Adaptive Non-Linear Pattern Matching Automata

Rick Erkens
Eindhoven University of Technology, The Netherlands
r.j.a.erkens@tue.nl

Maurice Laveaux
Eindhoven University of Technology, The Netherlands
m.laveaux@tue.nl

—— Abstract

Efficient pattern matching is fundamental for practical term rewrite engines. By preprocessing

the given patterns into a finite deterministic automaton the matching patterns can be decided in
a single traversal of the relevant parts of the input term. Most automaton-based techniques are
restricted to linear patterns, where each variable occurs at most once, and require an additional
post-processing step to check so-called variable consistency. However, we can show that interleaving
the variable consistency and pattern matching phases can reduce the number of required steps to find
all matches. Therefore, we take the existing adaptive pattern matching automata as introduced by
Sekar et al and extend these with consistency checks. We prove that the resulting deterministic
pattern matching automaton is correct, and show that its evaluation depth can be shorter than
two-phase approaches.

2012 ACM Subject Classification Theory of computation — Pattern matching
Keywords and phrases Pattern matching, Term indexing, Tree automata

Digital Object ldentifier 10.4230/LIPIcs.FSCD.2020.20

Acknowledgements We would like to thank Jan Friso Groote, Bas Luttik and Tim Willemse for
their feedback and discussion. We would also like to thank the anonymous reviewers for their effort

and constructive remarks and questions.

1 Introduction

Term rewriting is a universal model of computation that is used in various applications,
for example to evaluate equalities or simplify expressions in model checking and theorem
proving. In its simplest form, a binary relation on terms, which is described by the term
rewrite system, defines the available reduction steps. Term rewriting is then the process of
repeatedly applying these reduction steps when applicable. The fundamental step in finding
which reduction steps are applicable is pattern matching.

There are two variants for the pattern matching problem. Root pattern matching can be
described as follows: given a term ¢ and a set of patterns, determine the subset of patterns
such that these are (syntactically) equal to ¢ under a suitable substitution for their variables.
The other variant, called complete pattern matching, determines the matching patterns for
all subterms of t. Root pattern matching is often sufficient for term rewriting, because
reduction steps invalidate other matches. A root pattern matching algorithm can be used to
naively solve the complete pattern matching problem by applying it to every subterm.

As the matching patterns need to be decided at each reduction step, various term indexing
techniques [7] have been proposed to determine matching patterns efficiently. Adaptive
pattern matching automata [8] (APMA) are tree-like data structures that are constructed
from a set of patterns. By using such an automaton one can decide the matching patterns
by only examining each function symbol of the input term at most once. Moreover it allows
for adaptive strategies, i.e., matching strategies that are not restricted to a fixed traversal

© Rick Erkens and Maurice Laveaux;

oY licensed under Creative Commons License CC-BY
5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020).
Editor: Zena M. Ariola; Article No. 20; pp. 20:1-20:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:r.j.a.erkens@tue.nl
https://orcid.org/0000-0001-8732-7580
mailto:m.laveaux@tue.nl
https://doi.org/10.4230/LIPIcs.FSCD.2020.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2

Adaptive Non-Linear Pattern Matching Automata

such as a left-to-right traversal in [4]. The size of an APMA is worst-case exponential in the
size of the pattern set, but in practice its size is typically smaller and this preprocessing step
is beneficial when many terms have to be matched against a fixed pattern set.

The APMA approach works for sets of linear patterns, that is, in every pattern every
variable occurs at most once. As mentioned in other literature [4, 8] the non-linear matching
problem can be solved by first preprocessing the patterns, then solving the linear matching
problem and lastly checking so-called wvariable consistency. Performing matching and consist-
ency checking separately does not yield the optimal matching time. Therefore we extend the
existing APMA with consistency checking on the fly. Our extension preserves the adaptive
traversal of [8] and allows information about the matching step to influence the consistency
checking, and the other way around.

We introduce consistency automata (CA) to perform the variable consistency check
efficiently for a set of patterns. The practical use of this automaton is based on similar
observations as the pattern matching automata: there may be overlapping consistency
constraints for multiple patterns in a set. We prove the correctness for these consistency
automata and provide an analysis of its time and space complexity. We prove that the
consistency automaton approach yields a correct consistency checking algorithm for non-linear
patterns. Then we introduce adaptive non-linear pattern matching automata (ANPMA), a
combination of adaptive pattern matching automata and consistency automata. ANPMAs
use information from both match and consistency checks to allow the removal of redundant
steps. We show that ANPMA yield a correct matching algorithm for non-linear patterns. To
this end we also give a correctness proof for the APMA approach from [8], which was not
given in the original work.

We compare this work with other term indexing techniques. Most techniques use tree-like
data structures with deterministic [1, 4, 8, 9] or non-deterministic [3, 2, 6, 10, 5] evaluation.
In this setting a deterministic evaluation guarantees that all positions in the input term
are inspected at most once. Non-deterministic approaches typically have smaller automata,
but the same position might be inspected multiple times for input terms as a result of
backtracking.

Not all techniques support matching non-linear patterns. Discrimination trees [6], sub-
stitution trees [5] and match trees [9] can be extended with on-the-fly consistency checks
for matching non-linear patterns. Their evaluation strategy however is restricted to pre-
order evaluation and variable consistency must be checked whenever a variable which has
already been bound occurs at the current evaluated position of the pattern. We have also
considered code trees [10], which also have preorder evaluation with backtracking. These
allow consistency checks to occur at different places. All three approaches might inspect the
same position multiple times due to backtracking. The ANPMAs introduced in this paper
mitigate these issues: consistency checks are allowed to occur at any point in the automaton,
the evaluation strategy is not limited to a fixed strategy and there are no redundant checks.

2 Preliminaries

In this section the preliminaries of first-order terms and the pattern matching problem are
defined. We denote the disjoint union of two sets A and B by AW B. Given two sets A and
B weuse A— B, A— B and A < B to denote the sets of total, partial and total injective
functions from A to B respectively. We assume that a partial function yields a special symbol
L for elements in its domain for which it is undefined. Furthermore, we assume the existence
of an index set Z and use A x Z to denote the indexed family with elements denoted by i : a
fora € Aand i€ 7.

R. Erkens and M. Laveaux

Let F = |4, F; be a ranked alphabet. We say that f € F; is a function symbol with

ieN

arity, written ar(f), equal to i. Let ¥ = VWTF be a signature where V is a set of variables.

The set of terms over X, denoted by Ty, is defined as the smallest set such that V C Ty
and whenever ty,...,t, € Ty and f € F,, then also f(t1,...,t,) € Ty. We typically use
the symbols z,y for variables, symbols a,b for function symbols of arity zero (constants),
f, g, h for function symbols of other arities and ¢, u for terms. The head of a term, written
as head, is defined as head(z) = z for a variable x and head(f(t1,...,t,)) = f for a term
f(t1,...,tn). We use vars(t) to denote the set of variables that occur in term ¢. A term for
which vars(t) = 0 is called a ground term. A pattern is a term of the form f(t1,...,¢,). A
pattern is linear iff every variable occurs at most once in it.

We define the (syntactical) equality relation = C T? as the smallest relation such that

x=ugforall x € V,and f(t1,...,tn) = f(t},...,¢,,) if and only if ¢; = ¢, for all 1 < i < n.

Furthermore, the equality relation modulo variables =,, C T? is the smallest relation such
that x =, y for all z,y € V, and f(¢t1,...,tn) = f(t],...,¢,) if and only if ¢, =, ¢} for
all 1 <i < n. Both = and =, satisfy reflexivity, symmetry and transitivity and thus are
equivalence relations, and we can observe that = C =,.

A substitution o is a total function from variables to terms. The application of a
substitution o to a term ¢, denoted by t?, is the term where variables of ¢ have been replaced
by the term assigned by the substitution. This can be inductively defined as 7 = o(x) and
fltr, o tn)? = f(t],...,t2). We say that term u matches t, denoted by ¢ < u, iff there is a
substitution ¢ such that ¢ = u. Terms ¢ and u unify iff there is a substitution o such that
7 =u’.

We define the set of positions P as the set of finite sequences over natural numbers where
the root position, denoted by ¢, is the identity element and concatenation, denoted by dot,
is an associative operator. Given a term t we define t[¢] = ¢ and if t[p] = f(¢1,...,%,) then
t[p.i] for 1 <4 < n is equal to t;. Note that ¢[p] may not be defined, e.g., f(z,y)[3] and
f(x,y)[1.1]. A position p is higher than ¢, denoted by p C ¢, iff there is position r € N*
such that p.r = ¢q. Position p is strictly higher than g, denoted by p C ¢, whenever p C ¢
and p # q. We say that a term ¢[g] is a subterm of t[p] if p C ¢ and t[q] is defined. The
replacement of the subterm at position p by term w in term ¢ is denoted by t[p/u], which
is defined as t[e/u] = w and f(t1,...,t,)[(¢.p)/u] = f(t1,...,t:[p/u], ..., tn). The fringe of
a term ¢, denoted by F(t), is the set of all positions at which a variable occurs, given by
F(t)={peP|t]p] € V}.

