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Abstract
The weighted path order (WPO) unifies and extends several termination proving techniques that are
known in term rewriting. Consequently, the first tool implementing WPO could prove termination
of rewrite systems for which all previous tools failed. However, we should not blindly trust such
results, since there might be problems with the implementation or the paper proof of WPO.

In this work, we increase the reliability of these automatically generated proofs. To this end, we
first formally prove the properties of WPO in Isabelle/HOL, and then develop a verified algorithm
to certify termination proofs that are generated by tools using WPO. We also include support for
max-polynomial interpretations, an important ingredient in WPO. Here we establish a connection
to an existing verified SMT solver. Moreover, we extend the termination tools NaTT and TTT2, so
that they can now generate certifiable WPO proofs.
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1 Introduction

Automatically proving termination of term rewrite systems (TRSs) has been an active field
of research for half a century. A number of simplification orders [13] are classic methods for
proving termination, while more general pairs of orders called reduction pairs play a central
role in the more modern dependency pair framework [19].

The weighted path order (WPO) was first [51] introduced as a simplification order that
unifies and extends classical ones, and then generalized to a reduction pair to further subsume
more recent techniques [53]. The Nagoya Termination Tool (NaTT) [52] was originally
developed solely to demonstrate the power of WPO. It participated in the full run of the
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Figure 1 Procedure for Certification of Termination Proofs via IsaFoR/CeTA.

2013 edition of the Termination Competition [18] and won the second place, closing 34 of
159 then-open problems in the TRS Standard category. In 28 of them WPO was essential
(the others are due to the efficiency of NaTT) [53].

Despite the significance of the result, two natural questions arise:

(1) “Is the theory of WPO correct?,” and if yes

(2) “Is NaTT’s implementation of the theory correct?”.
So far, nobody investigated the 34 proofs found by NaTT; these benchmarks are obtained
via automatic transformations from other systems, and hence hard to analyze by hand (they
have up to a few hundred of rules). In this work, we answer the two questions.

To this end, we extend IsaFoR and CeTA [47]. The former, Isabelle Formalization of
Rewriting, is an Isabelle/HOL [35]-formalized library of correctness proofs of analysis tech-
niques for term rewriting and transition systems, and the latter, Certified Tool Assertions,
is a verified Haskell code generated from IsaFoR that takes machine-readable output from
untrusted verifiers and checks whether techniques are applied correctly. This workflow is
illustrated in Figure 1.

In this paper we describe two main extensions of IsaFoR and CeTA. After preliminaries we
develop formal proofs of the properties of WPO being a reduction pair in Section 3. Here, we
illustrate that one refinement of WPO provided in [53] breaks transitivity in a corner case,
but we also show how to repair it by adding a mild precondition. Second, in Section 4 we
formalize the max-polynomial interpretations that are used in [53] in a general manner. There
we utilize our recently developed verified SMT solver for integer arithmetic [7, 8]. In Section 5
we give a short overview of our new certificate parser implementation in Isabelle/HOL and
the format for certificates for WPO and max-polynomial interpretations. In Section 6, we
experimentally evaluate our extensions of CeTA. To this end, we extend NaTT to be able to
output certificates introduced in the preceding section, and we also integrate WPO in the
Tyrolean Termination Tool 2 (TTT2) [27]. Details on the experiments are provided at:

http://cl-informatik.uibk.ac.at/isafor/experiments/wpo/

This website also provides links to the formalization.

http://cl-informatik.uibk.ac.at/isafor/experiments/wpo/
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Related Work

There is plenty of work on orders for proving termination of rewriting. The earliest such
work we are aware of is Knuth and Bendix’ order (KBO), introduced in their celebrated
paper in 1970 along with the Knuth–Bendix completion [26]. In the same year, Manna and
Ness [33] proposed a semantic approach, which nowadays is called interpretation methods.
One instantiation of this approach is Lankford’s polynomial interpretation method [30], which
he also combined with KBO [31]. Dershowitz [14] initiated a purely syntactic approach called
recursive path orders (RPO), where he also discovered the notion of simplification orders.

The dependency pair method of Arts and Giesl [1] boosted the power of termination
proving techniques, and around the same time many automated termination provers emerged:
AProVE [17], TTT [21], CiME3 [10], Matchbox [49], muterm [32], TORPA [57], and so on, which
have been evaluated annually in the Termination Competition [18] since 2004. Results of the
competition regularly reveal that we cannot blindly trust such automated tools, when one
tool claims a TRS terminating, while another claims the same TRS nonterminating.

Hence certification came into play. Besides our IsaFoR/CeTA, we are aware of at least
two other systems for certifying termination proofs of TRSs: Coccinelle/CiME3 [11] and
CoLoR/Rainbow [6]. Here, Coccinelle and CoLoR are similar to IsaFoR: they are all formal
libraries on rewriting, though the former two are in Coq [5] instead of Isabelle. The choice
of proof assistant aside, a significant difference to IsaFoR/CeTA is in the workflow when
performing certification: CiME3 and Rainbow transform termination proofs into Coq files that
reference their corresponding formal libraries, and then Coq does the final check, whereas in
our case we just run the generated Haskell code CeTA outside of Isabelle.

Within IsaFoR, most closely related to the current work is the previous formalization [46]
of RPO, since RPO and WPO are similar in its structure. We refer to Section 3 for more
details on how we exploit this similarity.

We would also like to mention some related work outside of pure term rewriting. Recently
a verified ordered resolution prover [36] has been developed as part of the IsaFoL project, the
Isabelle Formalization of Logic. Currently the verified prover is based on KBO, which could
be replaced by the stronger and more general WPO. In fact, WPO is already utilized in the
E theorem prover [24].

