
A Complete Normal-Form Bisimilarity
for Algebraic Effects and Handlers
Dariusz Biernacki
University of Wrocław, Poland
dabi@cs.uni.wroc.pl

Sergueï Lenglet
Université de Lorraine, Nancy, France
serguei.lenglet@univ-lorraine.fr

Piotr Polesiuk
University of Wrocław, Poland
ppolesiuk@cs.uni.wroc.pl

Abstract
We present a complete coinductive syntactic theory for an untyped calculus of algebraic operations
and handlers, a relatively recent concept that augments a programming language with unprecedented
flexibility to define, combine and interpret computational effects. Our theory takes the form of a
normal-form bisimilarity and its soundness w.r.t. contextual equivalence hinges on using so-called
context variables to test evaluation contexts comprising normal forms other than values. The
theory is formulated in purely syntactic elementary terms and its completeness demonstrates the
discriminating power of handlers. It crucially takes advantage of the clean separation of effect
handling code from effect raising construct, a distinctive feature of algebraic effects, not present in
other closely related control structures such as delimited-control operators.
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1 Introduction

Algebraic effects with handlers [22, 3] have become a popular technique of programming
with computational effects such as exceptions, mutable state or nondeterminism. Their
strength lies in their modularity, as it is possible to easily combine several effects thanks to
the separation between syntax and semantics. Indeed, effects themselves are just syntactic
constructs which do not carry any meaning; their semantics is given by the handlers, which
come into play when an interpretation of an effect is needed for the computation to go
through.

As an informal example, borrowed from [8], consider the reader effect ask, which returns
a hidden value when triggered. An effect is used as a labeled operation, e.g., as in doask () +
doask () + 2, and its meaning is given by a handler, as in

handle doask () + doask () + 2 {ask:x,k→ k 5; ret y→ y}

The handler specifies how it interprets the ask effect by the expression x,k→ k 5, where x
stands for the value the effect operation is applied to (which is not used in this example), and k
for its continuation or resumption, i.e., the rest of the computation, which includes the handler
itself. Here, the handler simply passes 5 to the continuation, so that doask () + doask () + 2
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eventually reduces to 12. Once the expression inside the handler is a value, it is passed to
the return clause ret y→ y, which in our case simply returns the result. Any expression can
be used in an effect handler, including one making use of the continuation several times or
not at all; for example, in

handle doask () + doask () + 2 {ask:x,k→ 13; ret y→ y}

the handler throws away the continuation when called the first time and returns 13, which is
then the final result of the computation. Multiple effects can be used in an expression, which
are then interpreted by a single handler, or by successive handlers enclosing the expression.
The order of the handlers then specifies the semantics of all the effects combined.

While handlers make combining multiple effects programmer friendly, reasoning about the
behavior of programs with effects and handlers appears to be inherently challenging, mainly
due to the non-local transfer of control involved in effect handling. When it comes to the issue
of program equivalence, the standard notion considered in calculi modeling programming
languages, typically based on λ-calculi, is contextual equivalence [20], which requires program
phrases to behave the same when plugged in any context. The quantification over all
contexts makes this relation hard to use in practice, so one usually looks for more tractable
characterizations of contextual equivalence, either in the form of logical relations [24] or
coinductively defined bisimilarities [1, 17, 27].

In the presence of algebraic effects and handlers, the situation is even more interesting,
because we have to take into account the possibility that the testing context may interpret
any non-handled effects the two programs being tested might use. There exist some works on
formal techniques for reasoning about program equivalence in calculi with algebraic effects,
but they either do not include handlers in the language [16, 15, 14] or are directed by a
type structure of the calculus [8] (we discuss related work in detail in Section 4). None of
them, however, focuses on the control structure of a full calculus of algebraic effects and
handlers (where effects are interpreted dynamically, unlike, e.g., in [14]) and in isolation from
other concepts such as types. Algebraic effects are intimately related to delimited-control
operators [12, 21], for which bisimulation theories have been studied extensively [4], yet they
differ in a very essential way, as we argue in this work.

In this paper, we show that it is possible to characterize contextual equivalence in an
untyped calculus with algebraic effects and handlers with one of the simplest notions of
equivalence, namely normal-form (or open) bisimilarity [25, 17]. In a normal-form bisimilarity
proof one compares open terms by reducing them to normal forms, which are then decomposed
into bisimilar subterms. In a language with algebraic effects, we have to consider extra
normal forms – programs with effects that have not been handled. More importantly, we
have to observe how a context may handle an effect and its continuation. To this end, we
introduce an extended calculus where contexts can be abstractly represented with context
variables, a concept we used in our previous work on normal-form bisimulations for abortive
continuations [7]. Such variables can be observed and discriminated upon by the bisimilarity
that is defined for the extended calculus. Extending the calculus is a critical step in obtaining
sound and complete bisimilarity, but it should be seen just as a tool for studying the plain
calculus. When restricted to the plain calculus, the bisimilarity relates exactly those terms
that are equivalent w.r.t. the contextual equivalence in the plain calculus.

In many calculi, the decomposition of normal forms as done in normal-form bisimilarity
is usually too fine-grained and distinguishes programs that are in fact contextually equi-
valent [17]. The result of this paper shows that handlers contain sufficient discriminating
power for normal-form bisimilarity to be complete w.r.t. contextual equivalence. It contrasts
with other continuation-manipulating constructs such as (multi-prompted) delimited-control
operators, for which finding a complete normal-form bisimilarity remains an open issue [4].
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Lbl 3 l (effect labels)
Var 3 f, k, x, y, z (variables)

Val 3 u, v, w ::= x | λx.e (values)
Exp 3 e ::= v | e0 e1 | dol e | handle e {H; r} (expressions)

H ::= l1:h1; . . . ;ln:hn
h ::= x,k→ e (effect handlers)
r ::= ret x→ e (return clause)

Figure 1 Syntax of λeff.

The rest of this paper is organized as follows. In Section 2, we present the syntax,
semantics, and contextual equivalence of the plain calculus λeff, the minimal calculus with
effects and handlers we consider for our study. In Section 3, we define the normal-form
bisimilarity for the extended calculus and prove its soundness and completeness. We also
define up-to techniques, proof techniques meant to simplify equivalence proofs, and we
illustrate how the bisimilarity and these techniques can be used on examples. Additionally,
we pinpoint the difference between algebraic effects and delimited-control operators and how
it affects the definition of a normal-form bisimulation. In Section 4, we discuss related work,
and we conclude in Section 5. The appendix contains the soundness and completeness proof
sketches.

2 The Calculus λeff

Syntax. The calculus λeff, whose syntax is given in Figure 1, extends the λ-calculus with
labeled effects dol e and handlers handle e {H; r}, where H is a list of effect handlers
li:xi,ki→ ei and r is a return clause ret x→ e′. The order of the list is irrelevant, but
we assume the labels l1 . . . ln to be pairwise distinct. In a handler xi,ki→ ei, the variable xi
represents the argument of the effect, while ki stands for its continuation (or resumption).
We write lbl(e) for the set of effect labels l that label do expressions in e. The choice of
having a handler interpret several effects at once makes writing examples easier, but does not
affect the behavioral theory: the definitions of the equivalences are the same if the handler
takes care of one effect only.

An effect handler xi,ki→ ei binds xi and ki in ei, and a λ-abstraction λx.e or a return
clause ret x→ e bind x in e. We use the standard notions of free variables (fv(e) is the set of
free variables in e), closed and open expressions, and we work modulo α-conversion of the
bound variables. A variable is called fresh if it does not occur in any of the entities under
consideration.

We assume the standard call-by-value Church encoding of natural numbers, booleans
(true, false, if e0 then e1 else e2), unit (()), and the sequence expression (e1; e2) that we use
in examples and in the proof of completeness.

