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Preface

This volume contains the proceedings of the 5th International Conference on Formal Structures
for Computation and Deduction (FSCD 2020). The conference was planned to be held June
29 through July 6, 2020, in Paris, France, co-located with the 10th International Joint
Conference on Automated Reasoning (IJCAR 2020). Due to the COVID-19 pandemic, FSCD
2020 was instead held virtually. The conference (http://fscd-conference.org/) covers all
aspects of formal structures for computation and deduction, from theoretical foundations to
applications. Building on two communities, RTA (Rewriting Techniques and Applications)
and TLCA (Typed Lambda Calculi and Applications), FSCD embraces their core topics and
broadens their scope to include closely related areas in logics and proof theory, new emerging
models of computation, semantics and verification in new challenging areas.

The FSCD program featured four invited talks given by René Thiemann (University of
Innsbruck), Andrew Pitts (University of Cambridge), Simona Ronchi della Rocca (Universitá
di Torino), and Brigitte Pientka (McGill University). FSCD 2020 received 81 submissions
with contributing authors from 28 countries. The program committee consisted of 35 members
from 16 countries. Each submitted paper has been reviewed by at least three PC members
with the help of 98 external reviewers. The reviewing process, which included a rebuttal
phase, took place over eight weeks. A total of 28 regular research papers and 5 system
description papers were accepted for publication and are included in these proceedings. The
Program Committee awarded two FSCD 2020 Best Paper Awards by Junior Researchers:
Petar Vukmirović, Alexander Bentkamp and Visa Nummelin for the paper “Efficient Full
Higher-Order Unification”, and Andrej Dudenhefner for the paper “Undecidability of Semi-
unification on a Napkin”. This year we also introduced the Best System Description Award
by Junior Researchers, and the winner was Ankush Das for the paper “Resource-Aware
Session Types with Arithmetic Refinements” (co-authored with Frank Pfenning).

In addition to the main program, 9 FSCD-associated workshops were held, also virtually:

• IWC International Workshop on Confluence
• IFIP WG 1.6 Rewriting IFIP Meeting - 23rd edition
• Linearity & TLLA Joint workshop on Linearity and Trends

in Linear Logic and Applications
• UNIF International Workshop on Unification
• WPTE International Workshop on Rewriting Techniques for Program

Transformations and Evaluation
• WiL2020 Women in Logic
• HoTT/UF Workshop on Homotopy Type Theory/Univalent Foundations
• GeoCat Geometric and Categorical Structures for

Computation and Deduction
• TERMGRAPH International Workshop on Computing with Terms and Graphs

This volume of FSCD 2020 is published in the LIPIcs series under a Creative Commons
license: online access is free to all papers and authors retain rights over their contributions.
We thank the Leibniz Center for Informatics at Schloss Dagstuhl, in particular Michael
Wagner and Michael Didas for their prompt replies to any questions regarding the production
of these proceedings.
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0:x Preface

On behalf of the Program Committee, I thank the many authors of submitted papers
for considering FSCD as a venue for their work and all of the speakers for adapting their
presentations to a virtual environment. The Program Committee and the external reviewers
deserve thanks for their careful and detailed reviews of the submitted papers (the members
of the Program Committee and the list of external reviewers can be found on the following
pages). The EasyChair conference management system has been a useful tool in all phases
of the work of the Program Committee.

The associated workshops made a big contribution to the lively scientific atmosphere of
this virtual meeting. I thank the workshop organizers and local Workshop Chair, Giulio
Manzonetto, for their efforts and enthusiasm in making sure that workshops continued
to be an important element of FSCD. Stefano Guerrini, the Conference Chair, deserves
appreciation for rearranging the overall organization of the conference and for the smooth
functioning of the virtual meeting. Sandra Alves, as Publicity Chair, made a significant
contribution in advertising the conference. The steering committee, led by Delia Kesner,
provided excellent guidance in setting up this meeting and in ensuring that FSCD will have
a bright and enduring future.

FSCD 2020 was held in-cooperation with ACM SIGLOG and ACM SIGPLAN. It was
supported by Université Sorbonne Paris Nord, LIPN (Laboratoire d’Informatique de Paris
Nord), IRIF (Institut de Recherche en Informatique Fondamentale), CNRS (Centre National
de la Recherche Scientifique), INRIA (Institut National de Recherche en Informatique et en
Automatique), Tezos, and Amazon. Finally, I thank all of the participants of the virtual
conference for contributing to the success of the event in spite of the unusual circumstances
that we faced this year.

Zena M. Ariola
Program Chair of FSCD 2020
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Abstract
The notion of solvability, crucial in the λ-calculus, is conservatively extended to a probabilistic
setting, and a complete characterization of it is given. The employed technical tool is a type
assignment system, based on non-idempotent intersection types, whose typable terms turn out to
be precisely the terms which are solvable with nonnull probability. We also supply an operational
characterization of solvable terms, through the notion of head normal form, and a denotational
model of Λ⊕, itself induced by the type system, which equates all the unsolvable terms.
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1 Introduction

In probabilistic computation, the current state of the underlying program or machine can
evolve in different ways depending on the outcome of probabilistic choices, this way turning
an essentially deterministic process into a stochastic one. This computing paradigm has
proved useful, in particular, in the area of cryptography [20] or in so-called randomized
algorithmics [25]. From a theoretical point of view, all evolutions of a computation possibly
contribute to the final result, according to the laws of probability. As a consequence, the
result of a computation, if formalized using rewriting, is not a normal form with respect to
some set of reduction rules, but a probabilistic distribution on all the possible outcomes. If
the languages one has in mind are higher-order probabilistic languages, a natural model to
consider is the λ-calculus, of course enriched with one or more probabilistic constructs.

The simplest approach, followed in [11, 8, 13] consists in endowing the λ-calculus with
an operator ⊕ modeling fair coin flipping. This suffices to reach universality [8]: the
mere presence of binary fair probabilistic choice allows to get all computable probability
distributions on the natural numbers. The resulting calculus, called Λ⊕, is however well-
known to be non-confluent, as recalled in Example 3.2 below. In the literature, such a
problem has been handled by fixing deterministic reduction strategies. In [15], a foundational
investigation of all this has been initiated following a principle stated by Plotkin [28], where
a clear distinction is made between calculi and programming languages: the former consist
of reduction rules (and are thus independent of any reduction strategy), enjoy confluence
and standardization, while the latter are implementations of calculi, obtained by fixing a
deterministic standard strategy. The aforementioned reference [28] is the first considering
Λ⊕ as a calculus in the former sense, endowing it with the β-rule in its full generality, and
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1:2 Solvability in a Probabilistic Setting

a rule dealing with the probabilistic operator ⊕. The main results were that, under mild
conditions on the probabilistic rule, confluence and standardization hold. This is done both
in presence of call-by-name and of call-by-value evaluation.

In this paper, we continue this foundational investigation, from a semantic perspective.
We restrict ourselves to consider the call-by-name version of Λ⊕, and we study in it the
notion of solvability. Solvability is a central notion in λ-calculus theory: solvable programs
are those which are meaningful, i.e. those that can produce any desired result when applied
to a suitable sequence of arguments. More formally, a closed term M of the usual λ-calculus
is solvable if there is a sequence of terms ~P such that M ~P reduces to the identity. The
importance of this notion is witnessed by the fact that it is sound to equate all unsolvable
terms in any denotational semantics. We define solvability in Λ⊕, in a conservative way
with respect to λ-calculus, as follows. A closed term M of Λ⊕ is said to be p-solvable, where
p ∈ R[0,1] if p is the least upper bound on the probabilities of observing the identity in
the distributions obtained reducing M ~P for any sequence of terms ~P . In order to study
solvability, we use a type assignment system, based on non-idempotent intersection types,
where types are multisets (so intersections) of simple types, weighted by probabilities. The
result we obtain is a complete characterization of probabilistic solvability: an operational
characterization, through the notion of head normal form, a logical one, through typing, and
a denotational one. In fact, the type assignment system we define supplies a model for Λ⊕,
giving not trivial denotation to all and only the p-solvable terms, for a strictly positive real.

Related Work. The idea of endowing the λ-calculus with a form of probabilistic choice is
not at all new (see, e.g., [31, 17, 27, 29, 11, 13, 8]). Most of the introduced idioms, however,
come with a fixed reduction strategy, i.e. they are indeed languages, not calculi, according
to Plotkin’s distinction. To the authors’ knowledge, the only proposals of a probabilistic
λ-calculus in which reduction is studied independently on a specific strategy are the call-by-
name calculus introduced in [22], which stems from the line of work of differential [14] and
algebraic [32] λ-calculi, and the already mentioned work by the first and third authors [15].

The study of semantical properties of probabilistic λ-calculi has itself a long tradition,
starting from the pioneering contributions which introduced and studied the so-called
probabilistic powerdomain [31, 17], down to some deep observations about the technical
problems one inevitably encounters along this route [18], until, e.g., a very recent contribution
about how probabilistic higher-order computation can be reconciled with domain-theoretic
semantics based on continuous functions, through call-by-push-value [16].

An alternative way of giving a denotational semantics to probabilistic λ-calculi based
on coherent spaces has also been investigated [9], and the obtained model has been proved
fully abstract for a probabilistic variation on Plotkin’s PCF [12]. A model (itself based on
coherent spaces) for a calculus very similar in spirit to Λ⊕ has been given [13], and proved
fully abstract [24]. A full abstraction result has also been proved [5] for a model which is
based on the weighted relational semantics [21].

Observational equivalence for a probabilistic λ-calculus has been further studied by
Leventis [23] who proved it to coincide with the equivalence induced by Nakajima trees, i.e.
Böhm trees quotiented by infinitary extensionality. A probabilistic variation on Abramsky’s
applicative bisimilarity has been proved sound for contextual equivalence in an untyped
λ-calculus with weak-head evaluation [7], and fully abstract in presence of sequencing [19] or
head evaluation.
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An intersection type assignment system for Λ⊕ has been designed in [4], but with an
aim different than the one we have in the present paper: the authors show how weak-head
termination can be characterized by typability in idempotent intersection types. Type
disciplines of other kinds, sized types [6] and linear dependent types [1] in particular, have
been shown to be sound for termination of probabilistic higher-order programs.

Outline. In Section 2, we give basic notions about probability theory. In particular, we
define the central notions of distribution and multidistribution. In Section 3, we introduce the
calculus Λ⊕, a λ-calculus endowed with a probabilistic choice operator, indicated as ⊕. The
calculus’ operational semantics is given in terms of multidistributions, following [2, 15]. Then,
we define the semantic notion of p-solvability, and the notion of having head normal form
with probability p. In Section 4, we give a type assignment system, based on non-idempotent
intersection types, where types are multidistributions of simple types, and we prove that the
system enjoys the good properties of subject reduction and expansion. In Section 5 we give,
through the type assignment system, a threefold characterization of solvability: operational,
logical and denotational. In fact, the type assignment system induces a model for Λ⊕ in
which terms are interpreted by sets of typings. Section 6 contains some concluding remarks
and hints for future work. Some technical proofs are in the Appendix.

2 Preliminaries

A discrete probability space is given by a pair (Ω, µ), where Ω is a countable set, and
µ is a discrete probability distribution on Ω, i.e. is a function from Ω to [0,1] ⊂ R such
that ‖µ‖ :=

∑
ω∈Ωµ(ω) = 1. In this case, a probability measure is assigned to any subset

A ⊆ Ω as µ(A) =
∑
ω∈A µ(ω). Given a countable set Ω, a function µ : Ω → [0,1] is a

probability subdistribution if ‖µ‖≤ 1. We write DST(Ω) for the set of subdistributions on
Ω. Subdistributions allow us to deal with partial results and non-successful computations.
Slightly abusively, we often use the term distribution also when referring to subdistributions.

Let (Ω,µ) be as above. Any function F : Ω→ ∆, where ∆ is another countable set,
induces a probability distribution µF on ∆ by composition: µF (d ∈ ∆) := µ(F−1(d)) i.e.
µ{ω∈Ω:F (ω)=d}. The support of µ is Supp(µ)={ω :µ(ω)>0}. We represent a distribution
by explicitly indicating the support, and (as superscript) the probability µ assigns to each
element. We write µ= {ap1

1 ,...,a
pn
n } (where the ais are pairwise distinct) if µ(ai) = pi for

every 1≤ i≤n and µ(b)=0 for every b∈{a1,...,an}.

3 The Calculus

Terms and Contexts. Terms of Λ⊕ are generated by the grammar

M,N,P,Q ::=x | λx.M |MM |M⊕M (Terms)

where x ranges over a countable set of variables (indicated as x,y,...). As usual, λxy.PQR
abbreviates λx.(λy.(PQ)R), ~x and ~M denote respectively a sequence of variables and a
sequence of terms, and |~x| and | ~M | denote their lenghts. Free variables are defined as usual.
M [N/x] denotes the term obtained by the capture-avoiding substitution of N for each free
occurrence of x in M . Terms we use frequently in our examples are I = λx.x, ∆ = λx.xx,
K=λxy.x, O=λxy.y and Ω=(λx.xx)(λx.xx).

FSCD 2020
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Contexts and surface contexts are generated by the grammars:

C ::=� |MC |CM | λx.C |C⊕M |M⊕C (Contexts)

S,W,T ::=� | λx.S | SM (Surface Contexts)

where � denotes the hole of the context. Given a context C, we denote by C(M) the term
obtained from C by filling the hole with M , allowing the capture of free variables. Similarly
for surface contexts. Since the hole will be filled with a redex, surface contexts formalize the
fact that the redex (the hole) is neither in argument position nor in the scope of a ⊕.

Multidistributions. To syntactically represent the global evolution of a probabilistic system,
we rely on the notion of multidistribution [2].

A multiset is a (finite) list of elements, modulo reordering, ranged over by m,n. Let m
be a multiset of pairs of the form pM , with p∈]0,1], and M ∈Λ⊕. We call m=[piMi | i∈I]
(where the index set I ranges over finite subsets of a countable set a multidistribution
on Λ⊕ if

∑
i∈I pi ≤ 1 (think of list concatenation). We denote by MDST(Λ⊕) the set of

all multidistributions. We write the multidistribution [1M ] simply as [M ]. The sum of
multidistributions is denoted by +. The product q ·m of a scalar q and a multidistribution m
is defined pointwise: q ·[p1M1,...,pnMn]=[(qp1)M1,...,(qpn)Mn].

Intuitively, a multidistribution m∈MDST(Λ⊕) is a syntactical representation of a discrete
probability space where to each element of the space are associated a probability and a term
of Λ⊕. To the multidistribution m = [piMi | i ∈ I], we associate a probability distribution
µm∈DST(Λ⊕) as follows:

µm(M)=
∑
i∈I

qi qi=
{
pi if Mi=M

0 otherwise

(Observe that, m being a multiset, there are in general more than one elements piMi where
Mi = M , or even multiple copies of the same element). As usual (see Section 2), the
distribution µm assigns a probability measure to every subset of Λ⊕, namely the sum of the
probabilities of its elements. That is, given a set of terms T ⊆Λ⊕,

µm(T )=
∑
M∈T

µm(M)

I Example 3.1 (Distributions vs. Multidistributions). If m=[ 1
2a,

1
2a], then µm ={a1}. Please

observe the different nature of distributions and multidistributions: if n=[1a], then m 6=n,
but µm =µn.

Reduction Rules. We first define reduction rules on terms (Fig. 1), and one-step reduction
from terms to multidistributions (Fig. 2). We then lift the definition of reduction to a binary
relation on MDST(Λ⊕).

Observe that in the λ-calculus, a reduction step is given by the closure under context of
the reduction rules. However, a reduction from terms to terms is not informative enough
in a probabilistic setting, because the likelihood of each reduction step needs to be taken
into account. The meaning of M⊕N is that this term reduces to either M or N , with equal
probability 1

2 . There are various ways to formalize this fact, and here we follow [2, 15] and
use multidistributions.
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The reduction rules on the terms of Λ⊕ are defined in Fig. 1. The (one-step) reduction

The β-rule
(λx.M)N 7→βM [N/x]

Probabilistic Rules
M⊕N 7→l⊕M M⊕N 7→r⊕N

Figure 1 Reduction Rules.

relations →β ,→⊕⊆ Λ⊕× MDST(Λ⊕) are defined in Fig. 2. Observe that the probabilistic
rules 7→r⊕,l⊕ are closed only under surface contexts, while the reduction rule 7→β is closed
under general contexts. We denote by → the union →β∪→⊕. We lift the reduction relation

(λx.M)N 7→βM [N/x]
C((λx.M)N)→β [C(M [N/x])]

M⊕N 7→l⊕M M⊕N 7→r⊕N

S(M⊕N)→⊕ [ 1
2S(M), 12S(N)]

Figure 2 Reduction Steps.

→⊆Λ⊕×MDST(Λ⊕) to a relation ⇒⊆MDST(Λ⊕)×MDST(Λ⊕), as defined in Fig. 3. Observe
that ⇒ is a reflexive relation.
We define in the same way the lifting of any relation →r ⊆Λ⊕×MDST(Λ⊕) to a binary

[M ]⇒ [M ]
M→m

[M ]⇒m
([Mi]⇒mi)i∈I

[piMi | i∈I]⇒+i∈Ipi ·mi

Figure 3 Lifting → to ⇒.

relation ⇒r on MDST(Λ⊕). In particular, we lift →β ,→⊕ to ⇒β ,⇒⊕. The definition of
lifting allows us to apply a reduction step → to any number of Mi in the multidistribution
m=[piMi | i∈I]. If no Mi is reduced, then m⇒m (the relation ⇒ is reflexive).

Reduction Sequences. A ⇒-sequence (or reduction sequence) from m is a sequence
m0,m1,m2, ... such that m = m0 and mn ⇒ mn+1 for every n ∈ N. We write m⇒∗ n to indi-
cate that there is a finite sequence from m to n, and 〈mn〉n∈N for an infinite sequence.

Confluence. It has been proved [15] that the reduction ⇒ enjoys the confluence property.
The restriction of ⇒⊕ to surface contexts is essential to obtain confluence, as the following
example shows.

I Example 3.2. LetM be the term ∆(K⊕I). [M ]⇒β [(K⊕I)(K⊕I)]⇒∗ [ 1
4KK, 14KI, 14 IK, 14 II]⇒∗

[ 1
4λx.K,

1
4λx.I,

1
4K, 14 I], which is a multidistribution on normal forms. But, if we would allow

⇒⊕ also in the argument position, the result would be: [M ]⇒⊕ [ 1
2∆K, 12∆I]⇒∗ [ 1

2KK, 12 II]⇒⊕
[ 1
2λx.K,

1
2 I], which is a different multidistribution, again on normal forms!

Head Normal Forms. The notion of head normal form can be extended to Λ⊕. Head
normal forms (shortly hnfs) are the normal forms of surface reduction s→, i.e., the closure of
both β and ⊕ reduction rules under surface contexts S. Let us write H for the set of head
normal forms, which can be seen as being defined by the following grammar:

H ::=λx.H |K; K ::=x |KM.
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1:6 Solvability in a Probabilistic Setting

It is easy to check that any term of Λ⊕ can be written the following form:

λx1...xn.ζM1...Mm,

where m,n≥0 and ζ (the head) is either a variable or a redex. So, as in the λ-calculus, the
head normal forms are the terms having a variable in their head position.

In order to generalize the notion of having a head normal form to Λ⊕ we need to take
into account probabilities. Recall that H is the set of head normal forms, and therefore
µm(H) is the probability assigned by µm to the event “a term is in head normal form”. Let
then p be any strictly positive real number. Then:

A term M has head normal form with probability at least p (notation ≥p-hnf ) if there is
m such that [M ]⇒∗ m and µm(H)≥p.
A term M has head normal form with probability p (notation p-hnf ) if p=sup{q | [M ]⇒∗
m and µm(H)=q}.
A term M has not head normal form if for every m it holds that [M ] ⇒∗ m implies
µm(H)=0.

Note that even if a term has head normal form with probability 1, that degree of certitude
is not necessarily reached in any finite number of steps, as the following Example (point 2)
shows:

I Example 3.3.
1. M = λyz.(yI ⊕ y)Ω has ≥ 1

2 -hnf and ≥1-hnf so it has 1-hnf. In fact [M ] ⇒ m =
[ 1
2λyz.yIΩ, 12λyz.yΩ], and both components of m are in hnf.

2. Let N=λx.xx⊕I, and let M=NN . It is easy to check that [NN ]⇒∗ [ 1
2NN,

1
2 I], which,

for every n, reduces to m such that µm(H)= 1
2 + 1

4 +..+ 1
2n . So M has ≥

∑n
1

1
2n -hnf, for all

n≥1, and it thus has 1-hnf.
3. I⊕Ω has 1

2 -hnf.

3.1 Solvability
The notion of solvability is a central semantic notion, capturing the property of a term being
meaningful (or a program being meaningful, if we consider closed terms). In λ-calculus, the
semantic notion of solvability has its operational counterpart in that of head normal form,
moreover it can be characterized by suitable intersection type assignment systems. We will
show that similar properties hold for Λ⊕.

Let us first recall this notion for λ-calculus [3]. A λ-term M is solvable if there is a
surface context such that S(M) β-reduces to the identity I (obviously considering surface
contexts restricted to λ-calculus1). Closed solvable terms represent meaningful programs: if
M is closed and solvable, then M can produce any desired result when applied to a suitable
sequence of arguments. The importance of this notion is certified by the fact that it is sound
to equate all unsolvable terms in any denotational semantics.

Extending this notion to Λ⊕ is indeed possible by way of the following definition, where
p is any strictly positive real:

A term M is solvable with probability at least p (notation ≥p-solvable) if there is a surface
context S such that [S(M)]⇒∗ m, and µm(I)≥p.

1 To be precise, the definition of solvability for λ-calculus uses the notion of head context, which is a
restriction of that of surface context. But since the two induced β-reductions have the same normal
forms, using one or the other in the definition is equivalent. Here, the use of surface contexts is motivated
by the fact that the surface reduction is standard, while head reduction is not (see [15]).
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A term M is p-solvable if p=sup{q |M is ≥q-solvable}.
A term is unsolvable if for every S it holds that [S(M)]⇒∗ m implies µm(I)=0.

This definition, when restricted to the syntax of λ-calculus, coincides with the standard one.
Note that, while proving a term ≥p-solvable requires to exhibit just one context, proving
that a term is p-solvable may require to exhibit an infinite number of contexts. Point 3 of
the following example is an instance of this fact.

I Example 3.4.
1. M = λyz.(yI⊕ y)Ω is 1-solvable and ≥ 1

2 -solvable and ≥1-solvable. A context playing
the job is �(λxt.I)(λxt.I)I. In fact, [M(λxt.I)(λxt.I)I] ⇒∗β [((λxt.I)I ⊕ (λxt.I))ΩI] ⇒⊕
[ 1
2 (λxt.I)IΩI, 12 (λxt.I)ΩI]⇒∗β [ 1

2 II, 12 (λt.I)I]⇒β [ 1
2 I, 12 I].

2. Consider the term NN , defined in Example 3.3.2. Clearly NN is ≥
∑n

1
1

2n -solvable, for
every n>0. To prove that M is 1-solvable, the context � suffices.

3. Let Y be a fixed-point operator, whose behavior is [YM ]⇒∗ [M(YM)]. Then [Y (K⊕
O)]⇒∗ [ 1

2λx.Y (K⊕O), 1
2 I]⇒∗ [ 1

2 I, 1
4λx.I,

1
8λx1x2.I,..., 1

2nλx1..xn+1.I], (n ≥ 0). Then the
context Sn=� I..I︸︷︷︸

n+1

is a witness that M is ≥
∑n

1
1

2n -solvable, for every n≥0. Taking the

supremum, this term is 1-solvable.

Three Characterizations of Solvability. In the λ-calculus, solvability can be characterized [3,
30] in three different ways:

operationally, through the notion of head normal form;
logically, through suitable type assignment systems, based on intersection types;
denotationally, though some denotational models.

To be more precise, the operational characterization says that a term is solvable if and only
if it has head normal form, the logical characterization says that there are type assignment
systems assigning types to all and only the solvable terms, and the denotational one says
that there are λ-models which are sensible, i.e., which assign a significant denotation to all
and only the solvable terms. The aim of this paper is to show that similar characterizations
hold also for Λ⊕, taking into account the differences between the two calculi. For proving all
three characterizations, one tool is sufficient, namely an intersection type assignment system.

4 A Type Assignment System for Λ⊕

In this section we will present a type assignment system, based on non idempotent intersection
types, which is the technical tool we will use to characterize the solvability property of Λ⊕.

Types. Types are defined by the following grammars:

A,B ::=α |A→A (Simple Types)

a,b,c ::=
〈
p1A1,...,pnAn

〉
(Types)

A,B ::=[a1,...,an] (Context Types)

where n≥ 0, α ranges over a countable set of constants, types are multidistributions on
simple types, and context types are multisets of types. Note that the definition of types
as multidistributions means that, syntactically, a=

〈
p1A1,...,pnAn

〉
implies pi>0 for every

1≤ i≤n and Σ1≤i≤npi≤ 1. If a =
〈
piAi | i∈ I

〉
then its norm is ‖a‖=

∑
ipi. As usual, in

simple types, the type constructor → associates to the right.
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1:8 Solvability in a Probabilistic Setting

Type Contexts. Type contexts, ranged over by Γ,∆,Φ,Ψ are partial functions from variables
to context types, with finite domain. Γ]∆ denotes the function such that (Γ]∆)(x) =
Γ(x)+∆(x). We denote by ≤ the set-theoretical order between partial functions.

The Type Assignment System S. The type assignment S is given in Fig. 4; it proves
judgements of the shape Γ`M :a, or Γ`M :A, where Γ is a type context, M is a term, a is
a type and A is a context type.

I Notation 4.1. pa denotes
〈
pqA |qA∈a

〉
; recall that + denotes the multiset union, so a+b

denotes the concatenation of a and b. The type
〈
1A
〉
is abbreviated by

〈
A
〉
. Γ`M :a denotes

the existence of a derivation proving this judgment, while Π.Γ`M :a denotes a particular
type derivation proving the judgment Γ`M :a. If Π.Γ`M :a, then M and a are respectively
the subject and the object of Π. `M :a abbreviates ∅`M :a, where ∅ is the empty function.
If Π.Γ`M :a we say that M is typed in Π with probability ‖a‖.

a∈A
Γ,x :A`x :a var

Γ,x :A`M :
〈
piAi | i∈I

〉
Γ`λx.M :

〈
pi(A→Ai) | i∈I

〉 →I
Γ`M :

〈
pi(Ai→Bi) | i∈I

〉
(∆i`N :Ai)i∈I

Γ]i∈I∆i`MN :
〈
piBi | i∈I

〉 →E

(Γi`M :ai)i∈I
]iΓi`M : [ai | i∈I] !

Γ`M :a Γ`N :b
Γ`M⊕N : 1

2a+ 1
2b
⊕ Γ`M :a

Γ`M⊕N : 1
2a
⊕l Γ`N :a

Γ`M⊕N : 1
2a
⊕r

Figure 4 The Type Assignment System S.

The size of a derivation Π, denoted by |Π|, is defined as follows. Note that the size of Π is
not the number of its rule applications (the dimension of the derivation tree) because of the
cases of rules (!) and (⊕).

If Π is an application of the rule (var), then |Π|=1;
If Π ends with an application of rule (→I), with premise Φ, then |Π|= |Φ|+1;
If Π ends with an application of rule (→E), with premise Φ and (Ψi)i∈I , then |Π|=
|Φ|+

∑
i∈I |Ψi|+1;

If Π ends with an application of rule (!), with premises (Φi)i∈I , then |Π|=
∑
i∈I |Φi|;

If Π ends with an application of rule (⊕), with premises Φ,Ψ, then |Π|=max{|Φ|,|Ψ|}+1;
If Π ends with an application of rule (⊕r) (resp. (⊕l)), with premise Φ, then |Π|= |Φ|+1;

The size of a derivation is a key notion here, since one of the characterizations, namely the
proof of (1⇒2) in Theorem 5.1 is by induction on it. A benefit of using non idempotent
intersection consists in the fact that it is possible to define a measure of derivations that
decreases while reducing the subject. In case of λ-calculus, the size corresponds to the
dimension of the derivation tree, i.e., the number of rule applications in it. Here the additive
behavior of the (⊕) rule obliges us to a different choice.

Some comments about the rules of S are in order. The rule (var) uses implicitly a
weakening property. Rules (→ I) and (→E) are similar to the usual rules for λ-calculus.
Note that to the subject of the major premise is assigned a type, while to the subject
of the minor premise is assigned a context type; this is possible through rule (!). The
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three rules for the constructor ⊕ are as expected. Notice that these last rules treat type
environments addively, while the rule (→E) treats them multiplicatively. The use of an
additive presentation for ⊕ rules is justified by the fact that that, in order to have the subject
reduction property with respect to ⇒⊕, we need weakening, as the following example shows.

I Example 4.2. Let M=λx.(x⊕I). The following (incomplete) derivation can be built:

x : [
〈
A
〉
]`x :

〈
A
〉 var

` I :
〈
[
〈
B
〉
]→B

〉 →I

x : [
〈
A
〉
]`x⊕I :

〈 1
2A, 12 ([

〈
B
〉
]→B)

〉 ⊕

`λx.(x⊕I) :
〈 1

2 ([
〈
A
〉
]→A, 12 ([

〈
A
〉
]→ [

〈
B
〉
]→B

〉 →I

Note that [M ]⇒⊕ [ 1
2 I, 12λx.I]; while ` I :

〈
[
〈
A
〉
]→A

〉
, it is necessary to have weakening in order

to built a derivation proving `λx.I :
〈
[
〈
A
〉
]→([

〈
B
〉
]→B)

〉
.

In fact the weakening rule is derivable, as the following property formalizes.

I Property 4.3. Π.Γ`M :a implies there is Φ such that Φ.Γ]∆`M :a and |Φ|= |Π|.

On the other hand, the multiplicative presentation for the rule (→ E) comes naturally
from the use of non idempotent intersection, which avoid the use of difficult tools to prove
termination, like computability or reducibility candidates.

Rule (!) allows to assign context types to terms, and it can assign the type context [ ] to
any term, in case I is the empty set. It is not strictly necessary, a system without it could
be easily designed, but it allows for an easy presentation of the (→E) rule. Note that the
rule cannot be iterated.

The system can assign type also to terms with untyped subterms, through rules (⊕l),(⊕r)
and (→E), in case I=∅. Consider the following examples:

I Example 4.4.

x : [
〈
A
〉
]`x :

〈
A
〉 var

` I :
〈
[
〈
A
〉
]→A

〉 →I

` I⊕Ω:
〈 1

2 ([
〈
A
〉
]→A)

〉 ⊕l
x : [
〈
[ ]→B

〉
]`x :

〈
[ ]→B

〉 var

x : [
〈
[ ]→B

〉
]`xΩ:

〈
B
〉 →E

`λx.xΩ:
〈
[
〈
[ ]→B

〉
]→B

〉 →I

Properties of the Type Assignment System S. The system S enjoys the good properties
we expect, namely subject reduction and expansion. Before going into that, we need to prove
an important property of surface contexts, namely that terms filling their hole positions
inherit from them both the typability and the norm, as expressed by the following lemma.

I Lemma 4.5. If Π .Γ ` S(M) : a, then there are ∆ and b such that ∆ `M : b, where
‖a‖=‖b‖.

Proof. By induction on S. If S=� the proof is obvious. If S=TN , then Π is of the shape:

Π′.Γ′`T(M) :
〈
pi(Ai→Ai) | i∈I

〉
(∆i`N :Ai)i∈I

Γ′]i∈I∆i`T(M)N :
〈
piAi | i∈I

〉 →E

We conclude by induction. If S=λx.T, then the claim follows by induction, too. J

Typing is preserved by both reduction and expansion, but these properties, which are standard
in intersection type assignment systems, must be adapted to the probabilistic setting.

I Lemma 4.6 (One-Step Subject Reduction). Let Π.Γ`M :a.
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1:10 Solvability in a Probabilistic Setting

1. If M→β [N ] then there is Ψ.Γ`N :a.
2. If M→⊕ [ 1

2N1,
1
2N2], then one of the two following cases happens:

a= 1
2a1+ 1

2a2 and Ψ1.Γ`N1 :a1, Ψ2.Γ`N2 :a2;
a= 1

2b and Ψ.Γ`Ni :b, for some 1≤ i≤2.
Moreover, if the redex is typed in Π, then |Ψ|< |Π| (resp. |Ψi|< |Π|).

Proof. The proof is in the Appendix. J

I Lemma 4.7 (Subject Reduction). Π.Γ`M :a and [M ]⇒∗ m=[piNi | i∈ I] imply there is
J⊆I, a=Σj∈Jpjaj and Πj.Γ`Nj :aj.

Proof. By induction on the lenght of the reduction, using Lemma 4.6. J

I Lemma 4.8 (Subject Expansion). [M ]⇒∗ [piNi | i∈ I] and Γ`Nj : aj for some j ∈ J ⊆ I
imply ∆`M :Σj∈Jpjaj, for some ∆, Γ≤∆.

Proof. By induction on the length of the reduction, see the Appendix. J

The system can assign type to every hnf.

I Property 4.9. Let M ∈H. Then for every p∈]0,1] there are Γ,a such that Γ`M :a and
‖a‖=p.

Proof. Let M ∈H. The proof is by induction on the grammar defining H. Let M ∈K: we
will prove that, for every a there is Γ such that Γ`M : a. Let a =

〈
piAi | i∈ I

〉
. If M =x,

then choose Γ = x : [a], if M =NP , where N ∈K, then by induction there is Γ such that
Γ`N :

〈
pi([ ]→Ai) | i∈I

〉
and the proof follows by rule (→E). If M=λx.N , with N ∈H the

proof comes by induction and rule (→I). J

Note that the previous property says, in particular, that if a term is in hnf, then it is always
possible to assign it a type with norm 1.

5 Characterizing Solvability

The next theorem shows the key result of this paper.

I Theorem 5.1 (Finitary Characterization). The three following statements are equivalent:
1. Γ`M :a, with ‖a‖=p.
2. M has ≥p-hnf.
3. M is ≥p-solvable.

Proof. 1⇒2 Let Π.Γ`M :a; we prove that [M ]⇒∗ m with µm(H)≥‖a‖, by induction on
|Π|. Note that if M is in head normal form, the claim holds. If |Π|= 1, then M =x is
in hnf. Let |Π|>1. If M is in hnf, the claim holds; if M not in hnf, then, according to
Lemma 4.6, three cases can happen:
a M s→β [N ], and Ψ.Γ`N :a;
b M s→⊕ [ 1

2N1,
1
2N2], a= 1

2ai, and Ψ.Γ`Ni :ai, for some i∈{1,2};
c M s→⊕ [ 1

2N1,
1
2N2], a= 1

2a1+ 1
2a2, and Ψi.Γ`Ni :ai, for all i∈{1,2};

and in all cases |Ψ| < |Π|, |Ψi| < |Π| by Lemma 4.5. In case a, the result follows by
induction on the structure of Ψ. In the case b, by induction it holds that [Ni]⇒∗ ni
with µni

(H)≥‖ai‖, for some 1≤ i≤ 2. Assume i= 1. Then [M ]⇒∗ 1
2n1 + 1

2 [N2] = m, so
µm(H)≥ 1

2µn1(H)≥‖a‖. Let us consider case c. By i.h., it holds that [Ni]⇒∗ ni with
µni(H)≥‖ai‖ for every i∈{1,2}. Hence we have that M s→ [ 1

2N1,
1
2N2]⇒∗ ( 1

2n1+ 1
2n2)=m,

where µm(H)= 1
2µn1(H)+ 1

2µn2(H)≥i.h. 1
2‖a1‖+ 1

2‖a2‖=‖a‖.
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2⇒3 Assume M in H; we prove that M is 1-solvable, by showing how to build a particular
head context S such that [S(M)]⇒∗ [I]. Let M = λx1...xn.zM1...Mm. If z = xi, for
some i, then the context � (λz1...zm.I)︸ ︷︷ ︸

n

does the job. If z is free, then use the con-

text λz.�(λz1...zm.I). For the general case, let [M ] ⇒∗ m, and µm(H) = q ≥ p. Let
m = [q1N1, ...,qnNn] + n, where µn(H) = 0 and Σ1≤i≤nqi ≥ p. W.l.o.g., we assume M
closed. Every Ni is of the shape λ~xi.zi ~Pi, where zi ∈ ~xi; let r = max1≤i≤n|~xi| and
s=max1≤i≤n| ~Pi|. Choose w1,..,wr fresh variables. Then the desired context is:

H=(λw1...wr.�w1...wr)(λt1...tr+s.I)...(λt1...tr+s.I)︸ ︷︷ ︸
r

I...I︸︷︷︸
r+s

[S(M)]⇒∗ [q1S(N1),...,qnS(Nn)]+p. It is sufficient to prove that [S(Ni)]⇒∗ [I]. Now,

[S(Ni)]⇒∗β [(λw1...wr.w
i ~P ′i )(λt1...tr+s.I)...(λt1...tr+s.I)︸ ︷︷ ︸

r

I...I︸︷︷︸
r+s

],

where ~P ′i = ~Qiw|Pi|+1...wr, wi∈{w1,...,wr}, Qi=Pi[ ~wi/~xi] and | ~P ′i |≤| ~Pi|+r−1≤s+r−1.
Then, after r reduction steps, we obtain: [(λt1...tr+s.I) ~P ′′i I...I︸︷︷︸

r+s

]⇒∗β [(λ~t.I) I...I︸︷︷︸
l

], where

l≤r+s. Since s |~t|≤r+s, [(λ~t.I) I...I︸︷︷︸
l

]⇒∗β [ I...I︸︷︷︸
o

]⇒∗β [I] (o≤r+s−1).

3⇒1 Let M be ≥p-solvable. Then there is S such that [S(M)]⇒∗ [piI | i∈ I]+m, where
Σi∈Ipi ≥ p. By Property 4.9, there is a, with ‖a‖= 1, such that ` I : a, so, by Subject
Expansion, Γ`S(M) :Σi∈Ipia. By Lemma 4.5, Γ`M :b, where ‖b‖=Σi∈Ipi‖a‖.

J
The results of Theorem 5.1 can be extended to the supremum, this way enabling a complete
characterization:

I Theorem 5.2 (Characterization). The three following statements are equivalent
1. p=sup{q |Γ`M :a, for some Γ,a, and q=‖a‖}.
2. M has p-hnf.
3. M is p-solvable.

Theorem 5.2 implicitly supplies three different characterizations of solvability, similarly to
what happens in the λ-calculus. Namely, the equivalence 2⇔3 corresponds to an operational
characterization of solvability, and 1⇔3 corresponds to a logical characterization. Moreover
1⇔2 gives a logical characterization of hnf s.

A Model for Λ⊕. S is an extension of the basic type assignment system defined in [26],
which gives rise to a relational model of λ-calculus. It is possible to reason in a similar way
here, and to extract from S a model of Λ⊕, in the sense specified by Property 5.3. As has
been proved in [26], following a seminal observation of [10], the interpretation of a term in a
model extracted from a type assignment system with non-idempotent intersections, depends
not only on the types derivable for it, but also on the related type contexts. In fact, the
context is necessary to preserve the quantitative aspect of types. Let us define the basic
ingredients of our model. An abstract typing is a pair (Γ;a), where Γ is a type context and a
is a type, not necessarily related to each-other. Let T be the set of abstract typings: the
space D of denotations of our model is the power set of T . D is equipped by two operations
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1:12 Solvability in a Probabilistic Setting

◦,⊕ :D−→D which allow to interpret terms of Λ⊕. Their definitions reflect, respectively, the
behavior of the typing rules (→E) and (⊕) of S:

t1◦t2 ={(Γ;
〈
piAi | i∈I

〉
) |(Γ;

〈
pi([ ]→Ai) | i∈I

〉
∈ t1}∪{

(Γ]i∈I∆i;
〈
piAi | i∈I

〉∣∣∣∣ (Γ;
〈
pi(Ai→Ai) | i∈I

〉
∈ t1,Ai=[aij |j∈Ji],

(∆i
j ;aij)∈ t2,∆i=]j∈Ji∆i

j

}
;

t1⊕t2 =
{(

Γ;12a
)
|(Γ;a)∈ t1

}
∪
{(

Γ;12a
)
|(Γ;a)∈ t2

}
∪{(

Γ;12a1+ 1
2a2

)
|(Γ;ai)∈ ti,i=1,2

}
.

Moreover, if t∈D and p is a probability, p•t denotes the element of D such that, if (Γ;a)∈ t
then (Γ;pa)∈p•t. Let ρ be a denotational environment, assigning an element of D to every
variable: the interpretation of a term under the environment ρ is defined by induction as
follows:

JxKρ=ρ(x)
JMNKρ=JMKρ◦JNKρ

JM⊕NKρ=JMKρ⊕JNKρ
Jλx.MKρ={(Γ;

〈
pi(A→Ai) | i∈I

〉
|A=[aj |j∈J ],(Γ]j∈J∆j ;

〈
piAi | i∈I

〉
)∈JMKρ[t/x],

t={(∆j ;aj) |j∈J}}

It is easy to check that the interpretation of a term is related to its concrete typings in the
following way:

JMKρ={(Γ;a) |∆`M :a,Γ=]i∈I∆i such that for every x,
∆(x)=[ai | i∈I] implies (∆i;ai)∈ρ(x)}

If M is a closed term, then its interpretation is even simpler, namely:

JMK={(Γ;a) |∃Γ,a.Γ`M :a}

In particular, since M closed and Γ`M :a together imply that `M :a, the interpretation of
a closed term depends only on the types derivable for it. In the following we will restrict
ourselves to consider only closed terms: clearly all the properties we prove hold also for the
open terms, but are expressed in a more cumbersome way.

The model is correct with respect to the operational behavior of Λ⊕, i.e., the following
property holds.

I Property 5.3 (Adequacy). Let M be closed. M⇒∗ [piMi | i∈I] implies JMK=∪i∈Ipi•JMiK.

Finally, the model characterizes solvability, in the following sense:

I Property 5.4. Let M be closed. M is p-solvable if and only if p=sup{q |(Γ;a)∈JMK} and
‖a‖=q.

Note that M is unsolvable if and only if JMKρ=∅ for every ρ, so, using the terminology of
λ-calculus, this model is sensible, since it equates all unsolvable terms.
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6 Conclusions and Future Work

We investigated the notion of solvability in the context of the calculus Λ⊕ as introduced in
[15], and focusing on the call-by-name parameter passing regime. Solvability being a semantic
property, and call-by-name and call-by-value behaving quite differently semantically [30], we
leave the task of extending our work to call-by-value to some future work. The definition
of solvability we give is a conservative extension of the one from the pure λ-calculus, and
explicitly takes probability into account: a term is dubbed p-solvable if, put in a suitable
context, it reduces to the identity with probabilities at most, but arbitrary close to, p.
We characterize solvability through a type assignment system based on non-idempotent
intersection types. Such a system supplies a logical characterization of solvability, but also
induces an operational one in which being p-solvable corresponds to having head normal form
with probability p. Finally, the type system induces a model for Λ⊕, in which all unsolvable
terms (i.e., terms which are 0-solvable) are equated.

It would be interesting to study the theory induced by our model from a finer point
of view, in particular with respect to the equivalence it induces on terms. Certainly, this
equivalence cannot coincide with the operational one, characterized in [23], since our model is
not extensional. The type assignment system could however be enriched with an equivalence
between types, in such a way as to induce an extensional model, thus catching the operational
semantics of Λ⊕, in the sense of Plotkin.

Moreover, we intend to give a domain-theoretic account of our model: we believe that it
gives a logical description of the category of weighted relational models [21], as conjectured
by an anonymous referee.
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A Some Technical Proofs

Subject Reduction. As usual, the subject reduction property relies on a substitution
property.

I Lemma A.1 (Substitution). Π.Γ,x :A`M :a (resp. Π.Γ,x :A`M :B) and Θ.∆`N :A
imply Π[Θ/x].Γ]∆ `M [N/x] : a (resp. Π[Θ/x].Γ `M [N/x] : B). Moreover, |Π[Θ/x]|<
|Π|+|Θ|.

https://tel.archives-ouvertes.fr/tel-01427279v2/document
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Proof. By induction on Π:
Let Π be:

a∈A
Γ,y :A`y :a var

On the other side, the derivation Θ is of the shape:

(Πi.Γi`N :ai)i∈I
]i∈IΓi`N : [ai | i∈I] !

so a=ai, for some i. Let y=x. By Property 4.3, there is a derivation Ξ.Γ]i∈IΓi`N :ai,
such that |Ξ|= |Πi|. So Π[Θ/x]=Ξ. If y 6=x, then Π[Θ/x]=Π. In both cases the condition
on the size of Π[Θ/x] is obvious.
Let Π be:

Ξ.Γ,x :A′`P :
〈
pi(Bi→Bi) | i∈I

〉
(Πi.]i∈IΣi,x :Ai`Q :Bi)i∈I

Γ]i∈IΣi]x : (A′+i∈IAi)`PQ :
〈
piBi | i∈I

〉 →E

where A=A′+i∈IAi. Then the derivation Θ is:

(Φb.∆b`N :b)b∈A′ ((Φic.∆i
c`N :c)c∈Ai)i∈I

+b∈A′∆b+c∈A′,i∈I∆i
c`N :A !

Then we can build derivations Ψ and Ψi, with subject N , by rule (!) with premises
respectively (Φb)b∈A′ and (Φic)c∈Ai ; by induction there are Ξ[Ψ/x].P [N/x] :

〈
pi(Bi→bi) |

i∈I
〉
and (Πi[Ψi/x].`Q[N/x] :Bi). Since PQ[N/x]=P [N/x]Q[N/x] the result follows

by rule (→E). Moreover by induction |Ξ[Ψ/x]|< |Ξ|+ |Ψ|, |Πi[Ψi/x]|< |Πi|+ |Ψi|, so
|Π[Θ/x]|= |Ξ[Ψ/x]|+i∈I |Πi[Ψi/x]|+1< |Ξ|+|Ψ|+i∈I (|Πi|+|Ψi|)+1= |Π|+|Φ′|
Let Π be:

Π1.Γ,x :A`P :a Π2.Γ,x :A`N :b
Γ,x :A`P⊕Q : 1

2a+ 1
2b

⊕

By induction there are Π1[Θ/x].Γ]∆`P [N/x] : a and Π2[Θ/x].Γ]∆`Q[N/x] : b, so
Π[Θ/x] can be built by rule (⊕). Moreover |Π[Θ/x]|=max{|Π1[Θ/x]|,|Π2[Θ/x]|}+1<i.h.
max{(|Π1|+|Θ|,|Π2|+|Θ|)+1=max{|Π1|,|Π2|}+|Θ|+1= |Π|+|Θ|.
If the last used rule is (→I), (⊕r), ⊕l) the proof follows by induction.

J

Let us identify an occurrence of a term N in a termM by the context C such thatM=C(N).
Then, given a typing derivation Π.Γ`M : a, an occurrence of a subterm of M is a typed
occurrence of Π if and only if it is the subject of a subderivation of Π.

I Lemma (4.6, One-Step Subject Reduction). Let Π.Γ`M :a.
1. If M→β [M ′] then there is Π′.Γ`M ′ :a.
2. If M→⊕ [ 1

2M1,
1
2M2], then one of the two following cases happens:

a= 1
2a1+ 1

2a2 and Π′1.Γ`M1 :a1, Π′2.Γ`M2 :a2;
a= 1

2b and Π′.Γ`Mi :b, for some i (i∈{1,2}).
Moreover, if the redex is typed in Π, then |Π′|< |Π| (resp. |Π′i|< |Π|).

Proof.
1. By induction on the context C such that M =C((λx.P )Q) and M ′=C(P [Q/x]). The

base case follows by Lemma A.1, the induction case is easy.
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2. By induction on the context S such that M=S(P⊕Q), and then by induction on Π.
a. In case S=�, then the last rule of Π is ⊕, and the proof is obvious. Let S=λx.S′. So

M=λx.N→⊕ [ 1
2λx.N1,

1
2λx.N2], so N→⊕ [ 1

2N1,
1
2N2]. Π is of the shape:

Π′.Γ,x :A`N :
〈
piAi | i∈I

〉
Γ`λx.N :

〈
pi(A→Ai) | i∈I

〉 →I

by induction
〈
piAi | i∈I

〉
=
〈
qi

2 Ai | i∈I1
〉
+
〈
qi

2 Ai | i∈I2
〉
, and Γ`Nj :

〈
qi | i∈Ij

〉
, where

I=I1∪I2, pi= qi

2 (j=1,2). Then by rule (→I), Πj.Γ`λx.Nj :
〈
qi(A→Ai) | i∈Ij

〉
(j=

1,2), and then, by rule (⊕), Φ.Γ`λx.N1⊕λx.N2 : 1
2
〈
qi(A→Ai) | i∈I1

〉
+ 1

2
〈
qi(A→Ai) |

i∈I2
〉

=
〈
pi(A→Ai) | i∈I

〉
. Moreover, if the redex is typed in Π, then it is typed in Π′,

so by induction |Π′i|< |Π′|. Then |Φ|= 1
2 |Π1|+ 1

2 |Π2|= 1
2 (|Π′1|+|Π′2|)+1< |Π′|+1= |Π|.

Let S=S′P . Then M=NP→⊕ [ 1
2N1P,

1
2N2P ] and Π is of the shape:

Π′.Σ`N :
〈
pi(Ai→Ai) | i∈I

〉
(Ψi.∆i`P :Ai)i∈I

Γ=Σ]i∈I∆i`NP :
〈
piAi | i∈I

〉 →E

By induction on Π′, I = I1 ∪ I2 and
〈
pi(Ai → Ai) | i ∈ I

〉
=
〈 1

2pi(Ai → Ai) | i ∈
I1
〉

+
〈 1

2pi(Ai → Ai) | i ∈ I2
〉
such that Π1 . Σ ` N1 :

〈
pi(Ai → Ai) | i ∈ I1

〉
and

Π2.Σ`N2 :
〈
pi(Ai→Ai) | i∈I2

〉
, so, by rule (→E), Φj.Σ]i∈Ij ∆j `NjP :

〈
piAi | i∈Ij

〉
(j∈{1,2}). By Property 4.3, Σ]i∈I∆i`NjP :

〈
piAi | i∈Ij

〉
. So, by rule (⊕), we obtain

Θ.Γ`N1P⊕N2P : 1
2
〈
piAi | i∈ I1

〉
+ 1

2
〈
piAi | i∈ I2

〉
. Moreover, if the redex is typed in

Π, then it is typed in Π′, so by induction |Πi|< |Π′|. Since |Φj |= |Πj |+i∈Ij
|Ψi|+1,

we have: |Θ| = 1
2 |Φ1| + 1

2 |Φ2| = 1
2 (|Π1| +i∈I1 |Ψi| + 1) + 1

2 (|Π2| +i∈I2 |Ψi| + 1) =
1
2 (|Π1|+|Π2|)+i∈I |Ψi|+1< |Π′|+i∈I |Ψi|+1= |Π|.

b. Similar to the previous case, but easier.
If the redex occurs in an untyped occurence of Π, then, by Lemma 4.5, it is a β-redex. So, if
Π.Γ`C(M) :a, and M→βM

′, then Π′.Γ`C(M ′) :a can be obtained from Π just replacing
the occurrence of M by M ′. J

Subject Expansion.

I Lemma A.2 (Inverse Substitution). Π . Γ ` M [N/x] : a implies there is A such that
Σ,x :A`M :a, ∆`N :A and Γ⊆Σ]∆.

Proof. By induction on M . All the cases follow easily by induction. Note that, in case all
the occurrences of N in M are untyped in Π, then A=[] and Σ=Γ. J

I Lemma A.3 (One-Step Subject Expansion).
1. Π.Γ`M :a and N→β [M ] imply Γ`N :a.
2. Π.Γ`M :a and N→⊕ [ 1

2M, 12P ] imply Γ→N : 1
2a.

3. Π.Γ`Mi :ai for every 1≤ i≤2 and N→⊕ [ 1
2M1,

1
2M2] imply Γ`N : 1

2a1+ 1
2a2.

Proof.
1. By Lemma A.2.
2. By induction on the context S such that N=S(R1⊕R2)→⊕ [ 1

2S(R1), 12S(R2)] and either
M = S(R1) or P = S(R2), and then by induction on Π. In case S = �, the proof is
obvious. Let S=λx.S′, so N=λx.Q→⊕ [ 1

2λx.N1,
1
2λx.N2], where Q→⊕ [ 1

2N1,
1
2N2]. Let

Π.Γ`λx.N1 :a. Then Π is of the shape:

Γ,x :A`N1 :
〈
piBi | i∈I

〉
Γ`λx.N1 :

〈
pi(A→Bi | i∈I

〉 →I
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By induction Γ,x :A`Q :
〈 1

2piBi | i∈I
〉
, and then, by rule (→I), Γ`λx.Q :

〈 1
2pi(A→Bi) |

i∈I
〉
. Let S=S′R, so N=QR→⊕ [ 1

2N1R,
1
2N2R]. Then Π is of the shape:

Γ`N1 :
〈
pi(Ai→Ai) | i∈I

〉
(∆i`R :Ai)i∈I

Γ]i∈I∆i`N1R :
〈
piAi | i∈I

〉 →E

By induction, Γ`Q :
〈 1

2pi(Ai→Ai) | i∈I
〉
, so the proof follows by rule (→E). J
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Abstract
Metaprogramming is the art of writing programs that produce or manipulate other programs. This
opens the possibility to eliminate boilerplate code and exploit domain-specific knowledge to build
high-performance programs. Unfortunately, designing language extensions to support type-safe
multi-staged metaprogramming remains very challenging.

In this talk, we outline a modal type-theoretic foundation for multi-staged metaprogramming
which supports the generation and the analysis of polymorphic code. It has two main ingredients:
first, we exploit contextual modal types to describe open code together with the context in which
it is meaningful; second, we model code as a higher-order abstract syntax (HOAS) tree within a
context. These two ideas provide the appropriate abstractions for both generating and pattern
matching on open code without committing to a concrete representation of variable binding and
contexts.

Our work is a first step towards building a general type-theoretic foundation for multi-staged
metaprogramming which on the one hand enforces strong type guarantees and on the other hand
makes it easy to generate and manipulate code. This will allow us to exploit the full potential
of metaprogramming without sacrificing reliability of and trust in the code we are producing and
running.
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1 Summary

Metaprogramming provides programmers with the ability to write programs that generate
specialized and optimized code. This makes it possible to design and implement domain-
specific program optimizations that complement general compiler optimizations yielding
substantial performance gains. Unfortunately, designing language extensions to support
writing type-safe meta-programs remains very challenging.

One widely used approach to metaprogramming going back to Lisp/Scheme is using
quasiquotation which allows programmers to generate and compose code fragments. For
example, the quasiquotation d2 + 2e is representing an abstract syntax tree (AST) of the
expression 2 + 2. We can embed and compose code fragments using unquote, written as b c.
Assuming that the function square 2 generates code d2 * 2e, the expression d2 + bsquare 2ce
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evaluates to the code d2 + 2 * 2e where we splice in the generated code. There are two
immediate questions that arise:
1. Can we express and reason statically about open code, i.e. code that may contain and

refer to variables?
2. Can we analyze and further manipulate code via pattern matching?

A milestone in developing a logical foundation for characterizing code and reasoning about
code generation is the work by Davies and Pfenning [2]. Davies and Pfenning distinguish
between code and programs using the necessity modality. For example, the code d2 + 2e
has the modal type dinte, while the program square has type int → dinte. This allows us
to statically reason about different stages of computation. However, Pfenning and Davies’
work has two limitations: first, it only allows us to generate and reason about closed code
and second, it does not support analysis of code via pattern matching. Subsequent work by
Nanevski, Pfenning and Pientka [3] suggests to characterize open code 2 + x together with
the context x:int, ascribing the code dx. 2 + xe the contextual type dx:int ` inte thereby
removing the first restriction. Yet, a type-safe multi-staged metaprogramming foundation
that supports both the generation of and pattern matching on open code remains elusive.

In this talk, we outline a modal type-theoretic foundation for polymorphic multi-staged
metaprogramming that brings together the generation and the analysis of open code within
the same framework. In particular, we draw on the theory and practice of contextual types
and first-class contexts in the Beluga proof and programming environment [4, 7, 8, 1, 6, 5]
and adapt two main ideas to the metaprogramming setting: first, we exploit contextual
modal types to describe open polymorphic code together with the context in which it is
meaningful; second, we model code as a higher-order abstract syntax (HOAS) tree within
a context. These two ideas provide the appropriate abstractions for both generating and
pattern matching on open code without committing to a concrete representation of variable
binding and contexts which is left open to the implementor of the language.

Our work is a first step towards building a general type-theoretic foundation for multi-
staged metaprogramming which enforces strong type guarantees and whose provided abstrac-
tions make it easy to generate and manipulate code. This will allow us to exploit the full
potential of metaprogramming without sacrificing reliability of and trust in the code we are
producing and running.

References
1 Andrew Cave and Brigitte Pientka. Programming with binders and indexed data-types. In 39th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’12),
pages 413–424. ACM Press, 2012.

2 Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal of the
ACM, 48(3):555–604, 2001. doi:10.1145/382780.382785.

3 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
ACM Transactions on Computational Logic, 9(3):1–49, 2008.

4 Brigitte Pientka. A type-theoretic foundation for programming with higher-order abstract
syntax and first-class substitutions. In 35th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’08), pages 371–382. ACM Press, 2008.

5 Brigitte Pientka, Andreas Abel, Francisco Ferreira, David Thibodeau, and Rebecca Zucchini.
A type theory for defining logics and proofs. In 34th IEEE/ ACM Symposium on Logic in
Computer Science (LICS’19), pages 1–13. IEEE Computer Society, 2019.

6 Brigitte Pientka and Andrew Cave. Inductive Beluga:Programming Proofs (System Descrip-
tion). In 25th International Conference on Automated Deduction (CADE-25), Lecture Notes
in Computer Science (LNCS 9195), pages 272–281. Springer, 2015.

https://doi.org/10.1145/382780.382785


B. Pientka 2:3

7 Brigitte Pientka and Joshua Dunfield. Programming with proofs and explicit contexts. In ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming (PPDP’08),
pages 163–173. ACM Press, 2008.

8 Brigitte Pientka and Joshua Dunfield. Beluga: a framework for programming and reasoning
with deductive systems (System Description). In Jürgen Giesl and Reiner Haehnle, editors,
5th International Joint Conference on Automated Reasoning (IJCAR’10), Lecture Notes in
Artificial Intelligence (LNAI 6173), pages 15–21. Springer, 2010.

FSCD 2020





Quotients in Dependent Type Theory
Andrew M. Pitts
Department of Computer Science & Technology, University of Cambridge, UK

Abstract
Constructs that involve taking a quotient are commonplace in mathematics. Here I will consider
how they are treated within dependent type theory. The notion of quotient type has its origins in
the Nuprl theorem-proving system [4] for extensional type theory. Later Hofmann formulated a
version for intensional type theory in his thesis [7]. This depends on having a pre-existing notion
of intensional identity type. Hofmann used Martin-Löf’s notion, the indexed family inductively
generated from proofs of reflexivity [9, chapter 8]. The recent homotopical view of identity in terms
of path types [10] gives a more liberal perspective and has brought with it the notion of higher
inductive type (HIT) [8], subsuming both inductive and quotient types.

Inductively defined indexed families of types (in all their various forms) are perhaps the most
useful concept that dependent type theory has contributed to the practice of computer assistance for
formalizing mathematical proofs. However, it is often the case that a particular application of such
types needs not only to inductively generate a collection of objects, but also to make identifications
between the objects. In classical mathematics one can first generate and then identify, using the
Axiom of Choice to lift infinitary constructions to the quotient. HITs can allow one to avoid such non-
constructive uses of choice by inter-twining generation and identification. Perhaps more important
than the constructive/non-constructive issue is that simultaneously declaring how to generate and
how to identify can be a very natural way of defining some construct from the user’s point of view.
This is why HITs promise to be so useful, once we have robust and convenient mechanisms in
theorem-proving systems for defining HITs and defining functions out of HITs. Although some HITs
have been axiomatized in various systems, at the moment the only system I know of with built in
support for defining quite general forms of HIT and using them is the implementation of cubical
type theory [3] within recent versions of the Agda system [11].

The higher dimensional aspect of identity in cubical type theory is fascinating; nevertheless, the
simpler one-dimensional version of identity, in which one has uniqueness of identity proofs (UIP), is
adequate for many applications. Although some regard UIP as a bug of early versions of Agda with
it’s original form of dependent pattern matching [5], it is by choice a feature of the Lean prover [2].
Altenkirch and Kaposi [1] have termed the one-dimensional version of HITs quotient inductive types
(QITs) and they promise to be very useful even in the setting of type theory with UIP.

In this talk I survey some of these developments, including a recent reduction of QITs to
quotients [6], and the prospects for better support in theorem-provers for quotient constructions.
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Abstract
The weighted path order (WPO) unifies and extends several termination proving techniques that are
known in term rewriting. Consequently, the first tool implementing WPO could prove termination
of rewrite systems for which all previous tools failed. However, we should not blindly trust such
results, since there might be problems with the implementation or the paper proof of WPO.

In this work, we increase the reliability of these automatically generated proofs. To this end, we
first formally prove the properties of WPO in Isabelle/HOL, and then develop a verified algorithm
to certify termination proofs that are generated by tools using WPO. We also include support for
max-polynomial interpretations, an important ingredient in WPO. Here we establish a connection
to an existing verified SMT solver. Moreover, we extend the termination tools NaTT and TTT2, so
that they can now generate certifiable WPO proofs.
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1 Introduction

Automatically proving termination of term rewrite systems (TRSs) has been an active field
of research for half a century. A number of simplification orders [13] are classic methods for
proving termination, while more general pairs of orders called reduction pairs play a central
role in the more modern dependency pair framework [19].

The weighted path order (WPO) was first [51] introduced as a simplification order that
unifies and extends classical ones, and then generalized to a reduction pair to further subsume
more recent techniques [53]. The Nagoya Termination Tool (NaTT) [52] was originally
developed solely to demonstrate the power of WPO. It participated in the full run of the
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termination analysis in literature

proof assistant: Isabelle/HOL

formal library: IsaFoR

tools: NaTT, TTT2, . . .

termination proof

certifier: CeTA

theorems proofs

algorithms
techniques

generate

TRS

accept reject

Figure 1 Procedure for Certification of Termination Proofs via IsaFoR/CeTA.

2013 edition of the Termination Competition [18] and won the second place, closing 34 of
159 then-open problems in the TRS Standard category. In 28 of them WPO was essential
(the others are due to the efficiency of NaTT) [53].

Despite the significance of the result, two natural questions arise:

(1) “Is the theory of WPO correct?,” and if yes

(2) “Is NaTT’s implementation of the theory correct?”.
So far, nobody investigated the 34 proofs found by NaTT; these benchmarks are obtained
via automatic transformations from other systems, and hence hard to analyze by hand (they
have up to a few hundred of rules). In this work, we answer the two questions.

To this end, we extend IsaFoR and CeTA [47]. The former, Isabelle Formalization of
Rewriting, is an Isabelle/HOL [35]-formalized library of correctness proofs of analysis tech-
niques for term rewriting and transition systems, and the latter, Certified Tool Assertions,
is a verified Haskell code generated from IsaFoR that takes machine-readable output from
untrusted verifiers and checks whether techniques are applied correctly. This workflow is
illustrated in Figure 1.

In this paper we describe two main extensions of IsaFoR and CeTA. After preliminaries we
develop formal proofs of the properties of WPO being a reduction pair in Section 3. Here, we
illustrate that one refinement of WPO provided in [53] breaks transitivity in a corner case,
but we also show how to repair it by adding a mild precondition. Second, in Section 4 we
formalize the max-polynomial interpretations that are used in [53] in a general manner. There
we utilize our recently developed verified SMT solver for integer arithmetic [7, 8]. In Section 5
we give a short overview of our new certificate parser implementation in Isabelle/HOL and
the format for certificates for WPO and max-polynomial interpretations. In Section 6, we
experimentally evaluate our extensions of CeTA. To this end, we extend NaTT to be able to
output certificates introduced in the preceding section, and we also integrate WPO in the
Tyrolean Termination Tool 2 (TTT2) [27]. Details on the experiments are provided at:

http://cl-informatik.uibk.ac.at/isafor/experiments/wpo/

This website also provides links to the formalization.

http://cl-informatik.uibk.ac.at/isafor/experiments/wpo/
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Related Work

There is plenty of work on orders for proving termination of rewriting. The earliest such
work we are aware of is Knuth and Bendix’ order (KBO), introduced in their celebrated
paper in 1970 along with the Knuth–Bendix completion [26]. In the same year, Manna and
Ness [33] proposed a semantic approach, which nowadays is called interpretation methods.
One instantiation of this approach is Lankford’s polynomial interpretation method [30], which
he also combined with KBO [31]. Dershowitz [14] initiated a purely syntactic approach called
recursive path orders (RPO), where he also discovered the notion of simplification orders.

The dependency pair method of Arts and Giesl [1] boosted the power of termination
proving techniques, and around the same time many automated termination provers emerged:
AProVE [17], TTT [21], CiME3 [10], Matchbox [49], muterm [32], TORPA [57], and so on, which
have been evaluated annually in the Termination Competition [18] since 2004. Results of the
competition regularly reveal that we cannot blindly trust such automated tools, when one
tool claims a TRS terminating, while another claims the same TRS nonterminating.

Hence certification came into play. Besides our IsaFoR/CeTA, we are aware of at least
two other systems for certifying termination proofs of TRSs: Coccinelle/CiME3 [11] and
CoLoR/Rainbow [6]. Here, Coccinelle and CoLoR are similar to IsaFoR: they are all formal
libraries on rewriting, though the former two are in Coq [5] instead of Isabelle. The choice
of proof assistant aside, a significant difference to IsaFoR/CeTA is in the workflow when
performing certification: CiME3 and Rainbow transform termination proofs into Coq files that
reference their corresponding formal libraries, and then Coq does the final check, whereas in
our case we just run the generated Haskell code CeTA outside of Isabelle.

Within IsaFoR, most closely related to the current work is the previous formalization [46]
of RPO, since RPO and WPO are similar in its structure. We refer to Section 3 for more
details on how we exploit this similarity.

We would also like to mention some related work outside of pure term rewriting. Recently
a verified ordered resolution prover [36] has been developed as part of the IsaFoL project, the
Isabelle Formalization of Logic. Currently the verified prover is based on KBO, which could
be replaced by the stronger and more general WPO. In fact, WPO is already utilized in the
E theorem prover [24].

In recent work [8] IsaFoR became capable of certifying termination proofs for integer
transition systems. This work eventually led to a verified SMT solver for linear integer
arithmetic [7], which we heavily reuse in our current work.

2 Preliminaries

2.1 Term Rewriting
We assume familiarity with term rewriting [2], but briefly recall notions that are used in
the following. A term built from signature F and set V of variables is either x ∈ V or of
form f(t1, . . . , tn), where f ∈ F is n-ary and t1, . . . , tn are terms. A context C is a term
with one hole, and C[t] is the term where the hole is replaced by t. The subterm relation D
is defined by C[t] D t. A substitution is a function σ from variables to terms, and we write
tσ for the instance of term t in which every variable x is replaced by σ(x). A term rewrite
system (TRS) is a set R of rewrite rules, which are pairs of terms ` and r indicating that an
instance of ` in a term can be rewritten to the corresponding instance of r. R is terminating
if no term can be rewritten infinitely often.
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A reduction pair is a pair (�,%) of two relations on terms that satisfies the following
requirements: � is well-founded, % and � are compatible (i.e., % ◦ � ◦ % ⊆ �), both are
closed under substitutions, and % is closed under contexts. If � is also closed under contexts,
then we call (�,%) a monotone reduction pair. If the first component � of a monotone
reduction pair is transitive, it is called a reduction order. While reduction orders are used to
directly prove termination by R ⊆ �, reduction pairs are usually employed for termination
proofs with dependency pairs. We write �lex and �mul for the lexicographic and multiset
extension induced by (�,%), respectively.

A weakly monotone (F-)algebra A is a well-founded ordered set (A,>) equipped with an
interpretation fA : An → A for every n-ary f ∈ F , such that fA(. . . , a, . . .) ≥ fA(. . . , b, . . .)
whenever a ≥ b. Any weakly monotone algebra A induces a reduction pair (>A,≥A) defined
by s ≥( )A t iff [[s]]αA ≥( ) [[t]]αA for all assignments α. Here, [[t]]αA denotes term evaluation in the
algebra with respect to an assignment α : V → A.

A (partial) status is a mapping π which assigns to each n-ary symbol f a list π(f) =
[i1, . . . , im] of indices in {1, . . . , n}. Abusing notation, we also use π(f) as the set {i1, . . . , im},
and as an operation on n-ary lists defined by π(f)[t1, . . . , tn] = [ti1 , . . . , tim ].

A binary relation � over terms is simple with respect to status π, if f(t1, . . . , tn) � ti for
all i ∈ π(f). It is simple, if it is simple independent of the status. In particular, a simple
reduction order is called a simplification order.

A precedence is a preorder % on F , such that � := % \- is well-founded.

I Definition 1 (WPO [53, Def. 10, incl. Refinements (2c) and (2d) of Sect. 4.2]). Let A be a
weakly monotone algebra, % a precedence, and π be a status. Let ≥A be simple with respect
to π. The WPO reduction pair (�WPO,%WPO) is defined as follows: s �WPO t iff
1. s >A t, or
2. s ≥A t and

a. s = f(s1, . . . , sn) and ∃i ∈ π(f). si %WPO t, or
b. s = f(s1, . . . , sn), t = g(t1, . . . , tm), ∀j ∈ π(g). s �WPO tj and

i. f � g or
ii. f % g and π(f)[s1, . . . , sn] �lex

WPO π(g)[t1, . . . , tm].
The relation s %WPO t is defined in the same way, where �lex

WPO in the last line is replaced by
%lex

WPO, and there are the following additional subcases in case 2:
c. s ∈ V and either s = t or t = g(t1, . . . , tm), π(g) = ∅ and g is least in precedence,
d. s = f(s1, . . . , sn), t ∈ V, >A is simple w.r.t. π, and ∀g. f � g ∨ (f % g ∧ π(g) = ∅).

I Theorem 2 ([53]). WPO forms a reduction pair. J

For the certification purpose it suffices to formalize Theorem 2 and to provide a verified
implementation to check WPO constraints of the form s %( ) t for a concrete instance of
WPO. In [53] it is further shown that a number of existing methods are obtained as instances
of WPO, namely: the Knuth–Bendix order (KBO) [26], interpretation methods [15, 30],
polynomial KBO [31], lexicographic path orders (LPO) [25], and non-collapsing argument
filters [1, 29]. This means that, by having a WPO certifier, one can also certify these existing
methods.

2.2 Isabelle/HOL and IsaFoR
We do not assume familiarity with Isabelle/HOL, since most of the illustrated formal
statements are close to mathematical text. We give some brief explanations by illustrating
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certain term rewriting concepts via their counterparts in IsaFoR. For instance, IsaFoR contains a
datatype for terms, (’f,’v)term, where ’f and ’v are type-variables representing the signature F
and the set of variables V , respectively. A typing judgment is of the form term :: type. As an
example, R :: (’f,’v)term rel states that R has type (’f,’v)term rel, i.e., R is a binary relation
over terms.

An Isabelle locale [3] is a named context where certain elements can be fixed and properties
can be assumed. Locales are frequently used in IsaFoR. For instance, reduction pairs in IsaFoR
are formulated as a locale redpair.1 Here, O is relation composition, and SN is a predicate for
well-foundedness (strong normalization).

locale redpair =
fixes S NS :: “(’f,’v)term rel”
assumes “SN S”
and “ctxt.closed NS”
and “subst.closed S” and “subst.closed NS”
and “NS O S ⊆ S” and “S O NS ⊆ S”

Locales are also useful to model hierarchical structures. For instance, whereas redpair does
not require that the relations are orders, this is required in the upcoming locale redpair_order
which is an extension of redpair.

locale redpair_order = redpair S NS +
assumes “trans S” and “trans NS” and “refl NS”

Beside the abstract definitions for reduction pairs, IsaFoR also provides several instances
of them, e.g., one for RPO, one for KBO [40], etc. These instances can then be used in
termination techniques like the reduction pair processor to validate concrete termination
proofs. However, often the requirements of a reduction pair are not yet enough. As an
example, the usable rules refinement [20, 48] requires Ce-compatible reduction pairs and
argument filters. To this end IsaFoR contains the locale ce_af_redpair_order. It extends
redpair_order by a new parameter π for the argument filter, and demands the additional
requirements.

locale ce_af_redpair_order = redpair_order S NS +
fixes π :: “’f af”
assumes “af_compatible π NS”
and “ce_compatible NS”

There are further locales for monotone reduction pairs, for reduction pairs which can be
used in complexity proofs, etc.

3 Formalization of WPO

In this section we present our formalization of WPO. It starts by formalizing the properties
of WPO in Section 3.1, so that we can add WPO as a new instance of a reduction pair to
IsaFoR. Afterwards we illustrate our verified implementation for checking WPO constraints
in Section 3.2.

1 In IsaFoR, there is a more general locale for reduction triples (redtriple), which we simplify to reduction
pairs in the presentation of this paper.
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3.1 Properties of WPO
As we have seen in Section 2.2, IsaFoR already contains several formalized results about
reduction pairs, including general results, instances, and termination techniques based on
reduction pairs. In contrast, at the start of this formalization of WPO, IsaFoR did not contain
a single locale about generic weakly monotone algebras. In particular, the formalization of
matrix interpretations and polynomial interpretations [42] directly refers to redpair and its
variants. So, the question arises, how the generic version of WPO in Definition 1 can be
formalized, which is based on arbitrary weakly monotone algebras.

The obvious approach would have been to just add the missing pieces. To be more precise,
we could have formalized weakly monotone algebras in IsaFoR and then on top have formally
verified the properties of WPO. However, this approach has the disadvantage that we would
have had to adjust also existing instances of weakly monotone algebras (like polynomial
interpretations, arctic interpretations, and matrix interpretations) to the new interface.

Therefore, we choose a different approach, namely to reformulate the definition of WPO
such that it does no longer depend on the notion of weakly monotone algebra, but instead
directly refers to reduction pairs (cf. Definition 3).

I Definition 3 (WPO based on Reduction Pairs). Let (>A,≥A) be a reduction pair, % a
precedence, . . . and continue as in Definition 1 to define the relations �WPO and %WPO.

In this way, all instances of reduction pairs in IsaFoR immediately become available as
parameters to WPO. On the one hand, we can parameterize WPO with (max-)polynomial
interpretations and matrix interpretations as is already done in the literature. On the other
hand, it is also possible to use KBO or RPO as parameter to WPO, or even to nest WPOs
recursively.

Of course the question is, how easy it is to formally prove properties of this WPO based
on reduction pairs. At this point we profit from the fact that the structure of WPO is quite
close to other path orders like RPO, and that the latter has already been fully formalized in
IsaFoR.

I Definition 4 (RPO as formalized in IsaFoR). Let % be a precedence and σ be a function of
type F → {lex,mul}. We define the RPO reduction pair (�RPO,%RPO) as follows: s �RPO t

iff

a. s = f(s1, . . . , sn) and ∃i ∈ {1, . . . , n}. si %RPO t, or
b. s = f(s1, . . . , sn), t = g(t1, . . . , tm), ∀j ∈ {1, . . . ,m}. s �RPO tj and

i. f � g or
ii. f % g and σ(f) = σ(g) and [s1, . . . , sn] �σ(f)

RPO [t1, . . . , tm].
iii. f % g and σ(f) 6= σ(g) and n > 0 and m = 0.

The relation s %RPO t is defined in the same way, where �σ(f)
RPO in case bii is replaced by %σ(f)

RPO ,
the condition n > 0 in case biii is dropped, and there is one additional subcase:

c. s ∈ V and either s = t or t = c where c is a constant in F that is least in precedence.

So, we start our formalization of WPO by copy-and-pasting the definitions and proofs
about RPO, and renaming every occurrence of “RPO” to “WPO.” At this point we have a
fully verifiable Isabelle theory which defines WPO as a copy of RPO.

Next, we modify a couple of definitions, such that eventually, we arrive at a formalized
variant of the WPO in Definition 3. For each modification, we immediately adjust the formal
proofs. Such adjustments are mostly straight-forward, not least due to the valuable support
by the proof assistant: we are immediately pointed to those parts of proofs which are broken
by a modification, without having to manually recheck the remaining proofs that were not
affected.
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To be more precise, we perform the following sequence of modifications.
We delete σ from RPO and replace it by lex, as the choice between multiset and lex-
icographic comparison via σ is not present in WPO. As a result, case biii is dropped,
case bii always uses lexicographic comparison, and the formal proofs become shorter.
We add the two tests s ≥A t and s >A t that are present in WPO, but not in RPO.
Moreover, we add the requirement of WPO, that ≥A must be simple, in order to adjust
all the proofs of the defined relations.
We include the status π, which is present in the WPO definition, but not in RPO. In this
step we also weaken the requirement of ≥A being simple to the requirement that ≥A is
simple with respect to π.
We generalize case c of RPO in such a way that not only for constants c we permit
x %WPO c, but also x %WPO g(t1, . . . , tn) is possible if π(g) = ∅.
We finally add refinement 2d under the premise that >A is simple with respect to π. At
this point we have precisely a formalized version of WPO as defined in Definition 3.

Interestingly, after the final refinement we were no longer able to show all properties of
(�WPO,%WPO). For example, the transitivity proof of %WPO was broken and we were not
able to repair it. Indeed, it turns out that %WPO is no longer transitive with the refinement
as illustrated by Example 5. This example was constructed with the help of Isabelle, since it
directly pointed us to the case where the transitivity proof got broken.

I Example 5. Consider F = {a}, π(a) = [], and a reduction pair (or algebra) where ≥A
relates all terms and >A is empty. Then x %WPO a %WPO y, but x %WPO y does not hold.

The reduction pair (or algebra) in Example 5 is obviously a degenerate case. In fact, by
excluding this degenerate case, we can formally prove that WPO including refinement 2d is
a reduction pair.

To this end, we gather all parameters of WPO in a locale and assume relevant properties
of these parameters, either via other locales or as explicit assumptions. The precedence % is
specified by way of three functions prc, pr_least, and pr_large: prc takes two symbols f and g
and returns a pair of Booleans (f � g, f % g); pr_least is a predicate telling whether a symbol
is least in % or not; and pr_large states whether a symbol is largest in % with respect to π or
not, as required in rule 2d of Definition 1. Whereas most of the properties of the precedence
are encoded via an existing locale precedence, for a symbol being of largest precedence we add
two new assumptions explicitly. In the locale we further use a Boolean ssimple to indicate
whether >A is simple with respect to π, i.e., whether it is allowed to apply rule 2d or not.
Only then, the properties of pr_large must be satisfied and the degenerate case must be
excluded. Being simple with respect to π is enforced via the predicate simple_arg_pos: for
any relation R the property simple_arg_pos R f i ensures that f(t1, . . . , tn) R ti holds for
all t1, . . . , tn.

locale wpo_params = redpair_order S NS + precedence prc pr_least
for S NS :: “(’f, ’v) term rel” (∗ underlying reduction pair ∗)
and prc :: “’f ⇒ ’f ⇒ bool× bool” and pr_least pr_large :: “’f ⇒ bool”(∗ precedence ∗)
and ssimple :: bool (∗ flag whether rule (2d) is permitted ∗)
and π :: “’f status” + (∗ status ∗)

assumes “S ⊆ NS”
and “i ∈ π f =⇒ simple_arg_pos NS f i” (∗ NS is simple w.r.t. π ∗)
and “ssimple =⇒ i ∈ π f =⇒ simple_arg_pos S f i” (∗ S is simple w.r.t. π ∗)
and “ssimple =⇒ NS 6= UNIV” (∗ exclude degenerate case ∗)
and “ssimple =⇒ pr_large f =⇒ fst (prc f g) ∨ snd (prc f g) ∧ π g = []”
and “ssimple =⇒ pr_large f =⇒ snd (prc g f) =⇒ pr_large g”
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Within the locale we define the relations WPO_S and WPO_NS (�WPO and %WPO of
Definition 3) with the help of a recursive function, and prove the main theorem:

theorem “redpair_order WPO_S WPO_NS”

Moreover, we prove that whenever the non-strict relation is compatible with an argument
filter µ then also the WPO is compatible with π ∪ µ, defined as (π ∪ µ)(f) = π(f) ∪ µ(f).

lemma assumes “af_compatible µ NS”
shows “af_compatible (π ∪ µ) WPO_NS”

We further prove that WPO is also Ce-compatible under mild preconditions, namely
whenever π(f) includes the first two positions of some symbol f . Finally, we formalize
that WPO can be used in combination with usable rules, since it is an instance of the
corresponding locale:

lemma assumes “∃f. {0, 1} ⊆ π f” (∗ positions in IsaFoR start from 0 ∗)
and “af_compatible µ NS”
shows “ce_af_redpair_order WPO_S WPO_NS (π ∪ µ)”

At the moment, our formalization does not cover any comparison to other term orders.
There is, for example, no formal statement that each polynomial KBO can be formulated as
an instance of WPO. The simple reason is that such a formalization will not increase the
power of the certifier, and the support for polynomial KBO can much easier be added by just
translating an instance of polynomial KBO into a corresponding WPO within a certificate,
e.g., when generating certificates in a termination tool or when parsing certificates in CeTA.

3.2 Checking WPO Constraints
Recall that our formalization of WPO in Section 3.1 has largely been developed by adjusting
the existing formal proofs for RPO. When implementing an executable function to check
constraints of a particular WPO instance, where precedence, status, etc. are provided, there
is however one fundamental difference to RPO: in WPO we need several tests s >A t and
s ≥A t of the underlying reduction pair. And in general, these tests are just approximations,
e.g., since testing positiveness of non-linear polynomials is undecidable.

In order to cover approximations, the implementations of reduction pairs in IsaFoR adhere
to the following interface, which is a record named redpair that contains five components:

One component is for checking validity of the input. For instance, for polynomial
interpretations here one would check that each interpretation of an n-ary function symbol
is a polynomial which only uses variables x1, . . . , xn.
There are two functions check_S and check_NS of type (’f,’v)term ⇒ (’f,’v)term ⇒ bool
for approximating whether two terms are strictly and weakly oriented, respectively.
There is a flag mono which indicates whether the reduction pair is monotone. An enabled
mono-flag is required for checking termination proofs without dependency pairs.
The implicit argument filter of the reduction pair can be queried, a feature that is essential
for usable rules.

The generic interface is instantiated by all reduction pair (approximations) in IsaFoR, and
they satisfy the common soundness property, that for a given approximation of a reduction
pair rp and for given finite sets of strict- and non-strict-constraints, represented as two lists
S_list and NS_list, there exists a corresponding reduction pair that orients all constraints in
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S_list strictly and in NS_list weakly. In order to simplify the presentation, in the upcoming
formal sources we uniformly use set comprehensions instead of list comprehensions, and we
omit all conversions between lists and sets.

assumes “redpair.valid rp” (∗ generic_reduction_pair ∗)
and “∀ (s,t) ∈ S_list. redpair.check_S rp s t”
and “∀ (s,t) ∈ NS_list. redpair.check_NS rp s t”

shows “∃ S NS.
ce_af_redpair_order S NS (redpair.af rp) ∧
S_list ⊆ S ∧ NS_list ⊆ NS ∧
(redpair.mono rp −→ ctxt.closed S)”

We next explain how to instantiate this interface by WPO. To be more precise, we are
given a status π, a precedence, and an approximated reduction pair rp and have to implement
the interface for WPO such that generic_reduction_pair is satisfied.

For checking validity of WPO, we assert redpair.valid rp and in addition perform checks
that the status π is well-defined, i.e., π(f) ⊆ {1, . . . , n} must hold for each n-ary symbol f .
Moreover, we globally compute symbols of largest and least precedence, i.e., the functions
pr_least and pr_large of the wpo_params-locale. We further set the argument filter of WPO
to π ∪ redpair.af af.

For determining the ssimple parameter of the wpo_params-locale, there is the problem,
that we do not know whether the generated strict relation S will be simple with respect to π.
Moreover, to instantiate the locale, we always must ensure that NS is simple with respect to
π. Unfortunately, the formal statement of generic_reduction_pair does not include any such
information.

We solve this problem by enlarging the record redpair by two new entries for strict and
weak simplicity, and require in generic_reduction_pair that if these flags are enabled, then the
relations S and NS must be simple with respect to π, respectively. Whereas now all required
information for WPO is accessible via the interface, the change of the interface requires to
adapt all existing reduction pairs in IsaFoR, like polynomial interpretations, to provide the
new information. To be more precise, we formalize two sufficient criteria for each reduction
pair in IsaFoR, that ensure simplicity of the weak and strict relation, respectively.

At this point all parameters of WPO are fixed, except for S and NS. We now define the
approximation of WPO as the WPO where S and NS are replaced by redpair.check_S rp and
redpair.check_NS rp, respectively.

Next, we are given two lists of constraints wpo_S_list and wpo_NS_list that are oriented
by the approximation of WPO. Out of these we extract the lists S_list and NS_list that
contain all invocations of the underlying approximated reduction pair rp within the recursive
definition of WPO, for instance:

S_list = {(si, ti) | (s, t) ∈ wpo_S_list ∪ wpo_NS_list, sD si, tD ti, redpair.check_S rp si ti}

After these lists have been defined, we apply generic_reduction_pair to get access to the
(non-approximated) reduction pair in the form of relations S and NS. With these we are
able to instantiate the wpo_params-locale and get access to the reduction pair WPO_S and
WPO_NS. We further know that the approximations in S_list and NS_list are correct, e.g.,
whenever (s, t) ∈ wpo_S_list ∪ wpo_NS_list, s D si, t D ti and redpair.check_S rp si ti then
(si, ti) ∈ S. With this auxiliary statement we finally prove that the approximated WPO
corresponds to the actual WPO for all constraints in wpo_S_list ∪ wpo_NS_list. So, we have
a reduction pair WPO_S and WPO_NS and an approximation statement, as required by
generic_reduction_pair.
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In total, we get an interpretation of the generic interface for WPO, and thus can use
WPO in every termination technique of IsaFoR which is based on reduction pairs.

4 Integration of Max-Polynomial Interpretation

As already mentioned in the previous section, various kinds of interpretation methods have
been formalized in IsaFoR and supported by CeTA. However, max-polynomial interpreta-
tions [16] were not yet supported. Hence we extend IsaFoR and CeTA to incorporate them, in
particular those over natural numbers as required by WPO instances introduced in [53].

In order for CeTA to certify proofs using max-polynomial interpretations, we must formally
prove that the pair of relations (>A,≥A) forms a reduction pair, and implement a verifier to
check s >A t and s ≥A t. The former is easy, it is clearly weakly monotone and well-founded.
For a verified comparison of max-polynomials, instead of implementing a dedicated checker
from scratch, we chose to reduce the comparison of max-polynomials to the validity of an
integer arithmetic formula without max, for which we already have a formalized validity
checker [7, 8]. This checker is essentially an SMT-solver for linear integer arithmetic that we
utilize to ensure unsatisfiability of negated formulas.

We formalize max-polynomials in IsaFoR as terms over the following signature.

datatype sig = ConstF nat | SumF | ProdF | MaxF

The interpretation of these symbols is as expected:

primrec I where
“I (ConstF n) = (λx. n)”

| “I SumF = sum_list”
| “I ProdF = prod_list”
| “I MaxF = max_list”

In order to compare max-polynomials, we first normalize them according to the following
four distribution rules:

max(x, y) + z → max(x+ z, y + z) x+ max(y, z)→ max(x+ y, x+ z)
max(x, y) · z → max(x · z, y · z) x ·max(y, z)→ max(x · y, x · z)

Note that the distribution of multiplication over max is admissible because we are only
considering natural numbers. This way, the max-polynomials s and t are normalized to
maxni=1 si and maxmi=1 ti, where s1, . . . , sn and t1, . . . , tm are polynomials (without max). In
IsaFoR we define the mapping from s to s1, . . . , sn as to_IA. Then the comparison of two such
normal forms is easily translated to an arithmetic formula without max [4]:

s ≤( ) t ⇐⇒
nmax
i=1

si ≤( )

mmax
j=1

tj ⇐⇒
n∧
i=1

m∨
j=1

si ≤( ) tj

This reduction is formalized in Isabelle as follows. Here, operators with subscript “f” build
syntactic formulas, and those with prefix “IA.” or subscript “IA” come from the formalization
of integer arithmetic; e.g., “

∧
f x ← xs. IA.const 0 ≤IA IA.var x” denotes an integer arithmetic

formula representing “0 ≤ x1 ∧ · · · ∧ 0 ≤ xn”, where xs = [x1, . . . , xn]. Since we are originally
concerned about natural numbers, in the following definitions we insert such assumptions
for the list of variables occurring in s and t. Initially we did not impose these assumptions
and consequently, several valid termination proofs could not be certified. We thank Sarah
Winkler for spotting and fixing this omission.
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definition le_via_IA where “le_via_IA s t ≡
(
∧

f x ← vars_term_list s @ vars_term_list t. IA.const 0 ≤IA IA.var x) −→f
(
∧

f si ← to_IA s.
∨

f tj ← to_IA t. si ≤IA tj)”

definition less_via_IA where “less_via_IA s t ≡
(
∧

f x ← vars_term_list s @ vars_term_list t. IA.const 0 ≤IA IA.var x) −→f
(
∧

f si ← to_IA s.
∨

f tj ← to_IA t. si <IA tj)”

The soundness of the reduction is formally proved as follows.

lemma le_via_IA:
assumes “|=IA le_via_IA s t” shows “s ≤A t”

lemma less_via_IA:
assumes “|=IA less_via_IA s t” shows “s <A t”

Because of lemmas le_via_IA and less_via_IA it is now possible to invoke the validity
checker for integer arithmetic on the formulas le_via_IA t s and less_via_IA t s in order to
soundly validate the comparisons s ≥A t and s >A t, respectively.

Finally all results are put together to form an instance of an generic_reduction_pair of
Section 3.2, namely a verified implementation for max-polynomial interpretations.

5 Certificate Format and Parser

The Certification Problem Format (CPF) [41] is a machine-readable XML format, which
was codeveloped by several research groups of the term rewriting community to serve as the
standard communication language between automated provers and certifiers.

Here we present the additions to CPF that are part of the current work, i.e., the certificate
format for WPO and max-polynomial interpretations. Moreover, we comment on our complete
overhaul of CeTA’s certificate parser. Before this overhaul, the certificate parser was built on
top of an Isabelle/HOL formalized XML transformer library [43] that has several limitations.
In this context an XML transformer is a parser that consumes an XML element and produces
results represented by arbitrary (custom) data types. (In the remainder, we will use “parser”
and “transformer” synonymously.) In the current work we develop a more concise and flexible
XML transformer library, which allows for syntax similar to Haskell’s do-notation.

In our formalization, the type of XML transformers is ’a xmlt2, which is a function that
takes the internal representation of an XML element and returns, in form of direct sums,
either the result of a successful parse (type ’a) or an error state.

The notation “XMLdo s {...}” yields a transformer for an XML element whose root tag is
s. Within an XMLdo block, we can parse child elements by the binding “x ← inner ;” or one
of its variants such as “xs←^{`..u} inner ;” which binds xs to the list of values resulting from
transforming at least ` and at most u inner elements using the XML transformer inner . Here
u is of type enat (extended naturals), so that it can be ∞. The frequent instance ←^{0..∞}
is also written ←∗. Typically a parser block should end with “xml_return r”, where r is a
return value that may rely on previously bound variables. This invocation also checks that
after parsing, there are no child elements left in the current XML element. This ensures that
the transformer defines a grammar.

Given two parsers p1 and p2, we allow a choice between them by “p1 XMLor p2”. This
works as follows: if parser p1 returns a recoverable error state, then we continue with p2.
Otherwise, the result of “p1 XMLor p2” is the result of p1. Here recoverable means that the
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tag of the root element is not consumed by p1. If p1 consumed the root node but failed for
some child element, then it yields an unrecoverable error state containing an appropriate
error message.

In the following we illustrate our approach by some parsers from our formalization. The
new notation should make it fairly easy to translate between such parsers and corresponding
specifications for the CPF format. Until a certain moment in the development we stated all
parsers using Isabelle’s function command, which specifies a recursive function along with a
proof that the function is totally defined. For humans, proving XML transformers well-defined
is rather easy, only requiring a dedicated measure for the internal XML representations. For
Isabelle, however, accepting the proofs turned out to be excessively slow. Especially for the
big parser that covers the entire CPF. Therefore, we now define our transformers via the
partial_function [28] command, which does not perform such proofs and therefore is much
faster.

A first concrete example is a parser for expressions occurring in max-polynomial inter-
pretations. Here notions defined in Section 4 are accessed via prefix “max_poly.”, and (STR
”...”) is the notation for target-language strings in Isabelle/HOL.

partial_function (sum_bot) exp_parser :: “(max_poly.sig, nat) term xmlt2” where
[code]: “exp_parser xml = (
XMLdo (STR ”product”) {
exps ←∗ exp_parser; xml_return (Fun max_poly.ProdF exps)

} XMLor XMLdo (STR ”sum”) {
exps ←∗ exp_parser; xml_return (Fun max_poly.SumF exps)

} XMLor XMLdo (STR ”max”) {
exps ←^{1..∞} exp_parser; xml_return (Fun max_poly.MaxF exps)

} XMLor XMLdo (STR ”constant”) {
n ←nat; xml_return (max_poly.const n)

} XMLor XMLdo (STR ”variable”) {
n ←nat; xml_return (Var (n − 1))

}) xml”

The parser recursively defines the grammar of max-polynomial expressions (as a complex
type in XML schema terminology). It is a choice among the elements <product>, <sum>,
<max>, <constant> and <variable>. Elements <product> and <sum> recursively contain
an arbitrary number of subexpressions and construct corresponding terms over signature
max_poly.sig. Element <max> is similar, except that it demands at least one subexpression.
Element <constant> contains just a natural number, which is parsed as a constant. Element
<variable> also contains a natural number, which indicates the i-th variable (using zero-
based indexing).

The extended format for reduction pairs (triples) is as follows:

partial_function (sum_bot) redtriple :: “’a redtriple_impl xmlt2” where
[code]: “redtriple xml = ( ... (∗ existing reduction pairs ∗)

XMLor XMLdo (STR ”maxPoly”) { (∗ max−polynomial interpretations ∗)
inters ←∗ XMLdo (STR ”interpret”) {
f ← xml2name;
a ← XMLdo (STR ”arity”) { a ←nat; xml_return a };
e ← exp_parser;
xml_return ((f, a), e)

};
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xml_return (Max_poly inters)
} XMLor XMLdo (STR ”weightedPathOrder”) { (∗ new alternative for WPO ∗)
a ← wpo_params;
b ← redtriple;
xml_return (WPO a b)

}
XMLor XMLdo (STR ”filteredRedPair”) {...} (∗ collapsing argument filter ∗)

) xml”

It is extended from the previous reduction pairs with three new alternatives. Element
<maxPoly> is the reduction pair induced by max-polynomial interpretations, which is a list
of elements <interpret>, each assigning a function symbol f of arity a its interpretation as
expression e. The <weightedPathOrder> element characterizes a concrete WPO reduction
pair. It consists of WPO specific parameters wpo_params that fixes status and precedences,
and another reduction pair in a recursive manner, which specifies the “algebra” A in terms of
(>A,≥A). The <filteredRedPair> element is newly added specially for collapsing argument
filters. Since partial status subsumes non-collapsing argument filters [50], only dedicated
collapsing ones have to be specially supported.

6 Implementations and Experiments

In order to evaluate the relevance of our extension of CeTA by WPO and max-polynomial
interpretations, we implement certificate output for WPO in two termination analyzers:
NaTT and TTT2.

NaTT. originates as an experimental implementation of WPO [51]. From its early design
NaTT followed the trend [54, 55, 37, 9] of reducing termination problems into SMT problems
and employ an external SMT solver, by default, Z3 [12]. Further, NaTT utilizes incremental
SMT solving, and implements some tricks for efficiency [52]. In the current work, its output is
adjusted to conform to the newly defined XML certificate format for WPO, max-polynomials,
and collapsing argument filters. These are essentially the central techniques implemented in
NaTT, but a few techniques implemented later on in NaTT had to be deactivated to be able
to be certified by CeTA; some of them, such as nontermination proofs, are actually supported
but NaTT is not yet adjusted to produce certificates for them.

TTT2. succeeded the automated termination analyzer TTT in 2007. It implements numerous
(non-)termination techniques. For searching reduction pairs it uses a SAT/SMT-based
approach and the SMT solver MiniSMT [56]. We extend TTT2 by an implementation of
WPO, following mostly the presented encodings in [53]. A notable difference in the search
space for max-polynomials: while NaTT heuristically chooses between max and sum, TTT2
embeds this choice into the SMT encoding.

Besides the integration of the full WPO search engine, we would also like to mention
an additional feature of TTT2 regarding WPO. Usual termination tools just try to find any
proof. Even if users want a specific shape of proofs, they cannot impose constraints on proofs
that termination tools find. TTT2 provides termination templates [38] where users can fix
parts of proofs via parameters when invoking TTT2. We also added support for termination
templates for WPO, i.e., if one wants to find a specific proof with WPO then (some) values
can be fixed with TTT2 and afterwards CeTA can validate if the proof is correct.
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I Example 6. Consider the following TRS (Zantema_05/z10.xml of TPDB):

a(lambda(x), y)→ lambda(a(x, p(1, a(y, t)))) a(a(x, y), z)→ a(x, a(y, z))
a(p(x, y), z)→ p(a(x, z), a(y, z)) a(id, x)→ x

a(1, id)→ 1 a(t, id)→ t
a(1, p(x, y))→ x a(t, p(x, y))→ y

If we just call TTT2 with WPO (�2) on this TRS then we get a termination proof consisting
of arbitrary values. However, e.g., we might want a specific WPO proof with the precedence
id > a > lambda > t > 1 > p and a status reversing the arguments of p for the lexicographic
comparison. For this we can use the following call (�):

./ttt2 -s "wpo -msum -st \"p = [1;0]\" -prec \"id > a > lambda > t > 1 >
p\"" Zantema_05/z10.xml

The flag -msum activatesMSum (from [53]) as interpretation for WPO, the flag -st fixes
statuses and the flag -prec fixes a (part of a) precedence. Also all other WPO parameters,
for the standard instances of [53], can be fixed via flags. In order to be sure that the proof is
correct we can call CeTA on the certificate.

As a result we obtain a proof with the stated preconditions and in a broader sense TTT2 can
be used to find specific WPO proofs. For some applications, it even makes sense to fix all
parameters of WPO, so that there is no search at all. This option is useful for validating
WPO-based termination proofs in papers, since writing XML-files in CPF by hand is tedious,
but it is easy to invoke TTT2 on an ASCII representation of both the TRS and the WPO
parameters. Then one automatically gets the corresponding proof in XML so that validation
by CeTA is possible afterwards.

Evaluation. We now evaluate CeTA over the certifiable proofs generated by NaTT and TTT2.
Experiments are run on StarExec [45], a computation resource service for evaluating logic
solvers and program analyzers. The environment offers an Intel® Xeon® CPU E5-2609
running at 2.40GHz and 128GB main memory for each pair of a solver and problem. We set
300s timeout for each pair, as in the Termination Competition 2019.

We compare six configurations: NaTT, TTT2 without WPO and with WPO, and their
variants that restrict to certifiable techniques. The results are summarized in Table 1. We
remark that all the proofs generated by certifiable configurations are successfully certified by
CeTA. Most notably, the termination proofs for the 34 examples mentioned in the introduction
that reportedly only NaTT could prove terminating are verified.

The impact of WPO in TTT2, unfortunately, appears marginal. It only brings two
additional termination proofs in the certifiable setting; and in the other setting the small
difference would vanish if one slightly modifies the timeout. It is most likely that the proof
search heuristic of TTT2 is not optimal, and more engineering effort is necessary in order to
maximize the effect of WPO for TTT2.

There are still significant gaps between full and certifiable versions of each tool, since the
certifiable versions must disable techniques that are not (fully) supported by CeTA. Among
them, both NaTT and TTT2 had to disable or restrict:

max-polynomial interpretations with negative constants [22, 16];

2 The link in this icon directs to the web interface of TTT2, preloaded with this example.

http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR%20x%20y%20z%20)%0A(RULES%20%0A%20%20%20%20%20%20%20%20a(lambda(x)%2Cy)%20-%3E%20lambda(a(x%2Cp(1%2Ca(y%2Ct))))%0A%20%20%20%20%20%20%20%20a(p(x%2Cy)%2Cz)%20-%3E%20p(a(x%2Cz)%2Ca(y%2Cz))%0A%20%20%20%20%20%20%20%20a(a(x%2Cy)%2Cz)%20-%3E%20a(x%2Ca(y%2Cz))%0A%20%20%20%20%20%20%20%20a(id%2Cx)%20-%3E%20x%0A%20%20%20%20%20%20%20%20a(1%2Cid)%20-%3E%201%0A%20%20%20%20%20%20%20%20a(t%2Cid)%20-%3E%20t%0A%20%20%20%20%20%20%20%20a(1%2Cp(x%2Cy))%20-%3E%20x%0A%20%20%20%20%20%20%20%20a(t%2Cp(x%2Cy))%20-%3E%20y%0A%20%20%20%20%20%20%20%20%0A)%0A%20%20%20%20&strategy=expert&expert=wpo%20-msum%20-cpf
http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR%20x%20y%20z%20)%0A(RULES%20%0A%20%20%20%20%20%20%20%20a(lambda(x)%2Cy)%20-%3E%20lambda(a(x%2Cp(1%2Ca(y%2Ct))))%0A%20%20%20%20%20%20%20%20a(p(x%2Cy)%2Cz)%20-%3E%20p(a(x%2Cz)%2Ca(y%2Cz))%0A%20%20%20%20%20%20%20%20a(a(x%2Cy)%2Cz)%20-%3E%20a(x%2Ca(y%2Cz))%0A%20%20%20%20%20%20%20%20a(id%2Cx)%20-%3E%20x%0A%20%20%20%20%20%20%20%20a(1%2Cid)%20-%3E%201%0A%20%20%20%20%20%20%20%20a(t%2Cid)%20-%3E%20t%0A%20%20%20%20%20%20%20%20a(1%2Cp(x%2Cy))%20-%3E%20x%0A%20%20%20%20%20%20%20%20a(t%2Cp(x%2Cy))%20-%3E%20y%0A%20%20%20%20%20%20%20%20%0A)%0A%20%20%20%20&strategy=expert&expert=wpo%20-msum%20-cpf%20-st%20%22p%20%3D%20%5B1%3B0%5D%22%20-prec%20%22id%20%3E%20a%20%3E%20lambda%20%3E%20t%20%3E%201%20%3E%20p%22
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Table 1 Certification Experiments.

Tool Yes No Time (tool) Time (CeTA)
NaTT certifiable 751 7 02:32:39 00:13:46
TTT2 w/ WPO certifiable 754 194 1d 10:31:29 00:08:18
TTT2 w/o WPO certifiable 752 194 1d 06:26:32 00:03:55
NaTT 864 169 02:42:48 –
TTT2 w/ WPO 827 205 13:48:29 –
TTT2 w/o WPO 826 205 13:46:57 –

reachability analysis techniques: for NaTT satisfiability-oriented ones [44], and for TTT2
ones based on tree automata [34];
uncurrying [23]: although the technique itself is fully supported [39], both NaTT and
TTT2 have their own variants which exceed the capabilities of CeTA.

These observations lead to promising directions of future work. For instance, negative
constants seem essentially within reach in light of certified SMT solving.

7 Summary

We have presented an extension of the IsaFoR library and the certifier CeTA with a formalization
of WPO. First, we discussed how we obtained WPO as a new reduction pair in IsaFoR
while relying on the already existing formalization of RPO and adapting its proofs for
the requirements of WPO. Second, we described how max-polynomial interpretations were
added to IsaFoR as these are often used in combination with WPO. Afterwards we gave a
brief overview of the CPF format and the corresponding parser in CeTA. For this parser we
define and employ a notation similar to the do-notation of Haskell, which makes the parser
implementation more concise and easier to understand. Finally, we tested the new version
of CeTA with the termination provers NaTT and TTT2, which both have been extended to
generate CPF certificates for WPO. All generated proofs have been validated, including
those for the 34 TRSs that reportedly only NaTT could prove terminating.

The main formal developments in this paper consist of only 3669 lines of Isabelle source
code, since several concepts were already available in IsaFoR, e.g., lexicographic comparisons
and precedences for WPO and the integer arithmetic solver for max-polynomial interpreta-
tions.
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1 Introduction

Unification is concerned with finding a substitution that makes two terms equal, for some
notion of syntactic equality. Since the invention of Robinson’s first-order unification algorithm
[19], it has become an indispensable tool in theorem proving, logic programming, natural
language processing, programming language compilation and other areas of computer science.

Many of these applications are based on higher-order formalisms and require higher-order
unification. Due to its undecidability and explosiveness, the higher-order unification problem
is considered one of the main obstacles on the road to efficient higher-order tools.
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5:2 Efficient Full Higher-Order Unification

One of the reasons for higher-order unification’s explosiveness lies in flex-flex pairs, which
consist of two applied variables, e.g., F X ?= G a, where F , G, and X are variables and a is
a constant. Even this seemingly simple problem has infinitely many incomparable unifiers.
One of the first methods designed to combat this explosion is Huet’s preunification [10]. Huet
noticed that some logical calculi would remain complete if flex-flex pairs are not eagerly
solved but postponed as constraints. If only flex-flex constraints remain, we know that a
unifier must exist and we do not need to solve them. Huet’s preunification has been used in
many reasoning tools including Isabelle [17], Leo-III [22], and Satallax [3]. However, recent
developments in higher-order theorem proving [1,2] require full unification – i.e., enumeration
of unifiers even for flex-flex pairs, which is the focus of this paper.

Jensen and Pietrzykowski’s (JP) procedure [11] is the best known procedure for this
purpose (Section 2). Given two terms to unify, it first identifies a position where the terms
disagree. Then, in parallel branches of the search tree, it applies suitable substitutions,
involving a variable either at the position of disagreement or above, and repeats this process
on the resulting terms until they are equal or trivially nonunifiable.

Building on the JP procedure, we designed an improved procedure with the same
completeness guarantees (Section 3). It addresses many of the issues that are detrimental to
the performance of the JP procedure.

First, the JP procedure does not terminate in many cases of obvious nonunifiability, e.g.,
for X ?= f X, where X is a non-functional variable and f is a function constant. This example
also shows that the JP procedure does not generalize Robinson’s first-order procedure
gracefully. To address this issue, our procedure detects whether a unification problem
belongs to a fragment for which unification is decidable and finite complete sets of unifiers
(CSUs) exist. We call algorithms that enumerate elements of the CSU for such fragments
oracles. Noteworthy fragments with oracles are first-order terms, patterns [16], functions-as-
constructors [13], and a new fragment we present in Section 4. The unification procedures of
Isabelle and Leo-III check whether the unification problem belongs to a decidable fragment,
but we take this idea a step further by checking this more efficiently and for every subproblem
arising during unification.

Second, the JP procedure computes many redundant unifiers. Consider the example
F (G a) ?= F b, where JP produces, in addition to the desired unifiers {F 7→ λx.H} and
{G 7→ λx. b}, the redundant unifier {F 7→ λx.H, G 7→ λx. x}. The design of our procedure
avoids computing many redundant unifiers, including this one. Additionally, as oracles
usually return a small CSU, their integration reduces the number of redundant unifiers.

Third, the JP procedure applies infinitely branching rule to flex-rigid pairs, whereas
Huet’s preunification procedure solves flex-rigid pairs using simpler, finitely branching rules.
To gracefully generalize Huet’s procedure, we show that his rules for flex-rigid pairs suffice
to enumerate CSUs if combined with appropriate rules for flex-flex pairs.

Fourth, the JP procedure repeatedly traverses the parts of the unification problem that
have already been unified. Consider the problem f100 (G a) ?= f100 (H b), where the exponents
denote repeated application. It is easy to see that this problem can be reduced to G a ?= H b.
However, the JP procedure will wastefully retraverse the common context f100[ ] after applying
each new substitution. Since the JP procedure must apply substitutions to the variables
occurring in the common context above the disagreement pair, it cannot be easily adapted
to eagerly decompose unification pairs. By contrast, our procedure is designed to decompose
the pairs eagerly, never traversing a common context twice.

Last, optimizations such as lazy application of substitutions and lazy β-normalization
cannot easily be integrated into the JP procedure. The rules of simpler procedures (e.g., first-
order [9] and pattern unification [16]) depend only on the heads of the unification pair. Thus,
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to determine the next step, implementations of these procedures need to substitute and β-
reduce only until the heads of the current unification pair are not mapped by the substitution
and are not λ-abstractions. Since the JP procedure is not based on the decomposition of
unification pairs, it is unfit for optimizations of this kind. We designed our procedure to
allow for this optimization.

To filter out some of the terms that are not unifiable with a given query term from a set
of terms, we developed a higher-order extension of fingerprint indexing [20] (Section 5). We
implemented our procedure, several oracles, and the fingerprint index in the Zipperposition
prover (Section 6). Since a straightforward implementation of the JP procedure already
existed in Zipperposition, we used it as a baseline to evaluate the performance of our procedure
(Section 7). The results show substantial performance improvements.

This paper lays out the main ideas behind our unification procedure. A separate technical
report contains details and proofs of all statements [27].

2 Background

Our setting is the simply typed λ-calculus. Types α, β, γ are either base types or functional
types α → β. By convention, when we write α1 → · · · → αn → β, we assume β to be a
base type. Basic terms are free variables (denoted F,G,H, . . . ), bound variables (x, y, z),
and constants (f, g, h). Complex terms are applications of one term to another (s t) or λ-
abstractions (λx. s). Following Nipkow [16], we use these syntactic conventions to distinguish
free from bound variables. Bound variables with no enclosing binder, such as x in λy. x, are
called loose bound variables. We say that a term without loose bound variables is closed and
a term without free variables is ground. Iterated λ-abstraction λx1 . . . λxn. s is abbreviated
as λxn. s and iterated application (s t1) . . . tn as s tn, where n ≥ 0. Similarly, we denote a
sequence of terms t1, . . . , tn by tn, omitting its length n ≥ 0 where it can be inferred or is
irrelevant.

We assume the standard notions of α-, β-, η-conversions. A term is in head normal form
(hnf ) if it is of the form λx. a t, where a is a free variable, bound variable, or a constant. In
this case, a is called the head of the term. By convention, a and b denote heads. If a is
a free variable, we call it a flex head; otherwise, we call it a rigid head. A term is called
flex or rigid if its head is flex or rigid, respectively. By s↓h we denote the term obtained
from a term s by repeated β-reduction of the leftmost outermost redex until it is in hnf.
Unless stated otherwise, we view terms syntactically, as opposed to αβη-equivalence classes.
We write s↔∗αβη t if s and t are αβη-equivalent. Substitutions (σ, %, θ) are functions from
free and bound variables to terms; σt denotes application of σ to t, which α-renames t to
avoid variable capture. The composition %σ of substitutions is defined by (%σ)t = %(σt). A
variable F is mapped by σ if σF 6↔∗αβη F . We write % ⊆ σ if for all variables F mapped by
%, %F ↔∗αβη σF .

Deviating from the standard notion of higher-order subterm, we define subterms on
β-reduced terms as follows: a term t is a subterm of t at position ε. If s is a subterm of ui
at position p, then s is a subterm of a un at position i.p. If s is a subterm of t at position p,
then s is a subterm of λx. t at position 1.p. Our definition of subterm gracefully generalizes
the corresponding first-order notion: a is a subterm of f a b, but f and f a are not subterms of
f a b. A context is a term with zero or more subterms replaced by a hole �. We write C[un]
for the term resulting from filling in the holes of a context C with the terms un from left to
right. The common context C(s, t) of two η-long β-reduced terms s and t of the same type
is defined inductively as follows, assuming that a 6= b: C(λx. s, λy. t) = λx. C(s, {y 7→ x}t);
C(a sm, b tn) = �; C(a sm, a tm) = a C(s1, t1) . . . C(sm, tm).
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A unifier for terms s and t is a substitution σ, such that σs↔∗αβη σt. Following JP [11],
a complete set of unifiers (CSU ) of terms s and t is defined as a set U of unifiers for s and
t such that for every unifier % of s and t, there exists σ ∈ U and substitution θ such that
% ⊆ θσ. A most general unifier (MGU ) is a one-element CSU. We use ⊆ instead of = because
a CSU element σ may introduce auxiliary variables not mapped by %.

3 The Unification Procedure

To unify two terms s and t, our procedure builds a tree as follows. The nodes of the tree have
the form (E, σ), where E is a multiset of unification constraints {(s1

?= t1), . . . , (sn ?= tn)}
and σ is the substitution constructed up to that point. A unification constraint s ?= t is an
unordered pair of two terms of the same type. The root node of the tree is ({s ?= t}, id),
where id is the identity substitution. The tree is then constructed applying the transitions
listed below. The leaves of the tree are either failure nodes ⊥ or substitutions σ. Ignoring
failure nodes, the set of all substitutions in the leaves forms a complete set of unifiers for s
and t.

The transitions are parametrized by a mapping P that assigns a set of substitutions to
a unification pair; this mapping abstracts the concept of unification rules present in other
unification procedures. Moreover, the transitions are parametrized by a selection function S
mapping a multiset E of unification constraints to one of those constraints S(E) ∈ E, the
selected constraint in E. The transitions, defined as follows, are only applied if the grayed
constraint is selected.

Succeed (∅, σ) −→ σ

Normalizeαη ({λxm. s ?= λyn. t} ] E, σ) −→ ({λxm. s ?= λxm. t
′ xn+1 . . . xm} ] E, σ)

where m ≥ n, xm 6= yn, and t′ = {y1 7→ x1, . . . , yn 7→ xn}t
Normalizeβ ({λx. s ?= λx. t} ] E, σ) −→ ({λx. s↓h ?= λx. t↓h} ] E, σ)

where s or t is not in hnf
Dereference ({λx. F s ?= λx. t} ] E, σ) −→ ({λx. (σF ) s ?= λx. t} ] E, σ)

where none of the previous transitions apply and F is mapped by σ
Fail ({λx. a sm ?= λx. b tn } ] E, σ) −→ ⊥

where none of the previous transitions apply, and a and b are different rigid heads
Delete ({s ?= s} ] E, σ) −→ (E, σ)

where none of the previous transitions apply
OracleSucc ({s ?= t} ] E, σ) −→ (E, %σ)

where none of the previous transitions apply, some oracle found a finite CSU U for
σ(s) ?= σ(t), and % ∈ U ; if multiple oracles found a CSU, only one of them is considered

OracleFail ({s ?= t} ] E, σ) −→ ⊥
where none of the previous transitions apply, and some oracle determined σ(s) ?= σ(t)
has no solutions

Decompose ({λx. a sm ?= λx. a tm } ] E, σ) −→ ({s1
?= t1, . . . , sm

?= tm} ] E, σ)
where none of the transitions Succeed to OracleFail apply

Bind ({s ?= t} ] E, σ) −→ ({s ?= t} ] E, %σ)
where none of the transitions Succeed to OracleFail apply, and % ∈ P(s ?= t).

The transitions are designed so that only OracleSucc, Decompose, and Bind can introduce
parallel branches in the constructed tree. OracleSucc can introduce branches using different
unifiers of the CSU, Bind can introduce branches using different substitutions in P, and
Decompose can be applied in parallel with Bind.
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Our approach is to apply substitutions and αβη-normalize terms lazily. In particular, the
transitions that modify the constructed substitution, OracleSucc and Bind, do not apply that
substitution to the unification pairs directly. Instead, the transitions Normalizeαη, Normalizeβ ,
and Dereference partially normalize and partially apply the constructed substitution just
enough to ensure that the heads are the ones we would get if the substitution was fully
applied and the term was fully normalized. To support lazy dereferencing, OracleSucc and
Bind must maintain the invariant that all substitutions are idempotent.

The OracleSucc and OracleFail transitions invoke oracles, such as pattern unification, to
compute a CSU faster, produce fewer redundant unifiers, and discover nonunifiability earlier.
In some cases, addition of oracles lets the procedure terminate more often.

In the literature, oracles are usually stated under the assumption that their input belongs
to the appropriate fragment. To check whether a unification constraint is inside the fragment,
we need to fully apply the substitution and β-normalize the constraint. To avoid these
expensive operations and enable efficient oracle integration, oracles must be redesigned
to lazily discover whether the terms belong to their fragment. Most oracles contain a
decomposition operation which requires only a partial application of the substitution and
only partial β-normalization. If one of the constraints resulting from decomposition is not in
the fragment, the original problem is not in the fragment. This allows us to detect that the
problem is not in the fragment without fully applying the substitution and β-normalizing.

The core of the procedure lies in the Bind step, parameterized by the mapping P that
determines which substitutions (called bindings) to create. The bindings are defined as
follows:
Iteration for F Let F be a free variable of the type α1 → · · · → αn → β1 and let some αi

be the type γ1 → · · · → γm → β2, where n > 0 and m ≥ 0. Iteration for F at i is

F 7→ λxn. H xn (λy. xi (G1 xn y) . . . (Gm xn y))

The free variables H and G1, . . . , Gm are fresh, and y is an arbitrary-length sequence of
bound variables of arbitrary types. All new variables are of appropriate type. Due to
indeterminacy of y, this step is infinitely branching.

JP-style projection for F Let F be a free variable of type α1 → · · · → αn → β, where some
αi is equal to β and n > 0. Then the JP-style projection binding is

F 7→ λxn. xi

Huet-style projection for F Let F be a free variable of type α1 → · · · → αn → β, where
some αi = γ1 → · · · → γm → β, n > 0 and m ≥ 0. Huet-style projection is

F 7→ λxn. xi (F1 xn) . . . (Fm xn)

where the fresh free variables Fm and bound variables xn are of appropriate types.
Imitation of g for F Let F be a free variable of type α1 → · · · → αn → β and let g be a

constant of type γ1 → · · · → γm → β where n,m ≥ 0. The imitation binding is

F 7→ λxn. g (F1 xn) . . . (Fm xn)

where the fresh free variables Fm and bound variables xn are of appropriate types.
Identification for F and G Let F and G be different free variables. Furthermore, let the

type of F be α1 → · · · → αn → β and the type of G be γ1 → · · · → γm → β, where
n,m ≥ 0. Then, identification binding binds F and G with

F 7→ λxn. H xn (F1 xn) . . . (Fm xn) G 7→ λym. H (G1 ym) . . . (Gn ym) ym
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5:6 Efficient Full Higher-Order Unification

where the fresh free variables H,Fm, Gn and bound variables xn,ym are of appropriate
types. We call fresh variables emerging from this binding in the role of H identification
variables.

Elimination for F Let F be a free variable of type α1 → · · · → αn → β, where n > 0. In
addition, let 1 ≤ j1 < · · · < ji ≤ n and i < n. Elimination for the sequence (jk)ik=1 is

F 7→ λxn. G xj1 . . . xji

where the fresh free variable G as well as all xjk are of appropriate type. We call fresh
variables emerging from this binding in the role of G elimination variables.

Given a unification constraint λx. s ?= λx. t, P is defined as follows:
If the constraint is rigid-rigid, P(λx. s ?= λx. t) = ∅.
If the constraint is flex-rigid, let P(λx. F s ?= λx. a t) be

an imitation of a for F , if a is some constant g, and
all Huet-style projections for F , if F is not an identification variable.

If the constraint is flex-flex and the heads are different, let P(λx. F s ?= λx.G t) be
all identifications and iterations for both F and G, and
all JP-style projections for non-identification variables among F and G.

If the constraint is flex-flex and the heads are identical, we distinguish two cases:
if the head is an elimination variable, P(λx. s ?= λx. t) = ∅;
otherwise, let P(λx. F s ?= λx. F t) be all iterations for F at arguments of functional
type and all eliminations for F .

Comparison with the JP Procedure. In contrast to our procedure, the JP procedure
constructs a tree with only one unification constraint per node and does not have a Decompose
rule. Instead, at each node (s ?= t, σ), the JP procedure computes the common context
C of s and t, yielding term pairs (s1, t1), . . . , (sn, tn), called disagreement pairs, such that
s = C[s1, . . . , sn] and t = C[t1, . . . , tn]. The procedure heuristically chooses one of the
disagreement pairs (si, ti) and applies a binding to the heads of si and ti or to a free variable
occurring above the disagreement pair in the common context C. Due to this application of
bindings above the disagreement pair, lazy normalization and dereferencing cannot easily be
integrated into the JP procedure.

The mapping P uses many binding rules of the JP procedure, but our procedure explores
the search space differently. In particular, the JP procedure allows iteration or elimination
to be applied at a free variable in the common context of the unification constraint, even if
bindings were already applied below that free variable. In contrast, our procedure forces the
eliminations and iterations to be applied as soon as it observes a flex-flex pair with identical
heads. After applying the Decompose transition, this flex-flex pair will be reduced to pairs
representing the arguments of the identical heads. Therefore, unlike the JP procedure, it will
not apply bindings to the flex-flex pair after bindings have been applied to its arguments.

The JP procedure can be modified to solve the preunification problem by making it
choose only flex-rigid disagreement pairs and terminate with a preunifier when no flex-rigid
pair remains. However, such a procedure would be less efficient than Huet’s procedure
because it would use the iteration binding instead of Huet-style projection to solve flex-rigid
pairs. Our procedure applies Huet-style projections on flex-rigid pairs, which results in two
important improvements over the JP procedure. First, our procedure terminates more often
than the JP procedure because Huet-style projections cause only a finite branching, whereas
iteration causes an infinite branching. Second, when our procedure is modified to solve the
preunification problem by never selecting flex-flex pairs and stopping when only flex-flex
pairs are left, it becomes an optimized variant of Huet’s procedure that supports oracles as
well as lazy substitution and β-reduction.
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The bindings of our procedure contain further optimizations that are absent in the JP
procedure: The JP procedure applies eliminations for only one parameter at a time, yielding
multiple paths to the same unifier. It applies imitations to flex-flex pairs, which we found to
be unnecessary. Moreover, it does not keep track of which rules introduced which variables:
iterations and eliminations are applied on elimination variables, and projections are applied
on identification variables.

Examples. We present some illustrative derivations. The displayed branches of the con-
structed trees are not necessarily exhaustive. We abbreviate JP-style projection as JP Proj,
imitation as Imit, identification as Id, Decompose as Dc, Dereference as Dr, Normalizeβ as
Nβ , and Bind of a binding x as B(x). Transitions of the JP procedure are denoted by =⇒.
For the JP transitions we implicitly apply the generated bindings and fully normalize terms,
which significantly shortens JP derivations.

I Example 1. The JP procedure does not terminate on the problem G
?= f G:

(G ?= f G, id) Imit=⇒ (f G′ ?= f2 G′, σ1) Imit=⇒ (f2 G′′
?= f3 G′′, σ2) Imit=⇒ · · ·

where σ1 = {G 7→ λx. f G′} and σ2 = {G′ 7→ λx. f G′′}σ1. By including any oracle that
supports first-order occurs check, such as the pattern oracle or the fixpoint oracle described
in Section 6, our procedure gracefully generalizes first-order unification:

({G ?= f G}, id) OracleFail−→ ⊥

I Example 2. The following derivation illustrates the advantage of the Decompose rule.

({h100 (F a) ?= h100 (G b)}, id) Dc100

−→ ({F a ?= G b}, id) B(Id)−→ ({F a ?= G b}, σ1)
Dr+Nβ−→ ({H a (F ′ a) ?= H (G′ b) b}, σ1) Dc−→ ({a ?= G′ b, F ′ a ?= b}, σ1)
B(Imit)−→ ({a ?= G′ b, F ′ a ?= b}, σ2) Dr+Nβ−→ ({a ?= a, F ′ a ?= b}, σ2) Delete−→ ({F ′ a ?= b}, σ2)
B(Imit)−→ ({F ′ a ?= b}, σ3) Dr+Nβ−→ ({b ?= b}, σ3) Delete−→ (∅, σ3) Succeed−→ σ3

where σ1 = {F 7→ λx.H x (F ′ x), G 7→ λy.H (G′ y) y}; σ2 = {G′ 7→ λx. a}σ1; and σ3 =
{F ′ 7→ λx. b}σ2. The JP procedure produces the same intermediate substitutions σ1 to σ3,
but since it does not decompose the terms, it retraverses the common context h100 [ ] at every
step to identify the contained disagreement pair:

(h100 (F a) ?= h100 (G b), id) Id=⇒ (h100 (H a (F ′ a)) ?= h100 (H (G′ b) b), σ1)
Imit=⇒ (h100 (H a (F ′ a)) ?= h100 (H a b), σ2) Imit=⇒ (h100 (H a b) ?= h100 (H a b), σ3) Succeed=⇒ σ3

I Example 3. The search space restrictions also allow us to prune some redundant unifiers.
Consider the problem F (G a) ?= F b, where a and b are of base type. Our procedure produces
only one failing branch and the following two successful branches:

({F (G a) ?= F b}, id) Dc−→ ({G a ?= b}, id) B(Imit)−→ ({G a ?= b}, {G 7→ λx. b})
Dr+Nβ−→ ({b ?= b}, {G 7→ λx. b}) Delete−→ (∅, {G 7→ λx. b}) Succeed−→ {G 7→ λx. b}

({F (G a) ?= F b}, id) B(Elim)−→ ({F (G a) ?= F b}, {F 7→ λx. F ′})
Dr+Nβ−→ ({F ′ ?= F ′}, {F 7→ λx. F ′}) Delete−→ (∅, {F 7→ λx. F ′}) Succeed−→ {F 7→ λx. F ′}
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The JP procedure additionally produces the following redundant unifier:

(F (G a) ?= F b, id) JP Proj=⇒ (F a = F b, {G 7→ λx. x})
Elim=⇒ (F ′ = F ′, {G 7→ λx. x, F 7→ λx. F ′}) Succeed=⇒ {G 7→ λx. x, F 7→ λx. F ′}

Moreover, the JP procedure does not terminate because an infinite number of iterations is
applicable at the root. Our procedure terminates in this case since we only apply iteration
bindings for non base-type arguments, which F does not have.

Proof of Completeness. Like the JP procedure, our procedure misses no unifiers:

I Theorem 4. The procedure described above is complete, meaning that the substitutions
on the leaves of the constructed tree form a CSU. In other words, for any unifier % of a
multiset of constraints E there exists a derivation (E, id) −→∗ σ and a substitution θ such
that % ⊆ θσ.

The proof of Theorem 4 is an adaptation of the proof given by JP [11]. Definitions and
lemmas are reused, but they are combined together differently. The full proof is given in our
technical report [27]. The backbone of the proof is as follows. We incrementally define states
(Ej , σj) and remainder substitutions %j starting with (E0, σ0) = (E, id) and %0 = %. These
will satisfy the invariants that %j unifies Ej and %0 ⊆ %jσj . Intuitively, %j is what remains
to be added to σj to reach a unifier subsuming %0. In each step, %j guides the choice of the
next transition (Ej , σj) −→ (Ej+1, σj+1).

To show that we eventually reach a state with an empty Ej , we employ a well-founded
measure of (Ej , %j) that strictly decreases with each step. It is the lexicographic product of
the syntactic size of %jEj and a measure on %j , which is taken from the JP proof.

Contrary to our procedure, the proof assumes that all terms are in η-long β-reduced
form and that all substitutions are fully applied. These assumptions are justified because
all bindings depend only on the head of terms and hence replacing the lazy transitions
Normalizeαη, Normalizeβ , and Dereference by eager counterparts only affects the efficiency
but not the overall behavior of our procedure.

Fix a state (Ej , σj). If Ej is empty, then a unifier σj of E is found by Succeed and we
are done because %0 ⊆ %jσj by the induction hypothesis. Otherwise, let Ej = {u ?= v} ] E′j
where u ?= v is selected. We must find a transition that reduces the measure and preserves
the invariants. Fail and OracleFail cannot be applicable, because %ju = %jv by the induction
hypothesis. If applicable, Delete reduces the size of %jEj by removing a constraint.

OracleSucc has similar effect as Delete, but the remainder changes. Since %j is a unifier of
u

?= v and oracles compute CSUs, the oracle will find a unifier δ such that there exists a %j+1
satisfying %j ⊆ %j+1 δ. Then (Ej+1, σj+1) =

(
δE′j , δ σj

)
is a result of an OracleSucc transition.

Observe that %j+1Ej+1 = %j+1δE
′
j is a proper subset of %jEj . Hence, the measure decreases

and %j+1 unifies Ej+1. The other invariant holds, because %0 ⊆ %j σj ⊆ %j+1 δ σj = %j+1 σj+1.
If none of the previous transitions are applicable, we must find the right Decompose or

Bind transition to apply. The choice is determined by the head a of u, the head b of v, and
their values under %j . If u ?= v is flex-rigid, then either %ja has b as head symbol, enabling
imitation, or %ja has a bound variable as head symbol, enabling Huet-style projection. In
the flex-flex case, if a 6= b, we apply either iteration, identification, or JP-style projection
based on the form of %ja and %jb. Similarly, if a = b, we apply either iteration, elimination,
or Decompose guided by the form of %ja. To show preservation of the induction invariants
for Bind, we determine a binding δ that can be factored out of %j as %j ⊆ %j+1 δ similarly to
the OracleSucc case. Here we have %j+1Ej+1 = %jEj ; so we must ensure that the measure
of %j+1 is strictly smaller than that of %j . For Decompose, we set %j+1 = %j and show that
%j+1Ej+1 is smaller than %jEj .
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Pragmatic Variant. We structured our procedure so that most of the unification machinery
is contained in the Bind step. Modifying P, we can sacrifice completeness and obtain a
pragmatic variant of the procedure that often performs better in practice. Our prelimi-
nary experiments showed that P defined as follows is a reasonable compromise between
completeness and performance:

If the constraint is rigid-rigid, P(λx. s ?= λx. t) = ∅.
If the constraint is flex-rigid, let P(λx. F s ?= λx. a t) be

an imitation of a for F , if a is some constant g, and
all Huet-style projections for F if F is not an identification variable.

If the constraint is flex-flex and the heads are different, let P(λx. F s ?= λx.G t) be
an identification binding for F and G, and
all Huet-style projections for F if F is not an identification variable

If the constraint is flex-flex and the heads are identical, we distinguish two cases:
if the head is an elimination variable, P(λx. F s ?= λx. F t) = ∅;
otherwise, P(λx. F s ?= λx. F t) is the set of all eliminations bindings for F .

The pragmatic variant of our procedure removes all iteration bindings to enforce finite
branching. Moreover, it imposes limits on the number of bindings applied, counting the
applications of bindings locally, per constraint. It is useful to distinguish the Huet-style
projection cases where αi is a base type (called simple projection), which always reduces the
problem size, and the cases where αi is a functional type (called functional projection). We
limit applications of the following bindings: functional projections, eliminations, imitations
and identifications. In addition, a limit on the total number of applied bindings can be set.
An elimination binding that removes k arguments counts as k elimination steps. Due to
limits on application of bindings, the pragmatic variant terminates.

To fail as soon as any of the limits is reached, the pragmatic variant employs an additional
oracle. If this oracle determines that the limits are reached and the constraint is of the form
λx. F sm

?= λx.G tn, it returns a trivial unifier – a substitution {F 7→ λxm. H,G 7→ λxn. H},
where H is a fresh variable; if the limits are reached and the constraint is flex-rigid, the
oracle fails; if the limits are not reached, it reports that terms are outside its fragment. The
trivial unifier prevents the procedure from failing on easily unifiable flex-flex pairs.

Careful tuning of each limit optimizes the procedure for a specific class of problems.
For problems originating from proof assistants, shallow unification depth usually suffices.
However, hard hand-crafted problems often need deeper unification.

4 A New Decidable Fragment

We discovered a new fragment that admits a finite CSU and a simple oracle. The oracle is
based on work by Prehofer and the PT procedure [18], a modification of Huet’s procedure.
PT transforms an initial multiset of constraints E0 by applying bindings %. If there is a
sequence E0 =⇒%1 · · · =⇒%n En such that En has only flex-flex constraints, we say that
PT produces a preunifier σ = %n . . . %1 with constraints En. A sequence fails if En = ⊥.
Unlike previously, in this section we consider all terms to be αβη-equivalence classes with the
η-long β-reduced form as their canonical representative and we view unification constraints
s

?= t as ordered pairs.
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The following rules, however, are stated modulo orientation. The PT transition rules,
adapted for our presentation style, are as follows:
Deletion {s ?= s} ] E =⇒id E

Decomposition {λx. a sm ?= λx. a tm } ] E =⇒id {s1
?= t1, . . . , sm

?= tm} ] E
where a is rigid

Failure {λx. a s ?= λx. b t} ] E =⇒id ⊥
where a and b are different rigid heads

Solution {λx. F x ?= λx. t} ] E =⇒% %(E)
where F does not occur in t, t does not have a flex head, and % = {F 7→ λx. t}

Imitation {λx. F sm ?= λx. f tn } ] E =⇒% %({G1 sm
?= t1, . . . , Gn sm

?= tn} ] E)
where % = {F 7→ λxm. f (G1 xm) . . . (Gn xm)}, Gn are fresh variables of appropriate types

Projection {λx. F sm ?= λx. a t} ] E =⇒% %({si (G1 sm) . . . (Gj sm) ?= a t} ] E)
where % = {F 7→ λxm. xi (G1 xm) . . . (Gj xm)}, Gj are fresh variables of appropriate types

The grayed constraints are required to be selected by a given selection function S. We call
S admissible if it prioritizes selection of constraints applicable for Failure and Decomposition,
and of descendant constraints of Projection transitions with j = 0 (i.e., for xi of base type), in
that order of priority. In the remainder of this section we consider only admissible selection
functions, an assumption that Prehofer also makes implicitly in his thesis.

Prehofer showed that PT terminates for some classes of constraints. We call a term linear
if no free variable has repeated occurrences in it. We call a term solid if its free variables are
applied either to bound variables or ground base-type terms. We call it strictly solid if its
free variables are applied either to bound variables or second-order ground base-type terms.
For example, if G, a, and x are of base type, and F , H, g, and y are binary, the terms F G a,
and H (λx. x) a are not solid; λx. F xx is strictly solid; F a (g (λy. y a a) a) is solid, but not
strictly. Prehofer’s thesis states that PT terminates on {s ?= t} if s is linear, s shares no free
variables with t, s is strictly solid, and t is second-order.

We extend this result in Theorem 8 along two axes: we create an oracle for the full
unification problem, and we lift some order constraints by requiring s and t to be solid.
Lemma 5 lifts Prehofer’s preunification result to solid terms:

I Lemma 5. If s and t are solid, s is linear and shares no free variables with t, PT terminates
for the preunification problem {s ?= t}, and all remaining flex-flex constraints are solid.

Enumerating a CSU for a solid flex-flex pair may seem as hard as for any other flex-flex
pair; however, the following two lemmas show that solid pairs admit an MGU:

I Lemma 6. The unification problem {λx. F sm ?= λx. F tm}, where both terms are solid,
has an MGU of the form σ = {F 7→ λxm. G xj1 . . . xjr} where G is a fresh variable, and
1 ≤ j1 < · · · < jr ≤ m are exactly those indices ji for which sji = tji .

I Lemma 7. Let {λx. F sm ?= λx.G tn} be a solid unification problem where F 6= G. Then
there is a finite CSU {σ1

i , . . . , σ
ki
i } of the problem {si ?= Hi tn}, where Hi is a fresh free

variable. Let λyn. s
j
i = λyn. σ

j
i (Hi) yn. Similarly, there is a finite CSU {σ̃1

i , . . . , σ̃
li
i } of the

problem {ti ?= H̃i sm}, where H̃i is a fresh free variable. Let λxm. tji = λxm. σ̃
j
i (H̃i)xm. Let

Z be a fresh free variable. An MGU σ for the given problem is

F 7→ λxm. Z x1 . . . x1︸ ︷︷ ︸
k1 times

. . . xm . . . xm︸ ︷︷ ︸
km times

t11 . . . t
l1
1 . . . t1n . . . t

ln
n

G 7→ λyn. Z s
1
1 . . . s

k1
1 . . . s1

m . . . skmm y1 . . . y1︸ ︷︷ ︸
l1 times

. . . yn . . . yn︸ ︷︷ ︸
ln times
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Our proof that finite CSUs exist relies on Prehofer’s proof that PT terminates without
producing flex-flex pairs for the matching problem {λxn. F sk ?= λxn. t} where F sk is strictly
solid and t is ground and second-order. His proof is easily generalized to the case where t
is arbitrary order and F sk is solid. Since PT is complete, we conclude that such problems
have finite CSUs.

I Theorem 8. Let s and t be solid terms that share no free variables, and let s be linear.
Then the unification problem {s ?= t} has a finite CSU.

This CSU is straightforward to compute. By Lemma 5, PT terminates on {s ?= t} with a
finite set of preunifiers σ, each associated with a multiset E of solid flex-flex pairs. An MGU
δE of E can be found as follows. Choose a constraint (u ?= v) ∈ E and determine an MGU %

for it using Lemma 6 or 7. Then the set %(E \ {u ?= v}) also contains only solid flex-flex
constraints, and we iterate this process by choosing a constraint from %(E \ {u ?= v}) next
until there are no constraints left, eventually yielding an MGU %′ of %(E \ {u ?= v}). Finally,
let δE = %′%. Then {δEσ | PT produces preunifier σ with constraints E} is a finite CSU.

I Example 9. For example, let {F (f a) ?= g a (G a)} be the unification problem to solve.
Projecting F onto the first argument will lead to a nonunifiable problem, so we perform
imitation of g building a binding σ1 = {F 7→ λx. g (F1 x) (F2 x)}. This yields the problem
{F1 (f a) ?= a, F2 (f a) ?= G a}. Again, we can only imitate a for F1 – building a new binding
σ2 = {F1 7→ λx. a}. Finally, this yields the problem {F2 (f a) ?= G a}. According to
Lemma 7, we find CSUs for the problems J1 a = f a and I1 (f a) ?= a using PT. The latter
problem has a singleton CSU {I1 7→ λx. a}, whereas the former has a CSU containing
{J1 7→ λx. f x} and {J1 7→ λx. f a}. Combining these solutions, we obtain an MGU σ3 =
{F2 7→ λx.H xx a, G 7→ λx.H (f a) (f x)x} for F2 (f a) ?= G a. Finally, we get the MGU
σ = σ3σ2σ1 = {F 7→ λx. g a (H xx a), G 7→ λx.H (f a) (f x)x} of the original problem.

Small examples that violate conditions of Theorem 8 and admit only infinite CSUs can
be found easily. The problem {λx. F (f x) ?= λx. f (F x)} violates variable distinctness and is
a well-known example of a problem with only infinite CSUs. Similarly, λx. g (F (f x))F ?=
λx. g (f (Gx))G, which violates linearity, reduces to the previous problem. Only ground
arguments to free variables are allowed because {F X ?= G a} has only infinite CSUs. Finally,
it is crucial that functional arguments to free variables are only bound variables: the problem
{λy.X(λx. x) y ?= λy. y} has only infinite CSUs.

5 An Extension of Fingerprint Indexing

A fundamental building block for almost all automated reasoning tools is the operation
of retrieving term pairs that satisfy certain conditions, e.g., unifiable terms, instances or
generalizations. Indexing data structures are used to implement this operation efficiently. If
the data structure retrieves precisely the terms that satisfy the condition it is called perfect.

Higher-order indexing has received little attention, compared to its first-order counterpart.
However, recent research in higher-order theorem proving increased the interest in higher-
order indexing [2,14]. A fingerprint index [20,28] is an imperfect index based on the idea that
the skeleton of the term consisting of all non-variable positions is not affected by substitutions.
Therefore, we can easily determine that the terms are not unifiable (or matchable) if they
disagree on a fixed set of sample positions.
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More formally, when we sample an untyped first-order term t on a sample position p, the
generic fingerprinting function gfpf distinguishes four possibilities:

gfpf(t, p) =


f if t|p has a symbol head f
A if t|p is a variable
B if t|q is a variable for some proper prefix q of p
N otherwise

We define the fingerprinting function fp(t) = (gfpf(t, p1), . . . , gfpf(t, pn)), based on a fixed
tuple of positions pn. Determining whether two terms are compatible for a given retrieval
operation reduces to checking their fingerprints’ componentwise compatibility. The following
matrices determine the compatibility for retrieval operations:

f1 f2 A B N
f1 7 7

A 7

B
N 7 7 7

f1 f2 A B N
f1 7 7 7 7

A 7 7

B
N 7 7 7 7

The left matrix determines unification compatibility, while the right matrix determines
compatibility for matching term s (rows) onto term t (columns). Symbols f1 and f2 stand for
arbitrary distinct constants. Incompatible features are marked with 7. For example, given a
tuple of term positions (1, 1.1.1, 2), and terms f(g(X), b) and f(f(a, a), b), their fingerprints
are (g,B, b) and (f,N, b), respectively. Since the first fingerprint component is incompatible,
terms are not unifiable.

Fingerprints for the terms in the index are stored in a trie data structure. This allows us
to efficiently filter out terms that are not compatible with a given retrieval condition. For the
remaining terms, a unification or matching procedure must be invoked to determine whether
they satisfy the condition or not.

The fundamental idea of first-order fingerprint indexing carries over to higher-order terms
– application of a substitution does not change the rigid skeleton of a term. However, to extend
fingerprint indexing to higher-order terms, we must address the issues of αβη-normalization
and figure how to cope with λ-abstractions and bound variables. To that end, we define a
function btc, defined on β-reduced terms in De Bruijn [4] notation:

bF sc = F bxi snc = dbαi (bs1c, . . . , bsnc) bf snc = f(bs1c, . . . , bsnc) bλx. sc = bsc

We let xi be a bound variable of type α with De Bruijn index i, and dbαi be a fresh constant
corresponding to this variable. All constants dbαi must be fresh. Effectively, b c transforms a
η-long β-reduced higher-order term to an untyped first-order term. Let t↓βη be the η-long
β-reduced form of t; the higher-order generic fingerprinting function gfpfho, which relies on
conversion 〈t〉db from named to De Bruijn representation, is defined as

gfpfho(t, p) = gfpf(b〈t↓βη〉dbc, p)

If we define fpho(t) = fp(b〈t↓βη〉dbc), we can support fingerprint indexing for higher-order
terms with no changes to the compatibility matrices. For example, consider the terms
s = (λxy. x y) g and t = f, where g has the type α→ β and f has the type α→ α→ β. For
the tuple of positions (1, 1.1.1, 2) we get

fpho(s) = fp(b〈s↓βη〉dbc) = fp(g(dbα0 )) = (dbα0 ,N,N)
fpho(t) = fp(b〈t↓βη〉dbc) = fp(f(dbα1 , dbα0 )) = (dbα1 ,N, dbα0 )
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Since the first and third fingerprint component are incompatible, the terms are not unifiable.
Other first-order indexing techniques such as feature vector indexing and substitution

trees can probably be extended to higher-order terms using the method described here as
well.

6 Implementation

Zipperposition [5,6] is an open-source1 theorem prover written in OCaml. It is a versatile
testbed for prototyping extensions to superposition-based theorem provers. It was initially
designed as a prover for polymorphic first-order logic and then extended to higher-order
logic. The most recent addition is a complete mode for Boolean-free higher-order logic [1],
which depends on a unification procedure that can enumerate a CSU. We implemented our
procedure in Zipperposition.

We used OCaml’s functors to create a modular implementation. The core of our procedure
is implemented in a module which is parametrized by another module providing oracles and
implementing the Bind step. In this way we can obtain the full or pragmatic procedure and
seamlessly integrate oracles while reusing as much common code as possible.

To enumerate all elements of a possibly infinite CSU, we rely on lazy lists whose elements
are subsingletons of unifiers (either one-element sets containing a unifier or empty sets). The
search space must be explored in a fair manner, meaning that no branch of the constructed
tree is indefinitely postponed.

Each Bind step will give rise to new unification problems E1, E2, . . . to be solved. Solutions
to each of those problems are lazy lists p1, p2, . . . containing subsingletons of unifiers. To
avoid postponing some unifier indefinitely, we use the dovetailing technique: we first take one
subsingleton from p1, then one from each of p1 and p2. We continue with one subsingleton
from each of p1, p2 and p3, and so on. Empty lazy lists are ignored in the traversal. To
ensure we do not remain stuck waiting for a unifier from a particular lazy list, the procedure
will periodically return an empty set, indicating that the next lazy list should be probed.

The implemented selection function for our procedure prioritizes selection of rigid-rigid
over flex-rigid pairs, and flex-rigid over flex-flex pairs. However, since the constructed
substitution σ is not applied eagerly, heads can appear to be flex, even if they become rigid
after dereferencing and normalization. To mitigate this issue to some degree, we dereference
the heads with σ, but do not normalize, and use the resulting heads for prioritization.

We implemented oracles for the pattern, solid, and fixpoint fragment. Fixpoint unifica-
tion [10] is concerned with problems of the form {F ?= t}. If F does not occur in t, {F 7→ t}
is an MGU for the problem. If there is a position p in t such that t|p = F um and for each
prefix q 6= p of p, t|q has a rigid head and either m = 0 or t is not a λ-abstraction, then we
can conclude that F ?= t has no solutions. Otherwise, the fixpoint oracle is not applicable.

7 Evaluation

We evaluated the implementation of our unification procedure in Zipperposition, assessing
a complete variant and a pragmatic variant, the latter with several different combinations
of limits for number of bindings. As part of the implementation of the complete mode for
Boolean-free higher-order logic in Zipperposition [1], Bentkamp implemented a straightforward
version of JP procedure. This version is faithful to the original description, with a check as

1 https://github.com/sneeuwballen/zipperposition
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jp cv pv12
6666 pv6

3333 pv4
2222 pv2

1222 pv2
1121 pv2

1020

TPTP 1551 1717 1722 1732 1732 1715 1712 1719
SH 242 260 253 255 255 254 259 257

Figure 1 Proved problems, per configuration.

n f p s fp fs ps fps

TPTP 1658 1717 1717 1720 1719 1724 1720 1723
SH 245 255 260 259 255 254 258 254

Figure 2 Proved problems, per used oracle.

to whether a (sub)problem can be solved using a first-order oracle as the only optimization.
Our evaluations were performed on StarExec Miami [23] servers with Intel Xeon E5-2620 v4
CPUs clocked at 2.10GHz with 60 s CPU limit.

Contrary to first-order unification, there is no widely available corpus of benchmarks
dedicated solely to evaluating performance of higher-order unification algorithms. Thus,
we used all 2606 monomorphic higher-order theorems from the TPTP library [25] and 832
monomorphic higher-order Sledgehammer (SH) generated problems [24] as our benchmarks2.
Many TPTP problems require synthesis of complicated unifiers, whereas Sledgehammer
problems are only mildly higher-order – many of them are solved with first-order unifiers.

We used the naive implementation of the JP procedure (jp) as a baseline to evaluate the
performance of our procedure. We compare it with the complete variant of our procedure
(cv) and pragmatic variants (pv) with several different configurations of limits for applied
bindings. All other Zipperposition parameters have been fixed to the values of a variant of a
well-performing configuration we used for the CASC-27 theorem proving competition [26].
The cv configuration and all of the pv configurations use only pattern unification as an
underlying oracle. To test the effect of oracle choice, we evaluated the complete variant in 8
combinations: with no oracles (n), with only fixpoint (f), pattern (p), or solid (s) oracle,
and with their combinations: fp, fs, ps, fps.

Figure 1 compares different variants of the procedure with the naive JP implementation.
Each pv configuration is denoted by pvabcde where a is the limit on the total number of applied
bindings, and b, c, d, and e are the limits of functional projections, eliminations, imitations,
and identifications, respectively. Figure 2 summarizes the effects of using different oracles.

The configuration of our procedure with no oracles outperforms the JP procedure with
the first-order oracle. This suggests that the design of the procedure, in particular lazy
normalization and lazy application of the substitution, already reduces the effects of the
JP procedure’s main bottlenecks. Raw evaluation data shows that on TPTP benchmarks,
complete and pragmatic configurations differ in the set of problems they solve – cv solves
19 problems not solved by pv4

2222, whereas pv4
2222 solves 34 problems cv does not solve.

Similarly, comparing the pragmatic configurations with each other, pv6
3333 and pv4

2222 each
solve 13 problems that the other one does not. The overall higher success rate of pv2

1020
compared to pv2

1222 suggests that solving flex-flex pairs by trivial unifiers often suffices for
superposition-based theorem proving.

2 An archive with raw results, all used problems, and scripts for running each configuration is available at
http://matryoshka.gforge.inria.fr/pubs/hounif_data.zip.

http://matryoshka.gforge.inria.fr/pubs/hounif_data.zip
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Counterintuitively, in some cases, using oracles can hurt the performance of Zipperposition.
Using oracles typically results in generating smaller CSUs, whose elements are more general
substitutions than the ones we obtain without oracles. These more general substitutions
usually contain more applied variables, which Zipperposition’s heuristics avoid due to their
explosive nature. This can make Zipperposition postpone necessary inferences for too long.
Configuration n benefits from this effect and therefore solves 18 TPTP problems that no
other configuration in Figure 2 solves. The same effect also gives configurations with only
one oracle an advantage over configurations with multiple oracles on some problems.

The evaluation sheds some light on how often solid unification problems appear in practice.
The raw data show that configuration s solves 5 TPTP problems that neither f nor p solve.
Configuration f solves 8 TPTP problems that neither s nor p solve, while p solves 9 TPTP
problems that two other configurations do not. This suggests that the solid oracle is slightly
less beneficial than the fixpoint or pattern oracles, but still presents a useful addition the set
of available oracles.

A subset of 11 TPTP benchmarks, concerning operations on Church numerals, is designed
to test the efficiency of higher-order unification. Our procedure performs exceptionally well
on these problems – it solves all of them, usually faster than other competitive higher-order
provers. In particular, on two of these problems, neither Leo-III 1.4 nor Satallax 3.4 produce
a proof within a 60 seconds CPU limit, while the cv configuration proves each of them in
less than 4.5 s. A full list of these problems is in our technical report [27].

8 Discussion and Related Work

The problem addressed in this paper is that of finding a complete and efficient higher-
order unification procedure. Three main lines of research dominated the research field of
higher-order unification over the last forty years.

The first line of research went in the direction of finding procedures that enumerate CSUs.
The most prominent procedure designed for this purpose is the JP procedure [11]. Snyder and
Gallier [21] also provide such a procedure, but instead of solving flex-flex pairs systematically,
their procedure blindly guesses the head of the necessary binding by considering all constants
in the signature and fresh variables of all possible types. Another approach, based on
higher-order combinators, is given by Dougherty [7]. This approach blindly creates (partially
applied) S-, K-, and I-combinator bindings for applied variables, which results in returning
many redundant unifiers, as well as in nonterminating behavior even for simple problems
such as X a = a.

The second line of research is concerned with enumerating preunifiers. The most prominent
procedure in this line of research is Huet’s [10]. The Snyder–Gallier procedure restricted not
to solve flex-flex pairs is a version of the PT procedure presented in Section 4. It improves
Huet’s procedure by featuring a Solution rule.

The third line of research gives up the expressiveness of the full λ-calculus and focuses
on decidable fragments. Patterns [16] are arguably the most important such fragment in
practice, with implementations in Isabelle [17], Leo-III [22], Satallax [3], λProlog [15], and
other systems. Functions-as-constructors [13] unification subsumes pattern unification but is
significantly more complex to implement. Prehofer [18] lists many other decidable fragments,
not only for unification but also preunification and unifier existence problems. Most of these
algorithms are given for second-order terms with various constraints on their variables. Finally,
one of the first decidability results is Farmer’s discovery [8] that higher-order unification of
terms with unary function symbols is decidable.
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Our procedure draws inspiration from and contributes to all three lines of research.
Accordingly, its advantages over previously known procedures can be laid out along those
three lines. First, our procedure mitigates many issues of the JP procedure. Second, it
can be modified not to solve flex-flex pairs, and become a version of Huet’s procedure with
important built-in optimizations. Third, it can integrate any oracle for problems with finite
CSUs – including the one we discovered.

9 Conclusion

We presented a procedure for enumerating a complete set of higher-order unifiers that is
designed for efficiency. Due to design that restricts search space and tight integration of
oracles it reduces the number of redundant unifiers returned and gives up early in cases of
nonunifiability. In addition, we presented a new fragment of higher-order terms that admits
finite CSUs. Our evaluation shows a clear improvement over previously known procedure.

In future work, we will focus on designing intelligent heuristics that automatically adjust
unification parameters according to the type of the problem. For example, we should usually
choose shallow unification for mostly first-order problems and deeper unification for hard
higher-order problems. We plan to investigate other heuristic choices, such as the order
of bindings and the way in which search space is traversed (breadth- or depth-first). We
are also interested in further improving the termination behavior of the procedure, without
sacrificing completeness. Finally, following the work of Libal [12] and Zaionc [29], we would
like to consider the use of regular grammars to finitely present infinite CSUs. For example,
the grammar G ::= λx. x | λx. f (Gx) represents all elements of the CSU for the problem
λx.G (f x) ?= λx. f (Gx).
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Lawvere observed in his celebrated work on hyperdoctrines that the set-theoretic schema of compre-
hension can be elegantly expressed in the functorial language of categorical logic, as a comprehension
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1 Introduction

A fundamental duality between comprehension and quotient structures

One fundamental discovery by Lawvere [14] is that the comprehension schema of Zermelo set
theory [15] can be elegantly expressed in the functorial language of categorical logic, in the
following way. Consider the category Set of sets and functions, and the category Pred of
predicates, defined in the following way: its objects are the pairs (A,R) consisting of a set A
and of a function R ∶ A → Ω to the set Ω = {false, true} of booleans, describing a specific
predicate R of A ; its morphisms f ∶ (A,R)→ (B,S) are the functions f ∶ A→ B such that
∀a ∈ A,Ra⇒ S(fa). The functor p ∶ Pred→ Set is the forgetful functor which transports
every predicate (A,R) to its underlying set A. The comprehension schema enables one to
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turn every predicate (A,R) into a set [A,R] defined as follows

[A,R] ∶= { a ∈ A ∣ Ra = true }

equipped moreover with a function

ιA,R ∶ [A,R] A

which transports every element a of the set [A,R] to itself, seen as element in A. The
construction is natural in (A,R) in the sense that it defines a functor

[−] ∶ Pred Set

together with a natural transformation

ι ∶ [−] p ∶ Pred Set.

Here, naturality means that every morphism f ∶ (A,R)→ (B,S) between predicates induces
the commutative diagram below, in the category Set.

[A,R] A

[B,S] B

ιA,R

[A,f] f

ιB,S

(1)

More generally, considering this example of the functor p ∶ Pred→ Set as typical, it makes
sense to formulate the following “minimalist” notion of comprehension structure:

I Definition 1. A comprehension structure on a functor p ∶ E → B is a pair ([−], ι)
consisting of a functor [−] ∶ E→ B and of a natural transformation ι ∶ [−]⇒ p.

Interestingly, Jacobs provides in [6] a useful and detailed survey of a hierarchy of axiomatic
requirements on a functor p ∶ E → B appearing in the literature, from which such a
comprehension structure can be derived. In a decreasing order of generality, one finds:

Jacob’s comprehension categories, defined in [6], Def. 4.1, page 181.
Ehrhard’s D-categories [4] called comprehension categories with unit in [6], Def. 4.12.
Lawvere categories [14] as Jacobs defined them in [6], first paragraph of p. 190.

Our definition just given of a comprehension structure (Def. 1) does not appear as such in
the literature, at least in the elementary 2-categorical way we express it here. The reason is
that the comprehension pair ([−], ι) can be equivalently formulated as a functor P ∶ E→ B

→

to the category of arrows of B, making the diagram below commute:

E B
→

B

P

p cod
(2)

where cod ∶ B→ → B denotes the codomain functor. The definitions of comprehension
category [6] and of Lawvere category [14] are based on this formulation, while the definition of
D-categories [4] works in an entirely different way, which we analyze later in this introduction,
as well as in §4. One purpose of the present paper is to revisit these three levels definitions
from a purely 2-categorical point of view. This search for a clean 2-categorical account of
comprehension in categorical logic is motivated by our desire to understand at this level
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of abstraction a recent observation by Fumex, Ghani and Johann [2, 3], who establish a
very nice duality between (a) the operation of comprehension which underlies reasoning
by induction using initial algebras, and (b) the operation of quotienting which underlies
reasoning by coinduction using terminal coalgebras. In particular, Fumex introduces in his
PhD thesis a notion of tC-opfibration p ∶ E → B (where tC refers to the section functor t
and the comprehension functor C of the structure) adapted for induction reasoning, which
he then dualizes into a notion of QCE-category pop ∶ Eop → B

op (where QCE stands for
quotient category with equality) adapted for coinduction reasoning, and simply obtained by
reversing the orientation of every morphism in E and B.

In order to understand and to illustrate this idea of quotient structures, consider the
category Rel whose objects are pairs (A,R) consisting of a set A and of a binary relation
R ⊆ A × A, and whose morphisms f ∶ (A,R) → (B,S) are functions f ∶ A → B such that
R(a, a′)⇒ S(fa, fa′). As in the previous case, the functor p ∶ Rel → Set is the forgetful
function which transports every binary relation (A,R) to its underlying set A. Every binary
relation (A,R) induces a set A/R defined as the quotient

A/R ∶= A/∼R
of the underlying set A by the equivalence relation ∼R generated by the binary relation R.
The set A/R comes together with a function

πA,R ∶ A A/R

which transports every element of A to its equivalence class modulo ∼R. The construction is
natural in (A,R) in the sense that it defines a functor

[[−]] ∶ Rel Set

with [[A,R]] = A/R, together with a natural transformation

π ∶ p [[−]] ∶ Rel Set.

Here, naturality means that every predicate morphism f ∶ (A,R) → (B,S) induces the
commutative diagram below in the category Set.

A [[A,R]]

B [[B,S]]

πA,R

f [[f]]
πB,S

(3)

In the same way as previously, this example leads us to the following definition, obtained by
dualizing Def. 1.

I Definition 2. A quotient structure on a functor p ∶ E → B is a pair ([[−]], π) consisting
of a functor [[−]] ∶ E→ B and of a natural transformation π ∶ p⇒ [[−]].
In the same way as previously, and by duality, a quotient structure is the same thing as a
functor Q ∶ E→ B

→ to the category of arrows of B, making the diagram below commute:

E B
→

B

Q

p dom
(4)

where dom ∶ B→ → B denotes the domain functor.

FSCD 2020



6:4 Comprehension and Quotient Structures in the Language of 2-Categories

A 2-categorical classification of comprehension structures

(i) Comprehension structures. In order to understand the duality between comprehension
and quotient structures, we find enlightening to take seriously the 2-categorical nature of
Def. 1 and 2, and to reformulate them in the following way. Suppose given a 2-category K

such as K = Cat, the 2-category of categories. We consider the 2-category K//K whose
objects are the triples (E,B, p ∶ E→ B) consisting of a pair of 0-cells E and B and a 1-cell
p ∶ E→ B of the 2-category K, and whose morphisms

(fE, fB, ϕ) ∶ (E1,B1, p1 ∶ E1 → B1) (E2,B2, p2 ∶ E2 → B2) (5)

are triples consisting of a pair of 1-cells fB ∶ B1 → B2 and fE ∶ E1 → E2 and a 2-cell

E1 E2

B1 B2

p1

fE

p2

fB

ϕ ϕ ∶ p2 ◦ fE fB ◦ p1

A morphism (5) is called strict when the 2-cell ϕ is the identity. We write in that case
(fE, fB) instead of (fE, fB, id). We also write K/K for the sub-2-category of K//K of strict
morphisms, with the same notion of 2-cell. It is essentially immediate that

I Proposition 3. A comprehension structure ([−], ι) (in the sense of Def. 1) is the same
thing as a morphism in Cat//Cat of the form

(fE, idB, ϕ) ∶ (E,B, p ∶ E→ B) (B,B, idB ∶ B→ B) (6)

One main contribution of the paper is to revisit in this 2-categorical style the hierarchy
of comprehension categories described by Jacobs [6]. To that purpose, we introduce three
corresponding levels of comprehension structures, each of them coming with an elementary
and concise 2-categorical formulation, as depicted in the figure below:

comprehension structures, Def. 1 as reformulated in Prop. 3,
comprehension structures with section, Def. 4 as reformulated in Prop. 6,
comprehension structures with image, Def. 7 as formulated in Def. 25.

One basic observation is that our minimalist notion of comprehension structure (Def. 1)
generalizes Jacobs’ notion of comprehension category, by relaxing the assumption that the
associated functor P ∶ E→ B

→ in (2) transports every p-cartesian map of E to a cod-cartesian
map of B→, that is, to a pullback diagram of the form (1) in the category B. This observation
underlies the first layer (in dark green) of our classification below.

D-categories

tC-op�brations

Lawvere
categories

comprehension
categories

comprehension
with image

comprehension
structures

comprehension
with section

(i)

(ii)

(iii)

(ii) Comprehension structures with section. We move to the next layer and consider
Ehrhard’s notion of D-category [4, 6] which is based on a convenient but somewhat mysterious
recipe to equip a functor p ∶ E→ B with a comprehension structure ([−], ι). The recipe [4, 6]
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works in two stages: (1) first, one equips the functor p with a section ⭒ ∶ B→ E, (2) then one
requires that the section ⭒ has a right adjoint [−] ∶ E→ B. Recall that a section ⭒ ∶ B→ E

is a functor such that p ◦ ⭒ = idB. This leads us to the following definition:

I Definition 4. A comprehension structure with section on a functor p ∶ E→ B is a section
⭒ ∶ B→ E together with a right adjoint functor [−] ∶ E→ B.

One astonishing aspect of the definition is that the natural transformation ι ∶ [−]⇒ p of the
associated comprehension structure ([−], ι) is not given explicitly, but derived as the image
by the functor p ∶ E→ B of the counit ⭒◦[−]⇒ idE of the adjunction ⭒ ⊣ [−]. From this it
follows that the relationship between the natural transformation ι and the two functors ⭒, [−]
is not entirely obvious from a conceptual point of view. We clarify this point by observing
here that the original adjunction ⭒ ⊣ [−] of Def. 4 living in K = Cat is the “emerged part”
of a more fundamental adjunction ⭒ ⊣ ([−], ι) living in the 2-category Cat//Cat, and
where the natural transformation ι is thus integrated. A preliminary observation is that

I Proposition 5. A section of the functor p ∶ E→ B is the same thing as a strict morphism
in Cat/Cat of the form

(sE, idB) ∶ (B,B, idB ∶ B→ B) (E,B, p ∶ E→ B) (7)

We will prove in the course of the paper (see §4, Prop. 17) that the adjunction ⭒ ⊣ [−]
in Def. 4 may be equivalently formulated as an adjunction in Cat//Cat between the
section ⭒ seen as a strict morphism (7) and the comprehension structure ([−], ι) seen as
a morphism (6). This property establishes the secretly 2-categorical nature of the notion
(Def. 4) of comprehension structure with section:

I Proposition 6. A comprehension structure with section is a comprehension structure (6)
right adjoint to a section (7) in the 2-category Cat//Cat.

The resulting 2-categorical notion of comprehension structure with section (Prop. 6) captures
the essence of the notion of D-category, and generalizes it in an interesting and useful way
to the categories of algebras and coalgebras, see §4 and §8 for a discussion.

(iii) Comprehension structures with image. We move finally to the next layer of our
hierarchy, and observe that the functor p ∶ E→ B is required to be an opfibration in both
notions of Lawvere category and of tC-opfibration [6, 2]. From this follows that the functor
p ∶ E→ B has an image structure, in the sense elaborated in §6 of this paper. This additional
image structure on the functor p enables one to construct a functor

image ∶ B
→

E (8)

from the arrow category B
→ of the basis category B to the category E. The functor image

transports every morphism f ∶ A → B of the basis category B to an object image(f) in
the fiber category EB of the object B, called the image of f ∶ A → B, and satisfying the
expected universality property, see §6 for details. By construction, the image functor (8)
makes the diagram below commute:

E B
→

B

p cod

image

(9)

FSCD 2020
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In order to recover a comprehension structure (2), the definition of a Lawvere category
requires that the functor image has a right adjoint P ∶ E→ B

→ in the fibered sense above
the category B. This leads us to the following definition.

I Definition 7. A comprehension structure with image on a functor p ∶ E→ B is a functor
image ∶ B→ → E together with a right adjoint P ∶ E→ B

→ in the fibered sense above B.

On the other hand, and somewhat surprisingly, the definition of tC-opfibration is apparently
weaker, since it only requires that the functor p ∶ E → B has a comprehension structure
with section, in the sense of Def. 4. In order to clarify the situation, and to get a clean and
harmonious picture, we establish that every tC-opfibration has comprehension with image
(in the sense of Def 7) using the following statement, which applies in particular to the case
of an opfibration p ∶ E→ B:

I Proposition 8. Suppose that the functor p ∶ E→ B has an image structure. In that case,
every comprehension structure with section (in the sense of Def. 4) defines a comprehension
structure with image (in the sense of Def. 7).

Illustration: inductive reasoning on algebras, coinductive reasoning on coalgebras

Suppose given a functor p ∶ E → B equipped with a comprehension structure with section
⭒ ∶ B→ E, where the categories E and B are moreover equipped with endofunctors F ∶ B→ B

and G ∶ E→ E related by a distributivity law

δ ∶ F ◦ p p ◦G ∶ E B. (10)

One guiding ambition of our 2-categorical account of comprehension structures is to explain
by conceptual means the recent characterization by Fumex, Ghani and Johann [2, 3] of the
initial G-algebra of E as the section ⭒A of the initial F -algebra µF of the basis category B.
To that purpose, we describe in §8 the necessary and sufficient conditions which characterize
when the distributivity law (10) on a comprehension structure with section p ∶ E→ B induces
a comprehension structure with section Alg(p) ∶ AlgG(E) → AlgF (B) on the associated
categories of algebras. In this situation, we obtain a simple conceptual explanation for the
forementioned result ([3], Thm 2.10) by Fumex, Ghani and Johann:

I Corollary 9. The comprehension structure with section ⭒ ∶ B→ E lifts to a comprehension
structure with section ⭒ ∶ AlgF (B)→ AlgG(E) which is left adjoint to comprehension [−]
and thus transports the initial F -algebra µF to the initial G-algebra µG = ⭒µF .

We proceed dually in the case of quotient structures and obtain necessary and sufficient
conditions to ensure that

I Corollary 10. The quotient structure with section ⭒ ∶ B→ E lifts to a quotient structure
with section ⭒ ∶ CoAlgF (B)→ CoAlgG(E) which is right adjoint to quotient [[−]] and thus
transports the terminal F -coalgebra νF to the terminal G-coalgebra νG = ⭒νF .

Plan of the paper
After this long and detailed introduction, we recall in §2 the notion of arrow 2-category
K//K and establish in §3 a simple and useful description of the formal adjunctions in this
2-category. This leads us to formulate in §4 our 2-categorical notion of comprehension with
section. We then formulate in §5 and §6 the notion of path object (B→, β) of an object B in
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any 2-category K, and the related notion of morphism p ∶ E→ B with an image structure.
This leads us to establish in §7 that a comprehension with image p ∶ E → B is the same
thing as a comprehension structure with section ⭒ ∶ B→ E, whose underlying section comes
with an image structure, and thus a morphism image ∶ B→ → E. We then illustrate in §8
the benefits of our 2-categorical approach with the example of inductive and coinductive
reasoning on algebra and coalgebra structures, and finally conclude in §9.

2 Definition of the arrow 2-categories K//K and K/K
We explained in the introduction, see (5), how to define the objects and the morphisms of
the 2-category K//K associated to a 2-category K. For the sake of completeness, we recall
now that a 2-cell

(θB, θE) ∶ (fE, fB, ϕ) (gE, gB, ψ) ∶ (E1,B1, p1) (E2,B2, p2)

of the 2-category K//K is defined as a pair of 2-cells θB ∶ fB ⇒ gB and θE ∶ fE ⇒ gE of the
original 2-category K, making the two pasting diagrams equal:

E1 E2

B1 B2

fE

p1 p2fB

gB

θB

ϕ

=

E1 E2

B1 B2

fE

gEp1 p2

gB

θE

ψ

It is worth mentioning that, thanks to this carefully chosen definition of 2-cells, there exists
a pair of 2-functors

K//K K
source

target
(11)

defined as the expected first and second projections, which transport every object (E,B, p ∶
E→ B) of the 2-category K//K to the object

source(E,B, p ∶ E→ B) = E target(E,B, p ∶ E→ B) = B

of the underlying 2-category K. Finally, let us also mention that the 2-category K/K of
strict morphisms in K//K comes exactly with the same notion of 2-cell. In other words, the
inclusion 2-functor K/K→ K//K is locally fully faithful.

3 Formal adjunctions in the 2-category K//K
As explained in the introduction in the case K = Cat, one main observation of the paper is
that the notion of comprehension structure with section (Def. 4) can be elegantly expressed
as a specific form of adjunction living in the 2-category K//K (Prop. 6). As a warm up
exercise, we study the notion of formal adjunction in K//K in the sense of Street [13] and
relate it in full generality to the notion of formal adjunction in the original 2-category K.
Suppose given a pair of morphisms

L = (LE, LB, ϕ) ∶ (E1,B1, p1 ∶ E1 → B1) (E2,B2, p2 ∶ E2 → B2)
R = (RE, RB, ψ) ∶ (E2,B2, p2 ∶ E2 → B2) (E1,B1, p1 ∶ E1 → B1)

(12)

FSCD 2020
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living in the 2-category K//K, and thus depicted as below in the underlying 2-category K:

E1 E2

B1 B2

p1

LE

p2

LB

ϕ

E1 E2

B1 B2

p1 p2

RE

RB

ψ

By definition, a formal adjunction between L and R in the 2-category K//K is defined as a
pair of 2-cells

(ηB, ηE) ∶ (id, id, id) (RE ◦ LE, RB ◦ LB, (RB ◦ ϕ)(ψ ◦ LE)) ∶ (E1,B1, p1) (E1,B1, p1)
(εB, εE) ∶ (LE ◦RE, LB ◦RB, (LB ◦ ψ)(ϕ ◦RE)) (id, id, id) ∶ (E2,B2, p2) (E2,B2, p2)

in the 2-category K//K, satisfying the triangular equations, see [13, 10] for details. One
nice consequence of this definition by generators and relations is that the resulting notion of
formal adjunction is preserved by 2-functors. Every formal adjunction L ⊣ R in K//K is thus
transported by the 2-functors (11) into a pair of formal adjunctions LB ⊣ RB and LE ⊣ RE
in the underlying 2-category K. From this follows that the 2-cell ψ ∶ p1 ◦RE ⇒ RB ◦ p2 in
K induces a 2-cell ψ̃ ∶ LB ◦ p1 ⇒ p2 ◦ LE called the mate of ψ, of the form below:

E1 E2

B1 B2

p1

LE

p2

LB

ψ̃

Suppose given two morphisms L and R in the 2-category K//K as in (12). In that case,

I Proposition 11. A formal adjunction L ⊣ R in the 2-category K//K is the same thing
as a pair of formal adjunctions LB ⊣ RB and LE ⊣ RE in the 2-category K, such that the
induced mate ψ̃ of the 2-cell ψ is the inverse of the 2-cell ϕ in the 2-category K.

From this follows easily that

I Proposition 12. A pair of formal adjunctions LB ⊣ RB and LE ⊣ RE in the 2-category K

lifts to a formal adjunction (LB, LE, ϕ) ⊣ (RB, RE, ψ) in the 2-category K//K precisely
when the 2-cell ϕ is invertible in K and the 2-cell ψ coincides with the mate of ϕ−1.

It should be mentioned that a similar observation is made by Kelly [9] (Prop. 1.3) on the
2-category of D-algebras derived from a 2-monad D on the 2-category K, see also [8], Section
3.5. It should be also noted that the characterization of formal adjunctions in K//K is also
very similar to the description of formal adjunctions in the 2-category of monoidal categories
and lax monoidal functors, see for instance [10].

4 Comprehension structures with section

In this section, we suppose given a morphism p ∶ E→ B in the 2-category K and establish
(Prop. 17) that a comprehension structure with section on a morphism p ∶ E→ B originally
defined (Def. 16) as an adjunction ⭒ ⊣ [−] in the 2-category K, can be in fact lifted (and
thus equivalently defined) as a specific form of adjunction ⭒ ⊣ ([−], ι) in the 2-category
K//K. As expected, the proof of Prop. 17 relies on the characterization of formal adjunctions
in K//K just established in the previous section, see Prop. 12. The result provides a general
2-categorical formulation of the proposition (Prop. 6) stated in the introduction for the
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particular case K = Cat. In order to perform our construction at this general 2-categorical
level of abstraction, we start by defining a comprehension structure on a morphism p ∶ E→ B
in the 2-category K, in a way which generalizes what we did in the introduction (see Def. 1)
in the specific case K = Cat.

I Definition 13. A comprehension structure on the morphism p ∶ E→ B is a pair ([−], ι)
consisting of a morphism [−] ∶ E→ B and of a 2-cell ι ∶ [−]⇒ p in the 2-category K.

We carry on as we did in the introduction (see Prop. 3) and observe that

I Proposition 14. A comprehension structure ([−], ι) on p ∶ E→ B is the same thing as a
morphism in the 2-category K//K of the form

(fE, idB, ϕ) ∶ (E,B, p ∶ E→ B) (B,B, idB ∶ B→ B) (13)

We proceed in just the same way as we did in the introduction with Prop. 5, and characterize
a section ⭒ ∶ B→ E of the morphism p ∶ E→ B as a specific form of strict morphism:

I Proposition 15. A section ⭒ ∶ B→ E of the morphism p ∶ E→ B in K is the same thing
as a strict morphism in K//K of the form

(sE, idB) ∶ (B,B, idB ∶ B→ B) (E,B, p ∶ E→ B) (14)

We are now ready to give our general 2-categorical definition of comprehension structure with
section on the morphism p ∶ E→ B in the 2-category K.

I Definition 16. A comprehension structure with section on p ∶ E → B is a section
⭒ ∶ B→ E together with a right adjoint [−] ∶ E→ B in the 2-category K.

We then take advantage of Prop. 12 in order to establish that:

I Proposition 17. A comprehension structure with section is a comprehension structure (13)
right adjoint to a section (14) in the 2-category K//K.

Proof. Suppose given a section ⭒ ∶ B→ E of the morphism p ∶ E→ B in the 2-category K,
described (Prop. 15) as a strict morphism

L = (⭒, idB, id) ∶ (B,B, idB ∶ B→ B) (E,B, p ∶ E→ B)

in the 2-category K/K. Consider moreover a morphism of the form

R = ([−], idB, ι) ∶ (E,B, p ∶ E→ B) (B,B, idB ∶ B→ B)

in the 2-category K//K. The morphisms L and R of the 2-category K//K can be depicted
as follows in the underlying 2-category K:

B E

B B
idB

⭒

p

idB

B E

B B
idB p

[−]

idB

ι

Now, suppose that ⭒ and [−] define a comprehension structure with section, in the sense
of Def 16. By definition, this means that there is an adjunction ⭒ ⊣ [−]. By Prop. 12,
the adjunction ⭒ ⊣ [−] lifts to an adjunction L ⊣ R between the morphisms L and R in
the 2-category K//K precisely when the 2-cell ι ∶ [−]⇒ p in the 2-category K is the mate
defined as ι = p ◦ ε, of the identity 2-cell id ∶ idB ⇒ p ◦ ⭒. Here, the 2-cell ε ∶ [−] ◦ ⭒⇒ id
denotes the counit of the adjunction ⭒ ⊣ [−] in the 2-category K. This establishes one
direction of the proof, while the other direction is immediate. J
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Note that the definition of the 2-cell ι ∶ [−]⇒ p as the mate ι ∶ [−]⇒ p of the identity
2-cell id ∶ idB ⇒ p ◦ ⭒ provides a conceptual explanation for the definition of ι ∶ [−]⇒ p as
the image by p of the counit ε of the counit of the adjunction ⭒ ⊣ [−].

5 Path objects in a 2-category

We introduce the notion of path object on an object B in a 2-category K. This construction,
which generalizes the usual construction of the arrow category B

→ of a category B when
K = Cat, will play an important role in §8 when we apply our constructions to inductive
and coinductive reasoning on initial algebras and terminal algebras. Every object B in a
2-category K induces a 2-functor

K(−,B)→ ∶ K Cat (15)

which transports every object X ∈ K to the arrow category K(X,B)→ of the hom-category
K(X,B) between X and B.

I Definition 18. A path object for the object B in the 2-category K is a pair (B→, β)
consisting of an object B→ and of a family of isomorphisms

βX ∶ K(X,B→) ≅ K(X,B)→

2-natural in the object X. Terminology: one says in that case that the pair (B→, β) defines a
representation of the 2-functor (15).

Note that every path object (B→, β) comes equipped with three morphisms and a 2-cell

cod,dom ∶ B→ B id ∶ B B→ hom ∶ dom cod ∶ B→ B

satisfying dom◦ id = idB = cod◦ id and that the 2-cell hom◦ id coincides with the identity
2-cell on idB. A remarkable property is that

I Proposition 19. The three morphisms cod, id and dom are related by a pair of formal
adjunctions cod ⊣ id and id ⊣ dom in the 2-category K.

Going back to the definition (Def. 16) of a comprehension structure with section, this
establishes that

I Proposition 20. Every path object (B→, β) defines a comprehension structure with section
id ∶ B→ B→ on the morphism cod ∶ B→ → B in the 2-category K.

Note that the comprehension structure ([−], ι) constructed in Prop. 17 using a 2-categorical
mate in K is provided in that case by the pair (dom,hom) with 2-cell hom ∶ dom⇒ cod.

6 Functors with image structure

In this section, we introduce the notion of functor p ∶ E → B with image structure which
weakens (and thus generalizes) the usual notion of Grothendieck opfibration p ∶ E→ B.

I Definition 21 (Image structure). An image structure on a functor p ∶ E → B is a pair
(⭒, λ) consisting of a section ⭒ defined as a functor ⭒ ∶ B → E satisfying the equation
p ◦ ⭒ = idB, together with a family λ of opcartesian morphisms

u ∶ A B ⊧ λu ∶ ⭒A ∃u[⭒A] (16)
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indexed by the morphisms u ∶ A → B of the basis category B. We will also suppose for
convenience that the opcartesian morphism

idA ∶ A A ⊧ λu ∶ ⭒A ∃idA
[⭒A]

coincides with the identity morphism on ⭒A.

Here, we follow the fibered philosophy of refinement type systems [11], and write

u ∶ A B ⊧ f ∶ R S

when a morphism f ∶ R → S in the category E has image p(f) = u ∶ A → B in the
category B. The intuition is that the morphism f ∶ R → S is “above” the morphism
u ∶ A→ B, and “dependent” of it. Accordingly, we write Eu∶A→B(R,S) for the set of such
morphisms f ∶ R → S such that p(f) = u. Let us recall what universal property is required
of the morphism (16) in order to make it opcartesian. By precomposition in the category E,
every morphism

v ∶ B B
′

⊧ h ∶ ∃u[⭒A] S
′

induces a morphism

v ◦ u ∶ A B
′

⊧ h ◦ λu ∶ ⭒A S
′

The fact that the morphism (16) is opcartesian simply means that the operation is reversible,
and thus induces a bijection

Ev◦u∶A→C(⭒A, S ′) ≅ Ev∶B→C(∃u[⭒A], S ′)

for every morphism v ∶ B → B
′ and every object S ′ in the fiber of B′.

I Proposition 22. For every morphism u ∶ A→ B of the category B, every functor p ∶ E→ B

with an image structure (⭒, λ) comes equipped with a family of morphisms

v ∶ B B
′

⊧ v⊳ ∶ ∃u[⭒A] ∃v◦u[⭒A] (17)

indexed by the morphisms v ∶ B → B
′ of the category B, and a family of morphisms

idB ∶ B B ⊧ ⊲w ∶ ∃u◦w[⭒A′] ∃u[⭒A] (18)

indexed by the morphisms w ∶ A′ → A of the category B. These morphisms make a series of
diagrams commute. First of all, the three coherence diagrams below commute

∃u[⭒A]

⭒A

∃v◦u[⭒A]

v⊳

λu

λvu

(a)

⭒A′ ∃u◦w[⭒A′]

⭒A ∃u[⭒A]

⭒w

λu◦w

(b) ⊲w

λu

∃u◦w[⭒A′] ∃v◦u◦w[⭒A′]

∃u[⭒A] ∃v◦u[⭒A]

⊲w

v⊳

(c) ⊲w

v⊳

(19)

for every path A
′

A B B
′w u v in the category B. Then, the functorial nature of (17)

and (18) is ensured by the fact that the diagrams below commute

∃v◦u[⭒A]

∃u[⭒A] ∃v′◦v◦u[⭒A]

v
′
⊳

(v′◦v)⊳

v⊳

∃u◦w[⭒A′]

∃u◦w◦w′[⭒A′′] ∃u[⭒A]

⊲w

⊲(w◦w′)

⊲w
′

(20)
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for every pair of paths A B B
′

B
′′u v v

′

and A
′′

A
′

A B
w
′

w u of the cat-
egory B, and moreover, that the morphisms

idB ∶ B B ⊧ (idB)⊳ ∶ ∃u[⭒A] ∃u[⭒A]
idB ∶ B B ⊧ ⊲(idA) ∶ ∃u[⭒A] ∃u[⭒A]

(21)

coincide with the identity, for every morphism u ∶ A→ B of the basis category B.

Proof. The two morphisms (17) and (18) are defined by the universal property of the family
of opcartesian morphisms λ defining the image structure, as the unique morphisms v⊳ and
⊲w making the two diagrams commute in (19-ab). The three coherence properties (19-c) (20)
and (21) follow easily from the definition of the two morphisms (17) and (18). J

We deduce from the statement (Prop. 22) just established that

I Corollary 23. Every functor p ∶ E→ B with an image structure comes with a functor

image ∶ B
→

E

called the image functor associated to the image structure.

Proof. The image functor transports every object u ∶ A→ B of the arrow category B
→ to

the object ∃u[⭒A] defined by the image structure, and every morphism

(v, w) ∶ (A,B, u ∶ A→ B) (A′, B′
, u

′ ∶ A′ → B
′)

to the composite morphism below in the category E

v ∶ B B
′
⊧ ∃u[⭒A] ∃v◦u[⭒A] ∃u′◦w[⭒A] ∃u′[⭒A′]v⊳ id ⊲w

The functoriality of image follows from the coherence properties (19-c) (20) and (21)
established in Prop. 22. J

The resulting image functor image ∶ B→ → E extends the section ⭒ ∶ B→ E, in the expected
sense that the diagram below commutes:

B

E

B B
→

p

id

⭒

idB

image

cod

(22)

In particular, as explained in the introduction, the diagram (9) commutes by definition of the
image functor. Note that every Grothendieck opfibration p ∶ E→ B with a section ⭒ ∶ B→ E

comes equipped with an image structure, which is canonical when the opfibration is cloven.

7 Comprehension structures with image

In order to work in full generality, and to include the case of the 2-categories of algebras
and coalgebras treated in §8, we find convenient to generalize our definition Def. 21 of image
structure for a functor p ∶ E→ B in the specific case K = Cat to any morphism p ∶ E→ B
in a 2-category K.
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I Definition 24 (Image structure). An image structure on a morphism p ∶ E → B in a
2-category K is a section ⭒ ∶ B→ E equipped with a family λ of 2-cells

λu ∶ ⭒a ∃u[⭒a] ∶ X E (23)

indexed by the objects X, the morphisms a, b ∶ X → B and the 2-cells u ∶ a ⇒ b of the
2-category K, where the morphism ⭒a is defined as the composite ⭒ ◦ a ∶ X → E. One
requires moreover that each 2-cell λu defines an opcartesian morphism

u ∶ a b ⊧ λu ∶ ⭒a ∃u[⭒a] (24)

with respect to the postcomposition functor

K(X, p) ∶ K(X,E) K(X,B)

above the morphism u ∶ a⇒ b in the category K(X,B). We also ask for convenience that
λu ∶ ⭒a ⇒ ∃u[⭒a] coincides with the identity 2-cell when u ∶ a⇒ a is the identity 2-cell.

Note that every morphism p ∶ E → B with an image structure (⭒, λ) to an object B
equipped with a path-object (B→, β) in the 2-category K comes equipped with a morphism
image ∶ B→ → E defined as image = ∃hom[⭒dom], and thus satisfying the equality:

B

B→ E

B

⭒

dom

cod

p

hom =

B

B→ E

B

⭒

dom

image

cod

p

λhom

(25)

Moreover, the resulting image morphism makes the counterpart of diagram (22) commute
for the same reason as in the specific case of the 2-category K = Cat. For that reason, the
morphism image may be seen as a morphism

image ∶ (B→, cod) (E, p) (26)

in the slice 2-category K/B, defined as the expected sub-2-category of K/K whose objects
are the morphisms p ∶ E→ B with codomain B. We are now in the position of defining the
notion of comprehension structure with image at that 2-categorical level of generality.

I Definition 25. Suppose given a morphism p ∶ E → B with an image structure on an
object B equipped with a path-object (B→, β). A comprehension structure with image on
the morphism p ∶ E → B is a right adjoint P ∶ (E, p) → (B→, cod) to the morphism
image ∶ (B→, cod)→ (E, p) defined in (26) in the slice 2-category K/B.

A comprehension structure with image on p ∶ E→ B in the sense of Def. 25 comes equipped
with a pair of adjunctions id ∶ B⇆ B→ ∶ dom and image ∶ B→ ⇆ E ∶ P in the 2-category K.
From that, one easily deduces that

I Proposition 26. Every comprehension structure with image (Def. 25) induces a compre-
hension structure with section defined as ⭒ = image ◦ id ∶ B→ E (Def. 16), where the right
adjoint functor [−] ∶ E→ B is defined as the composite [−] = dom ◦ P.
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We establish now the converse property which extends to every 2-category K the property
stated in the introduction (Prop. 8) in the specific case of K = Cat. The statement
extends [2], lemma 2.2.10 by relaxing the assumption that p ∶ E→ B is a bifibration.

I Proposition 27. Suppose that p ∶ E→ B has an image structure in the 2-category K (in
the sense of Def. 24). In that case, every comprehension structure with section (in the sense
of Def. 16) defines a comprehension structure with image (in the sense of Def. 25).

Proof. Suppose that p ∶ E→ B has an image structure and at the same time a comprehension
structure with section ⭒ ∶ E → B in the 2-category K. The 2-cell ι ∶ [−] → p ∶ E → B
mentioned in Prop. 12 defines a morphism in the 2-category K(E,B), and thus an object
in the 2-category K(E,B)→. By definition of the path object (B→, β) in Def. 18, the 2-cell
ι ∶ [−] → p ∶ E → B induces an object of the 2-category K(E,B→), and thus a morphism
noted P ∶ E→ B→ and characterized by the equation

hom ◦ P = ι ∶ [−] p ∶ E B

We want to show that this morphism P ∶ E → B→ is right adjoint to the morphism
image ∶ B→ → E in the 2-category K. To that purpose, we consider an object X of the
2-category K and a pair of morphisms u ∶ X → B→ and S ∶ X → E, and we exhibit a
one-to-one relationship (see [10], Section 5.11) between the 2-cells ϕ and ψ of the form:

B→

X

E

image

u

S

ϕ

B→

X

E

u

S

Pψ (27)

The key observation is that a 2-cell ψ of that form is the same thing as a 2-cell (ψ1, ψ2) in
the 2-category K//K between the composite morphisms:

X B→ B

X B B

u

idX

dom

cod idB

cod◦u idB

hom
(ψ1,ψ2)

X E B

X B B

S

idX

[−]

p idB

p◦S idB

ι

It follows from the existence of the adjunction in K//K established in Prop. 17 that there
is a one-to-one relationship between the pairs of 2-cells (ψ1, ψ2) in the 2-category K of the
form above, and the pairs (ϕ1, ϕ2) of 2-cells in the 2-category K defining a 2-cell (ϕ1, ϕ2) in
the 2-category K//K between the composite morphisms:

X B→ B E

X B B B

u

idX

dom

cod idB

⭒

p

cod◦u idB idB

hom
(ϕ1,ϕ2)

X E

X B

S

idX p

p◦S

The definition of the morphism image ∶ B→ → E and the cartesianity of the 2-cell λhom
in (25) with respect to the functor K(X, p) ∶ K(X,E) → K(X,B) implies that there is a
one-to-one relationship between the pairs of 2-cells (ϕ1, ϕ2) in the 2-category K//K above,
and the 2-cells ϕ of the form (27) in the 2-category K. The end of the proof is easy. J
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8 Illustration: inductive reasoning on functor algebras and dually,
coinductive reasoning on functor coalgebras

Suppose given a functor p ∶ E→ B between two categoriesB and E equipped with endofunctors
F ∶ B → B and G ∶ E → E and a distributivity law of the form (10). A well-known result
by Beck [1] states that the distributivity law δ ∶ F ◦ p⇒ p ◦G describes one specific lifting
of the functor p ∶ E → B to a functor p′ ∶ AlgG(E) → AlgF (B) between the underlying
categories of algebras, in such a way that the diagram below commutes:

AlgG(E) AlgF (B)

E B

U

p
′

U

p

where U denotes in both cases the forgetful functor. One main reason for working at a
2-categorical level as we do in the present paper is to provide us with a simple and elegant
recipe to characterize in just the same spirit inherited from Beck [1] when a comprehension
structure with section ⭒ ∶ B→ E on the functor p ∶ E→ B lifts to a comprehension structure
with section ⭒ ∶ AlgF (B) → AlgG(E) on the functor p ∶ AlgG(E) → AlgF (B). To that
purpose, we consider the 2-category Endo(Cat) with objects the categories equipped with
endofunctors, and with morphisms the functors equipped with a distributivity law à la
Beck. Note that Endo(Cat) may be defined as the full sub-2-category of Cat//Cat whose
objects are of the form (C,C, G ∶ C→ C). This leads us the question of characterizing when
a comprehension structure with section ⭒ ∶ B → E on the functor p ∶ E → B lifts to a
comprehension structure with section in the 2-category Endo(Cat), where this definition
should be understood in the 2-categorical sense of §4, Def. 16. We establish that

I Proposition 28. Suppose given a comprehension structure with section ([−],⭒) in Cat
on a functor p ∶ E → B between categories B and E equipped with endofunctors S ∶ B → B

and T ∶ E→ E. There is a one-to-one correspondence between the liftings to Endo(Cat) of
the comprehension structure with section ([−],⭒) and the pairs of distributivity laws

δ ∶ F ◦ p p ◦G ∶ E B σ ∶ G ◦ ⭒ ⭒ ◦ F ∶ B E

such that (1) the composite natural transformation

F F ◦ p ◦ ⭒ p ◦G ◦ ⭒ p ◦ ⭒ ◦ F F
equal δ◦⭒ p◦σ equal

is the identity and (2) the natural transformation σ is reversible.

It is worth mentioning that, in this situation, the comprehension functor [−] ∶ E→ B lifts as
the pair ([−], σ̃) ∶ (E, G) → (B, F ) where the distributivity law σ̃ ∶ F ◦ [−]⇒ [−] ◦ G is
defined as the mate of the inverse σ−1 ∶ ⭒ ◦ F ⇒ G ◦ ⭒. We obtain that in this situation

I Corollary 29. The comprehension structure with section ⭒ ∶ B→ E lifts to a comprehension
structure with section (⭒, σ) ∶ (B, F ) → (E, G) which is left adjoint to comprehension
([−], σ̃) ∶ (E, G) → (B, F ) and thus transports the initial F -algebra µF to the initial G-
algebra µG = ⭒µF .

The result extends the main soundness theorem established by Fumex, Ghani and Johann
in [3], Thm 2.10. It establishes in their terminology (see [2], Def. 4.3.1) that G defines an
induction scheme for µF in p. The approach translates immediately by duality to the case of
quotient structures, and provides in just the same way necessary and sufficient conditions to
be in the situation of Corollary 10 and to characterize the terminal F -coalgebra as νF = ⭒νF .
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9 Conclusion

Our main purpose and achievement in this paper is to exhibit the 2-categorical structures
secretly at work in the 1-categorical approach to comprehension structures traditionally found
in categorical logic. Our work was motivated by the fibered approach to induction on algebras
and coinduction on coalgebras recently developed by Fumex, Ghani and Johann [3, 2]. We
understand our 2-categorical approach and statements (Cor. 9, 10 and 29) as providing the
clean conceptual foundations underlying their soundness theorems. For lack of space, we did
not treat here the proof-theoretical aspects of our 2-categorical description of comprehension
structures. A natural direction would be to start from the recent multicategorical approach to
induction [7] developed in the fibered style of Melliès and Zeilberger’s refinement systems [11].
We leave that for future work.
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A Four alternative notions of comprehension structures

For the sake of completeness, we give the list below of four well-recognized notions of
comprehension structures appearing in the literature.

Jacobs comprehension categories

The notion of comprehension category was introduced by Jacobs ([6], Def 4.1, p. 181, and [5],
chapter 10.4, page 613). A comprehension category is defined there as a functor P ∶ E→ B

→

satisfying that
1. the functor p ∶ E → B defined as the composite functor p = cod ◦ P is a Grothendieck

fibration,
2. the functor P ∶ E → B

→ is cartesian in the sense that it transports every p-cartesian
morphism of E to a cod-cartesian morphism of B→, which may be equivalently defined
as a pullback square in the category B.

A comprehension category is thus the same thing as a comprehension structure in the sense
of Def. 1 where the underlying functor p ∶ E → B is a Grothendieck fibration, and where
the functor P ∶ E → B

→ induced from the functor [−] ∶ E → B and from the natural
transformation ι ∶ [−]⇒ p transports every p-cartesian morphism of E to a pullback square
in the category B. Note that in that case, the equality p = cod ◦ P holds by construction.

Ehrhard D-categories

The notion of D-category was introduced by Ehrhard [4]. Ehrhard’s D-categories are also
called comprehension category with units by Jacobs [6] def. 4.12, and Ehrhard comprehension
category by Moss [12], p 22. A pre-D-category is defined in [4] (Section 2.1, def. 5) as a
functor p ∶ E→ B equipped with a right adjoint functor ⭒ ∶ B→ E such that the counit of
the adjunction p ⊣ ⭒ an isomorphism, or equivalently, that the functor ⭒ is fully faithful.
The functor ⭒ ∶ B → E may be thus seen as a section of the functor p ∶ E → B up to
isomorphism. In the definition of a pre-D-category, the functor ⭒ ∶ B→ E should also come
equipped with a right adjoint functor [−] ∶ E → B. Finally, a D-category is defined in [4]
(Section 2.1, def. 5) as a pre-D-category where the functor p ∶ E → B is a Grothendieck
fibration.

In his later reformulation [6] of the notion of D-category, Jacobs makes the extra assump-
tion that the counit of the adjunction p ⊣ ⭒ is the identity, and not just an isomorphism.
This implies in particular that the functor ⭒ ∶ B→ E is a section of the functor p ∶ E→ B.
A D-category is thus defined in [6] Def. 4.12 as a Grothendieck fibration p ∶ E→ B equipped
with a terminal object functor ⭒ ∶ B→ E which has a right adjoint noted [−] ∶ E→ B. Here,
by terminal object functor s ∶ B → E, one means a section of the functor p ∶ E → B which
transports every object A of the basis category B to a terminal object of the fiber EA of the
object A with respect to the functor p ∶ E→ B. Note in particular that the terminal object
functor ⭒ ∶ B→ E is fully faithful and right adjoint to the functor p ∶ E→ B.

A D-category in that sense is thus the same thing as a comprehension structure with
section (Def. 4) where the functor p ∶ E → B is a Grothendieck fibration, and where the
section ⭒ ∶ B → E is moreover right adjoint to p ∶ E → B. As mentioned above, this last
point means that the section ⭒ ∶ B → E is the terminal object function which associates
to every object A of the category B the terminal object in its fiber EA with respect to the
functor p ∶ E→ B.
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Fumex tC-opfibrations

The notion of tC-opfibration was introduced by Fumex in his PhD thesis, ([2] p. 38, def.
2.2.2.) A tC-category is defined there as a Grothendieck opfibration p ∶ E→ B with a fully
faithful section ⭒ ∶ B → E. The section ⭒ ∶ B → E is moreover required to have a right
adjoint noted [−] ∶ E→ B. Note that, given an object A of the basis category B, one does
not require that the object sA is terminal in the fiber EA of the object A. This is one main
difference with Ehrhard’s notion of D-category.

A tC-category is thus the same thing as a comprehension structure with section in the
sense of Def. 4 where the functor p ∶ E → B is a Grothendieck opfibration and where the
section ⭒ ∶ B→ E is moreover fully faithful. At this stage, it is important to observe that
every Grothendieck opfibration has an image structure in the sense of Def. 21, or equivalently,
in the sense of Def. 24 for the specific case K = Cat. From this follows, by Prop. 27, that a
tC-category is in fact the same thing as a comprehension structure with image in sense of
Def. 7, where the functor p ∶ E→ B is moreover a Grothendieck opfibration and where the
section ⭒ ∶ B→ E is fully faithful.

Lawvere categories

The notion of Lawvere category was introduced by Jacobs in [6], p 190, as a way to reflect
the work by Lawvere [14] on hyperdoctrines in categorical logic. A Lawvere category is
defined as a Grothendieck bifibration p ∶ E→ B with a terminal object in each fiber, defining
a functor ⭒ ∶ B→ E, and such that the (ordinary) functor

f ↦ Σf⭒(domf) ∶ B
→
→ E

induced by the left fibration structure has a right adjoint [−] ∶ E→ B
→, verifying cod◦[−] =

p, and such that the unit and counit are vertical (their image by cod and p is the identity).
Note that every Lawvere category is a tC-opfibration in the sense of Fumex [2]. A Lawvere
category is thus the same thing as a comprehension structure with image in sense of Def. 7
where the functor p ∶ E→ B is a Grothendieck bifibration and where the section ⭒ ∶ B→ E

is the terminal object functor.
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Abstract
We present a complete coinductive syntactic theory for an untyped calculus of algebraic operations
and handlers, a relatively recent concept that augments a programming language with unprecedented
flexibility to define, combine and interpret computational effects. Our theory takes the form of a
normal-form bisimilarity and its soundness w.r.t. contextual equivalence hinges on using so-called
context variables to test evaluation contexts comprising normal forms other than values. The
theory is formulated in purely syntactic elementary terms and its completeness demonstrates the
discriminating power of handlers. It crucially takes advantage of the clean separation of effect
handling code from effect raising construct, a distinctive feature of algebraic effects, not present in
other closely related control structures such as delimited-control operators.
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1 Introduction

Algebraic effects with handlers [22, 3] have become a popular technique of programming
with computational effects such as exceptions, mutable state or nondeterminism. Their
strength lies in their modularity, as it is possible to easily combine several effects thanks to
the separation between syntax and semantics. Indeed, effects themselves are just syntactic
constructs which do not carry any meaning; their semantics is given by the handlers, which
come into play when an interpretation of an effect is needed for the computation to go
through.

As an informal example, borrowed from [8], consider the reader effect ask, which returns
a hidden value when triggered. An effect is used as a labeled operation, e.g., as in doask () +
doask () + 2, and its meaning is given by a handler, as in

handle doask () + doask () + 2 {ask:x,k→ k 5; ret y→ y}

The handler specifies how it interprets the ask effect by the expression x,k→ k 5, where x
stands for the value the effect operation is applied to (which is not used in this example), and k
for its continuation or resumption, i.e., the rest of the computation, which includes the handler
itself. Here, the handler simply passes 5 to the continuation, so that doask () + doask () + 2
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eventually reduces to 12. Once the expression inside the handler is a value, it is passed to
the return clause ret y→ y, which in our case simply returns the result. Any expression can
be used in an effect handler, including one making use of the continuation several times or
not at all; for example, in

handle doask () + doask () + 2 {ask:x,k→ 13; ret y→ y}

the handler throws away the continuation when called the first time and returns 13, which is
then the final result of the computation. Multiple effects can be used in an expression, which
are then interpreted by a single handler, or by successive handlers enclosing the expression.
The order of the handlers then specifies the semantics of all the effects combined.

While handlers make combining multiple effects programmer friendly, reasoning about the
behavior of programs with effects and handlers appears to be inherently challenging, mainly
due to the non-local transfer of control involved in effect handling. When it comes to the issue
of program equivalence, the standard notion considered in calculi modeling programming
languages, typically based on λ-calculi, is contextual equivalence [20], which requires program
phrases to behave the same when plugged in any context. The quantification over all
contexts makes this relation hard to use in practice, so one usually looks for more tractable
characterizations of contextual equivalence, either in the form of logical relations [24] or
coinductively defined bisimilarities [1, 17, 27].

In the presence of algebraic effects and handlers, the situation is even more interesting,
because we have to take into account the possibility that the testing context may interpret
any non-handled effects the two programs being tested might use. There exist some works on
formal techniques for reasoning about program equivalence in calculi with algebraic effects,
but they either do not include handlers in the language [16, 15, 14] or are directed by a
type structure of the calculus [8] (we discuss related work in detail in Section 4). None of
them, however, focuses on the control structure of a full calculus of algebraic effects and
handlers (where effects are interpreted dynamically, unlike, e.g., in [14]) and in isolation from
other concepts such as types. Algebraic effects are intimately related to delimited-control
operators [12, 21], for which bisimulation theories have been studied extensively [4], yet they
differ in a very essential way, as we argue in this work.

In this paper, we show that it is possible to characterize contextual equivalence in an
untyped calculus with algebraic effects and handlers with one of the simplest notions of
equivalence, namely normal-form (or open) bisimilarity [25, 17]. In a normal-form bisimilarity
proof one compares open terms by reducing them to normal forms, which are then decomposed
into bisimilar subterms. In a language with algebraic effects, we have to consider extra
normal forms – programs with effects that have not been handled. More importantly, we
have to observe how a context may handle an effect and its continuation. To this end, we
introduce an extended calculus where contexts can be abstractly represented with context
variables, a concept we used in our previous work on normal-form bisimulations for abortive
continuations [7]. Such variables can be observed and discriminated upon by the bisimilarity
that is defined for the extended calculus. Extending the calculus is a critical step in obtaining
sound and complete bisimilarity, but it should be seen just as a tool for studying the plain
calculus. When restricted to the plain calculus, the bisimilarity relates exactly those terms
that are equivalent w.r.t. the contextual equivalence in the plain calculus.

In many calculi, the decomposition of normal forms as done in normal-form bisimilarity
is usually too fine-grained and distinguishes programs that are in fact contextually equi-
valent [17]. The result of this paper shows that handlers contain sufficient discriminating
power for normal-form bisimilarity to be complete w.r.t. contextual equivalence. It contrasts
with other continuation-manipulating constructs such as (multi-prompted) delimited-control
operators, for which finding a complete normal-form bisimilarity remains an open issue [4].
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Lbl 3 l (effect labels)
Var 3 f, k, x, y, z (variables)

Val 3 u, v, w ::= x | λx.e (values)
Exp 3 e ::= v | e0 e1 | dol e | handle e {H; r} (expressions)

H ::= l1:h1; . . . ;ln:hn
h ::= x,k→ e (effect handlers)
r ::= ret x→ e (return clause)

Figure 1 Syntax of λeff.

The rest of this paper is organized as follows. In Section 2, we present the syntax,
semantics, and contextual equivalence of the plain calculus λeff, the minimal calculus with
effects and handlers we consider for our study. In Section 3, we define the normal-form
bisimilarity for the extended calculus and prove its soundness and completeness. We also
define up-to techniques, proof techniques meant to simplify equivalence proofs, and we
illustrate how the bisimilarity and these techniques can be used on examples. Additionally,
we pinpoint the difference between algebraic effects and delimited-control operators and how
it affects the definition of a normal-form bisimulation. In Section 4, we discuss related work,
and we conclude in Section 5. The appendix contains the soundness and completeness proof
sketches.

2 The Calculus λeff

Syntax. The calculus λeff, whose syntax is given in Figure 1, extends the λ-calculus with
labeled effects dol e and handlers handle e {H; r}, where H is a list of effect handlers
li:xi,ki→ ei and r is a return clause ret x→ e′. The order of the list is irrelevant, but
we assume the labels l1 . . . ln to be pairwise distinct. In a handler xi,ki→ ei, the variable xi
represents the argument of the effect, while ki stands for its continuation (or resumption).
We write lbl(e) for the set of effect labels l that label do expressions in e. The choice of
having a handler interpret several effects at once makes writing examples easier, but does not
affect the behavioral theory: the definitions of the equivalences are the same if the handler
takes care of one effect only.

An effect handler xi,ki→ ei binds xi and ki in ei, and a λ-abstraction λx.e or a return
clause ret x→ e bind x in e. We use the standard notions of free variables (fv(e) is the set of
free variables in e), closed and open expressions, and we work modulo α-conversion of the
bound variables. A variable is called fresh if it does not occur in any of the entities under
consideration.

We assume the standard call-by-value Church encoding of natural numbers, booleans
(true, false, if e0 then e1 else e2), unit (()), and the sequence expression (e1; e2) that we use
in examples and in the proof of completeness.

Reduction semantics. We fix a call-by-value, left-to-right reduction strategy for λeff by
defining the syntax of evaluation contexts as follows.

ECtx 3 E ::= � | E e | v E | dolE | handle E {H; r}

FSCD 2020



7:4 A Complete Normal-Form Bisimilarity for Algebraic Effects and Handlers

We write E[e] for the plugging of the expression e into the context E, and e{v/x} for the
usual capture-avoiding substitution of x by v in e. Given a context E, we define the set of
effects it handles, written hl(E), as follows.

hl(�) 4= ∅

hl(E e) 4= hl(E)

hl(v E) 4= hl(E)

hl(dolE) 4= hl(E)

hl(handle E {l1:h1; . . . ;ln:hn; r}) 4= hl(E) ∪ {l1, . . . , ln}

When writing expressions, we sometimes decorate a context with a label it does not handle,
i.e., writing El if l /∈ hl(E). Typically, we write El[dol v] for an expression where the effect l
cannot be handled by E.

The reduction semantics of λeff is given by the following rules.

(λx.e) v 7→ e{v/x}
handle v {H; ret x→ e} 7→ e{v/x}

E[dol v] 7→ e{v/x}{λz.E[z]/k} if E = handle E′l {H; r}
and l:x,k→ e ∈ H
and z is fresh

E[e] → E[e′] if e 7→ e′

We write →∗ for the reflexive and transitive closure of →. In the third rule, we see that
the effect dol v is interpreted by the first enclosing handler, as E = handle E′l {H; r} and E′
does not handle l. The handler has access not only to the argument v of the effect, but also
to its continuation, represented as a function λz.E[z]. Note that the handler itself is part of
the captured continuation, meaning that it can handle further effects when the continuation
is resumed.1 If a handler obtains a value (second rule), there are no more effects to handle
and the value is passed to the return clause. The semantics is deterministic, as it can be
shown that an expression is either a normal form or can be uniquely decomposed into a redex
and an evaluation context.

I Example 1. Let us consider the example from the introduction:

e
4= handle doask () + doask () + 2 {ask:x,k→ k 5; ret y→ y}

If E 4= handle � {ask:x,k→ k 5; ret y→ y} and z is a fresh variable, then e reduces as follows:

e→ (λz.E[z + doask () + 2]) 5
→ handle 5 + doask () + 2 {ask:x,k→ k 5; ret y→ y}
→ (λz.E[5 + z + 2]) 5
→ handle 5 + 5 + 2 {ask:x,k→ k 5; ret y→ y}
→∗ handle 12 {ask:x,k→ k 5; ret y→ y}
→ 12

1 Such handlers are known as deep handlers as opposed to shallow handlers also considered in the
literature [21].



D. Biernacki, S. Lenglet, and P. Polesiuk 7:5

Normal forms and contextual equivalence. When considering open expressions, normal
forms can be of the following kinds.

I Lemma 2. An open expression e is a normal form iff e is a value, or e = E[x v] for some
E, x, and v, or e = El[dol v] for some E, l, and v.

Values and expressions E[x v] (referred to as open-stuck terms) are usual normal forms
which can already be found in the plain λ-calculus. The expression El[dol v] cannot reduce
further, as E cannot handle the effect l; we refer to such normal forms as control-stuck terms.
Closed normal forms are either λ-abstractions or control-stuck terms.

Contextual equivalence equates expressions behaving the same in all contexts. In the
presence of multiple closed normal forms as in λeff, several definitions of contextual equivalence
are possible, depending on whether we observe termination of evaluation in general, or to
specific, meaningful normal forms – usually values. It turns out that such a choice does not
matter in λeff, as the definitions coincide; we explain why after presenting the definition we
use in this paper. We let C range over arbitrary contexts, i.e., expressions with a hole �.
We write e ⇓v if there is a value v, such that e→∗ v, and e ⇑ if e reduces infinitely, e.g., Ω ⇑,
where Ω = (λx.x x) (λx.x x).

I Definition 3. Two expressions e1 and e2 are contextually equivalent, written e1 ≡ e2, if
for all contexts C, such that C[e1] and C[e2] are closed, we have C[e1] ⇓v iff C[e2] ⇓v.

It can be shown that this definition introduces the same notion of contextual equivalence
as the one in which we observe simply termination of evaluation, instead of evaluation to a
value. The reason is that for any control-stuck term e1 = E1

l[dol v1], taking

C = handle � {l:x,k→Ω; ret x→x}

we have C[e1] ⇑, whereas C[v2] ⇓v for any value v2, and taking

C ′ = handle � {l:x,k→x; ret x→x}

we have C ′[e1] ⇓v, whereas C ′[e2] ⇑ for any e2 such that e2 ⇑. Thus, we can always build
a context that preserves non-termination and evaluation to a value, but that at the same
time coerces a control-stuck term to either a non-terminating expression (C) or to a value
(C ′). The two contextual equivalences therefore coincide, a situation which differs from other
context-manipulating constructs such as delimited-control operators [4].

3 Normal-Form Bisimilarity

We first informally introduce our notion of normal-form bisimilarity, before giving its definition
and discussing its soundness and completeness. We also explain why, in spite of the
relationship between handlers and multi-prompted delimited continuations, it is more difficult
to define a complete normal-form bisimilarity for the latter than for the former.

3.1 Informal Presentation
Normal-form bisimulation reduces expressions to normal forms and decomposes them into
related subterms; for example, an open-stuck term E1[x v1] is related to e2 if e2 reduces to a
similar term such that the contexts and values are pairwise related. Compared to the plain
λ-calculus [17, 7], we have to consider an extra normal form – control-stuck terms – but also
take into account the fact that contexts may handle effects.
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Dealing with control-stuck terms follows the same logic as for open-stuck terms: E1
l[dol v1]

is related to e2 if e2 reduces to a control-stuck term with related values and contexts.
Comparing contexts requires more care, as it depends how they are used. A context E1

l

surrounding a control-stuck term can only be captured and then plugged with a value, so it
is enough to test them with a fresh variable representing that value. Such contexts represent
resumptions (delimited continuations, really) that are bound to the continuation variable k
in effect handlers and used to obtain suitable interpretation of the effect.

In contrast, in an open-stuck term E1[x v1], the application may reduce to an effect
which could be handled by E1. Testing such contexts with only a fresh variable is not
enough as it would relate � and handle � {H; ret x→x}, two contexts which behave dif-
ferently as soon as they are plugged with an effect handled by H. We need to observe
which handlers are surrounding the context holes, but without requiring the sequence of
handled effects to be exactly the same. Indeed, successive “identity handlers” h 4= x,k→ k x

should be related if they handle the same effects, even in a different order: the context
handle handle � {l2:h; ret x→x} {l1:h; ret x→x} is expected to be equivalent to the context
handle handle � {l1:h; ret x→x} {l2:h; ret x→x}.

A simple way to compare the handlers behaviors is to plug the contexts with a control-
stuck term dol x for a fresh x and for any l (handled by the contexts). However, such a
testing term is not strong enough, as it would relate a handler which throws away the
continuation to one that does not, e.g., E1 = handle � {l:x,k→x; ret x→x} and E2 =
handle � {l:x,k→ k x; ret x→x}. We need to account for the fact that control-stuck terms
may be surrounded with a context without introducing a quantification over these contexts
which would go against the principles behind normal-form bisimulation. We do so by
extending the syntax of the calculus with context variables, a construct we introduced in
previous works to track the whereabouts of contexts captured by control operators [7, 4]. In
a control-stuck term αl[dol x], the context variable αl stands for a context which does not
handle l, and its presence allows to distinguish between the two contexts E1 and E2.

Adding context variables to λeff generates new normal forms of the shape E[αl[v]] and
E[αl[E′l

′
[dol′ v]]] (with l 6= l′), where the computation is stuck because we do not know

which context αl stands for. The bisimulation deals with these normal forms in a very regular
way, simply asking to reduce to a normal form of the same shape with related contexts
and values. In the end, the definition we obtain (Definition 5) follows the usual pattern of
normal-form bisimulation – the only subtlety being in how to compare contexts – and yet the
resulting bisimilarity is sound and complete w.r.t. the contextual equivalence of the extended
calculus. More importantly, the restriction of the bisimilarity to plain calculus terms yields
the contextual equivalence for the plain calculus.

3.2 Extended Calculus
As explained in the previous section, we extend the syntax of λeff with context variables in
order to observe how contexts are captured when effects are triggered. We assume a set CVar
of context variables, ranged over by α and β. Similar to evaluation contexts, we decorate
these variables with an effect it does not handle: the variable αl is a context variable standing
for a context which does not handle l. In particular, when considering a control-stuck term,
the context variable is always decorated with an effect label. Moreover, we write αl 6= βl

′ if
l 6= l′ or α 6= β.

We extend the syntax of expressions and evaluation contexts as follows.

e ::= . . . | αl[e] E ::= . . . | αl[E]
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We write cv(e) for the set of context variables occurring in e. We adapt the definition of hl
so that hl(αl[E]) 4= (Lbl \ {l}) ∪ hl(E), as αl stands for a context not handling l but which
may potentially handle any other label. While the reduction rules themselves are the same,
the semantics of the extended calculus is still affected by the change in the grammar of
evaluation contexts. In particular, it admits more normal forms than the plain λeff.

I Lemma 4. An open expression e is a normal form in the extended calculus iff e is a value,
or e = E[x v] for some E, x, and v, or e = El[dol v] for some E, l, and v, or e = E[αl[v]]
for some E, αl, and v, or e = E1[αl[E2

l′ [dol′ v]]] for some E1, E2, v, αl and l′ such that
l 6= l′.

We refer to normal forms of the shape E[αl[v]] as context-stuck terms and those of the shape
E1[αl[E2

l′ [dol′ v]]] as control/context-stuck terms. The latter differ from control-stuck terms
of the form El[dol v], because αl may be replaced by a context handling l′, so even if E1

does not handle l′ we cannot consider E1[αl[E2
l′ ]] as a context not handling l′.

A context variable cannot be bound, therefore an open term may contain context variables
or free expression variables. In contrast, an expression or context is closed if it does not have
any context variable or free expression variable.

Given an expression e, a context variable αl and a context El, we define the context sub-
stitution e{El/αl} so that (αl[e]){El/αl} 4= El[e{El/αl}], and the substitution is recursively
propagated to the sub-expressions in the other cases.

3.3 Definition
We define the bisimulation for the extended calculus using the notion of diacritical progress
we developed in a previous work [2, 6], which distinguishes between active and passive clauses.
Roughly, passive clauses are between simulation states which should be considered equal,
while active clauses are between states where actual progress is taking place. This distinction
does not change the notions of bisimulation or bisimilarity, but it simplifies the soundness
proof of the bisimilarity. It also allows for the definition of powerful up-to techniques,
functions on relations meant to simplify bisimilarity proofs. For normal-form bisimilarity,
our framework enables up-to techniques which respect η-expansion [7], a necessary condition
to reach completeness.

Given a relation R on expressions, we extend it to values and evaluation contexts in the
following way.

v1 x R v2 x x fresh
v1 Rv v2

E1[x] R E2[x] x fresh
E1 Rr E2

E1[x] R E2[x] ∀l ∈ hl(E1) ∪ hl(E2).E1[αl[dol x]] R E2[αl[dol x]] x, αl fresh
E1 Rc E2

The ·v extension compares values by simply applying them to a fresh variable; such a test,
compliant with η-expansion [7], is valid because λ-abstractions are the only values of our
language. As explained in Section 3.1, we consider two extensions for evaluation contexts, as
it depends how these are used: ·r is used when we know the contexts are plugged only with
values (resumptions), while ·c assumes that they can be filled with any expression, including
an effectful one. As a result, ·c compares how the contexts deal with the effects they may
handle (the ones in hl(E1)∪ hl(E2)), by testing them with an expression αl[dol x] built using
a fresh context variable αl which can be observed during the bisimulation game.
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We define progress, bisimulation and bisimilarity using these extensions.

I Definition 5. A relation R progresses to S, T written R� S, T , if R ⊆ S, S ⊆ T , and
e1 R e2 implies:

if e1 → e′1, then there exists e′2 such that e2 →∗ e′2 and e′1 T e′2;
if e1 = v1, then there exists v2 such that e2 →∗ v2 and v1 Sv v2;
if e1 = E1[x v1], then there exist E2 and v2 such that e2 →∗ E2[x v2], E1 T c E2, and
v1 T v v2;
if e1 = E1

l[dol v1], then there exist E2 and v2 such that e2 →∗ E2
l[dol v2], E1

l T r E2
l,

and v1 T v v2;
if e1 = E1[αl[v1]], then there exist E2 and v2 such that e2 →∗ E2[αl[v2]], E1 Sc E2, and
v1 Sv v2;

if e1 = E1[αl[E′1
l′ [dol′ v1]]] with l 6= l′, then there exist E2, E′2

l′ , and v2 such that
e2 →∗ E2[αl[E′2

l′ [dol′ v2]]], E1 T c E2, E′1
l′ T r E′2

l′ , and v1 T v v2;
the symmetric of the above conditions on e2.

A normal-form bisimulation is a relation R such that R� R,R, and normal-form bisimil-
arity ≈ is the union of all normal-form bisimulations.

As pointed out before, the clauses dealing with normal forms are very similar, simply
requiring e2 to reduce to a normal form of the same kind, and then decomposing these
normal forms into pairwise related subterms. We just have to be careful in using ·r only for
the contexts used as resumptions.

We progress towards S in the value and context-stuck term clauses and T in the others;
the former are passive while the latter are active. Our framework prevents some up-to
techniques from being applied after a passive transition. For values, we want to forbid the
application of bisimulation up to context as it would be unsound: we could deduce that v1 x

and v2 x are equivalent for all v1 and v2 just by building a candidate relation containing v1
and v2. Similarly, for context-stuck terms, we prevent the application of bisimulation up to
substitution of context variables, as we could also relate any v1 and v2 from a candidate
containing αl[v1] and αl[v2] by replacing the context variable with � x.

I Example 6. We consider the handler of Example 1 for the reader effect, where we generalize
the hidden value 5 to a given variable z:

E1
4= handle � {ask:x,k→ k z; ret x→x}

Alternatively, the reader effect can be interpreted by the following handler obtained from the
standard handler for mutable state:

E2
4= (handle � {ask:x,k→λy.k y y; ret x→λy.x}) z

The context E2 applies the handler to the current value of the state and let the handling
code of the operation(s) access it through a λ-abstraction. (We would obtain a standard
handler for mutable state by adding the clause set:x,k→λy.k y x handling the operation set
which sets the value of the state.)

We show that these two handlers for the reader effect are equivalent by establishing the
equivalence between the contexts E1 ≈c E2.
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Proof. Relating E1[x] and E2[x] for a fresh x is easy, as E1[x]→ x and E2[x]→ (λy.x) z → x.
Testing with αl[dol x] and defining E′2

4= handle � {l:x,k→λy.k y y; ret x→λy.x}, we get

E1[αl[dol x]]→2 E1[αl[z]]

E2[αl[dol x]]→ (λy.(λy′.E′2[αl[y′]]) y y) z →2 E′2[αl[z]]z = E2[αl[z]]

We obtain two context-stuck terms, for which we need to relate identical variables and the
contexts E1 and E2 we want to equate in the first place. In the end, we can easily build a
bisimulation R such that E1 Rc E2. J

3.4 Soundness and Up-to Techniques
In our framework [6] as in the works we extend [18, 23], proving that the bisimilarity is
compatible – preserved by contexts – amounts to showing that a form of bisimulation up
to context is valid, as explained after Lemma 10. We slightly reformulate our most recent
work [6] to make it simpler but expressive enough it can be applied to λeff.

In what follows, we use s, f, g to range over monotone functions on relations, i.e., functions
such that R ⊆ S implies f(R) ⊆ f(S) for any R, S. We extend ∪ to functions so that for
all R, (f ∪ g)(R) = f(R) ∪ g(R). We define an ordering v on functions so that f v g if for
all R, f(R) ⊆ g(R), which is itself extended pointwise to pairs of functions.

As pointed out before, because of the distinction between passive and active clauses, not
all up-to techniques can be applied in all clauses. In fact, we decompose an up-to technique
into a pair of functions (s, f), where s can be used in passive clauses while f cannot.

I Definition 7. A pair of monotone functions (s, f) is an up-to technique if for all R,
R� s(R), f(R) implies R ⊆ ≈.

In an up-to technique (s, f), s is said strong while f is said weak. Instead of proving directly
that a pair is an up-to technique, we consider a sufficient criterion based on respectfulness2
and the largest respectful pair, called the diacritical companion (u,w): if a pair (s, f) is below
the companion, then it is an up-to technique.

The diacritical companion is defined using notions of evolution on monotone functions
which can be seen as the higher-order counterpart of progress on relations. We decompose
diacritical progress R� S, T into passive progress R p

� S and active progress R a� T to
define different kinds of evolution.

I Definition 8. Let f, g be monotone functions.
f passively evolves to g, written f p

 g, if for all R, S, R p
� S implies f(R) p

� g(S);
f actively evolves to g, written f a g, if for all R, S, R a� S implies f(R) a� g(S);
f restrictively evolves to g, written f p|a

 g, if for all R, S, R p
� R a� S implies

f(R) a� g(S).
Passive and active evolutions express the idea that f becomes g in respectively passive and
active clauses. Restricted evolution allows a relation R to do some administrative step
(passive progress) before doing some active progress, as long as we stay in R. For λeff, it
means that we can reduce a term to a value before doing some active progress with it.

2 Our previous work [6] is built on the notion of compatibility, but the notion of progress we use in this
paper makes Definition 9 correspond to respectfulness instead. See [26, 23, 6] for a discussion on the
difference between the two notions.

FSCD 2020
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I Definition 9. A pair of monotone functions (s, f) diacritically evolves to (s′, f ′), (s′′, f′′),
written (s, f) (s′, f ′), (s′′, f′′) if

s p
 s′ f p

 f ′ s a f ′′ f p|a
 f ′′

A pair (s, f) is respectful if (s, f) (s, f), (s, f). The diacritical companion (u,w) is the largest
respectful pair.

In words, the bisimulations of diacritical evolution are exactly respectful pairs, and its
bisimilarity is the diacritical companion. Among other properties, we can show that any pair
below the companion (including the companion itself) is an up-to technique.

I Lemma 10. The following hold:
if (s, f) v (u,w), then (s, f) is an up-to technique;
u v w;
w(≈) = ≈.

The second inequality implies that any strong function can also be used as a weak one,
justifying why such a function is said “strong”, as it can be applied without restriction in
any clause. The last equality states that the weak companion preserves bisimilarity, so for
any f v w, we also have f(≈) ⊆ ≈. If f is a contextual closure function (if e1 R e2 then
C[e1] f(R) C[e2]), showing that it is below w is enough to deduce that ≈ is compatible.

The remaining question is how to prove that a given pair (s, f) is below the companion.
In this paper, we use a degenerate but sufficient version of a theorem in our previous work [6,
Theorem 4.12]. Let id be the identity on relations. We define S(s) inductively as the smallest
function verifying:

for all g ∈ {id, s, u}, g v S(s);
for all g ∈ {id, s, u}, g ◦ S(s) v S(s), S(s) ◦ g v S(s), g ∪ S(s) v S(s), and S(s) ∪ g v S(s);

and W(s, f) inductively as the smallest function verifying:
for all g ∈ {id, s, f,w}, g vW(s);
for all g ∈ {id, s, f,w}, g ◦W(s, f) v W(s, f), W(s, f) ◦ g v W(s, f), g ∪W(s, f) v W(s, f),
and W(s, f) ∪ g vW(s, f);

The function S(s) is the smallest function built from s, id, and u stable by composition and
union, while W(s, f) is the smallest function built from s, f, id, and w stable by composition
and union. Including u and w in their definition means that any function already proved
respectively strong or weak is below respectively S(s) or W(s, f).

I Theorem 11. Let (s, f) be monotone functions. If

s p
 S(s) f p

 S(s) ◦ f ◦ S(s) s a W(s, f) f p|a
 W(s, f)

then (s, f) v (u,w) and (s, f) is an up-to technique.

The idea of the theorem is to see how s and f evolve and prove that the results of their
evolutions is below what is on the right of the arrows. Any combination of weak functions
can be obtained after an active or restricted evolution, but only strong functions can be used
after a passive one, except that f can be used once. This constraint on f makes the soundness
proofs of the most interesting up-to techniques of λeff more difficult (cf. Appendix A).

We define the up-to functions we consider for λeff in Figure 2. The first four are usual
and can be found in many variants of the λ-calculus [7, 4]. The function red is the usual
bisimulation up to reduction, where expressions can be related after some reduction steps,
while refl equates any expression with itself. The function subst allows to replace a variable
in related expressions with related values. Finally, lam is compatibility w.r.t. λ-abstraction.
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Resumption position predicate.

resum(αl, x)

resum(αl, e)

resum(αl, λx.e)

resum(αl, e1) resum(αl, e2)

resum(αl, e1 e2)

resum(αl, e)

resum(αl, dol′ e)

resum(αl, e) ∀li:xi,ki→ ei ∈ H, resum(αl, ei) resum(αl, e′)

resum(αl, handle e {H; ret x→ e′})

resum(αl, v)

resum(αl, αl[v])

resum(αl, v)

resum(αl, αl[dol v])

resum(αl, e) βl
′ 6= αl

resum(αl, βl′ [e])

Up-to techniques.

e1 →∗ e′1 e2 →∗ e′2 e′1 R e′2

e1 red(R) e2 e refl(R) e

e1 R e2 v1 Rv v2

e1{v1/x} subst(R) e2{v2/x}
e1 R e2

λx.e1 lam(R) λx.e2

e1 R e2

αl[e1] cvar(R) αl[e2]

e1 R e2 E1
l Rc E2

l

e1{E1
l/αl} csubst(R) e2{E2

l/αl}

e1 R e2 E1
l Rr E2

l resum(αl, e1) resum(αl, e2)

e1{E1
l/αl} rsubst(R) e2{E2

l/αl}

Figure 2 Up-to functions for λeff.

The remaining functions are more specific to λeff. The function cvar plugs related terms
into any context variable. This variable can then be replaced with contexts using either
csubst or rsubst, depending whether the contexts behave as resumptions or not. In the
latter case, the contexts should be related with ·r, and the context variable should be in
resumption position, a condition we check with the predicate resum, defined in Figure 2.
Roughly, resum(αl, e) means that αl is about to be captured – i.e., plugged with an effect
dol v – or has already been captured, and is therefore plugged with a value.

The functions cvar, csubst, and rsubst can be used to define a more conventional bisimu-
lation up to evaluation context, similar to the one of the plain λ-calculus [7].

I Lemma 12. If e1 R e2 and E1 Rc E2, then E1[e1] csubst(cvar(R) ∪ id) E2[e2].

We simply plug e1 and e2 into a fresh context variable which is then replaced with E1 and E2.
The functions we define are strong, except for csubst and rsubst.

I Theorem 13. For all s ∈ {refl, id, red, subst, lam, cvar}, we have s v u. For all f ∈
{csubst, rsubst}, we have f v w.

The proofs for the strong techniques are simple or as in the plain λ-calculus [7]; we sketch
the proof for csubst and rsubst in the appendix. It is not surprising that these two functions
are weak, as they essentially behave as bisimulation up to context, which is also weak in the
plain λ-calculus. As explained in Section 3.3, they cannot be used in the passive clauses, i.e.,
when relating values or context-stuck terms.

FSCD 2020



7:12 A Complete Normal-Form Bisimilarity for Algebraic Effects and Handlers

Because cvar and csubst are up-to techniques, the bisimulation up to evaluation context
is also sound, from which we deduce that ≈ is compatible w.r.t. evaluation contexts using
Lemma 10. Thanks to lam, we know it is also preserved by λ-abstraction, so we can show
the bisimilarity is compatible, from which we deduce it is a valid proof technique for the
contextual equivalence of the plain calculus.

I Corollary 14. Let e1 and e2 be expressions of the plain calculus. If e1 ≈ e2, then e1 ≡ e2.

Indeed, if e1 ≈ e2, then for all contexts C, C[e1] ≈ C[e2] because ≈ is compatible. If C[e1] ⇓v,
then C[e2] ⇓v simply by definition of the bisimilarity.

The up-to techniques we define are useful beyond simply proving soundness of the
bisimilarity; they can simplify the equivalence proof of two given terms, as illustrated by the
following examples.

I Example 15. Dal Lago and Gavazzo [14] propose an example where two fixed-point
combinators are signaling each β-reduction with a tick effect; we modify it so that the two
expressions are equivalent with handlers (but the tick effect is now arbitrary). Let

e1
4= λy.dotick (∆y ∆y) ∆y

4= λx.(dotick y) λz.dotick (x x z)

e2
4= Θ Θ Θ 4= λx.λy.dotick ((dotick y) λz.dotick (x x y z))

We prove these expressions are bisimilar up to, by building a candidate relation R increment-
ally, starting from e1 and e2.

Proof. The term e1 is a value, and e2 → λy.dotick ((dotick y) λz.dotick (Θ Θ y z)), so we
need to relate the bodies of the λ-abstractions. We have a reduction dotick (∆y ∆y) →
dotick ((dotick y) λz.dotick (∆y ∆y z)); the resulting term is control-stuck, which we relate to
dotick ((dotick y) λz.dotick (Θ Θ y z)) which is also control-stuck. The arguments of the ef-
fect are the same, and we need to relate the two contexts dotick (� λz.dotick (∆y ∆y z)) and
dotick (� λz.dotick (Θ Θ y z)).

Plugging them with a fresh variable, we obtain two open-stuck terms, meaning that
we need to relate the two identical contexts dotick� and the values λz.dotick (∆y ∆y z) and
λz.dotick (Θ Θ y z). These last two values are related up to lambda and evaluation context
if R contains ∆y ∆y and Θ Θ y, and the bisimulation proof for these two expressions is the
same as for e1 and e2. In the end, taking R 4= {(e1, e2), (∆y ∆y,Θ Θ y)}, we can show that R
is a bisimulation up to refl, red, lam, and up to context, i.e., up to cvar and csubst. Note that
we are allowed to use the latter weak technique when comparing open-stuck terms, as it is
an active clause. J

I Example 16. We write ER for the reader effect of Example 6, and consider the following
handler to express backtracking.

EBT
4= handle � {fail:x,k→ ();flip:x,k→ (λz.k false) (k true); ret x→x}

ER
4= handle � {ask:x,k→ k z; ret x→x}

We prove that the two effects commute by showing that EBT [ER] ≈c ER[EBT ].
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Sketch. We show that the relation R given by the following rules is a bisimulation up-to.

EBT [ER[v]] R ER[EBT [v]] EBT [ER[αl[dol x]]] R ER[EBT [αl[dol x]]]

e1 red(R) ER[e2] z /∈ fv(e1) ∪ fv(e2)

(λz.e1) (EBT [ER[αl[dol x]]]) R ER[(λz.e2) (EBT [αl[dol x]]])

The pair of the first rule is straightforward to check as each expression evaluates to v. For the
second rule, the interesting cases are when l is an effect handled by EBT or ER. If l = fail,
the two expressions evaluate to (). If l = ask, they evaluate to respectively EBT [ER[αl[z]]]
and ER[EBT [αl[z]]], which are context-stuck terms and for which we can easily check the
bisimulation requirements.

If l = flip, then the expressions of the second rule reduce to respectively

(λz.((λy.EBT [ER[αl[y]]]) false)) EBT [ER[αl[true]]], and

ER[(λz.((λy.EBT [αl[y]]) false)) EBT [αl[true]]].

To compare these context-stuck terms, we plug the two contexts with a fresh variable and a
fresh control-stuck terms. When plugged with a fresh variable, we obtain EBT [ER[αl[false]]]
and ER[EBT [αl[false]]], for which we can again easily check the bisimulation clause. With
control-stuck terms, we obtain expressions related by the third rule defining R. Checking
bisimulation for the third rule is done by a similar case analysis on l and concludes the
proof. J

3.5 Completeness
In this section we show that for any two expressions e1 and e2 in the plain calculus, if e1 ≡ e2,
then e1 ≈ e2. To this end, we first observe that if e1 ≡ e2, then e1 ≡E e2, where ≡E is a
relation on expressions in the extended calculus, defined as follows.

I Definition 17. We write e1 ≡E e2 if for all evaluation contexts E (from the extended
calculus), and substitutions σ (i.e., finite mappings from variables to values and from context
variables to contexts), such that E[e1]σ and E[e2]σ are closed expressions in the plain calculus,
we have E[e1]σ ⇓v iff E[e2]σ ⇓v.

I Lemma 18. If e1 ≡ e2, then e1 ≡E e2.

Proof. Assume that e1 ≡ e2 and take any evaluation context E and closing substitution σ,
such that E[e1]σ ⇓v. Then, it must be the case that E[e2]σ ⇓v as well, since otherwise e1
and e2 would be distinguished by the following context:

C = (λx1.. . . λxn.Eσ) v1 . . . vn

assuming dom(σ) = {x1, . . . xn, α1, . . . , αm} and σ(xi) = vi for 1 ≤ i ≤ n. J

The main lemma of this section establishes that ≡E is a bisimulation, which, by Lemma 18,
implies completeness of ≈ w.r.t. ≡.

I Lemma 19. ≡E is a bisimulation.

Proof. The proof consists in a case-by-case verification of the conditions stated in Definition 5
for the candidate relation ≡E. Here we present one of the most representative cases that,
in our opinion, illustrates best the power of the calculus and the techniques used in the
remaining cases.
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Case: e1 = E1[αl[v1]] and e1 ≡E e2. We need to show that there exist E2 and v2 such
that: (1) e2 →∗ E2[αl[v2]], (2) v1 ≡v

E v2, and (3) E1 ≡c
E E2.

To prove (1), we take a fresh label l′, and we define a substitution σ as follows:

σ(x) = λy.Ω for x ∈ fv(e1) ∪ fv(e2)
σ(βl′′) = handle � {Hl′′ ; ret x→Ω} for βl′′ ∈ cv(e1) ∪ cv(e2) and βl′′ 6= αl

σ(αl) = dol′ �

where Hl′′ = l1:x,k→Ω; . . . ;ln:x,k→Ω and {l1, . . . , ln} = lbl(e1) ∪ lbl(e2) − {l′′}, and we
consider a context E = handle � {l′:x,k→x; ret x→Ω}. It is easy to see that E[e1]σ ⇓v and
that if e2 evaluates to a normal form which is not E2[αl[v2]] for some E2 and v2, then either
E[e2]σ ⇑ or E[e2]σ reduces to a control-stuck term (the latter case occurs when e2 itself
reduces to a control-stuck term E2[dol′′ v2]).