In recent work [8] IsaFoR became capable of certifying termination proofs for integer
transition systems. This work eventually led to a verified SMT solver for linear integer
arithmetic [7], which we heavily reuse in our current work.

2 Preliminaries

2.1 Term Rewriting
We assume familiarity with term rewriting [2], but briefly recall notions that are used in
the following. A term built from signature F and set V of variables is either x ∈ V or of
form f(t1, . . . , tn), where f ∈ F is n-ary and t1, . . . , tn are terms. A context C is a term
with one hole, and C[t] is the term where the hole is replaced by t. The subterm relation D
is defined by C[t] D t. A substitution is a function σ from variables to terms, and we write
tσ for the instance of term t in which every variable x is replaced by σ(x). A term rewrite
system (TRS) is a set R of rewrite rules, which are pairs of terms ` and r indicating that an
instance of ` in a term can be rewritten to the corresponding instance of r. R is terminating
if no term can be rewritten infinitely often.

FSCD 2020
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A reduction pair is a pair (�,%) of two relations on terms that satisfies the following
requirements: � is well-founded, % and � are compatible (i.e., % ◦ � ◦ % ⊆ �), both are
closed under substitutions, and % is closed under contexts. If � is also closed under contexts,
then we call (�,%) a monotone reduction pair. If the first component � of a monotone
reduction pair is transitive, it is called a reduction order. While reduction orders are used to
directly prove termination by R ⊆ �, reduction pairs are usually employed for termination
proofs with dependency pairs. We write �lex and �mul for the lexicographic and multiset
extension induced by (�,%), respectively.

A weakly monotone (F-)algebra A is a well-founded ordered set (A,>) equipped with an
interpretation fA : An → A for every n-ary f ∈ F , such that fA(. . . , a, . . .) ≥ fA(. . . , b, . . .)
whenever a ≥ b. Any weakly monotone algebra A induces a reduction pair (>A,≥A) defined
by s ≥( )A t iff [[s]]αA ≥( ) [[t]]αA for all assignments α. Here, [[t]]αA denotes term evaluation in the
algebra with respect to an assignment α : V → A.

A (partial) status is a mapping π which assigns to each n-ary symbol f a list π(f) =
[i1, . . . , im] of indices in {1, . . . , n}. Abusing notation, we also use π(f) as the set {i1, . . . , im},
and as an operation on n-ary lists defined by π(f)[t1, . . . , tn] = [ti1 , . . . , tim ].

A binary relation � over terms is simple with respect to status π, if f(t1, . . . , tn) � ti for
all i ∈ π(f). It is simple, if it is simple independent of the status. In particular, a simple
reduction order is called a simplification order.

A precedence is a preorder % on F , such that � := % \- is well-founded.

I Definition 1 (WPO [53, Def. 10, incl. Refinements (2c) and (2d) of Sect. 4.2]). Let A be a
weakly monotone algebra, % a precedence, and π be a status. Let ≥A be simple with respect
to π. The WPO reduction pair (�WPO,%WPO) is defined as follows: s �WPO t iff
1. s >A t, or
2. s ≥A t and

a. s = f(s1, . . . , sn) and ∃i ∈ π(f). si %WPO t, or
b. s = f(s1, . . . , sn), t = g(t1, . . . , tm), ∀j ∈ π(g). s �WPO tj and

i. f � g or
ii. f % g and π(f)[s1, . . . , sn] �lex

WPO π(g)[t1, . . . , tm].
The relation s %WPO t is defined in the same way, where �lex

WPO in the last line is replaced by
%lex

WPO, and there are the following additional subcases in case 2:
c. s ∈ V and either s = t or t = g(t1, . . . , tm), π(g) = ∅ and g is least in precedence,
d. s = f(s1, . . . , sn), t ∈ V, >A is simple w.r.t. π, and ∀g. f � g ∨ (f % g ∧ π(g) = ∅).

I Theorem 2 ([53]). WPO forms a reduction pair. J

For the certification purpose it suffices to formalize Theorem 2 and to provide a verified
implementation to check WPO constraints of the form s %( ) t for a concrete instance of
WPO. In [53] it is further shown that a number of existing methods are obtained as instances
of WPO, namely: the Knuth–Bendix order (KBO) [26], interpretation methods [15, 30],
polynomial KBO [31], lexicographic path orders (LPO) [25], and non-collapsing argument
filters [1, 29]. This means that, by having a WPO certifier, one can also certify these existing
methods.

2.2 Isabelle/HOL and IsaFoR
We do not assume familiarity with Isabelle/HOL, since most of the illustrated formal
statements are close to mathematical text. We give some brief explanations by illustrating
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certain term rewriting concepts via their counterparts in IsaFoR. For instance, IsaFoR contains a
datatype for terms, (’f,’v)term, where ’f and ’v are type-variables representing the signature F
and the set of variables V , respectively. A typing judgment is of the form term :: type. As an
example, R :: (’f,’v)term rel states that R has type (’f,’v)term rel, i.e., R is a binary relation
over terms.