Reduction semantics. We fix a call-by-value, left-to-right reduction strategy for λeff by
defining the syntax of evaluation contexts as follows.

ECtx 3 E ::= � | E e | v E | dolE | handle E {H; r}

FSCD 2020



7:4 A Complete Normal-Form Bisimilarity for Algebraic Effects and Handlers

We write E[e] for the plugging of the expression e into the context E, and e{v/x} for the
usual capture-avoiding substitution of x by v in e. Given a context E, we define the set of
effects it handles, written hl(E), as follows.

hl(�) 4= ∅

hl(E e) 4= hl(E)

hl(v E) 4= hl(E)

hl(dolE) 4= hl(E)

hl(handle E {l1:h1; . . . ;ln:hn; r}) 4= hl(E) ∪ {l1, . . . , ln}

When writing expressions, we sometimes decorate a context with a label it does not handle,
i.e., writing El if l /∈ hl(E). Typically, we write El[dol v] for an expression where the effect l
cannot be handled by E.

The reduction semantics of λeff is given by the following rules.

(λx.e) v 7→ e{v/x}
handle v {H; ret x→ e} 7→ e{v/x}

E[dol v] 7→ e{v/x}{λz.E[z]/k} if E = handle E′l {H; r}
and l:x,k→ e ∈ H
and z is fresh

E[e] → E[e′] if e 7→ e′

We write →∗ for the reflexive and transitive closure of →. In the third rule, we see that
the effect dol v is interpreted by the first enclosing handler, as E = handle E′l {H; r} and E′
does not handle l. The handler has access not only to the argument v of the effect, but also
to its continuation, represented as a function λz.E[z]. Note that the handler itself is part of
the captured continuation, meaning that it can handle further effects when the continuation
is resumed.1 If a handler obtains a value (second rule), there are no more effects to handle
and the value is passed to the return clause. The semantics is deterministic, as it can be
shown that an expression is either a normal form or can be uniquely decomposed into a redex
and an evaluation context.

I Example 1. Let us consider the example from the introduction:

e
4= handle doask () + doask () + 2 {ask:x,k→ k 5; ret y→ y}

If E 4= handle � {ask:x,k→ k 5; ret y→ y} and z is a fresh variable, then e reduces as follows:

e→ (λz.E[z + doask () + 2]) 5
→ handle 5 + doask () + 2 {ask:x,k→ k 5; ret y→ y}
→ (λz.E[5 + z + 2]) 5
→ handle 5 + 5 + 2 {ask:x,k→ k 5; ret y→ y}
→∗ handle 12 {ask:x,k→ k 5; ret y→ y}
→ 12

1 Such handlers are known as deep handlers as opposed to shallow handlers also considered in the
literature [21].
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Normal forms and contextual equivalence. When considering open expressions, normal
forms can be of the following kinds.

I Lemma 2. An open expression e is a normal form iff e is a value, or e = E[x v] for some
E, x, and v, or e = El[dol v] for some E, l, and v.

Values and expressions E[x v] (referred to as open-stuck terms) are usual normal forms
which can already be found in the plain λ-calculus. The expression El[dol v] cannot reduce
further, as E cannot handle the effect l; we refer to such normal forms as control-stuck terms.
Closed normal forms are either λ-abstractions or control-stuck terms.

Contextual equivalence equates expressions behaving the same in all contexts. In the
presence of multiple closed normal forms as in λeff, several definitions of contextual equivalence
are possible, depending on whether we observe termination of evaluation in general, or to
specific, meaningful normal forms – usually values. It turns out that such a choice does not
matter in λeff, as the definitions coincide; we explain why after presenting the definition we
use in this paper. We let C range over arbitrary contexts, i.e., expressions with a hole �.
We write e ⇓v if there is a value v, such that e→∗ v, and e ⇑ if e reduces infinitely, e.g., Ω ⇑,
where Ω = (λx.x x) (λx.x x).

I Definition 3. Two expressions e1 and e2 are contextually equivalent, written e1 ≡ e2, if
for all contexts C, such that C[e1] and C[e2] are closed, we have C[e1] ⇓v iff C[e2] ⇓v.

It can be shown that this definition introduces the same notion of contextual equivalence
as the one in which we observe simply termination of evaluation, instead of evaluation to a
value. The reason is that for any control-stuck term e1 = E1

l[dol v1], taking

C = handle � {l:x,k→Ω; ret x→x}

we have C[e1] ⇑, whereas C[v2] ⇓v for any value v2, and taking

C ′ = handle � {l:x,k→x; ret x→x}

we have C ′[e1] ⇓v, whereas C ′[e2] ⇑ for any e2 such that e2 ⇑. Thus, we can always build
a context that preserves non-termination and evaluation to a value, but that at the same
time coerces a control-stuck term to either a non-terminating expression (C) or to a value
(C ′). The two contextual equivalences therefore coincide, a situation which differs from other
context-manipulating constructs such as delimited-control operators [4].

3 Normal-Form Bisimilarity

We first informally introduce our notion of normal-form bisimilarity, before giving its definition
and discussing its soundness and completeness. We also explain why, in spite of the
relationship between handlers and multi-prompted delimited continuations, it is more difficult
to define a complete normal-form bisimilarity for the latter than for the former.

3.1 Informal Presentation
Normal-form bisimulation reduces expressions to normal forms and decomposes them into
related subterms; for example, an open-stuck term E1[x v1] is related to e2 if e2 reduces to a
similar term such that the contexts and values are pairwise related. Compared to the plain
λ-calculus [17, 7], we have to consider an extra normal form – control-stuck terms – but also
take into account the fact that contexts may handle effects.

FSCD 2020



7:6 A Complete Normal-Form Bisimilarity for Algebraic Effects and Handlers

Dealing with control-stuck terms follows the same logic as for open-stuck terms: E1
l[dol v1]

is related to e2 if e2 reduces to a control-stuck term with related values and contexts.
Comparing contexts requires more care, as it depends how they are used. A context E1

l

surrounding a control-stuck term can only be captured and then plugged with a value, so it
is enough to test them with a fresh variable representing that value. Such contexts represent
resumptions (delimited continuations, really) that are bound to the continuation variable k
in effect handlers and used to obtain suitable interpretation of the effect.

In contrast, in an open-stuck term E1[x v1], the application may reduce to an effect
which could be handled by E1. Testing such contexts with only a fresh variable is not
enough as it would relate � and handle � {H; ret x→x}, two contexts which behave dif-
ferently as soon as they are plugged with an effect handled by H. We need to observe
which handlers are surrounding the context holes, but without requiring the sequence of
handled effects to be exactly the same. Indeed, successive “identity handlers” h 4= x,k→ k x

should be related if they handle the same effects, even in a different order: the context
handle handle � {l2:h; ret x→x} {l1:h; ret x→x} is expected to be equivalent to the context
handle handle � {l1:h; ret x→x} {l2:h; ret x→x}.

A simple way to compare the handlers behaviors is to plug the contexts with a control-
stuck term dol x for a fresh x and for any l (handled by the contexts). However, such a
testing term is not strong enough, as it would relate a handler which throws away the
continuation to one that does not, e.g., E1 = handle � {l:x,k→x; ret x→x} and E2 =
handle � {l:x,k→ k x; ret x→x}. We need to account for the fact that control-stuck terms
may be surrounded with a context without introducing a quantification over these contexts
which would go against the principles behind normal-form bisimulation. We do so by
extending the syntax of the calculus with context variables, a construct we introduced in
previous works to track the whereabouts of contexts captured by control operators [7, 4]. In
a control-stuck term αl[dol x], the context variable αl stands for a context which does not
handle l, and its presence allows to distinguish between the two contexts E1 and E2.