We also define a restricted signature for terms with a one-to-one correspondence between

variables and positions. First, we define Vp as the set of position variables {w, | p € P}.

Consider the signature Xp = F & Vp. We say that a term ¢t € Ty, is position annotated iff
for all p € F(t) we have that t[p] = w,. For example, the terms we and f(w1,g(w2.1)) are
position annotated whereas the term f(wq.1) is not. Position annotated patterns are linear
as each variable can occur at most once.

A matching function decides for a given term and a set of patterns the exact subset of
these patterns that match the given term.

» Definition 1. Let L C Ty, be a set of patterns. A function matchy : Ty — 2Tz s g
matching function for L iff for all terms t we have matche(t) ={¢ € L|Fo : 47 =t}. If L
is a set of linear patterns then match, is a linear matching function.

3 Adaptive Pattern Matching Automata

For a single linear pattern to match a given term it is necessary that every function symbol
of the pattern occurs at the same position in the given term.

20:3

FSCD 2020

20:4

Adaptive Non-Linear Pattern Matching Automata

» Proposition 2. Let £ and ¢’ be linear patterns. We have that £ < {' if and only if for all
positions p: if head({[p]) € F then head({[p]) = head({'[p]).

A naive matching algorithm for linear patterns follows directly from this proposition:
to find all matches for term ¢ one can check the proposition for every pattern separately.
However, for a set of patterns we can observe that whenever a specific position of the given
term is inspected a decision can be made for all patterns at the same time. This is the
purpose of so-called term indexing techniques [7]. Sekar et al. [8] describe the construction
of a so-called adaptive pattern matching automaton, abbreviated as APMA. Given a set of
linear patterns £ an APMA can be constructed that can be used to decide for every term
t € Ty, which patterns of £ are matches for ¢t. The advantage of using an APMA over the
naive approach is that for every input term, every position is inspected at most once.

We present the evaluation and construction procedures of APMASs slightly differently
compared to the presentation by Sekar et al. APMAs are state machines in which every
state is a matching state, which is labelled with a position, or final state, which is labelled
with a set of patterns. Matching states indicate that the term under evaluation is being
inspected at the labelled position. Final states indicate that a set of matching patterns is
found. The transitions are labelled by function symbols or an additional fresh symbol X ¢ F;
let Fy = Fw {X}.

» Definition 3. An APMA is a tuple (S, 6, L, sg) where:
S = Sy WS is a finite set of states consisting of a set of match states Sy and a set of
final states SF;
0: Sy xFxg — S is a partial transition function;
L = Ly W Lp is a state labelling function with Ly : Syy — P and Ly : Sp — 27>
So € Sy is the initial state.
We only consider APMAs that have a tree structure that is rooted in so. That is, § is an
injective partial mapping and there is no pair (s, f) with (s, f) = so.

Consider the patterns f(a,b,x), f(c,b,2) and f(c¢,b,¢) with a,b,¢c € Fy, f € F3 and
xz € V. Figure 1 shows an APMA that can be used to decide which of these patterns match.
In addition to the position label on every matching state, it also displays the term that
represents what has been matched so far. That is, in the state labelled with position 2, only
the function symbol f has been inspected. The term f(w1,ws,ws) represents that f has been
inspected and the variables at positions 1, 2 and 3 represent that these positions have not
been inspected. We refer to this term as a prefiz. Prefixes are not a part of the APMA; they
are included for comprehensiveness only. Later they will aid in the construction algorithm
and the correctness proof.

The function MATCH below defines the evaluation of an APMA on a term. Upon reaching
a final state s € Sp the evaluation yields the set of terms Lp(s). In a matching state
s € Sy the head symbol head(t[Las(s)]) is examined. If there is an outgoing transition
labelled with this head symbol then evaluation continues in the resulting state; otherwise the
X-transition is taken. Whenever there is no outgoing X-transition then there is no match
and the evaluation returns the empty set as a result.

Lr(s) if se Sp
MATCH(M, t,6(s, f)) ifseSuAd(s, f)#L
MatcH(M, t,6(s,XK)) if s € Sy Ad(s,W) # LAG(s, f)=1
0 ifseSynd(s,K)=4d(s,f)=1
where f = head(t[Ln(s)])

If we consider the APMA M of Figure 1 and let initial state sy be the topmost state in
the figure. We have MATCH(M, f(a,b,a), sq) = {f(a,b,z)} and MATCH(M, f(b,b,b), s0) = D.
The term f(c,b,b) will yield the pattern set {f(c,b,x)}.

Marcu(M, t,s) =

R. Erkens and M. Laveaux

[{f(a,b,2)} : f(a,b,R) | [{f(c,b,x), f(c;bc)}: flc,b,0)] [{f(c.b,2)} : f(c,b,X)]

Figure 1 An APMA constructed from the patterns given above.

In Algorithm 1 the APMA construction is defined. Intuitively CONSTRUCT creates the
APMA from root to leaf based on the pattern set £ and the selection function SELECT. For
convenience we also assume that all patterns in £ are position-annotated. In later sections
we drop this assumption in order to treat non-linear patterns. The algorithm is initially
called with the initial state sg, after which every recursive call corresponds to a state deeper
in the tree. The parameter SELECT is a function that determines in each recursive call which
position from work becomes the label for the current state. Based on the selected position,
the current state and the pattern set, outgoing transitions are created to fresh states where
the construction continues recursively.

The prefix associated with each state plays an important role during construction. The
function symbols in pref represent which function symbols have been matched so far and
the variables in pref represent which positions have not been inspected yet. Each recursive
call starts by removing all the patterns from £ that do not unify with pref. Any match for
the removed patterns cannot reach the state of the subautomaton that is currently being
constructed. Therefore, the removed patterns do not have to be considered for the remainder
of the construction. If there are no variables in pref then there is nothing to be inspected
anymore. This is the termination condition for the construction; the current state s will
be labelled with the patterns that unify with pref. Otherwise, the work that still has to be
done, i.e., the set of positions that still have to be inspected, is the fringe of pref, denoted
by F(pref). If pref has the symbol X at position p then none of the patterns in £ that have a
non-variable subterm at position p can unify with the prefix any more.

3.1 Proof of Correctness

We prove that this construction yields an APMA that is suitable to solve the matching problem
for non-empty finite sets of linear patterns. We make use of the following auxilliary definitions.
A path to s, is a sequence of state and function symbol pairs (sg, fo),- .-, (Sn—1, fn-1) €
Sy X Fg such that §(s;, f;) = si+1 for all ¢ < n. Because ¢ is required to be an injective
partial mapping there is a unique path to s for every state s, which we denote by path(s).
A matching state s is top-down iff L(s) = e or there is a pair (s;, f;) in path(s) with
L(s;).j = L(s) for some 1 < j < ar(f;). State s is canonical iff there are no two states in
path(s) that are labelled with the same position. Finally we say that an APMA is well-formed
iff all matching states are top-down and canonical.

Well-formed APMAs allow us to inductively reconstruct the prefix of a state s as it was cre-
ated in the construction algorithm. We allow slight overloading of the notation and denote the
prefix of state s by pref(s). It is constructed inductively for well-formed APMAs by pref(sg) =

20:5

FSCD 2020

20:6

Adaptive Non-Linear Pattern Matching Automata

Algorithm 1 Given a finite set of patterns £, this algorithm constructs an APMA for L. Initially,
it is called with M = (0,0, 0, so), the initial state s = so and the prefix pref = w,.

1: procedure CONSTRUCT(L, SELECT, M, s, pref)
2 L' = {€ € L | ¢ unifies with pref}

3 work := F(pref)

4 if work = () then

5: M := M[SF :=(SpU{s}),Lr := LF[SH,C/H

6: else

7 pos := SELECT(work)

8 M = M[SM = (SMU{S})7LM = LM[8>—>pOSH
9 F:={f€F|3teL :head({[pos]) = f}

10: for f € F' do

11: M := M5 := 5[(s, f) — s']] where s’ is a fresh unbranded state w.r.t. M
12: M := CONSTRUCT(L, SELECT, M, s, pref[pos := f(wpos.1, - - -, Wpos.ar(f))])
13: if 3¢ € £’ : 3pos’ C pos : head(¢[pos’]) € V then

14: M := M5 := §[(s,X) — s']] where s’ is a fresh unbranded state w.r.t. M
15: M := ConsTRUCT (L, SELECT, M, s', pref[pos := X])

16: return M

we and if 6(sq, f) = si11 then pref(s;y1) = pref(s;)[L(si)/f(WL(s;)15- - > WL(si).ar(f))]- Simil-
arly, we denote the patterns of state s for all states by £(s) = {£ € £ | £ unifies with pref(s)}.
Lastly we use an arbitrary function SELECT : 2F — P such that for all sets of positions work
we have SELECT(work) € work.