To prove (2), we take a fresh variable z, a context E and a closing substitution σ, and
we assume that E[v1 z]σ ⇓v. To see that E[v2 z]σ ⇓v as well, we construct a substitution σ′
and a context E′ such that E′[ei]σ′ ⇓v iff E[vi z]σ ⇓v for i = 1, 2. To this end we take fresh
labels l′, get and put (the latter two to encode a binary state as an algebraic effect), and we
define σ′ to be equal to σ everywhere, except for αl:3

σ′(αl) = σ(αl)[(λx.if doget () then (doput false; dol′ x) else x)�]

along with

E′b = (handle E′′ {get:x,k→λy.k y y; put:x,k→λy.k () x; ret x→λy.x}) b
E′′ = handle � {l′:x,k→E[x z]; ret x→x}.

where b ∈ {true, false}. Let us notice that

E′true[ei]σ′ →∗ E′false[Ei[dol′ vi]]σ′ →∗ E′false[E[vi z]]σ′

The idea is to use αl, the single synchronization point of e1 and e2 available, in such a way
that the first time αl is used, E′true[ei]σ′ reduces to an expression behaving like E[vi z]σ. To
ensure this, we make sure that any subsequent uses of αl (it could occur in vi or E) actually
mean σ(αl). But when the state is set to false, the λ-abstraction in σ′(αl) behaves like the
identity, and filling the hole of σ′(αl) with a value v simply passes v to σ(αl). Filling it
with a control-stuck term E′

l′ [dol′ v] allows σ(αl) to eventually handle the effect, capturing
a context equivalent to (λz.z)E′l

′
. In the end, E′false[E[vi z]]σ′ behaves like E[vi z]σ, up to a

few additional reduction steps.
To prove (3), we have to show: (a) E1[z] ≡E E2[z] for a fresh variable z, and (b)

E1[αl′′ [dol′′ z]] ≡E E2[αl′′ [dol′′ z]] for any l′′ and fresh αl
′′ and z. Assuming we compare

expressions using E and σ in both cases, we proceed as in (2), except that in (a) we take

E′′ = handle � {l′:x,k→E[k z]; ret x→x}

and in (b) we take

E′′ = handle � {l′:x,k→E[k (αl′′ [dol′′ z])]; ret x→x}.

The remaining cases are proved similarly and can be found in Appendix B. J

I Corollary 20. For any expressions e1 and e2 in the plain calculus, if e1 ≡ e2, then e1 ≈ e2.

3 Strictly speaking, σ′ additionally takes into account the free variables and context variables that occur
in e1 or e2, but that have been reduced away and are not present in the resulting normal forms. The
values and contexts σ′ assigns to such variables are irrelevant.
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3.6 Comparison with Multi-Prompted Delimited Continuations
Algebraic effects and handlers studied in the untyped setting, as in this work, diverge from
their categorical origins [22], and can be considered a new form of delimited control [10, 11].
As a matter of fact, there exist mutual encodings of algebraic effects and (deep) handlers
over a single operation and the control operator shift0 [28], both in an untyped [12] and
polymorphically typed settings [21]. These encodings are not fully abstract and therefore
they do not guarantee that a behavioral theory, such as the one presented in this work, would
carry over to the corresponding calculus of delimited continuations. Given that we allow
for multi-labeled algebraic operations, the corresponding calculus in our case would be a
generalization of shift0 to its multi-prompted version shift0l where the main reduction rule is:

promptlEl[shift0lk.e] 7→ e{λz.promptlEl[z]/k}

We can observe that in contrast to the calculus of algebraic effects, the party responsible
for handling the effect is the same as the one that actually does the effect – it is not the
prompt that handles it, but the expression e. The reversal of the roles makes algebraic effects
considerably more programmer-friendly, but it also simplifies the theory, compared to the
one for classical delimited-control operators. In particular, the techniques we propose in
this work appear not to be sufficient for constructing a normal-form bisimulation theory for
multi-prompted shift0.

The main obstacle is encountered when we relate evaluation contexts, say E1 and E2. The
requirement that E1[z] and E2[z] (for a fresh z) be related is uncontroversial. However, how
should we test E1 and E2 for control effects? We need a notion of an abstract control-stuck
term and we do not know how to represent it in this calculus. We could introduce a syntactic
category of control-stuck-term variables for this purpose, but this would lead nowhere –
plugging E1 and E2 with such a variable would immediately result in control-stuck terms –
there simply is no code that could test the contexts.

One could try to decompose the contexts E1 and E2 into some corresponding sub-contexts
and relate those, following the approach that works for single-prompted control operators
shift and reset for which there exists a sound normal-form bisimilarity [4]. Whether this could
lead to a complete theory is not clear and requires further study. As for single-prompted
control operators, be it shift or shift0, reaching completeness seems a tall order – notice that
the completeness proof of Section 3.5 hinges on the existence of fresh effect labels (prompts).

4 Related Work

Up to now, most works studying the behavioral theory of a calculus with generic algebraic
effects were not considering handlers, but interpretations of effects instead, usually in a
monad. In such a setting, the behavior of an effect is therefore given for all programs once
and for all by the interpretation. In contrast, with handlers, the behavior of an effect may
change between programs or during the execution of a program as it depends on how it is
handled. The calculus we consider is therefore more expressive than those of the works we
list below, with a more discriminative contextual equivalence. It explains why we can reach
completeness with a syntactic equivalence such as normal-form bisimilarity while previous
works do not achieve completeness with more elaborate equivalences such as applicative
bisimilarity. As a matter of fact, the completeness proof presented in this paper relies on
an encoding of state and resembles the completeness proof we developed for higher-order
state in a previous work [5]. The definition of the normal-form bisimilarity for state, unlike
the one presented in this work, did not require any extensions of the calculus. However, its
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structure is considerably more involved since in the absence of control operators, to reach
completeness, we had to explicitly handle deferred diverging terms and impose a stack-like
discipline on the way evaluation contexts are tested.

Some recent works interpret effects in a monad and use relators which express how
interpreted terms should be compared in the monad. Relators allow to develop the behavioral
theory of a calculus with effects in a very abstract setting: e.g., one can get for free that
the bisimilarity is a congruence provided that a relator exists for the interpretation monad.
Relators have been studied for applicative bisimilarity in call-by-value [15] or call-by-name [16],
and for normal-form bisimilarity in call-by-value [14]. As pointed out by the authors in [16],
“there is however little hope to prove a generic full-abstraction result [w.r.t. contextual
equivalence] in such a setting, although for certain notions of an effect, full abstraction is
already known to hold.” However, completeness can be obtained in some cases, as in an
untyped call-by-name calculus with deterministic effects [16].

The other path to completeness in typed languages is through logic or logical relations.
Johann et al. [13] propose a contextual equivalence and a logical relation characterizing
it in a call-by-name calculus with effects. Their framework deals with different effects in
a uniform way but with some limitations, as for instance nondeterminism, local store, or
the combination of effects cannot be accounted for. Simpson and Voorneveld [29] present a
modal logic for a call-by-value calculus which coincides with Dal Lago et al.’s applicative
bisimilarity [15], but not with contextual equivalence, as demonstrated later [19]. Matache
and Staton improve on these results by defining a logic for a calculus in continuation-passing
style that coincides with both applicative bisimilarity and contextual equivalence [19]. Finally,
Biernacki et al. [8] define a step-indexed logical relation for a call-by-value calculus with
effects and handlers; to the best of our knowledge, it is the only previous work with handlers.

5 Conclusion

We present a sound and complete normal-form bisimilarity for a calculus with effects and
handlers. The crucial point is to accurately observe how evaluation contexts may handle
effects. First, we distinguish between resumptions, which are plugged only with values,
from regular contexts, which may be plugged with any expressions, including effectful
ones. We then test the latter contexts using control-stuck terms where the continuation is
represented by a context variable, which allows to track how the captured continuation is
handled. Extending the calculus with context variables introduces new normal forms which
are compared by the bisimilarity in a very simple and regular way. The fact that such a
simple notion of normal-form bisimilarity is complete shows the discriminating power of
handlers. A consequence is that the examples of equivalent programs we provide are quite
simple, as more complex effectful expressions are easily distinguished by handlers.

There are several directions for future work. As pointed out in Section 3.6, it remains an
open question how to define complete normal-form bisimulations in the calculus of multi-
prompted delimited-control operators corresponding to deep handlers studied in this work.
Then, it would be worthwhile to investigate whether the results presented in this paper
carry over to shallow handlers. Finally, there exist a number of type-and-effect systems for
algebraic effects of varying complexity [8, 9, 21], and one can wonder how features such as
effect polymorphism along with effect coercions would influence the theory of this paper.
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A Soundness Proof Sketch

We only discuss the case of csubst and rsubst, as the others are proved as in the plain
λ-calculus [7]. In particular, we use the fact that

I Lemma 21. subst v u

https://doi.org/10.2168/LMCS-9(4:23)2013


D. Biernacki, S. Lenglet, and P. Polesiuk 7:19

We want to prove that csubst and rsubst are weak, but to circumvent the constraint that
they cannot be composed twice in a passive clause, we combine csubst and rsubst in a single
ssubst doing simultaneous substitutions.

e1 R e2 σ1 Rσ σ2

e1σ1 ssubst(R) e2σ2

We let σ ranges over simultaneous substitution, meaning that if σ(αl) = El, then (αl[e])σ 4=
El[eσ]; we do not apply σ to El. We define Rσ pairwise such that we have either σ1(αl) Rc

σ2(αl), or σ1(αl) Rr σ2(αl) with resum(αl, e1) and resum(αl, e2).

I Lemma 22. ssubst v w

Proof. Let R� R,S, e1σ1 subst(R) e2σ2 with e1 R e2 and σ1 Rc σ2. We proceed by case
analysis on the behavior of e1. The cases where e1 reduces, is a value, or is an open-stuck
term are simple.

Suppose e1 = E′1
l[dol v1], then there exist E′2

l and v2 such that e2 →∗ E′2
l[dol v2],

E′1
l Sr E′2

l and v1 Sv v2. Any context variable surrounding the hole of E′1
l can only be of the

form αli, meaning that E′1
l
σ1 still does not handle l, and the resulting terms are control-stuck.

We progress to ssubst, so we can conclude.
Suppose e1 = E1[αl[v1]] with αl ∈ dom(σ1) (the case where the variable is not in the

domain is easily handled). There exist E2 and v2 such that e2 →∗ E2[αl[v2]], E1 Rc E2,
and v1 Rv v2. From σ1(αl) Rc σ2(αl), we get in particular σ1(αl)[x] R σ2(αl)[x] for a
fresh x, therefore σ1(αl)[v1] subst(R) σ2(αl)[v2]. We have two special cases to consider,
σ1(αl) = βl[�] and σ1(αl) = �; in the other cases, σ1(αl)[v1] is doing something active and
we can conclude using Lemma 21.

If σ1(αl) = �, we have x R σ2(αl)[x], from which we deduce that there exist w such
that σ2(αl)[x] →∗ w and x Rv w. As a result, e1σ1 = E′1{/σ}1[v1σ1], and e2σ2 →∗
E′2σ2[w{v2/x}σ2]. Since we have E′1[v1] subst(subst(R)) E′2[w{v2/x}], we can conclude again
with Lemma 21.

If σ1(αl) = βl[�], then from βl[x] R σ2(αl)[x], there exist E′2 and w such that σ2(αl)[x]→∗
E′2[βl[w]], � Rc E′2, and x Rv w. Therefore we have e2σ2 →∗ E2σ2[σ2(αl)[v2σ2]] →∗
E2σ2[E′2[βl[w{v2σ2/x}]]], yielding a context-stuck term that is to be related to E1σ1[βl[v1σ1]].
We are fine w.r.t. the values, as we have v1σ1 ssubst(subst(R)) w{v2σ2/x}. For the con-
texts, we first relate E1σ1[y] and E2σ2[E′2[y]] for a fresh y. Because � Rc E′2, there exists
w′ such that E′2[y] →∗ w′ and y Rv w′. As a result, we have E2σ2[E′2[y]] →∗ E2σ2[w′],
and therefore E1σ1[y] red(ssubst(subst(R))) E2σ2[E′2[y]], which is what we need. Then
we must relate E1σ1[γl′ [dol′ y]] and E2σ2[E′2[γl′ [dol′ y]]] for any l′ and fresh γl

′ and y.
Because � Rc E′2, there exist E′′2

l′ and w′ such that E′2[γl′ [dol′ y]] →∗ E′′2
l′ [dol′ w′],

γl
′ [�] Sr E′′2

l′ , and y Sv w′. From E1 Rc E2, we get E1[γl′ [dol′ y]] R E2[γl′ [dol′ y]],
so if E1[γl′ [dol′ y]] → e′1 for some e′1 (the case where l′ is not handled is not inter-
esting), then there exists e′2 such that E2[γl′ [dol′ y]] →∗ e′2 and e′1 S e′2. Therefore,
E2σ2[E′2[γl′ [dol′ y]]]→∗ E2σ2[E′′2

l′ [dol′ w′]]→∗ e′2σ′2{w′/y} where σ′2(γl′) = E′′2
l′ and is equal

to σ2 otherwise. Because E1σ1[γl′ [dol′ y]]→ e1σ1 = e1σ
′
1{y/y} where σ′1(γl′) = γl

′ [�] and is
equal to σ1 otherwise, we deduce E1σ1[γl′ [dol′ y]] red(subst(ssubst(S))) E2σ2[E′2[γl′ [dol′ y]]]
which is enough to conclude.

Suppose e1 = E1[αl[E′1
l′ [dol′ v1]]] with l 6= l′ and αl ∈ dom(σ1); then there exist E2,

E′2
l′ , and v2 such that e2 →∗ E2[αl[E′2

l′ [dol′ v2]]], E1 T c E2, E′1
l′ T r E′2

l′ , and v1 T v v2.
From σ1(αl) Rc σ2(αl), we get σ1(αl)[γl′ [dol′ x]] R σ2(αl)[γl′ [dol′ x]] for fresh γl′ and x. If
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σ1(αl)[γl′ [dol′ x]]→ e′1 for some e′1, then there exists e′2 such that σ2(αl)[γl′ [dol′ x]]→∗ e′2 and
e′1 S e′2. Then e1σ1 → E1[e′1{v1/x}{E′1

l′
/γl

′}]σ1 and e2σ2 →∗ E2[e′2{v2/x}{E′2
l′
/γl

′}]σ2,
and the resulting expressions are in ssubst(ssubst(cvar(ssubst(subst(S))))), which is fine,
because we are in an active clause. J

B Completeness Proof Sketch

The proof proceeds as described in Section 3.5: given e1 ≡E e2, we check that for each
behavior of e1, e2 is able to match. If e1 is a normal form, we verify that (1) e2 evaluates to a
normal form of the same kind, and the normal forms can be decomposed into related sub-parts.
For each case, we give the substitution σ and the context E enforcing (1). Checking that
related sub-parts are contextually equivalent relies in most cases on an encoding of a mutable
state using handlers, as in Section 3.5. In all the subcases below, we assume the labels get
and put to be fresh, and given a boolean b and a context E′′, we define

E′b = (handle E′′ {get: z,k→λy.k y y; put: z,k→λy.k () z; ret z→λy.z}) b

We define E′′ in each subcase where the encoding is needed.

Case: e1 → e′
1. Because the reduction is deterministic, we still have e′1 ≡E e2.

Case: e1 = v1. To check (1), take σ as follows:

σ(x) = λy.Ω for x ∈ fv(e1) ∪ fv(e2)
σ(αl) = handle � {Hl; ret x→Ω} for αl ∈ cv(e1) ∪ cv(e2)

where Hl = l1:x,k→Ω; . . . ;ln:x,k→Ω with {l1, . . . , ln} = lbl(e1) ∪ lbl(e2) \ {l}, and E = �.
Hence, there exists v2 such that e2 →∗ v2; we check that v1 ≡v

E v2.
Let x be a fresh variable, E a context, and σ a closing substitution such that E[v1 x]σ ⇓v.

Then E[e2 x]σ →∗ E[v2 x]σ and since e1 ≡E e2, we also have E[v2 x]σ ⇓v.

Case: e1 = E1[x v1]. To check (1), take σ as follows:

σ(z) = λy.Ω for z ∈ fv(e1) ∪ fv(e2) \ {x}
σ(x) = λy.dol′ λz.z
σ(αl) = handle � {Hl; ret x→Ω} for αl ∈ cv(e1) ∪ cv(e2)

where l′ /∈ lbl(e1) ∪ lbl(e2), Hl = l1:x,k→Ω; . . . ;ln:x,k→Ω with {l1, . . . , ln} = lbl(e1) ∪
lbl(e2) \ {l}, and E = handle � {l′: y,k→ y; ret x→Ω}. Hence, there exists E2[x v2] such that
e2 →∗ E2[x v2]; we check that (2) v1 ≡v

E v2 and (3) E1 ≡c
E E2.

For (2), let y be a fresh variable and consider the testing arguments E and σ such that σ
is a closing substitution and E[v1 y]σ ⇓v. Let l′ be a fresh label, and define σ′ to be equal
to σ everywhere, except for x:

σ′(x) = λz.if doget () then (doput false; dol′ z) else σ(x)

and consider

E′′ = handle � {l′: z,k→E[z y]; ret z→ z}.

Then E′true and σ′ are the discriminating arguments, i.e., E[v1 y]σ ⇓v iff E′true[e1]σ′ ⇓v iff
E′true[e2]σ′ ⇓v iff E[v2 y]σ ⇓v.
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Proving (3) requires (a) E1[y] ≡E E2[y] for a fresh y, and (b) E1[αl′′ [dol′′ y]] ≡E
E2[αl[dol y]] for any l and fresh αl and y. Assuming the same testing arguments E and σ,
both cases are proved as in (2), except that in (a) we take

E′′ = handle � {l′: z,k→E[k y]; ret z→ z}

and in (b) we take

E′′ = handle � {l′: z,k→E[k (αl[dol y])]; ret z→ z}.

Case: e1 = E1
l[dol v1]. To check (1), take σ as follows:

σ(x) = λy.Ω for x ∈ fv(e1) ∪ fv(e2)
σ(αl′) = handle � {Hl′ ; ret x→Ω} for αl′ ∈ cv(e1) ∪ cv(e2)

where Hl′ = l1:x,k→Ω; . . . ;ln:x,k→Ω with {l1, . . . , ln} = lbl(e1) ∪ lbl(e2) \ {l′}, and E =
handle � {l: y,k→ y; ret x→Ω}. Hence, there exists E2

l[dol v2] such that e2 →∗ E2
l[dol v2];

we check that (2) v1 ≡v
E v2 and (3) E1

l ≡r
E E2

l.
Assuming we use a fresh variable x and E, σ as testing arguments, we conclude in the

former case by considering E′ = handle � {l: z,k→E[z x]; ret z→ z} and σ as discriminating
arguments.

We prove (3) assuming x fresh and E, σ as testing arguments. Let l′, l′′ be fresh labels;
we define

E′′ = handle E′′′ {l′: z,k→El′′ [z x]; ret z→ z}.

where

E′′′ = handle � {l: z,k→ if doget () then (doput false; dol′ k) else k (dol′′ z); ret z→ z}.

and El′′ is E where all the occurrences of l are replaced by l′′. When l is handled first,
we create the discriminating term; subsequent handlings are perfomed by E through l′′.
Renaming l into a fresh l′′ in E is necessary to bypass the handler for l in E′′′. The
discriminating arguments are E′true and σ.

Case: e1 = E1[αl[v1]]. Described in details in Section 3.5.

Case: e1 = E1[αl′ [E′
1

l[dol v1]]]. To check (1), take σ as follows:

σ(x) = λy.Ω for x ∈ fv(e1) ∪ fv(e2)
σ(βl′′ ) = handle � {Hl′′ ; ret x→ Ω} for βl′′ ∈ cv(e1) ∪ cv(e2) and βl′′ 6= αl′

σ(αl′ ) = handle � {l:x,k→ dol′′′ x; ret x→ Ω}

where l′′′ /∈ lbl(e1) ∪ lbl(e2), Hl′′ = l1:x,k→Ω; . . . ;ln:x,k→Ω with {l1,. . . ,ln} = lbl(e1) ∪
lbl(e2)\{l′′}, and E=handle � {l′′′:x,k→x; ret x→Ω}. Hence, there exists E2[αl′ [E′2

l[dol v2]]]
such that e2 →∗ E2[αl′ [E′2

l[dol v2]]]; we check that (2) v1 ≡v
E v2, (3) E′1

l ≡r
E E′2

l, and (4)
E1 ≡c

E E2. In each case, we assume x and l′′ to be fresh and the testing arguments to be E
and σ.
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The discriminating arguments for (2) are σ′, defined to be equal to σ everywhere, except
for αl′ :

σ′(αl′ ) = σ(αl′ )[handle � {l: z,k→ if doget () then (doput false; dol′′ z) else k (dol x); ret z→ z}],

and E′true assuming

E′′ = handle � {l′′: z,k→E[z x]; ret z→ z}.

For (3), we prove E′1
l[x] ≡E E′2

l[x] as in (2), except that we take an extra fresh l′′′ and
define

σ′(αl′ ) = σ(αl′ )[handle � {l: z,k→ if doget () then (doput false; dol′′ k) else k (dol′′′ x); ret z→ z}]

and

E′′ = handle � {l′′: z,k→El′′′ [z x]; ret z→ z}

where El′′′ is the context E where the occurrences of l are replaced with l′′′.
Proving (4) requires (a) E1[x] ≡E E2[x] and (b) E1[αl′′′ [dol′′′ z]] ≡E E2[αl′′′ [dol′′′ x]] for

any l′′′ and fresh αl′′′ . Assuming the same testing arguments, both cases are proved as in
(2), except that in (a) we take

E′′ = handle � {l′′: z,k→E[k x]; ret z→ z}

and in (b) we take

E′′ = handle � {l′′: z,k→E[k (αl′′′ [dol′′′ x])]; ret z→ z}.



Pomsets with Boxes: Protection, Separation,
and Locality in Concurrent Kleene Algebra
Paul Brunet
University College London, UK
paul.brunet-zamansky.fr
paul@brunet-zamansky.fr

David Pym
University College London, UK
www.cantab.net/users/david.pym/
d.pym@ucl.ac.uk

Abstract
Concurrent Kleene Algebra is an elegant tool for equational reasoning about concurrent programs.
An important feature of concurrent programs that is missing from CKA is the ability to restrict
legal interleavings. To remedy this we extend the standard model of CKA, namely pomsets, with
a new feature, called boxes, which can specify that part of the system is protected from outside
interference. We study the algebraic properties of this new model. Another drawback of CKA is
that the language used for expressing properties of programs is the same as that which is used
to express programs themselves. This is often too restrictive for practical purposes. We provide
a logic, “pomset logic”, that is an assertion language for specifying such properties, and which is
interpreted on pomsets with boxes. In contrast with other approaches, this logic is not state-based,
but rather characterizes the runtime behaviour of a program. We develop the basic metatheory for
the relationship between pomset logic and CKA, including frame rules to support local reasoning,
and illustrate this relationship with simple examples.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Semantics and reasoning; Theory of computation → Separation logic

Keywords and phrases Concurrent Kleene Algebra, Pomsets, Atomicity, Semantics, Separation,
Local reasoning, Bunched logic, Frame rules

Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.8

Related Version Since proofs are omitted from this paper, we refer the inquisitive reader to its
extended version, available on arXiv: 1910.14384.

Supplementary Material A formalization of Section 2 in Coq is available on github: AtomicCKA.

Funding This work has been supported by UK EPSRC Research Grant EP/R006865/1: Interface
Reasoning for Interacting Systems (IRIS).

Acknowledgements The authors are grateful to their colleagues at UCL and within IRIS project for
their interest. We also thank the anonymous referees for their comments and suggestions.

1 Introduction

Concurrent Kleene Algebra (CKA) [11, 14, 15, 4] is an elegant tool for equational reasoning
about concurrent programs. Its semantics is given in terms of pomsets languages; that is,
sets of pomsets. Pomsets [8], also known as partial words [9], are a well-known model of
concurrent behaviour, traditionally associated with runs in Petri nets [13, 4].

However, in CKA the language used for expressing properties of programs is the same
as that which is used to express programs themselves. It is clear that this situation is not
ideal for specifying and reasoning about properties of programs. Any language specifiable
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8:2 Pomsets with Boxes

print(counter);
x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

print(counter);

(a) Pseudo code.

Ò
x Ix bx

y Iy by

Ò

(b) Graphical representation.

Figure 1 Distributed counter.

in CKA terms has bounded width (i.e., the number of processes in parallel; the size of a
maximal independent set) and bounded depth (i.e., the number of alternations of parallel
and sequential compositions)[17]. However, many properties of interest – for example, safety
properties – are satisfied by sets of pomsets with both unbounded width and depth.

In this paper, we provide a logic, “pomset logic”, that is an assertion language for
specifying such properties. We develop the basic metatheory for the relationship between
pomset logic and CKA and illustrate this relationship with simple examples. In addition,
to the usual classical or intuitionistic connectives – both are possible – the logic includes
connectives that characterize both sequential and parallel composition.

In addition, we note that CKA allows programs with every possible interleaving of parallel
threads. However, to prove the correctness of such programs, some restrictions must be
imposed on what are the legal interleavings. We provide a mechanism of “boxes” for this
purpose. Boxes identify protected parts of the system, so restricting the possible interleavings.
From the outside, one may interact with the box as a whole, as if the program inside was
atomic. On the other hand, it is not possible to interact with its individual components, as
that would intuitively require opening the box. However, boxes can be nested, with this
atomicity observation holding at each level. Pomset logic has context and box modalities
that characterize this situation.

I Note. The term “Pomset logic” has already been used in work by Retoré [25]. We feel that
reusing it does not introduce ambiguity, since the two frameworks arise in different contexts.

I Example 1 (Running example: a distributed counter). We consider here a program where a
counter is incremented in parallel by two processes. The intention is that the counter should
be incremented twice, once by each process. However, to do so each process has to first
load the contents of the counter, then compute the increment, and finally commit the result
to memory. A naive implementation is presented in Figure 1a. Graphically, we represent
the print instruction print(counter)by Ò, the read instruction x:=counter by x, the
increment instruction x:=x+1 by Ix, and finally the write instruction counter:=x by bx.
We thus represent the previous program as displayed in Figure 1b.
This program does not comply with our intended semantics, since the following run is possible:

Ò x Ix bxy Iy by Ò

The result is that the counter has been incremented by one. We can identify a subset
of instructions that indicate there is a fault: the problem is that both read instructions
happened before both write instructions; i.e.,

x bx

y by
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print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

(a) Pseudo code.

Ò
x Ix bx

y Iy by

Ò

(b) Graphical representation.

Figure 2 Distributed counter with atomic increment.

To preclude this problematic behaviour, a simple solution is to make the sequence
“read;compute;write” atomic. This yields the program in Figure 2a. Diagrammatically, this
can be represented by drawing solid boxes around the atomic{} blocks, as shown in Figure 2b.
This paper shows how to make these ideas formal.

In Section 2, we extend pomsets with a new construct for protection, namely boxes. We
provide a syntax for specifying such pomsets and characterize precisely its expressivity. This
enables us, for example, to correctly represent the program from Example 1. We present a
sound and complete axiomatization of these terms, with operators for boxing, sequential and
parallel composition, and non-deterministic choice, as well as the constants abort and skip.

In Section 3, we introduce pomset logic. This logic comes in both classical and intuitionistic
variants. In addition to the usual classical or intuitionistic connectives, this logic includes
connectives corresponding to each of sequential and parallel composition. These two classes
of connectives are combined to give the overall logics, in the same way as the additives and
multiplicatives of BI (bunched implications logic) [21, 1, 23]. Just as in BI and its associated
separation logics [21, 12, 26], pomset logic has both classical and intuitionistic variants.
It also includes modalities that characterize, respectively, protection, and locality. These
correspondences are made precise by van Benthem–Hennessy–Milner-type theorems asserting
that two programs are (operationally) equivalent iff they satisfy the same formulae. We obtain
such correspondences for several variants of our framework. In contrast to Hennessy–Milner
logic, however, pomset logic is a logic of behaviours rather than of states and transitions.

In Section 4, we investigate local reasoning principles for our logic of program behaviours.
We showcase the possibilities of our framework on an example. We conclude by briefly
discussing future work in Section 5.

2 Algebra of Pomsets with Boxes

In this section, we define our semantic model, and the corresponding syntax. We characterize
the expressivity of the syntax, and axiomatize its equational theory.

Throughout this paper, we will use Σ to denote a given set of atomic actions.

2.1 Pomsets with boxes
2.1.1 Definitions and elementary properties
I Definition 2 (Poset with boxes). A poset with boxes is a tuple P := 〈EP ,≤P , λP ,BP 〉,
where EP is a finite set of events; ≤P⊆ EP ×EP is a partial order; λP : EP → Σ is a labelling
function; BP ⊆ P (EP ) is a set of boxes, such that ∅ /∈ BP .

FSCD 2020
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Ò
x bx

y by

ÒÒ x bxy by Ò v

Ò
x bx

y by

ÒÒ x bx y by Ò v

Ò
x bx

y by

ÒÒ x bxy by Ò 6v

Figure 3 Poset subsumption.

The partial order should be viewed as a set of necessary dependencies: in any legal scheduling
of the pomset, these dependencies have to be satisfied. We therefore consider that a stronger
ordering – that is, one containing more pairs – yields a smaller pomset. The intuition is that
the set of legal schedulings of the smaller pomset is contained in that of the larger one. The
boxes are meant to further restrict the legal schedulings: no event from outside a box may
be interleaved between the events inside the box. Subsequently, a pomset with more boxes is
smaller than one with less boxes. This ordering between pomsets with boxes is formalized by
the notion of homomorphism:

I Definition 3 (Poset morphisms). A (poset with boxes) homomorphism is a map between
event-sets that is bijective, label respecting, order preserving, and box preserving. In other
words, a map φ : EP → EQ such that (i) φ is a bijection; (ii) λQ ◦ φ = λP ; (iii) φ(≤P ) ⊆≤Q;
(iv) φ(BP ) ⊆ BQ. If in addition (iii) holds as an equality, φ is called order-reflecting. If on
the other hand (iv) holds as an equality φ is box-reflecting. A homomorphism that is both
order- and box-reflecting is a (poset with boxes) isomorphism.

In Figure 3 are some examples and a non-example of subsumption between posets. We
introduce some notations. PΣ is the set of posets with boxes. If φ is a homomorphism
from P to Q, we write φ : P → Q. If there exists such a homomorphism (respectively an
isomorphism) from P to Q, we write Q v P (resp. Q ∼= P ).

I Lemma 4. ∼= is an equivalence relation. v is a partial order with respect to ∼=.

I Remark 5. Note that the fact that v is antisymmetric with respect to ∼= relies on the
finiteness of the posets considered here. Indeed, we can build infinite pomsets that are not
isomorphic but have nevertheless homomorphisms between them in both directions.

I Definition 6 (Pomsets with boxes). Pomsets with boxes are equivalence classes of ∼=. The
set PomΣ of pomsets with boxes is defined as PΣ/∼=.

We now define some elementary poset-building operations.

I Definition 7 (Constants). Given a symbol a ∈ Σ, the atomic poset associated with a is
defined as a :=

〈
{0} , [0 7→ a] , Id{0}, ∅

〉
∈PΣ. The empty poset is defined as � :=〈∅, ∅, ∅, ∅〉∈PΣ.

I Remark 8. For any poset P ∈ PΣ, P v �⇔ P w �⇔ P ∼= �. This is because each of those
relations imply there is a bijection between the events of P and E� = ∅. So we know that P
has no events, and since boxes cannot be empty, P has no boxes either. Hence P ∼= �.
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I Definition 9 (Compositions). Let P,Q be two posets with boxes. The sequential composition
P ⊗Q and parallel composition P ⊕Q are defined by:

P ⊗Q := 〈EP ] EQ,≤P ∪ ≤Q ∪ (EP × EQ) , λP t λQ,BP ∪ BQ〉
P ⊕Q := 〈EP ] EQ,≤P ∪ ≤Q, λP t λQ,BP ∪ BQ〉 ,

where the symbol t denotes the union of two functions; that is, given f : A → C and
g : B → C, the function f t g : A ]B → C associates f(a) to a ∈ A and g(b) to b ∈ B.

Intuitively, P ⊕Q consists of disjoint copies of P and Q side by side. P ⊗Q also contains
disjoint copies of P and Q, but also orders every event in P before any event in Q.

I Definition 10 (Boxing). Given a poset P its boxing is denoted by [P ] and is defined by:
[P ] := 〈EP ,≤P , λP ,BP ∪ {EP }〉.

Boxing a pomset simply amounts to drawing a box around it.
In our running example, the pattern of interest is a subset of the events of the whole run.

To capture this, we define the restriction of a poset to a subset of its events.

I Definition 11 (Restriction, sub-poset). For a given set of events A ⊆ EP , we define the
restriction of P to A as P �A := 〈A,≤P ∩ (A×A) , λP �A,BP ∩ P (A)〉. We say that P is a
sub-poset of Q, and write P D Q, if there is a set A ⊆ EQ such that P ∼= Q�A.

Given a poset P , a set of events A ⊆ EP is called:
nested if for any box β ∈ BP either β ⊆ A or A ∩ β = ∅;
prefix if for any e ∈ A and f /∈ A we have e ≤P f ; and
isolated if for any e ∈ A and f /∈ A we have e 6≤P f and f 6≤P e.

These properties characterize sub-posets of particular interest to P . This is made explicit
in the following observation:

I Fact 12. Given a poset P and a set of events A ⊆ EP :
(i) A is prefix and nested iff P ∼= P �A ⊗ P �A;
(ii) A is isolated and nested iff P ∼= P �A ⊕ P �A.

(Here A denotes the complement of A relative to EP ; that is, A := EP \A.)

This fact is very useful as a way to “reverse-engineer” how a poset was built.

2.1.2 Series–parallel pomsets
In the sequel, we will often restrict our attention to series–parallel pomsets. These are
of particular interest since they are defined as those pomsets that can be generated from
constants using the operators we have defined.

I Definition 13 (Pomset terms, SP-Pomsets). A (pomset) term is a syntactic expression
generated from the following grammar: s, t ∈ SPΣ ::= 1 | a | s ; t | s ‖ t | [s]. By convention ;
binds tighter than ‖. A term is interpreted as a poset as follows:

JaK := a J1K := � J [s] K := [ JsK ]
Js ; tK := JsK⊗ JtK Js ‖ tK := JsK⊕ JtK .

A pomset [P ]∼= is called series–parallel (or SP for short) if it is the interpretation of some
term; that is, ∃s ∈ SPΣ : JsK ∼= P .
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P1:
•

•

•

•

P2: • • • P3: •
•

•
P4: •

•

•

Figure 4 Forbidden patterns of SP-pomsets: dashed arrows (in red) are negated.

I Example 14. The program in Figure 1 of the running example corresponds to

JÒ ; ( x ;Ix ;bx ‖ y ;Iy ;by) ;ÒK .

The corrected program, from Figure 2, corresponds to

JÒ ; ([ x ;Ix ;bx] ‖ [ y ;Iy ;by]) ;ÒK .

Finally, the problematic pattern we identified may be represented as J( x ‖ y) ; (bx ‖by)K.

Series–parallel pomsets with boxes may also be defined by excluded patterns, in the same
style as the characterization of series–parallel pomsets [27, 9, 8]. More precisely, one can
prove that a pomset [P ]∼= is series–parallel iff and only if it does not contain any of the
patterns in Figure 4. These may be expressed formally as follows:
P1 : ∃e1, e2, e3, e4 ∈ EP : e1 ≤P e3 ∧ e2 ≤P e3 ∧ e2 ≤P e4 ∧ e1 6≤P e4 ∧ e2 6≤P e1 ∧ e4 6≤P e3
P2 : ∃e1, e2, e3 ∈ EP ,∃A,B ∈ BP : e1 ∈ A \B ∧ e2 ∈ A ∩B ∧ e3 ∈ B \A
P3 : ∃e1, e2, e3 ∈ EP ,∃A ∈ BP : e1 /∈ A ∧ e2, e3 ∈ A ∧ e1 ≤P e2 ∧ e1 6≤P e3
P4 : ∃e1, e2, e3 ∈ EP ,∃A ∈ BP : e1 /∈ A ∧ e2, e3 ∈ A ∧ e2 ≤P e1 ∧ e3 6≤P e1.

We omit the proof of this result here, but the interested reader may find it both in the
Coq proof and in the online version referenced above.

These four patterns are invariant under isomorphism, since they only use the ordering
between events and the membership of events to boxes. This is consistent with SP being
a property of pomsets, rather than just posets. This result provides an alternative view of
pomsets with boxes: one may see them as hyper-pomsets; that is, pomsets in which some
events (the boxes) can be labelled with non-empty pomsets (the contents of the boxes).
However, it seems that for our purposes the definition we provide is more convenient. In
particular, the definition of hyper-pomset homomorphism is more involved.

2.2 Sets of posets
We now lift our operations and relations to sets of posets. This allows us to enrich our syntax
with a non-deterministic choice operator.

I Definition 15 (Orderings on sets of posets). Let A,B ⊆ PΣ, we define the following:
Isomorphic inclusion A ⊂∼ B iff ∀P ∈ A, ∃Q ∈ B such that P ∼= Q

Isomorphic equivalence A ∼= B iff A ⊂∼ B ∧B ⊂∼ A
Subsumption A v B iff ∀P ∈ A, ∃Q ∈ B such that P v Q.
I Remark 16. Isomorphic inclusion and subsumption are partial orders with respect to
isomorphic equivalence, which is an equivalence relation.

I Definition 17 (Operations on sets of posets). We will use the set-theoretic union of sets of
posets, as well as the pointwise liftings of the two products of posets and the boxing operators:

A⊗B := {P ⊗Q | 〈P,Q〉 ∈ A×B} [A] := {[P ] | P ∈ A}
A⊕B := {P ⊕Q | 〈P,Q〉 ∈ A×B}.
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Table 1 Equational and inequational logic.

e = f ∈ A
A ` e = f

A ` e = e
A ` e = f

A ` f = e

A ` e = f A ` f = g

A ` e = g

σ, τ : Σ→ TΣ,
∀a ∈ Σ, A ` σ(a) = τ(a)

A ` σ̂(e) = τ̂(e)

e = f ∈ A
A ` e ≤ f

f = e ∈ A
A ` e ≤ f

e ≤ f ∈ A
A ` e ≤ f

A ` e ≤ e
A ` e ≤ f A ` f ≤ g

A ` e ≤ g

σ, τ : Σ→ TΣ,
∀a ∈ Σ, A ` σ(a) ≤ τ(a)

A ` σ̂(e) ≤ τ̂(e)

I Definition 18 (Closure of a set of posets). The (downwards) closure of a set of posets S is
the smallest set containing S that is downwards closed with respect to the subsumption order;
that is, S↓ := {P ∈ PΣ | ∃Q ∈ S : P v Q}. Similarly, the upwards closure of S is defined
as: S↑ := {P ∈ PΣ | ∃Q ∈ S : P w Q}.

I Remark 19. (_) ↓ and (_) ↑ are Kuratowski closure operators [16]; i.e., they satisfy the
following properties:

∅↓ = ∅ A ⊆ A↓ A↓↓ = A↓ (A ∪B) ↓ = A↓ ∪B↓.

(And, similarly, for the upwards closure.) Using downwards-closures, we may express
subsumption in terms of isomorphic inclusion:

A v B ⇔ A ⊂∼ B↓ ⇔ A↓ ⊂∼ B↓.

Similarly, the equivalence relation associated with v, defined as the intersection of the
relation and its converse, corresponds to the predicate A↓ ∼= B↓.

I Definition 20. Terms are defined by the following grammar:

e, f ∈ TΣ ::= 0 | 1 | a | e ; f | e ‖ f | e+ f | [e] .

Terms can be interpreted as finite sets of posets with boxes as follows:

J0K := ∅ J1K := {�} JaK := {a}

J [e] K := [ JeK ] Je ; fK := JeK⊗ JfK Je+ fK := JeK ∪ JfK Je ‖ fK := JeK⊕ JfK .

I Remark 21. Interpreted as a program, 0 represents failure: this is a program that aborts
the whole execution. +, on the other hand, represents non-deterministic choice. It can be
used to model conditional branching.

2.3 Axiomatic presentations of pomset algebra
We now introduce axioms to capture the various order and equivalence relations we introduced
over posets and sets of posets. Given a set of axioms A (i.e., universally quantified identities),
we write A ` e = f to denote that the pair 〈e, f〉 belongs to the smallest congruence

FSCD 2020
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Table 2 Axioms.

s ;(t ;u) = (s ; t) ;u (A1)
s ‖(t ‖u) = (s ‖ t) ‖u (A2)

s ‖ t = t ‖ s (A3)
1 ; s = s (A4)
s ; 1 = s (A5)
1 ‖ s = s (A6)
[[s]] = [s] (A7)
[1] = 1 (A8)

(s ‖ t) ;(u ‖ v) ≤ (s ;u) ‖(t ; v) (B1)
[s] ≤ s (B2)

e+(f + g) = (e+ f) + g (C1)
e+ f = f + e (C2)
e+ e = e (C3)
0 + e = e (C4)
0 ; e = e ; 0 = 0 (C5)
0 ‖ e = 0 (C6)

e ;(f + g) = (e ; f) +(e ; g) (C7)
(e+ f) ; g = (e ; g) +(f ; g) (C8)
e ‖(f + g) = (e ‖ f) +(e ‖ g) (C9)

[0] = 0 (C10)
[e+ f ] = [e] + [f ] (C11)

containing every axiom in A. Equivalently, A ` e = f holds iff this statement is derivable in
equational logic, as described in Table 1. Similarly, A ` e ≤ f is the smallest precongruence
containing A, where equality axioms are understood as pairs of inequational axioms. An
inference system is also provided in Table 1. We will consider the following sets of axioms:

BiMon� := (A1)− (A8) (Bimonoid with boxes)
CMon� := BiMon�, (B1), (B2) (Concurrent monoid with boxes)

SR� := BiMon�, (C1)− (C11) (Bisemiring with boxes)
CSR� := SR�, (B1), (B2). (Concurrent semiring with boxes)

In the last theory, inequational axioms e ≤ f should be read as e+ f = f . Indeed one can
show that for A ∈ {SR�,CSR�}, we have

A ` e ≤ f ⇔ A ` e+ f = f A ` e = f ⇔ A ` e ≤ f ∧A ` f ≤ e.

These axioms capture the relations ∼= and v:

I Theorem 22. For any pair of terms s, t ∈ SPΣ, the following hold:

JsK ∼= JtK⇔ BiMon� ` s = t (2.1)
JsK v JtK⇔ CMon� ` s ≤ t. (2.2)

The following lemma allows us to extend seamlessly our completeness theorem from
BiMon� to SR� and from CMon� to CSR�.

I Lemma 23. There exists a function T_ : TΣ → Pf (SPΣ) such that: SR� ` e =
∑

s∈Te
s

and JeK ∼= {JsK | s ∈ Te}.

From there, we can easily establish the following completeness results:

I Theorem 24. For any pair of terms e, f ∈ TΣ, the following hold:

JeK ∼= JfK⇔ SR� ` e = f (2.3)
JeK ↓ ∼= JfK ↓ ⇔ CSR� ` e = f. (2.4)
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3 Logic for pomsets with boxes

We introduce a logic for reasoning about pomsets with boxes, in the form of a bunched modal
logic, in the sense of [21, 7, 5, 1, 23], with substructural connectives corresponding to each of
sequential and concurrent composition. Modalities characterize boxes and locality. The logic
is also conceptually related to Concurrent Separation Logic [19, 3].

In contrast with other work, pomset logic is a logic of behaviours. A behaviour is a run
of some program, represented as a pomset. The logic describes such behaviours in terms of
the order in which instructions are, or can be, executed, and the separation properties of
sub-runs. Note, in particular, that we do not define any notion of state. On the contrary,
existing approaches, such as dynamic logic and Hennessy–Milner logic for example, put the
emphasis on the state of the machine before and after running the program. Typically, the
assertion language describes the memory-states, and some accessibility relations between
them. The semantics then relies on labelled transition systems to interpret action modalities.

Here, the satisfaction relation (given in Definition 26) directly defines a relation between
sets of behaviours and formulas. An intuitionistic version of the semantics given in Defin-
ition 26 might be set up – cf. Tarski’s semantics and the semantics of relevant logic – in
terms of (ternary) relations on behaviours.

3.1 Pomset logic: definitions
We generate the set of formulas FΣ and the set of positive formulas F+

Σ as follows:

φ, ψ ∈ F+
Σ ::= ⊥ | a | φ ∨ ψ | φ ∧ ψ | φIψ | φ ?ψ | [φ] | LβφM

φ, ψ ∈ FΣ ::= ⊥ | a | φ ∨ ψ | φ ∧ ψ | φIψ | φ ?ψ | [φ] | LβφM | ¬φ

I Remark 25. Here the atomic predicates are chosen to be exactly Σ. Another natural choice
would be a separate set Prop of atomic predicates, together with a valuation v : Prop→ P (Σ)
to indicate which actions satisfy which predicate. Both definitions are equivalent:

to encode a formula over Prop as a formula over Σ, simply replace every predicate
p ∈ Prop with the formula

∨
a∈v(p) a

to encode a formula over Σ as one over Prop, we need to make the customary assumption
that ∀a ∈ Σ, ∃p ∈ Prop : v(p) = {a}.

These formulas are interpreted over posets. We define a satisfaction relation |=R that is
parametrized by a relation R ⊆ PΣ × PΣ (to be instantiated later on with ∼=, v, and w).

I Definition 26. P |=R φ is defined by induction on φ ∈ FΣ:
P |=R ⊥ iff R (P, �)
P |=R a iff R (P, a)
P |=R ¬φ iff P 6|=R φ

P |=R φ ∨ ψ iff P |=R φ or P |=R ψ

P |=R φ ∧ ψ iff P |=R φ and P |=R ψ

P |=R φIψ iff ∃P1, P2 such that R (P, P1 ⊗ P2) and P1 |=R φ and P2 |=R ψ

P |=R φ ?ψ iff ∃P1, P2 such that R (P, P1 ⊕ P2) and P1 |=R φ and P2 |=R ψ

P |=R [φ] iff ∃Q such that R (P, [Q]) and Q |=R φ

P |=R LβφM iff ∃P ′, Q such that R (P, P ′) and P ′ E Q and Q |=R φ.
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The operator [−] describes the (encapsulated) properties of boxed terms. The operator Lβ−M
identifies a property of a term that is obtained by removing parts, including boxes and events,
of its satisfying term (i.e., its world) such that remainder satisfies the formula that it guards.
The meanings of these operators are discussed more fully in Section 4.2.

Note that |=w and |=v will only be used with positive formulas. Given a formula φ and
a relation R, we may define the R-semantics of φ as JφKR := {P ∈ PΣ | P |=R φ}.

I Example 27. Recall the problematic pattern we saw in the running example; i.e.,

x bx

y by

This pattern can be represented by the formula conflict := Lβ( x ? y)I (bx ?by)M.

We may also interpret these formulas over sets of posets. We consider here two ways a
set of posets X may satisfy a formula:

X satisfies φ universally if every poset in X satisfies φ;
X satisfies φ existentially if some poset in X satisfies φ.

Combined with our three satisfaction relations for pomsets, this yields six definitions:

X |=∀∼= φ iff ∀P ∈ X,P |=∼= φ X |=∃∼= φ iff ∃P ∈ X,P |=∼= φ

X |=∀w φ iff ∀P ∈ X,P |=w φ X |=∃w φ iff ∃P ∈ X,P |=w φ
X |=∀v φ iff ∀P ∈ X,P |=v φ X |=∃v φ iff ∃P ∈ X,P |=v φ.

For a term e ∈ TΣ, we write e |=y
R φ to mean JeK |=y

R φ. In terms of R-semantics, these
definitions may be formalized as:

e |=∃R φ⇔ JeK ∩ JφKR 6= ∅ e |=∀R φ⇔ JeK ⊆ JφKR . (3.1)

3.2 Properties of pomset logic
We now discuss some of the properties of pomset logic. First, notice that if the relation R is
transitive, then for any posets P,Q and any formula φ ∈ F+

Σ , we have that:

P R Q and Q |=R φ⇒ P |=R φ. (3.2)

If, additionally, R is symmetric, this property may be strengthened to

∀P,Q ∈ PΣ, ∀φ ∈ FΣ, if P R Q, then P |=R φ⇔ Q |=R φ. (3.3)

Furthermore, increasing the relation R increases the satisfaction relation as well:

R ⊆ R′ ⇒ ∀φ ∈ F+
Σ ,∀P ∈ PΣ, P |=R φ⇒ P |=R′ φ. (3.4)

From these observations and (3.1), we obtain the following characterizations of the
universal satisfaction relations for R ∈ {∼=,v,w}:

e |=∀∼= φ⇔ JeK ⊂∼ JφK∼= (3.5)
e |=∀v φ⇔ JeK v JφKv (3.6)

e |=∀w φ⇔ ∀P ∈ JeK , ∃Q ∈ JφKw : P w Q. (3.7)
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Additionally, the following preservation properties hold for sets of posets:

e ⊂∼ f ⇒ ∀φ ∈ FΣ,
(
e |=∃∼= φ⇒ f |=∃∼= φ

)
∧
(
f |=∀∼= φ⇒ e |=∀∼= φ

)
(3.8)

e v f ⇒ ∀φ ∈ F+
Σ ,
(
e |=∃w φ⇒ f |=∃w φ

)
∧
(
f |=∀v φ⇒ e |=∀v φ

)
. (3.9)

We can build formulas from series–parallel terms: φ(a) := a, φ(1) := ⊥, φ ([s]) := [φ(s)],
φ(s ; t) := φ(s)Iφ(t), and φ(s ‖ t) := φ(s) ? φ(t). Using T_, we generalize this construction
our full syntax: given a term e ∈ TΣ, we define the formula Φ(e) :=

∨
s∈Te

φ(s). These
formulas are closely related to terms thanks to the following lemma:

I Lemma 28. For any term s ∈ SPΣ and any poset P , we have:

P |=∼= φ(s)⇔ P ∼= JsK P |=w φ(s)⇔ P w JsK P |=v φ(s)⇔ P v JsK .

For a term e ∈ TΣ and a set of posets X ⊆ PΣ, we have:

X |=∀∼= Φ(e)⇔ X ⊂∼ JeK X |=∀v Φ(e)⇔ X v JeK .

As an immediate corollary, for any e ∈ TΣ and any s ∈ SPΣ, we obtain that:

e |=∃∼= φ(s)⇔ JsK ∈ JeK e |=∃w φ(s)⇔ JsK ∈ JeK ↓ (3.10)

We can now establish adequacy lemmas. These should be understood as appropriate
formulations of the completeness theorems relating operational equivalence and logical
equivalence in the sense of van Benthem [2] and Hennessy–Milner [10, 18] for this logic
(cf. [1]). From the results we have established so far, we may directly prove the following:

I Proposition 29. For a pair of series–parallel terms s, t ∈ SPΣ,

BiMon� ` s = t⇔ ∀φ ∈ FΣ, (JsK |=∼= φ⇔ JtK |=∼= φ) (3.11)
CMon� ` s ≤ t⇔ ∀φ ∈ F+

Σ , (JsK |=w φ⇒ JtK |=w φ) . (3.12)

This extends to sets of pomsets in the following sense:

I Proposition 30. Given two terms e, f ∈ TΣ, the following equivalences hold:

SR� ` e ≤ f ⇔
(
∀φ, e |=∃∼= φ⇒ f |=∃∼= φ

)
⇔
(
∀φ, f |=∀∼= φ⇒ e |=∀∼= φ

)
(3.13)

SR� ` e = f ⇔
(
∀φ, e |=∃∼= φ⇔ f |=∃∼= φ

)
⇔
(
∀φ, e |=∀∼= φ⇔ f |=∀∼= φ

)
(3.14)

CSR� ` e ≤ f ⇔
(
∀φ, e |=∃w φ⇒ f |=∃w φ

)
⇔
(
∀φ, f |=∀v φ⇒ e |=∀v φ

)
(3.15)

CSR� ` e = f ⇔
(
∀φ, e |=∃w φ⇔ f |=∃w φ

)
⇔
(
∀φ, e |=∀v φ⇔ f |=∀v φ

)
. (3.16)

4 Local Reasoning

Some of the discussions in this section do not rely on which satisfaction relation we pick.
When this is the case, we use the symbol |= to mean any of the relations |=∼=, |=w, |=v.

4.1 Modularity
Pomset logic enjoys a high level of compositionality, much like algebraic logic. Formally, this
comes from the following principle:

If e |= φ and ∀a, σa |= τa, then σ̂e |= τ̂φ.

FSCD 2020
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This makes possible the following verification scenario: Let P be a large program, involving
a number of simpler sub-programs P1, . . . , Pn. We may simplify P by replacing the sub-
programs by uninterpreted symbols x1, . . . , xn. We then check that this simplified program
satisfies a formula Φ, the statement of which might involve the xi. We then separately
determine for each sub-program Pi some specification φi. Finally, using the principle we just
stated, we can show that the full program P satisfies the formula Φ′, obtained by replacing
the xi with φi.

4.2 Frame rule
A key of objective of applied, modelling-oriented, work in logic and semantics is to understand
systems – such as complex programs, large-scale distributed systems, and organizations –
compositionally. That is, we seek understand how the system is made of components that
can be understood independently of one another. A key aspect of this is what has become
known as local reasoning. That is, that the pertinent logical properties of the components of
a system should be independent of their context.

In the world of Separation Logic [26, 12, 19], for reasoning about how computer programs
manipulate memory, O’Hearn, Reynolds, and Yang [22] suggest that

“To understand how a program works, it should be possible for reasoning and specific-
ation to be confined to the cells that the program actually accesses. The value of any
other cell will automatically remain unchanged.”

In this context, a key idea is that of the “footprint” of a program; that is, that part of
memory that is, in an appropriate sense, used by the program [24]. If, in an appropriate
sense, a program executes correctly, or “safely”, on its footprint, then the so-called “frame
property” ensures that the resources present outside of the footprint and, by implication,
their inherent logical properties, are unchanged by the program.

In the setting of Separation Logic, the frame property is usually represented by a Hoare-
triple rule of the form

{φ}C{ψ}
{φ ∗ χ}C{ψ ∗ χ}

C is independent of χ.

That is, the formula χ does not include any variables (from the memory) that are modified
by the program C.

In order to formulate the frame property in our framework, we first fix the notion of
independence between a program and a formula. We say that a pomset P is R-independent
of a formula φ, written P #R φ if P 6|=R Lβ[φ]M. Since independence is meant to prevent
overlap, the use of the Lβ−M modality should come as no surprise.

To explain the need for the [−] modality, first consider a pomset P satisfying LβφM. To
extract a witness of this fact, we must remove parts of P , including boxes and events, such
that the remainder satisfies φ. However, there are no restrictions on the relationship between
the remaining events and those we have deleted. In a sequence of three events, we are allowed
to keep the two extremities, and delete the middle one. In contrast, to get a witness of Lβ[φ]M,
we need to identify a box on P whose contents satisfy φ, and remove all events external to
that box. The result is that the deleted events, that is, the context of our witness, can only
appear outside the box, and must treat all events inside uniformly. In other words, these
events can interact with the behaviour encapsulated in the box, but cannot interact with
individual components inside. For this reason, the frame properties given in Proposition 31
are expressed using [φ] – that is, the encapsulation of φ – rather than φ.
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VoteProc := Choose ; Publish

Choose := [Vote (1)] ‖ · · · ‖ [Vote (n)]

Vote (i) :=
∑

16j6k

Bi,j ; j ;I ;bj

Publish := T1 ‖ · · · ‖Tn

Ti : the contents of counters c1, . . . , ck is sent to voter vi

Bi,j : voter vi chooses counter cj

j : the content of counter cj is loaded into a local variable
I : the local variable is incremented
bj : the content of the local variable is stored in counter cj

Figure 5 Voting protocol.

With this definition, we can now state three frame rules, enabling local reasoning with
respect to the parallel product, sequential prefixing, and sequential suffixing.

I Proposition 31 (Frame properties). If P #∼= φ, and Q |=∼= [φ], then it holds that:
(i) ∀ψ ∈ FΣ, P |=∼= ψ ⇔ P ⊕Q |=∼= ψ ? [φ];
(ii) ∀ψ ∈ FΣ, P |=∼= ψ ⇔ P ⊗Q |=∼= ψI [φ];
(iii) ∀ψ ∈ FΣ, P |=∼= ψ ⇔ Q⊗ P |=∼= [φ]Iψ.
I Remark 32. Note that this lemma does not hold for v or w instead of '. The left-to-right
implications always hold, but the converse may be fail. However, this principle may be
extended to sets of pomsets. Indeed, if we define the independence relation for sets of pomsets
as A #R φ := ∀P ∈ A, P #R φ, then Proposition 31 holds for both |=∀∼= and |=∃∼=.

4.3 Example
In this section, we present an example program, and showcase reasoning principles of pomset
logic. In particular, we will highlight the use of local reasoning when appropriate.

Consider the following voting protocol: a fixed number of voters, v1, . . . , vn, are each
asked to increment one of the counters c1, . . . , ck. The tally is then sent to each of the vi, to
inform them of the result. The increment is implemented similarly to our running example
of the distributed counter (Example 1). The implementation of the protocol is displayed in
Figure 5, together with the intended semantics of the atomic actions.

Conflict

As in Example 1, if we forgo the boxes in Choose, we cannot enforce mutual exclusion. Recall
that the undesirable behaviour is captured by the following formula:

conflictj := Lβ( j ? j)I (bj ?bj)M

We may see this by defining an alternative (faulty) protocol:

VoteProc′ := (Vote (1) ‖ · · · ‖ Vote (n)) ; Publish

and then checking that this protocol displays the behaviour we wanted to avoid:

VoteProc′ |=∃w conflictj .

FSCD 2020
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This statement should be read as “there is a pomset in JVoteProc′K that is larger than one
containing a conflict”. We can show the existence of this “bug” by local reasoning. We may
first prove that Vote (i) ‖ Vote (i′) |=∃w conflictj (for some arbitrary i 6= i′). The properties
of Lβ−M then allow us to deduce that

VoteProc′ ∼= (Vote (i) ‖ Vote (i′) ‖ · · · ) ; · · · |=∃w LβconflictjM ≡ conflictj .

The implementation in Figure 5 avoids this problem, and indeed it holds that:

VoteProc 6|=∃w conflictj .

However, showing that this formula is not satisfied by the program is less straightforward
and, in particular, cannot be done locally: we have to enumerate all possible sub-pomsets,
and check that none provide a suitable witness.

Sequential separation

In our protocol, the results of the vote are only communicated after every participant has
voted. This is specified by the following statement:

SendAfterVote := Lβ¬
(∨

i

Ti

)
MI Lβ¬

∨
i,j

Bi,j

M.
This may be checked modularly. Indeed, one may prove by simple syntactic analysis that

Choose |=∀∼= Lβ¬
(∨

i

Ti

)
M and Publish |=∀∼= Lβ¬

∨
i,j

Bi,j

M.
Therefore, we may combine these to get that:

VoteProc = Choose ; Publish |=∀∼= Lβ¬
(∨

i

Ti

)
MI Lβ¬

∨
i,j

Bi,j

M = SendAfterVote.

For voter i, two of the most meaningful steps are Bi,j and Ti, i.e. when the vote is cast
and when the result of the vote is forwarded to them. Using the macro choosei :=

∨
j Bi,j ,

we can specify that during the protocol, each voter first votes, and then gets send the result:

VoteThenSend := Lβ(choose1IT1) ? . . . ? (choosenITn)M.

Unique votes

Another important feature of this protocol is that each voter may only cast a single vote.
Knowing that each voter controls a single box, we express this property with the statement:

VoteProc 6|=∃v
∨
j,j′

Lβ[Lβbj ?bj′M]M.

Since we use the relation |=∃v with the connective ?, we allow any possible ordering of the
two write events. The only constraint is that there should be at least two of them in the
same box. As for the “conflict” property, if the “bad” behaviour were to happen, one could
prove it compositionally. However, disproving the existence of such a behaviour is a more
global process, involving the exploration of all possible sub-pomsets.
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Frame property

As we have seen in previous examples, proving that a formula does not hold can be challenging,
because the non-existence of a local pattern is not a local property. We may circumvent
this problem by adding more boxes in both programs and formulas. This is related to a
common pattern in parallel programming: in a multi-threaded program, one may insert
fences to “tame” concurrency. Doing so simplifies program analysis, at the cost of some
efficiency. Similarly, since adding boxes restricts behaviours – thus disallowing some possible
optimizations – the analysis of a program becomes simpler and more efficient.

We illustrate this with the following statement:

[Choose] ; [Publish] 6|=∀∼= LβbIbMI [φ] where φ := ¬ (⊥ ∨ Lβ[LβbM]M) .

LβbIbM indicates that two “write” instructions can be executed in sequence, while φ denotes
a non-empty pomset, not containing any boxes with a “write” event inside. We can first
prove properties of the subprograms:

[Publish] |=∀∼= [φ] [Choose] 6|=∀∼= Lβ[φ]M [Choose] 6|=∀∼= LβbIbM.

Since [Choose] #∼= φ and [Publish] |=∀∼= [φ], we obtain from the frame rule that

[Choose] ; [Publish] |=∀∼= LβbIbMI [φ]⇔ [Choose] |=∀∼= LβbIbM.

Since we have locally disproved the latter, we may deduce that the former does not hold.

5 Future work

In this paper, we have not considered the CKA operator −?. A natural further step would be
to do so, with the corresponding need to consider versions of pomset logic with fixed points.
Connections with Hoare-style program logics, such as Concurrent Separation Logic [3, 20]
with its concrete semantics, should also be considered.

Our satisfaction relation over pomsets is defined inductively. However, the satisfaction
relations we define for sets of pomsets is not: we define in terms of the former relation. For
practical purposes, such as model-checking, it would be useful to have a similar inductive
definition for sets of pomsets.

It is also worth noticing that the definitions and statements in Section 2 are straight-
forward generalizations of their counterparts in CKA (without boxes); even the proofs of
those results follow a similar strategy. However, we could reuse almost no result from CKA:
instead we had to reprove everything from scratch. This situation is deeply unsatisfactory,
and we plan on investigating techniques to better “recycle” proofs in this context. Recent
work on (C)KA with hypotheses [6, 14] seems to be a step towards this goal.
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Abstract
Semi-unification (unification combined with matching) has been proven undecidable by Kfoury,
Tiuryn, and Urzyczyn in the 1990s. The original argument reduces Turing machine immortality via
Turing machine boundedness to semi-unification. The latter part is technically most challenging,
involving several intermediate models of computation.

This work presents a novel, simpler reduction from Turing machine boundedness to semi-
unification. In contrast to the original argument, we directly translate boundedness to solutions of
semi-unification and vice versa. In addition, the reduction is mechanized in the Coq proof assistant,
relying on a mechanization-friendly stack machine model that corresponds to space-bounded Turing
machines. Taking advantage of the simpler proof, the mechanization is comparatively short and
fully constructive.
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1 Introduction

In the 1980s it was an actively studied, long-standing open problem whether the combination
of first-order unification and matching, both of which are decidable problems, is decidable.
This problem, called semi-unification, is: given a finite set of pairs (σ, τ) of first-order terms,
is there a valuation ϕ of term variables such that for each pair (σ, τ) we have ψ(ϕ(σ)) = ϕ(τ)
for some valuation ψ of term variables?

Semi-unification is directly related [10, 16] to type inference in an extension of the
Hindley–Milner type system [11, 19] (cf. the standard ML [20] programming language),
which allows for polymorphic recursion [21]. Therefore, computational properties of semi-
unification translate to type inference capabilities for polymorphic functional programming
languages, affecting programming language design. For a broad overview over properties of
semi-unification the reader is referred to [17, 13].

In the 1990s Kfoury, Tiuryn, and Urzyczyn have shown that semi-unification is un-
decidable [15, 17]. This negative result motivated exploration of decidable fragments of
semi-unification (for an overview see [18]). The original undecidability proof is quite so-
phisticated, reflecting the inherent intricacy of the semi-unification problem. It involves
Turing machine immortality, symmetric intercell Turing machine boundedness, path equation
derivability, and termination of a redex contraction procedure for semi-unification. Therefore,
it is challenging to verify the original proof down to the last detail, let alone mechanize it
in a proof assistant. Additionally, the original argument uses König’s lemma and it is not
obvious whether it can be presented constructively.

This work contributes to a better understanding of semi-unification in three aspects.
First, we present a simpler proof for the undecidability of semi-unification. The presented
technical argument connects an undecidable machine property (in immediate correspondence
with Turing machine boundedness) to solutions of semi-unification in a direct way. The key
contribution regarding this aspect is the function ζ (Definition 41) that constructs solutions
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for semi-unification instances. Second, we mechanize [2] (ca. 1500 lines of code in the
Coq [5] proof assistant) the presented argument, leaving little room for doubt regarding its
correctness. Third, König’s lemma in the original argument is replaced by the fan theorem.
The provided mechanization reveals full constructivity of the remaining reasoning.

Proof Synopsis

First, we reduce Turing machine immortality [12] (is there a diverging configuration?) to a
uniform boundedness problem for stack machines (is there a uniform bound on the number
of reachable configurations?). The considered, restricted class of stack machines, which we
call simple, is a mechanization-friendly presentation of space-bounded Turing machines.

Second, given a simple stack machineM, we encode each instruction ofM as a semi-
unification constraint, thereby constructing a finite set of constraints C. Each state ofM is
a variable in C. The resulting constraints are of restricted shape, which we also call simple.

Third, ifM is uniformly bounded, then we interpret configurations ofM as first-order
terms using an uncomplicated, computable function ζ. Most importantly, the interpretation
of an empty stack configuration in each state ofM is a solution for C.

Fourth, if C has a solution ϕ, then we construct a uniform bound forM from the maximal
depth of the syntax trees in the range of ϕ.

Fifth, the above constitutes an undecidability proof of semi-unification for simple con-
straints and immediately implies undecidability of semi-unification.

Key aspects of all of the above points, except the third, also appear in [17]. However, the
technically most challenging aspect of [17], which we are able to simplify, is to show that a
solution for a constructed semi-unification instance exists. Specifically, the function ζ is the
main contribution of this work towards a better understanding of semi-unification.

Organization of the Paper

Section 2 contains preliminary properties of simple semi-unification (Problem 15), which is a
restriction of semi-unification that transports undecidability (Theorem 1).

Section 3 contains preliminary properties of simple stack machines (Definition 16), which
are equivalent to space-bounded Turing machines. Additionally, uniform boundedness of
deterministic simple stack machines (Problem 26) is shown undecidable (Theorem 2).

Section 4 contains a reduction from uniform boundedness of deterministic simple stack
machines to simple semi-unification. Correctness of the reduction (Lemma 48 and Lemma 45)
results in undecidability of semi-unification (Theorem 4).

Section 5 provides an overview over the mechanization [2] of the presented reduction.
Section 6 concludes and lists potential future work.

2 Semi-unification Preliminaries

This section, following [17], recollects the basic definition and properties of semi-unification
(Problem 3).

I Definition 1 (Terms (T)). Let V be a countably infinite set of variables ranged over
by α, β, γ. The set of terms T, ranged over by σ, τ , is given by the grammar

σ, τ ∈ T ::= α | σ → τ

I Definition 2 (Valuation (ϕ), (ψ)). A valuation ϕ : V→ T assigns terms to variables, and
is tacitly lifted to terms.
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I Problem 3 (Semi-unification (SU)). Given a finite set {s1 ≤1 t1, . . . , sn ≤n tn} of indexed
inequalities, do there exist valuations ϕ,ψ1, . . . , ψn : V→ T such that ψi(ϕ(si)) = ϕ(ti) holds
for i = 1 . . . n?

Compared to first-order unification, semi-unification is non-structural. In a solvable
instance, the left-hand side of an indexed inequality may even appear as subterm of the
right-hand side (Example 4).

I Example 4. The indexed inequalities {α ≤1 α→ β, α→ α ≤2 β} are solved by the valu-
ations ϕ = {α Z⇒ α, β Z⇒ α → α}, ψ1 = {α Z⇒ α → (α → α)}, and ψ2 = {α Z⇒ α} because

ψ1(ϕ(α)) = α→ (α→ α) = ϕ(α→ β)
ψ2(ϕ(α→ α)) = α→ α = ϕ(β) y

Next, we introduce the notion of constraints (Definition 6) (called path equations in [17]).
Constraints play a key role connecting (constraint-based) semi-unification to the execution
of a stack machine. Intuitively, a constraint X .= Y reflects joinability of configurations X
and Y in a stack machine (cf. Section 4).

I Definition 5 (Binary Words (B∗)). Let B = {0, 1} be ranged over by a, b. The set B∗ of
words is ranged over by s, t, v, w.

I Definition 6 (Constraint (spαpt .= vpβpw)). A constraint has the shape spαpt .= vpβpw,
where α, β ∈ V and s, t, v, w ∈ B∗.

A constraint is simple if it has the shape apαpε .= εpβpb, where α, β ∈ V, a, b ∈ B, and ε is
the empty word.

In order to connect words with valuations, we define valuation compositions (Definition 7)
and path functions on terms (Definition 8).

I Definition 7 (Valuation Composition (ψv)). Let ψ0, ψ1 : V → T be valuations. For a
word v ∈ B∗, the composed valuation ψv : T→ T is such that

ψε(σ) = σ ψwa(σ) = ψw(ψa(σ))

I Definition 8 (Path Function (πv)). For a word v ∈ B∗, the partial path function πv : T 9 T
is such that

πε(σ) = σ π0w(σ → τ) = πw(σ) π1w(σ → τ) = πw(τ) (otherwise πv(σ) is undefined)

Intuitively, a simple constraint apαpε .= εpβpb is satisfied by a valuation triple (ϕ,ψ0, ψ1),
if ψa(ϕ(α)) = πb(ϕ(β)). The absence of ψ0 and ψ1 on the right-hand side captures matching
as part of semi-unification. Similarly to [17], the respective side spαpt of a constraint is
interpreted wrt. a valuation triple (ϕ,ψ0, ψ1) by the term which arises when we apply ψs
to ϕ(α) and then select a subterm via πt. This interpretation is captured by the following
model relation (|=).

I Definition 9 (Model Relation (|=)). A valuation triple (ϕ,ψ0, ψ1) models a constraint
spαpt .= vpβpw, written (ϕ,ψ0, ψ1) |= spαpt .= vpβpw, if πt(ψs(ϕ(α))) = πw(ψv(ϕ(β))).

For a set C of constraints, we write (ϕ,ψ0, ψ1) |= C if (ϕ,ψ0, ψ1) |= C for all C ∈ C.
For a set C of constraints and a constraint C, we write C |= C if for all valuation

triples (ϕ,ψ0, ψ1) such that (ϕ,ψ0, ψ1) |= C we have (ϕ,ψ0, ψ1) |= C.
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9:4 Undecidability of Semi-Unification on a Napkin

As a side note, path equation derivability of [17] is sound for (|=). The following
Example 10, Example 11, and Example 13 illustrate positive and negative cases for models.

I Example 10. Let C = {0pαpε .= εpβp1, 1pγpε .= εpβp1, 1pαpε .= εpγp0} be a set of simple
constraints. We have (ϕ,ψ0, ψ1) |= C, where

ϕ = {α Z⇒ α, β Z⇒ β0 → (β10 → β11), γ Z⇒ γ0 → γ1}
ψ0 = {α Z⇒ β10 → β11}
ψ1 = {α Z⇒ γ0, γ0 Z⇒ β10, γ1 Z⇒ β11}

I Example 11. Let C = {0pαpε .= εpβp1, 1pγpε .= εpβp1, 1pαpε .= εpγp0} be a set of simple
constraints. We have C |= 0pαp0 .= 11pαpε, because for any valuations ϕ,ψ0, ψ1 such that
(ϕ,ψ0, ψ1) |= C we have

π0(ψ0(ϕ(α))) = π0(π1(ϕ(β))) = π0(ψ1(ϕ(γ))) = ψ1(π0(ϕ(γ))) = ψ1(ψ1(ϕ(α)))

The depth of a term is the maximal depth of its syntax tree, and is non-decreasing under
substitution.

I Definition 12 (Term Depth (depth)). The function depth : T→ N is such that

depth(α) = 0 depth(σ → τ) = 1 + max{depth(σ),depth(τ)}

I Example 13. There is no valuation triple (ϕ,ψ0, ψ1) that models the simple constraint
1pαpε .= εpαp0. Otherwise, we would have

πε(ψ1(ϕ(α))) = π0(ψε(ϕ(α)))
=⇒ ψ1(ϕ(α)) = π0(ϕ(α))
=⇒ ψ1(σ → τ) = σ where ϕ(α) = σ → τ

=⇒ depth(ψ1(σ → τ)) = depth(σ)
=⇒ depth(ψ1(σ)) < depth(σ) which is a contradiction

Intuitively, the simple constraint 1pαpε .= εpαp0 corresponds to an unbounded computation
that transforms arbitrary many 1s on the left stack to 0s on the right stack (cf. Section 4).

The following Lemma 14 describes in which cases a simple constraint is modeled.

I Lemma 14. We have (ϕ,ψ0, ψ1) |= apαpε .= εpβpb iff one of the following conditions holds
b = 0 and ψa(ϕ(α))→ τ = ϕ(β) for some term τ ∈ T
b = 1 and σ → ψa(ϕ(α)) = ϕ(β) for some term σ ∈ T

Finally, we identify the following semi-unification problem based on simple constraints.
The importance of this restriction is pointed out in [17, Sec. 4], and its undecidability implies
the undecidability of semi-unification (Theorem 1). Intuitively, we will use a simple constraint
apαpε .= εpβpb to represent a stack machine transition from state α to state β, removing the
symbol a from the left stack and adding the symbol b to the right stack.

I Problem 15 (Simple Semi-unification (SSU)). Given a finite set C of simple constraints, do
there exist valuations ϕ,ψ0, ψ1 : V→ T such that (ϕ,ψ0, ψ1) |= C?
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I Theorem 1. If simple semi-unification (Problem 15) is undecidable, then so is semi-
unification (Problem 3).

Proof. Let C = {0pαipε
.= εpβipbi | i = 1 . . . n} ∪ {1pαipε

.= εpβipbi | i = n+ 1 . . .m} be a set of
simple constraints. We define an instance D of semi-unification that reflects solvability of C
as follows.

Define σi =
{
αi → γi if bi = 0
γi → αi if bi = 1

, where γi is fresh for i = 1 . . .m. Define D as (for conve-

nience, we start indexing inequalities from 0)

σ1 → · · · → σn ≤0 β1 → · · · → βn

σn+1 → · · · → σm ≤1 βn+1 → · · · → βm

First, by Lemma 14, if D has a solution ϕ,ψ0, ψ1, then ψ0(ϕ(σi)) = ϕ(βi) for i = 1 . . . n,
and ψ1(ϕ(σi)) = ϕ(βi) for i = n+ 1 . . .m. Therefore, (ϕ,ψ0, ψ1) |= C.

Second, assume (ϕ,ψ0, ψ1) |= C. Define ϕ′ : V→ T such that ϕ′(γi) = γi for i = 1 . . .m,
and otherwise ϕ′(α) = ϕ(α). For a ∈ B, define ψ′a : V→ T such that ψ′a(γi) = π(1−bi)(ϕ(βi))
for i = 1 . . .m, and otherwise ψ′a(α) = ψa(α). By Lemma 14, ϕ′, ψ′0, ψ′1 solve D. J

3 Stack Machine Preliminaries

Instead of working with Turing machines (or symmetric intercell Turing machines of [17]),
we use a more convenient computational model of simple stack machines (Definition 16).
Intuitively, simple stack machines are a mechanization-friendly presentation of space-bounded
Turing machines (cf. proof of Theorem 2).

I Definition 16 (Simple Stack Machine (M)). Let p, q range over a countably infinite set S
of states. A simple stack machine M is a finite set of instructions of shape either ap −→ qb

or pa −→ bq, where p, q ∈ S and a, b ∈ B.
A configuration is a triple spppt, where p ∈ S is a state, s ∈ B∗ is the left stack, and t ∈ B∗

is the right stack. The set of all configurations is denoted by C.
The step relation (−→M) ⊆ C× C on configurations is given by
sapppt −→M spqpbt if (ap −→ qb) ∈M
spppat −→M sbpqpt if (pa −→ bq) ∈M

The reachability relation (−→∗M) ⊆ C× C on configurations is the reflexive, transitive
closure of (−→M). For brevity, we say machine for simple stack machine.

I Example 17. Consider the machineM = {(1p −→ p0)}, which pops 1s from the left stack
and pushes 0s onto the right stack.

We have that from the configuration X = 1npppε the configurations Ym = 1mppp0n−m such
that m ≤ n are reachable, i.e. X −→∗M Ym for m = 0 . . . n.

I Definition 18 (Deterministic). A machine M is deterministic if for all configurations
X,Y, Z ∈ C such that X −→M Y and X −→M Z we have Y = Z.

I Remark 19. The step relation for Turing machines is naturally connected to the step
relation for simple stack machines as follows. Say a Turing machine reading a symbol
a in state x writes a symbol b, transitions into a state y, and moves right. This local
behavior is described by the instructions ((x, a)0 −→ b(y, 0)) and ((x, a)1 −→ b(y, 1)),
where (x, a), (y, 0), (y, 1) ∈ S. The left (resp. right) stack describes the Turing machine tape
left (resp. right) of the current head position.
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9:6 Undecidability of Semi-Unification on a Napkin

A distinctive machine feature is preservation of total available space under reachability
(Lemma 21).

I Definition 20 (Word Length (length)). The function length : B∗ → N is such that

length(ε) = 0 length(av) = 1 + length(v)

I Lemma 21. If spppt −→∗M vpqpw, then length(s) + length(t) = length(v) + length(w).

Proof. Instructions preserve the sum of stack lengths. J

Since machines operate in bounded space (as opposed to Turing machines that operate
on infinite tape), most machine properties, such as reachability (Lemma 22), are decidable.
This is most useful for a fully constructive mechanization.

I Lemma 22. It is decidable, whether for a machineM and configurations X,Y ∈ C, we
have X −→∗M Y .

Proof. By Lemma 21, the number of configurations reachable from X is finite and can be
searched exhaustively. J

Although boundedness (is for any configuration X the number of configurations reachable
from X finite?) is a trivially true machine property, uniform boundedness (Problem 26) is
undecidable (Theorem 2).

I Definition 23 (Uniformly Bounded). A machine M is uniformly bounded by a natural
number n ∈ N if for all configurations X ∈ C we have

|{Y ∈ C | X −→∗M Y }| ≤ n

For brevity, we say thatM is uniformly bounded ifM is uniformly bounded by some n ∈ N.

The following Example 24 illustrates a uniformly bounded machine.

I Example 24. The machine M = {(0p −→ q1), (q1 −→ 1p), (1p −→ q0), (q0 −→ 0p)} is
(by case analysis) uniformly bounded by n = 4. For instance, in case of a configuration
X = sapppt, where a ∈ B and s, t ∈ B∗, we have

|{Y ∈ C | X −→∗M Y }| = |{sapppt, spqp(1− a)t, s(1− a)pppt, spqpat}| = 4 ≤ n y

Complementarily, the following Example 25 illustrates a machine that is not uniformly
bounded. As will be shown in Section 4, this is because the simple constraint 1pαpε .= εpαp0 in
Example 13 has no model.

I Example 25. The machineM = {(1p −→ p0)} from Example 17 is not uniformly bounded,
because for any n ∈ N and the configuration X = 1npppε we have

|{Y ∈ C | X −→∗M Y }| = |{1mppp0n−m | 0 ≤ m ≤ n}| = n+ 1 > n y

I Problem 26 (Uniform Boundedness of Deterministic Simple Stack Machines (UBDSSM)).
Given a deterministic machineM, isM is uniformly bounded?

The intuition in the above Remark 19 is used in the following Theorem 2 to connect
unbounded simple stack machines to immortal Turing machines.
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I Theorem 2. Uniform boundedness of deterministic simple stack machines (Problem 26) is
undecidable.

Proof. Weak truth-table reduction from Turing machine mortality [12]. Let T be a Turing
machine with moving tape over the alphabet B having states Q and transition function
δ : Q × B → Q × B × {L,R}. A generalized instantaneous description (GID)1 of T is a
pair (x, T ) ∈ Q×BZ, where x is the current state and T is the current tape content with the
currently scanned symbol T (0).

Let (Q× B) ⊆ S. Define a simple stack machineM having as instructions
(0(x, a) −→ (y, 0)b) and (1(x, a) −→ (y, 1)b) if δ(x, a) = (y, b, L)
((x, a)0 −→ b(y, 0)) and ((x, a)1 −→ b(y, 1)) if δ(x, a) = (y, b, R)

If T is deterministic, then so isM. Clearly, any finite number of T -transitions corresponds
toM-steps for a large enough starting configuration.

We now show that if we can decide whetherM is uniformly bounded, then we can decide
whether T is immortal, i.e. that T has a GID which has no terminal successor.

First, assume thatM is uniformly bounded by n. From a GID (x, T ) we have that T
cannot scan symbols initially positioned at i such that i < −n or i > n. Therefore, T is
immortal iff it loops in space 2n+ 1, which is decidable by exhaustive search.

Second, assume that every GID in T has a terminal successor. We use the fan theorem
(as formulated by [4]) to show thatM is uniformly bounded. Let B = B> ∪B⊥, where B>
is the set of binary words that encode terminating computational histories (finite sequences
of GIDs in bounded space) in T , and let B⊥ be the set of binary words that cannot be
extended to encode a terminating computational history. Since every GID in T has a terminal
successor, membership in B is decidable and B is a bar, i.e. every infinite binary sequence
has a finite prefix in B. By the fan theorem, B is a uniform bar, i.e. there exists an n ∈ N
such that any word in B has a prefix of length at most n that is in B. As a result, encoded
terminating computational histories are of length at most n. Therefore, M is uniformly
bounded by n. J

I Remark 27. In the above proof of Theorem 2, we deliberately use the fan theorem instead
of König’s lemma (used in [17, Corollary 5]). In constructive mathematics, the fan theorem,
which is valid in Brouwer’s intuitionism, is weaker than König’s lemma (cf. [22]), which is
valid classically.

I Remark 28. Peculiarly, for counter machines, as another model of computation, uniform
boundedness is decidable (similarly to [14, Thm. 2]), whereas boundedness is not (similarly
to [14, Thm. 1]). For simple stack machines it is vice versa.

3.1 Narrow Configurations
Clearly, a configuration from which no configuration with an empty left or right stack is
reachable does not fully utilize the space it is provided. Therefore, key to boundedness are
configurations that have an empty left or right stack, as such configurations may require
additional space to reach further configurations. Extending this thought, in this section we
identify a property of configurations, which we call narrowness (Definition 34) which plays a
pivotal role in the overall argument and is part of the main contribution.

1 An instantaneous description (ID) requires the tape content to be 0 except for finitely many positions.
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We can view machine instructions as a restricted rewriting system. Such a view induces
the notion of joinable configurations (Definition 29). For deterministic machines, configu-
ration joinability is an equivalence relation (Lemma 30) with a system of representatives
(Definition 31).

I Definition 29 (Joinable (∼M)). Two configurations X,Y ∈ C are joinable in a machineM,
written X ∼M Y , if there exists a configuration Z such that X −→∗M Z and Y −→∗M Z.

I Lemma 30. If a machine M is deterministic, then (∼M) is an equivalence (reflexive,
symmetric, transitive) relation on configurations.

Proof. Clearly, (∼M) is reflexive and symmetric. Since M is deterministic, we have
that (−→M) is confluent. Therefore, for any configurations X1, X2, X3, Y1, Y2 such that
X1 −→∗M Y1, X2 −→∗M Y1, X2 −→∗M Y2, and X3 −→∗M Y2 there exists a configuration Z
such that X1 −→∗M Y1 −→∗M Z and X3 −→∗M Y2 −→∗M Z. Therefore, (∼M) is transi-
tive. J

I Definition 31 (Representative ([X]M)). The representative of a configuration X ∈ C in a
deterministic machineM, written [X]M, is the lexicographically smallest configuration Y
such that X ∼M Y .

I Lemma 32. For configurations X,Y ∈ C, we have [X]M = [Y ]M iff X ∼M Y .

I Remark 33. By Lemma 21 and Lemma 22 the representative [X]M of a configuration X
inM is computable, and joinability (∼M) is decidable.

Next, we identify a key property (Definition 34) of configurations, that connects machine
computation with semi-unification (cf. Section 4).

I Definition 34 (Narrow). A configuration X is narrow in a machineM, if there exists a
state p ∈ S and a word s ∈ B∗ such that X ∼M spppε.

I Remark 35. For a state p ∈ S, the configuration εpppε is narrow in any machineM.

I Remark 36. Similarly to Lemma 22, it is decidable, whether for a machine M and
configuration X ∈ C, we have that X is narrow inM.

I Example 37. In the machineM = {(p1 −→ 0r), (1q −→ r1)} the configuration 0ppp11 is
narrow because 0ppp11 −→∗M 00prp1←−∗M 001pqpε, that is we have 0ppp11 ∼M 001pqpε.

Narrow configurations play a pivotal role for uniform boundedness (Lemma 38 and
Lemma 39). Additionally, narrowness is the decisive property which we use to construct
solutions for semi-unification instances (Definition 41 and Definition 42).

I Lemma 38. If a machineM is uniformly bounded, then there exists m ∈ N such that for
all narrow inM configurations spppt ∈ C we have length(t) ≤ m.

Proof. If spppt is narrow in M, then there are a configurations s′pp′pε and vpqpw such that
spppt −→∗M vpqpw and s′pp′pε −→∗M vpqpw. If M is uniformly bounded by n, then we have
| length(t)− length(w)| ≤ n and | length(ε)− length(w)| ≤ n. Therefore, length(t) ≤ 2n. J
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I Lemma 39. LetM be a deterministic machine. If there exists m ∈ N such that for all
narrow inM configurations εpppt ∈ C we have length(t) ≤ m, thenM is uniformly bounded.

Proof. Let m ∈ N be such that for all narrow in M configurations εpppt ∈ C we have
length(t) ≤ m. Let n ∈ N and let X = spppt reach at least n configurations such that
(length(s) + length(t)) is minimal. We show thatM is uniformly bounded by showing

n ≤ 1 + |{s′pp′pt′ ∈ C | length(s′) + length(t′) ≤ m and p′ occurs inM}| (?)

We have X −→∗M εpqpw for some state q ∈ S and word w ∈ B∗. Otherwise, left stacks of
all configurations reachable from X would have the same prefix, which could be removed.
Similarly, we have X −→∗M vprpε for some state r ∈ S and word v ∈ B∗. Since M is
deterministic, (−→M) is confluent. Therefore, the configuration εpqpw is narrow inM.

Finally, by Lemma 21, for any configuration s′pp′pt′ such that X −→∗M s′pp′pt′ we have
length(s′) + length(t′) = length(s) + length(t) = length(w) ≤ m, showing (?). J

4 Undecidability of Semi-unification

In this section we fix a deterministic machine M. Our goal is to construct a specific
instance CM (Definition 40) of simple semi-unification such that the machineM is uniformly
bounded if (Lemma 48) and only if (Lemma 45) CM is solvable.

For brevity, we omitM in notations in this section, i.e. we write (∼) for (∼M), write C
for CM, say narrow for narrow inM, etc. All definitions in this section tacitly depend onM.

Let us tacitly inject S into V, i.e. S ⊆ V. Additionally, for each configuration X ∈ C we
fix a distinct variable αX ∈ V.

I Definition 40 (Specific instance C). The set C of simple constraints is given by

C = {apppε .= εpqpb | (ap −→ qb) ∈M} ∪ {bpqpε .= εpppa | (pa −→ bq) ∈M}

4.1 Uniform Boundedness of M to Solvability of C
In this subsection we assume thatM is uniformly bounded and construct a solution ϕ,ψ0, ψ1
(Definition 42) for C. Surprisingly, this can be done directly via the following function ζ

(Definition 41), based on the notion of narrow configurations (Definition 34).

I Definition 41 (ζ). IfM is uniformly bounded, then the function ζ : C→ T is given by

ζ(spppt) =
{
ζ(spppt0)→ ζ(spppt1) if spppt is narrow
α[spppt] otherwise

By Lemma 38, ζ is well-defined and computable (cf. Remark 36 and Remark 33).
Computability of ζ is essential for a fully constructive argument.

I Definition 42 (Valuations ϕ,ψ0, ψ1). The valuation ϕ : V→ T is such that

ϕ(p) = ζ(εpppε) (otherwise ϕ(α) = α)

For a ∈ B, the valuation ψa : V→ T is such that

ψa(αspppt) = ζ(aspppt) (otherwise ψa(α) = α)
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The function ζ respects joinability (Lemma 43), i.e. it can be lifted to (∼) equivalence
classes.

I Lemma 43. For configurations X,Y ∈ C such that X ∼ Y we have ζ(X) = ζ(Y ).

Proof. We show ζ(spppt) = ζ(vpqpw) by induction on depth(ζ(spppt)).
Case spppt is narrow: By Lemma 30, the configuration vpqpw is narrow. Therefore,

ζ(spppt) = ζ(spppt0)→ ζ(spppt1) (IH)= ζ(vpqpw0)→ ζ(vpqpw1) = ζ(vpqpw)

Case spppt is not narrow: By Lemma 30, the configuration vpqpw is not narrow. Therefore,

ζ(spppt) = α[spppt]
Lem. 32= α[vpqpw] = ζ(vpqpw) J

Since the function ζ respects joinability, it absorbs ψ0 and ψ1 (Lemma 44).

I Lemma 44. For a ∈ B and configuration spppt ∈ C, we have ψa(ζ(spppt)) = ζ(aspppt).

Proof. We show ψa(ζ(spppt)) = ζ(aspppt) by induction on depth(ζ(spppt)).
Case spppt is narrow: We have that aspppt is narrow, and

ψa(ζ(spppt)) = ψa(ζ(spppt0)→ ζ(spppt1)) = ψa(ζ(spppt0))→ ψa(ζ(spppt1))
(IH)= ζ(aspppt0)→ ζ(aspppt1) = ζ(aspppt)

Case spppt is not narrow: Let vpqpw = [spppt]. We have

ψa(ζ(spppt)) = ψa(α[spppt]) = ζ(avpqpw) Lem. 43= ζ(aspppt) J

As a result, the valuations ϕ,ψ0, ψ1 solve C (Lemma 45).

I Lemma 45. IfM is uniformly bounded, then (ϕ,ψ0, ψ1) |= C.

Proof. Configuration where both stacks are empty are trivially narrow (Remark 35).
Case apppε .= εpqpb ∈ C: We have (ap −→ qb) ∈M, therefore apppε ∼ εpqpb. We have

ψa(ϕ(p)) = ψa(ζ(εpppε)) Lem. 44= ζ(apppε) Lem. 43= ζ(εpqpb) = πb(ζ(εpqpε)) = πb(ϕ(q))

Case bpqpε .= εpppa ∈ C: We have (pa −→ bq) ∈M, therefore bpqpε ∼ εpppa. We have

ψb(ϕ(q)) = ψb(ζ(εpqpε))
Lem. 44= ζ(bpqpε) Lem. 43= ζ(εpppa) = πa(ζ(εpppε)) = πa(ϕ(p)) J

Essentially, the function ζ interprets machine configurations as terms from which the
solution (ϕ,ψ0, ψ1) of C is constructed. Traditionally, this step in the overall argument [17]
relies on on a more complicated path equation derivability and termination of a redex
contraction procedure for semi-unification. Arguably, the function ζ is the main insight of
this work, as it contributes to a simpler, fully constructive translation of machine boundedness
to solvability of semi-unification.
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4.2 Solvability of C to Uniform Boundedness ofM
In this subsection we assume that there exist valuations ϕ,ψ0, ψ1 such that (ϕ,ψ0, ψ1) |= C,
and we show thatM is uniformly bounded.

Intuitively, we show that joinability is sound for constraint semantics (Corollary 47) based
on soundness of the step relation for constraint semantics (Lemma 46).

I Lemma 46. For configurations X,Y ∈ C such that X −→ Y we have C |= X
.= Y .

Proof. Let ϕ,ψ0, ψ1 be valuations such that (ϕ,ψ0, ψ1) |= C.
Case sapppt −→ spqpbt: We have apppε .= εpqpb ∈ C. Therefore, ψa(ϕ(p)) = πb(ϕ(q)) and

πt(ψsa(ϕ(p))) = πt(ψs(ψa(ϕ(p)))) = πt(ψs(πb(ϕ(q)))) = πbt(ψs(ϕ(q)))

Case spppat −→M sbpqpt: We have bpqpε .= εpppa ∈ C. Therefore, ψb(ϕ(q)) = πa(ϕ(p)) and

πat(ψs(ϕ(p))) = πt(ψs(πa(ϕ(p)))) = πt(ψs(ψb(ϕ(q)))) = πt(ψsb(ϕ(q))) J

I Corollary 47. For configurations X,Y ∈ C such that X ∼ Y we have C |= X
.= Y .

As a result, narrow configurations εpppt do not admit arbitrary long right stacks t, because
πt(ϕ(p)) is undefined if length(t) exceeds depth(ϕ(p)). The bound on depth for the range
of ϕ immediately induces a uniform bound forM (Lemma 48).

I Lemma 48. If there exist valuations ϕ,ψ0, ψ1 such that (ϕ,ψ0, ψ1) |= C, then M is
uniformly bounded.

Proof. Let εpppt ∈ C be narrow, i.e. εpppt ∼ spqpε for some state q ∈ S and word s ∈ B∗. By
Corollary 47, we have πt(ϕ(p)) = ψs(ϕ(q)) ∈ T. Therefore,

length(t) ≤ max{depth(ϕ(r)) | r ∈ S and r occurs inM}

By Lemma 39,M is uniformly bounded. J

Key to the construction of a uniform bound in the above proof is the characterization of
uniform boundedness via narrow configurations (Lemma 39).

4.3 Main Result
Overall, we obtain undecidability of semi-unification (Theorem 4) via undecidability of simple
semi-unification (Theorem 3).

I Theorem 3. Simple semi-unification (Problem 15) is undecidable.

Proof. By Theorem 2, uniform boundedness of deterministic machines (UBDSSM) is un-
decidable. Section 4 gives a reduction from UBDSSM to simple semi-unification, for which
correctness is shown by Lemma 45 and Lemma 48. J

I Theorem 4. Semi-unification is undecidable.

Proof. By Theorem 3 and Theorem 1. J
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Let us illustrate the construction, revisiting the uniformly bounded machine of Example 24.

I Example 49. Let M = {(0p −→ q1), (q1 −→ 1p), (1p −→ q0), (q0 −→ 0p)}. Then,
C = {0pppε .= εpqp1, 1pppε .= εpqp1, 1pppε .= εpqp0, 0pppε .= εpqp0}. Narrow inM configurations are
sprpε for words s ∈ B∗ and states r ∈ S, and spqpa for words s ∈ B∗ and symbols a ∈ B.
Therefore (not writing out representatives), we have

ϕ(p) = ζ(εpppε) = ζ(εppp0)→ ζ(εppp1) = α[εppp0] → α[εppp1]

ϕ(q) = ζ(εpqpε) = ζ(εpqp0)→ ζ(εpqp1)
=
(
ζ(εpqp00)→ ζ(εpqp01)

)
→
(
ζ(εpqp10)→ ζ(εpqp11)

)
= (α[εpqp00] → α[εpqp01])→ (α[εpqp10] → α[εpqp11])

ψa(αεpppb) = ζ(apppb) = α[apppb] for a, b ∈ B

Overall, the valuations ϕ,ψ0, ψ1 model C, i.e. (ϕ,ψ0, ψ1) |= C. For example, we have
(ϕ,ψ0, ψ1) |= 0pppε .= εpqp1 because 0ppp1 ∼ εpqp11 and 0ppp1 ∼ εpqp11 imply

ψ0(ϕ(p)) = ψ0(α[εppp0] → α[εppp1]) = ψ0(αεppp0 → αεppp1) = α[0ppp0] → α[0ppp1]

= α[εpqp10] → α[εpqp11] = π1(ϕ(q))

5 Mechanization

This section provides an overview over the mechanization [2] in the Coq proof assistant of
the reduction presented in Section 4.

The mechanization can be considered self-contained code supporting the mathematical
argument and its constructivity. In addition, it is compatible with the framework of synthetic
undecidability results [9, 8, 7] in synthetic computability theory [3].

5.1 Semi-unification
Terms (Definition 1) are mechanized in SemiU/SemiU_prelim.v as the inductive type
Inductive term : Set :=

| atom : nat -> term
| arr : term -> term -> term.

Correspondingly, application of valuations is mechanized as
Definition valuation : Set := nat -> term.

Fixpoint substitute (f: valuation ) (t: term) : term :=
match t with
| atom n => f n
| arr s t => arr ( substitute f s) ( substitute f t)
end.

Solvability of semi-unification inequalities is mechanized as
Definition inequality : Set := (term * term ).

Definition solution (ϕ : valuation ) : inequality -> Prop :=
fun ’(s, t) => exists (ψ : valuation ),

substitute ψ ( substitute ϕ s) = substitute ϕ t.

Correspondingly, semi-unification is mechanized in SemiU/SemiU.v as the predicate
Definition SemiU (p: list inequality ) := exists (ϕ: valuation ),

forall (c: inequality ), In c p -> solution ϕ c.
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5.2 Simple Stack Machines
Machines (ssm) are mechanized in SM/SSM_prelim.v as lists of instructions.
Definition stack : Set := list bool.
Definition state : Set := nat.
Definition config : Set := stack * state * stack.
Definition dir : Set := bool.
Definition symbol : Set := bool.
Definition instruction : Set := state * state * symbol * symbol * dir.
Definition ssm : Set := list instruction .

For example, (p, q, a, b, true) : instruction corresponds to the instruction (ap −→ qb),
and (p, q, b, a, false) : instruction corresponds to the instruction (pb −→ aq). This
is captured by the inductive predicate Inductive step (M : ssm) : config -> config -> Prop,
that mechanizes the step relation.

Deterministic machines (dssm) admit only functional step predicates and reachability
(reachable) is the reflexive, transitive closure of step.

Definition deterministic (M: ssm) := forall (X Y Z: config ),
step M X Y -> step M X Z -> Y = Z.

Definition dssm := { M : ssm | deterministic M }.

Definition reachable (M: ssm) : config -> config -> Prop :=
clos_refl_trans config (step M).

Uniform boundedness (bounded) of deterministic machines (dssm) is mechanized in SM/DSSM_UB.v

as the predicate DSSM_UB.
Definition bounded (M: ssm) (n: nat) : Prop :=

forall (X: config ), exists (L: list config ),
( forall (Y: config ), reachable M X Y -> In Y L) /\ length L <= n.

Definition DSSM_UB (M: dssm) := exists (n: nat), bounded ( proj1_sig M) n.

5.3 Main Result
Many-one reducibility (�) of a predicate p : X -> Prop to a predicate q : Y -> Prop is mech-
anized in Reduction.v as
Definition reduces X Y (p : X -> Prop) (q : Y -> Prop) :=

exists f : X -> Y, forall x, p x <-> q (f x).
Notation "p � q" := ( reduces p q) (at level 50).

The main result is mechanized in SemiU/DSSM_UB_to_SemiU.v as
Theorem DSSM_UB_to_SemiU : DSSM_UB � SemiU.
Proof.

apply ( reduces_transitive DSSM_UB_to_SSemiU ).
exact SSemiU_to_SemiU .

Qed.

The above shows that we first reduce DSSM_UB to simple semi-unification (mechanized in
SemiU/SSemiU.v as the predicate SSemiU) and then reduce SSemiU to SemiU. Mechanization
details of DSSM_UB_to_SSemiU are found in SemiU/SSemiU/DSSM_UB_to_SSemiU_argument.v.

Informative decidability of narrowness is mechanized in DSM/DSSM/DSSM_facts.v as
Lemma narrow_dec (X: config ) : decidable ( narrow X).
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Based on decidability of narrowness, the key function ζ (Definition 41) is mechanized as
Fixpoint ζ (n: nat) (X: config ) : term :=

match n with
| 0 => atom (embed (nf X))
| S n =>

match X with
| (A, x, B) =>

if narrow_dec (A, x, B) then
arr (ζ n (A, x, B++[ false ])) (ζ n (A, x, B++[ true ]))

else atom (embed (nf X))
end

end.

where nf X mechanizes the representative of the mechanized configuration X (Definition 31).
The parameter n is initialized with a uniform bound of the underlying machine.

Finally, Lemma 45 and Lemma 48 are mechanized as
Lemma soundness {M: dssm} :

DSSM_UB M -> SSemiU ( SM_to_SUcs ( proj1_sig M)).

Lemma completeness {M: dssm }:
SSemiU ( SM_to_SUcs ( proj1_sig M)) -> DSSM_UB M.

Overall, the mechanization encompasses 1500 lines of code, where two thirds show
machine properties (such as decidability of narrowness) and one third is dedicated to the
main argument of Section 4.

6 Conclusion

Traditionally, the association of an undecidable property for Turing machines with solvability
of semi-unification is, arguably, opaque. It is established via the symmetric closure of
intercell Turing machines, path equation derivability, and termination of a redex contraction
procedure for semi-unification [17]. The main novelty of the presented approach is the direct
association of an undecidable boundedness property with solutions of semi-unification via
certain (narrow) machine configurations. As a consequence, we obtain a simpler argument
for the undecidability of semi-unification. Additionally, this allows for a fully constructive
mechanization of a reduction from uniform boundedness of deterministic simple stack machines
(Problem 26) to semi-unification (Problem 3).

There are at least two reasonable goals to pursue next.
First, there exists a larger Coq framework [9] containing various undecidability results.

The mechanization presented in Section 5 is a significant part of the ongoing effort to
mechanize a reduction from the Turing machine halting problem to semi-unification. It
is unclear whether a comprehensive reduction can be given fully constructively, as the
presented mechanization starts with uniform boundedness. The reduction from the Turing
machine halting problem (as of now) requires the fan theorem (which is part of Brouwer’s
constructivism, but is not considered fully constructive by Bishop). Nevertheless, it is an
improvement over König’s lemma used in [17]. There is reason to believe, that eliminating
immortality as an intermediate step may allow for a fully constructive reduction. This is
why the mechanization in Section 5 starts with boundedness as opposed to immortality.

Second, related work on semi-unification mostly follows the original approach (e.g. [1, 6]).
We anticipate that the more direct argument, presented in this work, can be adapted to
the related scenarios. Specifically, the presented approach seems promising to realize a
fully constructive mechanization of the undecidability of unification modulo synchronous
distributivity [1].
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Abstract
Reactive systems à la Leifer and Milner, an abstract categorical framework for rewriting, provide a
suitable framework for deriving bisimulation congruences. This is done by synthesizing interactions
with the environment in order to obtain a compositional semantics.

We enrich the notion of reactive systems by conditions on two levels: first, as in earlier work,
we consider rules enriched with application conditions and second, we investigate the notion of
conditional bisimilarity. Conditional bisimilarity allows us to say that two system states are bisimilar
provided that the environment satisfies a given condition. We present several equivalent definitions
of conditional bisimilarity, including one that is useful for concrete proofs and that employs an
up-to-context technique, and we compare with related behavioural equivalences. We instantiate
reactive systems in order to obtain DPO graph rewriting and consider a case study in this setting.
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1 Introduction

Behavioural equivalences, such as bisimilarity, relate system states with the same behaviour.
Here, we are in particular interested in conditional bisimilarity, which allows us to say that
two states a, b are bisimilar provided that the environment satisfies a condition C. Work
on such conditional bisimulations appears somewhat scattered in the literature (see for
instance [21, 15, 11, 3]). They also play a role in the setting of featured transition systems
for modelling software product lines [7], where the behaviour of many products is specified in
a single transition system. In this setting it is possible to state that two states are bisimilar
for certain products, but not for others.

We believe that conditional notions of behavioural equivalence are worthy of further
study. In practice it may easily happen that two sub-systems are only ever used in restricted
environments and it is too much to ask that they behave equivalently under all possible
contexts. Furthermore, instead of giving a simple yes/no-answer, bisimulation checks can
answer in a more fine-grained way, specifying conditions which ensure bisimilarity.
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We state our results in a very general setting: reactive systems à la Leifer and Milner [22],
a categorical abstract framework for rewriting, which provides a suitable framework for
deriving bisimulation congruences. In particular, this framework allows to synthesize labelled
transitions from plain reaction rules, such that the resulting bisimilarity is automatically
a congruence. Intuitively, the label is the minimal context that has to be borrowed from
the environment in order to trigger a reduction. (Transitions labelled with such a minimal
context will be called representative steps in the sequel. They are related to the idem pushout
steps of [22].) Here, we rely on the notion of saturated bisimilarity introduced in [5] and we
consider reactive system rules with application conditions, generalizing [16].

Important instances of reactive systems are process calculi with contextualization, bigraphs
[18] and double-pushout graph rewriting [8], or in general rewriting in adhesive categories [20].
Hence we can use our results to reason about process calculi as well as dynamically evolving
graphs and networks for various different types of graphs (node- or edge-labelled graphs,
hypergraphs, etc.). Our contributions in this paper can be summarized as follows:

We define the notion of conditional bisimilarity, in fact we provide three equivalent
definitions: two notions are derived from saturated bisimilarity, where a context step (or
a representative step) can be mimicked by several answering steps. Third, we compare
with the notion of conditional environment congruence, which is based on the idea of
annotating transitions with passive environments enabling a step.
Conditional bisimulation relations tend to be very large – often infinite in size. In order
to handle conditional bisimulation, we propose an up-to context technique that allows to
replace infinite conditional bisimulations by possibly finite bisimulations up-to context,
which provide witnesses for bisimilarity.
We compare conditional bisimilarity with related notions of behavioural equivalence.
To illustrate our concepts, we work out a small case study in the context of double-pushout
graph rewriting, where we model message passing over reliable and unreliable channels.

The article is structured as follows: First, in Section 2 we recite the fundamental ideas
for reactive systems without conditions, including all preliminary definitions and techniques
developed for reactive systems relevant to our work. In Section 3, we consider the refinement
to conditional reactive systems, before we turn towards our main contribution in Section 4,
which is conditional bisimulation and its up-to variant in Section 5. In Section 6 we give
an alternative characterization of conditional bisimilarity and compare to related notions of
behavioural equivalence and we conclude in Section 7. All proofs for the theorems in Sections 4
to 6, as well as additional examples can be found in the full version [17].

2 Reactive Systems

2.1 Reactive Systems without Conditions
We denote the composition of arrows f : A→ B, g : B → C by f ;g : A→ C.

We now define reactive systems, introduced in [22] and extended in [16] with application
conditions for rules:

▶ Definition 2.1 (Reactive system rules, reaction). Let C be a category with a distinguished
object 0 (not necessarily initial). A rule is a pair (ℓ, r) of arrows ℓ, r : 0→ I (called left-hand
side and right-hand side). A reactive system is a set of rules.

Let R be a reactive system and a, a′ : 0 → J be arrows. We say that a reduces to a′

(a⇝ a′) whenever there exists a rule (ℓ, r) ∈ R with ℓ, r : 0→ I and an arrow c : I → J (the
reactive context) such that a = ℓ;c and a′ = r;c.
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Using a notation closer to process caluli, we could write C[P ]⇝ C[P ′] whenever there is
a reaction rule P → P ′ and a context C[_]. Fixing a distinguished object 0 means that we
consider only ground reaction rules (as opposed to open reactive systems [19]).

An important instance are reactive systems where the arrows are cospans in a base
category D with pushouts [27, 28]. A cospan is a pair of arrows fL : A → C, fR : B → C.
A cospan is input linear if its left arrow fL is mono.

A X

B

Y C

Z

fL

fR gL
gR

pL pR

f g

f ;g

(PO)

Figure 1 Composition of cospans via pushouts.

Two cospans f : A
fL−→ X

fR←−− B, g : B
gL−→ Y

gR←−− C are composed by taking the pushout
(pL, pR) of (fR, gL) as shown in Figure 1. The result is the cospan f ;g : A

fL;pL−−−−→ Z
gR;pR←−−−− C,

where Z is the pushout object of fR, gL. For adhesive categories [20], the composition of input
linear cospans again yields an input linear cospan (by applying [20, Lemma 12] to the cospan
composition diagram). Given an adhesive category D, ILC(D) is the category where the
objects are the objects of D, the arrows f : A→ C are input linear cospans f : A→ B ← C

of D and composition is performed via pushouts as above. We see an arrow f : A → C

of ILC(D) as an object B of D equipped with two interfaces A, C, and composition glues
the inner objects of two cospans via their interfaces. Input linearity is required since we
rely on adhesive categories where pushouts along monos are well-behaved and are stable
under pullbacks.

0 L I R 0

G C H

0

ℓ

a

c

r

a′

Figure 2 DPO graph transformation as reactive system steps.

In this article, as a running example we consider Graphfin, which is the category of
finite graphs (we use directed multigraphs with node and edge labels) and total graph
morphisms as arrows. In Graphfin, monos are exactly the injective graph morphisms. We
then use reactive systems over ILC(Graphfin) (input-linear cospans of graphs), i.e. we
rewrite graphs with interfaces. If the distinguished object 0 is the empty graph (the initial
object of Graphfin), such reactive systems coincide [27] with the well-known double pushout
(DPO) graph transformation approach [10, 13] when used with injective matches. As shown in
Figure 2, a DPO rewrite step G⇒ H can be expressed as a reactive system reaction a⇝ a′

where the pushouts of the DPO step are obtained from cospan compositions ℓ;c and r;c.

2.2 Deriving Bisimulation Congruences
The reduction relation ⇝ generates an unlabelled transition system, on reactive agents (in
our example, graphs) as states. A disadvantage of bisimilarity on ⇝ is that it usually is
not a congruence: it is easy to construct an example where neither a nor b can perform a
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step since no complete left-hand side is present. However, by adding a suitable context c,
a;c could contain a full left-hand side and can reduce, whereas b;c can not.

Therefore, to check whether two components can be exchanged, they have to be combined
with every possible context and bisimilarity has to be shown for each.

In order to obtain a congruence, we can resort to defining bisimulation on labelled
transitions, using as labels the additional contexts that allow an agent to react [22, 16].

▶ Definition 2.2 (Context step (without conditions) [16]). Let R be a reactive system and
a : 0 → J, f : J → K, a′ : 0 → K be arrows. We write a

f−→C a′ whenever a;f ⇝ a′ (i.e.
there exists a rule (ℓ, r) ∈ R and an arrow c such that a;f = ℓ;c, a′ = r;c). Such steps are
called context steps.

0 I 0

J K

ℓ r

a′
a c

f

The name context step stems from the fact that a cannot do a reaction on its own, but
requires an additional context f . This can be seen in the following example:

▶ Example 2.3 (Context step (without conditions)). Consider the following reactive system
over ILC(Graphfin), where we model a network of nodes that pass messages (represented
by m-loops) over communication channels. Let the following graphs be given:

C0 =
c

Cℓ =
c

m
Cr =

c
m

N0 = Nm = m

We can now represent the transmission of a message from the left node to the right node
using the rule P = (∅ → Cℓ ← C0, ∅ → Cr ← C0). All graph morphisms are induced by
edge labels and position of nodes, i.e. the left node is always mapped to the left node.

Observe that a channel by itself (a = ∅ → C0 ← N0) cannot do a reaction, since there
is no message to be transferred. However, if a message on the left node is borrowed
(f = N0 → Nm ← N0), the example rule can be applied. As a result, we obtain the context
step (∅ → C0 ← N0) (N0→Nm←N0)−−−−−−−−−−→C (∅ → Cr ← N0).

A bisimulation relation over →C is called saturated bisimulation, as it checks all contexts.
Consequently, saturated bisimilarity ∼C (∼SAT in [16]) is a congruence [5, 16], i.e., it is
closed under contextualization. In other words a∼Cb implies a;c∼Cb;c for all contexts c.

2.3 Representative Squares
Checking bisimilarity of context steps is impractical: usually, f can be chosen from an infinite
set of possible contexts, which all have to be checked. Most of these contexts are larger than
necessary, that is, they contain elements that do not actively participate in the reduction.
(In Example 2.3, contexts can be arbitrarily large, as long as they have an m-loop on the left
node.) An improvement would be to check only the minimal contexts from which all other
context steps can be derived.

When checking which contexts are required to make a rule applicable, in the reaction
diagram (Definition 2.2) the arrows a, ℓ are given and we need to check for possible values of
f (which generate matching c, a′). To derive a set of contexts f which is as small as possible
– preferably finite – [6, 16] introduced the notion of representative squares, which describe
methods to produce squares from a pair a, ℓ in a representative way.
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▶ Definition 2.4 (Representative squares [6]). A class κ of commuting squares in a cat-
egory C is representative if κ satisfies the following condition: for each commuting square
(α1, α2, δ1, δ2) in C there exists a commuting square (α1, α2, β1, β2) in κ and an arrow γ,
such that δ1 = β1;γ, δ2 = β2;γ. This situation is depicted in Figure 3.

A B

C D′

α1

α2 δ1

δ2

→

A B

C
D

D′

α1

α2
β1

β2 γ δ1

δ2

Figure 3 Every commuting square of the category (left) can be reduced to a representative square
in κ and an arrow γ which extends the representative square to the original square (right).

For two arrows α1 : A→ B, α2 : A→ C, we define κ(α1, α2) as the set of pairs of arrows
(β1, β2) which, together with α1, α2, form representative squares in κ.

The original paper on reactive systems [22] used the (more restrictive) notion of idem
pushouts instead of representative squares. Unfortunately, the universal property of idem
pushouts leads to complications, in particular for cospan categories, where one has to resort
to the theory of bicategories in order to be able to express this requirement. For the purposes
of this paper, we stick to the simpler notion of representative squares, in order to keep our
results independent of the concrete class of squares chosen.

The question arises which constructions yield suitable classes of representative squares,
ideally with finite κ(α1, α2), in order to represent all possible contexts δ1, δ2 with a finite set
of representative contexts β1, β2. Pushouts can be used when they exist [16], however, they
do not exist for ILC(Graphfin).

For adhesive categories, borrowed context diagrams – initially introduced as an extension
of DPO rewriting [9] – can be used as representative squares. Before we can introduce such
diagrams, we first need the notion of jointly epi.

▶ Definition 2.5 (Jointly epi). A pair of arrows f : B → D, g : C → D is jointly epi (JE) if
for each pair of arrows d1, d2 : D → E the following holds: if f ;d1 = f ;d2 and g;d1 = g;d2,
then d1 = d2.

In Graphfin jointly epi equals jointly surjective, meaning that each node or edge of D is
required to have a preimage under f or g or both (it contains only elements from B or C).

▶ Definition 2.6 (Borrowed context diagram [16]). A commuting diagram in the category
ILC(C), where C is adhesive, is a borrowed context diagram whenever it has the form of
the diagram shown below, and the four squares in the base category C are jointly epi (JE),
pushout (PO) or pullback (PB) as indicated.

0 L I

G G+ C

J F K

JE PO

PO PB

ℓ

a c

f
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10:6 Conditional Bisimilarity for Reactive Systems

The top left jointly epi square and the bottom left pushout ensure that the borrowed
context f is not larger than necessary [9]. We will discuss an example below (Example 2.9).
For additional examples, we refer to [9].

For adhesive categories, borrowed context diagrams form a representative class of
squares [16]. Furthermore, for some categories (such as Graphfin), there are – up to
isomorphism – only finitely many jointly epi squares for a given span of monos and hence
only finitely many borrowed context diagrams given a, ℓ (since pushout complements along
monos in adhesive categories are unique up to isomorphism).

This motivates the following finiteness assumption that we will refer to in this paper:
given a, ℓ, we require that κ(a, ℓ) is finite. (Fin)

2.4 Representative Steps
It is possible to define a reaction relation based on representative squares. By requiring that
the left square is representative, we ensure that the contexts f̂ are not larger than necessary:

▶ Definition 2.7 (Representative step (without conditions) [16]). Let a : 0→ J, f̂ : J → K,

a′ : 0→ K be arrows. We write a
f̂−→R a′ if a context step a

f̂−→C a′ is possible (i.e. a;f̂ ⇝ a′,
i.e. for some rule (ℓ, r) and some arrow ĉ we have a;f̂ = ℓ;ĉ and r;ĉ = a′) and additionally
κ(a, ℓ) ∋ (f̂ , ĉ) (i.e. the arrows (a, ℓ, f̂ , ĉ) form a representative square). Such steps are called
representative steps.

0 I

J K

ℓ

a c
f

0r

a′

0 I

J
K ′

K

ℓ

a
ĉ

f̂ ĝ
c

f

0r

a′

▶ Remark 2.8. Definitions 2.2 and 2.4 imply that every context step a
f−→C a′ (top diagram)

can be reduced to a representative step a
f̂−→R r;ĉ (bottom diagram), a fact used in the

proofs.
For this, we construct the representative square (a, ℓ, f̂ , ĉ) ∈ κ (which, according to

Definition 2.4, always exists) from the square (a, ℓ, f, c) describing the context step. We
obtain arrows f̂ , ĉ and an arrow ĝ which completes f̂ , ĉ to f, c (i.e. f̂ ;ĝ = f, ĉ;ĝ = c).

▶ Example 2.9 (Representative steps). Let the following graphs be given:

C0 =
c

Cℓ =
c

m
Cx =

c
m m

Cr =
c

m

N0 = Nm = m
Nx = m m

Crr =
c

m

m

As before (Example 2.3), the rule P = (∅ → Cℓ ← C0, ∅ → Cr ← C0) transfers a message.
One possible context step allows a channel C0 to borrow a message Nm and do a transfer:
(∅ → C0 ← N0) (N0→Nm←N0)−−−−−−−−−−→C (∅ → Cr ← N0).
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0 L c

m

I c

C cG c
G+ c

m

J F

m

K

JE PO

PO PB

(a) Borrowed context diagram for C0
Nm−−→R Cr.

0 L c

m

I c

C c

m

G c
G+ c

m m

J F

m m

K

PO

PO

(b) Commuting diagram for C0
Nx−−→C Crr.

Figure 4 Diagrams for the two steps described in Example 2.9.

Another possible context step is (∅ → C0 ← N0) (N0→Nx←N0)−−−−−−−−−→C (∅ → Crr ← N0), i.e. an
additional message on the right node is borrowed. Clearly, this is a valid context step, but
the right message is not required by the rule, and we do not want to consider such steps in
our analysis (by adding yet more messages, we obtain infinitely many context steps).

However, the second context step is not a representative step. We try to construct a
borrowed context diagram: First we fill in the graphs given by a, f and ℓ, then we construct
the bottom left pushout, we obtain G+ = Cx as depicted in Figure 4b. Then however the top
left square is not jointly epi, since neither Cℓ (from ℓ) nor C0 (from a) provide a preimage
for the right m-loop.

On the other hand, the first context step is representative, since there G+ = Cℓ does not
contain the problematic right m-loop and it is possible to complete the borrowed context
diagram as shown in Figure 4a. (To obtain the result of the step, the right-hand side a′ is
constructed just as for context steps (see Example 2.3), which is not depicted here.)

In a semi-saturated bisimulation,→R-steps are answered by→C -steps (for every (a, b) ∈ R

and step a
f−→R a′ there is b

f−→C b′ such that (a′, b′) ∈ R). The resulting bisimilarity ∼R

is identical [16] to saturated bisimilarity (i.e. ∼R = ∼C) and therefore also a congruence.
Whenever (Fin) holds, ∼R is amenable to mechanization, since we have to consider only
finitely many →R-steps (→R is finitely branching).

Note that answering→R-steps with→R-steps gives a different, finer notion of behavioural
equivalence, which we do not treat here [16].

3 Conditions for Reactive Systems

The reactive systems defined so far cannot represent rules where a certain component is
required to be absent: whenever a reaction a⇝ a′ is possible, a reaction a;c⇝ a′;c (with
additional context c) is also possible, with no method to prevent this. Restricting rule
applications can be useful, e.g. to model access to a shared resource, which may only be
accessed if no other entity is currently using it.

For graph transformation systems, application conditions with a first-order logic flavour
have been studied extensively (e.g. in [12, 14]) and generalized to reactive systems in [6]. If
we interpret such conditions in ILC(Graphfin), we obtain a logic that subsumes first-order
logic (for more details on expressiveness see [6]).

In this section, we summarize the definitions from [6] and define shifting of conditions as
partial evaluation. We then summarize the changes that are necessary to extend reactive
systems with conditions. An example for conditional reactive systems will be discussed later
(Example 4.3). For further examples, we refer to the full version and to [6].
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10:8 Conditional Bisimilarity for Reactive Systems

3.1 Conditions and Satisfiability

▶ Definition 3.1 (Condition [6]). Let C be a category. The set of conditions Cond(A) over
an object A is defined inductively as:

trueA := (A,∀, ∅) ∈ Cond(A), falseA := (A,∃, ∅) ∈ Cond(A) (base case)
A = (A,Q, S) ∈ Cond(A), where A = Ro(A) is the root object of A,
Q ∈ {∀,∃} is a quantifier and
S is a finite set of pairs (h,A′), where h : A→ A′ is an arrow and A′ ∈ Cond(A′).

Note that conditions can be represented as finite trees.

▶ Definition 3.2 (Satisfiability of conditions [6]). Let A ∈ Cond(A). For an arrow a : A→ B

and a condition A we define the satisfaction relation a |= A as follows:
a |= (A,∀, S) iff for every pair (h,A′) ∈ S and every arrow g : Ro(A′) → B we have:
if a = h;g, then g |= A′.
a |= (A,∃, S) iff there exists a pair (h,A′) ∈ S and an arrow g : Ro(A′)→ B such that
a = h;g and g |= A′.

We write A |= B (A implies B) if for every arrow c with dom(c) = Ro(A) = Ro(B) we
have: if c |= A, then c |= B. Two conditions are equivalent (A ≡ B) if A |= B and B |= A.

▶ Proposition 3.3 (Boolean operations). We define the following Boolean operations on
conditions:
¬(A,∀, S) := (A,∃, {(h,¬A′) | (h,A′) ∈ S}) and
¬(A,∃, S) := (A,∀, {(h,¬A′) | (h,A′) ∈ S})
A ∨ B := (A,∃, {(idA,A), (idA,B)}) for two conditions A,B ∈ Cond(A)
A ∧ B := (A,∀, {(idA,A), (idA,B)}) for two conditions A,B ∈ Cond(A)

These operations satisfy the standard laws of propositional logic, i.e. trueA is satisfied by
every arrow with domain A, falseA is satisfied by no arrow; a |= ¬A if and only if a |̸= A;
a |= (A ∨ B) if and only if a |= A ∨ a |= B, analogously for A ∧ B.

3.2 Shifting as Partial Evaluation of Conditions

When evaluating conditions, it is sometimes known that a given context is guaranteed to be
present. In this case, a condition can be rewritten, using representative squares, under the
assumption that this context is provided by the environment. This operation is known as
shift [14]:

▶ Definition 3.4 (Shift of a condition [6]). Given a fixed class of representative squares κ, the
shift of a condition A = (A,Q, S) along an arrow c : A→ B is inductively defined as follows:

A↓c :=
(

B,Q,
{

(β,A′↓α)
∣∣∣ (h,A′) ∈ S, (α, β) ∈ κ(h, c)

})
The shift operation can be understood as a partial evaluation of A under the assumption

that c is already present. It satisfies c;d |= A ⇐⇒ d |= A↓c.

If we assume that (Fin) holds, shifting a finite condition will again result in a finite
condition. Representative squares as well as shift play a major role in the diagrammatic proofs.
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3.3 Conditional Reactive Systems
We now extend reactive systems with application conditions:

▶ Definition 3.5 (Conditional reactive system [6]). A rule with condition is a triple (ℓ, r,B)
where ℓ, r : 0→ I are arrows and B is a condition with root object I. A conditional reactive
system is a set of rules with conditions.

As the root object I of the condition is the codomain of the rule arrow, it is also the
domain of the reactive context, which has to satisfy the rule condition in order to be able to
apply the rule:

▶ Definition 3.6 (Reaction). Let a, a′ be arrows of a conditional reactive system with rules R.
We say that a reduces to a′ (a⇝ a′) whenever there exists a rule (ℓ, r,B) ∈ R with ℓ, r : 0→ I

and a reactive context c : I → J such that a = ℓ;c, a′ = r;c and additionally c |= B.

In order to define a bisimulation for conditional reactive systems that is also a congruence,
it is necessary to enrich labels with conditions derived from the application conditions. Since
we can not assume that the full context is present, the application condition might refer to
currently unknown parts of the context and this has to be suitably integrated into the label.

▶ Definition 3.7 (Context/representative step with conditions [16]). Let R be a conditional
reactive system, let a : 0 → J, f : J → K, a′ : 0 → K be arrows and A ∈ Cond(K) be a
condition. We write a

f,A−−→C a′ whenever there exists a rule (ℓ, r,B) ∈ R and an arrow c

such that a;f = ℓ;c, a′ = r;c (i.e. the reaction is possible without conditions) and furthermore
A |= B↓c (an additional context has to satisfy a condition A which is at least as strong as the
rule condition B, shifted over c). Such steps are called context steps.

We write a
f,A−−→R a′ whenever a

f,A−−→C a′, κ(a, ℓ) ∋ (f, c) and A = B↓c. Such steps are
called representative steps.

0 I 0

J K

ℓ r

a′
a c

f

B

A

Conditions are represented graphically in the form of “arrowhead shapes” depicted next
to the root object. Intuitively a

f,A−−→C a′ means that a can make a step to a′ when borrowing
f , if the yet unknown context beyond f satisfies condition A (since this context does not
directly participate in the reduction, we call it passive context). In the case of a representative
step, we require that a context step is possible, the borrowed context is minimal, and the
condition on the passive context is not stronger than necessary.
▶ Remark 3.8. Definitions 2.4 and 3.7 imply, analogously to Remark 2.8, that every con-

text step a
f,A−−→C a′ can be reduced to a representative step a

f̂, B↓ĉ−−−−→R r;ĉ.
We now extend (semi-)saturated bisimilarity to rules with conditions:

▶ Definition 3.9 ((Semi-)Saturated bisimilarity [16]). A saturated bisimulation is a symmetric
relation R, relating pairs of arrows a, b : 0→ J , such that: for all (a, b) ∈ R and for every
context step a

f,A−−→C a′ there exist answering moves b
f,Bi−−−→C b′i, i ∈ I, such that (a′, b′i) ∈ R

and A |=
∨

i∈I Bi.
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10:10 Conditional Bisimilarity for Reactive Systems

Two arrows a, b are called saturated bisimilar ((a, b) ∈ ∼C) whenever there exists a
saturated bisimulation R with (a, b) ∈ R. Similarly, for semi-saturated bisimilarity we
require that →R-steps of a can be answered by →C-steps of b. Saturated and semi-saturated
bisimilarity agree and both are congruences [16].

The logic does not support infinite disjunctions, so A |=
∨

i∈I Bi means that for every d

with d |= A, there exists i ∈ I such that d |= Bi.

4 Conditional Bisimilarity

We will now introduce our new results on conditional bisimilarity: as stated earlier, our
motivation is to extend the notion of saturated bisimilarity, which is often too strict, since
it requires that two system states behave identically in all possible contexts. However,
sometimes it is enough to ensure behavioural equivalence only in specific environments.

Hence we now replace standard bisimilarity, which is a binary relation, by a ternary
relation – called conditional relation – with tuples of the form (a, b, C), which can be read as:
a, b are bisimilar in all contexts satisfying C.

4.1 Definition, Properties and Examples
▶ Definition 4.1 (Conditional relation, closure under contextualization, conditional congruence).
A conditional relation is a set of triples (a, b, C), where a, b : 0→ J are arrows with identical
target and C is a condition over J . A conditional relation R is reflexive if (a, a, C) ∈ R for
all a, C with codom(a) = Ro(C); symmetric if (a, b, C) ∈ R implies (b, a, C) ∈ R; transitive if
(a, b, C) ∈ R and (b, c, C) ∈ R implies (a, c, C) ∈ R. R is closed under contextualization if
(a, b, C) ∈ R implies (a;d, b;d, C↓d) ∈ R. R is a conditional congruence if it is additionally an
equivalence (reflexive, symmetric, transitive).

Closure under contextualization means that whenever a, b are related under a context
satisfying C, then they are still related when we contextualize under d, where however the
condition has to be shifted since we commit to the fact that the context is of the form d;c
for some c.

Note that the root object of the condition is not the source of a (as is the case for
satisfiability), but the target codom(a). This is because we do not state a condition on the
arrows a, b themselves, but on the context in which they are embedded (a;f resp. b;f for
some context f), so the condition is over dom(f) = codom(a).

▶ Definition 4.2 (Conditional bisimulation). A conditional bisimulation R is a symmetric
conditional relation such that the following holds: for each triple (a, b, C) ∈ R and each
context step a

f,A−−→C a′, there are answering steps b
f,Bi−−−→C b′i, i ∈ I, and conditions C′i such

that (a′, b′i, C′i) ∈ R and A ∧ C↓f |=
∨

i∈I (C′i ∧ Bi). Two arrows are conditionally bisimilar
under C ((a, b, C) ∈ ◦∼C) whenever a conditional bisimulation R with (a, b, C) ∈ R exists.1

The condition is to be understood as follows: For every step, we have a borrowed context f

and an additional passive context d (as explained below Definition 3.7). The condition C from
the triple refers to the full context of a (hence f ;d |= C or equivalently d |= C↓f ), while A,
coming from the context step, only refers to the passive context (hence d |= A).

1 Note that since conditional bisimulations are closed under union, ◦∼C is itself a conditional bisimulation.
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If these two are satisfied (left-hand side of the implication), we require answering steps
which also impose conditions on the passive context (d |= Bi). Additionally, we choose
conditions C′i, which ensure that the chosen answering steps yield pairs a′, b′i which are
bisimilar under C′i. As for saturated bisimilarity [16, remark after Definition 15], we need to
allow several answering moves for a single step of a: the answering step taken by b might
depend on the context, using different rules for contexts satisfying different conditions Bi. We
just have to ensure that all answering step conditions together (disjunction on the right-hand
side) fully cover the conditions under which the step of a is feasible (left-hand side).

▶ Example 4.3 (Message passing over unreliable channels). We now work in the category of
input-linear cospans of graphs, i.e., ILC(Graphfin).

We extend our previous example (cf. Example 2.3) of networked nodes, introducing
different types of channels. A channel can be reliable or unreliable, indicated by an r-edge or
u-edge respectively. Sending a message over a reliable channel always succeeds (rule PR),
while an unreliable channel only transmits a message if there is no noise (indicated by a
parallel n-edge) in the environment that disturbs the transmission (rule PU ).

To represent this situation as a reactive system, let the following graphs be given:

R0 =
r

Rℓ =
r

m
Rr =

r

m

U0 =
u

Uℓ =
u

m
Ur =

u

m
UN =

u

n

I0 = Iℓ =
m

Ir =
m

IN =
n

We can now represent the transmission of a message using the following rules with
application conditions, where AU states that no n-edge exists:

PR =
(
∅ → Rℓ ← R0, ∅ → Rr ← R0, trueR0

)
PU =

(
∅ → Uℓ ← U0, ∅ → Ur ← U0, AU

)
AU =

(
U0,∀,

{
(U0 → UN ← U0, falseU0)

})
Hence the application condition AU says that the context must not be decomposable

into U0 → UN ← U0 and some other cospan, i.e., the u-edge in the interface has no parallel
n-edge. In other words: there is no noise.

We compare the behaviour of a reliable channel (r := ∅ → R0 ← I0) to that of an
unreliable channel (u := ∅ → U0 ← I0). It is easy to see that they are not saturated bisimilar:
r can do a step by borrowing a message on the left (f := I0 → Iℓ ← I0) without further
restrictions (i.e. using an environment condition A = true). But u is unable to answer this
step, because the corresponding rule is only applicable if no n-edge is present.

However, r and u are conditionally bisimilar under the assumption that no n-edge is
present (C = AC =

(
I0,∀,

{
(I0 → IN ← I0, falseI0)

})
), i.e. there exists a conditional

bisimulation that contains (r, u,AC). A direct proof is hard, since the proof involves checking
infinitely many context steps, since messages accumulate on the right-hand side. However, in
Example 4.9 we will use an argument based on representative steps to construct a proof.

▶ Remark 4.4 (Condition strengthening). It holds that (a, b, C′) ∈ ◦∼C , C |= C′ implies
(a, b, C) ∈ ◦∼C . (This is due to the fact that C |= C′ implies C↓f |= C′↓f which, in Definition 4.2,
implies A ∧ C↓f |= A ∧ C′↓f for any condition A and arrow f .)
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10:12 Conditional Bisimilarity for Reactive Systems

▶ Remark 4.5. It can be shown that conditional bisimilarity ◦∼C is a conditional congruence,
this follows as a corollary of Theorem 6.3 which will be shown later. This is an important
plausibility check, since reactive systems have been introduced with the express purpose to
define and reason about bisimulation congruences.

Our motivation for introducing the notion of conditional bisimilarity was to check whether
two systems are behaviourally equivalent, when they are put into a context that satisfies
some condition C. It is not immediately obvious that our definition can be used for this
purpose, since all context steps are checked, not just the ones that actually satisfy C.

Hence we now show that our definition is sound, i.e. if two systems are conditionally
bisimilar, then they show identical behaviour under all contexts that satisfy C.

▶ Theorem 4.6. Let R be a conditional bisimulation. Then R′ = {(a;d, b;d) | (a, b, C) ∈ R

∧ d |= C} is a bisimulation for the reaction relation ⇝.

Note that the converse of Theorem 4.6 (if R′ is a bisimulation, then R is a conditional
bisimulation) does not hold. For a counterexample, we refer to the full version.

4.2 Representative Conditional Bisimulations
Checking whether two arrows are conditionally bisimilar, or whether a given relation is a
conditional bisimulation, can be hard in practice, since we have to check all possible context
steps, of which there are typically infinitely many.

For saturated bisimilarity, we used representative steps instead of context steps (cf.
Sections 2.3 and 2.4) to reduce the number of contexts to be checked. In this section, we
extend our definition of conditional bisimulation to use representative steps and prove that
the resulting bisimilarity is identical to the one previously defined.

▶ Definition 4.7 (Representative conditional bisimulation). A representative conditional
bisimulation R is a symmetric conditional relation such that the following holds: for each
triple (a, b, C) ∈ R and each representative step a

f,A−−→R a′, there are answering context
steps b

f,Bi−−−→C b′i and conditions C′i such that (a′, b′i, C′i) ∈ R and A ∧ C↓f |=
∨

i∈I (C′i ∧ Bi).
Two arrows are representative conditionally bisimilar under C ((a, b, C) ∈ ◦∼R) whenever a
representative conditional bisimulation R with (a, b, C) ∈ R exists.

We now show that these two conditional bisimilarities are equivalent.

▶ Theorem 4.8. Conditional bisimilarity and representative conditional bisimilarity coincide,
that is, ◦∼C = ◦∼R.

▶ Example 4.9 (Message passing over unreliable channels, continued). Consider the reactive
system of Example 4.3. There exists a representative conditional bisimulation R such that
(∅ → R0 ← I0, ∅ → U0 ← I0, AC) ∈ R.

We consider the representative steps that are possible from either R0 or U0 and only
explain the most interesting cases:

R0 can do a step using rule PR by borrowing a message on the left node, that is,
f = I0 → Iℓ ← I0, and reacting to Rr. No further restrictions on the environment are
necessary, so A = true. U0 can answer this step using PU and reacts to Ur, but only
if no noise is present (environment satisfies Bi = AC). We evaluate the implication
A∧C↓f ≡ true∧AC↓f ≡ AC |=

∨
i∈I (C′i ∧ AC) ≡

∨
i∈I (C′i ∧ Bi), setting C′i = AC . (Note

that AC↓f ≡ AC since AC forbids the existence of an n-edge between the two interface
nodes and f is unrelated, providing an m-loop on the left-hand node.) We now require
(∅ → Rr ← I0, ∅ → Ur ← I0, AC) ∈ R.
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Symmetrically, U0 can do a step using PU by borrowing a message on the left node,
reacting to Ur in an environment without noise (A = AC). R0 can answer this step under
any condition Bi. Then, the implication is satisfied if we set C′i = AC , so we require again
(∅ → Rr ← I0, ∅ → Ur ← I0, AC) ∈ R.
There are additional representative steps that differ in how much of the left-hand side is
borrowed, but can be proven analogously to the two previously discussed steps.

This means that we have to add the pair (∅ → Rr ← I0, ∅ → Ur ← I0, AC) to R and
to continue adding pairs until we obtain a bisimulation: with every step, a new triple with
an additional m-loop on the right node is added to the relation, therefore, the smallest
conditional bisimulation has infinite size. However, except for the additional m-loop on the
right node, which does not affect rule application, this pair is identical to the initial one and
we can hence use a similar argument. In Section 5 we show how to make this formal, using
up-to techniques, and thus obtain a completely mechanized proof. In summary, we conclude
that R0 is conditionally bisimilar to U0 under the condition AC .

▶ Example 4.10 (Unreliable channel vs. no channel). For Examples 4.3 and 4.9, it can also be
shown that under the condition ¬AC , the unreliable channel ∅ → U0 ← I0 is conditionally
bisimilar to not having a channel between the two nodes (∅ → I0 ← I0).

In this case, U0 can still do a reaction under AC . Then, I0 can answer with an empty set
of steps. The implication AC ∧ C↓f |=

∨
i∈I (C′i ∧ Bi) is then simplified to AC ∧ ¬AC |= false,

which is easily seen to be valid.

5 Up-to Techniques for Proving Conditional Bisimilarity

Our optimizations so far involved replacing context steps by representative steps, which ensure
finite branching and thus greatly reduce the proof obligations for a single step. However,
it can still happen very easily that the smallest possible bisimulation is of infinite size, in
which case automated proving of conditional bisimilarity becomes impossible. For instance,
in Example 4.9, the least conditional bisimulation relating the two cospans u, r (representing
(un)reliable channels) contains infinitely many triples (u;mn, r;mn, AC) for any number n

of messages on the right node (m = I0 → Ir ← I0).
On the other hand, conditional bisimilarity is closed under contextualization, hence if

u, r are related, we can conclude that u;m and r;m must be related as well. Intuitively
the relation R = {(u, r,AC)} is a sufficient witness, since after one step we reach the triple
(u;m, r;m, AC), from which we can “peel off” a common context m to obtain a triple already
contained in R.

This is an instance of an up-to technique, which can be used to obtain smaller witness
relations by identifying and removing redundant elements from a bisimulation relation.
Instead of requiring the redundant triple (u;m, r;m, AC) to be contained in the relation, it
is sufficient to say that up to the passive context m, the triple is represented by (u, r,AC),
which is already contained in the relation. In particular, this specific up-to technique is
known as up-to context [25], a well-known proof technique for process calculi.

Note that in general, a bisimulation up-to context is not a bisimulation relation. However,
it can be converted into a bisimulation by closing it under all contexts.

In this section, we show how to adapt this concept to conditional bisimilarity and in
particular discuss how to deal with the conditions in a conditional bisimulation up-to context.
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5.1 Conditional Bisimilarity Up-To Context
We start our investigation of conditional bisimilarity up-to context with the idea of a relation
that can be extended to a conditional bisimulation. To show, using such a conditional
bisimulation up-to context R, that a pair of arrows is conditionally bisimilar, one cannot
necessarily find the pair in R, but instead extends a pair in R to the pair under review.
As this extension might provide parts of the context that the original condition referred to,
it is necessary to shift the associated condition over the extension.

▶ Definition 5.1 (Conditional bisimulation up-to context (CBUC)). A symmetric conditional
relation R is a conditional bisimulation up-to context if the following holds: for each triple
(a, b, C) ∈ R and each context step a

f,A−−→C a′, there are answering steps b
f,Bi−−−→C b′i, i ∈ I,

and conditions C′′i such that for each i ∈ I there exists (a′′i , b′′i , C′′i ) ∈ R with a′ = a′′i ;ji,
b′i = b′′i ;ji for some arrow ji and additionally A ∧ C↓f |=

∨
i∈I

(
C′′i↓ji

∧ Bi

)
.

0 I 0

J K J ′

0 Ii 0

ℓ r

a′

ℓi ri

b′i

a

b

c

ei

a′′i

b′′i

f ji

D

C

Di

C′′i

Figure 5 A single answer step in conditional bisimulation up-to context.

The situation for one answer step is depicted in Figure 5. The conditions A,Bi over K

are not shown in the diagram. The weakest possible A,Bi can be derived from the rule
conditions as A = D↓c, Bi = Di↓ei

.
Compared to a regular conditional bisimulation, which directly relates the results of the

answering steps (a′, b′i, C′i), in a CBUC it is sufficient to relate some pair (a′′i , b′′i , C′′i ), where
a′′i , b′′i are obtained from a′, b′i by removing an identical context ji.

We now show that this up-to technique is useful or sound, that is, all elements recognized
as bisimilar by the up-to technique are actually bisimilar [26, 25].

▶ Theorem 5.2 (Characterization of CBUC). A symmetric conditional relation R satisfies
Definition 5.1 (is a CBUC) iff its closure under contextualization R̂ := {(a;d, b;d, C↓d) |
(a, b, C) ∈ R, a, b : 0→ J, d : J → K} is a conditional bisimulation.

▶ Remark 5.3. From Theorem 5.2 we easily obtain as a corollary that every CBUC R

is contained in ◦∼C (R ⊆ ◦∼C), i.e. all elements contained in some CBUC are indeed
conditionally bisimilar. This follows from the fact that R ⊆ R̂ (set d = idJ) and R̂ ⊆ ◦∼C

(since by Theorem 5.2 R̂ is a conditional bisimulation).

Note that while Theorem 5.2 gives a more accessible definition of CBUCs than Defini-
tion 5.1, the latter definition is amenable to mechanization, since R might be finite, whereas
R̂ is infinite.
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5.2 Conditional Bisimilarity Up-To Context with Representative Steps
CBUCs allow us to represent certain infinite bisimulation relations in a finite way. For
instance, we can use a finite CBUC in Example 4.9. However, automated checking for
conditional bisimilarity up-to context is still hard, since all possible context steps have to be
checked, of which there can be infinitely many.

For conditional bisimulations, we introduced an alternative definition using representative
steps (Definition 4.7) and showed that it yields an equivalent notion of conditional bisimilarity
(Theorem 4.8). We will show that the same approach can be used for CBUCs.

▶ Definition 5.4 (CBUC with representative steps). A CBUC with representative steps is a
symmetric conditional relation R such that the following holds: for each triple (a, b, C) ∈ R

and each representative step a
f,A−−→R a′, there are answering steps b

f,Bi−−−→C b′i and conditions
C′′i such that for each answering step there exists (a′′i , b′′i , C′′i ) ∈ R with a′ = a′′i ;ji, b′i = b′′i ;ji

for some arrow ji per answering step, and additionally A ∧ C↓f |=
∨

i∈I

(
C′′i↓ji

∧ Bi

)
.

▶ Theorem 5.5. A conditional relation is a CBUC (Definition 5.1) if and only if it is a
CBUC with representative steps (Definition 5.4).

▶ Example 5.6. Consider again Examples 4.3 and 4.9. We have previously seen that it
is possible to repeatedly borrow a message on the left-hand node and transfer it to the
right-hand node, which leads to more and more received messages accumulating at the
right-hand node. We now show that the two types of channels are conditionally bisimilar
by showing that R =

{
(∅ → R0 ← I0, ∅ → U0 ← I0, AC)

}
is a CBUC, i.e. it satisfies

Definition 5.4. We consider the same steps as in Example 4.9:
R0 can do a step using rule PR by borrowing a message on the left node, with environment
condition A = true, and reduces to a′ = ∅ → Rr ← I0. U0 can answer this step using PU

under Bi = AC (no noise) and reacts to b′i = ∅ → Ur ← I0.
Now set ji = I0 → Ir ← I0, i.e. we consider the m-loop on the right node as irrelevant
context. Then, using a′′i = ∅ → R0 ← I0, b′′i = ∅ → U0 ← I0, C′′i = AC we have
a′ = a′′i ;ji, b′i = b′′i ;ji, and we find that the triple without the irrelevant context ji, that
is (a′′i , b′′i , C′′i ) (which happens to be the same as our initial triple), is contained in R. As
before, the implication A ∧ C↓f |=

∨
i∈I (C′′i ∧ Bi) holds.

Symmetrically, U0 borrows a message on the left node and reacts to Ur under A = AC .
Analogously to the previous case and to Example 4.9, R0 answers this step, using C′′i = AC

and ji = I0 → Ir ← I0.
Again, the remaining representative steps can be proven in an analogous way.

Note that instead of working with an infinite bisimulation, we now have a singleton.

6 Comparison and An Alternative Characterization

6.1 An Equivalent Characterization Based on Environment Steps
We will now give a more natural characterization of conditional bisimilarity, in order to justify
Definitions 4.2 and 4.7. This alternative definition is more elegant since it characterizes ◦∼C

as the largest conditional congruence that is a conditional environment bisimulation. On the
other hand, this definition is not directly suitable for mechanization.

In [16], environment steps, which capture the idea that a reaction is possible under some
passive context d, have been defined to obtain a more natural characterization of saturated
bisimilarity. Unlike the borrowed context f , the passive context d does not participate in the
reaction itself, but we refer to it to ensure that the application condition of the rule holds.
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▶ Definition 6.1 (Environment step [16]). Let R be a set of reactive system rules and
a : 0→ K, a′ : 0→ K, d : K → J be arrows. We write a

d
⇝ a′ whenever there exists a rule

(ℓ, r,B) ∈ R and an arrow c such that a = ℓ;c, a′ = r;c and c;d |= B.

Environment steps and context steps are related: they can be transformed into each other.
Furthermore saturated bisimilarity is the coarsest bisimulation relation over environment
steps that is also a congruence [16]. We now give a characterization of conditional bisimilarity
based on environment steps:

▶ Definition 6.2 (Conditional environment congruence). A symmetric conditional relation
R is a conditional environment bisimulation if whenever (a, b, C) ∈ R and a

d
⇝ a′ for some

d |= C, then b
d
⇝ b′ and (a′, b′, C′) ∈ R for some condition C′ such that d |= C′. We denote by

◦∼E the largest conditional environment bisimulation that is also a conditional congruence
and call it conditional environment congruence.

▶ Theorem 6.3. Conditional bisimilarity and conditional environment congruence coincide,
that is, ◦∼C = ◦∼E.

6.2 Comparison to Other Equivalences
We conclude this section by considering ◦∼T := {(a, b) | (a, b, true) ∈ ◦∼C}, a binary relation
derived from conditional bisimilarity, which is ternary. Intuitively it contains pairs (a, b),
where a, b are system states that behave equivalently in every possible context. We investigate
how ◦∼T compares to other behavioural equivalences that also check for identical behaviour
in all contexts. First, we consider saturated bisimilarity (∼C), which has been characterized
in [16] as the coarsest relation which is a congruence as well as a bisimilarity:

▶ Theorem 6.4. Saturated bisimilarity implies true-conditional bisimilarity (∼C ⊆ ◦∼T ).
However, true-conditional bisimilarity does not imply saturated bisimilarity ( ◦∼T ⊈ ∼C).

For saturated bisimilarity, if a step of a is answered by b with multiple steps, all b′i reached
in this way must be saturated bisimilar to a′ (that is, show the same behaviour even if the
environment is later changed to one which did not allow the given b′i to be reached). In
fact, it was an explicit goal in the design of saturated bisimilarity to account for external
modification of the environment.

On the other hand, for conditional bisimilarity, each b′i is only required to be conditionally
bisimilar to a′ under the condition which allowed this particular answering step – that is,
after a step, the environment is fixed (or, depending on the system, can only assume a subset
of all possible environments, cf. Definition 6.2 and Theorem 6.3).

Next, we compare ◦∼T to id-congruence, the coarsest congruence contained in bisimilarity
over the reaction relation ⇝. It simply relates two agents whenever they are bisimilar in all
contexts, i.e. ∼id := {(a, b) | for all contexts d, a;d, b;d are bisimilar wrt.⇝}.

▶ Theorem 6.5. It holds that true-conditional bisimilarity implies id-congruence ( ◦∼T ⊆ ∼id).
However, id-congruence does not imply true-conditional bisimilarity (∼id ⊈ ◦∼T ).

Intuitively, true-conditional bisimilarity allows to observe whether some item is consumed
and recreated (by including it in both sides of a rule) or whether it is simply required (using
an existential rule condition, cf. Theorem 6.5). On the other hand, id-congruence does not
recognize this and simply checks whether reactions are possible in the same set of contexts.



M. Hülsbusch, B. König, S. Küpper, and L. Stoltenow 10:17

Hence we have ∼C ⊊ ◦∼T ⊊ ∼id, which implies that checking for identical behaviour in
all contexts using conditional bisimilarity gives rise to a new kind of behavioural equivalence,
which does not allow arbitrary changes to the environment (as ∼C does), yet allows distin-
guishing borrowed and passive context (which ∼id does not). For two of those equivalences
(∼C , ◦∼T ) we can mechanize bisimulation proofs.

7 Conclusion, Related and Future Work

As stated earlier, there are some scattered approaches to notions of behavioural equivalence
that can be compared to conditional bisimilarity. The concept of behaviour depending on a
context is also present in Larsen’s PhD thesis [21]. There, the idea is to embed an LTS into an
environment, which is modelled as an action transducer, an LTS that consumes transitions of
the system under investigation – similar to CCS synchronization. He then defines environment-
parameterized bisimulation by considering only those transitions that are consumed in a
certain environment. In [15], Hennessy and Lin describe symbolic bisimulations in the setting
of value-passing processes, where Boolean expressions restrict the interpretations for which
one shows bisimilarity. Instead in [2], Baldan, Bracciali and Bruni propose bisimilarity on
open systems, specified by terms with a hole or place-holder. Instead of imposing conditions
on the environment, they restrict the components that are filling the holes.

In [11], Fitting studies a matrix view of unlabelled transition system, annotated by
Boolean conditions. In [3] we have shown that such systems can alternatively be viewed as
conditional transition systems, where activation of transitions depends on conditions of the
environment and one can state the bisimilarity of two states provided that the environment
meets certain requirements. This view is closely tied to featured transition systems, which
have been studied extensively in the software engineering literature. The idea here is to
specify system behaviour dependent on the features that are present in the product (see for
instance [7] for simulations on featured transition systems).

Our contribution in this paper is to consider conditional bisimilarity based on contextual-
ization in a rule-based setting. That is, system behaviour is specified by generic rewriting
rules, system states can be composed with a context specifying the environment and we
impose restrictions on those contexts. By viewing both system states and contexts as arrows
of a category, we can work in the framework of reactive systems à la Leifer and Milner and
define a general theory of conditional bisimilarity. While in [16] conditions were only used
to restrict applicability of the rules and bisimilarity was checked for all contexts, we here
additionally use conditions to establish behavioural equivalence only in specific contexts.

As future work we want to take a closer look at the logic that we used to specify conditions.
Conditional bisimilarity is defined in a way that is largely independent of the kind of logic,
provided that the logic supports Boolean operators and shift. It is unclear and worth
exploring whether the logic considered by us is expressive enough to characterize all contexts
that ensure bisimilarity of two given arrows.

Up-to techniques can be elegantly stated in a lattice-theoretical framework [24] and it is
not difficult to reframe the results of Section 5 in this setting, using the notion of compatibility.
This view might help to incorporate further optimizations into the up-to technique.

Furthermore, it is an open question whether there is an alternative characterization of
the id-congruence of Theorem 6.5 that is amenable to mechanization.

We have already implemented label derivation and bisimulation checking in the borrowed
context approach, see for instance [23], however without taking conditions into account. Our
aim is to obtain an efficient implementation for the scenario described in this paper. Note
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that our conditions subsume first-order logic [6] and hence in order to come to terms with the
undecidability of implication we have to resort to simpler conditions or use approximative
methods.

One natural question is whether our results can be stated in a coalgebraic setting, since
coalgebra provides a generic framework for behavioural equivalences. We have already
studied a much simplified coalgebraic version of conditional systems (without considering
contextualization) in [1], using coalgebras living in Kleisli categories. Reactive systems can
also be viewed as coalgebras (see [4]). However, a combination of these features has not yet
been considered as far as we know.
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Abstract
Uniqueness of normal forms w.r.t. conversion (UNC) of term rewriting systems (TRSs) guarantees
that there are no distinct convertible normal forms. It was recently shown that the UNC property of
TRSs is decidable for shallow TRSs (Radcliffe et al., 2010). The existing procedure mainly consists
of testing whether there exists a counterexample in a finite set of candidates; however, the procedure
suffers a bottleneck of having a sheer number of such candidates. In this paper, we propose a new
procedure which consists of checking a smaller number of such candidates and enumerating such
candidates more efficiently. Correctness of the proposed procedure is proved and its complexity
is analyzed. Furthermore, these two procedures have been implemented and it is experimentally
confirmed that the proposed procedure runs much faster than the existing procedure.
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1 Introduction

A term rewriting systems (TRS for short) is a well-known model of computation, which plays
many roles in equational deduction and formal verification. A key property of the computation
of TRSs that it is non-deterministic, which enables flexible computations in TRSs as well as
flexible transformations between TRSs and equational axioms. Due to the non-determinism
in the computations, however, it is not always guaranteed that results of computations are
unique. Thus, properties ensuring unique results of computations are important topics in
the study of TRSs. The most well-known such a property is confluence (CR), meaning
that two convertible terms are joinable. Less known such properties include uniqueness of
normal forms w.r.t. conversion (UNC) meaning that there are no distinct convertible normal
forms. The UNC property1 of TRSs has been studied in e.g. [3, 4, 11, 12, 13, 19, 10, 20].
Furthermore, interests in automation of proving these properties initiated to start Confluence
Competition [1, 2, 14] among software tools for proving such properties; there the category of
the UNC property has been started from the 2016 edition of the Competition.

1 The UNC property have been also studied under the name of UN or UN=. We use UNC, following the
convention employed in the Confluence Competition.
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11:2 A Fast Decision Procedure for UNC of Shallow TRSs

One of the important topics concerning these properties is (un)decidability. It is known
that the first-order theory of rewriting is decidable for left-linear right-ground TRSs [9].
Indeed, an implementation of the decision procedure of such theory have been reported in [18],
and has been applied for (dis)proving these properties of left-linear and right-ground TRSs.
An implementation of more efficient decision procedures of these properties for ground TRSs
(a subclass of left-linear and right-ground TRSs) have been also reported in [11]. Another
line of criteria for such (un)decidability is shallowness and flatness. Shallowness or flatness
restricts the depth of (variable) occurrences in the rewrite rules. It is known that confluence
is undecidable for flat (and hence shallow) TRSs [15]. In contrast, a polynomial algorithm
for deciding the UNC property of linear shallow TRSs have been shown in [20], and it was
recently shown that the UNC property of shallow TRSs is decidable [16, 17].

The existing procedure of [17] mainly consists of testing whether there exists a counter-
example in a finite set of candidates. However, the procedure suffers a bottleneck of having
a sheer number of such candidates even for small examples. In this paper, we propose a new
procedure which reduces the number of such candidates to be checked and also enumerates
such candidates more efficiently. The proposed procedure has the same structure and is
based on the same ideas as the one of [17]; the difference is in the ways of checking the two
main cases (whether or not there exists a counterexample to UNC in which the convertible
normal forms are convertible to a constant in ÊR, a complete equations set for TRS R [8]).

The idea of the proposed method is to construct normal forms which can be reached
by minimal constant expansion steps of ÊR. Based on this idea, we introduce constant
propagation algorithm that incrementally constructs normal forms of each constant. Using
this algorithm, we can determine whether there exists any minimal counterexample that is
equivalent to a constant efficiently. If there exists no such a counterexample, we can check
the UNC property efficiently by using the normal forms obtained by the algorithm.

We prove correctness of the proposed decision procedure and analyze its complexity.
Furthermore, we implement two UNC decision procedures those based on existing method
[17] and those based on proposed method, and experimentally confirm that proposed method
runs much faster than existing one.

The rest of the paper is organized as follows: In Section 2, we present basic notions
and notations used in this paper, and recall some preliminary backgrounds on our decision
procedure. In addition, we overview the existing procedure [17]. In Section 3, we present
our new decision procedure, together with its main ingredients – construction of two key
sets CPNF and CW – illustrating them through concrete examples. In Section 4, a notion of
constant propagation class is introduced; it is used to show the correctness of checking the
existence of a minimal witness that is equivalent to a constant by CPNF in Section 5. Section
6 is devoted to show the correctness of checking the existence of a minimal witness that is
not equivalent to a constant by CW . The correctness theorem and complexity analysis of
our decision procedure are given in Section 7. In Section 8, we report our implementation
and experiments. In Section 9, we conclude.

2 Preliminaries

In this section, we fix notations that will be used in this paper. Familiarity with term
rewriting systems are assumed (see e.g. [6]).

2.1 Term rewriting systems
We denote by V a countably infinite set of variables, and by F the finite set of (arity-
fixed) function symbols, which includes the set C of constants; variables are denoted by
x, y, z, . . ., function symbols by f, g, h, . . ., and constants by a, b, c, . . .. The set of terms
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is denoted by T(F ,V) and the set of non-constant non-variable terms by Tf (F ,V); they
may be abbreviated to T and Tf , respectively. We define height(t) = 0 for t ∈ C ∪ V, and
height(f(t1, . . . , tn)) = 1 + max{height(t1), . . . ,height(tn)} (n ≥ 1). The size of a term t,
denoted by |t|, is 1 if t ∈ V , and is 1 +

∑n
i=1 |ti| if t = f(t1, . . . , tn). The set of variables in a

term t is denoted by V(t). The root symbol of a term t is denoted by root(t).
A substitution σ is a mapping σ : V → T(F ,V) such that the set dom(σ) = {x | σ(x) 6= x}

is finite. When dom(σ) ⊆ {x1, . . . , xn}, we also write it as {x1 := σ(x1), . . . , xn := σ(xn)}.
A substitution is identified with its homomorphic extension; we write tσ for σ(t). We write
s 6 t if σ(s) = t for some substitution σ. A renaming substitution is a substitution that is a
permutation on variables (i.e. a bijective mapping from V to V); renaming substitutions are
denoted by σα, ρα, . . .. The symbol N (N∗) stands for the set of (resp. the finite sequences
of) natural numbers. We denote the set of (variable) positions in a term t by Pos(t) (resp.
PosV(t)). The root position is denoted by ε and the subterm at a position p by t|p. A subterm
t|p is a direct (variable) subterm of t if p ∈ N (resp. t|p ∈ V). A hole is a special constant,
denoted by �. A context is a term containing exactly one hole. For a context C and a term
t, we denote by C[t] the term obtained by replacing the hole in C by t. A context C is also
written as C[ ]. Especially, we write C[ ]p to specify the position of the hole in C[ ]. We write
t[ ]p to denote the context obtained by substituting the hole at the position p in a term t.

A rewrite rule l→ r satisfies l /∈ V; we don’t assume, however, the other usual variable
restriction V(r) ⊆ V(l) in this paper. A term rewriting system (TRS) is given by 〈F ,R〉
where R is a finite set of rewrite rules over F . When 〈F ,R〉 is abbreviated to R, some
appropriate F is fixed. Let R be a TRS. If there exist l → r ∈ R, a substitution σ and a
context C[ ]p such that s = C[lσ]p t = C[rσ]p, we have a rewrite step s→R t. The subscript
R may be abbreviated when it is clear from the context. When we need to make (some
of) p, l → r, σ explicit, we write s→p,l→r,σ t, etc. A rewrite step s→p t is root if p = ε. A
non-root rewrite step is denoted by s →>ε t. A term s is a normal form if s → t for no t;
the set of normal forms is denoted by NF . The symmetric closure of → is denoted by ↔, its
transitive closure by +→, its reflexive transitive closure by ∗→. its equivalence closure by ∗↔. A
successive composition of rewrite steps s1 → · · · → sn is called a rewrite sequence, which may
be abbreviated as s1

∗→ sn. These notations are reused for other similar relations as well and
could be combined. Terms s and t are convertible if s ∗←→ t. A TRS R satisfies uniqueness of
normal forms w.r.t. conversion (UNC) if there are no convertible distinct normal forms, i.e.
s
∗←→ t with s, t ∈ NF implies s = t. A finite set of equations is called an equational system

(ES for short). We identify equations l ≈ r and r ≈ l. A rewrite step s↔E t by an equation
l ≈ r ∈ E is defined in the same way as for a rewrite rule. For a TRS R, the associated ES
{l ≈ r | l→ r ∈ R} is denoted by ER.

2.2 UNC of shallow TRSs
A term t is shallow if PosV(t) ⊆ {ε} ∪ N, i.e. t ∈ C ∪ V or t contains a variable only as a
direct subterm. For example, terms x, a, g(y), f(x, g(a)) are shallow but f(x, g(y)) is not. A
TRS R is shallow if l, r are shallow for all l→ r ∈ R. In [17], a decision procedure for the
UNC property of shallow TRSs is given. We now explain some crucial characterizations of
UNC, some notions and notations in [17] that will be also used in our decision procedure.

The first step of our decision procedure, as well as that of [17], is to translate shallow
TRSs to flat TRSs. A term t is flat if height(t) ≤ 1; a TRS R is flat if l, r are flat for all
l→ r ∈ R. Clearly, flat TRSs are shallow. On the other hand, a term f(x, g(a)) is shallow
but not flat. It is known that one can transform shallow TRSs into flat TRSs preserving
(non-)UNC; we refer details to [20].

FSCD 2020
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I Example 1. Let Rshallow = {f(x, y)→ g(h(a))}. As height(g(h(a))) = 2, the TRS Rshallow
is not flat. Now, by the UNC-preserving flatting translation [20], we obtain a flat TRS
R = {b→ h(a), f(x, y)→ g(b)} from Rshallow. Here, b is a newly introduced constant.

Our procedure, as well as the one of [17], employs this transformation. Henceforth, we
focus on flat TRSs.

The pattern of direct subterms in a term t = f(t1, . . . , tn) ∈ Tf , denoted by Patt(t), is
the set {{i, j} | 1 ≤ i, j ≤ n, i 6= j, t|i = t|j}; its subset {{i, j} ∈ Patt(t) | t|i ∈ V} is denoted
by PattV(t). The following property of root rewrite steps of flat TRSs will be heavily used:

I Lemma 2 ([17]). Let R be a flat TRS and t a term. Then, t→ε,l→r
R t′ for some t′ iff (1)

root(l) = root(t), (2) l|i = t|i for all i ∈ N with li ∈ C, and (3) PattV(l) ⊆ Patt(t).

An ES is flat if so are all equations in it. An important ingredient of the decision procedure
is the completion of flat ESs [8]: Given a flat ES E, one can construct a closure Ê of E with
respect to the following rules:

g ≈ d, l ≈ r
dσ ≈ rσ

if l, g /∈ V, σ = mgu(l, g) (1)

l ≈ d, y ≈ r
d ≈ rσ

if y ∈ V, l ∈ C ∪ V, σ = {y := l} (2)

C[a] ≈ d, a ≈ b
C[b] ≈ d if a, b ∈ C (3)

Here, mgu stands for a most general unifier. Then, Ê is a flat ES that is equivalent to E (i.e.
∗←→E = ∗←→

Ê
) and is ground complete w.r.t. the ordered rewriting [7]. We won’t go into the

detail of the latter property, but remark that only we concern in this paper is that, from the
latter property, for any given terms s, t, it is decidable whether s ∗←→

Ê
t holds. Our procedure,

as well as the one of [17], heavily uses the completion ÊR of ER (= {l ≈ r | l→ r ∈ R}).

I Example 3. Let R = {a → b, a → f(x, c, d), c → g(d), h(a) → d, e → g(e)}. Then, for
example, one obtains ÊR = {a ≈ b, a ≈ f(x, c, d), b ≈ f(x, c, d), f(x, c, d) ≈ f(y, c, d), c ≈
g(d), h(a) ≈ d, h(b) ≈ d, h(a) ≈ h(b), e ≈ g(e)}. It is decidable whether s ∗←→

ÊR
t (equivalently,

s
∗←→R t ) for any given terms s, t.

We have one further point to explain about the use of ÊR in the decision procedures. A
TRS R (or an ES E) is inconsistent if x ∗←→R y (resp. x ∗←→E y) for some distinct variables
x, y; it is consistent if it is not inconsistent. Clearly, UNC of a TRS R implies consistency
of R. It is also easy to see that a TRS (or an ES) is inconsistent iff there exists a term t

convertible to x ∈ V \ V(t). For a flat ES E, this characterization can be strengthened as
follows [8]: E is inconsistent iff there exists x ≈ t ∈ Ê such that x /∈ V(t). Thus, one can
check whether R is consistent using ÊR.

In the beginning of the decision procedures, one computes a completion ÊR of ER. Then,
one checks if there exists an equation x ≈ t ∈ ÊR such that x /∈ V(t). If this is the case, one
knows that ÊR is inconsistent, and hence so is R. As inconsistency implies non-UNC, one
can conclude R is not UNC. Thus, the rest of the procedure only deals with the case R is
consistent. For this reason, we focus on the case that R is consistent in Sections 4–6.

The following properties are easily obtained using the definition of Ê [8]. These properties
will be used in subsequent sections without mentioning.
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I Proposition 4 ([8]). Let E be a consistent flat ES, and Ê its completion. (1) If s ∗←→E t,
then there exists a rewrite sequence s ∗←→

Ê
t that has at most one root rewrite step. (2) For

any c, c′ ∈ C with c 6= c′, c ∗←→
Ê
c′ iff c ≈ c′ ∈ Ê. (3) Suppose c ∗←→

Ê
c′. Then, c ≈ r ∈ Ê iff

c′ ≈ r ∈ Ê.

As we focus on the UNC property of R, a pair 〈s, t〉 of distinct normal forms s, t such
that s ∗←→R t is called a witness (of non-UNC). We call a witness 〈s, t〉 is equivalent to a
constant c if s ∗←→ c and t ∗←→ c. If |s|+ |t| is minimal among all witnesses, 〈s, t〉 is a minimal
witness. The set of all subterms of any minimal witness is denoted by SubMinWitR. Clearly,
R has UNC property iff there exists no (minimal) witness. It is not at all easy to see what
actually SubMinWitR is, but it satisfies the following useful claims that will be used later.

I Proposition 5 ([17]). Let f(t1, . . . , tn) ∈ SubMinWitR. If ti
∗←→ tj then ti = tj.

I Lemma 6. Let f(t1, . . . , tn) ∈ SubMinWitR. If ti
∗←→ c ∈ C ∩NF then ti = c.

2.3 Existing Decision Procedure
Here, we briefly describe the decision procedure of [17]. It is based on these two lemmas:

I Lemma 7 ([17]). Let R be a TRS. One can add a finite number of constants to R to get
the TRS R′ which meets the following condition: a witness exists in R iff a ground witness
exists in R′.

I Lemma 8 ([17]). Let R be a flat TRS. If there exists a witness, there exists a witness
〈s, t〉 such that height(s),height(t) ≤ max(1, |C|).

Think of a given shallow TRS Rshallow. As we explained above, one can get a flat TRS
R from Rshallow preserving (non-)UNC, and its completion ÊR. From Lemmas 7 and 8, we
simply need to check there exists a ground witness 〈s, t〉 s.t. height(s),height(t) ≤ max(1, |C|),
adding a finite number of constants to R. Since there are only finitely many ground terms
that satisfy height ≤ max(1, |C|), one can construct all of them. Thus, it remains to check
there exists any pair of such terms that is a witness – this can be decided using R (whether
its components are normal forms) and ÊR (whether it consists of convertible terms).

3 New Decision Procedure

In this section, we describe our new decision procedure for the UNC property of shallow
TRSs and motivate later sections where we prove its correctness.

3.1 The Whole Procedure
Below, the rewrite step ↔ of ÊR will be abbreviated as ↔ and NF denotes the set of normal
forms w.r.t. →R.

The whole decision procedure is given in Figure 1. Apart from the same part as the
existing procedure (Step 1) and simple checking, the procedure contains two main ingredients
– construction of the set CPNF and that of the set CW . We are going to explain the details
of these constructions shortly. Actually, these two steps are closely related to the correctness
proofs of the previous algorithm [17]. In [17], the authors divide the UNC problem into two
main cases according to whether there exists a witness equivalent to a constant. The Step
3 checks whether there exists such a witness and the Step 4 checks whether there exists a
witness that is not equivalent to any constant.

FSCD 2020
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Input: a shallow TRS
Output: UNC or Non-UNC

Step 1 Transform the input shallow TRS into a flat TRSR preserving the UNC property,
and calculate its completion ÊR. If R is inconsistent (this can be detected when
calculating ÊR), then return Non-UNC.

Step 2 Calculate CPNF by the Constant Propagation Algorithm.
Step 3 If there exists (ĉ, r̂, t, h) ∈ CPNF such that t has a direct variable subterm, then

return Non-UNC. If there exist (ĉ, r̂s, s, hs), (ĉ, r̂t, t, ht) ∈ CPNF such that s 6= t,
then return Non-UNC.

Step 4 Calculate CW . If there exist 〈s, t〉 ∈ CW such that s 6= t and s, t ∈ NF , then
return Non-UNC.

Step 5 Return UNC.

Figure 1 Proposed decision procedure for UNC of shallow TRSs.

3.2 Constant Propagation Algorithm
Here, we describe how to construct CPNF by Constant Propagation Algorithm, which
determine whether there exists any minimal counterexample that is equivalent to a constant.

We first need a couple of notion and notation.

I Definition 9 (equivalence relation ' on flat terms). We define an equivalence relation '
on flat terms like this: s ' t iff either (1) s, t ∈ V and s = t, (2) s, t ∈ C and s

∗←→ t,
or (3) s = f(s1, . . . , sn), t = f(t1, . . . , tn) (n ≥ 1) such that (a) si ∈ C iff ti ∈ C for all
1 ≤ i ≤ n, (b) si

∗←→ ti for all si ∈ C, and (c) there exists a renaming substitution σα such
that σα(si) = ti for all si ∈ V.

It is easy to see that ' is indeed an equivalence relation. The '-equivalence class of a
flat term t is denoted by [[t]].

I Definition 10. We fix a representative element of [[c]] (c ∈ C) and denote it by ĉ. We denote
the set {ĉ | c ∈ C} by Ĉ. For an arbitrary flat term t, we define x̂ = x and t̂ = f(t̂1, . . . , t̂n)
for t = f(t1, . . . , tn), in addition.

The idea of our algorithms comes from the observation that, for any term t which
is equivalent to a constant c, we have t ∗→ c by the ordered rewriting of ÊR, and c (or
maybe another constant that is equivalent to c) is a ÊR-normal form of t. Our algorithm
incrementally searches normal forms of each constant, tracing the inverse direction of the
ÊR-rewriting sequences.

I Definition 11 (Constant Propagation (CP) Algorithm). Suppose a flat TRS R and its
completion ÊR are given. The algorithm incrementally computes a set of quadruples CPNF
by the pseudo-code presented in Figure 2.

Actually, the fourth element of quadruples is unused to compute the result; the sole
purpose of adding auxiliary parameter H is to use it in our proof below.

I Example 12. Let R and ÊR be given as in Example 3. The constant propagation algorithm
runs as follows:
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Input: a flat TRS R and its completion ÊR
Output: CPNF

Step 1: H := 0; Ĉ := {ĉ1, . . . , ĉm}
For each i = 1, . . . ,m : Yĉi

:= {r̂ | r ∈ Tf , ĉi ≈ r ∈ ÊR}
Step 2: CPNF := {(ĉ, ĉ, c, 0) | c ∈ C ∩NF}
Step 3: Repeat the following (main loop):

H := H + 1; Xtmp := ∅
Calculate a function χH : Ĉ ∪ V → P(T) as follows :

χH(ĉ) =
{
{u | (ĉ,_, u,_) ∈ CPNF} if ∃(ĉ,_, u,_) ∈ CPNF
{ĉ} otherwise

χH(x) = {x}

For each i = 1, . . . ,m, calculate as follows :
For each r̂ = f(û1, . . . , ûn) ∈ Yĉi , calculate as follows :

Xi,r̂ :=
{

(ĉi, r̂, f(u′1, . . . , u′n), H)
∣∣∣∣ u′j ∈ χH(ûj) (1 ≤ j ≤ n)
f(u′1, . . . , u′n) ∈ NF

}
Yĉi :=

{
Yĉi
\{r̂} if Xi,r̂ 6= ∅

Yĉi
otherwise

Xtmp := Xi,r̂ ∪Xtmp
CPNF := Xtmp ∪ CPNF
If Xtmp = ∅, exit the main loop

Figure 2 Constant Propagation Algorithm.

1. Choose a representative element among convertible constants. As we have a ∗←→ b, let
us pick up a as their representative, i.e. â = b̂ = a (picking b leads no problem). Since
there are no other distinct convertible constants, we have Ĉ = {a, c, d, e}. Thus, we set
Ya = {f(x, c, d)}, Yc = {g(d)}, Yd = {h(a)} and Ye = {g(e)} in Step 1.

2. In Step 2, as C ∩NF = {b, d}, we initialize CPNF := {(a, a, b, 0), (d, d, d, 0)}. Intuitively,
this expresses that a term b (d) is one of the convertible normal forms of the constant a
(resp. d).

3. Now we run into the first loop of the Step 3. We have χ1(a) = {b} and χ1(x) = {x}
for x 6= a. Now, we check whether this replacement mapping χ1 can make elements
of Ya ∪ Yc ∪ Yd ∪ Ye a normal form. Then, we find that g(d) ∈ NF is obtained from
g(d) ∈ Yc and h(b) ∈ NF is obtained from h(a) ∈ Yd. Thus, we updates the sets as:
CPNF := CPNF ∪ {(c, g(d), g(d), 1), (d, h(a), h(b), 1)}, Yc := ∅ and Yd := ∅. Intuitively, in
this step, we found a normal form g(d) (h(b)) equivalent to a constant c (resp. d).

4. Now we run into the second loop of the Step 3. We have χ2(a) = {b}, χ2(c) = {g(d)},
χ2(d) = {d, h(b)} and χ2(x) = {x} for x /∈ {a, c, d}. Again, we check whether this replace
mapping can make remaining elements of Ya ∪ Ye a normal form. Then, we find that
f(x, g(d), d), f(x, g(d), h(b)) ∈ NF are obtained from f(x, c, d) ∈ Ya. Thus, we update the
sets as: CPNF := CPNF ∪ {(a, f(x, c, d), f(x, g(d), d), 2), (a, f(x, c, d), f(x, g(d), h(b)), 2)}
and Ya := ∅.

5. The third round of the loop of the Step 3 finds no new normal forms, and Xtmp = ∅.

FSCD 2020
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Thus, we exit the loop.
Finally, we have CPNF ={

(a, a, b, 0), (a, f(x, c, d), f(x, g(d), d), 2), (a, f(x, c, d), f(x, g(d), h(b)), 2),
(c, g(d), g(d), 1), (d, d, d, 0), (d, h(a), h(b), 1)

}
.

Observe that, for any quadruples (c, r, u, h) ∈ CPNF , we have c ∗←→ u and u ∈ NF . Thus,
from the final CPNF , one easily see some witnesses equivalent to a constant: e.g. 〈d, h(b)〉
(equivalent to d), 〈b, f(x, g(d), d)〉 and 〈f(x, g(d), d), f(x, g(d), h(b))〉 (equivalent to a). One
also obtains a witness 〈f(x, g(d), d), f(y, g(d), d) (equivalent to a), since renaming x to y leads
f(x, g(d), d) ∗←→ a ∗←→ f(y, g(d), d).

To characterize the situation where we couldn’t find any witness from CPNF , we introduce
the following property.

I Definition 13 (consistency of CPNF). CPNF is consistent if (i) there exists no (ĉ, r̂, t, h) ∈
CPNF such that t has a direct variable subterm, and (ii) no (ĉ, r̂s, s, hs), (ĉ, r̂t, t, ht) ∈ CPNF
such that s 6= t. It is inconsistent if it is not consistent.

Before ending this subsection, we introduce one notation that will be used below.

I Definition 14. We define TCP = {t | (ĉ, r̂, t, h) ∈ CPNF}.

3.3 Construction of CW

CPNF finds only constant-equivalent witnesses, so we need to know yet whether there exist
any minimal witnesses that are not equivalent to a constant.

From Step 3, we may suppose that CPNF is consistent. Assume a term t is equivalent to
a constant c. We denote a term t̃ such that t̃ ∈ TCP and c ∗←→ t̃. If such a term exists, it
must be unique from the assumption.

I Definition 15. (1) Define δ′′(t) for t ∈ C ∪ V as follows: δ′′(t) = t̃ if t ∈ C, and δ′′(t) = t

otherwise. (2) Define ψ′′(t) for non-constant flat terms t as follows: ψ′′(t) = t if t ∈ V, and
ψ′′(t) = f(δ′′(t1), . . . , δ′′(tn)) if t = f(t1, . . . , tn) (n ≥ 1). (3) Finally, define the set CW :

CW = {〈ψ′′(l), ψ′′(r)〉 | l ≈ r ∈ ÊR, l, r /∈ C}.

I Example 16. Let us consider R of Example 1. Through the Step 1 of the Figure 1, we
obtain a completion of R as ÊR = {b ≈ h(a), f(x, y) ≈ g(b), f(x, y) ≈ f(x1, y1)}. By the Step
2, we obtain CPNF := {(a, a, a, 0), (b, h(a), h(a), 1)}. The conditions of Step 3 fails, and thus
we run into Step 4. Note here that from CPNF , we have ã = a and b̃ = h(a). Thus, we obtain
CW = {〈f(x, y), g(h(a))〉, 〈f(x, y), f(x1, y1)〉}. Since none of f(x, y), g(h(a)), f(x, y), f(x1, y1) is
a normal form of R, we conclude that R (and hence Rshallow) is UNC.

In the subsequent sections, we prove the correctness of our decision procedure, and report
its complexity analysis and the result of experiments.

4 Constant Propagation Class

In the previous section, we introduced CPNF that finds witnesses that are equivalent to
constants. In this section, we introduce a notion of constant propagation class, a key notion
that acts as a mediator between CPNF and constant-equivalent witnesses.
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In subsequent sections, we fix a TRS R that is consistent and flat, and its completion
ÊR. For convenience, we also use R and ÊR as if they are closed under renaming, i.e. we
assume R (ÊR) includes all the rules (resp. equations) whose variables are renamed, and use
ÊR as if it contains trivial equations c ≈ c (c ∈ C).

I Definition 17 (constant expansion). A term t is obtained from s by a constant expansion,
written as s −⇀

ÊR
t, if there exists c ∈ C with c ≈ r ∈ ÊR and a position p such that s|p = c,

t = s[r]p and V(r) ∩ V(s) = ∅.

Henceforth, we will omit the subscript ÊR of s −⇀
ÊR

t. Clearly, t −⇀ t′ implies t↔ t′.

I Example 18. Let R and ÊR be given as in Example 3 (enhanced by trivial equations and
renamed rules, as explained). Then we have a −⇀ a, a −⇀ b, a −⇀ f(x, c, d) −⇀ f(x, c, h(a)) −⇀
f(x, c, h(f(y, c, d))), and a −⇀ f(x, c, d) −⇀ f(x, c, h(b)) −⇀ f(x, c, h(a)) −⇀ f(x, g(d), h(a)).

For any r ∈ Tf , we have r ∗−⇀ t iff r ∗−⇀>ε t, and hence r ∗−⇀ t implies root(r) = root(t).
This motivates us to introduce a term class parameterized by c ∈ C and r ∈ Tf as follows.

I Definition 19 (constant propagation class). Let c ∈ C, r ∈ T . Define the constant propaga-
tion class (CPC) of the pair 〈c, r〉 as follows:

CP(c, r) = {t | r ∈ Tf , c ≈ r ∈ ÊR, ∃t′ s.t. c −⇀ r
∗−⇀ t′ 6 t}

Remark that t ∈ CP(c, r) implies that t ∈ Tf and root(t) = root(r).

I Example 20. Let ÊR be as in Example 18. Then, f(b, c, h(f(x, c, d))) ∈ CP(a, f(x, c, d)) as
a −⇀ f(x, c, d) ∗−⇀ f(x, c, h(f(y, c, d))) 6 f(b, c, h(f(x, c, d))).

Next lemma shows that the class CP(c, r) is invariant under renaming.

I Lemma 21. Let c ∈ C, r ∈ Tf , and assume c ≈ r ∈ ÊR. Then, CP(c, r) = {t |
∃t′, σα s.t. c −⇀ σα(r) ∗−⇀ t′ 6 t}, and hence CP(c, r) = CP(c, σα(r)).

The invariance of the CP(c, r) can be extended further than renaming. Firstly, CP(c, r)
and [[c]] share the following property.

I Lemma 22. Let t ∈ CP(c, r) ∪ [[c]]. Then, (1) c ∗−⇀ t′ 6 t for some t′, and (2) c ∗←→ t.

We are now going to show that any CPC is preserved under ' (Theorem 25).

I Lemma 23. Let c, c′ ∈ C and r, r′ ∈ Tf . (1) c ' c′ iff c ≈ c′ ∈ ÊR. (2) If r ' r′ then
c ≈ r ∈ ÊR iff c ≈ r′ ∈ ÊR.

I Lemma 24. Let c, c′ ∈ C and r, r′ ∈ Tf . (1) If c ' c′ then c −⇀ c′. (2) If c ' c′, then
c −⇀ r iff c′ −⇀ r. (3) If c ' c′ and r ' r′, then c −⇀ r iff c′ −⇀ r′. (4) If r ' r′ then there
exists σα such that σα(r′) ∗−⇀ r.

I Theorem 25 (preservation of CPCs by '). CPCs are preserved by ', i.e. if c ' c′ and
r ' r′ then CP(c, r) = CP(c′, r′). In particular, CP(c, r) = CP(ĉ, r̂).

Proof. Use above four lemmas and Proposition 4. See appendix for the detail. J

Before ending the section, we relate SubMinWitR and CPCs.

I Theorem 26. Let c ∈ C and t ∈ SubMinWitR such that c ∗←→ t. Then, there exists a term
r such that t ∈ CP(c, r) ∪ [[c]]. Hence, t ∈ CP(ĉ, r̂) ∪ [[ĉ]].
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Proof. The proof proceeds by induction on h = height(t). Let c ∈ C and t ∈ SubMinWitR,
and assume c ∗←→ t.
1. (B.S.) Suppose h = 0. Then t ∈ C ∪ V holds. It follows from the consistency of R that

t ∈ C. Since c ∗←→ t, we have c ' t. Thus t ∈ [[c]].
2. (I.S.) By h > 0, we have t /∈ [[c]]. From c

∗←→ t and Proposition 4, it follows that we have

c↔ε f(s′1, . . . , s′n) ∗←→>ε f(t1, . . . , tn) = t.

Let c↔ f(s1, . . . , sn) ∈ ÊR be the rule used at the rewrite step c↔ε f(s′1, . . . , s′n). Then,
there exists a substitution σ such that f(σ(s1), . . . , σ(sn)) = f(s′1, . . . , s′n) and σ(si)

∗←→ ti
(1 ≤ i ≤ n). Now, define ui and σi such that si

∗−⇀ ui, σi(ui) = ti (i = 1, . . . , n) so that⋃
i σi is well-defined, according to the following case distinction:

a. Case si = ci ∈ C. Then, σ(si) = ci
∗←→ ti holds. From consistency of R, we know

ti /∈ V. By ci
∗←→ ti and ti ∈ SubMinWitR, it follows from induction hypothesis that

there exists ri such that ti ∈ CP(ci, ri) ∪ [[ci]].
i. Case ti ∈ [[ci]]. Put ui = ti and σi = {} (the identity substitution). Then
si = ci ' ti = ui, and hence we have si −⇀ ui by Lemma 24. Clearly, σi(ui) = ti
and V(ui) = ∅.

ii. Case ti ∈ CP(ci, ri). Then, ri ∈ Tf holds. From Lemma 21, ci −⇀ σαi
(ri)

∗−⇀ t′i 6 ti
for some t′i and σαi

such that the variables in σαi
(ri) or t′i are fresh. Put ui = t′i

and take σi as a substitution such that σi(t′i) = ti. Clearly, we have si = ci
∗−⇀ ui

and σi(ui) = ti. Furthermore, variables in dom(σi) and V(ui) are fresh.
b. Case ri ∈ V. Put ui = ri and σi = {ui := ti}. Clearly, we have ri

∗−⇀ ui and
σi(ui) = ti.

Now, we show the substitution σ =
⋃

1≤i≤n σi is well-defined. From the construction, it
is clear that it suffices to show tp = tq whenever sp = sq ∈ V (1 ≤ p, q ≤ n). If sp = sq,
then tp

∗←→ σ(sp) = σ(sq)
∗←→ tq holds. Then, since t ∈ SubMinWitR, we have tp = tq by

Proposition 5. Hence, σ is well-defined. Now we have c −⇀ f(s1, . . . , sn) ∗−⇀ f(u1, . . . , un)
and σ(f(u1, . . . , un)) = t. Thus, t ∈ CP(c, f(s1, . . . , sn)).

Thus, there exists r such that t ∈ CP(c, r) ∪ [[c]]. Also, t ∈ CP(ĉ, r̂) ∪ [[ĉ]] by Theorem 25. J

5 Correctness of Constant Propagation Algorithm

In this section, we describe the correctness of Constant Propagation Algorithm given in
Figure 2, which checks whether there exists a minimal witness that is equivalent to a constant.

Because of the main loop, termination of the algorithm needs to be clarified.

I Lemma 27. CP algorithm terminates.

The following properties of elements in CPNF are immediate from the definition.

I Lemma 28. Let t ∈ C ∩NF . Then, t ∈ [[ĉ]] iff (ĉ, ĉ, t, 0) ∈ CPNF .

I Lemma 29. Let (ĉ, r̂, t, h) ∈ CPNF . Then, (1) height(t) = h, (2) root(r̂) = root(t), (3)
r̂|i ∈ V ⇒ r̂|i = t|i for each i ∈ N, (4) t ∈ NF , and (5) t /∈ V.

Further properties are established as well.

I Lemma 30. Let (ĉ, r̂, t, h) ∈ CPNF . Then, (1) ĉ −⇀ r̂
∗−⇀ t, (2) if h > 0 then t ∈ CP(ĉ, r̂),

and (3) ĉ ∗←→ t.
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From the previous lemma and Lemma 28, (ĉ, r̂, t, h) ∈ CPNF implies t ∈ CP(ĉ, r̂) ∪ [[ĉ]].
We now consider the reverse direction. In fact, we have already shown the case t ∈ [[ĉ]] in
Lemma 28. For the case t ∈ CP(ĉ, r̂), we need a further assumption that t ∈ SubMinWitR.

I Lemma 31. Let t ∈ SubMinWitR ∩ CP(ĉ, r̂). Then, (ĉ, r̂, t′, h′) ∈ CPNF for some t′ and
h′ ≤ height(t).

A final property of elements in CPNF we need is a kind of injectivity.

I Lemma 32. Suppose (ĉs, r̂s, s, hs), (ĉt, r̂t, t, ht) ∈ CPNF . Then s = t implies ĉs = ĉt and
r̂s = r̂t.

Now we arrive at the main result of this section – CPNF gives a necessary and sufficient
criteria to find a minimal witness equivalent to a constant.

I Theorem 33. There exists a witness that is equivalent to a constant iff CPNF is incon-
sistent.

Proof. (⇒) Let 〈u, v〉 be a minimal witness that is equivalent to a constant c. We have
c
∗←→ u, c ∗←→ v, u 6= v and u, v ∈ NF . From Theorem 26, there exists ru, rv such that

u ∈ CP(ĉ, r̂u) ∪ [[ĉ]] and v ∈ CP(ĉ, r̂v) ∪ [[ĉ]]. We distinguish four cases:
1. Case u ∈ [[ĉ]] and v ∈ [[ĉ]]. From Lemma 28, we have (ĉ, ĉ, u, 0), (ĉ, ĉ, v, 0) ∈ CPNF . Since

u 6= v, the claim holds.
2. Case u ∈ CP(ĉ, r̂u) and v ∈ [[ĉ]]. From Lemma 31, there exists u′ ∈ CP(ĉ, r̂u) such that

(ĉ, r̂u, u′, h′u) ∈ CPNF . From Lemma 28, we have (ĉ, ĉ, v, 0) ∈ CPNF . Since r̂u /∈ C, ĉ 6= r̂u
holds. Hence Lemma 32 leads u′ 6= v.

3. Case u ∈ [[ĉ]] and v ∈ CP(ĉ, r̂v). Similar to the previous case.
4. Case u ∈ CP(ĉ, r̂u) and v ∈ CP(ĉ, r̂v). If (ĉ, r̂u) 6= (ĉ, r̂v), then u 6= v by Lemma 32. So,

suppose otherwise, i.e. (ĉ, r̂u) = (ĉ, r̂v). By r̂u = r̂v, root(u) = root(r̂u) = root(r̂v) =
root(v). Thus, one can let u = f(tu,1, . . . , tu,n), v = f(tv,1, . . . , tv,n) and r̂u = r̂v =
f(s1, . . . , sn). Then, there exist u′, v′ ∈ Tf , σu, σv ∈ Σ such that

c −⇀ f(s1, . . . , sn) ∗−⇀ f(u1, . . . , un) = u′, σu(u′) = u,

c −⇀ f(s1, . . . , sn) ∗−⇀ f(v1, . . . , vn) = v′, σv(v′) = v

where si
∗−⇀ ui, si

∗−⇀ vi for all 1 ≤ i ≤ n. Since u 6= v, σu(ui) 6= σv(vi) for some 1 ≤ i ≤ n.
Assume σu(ui) 6= σv(vi). Suppose si ∈ C. Then, we have σu(ui)

∗←→ si
∗←→ σv(vi). Since

σu(ui), σv(vi) ∈ NF , 〈σu(ui), σv(vi)〉 is a witness equivalent to the constant si. This
violates the minimality of 〈u, v〉. Hence si ∈ V. Now, as u ∈ SubMinWitR ∩ CP(ĉ, r̂u),
there exists u′ ∈ CP(ĉ, r̂u) ∪ [[ĉ]] such that (ĉ, r̂u, u′, h′u) ∈ CPNF by Lemma 31. Because
of si ∈ V , we have si = r̂u|i = u′|i by Lemma 29. Hence u′ has a direct variable subterm.

(⇐) Suppose (i) of the definition of CPNF holds. One can take σα such that σα(t) 6= t.
Then 〈t, σα(t)〉 is a witness as t, σα(t) ∈ NF and t ∗←→ c

∗←→ σα(t). Suppose (ii) holds. Then
s, t ∈ NF by Lemma 29 and s ∗←→ ĉ

∗←→ t by Lemma 30. Thus 〈s, t〉 is a witness. J

Before ending the section, we present a property regarding TCP (see Definition 14).

I Lemma 34. Suppose CPNF is consistent. Then, (1) for any s, t ∈ TCP ∪V, s ∗←→ t implies
s = t. (2) Suppose c ∗←→ t for c ∈ C and t ∈ SubMinWitR. Then, there exists a unique
s ∈ TCP such that c ∗←→ s.

FSCD 2020



11:12 A Fast Decision Procedure for UNC of Shallow TRSs

6 Minimal Witness that is Not Equivalent to a Constant

In the previous section, a sufficient criteria for having a minimal witness that is equivalent a
constant is obtained. In this section, we turn our attention to the check whether there exists
a witness that is not equivalent to a constant.

We use the following result of [17] as our starting point. For each term t, one can assign
a variable xt in such a way that xs = xt if and only if s ∗←→ t. Using this convention, the
following definition is given.

I Definition 35 ([17]). Let δ and ψ be defined as follows: (1) δ(t) = t if t is equivalent to a
constant, and δ(t) = xt otherwise. (2) ψ(t) = t if t ∈ C ∪ V, and ψ(t) = f(δ(t1), . . . , δ(tn)) if
t = f(t1, . . . , tn) (n ≥ 1).

I Proposition 36 ([17]). Let 〈s, t〉 be a minimal witness that is not equivalent to a constant.
Then, either 〈ψ(s), y〉, 〈y, ψ(t)〉 or 〈ψ(s), ψ(t)〉 is a witness for some variable y.

We first refine δ so that the candidates of δ(t) form a smaller set. As we focus the case
that there is no witness that is equivalent a constant, for the rest of the section, we suppose
CPNF is consistent. We refine δ to δ′ by substituting a unique term t̃ for δ′(t) (see section
3.3); the existence of such a term is guaranteed for t ∈ SubMinWitR by our assumption just
given and Lemma 34.

I Definition 37. Let δ′ and ψ′ be defined as follows: (1) δ′(t) = t̃ if t is equivalent to a
constant, and δ′(t) = xt otherwise. (2) ψ′(t) = t if t ∈ C ∪V, and ψ′(t) = f(δ′(t1), . . . , δ′(tn))
if t = f(t1, . . . , tn) (n ≥ 1).

The following lemma is readily checked.

I Lemma 38. Let t ∈ SubMinWitR. (1) Then, root(t) = root(ψ(t)) = root(ψ′(t)). (2) If
t ∈ Tf and ψ(t)|i ∈ V then ψ(t)|i = ψ′(t)|i for all i ∈ N. (3) If t ∈ Tf , then ψ(t)|i

∗←→ ψ′(t)|i
for all i ∈ N. (4) We have ψ(t) ∗←→ ψ′(t).

A further property of ψ′ is as follows.

I Lemma 39. Let 〈s, t〉 be a minimal witness that is not equivalent to a constant. Then,
s /∈ V (t /∈ V) implies ψ′(s) ∈ NF (resp. ψ′(t) ∈ NF).

We can now refine Proposition 36 as follows.

I Lemma 40. Let 〈s, t〉 be a minimal witness that is not equivalent to a constant. Then,
either 〈ψ′(s), y〉, 〈y, ψ′(t)〉 or 〈ψ′(s), ψ′(t)〉 is a witness for some variable y.

The definition of ψ′ gives rise to the following characterization of terms.

I Definition 41. We define TCP
f = {f(t1, . . . , tn) | ti ∈ TCP ∪ V for all i}.

The following lemma will be used later.

I Lemma 42. Let 〈s, t〉 be a witness such that s, t ∈ TCP
f ∪ V. Then, there exists a proof

s
∗←→ t which has precisely one root rewrite step using a non-trivial equation.

CW (Definition 15) is now used to further restrict the witnesses class. Because ÊR is
finite, CW is a finite set, and it can be checked whether an element of CW is a witness:

I Lemma 43. Let 〈s, t〉 ∈ CW . Then, 〈s, t〉 is a witness if and only if s, t ∈ NF and s 6= t.
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We now arrive at the main result of this section that a witness (if it exists) can be found
in CW , if there is no minimal witness equivalent to a constant.

I Theorem 44. Suppose CPNF is consistent. If there exists a minimal witness that is not
equivalent to a constant, then there exists a witness in CW .

Proof. We show that if there exists a witness 〈s, t〉 such that s, t ∈ (TCP
f ∩ NF) ∪ V

then there exists a witness 〈s′, t′〉 ∈ CW . Then the claim follows from Lemma 40, as
ψ′(s), ψ′(t) ∈ TCP

f ∩NF by Lemma 39. Let 〈s, t〉 be a witness such that s, t ∈ (TCP
f ∩NF)∪V .

Then, w.l.o.g. one can suppose (a) s = f(u1, . . . , um) and t = g(um+1, . . . , um+n), or (b)
s = f(u1, . . . , um) and t = um+1 ∈ V. Now, we repeatedly refine the witness 〈s, t〉 until we
get a desired witness 〈s′, t′〉 ∈ CW .

We first describe one step refinement from 〈s, t〉 to 〈s′, t′〉 for the case (a). Suppose
s, t ∈ TCP

f ∩NF with s = f(u1, . . . , um) and t = g(um+1, . . . , vm+n).
By Lemma 42, there exist f(µ1, . . . , µm), g(µm+1, . . . , µm+n) such that

s
∗←→>ε f(µ1, . . . , µm)↔ε g(µm+1, . . . , µm+n) ∗←→>ε t

Let f(s1, . . . , sm) ≈ g(sm+1, . . . , sm+n) ∈ ÊR be the equation used in the root rewrite step.
Then, there exists a substitution σ such that ui

∗←→ µi = σ(si) for all 1 ≤ i ≤ m+n. Suppose
there exists si ∈ V either ui = µi ∈ V does not hold, or there exists j such that si 6= sj and
µi = µj . If there is no such si, the refining step stops.

Let {k1, . . . kp} = {j ∈ N | si = sj}. Then, we have uk1
∗←→ uk2

∗←→ · · · ∗←→ ukp . Since
s, t ∈ TCP

f , uk1 , . . . , ukp
∈ TCP ∪ V. Thus, Lemma 34 yields uk1 = · · · = ukp

. Now, take a
fresh variable x, and let u′j , µ′j be x for all j ∈ {k1, . . . kp} and uj , µj , respectively, otherwise.
Then we obtain a proof

s′
∗←→>ε f(µ′1, . . . , µ′m)↔ε g(µ′m+1, . . . , µ

′
m+n) ∗←→>ε t′

where s′ = f(u′1, . . . , u′m) and t′ = g(u′m+1, . . . , u
′
m+n).

By construction, it is clear that s′, t′ ∈ TCP
f . Since s ∈ NF and Patt(s′) ⊆ Patt(s),

we have s′ ∈ NF by Lemma 2. Similarly, t′ ∈ NF . Thus, 〈s′, t′〉 is a witness such that
s′, t′ ∈ TCP

f ∩NF .
Next, we describe one step refinement from 〈s, t〉 to 〈s′, t′〉 for the case (b). So, assume

s = f(u1, . . . , um), t = um+1 ∈ V with s ∈ TCP
f ∩NF .

By Lemma 42, there exists f(µ1, . . . , µm) such that

s = f(u1, . . . , um) ∗←→>ε f(µ1, . . . , µm)↔ε t

Suppose the equation f(s1, . . . , sm) ≈ sm+1 ∈ ÊR was used for the root rewrite. Suppose
there exists si ∈ V such that either ui = µi ∈ V does not hold, or there exists j such that
si 6= sj and µi = µj . Then, similar to the case (a), one can obtain a witness 〈s′, t′〉 such that
s′ ∈ TCP

f ∩NF and t′ ∈ V.
Since 〈s′, t′〉 is a witness such that s′, t′ ∈ (TCP

f ∩NF) ∪ V, we can repeatedly apply the
refinement step above. Since one can iterates the refining steps at most n+m-times, eventually
one obtains a witness 〈s′′, t′′〉 so that, for some equation f(s1, . . . , sm) ≈ g(t1, . . . , tn) ∈ ÊR
(note the all renaming equations are in ÊR), s′′|i ∈ TCP ∪ V, s′′|i = si if si ∈ V, and
s′′|i

∗←→ si if si ∈ C for all 1 ≤ i ≤ m, and similarly for all ti’s.
Furthermore, since there are no (ĉ, r̂s, s, hs), (ĉ, r̂t, t, ht) ∈ CPNF such that s 6= t, we have

s′′ = ψ′′(f(s1, . . . , sm)), t′′ = ψ′′(g(t1, . . . , tn)). Hence, 〈s′′, t′′〉 ∈ CW . J
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Table 1 Construction of CPNF by CP algorithm.

ĉ r̂ (or ĉ) normal forms h

a a b 0
f(x, c, d)

c c - -
g(d)

d d d 0
h(a)

e e - -
g(e)

(CP table after Step 2)

ĉ r̂ (or ĉ) normal forms h

a
a b 0

f(x, c, d) f(x, g(d), d) 2
f(x, g(d), h(b)) 2

c c - -
g(d) g(d) 1

d d d 0
h(a) h(b) 1

e e - -
g(e)

(Final CP table)

7 Correctness of the Decision Procedure and Its Complexity

Combining preparations in the previous sections, we now show the correctness of the decision
procedure for the UNC property of shallow TRSs in Figure 1. The following is immediate.

I Lemma 45. The procedure given in Figure 1 terminates.

Our main theorem follows from Theorems 33 and 44.

I Theorem 46. It can be decided whether a given shallow TRS is UNC or not, by the
procedure given in Figure 1.

We now analyze the complexity of our algorithm. Following [17], the complexity of the
algorithm is evaluated in terms of the number of rules in the flat TRS R, and we omit the
cost of constructing ÊR.

In Section 3, we give a set-based description of the constant propagation algorithm. To
evaluate the complexity, we introduce a data structure CP table as illustrated in the following
example.

I Example 47. Let R and ÊR be as in Example 12. One can obtain CPNF as in Table 1
according to following procedure:
1. Enumerate all constants in Ĉ and fill the first column of the table.
2. For all ĉ ∈ Ĉ, enumerate all elements of [[ĉ]] and all equations ĉ ≈ r̂ ∈ ÊR (r /∈ C) to fill

the second column.
3. Fill the 1st, 3rd, 5th and 7th rows according to CPNF := {(ĉ, ĉ, c, 0) | c ∈ C ∩NF}.
4. When an element (ĉ, r̂, t,H) is added to CPNF in the main loop of the algorithm, fill the

third and forth columns with t,H whose first and second columns correspond to ĉ ≈ r̂.
The table is referred to as a CP table. A row of the CP table with non-empty third column
corresponds an element of CPNF . Thus, χH(ĉ) is given by look up of the third columns of
the rows with h < H and having ĉ at the first column.

I Theorem 48. The procedure in Figure 1 runs in O(α|R|4α+5), where α is the maximal
arity of function symbols and |R| is the number of rules in R.

Proof. Let R be the flat TRS obtained by the transformation from the input shallow TRS,
and ÊR the completion of ER. Let N = |R| and M = |ÊR|.
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Let us first evaluate the CP algorithm. If the set Xtmp is non-empty, then Xi,r̂ is non-
empty for some i, r̂. Thus in each iteration of the main loop, the number of Yĉi

reduces for
some i. As

∑
i |Yĉi

| ≤M , the number of iterations of the main loop is bounded by M .
In each iteration, the calculation of χH is replaced with the look up of the CP table for

calculating CPNF (Table 1) Each pair 〈ĉ, r̂〉 in the table is from an equation c ≈ r ∈ ÊR. If
one finds two normal forms for the pair 〈ĉ, r̂〉, during the construction of the CP table, then
one can stop the construction and output a counter example. Thus, the height of the CP
table is bounded by the number of such pairs, i.e. by M . The calculation of a candidate of
new normal form f(u′1, . . . , u′n) is done by representing non-variable direct subterms of r̂ as
a pointer to an entry of the CP table. Then, one has to check the candidate f(u′1, . . . , u′n)
is whether a normal form; as as u′1, . . . , u′n are normal forms and R is flat, this is done in
O(αN). Note that each non-variable u′i can be identified as a pointer to an entry of the CP
table. Thus, the calculation of each entry of the CP table is done in O(αN).

Thus, each iteration of the main loop is bounded by O(αNM), and hence the CP
algorithm is bounded by O(αNM2). During the construction of the CP table the checks in
Step 3 can be done in O(1). Thus, this accounts the complexity of the Steps 2, 3.

For the Step 4, first note that computing c̃ costs M . Thus, computing ψ′′(t) costs at
most αM . Since the size of CW is at most M , one needs O(αM2) for computing the set
CW . For each 〈s, t〉 ∈ CW , checking whether s, t ∈ NF needs O(αN), and checking whether
s 6= t needs O(α), Since the size of CW is at most M , checking the existence of a witness in
CW costs O(αNM). Thus, the Step 4 runs in O(αM2 + αNM).

Thus, the complexity is dominated by Step 1, that is, O(αNM2). Now it is known that
M is bounded by O(N2α+2) [17]. Hence, we conclude that the complexity of the algorithm
is O(αN4α+5). J

I Remark 49. It is shown in [17] that the complexity of the algorithm given there is
O(|R|2α+2(|R|+ (|F|+ β + 1)O(βα|C|)), where β = O(max(α, |C| − 1))). This is of the form
O(N(M + L)) where L is the number of candidates for witnesses (and N,M as in the proof
above). This complexity comes from check s 6= t of the candidates 〈s, t〉 of the witnesses. In
their algorithm, the complexity of the candidates construction part O(αML) does not affect
the final complexity. In contrast, our complexity comes from the candidates construction
part O(αNM2). In this view, a large set L of candidates is reduced to a set of size O(NM)
in our algorithm, and the witness checking part is omittable in contrast.

8 Implementations and Experiments

We have implemented our decision procedure, as well as the existing one described in [17].
We use the functional programming language SML/NJ for the implementations.

We have prepared 13 shallow TRSs which covers various situations of the algorithm for
our experiments. The timeout was set to 300 seconds. When the execution exceeds 300
seconds, we regard the decision was failed, and we write the execution time as ∞. Our
computer used for the experiments has Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz and
4GB memory. Standard ML of New Jersey of v110.79 has been used.

A summary of the experiments is shown in Table 2. Here, “YES” stands for UNC and
“NO” stands for Non-UNC; when it cannot judge UNC by timeout, the result is shown
as “ - ”. WEC stands for “a witness equivalent to a constant.” The results show that our
procedure can judge UNC for all examples 1–13. On the other hand, the existing procedure
cannot for examples 7–9,11, because the execution time sharply increased as the rules become
complicated. Furthermore, except for very simple examples, the proposed procedure was
able to run significantly faster than the existing method.
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Table 2 A summary of experiments on examples for various situations.

Procedure of [17] Proposed procedure
TRS Result Time(s) Result Time(s) features of the TRS
R1 NO 0.003 NO 0.001 signature with only constants
R2 NO 0.177 NO 0.002 flat with WEC
R3 NO 0.001 NO 0.000 flat without WEC
R4 YES 0.001 YES 0.001 flat, simple, UNC
R5 NO 0.000 NO 0.000 inconsistent
R6 YES 0.868 YES 0.000 shallow, simple, height 2
R7 - ∞ YES 0.000 shallow, simple, height 3
R8 - ∞ NO 0.014 shallow, complex, with WEC
R9 - ∞ NO 0.013 shallow, complex, without WEC
R10 YES 0.004 YES 0.001 shallow, simple, UNC
R11 - ∞ YES 0.011 shallow, complex, UNC
R12 NO 0.003 NO 0.001 non-linear, Non-UNC
R13 YES 0.900 YES 0.000 non-linear, UNC

Table 3 A summary of experiments on problems from Cops.

Procedure of [17] Proposed procedure
Result Num of examples Num of examples
YES 38 94
NO 18 45

timeout 90 7

We have also tested how procedures fare for the problems from the Cops (confluence
problems) database2. At the time of the experiment, the database consists of 1137 problems,
containing 146 shallow TRSs in it. The timeout was set to 60 sec., which is the timeout used
in the Confluence Competition. A summary of the experiments is shown in Table 3. Our
procedure succeeds 139 examples and have 7 timeouts, while the previous procedure succeeds
56 examples and have 90 timeouts. Our decision procedure has been also incorporated to
the confluence tool ACP [5], which have won the category of UNC in the 2019 edition of
Confluence Competition (CoCo 2019)3.

Our implementations as well as the details of the experiments can be found in the webpage
http://www.nue.ie.niigata-u.ac.jp/experiments/fscd20/.

9 Conclusion

In this paper, we have proposed a new decision procedure for the UNC property of shallow
TRSs. We have introduced a constant propagation algorithm that efficiently constructs
candidates of counter examples that are equivalent to a constant. Those candidates have been
also used to construct candidates of counter examples that are not equivalent to a constant
either. Thus, a large enumeration of candidates for counter examples have been avoided, in
contrast to the existing algorithm of [17]. The correctness of the proposed procedure has

2 https://cops.uibk.ac.at/
3 http://project-coco.uibk.ac.at/2019/

http://www.nue.ie.niigata-u.ac.jp/experiments/fscd20/
https://cops.uibk.ac.at/
http://project-coco.uibk.ac.at/2019/
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been proved and its complexity has been analyzed. Furthermore, we have implemented the
proposed decision procedure and the existing one, and it has been experimentally confirmed
that the proposed procedure runs much faster than the existing procedure.
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A Omitted Proofs

Proof of Lemma 6. Let t = f(t1, . . . , tn). Then there exists a minimal witness 〈u, v〉 such
that t is a subterm of u or v. Assume ti

∗←→ c ∈ C ∩ NF with ti 6= c. From u, v ∈ NF , we
know ti ∈ NF . Thus, 〈ti, c〉 is a witness. But, as |ti|+ |c| = |ti|+ 1 < |t|+ 1 ≤ |u|+ |v|, this
contradicts the minimality of 〈u, v〉. J

Proof of Lemma 21. Note that, by our convention, c ≈ r ∈ ÊR iff c ≈ σα(r) ∈ ÊR. (⊆)
Clear. (⊇) Observe σα(r) ∗−⇀ t′ implies r ∗−⇀ σ−1

α (t′) 6 t′ 6 t. J

Prof of Lemma 22. (1) For t ∈ [[c]], we have t ∈ C by the definition, and thus, c ↔ t or
c = t by Proposition 4 (1). For t ∈ CP(c, r), it is clear from the definition. (2) From
(1), we have c ∗−⇀ t′ 6 t. Hence we have c ∗←→ t′ and σ(t′) = t for some σ. Therefore,
c = cσ

∗←→ t′σ = t. J

Proof of Lemma 23. (1) follows immediately from Proposition 4 and our convention that
c ≈ c ∈ ÊR for c ∈ C. (2) is a consequence of (1) and the inference rule (3) for Ê ([8], p. 160)
and by our convention that ÊR is closed under renaming. J

Proof of Lemma 24. (1) By Lemma 23. (2) By Proposition 4. (3) Use (2) and Lemma 23.
(4) Then r = f(s1, . . . , sn), r′ = f(t1, . . . , tn) (n ≥ 1), and there exists σα such that
si = σα(ti) for all si ∈ V, and si ' ti for all si ∈ C. From (1), ti −⇀ si for all si ∈ C. Thus,
σα(r′) ∗−⇀ r. J

Proof of Theorem 25. By the definition of CPC, we only consider the case c, c′ ∈ C. Since
r ' r′, we have either (a) r, r′ ∈ V , (b) r, r′ ∈ C or (c) r, r′ ∈ Tf . For the cases (a), (b), we
have CP(c, r) = ∅ = CP(c, r) by the definition. Thus, assume furthermore, r, r′ ∈ Tf . It
suffices to show that (1) c ' c′ implies CP(c, r) = CP(c′, r) for any r ∈ Tf , and (2) r ' r′

implies CP(c, r) = CP(c, r′) for any c ∈ C. (1) follows from Proposition 4. (2) Suppose r ' r′.
Then, by Lemma 24, σα(r′) ∗−⇀ r for some σα. Furthermore, from r ' r′, we have c ≈ r ∈ ÊR
iff c ≈ r′ ∈ ÊR by Lemma 23. Suppose t ∈ CP(c, r). Then, we have c −⇀ r

∗−⇀ t′ 6 t for some
t′. Hence c −⇀ σα(r′) ∗−⇀ t′ 6 t. Thus, by Lemma 21, we obtain t ∈ CP(c, r′). J

Proof of Lemma 27. k =
∑m
i=1 |Yĉi | is finite for H = 0, and the algorithm decreases k in

each iteration of the main loop. J

Proof of Lemma 30. (1) The proof proceeds by induction on h. (B.S.) Then r̂ = ĉ and t = c.
Thus ĉ ' t and the claim follows by Lemma 24. (I.S.) By Lemma 29, let r̂ = f(û1, . . . , ûn),
t = f(u′1, . . . , u′n). As r̂ ∈ Yĉ, we have ĉ ≈ r ∈ ÊR, and thus, ĉ ≈ r̂ ∈ ÊR by Lemma 24.
Hence ĉ −⇀ r̂. Consider the relation between ûi and u′i, according to the following case
distinction:
1. Case ûi ∈ V. Then, by Lemma 29, u′i = ûi.

https://doi.org/10.4230/LIPIcs.FSCD.2016.36
https://doi.org/10.1007/s00200-010-0133-1
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2. Case ûi ∈ C. Then, by the definition of χH , either (a) (ûi, r̂i, u′i, h′i) ∈ CPNF for some
r̂i and h′i < hi or (b) ûi = u′i. In the former case, we have ûi −⇀ r̂i

∗−⇀ u′i by induction
hypothesis. In the latter case, ûi

∗−⇀ u′i trivially.
Thus, ĉ −⇀ r̂ = f(û1, . . . , ûn) ∗−⇀ f(u′1, . . . , u′n) = t. (2) If h > 0, then r̂ ∈ Tf by Lemma 29,
and thus the claim follows from (1). (3) is also clear from (1). J

Proof of Lemma 31. The proof proceeds by induction on h = height(t). Let
t ∈ SubMinWitR ∩CP(ĉ, r̂). (B.S.) By t ∈ CP(ĉ, r̂), we have h > 0. Thus, the claim trivially
holds. (I.S.) By the definition of CPC, one can let r̂ = f(s1, . . . , sn) and t = f(t1, . . . , tn),
and for some u = f(u1, . . . , un),

c −⇀ε f(s1, . . . , sn) ∗−⇀>ε f(u1, . . . , un) 6 f(t1, . . . , tn).

Let σ(f(u1, . . . , un)) = f(t1, . . . , tn). By si
∗←→ ui, we have σ(si)

∗←→ σ(ui) = ti. Now, define
t′i and hi (1 ≤ i ≤ n) according to the following case distinction:
1. Case si = ci ∈ C. Then, σ(si) = ci

∗←→ ti holds. Since R is consistent, ti /∈ V. Since
ti ∈ SubMinWitR, there exists r̂i such that ti ∈ CP(ĉi, r̂i) ∪ [[ĉi]] by Theorem 26.

Case ti ∈ [[ĉi]]. Put t′i = ti and hi = 0. Since ti ∈ C∩NF , we have (ĉi, ĉi, t′i, hi) ∈ CPNF
by Lemma 28.
Case ti ∈ CP(ĉi, r̂i). By induction hypothesis, there exists t′i ∈ CP(ĉi, r̂i) such that
(ĉi, r̂i, t′i, hi) ∈ CPNF with hi = height(t′i) ≤ height(ti) < h. By Lemmas 22 and 30,
we have ti

∗←→ ĉi
∗←→ t′i. Also, by Lemma 29, t′i ∈ NF .

2. Case si ∈ V. Put t′i = si and hi = 0.

Let t′ = f(t′1, . . . , t′n). We now derive t′ ∈ NF from t ∈ NF using Lemma 2. From the
definition, t′1, . . . , t′n ∈ NF . Clearly, t′|i = t|i whenever t′|i ∈ C. Also, root(t) = root(t′).
Thus, it remains to show Patt(t′) ⊆ Patt(t), i.e. ti = tj whenever t′i = t′j . Suppose t′i = t′j .

Case t′i = t′j /∈ V. Then si, sj ∈ C, and thus, ti
∗←→ t′i and tj

∗←→ t′j . Hence, ti
∗←→ t′i =

t′j
∗←→ tj . Then, since t ∈ SubMinWitR, Proposition 5 leads ti = tj .

Case t′i = t′j ∈ V. Then, si = t′i = t′j = sj ∈ V. Thus, we have ti
∗←→ σ(si) = σ(sj)

∗←→ tj .
Since t ∈ SubMinWitR, Proposition 5 leads ti = tj .

Thus, we obtain t′ ∈ NF . Also, h′ = height(t′) = 1 + max{height(t′i)}i ≤ h.
Since h′ = 1 + maxi h′i, there exists 1 ≤ j ≤ n such that hj = h′ − 1. Then (ĉj , r̂j , tj , hj)

is added to CPNF at H = h′ − 1 by Lemma 29. Thus, the main loop the CP algorithm
is performed at H = h′. Consider the main loop for H = h′. If r̂ /∈ Yĉ already, it is clear
that there exists t′′ and h′′ ∈ N such that (ĉ, r̂, t′′, h′′) ∈ CPNF (h′′ < h′). From Lemma 30,
we have t′′ ∈ CP(ĉ, r̂). Hence the claim established in this case. Suppose r̂ ∈ Yĉi

. Then,
by the construction above, si = t′i whenever si ∈ V, and (ŝi, r̂i, t′i, hi) ∈ CPNF (hi < h)
whenever si ∈ C. Also, t′ ∈ NF . Therefore, the main loop of the CP algorithm yields
(ĉ, r̂, t′, h′) ∈ CPNF . J

Proof of Lemma 32. Suppose (ĉs, r̂s, s, hs), (ĉt, r̂t, t, ht) ∈ CPNF and s= t. From Lemma 30,
we have ĉs

∗←→ s = t
∗←→ ĉt. Thus, ĉs ≈ ĉt, and hence ĉs = ĉt. By Lemma 30, s ∈

CP(ĉs, r̂s) ∪ [[ĉs]] and t ∈ CP(ĉs, r̂t) ∪ [[ĉs]]. We distinguish four cases:
1. Case s ∈ [[ĉs]] and t ∈ [[ĉs]]. Then, s, t ∈ C. Thus, hs = ht = 0 and r̂s = ĉs = ĉt = r̂t.
2. Case s ∈ [[ĉs]], t ∈ CP(ĉs, r̂t). Then height(s) > 0 = height(t), which contradicts s = t.
3. Case s ∈ CP(ĉs, r̂s), t ∈ [[ĉs]]. Similar to the previous case.

FSCD 2020



11:20 A Fast Decision Procedure for UNC of Shallow TRSs

4. Case s ∈ CP(ĉs, r̂s), t ∈ CP(ĉs, r̂t). From Lemma 30, we have ĉs −⇀ r̂s
∗−⇀ s and

ĉs −⇀ r̂t
∗−⇀ t. Thus root(r̂s) = root(s) = root(t) = root(r̂t). Thus, one can let

r̂s = f(u1, . . . , un), r̂t = f(v1, . . . , vn), s = f(s1, . . . , sn) = t. Furthermore, we have
ui

∗−⇀ si and vi
∗−⇀ si for all 1 ≤ i ≤ n. If si ∈ V then ui = si = vi by Lemma 29.

Suppose si /∈ V. Then, ui, vi ∈ C, and thus ûi = ui and v̂i = vi (as they are subterms
of r̂s, r̂t). Since ui

∗←→ si
∗←→ vi, we have ui ≈ vi, and hence ui = vi. Thus, we obtain

r̂s = f(u1, . . . , un) = f(v1, . . . , vn) = r̂t. J

Proof of Lemma 34. (1) Suppose s ∗←→ t. By Lemma 29, TCP ∩ V = ∅. Thus, we can
distinguish four cases. The case s, t ∈ TCP follows from the assumption, and the case s, t ∈ V
follows from the consistency of R. If s ∈ TCP and t ∈ V then (ĉ, r̂, s, hs) ∈ CPNF for some
ĉ, r̂, hs, and thus ĉ ∗←→ s

∗←→ t ∈ V by Lemma 30. This contradicts the consistency of R. The
case t ∈ TCP and s ∈ V follows similarly. (2) Suppose c ∗←→ t for c ∈ C and t ∈ SubMinWitR.
Then, by Theorem 26, t ∈ CP(c, r) ∪ [[c]]. Then, by Lemma 31, (ĉ, r̂, s,_) ∈ CPNF for some
s. Then, we have s ∈ TCP and c ∗←→ ĉ

∗←→ s by Lemma 30. If s′ ∈ TCP and c ∗←→ s′, then
s
∗←→ c

∗←→ s′, and thus s = s′ by (1). J

Proof of Lemma 38. (1), (2) are immediate. (3) If t|i is not equivalent to a constant, from
definitions of ψ and ψ′, we have ψ(t)|i = ψ′(t)|i. If t|i is equivalent to a constant c, we have
c
∗←→ t|i. From the definition of ψ, t|i = ψ(t)|i. Also, from the definition of ψ′, c ∗←→ ψ′(t)|i.

Hence ψ(t)|i
∗←→ ψ′(t)|i. (4) Clear from (1) and (3). J

Proof of Lemma 39. From Lemma 29, we have t′1, . . . , t′n ∈ NF . Thus it suffices to show
there’s no root rewrite step from ψ′(s). It is known that ψ(s) ∈ NF [17]; thus (as R is
flat) the claim follows if we have: (a) t′i ∈ C implies t′i = ti for all 1 ≤ i ≤ n and (b)
Patt(ψ′(s)) ⊆ Patt(ψ(s)). To show (a), suppose t′i ∈ C. Then t′i ∈ C ∩ NF . From Lemma
38, ti

∗←→ t′i holds. Also, by definition of ψ, ui = ti holds. Thus, ui = ti
∗←→ t′i ∈ C ∩ NF .

Since s = f(u1, . . . , un) ∈ SubMinWitR, ti = ui = t′i holds by Lemma 6. Next, we show (b).
Suppose t′i = t′j . We distinguish two cases:

Case t′i = t′j /∈ V. Then ui, uj are equivalent to constants, and hence ui = ti and uj = tj

by the definition of ψ. By ui = ti
∗←→ t′i = t′j

∗←→ tj = uj and s ∈ SubMinWitR, we obtain
ti = ui = uj = tj by Proposition 5.
Case t′i = t′j ∈ V. Then ti = t′i = t′j = tj by definitions of ψ and ψ′. J

Proof of Lemma 40. Let 〈s, t〉 be a minimal witness that is not equivalent to a constant.
By Proposition 36, either 〈ψ(s), y〉, 〈y, ψ(t)〉 or 〈ψ(s), ψ(t)〉 is a witness for some variable y.
By Lemma 38, ψ(s) ∗←→ ψ′(s) and ψ(t) ∗←→ ψ′(t) hold. We distinguish three cases.

Case 〈ψ(s), y〉 is a witness. Then ψ(s) /∈ V as R is consistent. By the definitions, we
have ψ(s) /∈ V iff s /∈ V iff ψ′(s) /∈ V, and thus ψ′(s) ∈ NF \ V by Lemma 39. Since
ψ′(s) ∗←→ ψ(s) ∗←→ y, 〈ψ′(s), y〉 is also a witness.
Case 〈y, ψ(t)〉 is a witness. Same as the previous case.
Case 〈ψ(s), ψ(t)〉 is a witness. If ψ(s) ∈ V or ψ(t) ∈ V, then one can use the same
argument as above. So, suppose ψ(s), ψ(t) /∈ V. Then, ψ′(s), ψ′(t) /∈ V as above, and
thus ψ′(s), ψ′(t) ∈ NF by Lemma 39. Since ψ′(s) ∗←→ ψ(s) ∗←→ ψ(t) ∗←→ ψ′(t), it remains
to show ψ′(s) 6= ψ′(t). If root(ψ(s)) 6= root(ψ(t)) or if ψ(s)|i 6= ψ(t)|i with ψ(s)|i ∈ V or
ψ(t)|i ∈ V for some i ∈ N, then it follows from Lemma 38 that ψ′(s) 6= ψ′(t). Consider
the case where roots of 〈ψ(s), ψ(t)〉 and all direct variable subterms are same. Then,
we have ψ(s)|i 6= ψ(t)|i and ψ(s)|i, ψ(t)|i /∈ V for some i ∈ N. Then by definition of ψ,
we have s|i = ψ(s)|i and t|i = ψ(t)|i. Thus, s|i 6= t|i. Then, if ψ′(s)|i = ψ′(t)|i, then
s|i = ψ(s)|i

∗←→ ψ′(s)|i = ψ′(t) ∗←→ ψ′(t)|i = t|i by Lemma 38. Then 〈s|i, t|i〉 becomes a
witness, which contradicts the minimaliy of 〈s, t〉. J
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Proof of Lemma 42. From Proposition 4, there exists a proof s ∗←→ t which has at most
one root rewrite step. Clearly, one can assume the root step by a trivial equation have
been removed. Suppose s ∗←→ t does not have a root rewrite step. Then, s = f(s1, . . . sn),
t = f(t1, . . . tn) and si

∗←→ ti for all 1 ≤ i ≤ n for some f and si, ti (1 ≤ i ≤ n). Then,
s, t ∈ TCP

f and hence si, ti ∈ TCP ∪ V for all 1 ≤ i ≤ n. Then, from Lemma 34, we know
si = ti for all 1 ≤ i ≤ n. Thus, s = f(s1, . . . sn) = f(t1, . . . tn) = t, but this contradicts that
〈s, t〉 is a witness. J

Proof of Lemma 43. Let 〈s, t〉 ∈ CW . Then, there exists l ≈ r ∈ ÊR such that ψ′′(l) = s

and ψ′′(r) = t. It immediately follows from the definition of ψ′′ that ψ′′(l) ∗←→ l and
r
∗←→ ψ′′(r). Hence s ∗←→ t. The claim is an easy consequence of this. J

Proof of Lemma 45. Step 1 terminates and a flat TRS R and a finite set ÊR is computed
[8, 20]. Step 2 terminates by Lemma 27, and a finite set CPNF is obtained. As the set CPNF
is finite, Step 3 terminates. As a consequence of Step 3, t̃ is defined uniquely. Thus, by the
finiteness of CPNF and ÊR, a finite set CW can be computed. By Lemma 43, one can check
whether there exists a witness in CW . Thus, Step 4 terminates. J

Proof of Theorem 46. It suffices to decide that the flat TRS R obtained by the transform-
ation has the UNC property or not. If R is inconsistent, then R is not UNC. In this case,
UNC is returned at the Step 1 of the procedure. For the rest of the procedure, one can
assume R is consistent. Suppose there exists (ĉ, r̂, t, h) ∈ CPNF such that t has a direct
variable subterm or there exist (ĉ, r̂s, s, hs), (ĉ, r̂t, t, ht) ∈ CPNF such that s 6= t. Then R is
not UNC by Theorem 33. In this case, Non-UNC is returned as the Step 3 of the procedure.
Suppose this does not hold. Then, by Theorem 33, there exists no minimal witness equivalent
to a constant. If there exists a minimal witness that is not equivalent to a constant, then
there exists a witness in CW by Theorem 44. Thus, in this case, Non-UNC is returned as
the Step 4 of the procedure. Suppose otherwise. Clearly, if a witness exists, then there exists
a minimal witness. Thus, one can conclude that there is no witness, and hence R has the
UNC property. In this case, UNC is returned as the Step 5 of the procedure. J
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B Examples in our Experiments

Bellow we present examples used in our experiments given in Table 2.

R1 = {a → b, a → c, c → c, d → c, d → e}
R2 = {f(x, a) → a, a → b}
R3 = {g(y) → f(x, y)}
R4 = {a → b, b → a, f(x, y) → a}
R5 = {a → b, b → a, f(x, y) → a, f(x, y) → z}
R6 = {f(g(a), y) → y}
R7 = {f(g(h(a)), y) → y}

R8 =
{

f(x, y) → a, f(k(l(a1, a2), a1, a3), y) → a, f(x, u) → a, a → g(b1, u, x), b1 → b,

b → h(x, d), h(y, d) → i(c), u → j(v)

}
R9 =

{
f(x, y) → a, f(k(l(a1, a2), a1, a3), y) → a, f(x, u) → a, a → g(b1, u), b1 → b
b → h(x, d), h(y, d) → i(c), u → j(v), m(x, x) → n(y)

}
R10 =

{
f(x, y) → g(h(a))

}
R11 =

{
f(x, y) → a, f(k(l(a1, a2), a1, a3), y) → a, f(x, u) → a, a → g(b1, u), b1 → b
b → h(x, d). h(y, d) → i(c), u → j(v)

}
R12 = {f(x) → g(a, x), f(x) → g(x, a), g(x, x) → f(x)}
R13 = {f(x, x) → g(x), f(a, b) → g(a)}

C Implementation of Existing Decision Procedure

Here, we briefly explain our implementation of the existing decision procedure [17] and
illustrate why it suffers a bottleneck of having a sheer number of candidates for the witness.

We use the following algorithm:
1. Transform a shallow TRS into a flat TRS R preserving UNC.
2. Calculate ÊR. (Here, the program also judges whether R is consistent.)
3. Add new constants Cnew to F of the size |Cnew| = 2 ∗ αh−1, where h = max(1, |C|) and

α = max{arity(f) | f ∈ F}.
4. Make all ground terms over F ∪ Cnew of height ≤ h.
5. Check whether there exists a pair of such terms that is a witness.

Below, we provide a (straight) estimation of the number of candidates for the witness for
our examples R6 and R7. These examples are very similar (see the previous section) but our
implementation of the existing procedure succeeds for R6 but fails for R7.

I Example 50. Consider the TRS R6. The UNC-preserving flatting translation makes the
following flat TRS {f(c0, x)→ x, g(a)→ c0}. Since we have h = |C| = 2 and α = 2, we add
2 ∗ 21 = 4 new constants. Hence, we consider ground terms over function symbols f, g and
2 + 4 = 6 constants. We have 6 ground terms of height 0. There are 6 ground terms of height
1 having root g and 6× 6 = 36 ground terms of height 1 having root f. Thus, the number
of ground terms of height ≤ 2 to be used to constructing the candidates is 6 + 6 + 42 = 48.
This means there are 48× 47 = 2, 256 candidates to be checked.

I Example 51. Consider the TRS R7. The UNC-preserving flatting translation makes the
following flat TRS {f(c1, x) → x, g(c0) → c1, h(a) → c0}. Since we have h = |C| = 3 and
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α = 2, we add 2 ∗ 22 = 8 new constants. Hence, we consider ground terms over function
symbols f, g and 3 + 8 = 11 constants. We have 11 ground terms of height 0. There are
11 ground terms of height 1 having root g, and 11 × 11 = 121 ground terms of height 1
having root f. Thus, the number of ground terms of height 1 to be used is 11 + 121 = 132.
There are 132 ground terms of height 2 having root g. Now we calculate the number of
ground terms of height 2 having root f distinguishing three cases. The number of terms
f(s, t) with height(s) = 0, height(t) = 1 is 11× 121 = 1331; so is the number of terms f(s, t)
with height(s) = 1, height(t) = 0. The number of terms f(s, t) with height(s) = height(t) = 1
is 121× 121 = 14, 642. Thus, we have 132 + 1331 + 1331 + 14, 641 = 17, 435 ground terms
of height 2. Hence,the number of ground terms of height ≤ 2 be used to constructing the
candidates is 11 + 121 + 17435 = 17567. This means there are 17567× 17566 (≈ 300 millions)
candidates to be checked.
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1 Introduction

The search for a mathematical notion of programming language goes back at least to Turi and
Plotkin [25], who coined the name “Mathematical Operational Semantics”, and explained how
known classes of well-behaved rules for structural operational semantics, such as GSOS [7],
can be categorically understood and specified via distributive laws and bialgebras. Their
initial framework did not cover variable binding, and several authors have proposed variants
which do [14, 13, 24], treating examples like the π-calculus. However, none of these approaches
covers higher-order languages like the λ-calculus.

In recent work, following previous work on modules over monads for syntax with bind-
ing [18, 2] (see also [1]), Ahrens et al. [3] introduce reduction monads, and show how
they cover several standard variants of the λ-calculus. Furthermore, as expected in similar
contexts, they propose a mechanism for specifying reduction monads by suitable signatures.

Our starting point is the fact that already the call-by-value λ-calculus does not form
a reduction monad. Indeed, in this calculus, variables are placeholders for values but not
for λ-terms; in other words, reduction, although it involves general terms, is stable under
substitution by values only.

In the present work, we generalise reduction monads to what we call transition monads.
The main new ingredients of our generalisation are as follows.

We now have two kinds of terms, called placetakers and states: variables are place-
holders for our placetakers, while transitions relate states. Typically, in call-by-value,
small-step λ-calculus, placetakers are values, while states are general terms.
We also have a set of types for placetakers, and a possibly different set of types for states.
Typically, in call-by-value, simply-typed λ-calculus, both sets of types coincide and are
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given by simple types, while in λµ-calculus, we have two placetaker types, one for terms
and one for stacks, and one state type, for processes.
We in fact have two possibly different kinds of states, source states and target states, so
that a transition now relates a source state to a target state. Typically, in call-by-value,
big-step λ-calculus, source states are general terms, while target states are values.
The relationship between placetakers and states is governed by two functors S1 and S2,
as follows: given an object X (for variables), we have an object T (X) of placetakers
(“with free variables in X”), and the corresponding objects of source and target states
are respectively S1(T (X)) and S2(T (X)) (see §2.2).

Reduction monads correspond to the untyped case with S1 = S2 = IdSet. In §2.1, after
giving a “monadic” definition of transition monads in terms of relative monads [4], we
provide a “modular” definition (in terms of modules over monads), which we prove equi-
valent in Proposition 6. From the modular point of view, a transition monad consists of
a placetaker monad T , two state functors S1, S2, a transition T -module R, and two
T -module morphisms src : R→ S1T and tgt : R→ S2T . Such a triple (R, src, tgt) is thus
an object of the slice category of T -modules over S1T × S2T .

In §2.2, we present a series of examples of transition monads: λµ-calculus, simply-typed
λ-calculus (in its call-by-value, big-step variant), π-calculus (as an unlabelled transition
system), and differential λ-calculus.

Finally, in §2.3, we organise transition monads into categories. For the category of
transition monads over a fixed triple (T, S1, S2), we take the slice category of T -modules
alluded to above. Then, we wrap together these “little” slice categories into what we call a
record category of transition monads.

We then proceed to the main concern of this work: the specification of transition monads
via suitable signatures. For this, we start in §3 by proposing a new, abstract notion of
semantic signature over a category C. A semantic signature S = (E, U) over C consists
of a category E of algebras, together with a forgetful1 functor U : E→ C, such that E
has an initial object S~: we think of such a semantic signature as specifying the object
S∗ := U(S~) underlying the initial algebra. Abstracting over this generating procedure,
we introduce registers in §3. A register R for the category C consists of a class SigR of
signatures, together with a map associating to each signature S a semantic signature JSKR,
say US : S -alg→ C. Just as for semantic signatures, omitting J−KR for readability, we think
of a signature S as specifying the object S∗ = US(S~).

We may now state our achievement properly: we construct a register for transition
monads, containing signatures specifying the desired examples. Towards this goal, we start
in §4 by designing registers for monads and functors, relying on Ahrens et al. [2] and Fiore
and Hur [11]. This will allow us to efficiently specify the base components (T, S1, S2) of the
desired example transition monads, separately. We continue in §5 by presenting some general
constructions of registers, whose combination will yield a register for transition monads.
First, the product construction allows us to group the signatures of T , S1, and S2 into a
single signature for the triple (T, S1, S2). Then, we introduce in §5.2 a register for a slice
category of modules over a monad. This yields a register for transition monads over a fixed
triple (T, S1, S2), since these form such a slice category. Finally, in §5.3 we address the
task of grouping into a single signature the signatures for the triple (T, S1, S2) and for the
transition module (R, s, t) over it. For this, we propose a record construction for registers,
which binds together registers on the base and on fibres of a record category. Applying this

1 Here “algebra” and “forgetful” have no technical meaning and are chosen by analogy.
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to the previously constructed registers for our base product of three categories and our fibre
slice categories of modules, we give in Definition 63 our final register for the category of
transition monads (with fixed sets of types). This register covers all examples of transition
monads from §2.2, as we demonstrate in the appendix.

Related work
Beyond the already evoked related work [3, 25, 11], there is a solid body of work on
categorical approaches to rewriting with variable binding, which only covers transition
relations that are stable under arbitrary contexts, e.g., Hamana [16], T. Hirschowitz [19],
and Ahrens [1]. Regarding signatures, Fiore [12], Altenkirch et al. [5], and Garner [15] use
notions of signatures for languages with dependent types, which may provide an alternative
approach to the specification of operational semantics systems. Finally, let us mention that
a preliminary account of the present work appears in the third author’s PhD thesis [20,
Chapter 6].

Notations
In the following, Set denotes the category of sets, [SetP,SetQ]f denotes the locally small
category of finitary functors SetP → SetQ for any sets P and Q.

The category of finitary monads on C is denoted by Mndf (C), or sometimes just Mndf
when C is clear from context. Given a monad T on C, the category of D-valued (finitary)
T -modules is denoted by T -Modf (D), where we recall [18] that such a T -module consists of
a finitary functor M : C→ D equipped with a right T -action M ◦ T →M satisfying some
coherence conditions.

For any sequence p1, . . . , pn in a set P, for any monad T on SetP and D-valued T -
module M , we denote by M (p1,...,pn) the D-valued T -module defined by M (p1,...,pn)(X) =
M(X + yp1 + · · ·+ ypn), where y : P→ SetP is the embedding defined by yp(q) = 1 if p = q

and ∅ otherwise. If P is a singleton, we abbreviate this to M (n).

2 Transition monads

2.1 Definition of transition monads
In this section, we introduce the main new mathematical notion of the paper which was
already motivated by the case of the call-by-value, simply-typed, big-step λ-calculus in §1:
transition monads. We first describe the various components of a transition monad. Then
we give the monadic definition. And finally we give a modular description, which is better
suited for later use.

Placetakers and states. In standard λ-calculus, we have terms, variables are placeholders
for terms, and transitions relate a source term to a target term. In a general transition
monad we still have variables and transitions, but placetakers for variables and endpoints of
transitions can be of a different nature, which we phrase as follows: variables are placeholders
for placetakers, while transitions relate a source state with a target state.

The categories for placetakers and for states. In standard λ-calculi, we have a set T
of types for terms (and variables); for instance in the untyped version, T is a singleton.
Accordingly, terms form a monad on the category SetT.

