
On Average-Case Hardness of Higher-Order
Model Checking
Yoshiki Nakamura
Tokyo Institute of Technology, Japan
nakamura.yoshiki.ny@gmail.com

Kazuyuki Asada
Tohoku University, Sendai, Japan
asada@riec.tohoku.ac.jp

Naoki Kobayashi
The University of Tokyo, Japan
koba@is.s.u-tokyo.ac.jp

Ryoma Sin’ya
Akita University, Japan
ryoma@math.akita-u.ac.jp

Takeshi Tsukada
The University of Tokyo, Japan
tsukada@is.s.u-tokyo.ac.jp

Abstract
We study a mixture between the average case and worst case complexities of higher-order model
checking, the problem of deciding whether the tree generated by a given λY -term (or equivalently, a
higher-order recursion scheme) satisfies the property expressed by a given tree automaton. Higher-
order model checking has recently been studied extensively in the context of higher-order program
verification. Although the worst-case complexity of the problem is k-EXPTIME complete for order-k
terms, various higher-order model checkers have been developed that run efficiently for typical inputs,
and program verification tools have been constructed on top of them. One may, therefore, hope
that higher-order model checking can be solved efficiently in the average case, despite the worst-case
complexity. We provide a negative result, by showing that, under certain assumptions, for almost
every term, the higher-order model checking problem specialized for the term is k-EXPTIME hard
with respect to the size of automata. The proof is based on a novel intersection type system that
characterizes terms that do not contain any useless subterms.

2012 ACM Subject Classification Theory of computation → Program verification

Keywords and phrases Higher-order model checking, average-case complexity, intersection type
system

Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.21

Related Version A full version of the paper is available at https://www.kb.is.s.u-tokyo.ac.jp/
~koba/papers/OnAverageCaseHOMC.pdf [20].

Funding This work was supported by JSPS Kakenhi 15H05706 and JSPS Kakenhi 20H00577.

Acknowledgements We would like to thank anonymous referees for useful comments.

1 Introduction

Higher-order model checking [12, 21, 24] asks whether the (possibly infinite) tree generated by
a given λY -term (or equivalently, a higher-order recursion scheme) is accepted by a given tree
automaton. The problem was shown to be decidable by Ong in 2006 [21], and has been applied
to higher-order program verification [15, 16, 22, 19]. Although the worst-case complexity of

© Yoshiki Nakamura, Kazuyuki Asada, Naoki Kobayashi, Ryoma Sin’ya, and Takeshi Tsukada;
licensed under Creative Commons License CC-BY

5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020).
Editor: Zena M. Ariola; Article No. 21; pp. 21:1–21:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4106-0408
mailto:nakamura.yoshiki.ny@gmail.com
https://orcid.org/0000-0001-8782-2119
mailto:asada@riec.tohoku.ac.jp
https://orcid.org/0000-0002-0537-0604
mailto:koba@is.s.u-tokyo.ac.jp
https://orcid.org/0000-0002-8152-998X
mailto:ryoma@math.akita-u.ac.jp
https://orcid.org/0000-0002-2824-8708
mailto:tsukada@is.s.u-tokyo.ac.jp
https://doi.org/10.4230/LIPIcs.FSCD.2020.21
https://www.kb.is.s.u-tokyo.ac.jp/~koba/papers/OnAverageCaseHOMC.pdf
https://www.kb.is.s.u-tokyo.ac.jp/~koba/papers/OnAverageCaseHOMC.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 On Average-Case Hardness of Higher-Order Model Checking

higher-order model checking is k-EXPTIME complete (where k is the type-theoretic order of
the given λY -term), practical higher-order model checkers have been developed that run fast
for many typical inputs. They lead to the development of various automated verification
tools for higher-order functional programs.

In view of the situation above, we are interested in the following question: why do
higher-order model checkers run efficiently, despite the extremely high worst case complexity?
There are a couple of known reasons. First, the worst-case time complexity of higher-order
model checking is actually polynomial in the size of a given term, provided that the other
parameters (the largest order and arity of functions, and the size of an automaton) are
fixed [17]. Second, linear functions do not blow up the complexity [5]. These reasons alone,
however, do not fully explain why higher-order model checking works in practice. For example,
for the first point above, the constant factor determined by the other parameters is huge.

In the present paper, we consider another possibility: higher-order model checking may
actually be easy in the average case; in other words, it may be the case that hard instances
that cost k-EXPTIME are sparse and many of the instances of higher-order model checking
can be solved more efficiently. We give a somewhat negative result on that possibility.
For each term t of the λY -calculus, we consider the following higher-order model checking
problem specialized to t:

HOMC(t, ·): Given a tree automaton A, decide whether the tree
generated by t is accepted by A.

Our main result is that for almost every term t of order-k that is sufficiently large, HOMC(t, ·)
is k-EXPTIME hard. A little more precisely, we prove that, for the set Termsn,k of terms of
size n and order k (modulo certain additional conditions that we explain later), the ratio of
“hard” terms:

#{t ∈ Termsn,k | HOMC(t, ·) is k-EXPTIME hard}
#Termsn,k

tends to 1 if n→∞ (where #S denotes the cardinality of a set S). In other words, if we
pick up a term randomly according to the uniform distribution over Termsn,k, it is likely
that there exists a bad automaton A such that HOMC(t,A) is very hard. Note that this is a
mixture between the average case and worst-case analysis: the result above says that in the
average case on the choice of a term t, the complexity of HOMC(t, ·) is k-EXPTIME hard in
the worst-case on the choice of an automaton.

In order to make the above analysis meaningful, we have to carefully define the set
Termsn,k of terms. To see why, consider a term of the form (λx.c)t, where c is a nullary
tree constructor. The term generates the singleton tree c; so, no matter how large t is, the
problem HOMC((λx.c)t, ·) is easy. Thus, if we include such terms in Termsn,k, the ratio of
hard instances above would not be 1 for the trivial reason. In the context of applications of
higher-order model checking to program verification, however, such instances are unlikely to
appear: a λY -term corresponds to a program, and it is unlikely that one writes a program that
contains such a huge useless term t. (It might be the case for machine-generated programs,
but even in that case, one can apply simple preprocessing to remove such useless terms
before invoking a costly higher-order model checking algorithm.) We, therefore, exclude out,
from Termsn,k, terms that contain any useless subterms. Here, a subterm t1 of t is useless
if replacing t1 with another term never changes the tree generated by t. (We will impose
further conditions such as the number of variables, which will be explained in Section 2.)

Once the set Termsn,k is properly chosen as explained above, our main result can be
proved as follows. First, according to Kobayashi and Ong’s work on the complexity of
higher-order model checking [18], there exists an order-k “hard” term tHard,k such that

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 21:3

HOMC(tHard,k, ·) is k-EXPTIME complete. Second, according to Asada et al.’s work on
quantitative analysis on λ-terms [1], any sufficiently large term t can be decomposed into
the form E[C1, . . . , Cm] for sufficiently many contexts C1, . . . , Cm, where each Ci is large
enough to be replaced by a context, say C ′i, that contains the hard term tHard,k, without
changing the term size. Thus, by using their argument (which originates from the so called
“infinite monkey theorem” stating that almost every word contains any given word), we
can deduce that almost every sufficiently large term contains the hard term tHard,k, if we
ignore the condition that useless terms should be excluded. Finally (and most importantly),
we can choose a context C ′i that contains the hard term, so that if E[C1, . . . , Ci, . . . , Cm]
belongs to Termsn,k (and therefore does not contain any useless subterms), then so does
E[C1, . . . , C

′
i, . . . , Cm].

To obtain the last part of the result, we develop a novel intersection type system that
completely characterizes the set of terms that do not contain useless terms, in the sense that
a closed term t is typable if and only if t does not contain any useless term. This type system
is one of the main contributions of the present paper, and may be of independent interest.
Type systems for useless code elimination have been studied before [6, 7, 13] (in particular,
Damiani [7] used intersection types), but the complete characterization was not known, to
our knowledge.

The rest of this paper is structured as follows. Section 2 provides formal definitions of
λY -terms and the higher-oder model checking. Section 3 states our main result and gives
a proof outline. Sections 4–6 prove the theorem. Section 7 discusses related work, and
Section 8 concludes this article.

2 Preliminaries

For a map f , we write dom(f) for the domain of f and rng(f) for the range of f . We denote
by N the set of non-negative integers and by N+ the set of positive integers. For m,n ∈ N,
we write [m,n] for the set {i ∈ N | m ≤ i ≤ n}, and [n] for [1, n]; note that [0] = ∅. The
cardinality of a set A is denoted by #(A). We use A ·∪B instead of A ∪B if sets A and B
are disjoint. For a set A, we write A∗ for the set of finite sequences consisting of elements of
A. An L-labeled tree is a partial map T from N∗+ to L such that, for every 〈α, i〉 ∈ N∗+ ×N+,
if α · i ∈ dom(T), then {α, α · 1, . . . , α · (i − 1)} ⊆ dom(T). An L-labeled tree T is called
finite if dom(T) is finite. We write rT (α) for the number of children of a node α in T , i.e.,
rT (α) = #{i ∈ N+ | α · i ∈ dom(T)}. A ranked alphabet Σ is a map from a finite set of
symbols to N. We call Σ(a) the rank of a. A dom(Σ)-labeled tree T is called a Σ-ranked tree
(Σ-tree, for short) if, for every α ∈ dom(T), rT (α) = Σ(T (α)).

2.1 λY -Terms as Tree Generators
In this subsection, we introduce (simply-typed) λY -terms [27] as generators of (possibly
infinite) Σ-trees. In the context of higher-order model checking, higher-order recursion
schemes have originally been used as generators of trees [12, 21], but the λY -terms (with
constants of order up to 1 as tree constructors), which are equi-expressive with higher-order
recursion schemes, (see, e.g., [25]), have also been used in later studies on higher-order
model checking [24]. For the purpose of the present paper, we find it more convenient to use
λY -terms.

Let Σ be a ranked alphabet. Each a ∈ dom(Σ) is called a tree constructor. We use
meta-variables a, b, c for tree constructors (and a, b, c, . . . for concrete symbols). The set
of simple types is defined by: κ ::= o | κ1 → κ2. The ground type o is the type of

FSCD 2020

21:4 On Average-Case Hardness of Higher-Order Model Checking

trees. The order and arity of a simple type κ, written ord (κ) and ar (κ) respectively,
are defined by: ord (κ1 → · · · → κn → o) , max({0} ∪ {ord (κi) + 1 | 1 ≤ i ≤ n}) and
ar (κ1 → · · · → κn → o) , n, where n ≥ 0. Let V be a countably infinite set, which is ranged
over by x, y, z.

I Definition 1 (λY -terms). The set of (λY -)terms (over Σ) is defined by:

t ::= xκ | λxκ.t | λ_κ.t | t1 t2 | Yκt | a(t1, . . . , tΣ(a)) | ⊥κ.

We call elements of V ·∪ {_} variables and use meta-variables x̄, ȳ, z̄ for them. As in the
standard λY -calculus, the constructor Yκ may be considered a fixpoint operator of type
(κ→ κ)→ κ. The special variable ‘_’ denotes an unused variable (hence can occur only in a
binder, not in the body of a function). For each type κ, we have a special term ⊥κ, which
intuitively represents an unused term and will play an important role in the definition of
minimal terms. We often omit type annotations (for example, λxκ.xκ is just written λx.x).
For a term t, we write FV(t) for the set of all the free variables of t.