An Isabelle locale [3] is a named context where certain elements can be fixed and properties
can be assumed. Locales are frequently used in IsaFoR. For instance, reduction pairs in IsaFoR
are formulated as a locale redpair.1 Here, O is relation composition, and SN is a predicate for
well-foundedness (strong normalization).

locale redpair =
fixes S NS :: “(’f,’v)term rel”
assumes “SN S”
and “ctxt.closed NS”
and “subst.closed S” and “subst.closed NS”
and “NS O S ⊆ S” and “S O NS ⊆ S”

Locales are also useful to model hierarchical structures. For instance, whereas redpair does
not require that the relations are orders, this is required in the upcoming locale redpair_order
which is an extension of redpair.

locale redpair_order = redpair S NS +
assumes “trans S” and “trans NS” and “refl NS”

Beside the abstract definitions for reduction pairs, IsaFoR also provides several instances
of them, e.g., one for RPO, one for KBO [40], etc. These instances can then be used in
termination techniques like the reduction pair processor to validate concrete termination
proofs. However, often the requirements of a reduction pair are not yet enough. As an
example, the usable rules refinement [20, 48] requires Ce-compatible reduction pairs and
argument filters. To this end IsaFoR contains the locale ce_af_redpair_order. It extends
redpair_order by a new parameter π for the argument filter, and demands the additional
requirements.

locale ce_af_redpair_order = redpair_order S NS +
fixes π :: “’f af”
assumes “af_compatible π NS”
and “ce_compatible NS”

There are further locales for monotone reduction pairs, for reduction pairs which can be
used in complexity proofs, etc.

3 Formalization of WPO

In this section we present our formalization of WPO. It starts by formalizing the properties
of WPO in Section 3.1, so that we can add WPO as a new instance of a reduction pair to
IsaFoR. Afterwards we illustrate our verified implementation for checking WPO constraints
in Section 3.2.

1 In IsaFoR, there is a more general locale for reduction triples (redtriple), which we simplify to reduction
pairs in the presentation of this paper.
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3.1 Properties of WPO
As we have seen in Section 2.2, IsaFoR already contains several formalized results about
reduction pairs, including general results, instances, and termination techniques based on
reduction pairs. In contrast, at the start of this formalization of WPO, IsaFoR did not contain
a single locale about generic weakly monotone algebras. In particular, the formalization of
matrix interpretations and polynomial interpretations [42] directly refers to redpair and its
variants. So, the question arises, how the generic version of WPO in Definition 1 can be
formalized, which is based on arbitrary weakly monotone algebras.

The obvious approach would have been to just add the missing pieces. To be more precise,
we could have formalized weakly monotone algebras in IsaFoR and then on top have formally
verified the properties of WPO. However, this approach has the disadvantage that we would
have had to adjust also existing instances of weakly monotone algebras (like polynomial
interpretations, arctic interpretations, and matrix interpretations) to the new interface.

Therefore, we choose a different approach, namely to reformulate the definition of WPO
such that it does no longer depend on the notion of weakly monotone algebra, but instead
directly refers to reduction pairs (cf. Definition 3).

I Definition 3 (WPO based on Reduction Pairs). Let (>A,≥A) be a reduction pair, % a
precedence, . . . and continue as in Definition 1 to define the relations �WPO and %WPO.

In this way, all instances of reduction pairs in IsaFoR immediately become available as
parameters to WPO. On the one hand, we can parameterize WPO with (max-)polynomial
interpretations and matrix interpretations as is already done in the literature. On the other
hand, it is also possible to use KBO or RPO as parameter to WPO, or even to nest WPOs
recursively.

Of course the question is, how easy it is to formally prove properties of this WPO based
on reduction pairs. At this point we profit from the fact that the structure of WPO is quite
close to other path orders like RPO, and that the latter has already been fully formalized in
IsaFoR.

I Definition 4 (RPO as formalized in IsaFoR). Let % be a precedence and σ be a function of
type F → {lex,mul}. We define the RPO reduction pair (�RPO,%RPO) as follows: s �RPO t

iff

a. s = f(s1, . . . , sn) and ∃i ∈ {1, . . . , n}. si %RPO t, or
b. s = f(s1, . . . , sn), t = g(t1, . . . , tm), ∀j ∈ {1, . . . ,m}. s �RPO tj and

i. f � g or
ii. f % g and σ(f) = σ(g) and [s1, . . . , sn] �σ(f)

RPO [t1, . . . , tm].
iii. f % g and σ(f) 6= σ(g) and n > 0 and m = 0.

The relation s %RPO t is defined in the same way, where �σ(f)
RPO in case bii is replaced by %σ(f)

RPO ,
the condition n > 0 in case biii is dropped, and there is one additional subcase:

c. s ∈ V and either s = t or t = c where c is a constant in F that is least in precedence.

So, we start our formalization of WPO by copy-and-pasting the definitions and proofs
about RPO, and renaming every occurrence of “RPO” to “WPO.” At this point we have a
fully verifiable Isabelle theory which defines WPO as a copy of RPO.

Next, we modify a couple of definitions, such that eventually, we arrive at a formalized
variant of the WPO in Definition 3. For each modification, we immediately adjust the formal
proofs. Such adjustments are mostly straight-forward, not least due to the valuable support
by the proof assistant: we are immediately pointed to those parts of proofs which are broken
by a modification, without having to manually recheck the remaining proofs that were not
affected.
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To be more precise, we perform the following sequence of modifications.
We delete σ from RPO and replace it by lex, as the choice between multiset and lex-
icographic comparison via σ is not present in WPO. As a result, case biii is dropped,
case bii always uses lexicographic comparison, and the formal proofs become shorter.
We add the two tests s ≥A t and s >A t that are present in WPO, but not in RPO.
Moreover, we add the requirement of WPO, that ≥A must be simple, in order to adjust
all the proofs of the defined relations.
We include the status π, which is present in the WPO definition, but not in RPO. In this
step we also weaken the requirement of ≥A being simple to the requirement that ≥A is
simple with respect to π.
We generalize case c of RPO in such a way that not only for constants c we permit
x %WPO c, but also x %WPO g(t1, . . . , tn) is possible if π(g) = ∅.
We finally add refinement 2d under the premise that >A is simple with respect to π. At
this point we have precisely a formalized version of WPO as defined in Definition 3.