Adding context variables to λeff generates new normal forms of the shape E[αl[v]] and
E[αl[E′l

′
[dol′ v]]] (with l 6= l′), where the computation is stuck because we do not know

which context αl stands for. The bisimulation deals with these normal forms in a very regular
way, simply asking to reduce to a normal form of the same shape with related contexts
and values. In the end, the definition we obtain (Definition 5) follows the usual pattern of
normal-form bisimulation – the only subtlety being in how to compare contexts – and yet the
resulting bisimilarity is sound and complete w.r.t. the contextual equivalence of the extended
calculus. More importantly, the restriction of the bisimilarity to plain calculus terms yields
the contextual equivalence for the plain calculus.

3.2 Extended Calculus
As explained in the previous section, we extend the syntax of λeff with context variables in
order to observe how contexts are captured when effects are triggered. We assume a set CVar
of context variables, ranged over by α and β. Similar to evaluation contexts, we decorate
these variables with an effect it does not handle: the variable αl is a context variable standing
for a context which does not handle l. In particular, when considering a control-stuck term,
the context variable is always decorated with an effect label. Moreover, we write αl 6= βl

′ if
l 6= l′ or α 6= β.

We extend the syntax of expressions and evaluation contexts as follows.

e ::= . . . | αl[e] E ::= . . . | αl[E]
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We write cv(e) for the set of context variables occurring in e. We adapt the definition of hl
so that hl(αl[E]) 4= (Lbl \ {l}) ∪ hl(E), as αl stands for a context not handling l but which
may potentially handle any other label. While the reduction rules themselves are the same,
the semantics of the extended calculus is still affected by the change in the grammar of
evaluation contexts. In particular, it admits more normal forms than the plain λeff.

I Lemma 4. An open expression e is a normal form in the extended calculus iff e is a value,
or e = E[x v] for some E, x, and v, or e = El[dol v] for some E, l, and v, or e = E[αl[v]]
for some E, αl, and v, or e = E1[αl[E2

l′ [dol′ v]]] for some E1, E2, v, αl and l′ such that
l 6= l′.

We refer to normal forms of the shape E[αl[v]] as context-stuck terms and those of the shape
E1[αl[E2

l′ [dol′ v]]] as control/context-stuck terms. The latter differ from control-stuck terms
of the form El[dol v], because αl may be replaced by a context handling l′, so even if E1

does not handle l′ we cannot consider E1[αl[E2
l′ ]] as a context not handling l′.

A context variable cannot be bound, therefore an open term may contain context variables
or free expression variables. In contrast, an expression or context is closed if it does not have
any context variable or free expression variable.

Given an expression e, a context variable αl and a context El, we define the context sub-
stitution e{El/αl} so that (αl[e]){El/αl} 4= El[e{El/αl}], and the substitution is recursively
propagated to the sub-expressions in the other cases.

3.3 Definition
We define the bisimulation for the extended calculus using the notion of diacritical progress
we developed in a previous work [2, 6], which distinguishes between active and passive clauses.
Roughly, passive clauses are between simulation states which should be considered equal,
while active clauses are between states where actual progress is taking place. This distinction
does not change the notions of bisimulation or bisimilarity, but it simplifies the soundness
proof of the bisimilarity. It also allows for the definition of powerful up-to techniques,
functions on relations meant to simplify bisimilarity proofs. For normal-form bisimilarity,
our framework enables up-to techniques which respect η-expansion [7], a necessary condition
to reach completeness.

Given a relation R on expressions, we extend it to values and evaluation contexts in the
following way.

v1 x R v2 x x fresh
v1 Rv v2

E1[x] R E2[x] x fresh
E1 Rr E2

E1[x] R E2[x] ∀l ∈ hl(E1) ∪ hl(E2).E1[αl[dol x]] R E2[αl[dol x]] x, αl fresh
E1 Rc E2

The ·v extension compares values by simply applying them to a fresh variable; such a test,
compliant with η-expansion [7], is valid because λ-abstractions are the only values of our
language. As explained in Section 3.1, we consider two extensions for evaluation contexts, as
it depends how these are used: ·r is used when we know the contexts are plugged only with
values (resumptions), while ·c assumes that they can be filled with any expression, including
an effectful one. As a result, ·c compares how the contexts deal with the effects they may
handle (the ones in hl(E1)∪ hl(E2)), by testing them with an expression αl[dol x] built using
a fresh context variable αl which can be observed during the bisimulation game.

FSCD 2020
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We define progress, bisimulation and bisimilarity using these extensions.

I Definition 5. A relation R progresses to S, T written R� S, T , if R ⊆ S, S ⊆ T , and
e1 R e2 implies:

if e1 → e′1, then there exists e′2 such that e2 →∗ e′2 and e′1 T e′2;
if e1 = v1, then there exists v2 such that e2 →∗ v2 and v1 Sv v2;
if e1 = E1[x v1], then there exist E2 and v2 such that e2 →∗ E2[x v2], E1 T c E2, and
v1 T v v2;
if e1 = E1

l[dol v1], then there exist E2 and v2 such that e2 →∗ E2
l[dol v2], E1

l T r E2
l,

and v1 T v v2;
if e1 = E1[αl[v1]], then there exist E2 and v2 such that e2 →∗ E2[αl[v2]], E1 Sc E2, and
v1 Sv v2;

if e1 = E1[αl[E′1
l′ [dol′ v1]]] with l 6= l′, then there exist E2, E′2

l′ , and v2 such that
e2 →∗ E2[αl[E′2

l′ [dol′ v2]]], E1 T c E2, E′1
l′ T r E′2

l′ , and v1 T v v2;
the symmetric of the above conditions on e2.

A normal-form bisimulation is a relation R such that R� R,R, and normal-form bisimil-
arity ≈ is the union of all normal-form bisimulations.

As pointed out before, the clauses dealing with normal forms are very similar, simply
requiring e2 to reduce to a normal form of the same kind, and then decomposing these
normal forms into pairwise related subterms. We just have to be careful in using ·r only for
the contexts used as resumptions.

We progress towards S in the value and context-stuck term clauses and T in the others;
the former are passive while the latter are active. Our framework prevents some up-to
techniques from being applied after a passive transition. For values, we want to forbid the
application of bisimulation up to context as it would be unsound: we could deduce that v1 x

and v2 x are equivalent for all v1 and v2 just by building a candidate relation containing v1
and v2. Similarly, for context-stuck terms, we prevent the application of bisimulation up to
substitution of context variables, as we could also relate any v1 and v2 from a candidate
containing αl[v1] and αl[v2] by replacing the context variable with � x.

I Example 6. We consider the handler of Example 1 for the reader effect, where we generalize
the hidden value 5 to a given variable z:

E1
4= handle � {ask:x,k→ k z; ret x→x}

Alternatively, the reader effect can be interpreted by the following handler obtained from the
standard handler for mutable state:

E2
4= (handle � {ask:x,k→λy.k y y; ret x→λy.x}) z

The context E2 applies the handler to the current value of the state and let the handling
code of the operation(s) access it through a λ-abstraction. (We would obtain a standard
handler for mutable state by adding the clause set:x,k→λy.k y x handling the operation set
which sets the value of the state.)

We show that these two handlers for the reader effect are equivalent by establishing the
equivalence between the contexts E1 ≈c E2.