FSCD 2020
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Similarly, in a general transition monad we have a set P of placetaker types, and a set S
of state types. For example, for simply-typed λ-calculus, P = S is the set of simple types.

Placetakers form a monad on the category SetP.

The object of variables. In our (monadic) view of the untyped λ-calculus, there is a
(variable!) set of variables and everything is parametric in this “variable set”. Similarly,
in a general transition monad R, there is a “variable object” V in SetP and everything is
functorial in this variable object. In particular, we have a placetaker object TR(V ) in SetP
and a source (resp. target) state object in SetS, both depending upon the variable object.

The state functors S1 and S2. While in the λ-calculus, states are the same as placetakers,
in a general transition monad, they may differ, and more precisely both state objects are
derived from the placetaker object by applying the state functors S1, S2 : SetP → SetS.

The transitions. In standard λ-calculi, there is a (typed!) set of transitions, which yields
a graph on the set of terms. That is to say, if V is the variable object, and LC(V )
the term object, there is a transition object Trans(V ) equipped with two morphisms
srcV , trgV : Trans(V )→ LC(V ). Note that we consider “proof-relevant” transitions here, in
the sense that two different transitions may have the same source and target. (Appendix G
discusses how proof irrelevance can be recovered.)

In a general transition monad R, we still have a transition object TransR(V ) , which
now lives in SetS, together with state objects S1(TR(V )) and S2(TR(V )), so that srcV and
trgV form a span S1(TR(V ))← TransR(V )→ S2(TR(V )).

The S-graph of transitions. Now we rephrase the previous status of transitions in terms
of a graph-like notion which we call S-graph: here S := (S1, S2) is the pair of state functors.
In the untyped λ-calculus, Trans(V ) and the maps srcV and trgV turn the term object
LC(V ) into a graph (which depends functorially on the variable object V ). For an analogous
statement in a general transition monad, we will use the following.

I Definition 1. For any pair S = (S1, S2) of functors SetP → SetS, an S-graph over an
object V ∈ SetP consists of

an object E (of edges) in SetS, and
a span S1(V ) ← E → S2(V ), which we alternatively view as a morphism ∂ : E →
S1(V )× S2(V ).

An S-graph consists of an object V ∈ SetP and an S-graph over V .

Now we can say that in a general transition monad, transitions form an S-graph over the
placetaker object (the whole thing depending upon the variable object. . . ).

The category of S-graphs. A reduction monad (in particular the untyped λ-calculus) is
just a monad relative to the “discrete graph” functor from sets to graphs [3]. In order to
have a similar definition for transition monads, the last missing piece is the category of
S-graphs, which we now describe. A morphism G→ G′ of S-graphs consists of a morphism
for vertices f : VG → VG′ together with a morphism for edges g : EG → EG′ making the
following diagram commute.

EG EG′

S1(VG)× S2(VG) S1(VG′)× S2(VG′)

g

∂G

S1(f)×S2(f)

∂G′
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I Proposition 2. For any pair S = (S1, S2) of functors SetP → SetS, S-graphs form a
category S-Gph.

Monadic definition of transition monad. First of all, let us recall [4] that, given any functor
J : C→ D, a monad relative to J , or J-relative monad, consists of

an object mapping T : ob(C)→ ob(D), together with
morphisms ηX : J(X)→ T (X), and
for each morphism f : J(X)→ T (Y ), an extension f? : T (X)→ T (Y ),

satisfying coherence conditions. Any J-relative monad T has an underlying functor C→ D,
and is said finitary when this functor is.

We will consider monads relative to functors of the following form.

I Definition 3. For any functors S1, S2 : SetP → SetS, letting S = (S1, S2), the discrete
S-graph functor JS : SetP → SetS maps any V ∈ SetP to the S-graph on V with no edges.

Now we are ready to deliver a first, monadic definition of transition monad.

I Definition 4. A monadic transition monad over (P,S) consists of
two finitary functors S1, S2 : SetP → SetS, and
a finitary JS-relative monad, where S = (S1, S2).

Given any JS-relative monad T , we think of T (X) as having terms with free variables in
X as vertices, with all transitions between them as edges. A morphism σ : JS(X)→ T (Y )
amounts to a mapping from X to terms in T (Y ), i.e., a substitution, and its extension
T (X)→ T (Y ) models the action of σ both on terms and on transitions.

Modular definition of transition monad. The monadic definition just given does not
mention explicitly one crucial feature we had mentioned earlier: the monad of placetakers.
In order to clarify this point, we give an alternative “modular” definition.

I Definition 5. A transition monad over (P,S) consists of
two finitary functors S1, S2 : SetP → SetS,
a finitary monad T on SetP, called the placetaker monad,
a finitary T -module R : SetP → SetS, called the transition module,
a source T -module morphism src : R→ S1T ,
a target T -module morphism tgt : R→ S2T .

This is the definition that we use in the rest of the paper.

I Proposition 6. Modular and monadic transition monads are in one-to-one correspondence.

Proof. See Appendix F. J

2.2 Examples of transition monads

In this section, we introduce informally a few example transition monads, which will be more
rigorously defined in the appendix.
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2.2.1 λµ-calculus
The λµ-calculus [17] is an example with two placetaker types. Its grammar is given by

Processes
c ::= 〈e|π〉

Programs
e ::= x | µα.c | λx.e

Stacks
π ::= α | e · π,

where x and α range over two disjoint sets of variables, called stack and program variables
respectively. Both constructions µ and λ bind their variable in the body. There are two
transition rules: 〈µα.c|π〉 → c[α 7→ π] 〈λx.e|e′ · π〉 → 〈e[x 7→ e′]|π〉.

Let us show how this calculus gives rise to a transition monad. First, there are two
placetaker types, for programs and stacks, so P = 2 = {p, s}. A variable object is an element
of SetP, that is, a pair of sets: the first one gives the available free program variables,
and the second one the available free stack variables. The syntax may be viewed as a
monad T : Set2 → Set2: given a variable object X = (Xp, Xs) ∈ Set2, the placetaker
object (T (X)p, T (X)s) ∈ Set2 consists of the sets of program and stack terms with free
variables in X, up to bound variable renaming. As usual, monad multiplication is given by
capture-avoiding substitution.

For transitions, source and target states are processes, so there is only one state type:
S = 1. Furthermore, processes are pairs of a program and a stack, so that, setting S1(A) =
S2(A) = Ap × As, we get Si(T (X)) = T (X)p × T (X)s for i = 1, 2 as desired. Finally,
transitions with free variables in X form a graph with vertices in T (X)p × T (X)s, which we
model as a map 〈srcX , tgtX〉 : Trans(X) → (T (X)p × T (X)s)2. This family is natural in
X and commutes with substitution, hence forms a T -module morphism. We thus have a
transition monad.

2.2.2 The π-calculus
For an example involving equations on placetakers, let us recall the following standard
presentation of π-calculus [23]. The syntax for processes is given by

P,Q ::= 0 | (P |Q) | νa.P | a〈b〉.P | a(b).P,

where a and b range over channel names, and b is bound in a(b).P and in νb.P . Processes
are identified when related by the smallest context-closed equivalence relation ≡ satisfying

0|P ≡ P P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R (νa.P )|Q ≡ νa.(P |Q),

where in the last equation a should not occur free in Q. Transition is then given by the rules

a〈b〉.P |a(c).Q −→ P |(Q[c 7→ b])
P −→ Q

P |R −→ Q|R
P −→ Q

νa.P −→ νa.Q
.

The π-calculus gives rise to a transition monad as follows. Again, we consider two
placetaker types, one for channels and one for processes. Hence, P = 2 = {c,p}. Then,
the syntax may be viewed as a monad T : Set2 → Set2: given a variable object X =
(Xc, Xp) ∈ Set2, the placetaker object T (X) = (Xc, T (X)p) ∈ Set2 consists of the sets
of channels and processes with free variables in X (modulo ≡). Note that T (X)c = Xc
as there is no operation on channels. Transitions relate processes, so we take S = 1 and
S1(X) = S2(X) = Xp. Transitions are stable under substitution, hence form a transition
monad.
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2.2.3 Positive GSOS rules
An example involving labelled transitions (and S1 6= S2) is given by Positive GSOS rules [7].
They specify labelled transitions e a−→ f . For any set O of operations with arities in N,

Positive GSOS rules have the shape
xi

ai,j−−→ yi,j

op(x1, . . . , xn) c−→ e
, where the variables xi and yi,j are

all distinct, op ∈ O is an operation with arity n, and e is an expression potentially depending
on all the variables.

Each family of operations and rules yields a transition monad with P = 1, because
we are in an untyped setting, and S = 1 because states are terms. The syntax gives the
term monad T . For transitions, in order to take labels into account, we take S1(X) = X

and S2(X) = A ×X, where A denotes the set of labels. Transitions thus form a set over
X × (A×X) as desired.

2.2.4 Differential λ-calculus
The differential λ-calculus [9] provides a further example with S1 6= S2. Its syntax may [26,
§6] be defined by e, f ::= x | λx.e | e U | De · f (terms)

U, V ::= 〈e1, . . . , en〉 (multiterms),
where 〈e1, . . . , en〉

denotes a (possibly empty) multiset, i.e., the ordering is irrelevant. Terms induce a monad T
on Set, which we take as the placetaker monad (hence P = 1).

Transitions relate terms to multiterms, hence S = 1, S1 is the identity, and S2 = ! is the
functor mapping any set X to the set of (finite) multisets over X.

The definition of transition is based on two intermediate notions:
1. Unary multiterm substitution e[x 7→ U ] of a multiterm U for a variable x in a term

e, which returns a multiterm (not to be confused with unary monadic substitution, which
handles the particular case where U is just a singleton).

2. Partial derivative ∂e
∂x ·U of a term e w.r.t. a term variable x along a multiterm U . This

again returns a multiterm.
Both are defined by induction on e (see [26]) and induce T -module morphisms T (1)× ! ◦T →
! ◦ T .

Unary multiterm substitution and partial derivation are used to define the transition
relation as the smallest context-closed relation satisfying the rules below.

(λx.e) U → e[x 7→ U ] D(λx.e) · f → λx.

(
∂e

∂x
· f
)

The second rule relies on the abbreviation λx.〈e1, . . . , en〉 := 〈λx.e1, . . . , λx.en〉.
One can show that transitions are stable under substitution by terms, hence we again

have a transition monad.

2.2.5 Call-by-value, simply-typed λ-calculus, big-step style
Let us finally organise the simply-typed, call-by-value, big-step λ-calculus into a transition
monad. Most often, big-step semantics describes evaluation of closed terms. Our approach
requires to treat open terms as well, so we consider a variant describing the evaluation of
open terms [21]. In this setting, the main subtlety lies in the fact that variables are only
placeholders for values.

Because variables and values are indexed by (simple) types, we take P = S to be the
set of types (generated from some fixed set of type constants). The monad T over SetP is
then given by values: given a variable object X ∈ SetP, the placetaker object T (X) ∈ SetP
assigns to each type τ the set T (X)τ of values of type τ taking free (typed) variables in X.
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In big-step semantics, transition relates terms to values. Hence, we are seeking state
functors S1, S2 : SetP → SetP such that S1(T (X))τ is the set of λ-terms of type τ with free
variables in X, and S2(T (X))τ is the subset of values therein. For S2, we should clearly take
the identity functor. For S1, we first observe that λ-terms can be described as application
binary trees whose leaves are values (internal nodes being typed applications). Thus, we
define S1(X)τ to be the set of application binary trees of type τ with leaves in X.

Finally, transitions are stable under value substitution, so we obtain a transition monad.

2.3 Categories of transition monads
In the next sections, we show how to generate transition monads such as the examples of
the previous section from basic data. For this, we follow the recipe of initial semantics; this
requires as input a category of “models” equipped with a “forgetful” functor to the category
of transition monads, and it outputs the image of the initial model by this functor (of course,
the existence of an initial model is also required). In order to do this for transition monads,
we need to organise them into a category. We start with a particular case.

I Definition 7. For any sets P and S, finitary monad T over SetP, and finitary functors
S1, S2 : SetP→SetS, let TMndP,S(T, S1, S2) denote the slice category T -Modf (SetS)/S1T×
S2T .

This gives a first family of categories of transition monads, that we will integrate through
a simple construction2:

I Definition 8. A record category is a category of the form
∑
B∈ob(B) PB where B ranges

over the objects of a base category B, and each PB, called the fibre over B, is a category.
In other words, it is given by a (base) category B equipped with a map P : ob(B)→ CAT.

The relevant example for the present work is the following.

I Definition 9. Given two sets P and S, let TMndP,S denote the following record category
of transition monads with P and S as sets of types for placetakers and states:

its base category is the product Mndf (SetP)× [SetP,SetS]2f of the category of monads
on SetP with two copies of the functor category [SetP,SetS]f ;
the fibre over a triple (T, S1, S2) is the category TMndP,S(T, S1, S2) of Definition 7.

3 Signatures and registers

The rest of the paper is devoted to the specification of transition monads via suitable
signatures. More concretely, each of our example transition monads may be characterised as
underlying the initial object in the category of models associated to a suitable signature.

We start in §3.1 by introducing a general notion of semantic signature over a category.
In §3.2, we define registers: a register is just a family of semantic signatures. Our main goal
(achieved in Definition 63) is to propose a register for transition monads.

2 There is a more comprehensive construction, obtained by observing that the assignment (T, S1, S2) 7→
TMndP,S(T, S1, S2) forms a pseudofunctor and applying the so-called Grothendieck construction.
Signatures for the earlier definitions of transition monads presented in [3] and [20, Chapter 6] fully
acknowledge this fact, but here we choose to ignore it in order to make the development simpler.
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3.1 Semantic signatures
Our notion of semantic signature is an abstract counterpart of usual signatures.

I Definition 10. A semantic signature S over a given category C consists of
a category S -alg of models of S (or algebras), which admits an initial object, denoted
by S~, and
a forgetful functor Us : S -alg→ C.

I Remark 11. The term “forgetful functor” is merely the name of the corresponding component
of a semantic signature; it does not impose any further constraint on it.

I Terminology 12. Given a semantic signature S over a category C, we say that S is a
signature for S∗ := US(S~), or alternatively that S specifies S∗.
I Notation 13. When convenient, we introduce a semantic signature over C as u : E→ C,
to be understood as the semantic signature S with S -alg := E and US := u.

I Example 14. Any object c of any given category C is specified by the following signatures:
the functor 1→ C mapping the only object of the final category (with one object and
one morphism) to c;
the codomain functor c/C→ C from the coslice category.

I Example 15. Consider the standard endofunctor F : Set→ Set with F (X) = X + 1. We
define a semantic signature over Set for which the category of models is the category of
F -algebras, and the forgetful functor sends any F -algebra to its carrier. In order to complete
the definition of this example, we should prove that the category of F -algebras has an initial
object. This is well-known and the carrier of the initial model is N.

I Definition 16. We denote by URC the class of semantic signatures over the category C
(UR stands for “universal register”, as later justified by Definition 19, Section 3.2).

I Proposition 17. The assignment C 7→ URC extends to a functor CAT → SET. The
action of a functor F : C→ D, denoted by URF , is given by postcomposition.

3.2 Registers of signatures
In this section, we introduce registers of signatures for a category C, which are (possibly
large) families of semantic signatures over C. Roughly speaking, each register allows to write
down specific signatures, gives the recipe for the corresponding semantic signature, hence
yielding a notion of model together with the existence of an initial one.

I Definition 18. A register R for a given category C consists of
a class SigR (of signatures), and
a semantics map J−KR : SigR → URC.

We can now motivate the notation URC above:

I Definition 19. For a given category C, the universal register URC is defined as follows:
its signatures are semantic signatures for C, and
the map J−KURC is the identity (on URC).

I Notation 20. When convenient, we introduce a register as u : S → URC to be understood
as the register R with SigR := S and J−KR := u. Moreover, we sometimes implicitly identify
a signature s in a register with its associated semantic signature JsKR.
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12:10 Modules over Monads and Operational Semantics

We can now translate the slogan Endofunctors are signatures with a register, using a
well-known initiality result [22, p62].

I Definition 21. For a given cocomplete category C, the universal finitary endofunctorial
register UFEC is defined as the map [C,C]f → URC sending any finitary endofunctor F to
the forgetful functor F -alg→ C from its category of algebras.

Let us now define simple constructions of registers. Recalling Proposition 17, we have:

I Definition 22. For any register R for C and functor F : C → D, postcomposition with
URF induces a register F!(R) := (SigR,URF ◦ J−KR) for D.

I Definition 23. For any register R for C and map f : S→ SigR, precomposition with f
induces a register f∗(R) for C whose signatures are elements of S. We say that f∗(R) is a
subregister of R.

Here is an important application.

I Definition 24. We call endofunctorial all registers of the form f∗(UFEC), for some
map f : S→ SigUFEC .

A useful fact is that endofunctorial registers are closed under the family construction:

I Definition 25. For any endofunctorial register R, we denote by R∗ the endofunctorial
register whose signatures are families of signatures in SigR, and whose semantics maps any
family to the coproduct of associated endofunctors.

4 Basic registers

In this section, we construct registers for monads and functors. Both of our initiality proofs
follow from Fiore and Hur’s theory of equational systems [11].

4.1 A register for monads
In this section, we fix a set P and construct a register MndReg(P) for monads on SetP,
generalising [2] to the simply-typed setting (see also Fiore and Hur [10]).

Let us first construct a naive register MndReg0(P) which only allows us to specify
operations. We will then deal with equations.

4.1.1 A naive register for specifying operations
We first describe signatures for MndReg0(P). The basic idea for specifying operations is
that the arity of an operation is a pair of (Set-valued) parametric modules, in the sense of
modules that are definable for any monad on SetP.

I Definition 26. Given a category D, Let Mod(D) denote the category
whose objects are pairs (T,M) of a finitary monad T on SetP and a finitary T -module
M : SetP → D,
and whose morphisms (T,M)→ (U,N) are pairs (α, β) of a monad morphism α : T → U

and a natural transformation β : M → N commuting with action.
The first projection yields a forgetful functor p : Mod(D)→Mndf .

I Definition 27. A (D-valued) parametric module is a section of p, i.e., a functor s :
Mndf →Mod(D) such that p ◦ s = idMndf .
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I Terminology 28. In the following, parametric modules are implicitly Set-valued by default.

I Example 29. Let us start by a few basic constructions of parametric modules:
we denote by Θ the SetP-valued parametric module mapping a monad T to itself, as a
module over itself;
for any p1, . . . , pn ∈ P and D-valued parametric module M , let M (p1,...,pn) associ-
ate to each monad T the T -module M(T )(p1,...,pn) as in the notations of §1, i.e.,
M (p1,...,pn)(T )(X) = M(T )(X + yp1 + · · · + ypn); when P = 1, we merely count the
pi’s and write M (n);
for any finitary functor F : D→ E and D-valued parametric moduleM , the E-parametric
module F ◦M maps any monad T to the T -module F ◦M(T ); as particular cases:

the terminal Set-valued parametric module 1 = 1 ◦ Θ maps any monad T to the
constant T -module 1;
for any p ∈ P and SetP-valued parametric module M , we denote by Mp the Set-valued
parametric module mapping any monad T to the T -module X 7→M(X)p (see § 2.2.1);
given a finite family (Mi)i∈I of Set-valued parametric modules, I, let

∏
iMi associate

to any monad T the T -module
∏
iMi(T ).

I Example 30. An operation will be specified by two parametric modules, one for the source
and one for the target. Let us give the parametric modules for a few operations from our
examples.

Language Operation Source Target
Pure λµ Push Θp ×Θs Θs

Pure λµ Abstraction Θ(1)
p Θp

π-calculus Input a(b).P Θc ×Θ(c)
p Θp

Morally, a signature (without equations) should be a family of pairs of parametric modules.
However, in order to ensure existence of an initial model, we restrict this as follows.

I Definition 31. A signature of MndReg0(P) is a family of pairs (d, c) of parametric
modules, in which

c has the shape Θp for some p ∈ P, and
d is elementary, in the sense that it is a finite product of parametric modules of the
shape (F ◦Θ)(p1,...,pn) for some p1, . . . , pn ∈ P and finitary functor F : SetP → Set.

I Example 32. Typically, an elementary parametric module is a finite product of parametric
modules of the shape Θ(p1,...,pn)

p , for some p, p1, . . . , pn ∈ P.

I Definition 33. The category of models associated to a signature (di, ci)i∈I is defined by:
A model is a monad T equipped with module morphisms di(T )→ ci(T ) for all i ∈ I.
A model morphism is a monad morphism commuting with these morphisms.

I Lemma 34. Any such category of models admits an initial object.

With the obvious forgetful functor to the category of monads, this defines the semantic
signature associated to a signature of MndReg0(P), as a register for monads on SetP.

4.1.2 A register for specifying operations and equations
Let us now define our register MndReg(P), following Ahrens et al.’s approach to specifying
equations [2]. A signature of MndReg(P) will consist of a signature of MndReg0(P), plus
a family of “equations”. An equation is essentially a pair of “metaterms”, which may have
“metavariables”. The idea is that metavariables are given by a parametric module.
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I Example 35. Consider associativity of parallel composition in π-calculus, P |(Q|R) ≡
(P |Q)|R: the metavariables are P , Q, and R. The corresponding parametric module is Θ3

p.

Intuitively, a metaterm will be a parametric module morphism from metavariables to some
Θp. However, it should potentially rely on constructions from the considered signature Σ of
MndReg0(P), as in Example 35. We thus consider a modified notion of parametric module
morphism, which is parametric in models of Σ instead of mere monads.

I Definition 36. Given any signature Σ for MndReg0(P),
a Σ-module morphism M → N between parametric modules M and N is a natural fam-
ily of morphisms (αT : M(T ) −→ N(T ))T∈Σ -alg, such that αT is a T -module morphism,
for each Σ-model T ;
a Σ-equation consists of an elementary parametric module V , called the metavariable
module, and two parallel Σ-module morphisms V −→ θp, for some p ∈ P, called the
metaterms (of type p).

I Definition 37. A signature of MndReg(P) is a pair of a signature Σ of MndReg0(P)
and a family of Σ-equations.

I Definition 38. The category of models associated to a signature (Σ, E) is defined as follows.
A model is a model T of Σ such that for all equations (L,R) ∈ E, L(T ) = R(T ).
A morphism of models of (Σ, E) is a morphism of models of Σ.

The following generalises [2, Theorem 32]:

I Lemma 39. Any such category of models admits an initial object.

With the obvious forgetful functor to the category of monads, this defines the semantic
signature associated to a signature of MndReg(P), as a register for monads on SetP.

I Example 40. Let us revisit Example 35: the relevant signature Σ has in particular an
operation par : Θ2

p → Θp for parallel composition, which gives our two metaterms

Θ3
p

par×Θp−−−−−→ Θ2
p

par−−→ Θp and Θ3
p

Θp×par−−−−−→ Θ2
p

par−−→ Θp.

I Notation 41 (Format for equations). We have already started to write pairs (d, c) of
parametric modules as d → c. Given any signature Σ for MndReg0(P), we write any
Σ-equation V → Θ2

p

x 7→ (L,R)
as x : V ` L ≡ R : Θp, or just L ≡ R when the rest may be

inferred.

I Example 42. We write associativity from Example 40 as just par(P, par(Q,R)) ≡
par(par(P,Q), R). In this case, the argument x is the triple (P,Q,R).

4.2 A register for state functors
In this section, we sketch a register FunReg(P,S), which is an adaptation of MndReg(P)
to the case of state functors. Parametric modules are replaced with parametric premodules:

I Definition 43. A parametric premodule is a functor [SetP,SetS]f → [SetP,Set]f .

We introduce the following notations:
I Notation 44. We denote by Θ the identity endofunctor on [SetP,SetS]f , and by Γ :
[SetP,SetS]f → [SetP,SetP]f the constant functor mapping anything to the identity endo-
functor.
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The constructions
∏
iMi and M (p1,...,pn) carry over essentially verbatim.

I Example 45. We have seen in §2.2.5 that the source state functor S1 for call-by-value,
simply-typed λ-calculus is built with application binary trees. Intuitively, it has two (type-
indexed families of) operations: the first one injects values, thus maps Xt, into S1(X)t,
and the second one forms application binary trees, with components Xt → S1(X)t and
S1(X)t→t′ × S1(X)t → S1(X)t′ .
This yields a specification with two families of operations Γt → Θt and Θt→t′ ×Θt → Θt′ .

Operations, equations, and models are defined exactly as for monads, and a signature in
FunReg(P,S) again consists of families of operations and equations3. The only difference
lies in the notion of elementary parametric premodule, which becomes the following:

IDefinition 46. A parametric premodule is elementary iff it is a finite product of parametric
premodules of the shape (F ◦ 〈Γ,Θ〉)(p1,...,pn) for some p1, . . . , pn ∈ P and finitary functor
F : SetP × SetS → Set.

I Example 47. Typically, an elementary parametric premodule is a product of parametric
premodules of the shape Γ(p1,...,pn)

p or Θ(p1,...,pn)
σ , for some p, p1, . . . , pn ∈ P and σ ∈ S.

I Remark 48. Any finitary functor F admits a trivial signature consisting of the family
((Fσ ◦ Γ)→ Θσ)σ∈S of operations. Here are a few examples from §2.2:

Language State functor Specification
λµ S1(X) = S2(X) = Xp ×Xs 〈−|−〉 : Γp × Γs → Θ
π S1(X) = S2(X) = Xp Γp → Θ
Call-by-value, simply-typed λ S2(X) = X ηt : Γt → Θt (for all t)
Positive GSOS specifications S1(X) = X Γ→ Θ

S2(X) = A×X A× Γ→ Θ

I Notation 49. We adopt Notation 41 for state functors. E.g., Example 42 applies verbatim
for associativity of multiset union in the target state functor for differential λ-calculus.

5 Constructions of registers

In this section, we provide constructions of new registers out of existing ones.

5.1 Product registers
Let us start by considering products. We first describe the product of semantic signatures,
and then, based on that, we define product registers.

Given semantic signatures for some family of categories, we want to construct a semantic
signature for the product category. The application we have in mind is the product category
Mndf (SetP)× [SetP,SetS]2f (Definition 9), which is the base category of our record category
of transition monads (see below Example 53).

I Lemma 50. Given a set I and functors Ui : Ei → Ci for i ∈ I, if each Ei has an initial
object, then so does the product

∏
i Ei.

3 Existence of an initial object in the category of models relies on the theory of equational systems, as
mentioned above.
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I Definition 51. Given a family C := (Ci)i∈I of categories, and a corresponding family of
semantic signatures ui : Ei → Ci, the product

∏
i ui :

∏
i Ei →

∏
i Ci is a semantic signature.

This defines our (external) product of signatures
∏

C :
∏
i URCi

→ UR∏
i

Ci
.

Let us now define the product of a family of registers.

I Definition 52. The product of a family (ui : Si → URCi)i∈I of registers is obtained by
post-composing

∏
i ui with the product of semantic signatures:

∏
i

Si

∏
i
ui

−−−−→
∏
i

URCi

∏
C−−−→ UR∏

i
Ci
.

I Example 53. The product MndReg(P) × FunReg(P,S)2 of the register MndReg(P)
with two copies of the register FunReg(P,S).

5.2 Registers for slice module categories
In this section, we fix two sets P and S, a monad T on SetP, and a SetS-valued T -module M .
We then define an endofunctorial register Rule(T,M) for the category T -Modf (SetS)/M .
Later on, we will use the register Rule∗(T,M) (recalling Definition 25) withM := S1T×S2T ,
i.e., for the category of transition monads over (T, S1, S2).

5.2.1 The naive register Rule0

For expository purposes, we start by defining a naive endofunctorial register, Rule0(T,M).
A signature of Rule0(T,M) consists of

a metavariable Set-valued T -module V ,
a conclusion module morphism t : V →Mτ for some conclusion state type τ ∈ S, and
a list of premise module morphisms si : V →Mσi , for some premise state types σi ∈ S.

I Example 54. For the left application congruence rule of pure λ-calculus
e→ e′

e f → e′ f
, there

are three metavariables e, e′, and f , so the metavariable module V is T 3. The conclusion
and premise are respectively defined as the module morphisms

T 3 → T 2

(e, e′, f) 7→ (e f, e′ f) and T 3 → T 2

(e, e′, f) 7→ (e, e′).

Now, the endofunctor ΣS associated to any signature S := (τ, V, t, (σi, si)i∈n) is a
composite

T -Modf (Set)/
∏
iMσi T -Modf (Set)/V T -Modf (Set)/Mτ

T -Modf (SetS)/M T -Modf (SetS)/M ,

∏
i
(−)σi

∆〈si〉i
∑

t

(1)

of four functors, where∏
i(∂ : R→M)σi denotes

∏
i ∂σi :

∏
iRσi →

∏
iMσi ,

∆〈si〉i is defined by pullback along the tupling 〈si〉i : V →
∏
iMσi of all premises,∑

i is defined by postcomposition with the conclusion t : V →Mτ , and
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the last functor is the canonical embedding, which maps any R → Mτ to R · yτ → M ,
where R · yτ is defined for every X by (R · yτ )(X)τ = R(X) and (R · yτ )(X)σ = ∅ for
σ 6= τ .

I Remark 55. The embedding (−) · yτ is left adjoint to evaluation at τ : (−) · yτ a (−)τ .
Thus ΣS maps any ∂ : R→M to the transpose of the right-hand composite q below.

∏
iRσi P

∏
iMσi V Mτ

∏
i
∂σi

〈si〉i t

q (2)

By Lemma 59 below, each ΣS is finitary, which completes the definition of our register
Rule0(T,M) for T -Modf (SetS)/M .

I Example 56. Consider the endofunctor associated to the left application rule of Example 54.
Because S = 1, the functor (−) · yτ is the identity functor, so the endofunctor maps any
∂ : R→ T 2:

to the pullback P , where P (X) is the set of 4-tuples (r, e, e′, f) ∈ R(X) × T (X)3 such
that r is a transition e→ e′,
with projection to T 2 mapping any (r, e, e′, f) to (e f, e′ f).

An algebra is thus such a ∂ : R → T 2 which, to each such tuple (r, e, e′, f) associates a
transition over (e f, e′ f), as desired.

5.2.2 The register Rule

In this section, we define the endofunctorial register Rule(T,M), refining the naive register
Rule0(T,M) of the previous section. The motivation lies in rules whose premises have
additional free variables.

I Example 57. Consider the ξ rule of pure λ-calculus:
e→ f

λx.e→ λx.f
·

The metavariables and conclusion may remain the same; the problem is with the premise,
which cannot be a morphism V → T 2, but should rather have type V → T (1) × T (1). We
thus generalise Rule0(T,M) to let rules have premises of this shape:

I Definition 58. The endofunctorial register Rule(T,M) for T -Modf (SetS)/M is defined
by:

signatures are just as in Rule0(T,M), except that the premises now have the shape
s : V →M

(~p)
σ , for σ ∈ S and ~p a list of elements of P; and

the induced endofunctor is defined exactly as for naive rules, replacing
∏
iRi with

∏
iR

(~pi)
i .

This register is well defined thanks to the following lemma (proved in Appendix H):

I Lemma 59. Given a signature S, the endofunctor ΣS is finitary.

Using Definition 25, we obtain a register Rule∗(T,M) for T -Modf (SetS)/M , whose
signatures are families of signatures in Rule(T,M).
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5.2.3 A format for signatures in Rule and Rule∗

When M = S1T × S2T , we adopt the following notational conventions for signatures in
Rule(T,M):

for each premise or conclusion V → W

x 7→ (L,R)
of a rule, we write x : V ` L R : W ,

we organise the premises and conclusion as usual:

x : V ` L1  R1 : W1 . . . x : V ` Ln  Rn : Wn

x : V ` L R : W
,

or just
L1  R1 . . . Ln  Rn

L R
when the rest may be inferred from context.

I Remark 60. The module V is often a product and thus x is a tuple.

I Remark 61 ([3]). In practice, there are several choices for building the transition rule out
of such a schematic presentation, depending on the order of metavariables. This order is
irrelevant: all interpretations yield isomorphic semantics, in the obvious sense.

5.3 The record construction for registers
The registers introduced in the previous sections allow us to design registers for the various
components of our transition monad, separately: we may specify the underlying monad T
and state functors S1 and S2 using signatures from the registers for monads and functors
previously defined. We may even assemble these signatures into a single signature Σ for the
product register of Definition 52. Then, we may specify the desired transition monad as
an object of the fibre TMndP,S(T, S1, S2), using a signature R of the register Rule∗(T,M)
from Section 5.2.2, with M = S1T × S2T .

In this section, we show how to assemble Σ and R into a single signature of some
compound register for the record category TMndP,S. Our construction can be performed in
general for an arbitrary record category.

I Definition 62. Consider any record category K =
∑
B∈ob(B) P(B), with P : ob(B) →

CAT, together with
a base register Rb for B, and
for each signature S in SigRb , a fibre register Rf (S) for the fibre PS∗ over the initial
S-algebra.

The record register
∑

(Rb, Rf ) for the record category K is defined as follows.
Signatures are pairs (S, F ) with S ∈ SigRb and F ∈ SigRf (B).
The semantic signature associated to any (S, F ) is the composite F -alg UF−−→ PS∗ ↪→ K.

Our main example application is:

I Definition 63. Let TMndReg :=
∑

(Rb, Rf ), where
Rb is the product register MndReg(P)×FunReg(P,S)2 of Example 53 for monads and
state functors, and
for all signatures S of Rb, the register Rf (S) is defined as Rule∗(T, S1T × S2T ), where
(T, S1, S2) = S∗.

We provide signatures for all examples from §2.2 in the appendix.
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6 Conclusion and perspectives

We have introduced transition monads as a generalisation of reduction monads, and demon-
strated that they cover relevant new examples. We have introduced a register of signatures
for specifying them. In future work, we plan to investigate more general forms of state
modules. E.g., using an arbitrary module covers the subtle labelled transition system for
π-calculus. We also plan to generalise the Grothendieck construction to signatures/registers
along the line in [3]. In the longer term, we plan to refine our register in a way ensuring that
the generated transition system satisfies important properties like congruence of observational
equivalences, confluence, or type soundness. In this direction, a result on congruence of
applicative bisimilarity for a simpler register has recently been obtained by Borthelle et
al. [8]. Finally, quantitative (e.g., probabilistic [6]) operational semantics would be worth
investigating in our setting.
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A Specifying the call-by-value, simply-typed, big-step λ-calculus

In the setting of §2.2.5, let F : SetP → SetS be specified by two families of operations
appt,t′ : Θt→t′ ×Θt → Θt′ and valt : Γt → Θt. Our signature for call-by-value, simply-typed,
big-step λ-calculus is presented in the following table

Monad and
state functors

T S1 S2

λt,t′ : (Ft′ ◦Θ)(t) → Θt→t′ F Id

Rules
valt(v) v

e1  λt,t′(e3) e2  w e3[w] v

appt,t′(e1, e2) v

where
−[−] : (S1T )(t)

t′ × Tt → (S1T )t′ denotes the substitution morphism;
S1 = F and S2 = Id are specified by easy signatures as in Remark 48;
the rules should be understood as families of rules indexed by suitable types.

In a bit more detail, the first rule is indexed by the type t of v. The second one is indexed
by two types t and t′. There are five metavariables, e1, e2, e3, v, and w. We thus take
V := (S1T )t→t′ × (S1T )t × (S1T )(t)

t′ × Tt′ × Tt.

B Specifying the λµ-calculus

For λµ-calculus, the state functor has been specified in Remark 48. The monad is specified
by operations

µ : Θ(s)
p ×Θ(s)

s → Θp λ : Θ(p)
p → Θp · : Θp ×Θs → Θs,

with no equation.
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The transition rules are almost as usual:

〈µ〈e|π′〉|π〉 → 〈e[π], π′[π]〉 〈λ(e)|e′ · π〉 → 〈e[e′]|π〉

The first rule has metavariable module V := T
(s)
p × T (s)

s × Ts, the argument being (e, π′, π).
The second rule has V := T

(p)
p × Tp × Ts.

C Specifying the π-calculus

For π-calculus, the state functor has been specified in Remark 48. The placetaker monad T
is specified by operations

0 : 1→ Θp | : Θp ×Θp → Θp ν : Θ(c)
p → Θp out : Θ2

c ×Θp → Θp in :
Θc ×Θ(c)

p → Θp
with equations 0|P ≡ P P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R ν(P )|Q ≡ ν(P |wc(Q)),
almost copied verbatim from §2.2.2, where wc(Q) denotes the action of T (X)→ T (X + yc)
on Q. Finally, the transition rules are

out(a, b, P )|in(a,Q) −→ P |(Q[b])
P −→ Q

P |R −→ Q|R
P −→ Q

ν(P ) −→ ν(Q)
.

In particular, the third rule has as metavariable module V := (Θ(c)
p )2.

D The register GSOS+

In this section, we define a register GSOS+ for specifying positive GSOS systems [7]. This is
a subregister of our record register TMndReg, for untyped (P = S = 1) transition monads.
Let us recall that signatures in this register consist of pairs (B,F ) where B is a signature in
the product register of Example 53, and F is a signature in Rule∗(B).

In order to describe this subregister, we have to describe its class of signatures, and then
assign to each such signature a pair (B,F ) as above. Before performing this task we recall
the standard format of a GSOS+ rule:

. . . Vi
ai,j−−→ Vi,j . . .

op(V1, . . . , Vn) c−→ e
.

A signature of the register GSOS+ consist of
three sets O (for operations), A (for labels), and R (for rules),
for each element o of O, a number mo (the arity),
for each rule,

an operation o ∈ O (for the source of the conclusion),
a label c ∈ A (the label of the conclusion),
for each i ≤ mo,
∗ a number ni (the number of premises for this argument),
∗ for each j ≤ ni , an element aij of A (for the label of the premise),
∗ a term e in the syntax generated by O, potentially depending on mo +

∑
i ni

variables.

We now describe the pair (B,F ) associated to a signature as above:
the signatures for both state functors have been given in Remark 48;
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the signature for the underlying monad is
∑
o∈O Θmo → Θ (following §4.1).

These three signatures yield our base signature B. Finally, each Positive GSOS rule yields

a rule
. . . Vi  (ai,j , Vi,j) . . .

opo(V1, . . . , Vmo) (c, e)
in our fibre signature F (in the register Rule∗(T, S1T×

S2T )).

E Specifying the differential λ-calculus

In this section, we present in some detail the signature for differential λ-calculus, as a
transition monad with P = S = 1, introduced in §2.2.4. A signature in the register of
transition monads consists of two components: a (product) signature for the state functors
and monad, given in §E.1, and a signature for the β and ∂-transition rules. Both are
straightforwardly modelled by a signature over as explained in §5.2, but they first require us
to construct some intermediate operations −[x 7→ −] and ∂−

∂x · −. We tackle this task in §E.2.

E.1 State functors and monad of differential λ-calculus
The first state functor is the identity functor Id : Set→ Set, and thus is specified by the
arity Γ→ Θ. The second state functor is !, the multiset functor, and is specified by three
arities 1→ Θ (for the empty multiset), Γ→ Θ (for the singleton multiset), and Θ×Θ→ Θ
(for the union operation), subject to commutativity, associativity, and unitality.

Next, the monad of differential λ-calculus is specified by the arities Θ(1) → Θ, Θ×!Θ→ Θ,
and Θ×Θ→ Θ, modelling the operations λx.−, − −, and D − ·−. No equation is required.

E.2 Intermediate constructions for differential λ-calculus
Specifying the transition rules requires two intermediate constructions: unary multiterm
substitution −[x 7→ −], and partial derivation ∂−

∂x ·−, which we both model as T -module
morphisms T (1) × !T → !T , or equivalently T (1) → (!T )!T . 4

In [26, §6], the underlying maps are defined by induction. Here, we define them by
using a special induction principle for building module morphisms out of T (1), that we now
describe. Let us denote by Σ↑ the endofunctor on T -modules defined by the same formula
than the parametric module specifying the differential λ-calculus monad T (see Section E.1):
Σ↑(M) = M (1) + M × !M + M ×M . Note that T has a canonical Σ↑-algebra structure,
T (1) a canonical (Σ↑ + 1)-algebra structure, and the embedding T → T (1) is a Σ↑-algebra
morphism.

The following lemma induces a useful induction principle:

I Lemma 64. Given any (Σ↑ + 1)-algebra M and Σ↑-algebra morphism m : T →M , there
exists a unique (Σ↑ + 1)-algebra morphism i : T (1) → M making the following diagram
commute.

T T (1)

M

j

∀m ∃!i

4 The category of finitary Set-valued T -modules is equivalent to the category of presheaves on the full
subcategory of the Kleisli category of T consisting of finite sets. As such, it has exponentials.
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Proof. By [11], T is the initial algebra of Σ↑ + Id, as a (finitary) endofunctor on [Set,Set]f .
By inspecting the colimit of the relevant initial chains, it can be shown that T (1) is the initial
algebra of Σ↑ + Id +1 . Given the data, M has (Σ↑ + Id +1)-algebra structure: the natural
transformation Id→M is merely the composite Id→ T →M with the unit of T .

By initiality, we have a unique (Σ↑ + Id +1)-algebra morphism i : T (1) →M as functors,
such that i◦ j = m. At this stage, we can already deduce uniqueness of the desired morphism.

It remains to show that i is a T -module morphism. We omit the proof for lack of
space. J

The lemma legitimates the following general recipe for constructing a T -module morphism
T (1) →M :
1. provide M with a (Σ↑ + 1)-algebra structure,
2. provide a T -module morphism T →M , and
3. check that this morphism is a Σ↑-algebra morphism.
Indeed, by the above adjunction, we get a (Σ↑ + 1)-algebra morphism T (1) →M , and thus
in particular a T -module morphism T (1) →M .

We now apply this recipe to define unary multiterm substitution (the case of partial
derivation is similar).

1. We first equip (!T )!T with (Σ↑ + 1)-algebra structure. This structure should reflect the
recursive equations in [26, Definition 6.3] defining unary multiterm substitution. In
fact, the recursive equations will follow from the fact that the constructed morphism
T (1) → (!T )!T is a (Σ↑ + 1)-algebra morphism.
By universal property of exponential and coproduct, a (Σ↑ + 1)-algebra structure on
(!T )!T decomposes into a 4-tuple of maps to !T , each one corresponding to a recursive
equation. We define these maps, recalling the corresponding recursive equation, in the
following table.

Inductive case Recursive equation T -module morphism

Abstraction (λx.t)[x 7→ U ] = λx.t[x 7→ U ]
((!T )!T )(1) × !T → !T

(t, U) 7→ λ.t(U)

Application ((s) V )[x 7→ U ] = (s[x 7→ U ]) V [x 7→ U ]
(!T )!T × !(!T )!T × !T → !T

(s, V, U) 7→ (s(U)) V (U)

Differential application (Ds · u)[x 7→ U ] = D(s[x 7→ U ]) · u[x 7→ U ]
(!T )!T × (!T )!T × !T → !T

(s, u, U) 7→ D(s(U)) · u(U)

Substituted variable x[x 7→ U ] = U
!T → !T
U 7→ U

This covers four out of five recursive equations. The missing one is y[x 7→ U ] = y when
x 6= y; it corresponds to the morphism T → (!T )!T , which more generally deals with any
term not depending on x.
Let us explain some cases, beginning with the last one. The morphism !T → !T corresponds
to the mapping U 7→ x[x 7→ U ], thus we choose the identity morphism.
Next, e.g., the morphism for application is a composite

(!T )!T × !(!T )!T × !T → !T × !!T → !(T × !T ) !app−−−→ !T,
where

the first morphism duplicates !T and evaluates both exponentials, and
the second follows from the well-known fact that ! is a commutative monad.

The other cases are similar, and require to lift the other operations to the level of
multiterms.
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2. Now, following our recipe, we need to give a T -module morphism from T to (!T )!T , or
equivalently, a T -module morphism m : T × !T → !T . This morphism corresponds to the
mapping (t, U) 7→ t[x 7→ U ], when t does not depend on x. Thus, we define mX(t, U) = t.
More formally, m is the composite T × !T π1−→ T

η!T−−→ !T .
3. It remains to check that the induced morphism T → (!T )!T is a Σ↑-algebra morphism,

that is, that this morphism is compatible with each operation, which is routine.

F Proof of Proposition 6

In this section, we show that the modular and the monadic definitions of transition monads
are equivalent. The proof consists merely in unfolding the definitions.

Consider the modular definition. We have:
a finitary monad T on SetP, that is:

an object mapping T : ob(SetP)→ ob(SetP), together with
morphisms X → T (X) for the variables, and
for each morphism f : X → T (Y ), an extension f? : T (X) → T (Y ), subject to the
usual equations;

a finitary T -module R : SetP → SetS, called the transition module, that is:
an object mapping R : ob(SetP)→ ob(SetS), together with
for each morphism f : X → T (Y ), an extension f? : R(X) → R(Y ) subject to the
usual equations;

two T -module morphisms si : R→ SiT , that is, families of morphisms R(X)→ Si(T (X))
commuting with T -substitution.

The monadic definition was already detailed after Definition 4. It is straightforward
to check that the assignement X 7→ (srcX , tgtX : R(X) → Si(T (X))) defines a monadic
transition monad. Conversely, given a monadic transition monad mapping X to some
(srcX , tgtX : R(X) → Si(T (X))), the assignement X 7→ T (X) defines a monad T , the
assignment X 7→ R(X) defines a T -module R, and src and tgt induce T -module morphisms
R→ S1T and R→ S2T , respectively. Hence we get a modular transition monad.

G Proof-irrelevant variant

I Proposition 65. Let ITMndP,S(T, S1, S2) denote the full subcategory of transition monads
〈src, tgt〉 : R→ S1T ×S2T such that 〈src, tgt〉 is a pointwise inclusion. Then, the embedding
U : ITMndP,S(T, S1, S2) ↪→ TMndP,S(T, S1, S2) is reflective.

Proof. The left adjoint L : TMndP,S(T, S1, S2)→ ITMndP,S(T, S1, S2) maps a transition
monad ∂ : R→ S1T ×S2T to the monomorphism R ↪→ S1T ×S2T obtained from the (strong
epi)-mono factorisation5 of ∂. Then, the natural bijection TMndP,S(T, S1, S2)(T1, UT2) ∼=
ITMndP,S(T, S1, S2)(LT1, T2) follows from the lifting property of strong epimorphisms. J

Thanks to Definition 22, we then get a register for proof-irrelevant transition monads
from the register TMndReg of Definition 63.

5 As mentioned before, the category of finitary Set-valued T -modules is a presheaf category, and thus
has (strong epi)-mono factorisations.
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H Proof of Lemma 59

In this section, we fix two sets P and S, a monad T on SetP, and a SetS-valued T -module
M . We then show that given any signature ρ in Rule(T,M), Σρ on T -Modf (SetS)/M is
finitary.

Now, Σρ is a composite of four functors as in (1) with
∏
i(−)σi replaced byDρ :=

∏
i(−)(~pi)

σi

as explain in §5.2.2. The last three of these functors are left adjoints (because we restrict to
finitary modules), hence readily finitary. It remains to show that the fourth factor, Dρ/M :
T -Modf (SetS)/M → T -Modf (Set)/Dρ(M), is finitary. Because the domain functors
T -Modf (SetS)/M → T -Modf (SetS) and T -Modf (Set)/Dρ(M)→ T -Modf (Set) create
colimits, this reduces to Dρ being finitary. But finitary functors are closed under finite
products, so, because colimits are pointwise in presheaf categories, this in turn reduces to
each (−)(p) being finitary, which follows from their being left adjoints. (They may be viewed
as precomposition with an endofunctor of Kl(T ), hence admit a right adjoint given by right
Kan extension.)
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The expressiveness of dependent type theory can be extended by identifying types modulo some
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1 Introduction

The λΠ-calculus, or LF [12], is an extension of the simply-typed λ-calculus with dependent
types, that is, types that can depend on values like, for instance, the type V n of vectors
of dimension n. And two dependent types like V n and V p are identified as soon as n and
p are two expressions having the same value (modulo the evaluation rule of λ-calculus,
β-reduction).

In the λΠ-calculus modulo rewriting, function and type symbols can be defined not only
by using β-reduction but also by using rewriting rules [19]. Hence, types are identified modulo
β-reduction and some user-defined rewriting rules. This calculus has been implemented in a
tool called Dedukti [9].

Adding rewriting rules adds a lot of expressivity for encoding logical or type systems.
For instance, although the λΠ-calculus has no native polymorphism, one can easily encode
higher-order logic or the calculus of constructions by using just a few symbols and rules
[8]. As a consequence, various tools have been developed for translating actual terms and
proofs from various systems (Coq, OpenTheory, Matita, Focalize, . . . ) to Dedukti, and
back, opening the way to some interoperability between those systems [1]. The Agda system
recently started to experiment with rewriting too [7].

To preserve the decidability of type-checking and the logical consistency, it is however
essential that the rules added by the user preserve typing, that is, if an expression e has
some type T and a rewriting rule transforms e into a new expression e′, then e′ should have
type T too. This property is also very important in programming languages, to avoid some
errors (a program declared to return a string should not return an integer).

When working in the simply-typed λ-calculus, it is not too difficult to ensure this property:
it suffices to check that, for every rewriting rule l ↪→ r, the right-hand side (RHS) r has the
same type as the left-hand side (LHS) l, which is decidable.
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13:2 Type Safety of Rewrite Rules in Dependent Types

The situation is however much more complicated when working with dependent types
modulo user-defined rewriting rules. As type-checking requires one to decide the equivalence
of two expressions, it is undecidable in general to say whether a rewriting rule preserves
typing, even β-reduction alone [17].

Note also that, in the λΠ-calculus modulo rewriting, the set of well-typed terms is not
fixed but depends on the rewriting rules themselves (it grows when one adds rewriting rules).

Finally, the technique used in the simply-typed case (checking that both the LHS and
the RHS have the same type) is not satisfactory in the case of dependent types, as it often
forces rule left-hand sides to be non-linear [6], making other important properties (namely
confluence) more difficult to establish and the implementation of rewriting less efficient (if it
does not use sharing).

I Example 1. As already mentioned, Dedukti is often used to encode logical systems and
proofs coming from interactive or automated theorem provers. For instance, one wants to
be able to encode the simply-typed λ-calculus in Dedukti. Using the new Dedukti syntax1,
this can be done as follows (rule variables must be prefixed by $ to distinguish them from
function symbols with the same name):

constant symbol T: TYPE // Dedukti type for representing simple types
constant symbol arr: T → T → T // arrow simple type constructor

injective symbol τ : T → TYPE // interprets T elements as Dedukti types
rule τ (arr $x $y) ↪→ τ $x → τ $y // (Curry - Howard isomorphism )

// representation of simply -typed λ-terms
symbol lam: Π a b, (τ a → τ b) → τ (arr a b)
symbol app: Π a b, τ (arr a b) → (τ a → τ b)

rule app $a $b (lam $a ’ $b ’ $f) $x ↪→ $f $x // β-reduction

Proving that the above rule preserves typing is not trivial as it is equivalent to proving
that β-reduction has the subject-reduction property in the simply-typed λ-calculus. And,
indeed, the previous version of Dedukti was unable to prove it.

The LHS is typable if f is of type τ(arr a′ b′), τ(arr a′ b′) ' τ(arr a b), and x is of type
τa. Then, in this case, the LHS is of type τb.

Here, one could be tempted to replace a′ by a, and b′ by b, so that these conditions are
satisfied but this would make the rewriting rule non left-linear and the proof of its confluence
problematic [13].

Fortunately, this is not necessary. Indeed, we can prove that the RHS is typable and
has the same type as the LHS by using the fact that τ(arr a′ b′) ' τ(arr a b) when the LHS
is typable. Indeed, in this case, and thanks to the rule defining τ , f is of type τa → τb.
Therefore, the RHS has type τb as well.

In this paper, we present a new method for doing this kind of reasoning automatically.
By using Knuth-Bendix completion [15, 18], the equations holding when a LHS is typable
are turned into a convergent (i.e. confluent and terminating) set of rewriting rules, so that
the type-checking algorithm of Dedukti itself can be used to check the type of a RHS modulo
these equations.

1 https://github.com/Deducteam/lambdapi

https://github.com/Deducteam/lambdapi
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Outline. The paper is organized as follows. In Section 2, we recall the definition of the
λΠ-calculus modulo rewriting. In Section 3, we recall what it means for a rewriting rule to
preserve typing. In Section 4, we describe a new algorithm for checking that a rewriting
rule preserves typing and provide general conditions for ensuring its termination. Finally, in
Section 5, we compare this new approach with previous ones and conclude.

2 λΠ-calculus modulo rewriting

Following Barendregt’s book on typed λ-calculus [4], the λΠ-calculus is a Pure Type System
(PTS) on the set of sorts S = {?,�}:2

I Definition 2 (λΠ-term algebra). A λΠ-term algebra is defined by:
a set F of function symbols,
an infinite set V of variables,

such that V, F and S are pairwise disjoint.
The set T (F ,V) of λΠ-terms is then inductively defined as follows:

t, u := s ∈ S | x ∈ V | f ∈ F | λx : t, u | tu | Πx : t, u

where λx : t, u is called an abstraction, tu an application, and Πx : t, u a (dependent) product
(simply written t → u if x does not occur in u). As usual, terms are identified modulo
renaming of bound variables (x is bound in λx : t, u and Πx : t, u). We denote by FV(t) the
free variables of t. A term is said to be closed if it has no free variables.

A substitution is a finite map from V to T (F ,V). It is written as a finite set of pairs.
For instance, {(x, a)} is the substitution mapping x to a.

Given a substitution σ and a term t, we denote by tσ the capture-avoiding replacement of
every free occurrence of x in t by its image in σ.

I Definition 3 (λΠ-calculus). A λΠ-calculus on T (F ,V) is given by:
a function Θ : F → T (F ,V) mapping every function symbol f to a term Θf called its
type (we will often write f : A instead of Θf = A),
a function Σ : F → S mapping every function symbol f to a sort Σf ,
a set R of rewriting rules (l, r) ∈ T 2, written l ↪→ r, such that FV(r) ⊆ FV(l).

We then denote by ' the smallest equivalence relation containing ↪→ = ↪→R ∪ ↪→β where
↪→R is the smallest relation stable by context and substitution containing R, and ↪→β is the
usual β-reduction relation.

I Example 4. For representing natural numbers, we can use the function symbols N : ? of
sort �, and the function symbols 0 : N and s : N → N of sort ?. Addition can be represented
by + : N → N → N of sort ? together with the following set of rules:

0 + y ↪→ y

x+ 0 ↪→ x

x+ (sy) ↪→ s(x+ y)
(sx) + y ↪→ s(x+ y)

(x+ y) + z ↪→ x+ (y + z)

2 PTS sorts should not be confused with the notion of sort used in first-order logic. The meaning of these
sorts will be explained after the definition of typing (Definition 5). Roughly speaking, ? is the type of
objects and proofs, and � is the type of set families and predicates.

FSCD 2020



13:4 Type Safety of Rewrite Rules in Dependent Types

(ax) ` ? : �

(fun)
` Θf : Σf

` f : Θf

(var)
Γ ` A : s

Γ, x : A ` x : A (x /∈ Γ)

(weak)
Γ ` t : T Γ ` A : s

Γ, x : A ` t : T (x /∈ Γ)

(prod)
Γ ` A : ? Γ, x : A ` B : s

Γ ` Πx : A,B : s

(app)
Γ ` t : Πx : A,B Γ ` a : A

Γ ` ta : B{(x, a)}

(abs)
Γ, x : A ` b : B Γ ` Πx : A,B : s

Γ ` λx : A, b : Πx : A,B

(conv)
Γ ` t : T Γ ` U : s

Γ ` t : U (T ' U)

Figure 1 Typing rules of the λΠ-calculus modulo rewriting.

Note that Dedukti allows overlapping LHS and matching on defined symbols like in this
example. (It also allows higher-order pattern matching like in Combinatory Reduction
Systems (CRS) [14] but we do not consider this feature in the current paper.)

Throughout the paper, we assume a given λΠ-calculus Λ = (F ,V,Θ,Σ,R).

I Definition 5 (Well-typed terms). A typing environment is a possibly empty ordered sequence
of pairs (x1, A1), . . . , (xn, An), written x1 : A1, . . . , xn : An, where the xi’s are distinct
variables and the Ai’s are terms.

A term t has type A in a typing environment Γ if the judgment Γ ` t : A is derivable
from the rules of Figure 1. An environment Γ is valid if some term is typable in it.

A substitution σ is a well-typed substitution from an environment Γ to an environment
Γ′, written Γ′ ` σ : Γ, if, for all x : A ∈ Γ, we have Γ′ ` xσ : Aσ.

Note that well-typed substitutions preserve typing: if Γ ` t : T and Γ′ ` σ : Γ, then
Γ′ ` tσ : Tσ [5].

A type-checking algorithm for the λΠ-calculus modulo (user-defined) rewriting rules is
implemented in the Dedukti tool [9].

We first recall a number of basic properties that hold whatever R is and can be easily
proved by induction on ` [5]:

I Lemma 6.
(a) If t is typable, then every subterm of t is typable.
(b) � is not typable.
(c) If Γ ` t : T then either T = � or Γ ` T : s for some sort s.
(d) If Γ ` t : � then t is a kind, that is, of the form Πx1 : T1, . . . ,Πxn : Tn, ?.
(e) If Γ ` t : T , Γ ⊆ Γ′ and Γ′ is valid, then Γ′ ` t : T .

Throughout the paper, we assume that, for all f , ` Θf : Σf . Indeed, if ` Θf : Σf

does not hold, then no well-typed term can contain f . (This assumption is implicit in the
presentations of LF using signatures [12].)
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More importantly, we will assume that ↪→ is confluent on the set T (F ,V) of untyped
terms, that is, for all terms t, u, v ∈ T (F ,V), if t ↪→∗ u and t ↪→∗ v, then there exists a term
w ∈ T (F ,V) such that u ↪→∗ w and v ↪→∗ w, where ↪→∗ is the reflexive and transitive closure
of ↪→.

This condition is required for ensuring that conversion behaves well with respect to
products (if Πx : A,B ' Πx : A′, B′ then A ' A′ and B ' B′), which in particular implies
subject-reduction for ↪→β .

This last assumption may look strong, all the more so since confluence is undecidable.
However this property is satisfied by many systems in practice. For instance, ↪→ is confluent if
the left-hand sides of R are algebraic (Definition 8), linear and do not overlap with each other
[21]. This is in particular the case of the rewriting systems corresponding to the function
definitions allowed in functional programming languages such as Haskell, Agda, OCaml or
Coq. But confluence can be relaxed in some cases: when there are no type-level rewriting
rules [3] or when the right-hand sides of type-level rewriting rules are not products [6].

When ↪→ is confluent, the typing relation satisfies additional properties. For instance,
the set of typable terms can be divided into three disjoint classes:

the terms of type �, called kinds, of the form Πx1 : A1, . . . ,Πxn : An, ?;
the terms whose type is a kind, called predicates;
the terms whose type is a predicate, called objects.

3 Subject-reduction

A relation B preserves typing (subject-reduction property) if, for all environments Γ and all
terms t, u and A, if Γ ` t : A and tB u, then Γ ` u : A.

One can easily check that ↪→β preserves typing when ↪→ is confluent [5]. Our aim is
therefore to check that ↪→R preserves typing too. To this end, it is enough to check that
every rule l ↪→ r ∈ R preserves typing, that is, for all environments Γ, substitutions σ and
terms A, if Γ ` lσ : A, then Γ ` rσ : A.

A first idea is to require that:

(*) there exist ∆ and B such that ∆ ` l : B and ∆ ` r : B.

But this condition is not sufficient in general as shown by the following example:

I Example 7. Consider the rule f(xy) ↪→ y with f : B → B. In the environment ∆ =
x : B → B, y : B, we have ∆ ` l : B and ∆ ` r : B. However, in the environment Γ =
x : A→ B, y : A, we have Γ ` l : B and Γ ` r : A.

The condition (*) is sufficient if the rule left-hand side is a non-variable simply-typed
first-order term [3], a notion that we slightly generalize as follows:

I Definition 8 (Pattern). We assume that the set of variables is split in two disjoint sets, the
algebraic variables and the non-algebraic ones, and that there is an injection ̂ from algebraic
variables to non-algebraic variables.

A term is algebraic if it is an algebraic variable or of the form ft1 . . . tn with each ti
algebraic and f a function symbol whose type is of the form Πx1 : A1, . . . , xn : An, B.

A term is an object-level algebraic term if it is algebraic and all its function symbols are
of sort ?.

A pattern is an algebraic term of the form ft1 . . . tn where each ti is an object-level
algebraic term.

FSCD 2020



13:6 Type Safety of Rewrite Rules in Dependent Types

The distinction between algebraic and non-algebraic variables is purely technical: for
generating equations (Definition 10), we need to associate a type x̂ to every variable x, and
we need those variables x̂ to be distinct from one another and distinct from the variables
used in rules. To do so, we split the set of variables into two disjoint sets. The ones used
in rules are called algebraic, and the others are called non-algebraic. Finally, we ask the
function ̂ to be an injection from the set of algebraic variables to the set of non-algebraic
variables.

In the rest of the paper, we also assume that rule left-hand sides are patterns. Hence,
every rule is of the form f l1 . . . ln ↪→ r, and we say that a symbol f ∈ F is defined if there is
in R a rule of the form f l1 . . . ln ↪→ r.

However, the condition (*) is not satisfactory in the context of dependent types. Indeed,
when function symbols have dependent types, it often happens that a term is typable only
if it is non-linear. And, with non-left-linear rewriting rules, ↪→ is generally not confluent
on untyped terms [13], while there exist many confluence criteria for left-linear rewriting
systems [21].

Throughout the paper, we will use the following simple but paradigmatic example to
illustrate how our new algorithm works:

I Example 9. Consider the following rule to define the tail function on vectors:

tail n (cons x p v) ↪→ v

where tail : Πn : N,V (sn)→ V n, V : N → ?, nil : V 0, cons : R→ Πn : N,V n→ V (sn) and
R : ?.

For the left-hand side to be typable, we need to take p = n, because tail n expects an
argument of type V (sn), but cons x p v is of type V (sp).

Yet, the rule with p 6= n preserves typing. Indeed, assume that there is an environment
Γ, a substitution σ and a term A such that Γ ` tail nσ (cons xσ pσ vσ) : A. By inversion
of typing rules, we get V (nσ) ' A, Γ ` A : s for some sort s, V (spσ) ' V (snσ) and
Γ ` vσ : V pσ. Assume now that V and s are undefined, that is, there is no rule of R of
the form V t ↪→ u or st ↪→ u. Then, by confluence, pσ ' nσ. Therefore, V pσ ' A and
Γ ` vσ : A.

Hence, that a rewriting rule l ↪→ r preserves typing does not mean that its left-hand side
l must be typable [6]. Actually, if no instance of l is typable, then l ↪→ r trivially preserves
typing (since it can never be applied)! The point is therefore to check that any typable
instance of l ↪→ r preserves typing.

4 A new subject-reduction criterion

The new criterion that we propose for checking that l ↪→ r preserves typing proceeds in two
steps. First, we generate conversion constraints that are satisfied by every typable instance
of l (Figure 2). Then, we try to check that r has the same type as l in the type system where
the conversion relation is extended with the equational theory generated by the conversion
constraints inferred in the first step. For type-checking in this extended type theory to be
decidable and implementable using Dedukti itself, we use Knuth-Bendix completion [15] to
replace the set of conversion constraints by an equivalent but convergent (i.e. terminating
and confluent) set of rewriting rules.
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4.1 Inference of typability constraints
We first define an algorithm for inferring typability constraints and then prove its correctness
and completeness.

I Definition 10 (Typability constraints). For every algebraic term t, we assume given a valid
environment ∆t = ŷ1 : ?, y1 : ŷ1, . . . , ŷk : ?, yk : ŷk where y1, . . . , yk are the free variables of t.

Let ↑ be the partial function defined in Figure 2. It takes as input a term t and returns a
pair (A, E), written A[E ], where A is a term and E is a set of equations, an equation being a
pair of terms (l, r) usually written l = r.

A substitution σ satisfies a set E of equations, written σ |= E, if for all equations a = b ∈ E,
aσ ' bσ.

y ↑ ŷ[∅]

f : Πx1 : T1, . . . ,Πxn : Tn, U t1 ↑ A1[E1] tn ↑ An[En]
ft1 . . . tn ↑ Uσ[E1 ∪ . . . ∪ En ∪ {A1 = T1σ, . . . , An = Tnσ}]

where σ = {(x1, t1), . . . , (xn, tn)}

Figure 2 Typability constraints.

I Example 11. In our running example tail n (cons x p v) ↪→ v, we have cons x p v ↑
V (sp)[E1] with E1 = {x̂ = T , p̂ = N, v̂ = V p}, and tail n (cons x p v) ↑ V n[E2] with E2 =
E1 ∪ {n̂ = N,V (sp) = V (sn)}.

I Lemma 12. If Γ ` Πx1 : T1, . . . ,Πxn : Tn, U : s then, for all i, Γi−1 ` Ti : ? and
Γn ` U : s, where Γi = Γ, x1 : T1, . . . , xi : Ti.

Proof. Since ↪→ is confluent and left-hand sides are patterns, s ' s′ iff s = s′. The result
follows then by inversion of typing rules and weakening. J

In particular, because ` Θf : Σf for all f , we have:

I Corollary 13. For all function symbols f : Πx1 : T1, . . . ,Πxn : Tn, U and integer i, we
have Γi−1

f ` Ti : ? and Γnf ` U : Σf where Γif = x1 : T1, . . . , xi : Ti.

I Lemma 14. For all environments Γ, terms t, x1, T1, . . . , xn, Tn, U, T and substitutions σ
for x1, . . . , xn, if Γ ` t : Πx1 : T1, . . . ,Πxn : Tn, U and Γ ` tx1σ . . . xnσ : T , then Uσ ' T

and Γ ` σ : ∆n where ∆n = x1 : T1, . . . , xn : Tn.

Proof. Let σi = {(x1, t1), . . . , (xi−1, ti−1)}. We proceed by induction on n.
Case n = 0. By equivalence of types.
Case n > 0. By inversion of typing rules and weakening, Γ,∆n−1 ` Tn : ?, Γ `
tx1σn−1 . . . xn−1σn−1 : Πxn : A,B, Γ ` xnσ : A and B{(xn, xnσ)} ' T . By induction
hypothesis, Γ ` σn−1 : ∆n−1 and (xn : Tnσn−1)Uσn−1 ' Πxn : A,B. By substitu-
tion, Γ ` Tnσn−1 : ?. By confluence , Tnσn−1 ' A and Uσn−1 ' B. Therefore, by
conversion, Γ ` xnσ : Tnσ and Γ ` σ : ∆n. Now, xn can always be chosen so that
Uσ = Uσn−1{(xn, xnσ)}. Therefore, Uσ ' B{(xn, xnσ)} ' T . J
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I Lemma 15. (Correctness) For all algebraic terms t, terms T and sets of equations E,
if t ↑ T [E ] then, for all valid environments Γ, substitutions θ̂ such that Γ ` θ̂ : ∆t and
θ̂ |= E, we have Γ ` tθ̂ : T θ̂.
(Completeness) For all environments Γ, patterns t, substitutions θ and terms A, if
Γ ` tθ : A, then there are a term T , a set of equations E and a substitution θ̂ extending θ
such that t ↑ T [E ], θ̂ |= E, Γ ` θ̂ : ∆t and A ' T θ̂.

Proof. (Correctness) By induction on t.
Case t = y. Then, T = ŷ and E = ∅. By assumption, we have Γ ` yθ : ŷθ. Therefore,
Γ ` tθ : Tθ.
Case t = ft1 . . . tn with f : Πx1 : T1, . . . , xn : Tn, U , t1 ↑ A1[E1], . . . , tn ↑ An[En].
Then, T = Uσ and E = E1 ∪ . . . ∪ En ∪ {A1 = T1σ, . . . , An = Tnσ} where σ =
{(x1, t1), . . . , (xn, tn)}.
By Lemma 12, we have Γi−1

f ` Ti : ?.
By induction hypothesis, for all i, we have Γ ` tiθ̂ : Aiθ̂ and Aiθ̂ ' Tiσθ̂.
We now prove that, for all i, Γ ` Tiσθ̂ : ? and Γ ` xiσθ̂ : Tiσθ̂, hence that Γ ` σ : Γif ,
by induction on i.
∗ Case i = 1. Since ` T1 : ?, T1 is closed and T1σθ̂ = T1. Therefore, by weakening,

Γ ` T1σθ̂ : ? and, by conversion, Γ ` x1σθ̂ : T1σθ̂.
∗ Case i > 1. By induction hypothesis, Γ ` σθ̂ : Γi−1

f . Since Γi−1
f ` Ti : ?, by

substitution, we get Γ ` Tiσθ̂ : ?. Therefore, by conversion, Γ ` xiσθ̂ : Tiσθ̂.
Hence, Γ ` σθ̂ : Γnf . Now, since Γnf ` fx1 . . . xn : U , by substitution, we get Γ ` t : Uσθ̂.

(Completeness) We first prove completeness for object-level algebraic terms t such that
Γ ` A : ?, by induction on t.

Case t = y. We take T = ŷ, E = ∅ and θ̂ = θ ∪ {(ŷ, A)}. We have t ↑ T [E ], θ̂ |= E and
A ' T θ̂. Now, Γ ` yθ̂ : ŷθ̂ and Γ ` ŷθ̂ : ?. Therefore, Γ ` θ̂ : ∆t.
Case t = ft1 . . . tn with f : Πx1 : T1, . . . , xn : Tn, U . By Lemma 12, for all i, we have
Γf ` xi : Ti and Γf ` Ti : ?, where Γf = x1 : T1, . . . , xn : Tn. By Lemma 14 because
` Θf : Σf for all f , we have A ' Uσθ and Γ ` σθ : Γf . Hence, by substitution, for
all i, we have Γ ` tiθ : Tiσθ and Γ ` Tiσθ : ?. Therefore, by induction hypothesis,
there are Ai, Ei and θ̂i extending θ such that ti ↑ Ai[Ei], θ̂i |= Ei, Γ ` θ̂i : ∆ti

and Tiσθ ' Aiθ̂i. Then, let T = Uσ, E = E1 ∪ . . . ∪ En ∪ {(A1, T1σ), . . . , (An, Tnσ)},
yθ̂ = yθ if y ∈ FV(t), and ŷθ̂ = ŷθ̂i where i is the smallest integer such that y ∈ FV(ti).
Then, we have t ↑ T [E ] and A ' Uσθ = T θ̂.
If y ∈ FV(ti) ∩ FV(tj), then yθ̂i = yθ = yθ̂j since θ̂i and θ̂j are both extensions of
θ. Now, if Γ ` yθ̂i : ŷθ̂i and Γ ` yθ̂j : ŷθ̂j then, by equivalence of types, ŷθ̂i ' ŷθ̂j .
Therefore, θ̂ |= E and Γ ` θ̂ : ∆t.

Let now t be a pattern. By definition, t is of the form ft1 . . . tn with f : Πx1 : T1, . . . , xn :
Tn, U and each ti an object-level algebraic term. As we have seen above, for all i, we have
Γ ` tiθ : Tiσθ and Γ ` Tiσθ : ?. Therefore, by completeness for object level algebraic
terms, there are Ai, Ei and θ̂i extending θ such that ti ↑ Ai[Ei], θ̂i |= Ei, Γ ` θ̂i : ∆ti and
Tiσθ ' Aiθ̂i. We can now conclude like in the previous case. J

I Example 16. In our running example tail n (cons x p v) ↪→ v, we have seen that
cons x p v ↑ V (sp)[E1] with E1 = {x̂ = T , p̂ = N , v̂ = V p}, and tail n (cons x p v) ↑ V n[E2]
with E2 = E1 ∪ {n̂ = N,V (sp) = V (sn)}. This means that, if σ is a substitution and
(tail n (cons x p v))σ is typable, then σ |= E2. In particular, V (spσ) ' V (snσ).
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4.2 Type-checking modulo typability constraints
For checking that the right-hand side of a rewriting rule l ↪→ r has the same type as the
left-hand side modulo the typability constraints E of the left hand-side, we introduce a new
λΠ-calculus as follows:

I Definition 17. Given a pattern l and a set of equations E such that R contains no variable
of {x | x ∈ FV(l)} ∪ {x̂ | x ∈ FV(l)}3, we define a new λΠ-calculus Λl,E = (F ′,V ′,Θ′,Σ′,R′)
where:
F ′ = F ∪ {x | x ∈ FV(l)} ∪ {x̂ | x ∈ FV(l)}
V ′ = V − ({x | x ∈ FV(l)} ∪ {x̂ | x ∈ FV(l)})
Θ′ = Θ ∪ {(x, x̂) | x ∈ FV(l)} ∪ {(x̂, ?) | x ∈ FV(l)}
Σ′ = Σ ∪ {(x, ?) | x ∈ FV(l)} ∪ {(x̂,�) | x ∈ FV(l)}
R′ = R∪ E ∪ E−1, where l = r ∈ E−1 iff r = l ∈ E.

We denote by 'l,E the conversion relation of Λl,E , and by `l,E its typing relation.

Λl,E is similar to Λ except that the symbols of {x | x ∈ FV(l)} ∪ {x̂ | x ∈ FV(l)} are not
variables but function symbols, and that the set of rewriting rules is extended by E ∪ E−1

which, in Λl,E , is a set of closed rewriting rules (rules and equations are synonyms: they both
are pairs of terms).

I Lemma 18. For all patterns l, sets of equations E and substitutions σ in Λ, and for all
terms t, u in Λl,E , if σ |= E and t 'l,E u, then tσ ' uσ.4

Proof. Immediate as each application of an equation (a, b) ∈ E ∪ E−1 can be replaced by a
conversion a ' b. J

I Theorem 19. For all patterns l, sets of equations E, and terms T, r in Λ, if l ↑ T [E ] and
`l,E r : T , then l ↪→ r preserves typing in Λ.

Proof. Let ∆ be an environment, σ be a substitution and A be a term of Λ such that
∆ ` lσ : A. By Lemma 15 (completeness), there are a term T ′, a set of equations E ′ and a
substitution σ̂ extending σ such that t ↑ T ′[E ′], σ̂ |= E ′, ∆ ` σ̂ : ∆t and A ' T ′σ̂. Since ↑ is
a function, we have T ′ = T and E ′ = E .

We now prove that, if Γ `l,E t : T , then ∆,Γσ̂ ` tσ̂ : T σ̂, by induction on `l,E (note that
σ̂ replaces function symbols by terms).

(fun)
`l,E Θ′f : Σ′f
`l,E f : Θ′f

. By induction hypothesis, we have ∆ ` Θ′f σ̂ : Σ′f σ̂ = Σ′f .

Case f ∈ F . Then, fσ̂ = f , Θ′f σ̂ = Θ′f = Θf and Σ′f = Σf . By inverting typing rules,
we get ` Θf : Σf . Therefore, by (fun) and (weak), ∆ ` f : Θf , that is, ∆ ` fσ̂ : Θf σ̂.
Case f = x ∈ FV(l). Then, fσ̂ = xσ and Θ′f σ̂ = x̂σ̂. Therefore, ∆ ` fσ̂ : Θf σ̂ since
∆ ` xσ̂ : x̂σ̂.
Case f = x̂ with x ∈ FV(l). Then, fσ̂ = x̂σ̂ and Θ′f σ̂ = ?. Therefore, ∆ ` fσ̂ : Θf σ̂

since ∆ ` x̂σ̂ : ?.

(conv)
Γ `l,E t : T T 'l,E U Γ `l,E U : s

Γ `l,E t : U . By induction hypothesis, ∆,Γσ̂ ` tσ̂ : T σ̂ and

∆,Γσ̂ ` Uσ̂ : s. By Lemma 18, T σ̂ ' Uσ̂ since σ̂ |= E . Hence, by (conv), ∆,Γσ̂ ` tσ̂ : Uσ̂.

The other cases follow easily by induction hypothesis.

3 This can always be done by renaming variables.
4 Note that, here, we extend the notion of substitution by taking maps on V ∪ F .
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Hence, we have ∆ ` rσ̂ : T σ̂. Since FV(r) ⊆ FV(l), we have rσ̂ = rσ. Since ∆ ` lσ : A,
by Lemma 6, either ∆ ` A : s for some sort s, or A = � and lσ is of the form Πx1 :
A1, . . . ,Πxk : Ak, ?. Since l is a pattern, l is of the form fl1 . . . ln. Therefore, ∆ ` A : s and,
by (conv), ∆ ` rσ : A. J

I Example 20. We have seen that cons x p v ↑ V (sp)[E1] with E1 = {x̂ = T , p̂ = N , v̂ = V p},
and tail n (cons x p v) ↑ V n[E2] with E2 = E1 ∪{n̂ = N,V (sp) = V (sn)}. After the previous
theorem, the rewriting rule defining tail preserves typing if we can prove that `l,E2 v : V n
where, in Λl,E2 , v is a function symbol of type v̂ and sort ?, and types are identified modulo
' and the equations of E2. But this is not possible since v : V p and V p 6'l,E2 V n. Yet, if
σ |= V (sp) = V (sn) and V and s are undefined then, by confluence, σ |= p = n and thus
σ |= V p = V n. We therefore need to simplify the set of equations before type-checking the
right-hand side.

4.3 Simplification of typability constraints
In this section, we show that Theorem 19 can be generalized by using any valid simplification
relation, and give an example of such a relation.

I Definition 21 (Valid simplification relation). A relation  on sets of equations is valid if,
for all sets of equations D,D′ and substitutions σ, if σ |= D and D  D′, then σ |= D′.

Theorem 19 can be easily generalized as follows:

I Theorem 22 (Preservation of typing). For all patterns l, sets of equations D, E, and terms
T, r in Λ, if l ↑ T [D], D  ∗ E and `l,E r : T , then l ↪→ r preserves typing in Λ.

We have seen in the previous example that, thanks to confluence, σ |= p = n whenever
σ |= sp = sn and s is undefined. But this last condition is a particular case of a more general
property:

I Definition 23 (I-injectivity). Given f : Πx1 : T1, . . . ,Πxn : Tn, U and a set I ⊆ {1, . . . , n},
we say that f is I-injective when, for all t1, u1, . . . , tn, un, if ft1 . . . tn ' fu1 . . . un and, for
all i /∈ I, ti ' ui, then, for all i ∈ I, ti ' ui.

For instance, f is {1, . . . , n}-injective if f is undefined. The new version of Dedukti allows
users to declare if a function symbol is I-injective (like the function τ in Example 1), and a
procedure for checking I-injectivity of function symbols defined by rewriting rules has been
developed and implemented in Dedukti [22]. For instance, the function symbol τ of Example
1, which is defined by the rule τ(arrx y) ↪→ τx→ τy, can be proved to be {1}-injective.

Clearly, I-injectivity can be used to define a valid simplification relation. In fact, one can
easily check that the following simplification rules are valid too:

I Lemma 24. The relation defined in Figure 3 is a valid simplification relation.

Proof. We only detail the first rule which says that, if some substitution σ validates some
equation t = u, that is, if tσ ' uσ, then σ validates any equation t′ = u′ where t′ and u′ are
reducts of t and u respectively. Indeed, since t′ is a reduct of t, t′ ' t. Similarly, u′ ' u.
Therefore, by stability of conversion by substitution and transitivity, t′σ ' u′σ. J

I Example 25. We can now handle our running example. We have cons x p v ↑ V (sp)[E1]
with E1 = {x̂ = T , p̂ = N, v̂ = V p}, l = tail n (cons x p v) ↑ V n[E2] with E2 = E1 ∪
{n̂ = N,V (sp) = V (sn)}, and E2  ∗ E ′2 = E1 ∪ {n̂ = N, p = n} since V and s are {1}-
injective. Therefore, `l,E′2 v : V n and l ↪→ v preserves typing.



F. Blanqui 13:11

D ] {t = u}  D ∪ {t′ = u′} if t ↪→∗ t′ and u ↪→∗ u′
D ] {Πx : t1, t2 = Πx : u1, u2}  D ∪ {t1 = u1, t2 = u2} if x is fresh
D ] {ft1 . . . tn = fu1 . . . un}  D ∪ {ti = ui | i ∈ I}

if f is I-injective and ∀i /∈ I, ti 'l,D ui

Figure 3 Some valid simplification rules on typability constraints.

The above simplification relation works for the rewriting rule defining tail but may not
be sufficient in more general situations:

I Example 26. Let D be the set of equations {fct = ga, fcu = gb, a = b} and assume that
f is {2}-injective. Then the equation t = u holds as well, but D cannot be simplified by the
above rules because it contains no equation of the form fct = fcu.

We leave for future work the development of more general simplification relations.

4.4 Decidability conditions
We now discuss the decidability of type-checking in Λl,E and of the simplification relation
based on injectivity, assuming that ↪→β ∪ ↪→R is terminating and confluent so that type-
checking is decidable in Λ. In both cases, we have to decide 'l,E , the reflexive, symmetric
and transitive closure of ↪→β ∪ ↪→R ∪ ↪→E ∪ ↪→E−1 , where E is a set of closed equations.

As it is well known, an equational theory is decidable if there exists a convergent (i.e.
terminating and confluent) rewriting system having the same equational theory: to decide
whether two terms are equivalent, it suffices to check that their normal forms are identical.

In [15], Knuth and Bendix introduced a procedure to compute a convergent rewriting
system included in some termination ordering, when equations are algebraic. Interestingly,
this procedure always terminates when equations are closed, if one takes a termination
ordering that is total on closed terms like the lexicographic path ordering >lpo wrt any total
order > on function symbols (for more details, see for instance [2]).

For the sake of self-contentness, we recall in Figure 4 a rule-based definition of closed
completion. These rules operate on a pair (E ,D) made of a set of equations E and a set of
rules D. Starting from (E , ∅), completion consists in applying these rules as long as possible.
This process necessarily ends on (∅,D) where D is terminating (because D ⊆ >lpo) and
confluent (because it has no critical pairs).

(E ] {l = r},D)  (E , {l ↪→ r} ∪ D) if l > r

(E ] {l = r},D)  (E , {r ↪→ l} ∪ D) if l < r

(E ] {t = t},D)  (E ,D)
(E , {l[g] ↪→ r, g ↪→ d} ] D)  (E ∪ {l[d] = r}, {g ↪→ d} ∪ D)
(E , {l ↪→ r[g], g ↪→ d} ] D)  (E , {l ↪→ r[d], g ↪→ d} ∪ D)

Figure 4 Rules for closed completion.

We leave for future work the extension of this procedure to the case of non-algebraic, and
possibly higher-order, equations.

If we apply this procedure to the set E of equations (assuming that they are algebraic),
we get that 'l,E is the reflexive, symmetric and transitive closure of ↪→β ∪ ↪→R ∪ ↪→D, where
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↪→β∪ ↪→R and ↪→D are both terminating and confluent. However, termination is not modular
in general, even when combining two systems having no symbols in common [20].

There exists many results on the modularity of confluence and termination of first-order
rewriting systems when these systems have no symbols in common, or just undefined symbols
(see for instance [11] for some survey). But, here, we have higher-order rewriting rules that
may share defined symbols.

So, instead, we may try to apply general modularity results on abstract relations [10].
In particular, for all terminating relations P and Q, P ∪ Q terminates if P steps can be
postponed, that is, if PQ ⊆ QP ∗. In our case, we may try to postpone the D steps:

I Lemma 27. For all sets of higher-order rewriting rules R and D, we have that ↪→β ∪
↪→R ∪ ↪→D terminates if:
(a) ↪→β ∪ ↪→R and ↪→D terminate,
(b) R is left-linear,
(c) D is closed,
(d) no right-hand side of D is βR-reducible or headed by an abstraction,
(e) no right-hand side of D unifies with a non-variable subterm of a left-hand side of R.

Proof. As usual, we define positions in a term as words on {1, 2}: Pos(s) = Pos(x) =
Pos(f) = {ε}, the empty word representing the root position, and Pos(tu) = Pos(λx : t, u) =
Pos(Πx : t, u) = 1 · Pos(t) ∪ 2 · Pos(u).

Assume that t ↪→D u at position p and u ↪→βR v at position q. If p and q are disjoint,
then these reductions can be trivially permuted: t ↪→βR↪→D v. The case p ≤ q (p prefix of q)
is not possible since D is closed (c) and no right-hand side of D is βR-reducible (d). So, we
are left with the case q < p:

Case u ↪→β v. The case p = q1 is not possible since no right-hand side of D is headed
by an abstraction (d). So, t|q is of the form (λx : A, b)a and the D step is in A, b or a.
Therefore, t ↪→β ↪→∗D v.
Case u ↪→R v, that is, when u|q = lσ where l is a left-hand side of a rule of R. The case
p = qs where s is a non-variable position of l is not possible because no non-variable
subterm of a left-hand side of R unifies with a right-hand side of D (e). Therefore, since
l is left-linear (b), t|q is of the form lθ for some substitution θ, and the D step occurs in
some xθ. Hence, t ↪→R↪→∗D v. J

I Example 28. As we have already seen, the typability conditions of l = tail n (cons x p v)
is the set of equations E = {x̂ = T , p̂ = N, v̂ = V p, n̂ = N,V (sp) = V (sn)}. By taking
x̂ > v̂ > p̂ > n̂ > V > T > N > s > p > n as total order on function symbols, the
Knuth-Bendix completion procedure yields with >lpo the rewriting system D = {x̂ ↪→ T, p̂ ↪→
N, v̂ ↪→ V p, n̂ ↪→ N,V (sp) ↪→ V (sn)}. After Lemma 27, ↪→β ∪ ↪→R ∪ ↪→D is convergent if
↪→β ∪ ↪→R is convergent, R is left-linear and V and s are undefined. This works as well if,
instead of E , we use its simplification E ′ = {x̂ = T , p̂ = N, v̂ = V p, n̂ = N, p = n}. In this
case, we get the rewriting system D = {x̂ ↪→ T, p̂ ↪→ N, v̂ ↪→ V n, n̂ ↪→ N, p ↪→ n}.

I Example 29. Finally, let’s come back to the rewriting rule app a b (lam a′ b′ f)x ↪→ f x of
Example 1 encoding the β-reduction of simply-type λ-calculus. As already mentioned, the
previous version of Dedukti was unable to prove that this rule preserves typing. Thanks to
our new algorithm, the new version of Dedukti5 can now do it.

5 https://github.com/Deducteam/lambdapi

https://github.com/Deducteam/lambdapi
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The computability constraints of the LHS are f̂ = τa′ → τb′, τa′ → τb′ = τ(arr a b) and
x̂ = τa. Preservation of typing cannot be proved without simplifying this set of equations to
f̂ = τa′ → τb′, τa′ = τa, τb′ = τb and x̂ = τa.

Then, any total order on function symbols allows to prove preservation of typing. For
instance, by taking f̂ >→> a′ > a > b′ > b, we get the rewriting rules f̂ ↪→ τa → τb,
τa′ ↪→ τa, τb′ ↪→ τb and x̂ ↪→ τa, so that one can easily check that, modulo these rewriting
rules, f x has type τb. Therefore, app a b (lam a′ b′ f)x ↪→ f x preserves typing.

Note that the result does not depend on the total order taken on function symbols. For
instance, if one takes f̂ >→> a > a′ > b′ > b (flipping the order of a and a′), we get the
rewriting rules f̂ ↪→ τa′ → τb, τa ↪→ τa′, τb′ ↪→ τb and x̂ ↪→ τa′. In this case, f x has type
τb as well. Flipping the order of b and b′ would work as well.

5 Related works and conclusion

The problem of type safety of rewriting rules in dependent type theory modulo rewriting has
been first studied for simply-typed function symbols by Barbanera, Fernández and Geuvers
in [3]. In [6], the author extended these results to polymorphically and dependently typed
function symbols, and showed that rule left-hand sides do not need to be typable for rewriting
to preserve typing. This was later studied in more details and implemented in Dedukti by
Saillard [17]. In this approach, one first extracts a substitution ρ (called a pre-solution in
Saillard’s work) from the typability constraints of the left-hand side l and check that, if l is
of type A, then the right-hand side r is of type Aρ (in the same system). For instance, from
the simplified set of constraints E ′ = {x̂ = T , p̂ = N, v̂ = V p, n̂ = N, p = n} of our running
example, one can extract the substitution ρ = {(n, p)} and check that v has type (V n)ρ = V p.
However, it is not said how to compute useful pre-solutions (note that we can always take
the identity as pre-solution). In practice, the pre-solution is often given by the user thanks
to annotations in rules. A similar mechanism called inaccessible or “dot” patterns exists in
Agda too [16].

An inconvenience of this approach is that, in some cases, no useful pre-solution can be
extracted. For instance, if, in the previous example, we take the original set of constraints
E = {x̂ = T , p̂ = N, v̂ = V p, n̂ = N,V (sp) = V (sn)} instead of its simplified version E ′, then
we cannot extract any useful pre-solution.

In this paper, we proposed a more general approach where we check that the right-hand
side has the same type as the left-hand side modulo the equational theory generated by
the typability constraints of the left-hand side seen as closed equations (Theorem 19). A
prototype implementation is available on:
https://github.com/wujuihsuan2016/lambdapi/tree/sr.

To ensure the decidability of type-checking in this extended system, we propose to
replace these equations by an equivalent but convergent rewriting system using Knuth-Bendix
completion [15] (which always terminates on closed equations), and provide conditions for
preserving the termination and confluence of the system when adding these new rules (Lemma
27). This approach has also the advantage that Dedukti itself can be used to check the type
safety of user-defined Dedukti rules.

We also showed that, for the algorithm to work, the typability constraints sometimes
need to be simplified first, using the fact that some function symbols are injective (Theorem
22). It would be interesting to be able to detect or check injectivity automatically (see [22]
for preliminary results on this topic), and also to find a simplification procedure more general
than the one of Figure 3.
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Abstract
We extend the constructive differential game logic (CdGL) of hybrid games with a refinement
connective that relates two hybrid games. In addition to CdGL’s ability to prove the existence of
winning strategies for specific postconditions of hybrid games, game refinements relate two games to
one another. That makes it possible to prove that any winning strategy for any postcondition of
one game carries over to a winning strategy for the other. Since CdGL is constructive, a computable
winning strategy can be extracted from a proof that a player wins a game. A folk theorem says that
any such winning strategy for a hybrid game gives rise to a corresponding hybrid system satisfying
the same property. We make this precise using CdGL’s game refinements and prove correct the
construction of hybrid systems from winning strategies of hybrid games.
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1 Introduction

Cyber-physical systems (CPSs) such as transportation systems, medical devices, and power
systems are often modeled with hybrid systems and hybrid games. Hybrid systems combine
discrete computation with continuous differential equations (ODEs), to which hybrid games
add adversarial dynamics. Differential Game Logic (dGL) [44] and its systems fragment
dL [46] provide formal proofs of correctness properties such as safety and liveness for hybrid
games and systems. Theorems of dGL answer: does a winning strategy exist for a given
player to achieve a given postcondition in a given game? Because safety-critical CPSs must
remain reliable even in adversarial environments, these rigorous correctness guarantees for
adversarial models are essential. Despite the importance of games, verification and synthesis
technology for hybrid games are less mature than for hybrid systems. For example, the
end-to-end verified monitor synthesizer VeriPhy [13] only supports systems.

This paper studies the gap between hybrid games and systems and proposes a reduction,
which in principle enables hybrid game synthesis via existing hybrid system tools. To study
this gap, we use a program refinement calculus, which is the fundamental tool for comparing
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programs. Refinement and equivalence reasoning have repeatedly proven fruitful for programs
generally and for CPS models specifically:

Equivalences of programs are the fundamental building block for KAT [34].
Differential refinement logic dRL [36] has reduced the human labor required for verification
of classical hybrid systems by relating one hybrid system to another.
Differential game refinements in dGL [45] provide a relational reasoning technique for
differential games (as opposed to hybrid games).

Because we are motivated by code synthesis, we develop our refinement calculus for
Constructive Differential Game Logic (CdGL) [11], which ensures winning strategies are
computable. Having defined refinements for CdGL, we bridge the gap between hybrid games
and systems by defining an operation we call reification. The reification operation takes as its
input a hybrid game α, its correctness condition ϕ, and a CdGL proof that α satisfies ϕ. The
reified output is a hybrid system which implements the strategy expressed in the correctness
proof. Refinement allows us to prove the relationship between a game and its reified system:
the output system refines the input game so that every safety theorem of the output is
a theorem of the input. Conversely, the output also satisfies ϕ. To our knowledge, prior
works [5] only feature ad-hoc discussions of reification; we give the first rigorous algorithm
and correctness theorems. It may be surprising that game strategies can be reduced to
systems, because games are known [44] to be more expressive than systems. Our result
does not contradict this fact: only once a winning strategy is known can we bridge this
expressiveness gap. Reification makes several practical applications possible:

i) End-to-end correctness for hybrid game synthesis could be implemented by reifying
winning strategies as a preprocessing step to VeriPhy [13].

ii) Interactive proof languages are better understood for systems than for games. A proof
language for CdGL could be developed which combines systems reasoning with refinement.
Experience with dRL [36] suggests refinement-based proof may be more productive.

iii) Reification and refinement give an intensional view of strategy equality: two strategies
are “the same” if their reification produces equivalent systems.

iv) Refinement may enable comparing the efficacy of two controllers: does one controller
always achieve its goal faster?

In Section 2, we discuss additional related work. In Section 3, we recall the syntax of
CdGL, demonstrate the syntax with a toy example, and add a refinement connective. In
Section 4, we recall the semantics of CdGL, generalizing them to support refinement. In
Section 5, we give a calculus for CdGL refinements. In Section 6, we discuss theoretical results
about soundness and reification. The paper concludes with Section 7.

2 Related Work

Our most closely related works are refinement logics. Other related works include constructive
modal logics, synthesis, and games in logic.

Refinement

Refinement calculi have been studied extensively, and previous studies [5] have given examples
of how programs can be refined from games, but have not given an explicit reification algorithm
let alone its correctness theorems. We give an explicit reification algorithm and prove that it
captures the winning strategy of a game in a system. Our proofs are not formalized because
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they rely on features which are unsupported or experimental in prominent proof assistants
such as Coq. Specifically, we construct inductive families whose well-foundedness requires
inductive proof and we make significant use of universe polymorphism.

We build directly on classical refinement reasoning for hybrid systems from dRL [36]
and also on (propositional discrete) game algebra [28]. Game algebra equivalences are
not contextual because contextual reasoning is uniquely challenging for games, which are
subnormal. dRL supports contextual reasoning but not games. Our refinement calculus
subsumes both game algebra and dRL by mixing games rules with contextual rules for systems.
Even for rules which look the same as prior work, our constructive semantics demand novel
soundness proofs. Event-B [2] uses refinement for practical verification by verifying simpler
models, then refining them to more complex models. Extensions of Event-B have been
proposed for hybrid systems [6] but not hybrid games.

Games in Logic

Propositional GL was introduced by Parikh [41]. The first-order GL of hybrid games is
dGL [44]. We build on CdGL [10, 11], the constructive dialect of dGL. GL formulas have been
reduced to µ-calculus [41, 33] and game algebras have been reduced [28] to propositional
modal logic. In contrast, we translate game logic proofs, which lets us translate CdGL into a
less expressive logical fragment.

GLs are unique in their clear delegation of strategy to the proof language rather than the
model language, allowing succinct, trustworthy game specifications with sophisticated winning
strategies. Relatives without this separation of concerns include Constructive Concurrent
Dynamic Logic [59], SL [16], ATL [4], CATL [55], SDGL [27], structured strategies [48],
DEL [52, 54, 51], evidence logic [53], and Angelic Hoare Logic [38].

Completeness of game logics is a notoriously difficult problem, which has recently been
shown in the propositional case [22]. dGL is undecidable, but is relatively complete [44].
Game logics can be expressed in game refinement logics, so game refinement completeness is
at least as difficult. Game algebra is complete for games containing only choices, sequencing,
and duality [28]. This paper does not pursue a completeness theorem, but we subsume game
algebra, incorporate dGL-like rules, and exercise a broad range of refinement reasoning in
our theorems on reification. These facts bode well for the expressiveness of our calculus. As
with other refinement calculi, we expect that limitations arise when reasoning with ghost
variables or reasoning about two games whose structures are entirely different.

Constructive Modal Logics

The task of assigning a semantics to games should not be confused with game semantics [1],
which give a semantics to programs in terms of games. The main semantic approaches for
constructive modal logics are intuitionistic Kripke semantics [58] and realizability seman-
tics [56, 35]. We follow the type theoretic semantics which were introduced for CdGL [11]. A
related approach to our type-theoretic semantics is Hoare Type Theory [40], which provides
a type-theoretic connective for Hoare triples, but does not consider games or refinement.

Constructive (modal) program logics are less studied than classical ones. A few authors [10,
31] develop a Curry-Howard correspondence with proof terms, the latter for a simple fragment
of dynamic logic. Other works [59, 20, 15] address only fragments and do not explore Curry-
Howard in the same depth. In contrast to these, we support constructive refinement, which
is also of interest for constructive program logics generally. We do not discuss proof terms
here for the sake of space. Our treatment of constructive real arithmetic follows CdGL, which
follows Bishop [8, 14] using constructive formalizations [19, 37].

FSCD 2020



14:4 Refining Constructive Hybrid Games

Hybrid Systems Synthesis

Synthesis for hybrid systems is an active research area. Fully automated synthesis relies on
restrictions such as simple fragments [32, 49] or discrete abstractions [25, 24]. ModelPlex [39]
exploits interactive safety proofs in dL [46], the systems fragment of dGL, for monitor synthesis.
Not only can proof-based synthesis synthesize every provable model, but it gives the user
more control: to generate a less restrictive monitor, simply revise the proof to use less
restrictive assumptions. ModelPlex supports an especially rigorous end-to-end verification
approach [13]. We aim to provide a reduction through which ModelPlex could support games.
Synthesis of high-level plans is also studied [7, 23].

3 Constructive Differential Game Logic

We recall the language of CdGL [11], introduce refinement formulas, and give an example.

3.1 Syntax
The language of CdGL consists of terms f, g, games α, β, and formulas ϕ, ψ, φ. Games are
perfect-information, zero-sum, and with two players. Take note of our terminology for players,
which is particularly subtle for constructive games. We use the name Angel for the player
whose choices are quantified existentially (“us”) and Demon for the player whose choices
are quantified universally (“them”). The players alternate turns, and at any moment one
player is active (making decisions) while the opponent is dormant (waiting for their turn).
In an unfortunate subtlety, a formula, proof, refinement, etc. is called Angelic whenever it is
existential and Demonic whenever it is universal, regardless of which player is active. The
simplest terms are (game) variables x, y ∈ V where V is the set of variable identifiers. All
variables are mutable and globally scoped. Their values correspond to the state of the game.
For every base game variable x there is a primed counterpart x′ whose purpose within an
ODE is to track the time-derivative of x. The state consists of reals, which are uncountable,
but the value of a term is computable as a function of the state.

▶ Definition 1 (Terms). We define scalar terms f, g inductively, where c ∈ R is a real literal,
x a game variable, f + g a sum, and f · g a product:

f, g ::= · · · | c | x | f + g | f · g | (f)′

In a practical implementation within a theorem prover, one might prefer to reuse terms from
the metalogic. It suffices that the interpretation of every term is a (Type-2 [57]) computable
function. Type-2 computability means the interpretation of f must be computable to arbitrary
precision when the values of variables are represented as streams of bits. We occasionally
use terms which return tuples of reals, which are computable when every component is
computable. The total spatial differential of term f is written (f)′ and agrees with the time
derivative of f during an ODE.

Because CdGL is constructive, strategies must represent Angel’s choices computably.
While Demon is playing, Angel simply monitors whether Demon’s choices obey the rules of
the game, and does not care whether choices were computable. We informally discuss how a
game is played here, then give full winning conditions in Section 4. The definitions of games
and formulas are simultaneously inductive.

▶ Definition 2 (Games). The language of games α, β is defined recursively as such:

α, β ::= ?ϕ | x := f | x := ∗ | x′ = f &ψ | α ∪ β | α;β | α∗ | αd
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The test game ?ϕ, is a no-op if the active player can present a proof of ϕ, else the dormant
player wins by default since the active player “broke the rules”. A deterministic assignment
x := f updates variable x to the value of term f . Nondeterministic assignments x := ∗ ask
the active player to compute the new value of x : R, i.e. they are witnessed by a term that
computes a new value of x. The ODE game x′ = f &ψ evolves the ODE x′ = f for some
duration d ≥ 0 chosen by the active player such that the active player proves ψ throughout.

All terms f are effectively locally Lipschitz continuous, meaning that a neighborhood
N and real L for each state can be constructed such that L is a Lipschitz constant of f on
N . Effective local Lipschitz continuity ensures that constructive Picard-Lindelöf [37] can
construct the unique solution of each ODE, which need not have a closed form. ODEs are
explicit-form, meaning that f and ψ do not mention any primed variables y′. Except when
otherwise stated, we present ODEs with a single equation x′ = f for the sake of readability.
In the choice game α ∪ β, the active player chooses whether to play game α or game β. In
the sequential game α;β, game α is played first, then β from the resulting state (unless a
player broke the rules during α). In the repetition game α∗, the active player chooses after
each repetition of α whether to continue playing, but repetitions must be well-founded and
thus terminating. The exact number of iterations does not need to be computed in advance
but can depend on the opponent’s moves. The dual game αd plays α with the active and
dormant roles reversed. We parenthesize games with braces {α} when necessary.

▶ Definition 3 (CdGL Formulas). The language of CdGL formulas ϕ, ψ, φ is given recursively
by the following grammar, where ∼ ∈{≤, <,=, ̸=, >,≥} are comparison predicates:

ϕ ::= ⟨α⟩ϕ | [α]ϕ | f ∼ g | α ≤ i
[ ] β

Modalities ⟨α⟩ϕ and [α]ϕ say Angel wins α with postcondition ϕ, starting as the active or
dormant player respectively. Modality ⟨α⟩ϕ is Angelic in the sense that decisions are resolved
Angelically: Angel is the one currently making choices. Modality [α]ϕ is Demonic in the
sense that decisions are resolved Demonically: Angel has no control until a dual operator
is encountered. We will deal mainly in box modalities [α]ϕ, with Angel’s moves appearing
inside dualities αd and Demon’s moves outside dualities.

To define refinements, we introduce the rank R(α or ϕ) of a game or formula, a technical
device which represents the smallest predicative universe in which α has a semantics, see
Section 4. Game refinements come in two standard [28] kinds: Angelic and Demonic. Demonic
refinement α ≤ i

[ ] β of rank i holds if for every ϕ with R(ϕ) ≤ i, dormant winning strategies of
[α]ϕ can be mapped constructively into winning strategies of [β]ϕ. Angelic refinement α ≤ i

⟨⟩ β

maps active winning strategies of ⟨α⟩ϕ constructively into winning strategies of ⟨β⟩ϕ. Note
this difference carefully: Angelic refinement may be more familiar to the reader, but we take
the Demonic presentation as primary, in large part because the theorems we wish to prove
are Demonic. Angelic and Demonic refinement are interdefinable: α ≤ i

⟨⟩ β ↔ αd ≤ i
[ ] β

d and
vice versa. You may wish to ignore rank on the first reading: it can be inferred automatically,
and we write α ≤[ ] β when rank is unimportant.

The standard connectives of first-order constructive logic are definable from games and
comparisons. Verum (tt) is defined 1 > 0 and falsum (ff) is 0 > 1. Conjunction ϕ ∧ ψ is
defined ⟨?ϕ⟩ψ, disjunction ϕ∨ψ is ⟨?ϕ∪?ψ⟩tt, implication ϕ → ψ is [?ϕ]ψ, universal quantifi-
cation ∀xϕ is defined [x := ∗]ϕ, and existential quantification ∃xϕ is ⟨x := ∗⟩ϕ. Equivalence
ϕ ↔ ψ is (ϕ → ψ) ∧ (ψ → ϕ). As usual in constructive logics, negation ¬ϕ is defined ϕ → ff,
and inequality is defined by f ̸= g ≡ ¬(f = g). The defined game skip is the trivial test
?tt. While these constructs are derivable, and thus it suffices to provide semantics and
proof rules for the core constructs, we find it useful to consider the core and derived forms
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14:6 Refining Constructive Hybrid Games

syntactically distinct. It will also aid in understanding of the semantics to keep the definitions
above in mind, because the semantics for many first-order programs mirror those from their
counterpart in first-order constructive logic.

3.2 Example Game
As a simple example, consider a push-pull cart [46] on a 1 dimensional playing field with
boundaries xl ≤ x ≤ xr where x is the position of the cart and xl < xr strictly. The initial
position is written x0. These preconditions are in formula pre. Demon is at the left of the cart
and Angel at its right. Each player chooses to pull or push the cart, then the (oversimplified)
physics say velocity is proportional to the sum of forces. Physics can evolve so long as the
boundary xl ≤ x ≤ xr is respected, with duration chosen by Demon.

pre ≡ xl < xr ∧ xl ≤ x0 = x ≤ xr

PP ≡ {{L := −1 ∪ L := 1}; {R := −1 ∪R := 1}d; {x′ = L+R&xl ≤ x ≤ xr}}∗

A simple safety theorem for the push-pull game says that Angel has a strategy to ensure
position x remains constant (x = x0) no matter how Demon plays:

pre → [PP]x = x0 (1)

The winning strategy that proves (1) is a simple mirroring strategy: Angel observes Demon’s
choice of L and plays the opposite value of R so that L+R = 0. Because L+R = 0, the
ODE simplifies to x′ = 0 &xl ≤ x ≤ xr, which has the trivial solution x(t) = x(0) for all
times t ∈ R≥0. Angel shows the safety theorem by replacing the ODE with its solution and
observing that x = x0 holds for all possible durations.

In addition to solution reasoning, CdGL supports differential invariant [46] reasoning
which appeals to the derivative of a term and differential ghost [46] reasoning which augments
an ODE with a new continuous variable. Solution reasoning suffices for this toy example,
but invariant reasoning is essential for CdGL games whose ODEs have non-polynomial, even
non-elementary solutions. Ghost reasoning allows proving differential invariants which are
not inductive [47], which cannot be proved otherwise [43]. For these reasons, our proof
calculus (Section 5) includes solution, invariant, and ghost rules.

In contrast to a safety theorem, a liveness theorem would be shown by a progress argument.
Suppose that Angel could set L = 2 but Demon can only choose R ∈ {−1, 1}. Then Angel’s
liveness theorem might say she can achieve x = xr if she as allowed to choose ODE duration,
because the choice L = 2 ensures at least 1 unit of progress in x for each unit of time.

4 Type-theoretic Semantics

We generalize the type-theoretic semantics of CdGL [11]. We define the semantics of the new
refinement formulas α ≤ i

[ ] β and employ an infinite tower of type universes, in support of
refinements. We first give our assumptions on the underlying type theory.

4.1 Type Theory Assumptions
We assume a Calculus of Inductive and Coinductive Constructions (CIC)-like type the-
ory [17, 18, 50] with dependency and an infinite tower of cumulative predicative universes.
Predicativity is essential because our semantics are a large elimination, which would interact
dangerously with impredicative quantification. We assume first-class anonymous constructors
for (indexed [21]) inductive and coinductive types. We write M,N for type-theoretic terms,
τ for type families, and κ for kinds (those type families inhabited by other type families).
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We write Πx : τ1. τ2 for a dependent function type with argument named x of type τ1
where return type τ2 may mention x. We write Σx : τ1. τ2 for a dependent pair type with left
component named x of type τ1 and right component of type τ2, possibly mentioning x. These
specialize to the simple types τ1 ⇒ τ2 and τ1 * τ2 respectively when x is not mentioned in τ2.
Lambdas (λx : τ. M) inhabit dependent function types. Pairs (M,N) inhabit dependent pair
types. Let-binding unpacks pairs and πLM and πRM are left and right projection. We write
τ1 + τ2 for disjoint unions inhabited by ℓ ·M and r ·M, and write case A of ℓ ⇒ B | r ⇒ C

for case analysis for τ1 + τ2, where ℓ and r are variables over proofs.
We assume a type R for real numbers and type S for Euclidean state vectors supporting

scalar and vector sums, products, scalar inverses, and units. States s, ŝ : S assign values
to every variable x ∈ V and support the operations s x for retrieving the value of x and
set s x v for updating the value of x to v. Likewise, set s (x, y) (v, w) sets both x and y to v
and w, respectively. The usual axioms of setters and getters [26] are satisfied.

We write Ti for the i’th predicative universe. We use P,Q : S ⇒ Ti for variables over
regions, e.g., the interpretations of formulas. Inductive type families are written µP : κ. τ,
which denotes the smallest solution ty of kind κ to the fixed-point equation ty = [ty/P ]τ.
Coinductive type families are written ρP : κ. τ, which denotes the largest solution ty of kind
κ to the fixed-point equation ty = [ty/P ]τ. The type expression τ must be monotone in
P to ensure that smallest and largest solutions exist, per Knaster-Tarski [29, Thm. 1.12].
Monotonicity of τ will require inductive proof in our case.

4.2 Semantics of CdGL
The interpretation of terms f, g as functions of type S ⇒ R is standard. Games α and
formulas ϕ require a notion of rank R(α or ϕ) indicating the smallest universe where α or ϕ
has semantics. Universes are cumulative, so the semantics also belong to all universes Ti such
that i ≥ R(α). Refinement quantifies over types of a lower universe, which is predicative.
A refinement formula’s rank is given by its annotation: R(α ≤ i

[ ] β) = 1 + i, requiring
R(α),R(β) ≤ i. In all other cases, the rank is the maximum of ranks of subexpressions.

Formulas ϕ are interpreted as predicates over states, i.e., type families ⌜ϕ⌝ : S ⇒ TR(ϕ).
We say the formula ϕ is valid if there exists a CIC term M : (Πs : S. ⌜ϕ⌝ s). CIC term M is
allowed to inspect state s, but only using computable operations. A natural deduction sequent
(Γ ⊢ ϕ) is valid iff implication formula

∧
Γ → ϕ with conjunction

∧
Γ is valid. The formula

semantics are defined in terms of the active and dormant semantics of games, which determine
how Angel wins a game α whose postcondition is a formula ϕ whose semantics are the goal
region ⌜ϕ⌝ (variable P in Definition 5). We write ⟨⟨α⟩⟩ : (S ⇒ TR(α)) ⇒ (S ⇒ TR(α)) for
the active semantics of α and [[α]] : (S ⇒ TR(α)) ⇒ (S ⇒ TR(α)) for its dormant semantics,
which capture Angel’s winning strategies when Angel is active or dormant, respectively. In
contrast to classical game logics, the diamond and box modalities are not interdefinable
constructively. The rank of an expression is only relevant in the refinement cases.

▶ Definition 4 (Formula semantics). Interpretation ⌜ϕ⌝ : S ⇒ TR(ϕ) is defined by

⌜[α]ϕ⌝ s = [[α]] ⌜ϕ⌝ s
⌜⟨α⟩ϕ⌝ s = ⟨⟨α⟩⟩ ⌜ϕ⌝ s ⌜f ∼ g⌝ s =

(
(f s) ∼ (g s)

)
⌜
α ≤ i

[ ] β
⌝
s =

(
ΠP : (S ⇒ Ti).

(
[[α]] P s ⇒ [[β]] P s

))
The modality ⟨α⟩ϕ is true in state s when active Angel has a strategy ⟨⟨α⟩⟩ ⌜ϕ⌝ s for game α
from state s to reach the region ⌜ϕ⌝ on which ϕ has a proof. The modality [α]ϕ is true in state
s when dormant Angel has a strategy [[α]] for game α from state s to reach the region ⌜ϕ⌝ on
which ϕ has a proof. For comparison operators ∼ ∈ {≤, <,=, ̸=, >,≥}, the values of f and
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g are compared at state s. Game α demonically refines β (α ≤[ ] β) from a state s if for all
goal regions P there exists an effective mapping from dormant strategies [[α]] P s to dormant
strategies [[β]] P s. The (defined) meaning of angelic refinement α ≤⟨⟩ β is symmetric using
diamond semantics ⟨⟨α⟩⟩. That is, refinements may depend on the state (they are local or
contextual), but must hold for all goal regions P , as refinements consider the general game
form itself, not a game fixed to a particular postcondition. Because refinement formulas are
first-class, quantifiers may appear nested and in arbitrary positions, not necessarily prenex
form. We ensure predicativity by requiring that refinements quantify only over postconditions
of lower rank. Rank can be inferred in practice by inspecting a proof: each rank annotation
need only be as large as the rank of every postcondition in every application of rules R⟨·⟩
and R[·] from Section 5.

The semantics of games are simultaneously inductive with those for formulas and with
one another. In each case, the connectives which define [[α]] and ⟨⟨α⟩⟩ are duals, because [α]ϕ
and ⟨α⟩ϕ are dual. Below, P is the goal region and s is the initial state.

▶ Definition 5 (Active semantics). The active interpretation ⟨⟨α⟩⟩ of the hybrid game α has
kind (S ⇒ TR(α)) ⇒ (S ⇒ TR(α)) and is defined by

⟨⟨?ψ⟩⟩ P s = ⌜ψ⌝ s * P s

⟨⟨x := f⟩⟩ P s = P (set s x (f s))
⟨⟨x := ∗⟩⟩ P s = Σv : R. (P (set s x v))
⟨⟨α ∪ β⟩⟩ P s = ⟨⟨α⟩⟩ P s + ⟨⟨β⟩⟩ P s

⟨⟨α;β⟩⟩ P s = ⟨⟨α⟩⟩ (⟨⟨β⟩⟩ P ) s

⟨⟨αd⟩⟩ P s = [[α]] P s

⟨⟨x′ = f &ψ⟩⟩ P s = Σd : R≥0.Σsol : ([0, d] ⇒ R).
(sol, s, d ⊨ x′ = f)

* (Πt : [0, d]. ⌜ψ⌝ (set s x (sol t)))

*P
(
set s (x, x′)

(sol d, f (set s x (sol d)))
)

⟨⟨α∗⟩⟩ P s =
(
µQ : (S ⇒ TR(α)). λŝ : S. (P ŝ ⇒ Q ŝ) + (⟨⟨α⟩⟩ Q ŝ ⇒ Q ŝ)

)
s

Angel wins ?ψ by proving both ψ and P at s. Angel wins the deterministic assignment
x := f by executing it, then proving P . Angel wins nondeterministic assignment x := ∗
by choosing a new value v, then proving P . Angel wins α ∪ β by choosing to play game
α or β, then winning it. Angel wins α;β by winning α with the postcondition of winning
β. Angel wins αd if she wins α in the dormant role. Angel wins ODE game x′ = f &ψ

by choosing some solution y of some duration d for which she proves domain constraint ψ
throughout and the goal region P at time d. While top-level postconditions rarely mention
x′, intermediate proof steps do, thus x and x′ are both updated in the postcondition. The
construct (sol, s, d ⊨ x′ = f) says sol solves x′ = f from state s for time d [12, App. A].
Active Angel strategies for α∗ are inductively defined: either stop the loop and prove P now,
else play a round of α and repeat inductively. By Knaster-Tarski [29, Thm. 1.12], this least
fixed point exists since games’ semantics are monotone in the postcondition [11, Lem. 7].

▶ Definition 6 (Dormant semantics). The dormant interpretation [[α]] of the hybrid game α
has kind (S ⇒ TR(α)) ⇒ (S ⇒ TR(α)) and is defined by

[[?ψ]] P s = ⌜ψ⌝ s ⇒ P s

[[x := f ]] P s = P (set s x (f s))
[[x := ∗]] P s = Πv : R. (P (set s x v))
[[α ∪ β]] P s = [[α]] P s * [[β]] P s

[[α;β]] P s = [[α]] ([[β]] P ) s

[[αd]] P s = ⟨⟨α⟩⟩ P s

[[x′ = f &ψ]] P s = Πd : R≥0.Πsol : ([0, d] ⇒ R).
(sol, s, d ⊨ x′ = f)

⇒
(
Πt : [0, d]. ⌜ψ⌝ (set s x (sol t))

)
⇒P

(
set s (x, x′)

(sol d, f (set s x (sol d)))
)

[[α∗]] P s =
(
ρQ : (S ⇒ TR(α)). λŝ : S. (Q ŝ ⇒ [[α]] Q ŝ) * (Q ŝ ⇒ P ŝ)

)
s
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Angel wins ?ψ by proving P under assumption ψ, which Demon must provide. Deterministic
assignment is unchanged. Angel wins x := ∗ by proving P for every choice of x. Angel
wins α ∪ β with a pair of winning strategies, since Demon chooses whether to play α or β.
Angel wins α;β by winning α with a postcondition of winning β. Angel wins αd if she can
win α actively. Angel wins x′ = f &ψ if for an arbitrary duration and arbitrary solution
which satisfy the domain constraint, Angel can prove the postcondition. Dormant repetition
strategies are coinductive using some invariant region Q. When Demon decides to stop the
loop, Angel responds by proving P from Q. Whenever Demon chooses to continue, Angel
proves that Q is preserved. Greatest fixed points exist by Knaster-Tarski [29, Thm. 1.12]
using monotonicity [11, Lem. 7].

In general, Angel strategies are constructive but permit Demon to play classically. In the
cyber-physical setting, Demon is indeed rarely a computer.

5 Refinement Proof Calculus

We give a natural deduction calculus for hybrid game refinements. Refinement is relative to
a context Γ of CdGL formulas, which may include refinements. All rules are expressed as
Demonic refinements α ≤ i

[ ] β, but an Angelic refinement α ≤ i
⟨⟩ β is supported by refining

the duals αd ≤ i
[ ] β

d. Remember that in a Demonic refinement, the Angelic (existential)
connectives appear under dualities αd. We write α ∼= β for α ≤[ ] β ∧ β ≤[ ] α. Recall that
hybrid systems are hybrid games which do not contain the dual operator αd.

The refinement elimination rules R⟨·⟩ and R[·] say every true postcondition ϕ of a game
α is a true postcondition of every β which α refines. The side condition for R⟨·⟩ and R[·] is
that R(ϕ) ≤ i where i is the rank annotation of the refinement. These are the only rules
which care about rank, so ranks can be inferred from proofs by inspecting the uses of these
rules. While rank is of little practical import, it ensures a predicative formal foundation.

Figure 1 gives the refinement rules for discrete connectives. Soundness of game refinement
rules is subtle because games are subnormal. Sound game refinement rules can be divided into
two classes: either refine games globally by requiring an empty context (;G), or restrict some
subgames to be systems (;S). The formal approach follows game algebra [28] and is required
when comparing two games. The latter approach generalizes dRL [36] and is necessary when
reifying sequential games. By combining both approaches, our calculus is strictly more
complete than both game algebra and dRL. Unlike dRL [36], we face the challenge that game
logics are subnormal and subregular [30]: For a game α, formula [α](ϕ ∧ ψ) need not hold
when both [α]ϕ and [α]ψ do.

Bold variables only range over systems, e.g., α and α1 in rules ;S and un∗. One sequence
refines another piecewise in the ;S rule, which is contextual: refinement of the second
component exploits the fact that the first component has been executed. Rule ;G is a variant
of ;S which says α1 can be an arbitrary game, but only if β1 ≤[ ] β2 holds in the empty
context. System α1 in the second premiss of ;S could soundly be α2, but in practical proofs it
is often more convenient to work with [α1] because it is a system modality, which is normal.
Rules ⟨?⟩ and [?] refine tests by weakening or strengthening test conditions. The left and
right rules for choices are dual. Rules ⟨∪⟩R1 and ⟨∪⟩R2 say each branch refines an Angelic
choice, while [∪]R says a Demonic choice is refined by refining both branches. Rules ⟨:∗⟩
and [:∗] say that deterministic assignments refine nondeterministic ones. Rule un∗ compares
loops by comparing their bodies and rolll allows unrolling a loop before refining. Rules skipd,
:=d, and ;d say skip and x := f are self-dual and the dual of a sequence is a sequence of duals.
Double duals cancel by DDE.
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R⟨·⟩
Γ ⊢ ⟨α⟩ϕ Γ ⊢ α ≤ i

⟨⟩ β

Γ ⊢ ⟨β⟩ϕ
1

;S
Γ ⊢ α1 ≤[ ] α2 Γ ⊢ [α1]β1 ≤[ ] β2

Γ ⊢ α1;β1 ≤[ ] α2;β2
2

;G
Γ ⊢ α1 ≤[ ] α2 · ⊢ β1 ≤[ ] β2

Γ ⊢ α1;β1 ≤[ ] α2;β2

[∪]L1 Γ ⊢ α ∪ β ≤[ ] α

[∪]L2 Γ ⊢ α ∪ β ≤[ ] β

[∪]R
Γ ⊢ α ≤[ ] β Γ ⊢ α ≤[ ] γ

Γ ⊢ α ≤[ ] β ∪ γ

⟨:∗⟩ Γ ⊢ x := fd ≤[ ] x := ∗d

[:∗] Γ ⊢ x := ∗ ≤[ ] x := f

R[·]
Γ ⊢ [α]ϕ Γ ⊢ α ≤ i

[ ] β

Γ ⊢ [β]ϕ
2

⟨?⟩
Γ ⊢ ϕ → ψ

Γ ⊢?ϕd ≤[ ]?ψd

[?]
Γ ⊢ ψ → ϕ

Γ ⊢?ϕ ≤[ ]?ψ
⟨∪⟩R1 Γ ⊢ αd ≤[ ] {α ∪ β}d

⟨∪⟩R2 Γ ⊢ βd ≤[ ] {α ∪ β}d

⟨∪⟩L
Γ ⊢ αd ≤[ ] γ Γ ⊢ βd ≤[ ] γ

Γ ⊢ {α ∪ β}d ≤[ ] γ

un∗
Γ ⊢ [α∗](α ≤[ ] β)

Γ ⊢ α∗ ≤[ ] β
∗

2

rolll Γ ⊢ skip ∪ {α;α∗} ∼= α∗

skipd skipd ∼= skip ;d {α;β}d ∼= αd;βd :=d x := fd ∼= x := f DDE {αd}d ∼= α

1 assuming R(ϕ) ≤ i
2 α1 respectively α is a hybrid system

Figure 1 Refinement of discrete connectives.

trans
Γ ⊢ α ≤[ ] β Γ ⊢ β ≤[ ] γ

Γ ⊢ α ≤[ ] γ

refl Γ ⊢ α ≤[ ] α

;idl Γ ⊢ {skip;α} ∼= α

;idr Γ ⊢ {α; skip} ∼= α

annihl Γ ⊢?ff;α ∼= ?ff

:=nop Γ ⊢ {x := x} ∼= skip

;dr Γ ⊢ {α ∪ β}; γ ∼= {α; γ} ∪ {β; γ}

;A Γ ⊢ {α;β}; γ ∼= α; {β; γ}

:=:= Γ ⊢ x := f ;x := g ∼= x := g 1

∪A Γ ⊢ {α ∪ β} ∪ γ ∼= α ∪ {β ∪ γ}

∪c Γ ⊢ α ∪ β ∼= β ∪ α

∪idem Γ ⊢ α ∪ α ∼= α

1 for x /∈ FV(g)

Figure 2 Algebraic rules (selected).
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DC
Γ ⊢ [x′ = f &ϕ]ψ

Γ ⊢ {x′ = f &ϕ} ∼= {x′ = f &ϕ ∧ ψ}
DW Γ ⊢ {x := ∗;x′ := f ; ?ψ} ≤[ ] {x′ = f &ψ}

solve
Γ ⊢ [t := ∗; ?0 ≤ t ≤ d;x := sln]ψ

Γ, t = 0, d ≥ 0 ⊢ {t := d;x := sln; t′ := 1;x′ := f} ≤[ ] {t′ = 1, x′ = f &ψ}d
1

DG Γ ⊢ {y := f0;x′ = f, y′ = a(x)y + b(x) &ψ} ≤[ ] {x′ = f &ψ; {y := ∗; y′ := ∗}d}

1 sln solves ODE, {t, t′, x, x′} ∩ FV (d) = ∅

Figure 3 Differential equation refinements.

The rules in Figure 2 are selected algebraic properties which will be used in the proof of
Theorem 10. These rules generalize known game equalities [28] to refinement. Some rules
of dRL [36] are reused here, but other rules of dRL, such as those for repetitions α∗ are not
sound for arbitrary games. Rules refl and trans say refinement is a partial order. Sequential
composition has identities (;idl and ;idr). Rule :=:= deduplicates a double assignment if
the first assignment does not influence the second: FV(f) are the free variables mentioned
in f . Choice (∪A) and sequence (;A) are associative, and choice is commutative (∪c) and
idempotent (∪idem), while sequence is right-distributive (;dr). Impossible tests can annihilate
any following program (annihl). Assigning a variable to itself is a no-op (:=nop).

Figure 3 gives the ODE refinement rules. Differential cut DC says the domain constraints
ϕ and ϕ∧ψ are equivalent if ψ holds as a postcondition under domain constraint ϕ. Differential
weakening DW says an ODE is overapproximated by the program which assumes only the
domain constraint. Differential solution solve says that a solvable Angelic ODE x′ = f &ψ

with syntactic solution term sln is refined by a deterministic program which assigns the
solution to x after through which the domain constraint holds, specified by a term d which is
constant throughout the ODE. Here sln = (λs : S. (sol (s t))) is the term corresponding to
the semantic solution sol at time t. Differential ghosts DG soundly augments an ODE with
a fresh dimension y so long as the solution for y exists as long as that of x, and is known [47]
to enable proofs of otherwise unprovable [43] properties. The right-hand side for y is required
to be linear in y because this suffices to ensure sufficient duration. Axiom DG is not an
equivalence because linear ODEs do not suffice to reach every of the nondeterministically
assigned final values for y and y′ [42].

6 Theory

We develop theoretical results about CdGL refinements: soundness and the relationship
between games and systems. Proofs are in a companion report [12].

6.1 Soundness
The sine qua non condition of any logic is soundness. We show that every formula provable
in the CdGL refinement calculus is true in the type-theoretic semantics.

▶ Theorem 7 (Soundness). If Γ ⊢ ϕ is provable then the sequent (Γ ⊢ ϕ) is valid.

6.2 Reification
A game α describes what actions are allowed for each player but not how Angel selects
among them given an adversarial Demon. Every game modality proof, whether of [α]ϕ or
⟨α⟩ϕ, lets Demon make arbitrary (universally-quantified) moves within the confines of the
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game, and describes Angel’s strategy to achieve a given postcondition ϕ. Whereas a given
game can contain both Angelic and Demonic choices, a system can only contain one or the
other: modality [α]ϕ treats a system α as Demonic while ⟨α⟩ϕ treats a system as Angelic.

A folklore theorem describes the relation between hybrid games and hybrid systems:
given a proof (winning strategy) for a hybrid game, one can reify Angel’s strategy to produce
a hybrid system which implements that strategy. The constructivity of CdGL ensures that
Angel’s choices are implementable by computable functions. Since Demonic choices survive
reification, it is simplest to work with Demonic game modalities [α]ϕ here, but every Angelic
game modality ⟨α⟩ϕ could equivalently be expressed as [αd]ϕ. In this section, we formally
define the reification operation and prove its relation to the source game using refinements
and a derivation A in the CdGL (non-refinement) proof calculus. For the sake of space, we
present CdGL rules informally as we define reification. Our presentation differs in insignificant
ways from the full calculus from prior work [11]; it is convenient for our purposes that
premisses eliminate as many connectives as possible, as is common in natural-deduction style.
Let A be a CdGL proof of some CdGL formula [α]ϕ in context Γ, i.e., let Γ ⊢ A : [α]ϕ. We
then write A⇝ α to say the (unique) result of reifying the strategy given by A into hybrid
game α is the hybrid system α. The system α needs to commit to Angel’s strategy according
to A while retaining all available choices of Demon. What properties ought α satisfy?

Committing to a safe Angel strategy should never make the system less safe. The safety
postcondition ϕ should transfer to α, i.e., the following property should hold:

If Γ ⊢ A : [α]ϕ and A⇝ α then (Γ ⊢ [α]ϕ) is provable.

Transfer alone does not capture reification, e.g., defining α = ?ff for all α and A would
vacuously satisfy the transfer property but certainly not capture the meaning of strategy A.

We, thus, guarantee a converse direction. The reified hybrid system α is a safety
refinement of hybrid game α, so every postcondition ψ satisfying [α]ψ also satisfies [α]ψ:

If Γ ⊢ A : [α]ϕ and A⇝ α then (Γ ⊢ α ≤[ ] α) is provable.

Intuitively, [α]ψ says postcondition ψ holds for every Demon behavior of α, while [α]ψ
holds if there exists an Angel strategy that ensures ψ for every Demon behavior of α.
Since derivation A is designed to satisfy ψ, there certainly exists a strategy that satisfies ψ.
Refinement captures the notion that Angelic choices in α are made more strictly than in α,

while Demonic choices are only made more loosely.
Even transfer and refinement do not fully validate the reification operation, since defining

α = α suffices to ensure both. This leads to a third, most obvious property: α must be a
system when α is a game. Not only are systemhood, transfer, and refinement all desirable
properties for reification, but their combination is an appealing specification because there
is no trivial operation which satisfies all three. If the above three properties hold, they
also imply a sound version of the normal modal logic axiom K that is elusive in games:
If Γ ⊢ A : [α]ϕ and Γ ⊢ [α]ψ is provable for A ⇝ α, then Γ ⊢ [α](ϕ ∧ ψ) is provable.
Additionally, transfer and systemhood suggest that game synthesis can “export” a game
proof to a systems proof, for which synthesis tools already exist [39, 13]. We discuss some
technicalities first.

Technicalities

Reification accepts a CdGL proof and returns a system. In each case of its inductive definition,
we write A,B, C for the proofs of each premiss and α,β,γ for corresponding output systems.
For simplicity, we reify nested modalities: reifying a proof of [α1][α2]ϕ results in a system α
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which refines α1;α2. Angelic programs are represented by duality αd and the reification of
first-order ϕ is a no-op skip. This style is interchangeable with normal-form CdGL proofs; we
elide the duality ([αd]ϕ ↔ ⟨α⟩ϕ) and skip ([skip]ϕ ↔ ϕ) steps which convert between the two.
Prior work [10] shows case-analysis, which is not canonical, is sometimes normal because
state-dependent cases are decided only at runtime. Normal case analyses are analogous to
case-tree normal forms in lambda calculi with coproducts [3]. Normal forms of (classical)
ODE proofs have been characterized [9]. We call a game system-test if all its tests and
domain constraints are system-test formulas. A formula is system-test if all modalities it
mentions are box system modalities, while a proof is system-test if every context in its proof
tree contains only system-test formulas. For the sake of defining system-test, the first-order
propositional connectives are considered distinct from game modalities, rather than defined,
i.e., first-order arithmetic expressions are permissible in the system-test fragment. Restricting
reification to the system-test fragment ensures the reification of the hypothesis rule hyp is
a system. System-test is stronger than weak-test (no modalities in tests) but weaker than
strong-test (arbitrary modalities in tests). In the proof rules that follow, · y

x is the renaming
of variable x to (usuallly fresh) variable y in a term, formula, game, or context.

Definitions

We define reification. Reification A ⇝ α is defined inductively on box CdGL proofs of
system-test games. We first give the reification of case-analysis and hypothesis proofs, the
only two normal proofs which are not introduction forms. In ∨E, A proves some first-order
disjunction ϕ ∨ ψ, since proper choice game modalities ⟨α ∪ β⟩ are not permitted in system-
test, normal-form proofs. In ∨E, the reified systems for the second and third premiss are β

and γ, likewise in every rule.

hyp
(if [α]ϕ ∈ Γ)

Γ ⊢ [α]ϕ ⇝ α ∨E
Γ ⊢ ϕ ∨ ψ Γ, ϕ ⊢ φ Γ, ψ ⊢ φ

Γ ⊢ φ
⇝ {?ϕ; β} ∪ {?ψ; γ}

Hypothesis proofs do not give a concrete strategy for α and thus trivially refine α to itself.
Case analysis allows Demon to choose either branch, so long as it is provable. The output is
nondeterministic if ϕ and ψ are not mutually exclusive. Both ϕ and ψ are game-free in the
system-test fragment and, in practical proofs, even quantifier-free first-order arithmetic. We
first give the discrete Angelic cases, which plug in the specific Angel strategy from proof A.

⟨[:=]⟩I
Γ y

x
, x = f y

x
⊢ ϕ

Γ ⊢ [{x := f}d]ϕ⇝ x := f ; α ⟨:∗⟩I
Γ y

x
, x = f y

x
⊢ ϕ

Γ ⊢ [{x := ∗}d]ϕ⇝ x := f ; α ⟨?⟩I
Γ ⊢ ϕ Γ ⊢ ψ

Γ ⊢ [{?ϕ}d]ψ ⇝ β

⟨[;]⟩I
Γ ⊢ [αd][βd]ϕ
Γ ⊢ [{α;β}d]ϕ⇝ α ⟨∪⟩IL

Γ ⊢ [αd]ϕ
Γ ⊢ [{α ∪ β}d]ϕ⇝ α ⟨∪⟩IR

Γ ⊢ [βd]ϕ
Γ ⊢ [{α ∪ β}d]ϕ⇝ α

⟨∗⟩I

Γ ⊢ φ

φ,M ≻ 0 ∧ M0 = M ⊢ [αd](φ ∧ M0 ≻ M) φ,0 ≽M ⊢ ϕ

Γ ⊢ [{α∗}d]ϕ ⇝ {?M ≻ 0; β}∗; ?0 ≽M; γ

Discrete assignments remain in the output. Nondeterministic assignments are proved by
providing a witness term f (rule ⟨:∗⟩), which is preserved by the inductive call α. Subtly,
Angelic tests can be eliminated by ⟨?⟩ because they are proven to succeed and because
we wish only to keep tests which Demon is required to pass. A normal-form proof for a
sequential composition α;β proves α with β in the postcondition. Normal Angelic choice
proofs are injections, so Angelic proofs reify by ⟨∪⟩R1 or ⟨∪⟩R2 according to one branch or
the other. Normal Angelic repetition proofs are by convergence: some metric M decreases to
terminal value 0 while maintaining invariant formula φ. Variable M0 remembers the value
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of M at the start of each loop iteration for comparison purposes. Hybrid systems loops are
nondeterministic, so Demon chooses the loop duration, but the Demonic test M ≻ 0 must
pass at each repetition and 0 ≽M must pass at the end, determinizing the loop duration.

To reify a discrete Demonic connective, we do not restrict Demon’s capabilities, but
recursively traverse the proof so that Angelic proofs can be reified.

⟨[:=]⟩I
Γ y

x , x = f y
x ⊢ ϕ

Γ ⊢ [x := f ]ϕ ⇝ x := f ; α [:∗]
Γ y

x ⊢ ϕ

Γ ⊢ [x := ∗]ϕ⇝ x := ∗; α ⟨[;]⟩I
Γ ⊢ [α][β]ϕ
Γ ⊢ [α;β]ϕ ⇝ α

[?]I
Γ, ψ ⊢ ϕ

Γ ⊢ [?ψ]ϕ⇝?ψ; α [∪]I
Γ ⊢ [α]ϕ Γ ⊢ [β]ϕ

Γ ⊢ [α ∪ β]ϕ ⇝ α ∪ β [∗]I
Γ ⊢ ψ ψ ⊢ [α]ψ ψ ⊢ ϕ

Γ ⊢ [α∗]ϕ ⇝ β∗; γ

Nondeterministic Demonic assignments, unlike Angelic ones, are not modified during reifi-
cation, because Demon retains the power to choose any value. Demonic tests introduce
assumptions, and must continue to do so in the reification system to avoid changing the
acceptable behavior. Demonic sequential compositions are like Angelic ones. Demonic choices
refine each branch. Note that reification of games with form {α ∪ β}; γ follows distributive
normal forms {α; γ} ∪ {β; γ}, which are equivalent by ;dr. Demonic repetitions keep the
loop, recalling that the coinductive loop invariant ψ justifies the postcondition by premiss C.

We give the reification cases for ODEs. The reification of an invariant-based Demonic proof
(dc and dw) is a relaxation of the ODE: the reified system need not follow the precise behavior
of the ODE so long as all invariants required for the proof are obeyed. Indeed, this is where
proof-based synthesis in ModelPlex [39] gains much of its power: real implementations never
follow an ODE with perfect precision, but usually do follow its invariant-based relaxation.

⟨′⟩

Γ ⊢ d ≥ 0 Γ y
x , 0 ≤ t ≤ d, x = sln y

x , x
′ = f ⊢ ψ

Γ y
x , 0 ≤ t = d, x = sln y

x , x
′ = f ⊢ ϕ

Γ ⊢ [t := 0; {t′ = 1, x′ = f &ψ}d]ϕ ⇝ t := d;x := sln;x′ := f ; γ

[′]
Γ y

x , t ≥ 0, ψ̂, x = sln y
x , x

′ = f ⊢ ϕ

Γ ⊢ [t := 0; {t′ = 1, x′ = f &ψ}]ϕ ⇝ t := 0; {t′ = 1, x′ = f &ψ}; α

dw
Γ y

x , ψ ⊢ ϕ

Γ ⊢ [x′ = f &ψ]ϕ⇝ x := ∗;x′ := f ; ?ψ; α

dc
Γ ⊢ [x′ = f &ψ]φ Γ ⊢ [x′ = f &ψ ∧ φ]ϕ

Γ ⊢ [x′ = f &ψ]ϕ ⇝ β

dg
Γ, y = f0 ⊢ [x′ = f, y′ = a(x)y + b(x) &ψ]ϕ

Γ ⊢ [x′ = f &ψ; {y := ∗; y′ := ∗}d]ϕ ⇝ y := f0; α

Variable y is fresh in ⟨′⟩, [′], and dg. In ⟨′⟩, the side condition requires that y is fresh, term
sln is the unique solution of the ODE, and chosen duration term d is constant throughout the
ODE. The Angelic domain constraint is comparable to an Angelic test: it is soundly omitted
in the reification because it is proven to pass. In Demonic ODE solutions ([′]), the duration
and domain constraint are assumptions, and formula ψ̂ ≡ ∀0 ≤ s ≤ t [t := s;x := sln]ψ says
the domain constraint ψ holds through time t where s is fresh. Since our ODEs are Lipschitz,
they have unique solutions and Demon could reify the unique solution of the ODE, as does
case (⟨′⟩). There is no obvious benefit to doing so, except that the reified system would fall
within discrete dynamic logic. Differential Cut (dc) reification introduces an assumption
in the domain constraint, and is sound by DC. By itself, dc strengthens a program, but in
combination with dw enables relaxation of ODEs. Differential Weakening (dw) relaxes an
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ODE by allowing x and x′ to change arbitrarily so long as the domain constraint ψ (and thus
invariants introduced by dc) remain true. Differential Ghost (dg) introduces a dimension to
the ODE and reifies according to the recursive call. The introduced dimension is linear in
order to soundly preserve the duration of the ODE. Assignment y := f0 sets the initial value
of the ghost variable to a chosen term.

Reification Example

Recall example PP and its safety property (1). Let APP be the proof of (1) with a mirroring
strategy described in Section 3.2. Then the reified result αPP is

αPP =
{

{L := −1;R := 1;x′ = L+R&xl ≤ x ≤ xr}

∪{L := 1;R := −1;x′ = L+R&xl ≤ x ≤ xr}
}∗

which we discuss step-by-step. Demonic repetition reification just repeats the body. Reifying
a Demonic choice follows the structure of the proof, not the source program, hence the ODE
occurs for each branch. Each branch commits to a choice of L, and each branch of APP resolves
the Angelic choice R to balance out L. When reifying an Angelic choice, only the branch
taken is emitted. In αPP, we assume that APP proves the ODE x′ = L+R&xl ≤ x ≤ xr by
replacing it with its solution, which is why the ODE appears verbatim in the refined system.
A differential invariant proof could also be used with a differential cut (DC) of x = x0, in
which case physics are represented by the program x := ∗;x′ := ∗; ?xl ≤ x ≤ xr ∧ x = x0 in
the result of reification. Different proofs generally give rise to different systems, some of which
are less restrictive than others. Differential invariants, especially inequational invariants,
(x ≥ x0 vs. x = x0) can be more easily monitored with finite-precision numbers.

Note that the system αPP is a refinement of PP and satisfies the same safety theorem
pre → [αPP]x = x0. Next, we show that this is the case for all reified strategies.

Metatheoretic Results

We state theorems (proven in our report [12]) showing how the reification of a game α refines
α. Recall that Γ, α, ϕ, and A are in the system-test fragment of CdGL.

▶ Theorem 8 (Systemhood). If Γ ⊢ A : [α]ϕ for system-test Γ,A, and hybrid game α and
A⇝ α then α is a system, i.e., it does not contain dualities.

▶ Theorem 9 (Reification transfer). If Γ ⊢ A : [α]ϕ for system-test Γ,A, and hybrid game α
and A⇝ α then Γ ⊢ [α]ϕ is provable in CdGL.

▶ Theorem 10 (Reification refinement). If Γ ⊢ A : [α]ϕ for system-test Γ,A, and hybrid game
α and A⇝ α then Γ ⊢ α ≤[ ] α is provable in CdGL.

Theorem 8 is proven by trivial induction on A. Theorem 9 is proven by inducting on A,
reusing its contents in a proof for α. Theorem 10 inducts on A and in each case appeals to
the corresponding refinement rule. The fact that Theorem 10 could be proved validates the
strength of CdGL’s refinement rules.

7 Conclusion

We developed a refinement calculus for Constructive Differential Game Logic (CdGL). Tech-
nical challenges in this development included the facts that game logic is subnormal and
that the constructive box and diamond modalities [α]ϕ and ⟨α⟩ϕ are not interdefinable.
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We introduced a new constructive semantics for refinement and proved soundness. We
formalized a reification operation and folklore theorem which reduce verified hybrid games
to hybrid systems by specializing a game to the commitments made by its winning strategy.
The immediate applications are synthesis tools and refinement-based proof tools for hybrid
games. Theorem 8 and Theorem 9 support synthesis by ensuring that the reified system is a
system which satisfies the same safety condition as the input game, which are respectively
required in order to use existing synthesis tools and to ensure an end-to-end safety guarantee.
Theorem 10 supports refinement-based proof technology: because the reified system refines
the input game, game safety can be shown by choosing a strategy and showing the strategy
safe. Once these tools are implemented, there are a wide array of applications studied in the
hybrid systems and hybrid games literature which would benefit from the modeling power
and synthesis guarantees that are possible with CdGL.

Our refinement calculus is of theoretical and practical interest beyond reducing games
to systems. We expect that refinements can be used to provide shorter proofs, to compare
the efficacy (dominance) of two strategies for the same game, and to determine when two
strategies or programs should be considered “the same”. These questions are worth pursuing
both for hybrid games and for games in general.
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Abstract
In static analysis, two frameworks have been studied extensively: monotone data-flow analysis and
type-and-effect systems. Whilst both are seen as general analysis frameworks, their relationship has
remained unclear. Here we show that monotone data-flow analyses can be encoded as effect systems
in a uniform way, via algebras of transfer functions. This helps to answer questions about the
most appropriate structure for general effect algebras, especially with regards capturing control-flow
precisely. Via the perspective of capturing data-flow analyses, we show the recent suggestion of
using effect quantales is not general enough as it excludes non-distributive analyses e.g., constant
propagation. By rephrasing the McCarthy transformation, we then model monotone data-flow effects
via graded monads. This provides a model of data-flow analyses that can be used to reason about
analysis correctness at the semantic level, and to embed data-flow analyses into type systems.
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1 Introduction

Static program analysis is the bedrock of optimising compilation, extracting program proper-
ties from syntax to inform semantics-preserving program transformations. Throughout the
history of program analysis it has been repeatedly noticed that various analyses have similar
forms and can thus be unified into more general frameworks. Notably, the early data-flow ana-
lyses performed on control-flow graphs (e.g., for live variables, available expressions, reaching
definitions etc.) were unified by the notion of monotone data-flow frameworks [8] (Khedker
et al. [10] give a wider perspective). Such analyses are formalised as scanning program state-
ments forwards or backwards to obtain data-flow equations over some algebraic structure,
which are then solved. Another major class of analyses are effect systems [5, 7, 15, 24],
typically applied in a functional setting (but also notably for Java’s checked exceptions).
Effect systems typically augment type systems with information about possible side-effects,
drawn from a particular algebraic structure. Such approaches evolved into a framework for
general static analysis [16]. Another general class of static analysis is abstract interpretation
given by Galois connections or related structures [3], though this is not our focus here.
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15:2 Data-Flow Analyses as Effects and Graded Monads

Despite claims of effect systems’ generality, it has been unclear whether they have sufficient
expressive power to capture classical data-flow analyses, due in part to the functional-style bias
of effect systems but also due to a lack of clarity about how effect systems interact with control-
flow. Various approaches have developed effect-system-like systems for capturing particular
data-flow analyses, but typically in an ad hoc manner. For example, Nielson, Nielson, and
Hankin [17] presented an effect-system-like annotated type system for reaching definitions
analysis, but the approach was not clearly linked to a general algebraic characterisation
of effects seen elsewhere. Laud et al. [11] introduced several type systems that represent
data-flow analyses, but these are not effect systems and the approach is not unified.

In this work, we study the general relationship of dataflow frameworks to effect systems,
and through this investigate the most appropriate algebraic characterisation of effects to
capture known analyses in a uniform way. While Gifford-Lucassen-style [5] effect annotations
were originally seen as mere subsets of the space of possible effect operations along with a
single composition operator, Amtoft and the Nielsons [1] showed how distinct sequencing
and alternation operators for composing effects gave better expressivity, capturing various
other analyses. Recently, Katsumata [9] and Orchard et al. [20] linked effect systems to the
mathematical notion of graded monads, using graded monads to model languages with effect
systems. The graded monad model characterises the algebraic structure of effect systems
by the structure of its grades which constrain the model of a computation’s side effects.
In this setting, Katsumata offers the most-general framework for effect systems: an effect
algebra is a pre-ordered monoid (D,v,B, 1), where (D,v) is a pre-ordered set and (D,B, 1)
a monoid with B monotonic with respect to v [9]. Binary least upper bounds on D, if they
exist, give a natural (if partial) alternation operator. Gordon [6] by contrast aims, in recent
work, at a more precise axiomatisation using effect quantales which enforce composition and
alternation to be total, if necessary by adding an additional top (or error) element to D, and
adding distributivity requirements. Mycroft et al. [15] also split effect algebras into separate
operators for sequencing and alternation, with a graded monad model.

Two questions arise. Firstly, how related are the theories of data-flow analysis and effect
systems, and their interpretation as graded monads? Secondly, what is the most natural
structure for an effect algebra that covers common analyses?

Contributions and structure. Section 2 begins by summarising various background material
about data-flow analyses and effect systems. We then contribute three main results:
1. We show that monotone data-flow frameworks can be captured via a kind of effect system

on control-flow graphs (CFGs) with effect algebras of transfer functions (Section 3). The
approach ends up resembling Kam and Ullman’s monotone data-flow analysis frameworks.
The novelty is that the approach unifies several classical data-flow analyses.

2. We adapt McCarthy’s transformation [12] to translate the CFG-effect system of Section 3
into a graded monad rendering of effect systems (Section 4). This gives a semantic model
equipped with data-flow analysis information which can be used to reason about analysis
correctness or to capture dataflow as types, which we demonstrate via a Haskell encoding.

3. We discuss how effect quantales are too restrictive to capture non-distributive data-flow
analyses such as constant propagation (Section 5).

There are several interesting lines of further work that follow from the perspective of this
paper. For example, computational complexity of data-flow analysis algorithms is well
understood and results from this field may provide valuable insight in constructing efficient
type-and-effect inference algorithms. We also aim to contribute towards finding a ‘best’
model for effect algebras – one that imposes just enough restrictions that every static analysis
can be modelled, while disallowing models which correspond to no (known) static analysis.



A. Ivašković, A. Mycroft, and D. Orchard 15:3

2 Background

2.1 Analysis structure: partial orders and lattices
Program analysis generally captures program properties as elements of a partially ordered
set (poset). Often this poset forms a complete lattice, but this places strong requirements
on the existence of least upper and greatest lower bounds, which are not always needed or
desired. For example, in type inference we may infer that two expressions e1 and e2 have
respective types Int and Bool, but then say that a conditional selecting between e1 and e2 is
ill-typed. There seems to be a tacit understanding that static type inference is usually partial
while static determination of other properties is total – perhaps because we are happy for a
program to be rejected as ill-typed, but not for a compiler to reject our program just because
a static analysis says it is unfit for a given optimisation. In general this distinction between
partial and total analyses affects “formal presentation” more than “conceptual understanding”
as we can make any partial analysis total by adding a > element to its poset of values.

A poset (D,v) is a set D with a reflexive, antisymmetric and transitive relation v. Given
two posets, (D1,v1) and (D2,v2) then their product D1×D2 has the induced product order:
(x, y) v (x′, y′) whenever x v1 x

′ and y v2 y
′. Similarly, given any set X then X → D

becomes a poset with induced ordering f v g whenever ∀x ∈ X.f(x) v g(x).
A poset (D,v) is a (bounded) join-semilattice if all finite (including empty) subsets

X ⊆ D have a least upper bound with respect to v. It is a (bounded) lattice if such subsets
also have a greatest lower bound. It is a complete lattice if all subsets have least upper
bounds and greatest lower bounds. We write ⊥ for

⊔
{} and > for

⊔
D when these exist.

Much work on program analysis is done on posets of finite height (every totally ordered
subset is finite) so completeness adds no additional requirements.

A join-semilattice is often axiomatised via an operator (D,t) because this gives an
algebraic characterisation; the relation v can be recovered by taking x v y ⇔ x t y = y.

For data-flow analysis of Turing-complete languages we generally need (D,v), or (D,t)
to be bounded or pointed, i.e. to have a least element ⊥ which can represent the data-flow
values resulting from a non-terminating expression, and also serves as the initial value for a
Tarski fixed-point iteration when solving data-flow equations.

2.2 Control-flow graphs
Classical compiler optimisations usually deal with simple imperative programs, represented
as control-flow graphs (CFGs). Here statements S appearing within the flow graph and
possibly containing branches to labels ` are given by:

v ::= X | k (syntactic values)
e ::= v | v1 op v2 (expressions)
S ::= X := e; goto ` | if v ≥ 0 then goto `′ else goto `′′ | halt v (statements)

where k are assumed to be integers, op ranges over arithmetic operators (+, −, × etc.), and
X ranges over Vars, a finite set of integer-valued mutable variables.

A CFG (N,E ⊆ N × N,L : N → S) is a directed graph whose nodes N are labelled
with 3-address arithmetic and control-flow statements. We use n (and ` when thinking of
a node as a label) to range over N . As usual, we write succ(n) and pred(n) for the sets of
E-successors and E-predecessors of n, and require the number of successors of a node to
respect the labelling L. We write (` : S) to indicate that node ` is labelled with a given
statement or, in programming terms, that statement S has label `.

FSCD 2020
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2.3 Classical data-flow analysis
Data-flow analysis refers to static analysis approaches commonly used in optimising compilers.
These analyses infer facts about how data is used in the program, including constant
propagation, live variables and pointer analysis.

Liveness. In a CFG, a variable x is live at node n if there is a (possibly infeasible) path of
edges starting at n along which the value of X is read before being written to. The sets of
variables live on entry and exit of n respectively satisfy the following data-flow equations:

LiveIn(n) = (LiveOut(n) \ LiveKill(n)) ∪ LiveGen(n) LiveOut(n) =
⋃

s∈succ(n)

LiveIn(s)

Sets LiveKill(n) and LiveGen(n) are determined by the statement at node n. For statement
X := e they are LiveKill(n) = {X} and LiveGen(n) = fv(e) (the set of free variables in e).
For halt v and if v ≥ 0 they are LiveKill(n) = ∅ and LiveGen(n) = fv(v).

We consider LiveIn(n) to be the set of live variables just before the statement at node
n, and LiveOut(n) to be the live variables immediately after this statement. The notation
Live(n), gen(n), and kill(n) are used as synonyms for LiveIn(n), LiveGen(n), and LiveKill(n).

Monotone data-flow analysis frameworks. Liveness, along with several other analyses,
can be seen as examples of Kam and Ullman’s monotone data-flow analysis frameworks [8].
Roughly speaking, a monotone data-flow analysis framework1 instance is specified by a lattice
(DFValues,t) with:

the set DFValues of all possible data-flow values with a least element ⊥;
the direction of the analysis, forwards or backwards (liveness is backwards since LiveOut
is calculated from successors);
Gen and Kill sets for every statement;
the merge operation t (for liveness and reaching definitions this is ∪, whereas for available
expressions and very busy expressions it is ∩).

As with liveness, such instances give a set of equations whose solutions give the data-flow
values at every node in the CFG. An exception is made in the cases of incoming data-flow
values for entry nodes in forwards analysis and outgoing data-flow in exit nodes in backwards
analysis – they do not depend on other data-flow values, they are instead equal to the
boundary information (BI, typically ⊥ or >). When there are multiple solutions, we take the
least one (which exists because of the lattice assumption and the existence of ⊥ in DFValues).
An iterative work-list algorithm is used to compute data-flow values at every node.

Every node in a CFG determines a transfer function (or flow function) from the set of data-
flow values at one end of the node to that at the other end (In to Out for forwards analyses
and Out to In for backwards analyses). Transfer functions propagate data-flow values around
a program. For backwards analyses, the transfer function φ satisfies DFIn(n) = φ(DFOut(n));
for forward analyses DFOut(n) = φ(DFIn(n)) (where DFIn and DFOut map nodes to the
data-flow values at entry and exit, like LiveIn and LiveOut previously).

We can extend the idea of transfer functions for single statements to sequences of
statements (or paths in a CFG). Consider, for example, statements S1 and S2 with associated
transfer functions φ1 and φ2. Then the transfer function for the sequence “S1 then S2” is

1 The original work calculated maximal fixed points by iterating from a > value. We use the dual
formulation (least fixed points and ⊥ value). Our data-flow examples use complete lattices.
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· · · −2 −1 0 1 2 · · ·
⊤

⊥

Figure 1 Lattice of integers Z>
⊥ with > and ⊥ whose product lattice is the lattice of data-flow

values in constant propagation.

X := 1

Y := 2

X := 2

Y := 1

Z :=X + Y

n0

n1

n2

n3

n4

n5

[X 7→⊤, Y 7→⊤, Z 7→⊤]

[X 7→1, Y 7→⊤, Z 7→⊤]

[X 7→1, Y 7→2, Z 7→⊤]

[X 7→2, Y 7→⊤, Z 7→⊤]

[X 7→2, Y 7→1, Z 7→⊤]

[X 7→⊤, Y 7→⊤, Z 7→⊤]

[X 7→⊤, Y 7→⊤, Z 7→⊤]

X := 1

Y := 2

X := 2

Y := 1

Z :=X + Y Z :=X + Y

n0

n1

n2

n3

n4

n′
5 n′′

5

[X 7→⊤, Y 7→⊤, Z 7→⊤]

[X 7→1, Y 7→⊤, Z 7→⊤]

[X 7→1, Y 7→2, Z 7→⊤]

[X 7→2, Y 7→⊤, Z 7→⊤]

[X 7→2, Y 7→1, Z 7→⊤]

[X 7→1, Y 7→2, Z 7→3] [X 7→2, Y 7→1, Z 7→3]

Figure 2 Non-distributivity of constant propagation. Assume data-flow into n0 is such that
multiple values can be associated with each of X,Y, Z and so these are mapped to >. Non-
distributivity manifests at node n5 in the CFG on the left: whichever execution path is taken after
n0, Z has value 3 at n5, but constant-propagation analysis gives Z 7→ >. Splitting the statement
into two and performing constant-propagation analysis on these paths separately (as in the CFG on
the right) gives Z 7→ 3 which is more precise than Z 7→ > in the left CFG, violating distributivity.

φ1 ◦ φ2 for a backwards analysis, whereas for a forwards analysis it is φ2 ◦ φ1 (this reverse
composition is natural for forwards analysis, since φ2 ◦ φ1 first applies φ1 to the input, then
applies φ2 to the result).

Data-flow analyses may also have a notion of distributivity relating to the merging operator.
A forwards or backwards analysis is distributive if it satisfies the following corresponding
property for all nodes n:

DFOut(n) =
⊔

n′∈pred(n)

φn(DFOut(n′)) (forward) DFIn(n) =
⊔

n′∈succ(n)

φn(DFIn(n′)) (backward)

where φn is the transfer function for node n. Live variable analysis is a distributive analysis.

Constant propagation. Some data-flow analyses are not distributive. One such example is
constant propagation: a forwards analysis that associates with each program point a mapping
(ranged over by s here) from variables to data-flow values which are either an integer or one
of two special symbols ⊥ or >. The mapping X 7→ > means that variable X potentially
takes multiple values and so is not (known to be) a constant, whereas Y 7→ ⊥ means that
the value of variable Y has not been explored yet in the analysis (this is needed for loops
where the analysis uses fixed-point iteration). For integer variables, this gives a lattice of
data-flow values of integers, along with ⊥ and >, shown in Figure 1.

This lattice naturally gives rise to a lattice of mappings which is just a product lattice with
the subtlety that if one variable maps to ⊥ then all do (a so-called ⊥-coalesced product), with
the partial order v lifted to the product space, e.g. [X 7→ 1, Y 7→ 5] v [X 7→ 1, Y 7→ >]
but [X 7→ 1, Y 7→ 5] 6v [X 7→ 3, Y 7→ 5]. The formula s1 v s2 can be read as “s1
is more precise than s2”. The result of the analysis should be a least solution of the
data-flow equations. Merging is via least upper bounds (t) taken component-wise, e.g.
[X 7→ 1, Y 7→ 3] t [X 7→ 2, Y 7→ 3] = [X 7→ >, Y 7→ 3].

Figure 2 shows via an example that the analysis is not distributive.
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2.4 Effect systems and effect algebras

Type-and-effect systems extend type systems to analyse impure concepts such as IO, exceptions
and mutable state [5, 7, 24, 15]. Type-and-effect judgements are often written as Γ`e : τ &F

for an expression e of type τ in context Γ with potential effects described by F . (For the
remainder of Section 2 we take e as ranging over general programming-language expressions.)
For example, F might be the set of exceptions the expression e may throw. Type-and-effect
systems also introduce latent effect annotations in functions, for example τ1

F−→ τ2 is the
type of a function which has effect F when applied.

The simplest effect systems use powersets of symbols representing possible impure program
actions, ignoring control-flow and statement order by using ∪ to combine effect information
(e.g., [5, 24]). Consider the effect system that captures the set of exceptions that an expression
may raise. In this case, the inference rule for conditionals is:

(if) Γ ` e1 : Bool & F1 Γ ` e2 : τ & F2 Γ ` e3 : τ & F3

Γ ` if e1 then e2 else e3 : τ & F1 ∪ F2 ∪ F3

However, this only covers ‘may’ analyses, and not ‘must’ analyses, and furthermore it only
allows for commutative effect combination. Amtoft et al. [1] therefore introduced separate
operators for sequencing (B) and combining alternate effects (t) e.g., in if-then-else-style
conditionals. The meaning of B is such that F1 BF2 is the cumulative effect of two sequenced
operations, where the first has the effect F1 and the second F2. This sequential composition
of effects, in a space D, is generally modelled as a monoid (D,B, 1) where B is an associative
operation with identity element 1. The previous inference rule now becomes:

(if) Γ ` e1 : Bool & F1 Γ ` e2 : τ & F2 Γ ` e3 : τ & F3

Γ ` if e1 then e2 else e3 : τ & F1 B (F2 t F3)

The effect system now distinguishes sequencing from branching and allows the former to be
non-commutative. Such effect systems, which take control flow into account, are sometimes
referred to as sequential (or flow-sensitive) effect systems [26].

One algebraic characterisation of these effect-system operators, due to Katsumata [9],
is as a partially-ordered2 monoid (pomonoid), which we write as a quadruple (D,v,B, 1)
where D is both a poset (ordered by v) and a monoid (with v-monotonic operation B).

Gordon argues for a special case of this model3 called effect quantales [6]. An effect
quantale (D,t,B) is a bounded join-semilattice where B distributes over t on both sides:
xB (ytz) = (xBy)t (xBz) and (ytz)Bx = (yBx)t (zBx). Gordon adds the requirement
that (D,t) has a > element (but this holds whenever D is finite-height) and also that > is a
left- and right-zero for B.

Distributivity of B over t implies its monotonicity w.r.t. v, but not vice versa.
Both Katsumata’s pomonoids and Gordon’s effect quantales form bases for sequential

effect systems. Effect quantales are a special case of pomonoids, but have the laudable aim
to be closer to modelling only those effect algebras which are useful in practice. We however
argue that the distributivity requirement of effect quantales is too strong (Section 3.4).

2 Katsumata proposed a pre-ordered monoid, but this becomes a partially ordered monoid after quotienting
by equivalence classes hence our slight re-characterisation here to match the partial-order setting of
data-flow analysis.

3 Here we consider only sequential composition and alternation; Gordon’s work also considers iteration.
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(if) Φ(`) = 〈〈v〉〉TF B (Φ(`1) t Φ(`2))
Φ ` (` : if v ≥ 0 then goto `1 else goto `2) : Int & Φ(`)

(assign) Φ(`) = 〈〈` : X := e〉〉TF B Φ(`′)
Φ ` (` : X := e; goto `′) : Int & Φ(`) (halt) Φ(`) = 〈〈v〉〉TF

Φ ` (` : halt v) : Int & Φ(`)

Figure 3 Data-flow effect system for the imperative language of CFGs.

3 An effect system for data-flow analysis

As discussed in Section 1, specific data-flow analyses have sometimes been given ad hoc
characterisations as effect-system-like analyses (e.g., Nielson et al.’s annotated type system
for reaching definitions [17]). Here we introduce a more general, unifying approach based on
a type-and-effect system for CFGs in which statements in the language of Section 2.2 are
given effect annotations corresponding to transfer functions. Since assignments and branches
contain goto `, their overall (“run to completion”) effect does not directly correspond to
traditional transfer functions of CFG nodes. Section 3.1 explores the details, introducing an
effect system for liveness. Section 3.2 considers inference. Section 3.3 then generalises the
system to classical dataflow analyses and constant propagation, which is non-distributive.

3.1 Type-and-effect system and inference rules for liveness
Recall the language of CFGs introduced in Section 2.2. We wrote (` : S) to mean node `
is associated with statement S. We introduce judgements capturing the type and effect of
running to completion a CFG program starting at a given statement. The judgement form is
Φ` (` : S) : τ &φ, where τ is a type and φ is an effect annotation given by a transfer function
that is a combination of transfer functions on paths from ` up to a halt. More precisely: for
liveness, applying φ to the live variable set at program exit (the boundary information) gives
the live set at `.

The role of Φ (which is a map from labels to transfer functions) is more subtle. Normally,
type-and-effect systems are given in a syntax-directed manner. But loops in programs behave
like recursive functions, requiring finding a fixed point (with potentially multiple solutions).
Here, we posit a solution Φ giving the data-flow value at each program point, and use
inference rules to assert this is consistent. There may be multiple possible Φ (fixed points).

The type-and-effect system of this form that describes liveness is given in Figure 3.
It uses various functions and symbols. The operators t and B are ∪ and ◦ (function
composition), respectively. The notation 〈〈` : X := e〉〉TF and 〈〈v〉〉TF represents transfer
functions corresponding respectively to assignmentsX :=e at label `, and variable references in
halt v and if v ≥ 0 statements. They are respectively λs. (s \ kill(` : X := e)) ∪ gen(` : X := e)
and λs. s ∪ fv(v). We interpret these rules inductively and we are interested in the least
solution (in terms of Φ in the partial order of functions from labels to transfer functions).

I Theorem 1. Let Φ̂ be the least solution for a CFG that contains an instruction with label
`. Then Φ̂(`)(∅) is equal to the set of live variables at node ` of the CFG.

Proof. This is restating a well-known fact about transfer functions by Sharir and Pnueli [22].
A statement and proof of it can be found in, for example, Theorem 7-3.4 in Muchnick and
Jones [14]. Using their notation, the expression Φ̂(`)(∅) corresponds to z` = χ`(∅) and the
live set at ` is x`, and the theorem states that x` = z`. See Appendix A for details. J
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15:8 Data-Flow Analyses as Effects and Graded Monads

Effect systems are traditionally applied to functional languages to analyse impure code.
Thus calling our approach here an “effect system” may seem unorthodox. Our justification is
that the inference system in Figure 3 is the pre-image of the translation in Section 4 (based
on the McCarthy transformation) from CFGs into functional code with a type-and-effect
system (via graded monads) mapping transfer functions to type-based effect information.

Our effect system here resembles Nielson et al.’s “annotated type system” [17] capturing
reaching-definitions analysis for a simple imperative while language. The main difference is
that we operate with transfer functions on CFGs (which, to the best of our knowledge, is a
novel approach), unifying several monotone data-flow analyses (shown in Section 3.3).

3.2 Inferring effects
Given a labelled imperative program as in Section 3.1, we want to find the effects associated
with every single label. We present a method to infer the principal solution to this problem.

Statements in a CFG are uniquely labelled. Thus we can see a CFG as a set of tuples
(` : S), where ` is a label and S is a statement. Let φ` be the effect associated with the
label `, so that Φ ` (` : S) : τ & φ` holds. For every statement there is an associated set of
constraints involving its effect. These constraints resemble the rules given in Figure 3. They
are given in the form of inequalities that use a subeffecting relation v, which in the case of
liveness is just ⊆ lifted to the function space. Each statement form below emits the indicated
constraint (these are conventionally expressed using w, the converse of v):

(` : halt v) =⇒ φ` w 〈〈v〉〉TF
(` : if v ≥ 0 then goto `1 else goto `2) =⇒ φ` w 〈〈v〉〉TF B (φ`1 t φ`2)
(` : X := e; goto `′) =⇒ φ` w 〈〈` : X := e〉〉TF B φ`′

We seek the least solution (w.r.t. v) for this set of constraints. Since the domain of the
constraints is the lattice of transfer functions, finding the least solution is done by using
a simple work-list algorithm: Initially all φ` are set to ⊥DFValues→DFValues (the transfer
function that maps any set of data-flow values to ∅). Then the solution is iteratively improved
until we reach a tuple of transfer functions that satisfies all the constraints.

Since every transfer function appears on the left-hand side of exactly one constraint, the
value in the next iteration is updated according to this constraint. For example, if there is
a constraint φ w 〈〈v〉〉TF B (φ1 t φ2), this update step sets the new estimate of φ to exactly
〈〈v〉〉TF B (φ′1 t φ′2), where φ′1 and φ′2 are the current estimates of φ1 and φ2. These steps
are monotonic with respect to v, and thus this iteration converges to the least fixed-point
solution for our finite-height lattices.

3.3 Generalising to other data-flow analyses
Our CFG-based effect system for liveness can be generalised to a single framework capturing
the four classical data-flow analyses (live variables, reaching definitions, very busy expressions,
available expressions). The generalised form is parameterised by the following algebra:

a set of data-flow values DFValues, effects are then transfer functions drawn from
DFValues → DFValues;
a subeffecting relation v on transfer functions;
a sequencing operator B on transfer functions;
a function 〈〈` : X := e〉〉TF mapping labelled assignment statements to transfer functions;
a function 〈〈v〉〉TF mapping a potential variable appearing in halt v or in if v ≥ 0 to a
transfer function representing its being read.
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DFValues v t B kill(` : X := e) gen(` : X := e) vgen(v)
LVA P(Vars) ⊆ ∪ ◦ {X} fv(e) fv(v)
RD P(Vars × Labels) ⊆ ∪ ◦̂ {(X, l) | l ∈ Labels} {(X, `)} ∅
VBE P(Expressions) ⊇ ∩ ◦ {e′ |X ∈ fv(e′)} {e} fv(v)
AVAIL P(Expressions) ⊇ ∩ ◦̂ {e′ |X ∈ fv(e′)} {e} fv(v)
(Recall v ::= X | k therefore fv(v) in the rightmost column is either a singleton or empty set.)

Figure 4 CFG effect-system instantiations for classical data-flow analyses.

Sets of transfer functions equipped with v are lattices, therefore a t operator (join) exists.
For all four classical analysis, 〈〈` : X := e〉〉TF and 〈〈v〉〉TF can be expressed:

〈〈` : X := e〉〉TF = (λd. (d \ kill(` : X := e)) ∪ gen(` : X := e)) : DFValues → DFValues
〈〈v〉〉TF = (λd. d ∪ vgen(v)) : DFValues → DFValues

The space of data-flow values DFValues along with its v, t, gen, kill and vgen operators
are variously parameterised for the four data-flow analyses as shown in Figure 4. The effect
system that then describes all of these is precisely the one given in Figure 3.

In these instantiations, theB operator is particularly interesting. The algebra (DFValues→
DFValues,v,B, id) is a partially ordered monoid, with id as the unit element. We consider
two possibilities for B depending on the direction of the analysis

For backwards analysis, B is function composition ◦;
For forwards analysis, B is reverse function composition ◦̂ – defined as f ◦̂ g def= g ◦ f .

3.4 Constant propagation as a non-distributive example
Constant propagation from Section 2.3 (not one of the four classical analyses) also fits into
the above framework. We take DFValues to be the lattice of mappings s from variables
to Z>⊥ with the v relation being lifted component-wise. This lattice of transfer functions
becomes a pomonoid by taking B to be reverse composition ◦̂ (since constant propagation is
a forwards analysis). Transfer functions for assignment and variable access are:

〈〈` : X := e〉〉TF = λs. s[X 7→ s(e)] and 〈〈v〉〉TF = λs. s

where we abusively write s(e) to mean the value in Z>⊥ obtained by substituting variables in
e as specified by s and simplifying. Variable access does not update variables so 〈〈v〉〉TF = id.

As an example, sequencing the effects of X := 1 and Y :=X + 2 gives the effect:

(λs. s[X 7→ 1]) ◦̂ (λs. s[Y 7→ s(X) + 2]) = (λs. s[Y 7→ s(X) + 2]) ◦ (λs. s[X 7→ 1])
= λs. s[X 7→ 1, Y 7→ 3]

Thus the inference system of Figure 3 can be used also for constant propagation.
With constant propagation, t and ◦̂ do not satisfy distributivity, as seen previously in

the example of Figure 2. In this algebra, that example illustrates the fact that for:

φ1 = λs. s[X 7→ 1, Y 7→ 2] φ2 = λs. s[X 7→ 2, Y 7→ 1] φ3 = λs. s[Z 7→ s(X) + s(Y )]

distributivity is violated – that is, (φ1 ◦̂ φ3) t (φ2 ◦̂ φ3) 6= (φ1 t φ2) ◦̂ φ3. Thus, the idea of
basing effect-systems on the distributive structure of quantales (as in [6]) would exclude this
common static analysis. We therefore advocate that distributivity is not imposed (Section 5).
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4 Translating to a graded monadic setting

We now formulate a graded monadic model of the effect system given in Section 3, exploring
the use of graded structures to encode liveness analysis in programming and semantic
modelling. We describe translations from our CFGs into a pure functional language (e.g.,
Haskell, Agda, Coq, or a pure subset of ML).

We briefly overview graded monads in Section 4.1. We go on to define a monadic variant of
the McCarthy transformation in Section 4.2; this is generalised to a graded monadic McCarthy
transformation in Section 4.3.1. For the graded monadic case, the data-flow equations get
represented as typing constraints in the target language’s type system. Section 4.3.2 gives
a graded monad which further refines a semantic model of state by liveness information.
Section 4.4 considers a concrete translation into Haskell, details of which are in Appendix B.
Lastly, Section 4.5 explains how to generalise this approach to other data-flow analyses.

4.1 Graded monads
Monads are common in pure functional programming languages (such as Haskell) for embed-
ding and structuring effectful computations [27] and for semantic models of effects [13]. We
recall a programming oriented definition: a monad is a triple (M,�=, return) where M is a
type constructor, �= (bind) is an infix operator, and return is a function, with the types:

return : ∀α. α→Mα (�=) : ∀α∀β. Mα→ (α→Mβ)→Mβ

Following Moggi [13], we use the word computation for values of type Mτ , just like we use
function for values of type σ → τ .

In addition, these operations should satisfy the following axioms:

m�= return = m (right identity)
return x�= f = f x (left identity)

(m�= f)�= g = m�= (λx. f x�= g) (associativity)

Wadler and Thiemann [28] showed that monads and effect systems can be united by trans-
posing effect systems into an equivalent monadic system with effect annotations in types:
for an expression of type τ with effect F , there is an monad M annotated with F (written
MF ) such that there is an equivalent expression of type MF τ . This annotated monad
represents the possible effects of an impure expression e, described by F . Graded monads
essentially systematise and generalise this idea so that a model or embedding of the effectful
computation may depend on the effect information F , which has some algebraic structure
(the effect algebra). In this way, graded monads can capture effect information in types (e.g.,
for fine-grained effect and resource reasoning) or make effect semantics more fine-grained.

Graded monads generalise monads to an indexed family of type constructors whose indices
range over elements of a given algebraic structure [4, 9, 15]. The operations of this structure
then mediate the operations of the graded monad. The structure of grades is usually a
pomonoid (D,v,B, 1), giving a graded monad ({Mr}r∈D, sub,�=, return), where {Mr}r∈D
is a family of type constructors indexed by D-elements and �=, return, and sub have types:

�= : ∀r∀s∀α∀β. Mrα→ (α→Msβ)→MrBsβ
return : ∀α. α→M1α
sub : ∀r∀s∀α. Mrα→Msα if r v s

Here �= and sub are polymorphic in types and grades. We use Greek letters for types and
Roman letters for elements (grades) of the algebra in order to avoid clutter in type signatures.
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A graded monad satisfies axioms analogous to those of a monad, but with the addition of
grades in such a way that the graded monad laws depend on the associativity and identity
properties of the monoid, where for all x : α,m : Mrα, f : α→Msβ and g : β →M tγ:

m�=r,1 return = m : Mrα (right identity)
return x�=1,s f = f x : Msβ (left identity)

(m�=r,s f)�=rBs,t g = m�=r,sBt (λx. f x�=s,t g) : MrBsBtγ (associativity)

We subscript the operations with the instantiation of the grades here for clarity.
The sub satisfies the following ∀r, s, r′, s′,m : Mrα, f : α→Msβ where r v r′ and s v s′:

subr,r′m �=r′,s′ (subs,s′ ◦ f) = subrBs,r′Bs′ (m�=r,s f) : Mr′Bs′
β (monotonicity)

Categorically, graded monads correspond to lax monoidal functors between a pomonoid
(viewed as a category) and a category of endofunctors (essentially type constructors) [9, 20].
This categorical construction embodies the idea that graded monads match the structure
of some analysis domain (a pomonoid on D) to the structure of a semantic domain (type
constructors modelling computations). The resulting operations (�=, return, sub) propagate
the pomonoid structure with them via the grades, describing the structure of a computation.

4.2 Monadic McCarthy transformation
McCarthy’s transformation [12] maps CFG statements to mutually recursive function defini-
tions using an m-tuple of functionally updated variables to represent the state. For example,
the node (`1 : Y :=X + Z; goto `2) in a CFG containing variables X, Y , Z can be translated
into the function f1(x, y, z) = f2(x, x+ z, z) where f2 is the function corresponding to the
CFG node with label `2. We define a variant, using a monad to represent state, and call it
the monadic McCarthy transformation.

The standard state monad [27] models a single mutable memory cell with type constructor
State α parameterised by the type of values that can be stored α, and two operations for
manipulating the state: get : ∀α.State α α and put : ∀α.α → State α Unit. We can thus
represent m integer variables by the monad State(Int, . . . , Int) with access to each variable
provided by get and put and projections. An alternative is to use a monad transformer stack.
For brevity, we instead assume an equivalent monad MultiState which holds the state of m
integer variables and has m operations geti : MultiState Int and puti : Int→ MultiState Unit
one for each CFG variable (X,Y, Z, . . . ∈ Vars). In examples these are written getX, putY
etc. Thus MultiState τ is the type of computations over mutable variables that return type τ .

We use Haskell’s do {. . .} notation as syntactic sugar for monadic computations,4 equival-
ent to Moggi’s monadic metalanguage [13]. For example, do {x←e1; e2} sugars e1�=(λx. e2),
and do {e1; e2} sugars e1�= (λ_. e2). The desugaring is recursively applied.

Our monadic McCarthy transformation produces a set of mutually recursive definitions of
computation values of monadic type (in our case MultiState Int) instead of a set of mutually
recursive functions. Each labelled statement (` : S`) maps to a definition J` : S`KMM as
specified in Figure 5: for assignment X := e, the variables of e are read into temporary (pure)
variables using get, followed by a putX to write to X; variables read within conditionals
and halts are treated similarly. The resultant monadic definitions can be directly read as a
Haskell program (or an ML program after desugaring into recursive function definitions).

4 There is an additional assumption of monad strength which allows monadic computations to close over
variables in scope. Strength holds for all monads in Cartesian-closed categories (and in programming
settings). The notion of strength extends to graded monads [9] and is provided for all our examples.
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` : S J` : SKMM
` : X := Y + Z; goto `′ g` = do { y← getY; z← getZ; putX (y + z); g`′ }

` : X := k; goto `′ g` = do { putX k; g`′ }
` : if X ≥ 0 then goto `′ else goto `′′ g` = do { x← getX; if x ≥ 0 then g`′ else g`′′ }

` : halt X g` = do { x← getX; return x }

Figure 5 The monadic McCarthy transformation J−KMM. For assignment, we only give the cases
X := k and X := Y + Z; other cases, e.g., X := Y + 1, are similar. Conditional and halt forms that
have k (constants) instead of variables X are analogous.

`0 :X := 100; goto `1
`1 : if X ≥ 0 then goto `2 else goto `4
`2 :X :=X − 1; goto `3
`3 : Y := Y + 1; goto `1
`4 :R := Y + Z; goto `5
`5 : halt R

J−KMM−−−−→

g0 = do { putX 100; g1 }
g1 = do { x← getX; if x ≥ 0 then g2 else g4 }
g2 = do { x← getX; putX (x− 1); g3 }
g3 = do { y← getY; putY (y + 1); g1 }
g4 = do { y← getY; z← getZ; putR (y + z); g5 }
g5 = do { r← getR; return r }

Figure 6 Example monadic McCarthy transformation. CFG code (left) is translated into mutually
recursive definitions of computation values (right).

Figure 6 exemplifies the monadic McCarthy transformation converting an imperative
program (left) to a set of mutually recursive computation definitions (right).

The monadic McCarthy transformation produces a program with equivalent behaviour to
the original CFG (by a straightforward refactoring of McCarthy’s transformation into the
state monad). Next, we show that a more refined model can be given by targeting a graded
monad instead of a monad. This allows the target of the translation to capture the same
data-flow information as the CFG effect system’s judgements.

4.3 Graded monadic McCarthy transformation for liveness

The above monadic McCarthy transformation maps CFG terms to state monad computations,
i.e., Jl : SKMM : MultiState Int. Instead, given a graded monad MultiStateφ which provides
state monad-like behaviour (graded by our pomonoid of transfer functions φ), we give a graded
monadic McCarthy transformation J` : SKGM : MultiStateΦ(`) τ whenever Φ` (` : S) : τ &Φ(`).

We describe this graded monadic McCarthy transformation (Section 4.3.1) by first taking
the usual MultiState monad and wrapping into a trivial graded monad: one whose grades
only decorate the types but do not affect the operations and thus have no semantic meaning.
We then replace this graded monad with one whose grades have semantic meaning, refining
the types and operations of the former to give a semantic account of liveness (Section 4.3.2).

4.3.1 Transformation to a trivial graded monad

Given a monad M and a pomonoid (D,v,B, 1) one can construct a trivial graded monad
with type constructors Md

trivτ = Mτ for d ∈ D. In this construction Md
triv simply wraps M

and thus the grades have no bearing on the computation encoded by the monad. The monad
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operations of M provide the graded monad operations of Mtriv via this wrapping, and the
required graded monad laws follow from the laws of the monoid (D,v,B, 1) and monad M .

We use this construction on the MultiState monad to form a graded monad written
MultiStateφtriv graded by the pomonoid of transfer functions (DFValues → DFValues,v,B, id)
from Section 3.1. Thus a value of type MultiStateφtriv τ is a stateful computation that returns
a value of type τ with some transfer-function grade φ associated to it by its operations.

The graded monadic McCarthy transformation J−KGM enriches J−KMM (Fig. 5) in only
two ways: (i) applying sub to both g`′ and g`′′ in the translation of if, and (ii) using the
graded monad operations below in the body of do (and for �= when desugaring it):

getX : MultiStategenX

triv Int
putX : Int→ MultiStatekillX

triv Unit
return : ∀α.α→ MultiStateid

triv α

�= : ∀φ, φ′, α, β. MultiStateφtriv α→ (α→ MultiStateφ
′

triv β)→ MultiStateφBφ
′

triv β

where genX
def= λd. d ∪ {X}

killX
def= λd. d \ {X}

Since the transformation operates on the syntax of CFGs, rather than judgements of the
CFG effect system, the grades on each computation type must be inferred by generating a
set of typing constraints which are then solved (as was done in Section 3.2), by the host
language’s type system (we consider the feasibility of this in Section 4.4).

The syntactic translation results in graded monadic computations whose grades match
exactly the analysis of our CFG effect-system from Section 3:

I Lemma 2 (Soundness of the graded monadic McCarthy transformation). If Φ`(` : S) : τ&Φ(`)
and ∀`′ ∈ dom(Φ).(g`′ : MultiStateΦ(`′)

triv Int) then J` : SKGM : MultiStateΦ(`)
triv τ .

I Example 3. Let g, of type MultiStateφtriv Int, represent a liveness transfer function ‘for the
rest of the program’. Now consider the following expression (effectively prefixing g with the
statement Z :=X + Y and applying the graded McCarthy transformation J−KGM above):

do { x← getX; y← getY; putZ (x+ y); g }

By construction, its type is MultiStateφ
′

triv Int where φ′ = λd. (φ(d) \ {Z}) ∪ {X,Y } represents
the liveness transfer function for Z :=X + Y followed by the ‘rest of the program’ because

φ′ = genX B genY B killZ B φ = λd. (φ(d) \ {Z}) ∪ {X,Y }

As in Section 3.1, φ′(∅) gives us the liveness information the start of the ‘body’ of do {}
because the boundary information is that the set of live variables is empty at program exit.

I Example 4. In Figure 6, we converted an imperative program into mutually recursive
computation values g0, . . . , g5. Let φ0, . . . , φ5 stand for the transfer function grades of the
graded monadic types of g0, . . . , g5, so that gi is of type MultiStateφi

triv Int. Then these transfer
functions must satisfy the following constraints (coming from the type system):

φ0 w killX B φ1 φ1 w genX B φ2 φ1 w genX B φ4
φ2 w genX B killX B φ3 φ3 w genY B killY B φ1
φ4 w genY B genZ B killR B φ5 φ5 w genR B id

The usual fixed-point iteration gives the principal (least) solution:φ0 =λd.(d\{X,R})∪{Y, Z},
φ1 =φ2 =φ3 =φ4 =λd. (d\{R}) ∪ {X,Y, Z} and φ5 =λd. d ∪ {R}. The set of live variables at
the program start (i.e. at g0) is therefore φ0(∅) = {Y,Z}.
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4.3.2 Analysis-directed semantics via grade-based refinement
The previous section constructed the graded monad MultiStateφtriv τ as a simple wrapper over
the usual state monad; grade φ was a transfer function but it had no semantic meaning: the
grades were merely decorations on types and did not affect the operations. We can instead use
grades to refine the types and operations of the usual state monad by the liveness information,
so that graded monad operations actually depend on the grades. In this case, refinement
means restricting stores to subsets of the variables involved in a program. This paves the way
to ensuring that only semantically valid analyses can be encoded as grades. The translation
J` : SKGM remains the same but we instead replace the operations of MultiStateφtriv with the
operations of a new graded monad MultiStateφ (such that Lemma 2 holds for MultiStateφ).

Previously, MultiState and MultiStateφtriv τ represented their stores as m-tuples of Ints
where m = |Vars| (the CFG variables), i.e. MultiState τ = (Int, . . . , Int)→ τ × (Int, . . . , Int).
Now, given any subset V ⊆ Vars, we define the V-refined store Store(V ) to be V → Int,
writing ∅̂ for the only member of Store(∅). Note, Store(Vars) recovers (up to isomorphism)
the previous (Int, . . . , Int).

We now define MultiStateφ whose input and output stores are computed from φ:

MultiStateφτ = Store(reads(φ))→ τ × Store(footprint(φ))

For the input store, reads(φ) = φ(∅) gives us the subset of variables which are live-in
and thus read by a computation of type MultiStateφτ . For the output store, footprint(φ) =
φ(∅) ∪ (Vars\φ(Vars)) gives the footprint (borrowing terminology from separation logic [18])
containing those variables read or written by this computation.5 For example, do {x←
getX; y←getY; putZ (x+ y); } has grade φ = genXBgenY BkillZ = λd. (d \ {Z}) ∪ {X,Y }
(akin to Example 3) and thus reads(φ) = φ(∅) = {X,Y } and footprint(φ) = {X,Y, Z}.

The MultiStateφ type is a graded monad with refined return and state operations:

return : ∀α.α→ MultiStateidα = λx.λs.(x, ∅̂) : ∀α.α→ (Store(∅)→ α× Store(∅))
getX : MultiStategenX Int = λs.(s(X), s) : Store({X})→ Int× Store({X})
putX : Int→MultiStatekillX Unit= λx.λs.((), [X 7→x]) : Int→ (Store(∅)→ Unit× Store({X}))

On the right, we repeat the type of the operations, expanding the definition of MultiStateφ.
The input and output stores of return are both the empty map as reads(id) = footprint(id) = ∅
representing that no variables are read or written by return. Thus, return represents a pure
computation as isomorphic to the identity. The getX and putX operators are similarly refined.

The graded monad �= resembles the usual state monad �= but with three auxiliary
operations (J, /, and ↓ below) to manage the variously refined stores:

�= : ∀φ, φ′, α, β. MultiStateφα→ (α→ MultiStateφ′
β)→ MultiStateφBφ′

β

= λm.λf.λs. let (a, s′) = m(↓φ,φ′ s) in
let (b, s′′) = (f a)(s Jφ,φ′ s′) in (b, s′/φ,φ′s′′)

where ↓φ,φ′ : Store(reads(φB φ′))→ Store(reads(φ)) (restrict)
Jφ,φ′ : Store(reads(φB φ′))× Store(footprint(φ))→ Store(reads(φ′)) (merge1)
/φ,φ′ : Store(footprint(φ))× Store(footprint(φ′))→ Store(footprint(φB φ′)) (merge2)

Here ↓φ,φ′ s restricts the incoming store s : Store(reads(φB φ′)) to Store(reads(φ)), i.e., just
those variables live in computation m : MultiStateφα. The operation s Jφ,φ′ s′ pads the

5 A more refined graded state monad would return an output store containing only those variables that
are written-to (e.g. as in [15]). However, liveness analysis alone does not allow us to compute just the
variables written-to. The footprint is therefore a safe over-approximation of the written-to set.
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domain of store s′ : Store(footprint(φ)) (resulting from m) with the variables in store s, to
produce a store whose domain is just the live variables required for computation (f a). The
s′/φ,φ′s′′ operation similarly pads the domain of store s′′ : Store(footprint(φ′)) (resulting
from (f a)) with the variables in store s′ to give the final updated store its required domain.

The resulting�= operation thus ‘filters’ input stores by what is live, and output stores by
the footprint enabling, e.g., soundness of dead-code removal to be proved (future work). The
usual state monad �= is recovered by redefining ↓φ,φ′ s = s and s Jφ,φ′ s′ = s/φ,φ′s′ = s′.

Appendix C provides more details and the proof that this is indeed a graded monad. For
brevity, we omit the definition of sub.

4.4 Targeting a host language and applications
We have used Haskell-like do-notation as syntactic sugar for the (graded) monad operations in
some functional language. We can take this a step further, concretely targeting GHC/Haskell,
leveraging its combination of a practical functional language with an advanced type system.
Appendix B gives more details, showing how the Section 4.3.1 can be captured in Haskell.

This approach works well for sequential code, but reaches its limits with branching and
recursion as GHC does not have an appropriate notion of subtyping nor can it compute fixed-
points of type equations. A system with subtyping and equirecursive types (e.g., OCaml) may
fare better. An alternate approach is to make the graded monadic McCarthy transformation
not just syntax directed but type-and-effect directed. In this approach, solutions to the
data-flow equations can be computed (e.g, by work-list algorithm) before applying the graded
monadic McCarthy transformation. The resulting (least) transfer functions can then be used
in the translation to specialise the types of the resultant graded monadic program.

Whilst Haskell is shown as a target here, our approach is likely to be more useful in
the setting of a proof assistant when formalising language semantics or a compiler and its
optimisations (e.g., the CakeML verified compiler [25]).

4.5 Generalising to other data-flow analyses
So far we focused on liveness, where assignment statements are decomposed into sequences
of get and put operations. For other data-flow analyses, we cannot perform the same
translation of assignment as it may not be similarly decomposable. For example, for available
expressions we cannot associate kill with put nor gen with get. To capture these other
data-flow analyses, we can parameterise our graded monadic McCarthy transformation by
a specialised interpretation for assignments [` : x := e]GM : M 〈〈`:x:=e〉〉TFUnit, graded by the
assignment transfer function. The translation is then the same as Section 4.3, but with
assignments translated as:

J` : x := e; goto `′KGM = do { [` : x := e]GM; g`′}

We then require that [` : x := e]GM simulates the behaviour of assignment in the non-graded
monadic McCarthy transformation J−KMM on the MultiState monad. Using this generalisation
for different analyses with specialised graded monads akin to Section 4.3.2 is further work.

5 Conclusions and discussion

We demonstrated that a type-and-effect system based on transfer functions can be used to
compute data-flow values at any point in a CFG, and in particular can be used for liveness
analysis. Furthermore we have shown that the McCarthy transformation can be adapted
into a (graded) monadic form which embeds live variable analysis using control-flow graphs
into functional programs, where transfer functions are grades of a graded monad.
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This not only unifies two separately developed fields, but also contributes to the evolving
discussion of “what properties do we expect of the effect algebras used as grades”. In particular,
it shows that the distributivity axiom posited for effect quantales is over-restrictive in that
it does not allow representation of non-distributive data-flow problems such as constant
propagation. Using a pomonoid (or even pre-ordered monoid as originally phrased by
Katsumata) seems to impose minimal requirements on a model and so is most general.
However, it then admits partial orders in which there is no concept of a least (or principal)
solution and which do not seem to model any known static analysis. We suggest an appropriate
model should be a pomonoid (D,v,B) which satisfies the following requirements:

B is monotonic w.r.t. v (following Katsumata and allowing distributivity);
D is bounded complete: whenever set X ⊆ D has some upper bound then it has a least
upper bound.

An advantage of our graded-monadic approach compared to classical data-flow analysis is the
potential for a correct-by-construction property; correctness of an analysis can be established
at the semantic level, either denotationally or by showing a graded-type-preservation property
in a reduction-style operational semantics. Correctness then follows from a number of results:
1. that live-variable analysis is achieved by fixed-point calculation over equations on transfer

functions (Theorem 1);
2. soundness of the McCarthy transformation (established in [12]); soundness of replacing

McCarthy’s explicit state passing with the state monad (well-known); and soundness of
our novel transformation to a graded state monad (Lemma 2);

3. that our graded monad MultiStateφ really is a graded monad (Section 4.3.2 / Appendix C);
4. that reduction in our (graded monad) calculus exhibits progress and preservation.
The last point is the subject of future work, which we wish to explore in the context of
general data-flow analyses and proving the correctness of program transformations.

Related work. Benton et al. [2] use a graded-monad-based effect system to model non-
determinism in an otherwise pure functional language and then use this information in a
logical relation semantics to prove program transformations correct, whereas our focus is on
embedding general data-flow analyses for imperative languages into graded monads.

Dijkstra monads [23] are a generalisation of monads used for verifying program conditions,
where the annotation carries the precondition and postcondition of an expression. While
more general, they achieve their full power in a dependently typed language. By contrast,
we manage to get far in a graded monadic setting without dependent types.

Further work. As discussed in Section 4.5, further work is to study the graded monadic
McCarthy approach in more detail for analyses other than liveness, which was our focus here.

The current work embeds intra-procedural program analyses on control-flow graphs as
grading inference problems in graded-monadic forms of effect systems. Further work might
include showing how notions from inter-procedural analysis, such as context-sensitivity and
the IDE and IFDS frameworks of Reps et al. [21], along with how notions such as bidirectional
analysis fit into the “properties as grades of a graded monad” model.

Section 4.4 discussed how the graded monadic embedding is likely to be most useful in
the setting of verifying optimising compilers (rather than, say, general Haskell programming).
Exploring our approach in this context is future work.
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then dOut
n = BI, where BI represents the boundary information (∅ both in the cases of liveness

and VBE). If n has a non-empty set of successors, then: dOut
n =

⊔
s∈succ(n) d

In
s

Thus for every node in N we have two data-flow equations, say k in total (where k = 2|N |).
Let ~d be the k-length vector of all data-flow values associated with the nodes, where di is
its ith component. The data-flow equations give rise to a k-length vector ~h of monotonic
functions in DFValuesk → DFValues such that di = hi(~d), for 1 ≤ i ≤ k. The solution of
the data-flow equations is the least vector ~d that satisfies these equations. Starting from a
k-length vector (⊥, . . . ,⊥), we eventually get to the least solution, given by:

~d = fix (λ~d′. (h1(~d′), . . . , hk(~d′)))

where fix(f) is the least fixed point of a function f .
By contrast, our approach in this paper is to find monotonic (transfer) functions Hi :

DFValues → DFValues (i.e., on single data-flow values) per node that satisfy di = Hi(BI).
In this case, we have a function Ĥ = λd. 〈H1(d), . . . ,Hk(d)〉 that maps to a tuple of data-flow
values, given by the least fixed point:

Ĥ = fix(λĤ ′. λd. 〈h1(H ′1(d), . . . ,H ′k(d)), . . . , hk(H ′1(d), . . . ,H ′k(d))〉)

In this paper, the effects correspond to a subset of the Hi functions (either just the incoming
ones or the outgoing ones), which end up being transfer functions of the continuations (or
“from this point on in the CFG”) – we can refer to them as cumulative transfer functions. The
least fixed point Ĥ in this expression satisfies di = Hi(BI) by definition of fixed points. As
di = hi(~d) as well, the two approaches give the same result by least fixed point uniqueness.

The main application of these facts is in the proof of Theorem 1. By the conventional
definition of live variables, the data-flow equations for the CFG language in this paper are:

Live(` : halt v) = fv(v)
Live(` : if v ≥ 0 then goto `1 else goto `2) = fv(v) ∪ Live(`1 : L(`1)) ∪ Live(`2 : L(`2))
Live(` : X := e; goto `′) = 〈〈` : X := e〉〉TF(Live(`′ : L(`′)))

where Live(` : S) is the set of live variables at label ` corresponding to statement S and fv(v)
is the set of free variables in v. This definition is recursive; the set L̂ive corresponds to its
least solution in the partial order of sets (that is, subsets of the set of all variables in a CFG).

Proof of Theorem 1. Let there be n instructions labelled `1, . . . , `n in the CFG. We want
to show that Φ̂(`)(∅) = L̂ive(` : L(`)) hold for all `. For any label `, the exact link between
Φ̂(`) and all the other Φ̂(`′) depends on what exactly the instruction at ` is.

For L(`) = halt v, we have Φ̂(`) = 〈〈v〉〉TF = λd. d ∪ fv(v).
For L(`) = if v ≥ 0 then goto `′ else goto `′′, we have Φ̂(`) = 〈〈v〉〉TF B (Φ̂(`′) t Φ̂(`′′)),
that is, Φ̂(`) = λd. fv(d) ∪ Φ̂(`′)(d) ∪ Φ̂(`′′)(d).
For L(`) = X := e; goto `′, we get Φ̂(`) = 〈〈` : X := e〉〉TF B Φ̂(`′), that is, we have
Φ̂(`) = λd. 〈〈` : X := e〉〉TF(Φ̂(`′)(d)).

Looking at the previous discussion, L(`) corresponds exactly to Ĥ as it is also a least
solution. Similarly, the expressions for L̂ive are analogous to ~d when looking at the vector
given by L̂ive(`1 : L(`1)), . . ., L̂ive(`n : L(`n)). The empty set is the bottom element of the
data-flow lattice for liveness, so BI = ∅. Thus L̂ive(`i : L(`i))(∅) = Φ̂(`i) for all 1 ≤ i ≤ n. J

FSCD 2020



15:20 Data-Flow Analyses as Effects and Graded Monads

B Haskell embedding

Modern Haskell as provided by the Glasgow Haskell Compiler (GHC) (from at least version
8.2 onwards) can embed our graded monads with transfer-function effect algebras in its types,
leveraging our graded monadic McCarthy transformation. Graded monads can be captured
via the following type class which uses type families to provide the grading pomonoid (based
on the effect-monad package6 by Orchard et al. [19]):

import Prelude hiding (Monad(..)) -- hide regular monads and then...
import qualified Prelude as M -- ...import as qualified to wrap monads later

class GradedMonad (m :: d → * → *) where -- Pomonoid graded monads
type Unit m :: d -- {Type-level monoid providing the
type Seq m (r :: d) (s :: d) :: d -- effect algebra over domain ‘d‘}
type Sub m (r :: d) (s :: d) :: Constraint -- Type-level partial order
-- Graded monad operations
return :: a → m (Unit m) a
(>>=) :: m r a → (a → m s b) → m (Seq m r s) b
sub :: Sub m r s ⇒ m r a → m s a

We show the encoding of the compositional live-variable analysis, which is graded by the effect
algebra of transfer functions. It is a commonly held belief that type-level functions in Haskell
cannot be partially applied, mainly because a type-family based encoding is considered. We
show an alternate approach that is much more flexible and suits out purposes well.

To capture transfer functions at the type level, we use a class-based encoding with d =
[Symbol] → [Symbol] → Constraint meaning that transfer functions are functional relations
between two type-level lists of symbols (which are used to represent sets of variables). These
type-level lists later get normalised to form sets by removing duplicates and giving an
arbitrary consistent ordering, leveraging the type-level-sets package.7

The genv and killv functions for variable v are defined at the type-level as:

class Gen (v :: Symbol) (dIn :: [Symbol]) (dOut :: [Symbol]) | v dIn → dOut
instance Gen v dIn (v ’: dIn) -- add ‘v‘ to the incoming set ‘dIn‘
class Kill (v :: Symbol) (dIn :: [Symbol]) (dOut :: [Symbol]) | v dIn → dOut
instance Remove dIn v dOut ⇒ Kill v dIn dOut -- rem ‘v‘ from ‘dIn‘ to get ‘dOut‘

Classes are types of kind Constraint so Gen v :: [Symbol] → [Symbol] → Constraint. The
syntax v dIn → dOut is a functional dependency telling the type checker that v and dIn
uniquely determine dOut, i.e., these class-based relations are really functions. The single
instances of each class are then equivalent to the usual λ-based definitions of genv and killv.

The definition of Kill uses a recursive type-level function for removing an element from a
list, again encoded as a functional relation (for brevity, we skip its recursive definition):

class Remove (xs :: [Symbol]) (x :: Symbol) (ys :: [Symbol]) | xs x → ys

We can capture type-level identity and function composition (which we write as :|> due to
its later use for the effect algebra) as:

class Id dIn dOut | dIn → dOut -- Identity function
instance Id d d

6 https://hackage.haskell.org/package/effect-monad
7 https://hackage.haskell.org/package/type-level-sets

https://hackage.haskell.org/package/effect-monad
https://hackage.haskell.org/package/type-level-sets
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class (:|>) f g dIn dOut -- Function composition
instance (f dIn dMid, g dMid dOut) ⇒ (:|>) g f dIn dOut

We then define a data type for a Haskell implementation of the graded monad MultiStatetriv
by wrapping a monad transformer stack of state monad transformers capturing enough
variables for our program. Here we capture a maximum of four mutable variables as:

data MultiState (r :: [Symbol] → [Symbol] → Constraint) (a :: Type) =
MultiState {unMS :: StateT Int (StateT Int (StateT Int (StateT Int Identity))) x}

We give MultiState a graded monad instance which uses the above type-level identity and
function composition:

instance GradedMonad MultiState where
type Unit MultiState = Id
type Seq MultiState r s = r :|> s
type Sub MultiState r s = PointwiseSub r s

return x = MultiState $ M.return x
(MultiState x) >>= k = MultiState ((M.>>=) x (unMS ◦ k))
sub (MultiState x) = MultiState x

The operations wrap the underlying monad, packing and unpacking the wrapper data type
via its constructor and deconstructor. We then define get and put operations for each of the
variables we need, e.g. for X we have "x" as its type-level symbol representation:
getX :: MultiState (Gen "x") Int
getX = MultiState get

putX :: Int → MultiState (Kill "x") ()
putX x = MultiState (put x)

Example 3 showed the translation of z := x+ y as a prefix for a program labelled g. In our
Haskell implementation, we can write exactly the same code:

exm3 g = do { x ← getX; y ← getY; putZ (x + y); g }

This leverages GHC’s RebindableSyntax extension which allows do {} to be desugared into
graded monad operations instead of monad operations. We can then query GHC’s type
inference which yields the type:

exm3 :: MultiState s b → MultiState (Gen "x" :|> (Gen "y" :|> (Kill "z" :|> s))) b

To get the data-flow at the current program point, we apply the transfer function grade to
the empty set (Section 4.3.1) via the following function:

atProgramPoint :: r ’[] dOut ⇒ MultiState r x → Set (AsSet dOut)
atProgramPoint (MultiState _) = Set

where AsSet normalises the type-level list into a set representation and Set is a data type
with a phantom type parameter (not used in any data constructor).

Thus atProgramPoint captures the resulting data-flow value dOut as a type-level set by
forcing the data-flow value input to unify with the boundary value (empty set ’[]). Applied
to exm3, GHC calculates the following type representing the set {x, y} as expected:

atProgramPoint (exm3 (return ())) :: Set ’["x", "y"]
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C Details and proofs for the graded monad of liveness

The state-management operations used in the graded monad definition of Section 4.3.2 (which
were omitted for brevity) are defined in turn as follows:

↓φ,φ′ : Store(reads(φB φ′))→ Store(reads(φ)) = λs.s|φ(∅)

i.e., we restrict the domain of the incoming store s to the set reads(φ) (hence the name of
restriction for this operator). This relies on the property that x ∈ φ(∅) =⇒ x ∈ (φB φ′)(∅)
which is proved by induction on the generating set of transfer functions (see supplement).

Jφ,φ′ : Store(reads(φB φ′))× Store(footprint(φ))→ Store(reads(φ′))

= λ(s, s′).{
{
x 7→ s′(x) x ∈ footprint(φ)
x 7→ s(x) x ∈ reads(φB φ′) ∧ x 6∈ footprint(φ)

}

where x ∈ reads(φ′) i.e., choose from the right state s′ if x is in its domain, otherwise chose
from s if x is in its domain but not in the domain of s′. We have that x 6∈ footprint(φ)∧ x 6∈
reads(φB φ′) =⇒ x 6∈ reads(φ′) (by induction on generating set of transfer functions) which
implies that the resulting map is well-defined (a total function).

/φ,φ′ : Store(footprint(φ))× Store(footprint(φ′))→ Store(footprint(φB φ′))

= λ(s, s′).{
{
x 7→ s′(x) x ∈ footprint(φ′)
x 7→ s(x) x ∈ footprint(φ) ∧ x 6∈ footprint(φ′)

}

where x ∈ footprint(φB φ′). This merging operator resembles J, where an additional lemma
x 6∈ footprint(φ) ∧ x 6∈ footprint(φ′) =⇒ x 6∈ footprint(φB φ′) (by induction on generating
set of transfer functions) implies that the resulting map is well-defined (a total function).

I Proposition 5 (Restriction right unit). ∀φ and s ∈ Store(reads(φ)) then ↓φ,id s ≡ s

I Proposition 6 (Merge / right unit). ∀φ and s ∈ Store(footprint(φ)) then s/φ,id ∅̂ ≡ s

I Proposition 7 (Merge J right unit). ∀φ′ and s ∈ Store(reads(φ′)) then s Jid,φ′ ∅̂ ≡ s

I Proposition 8 (Merge / left unit). ∀φ′ and s ∈ Store(footprint(φ′)) then ∅̂/id,φ′s≡s

I Proposition 9 (Restriction closure). ∀φ, φ′, φ′′ and s ∈ Store(reads((φB φ′) B φ′′)) then:
↓φ,φ′ (↓φBφ′,φ′′ s) ≡ ↓φ,φ′Bφ′′ s

I Proposition 10 (Merge / associativity). ∀φ, φ′, φ′′ and s ∈ Store(footprint(φ)),
s′ ∈ Store(footprint(φ′)), and s′′ ∈ Store(footprint(φ′′)) then:

(s/φ,φ′s′)/(φBφ′),φ′′s′′ ≡ s/φ,φ′Bφ′′(s′/φ′,φ′′s′′).

I Proposition 11 (Merge //J associativity). ∀φ, φ′, φ′′ and s ∈ Store(reads((φB φ′) B φ′′))
and s′ ∈ Store(footprint(φ)) and s′′ ∈ Store(footprint(φ′)) then:

s J(φBφ′),φ′′ (s′/φ,φ′s′′) ≡ (s Jφ,φ′Bφ′′ s′) Jφ′,φ′′ s′′

I Proposition 12 (Merge J/restriction commutativity). ∀φ, φ′, φ′′ and s ∈ Store(reads((φB
φ′) B φ′′)) and s′ ∈ Store(footprint(φ)) then: (↓φBφ′,φ′′ s) Jφ,φ′ s′ ≡ ↓φ′,φ′′ (s Jφ,φ′Bφ′′ s′)

The supplementary material (https://doi.org/10.5281/zenodo.3784967) provides
the proofs. We now prove the identity and associativity axioms for the graded monad.
We refer to the monoid axioms as idL (id B φ = φ) and idR (φ B id = φ) and assoc
((φB φ′) B φ′′ = φB (φ′ B φ′′)).

https://doi.org/10.5281/zenodo.3784967
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(right identity). ∀m : Mφα then: m�=φ,id return ≡ m : Mφα which follows by:
m�=φ,id return

{defs.+β} ≡ λs.let(y, s′) = m(↓φ,id s) in let(z, s′′) = ((λx.λs.(x, ∅̂)) y)(s Jφ,id s′) in (z, s′/φ,ids′′)
{β} ≡ λs.let(y, s′) = m(↓φ,id s) in let(z, s′′) = ((λs.(y, ∅̂))(s Jφ,id s′) in (z, s′/φ,ids′′)
{β} ≡ λs.let(y, s′) = m(↓φ,id s) in let(z, s′′) = (y, ∅̂) in (z, s′/φ,ids′′)
{β} ≡ λs.let(y, s′) = m(↓φ,id s) in (y, s′/φ,id ∅̂)

{idR+P.5}≡ λs.let(y, s′) = m s in (y, s′/φ,id ∅̂)
{idR+P.6}≡ λs.let(y, s′) = m s in (y, s′))
{β + η} ≡m

(left identity). ∀x : α, f : α→Mφ′
β then return x�=id,φ′ f = f x : Mφ′

β follows by:
return x�=id,φ′ f

{defs.+β} ≡ λs.let(y, s′) = ((λx.λs.(x, ∅̂))x)(↓id,φ′ s) in let(z, s′′) = (f y)(s Jid,φ′ s′) in (z, s′/id,φ′s′′)
{β} ≡ λs.let(y, s′) = (x, ∅̂) in let(z, s′′) = (f y)(s Jid,φ′ s′) in (z, s′/id,φ′s′′)
{β} ≡ λs.let(z, s′′) = (f x)(s Jid,φ′ ∅̂) in (z, ∅̂/id,φ′s′′)

{idL+P.7} ≡ λs.let(z, s′′) = (f x)s in (z, ∅̂/id,φ′s′′)
{idL+P.8} ≡ λs.let(z, s′′) = (f x)s in (z, s′′)
{β+η} ≡ f x

(associativity). ∀m : Mφα, f : α→Mφ′
β, g : β →Mφ′′

γ then
(m�=φ,φ′ f)�=φBφ′,φ′′ g = m�=φ,φ′Bφ′′ (λx. f x�=φ′,φ′′ g)
follows by:

(m�=φ,φ′ f)�=φBφ′,φ′′ g

{defs+β} ≡ λs.let(y, s′) =
((λs.let(y, s′) = m(↓φ,φ′ s) in

let(z, s′′) = (f y)(s Jφ,φ′ s′) in (z, s′/φ,φ′s′′))

)
(↓φBφ′,φ′′ s)

in let(z, s′′) = (g y)(s JφBφ′,φ′′ s′) in (z, s′/φBφ′,φ′′s′′)

{β} ≡ λs.let(y, s′) =
( let(y, s′) = m(↓φ,φ′ (↓φBφ′,φ′′ s)) in

let(z, s′′) = (f y)((↓φBφ′,φ′′ s) Jφ,φ′ s′) in (z, s′/φ,φ′s′′)

)
in let(z, s′′) = (g y)(s JφBφ′,φ′′ s′) in (z, s′/φBφ′,φ′′s′′)

{let-assoc} ≡ λs.let(y, s′) = m(↓φ,φ′ (↓φBφ′,φ′′ s)) in
let(z, s′′) = (f y)((↓φBφ′,φ′′ s) Jφ,φ′ s′)
let(z′, s′′′) = (g z)(s J(φBφ′),φ′′ (s′/φ,φ′s′′)) in (z′, (s′/φ,φ′s′′)/(φBφ′),φ′′s′′′)

{assoc+P.9-12} ≡ λs.let(y, s′) = m(↓φ,φ′Bφ′′ s) in
let(z, s′′) = (f y)(↓φ′,φ′′ (s Jφ,φ′Bφ′′ s′)) in
let(z′, s′′′) = (g z)((s Jφ,φ′Bφ′′ s′) Jφ′,φ′′ s′′) in(z′, s′/φ,φ′Bφ′′ (s′′/φ′,φ′′s′′′))

{let-assoc} ≡ λs.let(y, s′) = m(↓φ,φ′Bφ′′ s) in
let(z, s′′) =

( let(y, s′′) = (f y)(↓φ′,φ′′ (s Jφ,φ′Bφ′′ s′)) in
let(z, s′′′) = (g y)((s Jφ,φ′Bφ′′ s′) Jφ′,φ′′ s′′) in (z, s′′/φ′,φ′′s′′′)

)
in (z, s′/φ,φ′Bφ′′s′′)

{β} ≡ λs.let(y, s′) = m(↓φ,φ′Bφ′′ s) in
let(z, s′′) = (

(
λx.λs.let(y, s′) = (f x)(↓φ′,φ′′ s) in
let(z, s′′) = (g y)(s Jφ′,φ′′ s′) in (z, s′/φ′,φ′′s′′)

)
y)(s Jφ,φ′Bφ′′ s′)

in (z, s′/φ,φ′Bφ′′s′′)
{defs+β} ≡m�=φ,φ′Bφ′′ (λx. f x�=φ′,φ′′ g)
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Abstract
In this paper, we study the bicategory of profunctors with the free finite coproduct pseudo-comonad
and show that it constitutes a model of linear logic that generalizes the Scott model. We formalize
the connection between the two models as a change of base for enriched categories which induces a
pseudo-functor that preserves all the linear logic structure. We prove that morphisms in the co-Kleisli
bicategory correspond to the concept of strongly finitary functors (sifted colimits preserving functors)
between presheaf categories. We further show that this model provides solutions of recursive type
equations which provides 2-dimensional models of the pure lambda calculus and we also exhibit a
fixed point operator on terms.
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1 Introduction

1.1 Scott semantics and linear logic
Domain theory provides a mathematical structure to study computability with a notion
of approximation of information. The elements of a domain represent partial stages of
computation and the order relation represents increasing computational information. Among
the desired properties of the interpretation of a program are monotonicity and continuity, i.e.
the more a function has information on its input, the more it will provide information on its
output and any finite part of the output can be attained through a finite computation. These
features form the basis of Scott semantics of λ-calculus whose framework is Scott-continuous
functions (monotonous maps preserving directed suprema) between domains. A fundamental
property of Scott-continuous functions is that they admit a least fixed point which allows for
the study of recursively defined programs.

Linear logic (LL) arose from the analysis by Girard of denotational models of sys-
tem F (second order λ-calculus). It allows the study of how programs or proofs manage their
resources by using exponential modalities that distinguish linear arguments that can be used
exactly once and non-linear ones that can be used an arbitrary number of times [13]. One of
the most basic models of linear logic is the category of sets and relations Rel which provides
a quantitative semantics of LL as it allows to recover the number of times a program or a
proof uses its argument to compute a given output. In quantitative models of LL, non-linear
programs are thought of as analytic maps that are infinitely differentiable and represented
by power series which can be approximated by polynomials. Viewing programs as series,
a natural question was to understand the logical counterpart of differentiation, which led
Ehrhard and Regnier to introduce differential linear logic and the syntactic notion of Taylor
expansion which associates a formal sum of resource λ-terms to a given λ-term [7, 8].
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Huth showed that the Scott model of λ-calculus can be extended to a model of LL where
the objects are prime algebraic complete lattices, the linear maps are functions preserving
all suprema and the co-Kleisli maps are Scott-continuous functions [14, 15]. Independently,
Winskel gave a simpler presentation based on preorders and ideal relations [22, 23]. In
both cases, the co-Kleisli category is equivalent to the category of prime algebraic complete
lattices and Scott-continuous functions between them. The obtained linear logic model
is qualitative in that it only provides information about which arguments were used to
compute a given output but not how many times. The qualitative Scott model is connected
to the quantitative differential relational model through an extensional collapse construction
discovered by Ehrhard [6]. This construction has been used in the context of intersection
types which characterize normalization properties of λ-calculus. The quantitative relational
model corresponds to a non-idempotent intersection type system whereas the qualitative
Scott model corresponds to an idempotent type system. The extensional collapse construction
provides a connection between the two type systems that allows to translate non-idempotent
normalization to the indempotent one [5].

1.2 Categorifying Scott semantics
When taking a categorical approach to domain theory, preorders are generalized to categories
and a morphism f : x→ y is now an explicit name to represent the fact that y contains more
computational information than x. This approach was extensively studied by Winskel among
others and has proved in many ways fruitful in the theory of concurrent computation [3, 24].
This analogy can be formalized in the setting of enriched categories. A preorder A = (|A| ,≤A)
corresponds to a category enriched over the two element lattice 2 = ({∅ ≤ 1},∧,1) where
for every a, a′ ∈ |A|, the homset A(a, a′) is equal to 1 if a ≤A a′ and is empty otherwise. A
2-functor between preorders A and B is simply an order-preserving function f : |A| → |B|
and the presheaf category of a preorder [Aop,2] corresponds to the set of down-closed subsets
of A ordered with by inclusion. An ideal relation between preorders A and B (a relation
up-closed in A and down-closed in B) corresponds to a monotone function A → [Bop,2].
Using the cartesian closed structure, it can be identified with a monotone map A×Bop → 2
which gives the direct correspondence with 2-profunctors.

Following this analogy, Cattani and Winskel showed that the bicategory of profunctors
with the finite colimit completion pseudo-comonad F forms a model of linear logic that
generalizes intuitions from the Scott model [3]. In their model, filtered colimits generalize
directed suprema and Scott-continuous functions correspond to finitary functors. More
recently, Fiore, Gambino, Hyland and Winskel used profunctors with the free symmetric
monoidal completion pseudo-comonad S and showed that it forms a differential model of
linear logic that generalizes the theory of combinatorial species of structures [10]. The
monoidal structure of the exponential modality S encodes linear substitution and S-species
can be considered as a categorified version of the differential relational model.

In this paper, we study the free coproduct completion pseudo-comonad C (which corre-
sponds to the finite Fam-construction) which models non-linear operations such as duplication
and erasure. In the setting of algebraic theories and operads, symmetric operads are monads
in the category of combinatorial species [S 1,Set] with the Day convolution product and a
Lawvere theory is a monad in the category [FinSet,Set] ' [C 1,Set] with the substitution
product. This analogy extends to the many-sorted case where symmetric many-sorted operads
correspond to monads in the bicategory of S-species [10]. Similarly, monads for C-species
correspond to many-sorted Lawvere theories. C-species are also related to the cartesian closed
bicategory of cartesian profunctors studied by Fiore and Joyal [12] where C-species can be
obtained by restricting to free cartesian categories.
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Our motivation is two-fold: firstly, when we take C as a pseudo-comonad to interpret the
exponential modality, we obtain a model of linear logic that generalizes the Scott model.
There is indeed a monoidal functor from Set to the two-element lattice 2 that induces a
change of base pseudo-functor from C-species to the Scott model which commutes with all the
constructions of linear logic. The obtained model of C-species gives a different perspective on
how to categorify Scott-continuity: directed suprema now correspond to sifted colimits and
Scott-continuous functions correspond to strongly finitary functors. These correspondences
are summarized in the table below:

a preorder A = (|A| ,≤A) a small category A
a monotonous function f : A→ B a functor F : A→ B

a down-closed subset x ⊆ |A| a presheaf X : Aop → Set
an ideal relation R ⊆ A×B a profunctor F : A −7→ B

inclusion of relations a natural transformation
a directed supremum a sifted colimit

a Scott-continuous function a strongly finitary functor

Secondly, since S-species categorify the relational model and C-species categorify the Scott-
model, our future goal is to connect them using a construction in the spirit of the extensional
collapse mentionned above and to explore the intersection type counterpart of this construction
in the profunctorial setting.

Contributions
In Section 3, we show that the model of profunctors with the finite coproduct pseudo-
comonad C is a model of linear logic which is a generalization of the qualitative Scott
model with Rel.
The connection is formalized by exhibiting a change of base pseudo-functor that commutes
with the linear logic structure (Section 5).
We prove in Section 4 that morphisms in the associated co-Kleisli bicategory correspond
to the notion of functors preserving sifted colimits by providing a biequivalence between
the two structures.
Lastly, we show in Section 6 that every recursive type equation built from linear logic
connectives has a least fixed point solution, and we exhibit a fixed point operator on
terms which allows for the study of recursively defined terms.

Notation
For an integer n ∈ N, we write n for the set {1, . . . , n}.
The length of a finite sequence of elements u = 〈a1, . . . , an〉 is denoted by |u|.
Categories will be denoted in boldface whereas simple text will be used for sets. For a
small category A, we denote by Â the presheaf category [Aop,Set] and write yA : A→ Â
for the Yoneda embedding.
We use ∼= for natural isomorphisms between functors or category isomorphisms and '
for equivalences.

2 The Qualitative Scott Model of Linear Logic

The category of prime algebraic lattices and maps preserving all suprema gives rise to a model
of linear logic whose associated co-Kleisli category is equivalent to the Scott model of prime
algebraic lattices and Scott-continuous functions between them [14, 15]. It is however more
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convenient to manipulate linear logic constructions on preorders rather than on lattices and
since any prime algebraic lattice can be obtained as the set of downward closed subsets of a
preorder, we adopt the viewpoint of taking our objects to be preorders. The Kleisli category
of this model is then equivalent to the Scott model of prime algebraic lattices [22, 23].

Define ScottL to be the category whose objects are preordered sets A = (|A| ,≤A) and
a morphism from A to B is a relation R ⊆ |A| × |B| that is up-closed in (|A| ,≤A) and
down-closed in (|B| ,≤B). Explicitly, it verifies that for all a, a′ ∈ |A| and b, b′ ∈ |B|:

(a ≤A a′ ∧ (a, b) ∈ R ∧ b′ ≤B b) ⇒ (a′, b′) ∈ R

The identity is given by idA := {(a, a′) | a′ ≤A a} and composition is the usual composition
of relations. The dual of a preordered set A is defined to be A⊥ := (|A| ,≥A). Every
preordered set A induces a a domain I(A) of ideals (downward closed subsets of A) ordered
by inclusion. Morphisms in the linear category ScottL(A,B) can then be seen as elements
of I(A⊥ ×B); they are also equivalent to functions from I(A) to I(B) that commute with all
unions.

ScottL is a compact closed category where the tensor product A ⊗ B is given by
(|A| × |B| ,≤A × ≤B) and has the singleton preordered set 1 as a unit. The additive
structure is given by the disjoint union of preorders A& B := (|A|+ |B| ,≤A + ≤B) with
the empty preordered set 0 as zero object.

The exponential modality ! : ScottL→ ScottL takes a preordered set A to the preordered
set whose web |!A| is the set of finite sequences of elements in |A| i.e |!A| := {〈a1, . . . , an〉 | ai ∈
|A| , n ∈ N} and the preorder relation is defined as follows:

〈a1, . . . , an〉 ≤!A 〈b1, . . . , bm〉 :⇔ ∀i ∈ n,∃j ∈ m, ai ≤A bj

On morphisms, a relation R ∈ ScottL(A,B) is mapped to

!R := {(〈a1, . . . an〉, 〈b1, . . . , bm〉) | ∀j ∈ m,∃i ∈ n, (ai, bj) ∈ R}.

The obtained co-Kleisli category ScottL! is then equivalent to the category of prime alge-
braic lattices and Scott-continuous functions between them as every relation in ScottL!(A,B)
corresponds to a Scott-continuous function I(A)→ I(B).

I Remark 1. We chose this presentation of the comonad instead of finite subsets [14, 22] or
finite multisets [5, 6] since it is more convenient for the profunctorial generalization with
the free coproduct pseudo-comonad. Note that for the three presentations, the associated
lattices of downward closed subsets are all isomorphic and the associated co-Kleisli categories
are all equivalent to the Scott model.

3 The Model of Profunctors

3.1 The bicategory of profunctors
The notion of profunctor (or distributor) has become increasingly important in theoretical
computer science as a tool to model a wide range of bidimensional computational structures.
For small categories A and B, a profunctor F : A −7→ B is a functor F : A×Bop → Set or
equivalently a functor F : A→ B̂ [2]. Profunctors can be seen as a generalization of Rel as
a relation R ⊆ A×B corresponds to a profunctor between discrete categories such that each
component is either the empty set or a singleton.
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The composite of two profunctors F : A −7→ B and G : B −7→ C is the profunctor
G ◦ F : A×Cop → Set given by the coend formula:

(a, c) 7→
∫ b∈B

F (a, b)×G(b, c).

and the identity idA : A −7→ A is given by the yoneda embedding yA : A→ Â. Composition
of profunctors is however associative only up to natural isomorphisms which puts us in the
setting of a bicategory [17].

I Definition 2. The bicategory of profunctors Prof consists of
0-cells: small categories A,B,
1-cells: profunctors F : A −7→ B,
2-cells: natural transformations between profunctors.

In [10], Fiore et al. showed that Prof is a bicategorical model of LL that constitutes
a generalization of Joyal’s species of structures. Prof can be equipped with a symmetric
monoidal structure where the unit 1 is the category with a unique object and a unique arrow
and the tensor product ⊗ : (A,B) 7→ A×B is the cartesian product of categories in Cat.
The dualizer −⊥ which takes a small category A to Aop provides Prof with a compact
closed structure. The additive structure & : (A,B) 7→ A + B is given by the coproduct in
Cat which makes Prof a cartesian bicategory whose zero object is the empty category 0.
The exponential modality in their model relies on the free symmetric monoidal completion
SA for a small category A.

3.2 The free finite coproduct pseudo-comonad
Cattani and Winskel showed that by taking the free finite colimit completion pseudo-comonad
F , we obtain a model of LL that generalizes the Scott model [3]. The maps obtained in the
co-Kleisli bicategory do not however preserve bisimulation which led them to consider the
pseudo-comonad of indexed families instead. Among the examples given is the restriction to
finite families which corresponds to the free finite coproduct completion C. In this section, we
expand this example and exhibit that Prof together with the pseudo-comonad C forms a
model of LL that gives a different perspective on how to categorify the Scott model. While
1-categorical semantics of linear logic has been extensively studied (see [18] for a complete
review of LL-models and [7] for differential linear logic), no complete account of what is a
bicategorical model of differential linear logic has been given yet. In this section, we take the
same compact closed structure for the linear bicategory described in the previous paragraph
(see [3] and [10] for more details). The remaining ingredients to obtain a model of LL are a
pseudo-comonad structure and Seely equivalences satisfying the coherence conditions for a
linear exponential pseudo-comonad.

I Definition 3. For a small category A, define CA to be the category whose objects are finite
sequences 〈a1, . . . , an〉 of objects of A and a morphism between two sequences 〈a1, . . . , an〉
and 〈b1, . . . , bm〉 consists of a pair (σ, (fi)i∈n) of a function σ : n → m and a family of
morphisms fi : ai → bσ(i) in A for i ∈ n. Equivalently, the hom-sets can be described by:

CA(〈a1, . . . , an〉, 〈b1, . . . , bm〉) =
∏
i∈n

∑
j∈m

A(ai, bj).

We recall below a classical result:
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I Lemma 4. For two finite sequences u and v in CA, the concatenation (denoted by u⊕ v)
provides a coproduct structure for CA and the empty sequence 〈〉 is initial. CA is the free
finite coproduct completion of A, i.e. for any functor F : A→ B where B is a category with
finite coproducts, there exists a unique (up to natural isomorphism) functor F : CA → B
that preserves finite coproducts and makes the following diagram commute:

A CA

B

ηA

FF

I Note 5. To obtain the free symmetric monoidal completion SA, it suffices to take the
subcategory of CA where we restrict σ in Definition 3 to be a bijection.

The endofunctor C : Cat→ Cat can be equipped with a 2-monad structure. In order to
obtain a pseudo-comonad on Prof , one needs to start with the dual construction of the free
finite product 2-monad P : Cat→ Cat which takes a small category A to P(A) = (C(Aop))op.
In [11], Fiore et al. show that the 2-monad P lifts to a pseudo-monad on Prof . Taking its
dual, one obtains the pseudo-comonad of finite coproducts on Prof which we briefly describe
below.

For a profunctor F : A −7→ B between small categories A and B, CF : CA −7→ CB is
given by:

CF : (u, v) 7→
∏
j∈|v|

∫ aj∈A
F (aj , vj)× CA(〈aj〉, u)

The counit and comultiplication pseudo-natural transformations have the following compo-
nents:

εA : CA −7→ A δA : CA −7→ C2A
(u, a) 7→ CA(〈a〉, u) (u, 〈u1, . . . , un〉) 7→ CA(u1 ⊕ · · · ⊕ un, u)

A morphism F : CA −7→ B in the co-Kleisli bicategory ProfC is called a C-species and
its lifting or promotion F C : CA −7→ CB is given by:

F C(u, v) = CF ◦ δA(u, v) =
∏
j∈|v|

F (u, vj)

The composite in ProfC of two C-species F : CA −7→ B and G : CB −7→ C is then given by
the profunctorial composition G ◦ F C : CA −7→ C.

I Lemma 6. There is a Seely adjoint equivalence of categories C(A & B) ' CA⊗ CB.

Proof. Define IA,B : CA⊗ CB→ C(A & B) as follows:

IA,B : (u, v) 7→ C(i1)(u)⊕ C(i2)(v) ∈ C(A & B)

where i1 : A→ A & B and i2 : B→ A & B are the coprojections maps. Consider now the
functor p1 : A & B→ CA defined by p1(1, a) := 〈a〉 and p1(2, b) := 〈〉. This functor induces
a functor p1 : C(A & B) → CA (using the universal property of the free finite coproduct
completion) that is a retract of C(i1) : CA → C(A & B). We define similarly a functor
p2 : C(A&B)→ CB that is a retract of C(i2) : CB→ C(A&B). For w ∈ C(A&B), we denote
by w.1 ∈ CA its image by p1 and by w.2 ∈ CB its image by p2. SA,B : C(A&B)→ CA⊗CB
is then defined to be the functor w 7→ (w.1, w.2) ∈ CA⊗ CB.
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C(A & B) CA⊗ CB

SA,B

IA,B

>

We now exhibit two natural isomorphisms η : IdCA⊗CB ⇒ SA,B ◦IA,B and ε : IA,B ◦SA,B ⇒
IdC(A&B). For (u, v) ∈ CA⊗ CB, we have that

((C(i1)(u)⊕ C(i2)(v)).1, (C(i1)(u)⊕ C(i2)(v)).2) = (u, v)

so η is just the identity. Let w ∈ C(A & B), εw is the reshuffling isomorphism from
C(i1)(w.1)⊕C(i2)(w.2) to w. The adjunction is obtained by seeing that for (u, v) ∈ CA⊗CB
and w ∈ C(A & B) there is a natural isomorphism:
C(A & B)(C(i1)(u)⊕ C(i2)(v), w) ∼= CA(u,w.1)× CB(v, w.2). J

In [10], Fiore et al. show that Prof together with the free symmetric monoidal pseudo-
comonad S is a model of differential linear logic which can be seen as a categorification of
the differential relational model. We show below that similarly to the Scott model with
preorders, ProfC is not a model of differential linear logic.

I Lemma 7. ProfC is not a model of differential linear logic.

Proof. If ProfC were a model of differential linear logic, there would exist a pseudo-natural
transformation ε : IdProf → C interpreting the codereliction rule. One of the required
coherence axioms for the codereliction is ε ◦ ε = IdProf . For all A ∈ Cat and a, a′ ∈ A, we
then have:∫ u∈CA

εA(a, u)× CA(〈a′〉, u) ∼= A(a′, a)

which implies ε(a, 〈a′〉) ∼= A(a′, a). Another required coherence diagrams for the codereliction
map is that for any object A, wA ◦ εA = 0A where wA : CA −7→ 1 is the weakening map
given by u 7→ CA(〈〉, u) and 0A : A −7→ 1 is the empty profunctor. For a ∈ A, we have:

wA ◦ εA(a) =
∫ u∈CA

CA(〈〉, u)× εA(a, u) ∼= εA(a, 〈〉)

Since there is a map 〈〉 → 〈a〉 in CA, it induces a function from εA(a, 〈a〉) to εA(a, 〈〉). The
set εA(a, 〈a〉) ∼= A(a, a) is not empty as it contains ida so the set εA(a, 〈〉) cannot be empty
which contradicts our hypothesis. J

The extensional collapse construction between the relational model and the Scott model
gives a connection between Rel! which is not well-pointed to the well-pointed category
ScottL!. In the categorified setting, the situation is however more subtle. In the case of
S-species, Fiore introduced the notion of generalized analytic functor as the Taylor series
counterpart of species that generalizes Joyal’s original definition for combinatorial species
[9]. For small categories A and B, a functor P : Â→ B̂ is said to be analytic if there exists
a generalized species F : SA −7→ B such that P is isomorphic to LansAF (the left Kan
extension of F along sA)

SA B̂

Â

⇓

F

LansA(F )sA

FSCD 2020
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where sA : SA→ Â is the functor that takes a sequence 〈a1, . . . an〉 in SA to the presheaf
n∑
i=1

yA(ai) in Â. The functor sA : SA→ Â is not fully faithful which entails that the functor

giving the correspondence between S-species and analytic functors:

LansA : ProfS(A,B)→ [Â, B̂]

is not fully faithful. Fiore however showed that it is possible to reconstruct an S-species
from its analytic functor if we restrict the objects to be groupoids [9]. Formally, he showed
that there is a biequivalence between the bicategory of S-species restricted to groupoids
and the 2-category of analytic functors (whose 0-cells are small groupoids, 1-cells are
analytic functors and 2-cells are weak cartesian natural transformations). If we extend
the functor sA to the category CA, we obtain a fully faithful functor which entails that
LansA : ProfC(A,B) → [Â, B̂] is now fully faithful as a corollary of a classical result on
Kan extension that we recall below.

I Proposition 8 ([16]). Let S : A→ B be a fully faithful functor from a small category A.
Then, for every functor F : A→ D into a cocomplete category D, the natural transformation
F ⇒ LanS(F ) ◦ S is an isomorphism and the functor LanS : [A,D] → [B,D] is fully
faithful.

3.3 The cartesian closed structure
I Definition 9. A cartesian bicategory B is closed if for every pair of objects A,B ∈ B, we
have:
1. an exponential object A⇒ B together with an evaluation map EvA,B ∈ B((A⇒ B)&A,B)

and
2. for every X ∈ B, an adjoint equivalence

B(X,BA) B(X &A,B)

EvA,B ◦ ((−) &A)

λ

⊥

I Proposition 10. ProfC is cartesian closed.

Proof.
1. For small categories A and B, the exponential object A⇒ B is defined as (CA)op×B and

the evaluation map EvA,B : C ((A⇒ B) & A) −7→ B takes (W, b) ∈ C ((A⇒ B) & A)×
Bop to the set:∫ u1∈C(A⇒B),u2∈CA

C(A⇒ B)(u1,W.1)× CA(u2,W.2)× C(A⇒ B)(〈(u2, b)〉, u1)

∼= C(A⇒ B)(〈(W.2, b)〉,W.1)

2. For G : C(X & A) −7→ B, λ(G) : CX −7→ (CA ( B) is defined by

λ(G) : (z, (u, b)) 7→ F (C(i1)(z)⊕ C(i2)(u), b).

Let F : CX −7→ (A ⇒ B), F & A : C(X & A) −7→ (A ⇒ B) & A is the profunctor that
takes (w, (1, (u, b))) in C(X & A)× ((A⇒ B) & A)op to:

F ◦Π1(w, (u, b)) =
∫ z∈CX

F (z, (u, b))× C(X & A)(C(i1)z, w)

∼=
∫ z∈CX

F (z, (u, b))× CX(z, w.1)× CA(〈〉, w.2) ∼= F (w.1, (u, b))
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and the image of an element (w, (2, a)) ∈ C(X & A)× ((A⇒ B) & A)op is given by

Π2(w, a) = C(X & A)(〈(2, a)〉, w) ∼= CA(〈a〉, w.2).

Hence, its lifting (F & A)C : C(X & A) −7→ C((A⇒ B) & A) is given by:

(w,W ) 7→∼= F C(w.1,W.1)× CA(W.2, w.2)

We can now compute EvA,B ◦ (F & A) : C(X & A) −7→ B:

(w, b) 7→
∫ W∈C(A⇒B)&A

EvA,B(W, b)× (F & A)C(w,W )

∼=
∫ W

C(A⇒ B)(〈(W.2, b)〉,W.1)× F C(w.1,W.1)× CA(W.2, w.2)

∼= F C(w.1, 〈(w.1, b)〉) ∼= F (w.1, (w.2, b)

Consider now two profunctors F : CX −7→ (A⇒ B) and G : C(X & A) −7→ B, we exhibit
the following natural ismorphisms:

ηF : F ∼=⇒ λ(EvA,B ◦ (F & A)) βG : EvA,B ◦ (λ(G) & A) ∼=⇒ G

For (z, (u, b)) ∈ CX× (A⇒ B)op, we have:

λ(EvA,B ◦ (F & A))(z, (u, b)) ∼= (EvA,B ◦ (F & A))(Ci1z ⊕ Ci2u, b)
∼= F ((Ci1z ⊕ Ci2u).1, (Ci1z ⊕ Ci2u).2, b)) ∼= F (z, (u, b))

and for (w, b) ∈ C(X & A)×Bop, we obtain:

EvA,B(λ(G) & A)(w, b) = λ(G)(w.1, (w.2, b))
∼= G((C(i1)(w.1)⊕ C(i2)(w.2)), b) ∼= G(w, b)

J

4 Strongly finitary functors

In the case of analytic functors for S-species (restricted to groupoids), one can characterize
them as functors preserving filtered colimits and weak wide pullbacks [9]. Cattani and
Winskel showed that F-species correspond to the notion of finitary functors, i.e. functors
preserving filtered colimits [3]. Filtered colimits are the classical way of generalizing directed
suprema in Scott’s topology, and they are characterized as colimits which commute with
finite limits in Set. In this section, we focus on a larger class of colimits, called sifted colimits
which are colimits which commute with finite products in Set. A large part of the theory
of locally finitely presentable categories and finitely presentable objects has analogues for
sifted colimits. An object a in a category A is said to be strongly finitely presentable if
A(a,−) : A→ Set preserves sifted colimits. The full subcategory of these objects in A is
denoted by Asfp. For a preorder, finitely and strongly presentable objects coincide with the
compact elements and in the category Set, the two notions coincide with finite sets [1]. A
category A is strongly locally finitely presentable if it is cocomplete, Asfp is a small category
and every object of A is a sifted colimit of a diagram in Asfp.