Interestingly, after the final refinement we were no longer able to show all properties of
(�WPO,%WPO). For example, the transitivity proof of %WPO was broken and we were not
able to repair it. Indeed, it turns out that %WPO is no longer transitive with the refinement
as illustrated by Example 5. This example was constructed with the help of Isabelle, since it
directly pointed us to the case where the transitivity proof got broken.

I Example 5. Consider F = {a}, π(a) = [], and a reduction pair (or algebra) where ≥A
relates all terms and >A is empty. Then x %WPO a %WPO y, but x %WPO y does not hold.

The reduction pair (or algebra) in Example 5 is obviously a degenerate case. In fact, by
excluding this degenerate case, we can formally prove that WPO including refinement 2d is
a reduction pair.

To this end, we gather all parameters of WPO in a locale and assume relevant properties
of these parameters, either via other locales or as explicit assumptions. The precedence % is
specified by way of three functions prc, pr_least, and pr_large: prc takes two symbols f and g
and returns a pair of Booleans (f � g, f % g); pr_least is a predicate telling whether a symbol
is least in % or not; and pr_large states whether a symbol is largest in % with respect to π or
not, as required in rule 2d of Definition 1. Whereas most of the properties of the precedence
are encoded via an existing locale precedence, for a symbol being of largest precedence we add
two new assumptions explicitly. In the locale we further use a Boolean ssimple to indicate
whether >A is simple with respect to π, i.e., whether it is allowed to apply rule 2d or not.
Only then, the properties of pr_large must be satisfied and the degenerate case must be
excluded. Being simple with respect to π is enforced via the predicate simple_arg_pos: for
any relation R the property simple_arg_pos R f i ensures that f(t1, . . . , tn) R ti holds for
all t1, . . . , tn.

locale wpo_params = redpair_order S NS + precedence prc pr_least
for S NS :: “(’f, ’v) term rel” (∗ underlying reduction pair ∗)
and prc :: “’f ⇒ ’f ⇒ bool× bool” and pr_least pr_large :: “’f ⇒ bool”(∗ precedence ∗)
and ssimple :: bool (∗ flag whether rule (2d) is permitted ∗)
and π :: “’f status” + (∗ status ∗)

assumes “S ⊆ NS”
and “i ∈ π f =⇒ simple_arg_pos NS f i” (∗ NS is simple w.r.t. π ∗)
and “ssimple =⇒ i ∈ π f =⇒ simple_arg_pos S f i” (∗ S is simple w.r.t. π ∗)
and “ssimple =⇒ NS 6= UNIV” (∗ exclude degenerate case ∗)
and “ssimple =⇒ pr_large f =⇒ fst (prc f g) ∨ snd (prc f g) ∧ π g = []”
and “ssimple =⇒ pr_large f =⇒ snd (prc g f) =⇒ pr_large g”

FSCD 2020
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Within the locale we define the relations WPO_S and WPO_NS (�WPO and %WPO of
Definition 3) with the help of a recursive function, and prove the main theorem:

theorem “redpair_order WPO_S WPO_NS”

Moreover, we prove that whenever the non-strict relation is compatible with an argument
filter µ then also the WPO is compatible with π ∪ µ, defined as (π ∪ µ)(f) = π(f) ∪ µ(f).

lemma assumes “af_compatible µ NS”
shows “af_compatible (π ∪ µ) WPO_NS”

We further prove that WPO is also Ce-compatible under mild preconditions, namely
whenever π(f) includes the first two positions of some symbol f . Finally, we formalize
that WPO can be used in combination with usable rules, since it is an instance of the
corresponding locale:

lemma assumes “∃f. {0, 1} ⊆ π f” (∗ positions in IsaFoR start from 0 ∗)
and “af_compatible µ NS”
shows “ce_af_redpair_order WPO_S WPO_NS (π ∪ µ)”

At the moment, our formalization does not cover any comparison to other term orders.
There is, for example, no formal statement that each polynomial KBO can be formulated as
an instance of WPO. The simple reason is that such a formalization will not increase the
power of the certifier, and the support for polynomial KBO can much easier be added by just
translating an instance of polynomial KBO into a corresponding WPO within a certificate,
e.g., when generating certificates in a termination tool or when parsing certificates in CeTA.

3.2 Checking WPO Constraints
Recall that our formalization of WPO in Section 3.1 has largely been developed by adjusting
the existing formal proofs for RPO. When implementing an executable function to check
constraints of a particular WPO instance, where precedence, status, etc. are provided, there
is however one fundamental difference to RPO: in WPO we need several tests s >A t and
s ≥A t of the underlying reduction pair. And in general, these tests are just approximations,
e.g., since testing positiveness of non-linear polynomials is undecidable.

In order to cover approximations, the implementations of reduction pairs in IsaFoR adhere
to the following interface, which is a record named redpair that contains five components:

One component is for checking validity of the input. For instance, for polynomial
interpretations here one would check that each interpretation of an n-ary function symbol
is a polynomial which only uses variables x1, . . . , xn.
There are two functions check_S and check_NS of type (’f,’v)term ⇒ (’f,’v)term ⇒ bool
for approximating whether two terms are strictly and weakly oriented, respectively.
There is a flag mono which indicates whether the reduction pair is monotone. An enabled
mono-flag is required for checking termination proofs without dependency pairs.
The implicit argument filter of the reduction pair can be queried, a feature that is essential
for usable rules.

