
Size-Preserving Translations from Order-(n + 1)
Word Grammars to Order-n Tree Grammars
Kazuyuki Asada
Tohoku University, Sendai, Japan
http://www.riec.tohoku.ac.jp/~asada/
asada@riec.tohoku.ac.jp

Naoki Kobayashi
The University of Tokyo, Japan
http://www-kb.is.s.u-tokyo.ac.jp/~koba/
koba@kb.is.s.u-tokyo.ac.jp

Abstract
Higher-order grammars have recently been studied actively in the context of automated verification
of higher-order programs. Asada and Kobayashi have previously shown that, for any order-(n+ 1)
word grammar, there exists an order-n grammar whose frontier language coincides with the language
generated by the word grammar. Their translation, however, blows up the size of the grammar,
which inhibited complexity-preserving reductions from decision problems on word grammars to those
on tree grammars. In this paper, we present a new translation from order-(n+ 1) word grammars to
order-n tree grammars that is size-preserving in the sense that the size of the output tree grammar
is polynomial in the size of an input tree grammar. The new translation and its correctness proof
are arguably much simpler than the previous translation and proof.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases higher-order grammar, word language, tree language, complexity

Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.22

Related Version A full version of the paper is available at http://www.riec.tohoku.ac.jp/~asada/
papers/spWtoT.pdf.

Funding This work was supported by JSPS Kakenhi 15H05706, 18K11156, and 20H00577.

Acknowledgements We would like to thank anonymous referees for useful comments.

1 Introduction

It is well known that there is a close relationship between context-free word languages
and regular tree languages: for any regular tree language L, its frontier language, i.e., the
word language consisting of the sequence of leaf symbols of each tree in L, is context-free;
conversely, for any context-free language with no empty sequence, the set of parse trees
is a regular tree language. Damm [6] has shown that this correspondence generalizes to
safe higher-order languages: for any order-n (safe) language L, there is a corresponding
order-(n+ 1) word language that corresponds to the frontier language of L, and vice versa.
Asada and Kobayashi [1] extended the result to unsafe higher-order languages. The results
allow us to reduce a problem on order-(n + 1) word languages (like linear-time property
verification of order-(n+1) functional programs) to a problem on order-n (but tree) languages.
Such a reduction may be useful, since the cost of various problems on a higher-order language
(such as HORS model checking) is usually in the tower of exponentials whose height is the
order of the language.

© Kazuyuki Asada and Naoki Kobayashi;
licensed under Creative Commons License CC-BY

5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020).
Editor: Zena M. Ariola; Article No. 22; pp. 22:1–22:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8782-2119
http://www.riec.tohoku.ac.jp/~asada/
mailto:asada@riec.tohoku.ac.jp
https://orcid.org/0000-0002-0537-0604
http://www-kb.is.s.u-tokyo.ac.jp/~koba/
mailto:koba@kb.is.s.u-tokyo.ac.jp
https://doi.org/10.4230/LIPIcs.FSCD.2020.22
http://www.riec.tohoku.ac.jp/~asada/papers/spWtoT.pdf
http://www.riec.tohoku.ac.jp/~asada/papers/spWtoT.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Size-Preserving Translations from Word Grammars to Tree Grammars

Unfortunately, however, the translation of Asada and Kobayashi [1] from order-(n+ 1)
word grammars to order-n tree grammars (which is the hard direction) blows up the size of
the grammar: the output tree grammar is hyper-exponential in the size of an input word
grammar, which cancels off the benefit of reducing the order of the grammar. Also, both the
translation and correctness proof were very complex. Clemente et al. [5] have shown another
translation from order-(n+ 1) word grammars to order-n tree grammars (as a component of
their algorithm for the diagonal problem), but their translation also suffers from the same
problem of blowing up the size of the grammar.

In the present paper, we present a much simpler translation from order-(n + 1) word
grammars to order-n tree grammars, where the size of the output grammar is polynomial in
the size of an input grammar.1

Some of the known results on the complexity of decision problems on higher-order
languages follow immediately from our result. For example, Parys [12] has shown that the
complexity of the diagonal problem is n-EXPTIME-complete for order-n tree grammars and
(n− 1)-EXPTIME-complete for order-n word grammars. He separately discussed the tree
and word cases, but using our result, the upper-bound for the word-case follows immediately
from the tree case. (Note that the hardness follows from the translation of [1] in the
opposite direction.) For another example, it is known that the inclusion problem between an
order-(n+ 1) word language and a regular language (to which various program verification
problems can be reduced) can be decided in n-EXPTIME in the size of the order-(n + 1)
word grammar; it is, for example, obtained as a corollary of Kobayashi and Ong’s result [10]
that linear-time property model checking of order-(n + 1) higher-order recursion schemes
(HORS) is n-EXPTIME complete. Using our result, the upper-bound of the complexity
of the inclusion problem can be obtained as an immediate corollary of the n-EXPTIME
completeness of the modal µ-calculus model checking of HORS [11] and our result.