I Lemma 11. For a small category A, the presheaf category Â is strongly finitely presentable
and every presheaf is a sifted colimit of finite coproducts of representables.
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Proof. Let A be a small category, then Â is strongly finitely presentable and the strongly
finitely presentable objects are the regular projective presheaves [1]. In presheaf categories, the
full subcategory of coproducts of representables is a regular projective cover [20]. Hence
every presheaf is a sifted colimit of coproducts of representables. Since every coproduct is a
filtered colimit of finite coproducts, we obtain the desired result. J

Functors preserving sifted colimits are called strongly finitary functors. On Set, finitary and
strongly finitary functors coincide [1].

I Definition 12. The 2-category Sift has small categories as objects and a morphism between
two categories A and B is a strongly finitary functor P : Â→ B̂. The 2-cells between two
such functors are natural transformations.

The main result of this section is to show that there is a biequivalence between the
bicategory ProfC and the 2-category Sift.

I Lemma 13. For a C-species F : CA −7→ B, LansA(F ) : Â→ B̂ preserves sifted colimits.

Proof. Let D : I → Â be a sifted diagram, we have:

LansAF (lim−→
i∈I
D(i))(b) =

∫ u=〈a1,...,an〉
F (u, b)× Â(sA(u), lim−→

i∈I
D(i))

∼=
∫ u

F (u, b)×
n∏
j=1

Â(y(aj), lim−→
i∈I
D(i)) ∼=

∫ u

F (u, b)×
n∏
i=j

lim−→
i∈I
D(i)(aj)

∼=
∫ u

F (u, b)× lim−→
i∈I

n∏
j=1
D(i)(aj) ∼=

∫ u

F (u, b)× lim−→
i∈I

(
Â(sA(u),D(i))

)
∼=
∫ u

lim−→
i∈I

(
F (u, b)× Â(sA(u),D(i))

)
= lim−→

i∈I

(∫ u

F (u, b)× Â(sA(u),D(i))
)

Since sifted colimits commute with finite products, it allows us to obtain the third isomorphism.
We then make use of the facts that (F (u, b)×−) is a left adjoint, and hence colimit-preserving,
and that the coend is a colimit and hence commutes with colimits. J

I Lemma 14. For small categories A and B, there is an adjoint equivalence between the
categories:

ProfC(A,B) Sift(A,B)

LansA(−)

− ◦ sA

⊥

Proof. Since sA is fully faithful, for any C-species F in ProfC(A,B) there is a natural
isomorphism αF : F ⇒ (LansA(F ))◦ sA. Hence, for a natural transformation β : F1 ⇒ F2 in
ProfC(A,B), its image by LansA(−) is the unique natural transformation γ : LansA(F1)⇒
LansA(F2) such that γsAαF1 = βαF2 which provides us with a natural isomorphism η :
IdProf C(A,B) ⇒ (LansA(−)) ◦ sA by Proposition 8.

Let P : Â→ B̂ be a functor that preserves sifted colimits. We want to exhibit a natural
isomorphism

LansA(P ◦ sA)(X) ∼= P (X)
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By Lemma 11, X is a sifted colimit of finite coproducts of representables, i.e. there exists a
sifted diagram D : I → CA such that X ∼= lim−→i∈I sA(D(i)):

LansA (P ◦ sA)(X) =
∫ u=〈a1,...,an〉

P (sA(u))× Â(sA(u), X)

∼=
∫ u

P (sA(u))×
n∏

j=1

Â(y(aj), lim−→
i∈I

sAD(i)) ∼=
∫ u

P (sA(u))× lim−→
i∈I

n∏
j=1

Â(y(aj), sAD(i))

∼=
∫ u

P (sA(u))× lim−→
i∈I

Â(sA(u), sAD(i)) ∼= lim−→
i∈I

∫ u

P (sA(u))× CA(sA(u), sAD(i))

∼= lim−→
i∈I

P (sA(D(i))) ∼= P (X)

which entails the existence of a natural isomorphism ε : LansA(− ◦ sA) ⇒ IdSift(A,B) as
desired. The adjunction

[CA, B̂](F, P ◦ sA) ∼= [Â, B̂](LansAF, P ).

is a direct consequence of the universal property of left Kan extensions (see Theorem 4.38 in
[16] for example). J

I Proposition 15. The bicategory ProfC is biequivalent to the 2-category Sift.

Proof. We prove that the pseudofunctor F : ProfC → Sift defined below is a biequivalence.
For A and B small categories, we define F(A) := A and

FA,B : ProfC(A,B)→ Sift(A,B)

F : CA −7→ B 7→ LansA(F ) : Â→ B̂

Since ProfC and Sift have the same objects, it follows immediately that F : ProfC → Sift is
essentially surjective. Lemma 14 entails that FA,B is an adjoint equivalence of categories. J

5 From Prof to ScottL

In this section, we formalize the connection between the categorical approach and the preorder
model as a change of base for enriched categories. A category enriched over 2 = ({∅ ≤ 1},∧,1)
is a preorder and a 2-profunctor between two preorders A = (|A| ,≤A) and B = (|B| ,≤B)
corresponds to a relation in ScottL(A,B). The functor M : Set→ 2 defined by

X 7→

{
∅ if X = ∅
1 otherwise

is monoidal and therefore induces a lax pseudo-functor Ψ from ProfSet (just denoted by
Prof) to Prof2 = ScottL [4]. In this section, we give an explicit description of this change of
base pseudo-functor Ψ : Prof → ScottL and show that it is in fact a strong pseudo-functor
that preserves all the structure of linear logic. The viewpoint of enriched categories enables
us to work in a unified setting where both models coexist and the change of base becomes a
pseudo-functor that connects the preorder world and the categorified world in a way that
preserves the structure of linear logic.

On objects, Ψ sends a small category A to the following preorder:

(Ob(A),≤A) where a ≤A a′ :⇔ HomA(a, a′) 6= ∅

For a profunctor F : A −7→ B, ΨA,B(F ) is given by ΨA,B(F ) := {(a, b) | F (a, b) 6= ∅}.
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I Lemma 16. For every A,B, ΨA,B : Prof(A,B)→ ScottL(Ψ(A),Ψ(B)) is functorial.

Proof. We first need to check that ΨA,B(F ) is indeed an element of ScottL(Ψ(A),Ψ(B)),
i.e. that for all (a, b) ∈ ΨA,B(F ), (a′, b′) ≤Aop×B (a, b) implies (a′, b′) ∈ ΨA,B(F ). If
(a, b) ∈ ΨA,B(F ), then F (a, b) 6= ∅ so there exists an element s ∈ F (a, b). The inequality
(a′, b′) ≤Aop×B (a, b) implies that there exist morphisms f : a → a′ in A and g : b′ → b in
B. Hence, F (f, g)(s) ∈ F (a′, b′) which is not empty as desired. When we consider ScottL
as a bicategory, morphisms in ScottL(Ψ(A),Ψ(B)) are just inclusions of relations so we
only need to show that if there exists a natural transformation α : F ⇒ G in Prof(A,B),
then ΨA,B(F ) ⊆ ΨA,B(G). For (a, b) ∈ ΨA,B(F ), if there exists an element s ∈ F (a, b) then
α(a,b)(s) ∈ G(a, b) which implies that (a, b) ∈ ΨA,B(G) as desired. J

I Proposition 17. Ψ is a strong pseudo-functor that preserves the linear logic structure.

Proof.
For profunctors F : A −7→ B and G : B −7→ C, the following equalities hold:

ΨA,C(G ◦Prof F ) = {(a, c) |
∫ b∈B

F (a, b)×G(b, c) 6= ∅}

= {(a, c) | ∃b ∈ Ob(B), F (a, b) 6= ∅ and G(b, c) 6= ∅}
= {(a, c) | ∃b ∈ Ob(B), (a, b) ∈ ΨA,B(F ) and (b, c) ∈ ΨB,C(G)}
= ΨB,C(G) ◦ScottL ΨA,B(F )

We only show that Ψ commutes with the pseudo-comonad structure, the other cases being
similar. For a small category A, !Ψ(A) is the preorder whose underlying set is equal to
the object set of CA so !Ψ and ΨC coincide on objects. For a profunctor F : A −7→ B, we
have:

!ΨA,B(F ) = {(〈a1, . . . , an〉, 〈b1, . . . , bm〉) | ∀j ∈ m,∃i ∈ n, (ai, bj) ∈ Ψ(F )}
= {(〈a1, . . . , an〉, 〈b1, . . . , bm〉) | ∀j ∈ m,∃i ∈ n, F (ai, bj) 6= ∅}

= {(〈a1, . . . , an〉, 〈b1, . . . , bm〉) |
∏
j∈m

∑
i∈n

F (ai, bj) 6= ∅}

= {(〈a1, . . . , an〉, 〈b1, . . . , bm〉) | CF (〈a1, . . . , an〉, 〈b1, . . . , bm〉) 6= ∅} = Ψ(CF )

The following equalities also hold for the dereliction and the digging pseudo-natural
transformations:

Ψ(εA) = {(u, a) | εA(u, a) 6= ∅} = {(u, a) |
∑
i∈|u|

A(a, ui) 6= ∅}

= {(u, a) | ∀i ∈ |u| , a ≤Ψ(A) ui} = εΨ(A)

Ψ(δA) = {(u, 〈u1, . . . , un〉) | CA(u1 ⊕ · · · ⊕ un, u) 6= ∅}
= {(u, 〈u1, . . . , un〉) | u1 ⊕ · · · ⊕ un ≤Ψ(CA) u} = δΨCA

J

6 Recursive Type and Term Equations

6.1 Fixed points of Types
Recursive domain equations play a central role in denotational semantics. A classical example
is Scott’s D∞ construction providing an extensional model of the untyped λ-calculus. In
ProfC, we show that full subcategory inclusion is a partial order relation on objects such
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that all linear logic constructions define Scott-continuous maps on this partially ordered
class. It entails that we can give solutions to any recursive type equation constituted of
linear logic operators and we exhibit in this section an example of a 2-dimensional model of
pure λ-calculus in ProfC .

I Definition 18. For small categories A and B, we write A v B if A is a full subcategory
of B, i.e. Ob(A) ⊆ Ob(B) and for all a and a′ in Ob(A), A(a, a′) = B(a, a′).

One can easily check that v defines a partial order relation on the class of small categories.
We denote by Catv the obtained partially ordered class and show the following lemma:

I Lemma 19. Catv is closed under directed colimits.

Proof. Let D : I → Catv be a directed diagram. We denote by
∨
i∈I Di the category whose

set of objects is
⋃
i∈I Ob(Di) so that for any a, b ∈ Ob(

∨
i∈I Di), there exist i, j ∈ I such that

a ∈ Ob(Di) and b ∈ Ob(Dj). Since I is directed, there exists k ∈ I such that a, b ∈ Ob(Dk)
so we define

∨
i∈I Di(a, b) to be Dk(a, b). J

I Lemma 20. All the linear logic constructions are Scott-continuous with respect to the
order v.

Proof. The proof is routine, we only exhibit the dual and exponential cases:
Dual: It is noteworthy to observe that the dual is monotonous with respect to this
order. For A v B, we have that Ob(Aop) = Ob(A) ⊆ Ob(B) = Ob(Bop) and for any
a, a′ ∈ Aop, Aop(a, a′) = A(a′, a) = B(a′, a) = Bop(a, a′) which entails that Aop v Bop.
Let D : I → Catv be a directed diagram, we want to show that

(∨
i∈I Di

)op =
∨
i∈I D

op
i .

It is immediate to show that these two categories have the same objects and for a, a′ ∈∨
i∈I D

op
i , there exists k ∈ I such that a, a′ ∈ Ob(Dk) so that:∨

i∈I
Dop
i (a, a′) = Dop

k (a, a′) = Dk(a′, a) = (
∨
i∈I

Di)(a′, a) = (
∨
i∈I

Di)op(a, a′).

Exponential: For A v B, Ob(CA)={〈a1, . . . , an〉 | ai ∈ Ob(A)} ⊆ {〈b1, . . . , bn〉 | bi ∈
Ob(B)} = Ob(CB) and for u, v in Ob(CA):

CA(u, v) =
∏
i∈|u|

∑
j∈|v|

A(ui, vj) =
∏
i∈|u|

∑
j∈|v|

B(ui, vj) = CB(u, v)

which entails that CA v CB as desired. Let D : I → Catv be a directed diagram, we
want to show that C(

∨
i∈I Di) =

∨
i∈I CDi. For the object sets, we haveL

Ob(C(
∨
i∈I

D(i))) =
⋃
n∈N

Ob(
∨
i∈I

D(i))n =
⋃
n∈N

(
⋃
i∈I

Ob(Di))n =
⋃
n∈N

⋃
i∈I

(Ob(D(i)))n

=
⋃
i∈I

⋃
n∈N

(Ob(Di))n = Ob
(∨
i∈I
CDi

)

The third equality follows from the fact that directed unions commute with finite products.
Consider now two elements u := 〈x1, . . . , xn〉 and v := 〈y1, . . . , ym〉 in

∨
i∈I C(Di). Since

I is directed, there exists k ∈ I such that u, v ∈ Ob(C(Dk)), we therefore obtain:

(
∨
i∈I

C(Di)(u, v) = C(Dk)(u, v) =
∏
l∈n

∑
r∈m

Dk(xl, yr) =
∏
l∈n

∑
r∈m

∨
i∈I

Dk(xl, yr) = C(
∨
i∈I

D(i))(u, v)

The last equality follows from the fact that Dk v
∨
i∈I Di. J

FSCD 2020
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I Example 21. By the previous lemma, any recursive type equation on Catv built from
linear logic connectives has a least fixed point. Let N be the least fixed point solution of
N = 1⊕N, it can be explicitly described as the category N =

⊕
i∈N 1. Consider now D

to be the least fixed point solution of D = (C(N ( D))op. Using the Seely equivalence in
Lemma 6, we can first note that D verifies the following equivalence:

D = (C(N ( D))op ' (C((1⊕N) ( D))op ' (C((1( D) & (N ( D)))op

' ((C(D))⊗ C(N ( D))op = (CD)op ` D = (D⇒ D)

The category D provides an extensional reflexive object for the pure λ-calculus in the cartesian
closed bicategory ProfC . We make explicit its structure below by first giving the application
and lambda profunctors:

Ap : C(D⇒ D) −7→ D λ : CD −7→ (D⇒ D)

as follows: for W ∈ C(D⇒ D) and d ∈ Dop, let k ∈ N be the smallest index such that W ∈
C(Dk ⇒ Dk) and d ∈ Dop

k . Since Dop
k = (C((1⊕N) ( Dk−1)) ∼= (C(Dk−1)&(N ( Dk−1))),

we use the Seely equivalence and obtain d.1 ∈ C(Dk−1) v C(Dk) and d.2 ∈ C(N ( Dk−1) =
Dop
k . We now define Ap as the profunctor taking (W,d) to C(Dk ⇒ Dk)(〈(d.1, d.2)〉,W ).
To define λ(u, (v, d)) for u ∈ CD and (v, d) ∈ (D ⇒ D)op, we first let l to be the

smallest index such that u ∈ C(D)l, v ∈ C(Dl) and d ∈ Dop
l v Dop

l+1 = C((1⊕N) ( Dl) ∼=
C(Dl & (N ( Dl)). Considering the diagram below,

C(D)l C(Dl & (N ( Dl)) C(N ( Dl)

Dop
l+1

C(i1) C(i2)

we obtain that C(i1)(u) ⊕ C(i2)(d) is an element of Dop
l+1, so we define λ(u, (v, d)) to be

C(Dl+1)(C(i1)(v)⊕ C(i2)(d), u). We then obtain:

λ ◦Ap(W, (v, d)) =
∫ u∈CD

λ(u, (v, d))×ApC(W,u) =
∫ u

CD(C(i1)(v)⊕ C(i2)(d), u)×ApC(W,u)

∼= Ap(W, C(i1)(v)⊕ C(i2)(d)) = C(D⇒ D)(〈(v, d)〉,W ) = IdD⇒D(W, (v, d))

The second to last equality follows from the fact that (C(i1)(v) ⊕ C(i2)(d)).1 = v and
(C(i1)(v)⊕ C(i2)(d)).2 = d. We also obtain the following isomorphism:

Ap ◦ λ(u, d) =
∫ W∈C(D⇒D)

Ap(W,d)× λC(u,W )

=
∫ W

C(D⇒ D)(〈(d.1, d.2)〉,W )× λC(u,W ) ∼= λ(u, (d.1, d.2))

= CD(C(i1)(d.1)⊕ C(i2)(d.2), u) ∼= CD(〈d〉, u) = IdD(u, d)

The second to last equality follows from the fact that d is isomorphic to C(i1)(d.1)⊕C(i2)(d.2)
in C(D).

6.2 Fixed point operator for terms
I Theorem 22 (e.g. [21]). Let C be a category with ω-colimits together with an initial object
0 and let F : C → C be an endofunctor that preserves ω-chains. Then F has an initial
algebra obtained by taking the colimit of the following diagram:
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0 F (0) F 2(0) . . .
i F (i) F 2(i)

where i is the unique map from the initial object to F (0).

I Lemma 23 (e.g. [21]). Let F : C → C be an endofunctor and a : F (c) → c an initial
algebra. Then a is an isomorphism.

I Definition 24. Let B be a cartesian closed bicategory and A an object of B. A fixpoint
operator for an object A in B is a 1-cell fixA ∈ B(A ⇒ A,A) together with an invertible
2-cell α:

A⇒ A

(A⇒ A) &A A

∼=⇒
α

〈IdA⇒A,fixA〉

EvA,A

fixA

For f ∈ A⇒ A, we obtain that EvA,A〈f,fixA(f)〉 ∼=⇒ fixA(f).

For a small category A, fixA ∈ ProfC(A⇒ A,A) is obtained as the initial algebra of
the following functor:

YA : ProfC(A⇒ A,A)→ ProfC(A⇒ A,A)
F 7→ Ev ◦ 〈Id, F 〉

We identify ProfC(A⇒ A,A) with the presheaf category of (A⇒ A)⇒ A whose initial
object is the empty presheaf. Since for any morphism H : CX −7→ Y in ProfC , LansX(H) :
X̂ → Ŷ preserves ω-colimits (as a particular case of sifted colimits), we show that YA can be
obtained as the left Kan extension of a C-species in ProfC((A⇒ A)⇒ A, (A⇒ A)⇒ A)
which entails the existence of fixA by Theorem 22.

Consider the profunctor ZA ∈ ProfC(((A ⇒ A) ⇒ A) & (A ⇒ A),A) defined by the
following composition:

((A⇒ A)⇒ A) & (A⇒ A)

((A⇒ A)⇒ A) & (A⇒ A) & (A⇒ A)

A & (A⇒ A) (A⇒ A) & A A

Id& 〈Id, Id〉

EvA⇒A,A & Id

〈π2, π1〉 EvA,A

By currying, we obtain a profunctor λ(ZA) in ProfC((A⇒ A)⇒ A, (A⇒ A)⇒ A) whose
left Kan extension along s(A⇒A)⇒A is isomorphic to YA as desired. Explicitely, YA is given
by:

YA : (F, (U, a)) =
∫ u∈CA

F C(U, u)× C(A⇒ A)(〈(u, a)〉, U)

We can now obtain fixA : C(A⇒ A) −7→ A by computing lim−→n∈ω Y
n
A(0).

FSCD 2020
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I Example 25.
In the theory of combinatorial species, the species of lists is a solution of the equation
L = 1 + X · L where 1 is the species whose analytic functor Set → Set is given by
S 7→ {?} and X is the singleton species whose analytic functor is the identity endofunctor
on Set. It follows the intuition that a list is either empty or an element followed by a
list. In the case of ProfC , we can define for every small category A a C-species of lists
LA : CA −7→ A. LA is obtained as the least fixpoint of the operator:

EA : ProfC(A,A)→ ProfC(A,A)
(F, (u, a)) 7→ 1A(u, a) + XA(u, a)× F (u, a) = CA(〈〉, u) + CA(〈a〉, u)× F (u, a)

where 1A(u, a) is the constant species (u, a) 7→ CA(〈〉, u) ' {?} and XA is the singleton
species (u, a) 7→ CA(〈a〉, u). Note that if we take A to be the category 1, we obtain the
species 1 and X mentionned above. Explicitly, the C-species of lists LA : CA −7→ A maps
(u, a) to

∑
n∈N CA(〈a〉, u)n which entails that LansA(LA) : Â→ Â is given by

(X, a) 7→
∑
n∈N

(X(a))n.

Using a similar reasoning, we can obtain a C-species of binary trees, which is a solution
of the equation B = 1 +X ·B2. For a small category A, if we compute the least fixpoint
of the operator:

HA : ProfC(A,A)→ ProfC(A,A)
(F, (u, a)) 7→ CA(〈〉, u) + CA(〈a〉, u)× F (u, a)× F (u, a)

we obtain the C-species BA : CA −7→ A that maps (u, a) to
∑
n∈N Cn×CA(〈a〉, u)n, where

Cn is the nth Catalan number.

Conclusion and Perspectives

We have seen that the bicategory of profunctors with the free finite coproduct pseudo-
comonad C provides a different perspective on how to categorify Scott continuity. This
construction enables us to work in the unified framework of enriched profunctors where the
change of base allows us to go from the categorified model to the preorder model while
preserving the linear logic structure. An important construction in domain theory is the
ideal completion which associates an algebraic domain to a preorder by completing with
all directed joins. In the preorder model, the morphisms in the Eilenberg-Moore category
can characterized as Scott-continuous functions between ideal completions of preorders. We
aim to obtain in future work a 2-categorical analogue of this result with strongly finitary
functors between sifted colimit completions of small categories. Another future direction is
to connect the differential model of S-species with the Scott model of C-species by using
a categorified version of the extensional collapse established by Ehrhard. The relationship
between profunctors and intersection types has also recently been explored by Olimpieri where
the non-idempotent intersection type system corresponds to the free symmetric monoidal
pseudo-monad and the idempotent case corresponds to the cartesian pseudo-monad [19].
Our future goal is to connect the two type systems with the categorified extensional collapse
construction.
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Abstract
Optics are a data representation for compositional data access, with lenses as a popular special case.
Hedges has presented a diagrammatic calculus for lenses, but in a way that does not generalize to
other classes of optic. We present a calculus that works for all optics, not just lenses; this is done by
embedding optics into their presheaf category, which naturally features string diagrams. We apply
our calculus to the common case of lenses, extend it to effectful lenses, and explore how the laws of
optics manifest in this setting.
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1 Introduction

Optics are a versatile categorical structure. Their best-known special case, lenses, have found
uses in a variety of contexts, from machine learning to game theory [5]. Their more general
instantiations have been studied in the context of bidirectional data transformations [14]. In
all cases, their main feature of interest is their composability and their peculiar bidirectional
information flow.

In the interest of making them easier to represent and manipulate, authors often spon-
taneously use diagrams to construct instances of optics [13, 14]. These diagrams are usually
informal, with one notable exception in the work of Hedges [4] on diagrams for lenses. Hedges’
diagrammatic calculus however assumes a lot of structure on the underlying categories, in a
way that doesn’t extend to more general optics.

Here we propose instead a different approach that embeds optics into a larger space
(namely its presheaf category) that naturally has string diagrams. Not only does this work
for the most general optics, but all the diagrammatic gadgets follow naturally from the
embedding, and it even allows for useful diagrams that would not be expressible in the
category Optic alone.

2 Background

We fix a monoidal category (M,⊗, I, λ, µ, a) throughout the paper.
We assume readers are familiar with coends. For an introduction to the material relevant

to the study of optics, see [15, Chapter 2].

I Note. We will prefer diagrammatic order for composition, using the symbol #.
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2.1 Actegories
I Definition 1 ([10]). An M -actegory (contraction of “action” and “category”) is a category
C equipped with a functor �C : M × C → C (the “action”) and two natural structure
isomorphisms λx : I �C x

∼−→ x and am,n,x : (m ⊗ n) �C x
∼−→ m �C (n �C x) that satisfy

compatibility axioms with the monoidal structure of M .

We will drop the subscripts when the relevant actegory is clear from context. The naming
of the structure morphisms clashes with those of M on purpose:

I Proposition 2. M has canonically the structure of an M -actegory, with �M = ⊗, and λ
and a as the actegory structure morphisms.

In what follows, when we use M as an M -actegory, we assume this canonical structure.

2.2 Optics
I Definition 3 ([15, Proposition 3.1.1]). Given two M -actegories C and D, we construct the
category OpticC,D as follows: objects are pairs ( x

u ) where x : C and u : D, and arrows are
elements of the set

OpticC,D(( x
u ) , ( y

v )) :=
∫ m:M

C(x,m�C y)×D(m�D v, u)

Given α : C(x,m�C y) and β : D(m�D v, u), we will denote the corresponding arrow by
〈α |β〉m. Composition and identities are defined componentwise in the expected way; see [15]
for more details.

I Note. Expanding the definition of coends in Set, we get that the coend above denotes the
set of pairs 〈α |β〉m with α : C(x,m�C y) and β : D(m�D v, u), quotiented by the equation
〈α # (f �C y) |β〉m = 〈α |(f �D v) # β〉n for f : M(n,m).

Except in special cases, this category is not monoidal. This prevents us from having
string diagrams in the usual way. We will see how to work around this limitation in the rest
of the paper.

I Example 4. The canonical example of optics are lenses. They arise when C = D = M

and the monoidal structure of C is cartesian. We get:

LensC(( x
u ) , ( y

v )) :=
∫ c:C

C(x, c× y)× C(c× v, u)

While this presentation is pleasantly symmetrical, lenses are usually described as a pair
of functions without this unfamiliar coend. We can in fact calculate that both presentations
are equivalent:

LensC(( x
u ) , ( y

v )) =
∫ c:C

C(x, c× y)× C(c× v, u)

∼=
∫ c:C

C(x, y)× C(x, c)× C(c× v, u)

∼= C(x, y)×
∫ c:C

C(x, c)× C(c× v, u)

∼= C(x, y)× C(x× v, u)
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We recover the usual formulation: a lens from ( x
u ) to ( y

v ) is a pair of functions get : x→ y

and put : x × v → u. The intuition is that get extracts some y from a datum x, and put
allows replacing that y by a new v, yielding an updated datum u. It is often the case that
x = u and y = v, making this intuition clearer, but having distinct types allows for more
flexibility.

A concrete example of a lens that gives access to a field of a record can be written in
Haskell:

data Lens x u y v = L (x -> y) (x -> v -> u)

data Person = P { name :: String, address :: String }
personName :: Lens Person Person String String
personName = L get put

where get (P name _) = name
put (P _ address) name = P name address

The case for distinct types is well illustrated on tuples:

tupleSnd :: Lens (a, b) (a, c) b c
tupleSnd = L get put

where get (_, b) = b
put (a, _) c = (a, c)

y

2.3 Tambara Modules
I Definition 5 ([15, Proposition 5.1.1]). Given two M -actegories C and D, we construct the
category TambC,D as follows: objects are (pro)functors P : Cop ×D → Set equipped with
a natural transformation strength :

∫
m:M P (a, b)→ P (m�C a,m�D b) compatible with the

actegory structures; arrows are strength-preserving natural transformations.

This generalizes the usual notion of strength for a profunctor.

I Definition 6. We construct the bicategory Tamb as follows: objects are M-actegories;
Hom-categories are the categories TambC,D.

It inherits its bicategorical structure from the bicategory Prof of profunctors: the identities
are the hom-profunctors C(−,=), and the tensor (horizontal composition) is profunctor
composition, defined as usual as follows:

(P ⊗Q)(a, c) =
∫ b

P (a, b)×Q(b, c)

I Note. Prof and Tamb share in fact a lot of structure. In a sense Tamb is the analogue
of Prof for M -actegories, and we will see that like Prof it supports a rich diagrammatic
calculus.

Our interest in Tambara modules comes from the following strong relationship with
optics:

I Theorem 7 ([15, Proposition 5.5.2]). [Opticop
C,D, Set] ∼= TambC,D

Proof. The proof can be found in [15, Proposition 5.5.2], but initially comes from [12,
Proposition 6.1] in the special case where M = C = D, along with more results on the
structure of both of those categories. J
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3 Diagrams for Tambara Modules

3.1 Basics
As in any bicategory, cells in Tamb can be represented as diagrams, as follows:

A 0-cell (an M -actegory) is represented as a planar region delimited by the other types
of cells. For technical reasons we will not represent them in what follows, but it should be
kept in mind that 1-cells can only be composed if their types match.

A 1-cell P : TambC,D is represented as a wire, with C above and D below:

P P

Tensoring (1-cell composition) is vertical juxtaposition (for P : TambC,D and Q :
TambD,E):

P ⊗Q P ⊗Q =
Q

P

Q

P

A 2-cell α : P → Q (for P,Q : TambC,D) is represented as:

P αα Q

Composition is horizontal juxtaposition:

P α # βα # β R = P αα ββ R

and tensoring is vertical juxtaposition:

P ⊗R α⊗ βα⊗ β Q⊗ S =
R

P

ββ

αα

S

Q

For example, one could represent the following complex composition of cells diagrammat-
ically:

P αα
εε

S

R

Q

The axioms of bicategories ensure that we can interchange boxes like we do in string
diagrams for monoidal categories.

3.2 Oriented Wires
So far, this was common to any bicategory. We can now investigate gadgets specific to Tamb.

Let us fix an M -actegory C.

I Definition 8. Given x : C, let us define two profunctors Rx := C(−,= �C x) and
Lx := C(−�C x,=).

I Proposition 9. Rx is in TambC,M and Lx is in TambM,C , where M is taken with its
canonical M -actegory structure.
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Proof. Rx is a profunctor Cop ×M → Set. The action of the (m�C −) functor provides it
with a strength. The same works for Lx. J

I Proposition 10. Rx extends to a functor R : C → TambC,M , and Lx extends to a functor
L : Cop → TambM,C

Proof. Straightforward from their definitions. J

I Proposition 11. R and L respect the actegory structures: RI
∼= LI

∼= M(−,=), Rx⊗Rm
∼=

Rm�x, and Lm ⊗ Lx
∼= Lm�x.

Proof. See appendix A.1. J

This justifies the following notation:

x x := Rx Rx (1)

and

x ff y := Rx RfRf Ry (2)

similarly

y y := Ly Ly (3)

and

y ff x := Ly LfLf Lx (4)

I Note. This choice of notation could create confusion as to whether a box on an oriented
wire is meant to be seen as in the image of R/L or not. However we will see later that R
and L are fully faithful, and thus this confusion fades away: all boxes on an oriented wire
are arrows in C.

From the propositions above, we see that this notation respects composition in C as
well as the M -actegory structures (note the inversion that happens when tensoring on a
right-oriented wire):

m

x

m

x
= m� x m� x

x

m

x

m
= m� x m� x

I I = empty diagram

I I = empty diagram
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I Note. Note that because of the types of the 1-cells (that are not shown in the diagrams),
not all tensorings of the oriented wires are allowed. For example, it could be tempting to
think that Rx ⊗ Ry

∼= Ry⊗x for x, y : C, but not only is C not monoidal in general, the
tensoring doesn’t even type-check since both Rx and Ry are objects of TambC,M .
I Note. When C is chosen to be M , both R and L provide a monoidal embedding of M into
TambM,M ; we will see later that it is also fully faithful. This means that the string diagrams
in M have two full and faithful embeddings into the string diagrams of Tamb, using the
oriented wires.

3.3 Bending Wires
I Proposition 12. For a given x : C, the modules Rx and Lx are adjoint. Moreover, the
structure maps of the adjunction are dinatural in x.

Proof. Rx = C(−,=�x) and Lx = C(−�x,=) are clearly adjoint in Prof . The adjunction
lifts to Tamb; see appendix A.2. Dinaturality in x is straightforward from the definition of
the unit and counit. J

This means that there exist two 2-cells, that we will draw as:

x

x
and

x

x

that satisfy the so-called “snake equations”:

x

x

= x x (5)

and

x

x

= x x (6)

Those maps are additionally dinatural in x, which means we can also slide C-arrows
around them:

ff

y

x
=

ff y

x
(7)

and

y

x ff
= y

x

ff
(8)

We have discovered an additional property of the diagrammatic language: oriented arrows
can be bent downwards. Note that bending upwards is not in general possible.
I Note. In the case of set-based lenses (i.e. C = D = M = Set with the cartesian product),
the second of those maps (the “cap”) was featured in the calculus of [4]. The first map (the
“cup”) however cannot be expressed in that calculus.
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4 Embedding Optics

4.1 A Representation Theorem
We will now use this calculus to express optics. Recall from Theorem 7 that presheaves
on optics are equivalent to Tambara modules. Consequently, the Yoneda embedding Y :
OpticC,D → [Opticop

C,D, Set] ∼= TambC,D provides a fully faithful embedding of optics into
Tamb. This is the crucial property that enables our calculus.

I Lemma 13. Y ( x
u ) = Rx ⊗ Lu

Proof. By definition of Y , R and L, modulo the equivalence of Theorem 7. J

Thus Y ( x
u ) has the following nice diagrammatic notation:

Y ( x
u ) Y ( x

u ) =
u

x

u

x
(9)

From this we deduce the main theorem of this paper:

I Theorem 14 (Representation theorem). Optics l : OpticC,D(( x
u ) , ( y

v )) are in bijection with
arrows in TambC,D of type:

u

x
ll

v

y

and moreover this bijection is functorial, i.e. composition of optics becomes horizontal
composition of diagrams and the identity optic is the identity diagram.

Proof. By full-faithfulness and functoriality of the Yoneda embedding. J

The consequences of this property need stressing: any diagram of this type represents an
optic, even if it is made of subcomponents that are not themselves optics. A parallel can be
drawn with complex numbers: a complex number with no imaginary part represents a real
number, regardless of whether it was constructed (using complex operations like rotation)
from complex numbers that were not themselves real numbers. In both cases, we can work in
this more general space (complex numbers/Tambara modules) to reason more flexibly about
the simpler objects (reals/optics).

For example, the following diagram is a valid optic, even though several of its subcom-
ponents are not optics.

u

x

kk

ll

v

y

4.2 Simple Arrows
The simplest optic we can construct is made out of two simple arrows (i.e. arrows in the base
M -actegories). This is sometimes called an adapter. Given f : C(x, y) and g : D(v, u), we
can see from its type that Rf ⊗ Lg is an optic:

u

x

gg

ff

v

y

FSCD 2020



17:8 String Diagrams for Optics

I Lemma 15. The optic corresponding to this diagram is 〈f # λ−1
y |λv # g〉I .

Proof. By a straightforward calculation; see appendix A.3. J

The special case of a single simple arrow is particularly interesting:

I Theorem 16. All morphisms of type

Rx ll Ry

are of the form

x ff y

for some unique f : C(x, y).
Similarly for L and wires going to the left.

Proof. Since LI
∼= M(−,=), we have (using a potentially confusing notation):

Rx ll Ry =
I

Rx ll

I

Ry

=
I

x ll

I

y

Thus by the representation theorem, l can be seen as an optic in OpticC,M (( x
I ) , ( y

I )).
We then calculate (see appendix A.4) that OpticC,M (( x

I ) , ( y
I )) ∼= C(x, y), with the reverse

direction given by the action of R. The proof for L is identical. J

I Corollary 17. R and L are fully faithful.

I Note. As pointed out earlier, in the particular case where we choose C = D = M (as in
the case of lenses), then R and L both provide a fully-faithful and monoidal embedding of
the arrows in M into diagrams.

4.3 Refining the Representation Theorem

Together, simple arrows and the cap are enough to represent any optic as a string diagram.

I Theorem 18. Given α : C(x,m� y) and β : D(m� v, u), the optic l := 〈α |β〉m can be
represented as follows:

u

x
ll

v

y
=

u

x

ββ

αα

v

y

(10)

Proof. By calculating the composition of the pair of simple arrows with the cap; see
appendix A.5. J
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I Note. Recall that the pairs 〈α |β〉m are defined modulo an equivalence relation. How is this
compatible with the diagrammatic notation? The equivalence says that 〈α # (f � y) |β〉m =
〈α |(f � v) # β〉n; diagrammatically, this becomes:

u

x

ββ

αα
ff

v

y

=
u

x

ββ

αα

ff

v

y

(11)

Which we already know holds, by sliding f along the bent wire!

5 Applications

We present two examples of applications of the calculus that illustrate its expressivity.

5.1 Lawful Optics
One of the most striking consequences of this calculus (and the question that led to its
discovery) is the neatness with which it can express optic laws.

As originally constructed by the Haskell community [9], optics were required to abide by
certain round-trip laws that ensure coherence of their operations. Those laws in particular
coincide with very-well-behavedness [3] in the case of lenses, which we investigate in more
detail in the next section. Riley formalized those laws in a general form [14, Section 3], but
the result is rather hard to manipulate. The string calculus enables an alternative (and
equivalent) description that is purely diagrammatic:

I Definition 19. An optic l : ( x
x )→ ( y

y ) is said to be lawful when

x

x
ll =

x

x
(12)

and

x

x
ll

y

y

y

y

=

x

x

ll

ll

y

y

y

y

(13)

I Note. We can see that lawful optics are exactly the homomorphisms for the “pair-of-pants”
comonoid made from pairs of oriented wires. Interestingly, if we view this comonoid as a
procomonad on C, then lawful optics are in bijection with its coalgebras on the carrier Rx.
This is a significant generalization of the result by O’Connor [11] that lawful lenses are the
coalgebras for the store comonad: here the “pair-of-pants” procomonad precisely generalizes
the store comonad.

I Theorem 20. This notion of lawfulness is equivalent to the one defined by Riley in [14,
Section 3].
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Proof. See appendix A.6. J

Thus this diagrammatic definition captures properly the useful and very general notion
of lawfulness for optics. Using this theorem, many properties of lawfulness can be derived
purely diagrammatically. As an example, let us reprove [14, Proposition 3.0.4]:

I Proposition 21 ([14, Proposition 3.0.4]). If α and β are mutual inverses, then the optic
〈α |β〉m is lawful.

Proof.

x

x

ββ

αα

=
x

x αα ββ

= x

x

x

x

ββ

αα

ββ

αα

y

y

y

y

=

x

x

ββ

ββ

αα

αα

y

y

y

y

=

x

x

ββ

αα

y

y

y

y

=
x

x

ββ

αα

y

y

y

y

J

5.2 Cartesian Lenses
The canonical special case of optics, that we mentioned in Example 4, is cartesian lenses.
They arise when we restrict ourselves to C = D = M and the monoidal product of C is
cartesian.

In this setting, we have two important gadgets in C: duplication and deletion, cor-
responding respectively to the diagonal map C(x, x × x) and the terminal map C(x, I).
Diagrammatically, we represent them as follows:

x
x

x
and x
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I Lemma 22. Given f : C(X,Y × Z), we have

x ff
z

y
= x

ff

ff

z

y

(14)

Proof. This corresponds to the standard fact that f = 〈fst ◦ f, snd ◦ f〉. J

I Theorem 23. A lens l : ( x
u )→ ( y

v ) can be expressed as:

u

x

putput

getget

v

y

for some get : C(x, y) and put : C(x× v, u).

Proof.

u

x

ββ

αα

v

y

=

u

x

ββ

αα

αα

v

y

=

u

x

ββ

αα

αα

v

y

which has the required shape. We have:

x getget y := x αα
y

u putput
v

x
:= u ββ

αα

v

x

J

I Note. Observe that it is diagrammatically clear that the definition of put and get in terms
of 〈α |β〉m respects the equivalence relation induced by the coend.
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We recovered purely diagrammatically the usual formulation of lenses in terms of get and
put, that we had derived in Example 4. In this setting, various properties of lenses can be
investigated purely diagrammatically. As an example, let us revisit [14, Proposition 3.0.3],
which captures the fact that the general notion of lawfulness for optics coincides with the
familiar PutGet, GetPut and PutPut laws [3] (together called “very-well-behavedness”) in
the case of lenses.

I Proposition 24 ([14, Proposition 3.0.3]). A lens l : ( x
x )→ ( y

y ) is lawful iff the following
three laws (respectively called PutGet, GetPut and PutPut) hold in C:

x
getget

putput x = x x

x

y
putput getget y =

x

y y

x

y

y

putput
putput x =

x

y

y

putput x

Proof. Diagrammatically, the fact that a lens is lawful reads:

x

x

putput

getget

=
x

x

which is exactly the PutGet law, and:

x

x

putput

getget

y

y

y

y

=

x

x

putput

putput

getget

getget

y

y

y

y

=

x

x

putput

putput

getget

getget

y

y

y

y

=

x

x

getget

putput

putput

putput getget

y

y

y

y
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It is straightforward to see that the PutPut and the GetPut laws together entail this
equality. By applying the deletion map successively to the outputs, one can also show that
this equation entails those two laws, when y is inhabited. J

5.3 Effectful Lenses
We now turn to a less common example: effectful lenses. They stem from the desire to allow
lenses to perform effects while retrieving or updating data. Various approaches have been
proposed; see Abou-Saleh et al. [1] for an overview.

Let C be a cartesian category and T a monad on C. We would like an optic that
resembles cartesian lenses from the previous section, but with effectful arrows. This means
that we would like our arrows to live in the Kleisli category CT . This category however is
rarely monoidal, let alone cartesian: for it to be monoidal, the monad T would need to be
commutative, which rules out large classes of effects that we might want to use. Thus we
cannot reuse the results from the previous section. Here we can instead make good use of
the generality of monoidal actions: CT may not be monoidal, but when T is strong (which is
rather common), the product of C extends to an action of C on CT [14, Proposition 4.9.3].
This is enough to define an optic for monadic lenses:

MLensT (( x
u ) , ( y

v )) :=
∫ c:C

CT (x, c× y)× CT (c× v, u)

Let us now investigate the diagrams for such an optic. Recall the details of how oriented
wires are typed. Here the acting category is C, which means that in a diagram like the
following, the typing rules enforce that x, y and f can live in CT , but a, b and g can only
live in C.

a

x

gg

ff

b

y

This is why we don’t need CT to be monoidal: this calculus only allows an arrow in CT

to be tensored with arrows in C. This gives us a string diagram calculus where otherwise
none would have been possible.

The distinction between effectful maps (in CT ) and pure maps (in C) is an important
aspect of this calculus. Note that every pure map f can be lifted to an effectful map written
df e, via a canonical functor. This functor also respects the actegory structures, and therefore
allows us to embed the pure lenses from the previous section as monadic lenses.

This calculus even inherits some of the diagrammatic features of the previous section:
the duplication map and the swap still exist and are represented as before.

x
x

x

y

x

x

y
(15)

The difference is that the bottom wire can only carry maps living in C. Whereas before,
all maps could be “slid through” the duplication map and swap, now only C-maps (aka pure
maps) can:

x df edf e

y

y
= x

ff

df edf e

y

y
(16)
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We now restrict ourselves to the monadic lenses proposed by Abou-Saleh et al. [1]. Those
lenses are modeled closer to ordinary lenses, in particular their definition does not involve a
coend. They are composed of get : C(x, y) and put : CT (x× v, u). Diagrammatically they
look quite like cartesian lenses:

u

x

putput

dgetedgete

v

y

Note that get is required to be pure. This is important to ensure that composing two
such lenses stays of that simplified shape. This non-trivial fact can be seen diagrammatically
in what follows: if get was not pure, it couldn’t be slid across the duplication map.

u

x

putput

dgetedgete

put′put′

dget′edget′e

w

z

=
u

x

putput
put′put′

getget

dgetedgete dget′edget′e

w

z

=
u

x

putput
put′put′

dgetedgete

getget

dget′edget′e

w

z

Finally, this new calculus can express the laws proposed by Abou-Saleh et al. [1], making
them much easier to reason about:

x
dgetedgete

putput x = x x

x

y
putput

getget y

x
=

x

y putput

y

x

6 Conclusion and Future Work

We have presented a calculus that flowed naturally from the Yoneda embedding of optics into
Tambara modules. We have shown that it was well-suited for expressing common properties
of optics and proving useful theorems generally, some of which would otherwise be painful
to prove. This work however is only the start: it provides the basis of a calculus, whose
expressive power hasn’t yet been explored in the plethora of topics where optics have found
a use. In particular, we expect new specific diagrammatic properties like those of lenses to
arise for other kinds of optics like prisms or traversals.

Then, the calculus could be linked with related constructions, like the calculus for
teleological categories from [4], or the Int construction from [7].
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Properties of Tamb as a bicategory also seem worth exploring, in particular its strong
similarity with Prof , and the link between the properties of M and those of Tamb.

Finally, diagrams in Tamb with multiple ingoing and outgoing legs seem to relate to
combs as in [8] and dialogues in the style of [6]; there is potential for using Tamb to provide
a basis for general diagrammatic descriptions of those objects.
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A Proofs

A.1 R Respects the Actegory Structure (Proposition 11)

Proof (Proposition 11).

RI = M(−,=�M I)
= M(−,=⊗ I)
∼= M(−,=)

Rx ⊗Rm =
∫ n:M

C(−, n�C x)×M(n,=�M m)

=
∫ n:M

C(−, n�C x)×M(n,=⊗m)

∼= C(−, (=⊗m)�C x)
∼= C(−,=�C (m�C x))
= Rm�C x

LI = M(−�M I,=)
= M(−⊗ I,=)
∼= M(−,=)

Lm ⊗ Lx =
∫ n:M

M(−�M m,n)× C(n�C x,=)

=
∫ n:M

M(−⊗m,n)× C(n�C x,=)

∼= C((−⊗m)�C x,=)
∼= C(−�C (m�C x),=)
= Lm�Cx

It is easy to check that the corresponding strengths coincide as well. J

A.2 R and L Are Adjoint (Proposition 12)

Proof (Proposition 12). The counit ε : Rx ⊗ Lx → C(−,=) of the adjunction in Prof is
given by composition in C. We need it to commute with strength:

∫ b
C(a, b� x)⊗ C(b� x, c) C(a, c)

∫ b′
C(m� a, b′ � x)⊗ C(b′ � x,m� c) C(m� a,m� c)

#

strength strength

#
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We inline the definition of strength, and move the coends out by continuity, to get an
equivalent square:

C(a, b� x)⊗ C(b� x, c) C(a, c)

C(m� a,m� (b� x))⊗ C(m� (b� x),m� c) C(m� a,m� c)

C(m� a, (m⊗ b)� x)⊗ C((m⊗ b)� x,m� c) C(m� a,m� c)

#

(m�−)⊗(m�−) (m�−)

#

C(id,a−1)⊗C(a,id) id

#

The top square commutes by functoriality of (m�−); the bottom one by the fact that
a−1 # a = id.

Similarly, the unit also lives in Tamb. This is enough for the adjunction to lift from Prof
to Tamb. J

A.3 Diagram for Simple Arrows (Lemma 15)
Proof (Lemma 15). The diagram corresponds to the 2-cell Rf ⊗ Lg.

It has type

Rf ⊗ Lg : Rx ⊗ Lu → Ry ⊗ Lv

=
∫

ab

(
∫ m

Rx(a,m)× Lu(m, b))→ (
∫ m

Ry(a,m)× Lv(m, b))

And value
(Rf ⊗ Lg)(〈p | q〉m) = 〈Rf (p) |Lg(q)〉m

= 〈p # (m� f) |(m� g) # q〉m
To get the preimage through Y , we apply this map to the identity optic.

(Rf ⊗ Lg)(id( x
u )) = (Rf ⊗ Lg)(〈λ−1

x |λu〉I)

= 〈λ−1
x # (I � f) |(I � g) # λu〉I

= 〈f # λ−1
y |λv # g〉I J

A.4 Simple Arrows Embed Fully-Faithfully (Theorem 16)
Proof (Theorem 16). We calculate:

OpticC,M (( x
I ) , ( y

I ))

=
∫ m

C(x,m�C y)×M(m�M I, I)

=
∫ m

C(x,m�C y)×M(m⊗ I, I)

∼=
∫ m

C(x,m�C y)×M(m, I)

∼= C(x, I �C y)
∼= C(x, y)

By following the isomorphisms, we get that the reverse direction is the function f :
C(x, y) 7→ 〈f # λ−1

y |λI〉I , which as we saw previously corresponds to f 7→ ι(f, idI) =
Rf ⊗ LidI

= Rf . J
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A.5 Representation Theorem (Theorem 18)
I Lemma 25. The optic corresponding to this diagram is 〈idm�x | idm�u〉m.

u

m

m

x

u

x

Proof. Let us name the map corresponding to this diagram Λx,m,u.
Knowing the action of the cap ε, we obtain by a tedious calculation that we will omit

here:
Λx,m,u : Y

(
m�x
m�u

)
→ Y ( x

u )
= 〈α |β〉n 7→ 〈α # a−1

n,m,x | an,m,u # β〉n⊗m

Thus the corresponding optic is:

Λx,m,u(id(m�x
m�u

)) = Λx,m,u(〈λ−1
m�x |λm�u〉I)

= 〈λ−1
m�x # a−1

I,m,x | aI,m,u # λm�u〉I⊗m

= 〈λ−1
m � x |λm � u〉I⊗m

= 〈(λ−1
m # λm)� x | idm�u〉m

= 〈idm�x | idm�u〉m J

Proof (Theorem 18). The right-hand-side diagram is the composition of two optics of which
we know the value: the first is 〈α # λ−1

m�y |λm�v # β〉I ; the second is 〈idm�y | idm�v〉m.
The resulting optic is thus their composition:

〈α # λ−1
m�y |λm�v # β〉I # 〈idm�y | idm�v〉m

= 〈α # λ−1
m�y # (I � idm�y) # a−1

m,I | am,I # (I � idm�v) # λm�v # β〉I⊗m

= 〈α # λ−1
m�y # a−1

m,I | am,I # λm�v # β〉I⊗m

= 〈α # (λ−1
I � y) |(λI � v) # β〉I⊗m

= 〈α # (λ−1
I � y) # (λI � y) |β〉m

= 〈α |β〉m J

A.6 Lawfulness in Diagrams (Theorem 20)
Proof (Theorem 20). Lawfulness in [14, Section 3] is based on three maps named outside,
once, and twice. Unpacking the definitions, those three maps applied to an optic l correspond
respectively to the three diagrams:

x

x
ll

x

x
ll

y

y

y

y

x

x

ll

ll

y

y

y

y

The interesting insight is that the complicated Optic2
M coend from Riley’s paper can be

easily constructed diagrammatically by tensoring oriented wires as above. The theorem then
follows directly from Riley’s definition of lawfulness. J
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Abstract
We present a study of the continuation-composing style (CCS) that describes the image of the CPS
translation of Danvy and Filinski’s shift and reset delimited-control operators. In CCS continu-
ations are composable rather than abortive as in the traditional CPS, and, therefore, the structure of
terms is considerably more complex. We show that the CPS translation from Moggi’s computational
lambda calculus extended with shift and reset has a right inverse and that the two translations
form a reflection i.e., a Galois connection in which the target is isomorphic to a subset of the source
(the orders are given by the reduction relations). Furthermore, we use this result to show that
Plotkin’s call-by-value lambda calculus extended with shift and reset is isomorphic to the image
of the CPS translation. This result, in particular, provides a first direct-style transformation for
delimited continuations that is an inverse of the CPS transformation up to syntactic identity.
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1 Introduction

In higher-order programming languages based on the λ-calculus, continuation-passing style
(CPS) is a program format in which functions accept an additional parameter – a continuation
– that represents the entire rest of the computation [17]. In CPS, computations are explicitly
sequentialised according to a given evaluation strategy, the intermediate results are named,
and there are no nested function calls, i.e., all function calls are tail calls. A notion
associated with CPS is the notion of a CPS translation that transforms a term in direct
style, i.e., where continuations are not passed around, to the corresponding term in CPS [8,
16]. Such translations have been routinely used both to define continuation semantics of
higher-order programs, where object-level constructs are CPS-translated to the meta-level
λ-calculus [21, 18], and as a compilation step bridging the gap between higher-order and
low-level languages [23, 1].

In the context of compilation, a critical concern is correctness of the CPS translation.
In his seminal work [16], Plotkin introduced the call-by-value lambda calculus λv, equipped
with a reduction → and equality = theories, along with a CPS translation ∗ to the call-
by-name lambda calculus λn, for which he proved equational soundness, i.e., M = N in
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the source implies M∗ = N∗ in the target, and he showed that the converse does not hold,
i.e., the translation is not complete. Completeness has been obtained by Moggi who devised
a monad translation, including a CPS translation as a special case, from the computational
lambda calculus λc (an extension of λv) to the monadic metalanguage λml (equipped with
an equational theory only) [15]. This result was strengthened by Hatcliff and Danvy [11], who
showed that Moggi’s monad translation ∗ has an inverse translation # such that M = M∗#

in the source and N#∗ = N in the target, i.e., it is an equational correspondence. Finally,
Sabry and Felleisen further improved on Plotkin’s result by devising a CPS translation that
forms an equational correspondence between λc and λn [19].

Whereas all these results concern equality theories, Sabry and Wadler obtained stronger
results in which equality is replaced with reduction (viewed as directed code optimisation) [20].
In particular, they presented a CPS translation ∗ from λc to λn along with its inverse #
that form a Galois connection satisfying:

soundness: if M � N# in the source then M∗ � N in the target;
completeness: if M∗ � N in the target then M � N# in the source;

This means that evaluation in the source language is equivalent to compiling, evaluating in
the target and decompiling. Moreover, this Galois connection is a reflection by satisfying
an additional condition: compiling is a left inverse to decompiling, M#∗ ≡M , where ≡ is
syntactic identity. Interestingly, Danvy developed a direct-style transformation from λn to
λv that is a left inverse to Plotkin’s CPS translation [2], but he did not consider reduction or
equality theories.

A particularly interesting application of CPS is in defining the semantics of control
operators, i.e., constructs that access and manipulate the continuation [17, 24, 5]. For
abortive control operators such as call/cc, which model jumps, the image of the CPS
translation is more challenging to characterise than in the pure case. The main reason is that
in the pure case one continuation identifier suffices, whereas the abortive control operators
may use any of the lexically visible continuation identifiers – continuations can be used out
of turn. Sabry and Felleisen [19] considered an extension of Felleisen et al.’s λv-C-calculus
(including call/cc and the abort operator) [6], and they showed a CPS-translation to λn
that forms an equational correspondence. A direct-style translation for call/cc was also
developed by Danvy and Lawall [4]. Their transformation is related to the CPS translation via
a Galois connection, induced from the translations and based on the the syntactic structure
of terms rather than on reduction relations.

In this work, we study the continuation-composing style (CCS), which arises as the image
of the CPS translation of Danvy and Filinski’s delimited-control operators shift and
reset [3]. In CCS continuations are composable rather than abortive, which means that not
all calls are tail calls and the conditions imposed on where continuation identifiers occur
in terms are further relaxed. Continuation composability is central to the expressibility of
arbitrary computational effects with continuations [25, 7]. There exist some work devoted to
the image of the double CPS translation of shift and reset in which a meta-continuation
is introduced to eliminate nested computations of CCS [3]. Most notably, Kameyama
and Hasegawa introduced a direct-style translation which led to a direct-style equational
characterisation of the image of the double CPS translation with βη-equality (a subset
of λn) [12]. However, we are not aware of any published study of the reduction theory of
CCS, and the goal of the present work is to fill this vacuum.

To that end, we follow the programme of Sabry and Wadler [20], and we construct a
reflection of CCS in two calculi with shift, considered as a combinator, and reset. We first
focus on the λcS -calculus, which is Moggi’s computational lambda calculus λc, extended with
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shift and reset for which we give a CPS translation that eliminates administrative redexes.
The image of the translation is λ∗cS , a call-by-value lambda calculus equipped with a set of
dedicated reduction rules. We then define a direct-style translation from this calculus back to
a subset of λcS that we call λ.cS (the kernel of λcS) and we prove that it is a right inverse to
the CPS translation. We then show that the two translations form a reflection with respect
to orders given by the respective reduction relations and that the reflection decomposes into
an inclusion of λcS in the kernel λ.cS and an order isomorphism of λ.cS and λ∗cS .

Second, we consider λS , a subcalculus of λcS that is a more traditional calculus of
delimited control and that coincides with λv extended with shift and reset. Building on
the results for λcS and restricting the CPS translation to λS , we show that λS is isomorphic
to λ∗S , its image through the CPS translation and a subcalculus of λ∗cS . A byproduct of
this development is a one-pass direct-style translation for delimited-control operators, a long
missing continuation of the work by Danvy for pure call-by-value lambda calculus [2], and by
Danvy and Lawall for abortive control operators [4]. Such transformations make it possible
to automatically map continuation-passing programs to their more concise, but at the same
time more challenging to design, direct-style counterparts.

The remainder of this article is structured as follows. In Section 2, we briefly introduce
the basic notions related to Galois connections and reflections. In Section 3, we introduce
the calculi λcS and λ∗cS along with the CPS translation from λcS to λ∗cS . In Section 4, we
characterise the image of the CPS translation and we define its right inverse – the direct
style translation. In Section 5, we prove that the two translations form a reflection and we
identify the kernel of the reflection in λcS . In Section 6, we show that when restricted to λS ,
the CPS translation has an inverse such that the two transformations form an isomorphism.
We conclude in Section 7.

2 Galois Connections and Reflections

Below, we recall the essential facts about Galois connections that we use throughout the
article. We refer the reader to Sabry and Wadler’s work [20] for more detailed background.
We treat each set A as equipped with a preorder (i.e., reflexive and transitive) relation
�A. In our development, we define these in two ways: either by applying reflexive-transitive
closure on a reduction relation →A, or by truncating a preorder (multi-step reduction)
relation �X of a superset X ⊇ A (�A is then an induced preorder). In the following, ≡A
denotes the syntactic identity on A .

In the following, it may be helpful to think about A and B as a source and target
calculi, respectively, whereas f and g can be thought of us compiling and decompiling,
respectively. We start with the standard notion of monotonicity, i.e, preservation of reduction
by the compiling map.

I Definition 1 (Monotone function). A function f : A → B is monotone if, and only if
∀x1, x2 ∈ A . x1 �A x2 =⇒ f(x1)�B f(x2).

A Galois connection expresses a form of harmony of compiling and decompiling with
respect to reduction relations.

I Definition 2 (Galois connection). Monotone functions f : A → B and g : B → A form a
Galois connection if, and only if a �A g(b)⇐⇒ f(a)�B b.

There is an alternative characterisation of a Galois connection.

FSCD 2020
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terms L,M,N ::= V |P
values V,W ::= x |λx .M | S
nonvalues P,Q ::= M N | letx = M inN |〈M〉
pure contexts J,K ::= [ ] |KM |V K | letx = K inM
(β.v) (λx .M)V → M [x := V ]
(η.v) λx . V x → V

(β.let) letx = V inM → M [x := V ]
(η.let) letx = M in x → M

(assoc) letx = let y = L inM inN → let y = L in letx = M inN
(let.1) P N → letx = P in xN
(let.2) V Q → let y = Q inV y
(β.S) 〈J [S N ]〉 → 〈N (λ y .〈J [y]〉)〉
(β.R) 〈V 〉 → V

Figure 1 Direct style calculus λcS .

I Theorem 3 (Equivalent definition of Galois connection). Monotone functions f : A → B

and g : B → A form a Galois connection if, and only if
a �A g(f(a)) and
f(g(b))�B b.

When compiling is a left inverse to decompiling, then we have a reflection.

I Definition 4 (Reflection). A Galois connection (f : A → B, g : B → A) is a reflection if,
and only if f(g(b)) ≡B b.

In case compiling is also a right inverse to decompiling, we have an isomorphism.

I Definition 5 (Order isomorphism). A reflection (f : A → B, g : B → A) is an order
isomorphism if, and only if a ≡A g(f(a)).

Every reflection factors into an inclusion and an order isomorphism.

I Theorem 6 (Reflection decomposition). Every reflection (f : A → B, g : B → A)
decomposes into a reflection (called inclusion) (g ◦ f : A → g[B], idg[B] : g[B]→ A) and an
order isomorphism (f : g[B]→ B, g : B → g[B]), where g[B] ⊆ A has an induced preorder.

It follows from Theorem 6 that given a reflection (f : A → B, g : B → A), the source
calculus has a kernel g[B] (or equivalently, g[f [A]]) that is isomorphic with B, or that
reflects B. The goal of this work is to identify such a reflection of CCS in call-by-value
lambda calculi with delimited continuations.

3 Delimited-Control Operators Shift and Reset

We begin with Moggi’s calculus of computations, λc, extended with shift and reset delimited
control operators, which we dub λcS . The syntax and semantics are presented in Figure 1.
The terms of the calculus are divided into values, which include variables, lambda abstractions
and the shift combinator S, and computations, which include applications, let-bindings and
the reset operator, which serves to delimit the scope of the continuation. Moreover, we
introduce the syntactic domain of pure evaluation contexts, which encode a left-to-right
call-by-value evaluation strategy and, crucially do not contain the reset operators.
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∗ : λcS → λ

M∗ = λ k .(M : k)
V : K = K V †

(P Q) : K = P : (λx .(Q : (λ y . x y K)))
(P W ) : K = P : (λx . xW †K)
(V Q) : K = Q : (λ y . V † y K)
(V W ) : K = V †W †K

(letx = M inN) : K = M : (λx .(N : K))
〈M〉 : K = K (M : (λx . x))
x† = x

(λx .M)† = λx .M∗

S† = λw j .w (λ y k . k (j y)) (λx . x)

Figure 2 Conversion from λcS to Continuation-Composing Style.

The operational semantics of the calculus is given by a contraction relation, which may
be performed within any context, as we consider general reduction rather than evaluation.
Nonetheless, we still require the pure fragment of evaluation contexts: these are used to
match the shift operator with the enclosing reset by the (β.S) rule. This rule matches a S
operator applied to some term N in a pure context J closed by a reset operator, captures
the latter context (together with the reset), reifies it as a function and passes it as an argument
to N . Note the duplication of the reset operator in the contractum, which is an important
characteristic of shift/reset [22].

Except for (β.S) and the simple (β.R) rule, the rules are those of λc, including β and η
rules for applications and the let-bindings, as well as a rule for association, or hoisting, of
let bindings. Note, however, that we do not include any η rules for the control operators,
restricting ourselves to the appropriate β-reductions, which leads to a minimal extension
of λc with delimited control. It can be shown that the resulting calculus is confluent. While
most presentations treat S as an operator with a binder (for a continuation variable) rather
than as a combinator, the latter approach is hardly non-standard: in particular, most
implementations provide shift as a combinator.

We now turn to the CPS transformation for λcS , which is presented in Figure 2. Since
the CCS calculus is rather complex, the transformation targets syntactic lambda-terms, and
we establish the fact that it only produces terms in CCS a posteriori. This translation extends
Sabry and Wadler’s CPS translation for λc [20], which eliminates unnecessary administrative
redexes, to handle the shift and reset delimited control operators. Note that, in contrast
to some of the classic one-pass CPS translations for shift and reset, including Danvy and
Filinski’s [3], the translation does not reduce matching shift-reset pairs at transformation
time. Note that without this more conservative approach to source-language redexes we
could not hope for establishing the desired reflection.

4 Back to Direct Style

Having defined the CPS translation for the extended computational calculus, we now turn to
precisely identifying its image. To this end, we introduce a new calculus, λ∗cS , presented in
Figure 3. The syntax is given as a mildly context-sensitive grammar in the style of literal
movement grammars [10]. In this case, context-sensitivity amounts to annotating both term

FSCD 2020
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roots R ::= λ k .Mk

terms∆ M,N ::= K∆ V |V W K∆ |K∆M•
values V,W ::= x |λx .R |S
shift S ::= λw j .w (λ y k . k (j y)) (λx . x)
continuations∆ J,K ::= (∆=k) k | (∆=•) λx . x |λx .M∆

(β.v) (λx k .Mk)V K∆ → Mk[x := V ][k := K∆]
(η.v) λx k . V x k → V

(β.let) (λx .M∆)V → M∆[x := V ]
(η.let) λx .K∆ x → K∆
(β.S) SW J• → W (λ y k . k (J• y)) (λx . x)
(β.R) (λx . x)V → V

Figure 3 Continuation-composing style calculus λ∗cS .

and continuation nonterminals with ∆, which ranges over the set of variables extended with •,
and limiting certain productions to particular annotations. This serves to distinguish the
“tail-recursive” parts of the term, where there is a current continuation that needs to be used,
from the “returning” calls, where there is no access to the current continuation (and thus
the only trivial continuation is the identity). Throughout the following, we use ∆ `NC M

to mean that a term M is derived as a member of syntactic class N of calculus C under
assumptions ∆ of the shape appropriate for the given calculus and non-terminal combination;
in the case of standard context-free grammars, this assumption context is always empty.

For the semantics of our calculus, we follow the methodology of Sabry and Wadler [20],
extending their λcps calculus with reductions that notionally match our control operators.
Note that while this calculus can be considered a subsystem of the lambda-calculus, its
reductions take much larger steps, and thus the system is not closed under general λv
reductions. We begin by establishing that the image of the CPS translation defined in
previous section is indeed contained within λ∗cS .

I Lemma 7 (Characterisation of CCS). For all M ∈ λcS , M∗ ∈ λ∗cS .

Proof. We prove the following propositions by mutual structural induction on the term:
`MλcS

M =⇒ `Rλ∗
cS
M∗,

`MλcS
M ∧∆ `Kλ∗

cS
K =⇒ ∆ `Mλ∗

cS
(M : K),

`VλcS
V =⇒ ∆ `Vλ∗

cS
V †. J

4.1 Direct-Style Transformation
With the calculus λ∗cS defined, we now turn to a translation to direct style. The target of
such translation is λcS , the computational calculus with shift and reset, and the translation
is defined in Figure 4, with the definition proceeding inductively on the structure of terms
of λ∗cS . We can now show that the CPS and DS translations form a retraction pair with
respect to syntactic equality (as usual, up to implicit α-equivalence) in λ∗cS . We take I∆ to
denote the trivial continuation for ∆, i.e., Ik = k and I• = λx . x.

I Theorem 8 (Right inverse of ∗). For all R ∈ λ∗cS , R#∗ ≡ R. Also, the following equalities
hold: M ]

∆ : I∆ ≡M∆, V \† ≡ V , K[
∆[M ] : I∆ ≡M : K∆.

Proof. By mutual structural induction. J
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# : λ∗cS → λcS

(λ k .Mk)# = M ]
k

(K∆ V )] = K[
∆[V \]

(V W K∆)] = K[
∆[V \W \]

(K∆M•)] = K[
∆[〈M ]

•〉]
x\ = x

(λx .R)\ = λx .R#

(λw j .w (λ y k . k (j y)) (λx . x))\ = S
k[ = [ ]
(λx . x)[ = [ ]
(λx .N∆)[ = letx = [ ] inN ]

∆

Figure 4 Back to Direct Style from λ∗cS .

terms M,N ::= K[V ] |K[P ]
values V,W ::= x |λx .M | S
nonvalues P,Q ::= V W |〈M〉
pure contexts J,K ::= [ ] | letx = [ ] inM
(β.v) K[(λx .M)V ] → M [x := V ] : K K maximal
(η.v) λx . V x → V

(β.let) letx = V inM → M [x := V ]
(η.let) letx = [ ] inK[x] → K

(β.S) 〈J [S W ]〉 → 〈W (λ y .〈J [y]〉)〉
(β.R) 〈V 〉 → V

V : K = K[V ]
P : K = K[P ]
(letx = V inM) : K = letx = V in(M : K)
(letx = P inM) : K = letx = P in(M : K)

Figure 5 The kernel direct style calculus λ.
cS .

This result establishes that λ∗cS does not overestimate the set of valid CCS terms, as
any root in λ∗cS can be obtained by the CPS transformation from its own translation to λcS .
However, not all terms of λcS can be obtained as the result of the direct style translation.
Thus, we define yet another calculus, λ.cS , which characterises the kernel of λcS . The definition
presented in Figure 5 again follows and extends Sabry and Wadler’s take on a refined calculus
(this time extending their λc∗∗); the major difference with respect to λcS is the fact that all
the let-bindings are hoisted, i.e., normalised with respect to associativity rule. The reduction
rules need to preserve this fact, which again leads to larger reduction steps: this time, when
reducing an application, we may need to reassociate arbitrarily many let-bindings. We finish
this section by establishing that the image of our direct style translation falls within λ.cS .

I Lemma 9 (Characterisation of kernel DS). For all M ∈ λ∗cS , M# ∈ λ.cS .

Proof. We prove the following propositions by mutual structural induction on the term:
`Rλ∗

cS
R =⇒ `Mλ.

cS
R#,

∆ `Mλ∗
cS
M =⇒ `Mλ.

cS
M ],

FSCD 2020
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`Vλ∗
cS
V =⇒ `Vλ.

cS
V \,

∆ `Kλ∗
cS
K =⇒ `Kλ.

cS
K[. J

5 Reflection: Computational λ-Calculus with Shift and Reset

Having introduced the three main calculi involved in the reflection and established a syntactic
inverse in one direction (in Theorem 8), we now turn to establishing a Galois connection
between λcS and λ∗cS . By Theorem 6, such a connection will decompose into an isomorphism
and a reflection: in the following we establish that λ.cS is such a factorisation.

5.1 Monotonicity
In order for our CPS and DS transformations to form a Galois connection, we must first
establish that they are monotone maps, i.e., that they preserve the order given by reflexive-
transitive closure of the reduction relation of, respectively, λcS and λ∗cS . Since for some
intermediate results we require zero or one reduction steps, we also introduce→? as a reflexive
closure of the relation →. We begin by establishing that any pure evaluation context J
of λcS can be matched by a continuation of λ∗cS .

I Lemma 10 (Existence of a continuation for each context). For all J,∆ and K∆, exists Ĵ∆
such that for all M , J [M ] : K∆ ≡M : Ĵ∆.

Proof. By structural induction on J . J

Next, we show that any reduction of λ∗cS continuations extends to the colon translations of
a common λcS term.

I Lemma 11 (Single-step reduction preservation by : in the second argument). For any λcS
term M and λ∗cS continuations J∆ and K∆ such that J∆ → K∆ we have M : J∆ →? M : K∆.

Proof. By structural induction on M . J

Finally, we can show that the CPS translation preserves single-step reductions, possibly
without making a transition in λ∗cS . Monotonicity of CPS follows as a simple corollary.

I Lemma 12 (Single-step reduction preservation by :, ∗ and †). The following implications
hold:

M → N =⇒ ∀K .M : K∆ →? N : K∆,
M → N =⇒ M∗ →? N∗,
V →W =⇒ V † →? W †

Proof. We prove the statements by mutual induction on the structure of the term, and invert
the reduction relation as necessary. Preservation in the second argument is used for some
congruences and (η.let). Base cases (let.1), (let.2), (assoc) follow by definition. The existence
of a continuation is used for (β.S).

We show the case for the (β.S) reduction as an interesting example. We have the following
reduction:

〈J [S W ]〉 → 〈W (λ y .〈J [y]〉)〉,

and need to prove that 〈J [S W ]〉 : K∆ →? 〈W (λ y .〈J [y]〉)〉 : K∆.
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We proceed as follows:

〈J [S W ]〉 : K∆

≡def. K∆ (J [S W ] : (λx . x))
≡existence of cont. K∆ (S W : J•)
≡def. K∆ (SW †J•)
→(β.S) K∆ (W † (λ y k . k (J• y)) (λx . x))
≡def. K∆ (W † (λ y k . k (y : J•)) (λx . x))
≡existence of cont. K∆ (W † (λ y k . k (J [y] : (λx . x))) (λx . x))
≡def. K∆ ((W (λ y .〈J [y]〉)) : (λx . x))
≡def. 〈W (λ y .〈J [y]〉)〉 : K∆

As another examples, consider the sample congruence case, where we have:

V →W

P V → P W
,

and need to show that P V : K∆ →? P W : K∆.
We proceed as follows:

V →W

=⇒ ind. hyp. V † →W †

=⇒ congruence λx . x V †K∆ → λx . xW †K∆

=⇒ second arg. preservation P : (λx . x V †K∆)→ P : (λx . xW †K∆)
≡def. (P V ) : K∆ → (P W ) : K∆ J

I Corollary 13 (Monotonicity of ∗). For all M0,M1 ∈ λcS , M0 �M1 implies M∗0 �M∗1 .

Monotonicity of the direct-style transformation is simpler to prove: we show that all
component parts preserve single-step reductions in λ.cS (which themselves are possibly
multi-step reduction sequences in λcS), and obtain monotonicity as a simple corollary.

I Lemma 14 (Single-step reduction preservation by #, ], \ and [). The following implications
hold:

R0 → R′1 =⇒ R#
0 → R#

1 ,
Mk → Nk =⇒ M ]

k → N ]
k,

M• → N• =⇒ 〈M ]
•〉 → 〈N ]

•〉,
V →W =⇒ V \ →W \,
J∆ → K∆ =⇒ ∀M .J[∆[M ]→ K[

∆[M ].

Proof. Mutual structural induction on the first term and then each case by inversion on
single-step reduction. J

I Corollary 15 (Monotonicity of #). For all R0, R1 ∈ λ∗cS , R0 � R1 implies R#
0 � R#

1 .

5.2 Reflection theorem
Recall from Section 2 that in order to establish that ∗ and # form a Galois connection, it
is enough to show that both compositions are extensive with respect to the appropriate
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reduction orderings, i.e., M � M∗# and R � R#∗, respectively. Since in Theorem 8 we
have shown that R ≡ R#∗, the latter ordering holds trivially. In this section we establish the
remaining property.

I Lemma 16 (Generalised associativity). The following reduction holds:
K[

∆[letx = L inN ]→? letx = L inK[
∆[N ].

Proof. By cases on K∆. J

I Lemma 17 (Left near inverse of : and †). The following reductions hold:
K[

∆[M ]� (M : K∆)],
V � V †\.

Proof. By mutual structural induction. The generalised associativity is used in several cases,
it conveniently wraps potential uses of (let.assoc) rule, as presented in the following example
cases for let-binders and reset.

K[
∆[letx = L inN ]

→?
gen. assoc. letx = L inK[

∆[N ]
�ind. hyp. letx = L in(N : K∆)]

≡def. (λx .(N : K∆))[[L]
�ind. hyp. ((letx = L inN) : K∆)]

K[
∆[〈M〉]

≡def. K[
∆[〈I[•[M ]〉]

�ind. hyp. K[
∆[〈(M : I•)]〉]

≡def. (K∆(M : I•))]

≡def. (〈M〉 : K∆)] J

I Theorem 18 (Left near inverse of ∗). For all M ∈ λcS , M �M∗#.

Proof. Follows from the left near inverse for the : transformation. J

I Corollary 19 (Reflection). Transformations ∗ and # form a reflection.

5.3 Reflection decomposition
By Theorem 6, any reflection decomposes into an order isomorphism and an inclusion. In
our case, this means that the reflection (∗,#) has a kernel that is isomorphic to λ∗cS . This is
our calculus λ.cS – although we still need to establish that it is in fact isomorphic to λ∗cS . To
this end, we first calculate the CPS translation as specialised to λ.cS (i.e., as a composition of
inclusion of λ.cS in λcS and ∗), which we dub ?; this transformation is presented in Figure 6.
We can then establish that ? and # compose to identity, which, together with one-to-one
matching of reductions established in Lemma 14 establishes the isomorphism.
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? : λ.cS → λ∗cS

M? = λ k .M◦k
(K[V ])◦∆ = K‡∆ V †

(K[V W ])◦∆ = V †W †K‡∆
(K[〈M〉])◦∆ = K‡∆M◦•
x† = x

(λx .M)† = λx .M?

S† = λw j .w (λ y k . k (j y)) (λx . x)
[ ]‡k = k

[ ]‡• = λx . x

(letx = [ ] inN)‡∆ = λx .N◦∆

Figure 6 Order isomorphism from λ.
cS to λ∗cS .

. : λcS → λ.cS

M. = M : [ ]
V : K = K[V †]
(P Q) : K = P : (letx = [ ] in(Q : (let y = [ ] inK[x y])))
(P W ) : K = P : (letx = [ ] inK[xW †])
(V Q) : K = Q : (let y = [ ] inK[V † y])
(V W ) : K = K[V †W †]
(letx = M inN) : K = M : (letx = [ ] in(N : K))
〈M〉 : K = K[〈M.〉]
x† = x

(λx .M)† = λx .M.

S† = S

Figure 7 Inclusion in λcS of λ.
cS .

I Lemma 20 (Left inverse of ?). For all M ∈ λ.cS we have M ≡M?#.

Proof. By mutual induction on the structure of terms, including analogous statements for
the auxiliary transformations. J

Having established that λ.cS is isomorphic to λ∗cS , we obtain an inclusion between λ.cS and
the main calculus, λcS . Thus, to conclude this section we present the one-pass transformation
. : λcS → λ.cS , which is computed from the composition of ∗ and #. This transformation,
presented in Figure 7, forms a final reflection for these calculi, together with identity: (., idλ.

cS
)

is a reflection between λcS and λ.cS .

6 Isomorphism: λv-Calculus with Shift and Reset

While the results we have obtained thus far provide some fundamental insight into the struc-
ture and reductions of computations in continuation composing style, the computational
calculus λcS we took as our source language differs somewhat from calculi with shift and
reset that are most commonly studied. Thus, in this section we study λS , the call-by-value
lambda calculus extended with delimited control operators, and apply the results we have
obtained thus far to this restricted setting.
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terms M,N ::= V |P
values V,W ::= x |λx .M | S
nonvalues P,Q ::= M N |〈M〉
pure contexts J,K ::= [ ] |KM |V K
(β.v) (λx .M)V → M [x := V ]
(η.v) λx . V x → V

(β.S) 〈J [S N ]〉 → 〈N (λ y .〈J [y]〉)〉
(β.R) 〈V 〉 → V

Figure 8 Subcalculus λS : λcS without let.

roots R ::= Vε |Mε

termsΣ M,N ::= (Σ=Σ1Σ2)KΣ1 [PΣ2 ]
valuesΣ V,W ::= (Σ=x)x | (Σ=ε) x | (Σ=ε) λx .R | (Σ=ε) S
nonvaluesΣ P,Q ::= (Σ=Σ1Σ2) VΣ1 WΣ2 | (Σ=ε) 〈R〉
pure contextsΣ J,K ::= (Σ=ε) [ ] | letx = [ ] inMΣx

(β.v) KΣ[(λx .R)Vε] → R[x := Vε] : KΣ KΣ maximal
(η.v) λx . Vε x → Vε
(β.S) 〈Jε[S Wε]〉 → 〈Wε (λ y .〈Jε; y〉)〉
(β.R) KΣ[〈Vε〉] → KΣ;Vε KΣ maximal
[ ];Vε = Vε
(letx = [ ] inMΣx);Vε = MΣx[x := Vε]
Vε : KΣ = KΣ;Vε
PΣ2 : KΣ1 = KΣ1 [PΣ2 ]
(letx = PΣ2 inMΣx) : KΣ1 = letx = PΣ2 in(MΣx : KΣ1)

Figure 9 Subcalculus λ.
S : the image of λS via ..

The syntax and semantics of λS are presented in Figure 8. It is clear that this calculus
embeds in λcS . The reduction relation is defined via contraction relation and is a strict
subrelation of the induced reduction relation (e.g., (λx . x)M �M in λcS , but not in λS).
The reduction relations for the CCS and kernel calculi, presented later on in this section, are
images of this restricted reduction relation. It is worth noting that it would also be sound to
use the induced relations instead: all transformations, including all-new /, are designed to
be monotone with respect to the original, wider reduction relations. However, we do not
pursue the task of characterising the induced relations in this work, and therefore stick to
the restricted relations.

We begin by considering the image of λS under the reflection defined in previous section:
this is the calculus λ.S , defined in Figure 9. We establish that it contains the image of λS
under ., while deferring the other inclusion till later.

I Lemma 21 (Restriction of .). For all M ∈ λS , M. ∈ λ.S .

With λ.cS defined, we need to define an inverse transformation, /. However, the reduction
relation on λcS – induced by its super-calculi – is cumbersome to work with. Thus, we
define this transformation for the entire calculus λcS , and establish its properties on its
particular sub-calculi post hoc. First, notice that the shape of λ.S is more constrained than
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/ : λcS → λcS

(M N)/ = M/N/

(letx = M inN)/ = N/[x := M/] (if N ≡ K[x] for some K and x 6∈ FV(K))
(letx = M inN)/ = letx = M/ inN/ (otherwise)
〈M〉/ = 〈M/〉
x/ = x

(λx .M)/ = λx .M/

S/ = S

Figure 10 Deletion of inessential let-expressions.

the general calculus λS , which is mostly due to lifting some subcomputations as pure, linear
let-expressions. Thus, the idea behind / is to inline these (and only these) let-expressions.
The transformation is presented in Figure 10.

Additionally, we lift / to pure contexts of λcS as an auxiliary construct in the following.
It is easy to check that this makes / distribute over plugging of terms into contexts:

K/[M/] ≡ (K[M ])/.

We can now show that the transformation is monotone with respect to the λcS reductions.

I Theorem 22 (Monotonicity of /). For all M,N ∈ λcS , M � N implies N/ � N/.

Proof. Induction on reflexive-transitive closure of contraction relation. To prove single-
step version, apply structural induction on the left-hand-side term and then inversion on
contraction relation. The only interesting case is the contraction of shift: given 〈J [S M ]〉 →
〈M(λ y .〈J [y]〉)〉, show 〈J [S M ]〉/ � 〈M(λ y .〈J [y]〉)〉/. Notice that we have 〈J [S M ]〉/ ≡
〈J/[S M/]〉 → 〈M/ (λ y .〈J/[y]〉)〉 ≡ 〈M (λ y .〈J [y]〉)〉/. Crucially, transformation preserves
purity of contexts. J

Now we can ensure that inlining the administrative let-expressions in λ.S produces terms
of λS , and thus that . restricted to λS is a section.

I Lemma 23 (Restriction of /). For all R ∈ λ.S , R/ ∈ λS .

I Theorem 24 (Left inverse of .). For all M ∈ λS , M ≡M./. Also, the following identities
hold: V †/ ≡ V , (M : K)/ ≡ K/[M ].

Proof. Mutual structural induction on M , V and M , respectively. J

To show that . is also a retraction, we need a tool that can apply a substitution of variables
for λS terms to a λ.S term.

I Definition 25 (Iterated flattened let-expressions). Let P,Q refer to the grammar of λS , all
other names refer to the grammar of λ.S .

ε . R = R

[x := P ] . xx = P .

[x := P , y := Q] . Mxy = [x := P ] . (Q : (let y = [ ] inMxy))

We can now establish that . is a retraction and, as a consequence, that λS and λ.S are
isomorphic.
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roots R ::= λ k . Tk
trunks∆ T ::= I∆ Vε |M∆,ε
terms∆,Σ M,N ::= (Σ=Σ1Σ2Σ3) VΣ2 WΣ3 K∆,Σ1 |K∆,Σ Tε
valuesΣ V,W ::= (Σ=x)x | (Σ=ε) x | (Σ=ε) λx .R | (Σ=ε) S

shift S ::= λw j .w (λ y k . k (j y)) (λx . x)
trivial continuations∆ I ::= (∆=k) k | (∆=•) λx . x

continuations∆,Σ J,K ::= (Σ=ε) I∆ |λx .M∆,Σx

(β.v) (λx k . Tk)VεK∆,Σ → Tk[x := Vε] : K∆,Σ
(η.v) λx k . Vε x k → Vε
(β.S) SWε J•,ε → Wε (λ y k . k (J•,ε; y)) (λx . x)
(β.R) K∆,Σ ((λx . x)V ) → K∆,Σ;V
I∆;Vε = I∆ Vε
(λx .M∆,Σx);Vε = M∆,Σx[x := Vε]
(k Vε) : K∆,Σ = K∆,Σ;Vε
Mk,ε : K∆,Σ = Mk,ε[k := K∆,Σ]

Figure 11 Subcalculus λ∗S : the CPS image of λS .

I Theorem 26 (Right inverse of .). The following identities hold:
R/. ≡ R,
(V /x [x := P ]). ≡ [x := P ] . Vx,
(M/

x [x := P ]). ≡ [x := P ] . Mx.

Proof. The proof proceeds by mutual structural induction on R, V and M , respectively. J

I Corollary 27 (Isomorphism of λS and λ.S). Transformations . : λS → λ.S and / : λ.S → λS
form an isomorphism.

Although we have shown that λS is isomorphic to its image under ., both these calculi
are in direct style. However, as any image of . (and thus of its latter component, #), λ.S is
a sub-calculus of λ.cS . Therefore, we investigate the final calculus: the image of λS under
the CPS transformation, λ∗S . The syntax of the calculus is presented in Figure 11.

Note that, as an image of a subcalculus of λcS under the CPS transformation, λ∗S is
clearly a sub-calculus of λ∗cS . Therefore, we are able to narrow down an isomorphism of λ∗cS
and λ.cS to the appropriate subcalculi arising from λS .

I Lemma 28 (Isomorphism of λ.S and λ∗S). Transformations ? : λ.S → λ∗S and # : λ∗S → λ.S
form an isomorphism.

Proof. Isomorphism of wider λ.cS and λ∗cS calculi can be narrowed. To complete the proof,
check that #[λ∗S ] ⊆ λ.S and ?[λ.S ] ⊆ λ∗S . J

By now we have established that λ.S is isomorphic to both λS and λ∗S . Therefore, by
composition of these isomorphisms, we obtain an isomorphism between λS and λ∗S . This
establishes a formal connection between a calculus for delimited control in the familiar style
and its counterpart in the continuation composing style. In order for the connection to be
made more explicit, we compute the composition of # and /, which forms the single-pass
direct-style transformation from λ∗S to λS . This transformation is dubbed � and presented
in Figure 12. We conclude with the following isomorphism theorem.
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� : λ∗S → λS

(λ k . k Vε)� = V \ε
(λ k .Mk,ε)� = Mk,ε ] ε

xx yyK∆,Σ ] σ · V ·W = K∆,Σ [ (σ, V W )
xxWεK∆,Σ ] σ · V = K∆,Σ [ (σ, V W \

ε )
Vε yyK∆,Σ ] σ ·W = K∆,Σ [ (σ, V \ε W )
VεWεK∆,Σ ] σ = K∆,Σ [ (σ, V \ε W \

ε )
K∆,Σ ((λx . x)Vε) ] σ = K∆,Σ [ (σ, 〈V \ε 〉)
K∆,ΣM•,ε ] σ = K [ (σ, 〈M•,ε ] ε〉)
x\ = x

(λx .R)\ = λx .R�

(λw j .w (λ y k . k (j y)) (λx . x))\ = S
k [ (ε,M) = M

(λx . x) [ (ε,M) = M

(λx .N∆,Σx) [ (σ,M) = N∆,Σx ] σ ·M

Figure 12 Back to Direct Style from λ∗S . We assume |σ| = |Σ| for the ] and [ translations. The \
translation only works on Vε – the other value cases are handled explicitly, hence variables annotated
with themselves.

λcS λ∗cS

λS λ.cS λ∗S

λ.S

∗

∗
#

/
∗

#

Figure 13 Summary of the relationships between the calculi. Hooked arrows denote sub-calculi,
∗ denotes the CPS transformation and # the DS transformation; both can be retracted along some
of the inclusions.

I Theorem 29 (Isomorphism of λS and λ∗S). Transformations ∗ : λS → λ∗S and � : λ∗S → λS
form an isomorphism.

7 Conclusion and Future Work

In this work we established a reflection of the image of the CPS translation for the compu-
tational lambda calculus λc extended with shift and reset. We also showed that when
restricted to an extension of the call-by-value lambda calculus λv, the reflection actually
forms an isomorphism. To the best of our knowledge, this is the first study that formally
establishes such a tight relationship of the direct-style and CCS reduction theories. In partic-
ular, the direct-style translation from CCS to λS that is an inverse of the CPS translation,
appears to be a first such translation for shift and reset in the literature. It can be seen
as a continuation of the works by Danvy [2], and by Danvy and Lawall [4]. The connections
between the various calculi we studied are summarised in Figure 13.
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Besides the theoretical aspects of the presented results, one can view them as a source of
sound code optimisations that can be performed both at the level of the source and the target
of the CPS translation, which is a standard translation step in compilers. Moreover, in the
light of Filinski’s seminal result [7], our theory makes it possible to reason about any monadic
effect, since the direct-style monad operations reflect and reify are expressible in terms
of shift and reset.

Several possible directions for future work are on the horizon. First of all, the shift
operator as considered in this work is a combinator. It seems that if, instead, shift was
introduced as a special form or as a binder, characterising the image of the CPS translation
would require more machinery. Especially in the latter case, we would need to pay special
attention to the continuation identifiers bound by shift. Introducing a construct throw for
applying a captured continuation could turn out useful in that scenario.

A delimited-control operator that has been lately gaining currency is shift0, a seemingly
mild variation on shift [3]. This operator is intimately related to the mechanism of algebraic
effects and deep handlers [9], a fairly recent and much celebrated approach to computational
effects. Establishing a reflection for shift0, based on the existing CPS translations [14, 13]
would be interesting in its own right, but it could also pave a way to a similar theory for
algebraic effects.

Finally, it is quite plausible that following the lines of the present work, one could obtain
a similar set of reflections and isomorphisms for a calculus with call/cc.
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Abstract
We introduce PHFL, a probabilistic extension of higher-order fixpoint logic, which can also be
regarded as a higher-order extension of probabilistic temporal logics such as PCTL and the µp-
calculus. We show that PHFL is strictly more expressive than the µp-calculus, and that the PHFL
model-checking problem for finite Markov chains is undecidable even for the µ-only, order-1 fragment
of PHFL. Furthermore the full PHFL is far more expressive: we give a translation from Lubarsky’s
µ-arithmetic to PHFL, which implies that PHFL model checking is Π1

1-hard and Σ1
1-hard. As a

positive result, we characterize a decidable fragment of the PHFL model-checking problems using a
novel type system.
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1 Introduction

Temporal logics such as CTL and CTL* have been playing important roles, for example, in
system verification. Among the most expressive temporal logics is the higher-order fixpoint
logic (HFL for short) proposed by Viswanathan and Viswanathan [22], which is a higher-order
extension of the modal µ-calculus [13]. HFL is known to be strictly more expressive than the
modal µ-calculus but the model-checking problem against finite models is still decidable.

In view of the increasing importance of probabilistic systems, temporal logics for proba-
bilistic systems (such as PCTL [7]) and their model-checking problems have been studied
and applied to verification and analysis of probabilistic systems and randomized distributed
algorithms [14]. Recently Castro et al. [2] have proposed a probabilistic extension of the
modal µ-calculus, called the µp-calculus. They showed that the µp-calculus is strictly more
expressive than PCTL and that the model-checking problem for the µp-calculus belongs to
NP ∩ co-NP.

In the present paper, we introduce PHFL, a probabilistic higher-order fixpoint logic,
which can be regarded as a probabilistic extension of HFL and as a higher-order extension of
the µp-calculus. PHFL strictly subsumes the µp-calculus [2], which coincides with order-0
PHFL.

We prove that PHFL model checking for finite Markov chains is undecidable even for
the order-1 fragment of PHFL without fixpoint alternations, by giving a reduction of the
value problem of probabilistic automata [21, 20]. In the presence of fixpoint alternations (i.e.,
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with both least and greatest fixpoint operators), PHFL model checking is even harder: the
order-1 PHFL model-checking problem is Π1

1-hard and Σ1
1-hard. The proof is by a reduction

from the validity checking problem for µ-arithmetic [16] to PHFL model checking. This
may be surprising, because both order-0 PHFL model checking (i.e. µp-calculus model
checking) for finite Markov chains [2] and HFL model checking for finite state systems [22]
are decidable. The combination of probabilities and higher-order predicates suddenly makes
the model-checking problem highly undecidable.

As a positive result, we identify a decidable subclass of PHFL model-checking problems.
To characterize the subclass, we introduce a type system for PHFL formulas, which is
parameterized by Markov chains M . We show that the model-checking problem M |= ϕ is
decidable provided that ϕ is typable by the type system forM , by giving a decision procedure
using the decidability of existential theories of reals. The decidable subclass is reasonably
expressive: the problem of computing termination probabilities of recursive Markov chains [3]
can be reduced to the subclass.

The rest of this paper is organized as follows. Section 2 introduces PHFL and shows
that it is strictly more expressive than the µp-calculus. Section 3 proves undecidability of
the model-checking problem for µ-only and order-1 PHFL. Section 4 proves that the PHFL
model-checking problem is both Π1

1-hard and Σ1
1-hard. Section 5 introduces a decidable

subclass of PHFL model-checking problems, and shows that the subclass is reasonably large.
Section 6 discusses related work, and Section 7 concludes the paper. Proofs omitted in the
paper are found in a longer version of this paper [18].

2 PHFL: Probabilistic Higher-order Fixpoint Logic

This section introduces PHFL, a probabilistic extension of HFL [22]. It is a logic used for
describing properties of Markov chains. We define its syntax and semantics and show that it
is more expressive than the µp-calculus [2].

2.1 Markov Chains

We first recall the standard notion of Markov chains. Our definitions follow those in [2].

IDefinition 1. A Markov chain over a set AP of atomic propositions is a tuple (S, P, ρAP , sin)
where

S is a finite set of states,
P : S × S → [0, 1] satisfying ∀s.

∑
s′∈S P (s, s′) = 1 describes transition probabilities,

ρAP : AP → 2S is a labeling function, and
sin ∈ S is an initial state.

For a Markov chainM=(S, P, ρAP , sin), its embedded Kripke structure is K=(S,R, ρAP , sin)
where R ⊆ S × S is a relation such that R = {(s, s′)|P (s, s′) > 0}.

Intuitively, P (s, s′) denotes the probability that the state s transits to the state s′, and
ρAP(p) gives the set of states where p is true. Throughout the paper, we assume that the set
AP of atomic propositions is closed under negations, in the sense that for any p ∈ AP, there
exists p ∈ AP such that ρAP(p) = S \ ρAP(p).

Given a Markov chain M , we often write SM , PM , ρAP,M , sin,M for its components; we
omit the subscript M when it is clear from the context.
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2.2 Syntax of PHFL Formulas
As in HFL [22, 11], we need the notion of types to define the syntax of PHFL formulas.

The set of types, ranged over by τ , is given by:

τ ::= Prop{0,1} |Prop[0,1] | τ1 → τ2.

The type Prop{0,1} is for qualitative propositions, which take truth values (0 for false,
and 1 for true). In contrast, Prop[0,1] is the type of quantitative propositions, whose
values range over [0, 1]. Intuitively, the value of a quantitative proposition represents the
probability that the proposition holds. The type τ1 → τ2 is for functions from τ1 to τ2.
For example, (Prop{0,1} → Prop{0,1}) → Prop[0,1] represents the type of (higher-order)
quantitative predicates on a qualitative predicate.

We assume a countably infinite set Var of variables, ranged over by X1, X2, . . . . The set
of PHFL (pre-)formulas, ranged over by φ, is given by:

φ ::= p |X |φ1 ∨ φ2 |φ1 ∧ φ2 | [φ]J | {φ} |�φ |♦φ | © φ |µX.φ | νX.φ |λX.φ |φ1 φ2.

Here, p ranges over the set AP of atomic propositions (of the underlying Markov chains; we
thus assume that AP is closed under negations). The subscript J of [φ]J is either “> r” or
“≥ r” for some rational number r ∈ [0, 1]. We often identify J with an interval: for example,
“> r” is regarded as (r, 1] = {x | r < x ≤ 1 }. Given a quantitative proposition φ, the formula
[φ]>r (resp. [φ]≥r) is a qualitative formula, which is true just if the probability that φ holds
is greater than r (resp. no less than r). The formulas �φ, ♦φ, and ©φ respectively mean
the minimum, maximum, and average probabilities that φ holds after a one-step transition.
The formulas µX.φ and νX.φ respectively denote the least and greatest fixpoints of λX.φ.
Note that φ may denote higher-order predicates (unlike in the modal µ-calculus and its
probabilistic variants [2, 17, 19], where fixpoints are restricted to propositions). We have
also λ-abstractions and applications, to manipulate higher-order predicates. The prefixes
µX, νX and λX bind the variable X. As usual, we identify formulas up to the renaming of
bound variables and implicitly allow α-conversions.

In order to exclude out ill-formed formulas like (p1 ∨ p2)(φ), we restrict the shape of
formulas through a type system. A type environment is a map from a finite set of variables
to the set of types. A type judgment is of the form Γ ` φ : τ . The typing rules are shown
in Figure 1. In the figure, P is a meta-variable ranging over the set {Prop{0,1},Prop[0,1]} of
proposition types. For example, the rule for φ1 ∧ φ2 means that Γ ` φi : Prop{0,1} for each
i ∈ {1, 2} implies Γ ` φ1 ∧φ2 : Prop{0,1} and that Γ ` φi : Prop[0,1] for each i ∈ {1, 2} implies
Γ ` φ1 ∧ φ2 : Prop[0,1]. A formula φ is well-typed if Γ ` φ : τ is derivable for some Γ and τ .
Henceforth, we consider only well-typed formulas.

I Example 2. For a proposition p ∈ AP, the formula φ = (µF.λX.X ∨ F (©X)) {p} is a
well-typed formula of type Prop[0,1]. By unfolding the fixpoint formula, we obtain:

φ ≡ (λX.X ∨ (µF.λX.X ∨ F (©X))(©X)){p}
≡ {p} ∨ (µF.λX.X ∨ F (©X))(©{p})
≡ {p} ∨©{p} ∨ (µF.λX.X ∨ F (©X))(©©{p})
≡ {p} ∨©{p} ∨©© {p} ∨ · · ·

Thus, intuitively, the formula represents the function that maps each state s to the value
supk≥0 qk where qk is the probability that a k-step transition sequence starting from the
state s ends in a state satisfying p. J

FSCD 2020
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Γ ` p : Prop{0,1} Γ, X : τ ` X : τ
Γ ` φ : Prop[0,1]

Γ ` [φ]J : Prop{0,1}

Γ ` φ : Prop{0,1}
Γ ` {φ} : Prop[0,1]

Γ ` φ1, φ2 : P
Γ ` φ1 ∧ φ2 : P

Γ ` φ1, φ2 : P
Γ ` φ1 ∨ φ2 : P

Γ ` φ : P
Γ ` �φ : P

Γ ` φ : P
Γ ` ♦φ : P

Γ ` φ : Prop[0,1]

Γ ` ©φ : Prop[0,1]

Γ, X : τ ` φ : τ
Γ ` µX.φ : τ

Γ, X : τ ` φ : τ
Γ ` νX.φ : τ

Γ, X : τ1 ` φ : τ2
Γ ` λX.φ : τ1 → τ2

Γ ` φ : τ1 → τ2 Γ ` ψ : τ1
Γ ` φψ : τ2

Figure 1 Type Derivation Rules for PHFL.

I Remark 3. Following [11], we have excluded out negations. By a transformation similar to
that in [15] and our assumption that the set of atomic propositions is closed under negations,
any closed formula of PHFL extended with negations can be transformed to an equivalent
negation-free formula. J

We define the order of a type τ by:

order(Prop{0,1}) = order(Prop[0,1]) = 0 order(τ1 → τ2) = max(order(τ1)+1, order(τ2)).

The order of a formula φ such that Γ ` φ : τ is the largest order of types used in the derivation
of Γ ` φ : τ . The order-k PHFL is the fragment of PHFL consisting of formulas of order up
to k. Order-0 PHFL coincides with the µp-calculus [2].

2.3 Semantics
We first give the semantics of types. We write ≤R for the natural order over the set R of real
numbers, and often omit the subscript when there is no danger of confusion. For a map f ,
we write dom(f) for the domain of f .

I Definition 4 (Semantics of Types). For each τ , we define a partially ordered set JτK =
(Dτ ,≤τ ) inductively by:

DProp{0,1} = S → {0, 1} f ≤Prop{0,1} g
def⇐⇒ ∀s ∈ S.f(s) ≤ g(s)

DProp[0,1] = S → [0, 1] f ≤Prop[0,1] g
def⇐⇒ ∀s ∈ S.f(s) ≤ g(s)

Dτ1→τ2 = {f ∈ Dτ1 → Dτ2 | ∀x, y ∈ Dτ1 .x ≤τ1 y =⇒ f(x) ≤τ2 f(y)}
f ≤τ1→τ2 g

def⇐⇒ ∀x ∈ Dτ1 .f(x) ≤τ2 g(x).

For a type environment Γ, we write JΓK for the set of maps f such that dom(f) = dom(Γ)
and f(x) ∈ DΓ(x) for every x ∈ dom(Γ).

Note that JτK forms a complete lattice for each τ . We write ⊥τ for the least element of
JτK, and for a set V ⊆ Dτ , we write

∨
τV for the least upper bound of S with respect to

≤τ ; we often omit the subscript τ if it is clear from the context. Note also that for every
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functional type τ1 → τ2, every element of Dτ1→τ2 is monotonic. Thus, for every type τ and
every function f ∈ Dτ→τ , the least and greatest fixed points of f exist.

We now define the semantics of formulas. Since the meaning of a formula depends on
its type environment, we actually define the semantics JΓ ` φ : τKM for each type judgment
Γ ` φ : τ . Here, M is the underlying Markov chain, which is often omitted.

I Definition 5 (Semantics of Type Judgement). Let M be a Markov chain and assume
Γ ` φ : τ is derivable. Then its semantics JΓ ` φ : τKM ∈ JΓK→ JτK is defined by induction
on the (unique) derivation of Γ ` φ : τ by:

JΓ ` p : Prop{0,1}KM (ρ) = λs ∈ SM .if s ∈ ρAP,M (p) then 1 else 0
JΓ ` X : τKM (ρ) = ρ(X)

JΓ ` φ1 ∧ φ2 : PKM (ρ) = λs ∈ SM . min
i∈{1,2}

JΓ ` φi : PKM (ρ)(s)

JΓ ` φ1 ∨ φ2 : PKM (ρ) = λs ∈ SM . max
i∈{1,2}

JΓ ` φi : PKM (ρ)(s)

JΓ ` [φ]J : Prop{0,1}KM (ρ) = λs ∈ SM .if JΓ ` φ : Prop[0,1]KM (ρ)(s) ∈ J then 1 else 0
JΓ ` {φ} : Prop[0,1]KM (ρ) = JΓ ` φ : Prop{0,1}KM (ρ)

JΓ ` �φ : PKM (ρ) = λs ∈ SM . min
s′:PM (s,s′)>0

JΓ ` φ : PKM (ρ)(s′)

JΓ ` ♦φ : PKM (ρ) = λs ∈ SM . max
s′:PM (s,s′)>0

JΓ ` φ : PKM (ρ)(s′)

JΓ ` ©φ : Prop[0,1]KM (ρ) = λs ∈ SM .
∑
s′∈SM

PM (s, s′)JΓ ` φ : Prop[0,1]KM (ρ)(s′)

JΓ ` µX.φ : τKM (ρ) = LFP(λv ∈ Dτ .JΓ, X : τ ` φ : τKM (ρ[X 7→ v]))
JΓ ` νX.φ : τKM (ρ) = GFP(λv ∈ Dτ .JΓ, X : τ ` φ : τKM (ρ[X 7→ v]))

JΓ ` λX.φ : τ1 → τ2KM (ρ) = λv ∈ Dτ1 .JΓ, X : τ1 ` φ : τ2KM (ρ[X 7→ v])
JΓ ` φ1 φ2KM (ρ) = JΓ ` φ1KM (ρ) (JΓ ` φ2KM (ρ))

Here P ∈ {Prop{0,1},Prop[0,1] }.

In the definitions of the semantics of �φ and ♦φ, the set S′ = {s′ ∈ S|P (s, s′) > 0} is
non-empty and finite, because

∑
s′∈S P (s, s′) = 1 and S is finite by the definition of Markov

chains. Thus the max/min operations are well-defined. We also note that JΓ ` φ : τK is a
monotone function from JΓK to JτK (here JΓK is ordered by the component-wise ordering; note
also Remark 6 below). This ensures the well-definedness of the semantics of abstractions.

I Remark 6. Recall that in a formula [φ]J , we allow the predicate J to be “> r” or “≥ r”
(where r ∈ [0, 1]), but neither “< r” nor “≤ r”. Allowing “< r” would break the monotonicity
of the semantics of a formula. For example, J∅ ` λX.[X]<1 : Prop[0,1] → Prop{0,1}K = λv ∈
DProp[0,1] .λs ∈ S.(if v(s) < 1 then 1 else 0) is not monotonic. J

We often omit M , the type of the formula, and the type environment in the notation of
semantics when there is no confusion and just write JφK or JΓ ` φK for JΓ ` φ : τKM . For a
Markov chain M = (S, P, ρAP , sin) and a closed PHFL formula φ of type Prop{0,1}, we write
M |= φ if JφK(sin) = 1.

I Example 7. Recall the PHFL formula φ = ψ {p} where ψ = µF.λX.X ∨ F (©X) in
Example 2. We have

JψK = LFP
(
λv ∈ DProp[0,1]→Prop[0,1] .λx ∈ DProp[0,1] .λs ∈ S.

FSCD 2020
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max
(
x s, v (λs′ ∈ S.

∑
s′′

P (s′, s′′) · (xs′′)) s
))

≥
(
λv.λx.λs.max

(
x s, v (λs′ ∈ S.

∑
s′′

P (s′, s′′) · (xs′′)) s
))n+1

(⊥Prop[0,1]→Prop[0,1])

= λx.λs. max
0≤k≤n

∑
s0s1...sk∈Sk+1,s0=s

(
x(sk) ·

∏
0≤j≤k−1

P (sj , sj+1)
)

for every n ≥ 0. Thus, we have:

JψK ≥ λx.λs ∈ S. supk≥0
∑
s0s1...sk∈Sk+1,s0=s

(
x(sk) ·

∏
0≤j≤k−1 P (sj , sj+1)

)
.

Actually, the equality holds, because the righthand side is a fixpoint of

λv ∈ DProp[0,1]→Prop[0,1] .λx ∈ DProp[0,1] .max(x, v(λs ∈ S.
∑
s′

P (s, s′) · (xs′))).

The semantics of φ is, therefore, given by

JφK = λs ∈ S. sup
k≥0

∑
s0s1...sk∈Sk+1,s0=s

(
ρAP(p)(sk) ·

∏
0≤j≤k−1

P (sj , sj+1)
)
. J

2.4 Expressive Power
PHFL obviously subsumes the µp-calculus [2], which coincides with order-0 PHFL. Hence
PHFL also subsumes PCTL [7], since the µp-calculus subsumes PCTL [2].

PHFL is strictly more expressive than the µp-calculus.

I Theorem 8. Order-1 PHFL is strictly more expressive than the µp-calculus, i.e., there
exists an order-1 PHFL proposition φ such that φ is not equivalent to any µp-formula.

Proof. LetM be the set of Markov chains M = (S, P, ρAP , sin) that satisfy the following
conditions.

S = {s0, s1, . . . , sn} for a positive integer n,
P (si, si+1) = 1 (0 ≤ i ≤ n− 1), P (sn, sn) = 1 and P (si, sj) = 0 otherwise.
There are three atomic propositions a, b, c with ρAP(a) ∪ ρAP(b) = {s0, s1, . . . , sn−1},
ρAP(a) ∩ ρAP(b) = ∅ and ρAP(c) = {sn}.
The initial state is sin = s0

Let φ be the order-1 PHFL formula of type Prop{0,1}:

(µF.λX.a ∧ ♦(X ∨ F (b ∧ ♦X)))(b ∧ ♦c).

Note that, for M ∈ M, M |= φ holds just if n is even, and ρAP satisfies ρAP(a) =
{s0, s1, . . . , sn

2−1} and ρAP(b) = {sn
2
, sn

2 +1, . . . , sn−1}.
We show that there is no µp-formula equivalent to φ. Suppose that a µp-formula φ′ were

equivalent to φ, which would imply that M |= φ if and only if M |= φ′ for any M ∈M. For
M ∈M, let us write KM for the embedded Kripke structure ofM . Since all the transitions in
M are deterministic, there exists a modal µ-calculus formula φ′′ such thatM |= φ′ if and only
if KM |= φ′′ (note that φ′′ is obtained by replacing © with ♦, and replacing [φ1]J with true
if J is “≥ 0” and with φ1 otherwise). That would imply that KM |= φ′′ for M ∈M, just if
n is even and ρAP satisfies ρAP(a) = {s0, s1, . . . , sn

2−1} and ρAP(b) = {sn
2
, sn

2 +1, . . . , sn−1}.
But then φ′′ corresponds to the non-regular language {ambm | m ≥ 1}, which contradicts
the fact that the modal µ-calculus can express only regular properties. J
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3 Undecidability of PHFL Model Checking

In this section we prove the undecidability of the following problem.

I Definition 9 (PHFL Model Checking). The PHFL model-checking problem for finite Markov
chains is the problem of deciding whether M |= φ, given a (finite) Markov chain M and a
closed PHFL formula φ of type Prop{0,1} as input.

We prove that the problem is undecidable even for the order-1 fragment of PHFL without
fixpoint alternations, by a reduction from the undecidability of the value-1 problem [6] for
probabilistic automata [21]. In contrast to the undecidability of PHFL model checking,
the corresponding model-checking problems are decidable for the full fragments of the
µp-calculus [2] and (non-probabilistic) HFL [22], with fixpoint alternations. Thus, the
combination of probabilities and higher-order predicates introduces a new difficulty.

In Section 3.1, we review the definition of probabilistic automata and the value-1 problem.
Section 3.2 shows the reduction from the value-1 problem to the PHFL model-checking
problem.

3.1 Probabilistic Automata

We review probabilistic automata [21] and the undecidability of the value-1 problem. Our
definition follows [4].

I Definition 10 (Probabilistic Automata). A probabilistic automaton A is a tuple
(Q,Σ, qI ,∆, F ) where

Q is a finite set of states,
Σ is a finite set of input symbols,
qI ∈ Q is an initial state,
∆ : Q × Σ → D(Q), where D(Q) := { f : Q → [0, 1] |

∑
q∈Q f(q) = 1 } is the set of

probabilistic distributions over the set Q, represents transition probabilities, and
F ⊆ Q is a set of accepting states.

For a word w = w1 · · ·wn ∈ Σn, the probability that w is accepted by A = (Q,Σ, qI ,∆, F ),
written A(w), is defined by:

A(w) :=
∑

q0,...,qn−1∈Q,qn∈F
s.t. q0=qI

∏
1≤i≤n

∆(qi−1, wi)(qi).

The value of a probabilistic automaton A, denoted by val(A), is defined by

val(A) := sup
w∈Σ∗

A(w).

The problem of deciding whether val(A) = 1, called the value-1 problem, is known to be
undecidable.

I Theorem 11 (Undecidability of The Value-1 Problem [6]). Given a probabilistic automaton
A, whether val(A) = 1 is undecidable.
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3.2 The Undecidability Result
Let A = (Q,Σ, qI ,∆, F ) be a probabilistic automaton, where Σ = {c1, . . . , c|Σ|} with |Σ| > 0.
We shall construct a Markov chain MA and a PHFL formula φA, so that val(A) = 1 if and
only if MA |= φA. The undecidability of PHFL model checking then follows immediately
from Theorem 11.

We first construct a Markov chain. The set AP of atomic propositions is { pc | c ∈
Σ } ] { pF }. The Markov chain MA = (S, P, ρAP , sin) is defined as follows.

The set S of states is Q ] (Q× Σ).
The transition probability P is given by:

P ((q, c), q′) = ∆(q, c)(q′) (c ∈ Σ and q, q′ ∈ Q)

P (q, (q, c)) = 1
|Σ| (c ∈ Σ and q ∈ Q)

P (s, s′) = 0 (otherwise)

The first transition (from (q, c) to q′) is used to simulate the transition of A from q to
q′ for the input symbol c. The second transition (from q to (q, c)) is used to choose the
next input symbol to be supplied to the automaton; the probability is not important, and
replacing 1/|Σ| with any non-zero probability does not affect the following arguments.
ρAP is defined by:

ρAP(pc) = { (q, c) | q ∈ Q } ρAP(pF ) = { q | q ∈ F }.

The initial state is sin = qI .
Intuitively, the Markov chain MA simulates the behavior of A. The atomic proposition pc
means that A is currently reading the symbol c, and pF means that A is in a final state.

Based on this intuition, we now construct the PHFL formula φA. For each c ∈ Σ, we
define a formula fc of type Prop[0,1] → Prop[0,1] by:

fc := λX.♦({pc} ∧©X).

Intuitively fc(φ) denotes the probability that the automaton transits to a state satisfying φ
given c as the next input. Given a word w = w1w2 . . . wn ∈ Σ∗, we define the formula gw by

gw := fw1(fw2(. . . (fwn{pF }) . . . )).

We write Aq for the automaton obtained from A by replacing the initial state with q.

I Lemma 12. Aq(w) = JgwKMA
(q) for every q ∈ Q.

Proof. By induction on the length of w. J

Using Lemma 12, we obtain val(A) = supn∈ωJ
∨
w∈Σ≤n gwKMA

(qI), where Σ≤n is the set
of words of length up to n. This can be expressed by using the least fixpoint operator.

I Theorem 13. Let θA be the formula of type Prop[0,1] → Prop[0,1] defined by:

θA := µF.
(
λX.X ∨

∨
c∈Σ

F (fcX)
)
.

and let φA := [θA {pF }]≥1. Then val(A) = JθA {pF }KMA
(qI). Therefore MA |= φA if and

only if val(A) = 1.
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Proof. Let

ξ := λF.λX.X ∨
∨
c∈Σ

F (fcX).

Then, it is easy to verify:

JθAKM = JµF.ξ F KM =
∨

Prop[0,1]→Prop[0,1]
{Jξn(⊥)K | n ∈ ω}

where ⊥ := λZ.µU.U is the formula of type Prop[0,1] → Prop[0,1], and ξn(x) denotes n-times
applications of ξ to x.

We have also: Jξn(⊥) {pF }KM = J
∨
w∈Σ≤n gwKM . Therefore, we obtain:

val(A) = sup
n

(J
∨

w∈Σ≤n

gwKMA (qI)) = sup
n

(Jξn(⊥){pF }K(qI)) = JθA {pF }KMA (qI),

which implies the required result. J

The following is an immediate corollary of Theorems 11 and 13.

I Corollary 14 (Undecidability of PHFL Model-Checking Problem). There is no algorithm that,
given a Markov chain M and a closed order-1 formula φ of type Prop{0,1}, decides whether
M |= φ.

We close this section with some remarks.1

I Remark 15. Note that the value val(A) of a probabilistic automaton cannot even be
approximately computable [4]: there is no algorithm that outputs “Yes” if val(A) = 1 and
“No” if val(A) ≤ 1

2 . Thus, the proof of Theorem 13 (in particular, the result val(A) =
JθA {pF }KMA

(qI)) also implies that for a qualitative formula of PHFL ψ, JψK is not approxi-
mately computable in general.
I Remark 16. It would be interesting to study a converse encoding, i.e., to find an encoding
of some fragment of the PHFL model checking problem into the value-1 problem. Such an
encoding may help us find a decidable class of the PHFL model checking problem, based on
decidable subclasses for the value-1 problem, such as the one studied in [5].

4 Hardness of the PHFL Model-Checking Problem

In the previous section, we have seen that PHFL model checking is undecidable even for the
fragment of PHFL without fixpoint alternations. In this section, we give a lower bound of
the hardness of the PHFL model-checking problem in the presence of fixpoint alternations.
The following theorem states the main result of this section.

I Theorem 17. The order-1 PHFL model-checking problem is Π1
1-hard and Σ1

1-hard.

Note that Π1
1 and Σ1

1, defined in terms of the second-order arithmetic, contain very hard
problems. For example, the problem of deciding whether a given first-order Peano arithmetic
formula is true is in those classes.

We prove this theorem by reducing the validity checking problem of the µ-arithmetic [16]
to the PHFL model-checking problem. It is even possible to reduce the validity checking
problem of a higher-order extension of the µ-arithmetic to the PHFL model-checking problem.
The key in the proof is a representation of natural numbers as quantitative propositions such
that all the operations on natural numbers in the µ-arithmetic are expressible in PHFL.

This section is structured as follows. Section 4.1 reviews the basic notions of the µ-
arithmetic. Section 4.2 describes the reduction and proves the theorem above.

1 We would like to thank an anonymous reviewer for pointing them out.
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Γ, X :A `µ X : A Γ `µ Z : N
Γ `µ s : N

Γ `µ S s : N
Γ `µ s, t : N

Γ `µ s ≤ t : Ω

Γ `µ φ, ψ : Ω
Γ `µ φ ∧ ψ : Ω

Γ `µ φ, ψ : Ω
Γ `µ φ ∨ ψ : Ω

Γ, X : A `µ φ : T
Γ `µ λX.φ : A→ T

Γ `µ φ : A→ T Γ `µ ψ : A
Γ `µ φψ : T

Γ, X : T `µ φ : T
Γ `µ µX.φ : T

Γ, X : T `µ φ : T
Γ `µ νx.φ : T

Figure 2 Typing Rules for the Higher-order Fixpoint Arithmetic.

4.1 Higher-Order Fixpoint Arithmetic
The µ-arithmetic [16] is a first-order arithmetic with fixpoint operators. This section briefly
reviews its higher-order extension, studied by Kobayashi et al. [12].

As in PHFL, we first define the types of µ-arithmetic formulas. The set of types, ranged
over by A, is given by:

A ::= N |T T ::= Ω |A→ T.

The type N is for natural numbers, Ω for (qualitative) propositions, and A → T for
functions. We do not allow functions to return values of type N . We define the order of
types of the µ-arithmetic similarly to the PHFL types, by: order(N) = order(Ω) = 0 and
order(A→ T ) = max(order(A) + 1, order(T )).

Assume a countably infinite set Var of variables ranged over by X. The set of formulas
is given by the following grammar.

s ::= X |Z |Ss φ ::= X | s1 ≤ s2 |φ1 ∧ φ2 |φ1 ∨ φ2 |λX.φ |φ1 φ2 |µX.φ | νX.φ.

Here, Z and S respectively denote the constant 0 and the successor function on natural
numbers.

The typing rules are shown in Fig. 2. We shall consider only well-typed formulas. We
define the order of a formula as the largest order of the types of its subformulas.

I Definition 18 (Semantics of Types). The semantics of a type A is a partially ordered set
JAKµ = (DA,vA) defined inductively on the structure of A as follows.
1. The semantics of types N and Ω are defined as follows.

DN = N n vN m
def⇐⇒ n = m

DΩ = {0, 1} p vΩ q
def⇐⇒ p ≤ q

2. The semantics of the type A→ T is defined as follows.

DA→T = { f : DA → DT | ∀u, v ∈ DA.u vA v =⇒ f(u) vT f(v) }

f vA→T g
def⇐⇒ ∀v ∈ DA.f(v) vT g(v)

The semantics JT Kµ of a type T forms a complete lattice; we write
∨
T for the least upper

bound operation, and ⊥T for the least element.
The interpretation JΓKµ of a type environment Γ is the set of functions θ such that

dom(θ) = dom(Γ) and that θ(X) ∈ JΓ(X)Kµ for every X ∈ dom(Γ). It is ordered by the
point-wise ordering.
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I Definition 19 (Semantics of Formulas). The semantics of a formula φ with judgment
Γ `µ φ : A is a monotone map from JΓKµ to JAKµ, defined as follows.

JΓ `µ X : AKµ(θ) := θ(X)
JΓ `µ Z : NKµ(θ) := 0

JΓ `µ Ss : NKµ(θ) := JΓ `µ s : NKµ(θ) + 1

JΓ `µ s ≤ t : ΩKµ(θ) :=
{

1 (if JΓ `µ s : NKµ(θ) ≤ JΓ `µ t : NKµ(θ))
0 (if JΓ `µ s : NKµ(θ) > JΓ `µ t : NKµ(θ))

JΓ `µ φ ∧ ψ : ΩKµ(θ) := JΓ `µ φ : ΩKµ(θ) ∧ JΓ `µ φ : ΩKµ(θ)
JΓ `µ φ ∨ ψ : ΩKµ(θ) := JΓ `µ φ : ΩKµ(θ) ∨ JΓ `µ φ : ΩKµ(θ)

JΓ `µ λX.φ : A→ T Kµ(θ) := λv ∈ JAKµ.JΓ, X : A `µ φ : T Kµ(θ[X 7→ v])
JΓ `µ φψ : T Kµ(θ) := JΓ `µ φ : A→ T Kµ(θ) (JΓ `µ ψ : AKµ(θ))

JΓ `µ µX.φ : T Kµ(θ) := LFP(λv ∈ DT .JΓ, v : T `µ φ : T K(θ[X 7→ v]))
JΓ `µ νX.φ : T Kµ(θ) := GFP(λv ∈ DT .JΓ, v : T `µ φ : T K(θ[X 7→ v]))

As in the case of PHFL, we write JφKµ(θ) for JΓ `µ φ : AKµ(θ) and just JφKµ for JφKµ(∅)
when there is no confusion.

I Example 20. Let φ = µF.λX.(X = 100 ∨ F (S(S X))) where 100 is an abbreviation of the
term S(S(. . . S︸ ︷︷ ︸

100

Z) . . . ). The semantics JφKµ is a function f : N→ {0, 1} where f(n) = 1 if

and only if n is an even number no greater than 100.

The validity checking problem of the higher-order fixpoint arithmetic is the problem of,
given a closed formula φ of type Ω, deciding whether JφKµ = 1. The following result is
probably folklore, which follows from the well-known fact that the fair termination problem
for programs is Π1

1-complete (see, e.g., Harel [8]), and the fact that the fair termination of a
program can be reduced to the validity of a first-order fixpoint arithmetic formula (see, e.g.,
[12] for the reduction).

I Theorem 21. The validity checking problem of the first-order fixpoint arithmetic is Π1
1-hard

and Σ1
1-hard.

I Remark 22. As for an upper bound, Lubarsky [16] has shown that predicates on natural
numbers definable by µ-arithmetic formulas belong to ∆1

2. One can prove that the validity
problem for the µ-arithmetic is ∆1

2 as well.

4.2 Hardness of PHFL Model Checking
We give a reduction of the validity checking problem of the higher-order fixpoint arithmetic
to the PHFL model-checking problem. The main theorem of this section (Theorem 17) is an
immediate consequence of this reduction and Theorem 21.

Given a formula φ of the higher-order fixpoint arithmetic, we need to effectively construct
a pair (ψ,M) of a formula of PHFL and a Markov chain such that φ is true if and only if
M |= ψ. The Markov chain M is independent of the formula φ. We first define the Markov
chain and then explain the intuition of the translation of formulas.

The Markov chain M = (S, P, ρAP , sin) is shown in Figure 3. It is defined as follows.
The set of states is S = {s0, s

′
0, s1, s

′
1}.

FSCD 2020



19:12 A Probabilistic Higher-Order Fixpoint Logic
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Figure 3 The Markov Chain for Reduction from Higher-order Fixpoint Arithmetic to PHFL.

The transition probability satisfies P (s0, s1) = P (s0, s
′
0) = P (s′0, s0) = P (s′0, s′1) = 1

2 ,
P (s1, s0) = P (s′1, s′0) = 1 and P (si, sj) = 0 for all other pairs of states.
There are four atomic propositions p0, p

′
0, p1, and p′1, representing each state

(e.g. ρAP(p0)={s0}).
The initial state sin is s0.

For notational convenience, we write v ∈ JProp[0,1]KM as a tuple (v(s0), v(s′0), v(s1), v(s′1)).
As mentioned at the beginning of this section, the key of the reduction is the representation

of natural numbers, as well as operations on natural numbers. We represent a natural number
n by a quantitative propositional formula ψ such that JψKM = ( 1

2n , 1− 1
2n ,_,_). Here, _

denotes a “don’t care” value. We implement primitives on natural numbers Z, S and ≤, as
follows.

The constant Z can be represented by {p0}: then J{p0}KM = (1, 0, 0, 0) = (1/20, 1 −
(1/20), 0, 0) as expected.

Assuming that ψ represents n (i.e. JψKM = (1/2n, 1− (1/2n),_,_)), the successor n+ 1
can be given by

ψ′ := ©((©ψ ∧ (p1 ∨ p′1)) ∨ p0).

Indeed, we have:

J©ψKM = (_,_, 1
2n , 1−

1
2n )

J©ψ ∧ (p1 ∨ p′1)KM = (0, 0, 1
2n , 1−

1
2n )

J(©ψ ∧ (p1 ∨ p′1)) ∨ p0KM = (1, 0, 1
2n , 1−

1
2n )

J©((©ψ ∧ (p1 ∨ p′1)) ∨ p0)KM = (1
2 ×

1
2n ,

1
2 + 1

2 × (1− 1
2n ),_,_)

= ( 1
2n+1 , 1−

1
2n+1 ,_,_).

It remains to encode ≤. We use the fact that, for any natural numbers n and m,

n ≤ m ⇔ 1
2n ≥

1
2m ⇔ 1

2n + (1− 1
2m ) ≥ 1.

The s′0-component of the representation of a natural number plays an important role below.
Assume that ψ and χ represent n and m respectively. Then we have

J©ψ ∧ p1KM = (0, 0, 1
2n , 0) Jχ ∧ p′0KM = (0, 1− 1

2m , 0, 0)
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and thus

J(©ψ ∧ p1) ∨ (χ ∧ p′0)KM = (0, 1− 1
2m ,

1
2n , 0).

Therefore

J©((©ψ ∧ p1) ∨ (χ ∧ p′0))KM = (1
2 ×

( 1
2n + (1− 1

2m )
)
,_,_,_).

Therefore, n ≤ m if and only if the s0-component of the above formula is ≥ 1
2 .

Let us formalize the above argument. We first give the translation of types:

tr(N) = Prop[0,1] tr(Ω) = Prop{0,1} tr(A→ T ) = tr(A)→ tr(T ).

The translation can be naturally extended to type environments. Following the above
discussion, the translation of formulas of type N is given by

tr(Z) = {p0} and tr(S s) =©((©tr(s) ∧ (p1 ∨ p′1)) ∨ p0).

The comparison operator can be translated as follows:

tr(s ≤ t) = [(©((©tr(s) ∧ p1) ∨ (tr(t) ∧ p′0)))]≥ 1
2
.

The translation of other connectives is straightforward:

tr(φ ∧ ψ) = tr(φ) ∧ tr(ψ) tr(φ ∨ ψ) = tr(φ) ∨ tr(ψ) tr(λX.φ) = λX.tr(φ)
tr(X) = X tr(φψ) = tr(φ) tr(ψ) tr(µX.φ) = µX.tr(φ) tr(νX.φ) = νX.tr(φ).

The following lemma states that the translation preserves types.

I Lemma 23. If Γ `µ φ : A, then tr(Γ) ` tr(φ) : tr(A).

We prove the correctness of the translation. For each type A of the higher-order fixpoint
arithmetic, we define a relation (∼A) ⊆ JAKµ × Jtr(A)KM by induction on A as follows:

n ∼N (r0, r
′
0, r1, r

′
1) def⇐⇒ r0 = 1

2n and r′0 = 1− 1
2n

b ∼Ω (r0, r
′
0, r1, r

′
1) def⇐⇒ b = r0

f ∼A→T g
def⇐⇒ ∀x ∈ JAKµ.∀y ∈ Jtr(A)KM . x ∼A y =⇒ f x ∼T g y.

This relation can be naturally extended to the interpretations of type environments: given a
type environment Γ of the µ-arithmetic, the relation (∼Γ) ⊆ JΓKµ × Jtr(Γ)KM is defined by

θ ∼Γ ρ
def⇐⇒ ∀X ∈ dom(Γ). θ(X) ∼Γ(X) ρ(X).

I Theorem 24. Let Γ `µ φ : A be a formula of the higher-order fixpoint arithmetic. Assume
θ ∈ JΓKµ and ρ ∈ Jtr(Γ)K. If θ ∼Γ ρ, then JΓ `µ φ : AKµ(θ) ∼A Jtr(Γ) ` tr(φ) : tr(A)KM (ρ).

Proof. See Appendix A. J

I Corollary 25. The validity problem of the order-k fixpoint arithmetic (where k > 0) is
reducible to the order-k PHFL model-checking problem.

Proof. Assume ∅ `µ φ : Ω. By Theorem 24, JφKµ ∼Ω Jtr(φ)KM . Therefore, JφKµ = 1 if and
only if Jtr(φ)KM (s0) = 1, i.e. M |= tr(φ). The mapping φ 7→ (tr(φ),M) is obviously effective,
and preserves the order. J

Theorem 17 is an immediate consequence of Theorem 21 and Corollary 25.
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5 Decidable Subclass of Order-1 PHFL Model Checking

As we have seen in the last section, PHFL model checking is undecidable in general, even
for order 1. In this section, we identify a decidable subclass of the order-1 PHFL model-
checking problems (i.e., a set of pairs (φ,M) such that whether M |=φ is decidable). We
identify the subclass by using a type system: we define a type system TM for PHFL formulas,
parameterized byM , such that if φ is a proposition well-typed in TM , thenM |=φ is decidable.

We first explain the idea of the restriction imposed by the type system. By definition, the
semantics of a (closed) order-1 PHFL formula φ of type Prop[0,1] → Prop[0,1] with respect to
the Markov chain M is a map fφ from the set of functions S → [0, 1] to the same set, where
S is the set of states of M . Thus, if S = {s1, s2, . . . , sn} is fixed, fφ can be regarded as a
function from [0, 1]n to [0, 1]n. Now, if the function fφ were affine, i.e., if there are functions
f1, f2, . . . , fn such that fφ(r1, r2, . . . , rk) = (f1(r1, r2, . . . , rk), . . . , fn(r1, r2, . . . , rk)), where
fi(r1, r2, . . . , rk) = ci,0 + ci,1r1 + · · ·+ ci,krk for some real numbers ci,j , then the function fφ
would be representable by a finite number of reals ci,j . The semantics of an (alternation-free)
fixpoint formula would then be given as a solution of a fixpoint equation on the coefficients,
which is solvable by appealing to the existential theories of reals.

Based on the observation above, we use a type system to restrict the formulas so that the
semantics of every order-1 formula is affine. The conjunction φ1∧φ2 is one of the problematic
logical connectives that may make the semantics of an order-1 formula non-affine: recall that
the min operator was used to define the semantics of conjunction. We require that for every
subformula of the form φ1∧φ2 and for each state s ∈ S, one of the values Jφ1K(s) and Jφ2K(s)
is the constant 0 or 1. We can then remove the min operator, since we have min(0, x) = 0
and min(1, x) = x for every x ∈ [0, 1].

The discussion above motivates us to refine the type Prop[0,1] of quantitative propositions
to PropT,U where T,U ⊆ S and T ∩U = ∅. Intuitively, the type PropT,U is a type for values
v ∈ Prop[0,1] such that v(s) = 0 for all s ∈ T and v(s) = 1 for all s ∈ U ; there is no guarantee
on the value of v(s) for s ∈ S \ (T ∪ U). The syntax of refined types is given by:

σ ::= κ |Prop{0,1} κ ::= PropT,U |PropT,U → κ

where T and U range over the subsets of S satisfying T ∩ U = ∅. Note that each type
κ 6= Prop{0,1} can be expressed as PropT1,U1 → PropT2,U2 → · · · → PropTk,Uk → PropT,U

where k ≥ 0. The formal definition of the semantics of types is given later.
We restrict PHFL formulas to those given by:

ψ ::= [φ]J φ ::= {p} |x |φ1 ∧ φ2 |φ1 ∨ φ2 | © φ |µx.φ |λx.φ |φ1 φ2

and further restrict them by using the typing rules in Figure 4. In the figure, the type
environment K maps each variable to a type in the set ranged over by κ. The operator [·]
has been restricted to the top-level, and the operators ♦,� and ν have been removed. Note
that ψ is a qualitative formula and φ is a quantitative formula.

A key rule is for conjunctions. Note that Jφ1 ∧ φ2K(s) = 0 if either Jφ1K(s) = 0 or
Jφ2K(s) = 0 holds; hence s ∈ T1 ∪T2 implies Jφ1 ∧φ2K(s) = 0. Note also that Jφ1 ∧φ2K(s) = 1
if both Jφ1K(s) = 1 and Jφ2K(s) = 1 hold. Thus, s ∈ U1 ∩ U2 implies Jφ1 ∧ φ2K(s) = 1.
This is why φ1 ∧ φ2 has type PropT1∪T2,U1∩U2 . The extra condition T1 ∪ U1 ∪ T2 ∪ U2 = S

requires that, for each state s, either Jφ1K(s) or Jφ2K(s) is the constant 0 or 1; recall the
earlier discussion on a sufficient condition for the semantics of an order-1 formula to be affine.
The rule for disjunctions is analogous.

The following lemma states that a formula that is well-typed in TM is also well-typed in
the original PHFL type system.
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K `M {p} : PropρAP(p),ρAP(p)
K `M φ : PropT,U T ′ ⊆ T U ′ ⊆ U

K `M φ : PropT
′,U ′

K `M φ1 : PropT1,U1 K `M φ2 : PropT2,U2 T1 ∪ U1 ∪ T2 ∪ U2 = S

K `M φ1 ∧ φ2 : Prop(T1∪T2),(U1∩U2)

K `M φ1 : PropT1,U1 K `M φ2 : PropT2,U2 T1 ∪ U1 ∪ T2 ∪ U2 = S

K `M φ1 ∨ φ2 : Prop(T1∩T2),(U1∪U2)

K, X : κ `M X : κ
K `M φ : PropT,U

K `M [φ]J : Prop{0,1}
K `M φ : PropT,U

K `M ©φ : Prop∅,∅

K, X : κ `M φ : κ
K `M µX.φ : κ

K, X : κ1 `M φ : κ2
K `M λX.φ : κ1 → κ2

K `M φ0 : PropT1,U1 → · · · → PropTk,Uk → PropT,U K `M φi : PropTi,Ui (1 ≤ i ≤ k)
K `M φ0 φ1 . . . φk : PropT,U

Figure 4 Type Derivation Rules for the PHFL Subclass. Here X means the complement S \X.

I Lemma 26. Let φ be a PHFL formula such that K `M φ : κ in TM . Define the translation
from the set of types in TM to the set of types in PHFL by

tr(Prop{0,1}) = Prop{0,1} tr(PropT,U ) = Prop[0,1] tr(κ1 → κ2) = tr(κ1)→ tr(κ2)

and the translation of type environment K by (tr(K))(x) = tr(K(x)). Then we have tr(K) `
φ : tr(κ).

The lemma above can be proved by induction on the structure of φ. Using the lemma, we
can define the semantics of a type judgment of the type system TM by JK `M φ : κKM =
Jtr(K) ` φ : tr(κ)KM . As before, we often omit the type environment, the derived type and
the subscript of the Markov chain in the notation of the semantics.

I Example 27. Let p1, p2, p3 ∈ AP be atomic propositions satisfying ρAP(p2)∩ ρAP(p3) = ∅.
Consider the formula φ = ©(({p2} ∧ ©{p1}) ∨ ({p3} ∧ ©{p1})). For each s ∈ S, the
value JφK(s) represents the probability that a two-step transition starting from s reaches a
state satisfying p1 through a state satisfying p2 or p3. We can derive ∅ `M φ : Prop∅,∅ as
follows. First, {p1}, {p2}, and {p3} have types PropρAP(p1),ρAP(p1), PropρAP(p2),ρAP(p2), and
PropρAP(p3),ρAP(p3). It follows that {p2} ∧©{p1} and {p3} ∧©{p1} have types PropρAP(p2),∅)

and PropρAP(p3),∅. Since ρAP(p2) ∪ ρAP(p3) = ρAP(p2) ∩ ρAP(p3) = ∅ = S, the formula
({p2} ∧ ©{p1}) ∨ ({p3} ∧ ©{p1}) has type PropρAP(p2)∩ρAP(p3),∅, from which we obtain
∅ `M φ : Prop∅,∅. Note that the condition L(p2) ∩ L(p3) = ∅ was crucial in the type
derivation above. J

We have the following two theorems. The former one states the decidability result, and
the latter one states that the restricted subclass of the PHFL model-checking problems is
reasonably expressive. Proofs are found in Appendix B.

I Theorem 28. Let M be a Markov chain, and ψ be a PHFL formula satisfying `M ψ :
Prop{0,1}. Then it is decidable whether M |= ψ.
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I Theorem 29. There exists an algorithm that takes a recursive Markov chain R and a
rational number r as input, and outputs an order-1 PHFL formula φR and a Markov chain
MR such that `MR

[φR]≥r : Prop{0,1}, and the termination probability of R is no less than r
if and only if MR |= [φR]≥r.

6 Related Work

As mentioned in Section 1, PHFL can be regarded as a probabilistic extension of the higher-
order fixpoint logic, and as a higher-order extension of the µp-calculus. We thus compare our
work with previous studies on (non-probabilistic) higher-order fixpoint logic and those on (non-
higher-order) probabilistic logics. As already mentioned, for (non-probabilistic) HFL, model
checking of finite-state systems is known to be decidable [22], and k-EXPTIME complete [1].
This is in a sharp contrast with our result that PHFL model checking is highly undecidable
(both Π1

1-hard and Σ1
1-hard) even at order 1. As for studies on probabilistic logics, besides

the µp-calculus, there are other probabilistic extensions of the modal µ-calculus [19, 9, 17].
To our knowledge, however, ours is the first higher-order and probabilistic extension of the
modal µ-calculus.

Recently, Kobayashi et al. [10] introduced PHORS, a probabilistic extension of higher-
order recursion schemes (HORS), which can also be viewed as a higher-order extension of
recursive Markov chains (or probabilistic pushdown systems), and proved that the almost
sure termination problem is undecidable. Although the problem setting is quite different (in
our work, the logic is higher-order whereas the system to be verified is higher-order in their
work), our encoding of the µ-arithmetic has been partially inspired by their undecidability
proof; they also represented a natural number n as the probability 1

2n .

7 Conclusion

We have introduced PHFL, a probabilistic logic which can be regarded as both a probabilistic
extension of HFL and a higher-order extension of the probabilistic logic µp-calculus. We have
shown that the model-checking problem for PHFL for a finite Markov chain is undecidable
for the µ-only and order-1 fragment. We have also shown that the model-checking problem
for the full order-1 fragment of PHFL is Π1

1-hard and Σ1
1-hard. As positive results, we have

introduced a decidable subclass of the PHFL model-checking problems, and showed that the
termination problem of Recursive Markov Chains can be encoded in the subclass.

Finding an upper bound of the hardness of the PHFL model-checking problem is left for
future work. It is also left for future work to find a larger, more natural decidable class of
PHFL model-checking problems.
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Appendix

A Proof of Theorem 24

We prove the theorem by induction on the structure of φ. In this proof, we omit the subscript
M of J−KM for simplicity. We discuss only the main cases; see [18] for more details.

Case φ = X.
We have tr(φ) = X and JφKµ(θ) = θ(X) ∼Γ(X) ρ(X) = Jtr(φ)K(ρ).
Case φ = Z.
Then tr(φ) = {p′0} and A = N . We have JφKµ(θ) = 0 ∼N (1, 0, 0, 0) = Jtr(φ)K(ρ).
Case φ = S t.
Let n = JtKµ(θ). By the induction hypothesis, we have

Jtr(t)K(ρ) =
(

1
2n , 1− 1

2n , _, _
)
.

By the definition of tr(φ) and calculation, we have

Jtr(φ)K(ρ) =
(

1
2n+1 , 1− 1

2n+1 , _, _
)
,

which implies JS tKµ(θ) = n+ 1 ∼N Jtr(φ)K(ρ).
Case φ = (s ≤ t).
Let n = JsKµ(θ) and m = JtKµ(θ). By the induction hypothesis, we have

Jtr(s)K(ρ) = ( 1
2n , , 1−

1
2n , _, _)

Jtr(t)K(ρ) = ( 1
2m , , 1−

1
2m , _, _).

By the definition of tr(s ≤ t) and calculation, we have

Jtr(s ≤ t)K(ρ) =
{

(1,_,_,_) (if 1
2 ×

( 1
2n + (1− 1

2m )
)
≥ 1

2 , i.e. if n ≤ m)
(0,_,_,_) (if 1

2 ×
( 1

2n + (1− 1
2m )
)
< 1

2 , i.e., if n > m).

Thus, we have Js ≤ tKµ(θ) ∼Ω Jtr(s ≤ t)K(ρ) as required.
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Case φ = λX.ψ. In this case, A is of the form B → T , with Γ, X : B `µ ψ : T . By the
induction hypothesis, ψ satisfies

JΓ, X : B `µ ψ : T Kµ(θ[X 7→ v]) ∼B→T Jtr(Γ, X : B) ` tr(ψ) : tr(T )K(ρ[X 7→ u])

for any v ∈ JBK and u ∈ Jtr(B)K such that v ∼B u.
Therefore, by the definition of ∼B→T , we have

JΓ `µ φ : B → T Kµ(θ) ∼B→T Jtr(Γ) ` tr(φ) : tr(B → T )K(ρ)

as required.
Case φ = ψ1 ψ2. We have A = T , with Γ `µ ψ1 : B → T and Γ `µ ψ2 : B.
By the induction hypothesis, we have Jψ1Kµ(θ) ∼B→T Jtr(ψ1)K(ρ) and Jψ2Kµ(θ) ∼B
Jtr(ψ2)K(ρ). Therefore by the definition of ∼B→T , we have

Jψ1 ψ2Kµ(θ) = Jψ1Kµ(θ) (Jψ2Kµ(θ))
∼A Jtr(ψ1)K(ρ) (Jtr(ψ2)K(ρ))
= Jtr(ψ1 ψ2)K(ρ)

as desired.
Case φ = µX.ψ.
In this case, A = T , with Γ, X :T `µ ψ : T . By the induction hypothesis, for any v ∈ JT Kµ
and u ∈ Jtr(T )K such that v ∼T u, we have

JψKµ(θ[X 7→ v]) ∼T Jtr(ψ)K(ρ[X 7→ u]).

Since tr(µX.ψ) = µX.tr(ψ), it suffices to show:

JµX.ψKµ(θ) ∼T JµX.tr(ψ)K(ρ).

Let F : JT Kµ → JT Kµ and G : Jtr(T )K→ Jtr(T )K be the functions defined by:

F(v) := JψKµ(θ[X 7→ v]) G(u) := Jtr(ψ)K(ρ[X 7→ u]).

By the reasoning above, we have F ∼T→T G. By the definitions of the semantics, we
have JµX.ψKµ(θ) = LFP(F) and JµX.ψK(ρ) = LFP(G). Then there exists an ordinal α
such that

LFP(F) = Fα(⊥T ) and LFP(G) = Gα(⊥tr(T )),

where fβ(x) is defined by f0(x) = x, fβ+1 = f(fβ(x)), and fβ =
∨
γ<β

fγ(x) if β is a
limit ordinal. We shall prove by (transfinite) induction on β that Fβ(⊥T ) ∼T Gβ(⊥tr(T )),
which would imply

LFP(F) = Fα(⊥T ) ∼T Gα(⊥tr(T )) = LFP(G)

as required.
The base case F0(⊥T ) = ⊥T ∼T ⊥tr(T ) = G0(⊥tr(T )) follows by a straightforward
induction on the structure of T . The case where β is a successor ordinal follows immediately
from the induction hypothesis and F ∼T→T G. If β is a limit ordinal, then

Fβ(⊥T ) =
∨
γ<β
Fγ(⊥T ) and Gβ(⊥T ) =

∨
γ<β
Gγ(⊥T ).
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By the induction hypothesis (of the transfinite induction),

Fγ(⊥T ) ∼T Gγ(⊥T )

for every γ < β. Since ∼T is preserved by the least upper-bound operation (which can
be proved by an easy induction on T ), we have

Fβ(⊥T ) ∼T Gβ(⊥T )

as required.
Case φ = νX.ψ. Similar to the case for φ = µX.ψ above.

B Proofs for Section 5

B.1 Proof of Theorem 28
We first give a matrix representation for each value of the semantics of types of TM . As
mentioned before, we fix the underlying Markov chain M with the set of states S =
{s1, s2, . . . , sn}. Henceforth, we identify the set of functions S → [0, 1] with the set [0, 1]n.

We first give the formal definition of the semantics of types in TM . As explained in
Section 5, the values of function types are restricted to affine functions.

I Definition 30. For each type κ 6= Prop{0,1} in the type system TM , we define its semantics
JκK = (Dκ,vκ) by induction on κ as follows.
1. For κ = PropT,U , Dκ is the set {v ∈ JProp[0,1]K | ∀s ∈ T.v(s) = 0,∀s ∈ U.v(s) = 1} and

f1 vκ f2 if and only if ∀s ∈ S.f1(s) ≤ f2(s).
2. For κ = PropT1,U1 → PropT2,U2 → . . .PropTk,Uk → PropT,U (k ≥ 1), Dκ is the set of

affine functions f : ([0, 1]n)k → [0, 1]n which belong to Jtr(κ)K (with the identification
between [0, 1]S and [0, 1]n), and f1 vκ f2 if and only if for every tuple (v1, v2, . . . , vk) in
JPropT1,U1K× · · · × JPropTk,UkK, the relation f1 v1 v2 . . . vk v f2 v1 v2 . . . vk holds.

We now give a matrix representation Matκ(f) for each type κ 6= Prop{0,1} of TM and
f ∈ JκK. For v ∈ JPropT,U K, we write Vec(v) for the 1× n matrix (v(s1) v(s2) . . . v(sn)).

I Definition 31 (Matrix Representation). For an element f ∈ JκK where κ = PropT1,U1 →
PropT2,U2 → . . .PropTk,Uk → PropT,U (k ≥ 0), its matrix representation Matκ(f) is the
(unique) matrix M = (mij)ij of size (n+ 1)× (kn+ 1) satisfying the following conditions.
1. For every tuple (v1, v2, . . . , vk) where vi ∈ JPropTi,UiK (1 ≤ i ≤ k), the following equality

holds.

M
(

1 Vec(v1) Vec(v2) . . . Vec(vk)
)> =

(
1 Vec(f v1 v2 . . . vk)

)>
2. For each i (1 ≤ i ≤ k), sj ∈ Ti∪Ui, and ` (1 ≤ ` ≤ n+ 1), the equality m`,(i−1)n+j+1 = 0

holds.
3. For each j (1 ≤ j ≤ kn+ 1) and si ∈ T , the equality mi+1,j = 0 holds. Also, for each j

(2 ≤ j ≤ kn+ 1) and si ∈ U , the equaities mi+1,1 = 1 and mi+1,j = 0 hold.
4. For each j (2 ≤ j ≤ kn+ 1), the equalities m11 = 1 and m1j = 0 hold.
The existence of M satisfying the first condition is obvious from the assumption that f is
affine. The other conditions are imposed to ensure the uniqueness of M . We often omit the
type annotation and just write Mat for Matκ.

When k = 0, the matrix representation Mat(v) for v ∈ JPropT,U K is given by Mat(v) =(
1 Vec(v)

)>.
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Given a 2-dimensional matrix M , we write Mij for the (i, j)-entry of M . The order ≤
between two matricesM andM ′ of the same size (n+1)× (kn+1) is defined as the pointwise
order, i.e., M ≤M ′ def⇐⇒ ∀1 ≤ i ≤ n+ 1, 1 ≤ j ≤ kn+ 1.Mij ≤M ′ij .

We define the matrix semantics of a type κ by JκKMat = Mat(JκK) = {Mat(f) | f ∈ JκK}.
For a type environment K, its matrix semantics JKKMat is the set of maps ηMat satisfying
dom(ηMat) = dom(K) and ηMat(X) ∈ JK(X)KMat for all X ∈ dom(K). For a type derivation
K `M φ : κ, we write JK `M φ : κKMat for the map from JKKMat to Mat(JκK) defined by:

JK `M φ : κKMat(ηMat) = Mat(JK `M φ : κK(η))

Here, η satisfies η(X) = Mat−1(ηMat(X)) for each X ∈ dom(K). For the well-definedness of
JK `M φ : κKMat above, it must be the case that JK `M φ : κK(η) ∈ JκK, which can be easily
checked.

I Example 32. Let M = (S, P, ρAP , sin) be a Markov chain such that
S = {s1, s2, s3},
P satisfies P (s1, s2) = 0.4, P (s1, s3) = 0.6, P (s2, s1) = P (s3, s1) = 1 and P (si, sj) = 0
for all the other pairs (si, sj) ∈ S × S,
there exist p1, p2, p3 ∈ AP such that ρAP(pi) = {si} for each i ∈ {1, 2, 3}, and
sin = s1

Let us consider the the formula φ = λX.© ((({p1} ∨ {p2}) ∧©X) ∨ ({p3} ∧ ©X)). The
matrix representation of the semantics of φ is

r
φ : Prop{s3},∅ → Prop∅,∅

z

Mat
=


1 0 0 0
0 1 0 0
0 0 0.4 0
0 0 0.4 0


r
φ : Prop∅,{s3} → Prop∅,∅

z

Mat
=


1 0 0 0
0 1 0 0

0.6 0 0.4 0
0.6 0 0.4 0


Note that the matrix representation Jφ : κKMat depends on the type κ. J

Henceforth, we assume that a formula is given in the form of a hierarchical equation
system (HES) [11]: E = (X1 =µ φ1;X2 =µ φ2; . . . ;Xk =µ φk), where φi does not contain
fixpoint operators. The corresponding PHFL formula toPHFL(E) is given by:

toPHFL(X =µ φ) = µX.φ toPHFL(E ;X =µ φ) = toPHFL([µX.φ/X]E).

For an HES E = (X1 =µ φ1;X2 =µ φ2; . . . ;Xk =µ φk), we define the fixpoint equation
toFP(E) by:

toFP(E) := (M1 = Jφ1KMat(ηMat);M2 = Jφ2KMat(ηMat); . . . ;Mk = JφkKMat(ηMat)).

Here, ηMat maps each variable Xi to the matrix Mi that contains variables that represent
unknown values. The following theorem guarantees that the semantics of the formula can be
effectively computed by using the matrix representation (see [18] for details).

I Theorem 33. Let φ be a formula whose HES form is (X1 =µ φ1;X2 =µ φ2; . . . ;Xk =µ φk).
Suppose ∅ `M φ : PropT,U . Let (M1 = m1;M2 = m2; . . . ;Mk = mk) be the least solution of
the fixpoint equation toFP(E), and v be the entry of the matrix m1 which corresponds to the
initial state sin of the Markov chain. Then we have JφK(sin) = v.
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Since a fixpoint equation on reals can be solved in PSPACE [3], we have the following result
as a corollary of this theorem, which subsumes Theorem 28.

I Corollary 34. Let M be a Markov chain. If ∅ `M ψ : Prop{0,1}, then whether M |= ψ is
decidable in space polynomial in n(d+ s), where n is the number of the states of M , d is the
size of ψ and s is the sum of the arities of the order-1 variables bound by fixpoint operators.

B.2 Proof of Theorem 29
Recursive Markov chains can be encoded as order-1 probabilistic HORS (PHORS) [10]. Thus,
in this section, we show how the termination problem for PHORS can be encoded into a
PHFL model-checking problem in the restricted class.

We transform an order-1 PHORS G to a pair of a Markov chain M and a PHFL formula
φ typable in TM where, for any 0 ≤ r ≤ 1, the value J[φ]≥rK(sin) over the Markov chain M
equals 1 if and only if the termination probability of G is no less than r.

In the rest of this section we follow the notational conventions and definitions about
PHORS and higher-order fixpoint equations from [10].

We first fix an order-1 PHORS G = (N ,R, S) where dom(N ) = {S, F1, F2, . . . , Fm},
N (Fi) = o→ o→ · · · → o︸ ︷︷ ︸

ki

→ o (which is denoted by oki → o) and R is such that

FiX1X2 . . . Xki
= ti,L ⊕pi

ti,R for each 1 ≤ i ≤ m and S = tS ⊕1 Ω. Without loss of
generality, we assume p1 ≤ p2 ≤ · · · ≤ pm. We write P(G) for the termination probability of
the PHORS G.

We define the Markov chain M = (S, P, ρAP , sin) as follows.
S = {s0, s1, . . . , sm+1},
P satisfies P (s0, s1) = p1, P (s0, si) = pi − pi−1 for 2 ≤ i ≤ m, P (s0, sm+1) = 1 − pm,
P (si, s0) = 1 for 1 ≤ i ≤ m+ 1 and P (si, sj) = 0 otherwise,
ρAP(Pi) = {si} for each 0 ≤ i ≤ m+ 1, and
sin = s0.

Before defining the formula φ, we define, for each applicative term t of PHORS, the
PHFL formula 〈t〉 by induction on the structure of t as follows.

〈halt〉 = {P0} 〈Ω〉 = {false}
〈X〉 = X 〈Fi〉 = Fi

〈f u1 u2 . . . um〉 = 〈f〉 〈u1〉 〈u2〉 . . . 〈uk〉 .

We also define the formula br(φL, φR, i) for formulas φL, φR and an index 1 ≤ i ≤ m by:

br(φL, φR, i) = {P0} ∧©

((
(©φL) ∧

( ∨
1≤j≤i

{Pj}

))
∨

(
(©φR) ∧

( ∨
i+1≤j≤m+1

{Pj}

)))
.

Then the desired formula φ is given by φ = toPHFL(E) where E = (S =µ 〈tS〉 ;F1 =µ

λX1.λX2.. . .λXk1 .br(〈t1,L〉 , 〈t1,R〉 , 1);. . . ;Fm =µ λX1.λX2.. . .λXkm .br(〈tm,L〉 , 〈tm,R〉 ,m)).
Then φ has type Prop{s1,s2,...,sm+1},∅ (thus belongs to the decidable subclass), and P(G) =
JφK(sin) holds; see [18] for details.
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Abstract
Efficient pattern matching is fundamental for practical term rewrite engines. By preprocessing
the given patterns into a finite deterministic automaton the matching patterns can be decided in
a single traversal of the relevant parts of the input term. Most automaton-based techniques are
restricted to linear patterns, where each variable occurs at most once, and require an additional
post-processing step to check so-called variable consistency. However, we can show that interleaving
the variable consistency and pattern matching phases can reduce the number of required steps to find
all matches. Therefore, we take the existing adaptive pattern matching automata as introduced by
Sekar et al and extend these with consistency checks. We prove that the resulting deterministic
pattern matching automaton is correct, and show that its evaluation depth can be shorter than
two-phase approaches.
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1 Introduction

Term rewriting is a universal model of computation that is used in various applications,
for example to evaluate equalities or simplify expressions in model checking and theorem
proving. In its simplest form, a binary relation on terms, which is described by the term
rewrite system, defines the available reduction steps. Term rewriting is then the process of
repeatedly applying these reduction steps when applicable. The fundamental step in finding
which reduction steps are applicable is pattern matching.

There are two variants for the pattern matching problem. Root pattern matching can be
described as follows: given a term t and a set of patterns, determine the subset of patterns
such that these are (syntactically) equal to t under a suitable substitution for their variables.
The other variant, called complete pattern matching, determines the matching patterns for
all subterms of t. Root pattern matching is often sufficient for term rewriting, because
reduction steps invalidate other matches. A root pattern matching algorithm can be used to
naively solve the complete pattern matching problem by applying it to every subterm.

As the matching patterns need to be decided at each reduction step, various term indexing
techniques [7] have been proposed to determine matching patterns efficiently. Adaptive
pattern matching automata [8] (APMA) are tree-like data structures that are constructed
from a set of patterns. By using such an automaton one can decide the matching patterns
by only examining each function symbol of the input term at most once. Moreover it allows
for adaptive strategies, i.e., matching strategies that are not restricted to a fixed traversal
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such as a left-to-right traversal in [4]. The size of an APMA is worst-case exponential in the
size of the pattern set, but in practice its size is typically smaller and this preprocessing step
is beneficial when many terms have to be matched against a fixed pattern set.

The APMA approach works for sets of linear patterns, that is, in every pattern every
variable occurs at most once. As mentioned in other literature [4, 8] the non-linear matching
problem can be solved by first preprocessing the patterns, then solving the linear matching
problem and lastly checking so-called variable consistency. Performing matching and consist-
ency checking separately does not yield the optimal matching time. Therefore we extend the
existing APMA with consistency checking on the fly. Our extension preserves the adaptive
traversal of [8] and allows information about the matching step to influence the consistency
checking, and the other way around.

We introduce consistency automata (CA) to perform the variable consistency check
efficiently for a set of patterns. The practical use of this automaton is based on similar
observations as the pattern matching automata: there may be overlapping consistency
constraints for multiple patterns in a set. We prove the correctness for these consistency
automata and provide an analysis of its time and space complexity. We prove that the
consistency automaton approach yields a correct consistency checking algorithm for non-linear
patterns. Then we introduce adaptive non-linear pattern matching automata (ANPMA), a
combination of adaptive pattern matching automata and consistency automata. ANPMAs
use information from both match and consistency checks to allow the removal of redundant
steps. We show that ANPMA yield a correct matching algorithm for non-linear patterns. To
this end we also give a correctness proof for the APMA approach from [8], which was not
given in the original work.

We compare this work with other term indexing techniques. Most techniques use tree-like
data structures with deterministic [1, 4, 8, 9] or non-deterministic [3, 2, 6, 10, 5] evaluation.
In this setting a deterministic evaluation guarantees that all positions in the input term
are inspected at most once. Non-deterministic approaches typically have smaller automata,
but the same position might be inspected multiple times for input terms as a result of
backtracking.

Not all techniques support matching non-linear patterns. Discrimination trees [6], sub-
stitution trees [5] and match trees [9] can be extended with on-the-fly consistency checks
for matching non-linear patterns. Their evaluation strategy however is restricted to pre-
order evaluation and variable consistency must be checked whenever a variable which has
already been bound occurs at the current evaluated position of the pattern. We have also
considered code trees [10], which also have preorder evaluation with backtracking. These
allow consistency checks to occur at different places. All three approaches might inspect the
same position multiple times due to backtracking. The ANPMAs introduced in this paper
mitigate these issues: consistency checks are allowed to occur at any point in the automaton,
the evaluation strategy is not limited to a fixed strategy and there are no redundant checks.

2 Preliminaries

In this section the preliminaries of first-order terms and the pattern matching problem are
defined. We denote the disjoint union of two sets A and B by A ]B. Given two sets A and
B we use A→ B, A ⇀ B and A ↪→ B to denote the sets of total, partial and total injective
functions from A to B respectively. We assume that a partial function yields a special symbol
⊥ for elements in its domain for which it is undefined. Furthermore, we assume the existence
of an index set I and use A× I to denote the indexed family with elements denoted by i : a
for a ∈ A and i ∈ I.
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Let F =
⊎
i∈N Fi be a ranked alphabet. We say that f ∈ Fi is a function symbol with

arity, written ar(f), equal to i. Let Σ = V ] F be a signature where V is a set of variables.
The set of terms over Σ, denoted by TΣ, is defined as the smallest set such that V ⊆ TΣ
and whenever t1, . . . , tn ∈ TΣ and f ∈ Fn, then also f(t1, . . . , tn) ∈ TΣ. We typically use
the symbols x, y for variables, symbols a, b for function symbols of arity zero (constants),
f, g, h for function symbols of other arities and t, u for terms. The head of a term, written
as head, is defined as head(x) = x for a variable x and head(f(t1, . . . , tn)) = f for a term
f(t1, . . . , tn). We use vars(t) to denote the set of variables that occur in term t. A term for
which vars(t) = ∅ is called a ground term. A pattern is a term of the form f(t1, . . . , tn). A
pattern is linear iff every variable occurs at most once in it.

We define the (syntactical) equality relation = ⊆ T2 as the smallest relation such that
x = x for all x ∈ V, and f(t1, . . . , tn) = f(t′1, . . . , t′n) if and only if ti = t′i for all 1 ≤ i ≤ n.
Furthermore, the equality relation modulo variables =ω ⊆ T2 is the smallest relation such
that x =ω y for all x, y ∈ V, and f(t1, . . . , tn) =ω f(t′1, . . . , t′n) if and only if ti =ω t′i for
all 1 ≤ i ≤ n. Both = and =ω satisfy reflexivity, symmetry and transitivity and thus are
equivalence relations, and we can observe that = ⊆ =ω.

A substitution σ is a total function from variables to terms. The application of a
substitution σ to a term t, denoted by tσ, is the term where variables of t have been replaced
by the term assigned by the substitution. This can be inductively defined as xσ = σ(x) and
f(t1, . . . , tn)σ = f(tσ1 , . . . , tσn). We say that term u matches t, denoted by t ≤ u, iff there is a
substitution σ such that tσ = u. Terms t and u unify iff there is a substitution σ such that
tσ = uσ.

We define the set of positions P as the set of finite sequences over natural numbers where
the root position, denoted by ε, is the identity element and concatenation, denoted by dot,
is an associative operator. Given a term t we define t[ε] = t and if t[p] = f(t1, . . . , tn) then
t[p.i] for 1 ≤ i ≤ n is equal to ti. Note that t[p] may not be defined, e.g., f(x, y)[3] and
f(x, y)[1.1]. A position p is higher than q, denoted by p v q, iff there is position r ∈ N∗
such that p.r = q. Position p is strictly higher than q, denoted by p @ q, whenever p v q

and p 6= q. We say that a term t[q] is a subterm of t[p] if p @ q and t[q] is defined. The
replacement of the subterm at position p by term u in term t is denoted by t[p/u], which
is defined as t[ε/u] = u and f(t1, . . . , tn)[(i.p)/u] = f(t1, . . . , ti[p/u], . . . , tn). The fringe of
a term t, denoted by F(t), is the set of all positions at which a variable occurs, given by
F(t) = {p ∈ P | t[p] ∈ V}.

We also define a restricted signature for terms with a one-to-one correspondence between
variables and positions. First, we define VP as the set of position variables {ωp | p ∈ P}.
Consider the signature ΣP = F ] VP. We say that a term t ∈ TΣP is position annotated iff
for all p ∈ F(t) we have that t[p] = ωp. For example, the terms ωε and f(ω1, g(ω2.1)) are
position annotated whereas the term f(ω1.1) is not. Position annotated patterns are linear
as each variable can occur at most once.

A matching function decides for a given term and a set of patterns the exact subset of
these patterns that match the given term.

I Definition 1. Let L ⊆ TΣ be a set of patterns. A function matchL : TΣ → 2TΣ is a
matching function for L iff for all terms t we have matchL(t) = {` ∈ L | ∃σ : `σ = t}. If L
is a set of linear patterns then matchL is a linear matching function.

3 Adaptive Pattern Matching Automata

For a single linear pattern to match a given term it is necessary that every function symbol
of the pattern occurs at the same position in the given term.

FSCD 2020
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I Proposition 2. Let ` and `′ be linear patterns. We have that ` ≤ `′ if and only if for all
positions p: if head(`[p]) ∈ F then head(`[p]) = head(`′[p]).

A naive matching algorithm for linear patterns follows directly from this proposition:
to find all matches for term t one can check the proposition for every pattern separately.
However, for a set of patterns we can observe that whenever a specific position of the given
term is inspected a decision can be made for all patterns at the same time. This is the
purpose of so-called term indexing techniques [7]. Sekar et al. [8] describe the construction
of a so-called adaptive pattern matching automaton, abbreviated as APMA. Given a set of
linear patterns L an APMA can be constructed that can be used to decide for every term
t ∈ TΣ which patterns of L are matches for t. The advantage of using an APMA over the
naive approach is that for every input term, every position is inspected at most once.

We present the evaluation and construction procedures of APMAs slightly differently
compared to the presentation by Sekar et al. APMAs are state machines in which every
state is a matching state, which is labelled with a position, or final state, which is labelled
with a set of patterns. Matching states indicate that the term under evaluation is being
inspected at the labelled position. Final states indicate that a set of matching patterns is
found. The transitions are labelled by function symbols or an additional fresh symbol � /∈ F;
let F� = F ] {�}.

I Definition 3. An APMA is a tuple (S, δ, L, s0) where:
S = SM ] SF is a finite set of states consisting of a set of match states SM and a set of
final states SF ;
δ : SM × F� ⇀ S is a partial transition function;
L = LM ] LF is a state labelling function with LM : SM → P and LF : SF → 2TΣ

s0 ∈ SM is the initial state.
We only consider APMAs that have a tree structure that is rooted in s0. That is, δ is an
injective partial mapping and there is no pair (s, f) with δ(s, f) = s0.

Consider the patterns f(a, b, x), f(c, b, x) and f(c, b, c) with a, b, c ∈ F0, f ∈ F3 and
x ∈ V. Figure 1 shows an APMA that can be used to decide which of these patterns match.
In addition to the position label on every matching state, it also displays the term that
represents what has been matched so far. That is, in the state labelled with position 2, only
the function symbol f has been inspected. The term f(ω1, ω2, ω3) represents that f has been
inspected and the variables at positions 1, 2 and 3 represent that these positions have not
been inspected. We refer to this term as a prefix. Prefixes are not a part of the APMA; they
are included for comprehensiveness only. Later they will aid in the construction algorithm
and the correctness proof.

The function Match below defines the evaluation of an APMA on a term. Upon reaching
a final state s ∈ SF the evaluation yields the set of terms LF (s). In a matching state
s ∈ SM the head symbol head(t[LM (s)]) is examined. If there is an outgoing transition
labelled with this head symbol then evaluation continues in the resulting state; otherwise the
�-transition is taken. Whenever there is no outgoing �-transition then there is no match
and the evaluation returns the empty set as a result.

Match(M, t, s) =


LF (s) if s ∈ SF
Match(M, t, δ(s, f)) if s ∈ SM ∧ δ(s, f) 6= ⊥
Match(M, t, δ(s,�)) if s ∈ SM ∧ δ(s,�) 6= ⊥ ∧ δ(s, f) = ⊥
∅ if s ∈ SM ∧ δ(s,�) = δ(s, f) = ⊥

where f = head(t[LM (s)])
If we consider the APMA M of Figure 1 and let initial state s0 be the topmost state in

the figure. We have Match(M,f(a, b, a), s0) = {f(a, b, x)} and Match(M,f(b, b, b), s0) = ∅.
The term f(c, b, b) will yield the pattern set {f(c, b, x)}.
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ε : ωε

2 : f(ω1, ω2, ω3)

1 : f(ω1, b, ω3)

3 : f(a, b, ω3) 3 : f(c, b, ω3)

{f(a, b, x)} : f(a, b,�) {f(c, b, x), f(c, b, c)} : f(c, b, c) {f(c, b, x)} : f(c, b,�)

f

b

a c

�
c �

Figure 1 An APMA constructed from the patterns given above.

In Algorithm 1 the APMA construction is defined. Intuitively Construct creates the
APMA from root to leaf based on the pattern set L and the selection function Select. For
convenience we also assume that all patterns in L are position-annotated. In later sections
we drop this assumption in order to treat non-linear patterns. The algorithm is initially
called with the initial state s0, after which every recursive call corresponds to a state deeper
in the tree. The parameter Select is a function that determines in each recursive call which
position from work becomes the label for the current state. Based on the selected position,
the current state and the pattern set, outgoing transitions are created to fresh states where
the construction continues recursively.

The prefix associated with each state plays an important role during construction. The
function symbols in pref represent which function symbols have been matched so far and
the variables in pref represent which positions have not been inspected yet. Each recursive
call starts by removing all the patterns from L that do not unify with pref. Any match for
the removed patterns cannot reach the state of the subautomaton that is currently being
constructed. Therefore, the removed patterns do not have to be considered for the remainder
of the construction. If there are no variables in pref then there is nothing to be inspected
anymore. This is the termination condition for the construction; the current state s will
be labelled with the patterns that unify with pref. Otherwise, the work that still has to be
done, i.e., the set of positions that still have to be inspected, is the fringe of pref, denoted
by F(pref). If pref has the symbol � at position p then none of the patterns in L that have a
non-variable subterm at position p can unify with the prefix any more.

3.1 Proof of Correctness
We prove that this construction yields an APMA that is suitable to solve the matching problem
for non-empty finite sets of linear patterns. We make use of the following auxilliary definitions.
A path to sn is a sequence of state and function symbol pairs (s0, f0), . . . , (sn−1, fn−1) ∈
SM × F� such that δ(si, fi) = si+1 for all i < n. Because δ is required to be an injective
partial mapping there is a unique path to s for every state s, which we denote by path(s).
A matching state s is top-down iff L(s) = ε or there is a pair (si, fi) in path(s) with
L(si).j = L(s) for some 1 ≤ j ≤ ar(fi). State s is canonical iff there are no two states in
path(s) that are labelled with the same position. Finally we say that an APMA is well-formed
iff all matching states are top-down and canonical.

Well-formed APMAs allow us to inductively reconstruct the prefix of a state s as it was cre-
ated in the construction algorithm. We allow slight overloading of the notation and denote the
prefix of state s by pref(s). It is constructed inductively for well-formed APMAs by pref(s0) =

FSCD 2020
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Algorithm 1 Given a finite set of patterns L, this algorithm constructs an APMA for L. Initially,
it is called with M = (∅, ∅, ∅, s0), the initial state s = s0 and the prefix pref = ωε.

1: procedure Construct(L,Select,M, s, pref)
2: L′ := {` ∈ L | ` unifies with pref}
3: work := F(pref)
4: if work = ∅ then
5: M := M [SF := (SF ∪ {s}), LF := LF [s 7→ L′]]
6: else
7: pos := Select(work)
8: M := M [SM := (SM ∪ {s}), LM := LM [s 7→ pos]]
9: F := {f ∈ F | ∃` ∈ L′ : head(`[pos]) = f}
10: for f ∈ F do
11: M := M [δ := δ[(s, f) 7→ s′]] where s′ is a fresh unbranded state w.r.t. M
12: M := Construct(L,Select,M, s′, pref[pos := f(ωpos.1, . . . , ωpos.ar(f))])
13: if ∃` ∈ L′ : ∃pos′ v pos : head(`[pos′]) ∈ V then
14: M := M [δ := δ[(s,�) 7→ s′]] where s′ is a fresh unbranded state w.r.t. M
15: M := Construct(L,Select,M, s′, pref[pos := �])
16: return M

ωε and if δ(si, f) = si+1 then pref(si+1) = pref(si)[L(si)/f(ωL(si).1, . . . , ωL(si).ar(f))]. Simil-
arly, we denote the patterns of state s for all states by L(s) = {` ∈ L | ` unifies with pref(s)}.
Lastly we use an arbitrary function Select : 2P → P such that for all sets of positions work
we have Select(work) ∈ work.

I Lemma 4. For all finite, non-empty sets of patterns L we have that the procedure
Construct(L,Select, (∅, ∅, ∅, s0), s0, ωε) terminates and yields a well-formed APMA M =
(S, δ, L, s0).

For the remainder of the correctness proof assume an arbitrary finite, non-empty set of
position annotated patterns L and let M = (S, δ, L, s0) be the APMA for L that results from
Construct(L,Select, (∅, ∅, ∅, s0), s0, ωε). Furthermore, let t be an arbitrary term and let
Lt = {` ∈ L | ` ≤ t}.

The following lemmas state some claims and invariants about Construct and its relation
to Match. The proofs are rather tedious and are attached in the appendix.

I Lemma 5. For every every final state s: (a) the set L(s) is non-empty, (b) pref(s) is a
ground term, and (c) for all ` ∈ L(s) we have ` ≤ pref(s). Moreover (d) for every pattern
` ∈ L there is at least one final state s with ` ∈ L(s).

I Lemma 6. For all states s such that Match(M, t, s0) = Match(M, t, s) it holds that
Lt ⊆ L(s).

I Lemma 7. It holds that:
a) If Lt = ∅ then Match(M, t, s0) = ∅;
b) If Lt 6= ∅ then Match(M, t, s0) = Match(M, t, sf ) for some final state sf .

I Lemma 8. If Match(M, t, s0) = Match(M, t, sf ) for some final state sf then L(sf ) = Lt.

I Theorem 9. Then λt.Match(M, t, s0) is a linear matching function for pattern set L.

Proof. Let t be an arbitrary term and let Lt = {` ∈ L | ` ≤ t}. If Lt = ∅ then by Lemma 7
we get that Match(M, t, s0) = ∅ = Lt as required. If Lt is non-empty then by Lemma 7 we
have that Match(M, t, s0) = Match(M, t, sf ) for some final state sf . Then by definition
of Match we get Match(M, t, sf ) = L(sf ). From Lemma 8 it follows that L(sf ) = Lt,
by which we can conclude Match(M, t, s0) = Lt. Hence λt.Match(M, t, s0) is a linear
matching function for L. J
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4 Consistency Checking

As mentioned in other literature [4, 7, 8] a linear matching algorithm can be used to solve the
non-linear matching problem by transforming the patterns and checking so-called variable
consistency after the matching phase. This is required because a variable which occurs at
multiple positions can only be assigned a single value in the matching substitution. First, a
transformation step ensures that all input terms are changed into linear patterns by renaming
different occurrences of the variables in the non-linear patterns. The linear matching algorithm
can then be used to solve part of the non-linear matching problem. Finally, a consistency
check is performed to remove the linear patterns for which the substitution that witnesses
the match is not valid for the original patterns. We first focus on efficiently deciding this
variable consistency step.

4.1 Pattern Renaming

A straightforward way to achieve the renaming would be to introduce new variables for
each position in the fringe of each pattern. However, for patterns f(x, a) and f(x′, y′) the
variables x and x′ could be identical such that the assignment for x (or equally x′) yields a
substitution for both patterns. We can use position annotated variables, which are identical
for the same position in different patterns, to obtain these overlapping assignments.

For the consistency check it is necessary to keep track of equality constraints that are
forgotten when a non-linear pattern is renamed. For this purpose we introduce consistency
classes [7]. This is a set of positions with the following notion.

I Definition 10. Given a term t and a consistency class C ⊆ P we say that t is consistent
w.r.t. C if and only if t[p] = t[q] for all p, q ∈ C.

A pattern can give rise to multiple consistency classes. For instance, consider the pattern
f(x, x, y, y, y, z). Based on the occurrences of variables x, y and z we derive the three classes
{1, 2}, {3, 4, 5} and {6}. This means that for the input term t = f(t1, . . . , t6) that both
t[1] = t[2] and t[3] = t[4] = t[5] must hold; and finally t[i] = t[i] holds trivially for all
1 ≤ i ≤ 6, for this term to be consistent w.r.t. these classes. A set of consistency classes is
referred to as a consistency partition. The notion of term consistency w.r.t. a consistency
class is extended as follows. A term t is consistent w.r.t. a consistency partition P iff t is
consistent w.r.t. C for every C ∈ P .

First, we illustrate the renaming procedure by means of an example. For the purpose of
renaming, partitions of the fringe of a pattern are sufficient. Consider three patterns f(x, x, z),
f(x, y, x) and f(x, x, x). After renaming we obtain the following pairs of a linear pattern
and the corresponding consistency partition: (f(ω1, ω2, ω3), P1), (f(ω1, ω2, ω3), P2) and
(f(ω1, ω2, ω3), P3); with the consistency partitions P1 = {{1, 2}, {3}}, P2 = {{1, 3}, {2}} and
P3 = {{1, 2, 3}}. The term f(a, a, b) matches f(ω1, ω2, ω3) as witnessed by the substitution
id[ω1 7→ a, ω2 7→ a, ω3 7→ b], but f(a, a, b) is only consistent w.r.t. partition P1. Therefore,
the given term only matches pattern f(x, x, z).

We define a rename function that yields a position annotated term and a consistency
partition over F(t) for any given term.

I Definition 11. The term rename function rename : TΣ → (TΣP × 22P) is defined as

rename(t) = (rename1(t, ε), {{p ∈ P | t[p] = x} | x ∈ vars(t)})
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where rename1(t, ε) : (TΣ × P) → TΣP renames the variables of the given term to position
variables, which is defined below.

rename1(x, p) = ωp if x ∈ V
rename1(f(t1, . . . , tn), p) = f(rename1(t1, p.1), . . . , rename1(tn, p.n))

Note that for linear patterns the result is a position annotated term with trivial consistency
classes. We show a number of characteristic properties of the rename function which are
essential for the non-linear matching algorithm.

I Lemma 12. For all terms t ∈ TΣ if (t′, P ) = rename(t) then:
t =ω t

′;
for all p ∈ F(t): t′[p] = ωp;
for all u ∈ TΣ it holds that u matches t if and only if u matches t′ and u is consistent
w.r.t. P .

For the variable consistency phase a straightforward implementation follows directly
from Definition 10. Let P = {C1, . . . , Cn} be a partition. For each consistency class Ci, for
1 ≤ i ≤ n, there are |Ci| − 1 comparisons to perform, after which the consistency of a term
w.r.t. Ci is determined. This can be extended to partitions by performing such a check for
every consistency class in the given partition. We use the function is-consistent(t, P ) to
denote this naive algorithm. For a set of partitions {P1, . . . , Pm} the (naive) consistency
check requires exactly

∑
1≤j≤m

∑
C∈Pj

|C| comparisons if t is consistent w.r.t. P .
For the renaming procedure we must consider that the patterns f(x, x) and f(x, y) are

both renamed to the linear pattern f(ω1, ω2). However, then it is no longer possible to
identify the corresponding original pattern. This can be solved by considering an indexed
family of patterns, indexed by elements from I, and adapting the rename function to preserve
the corresponding indices. Now, when given an indexed linear pattern that resulted from
renaming we can identify the corresponding original pattern by its index. The following
lemma follows directly from the third property of Lemma 12.

I Lemma 13. Let L ⊆ TΣ × I be a set of patterns and let Lr ⊆ TΣP × 22P × I be the set of
linear patterns and corresponding consistency partitions resulting from renaming; i.e., Lr =
{rename(l) | l ∈ L}. Let match-linear : TΣ× 2TΣ ×I → 2TΣ ×I be a linear matching function
that preserves indices. For any term t ∈ L we define match : (TΣ × (TΣP × 22P × I))→ TΣ
as:

match(t,Lr) = {` | i : `′ ∈ L′ ∧ i : (`′, P ) ∈ Lr ∧ is-consistent(t, P )}

where L′ is equal to match-linear(t, {i : `′ | i : (`′, P ) ∈ Lr}). The function match is a
matching function.

4.2 Consistency Automata
In this section, we are only going to focus on solving the consistency checking efficiently
and later on we show that the matching time can be further improved by interleaving the
choices. Consider the consistency partitions P1 = {{1, 2}, {3}}, P2 = {{1, 3}, {2}} and
P3 = {{1, 2, 3}} again. We would expect that similarly to an APMA we can use the fact that
comparisons of overlapping partitions can be used to determine the subset of all consistent
partitions directly. This means that, at most three comparisons t[1] = t[2], t[2] = t[3] and
t[1] = t[3] would have to be performed to determine the consistent partitions. For this reason,
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{1, 2}

{1, 3} {1, 3}

{2, 3} {2, 3} {P2} ∅

{P1, P2, P3} {P1, P2} {P1} {P1}

3 7

3
7

3
7

3
7 3

7

Figure 2 The CA for the partitions P1 = {{1, 3}, {2}}, P2 = {{1, 2}, {3}} and P3 = {{1, 2, 3}}
where positions 1 and 2 are compared first, followed by 1 and 3 and finally 2 and 3. The grey states
are redundant and can be removed as shown in later steps.

we define consistency automata which are constructed from a set of consistency partitions.
Each state of this automaton is labelled with a pair of positions that should be compared.
Similar labelling is also present in other matching algorithms [10], but not presented as a
separate automaton. Afterwards, we show that redundant comparisons can be removed such
that this example requires at most two comparisons.

A consistency automaton, abbreviated CA, is a state machine where every state is a
consistency state, which is labelled with a pair of positions, or a final state, which is labelled
with set of partitions. The transitions are labelled with either 3 or 7 to indicate that the
compared positions are equal or unequal respectively. The evaluation of a CA determines
the consistency of a term w.r.t. a given set of partitions.

I Definition 14. A consistency automaton is a tuple (S, δ, L, s0) where:
S = SC ] SF is a set of states consisting of a set of consistency states SC and a set of
final states SF ;
δ : (SC × {3,7})→ S is a transition function;
L = LC ] LF is a state labelling function with LC : SC → P2 and LF : SF → 2I ;
s0 ∈ S is the initial state.

We show an example to illustrate the intuition behind the evaluation function of a CA.
Consider the consistency partitions P1 = {{1, 2}, {3}}, P2 = {{1, 3}, {2}} and P3 = {{1, 2, 3}}
again. Figure 2 shows a CA that can be used to decide the consistency of a given term t

w.r.t. any of these partitions. If the consider the state labelled with {1, 2} the subterms t[1]
and t[2] are compared. Whenever these are equal the evaluation continues with the 3-branch
and it continues with the 7-branch otherwise. If a final state (labelled with partitions) is
reached then t is consistent w.r.t. these partitions by construction.

The evaluation function of a CA for the input term and a given state, starting with the
initial state, is defined below. First, it checks whether the current state is final, in which case
the label L(s) indicates the set of indices such that t is consistent w.r.t. the partitions Pi for
i ∈ L(s). Otherwise, evaluation proceeds by considering the pair of positions given by SC(s).
The positions given by SC(s) are unordered pairs of positions (or 2-sets), denoted by P2, with
elements {p, q} such that p 6= q. These unordered pairs avoid unnecessary comparisons by
the reflexivity and symmetry of term equality. If the comparison yields true the evaluation
proceeds with the state of the outgoing 3-transition; otherwise it proceeds with the state of
the outgoing 7-transition.
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eval-ca(M, t, s) =

LF (s) if s ∈ SF
eval-ca(M, t, δ(s,3)) if s ∈ SC ∧ t[p] = t[q] where {p, q} = LC(s)
eval-ca(M, t, δ(s, 7)) if s ∈ SC ∧ t[p] 6= t[q] where {p, q} = LC(s)

The construction procedure of a CA is defined in Algorithm 2. Its parameters are the
automaton M that has been constructed so far, the set of partitions P and the current state
s. Additionally, parameter E contains the pairs of positions where the subterms are known
to be equal, and similarly N is the set of pairs that are known to be different. Lastly, a
selection function Select is used to define the strategy for choosing the next positions to
compare.

The partitions in P for which a pair {p, q} of positions is known to be different are
removed as these can not be consistent. The remaining partitions form the set P ′. To denote
the remaining work concisely we introduce the notation ⊆∈ for the composition of ⊆ and
∈; formally A ⊆∈ B iff ∃C ∈ B : A ⊆ C. Each pair of E that has already been compared
is removed from work. The condition on line 4 checks whether there are no choices left to
be made. If this is the case then all partitions in P ′ are consistent by construction and the
labelling function is set to yield the partitions P ′.

Otherwise, a pair {p, q} of positions in work is chosen by the Select function and two
outgoing transitions are created. A 3-transition is created that is taken during evaluation
whenever the subterms at positions p and q are equal and this information is recorded in E.
Otherwise, the fact that these are not equal is recorded in N and a corresponding 7-transition
is created.

Algorithm 2 Given a set of partitions P = {P1, . . . , Pn} then construct-ca(P,Select) com-
putes a CA using construct-ca(P,Select, (∅, ∅, ∅, s0), s0, ∅, ∅) that can be used to evaluate the
consistent partitions using eval-ca.

1: procedure construct-ca(P,Select,M, s, E,N)
2: P ′ := {Pi ∈ P | ¬∃C ∈ Pi : ∃{p, q} ∈ N : p, q ∈ C}
3: work := {{p, q} ∈ P2 | {p, q} ⊆∈ Pi ∧ Pi ∈ P ′} \ E
4: if work = ∅ then
5: M := M [SF := (SF ∪ {s}), LF := LF [s 7→ P ′]]
6: else
7: {p, q} := Select(work)
8: M := M [SC := (SC ∪ {s}), LC := LC [s 7→ {p, q}]]
9: M := construct-ca(P,Select,M [δ := δ[(s,3) 7→ s′]], s′, E ∪ {{p, q}}, N) where s′ is a

fresh unbranded state w.r.t. M .
10: M := construct-ca(P,Select,M [δ := δ[(s, 7) 7→ s′]], s′, E,N ∪ {{p, q}}) where s′ is a

fresh unbranded state w.r.t. M .
11: return M

The consistency automata obtained from this construction are not optimal, but later on
we show how some redundancies can be removed.

4.3 Proof of Correctness
We show the correctness of the construction and evaluation of a CA as defined in Theorem 17.
In the following statements let P = {P1, . . . , Pn} be a set of partitions where each partition
is a finite set of finite consistency classes and let Select : 2P2 → P2 be any selection function
such that Select(work) ∈ work for all non-empty work ⊆ 2P2 . For the termination of the
construction procedure we can show that the number of choices in work strictly decreases at
each recursive call. Again, the complete proofs are present in the appendix.
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I Lemma 15. The procedure construct-ca(P,Select) terminates.

For the construction procedure we can show that for parameter s it holds that s /∈ S
as a precondition. Therefore, we can use work(s) : S → 2P, E(s) : S → 2P2 and N(s) :
S → 2P2 to denote the values of work, E and N respectively during the recursive call of
construct-ca(P,Select,M, s,E,N). For the termination of the evaluation procedure we
can show that work(s) strictly decreases for the visited states s.

For the proof of partial correctness we show a relation between the pairs in E(s) and
N(s) and the comparisons performed in the evaluation function. First, we define for a term
t ∈ TΣ and parameters E,N ⊆ 2P2 the notion of consistency where t is consistent w.r.t. E
and N , denoted by (E,N) |= t, iff:
∀{p, q} ∈ E : t[p] = t[q], and
∀{p, q} ∈ N : t[p] 6= t[q]

A consistency automaton M = (S, δ, L, s0) is well-formed iff for all terms t ∈ TΣ and all
recursive calls eval-ca(M, t, s0) = eval-ca(M, t, sn) it holds that that (E(sn), N(sn)) |= t.

I Lemma 16. Let M = (S, δ, L, s0) be the result of construct-ca(P,Select). Then M
is well-formed.

Finally, we can show the correctness of using consistency automata to evaluate the
consistency of a given term w.r.t. partitions in P .

I Theorem 17. Let M = (S, δ, L, s0) be the result of construct-ca(P,Select) then
for all terms t ∈ TΣ we have P ′ = eval-ca(M, s0, t) for some P ′ ⊆ 22P , and
for all Pj ∈ P it holds that Pj ∈ P ′ iff the term t is consistent w.r.t. Pj.

Proof. We have already shown termination of the construction procedure in Lemma 15. Let
P ′ be the set of partitions returned by eval-ca(M, t, s0), let Pi ∈ P be any partition and
eval-ca(M, t, s0) = eval-ca(M, t, sn) for some final state sn ∈ SF . By Lemma 16 it holds
for all {p, q} ∈ E(sn) that t[p] = t[q] and for all {p, q} ∈ N(sn) that t[p] 6= t[q].
=⇒ ) Assume that Pj ∈ P ′. For all p, q such that {p, q} ⊆∈ Pj it holds that {p, q} ∈ E(sn)

as work(sn) is equal to ∅ for sn to become a final state in the construction. Therefore, for
all p, q ∈ C for consistency class C ∈ Pj it holds that t[p] = t[q] and as such t is consistent
w.r.t. Pj .

⇐= ) Assume that term t is consistent w.r.t. Pj . Proof by contradiction, assume that
Pj /∈ P ′. As such, there is a position pair {p, q} ⊆∈ Pj such that {p, q} ∈ N(sn). However,
then it follows that t[p] 6= t[q], from which we conclude that t can not be consistent w.r.t.
Pj . J

4.4 Efficiency
Given a CA M and a term t we define the evaluation depth, denoted by ED(M, t), as the
number of recursive eval-ca calls made to reach the final state. The size, denoted by |M |, is
given by the number of states of M . The number of transitions is omitted as each non-final
state has exactly two outgoing transitions. We define a notion of relative efficiency that
compares the evaluation depth of two automata for all input terms.

I Definition 18. Given two consistency automata M = (S, δ, L, s0) and M ′ = (S′, δ′, L′, s′0)
for a set of consistency partition P . We say that M �M ′ iff for all terms t ∈ TΣ it holds
that ED(M, t) ≤ ED(M ′, t).
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Figure 3 Two CA for the partitions P1 = {{1, 2}, {3, 4}} and P2 = {{1, 2, 3}}. The CA on the
left chooses {2, 3} first. However, as shown on the right selecting {1, 2} first removes both partitions,
and leads to a smaller CA.

We present two ways to improve the (time and space) efficiency of consistency automata.
First of all, the selection function used for construction influences the relative efficiency and
size of the resulting CA as shown in Figure 3.

Changing the selection function does not necessarily result in the most efficient (equivalent)
CA. If we consider Figure 2 again, we can observe that the resulting automaton is not optimal,
despite being the smallest w.r.t. the selection function, because some of the (final) states are
not reached during evaluation of any given term. For example, the final state labelled with
{P1, P2} is not reachable, because any term t ∈ TΣ that satisfies t[1] = t[2] and t[1] = t[3]
can not have that t[2] 6= t[3] by the transitivity of term equality. Removing the redundant
states reduces the number of states and yields a relatively more efficient CA.

Given a CAM = (S, δ, L, s0) and a non-final state s ∈ SC we give the following conditions
for its redundancy. Namely, whenever for all terms t ∈ TΣ that satisfy (E(s), N(s)) |= t it
holds that t[p] = t[q], for {p, q} := LC(s), s is said to be 3-redundant. Similarly, whenever
we can show that all consistent terms satisfy t[p] 6= t[q] then s is 7-redundant. Redundant
states can be removed from the automata without affecting the correctness of its evaluation
in the following way.

A state s that is 3-redundant can be removed by updating δ such that the incoming
transition δ(r, a) = s, for some r ∈ S and a ∈ {3,7}, is updated to δ(s,3). A similar
transformation of δ can be applied for states that are 7-redundant using δ(s,7). We can
observe that such a removal results in a relatively more efficient CA and that the size of the
CA is reduced by the number of states in the 3-branch (or 7-branch) respectively if states
unreachable by the transition relation are removed. Next, we prove that removal does not
influence the correctness of evaluation.

I Lemma 19. Let M = (S, δ, L, s0) be any CA that is well-formed. Then the resulting CA
M ′ where a 3-redundant or 7-redundant state v ∈ S is removed remains well-formed.

Using Lemma 19 and the fact that removing redundant states does not change the
labelling of any state we have shown that eval-ca(M, s0, t) = eval-ca(M ′, s0, t) for all t.

If we consider Figure 2 again it follows from transitivity that the left indicated state is
3-redundant and the right indicated state 7-redundant. If the indicated states are removed
then all states of the resulting CA are reachable, which could be argued for as a form of
local optimum. For transitivity it is relatively straightforward to construct a procedure to
identify and remove these states. However, it would be more interesting to devise a method
that determines all redundant states. Additional redundancies follow from the ordering of
positions. For example, a term can never be equal to any of its subterms. Defining this
complete procedure is left as future work.
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4.5 Worst-case Complexity
We establish several upper and lower bounds on the space and time complexity for consistency
automata. The maximum evaluation depth, given by maxt∈TΣ(ED(M, t)), is the measurement
for time complexity, where only the number of comparisons is counted. Finally, we only
consider the time-optimal automaton M for the complexity analysis, which is the CA where
the maximal evaluation depth is minimal from all possible selection functions.

For the time complexity of consistency automata we can show that each pair of positions is
compared at most once. Let n be the number of unique position pairs in the given partitions,
where each pair of positions is counted at most once. It can be shown that the worst-case
time complexity of the consistency automata evaluation is tightly bounded by O(n) and its
corresponding size is O(2n) . This follows essentially from the size of work for the first call
to the construction procedure, which reduces in each recursive call. The given bounds are
also tight as we can construct an example where the maximum evaluation depth requires
exactly n comparisons.

5 Adaptive Non-linear Pattern Matching Automata

We have shown in Lemma 13 that a naive matching algorithm for non-linear patterns can be
obtained by using a linear matching function followed by a consistency check. In that case
we have to check the consistency of all partitions returned by the linear matching function.
However, as shown in the following example overlapping patterns can unify with the same
prefix, but no term can match both patterns at the same time.

Consider the patterns: `1 : f(x, x) and `2 : f(a, b). After renaming we obtain the following
pairs (f(ω1, ω2), {{1, 2}}) and (f(a, b)), {∅}). Now, the resulting APMA has a final state
labelled with both patterns as shown in Figure 4a. We can observe that the consistency
check of positions one and two always yields false whenever the evaluation of a term ends up
in the final state labelled with {`1, `2}, because terms a and b are not equal. Therefore, this
comparison would be unnecessary.

ε : ωε

1 : f(ω1, ω2)

2 : f(a, ω2) {`1}

{`1, `2} {`1}

f

a
�

b
�

(a)

ε : ωε

1 : f(ω1, ω2)

2 : f(a, ω2) {1, 2}

{1, 2} {1, 2} {`1} ∅

{`1, `2} {`2} {`1} ∅

f

a
�

b
� 3

7

3
7

3
7

(b)

Figure 4 The resulting APMA shown on the left and the corresponding ANPMA with a grey
7-redundant state on the right.

We could also consider an alternative where the consistency phase is performed first, but
then we have the problem that whenever the given term is consistent w.r.t. partition {1, 2}
that matching on f(a, b) is avoided. To enable these kind of efficiency improvements, we
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propose a combination of APMAs and CAs to obtain a matching automaton for non-linear
patterns called adaptive non-linear pattern matching automata, abbreviated as ANPMAs.
The result is an automaton that has three kinds of states; matching states of APMAs,
consistency states of CAs and final states, and two transition functions; one for matching
states and one for consistency states.

I Definition 20. An adaptive non-linear pattern matching automaton (ANPMA) is a tuple
(S, δ, L, s0) with

S = SM ] SC ] SF is a set of states where SM is a set of matching states, SC is a set of
consistency states and SF is a set of final states;
δ = δF]δC is a partial transition function with δF : SM×F⇀ S and δC : SC×{3,7} → S;
L = LM ] LC ] LF is a state labelling function with LM : SM → P, LC : SC → P2 and
LF : SF → 2T;
s0 ∈ SM is the initial state.

We only consider ANPMAs that have a tree structure rooted in s0. Given an ANPMA
M = (S, δ, L, s0) and a term t the procedure Match(M, s0, t) below defines the evaluation
of the ANPMA. It is essentially the combination of the evaluation functions for the APMA
and CA depending on the current state.

MatchANPMA(M, t, s) =



LM (s) if s ∈ SF
MatchANPMA(M, t, δF (s, f)) if s ∈ SM ∧ δ(s, f) 6= ⊥
MatchANPMA(M, t, δF (s,�)) if s ∈ SM ∧ δ(s,�) 6= ⊥ ∧ δ(s, f) = ⊥
∅ if s ∈ SM ∧ δ(s,�) = δ(s, f) = ⊥
MatchANPMA(M, t, δC(s,3)) if s ∈ SC ∧ t[p] = t[q]
MatchANPMA(M, t, δC(s, 7)) if s ∈ SC ∧ t[p] 6= t[q]

where f = head(t[LM (s)]) and {p, q} = LC(s)

The construction algorithm of the ANPMA is defined in Algorithm 3. It combines the
construction algorithm of APMAs (Algorithm 1) and the construction algorithm for CAs
(Algorithm 2). The parameters that remain the same value during the recursion are the
original set L, the result of renaming Lr and the selection function Select. Next, we have
the ANPMAM , a state s and finally the current prefix pref similar to the APMA construction
and the sets of position pairs E and N as in the consistency automata construction.

First we remove the terms that do not have to be considered anymore. These are the
elements i : (`, P ) from Lr such that P is inconsistent due to the pairs in N and pref does not
unify with `. Obtaining work for both types of choices is almost the same as before. However,
for workC we have added the condition that the positions must be defined in the prefix to
ensure that these positions are indeed defined when evaluating a term. The termination
condition is that both workF and workC are empty, or that the set of patterns L′r has become
empty. The latter can happen when the inconsistency of two positions removes a pattern,
which could still have other positions to be matched.

The function Select is a function that chooses a position from workF or a pair of
positions from workC. Its result determines the kind of state that s becomes and as such
also the outgoing transitions. If a position is selected then s will become a matching state
and the construction continues as in Algorithm 1. Otherwise, similar to Algorithm 2 two
fresh states and two outgoing transition labelled with 3 and 7 are created, after which the
parameters E and N are updated.
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Algorithm 3 Given a set of patterns L and a renamed set of patterns Lr, this algorithm computes
an ANPMA for L. Initially it is called with M = (∅, ∅, ∅, s0), the initial state s = s0, the prefix
pref = ωε, and E = N = ∅.

1: procedure ConstructANPMA(L,Lr,Select,M, s, pref, E,N)
2: L′

r := {i : (`, P ) ∈ Lr | ` unifies with pref ∧ ¬∃C ∈ P : ∃{p, q} ∈ N : p, q ∈ C}
3: workF := F(pref)
4: workC := {{p, q} ∈ P2 | {p, q} ⊆∈ Pi ∧ (i : `, i : Pi) ∈ L′

r ∧ pref[p] and pref[q] are defined} \ E
5: if (workF = ∅ and workC = ∅) or (L′

r = ∅) then
6: M := M [SF := SF ∪ {s}, L := L[s 7→ {i : ` ∈ L | i : `′ ∈ L′}]]
7: else
8: next := Select(workF,workC)
9: if next = pos for some position pos then
10: M := M [SM := (SM ∪ {s}), LM := LM [s 7→ pos]]
11: F := {f ∈ F | ∃(i : (`, P )) ∈ L′

r : head(`[pos]) = f}
12: for f ∈ F do
13: M := M [δ := δ[(s, f) 7→ s′]] where s′ is a fresh unbranded state w.r.t. M
14: M := ConstructANPMA(L,Lr,Select,M, s′, pref[pos/f(ωpos.1,. . . ,ωpos.ar(f))], E,N)
15: if ∃(i : (`, P )) ∈ L′

r : ∃pos′ ≤ pos : head(`[pos′]) ∈ V then
16: M := M [δ := δ[(s,�) 7→ s′]] where s′ is a fresh unbranded state w.r.t. M
17: M := ConstructANPMA(L,Lr,Select,M, s′, pref[pos/�], E,N)
18: else if next = {p, q} for some pair {p, q} ∈ P2 then
19: M := M [SC := (SC ∪ {s}), LC := LC [s 7→ {p, q}]]
20: M := ConstructANPMA(L,Lr,Select,M [δC := δC [(s,3) 7→ s′]], s′, pref, E ∪
{{p, q}}, N)

where s′ is an unbranded state w.r.t. M .
21: M := ConstructANPMA(L,Lr,Select,M [δC := δC [(s, 7) 7→ s′]], s′, pref, E,N ∪
{{p, q}})

where s′ is an unbranded state w.r.t. M .
22: return M

5.1 Correctness
The ANPMA construction algorithm yields an ANPMA that is suitable to solve the matching
problem for non-empty finite sets of (non-linear) patterns. This can be shown by combining
the efforts of Theorem 9 and Theorem 17 and the proofs can be found in the appendix.

Let L be a finite non-empty indexed family of (non-linear) patterns and let (Lr, P ) =
rename(L). Suppose that Select : 2P × 2P2 → P ] P2 is any function such that for all
sets of positions workF and position pairs workC we have that Select(workF,workC) ∈
workF ] workC.

We extend the auxiliary definitions for APMA as follows. A path to sn is a sequence with
both types of labels (s0, a0), . . . , (sn−1, an−1) ∈ S × (F� ] {3,7}) such that δ(si, ai) = si+1
for all i < n. A position p is called visible for state s iff there is a pair (si, ai) in path(s)
such that L(si).i = p for some 1 ≤ i ≤ ar(fi) or L(s) = ε. A state s is top-down iff s ∈ SM
and LM (s) is visible or s ∈ SC and both positions in LC(s) are visible. State s is canonical
iff there are no two matching states in path(s) that are labelled with the same position.
Finally we say that an ANPMA is well-formed iff L(s0) = ε, and all states are top-down and
canonical.

I Lemma 21. The procedure ConstructANPMA(Lr, P,Select, (∅, ∅, ∅, s0), s0, ωε, ∅, ∅)
terminates and yields a well-formed ANPMA.

Let M = (S, δ, L, s0) be the ANPMA resulting from ConstructANPMA(L,Select). Let
t ∈ TΣ be a term and Lt be equal to {i : ` ∈ L | ` ≤ t}. For every state s ∈ S we define L(s)
to be equal to {i : ` ∈ L | i : (`′, P ) ∈ L′r(si)}. We show that the evaluation algorithm on M
satisfies a number of invariants.

I Lemma 22. For all s ∈ S such that MatchANPMA(M, t, s0) = MatchANPMA(M, t, s)
it holds that: (a) (E(si), N(si)) |= t, (b) Lt ⊆ L(s) and (c) if s ∈ SF then L(sf ) = Lt.
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I Lemma 23. If Lt = ∅ then MatchANPMA(M, t, s0) = ∅.

I Theorem 24. Then λt.MatchANPMA(M, t, s0) is a matching function for L.

Proof. If Lt is empty then by Lemma 23 we get that MatchANPMA(M, t, s0) = ∅ = Lt as
required. Otherwise, we have that MatchANPMA(M, t, s0) = MatchANPMA(M, t, sf )
for some final state sf . Then by the definition of MatchANPMA and Lemma 22 we
conclude MatchANPMA(M, t, s0) = MatchANPMA(M, t, sf ) = L(sf ) = Lt. J

5.2 Strategy
The notion of 3-redundancy (and 7-redundancy) that we defined for CA can be easily
extended to ANPMA. However, we can even identify more redundant states by considering
the prefix for a given state s. Namely, for a state s labelled with a pair of positions {p, q},
given by LC(s), we can observe that s is 7-redundant whenever pref[p] does not unify with
pref[q], because if they do not unify then they can not be equal. Consider the patterns
`1 : f(x, x) and `2 : f(a, b) again, we show the resulting ANPMA in Figure 4b.

6 Conclusion and Future Work

In this paper, we presented a formal proof for the correctness of APMAs. Furthermore, we
introduced CAs as a deterministic automaton to perform the consistency checking, from
which some redundant states could be removed by taking the previous choices into account.
These two automata are then combined to obtain an ANPMA which could be evaluated by
only performing comparisons and taking the corresponding outgoing edge.

ANPMAs offer a formal platform to study the relations between linear pattern matching
and consistency checking. There are still some questions that have arisen from this work. As
mentioned in the previous section, the current ANPMA construction algorithm can contain
redundant states. For the moment it is still unclear how to detect which states are redundant.
An interesting direction for future research is to optimise the ANPMA construction algorithm
that creates an optimal ANPMA on the fly.

Secondly we did not study selection functions in this work. All three automaton construc-
tion algorithms in this paper are parametrised in a selection function that decides for each
node what will happen next. We have shown that all constructions yield correct automata
for any selection function, with the side note that the selection indeed yields an element
from its input set. The size of all three kinds of automata depends heavily on the selection
function that is used. For APMAs some selection functions have already been studied in [8].

Thirdly it would be interesting to implement this approach. This work is a theoretical
approach to ultimately obtain micro-optimisations in for example term rewriting. Many
formalisms do not support non-linear patterns and as discussed in the introduction, many
solutions to the pattern matching problem do not support it. It would be interesting to find
out in practise whether exploiting O(1) term equality checking is worth the extra overhead
that the ANPMA approach carries with it.
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A Proof of Lemma 4

Proof. The set L is finite, so all non recursive statements terminate. The for loop in
particular treats finitely many function symbols from F . Finally, we show that the prefixes
of the recursive calls are ordered by the matching ordering <. The algorithm Construct
realises that the prefix is only defined for defined positions of patterns in L. Hence this
ordering is well-founded on the recursive calls and the construction terminates.

Upon termination the result M is indeed an APMA. For every function symbol in F

exactly one transition is created and at most one �-transition is created, so δ is a partial
mapping. Since the target states of these transitions are fresh we have that δ is injective.
Moreover there is no transition to s0 since the algorithm is initially called with s0. Hence M
is an APMA.

We check thatM is well-formed. By construction we have L(s0) = ε since the construction
procedure is called with the prefix ωε. Let s be an arbitrary non-final state and consider
the stage of the construction algorithm Construct(L,Select,M, s, pref). A position label
p.i is only chosen if it occurs in the fringe of pref. Therefore there must have been a state
labelled with p where the variable ωp.i was put in the prefix, so s must be top-down. Lastly s
is canonical because once a position p is chosen, it cannot be chosen again since the variable
ωp is replaced by an element of F� in the prefix. Hence M meets all requirements for
well-formedness. J

B Proof of Lemma 5

Proof. First observe that L(s) is non-empty for all states s. Let s be a final state.
a) Since L(s) = L(s) and L(s) is non-empty the claim holds.
b) The prefix pref(s) is ground for final states s because the construction only creates final

states if pref(s) has no variables.
c) By construction we have L(s) = {` ∈ L | ` unifies with pref(s)}. Since pref(s) is ground

we have that for all ` ∈ L(s) that ` ≤ pref(s).
d) Let ` ∈ L. The following invariant holds for the construction algorithm: for all matching

states s′, if ` ∈ L(s′) then there is a pair (s′′, f) such that δ(s′, f) = s′′ and ` ∈ L(s′′). J
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C Proof of Lemma 6

Proof. By induction on the length of path(s). If there are no pairs in path(s) then it must
be that s = s0. For the initial state we have Lt ⊆ L = L(s0) = L(s), so the base case holds.

Let s be an arbitrary state and suppose that Match(M, t, s0) = Match(M, t, s) and
assume the induction hypothesis Lt ⊆ L(s). Now suppose Match(M, t, s) = Match(M, t, s′)
where s′ = δ(s, f) for some f ∈ F� and let L(s) = p.

If f ∈ F then pref(s′) = pref(s)[p/f(ωp.1, . . . , ωp.ar(f))]. By definition of Match we know
that head(t[p]) = f .
Let ` ∈ Lt. We show that ` unifies with pref(s′). We know that ` ≤ t by assumption.
From the induction hypothesis it follows that ` unifies with pref(s). So there is a term u

such that ` ≤ u and pref(s) ≤ u. Then we distinguish two cases.
If `[p′] is a variable for some p′ v p then ` unifies with pref(s′).
If head(`[p]) is a function symbol then by ` ≤ t it must be that head(`[p]) = f , so `
unifies with pref(s′).

If f = � then pref(s′) = pref(s)[p/�]. By definition of Match we know that
δ(s, head(t[p])) is undefined.
From the construction algorithm we then know that there is no pattern ` ∈ L(s) such
that head(`[p]) ∈ F and there is at least one pattern ` ∈ L(s) such that `[p′] is a variable
for some position p′ v p.
Let ` ∈ Lt. By induction hypothesis we know that ` unifies with pref(s). We show that `
unifies with pref(s′) by showing that `[p′] = ωp′ for some position p′ v p.

Suppose that `[p] exists. Since ` ≤ t and head(t[p]) 6= head(`[p]) it must be that
`[p] = ωp.
Suppose that `[p] does not exist. Pick the lowest position p′ such that p′ @ p and `[p′]
exists and assume for a contradiction that head(`[p′]) = f for some function symbol
f . Then it must be that head(pref(s)[p′]) = f by the induction hypothesis. However,
pref(s)[p] exists and from p′ @ p it follows that `[p] has subterms of the function symbol
f , which contradicts the assumption that p′ is the lowest position strictly higher than
p. So `[p′] = ωp′ . J

D Proof of Lemma 7

Proof.
a) We show that Match(M, t, s0) 6= L(s) for all final states s. Let sf be an arbitrary final

state and pick some pattern ` ∈ L(sf ). By assumption ` 6≤ t and by Proposition 2 it
follows that there is a position p and a function symbol f ∈ F such that head(`[p]) = f

and head(t[p]) 6= f . By Lemma 5 it must be that head(pref(s)[p]) = f , by which there
must be a pair (si, f) ∈ path(s). Since Match is a function we have Match(M, t, s0) =
Match(M, t, si) = Match(M, t, sf ). However, by definition of Match we know that
head(t[p]) = f , which contradicts the assumption that l ∈ L(sf ).

b) Let ` ∈ Lt. We prove that for all s such that Match(M, s0, t) = Match(M, s, t), we
have that δ(s, head(t[L(s)])) or δ(s,�) is defined.
Suppose that Match(M, s0, t) = Match(M, s, t). From Lemma 6 it follows that ` ∈ L(s).
If head(`[L(s)]) = f for some function symbol f then the construction algorithm created
an f -transition to a new state, by which δ(s, f) exists. Otherwise if head(`[L(s)]) does
not exist then by ` ≤ t there must be a position p @ L(s) such that `[p] = ωp. In that
case a �-transition is created and hence δ(s,�) exists.
By definition of Match we then have that Match(M, s0, t) cannot yield the empty set,
so it must terminate in a final state. J
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E Proof of Lemma 8

Proof. Since L(sf ) = L(sf ) we know that Lt ⊆ L(sf ) by Lemma 6. It only remains
show that L(sf ) ⊆ Lt. Since sf is a final state we have that pref(sf ) is ground; therefore
L(sf ) = {` ∈ L | ` ≤ pref(sf )}. Suppose for a contradiction that there is some ` ≤ pref(sf )
such that ` 6≤ t. Then there is a position p such that head(`[p]) ∈ F and head(t[p]) 6= head(`[p]).
We have head(`[p]) = head(pref(sf )[p]) by assumption. So, there is a pair (si, fi) in path(sf )
such that L(si) = p. By definition of Match we then have head(t[p]) = fi = head(`[p]), a
contradiction. J

F Proof of Lemma 12

Proof. We can show by induction on positions that t =ω rename1(t, ε) to prove the first state-
ment. For the second statement let p ∈ F(t). First, we can show that t′[p] = rename1(t[p], p)
by induction on position p. From t[p] ∈ V it follows that t′[p] is equal to ωp.

For the last property let P be equal to {{p ∈ P | t[p] = x} | x ∈ vars(t)} and let u be an
arbitrary term. Assume that u is consistent w.r.t. P and u matches t′. The latter means
that there is a substitution σ such that t′σ = u. It follows that for all positions p ∈ F(t′)
that σ(t′[p]) = u[p]. As u is consistent w.r.t. P it means that for all x ∈ V and p, q ∈ P
that if t[p] = t[q] = x then u[p] = u[q]. Therefore, we can construct the substitution ρ such
that for all p ∈ F(t) we assign u[p] to t[p], where the latter is some variable in vars(t). The
observation of consistency above lets us conclude that there is only one such substitution ρ.
From t =ω t

′ it follows that tρ = t′σ and as such tρ = u, which means that u matches t.
Otherwise, if u matches t then there is a substitution σ such that tσ = u. Let ρ be the

substitution such that for all positions p ∈ F(t) we assign σ(t[p]) (which is equal to u[p]) to ωp.
As t′ is linear it follows that each ωp is assigned once and thus ρ(ωp) = σ(t[p]) by definition.
Again, from t =ω t

′ it follows that t′ρ = tσ and as such u matches t′. Finally, for all positions
p and q such that t[p] = t[q] = x for variable x ∈ V it follows that u[p] = u[q] = σ(x). We
can thus conclude that u is consistent w.r.t. P . J

G Proof of Lemma 15

Proof. Consider the pair of positions {p, q} that is taken from work at line 7. It is easy to
see that {p, q} /∈ E, and {p, q} /∈ N follows directly from the fact that P ′ only consists of
partitions of which the consistency classes do not contain positions together in a pair of
N . Therefore, it follows that in subsequent recursive calls {p, q} cannot be in work again
as either E or N is extended with {p, q} and no elements are ever removed from E or N .
Furthermore, the execution of all other statements terminates as #(P ) is finite, which also
means that |E| and |N | are finite as inserted pairs satisfy {p, q} ⊆∈ P ′. Finally, the selection
function terminates by assumption. J

H Proof of Lemma 16

Proof. The recursive calls form an evaluation series (s0, a0), . . . , (sn, an) for si ∈ S and ai ∈
{3,7} for 0 ≤ i < n such that eval-ca(M, si, t) = eval-ca(M, si+1, t) and δ(si, ai) = si+1.
Let t ∈ TΣ be any term. We prove the statement by induction on the length of the evaluation
series.

Base case. We have E(s0) = N(s0) = ∅ and as such the statement holds vacuously.

FSCD 2020



20:20 Adaptive Non-Linear Pattern Matching Automata

Inductive step. Suppose that the statement holds for eval-ca(M,t,s0)=eval-ca(M, t, s).
Suppose that eval-ca(M, t, s) = eval-ca(M, t, s′) where s′ = δ(s, a) for a ∈ {3,7} and let
LC(s) = {p, q}. There are two cases to consider:

t[p] = t[q] in which case E(s′), where s′ is equal to δ(s,3), is E(s) extended with {p, q}
and N(s′) = N(s).
Otherwise, t[p] 6= t[q] in which case N(s′) is equal to N(s) extended with {p, q} and
E(s′) = E(s).

In both cases (E(s′), N(s′)) |= t holds by definition. J

I Proof of Lemma 19

Proof. The recursive calls form an evaluation series (s0, a0), . . . , (sn, an) for si ∈ S and
ai ∈ {3,7} for 0 ≤ i < n such that eval-ca(M, si, t) = eval-ca(M, si+1, t) and δ(si, ai) =
si+1. By well-formedness of M we know, for all terms t ∈ TΣ and all evaluation series
(s0, a0), . . . , (sk, ak) ∈ (S×{3,7}) of eval-ca(M, s0, t), that for all states si, with 0 ≤ i ≤ k,
it holds that (E(si), N(si)) |= t. Now, we only have to consider sequences that contain the
state v as the other evaluation sequences remain the same. Consider any such sequence and
let u be the state in that sequence such that δ(u, a) = v, for some a ∈ {3,7}, and let t be
an arbitrary term. Note that the initial state can not be removed by this procedure. Let
{p, q} be the value of LC(v) then there are two cases to consider:

v is 3-redundant. It follows that t[p] = t[q] for {p, q} := LC(s). All sequences such that
v occurs in it must contain exactly the pair (v,3) by definition of 3-redundancy. We
conclude that (E(u) ∪ {{p, q}}, N(u)) |= t holds and the term remains consistent with all
extensions to E and N for the remaining states in the sequence.
s is 7-redundant. Similarly, with the observation that (E(v), N(v) ∪ {{p, q}}) |= t. J

J Proof for Lemma 21

Proof. We only show that the recursion terminates. The rest is similar to the proof for
Lemma 4, with the additional observation that positions in P are only chosen when they
are defined in the prefix. Given the parameters pref1, E1, N1 and pref2, E2, N2 we can fix the
ordering:

(pref1 < pref2 ∧ E1 = E2 ∧N1 = N2) ∨
(pref1 = pref2 ∧ E1 ⊂ E2 ∧N1 = N2) ∨
(pref1 = pref2 ∧ E1 = E2 ∧N1 ⊂ N2) .

The prefixes are again only defined on positions that are defined in patterns of L and the sets
E and N are bounded by a finite product of positions, hence the ordering is well-founded.
The recursive calls conform to to this ordering; therefore the recursion terminates. J

K Proof for Lemma 22

Proof. Take an arbitrary term t. We prove the first two invariants by induction on the
length of path(s).

Base case, the empty path and as such s = s0. E(s0) = N(s0) = ∅ and Lt ⊆ L, and
L = L(s0) = L(s), as such the statements hold vacuously.
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Inductive step. Let s be an arbitrary state and suppose that the statements hold for
MatchANPMA(A, t, s0) = MatchANPMA(A, t, s). Suppose MatchANPMA(A, t, s) =
MatchANPMA(A, t, s′) for some s′ = δ(s, x) such that x ∈ (F� ] {3,7})). Now, there are
two cases to consider:

s ∈ SC . Let {p, q} be the value of LC(sk). Again, there are two cases to consider:
t[p] = t[q] in which case E(s′) is E(s) ∪ {p, q} and N(s′) = N(s). Therefore,
(E(s′), N(s′)) |= t holds. Furthermore, L(s′) = L(s) because also pref(s′) = pref(s).
Otherwise, t[p] 6= t[q] in which case N(s′) is equal to N(s) ∪ {p, q} and E(s′) = E(s).
Therefore, (E(s′), N(s′)) |= t holds. Consider any i : l ∈ L(s) such that i : l /∈ L(s′).
From pref(s′) = pref(s) it follows that for i : (l′, P ) ∈ Lr it holds that P is not consistent
w.r.t. t by observation that positions {p, q} ⊆∈ P are included in N and t[p] 6= t[q].
Therefore, by Lemma 12 it holds that i : l /∈ Lt.

s ∈ SM . It hold that E(s′) = E(s) and N(s′) = N(s). Therefore, (E(s′), N(s′)) |= t

remains true. Now, we can use the same argument as before to argue that any pattern
removed must not unify with pref(s′). Then the same arguments as given in Lemma 6
can be used to show that Lt ⊆ L(s′) holds.

Finally, if s ∈ SF from the fact that L(s) = L(s) we know that Lt ⊆ L(s). It only remains
show that L(sf ) ⊆ Lt. There are two cases for this state to become a final state during
construction:

Both workC = ∅ and workF = ∅. Suppose for a contradiction that there is some i : l ∈ L(sf )
such that i : l /∈ Lt. It follows that l � t, which means that for i : (l′, P ) ∈ Lr that
l′ 6≤ t or t is not consistent w.r.t. P by Lemma 12. We show that both cases lead to a
contradiction:

Case l′ 6≤ t. This follows essentially from the same observations as Lemma 8.
Case t is not consistent w.r.t. P . From the fact that pref(sf ) unifies with t and that it
is a ground term due to workF = ∅ it follows that for all p, q such that {p, q} ⊆∈ Pi
they are defined in pref(s) and therefore it holds that {p, q} ∈ E(s). Therefore, for all
p, q ∈ C for consistency class C ∈ Pi it holds that t[p] = t[q] and as such t is consistent
w.r.t. Pi. As such i is not an element of L(sf ), contradicting our assumption.

The set L(s) is empty. In this case L(sf ) is empty and L(sf ) ⊆ Lt by definition. J

L Proof for Lemma 23

Proof. We show that Match(M, t, s0) 6= L(s) for all final states s for which for L(s) 6= ∅.
Let sf be an arbitrary final state such that L(s) 6= ∅ and pick some pattern i : ` ∈ L(sf ). By
assumption ` 6≤ t and by Lemma 12 it holds for the pair i : (`′, P ) ∈ Lr that `′ 6≤ t or t is
not consistent w.r.t. P .

If `′ 6≤ t then by Proposition 2 it follows that there is a position p and a func-
tion symbol f ∈ F such that head(`[p]) = f and head(t[p]) 6= f . By Lemma 5 it
must be that head(pref(s)[p]) = f , by which there must be a pair (si, f) ∈ path(s).
Since MatchANPMA is a function we again have that MatchANPMA(M, t, s0) =
MatchANPMA(M, t, si) = MatchANPMA(M, t, sf ). However, by its definition we
know that head(t[p]) = f , which contradicts the assumption that i : l ∈ L(sf ).
If t is not consistent w.r.t. P . By Lemma 22 we know that (E(sf ), N(sf )) |= t and for
all pairs {p, q} ⊆∈ P it holds that {p, q} ∈ E for workC to become empty, because all
positions of pattern l are defined in the prefix pref(sf ). As such t must be consistent
w.r.t. P , which contradicts the assumption that i : l ∈ L(sf ). J
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Abstract
We study a mixture between the average case and worst case complexities of higher-order model
checking, the problem of deciding whether the tree generated by a given λY -term (or equivalently, a
higher-order recursion scheme) satisfies the property expressed by a given tree automaton. Higher-
order model checking has recently been studied extensively in the context of higher-order program
verification. Although the worst-case complexity of the problem is k-EXPTIME complete for order-k
terms, various higher-order model checkers have been developed that run efficiently for typical inputs,
and program verification tools have been constructed on top of them. One may, therefore, hope
that higher-order model checking can be solved efficiently in the average case, despite the worst-case
complexity. We provide a negative result, by showing that, under certain assumptions, for almost
every term, the higher-order model checking problem specialized for the term is k-EXPTIME hard
with respect to the size of automata. The proof is based on a novel intersection type system that
characterizes terms that do not contain any useless subterms.
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1 Introduction

Higher-order model checking [12, 21, 24] asks whether the (possibly infinite) tree generated by
a given λY -term (or equivalently, a higher-order recursion scheme) is accepted by a given tree
automaton. The problem was shown to be decidable by Ong in 2006 [21], and has been applied
to higher-order program verification [15, 16, 22, 19]. Although the worst-case complexity of
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higher-order model checking is k-EXPTIME complete (where k is the type-theoretic order of
the given λY -term), practical higher-order model checkers have been developed that run fast
for many typical inputs. They lead to the development of various automated verification
tools for higher-order functional programs.

In view of the situation above, we are interested in the following question: why do
higher-order model checkers run efficiently, despite the extremely high worst case complexity?
There are a couple of known reasons. First, the worst-case time complexity of higher-order
model checking is actually polynomial in the size of a given term, provided that the other
parameters (the largest order and arity of functions, and the size of an automaton) are
fixed [17]. Second, linear functions do not blow up the complexity [5]. These reasons alone,
however, do not fully explain why higher-order model checking works in practice. For example,
for the first point above, the constant factor determined by the other parameters is huge.

In the present paper, we consider another possibility: higher-order model checking may
actually be easy in the average case; in other words, it may be the case that hard instances
that cost k-EXPTIME are sparse and many of the instances of higher-order model checking
can be solved more efficiently. We give a somewhat negative result on that possibility.
For each term t of the λY -calculus, we consider the following higher-order model checking
problem specialized to t:

HOMC(t, ·): Given a tree automaton A, decide whether the tree
generated by t is accepted by A.

Our main result is that for almost every term t of order-k that is sufficiently large, HOMC(t, ·)
is k-EXPTIME hard. A little more precisely, we prove that, for the set Termsn,k of terms of
size n and order k (modulo certain additional conditions that we explain later), the ratio of
“hard” terms:

#{t ∈ Termsn,k | HOMC(t, ·) is k-EXPTIME hard}
#Termsn,k

tends to 1 if n→∞ (where #S denotes the cardinality of a set S). In other words, if we
pick up a term randomly according to the uniform distribution over Termsn,k, it is likely
that there exists a bad automaton A such that HOMC(t,A) is very hard. Note that this is a
mixture between the average case and worst-case analysis: the result above says that in the
average case on the choice of a term t, the complexity of HOMC(t, ·) is k-EXPTIME hard in
the worst-case on the choice of an automaton.

In order to make the above analysis meaningful, we have to carefully define the set
Termsn,k of terms. To see why, consider a term of the form (λx.c)t, where c is a nullary
tree constructor. The term generates the singleton tree c; so, no matter how large t is, the
problem HOMC((λx.c)t, ·) is easy. Thus, if we include such terms in Termsn,k, the ratio of
hard instances above would not be 1 for the trivial reason. In the context of applications of
higher-order model checking to program verification, however, such instances are unlikely to
appear: a λY -term corresponds to a program, and it is unlikely that one writes a program that
contains such a huge useless term t. (It might be the case for machine-generated programs,
but even in that case, one can apply simple preprocessing to remove such useless terms
before invoking a costly higher-order model checking algorithm.) We, therefore, exclude out,
from Termsn,k, terms that contain any useless subterms. Here, a subterm t1 of t is useless
if replacing t1 with another term never changes the tree generated by t. (We will impose
further conditions such as the number of variables, which will be explained in Section 2.)

Once the set Termsn,k is properly chosen as explained above, our main result can be
proved as follows. First, according to Kobayashi and Ong’s work on the complexity of
higher-order model checking [18], there exists an order-k “hard” term tHard,k such that
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HOMC(tHard,k, ·) is k-EXPTIME complete. Second, according to Asada et al.’s work on
quantitative analysis on λ-terms [1], any sufficiently large term t can be decomposed into
the form E[C1, . . . , Cm] for sufficiently many contexts C1, . . . , Cm, where each Ci is large
enough to be replaced by a context, say C ′i, that contains the hard term tHard,k, without
changing the term size. Thus, by using their argument (which originates from the so called
“infinite monkey theorem” stating that almost every word contains any given word), we
can deduce that almost every sufficiently large term contains the hard term tHard,k, if we
ignore the condition that useless terms should be excluded. Finally (and most importantly),
we can choose a context C ′i that contains the hard term, so that if E[C1, . . . , Ci, . . . , Cm]
belongs to Termsn,k (and therefore does not contain any useless subterms), then so does
E[C1, . . . , C

′
i, . . . , Cm].

To obtain the last part of the result, we develop a novel intersection type system that
completely characterizes the set of terms that do not contain useless terms, in the sense that
a closed term t is typable if and only if t does not contain any useless term. This type system
is one of the main contributions of the present paper, and may be of independent interest.
Type systems for useless code elimination have been studied before [6, 7, 13] (in particular,
Damiani [7] used intersection types), but the complete characterization was not known, to
our knowledge.

The rest of this paper is structured as follows. Section 2 provides formal definitions of
λY -terms and the higher-oder model checking. Section 3 states our main result and gives
a proof outline. Sections 4–6 prove the theorem. Section 7 discusses related work, and
Section 8 concludes this article.

2 Preliminaries

For a map f , we write dom(f) for the domain of f and rng(f) for the range of f . We denote
by N the set of non-negative integers and by N+ the set of positive integers. For m,n ∈ N,
we write [m,n] for the set {i ∈ N | m ≤ i ≤ n}, and [n] for [1, n]; note that [0] = ∅. The
cardinality of a set A is denoted by #(A). We use A ·∪B instead of A ∪B if sets A and B
are disjoint. For a set A, we write A∗ for the set of finite sequences consisting of elements of
A. An L-labeled tree is a partial map T from N∗+ to L such that, for every 〈α, i〉 ∈ N∗+ ×N+,
if α · i ∈ dom(T ), then {α, α · 1, . . . , α · (i − 1)} ⊆ dom(T ). An L-labeled tree T is called
finite if dom(T ) is finite. We write rT (α) for the number of children of a node α in T , i.e.,
rT (α) = #{i ∈ N+ | α · i ∈ dom(T )}. A ranked alphabet Σ is a map from a finite set of
symbols to N. We call Σ(a) the rank of a. A dom(Σ)-labeled tree T is called a Σ-ranked tree
(Σ-tree, for short) if, for every α ∈ dom(T ), rT (α) = Σ(T (α)).

2.1 λY -Terms as Tree Generators
In this subsection, we introduce (simply-typed) λY -terms [27] as generators of (possibly
infinite) Σ-trees. In the context of higher-order model checking, higher-order recursion
schemes have originally been used as generators of trees [12, 21], but the λY -terms (with
constants of order up to 1 as tree constructors), which are equi-expressive with higher-order
recursion schemes, (see, e.g., [25]), have also been used in later studies on higher-order
model checking [24]. For the purpose of the present paper, we find it more convenient to use
λY -terms.

Let Σ be a ranked alphabet. Each a ∈ dom(Σ) is called a tree constructor. We use
meta-variables a, b, c for tree constructors (and a, b, c, . . . for concrete symbols). The set
of simple types is defined by: κ ::= o | κ1 → κ2. The ground type o is the type of
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trees. The order and arity of a simple type κ, written ord (κ) and ar (κ) respectively,
are defined by: ord (κ1 → · · · → κn → o) , max({0} ∪ {ord (κi) + 1 | 1 ≤ i ≤ n}) and
ar (κ1 → · · · → κn → o) , n, where n ≥ 0. Let V be a countably infinite set, which is ranged
over by x, y, z.

I Definition 1 (λY -terms). The set of (λY -)terms (over Σ) is defined by:

t ::= xκ | λxκ.t | λ_κ.t | t1 t2 | Yκt | a(t1, . . . , tΣ(a)) | ⊥κ.

We call elements of V ·∪ {_} variables and use meta-variables x̄, ȳ, z̄ for them. As in the
standard λY -calculus, the constructor Yκ may be considered a fixpoint operator of type
(κ→ κ)→ κ. The special variable ‘_’ denotes an unused variable (hence can occur only in a
binder, not in the body of a function). For each type κ, we have a special term ⊥κ, which
intuitively represents an unused term and will play an important role in the definition of
minimal terms. We often omit type annotations (for example, λxκ.xκ is just written λx.x).
For a term t, we write FV(t) for the set of all the free variables of t.

A simple type environment Γ is a finite partial map from V (recall that the special variable
_ does not belong to V) to the set of simple types. We simply write Γ, x : κ for Γ ·∪ {x 7→ κ}.
The type judgment relation Γ `ST t : κ is inductively defined by the following rules:

(Var)
x : κ `ST xκ : κ

Γ, x : κ `ST t : κ′
(Abs1)

Γ `ST λxκ.t : κ→ κ′
Γ `ST t : κ′

(Abs2)
Γ `ST λx̄κ.t : κ→ κ′

(⊥)
∅ `ST ⊥κ : κ

Γ1 `ST t : κ→ κ′ Γ2 `ST s : κ
(App)

Γ1 ∪ Γ2 `ST t s : κ′
Γ1 `ST t1 : o . . . Γn `ST tn : o

(a)⋃
i∈[n] Γi `ST a(t1, . . . , tn) : o

Γ `ST t : κ→ κ
(Y)

Γ `ST Yκ t : κ

Henceforth, we only consider well-typed terms (i.e., terms t such that Γ `ST t : κ for some
〈Γ, κ〉). Note that for every well-typed term t, there is a unique pair 〈Γ, κ〉 such that
Γ `ST t : κ; and moreover, its derivation tree is also uniquely determined. We sometimes
annotate a term with its type, like tκ, when t has type κ (under a certain type environment).
We say that t is closed if Γ = ∅; and that t is ground-typed if κ = o.

I Definition 2. The (call-by-name) reduction relation −→ is defined as the least binary
relation on well-typed terms (up to α-equivalence) closed under the following rules, where we
write t{s/x} for the term obtained from t by substituting s for all the free occurrences of x
in a capture-avoiding manner:

(β) (λx̄.t) s −→ t{s/x̄}; (Y) Yt −→ t (Yt); (⊥) ⊥κ1→κ2t −→ ⊥κ2 ;
(App) tu −→ t′u if t −→ t′; (a) a(t1, . . . , tn) −→ a(t1, . . . , ti−1, t

′
i, ti+1, . . . , tn) if ti −→ t′i.

We write −→∗ for the reflexive transitive closure of −→.

The tree generated by a closed and ground λY -term t is the one obtained from t by
(possibly) infinite rewriting with respect to the above reduction relation. The precise
definition is given below.

We write Σ⊥ for the ranked alphabet Σ ·∪ {⊥ 7→ 0}. We define the binary relation v on
Σ⊥-trees by: T1 v T2 if and only if (i) dom(T1) ⊆ dom(T2) and (ii) for every α ∈ dom(T1),
T1(α) = ⊥ or T1(α) = T2(α). We write T1 @ T2 if T1 v T2 and T1 6= T2. We denote the join
of {Ti}i∈I with respect to v by

⊔
i∈I Ti if defined.

A term consisting of only tree constructors and ⊥o can naturally be regarded as a Σ⊥-tree.
For example, b(c, a(⊥o)) can be regarded as the Σ⊥-tree: {ε 7→ b, 1 7→ c, 2 7→ a, 2 · 1 7→ ⊥};
hence we identify finite trees and terms consisting of tree constructors and ⊥o below. For
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each closed and ground-typed term t, the Σ⊥-tree t⊥ is defined by: t⊥ , a(t⊥1 , . . . , t⊥Σ(a)) if
t = a(t1, . . . , tΣ(a)); and t⊥ , ⊥ otherwise. The value tree of a closed and ground-typed term
t, written T (t), is defined by: T (t) ,

⊔
{s⊥ | t −→∗ s}. For example, consider the value tree

of (Yt1)c where t1 = λfo→o.λxo.b(x, f(a(x))). By applying the reduction rules (Y) and (β),
we can obtain the following reduction sequence

(Yt1)c −→ t1(Yt1)c −→∗ b(c, (Yt1)(a(c))) −→∗ b(c, b(a(c), (Yt1)(a(a(c)))))

and observe that T (t) is the infinite tree of the form b(c, b(a(c), b(a(a(c)), b(· · · )))).
We also define the size and order of a term, which will be used in the complexity analysis.

I Definition 3 (size, order). The size of a term t is defined by: |x| = |⊥| , 1, |λx̄.t| = |Yt| ,
1 + |t|, |t1 t2| , 1 + |t1|+ |t2|, and |a(t1, . . . , tΣ(a))| , 1 +

∑
i∈[Σ(a)] |ti|. The order of a term

t, written ord (t), is defined by:

ord (t) , max({0} ∪ {ord (κ) | λxκ.s or Yκs is a subterm of t}).

Note that the size of a variable is a constant; this is appropriate in our context, as we fix the
number of variables in the main theorem (Theorem 7).

I Remark 4. Our definition of the order of a λY -term given above deviates from the standard
definition of the order of a λY -term (where the order of a term is defined as the largest
order of the types of subterms) [25]. For example, the order of Y oλxo.a(x) (which generates
a unary infinite tree consisting of only a) is 0 in our definition, but it is 1 in the standard
definition, because λxo.a(x) has type o→ o, which has order 1. Our definition is motivated
to make the order of λY -term equivalent to that of the corresponding higher-order recursion
scheme (where the order is defined as the largest order of the types of recursive functions);
for example, the above term corresponds to the higher-order recursion scheme consisting of a
single rule S −→ a(S), whose order is 0. The translation from higher-order recursion schemes
to λY -terms given in [25] is order-preserving in our definition, but increases the order by 1
in the definition of [25]. There is also a translation from λY -terms to higher-order recursion
schemes that preserves the order in our definition (given an order-k λY -term, reduce all
the β-redexes of the form (λxκ.s)t with ord (κ) = k first, and then apply the translation
suggested in [25]; the first phase of β-reductions may incur an exponential blow-up, which
can be avoided by appropriately introducing non-terminals to avoid duplications of terms).

2.2 Higher-Order Model Checking
We assume the notion of alternating parity tree automaton (APT for short): see, e.g., [10].
The precise definition of APT is unnecessary for understanding our technical development
in later sections, once you admit the results in this subsection. We recall the definition of
higher-order model checking below.

I Definition 5 (higher-order model checking problem). The higher-order model checking
problem, written HOMC (·, ·), is the problem of, given a closed and ground-typed λY -term
t over Σ and an APT A over Σ as input, deciding whether A accepts T (t). We write
HOMCk(·, ·) when the first input is restricted to a term of order-k. We denote by HOMC (t, ·)
the problem obtained by fixing the first input to t, i.e., the problem of, given an APT A as
input, deciding whether A accepts T (t).
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Ong [21] has shown that the HOMCk(·, ·) is k-EXPTIME complete (combined complexity)
for each k ≥ 0. The following theorem states the complexity of HOMC (t, ·), which serves as
a basis of the present work.

I Theorem 6 ([21] for (1) and [18, Theorem 3.8] for (2)). For each k ≥ 1,
(1) for every order-k λY -term t, HOMC (t, ·) is decidable in k-EXPTIME; and
(2) there exists an order-k λY -term tHard,k such that HOMC (tHard,k, ·) is k-EXPTIME hard.

3 Main Theorem

This section formally states the main result of the paper: for almost every order-k λY -term,
the higher-order model checking problem HOMC(t, ·) is k-EXPTIME hard, under a certain
assumption, and sketches an overall structure of the proof. We first prepare some auxiliary
notations. We denote by [t]α the α-equivalence class of t. In our quantitative analysis,
we count α-equivalent terms at most once (e.g., we do not distinguish (λx.λy.x)z and
(λz.λ_.z)z). We define #vars (t) , min{#(V(t′)) | t′ ∈ [t]α}, where V(t) denotes the set of
all the variables (except _) occurring in t. Namely, #vars (t) is the minimum number of
variables occurring in the term t, up to α-equivalence. For example, #vars ((λx.λy.x)z) = 1
since the term is α-equivalent to (λz.λ_.z)z. The internal arity of a term t, written iar (t),
is defined by: iar (t) , max({ar (κ) | sκ is a subterm of t}).

Let Λ̂n(k, ι, ξ) be the set of all (α-equivalence classes of) closed and ground-typed λY -terms
such that1
(i) the size is n (i.e., |t| = n);
(ii) the order is up to k (i.e., ord (t) ≤ k);
(iii) the internal arity is up to ι (i.e., iar (t) ≤ ι);
(iv) the number of variable names is up to ξ (i.e., #vars (t) ≤ ξ); and
(v) the terms are minimal (see Section 3.1 below for the definition).

The main theorem is stated as follows.

I Theorem 7 (main theorem). For each k ≥ 1, let ι and ξ be sufficiently large natural
numbers. Then,

lim
n→∞

#
(
{t ∈ Λ̂n(k, ι, ξ) | HOMC(t, ·) is k-EXPTIME hard}

)
#
(

Λ̂n(k, ι, ξ)
) = 1.

Below we first define the minimality in Section 3.1 and give a proof outline in Section 3.2.