The generic interface is instantiated by all reduction pair (approximations) in IsaFoR, and
they satisfy the common soundness property, that for a given approximation of a reduction
pair rp and for given finite sets of strict- and non-strict-constraints, represented as two lists
S_list and NS_list, there exists a corresponding reduction pair that orients all constraints in
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S_list strictly and in NS_list weakly. In order to simplify the presentation, in the upcoming
formal sources we uniformly use set comprehensions instead of list comprehensions, and we
omit all conversions between lists and sets.

assumes “redpair.valid rp” (∗ generic_reduction_pair ∗)
and “∀ (s,t) ∈ S_list. redpair.check_S rp s t”
and “∀ (s,t) ∈ NS_list. redpair.check_NS rp s t”

shows “∃ S NS.
ce_af_redpair_order S NS (redpair.af rp) ∧
S_list ⊆ S ∧ NS_list ⊆ NS ∧
(redpair.mono rp −→ ctxt.closed S)”

We next explain how to instantiate this interface by WPO. To be more precise, we are
given a status π, a precedence, and an approximated reduction pair rp and have to implement
the interface for WPO such that generic_reduction_pair is satisfied.

For checking validity of WPO, we assert redpair.valid rp and in addition perform checks
that the status π is well-defined, i.e., π(f) ⊆ {1, . . . , n} must hold for each n-ary symbol f .
Moreover, we globally compute symbols of largest and least precedence, i.e., the functions
pr_least and pr_large of the wpo_params-locale. We further set the argument filter of WPO
to π ∪ redpair.af af.

For determining the ssimple parameter of the wpo_params-locale, there is the problem,
that we do not know whether the generated strict relation S will be simple with respect to π.
Moreover, to instantiate the locale, we always must ensure that NS is simple with respect to
π. Unfortunately, the formal statement of generic_reduction_pair does not include any such
information.

We solve this problem by enlarging the record redpair by two new entries for strict and
weak simplicity, and require in generic_reduction_pair that if these flags are enabled, then the
relations S and NS must be simple with respect to π, respectively. Whereas now all required
information for WPO is accessible via the interface, the change of the interface requires to
adapt all existing reduction pairs in IsaFoR, like polynomial interpretations, to provide the
new information. To be more precise, we formalize two sufficient criteria for each reduction
pair in IsaFoR, that ensure simplicity of the weak and strict relation, respectively.

At this point all parameters of WPO are fixed, except for S and NS. We now define the
approximation of WPO as the WPO where S and NS are replaced by redpair.check_S rp and
redpair.check_NS rp, respectively.

Next, we are given two lists of constraints wpo_S_list and wpo_NS_list that are oriented
by the approximation of WPO. Out of these we extract the lists S_list and NS_list that
contain all invocations of the underlying approximated reduction pair rp within the recursive
definition of WPO, for instance:

S_list = {(si, ti) | (s, t) ∈ wpo_S_list ∪ wpo_NS_list, sD si, tD ti, redpair.check_S rp si ti}

After these lists have been defined, we apply generic_reduction_pair to get access to the
(non-approximated) reduction pair in the form of relations S and NS. With these we are
able to instantiate the wpo_params-locale and get access to the reduction pair WPO_S and
WPO_NS. We further know that the approximations in S_list and NS_list are correct, e.g.,
whenever (s, t) ∈ wpo_S_list ∪ wpo_NS_list, s D si, t D ti and redpair.check_S rp si ti then
(si, ti) ∈ S. With this auxiliary statement we finally prove that the approximated WPO
corresponds to the actual WPO for all constraints in wpo_S_list ∪ wpo_NS_list. So, we have
a reduction pair WPO_S and WPO_NS and an approximation statement, as required by
generic_reduction_pair.
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In total, we get an interpretation of the generic interface for WPO, and thus can use
WPO in every termination technique of IsaFoR which is based on reduction pairs.

4 Integration of Max-Polynomial Interpretation

As already mentioned in the previous section, various kinds of interpretation methods have
been formalized in IsaFoR and supported by CeTA. However, max-polynomial interpreta-
tions [16] were not yet supported. Hence we extend IsaFoR and CeTA to incorporate them, in
particular those over natural numbers as required by WPO instances introduced in [53].

In order for CeTA to certify proofs using max-polynomial interpretations, we must formally
prove that the pair of relations (>A,≥A) forms a reduction pair, and implement a verifier to
check s >A t and s ≥A t. The former is easy, it is clearly weakly monotone and well-founded.
For a verified comparison of max-polynomials, instead of implementing a dedicated checker
from scratch, we chose to reduce the comparison of max-polynomials to the validity of an
integer arithmetic formula without max, for which we already have a formalized validity
checker [7, 8]. This checker is essentially an SMT-solver for linear integer arithmetic that we
utilize to ensure unsatisfiability of negated formulas.

We formalize max-polynomials in IsaFoR as terms over the following signature.

datatype sig = ConstF nat | SumF | ProdF | MaxF

The interpretation of these symbols is as expected:

primrec I where
“I (ConstF n) = (λx. n)”

| “I SumF = sum_list”
| “I ProdF = prod_list”
| “I MaxF = max_list”

In order to compare max-polynomials, we first normalize them according to the following
four distribution rules:

max(x, y) + z → max(x+ z, y + z) x+ max(y, z)→ max(x+ y, x+ z)
max(x, y) · z → max(x · z, y · z) x ·max(y, z)→ max(x · y, x · z)

Note that the distribution of multiplication over max is admissible because we are only
considering natural numbers. This way, the max-polynomials s and t are normalized to
maxni=1 si and maxmi=1 ti, where s1, . . . , sn and t1, . . . , tm are polynomials (without max). In
IsaFoR we define the mapping from s to s1, . . . , sn as to_IA. Then the comparison of two such
normal forms is easily translated to an arithmetic formula without max [4]:

s ≤( ) t ⇐⇒
nmax
i=1

si ≤( )

mmax
j=1

tj ⇐⇒
n∧
i=1

m∨
j=1

si ≤( ) tj

This reduction is formalized in Isabelle as follows. Here, operators with subscript “f” build
syntactic formulas, and those with prefix “IA.” or subscript “IA” come from the formalization
of integer arithmetic; e.g., “