» Lemma 4. For all finite, non-empty sets of patterns L we have that the procedure
CoNSTRUCT(L, SELECT, (0, 0,0, s0), S0, we) terminates and yields a well-formed APMA M =
(S, (5,L,So).

For the remainder of the correctness proof assume an arbitrary finite, non-empty set of
position annotated patterns £ and let M = (S, 4, L, s9) be the APMA for £ that results from
CoNSTRUCT(L, SELECT, (0, 0,0, s0), S0, we). Furthermore, let ¢ be an arbitrary term and let
L:={leLl]|t<t}

The following lemmas state some claims and invariants about CONSTRUCT and its relation
to MATCH. The proofs are rather tedious and are attached in the appendix.

» Lemma 5. For every every final state s: (a) the set L(s) is non-empty, (b) pref(s) is a
ground term, and (c) for all £ € L(s) we have £ < pref(s). Moreover (d) for every pattern
L € L there is at least one final state s with £ € L(s).

» Lemma 6. For all states s such that MATCH(M,t,sq) = MATCH(M,t,s) it holds that

» Lemma 7. It holds that:
a) If L; = 0 then MAaTcH(M,t, so) = 0);
b) If L # 0 then MATCH(M,t,so) = MATCH(M,t,s¢) for some final state sy.

» Lemma 8. If MATCH(M, t,s0) = MATCH(M,t,s¢) for some final state sy then L(sf) = L.
» Theorem 9. Then \t. MATCH(M,t,so) is a linear matching function for pattern set L.

Proof. Let ¢ be an arbitrary term and let £; = {¢ € L | ¢ < t}. If L; = () then by Lemma 7
we get that MATCH(M, t,s0) = 0 = L; as required. If £; is non-empty then by Lemma 7 we
have that MATCH(M, t, sg) = MATCH(M, ¢, sy) for some final state s;. Then by definition
of MATCH we get MATCH(M, t,s7) = L(sy). From Lemma 8 it follows that L(s;) = L,
by which we can conclude MATCH(M,t,s9) = L;. Hence \t. MATCH(M, t,sq) is a linear
matching function for L. <

R. Erkens and M. Laveaux

4 Consistency Checking

As mentioned in other literature [4, 7, 8] a linear matching algorithm can be used to solve the
non-linear matching problem by transforming the patterns and checking so-called variable
consistency after the matching phase. This is required because a variable which occurs at
multiple positions can only be assigned a single value in the matching substitution. First, a
transformation step ensures that all input terms are changed into linear patterns by renaming
different occurrences of the variables in the non-linear patterns. The linear matching algorithm
can then be used to solve part of the non-linear matching problem. Finally, a consistency
check is performed to remove the linear patterns for which the substitution that witnesses
the match is not valid for the original patterns. We first focus on efficiently deciding this
variable consistency step.

4.1 Pattern Renaming

A straightforward way to achieve the renaming would be to introduce new variables for
each position in the fringe of each pattern. However, for patterns f(z,a) and f(z',y’) the
variables z and 2’ could be identical such that the assignment for x (or equally ') yields a
substitution for both patterns. We can use position annotated variables, which are identical
for the same position in different patterns, to obtain these overlapping assignments.

For the consistency check it is necessary to keep track of equality constraints that are
forgotten when a non-linear pattern is renamed. For this purpose we introduce consistency
classes [7]. This is a set of positions with the following notion.

» Definition 10. Given a term t and a consistency class C C P we say that t is consistent
w.r.t. C if and only if t[p] = t[q] for all p,q € C.

A pattern can give rise to multiple consistency classes. For instance, consider the pattern
flz,z,y,y,y, z). Based on the occurrences of variables x,y and z we derive the three classes
{1,2}, {3,4,5} and {6}. This means that for the input term ¢ = f(¢1,...,ts) that both
t[1] = t[2] and ¢[3] = t[4] = ¢[5] must hold; and finally ¢[i] = ¢[7] holds trivially for all
1 <@ <6, for this term to be consistent w.r.t. these classes. A set of consistency classes is
referred to as a consistency partition. The notion of term consistency w.r.t. a consistency
class is extended as follows. A term ¢ is consistent w.r.t. a consistency partition P iff ¢ is
consistent w.r.t. C for every C € P.

First, we illustrate the renaming procedure by means of an example. For the purpose of
renaming, partitions of the fringe of a pattern are sufficient. Consider three patterns f(x, z, 2),
flz,y,x) and f(x,z,z). After renaming we obtain the following pairs of a linear pattern
and the corresponding consistency partition: (f(wi,ws,ws), P1), (f(w1,ws,ws), P2) and
(f(w1,wa,ws), Ps); with the consistency partitions Py = {{1,2},{3}}, P» = {{1,3},{2}} and
P; ={{1,2,3}}. The term f(a,a,b) matches f(w1,ws,ws) as witnessed by the substitution
idlwi — a,ws > a,ws — b], but f(a,a,b) is only consistent w.r.t. partition P;. Therefore,
the given term only matches pattern f(z,z, 2).

We define a rename function that yields a position annotated term and a consistency
partition over F(t) for any given term.

» Definition 11. The term rename function rename: Ty, — (Tx, X ZQP) is defined as

rename(t) = (rename; (t,€), {{p € P | t[p] = x} | = € vars(t)})

20:7

FSCD 2020

20:8

Adaptive Non-Linear Pattern Matching Automata

where rename; (t,€) : (Ty x P) — Tx, renames the variables of the given term to position
variables, which is defined below.

rename; (x,p) = w, ifreV

renamey (f(t1,...,tn),p) = f(rename; (t1,p.1),..., rename, (t,,p.n))

Note that for linear patterns the result is a position annotated term with trivial consistency
classes. We show a number of characteristic properties of the rename function which are
essential for the non-linear matching algorithm.

» Lemma 12. For all terms t € Ty, if (t', P) = rename(t) then:
t =, t';
for all p € F(t): t'[p] = wp;
for all u € Ty, it holds that u matches t if and only if u matches t' and u is consistent
w.r.t. P.

For the variable consistency phase a straightforward implementation follows directly
from Definition 10. Let P = {C4,...,Cy,} be a partition. For each consistency class C;, for
1 <4 < n, there are |C;| — 1 comparisons to perform, after which the consistency of a term
w.r.t. C; is determined. This can be extended to partitions by performing such a check for
every consistency class in the given partition. We use the function 1S-CONSISTENT (%, P) to
denote this naive algorithm. For a set of partitions {P,..., P,,} the (naive) consistency
check requires exactly } ., > cep, |C| comparisons if ¢ is consistent w.r.t. P.

For the renaming procedure we must consider that the patterns f(z,x) and f(x,y) are
both renamed to the linear pattern f(wi,ws). However, then it is no longer possible to
identify the corresponding original pattern. This can be solved by considering an indexed
family of patterns, indexed by elements from Z, and adapting the rename function to preserve
the corresponding indices. Now, when given an indexed linear pattern that resulted from
renaming we can identify the corresponding original pattern by its index. The following
lemma follows directly from the third property of Lemma 12.

» Lemma 13. Let L C Ty, x T be a set of patterns and let L, C Ty, X 22" % T be the set of
linear patterns and corresponding consistency partitions resulting from renaming; i.e., L, =
{rename(l) | | € L}. Let match-linear: Ts, x 2= x T — 2T= x T be a linear matching function
that preserves indices. For any term t € L we define match : (Tx, x (Tyx, X 22" x 7)) = Ty
as:

match(t, L) ={¢|i: ¢ € L'"Ni:({,P) € L, NIS-CONSISTENT(t, P)}

where L' is equal to match-linear(t,{i : ¢' | i : (¢!, P) € L,}). The function match is a
matching function.