3.1 Minimal Terms
Intuitively, a term is minimal if it has no useless subterm. For the formal definition, we first
define the relation v on terms, which is analogous to the corresponding relation (v) on trees.

I Definition 8. The approximate relation v is the least precongruence (i.e., the relation
closed under all the term constructors) such that ⊥κ v tκ.

1 The set Λ̂n(k, ι, ξ) implicitly depends on the choice of ranked alphabet Σ. The main theorem holds
independently of the choice of Σ unless Σ is unreasonably small.
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In other words, s v t means that s is obtained from t by replacing subterms tκ1
1 , . . . , tκn

n with
⊥κ1 , . . . ,⊥κn . We write s @ t if s v t and s 6= t. We denote the join of {ti}i∈I with respect
to v (i.e., the least upper bound of {ti}i∈I with respect to v) by

⊔
i∈I ti if defined, and we

sometimes write t1t. . .ttn for
⊔
i∈[n] ti. For example, (λx.b(x,⊥))t(λx.b(⊥, x)) = λx.b(x, x).

Note that, with respect to Σ⊥-tree terms, the relation v on terms is equivalent to the relation
v on Σ⊥-trees.

I Definition 9. A closed and ground-typed term t is minimal if for every s @ t, T (s) 6= T (t).

In other words, a term t is not minimal if there exists s obtained by replacing a non-⊥
subterm u of t with ⊥ such that T (s) = T (t).

I Example 10. Let t = (λx.λy.x) a u, with u 6= ⊥. Then the value tree T (t) = a (since
(λx.λy.x) a u −→ (λy.a) u −→ a). Note that the subterm u is “useless”; indeed the term
s = (λx.λy.x) a ⊥, obtained from t by replacing u with ⊥, also generates a. Thus, t is not
minimal. In contrast, s is minimal. In fact, any term obtained by replacing a non-⊥ subterm
of s with ⊥ (such as (λx.λy.⊥) a ⊥) fails to generate a.

The following proposition gives an important property of minimal terms. We write t′ � t
when t′ is a subterm of a term t.

I Proposition 11. Let t be a closed and ground-typed term. If t is minimal, then for every
non-⊥, closed and ground-typed subterm s � t, its value tree T (s) is a subtree of T (t).

This property is intuitively obvious. Since t is minimal, the subterm s assumed to be non-⊥
must be used in the computation of the value tree T (t). As s is closed and ground-typed, the
only way to use s is to place its value tree T (s) somewhere in T (t); hence the proposition.
For a formal proof, see the full version [20].

3.2 Proof Outline
For each k, let tHard,k be an order-k closed, ground-typed term such that the problem
HOMC(t, ·) is k-EXPTIME hard. The existence of tHard,k is guaranteed by Theorem 6 (2).
We can assume, without loss of generality, that tHard,k is minimal; otherwise take a minimal
element t′Hard,k of {s | T (s) = T (tHard,k)}. Theorem 7 follows immediately from Lemmas 12
and 13 below, which respectively state: (a) for each order k, every order-k minimal term
containing the “hard” term tHard,k as a subterm yields k-EXPTIME-hardness for the higher-
order model checking problem; and (b) almost every minimal term of order k contains the
“hard” term tHard,k as a subterm.

I Lemma 12. Let k ≥ 1. For every minimal λY -term t � tHard,k, HOMC (t, ·) is
k-EXPTIME hard.

Proof. Assume that t � tHard,k. Then T (t) � T (tHard,k) by Proposition 11, i.e. T (tHard,k) =
(T (t)�α) for some α ∈ dom(T (t)) where (T �α) denotes the subtree of T induced by the node
α. Let c be the length of α. For any APT A, we can construct an automaton A�α by adding
c states to A and replacing the initial state so that A�α accepts T if and only if A accepts
T �α (intuitively, A�α first moves to the node α then behaves like A). Then the polynomial-
time function A 7→ (A�α) gives a polynomial-time reduction from HOMC (tHard,k, ·) to
HOMC (t, ·) The lemma follows from k-EXPTIME-hardness of HOMC (tHard,k, ·). J
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I Lemma 13. For each k ≥ 1, let ι and ξ be sufficiently large natural numbers. Then,

lim
n→∞

#
(
{t ∈ Λ̂n(k, ι, ξ) | t � tHard,k}

)
#
(

Λ̂n(k, ι, ξ)
) = 1.

It remains to show Lemma 13. To this end, we introduce the following lemma (where the
precise definition of second-order contexts will be given in Section 4).

I Lemma 14. For each k ≥ 1, let ι and ξ be sufficiently large natural numbers. There exists
m such that the following holds: Let n ≥ m, E be any second-order linear context, and C
be any affine context such that |C| ≥ m and E[C] ∈ Λ̂n(k, ι, ξ). Then there exists an affine
context D � tHard,k such that E[D] ∈ Λ̂n(k, ι, ξ).

We show how Lemma 13 follows from Lemma 14 in Section 4. We then introduce a new
intersection type system that characterizes the minimality in Section 5, and use it to prove
Lemma 14 in Section 6.

4 Infinite Monkey Theorem for Minimal Terms

We sketch a proof of Lemma 13 (modulo Lemma 14) in this section; see [20] for the full
proof. The proof is analogous to that of the following, so-called infinite monkey theorem
(a.k.a. “Borges’s theorem” [9, p.61, Note I.35]) for words:

I Theorem 15. Let Σ be a finite alphabet. For any word x ∈ Σ∗, almost all words contain
x as a subword, i.e.

lim
n→∞

#({w ∈ Σn | w = uxv for some u, v ∈ Σ∗})
#(Σn) = 1.

The theorem above follows from the following reasoning: Any word w can be decomposed
into the form w1w2 · · ·wpw′ where |wi| = |x| and |w′| < |x|. If we pick w randomly, the
probability that wi coincides with x is ( 1

|Σ| )
|x|; hence the probability that w contains x is

at least 1 − (1 − ( 1
|Σ| )
|x|)p, which tends to 1 when n tends to infinity. For the purpose of

proving Lemma 13, we analogously decompose each term t to the form E[C1, . . . , Cp] (where
E and Ci respectively correspond to w′ and wi above), by using the tree decomposition
in [1]. We can then use Lemma 14 to prove Lemma 13. The hardest part is actually to prove
Lemma 14, which is deferred to Section 6.

We first need to prepare some definitions. In order to make use of the tree decomposition
function Φm in [1], below we regard a λY -term over Σ as a ΣΛ̂(k,ι,ξ)-tree where ΣΛ̂(k,ι,ξ) is an
extension of Σ defined by:

ΣΛ̂(k,ι,ξ) , Σ ·∪ {x 7→ 0 | x ∈ Vξ}

·∪ {λx̄κ 7→ 1 | x̄ ∈ Vξ ·∪ {_}, ord (κ) ≤ k, iar (κ) ≤ ι}
·∪ {@ 7→ 2} ·∪ {Yκ 7→ 1,⊥κ 7→ 0 | ord (κ) ≤ k, iar (κ) ≤ ι}

Here, Vξ = {x1, · · · , xξ} is a finite subset of V and the symbol @ represents the application
operation.

Next, we recall the notion of contexts and second-order contexts used in the decomposition.
A context is a tree with special leaves [ ] called holes. Formally, the set of contexts over Σ is
given by

C ::= [ ] | a(C1, . . . , CΣ(a)),
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where a ranges over dom(Σ). We call a context with k holes a k-context, and call a context
affine if it is a 0- or 1-context. The size of a context C, denoted by |C|, is inductively defined
by: |[ ]| , 0 and |a(C1, . . . , CΣ(a))| , 1 + |C1|+ · · ·+ |CΣ(a)|. For a k-context C and contexts
−→
C = C1 · · ·Ck, we write C[−→C ] or C[C1, . . . , Ck] for the context obtained by replacing each
occurrence of [ ] in C with Ci in the left-to-right order.

A second-order context is an expression having holes of the form JKnk (called second-order
holes), which should be filled with a k-context of size n. Formally, the set of second-order
contexts over Σ, ranged over by E, is defined by:

E ::= JKnk [E1, . . . , Ek] | a(E1, . . . , EΣ(a)) (a ∈ dom(Σ)).

We write shn (E) for the number of the second-order holes in E, and E.i for the i-th leftmost
second-order hole in E.

I Definition 16 (substitution for second-order contexts). For a context C and a second-order
hole JKnk , we write C : JKnk if C is a k-context of size n. For a second-order context E and a
sequence of contexts −→C = C1 · · ·Cshn(E) such that Ci : E�i for each i ∈ [shn (E)], we write
E[−→C ] or E[C1, . . . , Cshn(E)] for the tree which can be obtained by replacing each occurrence
of JK in E with Ci in the left-to-right manner (and by interpreting the syntactical bracket [−]
as the substitution operation for usual contexts), where #

(−→
Ci

)
= shn (Ei) for each i:

(JKnk [E1, . . . , Ek]) [C · −→C1 · · ·
−→
Ck] , C[E1[−→C1], . . . , Ek[−→Ck]]

(a(E1, . . . , EΣ(a)))[
−→
C1 · · ·

−→
C Σ(a)] , a(E1[−→C1], . . . , EΣ(a)[

−→
C Σ(a)]).

We can use the decomposition function Φm (where m > 0 is an integer parameter) intro-
duced in [1] to uniquely decompose (the tree representation of) a λY -term t to (E,C1, . . . , Ck)
such that (i) E is a second-order context, (ii) Ci’s are affine contexts such that m ≤ |Ci| ≤ rm
(where r is the largest arity of the symbols in ΣΛ̂(k,ι,ξ)), (iii) t = E[C1, . . . , Ck], (iv) k ≥ |t|

2rm
, (v) Φm(E[C1, . . . , Ci−1, Di, Ci+1, . . . , Ck]) = (E,C1, . . . , Ci−1, Di, Ci+1, . . . , Ck) for any
“good” context Di (see [1, 20] for the definition of “goodness”).

I Example 17. The term a((λ_.a((λx.a(x))(Yλy.a(y))))⊥) on the left hand side of Figure 1
can be decomposed into the second-order context a(JK4

1[(JK3
0[])(Y (JK3

0[]))]) and affine contexts,
as shown on the right hand side.

We are now ready to provide a proof sketch of Lemma 13. Let us define Sn,Ei and Enm by:

Sn,Ei , {t ∈ Λ̂n(k, ι, ξ) | Φm(t) = (E,C1, . . . , C`), and tHard,k 6� Cj for each j ∈ [i]}

Enm ,
{
E | Φm(t) = (E, · · · ) for some t ∈ Λ̂n(k, ι, ξ)

}
.

Below we write E ? (C1, . . . , C`) ∈ S to mean E[C1, . . . , C`] ∈ S and Φm(E[C1, . . . , C`]) =
(E,C1, . . . , C`). If n and m (with n > m) are sufficiently large, we can estimate the ratio
#(Sn,E

i )
#(Sn,E

i−1 ) for i ∈ [shn (E)] by:

#
(
Sn,Ei

)
#
(
Sn,Ei−1

) =

∑
C1,...,Ci−1,Ci+1,...,Cshn(E)

#
({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1 , tHard,k 6� Ci

})∑
C1,...,Ci−1,Ci+1,...,Cshn(E)

#
(
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1

)
≤ max
C1,...,Ci−1,Ci+1,...,Cshn(E)

#
({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1 , tHard,k 6� Ci

})
#
({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1

})
(by Σjsj

Σjrj
≤ maxj

sj
rj

if rj > 0, sj ≥ 0 for every j)

FSCD 2020
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J K

J K

J K+

7�!

Second-order context

Sequence of a�ne subcontexts

�3
<latexit sha1_base64="Y25b6jBMOaCoCnadE00ikJWb1oU=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld1W0GPRi8cK9gPapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdgp7u7tHxyWjo5bRqWasiZVQulOSAwTXLKm5VawTqIZiUPB2uH4dua3n5g2XMkHO0lYEJOh5BGnxDqp1WuMeL/WL5W9ijcHXiV+TsqQo9EvffUGiqYxk5YKYkzX9xIbZERbTgWbFnupYQmhYzJkXUcliZkJsvm1U3zulAGOlHYlLZ6rvycyEhsziUPXGRM7MsveTPzP66Y2ug4yLpPUMkkXi6JUYKvw7HU84JpRKyaOEKq5uxXTEdGEWhdQ0YXgL7+8SlrVil+rVO8vy/WbPI4CnMIZXIAPV1CHO2hAEyg8wjO8whtS6AW9o49F6xrKZ07gD9DnDw6cjsk=</latexit>

x
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

@
<latexit sha1_base64="KLdrpM4jFNUPck3AS3RlfnxyAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZr1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fkqeMyA==</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

@
<latexit sha1_base64="KLdrpM4jFNUPck3AS3RlfnxyAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZr1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fkqeMyA==</latexit>

Y<latexit sha1_base64="n2Ua7mA6OmSMMHjxVauWwbnDW7Q=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+9C2lEyaaUMzmSG5I5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xYykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJko04w0WyUi3fWq4FIo3UKDk7VhzGvqSt/zxTea3nrg2IlL3OIl5L6RDJQLBKFrpsRtSHPlB+jDtl8puxZ2BLBMvJ2XIUe+XvrqDiCUhV8gkNabjuTH2UqpRMMmnxW5ieEzZmA55x1JFQ2566SzxlJxaZUCCSNunkMzU3xspDY2ZhL6dzBKaRS8T//M6CQZXvVSoOEGu2PyjIJEEI5KdTwZCc4ZyYgllWtishI2opgxtSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMEzvMKbY5wX5935mI+uOPnOEfyB8/kDz2yRAQ==</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

?<latexit sha1_base64="UYKwwofUuuOdfsM5oOS0ekmYRI8=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT2WTIPJaZWSEs+QUvHhTx6g9582+cTfagiQUNRVU33V1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UakmtEUUV7obYUM5k7RlmeW0m2iKRcRpJ5rc5X7niWrDlHy004SGAo8kixnBNpf6kbKDStWv+XOgVRIUpAoFmoPKV3+oSCqotIRjY3qBn9gww9oywums3E8NTTCZ4BHtOSqxoCbM5rfO0LlThihW2pW0aK7+nsiwMGYqItcpsB2bZS8X//N6qY1vwozJJLVUksWiOOXIKpQ/joZMU2L51BFMNHO3IjLGGhPr4im7EILll1dJu14LLmv1h6tq47aIowSncAYXEMA1NOAemtACAmN4hld484T34r17H4vWNa+YOYE/8D5/ABrRjkc=</latexit>�
<latexit sha1_base64="cpYy4H96zOSrWb3Gf5Cq0hBTCuM=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ad2hpLJZNrQTDIkGaEM/Qs3LhRx69+4829M21lo64HA4Zxzyb0nTDnTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkpQttEcql6IdaUM0HbhhlOe6miOAk57Ybj25nffaJKMykezCSlQYKHgsWMYGOlR5/baISRPxhUa27dnQOtEq8gNSjQGlS//EiSLKHCEI617ntuaoIcK8MIp9OKn2maYjLGQ9q3VOCE6iCfbzxFZ1aJUCyVfcKgufp7IseJ1pMktMkEm5Fe9mbif14/M/F1kDORZoYKsvgozjgyEs3ORxFTlBg+sQQTxeyuiIywwsTYkiq2BG/55FXSadS9i3rj/rLWvCnqKMMJnMI5eHAFTbiDFrSBgIBneIU3RzsvzrvzsYiWnGLmGP7A+fwBAcaQeg==</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

�x
<latexit sha1_base64="CwO+/zUxlsjKk4GaefOZdcF0Mj0=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqszUgi6LblxWsA9ph5LJZNrQJDMkGbEM/Qo3LhRx6+e4829M21lo64HA4Zxzyb0nSDjTxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVhLZIzGPVDbCmnEnaMsxw2k0UxSLgtBOMb2Z+55EqzWJ5byYJ9QUeShYxgo2VHvrcRkOMngblilt150CrxMtJBXI0B+WvfhiTVFBpCMda9zw3MX6GlWGE02mpn2qaYDLGQ9qzVGJBtZ/NF56iM6uEKIqVfdKgufp7IsNC64kIbFJgM9LL3kz8z+ulJrryMyaT1FBJFh9FKUcmRrPrUcgUJYZPLMFEMbsrIiOsMDG2o5ItwVs+eZW0a1Xvolq7q1ca13kdRTiBUzgHDy6hAbfQhBYQEPAMr/DmKOfFeXc+FtGCk88cwx84nz9z/pAt</latexit>

Y<latexit sha1_base64="n2Ua7mA6OmSMMHjxVauWwbnDW7Q=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+9C2lEyaaUMzmSG5I5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xYykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJko04w0WyUi3fWq4FIo3UKDk7VhzGvqSt/zxTea3nrg2IlL3OIl5L6RDJQLBKFrpsRtSHPlB+jDtl8puxZ2BLBMvJ2XIUe+XvrqDiCUhV8gkNabjuTH2UqpRMMmnxW5ieEzZmA55x1JFQ2566SzxlJxaZUCCSNunkMzU3xspDY2ZhL6dzBKaRS8T//M6CQZXvVSoOEGu2PyjIJEEI5KdTwZCc4ZyYgllWtishI2opgxtSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMEzvMKbY5wX5935mI+uOPnOEfyB8/kDz2yRAQ==</latexit>

@
<latexit sha1_base64="KLdrpM4jFNUPck3AS3RlfnxyAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZr1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fkqeMyA==</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

�y
<latexit sha1_base64="TPyhFvh+DR7DQdxEd/ogdQqUZGo=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ie0Q8lkMm1okhmSjDAM/Qo3LhRx6+e4829M21lo64HA4Zxzyb0nSDjTxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVhLZJzGPVC7CmnEnaNsxw2ksUxSLgtBtMbmd+94kqzWL5YLKE+gKPJIsYwcZKjwNuoyFG2bBac+vuHGiVeAWpQYHWsPo1CGOSCioN4Vjrvucmxs+xMoxwOq0MUk0TTCZ4RPuWSiyo9vP5wlN0ZpUQRbGyTxo0V39P5FhonYnAJgU2Y73szcT/vH5qoms/ZzJJDZVk8VGUcmRiNLsehUxRYnhmCSaK2V0RGWOFibEdVWwJ3vLJq6TTqHsX9cb9Za15U9RRhhM4hXPw4AqacActaAMBAc/wCm+Ocl6cd+djES05xcwx/IHz+QN1gpAu</latexit>

y
<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

(� .a([ ]))? · �x.a(x) · �y.a(y)
<latexit sha1_base64="0z6UASoIB23tBj3eJyHHEAYtUaU="></latexit>

Figure 1 An example of term decomposition. The parts surrounded by rectangles on the left hand
side show the extracted affine subcontexts, and the remaining part of the tree is the second-order
tree context.

≤ max
C1,...,Ci−1,Ci+1,...,Cshn(E)

#
({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1

})
− 1

#
({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1

})
(by Lemma 14)

= max
C1,...,Ci−1,Ci+1,...,Cshn(E)

1− 1
#
({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1

})
≤ 1− 1

γrm

for some γ > 1. Here, C1, . . . , Ci−1, Ci+1, . . . , Cshn(E) in the subscript of max range over
the set of contexts for which the denominator #

({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei

})
is

non-zero. The last inequality follows from Property (ii) of Φm (that the size of Ci is bounded
by rm), and the fact that the number of contexts of a given size ` can be bounded by γ` for
some γ.

Thus, we have:

#
(
{t ∈ Λ̂n(k, ι, ξ) | tHard,k 6� t}

)
#
(

Λ̂n(k, ι, ξ)
) ≤

∑
E∈En

m
#
(
Sn,Eshn(E)

)
∑
E∈En

m
#
(
Sn,E0

) (
by the properties of Φm

)

≤ max
E∈En

m

#
(
Sn,Eshn(E)

)
#
(
Sn,E0

) (
by
∑
i si∑
i ri
≤ maxi

si
ri

)

= max
E∈En

m

#
(
Sn,E1

)
#
(
Sn,E0

) · #
(
Sn,E2

)
#
(
Sn,E1

) · · · · · #
(
Sn,Eshn(E)

)
#
(
Sn,Eshn(E)−1

) .
≤ max
E∈En

m

(1− 1
γrm

)shn(E)

≤ (1− 1
γrm

) n
2rm

(
by Property (iv) of Φm

)
→ 0 (as n→∞)
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Therefore, we obtain

lim
n→∞

#
(
{t ∈ Λ̂n(k, ι, ξ) | t � tHard,k}

)
#
(

Λ̂n(k, ι, ξ)
) = 1

as required.

5 Intersection Types for Minimal Terms

This section introduces an intersection type system for characterizing minimal terms, so that
a closed, ground-typed term is typable just if it is minimal. For the terms in Example 10,
(λx.λy.x) a ⊥ is typable in the intersection type system but (λx.λy.x) a a is not. This
intersection type system will serve as a key tool for proving Lemma 14 in Section 6.

The sets of prime intersection types and intersection types are defined by:

τ, σ (prime intersection types) ::= o | θ → τ θ, δ (intersection types) ::=
∧κ{τ1, . . . , τn}.

Here, n ≥ 0: Intuitively, o is the type of terms that generate non-⊥ trees that will occur
in the value tree. The intersection type

∧κ {τ1, . . . , τn} describes terms that are used
according to types τ1, . . . , τn. In particular,

∧κ ∅ is the type of terms that are not used. Note
that {τ1, . . . , τn} in

∧κ {τ1, . . . , τn} is a set rather than a multiset; thus we consider here
idempotent intersection types. The superscript κ (which ranges over the set of simple types)
is used for distinguishing between, for example, ∅o and ∅o→o; we, however, often omit the
superscript.

We often write
∧κ
i∈[n] τi or τ1 ∧ · · · ∧ τn for

∧κ{τ1, . . . , τn}, and >κ (or just >) for
∧κ ∅.

For each intersection types θ =
∧κ

S and δ =
∧κ

T , We denote by θ ∧ δ the intersection
type

∧κ(S ∪ T ). We use θ̄, δ̄ to denote a prime intersection type or an intersection type.
An intersection type environment, written as Θ or ∆, is a finite partial mapping from V to
the set of intersection types. For each Θ, x ∈ V \ dom(Θ), and θ, we write (Θ, x : θ) for
Θ ·∪ {x 7→ θ}. The refinement relation θ̄ :: κ (resp. Θ :: Γ) is the least relation closed under
the following rules, where n ≥ 0:

o :: o

τ1 :: κ . . . τn :: κ∧κ
i∈[n] τi :: κ

θ :: κ τ :: κ′

(θ → τ) :: (κ→ κ′) ∅ :: ∅
Θ :: Γ θ :: κ

(Θ, x : θ) :: (Γ, x : κ).

Note that, for each θ̄ (and similarly for Θ), there exists at most one simple type κ such that
θ̄ :: κ. Henceforth we only consider intersection types occurring in this refinement relation
(so, we always make the assumption that for each θ̄, θ̄ :: κ holds for some κ).

We write Θ ∧∆ for the intersection type environment {x 7→ Θ(x) ∧∆(x) | x ∈ dom(Θ) ∪
dom(∆)}, where Θ(x) = >κ (where κ is uniquely determined by ∆(x)) if x 6∈ dom(Θ), and
similarly for the case x 6∈ dom(∆).

The intersection type judgment relation Θ ` t : θ̄ is inductively defined by the typing
rules in Figure 2. We implicitly assume that, whenever Θ ` t : θ̄ occurs in a rule, Γ `ST t : κ,
Θ :: Γ, and θ̄ :: κ hold for some Γ and κ; for example, in (Var), it must be the case that τ :: κ.

Many of the rules are the same as those of standard intersection type systems, but
peculiar to our type system is the use of t in the rules (∧) and (Y1). In (∧), the premises
say that each ti is used according to τi; think of ti as a “used” part of some term t such that
ti v t. In the conclusion, those used parts t1, . . . , tn are “merged” to obtain

⊔
i∈[n] ti as the

used part of t when it is accessed according to types τ1, . . . , τn. For example, consider the
term λxo→o→o.λyo.λzo.x y z. Then we have ∅ ` λxo→o→o.λyo.λzo.x y⊥ : (o → > → o) →
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(Var)
x : ∧{τ} ` xκ : τ

Θ, x : θ ` t : τ
(Abs1)

Θ ` λx.t : θ → τ

Θ ` t : τ (Abs2)
Θ ` λx̄.t : > → τ

Θ ` t : θ → τ ∆ ` s : θ (App)
Θ ∧∆ ` t s : τ

Θ ` t1 (Yt2) : τ
(Y1)

Θ ` Y(t1 t t2) : τ
Θ ` t⊥ : τ (Y2)
Θ ` Yt : τ

Θ1 ` t1 : θ1 . . . Θn ` tn : θn (a)∧
i∈[n] Θi ` a(t1, . . . , tn) : o

Θ1 ` t1 : τ1 . . . Θn ` tn : τn (∧)∧
i∈[n] Θi `

⊔
i∈[n] ti :

∧
i∈[n] τi

Θ ` t : θ̄ (>)
Θ, x : > ` t : θ̄

Figure 2 The intersection type system for the minimality (see Section 3.1 for the operator t).

o → > → o and ∅ ` λxo→o→o.λyo.λzo.x⊥ z : (> → o → o) → > → o → o. From those
judgments, we obtain

∅ ` λxo→o→o.λyo.λzo.x y z : ((o→ >→ o)→ o→ >→ o)∧((> → o→ o)→ >→ o→ o)

by using (∧). Note that when n = 0, the rule (∧) allows us to derive ∅ ` ⊥ : >.
There are two typing rules for Y t. The rule (Y1) covers the case where Y t is reduced

to t(Y t) and the argument Y t is used again; t1 in the premise represents the used part of
the head occurrence of t, whereas t2 represents the used part of the occurrence of t in the
argument Y t. In the conclusion, both parts are merged to obtain t1 t t2 as the used part
of t. For example, consider Y t where t = λf.λx.λy.bx (f ⊥ y) and τ = o→ ⊥ → o. Then
we have ∅ ` t1(Y t2) : τ for t1 = λf.λx.λy.bx (f ⊥⊥) and t2 = λf.λx.λy.b⊥ (f ⊥⊥). By
using (Y1), we obtain ∅ ` Y(λf.λx.λy.bx (f ⊥⊥)) : τ , which correctly models the used part
of Y t. The rule (Y2) is for the case where recursive calls do not contribute to the result.
For example, consider the term t = Y(λx.a(⊥)). Then from ∅ ` (λx.a(⊥))⊥ : o, we obtain
∅ ` t : o.

The theorem below states that the minimality is correctly characterized by our intersection
type system. See Appendix A for an outline of a proof; the full proof is found in [20].

I Theorem 18 (soundness and completeness). For every closed and ground-typed term t, t is
minimal if and only if ∅ ` t : θ̄ for some θ̄.

We give examples of type derivations below.

I Example 19 (cf. Example 10). Let t = (λxo.λyo.xo) a ⊥o and s = (λxo.λyo.xo) a a. Then
we can show that t is minimal by giving the derivation tree of ∅ ` t : o as follows:

(Var)
x : ∧{o} ` xo : o

(Abs2)
x : ∧{o} ` λyo.xo : > → o

(Abs1)
∅ ` λxo.λyo.xo : ∧{o} → > → o

(a)
∅ ` a : o (∧)
∅ ` a : ∧{o}

(App)
∅ ` (λxo.λyo.xo) a : > → o

(∧)
∅ ` ⊥o : >

(App)
∅ ` (λxo.λyo.xo) a ⊥o : o

In contrast, ∅ 0 s : o, because x : ∧{o}, y : ∧{o} 0 xo : o.

The following is a more complex example, where intersection types play an important role.
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I Example 20. Let s = (λf (o→o→o)→o.a(f fst, f snd)), u = (λgo→o→o.g b c), and t = s u,
where fst = λxo.λyo.xo and snd = λxo.λyo.yo. Then ∅ ` t : o is derived from the following
two derivations by applying (App), where τ1 = ∧{o} → > → o and τ2 = > → ∧{o} → o.
Hence this t is minimal.

(Var)
f : ∧{∧{τ1} → o} ` f : ∧{τ1} → o

(similarly to Example 19)
∅ ` fst : τ1 (∧)
∅ ` fst : ∧{τ1}

(App)
f : ∧{∧{τ1} → o} ` f fst : o

(∧)
f : ∧{∧{τ1} → o} ` f fst : ∧{o}

(similarly to the left)
(∧)

f : ∧{∧{τ2} → o} ` f snd : ∧{o}
(a)

f : ∧{∧{τ1} → o,∧{τ2} → o} ` a(f fst, f snd) : o
(Abs1)

∅ ` λf.a(f fst, f snd) :
∧
l∈[2]{∧{τl} → o} → o

(Var)
g : ∧{τ1} ` g : ∧{o} → > → o

(b)
∅ ` b : o

(∧)
∅ ` b : ∧{o}

(App)
g : ∧{τ1} ` g b : > → o

(∧)
∅ ` ⊥ : >

(App)
g : ∧{τ1} ` g b⊥ : o

(Abs1)
∅ ` λg.g b⊥ : ∧{τ1} → o

(similarly to the left)
(App)

g : ∧{τ2} ` g⊥ c : o
(Abs1)

∅ ` λg.g⊥ c : ∧{τ2} → o
(∧)

∅ ` λg.g b c :
∧
l∈[2]{∧{τl} → o}

Note that the term u is “used” in two different ways in t: in f fst, the subterm b is used,
whereas in f snd, the subterm c is used.

6 Proof of the Main Lemma (Lemma 14)

In this section, we prove Lemma 14 by using the intersection type system from the previous
section. Recall that we need to prove that if E[C] ∈ Λ̂n(k, ι, ξ), then there is a context
D � tHard,k such that E[D] ∈ Λ̂n(k, ι, ξ). Thanks to the result of the previous section,
E[C] ∈ Λ̂n(k, ι, ξ) implies that E[C] is typable in the intersection type system. Thus, it
suffices to construct D of the same size such that (i) C has “the same typing properties” as
D, and (ii) D contains tHard,k. To this end, we first extend the notion of types to those
of contexts (called context-types) in Section 6.1. We then show in Section 6.2 that we can
indeed construct a context D that has the same context types as C, and prove Lemma 14.

6.1 Context-Types
For each affine-context C, we write C CST {〈Γ′1, κ′1〉, . . . , 〈Γ′n, κ′n〉} V 〈Γ, κ〉 if there is a
derivation tree of Γ `ST C[x] : κ with the assumptions {Γ′1 `ST x : κ′1, . . . ,Γ′n `ST x : κ′n},
where n is at most one and x is a variable not occurring in C. Intuitively, it means that there
is a derivation tree of Γ′ `ST C : κ′ with the assumptions {Γ′1 `ST [ ] : κ′1, . . . ,Γ′n `ST [ ] : κ′n}
(see also Example 21). We often write t CST θ̃ for t CST ∅ V θ̃. We use κ̃ to denote a
pair 〈Γ, κ〉 and use ν̃ to denote a {〈Γ′1, κ′1〉, . . . , 〈Γ′n, κ′n〉} V 〈Γ, κ〉. Note that C is a term
(resp. a linear-context) if C CST {〈Γ′1, κ′1〉, . . . , 〈Γ′n, κ′n〉} V 〈Γ, κ〉 holds for n = 0 (resp.
n = 1). Below we extend the notion of CST to the intersection type system. The set of
(affine-)context-types, ranged over by µ̃, is defined as follows, where n ≥ 0 and we may write
θ̃+ for θ̃ if θ̃ 6= ∅:

τ̃ ::= 〈Θ, τ〉 θ̃ ::= {τ̃1, . . . , τ̃n} π̃ ::= τ̃ | θ̃+ µ̃ ::= θ̃ V π̃.

For µ̃, intuitively, θ̃ V τ̃ denotes the pair of the assumptions (θ̃) and the conclusion (τ̃) of
a derivation tree, and θ̃ V θ̃+ denotes the pair of the assumptions (θ̃) and the conclusions
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(θ̃+) of one or more derivation trees. The refinement relation is defined as the least relation
closed under the following rules, where n ≥ 0:

Θ :: Γ τ :: κ
〈Θ, τ〉 :: 〈Γ, κ〉

τ̃1 :: 〈Γ, κ〉 . . . τ̃n :: 〈Γ, κ〉
{τ̃1, . . . , τ̃n} :: 〈Γ, κ〉

θ̃′ :: 〈Γ′, κ′〉 π̃ :: 〈Γ, κ〉

θ̃′ V π̃ :: 〈Γ′, κ′〉V 〈Γ, κ〉
.

Henceforth we only consider context-types occurring in this refinement relation (so, we always
make the assumptions that for each θ̃′ V θ̃, for some 〈Γ, κ〉 and 〈Γ′, κ′〉, θ̃ :: 〈Γ, κ〉 and θ̃′ ::
〈Γ′, κ′〉). For each affine-context C, we write C C {〈Θ′1, τ ′1〉, . . . , 〈Θ′n, τ ′n〉}V 〈Θ, τ〉 if there is
a derivation tree of Θ ` C[x] : τ with the assumptions {Θ′1 ` x : τ ′1, . . . ,Θ′n ` x : τ ′n}, where x
is a variable not occurring in C. For n ≥ 1, we write (

⊔
i∈[n] Ci) C (

⋃
i∈[n] θ̃

′
i)V {τ̃1, . . . , τ̃n}

if Ci C θ̃′i V τ̃i for each i ∈ [n]. We often write t C θ̃ for t C ∅V θ̃.

I Example 21. Let C = (λgκ0 .[ ] b c), where κ0 = o→ o→ o. Note that C[g] is the term
u in Example 20. Then, we have C CST {〈(g : κ0), κ0〉} V 〈∅, κ0 → o〉 by g : κ0 `ST
g : κ0 and ∅ `ST C[g] : κ0 → o. Also, we have C C {〈(g : τ1), τ1〉, 〈(g : τ2), τ2〉} V
〈∅,
∧
l∈[2]{∧{τl} → o}〉 by using the derivation tree in Example 20 with regarding g as a

hole, where τ1 = ∧{o} → > → o and τ2 = > → ∧{o} → o. Furthermore, we also have
C C {〈(g : τ1), τ1〉, 〈(g : τ2), τ2〉}V {〈∅,∧{τ1} → o〉, 〈∅,∧{τ2} → o〉}. It is because C is the
join of C1 = (λgκ0 .[ ] b⊥o) and C2 = (λgκ0 .[ ]⊥o c). Here, note that C[g] = C1[g] t C2[g],
C1 C {〈(g : τ1), τ1〉}V 〈∅,∧{τ1} → o〉, and C2 C {〈(g : τ2), τ2〉}V 〈∅,∧{τ2} → o〉.

Below we list a few properties (see Appendix B for the proofs).

I Proposition 22 (substitution). Suppose that C is a linear-context. If C C θ̃′ V θ̃ and
C ′ C θ̃′′ V θ̃′, then C[C ′] C θ̃′′ V θ̃.

I Proposition 23 (inverse substitution). Suppose that C is a linear-context. If C[C ′] C θ̃′′ V θ̃,
then C C θ̃′ V θ̃ and C ′ C θ̃′′ V θ̃′ for some θ̃′.

These properties enable us to replace contexts preserving the minimality. For example,
given ∅ ` C[D[t]] : o (i.e., C[D[t]] is minimal); then by Proposition 23, C C θ̃ V {〈∅, o〉},
D C θ̃′ V θ̃, and t C θ̃′ for some θ̃ and θ̃′; then by Proposition 22, C[D′[t]] C {〈∅, o〉} (hence,
C[D′[t]] is also minimal) for each linear context D′ C θ̃′ V θ̃.

In the following subsection, we will show in Lemma 25 that for the term C[D[t]] in
the above, if the size |D| is sufficiently large, then one can choose D′ as a term satisfying
(i) D′ � tHard,k, and (ii) |D′| = |D|. Thus, from a term C[D[t]] ∈ Λ̂n(k, ι, ξ) such that
|D| is sufficiently large, one can construct a term C[D′[t]] satisfying (i) C[D′[t]] � tHard,k,
and (ii) |C[D′[t]]| = |C[D[t]]| and C[D′[t]] is minimal (hence, C[D′[t]] ∈ Λ̂n(k, ι, ξ)). This
transformation method will help us to show Lemma 14.

6.2 Proof of Lemma 14
Here, we fix parameters k, ι, and ξ. W.l.o.g., in the following, we only consider terms,
contexts, and environments having only variables in a fixed set Vξ , {z1, . . . , zξ} (of size
ξ). We say that 〈Γ, κ〉 is (〈k, ι, ξ〉-)bounded if max{ord (κ′) | κ′ ∈ {κ} ∪ rng(Γ)} ≤ k and
max{iar (κ′) | κ′ ∈ {κ} ∪ rng(Γ)} ≤ ι; and that 〈Γ′, κ′〉V 〈Γ, κ〉 is bounded if both 〈Γ′, κ′〉
and 〈Γ, κ〉 are; and that a context-type µ̃ is bounded if the ν̃ such that µ̃ :: ν̃ is bounded.
We also say that t is bounded if ord (t) ≤ k and iar (t) ≤ ι; and that a linear-context C
is bounded if C[⊥] is. Also, we use a (resp. b, c) to denote a tree constructor of arity 0
(resp. 2, 1).

The following technical lemma allows conversion between a ground-typed term and a
term of a required typing property: see Appendix C for a proof.
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I Lemma 24.
(1) Suppose that θ̃+ :: 〈Γ, κ〉 is bounded. If #(dom(Γ)) < ξ or ar (κ) < ι, then there exists a

bounded linear-context Cθ̃+ such that Cθ̃+ C {〈∅, o〉}V θ̃+.
(2) Suppose that θ̃ is bounded. Then, there exists a bounded affine-context Dθ̃ such that

Dθ̃ C θ̃ V {〈∅, o〉}.
By Lemma 24, from a given bounded context-type θ̃′ V θ̃+, one can construct a bounded
affine-context having this context-type as Cθ̃+ [Dθ̃′ ], except the case of that #(dom(Γ)) = ξ

and ar (κ) = ι. See Appendix C.1 for the boundary case; actually, terms having such
context-type are of a special form.

The following is the key lemma, which shows that for any bounded context-type, one can
construct a context D that has the context-type and contains the hard term tHard,k.

I Lemma 25. Suppose that C C θ̃′ V θ̃+ for some bounded affine-context C. Then for
some m0, for every m ≥ m0, there exists a bounded affine-context D of size m such that
D C θ̃′ V θ̃+ and D � tHard,k.

Proof. Let 〈Γ, κ〉 be such that θ̃+ C 〈Γ, κ〉. Note that θ̃′ and θ̃+ are also bounded.
(a) #(dom(Γ)) < ξ or ar (κ) < ι: For each l ≥ 0, let Dl be as follows, where cl(a) is the

term c(. . . c(a) . . . ) that c occurs l times and Dθ̃′ and Cθ̃+ are the ones in Lemma 24:

Dl , Cθ̃+ [b(tHard,k, b(cl(a), []))][Dθ̃′ ].

ThenDl � tHard,k is obvious, andDl C θ̃′ V θ̃+ by Proposition 22 (since b(tHard,k, b(cl, [])) C
{〈∅, o〉}V {〈∅, o〉}). Therefore, the claim has been proved by using these D1, D2, · · · .

(b) Otherwise: Then, Γ `ST C[⊥] : κ, C[⊥] is bounded, and #(dom(Γ)) = ξ and
ar (κ) = ι, so C should be of the form λ_.C0 (see Appendix C.1). By Proposition 23,
C0 C θ̃′ V θ̃0 and λ_.[] C θ̃0 V θ̃ for some θ̃0. Then ar (C0) < ar (C) ≤ ι and θ̃0 6= ∅
by C0 6= ⊥ (since ξ > 0). Therefore by (a), for some m′0, there is {D′l}l≥m′0 such that
D′l C θ̃′ V θ̃0, D′l � tHard,k, and |D′l| = l for each l ≥ m′0. Let Dl = λ_.D′l. Then
Dl � tHard,k is obvious, and Dl C θ̃′ V θ̃+ by Proposition 22. Therefore, the claim has been
proved by using these Dm′0

, Dm′0+1, · · · . J

We are now ready to prove the main lemma.

Proof (of Lemma 14). Let m , max{mθ̃′Vθ̃+ | C C θ̃′ V θ̃+ for some bounded C}, where
each mθ̃′Vθ̃+ is the m0 in Lemma 25. Indeed such m exists, since the number of bounded
context-types is finite. Recall E[C] ∈ Λ̂n(k, ι, ξ). Let Ẽ be a linear-context such that
E[C] = Ẽ[C[t]] for some t or E[C] = Ẽ[C]. For the sake of brevity, we only write the case of
that C is linear-context (i.e., E[C] = Ẽ[C[t]]). Since Ẽ[C[t]] is minimal, ∅ ` Ẽ[C[t]] : θ̄ for
some θ̄ :: o (Theorem 18). Then Ẽ[C[t]] C ∅V {〈∅, o〉} (by Ẽ[C[t]] 6= ⊥). By Proposition 23,
there exist θ̃ and θ̃′ such that Ẽ C θ̃ V {〈∅, o〉}, C C θ̃′ V θ̃, and t C ∅V θ̃′. By Lemma 25
(and C 6= ⊥), there exists a bounded linear-context D C θ̃′ V θ̃ such that D � tHard,k and
|D| = |C|. Therefore Ẽ[D[t]] C ∅V {〈∅, o〉} (hence, ∅ ` Ẽ[D[t]] : ∧{o}) by Proposition 22,
and thus E[D] is minimal (Theorem 18). Hence, E[D] ∈ Λ̂n(k, ι, ξ). J

7 Related Work

Ong [21] proved the k-EXPTIME completeness of higher-order model checking. There have
also been results on parameterized complexity [15, 17, 18] and the complexity of subclasses
of the problem [18, 5]. To our knowledge, however, they are all about the worst-case
complexity. Despite the extremely high worst-case complexity, practical model checkers have
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been developed that run quite fast for typical inputs [14, 4, 23, 28], which has led to the
motivating question for our work: is higher-order model checking really hard in the average
case?

Technically, closest to ours is the work of Asada et al. [26, 1] on a quantitative analysis
of the length of β-reduction sequences of simply-typed λ-terms. In fact, our use of the
tree-version of infinite monkey theorem (to show that almost every term contains a “hard”
term), as well as the tree decomposition [1] has been inspired by their work and other studies
on quantitative analysis of the λ-calculus and combinatory logics [8, 2]. The main new
difficulty was that, unlike in the case of the length of β-reduction sequences, even if t is
a “hard” term to model-check, a term C[t] that contains t as a subterm may not be hard
to model-check, because t may not actually be used in C[t] or may be irrelevant for the
property to be checked. This has led us to restrict terms to “minimal ones” that do not
contain unnecessary subterms. The restriction turned out to be natural also for our goal: we
wish to model the average case that arises in the actual applications to program verification,
and the restriction to minimal terms helps us exclude out unlikely inputs.

We have used an intersection type system to characterize minimal terms. Related type
systems have been studied in the context of useless code elimination [6, 7, 13]. In particular,
Daminani [7] also used an intersection type system. To our knowledge, however, previous
studies do not provide a complete characterization of minimal terms (especially in the presence
of recursion).

There has been much interest in the average-case complexity in the field of computational
complexity: see [3] for a good survey. In their terminology, our ultimate goal is to answer
whether (HOMCk(·, ·),U) belongs to AvgδDTIME(f(n)) (the class of distributional problems
that can be solved in time f(n) for at least (1 − δ(n))-fraction of the inputs of size n),2
where HOMCk(·, ·) is the higher-order model checking problem of order k, U is a uniform
distribution on inputs of each size n, δ is a function that is asymptotically smaller than λn.1,
and f(n) is a function asymptotically much smaller than expk(cn) (a k-fold exponential
function). The result obtained in the present paper (Theorem 7) is not yet of this form, and
is rather a mixture of average-case and worst-case analysis, which may be of independent
interest from the perspective of complexity theory.

8 Conclusion

We have studied a mixture of average-case and worst-case complexity of higher-order model
checking, and shown that for almost every minimal λY -term t of order-k, the higher-order
model checking problem specialized for t is k-EXPTIME hard with respect to the size of
a tree automaton. To our knowledge, this is the first result on the average-case hardness
of higher-order model checking. To obtain the result, we have given a complete type-based
characterization of “minimal” terms that contain no useless subterms, which may be of
independent interest. Pure average-case analysis of the hardness of higher-order model
checking is left for future work.

2 A similar notion has also been studied under the name “generic-case complexity” [11].
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u in C[u] is used if t = C[u] −→∗ E[u] for some evaluation context E,3 but this criterion is
incorrect. Consider, for example,

t = a
(
(λx.x)u, ⊥u

)
−→ a(u, ⊥u),

where u appears under an evaluation context E = a([ ],⊥u) after the reduction but the
underlined occurrence of u is indeed useless. This example suggests that we need to distinguish
different occurrences of the same term.

Let ` be a special tree constructor of arity 1 such that ` /∈ Σ. We call this symbol a
label and use it to mark focused occurrences of (sub)terms. The labelling operation (−)` is
defined, for a term t of type κ1 → . . . → κk → o, by t` := λz1. . . . λzk.`(t z1 . . . zk). For a
term t possibly having `, we write \(t) for the term obtained by removing `.

A term is labelled if it contains `; otherwise it is unlabelled. A labelled finite tree V is
well-labelled if V = D[`(u)] and \(u) 6= ⊥ for some D and u.

I Theorem 26 (Characterization of the minimality). Let t be a closed and ground-typed term
over Σ. Then, t is minimal if and only if for every 〈C, s〉 such that t = C[s] and s 6= ⊥, there
exists a finite well-labelled tree V such that C[s`] −→∗w V .

A.2 Proof Sketch of Proposition 11
Let t be a closed and ground-typed term. Assume that t is minimal, and let s be a non-
⊥, closed and ground-typed subterm of t. Then t = C[s] for some linear-context C. By
Theorem 26, the value tree of C[s`] contains `, say T (C[s`]) = D[`(V )]. One can show
that V is the value tree of s, which implies that T (C[s`]) contains T (s) as a subtree. Since
T (t) = T (C[s]) is obtained by removing ` from T (C[s`]), it also contains T (s) as a subtree.

A.3 Proof Sketch of Theorem 18
Since we shall study possibly labelled terms, we first introduce a typing rule for `(t):

Θ ` t : o (`)
Θ ` `(t) : o

.

Note that the rule for `(t) differs from that for tree constructors: the argument of ` must be
of type o, whereas those of a tree constructor can be of type ⊥ in addition to o. The above
rule ensures that ∅ ` `(t) : o implies \(t) 6= ⊥. So we have the following lemma.

I Lemma 27. Let V be a labelled finite tree. If ∅ ` V : o, then V is well-labelled.

We use Subject Reduction and Subject Expansion in the soundness and completeness
proofs of our system, similar to proofs for other intersection type systems. However the
standard version of Subject Reduction and Subject Expansion does not hold for our system
since minimality is not preserved by reduction nor expansion. For example, consider(

λf.a
(
f (λx_.x), f (λ_y.y)

))
(λg.g b c) −→ a

(
(λg.g b c) (λx_.x), (λg.g b c) (λ_y.y)

)
,

where a, b and c are tree constructors; the left-hand-side is minimal but the right-hand-side
is not. In order to retain minimality, the right-hand-side has to be approximated:

a
(
(λg.g b c) (λx_.x), (λg.g b c) (λ_y.y)

)
w a

(
(λg.g b⊥) (λx_.x), (λg.g⊥ c) (λ_y.y)

)
.

3 Although evaluation contexts are not explicitly defined in Section 2, they are implicitly given in
Definition 2 and their concrete definition should be clear.
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The next lemma is a correct version, which takes account of the approximation relation.

I Lemma 28 (Subject Reduction / Subject Expansion). Assume that s1 v t1 and Θ ` s1 : θ̄.
(1) If t1 −→∗ t2, then there exists s2 v t2 with Θ ` s2 : θ̄ such that s1 −→∗w s2. Further-

more, if s1 is labelled, we can choose s2 so that it is labelled.
(2) If t0 −→∗ t1, then there exists s0 v t0 with Θ ` s0 : θ̄ such that s0 −→∗w s1.

The proof of completeness is rather straightforward. Note that, given a term t and a tree
V with t −→∗w V , Subject Expansion induces a derivation of ∅ ` t′ : θ̄ for some t′ v t. The
key to the completeness proof is to find sufficiently large V so that t′ = t.

I Theorem 29 (completeness). Let t be any closed and ground-typed term over Σ. If t is
minimal, then ∅ ` t : θ̄ for some θ̄.

Proof sketch. Since t is minimal, by Theorem 26, for each 〈C, s〉 such that t = C[s] and
s 6= ⊥, one can find a finite well-labelled tree VC = DC [`(uC)] such that

C[s`] −→∗w VC = DC [`(uC)]. (1)

We can assume without loss of generality that ` does not occur in DC . Let V =
⊔
C DC [\uC ],

where C ranges over linear contexts such that t = C[s] holds for some s 6= ⊥. This is
well-defined since DC [\uC ] v T (t) for every C. Since V is an unlabelled tree, ∅ ` V : θ̄ for
some θ̄. Then by Subject Expansion (Lemma 28(2)), there exists t′ v t such that t′ −→∗w V
and ∅ ` t′ : θ̄.

It suffices to show that t′ = t. Assume t′ @ t for contradiction. By the assumption, there
exists 〈C, s〉 such that t = C[s], s 6= ⊥, and t′ v C[⊥]. Then

C[s`] w C[⊥] w t′ −→∗w V w DC [\uC ],

and thus C[s`] −→∗w DC [\uC ]. This together with (1) implies that DC [`(uC)] tDC [\uC ] is
well-defined. This means `(uC) t \(uC) is well-defined, which contradicts to the assumption
that \(uC) 6= ⊥. J

The soundness proof requires another trick, since Subject Reduction alone does not ensure
that a label eventually appears under an evaluation context in the presence of divergence. A
term is Y-free if it does not have Y. The evaluation of a Y-free term always terminates,
and the soundness of the type system for Y-free terms is relatively easy to prove. So we aim
to remove Y in a given term before applying Subject Reduction, preserving its type.

Consider the rewriting rule C[Y t] ↪→ C[t (Y t)], which is allowed to be applied to any
occurrence of Y t (not restricted to those under evaluation contexts). Then �Y is defined as
↪→∗w. The next lemma is a key to the soundness proof, reflecting the inductive nature of
the rules for Y in our type system.

I Lemma 30. Assume that Θ ` t : θ̄. Then there exists a Y-free term s such that t �Y s

and Θ ` s : θ̄. Furthermore, if t is labelled, one can choose s so that s is also labelled.

I Theorem 31 (soundness). Let t be any closed and ground-typed term over Σ. If ∅ ` t : θ̄
for some θ̄, then t is minimal.

Proof sketch. If θ̄ = >, then t = ⊥ and thus t is minimal. Otherwise, we can assume
without loss of generality that θ̄ = o. By Theorem 26, it suffices to show that, for every 〈C, s〉
with t = C[s] and s 6= ⊥, there exists a finite well-labelled tree V such that C[s`] −→∗w V .
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Assume that t = C[s] and s 6= ⊥. Since ∅ ` C[s] : o and s 6= ⊥, one can show that
∅ ` C[s`] : o. By Lemma 30, there exists a Y-free labelled term ∅ ` u : o such that
C[s`] �Y u. Since u is Y-free, its evaluation terminates, i.e. u −→∗ W for some tree W . By
Subject Reduction (Lemma 28(1)), there exists a labelled term V vW such that u −→∗w V
and ∅ ` V : o.

It suffices to show that C[s`] −→∗w V and that V is a well-labelled tree. The former
claim follows from C[s`] �Y u −→∗w V because �Y can be seen as a kind of reduction. To
prove the latter, observe that V is a tree since every approximation of a tree is a tree. So V
as a well-typed and labelled tree is well-labelled by Lemma 27. J

B Proof of Proposition 22 and 23

I Lemma 32. Suppose that C is a linear-context. If C C θ̃′ V τ̃ and C ′ C θ̃′′ V θ̃′, then
C[C ′] C θ̃′′ V {τ̃}.

Proof. Let θ̃′ = {τ̃ ′1, . . . , τ̃ ′n}. By C ′ C θ̃′′ V θ̃′, there exists {〈θ̃′′i,j , C ′i,j〉}i∈[n],j∈[ki] such that
C ′ =

⊔
i∈[n],j∈[ki] C

′
i,j , θ̃′′ =

⋃
i∈[n],j∈[ki] θ̃

′′
i,j , and C ′i,j C θ̃′′i,j V τ̃ ′i . Here, we can assume that

k1 = · · · = kn (so, we denote them by k). Then from the derivation tree of C C θ̃′ V τ̃ (see
the left-hand side below), we can construct a derivation tree of C[C ′] C θ̃′′ V τ̃ (see the
right-hand side below) by copying the form of the derivation tree of C C θ̃′ V τ̃ as follows,
where τ̃ = 〈Θ, τ〉 and f : [m]→ [n′] is a surjective map:

x C τ̃ ′f(1) . . . x C τ̃ ′f(m)

.... T
Θ ` C[x] : τ

 copy T

C ′f(1),1 C θ̃
′′
f(1),1 V τ̃ ′f(1) . . . C ′f(m),1 C θ̃

′′
f(m),1 V τ̃ ′f(m)

.... T
Θ ` C[

⊔
i∈[n] C

′
i,1] : τ . . .

. . . . . . . . .

.... T
Θ ` C[

⊔
i∈[n] C

′
i,k] : τ

(∧)
Θ ` C[C ′] : τ

. J

Proof of Proposition 22. Let θ̃′ = {τ̃ ′1, . . . , τ̃ ′n′} and θ̃ = {τ̃1, . . . , τ̃n}. By C C θ̃′ V θ̃, there
exists {〈θ̃′i, Ci〉}i∈[m] such that C =

⊔
i∈[m] Ci, θ̃′ =

⋃
i∈[m] θ̃

′
i, and Ci C θ̃′i V τ̃f(i). By

C ′ C θ̃′′ V θ̃′, there exists {〈θ̃′′j , C ′′j 〉}j∈[n′] such that C ′ =
⊔
j∈[n′] C

′′
j , θ̃′′ =

⋃
j∈[n′] θ̃

′′
j , and

C ′′j C θ̃
′′
j V {τ̃j}. Let C ′i =

⊔
j∈[n′];τ̃ ′

j
∈θ̃′

i
C ′′j and let θ̃′′i =

⋃
j∈[n′];τ̃ ′

j
∈θ̃′

i
θ̃′′j . Then C ′i C θ̃′′i V θ̃′i.

By Lemma 32, Ci[C ′i] C θ̃′′i V τ̃f(i). Therefore, C[C ′] C θ̃′′ V θ̃. J

I Lemma 33. Suppose that C is a linear-context. If C[C ′] C θ̃′′ V τ̃ , then C C θ̃′ V τ̃ and
C ′ C θ̃′′ V θ̃′ for some θ̃′.

Proof. Then (the derivation tree of) C[C ′] C θ̃′′ V τ̃ should be of the form in the right-hand
side below, where τ̃ = 〈Θ, τ〉, C ′ =

⊔
i∈[m] C

′
i, and θ̃′′ =

⋃
i∈[m] θ̃

′′
i . We let θ̃′ = {τ̃ ′1, . . . , τ̃ ′m}.

Then, C ′ C θ̃′′ V θ̃′ is immediate and C C θ̃′ V τ̃ is shown by replacing each subterm arise
from t to x (see the left-hand side below):

x C τ̃ ′1 . . . x C τ̃ ′m
.... T

Θ ` C[x] : τ

 

C ′1 C θ̃
′′
1 V τ̃ ′1 . . . C ′m C θ̃

′′
m V τ̃ ′m

.... T
Θ ` C[C ′] : τ

. J

Proof of Proposition 23. Let θ̃′′ = {τ̃ ′′1 , . . . , τ̃ ′′n′′} and θ̃ = {τ̃1, . . . , τ̃n}. By C[C ′] C θ̃′′ V θ̃,
there exist a surjective map f : [m] → [n] and a sequence {〈Ci, C ′i, θ̃′′i 〉}i∈[m] such that
Ci[C ′i] C θ̃′′i V τ̃f(i), C =

⊔
i∈[m] Ci, C ′ =

⊔
i∈[m] C

′
i, and θ̃′′ =

⋃
i∈[m] θ̃

′′
i (see also the full

version [20]). By Lemma 33, Ci C θ̃′i V τ̃f(i) and C ′i C θ̃′′i V θ̃′i for some θ̃′i. We now let
θ̃′ =

⋃
j∈[m] θ̃

′
i. Then, both C ′ C θ̃′′ V θ̃′ and C C θ̃′ V θ̃ are immediate. J
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C Proof of Lemma 24

The size of a simple type κ and a simple type environment Γ, written |κ| and |Γ| respectively, is
defined by: |κ| , 1 if κ = o, |κ| , 1+|κ1|+|κ2| if κ = κ1 → κ2, and |Γ| , 1+

∑
x∈dom(Γ) |Γ(x)|.

I Definition 34. The term tΓ,κ is inductively defined as follows, where in the second case,
l = min{i ∈ [ξ] | zi ∈ dom(Γ)}; and in the third case, l = min{i ∈ [ξ] | zi 6∈ dom(Γ)}:

tΓ,κ ,



a (κ = o and Γ = ∅)
b(zlt∅,κ1 . . . t∅,κm , tΓ′,o) (κ = o and Γ = (Γ′, zl : κ1 → . . .→ κm → o))
λzl.t(Γ,zl:κ′),κ′′ (κ = κ′ → κ′′ and #(dom(Γ)) < ξ)
(λz1.t(z1:o),κ) tΓ,o (κ = κ′ → κ′′ and ar (κ) < ι)
undefined (otherwise)

.

I Proposition 35. Suppose that 〈Γ, κ〉 is (〈k, ι, ξ〉-)bounded. If #(dom(Γ)) < ξ or ar (κ) < ι,
then (1) tΓ,κ is defined, (2) Γ `ST tΓ,κ : κ, and (3) tΓ,κ is bounded.

Proof. By a straightforward induction on the parameter 〈|κ|, |Γ|〉. J

We now extend the above for intersection types.

I Definition 36. The term tΘ,θ̄ is inductively defined as follows, where in the second case,
l = min{i ∈ [ξ] | zi ∈ dom(Θ)}; and in the third case, l = min{i ∈ [ξ] | zi 6∈ dom(Θ)}:

tΘ,θ̄ ,



a (θ̄ = o and Θ = ∅)
b(
⊔
i∈[n] zlt∅,θ1

i
. . . t∅,θm

i
, tΘ′,o) (θ̄ = o and Θ = (Θ′, zl :

∧
i∈[n] θ

1
i → . . .→ θmi → o))

λzl.t(Θ,zl:θ′),τ ′′ (θ̄ = θ′ → τ ′′ and #(dom(Θ)) < ξ)
(λz1.t(z1:∧{o}),θ̄) tΘ,o (θ̄ = θ′ → τ ′′ and ar (κ) < ι)⊔
i∈[n] tΘ,τi (θ̄ =

∧
i∈[n] τi and n ≥ 1)

⊥κ (θ̄ = >κ and Θ = ∅)
undefined (otherwise)

.

I Proposition 37. Suppose that 〈Θ, θ̄〉 :: 〈Γ, κ〉 for some bounded 〈Γ, κ〉. If #(dom(Γ)) < ξ,
ar (κ) < ι, or 〈Θ, θ̄〉 = 〈∅,>〉, then (1) tΘ,θ̄ is defined, (2) tΘ,θ̄ v tΓ,κ, (3) Θ ` tΘ,θ̄ : θ̄, and
(4) tΘ,θ̄ is bounded.

Proof. By a straightforward induction on the parameter 〈|κ|, |Γ|〉. The existence of the join
in each case can be ensured by the assumption (2). J

We now extend the above for context-types to prove Lemma 24.

I Definition 38. The linear-context Cτ̃ is inductively defined as follows, where in the second
case, l = min{i ∈ [ξ] | zi 6∈ dom(Θ)}:

C〈Θ,τ〉 ,


b(tΘ,o, [ ]) (τ = o)
λzl.C〈(Θ,zl:θ′),τ ′′〉 (τ = θ′ → τ ′′ and #(dom(Θ)) < ξ)
(λz1.t(z1:∧{o}),τ ) C〈Θ,o〉 (τ = θ′ → τ ′′ and ar (τ) < ι)
undefined (otherwise)

. For each θ̃+ =

{τ̃1, . . . , τ̃n}, let Cθ̃+ ,
⊔
i∈[n] Cτ̃i

. This is well-defined thanks to Proposition 37(2).

I Proposition 39. Suppose that θ̃+ :: 〈Γ, κ〉 for some bounded 〈Γ, κ〉. If #(dom(Γ)) < ξ or
ar (κ) < ι, then (1) Cθ̃+ is defined, (2) Cθ̃+ C {〈∅, o〉}V θ̃, and (3) Cθ̃+ is bounded.
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Proof. By a straightforward induction on the parameter 〈|κ|, |Γ|〉. J

I Definition 40. The linear-context Dτ̃ is defined as follows, where in the first case, l =
min{i ∈ [ξ] | zi ∈ dom(Θ)}; and in the second case, τ = θ1 → . . .→ θm → o:

D〈Θ,τ〉 ,

{
(λzl.D〈Θ′,τ〉) t∅,θl

(Θ = (Θ′, zl : θl))
c([ ] t∅,θ1 . . . t∅,θm) (Θ = ∅)

. Let Dθ̃+ ,
⊔
i∈[n]Dτ̃i for each θ̃+ =

{τ̃1, . . . , τ̃n}. This is well-defined thanks to Proposition 37(2). Also, specially, let D∅ , a.

I Proposition 41. Suppose that θ̃ :: 〈Γ, κ〉 for some bounded 〈Γ, κ〉. Then, (1) Dθ̃ is defined,
(2) Dθ̃ C θ̃ V {〈∅, o〉}, and (3) Dθ̃ is bounded.

Proof. By a straightforward induction on the parameter 〈|κ|, |Γ|〉. J

As a consequence of Proposition 39 and 41, Lemma 24 has been proved.

C.1 On the Boundary Case of Lemma 24(1)
Here, we consider the boundary case of Lemma 24(1), i.e., Γ `ST t : κ, t is 〈k, ι, ξ〉-bounded,
#(dom(Γ)) = ξ, and ar (κ) = ι. Actually in this case, t should be of a special form.

I Lemma 42. Suppose that
(1) Γ `ST t : κ,
(2) t is 〈k, ι, ξ〉-bounded,
(3) #(dom(Γ)) = ξ, and
(4) ar (κ) = ι.
Then, t is α-equivalent to a term of the form λ_.t1.

Proof. By ξ > 1, t 6= x and t 6= ⊥. By ι > 0, t 6= a(t1, . . . , tΣ(a)). By ar (κ) = ι, t 6= t1t2
and t 6= Yt1. Therefore t is of the form λx̄.t1. By that t is bounded and #(dom(Γ)) = ξ,
the last rule of Γ `ST λx̄.t1 : κ should be (Abs2), so Γ `ST t1 : κ′′, where κ = κ′ → κ′′. Then
x̄ does not occur in t1 as a free variable. Therefore t is α-equivalent to the term λ_.t1. J
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Abstract
Higher-order grammars have recently been studied actively in the context of automated verification
of higher-order programs. Asada and Kobayashi have previously shown that, for any order-(n+ 1)
word grammar, there exists an order-n grammar whose frontier language coincides with the language
generated by the word grammar. Their translation, however, blows up the size of the grammar,
which inhibited complexity-preserving reductions from decision problems on word grammars to those
on tree grammars. In this paper, we present a new translation from order-(n+ 1) word grammars to
order-n tree grammars that is size-preserving in the sense that the size of the output tree grammar
is polynomial in the size of an input tree grammar. The new translation and its correctness proof
are arguably much simpler than the previous translation and proof.
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1 Introduction

It is well known that there is a close relationship between context-free word languages
and regular tree languages: for any regular tree language L, its frontier language, i.e., the
word language consisting of the sequence of leaf symbols of each tree in L, is context-free;
conversely, for any context-free language with no empty sequence, the set of parse trees
is a regular tree language. Damm [6] has shown that this correspondence generalizes to
safe higher-order languages: for any order-n (safe) language L, there is a corresponding
order-(n+ 1) word language that corresponds to the frontier language of L, and vice versa.
Asada and Kobayashi [1] extended the result to unsafe higher-order languages. The results
allow us to reduce a problem on order-(n + 1) word languages (like linear-time property
verification of order-(n+1) functional programs) to a problem on order-n (but tree) languages.
Such a reduction may be useful, since the cost of various problems on a higher-order language
(such as HORS model checking) is usually in the tower of exponentials whose height is the
order of the language.
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22:2 Size-Preserving Translations from Word Grammars to Tree Grammars

Unfortunately, however, the translation of Asada and Kobayashi [1] from order-(n+ 1)
word grammars to order-n tree grammars (which is the hard direction) blows up the size of
the grammar: the output tree grammar is hyper-exponential in the size of an input word
grammar, which cancels off the benefit of reducing the order of the grammar. Also, both the
translation and correctness proof were very complex. Clemente et al. [5] have shown another
translation from order-(n+ 1) word grammars to order-n tree grammars (as a component of
their algorithm for the diagonal problem), but their translation also suffers from the same
problem of blowing up the size of the grammar.

In the present paper, we present a much simpler translation from order-(n + 1) word
grammars to order-n tree grammars, where the size of the output grammar is polynomial in
the size of an input grammar.1

Some of the known results on the complexity of decision problems on higher-order
languages follow immediately from our result. For example, Parys [12] has shown that the
complexity of the diagonal problem is n-EXPTIME-complete for order-n tree grammars and
(n− 1)-EXPTIME-complete for order-n word grammars. He separately discussed the tree
and word cases, but using our result, the upper-bound for the word-case follows immediately
from the tree case. (Note that the hardness follows from the translation of [1] in the
opposite direction.) For another example, it is known that the inclusion problem between an
order-(n+ 1) word language and a regular language (to which various program verification
problems can be reduced) can be decided in n-EXPTIME in the size of the order-(n + 1)
word grammar; it is, for example, obtained as a corollary of Kobayashi and Ong’s result [10]
that linear-time property model checking of order-(n + 1) higher-order recursion schemes
(HORS) is n-EXPTIME complete. Using our result, the upper-bound of the complexity
of the inclusion problem can be obtained as an immediate corollary of the n-EXPTIME
completeness of the modal µ-calculus model checking of HORS [11] and our result.

Our new translation from word grammars to tree grammars is in a sense more elementary
than the previous known translations [1, 5]. While the previous translations used intersection
types, our new translation, which has been inspired from [3, 9], uses only simple types. The
correctness proof of the new translation is also arguably much simpler than those of the
previous translations.

Related Work. As explained above, a translation from order-(n + 1) word grammars to
order-n tree grammars has first been shown by Damm [6, Theorem 7.17] for safe grammars.
His translation does not seem to generalize to unsafe grammars (grammars without the so
called “safety restriction” [7, 4]). Asada and Kobayashi [1] and Clemente et al. [5] have
shown translations for unsafe grammars. As mentioned already, these previous translations
are quite different from ours. Both of the previous translations [1, 5] used intersection types
and replicated a term for each intersection type. Since the number of intersection types
need for the translation of order-k grammars is k-fold exponential, it was inevitable for the
previous translations to blow up the size of the grammar. In contrast, our translation does
not use intersection types, and only keeps track of how order-0 variables are used.

As for applications, Asada and Kobayashi’s translation [1] has been used to prove a
pumping lemma for higher-order grammars modulo a certain conjecture [2]. Clemente et
al. [5] used (an extension of) their translation to prove the decidability of the diagonal
problem.

1 More precisely, the transformation of Asada and Kobayashi [1] consists of two steps, a main step and an
administrative step. We simplify only the main step; for applications discussed below, we do not need
the administrative step.
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Our translation has been inspired from related transformations developed in [3, 9]. Asada
and Kobayashi [3] used a related transformation for order-3 grammars, which was used to
prove a variant of the pumping lemma for higher-order grammars. Kobayashi et al. [9] used
a similar transformation technique for probabilistic higher-order grammars called PHORS,
to provide a fixpoint characterization of the termination probability of PHORS.

The rest of the paper is structured as follows. Section 2 reviews the definition of higher-
order grammars, and states the main result. Section 3 gives the definition of the new
transformation from order-(n + 1) word grammars to order-n tree grammars. Section 4
proves the complexity results, and discusses an application of the main result. Section 5
proves the correctness of the translation. Section 6 concludes the paper.

2 Preliminaries

We first review basic definitions on higher-order grammars [6, 1] in Section 2.1; our definitions
given below basically follow those of [1], with slight modifications. We then state our main
result in Section 2.2.

We often write ã for a sequence a1, . . . , an, and write |ã| for the length n of the sequence.

2.1 Higher-order grammars
I Definition 1 (types and terms). The set of (simple) types, ranged over by κ, is given by:
κ ::= o | κ1 → κ2. The order, arity, and size of a type κ, written ord(κ), ari(κ), and |κ|,
are defined by

ord(o) := 0 ord(κ1 → κ2) := max
(
ord(κ1) + 1, ord(κ2)

)
ari(o) := 0 ari(κ1 → κ2) := 1 + ari(κ2)
|o| := 1 |κ1 → κ2| := |κ1|+ |κ2|+ 1.

The type o describes trees, and κ1 → κ2 describes functions from κ1 to κ2. The set of terms,
ranged over by s, t, u, . . ., is defined by:

t ::= x | a t1 · · · tk | t1 t2 | t1 ⊕ t2 | Ω.

Here, x ranges over a denumerable set of variables, and a over a set of constants (which
represent tree constructors). We also use meta-variables y, z, F,G for variables. Variables
and constants are also called non-terminals and terminals respectively. A ranked alphabet
Σ is a map from a finite set of terminals to the set of natural numbers; we call Σ(a) the
arity of a terminal a. We implicitly assume a ranked alphabet whose domain contains all
terminals discussed, unless explicitly described. The term t1 ⊕ t2 denotes a non-deterministic
choice between t1 and t2, and Ω denotes divergence. A term is called an applicative term if
it contains neither ⊕ nor Ω.

A (simple) type environment K is a sequence of type bindings of the form x : κ, where K
may contain at most one binding for each variable. The type judgment relation K `ST t : κ is
defined by the following rules.

K, x : κ, K′ `ST x : κ
Σ(a) = k K `ST ti : o (for each i ∈ {1, . . . , k})

K `ST a t1 · · · tk : o

K `ST t1 : κ2 → κ K `ST t2 : κ2

K `ST t1 t2 : κ
K `ST t1 : o K `ST t2 : o

K `ST t1 ⊕ t2 : o K `ST Ω : o

FSCD 2020



22:4 Size-Preserving Translations from Word Grammars to Tree Grammars

For a technical convenience, in the typing rule for constants, we require that a terminal must
be fully applied; this does not restrict the expressive power of higher-order grammars introduced
below. Note that, given K and t, there exists at most one type κ such that K `ST t : κ. We
call κ the type of t (with respect to K). Henceforth, we consider only well-typed terms.

A term t is called ground (with respect to K) if K `ST t : o, and t is called a (finite,
Σ-ranked) tree if t is a closed ground applicative term consisting of only terminals. We write
TreeΣ for the set of Σ-ranked trees, and use the meta-variable v for trees.

We define the size |t| of a term t by: |x| := 1, |a t1 · · · , tk| := 1 + |t1| + · · · + |tk|,
|s t| := |s|+ |t|+ 1, |s⊕ t| := |s|+ |t|+ 1, and |Ω| := 1.

I Definition 2 (higher-order grammar). A higher-order grammar (or grammar for short) is
a quadruple (Σ,N ,R, t◦), where

Σ is a ranked alphabet,
N is a map from a finite set of non-terminals to their types,
R is a finite set of rewriting rules of the form F x1 · · · x` → t, where: (i) t is a term,
(ii) N (F ) = κ1 → · · · → κ` → o, (iii) N , x1 : κ1, . . . , x` : κ` `ST t : o holds, and (iv) in R
there is exactly one rule for each nonterminal,
t◦ is a term called the start term, and N `ST t

◦ : o.

The order of a grammar G is defined as the largest order of the types of non-terminals (or
0 if dom(N ) is empty). We define the size of N , written as |N |, by |N | :=

∑
F∈N |N (F )|,

and also define the Curry-style and Church-style sizes of a grammar G, written as |G|cy and
|G|ch, by: |G|cy := |t◦|+

∑
(F x1 ··· x`→t)∈R(|t|+ `) and |G|ch := |G|cy + |N |, respectively. We

sometimes omit the subscript of |G|ch and write |G|. |G|ch (rather than |G|cy) is essentially
the same as the definition of the grammar size in [12] (the results of [12] will be discussed
in Section 4.2, as an application of our results).

The tree language L(G) generated by a grammar G is defined as follows. The set of
evaluation contexts (ranged over by E) is defined by the grammar:

E ::= [ ] | a t1 . . . ti−1E ti+1 . . . tΣ(a) (1 ≤ i ≤ Σ(a)) | E ⊕ t | t⊕ E.

Below we consider only contexts E such that N ,K, [ ] : o `ST E : o. For a grammar G =
(Σ,N ,R, t◦), the rewriting relation −→G is defined as follows:

(F x̃→ t) ∈ R
E[F s̃ ] −→G E[ [s̃/x̃]t ] E[ a s̃ (t1 ⊕ t2) ũ ] −→G E[ (a s̃ t1 ũ)⊕ (a s̃ t2 ũ) ]

We write −→∗G for the reflexive transitive closure of −→G. We may omit the subscript G
and write −→ and −→∗, if G is clear from the context. We define the set of choice contexts
(ranged over by C) by: C ::= [ ] | C ⊕ t | t⊕ C. For N `ST t : o, we define L(G, t) := {v ∈
TreeΣ | t −→∗G C[v]}, and L(G) := L(G, t◦).

I Remark 3. In [1], we used a slightly different definition of a higher-order grammar: (i) The
definition in the present paper uses a start term, while that in [1] uses a start symbol (i.e., a
start term is restricted to some non-terminal S). (ii) In the present paper R is deterministic
and total, and ⊕ and Ω may occur on the right hand side of each rule, while in [1] R is
not necessarily deterministic nor total, and neither ⊕ nor Ω may occur. The two styles of
grammars can be mutually translated in an obvious manner.

The grammars defined above may also be viewed as generators of word languages.
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I Definition 4 (word alphabet / br-alphabet). A ranked alphabet Σ is called a word alphabet
if it has a special nullary terminal e and all the other terminals have arity 1. A grammar G
is called a word grammar if its alphabet is a word alphabet. For a tree v = a1(· · · (an e) · · · )
of a word grammar, we define word(v) = a1 · · · an. The word language generated by a word
grammar G, written Lw(G), is word(L(G)).

The frontier word of a tree v, written leaves(v), is the sequence of symbols in the leaves
of v. It is defined inductively by: leaves(a) = a when Σ(a) = 0, and leaves(a v1 · · · vk) =
leaves(v1) · · · leaves(vk) when Σ(a) = k > 0. We write Lleaf(G) and Lleaf(G, t) for
leaves(L(G)) and leaves(L(G, t)), respectively, and call Lleaf(G) the frontier language gen-
erated by G.

A br-alphabet is a ranked alphabet such that it has a special binary constant br and
a special nullary constant e, and the other constants are nullary. We call a grammar G a
br-grammar if its alphabet is a br-alphabet. Intuitively, br and e represent the concatenation
of two frontier words and the empty word ε respectively. For a word w, we write w↑e for the
word obtained by removing all the occurrences of e in w, and L↑e for {w↑e | w ∈ L}. We
write s ≈ t if Lleaf(G, s)↑e = Lleaf(G, t)↑e.

For a word alphabet Σ, we define the br-alphabet of Σ, written br(Σ), by: br(Σ) :=
{e 7→ 0, br 7→ 2} ∪ {a 7→ 0 | Σ(a) = 1}.

We note that the classes of order-0, order-1, and order-2 word languages coincide with
those of regular, context-free, and indexed languages, respectively [13].

I Example 5. Consider the order-2 (word) grammar G1 = ({a : 1, e : 0}, {S : o, F : (o→ o)→
(o→ o), T : (o→ o)→ (o→ o), A : o→ o},R1, S), where R1 consists of:

S → F A e F f x→ (f x)⊕ (F (T f)x) T f x→ f(f x) Ax→ ax

S is reduced, for example, as follows

S −→ F A e −→ C1[F (T A) e] −→ C2[F (T (T A)) e] −→C3[(T (T A)) e]
−→C3[T A (T A e)] −→∗ C3[a4(e)]

where C1, C2, and C3 are some appropriate choice contexts. The word language Lw(G1) is
{a2n | n ≥ 0}.

Consider the order-1 (tree) grammar G2 = ({br : 2, a : 0, e : 0}, {S : o, F : o→ o, T : o→ o},
R2, S), where R2 consists of:

S → F a F f → f ⊕ (F (T f)) T f → br f f.

The frontier language Lleaf(G2) coincides with Lw(G1) above. This (existence of an order-1
tree grammar corresponding to an order-2 word grammar) is not a coincidence, as stated in
Theorem 6 below.

2.2 The main result
The following theorem states the main result of the present paper.

I Theorem 6. For any n ≥ 0, there exist an effective translation Tn from order-(n+ 1) word
grammars to order-n br-grammars and a polynomial pn such that, for any order-(n+ 1) word
grammar G, Lleaf(Tn(G))↑e = Lw(G) and |Tn(G)| ≤ pn(|G|).

The theorem above follows from Theorems 12 and 13, given in Sections 4 and 5 respectively.
Theorem 6 without the condition |Tn(G)| ≤ pn(|G|) has been proved in [1] (Theorem 7).
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I Remark 7. Asada and Kobayashi [1] have also presented a post-processing transformation
for removing e, which also suffers from a hyper-exponential blow-up of the grammar size. We
do not think that there exists a size-preserving transformation that achieves the removal of e.
Fortunately, however, the post-processing transformation is unnecessary for the applications
discussed in the introduction.

3 The Transformation

A basic idea of our translation (Tn in Theorem 6) to decrease the order of a grammar is to
represent an order-1 word function as a tuple of order-0 terms, each of which represents the
set of (the tree representations of) words that may be generated before a certain target term
(such as an argument, a constant, or a variable) is encountered. For example, consider a
term t u of type o where t has type o→ o. The set of words generated by t u is T0 ∪ (T1 ·U0),
where T0 = {w | t x −→∗ w(e)}, T1 = {w | t x −→∗ w(x)} (for a fresh variable x of type o),
and U0 = {w | u −→∗ w(e)}. In other words, T0 is the set of words that are generated by t
before e is encountered (without using the argument), and T1 is the set of words that are
generated before the argument is encountered. If we can convert t and u to t0, t1, and u0
that respectively generate tree representations of T0, T1, and U0, then the whole term t u can
be converted to t0 ⊕ (br t1 u0) (where recall that the binary tree constructor br plays the
role of word concatenation). In this manner, the order-1 term t has been replaced by order-0
terms t0 and t1. As a concrete example, consider an order-1 grammar:

S → T U T x→ a e⊕ bx U → c e.

Then it can be converted to the order-0 grammar:

S → T0 ⊕ (br T1 U0) T0 → a T1 → b U0 → c.

(In the actual translation below, e should actually be passed around as a variable.)
For higher-order grammars, we apply the above transformation inductively (although a

further twist is required as we explain later). For example, consider the grammar (which is a
contrived version of Example 5).

S → T A e T f x→ f(f x) Ax→ ax.

Since the first argument f of T has type o→ o, it is replaced by an order-0 variable f1, which
is bound to a term that generates (the tree representation of) words generated by f before
the argument is encountered. T is then replaced by an order-1 function T1 which, given f1,
generates words generated by T f x before x is encountered. The resulting grammar is thus:

S → T1A1 T1 f1 → br f1 f1 A1 → a.

Note that f(f x) generates x only after the outer call of f uses the argument f x, and then
the inner call of f uses the argument, hence the body br f1 f1 of T1. Notice that the type
of T1 is o→ o, which has order 1. In general, a function of type κ1 → · · · → κk → o` → o
(where ord(κk) > 0) is converted to a tuple of functions of type κ†1 → · · · → κ†k → o, where
(·)† represents recursive applications of the type conversion.

A further twist is required for higher-order cases. For example, consider the grammar:

S → H e (b e) H xy → F (Gxy) F g → g A Gxy h→ (hx)⊕ (h(h y))
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where the types of non-terminals are:

S : o H : o→ o→ o F : ((o→ o)→ o)→ o G : o→ o→ (o→ o)→ o

(the rule and type of A are as before, hence omitted). Based on the idea above, the rule for
S can be translated to:

S → H1 ⊕ (brH2 b),

whereH1 (H2, resp.) generates the words generated byH xy before x (y, resp.) is encountered
in the original grammar. But how can the rules for H1 and H2 be obtained from that of H?
The head symbol F of the body of H has no order-0 argument, so the idea explained above
does not apply. We translate the rules for H, F , and G to:

H1 → F0(G0 e Ω) H2 → F0(G0 Ω e) F0 g0 → g0A1
G0 x0 y0 h1 → (brh1 x0)⊕ (brh1 (brh1 y0)).

Here, F0 g0 generates the words generated by F g before a certain target symbol (say,
z) is encountered, assuming that g0A1 generates the words generated by g A before z is
encountered. In H1, the argument g0 is set to G0 e Ω (so that when x is reached in the original
grammar, the empty word is generated, and when y is reached in the original grammar, no
word is generated) since the target symbol is x, while in H2, g0 is set to G0 Ω e. Similarly,
G0 is a function to generate the words generated by Gxy h in the original grammar before a
certain target symbol is encountered, assuming that the arguments x0 and y0 generate the
words generated by x and y before the target is encountered.

The following is a variation of the example above:

S → H e (b e) H xy → K(Gx) y K k y → F (k y) F g → g A

Gxy h→ (hx)⊕ (h(h y))

where K : (o→ (o→ o)→ o)→ o→ o. We have just introduced an auxiliary step to reduce
H xy to F (Gxy), via K(Gx) y. It can be translated to:

S → H1 ⊕ (brH2 b) H1 → K0(G0 e) H2 → K1(G0 Ω) K0 k0 → F0(k0 Ω)
K1 k1 → F0(k1 e) F0 g0 → g0A1 G0 x0 y0 h1 → (brh1 x0)⊕ (brh1 (brh1 y0)).

Here, K0 is a function to generate the words generated by K k y before a certain target
(embedded in k) is encountered (thus, K0 (G0 e) generates the words generated by K (Gx) y
before the target x is encountered), whereas K1 is a function to generate the words generated
by K k y before y is encountered. Different arguments G0 e and G0 Ω are, therefore, passed
to K0 and K1. In G0 e, the target is set to x (hence x has been replaced by e), whereas in
G0 Ω, the target has not been set yet (and is later set to y when G0 Ω is passed to K1).

Note that the translations above have been chosen to clarify the essence of our transfor-
mation; they do not exactly match the actual translations defined below. Henceforth, we
often write κ1 → · · · → κk ⇒ o` → o for κ1 → · · · → κk → o` → o when either ord(κk) > 0
or k = 0; note that κ1, . . . , κk−1 (but not κk) may be the ground type o. We abbreviate
κ1 → · · · → κk ⇒ o` → o to κ̃⇒ o` → o, and define gar(κ̃⇒ o` → o) := `. We assume that
a given word grammar is normalized to the form (Σ,N ,R, S e), where R does not contain e.

The discussions above suggest that for each term t of an order-n type κ̃⇒ o` → o, with
order-0 variables x1, . . . , xk, we need to consider the following tuple of order-(n− 1) terms in
the target grammar:

(t0, t1, . . . , t`, t`+1, . . . , t`+k, t`+k+1).
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Here, each element ti of the tuple is a function used to generate (tree representations of) the
words generated by t before a certain target is encountered, where the “target” is:

the i-th ground-type argument (precisely, the i-th argument of the part o` → o in the
type κ̃⇒ o` → o of t) if 1 ≤ i ≤ `,
xi−` if `+ 1 ≤ i ≤ `+ k,
set inside the term t if i = 0, and
set later by the higher-order arguments of t if i = `+ k + 1.

We formalize the translation for terms as a type-based transformation relation of the
form:

K;x1, . . . , xk `N t : κ̃⇒ o` → o (t0, t1, . . . , t`, t`+1, . . . , t`+k, t`+k+1).

where K is a type environment and x1, . . . , xk are order-0 variables; we often omit the
subscript of `N and write ` if N is clear from the context. The relation means that the term
t of type κ̃⇒ o` → o is transformed to the tuple (t0, t1, . . . , t`, t`+1, . . . , t`+k, t`+k+1), where
the role of each term is as described above. The relation is defined by the transformation
rules given in Fig. 1.

The translation N ‡ of the types of nonterminals used in (Tr-Gram) is defined as follows.
We first define the translation of types by:

(κ1 → · · · → κk ⇒ o` → o)† :=

(κ1
† → · · · → κk

† → o)×(κ1
†′ → · · · → κk

†′ → o)` × (κ1
† → · · · → κk

† → o),

(κ1 → · · · → κk ⇒ o` → o)†
′
:= (κ1

†′ → · · · → κk
†′ → o)` × (κ1

† → · · · → κk
† → o),

(κ1 → · · · → κk ⇒ o` → o)†+m :=

(κ1
† → · · · → κk

† → o)×(κ1
†′ → · · · → κk

†′ → o)` × (κ1
† → · · · → κk

† → o)m+1

where m ≥ −1. The translation of type environments is defined by:

(y1 : κ1, . . . , yk : κk)† := (y1,0, . . . , y1,gar(κ1)+1) : κ1
†, . . . , (yk,0, . . . , yk,gar(κk)+1) : κk†.

Finally, we define N ‡ by:

(F1 : κ1, . . . , Fk : κk)‡ := (F1,0, . . . , F1,gar(κ1)) : κ1
†−1, . . . , (Fk,0, . . . , Fk,gar(κk)) : κk†−1.

As in (Tr-Rule), we translate each rule F y1 · · · ym x1 . . . xk → t with N (F ) = κ1 →
· · · → κm ⇒ ok → o by the relation:

y1 : κ1, . . . , ym : κm;x1, . . . , xk : o `N t : o (t0, t1, . . . , tk, tk+1).

Note that every t being transformed never contains e since R does not contain e.
We now explain some of the key rules. There are two rules for variables: (Tr-VarG)

for ground type variables x1, . . . , xk, and (Tr-Var) for variables bound in K (note that
some of them also may have ground type o). In (Tr-VarG), the (i + 1)-th component
of the output should represent the words generated before xi is encountered; since xi is
immediately encountered, the component is set to e. The other components are set to
Ω (which generates no word), since no other variable is encountered by reducing xi. In
(Tr-Var), each type binding y : κ in K gets (implicitly) translated to (y0, . . . , y`+1) : κ†. In
the output of translation, the last k + 1 components (which represent the words generated
until x1, . . . , xk and an unknown target are encountered) are set to y`+1, because xi’s are
unknown for the environment. In Example 8 below, we explain why we use y`+1 (rather than
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K;x1, . . . , xk : o `N Ω : o (Ωk+2)
(Tr-Omega)

K;x1, . . . , xk : o `N xi : o (Ωi, e,Ωk−i+1)
(Tr-VarG)

K(y) = κ̃⇒ o` → o

K;x1, . . . , xk : o `N y : κ̃⇒ o` → o (y0, y1, . . . , y`, (y`+1)k+1)
(Tr-Var)

N (F ) = κ̃⇒ o` → o

K;x1, . . . , xk : o `N F : κ̃⇒ o` → o (F0, F1, . . . , F`, (F0)k+1)
(Tr-NT)

K;x1, . . . , xk : o `N t : o (t0, . . . , tk+1)
K;x1, . . . , xk : o `N a(t) : o (br a t0, . . . , br a tk+1)

(Tr-Const)

K;x1, . . . , xk : o `N s : κ0 → κ̃⇒ o` → o (s0, . . . , s`+k+1)
K;x1, . . . , xk : o `N t : κ0  (t0, . . . , t`′+k+1) gar(κ0) = `′

K;x1, . . . , xk : o `N s t : κ̃⇒ o` → o
 (s0(t0, . . . , t`′ , t`′+k+1), s1(t1, . . . , t`′ , t`′+k+1), . . . , s`(t1, . . . , t`′ , t`′+k+1),

s`+1(t`′+1, t1, . . . , t`′ , t`′+k+1), . . . , s`+k+1(t`′+k+1, t1, . . . , t`′ , t`′+k+1))

(Tr-App)

K;x1, . . . , xk : o `N s : o`+1 → o (s0, . . . , s`+k+2)
K;x1, . . . , xk : o `N t : o (t0, . . . , tk+1)

K;x1, . . . , xk : o `N s t : o` → o
 (s0 ⊕ (br s1 t0), s2, . . . , s`+1, s`+2 ⊕ (br s1 t1), . . . , s`+k+2 ⊕ (br s1 tk+1))

(Tr-AppG)

K;x1, . . . , xk : o `N s : o (s0, . . . , sk+1)
K;x1, . . . , xk : o `N t : o (t0, . . . , tk+1)

K;x1, . . . , xk : o `N s⊕ t : o (s0 ⊕ t0, . . . , sk+1 ⊕ tk+1)
(Tr-Choice)

N (F ) = κ1 → · · · → κm ⇒ ok → o
y1 : κ1, . . . , ym : κm;x1, . . . , xk : o `N t : o (t0, t1, . . . , tk, tk+1)

ỹi = (yi,0, . . . , yi,gar(κi)+1) ỹi
′ = (yi,1, . . . , yi,gar(κi)+1) (1 ≤ i ≤ m)

`N (F y1 · · · ym x1 · · · xk → t) 

({
F0 ỹ1 · · · ỹm → t0

}
∪{

Fi ỹ1
′ · · · ỹm′ → ti

∣∣ i ∈ {1, . . . , k}}
) (Tr-Rule)

G = (Σ,N ,R, S e) e does not occur in R
R′ =

⋃
{R′′ | `N (F ỹ x̃→ t) R′′, (F ỹ x̃→ t) ∈ R}

G  (br(Σ),N ‡,R′, S1)
(Tr-Gram)

Figure 1 Translation rules from a word grammar to a tree grammar.
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y0) for the last k + 1 components of (Tr-Var). There are also two rules for applications,
(Tr-App) and (Tr-AppG). (Tr-AppG) is used when the function s has an order-1 type.
The first component of the output is set to s0 ⊕ (br s1 t0), since s t encounters the current
target either when s does so without using t (which is covered by s0), or s uses the argument
t and then t encounters the target (which is covered by br s1 t0). In (Tr-App), the output
is just an application, but we need to choose the function and the argument appropriately
for each component of the output tuple. Note that κ0 in (Tr-App) can be o.

I Example 8. The following example of the translation shows why we need to use y`+1
rather than y0 for the last k + 1 components in (Tr-Var). Let us consider the following
grammar:

S x → F x (Gx) F y g → T (Ag) y T h y → h(h y)
Ag y → g (J y) Gxh→ hx J y z → (b y)⊕ (c z)
S : o→ o, F : o→ ((o→ o)→ o)→ o, T : (o→ o)→ o→ o,

A : ((o→ o)→ o)→ o→ o, G : o→ (o→ o)→ o, J : o→ o→ o.

Then we have the following reduction sequence:

S e −→ F e (G e) −→ T (A(G e))e −→ A(G e)(A(G e)e) −→ G e (J (A(G e)e))

−→ J (A(G e)e) e −→
(
b (A(G e)e)

)
⊕ (c e) −→

(
b (G e(J e))

)
⊕ (c e)

−→
(
b (J e e)

)
⊕ (c e) −→

(
b ((b e)⊕ (c e))

)
⊕ (c e) −→

(
(b (b e))⊕ (b (c e))

)
⊕ (c e).

Thus, the language generated by the grammar is {bb, bc, c}. The translation produces:

S1 → F0 (e, Ω) (G0(e,Ω), G0(Ω,Ω))
F0 (y0, y1) (g0, g1)→

(
T0(A0(g0, g1), A1(g1), A0(g1, g1))

)
⊕
(
br
(
T1( A1(g1), A0(g1, g1))

)
y0
)

T0(h0, h1, h2)→ h0 ⊕ (brh1 h0)
T1( h1, h2)→ brh1 (brh1 e)

A0(g0, g1)→ g0(br J1 Ω, J2, br J1 Ω)
A1( g1)→ g1(br J1 e , J2, br J1 Ω)

G0 (x0, x1) (h0, h1, h2)→ h0 ⊕ (brh1 x0)
J0 → Ω J1 → b J2 → c.

The frontier language generated by the output grammar is {bb, bc, c}. If we changed the
definition of (Tr-Var) by replacing yk+1 with y0, then A1(g1) in the body of F0 above would
be replaced with A1(g0). – But then we would wrongly obtain cc as a member of the frontier
language.

The following theorem guarantees that the output of the translation is a valid grammar;
the preservation of the language will be proved later in Section 5.

I Theorem 9. Suppose that G = (Σ,N ,R, S e) is an order-(n + 1) word grammar, and
G  G′. Then G′ is a (well-typed) order-n tree grammar.

The well-typedness of G′ follows immediately from the following lemma, which can be proved
by a straightforward induction.

I Lemma 10. If K; x̃ : o `N t : κ  (t̃), then N ‡,K† ` (t̃) : κ†+|x̃|. Furthermore for
y ∈ dom(K), y0 does not occur freely in t̃ except for t0.
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4 Complexity and Application

Here we give some complexity results of our translation: an upper bound of the size of an
output grammar and the time complexity of the translation. Based on the complexity results,
we discuss an application of our translation.

For a grammar G, we write AG (or A if G is clear from the context) for the largest arity
of the terminals, variables, and nonterminals occurring in G. Note that, for an input word
grammar G, we have AG ≤ |N | ≤ |G|ch and |G|cy ≤ |G|ch, but it is not necessary the case
that AG ≤ |G|cy (for any κ, {S → F (G e), F fκ→o → e, G xo gκ → e} is well-typed and
AG ≥ ari(κ)). Also note that AG ≥ 1 for an input grammar G (since the start term is S e).
For r = (F x̃ → t) ∈ R, we define |r| := |t| + ari(N (F )), so that |G|cy = |t◦| +

∑
r∈R |r|;

also, we write Rr for R′ such that `N r  R′ by (Tr-Rule).

4.1 Complexity
To suppress the blow-up of the cost of our translation, we pre-process an input grammar to
convert it to a certain normal form, as in [8]. A grammar G is in normal form if each rule is
of the form

F z̃ →
(
f1,0(f1,1z̃1,1) · · · (f1,`1 z̃1,`1)

)
⊕ · · · ⊕

(
fk,0(fk,1z̃k,1) · · · (fk,`k

z̃k,`k
)
)
,

where each fh,i is a non-terminal, terminal, or variable; and each zh,i,j is a variable; note
that k and each `h can be 0. (Rigorously, the expression like t1 ⊕ · · · ⊕ tk can be represented
as D[t1] · · · [tk] with D ::= [ ] | Ω | D ⊕D.) By the following transformation, any grammar G
can be transformed to a grammar in normal form: First note that any rule is of the form

F z̃ →
(
f1,0 t1,1 . . . t1,`1

)
⊕ · · · ⊕

(
fk,0 tk,1 . . . tk,`k

)
where each fh,i is a non-terminal, terminal, or variable, and each th,i is a term (which may
contain ⊕ and Ω). If there exist h and i such that th,i is not of the form fh,iz̃h,i, then
we replace the occurrence th,i with G z̃h,i and add the rule G z̃h,i ỹ → th,i ỹ, where G is a
fresh non-terminal and {z̃h,i} (⊆ {z̃}) is all the free variables occurring in th,i. By repeated
applications of this transformation, we obtain a grammar in normal form; note that the
number of repeated applications is at most |G|cy. The following lemma guarantees that the
preprocessing transformation does not blow up the grammar size; see the full version for the
proof.

I Lemma 11. Let G′ = (Σ,N ′,R′, S e) be the grammar obtained from G = (Σ,N ,R, S e) by
the above transformation. We write A for AG. Then,
1. AG′ ≤ 2A,
2. |N ′| ≤ O(|N | × |G|cy)
3. |G′|cy ∈ O(A× |G|cy),
4. the time complexity of the normal-form transformation is O(A× |G|cy),
5. ord(G′) = ord(G).

We obtain the following complexity results; see Appendix A for the proof.

I Theorem 12. Let G′ be the output of our translation (i.e., the composite of the normal-form
transformation and that of Fig. 1) for an input grammar G = (Σ,N ,R, S e). We write A for
AG. Then,
1. AG′ ∈ O(A2),
2. |G′|cy ∈ O(A4 × |G|cy) and |G′|ch ∈ O(A4 × |G|cy + (|N | × |G|cy)n) where n = ord(G),
3. the time complexity of our translation is O((A3 + |N |)× |G|cy).
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4.2 Applications
Our translation can be used to bridge results on higher-order word and tree grammars.
Besides applications of our previous translation [1], our new size-preserving transformation
can be applied in contexts where the complexity is critical. For example, Parys [12] showed
that the diagonal problem for higher-order grammars (which is called nondeterministic higher-
order recursion schemes in [12]) is (n− 1)-EXPTIME-complete for order-n word grammars,
and n-EXPTIME-complete for order-n tree grammars. In his paper, the two results, for
words and for trees, were proved separately. By using the result in the present paper, however,
the (n− 1)-EXPTIME-completeness of the diagonal problem for word grammars of order n
immediately follows from the n-EXPTIME-completeness of the diagonal problem for tree
grammars of order n (where, on the hardness part, use the converse transformation given
in [1, Theorem 5]).

5 Correctness of the Translation

Here we prove the following theorem, which states the correctness of the translation.
I Theorem 13. If G  G′, then Lw(G) = Lleaf(G′)↑e.

We show this theorem in the following steps:
First, in Section 5.1, we reduce the proof to the case where G is recursion-free (Lemma 15).
This is rather a standard technique, which uses the finite approximation G(m): the
reduction of G(m) imitates that of G up to m-steps, but diverges after m-steps.
Then we show the statement of Theorem 13 with the assumption that G is recursion-free
(Lemma 21). This is the main part, proved by using the subject reduction property. In
the proof of the subject reduction, we modify the reduction −→G of the source grammar
G, by using explicit substitutions. We define the modified reduction in Section 5.2, and
then we show the subject reduction and the correctness for a recursion-free grammar in
Section 5.3.

5.1 Reduction of the correctness to recursion-free grammars
I Definition 14 (recursion-free grammars). A grammar G is called recursion-free if there is
no cyclic dependency on its non-terminals. Precisely, we define a binary relation �G on
nonterminals of G by: F �G F ′ iff F ′ occurs on the right-hand side of the rule for F ; then G
is recursion free if the transitive closure �∗G of �G is irreflexive (i.e., F �∗G F for no F ∈ N ).

Here we show the following lemma:
I Lemma 15. Suppose that, for any G and G′, if G is recursion-free and G  G′, then
Lw(G) = Lleaf(G′)↑e. Then, for any G and G′, if G  G′, then Lw(G) = Lleaf(G′)↑e.
To show this lemma, we define the finite approximation mentioned above. Given terms t,
si (i ∈ I) and variables xi (i ∈ I), we write [si/xi]i∈It for the term obtained by simultaneously
substituting si for xi in t. Given m ≥ 0 and G = (Σ,N ,R, t◦), we define the m-th
approximation G(m) of G as follows.

N (m) := {F (i) 7→ N (F ) | F ∈ dom(N ), 0 ≤ i ≤ m}

t
(i)
N := [F (i)/F ]F∈N t (for any term t and i ∈ {0, . . . ,m})

R(m)
N := {F (i) x̃→ t

(i−1)
N | (F x̃→ t) ∈ R, 1 ≤ i ≤ m}

∪ {F (0) x̃→ Ω | (F x̃→ t) ∈ R}

G(m) := (Σ,N (m),R(m)
N , (t◦)(m)

N ).
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We write t(i) and R(m) for t(i)N and R(m)
N if N is clear from the context.

The following are basic properties of G(m):

I Lemma 16.
1. If G is in the domain of the transformation  (i.e., G is of the form (Σ,N ,R, S e) where

Σ is a word alphabet and R does not contain e), then so is G(m).
2. G(m) is a recursion-free grammar.
3. L(G) = ∪mL(G(m)). Hence, Lw(G) = ∪mLw(G(m)) for any word grammar G, and
Lleaf(G)↑e = ∪mLleaf(G(m))↑e for any br-grammar G.

Proof. Item 1 is clear, and also Item 2 is clear (since F (i) �G(m) G(j) implies j = i− 1).
Item 3: Let G = (Σ,N ,R, t◦). To show ∪mL(G(m)) ⊆ L(G), let v ∈ L(G(m)); i.e., there

exist a choice context C and a reduction sequence Π in G(m) from (t◦)(m) to C[v]. Let us
call a rule in {F (0) x̃→ Ω | (F x̃→ t) ∈ R} a bottom rule. We can easily show the following
fact: if t −→ s by some bottom rule r and s −→ u, then there is a term u′ such that t −→ u′

and u′ −→∗ u where the latter rewriting uses only r. By using this fact repeatedly, from
Π, we obtain a choice context C ′ and a reduction sequence Π′ in G(m) from (t◦)(m) to C ′[v]
where Π′ does not use any bottom rule. Then, by dropping the index i of every nonterminal
F (i) in Π′, we obtain a reduction sequence in G from t◦ to C ′′[v] for some C ′′.

Conversely, let v ∈ L(G). We have C and a reduction sequence Π in G from t◦ to C[v]; let
m be the length of Π. Then there exist C ′ and a reduction sequence Π′ in G(m) from (t◦)(m)

to C ′[v] (such that Π is obtained from Π′ by dropping the indices of all the nonterminals in
Π′). Hence v ∈ L(G(m)), and thus L(G) ⊆ ∪mL(G(m)). J

The following lemma is trivial; see the full version for the proof.

I Lemma 17. If G  G′ and G(m)  G′m, then Lleaf(G′(m))↑e = Lleaf(G′m)↑e.

Now we can show:

Proof of Lemma 15. Let G  G′ and G(m)  G′m for each m. Then, by the assumption,

Lw(G(m)) = Lleaf(G′m)↑e. (1)

Then,

Lw(G) = ∪mLw(G(m)) (by Lemma 16-3)
= ∪mLleaf(G′m)↑e (by (1))

= ∪mLleaf(G′(m))↑e (by Lemma 17)
= Lleaf(G′)↑e. (by Lemma 16-3). J

5.2 The modified reduction of source grammars
As explained at the beginning of this section, we modify the reduction relation of a word
grammar G = (Σ,N ,R, t◦) by using explicit substitutions. We first extend the set of terms
as follows, which we call extended terms:

t ::= x | e | a(t) | t1 t2 | t1 ⊕ t2 | Ω | {t1/x1, . . . , t`/x`}t0

Here, we write a(t) instead of a t, to emphasize that a is a unary constructor. Recall
that nonterminals are included in variables x. The term {t1/x1, . . . , t`/x`}t0 is an explicit
substitution and is limited to the ground type:

K `ST ti : o (i ∈ {1, . . . , `}) K, x1 : o, . . . , x` : o `ST t0 : o

K `ST {t1/x1, . . . , t`/x`}t0 : o
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We call the original notions of a term, evaluation context, and choice context a non-
extended term, non-extended evaluation context, and non-extended choice context, respectively,
if we need the clarity. We use the same meta-variables s, t, u for the extended terms, and also
use E and C for the extended evaluation contexts and extended choice contexts defined below.
We avoid this ambiguity as follows: in this subsection, these meta-variables range over the
extended notions unless we declare otherwise; in the next subsection (i.e., in Section 5.3 for the
proof of the correctness for recursion-free grammars), the source term of the transformation
relation  is an extended one and the target term is a non-extended one.

We define the extended evaluation contexts by the following grammar:

E ::= [ ] | a(E) | E ⊕ t | t⊕ E | {t1/x1, . . . , t`/x`}E.

We often abbreviate {t1/x1, . . . , t`/x`}t0 and {t1/x1, . . . , t`/x`}E to {t̃/x̃}t0 and {t̃/x̃}E,
respectively. Then the modified reduction, written as −→es,G (or −→es if G is clear), is
defined as follows:

F ỹ z̃ → u ∈ R
N (F ) = κ̃⇒ o` → o |κ̃| = |ỹ| = |s̃| ` = |z̃| = |t̃| z̃ do not occur in E[F s̃ t̃]

E[F s̃ t̃] −→es E[{t̃/z̃}[s̃/ỹ]u]

E[{s̃/z̃}zi] −→es E[si]
x /∈ {z1, . . . , z|s̃|} ∪ dom(N )

E[{s̃/z̃}x] −→es E[x]

E[{s̃/z̃}e] −→es E[e] E[{s̃/z̃}a(t)] −→es E[a({s̃/z̃}t)]

E[{s̃/z̃}(t1 ⊕ t2)] −→es E[({s̃/z̃}t1)⊕ ({s̃/z̃}t2)] E[a(t1 ⊕ t2)] −→es E[a(t1)⊕ a(t2)]

We define the extended choice contexts by: C ::= [ ] | C ⊕ t | t⊕C. For N `ST t : o, we define
the languages generated by a term and by a grammar with respect to −→es as follows:

Les
w (G, t) = {word(v) | t −→∗es C[v]} Les

w (G) = Les
w (G, t◦).

There is an obvious function ψ from the extended terms to the non-extended terms that
performs every explicit substitution as the real substitution. The following lemma can be
proved in a standard manner; see the full version for the proof.

I Lemma 18. Let G be a word grammar.
1. For any extended term N `ST t : o, we have Lw(G, ψ(t)) = Les

w (G, t). Especially, Lw(G) =
Les

w (G).
2. For any extended terms N ` t, t′ : o, if t −→es t

′, then Les
w (G, t) = Les

w (G, t′).

We also extend the transformation relation to handle explicit substitutions:

K;x1, . . . , xk : o ` si : o (si,0, . . . , si,k+1) (i ∈ {1, . . . , `})
K; z1, . . . , z`, x1, . . . , xk : o ` t : o (t0, . . . , t`+k+1)

K;x1, . . . , xk : o ` {s̃/z̃}t : o 
(
t0 ⊕

⊕`
i=1(br ti si,0),

t`+1 ⊕
⊕`

i=1(br ti si,1), . . . , t`+k+1 ⊕
⊕`

i=1(br ti si,k+1)
) (Tr-Sub)

5.3 Correctness for recursion-free grammars
To show the correctness for recursion-free grammars, we use the following substitution lemma
and the subject reduction property:
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I Lemma 19 (substitution lemma). Suppose that u contains no explicit substitutions (i.e.,
no subterms of the form {t̃′/z̃′}s′) and

ỹ : κ̃; z̃ : o ` u : κ′  (u0, . . . , ugar(κ′)+|z̃|, ugar(κ′)+|z̃|+1)
x̃ : o ` s′i : κi  (s′i,0, . . . , s′i,`i+k+1) `i = gar(κi) (i = 1, . . . , |κ̃|)
k = |x̃| {x̃} ∩ {z̃} = ∅.

We define the following substitution functions

θj = θ1,j · · · θ|κ̃|,j (j = 0, . . . , k)
θi,0 = [s′i,0/yi,0, s′i,1/yi,1, . . . , s′i,`i

/yi,`i
, s′i,`i+k+1/yi,`i+1] (i = 1, . . . , |κ̃|)

θi,j = [s′i,`i+j/yi,0, s
′
i,1/yi,1, . . . , s

′
i,`i
/yi,`i

, s′i,`i+k+1/yi,`i+1]
(i = 1, . . . , |κ̃|, j = 1, . . . , k + 1).

Then we have:
1. z̃, x̃ : o ` [s̃′/ỹ]u : κ′  (θ0u0, . . . , θ0ugar(κ′)+|z̃|, θ1u0, . . . , θku0, θ0ugar(κ′)+|z̃|+1)
2. θ0ugar(κ′)+|z̃|+1 = θk+1u0.

Proof. Both items can be shown by induction on u and case analysis on the last rule used
for the derivation ỹ : κ̃; z̃ : o ` u : κ′  (u0, . . . , ugar(κ′)+|z̃|+1). See Appendix B. J

I Lemma 20 (subject reduction). If x1, . . . , xk : o ` s : o  (s0, . . . , sk+1) and s −→es t,
then there exist t0, . . . , tk+1 such that x1, . . . , xk : o ` t : o  (t0, . . . , tk+1) and si ≈ ti for
each i ∈ {1, . . . , k + 1}.

Proof. We use Lemma 19. The proof proceeds by induction on the derivation of x̃:o ` s : o 
(s0, . . . , sk+1) and case analysis on evaluation contexts and redexes. See Appendix B. J

Now we show the correctness for recursion-free grammars; as explained already, Theo-
rem 13 follows immediately from this and Lemma 15.

I Lemma 21. Suppose that G is recursion-free. If G  G′, then Lw(G) = Lleaf(G′)↑e.

Proof. Since G = (Σ,N ,R, S e) is recursion-free, every term x : o ` s : o is strongly
normalizing with respect to −→es. Since the reduction relation is finitely branching, the
length of reduction sequences from s is bounded. Let #(s) be the length of the longest
reduction sequence from s.

Now we show that

x : o `N s : o (s0, s1, s2) implies Les
w (G, [e/x]s) = Lleaf(G′, s1)↑e (2)

by induction on #(s). If (2) holds, then we can complete the proof as follows: let the rule of
S be S x→ s; then G′ has the rule S1 → s1, and by Lemma 18-1 and (2) we have

Lw(G) = Les
w (G, S e) = Les

w (G, [e/x]s) = Lleaf(G′, s1)↑e = Lleaf(G′)↑e.

In the base case that #(s) = 0, i.e., in the case where s is a normal form, first note that,
given a term t satisfies x1 : o, . . . , xn : o `ST t : o for some x1, . . . , xn, then t is a normal form
with respect to −→es iff t is generated by the following grammar with start symbol w:

w ::= r | w ⊕ w r ::= δ | x | a(r) (a ∈ Σ) δ ::= Ω | {t1/x1, . . . , tk/xk}δ.

FSCD 2020



22:16 Size-Preserving Translations from Word Grammars to Tree Grammars

Then we can show (2) by induction on this grammar. (For the case s = δ, show that
x1, . . . , xk : o ` δ : o (s̃) implies si ≈ Ω for every i, by induction on δ.)

In the case #(s) > 0, suppose s −→es s
′. Hence [e/x]s −→es [e/x]s′. By Lemma 20,

there exist s′0, s′1, and s′2 such that x :o `N s′ : o (s′0, s′1, s′2) and s1 ≈ s′1. By the induction
hypothesis, Les

w (G, [e/x]s′) = Lleaf(G′, s′1)↑e. Then, by Lemma 18-2 and s′1 ≈ s1, we have

Les
w (G, [e/x]s) = Les

w (G, [e/x]s′) = Lleaf(G′, s′1)↑e = Lleaf(G′, s1)↑e. J

6 Conclusion

We have given a new transformation that converts an order-(n + 1) word grammar to an
order-n tree grammar whose frontier language coincides with the word language of the
input grammar, and have proved that, unlike the previous transformations [1, 12], our
transformation is size-preserving, in that the size of the output grammar is polynomial in
the size of an input grammar. The time complexity is also polynomial in the size of input
grammar. These properties allow us to establish a link between algorithms for higher-order
word and tree grammars. As a concrete example of this, we have also applied our result
to the work of Parys [12] on the complexity of the diagonal problems for word and tree
languages..
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A Proof of Theorem 12

Proof of Theorem 12. On Item 1, see the full version.
Next, we show Item 2: note that, by Lemma 11, we only need to show the following: if G

is already in normal form, then |G′|cy ∈ O(A3 × |G|cy) and |G′|ch ∈ O(A3 × |G|cy + |N |n).
Let: r = (F ỹ x̃→ s) ∈ R, N (F ) = κ′1 → · · · → κ′m ⇒ ok → o, K = y1 : κ′1, . . . , ym : κ′m,

and D0 be the derivation tree of K; x̃ : o `N s : o (s0, . . . , sk+1).
Further, let K; x̃ : o `N t : κ̃ ⇒ o` → o  (t̃) be an arbitrary judgment in D0, and D

be the sub-derivation-tree of D0 for this judgment. Then we can show ` ≤ A by induction
on the height of D. Next, let h (h′, resp.) be the largest number, in the depth direction, of
uses of (Tr-App) ((Tr-AppG), resp.) in D: precisely, h (h′, resp.) is defined as the least
number p such that in any path of D, the number of (Tr-App) ((Tr-AppG), resp.) in the
path is no more than p. Then for each i ∈ {0, . . . , `+ k + 1}, we can show

|ti| ≤ 2(A+ 2)h2h
′
|t| (3)

by induction on t and case analysis on the last rule of D.
Now let us consider the case D = D0 (and hence t = s). Since G is in normal form,

h, h′ ≤ 2; hence by (3), |si| ≤ O(A2 × |s|) for each i. Also note that, from Item 1,
ari(N ‡(Fi)) ≤ O(A2) for each i. Thus, for each r′ ∈ Rr, we have |r′| ≤ O(A2 × |r|). Since
the cardinality of Rr is no more than A+ 1, we have:

|G′|cy = |S1|+
∑
r∈R

( ∑
r′∈Rr

|r′|
)
≤ |S e|+

∑
r∈R

O(A3 × |r|) ≤ O(A3 × |G|cy).

Next we calculate |G′|ch. We define |κ1 × · · · × κk| := |κ1|+ · · ·+ |κk|+ k − 1. We can
show that |κ†|, |κ†′ | ≤ 3|κ|ord(κ) simultaneously by induction on κ. Hence, we have

|N ‡| ≤
∑
F∈N

|N (F )†| ≤
∑
F∈N

3|N (F )|ord(N (F )) ≤ 3
∑
F∈N

|N (F )|n ≤ 3|N |n

and thus |G′|ch ≤ O(A3 × |G|cy + |N |n).
Lastly, we show Item 3. Note that, by Lemma 11, we only need to show the following: if

G is already in normal form, then the transformation given in Fig. 1 takes O(A2|G|cy + |N |)
time.

We implement terms by directed acyclic graphs. The implementation bκc of a type κ
is as follows: Let κ be of the form κ1 → · · · → κk ⇒ o` → o. If k = 0, bκc is the 2-length
array [k, `]. If k > 0, note that κ = κ1 → (κ2 → · · · → κk ⇒ o` → o) and we define bκc
as the 4-length array [k, `, bκ1c, bκ2 → · · · → κk ⇒ o` → oc]. Then, the two operations
that respectively extract k and ` from a type κ = κ1 → · · · → κk ⇒ o` → o and the type
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construction κ→ κ′ from κ and κ′ can be performed by O(1). The operation that extracts
the sequence κ1, . . . , κk from a type κ = κ1 → · · · → κk ⇒ o` → o can be performed
by O(ari(κ)). During the computation of G′ from G, we need to extract such a sequence
κ1, . . . , κk just at the top of the derivation tree of (Tr-Rule) for each rewriting rule; then
in the derivation tree, all the typing environments are common and can be shared.

Now let us consider the computation of a derivation tree; look at Fig. 1. To compute the
base transformation rules (i.e., (Tr-Omega), (Tr-VarG), (Tr-Var), and (Tr-NT)), it
takes O(A) time, as the length of the resulting tuple is bounded by O(A). The computation for
one occurrence of (Tr-Choice) in the derivation tree takesO(k) time, i.e., if the computations
for s and t take p and q time, respectively, then that for s ⊕ t takes p + q + O(k) time.
Similarly, the computations for occurrences of (Tr-Const), (Tr-AppG), and (Tr-App)
take O(k), O(`+ k), and O(`′(`+ k)) time, respectively. Thus, the running time for every
node of the derivation tree is O(A2).

Hence, for each rule F ỹ x̃→ t of G, the computation of y1 :κ1, . . . , ym :κm;x1, . . . , xk :o `N
t : o (t0, t1, . . . , tk, tk+1) takes O(A2|t|) time. Also, that of all ỹi and ỹi′ (1 ≤ i ≤ m) takes
O(A2) time. Therefore, that of (Tr-Rule) runs in O(A2|t|) time. Thus the computation of
R′ takes O(A2|G|cy) time.

Also the computation of N ‡ takes O(|N |) time because, for κ = κ1 → · · · → κk ⇒ o` → o,
that of κ† (and simultaneously of κ†′) takes O(|κ1| + · · · + |κk| + k + `) time. Hence, the
computation of (Tr-Gram) runs in O(A2|G|cy + |N |). J

B Proofs for Section 5.3

Due to the space limit, we focus only on some important cases when we perform case analysis
in proofs. See the full version for detailed proofs.

First we show the substitution lemma (Lemma 19), where we use the following lemma:

I Lemma 22 (Weakening). If K;x1, . . . , xk : o ` t : κ (t0, . . . , t`+k+1) where gar(κ) = `,
then K;x0, x1, . . . , xk : o ` t : κ (t0, . . . , t`, t`+k+1, t`+1, . . . , t`+k, t`+k+1).

Proof. Straightforward induction on t. J

Proof of Lemma 19. First we show the second item of the lemma. We have:

θ0ugar(κ′)+|z̃|+1 = θk+1ugar(κ′)+|z̃|+1 = θk+1u0

where the former equation follows from Lemma 10, and the latter one can be shown by
straightforward induction on u and case analysis on the last rule used for the derivation
ỹ : κ̃; z̃ : o ` u : κ′  (u0, . . . , ugar(κ′)+|z̃|+1), where we unfold the definition of θk+1 only in
the case of (Tr-Var).

Next we show the first item, again by induction on u and case analysis on the last rule
used for the derivation ỹ : κ̃; z̃ : o ` u : κ′  (u0, . . . , ugar(κ′)+|z̃|+1).

Case of (Tr-Var): Let the last rule be the following:

K(yi′) = κ̃⇒ o`i′ → o

ỹ : κ̃; z̃ : o ` yi′ : κ̃⇒ o`i′ → o (yi′,0, yi′,1, . . . , yi′,`i′ , (yi′,`i′ +1)|z̃|+1)

Now [s̃′/ỹ]u = [s̃′/ỹ]yi′ = s′i′ , and by the assumption and the weakening lemma
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(Lemma 22),

z̃, x̃ : o ` s′i′ : κi′  

(s′i′,0, . . . , s′i′,`i′ , (s′i′,`i′ +k+1)|z̃|, s′i′,`i′ +1, . . . , s
′
i′,`i′ +k, s

′
i′,`i′ +k+1)

= (θ0yi′,0, . . . , θ0yi′,`i′ , (θ0yi′,`i′ +1)|z̃|, θ1yi′,0, . . . , θkyi′,0, θ0yi′,`i′ +1)

as required.
Case of (Tr-App): Let the last rule be the following:

ỹ : κ̃; z̃ : o ` s : κ′0 → κ̃′ ⇒ o` → o (s0, . . . , s`+|z̃|+1)
ỹ : κ̃; z̃ : o ` t : κ′0  (t0, . . . , t`′+|z̃|+1) gar(κ′0) = `′

ỹ : κ̃; z̃ : o ` s t : κ̃′ ⇒ o` → o (
s0(t0, . . . , t`′ , t`′+|z̃|+1), s1(t1, . . . , t`′ , t`′+|z̃|+1), . . . , s`(t1, . . . , t`′ , t`′+|z̃|+1),
s`+1(t`′+1, t1, . . . , t`′ , t`′+|z̃|+1), . . . , s`+|z̃|+1(t`′+|z̃|+1, t1, . . . , t`′ , t`′+|z̃|+1)

)
By induction hypothesis and (Tr-App), we have:

z̃, x̃ : o ` [s̃′/ỹ]s : κ′0 → κ̃′ ⇒ o` → o (θ0s0, . . . , θ0s`+|z̃|, θ1s0 . . . , θks0, θ0s`+|z̃|+1)

z̃, x̃ : o ` [s̃′/ỹ]t : κ′0  (θ0t0, . . . , θ0t`′+|z̃|, θ1t0 . . . , θkt0, θ0t`′+|z̃|+1) gar(κ′0) = `′

z̃, x̃ : o ` [s̃′/ỹ]s [s̃′/ỹ]t : κ̃′ ⇒ o` → o (
θ0s0(θ0t0, . . . , θ0t`′ , θ0t`′+|z̃|+1),
θ0s1(θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1), . . . , θ0s`(θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1),
θ0s`+1(θ0t`′+1, θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1), . . . , θ0s`+|z̃|(θ0t`′+|z̃|, θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1)
θ1s0(θ1t0, θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1), . . . , θks0(θkt0, θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1),
θ0s`+|z̃|+1(θ0t`′+|z̃|+1, θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1)

)
Then it is enough to show

θjs0(θjt0, θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1) = θj
(
s0(t0, t1, . . . , t`′ , t`′+|z̃|+1)

)
(j ∈ {1, . . . , k})

i.e., θ0ti = θjti (i ∈ {1, . . . , `′, `′ + |z̃|+ 1}, j ∈ {1, . . . , k})

which follows from Lemma 10.
Case of (Tr-AppG): Let the last rule be the following:

ỹ : κ̃; z̃ : o ` s : o`+1 → o (s0, . . . , s`+|z̃|+2)
ỹ : κ̃; z̃ : o ` t : o (t0, . . . , t|z̃|+1)

ỹ : κ̃; z̃ : o ` s t : o` → o (
s0 ⊕ (br s1 t0), s2, . . . , s`+1, s`+2 ⊕ (br s1 t1), . . . , s`+|z̃|+2 ⊕ (br s1 t|z̃|+1)

)
By induction hypothesis and (Tr-AppG), we have:

z̃, x̃ : o ` [s̃′/ỹ]s : o`+1 → o (θ0s0, . . . , θ0s`+|z̃|+1, θ1s0 . . . , θks0, θ0s`+|z̃|+2)

z̃, x̃ : o ` [s̃′/ỹ]t : o (θ0t0, . . . , θ0t|z̃|, θ1t0, . . . , θkt0, θ0t|z̃|+1)

z̃, x̃ : o ` [s̃′/ỹ]s [s̃′/ỹ]t : o` → o (
θ0s0 ⊕ (br θ0s1 θ0t0), θ0s2, . . . , θ0s`+1,

θ0s`+2 ⊕ (br θ0s1 θ0t1), . . . , θ0s`+|z̃|+1 ⊕ (br θ0s1 θ0t|z̃|),
θ1s0 ⊕ (br θ0s1 θ1t0), . . . , θks0 ⊕ (br θ0s1 θkt0),
θ0s`+|z̃|+2 ⊕ (br θ0s1 θ0t|z̃|+1)

)
Then it is enough to show θ0s1 = θjs1 for j = 1, . . . , k, which follows from Lemma 10. J
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Now we prove the subject reduction lemma:

Proof of Lemma 20. We restate Lemma 20 as follows with different meta-variables s′, t′, s′i, t′i
for convenience of the proof:

If x1, . . . , xk : o ` s′ : o (s′0, . . . , s′k+1) and s′ −→es t
′, then there exist t′0, . . . , t′k+1

such that x1, . . . , xk : o ` t′ : o (t′0, . . . , t′k+1) and s′i ≈ t′i for each i ∈ {1, . . . , k + 1}.

The proof proceeds by induction on the derivation of x1, . . . , xk : o ` s′ : o (s′0, . . . , s′k+1).
Let s′ be of the form E[s′′] where s′′ is the redex of −→es. The case where E 6= [ ] can be

proved easily by induction hypothesis (as the transformation rules are compositional). So we
consider only the case where E = [ ]. We perform case analysis on the redex s′′(= s′):

Case where s′ = F s̃ t̃ −→es {t̃/z̃}[s̃/ỹ]u: In this case,

F ỹ z̃ → u ∈ R N (F ) = κ̃⇒ o` → o |κ̃| = |ỹ| = |s̃| ` = |z̃| = |t̃|,

and z̃ do not occur in F s̃ t̃.
By the derivation of x̃ : o ` (s′ =) F s̃ t̃ : o (s′0, . . . , s′k+1), we have:

x̃ : o ` F : κ̃⇒ o` → o (F0, F1, . . . , F`, (F0)k+1)
x̃ : o ` si : κi  (si,0, . . . , si,`i+k+1) gar(κi) = `i (i = 1, . . . , |s̃|) (4)
x̃ : o ` ti : o (ti,0, . . . , ti,k+1) (i = 1, . . . , |t̃|) (5)
(s′0, . . . , s′k+1) = (v`+1,0, . . . , v`+1,k+1)

where for i = 1, . . . , |s̃| and j = 1, . . . , |t̃|(= `), we define:

(v′1,0, . . . , v′1,`+k+1) := (F0, F1, . . . , F`, (F0)k+1)
(v′i+1,0, . . . , v

′
i+1,`+k+1) :=(

v′i,0(si,0, . . . , si,`i , si,`i+k+1),

v′i,1(si,1, . . . , si,`i , si,`i+k+1), . . . , v′i,`(si,1, . . . , si,`i , si,`i+k+1),

v′i,`+1(si,`i+1, si,1, . . . , si,`i , si,`i+k+1), . . . , v′i,`+k+1(si,`i+k+1, si,1, . . . , si,`i , si,`i+k+1)
)

(v1,0, . . . , v1,`+k+1) := (v′|s̃|+1,0, . . . , v
′
|s̃|+1,`+k+1)

(vj+1,0, . . . , vj+1,`+k+1−j) :=(
vj,0 ⊕ (br vj,1 tj,0), vj,2, . . . , vj,`+1−j ,

vj,`+2−j ⊕ (br vj,1 tj,1), . . . , vj,`+k+2−j ⊕ (br vj,1 tj,k+1)
)
.

Then we have

(s′0, s′1, . . . , s′k+1) = (v`+1,0, v`+1,1, . . . , v`+1,k+1)

=
(
v`,0 ⊕ (br v`,1 t`,0), v`,2 ⊕ (br v`,1 t`,1), . . . , v`,k+2 ⊕ (br v`,1 t`,k+1)

)
=
((
v`−1,0 ⊕ (br v`−1,1 t`−1,0)

)
⊕ (br v`−1,2 t`,0),(

v`−1,3 ⊕ (br v`−1,1 t`−1,1)
)
⊕ (br v`−1,2 t`,1), . . . ,(

v`−1,k+3 ⊕ (br v`−1,1 t`−1,k+1)
)
⊕ (br v`−1,2 t`,k+1)

)
= . . .

=
(
v1,0 ⊕ (br v1,1 t1,0)⊕ · · · ⊕ (br v1,` t`,0),

v1,`+1 ⊕ (br v1,1 t1,1)⊕ · · · ⊕ (br v1,` t`,1), . . . ,

v1,`+k+1 ⊕ (br v1,1 t1,k+1)⊕ · · · ⊕ (br v1,` t`,k+1)
)

(6)
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and

v1,0 = F0(s1,0, . . . , s1,`1 , s1,`1+k+1) · · · (s|s̃|,0, . . . , s|s̃|,`|s̃| , s|s̃|,`|s̃|+k+1)

v1,j = Fj(s1,1, . . . , s1,`1 , s1,`1+k+1) · · · (s|s̃|,1, . . . , s|s̃|,`|s̃| , s|s̃|,`|s̃|+k+1) (j = 1, . . . , `)

v1,`+j = F0(s1,`1+j , s1,1, . . . , s1,`1 , s1,`1+k+1) · · · (s|s̃|,`|s̃|+j , s|s̃|,1, . . . , s|s̃|,`|s̃| , s|s̃|,`|s̃|+k+1)

(j = 1, . . . , k + 1).

Next let us consider t′ = {t̃/z̃}[s̃/ỹ]u. For some ũ, we have

ỹ : κ̃; z̃ : o ` u : o (u0, . . . , u`+1). (7)

By (7), (4), and the substitution lemma (Lemma 19), we have

z̃, x̃ : o ` [s̃/ỹ]u : o (θ0u0, θ0u1, . . . , θ0u`, θ1u0, . . . , θku0, θ0u`+1) (8)
θ0u`+1 = θk+1u0 (9)

where

θj = θ1,j · · · θ|κ̃|,j (j = 0, . . . , k)
θi,0 = [si,0/yi,0, . . . , si,`i

/yi,`i
, si,`i+k+1/yi,`i+1] (i = 1, . . . , |κ̃|)

θi,j = [si,`i+j/yi,0, . . . , si,`i
/yi,`i

, si,`i+k+1/yi,`i+1] (i = 1, . . . , |κ̃|, j = 1, . . . , k + 1).

Further, by (5), (8), and (Tr-Sub), we have

x̃ : o ` (t′ =) {t̃/z̃}[s̃/ỹ]u : o (t′0, . . . , t′k+1)

where

(t′0, t′1, . . . , t′k, t′k+1) :=(
(θ0u0)⊕

⊕`
i=1(br (θ0ui) ti,0),

(θ1u0)⊕
⊕`

i=1(br (θ0ui) ti,1), . . . , (θku0)⊕
⊕`

i=1(br (θ0ui) ti,k),

(θ0u`+1)⊕
⊕`

i=1(br (θ0ui) ti,k+1)
)
.

(10)

Now, by (Tr-Rule), the transformed grammar has the following rules

F0 ỹ1 · · · ỹ|ỹ| → u0, Fj ỹ1
′ · · · ỹ|ỹ|

′ → uj (j = 1, . . . , `)

where

ỹi = (yi,0, . . . , yi,gar(κi)+1) ỹi
′ = (yi,1, . . . , yi,gar(κi)+1) (i = 1, . . . , |ỹ|).

Then,

v1,0 −→∗ θ0u0 (11)
v1,j −→∗ θ0uj (j = 1, . . . , `) (12)
v1,`+j −→∗ θju0 (j = 1, . . . , k) (13)
v1,`+k+1 −→∗ θk+1u0 = θ0u`+1 (14)
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where: the equation in (14) is just (9); and for (12) note that y1,0, . . . , y|κ̃|,0 do not occur
in uj by Lemma 10. Then, we have

(s′0, s′1, . . . , s′k, s′k+1)

=
(
v1,0 ⊕

⊕`
i=1(br v1,i ti,0), (∵ (6))

v1,`+1 ⊕
⊕`

i=1(br v1,i ti,1), . . . , v1,`+k ⊕
⊕`

i=1(br v1,i ti,k)

v1,`+k+1 ⊕
⊕`

i=1(br v1,i ti,k+1)
)

≈
(
(θ0u0)⊕

⊕`
i=1(br (θ0ui) ti,0),

(θ1u0)⊕
⊕`

i=1(br (θ0ui) ti,1), . . . , (θku0)⊕
⊕`

i=1(br (θ0ui) ti,k),

(θ0u`+1)⊕
⊕`

i=1(br (θ0ui) ti,k+1)
)

(∵ (11)-(14))

= (t′0, t′1, . . . , t′k, t′k+1) (∵ (10))

as required. J
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Abstract
Inductive families of types are a feature of most languages based on dependent types. They are
usually described either by syntactic schemes or by encodings of strictly positive functors such as
combinator languages or containers. The former approaches are informal and give only external
signatures, the latter approaches suffer from encoding overheads and do not directly represent mutual
types.

In this paper we propose a direct method for describing signatures for mutual inductive families
using a domain-specific type theory. A signature is a context (roughly speaking, a list of types) in
this small type theory. Algebras, displayed algebras and sections are defined by models of this type
theory: the standard model, the logical predicate and a logical relation interpretation, respectively.
We reduce the existence of initial algebras for these signatures to the existence of the syntax of our
domain-specific type theory. As this theory is very simple, its normal syntax can be encoded using
indexed W-types. To the best of our knowledge, this is the first formalisation of the folklore fact
that mutual inductive types can be reduced to indexed W-types.
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1 Introduction

Programming languages based on type theory rely heavily on easy, flexible and sound ways
to define new data types. Usually, type theories allow for the definition of inductive types,
which are defined by giving a list of constructors which generate the elements of the type.
One prime example for such an inductive type is the type of natural numbers N : Set which is
generated by the zero constructor 0 : N and the successor function S : N→ N. Besides these
plain inductive types, dependent type theories often make use of inductive families of types
(also called indexed inductive types) where, instead of just a type we define a type family
over a previously defined type. This enables us for example to define the type of vectors of
a type A as a family Vec : N → Set, by a constructor for the empty vector nil : Vec 0 and
cons : A→ (n : N)→ Vecn→ Vec (Sn). Besides inductive families, another recurring need
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is the one for mutual definitions: Often, we want to define more than one inductive type
simultaneously with constructors referring to any of these types. For example we might want
to obtain the predicates of a natural number being even and odd in reference to each other
by defining

isEven : N→ Set,
isOdd : N→ Set

by constructors

even0 : isEven 0,
evenS : (n : N)→ isOddn→ isEven (Sn), and
oddS : (n : N)→ isEvenn→ isOdd (Sn).

Syntaxes of programming languages usually also consist of mutually given inductive types,
such as expressions (indexed by their types), commands, blocks, etc. We call these types
mutual inductive families.

There is a folklore trick to reduce mutual inductive families to inductive families. For
example, isEven–isOdd can be simulated by a single family indexed over an extra boolean
which says which sort is meant: isEven? : Bool → N → Set. Now isEven is simulated by
isEven? true and isOdd by isEven? false. To show that this technique works for every mutual
inductive family, we first have to provide a general definition for mutual inductive families.

The description of inductive families was Peter Dybjer’s external scheme [17]. He extended
type theory with new deriviation rules for inductive families and their constructors, elimination
principles and computation rules. His approach does not allow internal manipulation of
signatures and it can only be formalised as an extension of a pre-existing syntax of type
theory, however it covers mutual inductive families as well.

Another popular method is the functorial approach: strictly positive functors are encoded
either using a combinator calculus [15] or using indexed containers [4]. An algebra of such
a functor F is given by a family X and a morphism F X → X, the initial algebra is given
by the least fixpoint of the functor. The codes for the functors can be expressed internally
allowing generic programming with signatures. A powerful application of this method is the
automatic derivation of substitution laws for syntaxes with binders [2]. The drawback of the
functorial approach is its encoding overhead – mutual types have to be transformed to indexed
types, separate constructors have to be given as single families and in uncurried forms. The
indexed container encoding, while being very concise, also relies on function extensionality.
E.g. without assuming function extensionality, there are many different, unequal constructors
for zero [6, Section 2.1]. These constructors cannot be made definitionally equal even in the
presence of function extensionality – they contain definitionally unequal ⊥ → N functions.

In this paper we aim to formalise mutual inductive families in a direct way, in the spirit of
the original Dybjer definition. Drawing inspiration from the syntax of signatures for quotient
inductive-inductive types (QIITs) and higher inductive-inductive types (HIITs) given by
Kaposi, Kovács and Altenkirch [27, 26], we define signatures for mutual inductive families
using the syntax of a small type theory tailor made for this purpose. We call this type
theory the theory of signatures. A signature is a context in the theory of signatures, that
is, roughly, a list of types. For example, the signature of natural numbers is given by the
context (N : Set, 0 : N, S : N → N), where N , 0 and S are simply variable names. The
rules for the theory of signatures enforce that we can only write strictly positive constructors.
This syntax allows us to write down the definition of an inductive family in the same way as
it would look like in a theorem prover like Agda [30], Lean [16], or Coq [9].
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The syntax for the theory of signatures can be internalised in type theory but it can also
be seen as an external type theory in which one can describe signatures. We will present our
syntax internally to a type theory, define its semantics and show that all mutual inductive
families can be reduced to indexed W-types. All of the results were formalised in the proof
assistant Agda, the source code is available online1.

Contributions and structure

This paper contributes the following to the literature on inductive types.
A syntax for mutual inductive families in which signatures can be defined in a direct way,
simply by listing the types of sorts and constructors (Section 2). This syntax can be
encoded by indexed W-types.
Semantics for each signature: notions of algebras, displayed algebras and sections (Sec-
tion 3). These explain what it means that an inductive type specified by a signature
exists. The computation rules are specified as propositional (rather than definitional)
equalities.
An extension of the theory of signatures to a full substitution calculus (Section 4.1).
A proof that each mutual inductive type can be constructed from the theory of signatures
(Section 4.2), and as a by-product, a proof that mutual inductive families can be reduced
to W-types. The reduction only justifies propositional computation rules.

Related work

As mentioned earlier, schemes for inductive types can be categorised into (1) external schemes,
(2) internal combinatorial or (3) internal semantic schemes. Our approach is between (1)
and (2). It compares to (2) as lambda-calculus compares to combinatory logic. To illustrate
the difference, we list the signature for natural numbers in all approaches. (1) Dybjer [17]
defines natural numbers by the formation rule N : set and introduction rules 0 : N and
s : (u : N)N . Our syntax will encode the same information by a sort context (· B U) and
a point context ·B El (var vz)B var vz⇒p El (var vz). The difference in encoding is that we
use de Bruijn indices instead of variable names and El when decoding an index to a type
(but not on the left hand side of the arrow ⇒p, see later). (2) In [15, 2], natural numbers are
specified by ‘σ Bool (λb . if b then ‘� tt else ‘X tt (‘� tt)). The two constructors are encoded as
one constructor with a Bool parameter. When this is true (zero case), there are no more
parameters (denoted by ‘�), when it is false (successor) there is one recursive argument
signified by ‘X. The tts are necessary because the type of natural numbers does not have
indices. (3) The container representation [4] of natural numbers is given by the type Bool
(expressing that there are two constructors) and a family of sets over Bool, λb . if b then⊥ else>
expressing that the first constructor has zero and the second constructor has one recursive
argument. We list the related work categorised as above.

(1) External syntactic schemes similar to the Dybjer’s were used to describe mutual
inductive families of Coq on paper [32] and inside Coq [8], inductive-recursive types [18],
subsets of higher inductive types [11, 19, 14], and inductive and coinductive types [10].

(2) Internal combinatorial schemes are defined by Benke, Dybjer and Jansson [12] for
different classes of inductive types for the purpose of generic programming. Their signatures
can be seen as uncurried versions of our signatures with some encoding overhead. In addition
to our signatures, they separate the cases of parametrised and indexed definitions, while

1 https://bitbucket.org/javra/inductive-families/src/master/agda
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we only have indexed ones and they also cover infinitary constructors. They also feature
iterated signatures, while we only model these using the function space with metatheoretic
domain. [20, 21] use combinator languages to axiomatise inductive-recursive types and
indexed inductive-recursive types, respectively. The same technique was used to describe
inductive-inductive types [29] and inductive families [15, 2].

(3) Internal semantic schemes: Containers for describing signatures of W-types were
introduced in [1] and extended to indexed W-types (potentially infinitary inductive families)
in [4] and QW-types (allowing equality constructors) [22]. In fact, indexed W-types were
introduced as “tree sets” much earlier, by Petersson and Synek [33]. The more semantic
treatments of higher inductive types [28] and quotient inductive-inductive types [3] don’t
provide schemes for the allowed constructors.

The direct inspiration of our work are the domain-specific type theories for describing
higher inductive-inductive [25] and quotient inductive-inductive signatures [27]. The latter
also derives all QIITs from a theory of QIIT signatures. Note that the analogous result in
our paper is not a consequence of the result of [27]. We use a similar proof, however we
have a much weaker assumption: we derive all mutual inductive families from the theory
of mutual inductive family signatures, instead of the theory of QIIT signatures. Moreover,
we also show how to reduce our weaker theory of signatures to indexed W-types. Such a
reduction is not done in [27], and is probably not possible for the theory of QIIT signatures.

Notation and metatheory

Throughout the paper, we will assume that we are given a type theory with a hierarchy
of universes Seti (we omit the indices for readability), Π-types, Σ-types, unit type 1, pro-
positional equality – = –, and indexed W-types [4] (see Appendix A). We write Σ-types
as (x : A) × B and Π-types as (x : A) → B where B might refer to x. We write implicit
arguments in curly braces {x : A} → B or simply omit them. Definitional equality is denoted
– ≡ –. We presume that the type theory is extensional, that is, given a term t : u = v, we
have u ≡ v. It is expected that all definitions could be translated to intensional type theory
with the necessary coercions and transports following Hofmann’s translation [23, 31, 35]. In
the Agda formalisation we use explicit transports and rewrite rules occasionally as a limited
version of equality reflection. We also assume function extensionality, this is necessary to
handle the Π-types in our syntax with metatheoretic domain (Π̂s, Π̂p). In the formalisation
we do not use uniqueness of identity proofs and we conjecture that our usages of equality
reflection do not imply it.

2 Signatures for Mutual Inductive Families

In this section we define a syntax for a small type theory for describing signatures of mutual
inductive families. We call this the theory of signatures. The idea is that a signature is a
context in this theory, starting with the declaration of the sorts as functions into the universe
U, then listing the constructors for the sorts in any order. We call these point constructors
following [34]. This theory is much simpler than the full syntax of dependent type theory. For
example, there are no interdependencies between sorts, neither between point constructors,
and no references from sorts to point constructors. We reflect these properties in our syntax
by separating sort contexts Cons from point contexts Conp, and the latter will be indexed
over the former. We define an intrinsically typed syntax (in the style of [7, 5]), that is, we
don’t have preterms or typing relations, only well-scoped, well-typed terms, well-formed
contexts and types.
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I Definition 1 (The Theory of Signatures). The syntax is defined inductively by the following
6 sorts and 13 constructors. These 6 types can be encoded as indexed W-types, the detailed
construction of which is provided in Appendix A.

Tys : Set Typ : Cons → Set
U : Tys El : Tms Γs U→ Typ Γs
Π̂s : (T : Set)→ (T → Tys)→ Tys Π̂p : (T : Set)→ (T → Typ Γs)→ Typ Γs
Cons : Set –⇒p – : Tms Γs U→ Typ Γs → Typ Γs
· : Cons Conp : Cons → Set
–B – : Cons → Tys → Cons · : Conp Γs
Vars : Cons → Tys → Set –B – : Conp Γs → Typ Γs → Conp Γs
vz : Vars (Γs BAs)As
vs : Vars ΓsAs → Vars (Γs BBs)As
Tms : Cons → Tys → Set
var : Vars ΓsAs → Tms ΓsAs
–@ – : Tms Γs (Π̂s T As)→ (τ : T )→ Tms Γs (As τ)

A sort type Tys is either a universe U or is given by an indexing type T and a sort type
for each element of T . The latter can be seen as a function space where the domain is
metatheoretic, hence the notation Π̂s. We use the abbreviation T ⇒̂s As for Π̂s T (λτ.As)
when As : Tys. A sort context Cons is simply a snoc-list of sort types (empty context · and
context extension –B–). In order to refer to sorts we introduce typed de Bruijn variables Vars
with zero vz and successor vs constructors. Just as variables, sort terms Tms are indexed by
a sort context and a sort type. Each variable is a term (var) and we have application –@ – for
the function space Π̂s. Note that t : Tms ΓsAs carries similar information to Γs ` t : As in a
presentation of a syntax with preterms and typing relations, but we do not have preterms,
only well-typed terms.

Point constructors are represented by point types Typ over a given sort context. The type
formers are the element type for the universe U, a function type with metatheoretic domain
Π̂p and a non-dependent function type –⇒p – where the domain is in U. The former function
type allows adding parameters to constructors, the latter allows adding recursive arguments.
We use the abbreviation T ⇒̂p Ap for Π̂p T (λτ.Ap) when Ap : Typ. A point context over a
given sort context is a snoc-list of point types all in the same sort context.

I Example 2 (Natural Numbers, Vectors, Parity). A common example for inductive types,
the natural numbers, with one constructor for zero and one for the successor function, are
represented by the following sort and point contexts. On the right hand side, we write the
same with an informal notation using variable names.

Ns :≡ (·B U) (N : U)
N :≡

(
·BEl (var vz)B var vz⇒p El (var vz)

)
(zero : N, suc : N → N)

The only sort is referred to by var vz. As shown by the constructor for successor, on the left
hand side of the arrow ⇒p we have to write a sort term of type U, and not a point type. This
makes sure that all constructors are strictly positive, as the only ways to form sort terms are
variables and applications.

FSCD 2020
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An example of a real indexed type is the type family of vectors of a fixed type A : Set.
We also assume that we have natural numbers in our metatheory.

Vs :≡ (·B N ⇒̂s U) (V ec : N→ U)
V :≡

(
·BEl (var vz @ 0)B (nil : V ec 0,

A ⇒̂p Π̂p N
(
λn.var vz @ n⇒p cons : A→ (n : N)→ V ec n→

El (var vz @(n+ 1))
))

V ec (n+ 1))

As our sort has a function type, whenever we have to refer to it in constructors, we have
to use the application @ to specify the natural number index. In the cons constructor, we
use both kinds of function types: the first two function types are Π̂p as they refer to the
parameters of type A and N. The last function type is⇒p as it refers to a recursive argument.

We revisit the parity example from the introduction.

Ps :≡ (·B N ⇒̂s UB N ⇒̂s U) (isEven : N→ U, isOdd : N→ U)

P :≡
(
·BEl (var (vs vz) @ 0)B (even0 : isEven 0,

Π̂p N
(
λn.var vz @n⇒p evenS : (n : N)→ isOddn→

El (var (vs vz) @(n+ 1))
)
B isEven (n+ 1),

Π̂p N
(
λn.var (vs vz) @n⇒p oddS : (n : N)→ isEvenn→

El (var vz @(n+ 1))
))

isOdd (n+ 1))

The sort context Ps has length two, we refer to the isEven sort by var (vs vz), to the isOdd
sort by var vz.

3 Algebras, Displayed Algebras, and Sections

In this section we provide semantics for the theory of signatures (Definition 1). A signature
is given by a sort context Γs and a point context Γ : Conp Γs. For each such signature, we
will obtain notions of algebras, displayed algebras and sections of displayed algebras. From
the signature for natural numbers given in Example 2 we will derive that a natural number
algebra is an element of

(N : Set)×N × (N → N),

a displayed natural number algebra over an algebra (N, z, s) is an element of

(P : N → Set)× P z × ((n : N)→ P n→ P (s n)),

and a section of a displayed algebra (P,w, h) over (N, z, s) is an element of

(f : (n : N)→ P n)× (f z = w)×
(
(n : N)→ f (s n) = hn (f n)

)
.

The constructors of the inductive type will be elements of the algebra, the arguments of
the eliminator (sometimes called motives and methods) form a displayed algebra over the
constructors, while the eliminator itself is a section. The equalities in the section are the
computation rules (β rules) for the eliminator.
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More formally, we will define operations –A, –D and –S for computing algebras, displayed
algebras and sections. As sort and point contexts are separate, we have to define them
separately for both.

ΓsA : Set ΓsD : ΓsA → Set ΓsS : (γs : ΓsA)→ ΓsD γs → Set
ΓA : ΓsA → Set ΓD : ΓsD γs → ΓA γs → Set ΓS : ΓsS γs γ

d
s → (γ : ΓA γs)→

ΓD γds γ → Set

Putting them together, we get algebras as (γs : ΓsA)×ΓA γs, displayed algebras over a (γs, γ)
by (γds : ΓsD γs)× ΓD γds γ, and sections of (γds , γd) by (γss : ΓsS γs γ

d
s )× ΓS γss γ γ

d.
The algebra operator corresponds to building the standard model (set model, metacircular

interpretation [24, 5]) of the theory of signatures.

I Definition 3 (Algebra Operation). We map sort types and sort contexts to types, variables
and terms are mapped to functions from the interpretation of their context to the interpretation
of their types, point types and point contexts are mapped to families over the interpretation
of the sort contexts.

–A : Tys → Set –A : Vars ΓsAs → ΓsA → As
A –A : Typ Γs → ΓsA → Set

–A : Cons → Set –A : Tms ΓsAs → ΓsA → As
A –A : Conp Γs → ΓsA → Set

We go through each operation in order. First, sort types are interpreted as functions into the
universe (left column), and sort contexts become iterated product types (right column).

UA :≡ Set ·A :≡ 1

(Π̂s T As)A :≡ (τ : T )→ (Aτ)A (Γs BAs)A :≡ ΓsA ×AsA

We use variables and terms to navigate these iterated products via iterated projections, and
to apply function sorts to parameters.

vzA (γs, αs) :≡ αs (var x)A γs :≡ xA γs

(vsx)A (γs, αs) :≡ xA γs (t@ τ)A γs :≡ (tA γs) τ

For point types, both function types become metatheoretic functions and we erase the element
operator, since it does not have any semantic meaning. Just as sort contexts, point contexts
are interdependency-free lists of the interpretations of their constituent types.

(El a)A γs :≡ aA γs ·A γs :≡ 1

(Π̂p T A)A γs :≡ (τ : T )→ (Aτ)A γs (Γ BA)A γs :≡ ΓA γs ×AA γs

(a⇒p A)A γs :≡ aA γs → AA γs

I Example 4 (Revisiting Natural Numbers, Vectors, Parity). Looking at the signatures in
Example 2, we observe that the algebra interpretations are the expected left-nested product
types starting with 1. For natural numbers, we have NsA ≡ 1×Set. Given a (?,M) : 1× Set,
the algebras of its point contexts become NA (?,M) ≡ (1×M)× (M → M). For vectors,
the sorts in an algebra are elements of VsA ≡ 1× (N→ Set), and given such a (?,W ), the
point algebras are given by V A (?,W ) ≡ 1 ×W 0 × (A → (n : N) → W n → W (n + 1)).
For parity, the sorts in an algebra are PsA ≡ 1× (N→ Set)× (N→ Set), and given such a
(?,E,O), point algebras are PA (?,E,O) ≡ 1 × E 0 ×

(
(n : N) → On → E (n+ 1)

)
×

(
(n :

N)→ E n→ O (n+ 1)
)
.
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Displayed algebras can be seen as the logical predicate interpretation [13] of the syntax.

I Definition 5 (Displayed Algebra Operation). Sort contexts and types become predicates over
their algebra interpretations, while the displayed algebra interpretation of variables and terms
says that they respect the predicates (usually called fundamental lemma).

–D : (As : Tys) → As
A → Set –D : (x : Vars ΓsAs)→ ΓsD γs → As

D (xA γs)
–D : (Γs : Cons)→ ΓsA → Set –D : (t : Tms ΓsAs)→ ΓsD γs → As

D (tA γs)

Point types and contexts become predicates over their corresponding algebra interpretations,
but these predicates also depend on witnesses of the predicates for the sort contexts.

–D : (A : Typ Γs) → ΓsD γs → AA γs → Set
–D : (Γ : Conp Γs)→ ΓsD γs → ΓA γs → Set

The interpretation of U is predicate space, interpretations of Π̂p and sort contexts are pointwise.

UD T :≡ T → U ·D ? :≡ 1

(Π̂s T As)D fs :≡ (τ : T )→ (As τ)D (fs τ) (Γs BAs)D (γs, αs) :≡ ΓD
s γs ×As

D αs

The interpretation of terms follows the same pattern as for algebras, variables are lookups, ap-
plication is metatheoretic application, we omit listing them. On point types, the interpretation
of El is again non-interesting, the interpretation of Π̂p is pointwise, while the interpretation
of ⇒p says that if the predicate holds for the input, then it holds for the output.

(El a)D γds α :≡ aD γd α

(Π̂p T A)D γds f :≡ (τ : T )→ (Aτ)D γds (f τ)
(a⇒p A)D γds f :≡ {α : aA γs} → aD γds α→ AD γds (f α)

Finally, point contexts are interpreted as iterated products again, they contain witnesses that
the predicates hold for everything in the algebra.

·D γds γ :≡ 1
(Γ BA)D γds (γ, α) :≡ ΓD γds γ ×AD γds α

I Example 6 (Revisiting Natural Numbers, Vectors, Parity). Given (?,M) : NsA and (?, z, s) :
NA (?,M), the displayed sort algebra is a predicate onM , concretely NsD (?,M) ≡ 1×(M →
Set). This can be seen as the motive of the eliminator if (M, z, s) is the initial algebra.
Given such a (?,Q), the displayed point algebra computes the types of methods of the
eliminator, ND (?,Q) (?, z, s) ≡ 1 × Qz ×

(
(n : M) → Qn → Q (s n)

)
as expected. Given

a vector algebra (?,W ), (?, nil, cons), a displayed sort algebra computes to VsD (?,W ) ≡
1 × ((n : N) → W n → Set), and the displayed point algebra is V D (?,Q) (?, nil, cons) ≡
1 × Q 0nil ×

(
(a : A)(x : N)(v : W n) → Qnv → Q (n + 1) (cons a x v)

)
. Finally, given a

parity algebra (?,E,O), (?, e0 , eS, oS), the displayed sort algebra consists of PsD (?,E,O) ≡
1 × ((n : N) → E n → Set) × ((n : N) → On → Set) and given such a (?,Q,R), displayed
point algebras are PD (?,Q,R) (?, e0 , eS, oS) ≡ 1 × Q 0 e0 ×

(
(n : N)(o : On) → Rno →

Q (n+ 1) (eS n o)
)
×

(
(n : N)(e : E n)→ Qne→ R (n+ 1) (oS n e)

)
. Given a family Q over

E and a family R over O, these express that e0 witnesses Q, while eS turns witnesses of R
into witnesses of Q and oS turns witnesses of Q into witnesses of R.
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Sections are dependent binary logical relations, where the interpretation of U, El and ⇒p
are non-standard.

I Definition 7 (Section Operation). For sorts and sort contexts, sections are dependent
binary relations over the corresponding algebra and displayed algebra. “Dependent” here
means the type of the second argument of the relation depends on the first.

–S : (As : Tys) → (αs : AsA)→ As
D αs → Set

–S : (Γs : Cons)→ (γs : ΓsA) → ΓsD γs → Set

The interpretation of variables expresses that if the relation holds at the context, then it also
holds at the type for the algebra and displayed algebra interpretation of the variable. We have
the same for terms.

–S : (x : Vars ΓsAs)→ ΓsS γs γ
d
s → As

S (xA γs) (xD γds )
–S : (t : Tms ΓsAs) → ΓsS γs γ

d
s → As

S (tA γs) (tD γds )

The interpretation of point types are dependent binary relations displayed over witnesses of
relatedness for the relations for the contexts.

–S : (A : Typ Γs) → ΓsS γs γ
d
s → (α : AA γs)→ AD γds α→ Set

–S : (Γ : Conp Γs)→ ΓsS γs γ
d
s → (γ : ΓA γs) → ΓD γds γ → Set

Sections of the universe are given as dependent functions (instead of dependent relation space
as is usual for logical relations). The interpretation of Π̂s is pointwise, and so is that of sort
contexts.

US T T d :≡ (τ : T )→ T d τ

(Π̂s T As)S fs f
d
s :≡ (τ : T )→ (As τ)S (fs τ) (fds τ)

·S ? ? :≡ 1

(Γs BAs)S (γs, αs) (γds , αds) :≡ ΓsS γs γ
d
s ×As

S αs αs

Sort terms follow the usual pattern of variables selecting sort interpretations via projections
of products and interpreting the application by metatheoretic application:

vzS (γss , αss) :≡ αss (var x)S γss :≡ xS γss

(vsx)S (γss , αss) :≡ xS γss (t@ τ)S γss :≡ tS γss τ

Sections on point types express equalities. Each point type ends with an El a, and the section
says that the function given by aS returns the witness of the predicate αd. Π̂p is defined
pointwise, while ⇒p says that for any input, the outputs of f and fd are related by AS, where
we use aS again to produce a witness of the predicate on the right hand side.

(El a)S γss αα
d :≡ (aS γss α = αd)

(Π̂p T A)S γss f f
d :≡ (τ : T )→ (Aτ)S γss (f τ) (fd τ)

(a⇒p A)S γss f f
d :≡ (α : aA γs)→ AS γss (f α) (fd (aS γss α))

The definition of sections of point contexts is, again, just an iteration of products.

·S γss γ γd :≡ 1
(Γ BA)S γss (γ, α) (γd, αd) :≡ ΓS γss γ γ

d ×AS γss αα
d
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I Example 8 (Revisiting Natural Numbers, Vectors, Parity). Using the same notation for
algebras and displayed algebras as in Example 6, a section of a natural number dis-
played algebra is a (?, f) having type NsS (?,M) (?,Q) ≡ 1 × ((n : M) → Qn) together
with a witness of NS (?, f) (?, z, s) (?, w, h) ≡ 1 × (f z = w) × ((n : N) → f (s n) =
hn (f n)). These equalities are the computation rules of the eliminator. For vectors,
the section operation computes to Vs

S (?,W ) (?,Q) ≡ 1 ×
(
(n : N)(v : W n) → Qnv

)
and to V S (?, f) (?, nil, cons) (?, nild, consd) ≡ 1 × (f 0nil = nild) ×

(
(a : A)(n : N)(v :

W n) → f (n + 1) (cons an v) = consd an (f n v)
)
. For the parity families, sections are

Ps
S (?,E,O) (?,Q,R) ≡ 1× ((n : N)(e : E n)→ Qne)× ((n : N)(o : On)→ Rno) together

with P S (?, f, g) (?, e0 , eS, oS) (e0 d, eSd, oSd) ≡ 1 × (f 0 e0 = e0 d) ×
(
(n : N)(o : On) →

f (n+ 1) (eS n o) = eSd n (g n o)
)
×

(
(n : N)(e : E n)→ g (n+ 1) (oS n e) = oSd n (f n e)

)
. A

section for parity displayed algebras consists of two functions f , g which map e0 to e0 d, eS
to eSd and oS to oSd.

4 Existence of Inductive Families

When does a type theory “support” types of our specification of mutual inductive families
and how does this compare to well-established notions of inductive types? The intended
meaning of the signatures is clear from the definition of their algebras as seen in Section 3, the
types of their eliminators and computation rules are specified in the definitions of displayed
algebras and sections. This means that we can formally say what it means for inductive
families to exist in a type theory. In this section, we will prove that any metatheory with
indexed W-types supports our notion of mutual inductive families or, in other words, mutual
inductive families can be reduced to indexed W-types:

I Theorem 9 (Existence of Inductive Families). For every signature of inductive families
given by a sort context Ωs : Cons and point context Ω : Conp Ωs, there are are sort and point
constructors in the form of

cons Ω : ΩsA and
con Ω : ΩA (cons Ω)

such that for each displayed algebra given by motives ωds : ΩsD (cons Ω) and methods ωd :
ΩD ωds (con Ω) we have an eliminator given by sections

elims Ω ωds : ΩsS (cons Ω)ωds with
elim Ω ωd : ΩS (elimsΩωds ) (con Ω)ωd.

Note that this definition of existence only requires the computation rules contained in
elim Ω ωd to hold propositionally. One might also wish for strict reduction rules instead to
enable better computational behaviour.

Our strategy to prove this theorem is to first extend our syntax to a full substitution
calculus including sort and point substitutions and point types (Section 4.1). Then we
construct a term model using the extended syntax, which we can then show to be the initial
algebra (Section 4.2).
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4.1 A Substitution Calculus for the Syntax
The syntax for usual type theories includes substitutions. We did not have to mention them
in the theory of signatures because of the simplicity of mutual inductive definitions. In other
words, our syntax only contains normal forms (there are also no conversion rules in our
syntax). However when doing constructions on the syntax, it is sometimes useful to have a
full syntax, this includes a category of substitutions. We will make use of them in Section 4.2.

I Definition 10 (Sort Substitutions). A calculus of substitutions Subs of sort contexts is
useful to compare sort contexts themselves as well as to relate point contexts over different
sort contexts. We define them to be inductively generated by

Subs : Cons → Cons → Set
ε : Subs Γs ·
–, – : Subs Γs ∆s → Tms ΓsAs → Subs Γs (∆s BAs)

Like with the syntax of signatures itself, Subs can be encoded as an indexed W-type as shown
in Appendix A. These substitutions allow us to substitute point types, point contexts, and
sort terms via the following “pullback” operations:

–[–] : Typ ∆s → Subs Γs ∆s → Typ Γs –[–] : Vars ∆sAs → Subs Γs ∆s → Tms ΓsAs
–[–] : Conp ∆s → Subs Γs ∆s → Conp Γs –[–] : Tms ∆sAs → Subs Γs ∆s → Tms ΓsAs

given by the defining rules for substitution

Π̂p T A[σ] :≡ Π̂p T (λτ.(Aτ)[σ]) vz[σ, t] :≡ t
El a[σ] :≡ El (a[σ]) (vsx)[σ, t] :≡ x[σ]
(a⇒p A)[σ] :≡ a[σ]⇒p A[σ] (var x)[σ] :≡ x[σ]
· [σ] :≡ · (t@ τ)[σ] :≡ t[σ] @ τ

(Γ BA)[σ] :≡ Γ [σ]BA[σ]

We can derive from this some useful gadgets of the substitutional calculus: We can define
the weakening of a substitution σ : Subs Γs ∆s to the substitution wkσ : Subs (Γs BAs) ∆s via
recursion on σ by wkε :≡ ε and wkσ,t :≡ (wkσ, vs t).

Using wk, we can then recover the categorical structure of the substitutions by defining
the identity idΓs : Subs Γs Γs by recursion of the context Γs: id· :≡ ε and idΓsBAs :≡
(wkidΓs

, var vz). Composition σ ◦ δ : Subs Γs ∆s of substitutions σ : Subs Θs ∆s and δ :
Subs Γs ∆s is defined by recursion on the first substitution: ε ◦ δ :≡ ε, (σ, t) ◦ δ :≡ (σ ◦ δ, t[δ]).

The projections π1 σ : Subs Γs ∆s and π2 σ : Tmss ΓsAs of a substitution σ : Subs Γs (∆sB
As) are just projections of ×-types: Any substitution between Γs and ∆s BAs is of the form
σ, t and we can just set π1 (σ, t) :≡ σ and π2 (σ, t) :≡ t.

Obviously, we might also want to consider algebras, displayed algebras, and their sections
over these substitutions.

I Definition 11 (Semantics of Sort Substitutions). We can extend the algebra operator by
defining it on substitutions by functions between the interpretations of sort contexts:

–A : Subs Γs ∆s → ΓsA → ∆s
A

This is done by setting εA :≡ ? and (σ, t)A :≡ (σA, tA).
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The type of displayed algebras over a sort substitution should be the type of function
between the displayed algebras of its domain and codomain, where in the latter we have to
apply the function which we get from the algebra over the substitution:

–D : (σ : Subs Γs ∆s)→ ΓsD γs → ∆s
D (σA γs)

These are defined, like in the non-displayed case, by setting εD γds :≡ ? and (σ, t)D γds :≡(
σD γds , t

D γds
)
.

A section of a displayed algebra of a sort substitution is supposed to map sections of its
domain to sections of its codomain:

–S : (σ : Subs Γs ∆s)→ ΓsS γs γ
d
s → ∆s

S (σA γs) (σD γds )

Again, this is happening componentwise by having: εS γss :≡ ? and (σ, t)S γss :≡
(
σS γss , t

S γss
)
.

I Lemma 12. It is easy to check that this definition of algebras of a subtitution respects the
substitution calculus given in Definition 10 in the following sense:

(A[σ])A γs = AA (σA γs), wkσA (γs, αs) = σA γs,
(t[σ])A γs = tA (σA γs), (π1 σ)A γs = pr1 (σA γs), and

idA γs = γs, (π2 σ)A γs = pr2 (σA γs).
(σ ◦ δ)A γs = σA (δA γs),

Proof. We can prove the first rule by recursion on the point type A : Typ Γs, the second
rule by recursing on the term t : Tms ΓsAs, the third by induction on the context, and all
other by induction by the substitution. Analogous rules hold for displayed algebras over
substitutions. J

The model which is initial in the category of all models is usually called the term model.
This is because in this model, a type gets interpreted as the set of all of its terms. Since
our signatures form – or are at least strongly inspired by – a type theoretic syntax as
well, we might hope to deploy the same strategy for inductive families. In the core of this
interpretation is the issue of how to find an interpretation for a given sort term a of the
universe token U. The interpretation of this ought to be the terms of the point type El(a)
associated with this sort term. But our syntax does not mention terms of point types at
all, since point constructors are not interdependent! So our solution is to retrofit the theory
with terms, as well as substitutions for the point contexts:

I Definition 13 (Point Substitution Calculus). Let us fix a sort context Γs : Cons. It turns
out that there are three ways to construct reasonable terms of point types in Γs: Via variables
to navigate point contexts and application constructors for each of the two kinds of Π-types
present in the syntax.

Varp : Conp Γs → Typ Γs → Set var : Varp Γ A→ Tmp Γ A

Tmp : Conp Γs → Typ Γs → Set – @̂ – : Tmp Γ (Π̂p T A)→ (τ : T )→ Tmp Γ (Aτ)
vz : Varp (Γ BA)A –@ – : Tmp Γ (a⇒p A)→ Tmp Γ (El a)→ Tmp Γ A

vs : Varp Γ A→ Varp (Γ BB)A



A. Kaposi and J. von Raumer 23:13

Like with the sort substitutions defined in Definition 10, we define substitutions between point
contexts over a fixed sort context Γs : Cons to be lists of point terms:

Subp : Conp Γs → Conp Γs → Set
ε : Subp Γ ·
–, – : Subp Γ ∆→ Tmp Γ A→ Subp Γ (∆BA)

All of these can again be encoded as indexed W-types (cf. Appendix A). We can again define
a pullback operations for variables and terms – this time for point terms – along substitutions
in the form of

–[–] : Varp ∆A→ Subp Γ ∆→ Tmp Γ A –[–] : Tmp ∆A→ Subp Γ ∆→ Tmp Γ A

which are defined recursively by

vz[σ, t] :≡ t (var x)[σ] :≡ x[σ]
(vsx)[σ, t] :≡ x[σ] (t @̂ τ)[σ] :≡ t[σ] @̂ τ

(t@u)[σ] :≡ t[σ] @u[σ]

Analogously to Definition 10 we can define the weakening wkσ : Subp (Γ B A) ∆ of a point
substitution σ : Subp Γ ∆ along a point type A : Typ Γs, the identity substitution id : Subp Γ Γ
and the composition σ ◦ δ : Subp Γ ∆ of substitutions σ : Subp Θ ∆ and δ : Subp Γ Θ.

As an auxiliary construction for our existence proof we will furthermore need notions of
algebras, displayed algebras, and sections for the point terms and point substitutions:

I Definition 14 (Semantics of Point Substitutions & Terms). Let us fix a sort context Γs : Cons
and an algebra γs : ΓA

s over it. We can give semantic meaning to point types and point
substitution by extending the algebra operator with the following components:

–A : Varp Γ A→ ΓA γs → AA γs –A : Subp Γ ∆→ ΓA γs → ∆A γs

–A : Tmp Γ A→ ΓA γs → AA γs

These components are, in essence, defined the same way as their respective parts on sorts.
Of course, apart from these defining equations, this definition of algebras is also well-behaved
under the other components of substitutional calculus, analogous to sort substitutions (cf.
Lemma 12).

Let us now also fix a displayed algebra γds : ΓsD γs. For the displayed version of these
algebras, the interpretation of point terms and of point substitutions needs to depend on these
and, additionally, on an algebra and displayed algebra of the underlying point context. This
leads to the following interpretations:

–D : (x : Varp Γ A) → ΓD γds γ → AD γds (xA γ)
–D : (t : Tmp Γ A) → ΓD γds γ → AD γds (tA γ)
–D : (σ : Subp Γ ∆)→ ΓD γds γ → ∆D γds (σA γ)

Again, we define them by equations resembling the ones for sort substitutions, and again,
substitution rules analogous to the ones in Lemma 12 hold.
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4.2 Constructing all Inductive Families from the Syntax
In this section, assuming our type theory supports the theory of signatures (including the
extensions of Section 4.1), we show that all mutual inductive families described by signatures
exist. To give an intuition for this construction, consider the example of natural numbers: In
its initial algebra, we want the interpretation of the U sort to contain exactly the elements z,
s z, s (s z), . . . , where z and s are point terms, pointing to the zero and successor constructor,
respectively. But we observe that these are just the point terms of the type ElN in the
context ∆ := (N : U, z : ElN, s : N ⇒p ElN) (for the sake of the example, we use variable
names and don’t separate sort and point contexts). So we define the initial algebra as(
Tm ∆ (ElN), z, λt.s@ t

)
: ∆A. Note that given any other algebra (A, a, f) : ∆A and natural

number n : Tm ∆ (ElN), we can simply use the algebra interpretation to obtain the result
of the non-dependent elimination principle on n: nA (A, a, f) will have type A, moreover
zA (A, a, f) = a and (s@ t)A (A, a, f) = f (tA (A, a, f)) which are the correct computation
rules. The same idea works for displayed algebras: we can use the –D operation on a natural
number (given as a term) to obtain the result of the dependent elimination principle. In
the following we will give the general description of this approach and prove its initiality by
giving the dependent eliminator.

For the remainder of this section, let us fix the sort context Ωs : Cons and the point context
Ω : Conp Ωs which we want to construct by giving cons Ω : ΩsA and con Ω : ΩA (cons Ω). Our
definition of the constructor uses the trick to index several of the constructions by a second
sort or point context together with a sort or point substitution from Ωs or Ω. We can think
of this second context as some sort of a “sub-context” of a fixed context.

I Definition 15 (The Sort Constructor). The generalised sort constructor consists of:

con′s : Subs Ωs Γs → ΓsA

We can define this recursively via con′s ε :≡ ? and con′s (σ, t) :≡ (con′s σ, con′s t) where on sort
terms we will define a constructor operation yielding an algebra of the respective sort type:

con′s : Tms ΩsAs → As
A

This operation will on universe terms consist of the type of point terms in the point context
Ω, while on metatheoretic sort functions, it will return a function with constructor of the
applied term:

con′s a :≡ Tmp Ω (El a) for a : Tms Γs U and

con′s t :≡ λτ.con′s (t @̂ τ) for t : Tms Ωs (Π̂s T As).

This construction is already enough to give the sort constructor required in Theorem 9 by
pinning the substitution to be the identity: cons Ω :≡ con′s idΩs

: ΩsA.

It is not immediately clear that the operation on substitutions and the operation on sort
terms is well-behaved under the pullback along substitutions. We can, however, show that
this is indeed the case:

I Lemma 16 (Coherence of the Sort Constructor). For all substitutions σ : Subs Ωs Γs
and t : Tms ΓsAs, taking a constructor of t pulled back along σ has the same effect as
taking the term algebra over the context algebra generated by the constructor on σ, that is,
tA (con′s σ) = con′s (t[σ]).
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Proof. Let us first do a case distinction on the substitution. If it is ε, then Γs = ·, and it
is easy to see that there are no terms in the empty sort context. Thus, we can assume the
substitution to be of the form (σ, s). In this case, lets recurse on the term and see that

(var vz)A(con′s (σ, s)) = vzA (con′s σ, con′s s)
= con′s s
= con′s (var vz[σ, s]),

(var (vsx))A (con′s (σ, s)) = var (vsx)A(con′s σ, con′s s)
= (var x)A (con′s σ)
= con′s (var x[σ]) by induction
= con′s (var (vsx)[σ, s]), and lastly

(f @̂ τ)A (con′s (σ, s)) = fA (con′s (σ, s)) τ
= con′s (f [σ, s]) τ by induction

= con′s ((f τ)[σ, s]) for f : Π̂s T B. J

We can now use this lemma to do a trick with con Ω similar to the trick we did for cons Ω:
Replace the fixed point context with a variable one, together with a substitution from Ω,
and define the constructor recursively on point types.

I Definition 17 (The Point Constructor). We define operations on point contexts and point
terms, resulting in algebras, in the following form:

con′ : Subp Ω Γ → ΓA (cons Ω) con′: Tmp Ω A→ AA (cons Ω)

The operation on point substitutions is defined recursively by con′ ε :≡ ? and con′ (σ, t) :≡
(con′ σ, con′ t), whereas for point terms, note that if t : Tmp Ω (El a), then by Lemma 16

t : con′s a ≡ con′s(a[id]) = aA (con′s idΩs
) ≡ (El a)A (cons Ω),

which allows us to define the constructor operator by

con′ t :≡ t for t : Tmp Ω (El a),

con′t :≡ λτ. con′ (t @̂ τ) for t : Tmp Ω (Π̂p T A), and
con′t :≡ λu. con′ (t@u) for t : Tmp Ω (a⇒p A).

This concludes the definition of the constructors, since we can set, like for the sort constructor,
con Ω :≡ con′ idΩ : ΩA (cons Ω).

Again, the construction comes with a property that makes it coherent under pulled back
point terms. Analogously to Lemma 16, this coherence looks as follows:

I Lemma 18 (Coherence of the Point Constructor). For all point substitutions σ : Subp Ω Γ
and point terms t : Tmp Γ A, pulling back has the same effect as the point constructor as in
tA (con′σ) = con′t[σ].

The proof is by induction on σ and t, and analogous to the one of Lemma 16, see Appendix
B.

With the constructors defined, let us move on to the construction of the eliminator. Let
us from now on fix displayed algebras ωds : ΩD

s (cons Ω) and ωd : ΩD ωds (con Ω). We will
proceed in the same order as for the constructors and start by generalizing elims Ω ωd to
arbitrary subcontexts of Ω by giving constructions on sort substitutions and sort terms.
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I Definition 19 (The Eliminator). The generalized eliminator will take substitutions or sort
terms to give sections of sort types or sort contexts, respectively:

elims
′ : (σ : Subs Ωs Γs)→ ΓsS (σA (cons Ω)) (σD ωds )

elims
′ : (t : Tms ΩsAs) → As

S (tA (cons Ω)) (tD ωds )

The first rule is defined by recursion using the second construction as usual: elims
′ ε :≡ ?

and elims
′ (σ, t) :≡

(
elims

′ σ, elims
′ t

)
. For the sort terms, we observe that, by Lemmas 16 and

18, for a : Tms Ωs U and t : aA (cons Ω) we have US(aD ωds (tA (con Ω)) = aD ωds t, and thus we
can set, disregarding transports,

elims
′ a :≡ λt. tD ωd for a : Tms Ωs U and

elims
′ t :≡ λτ. elims

′ (t @̂ τ) for t : Tms Ωs (Π̂s T As).

Now we set elims Ω ωd :≡ elims
′ idΩs

.

Similar to Lemma 16, these definitions are coherent in the following form:

I Lemma 20. Given a sort substitution σ : Subs Ωs Γs and a sort term t : Tms ΓsAs, the
eliminator of a pulled back term is the section of the term, evaluated at the eliminator on a
substitution: elims

′ (t[σ]) = tS (elims
′ σ).

Proof. The proof strategy is exactly the same as for Lemma 16. J

As a last step, we still need to prove the computation rules for the eliminator, consisting
of a section a displayed algebra over a given point context. Consistent with Definition 15, we
generalize them to arbitrary point substitutions and point terms.

I Lemma 21 (Computation Rules). We prove the computation rules for our eliminator
elims Ω ωd to be a section of subcontexts of Ω and of point terms in Ω:

elim′ : (σ : Subp Ω Γ)→ ΓS (elims Ω ωd) (σA (con Ω)) (σD ωd)
elim′ : (t : Tmp Ω A) → AS (elims Ω ωd) (tA (con Ω)) (tD ωd)

Proof. Using the elim′ for terms, the one for substitutions can be implemented in a straightfor-
ward way by recursion on the point substitution: elim′ ε ≡ ? and elim′ (σ, t) ≡

(
elim′ σ, elim′t

)
.

We implement elim′ for a term t : Tmp Ω A by case distinction on its type A. If A = El a,
we prove the following equality with the help of Lemmas 18 and 20:

aS (elims
′ idΩs) (tA (con Ω)) = aS (elims

′ idΩs) t = elims
′ a t = tD ωd.

For the other two cases, we use the induction hypotheses:

elim′t :≡ λτ. elim′ (t @̂ τ) for t : Tmp Ω (Π̂p T A), and
elim′t :≡ λu. elim′ (t@u) for t : Tmp Ω (a⇒p A). J

Proof of Theorem 9. Lemma 21 completes the construction of the eliminator and setting
elim Ω ωd :≡ elim′ idΩ completes the existence proofs for of inductive families. J
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5 Conclusions and further work

We defined a syntax of signatures for mutual inductive families which is very close to the
usual way of specifying such types in proof assistants: by a list of sorts and then a list of
constructors. We defined semantics for these signatures and showed how to derive the initial
algebra for any signature just by using the syntax of signatures. The syntax of signatures
was only given by normal forms, hence we could encode them as indexed W-types. Thus we
obtained a formalisation of the reduction of mutual inductive families to indexed W-types.
The lack of such a proof in the literature might be due to the absence of direct, convenient
descriptions of mutual inductive types.

In the future, we would like to investigate how to integrate the theory of signatures into
the core language of a proof assistant and how generic programming can be performed by
induction on signatures, e.g. proving injectivity, disjointness of constructors, or decidability
of equality. Also, we would like to extend the theory of signatures and its semantics
with infinitary constructors. Currently, infinitely branching trees cannot be described as
a signature, and as a consequence, the theory of signatures itself cannot be described as a
signature.
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A Deriving the Syntax from Indexed W-Types

We recall the notion of an indexed W-type.

I Definition 22 (Indexed W-Types, [4]). The indexed W-type IWo,r
A,B : I → Set for input data

I : Set (“index type”)
A : Set (“shapes”)
B : A→ Set (“positions”)
o : A→ I (“output indices”) and
r : (a : A)→ B a→ I (“recursive indices”)

is the inductive type on the constructor of the following form:

a : A c : (b : B a)→ IWo,r
A,B (r a b)

sup a b : IWo,r
A,B (o a)

admitting a dependent eliminator

C : {i : I} → IWo,r
A,B i→ Set

p : (a : A)
(
c : (b : B a)→ IWo,r

A,B (r a b)
)

→
(

(b : B a)→ C (c b)
)
→ C (sup a c)

elimIW C p : (i : I)(w : IWo,r
A,B i)→ C w

with the reduction rule

elimIW C p (o a) (sup a c) ≡ p a c (λb. elimIW C p (r a b) (c b)).

Using this definition of indexed W-types we now want to represent our extended syntax
as such:
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Table 1 The input data for the indexed W-types representing the internalized syntax for inductive
families.

i Ii : Set Ai : Set Bi : Ai → Set oi : Ai → Ii ri : (a : Ai)→ Bi a→ Ii

Tys 1 1
+Set

inl ? 7→ 0
inr T 7→ T

– 7→ ? – 7→ ?

Cons 1 1
+Tys

inl ? 7→ 0
inrB 7→ 1 – 7→ ? – 7→ ?

Vars Cons
Cons
+Cons × Tys

inl Γs 7→ 0
inr (Γs, B

′) 7→ 1
inl Γs 7→ (Γs, B)
inr (Γs, B

′) 7→ (Γs, B
′)
−
inr (Γs, B

′) ? 7→ Γs

Tms Γs Tys
Tys
+(T : Set)× (T → Tys)× T

inlB 7→ 0
inr – 7→ 1

inlB 7→ 0
inr (T,B, τ) 7→ B τ

−
inr (T,B, τ) ? 7→ Π̂s T B

Subs Γs 1 1
+(B : Tys)× Tms Γs B

inl ? 7→ 0
inr (B, t) 7→ 1 – 7→ ? – 7→ ?

Typ Γs 1
Tms Γ U
+Set
+TmsΓ U

inl a 7→ 0
inr (inl τ) 7→ T
inr (inr a) 7→ 1

– 7→ ? – 7→ ?

Conp Γs 1 1
+Tys Γs

inl ? 7→ 0
inrA 7→ 1 – 7→ ? – 7→ ?

Varp –A Conp Γs
Conp Γs

+Conp Γs × Typ Γs

inl Γ 7→ 0
inr (Γ , A′) 7→ 1

inl Γ 7→ (Γ , A)
inr (Γ , A′) 7→ (Γ , A′)

−
inr (Γ , A′) ? 7→ Γ

Tmp Γ Typ Γs (A : Typ Γs)× Varp Γ A

inl (A, v) 7→ 0
inr (inl –) 7→ 2

inr (inr –) 7→ 1

inl (A, v) 7→ A
inr (inl (A, a)) 7→ A

inr (inr (T,A, τ)) 7→ Aτ

−
inr (inl (A, a)) 0 7→ (a⇒p A)
inr (inl (A, a)) 1 7→ El a
inr (inr (T,A, τ)) ? 7→ Π̂p T A

Subp Γ 1 1
+(A : Typ Γs)× Tmp Γ A

inl ? 7→ 0
inr (A, t) 7→ 1 – 7→ ? – 7→ ?

I Definition 23 (IF-Syntax as W-Types). We define the types defined in Definition 1, Defini-
tion 10, and Definition 13 as follows:

Tys :≡ IWoTys ,rTys
ATys ,BTys

? ,

Cons :≡ IWoCons ,rCons
ACons ,BCons

? ,

Vars –B :≡ IWoVars B,rVars B
AVars B,BVars B

,

Tms Γs :≡ IWoTms Γs,rTms Γs

ATms Γs,BTms Γs
,

Subs Γs :≡ IWoSubs Γs,rSubs Γs

ASubs Γs,BSubs Γs
,

Typ Γs :≡ IW
oTyp ,rTyp
ATyp ,BTyp

? ,

Conp Γs :≡ IWoConp ,rConp
AConp ,BConp

? ,

Varp –A :≡ IWoVarp A,rVarp A

AVarp A,BVarp A
,

Tmp Γ :≡ IWoTmp Γ,rTmp Γ
ATmp Γ,BTmp Γ ,

Subp Γ :≡ IWoSubp Γ,rSubp Γ
ASubp Γ,BSubp Γ ,

where the respective input data for the indexed W-types is given in Table 1.
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B Proof of Lemma 18

Proof. Repeating the strategy of the proof of Lemma 16, we again see that we can assume
the substitution to be of an extended form (σ, s), since there are no point terms in the empty
point context. Now, by recursion on the term we see that

(var vz)A (con′ (σ, s)) = (var vz)A (con′ σ, con′ s)
= con′ s
= con′ (var vz[σ, s]),

(var(vsx))A (con′ (σ, s)) = (var (vsx))A (con′ σ, con′ s)
= (var x)A (con′ σ)
= con′ (var x[σ]) by induction
= con′ (var (vsx)[σ, s]),

(t@u)A (con′ σ) = tA (con′ σ)
(
uA (con′ σ)

)
= con′ (t[σ]) (con′ (u[σ])) by induction
= con′ ((t@u)[σ]), and

(t @̂ τ)A (con′ σ) = tA (con′ σ) τ
= con′ (t[σ]) τ by induction
= con′ ((t @̂ τ)[σ]). J
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With hybrid systems becoming ever more pervasive, the underlying semantic challenges emerge in
their entirety. The need for principled semantic foundations has been recognized previously in the
case of discrete computation and discrete data, with subsequent implementations in programming
languages and proof assistants. Hybrid systems, contrastingly, do not directly fit into the classical
semantic paradigms due to the presence of quite specific “non-programmable” features, such as
Zeno behaviour and the inherent indispensable reliance on a notion of continuous time. Here, we
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1 Introduction

Hybrid semantics underlies cyber-physical systems, which are systems combining discrete
communication and control with continuous evolution of physical (chemical, biological, neuro-
morphic, etc) processes, typically described by systems of (ordinary) differential equations.
Semantic theories, rooted in the classical notion of computability, have been explored
thoroughly in recent decades [24, 15, 18]. On the one hand, this has led to a better
understanding of the corresponding discrete time systems, thus implicitly or explicitly
contributing to improving their design. On the other hand, the results were used in developing
verification environments and proof assistants. Hybrid semantics however, requires a massive
reconsideration of the established approaches due to a number of features not covered
standardly such as Zeno behaviour, i.e. the phenomenon of switching the discrete control state
infinitely many times within a (physically) finite time interval. Moreover, hybrid computation
is inherently intertwined with reasoning. For example, in order to describe the movement of a
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ball, one has to be able to calculate the moments of collision of the ball with obstacles. From
a practical point of view, a clear mathematical formulation of hybrid semantics is needed
to be able to deal with verification challenges arising from safety critical systems such as
self-driving cars, or aircrafts, or surgeon robots. A natural way to do this is to turn to the
computational, and more specifically to the constructive side of the issue. We thus ask: “How
constructive is hybrid semantics?” and “What is the impact of the constructive viewpoint on
the verification challenges that may or may not be solved?”. In order to account for these
questions we orient towards principled constructive environments such as intensional type
theory and the corresponding implementations such as Coq and Agda.

The key concept in the heart of hybrid semantics are real numbers. The major existing
approaches to hybrid systems rely on classical (non-constructive) real numbers, which are
suitable for reasoning but not for computationally feasible operational semantics and not for
computer representation of hybrid programs. Observations in a similar vein have been made
recently [19, 5]. Here we assume a constructive notion of real numbers and constructive
hybrid trajectories, i.e. time indexed sequences, based on them.

In a nutshell, we develop a generalization of the following denotational domain

R` ˆX Y R̄` (F)

for modelling durations of hybrid programs, where R` stands for non-negative real numbers
and R̄` stands for non-negative real numbers extended with infinity. This domain contains
pairs pd, xq produced by computations that converge in time d and deliver a final value x,
and possibly infinite durations d : R̄` corresponding to computations that diverge in time d
(hence, not delivering any value). We generalize (F) in two directions: by replacing R`
with a general ordered monoid (to capture various notions of time), and by getting rid
of non-constructive principles underlying the use of (F). Roughly, the latter direction is
motivated by the fact that (F) does not adequately model iterative computation, unless the
law of excluded middle is admitted – the fact, that (F) is presented as a disjoint union of
denotation domains for convergent and divergent computations, would entail that program
termination is decidable for this semantics. This phenomenon is known for the partiality
monad [6, 4], which was developed as a replacement for the maybe monad X Z tKu, and in
exactly the same sense our present construction replaces (F). Even more so, our construction
is a direct generalization of the partiality monad construction from [4] and contains the latter
as a special case. We dub the obtained monad rL the (generalized) duration monad following
previous work [9, 10] and keeping in touch with the idea that monoid elements represent
time duration, even under a possibly far reaching generalization of the notion of time.

Despite technical similarity, our generalization raises issues which are degenerate and
hence ineffective for the partiality monad. For one thing, the idea of characterizations in terms
of complete partial orders stems from domain theory, where a suitable information order for
the target denotational domain is assumed, with a bottom element K representing divergence.
In (F), the notions of divergence continuously range over extended real numbers R̄`, in
particular, we have the least (0) and the greatest (8) notions of divergence. It turns out
that one can select K to be 0 and define the information order suitably by combining the
standard idea from domain theory, that divergent computations are denotationally smaller
than the convergent ones, with the comparison total order on real numbers.

The partiality monad thus becomes the duration monad over a trivial (i.e. single element)
ordered monoid, i.e. a computation over it either finishes instantly or diverges. The partial
order relation of the trivial ordered monoid is decidable in the type-theoretic sense (under
the propositions-as-types discipline, the corresponding type satisfies excluded middle). Our
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paramount example of an ordered monoid though are non-negative reals R` whose partial
order relation is not decidable. The move from the decidable case to possibly undecidable
ones has a significant impact on the choice of conditions for countable sequences whose least
upper bounds can be computed. Here we stick to directed sequences rather than monotone
sequences as before [4]. While in the decidable case both approaches are equivalent, in
general not only directedness of sequences differs from monotonicity, but also the former
comes in two forms: extensional and intensional. In the latter case, we demand for any two
elements of a directed sequence to exist a concrete element greater than both, while in the
former one we demand that such an element exists but it is not known which one it is. In
type-theoretic terms the difference is expressed by means of propositional truncation.

In terms of category theory, we identify each
~
LX as a suitable free object on X, or

equivalently as an initial object in a certain comma category, in accordance with the previous
construction of the partiality monad [4]. An alternative approach to constructing the latter
presupposes the axiom of countable choice and essentially amounts to quotienting the space
of monotone sequence over X Z tKu by weak bisimilarity [6, 21]. This quotienting procedure
can also be viewed as ω-completion of X Z tKu regarded as a flat domain [17]. Under
countable choice, both constructions are known to be equivalent. We establish an analogue
of this equivalence but only in classical setting (under the full axiom of choice) and, again,
replacing monotone sequences with directed ones. Remarkably, the completion procedure
gives some insight into Zeno behaviour: when forming the completion of a partial order, Zeno
behaviour contributes via duplication of least upper bounds that already exist in the original
set because those cannot be detected via the completion procedure. For example, directed
sequence completion (in contrast e.g. to Cauchy completion) cannot identify the sequence
1{2, 3{4, 7{8, . . . and 1, 1, 1, . . . To remedy this, we also introduce a coarsened version L of rL by
additionally demanding that all the originally existing least upper bounds must be kept intact.
This corresponds to a modified completion procedure [14], which is dubbed conservative
completion in [23].

We formalized our duration monad via higher inductive-inductive types in the Agda proof
assistant (version 2.6.1-96d0dd0) using the version of the cubical library from Feb 6 2020.
The recent version of our implementation can be found at https://github.com/sergey-
goncharov/hybrid-agda.

Paper Organization

After short preliminaries in Section 2, we present our motivation in Section 3. In Section 4
we provide our main construction using complete monoid modules in categorical terms, and
subsequenty characterize the obtained object in Section 5 under the assumption of the axiom
of choice. In Section 6 we give the main construction of the generalized duration monad
coping with Zeno behaviour. We discuss our formalization of both our constructions as
higher inductive-inductive types in cubical Agda in Section 7. A conclusion and our plans of
further work are given in Section 8.

2 Preliminaries

We work in an ambient theory of sets Set throughout, unless stated otherwise not assuming it
to validate either excluded middle or any form of choice. For example Set can be understood
as the type of HoTT types of h-level 2 [20]. Generally, we refer to the cited HoTT book as a
comprehensive presentation of the underlying foundational realm for our results. An ordered
monoid is a monoid pM,`, 0q together with a partial order ď on M such that 0 is the least
element and ` is monotone on the right, i.e. 0 ď a and b ď cñ a` b ď a` c for all a, b, c : M.
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We do not generally assume the dual monotonicity law (!) a ď b ñ a ` c ď b ` c. Even
though we use the additive notation ` for generic monoids, we do not assume commutativity
of `. By R, R` and R̄` we respectively denote (constructive) reals, non-negative reals and
extended non-negative reals (i.e.R` suitably extended with the infinite value 8). For least
upper bounds of families psiqi, we interchangeably use the notation

Ž

psiqi and
Ž

i si.
We assume basic familiarity with the concepts of category theory, specifically with uni-

versal arrows [13] in the form of free objects [2] (i.e. universal arrows for faithful func-
tors). A monad T (on Set) is determined by a Kleisli triple pT, η, p´q‹q, consisting of a
map T : Set Ñ Set, together with a Set-indexed class of morphisms ηX : X Ñ TX and
Kleisli lifting sending each f : X Ñ TY to f‹ : TX Ñ TY and obeying monad laws: η‹ “ id,
f‹η “ f , pf‹gq‹ “ f‹g‹ (it follows from this definition that T extends to a functor and η to
a natural transformation). The map f, g ÞÑ f‹g is called Kleisli composition. In program
semantics, in order to interpret while-loops, one more specifically needs monads equipped
with a notion of iteration. Monads from a suitable class called (complete) Elgot monads
are required to support an Elgot iteration operator pf : X Ñ T pY ZXqq ÞÑ pf : : X Ñ TY q

subject to established laws of iteration [11]. We will continue to use bold capitals (e.g. T)
for monads over the corresponding endofunctors written as capital Romans (e.g. T ).

3 Hybrid Semantics and Beyond

Let us briefly recall the hybrid language HybCore from previous work [10]. The grammar
is as follows:

v, w ::“ x | ‹ | true | false | pv, wq | fpvq pf P Σq
p, q ::“ ddvee | px, yq :“ p; q | x :“ p; q

| x :“ t. v & w | if v then p else q | x :“ p while v tqu

Here, x, y refer to variables, v, w refer to values and p, q refer to programs (as prescribed
by the fine-grain call-by-value discipline [12]). Besides the standard Boolean values (true
and false) and the canonical value ‹ of the unit type, new values can be generated by
Cartesian pairs pv, wq, and by transforming other values with functions coming from a
custom signature Σ. The latter is specifically meant to contain all the necessary parametrized
time-dependent functions of type X ˆ R` Ñ Y representing continuous dynamics, and are
regarded as atomic constructs by HybCore. A program either instantly returns a value
(ddvee), or is obtained by using one of the standard imperative style constructs, or by using
the construct x :“ t. v & w, which simultaneously abstracts v over the time variable t and
restricts the domain of definiteness of the obtained function to the largest interval (either of
the form r0, dq or r0, ds) on which the predicate w holds throughout. A standard example is
bouncing ball:

x :“ ddp5, 0qee while true tph, vq :“ px :“ t. ballpx, tq & fstx ě 0q; ddph,´0.5vqeeu

Here, the height h and the velocity v are initially set to 5 and 0 correspondingly, and ball
is a signature symbol representing the continuous dynamics of a flying ball. Each time the
ball touches the ground v is reset to ´0.5v with ´0.5 standing for the damping factor. This
behaviour is repeated in the loop indefinitely. Graphically, we obtain the following trajectory
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representing the dependency of the ball’s hight in time. Among other things, this example
demonstrates Zeno behaviour which is inherent to hybrid systems: infinitely many iterations
occur in finite time.

We use HybCore as a motivation for the duration semantics, which assigns to any
program a map f : X Ñ R` ˆ Y Y R̄` meaning that

if fpxq “ pd, yq : R` ˆ Y then the program yields the final value y in finite time d;
if fpxq “ d P R̄` then the program diverges in finite or infinite time d (e.g. by exposing
Zeno behaviour) and hence does not deliver any final value.

This semantics yields a monad R` ˆ p--q Y R̄`, which is further generalized as follows.

I Definition 1 (Monoid Module, Generalized Writer Monad [10]). Given a monoid pM,`, 0q,
a monoid module is a set E equipped with a map . : Mˆ E Ñ E, subject to the laws

0 . e “ e pm` nq . e “ m . pn . eq

Every monoid-module pair pM,Eq induces the following monad T “ pT, η, p--q‹q which we call
the generalized writer monad: T “ Mˆ p´q Y E, ηXpxq “ p0, xq, and

f‹pm,xq “ pm` n, yq where m : M, x : X, fpxq “ pn, yq : Mˆ Y

f‹pm,xq “ m . e where m : M, x : X, fpxq “ e : E

f‹peq “ e where e : E

This yields a joint generalization of the writer monad pE “ Hq and the exception mo-
nad pM “ 1q.

In order to interpret while-loops of HybCore w.r.t. the duration semantics, one needs to
turn R` ˆ p--q Y R̄` into an Elgot monad, which is, however, impossible in a constructive
setting because this would imply decidability of program divergence. This is analogous to
the fact that the maybe-monad, i.e. the generalized writer monad over M “ 1, E “ 1 cannot
generally serve as a model of partiality [4].

We next abstract from a concrete choice of M and fix the following stock of running
examples for further reference.

I Example 2 (Ordered Monoids). Following are some ordered monoids on Set.
1. p1, !, ‹, tp‹, ‹quq is a trivial ordered monoid over a one-element carrier 1 “ t‹u.
2. pN,`, 0,ďq is an ordered monoid of natural numbers N.
3. pQ`,`, 0,ďq is an ordered monoid of non-negative rational numbers Q`.
4. pR`,`, 0,ďq is an ordered monoid of non-negative real numbers R`.
5. pA‹, ¨ , ε,ďq is an ordered monoid of finite strings where ε is the empty string and ď is

defined as follows: u ď v iff u is a prefix of v, i.e. there exists a w such that uw “ v.

FSCD 2020
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6. pAr0,R`q,_, p0, !q,ďq, the monoid of (finite) trajectories over a given set A, is defined
as follows: Ar0,R`q “ Σd : R` r0, dq Ñ A is the set of finite trajectories valued on A;
elements are pairs pd, eq where d : R` and e : r0, dq Ñ A is a trajectory of duration d; the
concatenation operation _ is defined as follows:

pd1, e1q
_
pd2, e2q “ pd1 ` d2, λt. if t ă d1 then e1ptq else e2pt´ d1qq.

The unit is p0, !q where ! : r0, 0q Ñ A is the empty trajectory and the relation ď is defined as
follows: pd1, e1q ď pd2, e2q if d1 ď d2 and e1ptq “ e2ptq for every t : r0, d1q. Note that A‹ is
isomorphic to Σn : N An, hence Ar0,R`q can be understood as a counterpart of A‹ obtained
by changing the underlying notion of time from discrete (N) to continuous (R`).

7. pL,_, 0,ďq is an ordered monoid for any join semilattice L with a bottom element 0.
8. pM1 ˆ M2,`, p01, 02q,ďq is an ordered monoid, provided that so are pM1,`1, 01,ď1q and
pM2,`2, 02,ď2q; under these assumptions pa1, a2q ` pb1, b2q “ pa1 `1 b1, a2 `2 b2q and
pa1, a2q ď pb1, b2q if a1 ď1 b1 and a2 ď2 b2.

We intuitively regard ordered monoids as carriers of various (possibly exotic) notions of
time. The examples 4. and 6. are of direct use for hybrid semantics: the former (duration
semantics) corresponds to the semantics capturing only durations of programs; the latter
(evolution semantics) captures both the durations and the intermediate states arranged in
trajectories (cf. [10]). The monoids in 2. and 3. capture discrete and rational notions of
time. In 5., the discrete time instants are labelled by the elements of A, in particular, 1‹–N
corresponds to vacuous labelling. Both 5. and 6. illustrate our decision to make do without
the left monotonicity law a ď bñ a` c ď b` c, which is not satisfied by these examples.

We will treat an ordered monoid M as an input parameter to our constructions, while the
corresponding monoid module E will universally arise from M. In contrast to the generalized
writer monad, E will no longer be a disjoint component of TX, however, the equation T∅ “ E
will have to remain true. In fact, the perspective we take is to consider the whole TX as a
monoid module, regarded as an algebraic structure, and generated by X.

4 Complete Monoid Modules, Categorically

To obtain a constructively feasible replacement for the monad in Definition 1, we follow
the idea used to define the partiality monad in intensional type theory [4], which can be
abstractly summarized as follows:
1. Introduce a suitable category of algebras AlgT over Set.
2. Obtain T from an adjunction Set AlgTK .
This scenario raises three main questions:

How to specify the category of algebras AlgT?
How to construct T (i.e. prove that it exists)?
How to ensure that the constructed monad T does indeed faithfully capture the intended
semantics?

In this section we introduce a monad rL parametrized by a generic ordered monoid M. The
construction of rL is formulated in abstract category-theoretic terms, thus remaining agnostic
about any specific choice of foundations. In Section 5, we then show that classically rL can
be characterized in terms of directed sequence completion and in Section 7 we discuss a
formalization of rL in the constructive realm of HoTT and cubical Agda.

As the first step, we identify the category of algebras Alg
rL, which in our case are called

complete M-modules. Complete M-modules are a proper generalization of partiality algebras [4]
(corresponding to trivial M).
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I Definition 3 (Complete M-Modules). An ordered M-module w.r.t. an ordered monoid
pM,`, 0,ďq, is an M-module pE, . q together with a partial order v and a least element K,
such that . is monotone on the right and p´ . Kq is monotone, i.e.

K v x

x v y

a . x v a . y

a ď b

a . K v b . K

We call the last property restricted left monotonicity. An infinite sequence s1, s2, . . . is
monotone if si v si`1 for every i and directed if for every i and every j there exists k such
that si v sk and sj v sk. Clearly, every monotone sequence is directed.

An ordered M-module is (directed ω-)complete if for every directed sequence psiqi on E
there is a least upper bound

Ů

i si and . is continuous on the right, i.e.

si v
Ů

i si

@i. si v x
Ů

i si v x
Ů

i a . si v a .
Ů

i si

(the law a .
Ů

i si v
Ů

i a . si is derivable).

Note that any ordered monoid M, which is complete as a partial order is a complete M-module
under . “ `, provided that ` is right continuous. Consider further examples of complete
M-modules.

I Example 4. Let us revisit Example 2. For illustration purposes, let us assume here
that Set is a classical set theory, e.g. ZFC.

In 2.–4., N̄ “ NY t8u is an ordered N-module, Q̄` “ Q` Y t8u is an ordered Q`-module
and R̄` “ R`Yt8u is an ordered R`-module respectively: x . y “ x` y and x . 8 “ 8,
K “ 0, x ď y ñ x v y and x v 8 always. Both Q̄` and R̄` are also ordered N-modules
and R̄` is an ordered Q`-module. Now, N̄ is a complete N-module and R̄` is a complete
R`-module:

Ů

i si is the least upper bound of psiqi if s is bounded and 8 otherwise.
Also R̄` is a complete N-module and a complete Q`-module, but Q̄` is not complete
w.r.t. any monoid because it is not complete as a partial order.
In 5., the set Aω of infinite strings and the set Aďω “ A‹ Y Aω of finite and infinite
strings are both A‹-modules under prefixing a string with a finite string. Moreover, Aďω
is a complete A‹-module with the empty word as K and least upper bounds calculated in
the obvious way.
In 6. we defined the set Ar0,R`q “ Σd : R` r0, dq Ñ A of finite trajectories, which is of
course an Ar0,R`q-module on itself. Analogously, let Ar0,R̄`q “ Σd : R̄` r0, dq Ñ A be
the set of finite or infinite trajectories under the same operations, partially ordered in
the same way and with . extended as follows: pd1, e1q . pd2, e2q “ pd1, e1q

_
pd2, e2q

if d1 : R` and p8, e1q . pd2, e2q “ p8, e1q. Now, to calculate the least upper bound of
a directed sequence pd1, e1q, pd2, e2q, . . ., we first calculate d “

Ž

i di and then calculate
e : r0, dq Ñ A at each point x : r0, dq by setting epxq “ eipxq for sufficiently large i, which
is guaranteed to exist by definition. Thus Ar0,R̄`q is a complete Ar0,R`q-module.

We emphasize the non-constructive flavor of the above examples: when forming a disjoint
union such as A‹ Y Aω, we make an explicit distinction between finite and infinite data,
which cannot be realized constructively. For example, it is not possible to decide whether a
string is finite or infinite on the basis of a given finite prefix whatever long.

Complete M-modules form a category Alg
rL together with complete M-module morphisms,

which we define as follows.

FSCD 2020
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I Definition 5 (Complete M-Module Morphisms). Given two complete M-modules E and F, a
complete M-module morphism from E to F is a map f : E Ñ F such that

fpa . xq “ a . fpxq fpKq “ K

x v y

fpxq v fpyq f
`
Ů

i si
˘

“
Ů

i fpsiq

We next instantiate the general categorical notion of free object [2] to complete M-modules
as follows.

I Definition 6 (Free Complete M-Modules). A free complete M-module on a set X consists
of a complete M-module

~
LX and a map ηX : X Ñ

~
LX, such that for every map f : X Ñ E

there exists a unique complete M-module morphism f‹ :
~
LX Ñ E and the following diagram

commutes
~
LX E

X

f‹

ηX
f

(1)

In different terms, p
~
LX, ηXq is an initial object in the comma category XÓ ηX .

We proceed under the assumption that every
~
LX exists and defer further details related to

this issue until Section 7 where we discuss our construction of
~
LX as a quotient inductive-

inductive type. For now, we concentrate on checking if the object
~
LX does indeed correctly

capture the intended semantics. First, observe the following.

I Theorem 7.
1. The forgetful functor U : Alg

rL Ñ Set has a left adjoint F : Set Ñ Alg
rL inducing a

monad over
~
L “ UF with unit η and Kleisli lifting p--q‹ agreeing with (1).

2. rL is enriched over directed complete partial orders, and moreover, Kleisli composition is
strict on both sides.

3. rL is an Elgot monad with the iteration operator pf : X Ñ rLpY ZXqq: calculated as a least
fixed point of the map rη, --s‹f : pX Ñ

~
LY q Ñ pX Ñ

~
LY q.

Proof.
1. It is a standard category-theoretic fact [2] that existence of all free objects

~
LX implies

existence of the left adjoint F to the forgetful functor U . The arising monad rL is then as
described.

2. Every
~
LX carries a complete partial order by definition. The laws f‹pKq “ K,

p v q ñ f‹ppq v f‹pqq and f‹
`
Ů

i siq “
Ů

i f
‹psiq follow from the fact that f‹ is a complete

M-module morphism by definition. The dual properties of Kleisli composition amount to
f v g ñ f‹ v g‹ and

Ů

i f
‹
i “

`
Ů

i fi
˘‹ assuming pointwise extension of the order on the

function spaces. Assuming the former, the latter easily follows from the universal property (1)
since

`
Ů

i f
‹
i

˘

η “
Ů

i f
‹
i η “

Ů

i fi “
`
Ů

i fi
˘‹
η.

The fact that f v g implies f‹ v g‹ (for f, g : X Ñ
~
LY ) is by no means entailed by a

generic category-theoretic argument. We show it as follows in slightly more generality for any
f, g : X Ñ E. For any complete M-module E, let EÓ be the set of down-closed E-submodules
of E. Then EÓ is itself an E-module under

a . S “ ta . x | x : Su, K “ H, S v R ðñ S Ď R,
ğ

i
Si “

ď

i
Si.
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Now, given f, g : X Ñ E, let f Ó and gÓ be the pointwise principal ideals induced by f and g,
e.g. f Ópxq “ ty | y v fpxqu. Now, if f v g then pf‹ÓY g‹Óq η “ f ÓY gÓ “ gÓ “ g‹Ó η, hence
f‹ÓY g‹Ó “ g‹Ó, which entails the desired inequation f‹ v g‹.

3. Finally, the fact that the above defined iteration operator turns rL into an Elgot monad
was shown in previous work [11]. J

I Remark 8. Observe that Alg
rL need not be the Eilenberg-Moore category of rL. Already

with M “ 1 we obtain as Alg
rL the category of directed complete partial orders, which is

known not to be monadic over Set.

Using Theorem 7, we can immediately equip HybCore with a denotational semantics. The
key clause, not entailed by the standard monad-based paradigm [16, 12], is while-loops, for
which we put

Jx :“ p while b tquKpσq
“
`

pλσ, x. if JbKpσ, xq then p
~
L inrqJqKpσ, xq else ηpinlxqq:

˘‹
pσ, JpKσq

where σ : JΓK interprets free variables from the variable context Γ, JpK : JΓK Ñ
~
LJXK and

JqK : JΓKˆ JXK Ñ
~
LJXK are semantics of the involved programs, and JbK : JΓKˆ JXK Ñ 2 is

the semantics of the Boolean test b. By applying this to Example 2 (4) and to Example 2 (6),
we obtain duration semantics and evolution semantics correspondingly (cf. [10]).

5 Complete Monoid Modules, Classically

Throughout this section we assume that Set is a classical set theory satisfying the axiom
of choice (and hence also the law of excluded middle). Some portion of the presented
developments can in fact be interpreted constructively or using more conservative principles
such as the axiom of countable choice. However, we currently do not know how to fully
rebase the following material on such more relaxed assumptions.

Our purpose here is to obtain a concrete description of the monad rL and make sure that
the result is in agreement with the expectations. To that end we develop an alternative
characterization of

~
LX in terms of directed sequences.

I Definition 9 (Directed Sequences). A directed sequence is a countable infinite sequence
s1, s2, . . . with the property that for every i and every j there is k such that si v sk and
sj v sk. An (ω-)directed complete set is a partially ordered set in which every (ω-)directed
sequence has a least upper bound.

We start off by equipping the set MX “ M ˆ pX Z tKuq with the structure of an ordered
M-module as follows:

a .Xpb, xq “ pa` b, xq pa, inlxq vX pa, inlxq
a ď b

pa, inrKq vX pb, xq

The idea is to use the elements of directed sequences s : N Ñ MX as progressively improving
pieces of information about the final outcome of the underlying computational process. The
elements of the form pa, inlxq are the maximal elements of this order, indicating that x is a
final output of the process at time instant a. The elements of the form pa, inrKq represent
potential divergence the time instant a, or later. The constraint pa, inrKq vX pb, xq with
a ď b indicates that this potential divergence can still be resolved into successful termination

FSCD 2020
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over time. However, this need not happen. In particular, we allow for Zeno behaviour in the
form of monotone sequences:

pa1, inrKq vX pa2, inrKq vX . . .

with a1 ă a2 ă . . . where the set ta1, a2, . . .u has an upper bound in M. Existence of such
sequences, of course, depends on the properties of M. For example, they do not exist for
M “ N, but they do exist for R`, e.g. a1 “ 1{2, a2 “ 1{2` 1{4, . . .

The following property is easy to verify.

I Proposition 10. For any set X, pMX , .X , p0, inrKq,vXq is an ordered M-module.

We next need to quotient the space of directed sequences N Ñ MX suitably to ensure that
two sequences which tend to the same value are indistinguishable. To this end, we adapt
the standard idea of chain completion from domain theory [17] by moving from monotone
sequences to directed sequences.

I Definition 11 (Directed Sequence Completion). For any poset pA,ďq, we define a preorder À
on directed sequences over A as follows:

psiqi À ptiqi ðñ @i : N. Dj : N. si ď tj .

This induces the equivalence „ on directed sequences as follows:

s „ t ðñ s À t^ t À s.

The directed sequence completion
~
A of A is the poset p

~
A,Æq, defined as follows:

~
A is the

quotient of the space of directed sequences over A by „, and rss„ Æ rts„ whenever s À t,
where, as usual, we denote by rss„ :

~
A the equivalence class of s : N Ñ A in

~
A. Let us also

agree to use the notation rsisi instead of rpsiqis„.

I Remark 12 (Ideal Completion). An apparently more common, and classically equivalent,
way (see e.g. [23, 1]) to introduce

~
A is to use ideal completion. An ideal in A is a nonempty

subset of A that is downward closed and directed. We could thus alternatively view
~
A not

as a set of equivalence classes but as a set of ideals of A generated by directed sequences.
This switch of perspective is based on a representation of quotients by means of equivalence
classes, which is uncomplicated for set theory but, of course, not for type theory.
The directed sequence completion of MX yields a complete M-module

~
MX . To show this we

use the Cantor pairing function π : Nˆ N Ñ N with

πpx, yq “
1
2 px` yqpx` y ` 1q ` x,

which witnesses an isomorphism between N and N ˆ N whose inverse we denote π -1 “
pπ -11 , π

-1
2 q : N Ñ Nˆ N.

I Proposition 13. The quotient p
~
MX , . ,K,Æ,

«Ž
q is a complete M-module under

a . rsisi “ ra .X sisi, K “ rp0, inrKqsi,
«ł

i
rsi,jsj “ rsπ -1

1 piq,π
-1
2 piq
si.

Proof Sketch. If psiqi „ ptiqi for directed sequences psiqi and ptiqi then it is easy to see that
both pa .X siqi and pa .X tiqi are directed and pa .X siqi „ pa .X tiqi, hence . is correctly
defined. Let us check that

«Ž

i rsi,jsj is correctly defined. First, if psi,jqj „ pti,jqj for every i,
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then for all j there is j1 such that si,j ď ti,j1 for every i, and conversely for all j there is j1 such
that ti,j ď si,j1 for every i, hence psπ -1

1 piq,π
-1
2 piq
qi „ ptπ -1

1 piq,π
-1
2 piq
qi. Therefore, the expression

for
«Ž

i rsi,jsj does not depend on the representatives of the equivalence classes rsi,jsi. To
show correctness of the definition of

«Ž

i rsi,jsj , we are left to verify that psπ -1
1 piq,π

-1
2 piq
qi is

directed. Let n,m : N and construct a suitable k such that sπ -1
1 pnq,π

-1
2 pnq

ď sπ -1
1 pkq,π

-1
2 pkq

and
sπ -1

1 pmq,π
-1
2 pmq

ď sπ -1
1 pkq,π

-1
2 pkq

. Let pn1, n2q “ π -1pnq and pm1,m2q “ π -1pmq. By assumptions,
there is k1 such that psn1,jqj À psk1,jqj and psm1,jqj À psk1,jqj . Thus we obtain n12,m12 : N
such that sn1,n2 ď sk1,n12

and sm1,m2 ď sk1,m12
and k2 : N such that sn1,n2 ď sk1,n12

ď sk1,k2

and sm1,m2 ď sk1,m12
ď sk1,k2 . Hence, we can take k “ πpk1, k2q.

The axioms of complete M-modules then transfer from MX to
~
MX . J

The defined M-module is in fact the free one on X.

I Theorem 14. pp
~
MX , . ,K,Æ,

«Ž
q, ηq is the free complete M-module on X with ηpxq “

rp0, inlxqsi.

Proof Sketch. We fix a complete M-module pE, . ,K,v,
Ů

q together with a map f : X Ñ E.
Our goal is to construct a unique complete M-module morphism f‹ :

~
MX Ñ E satisfying

f‹pηpxqq “ fpxq. To this purpose we define an auxiliary function ` : X Z tKu Ñ E as follows:

`pinlxq “ fpxq, `pinrKq “ K.

We then define f‹ :
~
MX Ñ E by putting f‹rpai, xiqsi “

Ů

i ai . `pxiq. The remaining technical
work amounts to showing that the above definition of f‹ is valid and that f‹ is the unique
morphism making (1) commute. J

Theorem 14 can be understood as a soundness and completeness property: it shows that
the axioms of complete M-modules are sound and complete over the models arising from M
by directed sequence completion. Hence, we also obtain a more explicit description of the
object

~
LX.

I Corollary 15.
~
LX and

~
MX are isomorphic in the category of complete M-modules.

Let us write
~
M∅ simply as

~
M.

I Proposition 16.
~
LX – MˆX Y

~
M.

Proof Sketch. The argument relies on the law of excluded middle: there are precisely two
kinds of directed sequences over MX :
1. those, which contain an element of the from pa, inlxq;
2. those, which only contain elements of the form pa, inrKq.
In the first case, the limit is pa, inlxq (a is uniquely determined, because pa, inlxq and pa1, inlx1q
are incompatible, unless a “ a1 and x “ x1). In the latter case, the limit is pc, inrKq where
where c is the least upper bound over all such a that pa, inrKq is in the sequence. This
produces the dichotomy of

~
LX as MˆX Y

~
M. J

We thus obtain agreement with Example 1. Let us again revisit Examples 2 and 4.

I Example 17. By Proposition 16,
~
LX is completely determined by the initial complete

M-module
~
M. Hence we stick to the latter. We use the fact that classically directed sequence

completion and monotone sequence completion coincide. Hence w.l.o.g. we view
~
M as a

quotient of the space of monotone sequences.
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1. Completion of natural numbers yields natural numbers extended with infinity:
~
N– NY

t8u “ N̄.
2. For non-negative rational numbers we obtain

~
Q`– Q`ZpR`rt0uqZt8u–Q̄`ZpR`rt0uq.

That is, a monotone sequence s1 ď s2 ď . . . is either eventually constant, i.e. has a
rational number as a least upper bound, or unbounded and hence its least upper bound
is infinity 8, or, finally, the sequence is Zeno, i.e. its supremum which can be rational or
irrational is not reached. For example, the sequences

1{2 ď 3{4 ď 7{8 ď . . . and 1 ď 1 ď 1 ď . . .

both tend to 1, but neither directed sequence completion nor the free object construction
(which agree, as we have seen) identify them.

3. Similarly, for real numbers:
~
R` – R` Z pR` r t0uq Z t8u – R̄` Z pR` r t0uq. That is,

except for 0 and 8, every real number in
~
R` is counted twice: as a Zeno value and as a

non-Zeno value.
4. By completing finite strings we expectedly obtain finite and infinite strings:

~
A‹ “

A‹ YAω “ Aďω.
5. Recall the monoid Ar0,R`q of finite trajectories 6. from Example 2 and the monoid Ar0,R̄`q

of finite and infinite trajectories 4. from Example 4. Then, analogously to the case of
real numbers, we obtain ČAr0,R`q –Ar0,R̄`q Z pAr0,R`q r tp0, !quq.

6 Conservatively Complete Monoid Modules

The effect of duplicating values caused by Zeno behaviour makes definite computational
sense, however it might also be undesirable. The way we defined the monad rL as a result of
a universal construction allows us to remedy it easily.

I Definition 18 (Conservatively Complete Monoid Modules). A complete monoid M-module
is conservatively complete if it satisfies the following additional axiom: for every directed
sequence paiqi in M, such that the least upper bound

Ž

i ai exists, the directed sequence
pai . Kqi has the least upper bound p

Ž

i aiq . K.

Again, conservatively complete monoid M-modules form a category AlgL under the same
morphisms as complete monoid modules (i.e. AlgL is a full subcategory of Alg

rL). By
replicating the previous construction of a free object L̄X, we obtain a monad L, for which a
complete analogue of Theorem 7 holds.

I Theorem 19.
1. The forgetful functor U : AlgL Ñ Set has a left adjoint F : Set Ñ AlgL inducing a

monad over L̄ “ UF with unit η and Kleisli lifting p--q‹.
2. L is enriched over directed complete partial orders, and moreover Kleisli composition is

strict on both sides.
3. L is an Elgot monad with the iteration operator pf : X Ñ L̄pY Z Xqq: calculated as a

least fixed point of the map rη, --s‹f : pX Ñ L̄Y q Ñ pX Ñ L̄Y q.
Again, we write M̄ instead of M̄∅.

Next, we would like to establish an analogue of Theorem 14 in order to be able to explicitly
calculate L̄X. To that end, we need to rebase our approach the construction on conservative
completion of partial orders. In order to facilitate the corresponding construction [14], until
the end of this section we impose the following further assumption which is satisfied by all
our examples.
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I Assumption 20. Let paiqi and pbiqi be directed sequences over M.
1. If

Ž

i bi exists then
Ž

i a` bi “ a`
Ž

i bi.
2. If

Ž

i ai exists and for every i there exists j such that ai ď bj then either
Ž

i bi exists or
Ž

i ai ď bj for some j.
Recall the definitions of MX and

~
MX from Section 5 and let M̄X be constructed in the same

way as
~
MX , but with the following additional clause added to the equivalence relation „:

pai, inrKqi „ pa, inrKqi whenever a “
ł

i
ai. (2)

Modulo this change, the remaining definition of the complete M-module structure on M̄X
is the same as for

~
MX . The following characterization is a counterpart of Theorem 14 and

Proposition 16.

I Theorem 21. In classical set theory, ppM̄X , . ,K,Æ,
«Ž
q, ηq is the free conservatively com-

plete M-module on X with ηpxq “ rp0, inlxqsi, and M̄X – MˆX Y M̄.

Proof. The fact that under the above strengthening of „ the definition of the complete M-
module structure of M̄X remains valid relies on Assumption 20. For example, we need to make
sure that pa .Xpbi, inrKqqi „ pa .Xpb, inrKqqi for all a, bi : M whenever b “

Ž

i bi. Equival-
ently, we need to show pa` bi, inrKqi „ pa` b, inrKqi, which follows from Assumption 20 (1).
Similarly, correctness of

«Ž
requires Assumption 20 (2). J

I Example 22. Let us revisit some previous examples, again, assuming that Set is a classical
set theory. Analogously to the case of rL, for L we again obtain the property that L̄X is
isomorphic to MˆX Y M̄, hence it suffices to consider M̄.

Note that the new law (2) is often ineffective, hence e.g.
~
N “ N̄, and

~
A‹ “ A‹. However,

as expected, R` consists precisely of extended reals, i.e. R` “ R` Y t8u. Analogously,
Q` “ R`. Finally, for the monoid of trajectories, Ar0,R`q –Ar0,R̄`q.

7 Formalization in HoTT/Cubical Agda

We next embark on the details of our formalization of the material of Sections 4 and 6
using the means of homotopy type theory (HoTT). The latter is an extension of intensional
Martin-Löf type theory (MLTT) obtained by interpreting types A as topological spaces,
inhabitants of types a : A as the corresponding points, and identity types IdApa, bq as spaces
of continuous paths from a : A to b : A within A, subject to homotopy equivalence. We use
the standard Agda notation a ” b for the identity type IdApa, bq from now on.

Among various benefits and far reaching implications of HoTT, the critical feature we need
here are higher inductive-inductive types (HIITs), which in particular enable construction of
free objects in the style of category theory. We carry out our formalization in the recently
emerged cubical extension [22] of the Agda proof assistant – while Agda is generally based on
MLTT, the cubical extension adds full support of HoTT (in the form of cubical type theory [7]).
As a result, cubical Agda provides a rather accurate way for designing machine checked
proofs in the style of HoTT, and here we dim the distinction between HoTT and cubical
Agda as much as possible. We note that we only involve particular HIITs, called quotient
inductive-inductive types (QIITs) [3], which are a special case of HIITs – this specialization is
completely explicit in cubical Agda, i.e. HIITs are available via native language primitives
while QIITs are expressible as certain HIITs.

In our formalization we closely follow the previous work on constructing the partiality
monad (which is in our setting the duration monad over the trivial monoid) and the subsequent
formalization in cubical Agda by Danielsson [8].
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Since Agda supports the propositions-as-types discipline, types can be read as propositions
and the corresponding terms as proofs. Hence, universal @ and existential D quantifiers have
the same meaning as dependent product Π and dependent sum Σ operators correspondingly.
This is a standard convention for Agda, which we apply to improve readability (for technical
reasons we use slightly unusual syntax for existential quantification: Dr x s φ instead of Dx φ).
Moreover, for the same purpose, we use the disjunction symbol _ for coproducts Z and the
conjunction symbol ^ for products ˆ. For example, the following self-explanatory Agda code

IsProp A = @ (x y : A) Ñ x ” y
IsSet A = @ (x y : A) Ñ IsProp (x ” y)
IsDec A = A _ ¬ A

defines correspondingly (mere) propositions, sets and decidable types.
A derivable facility of HoTT is the propositional truncation operator ‖_‖ sending any

type A to the type ‖A‖ obtained by quotienting A under the equality x ” y for all x y : A,
which is implemented as follows:

data ‖_‖ (A : Set `) : Set ` where
|_| : A Ñ ‖ A ‖
‖‖-prop : IsProp ‖ A ‖

This provides a simple example of a quotient inductive type (QIT), i.e. an inductively defined
set with constructors for equalities. Such types already generally go beyond MLTT. Next,
given an infinite sequence σ : N Ñ A over a partially ordered set A, the following definitions

Inc σ = @ (n : N) Ñ σ n ď σ (suc n)
Dir σ = @ (n m : N) Ñ D[ k ] (σ n ď σ k ^ σ m ď σ k)
‖Dir‖ σ = @ (n m : N) Ñ ‖ D[ k ] (σ n ď σ k ^ σ m ď σ k) ‖

identify monotone (increasing), intensionally directed and extensionally directed sequences
correspondingly. The intensional version of directedness for any two numbers n and m

produces a number k with an obvious property. The extensional version ensures that such
a number exists, without producing it. Observe that Inc, Dir and ‖Dir‖ are arranged by
strength: if σ is monotone, then it is intensionally directed (k is the maximum of n and
m), and if σ is intensionally directed then it is extensionally directed (by using |_| to forget
the choice of k). Furthermore, observe that Inc, Dir and ‖Dir‖ induce the corresponding
notions of Inc-complete, Dir-complete and ‖Dir‖-complete partial orders, i.e. those partial
orders in which all least upper bounds of the corresponding sequences exist. These notions
are therefore arranged in the opposite direction: ‖Dir‖-completeness implies Dir-completeness,
and the latter implies Inc-completeness.

The discrepancy between Dir and ‖Dir‖ can be clarified in terms of the axiom of countable
choice, which can be expressed e.g. as follows:

ACω {`} = @ (P : N Ñ Set `) Ñ (@ n Ñ ‖ P n ‖) Ñ ‖ (@ n Ñ P n) ‖

This can be read as the statement that any proof of inhabitance of P n for every n, can be
converted into a proof of existence of a corresponding choice function. Intuitively, under
ACω one should be able to convert an extensionally directed sequence to an intensionally
directed one by successively pushing the truncation operator ‖_‖ upwards and then applying
the elimination principle for ‖_‖. This indeed works, and in summary we have the following
set of results:
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I Proposition 23. Let (a), (b) and (c) stand for completeness of a fixed set A w.r.t. ‖Dir‖, Dir
and Inc correspondingly. Then

(a) ñ (b) ñ (c);
(b) ñ (a) under countable choice;
(c) ñ (a) under the decidability of ď on A (i.e. under @ px y : Aq Ñ IsDec px ď yq).

Proof Sketch. Consider the last clause, which is the one we did not discuss yet. The idea is
based on Exercise 3.19. from the HoTT book [20], which can be formalized as follows:

restore-ωC : @ (P : N Ñ Set `) Ñ (@ (n : N) Ñ IsDec (P n)) Ñ ‖ D[ n ] P n ‖ Ñ D[ n ] P n

That is, under decidability of all P n, the fact that there exists n satisfying P implies a
constructive procedure for producing such an n. In our implementation such a procedure
simply finds the first n that satisfies P , and that critically depends on the decidability
assumption – otherwise the very concept “first n satisfying P” cannot be realized. Using
restore-ωC, and the decidability assumption for ď, it is easy to select a monotone subsequence
from any extensionally directed sequence and show coincidence of the corresponding least
upper bounds. J

For decidable ď, ‖Dir‖-, Dir- and Inc-completeness are therefore equivalent, which is the
case of the partiality monad. While the partiality monad is based on Inc-completeness, our
implementation of rL and L is based on Dir-completeness, as we explain next.

For rL we introduce an HIIT of a mutually dependent carrier (implicitly parametrized
by an argument A of type Set (` \ `1)) and a binary relation v on it, w.r.t. an ordered
monoid M with a carrier from Set ` and a partial order relation on M from Set `1:

data
~
L : Set (` \ `1)

data _v_ :
~
L Ñ

~
L Ñ Set (` \ `1)

The following forward reference asserts that
~
L will be a partial order

PO-v : PartialOrder
~
L

Then we introduce the constructors for
~
L:

data
~
L where

_B_ : M Ñ
~
L Ñ

~
L

K :
~
L

Ů

: DirSeq PO-v Ñ
~
L

η : A Ñ
~
L

v-antisym : @ (x y :
~
L) Ñ x v y Ñ y v x Ñ x ” y

where DirSeq PO-v is the type of intensionally directed sequences over
~
L. The corresponding

definition of _v_ is more technical, and we omit it here. This definition contains all the
necessary axioms and in particular allows us to define PO-v. Moreover, it is asserted that
IsProp (x v y) is inhabited, which implies that our carrier is a set (Theorem 7.2.2 of the HoTT
book), i.e. the HIIT we define is indeed a QIIT. The most technically involved remaining part
of the construction is the definition of the elimination principle together with the proof that
it implies initiality of

~
L which in the categorical sense is the same as freeness of each

~
LX as

an M-module on X. The construction of L̄ is analogous – essentially we add the conservative
completeness property as a new axiom to the definition of _v_.

Our definitions of
~
L and L̄ are based on the intensional notion of directedness. It is

currently not clear to us if those can also be based on the corresponding extensional notion,
and whether this would bring any benefits over the present formalization. We regard this as
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an issue for further work. For another alternative, it would be perfectly possible to base
~
L

and L̄ on Inc-completeness. We avoided that for a strategic reason: although the results of
Section 5 currently hold under rather strong classicality assumptions, some of them must
hold under weaker assumptions such as the axiom of countable choice. The challenges we
would face then would be similar to those one faces when proving completeness of Cauchy
reals. That standardly relies on a diagonalization argument roughly stating that a directed
sequence of directed sequences can be converted to a directed sequence. This argument is
constructively valid for Dir-completeness, but for Inc-completeness it seems to indispensably
rely on decidability of inequality of the underlying set.

8 Conclusions and Further Work

We proposed a constructive formalization of hybrid semantics by combining ideas from
category theory, type theory and domain theory and justified the results by an implementation
in the Agda proof assistant extended with support of cubical type theory [7]. On the one
hand, we closely followed the previous work on constructing the partiality monad, and on
the other hand, complemented this construction with an explicit “time” dimension in the
form of an ordered monoid. We thus reinforce the importance of quotient inductive-inductive
types (QIITs) [3] which have previously been used for defining constructive counterparts of
important semantic notions such as Cauchy reals and non-terminating computations so that
even the principle of countable choice is avoided. Our analysis also identifies the importance
of the notion of conservative completion [23], which seems to be little known in the computer
science community, possibly because this notion only becomes relevant when dealing with
non-discrete data types, once Zeno effects come into play. In contrast to the partiality monad
case, our characterization in terms of directed sequence completion is only established under
strong classicality assumptions and not with countable choice as the only additional axiom.
We leave it as an important pending question for further work to check if our results to
this effect can be improved. In a nutshell, a potential positive answer would amount to
implementing the relevant parts of Section 5 in cubical Agda with the axiom of countable
choice postulated.

Our work is motivated by a simple deterministic hybrid language HybCore for hybrid
computation [10], which we now provided with a constructive semantics. As a next step,
we are planning to extend HybCore with further features such as concurrency and non-
determinism in a principled fashion. In fact, the majority of existing work on hybrid systems
intertwine hybridness and non-determinism (even though, conceptually, these are independent
computational effects). From a type-theoretic perspective, an interesting insight into relating
partiality and nondeterminism is provided by Veltri [21], who proposed to build a constructive
analogue of the countable powerset monad as a quotient inductive type (instead of a QIIT!),
from which the partiality monad is then ingeniously carved out. The technical benefit of this
approach is that it enables construction of the partiality monad in environments which do
not support QIITs. We consider this approach more broadly as a way to relate partiality
and non-determinism, and in particular, we plan to investigate its potential for constructing
non-deterministic hybrid monads.
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A Omitted Proofs

A.1 Proof of Theorem 14

We fix a complete M-module pE, . ,K,v,
Ů

q together with a map f : X Ñ E. Our goal is to
construct a unique complete M-module morphism f‹ :

~
MX Ñ E satisfying f‹pηpxqq “ fpxq.

To this purpose we define an auxiliary function ` : X Z tKu Ñ E as follows:

`pinlxq “ fpxq, `pinrKq “ K.

Now, we define f‹ :
~
MX Ñ E as follows:

f‹rpai, xiqsi “
ğ

i
ai . `pxiq.

This definition is only valid if pai . `pxiqqi is directed and
Ů

i ai . `pxiq does not depend on
the specific representatives pai, xiqi of the corresponding equivalence classes. Both these
properties require us to prove that pa, xq vX pb, yq implies a . `pxq v b . `pyq, which is
shown as follows:

if pa, inlxq vX pb, inl yq then pa, inlxq “ pb, inl yq and thus a . `pinlxq v b . `pinl yq;
if pa, inrKq vX pb, inl yq then a ď b and thus a . `pinrKq “ a . K v b . K v b . fpyq “

b . `pinl yq by the restricted left monotonicity, least element and right monotonicity
axioms;
if pa, inrKq vX pb, inrKq then a ď b and thus a . `pinrKq “ a . K v b . K “ b . `pinrKq
by restricted left monotonicity.

Next, let us show that f‹ is a complete M-module morphism, by verifying the corresponding
preservation properties:

f‹pa . rpbi, xiqsiq “ a . f‹rpbi, xiqsi: the requisite calculation runs as follows:

f‹pa . rpbi, xiqsiq “ f‹ra .Xpbi, xiqsi (definition of . )
“ f‹rpa` bi, xiqsi (definition of .X)

“
ğ

i
pa` biq . `pxiq (definition of f‹)

“
ğ

i
a . pbi . `pxiqq (monoid action)

“ a .
ğ

i
bi . `pxiq (right continuity of . )

“ a . f‹rpbi, xiqsi. (definition of f‹)

f‹pKq “ K: f‹pKq “ f‹rp0, inrKqsi “
Ů

i 0 . `pinrKq “
Ů

i 0 . K “
Ů

iK “ K using the
definition of monoidal action.
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rpai, xiqsi Æ rpbi, yiqsi implies f‹rpai, xiqsi v f‹rpbi, yiqsi: If rpai, xiqsi Æ rpbi, yiqsi then
pai, xiqi À pbi, yiqi meaning that for every i : N there exists a j : N such that pai, xiq vX

pbj , yjq. This implies ai . `pxiq v bj . `pyjq v
Ů

i bi . `pyiq for every i : N by upper bound
and thus f‹rpai, xiqsi “

Ů

i ai . `pxiq v
Ů

i bi . `pyiq “ f‹rpbi, yiqsi by least upper bound.
f‹

` «Ž

irpai,j , xi,jqsj
˘

“
Ů

i f
‹rpai,j , xi,jqsj : This is obtained as follows.

f‹
´ «ł

i
rpai,j , xi,jqsj

¯

“ f‹rpaπ -1
1 piq,π

-1
2 piq

, xπ -1
1 piq,π

-1
2 piq
qsi

“
ğ

i
aπ -1

1 piq,π
-1
2 piq

. `pxπ -1
1 piq,π

-1
2 piq
q

“
ğ

i

ğ

j
ai,j . `pxi,jq p˚q

“
ğ

i
f‹rpai,j , xi,jqsj .

The only step that does not follow by definition is p˚q, and we show it by antisymmetry
of v as follows.

(v): Let us fix i : N and let k1 “ π -11 piq, k2 “ π -12 piq, and then

aπ -1
1 piq,π

-1
2 piq

. `pxπ -1
1 piq,π

-1
2 piq
q “ ak1,k2 . `pxk1,k2q

v
ğ

j
ak1,j . `pxk1,jq

v
ğ

i

ğ

j
ai,j . `pxi,jq.

Since i is arbitrary, by the least upper bound property,
Ů

i aπ -1
1 piq,π

-1
2 piq

. `pxπ -1
1 piq,π

-1
2 piq
q v

Ů

i

Ů

j ai,j . `pxi,jq.
(w): For all i, j : N, ai,j . `pxi,jq “ aπ -1pπpi,jqq . `pxπ -1pπpi,jqqq v

Ů

i aπ -1piq . `pxπ -1piqq

and hence
Ů

i

Ů

j ai,j . `pxi,jq v
Ů

i aπ -1
1 piq,π

-1
2 piq

. `pxπ -1
1 piq,π

-1
2 piq
q by the least upper

bound property.

Next we show commutativity of (1), i.e. that f‹pηpxqq “ fpxq, as follows: f‹pηpxqq “

f‹rp0, inlxqsi “
Ů

i 0 . `pinlxq “
Ů

i 0 . fpxq “
Ů

i fpxq “ fpxq using the definition of
monoidal action.

Finally, we show that the constructed morphism f‹ is unique. That is, given another
complete M-module morphism g :

~
MX Ñ E satisfying gpηpxqq “ fpxq, we show that f‹

and g are equal. First, let h : X Z tKu Ñ
~
MX be defined as hpxq “ rp0, xqsi. Note that

gphpxqq “ `pxq for any x : X Z tKu:

gphpinlxqq “ grp0, inlxqsj “ gpηpxqq “ fpxq “ `pinlxq,
gphpinrKqq “ grp0, inrKqsj “ gpKq “ K “ `pinrKq.

The desired equation f‹ “ g is obtained as follows:

grpai, xiqsi “ g
´ «ł

i
ai . hpxiq

¯

“
ğ

i
gpai . hpxiqq “

ğ

i
ai . gphpxiqq

“
ğ

i
ai . `pxiq “ f‹rpai, xiqsi.

Here, only the first step is not by definition. Let us show that, in fact, rpai, xiqsi “
«Ž

i ai . hpxiq. Note that pai, xiqi „ paπ -1
1 piq

, xπ -1
1 piq
qi basically because by definition π -11 piq can

be made arbitrary large by choosing a suitable i. Therefore rpai, xiqsi “ rpaπ -1
1 piq

, xπ -1
1 piq
qsi

and we have

rpai, xiqsi “ rpaπ -1
1 piq

, xπ -1
1 piq
qsi “

«ł

i
rpai, xiqsj “

«ł

i
ai . rp0, xiqsj “

«ł

i
ai . hpxiq,

which completes the proof. J

FSCD 2020





A Gentzen-Style Monadic Translation of Gödel’s
System T
Chuangjie Xu
Ludwig-Maximilians-Universität München, Germany
http://cj-xu.github.io/
cj-xu@outlook.com

Abstract
We introduce a syntactic translation of Gödel’s System T parametrized by a weak notion of a monad,
and prove a corresponding fundamental theorem of logical relation. Our translation structurally
corresponds to Gentzen’s negative translation of classical logic. By instantiating the monad and
the logical relation, we reveal the well-known properties and structures of T-definable functionals
including majorizability, continuity and bar recursion. Our development has been formalized in the
Agda proof assistant.
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1 Introduction

Via a syntactic translation of Gödel’s System T, Oliva and Steila [17] construct functionals of
bar recursion whose terminating functional is given by a closed term in System T. The author
adapts their method to compute moduli of (uniform) continuity of functions (N→ N)→ N
that are definable in System T [27]. Inspired by the generalizations of negative translations
which replace double negation by an arbitrary nucleus [8, 12, 25], we introduce a monadic
translation of System T into itself which unifies those in [17, 27]. This monadic translation
structurally corresponds to Gentzen’s negative translation.