A simple type environment Γ is a finite partial map from V (recall that the special variable
_ does not belong to V) to the set of simple types. We simply write Γ, x : κ for Γ ·∪ {x 7→ κ}.
The type judgment relation Γ `ST t : κ is inductively defined by the following rules:

(Var)
x : κ `ST xκ : κ

Γ, x : κ `ST t : κ′
(Abs1)

Γ `ST λxκ.t : κ→ κ′
Γ `ST t : κ′

(Abs2)
Γ `ST λx̄κ.t : κ→ κ′

(⊥)
∅ `ST ⊥κ : κ

Γ1 `ST t : κ→ κ′ Γ2 `ST s : κ
(App)

Γ1 ∪ Γ2 `ST t s : κ′
Γ1 `ST t1 : o . . . Γn `ST tn : o

(a)⋃
i∈[n] Γi `ST a(t1, . . . , tn) : o

Γ `ST t : κ→ κ
(Y)

Γ `ST Yκ t : κ

Henceforth, we only consider well-typed terms (i.e., terms t such that Γ `ST t : κ for some
〈Γ, κ〉). Note that for every well-typed term t, there is a unique pair 〈Γ, κ〉 such that
Γ `ST t : κ; and moreover, its derivation tree is also uniquely determined. We sometimes
annotate a term with its type, like tκ, when t has type κ (under a certain type environment).
We say that t is closed if Γ = ∅; and that t is ground-typed if κ = o.

I Definition 2. The (call-by-name) reduction relation −→ is defined as the least binary
relation on well-typed terms (up to α-equivalence) closed under the following rules, where we
write t{s/x} for the term obtained from t by substituting s for all the free occurrences of x
in a capture-avoiding manner:

(β) (λx̄.t) s −→ t{s/x̄}; (Y) Yt −→ t (Yt); (⊥) ⊥κ1→κ2t −→ ⊥κ2 ;
(App) tu −→ t′u if t −→ t′; (a) a(t1, . . . , tn) −→ a(t1, . . . , ti−1, t

′
i, ti+1, . . . , tn) if ti −→ t′i.

We write −→∗ for the reflexive transitive closure of −→.

The tree generated by a closed and ground λY -term t is the one obtained from t by
(possibly) infinite rewriting with respect to the above reduction relation. The precise
definition is given below.

We write Σ⊥ for the ranked alphabet Σ ·∪ {⊥ 7→ 0}. We define the binary relation v on
Σ⊥-trees by: T1 v T2 if and only if (i) dom(T1) ⊆ dom(T2) and (ii) for every α ∈ dom(T1),
T1(α) = ⊥ or T1(α) = T2(α). We write T1 @ T2 if T1 v T2 and T1 6= T2. We denote the join
of {Ti}i∈I with respect to v by

⊔
i∈I Ti if defined.

A term consisting of only tree constructors and ⊥o can naturally be regarded as a Σ⊥-tree.
For example, b(c, a(⊥o)) can be regarded as the Σ⊥-tree: {ε 7→ b, 1 7→ c, 2 7→ a, 2 · 1 7→ ⊥};
hence we identify finite trees and terms consisting of tree constructors and ⊥o below. For

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 21:5

each closed and ground-typed term t, the Σ⊥-tree t⊥ is defined by: t⊥ , a(t⊥1 , . . . , t⊥Σ(a)) if
t = a(t1, . . . , tΣ(a)); and t⊥ , ⊥ otherwise. The value tree of a closed and ground-typed term
t, written T (t), is defined by: T (t) ,

⊔
{s⊥ | t −→∗ s}. For example, consider the value tree

of (Yt1)c where t1 = λfo→o.λxo.b(x, f(a(x))). By applying the reduction rules (Y) and (β),
we can obtain the following reduction sequence

(Yt1)c −→ t1(Yt1)c −→∗ b(c, (Yt1)(a(c))) −→∗ b(c, b(a(c), (Yt1)(a(a(c)))))

and observe that T (t) is the infinite tree of the form b(c, b(a(c), b(a(a(c)), b(· · ·)))).
We also define the size and order of a term, which will be used in the complexity analysis.

I Definition 3 (size, order). The size of a term t is defined by: |x| = |⊥| , 1, |λx̄.t| = |Yt| ,
1 + |t|, |t1 t2| , 1 + |t1|+ |t2|, and |a(t1, . . . , tΣ(a))| , 1 +

∑
i∈[Σ(a)] |ti|. The order of a term

t, written ord (t), is defined by:

ord (t) , max({0} ∪ {ord (κ) | λxκ.s or Yκs is a subterm of t}).

Note that the size of a variable is a constant; this is appropriate in our context, as we fix the
number of variables in the main theorem (Theorem 7).

I Remark 4. Our definition of the order of a λY -term given above deviates from the standard
definition of the order of a λY -term (where the order of a term is defined as the largest
order of the types of subterms) [25]. For example, the order of Y oλxo.a(x) (which generates
a unary infinite tree consisting of only a) is 0 in our definition, but it is 1 in the standard
definition, because λxo.a(x) has type o→ o, which has order 1. Our definition is motivated
to make the order of λY -term equivalent to that of the corresponding higher-order recursion
scheme (where the order is defined as the largest order of the types of recursive functions);
for example, the above term corresponds to the higher-order recursion scheme consisting of a
single rule S −→ a(S), whose order is 0. The translation from higher-order recursion schemes
to λY -terms given in [25] is order-preserving in our definition, but increases the order by 1
in the definition of [25]. There is also a translation from λY -terms to higher-order recursion
schemes that preserves the order in our definition (given an order-k λY -term, reduce all
the β-redexes of the form (λxκ.s)t with ord (κ) = k first, and then apply the translation
suggested in [25]; the first phase of β-reductions may incur an exponential blow-up, which
can be avoided by appropriately introducing non-terminals to avoid duplications of terms).

2.2 Higher-Order Model Checking
We assume the notion of alternating parity tree automaton (APT for short): see, e.g., [10].
The precise definition of APT is unnecessary for understanding our technical development
in later sections, once you admit the results in this subsection. We recall the definition of
higher-order model checking below.

I Definition 5 (higher-order model checking problem). The higher-order model checking
problem, written HOMC (·, ·), is the problem of, given a closed and ground-typed λY -term
t over Σ and an APT A over Σ as input, deciding whether A accepts T (t). We write
HOMCk(·, ·) when the first input is restricted to a term of order-k. We denote by HOMC (t, ·)
the problem obtained by fixing the first input to t, i.e., the problem of, given an APT A as
input, deciding whether A accepts T (t).

FSCD 2020

21:6 On Average-Case Hardness of Higher-Order Model Checking

Ong [21] has shown that the HOMCk(·, ·) is k-EXPTIME complete (combined complexity)
for each k ≥ 0. The following theorem states the complexity of HOMC (t, ·), which serves as
a basis of the present work.

I Theorem 6 ([21] for (1) and [18, Theorem 3.8] for (2)). For each k ≥ 1,
(1) for every order-k λY -term t, HOMC (t, ·) is decidable in k-EXPTIME; and
(2) there exists an order-k λY -term tHard,k such that HOMC (tHard,k, ·) is k-EXPTIME hard.

3 Main Theorem

This section formally states the main result of the paper: for almost every order-k λY -term,
the higher-order model checking problem HOMC(t, ·) is k-EXPTIME hard, under a certain
assumption, and sketches an overall structure of the proof. We first prepare some auxiliary
notations. We denote by [t]α the α-equivalence class of t. In our quantitative analysis,
we count α-equivalent terms at most once (e.g., we do not distinguish (λx.λy.x)z and
(λz.λ_.z)z). We define #vars (t) , min{#(V(t′)) | t′ ∈ [t]α}, where V(t) denotes the set of
all the variables (except _) occurring in t. Namely, #vars (t) is the minimum number of
variables occurring in the term t, up to α-equivalence. For example, #vars ((λx.λy.x)z) = 1
since the term is α-equivalent to (λz.λ_.z)z. The internal arity of a term t, written iar (t),
is defined by: iar (t) , max({ar (κ) | sκ is a subterm of t}).

Let Λ̂n(k, ι, ξ) be the set of all (α-equivalence classes of) closed and ground-typed λY -terms
such that1
(i) the size is n (i.e., |t| = n);
(ii) the order is up to k (i.e., ord (t) ≤ k);
(iii) the internal arity is up to ι (i.e., iar (t) ≤ ι);
(iv) the number of variable names is up to ξ (i.e., #vars (t) ≤ ξ); and
(v) the terms are minimal (see Section 3.1 below for the definition).

The main theorem is stated as follows.

I Theorem 7 (main theorem). For each k ≥ 1, let ι and ξ be sufficiently large natural
numbers. Then,

lim
n→∞

#
(
{t ∈ Λ̂n(k, ι, ξ) | HOMC(t, ·) is k-EXPTIME hard}

)
#
(

Λ̂n(k, ι, ξ)
) = 1.

Below we first define the minimality in Section 3.1 and give a proof outline in Section 3.2.

3.1 Minimal Terms
Intuitively, a term is minimal if it has no useless subterm. For the formal definition, we first
define the relation v on terms, which is analogous to the corresponding relation (v) on trees.

I Definition 8. The approximate relation v is the least precongruence (i.e., the relation
closed under all the term constructors) such that ⊥κ v tκ.

1 The set Λ̂n(k, ι, ξ) implicitly depends on the choice of ranked alphabet Σ. The main theorem holds
independently of the choice of Σ unless Σ is unreasonably small.

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 21:7

In other words, s v t means that s is obtained from t by replacing subterms tκ1
1 , . . . , tκn

n with
⊥κ1 , . . . ,⊥κn . We write s @ t if s v t and s 6= t. We denote the join of {ti}i∈I with respect
to v (i.e., the least upper bound of {ti}i∈I with respect to v) by

⊔
i∈I ti if defined, and we

sometimes write t1t. . .ttn for
⊔
i∈[n] ti. For example, (λx.b(x,⊥))t(λx.b(⊥, x)) = λx.b(x, x).

Note that, with respect to Σ⊥-tree terms, the relation v on terms is equivalent to the relation
v on Σ⊥-trees.

I Definition 9. A closed and ground-typed term t is minimal if for every s @ t, T (s) 6= T (t).

In other words, a term t is not minimal if there exists s obtained by replacing a non-⊥
subterm u of t with ⊥ such that T (s) = T (t).

I Example 10. Let t = (λx.λy.x) a u, with u 6= ⊥. Then the value tree T (t) = a (since
(λx.λy.x) a u −→ (λy.a) u −→ a). Note that the subterm u is “useless”; indeed the term
s = (λx.λy.x) a ⊥, obtained from t by replacing u with ⊥, also generates a. Thus, t is not
minimal. In contrast, s is minimal. In fact, any term obtained by replacing a non-⊥ subterm
of s with ⊥ (such as (λx.λy.⊥) a ⊥) fails to generate a.

The following proposition gives an important property of minimal terms. We write t′ � t
when t′ is a subterm of a term t.

I Proposition 11. Let t be a closed and ground-typed term. If t is minimal, then for every
non-⊥, closed and ground-typed subterm s � t, its value tree T (s) is a subtree of T (t).

This property is intuitively obvious. Since t is minimal, the subterm s assumed to be non-⊥
must be used in the computation of the value tree T (t). As s is closed and ground-typed, the
only way to use s is to place its value tree T (s) somewhere in T (t); hence the proposition.
For a formal proof, see the full version [20].

3.2 Proof Outline
For each k, let tHard,k be an order-k closed, ground-typed term such that the problem
HOMC(t, ·) is k-EXPTIME hard. The existence of tHard,k is guaranteed by Theorem 6 (2).
We can assume, without loss of generality, that tHard,k is minimal; otherwise take a minimal
element t′Hard,k of {s | T (s) = T (tHard,k)}. Theorem 7 follows immediately from Lemmas 12
and 13 below, which respectively state: (a) for each order k, every order-k minimal term
containing the “hard” term tHard,k as a subterm yields k-EXPTIME-hardness for the higher-
order model checking problem; and (b) almost every minimal term of order k contains the
“hard” term tHard,k as a subterm.

I Lemma 12. Let k ≥ 1. For every minimal λY -term t � tHard,k, HOMC (t, ·) is
k-EXPTIME hard.