∧
f x ← xs. IA.const 0 ≤IA IA.var x” denotes an integer arithmetic

formula representing “0 ≤ x1 ∧ · · · ∧ 0 ≤ xn”, where xs = [x1, . . . , xn]. Since we are originally
concerned about natural numbers, in the following definitions we insert such assumptions
for the list of variables occurring in s and t. Initially we did not impose these assumptions
and consequently, several valid termination proofs could not be certified. We thank Sarah
Winkler for spotting and fixing this omission.
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definition le_via_IA where “le_via_IA s t ≡
(
∧

f x ← vars_term_list s @ vars_term_list t. IA.const 0 ≤IA IA.var x) −→f
(
∧

f si ← to_IA s.
∨

f tj ← to_IA t. si ≤IA tj)”

definition less_via_IA where “less_via_IA s t ≡
(
∧

f x ← vars_term_list s @ vars_term_list t. IA.const 0 ≤IA IA.var x) −→f
(
∧

f si ← to_IA s.
∨

f tj ← to_IA t. si <IA tj)”

The soundness of the reduction is formally proved as follows.

lemma le_via_IA:
assumes “|=IA le_via_IA s t” shows “s ≤A t”

lemma less_via_IA:
assumes “|=IA less_via_IA s t” shows “s <A t”

Because of lemmas le_via_IA and less_via_IA it is now possible to invoke the validity
checker for integer arithmetic on the formulas le_via_IA t s and less_via_IA t s in order to
soundly validate the comparisons s ≥A t and s >A t, respectively.

Finally all results are put together to form an instance of an generic_reduction_pair of
Section 3.2, namely a verified implementation for max-polynomial interpretations.

5 Certificate Format and Parser

The Certification Problem Format (CPF) [41] is a machine-readable XML format, which
was codeveloped by several research groups of the term rewriting community to serve as the
standard communication language between automated provers and certifiers.

Here we present the additions to CPF that are part of the current work, i.e., the certificate
format for WPO and max-polynomial interpretations. Moreover, we comment on our complete
overhaul of CeTA’s certificate parser. Before this overhaul, the certificate parser was built on
top of an Isabelle/HOL formalized XML transformer library [43] that has several limitations.
In this context an XML transformer is a parser that consumes an XML element and produces
results represented by arbitrary (custom) data types. (In the remainder, we will use “parser”
and “transformer” synonymously.) In the current work we develop a more concise and flexible
XML transformer library, which allows for syntax similar to Haskell’s do-notation.

In our formalization, the type of XML transformers is ’a xmlt2, which is a function that
takes the internal representation of an XML element and returns, in form of direct sums,
either the result of a successful parse (type ’a) or an error state.

The notation “XMLdo s {...}” yields a transformer for an XML element whose root tag is
s. Within an XMLdo block, we can parse child elements by the binding “x ← inner ;” or one
of its variants such as “xs←^{`..u} inner ;” which binds xs to the list of values resulting from
transforming at least ` and at most u inner elements using the XML transformer inner . Here
u is of type enat (extended naturals), so that it can be ∞. The frequent instance ←^{0..∞}
is also written ←∗. Typically a parser block should end with “xml_return r”, where r is a
return value that may rely on previously bound variables. This invocation also checks that
after parsing, there are no child elements left in the current XML element. This ensures that
the transformer defines a grammar.

Given two parsers p1 and p2, we allow a choice between them by “p1 XMLor p2”. This
works as follows: if parser p1 returns a recoverable error state, then we continue with p2.
Otherwise, the result of “p1 XMLor p2” is the result of p1. Here recoverable means that the
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tag of the root element is not consumed by p1. If p1 consumed the root node but failed for
some child element, then it yields an unrecoverable error state containing an appropriate
error message.

In the following we illustrate our approach by some parsers from our formalization. The
new notation should make it fairly easy to translate between such parsers and corresponding
specifications for the CPF format. Until a certain moment in the development we stated all
parsers using Isabelle’s function command, which specifies a recursive function along with a
proof that the function is totally defined. For humans, proving XML transformers well-defined
is rather easy, only requiring a dedicated measure for the internal XML representations. For
Isabelle, however, accepting the proofs turned out to be excessively slow. Especially for the
big parser that covers the entire CPF. Therefore, we now define our transformers via the
partial_function [28] command, which does not perform such proofs and therefore is much
faster.

A first concrete example is a parser for expressions occurring in max-polynomial inter-
pretations. Here notions defined in Section 4 are accessed via prefix “max_poly.”, and (STR
”...”) is the notation for target-language strings in Isabelle/HOL.

partial_function (sum_bot) exp_parser :: “(max_poly.sig, nat) term xmlt2” where
[code]: “exp_parser xml = (
XMLdo (STR ”product”) {
exps ←∗ exp_parser; xml_return (Fun max_poly.ProdF exps)

} XMLor XMLdo (STR ”sum”) {
exps ←∗ exp_parser; xml_return (Fun max_poly.SumF exps)

} XMLor XMLdo (STR ”max”) {
exps ←^{1..∞} exp_parser; xml_return (Fun max_poly.MaxF exps)

} XMLor XMLdo (STR ”constant”) {
n ←nat; xml_return (max_poly.const n)

} XMLor XMLdo (STR ”variable”) {
n ←nat; xml_return (Var (n − 1))

}) xml”

The parser recursively defines the grammar of max-polynomial expressions (as a complex
type in XML schema terminology). It is a choice among the elements <product>, <sum>,
<max>, <constant> and <variable>. Elements <product> and <sum> recursively contain
an arbitrary number of subexpressions and construct corresponding terms over signature
max_poly.sig. Element <max> is similar, except that it demands at least one subexpression.
Element <constant> contains just a natural number, which is parsed as a constant. Element
<variable> also contains a natural number, which indicates the i-th variable (using zero-
based indexing).