Our translation is parametrized by a monad-like structure, which we call a nucleus, but
without the restriction of satisfying the monad laws. We adopt the standard technique of
logical relations to show the soundness of the translation in the sense that each term of T
is related to its translation. Because the translation is parametrized by a nucleus, we have
to assume that the logical relation holds for the nucleus. Such a soundness theorem is an
instance of the fundamental theorem of logical relation [21] stating that if a logical relation
holds for all constants then so does it for all terms.

Monadic translations have been widely used for assigning semantics to impure languages.
Our goal is instead to reveal properties enjoyed by terms of T and to extract witnesses of
these properties. For this purpose, the nuclei we work with are not extensions of T, but
just simple structures given by types and terms of T, so that the translation remains in T
and the extracted witnesses are terms of T. The Gentzen-style translation looks simpler
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than the other variants [19, 24]. But we demonstrate its power and elegance via its various
applications including majorizability, (uniform) continuity and bar recursion. Of course these
properties of T-definable functionals are well known [5, 7, 11, 13, 17, 19, 27]. The main
contribution of the paper, however, is in obtaining these results in a single framework simply
by choosing a suitable nucleus that satisfies the logical relation for the target property.

All the results in the paper are formalized in the Agda proof assistant [2], except the
introductory section on negative translations of predicate logic. There are some differences
in the Agda development. Firstly, it works with de Bruijn indices when representing the
syntax of T to avoid handling variable names. Moreover, all the logical relations are defined
between the Agda (or type-theoretic) interpretations of T-types. What we have proved in
Agda is that the interpretation of any T-term is related to the one of its translation. In this
way, we avoid dealing with the computation rules of T because they all hold judgmentally in
the Agda interpretation. The Agda development is available at the author’s GitHub page to
which the link is given above the introduction.

1.1 Proof-theoretic translations
Recall that Gentzen’s translation1 simply places a double negation in front of atomic formulas,
disjunctions and existential quantifiers [22]. One can replace double negation with a nucleus,
that is, an endofunction j on formulas such that for any formulas A,B the following statements
are provable:

A→ jA (A→ jB)→ jA→ jB (jA)[t/x]↔ j(A[t/x]).

Nuclei are also known as lax modalities [1] and strong monad [8]. But in this paper we adopt
the terminology and definition from [25] which brought the technical motivation to this work.
Each nucleus determines a proof-theoretic translation of intuitionistic predicate logic IQL
into itself, consisting of a formula translation A 7→ AG

j defined as follows

(A→ B)G
j := AG

j → BG
j PG

j := jP for primitive P
(A ∧B)G

j := AG
j ∧BG

j (A ∨B)G
j := j(AG

j ∨BG
j )

(∀xA)G
j := ∀xAG

j (∃xA)G
j := j∃xAG

j

and a soundness theorem stating that IQL ` A implies IQL ` AG
j . Working with different

nuclei, one embed a logic system into another:
if jA = (A→ ⊥)→ ⊥, then CQL ` A implies MQL ` AG

j ;
if jA = (A→ R)→ R for some predicate variable R, then CQL ` A implies IQL ` AG

j ;
if jA = A ∨ ⊥, then IQL ` A implies MQL ` AG

j ;
where CQL stands for classical predicate logic and MQL for minimal predicate logic. These
results are well-known (see e.g. [12, 25]) and various instances of the translation have been
applied in term extraction (see e.g. [8, 14])

Under the viewpoint of the proofs-as-programs correspondence, our translation of Gödel’s
System T presented in Section 2 is exactly a term/program version of the above proof-theoretic
translation on minimal propositional logic.

1 Nowadays it is known as the Gödel-Gentzen negative translation. Gödel’s translation places a double
negation also in front of the clause for implication, which makes it different from Gentzen’s one in affine
logic [3].
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1.2 Gödel’s System T
Recall that the term language of Gödel’s System T can be given by the following grammar

Type σ, τ ::= N | σ → τ

Term t, u ::= x | λxσ.t | tu | 0 | suc | recσ

where N is the base type of natural numbers and σ → τ the type of functions from σ to τ . A
typing judgment takes the form Γ ` t : τ , where Γ is a context (i.e. a list of distinct typed
variables x : σ), t is a term and τ is a type. Here are the typing rules:

Γ, x : σ ` x : σ Γ, x : σ ` t : τ
Γ ` λxσ.t : σ → τ

Γ ` t : σ → τ Γ ` u : σ
Γ ` tu : τ

Γ ` 0 : N Γ ` suc : N→ N Γ ` recσ : σ → (N→ σ → σ)→ N→ σ

We call Γ ` t : τ a well-typed term if it is derivable. We may omit the context Γ and simply
write t : τ or tτ if it is unambiguous. When mentioning terms of T in the paper, we refer to
only the well-typed ones. We often omit superscript and subscript types if they can be easily
inferred, and may write:

λx1x2 · · ·xn.t instead of λx1.λx2. · · ·λxn.t,
f(a1, a2, · · · , an) instead of (((fa1)a2) · · · )an,
n+ 1 instead of sucn,
τσ instead of σ → τ , and
f ◦ g instead of λx.f(gx).

Using the primitive recursor, we can for instance define the function max : N→ N→ N that
returns the greater argument as follows:

max := recN→N(λnN.n, λnNfN→N.recN(sucn, λmNgN→N.suc(fm))).

One can easily verify that the usual defining equations of max

max(0, n) = n max(m, 0) = m max(sucm, sucn) = suc(max(m,n))

hold using the computation rules of rec

recσ(a, f, 0) = a recσ(a, f, sucn) = f(n, recσ(a, f, n))

where a : σ and f : N→ σ → σ. For the ease of understanding, we will use defining equations
rather than T-terms involving rec in the paper.

2 A monadic translation of System T

Our syntactic translation of System T is parametrized by a nucleus, that is, a monad-like
structure without the restriction of satisfying the monad laws.

I Definition 1 (nuclei). A nucleus relative to T is a triple (JN, η, κ) consisting of a type JN
and two terms

η : N→ JN κ : (N→ JN)→ JN→ JN

of System T.

FSCD 2020
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Note that a nucleus is not an extension of T, but instead a simple structure given by a
type and two terms of T. Therefore, our translation of any term of T remains in T rather than
some monadic metatheory such as in [19, 24]. The simplest example is the identity nucleus
where JN is just N and η, κ are the identity functions of suitable types. More examples are
available in Section 3. Though the first component of a nucleus is just a type, we denote it
as JN because in the generalized notion of a nucleus discussed in Section 4 it will be a map J
on all the types of T.

We are now ready to construct a syntactic translation of T into itself:

I Definition 2 (J-translation). Given a nucleus (JN, η, κ), we assign to each type ρ of T a
type ρJ as follows:

NJ := JN
(σ → τ)J := σJ → τ J.

Each term Γ ` t : ρ is translated to a term ΓJ ` tJ : ρJ, where ΓJ is a new context assigning
each x : σ ∈ Γ to a fresh variable xJ : σJ, and tJ is translated inductively as follows:

(x)J := xJ 0J := η0
(λx.t)J := λxJ.tJ sucJ := κ(η ◦ suc)

(tu)J := tJuJ (recσ)J := λxσ
J
f JN→σJ→σJ

.keσ (recσJ (x, f ◦ η))

where keσ : (N→ σJ)→ JN→ σJ is an extension of κ defined inductively on σ:

keN := κ

keσ→τ := λgN→σ
J→τ J

aJNxσ
J
.keτ

(
λnN.g(n, x), a

)
.

We often write J to denote the nucleus (JN, η, κ) and call the above the J-translation of T.

Thanks to the inductive translation of function types into function types, the translation of
the simply-typed-λ-calculus fragment of T is straightforward. There is no need of introducing
a nonstandard, monadic notion of function application which plays an essential role in the
other monadic translations [19, 24] as discussed in Section 4.

The more interesting part is the translation of the constants. Viewing η as a unit operator
and κ as a bind operator in a monad J on N may reveal some intuition behind the translation
of 0 and suc: It is natural to expect nJ = ηn for each numeral n := sucn(0). This is indeed
the case if the monad laws are satisfied, because κ(η ◦ −) : (N→ N)→ JN→ JN which is
used to translate suc recovers exactly the “functoriality” of J. It is also natural to expect
(recσ)J to preserve the computation rules, i.e.

(recσ)J(x, f, 0J) = x (recσ)J(x, f, (sucn)J) = f(nJ, (recσ)J(x, f, nJ)).

A promising candidate of such (recσ)J(x, f) : JN→ σJ is recσJ(x, f ◦ η) : N→ σJ. Hence, we
extend κ to keσ : (N→ σJ)→ JN→ σJ to complete the translation of recσ.

We adopt the standard technique of logical relations to show that the above translation is
sound in the sense that each term of T is related to its translation2. Because the translation is
parametrized by a nucleus, we have to assume that the logical relation holds for the nucleus.

2 We owe the idea of proving a unified theorem of logical relation to Thomas Powell.
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I Theorem 3 (Fundamental Theorem of Logical Relation). Let (JN, η, κ) be a nucleus. Given
a binary relation RN ⊆ N× JN between terms of T, we extend it to Rρ ⊆ ρ× ρJ for arbitrary
type ρ of T by defining

f Rσ→τ g := ∀xσaσ
J
(x Rσ a→ fx Rτ ga) .

If RN satisfies

∀nN (n RN ηn) and ∀fN→NgN→JN (∀nN (fn RN gn)→ f RN→N κg
)

(†)

then t Rρ t
J for any closed term t : ρ of T.

Proof. We prove a more general statement that

for any term Γ ` t : ρ of T, if Γ R ΓJ then t Rρ t
J

where (x1 : σ1, . . . , xn : σn) R (xJ
1 : σJ

1, . . . , x
J
n : σJ

n) stands for x1 Rσ1 x
J
1 ∧ . . . ∧ xn Rσn

xJ
n,

by structural induction over t.
t = x. By the assumption Γ R ΓJ.
t = λx.u. Assume Γ R ΓJ and x Rσ x

J. We have u R uJ by induction hypothesis.
t = uv. By induction hypothesis we have u Rσ→τ u

J and v Rσ v
J. Then, by the definition

of Rσ→τ , we have uv Rτ u
JvJ.

t = 0. By the assumption (†) of η.
t = suc. By the assumption (†) of η, we have suc(n) RN η(suc(n)) for all n : N. Then by
the assumption (†) of κ, we have suc RN κ(η ◦ suc).
t = rec. We prove rec R recJ with the following claims:
1. For any type σ of T, the term keσ preserves the logical relation in the following sense:

∀fN→σgN→σ
J (
∀nN (fn Rσ gn)→ f RN→σ keσ(g)

)
.

Proof. By induction on σ. J

2. For any xσ and yσJ with x R y, and any fN→σ→σ and gJN→σJ→σJ with f R g,

∀nN (recσ(x, f, n) Rσ recσJ(y, g ◦ η, n)) .

Proof. By induction on n. J

We get a proof of rec R recJ simply by applying (1) to (2). J

I Remark 4. The above proof can be carried out in the intuitionistic Heyting arithmetic in
finite types HAω [23], with the theorem formulated as

if HAω proves (†) then, for each closed term t of T, HAω proves t R tJ.

So are all the results in Section 3. Hence, the verification system here can be HAω. We leave
it unspecified in the theorem for several reasons. Firstly, we hope to study other properties
whose verification may require a stronger system as in [19]. Moreover, what we have proved
in the Agda formalization is a version of the theorem for the Agda embedding of System T,
namely that the Agda interpretations of any T-term and its translation are related. But that
is only an implementation choice as explained in the introduction.
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3 Applications of the monadic translation

We now apply the above framework to reveal various properties and structures of T-definable
functions including majorizability, (uniform) continuity and bar recursion. Each example
consists of an algorithm to construct the desired structure given by the monadic translation,
and a correctness proof of the algorithm given by the fundamental theorem of logical relation.
For this, one only needs to choose a suitable nucleus that satisfies the logical relation for the
target property.

3.1 Majorizability
Our first application is to recover Howard’s majorizability proof of System T [11]. Majoriz-
ability plays an important role in models of higher-order calculi and more recently in the
proof mining program [14]. Howard’s majorizability relation extends the usual ordering ≤
on natural numbers to the one /ρ on functionals of arbitrary finite type ρ in the same way
as in Theorem 3. Specifically /ρ is defined inductively on ρ as follows:

n /N m := n ≤ m
f /σ→τ g := ∀xσyσ (x /σ y → fx /τ gy) .

We say t is majorized by u if t / u, and call u a majorant of t. Howard shows that each closed
term of T is majorized by some closed term of T, which fits perfectly into our framework:
Let us take JN = N and define η : N→ N and κ : (N→ N)→ N→ N by

η(n) := n
κ(g, 0) := g(0)

κ(g, n+ 1) := max (κ(g, n), g(n+ 1)) .

The max function can be defined in T using rec as shown in Section 1.2, and thus so is κ.
Intuitively κ(g, n) is the maximum of the values g0, g1, . . . , gn. Therefore, it satisfies the
following property:

I Lemma 5. For any g : N→ N, we have gm ≤ κ(g, n) whenever m ≤ n.

Proof. By induction on n. If n = 0, we are done because m has to be 0. If m ≤ n+ 1, we
have two cases: (i) If m = n + 1, then g(n + 1) ≤ κ(g, n + 1) by definition. (ii) If m ≤ n,
then g(m) ≤ κ(g, n) ≤ κ(g, n+ 1) by induction hypothesis and definition. J

I Corollary 6. Each closed term t : ρ of T is majorized by its translation tJ.

Proof. We only need to check that the two conditions (†) are fulfilled. The first one holds
because the ordering ≤ is reflexive. For the second, let us assume ∀n (fn ≤ gn) and n ≤ m.
We have gn ≤ κ(g,m) by Lemma 5, and thus fn ≤ κ(g,m) by the transitivity of ≤. J

We draw the reader’s attention to this simple example also because the nucleus defined
above does not satisfy the monad laws: Here η is the identity function on N. If the left-identity
law κ(f, ηx) = fx holds, then κ has to be the identity function on NN, which is not the case.

3.2 Lifting to higher-order functionals
In the previous example, we extend a relation on natural numbers to arbitrary finite types
and then show that the resulting logical relation holds for all terms of T. However, if one
wants to prove a certain property P of functions X → N, the above syntactic method may
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not work directly, because the property P may not be captured by the inductively defined
logical relation. Our monadic translation can serve a preliminary step to solve the problem
by lifting natural numbers to functions X → N so that the desired property P becomes the
base case of the logical relation.

Let X be a type of T. Consider the nucleus (JN, η, κ) with JN = X → N and η : N→ JN
and κ : (N→ JN)→ JN→ JN defined by

η(n) := λx.n κ(g, f) := λx.g(fx, x).

Clearly η maps a natural number n to a constant function with value n. The intuition of
κ(g, f) : X → N is the following: Given an input x, we have an index fx to get a function
g(fx) from the sequence g. Then we apply it to the input x to get the final value.

Given x : X, we define a logical relation Rx
ρ ⊆ ρ× ρJ inductively as in Theorem 3:

n Rx
N f := n = fx

g Rx
σ→τ h := ∀yσ, zσ

J
(y Rx

σ z → gy Rx
τ hz) .

Clearly the conditions (†) hold; thus by Theorem 3 we have t Rx
ρ t

J for any closed term t

of T. In particular, for any closed term f : X → N of T, we have

∀ΩX
J (
x Rx

X Ω→ fx = f J(Ω, x)
)
.

For some type X of T, we may be able to construct a closed term Ω : XJ such that x Rx
X Ω

for all x : X, by unfolding the statement x Rx
X Ω. For example, if X = NN, then x Rx

X Ω is
unfolded to ∀nN, fNN→N (n = fx→ xn = Ω(f, x)); we thus define Ω(f, x) := x(fx) as fx = n

by assumption and then have x Rx
X Ω by definition. Once we construct such a term Ω : XJ,

we have f = f JΩ (up to pointwise equality). The term Ω : XJ which preserves the logical
relation in the sense of x Rx

X Ω for all x : X is known as a generic element [6, 7].
Given a property P of functions X → N, we define a predicate Qρ ⊆ ρJ on elements of

the translated type ρJ inductively on ρ:

QN(f) := P (f)

Qσ→τ (h) := ∀zσ
J
(Qσ(z)→ Qτ (hz)) .

Note that Q is just an instance of the binary relation defined in Theorem 3. Once we prove
the conditions (†) for Q, i.e.

∀nNQN(ηn) and ∀gN→X→N (∀nNQN(gn)→ QN→N(κg)
)

we have Q(tJ) for any closed term t of T. If we prove also QX(Ω), then we have P (f) for all
closed terms f : N→ X of T because QN(f JΩ) and f = f JΩ.

All the remaining examples are about properties of T-definable functions NN → N which
can be proved following the above steps. We instead enrich the “lifting” nucleus to reflect the
computational content of the properties so that witnesses of the properties can be obtained
as terms of T directly via the translation.

3.3 Continuity
The next applications of our monadic translation are to recover the well-known results that
every T-definable function NN → N is pointwise continuous and its restriction to any compact
subspace is uniformly continuous [5].
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There are various approaches to continuity: Kohlenbach [13] extracts a term from the
extensionality proof via the Dialectica interpretation, and then uses the majorant of this
term to construct a modulus of uniform continuity. Coquand and Jaber [6] extend type
theory with a new constant for a generic element, decorate the operational semantics with
forcing information, and then extract continuity information of a functional by applying it to
the generic element. Escardó [7] also employs a generic element to compute continuity but
in his model of dialogue trees, which is closely related to our syntactic approach as discussed
in Remark 8. There are also various sheaf models [9, 10, 26] in which all functionals from the
Baire space NN are continuous and those from the Cantor space 2N are uniformly continuous.
Powell [19] introduces a monadic translation for some call-by-value functional languages,
one of whose instantiations tackles also continuity of T-definable functionals. His method
corresponds to Kuroda’s negative translation as discussed in Section 4.3.

We enrich the “lifting” nucleus (Section 3.2) so that moduli of (uniform) continuity are
obtained directly from the translation. For the sake of convenience, we extend System T
with products. Such extension can be avoided by working with sequences of types and terms
as in the literature of functional interpretations such as [15].

3.3.1 Translating products
We extend System T with product type σ × τ and constants

pair : σ → τ → σ × τ pr1 : σ × τ → σ pr2 : σ × τ → τ

satisfying the usual computation rules. Similarly to Gentzen’s translation of conjunction, we
translate product type component-wise, i.e. (σ × τ)J := σJ × τ J. Then the above constants
are translated into themselves but of the translated types, e.g. prJ

1 := pr1 : σJ × τ J → σJ.
Recall that the primitive recursor is translated using keσ : (N → σJ) → JN → σJ which is
defined inductively on σ. So we have to add the following case

keσ×τ := λgN→σ
J×τ J

aJN. pair (keσ(pr1 ◦ g, a), keτ (pr2 ◦ g, a))

into the definition of ke in order to complete the translation. For the fundamental theorem of
logical relation, when extending a relation RN ⊆ N× JN to Rρ ⊆ ρ× ρJ, we add the following
case for product type

u Rσ×τ v := (pr1u Rσ pr1v) ∧ (pr2u Rτ pr2v) .

and can easily show that the constants of product types are related to their translations. We
often write 〈a, b〉 instead of pair(a, b) for the sake of readability.

3.3.2 Pointwise continuity
Recall that a function M : NN → N is a modulus of continuity of f : NN → N if

∀αNN
βNN

(α =Mα β → fα = fβ)

where α =m β stands for ∀i<m (αi = βi). Our goal is to find a suitable nucleus J so that we
can obtain such a functional M from the J-translation of f and then verify its correctness
using the fundamental theorem of logical relation.

Let JN = (NN → N)× (NN → N). For w : JN we write Vw to denote its first component
and Mw the second, due to the intuition that Mw is a modulus of continuity of the value
component Vw. Then we define η : N→ JN by

η(n) := 〈λα.n, λα.0〉
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and κ : (N→ JN)→ JN→ JN by

κ(g, w) :=
〈
λα.Vg(Vw(α))(α), λα.max(Mg(Vw(α))(α),Mw(α))

〉
.

Note that the “value” components form a “lifting” nucleus in the sense of Section 3.2 so that
natural numbers are lifted to functions NN → N. And the “modulus” components will allow
the translation to equip a continuity structure to the values. Reasonably η(n) equips the
constantly zero function as a modulus of continuity to the constant function λα.n since its
input is never accessed. As to κ(g, w), its value at a point α has two possible moduli: one
given by g(Vw(α)) and the other by w; thus the greater one is a modulus of continuity at α.

We work with a logical relation Rα
ρ ⊆ ρ×ρJ which is parametrized by α : NN. Specifically,

its base case Rα
N ⊆ N× JN is defined by

n Rα
N w := n = Vw(α) ∧ ∀β

(
α =Mw(α) β → Vw(α) = Vw(β)

)
.

The first component of n Rα
N w states that the value of w at α is n, while the second explains

exactly the intuition of the type JN, namely that Mw(α) is a modulus of continuity of Vw

at α. We leave the proof of (†) to the reader. By Theorem 3, we have t Rα
ρ t

J for any α : NN

and for any closed term t : ρ of T. In particular, we have f Rα
NN→N f

J for every closed term
f : NN → N of T.

The last step is to construct the generic element Ω : JN→ JN such that α Rα
NN Ω for all

α : NN. Once we unfold α Rα
NN Ω, we can see that, for any w : JN, the value of Ω(w) has to

be λα.α(Vw(α)) as discussed in Section 3.2. Then we also need to construct its modulus of
continuity. There are two possible moduli at α: one is Vw(α) + 1 because the modulus of
continuity of λα.αn at α is n+ 1, and the other is Mw(α). We just take the greater one and
then end up with the following definition:

Ω(w) := 〈λα.α(Vw(α)), λα.max(Vw(α) + 1,Mw(α))〉 .

One may have noticed that the above is highly similar to the definition of κ. Indeed, we have
Ω = κ(λn. 〈λα.αn, λα.n+ 1〉).

I Theorem 7. Every closed term f : NN → N of T has a modulus of continuity given by the
term Mf J(Ω).

Proof. Because f Rα
NN→N f J and α Rα

NN Ω, we have fα Rα
N f J(Ω) for any α : NN, which

implies (i) f = Vf J(Ω) up to pointwise equality, and (ii) Mf J(Ω) is a modulus of continuity of
Vf J(Ω). Therefore, Mf J(Ω) is also a modulus of continuity of f . J

I Remark 8. The above development can be viewed as a syntactic (and simplified) version of
Escardó’s approach via dialogue trees [7]. The algorithms to construct moduli of continuity
in these two methods are exactly the same. On the other hand, though Powell works also
with a monadic translation [19], his algorithm is different because he translates terms in the
call-by-value manner. We will look into this in more detail in Section 4.3.

3.3.3 Uniform continuity
The objective here is to, for each closed term f : NN → N of T, construct a modulus of
uniform continuity M : NN → N, i.e.

∀δN
N
αNN

βNN (
α ≤1 δ ∧ β ≤1 δ ∧ α =Mδ β → fα = fβ

)
where α ≤1 β stands for ∀i(αi ≤ βi). The valueMδ is called a modulus of uniform continuity
of f on {α : NN | α ≤1 δ}. The following fact of uniform continuity plays an important role
in the construction:
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I Lemma 9. If f : NN → N is uniformly continuous on {α : NN | α ≤1 δ} with a modulus m,
then it has a maximum image on {α : NN | α ≤1 δ}.

Proof. We compute the maximum image Θ(m, f, δ) by induction on the modulus m:

Θ(0, f, δ) := fδ

Θ(m+ 1, f, δ) := Φ (λi.Θ (m,λα.f(i ∗ α), δ ◦ suc) , δ0)

where i ∗ α is an infinite sequence with head i and tail α, and Φ : NN → N→ N defined by

Φ(α, 0) := α0
Φ(α, n+ 1) := max (Φ(α, n), α(n+ 1))

i.e. Φ(α, n) is the greatest αi for i ≤ n (note that Φ is the κ of the “majorizability” nucleus
introduced in Section 3.1). In the base case of Θ, the modulus is 0 and thus f is constant
with the value fδ. To compute Θ(m+ 1, f, δ), by induction hypothesis we have for each i : N
the maximum image Θ (m,λα.f(i ∗ α), δ ◦ suc)) of the function λα.f(i∗α) with a modulus m
on the inputs bounded by δ ◦ suc. Because the inputs of f are bounded by δ, the greatest
Θ (m,λα.f(i ∗ α), δ ◦ suc)) for i < δ0 is the maximum image of f , and we use Φ to find it.
Note that both Φ and Θ can be defined in T using rec. J

We are now ready to construct the nucleus. Let JN = (NN → N)× (NN → N). The ieda
is exactly the same as in the previous treatment to pointwise continuity: For any w : JN,
its second component Mw is (expected to be) a modulus of uniform continuity of the first
component Vw. Then we define η : N→ JN by

η(n) := 〈λα.n, λα.0〉

and κ : (N→ JN)→ JN→ JN by

κ(g, w) :=
〈
λα.Vg(Vw(α))(α), λδ.max(Φ(λi.Mgi(δ),Θ(Mw(δ),Vw, δ)),Mw(δ))

〉
where Φ and Θ are defined in the proof of Lemma 9. Specifically, we construct a modulus of
uniform continuity for the value of κ(g, w) as follows: Given δ : NN, we have two possible
moduli given by those of g and w at δ and thus we choose the larger one. Actually the only
complication comes from the calculation of the modulus given by g. For each i : N we have a
modulus Mgi(δ). In the value of κ(g, w), we apply g to Vw(α) for input α. Because Vw has
a maximum image computed using Θ, we only need to find the greatest modulus Mgi(δ) for
i not greater than the maximum image of Vw, and we use Φ for this purpose.

Given δ : NN, the base case Rδ
N ⊆ N× JN of the logical relation is defined by

n Rδ
N w := n = Vw(δ) ∧ ∀α, β

(
α ≤1 δ ∧ β ≤1 δ ∧ α =Mw(δ) β → Vw(α) = Vw(β)

)
.

In words, n Rδ
N w means that n is the value of w at δ and that Mw(δ) is a modulus of uniform

continuity of Vw on {α : NN | α ≤1 δ}. It is routine to check that both η and κ preserve the
logical relation in the sense of (†), which we again leave to the reader. By Theorem 3 we
have t Rδ

ρ t
J for any δ : NN and for any closed term t : ρ of T. Moreover, the generic element

Ω : JN→ JN defined by

Ω := κ(λn. 〈λα.αn, λα.n+ 1〉)

also preserves the logical relation in the sense of δ Rδ
NN Ω for all δ : NN.

With a proof similar to the one of Theorem 7, we get the following result:

I Theorem 10. Every closed term f : NN → N of T has a modulus of uniform continuity
given by the term Mf J(Ω).
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3.4 General bar recursion
To prove Schwichtenberg’s theorem [20] that the System T definable functionals are closed
under a rule-like version Spector’s bar recursion of type levels 0 and 1, Oliva and Steila [17]
introduce a notion of general bar recursion whose termination condition is given by decidable
monotone predicates on finite sequences. As the last example, we recover their construction
of general-bar-recursion functionals ([17, Definitions 3.1 & 3.3]) via an instantiation of our
translation. For this, we need the following notations:

We represent decidable predicates as functions N∗ → 2, where N∗ is the type of finite
sequences of natural numbers and 2 = {0, 1} is the type of booleans.
For any S : N∗ → 2 and s : N∗, we write S(s) instead of S(s) = 1.
For any s : N∗, we write |s| : N to denote its length and ŝ : NN the extension of s with
infinitely many 0’s.
For any s : N∗ and n : N, we write s ∗ n : N∗ to denote appending n to s.
For any s : N∗ and α : NN, we write s ∗ α : NN to denote their concatenation.

Note that the treatment of N∗ and 2 is not essential. For instance, we can represent a finite
sequence s by a pair 〈α, n〉 and consider s as the prefix of the infinite sequence α of length n
as in our Agda implementation. All the above operations on sequences are definable in T.
We also need the following definitions:

We call ξ : (N∗ → σ)→ (N∗ → σN → σ)→ N∗ → σ a functional of general bar recursion
for S : N∗ → 2 if GBRS(ξ) holds where GBRS(ξ) is defined by

GBRS(ξ) := ∀GN∗→σHN∗→σN→σsN
∗


S(s)→ ξ(G,H, s) = G(s)

∧
¬S(s)→ ξ(G,H, s) = H(s, λnN.ξ(G,H, s ∗ n))

 .

A predicate S is monotone if S(s) implies S(s ∗ n) for all s : N∗ and n : N.
For Y : NN → N, we say S secures Y if

∀sN
∗
(
S(s)→ ∀αNN

Y (s ∗ α) = Y (ŝ)
)
.

Let Y : NN → N be a closed term of T. Oliva and Steila show (i) for any S securing Y ,
from a functional of general bar recursion for S we can construct a functional of Spector’s
bar recursion for Y [17, Theorem 2.4], and (ii) we can construct a monotone predicate S
that secures Y and a functional of general bar recursion for S [17, Theorem 3.4]. In this way,
they give a new proof of Schwichtenberg’s bar recursion closure theorem with an explicit
construction of Spector’s bar-recursion functionals.

We firstly construct a nucleus for general bar recursion. Fix a type σ of T. Let JN =
(NN → N)× (N∗ → 2)× ((N∗ → σ)→ (N∗ → σN → σ)→N∗ → σ). Given w : JN, we write
Vw, Sw,Bw to denote its three components. The intuition is that Sw is a monotone predicate
securing Vw and Bw is a functional of general bar recursion for Sw. We define η : N→ JN by

η(n) := 〈λα.n, λs.1, λGH.G〉

and κ : (N→ JN)→ JN→ JN by

κ(g, w) :=
〈
λα.Vg(Vwα)α, λs.min(Sw(s),Sg(Vw ŝ)(s)), λGH.Bw(λs.Bg(Vw ŝ)(G,H, s), H)

〉
where min : N→ N→ N returns the smaller argument. Lastly, we define the generic element
Ω : JN→ JN by

Ω := κ(λn. 〈λα.αn, λs.Le(n, |s|), Ψn〉)
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where Le : N→ N→ 2 has value 1 iff its first argument is strictly smaller than the second,
and Ψn : (N∗ → σ)→ (N∗ → σN → σ)→ N∗ → σ is a T-definable functional of bar recursion
for the constant function Y = λα.n [17, Lemma 2.1], i.e.

∀GN∗→σHN∗→σN→σsN
∗


n < |s| → Ψn(G,H, s) = G(s)

∧
n ≥ |s| → Ψn(G,H, s) = H(s, λm.Ψn(G,H, s ∗m))

 .

For any n : N, it is clear that λs.Le(n, |s|) is a monotone predicate that secures λα.αn, and
that Ψn is a functional of general bar recursion for λs.Le(n, |s|).

I Theorem 11. For any closed term Y : NN → N of T,
1. SY JΩ is a monotone predicate securing Y , and
2. BY JΩ is a functional of general bar recursion of SY JΩ.

Proof. Given α : NN, we define the base case Rα
N ⊆ N× JN of the logical relation by

n Rα
N w := n = Vw(α) ∧ Sw is monotone ∧ Sw secures Vw ∧ GBRSw

(Bw).

To apply the fundamental theorem of logical relation, we need to check the conditions (†):
It is trivial to prove n Rα

N ηn for all n : N.
As to κ, given f : N→ N and g : N→ JN such that fi Rα

N gi for all i : N, our goal is to
prove f Rα

N→N κg. Let n : N and w : JN with n Rα
N w be given.

We have fn = Vgn(α) = Vg(Vw(α))(α) = Vκ(g,w)(α) as in the previous examples.
Because Sw is monotone and so is Sgi for all i : N by assumption, the predicate Sκ(g,w)
is also monotone.
If Sκ(g,w)(s), then Sw(s) and Sg(Vw ŝ)(s) by definition. Given α : NN, we have Vw(s∗α) =
Vw(ŝ) because Sw secures Vw. Then we have Vκ(g,w)(s ∗ α) = Vg(Vw(s∗α))(s ∗ α) =
Vg(Vw(ŝ))(s ∗ α) = Vg(Vw(ŝ))(ŝ) = Vκ(g,w)(ŝ) because Sg(Vw ŝ) secures Vg(Vw ŝ). Hence
Sκ(g,w) secures Vκ(g,w).
Lastly we show that Bκ(g,w) is a functional of general bar recursion for Sκ(g,w). Let
G : N∗ → σ, H : N∗ → σN → σ and s : N∗ be given. (1) If Sκ(g,w)(s), then Sw(s) and
Sg(Vw ŝ)(s), and thus we have Bκ(g,w)(G,H, s) = G(s). (2) If ¬Sκ(g,w)(s), then we
have two cases to check: (2.1) If Sw(s), then ¬Sg(Vw ŝ)(s) by definition. It is not hard
to show Bκ(g,w)(G,H, s) = H(s, λn.Bκ(g,w)(G,H, s ∗ n)). (2.2) If ¬(Sw(s)), then we
always have Bκ(g,w)(G,H, s) = H(s, λn.Bκ(g,w)(G,H, s ∗ n)) no matter if Sg(Vw ŝ)(s)
holds or not.

Hence, we have fn Rα
N κ(g, w).

Given a closed term Y : NN → N of T, for any α : NN we have Y Rα
NN→N Y

J by Theorem 3.
For any n : N, we have n Rα

N 〈λα.αn, λs.Le(n, |s|), Ψn〉 by definition; thus, α Rα
N→N Ω holds

by (†) for κ which we have just proved. Hence we have Y α Rα
N Y

JΩ for any α : NN. From
this, we get (i) Y = VY JΩ up to pointwise equality, (ii) SY JΩ is a monotone predicate securing
VY JΩ and thus also Y , and (iii) BY JΩ is a functional of general bar recursion for SY JΩ. J

The above development is just a restructuring of the work of Oliva and Steila [17] that
fits into our framework. But there are some small differences (or simplifications):

[17] requires the predicate S to satisfy the bar condition ∀αNN∃nNS(ᾱn), where ᾱn : N∗ is
the prefix of α of length n. As pointed out by Makoto Fujiwara in a personal discussion,
this condition is not needed for the result. So we remove it in the above development.
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[17] assumes that the closed terms Y : NN → N are of the form λα.t where α : NN is the
only free variable in t : N, and treats α as a special constant (for the generic element).
Motivated by a version of Escardó’s Agda development of [7], we avoid such extension by
using the lifting nucleus that is introduced in Section 3.2.
The syntactic translation of T in [17, Definitions 3.1 & 3.3] contains only the construction
of general-bar-recursion functionals while the one of monotone securing predicates is given
in the proof of the main theorem [17, Theorem 3.4]. We combine both in the translation
in order to split the constructions from the correctness proof.

As pointed out by an anonymous reviewer, this section unifies the results in Section 3.3
in the sense that moduli of (uniform) continuity can be defined from monotone securing bars
and general-bar-recursion functionals: Let Y : NN → N be a closed term of T. The monotone
predicate SY JΩ is a bar, i.e. ∀αNN∃nNSY JΩ(ᾱn), as shown in [17, Theorem 3.4]. This together
with the fact that it secures Y implies the pointwise continuity of Y . The witness of the fact
that SY JΩ is a bar obtained via e.g. modified realizability [14] is a continuity modulus of Y .
Our translation in Section 3.3 is just an explicit procedure to get these witnesses that are
blurred in the proof of [17, Theorem 3.4]. On the other hand, the reviewer points out that
we can construct a modulus M : NN → N of uniform continuity of Y by

M(δ) := BY JΩ(G,Hδ, nil)

where G(s) := 0, Hδ(s, f) := 1 + max{fn | n ≤ δ(|s|)} and nil : N∗ is the empty sequence.
The idea is that if s is a prefix of δ then BY JΩ(G,Hδ, s) is a modulus of uniform continuity
of the function λα.Y (s ∗ α) on {α : NN | α ≤1 δ}: If SY JΩ(s), we know λα.Y (s ∗ α) is a
constant function because SY JΩ secures Y . Then BY JΩ(G,Hδ, s) = G(s) = 0 is a proper
modulus. If ¬SY JΩ(s), then the step functional Hδ finds the greatest value of the moduli of
λα.Y (s ∗ n ∗ α) given by BY JΩ(G,Hδ, s ∗ n) for n ≤ δ(|s|) and then adds 1 to get a modulus
of λα.Y (s ∗ α).

4 Generalization and variants of the monadic translation

We have developed a self-translation of System T in the spirit of Gentzen’s negative translation.
We conclude the paper by generalizing it to translate sums and comparing it with another
two monadic translations.

4.1 Translating sums

We generalize our Gentzen-style translation to translate also sums. Let us extend T with
sum type σ + τ and the following constants

inj1 : σ → σ + τ inj2 : τ → σ + τ case : (σ → ρ)→ (τ → ρ)→ σ + τ → ρ.

In his translation, Gentzen places a double negation in front of disjunctions (see Section 1.1).
Following this inspiration, the sum type σ + τ should be translated into J(σJ + τ J). But the
simple notion of a nucleus given by a type and two terms does not suffice. We have to work
with the following more general notion: A nucleus (J, η, κ) consists of an endofunction J on
types of (the extension of) T, and terms

η : σ → Jσ κ : (σ → Jτ)→ Jσ → Jτ
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for any types σ, τ of (the extension of) T. Then we add the following clauses to Definition 2
to complete the translation:

(σ + τ)J := J(σJ + τ J) injiJ := η ◦ inji for i ∈ {1, 2}
keσ+τ := κ caseJ := λfg.ke(case(f, g)).

Generalizing the fundamental theorem of logical relation to cover sums is remained as a
future task. Both natural numbers and sums, as instances of inductive types, are translated
in a very similar way. Another future task is to generalize the translation to cover all (strictly
positive) inductive and coinductive types.

4.2 The Kolmogorov-style monadic translation
Barthe and Uustalu’s call-by-name continuation passing style transformation [4] corresponds
to Kolmogorov’s negative translation. By replacing the continuation monad with a nucleus,
one obtains a Kolmogorov-style monadic translation which is studied in [24]. Kolmogorov
places a double negation in front of every subformula. Similarly we place the nucleus in front
of every subtype. Hence we have to work with the more general notion of a nucleus (J, η, κ)
where J is an endofunction on types. Specifically, each type ρ of T is translated to J〈ρ〉 where
〈ρ〉 is defined inductively as follows

〈N〉 := N
〈σ � τ〉 := J〈σ〉 � J〈τ〉 for � ∈ {→,×,+}.

Each term t : ρ is translated to a term 〈t〉 : J〈ρ〉. In order to translate function application,
we have to consider a monadic notion of application. Given f : J(σ → Jτ) and a : σ, we
“apply” f to a as

f � a := κ(λgσ→Jτ .ga, f).

Then for any terms t : σ → τ and u : σ, we define 〈tu〉 := 〈t〉 � 〈u〉. The rest of the translation
can be found in the appendix.

4.3 The Kuroda-style monadic translation
There is also a Kuroda-style monadic translation of System T which has been studied by
Powell in [18, 19], where each type ρ is translated to J[ρ] with [ρ] defined by

[N] := N [σ × τ ] := [σ]× [τ ]
[σ → τ ] := [σ]→ J[τ ] [σ + τ ] := [σ] + [τ ].

Note that it actually corresponds to the variant of Kuroda’s negative translation where
double negations are placed also in front of conclusions of implications (see [16, Section 6]).
Here we need another notion of application for the term translation: Given f : J(σ → Jτ)
and a : Jσ, we “apply” f to a as

f • a := κ(λgσ→Jτ .κ(g, a), f).

The complete translation can be found in the appendix.
Powell makes use of the Kuroda-style translation to extract moduli of continuity [19,

Section 5], similarly to our development in Section 3.3. However, our algorithms are different
because the Kuroda-style translation is call-by-value while our Gentzen-style one is call-by-
name. Consider the following example. Let t = λα.rec(α0, λnm.0, 1) : NN → N which is a
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constant function. If we apply the Kuroda-style translation to t with the continuity nucleus
(similar to the one given in Section 3.3 but generalized to arbitrary types of T), then we get
a modulus λα.1, because in the call-by-value strategy all the inputs of rec including α0 are
evaluated. With the Gentzen-style translation, we get λα.0 because α0 is never evaluated in
the call-by-name strategy.

References
1 Peter Aczel. The Russell–Prawitz modality. Mathematical Structures in Computer Science,

11(4):541–554, 2001. doi:10.1017/S0960129501003309.
2 Agda community. The Agda Wiki. URL: https://wiki.portal.chalmers.se/agda/pmwiki.

php.
3 Rob Arthan and Paulo Oliva. On affine logic and łukasiewicz logic, 2014. arXiv:1404.0570

[cs.LO].
4 Gilles Barthe and Tarmo Uustalu. CPS translating inductive and coinductive types. In 2002

ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM’02), volume 37 of SIGPLAN Notices, pages 131–142. ACM Press, New York, 2002.
doi:10.1145/503032.503043.

5 Michael J. Beeson. Foundations of Constructive Mathematics. Springer, 1985. doi:10.1007/
978-3-642-68952-9.

6 Thierry Coquand and Guilhem Jaber. A note on forcing and type theory. Fundamenta
Informaticae, 100(1-4):43–52, 2010. doi:10.3233/FI-2010-262.

7 Martín H. Escardó. Continuity of Gödel’s system T functionals via effectful forcing. In
Proceedings of the Twenty-ninth Conference on the Mathematical Foundations of Programming
Semantics (MFPS’2013), volume 298 of Electronic Notes in Theoretical Computer Science,
pages 119–141. Elsevier, 2013. doi:10.1016/j.entcs.2013.09.010.

8 Martín H. Escardó and Paulo Oliva. The Peirce translation. Annals of Pure and Applied Logic,
163(6):681–692, 2012. doi:10.1016/j.apal.2011.11.002.

9 Martín H. Escardó and Chuangjie Xu. A constructive manifestation of the Kleene–Kreisel
continuous functionals. Annals of Pure and Applied Logic, 167(9):770–793, 2016. Fourth
Workshop on Formal Topology (4WFTop). doi:10.1016/j.apal.2016.04.011.

10 Michael P. Fourman. Notions of choice sequence. In The L. E. J. Brouwer Centenary
Symposium, volume 110 of Studies in Logic and the Foundations of Mathematics, pages 91–105.
Elsevier, 1982. doi:10.1016/S0049-237X(09)70125-9.

11 William A. Howard. Hereditarily majorizable functionals of finite type. In Metamathemat-
ical investigation of intuitionistic Arithmetic and Analysis, volume 344 of Lecture Notes in
Mathematics, pages 454–461. Springer, Berlin, Heidelberg, 1973. doi:10.1007/BFb0066739.

12 Hajime Ishihara. A note on the Gödel-Gentzen translation. Mathematical Logic Quarterly,
46(1):135–137, 2000. doi:10.1002/(SICI)1521-3870(200001)46:1<135::AID-MALQ135>3.0.
CO;2-R.

13 Ulrich Kohlenbach. Pointwise hereditary majorization and some applications. Archive for
Mathematical Logic, 31(4):227–241, 1992. doi:10.1007/BF01794980.

14 Ulrich Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics.
Springer Monographs in Mathematics. Springer, 2008. doi:10.1007/978-3-540-77533-1.

15 Paulo Oliva. Unifying functional interpretations. Notre Dame Journal of Formal Logic,
47(2):263–290, 2006. doi:10.1305/ndjfl/1153858651.

16 Paulo Oliva and Gilda Ferreira. On the relation between various negative translations. In
Logic, Construction, Computation, volume 3 of Mathematical Logic Series, pages 227–258.
Ontos-Verlag, 2012. doi:10.1515/9783110324921.

17 Paulo Oliva and Silvia Steila. A direct proof of Schwichtenberg’s bar recursion closure theorem.
The Journal of Symbolic Logic, 83(1):70–83, 2018. doi:10.1017/jsl.2017.33.

FSCD 2020

https://doi.org/10.1017/S0960129501003309
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://arxiv.org/abs/1404.0570
https://doi.org/10.1145/503032.503043
https://doi.org/10.1007/978-3-642-68952-9
https://doi.org/10.1007/978-3-642-68952-9
https://doi.org/10.3233/FI-2010-262
https://doi.org/10.1016/j.entcs.2013.09.010
https://doi.org/10.1016/j.apal.2011.11.002
https://doi.org/10.1016/j.apal.2016.04.011
https://doi.org/10.1016/S0049-237X(09)70125-9
https://doi.org/10.1007/BFb0066739
https://doi.org/10.1002/(SICI)1521-3870(200001)46:1<135::AID-MALQ135>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1521-3870(200001)46:1<135::AID-MALQ135>3.0.CO;2-R
https://doi.org/10.1007/BF01794980
https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/10.1305/ndjfl/1153858651
https://doi.org/10.1515/9783110324921
https://doi.org/10.1017/jsl.2017.33


25:16 A Gentzen-Style Monadic Translation

18 Thomas Powell. A functional interpretation with state. In Proceedings of the Thirty third
Annual IEEE Symposium on Logic in Computer Science (LICS 2018), pages 839–848. IEEE
Computer Society Press, July 2018. doi:10.1145/3209108.3209134.

19 Thomas Powell. A unifying framework for continuity and complexity in higher types, 2019.
arXiv:1906.10719 [cs.LO].

20 Helmut Schwichtenberg. On bar recursion of types 0 and 1. The Journal of Symbolic Logic,
44(3):325–329, 1979. doi:10.2307/2273126.

21 Richard Statman. Logical relations and the typed lambda-calculus. Information and Control,
65(2/3):85–97, 1985. doi:10.1016/S0019-9958(85)80001-2.

22 Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge
tracts in theoretical computer science. Cambridge University Press, 2nd edition, 2000.

23 Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in mathematics, Vol. II, volume
123 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co.,
Amsterdam, 1988.

24 Tarmo Uustalu. Monad translating inductive and coinductive types. In Types for Proofs and
Programs (TYPES 2002), volume 2646 of Lecture Notes in Computer Science, pages 299–315.
Springer, 2002. doi:10.1007/3-540-39185-1_17.

25 Benno van den Berg. A Kuroda-style j-translation. Archive for Mathematical Logic, 58(5-
6):627–634, 2019. doi:10.1007/s00153-018-0656-x.

26 Gerrit van der Hoeven and Ieke Moerdijk. Sheaf models for choice sequences. Annals of Pure
and Applied Logic, 27(1):63–107, 1984. doi:10.1016/0168-0072(84)90035-6.

27 Chuangjie Xu. A syntactic approach to continuity of T-definable functionals. Logical Methods
in Computer Science, 16(1):22:1–22:11, 2020. URL: https://lmcs.episciences.org/6130.

A The Kolmogorov- and Kuroda-style monadic translations of T

We present the Kolmogorov- and Kuroda-style monadic translations of System T extended
with products and sums, parametrized by a nucleus (J, η, κ), where J is an endofunction on
types of T and η : σ → Jσ and κ : (σ → Jτ)→ Jσ → Jτ are terms of T. Recall the following
notions of monadic application that will be needed in the translations:

Given f : J(σ → Jτ) and a : σ, we define

f � a := κ(λgσ→Jτ .ga, f).

Given f : J(σ → Jτ) and a : Jσ, we define

f • a := κ(λgσ→Jτ .κ(g, a), f).

I Definition 12 (Kolmogorov-style monadic translation). We assign to each type ρ a type J〈ρ〉
where 〈ρ〉 is defined as follows

〈N〉 := N
〈σ � τ〉 := J〈σ〉 � J〈τ〉 for � ∈ {→,×,+}.

Each term Γ ` t : ρ is translated to a term 〈Γ〉 ` 〈t〉 : J〈ρ〉, where 〈Γ〉 is a new context
assigning each x : σ ∈ Γ to a fresh variable x̂ : J〈σ〉, and 〈t〉 is defined inductively as follows:

〈x〉 := x̂ 〈0〉 := η(0)
〈λx.t〉 := η(λx̂.〈t〉) 〈suc〉 := η(κ(η ◦ suc))
〈tu〉 := 〈t〉 � 〈u〉 〈rec〉 := η(κ(λa.η(κ(λf.η(κ(rec�(a, f)))))))
〈pair〉 := η(λa.η(λb.η(pair(a, b)))) 〈inji〉 := η(η ◦ inji)
〈pri〉 := η(κ(pri)) 〈case〉 := η(κ(λf.η(κ(λg.η(κ(case(f, g)))))))
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where rec� : σ → (JN→ J(Jσ → Jσ))→ N→ Jσ is defined by

rec�(a, f, 0) := η(a)
rec�(a, f, n+ 1) := f(ηn) � rec�(a, f, n).

I Definition 13 (Kuroda-style monadic translation). We assign to each type ρ a type J[ρ]
where [ρ] is defined as follows

[N] := N [σ × τ ] := [σ]× [τ ]
[σ → τ ] := [σ]→ J[τ ] [σ + τ ] := [σ] + [τ ].

Each term Γ ` t : ρ is translated to a term [Γ] ` [t] : J[ρ], where [Γ] is a new context assigning
each x : σ ∈ Γ to a fresh variable x̄ : [σ], and [t] is defined inductively as follows:

[x] := η(x̄) [0] := η(0)
[λx.t] := η(λx̄.[t]) [suc] := η(η ◦ suc)

[tu] := [t] • [u] [rec] := η(λa.η(λf.η(rec•(a, f))))
[pair] := η(λα.η(λb.η(pair(a, b)))) [inji] := η(η ◦ inji)
[pri] := η(η ◦ pri) [case] := η(λf.η(λg.η(case(f, g))))

where rec• : σ → (N→ J(σ → Jσ))→ N→ Jσ is defined by

rec•(a, f, 0) := η(a)
rec•(a, f, n+ 1) := fn • rec•(a, f, n).
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Abstract
Unital equational theories are defined by axioms that assert the existence of the unit element for
some function symbols. We study anti-unification (AU) in unital theories and address the problems
of establishing generalization type and designing anti-unification algorithms. First, we prove that
when the term signature contains at least two unital functions, anti-unification is of the nullary
type by showing that there exists an AU problem, which does not have a minimal complete set of
generalizations. Next, we consider two special cases: the linear variant and the fragment with only
one unital symbol, and design AU algorithms for them. The algorithms are terminating, sound,
complete, and return tree grammars from which the set of generalizations can be constructed.
Anti-unification for both special cases is finitary. Further, the algorithm for the one-unital fragment
is extended to the unrestricted case. It terminates and returns a tree grammar which produces an
infinite set of generalizations. At the end, we discuss how the nullary type of unital anti-unification
might affect the anti-unification problem in some combined theories, and list some open questions.
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1 Introduction

We consider the equational theory of function symbols with unit element (also know as
identity), U, which is defined by the axioms f(x, εf ) ≈ x and f(εf , x) ≈ x, where εf is a
special constant, the unit element, associated with the function f . These axioms state that
the function symbol f is unital and that its unit is εf . We refer to such theories, containing
only these type of axioms, as unital theories. This property is ubiquitous in algebra, and
is essential to the two basic arithmetic operations + and · as well as the union (∪) and
intersection (∩) operations on sets. Furthermore, it is an example of a regular collapse
theory [16], which means that the variable sets of both sides of the defining axiom(s) are
the same (the regularity property), and it contains an axiom of the form t ≈ x, where t is a
non-variable term and x is a variable (the collapse property). Besides idempotency [8, 10], it
is the simplest well-known such theory.

Unification and matching in unital theories has been shown to be NP-complete [17].
Otherwise, investigations concerning unital unification mostly focused on its combination with
well known equational theories such as associativity (A), commutativity (C), idempotency (I),
see, e.g., [2] for a survey.
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As for anti-unification in unital theories, one of the earliest examples is generalization in
free monoids [7]. More recent work [1] considers problems over arbitrary term alphabets with
some binary symbols being unital, and proposes a modular algorithm for anti-unification in
A, C, U theories and their combinations. The set of generalizations computed by the unital
anti-unification algorithm there is not complete in general (as one can see from Example 16
below), but completeness would hold if one restricts the result to linear generalizations.

The problems we address in this paper concern the unital anti-unification type and
algorithms. We prove that when the term signature contains at least two unital functions,
anti-unification is of type zero (nullary) by showing that there exists an AU problem which
does not have a minimal complete set of generalizations. Next, we consider two special cases:
the linear variant and one-unital fragment and design algorithms for them incrementally:
The one-unital fragment algorithm is obtained by extending the rule set used in the linear
variant algorithm. The latter uses a modification of rules from [1]. The algorithms are
terminating, sound, complete, and return tree grammars from which a set of generalizations
can be constructed. For the linear variant, the language of generalizations generated by the
grammar is finite. In the one-unital fragment, the language might be infinite, but it contains
a finite minimal complete set of generalizations. It follows that both linear and one-unital
anti-unification are finitary.

The algorithm for one-unital fragment is further extended for the unrestricted case. It
terminates and returns a tree grammar which produces an infinite set of generalizations. It
remains to be shown whether this set is always complete or not. At the end of the paper,
we also discuss how the nullary type of unital anti-unification might affect the problems in
theories that combine U with the properties such as A, C, or I.

Concerning applications, anti-unification has been used for recursion scheme detection
in functional programs [4], inductive synthesis of recursive functions [15], learning fixes
from software code repositories [3, 14], and for preventing bugs and misconfiguration [11],
just to name a few. Given the prominence of algebraic structures, whose equational theory
includes unit axioms, in programming language theory, understanding of anti-unification in
the presence of such axioms is essential to future progress in this area. As an example of
a possible application of this work, modern pure functional programming languages, such
as Haskell, heavily rely on monads which are higher-order AU-functions. Clone analysis of
code fragments which contain multiple monads used in conjunction would suffer from the
nullary type of unital anti-unification. However, restricted procedures, especially for the
linear variant, can provide useful substitutes to the less well behaved general procedure.
Combining unit axioms with a higher-order term signature was partially address in [9].

The unital anti-unification algorithms described in the paper are implemented and can
be accessed at https://github.com/Ermine516/UnitAU.

2 Preliminaries

We assume familiarity with the basic notions of unification theory, see, e.g., [2].

Terms and substitutions

We consider a ranked alphabet A, consisting of the set F of function symbols with fixed arity
and the set of variables V. A term t over A is defined as t ::= x | f(t1, . . . , tn), where x ∈ V
and f ∈ F with the arity n ≥ 0. The set of terms over the alphabet A is denoted by T (A).
Nullary function symbols are called constants. We denote variables by x, y, z, u, v, constants
by a, b, c, d, function symbols f, g, h, and terms by s, t, r. We denote the set of variables

https://github.com/Ermine516/UnitAU
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appearing in a term t by var(t). The depth of a term t is defined inductively as dep(x) =
dep(a) = 1 for variables and constants, and dep(f(t1, . . . , tn)) = max{dep(t1), . . . , dep(tn)}+1
otherwise. The number of occurrences of s in t is defined inductively as follows occ(s, s) = 1,
occ(s, a) = occ(s, x) = 0 if x 6= a and s 6= x, occ(s, f(t1, . . . , tn)) =

∑
i occ(s, ti).

The set of positions of a term t, denoted by pos(t), is the set of strings of positive integers,
defined as pos(x) = {ε} and pos(f(t1, . . . , tn)) = {ε}∪

⋃n
i=1{i.p | p ∈ pos(ti)}, where ε stands

for the empty string. If p is a position in a term s and t is a term, then s|p denotes the subterm
of s at position p and s[t]p denotes the term obtained from s by replacing the subterm s|p
with t. The head of a term t is defined as head(x) = x and head(f(t1, . . . , tn)) = f .

A substitution is a mapping from variables to terms such that all but finitely many
variables are mapped to themselves. Lower case Greek letters are used to denote them,
except the identity substitution, which is denoted by Id. They are extended to terms in the
usual way and we use the postfix notation for that, writing tσ for an instance of a term t

under a substitution σ. The composition of substitutions σ and ϑ, written as juxtaposition
σϑ, is the substitution defined as x(σϑ) = (xσ)ϑ for all variables x.

The domain of a substitution σ is the set of variables which are not mapped to themselves
by σ: dom(σ) := {x | xσ 6= x}. The restriction of σ to a set of variables X, denoted σ|X , is
the substitution defined as x(σ|X) = xσ if x ∈ X and x(σ|X) = x otherwise.

A binding is a pair of a variable and a term, written as x 7→ t. To explicitly write
substitutions, we use the standard convention representing a substitution σ as a finite set of
bindings {x 7→ xσ | x ∈ dom(σ)}. Application of σ to a set of bindings B, written Bσ, is
defined as Bσ = {x 7→ tσ | x 7→ t ∈ B}.

Equational anti-unification

Every function symbol f will have an associated set of axioms, denoted by Ax(f). If Ax(f) is
empty, then f does not have any associated properties and is called free. Otherwise, Ax(f) ⊆
{A,C,U, I} where A is associativity, i.e., f(t1, f(t2, t3)) ≡ f(f(t1, t2), t3) for all t1, t2, t3; C is
commutativity, i.e., f(t1, t2) ≡ f(t2, t1) for all t1, t2; U is unital, i.e., f(t, εf ) ≡ f(εf , t) ≡ t for
all t, where εf is the unique unit element associated with the function constant f ; and I is
idempotency, i.e., f(t, t) ≡ t for all t. Note that in these cases, only binary function symbols
have equational properties. In the case of unit element, only function constants with arity 0
can be εf . For each E ⊆ {A,C,U, I} we denote the equational theory generated by E by ≈E .
For particular equational theories such as U we can denote which function constants have
this property, writing, e.g., ≈U(f,g,...). The majority of this paper focuses on unital equational
theories. However, in later sections we consider combinations between unital theories and
the other above mentioned theories.

In the rest of the paper, every non-unital function symbol is free unless otherwise specified.
We say that a term is in unital normal form (U-normal form) if it does not contain a

subterm of the form f(t, εf ) or f(εf , t) for any unital symbol f . To get an U-normal form of
a term, all the subterms of the form f(t, εf ) and f(εf , t) are replaced by t repeatedly as long
as possible, for each unital symbol f . We write nfU (s) for the U-normal form of s, and for a
set of terms S, nfU (S) denotes the set nfU (S) := {nfU (s) | s ∈ S}.

A term r is more general than s modulo E (r is an E-generalization of s) if there exists a
substitution σ such that rσ ≈E s. It is written as r �E s. The relation �E is a quasi-ordering.
Its strict part is denoted by ≺E , and the equivalence relation it induces by 'E .

Given two terms t and s, and their generalization r, we say that it is their least general
generalization modulo E (E-lgg or just lgg in short), if there is no generalization r′ of t and s
which satisfies r ≺E r′.

FSCD 2020



26:4 Unital Anti-Unification

A minimal and complete set of E-generalizations of two terms t and s is the set G with
the following three properties:
1. Each element of G is an E-generalization of t and s (soundness of G).
2. For each E-generalization r′ of t and s, there exists r ∈ G such that r′ �E r, i.e., r is less

general than r′ modulo E (completeness of G).
3. No two distinct elements of G are �E -comparable: If r1, r2 ∈ G such that r1 �E r2, then

r1 = r2 (minimality of G).

We write mcsgE(t, s) for the minimal complete set of E-generalizations of t and s if it
exists.

Often we just say generalization, lgg, etc. instead of E-generalization, E-lgg and so on
when the equational theory being discussed is clear from context.

The Anti-unification type of equational theories are defined similarly (but dually) to
unification type, based on the existence and cardinality of a minimal complete set of
generalizations. We assume here no restriction on the signature, i.e., the problems and
generalizations may contain arbitrary function symbols. Then the types are defined as
follows:

Unitary type: Any anti-unification problem in the theory has a singleton mcsg.
Finitary type: Any anti-unification problem in the theory has an mcsg of finite cardinality,
for at least one problem having it greater than 1.
Infinitary type: For any anti-unification problem in the theory there exists an mcsg, and
for at least one problem this set is infinite.
Nullary type (or type zero): There exists an anti-unification problem in the theory which
does not have an mcsg, i.e., every complete set of generalizations for this problem contains
two distinct elements such that one is more general than the other.

For each of these types, there exists a corresponding instance of an equational theory.
The syntactic first-order anti-unification [12,13] is unitary; commutative anti-unification [1] is
finitary; idempotent anti-unification is infinitary [8]; nominal anti-unification with infinitely
many atoms is nullary [5, 6]. In this paper we illustrate that unital anti-unification is nullary
over a term alphabet with as least two unital function symbols, and study anti-unification
type for some other theories, which are combined with the unital one.

We represent anti-unification problems in the form of E-anti-unification triples (E-AUTs).
An E-AUT is a triple of a variable and two terms, written as x : t ,E s. Here x is a fresh
variable which stands for the most general E-generalization of t and s. Any E-generalization
r of t and s is then an instance of x, witnessed by a substitution σ such that xσ ≈E r.

Sometimes, when we want to anti-unify s and t, we simply say that we have an anti-
unification problem (AUP) modulo E , s ,E t.

In all the notations, we omit E when it is clear from the context.

Regular tree grammars

A regular tree grammar is a tuple 〈α,N, T,R〉, where the symbol α is called the axiom, N
is the set of non-terminal symbols with arity 0 such that α ∈ N , T is the set of terminal
symbols with T ∩N = ∅, and R is the set of production rules of the form β 7→ t where β ∈ N
and t ∈ T (T ∪N). Given a regular tree grammar G = 〈α,N, T,R〉, the derivation relation
→G is a relation on pairs of terms of T (T ∪N) such that s→G t if and only if there exists a
position p in s and a rule ν → r ∈ R such that s|p = ν and t = s[r]p. The language generated
by G from the nonterminal β is the set of terms L(G, β) := {t | t ∈ T (T ) and β →+

G t}, where
→+

G is the transitive closure of the relation →G. The language generated by G is defined
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as the language generated bt G from α: L(G) := L(G, α). Given a grammar G, the set of
nonterminals of G that appear in a syntactic object (term, rule, AUT, etc.) O is denoted by
nter(G, O). For a grammar G, the set of nonterminals that can be reached from a nonterminal
ν, denoted by reach(G, ν), is defined as reach(G, ν) := {µ | ν →∗G t and µ ∈ nter(G, t)},
where →∗G is reflexive and transitive closure of →G . When the grammar is clear from the
context, we write → instead of →G .

Our next step is to connect sets of bindings and regular tree grammars, defining how to
construct grammars from binding sets. The reasoning behind such a correspondence is the
following: our goal is to represent complete sets of unital generalizations by finite means with
the help of regular tree grammars. Hence, we want to develop a U-generalization algorithm
which gives us such a representation. The mentioned correspondence will make this task
easier, because it will allow us to design a simpler algorithm. It computes a set of bindings,
from which one can directly construct the desired grammar, based on the correspondence we
define below in Definition 1.

We assume that each nonempty set of bindings B contains a designated binding, which
we call the root binding. Its left hand side is called the root of B. It is required that the root
occurs only once in the grammar, in the left hand side of the root binding.

I Definition 1 (Regular tree grammar corresponding to a set of bindings). Given a (nonempty)
set of bindings B, the corresponding regular tree grammar G(B) = 〈α,N, T,B〉 is defined by
the following construction:

The axiom α is the root of B.
N = {x | x 7→ r ∈ B for some r}.
T = F ∪ V , where F is the set of all function symbols that appear in terms of the right
hand sides of B, and V = {var(r) | x 7→ r ∈ B for some x} \N .

The language of a tree grammar G is denoted by L(G).

A motivating Example

Let us consider the term g(f(a, c), a) , g(c, b) where Ax(g) = ∅ and Ax(f) = {U}. Using the
methods discussed in [1] the computed generalization is g(f(x, c), y). This seems reasonable
because after decomposing g(f(a, c), a) , g(c, b) once, we get two AUPs f(a, c) , c and
a , b. The latter is solvable while the former can benefit from a single application of unit
introduction, i.e. f(a, c) , f(εf , c), resulting in the AUPs a , εf and c , c. However, if
we apply unit introduction to a , b twice, resulting in f(a, εf ) , f(εf , b), we can merge
variables and get the generalization g(f(x, c), f(x, y)) which is less general than g(f(x, c), y).
This observation motivated us to investigate the type in greater detail because it seems to
imply the possibility of an arbitrary number of variable introductions and merges.

3 General case: unital anti-unification is nullary

We formulate the first main result of this paper: generalization in theories with at least two
unital function symbols is of type zero.

In this section all terms are taken from the set T ({f, g, εf , εg},V), where both f and g
are unital with units εf and εg respectively. That means, we have no other function symbols
except f, g, εf , and εg. Furthermore, we will denote generalizations by bold face g.

I Definition 2. Let g be a generalization in U-normal form of t , s. We refer to σ1 and σ2
as generalizing substitutions of g if gσ1 ≈U t, gσ2 ≈U s, and for every {x 7→ u} ∈ σi, for
i ∈ {1, 2}, u is in U-normal form.
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I Definition 3. Let g be a generalization in U-normal form of t , s, and let σ1 and σ2 be
generalizing substitutions. We say that g is in reduced form if the following conditions hold:
1. For every x ∈ var(g), xσ1 6≈U xσ2.
2. For all x, y ∈ var(g) either x = y, or for some θ ∈ {σ1, σ2}, xθ 6≈U yθ.

I Theorem 4. There exists a reduced generalization g of εf , εg such that g is not equal
modulo U to a variable.

Proof. Take g = f(x, g(x, y)). Then σ1 = {x 7→ εf , y 7→ εg} and σ2 = {x 7→ εg, y 7→ εf} are
the generalizing substitutions. Obviously, g is not equal modulo U to a variable. J

I Theorem 5. Any reduced generalization of εf , εg is either a variable or contains two
distinct variables (maybe with multiple occurrences).

Proof. Let g be a reduced generalization of εf , εg, and σ1 an σ2 be generalizing substitutions.
If g is a variable, the theorem trivially holds. By Theorem 4, there exist also nonvariable
reduced generalizations of εf , εg. Notice that for all x ∈ var(g) we have either (a)
xσ1 = εf and xσ2 = εg, or (b) xσ1 = εg and xσ2 = εf , for otherwise either g would not
be a generalization of εf , εg (we would be introducing new symbols not occurring in the
initial terms), or for some {x 7→ s} ∈ σi, i ∈ {1, 2}, s would not be in U-normal form. If
the latter is the case we may just replace the offending binding by {x 7→ s′} where s′ is the
U-normalized version of s. But since g is reduced, we do not have two distinct x, y ∈ var(g)
with xσi ≈U yσi. Hence, when g is not a variable, then it must contain two distinct variables:
one that satisfies (a), and the other one that satisfies (b). J

I Theorem 6. For every generalization g in U-normal form of εf , εg there exists a
substitution ϑ such that gϑ is a reduced generalization of εf , εg.

Proof. Let σ1 and σ2 be its generalizing substitutions. If g is reduced, then the theorem
trivially holds and ϑ = Id. Assume g is not in reduced form. (Therefore, it can not be a
variable.) We will construct ϑ as a composition of two substitutions ϑ1 and ϑ2, which we
define below. Since g is not reduced, it violates one of the two conditions of Definition 3.

If g does not violate the first condition, we take ϑ1 = Id and continue with checking the
second one. If g violates the first condition, then there exists x ∈ var(g) such that xσ1 = xσ2,
i.e., x is an overgeneralization. We can assume that xσ1 = xσ2 = εw, where w is either f or
g, because if dep(xσ1) > 1, then either xσ1 is not in U-normal form or gσ1 6≈U εw.

Assume {x1, . . . , xn, y1, . . . , ym} ⊆ var(g) are all those variables in g that violate the first
condition of Definition 3 such that xiσ1 = xiσ2 = εf for all 1 ≤ i ≤ n, and yjσ1 = yjσ2 = εg
for all 1 ≤ j ≤ m. Then we take z1, z2 /∈ var(g) and consider three substitutions

ϑ1 = {x1 7→ g(z1, z2)} · · · {xn 7→ g(z1, z2)}{y1 7→ f(z1, z2)} · · · {ym 7→ g(z1, z2)},
σ′1 = {z1 7→ εf , z2 7→ εg}σ1, σ′2 = {z1 7→ εg, z2 7→ εf}σ2.

gϑ1 is a generalization of εf , εg and σ′1 and σ′2 are generalizing substitutions, because

gϑ1σ
′
1 = g{x1 7→ εf} · · · {xn 7→ εf}{y1 7→ εg} · · · {ym 7→ εg}σ1 = gσ1 = εf .

gϑ1σ
′
2 = g{x1 7→ εf} · · · {xn 7→ εf}{y1 7→ εg} · · · {ym 7→ εg}σ2 = gσ2 = εg.

However, in gϑ1 we do not have variables that violate the first condition of Definition 3:
all such variables from g are now replaced by terms containing z1 and z2 only, and these
new variables do not violate the condition as one can see from σ′1 and σ′2.
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Hence, we got gϑ1 that does not violate the first condition of Definition 3. If gϑ1 fulfills
the second one too, then we take ϑ2 = Id and obtain ϑ = ϑ1. Otherwise there exist two
distinct variables x, y ∈ var(gϑ1) such that xσi ≈U yσi, i = 1, 2. We take the renaming
substitution {x 7→ y} and obtain gϑ1{x 7→ y}, which is obviously a generalization again,
but replaces the violating variable pair by a single variable. We can repeat this process
iteratively for all variable pairs violating the second condition of Definition 3. Let ϑ2 be the
composition of all renaming substitutions used in this process. The obtained generalization
gϑ1ϑ2 is in reduced form. Taking ϑ = ϑ1ϑ2 finishes the proof. J

From this proof we see that if g is a reduced generalization of εf , εg with variables
var(g) = {x, y}, then σ1 = {x 7→ εf , y 7→ εg} and σ2 = {x 7→ εg, y 7→ εf} can be taken as the
generalizing substitutions.

I Theorem 7. Let g be a reduced generalization of εf , εg. Then there exists a reduced
generalization g′ of εf , εg such that g ≺U g′.

Proof. By Theorem 5, since g is reduced, it is either a single variable x, or contains exactly
two variables x and y.

First assume g = x. Then g′ = g{x 7→ f(x, g(x, y))} = f(x, g(x, y)) is also a reduced
generalization of εf , εg. However, for no θ we have g′θ ≈U g. Hence, g ≺U g′ in this case.

Now let g be such that {x, y} = var(g) and g′ = g{x 7→ f(x, g(x, y))}. Furthermore, let
occ(x,g) = n and occ(y,g) = m. Then we get occ(x,g′) = 2n and occ(y,g′) = n + m. By
the proof of Theorem 5, n > 0 and m > 0. Assume by contradiction that g 6≺U g′, i.e. there
exists θ = {x 7→ t, y 7→ s} such that g{x 7→ f(x, g(x, y))}θ = g.

If x ∈ var(g′θ|x) then x ∈ var(t) implies that occ(x,g′θ|x) ≥ 2n. Thus, x 6∈ var(t). This
implies that x ∈ var(g′θ) iff x ∈ var(s). Therefore, occ(x,g′θ) ≥ n+m. On the other hand,
occ(x,g′θ) = occ(x,g) = n and from n ≥ n+m we get m = 0. But it is a contradiction with
m > 0.

We can apply similar reasoning to the case when g′ = g{y 7→ f(y, g(y, x))}. Hence,
g ≺U g′ also when g contains exactly two variables. J

I Theorem 8. Let C be a complete set of generalizations of εf , εg which are in U -normal
form. Then C contains g and g′ such that g ≺U g′.

Proof. Let g ∈ C. By Theorem 6, gϑ a reduced generalization of εf , εg for some ϑ.
By Theorem 7 there exists a substitution ϕ such that gϑ ≺U gϑϕ and gϑϕ is a reduced
generalization of εf , εg. By completeness of the set C, there exists a substitution µ such
that gϑϕµ ∈ C. Taking g′ = gϑϕµ, we get g,g′ ∈ C and g ≺U g′. J

I Corollary 9. Unital anti-unification is nullary.

Proof. Follows from Theorem 8. J

In the rest of the paper we consider two special cases of unital anti-unification for which
minimal complete set of generalizations exist, i.e., which are not nullary. These special cases
and the linear variant and the fragment with one unital symbol.

4 Linear variant

In linear variant we are looking for unital generalizations in which no variable occurs more
than once. Input is not restricted. In particular, the language may contain one or more
unital function symbols.
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We start by formulating the rules of an algorithm which is supposed to compute linear
U-generalizations. The rules transform configurations into configurations. A configuration
is a quadruple A;S;L;B, where A is a set of anti-unification triples to be solved, S is a
set of already solved anti-unification triples (called the store), L is a set of pairs of an
anti-unification triple and a set of unit elements denoting the start of cycles in B, and B is a
set of bindings, representing the generalizations “computed so far”. The intuitive idea is to
take the obtained B at the end and construct from it a regular tree grammar, from which
one can read off each generalization. The set L is not used in the linear variant, but we will
need it in later cases when introducing cycles into the constructed grammar. We elaborate
on the details later, after the rules are formulated. Configurations are denoted by C.

It is assumed that all terms in A and S are in U-normal form and if U ∈ Ax(f) then εf
is the unit element of f . Also, when bindings of the form {x 7→ x} occur in B they will
automatically be dropped. The rules are defined as follows ( ·∪ stands for disjoint union):

Dec: Decomposition
{x : f(s1, . . . , sn) , f(t1, . . . , tn)} ·∪A; S; L; B =⇒

{y1 : s1 , t1, . . . , yn : sn , tn} ∪A; S; L; B{x 7→ f(y1, . . . , yn)}
where n ≥ 0, and y1, . . . , yn are fresh variables.

Exp-U-Both: Expansion for Unit, Both
{x : t , s} ·∪A; S; L; B =⇒

{x1 : g(t, εg) , s, x2 : g(εg, t) , s, y1 : t , f(s, εf ), y2 : t , f(εf , s)} ∪A; S; L;
B ∪ {x 7→ x1} ∪ {x 7→ x2} ∪ {x 7→ y1} ∪ {x 7→ y2},

where head(t) = f 6= g = head(s), U ∈ Ax(f) ∩Ax(g), and x1, x2, y1, y2 are fresh variables.

Exp-U-L: Expansion for Unit, Left
{x : t , f(s1, s2)} ·∪A; S; L; B =⇒

{x1 : f(t, εf ) , f(s1, s2), x2 : f(εf , t) , f(s1, s2)}∪A; S; L; B∪{x 7→ x1}∪{x 7→ x2},
where f 6= head(t), U ∈ Ax(f), U 6∈ Ax(head(t)), and x1, x2 are fresh variables.

Exp-U-R: Expansion for Unit, Right
{x : f(t1, t2) , s} ·∪A; S; L; B =⇒

{x1 : f(t1, t2) , f(s, εf ), x2 : f(t1, t2) , f(εf , s)} ∪A; S; L; B ∪ {x 7→ x1} ∪ {x 7→ x2},
where f 6= head(s), U ∈ Ax(f), U 6∈ Ax(head(s)), and x1, x2 are fresh variables.

Solve: Solve
{x : s , t} ·∪A; S; L; B =⇒ A; {x : s , t} ∪ S;L; B,
where head(s) 6= head(t) and U /∈ Ax(head(t)) ∪Ax((head(s))).

We denote this set of rules by Rlin. In order to compute linear U-generalizations of two
terms t and s, we create an initial configuration {x : t , s}; ∅; ∅; {xroot → x}, where xroot
and x are fresh variables, and apply the following strategy as long as possible:

Select an AUT a arbitrarily from the first component of the configuration.
Apply a rule in Rlin, applicable to a. (There is only one such rule for each a in Rlin.)
If the applied rule is Exp-U-Both, transform all four new AUTs by the Dec rule.
If the applied rule is Exp-U-L or Exp-U-R, transform both new AUTs by the Dec rule.

This strategy, called Step, will be used in other algorithms below as well. Therefore,
we describe it in Algorithm 1. It takes a configuration and an AUT, and returns back a
new configuration. In the algorithm, instead of writing “apply rule R to the configuration
C = A;S;L;B with the AUT a selected in A”, we simply write “apply rule R to a”.
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Algorithm 1 Procedure Step.

Require: A configuration C = A;S;L;B and an AUT a = x : t , s ∈ A.
1: if head(t) = head(s) then
2: Apply Dec to a, resulting in C′. Update C← C′
3: else if ∃f, g ∈ F : (U ∈ (Ax(f) ∩Ax(g)) ∧ head(s) = f 6= g = head(t)) then
4: Apply Exp-U-Both to a resulting in C′ = {a1,a2,a3,a4} ∪A;S;L;B′
5: Apply Dec to a1,a2,a1,a2 resulting in C′′. Update C← C′′
6: else if head(t) 6= head(s) ∧ ∃f ∈ F : (U ∈ Ax(f) ∧ head(s) = f) then
7: Apply Exp-U-L to a resulting in C = {a1,a2} ∪A;S;L;B′
8: Apply Dec to a1,a2 resulting in C′′. Update C← C′′
9: else if head(t) 6= head(s) ∧ ∃f ∈ F : (U ∈ Ax(f) ∧ head(t) = f) then
10: Apply Exp-U-R to a resulting in {a1,a2} ∪A;S;L;B′
11: Apply Dec to a1,a2 resulting in C′′. Update C← C′′
12: else
13: Apply Solve to a resulting in C′. Update C← C′
14: end if
15: return C

The linear U-generalization algorithm, GU-lin, is then an iterative application of Step, as
one can see in Algorithm 2.1 However, in that work we refrained from using a tree grammar-
based procedure. In Example 10 below, we apply GU-lin to the AUP x : g(f(a, c), a) , g(c, b)
over the alphabet {f, g, a, b, c, εf}, where a, b, and c are constants and g is a binary free
function symbol.

Algorithm 2 Procedure GU-lin.

Require: A configuration C = A;S;L;B
while A 6= ∅ do

a← x : t , s ∈ A
C← Step(C,a) (See Algorithm 1)

end while
return C

I Example 10.

{x : g(f(a, c), a) , g(c, b)}; ∅; ∅; {xroot 7→ x} =⇒Dec

{x1 : f(a, c) , c, x2 : a , b}; ∅; ∅; {xroot 7→ g(x1, x2)} =⇒Exp-U-L, Dec×2

{x3 : a , εf , x4 : c , c, x5 : a , c, x6 : c , εf , x2 : a , b}; ∅; ∅;
{xroot 7→ g(x1, x2), x1 7→ f(x3, x4), x1 7→ f(x5, x6)} =⇒Dec

{x3 : a , εf , x5 : a , c, x6 : c , εf , x2 : a , b}; ∅; ∅;
{xroot 7→ g(x1, x2), x1 7→ f(x3, c), x1 7→ f(x5, x6)} =⇒Solve×4

∅; {x3 : a , εf , x5 : a , c, x6 : c , εf , x2 : a , b}; ∅;
{xroot 7→ g(x1, x2), x1 7→ f(x3, c), x1 7→ f(x5, x6)}

1 Linear U-anti-unification is discussed in [9].
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We refer to the final binding set as B. Thus, L(G(B)) ≈U {g(f(x3, c), x2), g(f(x5, x6), x2)}.
Note that g(f(x5, x6), x2) ≺U g(f(x3, c), x2).

I Theorem 11 (Termination). The procedure GU-lin is terminating.

Proof. Let the depth of an AUP be dep(x : t , s) = dep(t) + dep(s), and the complexity
measure of a configuration A;S;L;B be the multiset of depths of AUPs in A. We compare
measures by multiset extension of the standard ordering on natural numbers. The extension
is well-founded. After each iteration of the loop in Algorithm 2, the complexity measure of
C strictly decreases. Hence, the algorithm terminates. J

Termination of GU-lin means that any sequence of rule transformations, starting from the
initial configuration, is finite: {x : t , s}; ∅; ∅; {xroot 7→ x} =⇒∗ ∅;S;L;B. In the terminal
configuration the first component is empty, for otherwise there is always an applicable rule.
The set of bindings B at the end is called the GU-lin-computed set of bindings.

I Theorem 12 (Soundness). If {x : t , s}; ∅; ∅; {xroot 7→ x} =⇒∗ ∅;S;L;B is a transforma-
tion sequence of GU-lin, then for every r ∈ L(G(B)), r �U t and r �U s.

Proof. We can prove soundness by induction over the length of the derivation, based on
the fact that if L(G(B)) is a set of generalizations of an AUT x : t , s and {x : t ,
s} ∪ A;S;L;B =⇒ A′;S′;L′;B′ is a transformation step, then L(G(B′)) is also a set of
generalizations of x : t , s. For a transformation with Dec rule the proof of this property is
standard. For Solve rule it is obvious. For the expansion rules it follows from two facts: first,
B′ is obtained from B by bindings of a variable to a variable (e.g., x to x1) and second, all
new AUTs obtained by these rules are U-equivalent to the original one (e.g., an AUT whose
generalization is x1 is U-equivalent to the AUT whose generalization was x). J

For the set B computed by the procedure, we call L(G(B)) the set of generalizations
computed by GU-lin.

I Theorem 13 (Completeness of GU-lin). Let s be a linear U-generalization of two terms t1 and
t2. Then there exists a transformation sequence {x : t1 , t2}; ∅; ∅; {xroot 7→ x} =⇒∗ ∅;S;L;B
in GU-lin such that for some term r ∈ L(G(B)), s �U r.

Proof. See Appendix A. J

I Theorem 14. The set L(G(B)) computed by GU-lin is finite for any input.

Proof. At every step of GU-lin only one of the inference rules is applicable to the current
configuration. None of the rules used in the GU-lin procedure introduce cycles into the
grammar. Thus, the final set of bindings produces a tree grammar with a finite language. J

I Theorem 15. Linear unital anti-unification is finitary.

Proof. By Theorem 13 & 14. J

5 One-unital fragment

The next special case of U-anti-unification allows arbitrary generalizations (not only linear
ones), but takes input from a language with only one unital function. We call this special
case a one-unital fragment, and the corresponding alphabet one-unital alphabet.
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Lifting the linearity restriction leads to an extension of the rule system. If two variables
generalize the same AUTs, they should be merged. Besides, cycles should be permitted in
the grammar. These changes are reflected in the set of rules Rone(f) given below. They will
be used together with the Rlin rules to solve generalization problems with one unital symbol.

One will probably notice that the cycle rules allows the construction of a grammar with
an infinite language, however, as shown in Theorem 20, only a finite number of these terms
are least general generalization. In some sense the cycle rules allow for the construction
of more expressive tree grammars than necessary for finding the minimal complete set of
generalizations. It is reasonable to expect that less expressive versions of the rules may be
developed specifically for the one-unital fragment. However, as presented here we highlight
the relationship between this fragment and the algorithm we present for the general procedure.
Essentially in the one-unital fragment only a finite portion of the terms generated by the
cycles are least general generalizations where in the general case all the terms resulting from
a cycle may be ordered by generality.

Start-Cycle-U: Cycle introduction for Unit
{x : t , s} ·∪A; S; L; B =⇒ {y1 : f(t, εf ) , f(εf , s), y2 : f(εf , t) , f(s, εf ), y3 : t , s} ∪A;

S; {({x : t , s}, {εf})} ∪ L; B ∪ {x 7→ y1} ∪ {x 7→ y2},
where U ∈ Ax(f), ({y : t , s},Un) 6∈ L for any y and Un, head(t) 6= εf or head(s) 6= εf ,
U 6∈ Ax(head(t)) ∪Ax(head(s)), and y1 and y2 are fresh variables.

Sat-Cycle-U: Cycle Saturation for Unit
{x : t , s} ·∪A; S; {({y : t , s},Un)} ∪ L; B =⇒
{x : t , s} ∪A; S; ({y : t , s},Un) ∪ L; B{x 7→ y} ∪ {y 7→ x},

where x 6= y and {y 7→ x} 6∈ B.

Merge: Merge
∅; {x1 : s1 , t1, x2 : s2 , t2} ·∪ S; L; B =⇒ ∅; {x1 : s1 , t1} ∪ S; L; B{x2 7→ x1},
where s1 ≈U s2 and t1 ≈U t2.

For a given AUT, the Start-Cycle-U rule adds two new AUTs, which are U-equivalent to
the given one. The original AUT is still present, just with a renamed generalization variable.
It will be used for saturation. In Algorithm 3, we define a strategy for applying the new
cycle rules. We “exhaustively” (see line 6) apply Sat-Cycle-U because applying Dec to the
AUPs resulting from Start-Cycle-U may result in AUPs present in the cycle set L.

Algorithm 3 Procedure Cycle(C,a).

Require: A configuration C = A;S;L;B, an AUT a = x : t , s

1: if ∃f ∈ F : (U ∈ Ax(f) ∧ ({y : t , s}, Un) 6∈ L) then
2: Apply Start-Cycle-U to a resulting in C′ = {a1,a2, x

′ : t , s} ∪A;S;L′;B′
3: Apply Dec to a1,a2 resulting in C′′. Update C← C′′ and a← x′ : t , s

4: end if
5: Exhaustively apply Sat-Cycle-U to C resulting in C∗. Update C← C∗
6: return (C,a)

The one-unital-function anti-unification algorithm GU(f) is a strategy of applying the
rules in Rlin ∪Rone(f) as defined in Algorithm 4.
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Algorithm 4 Procedure for GU(f).

Require: A configuration C = A;S;L;B
while A 6= ∅ do

a← x : t , s ∈ A
(C,a)← Cycle(C,a) (See Algorithm 3)
C← Step(C,a) (See Algorithm 1)
Exhaustively apply Sat-Cycle-U to C resulting in C∗. Update C← C∗

end while
Exhaustively apply Merge to C resulting in C∗. Update C← C∗
return C

I Example 16. Observe that the AUP addressed in Example 10 is solved over an alphabet
with a single unital function symbol. Now we try to solve it using GU(f).

{x : g(f(a, c), a) , g(c, b)}; ∅; ∅; {xroot 7→ x} =⇒Start-Cycle-U

{x1 : g(f(a, c), a) , g(c, b), x2 : f(g(f(a, c), a), εf ) , f(εf , g(c, b)),

x3 : f(εf , g(f(a, c), a)) , f(g(c, b), εf )}; ∅; {(x : g(f(a, c), a) , g(c, b), {εf})};
{xroot 7→ x, x 7→ x2, x 7→ x3} =⇒Dec

{x1 : g(f(a, c), a) , g(c, b), x2 : f(g(f(a, c), a), εf ) , f(εf , g(c, b)), x4 : εf , g(c, b),

x5 : g(f(a, c), a) , εf}; ∅; {(x : g(f(a, c), a) , g(c, b), {εf})};
{xroot 7→ x, x 7→ x2, x 7→ f(x4, x5)} =⇒Dec

{x1 : g(f(a, c), a) , g(c, b), x4 : εf , g(c, b), x5 : g(f(a, c), a) , εf ,

x6 : g(f(a, c), a) , εf , x7 : εf , g(c, b)}; ∅; {(x : g(f(a, c), a) , g(c, b), {εf})};
{xroot 7→ x, x 7→ f(x6, x7), x 7→ f(x4, x5)},=⇒Sat-Cycle-U

{x1 : g(f(a, c), a) , g(c, b), x4 : εf , g(c, b), x5 : g(f(a, c), a) , εf ,

x6 : g(f(a, c), a) , εf , x7 : εf , g(c, b)}; ∅; {(x : g(f(a, c), a) , g(c, b), {εf})};
{xroot 7→ x, x 7→ f(x6, x7), x 7→ f(x4, x5), x 7→ x1} =⇒Dec

{x4 : εf , g(c, b), x5 : g(f(a, c), a) , εf , x6 : g(f(a, c), a) , εf , x7 : εf , g(c, b),

x8 : f(a, c) , c, x9 : a , b}; ∅; {(x : g(f(a, c), a) , g(c, b), {εf})};
{xroot 7→ x, x 7→ f(x6, x7), x 7→ f(x4, x5), x 7→ g(x8, x9)} =⇒Start-Cycle-U

· · ·

∅; {x10 : εf , g(c, b), x17 : g(f(a, c), a) , εf , x33 : a , b, x40 : εf , c, x76 : εf , b,

x83 : a , εf , x146 : a , c, x153 : c , εf};L; {xroot 7→ x, x 7→ g(f(x28, x61), f(x83, x76)),
x 7→ g(f(x83, f(x153, x40)), x33), . . . , x 7→ g(f(x83, c), f(x76, x83)),

x 7→ g(f(x70, x28), x33), x 7→ g(f(x83, f(x40, x153)), x33), . . . ,
x 7→ g(f(x61, x28), f(x76, x83)), x 7→ g(f(x83, c), f(x83, x76)), . . .}.

The complete derivation contains 217 rule applications. Here we skipped most of them.
The final binding set, after removing useless bindings, has 26 bindings together with a single
non-terminal.2 However, the majority of the generalizations contained in the language of
this grammar are comparable. We underline the two incomparable generalizations pro-
duced by the algorithm, and refer to them as g1 and g2. In fact, the set {g1,g2} forms

2 See Section C for the grammar generated by our implementation.
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mcsgU(g(f(a, c), a), g(c, b)).3 Observe that they are less general than the terms computed in
Example 10, indicating that the expansion rules are not enough to construct all non-linear
generalizations even when only one function symbol is unital. We did not even need the
Merge rule to obtain those nonlinear generalizations. The cycle rules created them.

I Theorem 17 (Termination). GU(f) is terminating for AUPs over an one-unital alphabet.

Proof. To a given AUT, Cycle can apply only once, because afterwards the AUT is put in
the set L. To each of the AUTs obtained by the application of the Start-Cycle-U the same
rule can apply again at most once, since the further obtained AUTs are either of the form
x : εf , εf , or are already placed in L. The saturation rule applies once to each element in L.
Hence, the cycle rules can apply only finitely many times. The other rules strictly decrease
the measure as defined in the proof of Theorem 11. It implies that GU(f) terminates. J

I Theorem 18 (Soundness). If {x : t , s}; ∅; ∅; {xroot 7→ x} =⇒∗ ∅;S;L;B is a transforma-
tion sequence of GU(f) for AUPs over an one-unital alphabet, then for every g ∈ L(G(B)),
g �U t and g �U s.

Proof. Similar to Theorem 12. For the cycle rules, the argument is the same as for the
expansion rules. J

The notion of computed grammar is defined for GU(f) in the same way as for GU-lin.

I Theorem 19 (Completeness of GU(f)). Let t1, t2, and s be terms over an one-unital alphabet
such that s is a U-generalization of t1 and t2. Then there exists a transformation sequence
{x : t1 , t2}; ∅; ∅; {xroot 7→ x} =⇒∗ ∅;S;L;B using the procedure GU(f) such that for some
term r ∈ L(G(B)), s �U r.

Proof. We assume that t1, t2, and s are in U-normal form. We prove the theorem by
induction on dep(t1) + dep(t2) which we denote by n. Furthermore we will denote the unital
function by f and its unit by εf .
Case 1: n = 2, i.e., t1 and t2 are constants.
a) The case dep(s) = 1 is handled in a similar way as case 1 a) of the proof of Theorem 13.
b) Now assume as the induction hypothesis that for every generalization s of t1 and t2 of

depth at most k, either s �U t1 and t1 = t2, or s �U x and t1 6= t2. We show that this
holds for a generalization s′ of depth k + 1. By our assumptions, s′ = f(s1, s2) for some
terms s1 and s2.

Let σ1 and σ2 be substitutions such that s′σ1 = t1 and s′σ2 = t2. If s1σ1 = s1σ2 = εf
(resp. if s2σ1 = s2σ2 = εf ), then, by the induction hypothesis, s2 �U t1 (resp., s1 �U t1)
when t1 = t2, or s2 �U x (resp., s1 �U x) when t1 6= t2. Without loss of generality,
this implies that for every x ∈ var(s1), xσ1 = xσ2 = εf , being that f is the only unital
function. Thus, there exists a substitution ϑ such that s1ϑ = εf and s2ϑ ≈U s

′
2 where s′2

is still a generalization of t1 and t2, i.e., s′ϑ = s′2 or s′ ≺U s
′
2.

However, if s2σ1 = εf and s1σ2 = εf , or vice versa, then additional observations are
required. We assume the former case, without loss of generality.

If t1 = t2 then both s1 and s2 are generalizations of t1 , t2 and by the induction
hypothesis s1 �U t1 and s2 �U t1. If t1 6= t2 then we need to make a distinction:

3 The algorithm in [1] computes generalizations that are more general than g1 and g2.
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b1. If neither t1 nor t2 is εf , then there exists a variable y occurring in s1 such that
yσ1 = t1 and a variable y′ occurring in s2 such that y′σ2 = t2. Note that if either t1 or
t2 occurs in s′ then s′ is not a generalization t1 , t2. Let use assume that either y or
y′ occurs in s2 or s1, respectively. without loss of generality we assume that y occurs
in s2. However, this would imply that s2σ1 = t1 resulting in the term f(t1, t1) unless
t1 = εf , which contradicts our assumptions. Thus, y cannot occur in s2. This implies
that there exist two substitutions σ′1 and σ′2 which coincide everywhere with σ1 and
σ2 except on y and y′ respectively. That is, yσ′1 = t1, yσ′2 = t2, y′σ′1 = yσ′2 = εf .
This implies that s1 is a generalization of t1 , t2 which has depth < k + 1. Thus,
s1 �U x.

b2. Either t1 or t2 is εf . The proof is similar to the case b1 by showing that the variable
generalizing the term which is not equivalent to εf cannot occur in both s1 and s2.

Case 2: n > 2.
a) Assume that t1 = g(w1, . . . , wm) and t2 = g(r1, . . . , rm), such that U 6∈ Ax(g). Then GU(f)

performs the following rule applications to the initial configuration:

{x : t1 , t2}; ∅; ∅; {xroot 7→ x} =⇒Start-Cycle-U, (Dec×2)

{x1 : t1 , εf , x2 : εf , t2, y1 : t1 , εf , y2 : εf , t2, x3 : t1 , t2}; ∅;

{(x : t1 , t2, {εf})}; {xroot 7→ x, x 7→ f(x1, x2), x 7→ f(y2, y1)} =⇒Sat-Cycle-U

{x1 : t1 , εf , x2 : εf , t2, y1 : t1 , εf , y2 : εf , t2, x3 : t1 , t2}; ∅;

{(x : t1 , t2, {εf})}; {xroot 7→ x, x 7→ f(x1, x2), x 7→ f(x2, x1), x 7→ x3} =⇒Dec

{x1 : t1 , εf , x2 : εf , t2, y1 : t1 , εf , y2 : εf , t2, z1 : w1 , r1, . . . , zm : w1 , rm};

∅; {(x : t1 , t2, {εf})}; {xroot 7→ x, x 7→ f(x1, x2), x 7→ f(x2, x1), x 7→ g(z1, . . . , zm)}

The case when s = g(s1, . . . , sm) is handled in a similar fashion as in case 2a) of the proof
of Theorem 13, though we may need to apply additional Merges.
If s = f(s1, s2) then it may be the case, without loss of generality, that s1 generalizes
t1 , εf and s2 generalizes εf , t2. This case may also be handled in a similar fashion as
in case 2a) of the proof of Theorem 13, though we may need to apply additional Merges.
The final case to consider is s = f(s1, s2) and, without loss of generality, s2 generalizes
εf , εf . This implies that for all x ∈ var(s2), xσ1 = xσ2 = εf . Similar to case 1b) above
we can reconstruct the substitutions such that s �U s1.

b) Assume that t1 = f(w1, w2) and t2 = f(r1, r2), such that U ∈ Ax(f). We can proceed in
a similar fashion as in case 2a).

c) Assume that ti = f(w1, w2) and t(i+1 mod 2) = g(r1, . . . , rk), where i ∈ {1, 2}. we can
proceed in a similar fashion as in case 2b) except that we apply Exp-U-Both, Exp-U-L or
Exp-U-R prior to applying Dec. J

I Theorem 20. The set L(G(B)) computed by GU(f) contains only finitely many incomparable
generalizations.

Proof. Notice that in case 1 of Theorem 19 only one generalization exists for a given
AUP whose left and right term are constant. In case 2 of Theorem 19 we show that the
generalizations of a given AUP can be constructed from the generalizations of the direct
subterms. The only point which makes reference to possibly infinite chains of generalizations
comes at the end of case 2a). However, it was shown that this case is degenerate. Thus,
we can redo the inductive construction of Theorem 19 to prove that L(G(B)) contains only
finitely many non-comparable generalizations. To show that it is not unitary we need only
to consider the f(a, a) , a where U ∈ Ax(f), which has two generalizations. J
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I Theorem 21. Anti-unification over an one-unital alphabet is finitary.

Proof. By Theorem 19 & 20. J

A problem one might have noticed concerning GU(f) is that the computed bindings
produce a verbose grammar. Most of the generalizations in the language of the grammar are
comparable. However, prior to termination, it is not clear which paths may be pruned from
the search. The binding set produced by GU(f) almost always produces a tree grammar with
an infinite language which contains a finite set of incomparable generalizations. Possible
ways of pruning need further investigations.

6 An algorithm for unrestricted unital anti-unification

The unrestricted case generalizes one-unital anti-unification by permitting more than one
unital symbol. To accommodate them in cycles, we need an extra rule, which resembles
to Start-Cycle-U in that it extends the set L, but only for AUTs already existing there, by
adding a new unit element.

Branch-Cycle-U: Branching Cycle for Unit
{x : t , s} ·∪A; S; {({y : t , s},Un)} ∪ L; B =⇒
{y1 : f(t, εf ) , f(εf , s), y2 : f(εf , t) , f(s, εf ), y3 : t , s} ∪A; S;
{({y : t , s}, {εf} ∪Un)} ∪ L; B{x 7→ y} ∪ {y 7→ y1} ∪ {y 7→ y2},

where U ∈ Ax(f), εf 6∈ Un, head(t) 6= εf or head(s) 6= εf , U 6∈ Ax(head(t)) ∪ Ax(head(s)),
and y1 and y2 are fresh variables.

We get the set of all rules for unital generalization RU := Rlin∪Rone(f)∪{Branch-Cycle-U},
and the procedure that is based on them is denoted by GU. It is formulated in Algorithm 5.

Algorithm 5 Procedure GU.

Require: A configuration C = A;S;L;B
1: while A 6= ∅ do
2: a← x : t , s ∈ A
3: (C,a)← Cycle(C,a) (See Algorithm 3)
4: if ∃f ∈ A : (U ∈ Ax(f) ∧ ({y : t , s},Un) ∈ L ∧ εf 6∈ Un) then
5: repeat
6: Apply Branch-Cycle-U to a resulting in C′ = {a1,a2, x

′ : t , s} ∪A;S;L′;B′
7: Apply Dec to a1,a2 resulting in C′′. Update C← C′′ and a← x′ : t , s

8: Exhaustively apply Sat-Cycle-U to C resulting in C∗. Update C← C∗
9: until ∀f ∈ A : (U ∈ Ax(f) ∧ ({y : t , s},Un) ∈ L)⇒ εf ∈ Un)
10: end if
11: C← Step(C,a) (See Algorithm 1)
12: Exhaustively apply Sat-Cycle-U to C resulting in C∗. Update C← C∗
13: end while
14: Exhaustively apply Merge to C resulting in C∗. Update C← C∗
15: return C

Note that at each step in the procedures outlined in Algorithms 2, 4, and 5, there is only
one rule applicable to the current configuration. Thus, each procedure produces a single tree
grammar whose language is the computed generalizations of the initial AUP. Termination
and soundness of GU depends on termination and soundness of Branch-Cycle-U, which can
be established similarly to Start-Cycle-U. Completeness of GU needs further study.
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I Theorem 22. The algorithm GU is terminating and sound.

We have seen in Section 3 that unital anti-unification with two unital symbols is nullary,
based on the AUPs εf , εg. Such AUPs can be generated with the help of Branch-Cycle-U
even from such trivial problems as, e.g., a , a.

7 Combined theories

In this section we consider the combination of unit element theories with other common
equational theories such as A (Associativity), C (Commutativity), and I (Idempotency).

Observe that the anti-unification problems used to prove Theorem 9, i.e., εf , εg and εg ,
εf , are still problematic when considering the combined theories CU, AU, ACU. For example,
modulo CU, AU, and ACU, f(x, g(x, y)) 6≈u x, for u ∈ {CU,AU,ACU}, when U ∈ Ax(f) and
U ∈ Ax(g). Thus, the argument outlined in Section 3 still applies to these cases. However,
for UI we have f(x, g(x, y)) �UI x, i.e., f(x, g(x, y)){y 7→ x} = f(x, g(x, x)) �UI f(x, x) �UI x

where U, I ∈ Ax(f) and U, I ∈ Ax(g). Thus, our proof of nullarity for unital theories cannot
be extended to UI. As it was shown in [8], a theory with a single idempotent function is
infinitary if there is an AUP with a so called base set of generalizations of size at least two.
It is not completely clear that a similar result will hold for UI and ACUI.

Concerning the special cases, since C, A, and AC are finitary [1], we expect that their
linear variant and one-unital fragment remain finitary, despite the fact that the existing
algorithms are not based on the tree grammar representation and would require reworking.
This can be done in a straightforward manner similar to our handling of the U-decomposition
rules we define above. When using the tree grammar formulation described in this paper or
as described in [8], one either needs to describe how to join tree grammars as in [8], or write
rules in such a way that all possibilities are exhausted by a single rule application. Notice the
U-decomposition rules introduce all possible decompositions modulo U into the configuration.
The existing rules for C, A, and AC can be adjusted to our framework in a similar way, i.e.,
it would require writing a rule which adds all decomposition paths simultaneously to the
current configuration.

8 Discussion

In this work we showed that unital anti-unification is of type zero. We also distinguished two
cases the problem is finitary: linear variant and one-unital fragment. We provided procedures
for solving those special cases, and proved their termination, soundness, and completeness.
Besides, we provide a terminating and sound general procedure for computing unrestricted
unital generalizations. These procedures are based on tree grammar construction in a similar
fashion as in earlier work on idempotent equational theories [8]. We also briefly discussed
generalization type in combined theories such as CU, AU, ACU, ACUI, and UI.

We end the paper with the following list of open questions:
Is the general procedure GU complete for arbitrary unital theories?
Modify the one-unital procedure GU(f) so that it produces less verbose tree grammars.
Can the rules outlined in [1] be joined with the rules from Rone(f) to produce minimal
complete procedures for restrictions of CU, AU, ACU.
Are unrestricted ACUI and UI infinitary or nullary?
Can the techniques used here and [8] be generalized to AU for any collapse theory?
Are there non-trivial collapse theories with unitary or finitary AU type?
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A Proof of Theorem 13

Proof. We assume that t1, t2, and s are in U-normal form. We prove the theorem by
induction on dep(t1) + dep(t2) which we denote by n.
Case 1: n = 2, i.e., t1 and t2 are constants.
a) First, assume that dep(s) = 1. If t1 = t2, then s = t1 = t2 and s is computed by the

derivation {x : t1 , t2}; ∅; ∅; {xroot 7→ x} =⇒Dec ∅; ∅; ∅; {xroot 7→ t1}. If t1 6= t2, then s

must be a variable, computed by the derivation {x : t1 , t2}; ∅; ∅; {xroot 7→ x} =⇒Sol
∅; {x : t1 , t2}; ∅; {xroot 7→ x} . Note that, in both cases the resulting tree grammars
are trivial, both have a language of size 1. Thus, we will refer to the members of these
languages directly rather than evoking the tree grammar itself.

b) Now assume as the induction hypothesis that for every generalization s of t1 and t2 of
depth at most k, either s � t1 and t1 = t2, or s � x and t1 6= t2. We show that this holds
for a generalization s′ of depth k + 1. Let head(s′) = f . Our assumptions imply that
U ∈ Ax(f) because both t1 and t2 are of depth 1. Thus, s′ = f(s1, s2).

By the definition of a generalization, there must exists two substitutions σ1 and σ2
such that s′σ1 = t1 and s′σ2 = t2. If s1σ1 = s1σ2 = εf (resp. if s2σ1 = s2σ2 = εf ), then
s2 (resp., s1) is, by the induction hypothesis, more general than t1 when t1 = t2, or more
general than x when t1 6= t2. This implies, by the linearity assumption that there exists a
substitution ϑ such that s2ϑ = s2 and s1ϑ = εf . Thus, s′ϑ = s2, i.e. s′ ≺ s2.

However, if s2σ1 = εf and s1σ2 = εf , or vice versa, then additional observations are
required. We assume without loss of generality the former case.

If t1 = t2 then both s1 and s2 are generalizations of t1 , t2 and by the induction
hypothesis s1 � t1 and s2 � t1. If t1 6= t2 then we need to make a distinction:
b1. If neither t1 nor t2 are units of function constants ft1 and ft2 , respectively, which

may appear in s, then there exists a variable y occurring in s1 such that yσ1 = t1 and
a variable y′ occurring in s2 such that y′σ2 = t2. However, by the linearity of S, this
implies that there exist two substitutions σ′1 and σ′2 which coincide everywhere with
σ1 and σ2 except on y and y′ respectively. That is, yσ′1 = t2 and y′σ′2 = t1. This
implies that both s1 and s2 are generalizations of t1 , t2 which have depth ≤ k + 1.
Thus, s1 � x and s2 � x.

b2. If either t1 or t2 is a unit of the function constants ft1 and ft2 , respectively, which
may appear in s, then additional observations are necessary. If neither t1 or t2 occurs
in s then we have the same situation as in case b1. Otherwise, if ft1 occurs in s1
(respectively ft2 in s2) then it must occur as the head symbol of a term with t1 as
a subterm because s1σ2 = εft1

. This implies that there must be a variable y in s1
which σ1 maps to t1. Similar can be said concerning s2, t2, and σ2. We can construct
a new substitution which coincides with σ1 (respectively, with σ2) everywhere but on
the variable y (resp. y′) which it maps to t2 (resp. to t1). This means that s1 and s2
are generalizations of t1 , t2 and by the induction hypothesis s1 � x s2 � x. This
completes the case 1.

Case 2: n > 2.
a) Let us assume that t1 = f(w1, . . . , wm) and t2 = f(r1, . . . , rm), such that U 6∈ Ax(f).

Then by applying the Dec rule to the AUP x : t1 , t2 we get m AUPs x1 : w1 , r1, . . . ,

xm : w1 , r1 each of which has a depth sum ≤ n−1. Thus, by the induction hypothesis, for
each generalization s′ generalizing Xi : wi , ri there exists a generalization s∗i ∈ L(G(Bi)),
where Bi is the final set of bindings computed using GU-lin, such that, s′ � s∗i . Now
let S∗i be the set of all such generalizations computed using GU-lin. We may now define
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the set of generalizations S∗ as S∗ = {f(s∗1, . . . , s∗m) | s∗i ∈ S∗i for all 1 ≤ i ≤ m} . Note
that each term in S∗ is a generalization of X : t1 , t2 computed using GU-lin in is
contained in L(G(B)), where B is the final set of bindings computed using GU-lin. Thus,
any generalization s′ of X : t1 , t2 such that head(s′) = f is more general than
some generalization of S∗. Thus we need only to consider generalization s′ such that
head(s′) 6= f . This implies that U ∈ Ax(head(s′)).

If s′ does not contain f , then s′ � X. Thus let us assume that s′ = g(s′1, s′2) where
U ∈ Ax(g) and without loss of generality head(s′1) = f . This implies that s′2 � εg (note
that s′ is linear) and thus s′1 � s′. This reduction can be performed inductively thus
showing that for any generalization s′ with head(s′) 6= f there exists s′′ ∈ S∗ such that
s′ � s′′.

b) Let us assume that t1 = f(w1, w2) and t2 = f(r1, r2), such that U ∈ Ax(f). Then we can
proceed in a similar fashion as in case b) by constructing S∗. Thus, any generalization s′
of X : t1 , t2 such that head(s′) = f and s′ = f(d1, d2), where d1 is a generalization of
w1 , r1, d2 a generalization of w2 , r2, is more general than some generalization of S∗.
When U ∈ Ax(head(s′)) and some generalization s′′ is a subterm of s′ such that there
exists s∗ ∈ S∗ with s′′ � s∗, a similar approach can be taken as in the second half of case
2a).

c) Let us assume that t1 = f(w1, . . . , wm) and t2 = g(r1, . . . , rk), where either U ∈ Ax(f) or
U ∈ Ax(g), or both. By an application of Exp-U-Both, Exp-U-L, or Exp-U-R this case can
be reduced to two (possibly four) instances of case 2b). J

B Example used for the proof of nullarity

Below is the tree grammar computed from the final configuration of GU applied to εg , εf .
Computation of the final binding set required the application of 86 rules to the initial
configuration.

G =


{x} ,


x,x1,

x5,x11
x18,x29

 ,


f, g,

εf , εg,

x8, x36

 ,



x 7→ g(x,x5), x 7→ g(x5,x)
x 7→ x1, x 7→ x8
x1 7→ f(x,x11), x1 7→ f(x11,x)
x5 7→ f(x,x18), x5 7→ f(x18,x)
x5 7→ εg, x11 7→ g(x18,x)
x11 7→ g(x,x18), x11 7→ εf
x18 7→ x29, x18 7→ x36
x18 7→ g(x5,x18), x18 7→ g(x18,x5)
x29 7→ f(x18,x11), x29 7→ g(x11,x18)




.

If we clean the grammar by removing redundant bindings we get the tree grammar G′:

G′ =


{x} ,

{
x,
y

}
,


f, g,

εf , εg,

y, z

 ,



x 7→ g(x, f(x,y)), x 7→ f(x, g(x,y))
x 7→ f(g(y,x),x), x 7→ x

x 7→ g(x, f(y,x)), x 7→ f(x, g(y,x))
x 7→ f(g(x,y),x), x 7→ g(f(y,x),x)
x 7→ g(f(x,y),x), y 7→ f(g(y,x),y)
y 7→ g(y, f(y,x)), y 7→ f(y, g(y,x))
y 7→ g(f(y,x),y), y 7→ y

y 7→ f(y, g(x,y)), y 7→ g(y, f(x,y))
y 7→ f(g(x,y),y), y 7→ g(f(x,y),y)




.

FSCD 2020
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Some of the generalizations contained in the language of this grammar are x, f(x, g(x, y)),
f(x, g(y, x)), f(g(y, x), x), f(g(y, x), f(x, g(x, y))), f(g(y, f(x, g(x, y))), f(x, g(x, y))), and
f(f(x, g(x, y)), g(f(x, g(x, y)), y)). Observe that some of these generalizations are comparable
and form a subsequence of an infinite chain of less generality.

C Grammar generated for Example 16

Below is the tree grammar computed from the final configuration of GU(f) applied to
g(f(a, c), a) , g(c, b). Note that g is non-unital and no unit elements show up in the
initial AUP. Computation of the final binding set required the application of 217 rules to the
initial configuration. We only provide the cleaned version of the tree grammar. Note that
the language of the resulting tree grammar is finite.

G =
(
{x} ,

{
x
}
,

{
f, g, εf , a, b,

c, y, z, y′, z′

}
, B

)
,

where B is the set

x 7→ g(f(f(y, z), y′), z′) x 7→ g(f(y, z), f(y′, z′)) x 7→ g(f(f(z, y′), y), f(z, z′))
x 7→ g(f(f(z, y), y′), f(z, z′)) x 7→ g(f(y, y′), z′) x 7→ g(f(f(y, z), y′), f(z′, z))
x 7→ g(f(y, f(z, y′)), z′) x 7→ g(f(z, f(y, y′)), z′) x 7→ g(f(z, f(y′, y)), z′)
x 7→ g(f(f(z, y), y′), f(z′, z)) x 7→ g(f(f(z, y′), y), f(z′, z)) x 7→ f(y, z)
x 7→ g(f(z, c), f(y, z)) x 7→ g(f(y, y′), f(z′, z)) x 7→ g(f(z, f(y, y′)), f(z, z′))

x 7→ g(f(y, f(z, y′)), f(z, z′)) x 7→ g(f(z, f(y′, y)), f(z, z′)) x 7→ g(f(z, c), z′)
x 7→ g(f(f(z, y′), y), z′) x 7→ g(f(z, f(y, y′)), f(z′, z)) x 7→ g(f(y, f(z, y′)), f(z′, z))
x 7→ g(f(f(y, z), y′), f(z, z′)) x 7→ g(f(z, c), f(z, y)) x 7→ g(f(z, f(y′, y)), f(z′, z))
x 7→ f(y, z) x 7→ g(f(f(z, y), y′), z′)



.

Observe that of the 26 terms contained in L(G), there are only two incomparable terms,
g(f(z, c), f(y, z)) and g(f(z, c), f(z, y)).
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Abstract

We present a framework for symbolically executing and model checking higher-order programs with

external (open) methods. We focus on the client-library paradigm and in particular we aim to check

libraries with respect to any definable client. We combine traditional symbolic execution techniques

with operational game semantics to build a symbolic execution semantics that captures arbitrary

external behaviour. We prove the symbolic semantics to be sound and complete. This yields a

bounded technique by imposing bounds on the depth of recursion and callbacks. We provide an

implementation of our technique in the K framework and showcase its performance on a custom

benchmark based on higher-order coding errors such as reentrancy bugs.
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1 Introduction

Two important challenges in program verification are state-space explosion and the environ-

ment problem. The former refers to the need to investigate infeasibly many states, while the

latter concerns cases where the code depends on an environment that is not available for

analysis. State-space explosion has been approached with a range of techniques, which have

led to verification tools being nowadays routinely used on industrial-scale code (e.g. [10, 5, 7]).

The environment problem, however, remains largely unanswered: verification techniques

often require the whole code to be present for the analysis and, in particular, cannot analyse

components like libraries where parts of the code are missing (e.g. the client using the library).

This problem is particularly acute in higher-order programs, where the interaction between a

program and its environment can be intricate and e.g. involve callbacks or reentrant calls. In

this paper we address this latter problem by combining game semantics, a semantics theory

for higher-order programs, with symbolic execution, a technique that uses symbolic values to

explore multiple execution paths of a program.

To showcase the importance and challenges of the environment problem, following is a

simple example of a library written in a sugared version of HOLi, the vehicle language of this

paper. The example is a simplified implementation of “The DAO” smart contract, a failed

decentralised autonomous organisation on the Ethereum blockchain platform [12]. As with

libraries, the challenge in analysing smart contracts is that the client code is not available.

We must thus generate all possible contexts in which the contract can be called. In this case,

the error is caused by a reentrant call from the send() method, which is provided by the
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environment. When this method is called, the environment takes control and is allowed to

call any method in the library. If a client were to call withdraw() within its send() method,

the recursive call would drain all the funds available, which is simulated in this example by a

negative balance. This happens because the method is manipulating a global state, and is

updating it after the external call. We can see that an analysis capturing this error would

need to be able to predict an intricate environment behaviour. Moreover, such an analysis

should ideally only predict realisable environment behaviours.

1 import send:(int → unit)

2 int balance := 100;

3

4 public withdraw (m:int) :(unit) =

5 if (not (! balance < m)) then

6 send(m);

7 balance := !balance - m;

8 assert(not(! balance < 0))

9 else ();

Symbolic execution [33, 13, 19] explores all paths of a program using symbolic values

instead of concrete input values. Each symbolic path holds a path condition (a SAT formula)

that is satisfiable if and only if the path can be concretely executed. While the resulting

analysis is unbounded in general, by restricting our focus to bounded paths we can soundly

catch errors, or affirm the absence thereof up to the used bound. Game semantics [2, 14],

on the other hand, models higher-order program phrases in isolation as 2-player games:

sequences of computational moves (method calls and returns) between the program and

its hypothetical environment. The power of the technique lies in its use of combinatorial

conditions to precisely allow those game plays that can be realised by including the program

in an actual environment. Moreover, the theory can be formulated operationally in terms

of a trace semantics for open terms [18, 21, 16] which, in turn, lends itself to a symbolic

representation. The latter yields a symbolic execution technique that is sound and complete

in the following sense: given an open program, its symbolic traces match its concrete traces,

which match its realisable traces in some environment.

Returning to the DAO example, we can model the ensuing interaction as a sequence of

moves, alternating between the environment and the library. Any finite sequence of moves

(that leads to an assertion violation) is a trace defining a counterexample. Running the

example in HOLiK, our implementation of the symbolic semantics in the K Framework [32],

the following minimal symbolic trace is automatically found:

call〈withdraw, x1〉 · call〈send, x1〉 · call〈withdraw, x2〉
· call〈send, x2〉 · ret〈send, ()〉 · ret〈withdraw, ()〉 · ret〈send, ()〉

where x1 is the original call parameter, and x2 is the parameter for the reentrant call,

satisfiable with values x1 = 100 and x2 = 1. A fix would be to swap line 6 and 7, to update

internal state before passing control.

In Appendix A we look at a few more examples of libraries that exhibit errors due to

high-order behaviours. We provide three examples: a file lock example, a double deallocation

example, and an unsafe implementation of flat-combining.

Overall, this paper contributes a novel symbolic execution technique based on game

semantics to precisely model the behaviour of higher-order stateful programs. Specifically:

We present a symbolic trace semantics for higher-order libraries that captures the beha-

viour of an unknown environment, and prove it sound and complete: i.e. it produces no

spurious error traces, and is able to produce the complete execution tree of any library.
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Libraries L ::= B | abstract m;L
Blocks B ::= ε | public m = λx.M ;B

| m = λx.M ;B | global r := i;B
| global r := λx.M ;B

Clients C ::= L; main = M

Terms M ::= m | i | () | x | λx.M | r := M | !r
|M ⊕M | 〈M,M〉 | π1M | π2M

|MM | if M then M else M
| letrec x = λx.M in M
| let x = M in M | assert(M)

() : unit i : int
x ∈ Varsθ
x : θ

m ∈ Methsθ,θ′

m : θ → θ′
M,M ′ : int
M ⊕M ′ : int

M : int M1,M0 : θ
if M then M1 else M0 : θ

M : θ1 M ′ : θ2

〈M,M ′〉 : θ1 × θ2

〈M,M ′〉 : θ1 × θ2

πi〈M,M ′〉 : θi
r ∈ Refsθ

!r : θ
r ∈ Refsθ M : θ
r := M : unit

M ′ : θ → θ′ M : θ
M ′ M : θ′

M : θ′ x : θ
λx.M : θ → θ′

x,M : θ M ′ : θ′

let x = M in M ′ : θ′
x, λy.M : θ → θ′′ M ′ : θ′

letrec x = λy.M in M ′ : θ′
M : int

assert(M) : unit

Figure 1 Syntax and typing rules of HOLi.

By bounding the depth of nested calls and the insistence of the environment in calling

library methods, we derive a sound and bounded-complete technique to check higher-order

libraries for errors.

We implement the latter in the K semantical framework [32] to produce a sound and

bounded-complete tool for higher-order libraries as a proof of concept. We test our

implementation with benchmarks adapted from the literature.

Some material has been delegated to an Appendix.

2 A Language for Higher-Order Libraries: HOLi

We introduce HOLi, a language for higher-order libraries which define methods to be used

by an external client, and in turn require external methods (provided by the client). We

give in HOLi an operational semantics for terms that integrates a counter for the depth of

nested calls that a program phrase can make. We then extend this counting semantics to

open terms by means of a trace semantics. We show that the trace semantics of libraries is

sound and complete for reachability of errors under any external client.

2.1 Syntax and operational semantics

A library in HOLi is a collection of typed higher-order methods. A client is simply a library

with a main body. Types are given by the grammar:

θ ::= unit | int | θ × θ | θ → θ

We use countably infinite sets Meths, Refs and Vars for method, global reference and

variable names, ranged over by m, r and x respectively, and variants thereof; while i is for

ranging over the integers. We use ⊕ to range over a set of binary integer operations, which

we leave unspecified. Each set of names is typed, that is, it can be expressed as a disjoint

union as follows: Meths =
⊎
θ,θ′ Methsθ,θ′ , Refs =

⊎
θ 6=θ1×θ2

Refsθ, Vars =
⊎
θ Varsθ.

The full syntax and typing rules are given in Figure 1. Thus, a library consists of

abstract method declarations, followed by blocks of public and private method and reference

definitions. A method is considered private unless it is declared public. Each public/private

method and reference is defined once. Abstract methods are not given definitions: these

methods are external to the library. Public, private and abstract methods are all disjoint.

F S C D 2 0 2 0
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(E[let x = v in M ], R, S, k)→ (E[M{v/x}], R, S, k) (E[πj〈v1, v2〉], R, S, k)→ (E[vj ], R, S, k)
(E[r := v], R, S, k)→ (E[()], R, S[r 7→ v], k) (E[!r], R, S, k)→ (E[S(r)], R, S, k)
(E[if i then M1 else M0], R, S, k)→ (E[Mj ], R, S, k) (1) (E[i1 ⊕ i2], R, S, k)→ (E[i], R, S, k) (2)
(E[λx.M ], R, S, k)→ (E[m], R ] {m 7→ λx.M}, S, k) (E[assert(i)], R, S, k)→ (E[()], R, S, k) (3)
(E[mv], R, S, k)→ (E[LM{v/x}M], R, S, k + 1) (4) (E[LvM], R, S, k + 1)→ (E[v], R, S, k)
(E[letrec f = λx.M in M ′], R, S, k)→ (E[M ′{m/f}], R ] {m 7→ λx.M{m/f}}, S, k)
Conditions: (1) : j = 1 iff i 6= 0, (2) : i = i1 ⊕ i2, (3) : i 6= 0, (4) : R(m) = λx.M.

Values v ::= m | i | () | 〈v, v〉 Terms (extended) M ::= · · · | LMM

Eval.Contexts E ::= • | assert(E) | r := E | E ⊕M | v ⊕ E | 〈E,M〉 | 〈v,E〉 | πjE
EM | mE | let x = E in M | if E then M else M | LEM

(abstract m;L,R, S,P,A) bld−−→ (L,R, S,P,A ] {m})
(public m = λx.M ;B,R, S,P,A) bld−−→ (B,R ] {m 7→ λx.M}, S,P ] {m},A)

(m = λx.M ;B,R, S,P,A) bld−−→ (B,R ] {m 7→ λx.M}, S,P,A)
(global r := i;B,R, S,P,A) bld−−→ (B,R, S ] {r 7→ i},P,A)

(global r := λx.M ;B,R, S,P,A) bld−−→ (B,R ] {m 7→ λx.M}, S ] {r 7→ m},P,A)

Figure 2 Operational semantics (top); values and evaluation contexts (mid); library build

(bottom).

Libraries are well typed if all their method and reference definitions are well typed (e.g.

public m = λx.M is well typed if m : θ and λx.M : θ are both valid for the same type θ)

and only mention methods and references that are defined or abstract. A client L; main = M

is well typed if M : unit is valid and L; m = λx.M is well typed for some fresh x,m. A

library/client is open if it contains abstract methods. This is different to open/closed terms:

we call a term open if it contains free variables.

I Remark 1. By typing variable, reference and method names, we do not need to provide a

context in typing judgements. Note that the references we use are of non-product type and,

more importantly, global to the library: a term can use references but not create them locally

or pass them as arguments (we discuss how to include such references in Appendix C).

I Example 2. The DAO-attack example from the Introduction can be written in HOLi as:

abstract send; global bal := 100;
public wdraw =

λx. if !bal ≥ x then (send(x); bal := !bal − x; assert(!bal ≥ 0)) else ()

where send,wdraw ∈ Methsint,unit, bal ∈ Refsint, and M ;M ′ stands for let = M in M ′.

A library contains public methods that can be called by a client. On the other hand,

a client contains a main body that can be executed. These two scenarios constitute the

operational semantics of HOLi. Both are based on evaluating (closed) terms, which we

define next. Term evaluation requires: the closed term being evaluated; method definitions,

provided by a method repository; reference values, provided by a store; and a call-depth

counter (a natural number). Since method application is the only source of infinite behaviour

in HOLi, bounding the depth of nested calls is enough to guarantee termination in program

analysis. Hence we provide a mechanism to keep track of call depth.

The operational semantics is given in Figure 2. The evaluation of terms (top part) involves

configurations of the form (M,R, S, k), where:
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M is a closed term which may contain evaluation boxes, i.e. points inside a term where

a method call has been made and has not yet returned, and is taken from the syntax

extending the one of Figure 1 with the rule: M ::= · · · | LMM
R is a method repository, i.e. a partial map from method names to their bodies

S is a store, i.e. a partial map from reference names to their stored values

k is a counter, i.e. a natural number.

Most of the rules are standard, but it is worth noting that lambdas are not values themselves

but, rather, evaluate to method names that are freshly stored in the repository. Moreover,

evaluation boxes interplay with the counter k in the semantics: they mark places where the

depth has increased because of a nested call. The penultimate line of rules in the operational

semantics keeps track of call depth, and illustrates the utility of evaluation boxes: making

a call increases the counter and leaves behind an evaluation box; returning form the call

removes the box and decreases the counter again.

A library L builds into a configuration of the form (ε,R, S,P,A), which includes its

public methods according to the rules in Figure 2 (bottom). More precisely, R and S are as

above, while P,A ⊆ Meths are (disjoint) sets of public and abstract method names. We say

that (a well typed) L builds to (ε,R, S,P,A) if (L, ∅, ∅, ∅, ∅) bld−−→
∗

(ε,R, S,P,A). If L builds

to (ε,R, S,P,A) then the client L; main = M builds to (M,R, S,P,A). Moreover, we can

link libraries to clients and evaluate them, as in the following definition.

I Definition 3.

1. Library L and client C are compiatible if L builds to some (ε,R, S,P,A) and C builds

to some (M,R′, S′,P ′,A′) such that: P⊇A′ and A⊇P ′ ( complementation); dom(S) ∩
dom(S′) = ∅ ( disjoint state); and dom(R) ∩ dom(R′) = ∅ ( method ownership).

2. For a library L, we let L̂ be L with all its abstract method declarations and public
keywords removed; and similarly for Ĉ. Given compatible library L and client C, we let

their composition be the client: L;C = L̂; Ĉ.

3. Given compatible L,C, the semantics of L;C is:

JL;CK = {ρ | L;C builds to (M,R, S, ∅, ∅) ∧ (M,R, S, 0)→∗ ρ}

We say that JL;CK fails if it contains some (E[assert(0)], · · · ).

I Example 4. To illustrate how libraries and clients are used, consider the DAO example

again as a library LDAO. We can define a client Catk:

abstract wdraw; global wlet := 0;
public send = λx.wlet := !wlet+ x; if !wlet < 100 then wdraw(x) else ();
main = wdraw(1)

to produce the following linked client LDAO;Catk (modulo re-ordering):

global bal := 100; global wlet := 0;
wdraw = λx. if !bal ≥ x then (send(x); bal := !bal − x; assert(!bal > 0)) else ();
public send = λx.wlet := !wlet+ x; if !wlet < 100 then wdraw(x) else ();
main = wdraw(1)

We can see how LDAO is vulnerable to an attacker such as Catk after linking them. The aim is

thus to use bounded analysis to find counterexamples that define clients such as this one.

F S C D 2 0 2 0
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(INT)
(M,R, S, k)→ (M ′, R′, S′, k′)

(E ,M,R, S,P,A, k)p → (E ,M ′, R′, S′,P,A, k′)p

(PQ) (E , E[mv], R, S,P,A, k)p
call(m,v)−−−−−−→ ((m,E) :: E , 0, R, S,P ′,A, k)o

(OQ) (E , l, R, S,P,A, k)o
call(m,v)−−−−−−→ ((m, l + 1) :: E ,mv,R, S,P,A′, k)p if R(m) = λx.M

(PA) ((m, l) :: E , v, R, S,P,A, k)p
ret(m,v)−−−−−→ (E , l, R, S,P ′,A, k)o

(OA) ((m,E) :: E , l, R, S,P,A, k)o
ret(m,v)−−−−−→ (E , E[v], R,P,A′, k)p

(PC) : m ∈ A∧P ′ = P ∪ (Meths(v) ∩ dom(R)), (OC) : m ∈ P ∧A′ = A∪ (Meths(v) \ dom(R)).

Figure 3 Trace semantics rules. Rules (PQ), (PA) assume the condition (PC), and similarly for

(OQ),(OA) and (OC). Meths(v) contains all method names appearing in v. INT stands for internal

transition; PQ for P -question (i.e. call); PA for P -answer (i.e. return). Similarly for OQ and OA.

2.2 Trace Semantics

The semantics we defined only allows us to evaluate terms, and only so long as their method

applications only involve methods that can be found in the repository R. We next extend

this semantics to encompass libraries and terms that can also call abstract methods. The

approach we follow is based on operational game semantics [18, 21, 16] and in particular the

semantics is given by means of traces of method calls and returns (called moves in game

semantics jargon), between the library and its client. In between such moves, the semantics

evolves as the operational semantics we already saw.

To maintain a terminating analysis, we need to keep track of an added source of infinite

execution, namely endless consecutive calls from an external component: a library will never

terminate if its client keeps calling its methods. This leads us to a semantics with two

counters, k and l, where k keeps track of internal nested method calls and l records the

number of consecutive calls made from the external component. This counter l is orthogonal

to k and is refreshed at every call to the external context.

When computing the semantics of a library, the library and its methods are the Player (P)

of the computation game, while the (intended) client is the Opponent (O). As the semantics

is given in absence of an actual client, O actually represents every possible client. When

computing the semantics of a client, the roles are reversed. In both cases, though, the same

sets of rules is used and there is no need to specify who is P and O in the semantics.

The trace semantics uses game configurations, which are divided into P -configurations

and O-configurations given respectively as:

(E ,M,R, S,P,A, k)p and (E , l, R, S,P,A, k)o .

In a P -configuration, a term M is being evaluated – this is P ’s role. In an O-configuration,

an external call has been made and the semantics waits for O to either return that call, or

reply itself with another call. The components M,R, S,P,A, k, l are as above, while E is an

evaluation stack :

E ::= ε | (m,E) :: E | (m, l) :: E

which keeps track of the computations that are on hold due to external calls. The trace

semantics is generated by the rules given in Figure 3.

The formulation follows closely the operational game semantics technique. For example,

from a P -configuration (E ,M,R, S,P,A, k)p, there are 3 options:
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1. If M can make an internal reduction, i.e. in the operational semantics in context (R,S, k),
then (E ,M,R, S,P,A, k)p performs this reduction (via (INT)).

2. If M is stuck at a method application for a method that is not in the repository R, then

that method must be abstract (i.e. external) and needs to be called externally. This is

achieved be issuing a call move and moving to an O-configuration (via (PQ)). The current

evaluation context and the called method name are stored, in order to resume once the

call is returned (via (OA)).

3. If M is a value and the evaluation stack is non-empty, then P has completed a method

call that was issued by O (via (OQ)) and can now return (via (PA)).

On the other hand, from an O-configuration (E , l, R, S,P,A, k)o, there are 2 options:

1. either return the last open method call (made by P ) via (OA), or

2. call one of the public methods (from P) using (OQ).

The role of conditions (PC) and (OC) is to ensure that each player calls the methods

owned by the other, or returns their own, and update the sets of public and abstract names

according to the method names passed inside v.

I Remark 5. The novelty of Figure 3 with respect to previous work on trace semantics for

open libraries (e.g. [25]) lies in the use of l in order to bound the ability of O to ask repeated

questions for finite analysis. The way rules (OQ) and (PA) are designed is such that any

sequence of consecutive O-calls and P -returns has maximum length 2n if we bound l to n

(i.e. l ≤ n), as each such pair of moves increases l by 1. On the other hand, each P -call

supplies to O a fresh counter (l = 0) to be used in contiguous (OQ)-(PA)’s. Thus, l can be

seen as keeping track of the insistence of O in calling.

Finally, we can define the trace semantics of libraries.

I Definition 6. Let L be a library. The semantics of L is :

JLK = {(τ, ρ) | (L, ∅, ∅, ∅, ∅) bld−−→∗ (ε,R, S,P,A) ∧ (ε, 0, R, S,P,A, 0)o
τ−→ ρ}

We say that JLK fails if it contains some (τ, (E , E[assert(0)], · · · )).

I Example 7. Consider the DAO example as library LDAO once again. Evaluating the game

semantics we know the following sequence is in JLDAOK. For economy, we hide R,P,A and

show only the top of the stack in the configurations. We also use m(v)? and m(v)! for calls

and returns. We write Si for the store [bal 7→ i].

(ε, 0, S100, 0)o
wdraw(42)?−−−−−−−→ ((wdraw, 1), wdraw(42), S100, 0)p

−→∗ ((wdraw, 1), E[send(42)], S100, 1)p
send(42)?−−−−−−→ ((send,E), 2, S100, 1)o

wdraw(100)?−−−−−−−−→ ((wdraw, 1), wdraw(100), S100, 1)p

−→∗ ((wdraw, 1), E′[send(100)], S100, 2)p
send(100)?−−−−−−−→ ((send,E), 2, S100, 2)o

send(())!−−−−−−→ ((wdraw, 1), E′[()], S100, 2)p −→∗ ((wdraw, 1), (), S0, 2)p
wdraw(())!−−−−−−−→ ((send,E), 1, S0, 2)o

send(())!−−−−−−→ ((wdraw, 1), E[()], S0, 1)p
−→∗ ((wdraw, 1), E[assert(−42 ≥ 0)], S−42, 1)p

This transition sequence is an instance of the symbolic trace provided in the Introduction.

Here, a call is made with parameter 42, and a reentrant call with 100, which leads to the

assertion violation assert(−42 ≥ 0). Note that a bound of k ≤ 2 is sufficient to find this

assertion violation.

F S C D 2 0 2 0
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We next establish two focal properties of the trace semantics: bounding k and l ensures

termination (Theorem 8), and that it is sound and complete with respect to library errors

(Theorem 9). Notice Theorem 9 captures both soundness and completeness as it states that

the game semantics eventually reaches every error that is concretely reachable for any client

while finding only errors that can be reached concretely by a definable client.

I Theorem 8 (Boundedness). For any game configuration ρ, provided an upper bound k0
and l0 for call counters k and l, the labelled transition system starting from ρ is strongly

normalising.

Proof. For any transition sequence ρ = ρ0 → · · · → ρi → . . . and each i > 0, we set the

following two classes of configurations:

(A) = {ρi | |ρi| < |ρi−1|} (B) = {ρi | ∃j < i− 1. |ρi| < |ρj |}

where |ρ| = (k0 − k, |M |, l0 − l) is the size of ρ, and |ρ| < |ρ′| is defined by the lexicographic

ordering of the triple (k0 − k, |M |, l0 − l), with bounds k0 and l0 such that k ≤ k0 and l ≤ l0
for semantic transitions to be applicable. If not present in the configuration, we look at

the evaluation stack E to find the top-most missing component. In other words, opponent

configurations will have size (k0 − k, |E|, l0 − l) where E is the top-most one in E , whereas

proponent configurations will have size (k0 − k, |M |, l0 − l) where l is the top-most one in E .

We approach the proof in two steps: (1) we show that, for any transition sequence out of

ρ, each reachable configuration belongs to (at least) one of the above classes; and (2) prove

that the classes form a terminating sequence. For (1), considering all moves available to ρ,

we have the following cases.

1. If ρ→ ρ′ is an (Int) move, we have two possibilities.

a. For a transition (E[LvM], R, S, k)→ (E[v], R, S, k+1), where k+1 ≤ k0, we have a class

(B) configuration since there must be a (E[mv], R, S, k) such that (E[mv], R, S, k)→∗
(E[v], R, S, k) which is lexicographically ordered since |v| < |mv|.

b. Every other transition sequence is class (A) since they reduce the size of the term.

2. If ρ→ ρ′ is a (Pq) move, we have that ρ′ is a class (A) configuration since (k, |E|, l0) <
(k, |E[mv]|, l0 − l) by lexicographic ordering.

3. If ρ→ ρ′ is an (Oa) move, we have a transition

((m,E) :: E , l, . . . , k)o
ret(m,v)−−−−−→ (E , E[v], . . . , k)p

which must be a result of the prior proponent question, meaning E holds an l′ on top.

We thus have the following sequence

(E , E[mv], . . . , k)p →∗ (E , E[v], . . . , k)o

where (k, |E[v]|, l) < (k, |E[mv]|, l′), so ρ′ is a class (B) configuration.

4. If ρ→ ρ′ is an (Oq) move, we have the transition

(E , l, . . . , k)o
call(m,v)−−−−−−→ ((m, l + 1) :: E ,mv, . . . , k)p
→ ((m, l + 1) :: E , LM{v/x}M, . . . , k + 1)

Simplifying the transition, we remove the configuration in between and take

(E , l, R, S,P,A, k)o
call(m,v)−−−−−−→ ((m, l + 1) :: E , LM{v/x}M, R, S,P,A, k + 1)p

to be our new equivalent transition. We thus have that ρ′ is a class (A) configuration since

(k0 − (k + 1), |LM{v/x}M|, l0 − (l + 1)) < (k0 − k, |E|, l0 − l) by lexicographic ordering.
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5. If ρ→ ρ′ is a (Pa) move, we have the transition

((m, l) :: E , v, . . . , k)p
ret(m,v)−−−−−→ (E , l, . . . , k)o

which must be the result of a prior opponent question

(E , l + 1, . . . , k)o
call(m,v)−−−−−−→ ((m, l) :: E , LM{v/x}M, . . . , k + 1)p

→∗ ((m, l) :: E ,LvM, . . . , k + 1)p → ((m, l) :: E , v, . . . , k)p
ret(m,v)−−−−−→ (E , l, . . . , k)o

where E′ is the topmost evaluation context in E . We thus have that (k0 − k,E′, l0 − l) <
(k0 − k,E′, l0 − (l + 1)), so ρ′ is a class (B) configuration.

For (2), let us assume there is an infinite sequence

ρ0 → · · · → ρj → · · · → ρi → . . .

Since all reachable configurations fall into either (A) or (B) class, we know that the sequence

must comprise only (A) and (B) configurations. In this infinite sequence, we know that all

sequences of (A) configurations are in descending size, so (A) sequences cannot be infinite.

We also observe that (B) configurations are padded with (A) sequences. For instance, if

ρi is a (B) configuration, and ρj is its matching configuration, there may exist nested (B)

configurations between ρj and ρi, as well as (A) sequences padding these.

Additionally, these (B) configurations can only occur as a return to a call, so we know

they only occur together with the introduction of evaluation boxes L•M. Since these brackets

occur in pairs and are introduced in a nested fashion, we know E can only contain evaluation

contexts with well-bracketed evaluation boxes, meaning that there cannot be interleaved

sequences of (B) configurations where their target configurations intersect. More specifically,

the sequence

ρ0 → · · · → ρj → · · · → ρ′j → · · · → ρi → · · · → ρ′i → . . .

where ρ′i matches ρ′j and ρi matches ρj is not possible.

Now, ignoring all (A) and nested (B) sequences, we are left with an infinite stream of

top-level (B) sequences which are also in descending order. Since starting size is finite, we

cannot have an infinite stream of (B) sequences. Thus, the assumption that the sequence is

infinite does not hold, meaning our semantics is strongly normalising. J

I Theorem 9 (S and C). We call a client good if it contains no assertions. For any library

L, the following are equivalent:

1. JLK fails (reaches an assertion violation)

2. there exists a good client C such that JL;CK fails

Proof. 1 to 2: Suppose now that (τ, ρ) ∈ JLK for some trace τ and failed ρ. By Theorem 11,

we have that there is a good client C realising the trace τ . So then, by Lemma 10, we have

that JL;CK fails.

2 to 1: Suppose JL;CK fails for some good client C. Then, by Lemma 10, there are τ, ρ, ρ′

such that (τ, ρ) ∈ JLK, (τ, ρ′) ∈ JCK, and ρ is failed (i.e. is of the shape (E , E[assert(0)], · · · )).
J

The latter relies on an auxiliary lemma (well-composing of libraries and clients), and a

definability result akin to game semantics definability arguments (see Appendix D).

F S C D 2 0 2 0
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I Lemma 10 (L-C Compositionality). For any library L and compatible good client C, JL;CK
fails if and only if there exist (τ1, ρ1) ∈ JLK and (τ2, ρ2) ∈ JCK such that τ1 = τ2 and

ρ1 = (E , E[assert(0)], · · · ).

I Theorem 11 (Definability). Let L be a library and (τ, ρ) ∈ JLK. There is a good client C

compatible with L such that (τ, ρ′) ∈ JCK for some ρ′.

3 Symbolic Semantics

Checking libraries for errors using the semantics of the previous section is infeasible, even when

the traces are bounded in length, as ground values are concretely represented. In particular,

integer values provided by O as arguments to calls or return values range over all integers.

The typical way to mitigate this limitation is to execute the semantics symbolically, using

symbolic variables for integers and path conditions to bind these variables to plausible values.

We use this technique to devise a symbolic version of the trace semantics, corresponding to a

symbolic execution which will enable us in the next sections to introduce a practical method

and implementation for checking libraries for errors. The symbolic semantics is fully formal,

closely following the developments of the previous section, and allows us to prove a strong

form of correspondence between concrete and symbolic semantics (a bisimulation).

Apart from integers, another class of concrete values provided by O are method names.

For them, the semantics we defined is symbolic by design: all method names played by O are

going to be fresh and therefore picking just one of those fresh choices is sufficient (formally

speaking, the semantics lives in nominal sets [31]). The reason why using fresh names for

methods played by O is sound is that the effect of O calling a higher-order public method

with an argument m (where m is another public method), and with λx.mx, is equivalent as

far as reachability of an error is concerned. In the latter case, the client semantics would

create a fresh name m′, bind it to λx.mx, and pass m′ as an argument. We therefore just

focus on this latter case.

The symbolic semantics involves terms that may contain symbolic values for integers. We

therefore extend the syntax for values and terms to include such values, and abuse notation

by continuing to use M to range over them. We let SInts be a set of symbolic integers

ranged over by κ and variants, and define:

Sym.Values ṽ ::= m | i | () | κ | ṽ ⊕ ṽ | 〈ṽ, ṽ〉
Sym.Terms M ::= · · · | κ

where, in ṽ ⊕ ṽ, not both ṽ can be integers. We moreover use a symbolic environment to

store symbolic values for references, but also to keep track of arithmetic performed with

symbolic integers. More precisely, we let σ be a finite partial map from the set SInts ∪ Refs
to symbolic values. Finally, we use pc to range over program conditions, which will be

quantifier-free first-order formulas with variables taken from SInts, and with >,⊥ denoting

true and false respectively.

The semantics for closed symbolic terms involves configurations of the form (M,R, σ, pc, k).
Its rules include copies of those from Figure 2 (top) where the pc and σ are simply carried

over. For example:

(E[λx.M ], R, σ, pc, k)→s (E[m], R ] {m 7→ λx.M}, σ, pc, k)

where m is fresh. On the other hand, the following rules directly involve symbolic reasoning:

(E[assert(κ)], R, σ, pc, k)→s (E[assert(0)], σ, pc ∧ (κ = 0), k)
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(ĨNT)
(M,R, σ, pc, k)→s (M ′, R′, σ, pc′, k′)

(E ,M,R,P,A, σ, pc, k)p →s (E ,M ′, R′,P,A, σ′, pc′, k′)p

(P̃Q) (E , E[mṽ], R,P,A, σ, pc, k)p
call(m,ṽ)−−−−−−→s ((m,E) :: E , 0, R,P ′,A, σ, k)o

(ÕQ) (E , l, R,P,A, σ, pc, k)o
call(m,ṽ)−−−−−−→s ((m, l + 1) :: E ,mṽ, R,P,A′, σ, pc, k)p

(P̃A) ((m, l) :: E , ṽ, R,P,A, σ, pc, k)p
ret(m,ṽ)−−−−−→s (E , l, R,P ′,A, σ, pc, k)o

(ÕA) ((m,E) :: E , l, R,P,A, σ, pc, k)o
ret(m,ṽ)−−−−−→s (E , E[ṽ], R,P,A′, σ, pc, k)p

(P̃C) m ∈ A and P ′ = P ∪ (Meths(ṽ) ∩ dom(R)).

(ÕC) m ∈ P and (ṽ′,A′) ∈ symval(θ,A) where θ is the expected type of ṽ. Moreover:

symval(θ,A) =



{((),A)} if θ = unit

{(κ,A ] {κ}) | κ is fresh in dom(σ) ] A} if θ = int

{(m,A ] {m}) | m is fresh in dom(R) ] A} if θ = θ1 → θ2

{(〈ṽ1, ṽ2〉,A2) | (ṽ1,A1) ∈ symval(θ1,A) if θ = θ1 × θ2

(ṽ2,A2) ∈ symval(θ2,A1)}
Figure 4 Symbolic trace semantics rules. Rules (P̃Q), (P̃A) assume the condition (P̃C), and

similarly for (ÕQ),(ÕA) and (ÕC). (ÕQ),(ÕA) introduce ṽ and thus are non-deterministic.

(E[assert(κ)], R, σ, pc, k)→s (E[()], R, σ, pc ∧ (κ 6= 0), k)
(E[!r], R, σ, pc, k)→s (E[σ(r)], R, σ, pc, k)
(E[r := ṽ], R, σ, pc, k)→s (E[()], R, σ[r 7→ ṽ], pc, k)
(E[ṽ1 ⊕ ṽ2], R, σ, pc, k)→s (E[κ], R, σ ] {κ 7→ ṽ1 ⊕ ṽ2}, pc, k) where κ is fresh

(E[if κ then M1 else M0], R, σ, pc, k)→s (E[M0], R, σ, pc ∧ (κ = 0), k)
(E[if κ then M1 else M0], R, σ, pc, k)→s (E[M1], R, σ, pc ∧ (κ 6= 0), k)

and where ṽ1 ⊕ ṽ2 is a symbolic value (for ii ⊕ i2 the rule from Figure 1 applies).

We now extend the symbolic setting to the trace semantics. We define symbolic configur-

ations for P and O respectively as:

(E ,M,R,P,A, σ, pc, k)p (E , l, R,P,A, σ, pc, k)o

with evaluation stack E , proponent term M , counters k, l ∈ N, method repository R, public

method name set P, σ and pc as previously. The abstract name set A is now a finite subset

of Meths ∪ SInts, as we also need to keep track of the symbolic integers introduced by

O (in order to be able to introduce fresh such names). The rules for the symbolic trace

semantics are given in Figure 4. Note that O always refreshes names it passes. This is a

sound overapproximation of all names passed for the sake of analysis.

Similarly to Definition 6, we can define the symbolic semantics of libraries.

I Definition 12. Given library L, the symbolic semantics of L is:

JLKs = {(τ, ρ) |(L, ∅, ∅, ∅, ∅) bld−−→∗ (ε,R, S,P,A)

∧ (ε, 0, R,P,A, S,>, 0)o
τ−→s ρ ∧ ∃M.M � ρ(σ)◦ ∧ ρ(pc)}

where ρ(χ) is component χ in configuration ρ, and M is a model as defined in the next

section. We say that JLKs fails if it contains some (τ, (E , E[assert(0)], · · · )).

F S C D 2 0 2 0
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The symbolic rules follow those of the concrete semantics, the biggest change being the

treatment of symbolic values played by O. Condition (ÕC) stipulates that O plays distinct

fresh symbolic integers as well as fresh method names, in each appropriate position in ṽ, and

all these names are included in the set A.

I Example 13. As with Example 7, we consider the DAO attack. Running the symbolic

semantics, we find the following minimal class of errors. We write σṽ for a symbolic

environment [bal 7→ ṽ].

(ε, 2, σ100, k0)o
wdraw(κ1)?−−−−−−−−→ ((wdraw, 1), wdraw(κ1), σ100, 2)p

−→∗ ((wdraw, 1), E[send(κ1)], σ100, 1)p
send(κ1)?−−−−−−→ ((send,E), 2, σ100, 1)o

wdraw(κ2)?−−−−−−−−→ ((wdraw, 1), wdraw(κ2), σ100, 1)p

−→∗ ((wdraw, 1), E′[send(κ2)], σ100, 0)p
send(κ2)?−−−−−−→ ((send,E), 2, σ100, 0)o

send(())!−−−−−−→ ((wdraw, 1), E′[()], σ100, 0)p

−→∗ ((wdraw, 1), (), σ100−κ2 , 0)p
wdraw(())!−−−−−−−→ ((send,E), 1, σ100−κ2 , 0)o

send(())!−−−−−−→ ((wdraw, 1), E[()], σ100−κ2 , 1)p
−→∗ ((wdraw, 1), E[assert(!bal ≥ 0)], σ100−κ2−κ1 , 1)p

For this to be a valid error, we require (κ1, κ2 ≤ 100) ∧ (100− κ2 − κ1 < 0) to be satisfiable.

Taking assignment {κ1 7→ 100, κ2 7→ 1}, we show the path is valid.

3.1 Soundness

The main result of this section is establishing the soundness of the symbolic semantics: a

trace and a specific configuration can be achieved symbolically iff they can be achieved

concretely as well. In fact, we will need to quantify this statement as, by construction, the

symbolic semantics requires O to always place fresh method names, whereas in the concrete

semantics O is given the freedom to play old names as well. What we show is that the

symbolic semantics corresponds (via bisimilarity) to a restriction of the concrete semantics

where O plays fresh names only. This restriction is sound, in the sense that it is sufficient for

identifying when a configuration can fail. We make this precise below.

A model M is a finite partial map from symbolic integers to concrete integers. Given

such anM and a formula φ, we defineM |= φ using a standard first-order logic interpretation

with integers and arithmetic operators (in particular, we require that all symbolic integers in

φ are in the domain of M). Moreover, for any symbolic term M (or trace, move, etc.), we

denote by M{M} the concrete term we obtain by substituting any symbolic integer κ of M

with its corresponding concrete integer M(κ). Finally, given a symbolic environment σ, we

define its formula representation σ◦ recursively by:

∅◦ = >, (σ ] {r 7→ v})◦ = σ◦, (σ ] {κ 7→ v})◦ = σ◦ ∧ (κ = v).

We now define notions for equivalence between symbolic and concrete configurations.

Let M be a model. For any concrete configuration ρ = (E , χ,R, S,P,A, k) and symbolic

configuration ρs = (E ′, χ′, R′,P ′,A′, σ, pc, k′), we say they are equivalent in M, written

ρ =M ρs, if:

(E , χ,R) = (E ′, χ′, R′){M},P = P ′,A = A′ ∩ Meths and S = (σ � Refs){M};
dom(M) = (A′ ∪ dom(σ)) ∩ SInts and M � pc ∧ σ◦.
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The notion of equivalence we require between concrete configurations and their symbolic

counterparts is behavioural equivalence, modulo O playing fresh names.

More precisely, a transition ρ
χ−→ ρ′ is called O-refreshing if, when ρ is an O-configuration

and χ = call/ret(m, v) then all names in v are fresh and distinct. A set R with elements

of the form (ρ,M, ρs) is a bisimulation if, whenever (ρ,M, ρs) ∈ R, written ρRM ρs then

ρ =M ρs and, using χ to range over moves and ε (i.e. no move):

if ρ
χ−→ ρ′ is O-refreshing then there exists M′ ⊇ M such that ρs

χs−→s ρ
′
s, with χ =

χs{M′}, and ρ′RM′ρ′s;

if ρs
χ−→s ρ

′
s then there exists M′ ⊇M such that ρ

χ{M′}−−−−→G ρ′ and ρ′RM′ρ′s.

We let ∼ be the largest bisimulation relation: ρ ∼M ρs iff there is bisimulation R such that

ρRMρs.
We can show that concrete and symbolic configurations are bisimilar.

I Lemma 14. Given ρ, ρs a concrete and symbolic configuration respectively, andM a model

such that ρ =M (ρ′), we have ρ ∼M ρs.

Proof (sketch). We show that {(ρ,M, ρ′) | ρ =M ρ′} is a bisimulation. J

Next, we argue that O-refreshing transitions suffice for examining failure of concrete

configurations. Indeed, suppose τ is a trace leading to fail, and where O plays an old name

m in argument position in a given move. Then, τ can be simulated by a trace τ ′ that uses

a fresh m′ in place of m. If m is an O-name, we obtain τ ′ from τ by following exactly the

same transitions, only that some P -calls to m are replaced by calls to m′ (and accordingly

for returns). If, on the other hand, m is a P -name, then the simulation performed by τ ′

is somewhat more elaborate: some internal calls to m will be replaced by P -calls to m′,

immediately followed by the required calls to m (and dually for returns).

I Lemma 15 (O-Refreshing). Let ρ be a concrete configuration. Then, ρ fails iff it fails using

only O-refreshing transitions.

With the above, we can prove soundness.

I Theorem 16 (Soundness). For any L, JLK fails iff JLKs fails.

Proof. Lemma 14 implies that JLKs fails iff JLK fails with O-refreshing transitions, which in

turns occurs iff JLK fails, by Lemma 15. J

3.2 Bounded Analysis for Libraries

Definition 12 states how the symbolic trace semantics can be used to independently check

libraries for errors. As with the trace semantics in Definition 6, this is strongly normalising

when given an upper limit to the call counters. As such, JLKs with counter bounds k0, l0 ∈ N,

for k, l respectively, defines a finite set (modulo selecting of fresh names) of reachable valid

configurations within k ≤ k0, l ≤ l0, where validity is defined by the satisfiability of the

symbolic environment σ and the path condition pc of the configuration reached. By virtue of

Theorems 9 and 16, every valid reachable configuration that is failed (evaluates an invalid

assertion) is realisable by some client. And viceversa.

Given a library L, taking FJLKs to be all reachable final configurations, we have the

exhaustive set of paths L can reach. In FJLKs, every failed configuration (τ, ρ), i.e. such

that ρ holds a term E[assert(0)], defines a reachable assertion violation, where τ is a true

counterexample. Hence, to check L for assertion violations it suffices to produce a finite

representation of the set FJLKs. One approach is to bound the depth of analysis by setting an

F S C D 2 0 2 0
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Table 1 Table recording performance of HOLiK on our benchmarks.

l ≤ 1 l ≤ 2 l ≤ 3

k ≤ 2 226/70/45 (555s) 5708/60/44 (4710s) 9656/3/23 (12471s)

k ≤ 3 1254/67/51 (1475s) 4092/27/18 (13482s) 4187/17/12 (16649s)

k ≤ 4 3392/63/48 (3180s) 3069/19/14 (15903s) 1335/12/10 (17765s)

k ≤ 5 3659/57/45 (4787s) 895/15/10 (16757s) 215/11/9 (17796s)

a/b/c (d) for a traces found in b successful runs taking d seconds in total

where c out of 59 unsafe files were found to have bugs, per bound.

59 of 59 unsafe files found to have bugs over the various bounds checked

upper bound to the call counters, using a name generator to make deterministic the creation

of fresh names, and then exhaustively search all final configurations for failed elements. In

the following section we implement this routine and test it.

4 Implementation and Experiments

We implemented the syntax and symbolic trace semantics (symbolic games) for HOLi in

the K semantic framework [32] as a proof of concept, and tested it on 70 sample libraries.1

Using K’s option to exhaustively expand all transitions, K is able to build a closure of all

applicable rules. By providing a bound on the call counters, we produce a finite set of all

reachable valid symbolic configurations up to the given depth (equivalent to finding every

valid ρ ∈ FJLKs) which thus implements our bounded symbolic execution.

We wrote and adapted examples of coding errors into a set of 70 sample libraries written

in HOLi, totalling 6,510 lines of code (LoC). Examples adapted from literature include:

reentrancy bugs from smart contracts [3, 23]; variations of the “awkward example” [30];

various programs from the MoCHi benchmark [35]; and simple implementations related to

concurrent programming (e.g. flat combining and race conditions) where errors may occur

in a single thread due to higher-order behaviour. We also combined several libraries, by

concatenating refactored method and reference definitions, to generate larger libraries that

are harder to solve. Combined files range from 150 to 520 LoC.

We ran HOLiK on all sample libraries, lexicographically increasing the bounds from

k ≤ 2, l ≤ 1 to k ≤ 5, l ≤ 3 (totalling 78,120 LoC checked), with a timeout set to five minutes

per library. We start from k ≤ 2 because it provides the minimum nesting needed to observe

higher-order semantics. All experiments ran on an Ubuntu 19.04 machine with 16GB RAM,

Intel Core i7 3.40GHz CPU, with intermediate calls to Z3 to prune invalid configurations. Per

bound, the number of counterexamples found, the time taken in seconds, and the execution

status, i.e. whether it terminated or not, are recorded in Table 1.

We can observe that independently increasing the bounds for k and l causes exponential

growth in the total time taken, which is expected from symbolic execution. Note that the

time tends towards 21000 seconds because of the timeout set to 5 minutes for 70 programs. In

particular, while the number of errors found grows exponentially with respect to the increase

in bounds – which is due to the exponential growth in paths – this trend does not continue

indefinitely because programs start timing out without reporting any errors as the bounds

1 The tool and its benchmarks can be found at: https://github.com/LaifsV1/HOLiK.

https://github.com/LaifsV1/HOLiK
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grow. With bounds k ≤ 2 and l ≤ 1, all 70 programs in our benchmark were successfully

analysed, though not all minimal errors were found until the bounds were increased further.

Cumulatively, all unsafe programs in our benchmark were correctly identified.

While the table may suggest that increasing bound for l is more beneficial than that

for k, the number of errors reported does not imply every trace is useful. For instance,

increasing the bound for l can lead to errors re-merging in a higher-order version, which

suggests potential gain from a partial order reduction. Overall, the k and l counters are

incomparable as they keep track of different behaviours. Finally, since HOLiK was able

to handle every file and correctly identified all unsafe files in the benchmark, we conclude

that HOLiK, as a proof of concept, captures the full range of behaviours in higher-order

libraries. Results suggest that the tool scales up to at least medium-sized programs (<1000

LoC), which is promising because real-world medium-size higher-order programs have been

proven infeasible to check with standard techniques (e.g. the DAO withdraw contract was

approximately 100 LoC).

5 Related Work

Game semantics techniques have been applied to program equivalence verification by reducing

program equivalence to language equivalence in a decidable automata class [15, 1]. Equivalence

tools can be used for reachability but, as they perform full verification, they can only cover

lower-order recursion-free language fragments. For example, the Coneqct [24] tool can verify

the simplified DAO attack, but cannot check higher-order or recursive functions (e.g. the

“file lock” and “flat combiner” examples), and operates on integers concretely. Close to our

approach is also Symbolic GameChecker [11], which performs symbolic model checking by

using a representation of games based on symbolic finite-state automata. The tool works

on recursion-free Idealized Algol with first-order functions, which supports only integer

references. On the other hand, it is complete (not bounded) on the fragment that it covers.

Besides games techniques, a recent line of work on verification of contracts in Racket

[27, 26] is the work closest to ours. Racket contracts exist in a higher-order setting similar

to ours, and generalise higher-order pre and post conditions, and thus specify safety. To

verify these, [27] defines a symbolic execution based on what they call “demonic context” in

prior work [38]. This either returns a symbolic value to a call, or performs a call to a known

method within some unknown context, thus approximating all the possible higher-order

behaviours, and is equivalent to the role the opponent plays in our games. In [26], the

technique is extended to handle state, and finitised for total verification. The approaches

are notionally similar to ours, since both amount to Symbolic Execution for an unknown

environment. In substance, the techniques are very different and in particular ours is based

on a semantics theory which allows us to obtain compositionality and definability results,

which are not proven for [26] and proven for [27] only in a stateless setting. On the other

hand, Racket contracts can be used for richer verification questions than assertion violations.

In terms of tool performance, we provide a comparison of the techniques in Appendix B.

Another relevant line of work is that of verifying programs in the Ethereum Platform.

Smart contracts call for techniques that handle the environment, with a focus on reentrancy.

Tools like Oyente [23] and Majan [28] use pre-defined patterns to find bugs in the transaction

order, but are not sound or complete. ReGuard [22] finds sound reentrancy bugs using a

fuzzing engine to generate random transactions to check with a reentrancy automaton. In

principle, it may detect reentrancy faster than symbolic execution (native execution is faster

[40]), but, is incomplete even in a bounded setting. More closely related to our approach,

F S C D 2 0 2 0
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[17] considers the possibility of an unknown contract c? calling a known contract c∗ at each

higher call level. This can be generalised in our game semantics as abstract and public names

calling each other, but their focus is on modelling reentrancy, while we handle the full range

of higher-order behaviours.

Like KLEE [4] and jCUTE [36], our implementation is a symbolic execution tool. These

are generally able to find first-order counterexamples, but are unable to produce higher-order

traces involving unknown code. Particularly, KLEE and jCUTE only handle symbolic calls

provided these can be concretised. This partially models the environment, but calls are often

impossible to concretise with libraries. The CBMC [6, 20] bounded model checking approach,

which also bounds function application to a fixed depth, partially handle calls to unknown

code by returning a non-deterministic value to such calls. This is equivalent to a game where

only move available to the opponent is to answer questions. This restriction allows CBMC

to find some bugs caused by interaction with the environment, but misses errors that arise

from transferring flow of control (e.g. reentrancy). The typical BMC approach also misses

bugs involving disclosure of names.

Higher-order model checking tools like MoCHi [35] are also related. MoCHi model checks

a pure subset of OCaml and is based on predicate abstraction and CEGAR and higher-order

recursion scheme model checkers. The modular approach [34] further extends this idea

with modular analysis that guesses refinement intersection types for each top-level function.

Although generally incomparable, HOLiK covers program features that MoCHi does not:

MoCHi does not handle references and support for open code is limited (from experiments,

and private communication with the authors).

6 Future Directions

Observing errors resurface deeper in the trace suggests the possibility of defining a partial

order for our semantics to obtain equivalence classes for configurations and thus eliminate

paths that involve known errors [29, 39]. Additionally, while k and l successfully bound

infinite behaviour, a notion of bounding can be arbitrarily chosen. In fact, while we chose to

directly bound the sources of infinite behaviour in method calls for simplicity of proofs and

implementation, the theory does not prevent the generalisation of k and l as a monotonic

cost function that bounds the semantics. It may also be worth considering the elimination of

bounds entirely for the sake of unbounded verification. For this, one direction is abstract

interpretation [9, 8], which amounts to defining overapproximations for values in our language

to then attempt to compute a fixpoint for the range of values that assertions may take.

However, defining and using abstract domains that maintain enough precision to check higher-

order behaviours, such as reentrancy, is not a simple extension of the theory. Another direction,

similar to Coneqct [24], is to define a push-down system for our semantics. Particularly,

the approach in [24] is based on the decidability of reachability in fresh-register pushdown

automata, and would require overapproximations for methods and integers. As with abstract

interpretation, this would require defining abstract domains for methods and integers. While

methods could be approximated using a finite set of names, as with k-CFA [37], an extension

using integer abstract domains would need refinement to tackle reentrancy attacks. Finally,

MoCHi [35] shows that it is possible to use CEGAR and higher-order recursion schemes

for unbounded verification of higher-order programs. However, an extension of the MoCHi

approach to include references and open code is not obvious.
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A Motivating examples

Our file lock example provides a scenario where the library makes it possible for the client to

update a file without first reacquiring the lock for it. The library contains an empty private

method updateFile that simulates file access. The library also provides a public method

openFile, which locks the file, allows the user to update the file indirectly, and then releases

the lock.

1 import userExec :(( unit → unit) → unit)

2 int lock := 0;

3 private updateFile(x:unit) :(unit) = { () };

4 public openFile (u:unit) :(unit) = {

5 if (!lock) then ()

6 else (lock := 1;

7 let write = fun(x:unit ):( unit) → (assert (!lock); updateFile ())

8 in userExec(write); lock := 0) };

The bug here is that openFile creates a write method, which it then passes to the client,

via userExec(write), to use whenever they want. This provides the client indirect access to

the private method updateFile, which it can call without first acquiring the lock. Running

this example in HOLiK we obtain the following minimal trace:

call〈openFile, ()〉 · call〈userExec,m2〉 · ret〈userExec, ()〉
· ret〈openFile, ()〉 · call〈m2, ()〉

where m2 is the method name generated by the library and bound to the variable write.

This example serves as a representative of a class of bugs caused by revealing methods to

the environment, a higher-order problem, in this case involving the second-order method

userExec revealing m2.

Next, we simulate double deallocation using a global reference addr as the memory

address. The library defines private methods alloc and free to simulate allocation and

freeing. The empty private method doSthing serves as a placeholder for internal computation

that does not free memory.

1 import getInput :(unit → int)

2 int addr := 0; // 0 means address is free

3 private alloc (u:unit) :(unit) = {

4 if not(!addr) then addr := 1 else () };

5 private free (u:unit) :(unit) = {

6 assert (!addr); addr := 0 };

7 private doSthing (i:int) :(unit) = { () };

8 public run (u:unit) :(unit) = {

9 alloc (); doSthing(getInput ()); free() };

The error occurs in line 9, which calls the client method getInput. This passes control to

the client, who can now call run again, thus causing free to be called twice. Executing the

example on HOLiK, we obtain the following trace:

call〈run, ()〉 · call〈getInput, ()〉 · call〈run, ()〉 · call〈getInput, ()〉
· ret〈getInput, x1〉 · ret〈run, ()〉 · ret〈getInput, x2〉

As with the DAO attack, this is a reentrancy bug.
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Finally, we have an unsafe implementation of a flat combiner. The library defines two

public methods: enlist, which allows the client to add procedures to be executed by the

library, and run, which lets the client run all procedures added so far. The higher-order

global reference list implements a list of methods.

1 private empty(x:int) : (unit) = { () };

2 fun list := empty;

3 int cnt := 0; int running := 0;

4 public enlist(f:(unit → unit)) :(unit) = {

5 if (! running) then ()

6 else

7 cnt := !cnt + 1;

8 (let c = !cnt in let l = !list in

9 list := (fun(z:int):( unit) → if (z == c) then f() else l(z)))};

10 public run(x:unit) :(unit) = {

11 running := 1;

12 if (0 < !cnt) then

13 (!list )(!cnt);

14 cnt := !cnt - 1; assert(not (!cnt < 0)); run()

15 else (list := empty; running := 0) };

The bug here is also due to a reentrant call in line 13. However, this is a much tougher

example as it involves a higher-order reference list, a recursive method run, and a second-

order method enlist that reveals client names to the library. With HOLiK, we obtain the

following minimal counterexample:

call〈enlist,m1〉 · ret〈enlist, ()〉 · call〈run, ()〉 · call〈m1, ()〉
· call〈run, ()〉 · call〈m1, ()〉 · ret〈m1, ()〉 · ret〈run, ()〉 · ret〈m1, ()〉

where m1 is a client name revealed to the library. In the trace above, enlist reveals the

method m1 to the library. This name is then added to the list of procedures to execute. In

run, the library passes control to the client by calling m1. At this point, the client is allowed

to call run again before the list is updated.

B Comparison with Racket Contract Verification

We shall consider the latest version of the tool [26] since it handles state, which we refer to as

SCV (Software Contract Verifier). A small benchmark (19 programs) based on HOLiK and

SCV benchmarks was used for testing. Programs were manually translated between HOLi and

Racket. Care was taken to translate programs whilst maintaining their semantics: contracts

enforcing an input-output relation were translated into HOLi using wrapper functions that

define the relation through an if statement. In the other direction, since contracts do not

directly access references inside a term, stateful functions were translated from HOLi to

return any references we wish to reason about.

Table 2 records the comparison. On one hand, HOLiK only found real errors, whereas

SCV reported several spurious errors–a third of all errors were spurious. On the other

hand, SCV was able to prove total correctness of 3 of the 7 safe files present. SCV also

scales much better than HOLiK with respect to program size, which is in exchange of

precision. The difference in time for small programs is mainly due to initialisation time.

Subtle differences in the nature of each tool can also be observed. e.g., HOLiK reports 1 real

error for ack-simple-e, whereas SCV reports 2 errors. The difference is because SCV takes

into account constraints for integers (e.g. > 0 and = 0). More interestingly, for various,

F S C D 2 0 2 0
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Table 2 Comparison of HOLiK (left) and SCV (right). N/A is recorded for ack as in our attempts

SCV crashed due to unknown reasons.

Program LoC Traces Time (s) LoC Errors Time (s) False Errors

ack 17 0 6.0 9 N/A 2.4 N/A

ack-simple 13 0 6.5 9 0 2.4 0

ack-simple-e 13 1 6.5 9 2 2.5 0

dao 10 0 5.0 15 1 2.6 1

dao-e 16 1 5.5 15 1 2.7 0

dao-various 85 5 22.5 122 10 3.0 5

dao2-e 85 10 23.5 122 10 2.9 0

escape 9 0 5.0 9 0 2.6 0

escape-e 9 2 5.0 10 1 2.7 0

escape2-e 10 14 6.0 10 1 2.7 0

factorial 10 0 5.0 9 0 2.2 0

mc91 12 0 5.0 9 1 2.2 1

mc91-e 12 1 5.0 8 1 2.4 0

mult 14 0 5.0 11 2 2.7 2

mult-e 14 1 5.0 11 2 2.4 0

succ 7 0 5.0 7 1 2.5 1

succ-e 7 1 5.0 7 1 2.8 0

various 116 19 14.0 108 11 6.2 5

total 459 55 140.5 500 45 49.8 15

HOLiK reports 19 ways to reach assertion violations, whereas SCV reports only 6 real ways

to violate contracts. The difference is because HOLiK reports paths through the execution

tree that reach errors, whereas SCV reports a set of terms that may violate the contracts. For

instance, independently safe methods A and B that may call an unsafe method C would be,

from testing, reported as three valid traces (call〈A〉 · call〈C〉, call〈B〉 · call〈C〉 and call〈C〉)
by HOLiK. In contrast, SCV reports a single contract violation blaming C. Finally, ack

failed to run on SCV due to unknown errors; Racket reported an error internal to the tool.

Further testing proved the file is a valid Racket program that can be executed manually.

C ML-like References

HOLi has global higher-order references. These are enough for coding all of our examples

and, moreover, allow us to prove completeness (every error has a realising client). We here

present a sketch of how games can be extended with (locally created, scope extruding)

ML-like references, following e.g. [21, 16]. First, the following extension to types and terms

are required.

θ ::= · · · | ref θ M ::= · · · | !M | ref M |M = M v ::= · · · | r

The term !M allows dereferencing terms M which evaluate to references, while ref v creates

dynamically a fresh name r ∈ Refsθ (if v : θ), and the semantic purpose is to update the

store S ] {r 7→ v} when evaluating ref v. Note that this allows us to store references to

references, etc. Finally, the construct M = M is for comparing references for name equality.

With terms handling general references concretely and symbolically, we extend game

configurations with sets Lp,Lo ⊆ Refs that keep track of reference names disclosed by the

proponent and opponent respectively. References being passed as values means that the

client can update the references belonging to the client, and viceversa. When making a move,
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for each reference r they own that is passed, the proponent adds r to Lp. Passing of names in

a move can be done either by method argument and return value, but also via the common

part of the store (i.e. via the references known to both players). Similarly, opponent passes

names in their moves, which are added to Lo. Concretely, when the opponent passes control,

all references in Lp are updated with opponent values. Symbolically, the references r are

updated with distinct fresh symbolic integers κ if r ∈ RefsInt, distinct fresh method names

if r ∈ Refsθ1→θ2 , or to arbitrary reference names if r ∈ RefsRefsθ .

D Definability

In this section we show that every trace τ in the semantics of a library L has a corresponding

good client that realises the same trace in its semantics.

Let L be a library with public names P and abstract names A. Given a trace τ produced

by L, with P ′ and A′ respectively the public and abstract names introduced in τ , we set:

N = P ∪ P ′ ∪ A ∪A′

Θv = {θ | ∃m ∈ N . m : θ′ ∧ θ a syntactic subtype of θ′}
Θm = {θ ∈ Θ | θ a method type}

Note that the above sets are finite, since τ,P,A are finite. We assume a fixed enumeration of

N = {m1,m2, · · · ,mn}. Moreover, for each type θ, we let defvalθ be a default value, and

divergeθ a term that on evaluation diverges by infinite recursion. We then construct a client

Cτ,P,A as in Figure 5.

The code is structured as follows.

1. We start off by defining global references:

cnt counts the number of P (Library) moves played so far;

meth stores an index that records the move made by P: if the move was a return then

meth stores 0; if it was call to mi then meth stores i;

each refi will store the method mi ∈ P ∪ P ′, either since the beginning (if mi ∈ P),

or once P plays it (if mi ∈ P ′);
each valθ will be used for storing the value played by P in their last move.

In the latter case above, there is a light abuse of syntax as θ can be a product type, of

which HOLi does not have references. But we can in fact simulate references of arbitrary

type by several HOLi references.

2. For each mi : θ1 → θ2 ∈ A, we define a public method mi that simulates the behaviour

of O whenever mi is called in τ :

it starts by increasing cnt, as a call to mi corresponds to a P-move being played;

it continues by storing i and x in meth and valθ1 respectively;

it calls the private method oracle, which is tasked with simulating the rest of τ and

storing the value that mi will return in valθ2 ;

it returns the value in valθ2 .

3. For each mi : θ1 → θ2 ∈ A′ we produce a method just like above, but keep it private (for

the time being).

4. The method oracle performs the bulk of the computations, by checking that the last

move played by P was the expected one and selecting the next move to play (and playing

it if is a call).

The oracle is called after each P-move is played, so it starts with increasing cnt.

F S C D 2 0 2 0
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1 g l o b a l cnt := 0

2 g l o b a l meth := 0

3 g l o b a l r e f i := mi # for each mi ∈ P
4 g l o b a l r e f i := d e f v a l # for each mi ∈ P ′

5 g l o b a l va l θ := d e f v a l # for each θ ∈ Θv

6 pub l i c mi = λx . # for each mi ∈ A
7 cnt++; meth:= i ; va l θ1 :=x ; o r a c l e ( )

8 mi = λx . # for each mi ∈ A′

9 cnt++; meth:= i ; va l θ1 :=x ; o r a c l e ( )

10 o r a c l e = λ ( ) .

11 match ( ! cnt ) with # number of P-moves played so far (max |τ |/2)

12 | i →
13 # if i > 0 and i-th P-move of τ is crmj(v), with mj : θ1 → θ2, then

14 # - if cr = ret then d = 0 and θ = θ2

15 # - if cr = call then d = j and θ = θ1

16 # diverge if the last P-move played is different from crmj(v)
17 i f not ( ! meth = d and ! va l θ

∧=θ v ) then d ive rge

18 e l s e f o r mi i n fresh ( ! va l θ ) do r e f i := mi

19 # if (i+ 1)-th O-move of τ is cr′ mk(u), with mk : θ1 → θ2, then

20 # - if cr′ = ret then c = 0
21 # - if cr′ = call then c = k

22 i f c then l e t x = ( ! r e f k )u i n # call mk(u)
23 cnt++; meth :=0; va l θ2 :=x ; o r a c l e ( ) ; ! va l θ2

24 e l s e va l θ2 :=u # return u

25 main = o r a c l e ( )

Figure 5 The client Cτ,P,A.

It then performs a case analysis on the value of cnt, which above we denote collectively

by assuming the value is i – this notation hides the fact that we have one case for each

of the finitely many values of i.

For each such i, the oracle first checks if the previous P-move (if there was one), was

the expected one. If the move was a call, it checks whether the called method was

the expected one (via an appropriate value of d), and also whether the value was the

expected one. Value comparisons (
∧=θ) only compare the integer components of θ, since

we cannot compare method names. If this check is successful, the oracle extracts from

u any method names played fresh by P and stores them in the corresponding refi.

Next, the oracle prepares the next move. If, for the given i, the next move is a call,

then the oracle issues the call, stores the return value of that call, increases cnt and

recurs to itself – when the issued call returns, it would be through a P-move. If, on the

other hand, the next move is a return, the oracle simply stores the value to be returned

in the respective val reference – this would allow to the respective mi to return that

value.

5. The main method simply calls the oracle.

We can then show the following. For any library L and (τ, ρ) ∈ JLK, Cτ is such that

(τ, ρ′) ∈ JCτ K for some ρ′.
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for normalizing NRC queries to equivalent flat queries; these normal forms correspond closely
to idiomatic SQL queries and translating from the former to the latter is straightforward.
The basic approach has been extended in a number of directions, including to allow for
(nonrecursive) higher-order functions in queries [7], and to allow for translating queries that
return nested results to a bounded number of flat relational queries [4].

Normalization-based techniques are used in language-integrated query systems such as
Kleisli [24] and Links [8], and can improve both performance and reliability of language-
integrated query in F# [3]. However, most work on normalization considers homogeneous
queries in which there is a single collection type (e.g. homogeneous sets or multisets).
Recently, we considered a heterogeneous calculus for mixed set and bag queries [20], and
conjectured that it too satisfies strong normalization and conservativity theorems. However,
in attempting to extend Cooper’s proof of normalization we discovered a subtle problem,
which makes the original proof incomplete.

Most techniques to prove the strong normalization property for higher-order languages
employ logical relations; among these, the Girard-Tait reducibility relation is particularly
influential: reducibility interprets types as certain sets of strongly normalizing terms enjoying
desirable closure properties with respect to reduction, called candidates of reducibility [9].
The fundamental theorem then proves that every well-typed term is reducible, hence also
strongly normalizing. In its traditional form, reducibility has a limitation that makes it
difficult to apply it to certain calculi: the elimination form of every type is expected to be
a neutral term or, informally, an expression that, when placed in an arbitrary evaluation
context, does not interact with it by creating new redexes. However, some calculi possess
commuting conversions, i.e. reduction rules that apply to nested elimination forms: such rules
usually arise when the elimination form for a type (say, pairs) is constructed by means of an
auxiliary term of any arbitrary, unrelated type. In this case, we expect nested elimination
forms to commute; for example, we could have the following commuting conversion hoisting
the elimination of pairs out of case analysis on disjoint unions:

cases (let (a, b) = p in t) of inl(x)⇒ u; inr(y)⇒ v

 let (a, b) = p in cases t of inl(x)⇒ u; inr(y)⇒ v

where p has type A×B, t has type C +D, u, v have type U , and the bound variables a, b are
chosen fresh for u and v. Since in the presence of commuting conversions elimination forms
are not neutral, a straightforward adaptation of reducibility to such languages is precluded.

1.1 >>-lifting and NRCλ

Cooper’s NRCλ [6, 7] extends the simply typed lambda calculus with collection types whose
elimination form is expressed by comprehensions

⋃
{M |x← N}, where M and N have a

collection type, and the bound variable x can appear in M :

Γ ` N : {S} Γ, x : S `M : {T}
Γ `

⋃
{M |x← N} : {T}

(we use typewriter-style braces {·} to indicate collections as expressions or types of NRCλ).
In the rule above, we typecheck a comprehension destructuring collections of type {S} to
produce new collections in {T}, where T is an unrelated type: semantically, this corresponds
to the union of all the collections M [V /x], such that V is in N . According to the standard
approach, we should attempt to define the reducibility predicate for the collection type {S}
as:

Red{S} , {N : ∀x, T,∀M ∈ Red{T},
⋃

{M |x← N} ∈ Red{T}}
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(we use roman-style braces {·} to express metalinguistic sets). Of course the definition above
is circular, since it uses reducibility over collections to express reducibility over collections;
however, this inconvenience could in principle be circumvented by means of impredicativity,
replacing Red{T} with a suitable, universally quantified candidate of reducibility (an approach
we used in [19] in the context of justification logic). Unfortunately, the arbitrary return type
of comprehensions is not the only problem: they are also involved in commuting conversions,
such as:⋃

{M |x←
⋃

{N |y ← P}} 
⋃

{
⋃

{M |x← N}|y ← P} (y /∈ FV (M))

Because of this rule, comprehensions are not neutral terms, thus we cannot use the closure
properties of candidates of reducibility (in particular, CR3 [9]) to prove that a collection
term is reducible. To address this problem, Lindley and Stark proposed a revised notion
of reducibility based on a technique they called >>-lifting [15]. >>-lifting, which derives
from Pitts’s related notion of >>-closure [18], involves quantification over arbitrarily nested,
reducible elimination contexts (continuations); the technique is actually composed of two
steps: >-lifting, used to define the set Red>T of reducible continuations for collections of type
T in terms of RedT , and >>-lifting proper, defining Red{T} = Red>>T in terms of Red>T . In
our setting, if we use SN to denote the set of strongly normalizing terms, the two operations
can be defined as follows:

Red>T , {K : ∀M ∈ RedT ,K[{M}] ∈ SN}

Red>>T , {M : ∀K ∈ Red>T ,K[M ] ∈ SN}

Notice that, in order to avoid a circularity between the definitions of reducible collection
continuations and reducible collections, the former are defined by lifting a reducible term M

of type T to a singleton collection.
In NRCλ, besides commuting conversions, we come across an additional problem con-

cerning the property of distributivity of comprehensions over unions, represented by the
following reduction rule:⋃

{M ∪N |x← P} 
⋃

{M |x← P} ∪
⋃

{N |x← P}

One can immediately see that in
⋃

{M ∪N |x← �} the reduction above duplicates the hole,
producing a multi-hole context that is not a continuation in the Lindley-Stark sense.

Cooper, in his work, attempted to reconcile continuations with duplicating reductions.
While considering extensions to his language, we discovered that his proof of strong normal-
ization presents a nontrivial lacuna which we could only fix by relaxing the definition of
continuations to allow multiple holes. This problem affected both the proof of the original
result and our attempt to extend it, and has an avalanche effect on definitions and proofs,
yielding a more radical revision of the >>-lifting technique which is the subject of this paper.

The contribution of this paper is to place previous work on higher-order program-
ming for language-integrated query on a solid foundation. As we will show, our approach
also extends to proving normalization for a higher-order heterogeneous collection calculus
NRCλ(Set,Bag) [20] and we believe our proof technique can be extended further.

1.2 Summary
Section 2 reviews presents NRCλ and its rewrite system. Section 3 presents the refined
approach to reducibility needed to handle rewrite rules with branching continuations. Section 4
presents the proof of strong normalization for NRCλ. Section 5 outlines the extension to a

FSCD 2020
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higher-order calculus NRCλ(Set,Bag) providing heterogeneous set and bag queries. Sections 6
and 7 discuss related work and conclude. Some of the proofs which were omitted from the
paper due to space constraints and are detailed in the appendix.

2 Higher-order NRC

NRCλ, a nested relational calculus with non-recursive higher-order functions, is defined by
the following grammar:

types S, T ::= A | S → T | 〈
−−→
` : T 〉 | {T}

terms L,M,N ::= x | c(−→M) | 〈
−−−−→
` = M〉 | M.` | λx.M | (M N)

| ∅ | {M} | M ∪N |
⋃

{M |x← N}
| empty M | where M do N

Types include atomic types A,B, . . . (among which we have Booleans B), record types
with named fields 〈

−−→
` : T 〉, collections {T}; we define relation types as those in the form

{〈
−−→
` : A〉}, i.e. collections of tuples of atomic types. Terms include applied constants c(−→M),

records with named fields and record projections (〈` = M〉, M.`), various collection terms
(empty, singleton, union, and comprehension), the emptiness test empty, and one-sided
conditional expressions for collection types where M do N . In this definition, x ranges over
variable names, c over constants, and ` over record field names. We will allow ourselves
to use sequences of generators in comprehensions, which are syntactic sugar for nested
comprehensions, e.g.:⋃

{M |x← N, y ← R} ,
⋃

{
⋃

{M |y ← R}|x← N}

The typing rules, shown in Figure 1, are largely standard, and we only mention those
operators that are specific to our language: constants are typed according to a fixed signature
Σ, prescribing the types of the n arguments and of the returned expression to be atomic;
empty takes a collection and returns a Boolean indicating whether its argument is empty;
where takes a Boolean condition and a collection and returns the second argument if the
Boolean is true, otherwise the empty set. (Conventional two-way conditionals, at any type,
are omitted for convenience but can be added without difficulty.)

2.1 Reduction and normalization
NRCλ is equipped with a rewrite system whose purpose is to convert expressions of flat
relation type into a sublanguage isomorphic to a fragment of SQL, even when the original
expression contains subterms whose type is not available in SQL, such as nested collections.
The rules for this rewrite system are shown in Figure 2.

Reduction on applied constants can happen when all of the arguments are values in
normal form, and relies on a fixed semantics J·K which assigns to each constant c of signature
Σ(c) = −→An → A′ a function mapping sequences of values of type −→An to values of type A′.
The rules for collections and conditionals are mostly standard. The reduction rule for the
emptiness test is triggered when the argument M is not of relation type (but, for instance,
of nested collection type) and employs comprehension to generate a (trivial) relation that is
empty if and only if M is.

The normal forms of queries under these rewriting rules construct no intermediate nested
structures, and are straightforward to translate to equivalent SQL queries. Cooper [7]
and Lindley and Cheney [14] give details of such translations. Cheney et al. [3] showed
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x : T ∈ Γ
Γ ` x : T

Σ(c) = −→An → A′ (Γ `Mi : Ai)i=1,...,n

Γ ` c(−→Mn) : A′

(Γ `Mi : Ti)i=1,...,n

Γ ` 〈
−−−−−−→
`n = Mn〉 : 〈

−−−−→
`n : Tn〉

Γ `M : 〈
−−−−→
`n : Tn〉 i ∈ {1, . . . , n}

Γ `M.`i : Ti
Γ, x : S `M : T

Γ ` λx.M : S → T

Γ `M : S → T Γ ` N : S
Γ ` (M N) : T

Γ ` ∅ : {T}
Γ `M : T

Γ ` {M} : {T}
Γ `M : {T} Γ ` N : {T}

Γ `M ∪N : {T}
Γ, x : T `M : {S} Γ ` N : {T}

Γ `
⋃

{M |x← N} : {S}

Γ `M : {T}
Γ ` empty M : B

Γ `M : B Γ ` N : {T}
Γ ` where M do N : {T}

Figure 1 Type system of NRC λ.

(λx.M) N  M [N/x] 〈. . . , ` = M, . . .〉.` M c(−→V ) JcK (−→V )⋃
{∅|x←M} ∅

⋃
{M |x← ∅} ∅

⋃
{M |x← {N}} M [N/x]⋃

{M ∪N |x← R}  
⋃

{M |x← R} ∪
⋃

{N |x← R}⋃
{M |x← N ∪R}  

⋃
{M |x← N} ∪

⋃
{M |x← R}⋃

{M |y ←
⋃

{R|x← N}}  
⋃

{M |x← N, y ← R} (if x /∈ FV(M))⋃
{M |x← where N do R}  

⋃
{where N do M |x← R} (if x /∈ FV(M))

where true do M  M where false do M  ∅ where M do ∅ ∅
where M do (N ∪R)  (where M do N) ∪ (where M do R)

where M do
⋃

{N |x← R}  
⋃

{where M do N |x← R}
where M do where N do R  where (M ∧N) do R

empty M  empty (
⋃

{〈〉|x←M}) (if M is not relation-typed)

Figure 2 Query normalization.

how to improve the performance and reliability of LINQ in F# using normalization and
gave many examples showing how higher-order queries support a convenient, compositional
language-integrated query programming style.

3 Reducibility with branching continuations

We introduce here the extension of >>-lifting we use to derive a proof of strong normalization
for NRCλ. The main contribution of this section is a refined definition of continuations with
branching structure and multiple holes, as opposed to the linear structure with a single hole
used by standard >>-lifting. In our definition, continuations (as well as the more general
notion of context) are particular forms of terms: in this way, the notion of term reduction
can be used for continuations as well, without need for auxiliary definitions.

3.1 Contexts and continuations
We start our discussion by introducing contexts, or terms with multiple, labelled holes that
can be instantiated by plugging other terms (including other contexts) into them.

FSCD 2020
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I Definition 1 (context). Let us fix a countably infinite set P of indices: a context C is a
term that may contain distinguished free variables [p], also called holes, where p ∈ P.

Given a finite map from indices to terms [p1 7→M1, . . . , pn 7→Mn] ( context instantiation),
the notation C[p1 7→M1, . . . , pn 7→Mn] ( context application) denotes the term obtained by
simultaneously substituting M1, . . . ,Mn for the holes [p1], . . . , [pn].

We will use metavariables η, θ to denote context instantiations.

I Definition 2 (support). Given a context C, its support supp(C) is defined as the set of
the indices p such that [p] occurs in C as a free variable:

supp(C) , {p : [p] ∈ FV(C)}

When a term does not contain any [p], we say that it is a pure term; when it is important
that a term be pure, we will refer to it by using overlined metavariables L,M,N,R, . . ..
Under the appropriate assumptions, a multiple context instantiation can be decomposed.

I Definition 3. An instantiation η is permutable iff for all p ∈ dom(η) we have FV(η(p))∩
dom(η) = ∅.

I Lemma 4. Let η be permutable and let us denote by η¬p the restriction of η to indices
other than p. Then for all p ∈ dom(η) we have:

Cη = C[p 7→ η(p)]η¬p = Cη¬p[p 7→ η(p)]

We can now define continuations as certain contexts that capture how one or more
collections can be used in a program.

I Definition 5 (continuation). Continuations K are defined as the following subset of contexts:

K,H ::= [p] | M | K ∪K |
⋃

{M |x← K} | where B do K

where for all indices p, [p] can occur at most once.

This definition differs from the traditional one in two ways: first, holes are decorated
with an index; secondly, and most importantly, the production K ∪K allows continuations
to branch and, as a consequence, to use more than one hole. Note that the grammar above is
ambiguous, in the sense that certain expressions like where B do N can be obtained either
from the production where B do K with K = N , or as pure terms by means of the production
M : we resolve this ambiguity by parsing these expressions as pure terms whenever possible,
and as continuations only when they are proper continuations. An additional complication of
NRCλ when compared to the computational metalanguage for which >>-lifting was devised
lies in the way conditional expressions can reduce when placed in an arbitrary context:
continuations in the grammar above are not liberal enough to adapt to such reductions,
therefore, like Cooper, we will need an additional definition of auxiliary continuations allowing
holes to appear in the body of a comprehension (in addition to comprehension generators).

I Definition 6 (auxiliary continuation). Auxiliary continuations are defined as the following
subset of contexts:

Q,O ::= [p] | M | Q ∪Q |
⋃

{Q|x← Q} | where B do Q

where for all indices p, [p] can occur at most once.
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We can then see that regular continuations are a special case of auxiliary continuations;
however, an auxiliary continuation is allowed to branch not only with unions, but also with
comprehensions.1 We use the following definition of frames to represent flat continuations
with a distinguished hole.

I Definition 7 (frame). Frames are defined by the following grammar:

F ::=
⋃

{Q|x} |
⋃

{x← Q} | where B

where for all indices p, [p] can occur at most once.
The operation F p, lifting a frame to an auxiliary continuation with a distinguished hole

[p] is defined by the following rules⋃
{Q|x}p =

⋃
{Q|x← [p]} (p /∈ supp(Q))⋃

{x← Q}p =
⋃

{[p] |x← Q} (p /∈ supp(Q))
(where B)p = where B do [p]

The composition operation Q p©F is defined as:

Q p©F = Q[p 7→ F p]

We generally use frames in conjunction with continuations or auxiliary continuations when
we need to partially expose their leaves: for example, if we write K = K0 p©

⋃
{M |x}, we

know that instantiating K at index p with (for example) a singleton term will create a
redex: K[p 7→ {L}] K0[p 7→M

[
L
/
x
]
]. We say that such a reduction is a reduction at the

interface between the continuation and the instantiation.
We introduce two measures |·|p and ‖·‖p denoting the nesting depth of a hole [p]: the

two measures differ in the treatment of nesting within the body of a comprehension.

I Definition 8. The measures |Q|p and ‖Q‖p are defined as follows:

|[q]|p = ‖[q]‖p =
{

1 if p = q

0 else∣∣M ∣∣
p

=
∥∥M∥∥

p
= 0

|Q1 ∪Q2|p = max(|Q1|p , |Q2|p) ‖Q1 ∪Q2‖p = max(‖Q1‖p , ‖Q2‖p)
|where B Q|p = |Q|p + 1 ‖where B Q‖p = ‖Q‖p + 1

|
⋃

{Q1|x 7→ Q2}|p =


|Q1|p if p ∈ supp(Q1)
|Q2|p + 1 if p ∈ supp(Q2)
0 else

‖
⋃

{Q1|x 7→ Q2}‖p =


‖Q1‖p + 1 if p ∈ supp(Q1)
‖Q2‖p + 1 if p ∈ supp(Q2)
0 else

1 It is worth noting that Cooper’s original definition of auxiliary continuation does not use branching
comprehension (nor branching unions), but is linear just like the original definition of continuation. The
only difference between regular and auxiliary continuations in his work is that the latter allowed nesting
not just within comprehension generators, but also within comprehension bodies (in our notation, this
would correspond to two separate productions

⋃
{M |x← Q} and

⋃
{Q|x← N}).
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NRCλ reduction can be used immediately on contexts (including regular and auxiliary
continuations) since these are simply terms with distinguished free variables; we will also
abuse notation to allow ourselves to specify reduction on hole instantiations: whenever
η(p) N and η′ = η¬p[p 7→ N ], we can write η  η′.

We will denote the set of strongly normalizing terms by SN . For strongly normalizing
terms we can introduce the concept of maximal reduction length.

I Definition 9 (maximal reduction length). Let M ∈ SN : we define ν(M) as the maximum
length of all reduction sequences starting with M . We also define ν(η) as

∑
p∈dom(η) ν(η(p)),

whenever this value is defined.

I Lemma 10. For all strongly normalizing terms M , if M  M ′, then ν(M ′) < ν(M).

I Lemma 11. If Q p©F ∈ SN , then ν(Q) ≤ ν(Q p©F ).

3.2 Renaming reduction
Reducing a plain or auxiliary continuation will yield a context that is not necessarily in the
same class because certain holes may have been duplicated. For this reason, we introduce a
refined notion of renaming reduction which we can use to rename holes in the results so that
each of them occurs at most one time.

I Definition 12. Given a term M with holes and a finite map σ : P → P, we write Mσ for
the term obtained from M by replacing each hole [p] such that σ(p) is defined with [σ(p)].

Even though finite renaming maps are partial functions, it is convenient to extend them
to total functions by taking σ(p) = p whenever p /∈ dom(σ); we will write id to denote the
empty renaming map, whose total extension is the identity function on P.

I Definition 13 (renaming reduction). M σ-reduces to N (notation: M σ
 N) iff M  Nσ.

Conveniently, it can be shown that every renaming reduction chain can be simulated by
a plain reduction chain of the same length and vice-versa: therefore the notion of strongly
normalizing term and the maximal reduction length ν(M) do not depend on whether we use
plain or renaming reduction (this simple result is described in the appendix).

Our goal is to describe the reduction of pure terms expressed in the form of instantiated
continuations. One first difficulty we need to overcome is that, as we noted, the sets of
continuations (both regular and auxiliary) are not closed under reduction; thankfully, we can
prove they are closed under renaming reduction.

I Lemma 14.
1. For all continuations K, if K  C, there exist a continuation K ′ and a finite map σ

such that K σ
 K ′ and K ′σ = C.

2. For all auxiliary continuations Q, if Q C, there exist an auxiliary continuation Q′ and
a finite map σ such that Q σ

 Q′ and Q′σ = C.

Proof sketch. For all C we can find C ′, σ such that C = C ′σ and all the holes in C ′ are
linear. For case 1, we can show by induction on the derivation of K  C ′σ that C ′ satisfies
the grammar for continuations. Case 2 is similar. J

Secondly, given a renaming reduction C
σ
 C ′, we want to be able to express the

corresponding reduction on Cη: due to the renaming σ, it is not enough to change C to C ′,
but we also need to construct some η′ containing precisely those mappings [q 7→ M ] such
that, if σ(q) = p, then p ∈ dom(η) and η(p) = M . This construction is expressed by means
of the following operation.
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I Definition 15. For all pure hole instantiations η and renamings σ, we define ησ as the
hole instantiation such that:

if σ(p) ∈ dom(η) then ησ(p) = η(σ(p));
in all other cases, ησ(p) = η(σ).

The results above allow us to express what happens when a reduction duplicates the
holes in a continuation which is then combined with a hole instantiation.

I Lemma 16. For all contexts C, renamings σ, and hole instantiations η such that, for all
p ∈ dom(η), supp(η(p)) ∩ dom(σ) = ∅, if C σ

 C ′, then Cη σ
 C ′ησ.

Remark. In [6], Cooper attempts to prove strong normalization for NRCλ using a similar,
but weaker result:

If K  C, then for all terms M there exists K ′M such that C[M ] = K ′M [M ] and
K[M ] K ′M [M ].

Since he does not have branching continuations and renaming reductions, whenever a hole is
duplicated, e.g.

K =
⋃

{N1 ∪N2|x← �} 
⋃

{N1|x← �} ∪
⋃

{N2|x← �} = C

he resorts to obtaining a continuation from C simply by filling one of the holes with the
instantiation M :

K ′M =
⋃

{N1|x←M} ∪
⋃

{N2|x← �}

Hence, K ′M [M ] = C[M ]. Unfortunately, subsequent proofs rely on the fact that ν(K) must
decrease under reduction: since we have no control over ν(M), which could potentially be
much greater than ν(K), it may be that ν(K ′M ) ≥ ν(K).

In our setting, by combining Lemmas 14 and 16, we can find a K ′ which is a proper
contractum of K. By Lemma 10, we get ν(K ′) < ν(K), as required by subsequent proofs.

The following result, like many other in the rest of this section, proceeds by well-founded
induction; we will use the following notation to represent well-founded relations:

< stands for the standard less-than relation on N, which is well-founded;
l is the lexicographic extension of < to k-tuples in Nk (for a given k), also well-founded;
≺ will be used to provide a decreasing metric that depends on the specific proof: such
metrics are defined as subsets of l and are thus well-founded.

I Lemma 17. Let Q be an auxiliary continuation, and let η, θ be context instantiations s.t.
their union is permutable. If Qη ∈ SN and Qθ ∈ SN , then Qηθ ∈ SN .

Proof. We assume that dom(η) ∪ dom(θ) ⊆ supp(Q) (otherwise, we can find strictly smaller
permutable η′, θ′ such that Qηθ = Qη′θ′, and their domains are subsets of supp(Q)). We
show Qη ∈ SN and Qθ ∈ SN imply Q ∈ SN , η ∈ SN and θ ∈ SN ; thus we can then prove
the theorem by well-founded induction on (Q, η, θ) using the following metric:

(Q1, η1, θ1) ≺ (Q2, η2, θ2) ⇐⇒ (ν(Q1), ‖Q1‖ , ν(η1)+ν(θ1))l(ν(Q2), ‖Q2‖ , ν(η2)+ν(θ2))

We show that all of the possible contracta of Qηθ are s.n. by case analysis on the contraction.
The important cases are the following:
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Q′ησθσ, where Q σ
 Q′: it is easy to see that ν(ησ) and ν(θσ) are defined because

ν(η) and ν(θ) are; then the thesis follows from the induction hypothesis, knowing that
ν(Q′) < ν(Q) (Lemma 10).
Q0[p 7→ N ]η0θ where Q = Q0 p©F , η = [p 7→M ]η0, and F p[p 7→M ] N by means of a
reduction at the interface. By Lemma 11 we know ν(Q0) ≤ ν(Q); we can easily prove
‖Q0‖ < ‖Q‖. We take η′ = [p 7→ N ]η0: since Qη reduces to Q0η

′ and both terms are
strongly normalizing, we have that ν(η′) is defined. Then we observe (Q0, η

′, θ) ≺ (Q, η, θ)
and obtain the thesis by induction hypothesis. A symmetric case with p ∈ dom(θ) is
proved similarly. J

I Corollary 18. Q[p 7→M ]σ ∈ SN iff for all q s.t. σ(q) = p, we have Q[q 7→M ] ∈ SN .

The following property (whose proof we detail in the appendix) tells us that instantiating
a continuation never shortens the maximal reduction chain.

I Lemma 19. If Qη ∈ SN , then Q ∈ SN and ν(Q) ≤ ν(Qη).

3.3 Candidates of reducibility
We here define the notion of candidates of reducibility: sets of strongly normalizing terms
enjoying certain closure properties that can be used to overapproximate the sets of terms
of a certain type. Our version of candidates for NRCλ is a straightforward adaptation of
the standard definition given by Girard and like that one is based on a notion of neutral
terms, i.e. those terms that, when placed in an arbitrary context, do not create additional
redexes. The set of neutral terms is denoted by NT . Let us introduce the following notation
for Girard’s CRx properties of sets [9]:

CR1(C) , C ⊆ SN
CR2(C) , ∀M ∈ C,∀M ′.M  M ′ =⇒M ′ ∈ C
CR3(C) , ∀M ∈ NT .(∀M ′.M  M ′ =⇒M ′ ∈ C) =⇒M ∈ C

The set CR of the candidates of reducibility is then defined as the collection of those sets of
terms which satisfy all the CRx properties. Some standard results include the non-emptiness
of candidates (in particular, all free variables are in every candidate) and that SN ∈ CR.

3.4 Reducibility sets
In this section we introduce reducibility sets, which are sets of terms that we will use to
provide an interpretation of the types of NRCλ; we will then prove that reducibility sets are
candidates of reducibility, hence they only contain strongly normalizing terms. The following
notation will be useful as a shorthand for certain operations on sets of terms that are used
to define reducibility sets:
C → D , {M : ∀N ∈ C, (M N) ∈ D}
〈
−−−−→
`k : Ck〉 , {M : ∀i = 1, . . . , k,M.`i ∈ Ci}

(p : C)> , {K : ∀M ∈ C.K[p 7→ {M}] ∈ SN}
C>> , {M : ∀p,∀K ∈ (p : C)>,K[p 7→M ] ∈ SN}

The sets (p : C)> and C>> are called the >-lifting and >>-lifting of C. These definitions
refine the ones used in the literature by using indices: >-lifting is defined with respect to a
given index p, while the definition of >>-lifting uses any index.
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I Definition 20 (reducibility). For all types T , the set RedT of reducible terms of type T is
defined by recursion on T by means of the rules:

RedA , SN RedS→T , RedS → RedT
Red〈−−−→`k:Tk〉

, 〈
−−−−−−→
`k : RedTk

〉 Red{T} , Red>>T

Let us use metavariables Θ,Θ′, . . . to denote finite maps from indices to sets of terms in
the form (p1 : C1, . . . , pk : Ck). We extend the notion of >-lifting to such maps by taking the
intersection of all the (pi : Ci)>. This notation is useful to track Θ under renaming reduction.

I Definition 21. Θ> ,
⋂
p∈dom(Θ)(p : Θ(p))>.

I Definition 22. Let Θ be a finite map from indices to sets of terms and σ a renaming: then
we define Θσ as the finite map Θσ(p) = Θ(σ(p)), defined for all p such that σ(p) ∈ dom(Θ).

We now proceed with the proof that all the sets RedT are candidates of reducibility: we
will only focus on collections since for the other types the result is standard. The proofs of
CR1 and CR2 do not differ much from the standard >>-lifting technique.

I Lemma 23 (CR1 for continuations). For all p and all non-empty C, (p : C)> ⊆ SN .

I Lemma 24 (CR1 for collections). If CR1(C), then CR1(C>>).

I Lemma 25 (CR2 for collections). If M ∈ C>> and M  M ′, then M ′ ∈ C>>.

In order to prove CR2 for all types (and particularly for collections), we do not need to
establish an analogous property on continuations; however such a property is still useful for
subsequent results (particularly CR3): its statement must, of course, consider that reduction
may duplicate (or indeed delete) holes, and thus employs renaming reduction.

I Lemma 26 (CR2 for continuations). If K ∈ Θ> and K σ
 K ′, then K ′ ∈ (Θσ)>.

The lemma above could have some unpleasant consequences for our proof: since reducing
an applied continuation of the form K[p 7→ M ] can lead to the duplication of M , every
proof of a statement about the strong normalizability of such an expression that proceeds
by induction on its reduction chains would need to be generalized to n-ary instantiations
of n-ary continuations! Fortunately, instantiations to pure terms are always permutable,
therefore we can simply consider each hole separately, as stated in the following lemma.

I Lemma 27. K ∈ (Θσ)> if, and only if, for all q ∈ dom(Θσ), we have K ∈ (q : Θ(σ(q)))>.
In particular, K ∈ ((p : C)σ)> if, and only if, for all q s.t. σ(q) = p, we have K ∈ (q : C)>.

This is everything we need to prove CR3.

I Lemma 28 (CR3 for collections). Let C ∈ CR, and M a neutral term such that for all
reductions M  M ′ we have M ′ ∈ C>>. Then M ∈ C>>.

Proof. By definition, we need to prove K[p 7→ M ] ∈ SN whenever K ∈ (p : C)> for some
index p. By Lemma 23, knowing that C, being a candidate, is non-empty, we have K ∈ SN .
We can thus proceed by well-founded induction on ν(K) to prove the strengthened statement:
for all indices q, if K ∈ (q : C)>, then K[q 7→M ] ∈ SN . Equivalently, we prove that all the
contracta of K[q 7→M ] are s.n. by cases on the possible contracta:
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K ′[q 7→M ]σ (where K σ
 K ′): to prove this term is s.n., by Lemma 18, we need to show

K ′[q′ 7→M ] ∈ SN whenever σ(q′) = q; by Lemmas 26 and 27, we know K ′ ∈ (q′ : C)>,
and naturally ν(K ′) < ν(K) (Lemma 10), thus the thesis follows by the IH.
K[p 7→M ′] (where M  M ′): this is s.n. because M ′ ∈ C>> by hypothesis.
Since M is neutral, there are no reductions at the interface. J

I Theorem 29. For all types T , RedT ∈ CR.

Proof. Standard by induction on T . For T = {T ′}, we use Lemmas 24, 25, and 28. J

4 Strong normalization

Having proved that the reducibility sets of all types are candidates of reducibility, in order
to obtain strong normalization we only need to know that every well-typed term is in
the reducibility set corresponding to its type: this proof is by structural induction on the
derivation of the typing judgment. Reducibility of singletons is trivial by definition, while
that of empty collections is proved in the same style as [6], with the obvious adaptations.

I Lemma 30 (reducibility for singletons). For all C, if M ∈ C, then {M} ∈ C>>.

I Lemma 31 (reducibility for ∅). For all C, ∅ ∈ C>>.

As for unions, we will prove a more general statement on auxiliary continuations.

I Lemma 32.
For all auxiliary continuations Q,O1, O2 with pairwise disjoint supports, if Q[p 7→ O1] ∈ SN
and Q[p 7→ O2] ∈ SN , then Q[p 7→ O1 ∪O2] ∈ SN .

The proof of the lemma above follows the same style as [6]; however since our definition of
auxiliary continuations is more general, the theorem statement mentions O1, O2 rather than
pure terms: the hypothesis on the supports of the continuations being disjoint is required by
this generalization.

I Corollary 33 (reducibility for unions). If M ∈ C>> and N ∈ C>>, then M ∪N ∈ C>>.

Like in proofs based on standard >>-lifting, the most challenging cases are those dealing
with commuting conversions – in our case, comprehensions and conditionals.

I Lemma 34. Let K, L, N be such that K[p 7→ N
[
L
/
x
]
] ∈ SN and L ∈ SN . Then

K[p 7→
⋃

{N |x← {L}}] ∈ SN .

Proof. In this proof, we assume the names of bound variables are chosen so as to avoid
duplicates, and are distinct from the free variables. We proceed by well-founded induction
on (K, p,N,L) using the following metric:

(K1, p1, N1, L1) ≺ (K2, p2, N2, L2)
⇐⇒ (ν(K1[p1 7→ N1

[
L1
/
x
]
]) + ν(L1), ‖K1‖p1

, size(N1))
l(ν(K2[p2 7→ N2

[
L2
/
x
]
]) + ν(L2), ‖K2‖p2

, size(N2))

Now we show that every contractum must be a strongly normalizing:
K[p 7→ N

[
L
/
x
]
]: this term is s.n. by hypothesis.
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K ′[p 7→
⋃

{N |x← {L}}]σ, where K σ
 K ′. Lemma 10 allows us to prove ν(K ′[p 7→

N
[
L
/
x
]
]σ) < ν(K[p 7→ N

[
L
/
x
]
]) (since the former is a contractum of the latter), which

implies ν(K ′[q 7→ N
[
L
/
x
]
]) ≤ ν(K ′[p 7→ N

[
L
/
x
]
]σ) < ν(K[p 7→ N

[
L
/
x
]
]) for all

q s.t. σ(q) = p by means of Lemma 19 (because [q 7→ N
[
L
/
x
]
] is a subapplication

of [p 7→ N
[
L
/
x
]
]σ); then we can apply the IH to obtain, for all q s.t. σ(q) = p,

K ′[q 7→
⋃

{N |x← {L}}] ∈ SN ; by Lemma 18, this implies the thesis.
K[p 7→ ∅] (when N = ∅): this is equal to K[p 7→ ∅

[
L
/
x
]
], which is s.n. by hypothesis.

K[p 7→
⋃

{N1|x← {L}}∪
⋃

{N2|x← {L}}] (whenN = N1∪N2); by IH (since size(Ni) <
size(N1∪N2), and all other metrics do not increase) we prove K[p 7→

⋃
{Ni|x← {L}}] ∈

SN (for i = 1, 2), and consequently obtain the thesis by Lemma 32.
K0[p 7→

⋃
{
⋃

{M |y ← N}|x← {L}}], where K = K0 p©
⋃

{M |y}; since we know, by
the hypothesis on the choice of bound variables, that x /∈ FV(M), we note that K0[p 7→⋃

{M |y ← N}
[
L
/
x
]
] = K[p 7→ N

[
L
/
x
]
]; furthermore, we know ‖K0‖p < ‖K‖p; then

we can apply the IH to obtain the thesis.
K0[p 7→

⋃
{where B do N |x← {L}}] (when K = K0 p© where B): since we know, from

the hypothesis on the choice of bound variables, that x /∈ FV(B), we note that K0[p 7→
(where B do N)

[
L
/
x
]
] = K[p 7→ N

[
L
/
x
]
]; furthermore, we know ‖K0‖p < ‖K‖p; then

we can apply the IH to obtain the thesis.
reductions within N or L follow from the IH by reducing the induction metric. J

I Lemma 35 (reducibility for comprehensions). Assume CR1(C), CR1(D), M ∈ C>> and for
all L ∈ C, N

[
L
/
x
]
∈ D>>. Then

⋃
{N |x←M} ∈ D>>.

Proof. We assume p, K ∈ (p : D)> and prove K[p 7→
⋃

{N |x←M}] ∈ SN . We start by
showing that K ′ = K p©

⋃
{N |x} ∈ (p : C)>, or equivalently that for all L ∈ C, K ′[p 7→

{L}] = K[p 7→
⋃

{N |x← {L}}] ∈ SN : since CR1(C), we know L ∈ SN , and since
N
[
L
/
x
]
∈ D>>, K[p 7→ N

[
L
/
x
]
] ∈ SN ; then we can apply Lemma 34 to obtain K ′[p 7→

{L}] ∈ SN and consequently K ′ ∈ (p : C)>. But then, since M ∈ C>>, we have K ′[p 7→
M ] = K[p 7→

⋃
{N |x←M}] ∈ SN , which is what we needed to prove. J

Reducibility for conditionals is proved in a similar manner. However, to consider all the
conversions commuting with where, we need to use the more general auxiliary continuations.

I Lemma 36. Let Q, B, O such that Q[p 7→ O] ∈ SN , B ∈ SN , and supp(Q)∩supp(O) = ∅.
Then Q[p 7→ where B do O] ∈ SN .

Proof sketch. We proceed by well-founded induction on (Q,B,O, p) using the following
metric:

(Q1, B1, O1, p1) ≺ (Q2, B2, O2, p2) ⇐⇒
(ν(Q1[p1 7→ O1]) + ν(B1), |Q1|p1

, size(O1)) l (ν(Q2[p2 7→ O2]) + ν(B2), |Q2|p2
, size(O2))

We show every contractum must be a strongly normalizing term; we apply the IH to
new auxiliary continuations obtained by placing pieces of O into Q or vice-versa: the
hypothesis on the supports of Q and O is used to ensure that the new continuations are
well-formed. The use of |·|p rather than ‖·‖p is needed to ensure that contractions in the
form Q[p 7→ where B do

⋃
{O1|x← O2}]  (Q p©

⋃
{x← O2})[p 7→ where B do O1] do

not increase the metric. J

I Corollary 37 (reducibility for conditionals).
If B ∈ SN and N ∈ Red{T}, then where B do N ∈ Red{T}.

FSCD 2020



28:14 Strongly Normalizing Higher-Order Relational Queries

Finally, reducibility for the emptiness test is proved in the same style as [6].

I Lemma 38. For all M and T such that Γ ` M : {T} and M ∈ Red>>T , we have
empty(M) ∈ SN .

4.1 Main theorem
Before stating and proving the main theorem, we introduce some auxiliary notation.

I Definition 39.
1. A substitution ρ satisfies Γ (notation: ρ � Γ) iff, for all x ∈ dom(Γ), ρ(x) ∈ RedΓ(x).
2. A substitution ρ satisfies M with type T (notation: ρ �M : T ) iff Mρ ∈ RedT .

As usual, the main result is obtained as a corollary of a stronger theorem generalized to
substitutions into open terms, by using the identity substitution idΓ.

I Lemma 40. For all Γ, we have idΓ � Γ.

I Theorem 41. If Γ `M : T , then for all ρ such that ρ � Γ, we have ρ �M : T

Proof. By induction on the derivation of Γ ` M : T . When M is empty, a singleton, a
union, an emptiness test, or a conditional, we use Lemmas 31, 30, 33, 38, and 37. For
comprehensions such that Γ `

⋃
{M1|x←M2} : {T}, we know by IH that ρ �M2 : {S} and

for all ρ′ � Γ, x : S we have ρ′ �M1 : {T}: we prove that for all L ∈ RedS , ρ [L/x] � Γ, x : S,
hence ρ [L/x] ` M1 : {T}; then we obtain ρ �

⋃
{M1|x←M2} : {T} by Lemma 35.

Non-collection cases are standard. J

I Corollary 42. If Γ `M : T , then M ∈ SN .

5 Heterogeneous Collections

In a short paper [20], we introduced a generalization of NRC called NRC (Set,Bag), which
contains both set-valued and bag-valued collections (with distinct types denoted by {T}
and HT I), along with mapping from bags to sets (deduplication δ) and from sets to bags
(promotion ι). We conjectured that this language also satisfies a normalization property. Here,
we prove this claim, even extending NRC (Set,Bag) to a richer language NRCλ(Set,Bag)
with higher-order (nonrecursive) functions.

L,M,N ::= . . . | f | HMI | M ]N |
⊎

HM |x← NI
| wherebag M do N | emptybag M | δM | ιM

The notations f, HMI, M ] N ,
⊎

HM |x← NI denote empty and singleton bags, bag
disjoint union and bag comprehension; the language also includes conditionals and emptiness
tests on bags. We omit the typing rules, and observe that the reduction rules involving bag
operations correspond to those for set operations, and additionally include the following:

δf ∅ δHMI {M} δ(M ]N) δM ∪ δN διM  M

δ
⊎

HM |x← NI 
⋃

{δM |x← δN} δ(wherebag M do N) where M do δN
ι∅ f ι{M} HMI ι(where M do N) wherebag M do ιN

SN for NRCλ(Set,Bag) is proved by first translating the language to a version of NRCλ

retaining the operations δ and ι that we call NRCλδι, by means of a forgetful translation b·c
mapping empty bags, bag unions and bag comprehensions to the corresponding set constructs.
We prove that every contraction in NRCλ(Set,Bag) is translated to a contraction in NRCλδι,
and thus obtain SN for NRCλ(Set,Bag) as a corollary of SN for NRCλδι.
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I Theorem 43. If Γ `M : T in NRCλ(Set,Bag), then bΓc ` bMc : bT c in NRCλδι.

I Lemma 44. For all terms M of NRCλ(Set,Bag), if M  M ′, we have bMc bM ′c in
NRCλδι. Consequently, if bM ′c ∈ SN in NRCλδι, then M ′ ∈ SN in NRCλ(Set,Bag).

I Theorem 45. If Γ `M : T in NRCλδι, then M ∈ SN in NRCλδι.

I Corollary 46. If Γ `M : T in NRCλ(Set,Bag), then M ∈ SN in NRCλ(Set,Bag).

6 Related Work

This paper builds on a long line of research on normalization of comprehension queries,
a model of query languages popularized over 25 years ago by Buneman et al. [2] and
inspired by Trinder and Wadler’s work on comprehensions [21, 22]. Wong [23] proved
conservativity via a strongly normalizing rewrite system, which was used in Kleisli [24], a
functional query system, in which flat query expressions were normalized to SQL. Libkin
and Wong [12, 13] investigated conservativity in the presence of aggregates, internal generic
functions, and bag operations, and demonstrated that bag operations can be expressed
using nested comprehensions. However, their normalization results studied bag queries by
translating to relational queries with aggregation, and did not consider higher-order queries,
so they do not imply the normalization results for NRCλ(Set,Bag) given here.

Cooper [7] first investigated query normalization (and hence conservativity) in the presence
of higher-order functions. He gave a rewrite system showing how to normalize homogeneous
(that is, pure set or pure bag) queries to eliminate intermediate occurrences of nesting or of
function types. However, although Cooper claimed a proof (based on >>-lifting [15]) and
provided proof details in his PhD thesis [6], there unfortunately turned out to be a nontrivial
lacuna in that proof, and this paper therefore (in our opinion) contains the first complete
proof of normalization for higher-order queries, even for the homogeneous case.

Since the fundamental work of Wong and others on the Kleisli system, language-integrated
query has gradually made its way into other systems, most notably Microsoft’s .NET
framework languages C# and F# [16], and the Web programming language Links [8].
Cheney et al. [3] formally investigated the F# approach to language-integrated query and
showed that normalization results due to Wong and Cooper could be adapted to improve it
further; however, their work considered only homogeneous collections. In subsequent work,
Cheney et al. [4] showed how use normalization to perform query shredding for multiset
queries, in which a query returning a type with n nested collections can be implemented by
combining the results of n flat queries; this has been implemented in Links [8].

Several recent efforts to formalize and reason about the semantics of SQL are comple-
mentary to our work. Guagliardo and Libkin [10] presented a semantics for SQL’s actual
behaviour in the presence of set and multiset operators (including bag intersection and
difference) as well as incomplete information (nulls), and related the expressiveness of this
fragment of SQL with that of an algebra over bags with nulls. Chu et al. [5] presented a
formalised semantics for reasoning about SQL (including set and bag semantics as well as
aggregation/grouping, but excluding nulls) using nested relational queries in Coq, while
Benzaken and Contejean [1] presented a semantics including all of these SQL features (set,
multiset, aggregation/grouping, nulls), and formalized the semantics in Coq. Kiselyov et
al. [11] has proposed language-integrated query techniques that handle sorting operations
(SQL’s ORDER BY).

However, the above work on semantics has not considered query normalization, and to
the best of our knowledge normalization results for query languages with more than one
collection type were previously unknown even in the first-order case. We are interested in
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extending our results for mixed set and bag semantics to handle nulls, grouping/aggregation,
and sorting, thus extending higher-order language integrated query to cover all of the most
widely-used SQL features. Normalization of higher-order queries in the presence of all of
these features simultaneously remains an open problem, which we plan to consider next. In
addition, fully formalizing such normalization proofs also appears to be a nontrivial challenge.

7 Conclusions

Integrating database queries into programming languages has many benefits, such as type
safety and avoidance of common SQL injection attacks, but also imposes limitations that
prevent programmers from constructing queries dynamically as they could by concatenating
SQL strings unsafely. Previous work has demonstrated that many useful dynamic queries
can be constructed safely using higher-order functions inside language-integrated queries;
provided such functions are not recursive, it was believed, query expressions can be normalized.
Moreover, while it is common in practice for language-integrated query systems to provide
support for SQL features such as mixed set and bag operators, it is not well understood in
theory how to normalize these queries in the presence of higher-order functions. Previous work
on higher-order query normalization has considered only homogeneous (that is, pure set or
pure bag) queries, and in the process of attempting to generalize this work to a heterogeneous
setting, we discovered a nontrivial gap in the previous proof of strong normalization. We
therefore prove strong normalization for both homogeneous and heterogeneous queries for
the first time.

As next steps, we intend to extend the Links implementation of language-integrated
query with heterogeneous queries and normalization, and to investigate (higher-order) query
normalization and conservativity for the remaining common SQL features, such as nulls,
grouping/aggregation, and ordering.
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A Proofs

This appendix expands on some results whose proofs were omitted or only sketched in the
paper.

Since under plain reduction each term can be reduced only in a finite number of ways, it
is easy to see that ν(M) is defined for any strongly normalizing term M ; however, under
renaming reduction, a term may be reduced in an infinite number of ways because, ifM  N ,
there may be infinite R, σ such that N = Rσ. Fortunately, we can prove that to any renaming
reduction chain there corresponds a plain reduction chain of the same length, and vice-versa:
consequently, the set of strongly normalizing terms is the same under the two notions of
reduction, and ν(M) refers to the maximal length of reduction chains starting at M either
with or without renaming.

I Lemma 47. For all contexts C, terms N and indices p, if C[p 7→ N ] ∈ SN , we have
C ∈ SN ; if p ∈ supp(C), then N ∈ SN .
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Proof of Lemma 11. If Q p©F ∈ SN , then ν(Q) ≤ ν(Q p©F ).

By induction on the possible reduction sequences in Q, we show there exists a corres-
ponding reduction sequence with the same length in Q p©F . J

I Lemma 48. If M  N , then Mσ  Nσ.

I Lemma 49.
1. If M · · · ︸ ︷︷ ︸

n times
N , then M id

 · · · id
 ︸ ︷︷ ︸

n times
N

2. If M σ1 · · · σn N , then M · · · ︸ ︷︷ ︸
n times

Nσn · · ·σ1

Proof. The first part of the lemma is trivial. For the second part, proceed by induction on
the length of the reduction chain: in the inductive case, we have M σ1 · · · σn M ′

σn+1
 N by

hypothesis and M  · · ·  M ′σn · · ·σ1 by induction hypothesis; to obtain the thesis, we
only need to prove that

M ′σn · · ·σ1  Nσn+1 · · ·σ1

In order for this to be true, by Lemma 48, it is sufficient to show that M ′  Nσn+1; this is
by definition equivalent to M ′ σn+1

 N , which we know by hypothesis. J

I Corollary 50. Suppose M ∈ SN : if M σ
 M ′, then ν(M ′) is defined and ν(M ′) < ν(M).

Proof. By Lemma 49, for any plain reduction chain there exists a renaming reduction chain
of the same length, and vice-versa. Thus, since plain reduction lowers the length of the
maximal reduction chain (Lemma 10), the same holds for renaming reduction. J

Proof of Lemma 14.
1. For all continuations K, if K  C, there exist a continuation K ′ and a finite map σ

such that K σ
 K ′ and K ′σ = C.

2. For all auxiliary continuation Q, if Q C, there exist an auxiliary continuation Q′ and
a finite map σ such that Q σ

 Q′ and Q′σ = C.

Let C be a contractum of the continuation we wish to reduce. This contractum will not,
in general, satisfy the side condition that holes must be linear; however we can show that,
for any context with duplicated holes, there exists a structurally equal context with linear
holes. Operationally, if C contains n holes, we generate n different fresh indices in P, and
replace the index of each hole in C with a different fresh index to obtain a new context
C ′: this induces a finite map σ : supp(C ′) → supp(C) such that C ′σ = C. By structural
induction on the derivation of the reduction and by case analysis on the structure of K (or
on the structure of Q) we show that C ′ must also satisfy the grammar in Definition 5 (resp.
Definition 6); furthermore, C ′ satisfies the linearity condition by construction, which proves
it is a continuation K ′ (resp. an auxiliary continuation Q′). J

I Lemma 51. For all contexts C and hole instantiations η, if C  C ′, then Cη  C ′η.

I Lemma 52. For all contexts C, finite maps σ, and hole instantiations η such that, for all
p ∈ dom(η), supp(η(p)) ∩ dom(σ) = ∅, we have Cση = Cησσ.

Proof. By structural induction on C. The interesting case is when C = [p]. If σ(p) ∈ dom(η),
we have [p]ση = [σ(p)] η = η(σ(p)) = η(σ(p))σ = [p] ησσ; otherwise, [p]ση = [p] =
[p] ησσ. J
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Proof of Lemma 16. For all contexts C, renamings σ, and hole instantiations η such that,
for all p ∈ dom(η), supp(η(p)) ∩ dom(σ) = ∅, if C σ

 C ′, then Cη σ
 C ′ησ.

By definition of σ
 , we have C  C ′σ; then, by Lemma 51, we obtain Cη  C ′ση; by

Lemma 52, we know C ′ση = C ′ησσ; then the thesis Cη σ
 C ′ησ follows immediately by the

definition of σ
 . J

I Lemma 53.
If M  M ′ and p ∈ supp(Q), then Q[p 7→M ] id

 Q[p 7→M ′].

Proof. By induction on the structure of Q, we show that for each reduction in the hypothesis,
we can construct a corresponding reduction proving the thesis. J

I Lemma 54 (classification of reductions in applied continuations). Suppose Qη  N , where
η is permutable, and dom(η) ⊆ supp(Q); then one of the following holds:
1. there exist an auxiliary continuation Q′ and a finite map σ such that N = Q′ησ, where

ησ is permutable, and Q σ
 Q′: in this case, we say the reduction is within Q;

2. there exist auxiliary continuations Q1, Q2, an index q ∈ supp(Q1), a variable x, and a
term L such that Q = (Q1 q©

⋃
{x← {L}})[q 7→ Q2], and N = Q1[q 7→ Q2

[
L
/
x
]
]η∗,

where we define η∗(p) = η(p)
[
L
/
x
]
for all p ∈ supp(Q2), otherwise η∗(p) = η(p): this is

a reduction within Q too;
3. there exists a permutable η′ such that N = Qη′ and η  η′: in this case we say the

reduction is within η;
4. there exist an auxiliary continuation Q0, an index p such that p ∈ supp(Q0) and p ∈

dom(η), a frame F and a term M such that N = Q0[p 7→ M ]η¬p, Q = Q0 p©F , and
F p[p 7→ η(p)] M : in this case we say the reduction is at the interface.

Furthermore, if Q is a regular continuation K, then the Q′ in case 1 can be chosen to be a
regular continuation K ′, and case 2 cannot happen.

Proof. By induction on Q with a case analysis on the reduction rule applied. J

Proof of Lemma 19. If Qη ∈ SN , then Q ∈ SN and ν(Q) ≤ ν(Qη).

We proceed by well-founded induction on (Q, η) using the metric:

(Q1, η1) ≺ (Q2, η2) ⇐⇒ ∃σ : Qη1
σ
 Q′η2

For all contractions Q σ
 Q′, by Lemma 53 we know Qη

σ
 Q′ησ: then we can apply the IH

with (Q′, ησ) to prove Q′: thus we conclude Q ∈ SN .
To prove ν(Q) ≤ ν(Qη), it is sufficient to see that for each reduction step in Q we have a

corresponding reduction step in Qη: thus the reduction chains starting in Qη must be at
least as long as those in Q. J

I Lemma 55. Suppose CR1(C): then for all indices p, q, [p] ∈ (q 7→ C)>.

Proof. To prove the lemma, it is sufficient to show that for all M ∈ C we have [p][q 7→
{M}] ∈ SN . This term is equal to either {M} (if p = q) or to [p] (otherwise); both terms
are s.n. (in the case of {M}, this is because CR1 holds for C, thus M ∈ SN ). J

Proof of Lemma 23. For all p and all non-empty C, (p : C)> ⊆ SN .

We assume K ∈ (p : C)> and M ∈ C: by definition, we know that K[p 7→ {M}] ∈ SN ;
then we have K ∈ SN by Lemma 47. J
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Proof of Lemma 24. If CR1(C), then CR1(C>>).

We need to prove that if M ∈ C>>, then M ∈ SN . By the definition of C>>, we know
that for all p, K[p 7→M ] ∈ SN whenever K ∈ (p : C)>. Now assume any p, and by Lemma 55
choose K = [p]: then K[p 7→M ] = M ∈ SN , which proves the thesis. J

I Lemma 56. If K ∈ SN is a continuation, then for all indices p we have K[p 7→ ∅] ∈ SN .

Proof. We proceed by well-founded induction, using the metric:

(K1, p1) ≺ (K2, p2) ⇐⇒ (ν(K1), ‖K1‖p1
) l (ν(K2), ‖K2‖p2

)

K ′[p 7→ ∅]σ, where K σ
 K ′: by Lemma 18, we need to show K ′[q 7→ ∅] ∈ SN whenever

σ(q) = p; this follows from the IH, with ν(K ′) < ν(K) by Lemma 10.
K0[p 7→ ∅], where K = K0 p©F for some frame F : by Lemma 11 we have ν(K0) ≤ ν(K);
furthermore, we can easily prove that ‖K0‖p < ‖K‖p; then the thesis follows immediately
from the IH. J

Proof of Lemma 31. For all C, ∅ ∈ C>>.

Immediate from Lemma 56, by unfolding the definition of C>>. J

Proof of Lemma 32. For all Q-continuations Q,O1, O2 with pairwise disjoint supports, if
Q[p 7→ O1] ∈ SN and Q[p 7→ O2] ∈ SN , then Q[p 7→ O1 ∪O2] ∈ SN .

We assume p ∈ supp(Q) (otherwise, Q[p 7→ O1] = Q[p 7→ O2] = Q[p 7→ O1 ∪ O2], and
the thesis holds trivially). Then, by Lemma 47, Q[p 7→ O1] ∈ SN and Q[p 7→ O2] ∈ SN
imply Q ∈ SN , O1 ∈ SN , and O2 ∈ SN : thus we can proceed by well-founded induction on
(Q, p,O1, O2) using the following metric:

(Q1, p1, O1
1, O

1
2) ≺ (Q2, p2, O2

1, O
2
2)

⇐⇒ (ν(Q1),
∥∥Q1

∥∥
p1 , ν(O1

1) + ν(O1
2)) l (ν(Q2),

∥∥Q2
∥∥
p2 , ν(O2

1) + ν(O2
2))

to prove that if Q[p 7→ O1] ∈ SN and Q[p 7→ O2] ∈ SN , then Q[p 7→ O1 ∪ O2] ∈ SN .
Equivalently, we will consider all possible contracta and show that each of them must
be a strongly normalizing term; we will apply the induction hypothesis to new auxiliary
continuations obtained by placing pieces of Q into O1 and O2: the hypothesis on the supports
of the continuations being disjoint is used to make sure that the new continuations do not
contain duplicate holes and are thus well-formed. By cases on the possible contracta:

Q1[q 7→ Q2
[
L
/
x
]
][p 7→ (O1

[
L
/
x
]
) ∪ (O2

[
L
/
x
]
)] (where Q = (Q1 q©

⋃
{x← {L}})[q 7→

Q2], q ∈ supp(Q1), p ∈ supp(Q2)): let Q′ = Q1[q 7→ Q2
[
L
/
x
]
], and note that Q  Q′,

hence ν(Q′) < ν(Q); note Q[p 7→ O1] Q′[p 7→ O1
[
L
/
x
]
], hence since the former term

is s.n., so must be the latter, and hence also O1
[
L
/
x
]
∈ SN ; similarly, O2

[
L
/
x
]
; then

we can apply the IH with (Q′, p, O1
[
L
/
x
]
, O2

[
L
/
x
]
) to obtain the thesis.

Q′[p 7→ O1 ∪ O2]σ (where Q σ
 Q′): by Lemma 18, we need to prove that, for all

q s.t. σ(q) = p, Q′[q 7→ O1 ∪ O2] ∈ SN ; since Q[p 7→ O1] ∈ SN , we also have
Q′[p 7→ O1]σ ∈ SN , which implies Q′[q 7→ O1] ∈ SN by Lemma 18; for the same reason,
Q′[q 7→ O2] ∈ SN ; by Lemma 10, ν(Q′) < ν(Q), thus the thesis follows by IH.
Q1[p 7→ (

⋃
{Q2|x← O1}) ∪ (

⋃
{Q2|x← O2})] (where Q = Q1 p©

⋃
{Q2|x}):

by Lemma 11, ν(Q1) ≤ ν(Q); we also know ‖Q1‖p < ‖Q‖p; take O′1 :=
⋃

{Q2|x← O1}
and note that, since Q[p 7→ O1] = Q0[p 7→ O′1], we have O′1 is a subterm of a strongly
normalizing term, thus O′1 ∈ SN ; similarly, we define O′2 :=

⋃
{Q2|x← O2} and show

it is s.n. in a similar way; then (Q1, p, O
′
1, O

′
2) reduce the metric, and we can prove the

thesis by IH.
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Q1[p 7→ (
⋃

{O1|x← Q2}) ∪ (
⋃

{O2|x← Q2})] (where Q = Q1 p©
⋃

{x← Q2}): by
Lemma 11, ν(Q1) ≤ ν(Q); we also know ‖Q1‖p < ‖Q‖p; take O′1 :=

⋃
{O1|x← Q2}

and note that, since Q[p 7→ O1] = Q1[p 7→ O′1], we have O′1 is a subterm of a strongly
normalizing term, thus O′1 ∈ SN ; similarly, we define O′2 :=

⋃
{O2|x← Q2} and show

it is s.n. in a similar way; then (Q1, p, O
′
1, O

′
2) reduce the metric, and we can prove the

thesis by IH.
Q0[p 7→ (where B do O1)∪ (where B do O2)] (where Q = Q0 p© where B): by Lemma 11,
ν(Q0) ≤ ν(Q); we also know ‖Q0‖p < ‖Q‖p; take O′1 := where B do O1 and note that,
since Q[p 7→ O1] = Q0[p 7→ O′1], we have O′1 is a subterm of a strongly normalizing
term, thus O′1 ∈ SN ; similarly, we define O′2 := where B do O2 and prove it is strongly
normalizing in the same way; then (Q0, p, O

′
1, O

′
2) reduce the metric, and we can prove

the thesis by IH.
Contractions within O1 or O2 reduce ν(O1) + ν(O2), thus the thesis follows by IH. J

Reducibility for conditionals similarly to comprehensions. However, to consider all the
conversions commuting with where, we need to use the more general auxiliary continuations.

I Lemma 57. If Q[p 7→ M ∪ N ] ∈ SN , then Q[p 7→ M ] ∈ SN and Q[p 7→ N ] ∈ SN ;
furthermore, we have:

ν(Q[p 7→M ]) ≤ ν(Q[p 7→M ∪N ])
ν(Q[p 7→ N ]) ≤ ν(Q[p 7→M ∪N ])

Proof. We assume p ∈ supp(Q) (otherwise, Q[p 7→ M ] = Q[p 7→ N ] = Q[p 7→ M ∪ N ],
and the thesis holds trivially), then we show that any contraction in Q[p 7→ M ] has a
corresponding non-empty reduction sequence in Q[p 7→ M ∪ N ], and the two reductions
preserve the term form, therefore no reduction sequence of Q[p 7→ M ] is longer than the
maximal one in Q[p 7→M ∪N ]. The same reasoning applies to Q[p 7→ N ]. J

Proof of Lemma 36. Let Q, B, O such that Q[p 7→ O] ∈ SN , B ∈ SN , and supp(Q) ∩
supp(O) = ∅. Then Q[p 7→ where B do O] ∈ SN .

In this proof, we assume the names of bound variables are chosen so as to avoid duplicates,
and distinct from the free variables. We proceed by well-founded induction on (Q,B,O, p)
using the following metric:

(Q1, B1, O1, p1) ≺ (Q2, B2, O2, p2) ⇐⇒
(ν(Q1[p1 7→ O1]) + ν(B1), |Q1|p1

, size(O1)) l (ν(Q2[p2 7→ O2]) + ν(B2), |Q2|p2
, size(O2))

We will consider all possible contracta and show that each of them must be a strongly
normalizing term; we will apply the induction hypothesis to new auxiliary continuations
obtained by placing pieces of O into Q or vice-versa: the hypothesis on the supports of Q and
O being disjoint is used to make sure that the new continuations do not contain duplicate
holes and are thus well-formed. By cases on the possible contracta:

Q1[q 7→ Q2
[
L
/
x
]
][p 7→ (where B do O)

[
L
/
x
]
], where Q = (Q1 q©

⋃
{x← {L}})[q 7→

Q2], q ∈ supp(Q1), and p ∈ supp(Q2); by the freshness condition we know x /∈ FV(B), thus
(where B do O)

[
L
/
x
]

= where B do (O
[
L
/
x
]
); we take Q′ = Q1[q 7→ Q2

[
L
/
x
]
] and

O′ = O
[
L
/
x
]
, and note that ν(Q′[p 7→ O′]) < ν(Q[p 7→ O]), because the former term is a

contractum of the latter: then we can apply the IH to prove Q′[p 7→ where B do O′] ∈ SN ,
as needed.