Proof. Assume that t � tHard,k. Then T (t) � T (tHard,k) by Proposition 11, i.e. T (tHard,k) =
(T (t)�α) for some α ∈ dom(T (t)) where (T �α) denotes the subtree of T induced by the node
α. Let c be the length of α. For any APT A, we can construct an automaton A�α by adding
c states to A and replacing the initial state so that A�α accepts T if and only if A accepts
T �α (intuitively, A�α first moves to the node α then behaves like A). Then the polynomial-
time function A 7→ (A�α) gives a polynomial-time reduction from HOMC (tHard,k, ·) to
HOMC (t, ·) The lemma follows from k-EXPTIME-hardness of HOMC (tHard,k, ·). J

FSCD 2020

21:8 On Average-Case Hardness of Higher-Order Model Checking

I Lemma 13. For each k ≥ 1, let ι and ξ be sufficiently large natural numbers. Then,

lim
n→∞

#
(
{t ∈ Λ̂n(k, ι, ξ) | t � tHard,k}

)
#
(

Λ̂n(k, ι, ξ)
) = 1.

It remains to show Lemma 13. To this end, we introduce the following lemma (where the
precise definition of second-order contexts will be given in Section 4).

I Lemma 14. For each k ≥ 1, let ι and ξ be sufficiently large natural numbers. There exists
m such that the following holds: Let n ≥ m, E be any second-order linear context, and C
be any affine context such that |C| ≥ m and E[C] ∈ Λ̂n(k, ι, ξ). Then there exists an affine
context D � tHard,k such that E[D] ∈ Λ̂n(k, ι, ξ).

We show how Lemma 13 follows from Lemma 14 in Section 4. We then introduce a new
intersection type system that characterizes the minimality in Section 5, and use it to prove
Lemma 14 in Section 6.

4 Infinite Monkey Theorem for Minimal Terms

We sketch a proof of Lemma 13 (modulo Lemma 14) in this section; see [20] for the full
proof. The proof is analogous to that of the following, so-called infinite monkey theorem
(a.k.a. “Borges’s theorem” [9, p.61, Note I.35]) for words:

I Theorem 15. Let Σ be a finite alphabet. For any word x ∈ Σ∗, almost all words contain
x as a subword, i.e.

lim
n→∞

#({w ∈ Σn | w = uxv for some u, v ∈ Σ∗})
#(Σn) = 1.

The theorem above follows from the following reasoning: Any word w can be decomposed
into the form w1w2 · · ·wpw′ where |wi| = |x| and |w′| < |x|. If we pick w randomly, the
probability that wi coincides with x is (1

|Σ|)
|x|; hence the probability that w contains x is

at least 1 − (1 − (1
|Σ|)
|x|)p, which tends to 1 when n tends to infinity. For the purpose of

proving Lemma 13, we analogously decompose each term t to the form E[C1, . . . , Cp] (where
E and Ci respectively correspond to w′ and wi above), by using the tree decomposition
in [1]. We can then use Lemma 14 to prove Lemma 13. The hardest part is actually to prove
Lemma 14, which is deferred to Section 6.

We first need to prepare some definitions. In order to make use of the tree decomposition
function Φm in [1], below we regard a λY -term over Σ as a ΣΛ̂(k,ι,ξ)-tree where ΣΛ̂(k,ι,ξ) is an
extension of Σ defined by:

ΣΛ̂(k,ι,ξ) , Σ ·∪ {x 7→ 0 | x ∈ Vξ}

·∪ {λx̄κ 7→ 1 | x̄ ∈ Vξ ·∪ {_}, ord (κ) ≤ k, iar (κ) ≤ ι}
·∪ {@ 7→ 2} ·∪ {Yκ 7→ 1,⊥κ 7→ 0 | ord (κ) ≤ k, iar (κ) ≤ ι}

Here, Vξ = {x1, · · · , xξ} is a finite subset of V and the symbol @ represents the application
operation.

Next, we recall the notion of contexts and second-order contexts used in the decomposition.
A context is a tree with special leaves [] called holes. Formally, the set of contexts over Σ is
given by

C ::= [] | a(C1, . . . , CΣ(a)),

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 21:9

where a ranges over dom(Σ). We call a context with k holes a k-context, and call a context
affine if it is a 0- or 1-context. The size of a context C, denoted by |C|, is inductively defined
by: |[]| , 0 and |a(C1, . . . , CΣ(a))| , 1 + |C1|+ · · ·+ |CΣ(a)|. For a k-context C and contexts
−→
C = C1 · · ·Ck, we write C[−→C] or C[C1, . . . , Ck] for the context obtained by replacing each
occurrence of [] in C with Ci in the left-to-right order.

A second-order context is an expression having holes of the form JKnk (called second-order
holes), which should be filled with a k-context of size n. Formally, the set of second-order
contexts over Σ, ranged over by E, is defined by:

E ::= JKnk [E1, . . . , Ek] | a(E1, . . . , EΣ(a)) (a ∈ dom(Σ)).

We write shn (E) for the number of the second-order holes in E, and E.i for the i-th leftmost
second-order hole in E.

I Definition 16 (substitution for second-order contexts). For a context C and a second-order
hole JKnk , we write C : JKnk if C is a k-context of size n. For a second-order context E and a
sequence of contexts −→C = C1 · · ·Cshn(E) such that Ci : E�i for each i ∈ [shn (E)], we write
E[−→C] or E[C1, . . . , Cshn(E)] for the tree which can be obtained by replacing each occurrence
of JK in E with Ci in the left-to-right manner (and by interpreting the syntactical bracket [−]
as the substitution operation for usual contexts), where #

(−→
Ci

)
= shn (Ei) for each i:

(JKnk [E1, . . . , Ek]) [C · −→C1 · · ·
−→
Ck] , C[E1[−→C1], . . . , Ek[−→Ck]]

(a(E1, . . . , EΣ(a)))[
−→
C1 · · ·

−→
C Σ(a)] , a(E1[−→C1], . . . , EΣ(a)[

−→
C Σ(a)]).

We can use the decomposition function Φm (where m > 0 is an integer parameter) intro-
duced in [1] to uniquely decompose (the tree representation of) a λY -term t to (E,C1, . . . , Ck)
such that (i) E is a second-order context, (ii) Ci’s are affine contexts such that m ≤ |Ci| ≤ rm
(where r is the largest arity of the symbols in ΣΛ̂(k,ι,ξ)), (iii) t = E[C1, . . . , Ck], (iv) k ≥ |t|

2rm
, (v) Φm(E[C1, . . . , Ci−1, Di, Ci+1, . . . , Ck]) = (E,C1, . . . , Ci−1, Di, Ci+1, . . . , Ck) for any
“good” context Di (see [1, 20] for the definition of “goodness”).

I Example 17. The term a((λ_.a((λx.a(x))(Yλy.a(y))))⊥) on the left hand side of Figure 1
can be decomposed into the second-order context a(JK4

1[(JK3
0[])(Y (JK3

0[]))]) and affine contexts,
as shown on the right hand side.

We are now ready to provide a proof sketch of Lemma 13. Let us define Sn,Ei and Enm by:

Sn,Ei , {t ∈ Λ̂n(k, ι, ξ) | Φm(t) = (E,C1, . . . , C`), and tHard,k 6� Cj for each j ∈ [i]}

Enm ,
{
E | Φm(t) = (E, · · ·) for some t ∈ Λ̂n(k, ι, ξ)

}
.

Below we write E ? (C1, . . . , C`) ∈ S to mean E[C1, . . . , C`] ∈ S and Φm(E[C1, . . . , C`]) =
(E,C1, . . . , C`). If n and m (with n > m) are sufficiently large, we can estimate the ratio
#(Sn,E

i)
#(Sn,E

i−1) for i ∈ [shn (E)] by:

#
(
Sn,Ei

)
#
(
Sn,Ei−1

) =

∑
C1,...,Ci−1,Ci+1,...,Cshn(E)

#
({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1 , tHard,k 6� Ci

})∑
C1,...,Ci−1,Ci+1,...,Cshn(E)

#
(
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1

)
≤ max
C1,...,Ci−1,Ci+1,...,Cshn(E)

#
({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1 , tHard,k 6� Ci

})
#
({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1

})
(by Σjsj

Σjrj
≤ maxj

sj
rj

if rj > 0, sj ≥ 0 for every j)

FSCD 2020

21:10 On Average-Case Hardness of Higher-Order Model Checking

J K

J K

J K+

7�!

Second-order context

Sequence of a�ne subcontexts

�3
<latexit sha1_base64="Y25b6jBMOaCoCnadE00ikJWb1oU=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld1W0GPRi8cK9gPapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdgp7u7tHxyWjo5bRqWasiZVQulOSAwTXLKm5VawTqIZiUPB2uH4dua3n5g2XMkHO0lYEJOh5BGnxDqp1WuMeL/WL5W9ijcHXiV+TsqQo9EvffUGiqYxk5YKYkzX9xIbZERbTgWbFnupYQmhYzJkXUcliZkJsvm1U3zulAGOlHYlLZ6rvycyEhsziUPXGRM7MsveTPzP66Y2ug4yLpPUMkkXi6JUYKvw7HU84JpRKyaOEKq5uxXTEdGEWhdQ0YXgL7+8SlrVil+rVO8vy/WbPI4CnMIZXIAPV1CHO2hAEyg8wjO8whtS6AW9o49F6xrKZ07gD9DnDw6cjsk=</latexit>

x
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

@
<latexit sha1_base64="KLdrpM4jFNUPck3AS3RlfnxyAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZr1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fkqeMyA==</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

@
<latexit sha1_base64="KLdrpM4jFNUPck3AS3RlfnxyAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZr1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fkqeMyA==</latexit>

Y<latexit sha1_base64="n2Ua7mA6OmSMMHjxVauWwbnDW7Q=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+9C2lEyaaUMzmSG5I5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xYykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJko04w0WyUi3fWq4FIo3UKDk7VhzGvqSt/zxTea3nrg2IlL3OIl5L6RDJQLBKFrpsRtSHPlB+jDtl8puxZ2BLBMvJ2XIUe+XvrqDiCUhV8gkNabjuTH2UqpRMMmnxW5ieEzZmA55x1JFQ2566SzxlJxaZUCCSNunkMzU3xspDY2ZhL6dzBKaRS8T//M6CQZXvVSoOEGu2PyjIJEEI5KdTwZCc4ZyYgllWtishI2opgxtSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMEzvMKbY5wX5935mI+uOPnOEfyB8/kDz2yRAQ==</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

?<latexit sha1_base64="UYKwwofUuuOdfsM5oOS0ekmYRI8=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT2WTIPJaZWSEs+QUvHhTx6g9582+cTfagiQUNRVU33V1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UakmtEUUV7obYUM5k7RlmeW0m2iKRcRpJ5rc5X7niWrDlHy004SGAo8kixnBNpf6kbKDStWv+XOgVRIUpAoFmoPKV3+oSCqotIRjY3qBn9gww9oywums3E8NTTCZ4BHtOSqxoCbM5rfO0LlThihW2pW0aK7+nsiwMGYqItcpsB2bZS8X//N6qY1vwozJJLVUksWiOOXIKpQ/joZMU2L51BFMNHO3IjLGGhPr4im7EILll1dJu14LLmv1h6tq47aIowSncAYXEMA1NOAemtACAmN4hld484T34r17H4vWNa+YOYE/8D5/ABrRjkc=</latexit>�
<latexit sha1_base64="cpYy4H96zOSrWb3Gf5Cq0hBTCuM=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ad2hpLJZNrQTDIkGaEM/Qs3LhRx69+4829M21lo64HA4Zxzyb0nTDnTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkpQttEcql6IdaUM0HbhhlOe6miOAk57Ybj25nffaJKMykezCSlQYKHgsWMYGOlR5/baISRPxhUa27dnQOtEq8gNSjQGlS//EiSLKHCEI617ntuaoIcK8MIp9OKn2maYjLGQ9q3VOCE6iCfbzxFZ1aJUCyVfcKgufp7IseJ1pMktMkEm5Fe9mbif14/M/F1kDORZoYKsvgozjgyEs3ORxFTlBg+sQQTxeyuiIywwsTYkiq2BG/55FXSadS9i3rj/rLWvCnqKMMJnMI5eHAFTbiDFrSBgIBneIU3RzsvzrvzsYiWnGLmGP7A+fwBAcaQeg==</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