The extended format for reduction pairs (triples) is as follows:

partial_function (sum_bot) redtriple :: “’a redtriple_impl xmlt2” where
[code]: “redtriple xml = ( ... (∗ existing reduction pairs ∗)

XMLor XMLdo (STR ”maxPoly”) { (∗ max−polynomial interpretations ∗)
inters ←∗ XMLdo (STR ”interpret”) {
f ← xml2name;
a ← XMLdo (STR ”arity”) { a ←nat; xml_return a };
e ← exp_parser;
xml_return ((f, a), e)

};



R. Thiemann, J. Schöpf, C. Sternagel, and A. Yamada 4:13

xml_return (Max_poly inters)
} XMLor XMLdo (STR ”weightedPathOrder”) { (∗ new alternative for WPO ∗)
a ← wpo_params;
b ← redtriple;
xml_return (WPO a b)

}
XMLor XMLdo (STR ”filteredRedPair”) {...} (∗ collapsing argument filter ∗)

) xml”

It is extended from the previous reduction pairs with three new alternatives. Element
<maxPoly> is the reduction pair induced by max-polynomial interpretations, which is a list
of elements <interpret>, each assigning a function symbol f of arity a its interpretation as
expression e. The <weightedPathOrder> element characterizes a concrete WPO reduction
pair. It consists of WPO specific parameters wpo_params that fixes status and precedences,
and another reduction pair in a recursive manner, which specifies the “algebra” A in terms of
(>A,≥A). The <filteredRedPair> element is newly added specially for collapsing argument
filters. Since partial status subsumes non-collapsing argument filters [50], only dedicated
collapsing ones have to be specially supported.

6 Implementations and Experiments

In order to evaluate the relevance of our extension of CeTA by WPO and max-polynomial
interpretations, we implement certificate output for WPO in two termination analyzers:
NaTT and TTT2.

NaTT. originates as an experimental implementation of WPO [51]. From its early design
NaTT followed the trend [54, 55, 37, 9] of reducing termination problems into SMT problems
and employ an external SMT solver, by default, Z3 [12]. Further, NaTT utilizes incremental
SMT solving, and implements some tricks for efficiency [52]. In the current work, its output is
adjusted to conform to the newly defined XML certificate format for WPO, max-polynomials,
and collapsing argument filters. These are essentially the central techniques implemented in
NaTT, but a few techniques implemented later on in NaTT had to be deactivated to be able
to be certified by CeTA; some of them, such as nontermination proofs, are actually supported
but NaTT is not yet adjusted to produce certificates for them.

TTT2. succeeded the automated termination analyzer TTT in 2007. It implements numerous
(non-)termination techniques. For searching reduction pairs it uses a SAT/SMT-based
approach and the SMT solver MiniSMT [56]. We extend TTT2 by an implementation of
WPO, following mostly the presented encodings in [53]. A notable difference in the search
space for max-polynomials: while NaTT heuristically chooses between max and sum, TTT2
embeds this choice into the SMT encoding.

Besides the integration of the full WPO search engine, we would also like to mention
an additional feature of TTT2 regarding WPO. Usual termination tools just try to find any
proof. Even if users want a specific shape of proofs, they cannot impose constraints on proofs
that termination tools find. TTT2 provides termination templates [38] where users can fix
parts of proofs via parameters when invoking TTT2. We also added support for termination
templates for WPO, i.e., if one wants to find a specific proof with WPO then (some) values
can be fixed with TTT2 and afterwards CeTA can validate if the proof is correct.
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I Example 6. Consider the following TRS (Zantema_05/z10.xml of TPDB):

a(lambda(x), y)→ lambda(a(x, p(1, a(y, t)))) a(a(x, y), z)→ a(x, a(y, z))
a(p(x, y), z)→ p(a(x, z), a(y, z)) a(id, x)→ x

a(1, id)→ 1 a(t, id)→ t
a(1, p(x, y))→ x a(t, p(x, y))→ y

If we just call TTT2 with WPO (�2) on this TRS then we get a termination proof consisting
of arbitrary values. However, e.g., we might want a specific WPO proof with the precedence
id > a > lambda > t > 1 > p and a status reversing the arguments of p for the lexicographic
comparison. For this we can use the following call (�):

./ttt2 -s "wpo -msum -st \"p = [1;0]\" -prec \"id > a > lambda > t > 1 >
p\"" Zantema_05/z10.xml

The flag -msum activatesMSum (from [53]) as interpretation for WPO, the flag -st fixes
statuses and the flag -prec fixes a (part of a) precedence. Also all other WPO parameters,
for the standard instances of [53], can be fixed via flags. In order to be sure that the proof is
correct we can call CeTA on the certificate.

As a result we obtain a proof with the stated preconditions and in a broader sense TTT2 can
be used to find specific WPO proofs. For some applications, it even makes sense to fix all
parameters of WPO, so that there is no search at all. This option is useful for validating
WPO-based termination proofs in papers, since writing XML-files in CPF by hand is tedious,
but it is easy to invoke TTT2 on an ASCII representation of both the TRS and the WPO
parameters. Then one automatically gets the corresponding proof in XML so that validation
by CeTA is possible afterwards.

Evaluation. We now evaluate CeTA over the certifiable proofs generated by NaTT and TTT2.
Experiments are run on StarExec [45], a computation resource service for evaluating logic
solvers and program analyzers. The environment offers an Intel® Xeon® CPU E5-2609
running at 2.40GHz and 128GB main memory for each pair of a solver and problem. We set
300s timeout for each pair, as in the Termination Competition 2019.