FSCD 2020
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Q′[p 7→ where B do O]σ, where Q σ
 Q′. We know ν(Q′[p 7→ O]σ) < ν(Q[p 7→ O]) by

Lemma 10 since the latter is a contractum of the former. By Lemma 18, for all q s.t.
σ(q) = p we have ν(Q′[q 7→ O]) ≤ ν(Q′[p 7→ O]σ); we can thus apply the IH to obtain
Q[q 7→ where B do O] ∈ SN whenever σ(q) = p. By Lemma 18, this implies the thesis.
Q1[p 7→ where B do

⋃
{Q2|x← O}], where Q = Q1 p©

⋃
{Q2|x}; we take O′ =⋃

{Q2|x← O}, and we note that Q[p 7→ O] = Q1[p 7→ O′] and |Q1|p < |Q|p; we
can thus apply the IH to prove Q1[p 7→ where B do O′] ∈ SN , as needed.
Q[p 7→ ∅], where O = ∅: this term is strongly normalizing by hypothesis.
Q[p 7→ (where B do O1) ∪ (where B do O2)], where O = O1 ∪O2; for i = 1, 2, we prove
Q[p 7→ Oi] ∈ SN and ν(Q[p 7→ Oi]) ≤ ν(Q[p 7→ O]) by Lemma 32, and we also note
size(Oi) < size(O); then we can apply the IH to prove Q[p 7→ where B do Oi] ∈ SN ,
which implies the thesis by Lemma 32.
Q[p 7→

⋃
{where B do O1|x← O2}], where O =

⋃
{O1|x← O2}; we take

Q′ = Q p©
⋃

{x← O2} and we have that Q′[p 7→ where B do O1] is equal to Q[p 7→⋃
{where B do O1|x← O2}]; we thus note ν(Q′[p 7→ O1]) = ν(Q[p 7→ O]), |Q′|p = |Q|p,

and size(O1) < size(O), thus we can apply the IH to prove Q′[p 7→ where B do O1] ∈ SN ,
as needed.
Reductions within B or O make the induction metric smaller, thus follow immediately
from the IH. J
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Abstract
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1 Introduction

The celebrated Curry-Howard isomorphism [8, 14] establishes a close connection between logic
and computation. There are three interrelated components that define this correspondence:
(1) propositions in the logic are interpreted as types, (2) proofs in the logic are interpreted
as programs, and (3) proof reduction is interpreted as computation. Parts (2) and (3)
mean that we must pay attention to the specific formulation of the logic. Curry used
combinatory logic [9] which derives from an axiomatic formulation of inference and arrives
at combinatory reduction. Howard [14] established the close connection between natural
deduction and the simply-typed λ-calculus. As a further example, Herbelin [13] introduced
LJT, a formulation of the sequent calculus with a stoup whose computational interpretation
uses explicit substitutions. In all three of these cases, the logic is simply intuitionistic logic
but its computational interpretation is quite different.

In this paper we add another entry to this list of correspondences. We introduce the
semi-axiomatic sequent calculus (Sax) which blends features of the sequent calculus with
axiomatic presentations of intuitionistic logic. We show that Sax satisfies a version of cut
elimination, where cut-free proofs have the subformula property, thereby establishing the
basics of the proof theory for Sax.

As for other inference systems, the proof of cut elimination contains the seeds of its
operational interpretation. For example, normalization for natural deduction is based on a
substitution operation that corresponds to β-reduction, and cut reduction on LJT corresponds
to λ-reduction in a calculus of explicit substitution. In Sax, a cut disappears entirely during
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a principal cut reduction, which is only possible because certain special forms of analytic cuts
we call snips are allowed to remain in cut-free proofs. This disappearing act can be explained
when we think of the cut reduction itself as reading from or writing to memory, which are
atomic actions. Under this view, we recognize that one operational interpretation of Sax
equates proofs with processes where some actively compute and others are passive, thereby
representing shared memory cells. We formalize the concurrent reduction strategy (that is,
the evaluation relation) using techniques from substructural operational semantics [27, 5, 6],
which can be mapped back directly to proofs (with a loss of readability). As a concurrent
programming language, the interpretation of Sax then has the desired properties such as
type preservation, progress, confluence, and termination.

Our results are yet another illustration of the flexibility of the sequent calculus as
a foundation for computation at a high level of abstraction. Sax is remarkably simple:
it requires no stoup or other structural devices, just the initial leap of faith to replace
noninvertible rules by axioms. It also provides a path towards understanding a simple,
logically grounded form of shared memory concurrency under a Curry-Howard interpretation.

In Section 2, we provide an overview of the standard sequent calculus G3 for background,
before relating it to Sax in Section 3. This section contains our first set of contributions:
Sax itself, translations between G3 and Sax, and a cut elimination result for Sax. We
briefly discuss some example Sax proofs in Section 4, which also serve as examples of
computations later on. Section 5 contains our second major set of contributions. We provide
an operational interpretation of Sax using shared memory and prove the basic theorems
of progress, preservation, and (because the semantics are nondeterministic) confluence. A
termination theorem, analagous to normalization for natural deduction, is more involved,
and is delayed to its own section (Section 6).

In prior work we have given a different interpretation of Sax (without investigating
its metatheory from a logical and proof-theoretic perspective) using session types and
message passing, starting with purely linear intuitionistic logic and generalizing all the way
to adjoint logic, combining structural and substructural intuitionistic logics [24]. This in
turn built on the Curry-Howard interpretation of linear logic as session-typed processes
using message-passing concurrency [3, 29, 4]. (Modeling asynchronous communication in
a Curry-Howard interpretation of linear logic was the original motivation behind Sax.)
Starting from Herbelin’s seminal work, others have also given computational interpretations
of intuitionistic and classical sequent calculi at various level of abstraction (for example, with
multiple conclusions and stoups [7] or with de Bruijn indices [2]). These are, however, quite
different from the interpretation presented here.

2 Ordinary Sequent Calculus

For reference, we provide the standard sequent calculus G3 [15] in Figure 1 so we can
explicitly relate it to Sax. In G3 all structural rules remain implicit, and antecedents Γ of
a sequent Γ ` A are propagated to all premises. For brevity, we omit the logical constants
falsehood (⊥) and truth (>) since they are not particularly interesting, especially from
the computational perspective. We do, however, present two forms of conjunction: A⊗B
and ANB, which are distinguished here by their left rules extrapolated from linear logic.
Although these conjunctions are logically equivalent (that is, A ⊗ B a` A N B), they are
computationally distinct: functionally, A ⊗ B corresponds to eager pairs whereas A N B

corresponds to lazy pairs (see, for example, call-by-push-value [16]).
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Γ, A ` A IdA
Γ ` A Γ, A ` C

Γ ` C CutA

Γ, A ` B
Γ ` A ⊃ B ⊃R

Γ, A ⊃ B ` A Γ, A ⊃ B,B ` C
Γ, A ⊃ B ` C ⊃L

Γ ` A Γ ` B
Γ ` A⊗B ⊗R

Γ, A⊗B,A,B ` C
Γ, A⊗B ` C ⊗L

Γ ` 1 1R
Γ,1 ` C
Γ,1 ` C 1L

Γ ` A
Γ ` A ∨B ∨R1

Γ ` B
Γ ` A ∨B ∨R2

Γ, A ∨B,A ` C Γ, A ∨B,B ` C
Γ, A ∨B ` C ∨L

Γ ` A Γ ` B
Γ ` ANB

NR
Γ, ANB,A ` C

Γ, ANB ` C NL1
Γ, ANB,B ` C

Γ, ANB ` C NL2

Figure 1 The Sequent Calculus (G3).

We also include 1, the unit of A⊗B, which can be thought of as the nullary form of the
binary A⊗B. The 1L rule may look a bit surprising: we might expect the antecedent 1 to
be deleted in its premise. But since we have implicit weakening and contraction, the principal
formula of every left rule, 1L included, must be preserved. Preserving the antecedents turns
out to be computationally significant in the shared memory interpretation that we present in
Section 5.

We have the following standard theorems with standard proofs. Gentzen’s original sequent
calculus had explicit structural rules and used an intermediate system with a rule called Mix
in the proof of cut elimination [11]. We sketch the proofs of admissibility of cut and cut
elimination [21] that are more closely related in structure to the proof in Sax in Section 3.

I Theorem 1 (Admissibility of Cut in G3 [11, 21]). If there are cut-free derivations Γ ` A
and Γ, A ` C then there is a cut-free derivation of Γ ` C.

Proof. By nested induction on the structure of A and then simultaneously on the derivations
of Γ ` A and Γ, A ` C. J

I Theorem 2 (Cut Elimination [11, 21]). If Γ ` A then there is a cut-free derivation of Γ ` A.

Proof. By induction on the structure of the given derivation, using Theorem 1 for cut. J

It is evident that the cut-free sequent calculus has the subformula property since, except
for cut, the premises of all rules are subformulas of the propositions in the conclusions.
This allows us to view the right- and left-rules for the logical connectives in G3 as a
compositional explanation for the meaning of propositions [10, 19]. Another component of
such an interpretation is identity expansion (we require the identity rule IdA only for atomic
propositions), which is significant from the foundational perspective but not computationally
interesting since identity expansions correspond to extensional equalities.

FSCD 2020
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Γ, A ` A IdA
Γ ` A Γ, A ` C

Γ ` C CutA

Γ, A ` B
Γ ` A ⊃ B ⊃R Γ, A,A ⊃ B ` B ⊃L

0

Γ, A,B ` A⊗B ⊗R
0 Γ, A⊗B,A,B ` C

Γ, A⊗B ` C ⊗L

Γ ` 1 1R0 Γ,1 ` C
Γ,1 ` C 1L

Γ ` A Γ ` B
Γ ` ANB

NR
Γ, ANB ` A NL0

1 Γ, ANB ` B NL0
1

Γ, A ` A ∨B ∨R
0
1 Γ, B ` A ∨B ∨R

0
2

Γ, A ∨B,A ` C Γ, A ∨B,B ` C
Γ, A ∨B ` C ∨L

Figure 2 The Semi-Axiomatic Sequent Calculus (Sax).

3 The Semi-Axiomatic Sequent Calculus

The connectives in intuitionistic logic can be divided into positive (A⊗ B, 1, A ∨ B) and
negative (A ⊃ B, A N B), where we have split conjunction into two. The right rules for
negative connectives and the left rules for the positive connectives are asynchronous (in
the terminology of Andreoli [1]) in the sense that a negative connective in the succedent
and a positive connective in the antecedent can always be broken down eagerly with the
corresponding rule when constructing a proof bottom-up. Conversely, the right rules for
positive connectives and the left rules for negative connectives may have to be postponed
until they can be applied. Even though in the formulation in G3 this is not strictly accurate,
we say that negative right and positive left rules are invertible while positive right and
negative left rules are noninvertible (see, for example, the analysis by Liang and Miller [17]).

The semi-axiomatic sequent calculus Sax arises from G3 by replacing all the noninvertible
rules (⊃L,NL,⊗R,1R,∨R) by corresponding axioms while leaving all the invertible rules
(⊃R,NR,⊗L,1L,∨L) unchanged. Identity and cut also remain unchanged. We annotate all
the rules that are now axioms with the superscript 0, indicating the zero premises of the
rule. A summary of the rules can be found in Figure 2.

First, we should convince ourselves that G3 and Sax have the same derivable sequents.

I Theorem 3 (Translations between G3 and Sax). Γ ` A in G3 iff Γ ` A in Sax.

Proof. In one direction, we can derive each new Sax axiom using the corresponding rules of
G3 and the identity. For example, we can derive ⊃L0 in G3 as follows:

Γ, A,A ⊃ B ` A IdA Γ, A,A ⊃ B,B ` B IdB

Γ, A,A ⊃ B ` B ⊃L

The other direction requires the uses of cut in Sax to derive the rules of G3. For example,
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we can derive ⊃L in Sax as follows:

Γ, A ⊃ B ` A Γ, A,A ⊃ B ` B ⊃L
0

Γ, A ⊃ B ` B Cut Γ, A ⊃ B,B ` C
Γ, A ⊃ B ` C Cut

All other cases are similar. J

Sax does not satisfy the standard cut elimination theorem. For example, there is no
cut-free proof of A ⊃ B,B ⊃ C ` A ⊃ C. Instead, we have the following proof (omitting
some unused antecedents):

A,A ⊃ B ` B ⊃L
0

B,B ⊃ C ` C ⊃L
0

A,A ⊃ B,B ⊃ C ` C CutB

A ⊃ B,B ⊃ C ` A ⊃ C ⊃R

Despite not being cut-free, this proof does exhibit the subformula property – its only cut is
analytic. However, we find admitting arbitrary analytic cuts in the normal forms of proofs
is too lenient and does not provide a good correspondence to operational behavior under
the Curry-Howard interpretation. Instead, we would like to recognize the subformulas of
the principal formula of each axiom as specific formulas that we may cut without losing the
subformula property. We then have a restricted form of cut we call Snip which requires that
the cut formula in one (or both) of the premises originates from an axiom in this way.

In order to make this precise we need to track specific formula occurrences, so we label
each antecedent and the succedent of each sequent in a derivation with variables, where all
variables in a sequent are distinct. As a representative example of an axiom, we will examine
the ⊃L0 axiom. We call the variables y : A and z : B in

Γ, y : A, x : A ⊃ B ` z : B ⊃L
0

eligible for a Snip (or just eligible) and propagate this information through the derivation. In
a rule with two premises a variable is eligible in the conclusion if it is eligible in at least one
of the premises. If we assume or prove that an antecedent or succedent is eligible we mark
it with x∗ : A (although the absence of a ∗ does not mean that it is ineligible). This mark
is not part of the syntax of sequents, just expressing an assumed or known property of its
derivation.

Since we are not in a linear logic, the cut elimination proof also seems to require that we
track irrelevant antecedents in sequents, those that are never used. These are the (ineligible)
side formulas of axioms and Id, which then propagate through the derivation. In a rule
with two premises, a variable is only irrelevant in the conclusion if it is irrelevant in both
premises. If we assume or prove that an antecedent is irrelevant, we mark it with x0 : A
(although again the absence of the mark does not mean it is relevant). We also write Γ0 if all
variables in Γ are irrelevant. Again, the superscript 0 is not part of the syntax of sequents,
just expressing an assumed or known property of its derivation.

We refer to the status of variables as irrelevant or relevant and eligible or ineligible, where,
by its definition, an eligible variable is automatically relevant.

In the normal form of derivations we now permit cuts where at least one of the two
occurrences of the cut formula is eligible for a snip. The rules can be found in Figure 3.

FSCD 2020
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Γ0, x : A ` y : A
IdA

Γ ` x : A Γ, x : A ` z : C
Γ ` z : C CutA

Γ ` x∗ : A Γ, x : A ` z : C
Γ ` z : C Snip1

A

Γ ` x : A Γ, x∗ : A ` z : C
Γ ` z : C Snip2

A

Γ, y : A ` z : B
Γ ` x : A ⊃ B ⊃R Γ0, y∗ : A, x : A ⊃ B ` z∗ : B ⊃L

0

Γ0, y∗ : A, z∗ : B ` x : A⊗B
⊗R0 Γ, x : A⊗B, y : A, z : B ` w : C

Γ, x : A⊗B ` w : C ⊗L

Γ0 ` x : 1 1R0 Γ, x : 1 ` w : C
Γ, x : 1 ` w : C 1L

Γ ` y : A Γ ` z : B
Γ ` x : ANB

NR
Γ0, x : ANB ` y∗ : A

NL0
1

Γ0, x : ANB ` z∗ : B
NL0

2

Γ0, x∗ : A ` z : A ∨B
∨R0

1

Γ0, y∗ : B ` z : A ∨B
∨R0

2

Γ, z : A ∨B, x : A ` w : C Γ, z : A ∨B, y : B ` w : C
Γ, z : A ∨B ` w : C ∨L

Figure 3 Sax in Labeled Form.

The implementation of ⊃L from ⊃L0 has two uses of cuts, but both of them are on
eligible formulas and are therefore snips.

Γ, y : A ⊃ B ` x : A Γ, x∗ : A, y : A ⊃ B ` z∗ : B ⊃L
0

Γ, y : A ⊃ B ` z∗ : B Snip2
A Γ, y : A ⊃ B, z : B ` w : C

Γ, y : A ⊃ B ` w : C Snip1
B

From now on when we say “cut-free” we mean that a derivation may not use Cut, but is
allowed to use Snip in both of its forms. In its most pedantic version, the cut-free proof of
our example would be

u∗ : A, x : A ⊃ B, y0 : B ⊃ C ` t∗ : B ⊃L
0

u0 : A, x0 : A ⊃ B, t∗ : B, y : B ⊃ C ` w∗ : C ⊃L
0

u∗ : A, x : A ⊃ B, y : B ⊃ C ` w∗ : C
SnipB

x : A ⊃ B, y : B ⊃ C ` z : A ⊃ C ⊃R

It so happens that in this example, the Snip is an instance of both Snip1 and Snip2. Also, in
the final conclusion none of the variables are eligible or irrelevant.

The translations between Sax and G3 give us one way to prove cut elimination for Sax.

I Theorem 4 (Cut Elimination in Sax, v1). If Γ ` x : A in Sax then there is a cut-free
derivation of Γ ` x : A in Sax.

Proof. We translate the given derivation from Sax to G3. This introduces additional uses
of the identity but mostly preserves the structure of the derivation. Now we apply cut
elimination (Theorem 2) to obtain a cut-free derivation in G3. The backwards translation
(see the proof of Theorem 3) of the result to Sax introduces some snips but no cuts. The
result is therefore cut-free in Sax. J
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This proof induces a simple algorithm for cut elimination but it does so in an indirect
way, via two translations. We are instead interested in understanding the computational
behavior of Sax directly, so we look for a direct algorithm for cut elimination. This proof
(and the algorithm it embodies) is somewhat more complex for Sax than for G3 because it
needs to allow snips but not general cuts.

As with G3, we proceed in two steps: first, we show the admissibility of cut in the cut-free
calculus, and then we prove cut elimination using the admissibility of cut.

I Theorem 5 (Admissibility of Cut in Sax). If there are cut-free derivations Γ ` x : A and
Γ, x : A ` z : C then there exists a cut-free derivation of Γ ` z : C.

Proof. For readability, we express the construction of F from D and E in the form

D
Γ ` x : A

E
Γ, x : A ` z : C

Γ ` z : C CutA =⇒
F

Γ ` z : C

The proof proceeds by a nested induction, first on the structure of A and then on the
structure of the first and second given derivations, D and E . We exploit that adding or
subtracting an irrelevant antecedent (D + {y0 : B} and D − {y0 : B}) does not change the
structure of a derivation.

However, a direct proof does not work – we need to generalize our induction hypothesis.
We observe that in the resulting derivation F , the status of variables in Γ and z : C may
be different from their status in D and E . If a variable becomes irrelevant we impose no
condition. If a variable y : B transitions from eligible in D or E to ineligible but relevant in
F , then we demand that B < A, that is, B be a strict subformula of A. This will allow us to
apply the induction hypothesis to B in these cases, but it also requires that this condition is
preserved in each case of the proof. See Appendix A for additional proof details. J

I Theorem 6 (Cut Elimination in Sax, v2). If there is a derivation of Γ ` x : A then there is
a cut-free derivation of the same sequent.

Proof. By a standard induction on the structure of the deduction, appealing to the admissi-
bility of cut in the case of a cut. A cut in the original derivation could turn into a snip or
be eliminated entirely, based on the eligibility of the cut formula in the two premises after
appeals to the induction hypothesis. J

I Theorem 7 (Subformula Property in Sax). All formulas in a cut-free derivation of Γ ` x : A
are subformulas of formulas in Γ or A.

Proof. We generalize the induction hypothesis to include:

For any eligible antecedent or succedent y∗ : B in any sequent in the derivation, B is
a subformula of at least one of the remaining (ineligible) formulas in the sequent.

Then we proceed by induction over the structure of the derivation. For a snip, we use the
eligibility requirement and the second part of the induction hypothesis to conclude that
the cut formula is a subformula in both premises. Also, the second part of the induction
hypothesis is manifestly true in all axioms and propagated by all the rules. J
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4 Some Example Derivations

As an example, we show that A ⊗ B a` A N B. These proofs will have some interesting
computational content examined in Appendix B. The first proof has three axioms and two
uses of snip.

x : ANB ` y∗ : A NL0
1

x : ANB ` z∗ : B NL0
2 x0 : ANB, y∗ : A, z∗ : B ` w : A⊗B

⊗R0

x : ANB, y∗ : A ` w : A⊗B
Snip

x : ANB ` w : A⊗B Snip

We have annotated the proof with eligibility information and notice that in both snips it
so happens the variables are eligible on both sides. This proof is cut-free according to our
criterion since it only contains snips and not general cuts. The following proof for the other
direction is also cut-free, but contains only rules from the usual sequent calculus.

x0 : A⊗B, y : A, z0 : B ` u : A
IdA

x0 : A⊗B, y0 : A, z : B ` v : B
IdB

x0 : A⊗B, y : A, z : B ` w : ANB
NR

x : A⊗B ` w : ANB
⊗L

As a final example, consider (this portion of) the proof of (A ⊃ C) N (B ⊃ C) ` (A∨B) ⊃ C:

p : (A ⊃ C) N (B ⊃ C) ` r∗ : A ⊃ C NL0
1 r : A ⊃ C, x∗ : A ` z∗ : C ⊃L

0

p : (A ⊃ C) N (B ⊃ C), x∗ : A ` z∗ : C
Snip ...

p : (A ⊃ C) N (B ⊃ C), s : A ∨B ` z∗ : C ∨L

p : (A ⊃ C) N (B ⊃ C) ` q : (A ∨B) ⊃ C ⊃R

5 A Shared Memory Interpretation

The key idea behind the shared memory interpretation is that at runtime, variables will be
substituted by addresses in shared memory. Moreover, a sequent

x1 : A1, . . . , xn : An ` z : C

defines the interface to a process P that reads from addresses x1, . . . , xn and writes to
address z. The types of the variables define the shape of the contents of memory at the given
address. Once z has been written to, the process P terminates because it has completed its
task. We sometimes refer to x1, . . . , xn as the sources and z as the destination for P .

True to the Curry-Howard interpretation, P can be read off from the derivation of the
sequent. We incorporate a process expression P into the judgment by writing

x1 : A1, . . . , xn : An ` P :: (z : C)

Now, the sequent can be seen as a typing judgment for the process expression P .

Cut. To understand the operational behavior of the processes assigned to sequents, we have
to study the cut reductions. We begin with the rule of cut itself, without distinguishing snip
as a special case. Cut is a first-class rule (unlike in the proof of admissibility of cut), so it
has a corresponding process. This is because cut reduction corresponds to computation, so if
we did not have cut we would have no computation.

Γ ` P :: (x : A) Γ, x : A ` Q :: (z : C)
Γ ` (x← P ; Q) :: (z : C) CutA
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A process executing x ← P ; Q will allocate a new cell in memory with address a, then
spawn a new process [a/x]P (which will write a), and continue as [a/x]Q (which may read
from a). Reading from a will be an act of synchronization, because [a/x]Q cannot read from
a until the value has been written by [a/x]P .

This is the only point in the dynamics where a new memory cell is allocated. Initially,
it is shared between two processes, [a/x]P and [a/x]Q. However, we also notice that Γ,
in accordance with the usual presentation of (nonlinear) intuitionistic sequent calculus, is
propagated to both premises. Dynamically, this means any cell with an address in Γ is
accessible to both new processes. On the other hand, the succedent of a sequent is always a
singleton, which leads us to the conclusion:

A cell with address a will be written by one distinguished process and may be read by
many different processes.

This observation will have consequences when we consider other rules.

Identity. The rule of identity has a straightforward operational interpretation.

Γ, x : A ` (yW ← xR) :: (y : A)
IdA

The process we assign reads from x and writes to y which amounts to just copying the
value at address x to memory at address y. After it has written to y it terminates. The
superscripts W and R would presumably not be part of the concrete syntax of a language,
but remind us that this process reads from x and writes to y.

If we examine the cut reductions _/Id and Id/_ in the proof of Theorem 5 (shown in
Appendix A) we see that this is a considerable restriction of the general reduction rules. This
exemplifies a common phenomenon when we relate pure proof theory to computation: some
rules of cut reduction may be entirely dropped (such as the so-called permutative reductions),
while others are restricted to superimpose a particular strategy on the general notion of
reduction.

Logical Rules. The general interpretation of the left and right rules is:

Process expressions assigned to right rules will write to memory while expressions
assigned to left rules will read from memory.

The question in each case is what to write to or read from memory, and how to subsequently
continue execution. We will examine this for each connective in turn.

Positive Conjunction. We start with the positive conjunction A⊗B because it is a little
easier to understand than implication. As one might expect given the general guideline, the
right rule should write a pair to memory, and it does!

Γ0, x∗ : A, y∗ : B ` zW .〈x, y〉 :: (z : A⊗B) ⊗R
0

The expression zW .〈x, y〉 writes the pair 〈x, y〉 to the cell at location z and terminates. The
superscript W is there to remind us that we write to the cell z. No other cell is written to
or read from. It may also be helpful to directly think of zW .〈x, y〉 as a representation of
the memory cell z with contents 〈x, y〉. Note that the value 〈x, y〉 itself just contains two
addresses x and y, not complex terms. The cells with these addresses may still be empty
when we write the pair to z, which allows for a high degree of parallelism.

FSCD 2020



29:10 Semi-Axiomatic Sequent Calculus

Conversely, the expression assigned to the rule ⊗L

Γ, z : A⊗B, x : A, y : B ` P :: (w : C)
Γ, z : A⊗B ` case zR (〈x, y〉 ⇒ P ) :: (w : C)

⊗L

reads such a pair from memory at location z, matches, it against 〈x, y〉 to extract the
components (say addresses a and b) and continues with [a/x, b/y]P . The cell z is persistent,
so it may be read again later, either by this process or by another one. Again, the cells
at addresses x and y may not yet have been filled, but we can nevertheless extract and
manipulate their addresses.

The principal cut reduction of ⊗R0 against ⊗L, expressed on processes, becomes

z ← (zW .〈a, b〉) ; case zR (〈x, y〉 ⇒ P ) −→ [a/x, b/y]P

which is precisely the intended operational semantics.

Implication. Implication represents somewhat of a challenge to intuition, and is perhaps
the reason that this form of sequent calculus and its shared memory interpretation has been
overlooked. We start with the left rule ⊃L0 which, according to our guiding principle, should
read from memory.

Γ, y∗ : A, x : A ⊃ B ` xR.〈y, z〉 :: (z∗ : B) ⊃L
0

The process expression xR.〈y, z〉 should read a value of type A ⊃ B from location x and pass
it the pair y and z. But what does this pair represent? y is the (usual) argument to the
function, having type A. And z is the destination for the result of the function. As such,
every function takes an additional argument. This is reminiscent of continuation-passing
style [28] except that instead of passing a continuation to accept the function’s result we pass
a destination address to store the function’s result.

Note that we have reused the syntax for pairs, except that the process assigned here
reads from x. It is economical for the ⊃R rule to also reuse the same syntax to describe the
augmented functions which we call continuations.

Γ, y : A ` P :: (z : B)
Γ ` case xW (〈y, z〉 ⇒ P ) :: (x : A ⊃ B)

⊃R

The process case cW (〈y, z〉 ⇒ P ) writes the continuation (〈y, z〉 ⇒ P ) to the cell at address
c and terminates.

The cut reduction for ⊃R against ⊃L0, expressed directly on processes, is symmetric to
the reduction for ⊗R0 against ⊗L:

z ← (case zW (〈x, y〉 ⇒ P )) ; zR.〈a, b〉 −→ [a/x, b/y]P

Disjunction and Negative Conjunction. Just like implication and positive conjunction
form a symmetric pair of expressions, reversing the role of read and write, so do disjunction
and negative conjunction. The rules can be found in Figure 4, which summarizes all of the
rules for Sax. We show here the reductions for A N B, and the reductions for A ∨ B are
symmetric, as they were for A ⊃ B and A⊗B.

z ← (case zW (π1(x)⇒ P | π2(y)⇒ Q)) ; zR.π1(a) −→ [a/x]P
z ← (case zW (π1(x)⇒ P | π2(y)⇒ Q)) ; zR.π2(b) −→ [b/x]Q
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Γ, x : A ` (yW ← xR) :: (y : A)
IdA

Γ ` P :: (x : A) Γ, x : A ` Q :: (z : C)
Γ ` (x← P ; Q) :: (z : C) CutA

Γ, y : A ` P :: (z : B)
Γ ` case xW (〈y, z〉 ⇒ P ) :: (x : A ⊃ B)

⊃R
Γ, y∗ : A, x : A ⊃ B ` (xR.〈y, z〉) :: (z∗ : B)

⊃L0

Γ0, y∗ : A, z∗ : B ` xW .〈y, z〉 :: (x : A⊗B)
⊗R0

Γ, x : A⊗B, y : A, z : B ` P :: (w : C)
Γ, x : A⊗B ` case xR (〈y, z〉 ⇒ P ) :: (w : C)

⊗L

Γ0 ` xW .〈 〉 :: (x : 1) 1R0
Γ, x : 1 ` P :: (w : C)

Γ, x : 1 ` case xR (〈 〉 ⇒ P ) :: (w : C)
1L

Γ ` P :: (y : A) Γ ` Q :: (z : B)
Γ ` case xW (π1(y)⇒ P | π2(z)⇒ Q) :: (x : ANB)

NR
Γ0, x : ANB ` xR.π1(y) :: (y∗ : A)

NL0
1

Γ0, x : ANB ` xR.π2(z) :: (z∗ : B)
NL0

2

Γ0, x∗ : A ` zW .π1(x) :: (z : A ∨B)
∨R0

1

Γ0, y∗ : B ` zW .π2(y) :: (z : A ∨B)
∨R0

2

Γ, z : A ∨B, x : A ` P :: (w : C) Γ, z : A ∨B, y : B ` Q :: (w : C)
Γ, z : A ∨B ` case zR (π1(x)⇒ P | π2(y)⇒ Q) :: (w : C)

∨L

Figure 4 Process Expression Assignment for Sax.

Processes P ::= x← P ; Q allocate a, spawn [a/x]P , continue as [a/x]Q
| xW ← yR copy contents of cell y into cell x
| xW .V write V to cell x
| case xR K read value V from cell x and pass it to K
| case xW K write continuation K to cell x
| xR.V read continuation K from x and pass V to it

Continuations K ::= (〈x, y〉 ⇒ P ) (⊗L,⊃R)
| (〈 〉 ⇒ P ) (1L)
| (π1(x)⇒ P | π2(x)⇒ Q) (NR,∨L)

Values V ::= 〈x, y〉 (⊗R0,⊃L0)
| 〈 〉 (1R0)
| π1(x) | π2(x) (NL0,∨R0)

Cell Contents W ::= V | K

Figure 5 The Grammar for Sax Process Expressions.

5.1 Values and Continuations, Cells and Processes

The language of process expressions is now complete, but the immediate cut reductions
do not yet fully capture the intended semantics. We first refactor the definition of our
language slightly, by separating small values V from continuations K. Figure 5 also now
shows what the new axioms of Sax represent: values. Meanwhile, the unchanged invertible
rules represent continuations.
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A key operation is in the semantics is passing a value to a continuation, which we write
as V . K. It is defined by the following clauses:

〈a, b〉 . (〈x, y〉 ⇒ P ) = [a/x, b/y]P
〈 〉 . (〈 〉 ⇒ P ) = P

π1(a) . (π1(x)⇒ P | π2(y)⇒ Q) = [a/x]P
π2(b) . (π1(x)⇒ P | π2(y)⇒ Q) = [b/y]Q

The difficulty with the raw cut reductions in the presence of contraction (whether implicit
as in G3 and Sax, or with an explicit rule) is that some of them duplicate derivations.
Instead, we would like them to be shared, which is exactly what the notion of shared memory
allows us to do. One can feed this back into proof theory using the notion of multicut [24].
Here, we represent multiple cuts, and simultaneous cuts of one derivation against multiple
others with the concept of a configuration. Such a configuration can be unravelled back into
ordinary cuts (and therefore ordinary derivations), but at the cost of duplicating derivations.

A configuration consists of allocated memory cells (some of which may have been written
to and some not) and executing processes. We present it as a substructural operational
semantics (SSOS) [5, 27] in the form of multiset rewriting rules [6], using the following
semantic objects.

proc c P process P with destination c
cell c _ memory cell c, allocated but not yet written
!cell c W cell c with contents W

In a configuration, a process proc c P is always paired with an allocated but not yet written
cell c _. We also have cells !cell c W that have been written already. They are persistent
(indicated by the exclamation mark) since they may be read multiple times but cannot be
written again. In the multiset rewriting rules, a left-hand side of the form !φ will remain in
the configuration, while objects ψ are removed and replaced by the objects on the right-hand
side of the rule. All addresses c with objects cell c _ or !cell c W in a given configuration
must be distinct, that is, no two cells in a configuration may share the same address.

The transitions in Figure 6 are multiset rewriting rules describing the dynamics of
configurations. They can be applied to any subconfiguration, which induces a form of
concurrency. However, the rules are confluent (see Theorem 10) so the result of reducing
a configuration via these rules is ultimately deterministic, modulo the names of freshly
introduced variables.

proc c (x← P ; Q) −→ proc a ([a/x]P ), cell a _, proc c ([a/x]Q) (a fresh)
!cell b W, proc a (aW ← bR), cell a _ −→ !cell a W
proc a (case aW K), cell a _ −→ !cell a K
!cell a K, proc c (aR.V ) −→ proc c (V . K)

!cell a V, proc a (case aR K) −→ proc a (V . K)
proc a (a.V ), cell a _ −→ !cell a V

Figure 6 Dynamic Semantics of Configurations.
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Γ ` (·) :: Γ
Empty Γ0 ` C1 :: Γ1 Γ1 ` C2 :: Γ2

Γ0 ` (C1, C2) :: Γ2
Join

Γ ` P :: (a : A)
Γ ` (proc a P, cell a _) :: (Γ, a : A) Proc

Γ ` aW .V :: (a : A)
Γ ` !cell a V :: (Γ, a : A) CellV

Γ ` case aW K :: (a : A)
Γ ` !cell a K :: (Γ, a : A) CellK

Figure 7 Typing Rules for Configurations.

5.2 Typing Configurations
Configurations, like cells and processes, are runtime artifacts which can nevertheless be typed
and also put into correspondence with the sequent calculus. First, typing. We have

Configurations C ::= proc a P, cell a _ process with destination a
| !cell a W cell with contents W
| · empty configuration
| C1, C2 joining configurations

The concatenation operator “,” for configurations is commutative and associative with unit
“·”, which makes it a suitable basis for multiset rewriting. However, a typing derivation for
a configuration imposes an order by requiring that the writer of a cell a comes before all
the readers of the cell. We include the rules for typing the contents of cells below those for
typing configurations in Figure 7.

We can now state and prove several key results regarding our dynamics.

I Theorem 8 (Preservation). If Γ0 ` C :: Γ and C −→ C′ then Γ0 ` C :: Γ′ for some Γ′ ⊇ Γ.

Proof. A first key property is that if Γ0 ` C :: Γ then Γ0 ⊆ Γ, which is easily proved by
induction on the typing derivation. Therefore, a cell with address a and any process tasked
with writing to a (which need not exist if the cell has already been filled) will always come
to the left of any reader of a. This and the persistence of !cell a W easily yield preservation
by induction on the typing derivation and inversion on the typing of processes and cell
contents. J

We say a configuration is final if it consists only of cells !cell a W . In other words, there
are no longer any running processes. We prove progress for closed configurations (· ` C :: Γ)
that do not depend on any undefined addresses.

Note that the typing derivation for a configuration is associative with respect to rule
Join and unit Empty. This has two useful consequences. First, this provides a simple way to
reconstruct a proof tree from a (well-typed) configuration – an empty configuration yields
an empty tree, the Proc and Cell rules are base cases, each becoming the proof tree in the
premise, and the Join rule simply cuts together the proof trees on the left and the right.
Second, because of the associativity, we may perform induction where we isolate the rightmost
cell or process and apply the inductive hypothesis to the remaining configuration to the left.

I Theorem 9 (Progress). If · ` C :: Γ then either C is final or C −→ C′ for some C′.

Proof. By right-to-left induction over the typing derivation for C.
Case: The rightmost rule is Cell, so C = (C1, !cell a W ). By induction hypothesis, either C1
is final (and so is then C) or C1 −→ C′1 and therefore also C −→ C′1, !cell a W .
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Case: The rightmost rule is Proc, so C = (C1, proc a P, cell a _). If C1 −→ C′1 then also
C −→ (C′1, proc a P, cell a _). If C1 is final then we distinguish cases on P . If P is alloc/spawn,
copy, or a process that writes, then C −→ C′ for some C′. If P is a process that reads, then
we apply inversion on the typing derivations of the cell a and the process P to show that a
reduction is once again possible. J

We say C1 ∼ C2 if there is a renaming ρ such that ρ C1 = C2.

I Theorem 10 (Diamond Property). Assume ∆ ` C :: Γ. If C −→ C1 and C −→ C2 such that
C1 6∼ C2. Then there exist C′1 and C′2 such that C1 −→ C′1 and C2 −→ C′2 with C′1 ∼ C′2.

Proof. The proof is straightforward by cases. There are no critical pairs involving ephemeral
(that is, non-persistent) objects in the left-hand sides. J

As usual, confluence of multistep reduction follows by two standard inductions from the
diamond property.

We now return to the distinction between general cuts and snips, which we introduced
in order to establish cut elimination. First, we note that the transition rule for cut applies
equally whether the cut x← P ; Q is a snip or not. In order to discuss the other rules, we
define that an occurrence of an address a is eligible if it is eligible in the typing derivation
according to the rules in Figure 7. This coincides with saying that the corresponding variable
would be eligible if we unwound the configuration into a collection of proofs. We notice that
in an object !cell a W the address a is never eligible because it labels the principal formula
of an inference. Furthermore, none of the reductions besides cut involve an eligible address
a, since they all label either an application of identity or the principal proposition of an
inference.

It remains to characterize final configurations, that is, those consisting only of cells. We
might at first suspect that all remaining cuts are snips, but that is not true because the
dynamics does not reduce continuations K. This reflects a common difference between pure
proof theory (where we show full normalization or cut elimination) and the dynamics of
programming languages (where we do not evaluate under abstractions). We call addresses
that occur in values V observable and those that occur in continuations K hidden.

I Theorem 11 (Observable Addresses). All observable addresses in a well-typed final configu-
ration are eligible.

Proof. By inversion on the typing of cells containing values V . J

From this, we obtain a simple corollary for purely positive types. In a functional language,
values of purely positive type are observable in their entirety, without any functions or
closures with hidden structure. Here, such values are allocated and distributed into memory
cells, but nevertheless observable in their entirety.

Purely Positive Type A+ ::= 1 | A+
1 ⊗A

+
2 | A

+
1 ∨A

+
2

Purely Positive Context Γ+ ::= · | Γ+, x : A+

We then have the following characterization.

I Corollary 12 (Final Configurations of Purely Positive Type). All cells in a final configuration
· ` F :: Γ+ have the form !cell a V , and therefore all addresses in V are observable and
eligible.

This means if we reconstitute a final configuration into a collection of proofs (one for each
a : A+ in Γ+) by introducing cuts, then all these cuts will be snips.
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6 Termination

We prove termination by means of a logical relation (predicate), which we first define for
closed configurations (with no free addresses), and then extend to open configurations. The
definition and proof incorporate ideas from standard logical relations for natural deduction
into those of Pérez et al. [20] in the context of synchronous message-passing concurrency.

I Definition 13. We define two predicates on configurations, Ja : AK and [a : A], by mutual
induction on the structure of the type A.

1. C ∈ Ja : AK iff C −→∗ F where F is final and F ∈ [a : A].

2.a F ∈ [a : B ⊗ C] iff F = F ′, !cell a 〈b, c〉, F ′ ∈ [b : B], and F ′ ∈ [c : C].
2.b F ∈ [a : 1] iff F = F ′, !cell a 〈〉.
2.c F ∈ [a : B ⊃ C] iff for all F ′ such that F ,F ′ ∈ [b : B],

we have F ,F ′, (proc c (a.〈b, c〉), cell c _) ∈ Jc : CK.
2.d F ∈ [a : B N C] iff both F , (proc b (a.π1(b)), cell b _) ∈ Jb : BK

and F , (proc c (a.π2(c)), cell c _) ∈ Jc : CK.
2.e F ∈ [a : B ∨ C] iff either F = FB , !cell a (π1(b)) with FB ∈ [b : B]

or F = FC , !cell a (π2(c)) with FC ∈ [c : C].

We can then extend this definition to specify the behavior of a configuration providing
more than one address.

I Definition 14. We define C ∈ JΓK iff for all a : A ∈ Γ, C ∈ Ja : AK.

Finally, using the above definitions, we can extend the predicate to open configurations.

I Definition 15. We define C ∈ JΓ ` a : AK iff for all C′ ∈ JΓK, C′, C ∈ Ja : AK. Note that
C ∈ J· ` a : AK iff C ∈ Ja : AK.

Given these definitions, we have three key lemmas for the proof of termination.

I Lemma 16 (Weakening). If C ∈ Ja : AK, then for all b, B, and C′ ∈ Jb : BK we have
C′, C ∈ Ja : AK.

As a corollary, if C ∈ Ja : AK then C ∈ JΓ ` a : AK for any Γ.

I Lemma 17 (Closure). If C −→∗ C′ then C ∈ JΓ ` a : AK iff C′ ∈ JΓ ` a : AK.

I Lemma 18 (Inversion). If a final F ∈ [a : A] then F = F ′, !cell a W for some F ′ and W .

Finally, using these lemmas, we can go on to prove the main theorem of this section,
which state that all well-typed configurations satisfy the termination predicate. We can
apply this to any of the succedents in the general typing judgment for configurations.

I Theorem 19. If Γ ` C :: ∆, then C ∈ JΓ ` a : AK for every (a : A) ∈ ∆.

Proof. This proof proceeds by induction on the multisetM of derivations Γ′ ` P :: (b : B)
and Γ′ `W : B used in the derivation of Γ ` C :: ∆. Derivations are ordered in the standard
way, and we use the multiset ordering derived from this as the basis of our induction. As
noted in the proof of Theorem 9, the typing derivation for a configuration induces an order
on that configuration and we can examine it from right to left. J

A corollary of this theorem is that any closed well-typed configuration terminates in a
final configuration.
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7 Conclusion

We defined Sax, a new hybrid form of sequent calculus in which right rules for positive
connectives and left rules for negative connectives are replaced by axioms, that is, inference
rules with no premises. This calculus satisfies a modified cut elimination theorem in which
certain analytic cuts which preserve the subformula property are allowed. We showed how
to assign process expression to derivations in Sax and provided a simple shared memory
semantics for them: cut allocates memory cells, identity copies contents from one cell to
another, processes assigned to right rules write to cells and those assigned to left rules read
from them. Cells may be written at most once, but read many times, which means that they
provide synchronization points between concurrent processes. This seems quite similar to
futures [12], an analogy we have substantiated in an unpublished report [25]. This report
does not investigate the proof-theoretic foundations of Sax but further generalizes the type
system to adjoint logic [26, 18, 23, 24], adds recursive types, and shows that futures can
be embedded into an adjoint formulation of Sax. We further conjecture that functional
programs can be compiled directly into Sax, where a particular schedule for the resulting
concurrent programs corresponds to their sequential execution. This has been developed
(without proof) in some unpublished lecture notes [22, Lectures 19–21].
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A Some Cases in the Proof of Cut Admissibility

Proof of Theorem 5. We consider various classes of cases. These cases are not mutually
exclusive, which means that the algorithm for the construction of F from D and E induced
by this constructive proof is naturally nondeterministic. We restrict ourselves to implication
only, but show all the cases relevant to this fragment. The cases for other connectives follow
similar patterns.

The first two cases show the admissibility of cut by building a snip when one (or both) of
the cut formulas are eligible.
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Case: ∗/_ (which also covers the cases ⊃L0/_)

D
Γ ` x∗ : A

E
Γ, x : A ` z : C

Γ ` z : C CutA =⇒

D
Γ ` x∗ : A

E
Γ, x : A ` z : C

Γ ` z : C Snip1
A

Case: _/∗ (which also covers a subcase of _/⊃0)

D
Γ ` x : A

E
Γ, x∗ : A ` z : C

Γ ` z : C CutA =⇒

D
Γ ` x : A

E
Γ, x∗ : A ` z : C

Γ ` z : C Snip2
A

The next case covers a cut against an irrelevant antecedent. This case is not strictly necessary
and could be replaced by several more specialized ones if desired.
Case: _/0 (also covers _/⊃L0 and _/Id where the cut formula is a side formula in E)

D
Γ ` x : A

E
Γ, x0 : A ` z : C

Γ ` z : C CutA =⇒
E − {x0 : A}

Γ ` z : C

In the next two cases the cut formula is the principal formula of an identity, either in D or E .
Case: _/Id

D
Γ ` x : A Γ, x : A ` z : A Id

Γ ` z : A CutA =⇒
[z/x]D

Γ ` z : A

Next is a case where z : C may be eligible in F even if it is not in E . Our proof is not
concerned with variables that may gain eligibility.
Case: Id/_

Γ′, y : A ` x : A id E
Γ′, y : A, x : A ` z : C

Γ′, y : A ` z : C CutA =⇒
[y/x]E

Γ′, y : A ` z : C

The next case is the principal case where the cut formula is inferred in the last inference of
both premises of the cut.
Case: ⊃R/⊃L0

D0
Γ′, y : A1, x1 : A1 ` x2 : A2

Γ′, y : A1 ` x : A1 ⊃ A2
⊃R

Γ′, y∗ : A1, x : A1 ⊃ A2 ` z∗ : A2
⊃L0

Γ′, y : A1 ` z : A2
CutA1⊃A2=⇒

[y/x1, z/x2]D0
Γ′, y : A1 ` z : A2

Note that in this case y : A1 and z : A2 may lose eligibility. However, A1 < A1 ⊃ A2 and
A2 < A1 ⊃ A2 so our requirements are satisfied in case they remain relevant.

In the next group of cases, the first derivation D is arbitrary and the cut formula is a side
formula of the last inference in E . Because E is assumed to be cut-free, we get five cases
_/⊃R, _/Snip1, _/Snip2, _/⊃L0, and _/Id, where the last two are already covered by _/0.
Case: _/⊃R

D
Γ ` x : A

E0
Γ, x : A, z1 : C1 ` z2 : C2

Γ, x : A ` z : C1 ⊃ C2
⊃R

Γ ` z : C1 ⊃ C2
CutA =⇒

D + {z0
1 : C1}

Γ, z0
1 : C1 ` x : A

E0
Γ, x : A, z1 : C1 ` z2 : C2

Γ, z1 : C1 ` z2 : C2
CutA

Γ ` z : C1 ⊃ C2
⊃R
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Case: _/Snip1 with two subcases.

D
Γ ` x : A

E1
Γ, x : A ` y∗ : B

E2
Γ, x : A, y : B ` z : C

Γ, x : A ` z : C Snip1
B

Γ ` z : C CutA =⇒
F

Γ ` z : C

where F is defined in each subcase below from

D
Γ ` x : A

E1
Γ, x : A ` y∗ : B

Γ ` y : B CutA =⇒
F1

Γ ` y : B

and

D + {y : B}
Γ, y : B ` x : A

E2
Γ, y : B, x : A ` z : C

Γ, y : B ` z : C CutA =⇒
F2

Γ, y : B ` z : C

There are two subcases depending on properties of F1, obtained from the induction
hypothesis.
Subcase: y is still eligible in F1.
Subcase: y is not eligible in F1 and B < A. Note that in this case we can apply the

induction hypothesis once more.
These two subcases yield the following two definitions of F , respectively:

F =

F1
Γ ` y∗ : B

F2
Γ, y : B ` z : C

Γ ` z : C Snip1
F =

F1
Γ ` y : B

F2
Γ, y : B ` z : C

Γ ` z : C CutB

Case: _/Snip2 with three subcases.

D
Γ ` x : A

E1
Γ, x : A ` y : B

E2
Γ, x : A, y∗ : B ` z : C

Γ, x : A ` z : C Snip1
B

Γ ` z : C CutA =⇒ F

We first apply the induction hypothesis twice on smaller derivations.

D
Γ ` x : A

E1
Γ, x : A ` y : B

Γ ` y : B CutA =⇒
F1

Γ ` y : B

and

D + {y0 : B}
Γ, y0 : B ` x : A

E2
Γ, y∗ : B, x : A ` z : C

Γ, y : B ` z : C CutA =⇒
F2

Γ, y : B ` z : C

There are three subcases for the status of y : B in F2.
Subcase: y : B becomes irrelevant.
Subcase: y : B remains eligible.
Subcase: y : B is ineligible but relevant and B < A.
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These subcases yield the following three definitions for F , respectively:

F =
F2 − {y0 : B}

Γ ` z : C F =

F1
Γ ` y : B

F2
Γ, y∗ : B ` z : C

Γ ` z : C Snip2
B F =

F1
Γ ` y : B

F2
Γ, y : B ` z : C

Γ ` z : C CutB

The next set of cases the cut formula is a side formula of the inference in D and E is arbitrary.
Case: Snip1/_.

D1
Γ ` y∗ : B

D2
Γ, y : B ` x : A

Γ ` x : A Snip1
B

E
Γ, x : A ` z : C

Γ ` z : C CutA

=⇒

D1
Γ ` y∗ : B

D2
Γ, y : B ` x : A

E + {y0 : B}
Γ, y0 : B, x : A ` z : C

Γ, y : B ` z : C CutA

Γ ` z : C Snip1
B

Case: Snip2/_

D1
Γ ` y : B

D2
Γ, y∗ : B ` x : A

Γ ` x : A Snip2
B

E
Γ, x : A ` z : C

Γ ` z : C CutA =⇒
F

Γ ` z : C

where

F2 =

D2
Γ, y∗ : B ` x : A

E + {y0 : B}
Γ, y0 : B, x : A ` z : C

Γ, y : B ` z : C CutA

Again, there are three subcases.
Subcase: y0 : B is irrelevant in F2.
Subcase: y∗ : B is eligible in F2.
Subcase: y : B is relevant but not eligible in F2 and B < A.
These three subcases yield the following three definitions for F , respectively:

F =
F2 − {y0 : B}

Γ ` z : C F =

D1
Γ ` y : B

F2
Γ, y∗ : B ` z : C

Γ ` z : C Snip2
B F =

D1
Γ ` y : B

F2
Γ, y : B ` z : C

Γ ` z : C CutB

J

B Some Example Programs

The following are the process expressions assigned to the proofs in Section 3 and Section 4.

x : A ⊃ B, y : B ⊃ C ` z : A ⊃ C

case zW (〈u,w〉 ⇒ b← xR.〈u, b〉 ;
yR.〈b, w〉)
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This process terminates immediately after writing a continuation to z. When this continuation
is called with an argument u and destination w, it allocates a fresh cell b and passes u to
x with instructions to place the result in b. While this continuation executes, it passes the
address b (which may not be filled yet) to y and jumps to that continuation in order to write
its answer into w. Note that two processes may execute concurrently here: intuitively, one
executing the function x and the other executing the function y. They are connected via a
common reference to a fresh cell b, to be written by x and read by y.

x : ANB ` w : A⊗B

y ← xR.π1(y) ;
z ← xR.π2(z) ;
wW .〈y, z〉

This process reads the continuation at x twice, requesting that the first component of the
pair be written to a freshly allocated cell y, the second to a freshly allocated cell z. While
these processes execute, it writes the pair 〈y, z〉 to the required destination w and terminates.
Note that both y and z have been allocated, but neither needs to have been filled by the
time this process terminates, since the two processes executing with the destinations y and z
can continue to run.

x : A⊗B ` w : ANB

case xR (〈y, z〉 ⇒
case wW (π1(u)⇒ uW ← yR

| π2(v)⇒ vW ← zR ))

This process reads the pair 〈y, z〉 from x and then terminates by writing a continuation to w.
If this continuation is invoked by a reader requesting the first component of ANB to be put
into u, this is satisfied by copying the contents of y; if the second component is requested we
copy the contents of z. This program is essentially sequential.

p : (A ⊃ C) N (B ⊃ C) ` q : (A ∨B) ⊃ C

case qW (〈s, z〉 ⇒
case sR (π1(x)⇒ r ← pR.π1(r) ; rR.〈x, z〉

| π2(y)⇒ t← pR.π2(t) ; tR.〈y, z〉 ))

This process writes a continuation to q and terminates. This continuation represents a
function with argument s and destination z. If it is invoked, it distinguishes two cases for
the contents of s. If it is π1(x) for some address x, it obtains the first component of p (call it
r) and invokes that with x, requesting the result to be put into z. If it is π2(y), it takes a
symmetric action with the second component of p. This example has little parallelism: even
though a fresh process is spawned to fill r and t in the two branches of the inner case, they
are immediately read which will block until r and t have been filled, respectively.

C More Details in the Termination Proof

Proof Sketch of Theorem 19. The case of an empty configuration is straightforward, as
is the case where the rightmost object in C provides an address d 6= a. In all remaining
cases, we may therefore assume that C is non-empty, and that its rightmost part (either a
cell !cell a W or a process with its unfilled destination cell at a) provides a. We refer to this
component as φa and the remainder of C as C′.
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If the typing derivation for φa ends with an id rule, then φa = (proc a a ← b, cell a _)
for some b : B in ∆. We therefore have (by the inductive hypothesis) that C′ ∈ JΓ ` b : AK.
Let C′′ ∈ JΓK. Now, by definition, (C′′, C′) ∈ Jb : AK, and so (C′′, C′) −→∗ F for some F
final and F ∈ [b : A]. Lemma 18 gives us that F contains !cell b W for some W . We
therefore have that (C′′, C) −→∗ F , !cell a W . Now, split C′ into C1, C2, where C2 contains
exactly the objects which mention or provide b. We may now apply the inductive hypothesis
to C1, !cell a W to get that C1, !cell a W ∈ JΓ ` a : AK. Lemma 16 then allows us to
conclude that C′, !cell a W ∈ JΓ ` a : AK. Thus, C′′, C′, !cell a W −→∗ F ′, !cell a W and
F ′, !cell a W ∈ [a : A]. Confluence (an easy consequence of Theorem 10) gives us that
F = F ′, and Lemma 17 completes this case.

If the typing derivation for φa ends with a cut rule, we may simply apply to the inductive
hypothesis after taking a step.

If the typing derivation for φa ends with ⊃L, NL, 1R, ⊗R, or ∨R, then we simply take
either zero or one steps (depending on exactly which rule it is and what form C has), invoke
the inductive hypothesis up to two times on C′, and then conclude using Lemma 17.

If the typing derivation for φa ends with 1L, ⊗L, or ∨L, we proceed much as in the case
of id. We set up a configuration Ĉ which is our candidate for what C would look like if we
were able to step in φa, and using the inductive hypothesis both on Ĉ and on C′, we are able
to show that given C′′ ∈ JΓK, both (C′′, C) and (C′′, Ĉ) reduce to the same configuration C̃
(taking advantage of confluence and Lemma 18 to do so). As in the identity case, Lemma 17
completes these cases.

If the typing derivation for φa ends with ⊃R or NR, we proceed largely similarly,
constructing a candidate Ĉ for the result of stepping φa in C. The only difference is that
here, we need to augment C with an additional process which reads from the cell a, rather
than working with C on its own. J
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uncertainty, imprecision, vagueness, fuzziness) and different methodologies have been proposed
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degree two objects are similar to each other. They satisfy reflexivity, symmetry, and fuzzy
min-transitivity properties, and can be characterized by “level-wise” equivalence. Once the
level λ > 0 of similarity is fixed, the set of all object-pairs, which have the similarity degree
at least λ, form a classical equivalence relation.

Reasoning with similarity relations requires approximate inference techniques. Solving
similarity-based constraints is the central computational mechanism for such inferences.
Several approaches to unification modulo similarity have been proposed, see, e.g., [1, 2, 5–
9, 14, 16, 17, 20, 21]. Recently, unification was studied also for proximity relations, which
generalize similarity in the sense they are reflexive and symmetric but non-transitive fuzzy
relations [10,12,15]. The techniques studied in these papers usually assume a single fuzzy
(similarity or proximity) relation. However, in many practical situations, one needs to deal
with several similarities between the objects from the same set, see, e.g. [18, 19], where
examples about building online fashion compatibility representation and understanding
visual similarities are considered in the context of learning image embeddings.

Multiple similarities pose challenges to constraint solving, since we can not rely on
the transitivity property anymore. Note that proximity relations are not transitive either,
but their unification methods have some limitations in dealing with multiple similarities
simultaneously.

We address this problem, proposing an algorithm for solving constraints over multiple
similarity relations. A simple example below illustrates the problem together with the results
of different approaches, and motivates the development of a dedicated technique for it.

I Example 1. Let white-circle,white-ellipse, gray-circle and gray-ellipse be four symbols
and R1 and R2 be two similarity relations, where R1 stands for “similar color, same shape”
and R2 denotes “same color, similar shape”. They are defined as
R1(white-circle, gray-circle) = R1(white-ellipse, gray-ellipse) = 0.5, and
R2(white-circle,white-ellipse) = R2(gray-circle, gray-ellipse) = 0.7.

Assume we want to find an objectX such that from the color point of view, it is at least 0.4-
similar to white-circle and from the shape point of view, it is at least 0.5-similar to gray-ellipse.
The corresponding constraint is X 'R1,0.4 white-circle and X 'R2,0.5 gray-ellipse. The
expected answer is X = gray-circle. But it is problematic to compute it by the existing
fuzzy unification techniques. The direct approach, trying to solve each equation separately
by the weak unification algorithm from [17] leads to no solution in this case, because
white-circle and gray-ellipse are not similar to each other by any of the given relations.
An alternative way could be to consider the constraint over the relation R1 ∪ R2, which
is a proximity, not a similarity, since transitivity is not satisfied. However, the proximity
unification algorithm from [12] gives no solution. We can try to use the algorithm for solving
proximity constraints from [15], but it would give two answers instead of one: X = gray-circle
and X = white-ellipse. On the other hand, the algorithm proposed in this paper computes
the right solution X = gray-circle. Its similarity degrees are 0.5 for the relation R1 and 0.7
for R2. J

It should be mentioned that the multi-adjoint framework [14, 16] is flexible enough to
accommodate multiple similarities. It is a logic programming-based approach, where one
needs to extend programs by fuzzy similarity axioms for each alphabet symbol and use
classical unification. The authors show how to encode Sessa’s algorithm [17] in this framework.

Our approach is different. We develop the solving algorithm directly, without being
dependent on the implementation or application preferences. It can be incorporated in
a modular way in the constraint logic programming schema, can be used for constrained
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rewriting, querying, or similar purposes. It combines three parts: solving syntactic equations,
solving similarity problems for one relation, and solving mixed problems. Except variables
for terms, we permit also variables for function symbols, since they are necessary in the
process of finding an “intermediate object” between terms in different similarity relations.

The paper is organized as follows: In Section 2 we introduce the basic notions, define
constraints and their solutions. Section 3 is the main section of the paper: it describes
all three parts of our algorithm and presents its termination, soundness, and completeness
results. In Section 4 we show how to include the computation of approximation degrees in
the algorithm. Concluding discussion can be found in Section 5.

2 Preliminaries

Similarity relations

We define basic notions about similarity relations following [9,17]. A binary fuzzy relation
on a set S is a mapping from S × S to the real interval [0, 1]. If R is a fuzzy relation on S
and λ is a number 0 < λ ≤ 1 (called cut value), then the λ-cut of R on S, denoted Rλ, is an
ordinary (crisp) relation on S defined as Rλ := {(s1, s2) | R(s1, s2) ≥ λ}.

A fuzzy relation R on a set S is called a proximity relation, if it is reflexive and symmetric:

Reflexivity: R(s, s) = 1 for all s ∈ S;
Symmetry: R(s1, s2) = R(s2, s1) for all s1, s2 ∈ S.

Let ∧ be a T-norm: an associative, commutative, non-decreasing binary operation on
[0, 1] with 1 as the unit element. A proximity relation (on S) is called a similarity relation
(on S) iff it is transitive:

Transitivity R(s1, s2) ≥ R(s1, s) ∧R(s, s2) for any s1, s2, s ∈ S.

In this paper, in the role of T-norm we take the minimum of two numbers, and write
min instead of ∧. In the role of S we take a syntactic domain, defined in the next section.

Terms, atoms, substitutions

Our alphabet A consists of the following pairwise disjoint sets of symbols:
VT: term variables, denoted by X,Y, Z,
VF: function variables, denoted by F,G,H,
CF: function constants, denoted by f, g, h,

By V we denote the set of variables V = VT ∪VF, and V is used for its elements.
A function symbol is a function variable or a function constant, i.e., an element of the set

F = CF ∪VF. We use the letters f, g, h to denote function symbols. Each function symbol
has a fixed arity.

Terms over A are defined by the grammar t := X | f(t1, . . . , tn), where f is an n-ary
function symbol. For terms we use the letters t, s, r. The set of terms over A is denoted by
Terms(A).

For a term f(t1, . . . , tn), if n = 0, we write just f instead of f(). Usually, from the context
it is clear whether we are talking about a symbol or about a term.

A substitution σ is a mapping from V to F ∪ Terms(A) such that
σ(X) ∈ Terms(A) for all X ∈ VT,
σ(F ) ∈ F for all F ∈ VF,
σ(V ) = V for all but finitely many variables V ∈ V.
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Substitutions are denoted by Greek letters σ, ϑ, ϕ. The identity substitution is denoted
by Id. The domain of a substitution σ is the set dom(σ) = {V | V ∈ V, σ(V ) 6= V }. The
restriction of σ to a set of variables V is the substitution σ|V defined as σ|V(V ) = σ(V ) if
V ∈ V and σ|V(V ) = V otherwise. We will use the usual set representation of substitutions,
writing σ as {V 7→ σ(V ) | V ∈ dom(σ)}.

Substitution application to variables, constants, and terms is defined as follows: cσ = c

for all c ∈ CF, V σ = σ(V ) for all V ∈ V, and f(t1, . . . , tn)σ = (fσ)(t1σ, . . . , tnσ).

Similarity relations on syntactic domains

Our similarity relations are defined on the set of constants CF. Any such relation R should
satisfy the restriction: R(f, g) = 0, if f and g have different arity.

Given an R defined on CF, we extend it to F ∪ Terms(A):
For variables: R(V, V ) = 1.
For nonvar. terms: R(f(t1, . . . , tn), g(s1, . . . , sn)) = min(R(f, g),R(t1, s1), . . . ,R(tn, sn)),
when f and g are both n-ary.
In all other cases, R(τ1, τ2) = 0 for τ1, τ2 ∈ F ∪ Terms(A).

Given a similarity relation R and the cut value λ ∈ (0, 1], we define (R, λ)-neighborhood
of τ as N(τ,R, λ) := {τ′ | R(τ, τ′) ≥ λ}, where τ, τ′ ∈ F∪Terms(A). Based on the definition
of similarity relations above, it is obvious that neighborhoods of function constants (resp.
variables) contain only function constants (resp. variables) of the same arity. Neighborhoods
of terms contain only terms. All terms in the same neighborhood have the same structure
(same set of positions). We require for each f ∈ CF, R, and λ, the set N(f,R, λ) to be finite.
It implies that term neighborhoods are finite as well.

Constraints

In our constraint language, the elements of F∪Terms(A) are the basic objects. In the rest of
the paper, the letter τ is used to denote its elements. Besides, we have the equality predicate
constant .= (interpreted as syntactic equality), one or more similarity predicate constants
'1, '2, . . . , (interpreted as similarity relations on F ∪ Terms(A)), propositional constants
true and false, connectives ∧,∨, and the quantifier ∃.

Primitive constraints P are defined by the grammar

P ::= true | false | t .= s | t ' s | f .= g | f ' g,

where ' ∈ {'1,'2 . . .}. Primitive .=- and '-constraints are called primitive equality
constraints and primitive similarity constraints, respectively. A literal L is an atom or a
primitive constraint. A (positive) constraint C over A is defined as C ::= P | C∧C | C∨C | ∃x.C.
In this paper we consider only positive constraints.

The domain of the intended interpretation of our constraint language is its Herbrand
universe (the set of ground terms). The predicate constant .= is interpreted as syntactic
equality. Each similarity predicate constant ' is interpreted as a similarity relation on the
domain as defined in the previous section. When a predicate constant ' is to be interpreted
by a relation R with the cut value λ ∈ (0, 1], we write 'R,λ instead of '.

A variable-predicate pair (VP-pair) is either 〈V,'R,λ〉 or 〈V,
.=〉. We say that a substitution

σ is more general than ϑ on a set of VP-pairs W iff there exists a substitution ϕ such that
R(V σϕ, V ϑ) ≥ λ for all 〈V,'R,λ〉 ∈ W and V σϕ = V ϑ for all 〈V, .=〉 ∈ W. In this case we
write σ �W ϑ.
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I Example 2. Let R1(a, b) = 0.7, R1(b, c) = 0.7, R1(a, c) = 0.8, R2(b, c) = 0.9, and
W = {〈X,'R1,0.5〉, 〈Y,'R1,0.6〉, 〈Y,'R2,0.7〉}.

Let σ = {X 7→ Y } and ϑ = {X 7→ a, Y 7→ b}. Then σ �W ϑ, because for ϕ = {X 7→ b,

Y 7→ b} we have Xσϕ = b 'R1,0.5 a = Xϑ, Y σϕ = b 'R1,0.6 b = Y ϑ, and Y σϕ =
b 'R2,0.7 b = Y ϑ.
Let σ = {X 7→ Y } and ϑ = {X 7→ a, Y 7→ c}. Then σ �W ϑ, because for ϕ = {X 7→ b,

Y 7→ b} we have Xσϕ = b 'R1,0.5 a = Xϑ, Y σϕ = b 'R1,0.6 c = Y ϑ, and Y σϕ =
b 'R2,0.7 c = Y ϑ.
Let σ = {X 7→ f(Y ), Y 7→ Z} and ϑ = {X 7→ f(Z), Y 7→ a, Z 7→ X}. Then σ �W ϑ,
because for ϕ = {Y 7→ Z,Z 7→ a} we have Xσϕ = f(Z) 'R1,0.5 f(Z) = Xϑ, Y σϕ =
a 'R1,0.6 a = Y ϑ, and Y σϕ = a 'R2,0.7 a = Y ϑ.

I Theorem 3. �W is a quasi-ordering for all W.

Proof. Reflexivity is obvious. For transitivity, assume σ1 �W σ2 and σ2 �W σ3. We will
show σ1 �W σ3. Take 〈V,'R,λ〉 ∈ W . Then for some ϕ1 and ϕ2 we have R(V σ1ϕ1, V σ2) ≥ λ
and R(V σ2ϕ2, V σ3) ≥ λ. Since similarity is stable for substitutions [17, Proposition 3.1],
we have R(V σ1ϕ1ϕ2, V σ2ϕ2) ≥ λ. By transitivity of similarity, we get R(V σ1ϕ1ϕ2, V σ3) ≥
min(R(V σ1ϕ1ϕ2, V σ2ϕ2),R(V σ2ϕ2, V σ3)) ≥ λ, which implies that σ1 �W σ3. J

We denote the equivalence relation induced by �W by ∼=.
The notation K .= denotes a conjunction of primitive equality constraints. By KR,λ we

denote a conjunction of primitive similarity constraints, all with the same relation R and the
same λ-cut: KR,λ = τ1 'R,λ τ′1 ∧ · · · ∧ τn 'R,λ τ′n.

Given a constraint K = K .= ∧ KR1,λ1 ∧ · · · ∧ KRm,λm
, we denote by W(K) the set of

VP-pairs W(K) := {〈V, .=〉 | V ∈ var(K .=)} ∪ {〈V,'Ri,λi
〉 | V ∈ var(KRi,λi

), 1 ≤ i ≤ m}.

I Definition 4 (Solution). A substitution σ is called a solution of a primitive constraint P, if
P = τ1

.= τ2 and τ1σ = τ2σ, or
P = τ1 'R,λ τ2 and R(τ1σ, τ2σ) ≥ λ.

Any substitution is a solution of true, while false has no solution.
A substitution σ is a solution of a conjunction of primitive constraints K iff it solves each

primitive constraint in K. We denote the set of all solutions of K by Sol(K). For a constraint
C = K1 ∧ · · · ∧ Kn in disjunctive normal form (DNF), we define Sol(C) = ∪ni=1Sol(Ki).

Given similarity relations R1, . . . ,Rn, a conjunction of primitive constraints K, and its
solution σ, we say that σ solves K with approximation degrees D = {〈R1, d1〉, . . . , 〈Rn, dn〉}
if
K = true or K = K .= and d1 = · · · = dn = 1,
K = τ1 'Rj ,λj τ2 for some 1 ≤ j ≤ n, dj = Rj(τ1σ, τ2σ) ≥ λj, and di = 1 for all
1 ≤ i ≤ n, i 6= j,
K = P ∧K′, σ solves P and K′ with approximation degrees {〈R1, d

P
1 〉, . . . , 〈Rn, dPn 〉} and

{〈R1, d
′
1〉, . . . , 〈Rn, d′n〉}, respectively, and di = min{dPi , d′i} for all 1 ≤ i ≤ n.

Such a definition of approximation degrees gives the flexibility to characterize approxima-
tions with respect to each involved relation independently from each other.
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I Theorem 5. Let K = K .= ∧KR1,λ1 ∧ · · · ∧ KRm,λm be a constraint. If σ is a solution of K
and σ �W(K) ϑ, then ϑ is a solution of K.

Proof. Let s1 'Ri,λi
s2 ∈ KRi,λi

. From σ �W(K) ϑ, by definition of �W(K), there exists a
ϕ such that R(V σϕ, V ϑ) ≥ λi for each V ∈ var(KRi,λi). It implies that

R(sjσϕ, sjϑ) ≥ λi, j = 1, 2. (1)

On the other hand, for similarity relations R(s1σϕ, s2σϕ) = R(s1σ, s2σ) (see [17]). Since
σ is a solution of K, R(s1σ, s2σ) ≥ λi. Hence, we have R(s1σϕ, s2σϕ) ≥ λi. From this
inequality and (1), by symmetry and transitivity of R, we get R(s1ϑ, s2ϑ) ≥ λi. Hence, ϑ is
a solution of s1 'Ri,λi s2.

It is straightforward that ϑ is a solution of any equation from K .=. Hence, ϑ is a solution
of K. J

IDefinition 6 (Solved form, approximately solved form). A conjunction of primitive constraints
K is in solved form, if K is either true or each primitive constraint in K has a form V

.= τ

or V 'R,λ τ, where V appears only once in K. A constraint in DNF K1 ∨ · · · ∨ Kn is in
solved form, if each Ki is in solved form.

A conjunction of primitive constraints Ksol ∧Kvar is in approximately solved form (appr-
solved form) if Ksol is in solved form, and Kvar is a conjunction of primitive similarity
constraints between variables V1 'R,λ V2 such that neither V1 nor V2 appear in the left hand
side of any primitive constraint in Ksol. A constraint in DNF K1 ∨ · · · ∨ Kn is in appr-solved
form, if each Ki is in appr-solved form.

Appr-solved forms are also solved forms, but not vice versa. Each solved form K induces
a substitution, denoted by σK: if K = true, then σK = Id, otherwise σK = {V 7→ τ | V .=
τ ∈ K or V 'R,λ τ ∈ K}. Obviously, σK is a solution of K. A constraint Ksol ∧ Kvar in
appr-solved form is also solvable, because σKsol solves Ksol and Kvar always has at least
a trivial solution mapping all terms variables to the same term variable and all function
variables to the same function variable.

I Example 7. Let R1 and R2 be defined as in Example 1 and K = KR1,0.4 ∧ KR2,0.5 be a
constraint, where KR1,0.4 = X 'R1,0.4 white-circle ∧X 'R1,0.4 Y and KR2,0.5 = X 'R2,0.5
gray-ellipse ∧ Y 'R2,0.5 white-ellipse.

One can bring KR1,0.4 to its equivalent solved form (e.g., by an algorithm along the lines
of the weak unification algorithm in [17]). KR2,0.5 is already in the solved form. Hence, K is
equivalent to the constraint

X 'R1,0.4 white-circle ∧ Y 'R1,0.4 white-circle ∧
X 'R2,0.5 gray-ellipse ∧ Y 'R2,0.5 white-ellipse,

which is not yet in a solved form. A solved form, equivalent to K, would be X .= gray-circle∧
Y

.= white-circle. It induces the substitution σ = {X 7→ gray-circle, Y 7→ white-circle}.

I Example 8. Let R1 and R2 be two similarity relations defined as

R1 : R1(a1, c1) = R1(b1, c1) = 0.7, R1(a1, b1) = 0.8,
R1(a2, c2) = R1(b2, c2) = 0.6, R1(a2, b2) = 0.7,

R2 : R2(b1, b3) = R2(b2, b3) = 0.6, R2(b1, b2) = 0.7, R2(c1, c2) = 0.8.
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Visually:
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b1

c1
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R1: the solid lines, R2: the dotted lines.

Let K = X 'R1,0.5 f(a1, a2) ∧ X 'R2,0.6 f(Y, Y ). It is equivalent to the disjunction
of two solved forms, e.g., (X .= f(b1, b2) ∧ Y 'R2,0.6 b1) ∨ (X .= f(c1, c2) ∧ Y 'R2,0.6 c1).
The solved forms induce two substitutions: σ1 = {X 7→ f(b1, b2), Y 7→ b1} and σ2 = {X 7→
f(c1, c2), Y 7→ c1}. They are solutions of K. There are other solutions of K that are
∼=-equivalent to σ1 or σ2: ϑ1 = {X 7→ f(b1, b2), Y 7→ b2} ∼= σ1, ϑ2 = {X 7→ f(b1, b2), Y 7→
b3} ∼= σ1, and ϑ3 = {X 7→ f(c1, c2), Y 7→ c2} ∼= σ2.

Now let K = X 'R1,0.8 g(Y ) ∧X 'R2,0.6 g(Z). A solved form Ks = X
.= g(Z) ∧ Y .= Z

implies K, but is not equivalent to it, because K has solutions {X 7→ g(b1), Y 7→ a1, Z 7→ b2}
and {X 7→ g(b1), Y 7→ a1, Z 7→ b3}, which do not solve Ks. On the other hand, if we
take the approximate solved form Kas = X

.= g(X1) ∧X1 'R1,0.8 Y ∧X1 'R2,0.6 Z, then
every solution of Kas solves K, and (∃X1.Kas)σ holds for any solution σ of K. (Substitution
application to a quantified constraint avoids variable capture.) Alternatively, we could have
taken another solved form K′s = X

.= g(X1) ∧ Y 'R1,0.8 X1 ∧ Z 'R2,0.6 X1 which has the
same properties as Kas.

I Example 9. Let R1(a, b1) = R1(b1, b2) = R1(a, b2) = 0.8, R2(c, b1) = R2(b1, b2) =
R2(b2, c) = 0.7 and consider a constraint K = X 'R1,0.6 f(Y, Y ) ∧X 'R2,0.5 f(Z,Z). The
straightforward solved form X

.= f(Z,Z) ∧ Y .= Z, as in the previous example, has fewer
solutions thanK, e.g., {X 7→ f(b1, b2), Y 7→ a, Z 7→ c} would be lost. If we take an appr-solved
form Kas = X

.= f(X1, X2) ∧X1 'R1,0.6 Y ∧X1 'R2,0.5 Z ∧X2 'R1,0.6 Y ∧X2 'R2,0.5 Z,
then all solutions of Kas solve K and for each solution σ of K, we have (∃X1, X2.Kas)σ.
Unlike the previous example, we can not turn this appr-solved form into a solved from by
swapping sides of variables-only equations.

3 Constraint solving

The constraint solving algorithm Solve presented in this section works on constraints in DNF.
Its rules are divided into three groups: for equalities, for similarities, and for mixed problems.
They are applied modulo associativity, commutativity, and idempotence of ∧ and ∨, treating
false as the unit element of ∨. We first introduce the rules and then show how Solve is defined
using them.

In the rules, the superscript ? indicates that the constraints are supposed to be solved.
The sides of an equation V .=?

τ belong to the same syntactic category, i.e., it stands either
for X .=?

t or for F .=? f. The same holds for V '?
R,λ τ.

Equality rules
In this subsection we describe the rules that solve equality constraints. Essentially, these are
first-order unification rules with a slight modification, which concerns dealing with function
and predicate variables. The rules have the form K K′, which defines the transformation
K ∨ C  K′ ∨ C. Note that C does not change.
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The rules are Del-eq (deletion), Dec-eq (decomposition), Ori-eq (orientation), Elim-eq
(variable elimination), Confl-eq (conflict), Mism-eq (arity mismatch), Occ-eq (occurrence
check), all formulated for the equality relation .=.

Del-eq : τ
.=?

τ ∧ K K, where τ ∈ CF ∪VF ∪VT.

Dec-eq : f(t1, . . . , tn) .=? g(s1, . . . , sn) ∧ K f .=? g ∧ t1
.=?
s1 ∧ · · · ∧ tn

.=?
sn ∧ K,

where n > 0.

Ori-eq : τ
.=?

V ∧ K V
.=?

τ ∧ K, if τ /∈ V.

Elim-eq : V
.=?

τ ∧ K V
.=?

τ ∧ K{V 7→ τ}, if V /∈ var(τ) and V ∈ var(K).

Confl-eq : f
.=?
g ∧ K false, where f 6= g.

Mism-eq : f(t1, . . . , tn) .=? g(s1, . . . , sm) ∧ K false, if n 6= m.

Occ-eq : X
.=?
t ∧ K false, if X ∈ var(t) and X 6= t.

Note that the Elim-eq rule replaces occurrences of a variable in the whole K, i.e., the
variable gets replaced both in equality and similarity constraints.

We define the algorithm Unif, which applies the equality rules as long as possible. When
there are more than one applicable rule, the algorithm may choose one arbitrarily.

I Theorem 10. Unif is terminating.

Proof. Similar to the proof of termination of the unification algorithm in [3]. J

I Lemma 11 (Soundness lemma for Unif). If K K′ is a step performed by a rule in Unif,
then Sol(K) = Sol(K′).

Proof. When K consists of equational constraints only, then so is K′ and the lemma can be
proved as the analogous property of the unification algorithm in [3]. If K contains similarity
constraints as well, the only nontrivial case to consider is the Elim-eq rule. We will need the
fact that for any σ and ϑ, ϑσ ∈ Sol(K) iff σ ∈ Sol(Kϑ) (which is straightforward to show).

Let K = {V .=?
τ} ∧ K0 and ϑ = {V 7→ τ}. Then K′ = {V .=?

τ} ∧ K0ϑ and we have

σ ∈Sol(K)iff σ ∈ Sol({V .=?
τ} ∧ K0) iff

V σ = τσ ∧ σ ∈ Sol(K0) iff (because V σ = τσ implies σ = ϑσ)
V σ = τσ ∧ ϑσ ∈ Sol(K0) iff
V σ = τσ ∧ σ ∈ Sol(K0ϑ) iff

σ ∈ Sol({V .=?
τ} ∧ K0ϑ) iff

σ ∈Sol(K′). J

Similarity rules
The rules in this section are designed for similarity relations. They resemble weak unification
rules [9, 17], with the difference that function variables and multiple similarity relations are
permitted, and aims at computing the answer in solved form, instead of a substitution.
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In the Elim-sim rule, the variable V is replaced by τ only in the constraints for the same
similarity relation. This is justified by the fact that although a λ-cut of each similarity
relation is transitive, from t 'R1,λ1 s, s 'R2,λ2 r we can not conclude anything about
similarity between t and r.

The similarity rules have the same form as the equality rules: K K′, which defines the
transformation K ∨ C  K′ ∨ C. The names are also similar to those for equalities, using sim
instead of eq.

Del-sim : τ1 '?
R,λ τ2 ∧ K K, where τ1, τ2 ∈ CF ∪VF ∪VT and R(τ1, τ2) ≥ λ.

Dec-sim : f(t1, . . . , tn) '?
R,λ g(s1, . . . , sn) ∧ K 

f '?
R,λ g ∧ t1 '?

R,λ s1 ∧ · · · ∧ tn '?
R,λ sn ∧ K, where n > 0.

Ori-sim : τ '?
R,λ V ∧ K V '?

R,λ τ ∧ K, where τ /∈ V.

Elim-sim : V '?
R,λ τ ∧ KR,λ ∧ K V '?

R,λ τ ∧ KR,λ{V 7→ τ} ∧ K
where K does not contain primitive '?

R,λ-constraints, V /∈ var(τ), and
V ∈ KR,λ.

Confl-sim : τ1 '?
R,λ τ2 ∧ K false, where τ1, τ2 ∈ CF ∪VF ∪VT, and R(τ1, τ2) < λ.

Mism-sim : f(t1, . . . , tn) '?
R,λ g(s1, . . . , sm) ∧ K false, if n 6= m.

Occ-sim : X '?
R,λ t ∧ K false, if X ∈ var(t) and X 6= t.

The algorithm Sim applies the similarity rules as long as possible. When there are more
than one applicable rule, the algorithm may choose one nondeterministically.

Termination of Sim can be proved as termination of Unif:

I Theorem 12. Sim is terminating.

I Lemma 13 (Soundness lemma for Sim). If K K′ is a step performed by a rule in Sim,
then Sol(K) = Sol(K′).

Proof. When we have only one similarity relation, soundness follows from soundness of
weak unification algorithm [17]. For the extension to multiple similarity relations, the only
nontrivial rule is Elim-sim. (For the others, Sol(K) = Sol(K′) holds directly.) It is important
to notice that in this rule, {V 7→ τ} applies only to KR,λ. Then for V '?

R,λ τ ∧ KR,λ we
have Sol(V '?

R,λ τ ∧ KR,λ) = Sol(V '?
R,λ τ ∧ KR,λ{V 7→ τ}). (It follows from soundness

of weak unification algorithm [17], since the constraint is over a single similarity relation.)
Constraints for all other relations remain unchanged. It implies that the solution sets for
constraints in both sides of the Elim-sim rule are the same. J

I Example 14. let KR1,0.4 = X 'R1,0.4 white-circle∧X 'R1,0.4 Y and KR2,0.5 = X 'R2,0.5
gray-ellipse ∧ Y 'R2,0.5 white-ellipse be the constraints from Example 7. The reduction
mentioned in that example is modeled by performing the Elim-sim step and replacing X by
white-circle in KR1,0.4:

X 'R1,0.4 white-circle ∧X 'R1,0.4 Y ∧
X 'R2,0.5 gray-ellipse ∧ Y 'R2,0.5 white-ellipse  Elim-sim

X 'R1,0.4 white-circle ∧ white-circle 'R1,0.4 Y ∧
X 'R2,0.5 gray-ellipse ∧ Y 'R2,0.5 white-ellipse.
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If Elim-sim permitted to replace X not only in KR1,0.4, but also in KR2,0.5, we would get

X 'R1,0.4 white-circle ∧ white-circle 'R1,0.4 Y ∧
white-circle 'R2,0.5 gray-ellipse ∧ Y 'R2,0.5 white-ellipse,

but white-circle 'R2,0.5 gray-ellipse is unsolvable. Hence, we would lose a solution.

Mixed rules
The rules in this section apply when there are at least two primitive constraints over different
similarity relations. The notation t[X] below means that the variable X occurs in the term t.

I Definition 15 (Occurrence cycle). An occurrence cycle for a variable X1 is called the
conjunction of primitive constraints X1 '?

R1,λ1
t1[X2]∧X2 '?

R2,λ2
t2[X3]∧ · · · ∧Xn '?

Rn,λn

tn[X1], where n > 1, Ri 6= Ri+1 for all 1 ≤ i ≤ n− 1, Rn 6= R1, and at least one t is not a
variable.

I Remark 16. Note that in the definition of occurrence cycle, if two neighboring primitive
similarity constraints use the same relation, they can be contracted into one constraint
by transitivity, i.e., instead of Xi '?

Ri,λi
ti[Xi+1] ∧ Xi+1 '?

Ri,λi
ti+1[Xi+2] we can have

Xi '?
Ri,λi

ti[ti+1[Xi+2]], getting rid of consecutive identical similarity relations. The same
is true for the last and the first constraints.

I Theorem 17. If a conjunction of primitive constraints contains an occurrence cycle modulo
symmetry of '?

R,λ, then it has no solution.

Proof. In similarity relations, symbols of different arities can not be similar. Therefore,
similar terms have the same set of positions, i.e., as trees they are the same up to renaming
of nodes.

Assume by contradiction that the given occurrence cycle has a solution ϑ. It means that
the following term pairs have the same structure: X1ϑ and t1[X2]ϑ, X2ϑ and t2[X3]ϑ, . . .,
Xnϑ and tn[X1]ϑ. Then X1ϑ and t1[t2[· · · [tn[X1]] · · · ]]ϑ have the same structure. Since at
least one of ti’s is not a variable, X1ϑ is a proper subterm of t1[t2[· · · [tn[X1]] · · · ]]ϑ. But a
term and its proper subterm can not have the same structure. A contradiction.

The phrase “modulo symmetry of '?
R,λ” in the theorem means that the sides of primitive

constraints can be swapped, in order to detect an occurrence cycle. Since side swapping does
not affect solvability of constraints, the theorem remains true if an occurrence cycle is not in
the explicit form in the constraint. J

Below, when we talk about existence of an occurrence cycle in a constraint, we mean
existence modulo symmetry of the similarity predicate.

The rules in the mixed group are rules for occurrence check (Occ-mix), mismatch
(Mism-mix), and elimination of term and function variables (TVE-mix and FVE-mix, re-
spectively). All of them except FVE-mix have the form K K′. As usual, they define the
constraint transformation K ∨ C  K′ ∨ C. As for FVE-mix, its form is K K′1 ∨ · · · ∨ K′n,
defining a transformation K∨ C  K′1 ∨ · · · ∨ K′n ∨ C. Note that in any of these rules, C does
not change.

In all the rules it is assumed that the constraint to be transformed (i.e., the constraint
in the left hand side of  ) has the form K .= ∧ KR1,λ1 ∧ · · · ∧ KRm,λm

, where K .= and each
KRi,λi , 1 ≤ i ≤ m, are in solved form.
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The TVE-mix rule uses the renaming function ρ. Applied to a term, ρ gives its fresh copy,
obtained by replacing each occurrence of a constant from CF by a new function variable,
each occurrence of a term variable by a fresh term variable, and each occurrence of a function
variable by a fresh function variable. For instance, if the term is f(F (a,X,X, f(a))), we have
ρ(f(F (a,X,X, f(a)))) = G1(G2(G3(), Y1, Y2, G4(G5()))), where G1, G2, G3, G4, G5 ∈ VF are
new function variables and Y1, Y2 ∈ VT are new term variables.

Occ-mix : X '?
R,λ t ∧ K false, if X '?

R,λ t ∧ K contains an occurrence cycle for X.

Mism-mix : X '?
R1,λ1

f(t1, . . . , tn) ∧X '?
R2,λ2

g(s1, . . . , sm) ∧ K false,
if R1 6= R2 and m 6= n.

TVE-mix : X '?
R,λ f(t1, . . . , tn) ∧ K 
X

.= F (t′1, . . . , t′n) ∧ F '?
R,λ f ∧ t′1 '?

R,λ t1 ∧ · · · ∧ t′n '?
R,λ tn ∧ Kϑ,

where X ∈ var(K), X '?
R1,λ1

f(t1, . . . , tn) ∧ K does not contain an oc-
currence cycle for X, F (t′1, . . . , t′n) = ρ(f(t1, . . . , tn)), and ϑ = {X 7→
F (t′1, . . . , t′n)}.

FVE-mix : F '?
R,λ f ∧ K ∨g∈N(f,R,λ)

(
F

.= g ∧ K{F 7→ g}
)
, where F ∈ var(K).

By Mix we denote one application of any of the mixed rules.

I Lemma 18 (Soundness lemma for Mix). If K  C is a step performed by a rule in Mix,
and σ ∈ Sol(C), then σ ∈ Sol(K).

Proof. For failing rules it is trivial as false has no solution. For FVE-mix, the definition of
neighborhood implies it. For TVE-mix we reason as follows: Let K = {X '?

R,λ f(t1, . . . , tn)}∧
K1 and σ be a solution of the right hand side of this rule. Then Xσ = F (t′1, . . . , t′n)σ 'R,λ
f(t1, . . . , tn)σ and σ solves X '?

R,λ f(t1, . . . , tn). As for any other equation eq ∈ K1, we have
eqϑ in the right hand side, where ϑ = {X 7→ F (t′1, . . . , t′n)}. Moreover, σ is a solution of eqϑ
iff ϑσ is a solution of eq. The equality Xσ = F (t′1, . . . , t′n)σ implies ϑσ = σ. Hence, σ is a
solution of eq. J

Our constraint solving algorithm Solve is designed as a strategy of applying Unif, Sim,
and Mix. To solve a conjunction of primitive equality and similarity constraints K =
K .= ∧ KR1,λ1 ∧ · · · ∧ KRm,λm , it performs the following steps:

C := K
while C is not in the appr-solved form do

C := Unif(C), if C = false, return false
C := Sim(C), if C = false, return false
C := Mix(C), if C = false, return false

return C
We write Solve(K) = C, if the algorithm returns C for the input K. Respectively,

Solve(K) = false if false is returned.

I Example 19. Let R1 and R2 be the relations defined in Example 8 and illustrate the
steps Solve would make to solve X '?

R1,0.5 f(a1, a2) ∧X '?
R2,0.6 f(Y, Y ). We will explicitly

distinguish between function variables and terms made of a function variable only, i.e.,
between F and F (). For the same reason, we write constant-terms a1 and a2 in their full
form a1() and a2(). Primitive constraints selected to perform a particular step are underlined.
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X '?
R1,0.5 f(a1(), a2()) ∧X '?

R2,0.6 f(Y, Y ) TVE-mix

X
.= F (G1(), G2()) ∧ F '?

R1,0.5 f ∧G1() '?
R1,0.5 a1() ∧G2() '?

R1,0.5 a2() ∧

F (G1(), G2()) '?
R2,0.6 f(Y, Y ) Dec-sim×2

X
.= F (G1(), G2()) ∧ F '?

R1,0.5 f ∧G1 '?
R1,0.5 a1 ∧G2 '?

R1,0.5 a2 ∧
F (G1(), G2()) '?

R2,0.6 f(Y, Y ) Dec-sim,Ori-sim

X
.= F (G1(), G2()) ∧ F '?

R1,0.5 f ∧G1 '?
R1,0.5 a1 ∧G2 '?

R1,0.5 a2 ∧
F '?

R2,0.6 f ∧ Y '
?
R2,0.6 G1() ∧G2() '?

R2,0.6 Y  Elim-sim

X
.= F (G1(), G2()) ∧ F '?

R1,0.5 f ∧G1 '?
R1,0.5 a1 ∧G2 '?

R1,0.5 a2 ∧
F '?

R2,0.6 f ∧ Y '
?
R2,0.6 G1() ∧G2() '?

R2,0.6 G1() Dec-sim

X
.= F (G1(), G2()) ∧ F '?

R1,0.5 f ∧G1 '?
R1,0.5 a1 ∧G2 '?

R1,0.5 a2 ∧

F '?
R2,0.6 f ∧ Y '

?
R2,0.6 G1() ∧G2 '?

R2,0.6 G1  FVE-mix

X
.= f(G1(), G2()) ∧ F .= f ∧G1 '?

R1,0.5 a1 ∧G2 '?
R1,0.5 a2 ∧

f '?
R2,0.6 f ∧ Y '

?
R2,0.6 G1() ∧G2 '?

R2,0.6 G1  Del-sim

X
.= f(G1(), G2()) ∧ F .= f ∧G1 '?

R1,0.5 a1 ∧G2 '?
R1,0.5 a2 ∧

Y '?
R2,0.6 G1() ∧G2 '?

R2,0.6 G1  FVE-mix×2 (showing only successful branches)(
X

.= f(b1(), b2()) ∧ F .= f ∧G1
.= b1 ∧G2

.= b2 ∧
Y '?

R2,0.6 b1() ∧ b2 '?
R2,0.6 b1

)
∨(

X
.= f(c1(), c2()) ∧ F .= f ∧G1

.= c1 ∧G2
.= c2 ∧

Y '?
R2,0.6 c1() ∧ c2 '?

R2,0.6 c1
)
 Del-sim×2(

X
.= f(b1(), b2()) ∧ F .= f ∧G1

.= b1 ∧G2
.= b2 ∧ Y '?

R2,0.6 b1()
)
∨(

X
.= f(c1(), c2()) ∧ F .= f ∧G1

.= c1 ∧G2
.= c2 ∧ Y '?

R2,0.6 c1()
)
.

Restricting the obtained result to the original variables (and writing constant-terms in
the conventional way), we get the solved form

(X .= f(b1, b2) ∧ Y 'R2,0.6 b1) ∨ (X .= f(c1, c2) ∧ Y 'R2,0.6 c1).

I Example 20. Now we show how Solve computes an appr-solved form for the constraint
from Example 9:

X '?
R1,0.6 f(Y, Y ) ∧X '?

R2,0.5 f(Z,Z) TVE-mix

X
.= F (X1, X2) ∧ F '?

R1,0.6 f ∧X1 '?
R1,0.6 Y ∧X2 '?

R1,0.6 Y ∧

F (X1, X2) '?
R2,0.5 g(Z,Z) FVE-mix

X
.= f(X1, X2) ∧ F 'R1,0.6 f ∧X1 '?

R1,0.6 Y ∧X2 '?
R1,0.6 Y ∧

f(X1, X2) '?
R2,0.5 g(Z,Z) Dec

X
.= f(X1, X2) ∧ F '?

R1,0.6 f ∧X1 '?
R1,0.6 Y ∧X2 '?

R1,0.6 Y ∧
X1 '?

R2,0.5 Z ∧X2 '?
R2,0.5 Z.

The result gives an appr-solved form. If we did not generate new copies for each variable
occurrence in the TVE-mix rule, we would end up with X .=?

f(Z,Z) ∧ F .=?
f ∧ Y .=?

Z.
As we saw in Example 9, some solutions would be lost in this case.
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To prove termination of Solve, we will need an ordering on directed acyclic graphs (dags).

I Definition 21 (The relation <dag). We consider dags, which have a finite set of symbols
associated to each vertex. These sets are called the marks of vertices. For a graph G and a
vertex v, we denote the mark of v in G by mark(v,G). The relation <dag is defined on such
graphs, having the same set of vertices.

Let G1 = (Vert, E1) and G2 = (Vert, E2) be two dags with the same set of vertices Vert.
The vertices are marked in G1 and G2. Then G1 <dag G2 iff E1 ⊇ E2 and the following
condition holds:

Let ∅ 6= D ⊆ Vert be the set of all vertices, for which the marks in the graphs differ (i.e.,
D := {v ∈ Vert | mark(v,G1) 6= mark(v,G2)}: same vertex, different markings), and
∅ 6= M ⊆ D be the set of those elements of D, which are not reachable from any of the
elements in D in G1. (Such a subset of D exists, because the graphs are acyclic.) Then
mark(v,G1) ⊂ mark(v,G2) for all v ∈M .

We write G >dag G
′ if G′ <dag G.

I Theorem 22. The relation >dag is a well-founded ordering on dags.

Proof. First, we show that >dag is a strict partial order (irreflexive and transitive relation).
Irreflexivity is obvious. For transitivity, assume G1 >dag G2, G2 >dag G3 and show G1 >dag
G3. Let Gi = (Vert, Ei) for i = 1, 2, 3. By transitivity of set inclusion, we have E1 ⊆ E3.

Let D(Gi, Gj) := {v ∈ Vert | mark(v,Gi) 6= mark(v,Gj)} and M(Gi, Gj) be the set
of all those elements in D(Gi, Gj) that are not reachable in Gj from D(Gi, Gj), 1 ≤ i <

j ≤ 3. Assume first that D(G1, G3) 6= ∅ and take v ∈ M(G1, G3). We want to show that
mark(v,G1) ⊃ mark(v,G3). The possible cases are
i. mark(v,G1) 6= mark(v,G2) and mark(v,G2) = mark(v,G3).
ii. mark(v,G1) = mark(v,G2) and mark(v,G2) 6= mark(v,G3).
iii. mark(v,G1) 6= mark(v,G2) and mark(v,G2) 6= mark(v,G3).

In case i, v ∈ D(G1, G2). If v ∈ M(G1, G2), then mark(v,G1) ⊃ mark(v,G2) =
mark(v,G3). Now we show that the case v /∈M(G1, G2) is impossible. Assume by contra-
diction that v /∈M(G1, G2). It means that there exists v′ ∈M(G1, G2) such that v′ →+ v

in G2. But then, since E2 ⊆ E3, we have v′ →+ v in G3. Since v ∈ M(G1, G3), we
should have v′ /∈ D(G1, G3), i.e., mark(v′, G1) = mark(v′, G3). On the other hand, from
G1 >dag G2 and v′ ∈ M(G1, G2), we have mark(v′, G1) ⊃ mark(v′, G2), which implies
mark(v′, G2) ⊂ mark(v′, G3), v′ ∈ D(G2, G3) and v′ /∈M(G2, G3). Then there should exist
v′′ ∈M(G2, G3) such that v′′ →+ v′ in G3. Hence, we get v′′ →+ v′ →+ v in G3. Therefore,
we can not have v′′ ∈ D(G1, G3), because there would be a contradiction: v ∈ M(G1, G3)
and v is reachable in G3 from v′′ ∈ D(G1, G3). Hence, we get mark(v′′, G1) = mark(v′′, G3),
which, together with v′′ ∈ M(G2, G3) implies that mark(v′′, G1) ⊂ mark(v′′, G2). Hence,
v′′ ∈ D(G1, G2) and since G1 >dag G2, there should exist v′′′ ∈ M(G1, G2) such that
mark(v′′′, G1) ⊃ mark(v′′′, G2) and v′′′ →+ v′′ in G2. Then we have also v′′′ →+ v′′ in G3,
since E2 ⊆ E3. Moreover, mark(v′′′, G2) = mark(v′′′, G3), because otherwise we would have
a contradiction with v′′ ∈ M(G2, G3) (there would be v′′′ ∈ D(G2, G3) with v′′′ →+ v′′ in
G3). Hence, mark(v′′′, G1) ⊃ mark(v′′′, G2) = mark(v′′′, G3) and we get v′′′ ∈ D(G1, G3).
But it contradicts our assumption that v ∈ M(G1, G3), because we got v′′′ ∈ D(G1, G3)
with v′′′ →+ v in G3. The obtained contradiction shows that the case v /∈ M(G1, G2) is
impossible. (See also the diagram in Appendix A.)
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The case ii can be proved analogously. In case iii, if we have mark(v,G1) ⊃ mark(v,G2)
and mark(v,G2) ⊃ mark(v,G3), we immediately get mark(v,G1) ⊃ mark(v,G3). The other
cases are not possible. For instance, assuming mark(v,G1) ⊃ mark(v,G2) and mark(v,G2) ⊂
mark(v,G3) will lead to contradiction by the same reasoning as in the proof of case i, where
we reached mark(v′, G1) ⊃ mark(v′, G2) and mark(v′, G2) ⊂ mark(v′, G3).

For the assumption D(G1, G3) = ∅ we get a contradiction analogously.
Well-foundedness follows from well-foundnedness of ⊃, from the facts that the set of

vertices is fixed and the set of edges can not be infinitely increased, and from boundedness of
the length of paths due to acyclicity. J

I Theorem 23 (Termination of Solve). The algorithm Solve terminates and gives either false
or a constraint in appr-solved form.

Proof. Let K0 be a given conjunction of primitive constraints. We build a term variable
dependency graph G = (Vert, E) from K0 and maintain it during the process of solving.
The vertices of G correspond to term variables in K0 so that to each variable a single
vertex is assigned. For instance, if K0 contains three term variables X1, X2, and Y3, then
Vert = {vX1 , vX2 , vX3}. The initial marking is defined as mark(vX , G) = {X} for each
vX ∈ Vert. Next, to define E, we do the following: If K0 contains a solved primitive
constraint X .=?

t or X '?
R,λ t (i.e., if X occurs in K0 once), then (vX , vY ) ∈ E for all

Y ∈ var(t) and mark(vX , G) is updated as mark(vX , G)\{X}. This is how the initial version
of the graph is created. It is denoted by GK0 .

In the process of the application of Solve, the graph gets modified as follows:
a) The applied rule is of the form K K′. Then from the graph GK we obtain the graph

GK′ depending on the rule:
Elim-eq with X .=?

t adds edges and removes X from the marking set of the vertex vX
exactly as described above.
Elim-sim with X '?

R,λ t either keeps the graph unchanged (when X occurs more than
once in the resulting constraint after the application of Elim-sim), or modifies it as
described above (when X occurs exactly once in the resulting constraint after the
application of Elim-sim).
TVE-mix withX '?

R,λ t does the same modification as Elim-eq and, in addition, modifies
marking: Let Y1, . . . , Ym, m ≥ 0, be all the copies of a term variable Y ∈ var(t) created
by the renaming function ρ in the TVE-mix step. Then each Yi is associated with the
vertex vY (i.e., vYi = vY ) and mark(vY , G) gets updated as mark(vY , G)∪{Y1, . . . , Ym}.
No other rule of the form K K′ modifies the graph.

b) The applied rule is of the form K K′1 ∨ · · · ∨ K′n, n > 1. Then GK = GK′
1

= · · · = GK′
n
.

One can see that the set Vert remains unchanged during the process.
Let G1 = (Vert, E1) be the graph before applying a rule, and G2 = (Vert, E2) be the

one after a rule application so that G1 6= G2, i.e., Elim-eq, Elim-sim, or TVE-mix is applied.
Let the chosen primitive constraint be X .=?

t (for Elim-eq) or X '?
R,λ t (for Elim-sim and

TVE-mix). Then E1 ⊆ E2, because new edges from vX to vY for each Y ∈ var(t) is created
and none are removed. Besides, mark(X,G1) ⊃ mark(X,G2) = mark(X,G1) \ {X}, and
markings in G2 are not changed for any of the vertices which is not reachable from X in G2.
Hence, G1 >dag G2.

Let us consider the pair (GK,VF(K)) of such a term variable dependency graph GK
associated to a constraint K and a set of function variables VF(K) occurring in K. These pairs
are ordered lexicographically by >dag and >. By Theorem 22, >dag is well-founded. The
relation > on natural numbers is well-founded. Therefore, their lexicographic combination is
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well-founded. Since Unif and Sim are terminating (Theorems 10 and 12), each iteration of
the while loop in the definition of Solve either stops with false, or reaches the application
of Mix. In this process, measure of the pair (GK,VF(K)) does not increase, because the
Unif and Sim rules, as we have already seen, either decrease or keep unchanged GK, and
do not add new function variables. The application of Mix either fails, or strictly reduces
(GK,VF(K)): TVE-mix strictly decreases GK, and FVE-mix does not change GK but strictly
decreases VF(K). Hence, the while loop in Solve can be executed only finitely many times.

If Solve does not stop with false, the only possible non-solved primitive constraints are
those between variables, whose left hand side has occurrences in at least two different kind of
constraints. For any other case, there is an applicable rule. Hence, the obtained constraint is
in appr-solved form. J

I Theorem 24 (Soundness of Solve). Let K be a conjunction of primitive constraints. Then
every solution of the constraint Solve(K) is a solution of K.

Proof. By induction on the length of a rule application sequence leading from K to Solve(K),
using the soundness lemmas for equality, similarity, and mixed rules (Lemmas 11, 13, 18). J

I Theorem 25 (Completeness of Solve). Let K be a conjunction of primitive constraints, and
ϑ be its solution. Then Solve(K) is a constraint (Ksol ∧ Kvar) ∨ C, where Ksol ∧ Kvar is in
appr-solved form, and σKsolσKvar �W(K) ϑ, where σKsol is the substitution induced by Ksol,
and σKvar is a solution of Kvar.

Proof. In the proof we use completeness of unification and weak unification algorithms [4,9,17].
First, note that if one of the failure rules is applicable to a constraint, then it has no solution.
For Occ-mix it follows from Theorem 17. For Mism-mix, it is guaranteed by the fact that
symbols with different arities are not similar. For failure rules in Unif and Sim it is known
from their completeness results.

Application of Unif to K leads to a new constraint Cun, which contains a solved from
Kun-sol such that σKun-sol �W(K) ϑ. Application of Sim to Cun gives Csim, which contains
a solved form Ksim-sol (an extension of Kun-sol) such that σKsim-sol �W(K) ϑ. After that, if
TVE-mix is applicable, we have an equation X '?

R,λ f(t1, . . . , tn). TVE-mix extends the
solved form by a new equation X .=?

ρ(f(t1, . . . , tn)), obtaining Ktve-sol. By definition of ρ,
the term ρ(f(t1, . . . , tn)) contains fresh variables for each symbol in f(t1, . . . , tn) and, hence,
σKtve-sol �W(K) ϑ. It is important at this step to record which fresh variable is a copy of
which original variable, maintaining an function original-of (V ′) = V , where V ∈ var(K) and
V ′ is zero or more applications of ρ to it (i.e., V ′ is V , or its copy, or a copy of its copy etc.).
If the rule FVE-mix is applicable, we have an equation F '?

R,λ f . We make a step by this rule,
adding a new equation F .=? original-of (F )ϑ and obtaining a new solved form Kfve-sol. Let ϕ
be the substitution {original-of (F ) 7→ original-of (F )ϑ}. Then we have σKfve-solϕ �W(K) ϑ.
Iterating this process, we do not get false, since K was solvable. By Theorem 23, the process
terminates with an appr-solved form Ksol ∧ Kvar such that σKsolϕ1 · · ·ϕk �W(K) ϑ, where
the ϕ’s are substitutions of the form {original-of (V ) 7→ original-of (V )ϑ}. Let σKvar be the
restriction of ϑ to the variables of Kvar. Then σKvar is a solution of Kvar. And we have
σKsolϕ1 · · ·ϕkσKvar �W(K) ϑ.

For the ϕ’s, composition is commutative, because they are ground substitutions with
disjoint domains. For some of them we have σKsolϕi = σKsol , because at some step we
might have solved an equation with original-of (V ) variable in its left for original-of (V ) ∈
dom(ϕi). We assume that the ϕ’s in the composition are rearranged so that σKsolϕ1 · · ·ϕi =
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σKsolϕi+1 · · ·ϕk. These remaining ϕ’s are those for which the algorithm reached a variables-
only equation containing original-of (V ), which occurs in the domain of one of the ϕ’s. But
then ϕi+1 · · ·ϕk is a part of σKvar . Hence, we can get rid of them, obtaining σKsolσKvar .
Hence, we get σKsolσKvar �W(K) ϑ. J

4 Computing approximation degrees

In the algorithm, we have not included the computation of approximation degrees, but it
can be done easily. Instead of constraints in DNF of the form K1 ∨ · · · ∨ Kn, we will be
working with expressions (we call them extended constraints) (K1,D1) ∨ · · · ∨ (Kn,Dn),
where D1, . . . ,Dn are approximation degrees. The rules will carry the degree (“computed
so far”) as an additional parameter, but only two rules would change them: Del-sim and
FVE-mix. Their variants with degree modification would work on constraint-degree pairs (]
stands for disjoint union):

Del-sim-deg :
(
τ1 '?

R,λ τ2 ∧ K, {〈R, d〉} ]D
)
 (K, {〈R,min{d,R(τ1, τ2)}〉} ∪D)

where τ1, τ2 ∈ CF ∪VF ∪VT and R(τ1, τ2) ≥ λ.

FVE-mix-deg :
(
F '?

R,λ f ∧ K, {〈R, d〉} ]D
)
 

∨g∈N(f,R,λ)
(
F

.= g ∧ K{F 7→ g}, {〈R,min{d,R(f, g)}〉} ∪D
)
,

where F ∈ var(K).

For any other rule R of the form K  K1 ∨ · · · ∨ Kn, n ≥ 1, its degree variant R-deg
will have the form (K,D) (K1,D) ∨ · · · ∨ (Kn,D), i.e., D will not change. Let us denote
the corresponding versions of Unif, Sim, and Mix by Unif-deg, Sim-deg, and Mix-deg. The
notions of solved and approx-solved forms generalize directly to extended constraints. Then
we can define Solve-deg along the lines of Solve: To solve a conjunction of primitive equality
and similarity constraints K with respect to similarity relations R1, . . . ,Rm, it performs the
following steps:

C := (K, {〈R1, 1〉, . . . , 〈Rm, 1〉})
while C is not in the appr-solved form do

C := Unif-deg(C), if C = false, return false
C := Sim-deg(C), if C = false, return false
C := Mix-deg(C), if C = false, return false

return C

5 Discussion and summary

The proposed solver can be used in constraint-based formalisms such as, for instance,
constraint logic programming [11] or term rewriting with constraints [13]. We can envisage
an instance of the CLP schema with constraints over multiple similarities. Without going
into much details, a simple constraint logic program below can illustrate this possibility:

I Example 26. The letter P in the program stands for a predicate variable. In constraints,
it is treated as a function variable.

P (X,Y )← P 'R1,λ1 p, X 'R1,λ1 F (Y ), Y 'R2,λ2 c, r(X), r(F (Y )).
r(F (X))← F 'R2,λ2 h, X 'R1,λ1 a.
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Assume R1(p, q) = 0.9, R1(a, b) = 0.8, R1(f, g) = 0.6, R2(g, h) = 0.5, R2(b, c) = 0.7,
λ1 = λ2 = 0.4. Then by performing the usual CLP inference (i.e., syntactically unifying
the selected query and the head of the corresponding clause) for the query ← q(X,Y ), the
resulting constraint (together with the approximation degrees) will be (X .= g(b) ∧ Y .= b;
{〈R1, 0.8〉, 〈R2, 0.5〉}) ∨ (X .= h(b) ∧ Y .= b; {〈R1, 0.8〉, 〈R2, 0.7〉}).

To summarize, the algorithm Solve presented in the paper solves positive equational
and similarity constraints, where multiple similarity relations are permitted. Given such
a constraint in DNF, it computes disjunction of approximately solved forms, from which
solution substitutions can be read off. It can be easily extended to include the computation of
approximation degrees of the solutions. The algorithm is terminating, sound, and complete.
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G1 G2 G3

v

v′

v′′

v′′′

v

v′

v′′

v′′′

v

v′

v′′

v′′′

⊂ =

⊃ ⊂

⊂ ⊃

⊃ =

mark(v,G1) ⊂ mark(v,G2) = mark(v,G3)

mark(v,G1) ⊃ mark(v,G2) ⊂ mark(v,G3)

mark(v,G1) ⊂ mark(v,G2) ⊃ mark(v,G3)

mark(v,G1) ⊃ mark(v,G2) = mark(v,G3)
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Abstract
We present in this paper an encoding in an extension with rewriting of the Edimburgh Logical
Framework (LF) [13] of two common features: universe polymorphism and eta-convertibility. This
encoding is at the root of the translator between Agda and Dedukti developped by the author.
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1 Introduction

With the multiplication of proof assistants, interoperability has became a main obstacle
preventing the dissemination of formally verified software among industrial companies.

Indeed, a lot of mathematical results have been formalized, using many different proof
assistants. Hence, if one want to use two already proved theorems in her development, there
is a high risk that these two proofs are in different systems.

To avoid the community the burden of redevelopping the same proofs in each system, the
Logipedia project aims at building an encyclopedia of formal proofs, agnostic in the system
they were developped in. To do so, the logics of the proof assistants can be encoded in the
same Logical Framework: Dedukti, which is based of the λΠ-calculus modulo rewriting.
Once all the logics are encoded in the same framework, it becomes easier to compare them,
and so to export to a target system proofs originally made in another system.

In this article, we present an encoding of two common features, shared by many proof
assistants.

The first one is universe polymorphism. Introduced by Harper and Pollack [14], this
allows the user to declare a symbol only once for all universe levels, and then to instantiate
it several times with concrete levels.

The second one is equality modulo η. In set theory, a function is identified with its graph,
hence two functions outputing the same result when fed with the same data are equal. In
type theory, it is not the case. η-conversion is a weak form of this principle of extensionality,
which just states that f is equal to the function associating to any x the result of f applied
to x.
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Developped for twenty years, Agda is a dependently-typed functional programming
language based on an extension Martin-Löf’s type theory. Thanks to Curry-Howard corres-
pondence, it is often used as a proof assistant. Furthermore, it features the two ingredients
this article focuses on. Hence, the author developed, in collaboration with Jesper Cockx, an
automatic translator from a fragment of Agda to Dedukti.

Outline
After a brief presentation of the λΠ-calculus modulo rewriting, Section 2 introduces the
Cousineau-Dowek’s encoding of Pure Type Systems. Section 3 presents a general encoding
of universe polymorphism and an instantiation of this encoding in the special case of the
predicative two-ladder universe system behind Agda. The main theorem of this section
is the preservation of typability of this encoding. Then, Section 4 explains how to encode
η-conversion using rewriting. Preservation of the conversion is the main result of this section.
Finally, after a presentation of the implementation in Section 5, Section 6 summarizes our
result and provides hints on future extensions.

2 Encoding Pure Type Systems in λΠ-modulo Rewriting

In [3], Barendregt presents the λ-cube, a classification of eight widely used type systems,
distinguishing themselves from each other by the possibility they offer (or not) to quantify
on a type, a term to construct a type, or a term.

Those constructions of systems in the λ-cube were generalized by Terlouw and Berardi
[5], giving birth to what they called “generalized type system”, nowadays more often called
Pure Type Systems (PTS).

Every PTS shares the same typing rules. The only difference between them are the
relations A and R. A, called axioms, states inhabitation between sorts and R, called rules,
controls on which sort one can quantify.

I Definition 1 (Syntax and typing of PTS). Let X be an infinite set of variables and S be
the set of sorts.

t, u ::= s | x | (x : t)→ u | λxt.u | t u with s ∈ S and x ∈ X

The typing rules include 5 introduction rules related to the syntax, and 2 structural rules.

(var)
Γ ` A : s

Γ, x : A ` x : A x /∈ dom(Γ)

(ax) ` s1 : s2
(s1, s2) ∈ A (prod)

Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (x : A)→ B : s3
(s1, s2, s3) ∈ R

(app)
Γ ` t : (x : A)→ B Γ ` u : A

Γ ` t u : B [u/x] (abs)
Γ ` (x : A)→ B : s Γ, x : A ` t : B

Γ ` λxA.t : (x : A)→ B

(conv)
Γ ` t : A Γ ` B : s

Γ ` t : B A!∗
β B (weak)

Γ ` A : s Γ ` t : B
Γ, x : A ` t : B x /∈ dom(Γ)

I Definition 2 (Functional Pure Type System). A PTS is called functional if axioms and
rules are functional relations, respectively from S and S × S to S.

One can be even more restrictive on the class of PTS’s considered, by defining a special
case of functional PTS, the full PTS.
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I Definition 3 (Full Pure Type System). A PTS is called full if axioms and rules are total
functions, respectively from S and S × S to S.

I Example 4 (P∞ and C∞). The predicative and impredicative infinite hierarchies, are two
full PTS: P∞ is S = {∗i| i ∈ N} ;A = {(∗i, ∗i+1)} ;R = { (∗i, ∗j , ∗k)| k = max(i, j)} whereas
C∞ is S = {∗i| i ∈ N} ;A = {(∗i, ∗i+1)} ;R = { (∗i, ∗j , ∗k)| j > 1 and k = max(i, j)} ∪
{(∗i, ∗0, ∗0)}.

I Definition 5 (Embedding of PTS). Given P1 = (S1;A1;R1) and P2 = (S2;A2;R2) two
PTS, f : S1 → S2 is an embedding of P1 in P2 if for all (s, s′) ∈ A1, we have (f(s), f(s′)) ∈ A2
and for all (s, s′, s′′) ∈ R1, we have (f(s), f(s′), f(s′′)) ∈ R2.

f is extended to terms of P1, by:
f(x) = x, if x ∈ X ; f(λxA.t) = λxf(A).f(t);
f(t u) = f(t) f(u); f((x : A)→ B) = (x : f(A))→ f(B).

I Proposition 6 (Soundness of the Embedding). If f is an embedding from a PTS P1 to P2,
if Γ `P1 t : A, then f(Γ) `P2 f(t) : f(A).

Proof. By induction on the proof tree. Since f preserves A and R, the (ax) and (prod) cases
are satisfied. All the other cases are direct, since f does not act on the shape of terms. J

The Edimburgh Logical Framework [13] (LF), denoted λP in Barendregt’s λ-cube is
the minimal PTS including dependent types. It has two sorts S = {?,�}, with the axioms
A = {(?,�)} and the rules R = {(?, ?, ?), (?,�,�)}. It is well-known to be “a framework
for defining logics”, since it allows to encode most of the proof systems. One can note, LF is
not a Full PTS, since � is the left-hand side of no axioms.

The logic behind the Logical Framework Dedukti is the λΠ-calculus modulo rewriting
[2, 6], an extension of the Edimburg Logical Framework with user-defined rewrite rules
used not only to define functions, but also types, allowing for shallow embedding of various
type systems. Indeed, even if one can encode many logics in LF, those encodings are deep,
meaning that applications, λ-abstractions and variables of the encoded system are not
translated directly by their equivalent in LF, but by using explicit symbols App, Lam and Var.
Using rewriting, the introduction of those extra symbols can be avoided, allowing for more
reasonable size translations.

I Definition 7 (Signature in λΠ-modulo rewriting). A signature in λΠ-modulo rewriting is
(Σ,Θ,R) where Σ is a set of symbols, disjoint of X , Θ is a function from Σ to terms and R
is a set of rewriting rules, i.e. a set of pair of terms of the form f ~l ↪→ r, with f ∈ Σ and all
li’s are Miller’s pattern [16].

We say that t rewrites to u, denoted t  u if there is a rule f ~l ↪→ r, a substitution σ
and a “term with a hole” C[], such that t = C[(f ~l)σ] and u = C[rσ].  is the smallest
relation containing ↪→ and stable by substitution and context. We denote by ∗ the reflexive
transitive closure of and by!∗ the convertibility relation, which is the reflexive symmetric
and transitive closure of  .

I Definition 8 (Typing rules of λΠ-modulo rewriting). They are the one of LF (those of Def.
1, instantiated with S = {?,�}, A = {(?,�)} and R = {(?, ?, ?), (?,�,�)}.), but with a rule
to introduce symbols of Σ and enrichment of the conversion, to include both β-reduction and
the user-defined rewriting rules.

(sig)
Γ ` Θ(f) : s f ∈ Σ

Γ ` f : Θ(f) (conv)
Γ ` t : A Γ ` B : s

Γ ` t : B A!∗
β∪R B

FSCD 2020
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In 2007, Cousineau and Dowek [8] proposed an encoding of any functional PTS in
Dedukti. Their encoding contained two symbols for each sort, and one symbol for each
axiom or rule. However, having an infinite number of symbols and rules is not well-suited
for implementations. Hence, to encode Pure Type Systems with an infinite number of sorts,
one prefers to have a type Sort for sorts and only one symbol for products [1]. For full Pure
Type Systems, this extension is quite straightforward. The general encoding of full PTS is:

First the PTS specificification: a type of sorts and two functions for A and R.

constant Sort : TYPE.
symbol axiom : Sort ⇒ Sort. symbol rule : Sort ⇒ Sort ⇒ Sort.

For each sort s, a type Univ s containing the codes of its elements. Indeed, since the λΠ-
calculus, does not allow to quantify over types, one needs to declare the type of the logic we
are encoding, not directly as a type, but as a code, which can be decoded to a type using
rewriting rules.

constant Univ : (s : Sort) ⇒ TYPE.

Then a symbol to decode the elements of Univ s as type of λΠ-modulo rewriting.

symbol Term : (s : Sort) ⇒ Univ s ⇒ TYPE.

The encoding of sorts and the rewrite rule to decode it. (Simulates the rule (ax) of a PTS).

constant code : (s : Sort) ⇒ Univ (axiom s).
Term _ (code s) −→ Univ s.

The encoding of products and its decoding rewrite rule. (Simulates the rule (prod) of a PTS).

constant prod : (s1 : Sort) ⇒ (s2 : Sort) ⇒
(A : Univ s1) ⇒ (Term s1 A ⇒ Univ s2) ⇒ Univ (rule s1 s2).

Term _ (prod a b A B) −→ (x : Term a A) ⇒ Term b (B x).

Then the peculiarity of each PTS is reflected in the encoding of the elements of S as
terms of Sort, and in the implementation of axiom and rule to encode A and R respectively.

3 Universe Polymorphism and its Encoding

It is quite common to enrich PTS with Universe Polymorphism [14], which consists in
allowing the user to quantify over universe levels, allowing to declare simultaneously a symbol
for several sorts. For instance, if the sorts are { Seti| i ∈ N}, then one want to declare List
in ∀`, (A : Set`)→ Set`. Indeed, just like polymorphism was used to avoid declaring a type
of lists for each type of elements, one want to avoid one declaration of a new type of lists for
each universe level.

We present here a definition of universe polymorphism inspired by the one given by Sozeau
and Tabareau [19] for the proof assistant Coq. In this setting, the context contains three
lists: a list Σ called signature, a list Θ of level variables, and a list Γ called local context.
Both Σ and Γ contain pairs of a variable name and a type, but the variables in Γ can contain
free level variables (those occuring in Θ), whereas all the level variables are bound by a
prenex quantifier ∀ in the signature Σ. Unlike [19], we do not need to store constraints
between universe levels, since those constraints are related to cumulativity, a feature we are
not trying to encode here.
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I Definition 9 (Uniform Universe Polymorphic Full PTS). We consider a set L of levels and a
finite set H of sort constructors. Then the sorts are {s`}s∈H,`∈L.

In addition to functionality and totality of A and R, we assume a uniformity in the
hierarchy. Meaning that for all s ∈ H, there is a s′ ∈ H, such that for all ` ∈ L, there is a
`′ ∈ L, such that (s`, s′`′) ∈ A and for all s(1), s(2) ∈ H, there is a s(3) ∈ H, such that for all
`1, `2,∈ L, there is `3 ∈ L such that (s(1)

`1
, s

(2)
`2
, s

(3)
`3

) ∈ R.
We denote by Ā the function

{
(s, s′) ∈ H2

∣∣ ∃`, `′, (s`, s′`′) ∈ A
}
and for all s by As the

function
{

(`, `′) ∈ L2
∣∣∃s′, (s`, s′`′) ∈ A

}
.

Analogously R̄ is the function
{

(s(1), s(2), s′) ∈ H3
∣∣∣∃`1, `2, `′, (s(1)

`1
, s

(2)
`2
, s′`′) ∈ R

}
and

for all (s(1), s(2)), Rs(1),s(2) is the function
{

(`1, `2, `′) ∈ L3
∣∣∣∃s′, (s(1)

`1
, s

(2)
`2
, s′`′) ∈ R

}
.

The typing rules are:

(lvl) Θ ` ` isLvl ` ∈ L (ax)
Θ ` γ isLvl

[]; Θ; [] ` sγ : s′As(γ)
(s, s′) ∈ Ā

(Lvar) Θ ` i isLvl i ∈ Θ (abs)
Σ; Θ,Γ ` (x : A)→ B : sγ Σ; Θ; Γ, x : A ` t : B

Σ; Θ; Γ ` λ(x : A).t : (x : A)→ B

(LA)
Θ ` ` isLvl

Θ ` As(`) isLvl (app)
Σ; Θ; Γ ` t : (x : A)→ B Σ; Θ; Γ ` u : A

Θ; Γ ` t u : B [u/x]

(LR)
Θ ` `1 isLvl Θ ` `2 isLvl

Θ ` Rss′ (`1, `2) isLvl (conv)
Σ; Θ; Γ ` t : A Σ; Θ; Γ ` B : sγ

Σ; Θ; Γ ` t : B A!∗
β B

(var)
Σ; Θ; Γ ` A : sγ

Σ; Θ; Γ, x : A ` x : A x /∈ Σ,Γ (sig)
Σ; Θ; [] ` A : sγ

Σ, x : ∀Θ.A; Θ′; [] ` x : ∀Θ.A x /∈ Σ,Γ

(inst)
Σ; Θ; Γ ` t : ∀[i1, . . . , in], A Θ ` γ1 isLvl . . . Θ ` γn isLvl

Σ; Θ; Γ ` t[γ1, . . . , γn] : A
[
γk/ik

]
k

(prod)
Σ; Θ; Γ ` A : sγ Σ; Θ; Γ, x : A ` B : s′γ′

Σ; Θ; Γ ` (x : A)→ B : s′′Rs,s′ (γ,γ′)
(s, s′, s′′) ∈ R̄

(ctx-weak)
Σ; Θ; Γ ` A : sγ Σ; Θ; Γ ` t : B

Σ; Θ; Γ, x : A ` t : B x /∈ Σ,Γ

(sig-weak)
Σ; Θ; [] ` A : sγ Σ; Θ′; [] ` t : B

Σ, x : ∀Θ.A; Θ′; Γ ` t : B x /∈ Σ,Γ

In all those typing rules, s, s′ ∈ H and i, x ∈ X . Furthermore, we allowed ourselves to simply
write x /∈ Σ,Γ, rather than “for all A, x : A is not in Σ,Γ”.

One typical case of use, is to have only one hierarchy: H = {Set} and to use natural
numbers for levels: L = N. But we do not want to restrict ourselves to have only one
hierarchy, since some proof assistants feature several. For instance, in Agda and Coq, there
are 2, called Set and Prop, and Type and SProp respectively.

The two rules modifying the signature Σ, allows to completely change the set Θ of names
of local variables. Changing this set during the proof is not necessary, however, without this
renewal of Θ, all the symbols in the signature would have been quantified over the same set
Θ, no matter which variables occur really in it.

The universe polymorphism we are interested in is purely prenex. Furthermore, universally
quantified types are not typed themselves and are only inhabited by variables. This form
of universe polymorphism only provides ease of use, but it does not allow to prove more,
meaning that it does not compromise the consistency of the logic.
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To prove this, one can construct a new PTS (SΘ,AΘ,RΘ) simply by adding a brand
new sort for every expression containing a level variable (such expressions are in L+

Θ). Then
embedding this newly-constructed PTS in the original one is defined just by interpreting
level variables. Then using this interpretation of the variables, one can mimic the proofs
done using universe polymorphism in the original PTS.

I Proposition 10 (Conservativity of the universe polymorphism). Let P = (L,H,A,R) be a
uniform universe polymorphic full PTS and Θ be a subset of X .

Let L+
Θ be the smallest subset such that:

L+
Θ = Θ ∪

{
As(l)

∣∣ s ∈ H, l ∈ L+
Θ
}
∪
{
Rss′(l1, l2)

∣∣ s, s′ ∈ H, (l1, l2) ∈ (L ∪ L+)2 \ L2} .
Let X+ = X ∪

{
y[l1, . . . , ln]

∣∣ y ∈ X , n ∈ N, (l1, . . . , ln) ∈ (L ∪ L+
X )n

}
and PΘ be the PTS:

SΘ =
{
sl
∣∣ s ∈ H, l ∈ L ∪ L+

Θ
}

; AΘ = A ∪
{ (

sl, s
′
As(l))

)∣∣∣ (s, s′) ∈ Ā, l ∈ L+
Θ

}
RΘ = R∪

{ (
sl1 , s

′
l2 , s

′′
Rss′ (l1,l2))

)∣∣∣ (s, s′, s′′) ∈ R̄, (l1, l2) ∈ (L ∪ L+)2 \ L2
}

a. There is an embedding from PΘ to the underlying PTS of P .
b. If Σ; Θ; Γ ` t : A in P and A is not a universal quantification, then there is a

Σ̄ ⊂
{
x[l1, . . . , ln] : A′

∣∣∣x : ∀[y1, . . . , yn].A ∈ Σ, A′ = A
[
li/yi

]
i=1...n

and all li ∈ L ∪ L+
Θ

}
such that Σ̄,Γ `PΘ t : A using the enriched set of variables X+.

Proof sketch. a. The embedding consists in just chosing a level for each variable in Θ.
b. Since A is not a universal quantification, in the proof of Σ; Θ; Γ ` t : A, all the (sig) are

followed directly by an arbitrary number of weakenings and a (inst). The weakenings
can be anticipated and to create a proof in PΘ, the (sig) and (inst) are compressed in a
single introduction of a variable of Σ̄. J

In a PTS, if Γ ` t : A, then there is a sort s such that A = s or Γ ` A : s. In a full PTS,
A is a total function, hence, all sorts inhabit a sort, allowing us to refer to s as the sort
of a A. However, in the presentation of universe polymorphism of Def. 9, this property is
lost because universally quantified types have no type. To overcome this issue, we assign
artificially a type to those quantified types, using a brand new sort Sortω, which is not
typable, is the type of no sort and over which one cannot quantify. Its only purpose is to
make “the sort of A” well-defined whenever A is inhabited. It must be noted that Sort is not
in H and ω is not a level.

To encode Universe Polymorphic Full PTS, one introduce a symbol sortOmega and a
quantification symbol ∀L which takes as first argument the sort in which the term will live
once instanciated. The definition of the decoding function Term is enriched with a new rule,
specifying its behaviour when applied to a ∀L.

I Definition 11 (Encoding).

constant sortOmega : Sort.
constant ∀L : (f:(L⇒Sort )) ⇒ ((l:L) ⇒ Univ (f l)) ⇒ Univ sortOmega .
Term _ (∀L f t) −→ (l : L) ⇒ Term (f l) (t l).

For instance, the encoding of ∀`,Set` is ∀L (λ l, axiom (set l)) (λ l, code (set l)),
if set is a sort constructor in the encoding. And its decoding (when applying Term sortOmega)
is, as expected, (l:L) ⇒ Univ (set l).
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I Example 12. Consider the system H = {s, σ}, A =
{

(Ai, saxA(i))
∣∣A ∈ H} and R ={

(Ai, Bj , Bru(i,j))
∣∣A,B ∈ H}, with axs, axσ and ru three functions remaining abstract here.

ru could be indexed by two sorts, for ease of readibility, we have chosen not present such a
general case.

(; one symbol for each sort constructor ;)
constant s : L ⇒ Sort. constant σ : L ⇒ Sort.
(; Function axiom ;)
symbol axiom : Sort ⇒ Sort.
symbol ax_s : L ⇒ L. symbol ax_σ : L ⇒ L.
axiom (s i) −→ s (ax_s i). axiom (σ i) −→ s (ax_σ i).
(; Function rule ;)
symbol rule : Sort ⇒ Sort ⇒ Sort. symbol ru : L ⇒ L ⇒ L.
rule (s i) (s j) −→ s (ru i j). rule (s i) (σ j) −→ σ (ru i j).
rule (σ i) (s j) −→ s (ru i j). rule (σ i) (σ j) −→ σ (ru i j).

I Definition 13 (Translation). We translate well-typed terms in a Universe Polymorphic Full
Pure Type System by: ‖x‖ = x; ‖s`‖ = code |s`|S; ‖t u‖ = ‖t‖ ‖u‖;∥∥λxA.t∥∥ = λ(x : Term |sA|S ‖A‖).‖t‖;
‖(x : A)→ B‖ = prod |sA|S |sB |S ‖A‖ (λx : Term |s1|S ‖A‖.‖B‖);
‖∀[`1, . . . , `n], A‖ = ∀L (λ`1 : L. sortOmega) (λ`1 . . . ∀L (λ`n : L.|sA|S) (λ`n : L.‖A‖). . . );
‖A[γ1, . . . , γn]‖ = ‖A‖ |γ1|L . . . |γn|L.

The translation of sorts is |Sortω|S = sortOmega, |sγ |S = s |γ|L.
And the translation of levels is |i|L = i if i ∈ X ;
|As(`)|L = ax_s |`|L and |Rss′(`1, `2)|L = ru_ss’ |`1|L |`2|L.

Wherever they are used, sA and sB are respectively the sorts of A and B.

It can be noted that the translation |`|L for ` ∈ L is not given, since in general the number
of level is infinite, hence, we do not want to introduce one new symbol per level. Furthermore,
with universe polymorphism, universe levels are open terms, hence, convertibility between
universe levels is now an issue. Fortunately, it is the last one, since once this issue is overcome,
the encoding has one of the expected properties: we type check at least as much terms as in
the original system.

To state this, we start with two useful lemmas:

I Lemma 14 (Substitution and conversion).
a. If x is a free variable in t such that t and t [u/x] are well-typed, ‖t [u/x]‖ = ‖t‖

[
‖u‖/x

]
;

b. If ` is a level variable in t such that t and t [u/`] are well-typed, ‖t [u/x]‖ = ‖t‖
[
|u|L/x

]
;

c. If t β u, then ‖t‖ β ‖u‖.

Proof. a and b are proved by induction on the the term t. c is because a β-redex is translated
as a β-redex. J

The proof of this property is only sketched, since Section 4 will contain detailled proofs
on the conversion specifically.

I Lemma 15 (Shape-preservation of type).
a. If s is a sort, Term |A(s)|S ‖s‖ ∗ Univ |s|S,
b. If (x :A)→ B is of sort s, Term |s|S ‖(x :A)→ B‖ ∗ (x :Term |sA|S ‖A‖)⇒Term |sB |S ‖B‖;
c. If `1 < · · · < `n, Term sortOmega ‖∀ {`i}i , A‖ ∗ (`1 : L)⇒ . . .⇒(`n : L)⇒‖A‖.

Proof. The three rules on Term are crafted to ensure those properties. J
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To state properly the Correctness Theorem, one first has to define the translation of
contexts:

I Definition 16 (Context Translation). If Σ = x1 : T1, . . . , xl : Tl, Θ = i1, . . . , im and
Γ = y1 : A1, . . . , yn : An, then the translation is ‖Σ; Θ; Γ‖ = x1 : Term sortOmega ‖T1‖ , . . . ,
xl : Term sortOmega ‖Tl‖ , i1 : L, . . . , im : L, y1 : Term |sA1 |S ‖A1‖ , . . . , yn : Term |sAn

|S ‖An‖.

I Theorem 17 (Correctness). Given a correct criterion for equality of levels (i.e. if two levels
`1 and `2 are equals, their translations |`i|L are convertible), for a Universe Polymorphic
Full Pure Type System P , if Σ; Θ; Γ ` t : A, then ‖Σ; Θ; Γ‖ `λΠ/P ‖t‖ : Term |s|S ‖A‖, where
s is the sort of A.

Proof. By induction on the derivation. We assume that if Θ ` γ isLvl, then ‖[]; Θ; []‖ `λΠ/P
|γ|L : L, a property which can be proved by induction on the derivation, with the assumption
that for all ` ∈ L, `λΠ/P |`|L : L. We then consider the 10 remaining cases:
(var) By induction hypothesis, ‖Σ; Θ; Γ‖ `λΠ/P ‖A‖ :Univ |sγ |S . Hence ‖Σ; Θ; Γ‖ `λΠ/P Term
|sγ |S ‖A‖: TYPE, so one can introduce a variable of this type.

(ax) The translation of sγ is code (s |γ|L) which lives in Univ (s’ (ax_s |γ|L)), which is the
reduct of the translation as type of s′As(γ).

(abs) By induction hypothesis, ‖Σ; Θ; Γ‖,x : Term |s|S ‖A‖ `λΠ/P ‖t‖ : Term |s′|S ‖B‖,
hence, one has thatλ(x : Term |s|S ‖A‖).t inhabits (x : Term |s|S ‖A‖)→Term |s′|S ‖B‖,
which is the reduct of the translation as type of (x : A) → B. The other induction
hypothesis ‖Σ; Θ; Γ‖ `λΠ/P ‖(x : A)→ B‖ : Univ |sγ |S ensures us that Term |s|S ‖A‖
lives in TYPE.

(app) By the induction hypothesis and the Lem. 15, one can apply the translation of t to
the translation of u. The result lives in the translation of B [u/x] thanks to Lem. 14.

(conv) This is a direct consequence of Lem. 14 and the induction hypotheses.
(sig) By induction hypothesis, ‖Σ; Θ; []‖ `λΠ/P ‖A‖ : Univ |sγ |S . Hence, one can use the

(prod) rule of λΠ-modulo rewriting to move all the i : L from the context to the term.
By Lem. 15, the product obtained is convertible with ‖∀Θ.A‖, hence one can introduce a
variable of this type. One must then use the weakening, to Re-invent the variables of
type L corresponding to the Θ′.

(inst) Lem. 15 tells us that, after conversion, the induction hypothesis is ‖Σ; Θ; Γ‖ ` ‖A‖ :
(`1 : L)→ · · · → (`n : L)→ ‖X‖, hence, we can apply the γi’s without type issues.

(prod) By induction hypothesis, we have ‖Σ; Θ; Γ‖ `λΠ/P ‖A‖ : Univ ‖sγ‖ and also
‖Σ; Θ; Γ, x : A‖ `λΠ/P ‖B‖ : Univ

∥∥s′γ′

∥∥, so ‖Σ; Θ; Γ‖ , x : Term |sγ |S ‖A‖ `λΠ/P ‖B‖ :
Univ

∥∥s′γ′

∥∥ and we can conclude by introducing the lambda and applying prod.
(ctx-weak) As before, we have ‖Σ; Θ; Γ‖ `λΠ/P ‖A‖ : Univ ‖sγ‖, so ‖Σ; Θ; Γ‖ `λΠ/P Term
|sγ |S ‖A‖: TYPE, so one can weaken with a variable of this type.

(∀weak) Like for the (sig) rule, one can empty the context of the variables of type L by
applying the rule (prod) of λΠ-modulo rewriting. Then, one can weaken with a variable
of this type and variables of type L to translate the Θ′. J

Now, we will more specifically focus on a specific hierarchy of levels, where L = N and
all the As are the successor function and all Rss′ are the maximum function. This is the
predicative hierarchy of P∞ (Expl. 4), used in Agda for instance.

The grammar of universe level we are interested in is: t, u∈L ::=x ∈ X | 0 | s t | max t u:

constant L : TYPE. symbol 0 : L.
symbol s : L ⇒ L. symbol max : L ⇒ L ⇒ L.
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The question which arises in the translation is to have a convergent rewrite system such
that for all t and u in L:

t↓ = u↓ if and only if ∀σ : X → N, JtKσ = JuKσ

where J_K_ : L → (X → N)→ N is the obvious interpretation in N:

J0Kσ = 0N JxKσ = σ(x), if x ∈ X Js tKσ = JtKσ +N 1N Jmax t uKσ = max N(JtKσ, JuKσ)

Since max is associative and commutative (AC), we will propose an encoding having a
weak version of this property: t↓ ≡AC u↓ if and only if ∀σ : X → N, JtKσ = JuKσ.

Since Js (max t uK = Jmax (s t) (su)K, one can consider having a Max acting on a set of
terms, which do not contain max.

Furthermore, we have for all n the equality Jmax (sn x)xK = Jsn xK. To avoid declaring this
rule infinitely often (once for every n), we add addition to our encoding. However, since this
addition encodes iteration of the application of s, it is not an addition between two levels, but
one between a ground natural number and a level. Furthermore, Jmax (sn x) (sm 0)K = Jsn xK,
if m < n. Hence, the symbol Max will also collect the value of the smallest possible ground
natural that the result can be.

Hence, in our encoding, the normal forms are the Max i {jk + xk}k where:
(1) i, j1, . . . are ground naturals, (2) x1, . . . are distinct variables, (3) for all k, i > jk.
A separate type N, containing only ground natural numbers, is declared, to avoid confusion

with levels.

constant N : TYPE. constant 0N : N. constant sN : N ⇒ N.
definition 1N := sN 0N.
symbol maxN : N ⇒ N ⇒ N. maxN 0N y −→ y.
maxN x 0N −→ x. maxN (sN x) (sN y) −→ sN (maxN x y).
infix +N : N ⇒ N ⇒ N.
0N +N y −→ y. (sN x) y −→ sN (x +N y).

Sets can be empty or singleton or union of sets. This union operator is an associative and
commutative symbol. Furthermore, since singletons are of the form {i+ x}, the constructor
of singletons is denoted ⊕.

symbol ∅: LSet. infix ⊕: N⇒L⇒LSet. infix ac ∪: LSet⇒LSet⇒LSet.
x ∪ ∅ −→ x.

Since constraint (1) is guaranteed by typing, we still have to implement the two constraints
(2) and (3) presented in the description of the normal form:

The only non-left-linear rule of the encoding eliminates redundancies, ensuring that all
variables in the normal forms are distinct, in order to satisfy the invariant (2).

(i ⊕ l) ∪ (j ⊕ l) −→ (maxN i j) ⊕ l.

Intuitively, to flatten the entanglement of max and plus, we would like to have a rule
stating that a+ max(b, c) = max(a+ b, a+ c).
However, to fulfill constraint (3), we added the invariant that the first argument of Max
is larger than all the first arguments of the ⊕ occuring directly under it. Hence, we
do not declare the expected computation rule of ⊕, but enforce this computation to be
performed under a Max.
Furthermore, for typing distinction between L and LSet, we introduce an auxiliary function
mapping (i ⊕ _) to all the elements of a set.
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symbol mapPlus : N ⇒ LSet ⇒ LSet.
mapPlus i ∅ −→ ∅. mapPlus i (j ⊕ l) −→ (i +N j) ⊕ l.
mapPlus i (l1 ∪ l2) −→ ( mapPlus i l1) ∪ ( mapPlus i l2).
symbol Max : N ⇒ LSet ⇒ L Max 0N (0N ⊕ x) −→ x.
Max i (j ⊕ Max k l) −→ Max (maxN i (j +N k)) ( mapPlus j l).
Max i ((j ⊕ Max k l) ∪ tl) −→

Max (maxN i (j +N k)) (( mapPlus j l) ∪ tl).

And finally we give rewrite rules for the symbols of the syntax:

0 −→ Max 0N ∅. s x −→ Max 1N (1N ⊕ x).
max x y −→ Max 0N ((0N ⊕ x) ∪ (0N ⊕ y)).

This encoding is not confluent, as the following example illustrates:

Max i (j ⊕ (Max k (j2 ⊕ (Max k2 l))))
 o Max (maxN i (j +N k)) ( mapPlus j (j2 ⊕ (Max k2 l)))
 Max (maxN i (j +N k)) ((j +N j2) ⊕ (Max k2 l))
 Max (maxN (maxN i (j +N k)) (j +N j2 +N k2)) ( mapPlus (j +N j2) l)
 i Max i (j ⊕ (Max (maxN k (j2 +N k2)) ( mapPlus j2 l)))
 Max (maxN i (j +N (maxN k (j2 +N k2 )))) ( mapPlus j ( mapPlus j2 l))

But this is not an issue, since we are only interested in reducts of elements of the syntax,
meaning that all the variables are of type L.

I Proposition 18. The absence of variable of type N or LvlSet ensures the uniqueness of
normal form (modulo AC) property.

Proof. Since there are no variables of type N and LSet, the function maxN, +N and mapPlus
are fully defined and cannot occur in the normal forms.

Hence, normal forms contain only 0N, sN, Max, ∅, ⊕ and ∪. Among it, the only constructor
of a L is Max, hence every level is either a variable or headed by Max.

If it contains a Max, there is one at the head. Hence the terms are of the form Max n s
with n a closed natural and s a LSet. If there are more than one Max, it means that the LSet
contains a level which is not a variable. This one, is headed by Max, so one of the rewrite
rule regarding the interaction between Max and ⊕ can be applied.

Hence all normal forms are either a variable or of the form Max n s, with n closed natural
and s a LSet where all levels are variable. The non-linear rule ensures us that the variables
are all distinct.

One can check that the invariant that every natural which is the first argument of a ⊕ is
smaller or equal to the first argument of the Max directly above the ⊕ is preserved by every
rule and verified by the reducts of the syntax.

So, we can conclude that the normal forms have the shape announced.
To check that a term cannot have two distinct normal forms, the definition of the

interpretation is extended to the symbols we introduced and one can verify that all the rules
preserve the interpretation and that all the terms of the shape we decribed have a different
interpretation. J

4 Eta-conversion

Many proof assistants implement, among other conversion rules, the η rule, which state that
if f is a function, f ≡η λx.f x.
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At first sight, this conversion might look quite harmless, and one can hope to just add
the corresponding rewrite rule. However, this conversion is an important issue for translation
of systems in Dedukti. Indeed, the contraction rule cannot be stated, since λx.f x is not a
Miller pattern: It requires to match on the fact that f x is an application, which would be
“meta-matching” and is not in the definition of λΠ-modulo rewriting. Furthermore, we could
replace it by λx.f [x], but f is not a valid right-hand side anymore, since it is of arity one.
On the other hand, to preserve typing, the expansion rule has to match on the type of a
variable, and is not syntax-directed anymore.

Another natural solution could be to define λΠ-modulo rewriting as a logical framework
with η hard-coded in the conversion (just like β is). But this is a path logical frameworks
want to avoid. Indeed, if η is hard-coded, it is impossible to have a shallow encoding of the
λ-calculus without η-conversion.

One could expect that η-expanding every term during the translation phase, could allow
us to completely ignore η-conversion in the λΠ-calculus modulo rewriting. Indeed, with
dependent types it might happen than an η-long term has a non-η-long type. A situation
that often breaks the type preservation of the translation.

I Example 19. To illustrate this, we start by defining a type, whose number of arrows
depends on a natural number, with a constructor for this type.
symbol D : (x : N) ⇒ TYPE. constant d : (x : N) ⇒ D x.
D 0 −→ N. D (s x) −→ N ⇒ D x.

We then define a new type depending on the first one and its constructor.
symbol E : (x : N) ⇒ D x ⇒ TYPE. symbol e : (x : N) ⇒ E x (d x).

Now, the term e 1 is η-long and has type E 1 (d 1), but not E 1 (λ x, d 1 x) which is
the η-long form of the type.

To overcome this issue, we propose to postpone η-expansion, until the type is fully
instantiated. For this, we introduce in the translation a symbol ηE, which purpose is to
tag with their types the subterms which may become η-expandable. Then some rewrite
rules pattern match on this type annotation to decide when and how the expansion can be
performed.

I Definition 20 (Eta-expansion rewrite rules). ηE annotates terms with their types, to do so,
it takes as arguments a sort, a code of type in this sort and the term to annotate. The rules
state that η-expansion is the identity for inhabitant of sorts (ηS), and genesrates λ’s for
inhabitants of products (ηP ). Furthermore, a rule state that η-expansion is an idempotent
operation (ηI).
symbol ηE : (s : Sort) ⇒ (A : Univ s) ⇒ Term s A ⇒ Term s A.
"ηS" ηE _ (code _) t −→ t.
"ηP" ηE _ (prod a b A B) t −→

λ (x : Term a A), ηE b (B (ηE a A x)) (t (ηE a A x)).
"ηI" ηE _ _ (ηE a A t) −→ ηE a A t.

To prove that adding those annotations in the encoding enriches enough the conversion
to simulate η-equality, we will also add those annotations in the system we are translating,
just like what is done in [12, 11].

For sake of readibility, we will study in this section, terms typed in a full PTS embeddable
in C∞, like P∞ and C∞ defined in Expl. 4, in order to directly reuse the induction principle
defined in [4].
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Performing η-expansion can be required for variables or if an application instantiated a
type, allowing it to reduce to a product. Hence, we will add those tags on the variable and
application rules. Hence, one could imagine having the rules:

(var’)
Γ ` A : si

Γ, x : A ` xA : A x /∈ dom(Γ) (app’)
Γ ` t : (x : A)→ B Γ ` u : A

Γ ` (t u)B[u/x] : B [u/x]

But those rules, do not have the property that if a term is well-type, its subterms are
well-typed with a smaller tree, because of the substitution performed on B. Fortunately,
the induction principle defined by Barthe, Hatcliff and Sørensen [4] ensures us that, if we
annotate the applications with normal form, this property is verified, leading to:

(app”)
Γ ` t : (x : A)→ B Γ ` u : A

Γ ` (t u)B[u/x]↓ : B [u/x]

One must note here that the same tags can be added to the universe polymorph version
of the full PTS considered. Indeed, Prop. 10 ensures us that the set of typable terms are the
same in both systems. However, it would require to annotate the x[l1, . . . , ln], generating an
overweight in the proof, without introducing technicality.

I Definition 21 (Translation). Given an annotated well-typed term t in a Full Pure Type
System, with the rules (var′) and (app′′) and the conversion enriched with η, we translate t
by:

∥∥xA∥∥ = ηE |sA|S ‖A‖ x; ‖s‖ = code |s|S;
∥∥(t u)A

∥∥ = ηE |sA|S ‖A‖ (‖t‖ ‖u‖);∥∥λxA.t∥∥ = λ(x : Term |sA|S ‖A‖).‖t‖;
‖(x : A)→ B‖ = prod |sA|S |sB |S ‖A‖ (λx : Term |s1|S ‖A‖.‖B‖);
sA and sB are respectively the sorts of A and B, and |.|S is the translation of sorts.

The correctness of our translation relies on the preservation of conversion. This result
comes from the three following lemmas:

I Lemma 22 (No ηE on translation). If Γ ` t : A, then ηE |sA|S ‖A↓‖ ‖t‖!∗ ‖t‖.

I Lemma 23 (Substitution). If t is well-typed in the context Γ, x1 : A1, . . . , xn : An,Γ′ and

if Γ ` u1 : A1,. . . ,Γ ` un : An then ‖t‖
[
‖ui‖/xi

]
i∈{1,...,n}

!∗
∥∥∥∥t [ui/xi]i∈{1,...,n}

∥∥∥∥.
I Lemma 24 (Reduction). If Γ ` t : A and t u, then ‖t‖!∗ ‖u‖.

We prove those three lemmas, in this order, by a mutual induction on the combination of
the subterm ordering and reduction on a multiset of terms (this multiset is of size at most
2), called “measure” in the proofs.

Proof of Lem. 22. We use ⦃t⦄ as the measure. If the normal form of A is a sort, then one
can conclude using the rule ηS. We proceed by case on t for the remaining cases:

If t = xB , then ηE |sA|S ‖A↓‖ ‖t‖ = ηE |sA|S ‖A↓‖ (ηE |sB |S ‖B‖ x) ηI ‖t‖.
If t = (u v)B , then it is again a direct consequence of the rule ηI
If t = λxB1

1 . . . λxBn
n .u, with u not a λ-abstraction.

There is a C such that: A↓= (x1 : B1 ↓)→ · · · → (xn : Bn ↓)→ C. We denote by si the
sort of (xi : Bi ↓)→ · · · → (xn : Bn ↓)→ C. We have:
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ηE |sA|S ‖A↓‖ ‖t‖
= ηE |sA|S (prod |sB1 |S |s2|S ‖B1 ↓‖ (λ(x1 : Term |sB1 |S ‖B1 ↓‖).

prod . . . |sBn
|S |sC |S ‖Bn ↓‖ (λ(xn : Term |sBn

|S ‖Bn ↓‖). ‖C‖) . . . ))
(λ(x1 : Term |sB1 |S ‖B1‖) . . . λ(xn : Term |sBn

|S ‖Bn‖). ‖u‖)
 ηP λ(x1 : Term |s1|S ‖B1 ↓‖).ηE |s2|S ((λ . . . ‖C‖)(ηE |s1|S ‖B1 ↓‖ x1))

((λx1 . . . ‖u‖)(ηE |s1|S ‖B1 ↓‖ x1))
 2
β λ(x1 : Term |s1|S ‖B1 ↓‖).ηE |s2|S (prod |sB2 |S |s3|S ‖B2 ↓‖ . . . ‖C‖)σ (λx2 . . . ‖u‖)σ

with σ =
[
ηE |s1|S ‖B1 ↓‖ x1/x1

]
( ηP 

2
β)n−1 λ(x1 : Term |s1|S ‖B1 ↓‖) . . . λ(xn : Term |sn|S ‖Bn ↓‖).ηE |sC |S ‖C‖ τ ‖u‖ τ

with τ =
[
ηE |si|S ‖Bi ↓‖ xi/xi

]
i∈{1,...,n}

!∗
Lem.23 λ(x1 : Term |s1|S ‖B1 ↓‖) . . . λ(xn : Term |sn|S ‖Bn ↓‖).ηE |sC |S ‖Cτ

′‖ ‖uτ ′‖

with τ ′ =
[
xBi↓
i /xi

]
i∈{1,...,n}

!∗
IH

∥∥∥λxB1
1 . . . λxBn

n .u
∥∥∥ J

Proof of Lem. 23. There, the measure is ⦃t, t
[
ui/xi

]
i∈{1,...,n}

⦄. Depending on the shape
of t, we have:

If t is a sort, the substitution does not have any impact.
If t = xAi

i , ‖t‖ = ηE |sAi |S ‖Ai‖ xi, so ‖t‖
[
‖ui‖/xi

]
i

= ηE |sAi |S ‖Ai‖ ‖ui‖. By Lem.

24, ‖Ai‖!∗ ‖Ai ↓‖ and one can conclude by Lem. 22 that ‖t‖
[
‖ui‖/xi

]
i
!∗ ‖ui‖.

If t = yB with y /∈ {xi}i, then ‖t‖ = ηE |sB |S ‖B‖ y,so

‖t‖
[
‖ui‖/xi

]
i

= ηE |sB |S ‖B‖
[
‖ui‖/xi

]
i
y!∗

IH

∥∥∥∥yB[ui/xi]i

∥∥∥∥ =
∥∥∥t [ui/xi]i∥∥∥ .

If t = λyB .v, then ‖t‖ = λ(y : Term |sB |S ‖B‖). ‖v‖, so

‖t‖
[
‖ui‖/xi

]
i

= λ(y : Term |sB |S ‖B‖
[
‖ui‖/xi

]
i
). ‖v‖

[
‖ui‖/xi

]
i

!∗
IH λ(y : Term |sB |S

∥∥∥B [ui/xi]i∥∥∥).
∥∥∥v [ui/xi]i∥∥∥ =

∥∥∥(λyB .v)
[
ui/xi

]
i

∥∥∥
The other cases are straightforward, just like the previous two. J

Proof of Lem. 24. We use ⦃t⦄ as the measure. If the reduction is not at the head of t, then
the result follows by the induction hypothesis.

Otherwise, the reduction occurs at the head of the term. It can be either η or β reduction.
(η) Then t = λxA.(uxA)B and u is either a variable, an application or a λ-abstraction. In

every case ‖t‖ = λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖ (‖u‖ (ηE |sA|S ‖A‖ x)).
If u = yC , then C ↓= (x : A↓)→ B.

‖u‖ = ηE |sC |S ‖C‖ y!
∗
IH ηE |sC |S ‖(x : A↓)→ B‖ y

= ηE |sC |S (prod |sA|S |sB |S ‖A↓‖ (λ(x : Term |sA|S ‖A↓‖). ‖B‖)) y
 ηP λ(x : Term |sA|S ‖A↓‖).ηE |sB |S ‖B‖ (y (ηE |sA|S ‖A↓‖ x))

When we instantiate ‖t‖ in this case, we get:

FSCD 2020
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‖t‖ β λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖

(ηE |sB |S ‖B‖
[
ηE |sA|S ‖A‖ x/x

]
(y (ηE |sA|S ‖A↓‖ (ηE |sA|S ‖A‖ x))))

 ηI λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖ (y (ηE |sA|S ‖A↓‖ x))!∗
IH ‖u‖

If u = (v w)(x:A↓)→B .

‖u‖ = ηE |C|S ‖(x : A↓)→ B‖ (‖v‖ ‖w‖)
 ηP λ(x : Term |sA|S ‖A↓‖).ηE |sB |S ‖B‖ (‖v‖ ‖w‖ (ηE |sA|S ‖A↓‖ x))

Instantiating ‖t‖ in this case give:

‖t‖ β λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖ (ηE |sB |S ‖B‖
[
ηE |sA|S ‖A‖ x/x

]
(‖v‖ ‖w‖ (ηE |sA|S ‖A↓‖ (ηE |sA|S ‖A‖ x))))

Since v and w do not contain x free.

 ηI λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖ (‖v‖ ‖w‖ (ηE |sA|S ‖A↓‖ x))!∗
IH ‖u‖

If u = λyC .v, then C ↓= A↓, then ‖u‖ = λ(y : Term |sC |S ‖C‖). ‖v‖. Then,

‖t‖ β λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖ ‖v‖
[
(ηE |sA|S ‖A‖ x)/y

]
!∗

Lem.23 λ(x : Term |sA|S ‖A‖).ηE |sB |S ‖B‖
∥∥∥v [x/y]∥∥∥

(λy.v)x is a subterm of t.

!∗
Lem.22 λ(x : Term |sA|S ‖A‖).

∥∥∥v [x/y]∥∥∥ =α ‖u‖

(β) Then t = ((λxA.v)w)B and u = v [w/x]. We have :

‖t‖ = ηE |sB |S ‖B‖ ((λ(x : Term |sA|S ‖A‖). ‖v‖) ‖w‖)

 β ηE |sB |S ‖B‖ ‖v‖
[
‖w‖/x

]
!∗

Lem.23 ηE |sB |S ‖B‖ ‖v [w/x]‖!∗
Lem.22 ‖v [w/x]‖

v and v [w/x] are respectively subterm and reduct of t, hence Lem. 23 applies. J

From those three lemmas, one can conclude that

I Theorem 25 (Correctness of the translation). If Γ ` t : A and t!∗ u, then ‖t‖!∗ ‖u‖.

5 Implementation

Agda [18, 17] is a dependently-typed programming languages, based on an extension of
Martin-Löf type theory, Luo’s Unifying Theory of dependent Types [15, Chapter 9], which
features both universe polymorphism and η-conversion. Dedukti [10, 2] is an implementation
of the λΠ-calculus modulo rewriting, which was recently enriched with conversion modulo
associativity and commutativity.

Developping a prototypical translator [7] from Agda to Dedukti allowed the author to
give a concrete application to the ideas presented in Sections 3 and 4.

However, Agda offers its users a logic much richer than a universe polymorphic pure type
system with η-conversion. First of all, Agda permits to declare inductive types and then to
define functions using dependent pattern-matching on the constructors of this type. This
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behaviour can easily be replicated in Dedukti, by declaring new symbols for inductive types,
constructors and functions and rewrite rules for each case of the dependent pattern-matching.
Just like sorts and products have an encoded and a decoded version, linked by the application
of the function Term, the type has two translation, one as code and one decoded, linked by a
rewrite rule enriching the definition of Term. Analogously, one rewrite rule is added to enrich
the definition of ηE.

I Example 26. The Agda declaration of the addition of natural numbers:
data Nat : Set where _+_ : Nat → Nat → Nat

zero : Nat zero + m = m
suc : (n : Nat) → Nat suc n + m = suc (n + m)

is translated in Dedukti by:
constant TYPE__Nat : TYPE. constant Nat : Univ (set 0).
Term _ Nat −→ TYPE__Nat . ηE _ Nat t −→ t.
constant Nat__zero: Term (set 0) Nat.
constant Nat__suc: Term (set 0) (prod (set 0) (set 0) Nat (λ n, Nat )).
symbol {| _+_ |} : Term (set 0) (prod (set 0) (set 0) Nat

(λ _0 , prod (set 0) (set 0) Nat (λ _1 , Nat ))).
{| _+_ |} Nat__zero m −→ m.
{| _+_ |} ( Nat__suc n) m −→ Nat__suc ({| _+_ |} n m).

We can observe, that Nat in Agda became TYPE__Nat and Nat in Dedukti, and two rules
have been added: one to state that TYPE__Nat is the decoding of Nat and the other to extend
the definition of ηE.

Each declaration of a new type consists in adding a new constructor to the type Univ s.
The new rules on ηE and Term are here to ensure that the pattern-matching on this type
remains exhaustive, in order to completely get rid of administrative encoding operators on
the normal forms of values.

One can note, that the enrichment of the functions Term and ηE are left to the will of
the author of the translation. This proves to be a good feature, since the η-conversion of
Agda does not restrict to product types, but also concerns records (η-conversion of records
is also sometimes called “surjective pairing” and means that if t lives in

∑
x:AB, then t

and (fst t, snd t) are convertible). This does not require to introduce a new symbol for this
enrichment of the conversion, but just to define adequate rules on ηE.

I Example 27. The declaration of this record:
record r : Set1 where constructor cons

field A : Set field b : A

is translated by:
constant TYPE__r : TYPE. constant r : Univ (set (s 0)).
Term _ r −→ TYPE__r .
ηE _ r y −→ r__cons (r__A y) (ηE 0 (r__A y) (r__b y)).
constant r__cons : Term (set (s 0)) (prod (set (s 0)) (set (s 0))

(code (set 0)) (λ A, prod (set 0) (set (s 0)) A (λ b, r))).
symbol r__A : Term (set (s 0))

(prod (set (s 0)) (set (s 0)) r (λ r, code (set 0))).
symbol r__b : Term (set (s 0))

(prod (set (s 0)) (set 0) r (λ r, r__A r)).
r__A ( r__cons A b) −→ A. r__b ( r__cons A b) −→ ηE 0 A b.
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The rule to define the η-expansion of an element of r states that if y is of type r, then
y ≡ {a = y.a; b = y.b}.

This translator is available at https://github.com/Deducteam/Agda2Dedukti, the dir-
ectory theory/ contains the encoding presented in Sections 3 and 4. It is able to translate
and type-check 162 files of Agda’s standard library [9].

6 Conclusion and Future Work

We presented in this article a correct encoding of universe polymorphism in λΠ-modulo
rewriting, meaning that every term typable in the original system is translated to a typable
term. We also presented a rewrite system to decide equality in the max-plus algebra, which
is a comon universe algebra.

Furthermore, we proposed an operator ηE to encode shallowly a type-directed rule, like
η-conversion, since the translation of an application really involves the application of the
translation of a term to the other one, reducing the interleaving between the computation
steps coming from the original system and the steps related to the encoding.

Finally, we applied those results to the practical case of the translation of the proof system
Agda, which offers, among others, the features we targeted, allowing us to provide Dedukti
users with more than 500 declarations of types, constructors or functions, originating from
Agda’s standard library.

We proved that translation of well-typed terms remain typable in our encoding. However,
it could be that our encoding is over-permissive and type-checks much more terms than
the original system. Hence, one could envision a conservativity theorem, stating that if the
translation of a type is inhabited, then the type is also inhabited in the original system. For
implementability purposes, we have chosen an encoding with finitely many symbols. Such a
theorem has only been proved [8, 1], for encodings of PTS with as many symbols as sorts,
axioms and rules. Extending those theorems to our setting is a short-term goal.

Regarding the implementation, making the translator more complete is naturally an
objective, however, it involves more theoretical problems, which are long run research
programs. For instance, how size types or co-inductive types can be encoded in the λΠ-
calculus modulo rewriting is not known yet.

Now that proofs have been translated to the logical framework Dedukti, they can be
analysed, and (when it is possible) exported to other proof assistants, like what was done
with proofs originating from the arithmetic library of Matita [20].
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Abstract
Cartesian difference categories are a recent generalisation of Cartesian differential categories which
introduce a notion of “infinitesimal” arrows satisfying an analogue of the Kock-Lawvere axiom,
with the axioms of a Cartesian differential category being satisfied only “up to an infinitesimal
perturbation”. In this work, we construct a simply-typed calculus in the spirit of the differential
λ-calculus equipped with syntactic “infinitesimals” and show how its models correspond to differ-
ence λ-categories, a family of Cartesian difference categories equipped with suitably well-behaved
exponentials.
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1 Introduction

A recent series of works introduced the concept of change actions and differential maps between
them [5, 4] in order to account for settings equipped with derivative-like operations. Although
the motivating example was the eminently practical field of incremental computation, these
structures appear in more abstract settings such as the calculus of finite differences and
Cartesian differential categories.

Of particular interest are Cartesian difference categories [2], a well-behaved class of change
action models [4] that are much closer to the strong axioms of a Cartesian differential category
[8] while remaining general enough for interpreting discrete calculus. A Cartesian difference
category is a left additive category equipped with an “infinitesimal extension”, an operation
that sends an arrow f to an arrow ε(f) which should be understood as f being multiplied
by an “infinitesimal” element – infinitesimal in the sense that it verifies the Kock-Lawvere
axiom from synthetic differential geometry (see [14] for an introduction to SDG).

The interest of Cartesian differential categories is in part motivated by the fact that they
provide models for the differential λ-calculus [13, 11], which extends the λ-calculus with
linear combinations of terms and an operator that differentiates arbitrary λ-abstractions.
The claim that differentiation in the differential λ-calculus corresponds to the standard,
“analytic” notion is then justified by its interpretation in (a well-behaved class of) Cartesian
differential categories [9, 16].

It is reasonable to ask, then, whether there is a similar calculus that captures the behavior
of derivatives in difference categories – especially since, as it has been shown, these subsume
differential categories. The issue is far from trivial, as many of the properties of the differential
λ-calculus crucially hinge on derivatives being linear. Through this work we provide an
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affirmative answer to this question by defining untyped and simply-typed variants for a
simple calculus which extends the differential λ-calculus with a notion of derivative more
suitable to the Cartesian difference setting.

For brevity most proofs have been omitted. Some of the most important proof sketches
and the auxiliary results involved can be found in the appendices. The full details are
available as part of the first author’s doctoral dissertation [1].

2 Cartesian Difference Categories

The theory of Cartesian difference categories is developed and discussed at length in [2, 3],
but we present here the main definitions and results which we will use throughout the paper,
referring the reader to [3] for the proofs.

I Definition 1. A Cartesian left additive category ([8, Definition 1.1.1.]) C is a Cartesian
category where every hom-set C [A,B] is endowed with the structure of a commutative monoid
(C [A,B] ,+, 0) such that 0 ◦ f = 0, (f + g) ◦ h = (f ◦ h) + (g ◦ h) and 〈f1, f2〉+ 〈g1, g2〉 =
〈f1 + g1, f2 + g2〉.

An infinitesimal extension ([2, Definition 8]) in a Cartesian left additive category C is a
choice of a monoid homomorphism ε : C [A,B]→ C [A,B] for every hom-set in C. That is,
ε(f + g) = ε(f) + ε(g) and ε(0) = 0. Furthermore, we require that ε be compatible with the
Cartesian structure, in the sense that ε(〈f, g〉) = 〈ε(f), ε(g)〉.

I Definition 2. A Cartesian difference category ([2, Definition 9]) is a Cartesian left additive
category with an infinitesimal extension ε which is equipped with a difference combinator
∂ [−] of the form:

f : A→ B

∂ [f ] : A×A→ B

satisfying the following coherence conditions (writing ∂2 [f ] for ∂ [∂ [f ]]):

[C∂.0] f ◦ (x+ ε(u)) = f ◦ x+ ε (∂ [f ] ◦ 〈x, u〉)
[C∂.1] ∂ [f + g] = ∂ [f ] + ∂ [g], ∂ [0] = 0, and ∂ [ε(f)] = ε(∂ [f ])
[C∂.2] ∂ [f ] ◦ 〈x, u+ v〉 = ∂ [f ] ◦ 〈x, u〉+ ∂ [f ] ◦ 〈x+ ε(u), v〉 and ∂ [f ] ◦ 〈x, 0〉 = 0
[C∂.3] ∂ [idA] = π2 and ∂ [π1] = π1 ◦ π2 and ∂ [π2] = π2 ◦ π2

[C∂.4] ∂ [〈f, g〉] = 〈∂ [f ] , ∂ [g]〉 and ∂ [!A] =!A×A
[C∂.5] ∂ [g ◦ f ] = ∂ [g] ◦ 〈f ◦ π1, ∂ [f ]〉
[C∂.6] ∂2 [f ] ◦ 〈〈x, u〉, 〈0, v〉〉 = ∂ [f ] ◦ 〈x+ ε(u), v〉
[C∂.7] ∂2 [f ] ◦ 〈〈x, u〉, 〈v, 0〉〉 = ∂2 [f ] ◦ 〈〈x, v〉, 〈u, 0〉〉

As noted in [2], the axioms in a Cartesian differential category (see e.g. [C∂.1–7] in [8])
correspond to the analogous axioms of the Cartesian difference operator, modulo certain
“infinitesimal” terms, i.e. terms of the form ε(f). We state here the following two properties,
whose proofs can be found in [3].

I Lemma 3. Given any map f : A→ B in a Cartesian difference category C, its derivative
∂ [f ] satisfies the following equations:

i. ∂ [f ] ◦ 〈x, ε(u)〉 = ε(∂ [f ]) ◦ 〈x, u〉
ii. ε(∂2 [f ]) ◦ 〈〈x, u〉, 〈v, 0〉〉 = ε2(∂2 [f ]) ◦ 〈〈x, u〉, 〈v, 0〉〉
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3 Difference λ-Categories

In order to give a semantics for the differential λ-calculus, it does not suffice to ask for a
Cartesian differential category equipped with exponentials – the exponential structure has
to be compatible with both the additive and the differential structure, in the sense of [9,
Definition 4.4]. For difference categories we will require an identical equation, together with
a condition requiring higher-order functions to respect the infinitesimal extension.

I Definition 4. We remind the reader that a Cartesian left additive category is Cartesian
closed left additive ([9, Definition 4.2]) whenever it is Cartesian closed and satisfies Λ(f +g) =
Λ(f) + Λ(g),Λ(0) = 0.

A Cartesian difference category C is a difference λ-category if it Cartesian closed left
additive and satisfies the following additional axioms:

[∂λ.1] ∂ [Λ(f)] = Λ (∂ [f ] ◦ 〈(π1 × id), (π2 × 0)〉)
[∂λ.2] Λ(ε(f)) = ε (Λ(f))

Equivalently, let sw denote the map 〈〈π11, π2〉, π21〉 : (A×B)×C → (A×C)×B. Then
the condition [∂λ.1] can be written in terms of sw as:

∂ [Λ(f)] := Λ (∂ [f ] ◦ (id × 〈id, 0〉) ◦ sw)

Axiom [∂λ.1] is identical to its differential analogue [9, Definition 4.4], and it follows the
same broad intuition. Given a map f : A×B → C, we usually understand the composite
∂ [f ] ◦ (idA×B × (idA × 0B)) : (A×B)×A→ C as a partial derivative of f with respect to
its first argument. Hence, just as it was with differential λ-categories, axiom [∂λ.1] states
that the derivative of a curried function is precisely the derivative of the uncurried function
with respect to its first argument.

I Example 5. Let C be a differential λ-category. Then the trivial Cartesian difference
category obtained by setting ε(f) = 0 (as in [2, Proposition 1]) is a difference λ-category.
Furthermore, the Kleisli category CT induced by its tangent bundle monad (as in [2,
Proposition 6]) is also a difference λ-category.

I Example 6. The category Ab ([2, Section 5.2]), which has Abelian groups as objects and
arbitrary functions between their carrier sets as morphisms, is a difference λ-category with
infinitesimal extension ε(f) = f and difference combinator ∂ [f ] (x, u) = f(x + u) − f(x).
Given groups G,H, the exponential G⇒ H is the set of (set-theoretic) functions from G into
H, endowed with the group structure of H lifted pointwise (that is, (f +g)(x) = f(x) +g(x)).
Evidently the exponential respects the monoidal structure and the infinitesimal extension.
We check that it also verifies axiom [∂λ.1]:

∂ [Λ(f)] (x, u)(y) = Λ(f)(x+ u)(y)− Λ(f)(x)(y)
= f(x+ u, y)− f(x, y)
= Λ(∂ [f ] ◦ (id × 〈id, 0〉) ◦ sw)(x, u)(y)

A central property of differential λ-categories is a deep correspondence between dif-
ferentiation and the evaluation map. As one would expect, the partial derivative of the
evaluation map gives one a first-class derivative operator (see, for example, [9, Lemma 4.5],
which provides an interpretation for the differential substitution operator in the differential
λ-calculus). This property still holds in difference categories, although its formulation is
somewhat more involved.
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I Lemma 7. For any C-morphisms Λ(f) : A→ (B ⇒ C), e : A→ B, the following identities
hold:

i. ∂ [ev ◦ 〈Λ(f), e〉] = ev ◦ 〈∂ [Λ(f)], e ◦ π1〉+ ∂ [f ] ◦ 〈〈π1 + ε(π2), e ◦ π1〉, 〈0, ∂ [e]〉〉
ii. ∂ [ev ◦ 〈Λ(f), e〉] = ev ◦ 〈∂ [Λ(f)], e ◦ π1 + ε(∂ [e])〉+ ∂ [f ] ◦ 〈〈π1, e ◦ π1〉, 〈0, ∂ [e]〉〉

A number of additional auxiliary results from the differential setting also hold for difference
λ-categories, possibly with the introduction of some extra “infinitesimal” terms. Some of
these will be stated in Appendix C.

4 The Difference λ-Calculus

We now set out to define λε, a calculus in the vein of the differential λ-calculus which adds
infinitesimal extensions and relaxes the linearity requirement. We proceed in a manner
similar to Vaux [17, 18] in his treatment of the algebraic λ-calculus; that is, we will first
define a set of “unrestricted” terms Λε which we will later consider up to an equivalence
relation arising from the theory of difference categories.

I Definition 8. The set Λε of unrestricted terms of the λε-calculus is given by the following
inductive definition:

Terms: s, t, e := x | λx.t | (s t) | D(s) · t | εt | s+ t | 0

assuming a countably infinite set of variables x, y, z, . . . is given. In what follows, we will
speak of terms only up to α-equivalence, and assume by convention that all bound variables
appearing in any term t ∈ Λε are different from its free variables.

Further to α-equivalence, we introduce here the notion of differential equivalence of terms.
The role of this relation is, as in [18], to enforce the elementary algebraic properties of sums
and actions. For example, we wish to treat the terms λx.(0 + ε(s+ t)) and (λx.εt) + (λx.εs)
as if they were equivalent (as it will be the case in the models). This equivalence relation
also has the role of ensuring that the axioms of a Cartesian difference category are satisfied.

I Definition 9. A binary relation ∼ ⊆ Λε × Λε is contextual whenever t ∼ t′ and s ∼ s′

implies

λx.t ∼ λx.t′ εt ∼ εt′ s t ∼ s′ t′ D(s) · t ∼ D(s′) · t′ s+ t ∼ s′ + t′

I Definition 10. Differential equivalence ∼ε ⊆ Λε × Λε is the least equivalence relation
which is contextual and contains the relation ∼1

ε in Figure 1 below.

The above conditions can be separated in a number of conceptually distinct groups
corresponding to their purpose. These are as follows:

The first block of equations states that + and 0 define a commutative monoid and that ε
is a monoid homomorphism.
The second block of equations amounts to stating that the monoid and infinitesimal
extension structure on functions is pointwise.
The third block of equations implies (and is equivalent to stating) that addition and
infinitesimal extension are “linear”, in the sense that they coincide with their own
derivatives (that is, ∂ [+] = + ◦ π2 and ∂ [ε] = ε).
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(s+ t) + e ∼1
ε s+ (t+ e)

s+ 0 ∼1
ε s

s+ t ∼1
ε t+ s

ε0 ∼1
ε 0

ε(s+ t) ∼1
ε εs+ εt

λx.0 ∼1
ε 0

λx.(s+ t) ∼1
ε (λx.s) + (λx.t)

λx.εt ∼1
ε ε(λx.t)

0 s ∼1
ε 0

(s+ t) e ∼1
ε (s e) + (t e)

(εs) t ∼1
ε ε(s t)

D(0) · e ∼1
ε 0

D(s+ t) · e ∼1
ε (D(s) · e) + (D(t) · e)

D(εt) · e ∼1
ε ε(D(t) · e)

D(s) · 0 ∼1
ε 0

D(s) · (t+ e) ∼1
ε D(s) · t+ D(s) · e+ ε(D(D(s) · t) · e)

D(s) · (εt) ∼1
ε ε(D(s) · t)

D(D(s) · t) · e ∼1
ε D(D(s) · e) · t

ε2D(D(s) · t) · e ∼1
ε εD(D(s) · t) · e

s (t+ εe) ∼1
ε (s t) + ε((D(s) · e) t)

Figure 1 Differential equivalence on unrestricted Λε-terms.

The fourth block of equations states structural properties of the derivative, such as the
derivative conditions and the commutativity of second derivatives. Similar equations are
also present in the differential λ-calculus, where they state instead that the derivative is
additive.

Most of these equations correspond directly to properties of Cartesian difference categories,
with the only exception being the requirement that D(s) · (εt) ∼ε ε(D(s) · t) and the
“duplication of infinitesimals” in εD(D(s) · t) · e = ε2D(D(s) · t) · e, which should be read
as a syntactic formulation of the equations in Lemma 3. It would be possible to give an
alternative presentation of the calculus where these equivalences are oriented and understood
as reduction rules, and thus part of the operational semantics (as in e.g. Arrighi et al.’s
treatment of the linear λ-calculus [7, 6]). While such a formulation would better reflect how
a real machine might evaluate these expressions, it would make the study of confluence and
termination harder.

I Definition 11. The set λε of well-formed terms, or simply terms, of the λε-calculus is
defined as the quotient set λε := Λε/∼ε. Whenever t is an unrestricted term, we write t to
refer to the well-formed term represented by t, that is to say, the ∼ε-equivalence class of t.

The notion of differential equivalence allows us to ensure that our calculus reflects the
laws of the underlying models, but has the unintended consequence that our λε-terms are
equivalence classes, rather than purely syntactic objects. We will proceed by defining a notion
of canonical form of a term and a canonicalization algorithm which explicitly constructs the
canonical form of any given term, thus proving that ∼ε is decidable.

I Definition 12. We define the sets Bε ⊂ B+
ε ⊂ B∗ε ⊂ C+

ε ⊂ Cε(⊂ Λε) of basic, positive,
additive, positive canonical and canonical terms according to the following grammar:

Basic terms: sb, tb, eb ∈ Bε := x | λx.tb | (sb t∗) | D(sb) · tb
Positive terms: s+, t+, e+ ∈ B+

ε := sb | sb + (t+)
Additive terms: s∗, t∗, e∗ ∈ B∗ε := 0 | s+

Positive canonical terms: S+, T+ ∈ Cε := εksb | εksb + (S+)
Canonical terms: S, T ∈ Cε := 0 | S+

We will sometimes abuse the notation and write t∗ or tb to denote well-formed terms whose
canonical form is an additive or basic term respectively.

Since every syntactic construct is additive except for application, basic terms may only
contain additive terms as the arguments to a function application. As infinitesimal extensions
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32:6 The Difference λ-Calculus

are themselves additive, we also want to disallow terms such as ε(s+ t), instead factoring
out the extension into εs+ εt. A general canonical term T ∈ Cε then has the form:

T = εk1tb1 + (εk2tb2 + (· · ·+ εkntbn) · · · )

That is to say, a canonical term is similar to a polynomial with coefficients in the set of
basic terms and a variable ε (but note that canonical terms are always written in their “fully
distributed” form, that is, we write εs+ (εt+ ε2e) rather than ε((s+ t) + εe)).

We will freely abuse notation and write
∑n
i=1 ε

kitbi to denote a general canonical term,
as this form is easier to manipulate in many cases. In particular, the canonical term 0 is
precisely the sum of zero terms. We will also write S + T to refer to the obvious canonical
term obtained by adding S and T and associating all the additions to the right.

I Definition 13. Given an unrestricted λε-term t ∈ Λε, we define its canonical form can (t)
by structural induction on t as follows:

can (0) := 0
can (x) := x

can (s+ t) := can (s) + can (t)
can (εt) := ε∗can (t), where:

ε∗T :=


T if T = εkD(D(e) · u) · v
εk+1tb if T = εktb 6= εkD(D(e) · u) · v∑n
i=1 ε

∗Ti if T =
∑n
i=1 Ti

If can (t) =
∑n
i=1 ε

kitbi then:

can (λx.t) :=
n∑
i=1

εki(λx.tbi )

If can (s) =
∑n
i=1 ε

kisb
i and can (t) = T then:

can (D(s) · t) :=
n∑
i=1

((ε∗)kireg
(
sb
i , T

)
)

where the regularization reg (s, T ) is defined by structural induction on T :

reg (s, 0) := 0

reg
(
s, εktb + T ′

)
:=
[
(ε∗)k D (s) · tb

]
+ [reg (s, T ′)] +

[
(ε∗)k+1 D∗ (reg (s, T ′)) · tb

]
and D∗ denotes the extension of D by additivity in its first argument, that is to say:

D∗
(

n∑
i=1

εkisb
i

)
· tb :=

n∑
i=1

εki
(
D
(
sb
i

)
· tb
)

Observe that, whenever S is canonical and tb is basic, the term D∗(S) · tb is also canonical.
Therefore, by induction, the regularization reg

(
sb, T

)
is indeed a canonical term, since

canonicity is preserved by ε∗,+.
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If can (s) =
∑n
i=1 ε

kisb
i and can (t) = T , then:

can (s t) :=
[

n∑
i=1

εki
(
sb
i pri(T )

)]
+
[
ε∗

(
n∑
i=1

ap(reg
(
sb
i , tan(T )

)
,pri(T ))

)]

where ap is the additive extension of application: ap
(∑n

i=1 ε
kisb

i , t
b) :=

∑n
i=1 ε

ki(sb
i t

b)
and the primal pri and tangent tan components of a canonical term T correspond
respectively to the basic terms with zero and non-zero ε coefficients:

pri (0) := 0 tan (0) := 0
pri

(
εk+1tb + T ′

)
:= pri (T ′) tan

(
εk+1tb + T ′

)
:= εktb + tan (T ′)

pri
(
ε0tb + T ′

)
:= tb + pri (T ′) tan

(
ε0tb + T ′

)
:= tan (T ′)

I Theorem 14. Every unrestricted λε-term is differentially equivalent to its canonical form
can (t). That is to say, for all t ∈ Λε we have t ∼ε can (t).

This canonicalization procedure is the result of orienting the equivalences in Definition 10.
Note, however, that while most of these equivalences have a “natural” orientation to them, two
of them are entirely symmetrical: those being commutativity of the sum and the derivative.
Barring the imposition of some arbitrary total ordering on terms which would allow us to
prefer the term x+ y over y+x (or vice versa), we settle for our canonical forms to be unique
“up to” these commutativity conditions.

I Definition 15. Permutative equivalence ∼+ ⊆ Λε × Λε is the least equivalence relation
which is contextual and satisfies the following properties:

s+ (t+ e) ∼+ (s+ t) + e

s+ t ∼+ t+ s

D(D(s) · t) · e ∼+ D(D(s) · e) · t

I Theorem 16. Given unrestricted terms s, t ∈ Λε, they are differentially equivalent if and
only if their canonical forms are permutatively equivalent. More succinctly, s ∼ε t if and
only if can (s) ∼+ can (t)

I Corollary 17. The set λε of well-formed terms corresponds precisely to the set of canonical
terms up to permutative equivalence Cε/∼+.

4.1 Substitution
As is usual, our calculus features two different kinds of application: standard function
application, represented as (s t); and differential application, represented as D(s) · t. These
two give rise to two different notions of substitution. The first is, of course, the usual capture-
avoiding substitution. The second, differential substitution, is similar to the equivalent notion
in the differential λ-calculus, as it arises from the same chain rule that is satisfied in both
Cartesian differential categories and change action models.

I Definition 18. Given terms s, t ∈ Λε and a variable x, the capture-avoiding substitution
of s for x in t (which we write as t [s/x]) is defined by induction on the structure of t:

x [s/x] := s

y [s/x] := y if x 6= y

(λy.t) [s/x] := λy.(t [s/x]) if y 6∈ FV(s)
(t e) [s/x] := (t [s/x])(e [s/x])

(D(t) · e) [s/x] := D(t [s/x]) · (e [s/x])
(εt) [s/x] := ε(t [s/x])

(t+ e) [s/x] := (t [s/x]) + (e [s/x])
0 [s/x] := 0
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I Proposition 19. Capture-avoiding substitution respects differential equivalence. That is
to say, whenever s ∼ε s′ and t ∼ε t′, it is the case that t [s/x] ∼ε t′ [s′/x].

I Definition 20. Given terms s, t ∈ Λε and a variable x which is not free in s the differential
substitution of s for x in t, which we write as ∂t

∂x (s), is defined by induction on the structure
of t:

∂x
∂x (s) := s

∂y
∂x (s) := 0 if x 6= y

∂(λy.t)
∂x (s) := λy.

(
∂t
∂x (s)

)
if y 6∈ FV(s)

∂(t e)
∂x (s) :=

[
D(t) ·

(
∂e
∂x (s)

)
e
]

+
[
∂t
∂x (s) (e [(x+ εs)/x])

]
∂(D(t)·e)

∂x (s) := D(t) ·
(
∂e
∂x (s)

)
+ D

(
∂t
∂x (s)

)
· (e [(x+ εs)/x])

+ εD(D(t) · e) ·
(
∂e
∂x (s)

)
∂(εt)
∂x (s) := ε

(
∂t
∂x (s)

)
∂(t+e)
∂x (s) :=

(
∂t
∂x (s)

)
+
(
∂e
∂x (s)

)
∂0
∂x (s) := 0

We write ∂kt
∂(x1,...,xk) (u1, . . . , uk) to denote a sequence of nested differential substitutions.

Most of the cases of differential substitution are identical to those in the differential
λ-calculus – our definition in fact coincides exactly with the original notion of differential
substitution in e.g [12], provided that one assumes the identity εt = 0 for all terms. This
reflects the fact that every Cartesian differential category is in fact a Cartesian difference
category with trivial infinitesimal extension.

All the differences in this definition stem from the failure of derivatives to be additive in
the setting of Cartesian difference categories. Consider the case for ∂D(t)·s

∂x (e), and remember
that the “essence” of a derivative in the setting of difference categories lies in [C∂.0], that is
to say, if t(x) is a term with a free variable x, we seek our notion of differential substitution
to satisfy a condition akin to Taylor’s formula:

t(x+ εy) ∼ε t(x) + ε
∂t

∂x
(y)

When the term t is a differential application, and assuming the above “Taylor’s formula”
holds for all of its subterms (which we will show later), this leads us to the following informal
argument:

D(t(x+ εy)) · (s(x+ εy)) ∼ε D
(
t(x) + ε ∂t∂x (y)

)
· (s(x+ εy))

∼ε D(t(x)) · (s(x)) + εD(t(x)) ·
(
∂s
∂x (y)

)
+ εD

(
∂t
∂x (y)

)
· (s(x+ εy))

+ε2D(D(t(x)) · (s(x))) ·
(
∂s
∂x (y)

)
From this calculation, the differential substitution for this case arises naturally as it

results from factoring out the ε and noticing that the resulting expression has precisely
the correct shape to be Taylor’s formula for the case of differential application. The case
for standard application can be derived similarly, although the involved terms are simpler.
Differential substitution verifies some useful properties, which we state below (mechanised
proofs are available as part of the author’s doctoral dissertation [1], although the details are
more cumbersome than enlightening).



M. Alvarez-Picallo and C.-H.-L. Ong 32:9

I Proposition 21. Differential substitution respects differential equivalence. That is to say,
whenever s ∼ε s′ and t ∼ε t′, it is the case that ∂t

∂x (s) ∼ε ∂t′

∂x (s′).

I Proposition 22. Whenever x is not free in t, then ∂t
∂x (u) ∼ε 0.

I Proposition 23. Whenever x is not free in u, v, then:

∂2t

∂x2 (u, v) ∼ε
∂2t

∂x2 (v, u)

As we have previously mentioned, the rationale behind our specific definition of differential
substitution is that it should satisfy some sort of “Taylor’s formula” (or rather, Kock-Lawvere
formula), in the following sense:

I Theorem 24. For any unrestricted terms s, t, e and any variable x which does not appear
free in e, we have

s [(t+ εe)/x] ∼ε s [t/x] + ε

((
∂s

∂x
(e)
)

[t/x]
)

We will often refer to the right-hand side of the above equivalence as the Taylor expansion of
the corresponding term in the left-hand side.

One consequence of this “syntactic Taylor’s formula” is that derivatives in the difference
λ-calculus can be computed by a sort of quasi-automatic-differentiation algorithm: given
an expression of the form λx.s, its derivative at point t along u can be computed by
reducing the differential application (D(λx.s) · (u)) t which, as we shall see later, reduces
(by definition) to

(
∂s
∂x (u)

)
[t/x]. Alternatively, we can simply evaluate (λx.s) (t+ ε(u)) to

compute s [t+ ε(u)/x] which, by Theorem 24 is equivalent to s [t/x] + ε
((

∂s
∂x (u)

)
[t/x]

)
. In

an appropriate setting (i.e. one where subtraction of terms is allowed and ε admits an
inverse) the derivative can then be extracted from this result by extracting the term under
the ε. This process is remarkably similar to forward-mode automatic differentiation, where
derivatives are computed by adding “perturbations” to the program input.

I Theorem 25. Differential substitution is regular, that is, for any unrestricted terms s, u, v
where x does not appear free in either u or v, we have:

∂s

∂x
(0) ∼ε 0

∂s

∂x
(u+ v) ∼ε

∂s

∂x
(u) +

(
∂s

∂x
(v)
)

[x+ εu/x]

4.2 The Operational Semantics of λε
With the substitution operations we have introduced so far, we can now proceed to give a
small-step operational semantics as a reduction system.

I Definition 26. The one-step reduction relation 1  ⊆ Λε × Λε is the least contextual
relation that contains the following reduction rules:

(λx.t) s  β t [s/x]
D(λx.t) · s  ∂ λx.

(
∂t
∂x (s)

)
1 While the one-step reduction rules for λε may seem identical to those in the differential λ-calculus
(compare [12, Section 3]), they are in fact not equivalent, as our notions of differential substitution and
term equivalence differ substantially.
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We write  + to denote the transitive closure of  , and  ∗ to denote its transitive,
reflexive closure.

The previous one-step reduction is defined as a relation from unrestricted terms to
unrestricted terms, but it is not compatible with differential equivalence. That is to say, there
may be differentially equivalent terms t ∼ε t′ such that t′ can be reduced but t cannot. For
example, consider the term (λx.x+ 0) 0, which contains no β-redexes that can be reduced.
This term is, however, equivalent to (λx.x) 0, which clearly reduces to 0. Fortunately the
canonical form of a term t gives us a representative of t which is “maximally reducible”, that
is to say, whenever any representative of t can be reduced to a representative of some t′, then
any canonical form can (t) for t can be reduced to a representative of the same t′, possibly
in zero reduction steps.

I Theorem 27. Reduction is compatible with canonicalization. That is to say, if s  s′,
then can (s) ∗ s′′ for some s′′ ∼ε s′.

This result then legitimises our proposed “existential” definition of reduction of well-
formed terms, as it shows that, in order to reduce a given term, it suffices to reduce its
canonical form. It also gets rid of the “reducing zero” problem, as canonical forms do not
contain “spurious” representations of zero.

I Definition 28. Given well-formed terms s, s′, we say that s reduces to s′ in one step, and
write s t, whenever can (s) s′′ and s′′ ∼ε s′, for some canonical form can (s) of s.

I Proposition 29. Whenever s s′ then for any term t we have s+ t s′ + t.
If t = t∗ is an additive term, then additionally s t∗  + s′ t∗.
Furthermore, when t = tb is a basic term (in particular tb is not differentially equivalent

to zero), we also have D(s) · t + D(s′) · t.
Conversely, whenever s is not differentially equivalent to zero and t t′, then s t + s t′

and D(s) · t + D(s) · t′.

A proof of confluence for λε is sketched in Appendix A This proof follows the standard
Tait/Martin-Löf method by introducing a notion of parallel reduction on terms which is
shown to have the diamond property although, due to the nature of our setting, the diamond
property only holds up to differential equivalence.

I Corollary 30. The reduction relation  is confluent.

4.3 Encoding the Differential λ-Calculus
It is immediately clear, from simply inspecting the operational semantics for λε, that it is
closely related to the differential λ-calculus – indeed, every Cartesian differential category is
a Cartesian difference category, and this connection should also be reflected in the syntax.

As it turns out, there is a clean translation that embeds λε into the differential λ-calculus,
which proceeds by deleting every term that contains an ε. The intuition behind this scheme
should be apparent: every single differential substitution rule in λε is identical to the
corresponding case for the differential λ-calculus, once all the ε terms are cancelled out.

I Definition 31. Given an unrestricted λε term t, its ε-erasure is the differential λ-term dte
defined according to the rules in Figure 2.

I Proposition 32. The erasure dte is invariant under equivalence. That is to say, whenever
t ∼ε t′, it is the case that dte = dt′e.
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dxe := x dεte := 0
d0e := 0 ds te := dse dte

ds+ te := dse+ dte dD(s) · te := D(dse) · dte

Figure 2 ε-erasure of a term t.

I Proposition 33. Erasure is compatible with standard and differential substitution. That
is to say, for any terms s, t and a variable x, we have ds [t/x]e = dse [dte/x] and

⌈
∂s
∂x (t)

⌉
=

∂dse
∂x (dte)

I Corollary 34. Whenever s s′, then dse ∗ ds′e.

These results form the syntactic obverse to the purely semantic correspondence between
differential and difference categories [2, Proposition 1]: the former exhibits the differential
λ-calculus as an instance of λε where the ε operator is “degenerate”, whereas the later shows
that every Cartesian differential category can be understood as a “degenerate” Cartesian
difference category, in the same sense that the corresponding infinitesimal extension is just
the zero map.

5 Simple Types for λε

Much like the differential λ-calculus, λε can be endowed with a system of simple types, built
from a set of basic types using the usual function type constructor.

I Definition 35. The set of types and contexts of the λε-calculus is given by the following
inductive definition:

Types: σ, τ := t | σ ⇒ τ

Contexts: Γ := ∅ | Γ, x : τ

assuming a countably infinite set of basic types t, s . . . is given.

The typing rules for the λε-calculus are given in Figure 3 below, and should not be in
the least surprising, as they are identical to the typing rules for the differential λ-calculus,
with the addition of a typing rule for the infinitesimal extension of a term. As one would
expect, our type system enjoys all the “usual” structural properties and their proofs follow by
straightforward induction on the typing derivation. Note, however, that all of these typing
rules operate on unrestricted terms, rather than on well-formed terms, for reasons that we
will clarify later.

Γ, x : τ ` x : τ
Γ ` s : τ ⇒ σ Γ ` t : τ

Γ ` (s t) : σ
Γ, x : τ ` t : σ

Γ ` λx.t : σ ⇒ τ

Γ ` 0 : τ
Γ ` s : τ Γ ` t : τ

Γ ` s+ t : τ
Γ ` t : τ
Γ ` εt : τ

Γ ` s : τ ⇒ σ Γ ` t : τ
Γ ` D(s) · t : τ ⇒ σ

Figure 3 Simple types for λε.
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One property that fails to hold is uniqueness of typings: indeed the term 0 admits any
type, as do terms such as 0+0 or (λx.0) y. Typing judgements are nonetheless invertible. The
following “standard” properties also hold, and can be proven by straightforward induction
on the relevant typing derivation.

I Proposition 36 (Weakening). Whenever Γ ` t : τ , then for any context Σ which is disjoint
with Γ it is also the case that Γ,Σ ` t : τ .

I Proposition 37 (Substitution). Whenever Γ, x : τ ` s : σ and Γ ` t : τ , we have:

(i) Γ ` s [t/x] : σ
(ii) Γ, x : τ ` ∂s

∂x (t) : σ

I Theorem 38 (Subject reduction). Whenever Γ ` t : τ and t t′ then Γ ` t′ : τ .

Since we have defined well-formed terms as equivalence classes of unrestricted terms, we
might ask if typing is compatible with this equivalence relation. The answer is unfortunately
no, that is to say, there are ill-typed terms that are differentially equivalent to well-typed
terms. In particular, the term (0 t) is differentially equivalent to the term 0, but while the
later is trivially well-typed, the former will not be typable for many choices of t (for example,
whenever t = (x x)). A weaker version of this property does hold, however, that makes use
of canonicity.

I Proposition 39. Whenever Γ ` t : τ , then Γ ` can (t) : τ , and furthermore whenever
Γ ` can (t) : τ then every canonical form of t admits the same type.

Before stating a progress theorem for λε, we must point out one small subtlety, as the
definition of reduction of unrestricted terms depends on the particular representation chosen
for the term. For example, the terms ((λx.x) + 0) 0 and (λx.x) 0 are equivalent, but the
first one contains no β-redexes, whereas the second one reduces to 0 in one step. We can
prove that progress holds for canonical terms, however, as those are “maximally reducible”.

I Definition 40. A canonical term T is a canonical value whenever it is of the form

T =
i∑
i=1

εki(λxi.ti)

I Theorem 41 (Progress). Whenever a canonical term T admits a typing derivation ` T : τ ,
then either T is a canonical value or there is some term t′ with T  t′.

I Definition 42. We extend typing judgements to well-formed terms by setting Γ ` t : τ
whenever Γ ` can (t) : τ .

I Corollary 43 (Subject reduction for well-formed terms). Whenever Γ ` t : τ and t t′, then
Γ ` t′ : τ .

I Corollary 44 (Progress for well-formed terms). Whenever Γ ` t : τ then either t  t′ or
every canonical form can (t) is a canonical value.

Finally, strong normalisation can be shown by a proof similar to Ehrhard and Regnier’s
[12] and Vaux’s [17], which themselves proceed by an argument similar to the standard
reducibility candidates method. We defer the details to Appendix B.

I Theorem 45 (Strong normalisation). Whenever a closed well-formed term is typable with
type ` t : τ , it is strongly normalising.
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6 Semantics

It is a well-known result that the simply-typed differential λ-calculus can be soundly inter-
preted in any differential λ-category, that is to say, any Cartesian differential category where
differentiation “commutes with” abstraction (in the sense of [9, Definition 4.4]).

The exact same result holds for the difference λ-calculus and difference λ-categories.
In what follows we will consider a fixed difference λ-category C, and proceed to define
interpretations for the types, contexts and terms of the simply-typed λε-calculus.

I Definition 46. Given a t-indexed family of objects Ot, we define the interpretation JτK of
a type τ by induction on its structure by setting JtK := Ot, Jσ ⇒ τK := JσK⇒ JτK. We lift
the interpretation of types to contexts in the usual way. Or, more formally, we have: J·K := 1,
JΓ, x : τK := JΓK× JτK.

As is the case in differential λ-categories, we can define a “differential substitution”
operator on the semantic side. This operator is akin to post-composition with a partial
derivative, and can be defined as follows.

I Definition 47. Given morphisms s : A× B → C, u : A→ B, we define their differential
composition s ? u : A×B → C by s ? u := ∂ [s] ◦ 〈idA×B , 〈0A, u ◦ π1〉〉

IDefinition 48. Given a well-typed unrestricted λε-term Γ ` t : τ , we define its interpretation
JtK : JΓK → JτK inductively as in Figure 4 below. When Γ and τ are irrelevant or can be
inferred from the context, we will simply write JtK.

J(xi : τi)ni=1 ` xk : τkK := π2 ◦ πn−k1 :
∏n
i=1 JτiK→ JτkK

JΓ ` 0 : τK := 0 : JΓK→ JτK
JΓ ` s+ t : τK := JsK + JtK : JΓK→ JτK

JΓ ` εt : τK := ε JtK : JΓK→ JτK
JΓ ` λx.t : σ ⇒ τK := Λ JtK : JΓK→ JσK⇒ JτK

JΓ ` (s t) : τK := ev ◦ 〈JsK, JtK〉 : JΓK→ JτK
JΓ ` D(s) · t : σ ⇒ τK := Λ (Λ−(JsK) ? JtK) : JΓK→ JτK

Figure 4 Interpreting λε in C.

I Theorem 49. Whenever s ∼ε t are equivalent unrestricted terms that admit typing
derivations Γ ` s : τ and Γ ` t : τ , then their interpretations are identical, that is to say:

JΓ ` s : τK = JΓ ` t : τK

I Definition 50. Given well-formed terms s, s′, we define the equivalence relation ∼β∂ as
the least contextual equivalence relation that contains the one-step reduction relation  .

I Theorem 51. The interpretation J·K is sound, that is to say, whenever s ∼β∂ s′ then
JsK = Js′K, independently of the choice of representatives s, s′.

Proof. Straightforward consequence of the results in Appendix C. J

I Definition 52. Recall that a simply-typed theory is a collection of equational judgements
of the form Γ ` s = t : σ where Γ ` s : σ and Γ ` t : σ are derivable. We say that a
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simply-typed theory is a difference λ-theory if it is closed under all rules in the system
λ×ε βη∂ (comprising the contextual rules for all the constructs of the λε-calculus augmented
by products, ∼ε equivalence, and the surjective pairing, β, η and ∂ laws, and last being the
equational version of  ∂).

Given an interpretation J·KM of λε in C, we say thatM = J·KM is a model of a difference
λ-theory T if for every typed equational judgement Γ ` s = t : σ in T , we have that
JΓ ` s : σKM and JΓ ` t : σKM are the same morphism.

A model homomorphism h : M → N is given by isomorphisms ht : JtKM → JtKN for
each basic type t, and hσ×τ := hσ × hτ , and

hσ⇒τ := h−1
σ ⇒ hτ := Λ(hτ ◦ ev ◦ (id × h−1

σ )).

We write ModDifλ(T ,C) for the category whose objects are all models of difference
λ-theory T in a difference λ-category C, and whose morphisms are model homomorphisms.

I Definition 53. Let C and D be difference λ-categories. We say that a functor F : C→ D
is a difference λ-functor if F preserves the following:

additive structure: F (f + g) = F (f) + F (g), and F (0) = 0
infinitesimal extension: F (ε(f)) = ε(F (f))
products via the isomorphism Φ := 〈F (π1), F (π2)〉
exponentials via the isomorphism Ψ := Λ(F (ev) ◦ Φ)
difference combinator: F (∂ [f ]) = ∂ [F (f)] ◦ Φ.

We write Difλ-Func(C,D) for the category of difference λ-functors C → D and natural
isomorphisms.

I Definition 54. Given a difference λ-theory T , we say that a category, denoted Cl(T ), is
classifying if there is a model of the theory in Cl(T ), and this model is “generic”, meaning
that for every differential λ-category D, there is a natural equivalence

Difλ-Func(Cl(T ),D) ' ModDifλ(T ,D). (1)

The classifying category (unique up to isomomrphism) is the “smallest” in the sense that
given a model of the theory J·KD in a difference λ-category D, there is a difference λ-functor
F : Cl(T ) → D such that the interpretation J·KD can be factored through the canonical
interpretation in the classifying category, i.e., J·KD = F ◦ J·KCl(T ).

I Conjecture 6.1 (Completeness). Every difference λ-theory T has a classifying difference
λ-category Cl(T ).

7 Future Work

We have defined here the difference λ-calculus, which generalises the differential λ-calculus
in exactly the same manner as Cartesian difference categories generalise their differential
counterpart. While this calculus is of theoretical interest, it lacks most practical features,
such as iteration or conditionals, and it is not immediately obvious how to extend it with
these. It is not clear, for example, precisely when iteration combinators are differentiable in
the difference category sense.

The problem of iteration is closely related to integration, which is itself the focus of
current work on the differential side [10, 15]. Indeed, consider a hypothetical extension of
the difference λ-calculus equipped with a type of natural numbers (with the identity as its
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corresponding infinitesimal extension, that is to say, εN = idN). How should an iteration
operator iter be defined? The straightforward option would be to give it the usual behavior,
that is to say:

iter Z z s  z

iter (S n) z s  s (iter n z s)

These reduction rules entail that every object involved must be complete, that is to say, for
every s, t : A, there is some u : A with s + ε(u) = t – such an element is given by the term
((D(λn.iter n s (λx.t)) · (S Z)) Z).

This would rule out a number of interesting models and so it seems unsatisfactory. An
alternative is to define the iteration operator by:

iter Z z s  z

iter (S n) z s  (iter n z s) + ε(s (iter n z s))

Fixed z, s, and defining the map µ(n) := iter n z s, its derivative D[µ](n,S Z) is precisely
s(µ(n)). Or, in other words, the function µ : N→ A is a “curve” which starts at z and whose
derivative at a given point n is s(µ(n)) – this boils down to stating that the curve µ is an
integral curve for the vector field s satisfying the initial condition µ(Z) = z! Hence it may
be possible to understand iteration as a discrete counterpart of the Picard-Lindelöf theorem,
which states that such integral curves always exist (locally).

It would be of great interest to extend λε with an interation operator and give its
semantics in terms of differential (or difference) equations. Studying recurrence equations
using the language of differential equations is a very useful tool in discrete analysis; for
example, one can treat the recursive definition of the Fibonacci sequence as a discrete ODE
and use differential equation methods to find a closed-form solution. We believe that in a
language which frames iteration in such terms may be amenable to optimisation by similar
analytic methods.
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A Confluence

The following lemmas relate differential substitution and standard substitution, and will be
of much use later.

I Lemma 55. Whenever x, y are (distinct) variables then for any unrestricted terms t, u, v
where x is not free in v we have:(

∂t

∂x
(u)
)

[v/y] = ∂t [v/y]
∂x

(u [v/y])

I Lemma 56. Whenever x, y are (distinct) variables, with y not free in either u, v, we have:

∂t [v/y]
∂x

(u) ∼ε
(
∂t

∂x
(u)
)

[(v [x+ εu/x])/y] +
(
∂t

∂y

(
∂v

∂x
(u)
))

[v/y]

I Definition 57. The parallel reduction relation between (unrestricted) terms is defined
according to the deduction rules in Figure 5.

(  x) x  x
(  0) 0  0

t  t′(  λ) λx.t  λx.t′

t  t′(  ε) εt  εt′
s  s′ t  t′(  +)
s+ t  s′ + t′

s  s′ t  t′(  ap)
s t  s′ t′

s  s′ t  t′(  D) D(s) · t  D(s′) · t′

s  λx.s′ t  t′(  β)
s t  s′ [t′/x]

s  λx.s′ t  t′(  ∂)
D(s) · t  λx.∂s

′

∂x (t′)

Figure 5 Parallel reduction rules for λε.

https://doi.org/10.1016/S0304-3975(03)00392-X
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The parallel reduction relation can be extended to well-formed terms by setting t  t′

whenever can (t)  t′′ with t′′ ∼ε t′ for some canonical form of t.

I Remark 58. Our definition of parallel reduction differs slightly from the usual in the rule
(  β), which allows reducing a newly-formed λ-abstraction. This is necessary because our
calculus contains terms of the shape (D(λx.s) · u) t, which we need to parallel reduce in a
single step to

(
∂s
∂x (u)

)
[t/x]. The original presentation of the differential λ-calculus opted

instead for adding an extra parallel reduction rule to allow for the case of reducing an
abstraction under a differential application. Similarly, our rule (  ∂) allows reducing terms
of the form D(D(λx.s) · u) · v in a single step.

One convenient property of the parallel reduction relation lies in its relation to canonical
forms. As we saw in Theorem 27, canonical forms are “maximally reducible”, but don’t
respect the number of reduction steps. This is no longer the case for parallel reduction: the
process of canonicalization only duplicates regexes “in parallel” (that is, by copying them
onto multiple separate summands) or in a “parallelizable series” (i.e. a differential application
may be regularized into a term of the form D(D(. . .) · u) · v, which can be entirely reduced in
a single parallel reduction step).

I Theorem 59. Whenever s  s′, then can (s)  s′′ for some s′′ ∼ε s′.

We also state the following standard properties of parallel reduction, all of which can be
proven by straightforward induction on the term.

I Lemma 60. Parallel reduction sits between one-step and many-step reduction. That is to
say:  ⊆   ⊆  ∗, and furthermore  ⊆   ⊆  ∗.

I Lemma 61. The parallel reduction relation is contextual. In particular, every term
parallel-reduces to itself.

I Lemma 62. Parallel reduction cannot introduce free variables. That is to say: whenever
t  t′, we have FV(t′) ⊆ FV(t).

I Lemma 63. Whenever λx.t  u, it must be the case that u = λx.t′ and t  t′.

I Lemma 64. Whenever s  s′ and t  t′ then s [t/x]  s′ [t′/x], and furthermore there is
some w with ∂s

∂x (t)  w ∼ε ∂s′

∂x (t′).

We first prove that parallel reduction has the diamond property when applied to canonical
terms, taking care that it holds up to differential equivalence (note that, much like one-step
reduction, the result of parallel-reducing a canonical term need not be canonical). For this,
we introduce the usual notion of a full parallel reduct of a term.

I Definition 65. Given an unrestricted term t, its full parallel reduct t↓ is defined inductively
by:

x↓ := x

(εt)↓ := ε(t↓)

(s+ t)↓ := (s↓) + (t↓)

0↓ := 0

(λx.t)↓ := λx.(t↓)

(s t)↓ :=
{
e [t↓/x] if s↓ = λx.e

(s↓) (t↓) otherwise

(D(s) · t)↓ :=
{
λx. ∂e∂x (t↓) if s↓ = λx.e

D(s↓) · (t↓) otherwise

I Lemma 66. Whenever s  λx.v, then s↓ is of the form λx.w, for some term w.
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I Theorem 67. For any unrestricted terms s, s′ such that s  s′, there is an unrestricted
term w such that s′   w and w ∼ε s↓.

I Corollary 68. Parallel reduction has the diamond property up to differential equivalence.
That is to say, for any unrestricted term t and terms t1, t2 such that t  t1 and t  t2, there
are terms u, v making the following diagram commute:

Tt1 t2

u v

    

    

∼ε

I Lemma 69. Given unrestricted terms s ∼+ s′ which are permutatively equivalent, that is,
which differ only up to a reordering of their additions and differential applications, their full
parallel reducts are differentially equivalent.

I Theorem 70. The reduction relation   has the diamond property. That is, whenever
s  u and s  v there is a term c such that u  c and v   c.

Proof. Consider a well-formed term s, and suppose that s   u and s   v. In particular,
this means there are two canonical forms can (s)1 , can (s)2 of s such that can (s)1

  u and
can (s)2

  v. These canonical forms can (s)1 , can (s)2 are equivalent up to permutative
equivalence, and so their full parallel reducts are differentially equivalent as per Lemma 69.
Denote their ∼ε-equivalence class by c. Therefore since can (s)1

  can (s)1↓ ∼ε c and
can (s)2

  can (s)2↓ ∼ε c it follows that u  c and v   c. J

B Strong Normalisation

With our typing rules in place, we set out to show that λε is strongly normalising. Our proof
follows the structure of Ehrhard and Regnier’s [12] and Vaux’s[17], which use an adaptation
of the well-known argument by reducibility candidates. Our proof will be somewhat simpler,
however, due to two main reasons: first, we are not concerning ourselves with terms with
coefficients on some general rig; and second, we have defined unrestricted and canonical
terms as inductive types, and so we can freely use induction on the syntax of our terms. We
will need some auxiliary results, which we prove now.

I Lemma 71. A term s+ t is strongly normalising if and only if s, t are strongly normalising.
A term εs is strongly normalising if and only if s is.

I Definition 72. For every type τ we define inductively a set Rτ of well-formed terms of
type τ .

Whenever τ = t is a primitive type, s ∈ Rt if and only if s is strongly normalising.
Whenever τ = σ1 ⇒ σ2, s ∈ Rσ1⇒σ2 if and only if for any additive term t∗ ∈ Rσ1

and for any sequence vb
1 , . . . , v

b
n of basic terms vb

i ∈ Rσ1 of length n ≥ 0 we have(
Dn(s) · (vb

1 , . . . , v
b
i )
)
t∗ ∈ Rσ2

If t ∈ Rτ we will often just say that t is reducible if the choice of τ is clear from the
context.

I Lemma 73. Whenever t ∈ Rτ , then for any two distinct variables x, y the renaming t [y/x]
is also in Rτ .
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I Lemma 74. Whenever t ∈ Rτ , then t is strongly normalising.

I Lemma 75. Whenever s, t ∈ Rτ , then both s+ t, εs are in Rτ . Conversely, whenever
s+ t is in Rτ then so are s, t.

I Lemma 76. Whenever s ∈ Rσ⇒τ and t ∈ Rσ then D(s) · t ∈ Rσ⇒τ .

I Corollary 77. A well-formed term t is in Rτ if and only if some canonical form T = can (t)
is of the form

∑n
i=1 ε

kitbi with tbi ∈ Rτ for each 1 ≤ i ≤ n.

I Lemma 78. Whenever t ∈ Rτ , t + t′, then t′ ∈ Rτ .

I Definition 79. A basic term tb is neutral whenever it is not a λ-abstraction. In other
words, a basic term is neutral whenever it is of the form x, (s t) or D(s) · u. A canonical
term T is neutral whenever it is of the form

∑n
i=1 ε

kisb
i , where each of the sb

i are neutral. In
particular, 0 is a neutral term. A well-formed term t is neutral whenever some (equivalently,
all) canonical form is neutral.

I Lemma 80. Whenever t is neutral and every t′ such that t + t′ is in Rτ , then so is t.

I Lemma 81. If, for all t∗ ∈ Rσ1 where x does not appear free, the term s [t∗/x] is in Rσ2

and, for all ub where x does not appear free, the term
(
∂s
∂x

(
ub)) [t∗/x] is in Rσ2 , then the

term λx.s is in Rσ1⇒σ2 .

I Theorem 82. Consider a well-formed term t which admits a typing of the form x1 :
σ1, . . . , xn : σn ` t : τ and assume given the following data:

A sequence of basic terms db
1 ∈ Rσ1 , . . . , d

b
n ∈ Rσn .

An arbitrary sequence of indices i1, . . . , ik ∈ {1, . . . , n} (possibly with repetitions).
A sequence of additive terms s∗1 ∈ Rσi1 , . . . , s

∗
k ∈ Rσik .

such that none of the variables x1, . . . , xi appear free in the db
i , s
∗
i . Then the term

t′ =
(

∂kt

∂(xi1 , . . . , xik) (db
1 , . . . , d

b
k )
)

[s∗1, . . . , s∗n/x1, . . . , xn]

is in Rτ .

C Soundness

The following result corresponds to well-known properties of differential λ-categories (see
e.g. [9, Lemma 4.8]), the proof being identical to the differential case (unlike some other
lemmas in that work which hinge on derivatives being additive).

I Lemma 83. Let f : A→ B, g : A→ C, h : (A×B)× E → F be arbitrary C-morphisms.
Then the following properties hold:

i. ∂ [sw] = sw ◦ π2
ii. (g ◦ π1) ? f = 0
iii. Λ(h) ? f = Λ(((h ◦ sw) ? (f ◦ π1)) ◦ sw)
iv. Λ− (Λ(h) ? f) = ((h ◦ sw) ? (f ◦ π1)) ◦ sw

The results below also have rough analogues in the theory of Cartesian differential
categories, but the correspondence starts growing a bit more distant as any result that hinges
on derivatives being additive will, in general, only hold up to some second-order term in the
theory of difference categories.
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I Lemma 84. Let f : A × B × C → D, g : A → B, g′ : A × B → B, e : A × B → C be
arbitrary C-morphisms. Then the following identities hold:

i. (ev ◦ 〈Λ(f), e〉) ? g = ev ◦ 〈Λ(f ? (e ? g)), e〉+ ev ◦ 〈Λ(f) ? g, e ◦ 〈π1, π2 + ε(g) ◦ π1〉〉
ii. Λ(f ? e) ? g = Λ

[
Λ−(Λ(f) ? g) ? (e ◦ (id + 〈0, ε(g)〉))) + ε(f ? e) ? (e ? g) + (f ? (e ? g))

]
iii. Λ(f ? e) ◦ 〈π1, g

′〉 = Λ(Λ−(Λ(f) ◦ 〈π1, g
′〉) ? (e ◦ 〈π1, g

′〉))

I Lemma 85. Let t be some unrestricted λε-term. The following properties hold:

i. If Γ ` t : τ and x does not appear in Γ then JΓ, x : σ ` t : τK = JΓ ` t : τK ◦ π1
ii. If Γ, x : σ1, y : σ2 ` t : τ then JΓ, y : σ2, x : σ1 ` t : τK = JΓ, x : σ1, y : σ2 ` t : τK ◦ sw

The morphism sw above is the obvious isomorphism between (A×B)×C and (A×C)×B,
which we can define explicitly by sw := 〈〈π11, π2〉, π21〉 : (A×B)× C → (A× C)×B

I Lemma 86. Let Γ, x : τ ` s : σ, with s some unrestricted λε-term. Then:

i. Whenever Γ, x : τ ` t : τ , then Js [t/x]KΓ = JsKΓ,x:τ ◦
〈
π1, JtKΓ,x:τ

〉
ii. Whenever Γ ` t : τ , then

q
∂s
∂x (t)

y
Γ,x:τ = ∂

[
JsKΓ,x:τ

]
◦ 〈id, 〈0, JtKΓ ◦ π1〉〉. Or, using the

notation in Definition 47,
q
∂s
∂x (t)

y
= JsK ? JtK.

D Completeness

We set up the equivalence (1) in the forward direction via modelling functors. Using
the preceding notations, let M = J·KM be a model of a difference λ-theory T in C,
we define a family of modelling functors modM : Difλ-Func(C,D) → ModDifλ(T ,D) by
JtKmodM F := F (JtKM) where F : C → D is a difference λ-functor; and for any natural
isomorphism φ : F → G, modM φ : modMF → modMG is a model homomorphism where
(modM φ)t := φJtKM .

We first build a syntactic difference λ-category using the difference λ-theory T , and then
prove that it is classifying by presenting the “inverse” for the functor

modG : Difλ-Func(Cl(T ),D)→ ModDifλ(T ,D),

writing G = J·KG for the canonical “generic” interpretation in Cl(T ).
We build the difference λ-category, Cl(T ), using a standard construction. Objects are

types of T , and morphisms f : σ → τ are equivalence classes of term-in-context judgements
[x : σ `M : τ ], where two terms are equivalent if they are provably equal in T . It remains
to show that Cl(T ) is classifying by exhibiting the “inverse” of the modelling functors.

It is straightforward to see that the canonical interpretation G, that sets JtKG := t, is a
model of T in Cl(T ). Take a difference λ-category D. We define

mod−1
G : ModDifλ(T ,D)→ Difλ-Func(Cl(T ),D)

as follows. Given a modelM of T in D, the functor mod−1
G M : Cl(T )→ D is defined by

σ 7→ JσKM
[x : σ `M : τ ] 7→ Jx : σ `M : τKM : JσKM → JτKM

Soundness of the interpretations tells us that mod−1
G M is functorial. Note that Φ and Ψ are

both identity functors, and so, mod−1
G M preserves products and exponentials. It remains to

check that mod−1
G M is a difference λ-functor.
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Given a model homomorphism h : M → N in ModDifλ(T ,D), we define the natural
isomorphism mod−1

G h : mod−1
G M→ mod−1

G N by setting

(mod−1
G h)σ := ht : JσKM → JσKN .

We can easily check that (mod−1
G h)σ is a natural transformation by induction on the length

of the derivation of the λ×ε -term Γ ` M : τ . Since hσ is an isomorphism for any type σ,
mod−1

G is a natural isomorphism.
We check that (mod−1

G h)σ is a natural transformation by induction on the length of the
derivation of the λ×ε -term-in-context, Γ `M : τ , that the following diagram commutes:

JΓ `M : σKN ◦ hΓ = hτ ◦ JΓ `M : σKM .

Lastly we check that modG and mod−1
G define an equivalence via the natural isomorphisms

µ : modG ◦mod−1
G ' idModDifλ(T ,D)

ν : idModDifλ(T ,D) ' mod−1
G ◦modG

defined as follows. For any modelM of T in D, µM : modG(mod−1
G M)→M is defined by

(µM)t := idJtKM : JtKmodG(mod−1
G M) = JtKM → JtKM

and for any difference λ-functor F : Cl(T )→ D, we define

(νF )σ := idFσ : F σ → (mod−1
G (modG F ))σ = F (JσKG) = F σ.

Obviously µ and ν are natural isomorphisms. Thus Cl(T ) is a classifying category with the
model G.
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Traditional session types prescribe bidirectional communication protocols for concurrent compu-
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The Rast language and system provide an open-source implementation of session-typed concurrent
programs extended with arithmetic refinements as well as ergometric and temporal types to capture
work and span of program execution. Type checking relies on Cooper’s algorithm for quantifier
elimination in Presburger arithmetic with a few significant optimizations, and a heuristic extension
to nonlinear constraints. Rast furthermore includes a reconstruction engine so that most program
constructs pertaining the layers of refinements and resources are inserted automatically. We provide
a variety of examples to demonstrate the expressivity of the language.
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1 Introduction

Session types [13, 14, 17] provide a structured way of statically prescribing communication
protocols in message-passing programs. In this system description we introduce the Rast
programming language and implementation which is based on binary session types governing
the interaction of two processes along a single channel, rather than multi-party session
types [15] which take a more global view of computation. Nevertheless, during the execution
of a Rast program complex networks of interacting processes arise. Recent work has placed
binary session types without general recursion on a strong logical foundation by exhibiting
a Curry-Howard isomorphism with linear logic [1, 18, 2]. Moreover, the cut reduction
properties of linear logic entail type safety of session typed processes and guarantee freedom
from deadlocks (global progress) and session fidelity (type preservation) ensuring adherence
to the communication protocols at runtime.
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The Rast programming language is based on session types derived from intuitionistic linear
logic, extended with equirecursive types and recursive process definitions. It furthermore
supports arithmetic type refinements as well as ergometric and temporal types to measure
the total work and span of Rast programs. The repository also contains a number of
illustrative examples that highlight various language features, some of which we briefly
sketch in this system description. The theory underlying Rast has been developed in
several papers, starting with the Curry-Howard interpretation of linear logic as session-
typed processes [1, 2], the treatment of general equirecursive types and type equality [10],
asynchronous communication [11, 9], ergometric types [6], temporal types [5], indexed types
and indexed type equality [12, 7].

We begin with motivation and a brief overview of the main features of the language using
a concurrent queue data structure as a running example. The following type specifies the
interface to a queue server in the system of basic recursive session types supporting the
operations of insert (enqueue) and delete (dequeue).

queueA = N{ins : A( queueA,

del : ⊕{none : 1,
some : A⊗ queueA}}

The external choice operator N dictates that the process providing this data structure
accepts either one of two messages: the labels ins or del. In the case of ins, it receives an
element of type A denoted by the ( operator, and then the type recurses back to queueA.
On receiving a del request, the process can respond with one of two labels (none or some),
indicated by the internal choice operator ⊕. If the queue is empty, it responds with none
and then terminates (indicated by 1). If the queue is nonempty, it responds with some
followed by the element of type A (expressed with the ⊗ operator) and recurses. However,
the simple session type does not express the conditions under which the none and some
branches must be chosen, which requires tracking the length of the queue.

Rast extends session types with arithmetic refinements [7] which can be used to express
the length of a queue. The more precise type

queueA[n] = N{ins : A( queueA[n+ 1],
del : ⊕{none : ?{n = 0}.1,

some : ?{n > 0}. A⊗ queueA[n− 1]}}

uses the index refinement n to indicate the number of elements in the queue. In addition,
the type constraint ?{φ}. A read as “there exists a proof of φ” is analogous to the assertion
of φ in imperative languages. Conceptually, the process providing the queue must provide a
proof of n = 0 after sending none, and a proof of n > 0 after sending some respectively.
It is therefore constrained in its choice between the two branches based on the value of the
index n. Since the constraint domain is decidable and the actual form of a proof is irrelevant
to the outcome of a computation, in the implementation no proof is actually sent.

As is standard in session types, the dual constraint to ?{φ}. A is !{φ}. A (for all proofs of
φ, analogous to the assumption of φ). We also add explicit quantifiers ∃n.A and ∀n.A that
send and receive natural numbers, respectively.

Arithmetic refinements are instrumental in expressing sequential and parallel complexity
bounds. These are captured with ergometric [6, 4] and temporal session types [5]. They rely on
index refinements to express, for example, the size of lists, stacks, and queue data structures,
or the height of trees and express work and time bounds as a function of these indices. Rast
largely follows and extends prior work on session types with arithmetic refinements [7].
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Revisiting the queue example, consider an implementation where each element in the
queue corresponds to a process. Then insertion acts like a bucket brigade, passing the new
element one by one to the end of the queue. Among multiple cost models provided by Rast is
one where each send operation requires 1 unit of work (erg). In this cost model, such a bucket
brigade requires 2n ergs because each process has to send ins and then the new element. On
the other hand, responding to the del request requires only 2 ergs: we respond with none
and close the channel, or some followed by the element. This gives us the following type

queueA[n] = N{ins : /2n(A( queueA[n+ 1]),
del : /2 ⊕ {none : ?{n = 0}.1,

some : ?{n > 0}. A⊗ queueA[n− 1]}}

which expresses that the client has to send 2n ergs to insert an element (/2n), and 2 ergs
to delete an element (/2). The ergometric type system (described in Section 4) verifies this
work bound using the potential operators as described in the type.

Temporal session types [5] capture the time complexity of session-typed programs assuming
maximal parallelism on unboundedly many processors, often called the span. How does this
work out in our example? We adopt a cost model where each send and receive action takes
one unit of time (tick). First, we note that a use of a queue is at the client’s discretion, so
should be available at any point in the future, expressed by the type constructor �. Secondly,
the queue does not interact at all with the elements it contains, so they have to be of type
�A for an arbitrary A. Since each interaction takes 1 tick, the next interaction requires at
least 1 tick to elapse, captured by the next-time operator ©. During insertion, we need more
time than this: a process needs 2 ticks to pass the element down the queue, so it takes 3
ticks overall until it can receive the next insert or delete request after an insertion. This
reasoning yields the following temporal type:

queueA[n] = �N {ins : ©(�A( ©3queueA[n+ 1]),
del : ©⊕ {none : © ?{n = 0}.1,

some : © ?{n > 0}.�A⊗©queueA[n− 1]}}

We see that even though the bucket brigade requires much work for every insertion (linear
in the length of the queue), it has a lot of parallelism because there are only a constant
number of required delays between consecutive insertions or deletions.

Rast follows the design principle that bases an explicit language directly on the correspon-
dence with the sequent calculus for the underlying logic (such as linear logic, or temporal or
ergometric linear logic), extended with recursively defined types and processes. Programming
in this fully explicit form tends to be unnecessarily verbose, so Rast also provides an implicit
language in which most constructs related to index refinements and amortized work anal-
ysis are omitted. Explicit programs are then recovered by a proof-theoretically motivated
algorithm for reconstruction which is sound and complete on valid implicit programs.

Rast is implemented in SML, and allows the user to choose explicit or implicit syntax and
the exact cost models for work and time analysis. The implementation consists of a lexer,
parser, type checker, reconstruction engines, and an interpreter, with particular attention to
providing precise error messages.

To summarize, our implementation makes the following contributions.
(i) A session-typed programming language with arithmetic refinements applied to ergomet-

ric and temporal types for parallel complexity analysis.
(ii) A type equality algorithm that works well in practice despite its theoretical undecid-

ability [7] and uses Cooper’s algorithm [3] with some small improvements to decide
constraints in Presburger arithmetic (and heuristics for nonlinear constraints).
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1 type queue{n} = &{ ins : A -o queue{n+1},
2 del : +{ none : ?{n = 0}. 1,
3 some : ?{n > 0}. A * queue{n -1}}}
4 decl empty : . |- (q : queue {0})
5 decl elem{n} : (x : A) (t : queue{n}) |- (q : queue{n+1})
6
7 proc q <- empty =
8 case q ( % receive a label along q
9 ins => x <- recv q ; % if ’ins ’ receive a channel x along q

10 e <- empty ; % spawn a new empty process
11 q <- elem {0} x e % continue as an elem holding x
12 | del => q.none ; % if ’del ’, respond with label ’none ’
13 assert q {0=0} ; % assert that (n = 0)[0/n]
14 close q ) % terminate by closing q
15
16 proc q <- elem{n} x t =
17 case q ( % receive a label along q
18 ins => y <- recv q ; % if ’ins ’ receive a channel y along q
19 t.ins ; % send label ’ins ’ along t
20 send t y ; % send the channel y along t
21 q <- elem{n+1} x t % recurse
22 | del => q.some ; % if ’del ’, respond with label ’some ’
23 assert q {n+1 >0} ; % assert that (n > 0)[n+1/n]
24 send q x ; % send x along q
25 q <-> t ) % identify q with t and terminate

Listing 1 Declaration and definition of queue processes, file examples/list.rast

(iii) A type checking algorithm that is sound and complete relative to type equality.
(iv) A sound and complete reconstruction algorithm for a process language where most

index and ergometric constructs remain implicit.
(v) An interpreter for executing session-typed programs using the recently proposed shared

memory semantics [16].

2 Example: An Implementation of Queues

We use the implementation of queues as sketched in the introduction as a first example
program, starting with the indexed version. The concrete syntax of types is a straightforward
rendering of their abstract syntax (Table 3), except that all arithmetic expressions are
enclosed in braces to make them visually easily discernible.

type queue{n} = &{ ins : A -o queue{n+1},
del : +{ none : ?{n = 0}. 1,

some : ?{n > 0}. A * queue{n -1}}}

Each channel has exactly two endpoints: a provider and a client. Session fidelity ensures that
provider and client always agree on the type of the channel and carry out complementary
actions. The type of the channel evolves during communication, since it has to track where
the processes are in the protocol as they exchange messages.

In our example, we need two kinds of processes: an empty process at the end of the
queue, and an elem process that holds an element x. The empty process provides an empty
queue, that is, a service of type queue{0} along a channel named q. It does not use any
other services (indicated by ’.’), so its type is declared with
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decl empty : . |- (q : queue {0})

An elem process provides a service of type queue{n+1} along a channel named q and uses a
queue of type queue{n} along a channel named t. In addition, it holds (“owns”) an element
x of type A.

decl elem{n} : (x : A) (t : queue{n}) |- (q : queue{n+1})

The turnstile ‘|-’ separates the channels used from the channel that is provided (which is
always exactly one, roughly analogous to a value returned by a function). The notation
elem{n} indicates that the natural number n is a parameter of this process.

Listing 1 shows the implementation of the two forms of processes in Rast. Comments,
starting with a % character and extending to the end of the line, provide a brief explanation
for the actions of each line of code. This code is in explicit form and contains two instances
of assert to match the constraints ?{n = 0} and ?{n > 0} in the two possible responses
to a delete request. These two lines would be omitted in implicit form since they can be
read off the type at the corresponding place in the protocol. Of course, the type checker
verifies that the assertion is justified and fails with an error message if it is not, whether the
construct is explicit or implicit.

3 Basic and Refined Session Types

We present the basic system of session types and its arithmetic refinement, postponing
ergometric and temporal types to Section 4.

Types A ::= ⊕{` : A}`∈L | N{` : A}`∈L | A⊗A | A( A | 1 | V [e]
| ?{φ}. A | !{φ}. A | ∃n.A | ∀n.A

Arith. Exps. e ::= i | e+ e | e− e | e× e | n
Arith. Props. φ ::= e < e | e ≤ e | e = e | e ≥ e | e > e | φ ∧ φ | φ ∨ φ | ¬φ | φ ⊃ φ

Here, i stands for a natural number, n for an arithmetic variable, L for a finite set of labels, V
for a type identifier, and [e] for a sequence of arithmetic expressions. Arithmetic propositions
could contain quantifiers, but at present the implementation only supports them at the
level of types. Arithmetic expressions may be nonlinear, although a definitive outcome of
type-checking is only guaranteed if they are lie within Presburger arithmetic.

Our implementation does not support type polymorphism which is convenient in some of
the examples. We therefore allow definitions such as queueA[n] = . . . and interpret them as
a family of definitions, one for each possible type A.

We review a few basic session type operators before introducing the quantified type
constructors. Table 1 overviews the session types with their continuations, their associated
process terms and operational description.

The complete typing judgment for process expressions has the form of a sequent

V ; C ; ∆ `
q

Σ P :: (x : A)

where V are index variables n, C are constraints over these variables expressed as a single
proposition, ∆ are the linear antecedents xi : Ai, P is a process expression, and x : A is the
linear succedent. The potential q is explained in Section 4. We propose and maintain that
the xi and x are all distinct, and that all free index variables in C, ∆, P , and A are contained
among V. Finally, Σ is a fixed signature containing type and process definitions (explained
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Table 1 Basic session types with operational description.

Type Cont. Process Term Cont. Description

c : ⊕{` : A`}`∈L c : Ak c.k ; P P provider sends label k along c
case c (`⇒ Q`)`∈L Qk client receives label k along c

c : N{` : A`}`∈L c : Ak case c (`⇒ P`)`∈L Pk provider receives label k along c
c.k ; Q Q client sends label k along c

c : A⊗B c : B send c w ; P P provider sends chan. w : A along c
y ← recv c ; Q Q[w/y] client receives chan. w : A along c

c : A( B c : B y ← recv c ; P P [w/y] provider receives w : A along c
send c w ; Q Q client sends w : A along c

c : 1 — close c — provider sends close along c
wait c ; Q Q client receives close along c

in Section 3.1). Because it is fixed, we elide it from the presentation of the rules. In addition
we write V ; C � φ for semantic entailment (φ is true assuming C) in the constraint domain
where V contains all arithmetic variables in C and φ.

3.1 Basic Session Types

External and Internal Choice

The external choice type constructor N{` : A`}`∈L is an n-ary labeled generalization of the
additive conjunction AN B. Operationally, it requires the provider of x : N{` : A`}`∈L to
branch based on the label k ∈ L it receives from the client and continue to provide type Ak.
The corresponding process term is written as case x (` ⇒ P )`∈L. Dually, the client must
send one of the labels k ∈ L using the process term (x.k ; Q) where Q is the continuation.
The internal choice constructor ⊕{` : A`}`∈L is the dual of external choice requiring the
provider to send one of the labels k ∈ L that the client must branch on.

Channel Passing

The tensor operator A⊗B prescribes that the provider of x : A⊗B sends a channel w of
type A and continues to provide type B. The corresponding process term is send x w ; P
where P is the continuation. Correspondingly, its client must receive a channel using the
term y ← recv x ; Q, binding it to variable y and continuing to execute Q. The dual operator
A( B allows the provider to receive a channel of type A and continue to provide type B.
Finally, the type 1 indicates termination, operationally denoting that the provider sends a
close message and terminates the communication.

A process x↔ y identifies the channels x and y so that any further communication along
either x or y will be along the unified channel. Its typing rule corresponds to the logical rule
of identity. Operationally, we refer to it as forwarding.
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Table 2 Refined session types with operational description.

Type Cont. Process Term Cont. Description

c : ∃n.A c : A[i/n] send c {e} ; P P provider sends the value i of e along c
{n} ← recv c ; Q Q[i/n] client receives number i along c

c : ∀n.A c : A[i/n] {n} ← recv c ; P P [i/n] provider receives number i along c
send c {e} ; Q Q client sends value i of e along c

c : ?{φ}. A c : A assert c {φ} ; P P provider asserts φ on channel c
assume c {φ} ; Q Q client assumes φ on c

c : !{φ}. A c : A assume c {φ} ; P P provider assumes φ on channel c
assert c {φ} ; Q Q client asserts φ on c

Process and Type Definitions

Process definitions (possibly mutually recursive) have the form ∆ `q f [n] = P :: (x : A)
where f is the name of the process and P its definition. In addition, n is a sequence of
arithmetic variables that ∆, q, P , and A can refer to. Note that in the implementation a
typed definition is split up into a declaration and a simple definition

decl f{n1}...{nk} : (x1 : A1) ... (xm : Am) |- (x : A)
proc x <- f{n1}...{nk} x1 ... xm = P

A new instance of a defined process f can be spawned with the expression x← f [e] y ; Q
where y is a sequence of channels matching the antecedents ∆ and [e] is a sequence of
arithmetic expressions matching the variables [n]. The newly spawned process will use all
variables in y and provide x to the continuation Q. The declaration of f is looked up in the
signature Σ, and e is substituted for n and y for ∆. Sometimes a process invocation is a tail
call, written without a continuation as x← f [e] y.

We allow (possibly mutually recursive) type definitions V [n] = A, or, in concrete syntax

type v{n1}...{nk} = A

in the signature Σ. Here, [n] again denotes a sequence of arithmetic variables. We also require
A to be contractive [10] meaning A should not itself be a type name. Our type definitions are
equirecursive so we can silently replace type names V [e] indexed with arithmetic refinements
by A[e/n] during type checking.

All types in a signature must be valid which requires that all free arithmetic variables of
C and A are contained in V, and that for each arithmetic expression e in A we can prove
V ′ ; C′ ` e : nat for the constraints C′ known at the occurrence of e (implying e ≥ 0).

3.2 The Refinement Layer
We now describe quantifiers (∃n.A, ∀n.A) and constraints (?{φ}. A, !{φ}. A). An overview
of the types, process expressions, and their operational meaning can be found in Table 2.

Quantification

The provider of (c : ∃n.A) should send a witness e along channel c and then continue as
A[e/n]. From the typing perspective, we just need to check that the expression e denotes a
natural number, using only the permitted variables in V.
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V ; C ` e : natV ; C ; ∆ `q P :: (x : A[e/n])
V ; C ; ∆ `q send x {e} ; P :: (x : ∃n.A)

∃R

V, n ; C ; ∆, (x : A) `q Qn :: (z : C) (n fresh)
V ; C ; ∆, (x : ∃n.A) `q {n} ← recv x ; Qn :: (z : C)

∃L

The dual type ∀n.A reverses the role of the provider and client. The client sends (the value
of) an arithmetic expression e which the provider receives and binds to n.