Our new translation from word grammars to tree grammars is in a sense more elementary
than the previous known translations [1, 5]. While the previous translations used intersection
types, our new translation, which has been inspired from [3, 9], uses only simple types. The
correctness proof of the new translation is also arguably much simpler than those of the
previous translations.

Related Work. As explained above, a translation from order-(n + 1) word grammars to
order-n tree grammars has first been shown by Damm [6, Theorem 7.17] for safe grammars.
His translation does not seem to generalize to unsafe grammars (grammars without the so
called “safety restriction” [7, 4]). Asada and Kobayashi [1] and Clemente et al. [5] have
shown translations for unsafe grammars. As mentioned already, these previous translations
are quite different from ours. Both of the previous translations [1, 5] used intersection types
and replicated a term for each intersection type. Since the number of intersection types
need for the translation of order-k grammars is k-fold exponential, it was inevitable for the
previous translations to blow up the size of the grammar. In contrast, our translation does
not use intersection types, and only keeps track of how order-0 variables are used.

As for applications, Asada and Kobayashi’s translation [1] has been used to prove a
pumping lemma for higher-order grammars modulo a certain conjecture [2]. Clemente et
al. [5] used (an extension of) their translation to prove the decidability of the diagonal
problem.

1 More precisely, the transformation of Asada and Kobayashi [1] consists of two steps, a main step and an
administrative step. We simplify only the main step; for applications discussed below, we do not need
the administrative step.

K. Asada and N. Kobayashi 22:3

Our translation has been inspired from related transformations developed in [3, 9]. Asada
and Kobayashi [3] used a related transformation for order-3 grammars, which was used to
prove a variant of the pumping lemma for higher-order grammars. Kobayashi et al. [9] used
a similar transformation technique for probabilistic higher-order grammars called PHORS,
to provide a fixpoint characterization of the termination probability of PHORS.

The rest of the paper is structured as follows. Section 2 reviews the definition of higher-
order grammars, and states the main result. Section 3 gives the definition of the new
transformation from order-(n + 1) word grammars to order-n tree grammars. Section 4
proves the complexity results, and discusses an application of the main result. Section 5
proves the correctness of the translation. Section 6 concludes the paper.

2 Preliminaries

We first review basic definitions on higher-order grammars [6, 1] in Section 2.1; our definitions
given below basically follow those of [1], with slight modifications. We then state our main
result in Section 2.2.

We often write ã for a sequence a1, . . . , an, and write |ã| for the length n of the sequence.

2.1 Higher-order grammars
I Definition 1 (types and terms). The set of (simple) types, ranged over by κ, is given by:
κ ::= o | κ1 → κ2. The order, arity, and size of a type κ, written ord(κ), ari(κ), and |κ|,
are defined by

ord(o) := 0 ord(κ1 → κ2) := max
(
ord(κ1) + 1, ord(κ2)

)
ari(o) := 0 ari(κ1 → κ2) := 1 + ari(κ2)
|o| := 1 |κ1 → κ2| := |κ1|+ |κ2|+ 1.

The type o describes trees, and κ1 → κ2 describes functions from κ1 to κ2. The set of terms,
ranged over by s, t, u, . . ., is defined by:

t ::= x | a t1 · · · tk | t1 t2 | t1 ⊕ t2 | Ω.

Here, x ranges over a denumerable set of variables, and a over a set of constants (which
represent tree constructors). We also use meta-variables y, z, F,G for variables. Variables
and constants are also called non-terminals and terminals respectively. A ranked alphabet
Σ is a map from a finite set of terminals to the set of natural numbers; we call Σ(a) the
arity of a terminal a. We implicitly assume a ranked alphabet whose domain contains all
terminals discussed, unless explicitly described. The term t1 ⊕ t2 denotes a non-deterministic
choice between t1 and t2, and Ω denotes divergence. A term is called an applicative term if
it contains neither ⊕ nor Ω.