D. Biernacki, S. Lenglet, and P. Polesiuk 7:9

Proof. Relating E1[x] and E2[x] for a fresh x is easy, as E1[x]→ x and E2[x]→ (λy.x) z → x.
Testing with αl[dol x] and defining E′2

4= handle � {l:x,k→λy.k y y; ret x→λy.x}, we get

E1[αl[dol x]]→2 E1[αl[z]]

E2[αl[dol x]]→ (λy.(λy′.E′2[αl[y′]]) y y) z →2 E′2[αl[z]]z = E2[αl[z]]

We obtain two context-stuck terms, for which we need to relate identical variables and the
contexts E1 and E2 we want to equate in the first place. In the end, we can easily build a
bisimulation R such that E1 Rc E2. J

3.4 Soundness and Up-to Techniques
In our framework [6] as in the works we extend [18, 23], proving that the bisimilarity is
compatible – preserved by contexts – amounts to showing that a form of bisimulation up
to context is valid, as explained after Lemma 10. We slightly reformulate our most recent
work [6] to make it simpler but expressive enough it can be applied to λeff.

In what follows, we use s, f, g to range over monotone functions on relations, i.e., functions
such that R ⊆ S implies f(R) ⊆ f(S) for any R, S. We extend ∪ to functions so that for
all R, (f ∪ g)(R) = f(R) ∪ g(R). We define an ordering v on functions so that f v g if for
all R, f(R) ⊆ g(R), which is itself extended pointwise to pairs of functions.

As pointed out before, because of the distinction between passive and active clauses, not
all up-to techniques can be applied in all clauses. In fact, we decompose an up-to technique
into a pair of functions (s, f), where s can be used in passive clauses while f cannot.

I Definition 7. A pair of monotone functions (s, f) is an up-to technique if for all R,
R� s(R), f(R) implies R ⊆ ≈.

In an up-to technique (s, f), s is said strong while f is said weak. Instead of proving directly
that a pair is an up-to technique, we consider a sufficient criterion based on respectfulness2
and the largest respectful pair, called the diacritical companion (u,w): if a pair (s, f) is below
the companion, then it is an up-to technique.

The diacritical companion is defined using notions of evolution on monotone functions
which can be seen as the higher-order counterpart of progress on relations. We decompose
diacritical progress R� S, T into passive progress R p

� S and active progress R a� T to
define different kinds of evolution.

I Definition 8. Let f, g be monotone functions.
f passively evolves to g, written f p

 g, if for all R, S, R p
� S implies f(R) p

� g(S);
f actively evolves to g, written f a g, if for all R, S, R a� S implies f(R) a� g(S);
f restrictively evolves to g, written f p|a

 g, if for all R, S, R p
� R a� S implies

f(R) a� g(S).
Passive and active evolutions express the idea that f becomes g in respectively passive and
active clauses. Restricted evolution allows a relation R to do some administrative step
(passive progress) before doing some active progress, as long as we stay in R. For λeff, it
means that we can reduce a term to a value before doing some active progress with it.

2 Our previous work [6] is built on the notion of compatibility, but the notion of progress we use in this
paper makes Definition 9 correspond to respectfulness instead. See [26, 23, 6] for a discussion on the
difference between the two notions.
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I Definition 9. A pair of monotone functions (s, f) diacritically evolves to (s′, f ′), (s′′, f′′),
written (s, f) (s′, f ′), (s′′, f′′) if

s p
 s′ f p

 f ′ s a f ′′ f p|a
 f ′′

A pair (s, f) is respectful if (s, f) (s, f), (s, f). The diacritical companion (u,w) is the largest
respectful pair.

In words, the bisimulations of diacritical evolution are exactly respectful pairs, and its
bisimilarity is the diacritical companion. Among other properties, we can show that any pair
below the companion (including the companion itself) is an up-to technique.

I Lemma 10. The following hold:
if (s, f) v (u,w), then (s, f) is an up-to technique;
u v w;
w(≈) = ≈.

The second inequality implies that any strong function can also be used as a weak one,
justifying why such a function is said “strong”, as it can be applied without restriction in
any clause. The last equality states that the weak companion preserves bisimilarity, so for
any f v w, we also have f(≈) ⊆ ≈. If f is a contextual closure function (if e1 R e2 then
C[e1] f(R) C[e2]), showing that it is below w is enough to deduce that ≈ is compatible.

The remaining question is how to prove that a given pair (s, f) is below the companion.
In this paper, we use a degenerate but sufficient version of a theorem in our previous work [6,
Theorem 4.12]. Let id be the identity on relations. We define S(s) inductively as the smallest
function verifying:

for all g ∈ {id, s, u}, g v S(s);
for all g ∈ {id, s, u}, g ◦ S(s) v S(s), S(s) ◦ g v S(s), g ∪ S(s) v S(s), and S(s) ∪ g v S(s);

and W(s, f) inductively as the smallest function verifying:
for all g ∈ {id, s, f,w}, g vW(s);
for all g ∈ {id, s, f,w}, g ◦W(s, f) v W(s, f), W(s, f) ◦ g v W(s, f), g ∪W(s, f) v W(s, f),
and W(s, f) ∪ g vW(s, f);

The function S(s) is the smallest function built from s, id, and u stable by composition and
union, while W(s, f) is the smallest function built from s, f, id, and w stable by composition
and union. Including u and w in their definition means that any function already proved
respectively strong or weak is below respectively S(s) or W(s, f).

I Theorem 11. Let (s, f) be monotone functions. If

s p
 S(s) f p

 S(s) ◦ f ◦ S(s) s a W(s, f) f p|a
 W(s, f)

then (s, f) v (u,w) and (s, f) is an up-to technique.

The idea of the theorem is to see how s and f evolve and prove that the results of their
evolutions is below what is on the right of the arrows. Any combination of weak functions
can be obtained after an active or restricted evolution, but only strong functions can be used
after a passive one, except that f can be used once. This constraint on f makes the soundness
proofs of the most interesting up-to techniques of λeff more difficult (cf. Appendix A).

We define the up-to functions we consider for λeff in Figure 2. The first four are usual
and can be found in many variants of the λ-calculus [7, 4]. The function red is the usual
bisimulation up to reduction, where expressions can be related after some reduction steps,
while refl equates any expression with itself. The function subst allows to replace a variable
in related expressions with related values. Finally, lam is compatibility w.r.t. λ-abstraction.
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Resumption position predicate.

resum(αl, x)

resum(αl, e)

resum(αl, λx.e)

resum(αl, e1) resum(αl, e2)

resum(αl, e1 e2)

resum(αl, e)

resum(αl, dol′ e)

resum(αl, e) ∀li:xi,ki→ ei ∈ H, resum(αl, ei) resum(αl, e′)

resum(αl, handle e {H; ret x→ e′})

resum(αl, v)

resum(αl, αl[v])

resum(αl, v)

resum(αl, αl[dol v])

resum(αl, e) βl
′ 6= αl

resum(αl, βl′ [e])

Up-to techniques.

e1 →∗ e′1 e2 →∗ e′2 e′1 R e′2

e1 red(R) e2 e refl(R) e

e1 R e2 v1 Rv v2

e1{v1/x} subst(R) e2{v2/x}
e1 R e2

λx.e1 lam(R) λx.e2

e1 R e2

αl[e1] cvar(R) αl[e2]

e1 R e2 E1
l Rc E2

l

e1{E1
l/αl} csubst(R) e2{E2

l/αl}

e1 R e2 E1
l Rr E2

l resum(αl, e1) resum(αl, e2)

e1{E1
l/αl} rsubst(R) e2{E2

l/αl}

Figure 2 Up-to functions for λeff.

The remaining functions are more specific to λeff. The function cvar plugs related terms
into any context variable. This variable can then be replaced with contexts using either
csubst or rsubst, depending whether the contexts behave as resumptions or not. In the
latter case, the contexts should be related with ·r, and the context variable should be in
resumption position, a condition we check with the predicate resum, defined in Figure 2.
Roughly, resum(αl, e) means that αl is about to be captured – i.e., plugged with an effect
dol v – or has already been captured, and is therefore plugged with a value.