Constraints

Refined session types also allow constraints over index variables. From the message-passing
perspective, the provider of (c : ?{φ}. A) should send a proof of φ along c and the client
should receive such a proof. Statically, it is the provider’s responsibility to ensure that φ
holds, while the client is permitted to assume that φ is true. The dual operator !{φ}. A
reverses the role of provider and client. The provider of c : !{φ}. A may assume the truth of
φ, while the client must verify it. The typing rules for the ? type constructor are

V ; C � φ V ; C ; ∆ `q P :: (x : A)
V ; C ; ∆ `q assert x {φ} ; P :: (x : ?{φ}. A)

?R

V ; C ∧ φ ; ∆, (x : A) `q Q :: (z : C)
V ; C ; ∆, (x : ?{φ}. A) `q assume x {φ} ; Q :: (z : C)

?L

The remaining issue is how to type-check a branch that is impossible due to unsatisfiable
constraints. A special impossibility construct is used to handle this situation (dead branches).

V ; C � ⊥
V ; C ; ∆ `q impossible :: (x : A)

unsat

There is no operational rule for this scenario since in well-typed configurations the process
expression “impossible” is dead code and can never be reached. In practice, we almost never
write this construct since reconstruction will fill in missing branches, whose impossibility is
then verified by the type checker.

Example: Binary Numbers

As a second example consider natural numbers in binary representation. The idea is that,
for example, the number 13 in binary (1101)2 form is represented as a sequence of labels
b1,b0,b1,b1, e, close sent or received on a given channel with the least significant bit first.
Here e represents 0 (the empty sequence of bits), while b0 and b1 represent bits 0 and 1,
respectively. Because (linear) arithmetic contains no division operator, we express the type
bin[n] of binary numbers with value n using existential quantification, with the concrete
syntax ?k. A for ∃k.A.

type bin{n} = +{ b0 : ?{n > 0}. ?k. ?{n = 2*k}. bin{k},
b1 : ?{n > 0}. ?k. ?{n = 2*k+1}. bin{k},
e : ?{n = 0}. 1 }

The constraint that n > 0 in the case of b0 ensures the representation is unique and there are
no leading zeros; the same constraint for b1 is in fact redundant. The examples/arith.rast
contains several examples of processes over binary numbers like addition, multiplication,
predecessor, equality and conversion to and from numbers in unary form.
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4 Ergometric and Temporal Session Types

An important application of refinement types is complexity analysis. Prior work on resource-
aware session types [6, 5, 4] crucially rely on arithmetic refinements to express work and time
bounds. In this section, we review these type systems. The design principle we followed is
that they should be conservative over the basic and indexed session types, so that previously
defined programs and type-checking rules do not change.

4.1 Ergometric Types
The key idea is that processes store potential and messages carry potential. This potential
can either be consumed to perform work or exchanged using special messages. The type
system provides the programmer with the flexibility to specify what constitutes work. Thus,
the programmer can choose to count the resource they are interested in, and the type system
provides the corresponding upper bound. Our current examples assign unit cost to message
sending operations (exempting those for index objects or potentials themselves) effectively
counting the total number of “real” messages exchanged during a computation.

Two dual type constructors .rA and /rA are used to exchange potential. The provider
of x : .rA must pay r units of potential along x using process term (pay x {r} ; P ), and
continue to provide A by executing P . These r units are deducted from the potential stored
inside the sender. Dually, the client must receive the r units of potential using the term
(getx {r} ; Q) and add this to its internal stored potential. Finally, since processes are
allowed to store potential, the typing judgment records the potential available to a process
above the turnstile V ; C ; ∆ `

q

Σ P :: (x : A). We allow potential q to refer to index variables
in V to capture variable potential. The typing rules for .rA are

V ; C � q ≥ r1 = r2 V ; C ; ∆ `q−r1
P :: (x : A)

V ; C ; ∆ `q pay x {r1} ; P :: (x : .r2A)
.R

V ; C � r1 = r2 V ; C ; ∆, (x : A) `q+r1
Q :: (z : C)

V ; C ; ∆, (x : .r2A) `q getx {r1} ; Q :: (z : C)
.L

In both cases, we check that the exchanged potential in the expression and type matches
(r1 = r2), and while paying, we ensure that the sender has sufficient potential to pay. The
dual type /rA enables the provider to receive potential that is sent by its client. Since the
sent or received potential must match the one prescribed by the type, our reconstruction
algorithm can insert the pay and get actions in a sound and complete way (get as soon as
possible and pay as late as possible).

We use a special expression work {r} ; P to perform work. Usually, work actions are
inserted by the Rast compiler based on a cost model selected by the programmer, such as
paying one erg just before every send operation. The programmer can also select a model
where all operations are free and manually insert calls to work {r}. An example of this is
given in the file linlam-reds.rast that counts the number of reductions necessary for the
evaluation of an expression in the linear λ-calculus.

V ; C � q ≥ r V ; C ; ∆ `q−r
P :: (x : A)

V ; C ; ∆ `q work {r} ; P :: (x : A)
work

Work is precise, that is, before terminating a process must have 0 potential, which can be
achieved by explicitly consuming any remaining potential.
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Example: Queue Revisited

We have already seen the ergometric types of queues as a bucket brigade in the introduction.
We show it now in concrete syntax, where <{p}| receives potential p.

type queue{n} = &{ ins : <{2*n}| A -o queue{n+1},
del : <{2}| +{ none : ?{n = 0}. 1,

some : ?{n > 0}. A * queue{n -1}}}

decl empty : . |- (q : queue {0})
decl elem{n} : (x : A) (r : queue{n}) |- (q : queue{n+1})

Interestingly, the exact code of Listing 1 will check against this more informative type (see
file examples/list-work.rast). The cost model will insert the appropriate work {r} action
and reconstruction will insert the actions to pay and get potential.

For a queue implemented internally as two stacks we can perform an amortized analysis.
Briefly, the queue process maintains two lists: one (in) to store messages when they are
enqueued, and a reversed list (out) from which they are dequeued. When the client wishes
to dequeue an element and the out list is empty, the provider reverses the in list to serve as
the new out list. A careful analysis shows that if this data structure is used linearly, both
insert and delete have constant amortized time. More specifically we obtain the type

type queue{n} = &{ enq : <{6}| nat -o queue{n+1},
deq : <{4}| +{ none : ?{n = 0}. 1,

some : ?{n > 0}. nat * queue{n -1}}}

The program can be found in the file list-work.rast in the repository.

4.2 Temporal Types
Rast also supports temporal modalities next (©A), always (�A), and eventually (♦A),
interpreted over a linear model of time. To model computation time, we use the syntactic
form delay which advances time by one tick. A particular cost semantics is specified by
taking an ordinary, non-temporal program and adding delays capturing the intended cost.
For example, if only the blocking operations should cost one unit of time, a delay is added
before the continuation of every receiving construct. For type checking, the delay construct
subtracts one © operator from every channel it refers to. We denote consuming r units on
the left of the context using [A]tL, and on the right by [A]tR. Briefly, [©tA]−t

L = [©tA]−t
R = A.

V ; C � t ≥ 0V ; C ; [∆]−t
L `

q
Q :: (x : [A]−t

R )
V ; C ; ∆ `q delay (t) ; P :: (x : A)

©LR

Always A

A process providing x : �A promises to be available at any time in the future, including now.
When the client would like to use this provider it (conceptually) sends a message now! along
x and then continues to interact according to type A.

A process P providing x : �A must be able to wait indefinitely. But this is only possible
if all the channels that P uses can also wait indefinitely. This is enforced in the rule by the
condition ∆ delayed� which requires each antecedent to have the form yi : ©ni �Bi.

∆ delayed� ∆ ` P :: (x : A)
∆ ` (when? (x) ; P ) :: (x : �A) �R

∆, x : A ` Q :: (z : C)
∆, x : �A ` (now! (x) ; Q) :: (z : C) �L
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Rast also has its dual modality ♦A, which communicates at some indeterminate future time.
This is used when the time (span) of a computation is unpredictable or not expressible within
the constraints of the language (more details in prior work [5]).

Example: Queue Revisited

We have already foreshadowed the temporal type of a queue, implemented as a bucket brigade.
We show it now in concrete syntax, where () is the © modality and [] represents �. We
also show the types of the empty and elem processes (see file examples/time.rast).

type queue{n} = [] {enq : () A -o ()()() queue{n+1},
deq : ()+{ none: () ?{n = 0}. 1,

some: () ?{n > 0}. A * () queue{n -1}}}
decl empty : . |- (q : ()() queue {0})
decl elem{n} : (x : A) (r : ()() queue{n}) |- (q : queue{n+1})

Because Rast currently does not have reconstruction for time we have to update the
program with the five temporal actions presented in this section (two instances of delay, two
of when, and one of now). A key observation here is that in the case of elem the process r
does not need to be ready instantaneously, but can be ready after a delay of 2 ticks, because
that is how long it takes to receive the ins label and the element along q. This slack is also
reflected in the type of empty because it becomes then back of a new element when the end
of the queue is reached.

5 Implementation

We have implemented a prototype for Rast in Standard ML (6700 lines of code). This
implementation contains a lexer and parser (1355 lines), an arithmetic solver (1083 lines), a
type checker (2852 lines), pretty printer (375 lines), reconstruction engine (880 lines), and
interpreter (155 lines). The source code is well-documented and available open-source.

Syntax

Table 3 describes the syntax for Rast programs. Each row presents the abstract and concrete
representation of a session type, and its corresponding providing expression. A program
contains a series of mutually recursive type and process declarations and definitions.

type v{n} = A
decl f : (x1 : A1) ... (xn : An) |- (x : A)
proc x <- f x1 ... xn = P

Listing 2 Top-Level Declarations
The first line is a type definition, where v is the name with index variable n and A is its
definition. The second line is a process declaration, where f is the process name, (x1 :
A1) . . . (xn : An) are the used channels and corresponding types, while the offered channel is
x of type A. Finally, the last line is a process definition for the same process f defined using
the process expression P . We use a hand-written lexer and shift-reduce parser to read an
input file and generate the corresponding abstract syntax tree of the program. The reason to
use a hand-written parser instead of a parser generator is to anticipate the most common
syntax errors that programmers make and respond with the best possible error messages.
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Table 3 Abstract and Corresponding Concrete Syntax for Types and Expressions.

Abstract Types Concrete Types Abstract Syntax Concrete Syntax

⊕{l : A, . . .} +{l : A, ...} x.k x.k
N{l : A, . . .} &{l : A, ...} case x (`⇒ P )`∈L case x (l => P | ...)
A⊗B A * B send x w send x w
A( B A -o B y ← recv x y <- recv x
1 1 close x close x

wait x wait x
∃n.A ?n. A send x {e} send x {e}
∀n.A !n. A {n} ← recv x {n} <- recv x
?{n = 0}. A ?{n = 0}. A assert x {n = 0} assert x {n = 0}
!{n = 0}. A !{n = 0}. A assume x {n = 0} assume x {n = 0}
.rA |{r}> A pay x {r} pay x {r}
/rA <{r}| A getx {r} get x {r}
©tA ({t}) A delay t delay {t}
�A [] A whenx when x
♦A <> A now x now x
V [e] V{e1}...{ek} x↔ y x <-> y

x← f x1 . . . xn x <- f x1 ... xn

Validity Checking

Once the program is parsed and its abstract syntax tree is extracted, we perform a validity
check on it. We check that all index refinements, potentials, and delay operators are non-
negative. We also check that all index expressions are closed with respect to the the index
variables in scope. To simplify and improve the efficiency of the type equality algorithm,
we also assign internal names to type subexpressions parameterized over their free index
variables. These internal names are not visible to the programmer.

Cost Model

The cost model defines the execution cost of each construct. Since our type system is
parametric in the cost model, we allow programmers to specify the cost model they want
to use. Although programmers can create their own cost model (by inserting work or delay
expressions in the process expressions), we provide three custom cost models: send, recv, and
recvsend. If we are analyzing work (resp. time), the send cost model inserts a work{1} (resp.
delay{1}) before (resp. after) each send operation. Similarly, recv model assigns a cost of
1 to each receive operation. The recvsend cost model assigns a cost of 1 to each send and
receive operation.

Reconstruction and Type Checking

The programmer can use a flag in the program file to indicate whether they are using
explicit or implicit syntax. If the syntax is explicit, the reconstruction engine performs no
program transformation. However, if the syntax is implicit, we use the implicit type system
to approximately type-check the program. Once completed, we use the forcing calculus,
introduced in prior work [7] to insert assert, assume, pay, get and work constructs. The core
idea here is simple: insert assume or get constructs eagerly, i.e., as soon as available on a
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channel, and insert assert and pay lazily, i.e., just before communicating on that channel.
The forcing calculus proves that this reconstruction technique is sound and complete in the
absence of certain forms of quantifier alternations (which are checked before reconstruction
is performed). We only perform reconstruction for proof constraints and ergometric types,
leaving reconstruction of quantifiers and temporal constructs to future work.

The implementation takes some care to provide good error messages, in particular
as session types (not to mention arithmetic refinements, ergometric types, and temporal
types) are likely to be unfamiliar. One technique is staging: first check approximate type
correctness, ignoring index, ergometric, and temporal types, and only if that check passes
perform reconstruction and strict checking of type. Another particularly helpful technique
has been type compression. Whenever the type checker expands a type V [e] with V [n] = A

to A[e/n] we record a reverse mapping from A[e/n] to V [e]. When printing types for error
messages this mapping is consulted, and complex types may be compressed to much simpler
forms, greatly aiding readability of error messages.

Type Equality

At the core of type checking lies type equality, defined coinductively [10]. With arithmetic
refinements this equality is undecidable, but have found what seems to be a practical
approximation [7], incrementally constructing a bisimulation closed under reflexivity. This
algorithm always terminates, but may fail to establish an equality if the coinductive invariant
is not general enough. Rast therefore allows the programmer to assert an arbitrary number
of additional type equalities with the construct

eqtype V{e1}...{en} = V’{e1’}...{ek’}

These are then checked one by one, assuming all other asserted equalities. The default
construction of the bisimulation is currently strong enough so that this feature has not been
needed for any of our standard examples.

Arithmetic Solver

To determine the validity of arithmetic propositions that is used by our refinement layer,
we use a straightforward implementation of Cooper’s decision procedure [3] for Presburger
arithmetic. We found a small number of optimizations were necessary, but the resulting
algorithm has been quite efficient and robust.
(i) We eliminate constraints of the form x = e (where x does not occur in e) by substituting

e for x in all other constraints to reduce the total number of variables.
(ii) We exploit that we are working over natural numbers so all solutions have a natural

lower bound, i.e., 0.

We also extend our solver to handle non-linear constraints. Since non-linear arithmetic is
undecidable, in general, we use a normalizer which collects coefficients of each term in the
multinomial expression.
(i) To check e1 = e2, we normalize e1 − e2 and check that each coefficient of the normal

form is 0.
(ii) To check e1 ≥ e2, we normalize e1 − e2 and check that each coefficient is non-negative.
(iii) If we know that x ≥ c, we substitute y + c for x in the constraint that we are checking

with the knowledge that the fresh y ≥ 0.
(iv) We try to find a quick counterexample to validity by plugging in 0 and 1 for the index

variables (which can be improved in the future).

FSCD 2020



33:14 Rast: Resource-Aware Session Types

If the constraint does not fall in the above two categories, we print the constraint and trust
that it holds. A user can then view these constraints manually and confirm their validity. At
present, all of our examples pass without having to trust unsolvable constraints with our
current set of heuristics beyond Presburger arithmetic.

Interpreter

The current version of the interpreter pursues a sequential schedule following a prior pro-
posal [16]. We only execute programs that have no free index variables and only one externally
visible channel, namely the one provided. When the computation finishes, the messages
that were asynchronously sent along this distinguished channel are shown, while running
processes waiting for input are displayed simply as a dash ’-’.

The interpreter is surprisingly fast. For example, using a linear prime sieve to compute
the status (prime or composite) or all number in the range [2, 257] takes 27.172 milliseconds
using MLton during our experiments (see machine specifications below).

6 Examples

We present several different kinds of examples from varying domains illustrating different
features of the type system and algorithms. Table 4 describes the results: iLOC describes the
lines of source code in implicit syntax, eLOC describes the lines of code after reconstruction
(which inserts implicit constructs), #Defs shows the number of process definitions, R (ms)
and T (ms) show the reconstruction and type-checking time in milliseconds respectively.
Note that reconstruction is faster than type-checking since reconstruction does not involve
solving any arithmetic propositions. The experiments were run on an Intel Core i5 2.7 GHz
processor with 16 GB 1867 MHz DDR3 memory.
(i) arithmetic: natural numbers in unary and binary representation indexed by their

value and processes implementing standard arithmetic operations.
(ii) integers: an integer counter represented using two indices x and y with value x− y.
(iii) linlam: expressions in the linear λ-calculus indexed by their size.
(iv) list: lists indexed by their size, and some standard operations such as append, reverse,

map, fold, etc. Also provides and implementation of stacks and queues using lists.
(v) primes: the sieve of Eratosthenes to classify numbers as prime or composite.
(vi) segments: type seg[n] = ∀k.list[k]( list[n+k] representing partial lists with constant-

work append operation.
(vii) ternary: natural numbers and integers represented in balanced ternary form with

digits 0, 1,−1, indexed by their value, and a few standard operations on them.
(viii) theorems: processes representing valid circular [8] proofs of simple theorems such as

n(k + 1) = nk + n, n+ 0 = n, n ∗ 0 = 0, etc.
(ix) tries: a trie data structure to store multisets of binary numbers, with constant amortized

work insertion and deletion verified with ergometric types.
We highlight interesting examples from some case studies showcasing the invariants that can
be proved using arithmetic refinements.

Linear λ-Calculus

We demonstrate an implementation of the (untyped) linear λ-calculus, including evaluation,
in which the index objects track the size of the expression. Type-checking verifies that the
result of evaluating a linear λ-term is no larger than the original term. Our representation
uses linear higher-order abstract syntax (see file examples/linlam-size.rast).
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Table 4 Case Studies.

Module iLOC eLOC #Defs R (ms) T (ms)

arithmetic 395 619 29 0.959 5.732
integers 90 125 8 0.488 0.659
linlam 88 112 10 0.549 1.072
list 341 642 37 3.164 4.637
primes 118 164 11 0.289 4.580
segments 48 76 8 0.183 0.225
ternary 270 406 20 0.947 140.765
theorems 79 156 13 0.182 1.095
tries 243 520 13 2.122 6.408

Total 1672 2820 149 8.883 165.173

type exp{n} = +{ lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n-1},
app : ?n1. ?n2. ?{n = n1+n2 +1}. exp{n1} * exp{n2} }

type val{n} = +{ lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n -1} }
decl eval{n} : (e : exp{n}) |- (v : ?k. ?{k <= n}. val{k})

An expression of size n is either a λ (the label lam) or an application (label app). In case
of lam, after proving n > 0, it expects an expression of size n1 as an argument and then
behaves like the body of the λ-abstraction of size n1 + n− 1. In case of app, it sends two
expressions of size n1 and n2 such that n = n1 + n2 + 1.

Interestingly, the result type of evaluation contains an existential quantifier since we do
not know the precise size of the value –we just know it is bounded by n. Also, as exemplified
in the type of val{n}, a value can only be a λ-expression (label app missing).

Trie Data Structure

We illustrate the data structure of a trie to maintain multisets of binary numbers. There is a
fair amount of parallelism since consecutive requests to insert numbers into the trie can be
carried out concurrently. We also obtain a good characterization of the necessary work –the
data structure is quite efficient (in theoretical terms). We start with binary numbers where
each bit carries potential p.

type bin{n}{p} = +{ b0 : ?{n > 0}. ?k. ?{n = 2*k}. |{p}> bin{k}{p},
b1 : ?{n > 0}. ?k. ?{n = 2*k+1}. |{p}> bin{k}{p},
e : ?{n = 0}. 1 }

A trie is represented by the type trie[n] where n is the number of elements in the current
multiset. When inserting a number it updates to trie[n+ 1]. When we delete a number x
from the trie we delete all copies of x and return its multiplicity. If m is the multiplicity
of the number, then after deletion the trie will have trie[n − m] elements. This requires
the constraint that m ≤ n: the multiplicity of an element cannot be greater than the total
number of elements in the multiset.

When inserting a binary number into the trie that number can be of any value. Therefore,
we must pass the index k representing that value, which is represented by a universal
quantifier in the type. Conversely, when responding we need to return the unique binary
number m which is of course not known statically and therefore is an existential quantifier.
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The way we insert the binary number is starting at the root with the least significant bit
and recursively insert the number into the left or right subtrie, depending on whether the bit
is b0 or b1. When we reach the end of the sequence of bits (e) we increase the multiplicity
at the leaf we have reached. As we traverse the trie, we need to construct new intermediate
nodes in case we encounter a leaf. These operations require 4 messages per bit, so the input
number should have potential of 4 per bit. For deletion, we need one more because we need
to communicate the answer back to the client, so 5 units per bit. For simplicity, we therefore
uniformly require 5 units of potential per bit when adding a number to the trie and “burn”
the extra unit during insertion.

type trie{n} =
&{ ins: <{4}| !k. bin{k}{5} -o trie{n+1},

del: <{5}| !k. bin{k}{5} -o ?m. ?{m<=n}. bin{m}{0} * trie{n-m}}

We have two kinds of nodes: leaf nodes (process leaf[0]) not holding any elements and
element nodes (process nodes[n0,m, n1]) representing an element of multiplicity m with
n0 and n1 elements in the left and right subtries, respectively. A node therefore has type
trie[n0 +m+ n1]. Neither process carries any potential.

decl leaf : . |- (t : trie {0})
decl node{n0}{m}{n1} :

(l : trie{n0}) (c : ctr{m}) (r : trie{n1}) |- (t : trie{n0+m+n1})

The source code is available at examples/trie-work.rast.

7 Conclusion

This paper describes the Rast programming language. In particular, we focused on the
concrete syntax, type checker and equality, the refinement layer [7], and its applicability
to work [6] and time analysis [5]. The refinements rely on an arithmetic solver based on
Cooper’s algorithm [3]. The interpreter uses the shared memory semantics introduced in
recent work [16]. We concluded with several examples demonstrating the efficacy of the
refined type system in expressing and verifying properties about data structure sizes and
values. We also illustrated the work and time bounds for several examples, all of which have
been verified with our system, and are available in an open-source repository.
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Abstract

It is nowadays customary to organize libraries of machine checked proofs around hierarchies of
algebraic structures [2, 6, 8, 16, 18, 23, 27]. One influential example is the Mathematical Components
library on top of which the long and intricate proof of the Odd Order Theorem could be fully
formalized [14].

Still, building algebraic hierarchies in a proof assistant such as Coq [9] requires a lot of manual
labor and often a deep expertise in the internals of the prover [13, 17]. Moreover, according to our
experience [26], making a hierarchy evolve without causing breakage in client code is equally tricky:
even a simple refactoring such as splitting a structure into two simpler ones is hard to get right.

In this paper we describe HB, a high level language to build hierarchies of algebraic structures
and to make these hierarchies evolve without breaking user code. The key concepts are the ones of
factory, builder and abbreviation that let the hierarchy developer describe an actual interface for
their library. Behind that interface the developer can provide appropriate code to ensure backward
compatibility. We implement the HB language in the hierarchy-builder addon for the Coq system
using the Elpi [11, 28] extension language.
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1 Introduction

Modern libraries of machine checked proofs are organized around hierarchies of algebraic
structures [2, 6, 8, 16, 18, 23, 27]. For example the Mathematical Components library for
the Coq system [9] provides a very rich, ever growing, hierarchy of structures such as group,
ring, module, algebra, field, partial order, order, lattice. . . The hierarchy does not only serve
the purpose of organizing knowledge, but also to make it easy to exploit it. Indeed the
interactive prover can take advantage of the structure of the library and the relation between
its concepts to infer part of information usually left implicit by the user, a capability that
turned out to be key to tame the complexity and size of the formal proof of the Odd Order
Theorem [14].

The hierarchy of the Mathematical Components library is implemented following the dis-
cipline of Packed Classes initially introduced by Garillot, Gonthier, Mahboubi and Rideau [13]
and later also adopted by Affeldt, Nowak, and Saikawa to describe a hierarchy of monadic
effects [2] and by Boldo, Lelay, and Melquiond in the Coquelicot library of real analysis [6].
We call Packed Classes a discipline, and not a language, because, in spite of its many virtues,
it is unwieldy to use. In particular it leaks to the user many of the technical details of
the Coq system. As a result, one needs to be a Coq expert in order to build or modify a
hierarchy, and even experts make mistakes as shown in [26]. Another inconvenience of the
Packed Classes discipline is that even simple changes to the hierarchy, such as splitting a
structure into two simpler ones, break user code.

In this paper we describe HB, a high level language to build hierarchies of algebraic
structures and to make these hierarchies evolve without breaking user code. The key concepts
are the ones of factory, builder and abbreviation that let the hierarchy developer describe an
actual interface for their library. Behind that interface the developer can provide appropriate
code to ensure backward compatibility. We implement the HB language by compiling it to a
variant of the Packed Classes discipline, that we call flat, in the hierarchy-builder addon
for Coq. We write this addon using the Elpi [11, 28] extension language.

To sum up, the main contributions of the paper are:
the design of the HB language,
the compilation of HB to the (flat) Packed Classes discipline, and
the implementation of HB in the hierarchy-builder addon for Coq.

The paper is organized as follows. Via an example we introduce HB and its key ideas. We
then describe the discipline of Packed Classes and we show how HB can be compiled to it.
We then discuss the implementation of the Coq addon via the Elpi extension language and
we position HB in the literature.

2 HB by examples: building and evolving a hierarchy

The first version of our hierarchy (that we name V1) features only two structures: Monoid
and Ring. We use notations from Appendix A to define them.

1 HB.mixin Record Monoid_of_Type M := {
2 zero : M;
3 add : M -> M -> M;
4 addrA : associative add; (* `add` is associative. *)
5 add0r : left_id zero add; (* `zero` is the left and right neutral *)
6 addr0 : right_id zero add; (* element with respect to `add`. *)
7 }.
8 HB.structure Definition Monoid := { M of Monoid_of_Type M }.
9
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10 HB.mixin Record Ring_of_Monoid R of Monoid R := {
11 one : R;
12 opp : R -> R;
13 mul : R -> R -> R;
14 addNr : left_inverse zero opp add; (* `opp x` is the left and right additive *)
15 addrN : right_inverse zero opp add; (* inverse of `x`. *)
16 mulrA : associative mul; (* `mul` is associative. *)
17 mul1r : left_id one mul; (* `one` is the left and right neutral *)
18 mulr1 : right_id one mul; (* element with respect to `mul`. *)
19 mulrDl : left_distributive mul add; (* `mul` is left and right distributive *)
20 mulrDr : right_distributive mul add; (* over `add`. *)
21 }.
22 HB.structure Definition Ring := { R of Monoid R & Ring_of_Monoid R }.

In order to build a structure we need to declare some factories and later assemble them.
One kind of factory supported by HB, the simplest one, is called mixin and is embodied by
a record that gathers operations and properties.

Mixins are declared via the HB.mixin command that takes a record declaration with a
type parameter and a possibly empty list of factories for that type. The code between lines 1
and 7 declares a mixin that can turn a naked type M into a monoid, hence we chose the name
to be Monoid_of_Type.

The HB.structure command takes in input a definition for a sigma type S that equips a
type with a list of factories. It registers a structure S in the hierarchy placing any definition
specific to that structure inside a Coq module named S. Line 8 hence forges the Monoid
structure.

Line 10 declares a second mixin collecting the operations and properties that are needed
in order to enrich a monoid to a ring, hence the name Ring_of_Monoid. Indeed this time the
type variable R is followed by Monoid that enriches R with the operations and properties of
monoids. As a consequence add and zero can be used to express the new properties.

The last line declares the Ring structure to hold all the axioms declared so far. We can
now inspect the contents of the hierarchy and then proceed to build a theory about abstract
rings, register examples (instances) of ring structures and finally use the abstract theory on
these examples.

1 Print Monoid.type. (* Monoid.type := { sort : Type; ... } *)
2 Check @add. (* add : forall M : Monoid.type, M -> M -> M *)
3 Check @addNr. (* addNr : forall R : Ring.type, left_inverse zero opp add *)
4

5 Lemma addrC {R : Ring.type} : commutative (@add R).
6 Proof. (* Proof by Hankel 1867, in Appendix B *) Qed.
7

8 Definition Z_Monoid_axioms : Monoid_of_Type Z :=
9 Monoid_of_Type.Build Z 0%Z Z.add Z.add_assoc Z.add_0_l Z.add_0_r.

10

11 HB.instance Z Z_Monoid_axioms.
12

13 Definition Z_Ring_axioms : Ring_of_Monoid Z :=
14 Ring_of_Monoid.Build Z 1%Z Z.opp Z.mul
15 Z.add_opp_diag_l Z.add_opp_diag_r Z.mul_assoc Z.mul_1_l Z.mul_1_r
16 Z.mul_add_distr_r Z.mul_add_distr_l.
17

18 HB.instance Z Z_Ring_axioms.
19

20 Lemma exercise (m n : Z) : (n + m) - n * 1 = m.
21 Proof. by rewrite mulr1 (addrC n) -(addrA m) addrN addr0. Qed.

We can print the type for monoids as forged by HB (line 1). It packs a carrier, called sort,
and the collection of operation and properties that we omit for brevity. We can also look
at the type of two constants synthesized by HB out of the hierarchy declaration. Remark
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that while the names of the constants come from the names of mixin fields, their types differ.
In particular they are quantified over a Monoid.type or Ring.type, and not a simple type
as in the mixins. Moreover we evince that the sort projection is declared as an implicit
coercion [24] and is automatically inserted in order to make M -> M -> M a meaningful type
for binary operations on the carrier of M. Last, we see that properties are quantified on (hence
apply to) the structure they belong to but use, in their statements, operations belonging to
simpler structures. For example addNr is a property of a ring but its statement mentions add,
the operation of the underlying monoid.

We then follow the proof of Hankel [5] to show that ring axioms imply the commutativity
of the underlying monoid (line 5). This simple example shows we can populate the theory of
abstract rings with new results.

We use the Monoid_of_Type.Build abbreviation (line 8) in order to build an instance of
the Monoid structure for binary integers Z. We then register that monoid instance as the
canonical one on Z (line 11) via the command HB.instance. We can similarly declare that Z
forms a ring by using the Ring_of_Monoid.Build abbreviation (lines 13 and 18). Note that
the Ring_of_Monoid.Build abbreviation is not a plain record constructor for Ring_of_Monoid,
since that would require more arguments, namely the monoid ones (see the _ at line 13).
The abbreviation synthesized by HB infers them automatically (as in [17, Section 7]) thanks
to the HB.instance declaration given just above.

From now on the axioms as well as the abstract theory of rings apply to integers, as shown
in lemma exercise. The details of the proof do not matter here, what is worth pointing
out is that in a single statement we mix monoid (e.g. +) and ring (e.g. -) operations and
in the proof we use monoid axioms (e.g. addrA), ring axioms (e.g. addrN) and ring lemmas
(e.g. addrC), all seamlessly.

2.1 Evolution of the hierarchy
We proceed by accommodating the intermediate structure of Abelian groups.

1 HB.mixin Record Monoid_of_Type M := { ... (* unchanged *) ... }.
2 HB.structure Definition Monoid := { M of Monoid_of_Type M }.
3

4 HB.mixin Record AbelianGroup_of_Monoid A of Monoid A := {
5 opp : A -> A;
6 addrC : commutative (add : A -> A -> A);
7 addNr : left_inverse zero opp add;
8 }.
9 HB.structure Definition AbelianGroup := { A of Monoid A & AbelianGroup_of_Monoid A }.

10

11 HB.mixin Record Ring_of_AbelianGroup R of AbelianGroup R := {
12 one : R;
13 mul : R -> R -> R;
14 mulrA : associative mul;
15 mul1r : left_id one mul; mulr1 : right_id one mul;
16 mulrDl : left_distributive mul add; mulrDr : right_distributive mul add;
17 }.
18 HB.structure Definition Ring := { R of AbelianGroup R & Ring_of_AbelianGroup R }.
19

20 Lemma addrN {A : AbelianGroup.type} : right_inverse zero opp add.
21 Proof. by move=> x; rewrite addrC addNr. Qed.

Some operations and properties were moved from the old mixin for rings into a newborn
mixin AbelianGroup_of_Monoid that gathers the axioms needed to turn a monoid into an
Abelian group. Consequently the mixin for rings is now called Ring_of_AbelianGroup (instead
of Ring_of_Monoid) since it expects the type R to be already an Abelian group and hence
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gathers fewer axioms. While operations moved from one structure to another, some properties
undergo a deep change in their status. The lemma addrC part of the abstract theory of rings
is now an axiom of Abelian groups, while addrN is no more an axiom of rings, but rather a
theorem of the abstract theory of Abelian groups proved at line 20.

It is worth clarifying here what axioms and lemmas are by looking at the two distinct
use cases for a hierarchy: 1) develop the abstract theory of some structure; 2) apply the
abstract theory on some concrete example. In the first case all the axioms of the structure
are (assumed to be) theorems so the distinction between axiom and theorem does not matter.
This is what happens in the proof of addNr by taking R to be of type AbelianGroup.type as an
assumption. In the second case, in order to show Coq that a data type and some operations
forms a structure, one must pick the axioms of the structure an prove them for that specific
type and operations. For example the Ring_of_Monoid.Build abbreviation is used at page 3
to package the set of proofs that make Z a ring (proviso Z is already a monoid).

With this new version of the hierarchy, that we name V2, the axiomatic that was previously
exposed to user changed, and indeed code written for version V1 breaks. For example the
declaration of the canonical ring over the integers fails, if only because we do not have a
Ring_of_Monoid.Build abbreviation anymore.

Our objective is to obtain a version of the hierarchy, that we name V3, that does not
only feature Abelian groups but that is also backward compatible with V1.

2.2 The missing puzzle piece

Figure 1 The evolution of the hierarchy. V3 is backward compatible with V1, while V2 is not.

The key to make a hierarchy evolve without breaking user code is the full fledged notion
of factory (the mixins seen so far are degenerate, trivial, factories). Factories, like mixins,
are packages for operations and properties but are not directly used in the definition of
structures. Instead a factory is equipped with builders: user provided pieces of code that
extract from the factory the contents of mixins, so that existing abbreviations can be used.

As depicted in Figure 1 we change again the hierarchy by declaring a Ring_of_Monoid fact-
ory, that, from the user point of view, will look indistinguishable from the old Ring_of_Monoid
mixin and hence grant backward compatibility between version V3 and version V1.
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1 HB.factory Record Ring_of_Monoid R of Monoid R := { ... (* unchanged *) ...}.
2

3 HB.builders Context R (f : Ring_of_Monoid R).
4

5 Lemma addrC : commutative add. Proof. (* The same proof as before *) Qed.
6

7 Definition to_AbelianGroup_of_Monoid :=
8 AbelianGroup_of_Monoid.Build R opp addrC addNr. (* addrN unused *)
9 HB.instance R to_AbelianGroup_of_Monoid.

10

11 Definition to_Ring_of_AbelianGroup := Ring_of_AbelianGroup.Build R one mul
12 mulrA mul1r mulr1 mulrDl mulrDr.
13 HB.instance R to_Ring_of_AbelianGroup.
14

15 HB.end.

The record Ring_of_Monoid is the same we declared as a mixin in version V1. In order to
make a factory out of it we equip it with two definitions that embody the builders. The first
is to_AbelianGroup_of_Monoid and explains how to build an AbelianGroup structure out of the
factory axioms (named f, line 3). This construction is also registered as canonical for R, so
that the next construction to_Ring_of_AbelianGroup can call the Ring_of_AbelianGroup.Build
abbreviation that requires R to be an AbelianGroup. It is worth pointing out that the proof
of addrC we had in V1 is now required in order to write the builder for Abelian groups, while
the addrN field is not used (the same statement is already part of the theory of Abelian
groups, see line 20 of the previous code snippet).

Thanks to this factory we can now declare Z to be an instance of a ring using the
Ring_of_Monoid.Build abbreviation. The associated builders generate, behind the scenes,
instances of the Ring_of_AbelianGroup and AbelianGroup_of_Monoid mixins that in turn are
used to build instances of the AbelianGroup and Ring structures. Indeed, when used in the
context of the hierarchy version V3, the command HB.instance Z Z_Ring_axioms makes Z an
instance of both structures, and not just the Ring one as in version V1. Thanks to that the
proof of example can use the theory of both structures, for example addrC holds on Abelian
groups, addrA holds on monoids, while addr1 holds on rings. As a result the very same proof
works on both version V1 and V3.

Last, it is worth pointing out that the new factory makes the following two lines equivalent
(the former declares rings in V1) since they both describe the same set of mixins.

1 HB.structure Definition Ring := { R of Monoid R & Ring_of_Monoid R }.
2 HB.structure Definition Ring := { R of AbelianGroup R & Ring_of_AbelianGroup R }.

This is another example of client code that would not break: the client of the hierarchy
is allowed to declare new structures on top of existing ones.

2.3 HB in a nutshell
By using HB the hierarchy designer has the following freedoms and advantages.

Operations and properties (axioms) are made available to the user as soon as they are
used in a structure. The hierarchy designer is free to move them from one to another and
replace an axiom by a lemma and vice versa.
Structures cannot disappear but the way they are built may change. The hierarchy
designer is free to split structures into smaller ones in order to better factor and reuse
parts of the hierarchy and the library that follows it.
Mixins cannot disappear but can change considerably in their implementation. A mixin
can become a full fledged factory equipped with builders to ensure backward compatibility.
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HB high level commands compile to the discipline of Packed Classes (Coq modules, records,
coercions, implicit arguments, canonical structure instances, notations, abbreviations).
This process lifts a considerable burden from the shoulders of the hierarchy designer and
the final user who are no longer required to master the details of Packed Classes.

3 The HB language

The Coq terms handled byHB are subdivided in five categories, the mixinsM, the factories F ,
builders B, the classes C and the structures S. Mixins, factories and instances are tagged
by the user, through the commands HB.mixin, HB.factory and HB.instance, and the user
may rely on their implementation. However structures and classes are generated with the
command HB.structure and builders are generated when using HB.instance while declaring
a factory, and the user may only refer to structure types, but should never rely on their
implementation, neither should they rely on explicit builders.

3.1 Mixins, factories and instances
In this section, we call “distinguished” a Coq definition or record that the developer of a
library has labeled “mixin”, “factory”, “builder”, “class” or “structure”.

I Definition 1 (M, mixins). A mixin m ∈M is a distinguished Coq record with one or more
parameters. The first parameter must be a (T : Type), while the other parameters are mixins
(mi)i∈{1,...,n}, each of which is applied to T and possibly previous mixin variables. I.e.

1 Record m (T : Type)
−−−−−−−−−→
(p : m T pσ)n : Type := { .. }.

where
−−−−−−−−−→
(p : m T pσ)n = (p1 : m1 T ) . . .

(
pn : mn T pσ(n,1) . . . pσ(n,qn)

)
and where for all

i ∈ {1, . . . , n} we have qi ∈ N and the arguments of mi ∈M consist in qi of the previously
quantified mixin parameters pk, i.e. for all k ∈ {1, . . . , qi}, we have σ(i, k) ∈ {1, . . . , i− 1}.

I Definition 2 (dep, mixin dependencies). Given m ∈M, we define dep(m) ∈ ℘(M) as the
set of all mixins that occur as parameters of m, i.e. dep(m) = {m1, . . . ,mn}.

I Remark 3. For all i ∈ {1, . . . , n}, we have dep(mi) =
{
mσ(i,1), . . . ,mσ(i,qi)

}
.

I Definition 4. If f : X → ℘(Y), then f? : ℘(X )→ ℘(Y) is defined as f?(X) =
⋃
x∈X f(x).

I Proposition 5 (dep is transitively closed and describes a DAG).

∀m ∈M, dep?(dep?(m)) ⊆ dep?(m) and m /∈ dep(m).

Proof. Indeed dep is transitively closed because records are well typed in the empty context
and describes a DAG since Coq does not admit circular definitions. J

I Definition 6 (factories F). A factory f ∈ F is a distinguished Coq record or definition
with one or more parameters. The first parameter must be a (T : Type), while the other
parameters are n mixins, applied to T and previous mixin variables. I.e.

1 Record (* or Definition *) f (T : Type)
−−−−−−−−−→
(p : m T pσ)n : Type := ...

I Definition 7 (requires, factory requirements.). Given f ∈ F , we define requires(f) ∈ ℘(M)
as the set of all mixins that occur as parameters of f , i.e. dep(f) = {m1, . . . ,mn}.

The following property holds,
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I Proposition 8 (requires is closed under dep). ∀f ∈ F , dep?(requires(f)) ⊆ requires(f).

Proof. Because Coq records and global definitions are well typed in the empty context. J

I Definition 9 (builders B). A builder µ ∈ B is a distinguished function whose return
type is a mixin mn+1 ∈ M and whose parameters are the carrier type (T : Type), mixins
{m1, . . . ,mn} ∈ ℘(M) and a factory f ∈ F , such that requires(f) = {m1, . . . ,mn}. I.e.

1 Definition µ (T : Type)
−−−−−−−−−→
(p : m T pσ)n: f T p1 . . . pn -> mn+1 T pσ(n+1,1) . . . pσ(n+1,qn+1) := ...

Note that the builders of a given factory have the same set of dependencies.

I Definition 10 (from). We define from(f,mn+1) = µ to be the (unique) builder for mn+1
from the factory f , when it exists.

Note that from is not a total function, and that from(f,m) is defined if and only if there
is a declared builder that shows how to build m from f . In this case, we say f provides m.

I Definition 11 (provides). provides(f) = {m | from(f,m) is defined} ∈ ℘(M) the set of
mixins that a factory f ∈ F provides, through its builders.

Mixins are declared by the user as the fundamental building blocks of a hierarchy. As the
next proposition shows they shall not be regarded as different from regular factories, since
they are a special case.

I Proposition 12 (M⊆ F). There is a way to see mixins as factories.

Proof. For allm ∈M we have requires(m) = dep(m), provides(m) = {m} and from(m,m) =(
fun T

−−−−−−−−→
(p : m T pσ)n (x : m T p1 . . . pn) => x

)
∈ B. J

I Coq command to declare a new mixin:

1 HB.mixin Record M T of f1 . . . fn := { .. }.

Declares the record axioms inside a module M. This record M.axioms depends on the mixins
requires(M.axioms) = dep(M.axioms) = provides? ({f1, . . . , fn}) and is registered both as a
mixin and a factory. Finally It exports an abbreviation M.Build and a notation M standing
for M.axioms, so that the module name can be used to denote the axioms record it contains.

I Coq command to declare an instance: HB.instance X b1 . . . bk, synthesizes terms
corresponding to all the mixins that can be built from the bi. Indeed if bi : fi T . . ., then this
command creates elements of types provides? ({f1, . . . , fk}) . This command also generates
unification hints as described in Section 4.

I Coq commands to declare a new factory and generate new builders:

1 HB.factory Record F T of f1 . . . fn := { .. }.
2 HB.builders Context T (a : F T).
3

4 Definition bn+1 : fn+1 T .. := ...
5 HB.instance T bn+1.
6 ..
7 Definition bn+k : fn+k T .. := ...
8 HB.instance T bn+k.
9 HB.end.
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Declares the record axioms inside a module F. This record F.axioms depends on the mixins
requires(F.axioms) = provides? ({f1, . . . , fn}) and is registered as a factory. It exports an
abbreviation F.Build and a notation F standing for F.axioms, so that the module name
can be used to denote the axioms record it contains. Finally it uses the factory instances
bn+1, . . . , bn+k provided by the user in order to derive builders, so that provides(F) =
provides? ({fn+1, . . . , fn+k}) .
It is thus necessary that requires? ({fn+1, . . . , fn+k}) ⊆ provides? ({f1, . . . , fn}) .

Note that the bi are not builders since their return types are not necessarily mixins, but
could be factories. However, since all factories provide mixins through builders, we obtain
builders out of each bi by function composition.

3.2 Classes and structures

I Definition 13 (C, class). A class c ∈ C is a distinguished Coq record with one parameter
(T : Type). The type of each field is a mixin inM applied to T and, if needed, any number
of other fields:

1 Record c (T : Type) := { p1 : m1 T; .. ; pi : mi T pσ(i,1) . . . pσ(i,qi); ..}.

I Definition 14 (def , class definition). We call def (c) ∈ ℘(M) the set of mixins mentioned
in the fields of the class, i.e. {m1, . . . ,mn}. Given that class records are well typed in the
empty context the set of mixin records is closed transitively. The implementation enforces
that no two class records contains the same set of mixins (disregarding the order of the fields),
i.e. def is injective.

I Programming invariant for def For all f ∈ F :
1. ∃c ∈ C, def (c) = requires?(f) ∪ provides?(f),
2. ∃C ⊆ C, def ?(C) = requires?(f).

Classes could also be seen as factories.

I Proposition 15 (C ⊆ F). For all m ∈ def (c) we have from(c,mi) = pi, and it follows that
requires(c) = ∅, provides(c) = def (c).

However since classes are generated, their implementation may change, thus users should
not rely on constructors of classes. Hence the only way users may refer to a class is as an
argument of HB.mixin, HB.factory or HB.structure.

I Definition 16 (S Structure). A structure s ∈ S is a distinguished dependent pair: a Coq
record where the value of the first field occurs in the type of the second. The first field is
(sort : Type) and the second field is (class : c sort) for some c ∈ C. As a consequence
structures are in bijection with classes.

I Coq command to declare a class and structure: HB.structure Definition M := { A of
f1 . . . fn } crafts a class M.class_of ∈ C where def (c) = provides? ({f1, . . . , fn}) and the
corresponding structure M.type ∈ S, together with unification hints as described in Section 4.

I Definition 17 (≤ ∈ C × C, subclass). c1 ≤ c2 iff def (c2) ⊆ def (c1)
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3.3 Automatic inference of mixins
Since mixins may change but factories stay the same, HB commands must never rely on a
particular set of mixins as arguments, and factory arguments must never be given explicitly
by the user. As described in Sections 3.1 and 3.2, HB commands take a list of factories as
arguments, which they expand into lists of mixins behind the scene. However factory types
and constructors have mixin arguments that must be inferred automatically when used. To
this end, the commands HB.mixin and HB.factory generate abbreviations for the user to
replace uses of constructors of factories. These commands first create a record faux with a
constructor Faux and then create abbreviations f and F that automatically fill the mixin
arguments of faux and Faux respectively. See [17, Section 7] for a detailed description of how
to implement these abbreviations in Coq.

1 Record faux T
−−−−−−−−−→
(p : m T pσ)n := Faux { ... }.

2 Notation f T := (faux T ...(* p1 . . . pn inferred when T is known *) ).
3 Notation F T x1 . . . xk := (Faux T ...(* p1 . . . pn inferred when T is known *) x1 . . . xk).
4 Definition b : f T := F T x1 . . . xn.

4 The target language: Coq with Packed, flat, Classes

The language of Packed Classes [13] is used directly to describe the algebraic hierarchy of the
Mathematical Components library. It is based on a disciplined use of records and projections
and on the possibility of extending the elaborator of Coq via the declaration of Canonical
Structures [17] instances. In this section, we describe the flat variant of Packed Classes, the
target language of hierarchy-builder, through the hierarchy V3 extended with semirings.

The hierarchy-builder addon can generate all the Coq declarations in this section
automatically, but some details are omitted for brevity in this section.

4.1 Describing structures with records and projections
We describe mathematical structures with three kinds of dependent records: mixins, classes,
and structures. As shown in Section 2, a mixin gathers operators and axioms newly introduced
by a structure. As in [13, Section 2.4][26, Section 2], a class record is parametrized by the
carrier type (T : Type) and gathers all the operators and axioms of a structure by assembling
mixins, and a Structure type (a record) bundles a carrier and its class instance, as follows.

1 Module Monoid.
2 Record axioms (M : Type) : Type :=
3 Class { Monoid_of_Type_mixin : Monoid_of_Type M; }.
4 Structure type : Type := Pack { sort : Type; class : axioms sort; }.
5 End Monoid.

The Monoid module plays the role of a name space and forces us to write qualified names such
as Monoid.type; as a consequence we can reuse the same unqualified names for other structures,
i.e., class and structure record can always be named as axioms and type respectively.

Mixins and classes are internal definitions to structures; in contrast, Monoid.type is part
of the interface of the monoid structure. As seen in section 2, we declare Monoid.sort as
an implicit coercion and lift monoid operators and axioms from projections for the monoid
mixin to definitions and lemmas for Monoid.type as follows.

1 Coercion Monoid.sort : Monoid.type >-> Sortclass.
2

3 Definition zero {M : Monoid.type} : M :=
4 Monoid_of_Type.zero M (Monoid.Monoid_of_Type_mixin M (Monoid.class M)).
5 Definition add {M : Monoid.type} : M -> M -> M :=
6 Monoid_of_Type.add M (Monoid.Monoid_of_Type_mixin M (Monoid.class M)).
7 Lemma addrA {M : Monoid.type} : associative (@add M).
8 (* Two monoid axioms `add0r` and `addr0` are omitted. *)
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Next we define Abelian groups. Since the monoid structure is the bottom of this hierarchy
its class record Monoid consists of just one mixin. In contrast the class record of Abelian
groups consists of two mixins where the second one depends on the former (since Abelian
groups inherit from monoids).

1 Module AbelianGroup.
2 Record axioms (A : Type) : Type := Class {
3 Monoid_of_Type_mixin : Monoid_of_Type A;
4 AbelianGroup_of_Monoid_mixin : AbelianGroup_of_Monoid A Monoid_of_Type_mixin; }.
5 Structure type : Type := Pack { sort : Type; class : axioms sort }.
6 End AbelianGroup.

In the flat variant of Packed Classes, a class record gathers mixins as its fields directly as
in above. In contrast, a class record of the non-flat variant packs a class instance of one of
the superclasses with remaining mixins, which reduces the amount of code to implement
inheritance significantly. Since we do not need to care about the amount of code in automated
generation, hierarchy-builder uses the flat variant of Packed Classes as its target language.

As in the monoid structure, we declare AbelianGroup.sort as an implicit coercion and lift
additive inverse opp and Abelian group axioms. Since Abelian groups inherit from monoids,
we also declare an implicit coercion from Abelian groups to monoids. A coercion between
structures can be defined in two steps: first a coercion between the class record of the
superclass to the class record of the subclass (line 2); and a coercion between structure
records (line 4) relying on the first one.

1 Coercion AbelianGroup.sort : AbelianGroup.type >-> Sortclass.
2 Coercion AbelianGroup_class_to_Monoid_class (A : Type) (c : AbelianGroup A) :
3 Monoid A := Monoid.Class A (AbelianGroup.Monoid_of_Type_mixin A c).
4 Coercion AbelianGroup_to_Monoid (A : AbelianGroup.type) : Monoid.type :=
5 Monoid.Pack (AbelianGroup.sort A) (AbelianGroup.class A).
6

7 Definition opp {A : AbelianGroup.type} : A -> A := ... .
8 (* Two Abelian group axioms `addrC` and `addNr` are omitted. *)

Generally, a coercion from a structure X to another structure Y can (and should) have the
following form, thanks to the corresponding coercion between classes X_class_to_Y_class.

1 Coercion X_to_Y (T : X.type) : Y.type :=
2 Y.Pack (X.sort T) ((* X_class_to_Y_class _ *) (X.class T)).

4.2 Multiple inheritance
In order to introduce multiple inheritance, we extend the hierarchy described in Section 2.2
with the structure of semirings as depicted in Figure 2, and name it V4. Semirings intro-
duce the binary multiplication operator mul and its identity element one. For the sake of
completeness, the full code of V4 is available in Appendix C.

1 HB.mixin Record SemiRing_of_Monoid S of Monoid S := {
2 one : S;
3 mul : S -> S -> S;
4 (* 7 axioms are omitted. *)
5 }.
6

7 HB.factory Record Ring_of_AbelianGroup R of AbelianGroup R := {
8 (* 2 operators and 5 axioms are omitted. *)
9 }.

10 HB.builders Context R (f : Ring_of_AbelianGroup R).
11 ..
12 HB.end.
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Figure 2 V4 introduces multiple inheritance. For brevity we omit the factories/builders for the
upper arrows.

Since semirings and Abelian groups do not inherit from each other, the definition of
semirings and Abelian groups are quite similar:

1 Module SemiRing.
2 Record axioms (S : Type) : Type := Class {
3 Monoid_of_Type_mixin : Monoid_of_Type S;
4 SemiRing_of_Monoid_mixin : SemiRing_of_Monoid S Monoid_of_Type_mixin;
5 }.
6 Structure type : Type := Pack { sort : Type; class : axioms sort; }.
7 End SemiRing.

We define implicit coercions from the semiring structure to the carrier and the monoid
structure, and we lift semiring operators and axioms as follows:

1 Coercion SemiRing.sort : SemiRing.type >-> Sortclass.
2 Coercion SemiRing_to_Monoid : SemiRing.type >-> Monoid.type.
3

4 Definition one {S : SemiRing.type} : S := ... .
5 Definition mul {S : SemiRing.type} : S -> S -> S := ... .
6 (* 7 semiring axioms are omitted. *)

The class record is defined by gathering the monoid, Abelian group, and semiring mixins.
Since the rings inherit from monoids, semirings, and Abelian groups, we define implicit
coercions from the ring structure to those three structures.

1 Module Ring.
2 Record axioms (R : Type) : Type := Class {
3 Monoid_of_Type_mixin : Monoid_of_Type R;
4 SemiRing_of_Monoid_mixin : SemiRing_of_Monoid R Monoid_of_Type_mixin;
5 AbelianGroup_of_Monoid_mixin : AbelianGroup_of_Monoid R Monoid_of_Type_mixin; }.
6 Structure type : Type := Pack { sort : Type; class : axioms sort; }.
7 End Ring.
8

9 Coercion Ring.sort : Ring.type >-> Sortclass.
10 Coercion Ring_to_Monoid : Ring.type >-> Monoid.type.
11 Coercion Ring_to_SemiRing : Ring.type >-> SemiRing.type.
12 Coercion Ring_to_AbelianGroup : Ring.type >-> AbelianGroup.type.

4.3 Linking structures and instances via Canonical Structures
We recall here how to use the Canonical Structures [17, 25] mechanism, which lets the user
extend the elaborator of Coq, in order to handle inheritance and inference of structure [1,
26, 13]. This software component takes as input a term as written by the user and has to
infer all the missing information that is necessary in order to make the term well typed.
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A first example of elaboration that requires canonical structures is 0 + 1. After removing
all syntactic facilities, the underlying Coq term is (add _ (zero _)) (one _) where _ stands
for an implicit piece of information to be inferred and the constants add and zero come from
the monoid structure while one comes from semirings. When the term is type checked each _
is replaced by a unification variable written ?v. Respectively, the head and the argument of
the top application can be typed as follows:

1 add ?M (zero ?M) : Monoid.sort ?M -> Monoid.sort ?M
2 one ?SR : SemiRing.sort ?SR

where ?M : Monoid.type and ?SR : SemiRing.type. In order to type check the applica-
tion Coq has to unify Monoid.sort ?M with SemiRing.sort ?SR, which is not trivial: it
amounts at finding a structure that is both a monoid and a semiring, possibly the smal-
lest one [26, Sect. 4]. This piece of information can be inferred from the hierarchy and
its inheritance relation (Definition 17) and we can tell Coq to exploit it by declaring
SemiRing_to_Monoid : SemiRing.type -> Monoid.type as canonical. With that hint Coq will
pick ?M to be SemiRing_to_Monoid ?SR as the canonical solution for this unification problem.
In general, all the coercions between structures must be declared as canonical.

Another example of elaboration problem is −1, which hides the term opp _ (one _). Here
opp and one are respectively from Abelian groups and semirings, which do not inherit each
other but whose smallest common substructure is rings; thus we have to extend the unifier
to solve a unification problem AbelianGroup.sort ?AbG = SemiRing.sort ?SR by instantiating
?AbG and ?SR with Ring_to_AbelianGroup ?R and Ring_to_SemiRing ?R respectively where ?R is
a fresh unification variable of type Ring.type. This hint can be given as follows:

1 Canonical AbelianGroup_to_SemiRing (S : Ring.type) :=
2 SemiRing.Pack (AbelianGroup.sort (Ring_to_AbelianGroup S)) (Ring.class S)).

Similarly, one can apply an algebraic theory to an instance (an example) of that structure,
e.g., 2× 3 where 2 and 3 have type Z. The same mechanism of canonical structures let us
extend the unifier to solve SemiRing.type ? = Z.

5 The implementation of HB in Coq-Elpi

The implementation is based on the Elpi extension language for Coq. In this section we
introduce the features of the programming language that came in handy in the development
of HB and comment a few code snippets.

Coq-Elpi [28] is a Coq plugin embedding Elpi and providing an extensive, high level,
API to access and script the Coq system at the vernacular level. This API lives in the
coq namespace and lets one easily declare records, coercions, canonical structures, modules,
implicit arguments, etc. The most basic Coq data type exposed to Elpi is the one of references
to global declarations:

1 kind gref type. % The data type of references to global terms
2 type indt inductive -> gref. % eg: Coq.Init.Datatypes.nat
3 type indc constructor -> gref. % eg: Coq.Init.Datatypes.O
4 type const constant -> gref. % eg: Coq.Init.Peano.plus

The arguments of the three constructors are opaque to Elpi, that can only use values of
these types via dedicated APIs. For example the API for declaring an inductive type will
generate a value of type inductive that is printed as, for example, «nat».
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Elpi [11] is a dialect of λProlog [19], an higher order logic programming language that
makes it easy to manipulate abstract syntax tree with binders. Coq-Elpi takes full advantage
of this capability by representing Coq terms in Higher Order Abstract Syntax [20] style,
reusing the binder of the programming language in order to represent Coq’s ones. Here is an
excerpt of the data type of Coq terms:

1 kind term type. % The data type of Coq terms
2 type global gref -> term. % eg: nat, O, S, plus, ...
3 type fun term -> (term -> term) -> term. % eg: fun x : t => b(x)
4 type app list term -> term. % eg: app [hd|args]
5 ... % all other term constructors are omitted for brevity

Note that the fun constructor holds a λProlog function. In this syntax the Coq term
(fun x : nat => x x) becomes (fun (global (indt «nat»)) x\ app[x, x]) where x\ binds
x in the body of the function. Substitution of a bound variable for a term can be computed
by applying a term (of function type) to an argument.

Data types with binders are also used as input to high level APIs that build terms behind
the scenes. For example a Coq record is just an inductive type and the API to declare one
must allow the type of a field to depend on the fields that comes before it. Note that the
field constructor takes a coercion flag, the name of the field, its type and binds a term in
the remaining record declaration.

1 kind indt-decl type. % The type of an inductive type declaration
2 type record string -> term -> string -> record-decl -> indt-decl.
3 type field bool -> string -> term -> (term -> record-decl) -> record-decl.
4 type end-record record-decl.
5 ... % constructors for non-record inductive types are omitted for brevity
6

7 external pred coq.env.add-indt i:indt-decl, o:inductive.
8 external pred coq.CS.canonical-projections i:inductive, o:list (option constant).

The pred keyword documents types and modes (input or output) of the arguments of
a predicate, while external signals that the predicate is a builtin (in other words it is
implemented in OCaml rather than λProlog).

We comment these two builtin predicates and the indt-decl type while looking at the
code of declare-structure that is in charge of scripting the following Coq code:

1 Structure type : Type := Pack { sort : Type; class : axioms sort }.

The following Elpi code builds the declaration, type checks it, adds it to the Coq
environment and finally returns the projections for the sort and the class fields.

1 pred declare-structure i:gref, o:term, o:term, o:term.
2

3 declare-structure ClassName Structure SortProjection ClassProjection :- std.do! [
4 StructureDeclaration =
5 record "type" {{ Type }} "Pack" (
6 field tt "sort" {{ Type }} s\
7 field ff "class" (app [global ClassName, s]) _\
8 end-record),
9 coq.typecheck-indt-decl StructureDeclaration,

10 coq.env.add-indt StructureDeclaration StructureName,
11 coq.CS.canonical-projections StructureName [some SortP, some ClassP],
12 Structure = global (indt StructureName),
13 SortProjection = global (const SortP),
14 ClassProjection = global (const ClassP),
15 ].
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Note that the binder s\ at line 6 lets one mention the first field in the type of the second.
The syntax {{ Type }} is a quotation: it lets one use the syntax of Coq to write an Elpi
expression of type term. The API coq.CS.canonical-projections lets us find the projections
automatically generated by Coq for a given record. The last detail worth mentioning is that
this program makes no use of backtracking: the std.do! combinator signals that.

In the simple case of the structure record, the number of fields, and hence the number of
binders, is fixed. On the contrary the class record has one field per mixin and each of them
can depend on the previous ones. In order to synthesize terms with binders in an inductive
fashion (using a recursive predicate) λProlog lets one postulate fresh nominal constants using
the pi operator and attach to the nominal some knowledge in the form of a clause via the =>
operator. This process is called binder mobility: the binder is moved from the data (that we
are building) to the program (the context of the current computation). This feature is key
to the following code that synthesizes the declaration of the fields of the class record.

1 pred synthesize-fields.field-for-mixin i:mixinname, o:term.
2 pred synthesize-fields i:list mixinname, i:term, o:record-decl.
3

4 synthesize-fields [] _ Decl :- Decl = end-record.
5 synthesize-fields [M|ML] T Decl :- std.do! [
6 get-mixin-modname M ModName, Name is ModName ^ "_mixin",
7 dep1 M Deps,
8 std.map Deps synthesize-fields.field-for-mixin Args,
9 Type = app[ global M, T | Args ],

10 Decl = (field ff Name Type f\ Fields f),
11 pi m\
12 synthesize-fields.field-for-mixin M m =>
13 synthesize-fields ML T (Fields m)
14 ].

The first predicate synthesize-fields.field-for-mixin is used to link a mixin to a
nominal that corresponds to the record field for that mixin. It has no clauses in the base
program but some clauses are added dynamically by synthesize-fields.

The second predicate proceeds by recursion on the (topologically sorted) list of mixins,
and terminates when the list is empty. If the list contains a mixin M then it crafts a Name for
it (line 6), fetches its dependencies (line 7) and finds the (previously declared) record fields
holding these mixins (line 8). The (std.map L1 P L2) predicate relates the two lists L1 and
L2 point wise using the predicate P.

Line 9 builds the type of the field: the mixin name applied to the type (sort) and all its
dependencies. Note that the Fields variable, representing the declaration of the next fields,
is under the binder for f (the current field). In order to make the recursive call under that
binder (line 13) and recursively process ML we postulate a nominal m (line 11) that is a term
satisfying any future dependency on the current mixin (line 12) and we replace f by m in
Fields by writing (Fields m).

6 Related work

The most closely related work is the one about Packed Classes [13] on which we build. The
main differences are that HB is a higher level language that is compiled down to (flat)
Packed Classes. The systematic use of factories makes the user interface of a hierarchy stable
under the insertion of structures, a property that Packed Classes lacks. Finally many of the
intricacies of Packed Classes are hidden to the user by the compilation step, in particular
creating all the necessary coercions and canonical structure declarations, especially in the case
of diamonds or when merging several libraries, which used to cause the need for a posteriori
validation of a hierarchy design [26]. It also opens the way to automatically detect and solve
problems tied to non judgmental commutative diagrams when forgetting structure [1].
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In [7] Carette and O’Connor describe the language of Theory Presentation Combinators
that can be used to describe a hierarchy of algebraic structures. They focus on the categorical
semantics of the language that is built upon the category of context. They do not describe
any actual compilation to the language of a mainstream interactive prover, indeed they claim
their language to be mostly type theory independent. We know they considered targeting
type theory and the language of unification hints [4] (a superset of the one of Canonical
Structures), but we could not find any written trace of that. Language-wise they provide
keywords such as combine and over to share (reuse) a property when defining a new structure.
For example in order to avoid restating the commutativity property when defining Abelian
groups they combine a commutative monoid and a group forcing the subjacent monoid
to coincide: CommutativeGroup := combine CommutativeMonoid , Group over Monoid.
In our language HB the same role is played by mixins. A mixin lets one write once and for
all a property and abstract it over types and operations so that it can be reused in all the
structures that need it. One operation HB allows for but that does not seem to be possible
in the setting of Presentation Combinators is the one of replacing an axiom with a lemma
and vice versa. As shown in subsection 2.1 HB supports that.

The MMT system [22] provides a framework to describe formal languages in a logical
framework, providing good support for binders and notations. It also provides an expressive
module system to organize theories and express relations among them in the form of functors.
At the time of writing it provides limited support for elaborating user input taking systematic
advantage of the contents of the theories. The elaborator can be extended by the user writing
Scala code, and in principle use the contents of the libraries to make sense of an incomplete
expressions, but no higher level language or mechanism is provided.

The library of the Mizar system features a hierarchy of algebraic structures [15]. In spite
of lacking dependent types, Mizar provides the concept of attributed types and adjectives
that can be used to describe the signature of structures as one would do with a dependently
typed record and their properties as one would define a conjunctive predicate. The Mizar
language also provides the notion of cluster that is used to link structures: by showing that
property P implies property Q one can inform automation that structures characterized by
P are instances of structures characterized by Q. The foundational theory of Mizar features
an extensional notion of equality that makes it easy to share the signature or the properties
of structures by just requiring a proof of their equivalence that is in turn used by automation
to treat equivalent structures as equal.

The concepts of factory and builder presented here is akin to the AbstractFactory and
Builder pattern from “the Gang Of Four” design patterns [12] in the sense that factories
are used to build an arbitrary number of objects (here mixin instances).

7 Conclusion

In this paper we design and implement HB, a high level language to describe hierarchies of
algebraic structures. The implementation of HB is based on the Elpi extension language for
the Coq system and is available at https://github.com/math-comp/hierarchy-builder.
The implementation amounts to approximately a thousand lines of (commented) Elpi code
and tree hundred lines of Coq vernacular. It took less than one month to implement HB, but
its design took several years of attempts and fruitful discussions with the people we thank in
the front page of this paper.

The HB language is only loosely tied to Coq or even Type Theory. We believe it could
be adopted with no major change to other tools. Indeed the properties and invariants that
link factories, mixins and classes are key to rule out meaningless or ambiguous sentences

https://github.com/math-comp/hierarchy-builder
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and are not specific to our logic setting. Moreover most logics feature packing construction
similar to records.

The compilation scheme we present in section 4 is tied to dependent records, that are
available in Coq but also in other provers based on Type Theory such a Matita [3] and
Lean [10]. We chose the flat variant of Packed Classes as the target for HB because the
Mathematical Components library uses Packed Classes as well: As of today Packed Classes
offer the best compromise between flexibility and performance [17, Section 8] in Coq. Of
course one could imagine a future were other approaches such as telescopes [21] or unbundled
classes [27] would offer equal or better performances in Coq, or in another system. It is a
virtue of our work to provide a user language that is separate from the implementation one.
We believe it would take a minor coding effort to retarget HB to another bundling approach.

We leave to future work extending HB to support structures parametrized by structures
such as the one of module over a ring. We also leave to future work the automatic synthesis
of the notion of morphism between structures of the hierarchy.
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A Coq reference
1 Section OperationProperties.
2

3 Variables (T : Type) (e : T) (inv : T -> T) (op : T -> T -> T) (add : T -> T -> T).
4

5 Definition left_id := forall x, op e x = x.
6 Definition right_id := forall x, op x e = x.
7

8 Definition left_inverse := forall x, op (inv x) x = e.
9 Definition right_inverse := forall x, op x (inv x) = e.

10

11 Definition commutative := forall x y, op x y = op y x.
12 Definition associative := forall x y z, op x (op y z) = op (op x y) z.
13

14 Definition left_distributive := forall x y z, op (add x y) z = add (op x z) (op y z).
15 Definition right_distributive := forall x y z, op x (add y z) = add (op x y) (op x z).
16

17 End OperationProperties.

B Proof of addrC
1 Lemma addrC {R : Ring.type} : commutative (@add R).
2 Proof.
3 have innerC (a b : R) : a + b + (a + b) = a + a + (b + b).
4 by rewrite -[a+b]mul1r -mulrDl mulrDr !mulrDl !mul1r.
5 have addKl (a b c : R) : a + b = a + c -> b = c.
6 apply: can_inj (add a) (add (opp a)) _ _ _.
7 by move=> x; rewrite addrA addNr add0r.
8 have addKr (a b c : R) : b + a = c + a -> b = c.
9 apply: can_inj (add ^~ a) (add ^~ (opp a)) _ _ _.

10 by move=> x; rewrite /= -addrA addrN addr0.
11 move=> x y; apply: addKl (x) _ _ _; apply: addKr (y) _ _ _.
12 by rewrite -!addrA [in RHS]addrA innerC !addrA.
13 Qed.

C Full V4 code
1 From Coq Require Import ssreflect ssrfun ZArith.
2 From HB Require Import structures.
3

4 Declare Scope hb_scope.
5 Delimit Scope hb_scope with G.
6 Open Scope hb_scope.
7

8 (* Bottom mixin in Fig. 2. *)
9 HB.mixin Record Monoid_of_Type M := {

10 zero : M;
11 add : M -> M -> M;
12 addrA : associative add;
13 add0r : left_id zero add;
14 addr0 : right_id zero add;
15 }.
16 HB.structure Definition Monoid := { M of Monoid_of_Type M }.
17 Notation "0" := zero : hb_scope.
18 Infix "+" := (@add _) : hb_scope.
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19

20 (* Bottom right mixin in Fig. 2. *)
21 HB.mixin Record AbelianGroup_of_Monoid A of Monoid A := {
22 opp : A -> A;
23 addrC : commutative (add : A -> A -> A);
24 addNr : left_inverse zero opp add;
25 }.
26 HB.structure Definition AbelianGroup := { A of Monoid A & AbelianGroup_of_Monoid A }.
27 Notation "- x" := (@opp _ x) : hb_scope.
28 Notation "x - y" := (x + - y) : hb_scope.
29

30 (* Bottom left mixin in Fig. 2. *)
31 HB.mixin Record SemiRing_of_Monoid S of Monoid S := {
32 one : S;
33 mul : S -> S -> S;
34 mulrA : associative mul;
35 mul1r : left_id one mul;
36 mulr1 : right_id one mul;
37 mulrDl : left_distributive mul add;
38 mulrDr : right_distributive mul add;
39 mul0r : left_zero zero mul;
40 mulr0 : right_zero zero mul;
41 }.
42 HB.structure Definition SemiRing := { S of Monoid S & SemiRing_of_Monoid S }.
43 Notation "1" := one : hb_scope.
44 Infix "*" := (@mul _) : hb_scope.
45

46 Lemma addrN {A : AbelianGroup.type} : right_inverse (zero : A) opp add.
47 Proof. by move=> x; rewrite addrC addNr. Qed.
48

49 (* Top right factory in Fig. 2. *)
50 HB.factory Record Ring_of_AbelianGroup R of AbelianGroup R := {
51 one : R;
52 mul : R -> R -> R;
53 mulrA : associative mul;
54 mul1r : left_id one mul;
55 mulr1 : right_id one mul;
56 mulrDl : left_distributive mul add;
57 mulrDr : right_distributive mul add;
58 }.
59

60 (* Builder arrow from top right to bottom left in Fig. 2. *)
61 HB.builders Context (A : Type) (f : Ring_of_AbelianGroup A).
62

63 Fact mul0r : left_zero zero mul.
64 Proof.
65 move=> x; rewrite -[LHS]add0r addrC.
66 rewrite -{2}(addNr (mul x x)) (addrC (opp _)) addrA.
67 by rewrite -mulrDl add0r addrC addNr.
68 Qed.
69

70 Fact mulr0 : right_zero zero mul.
71 Proof.
72 move=> x; rewrite -[LHS]add0r addrC.
73 rewrite -{2}(addNr (mul x x)) (addrC (opp _)) addrA.
74 by rewrite -mulrDr add0r addrC addNr.
75 Qed.
76

77 Definition to_SemiRing_of_Monoid := SemiRing_of_Monoid.Build A _ mul mulrA
78 mul1r mulr1 mulrDl mulrDr mul0r mulr0.
79 HB.instance A to_SemiRing_of_Monoid.
80

81 HB.end.
82 HB.structure Definition Ring := { A of AbelianGroup A & Ring_of_AbelianGroup A }.
83

84
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85 (* Top left factory in Fig. 2. *)
86 (* It is an exact copy of the bottom right mixin. *)
87 HB.factory Definition Ring_of_SemiRing R of SemiRing R := AbelianGroup_of_Monoid R.
88 (* The corresponding builder is the identity. *)
89 HB.builders Context (R : Type) (f : Ring_of_SemiRing R).
90 Definition to_AbelianGroup_of_Monoid : AbelianGroup_of_Monoid R := f.
91 HB.instance R to_AbelianGroup_of_Monoid.
92 HB.end.
93

94 (* Right-most factory in Fig. 2. *)
95 HB.factory Record Ring_of_Monoid R of Monoid R := {
96 one : R;
97 opp : R -> R;
98 mul : R -> R -> R;
99 addNr : left_inverse zero opp add;

100 addrN : right_inverse zero opp add;
101 mulrA : associative mul;
102 mul1r : left_id one mul;
103 mulr1 : right_id one mul;
104 mulrDl : left_distributive mul add;
105 mulrDr : right_distributive mul add;
106 }.
107

108 HB.builders Context (R : Type) (f : Ring_of_Monoid R).
109

110 Lemma addrC : commutative (add : R -> R -> R).
111 Proof. (* Exactly the same as in Appendix B. *)
112 have innerC (a b : R) : a + b + (a + b) = a + a + (b + b).
113 by rewrite -[a+b]mul1r -mulrDl mulrDr !mulrDl !mul1r.
114 have addKl (a b c : R) : a + b = a + c -> b = c.
115 apply: can_inj (add a) (add (opp a)) _ _ _.
116 by move=> x; rewrite addrA addNr add0r.
117 have addKr (a b c : R) : b + a = c + a -> b = c.
118 apply: can_inj (add ^~ a) (add ^~ (opp a)) _ _ _.
119 by move=> x; rewrite /= -addrA addrN addr0.
120 move=> x y; apply: addKl (x) _ _ _; apply: addKr (y) _ _ _.
121 by rewrite -!addrA [in RHS]addrA innerC !addrA.
122 Qed.
123

124 (* Builder to the bottom right mixin. *)
125 Definition to_AbelianGroup_of_Monoid :=
126 AbelianGroup_of_Monoid.Build R opp addrC addNr.
127 HB.instance R to_AbelianGroup_of_Monoid.
128

129 (* Builder to the top right factory, which is compiled to the bottom left mixin. *)
130 Definition to_Ring_of_AbelianGroup := Ring_of_AbelianGroup.Build R one mul
131 mulrA mul1r mulr1 mulrDl mulrDr.
132 HB.instance R to_Ring_of_AbelianGroup.
133

134 HB.end.

FSCD 2020





The New Rewriting Engine of Dedukti
Gabriel Hondet
Université Paris-Saclay, ENS Paris-Saclay, CNRS, Inria, Laboratoire Spécification et Vérification,
Gif-sur-Yvette, France
http://www.lsv.fr/~hondet/

Frédéric Blanqui
Université Paris-Saclay, ENS Paris-Saclay, CNRS, Inria, Laboratoire Spécification et Vérification,
Gif-sur-Yvette, France
http://rewriting.gforge.inria.fr/

Abstract
Dedukti is a type-checker for the λΠ-calculus modulo rewriting, an extension of Edinburgh’s logical
framework LF where functions and type symbols can be defined by rewrite rules. It therefore
contains an engine for rewriting LF terms and types according to the rewrite rules given by the user.
A key component of this engine is the matching algorithm to find which rules can be fired. In this
paper, we describe the class of rewrite rules supported by Dedukti and the new implementation of
the matching algorithm. Dedukti supports non-linear rewrite rules on terms with binders using
higher-order pattern-matching as in Combinatory Reduction Systems (CRS). The new matching
algorithm extends the technique of decision trees introduced by Luc Maranget in the OCaml
compiler to this more general context.
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1 Introduction

Dedukti is primarily a type-checker for the so-called λΠ-calculus modulo rewriting, λΠ/R,
an extension of Edinburgh’s logical framework LF [9] where function and type symbols can
be defined by rewrite rules. This means that Dedukti takes as input type declarations and
rewrite rules, and check that expressions are well typed modulo these rewrite rules and the
β-reduction of λ-calculus.

The λΠ-calculus is the simplest type system on top of the pure untyped λ-calculus
combining both the usual simple types of (functional) programming (e.g. the type N→ N of
functions from natural numbers to natural numbers) with value-dependent types (e.g. the
type Πn : N, V (n) of vectors of some given dimension). In fact, a simple type A→ B is just
a particular case of dependent type Πx : A, B where x does not occur in B. Syntactically,
this means that types are not defined prior to terms as usual, but that terms and types are
mutually defined.

Moreover, in λΠ/R, a term of type A is also seen as a term of type B if A and B are
equivalent not only modulo β-reduction but also modulo some user-defined rewrite rules
R. Therefore, to check that a term t is of type A, one has to be able to check when two
expressions are equivalent modulo β-reduction and rewrite rules. This is why there is a
rewriting engine in Dedukti.
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Thanks to the Curry-Howard correspondence between λ-terms and proofs on the one
hand, and (dependent) types and formulas on the other hand, Dedukti can be used as a
proof checker. Hence, in recent years, many satellite tools have been developed in order
to translate to Dedukti proofs generated by automated or interactive theorem provers:
Krajono for Matita, Coqine for Coq, Holide of OpenTheory (HOL Light, HOL4), Focalide
for Focalize, Isabelle, Zenon, iProverModulo, ArchSAT, etc. [1].

By unplugging its type verification engine to only retain its rewriting engine, Dedukti
can also be used as a programming language. Thanks to its rewriting capabilities, Dedukti
can be used to apply transformation rules on terms and formulas with binders [18, 4].

A rewrite rule is nothing but an oriented equation [2]. Rewriting consists in applying
some set of rewrite rules R (and β-reduction) as long as possible so as to get a term in (weak
head) normal form. At every step it is therefore necessary to check whether a term matches
some left-hand side of a rule of R. It is therefore important to have an efficient algorithm to
know whether a rule is applicable and select one:

I Example 1. Consider the following rules in the new Dedukti syntax (pattern variables are
prefixed by $ to avoid name clashes with other symbols):

rule f (c (c $x)) a ↪→ $x
with f $x b ↪→ $x

To select the correct rule to rewrite a term, the naive algorithm matches the term against
each rule left-hand side from the top rule to the bottom one. Let us apply the algorithm on
the matching of the term t = f (c (c e)) b.

The first argument of t is matched against the first argument of the first left-hand side
c (c $x). As c (c e) matches c (c $x), it succeeds. However, when we pass to the second
argument, b does not match the pattern a. So the second rule is tried. Pattern $x filters
successfully c (c e), and b matches b, so it succeeds.

Yet, matching c (c e) against c (c $x) can be avoided. Indeed, if we start by matching
the second argument of f, then the first rule is rejected in one comparison. The only remaining
work is to match c (c e) against $x.

In [14], Maranget introduces a domain-specific language of so-called decision trees for
describing matching algorithms, and a procedure for compiling some set of rewrite rules
into this language. But his language and compilation procedure handle rewrite systems
whose left-hand sides are linear constructor patterns only. In Dedukti, as we are going
to see it soon, we use a more general class of patterns containing defined symbols and
λ-abstractions. They can also be non-linear and contain variable-occurrence conditions as in
Klop’s Combinartory Reduction Systems (CRS) [11].

In this paper, we describe an extension of Maranget’s work to this more general setting,
and present some benchmark.

Outline of the paper. In Section 2, we start by giving examples of the kind of rewrite rules
that can be handled by Dedukti, before giving a more formal definition. In Section 3, we
present our extension of Maranget’s decision trees, their syntax and semantics, and how
to compile a set of rewrite rules into this language. In Section 4, we compare this new
implementation with previous ones and other tools implementing rewriting. Finally, in
Section 5, we discuss some related work and conclude.
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2 Rewriting in Dedukti

We will start by providing the reader with various examples of rewrite rules accepted by
Dedukti before giving a formal definition. To this end, we will use the new Dedukti syntax
(see https://github.com/Deducteam/lambdapi). In this new syntax, one can use Unicode
characters, some function symbols can be written in infix positions and, in rewrite rules,
pattern variables need to be prefixed by $ to avoid name clashes with function symbols. Note
however that, for the sake of simplicity, we may omit some declarations.

Dedukti can of course handle the “Hello world!” example of first-order rewriting, the
addition on unary natural numbers, as follows:
symbol N: TYPE symbol 0: N symbol s: N →N

symbol +: N →N →N

rule 0 + $m ↪→ $m
with (s $n) + $m ↪→ s ($n + $m)

More interestingly is the fact that, in constrast to functional programming languages
like OCaml, Haskell or Coq, rule left-hand sides can overlap each other. Consequently, in
Dedukti, addition on unary numbers can be more interestingly defined as follows:
rule 0 + $m ↪→ $m
with (s $n) + $m ↪→ s ($n + $m)
with $m + 0 ↪→ $m
with $m + (s $n) ↪→ s ($m + $n)

With the first definition, one has 0 + t equivalent to t modulo rewriting, written 0 + t ' t,
for all terms t (of type N), but not t+ 0 ' t. Hence, the interest of the second definition.

It is also possible to match on defined symbols and not just on constructors like in
usual functional programming languages. Hence, for instance, one can add the following
associativity rule on addition:
rule ($x + $y) + $z ↪→ $x + ($y + $z)

Moreover, one can use non-linear patterns, that is, require the equality of some subterms
to fire a rule like in:
rule $x + (- $x) ↪→ 0

Therefore, Dedukti can handle any first-order rewriting system [2]. But it can also
handle higher-order rewriting in the style of Combinatory Reduction Systems (CRS) [11].

The simplest example of higher-order rewriting is given by the map function on lists,
which applies an argument function to every element of a list:
symbol map: (N →N) → List → List

rule map $f (cons $x $l) ↪→ cons ($f $x) (map $f $l)

Unlike first-order rewriting, function symbols can be partially applied, including in
patterns. Hence, in Dedukti, one can write the following:
symbol id: N →N

rule id $x ↪→ $x
rule plus 0 ↪→ id with plus (s $n) $m ↪→ s (plus $n $m)
rule map id $l ↪→ $l
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It is also possible to match λ-abstractions as follows:

symbol cos: R → R

symbol sin: R → R

symbol *: (R → R) → (R → R) → (R → R)
symbol diff: (R → R) → (R → R)

rule diff(λx,sin($v[x])) ↪→ diff(λx,$v[x]) * cos

Following the definition of CRS, in a rule left-hand side, a higher-order pattern variable
can only be applied to distinct bound variables (this condition could be slightly relaxed
though [13]). A similar condition appears in λProlog [15]. It ensures the decidability of
matching.

It can also be used to check variable-occurrence conditions. The differential of a constant
function can thus be simply defined as follows in Dedukti:

rule diff(λx,$v) ↪→ λx,0

While in the rule for sin, we had $v [x], meaning that the term matching $v [x] may
depend on x, here we have $v applied to no bound variables, meaning that the term matching
$v cannot depend on x.

2.1 Terms, Patterns, Rewrite Rules and Matching, Formally
We now define more formally terms, patterns, rewrite rules and rewriting. Following [3], the
terms of the λΠ-calculus are inductively defined as follows:

t, u ::= TYPE | KIND | x | f | tu | λx : t, u | Πx : t, u

where x is a term variable, f is a function symbol, tu is the application of the function t to
the term u, λx : t, u is the function mapping x of type t to u, which type is the dependent
product Πx : t, u. The simple type t→ u is syntactic sugar for Πx : t, u where x is any fresh
term variable not occurring in u.

In λx : t, u and Πx : t, u, the occurrences of x in u are bound, and terms equivalent
modulo renaming of their bound variables are identified, as usual. In Dedukti, this is
implemented by using the Bindlib library [12].

A (possibly empty) ordered sequence of terms t1, . . . , tn is written ~t for short.
Patterns are inductively defined as follows:

p ::= $x [~y] | f~p | λy, p

where $x is a pattern variable and ~y is a sequence of distinct bound variables.
A rewrite rule is a pair of terms, written `→ r, such that ` is a pattern of the form f~p

and every pattern variable occurring in r also occurs in `.
In the following, we will assume given a set of user-defined rewrite rules R.
Matching a term t against a pattern p whose bound variables are in the set V , written

p �V t is inductively defined as follows:

$x [~y] �V t iff FV(t) ∩ V ⊆ {~y} (MatchFv)
f p1 . . . pn �V f t1 . . . tn iff (p1 . . . pn) �V (t1 . . . tn) (MatchSymb)

λy, p �V λy : A, t iff p �V ]{y} t (MatchAbst)
(p1 . . . pn) �V (t1 . . . tn) iff ∀i, pi �V ti ∧ ∀j, pi = pj ⇒ ti = tj (MatchTuple)

and we say that the term t matches the pattern p or that the pattern p filters the term t.
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The indexing set V of variables is used to record which binders have been traversed,
which is necessary to perform variable-occurrence tests.

The condition in the (MatchTuple) rule translates non-linearity conditions: if a variable
occurs twice in a pattern, then the matching values must be equal.

3 Implementing Matching With Decision Trees

The rewriting engine described in this paper is based on the work of Maranget [14]. Maranget
introduces a domain-specific language for matching and an algorithm to transform a (ordered)
list of first-order linear constructor patterns into a program in this language. In this section,
we explain how we extend Maranget’s language and compilation procedure to our more
general setting with non-linear higher-order patterns, partially applied function symbols, and
no order on patterns.

We start by defining the language of decision trees D and switch case lists L:

D,E ::= Leaf(r) | Fail | Swapi(D) | Store(D) | Switch(L)
| BinNl(D, {i, j}, E) | BinCl(D, (n,X), E)

L ::= (s,D)::L | (λ,D)::Lλ | T
Lλ ::= (s,D)::Lλ | T
T ::= (∗, D)::nil | nil

where r is a rule right-hand side, i, j and n are integers, X is a finite set of variables. For
case lists, s is a function symbol annotated with the number of arguments it is applied to, ::
is the cons operator on lists and nil is the empty list.

An element of a switch case list is a pair mapping:
a function symbol s to a tree for matching its arguments,
a λ to a tree for matching the body of an abstraction,
a default case ∗ to a tree for matching the other arguments.

Note that a list Lλ has no element (λ,D) and, in a list L, there is at most one element of
the form (λ,D). Finally, in both cases, there is at most one element of the form (∗, D) and,
if so, it is the last one (default case).

Semantics. Decision trees are evaluated along with a stack of terms ~v to filter and an
array ~s used by the decision tree to store elements. Informally, the semantics of each tree
constructor is as follows:
Leaf(r) matching succeeds and yields right-hand side r.
Fail matching fails.
Swapi(D) moves the ith element of ~v to the top of ~v and carries on with D.
Store(D) stores the top of the stack into ~s and continues with D.
Switch(L) branches on a tree in L depending on the term on top of ~v.
BinNl(D, {i, j}, E) checks whether si and sj are equal and continues with D if this is the

case, and E otherwise.
BinCl(D, (n, X), E) checks whether FV(sn) ⊆ X and continues with D if this is the case,

and with E otherwise.

I Example 2. The matching algorithm described in Example 1 can be represented by the
following decision tree:

Swap2(Switch([(a0, Switch([(c0, Switch([(c0, Leaf($x))]))]));
(b0, Leaf($x))]))
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$x
b

$x
cc

a

Figure 1 Graphical representation of the decision tree of Example 2.

which can be graphically represented as follows: where leaves are the right-hand sides of the
rewrite rules and a path from the root to a leaf is a successful matching. The tree of Figure 1
can be used to rewrite any term of the form f ~t. The sequence of operations to filter the
term f (f a) b can be read from the tree. The initial vector ~v is ~v = (f a, b) and the array ~s
won’t be necessary here.
1. The Swap2 transforms ~v into (b, f a), so the next operations will be carried out on b.
2. The Switch node with the case list [(a0, D), (b0, E)] allows to branch on D or E depending

on the term on top of ~v, that is, b. Since b is applied to no argument, it matches b0 and
filtering continues on E. The stack is now ~v = (f a).

3. Node E is in fact a Leaf and so the matching succeeds.
Note that the top symbol f is not matched. Top symbols are analysed prior to filtering as
they are needed to get the appropriate decision tree to filter the arguments.

The formal semantics is given in Figure 2. An evaluation is written as a judgement
~v,~s, V ` D  r which can be read: “stack ~v, store ~s and abstracted variables V yield the
term r when matched against tree D”. We overload the comma notation, using it for the
cons (s, ~v) and the concatenation (~v, ~w). The | is used as the alternative.

Matching succeeds with the Match rule. Terms are memorised on the stack ~s using the
Store rule. Matching on a symbol is performed with the SwitchSymb rule. If the stack has
a term f applied on top and the switch-case list L contains an element (f, D), then the symbol
f can be removed, and matching continues using sub-tree D. The rule SwitchDefault
allows to match on any symbol or abstraction, provided that the switch-case list L has a
default case (and that we can apply neither rule SwitchSymb nor SwitchAbst). The
binary constraint rules guide the matching depending on failure or success of the constraints.
The last three rules allow to search for a symbol in a switch-case list. A judgement s ` L p

reads “looking for symbol s in list L yields pair p”. Cont skips a cell of the list, Default
returns unconditionally the default cell of the list (which is the last by construction) and
Found returns the cell that matches the symbol looked for.

3.1 Matrix Representation of Rewrite Systems
In order to compile a set of rewrite rules into this language, it is convenient to represent rewrite
systems as tuples containing a matrix and three vectors. The matrix contains the patterns
and can have lines of different lengths because function symbols can be partially applied.
The vectors contain the right-hand side of the rewriting system and the constraints. Hence, a
rewrite system for a function symbol f , that is, a set of rewrite rules f~p1 → r1, . . . , f~pm → rm

is represented by:

p1

1 · · · p1
n1

p2
1 · · · p2

n2
...

pm1 · · · pmnm

 ,

N1
N2
...
Nm

 ,

C1
C2
...
Cm

 ,

r1
r2
...
rm
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Match

~v;~s;V ` Leaf(k) k

Swap
(vi, . . . , v1, . . . , vn);~s;V ` D  k

(v1, . . . , vi, . . . vn);~s;V ` Swapi(D) k

Store
~v;~s v1;V ` D  k

~v;~s;V ` Store(D) k

SwitchSymb
f ` L (f, D) (~w,~v);~s;V ` D  k

(f ~w,~v);~s;V ` Switch(L) k

SwitchDefault
(s` | λ) ` L (∗, D) ~v;~s;V ` D  k

((sw1 · · · w` | λx, w), ~v);~s;V ` Switch(L) k

SwitchAbst
λ ` L (λ,D) (w,~v);~s;V ∪ {x} ` D  k

(λx, w,~v);~s;V ` Switch(L) k

BinClSucc
FV(si) ∩X ⊆ V ~v;~s;V ` D  k

~v;~s;V ` BinCl(D, {i, j}, E) k

BinClFail
FV(si) ∩X 6⊆ V ~v;~s;V ` E  k

~v;~s;V ` BinCl(D, (i,X), E) k

BinNlSucc
sj = sj ~v;~s;V ` D  k

~v;~s;V ` BinNl(D, (i,X), E) k

BinNlFail
si 6= sj ~v;~s;V ` E  k

~v;~s;V ` BinNl(D, (i,X), E) k

Found

s ` (s,D) :: L (s,D)

Default

s ` (∗, D) (∗, D)

Cont
s 6= s′ s ` L (s|∗, D)
s ` (s′, D) :: L (s|∗, D)

Figure 2 Evaluation of decision trees.

where Ci encodes the variable-occurrence constraints in ~pi and Ni encodes non-linearity
constraints in ~pi.

A variable-occurrence constraint given by a pattern variable $x [~y] is encoded as a pair
(a, ~y) where a is the position of the variable in the main term.

Non-linearity constraints between two terms at positions a and b are encoded by the
unordered pair {a, b}.

In the above matrix, we can then replace a pattern of the form $x [~y] or $x by _.
For the sake of completeness, we recall the definition of positions:

I Definition 3 (Positions in a term). The set of positions of a term t is the set of words over
the alphabet of positive integers inductively defined as follows:
Pos(x) , {ε}
Pos(f t1 · · · tn) , {ε} ∪

⋃n
i=1{ia | a ∈ Pos(ti)}

Pos(λx, t) , {ε} ∪ {1a | a ∈ Pos(t)}
The position ε is called the root position of the term t and the symbol at this position is called
the root symbol of t.

For a ∈ Pos(t), the subterm of t at position a, denoted by t|a, is defined by induction on
the length of a, t|ε , t and f t1 · · · tn|ia , ti|a

The notion of position is extended to sequences of terms by taking ~t
∣∣
ia
, ti|a.
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I Example 4. The rewrite system

rule f a (λx,λy,$g[x]) ↪→ 0
with f $x $x ↪→ 1
with f a b ↪→ 2

is represented by the following matrix:a λx, λy, _
_ _
a b

 ,
 ∅
{{1, 2}}
∅

 ,
{(211, (x))}

∅
∅

 ,
0

1
2

 .

The variable-occurence constraint of the first rule is encoded by (211, (x)) since only the
variable x is authorised in $g [x]. The non-linearity constraint f &x &x is translated by {1, 2},
hence the constraints set {{1, 2}}.

3.2 Compiling Rewrite Systems to Decision Trees
We will describe the compilation process as a non-deterministic recursively defined relation
B between matrices and decision trees.

To this end, we use the transformations on matrices defined in Table 1.
Spec

(
f, a,

(
P, ~N, ~C,~r

))
keeps rows whose first pattern filters the application of function

f a arguments:

I Example 5. Let P =


r $x q

r f $x
$x r

λx, $x λx, r

. Then,

Spec
(

r, 1,
(
P, ~N, ~C,~r

))
=
([

$x q
_ r

]
, ~N, ~C,

[
r1
r3

])

Specλ
((
P, ~N, ~C,~r

))
keeps rows whose first pattern filters a λ-abstraction:

I Example 6. Let P be the same as in Example 5.

Specλ
(
P, ~N, ~C,~r

)
=
([

_ r
$x [x] λx, r

]
, ~N, ~C,

[
r3
r4

])

Def
(
P, ~N, ~C,~r

)
keeps rows whose first pattern is a pattern variable:

I Example 7. Let P be the same as in Example 5.

Def
(
P, ~N, ~C,~r

)
=
([

r
]
, ~N, ~C,

[
r3
])

To sum up, given a pattern matrix P , a simplification function removes rows of P that are
not compatible with some assumption on the form of the first pattern.

The same idea is used for constraints. Note that we will abuse set notations and write
k ∈ N or N\{k} even if N is not a set of elements of the type of k. In that case k ∈ N is
false and N\{k} is N .

csucc(k, (P, ~N, ~C,~r)) keeps all the rows and simplify the constraint sets

csucc(k, (~p,N,C, r)) , (~p,N\{k}, C\{k}, r)
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Table 1 Decomposition operators.

Pattern pj1 Rows of Spec(f, a, P → A) Rows of Specλ(P → A) Rows of Def(P → A)

f q1 · · · qa q1 · · · qa pj2 · · · pjn No row No row
f q1 · · · qb No row if a 6= b No row No row
f q1 · · · qb No row No row No row
λx, q No row q pj2 · · · pjn No row

_
×a︷ ︸︸ ︷

_ · · · _ _ pj2 · · · pjn pj2 · · · pjn

cfail(k, (P, ~N, ~C,~r)) keeps rows that don’t have k in their constraint sets

cfail(k, (~p,N,C, r)) ,
{
No row if k ∈ N or k ∈ C
(~p,N,C, r) if k 6∈ N and k 6∈ C

A compilation process consists in reducing the matrix step by step, compiling the sub-
matrices and aggregating the sub-trees obtained using the node that corresponds to the
computed sub-matrices (e.g. a Switch if the Spec, Def and Specλ sub-matrices have been
computed).

To say that the matrix
(
P, ~N, ~C,~r

)
compiles to the decision tree D, we write

(
~ρ,
(
P, ~N, ~C,~r

)
, n, E

)
BD

where:
~ρ are the positions in the term that will be matched against during evaluation.
E is a map from positions to integers such that E(ρ) is the index in ~s of the subterm at
position ρ used during the evaluation of decision trees. The empty map is denoted ∅.
n is the size of the store, which is incremented each time an element is added.

We now describe the compilation process implemented in Dedukti:

I Definition 8 (Compilation). 1. If the matrix P has no row (m = 0), then matching always
fails, since there is no rule to match,

~ρ,
(
∅, ~N, ~C,~r

)
, n, E B Fail (2)

2. If there is a row k in P composed of unconstrained variables, matching succeeds and yields
right-hand side r~ρ,



p1
1 · · · p1

n1
N1 C1 → r1
...

_ · · · _ ∅ ∅ → rk
...

pm1 · · · pmnm
Nm Cm → rm

 , n, E

B Leaf(rk) (3)

3. Otherwise, there is at least one row with either a symbol or a constraint or an abstraction.
We can choose to either specialise on a column or solve a constraint.
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a. Consider a specialisation on the first column, assuming it contains at least a symbol or
an abstraction.
If ρ1 is constrained in some Ni or Ci, then define n′ = n+ 1 and E ′ = E ∪ {ρ1 7→ n}.
Otherwise, let n′ = n and E ′ = E.
Let Σ be the set of root symbols of the terms of the first column and k the number of
arguments f is applied to. Then for each f ∈ Σ, we compile(

(ρ1|1 · · · ρ1|k ρ2 · · · ρn),Spec
(
f, k,

(
P, ~N, ~C,~r

))
, n′, E ′

)
BDfk

Let L be the switch case list defined as (we use the bracket notation for list comprehen-
sion as the order is not important here)

L , [(f,Dfk
)|f ∈ Σ]

If there is an abstraction in the column, the Specλ sub-matrix is computed and compiled
to Dλ, and an abstraction case is added to the mapping(

(ρ1|1 ρ2 · · · ρn),Specλ
((
P, ~N, ~C,~r

))
, n′, E ′

)
BDλ

L , [(s,Dfk
) | f ∈ Σ]::(λ,Dλ)::nil

Similarly, if the column contains a variable, the Def sub-matrix is computed and
compiled to D∗, and the mapping is completed with a default case, (the abstraction
case may or may not be present)(

(ρ2 · · · ρn),Def
((
P, ~N, ~C,~r

))
, n′, E ′

)
BD∗

L , [(fk, Dfk
)|s ∈ Σ]::(λ,Dλ)::(∗, D∗)::nil

Now that the switch case list L is complete (all the symbols, the abstractions and the
pattern variables are handled) and the sub-trees are defined and related to their pattern
matrix, we can create the top node Switch(L).
Furthermore, if ρ1 is constrained, the term must be saved during evaluation. In that
case, we add a Store node,(

~ρ,
(
P, ~N, ~C,~r

)
, n, E

)
B Store(Switch(L)).

Otherwise,(
~ρ,
(
P, ~N, ~C,~r

)
, n, E

)
B Switch(L).

b. If a term has been stored and is subject to a closedness constraint, then this constraint
can be checked.
That is, for any position µ such that E(µ) is defined and there is a constraint set Ci
and a variable set V such that (µ, V ) ∈ Ci, we compute the sub-matrices csucc and
cfail and we compile them to Ds and Df ,(

~ρ, csucc
(

(µ, V ),
(
P, ~N, ~C,~r

))
, n, E

)
BDs(

~ρ, cfail
(

(µ, V ),
(
P, ~N, ~C,~r

))
, n, E

)
BDf

with (µ,X) ∈ F j for some row number j and we finally define(
~ρ,
(
P, ~N, ~C,~r

)
, n, E

)
B BinCl(Ds, (E(µ), X), Df )
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c. A non linearity constraints can be enforced when the two terms involved in the constraint
have been stored, that is, when there is a couple {µ, ν} (µ 6= ν) such that E(µ) and
E(ν) are defined and there is a row j such that {µ, ν} ∈ Nj. If it is the case, then
compute csucc, cfail and compile them,(

~ρ, csucc
(
{µ, ν},

(
P, ~N, ~C,~r

))
, n, E

)
BDs(

~ρ, cfail
(
{µ, ν},

(
P, ~N, ~C,~r

))
, n, E

)
BDf

and define(
~ρ,
(
P, ~N, ~C,~r

)
, n, E

)
B BinNl(Ds, {E(i), E(j)}, Df )

4. If column i contain either a symbol, an abstraction or a constraint, and each pattern
vector of P is at least of length i, then compile

(
~µ,
(
P ′, ~N, ~F ,~r

)
, n, E

)
B D′ where

~µ = (ρi ρ1 . . . ρn) and P ′ is P with column i moved to the front; to build(
~ρ,
(
P, ~N, ~C,~r

)
, n, E

)
B Swapi(D′) (4)

I Example 9 (Example 1, 2 continued). We consider again the rewriting system used in
Example 1. We start by computing the matrices:

(P, ∅, ∅, ~r) ,
([

c (c _) a
_ b

]
,

[
∅
∅

]
,

[
∅
∅

]
,

[
$x
$x

])
.

1. We saw that it is better to start examining the second argument, so we start by swapping

columns of the matrix, P ′ =
[
a c (c _)
b _

]
, define D such that (2 1), (P ′, ∅, ∅, ~r) , 0, ∅BD.

and we thus have

((1 2), (P, ∅, ∅, ~r) , 0, ∅)B Swap2(D).

2. To continue and compute D, we can match on the symbols of the first column of P ′ with
a Switch node. For this, we compute
Pa = Spec(a, 0, P ′) =

[
c (c _)

]
, and

Pb = Spec(b, 0, P ′) =
[
_
]
.

Then we computeDa andDb such that (2, (Pa, ∅, ∅, ~r) , 0, ∅)BDa and (2, (Pb, ∅, ∅, ~r) , 0, ∅)B
Db. The switch case list L , [(a0, Da), (b0, Db)] can be defined and so the compilation
step produces

((2 1), (P ′, ∅, ∅, ~r) , 0, ∅)B Switch(L).

3. Since Pb contains only unconstrained variables, we are in the case item 2 and so we have
(1, (Pb, ∅, ∅, $x) , 0, ∅)B Leaf($x).

4. A specialisation on Pa with respect to c can be performed, let Qa , Spec(c, 0, Pa) =
[
c _

]
and define E such that (1, (Qa, ∅, ∅, $x) , 0, ∅)B E. The compilation step produces

(1, (Pa, ∅, ∅, $x) , 0, ∅)B Switch([(c, E)]).

5. Similarly, we can specialise Qa on c yielding the matrix
[
_
]
which compiles to Leaf. We

thus have,

(1, (Qa, ∅, ∅, $x) , 0, ∅)B Switch([(c, Leaf($x))]).
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Table 2 Time needed to solve Sudoku and SAT formulae in seconds.

Sudoku DPLL-SAT
easy med hard 2_ex ok_50x80

Dedukti2.6 0.7 7.7 8 min 43 2 10
Lambdapi1.0 1.2 13 16 min 2 1.6 10
Dedukti3.0 0.5 5.2 5 min 15 0.2 2

The soundness and completeness proofs for this compilation process can be found in [10].
We have seen that at each compilation step, several options are possible. The stack

can be swapped with Swap to orient the filtering. If a constraint can be solved, either is
is solved with a BinNl or BinCl node, or a Switch can be performed. These possibilities
make the compilation process undeterministic. Therefore, a given matrix can be compiled to
several decision trees. Maranget compares different heuristics based on the shape of patterns
as well as some more complex ones. In Dedukti, since verifying constraints can involve
non trivial operations (non-linearity and variable occurrence tests), constraint checking is
postponed as much as possible. Regarding Swap, we process in priority columns that have
many constructors and few constraints.

4 Results

This section compares the performance of the new rewriting engine with previous implement-
ations of Dedukti, and other tools as well.

4.1 Hand-written examples
We consider 3 different implementations of Dedukti:

Dedukti2.6 is the latest official release of Dedukti available on opam. Its matching
algorithm also implements decision trees but non-linearity and variable-occurrence con-
straints are not integrated in decision trees. Its implementation, primarily due to Ronan
Saillard [17], is available on https://github.com/Deducteam/dedukti.
Lambdapi1.0 is an alternative implementation of Dedukti due to Rodolphe Lepigre
[12]. It implements a naive algorithm for matching. It is available on https://github.
com/rlepigre/lambdapi/tree/fix_ho.
Dedukti3.0 is our new implementation of Dedukti. It adds to Lambdapi1.0 the
decision trees described in this paper. It is available on https://github.com/Deducteam/
lambdapi.

The git repository https://github.com/deducteam/libraries contains several hand-
written Dedukti examples, including a Sudoku solver with 3 examples labelled easy, medium
and hard respectively, and a DPLL-based SAT solver to decide the satisfiability of proposi-
tional logic formulae in conjunctive normal form with two example files:

2_ex contains a function that when given a integer n, produces n literals named vn and
the formula p(0) = v0 ∧

∧n
k=1(p(k) = p(k − 1) ∧ (vk−1 6= vk))

ok_50x80 contains a formula with 50 literals and 80 clauses of the form ¬x ∨ ¬y ∨ ¬z.
Because of the nature of the problems, they require a substantial amount of rewriting steps
to be solved.

https://github.com/Deducteam/dedukti
https://github.com/rlepigre/lambdapi/tree/fix_ho
https://github.com/rlepigre/lambdapi/tree/fix_ho
https://github.com/Deducteam/lambdapi
https://github.com/Deducteam/lambdapi
https://github.com/deducteam/libraries
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Table 2 shows the performance of each tool on these examples. Using decision trees
increases significantly performance on Sudoku since Lambdapi1.0 is twice as slow as De-
dukti2.6 which is slower than Dedukti3.0. SAT problems confirm that Dedukti3 is more
efficient than Lambdapi1.0 and Dedukti2.

More benchmarks are described in [10].

4.2 Rewriting Engine Competition (REC)
The Rewriting Engine Competition1 (REC), first organized in 2009, aims to compare rewriting
engines. F. Duràn and H. Garavel revived the competition in 2018, and another study has
been done in 2019 [5]. There are 14 rewriting engines tested, among which Haskell’s GHC
and OCaml.

REC problems are written in a specific REC syntax which is then translated into one
of the 14 target languages with Awk scripts. To use REC benchmarks with Dedukti, a
translation from Haskell benchmarks to Dedukti has been implemented2.

Our rewriting engine3 has been compared on the problems that do not use conditional
rewriting with OCaml and Haskell. For each language, we have measured both the
interpretation time with ocaml and runghc, and the compiling and running time with
ocamlopt and ghc. The results are in Table 3.

We can divide our observations on classes of problems. There are 43 problems, among
which 22 are solved in less that one second by at least two other solvers than Dedukti (the
first group of the table). On these problems, our rewriting engine is in average 4 times faster
than the median of the other rewriting engines. The second group contains problems on
which no other tool than Dedukti needs more than ten seconds. On this group, Dedukti is
in average 10 times slower than the median of the other tools. However, Dedukti performs
better than interpreted OCaml on add8 and better than compiled OCaml on benchtree10.
On the last group, Dedukti is in average 60 times slower than other engines. Interestingly
ocamlopt has more memory overflows than Dedukti (7 against 4).

5 Conclusion & Related Work

This article describes the implementation of the new rewriting engine of Dedukti. It extends
Maranget’s techniques of decision trees used in the OCaml compiler [14] to the class of
non-linear higher-order patterns used in Combinatory Reduction Systems (CRS) [11]. We
define the language of decision trees and how to compile a set of rewrite rules into a decision
tree. We finally present some benchmarks showing good performances.

A similar algorithm had been implemented in Dedukti2.6 by Ronan Saillard [17].
However, Saillard’s rewriting engine used decision trees for first-order linear matching and
handled non-linearity and variable-occurrence constraints afterwards in a naive way. In the
new implementation, these constraints are fully integrated in decision trees.

Other rewriting engine uses decision trees as well like CRSX, which is a rewrite engine for
an extension of Combinatory Reduction Systems [16], and Maude under certain conditions
[8], but Maude considers first-order terms only.

1 http://rec.gforge.inria.fr
2 https://raw.githubusercontent.com/Deducteam/lambdapi/master/tools/rec_to_lp/rec_hs_to_

lp.awk
3 with commit a0009fdaa53b607c53ebb8d1ee3a58b8d4bb8bc1
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Table 3 Performance on REC benchmark in seconds. N/A is for out of memory. T/O is for timeout
(30 minutes). The last line indicates that on the langton7 problem, Dedukti ran out of memory, the
command runghc langton7.hs took 533.2 seconds to finish, ocaml langton7.ml took 101.7 seconds, ghc
langton7.hs && ./langton7 took 66 seconds and ocamlopt langton7.ml && ./a.out took 39.6 seconds.

Dedukti runghc ocaml ghc ocamlopt

revelt 0.026 0.517 0.065 0.271 0.168
check1 0.030 0.417 0.065 0.270 0.170
calls 0.017 0.416 0.065 0.271 0.168
check2 0.033 0.466 0.065 0.271 0.168
garbagecollection 0.033 0.416 0.115 0.271 0.170
fibonacci05 0.033 0.416 0.065 0.271 0.168
soundnessofparallelengines 0.033 0.467 0.065 0.271 0.168
factorial5 0.033 0.416 0.066 0.271 0.168
empty 0.033 0.416 0.065 0.271 0.170
revnat100 0.064 0.516 0.115 0.276 0.170
factorial6 0.065 0.467 0.066 0.271 0.169
tautologyhard 0.065 0.716 0.165 0.271 0.221
fibonacci18 0.115 0.466 0.065 0.275 0.170
fibonacci21 0.166 0.566 0.068 0.178 0.174
benchexpr10 0.165 0.667 0.266 0.275 0.221
benchsym10 0.165 0.667 0.266 0.275 0.221
natlist 0.165 0.868 0.266 0.275 0.220
fibonacci19 0.168 0.517 0.065 0.174 0.170
factorial7 0.215 0.467 0.065 0.275 0.170
fibonacci20 0.265 0.567 0.065 0.283 0.174
permutations6 0.366 0.868 0.115 0.299 0.182
factorial8 1.467 0.817 0.115 0.299 0.183

revnat1000 3.300 3.578 0.266 0.482 0.281
benchtree10 3.476 0.667 126.027 0.275 11.546
factorial9 N/A 2.974 N/A 0.532 0.282
permutations7 6.376 3.276 0.416 0.531 0.331
add8 10.899 N/A 12.605 0.232 N/A
benchsym20 14.335 6.581 1.067 0.734 0.381
benchexpr20 14.787 6.786 1.417 0.932 0.983

mul16 T/O 11.154 6.640 0.735 N/A
add32 T/O 19.714 8.640 0.331 N/A
benchtree20 N/A 21.333 T/O 3.301 T/O
mul32 T/O 27.562 10.444 1.638 N/A
benchsym22 54.491 23.534 2.727 1.435 0.833
benchexpr22 52.995 24.492 3.979 2.092 2.337
add16 79.472 22.697 7.140 0.303 N/A
mul8 167.500 4.479 3.771 0.331 N/A
omul32 T/O 49.863 25.251 1.885 N/A
benchtree22 N/A 101.176 T/O 10.047 T/O
revnat10000 400 244.459 6.987 19.241 4.092
omul8 797.406 5.430 3.971 0.381 N/A
langton6 N/A 377.208 75.709 38.437 24.463
langton7 N/A 533.197 101.695 66.093 39.640
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Other pattern-matching algorithm are also possible, in particular using backtracking
automata instead of trees, which allow to have smaller data structures. The interested reader
can look at Prolog implementations or Egison (see [6] and, more particularly on the question
of pattern matching, [7]).

Further useful extensions would be interesting: conditional rewrite rules (the REC data-
base contains many files with conditional rewrite rules) and matching modulo associativity and
commutativity (AC). Conditional rewriting could be implemented without too much difficulty
since it would consist in extending the constraints mechanism which is modular. A prototype
implementation of matching modulo AC has already been developed for Dedukti2.6 by
Gaspard Férey4 but performances are not very good yet. This new implementation could
provide a better basis to implement matching modulo AC.
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Abstract
Wanda is a fully automatic termination analysis tool for higher-order term rewriting. In this paper,
we will discuss the methodology used in Wanda. Most pertinently, this includes a higher-order
dependency pair framework and a variation of the higher-order recursive path ordering, as well as
some non-termination analysis techniques and delegation to a first-order tool. Additionally, we will
discuss Wanda’s internal rewriting formalism, and how to use Wanda in practice for systems in two
different formalisms. We also present experimental results that consider both formalisms.
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1 Introduction

Termination of term rewriting systems has been an area of active research for several
decades. This concerns not only the analysis of pure term rewriting, but also many variants,
such as context-sensitive [51], conditional [40] and higher-order [7] term rewriting. Since the
introduction of the annual International Termination Competition [12], automated techniques
in particular have flourished, with many strong provers competing against each other.

Compared to the core area of first-order term rewriting, higher-order term rewriting
provides some unique challenges, for example due to bound variables. Nevertheless, several
tools have participated in the higher-order category of the termination competition (Hot [4],
THOR [8], Sol [28], SizeChangeTool [23], Wanda), each using different methods; these include
both extensions of first-order techniques like recursive and semantic path orderings [30, 14,
29, 9] and dependency pairs [3, 38, 37], and also dedicated methods such as sized types [5].

Wanda, a tool built primarily around dependency pairs, has participated in this category
since 2010 and won most years, including 2019. Wanda was also used as a termination
back-end in the higher-order category of the 2019 International Confluence Competition [11],
with both participants (ACPH [44] and CSI^ho [42]) delegating termination analysis to Wanda.

Despite this history, Wanda is not well-documented: no tool description has ever been
formally published. Implementation choices are outlined in the author’s PhD thesis [35]
alongside termination techniques, but are not easily accessible as understanding these parts
requires an understanding of the whole document. This has led to problems, as critical
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details – such as the rewriting formalism Wanda employs, what Wanda actually does and
how to use Wanda in different configurations or for different styles of rewriting – are hard to
find. In addition, there have been substantial updates in recent years.

The present work will address this issue by presenting the usage of and the most important
techniques used in Wanda. To start, the formalism of higher-order rewriting Wanda uses,
AFSMs, is explained in §2, as well as its relation to other popular higher-order formalisms.
Then we will discuss the non-termination and termination techniques used in Wanda (§3–5),
The paper ends with experimental results, practical information and conclusions (§6–8).

Wanda is open-source, and is available at: http://wandahot.sourceforge.net. The
snapshot that was used in the present paper, including all back-ends, is available from:
https://www.cs.ru.nl/~cynthiakop/experiments/fscd20/wanda2020.zip .

Theoretical contribution. Although the focus is on Wanda, this paper also presents some
theoretical results that were previously only published in the author’s PhD thesis:

a transformation from pattern HRSs [43] to Wanda’s internal format, AFSMs;
two simple non-termination techniques (§3.1–3.2);
a new variation of the higher-order recursive path ordering suited to AFSMs (§4.2).

In addition, the results of §2.3 and §4.1, and the “dynamic” part of §5, were previously
presented for a more restricted formalism and are here generalised to AFSMs. The remaining
results in this paper connect and discuss existing work, and explain how it is used in Wanda.

2 Higher-order term rewriting using AFSMs

There is no single, unified approach to higher-order term rewriting; rather, there are several
similar but not fully compatible systems. This is a problem, since users of various kinds of
higher-order TRSs may be interested in termination, and it would be frustrating to adapt
techniques and write different tools for each style. Therefore, Wanda uses a custom format,
AFSMs, which several popular kinds of rewriting systems can be translated into. AFSMs
(Algebraic Functional Systems with Meta-variables) are essentially simply-typed CRSs [32]
and also largely correspond to the formalism in [6]. AFSMs are fully presented in [22].

2.1 Preliminaries: the AFSM formalism
Wanda operates on typed expressions, defined by Definitions 1 and 2.

I Definition 1 (Simple types). We fix a set S of sorts. All sorts are simple types, and if
σ, τ are simple types, then so is σ → τ . Here, → is right-associative.

Denoting ι, κ for a sort, all types have a unique form σ1 → . . .→ σm → ι.
This definition does not have type variables, which occur in polymorphic styles of rewriting.

Wanda does allow them as input, but since the implementation of most termination techniques
does not support polymorphism, we will here consider only the simple types above.

I Definition 2 (Terms and meta-terms). We fix disjoint sets F of function symbols, V of
variables andM of meta-variables, each symbol equipped with a type. Each meta-variable
is additionally equipped with a natural number (its arity). We assume that both V andM
contain infinitely many symbols of all types. The set T (F ,V) of terms over F ,V consists of
expressions s where s : σ can be derived for some type σ by the following clauses:

(V) x : σ if x : σ ∈ V (@) s t : τ if s : σ → τ and t : σ
(F) f : σ if f : σ ∈ F (Λ) λx.s : σ → τ if x : σ ∈ V and s : τ

http://wandahot.sourceforge.net
https://www.cs.ru.nl/~cynthiakop/experiments/fscd20/wanda2020.zip
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Meta-terms are expressions whose type can be derived by the clauses above along with:
(M) Z[s1, . . . , sk] : σk+1 → . . .→ σm → ι

if Z : (σ1 → . . .→ σk → . . .→ σm → ι, k) ∈M and s1 : σ1, . . . , sk : σk

The λ binds variables as in the λ-calculus; unbound variables are called free, and FV (s) is
the set of free variables in s. Meta-variables cannot be bound; we write FMV (s) for the
set of meta-variables occurring in s. A meta-term s is called closed if FV (s) = ∅ (even
if FMV (s) 6= ∅). Meta-terms are considered modulo α-conversion. Application (@) is left-
associative; abstractions (Λ) extend as far to the right as possible. A meta-term s has type σ
if s : σ; it has base type if σ ∈ S. Let head(s) = head(s1) if s = s1 s2; otherwise head(s) = s.

A (meta-)term s has a sub-(meta-)term t, notation s� t, if either s = t or s� t, where
s� t if (a) s = λx.s′ and s′ � t, (b) s = s1 s2 and s2 � t or (c) s = s1 s2 and s1 � t.

Note that every term s has a form t s1 · · · sn with n ≥ 0 and t = head(s) a variable,
function symbol, or abstraction; in meta-terms t may also be a meta-variable application
Z[s1, . . . , sk]. Terms are the objects that we will rewrite; meta-terms are used to define
rewrite rules. Note that all our terms (and meta-terms) are, by definition, well-typed. An
example of a meta-term is λx.λy.sin Z[x]. In the left-hand side of a rule, this meta-term
stands for an arbitrary term of the form λx.λy.sin t where t may contain the bound variable
x, but not the bound variable y. This is more fully defined in Definitions 4 and 5.

For rewriting, we will additionally employ patterns:

I Definition 3 (Patterns). A meta-term is a pattern if it has one of the forms Z[x1, . . . , xk]
with all xi distinct variables and Z : (σ, k) ∈M for some σ; λx.` with x ∈ V and ` a pattern;
or a `1 · · · `n with a ∈ F ∪ V and all `i patterns (n ≥ 0).

In rewrite rules, meta-variables are used for matching and variables are only used with
binders. In terms, variables can occur both free and bound, and meta-variables cannot occur.
Meta-variables originate in early forms of higher-order rewriting (e.g., [1, 32]), but have also
been used in later formalisms (e.g., [6]). They strike a balance between matching modulo β
and syntactic matching. By using meta-variables, we obtain the same expressive power as
with Miller patterns [41], but without including a reversed β-reduction as part of matching.

In Wanda, function symbols are identified by their name, and variables and meta-variables
by an integer index; using integers makes it very easy to allocate fresh variables when needed.
The indexes are not shown to the user; instead a unique name is generated for printing.

I Definition 4 (Substitution). A substitution γ is a type-preserving mapping from a subset
of V ∪M (the domain of γ) to terms, typically denoted in a form γ = [b1 := s1, . . . , bn := sn]
(here, the domain is {b1, . . . , bn}). Substitutions may have infinite domain, but – denoting
dom(γ) for the domain of γ – we require that there are infinitely many variables x of all types
such that (a) x /∈ dom(γ) and (b) for all b ∈ dom(γ): x /∈ FV (γ(b)).

A substitution is extended to a function from meta-terms to meta-terms as follows:
xγ = γ(x) if x ∈ V ∩ dom(γ)
xγ = x if x ∈ V \ dom(γ)
fγ = f if f ∈ F

(s t)γ = (sγ) (tγ)
(λx.s)γ = λx.(sγ) if x /∈ dom(γ) ∧ x /∈⋃

y∈dom(γ) FV (γ(y))
Z[s1, . . . , sk]γ = Z[s1γ, . . . , skγ] if Z /∈ dom(γ)
Z[s1, . . . , sk]γ = t[x1 := s1γ, . . . , xk := skγ] if γ(Z) = λx1 . . . xk.t

Z[s1, . . . , sk]γ = t[x1 := s1γ, . . . , xn := snγ] (sn+1γ) · · · (skγ) if γ(Z) = λx1 . . . xn.t

∧ n < k

FSCD 2020
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Note that substituting an abstraction is fully defined due to α-conversion and the requi-
rement that there are infinitely many variables not occurring in the domain or range of γ.
Moreover, for fixed k, any meta-term γ(Z) can be written in the form λx1 . . . xn.t with either
n < k and t not an abstraction, or n = k (and t unrestricted). Thus, this is well-defined.

Essentially, applying a substitution with meta-variables in its domain combines a substi-
tution with a β-development. For example, deriv (λx.sin (F [x]))[F := λy.plus y x] equals
deriv (λz.sin (plus z x)), and X[0, nil][X := λx.map (λy.x)] equals map (λy.0) nil. If
dom(γ) contains all meta-variables in FMV (s), then sγ is a term.

I Definition 5 (Rules and Rewriting). A rule is a pair ` ⇒ r of closed meta-terms of the
same type, where ` is a pattern of the form f `1 · · · `n with f ∈ F , and FMV (r) ⊆ FMV (`).
For a set of rules R, reduction is the smallest monotonic relation ⇒R on terms that includes:
(Rule) `γ ⇒R rγ for `⇒ r ∈ R, and γ a substitution with dom(γ)=FMV (`)
(Beta) (λx.s) t ⇒R s[x := t]

Note that we can reduce at any position of a term, even below a λ. We write s⇒β t if s⇒R t

is derived using (Beta). A term s is terminating under R if there is no infinite reduction
s = s0 ⇒R s1 ⇒R . . . , is in normal form if there is no t with s ⇒R t, and is β-normal if
there is no t with s⇒β t. The relation ⇒R is terminating if all terms are terminating.

Although the theory in [35] allows for R to be infinite (mostly with an eye on polymor-
phism), Wanda does not fully support this yet, so we will here limit interest to finite R.

I Example 6. Let F ⊇ {0 : nat, s : nat → nat, nil : list, cons : nat → list →
list, map : (nat→ nat)→ list→ list} and consider the following rules R1:

map (λx.Z[x]) nil ⇒ nil
map (λx.Z[x]) (cons H T ) ⇒ cons Z[H] (map (λx.Z[x]) T )

Then map (λy.0) (cons (s 0) nil)⇒R1 cons 0 (map (λy.0) nil)⇒R1 cons 0 nil. Note that
the bound variable y does not need to occur in the body of λy.0 to be matched by λx.Z[x].
However, note also that a term like map s (cons 0 nil) cannot be reduced, because s does
not match λx.Z[x]. We could alternatively consider the rules R2:

map Z nil ⇒ nil
map Z (cons H T ) ⇒ cons (Z H) (map Z T )

In the previous example, we had Z : (nat→ nat, 1) ∈M; here, we have Z : (nat→ nat, 0) ∈
M (we will typically leave this implicit since the arity of meta-variables can be read off
from the left-hand sides of the rules). Instead of meta-variable application Z[x], we use
explicit application Z x. Now we do have map s (cons 0 nil)⇒R2 cons (s 0) (map s nil).
However, now we will often need explicit β-reductions; e.g., map (λy.0) (cons (s 0) nil)⇒R2

cons ((λy.0) (s 0)) (map (λy.0) nil)⇒β cons 0 (map (λy.0) nil).

Thus, AFSMs allow us to define essentially the same rules in multiple ways. This flexibility
may seem redundant, but is necessary to enable the analysis of different styles of higher-order
term rewriting, as we will see in §2.2. An AFSM is a pair (T (F ,V),⇒R) of a set of terms
and a reduction relation on that set. To define an AFSM, it suffices to supply F and R;
types of (meta-)variables can be derived from context. This is what Wanda takes as input.

I Example 7. The first map rules from Example 6 can be given to Wanda, in a file map.afsm,
which provides first the signature and then the rules:
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nil : list
cons : nat -> list -> list
map : (nat -> nat) -> list -> list

map (/\x.Z[x]) nil => nil
map (/\x.Z[x]) (cons H T) => cons Z[H] (map (/\x.Z[x]) T)

Note: all identifiers (function symbols, variables and meta-variables) in .afsm files are
expected to be alphanumeric. Characters such as +, - and _ are not allowed in names. The
only exceptions are the exclamation mark symbol (‘!’) and the percentage symbol (‘%’); the
latter may only be used at the start of (meta-)variables.

2.2 Transformations
AFSMs are not meant to be interesting in their own right. Rather, they are defined to
support termination proofs in multiple formalisms. Let us consider the two most relevant.

Higher-order Rewriting Systems (HRSs) [43] are one of the oldest styles of higher-order
term rewriting. Here, rewriting is modulo ⇒β : for terms s, t in η-long β-normal form we
have s⇒R t if there exist a rule `⇒ r and a substitution γ such that `γ ⇒∗β s and rγ ⇒∗β t.
All terms are presented in η-long β-normal form, and rules are pairs of such terms (there are
no meta-variables). The η-long form of a term s is obtained by repeatedly applying the step
“s⇒η λx.(s x)” on all subterms of s where this can be done without creating a β-redex.

In general, the reduction relation ⇒R in an HRS is not computable, but practical
examples typically consider pattern HRSs (PRSs), where for all rules ` ⇒ r and for all
subterms x `1 · · · `m of the left-hand side with x a variable: each `i is the η-long form of a
distinct bound variable. Pattern HRSs are translated to AFSMs in a natural way, by replacing
free variables in the rules by meta-variables, and their applications by meta-applications.

I Example 8. Let us consider an example of a pattern HRS:

bind (return x) (λy.f y) ⇒ f x

bind x (λy.return y) ⇒ x

bind (bind x (λy.f y)) (λz.g z) ⇒ bind x (λu.bind (f u) (λv.g v))

It is translated to the following AFSM (meta-variables are indicated with capitals):

bind (return X) (λy.F [y]) ⇒ F [X]
bind X (λy.return y) ⇒ X

bind (bind X (λy.F [y])) (λz.G[z]) ⇒ bind X (λu.bind (F [u]) (λv.G[v]))

This translated system has very similar behaviour to the original PRS, but there is a
critical difference: the PRS is a relation on η-long β-normal terms, while the AFSM is
generally considered as a relation on all terms. It turns out that the restriction to η-long
terms does not affect termination, but the β-normalisation does ([35, Theorem 3.5]):

I Lemma 9. The original PRS (F ,R) is terminating if and only if the translated AFSM
(F ,R′) is terminating using a reduction strategy where ⇒β is preferred to other steps.

That is, we need to β-normalise terms after every reduction step. Wanda can test the
property of termination with a ⇒β-first strategy by being invoked with a runtime argument
--betafirst (e.g., ./wanda.exe --betafirst system.afsm). As a side note, however, the
examples where this requirement makes a difference are rare and typically artificial.

FSCD 2020
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I Example 10. Let F = {a : o, f : o→ o, g : ((o→ o)→ o→ o)→ o} and R given by:

f a ⇒ g (λx.λy.x (f y)) g (λx.λy.h (λz.x z) y) ⇒ h (λz.a) (a)

This PRS is translated to an AFSM with the following rules R′:

f a ⇒ g (λx.λy.x (f y)) g (λx.λy.H[x, y]) ⇒ H[λz.a, a]

While the original PRS is terminating, the same does not hold for the translated AFSM: we
have f a⇒R′ g (λx.λy.x (f y))⇒R′ (λz.a) (f a), where the last term has f a as a subterm.
In an AFSM, it is not mandatory to reduce the β-redex. Wanda concludes non-termination
normally, but cannot find a proof or disproof if the --betafirst argument is provided.

Remark: Wanda has not been optimised for HRSs, and does not take advantage of the
--betafirst argument other than avoiding false claims of non-termination. This is primarily
due to a lack of motivating examples: the annual Termination Competition does not consider
HRSs. However, since the International Confluence Competition [11] does consider HRSs,
and comes with its own benchmark set, this situation is likely to change in the future.

Algebraic Functional Systems (AFSs) [29] are higher-order term rewriting systems with
⇒β as a separate step (i.e., ⇒β ⊆⇒R; unlike HRSs, β-steps are not implicitly done as part
of other steps); this is the format used in the higher-order category of the International
Termination Competition [12]. Rules in an AFS are pairs of terms, not meta-terms, and
there is no pattern Another difference with AFSMs is that AFSMs use applicative (curried)
notation while AFSs use a mixture of functional and applicative term formation; however, this
difference is not significant, since – following [34, 35] – currying does not affect termination.

Using variables rather than meta-variables for matching is not important either: just
replace all free variables by meta-variables. This gives rules like the “alternative” rules R2 in
Example 6. However, the lack of a pattern restriction is very significant.

I Example 11. Let us consider an example of an AFS that cannot be naturally translated
without violating pattern restrictions. We let F = {new : (N→ A)→ A} and R consist of:

new (λx.y) ⇒ y new (λx.new (λy.f x y)) ⇒ new (λx.new (λy.f y x))

Now, the left-hand sides look like patterns. Indeed, they satisfy the requirements for an
HRS-pattern: the free variable f in the second rule is only applied to distinct bound variables.
So if this was an HRS, we could translate it to the following AFSM:

new (λx.Y ) ⇒ Y new (λx.new (λy.F [x, y])) ⇒ new (λx.new (λy.F [y, x]))

However, since the original system was an AFS, this is not equivalent. Unlike in HRSs,
matching in AFSs is not modulo beta: like in AFSMs, s rewrites to t by rule `⇒ r if there
exists a substitution γ such that s = `γ and t = rγ. So, in the AFS, the subterm f x y can
only be instantiated by terms of the form s x y. An accurate translation of the second rule
to AFSMs would simply replace f x y by F [] x y, resulting in a non-pattern.

This is important because the AFSM above is non-terminating: new (λx.new (λy.z))
reduces to itself in one step because the meta-variable F can be instantiated by a substitution
λx.λy.z. On the other hand, the original AFS is terminating, as we will see below.

A final difference is that, following [29], AFSs use polymorphic types. Wanda limits
interest to simply-typed AFSs, which is what the Termination Competition uses. Polymorphic
AFSs can be translated to polymorphic AFSMs, but this is not yet well-supported in Wanda.
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Wanda accepts AFSs as input directly (using the xml format of the Termination Com-
petition or a custom human-readable format). Most AFSs can be naturally translated into
AFSMs just by replacing free variables by meta-variables; typically counterexamples look like
they were meant as HRSs, but translated poorly into AFSs. For the examples that cannot be
naturally translated, Wanda first applies the transformations in [34] to create patterns. This
involves introducing fresh symbols appi to replace some of the applications s t by terms of
the form appi s t. New rules may also be introduced, as for instance f (X Y ) a⇒ f (X b) Y
is replaced by not only f (appi X Y ) a⇒ f (appi X b) Y , but in addition potentially many
rules of the form f (g X1 · · ·Xn Y ) a⇒ f (g X1 · · ·Xn a) Y . This is exacerbated when the
AFS is presented in curried (applicative) form rather than functional notation.

I Example 12. The AFS of Example 11 is translated to an AFSM with the following rules:

new (λx.Y ) ⇒ Y

new (λx.new (λy.app F x y)) ⇒ new (λx.new (λy.app F u z))
app F X ⇒ F X

This AFSM can be proved terminating by Wanda’s recursive path ordering (§4.2) in combin-
ation with dependency pairs (§5).

It is worth noting that the transformations needed to translate an AFS to an AFSM
with equivalent behaviour can sometimes cause the system to become much more difficult
to analyse, both due to the inclusion of explicit “application” symbols in the rules and the
addition of potentially many new rules. For this reason, Wanda uses the following approach:

create both an accurate translation and an overestimation of the AFS (so that termination
of the overestimation implies termination of the original system, but not the reverse);
this results in translations like those given in Example 11;
try to prove non-termination using the accurate translation;
try to prove termination using the overestimation;
if this fails, try to prove termination using the accurate translation.

2.3 Uncurrying
Following [35, §2.3.1] and [34, §7], uncurrying does not affect termination provided the rules
are (essentially) unchanged. That is, we can denote both rules and terms in a functional
notation, but only if the number of arguments is respected in each rule. To be exact:

I Lemma 13. Let (F ,R) be an AFSM, and let minar(f) denote the largest number k such
that (1) the type of f allows f to be applied to at least k arguments, and (2) every occurrence
of f in R is applied to at least k arguments. Then ⇒R is non-terminating if and only if there
is an infinite reduction s1 ⇒R s2 ⇒R . . . where, in every term si, each symbol f always
occurs with at least minar(f) arguments.

For example, in Example 6, minar(s) = 1 and minar(cons) = minar(map) = 2; thus, we
do not need to consider terms such as map s (cons 0 nil) or map (λx.s x) for termination.
Wanda indicates this by showing terms in functional notation; e.g., map(λx.s(x), cons(0, nil)).

I Example 14. Consider the toy system with F = {a, b : o, f : o→ o→ o, g : o→ (o→
o) → o} and R = { f a X ⇒ g X (f a), g a F ⇒ F b}. Then minar(a) = minar(b) = 0,
minar(g) = 2 and minar(f) = 1 (since f occurs both with 1 or 2 arguments, we must choose
the smaller value). Wanda prints these rules as f(a) X ⇒ g(X, f(a)) and g(a, F )⇒ F b.

We do not η-expand as part of uncurrying. To illustrate why not, note that the above
system is terminating, but its η-long variant, which has a rule f a X ⇒ g (λz.f a z), is not.
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3 Non-termination

As Wanda’s focus is on proving termination, the available non-termination techniques are
currently quite minimal. There are three methods. The first two are very quick, and are
applied at the start of the analysis, before termination is considered. The last one is employed
when dependency pairs are initiated, as it is combined with the simplification given in §5.2.

3.1 Detecting obvious loops

An AFSM is clearly non-terminating if there is a reduction s⇒∗R t such that t� sγ for some
γ. To discover such loops, Wanda takes the left-hand side of a rule, replaces meta-variable
applications Z[x1, . . . , xk] by variable applications y x1 · · ·xk, and performs a breadth-first
search on reducts to see whether any instances of the original term appear, not going beyond
the first 1000. If the betafirst runtime argument is given, then reducts are β-normalised
before this test is done. This simple method will not find any sophisticated counterexamples
for termination, but is quick and easy, and often catches mistakes in a recursive call.

In the future, it would be natural to extend this module to use semi-unification [31]
instead of matching, as done for first-order rewriting in [26]. However, this would require the
design of a higher-order semi-unification algorithm. Similarly, Wanda could be strengthened
by creating higher-order variants of existing first-order non-termination techniques (e.g.,
[17, 45, 46]), but this would require substantial new work to develop the theory.

3.2 The ωω counterexample

Wanda also has one truly higher-order non-termination technique, which does not build
on first-order methods. This technique recognises a particular kind of rule that leads to
non-termination in a non-obvious way. The idea is to build a variation of the λ-term ωω in
the untyped λ-calculus, where ω = λx.xx. Note that ωω reduces to itself in one ⇒β-step.

Let a context be a meta-term C[21, . . . ,2n] containing n typed holes 2i, and denote
C[s1, . . . , sn] for the same meta-term with each 2i replaced by si. Wanda identifies rules
`⇒ r where ` has the form C[D[Z], X] such that:

Z : σ1 → . . .→ σn → τ ∈M, where τ is the type of `;
there is some i with X : (σi, 0) ∈M and also D[Z] has type σi;
r can be written as E[Z s1 · · · si−1 X si+1 · · · sn]
X and Z do not appear at other positions in C or D.

If this is satisfied, Wanda concludes non-termination with the following justification. Let γ
be the substitution that maps each Y : π1 → . . .→ πm → ι in the rule, aside from Z andX, to
a term λx1 . . . xm.y x1 · · ·xm (with y a variable), and let ω := Dγ[λx1 . . . xn.Cγ[xi, xi]]. Let
δ := γ ∪ [X := ω,Z := λx1 . . . xn.Cγ[xi, xi]]. Then Cγ[ω, ω] = `δ ⇒R E[(λx1 . . . xn.Cγ[xi,
xi]) s1 · · ·ω · · · sn)]δ ⇒∗β E[Cγ[ω, ω]]δ � Cγ[ω, ω], a loop.

The method above is specialised for AFSMs that originate from AFSs (as used in the
Termination Competition): it is designed for meta-variables that do not take any arguments.
If meta-variables do take arguments, and for instance λx1 . . . xn.Z[x1, . . . , xn] is used instead
of Z, we probably have a similar counter-example – depending on how Z and X are used in
E (it is possible that E[]δ does not contain any copies of 21). Wanda tries to recognise such
variations of the meta-variables, and tests whether the counterexample still applies.
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3.3 Using a first-order tool
Finally, it is clear that an AFSM (F ,R) is non-terminating if there is a subset R′ ⊆ R
such that ⇒R′ is non-terminating. An interesting subset is the set of rules that can be
viewed as first-order (i.e., rules that do not use λ, that only use function symbols with a type
declaration ι1 → . . .→ ιm → ι0 with all ιi ∈ S, and where function symbols only occur fully
applied). This subset is easier to analyse, as known methods for first-order rewriting apply.

Thus, Wanda extracts this first-order part, to pass it to a dedicated first-order (non-)
termination tool. The main problem with this approach is that existing tools do not consider
types. This can make a difference, as shown by an example due to Toyama [50]:

I Example 15. Let F = {0 : a, 1 : a, f : a → a → a → a, g : b → b → b} and
R = {f(X,X,X)⇒ f(0, 1, X), g(X,Y )⇒ X, g(X,Y )⇒ Y }. This system is terminating,
because there is no term of type a that reduces to both 0 and 1. However, there is an
untypable term that loops by these rules: f(0, 1, g(0, 1))⇒R f(g(0, 1), g(0, 1), g(0, 1))⇒R
f(0, g(0, 1), g(0, 1))⇒R f(0, 1, g(0, 1)). Thus, a first-order termination tool (which does
not consider types) would conclude non-termination.

Now, if the first-order subset is orthogonal, then it is terminating if and only if it is
terminating without regarding types as observed in [20] (using a combination of results in [19]
and [27]). Thus, in this case Wanda can use an arbitrary first-order tool without inhibitions.
The same is true if the set of first-order rules uses only one sort. If neither of those cases
holds, Wanda investigates the output of the first-order tool to see whether a non-terminating
term is given, and if so, tests whether it is well-sorted.

Comment: unfortunately, the standard output format for the Termination Competition
does not require tools to output a non-terminating term if NO is answered. Thus, any common
first-order tool can be used if R′ is orthogonal or has only one sort, but otherwise a specialised
tool with the right output format is needed. For this, Wanda uses a custom adaptation of
AProVE [24]. As AProVE is currently not open-source, this is not included in Wanda’s release.

4 Orderings

At the heart of Wanda’s termination techniques are reduction pairs. These are orderings on
terms – generated by an ordering on meta-terms – which can be used both as part of the
dependency pair framework (§5) and on their own to simplify a termination proof.

I Definition 16. A reduction pair is a pair (%,�) of a quasi-ordering and a well-founded
ordering on meta-terms of the same type, such that:

% and � are compatible: � · % is included in �;
% and � are meta-stable: if s % t and γ is a substitution on domain FMV (s)∪FMV (t),
then sγ % tγ (and similar for �);
% is monotonic: if s % t, then s u % t u and u s % u t and λx.s % λx.t

% contains beta: (λx.s) t % s[x := t] if s and t are terms.
A reduction pair is strongly monotonic if moreover � is monotonic.

Strongly monotonic reduction pairs can be used in rule removal: if ` % r for some rules,
and ` � r for the remainder, then the rules in the remainder cannot occur infinitely often in
a reduction sequence, and thus can be “removed” (they no longer need to be considered for
the termination argument). Reduction pairs are also used – without the strong monotonicity
requirement – in the dependency pair framework. It would be possible to also include rule
removal with strongly monotonic reduction pairs in the framework rather than using it as a
separate step; however, using it as a separate step often gives simpler termination proofs,
and makes it possible to assess the strength of these reduction pairs in isolation.
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Wanda has two ways to generate reduction pairs: weakly monotonic interpretations and
recursive path orderings. Both ideas extend first-order methods, and use functional notation.
This is an extension of uncurrying, where the remaining applications are replaced by function
application, as follows: in every rule, every subterm of the left- or right-hand side of the form
s t is replaced by @σ,τ (s, t), where s : σ → τ . The set of all symbols @σ,τ that are used in the
rules is added to F , and the corresponding rules @σ,τ (λx.Z[x], Y )⇒ Z[Y ] are added to R.

I Example 17. The AFSM of Example 14 is functionalised by replacing f(a) X in the
uncurried rules by @o,o(f(a), X) and F b by @o,o(F, b). Thus, we obtain the rules:

@o,o(f(a), X) ⇒ g(X, f(a)) @o,o(λx.Z[x], Y ) ⇒ Z[Y ]
g(a, F ) ⇒ @o,o(F, b)

4.1 Weakly monotonic algebras
The idea of van de Pol’s weakly monotonic algebras [47] is to assign valuations which map
all function symbols f of type σ to a weakly monotonic functional Jf: an element of JσK,
where JιK is the set of natural numbers for a sort ι and Jσ → τK is the set of those functions
from JσK to JτK that are weakly monotonic (i.e., if a, b ∈ JσK and a ≥ b, then f(a) ≥ f(b) for
f ∈ Jσ → τK, where ≥ is a point-wise comparison). This induces a value on closed terms,
which can be extended to a reduction pair, as explained below.

Given a meta-term s in functional notation and a function α which maps each variable x : σ
occurring freely in s to an element of JσK and each meta-variable Z : (σ1 → . . .→ σk → τ, k)
to an element of Jσ1 → . . .→ σk → τK, we let [s]Jα be recursively defined as follows:

[x]Jα = α(x) [f(s1, . . . , sk)]Jα = Jf([s1]Jα , . . . , [sk]Jα )
[λx.s]Jα = u 7→ [s]Jα∪[x:=u] [Z[s1, . . . , sk]]Jα = α(Z)([s1]Jα , . . . , [sk]Jα )

(This follows the definition of [·]Jα for functionalised AFSs in [21], but extends it with a case
for meta-variable applications.) For closed meta-terms `, r, let ` � r if [`]Jα > [r]Jα for all α,
and ` % r if [`]Jα ≥ [r]Jα for all α. Then (%,�) is a reduction pair if the valuations J@〈σ,τ〉

are chosen to have J@〈σ,τ〉(F,X) ≥ F (X). It is a strongly monotonic pair if each function
Jf (including each J@〈σ,τ〉) is monotonic over > in the first minar(f) arguments.

In [21], a strategy is discussed to find interpretations based on higher-order polynomials
for AFSs, and an automation using encodings of the ordering requirements into SAT. Wanda
implements this methodology, only slightly adapted to take meta-variables into account.

I Example 18. We consider R2 in Example 6. Let Jnil = 0 and Jcons = (n,m) 7→ n+m+ 1
and Jmap = (f, n) 7→ nf(n) + 2n + f(0) and J@nat,nat = (f, n) 7→ f(n) + n. Then, writing
F := α(Z), n := α(H), m := α(T ), we have:

[map(Z, nil)]Jα = F (0) ≥ 0 = [nil]Jα
[map(Z, cons(H,T ))]Jα = (n+m+ 1) · F (n+m+ 1) + 2 · (n+m+ 1) + F (0) > (F (n) +
n) + (m · F (m) + 2 ·m+ F (0)) + 1 = [cons(@〈nat,nat〉(Z,H), map(Z, T ))]Jα
[@nat,nat(λx.Z[x], H)]Jα = F (H) +H ≥ F (H) = [F [H]]Jα .

4.2 StarHorpo
The recursive path ordering [14] is a syntactic method to extend an ordering on function
symbols to an ordering on first-order terms. There are various extensions (e.g. [18, 30])
including several higher-order variations (e.g. [7, 29]). However, these are mostly designed
for rewriting with plain matching, and adapting them to work well with meta-variables is
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non-trivial. Instead, Wanda uses a specialised definition, built using the same ideas as [29] but
using iterative path orderings [33, 36] as a starting point. This is discussed in detail in [35,
Ch. 5]; here, we note only the end result: a reduction pair that can be used on functionalised
AFSMs and (unlike other higher-order recursive path orderings) is natively transitive.

Following [33, 36], StarHorpo employs a star mark ? to indicate an intent to decrease;
practically, f?σ(s1, . . . , sk) should be seen as an upper bound for all functional meta-terms of
type σ which are strictly smaller than f(s1, . . . , sk). Let s? denote λx1 . . . xn.f?σ(s1, . . . , sk)
if s = λx1 . . . xn.f(s1, . . . , sk). If s has any other form, then s? is undefined.

StarHorpo assumes given a precedence I: a quasi-ordering on all symbols, whose strict
part I is well-founded; we let ≈ denote the equivalence relation I∩J . We assume that there
is a special symbol ⊥σ for each type σ, which is minimal for I (i.e., f I⊥σ for all f); ⊥?σ is
undefined. All symbols are assigned a status in {Lex,Mul}, such that status(f) = status(g)
whenever f ≈ g. Let �f

? denote either the lexicographic or multiset extension of �?, depending
on the status of f. Now the reduction pair (�?,�?) is given by the rules in Figure 1.

(�) s �? t if s? �? t
(Var) x �? x if x ∈ V
(Abs) λx.s �? λx.t if s �? t
(Meta) Z[s1, . . . , sk] �? Z[t1, . . . , tk] if each si �? ti
(Fun) f(s1, . . . , sn) �? g(t1, . . . , tk) if f ≈ g and [s1, . . . , sn] �f

? [t1, . . . , tk]
(Put) f(s1, . . . , sn) �? t if f?σ(s1, . . . , sn) �? t (for f(~s) : σ)
(Select) f?σ(s1, . . . , sn) �? t if si〈f?τ1 (~s), . . . , f?τj (~s)〉 �? t (**)

where si : τ1 → . . .→ τj → σ

(FAbs) f?σ→τ (s1, . . . , sn) �? λx.t if f?τ (s1, . . . , sn, x) �? t
(Copy) f?σ(s1, . . . , sn) �? g(t1, . . . , tk) if f I g and f?τi(~s) �? ti for 1 ≤ i ≤ k
(Stat) f?σ(s1, . . . , sn) �? g(t1, . . . , tk) if f ≈ g and f?τi(~s) �? ti for 1 ≤ i ≤ k

and [s1, . . . , sn] �f
? [t1, . . . , tk]

(Bot) s �? ⊥σ if s : σ

(**)

The notation s〈t1, . . . , tn〉 applies s to t1, . . . , tn in the following sense: s〈〉 = s and
(λx.s)〈t, ~u〉 = s[x := t]〈~u〉 and f(~s)〈t, ~u〉 = f?τ (~s, t)〈~u〉 and also f?σ→τ (~s)〈t, ~u〉 = f?τ (~s, t)〈~u〉.

Figure 1 Rules of StarHorpo.

Note that �? and �? only compare terms of the same type, and that marked symbols f?

may occur with different types (indicated as subscripts) within a term. Symbols f? may also
have varying numbers of arguments, but must always have at least minar(f).

I Example 19. Given a function symbol @ : (σ → τ) → σ → τ (with σ and τ arbitrary
types), we can prove @(λx.Z[x], Y ) � Z[Y ] as follows:

by (�), because @?
τ (λx.Z[x], Y ) �? Z[Y ]

by (Select), because Z[@?
σ(λx.Z[x], Y )] �? Z[Y ]

by (Meta), because @?
σ(λx.Z[x], Y ) �? Y

by (Select) because Y �? Y by (Meta).

Wanda uses StarHorpo in combination with argument functions: each function symbol
f with minar(f) = k is mapped to a functionalised term λx1 . . . xk.s, and in a given
functionalised meta-term, all occurrences of f(t1, . . . , tk) are replaced by s[x1 := t1, . . . , xk :=
tk]. If the reduction pair is required to be strongly monotonic (as is the case for rule removal),
then FV (s) must be {x1, . . . , xk}. Argument functions are a generalisation of argument
filterings [39], and were introduced in [37]. In Wanda, they are not restricted to being used
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with dependency pairs (unlike [39, 37]), and s is limited to one of three forms: (1) xi, (2)
f′(xi1 , . . . , xin) (with n ≤ k, all xij distinct), or (3) ⊥σ. This effectively extends argument
filterings with argument permutations and a mapping to one of the minimal constants ⊥σ.

Wanda combines the search for a suitable precedence and status function with the search
for an argument function, using a SAT encoding following [35, Chapter 8.6].

I Example 20. Consider the (first-order) AFSM with just one sort o and the following rules:

f X (s Y ) ⇒ g Y (s (s X)) f X Y ⇒ g a b g X (s Y ) ⇒ f Y X

Then minar(f) = minar(g) = 2. We use the argument functions π(f) = λx.λy.f′(y, x) and
π(g) = λx.λy.g′(x, y) and π(s) = λx.s′(x) and π(a) = π(b) = ⊥nat to get the requirements:

f′(s′(Y ), X) � g′(Y, s′(s′(X))) f′(Y,X) % g′(⊥nat,⊥nat)
g′(X, s′(Y )) � f′(X,Y )

This is easily handled with f′ ≈ g′ I s′, and status(f′) = status(g′) = Lex. This example
relies on a and b being mapped to ⊥nat. Such use of a minimal constant originates in [48].

5 Dependency Pairs

After trying to prove non-termination using the methods in §3.1–3.2, and removing as many
rules as possible with strongly monotonic reduction pairs, control is passed to the dependency
pair (DP) framework. Like the first-order DP framework [25], this is an extendable framework
for termination (and non-termination), which new termination methods can easily be plugged
into in the form of “processors”. This framework encompasses all remaining termination
techniques, but does not currently contain any processors for non-termination. The DP
framework is detailed in [37, 22] and [35, Ch. 6–7]. Let us here consider a high-level overview.

5.1 The DP framework
The relatively simple form of the DP framework in Wanda operates on pairs (P,R) called
DP problems. For a given AFSM, an initial pair is generated, which must be proved “finite”
(also called “non-looping” in [2, 37]). If this property applies, then the AFSM is terminating.

Now, a processor is a function that maps a DP problem ρ to a finite set of DP problems.
Wanda has a list of processors M such that ρ is finite if and only if all elements of M(ρ)
are finite; moreover, either M(ρ) = {ρ}, or all elements of M(ρ) are strictly smaller than ρ
(counting the number of elements in P and R). Wanda then applies the following algorithm:
1. Let A be the set containing just the initial DP problem (P,R).
2. If A = ∅ then return YES.
3. Otherwise, choose an arbitrary element ρ ∈ A.
4. Find the first processor M in the list of processors such that M(ρ) 6= {ρ}.
5. If such a processor cannot be found, then the process has failed; return MAYBE.
6. Otherwise, let A := (A \ {ρ}) ∪M(ρ), and go back to Item 2.

Note that, throughout the process, we retain the following property: the original AFSM
is terminating if the initial DP problem is finite, which holds if and only if all elements in A
are finite. This is why the conclusion in Item 2 is correct.

The processors used are, in order: the dependency graph, the subterm criterion, the
computable subterm criterion, formative rules, and reduction pairs with usable rules (first
polynomial interpretations, then StarHorpo). All processors are explained in [35, 22].
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5.2 Delegation to a first-order prover
Following [20], the framework starts (as part of Item 1 in §5.1) by identifying the first-order
rules in the AFSM. These are functionalised and passed to an external first-order termination
tool; if the full AFSM is not orthogonal then additionally all rules in Cε = {cι(X,Y ) ⇒
X, cι(X,Y )⇒ Y | ι ∈ S} are added (with cι : ι→ ι→ ι fresh function symbols).1

If the tool detects termination, then this is stored, as it allows all dependency pairs for
these first-order rules to be omitted from the set of generated DPs. If the tool returns NO and
no Cε rules were added, then non-termination is concluded as explained in §3.3. Otherwise,
the remaining cases of §3.3 are tested with a dedicated non-termination prover.

5.3 Static and Dynamic DPs
To complete item 1 – so to generate the initial DP problem (P,R) – there are two different
approaches, originating from distinct lines of work around the same period [37, 38]. In both
cases, an AFSM (F ,R) gives an initial DP problem (

⋃
{DP(ρ) | ρ ∈ R}, R∪OptionalExtra),

where the set DP(ρ) of dependency pairs generated for a given rule varies between the two
approaches. In both cases, the elements of DP(ρ) with ρ a first-order rule may be omitted if
the first-order part was proved terminating following §5.2. Unlike the name suggests (as this
differs from the first-order definition), these dependency pairs are actually triples of a pattern
of the form f `1 . . . `n, a meta-term r and a set; this is discussed in more detail in [35, 22].

In the dynamic approach, each DDP(ρ) contains triples whose second component r has
a form g r1 · · · rm or Z[r1, . . . , rm]; the latter kind is called a “collapsing” DP. In the static
approach, SDP(ρ) contains no collapsing DPs, but may have DPs where FMV (r) 6⊆ FMV (`).
Both fresh meta-variables in r and collapsing DPs are complications not present in the
first-order setting, which make some of the processors weaker. The static approach for
generating DPs can only be used if some restrictions on the AFSM are satisfied, but when
applicable often gives an easier termination proof than the dynamic one.

The notion of a finite problem and the processors used in Wanda can all be defined generally
enough to apply for both the static and dynamic approach. Hence, once the initial DP problem
is generated, the same DP framework can be used for both. Wanda tries dynamic DPs first, and
if this fails, falls back to static DPs. However, if

⋃
{SDP(ρ) | ρ ∈ R} ⊆

⋃
{DDP(ρ) | ρ ∈ R},

this first step is omitted and only the static approach is tried.

I Example 21. For R1 in Example 6, the dynamic approach generates ({(1), (2)},R1) with:

(1) map] (λx.Z[x]) (cons H T ) V map] (λx.Z[x]) T (∅)
(2) map] (λx.Z[x]) (cons H T ) V Z[H] (∅)

The static approach generates ({(1)},R1). Thus, Wanda does not try the dynamic approach.

6 Experimental results

To test the power of both Wanda as a whole, and individual techniques, various configurations
of Wanda were tested on two data sets: (1) the “higher order union beta” benchmarks in
the Termination Problem DataBase [13] (which are used in the International Termination

1 These rules allow for the construction of a term that can be reduced to all elements of an arbitrary
finite set of terms with the same type. They are trivially discarded by many termination techniques,
but may complicate analysis because they turn the system non-confluent.
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YES NO MAYBE TIMEOUT Avg. time
Full 188 16 25 32 1.14

Only rule removal 123 0 118 20 1.13
Only StarHorpo 111 0 141 9 0.24

Only interpretations 59 0 156 46 0.07
Only dependency pairs 186 0 42 33 1.02

only static DPs 152 0 86 23 0.55
only dynamic DPs 167 0 58 36 1.30
no first-order tool 183 9 47 22 0.90
no overestimation 155 16 25 65 0.75

Figure 2 Experimental results on the TPDB (261 benchmarks).

Competition [12]), and (2) the pattern HRSs in the COPS (Confluence Problems) database
[10] (which are used in the International Confluence Competition [11]), most of which were
translated to AFSMs by the tool CSI^ho [42]. Wanda was executed with a timeout of 60
seconds, on a Lenovo Thinkpad T420, using AProVE [24] as a first-order termination prover,
and MiniSAT [16] as a SAT-solver. The results are discussed below. Note that the average
time only takes YES and NO results into account; in particular, TIMEOUTs are not considered.

An evaluation page with detailed results is available at:

https://www.cs.ru.nl/~cynthiakop/experiments/fscd20/

6.1 Benchmarks from the TPDB
The results on the termination problem database are given in Figure 2. The first test is
Wanda’s default behaviour, the next three use only rule removal (with both techniques or
only one), and the next three use only the DP framework (either full or with only one way
of generating the initial DP problem). The final tests disable specific features in the full
version: using a first-order termination tool, and overestimating AFSs as described in §2.2.
The longest successful evaluation is 20.46 seconds, so not close to the 60 second timeout.

The tests show that rule removal is not as effective as dependency pairs, but does help
a little: when it is disabled, Wanda loses two benchmarks (and does not gain any). This
could be avoided by implementing rule removal as a processor in the DP framework, but this
has thus far not been done (the implementation is not entirely straightforward due to the
different requirements imposed by the DP framework). The effect of rule removal on speed is
variable: rule removal often succeeds fast, but may take a long time to fail. Thus, when both
are tried, the solution speed could go either way. Within rule removal, StarHorpo is much
more powerful than polynomial interpretations, but the techniques are incomparable: there
are 12 benchmarks that can be handled by interpretations but not StarHorpo.

Also the two styles of dependency pairs are incomparable: the dynamic approach seems
to give a bit more power, but there are benchmarks that can be handled with static DPs
and not with dynamic ones. Moreover, the static approach is significantly faster.

Worth noting is that there are 16 benchmarks Wanda can prove non-terminating, of
which 7 are found by AProVE. Of the remainder, manual checking shows that 7 have obvious
loops, and 2 admit the ωω example. For termination, using AProVE gives a modest gain (five
benchmarks). The last row deserves some further discussion. Due to unclear documentation
on the competition’s format, the 85 newest benchmarks in this database are all “fake HRS”:
like the system in Example 11, the left-hand sides often have subterms such as F x y where

https://www.cs.ru.nl/~cynthiakop/experiments/fscd20/
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YES NO MAYBE TIMEOUT Avg. time
Full 43 30 19 1 0.09

Only rule removal 37 0 56 0 0.11
Only StarHorpo 33 0 60 0 0.17

Only interpretations 21 0 72 0 0.01
Only dependency pairs 43 0 49 1 0.51

only static DPs 37 0 56 0 0.26
only dynamic DPs 40 0 52 1 0.77
no first-order tool 43 30 19 1 0.07

Figure 3 Experimental results on the COPS database (93 benchmarks).

F is a free variable. Wanda spends more time on these benchmarks than others, since not
only the true translation to AFSM is considered, but also an overestimation that is often
easier to handle. When overestimating is disabled, Wanda is faster, but significantly weaker.

The first-order tool. It is worth noting that more than fifty benchmarks in this database
are actually first-order systems with one or two (typically trivial) higher-order rules. Indeed,
about 25 of Wanda’s TIMEOUTs are due to AProVE timing out on a complicated first-order
fragment. This raises the question whether the choice of first-order tool is significant.

The answer is ambiguous. For non-termination, Wanda relies on an explicit counter-
example, which only the customised version of AProVE provides; without it, Wanda loses 7
NOs. For termination, comparing Wanda’s performance when instead coupled with NaTT or
MU-TERM, we found that NaTT outperforms both AProVE and MU-TERM by 13 benchmarks.
However, this advantage is local: the “higher-order union beta” category of the TPDB has
seven sub-directories, each representing a batch of (often similar) benchmarks that were
added at the same time. On six of those seven, Wanda performs almost identically whichever
first-order tool is used: MU-TERM and AProVE give one benchmark that NaTT fails, and all
other answers are the same. In the seventh, NaTT wins 14 benchmarks over the others.

Looking at all benchmarks, we observe: the only cases where using a first-order tool helps,
are combinations of a challenging first-order TRS and a quite simple higher-order part: it
can be handled with static DPs and one of the subterm criterion processors [22]. Which
first-order tool is the best for the job depends only on the form of the first-order part.

6.2 Benchmarks from COPS
Figure 3 shows the experimental results on AFSMs translated from the Confluence Problems
database (COPS) [10]. Here, unlike the benchmarks from the TPDB, meta-variables are
used with arguments. Even so, the comparative results between rule removal and full Wanda,
and between static, dynamic and full dependency pairs, are similar to the TPDB results.
There are relatively far more NO answers, which seems to be because COPS contains more
non-terminating systems (and quite a few trivially so). This is explained by the purpose of
the database: confluence is harder to prove for non-terminating than terminating systems.

7 Practical use

Wanda is designed to run on a Linux terminal, and is invoked by supplying one or more
input files, and zero or more runtime parameters that customise the behaviour. Runtime
parameters range from purely aesthetical commands (e.g., to indicate that Wanda should
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use coloured output), to commands that make Wanda output properties of the given system
(e.g., to indicate whether a system has η-long form) or that modify the termination checking
behaviour (e.g., the previously mentioned betafirst parameter). Wanda has a fixed strategy
– that is, techniques are always applied in the same order – but certain techniques can be
disabled for practical experiments; this was done in §6. The full range of parameters is
documented in the README.txt file included with the distribution. Some pertinent commands
are:

-d 〈methods〉 disables the given methods; for example, use ./wanda.exe -d nt,poly,dp
to disable non-termination analysis, algebra interpretations and dependency pairs; this
forces Wanda to generate a proof using StarHorpo, if one can be found;

-i 〈tool〉 tells Wanda to use the given first-order termination tool as back-end, which must
be located in the resources/ sub-directory. If not given, Wanda uses the file “firstorder-
prover”. Similarly, -n 〈tool〉 tells Wanda to use the given tool for non-termination
analysis when this is done in a separate step.

In standard usage, Wanda takes an input file describing an AFSM or AFS, performs
an analysis following §3–5 and then prints YES (a termination proof was found), NO (a
non-termination proof was found) or MAYBE (neither could be proved). In the first two cases,
this is followed by a human-readable proof. If more than one input file is supplied, Wanda
prints the name of each file, followed by the answer and possibly proof. A timeout may be
supplied (following the standard for the termination competition) but is ignored.

8 Conclusions and directions for future work

This paper has discussed the various techniques used in Wanda, and how they are applied.
Wanda is only one of several higher-order tools, and interestingly, incomparable to others:
there are benchmarks that Wanda can handle and other tools cannot, and vice versa. This is
because all tools that have participated in the Termination Competition have focused on
different techniques. For Wanda, the main termination approach is the DP framework.

There are many directions for improvement. Most pertinently, due to the presence of a
large database of termination benchmarks in the competition format [13], Wanda has been
optimised for AFSs and is decidedly weak in the presence of meta-variables with arguments.
Moreover, non-termination analysis is very limited and does not take advantage of the DP
framework. Other improvements could be to further extend first-order termination techniques,
to build on primarily higher-order techniques like sized types [5], and to support AFSMs with
polymorphic types. Automatic certification as has been done for first-order rewriting [49]
would be a highly interesting direction to pursue, but would require a vast amount of work to
build up the formalisation library. Finally, Wanda’s usability could be substantially improved
by the addition of a web interface, for example using the EasyInterface toolkit [15].

A complete discussion of most techniques in Wanda and the technology behind automating
them is available in the author’s PhD thesis [35]. Wanda is open-source and available from
http://wandahot.sourceforge.net/. The snapshot that was used in the present paper
(including both open- and closed-source back-ends) is available from the evaluation pages:

https://www.cs.ru.nl/~cynthiakop/experiments/fscd20/

http://wandahot.sourceforge.net/
https://www.cs.ru.nl/~cynthiakop/experiments/fscd20/
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Abstract
We present the syntax, semantics, typing, subtyping, unification, refinement, and REPL of Bull,
a prototype theorem prover based on the ∆-Framework, i.e. a fully-typed Logical Framework à
la Edinburgh LF decorated with union and intersection types, as described in previous papers by
the authors. Bull also implements a subtyping algorithm for the Type Theory Ξ of Barbanera-
Dezani-de’Liguoro. Bull has a command-line interface where the user can declare axioms, terms, and
perform computations and some basic terminal-style features like error pretty-printing, subexpressions
highlighting, and file loading. Moreover, it can typecheck a proof or normalize it. These terms can
be incomplete, therefore the typechecking algorithm uses unification to try to construct the missing
subterms. Bull uses the syntax of Berardi’s Pure Type Systems to improve the compactness and
the modularity of the kernel. Abstract and concrete syntax are mostly aligned and similar to the
concrete syntax of Coq. Bull uses a higher-order unification algorithm for terms, while typechecking
and partial type inference are done by a bidirectional refinement algorithm, similar to the one found
in Matita and Beluga. The refinement can be split into two parts: the essence refinement and
the typing refinement. Binders are implemented using commonly-used de Bruijn indices. We have
defined a concrete language syntax that will allow user to write ∆-terms. We have defined the
reduction rules and an evaluator. We have implemented from scratch a refiner which does partial
typechecking and type reconstruction. We have experimented Bull with classical examples of the
intersection and union literature, such as the ones formalized by Pfenning with his Refinement Types
in LF and by Pierce. We hope that this research vein could be useful to experiment, in a proof
theoretical setting, forms of polymorphism alternatives to Girard’s parametric one.
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1 Introduction

This paper provides a unifying framework for two hitherto unreconciled understandings of
types: i.e. types-as-predicates à la Curry and types-as-propositions à la Church. The key
to our unification consists in introducing, implementing and experimenting strong proof-
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functional connectives [40, 2, 3] in a dependent type theory such as the Edinburgh Logical
Framework (LF) [21]. Both Logical Frameworks and Proof-Functional Logic consider proofs
as first-class citizens, albeit differently.

Strong proof-functional connectives take seriously into account the shape of logical proofs,
thus allowing for polymorphic features of proofs to be made explicit in formulæ. Hence they
provide a finer semantics than classical/intuitionistic connectives, where the meaning of a
compound formula depends only on the truth value or the provability of its subformulæ.
However, existing approaches to strong proof-functional connectives are all quite idiosyncratic
in mentioning proofs. Existing Logical Frameworks, on the other hand, provide a uniform
approach to proof terms in object logics, but they do not fully capitalize on subtyping.

This situation calls for a natural combination of the two understandings of types, which
should benefit both worlds. On the side of Logical Frameworks, the expressive power of
the metalanguage would be enhanced thus allowing for shallower encodings of logics, a
more principled use of subtypes [36], and new possibilities for formal reasoning in existing
interactive theorem provers. On the side of type disciplines for programming languages, a
principled framework for proofs would be provided, thus supporting a uniform approach to
“proof reuse” practices based on type theory [14, 38, 11, 20, 8].

Therefore, in [25] we extended LF with the connectives of strong intersection (correspon-
ding to intersection types [4, 5]) and strong union (corresponding to union types [31, 2])
of Proof-Functional Logic [40]. We called this extension the ∆-Framework (LF∆), since it
builds on the ∆-calculus [28]. As such, LF∆ subsumes many expressive type disciplines in
the literature [36, 2, 3, 38, 11].

It is not immediate to extend the Curry-Howard isomorphism to logics supporting strong
proof-functional connectives, since these connectives need to compare the shapes of derivations
and do not just take into account the provability of propositions, i.e. the inhabitation of the
corresponding type. In order to capture successfully strong logical connectives such as ∩ or
∪, we need to be able to express the rules:
D1 : A D2 : B D1 ≡R D2

A ∩B (∩I) D1 : A ⊃ C D2 : B ⊃ C A ∪B D1 ≡R D2

C
(∪E)

where ≡R is a suitable equivalence between logical proofs. Notice that the above rules suggest
immediately intriguing applications in polymorphic constructions, i.e. the same evidence can
be used as a proof for different statements.

Pottinger [40] was the first to study the strong connective ∩. He contrasted it to the
intuitionistic connective ∧ as follows: “The intuitive meaning of ∩ can be explained by saying
that to assert A ∩B is to assert that one has a reason for asserting A which is also a reason
for asserting B [while] to assert A∧B is to assert that one has a pair of reasons, the first of
which is a reason for asserting A and the second of which is a reason for asserting B”.

A logical theorem involving intuitionistic conjunction which does not hold for strong
conjunction is (A ⊃ A) ∧ (A ⊃ B ⊃ A), otherwise there should exist a closed λ-term having
simultaneously both one and two abstractions. López-Escobar [29] and Mints [33] investigated
extensively logics featuring both strong and intuitionistic connectives especially in the context
of realizability interpretations.

Dually, it is in the ∪-elimination rule that proof equality needs to be checked. Following
Pottinger, we could say that asserting (A ∪ B) ⊃ C is to assert that one has a reason for
(A ∪B) ⊃ C, which is also a reason to assert A ⊃ C and B ⊃ C. The two connectives differ
since the intuitionistic theorem ((A ⊃ B) ∨ B) ⊃ A ⊃ B is not derivable for ∪, otherwise
there would exist a term which behaves both as I and as K.
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Strong connectives arise naturally in investigating the propositions-as-types analogy for
intersection and union type assignment systems. From a logical point of view, there are
many proposals [33, 36, 47, 42, 34, 10, 9, 39, 19, 18] to find a suitable logic to fit intersection
and union: we also refer to [15, 25, 43] for a detailed discussion.

The LF∆ Logical Framework introduced in [25] extends [28] with union types and
dependent types. The novelty of LF∆ in the context of Logical Frameworks, lies in the
full-fledged use of strong proof-functional connectives, which to our knowledge has never
been explored before. Clearly, all ∆-terms have a computational counterpart.

Useful applications rely on using Proof-Functional Logics (that care about the proof-
derivation), instead of Truth-Functional Logics (that care about the validity of the conclusion).
In a nutshell: i) Intersection-types better catch the class of strongly normalizing terms than
Fω (see, among others, [46]). ii) Union and intersection types allow for a little form of
abstract interpretation (see Pierce IsZero example [38, 2]) that cannot easily be encoded in
LFω. iii) Proof-Functional Logics introduces a notion of “proof-synchronization”, as showed
in the operational semantics of the ∆-calculus, see Definition 4.3 and 5 of [28]: two proofs
are “in-sync” iff their “untyped essences” are equals. This could be possibly exploited in a
synchronized tactic in Bull. iv) Union types can capture a natural form of parallelism that
could be conveniently put to use in formalizing reasoning on concurrent execution, as in
proving correctness of concurrency control protocols or in branch-prediction techniques.

This paper presents the implementation of Bull [44, 43], an Interactive Theorem Prover
(ITP) based on the ∆-Framework [45, 25]. The first author wrote this theorem prover from
scratch for three years. Bull have a command-line interface program where the user can
declare axioms, terms, and perform computations. These terms can be incomplete, therefore
the typechecking algorithm uses unification to try to construct the missing subterms.

We have designed and implemented a novel subtyping algorithm [27] which extends the
well-known algorithm for intersection types, designed by Hindley [23], with union types. Our
subtyping algorithm has been mechanically proved correct in Coq and extracted in OCaml,
extending the proof of a subtyping algorithm for intersection types of Bessai et al. [7].

We have implemented several features. A Read-Eval-Print-Loop (REPL) allows to define
axioms and definitions, and performs some basic terminal-style features like error pretty-
printing, subexpressions highlighting, and file loading. Moreover, it can typecheck a proof
or normalize it. We use the Berardi’s syntax of Pure Type Systems [6] to improve the
compactness and the modularity of the kernel. Abstract and concrete syntax are mostly
aligned: the concrete syntax is similar to the concrete syntax of Coq.

We have designed a higher-order unification algorithm for terms, while typechecking and
partial type inference are done by our bidirectional refinement algorithm, similar to the one
found in Matita [1]. The refinement can be split into two parts: the essence refinement and
the typing refinement. The bidirectional refinement algorithm aims to have partial type
inference, and to give as much information as possible to the unifier. For instance, if we
want to find a ?y such that `Σ 〈λx:σ.x, λx:τ.?y〉 : (σ → σ) ∩ (τ → τ), then we can infer that
x:τ `?y : τ and that o ?y o =β x.

This paper is organized as follows: in Section 2, we introduce the language we have
implemented. In Section 3, we define the reduction rules and explain the evaluation process.
In Section 4, we present the subtyping algorithm. In Section 5, we present the unifier. In
Section 6, we present the refiner which does partial typechecking and type reconstruction. In
Section 7, we present the REPL. In Section 8, we present possible enhancements of the type
theory and of the ITP. Appendix contains interesting encodings that could be typechecked in
Bull and could help the reader to understand the usefulness of adding ad hoc polymorphism
and proof-functional operators to LF.
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2 Syntax of terms

The syntax for the logical framework we have designed and implemented is as follows:

∆, σ ::= s , c , v , _ , ?x[∆; ...; ∆] Sorts, Const, Vars, Placeholders and Metavars
| let x:σ := ∆ in ∆ Local definition
| Πx:σ.∆ , λx:σ.∆ , ∆S Π- and λ-abstraction and application
| σ ∩ σ , σ ∪ σ Intersection and Union types
| 〈∆,∆〉 , pr1 ∆ , pr2 ∆ Strong pair and Left/Right projections
| smatch ∆ return σ with [x:σ ⇒ ∆ | x:σ ⇒ ∆] Strong sum
| in1 σ∆ , in2 σ∆ , coeσ∆ Left/Right injections and Coercions

S ::= () | (S;∆) Typed Spines

By using a Pure Type System approach [6], all the terms are read through the same parser.
The main differences with the ∆-Framework [25] are the additions of a placeholder and
meta-variables, used by the refiner. We also added a let operator and changed the syntax of
the strong sum smatch so it looks more like the concrete syntax used in the implementation.
A meta-variable ?x[∆1; ...; ∆n] has the, so called, suspended substitutions ∆1; ...; ∆n, which
will be explained clearly in Subsection 2.4. Finally, following the Cervesato-Pfenning jargon
[12], applications are in spine form, i.e. the arguments of a function are stored together in a
list, exposing the head of the term separately. We also implemented a corresponding syntax
for the untyped counterpart of the framework, called essence [28], where all pure λ-terms M
and spines are defined as follows:

M, ς ::= s , c , x , _ , ?x[M ; ...;M ] Sorts, Const, Vars, Placeholders and Metavars
| let x := M in M Local definition
| Πx:ς.ς , λx.M , M R Π- and λ-abstraction and application
| ς ∩ ς , ς ∪ ς Intersection and Union types

R ::= () | (R;M) Untyped Spines

Note that essences of types (ς) belongs to the same syntactical set as essences of terms.

2.1 Concrete syntax
The concrete syntax of the terms has been implemented with OCamllex and OCamlyacc. Its
simplified syntax is as follows:

term ::= Type # type
| let ID [args] [: term] := term in term # let
| ID # variables and constants
| forall args, term # dependent product
| term -> term # non-dependent product
| fun args => term # lambda-abstraction
| term term # application
| term & term # intersection of types
| term | term # union of types
| <term,term> # strong pair
| proj_l term # left projection of a strong pair
| proj_r term # right projection of a strong pair
| smatch term [as ID] [return term] with ID [: term] => term, ID [: term] => term end
| inj_l term term # left injection of a strong sum # strong sum
| inj_r term term # right injection of a strong sum
| coe term term # coercion
| _ # wildcard
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Identifiers ID refers to any alphanumeric string (possibly with underscores and apostrophes).
The non-terminal symbol args correspond to a non-empty sequence of arguments, where
an argument is an identifier, and can be given with its type. In the latter case, you should
parenthesize it, for instance (x : A), and if you want to assign the same type to several
consecutive arguments, you can e.g. write (x y z : A). Strong sums have a complicated
syntax. For instance, consider this term:

smatch foo as x return T with y : T1 ⇒ bar, z : T2 ⇒ baz end

The above term in the concrete syntax corresponds to
smatch foo return λx:_.T with [y:T1⇒ bar | z:T2⇒ baz]
in the abstract syntax. The concrete syntax thus guarantees that the returned type is a
λ-abstraction, and it allows a simplified behaviour of the type reconstruction algorithm. The
behaviour of the concrete syntax is intended to mimic Coq.

2.2 Implementation of the syntax
In the OCaml implementation, ∆-terms and their types along with essences and type
essences are represented with a single type called term. It allows some functions (such as the
normalization function) to be applied both on ∆-terms and on essences.

type term =
| Sort of location ∗ sort
| Let of location ∗ string ∗ term ∗ term ∗ term (* let s : t1 := t2 in t3 *)
| Prod of location ∗ string ∗ term ∗ term (* forall s : t1, t2 *)
| Abs of location ∗ string ∗ term ∗ term (* fun s : t1 => t2 *)
| App of location ∗ term ∗ term list (* t t1 t2 ... tn *)
| Inter of location ∗ term ∗ term (* t1 & t2 *)
| Union of location ∗ term ∗ term (* t1 | t2 *)
| SPair of location ∗ term ∗ term (* < t1, t2 > *)
| SPrLeft of location ∗ term (* proj_l t1 *)
| SPrRight of location ∗ term (* proj_r t1 *)
| SMatch of location ∗ term ∗ term ∗ string ∗ term ∗ term ∗ string ∗ term ∗ term

(* match t1 return t2 with s1 : t3 => t4 , s2 : t5 => t6 end *)
| SInLeft of location ∗ term ∗ term (* inj_l t1 t2 *)
| SInRight of location ∗ term ∗ term (* inj_r t1 t2 *)
| Coercion of location ∗ term ∗ term (* coe t1 t2 *)
| Var of location ∗ int (* de Bruijn index *)
| Const of location ∗ string (* variable name *)
| Underscore of location (* meta-variables before analysis *)
| Meta of location ∗ int ∗ (term list) (* index and substitution *)

The constructors of term contain the location information retrieved by the parser that
allows the typechecker to give the precise location of a subterm to the user, in case of error.

The App constructor takes as parameters the applied function and the list of all the
arguments. The list of parameters is used as a stack, hence the rightmost argument is
the head of the list, and can easily be removed in the OCaml recursive functions. The
variables are referred to as strings in the Const constructor, and as de Bruijn indices in Var
constructors.

The parser does not compute de Bruijn indices, it gives the variables as strings. The
function fix_index replaces bound variables by de Bruijn indices. We still keep track of the
string names of the variables, in case we have to print them back. Its converse function,
fix_id, replaces the de Bruijn indices with the previous strings, possibly updating the string
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names in case of name clashes. For instance, the string printed to the user, showing the
normalized form of (fun (x y : nat) ⇒ x) y, is fun y0 : nat ⇒ y : the bound variable y has
been renamed y0. The meta-variables are generated by the typecheckers, and their identifier
is an integer. We have defined several helper functions to ease the process of terms.

The generic function visit_term f g h t looks at the children of the term t, and: i) every
child t1 outside of a binder is replaced with f t1; ii) every child t1 inside the binding of a
variable whose name (a string) is s is replaced with g s t1, while s is replaced with h s t1.

The functions g and h take a string as an argument, for helping the implementation of
the fix_index and fix_id functions.

The function map_term is a kind of mapping function: map_term k f t finds every variable
Var(l, n) inside the term t, and replaces it by f (k+offset) l n, where offset is the number
of extra bindings.

The lift and map_term functions allow us to define a substitution in a clean way:

(* update all indices greater than k by adding n to them *)
let lift k n = map_term k (fun k l m→ if m < k then Var (l, m) else Var (l, m+n))

(* Transform (lambda x. t1) t2 into t1[t2/x] *)
let beta_redex t1 t2 =

let subst k l m =
if m < k then Var (l, m) (* bound variable *)
else if m = k then (* x *)

lift 0 k t2
else (* the enclosing lambda goes away *)

Var (l, m−1)
in map_term 0 subst t1

2.3 Environments
There are four kinds of environments, namely:
1. the global environment (noted Σ). The global environment holds constants which are fully

typechecked: Σ ::= · | Σ, c:ς@σ | Σ, c := M@∆ : ς@σ. Intuitively, c:ς@σ is a declaration
of a constant (or axiom), and c := M@∆ : ς@σ corresponds to a global definition.

2. the local environment (noted Γ). It is used for the first step of typechecking, and looks
like a standard environment: Γ ::= · | Γ, x:σ | Γ, x := ∆ : σ. Intuitively, x:σ is a variable
introduced by a λ-abstraction, and x := ∆ : σ is a local definition introduced by a let.

3. the essence environment (noted Ψ). It is used for the second step of typechecking, and
holds the essence of the local variables: Ψ ::= · | Ψ, x | Ψ, x := M . Intuitively, x is a
variable introduced by a λ-abstraction, and x := M is a local definition introduced by a
let. Notice that the variable x in the BNF expression Ψ, x carries almost no information.
However, since local variables are referred to by their de Bruijn indices, and these indices
are actually their position in the environment, it follows that they have to appear in the
environment, even when there is no additional information.

4. the meta-environment (noted Φ). It is used for unification, and records meta-variables
and their instantiation whenever the unification algorithm has found a solution: Φ ::= · |
Φ, sort(?x) | Φ, ?x := s | Φ, (Γ `?x : σ) | Φ, (Γ `?x := ∆ : σ) | Φ,Ψ `?x | Φ,Ψ `?x := M .
Intuitively, since there are some meta-variables for which we know they have to be
sorts, it follows that sort(?x) declares a meta-variable ?x which correspond either to
Type or Kind, and ?x := s is the instantiation of a sort ?x. Also, Γ `?x : σ is the
declaration of a meta-variable ?x of type σ which appeared in a local environment Γ, and
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Γ `?x := ∆ : σ is the instantiation of the meta-variable ?x. Concerning meta-variables
inside essences, Ψ `?x is the declaration of a meta-variable ?x in an essence environment
Ψ, and Ψ `?x := M is the instantiation of ?x.

2.4 Suspended substitution
We shortly introduce suspended substitution, as presented in [1]. Let’s consider the following
example: if we want to unify (λx:σ.?y) c1 with c1, we could unify ?y with c1 or with x, the
latter being the preferred solution. However, if we normalize (λx:σ.?y) c1, we should record
the fact that c1 can be substituted by any occurrence of x appearing in ?y, even though
the term which will replace ?y is currently unknown. That is the purpose of suspended
substitution: the term is actually noted (λx:σ.?y[x]) c1 and reduces to ?y[c1], noting that c1
has replaced x.

I Definition 1 (Erase function and suspended substitution).
1. The vector x1; . . . ;xn is created using the erase function ·, defined as

x1:σ1; . . . ;xn:σn
def= x1; . . . ;xn and x1; . . . ;xn

def= x1; . . . ;xn.
2. When we want to create a new meta-variable in a local context Γ = x1:σ1; . . . ;xn:σn, we

create a meta-variable ?y[Γ]≡?y[x1; . . . ;xn]. The vector ∆1; . . . ; ∆n inside ?y[∆1; . . . ; ∆n]
is the suspended substitution of ?y. Substitutions for meta-variables and their suspended
substitution are propagated as follows:

?y[∆1; . . . ; ∆n][∆/x] def= ?y[∆1[∆/x]; . . . ; ∆n[∆/x]]

?y[M1; . . . ;Mn][N/x] def= ?y[M1[N/x]; . . . ;Mn[N/x]]

3 The evaluator of Bull

The evaluator follows the applicative order strategy, which recursively normalizes all subterms
from left to right (with the help of the visit_term function, see full code in [44]), then: if the
resulting term is a redex, reduces it, then uses the same strategy again; or else, the resulting
term is in normal form.

3.1 Reduction rules
The notions of reduction, from which we can define one-step reduction, multistep reduction,
and equivalence relation, are defined below.

I Definition 2 (Reductions).
1. for ∆-terms:

(λx:σ.∆1) ∆2 7→β ∆1[∆2/x]
λx:σ.∆x 7→η ∆ if x 6∈ Fv(∆)

pri 〈∆1,∆2〉 7→pri
∆i

smatch ini ∆3 return ρ with [x:σ ⇒ ∆1 | x:τ ⇒ ∆2]
7→ini ∆i[∆3/x]

let x:σ := ∆1 in ∆2 7→ζ ∆2[∆1/x]
c 7→δΣ ∆ if (c := M@∆ : ς@σ) ∈ Σ
x 7→δΓ ∆ if (x := ∆ : σ) ∈ Γ

?x[∆1; . . . ; ∆n] 7→δΦ ∆
−−−−→
[∆i/Γ] if (Γ `?x := ∆ : σ) ∈ Φ

?x[∆1; . . . ; ∆n] 7→δΦ s if ?x := s ∈ Φ
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2. for pure λ-terms:

(λx.M)N 7→β M [N/x]
λx.M x 7→η M if x 6∈ Fv(M)

let x := M in N 7→ζ N [M/x]
c 7→δΣ M if (c := M@∆ : ς@σ) ∈ Σ
x 7→δΨ M if (x := M) ∈ Ψ

?x[M1; . . . ;Mn] 7→δΦ N
−−−−→
[Mi/Ψ] if (Ψ `?x := M) ∈ Φ

?x[M1; . . . ;Mn] 7→δΦ s if ?x := s ∈ Φ

3.2 Implementation
When the user inputs a term, the refiner creates meta-variables and tries to instantiate them,
but this should remain as much as possible invisible to the user. Therefore the term returned
by the refiner should be meta-variable free, even though not in normal form. Thus, terms in
the global signature Σ are meta-variable free, and the δΦ reductions are only used by the
unifier and the refiner.

The function strongly_normalize works on both ∆-terms and pure λ-terms, and supposes
that the given term is meta-variable free. Note that reductions can create odd spines, for
instance if you consider the term (λx:σ.x S1) (∆S2), a simple β-redex would give ∆S2 S1,
therefore we merge S2 and S1 in a single spine.

let rec strongly_normalize is_essence env ctx t =
let sn_children = visit_term (strongly_normalize is_essence env ctx)

(fun _→ strongly_normalize is_essence
env (Env.add_var ctx (DefAxiom ("",nothing))))

(fun id _→ id)
in let sn = strongly_normalize is_essence env ctx in
(* Normalize the children *)
let t = sn_children t in
match t with
(* Spine fix *)
| App(l, App(l’, t1,t2), t3)→

sn (App(l, t1, List.append t2 t3))
(* Beta-redex *)
| App (l, Abs (l’, _,_, t1), t2 :: [ ]) →

sn (beta_redex t1 t2)
| App (l, Abs (l’, x,y, t1), t2 :: t3)
→ sn @@ app l (sn (App(l,Abs (l’,x,y, t1), t3))) t2

| Let (l, _, t1, t2, t3)→ sn (beta_redex t2 t1)
(* Delta-redex *)
| Var (l, n)→ let (t1, _) = Env.find_var ctx n in

(match t1 with
| Var _→ t1
| _→ sn t1)

| Const (l, id)→ let o = Env.find_const is_essence env id in
(match o with
| None→ Const(l, id)
| Some (Const (_,id’) as t1,_) when id = id’→ t1
| Some (t1,_)→ sn t1)

(* Eta-redex *)
| Abs (l,_, _, App (l’, t1, Var (_,0) :: l2))
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→ if is_eta (App (l’, t1, l2)) then
let t1 = lift 0 (−1) t1 in
match l2 with
| [ ]→ t1
| _→ App (l’, t1, List.map (lift 0 (−1)) l2)

else t
(* Pair-redex *)
| SPrLeft (l, SPair (l’, x,_)) → x
| SPrRight (l, SPair (l’, _, x)) → x
(* inj-reduction *)
| SMatch (l, SInLeft(l’,_,t1), _, id1, _, t2, id2, _, _)→

sn (beta_redex t2 t1)
| SMatch (l, SInRight(l’,_,t1), _, id1, _, _, id2, _, t2)→

sn (beta_redex t2 t1)
| _→ t

4 The subtyping algorithm of Bull

The subtyping algorithm implemented in Bull is basically the algorithm A as described
and Coq certified/extracted in [27] by the authors. The main judgment is Σ; Γ ` σ 6 τ .
The only difference is that the types are normalized before applying the algorithm. The
auxiliary rewriting functions R1,R2,R3,R4, described in [27], rewrite terms in normal forms
as follows:

let rec anf a =
let rec distr f a b =

match (a,b) with
| (Union(l,a1,a2),_)→ Inter(l, distr f a1 b, distr f a2 b)
| (_, Inter(l,b1,b2))→ Inter(l, distr f a b1, distr f a b2)
| _→ f a b

in
match a with
| Prod(l,id,a,b)→ distr (fun a b→ Prod(l,id,a,b)) (danf a) (canf b)
| _→ a

and canf a =
let rec distr a b =

match (a,b) with
| (Inter(l,a1,a2),_)→ Inter(l, distr a1 b, distr a2 b)
| (_,Inter(l,b1,b2))→ Inter(l, distr a b1, distr a b2)
| _→ Union(dummy_loc,a,b)

in
match a with
| Inter(l,a,b)→ Inter(l, canf a, canf b)
| Union(l,a,b)→ distr (canf a) (canf b)
| _→ anf a

and danf a =
let rec distr a b =

match (a,b) with
| (Union(l,a1,a2),_)→ Union(l, distr a1 b, distr a2 b)
| (_,Union(l,b1,b2))→ Union(l, distr a b1, distr a b2)
| _→ Inter(dummy_loc, a,b)

in
match a with
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| Inter(l,a,b)→ distr (danf a) (danf b)
| Union(l,a,b)→ Union(l, danf a, danf b)
| _→ anf a

It follows that, our subtyping function is quite simple:

let is_subtype env ctx a b =
let a = danf @@ strongly_normalize false env ctx a in
let b = canf @@ strongly_normalize false env ctx b in
let rec foo env ctx a b =
match (a, b) with
| (Union(_,a1,a2),_)→ foo env ctx a1 b && foo env ctx a2 b
| (_,Inter(_,b1,b2))→ foo env ctx a b1 && foo env ctx a b2
| (Inter(_,a1,a2),_)→ foo env ctx a1 b || foo env ctx a2 b
| (_,Union(_,b1,b2))→ foo env ctx a b1 || foo env ctx a b2
| (Prod(_,_,a1,a2),Prod(_,_,b1,b2))
→ foo env ctx b1 a1 && foo env (Env.add_var ctx (DefAxiom("",nothing))) a2 b2

| _→ same_term a b
in foo env ctx a b

5 The unification algorithm of Bull

Higher-order unification of two terms ∆1 and ∆2 aims at finding a most general substitution
for meta-variables such that ∆1 and ∆2 becomes convertible. The structural rules are given
in Figure 1. Classical references are the work of Huet [26], and Dowek et al. [16].

Our higher-order unification algorithm is inspired by the Reed [41] and Ziliani-Sozeau
[48] papers. In [48], conversion of terms is quite involved because of the complexity of Coq.
For simplicity, our algorithm supposes the terms to be in normal form.

The unification algorithm takes as input a meta-environment Φ, a global environment Σ,
a local environment Γ, the two terms to unify ∆1 and ∆2, and either fails or returns the
updated meta-environment Φ. The rest of the unification algorithm implements Higher-Order
Pattern Unification (HOPU) [41]. In a nutshell, HOPU takes as an argument a unification
problem ?f S ?= N , where all the terms in S are free variables and each variable occurs
once. For instance, for the unification problem ?f y x z ?= x c y, it creates the solution
?f := λy:σ2.λx:σ1.λz:σ3.x c y. The expected type of x, y, and z can be found in the local
environment, but capturing correctly the free variables x, y, and z is quite tricky because we
have to permute their de Bruijn indices. If HOPU fails, we recursively unify every subterm.

6 The refinement algorithm of Bull

The Bull refinement algorithm is inspired by the work on the Matita ITP [1]. It is defined
using bi-directionality, in the style of Harper-Licata [22]. The bi-directional technique is a
mix of typechecking and type reconstruction, in order to trigger the unification algorithm
as soon as possible. Moreover, it gives more precise error messages than standard type
reconstruction. For instance, if f : (bool −> nat −> bool) −> bool, then f (fun x y ⇒ y) is
ill-typed. With a simple type inference algorithm, we would type f, then fun x y ⇒ y which
would be given some type ?x −> ?y −> ?y, and finally we would try to unify bool −> nat −> bool
with ?x −> ?y −> ?y, which fails. However, the failure is localized on the application, whereas
it would better be localized inside the argument. More precisely, we would have the following
error message:
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s1 ≡ s2

Φ; Σ; Γ ` s1
?= s2

U
 Φ

(Sort) c1 ≡ c2

Φ; Σ; Γ ` c1
?= c2

U
 Φ

(Const) x1 ≡ x2

Φ; Σ; Γ ` x1
?= x2

U
 Φ

(Var)

Φ1; Σ; Γ ` σ1
?= σ2

U
 Φ2 Φ2; Σ; Γ, x:σ1 ` ∆1

?= ∆2
U
 Φ3

Φ1; Σ; Γ ` λx:σ1.∆1
?= λx:σ2.∆2

U
 Φ3

(Abs)

x1:σ1, . . . , xn:σn `?x : Πz1:τ1 . . .Πzm:τm.τ ∈ Φ1 y1 . . . yn, z1 . . . zm distinct
Φ2 ≡ Φ1, (x1:σ1, . . . , xn:σn `?x := λz1:τ1. . . . λzm:τm.∆

−−−−→
[xi/yi] : Πz1:τ1 . . .Πzm:τm.τ)

Φ1; Σ; Γ `?x[y1; . . . ; yn] (z1; . . . ; zm) ?= ∆ U
 Φ2

(App1)

Φ1 ` ∆1
?= ∆2

U
 Φ2

Φ1; Σ; Γ ` ∆1 () ?= ∆2
U
 Φ2

(App2) Φ1 ` ∆1 S1
?= ∆3 S2

U
 Φ2 Φ2 ` ∆2

?= ∆4
U
 Φ3

Φ1; Σ; Γ ` ∆1 (S1; ∆2) ?= ∆3 (S2; ∆4) U Φ3

(App3)

Φ1; Σ; Γ ` σ1
?= σ2

U
 Φ2

Φ2; Σ; Γ ` τ1
?= τ2

U
 Φ3

Φ1; Σ; Γ ` σ1 ∩ τ1
?= σ2 ∩ τ2

U
 Φ3

(∩)

Φ1; Σ; Γ ` σ1
?= σ2

U
 Φ2

Φ2; Σ; Γ ` τ1
?= τ2

U
 Φ3

Φ1; Σ; Γ ` σ1 ∪ τ1
?= σ2 ∪ τ2

U
 Φ3

(∪)

Φ1; Σ; Γ ` ∆1
?= ∆2

U
 Φ2

Φ2; Σ; Γ ` ∆3
?= ∆4

U
 Φ3

Φ1; Σ; Γ ` 〈∆1,∆3〉
?= 〈∆2,∆4〉

U
 Φ3

(Spair)
Φ1; Σ; Γ ` ∆1

?= ∆2
U
 Φ2

Φ1; Σ; Γ ` pri ∆1
?= pri ∆2

U
 Φ2

(Proj)

Φ1; Σ; Γ ` σ1
?= σ2

U
 Φ2

Φ2; Σ; Γ ` ∆1
?= ∆2

U
 Φ3

Φ1; Σ; Γ ` ini σ1∆1
?= ini σ2∆2

U
 Φ3

(Inj)

Φ1; Σ; Γ ` σ1
?= σ2

U
 Φ2

Φ2; Σ; Γ ` ∆1
?= ∆2

U
 Φ3

Φ1; Σ; Γ ` coeσ1 ∆1
?= coeσ2 ∆2

U
 Φ3

(Coe)

Φ1; Σ; Γ ` ∆ ?= ∆′ U Φ2 Φ2; Σ; Γ ` τ ?= τ ′
U
 Φ3 Φ3; Σ; Γ ` σ1

?= σ′1
U
 Φ4

Φ4; Σ; Γ, x:σ1 ` ∆1
?= ∆′1

U
 Φ5 Φ5; Σ; Γ ` σ2

?= σ′2
U
 Φ6 Φ6; Σ; Γ, x:σ2 ` ∆2

?= ∆′2
U
 Φ7

Φ1; Σ; Γ ` smatch ∆ return τ with [x:σ1 ⇒ ∆1 | x:σ2 ⇒ ∆2]
?= smatch ∆′ return τ ′ with [x:σ′1 ⇒ ∆1 | x:σ′2 ⇒ ∆′2] U Φ7

(Ssum)

Φ1; Σ; Γ, x:σ ` ∆1
?= ∆2 x

U
 Φ2

Φ1; Σ; Γ ` λx:σ.∆1
?= ∆2

U
 Φ2

(ηl)
Φ1; Σ; Γ, x:σ ` ∆1 x

?= ∆2
U
 Φ2

Φ1; Σ; Γ ` ∆1
?= λx:σ.∆2

U
 Φ2

(ηr)

Figure 1 Structural rules of the unification algorithm.

f (fun x y ⇒ y)
^

Error: the term "y" has type "nat" while it is expected to have type "bool".

Our typechecker is also a refiner : intuitively, a refiner takes as input an incomplete term,
and possibly an incomplete type, and tries to infer as much information as possible in order to
reconstruct a well-typed term. For example, let’s assume we have in the global environment
the following constants:

(eq : nat −> nat −> Type), (eq_refl : forall x : nat, eq x x)

Then refining the term eq_refl _ : eq _ 0 would create the following term:

eq_refl 0 : eq 0 0
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(x:σ) ∈ Γ or (x := ∆ : σ) ∈ Γ

Φ; Σ; Γ ` x ⇑ x : σ; Φ
(Var)

(c:σ) ∈ Σ or (c := ∆ : σ) ∈ Σ

Φ; Σ; Γ ` c ⇑ c : σ; Φ
(Const)

Φ1; Σ; Γ ` σ F σ′ : s; Φ2 Φ2; Σ; Γ ` ∆1 : σ′ ⇓ ∆′1; Φ3 Φ3; Σ; Γ, x := ∆′1:σ′ ` ∆2
⇑
 ∆′2 : τ ; Φ4

Φ1; Σ; Γ ` let x:σ := ∆1 in ∆2
⇑
 let x:σ′ := ∆′1 in ∆′2 : τ [σ′/x]; Φ4

(Let)

Φ1; Σ; Γ ` σ1
F
 σ′1 : s1; Φ2 Φ2; Σ; Γ ` σ2

F
 σ′2 : s2; Φ3 Φ3 ` (s1, s2) ∈ LF; Φ4

Φ1; Σ; Γ ` Πx:σ1.σ2
⇑
 Πx:σ′1.σ′2 : s2; Φ4

(Prod)

Φ1; Σ; Γ ` σ F σ′ : s; Φ2 Φ2; Σ; Γ, x:σ′ ` ∆ ⇑
 ∆′ : τ ; Φ3 Φ3; Σ; Γ ` Πx:σ′.τ F ρ : s; Φ4

Φ1; Σ; Γ ` λx:σ.∆ ⇑
 λx:σ′.∆′ : Πx:σ′.τ ; Φ4

(Abs)

Φ1; Σ; Γ ` ∆ ⇑
 ∆′ : σ; Φ2

Φ1; Σ; Γ ` ∆ () ⇑ ∆′ : σ; Φ2

(App1)
Φ; Σ; Γ ` Type ⇑ Type : Kind; Φ

(T )

Φ1; Σ; Γ ` ∆1 S
⇑
 ∆′1 : σ; Φ2 Φ2; Σ; Γ ` σ =β Πx:σ1.σ2 Φ2; Σ; Γ ` ∆2 : σ1

⇓
 ∆′2; Φ3

Φ1; Σ; Γ ` ∆1 (S; ∆2) ⇑ ∆′1 ∆′2 : σ2[∆′2/x]; Φ3

(App2)

Φ1; Σ; Γ ` ∆1 S
⇑
 ∆′1 : σ; Φ2 Φ2; Σ; Γ ` ∆2

⇑
 ∆′2 : σ1; Φ3

Φ3, sort(?y), (Γ, x:σ1 `?x :?y[ ]); Σ; Γ ` σ ?= Πx:σ1.?x[Γ;x] U Φ4

Φ1; Σ; Γ ` ∆1 (S; ∆2) ⇑ ∆′1 ∆′2 : ?x[Γ;x][∆′2/x]; Φ4

(App3)

Φ1; Σ; Γ ` σ1 : Type ⇓ σ′1; Φ2

Φ2; Σ; Γ ` σ2 : Type ⇓ σ′2; Φ3

Φ1; Σ; Γ ` σ1 ∩ σ2
⇑
 σ′1 ∩ σ′2 : Type; Φ3

(∩)

Φ1; Σ; Γ ` σ1 : Type ⇓ σ′1; Φ2

Φ2; Σ; Γ ` σ2 : Type ⇓ σ′2; Φ3

Φ1; Σ; Γ ` σ1 ∪ σ2
⇑
 σ′1 ∪ σ′2 : Type; Φ3

(∪)

Figure 2 Rules for ⇑ (1st part).

Refinement also enables untyped abstractions: the refiner may recover the type of bound
variables, because untyped abstractions are incomplete terms. The typechecking is done in
two steps: firstly the term is typechecked without caring about the essence, then we check
the essence. The five typing judgments are defined as follows:

I Definition 3 (Typing judgments). We have five typing judgments, corresponding to five
OCaml functions:
1. The function reconstruct takes as inputs a meta-environment Φ1, a global environment

Σ, a local environment Γ, and a term ∆1. It either fails or fills the holes in ∆1, which
becomes ∆2, and returns ∆2 along with its type σ and the updated meta-environment Φ2.
The corresponding judgment is the following Φ1; Σ; Γ ` ∆1

⇑
 ∆2 : σ; Φ2, and the most

relevant rules are described in Figures 2 and 3;
2. The function force_type takes as inputs a meta-environment Φ1, a global environment

Σ, a local environment Γ, and a term σ1. It either fails or fills the holes in σ1, which
becomes σ2 while ensuring it is a type, i.e. its type is a sort s, and returns σ2 along with
s, and the updated meta-environment Φ2. The corresponding judgment is the following
Φ1; Σ; Γ ` σ1

F
 σ2 : τ ; Φ2, and the rules are described in Figure 4. Intuitively, the

function reconstructs the type τ of σ1, then tries to unify τ with Type and Kind. If it can
only do one unification, it keeps the successful one, if both unifications work, we choose
unification with a sort meta-variable, so τ is convertible to a sort;

3. The function reconstruct_with_type takes as inputs a meta-environment Φ1, a global
environment Σ, a local environment Γ, a term ∆1, and its expected type σ. It either fails
or fills the holes in ∆1, which becomes ∆2 while ensuring its type is σ, and returns ∆2
along the updated meta-environment Φ2. The corresponding judgment is the following
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Φ1; Σ; Γ ` ∆1
⇑
 ∆′1 : σ1; Φ2

Φ2; Σ; Γ ` ∆2
⇑
 ∆′2 : σ2; Φ3 Φ3; Σ; Γ ` σ1 ∩ σ2 : Type ⇓ Φ4

Φ1; Σ; Γ ` 〈∆1,∆2〉
⇑
 〈∆′1,∆′2〉 : σ1 ∩ σ2; Φ4

(Spair)

Φ1; Σ; Γ ` ∆ ⇑
 ∆′ : σ; Φ2 Φ2; Σ; Γ ` σ =β σ1 ∩ σ2

Φ1; Σ; Γ ` pri ∆ ⇑
 pri ∆′ : σi; Φ2

(Proj1)

Φ1; Σ; Γ ` ∆ ⇑
 ∆′ : σ; Φ2

Φ2, (Γ `?x1 : Type), (Γ `?x2 : Type); Σ; Γ ` σ ?=?x1[Γ]∩?x2[Γ] U Φ3

Φ1; Σ; Γ ` pri ∆ ⇑
 pri ∆′ :?xi[Γ]; Φ3

(Proj2)

Φ1; Σ; Γ ` ∆ ⇑
 ∆′ : σ′; Φ2 Φ2; Σ; Γ ` λx:τ1.τ2 : Πx:σ.Type ⇓ λx:τ ′1.τ ′2; Φ3

Φ3; Σ; Γ ` σ1 : Type ⇓ σ′1; Φ4 Φ4; Σ; Γ ` σ2 : Type ⇓ σ′2; Φ5

Φ5; Σ; Γ ` σ′ ?= σ′1 ∪ σ′2
U
 Φ6 Φ6; Σ; Γ, x:σ′1 ` ∆1 : τ ′2[in1 σ

′
2 x/x] ⇓ ∆′1; Φ7

Φ7; Σ; Γ, x:σ′2 ` ∆2 : τ ′2[in2 σ
′
1 x/x] ⇓ ∆′2; Φ8

Φ1; Σ; Γ ` smatch ∆ return λx:τ1.τ2 with [x:σ1 ⇒ ∆1 | x:σ2 ⇒ ∆2] ⇑ 
smatch ∆′ return λx:τ ′1.τ ′2 with [x:σ′1 ⇒ ∆′1 | x:σ′2 ⇒ ∆′2] : τ ′2[∆′/x]; Φ8

(Ssum)

Φ1; Σ; Γ ` σ F σ′ : s; Φ2 Φ2; Σ; Γ ` ∆ ⇑
 ∆′ : τ ; Φ3 Σ; Γ ` τ 6 σ′

Φ1; Σ; Γ ` coeσ∆ ⇑
 coeσ′∆′ : σ′; Φ3

(Coe)

Φ; Σ; Γ ` _ ⇑
 ?x[Γ] :?y[Γ]; Φ, sort(?z), (Γ `?y :?z[ ]), (Γ `?x :?y[Γ])

(Wildcard)

(Γ′ `?x : σ) ∈ Φ or (Γ′ `?x := ∆ : σ) ∈ Φ
Γ′ = x1:σ1, . . . , xn:σn Φi; Σ; Γ ` ∆i : σi

⇓
 ∆′i; Φi+1 (i = 1 . . . n)

Φ1; Σ; Γ `?x[∆1; . . . ; ∆n] ⇑ ?x[∆′1; . . . ; ∆′n] : σ
−−−−→
[∆′i/Γ′]; Φn+1

(Meta−Var)

Figure 3 Rules for ⇑ (2nd part).

Φ1; Σ; Γ ` ∆1 : σ ⇓
 ∆2; Φ2, and the rules are described in Figure 5. There is a rule

(Default) which applies only if none of the other rules work. The acute reader could
remark two subtle things:
a. we chose not to add any inference rule for coercions, because we believe it would make

error messages clearer: more precisely, if we want to check that coeσ∆ has type τ ,
there could be two errors happening concurrently: it is possible that the type of ∆ is not
a subtype of σ, and at the same time σ is not unifiable with τ . We think that the error
to be reported should be the first one, and in this case the (Default) rule is sufficient;

b. the management of de Bruijn indices for the (Let) is tricky: if we want to check that
let x:σ := ∆1 in ∆2 has type τ in some local context Γ, we recursively check that ∆2
has type τ in the local context Γ, x := ∆′

1 : σ′ for some ∆′
1, but the de Bruijn indices

for τ correspond to the position of the local variables in the local context, which has
been updated. We therefore have to increment all the de Bruijn indices in τ , in order
to report the fact that there is one extra element in the local context;

4. The function essence takes as inputs a meta-environment Φ1, a global environment Σ,
an essence environment Ψ, and a term ∆. It either fails or construct its essence M , and
returns M along with the updated meta-environment Φ2. The corresponding judgment is
the following Φ1; Σ; Ψ ` ∆ E⇑

 M ; Φ2, and the rules are described in Figure 6;
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Φ1; Σ; Γ ` σ ⇑ σ′ : τ ; Φ2 Φ2; Σ; Γ ` τ ?= Type U Φ3

Φ2; Σ; Γ ` τ ?= Kind U Φ′3 Φ2, sort(?x); Σ ` τ ?=?x[ ] U Φ4

Φ1; Σ; Γ ` σ F σ′ : τ ; Φ4

(Force1 )

Φ1; Σ; Γ ` σ ⇑ σ′ : τ ; Φ2 Φ2; Σ; Γ ` τ ?= Type U Φ3 Φ2; Σ; Γ 6 ` τ ?= Kind U Φ′3
Φ1; Σ; Γ ` σ F σ′ : τ ; Φ3

(Force2 )

Φ1; Σ; Γ ` σ ⇑ σ′ : τ ; Φ2 Φ2; Σ; Γ 6 ` τ ?= Type U Φ3 Φ2; Σ; Γ ` τ ?= Kind U Φ′3
Φ1; Σ; Γ ` σ F σ′ : τ ; Φ′3

(Force3 )

Figure 4 Rules for F .

Φ1; Σ; Γ ` ∆ ⇑
 ∆′ : σ; Φ2 Φ2; Σ; Γ ` σ ?= τ

U
 Φ3

Φ1; Σ; Γ ` ∆ : τ ⇓ ∆′; Φ3

(Default)

Φ1; Σ; Γ ` σ F σ′ : s; Φ2 Φ2; Σ; Γ ` ∆1 : σ′ ⇓ ∆′1; Φ3 Φ3; Σ; Γ, x := ∆′1 : σ′ ` ∆2 : τ ⇓ ∆′2; Φ4

Φ1; Σ; Γ ` let x:σ := ∆1 in ∆2 : τ ⇓ let x:σ := ∆′1 in ∆′2; Φ4

(Let)

Φ1; Σ; Γ ` τ =β Πx:τ1.τ2 Φ1; Σ; Γ ` σ F σ′; Φ2

Φ2; Σ; Γ ` σ′ ?= τ1
U
 Φ3 Φ3; Σ; Γ, x:σ′ ` ∆ : τ2

⇓
 ∆′; Φ4

Φ1; Σ; Γ ` λx:σ.∆ : τ ⇓ λx:σ′.∆′; Φ4

(Abs)

Φ1; Σ; Γ ` σ =β σ1 ∩ σ2 Φ1; Σ; Γ ` ∆1 : σ1
⇓
 ∆′1; Φ2 Φ2; Σ; Γ ` ∆2 : σ2

⇓
 ∆′2; Φ3

Φ1; Σ; Γ ` 〈∆1,∆2〉 : σ ⇓ 〈∆′1,∆′2〉; Φ3

(Spair)

Φ1, (Γ `?x : Type); Σ; Γ ` σ∩?x : Type ⇓ τ ; Φ2 Φ2; Σ; Γ ` ∆ : σ∩?x ⇓ ∆′; Φ3

Φ1; Σ; Γ ` pr1 ∆ : σ ⇓ pr1 ∆′; Φ3

(Proj1)

Φ1, (Γ `?x : Type); Σ; Γ `?x ∩ σ : Type ⇓ τ ; Φ2 Φ2; Σ; Γ ` ∆ :?x ∩ σ ⇓ ∆′; Φ3

Φ1; Σ; Γ ` pr2 ∆ : σ ⇓ pr2 ∆′; Φ3

(Proj2)

Φ1; Σ; Γ ` τ =β τ1 ∪ τ2 Φ1; Σ; Γ ` σ : Type ⇓ σ′; Φ2 Φ2; Σ; Γ ` σ′ ?= τi
U
 Φ3

Φ1; Σ; Γ ` ini σ∆ : τ ⇓ ini σ′∆′; Φ3

(Inj)

Φ; Σ; Γ ` _ : σ ⇓ ?x[Γ]; Φ, (Γ `?x : σ)
(Wildcard)

Figure 5 Rules for ⇓ .

5. The function essence_with_hint takes as inputs a meta-environment Φ1, a global environ-
ment Σ, an essence environment Ψ, a term ∆, and its expected essence M . It either fails
or succeeds by returning the updated meta-environment Φ2. The corresponding judgment
is the following Φ1; Σ; Ψ `M@∆ E⇓

 Φ2, and the rules are described in Figure 7. There is
a rule (Default) which applies only if none of the other rules work.
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Φ1; Σ; Ψ ` ∆1
E⇑

 M ; Φ2 Φ2; Σ; Ψ `M@∆2
E⇓

 Φ3

Φ1; Σ; Ψ ` 〈∆1,∆2〉
E⇑

 M ; Φ3

(Spair)
Φ1; Σ; Ψ ` ∆ E⇑

 M ; Φ2

Φ1; Σ; Ψ ` pri ∆ E⇑

 M ; Φ2

(Proj)

Φ1; Σ; Ψ ` ∆ E⇑

 N ; Φ2 Φ2; Σ; Ψ ` σ E
⇑

 ς; Φ3 Φ3; Σ; Ψ ` σ1
E⇑

 ς1; Φ4

Φ4; Σ; Ψ, x ` ∆1
E⇑

 M ; Φ5 Φ5; Σ; Ψ ` σ2
E⇑

 ς2; Φ6 Φ6; Σ; Ψ, x `M@∆2
E⇓

 Φ7

Φ1; Σ; Ψ ` smatch ∆ return σ with [x:σ1 ⇒ ∆1 | x:σ2 ⇒ ∆2] E
⇑

 (λx.M)N ; Φ7

(Ssum)

Φ1; Σ; Ψ ` ∆ E⇑

 M ; Φ2

Φ1; Σ; Ψ ` ini σ ∆ E⇑

 M ; Φ2

(Inj)
Φ1; Σ; Ψ ` σ E

⇑

 ς; Φ2 Φ2; Σ; Ψ, x ` ∆ E⇑

 M ; Φ3

Φ1; Σ; Ψ ` λx:σ.∆ E⇑

 λx.M ; Φ3

(Abs)

Φ1; Σ; Ψ ` σ1
E⇑

 ς1; Φ2 Φ2; Σ; Ψ, x ` σ2
E⇑

 ς2; Φ3

Φ1; Σ; Ψ ` Πx:σ1.σ2
E⇑

 Πx:ς1.ς2; Φ3

(Prod)
Φ1; Σ; Ψ ` ∆ E⇑

 M ; Φ2

Φ1; Σ; Ψ ` coeσ∆ E⇑

 M ; Φ2

(Coe)

Φ1; Σ; Ψ ` ∆ E⇑

 M ; Φ2

Φ1; Σ; Ψ ` ∆ () E
⇑

 M ; Φ2

(App1)
Φ1; Σ; Ψ ` ∆1 S

E⇑

 M ; Φ2 Φ2; Σ; Ψ ` ∆2
E⇑

 N ; Φ3

Φ1; Σ; Ψ ` ∆1 (S; ∆2) E
⇑

 M N ; Φ3

(App2)

Φ1; Σ; Ψ ` σ1
E⇑

 ς1; Φ2 Φ2; Σ; Ψ ` σ2
E⇑

 ς2; Φ3

Φ1; Σ; Ψ ` σ1 ∩ σ2
E⇑

 ς1 ∩ ς2; Φ3

(∩)
Φ1; Σ; Ψ ` σ1

E⇑

 ς1; Φ2 Φ2; Σ; Ψ ` σ2
E⇑

 ς2; Φ3

Φ1; Σ; Ψ ` σ1 ∪ σ2
E⇑

 ς1 ∪ ς2; Φ3

(∪)

Figure 6 Rules for E
⇑
 .

Φ1; Σ; Ψ ` ∆ E⇑
 M2; Φ2

Φ2; Σ; Ψ `M1
?= M2

U
 Φ3

Φ1; Σ; Ψ `M1@∆ E⇓
 Φ3

(Default)

Φ1; Σ; Ψ `M@∆1
E⇓
 Φ2

Φ2; Σ; Ψ `M@∆2
E⇓
 Φ3

Φ1; Σ; Ψ `M@〈∆1,∆2〉
E⇓
 Φ3

(Spair)

Φ1; Σ; Ψ `M@∆ E⇓
 Φ2

Φ1; Σ; Ψ `M@pri ∆ E⇓
 Φ2

(Proj)
Φ1; Σ; Ψ ` σ E

⇑
 ς; Φ2 Φ2; Σ; Ψ `M@∆ E⇓

 ; Φ3

Φ1; Σ; Ψ `M@ini σ∆ E⇓
 Φ3

(Inj)

Φ1; Σ; Ψ ` σ E
⇑
 ς; Φ2 Φ2; Σ; Ψ ` ∆1

E⇑
 M1; Φ3 Φ3; Σ; Ψ, x := M1 `M@∆2

E⇓
 Φ4

Φ1; Σ; Ψ `M@let x:σ := ∆1 in ∆2
E⇓
 Φ4

(Let)

Φ1; Σ; Ψ ` ς =β Πx:ς1.ς2 Φ1; Σ; Ψ ` ς1@σ1
E⇓
 Φ2 Φ2; Σ; Ψ, x ` ς2@σ2

E⇓
 Φ3

Φ1; Σ; Ψ ` ς@Πx:σ1.σ2
E⇓
 Φ3

(Prod)

Φ1; Σ; Ψ `M1 =β λx.M2 Φ1; Σ; Ψ, x `M2@∆ E⇓
 Φ2

Φ1; Σ; Ψ `M1@λx:σ.∆ E⇓
 Φ2

(Abs)

Φ1; Σ; Ψ ` ς =β ς1 ∩ ς2 Φ1; Σ; Ψ ` ς1@σ1
E⇓
 Φ2 Φ2; Σ; Ψ ` ς2@σ2

E⇓
 Φ3

Φ1; Σ; Ψ ` ς@σ1 ∩ σ2
E⇓
 Φ3

(∩)

Φ1; Σ; Ψ ` ς =β ς1 ∪ ς2 Φ1; Σ; Ψ ` ς1@σ1
E⇓
 Φ2 Φ2; Σ; Ψ ` ς2@σ2

E⇓
 Φ3

Φ1; Σ; Ψ ` ς@σ1 ∪ σ2
E⇓
 Φ3

(∪)

Figure 7 Rules for E
⇓
 .
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7 The Read-Eval-Print-Loop of Bull

The Read-Eval-Print-Loop (REPL) reads a command which is given by the parser as a list of
atomic commands. For instance, if the user writes:

Axiom (a b : Type) (f : a −> b).

The parser creates the following list of three atomic commands:
1. the command asking a to be an axiom of type Type;
2. the command asking b to be an axiom of type Type;
3. the command asking f to be an axiom of type a -> b.
The REPL tries to process the whole list. If there is a single failure while processing the
list of atomic commands, it backtracks so the whole commands fails without changing the
environment. These commands are similar to the vernacular Coq commands and are quite
intuitive. Here is the list of the REPL commands, along with their description:

Help. show this list of commands
Load "file". for loading a script file
Axiom term : type. define a constant or an axiom
Definition name [: type] := term. define a term
Print name. print the definition of name
Printall. print all the signature

(axioms and definitions)
Compute name. normalize name and print the result
Quit. quit

8 Future work

The current version of Bull [44] lacks of the following features that we plan to implement in
the next future.
1. Inductive types are the most important feature to add, in order to have a usable theorem

prover. We plan to take inspiration from the works of Paulin-Mohring [35]. This should
be reasonably feasible;

2. Mixing subtyping and unification is a difficult problem, especially with intersection and
union types. The most extensive research which has been done in this domain is the work
of Dudenhefner, Martens, and Rehof [17], where the authors study unification modulo
subtyping with intersection types (but no union). It would be challenging to find a
unification algorithm modulo subtyping for intersection and union types, but ideally it
would allow us to do some implicit coercions. Take for example the famous Pierce code
exploiting union and intersection types (full details in the Bull [44] distribution and in
Appendix A): it would be interesting for the user to use implicit coercions in this way:

Axiom (Neg Zero Pos T F : Type) (Test : Pos | Neg).
Axiom Is_0 : (Neg −> F) & (Zero −> T) & (Pos −> F).
Definition Is_0_Test : F := smatch Test with

x ⇒ coe _ Is_0 x
, x ⇒ coe _ Is_0 x
end.

The unification algorithm would then guess that the first wildcard should be replaced
with Pos -> F and the second one should be replaced with Neg -> F, which does not
seem feasible if the unification algorithm does not take subtyping into account;

https://github.com/cstolze/Bull
https://github.com/cstolze/Bull
https://github.com/cstolze/Bull
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3. Relevant arrow, as defined in [25], it could be useful to add more expressivity to our
system. Relevant implication allows for a natural introduction of subtyping, in that
A ⊃r B morally means A 6 B. Relevant implication amounts to a notion of “proof-reuse”.
Combining the remarks in [3, 2], minimal relevant implication, strong intersection and
strong union correspond respectively to the implication, conjunction and disjunction
operators of Meyer and Routley’s Minimal Relevant Logic B+ [32]. This could lead
to some implementation problem, because deciding β-equality for the essences in this
extended system would be undecidable;

4. A Tactic language, such as the one of Coq, should be useful. Currently Bull has no tactics:
conceiving such a language should be feasible in the medium term.
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A Examples

This Appendix presents some examples in LF∆ along with their code in Bull, showing
a uniform approach to the encoding of a plethora of type disciplines and systems which
ultimately stem or can capitalize from strong proof-functional connectives and subtyping.
The framework LF∆ presented in [25], and its software incarnation Bull introduced in this
paper, are the first to accommodate all the examples and counterexamples that have appeared
in the literature. In what follows, we denote by λBDdL [2] the union and intersection type
assignment system à la Curry. Type inference of λBDdL is, of course, undecidable. We start
by showing the expressive power of LF∆ in encoding classical features of typing disciplines
with strong intersection and union. For these examples, we set Σ def= σ:Type, τ :Type.

Auto application. The judgment `λBDdL λx.x x : σ ∩ (σ → τ)→ τ in λBDdL, is rendered in
LF∆ by the LF∆ judgment `Σ λx:σ ∩ (σ → τ).(pr2 x) (pr1 x) : σ ∩ (σ → τ)→ τ .

Polymorphic identity. The judgment `λBDdL λx.x : (σ → σ)∩ (τ → τ) in λBDdL, is rendered
in LF∆ by the judgment `Σ 〈λx:σ.x, λx:τ.x〉 : (σ → σ) ∩ (τ → τ).

Commutativity of union. The judgment `Σ λx.x : (σ ∪ τ)→ (τ ∪ σ) in λBDdL, is rendered
in LF∆ by the judgment `Σ λx:σ∪τ.[λy:σ.inτ2 y, λy:τ.inσ1 y]x : (σ ∪ τ)→ (τ ∪ σ).
The Bull code corresponding to these examples is the following:
Axiom (s t : Type).
Definition auto_application (x : s & (s −> t)) := (proj_r x) (proj_l x).
Definition poly_id : (s −> s) & (t −> t) := let id1 x := x in

let id2 x := x in < id1, id2 >.
Definition commut_union (x : s | t) := smatch x with

x : s ⇒ inj_r t x
, x : t ⇒ inj_l s x
end.
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Atomic propositions, non-atomic goals and non-atomic programs: α, γ0, π0 : Type
Goals and programs: γ = α ∪ γ0 π = α ∪ π0

Constructors (implication, conjunction, disjunction).
impl : (π → γ → γ0) ∩ (γ → π → π0)
impl1 = λx:π.λy:γ.inα2 (pr1 implx y) impl2 = λx:γ.λy:π.inα2 (pr2 implx y)
and : (γ → γ → γ0) ∩ (π → π → π0)
and1 = λx:γ.λy:γ.inα2 (pr1 andx y) and2 = λx:π.λy:π.inα2 (pr2 andx y)
or : (γ → γ → γ0) or1 = λx:γ.λy:γ.inα2 (or x y)
solve p g indicates that the judgment p ` g is valid.
bchain p a g indicates that, if p ` g is valid, then p ` a is valid.
solve : π → γ → Type bchain : π → α→ γ → Type
Rules for solve:
− : Π(p:π)(g1, g2:γ).solve p g1 → solve p g2 → solve p (and1 g1 g2)
− : Π(p:π)(g1, g2:γ).solve p g1 → solve p (or1 g1 g2)
− : Π(p:π)(g1, g2:γ).solve p g2 → solve p (or1 g1 g2)
− : Π(p1, p2:π)(g:γ).solve (and2 p1 p2) g → solve p1 (impl1 p2 g)
− : Π(p:π)(a:α)(g:γ).bchain p a g → solve p g → solve p (inγ0

1 a)
Rules for bchain:
− : Π(a:α)(g:γ).bchain (impl2 g (inπ0

1 a)) a g
− : Π(p1, p2:π)(a:α)(g:γ).bchain p1 a g → bchain (and2 p1 p2) a g
− : Π(p1, p2:π)(a:α)(g:γ).bchain p2 a g → bchain (and2 p1 p2) a g
− : Π(p:π)(a:α)(g, g1, g2:γ).bchain

(impl2 (and1 g1 g2) p) a g → bchain (impl2 g1 (impl2 g2 p)) a g
− : Π(p1, p2:π)(a:α)(g, g1:γ).bchain (impl2 g1 p1) a g → bchain

(impl2 g1 (and2 p1 p2)) a g
− : Π(p1, p2:π)(a:α)(g, g1:γ).bchain

(impl2 g1 p2) a g → bchain (impl2 g1 (and2 p1 p2)) a g

Figure 8 The LF∆ encoding of Hereditary Harrop Formulæ.

Pierce’s code [38]. It shows the great expressivity of union and intersection types:

Test def= if b then 1 else−1 : Pos ∪Neg
Is_0 : (Neg → F ) ∩ (Zero→ T ) ∩ (Pos→ F )

(Is_0 Test) : F

The expressive power of union types highlighted by Pierce is rendered in LF∆ by:

Neg : Type Zero : Type Pos : Type T : Type F : Type Test : Pos ∪Neg
Is_0 : (Neg → F ) ∩ ((Zero→ T ) ∩ (Pos→ F ))

Is_0_Test def= [λx:Pos.(pr2 pr2 Is_0)x, λx:Neg.(pr1 Is_0)x]Test

The Bull code corresponding to this example is the following:

Axiom (Neg Zero Pos T F : Type) (Test : Pos | Neg).
Axiom Is_0 : (Neg −> F) & (Zero −> T) & (Pos −> F).
Definition Is_0_Test := smatch Test with

x ⇒ coe (Pos −> F) Is_0 x
, x ⇒ coe (Neg −> F) Is_0 x
end.
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Hereditary Harrop formulæ. The encoding of Hereditary Harrop’s Formulæ is one of the
motivating examples given by Pfenning for introducing Refinement Types in LF [36, 30].
In LF∆ it can be expressed as in Figure 8 and type checked in Bull, without any reference
to intersection types, by a subtle use of union types. We add also rules for solving and
backchaining. Hereditary Harrop formulæ can be recursively defined using two mutually
recursive syntactical objects called programs (π) and goals (γ):

γ := α | γ ∧ γ | π ⇒ γ | γ ∨ γ π := α | π ∧ π | γ ⇒ π

The Bull code is the following:

(* three base types: atomic propositions, non-atomic goals and non-atomic programs*)
Axiom atom : Type.
Axiom non_atomic_goal : Type.
Axiom non_atomic_prog : Type.

(* goals and programs are defined from the base types *)
Definition goal := atom | non_atomic_goal.
Definition prog := atom | non_atomic_prog.

(* constructors (implication, conjunction, disjunction) *)
Axiom impl : (prog −> goal −> non_atomic_goal) & (goal −> prog −> non_atomic_prog).
Definition impl_1 p g := inj_r atom (proj_l impl p g).
Definition impl_2 g p := inj_r atom (proj_r impl g p).
Axiom and : (goal −> goal −> non_atomic_goal) & (prog −> prog −> non_atomic_prog).
Definition and_1 g1 g2 := inj_r atom (proj_l and g1 g2).
Definition and_2 p1 p2 := inj_r atom (proj_r and p1 p2).
Axiom or : (goal −> goal −> non_atomic_goal).
Definition or_1 g1 g2 := inj_r atom (or g1 g2).

(* solve p g means: the judgment p |- g is valid *)
Axiom solve : prog −> goal −> Type.

(* backchain p a g means: if p |- g is valid, then p |- a is valid *)
Axiom backchain : prog −> atom −> goal −> Type.

(* rules for solve *)
Axiom solve_and : forall p g1 g2, solve p g1 −> solve p g2 −> solve p (and_1 g1 g2).
Axiom solve_or1 : forall p g1 g2, solve p g1 −> solve p (or_1 g1 g2).
Axiom solve_or2 : forall p g1 g2, solve p g2 −> solve p (or_1 g1 g2).
Axiom solve_impl : forall p1 p2 g, solve (and_2 p1 p2) g −> solve p1 (impl_1 p2 g).
Axiom solve_atom : forall p a g, backchain p a g −> solve p g −>

solve p (inj_l non_atomic_goal a).

(* rules for backchain *)
Axiom backchain_and1 :
forall p1 p2 a g, backchain p1 a g −> backchain (and_2 p1 p2) a g.

Axiom backchain_and2 :
forall p1 p2 a g, backchain p1 a g −> backchain (and_2 p1 p2) a g.

Axiom backchain_impl_atom :
forall a g, backchain (impl_2 g (inj_l non_atomic_prog a)) a g.

Axiom backchain_impl_impl :
forall p a g g1 g2, backchain (impl_2 (and_1 g1 g2) p) a g −>

backchain (impl_2 g1 (impl_2 g2 p)) a g.
Axiom backchain_impl_and1 :
forall p1 p2 a g g1, backchain (impl_2 g1 p1) a g −>
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backchain (impl_2 g1 (and_2 p1 p2)) a g.
Axiom backchain_impl_and2 :
forall p1 p2 a g g1, backchain (impl_2 g1 p2) a g −>

backchain (impl_2 g1 (and_2 p1 p2)) a g.

Natural deductions in normal form. The second motivating example for intersection types
given in [36, 30] is natural deductions in normal form. A natural deduction is in normal form
if there are no applications of elimination rules of a logical connective immediately following
their corresponding introduction, in the main branch of a subderivation.

⊃I : ΠA,B:o.(Elim(A)→ Nf(B))→ Nf0(A ⊃ B) o : Type Elim,Nf0 : o→ Type ⊃: o→ o→ o

⊃E : ΠA,B:o.Elim(A ⊃ B)→ Nf0(A)→ Elim(B) Nf ≡ λA:o.Nf0(A) ∪ Elim(A)

The corresponding Bull code is the following:

Axiom (o : Type) (impl : o −> o −> o) (Elim Nf0 : o −> Type).
Definition Nf A := Nf0 A | Elim A.
Axiom impl_I : forall A B, (Elim A −> Nf B) −> (Nf0 (impl A B)).
Axiom impl_E : forall A B, Elim (impl A B) −> Nf0 A −> Elim B.

The encoding we give in LF∆ is a slightly improved version of the one in [36, 30]: as Pfenning,
we restrict to the purely implicational fragment. As in the previous example, we use union
types to define normal forms Nf(A) either as pure elimination-deductions from hypotheses
Elim(A) or normal form-deductions Nf0(A). This example is interesting in itself, being the
prototype of the encoding of type systems using canonical and atomic syntactic categories
[22] and also of Fitch Set Theory [24].

Encoding of Edinburgh LF. A shallow encoding of LF [21] in LF∆ making essential use of
intersection types can be also type checked. Here we consider LF as defined with several
syntactical categories :

M ::= c | x | λx:σ.M |MM Objects K ::= ? | Πx:σ.K Kinds
σ ::= a | Πx:σ.σ | λx:σ.σ | σM Families S ::= � Superkind

We encode LF using Higher-Order Abstract Syntax (HOAS) [37, 13]. Moreover, using
intersection types, we can use the same axiom in order to encode both λ-abstractions on
objects and λ-abstractions on families, as well as a single axiom to encode both application
on objects and application on families, and a single axiom to encode both dependent products
on families and dependent products on kinds.

The typing rules, defined as axioms, have similar essence, it could be interesting to
investigate how to profit from these similarities for better encodings. We have decided to
explore two different approaches:

for the typing rules, we chose to define distinct axioms of_1, of_2, and of_3 of different
precise types. We have not found a way for these axioms to share the same essence, so we
have to write different (but very similar) rules for each of these different typing judgment;
for equality, we chose to define a single axiom eq : (obj | fam) −> (obj | fam) −> Type. The
type of this axiom is not very precise (it implies we could compare objects and families),
but we can factorize equality rules with the same shape, e.g. the rule beta_eq define
equalities between a β-redex and its contractum, both on objects and on families.

The corresponding Bull code is the following:
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Axiom obj’ : Type.
Axiom fam’ : Type.
Axiom knd’ : Type.
Axiom sup’ : Type.
Axiom same : (obj’ & fam’ & knd’ & sup’).
Axiom term : (obj’ | fam’ | knd’ | sup’) −> Type.

(* obj, fam, knd, and sup are different terms *)
(* but their essence is always (term same) *)
Definition obj := term (coe (obj’ | fam’ | knd’ | sup’) (coe obj’ same)).
Definition fam := term (coe (obj’ | fam’ | knd’ | sup’) (coe fam’ same)).
Definition knd := term (coe (obj’ | fam’ | knd’ | sup’) (coe knd’ same)).
Definition sup := term (coe (obj’ | fam’ | knd’ | sup’) (coe sup’ same)).

(* Syntax *)
Axiom star : knd.
Axiom sqre : sup.
Axiom lam : (fam −> (obj −> obj) −> obj) & (fam −> (obj −> fam) −> fam).
Definition lam_obj := coe (fam −> (obj −> obj) −> obj) lam.
Definition lam_fam := coe (fam −> (obj −> fam) −> fam) lam.
Axiom pi : (fam −> (obj −> fam) −> fam) & (fam −> (obj −> knd) −> knd).
Definition pi_fam := coe (fam −> (obj −> fam) −> fam) pi.
Definition pi_knd := coe (fam −> (obj −> knd) −> knd) pi.
Axiom app : (obj −> obj −> obj) & (fam −> obj −> fam).
Definition app_obj := coe (obj −> obj −> obj) app.
Definition app_fam := coe (fam −> obj −> fam) app.

(* Typing rules *)
Axiom of_1 : obj −> fam −> Type.
Axiom of_2 : fam −> knd −> Type.
Axiom of_3 : knd −> sup −> Type.
Axiom of_ax : of_3 star sqre.

(* Rules for lambda-abstraction are "essentially" the same *)
Definition of_lam_obj := forall t1 t2 t3, of_2 t1 star −>

(forall x, of_1 x t1 −> of_1 (t2 x) (t3 x)) −> of_1 (lam_obj t1 t2) (pi_fam t1 t3).
Definition of_lam_fam := forall t1 t2 t3, of_2 t1 star −>

(forall x, of_1 x t1 −> of_2 (t2 x) (t3 x)) −> of_2 (lam_fam t1 t2) (pi_knd t1 t3).
(* Rules for product are ’’essentially’’ the same *)
Definition of_pi_fam := forall t1 t2, of_2 t1 star −>
(forall x, of_1 x t1 −> of_2 (t2 x) star) −> of_2 (pi_fam t1 t2) star.

Definition of_pi_knd := forall t1 t2, of_2 t1 star −>
(forall x, of_1 x t1 −> of_3 (t2 x) sqre) −> of_3 (pi_knd t1 t2) sqre.

(* Rules for application are ’’essentially’’ the same *)
Definition of_app_obj := forall t1 t2 t3 t4, of_1 t1 (pi_fam t3 t4) −>
of_1 t2 t3 −> of_1 (app_obj t1 t2) (t4 t2).

Definition of_app_fam := forall t1 t2 t3 t4, of_2 t1 (pi_knd t3 t4) −>
of_1 t2 t3 −> of_2 (app_fam t1 t2) (t4 t2).

(* equality *)
Axiom eq : (obj | fam) −> (obj | fam) −> Type.
Definition c_obj (x : obj) := coe (obj | fam) x.
Definition c_fam (x : fam) := coe (obj | fam) x.
Axiom beta_eq : forall t1 f g,
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smatch f with
(* object *)

f ⇒ eq (c_obj (app_obj (lam_obj t1 f) g)) (c_obj (f g))
(* family *)
, f ⇒ eq (c_fam (app_fam (lam_fam t1 f) g)) (c_fam (f g))
end.

Axiom lam_eq : forall t1 t2 f,
eq (c_fam t1) (c_fam t2) −>
smatch f with
(* object *)

f ⇒ forall g, (forall x, eq (c_obj (f x)) (c_obj (g x))) −>
eq (c_obj (lam_obj t1 f)) (c_obj (lam_obj t2 f))

(* family *)
, f ⇒ forall g, (forall x, eq (c_fam (f x)) (c_fam (g x))) −>

eq (c_fam (lam_fam t1 f)) (c_fam (lam_fam t2 f))
end.

Axiom app_eq : forall n1 n2 m1,
eq (c_obj n1) (c_obj n2) −>
smatch m1 with
(* object *)

m1 ⇒ forall m2, eq (c_obj m1) (c_obj m2) −>
eq (c_obj (app_obj m1 n1)) (c_obj (app_obj m2 n2))

(* family *)
, m1 ⇒ forall m2, eq (c_fam m1) (c_fam m2) −>

eq (c_fam (app_fam m1 n1)) (c_fam (app_fam m2 n2))
end.

Axiom pi_eq : forall m1 m2 n1 n2,
eq (c_fam m1) (c_fam m2) −>
(forall x, eq (c_fam (n1 x)) (c_fam (n2 x))) −>
eq (c_fam (pi_fam m1 n1)) (c_fam (pi_fam m2 n2)).
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