A (simple) type environment K is a sequence of type bindings of the form x : κ, where K
may contain at most one binding for each variable. The type judgment relation K `ST t : κ is
defined by the following rules.

K, x : κ, K′ `ST x : κ
Σ(a) = k K `ST ti : o (for each i ∈ {1, . . . , k})

K `ST a t1 · · · tk : o

K `ST t1 : κ2 → κ K `ST t2 : κ2

K `ST t1 t2 : κ
K `ST t1 : o K `ST t2 : o

K `ST t1 ⊕ t2 : o K `ST Ω : o

FSCD 2020

22:4 Size-Preserving Translations from Word Grammars to Tree Grammars

For a technical convenience, in the typing rule for constants, we require that a terminal must
be fully applied; this does not restrict the expressive power of higher-order grammars introduced
below. Note that, given K and t, there exists at most one type κ such that K `ST t : κ. We
call κ the type of t (with respect to K). Henceforth, we consider only well-typed terms.

A term t is called ground (with respect to K) if K `ST t : o, and t is called a (finite,
Σ-ranked) tree if t is a closed ground applicative term consisting of only terminals. We write
TreeΣ for the set of Σ-ranked trees, and use the meta-variable v for trees.

We define the size |t| of a term t by: |x| := 1, |a t1 · · · , tk| := 1 + |t1| + · · · + |tk|,
|s t| := |s|+ |t|+ 1, |s⊕ t| := |s|+ |t|+ 1, and |Ω| := 1.

I Definition 2 (higher-order grammar). A higher-order grammar (or grammar for short) is
a quadruple (Σ,N ,R, t◦), where

Σ is a ranked alphabet,
N is a map from a finite set of non-terminals to their types,
R is a finite set of rewriting rules of the form F x1 · · · x` → t, where: (i) t is a term,
(ii) N (F) = κ1 → · · · → κ` → o, (iii) N , x1 : κ1, . . . , x` : κ` `ST t : o holds, and (iv) in R
there is exactly one rule for each nonterminal,
t◦ is a term called the start term, and N `ST t

◦ : o.

The order of a grammar G is defined as the largest order of the types of non-terminals (or
0 if dom(N) is empty). We define the size of N , written as |N |, by |N | :=

∑
F∈N |N (F)|,

and also define the Curry-style and Church-style sizes of a grammar G, written as |G|cy and
|G|ch, by: |G|cy := |t◦|+

∑
(F x1 ··· x`→t)∈R(|t|+ `) and |G|ch := |G|cy + |N |, respectively. We

sometimes omit the subscript of |G|ch and write |G|. |G|ch (rather than |G|cy) is essentially
the same as the definition of the grammar size in [12] (the results of [12] will be discussed
in Section 4.2, as an application of our results).

The tree language L(G) generated by a grammar G is defined as follows. The set of
evaluation contexts (ranged over by E) is defined by the grammar:

E ::= [] | a t1 . . . ti−1E ti+1 . . . tΣ(a) (1 ≤ i ≤ Σ(a)) | E ⊕ t | t⊕ E.

Below we consider only contexts E such that N ,K, [] : o `ST E : o. For a grammar G =
(Σ,N ,R, t◦), the rewriting relation −→G is defined as follows:

(F x̃→ t) ∈ R
E[F s̃] −→G E[[s̃/x̃]t] E[a s̃ (t1 ⊕ t2) ũ] −→G E[(a s̃ t1 ũ)⊕ (a s̃ t2 ũ)]

We write −→∗G for the reflexive transitive closure of −→G. We may omit the subscript G
and write −→ and −→∗, if G is clear from the context. We define the set of choice contexts
(ranged over by C) by: C ::= [] | C ⊕ t | t⊕ C. For N `ST t : o, we define L(G, t) := {v ∈
TreeΣ | t −→∗G C[v]}, and L(G) := L(G, t◦).

I Remark 3. In [1], we used a slightly different definition of a higher-order grammar: (i) The
definition in the present paper uses a start term, while that in [1] uses a start symbol (i.e., a
start term is restricted to some non-terminal S). (ii) In the present paper R is deterministic
and total, and ⊕ and Ω may occur on the right hand side of each rule, while in [1] R is
not necessarily deterministic nor total, and neither ⊕ nor Ω may occur. The two styles of
grammars can be mutually translated in an obvious manner.

The grammars defined above may also be viewed as generators of word languages.