The functions cvar, csubst, and rsubst can be used to define a more conventional bisimu-
lation up to evaluation context, similar to the one of the plain λ-calculus [7].

I Lemma 12. If e1 R e2 and E1 Rc E2, then E1[e1] csubst(cvar(R) ∪ id) E2[e2].

We simply plug e1 and e2 into a fresh context variable which is then replaced with E1 and E2.
The functions we define are strong, except for csubst and rsubst.

I Theorem 13. For all s ∈ {refl, id, red, subst, lam, cvar}, we have s v u. For all f ∈
{csubst, rsubst}, we have f v w.

The proofs for the strong techniques are simple or as in the plain λ-calculus [7]; we sketch
the proof for csubst and rsubst in the appendix. It is not surprising that these two functions
are weak, as they essentially behave as bisimulation up to context, which is also weak in the
plain λ-calculus. As explained in Section 3.3, they cannot be used in the passive clauses, i.e.,
when relating values or context-stuck terms.
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7:12 A Complete Normal-Form Bisimilarity for Algebraic Effects and Handlers

Because cvar and csubst are up-to techniques, the bisimulation up to evaluation context
is also sound, from which we deduce that ≈ is compatible w.r.t. evaluation contexts using
Lemma 10. Thanks to lam, we know it is also preserved by λ-abstraction, so we can show
the bisimilarity is compatible, from which we deduce it is a valid proof technique for the
contextual equivalence of the plain calculus.

I Corollary 14. Let e1 and e2 be expressions of the plain calculus. If e1 ≈ e2, then e1 ≡ e2.

Indeed, if e1 ≈ e2, then for all contexts C, C[e1] ≈ C[e2] because ≈ is compatible. If C[e1] ⇓v,
then C[e2] ⇓v simply by definition of the bisimilarity.

The up-to techniques we define are useful beyond simply proving soundness of the
bisimilarity; they can simplify the equivalence proof of two given terms, as illustrated by the
following examples.

I Example 15. Dal Lago and Gavazzo [14] propose an example where two fixed-point
combinators are signaling each β-reduction with a tick effect; we modify it so that the two
expressions are equivalent with handlers (but the tick effect is now arbitrary). Let

e1
4= λy.dotick (∆y ∆y) ∆y

4= λx.(dotick y) λz.dotick (x x z)

e2
4= Θ Θ Θ 4= λx.λy.dotick ((dotick y) λz.dotick (x x y z))

We prove these expressions are bisimilar up to, by building a candidate relation R increment-
ally, starting from e1 and e2.

Proof. The term e1 is a value, and e2 → λy.dotick ((dotick y) λz.dotick (Θ Θ y z)), so we
need to relate the bodies of the λ-abstractions. We have a reduction dotick (∆y ∆y) →
dotick ((dotick y) λz.dotick (∆y ∆y z)); the resulting term is control-stuck, which we relate to
dotick ((dotick y) λz.dotick (Θ Θ y z)) which is also control-stuck. The arguments of the ef-
fect are the same, and we need to relate the two contexts dotick (� λz.dotick (∆y ∆y z)) and
dotick (� λz.dotick (Θ Θ y z)).

Plugging them with a fresh variable, we obtain two open-stuck terms, meaning that
we need to relate the two identical contexts dotick� and the values λz.dotick (∆y ∆y z) and
λz.dotick (Θ Θ y z). These last two values are related up to lambda and evaluation context
if R contains ∆y ∆y and Θ Θ y, and the bisimulation proof for these two expressions is the
same as for e1 and e2. In the end, taking R 4= {(e1, e2), (∆y ∆y,Θ Θ y)}, we can show that R
is a bisimulation up to refl, red, lam, and up to context, i.e., up to cvar and csubst. Note that
we are allowed to use the latter weak technique when comparing open-stuck terms, as it is
an active clause. J

I Example 16. We write ER for the reader effect of Example 6, and consider the following
handler to express backtracking.

EBT
4= handle � {fail:x,k→ ();flip:x,k→ (λz.k false) (k true); ret x→x}

ER
4= handle � {ask:x,k→ k z; ret x→x}

We prove that the two effects commute by showing that EBT [ER] ≈c ER[EBT ].
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Sketch. We show that the relation R given by the following rules is a bisimulation up-to.

EBT [ER[v]] R ER[EBT [v]] EBT [ER[αl[dol x]]] R ER[EBT [αl[dol x]]]

e1 red(R) ER[e2] z /∈ fv(e1) ∪ fv(e2)

(λz.e1) (EBT [ER[αl[dol x]]]) R ER[(λz.e2) (EBT [αl[dol x]]])

The pair of the first rule is straightforward to check as each expression evaluates to v. For the
second rule, the interesting cases are when l is an effect handled by EBT or ER. If l = fail,
the two expressions evaluate to (). If l = ask, they evaluate to respectively EBT [ER[αl[z]]]
and ER[EBT [αl[z]]], which are context-stuck terms and for which we can easily check the
bisimulation requirements.

If l = flip, then the expressions of the second rule reduce to respectively

(λz.((λy.EBT [ER[αl[y]]]) false)) EBT [ER[αl[true]]], and

ER[(λz.((λy.EBT [αl[y]]) false)) EBT [αl[true]]].

To compare these context-stuck terms, we plug the two contexts with a fresh variable and a
fresh control-stuck terms. When plugged with a fresh variable, we obtain EBT [ER[αl[false]]]
and ER[EBT [αl[false]]], for which we can again easily check the bisimulation clause. With
control-stuck terms, we obtain expressions related by the third rule defining R. Checking
bisimulation for the third rule is done by a similar case analysis on l and concludes the
proof. J

3.5 Completeness
In this section we show that for any two expressions e1 and e2 in the plain calculus, if e1 ≡ e2,
then e1 ≈ e2. To this end, we first observe that if e1 ≡ e2, then e1 ≡E e2, where ≡E is a
relation on expressions in the extended calculus, defined as follows.

I Definition 17. We write e1 ≡E e2 if for all evaluation contexts E (from the extended
calculus), and substitutions σ (i.e., finite mappings from variables to values and from context
variables to contexts), such that E[e1]σ and E[e2]σ are closed expressions in the plain calculus,
we have E[e1]σ ⇓v iff E[e2]σ ⇓v.

I Lemma 18. If e1 ≡ e2, then e1 ≡E e2.

Proof. Assume that e1 ≡ e2 and take any evaluation context E and closing substitution σ,
such that E[e1]σ ⇓v. Then, it must be the case that E[e2]σ ⇓v as well, since otherwise e1
and e2 would be distinguished by the following context:

C = (λx1.. . . λxn.Eσ) v1 . . . vn

assuming dom(σ) = {x1, . . . xn, α1, . . . , αm} and σ(xi) = vi for 1 ≤ i ≤ n. J

The main lemma of this section establishes that ≡E is a bisimulation, which, by Lemma 18,
implies completeness of ≈ w.r.t. ≡.

I Lemma 19. ≡E is a bisimulation.

Proof. The proof consists in a case-by-case verification of the conditions stated in Definition 5
for the candidate relation ≡E. Here we present one of the most representative cases that,
in our opinion, illustrates best the power of the calculus and the techniques used in the
remaining cases.
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Case: e1 = E1[αl[v1]] and e1 ≡E e2. We need to show that there exist E2 and v2 such
that: (1) e2 →∗ E2[αl[v2]], (2) v1 ≡v

E v2, and (3) E1 ≡c
E E2.