4.2 Consistency Automata

In this section, we are only going to focus on solving the consistency checking efficiently
and later on we show that the matching time can be further improved by interleaving the
choices. Consider the consistency partitions P, = {{1,2},{3}}, P» = {{1,3},{2}} and
P; = {{1,2,3}} again. We would expect that similarly to an APMA we can use the fact that
comparisons of overlapping partitions can be used to determine the subset of all consistent
partitions directly. This means that, at most three comparisons t[1] = t[2], ¢[2] = ¢[3] and
t[1] = t[3] would have to be performed to determine the consistent partitions. For this reason,

R. Erkens and M. Laveaux

Figure 2 The CA for the partitions Py = {{1, 3}, {2}}, P> = {{1,2},{3}} and P3 = {{1,2,3}}
where positions 1 and 2 are compared first, followed by 1 and 3 and finally 2 and 3. The grey states
are redundant and can be removed as shown in later steps.

we define consistency automata which are constructed from a set of consistency partitions.
Each state of this automaton is labelled with a pair of positions that should be compared.

Similar labelling is also present in other matching algorithms [10], but not presented as a
separate automaton. Afterwards, we show that redundant comparisons can be removed such
that this example requires at most two comparisons.

A consistency automaton, abbreviated CA, is a state machine where every state is a
consistency state, which is labelled with a pair of positions, or a final state, which is labelled
with set of partitions. The transitions are labelled with either v or X to indicate that the
compared positions are equal or unequal respectively. The evaluation of a CA determines
the consistency of a term w.r.t. a given set of partitions.

» Definition 14. A consistency automaton is a tuple (S, 0, L, sg) where:

S = Sc W SE is a set of states consisting of a set of consistency states Sc and a set of
final states Sg;

d:(Sc x{v,X}) = S is a transition function;
L = Lc W Ly is a state labelling function with Lo : S¢ — P2 and Ly : Sp — 2%;

so € S is the initial state.

We show an example to illustrate the intuition behind the evaluation function of a CA.
Consider the consistency partitions Py = {{1,2},{3}}, P» = {{1,3},{2}} and P5s = {{1,2,3}}
again. Figure 2 shows a CA that can be used to decide the consistency of a given term ¢
w.r.t. any of these partitions. If the consider the state labelled with {1,2} the subterms ¢[1]
and t[2] are compared. Whenever these are equal the evaluation continues with the v-branch
and it continues with the X-branch otherwise. If a final state (labelled with partitions) is
reached then t is consistent w.r.t. these partitions by construction.

The evaluation function of a CA for the input term and a given state, starting with the
initial state, is defined below. First, it checks whether the current state is final, in which case
the label L(s) indicates the set of indices such that ¢ is consistent w.r.t. the partitions P; for
i € L(s). Otherwise, evaluation proceeds by considering the pair of positions given by Sc(s).
The positions given by Sc(s) are unordered pairs of positions (or 2-sets), denoted by P2, with
elements {p, ¢} such that p # ¢g. These unordered pairs avoid unnecessary comparisons by
the reflexivity and symmetry of term equality. If the comparison yields true the evaluation
proceeds with the state of the outgoing v'-transition; otherwise it proceeds with the state of
the outgoing X-transition.

20:9

FSCD 2020

20:10

Adaptive Non-Linear Pattern Matching Automata

Lr(s) if s e Sp
EVAL-CA(M, t, s) = ¢ EVAL-CA(M, t,6(s,v)) if s € Sc Atlp] = t[q] where {p,q} = Lc(s)
EVAL-CA(M, t,6(s,X)) if s € Sc At[p] # tlg] where {p,q} = Lc(s)

The construction procedure of a CA is defined in Algorithm 2. Its parameters are the
automaton M that has been constructed so far, the set of partitions P and the current state
s. Additionally, parameter E contains the pairs of positions where the subterms are known
to be equal, and similarly N is the set of pairs that are known to be different. Lastly, a
selection function SELECT is used to define the strategy for choosing the next positions to
compare.

The partitions in P for which a pair {p,q} of positions is known to be different are
removed as these can not be consistent. The remaining partitions form the set P’. To denote
the remaining work concisely we introduce the notation Ce for the composition of C and
€; formally A Ce B iff 3C € B: A C C. Each pair of F that has already been compared
is removed from work. The condition on line 4 checks whether there are no choices left to
be made. If this is the case then all partitions in P’ are consistent by construction and the
labelling function is set to yield the partitions P’.

Otherwise, a pair {p, ¢} of positions in work is chosen by the SELECT function and two
outgoing transitions are created. A v/-transition is created that is taken during evaluation
whenever the subterms at positions p and ¢ are equal and this information is recorded in E.
Otherwise, the fact that these are not equal is recorded in N and a corresponding X-transition
is created.

Algorithm 2 Given a set of partitions P = {P,..., P,} then CONSTRUCT-CA(P, SELECT) com-
putes a CA using CONSTRUCT-CA(P, SELECT, (0, 0, 0, s0), s0, @, #) that can be used to evaluate the
consistent partitions using EVAL-CA.

1: procedure CONSTRUCT-CA(P, SELECT, M, s, E, N)

2: P :={P,eP|-3C <P :3Hp,qt€N:pqeC}

3 work:={{p.q} €P*|{p,q} CE AP, € P'}\E

4: if work = () then

5: M = M[SF = (SFU{S}),LF = LF[SHP/”

6: else

7 {p, q} := SELECT(work)

8 M := M[Sc := (Sc U{s}), Lc := Lels — {p, ¢}]]

9 M := coNsTRUCT-CA(P, SELECT, M[§ := §[(s,V) — ']}, ', EU {{p, q}}, N) where s’ is a

fresh unbranded state w.r.t. M.

10: M := CONSTRUCT-CA(P, SELECT, M[§ := &[(s,X) — s']], s, E, N U {{p,q}}) where s’ is a
fresh unbranded state w.r.t. M.

11: return M

The consistency automata obtained from this construction are not optimal, but later on
we show how some redundancies can be removed.

4.3 Proof of Correctness

We show the correctness of the construction and evaluation of a CA as defined in Theorem 17.
In the following statements let P = {Py,..., P,} be a set of partitions where each partition
is a finite set of finite consistency classes and let SELECT : 2P 5 P2 be any selection function
such that SELECT(work) € work for all non-empty work C 2F° . For the termination of the
construction procedure we can show that the number of choices in work strictly decreases at
each recursive call. Again, the complete proofs are present in the appendix.

R. Erkens and M. Laveaux

» Lemma 15. The procedure CONSTRUCT-CA(P, SELECT) terminates.

For the construction procedure we can show that for parameter s it holds that s ¢ S
as a precondition. Therefore, we can use work(s) : S — 2P E(s) : S — 2P° and N(s) :
S — 2P° to denote the values of work, F and N respectively during the recursive call of
CONSTRUCT-CA(P, SELECT, M, s, E, N). For the termination of the evaluation procedure we
can show that work(s) strictly decreases for the visited states s.

For the proof of partial correctness we show a relation between the pairs in E(s) and
N(s) and the comparisons performed in the evaluation function. First, we define for a term
t € Ty and parameters £, N C 2F° the notion of consistency where t is consistent w.r.t. F
and N, denoted by (E, N) = t, iff:

V{p,q} € E : t[p] = t[g], and

V{p,q} € N : t[p] # t[q]

A consistency automaton M = (5,9, L, sg) is well-formed iff for all terms ¢ € Ty, and all
recursive calls EVAL-CA(M, t, sg) = EVAL-CA(M, 1, s,) it holds that that (E(s,), N(sn)) E t.

» Lemma 16. Let M = (5,6, L, sg) be the result of CONSTRUCT-CA(P, SELECT). Then M
1s well-formed.

Finally, we can show the correctness of using consistency automata to evaluate the
consistency of a given term w.r.t. partitions in P.

» Theorem 17. Let M = (S, 4, L, so) be the result of CONSTRUCT-CA(P, SELECT) then
for all terms t € Tx, we have P’ = EVAL-CA(M, sq,t) for some P’ C 22" and
for all P; € P it holds that P; € P’ iff the term t is consistent w.r.t. P;.

Proof. We have already shown termination of the construction procedure in Lemma 15. Let

P’ be the set of partitions returned by EVAL-CA(M,t, sg), let P; € P be any partition and

EVAL-CA(M,t,s9) = EVAL-CA(M, t, s,,) for some final state s,, € Sp. By Lemma 16 it holds

for all {p,q} € E(s,) that t[p] = ¢[q] and for all {p,q} € N(s,) that ¢[p] # t[q].

=) Assume that P; € P’. For all p, ¢ such that {p, ¢} C€ P; it holds that {p, ¢} € E(sy)
as work(s,,) is equal to @) for s, to become a final state in the construction. Therefore, for
all p, ¢ € C for consistency class C' € P; it holds that ¢[p] = t[¢] and as such ¢ is consistent
w.r.t. Pj.

<=) Assume that term ¢ is consistent w.r.t. P;. Proof by contradiction, assume that
P; ¢ P'. As such, there is a position pair {p, ¢} C€ P; such that {p, ¢} € N(s,). However,

then it follows that ¢[p] # t[g], from which we conclude that ¢ can not be consistent w.r.t.