�x
<latexit sha1_base64="CwO+/zUxlsjKk4GaefOZdcF0Mj0=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqszUgi6LblxWsA9ph5LJZNrQJDMkGbEM/Qo3LhRx6+e4829M21lo64HA4Zxzyb0nSDjTxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVhLZIzGPVDbCmnEnaMsxw2k0UxSLgtBOMb2Z+55EqzWJ5byYJ9QUeShYxgo2VHvrcRkOMngblilt150CrxMtJBXI0B+WvfhiTVFBpCMda9zw3MX6GlWGE02mpn2qaYDLGQ9qzVGJBtZ/NF56iM6uEKIqVfdKgufp7IsNC64kIbFJgM9LL3kz8z+ulJrryMyaT1FBJFh9FKUcmRrPrUcgUJYZPLMFEMbsrIiOsMDG2o5ItwVs+eZW0a1Xvolq7q1ca13kdRTiBUzgHDy6hAbfQhBYQEPAMr/DmKOfFeXc+FtGCk88cwx84nz9z/pAt</latexit>

Y<latexit sha1_base64="n2Ua7mA6OmSMMHjxVauWwbnDW7Q=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+9C2lEyaaUMzmSG5I5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xYykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJko04w0WyUi3fWq4FIo3UKDk7VhzGvqSt/zxTea3nrg2IlL3OIl5L6RDJQLBKFrpsRtSHPlB+jDtl8puxZ2BLBMvJ2XIUe+XvrqDiCUhV8gkNabjuTH2UqpRMMmnxW5ieEzZmA55x1JFQ2566SzxlJxaZUCCSNunkMzU3xspDY2ZhL6dzBKaRS8T//M6CQZXvVSoOEGu2PyjIJEEI5KdTwZCc4ZyYgllWtishI2opgxtSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMEzvMKbY5wX5935mI+uOPnOEfyB8/kDz2yRAQ==</latexit>

@
<latexit sha1_base64="KLdrpM4jFNUPck3AS3RlfnxyAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZr1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fkqeMyA==</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

�y
<latexit sha1_base64="TPyhFvh+DR7DQdxEd/ogdQqUZGo=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ie0Q8lkMm1okhmSjDAM/Qo3LhRx6+e4829M21lo64HA4Zxzyb0nSDjTxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVhLZJzGPVC7CmnEnaNsxw2ksUxSLgtBtMbmd+94kqzWL5YLKE+gKPJIsYwcZKjwNuoyFG2bBac+vuHGiVeAWpQYHWsPo1CGOSCioN4Vjrvucmxs+xMoxwOq0MUk0TTCZ4RPuWSiyo9vP5wlN0ZpUQRbGyTxo0V39P5FhonYnAJgU2Y73szcT/vH5qoms/ZzJJDZVk8VGUcmRiNLsehUxRYnhmCSaK2V0RGWOFibEdVWwJ3vLJq6TTqHsX9cb9Za15U9RRhhM4hXPw4AqacActaAMBAc/wCm+Ocl6cd+djES05xcwx/IHz+QN1gpAu</latexit>

y
<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

(� .a([]))? · �x.a(x) · �y.a(y)
<latexit sha1_base64="0z6UASoIB23tBj3eJyHHEAYtUaU=">AAACS3icbVBLS8NAGNzUV62vqkcvi0VoQUpSBT0WvXisYLWQhLLZbHRx82D3izSE/j8vXrz5J7x4UMSDmzaH2jqwyzAzH/vteIngCkzzzagsLa+srlXXaxubW9s79d29WxWnkrI+jUUsBx5RTPCI9YGDYINEMhJ6gt15j5eFf/fEpOJxdANZwtyQ3Ec84JSAloZ1r+kInfYJdoZt7IQEHgByMsZN2zl2Wy3seDHUHOoXd5kczQabo9acnf2xs9aw3jDb5gR4kVglaaASvWH91fFjmoYsAiqIUrZlJuDmRAKngo1rTqpYQugjuWe2phEJmXLzSRdjfKQVHwex1CcCPFFnJ3ISKpWFnk4WS6p5rxD/8+wUgnM351GSAovo9KEgFRhiXBSLfS4ZBZFpQqjkeldMH4gkFHT9NV2CNf/lRXLbaVsn7c71aaN7UdZRRQfoEDWRhc5QF12hHuojip7RO/pEX8aL8WF8Gz/TaMUoZ/bRH1RWfgHt77EQ</latexit>

Figure 1 An example of term decomposition. The parts surrounded by rectangles on the left hand
side show the extracted affine subcontexts, and the remaining part of the tree is the second-order
tree context.

≤ max
C1,...,Ci−1,Ci+1,...,Cshn(E)

#
({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1

})
− 1

#
({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1

})
(by Lemma 14)

= max
C1,...,Ci−1,Ci+1,...,Cshn(E)

1− 1
#
({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei−1

})
≤ 1− 1

γrm

for some γ > 1. Here, C1, . . . , Ci−1, Ci+1, . . . , Cshn(E) in the subscript of max range over
the set of contexts for which the denominator #

({
Ci | E ? (C1, . . . , Cshn(E)) ∈ Sn,Ei

})
is

non-zero. The last inequality follows from Property (ii) of Φm (that the size of Ci is bounded
by rm), and the fact that the number of contexts of a given size ` can be bounded by γ` for
some γ.

Thus, we have:

#
(
{t ∈ Λ̂n(k, ι, ξ) | tHard,k 6� t}

)
#
(

Λ̂n(k, ι, ξ)
) ≤

∑
E∈En

m
#
(
Sn,Eshn(E)

)
∑
E∈En

m
#
(
Sn,E0

) (
by the properties of Φm

)

≤ max
E∈En

m

#
(
Sn,Eshn(E)

)
#
(
Sn,E0

) (
by
∑
i si∑
i ri
≤ maxi

si
ri

)

= max
E∈En

m

#
(
Sn,E1

)
#
(
Sn,E0

) · #
(
Sn,E2

)
#
(
Sn,E1

) · · · · · #
(
Sn,Eshn(E)

)
#
(
Sn,Eshn(E)−1

) .
≤ max
E∈En

m

(1− 1
γrm

)shn(E)

≤ (1− 1
γrm

) n
2rm

(
by Property (iv) of Φm

)
→ 0 (as n→∞)

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 21:11

Therefore, we obtain

lim
n→∞

#
(
{t ∈ Λ̂n(k, ι, ξ) | t � tHard,k}

)
#
(

Λ̂n(k, ι, ξ)
) = 1

as required.

5 Intersection Types for Minimal Terms

This section introduces an intersection type system for characterizing minimal terms, so that
a closed, ground-typed term is typable just if it is minimal. For the terms in Example 10,
(λx.λy.x) a ⊥ is typable in the intersection type system but (λx.λy.x) a a is not. This
intersection type system will serve as a key tool for proving Lemma 14 in Section 6.

The sets of prime intersection types and intersection types are defined by:

τ, σ (prime intersection types) ::= o | θ → τ θ, δ (intersection types) ::=
∧κ{τ1, . . . , τn}.

Here, n ≥ 0: Intuitively, o is the type of terms that generate non-⊥ trees that will occur
in the value tree. The intersection type

∧κ {τ1, . . . , τn} describes terms that are used
according to types τ1, . . . , τn. In particular,

∧κ ∅ is the type of terms that are not used. Note
that {τ1, . . . , τn} in

∧κ {τ1, . . . , τn} is a set rather than a multiset; thus we consider here
idempotent intersection types. The superscript κ (which ranges over the set of simple types)
is used for distinguishing between, for example, ∅o and ∅o→o; we, however, often omit the
superscript.

We often write
∧κ
i∈[n] τi or τ1 ∧ · · · ∧ τn for

∧κ{τ1, . . . , τn}, and >κ (or just >) for
∧κ ∅.

For each intersection types θ =
∧κ

S and δ =
∧κ

T , We denote by θ ∧ δ the intersection
type

∧κ(S ∪ T). We use θ̄, δ̄ to denote a prime intersection type or an intersection type.
An intersection type environment, written as Θ or ∆, is a finite partial mapping from V to
the set of intersection types. For each Θ, x ∈ V \ dom(Θ), and θ, we write (Θ, x : θ) for
Θ ·∪ {x 7→ θ}. The refinement relation θ̄ :: κ (resp. Θ :: Γ) is the least relation closed under
the following rules, where n ≥ 0:

o :: o

τ1 :: κ . . . τn :: κ∧κ
i∈[n] τi :: κ

θ :: κ τ :: κ′

(θ → τ) :: (κ→ κ′) ∅ :: ∅
Θ :: Γ θ :: κ

(Θ, x : θ) :: (Γ, x : κ).

Note that, for each θ̄ (and similarly for Θ), there exists at most one simple type κ such that
θ̄ :: κ. Henceforth we only consider intersection types occurring in this refinement relation
(so, we always make the assumption that for each θ̄, θ̄ :: κ holds for some κ).

We write Θ ∧∆ for the intersection type environment {x 7→ Θ(x) ∧∆(x) | x ∈ dom(Θ) ∪
dom(∆)}, where Θ(x) = >κ (where κ is uniquely determined by ∆(x)) if x 6∈ dom(Θ), and
similarly for the case x 6∈ dom(∆).

The intersection type judgment relation Θ ` t : θ̄ is inductively defined by the typing
rules in Figure 2. We implicitly assume that, whenever Θ ` t : θ̄ occurs in a rule, Γ `ST t : κ,
Θ :: Γ, and θ̄ :: κ hold for some Γ and κ; for example, in (Var), it must be the case that τ :: κ.

Many of the rules are the same as those of standard intersection type systems, but
peculiar to our type system is the use of t in the rules (∧) and (Y1). In (∧), the premises
say that each ti is used according to τi; think of ti as a “used” part of some term t such that
ti v t. In the conclusion, those used parts t1, . . . , tn are “merged” to obtain

⊔
i∈[n] ti as the

used part of t when it is accessed according to types τ1, . . . , τn. For example, consider the
term λxo→o→o.λyo.λzo.x y z. Then we have ∅ ` λxo→o→o.λyo.λzo.x y⊥ : (o → > → o) →

FSCD 2020

21:12 On Average-Case Hardness of Higher-Order Model Checking

(Var)
x : ∧{τ} ` xκ : τ

Θ, x : θ ` t : τ
(Abs1)

Θ ` λx.t : θ → τ

Θ ` t : τ (Abs2)
Θ ` λx̄.t : > → τ

Θ ` t : θ → τ ∆ ` s : θ (App)
Θ ∧∆ ` t s : τ

Θ ` t1 (Yt2) : τ
(Y1)

Θ ` Y(t1 t t2) : τ
Θ ` t⊥ : τ (Y2)
Θ ` Yt : τ

Θ1 ` t1 : θ1 . . . Θn ` tn : θn (a)∧
i∈[n] Θi ` a(t1, . . . , tn) : o

Θ1 ` t1 : τ1 . . . Θn ` tn : τn (∧)∧
i∈[n] Θi `

⊔
i∈[n] ti :

∧
i∈[n] τi

Θ ` t : θ̄ (>)
Θ, x : > ` t : θ̄

Figure 2 The intersection type system for the minimality (see Section 3.1 for the operator t).

o → > → o and ∅ ` λxo→o→o.λyo.λzo.x⊥ z : (> → o → o) → > → o → o. From those
judgments, we obtain

∅ ` λxo→o→o.λyo.λzo.x y z : ((o→ >→ o)→ o→ >→ o)∧((> → o→ o)→ >→ o→ o)

by using (∧). Note that when n = 0, the rule (∧) allows us to derive ∅ ` ⊥ : >.
There are two typing rules for Y t. The rule (Y1) covers the case where Y t is reduced

to t(Y t) and the argument Y t is used again; t1 in the premise represents the used part of
the head occurrence of t, whereas t2 represents the used part of the occurrence of t in the
argument Y t. In the conclusion, both parts are merged to obtain t1 t t2 as the used part
of t. For example, consider Y t where t = λf.λx.λy.bx (f ⊥ y) and τ = o→ ⊥ → o. Then
we have ∅ ` t1(Y t2) : τ for t1 = λf.λx.λy.bx (f ⊥⊥) and t2 = λf.λx.λy.b⊥ (f ⊥⊥). By
using (Y1), we obtain ∅ ` Y(λf.λx.λy.bx (f ⊥⊥)) : τ , which correctly models the used part
of Y t. The rule (Y2) is for the case where recursive calls do not contribute to the result.
For example, consider the term t = Y(λx.a(⊥)). Then from ∅ ` (λx.a(⊥))⊥ : o, we obtain
∅ ` t : o.