To prove (1), we take a fresh label l′, and we define a substitution σ as follows:

σ(x) = λy.Ω for x ∈ fv(e1) ∪ fv(e2)
σ(βl′′) = handle � {Hl′′ ; ret x→Ω} for βl′′ ∈ cv(e1) ∪ cv(e2) and βl′′ 6= αl

σ(αl) = dol′ �

where Hl′′ = l1:x,k→Ω; . . . ;ln:x,k→Ω and {l1, . . . , ln} = lbl(e1) ∪ lbl(e2) − {l′′}, and we
consider a context E = handle � {l′:x,k→x; ret x→Ω}. It is easy to see that E[e1]σ ⇓v and
that if e2 evaluates to a normal form which is not E2[αl[v2]] for some E2 and v2, then either
E[e2]σ ⇑ or E[e2]σ reduces to a control-stuck term (the latter case occurs when e2 itself
reduces to a control-stuck term E2[dol′′ v2]).

To prove (2), we take a fresh variable z, a context E and a closing substitution σ, and
we assume that E[v1 z]σ ⇓v. To see that E[v2 z]σ ⇓v as well, we construct a substitution σ′
and a context E′ such that E′[ei]σ′ ⇓v iff E[vi z]σ ⇓v for i = 1, 2. To this end we take fresh
labels l′, get and put (the latter two to encode a binary state as an algebraic effect), and we
define σ′ to be equal to σ everywhere, except for αl:3

σ′(αl) = σ(αl)[(λx.if doget () then (doput false; dol′ x) else x)�]

along with

E′b = (handle E′′ {get:x,k→λy.k y y; put:x,k→λy.k () x; ret x→λy.x}) b
E′′ = handle � {l′:x,k→E[x z]; ret x→x}.

where b ∈ {true, false}. Let us notice that

E′true[ei]σ′ →∗ E′false[Ei[dol′ vi]]σ′ →∗ E′false[E[vi z]]σ′

The idea is to use αl, the single synchronization point of e1 and e2 available, in such a way
that the first time αl is used, E′true[ei]σ′ reduces to an expression behaving like E[vi z]σ. To
ensure this, we make sure that any subsequent uses of αl (it could occur in vi or E) actually
mean σ(αl). But when the state is set to false, the λ-abstraction in σ′(αl) behaves like the
identity, and filling the hole of σ′(αl) with a value v simply passes v to σ(αl). Filling it
with a control-stuck term E′

l′ [dol′ v] allows σ(αl) to eventually handle the effect, capturing
a context equivalent to (λz.z)E′l

′
. In the end, E′false[E[vi z]]σ′ behaves like E[vi z]σ, up to a

few additional reduction steps.
To prove (3), we have to show: (a) E1[z] ≡E E2[z] for a fresh variable z, and (b)

E1[αl′′ [dol′′ z]] ≡E E2[αl′′ [dol′′ z]] for any l′′ and fresh αl
′′ and z. Assuming we compare

expressions using E and σ in both cases, we proceed as in (2), except that in (a) we take

E′′ = handle � {l′:x,k→E[k z]; ret x→x}

and in (b) we take

E′′ = handle � {l′:x,k→E[k (αl′′ [dol′′ z])]; ret x→x}.

The remaining cases are proved similarly and can be found in Appendix B. J

I Corollary 20. For any expressions e1 and e2 in the plain calculus, if e1 ≡ e2, then e1 ≈ e2.

3 Strictly speaking, σ′ additionally takes into account the free variables and context variables that occur
in e1 or e2, but that have been reduced away and are not present in the resulting normal forms. The
values and contexts σ′ assigns to such variables are irrelevant.
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3.6 Comparison with Multi-Prompted Delimited Continuations
Algebraic effects and handlers studied in the untyped setting, as in this work, diverge from
their categorical origins [22], and can be considered a new form of delimited control [10, 11].
As a matter of fact, there exist mutual encodings of algebraic effects and (deep) handlers
over a single operation and the control operator shift0 [28], both in an untyped [12] and
polymorphically typed settings [21]. These encodings are not fully abstract and therefore
they do not guarantee that a behavioral theory, such as the one presented in this work, would
carry over to the corresponding calculus of delimited continuations. Given that we allow
for multi-labeled algebraic operations, the corresponding calculus in our case would be a
generalization of shift0 to its multi-prompted version shift0l where the main reduction rule is:

promptlEl[shift0lk.e] 7→ e{λz.promptlEl[z]/k}

We can observe that in contrast to the calculus of algebraic effects, the party responsible
for handling the effect is the same as the one that actually does the effect – it is not the
prompt that handles it, but the expression e. The reversal of the roles makes algebraic effects
considerably more programmer-friendly, but it also simplifies the theory, compared to the
one for classical delimited-control operators. In particular, the techniques we propose in
this work appear not to be sufficient for constructing a normal-form bisimulation theory for
multi-prompted shift0.

The main obstacle is encountered when we relate evaluation contexts, say E1 and E2. The
requirement that E1[z] and E2[z] (for a fresh z) be related is uncontroversial. However, how
should we test E1 and E2 for control effects? We need a notion of an abstract control-stuck
term and we do not know how to represent it in this calculus. We could introduce a syntactic
category of control-stuck-term variables for this purpose, but this would lead nowhere –
plugging E1 and E2 with such a variable would immediately result in control-stuck terms –
there simply is no code that could test the contexts.

One could try to decompose the contexts E1 and E2 into some corresponding sub-contexts
and relate those, following the approach that works for single-prompted control operators
shift and reset for which there exists a sound normal-form bisimilarity [4]. Whether this could
lead to a complete theory is not clear and requires further study. As for single-prompted
control operators, be it shift or shift0, reaching completeness seems a tall order – notice that
the completeness proof of Section 3.5 hinges on the existence of fresh effect labels (prompts).

4 Related Work

Up to now, most works studying the behavioral theory of a calculus with generic algebraic
effects were not considering handlers, but interpretations of effects instead, usually in a
monad. In such a setting, the behavior of an effect is therefore given for all programs once
and for all by the interpretation. In contrast, with handlers, the behavior of an effect may
change between programs or during the execution of a program as it depends on how it is
handled. The calculus we consider is therefore more expressive than those of the works we
list below, with a more discriminative contextual equivalence. It explains why we can reach
completeness with a syntactic equivalence such as normal-form bisimilarity while previous
works do not achieve completeness with more elaborate equivalences such as applicative
bisimilarity. As a matter of fact, the completeness proof presented in this paper relies on
an encoding of state and resembles the completeness proof we developed for higher-order
state in a previous work [5]. The definition of the normal-form bisimilarity for state, unlike
the one presented in this work, did not require any extensions of the calculus. However, its
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structure is considerably more involved since in the absence of control operators, to reach
completeness, we had to explicitly handle deferred diverging terms and impose a stack-like
discipline on the way evaluation contexts are tested.

Some recent works interpret effects in a monad and use relators which express how
interpreted terms should be compared in the monad. Relators allow to develop the behavioral
theory of a calculus with effects in a very abstract setting: e.g., one can get for free that
the bisimilarity is a congruence provided that a relator exists for the interpretation monad.
Relators have been studied for applicative bisimilarity in call-by-value [15] or call-by-name [16],
and for normal-form bisimilarity in call-by-value [14]. As pointed out by the authors in [16],
“there is however little hope to prove a generic full-abstraction result [w.r.t. contextual
equivalence] in such a setting, although for certain notions of an effect, full abstraction is
already known to hold.” However, completeness can be obtained in some cases, as in an
untyped call-by-name calculus with deterministic effects [16].