Pj. <

4.4 Efficiency

Given a CA M and a term ¢t we define the evaluation depth, denoted by ED(M,t), as the
number of recursive EVAL-CA calls made to reach the final state. The size, denoted by |M]|, is
given by the number of states of M. The number of transitions is omitted as each non-final
state has exactly two outgoing transitions. We define a notion of relative efficiency that
compares the evaluation depth of two automata for all input terms.

» Definition 18. Given two consistency automata M = (S,6, L, so) and M’ = (5,6, L', s()
for a set of consistency partition P. We say that M =< M’ iff for all terms t € Ty it holds
that ED(M,t) < ED(M’,t).

20:11

FSCD 2020

20:12

Adaptive Non-Linear Pattern Matching Automata

Figure 3 Two CA for the partitions P, = {{1,2},{3,4}} and P> = {{1,2,3}}. The CA on the
left chooses {2, 3} first. However, as shown on the right selecting {1, 2} first removes both partitions,
and leads to a smaller CA.

We present two ways to improve the (time and space) efficiency of consistency automata.
First of all, the selection function used for construction influences the relative efficiency and
size of the resulting CA as shown in Figure 3.

Changing the selection function does not necessarily result in the most efficient (equivalent)
CA. If we consider Figure 2 again, we can observe that the resulting automaton is not optimal,
despite being the smallest w.r.t. the selection function, because some of the (final) states are
not reached during evaluation of any given term. For example, the final state labelled with
{Py, P,} is not reachable, because any term t € Ty, that satisfies t[1] = ¢[2] and ¢[1] = ¢[3]
can not have that ¢[2] # ¢[3] by the transitivity of term equality. Removing the redundant
states reduces the number of states and yields a relatively more efficient CA.

Given a CA M = (5,6, L, sp) and a non-final state s € S¢ we give the following conditions
for its redundancy. Namely, whenever for all terms ¢ € Ty, that satisfy (E(s), N(s)) =t it
holds that t[p] = ¢[q], for {p,q} := Lc(s), s is said to be v-redundant. Similarly, whenever
we can show that all consistent terms satisfy ¢[p] # t[g] then s is X-redundant. Redundant
states can be removed from the automata without affecting the correctness of its evaluation
in the following way.

A state s that is v-redundant can be removed by updating ¢ such that the incoming
transition d(r,a) = s, for some r € S and a € {V,X}, is updated to d(s,v’). A similar
transformation of ¢ can be applied for states that are X-redundant using (s, X). We can
observe that such a removal results in a relatively more efficient CA and that the size of the
CA is reduced by the number of states in the v-branch (or X-branch) respectively if states
unreachable by the transition relation are removed. Next, we prove that removal does not
influence the correctness of evaluation.

» Lemma 19. Let M = (5,0, L, sg) be any CA that is well-formed. Then the resulting CA
M’ where a v/ -redundant or X-redundant state v € S is removed remains well-formed.

Using Lemma 19 and the fact that removing redundant states does not change the
labelling of any state we have shown that EVAL-CA(M, sg,t) = EVAL-CA(M’, so, t) for all ¢.

If we consider Figure 2 again it follows from transitivity that the left indicated state is
v-redundant and the right indicated state X-redundant. If the indicated states are removed
then all states of the resulting CA are reachable, which could be argued for as a form of
local optimum. For transitivity it is relatively straightforward to construct a procedure to
identify and remove these states. However, it would be more interesting to devise a method
that determines all redundant states. Additional redundancies follow from the ordering of
positions. For example, a term can never be equal to any of its subterms. Defining this
complete procedure is left as future work.

R. Erkens and M. Laveaux

4.5 Worst-case Complexity

We establish several upper and lower bounds on the space and time complexity for consistency
automata. The mazimum evaluation depth, given by maxier, (ED(M,t)), is the measurement
for time complexity, where only the number of comparisons is counted. Finally, we only
consider the time-optimal automaton M for the complexity analysis, which is the CA where
the maximal evaluation depth is minimal from all possible selection functions.

For the time complexity of consistency automata we can show that each pair of positions is
compared at most once. Let n be the number of unique position pairs in the given partitions,
where each pair of positions is counted at most once. It can be shown that the worst-case
time complexity of the consistency automata evaluation is tightly bounded by O(n) and its
corresponding size is O(2") . This follows essentially from the size of work for the first call
to the construction procedure, which reduces in each recursive call. The given bounds are
also tight as we can construct an example where the maximum evaluation depth requires
exactly n comparisons.

5 Adaptive Non-linear Pattern Matching Automata

We have shown in Lemma 13 that a naive matching algorithm for non-linear patterns can be
obtained by using a linear matching function followed by a consistency check. In that case

we have to check the consistency of all partitions returned by the linear matching function.

However, as shown in the following example overlapping patterns can unify with the same
prefix, but no term can match both patterns at the same time.

Consider the patterns: ¢ : f(z,x) and 45 : f(a,b). After renaming we obtain the following
pairs (f(w1,ws),{{1,2}}) and (f(a,b)),{0}). Now, the resulting APMA has a final state
labelled with both patterns as shown in Figure 4a. We can observe that the consistency
check of positions one and two always yields false whenever the evaluation of a term ends up
in the final state labelled with {1, ¢2}, because terms a and b are not equal. Therefore, this
comparison would be unnecessary.

€ We

f
1: fwi,w2)
; X
a

[2: fla,w2)] [{l1}]
X

b % X

({6, 62}] ({1}] ({6, 6}] ({2}]

(a) (b)

Figure 4 The resulting APMA shown on the left and the corresponding ANPMA with a grey
X-redundant state on the right.

We could also consider an alternative where the consistency phase is performed first, but
then we have the problem that whenever the given term is consistent w.r.t. partition {1,2}
that matching on f(a,b) is avoided. To enable these kind of efficiency improvements, we

20:13

FSCD 2020

20:14

Adaptive Non-Linear Pattern Matching Automata

propose a combination of APMAs and CAs to obtain a matching automaton for non-linear
patterns called adaptive non-linear pattern matching automata, abbreviated as ANPMAs.
The result is an automaton that has three kinds of states; matching states of APMAs,
consistency states of CAs and final states, and two transition functions; one for matching
states and one for consistency states.

» Definition 20. An adaptive non-linear pattern matching automaton (ANPMA) is a tuple
(S, (5, L7 S()) with
S =Sy WScWSE is a set of states where Sy is a set of matching states, Sc is a set of
consistency states and Sp is a set of final states;

d = dpWic is a partial transition function with 6 : SpyyxF — S and d¢ : Sex{/, X} = S;

L=LyWLcWLp is a state labelling function with Ly : Sy — P, Lo - So — P2 and
Lp: SF — QT,'

So € Sy is the initial state.

We only consider ANPMASs that have a tree structure rooted in sg. Given an ANPMA
M = (S,6,L,so) and a term t the procedure MATCH(M, sg,t) below defines the evaluation
of the ANPMA. Tt is essentially the combination of the evaluation functions for the APMA
and CA depending on the current state.

L[\/[(S) if se Sg

MATCHANPMA (M, t,8p(s, f)) if s € Sar A (s, f) # L
MATCHANPMA (M, t, 55 (5,K)) if s € Sar Ad(s,8) # L AS(s, f) = L
0 ifse Sy nd(s,K)=4d(s,f)=1
MATCHANPMA (M, t,6c(s,v)) if s € Sc At[p] = t[q]
MATCHANPMA (M, t,5¢(s,X)) if s € Sc: A t[p] # t[g]

MaTcHANPMA (M, t,s) =

where f = head(t[Ln(s)]) and {p,q} = Lc(s)

The construction algorithm of the ANPMA is defined in Algorithm 3. It combines the
construction algorithm of APMAs (Algorithm 1) and the construction algorithm for CAs
(Algorithm 2). The parameters that remain the same value during the recursion are the
original set £, the result of renaming £, and the selection function SELECT. Next, we have
the ANPMA M, a state s and finally the current prefix pref similar to the APMA construction
and the sets of position pairs £ and N as in the consistency automata construction.

First we remove the terms that do not have to be considered anymore. These are the
elements 7 : (¢, P) from £, such that P is inconsistent due to the pairs in NV and pref does not
unify with ¢. Obtaining work for both types of choices is almost the same as before. However,
for workC we have added the condition that the positions must be defined in the prefix to
ensure that these positions are indeed defined when evaluating a term. The termination
condition is that both workF and workC are empty, or that the set of patterns £/ has become
empty. The latter can happen when the inconsistency of two positions removes a pattern,
which could still have other positions to be matched.