We compare six configurations: NaTT, TTT2 without WPO and with WPO, and their
variants that restrict to certifiable techniques. The results are summarized in Table 1. We
remark that all the proofs generated by certifiable configurations are successfully certified by
CeTA. Most notably, the termination proofs for the 34 examples mentioned in the introduction
that reportedly only NaTT could prove terminating are verified.

The impact of WPO in TTT2, unfortunately, appears marginal. It only brings two
additional termination proofs in the certifiable setting; and in the other setting the small
difference would vanish if one slightly modifies the timeout. It is most likely that the proof
search heuristic of TTT2 is not optimal, and more engineering effort is necessary in order to
maximize the effect of WPO for TTT2.

There are still significant gaps between full and certifiable versions of each tool, since the
certifiable versions must disable techniques that are not (fully) supported by CeTA. Among
them, both NaTT and TTT2 had to disable or restrict:

max-polynomial interpretations with negative constants [22, 16];

2 The link in this icon directs to the web interface of TTT2, preloaded with this example.

http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR%20x%20y%20z%20)%0A(RULES%20%0A%20%20%20%20%20%20%20%20a(lambda(x)%2Cy)%20-%3E%20lambda(a(x%2Cp(1%2Ca(y%2Ct))))%0A%20%20%20%20%20%20%20%20a(p(x%2Cy)%2Cz)%20-%3E%20p(a(x%2Cz)%2Ca(y%2Cz))%0A%20%20%20%20%20%20%20%20a(a(x%2Cy)%2Cz)%20-%3E%20a(x%2Ca(y%2Cz))%0A%20%20%20%20%20%20%20%20a(id%2Cx)%20-%3E%20x%0A%20%20%20%20%20%20%20%20a(1%2Cid)%20-%3E%201%0A%20%20%20%20%20%20%20%20a(t%2Cid)%20-%3E%20t%0A%20%20%20%20%20%20%20%20a(1%2Cp(x%2Cy))%20-%3E%20x%0A%20%20%20%20%20%20%20%20a(t%2Cp(x%2Cy))%20-%3E%20y%0A%20%20%20%20%20%20%20%20%0A)%0A%20%20%20%20&strategy=expert&expert=wpo%20-msum%20-cpf
http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR%20x%20y%20z%20)%0A(RULES%20%0A%20%20%20%20%20%20%20%20a(lambda(x)%2Cy)%20-%3E%20lambda(a(x%2Cp(1%2Ca(y%2Ct))))%0A%20%20%20%20%20%20%20%20a(p(x%2Cy)%2Cz)%20-%3E%20p(a(x%2Cz)%2Ca(y%2Cz))%0A%20%20%20%20%20%20%20%20a(a(x%2Cy)%2Cz)%20-%3E%20a(x%2Ca(y%2Cz))%0A%20%20%20%20%20%20%20%20a(id%2Cx)%20-%3E%20x%0A%20%20%20%20%20%20%20%20a(1%2Cid)%20-%3E%201%0A%20%20%20%20%20%20%20%20a(t%2Cid)%20-%3E%20t%0A%20%20%20%20%20%20%20%20a(1%2Cp(x%2Cy))%20-%3E%20x%0A%20%20%20%20%20%20%20%20a(t%2Cp(x%2Cy))%20-%3E%20y%0A%20%20%20%20%20%20%20%20%0A)%0A%20%20%20%20&strategy=expert&expert=wpo%20-msum%20-cpf%20-st%20%22p%20%3D%20%5B1%3B0%5D%22%20-prec%20%22id%20%3E%20a%20%3E%20lambda%20%3E%20t%20%3E%201%20%3E%20p%22
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Table 1 Certification Experiments.

Tool Yes No Time (tool) Time (CeTA)
NaTT certifiable 751 7 02:32:39 00:13:46
TTT2 w/ WPO certifiable 754 194 1d 10:31:29 00:08:18
TTT2 w/o WPO certifiable 752 194 1d 06:26:32 00:03:55
NaTT 864 169 02:42:48 –
TTT2 w/ WPO 827 205 13:48:29 –
TTT2 w/o WPO 826 205 13:46:57 –

reachability analysis techniques: for NaTT satisfiability-oriented ones [44], and for TTT2
ones based on tree automata [34];
uncurrying [23]: although the technique itself is fully supported [39], both NaTT and
TTT2 have their own variants which exceed the capabilities of CeTA.

These observations lead to promising directions of future work. For instance, negative
constants seem essentially within reach in light of certified SMT solving.

7 Summary

We have presented an extension of the IsaFoR library and the certifier CeTA with a formalization
of WPO. First, we discussed how we obtained WPO as a new reduction pair in IsaFoR
while relying on the already existing formalization of RPO and adapting its proofs for
the requirements of WPO. Second, we described how max-polynomial interpretations were
added to IsaFoR as these are often used in combination with WPO. Afterwards we gave a
brief overview of the CPF format and the corresponding parser in CeTA. For this parser we
define and employ a notation similar to the do-notation of Haskell, which makes the parser
implementation more concise and easier to understand. Finally, we tested the new version
of CeTA with the termination provers NaTT and TTT2, which both have been extended to
generate CPF certificates for WPO. All generated proofs have been validated, including
those for the 34 TRSs that reportedly only NaTT could prove terminating.

The main formal developments in this paper consist of only 3669 lines of Isabelle source
code, since several concepts were already available in IsaFoR, e.g., lexicographic comparisons
and precedences for WPO and the integer arithmetic solver for max-polynomial interpreta-
tions.
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