The theorem below states that the minimality is correctly characterized by our intersection
type system. See Appendix A for an outline of a proof; the full proof is found in [20].

I Theorem 18 (soundness and completeness). For every closed and ground-typed term t, t is
minimal if and only if ∅ ` t : θ̄ for some θ̄.

We give examples of type derivations below.

I Example 19 (cf. Example 10). Let t = (λxo.λyo.xo) a ⊥o and s = (λxo.λyo.xo) a a. Then
we can show that t is minimal by giving the derivation tree of ∅ ` t : o as follows:

(Var)
x : ∧{o} ` xo : o

(Abs2)
x : ∧{o} ` λyo.xo : > → o

(Abs1)
∅ ` λxo.λyo.xo : ∧{o} → > → o

(a)
∅ ` a : o (∧)
∅ ` a : ∧{o}

(App)
∅ ` (λxo.λyo.xo) a : > → o

(∧)
∅ ` ⊥o : >

(App)
∅ ` (λxo.λyo.xo) a ⊥o : o

In contrast, ∅ 0 s : o, because x : ∧{o}, y : ∧{o} 0 xo : o.

The following is a more complex example, where intersection types play an important role.

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 21:13

I Example 20. Let s = (λf (o→o→o)→o.a(f fst, f snd)), u = (λgo→o→o.g b c), and t = s u,
where fst = λxo.λyo.xo and snd = λxo.λyo.yo. Then ∅ ` t : o is derived from the following
two derivations by applying (App), where τ1 = ∧{o} → > → o and τ2 = > → ∧{o} → o.
Hence this t is minimal.

(Var)
f : ∧{∧{τ1} → o} ` f : ∧{τ1} → o

(similarly to Example 19)
∅ ` fst : τ1 (∧)
∅ ` fst : ∧{τ1}

(App)
f : ∧{∧{τ1} → o} ` f fst : o

(∧)
f : ∧{∧{τ1} → o} ` f fst : ∧{o}

(similarly to the left)
(∧)

f : ∧{∧{τ2} → o} ` f snd : ∧{o}
(a)

f : ∧{∧{τ1} → o,∧{τ2} → o} ` a(f fst, f snd) : o
(Abs1)

∅ ` λf.a(f fst, f snd) :
∧
l∈[2]{∧{τl} → o} → o

(Var)
g : ∧{τ1} ` g : ∧{o} → > → o

(b)
∅ ` b : o

(∧)
∅ ` b : ∧{o}

(App)
g : ∧{τ1} ` g b : > → o

(∧)
∅ ` ⊥ : >

(App)
g : ∧{τ1} ` g b⊥ : o

(Abs1)
∅ ` λg.g b⊥ : ∧{τ1} → o

(similarly to the left)
(App)

g : ∧{τ2} ` g⊥ c : o
(Abs1)

∅ ` λg.g⊥ c : ∧{τ2} → o
(∧)

∅ ` λg.g b c :
∧
l∈[2]{∧{τl} → o}

Note that the term u is “used” in two different ways in t: in f fst, the subterm b is used,
whereas in f snd, the subterm c is used.

6 Proof of the Main Lemma (Lemma 14)

In this section, we prove Lemma 14 by using the intersection type system from the previous
section. Recall that we need to prove that if E[C] ∈ Λ̂n(k, ι, ξ), then there is a context
D � tHard,k such that E[D] ∈ Λ̂n(k, ι, ξ). Thanks to the result of the previous section,
E[C] ∈ Λ̂n(k, ι, ξ) implies that E[C] is typable in the intersection type system. Thus, it
suffices to construct D of the same size such that (i) C has “the same typing properties” as
D, and (ii) D contains tHard,k. To this end, we first extend the notion of types to those
of contexts (called context-types) in Section 6.1. We then show in Section 6.2 that we can
indeed construct a context D that has the same context types as C, and prove Lemma 14.

6.1 Context-Types
For each affine-context C, we write C CST {〈Γ′1, κ′1〉, . . . , 〈Γ′n, κ′n〉} V 〈Γ, κ〉 if there is a
derivation tree of Γ `ST C[x] : κ with the assumptions {Γ′1 `ST x : κ′1, . . . ,Γ′n `ST x : κ′n},
where n is at most one and x is a variable not occurring in C. Intuitively, it means that there
is a derivation tree of Γ′ `ST C : κ′ with the assumptions {Γ′1 `ST [] : κ′1, . . . ,Γ′n `ST [] : κ′n}
(see also Example 21). We often write t CST θ̃ for t CST ∅ V θ̃. We use κ̃ to denote a
pair 〈Γ, κ〉 and use ν̃ to denote a {〈Γ′1, κ′1〉, . . . , 〈Γ′n, κ′n〉} V 〈Γ, κ〉. Note that C is a term
(resp. a linear-context) if C CST {〈Γ′1, κ′1〉, . . . , 〈Γ′n, κ′n〉} V 〈Γ, κ〉 holds for n = 0 (resp.
n = 1). Below we extend the notion of CST to the intersection type system. The set of
(affine-)context-types, ranged over by µ̃, is defined as follows, where n ≥ 0 and we may write
θ̃+ for θ̃ if θ̃ 6= ∅:

τ̃ ::= 〈Θ, τ〉 θ̃ ::= {τ̃1, . . . , τ̃n} π̃ ::= τ̃ | θ̃+ µ̃ ::= θ̃ V π̃.

For µ̃, intuitively, θ̃ V τ̃ denotes the pair of the assumptions (θ̃) and the conclusion (τ̃) of
a derivation tree, and θ̃ V θ̃+ denotes the pair of the assumptions (θ̃) and the conclusions

FSCD 2020

21:14 On Average-Case Hardness of Higher-Order Model Checking

(θ̃+) of one or more derivation trees. The refinement relation is defined as the least relation
closed under the following rules, where n ≥ 0:

Θ :: Γ τ :: κ
〈Θ, τ〉 :: 〈Γ, κ〉

τ̃1 :: 〈Γ, κ〉 . . . τ̃n :: 〈Γ, κ〉
{τ̃1, . . . , τ̃n} :: 〈Γ, κ〉

θ̃′ :: 〈Γ′, κ′〉 π̃ :: 〈Γ, κ〉

θ̃′ V π̃ :: 〈Γ′, κ′〉V 〈Γ, κ〉
.

Henceforth we only consider context-types occurring in this refinement relation (so, we always
make the assumptions that for each θ̃′ V θ̃, for some 〈Γ, κ〉 and 〈Γ′, κ′〉, θ̃ :: 〈Γ, κ〉 and θ̃′ ::
〈Γ′, κ′〉). For each affine-context C, we write C C {〈Θ′1, τ ′1〉, . . . , 〈Θ′n, τ ′n〉}V 〈Θ, τ〉 if there is
a derivation tree of Θ ` C[x] : τ with the assumptions {Θ′1 ` x : τ ′1, . . . ,Θ′n ` x : τ ′n}, where x
is a variable not occurring in C. For n ≥ 1, we write (

⊔
i∈[n] Ci) C (

⋃
i∈[n] θ̃

′
i)V {τ̃1, . . . , τ̃n}

if Ci C θ̃′i V τ̃i for each i ∈ [n]. We often write t C θ̃ for t C ∅V θ̃.

I Example 21. Let C = (λgκ0 .[] b c), where κ0 = o→ o→ o. Note that C[g] is the term
u in Example 20. Then, we have C CST {〈(g : κ0), κ0〉} V 〈∅, κ0 → o〉 by g : κ0 `ST
g : κ0 and ∅ `ST C[g] : κ0 → o. Also, we have C C {〈(g : τ1), τ1〉, 〈(g : τ2), τ2〉} V
〈∅,
∧
l∈[2]{∧{τl} → o}〉 by using the derivation tree in Example 20 with regarding g as a

hole, where τ1 = ∧{o} → > → o and τ2 = > → ∧{o} → o. Furthermore, we also have
C C {〈(g : τ1), τ1〉, 〈(g : τ2), τ2〉}V {〈∅,∧{τ1} → o〉, 〈∅,∧{τ2} → o〉}. It is because C is the
join of C1 = (λgκ0 .[] b⊥o) and C2 = (λgκ0 .[]⊥o c). Here, note that C[g] = C1[g] t C2[g],
C1 C {〈(g : τ1), τ1〉}V 〈∅,∧{τ1} → o〉, and C2 C {〈(g : τ2), τ2〉}V 〈∅,∧{τ2} → o〉.

Below we list a few properties (see Appendix B for the proofs).

I Proposition 22 (substitution). Suppose that C is a linear-context. If C C θ̃′ V θ̃ and
C ′ C θ̃′′ V θ̃′, then C[C ′] C θ̃′′ V θ̃.

I Proposition 23 (inverse substitution). Suppose that C is a linear-context. If C[C ′] C θ̃′′ V θ̃,
then C C θ̃′ V θ̃ and C ′ C θ̃′′ V θ̃′ for some θ̃′.

These properties enable us to replace contexts preserving the minimality. For example,
given ∅ ` C[D[t]] : o (i.e., C[D[t]] is minimal); then by Proposition 23, C C θ̃ V {〈∅, o〉},
D C θ̃′ V θ̃, and t C θ̃′ for some θ̃ and θ̃′; then by Proposition 22, C[D′[t]] C {〈∅, o〉} (hence,
C[D′[t]] is also minimal) for each linear context D′ C θ̃′ V θ̃.

In the following subsection, we will show in Lemma 25 that for the term C[D[t]] in
the above, if the size |D| is sufficiently large, then one can choose D′ as a term satisfying
(i) D′ � tHard,k, and (ii) |D′| = |D|. Thus, from a term C[D[t]] ∈ Λ̂n(k, ι, ξ) such that
|D| is sufficiently large, one can construct a term C[D′[t]] satisfying (i) C[D′[t]] � tHard,k,
and (ii) |C[D′[t]]| = |C[D[t]]| and C[D′[t]] is minimal (hence, C[D′[t]] ∈ Λ̂n(k, ι, ξ)). This
transformation method will help us to show Lemma 14.

6.2 Proof of Lemma 14
Here, we fix parameters k, ι, and ξ. W.l.o.g., in the following, we only consider terms,
contexts, and environments having only variables in a fixed set Vξ , {z1, . . . , zξ} (of size
ξ). We say that 〈Γ, κ〉 is (〈k, ι, ξ〉-)bounded if max{ord (κ′) | κ′ ∈ {κ} ∪ rng(Γ)} ≤ k and
max{iar (κ′) | κ′ ∈ {κ} ∪ rng(Γ)} ≤ ι; and that 〈Γ′, κ′〉V 〈Γ, κ〉 is bounded if both 〈Γ′, κ′〉
and 〈Γ, κ〉 are; and that a context-type µ̃ is bounded if the ν̃ such that µ̃ :: ν̃ is bounded.
We also say that t is bounded if ord (t) ≤ k and iar (t) ≤ ι; and that a linear-context C
is bounded if C[⊥] is. Also, we use a (resp. b, c) to denote a tree constructor of arity 0
(resp. 2, 1).

The following technical lemma allows conversion between a ground-typed term and a
term of a required typing property: see Appendix C for a proof.