The function SELECT is a function that chooses a position from workF or a pair of
positions from workC. Its result determines the kind of state that s becomes and as such
also the outgoing transitions. If a position is selected then s will become a matching state
and the construction continues as in Algorithm 1. Otherwise, similar to Algorithm 2 two
fresh states and two outgoing transition labelled with v and X are created, after which the
parameters E and N are updated.

R. Erkens and M. Laveaux

Algorithm 3 Given a set of patterns £ and a renamed set of patterns £, this algorithm computes
an ANPMA for £. Initially it is called with M = (0,0,0, so), the initial state s = so, the prefix
pref = w., and E = N = (.

1: procedure CONSTRUCTANPMA(L, L., SELECT, M, s, pref, E, N)

2: L, :={i: (¢, P) € Ly | £ unifies with pref/\—ECGP El{p gt € N:p,qeC}

3 workF := F(pref)

4 workC := {{p,q} € P? | {p,q} CE PiA(i: £,i: P;) € L} A pref[p] and pref[q] are defined} \ E

5: if (workF = @ and workC = () or (£, = 0) then

6: M :=M[Sp:=SpU{s},L:=L[s— {i:LcL]i:l €L'}]

T else

8 next := SELECT(workF, workC)

9: if next = pos for some position pos then

10: M := M[Sn = (Sm U {s}), Ly := Lag[s — pos]]

11: F:={f€eF|3(i: (L P)) € L, :head({[pos]) = f}

12: for f € F' do

13: M := M5 := §[(s, f) — §']] where s’ is a fresh unbranded state w.r.t. M

14: M := CONSTRUCTANPMA (L, L, SELECT, M, s', pref[pos/ f (wpos.1,- - - spos.ar(£))]s By N)
15: if 3(i: (¢, P)) € L. : Ipos’ < pos : head(¢[pos’]) € V then

16: M := M6 := §[(s,X) + s']] where s is a fresh unbranded state w.r.t. M

17: M := CoNSTRUCTANPMA (L, L., SELECT, M, s, pref[pos/X], E, N)

18: else if next = {p, q} for some pair {p, ¢} € P? then

19: M := M[Sc := (Sc U{s}), Lc := Lc[s — {p,q}]]
20: M := CoONSTRUCTANPMA(L, £, SELECT, M[6c = 6cl(s,v/) + §']],s',pref, E U

{{r.a}}, N)
where s’ is an unbranded state w.r.t. M.
21: M := CONSTRUCTANPMA(L, L, SELECT, M[6c := dc[(s,X) — s']],s,pref, E,N U
Hp.a}}h)

where s’ is an unbranded state w.r.t. M.
22: return M

5.1 Correctness

The ANPMA construction algorithm yields an ANPMA that is suitable to solve the matching
problem for non-empty finite sets of (non-linear) patterns. This can be shown by combining
the efforts of Theorem 9 and Theorem 17 and the proofs can be found in the appendix.

Let £ be a finite non-empty indexed family of (non-linear) patterns and let (£, P) =
rename(£). Suppose that SELECT : 2F x 2% _ PwP? is any function such that for all
sets of positions workF and position pairs workC we have that SELECT(workF,workC) €
workF & workC.

We extend the auxiliary definitions for APMA as follows. A path to s, is a sequence with
both types of labels (sg, ag), ..., (Sn—1,an-1) € S X (Frg W {v, X}) such that §(s;,a;) = i1
for all ¢ < n. A position p is called wvisible for state s iff there is a pair (s;,a;) in path(s)
such that L(s;).i = p for some 1 <1 < ar(f;) or L(s) = e. A state s is top-down iff s € Sy,
and Ljs(s) is visible or s € S¢ and both positions in L (s) are visible. State s is canonical

iff there are no two matching states in path(s) that are labelled with the same position.

Finally we say that an ANPMA is well-formed iff L(sg) = ¢, and all states are top-down and
canonical.

» Lemma 21. The procedure CONSTRUCTANPMA(L,, P, SELECT, (0,0, 0, s0), S0, we, 0, 0)
terminates and yields a well-formed ANPMA.

Let M = (S,0, L, sp) be the ANPMA resulting from CONSTRUCTANPMA (£, SELECT). Let
t € Ty, be a term and £ be equal to {i : £ € L | £ < t}. For every state s € S we define £(s)
tobeequal to{i: L€ L |i: (¢, P) e Ll (s;)}. We show that the evaluation algorithm on M
satisfies a number of invariants.

» Lemma 22. Foralls € S such that MATCHANPMA(M,t,sq) = MATCHANPMA(M,t, s)
it holds that: (a) (E(s;),N(s:)) Et, (b) L+ T L(s) and (c) if s € Sp then L(sy) = L.

20:15

FSCD 2020

20:16

Adaptive Non-Linear Pattern Matching Automata

» Lemma 23. If £, = 0 then MATCHANPMA(M,t,s0) = 0.
» Theorem 24. Then A\t. MATCHANPMA (M, t,sqg) is a matching function for L.

Proof. If £; is empty then by Lemma 23 we get that MATCHANPMA (M, ¢, 50) = = L as
required. Otherwise, we have that MATCHANPMA (M, t, sg) = MATCHANPMA (M, t, s¢)
for some final state s;. Then by the definition of MATCHANPMA and Lemma 22 we
conclude MATCHANPMA (M, t, sg) = MATCHANPMA (M, t,s;) = L(sy) = Ly. <

5.2 Strategy

The notion of v-redundancy (and X-redundancy) that we defined for CA can be easily
extended to ANPMA. However, we can even identify more redundant states by considering
the prefix for a given state s. Namely, for a state s labelled with a pair of positions {p, ¢},
given by L¢(s), we can observe that s is X-redundant whenever pref[p] does not unify with
pref[g], because if they do not unify then they can not be equal. Consider the patterns
4y f(x,x) and £s : f(a,b) again, we show the resulting ANPMA in Figure 4b.

6 Conclusion and Future Work

In this paper, we presented a formal proof for the correctness of APMAs. Furthermore, we
introduced CAs as a deterministic automaton to perform the consistency checking, from
which some redundant states could be removed by taking the previous choices into account.
These two automata are then combined to obtain an ANPMA which could be evaluated by
only performing comparisons and taking the corresponding outgoing edge.

ANPMASs offer a formal platform to study the relations between linear pattern matching
and consistency checking. There are still some questions that have arisen from this work. As
mentioned in the previous section, the current ANPMA construction algorithm can contain
redundant states. For the moment it is still unclear how to detect which states are redundant.
An interesting direction for future research is to optimise the ANPMA construction algorithm
that creates an optimal ANPMA on the fly.

Secondly we did not study selection functions in this work. All three automaton construc-
tion algorithms in this paper are parametrised in a selection function that decides for each
node what will happen next. We have shown that all constructions yield correct automata
for any selection function, with the side note that the selection indeed yields an element
from its input set. The size of all three kinds of automata depends heavily on the selection
function that is used. For APMAs some selection functions have already been studied in [8].

Thirdly it would be interesting to implement this approach. This work is a theoretical
approach to ultimately obtain micro-optimisations in for example term rewriting. Many
formalisms do not support non-linear patterns and as discussed in the introduction, many
solutions to the pattern matching problem do not support it. It would be interesting to find
out in practise whether exploiting O(1) term equality checking is worth the extra overhead
that the ANPMA approach carries with it.

—— References

1 L. Cardelli. Compiling a functional language. In LISP and Functional Programming, pages
208-217. ACM, 1984.

2 J. Christian. Flatterms, discrimination nets, and fast term rewriting. Journal of Automated
Reasoning, 10(1):95-113, 1993. doi:10.1007/BF00881866.

3 Fabrice Le Fessant and Luc Maranget. Optimizing pattern matching. In ICFP, pages 26-37.
ACM, 2001.

https://doi.org/10.1007/BF00881866

R. Erkens and M. Laveaux

4 Albert Graf. Left-to-right tree pattern matching. In RTA, volume 488 of LNCS, pages 323-334.
Springer, 1991.

5 P. Graf. Substitution tree indexing. In J. Hsiang, editor, Rewriting Techniques and Applications,
pages 117-131, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

6 W. McCune. Experiments with discrimination-tree indexing and path indexing for term
retrieval. Journal of Automated Reasoning, 9(2):147-167, October 1992. doi:10.1007/
BF00245458.

7 R. Sekar, I.V. Ramakrishnan, and A. Voronkov. Chapter 26 - term indexing. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, Handbook of Automated Reas-
oning, pages 1853-1964. North-Holland, Amsterdam, 2001. doi:10.1016/B978-044450813-3/
50028-X.