The other path to completeness in typed languages is through logic or logical relations.
Johann et al. [13] propose a contextual equivalence and a logical relation characterizing
it in a call-by-name calculus with effects. Their framework deals with different effects in
a uniform way but with some limitations, as for instance nondeterminism, local store, or
the combination of effects cannot be accounted for. Simpson and Voorneveld [29] present a
modal logic for a call-by-value calculus which coincides with Dal Lago et al.’s applicative
bisimilarity [15], but not with contextual equivalence, as demonstrated later [19]. Matache
and Staton improve on these results by defining a logic for a calculus in continuation-passing
style that coincides with both applicative bisimilarity and contextual equivalence [19]. Finally,
Biernacki et al. [8] define a step-indexed logical relation for a call-by-value calculus with
effects and handlers; to the best of our knowledge, it is the only previous work with handlers.

5 Conclusion

We present a sound and complete normal-form bisimilarity for a calculus with effects and
handlers. The crucial point is to accurately observe how evaluation contexts may handle
effects. First, we distinguish between resumptions, which are plugged only with values,
from regular contexts, which may be plugged with any expressions, including effectful
ones. We then test the latter contexts using control-stuck terms where the continuation is
represented by a context variable, which allows to track how the captured continuation is
handled. Extending the calculus with context variables introduces new normal forms which
are compared by the bisimilarity in a very simple and regular way. The fact that such a
simple notion of normal-form bisimilarity is complete shows the discriminating power of
handlers. A consequence is that the examples of equivalent programs we provide are quite
simple, as more complex effectful expressions are easily distinguished by handlers.

There are several directions for future work. As pointed out in Section 3.6, it remains an
open question how to define complete normal-form bisimulations in the calculus of multi-
prompted delimited-control operators corresponding to deep handlers studied in this work.
Then, it would be worthwhile to investigate whether the results presented in this paper
carry over to shallow handlers. Finally, there exist a number of type-and-effect systems for
algebraic effects of varying complexity [8, 9, 21], and one can wonder how features such as
effect polymorphism along with effect coercions would influence the theory of this paper.
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A Soundness Proof Sketch

We only discuss the case of csubst and rsubst, as the others are proved as in the plain
λ-calculus [7]. In particular, we use the fact that

I Lemma 21. subst v u
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We want to prove that csubst and rsubst are weak, but to circumvent the constraint that
they cannot be composed twice in a passive clause, we combine csubst and rsubst in a single
ssubst doing simultaneous substitutions.

e1 R e2 σ1 Rσ σ2

e1σ1 ssubst(R) e2σ2

We let σ ranges over simultaneous substitution, meaning that if σ(αl) = El, then (αl[e])σ 4=
El[eσ]; we do not apply σ to El. We define Rσ pairwise such that we have either σ1(αl) Rc

σ2(αl), or σ1(αl) Rr σ2(αl) with resum(αl, e1) and resum(αl, e2).

I Lemma 22. ssubst v w

Proof. Let R� R,S, e1σ1 subst(R) e2σ2 with e1 R e2 and σ1 Rc σ2. We proceed by case
analysis on the behavior of e1. The cases where e1 reduces, is a value, or is an open-stuck
term are simple.

Suppose e1 = E′1
l[dol v1], then there exist E′2

l and v2 such that e2 →∗ E′2
l[dol v2],

E′1
l Sr E′2

l and v1 Sv v2. Any context variable surrounding the hole of E′1
l can only be of the

form αli, meaning that E′1
l
σ1 still does not handle l, and the resulting terms are control-stuck.

We progress to ssubst, so we can conclude.
Suppose e1 = E1[αl[v1]] with αl ∈ dom(σ1) (the case where the variable is not in the

domain is easily handled). There exist E2 and v2 such that e2 →∗ E2[αl[v2]], E1 Rc E2,
and v1 Rv v2. From σ1(αl) Rc σ2(αl), we get in particular σ1(αl)[x] R σ2(αl)[x] for a
fresh x, therefore σ1(αl)[v1] subst(R) σ2(αl)[v2]. We have two special cases to consider,
σ1(αl) = βl[�] and σ1(αl) = �; in the other cases, σ1(αl)[v1] is doing something active and
we can conclude using Lemma 21.

If σ1(αl) = �, we have x R σ2(αl)[x], from which we deduce that there exist w such
that σ2(αl)[x] →∗ w and x Rv w. As a result, e1σ1 = E′1{/σ}1[v1σ1], and e2σ2 →∗
E′2σ2[w{v2/x}σ2]. Since we have E′1[v1] subst(subst(R)) E′2[w{v2/x}], we can conclude again
with Lemma 21.

If σ1(αl) = βl[�], then from βl[x] R σ2(αl)[x], there exist E′2 and w such that σ2(αl)[x]→∗
E′2[βl[w]], � Rc E′2, and x Rv w. Therefore we have e2σ2 →∗ E2σ2[σ2(αl)[v2σ2]] →∗
E2σ2[E′2[βl[w{v2σ2/x}]]], yielding a context-stuck term that is to be related to E1σ1[βl[v1σ1]].
We are fine w.r.t. the values, as we have v1σ1 ssubst(subst(R)) w{v2σ2/x}. For the con-
texts, we first relate E1σ1[y] and E2σ2[E′2[y]] for a fresh y. Because � Rc E′2, there exists
w′ such that E′2[y] →∗ w′ and y Rv w′. As a result, we have E2σ2[E′2[y]] →∗ E2σ2[w′],
and therefore E1σ1[y] red(ssubst(subst(R))) E2σ2[E′2[y]], which is what we need. Then
we must relate E1σ1[γl′ [dol′ y]] and E2σ2[E′2[γl′ [dol′ y]]] for any l′ and fresh γl

′ and y.
Because � Rc E′2, there exist E′′2

l′ and w′ such that E′2[γl′ [dol′ y]] →∗ E′′2
l′ [dol′ w′],

γl
′ [�] Sr E′′2

l′ , and y Sv w′. From E1 Rc E2, we get E1[γl′ [dol′ y]] R E2[γl′ [dol′ y]],
so if E1[γl′ [dol′ y]] → e′1 for some e′1 (the case where l′ is not handled is not inter-
esting), then there exists e′2 such that E2[γl′ [dol′ y]] →∗ e′2 and e′1 S e′2. Therefore,
E2σ2[E′2[γl′ [dol′ y]]]→∗ E2σ2[E′′2

l′ [dol′ w′]]→∗ e′2σ′2{w′/y} where σ′2(γl′) = E′′2
l′ and is equal

to σ2 otherwise. Because E1σ1[γl′ [dol′ y]]→ e1σ1 = e1σ
′
1{y/y} where σ′1(γl′) = γl

′ [�] and is
equal to σ1 otherwise, we deduce E1σ1[γl′ [dol′ y]] red(subst(ssubst(S))) E2σ2[E′2[γl′ [dol′ y]]]
which is enough to conclude.

Suppose e1 = E1[αl[E′1
l′ [dol′ v1]]] with l 6= l′ and αl ∈ dom(σ1); then there exist E2,

E′2
l′ , and v2 such that e2 →∗ E2[αl[E′2

l′ [dol′ v2]]], E1 T c E2, E′1
l′ T r E′2

l′ , and v1 T v v2.
From σ1(αl) Rc σ2(αl), we get σ1(αl)[γl′ [dol′ x]] R σ2(αl)[γl′ [dol′ x]] for fresh γl′ and x. If
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σ1(αl)[γl′ [dol′ x]]→ e′1 for some e′1, then there exists e′2 such that σ2(αl)[γl′ [dol′ x]]→∗ e′2 and
e′1 S e′2. Then e1σ1 → E1[e′1{v1/x}{E′1

l′
/γl

′}]σ1 and e2σ2 →∗ E2[e′2{v2/x}{E′2
l′
/γl

′}]σ2,
and the resulting expressions are in ssubst(ssubst(cvar(ssubst(subst(S))))), which is fine,
because we are in an active clause. J

B Completeness Proof Sketch

The proof proceeds as described in Section 3.5: given e1 ≡E e2, we check that for each
behavior of e1, e2 is able to match. If e1 is a normal form, we verify that (1) e2 evaluates to a
normal form of the same kind, and the normal forms can be decomposed into related sub-parts.
For each case, we give the substitution σ and the context E enforcing (1). Checking that
related sub-parts are contextually equivalent relies in most cases on an encoding of a mutable
state using handlers, as in Section 3.5. In all the subcases below, we assume the labels get
and put to be fresh, and given a boolean b and a context E′′, we define

E′b = (handle E′′ {get: z,k→λy.k y y; put: z,k→λy.k () z; ret z→λy.z}) b

We define E′′ in each subcase where the encoding is needed.