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 21:15

I Lemma 24.
(1) Suppose that θ̃+ :: 〈Γ, κ〉 is bounded. If #(dom(Γ)) < ξ or ar (κ) < ι, then there exists a

bounded linear-context Cθ̃+ such that Cθ̃+ C {〈∅, o〉}V θ̃+.
(2) Suppose that θ̃ is bounded. Then, there exists a bounded affine-context Dθ̃ such that

Dθ̃ C θ̃ V {〈∅, o〉}.
By Lemma 24, from a given bounded context-type θ̃′ V θ̃+, one can construct a bounded
affine-context having this context-type as Cθ̃+ [Dθ̃′], except the case of that #(dom(Γ)) = ξ

and ar (κ) = ι. See Appendix C.1 for the boundary case; actually, terms having such
context-type are of a special form.

The following is the key lemma, which shows that for any bounded context-type, one can
construct a context D that has the context-type and contains the hard term tHard,k.

I Lemma 25. Suppose that C C θ̃′ V θ̃+ for some bounded affine-context C. Then for
some m0, for every m ≥ m0, there exists a bounded affine-context D of size m such that
D C θ̃′ V θ̃+ and D � tHard,k.

Proof. Let 〈Γ, κ〉 be such that θ̃+ C 〈Γ, κ〉. Note that θ̃′ and θ̃+ are also bounded.
(a) #(dom(Γ)) < ξ or ar (κ) < ι: For each l ≥ 0, let Dl be as follows, where cl(a) is the

term c(. . . c(a) . . .) that c occurs l times and Dθ̃′ and Cθ̃+ are the ones in Lemma 24:

Dl , Cθ̃+ [b(tHard,k, b(cl(a), []))][Dθ̃′].

ThenDl � tHard,k is obvious, andDl C θ̃′ V θ̃+ by Proposition 22 (since b(tHard,k, b(cl, [])) C
{〈∅, o〉}V {〈∅, o〉}). Therefore, the claim has been proved by using these D1, D2, · · · .

(b) Otherwise: Then, Γ `ST C[⊥] : κ, C[⊥] is bounded, and #(dom(Γ)) = ξ and
ar (κ) = ι, so C should be of the form λ_.C0 (see Appendix C.1). By Proposition 23,
C0 C θ̃′ V θ̃0 and λ_.[] C θ̃0 V θ̃ for some θ̃0. Then ar (C0) < ar (C) ≤ ι and θ̃0 6= ∅
by C0 6= ⊥ (since ξ > 0). Therefore by (a), for some m′0, there is {D′l}l≥m′0 such that
D′l C θ̃′ V θ̃0, D′l � tHard,k, and |D′l| = l for each l ≥ m′0. Let Dl = λ_.D′l. Then
Dl � tHard,k is obvious, and Dl C θ̃′ V θ̃+ by Proposition 22. Therefore, the claim has been
proved by using these Dm′0

, Dm′0+1, · · · . J

We are now ready to prove the main lemma.

Proof (of Lemma 14). Let m , max{mθ̃′Vθ̃+ | C C θ̃′ V θ̃+ for some bounded C}, where
each mθ̃′Vθ̃+ is the m0 in Lemma 25. Indeed such m exists, since the number of bounded
context-types is finite. Recall E[C] ∈ Λ̂n(k, ι, ξ). Let Ẽ be a linear-context such that
E[C] = Ẽ[C[t]] for some t or E[C] = Ẽ[C]. For the sake of brevity, we only write the case of
that C is linear-context (i.e., E[C] = Ẽ[C[t]]). Since Ẽ[C[t]] is minimal, ∅ ` Ẽ[C[t]] : θ̄ for
some θ̄ :: o (Theorem 18). Then Ẽ[C[t]] C ∅V {〈∅, o〉} (by Ẽ[C[t]] 6= ⊥). By Proposition 23,
there exist θ̃ and θ̃′ such that Ẽ C θ̃ V {〈∅, o〉}, C C θ̃′ V θ̃, and t C ∅V θ̃′. By Lemma 25
(and C 6= ⊥), there exists a bounded linear-context D C θ̃′ V θ̃ such that D � tHard,k and
|D| = |C|. Therefore Ẽ[D[t]] C ∅V {〈∅, o〉} (hence, ∅ ` Ẽ[D[t]] : ∧{o}) by Proposition 22,
and thus E[D] is minimal (Theorem 18). Hence, E[D] ∈ Λ̂n(k, ι, ξ). J

7 Related Work

Ong [21] proved the k-EXPTIME completeness of higher-order model checking. There have
also been results on parameterized complexity [15, 17, 18] and the complexity of subclasses
of the problem [18, 5]. To our knowledge, however, they are all about the worst-case
complexity. Despite the extremely high worst-case complexity, practical model checkers have

FSCD 2020

21:16 On Average-Case Hardness of Higher-Order Model Checking

been developed that run quite fast for typical inputs [14, 4, 23, 28], which has led to the
motivating question for our work: is higher-order model checking really hard in the average
case?

Technically, closest to ours is the work of Asada et al. [26, 1] on a quantitative analysis
of the length of β-reduction sequences of simply-typed λ-terms. In fact, our use of the
tree-version of infinite monkey theorem (to show that almost every term contains a “hard”
term), as well as the tree decomposition [1] has been inspired by their work and other studies
on quantitative analysis of the λ-calculus and combinatory logics [8, 2]. The main new
difficulty was that, unlike in the case of the length of β-reduction sequences, even if t is
a “hard” term to model-check, a term C[t] that contains t as a subterm may not be hard
to model-check, because t may not actually be used in C[t] or may be irrelevant for the
property to be checked. This has led us to restrict terms to “minimal ones” that do not
contain unnecessary subterms. The restriction turned out to be natural also for our goal: we
wish to model the average case that arises in the actual applications to program verification,
and the restriction to minimal terms helps us exclude out unlikely inputs.

We have used an intersection type system to characterize minimal terms. Related type
systems have been studied in the context of useless code elimination [6, 7, 13]. In particular,
Daminani [7] also used an intersection type system. To our knowledge, however, previous
studies do not provide a complete characterization of minimal terms (especially in the presence
of recursion).

There has been much interest in the average-case complexity in the field of computational
complexity: see [3] for a good survey. In their terminology, our ultimate goal is to answer
whether (HOMCk(·, ·),U) belongs to AvgδDTIME(f(n)) (the class of distributional problems
that can be solved in time f(n) for at least (1 − δ(n))-fraction of the inputs of size n),2
where HOMCk(·, ·) is the higher-order model checking problem of order k, U is a uniform
distribution on inputs of each size n, δ is a function that is asymptotically smaller than λn.1,
and f(n) is a function asymptotically much smaller than expk(cn) (a k-fold exponential
function). The result obtained in the present paper (Theorem 7) is not yet of this form, and
is rather a mixture of average-case and worst-case analysis, which may be of independent
interest from the perspective of complexity theory.

8 Conclusion

We have studied a mixture of average-case and worst-case complexity of higher-order model
checking, and shown that for almost every minimal λY -term t of order-k, the higher-order
model checking problem specialized for t is k-EXPTIME hard with respect to the size of
a tree automaton. To our knowledge, this is the first result on the average-case hardness
of higher-order model checking. To obtain the result, we have given a complete type-based
characterization of “minimal” terms that contain no useless subterms, which may be of
independent interest. Pure average-case analysis of the hardness of higher-order model
checking is left for future work.

2 A similar notion has also been studied under the name “generic-case complexity” [11].

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 21:17

References
1 Kazuyuki Asada, Naoki Kobayashi, Ryoma Sin’ya, and Takeshi Tsukada. Almost Every Simply

Typed Lambda-Term Has a Long Beta-Reduction Sequence. Logical Methods in Computer
Science, 15(1), 2019. doi:10.23638/LMCS-15(1:16)2019.

2 Maciej Bendkowski, Katarzyna Grygiel, and Marek Zaionc. On the likelihood of normalization
in combinatory logic. J. Log. Comput., 27(7):2251–2269, 2017. doi:10.1093/logcom/exx005.

3 Andrej Bogdanov and Luca Trevisan. Average-case complexity. CoRR, abs/cs/0606037, 2006.
arXiv:cs/0606037.

4 Christopher H. Broadbent and Naoki Kobayashi. Saturation-based model checking of higher-
order recursion schemes. In Proceedings of Computer Science Logic (CSL), volume 23 of
LIPIcs, pages 129–148. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013. doi:10.
4230/LIPIcs.CSL.2013.129.

5 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski. Linearity in higher-order
recursion schemes. PACMPL, 2(POPL):39:1–39:29, 2018. doi:10.1145/3158127.

6 Mario Coppo, Ferruccio Damiani, and Paola Giannini. Refinement types for program analysis.
In Proceedings of International Static Analysis Symposium (SAS), volume 1145 of Lecture
Notes in Computer Science, pages 143–158. Springer, 1996. doi:10.1007/3-540-61739-6_39.

7 Ferruccio Damiani. A conjunctive type system for useless-code elimination. Mathematical
Structures in Computer Science, 13(1):157–197, 2003. doi:10.1017/S0960129502003869.

8 René David, Katarzyna Grygiel, Jakub Kozik, Christophe Raffalli, Guillaume Theyssier, and
Marek Zaionc. Asymptotically almost all λ-terms are strongly normalizing. Logical Methods
in Computer Science, 9(1), 2013. doi:10.2168/LMCS-9(1:2)2013.

9 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
1 edition, 2009. doi:10.1017/CBO9780511801655.

10 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of Lecture Notes in Computer Science.
Springer, 2002. doi:10.1007/3-540-36387-4.

11 Ilya Kapovich, Alexei G. Myasnikov, Paul Schupp, and Vladimir Shpilrain. Generic-case
complexity, decision problems in group theory and random walks. CoRR, abs/math/0203239,
2002. URL: https://arxiv.org/abs/math/0203239.

12 Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order pushdown trees are
easy. In Proceedings of International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS), volume 2303 of Lecture Notes in Computer Science, pages
205–222. Springer, 2002. doi:10.1007/3-540-45931-6_15.

13 Naoki Kobayashi. Type-based useless-variable elimination. Higher-Order and Symbolic
Computation, 14(2-3):221–260, 2001. doi:10.1023/A:1012944815270.

14 Naoki Kobayashi. Model-checking higher-order functions. In Proceedings of ACM SIGPLAN
conference on Principles and Practice of Declarative Programming (PPDP), pages 25–36. ACM
Press, 2009. doi:10.1145/1599410.1599415.

15 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order pro-
grams. In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming
Languages (POPL), pages 416–428. ACM Press, 2009. doi:10.1145/1594834.1480933.

16 Naoki Kobayashi. Model checking higher-order programs. Journal of the ACM, 60(3), 2013.
doi:10.1145/2487241.2487246.

17 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In Proceedings of IEEE Symposium on
Logic in Computer Science (LICS), pages 179–188. IEEE Computer Society Press, 2009.
doi:10.1109/LICS.2009.29.

18 Naoki Kobayashi and C.-H. Luke Ong. Complexity of Model Checking Recursion Schemes
for Fragments of the Modal Mu-Calculus. Logical Methods in Computer Science, 7(4), 2012.
doi:10.2168/LMCS-7(4:9)2011.

FSCD 2020

https://doi.org/10.23638/LMCS-15(1:16)2019
https://doi.org/10.1093/logcom/exx005
http://arxiv.org/abs/cs/0606037
https://doi.org/10.4230/LIPIcs.CSL.2013.129
https://doi.org/10.4230/LIPIcs.CSL.2013.129
https://doi.org/10.1145/3158127
https://doi.org/10.1007/3-540-61739-6_39
https://doi.org/10.1017/S0960129502003869
https://doi.org/10.2168/LMCS-9(1:2)2013
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1007/3-540-36387-4
https://arxiv.org/abs/math/0203239
https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1023/A:1012944815270
https://doi.org/10.1145/1599410.1599415
https://doi.org/10.1145/1594834.1480933
https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1109/LICS.2009.29
https://doi.org/10.2168/LMCS-7(4:9)2011

21:18 On Average-Case Hardness of Higher-Order Model Checking

19 Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. Predicate abstraction and CEGAR for
higher-order model checking. In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 222–233. ACM Press, 2011. doi:10.
1145/1993498.1993525.