8 R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptive pattern matching. SIAM Journal
of Computing, 24(6):1207-1234, 1995. doi:10.1137/S0097539793246252.

9 M. van Weerdenburg. An account of implementing applicative term rewriting. Electronic
Notes in Theoretical Computer Science, 174(10):139-155, 2007.

10 A. Voronkov. The anatomy of vampire implementing bottom-up procedures with code trees.
Journal of Automated Reasoning, 15(2):237-265, 1995.

A Proof of Lemma 4

Proof. The set L is finite, so all non recursive statements terminate. The for loop in
particular treats finitely many function symbols from F'. Finally, we show that the prefixes
of the recursive calls are ordered by the matching ordering <. The algorithm CONSTRUCT
realises that the prefix is only defined for defined positions of patterns in £. Hence this
ordering is well-founded on the recursive calls and the construction terminates.

Upon termination the result M is indeed an APMA. For every function symbol in F'
exactly one transition is created and at most one X-transition is created, so § is a partial
mapping. Since the target states of these transitions are fresh we have that ¢ is injective.
Moreover there is no transition to sp since the algorithm is initially called with sq. Hence M
is an APMA.

We check that M is well-formed. By construction we have L(sg) = € since the construction
procedure is called with the prefix w.. Let s be an arbitrary non-final state and consider
the stage of the construction algorithm CONSTRUCT(L, SELECT, M, s, pref). A position label
p.i is only chosen if it occurs in the fringe of pref. Therefore there must have been a state
labelled with p where the variable w, ; was put in the prefix, so s must be top-down. Lastly s
is canonical because once a position p is chosen, it cannot be chosen again since the variable
wp is replaced by an element of Fg in the prefix. Hence M meets all requirements for
well-formedness. |

B Proof of Lemma 5

Proof. First observe that £(s) is non-empty for all states s. Let s be a final state.

a) Since L(s) = £L(s) and £L(s) is non-empty the claim holds.

b) The prefix pref(s) is ground for final states s because the construction only creates final
states if pref(s) has no variables.

c) By construction we have L(s) = {£ € £ | £ unifies with pref(s)}. Since pref(s) is ground
we have that for all £ € L(s) that ¢ < pref(s).

d) Let £ € L. The following invariant holds for the construction algorithm: for all matching
states s’, if £ € L(s") then there is a pair (s”, f) such that §(s’, f) = s and £ € L(s"). =

20:17

FSCD 2020

https://doi.org/10.1007/BF00245458
https://doi.org/10.1007/BF00245458
https://doi.org/10.1016/B978-044450813-3/50028-X
https://doi.org/10.1016/B978-044450813-3/50028-X
https://doi.org/10.1137/S0097539793246252

20:18

Adaptive Non-Linear Pattern Matching Automata

C

Proof of Lemma 6

Proof. By induction on the length of path(s). If there are no pairs in path(s) then it must
be that s = sg. For the initial state we have £; C L = L(sg) = L(s), so the base case holds.

Let s be an arbitrary state and suppose that MATCH(M, t, s9) = MATCH(M,t, s) and

assume the induction hypothesis £; C £(s). Now suppose MATCH(M, ¢, s) = MATCH(M, t, s")
where s’ = §(s, f) for some f € Fg and let L(s) = p.

If f € F then pref(s’) = pref(s)[p/f(wp.1, - -, Wp.ar(s))]- By definition of MATCH we know
that head(t[p]) = f.
Let £ € L;. We show that ¢ unifies with pref(s’). We know that ¢ < ¢ by assumption.
From the induction hypothesis it follows that £ unifies with pref(s). So there is a term u
such that £ < u and pref(s) < u. Then we distinguish two cases.
If ¢[p'] is a variable for some p’ C p then ¢ unifies with pref(s’).
If head(¢[p]) is a function symbol then by ¢ < ¢ it must be that head({[p]) = f, so ¢
unifies with pref(s’).
If f = X then pref(s’) = pref(s)[p/K]. By definition of MATCH we know that
(s, head(t[p])) is undefined.
From the construction algorithm we then know that there is no pattern ¢ € L(s) such
that head(¢[p]) € F and there is at least one pattern £ € L£(s) such that £[p’] is a variable
for some position p’ C p.
Let ¢ € £;. By induction hypothesis we know that ¢ unifies with pref(s). We show that ¢
unifies with pref(s’) by showing that ¢[p'] = w, for some position p’ C p.
Suppose that £[p] exists. Since ¢ < ¢ and head(t[p]) # head(¢[p]) it must be that
Lp] = wp.
Suppose that £[p] does not exist. Pick the lowest position p’ such that p’ C p and £[p/]
exists and assume for a contradiction that head(¢[p']) = f for some function symbol
f. Then it must be that head(pref(s)[p’]) = f by the induction hypothesis. However,
pref(s)[p] exists and from p’ T p it follows that ¢[p] has subterms of the function symbol
f, which contradicts the assumption that p’ is the lowest position strictly higher than

p. So {p'] = wy. <
D Proof of Lemma 7
Proof.
a) We show that MATCH(M, ¢, sg) # L(s) for all final states s. Let s; be an arbitrary final

b)

state and pick some pattern ¢ € L(sy). By assumption ¢ £ ¢ and by Proposition 2 it
follows that there is a position p and a function symbol f € F such that head(¢[p]) = f
and head(t[p]) # f. By Lemma 5 it must be that head(pref(s)[p]) = f, by which there
must be a pair (s;, f) € path(s). Since MATCH is a function we have MATCH(M, t, s9) =
MATCH(M, t,s;) = MATCH(M, t,sy). However, by definition of MATCH we know that
head(t[p]) = f, which contradicts the assumption that [€ L(sy).

Let ¢ € L;. We prove that for all s such that MATCH(M, sg,t) = MATCH(M, s,t), we
have that d(s, head(¢[L(s)])) or d(s,X) is defined.

Suppose that MATCH(M, so,t) = MATCH(M, s,t). From Lemma 6 it follows that ¢ € L(s).
If head(¢[L(s)]) = f for some function symbol f then the construction algorithm created
an f-transition to a new state, by which (s, f) exists. Otherwise if head(¢[L(s)]) does
not exist then by ¢ < ¢ there must be a position p T L(s) such that ¢[p] = w,. In that
case a W-transition is created and hence J(s, X) exists.

By definition of MATCH we then have that MATCH(M, sq,t) cannot yield the empty set,
so it must terminate in a final state. |

R. Erkens and M. Laveaux

E Proof of Lemma 8

Proof. Since L(sy) = L(sy) we know that £, C L(sy) by Lemma 6. It only remains
show that L(sy) C L;. Since sy is a final state we have that pref(ss) is ground; therefore
L(sy) ={¢ e L] ¢ < pref(sf)}. Suppose for a contradiction that there is some ¢ < pref(sy)
such that £ £ ¢. Then there is a position p such that head(¢[p]) € F and head(t[p]) # head(¢[p]).
We have head(¢[p]) = head(pref(sy)[p]) by assumption. So, there is a pair (s;, f;) in path(sy)
such that L(s;) = p. By definition of MATCH we then have head(t[p]) = f; = head(¢[p]), a
contradiction. <

F Proof of Lemma 12

Proof. We can show by induction on positions that ¢ =,, rename; (¢, €) to prove the first state-
ment. For the second statement let p € F(t). First, we can show that t'[p] = rename; (¢[p], p)
by induction on position p. From t[p] € V it follows that ¢'[p] is equal to w,.

For the last property let P be equal to {{p € P | t[p] = x} | = € vars(t)} and let u be an
arbitrary term. Assume that u is consistent w.r.t. P and u matches ¢'. The latter means
that there is a substitution o such that ¢’ = u. It follows that for all positions p € F(¢)
that o(t'[p]) = u[p]. As u is consistent w.r.t. P it means that for all z € V and p,q € P
that if t[p] = t[q] = x then u[p] = u[g]. Therefore, we can construct the substitution p such
that for all p € F(t) we assign u[p] to t[p], where the latter is some variable in vars(t). The
observation of consistency above lets us conclude that there is only one such substitution p.
From t =, t’ it follows that ¢ = ¢’ and as such ¢t” = u, which means that v matches t.