Case: e1 → e′
1. Because the reduction is deterministic, we still have e′1 ≡E e2.

Case: e1 = v1. To check (1), take σ as follows:

σ(x) = λy.Ω for x ∈ fv(e1) ∪ fv(e2)
σ(αl) = handle � {Hl; ret x→Ω} for αl ∈ cv(e1) ∪ cv(e2)

where Hl = l1:x,k→Ω; . . . ;ln:x,k→Ω with {l1, . . . , ln} = lbl(e1) ∪ lbl(e2) \ {l}, and E = �.
Hence, there exists v2 such that e2 →∗ v2; we check that v1 ≡v

E v2.
Let x be a fresh variable, E a context, and σ a closing substitution such that E[v1 x]σ ⇓v.

Then E[e2 x]σ →∗ E[v2 x]σ and since e1 ≡E e2, we also have E[v2 x]σ ⇓v.

Case: e1 = E1[x v1]. To check (1), take σ as follows:

σ(z) = λy.Ω for z ∈ fv(e1) ∪ fv(e2) \ {x}
σ(x) = λy.dol′ λz.z
σ(αl) = handle � {Hl; ret x→Ω} for αl ∈ cv(e1) ∪ cv(e2)

where l′ /∈ lbl(e1) ∪ lbl(e2), Hl = l1:x,k→Ω; . . . ;ln:x,k→Ω with {l1, . . . , ln} = lbl(e1) ∪
lbl(e2) \ {l}, and E = handle � {l′: y,k→ y; ret x→Ω}. Hence, there exists E2[x v2] such that
e2 →∗ E2[x v2]; we check that (2) v1 ≡v

E v2 and (3) E1 ≡c
E E2.

For (2), let y be a fresh variable and consider the testing arguments E and σ such that σ
is a closing substitution and E[v1 y]σ ⇓v. Let l′ be a fresh label, and define σ′ to be equal
to σ everywhere, except for x:

σ′(x) = λz.if doget () then (doput false; dol′ z) else σ(x)

and consider

E′′ = handle � {l′: z,k→E[z y]; ret z→ z}.

Then E′true and σ′ are the discriminating arguments, i.e., E[v1 y]σ ⇓v iff E′true[e1]σ′ ⇓v iff
E′true[e2]σ′ ⇓v iff E[v2 y]σ ⇓v.
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Proving (3) requires (a) E1[y] ≡E E2[y] for a fresh y, and (b) E1[αl′′ [dol′′ y]] ≡E
E2[αl[dol y]] for any l and fresh αl and y. Assuming the same testing arguments E and σ,
both cases are proved as in (2), except that in (a) we take

E′′ = handle � {l′: z,k→E[k y]; ret z→ z}

and in (b) we take

E′′ = handle � {l′: z,k→E[k (αl[dol y])]; ret z→ z}.

Case: e1 = E1
l[dol v1]. To check (1), take σ as follows:

σ(x) = λy.Ω for x ∈ fv(e1) ∪ fv(e2)
σ(αl′) = handle � {Hl′ ; ret x→Ω} for αl′ ∈ cv(e1) ∪ cv(e2)

where Hl′ = l1:x,k→Ω; . . . ;ln:x,k→Ω with {l1, . . . , ln} = lbl(e1) ∪ lbl(e2) \ {l′}, and E =
handle � {l: y,k→ y; ret x→Ω}. Hence, there exists E2

l[dol v2] such that e2 →∗ E2
l[dol v2];

we check that (2) v1 ≡v
E v2 and (3) E1

l ≡r
E E2

l.
Assuming we use a fresh variable x and E, σ as testing arguments, we conclude in the

former case by considering E′ = handle � {l: z,k→E[z x]; ret z→ z} and σ as discriminating
arguments.

We prove (3) assuming x fresh and E, σ as testing arguments. Let l′, l′′ be fresh labels;
we define

E′′ = handle E′′′ {l′: z,k→El′′ [z x]; ret z→ z}.

where

E′′′ = handle � {l: z,k→ if doget () then (doput false; dol′ k) else k (dol′′ z); ret z→ z}.

and El′′ is E where all the occurrences of l are replaced by l′′. When l is handled first,
we create the discriminating term; subsequent handlings are perfomed by E through l′′.
Renaming l into a fresh l′′ in E is necessary to bypass the handler for l in E′′′. The
discriminating arguments are E′true and σ.

Case: e1 = E1[αl[v1]]. Described in details in Section 3.5.

Case: e1 = E1[αl′ [E′
1

l[dol v1]]]. To check (1), take σ as follows:

σ(x) = λy.Ω for x ∈ fv(e1) ∪ fv(e2)
σ(βl′′ ) = handle � {Hl′′ ; ret x→ Ω} for βl′′ ∈ cv(e1) ∪ cv(e2) and βl′′ 6= αl′

σ(αl′ ) = handle � {l:x,k→ dol′′′ x; ret x→ Ω}

where l′′′ /∈ lbl(e1) ∪ lbl(e2), Hl′′ = l1:x,k→Ω; . . . ;ln:x,k→Ω with {l1,. . . ,ln} = lbl(e1) ∪
lbl(e2)\{l′′}, and E=handle � {l′′′:x,k→x; ret x→Ω}. Hence, there exists E2[αl′ [E′2

l[dol v2]]]
such that e2 →∗ E2[αl′ [E′2

l[dol v2]]]; we check that (2) v1 ≡v
E v2, (3) E′1

l ≡r
E E′2

l, and (4)
E1 ≡c

E E2. In each case, we assume x and l′′ to be fresh and the testing arguments to be E
and σ.
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The discriminating arguments for (2) are σ′, defined to be equal to σ everywhere, except
for αl′ :

σ′(αl′ ) = σ(αl′ )[handle � {l: z,k→ if doget () then (doput false; dol′′ z) else k (dol x); ret z→ z}],

and E′true assuming

E′′ = handle � {l′′: z,k→E[z x]; ret z→ z}.

For (3), we prove E′1
l[x] ≡E E′2

l[x] as in (2), except that we take an extra fresh l′′′ and
define

σ′(αl′ ) = σ(αl′ )[handle � {l: z,k→ if doget () then (doput false; dol′′ k) else k (dol′′′ x); ret z→ z}]

and

E′′ = handle � {l′′: z,k→El′′′ [z x]; ret z→ z}

where El′′′ is the context E where the occurrences of l are replaced with l′′′.
Proving (4) requires (a) E1[x] ≡E E2[x] and (b) E1[αl′′′ [dol′′′ z]] ≡E E2[αl′′′ [dol′′′ x]] for

any l′′′ and fresh αl′′′ . Assuming the same testing arguments, both cases are proved as in
(2), except that in (a) we take

E′′ = handle � {l′′: z,k→E[k x]; ret z→ z}

and in (b) we take

E′′ = handle � {l′′: z,k→E[k (αl′′′ [dol′′′ x])]; ret z→ z}.
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