20 Yoshiki Nakamura, Kazuyuki Asada, Naoki Kobayashi, Ryoma Sin’ya, and Takeshi Tsukada.
On average-case hardness of higher-order model checking. A full version. Available from
https://www.kb.is.s.u-tokyo.ac.jp/~koba/papers/OnAverageCaseHOMC.pdf.

21 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In
Proceedings of IEEE Symposium on Logic in Computer Science (LICS), pages 81–90. IEEE
Computer Society Press, 2006. doi:10.1109/LICS.2006.38.

22 C.-H. Luke Ong and Steven Ramsay. Verifying higher-order functional programs with pattern-
matching algebraic data types. In Proceedings of ACM SIGPLAN/SIGACT Symposium
on Principles of Programming Languages (POPL), pages 587–598. ACM Press, 2011. doi:
10.1145/1925844.1926453.

23 Steven Ramsay, Robin Neatherway, and C.-H. Luke Ong. A type-directed abstraction refine-
ment approach to higher-order model checking. In Proceedings of ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages (POPL), pages 61–72. ACM Press, 2014.
doi:10.1145/2535838.2535873.

24 Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. In
Proceedings of International Colloquium on Automata, Languages, and Programming (ICALP),
volume 6756 of Lecture Notes in Computer Science, pages 162–173. Springer, 2011. doi:
10.1007/978-3-642-22012-8_12.

25 Sylvain Salvati and Igor Walukiewicz. Recursive schemes, krivine machines, and collapsible
pushdown automata. In Proceedings of International Workshop on Reachability Problems
(RP), volume 7550 of Lecture Notes in Computer Science, pages 6–20. Springer, 2012. doi:
10.1007/978-3-642-33512-9_2.

26 Ryoma Sin’ya, Kazuyuki Asada, Naoki Kobayashi, and Takeshi Tsukada. Almost every
simply typed λ-term has a long β-reduction sequence. In Proceedings of International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS),
volume 10203 of Lecture Notes in Computer Science, pages 53–68. Springer, 2017. doi:
10.1007/978-3-662-54458-7_4.

27 Richard Statman. On the lambda Y calculus. APAL, 130(1-3):325–337, 2004. doi:10.1016/
j.apal.2004.04.004.

28 Ryota Suzuki, Koichi Fujima, Naoki Kobayashi, and Takeshi Tsukada. Streett automata
model checking of higher-order recursion schemes. In Proceedings of International Conference
on Formal Structures for Computation and Deduction (FSCD), volume 84 of LIPIcs, pages
32:1–32:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.
FSCD.2017.32.

A Supplementary Materials for Section 5

This section sketches a proof of Theorem 18 in Section 5, as well as that of Proposition 11.
The full proofs can be found in the long version [20].

A.1 A Characterization of the Minimality

We give a technically convenient characterization of the minimality. Let t be a closed and
ground-typed term and u be a subterm of t, i.e. t = C[u] for some linear-context C. Recall
that t is minimal if it has no useless subterm; so in particular u must be “used”. Intuitively

https://doi.org/10.1145/1993498.1993525
https://doi.org/10.1145/1993498.1993525
https://www.kb.is.s.u-tokyo.ac.jp/~koba/papers/OnAverageCaseHOMC.pdf
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.1145/1925844.1926453
https://doi.org/10.1145/1925844.1926453
https://doi.org/10.1145/2535838.2535873
https://doi.org/10.1007/978-3-642-22012-8_12
https://doi.org/10.1007/978-3-642-22012-8_12
https://doi.org/10.1007/978-3-642-33512-9_2
https://doi.org/10.1007/978-3-642-33512-9_2
https://doi.org/10.1007/978-3-662-54458-7_4
https://doi.org/10.1007/978-3-662-54458-7_4
https://doi.org/10.1016/j.apal.2004.04.004
https://doi.org/10.1016/j.apal.2004.04.004
https://doi.org/10.4230/LIPIcs.FSCD.2017.32
https://doi.org/10.4230/LIPIcs.FSCD.2017.32

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 21:19

u in C[u] is used if t = C[u] −→∗ E[u] for some evaluation context E,3 but this criterion is
incorrect. Consider, for example,

t = a
(
(λx.x)u, ⊥u

)
−→ a(u, ⊥u),

where u appears under an evaluation context E = a([],⊥u) after the reduction but the
underlined occurrence of u is indeed useless. This example suggests that we need to distinguish
different occurrences of the same term.

Let ` be a special tree constructor of arity 1 such that ` /∈ Σ. We call this symbol a
label and use it to mark focused occurrences of (sub)terms. The labelling operation (−)` is
defined, for a term t of type κ1 → . . . → κk → o, by t` := λz1. . . . λzk.`(t z1 . . . zk). For a
term t possibly having `, we write \(t) for the term obtained by removing `.

A term is labelled if it contains `; otherwise it is unlabelled. A labelled finite tree V is
well-labelled if V = D[`(u)] and \(u) 6= ⊥ for some D and u.

I Theorem 26 (Characterization of the minimality). Let t be a closed and ground-typed term
over Σ. Then, t is minimal if and only if for every 〈C, s〉 such that t = C[s] and s 6= ⊥, there
exists a finite well-labelled tree V such that C[s`] −→∗w V .

A.2 Proof Sketch of Proposition 11
Let t be a closed and ground-typed term. Assume that t is minimal, and let s be a non-
⊥, closed and ground-typed subterm of t. Then t = C[s] for some linear-context C. By
Theorem 26, the value tree of C[s`] contains `, say T (C[s`]) = D[`(V)]. One can show
that V is the value tree of s, which implies that T (C[s`]) contains T (s) as a subtree. Since
T (t) = T (C[s]) is obtained by removing ` from T (C[s`]), it also contains T (s) as a subtree.

A.3 Proof Sketch of Theorem 18
Since we shall study possibly labelled terms, we first introduce a typing rule for `(t):

Θ ` t : o (`)
Θ ` `(t) : o

.

Note that the rule for `(t) differs from that for tree constructors: the argument of ` must be
of type o, whereas those of a tree constructor can be of type ⊥ in addition to o. The above
rule ensures that ∅ ` `(t) : o implies \(t) 6= ⊥. So we have the following lemma.

I Lemma 27. Let V be a labelled finite tree. If ∅ ` V : o, then V is well-labelled.

We use Subject Reduction and Subject Expansion in the soundness and completeness
proofs of our system, similar to proofs for other intersection type systems. However the
standard version of Subject Reduction and Subject Expansion does not hold for our system
since minimality is not preserved by reduction nor expansion. For example, consider(

λf.a
(
f (λx_.x), f (λ_y.y)

))
(λg.g b c) −→ a

(
(λg.g b c) (λx_.x), (λg.g b c) (λ_y.y)

)
,

where a, b and c are tree constructors; the left-hand-side is minimal but the right-hand-side
is not. In order to retain minimality, the right-hand-side has to be approximated:

a
(
(λg.g b c) (λx_.x), (λg.g b c) (λ_y.y)

)
w a

(
(λg.g b⊥) (λx_.x), (λg.g⊥ c) (λ_y.y)

)
.

3 Although evaluation contexts are not explicitly defined in Section 2, they are implicitly given in
Definition 2 and their concrete definition should be clear.

FSCD 2020

21:20 On Average-Case Hardness of Higher-Order Model Checking

The next lemma is a correct version, which takes account of the approximation relation.

I Lemma 28 (Subject Reduction / Subject Expansion). Assume that s1 v t1 and Θ ` s1 : θ̄.
(1) If t1 −→∗ t2, then there exists s2 v t2 with Θ ` s2 : θ̄ such that s1 −→∗w s2. Further-

more, if s1 is labelled, we can choose s2 so that it is labelled.
(2) If t0 −→∗ t1, then there exists s0 v t0 with Θ ` s0 : θ̄ such that s0 −→∗w s1.

The proof of completeness is rather straightforward. Note that, given a term t and a tree
V with t −→∗w V , Subject Expansion induces a derivation of ∅ ` t′ : θ̄ for some t′ v t. The
key to the completeness proof is to find sufficiently large V so that t′ = t.

I Theorem 29 (completeness). Let t be any closed and ground-typed term over Σ. If t is
minimal, then ∅ ` t : θ̄ for some θ̄.

Proof sketch. Since t is minimal, by Theorem 26, for each 〈C, s〉 such that t = C[s] and
s 6= ⊥, one can find a finite well-labelled tree VC = DC [`(uC)] such that

C[s`] −→∗w VC = DC [`(uC)]. (1)

We can assume without loss of generality that ` does not occur in DC . Let V =
⊔
C DC [\uC],

where C ranges over linear contexts such that t = C[s] holds for some s 6= ⊥. This is
well-defined since DC [\uC] v T (t) for every C. Since V is an unlabelled tree, ∅ ` V : θ̄ for
some θ̄. Then by Subject Expansion (Lemma 28(2)), there exists t′ v t such that t′ −→∗w V
and ∅ ` t′ : θ̄.

It suffices to show that t′ = t. Assume t′ @ t for contradiction. By the assumption, there
exists 〈C, s〉 such that t = C[s], s 6= ⊥, and t′ v C[⊥]. Then

C[s`] w C[⊥] w t′ −→∗w V w DC [\uC],

and thus C[s`] −→∗w DC [\uC]. This together with (1) implies that DC [`(uC)] tDC [\uC] is
well-defined. This means `(uC) t \(uC) is well-defined, which contradicts to the assumption
that \(uC) 6= ⊥. J

The soundness proof requires another trick, since Subject Reduction alone does not ensure
that a label eventually appears under an evaluation context in the presence of divergence. A
term is Y-free if it does not have Y. The evaluation of a Y-free term always terminates,
and the soundness of the type system for Y-free terms is relatively easy to prove. So we aim
to remove Y in a given term before applying Subject Reduction, preserving its type.

Consider the rewriting rule C[Y t] ↪→ C[t (Y t)], which is allowed to be applied to any
occurrence of Y t (not restricted to those under evaluation contexts). Then �Y is defined as
↪→∗w. The next lemma is a key to the soundness proof, reflecting the inductive nature of
the rules for Y in our type system.

I Lemma 30. Assume that Θ ` t : θ̄. Then there exists a Y-free term s such that t �Y s

and Θ ` s : θ̄. Furthermore, if t is labelled, one can choose s so that s is also labelled.

I Theorem 31 (soundness). Let t be any closed and ground-typed term over Σ. If ∅ ` t : θ̄
for some θ̄, then t is minimal.

Proof sketch. If θ̄ = >, then t = ⊥ and thus t is minimal. Otherwise, we can assume
without loss of generality that θ̄ = o. By Theorem 26, it suffices to show that, for every 〈C, s〉
with t = C[s] and s 6= ⊥, there exists a finite well-labelled tree V such that C[s`] −→∗w V .

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 21:21

Assume that t = C[s] and s 6= ⊥. Since ∅ ` C[s] : o and s 6= ⊥, one can show that
∅ ` C[s`] : o. By Lemma 30, there exists a Y-free labelled term ∅ ` u : o such that
C[s`] �Y u. Since u is Y-free, its evaluation terminates, i.e. u −→∗ W for some tree W . By
Subject Reduction (Lemma 28(1)), there exists a labelled term V vW such that u −→∗w V
and ∅ ` V : o.

It suffices to show that C[s`] −→∗w V and that V is a well-labelled tree. The former
claim follows from C[s`] �Y u −→∗w V because �Y can be seen as a kind of reduction. To
prove the latter, observe that V is a tree since every approximation of a tree is a tree. So V
as a well-typed and labelled tree is well-labelled by Lemma 27. J

B Proof of Proposition 22 and 23

I Lemma 32. Suppose that C is a linear-context. If C C θ̃′ V τ̃ and C ′ C θ̃′′ V θ̃′, then
C[C ′] C θ̃′′ V {τ̃}.