Otherwise, if © matches ¢ then there is a substitution ¢ such that ¢ = u. Let p be the
substitution such that for all positions p € F(t) we assign o(t[p]) (which is equal to u[p]) to wy.
As t/ is linear it follows that each w), is assigned once and thus p(wp) = o(t[p]) by definition.
Again, from t =, ' it follows that t'” = ¢t and as such u matches ¢’. Finally, for all positions
p and ¢ such that t[p] = t[q] = x for variable x € V it follows that u[p] = u[¢] = o(x). We
can thus conclude that u is consistent w.r.t. P. <

G Proof of Lemma 15

Proof. Consider the pair of positions {p, ¢} that is taken from work at line 7. It is easy to
see that {p,q} ¢ E, and {p,q} ¢ N follows directly from the fact that P’ only consists of
partitions of which the consistency classes do not contain positions together in a pair of
N. Therefore, it follows that in subsequent recursive calls {p, ¢} cannot be in work again

as either F or N is extended with {p, ¢} and no elements are ever removed from E or N.

Furthermore, the execution of all other statements terminates as #(P) is finite, which also
means that |E| and |N| are finite as inserted pairs satisfy {p, ¢} C€ P’. Finally, the selection
function terminates by assumption. <

H Proof of Lemma 16

Proof. The recursive calls form an evaluation series (sg, o), .., (Sn,an) for s; € S and a; €

{V,X} for 0 < i < n such that EVAL-CA(M, s;,t) = EVAL-CA(M, s;41,t) and 0(s;,a;) = Sit1.

Let t € Ty be any term. We prove the statement by induction on the length of the evaluation
series.
Base case. We have E(sg) = N(so) = () and as such the statement holds vacuously.

20:19

FSCD 2020

20:20

Adaptive Non-Linear Pattern Matching Automata

Inductive step. Suppose that the statement holds for EVAL-CA (M, t,s¢) =EVAL-CA(M, ¢, s).
Suppose that EVAL-CA(M, t, s) = EVAL-CA(M, t,s") where s’ = §(s,a) for a € {V/,X} and let
Le(s) = {p, q}. There are two cases to consider:

t[p] = t[q] in which case E(s’), where s’ is equal to §(s,v), is E(s) extended with {p, ¢}

and N(s') = N(s).

Otherwise, t[p] # t[g] in which case N(s') is equal to N(s) extended with {p,q} and

E(s') = E(s).

In both cases (E(s"), N(s)) = t holds by definition. <

| Proof of Lemma 19

Proof. The recursive calls form an evaluation series (so,ao), ..., (Sn,an) for s; € S and
a; € {V,X} for 0 <i < n such that EVAL-CA(M, s;,t) = EVAL-CA(M, s,11,t) and 6(s;,a;) =
Si+1. By well-formedness of M we know, for all terms ¢t € Ty and all evaluation series
(50,G0), -, (Sk,ax) € (S x{V,X}) of EVAL-CA(M, s, 1), that for all states s;, with 0 < i <k,
it holds that (E(s;), N(s;)) = t. Now, we only have to consider sequences that contain the
state v as the other evaluation sequences remain the same. Consider any such sequence and
let u be the state in that sequence such that é(u,a) = v, for some a € {V/,X}, and let ¢t be
an arbitrary term. Note that the initial state can not be removed by this procedure. Let
{p, q} be the value of Ls(v) then there are two cases to consider:

v is v-redundant. It follows that t[p] = t[q] for {p,q} := Lo (s). All sequences such that
v occurs in it must contain exactly the pair (v,v) by definition of v-redundancy. We
conclude that (E(u) U {{p,q}}, N(u)) = t holds and the term remains consistent with all
extensions to E and N for the remaining states in the sequence.

s is X-redundant. Similarly, with the observation that (E(v), N(v) U{{p,q}}) Et. =

J Proof for Lemma 21

Proof. We only show that the recursion terminates. The rest is similar to the proof for
Lemma 4, with the additional observation that positions in P are only chosen when they
are defined in the prefix. Given the parameters pref;, 1, N1 and prefy, E5, No we can fix the
ordering:

(pref; < prefy A Ey = E9 ANy = Na) V
(pref, = prefy AEy C Eo ANy = Na) V
(pref; = prefy A By = Eo A N7 C Na).

The prefixes are again only defined on positions that are defined in patterns of £ and the sets
E and N are bounded by a finite product of positions, hence the ordering is well-founded.
The recursive calls conform to to this ordering; therefore the recursion terminates. |

K Proof for Lemma 22

Proof. Take an arbitrary term t. We prove the first two invariants by induction on the
length of path(s).

Base case, the empty path and as such s = sg. F(sg) = N(sp) = 0 and £, C £, and
L = L(sg) = L(s), as such the statements hold vacuously.

R. Erkens and M. Laveaux

Inductive step. Let s be an arbitrary state and suppose that the statements hold for
MATCHANPMA (A4,t,s9) = MATCHANPMA (A4, ¢, s). Suppose MATCHANPMA (A4,t,s) =
MATCHANPMA (A, t, s') for some s’ = d(s, z) such that « € (Fg W {v,X})). Now, there are
two cases to consider:

s € S¢. Let {p,q} be the value of Lo (sg). Again, there are two cases to consider:

t[p] = t[g] in which case E(s') is E(s) U {p,q} and N(s’) = N(s). Therefore,
(E(s"), N(s')) =t holds. Furthermore, £(s") = L(s) because also pref(s’) = pref(s).
Otherwise, t[p] # t[g] in which case N(s') is equal to N(s) U {p,q} and E(s") = E(s).
Therefore, (E(s'), N(s')) | t holds. Consider any i : I € L(s) such that i : 1 ¢ L(s').
From pref(s") = pref(s) it follows that for i : (I’, P) € L, it holds that P is not consistent
w.r.t. t by observation that positions {p,q} C€ P are included in N and t[p] # t[q].
Therefore, by Lemma 12 it holds that i : [¢ L,.

s € Sp. It hold that F(s’) = E(s) and N(s') = N(s). Therefore, (E(s'),N(s')) Et

remains true. Now, we can use the same argument as before to argue that any pattern

removed must not unify with pref(s’). Then the same arguments as given in Lemma 6

can be used to show that £; C L(s") holds.

Finally, if s € Sp from the fact that L(s) = L(s) we know that £; C L(s). It only remains
show that L(sy) C L£;. There are two cases for this state to become a final state during
construction:

Both workC =) and workF = (). Suppose for a contradiction that there is some i : [€ L(sy)

such that i : I ¢ £;. It follows that [£ ¢, which means that for i : (I, P) € £, that
I £t or t is not consistent w.r.t. P by Lemma 12. We show that both cases lead to a
contradiction:
Case I’ £ t. This follows essentially from the same observations as Lemma 8.
Case t is not consistent w.r.t. P. From the fact that pref(sy) unifies with ¢ and that it
is a ground term due to workF = () it follows that for all p, ¢ such that {p,q} C€ P,
they are defined in pref(s) and therefore it holds that {p,q} € E(s). Therefore, for all
p,q € C for consistency class C' € P; it holds that ¢[p] = t[q] and as such ¢ is consistent
w.r.t. P;. As such i is not an element of L(sy), contradicting our assumption.

The set L(s) is empty. In this case L(sy) is empty and L(s¢) C L; by definition. <

L Proof for Lemma 23

Proof. We show that MATCH(M, t, sg) # L(s) for all final states s for which for L(s) # 0.
Let sy be an arbitrary final state such that L(s) # () and pick some pattern i : £ € L(sy). By
assumption ¢ £ t and by Lemma 12 it holds for the pair ¢ : (¢/, P) € L, that ¢/ £t or t is
not consistent w.r.t. P.
If ¢/ £ ¢ then by Proposition 2 it follows that there is a position p and a func-
tion symbol f € F such that head(¢[p]) = f and head(t[p]) # f. By Lemma 5 it
must be that head(pref(s)[p]) = f, by which there must be a pair (s;, f) € path(s).
Since MATCHANPMA is a function we again have that MATCHANPMA (M, t,sq) =
MATCHANPMA (M, t,s;) = MATCHANPMA (M, t,ss). However, by its definition we
know that head(¢[p]) = f, which contradicts the assumption that ¢ : l € L(sy).
If ¢ is not consistent w.r.t. P. By Lemma 22 we know that (E(sf), N(sy)) =t and for
all pairs {p,q} C€ P it holds that {p,q} € E for workC to become empty, because all
positions of pattern [are defined in the prefix pref(ss). As such t must be consistent
w.r.t. P, which contradicts the assumption that i : { € L(sy). <

20:21

FSCD 2020

	Introduction
	Preliminaries
	Adaptive Pattern Matching Automata
	Proof of Correctness

	Consistency Checking
	Pattern Renaming
	Consistency Automata
	Proof of Correctness
	Efficiency
	Worst-case Complexity

	Adaptive Non-linear Pattern Matching Automata
	Correctness
	Strategy

	Conclusion and Future Work
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 12
	Proof of Lemma 15
	Proof of Lemma 16
	Proof of Lemma 19
	Proof for Lemma 21
	Proof for Lemma 22
	Proof for Lemma 23