Proof. Let θ̃′ = {τ̃ ′1, . . . , τ̃ ′n}. By C ′ C θ̃′′ V θ̃′, there exists {〈θ̃′′i,j , C ′i,j〉}i∈[n],j∈[ki] such that
C ′ =

⊔
i∈[n],j∈[ki] C

′
i,j , θ̃′′ =

⋃
i∈[n],j∈[ki] θ̃

′′
i,j , and C ′i,j C θ̃′′i,j V τ̃ ′i . Here, we can assume that

k1 = · · · = kn (so, we denote them by k). Then from the derivation tree of C C θ̃′ V τ̃ (see
the left-hand side below), we can construct a derivation tree of C[C ′] C θ̃′′ V τ̃ (see the
right-hand side below) by copying the form of the derivation tree of C C θ̃′ V τ̃ as follows,
where τ̃ = 〈Θ, τ〉 and f : [m]→ [n′] is a surjective map:

x C τ̃ ′f(1) . . . x C τ̃ ′f(m)

.... T
Θ ` C[x] : τ

 copy T

C ′f(1),1 C θ̃
′′
f(1),1 V τ̃ ′f(1) . . . C ′f(m),1 C θ̃

′′
f(m),1 V τ̃ ′f(m)

.... T
Θ ` C[

⊔
i∈[n] C

′
i,1] : τ . . .

.

.... T
Θ ` C[

⊔
i∈[n] C

′
i,k] : τ

(∧)
Θ ` C[C ′] : τ

. J

Proof of Proposition 22. Let θ̃′ = {τ̃ ′1, . . . , τ̃ ′n′} and θ̃ = {τ̃1, . . . , τ̃n}. By C C θ̃′ V θ̃, there
exists {〈θ̃′i, Ci〉}i∈[m] such that C =

⊔
i∈[m] Ci, θ̃′ =

⋃
i∈[m] θ̃

′
i, and Ci C θ̃′i V τ̃f(i). By

C ′ C θ̃′′ V θ̃′, there exists {〈θ̃′′j , C ′′j 〉}j∈[n′] such that C ′ =
⊔
j∈[n′] C

′′
j , θ̃′′ =

⋃
j∈[n′] θ̃

′′
j , and

C ′′j C θ̃
′′
j V {τ̃j}. Let C ′i =

⊔
j∈[n′];τ̃ ′

j
∈θ̃′

i
C ′′j and let θ̃′′i =

⋃
j∈[n′];τ̃ ′

j
∈θ̃′

i
θ̃′′j . Then C ′i C θ̃′′i V θ̃′i.

By Lemma 32, Ci[C ′i] C θ̃′′i V τ̃f(i). Therefore, C[C ′] C θ̃′′ V θ̃. J

I Lemma 33. Suppose that C is a linear-context. If C[C ′] C θ̃′′ V τ̃ , then C C θ̃′ V τ̃ and
C ′ C θ̃′′ V θ̃′ for some θ̃′.

Proof. Then (the derivation tree of) C[C ′] C θ̃′′ V τ̃ should be of the form in the right-hand
side below, where τ̃ = 〈Θ, τ〉, C ′ =

⊔
i∈[m] C

′
i, and θ̃′′ =

⋃
i∈[m] θ̃

′′
i . We let θ̃′ = {τ̃ ′1, . . . , τ̃ ′m}.

Then, C ′ C θ̃′′ V θ̃′ is immediate and C C θ̃′ V τ̃ is shown by replacing each subterm arise
from t to x (see the left-hand side below):

x C τ̃ ′1 . . . x C τ̃ ′m
.... T

Θ ` C[x] : τ

C ′1 C θ̃
′′
1 V τ̃ ′1 . . . C ′m C θ̃

′′
m V τ̃ ′m

.... T
Θ ` C[C ′] : τ

. J

Proof of Proposition 23. Let θ̃′′ = {τ̃ ′′1 , . . . , τ̃ ′′n′′} and θ̃ = {τ̃1, . . . , τ̃n}. By C[C ′] C θ̃′′ V θ̃,
there exist a surjective map f : [m] → [n] and a sequence {〈Ci, C ′i, θ̃′′i 〉}i∈[m] such that
Ci[C ′i] C θ̃′′i V τ̃f(i), C =

⊔
i∈[m] Ci, C ′ =

⊔
i∈[m] C

′
i, and θ̃′′ =

⋃
i∈[m] θ̃

′′
i (see also the full

version [20]). By Lemma 33, Ci C θ̃′i V τ̃f(i) and C ′i C θ̃′′i V θ̃′i for some θ̃′i. We now let
θ̃′ =

⋃
j∈[m] θ̃

′
i. Then, both C ′ C θ̃′′ V θ̃′ and C C θ̃′ V θ̃ are immediate. J

FSCD 2020

21:22 On Average-Case Hardness of Higher-Order Model Checking

C Proof of Lemma 24

The size of a simple type κ and a simple type environment Γ, written |κ| and |Γ| respectively, is
defined by: |κ| , 1 if κ = o, |κ| , 1+|κ1|+|κ2| if κ = κ1 → κ2, and |Γ| , 1+

∑
x∈dom(Γ) |Γ(x)|.

I Definition 34. The term tΓ,κ is inductively defined as follows, where in the second case,
l = min{i ∈ [ξ] | zi ∈ dom(Γ)}; and in the third case, l = min{i ∈ [ξ] | zi 6∈ dom(Γ)}:

tΓ,κ ,

a (κ = o and Γ = ∅)
b(zlt∅,κ1 . . . t∅,κm , tΓ′,o) (κ = o and Γ = (Γ′, zl : κ1 → . . .→ κm → o))
λzl.t(Γ,zl:κ′),κ′′ (κ = κ′ → κ′′ and #(dom(Γ)) < ξ)
(λz1.t(z1:o),κ) tΓ,o (κ = κ′ → κ′′ and ar (κ) < ι)
undefined (otherwise)

.

I Proposition 35. Suppose that 〈Γ, κ〉 is (〈k, ι, ξ〉-)bounded. If #(dom(Γ)) < ξ or ar (κ) < ι,
then (1) tΓ,κ is defined, (2) Γ `ST tΓ,κ : κ, and (3) tΓ,κ is bounded.

Proof. By a straightforward induction on the parameter 〈|κ|, |Γ|〉. J

We now extend the above for intersection types.

I Definition 36. The term tΘ,θ̄ is inductively defined as follows, where in the second case,
l = min{i ∈ [ξ] | zi ∈ dom(Θ)}; and in the third case, l = min{i ∈ [ξ] | zi 6∈ dom(Θ)}:

tΘ,θ̄ ,

a (θ̄ = o and Θ = ∅)
b(
⊔
i∈[n] zlt∅,θ1

i
. . . t∅,θm

i
, tΘ′,o) (θ̄ = o and Θ = (Θ′, zl :

∧
i∈[n] θ

1
i → . . .→ θmi → o))

λzl.t(Θ,zl:θ′),τ ′′ (θ̄ = θ′ → τ ′′ and #(dom(Θ)) < ξ)
(λz1.t(z1:∧{o}),θ̄) tΘ,o (θ̄ = θ′ → τ ′′ and ar (κ) < ι)⊔
i∈[n] tΘ,τi (θ̄ =

∧
i∈[n] τi and n ≥ 1)

⊥κ (θ̄ = >κ and Θ = ∅)
undefined (otherwise)

.

I Proposition 37. Suppose that 〈Θ, θ̄〉 :: 〈Γ, κ〉 for some bounded 〈Γ, κ〉. If #(dom(Γ)) < ξ,
ar (κ) < ι, or 〈Θ, θ̄〉 = 〈∅,>〉, then (1) tΘ,θ̄ is defined, (2) tΘ,θ̄ v tΓ,κ, (3) Θ ` tΘ,θ̄ : θ̄, and
(4) tΘ,θ̄ is bounded.

Proof. By a straightforward induction on the parameter 〈|κ|, |Γ|〉. The existence of the join
in each case can be ensured by the assumption (2). J

We now extend the above for context-types to prove Lemma 24.

I Definition 38. The linear-context Cτ̃ is inductively defined as follows, where in the second
case, l = min{i ∈ [ξ] | zi 6∈ dom(Θ)}:

C〈Θ,τ〉 ,

b(tΘ,o, []) (τ = o)
λzl.C〈(Θ,zl:θ′),τ ′′〉 (τ = θ′ → τ ′′ and #(dom(Θ)) < ξ)
(λz1.t(z1:∧{o}),τ) C〈Θ,o〉 (τ = θ′ → τ ′′ and ar (τ) < ι)
undefined (otherwise)

. For each θ̃+ =

{τ̃1, . . . , τ̃n}, let Cθ̃+ ,
⊔
i∈[n] Cτ̃i

. This is well-defined thanks to Proposition 37(2).

I Proposition 39. Suppose that θ̃+ :: 〈Γ, κ〉 for some bounded 〈Γ, κ〉. If #(dom(Γ)) < ξ or
ar (κ) < ι, then (1) Cθ̃+ is defined, (2) Cθ̃+ C {〈∅, o〉}V θ̃, and (3) Cθ̃+ is bounded.

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 21:23

Proof. By a straightforward induction on the parameter 〈|κ|, |Γ|〉. J

I Definition 40. The linear-context Dτ̃ is defined as follows, where in the first case, l =
min{i ∈ [ξ] | zi ∈ dom(Θ)}; and in the second case, τ = θ1 → . . .→ θm → o:

D〈Θ,τ〉 ,

{
(λzl.D〈Θ′,τ〉) t∅,θl

(Θ = (Θ′, zl : θl))
c([] t∅,θ1 . . . t∅,θm) (Θ = ∅)

. Let Dθ̃+ ,
⊔
i∈[n]Dτ̃i for each θ̃+ =

{τ̃1, . . . , τ̃n}. This is well-defined thanks to Proposition 37(2). Also, specially, let D∅ , a.

I Proposition 41. Suppose that θ̃ :: 〈Γ, κ〉 for some bounded 〈Γ, κ〉. Then, (1) Dθ̃ is defined,
(2) Dθ̃ C θ̃ V {〈∅, o〉}, and (3) Dθ̃ is bounded.

Proof. By a straightforward induction on the parameter 〈|κ|, |Γ|〉. J

As a consequence of Proposition 39 and 41, Lemma 24 has been proved.

C.1 On the Boundary Case of Lemma 24(1)
Here, we consider the boundary case of Lemma 24(1), i.e., Γ `ST t : κ, t is 〈k, ι, ξ〉-bounded,
#(dom(Γ)) = ξ, and ar (κ) = ι. Actually in this case, t should be of a special form.

I Lemma 42. Suppose that
(1) Γ `ST t : κ,
(2) t is 〈k, ι, ξ〉-bounded,
(3) #(dom(Γ)) = ξ, and
(4) ar (κ) = ι.
Then, t is α-equivalent to a term of the form λ_.t1.

Proof. By ξ > 1, t 6= x and t 6= ⊥. By ι > 0, t 6= a(t1, . . . , tΣ(a)). By ar (κ) = ι, t 6= t1t2
and t 6= Yt1. Therefore t is of the form λx̄.t1. By that t is bounded and #(dom(Γ)) = ξ,
the last rule of Γ `ST λx̄.t1 : κ should be (Abs2), so Γ `ST t1 : κ′′, where κ = κ′ → κ′′. Then
x̄ does not occur in t1 as a free variable. Therefore t is α-equivalent to the term λ_.t1. J

FSCD 2020

	Introduction
	Preliminaries
	lambda Y-Terms as Tree Generators
	Higher-Order Model Checking

	Main Theorem
	Minimal Terms
	Proof Outline

	Infinite Monkey Theorem for Minimal Terms
	Intersection Types for Minimal Terms
	Proof of the Main Lemma (Lemma 14)
	Context-Types
	Proof of Lemma 14

	Related Work
	Conclusion
	Supplementary Materials for Section 5
	A Characterization of the Minimality
	Proof Sketch of Proposition 11
	Proof Sketch of Theorem 18

	Proof of Proposition 22 and 23
	Proof of Lemma 24
	On the Boundary Case of Lemma 24(1)