K. Asada and N. Kobayashi 22:5

I Definition 4 (word alphabet / br-alphabet). A ranked alphabet Σ is called a word alphabet
if it has a special nullary terminal e and all the other terminals have arity 1. A grammar G
is called a word grammar if its alphabet is a word alphabet. For a tree v = a1(· · · (an e) · · ·)
of a word grammar, we define word(v) = a1 · · · an. The word language generated by a word
grammar G, written Lw(G), is word(L(G)).

The frontier word of a tree v, written leaves(v), is the sequence of symbols in the leaves
of v. It is defined inductively by: leaves(a) = a when Σ(a) = 0, and leaves(a v1 · · · vk) =
leaves(v1) · · · leaves(vk) when Σ(a) = k > 0. We write Lleaf(G) and Lleaf(G, t) for
leaves(L(G)) and leaves(L(G, t)), respectively, and call Lleaf(G) the frontier language gen-
erated by G.

A br-alphabet is a ranked alphabet such that it has a special binary constant br and
a special nullary constant e, and the other constants are nullary. We call a grammar G a
br-grammar if its alphabet is a br-alphabet. Intuitively, br and e represent the concatenation
of two frontier words and the empty word ε respectively. For a word w, we write w↑e for the
word obtained by removing all the occurrences of e in w, and L↑e for {w↑e | w ∈ L}. We
write s ≈ t if Lleaf(G, s)↑e = Lleaf(G, t)↑e.

For a word alphabet Σ, we define the br-alphabet of Σ, written br(Σ), by: br(Σ) :=
{e 7→ 0, br 7→ 2} ∪ {a 7→ 0 | Σ(a) = 1}.

We note that the classes of order-0, order-1, and order-2 word languages coincide with
those of regular, context-free, and indexed languages, respectively [13].

I Example 5. Consider the order-2 (word) grammar G1 = ({a : 1, e : 0}, {S : o, F : (o→ o)→
(o→ o), T : (o→ o)→ (o→ o), A : o→ o},R1, S), where R1 consists of:

S → F A e F f x→ (f x)⊕ (F (T f)x) T f x→ f(f x) Ax→ ax

S is reduced, for example, as follows

S −→ F A e −→ C1[F (T A) e] −→ C2[F (T (T A)) e] −→C3[(T (T A)) e]
−→C3[T A (T A e)] −→∗ C3[a4(e)]

where C1, C2, and C3 are some appropriate choice contexts. The word language Lw(G1) is
{a2n | n ≥ 0}.

Consider the order-1 (tree) grammar G2 = ({br : 2, a : 0, e : 0}, {S : o, F : o→ o, T : o→ o},
R2, S), where R2 consists of:

S → F a F f → f ⊕ (F (T f)) T f → br f f.

The frontier language Lleaf(G2) coincides with Lw(G1) above. This (existence of an order-1
tree grammar corresponding to an order-2 word grammar) is not a coincidence, as stated in
Theorem 6 below.

2.2 The main result
The following theorem states the main result of the present paper.

I Theorem 6. For any n ≥ 0, there exist an effective translation Tn from order-(n+ 1) word
grammars to order-n br-grammars and a polynomial pn such that, for any order-(n+ 1) word
grammar G, Lleaf(Tn(G))↑e = Lw(G) and |Tn(G)| ≤ pn(|G|).

The theorem above follows from Theorems 12 and 13, given in Sections 4 and 5 respectively.
Theorem 6 without the condition |Tn(G)| ≤ pn(|G|) has been proved in [1] (Theorem 7).

FSCD 2020

22:6 Size-Preserving Translations from Word Grammars to Tree Grammars

I Remark 7. Asada and Kobayashi [1] have also presented a post-processing transformation
for removing e, which also suffers from a hyper-exponential blow-up of the grammar size. We
do not think that there exists a size-preserving transformation that achieves the removal of e.
Fortunately, however, the post-processing transformation is unnecessary for the applications
discussed in the introduction.

3 The Transformation

A basic idea of our translation (Tn in Theorem 6) to decrease the order of a grammar is to
represent an order-1 word function as a tuple of order-0 terms, each of which represents the
set of (the tree representations of) words that may be generated before a certain target term
(such as an argument, a constant, or a variable) is encountered. For example, consider a
term t u of type o where t has type o→ o. The set of words generated by t u is T0 ∪ (T1 ·U0),
where T0 = {w | t x −→∗ w(e)}, T1 = {w | t x −→∗ w(x)} (for a fresh variable x of type o),
and U0 = {w | u −→∗ w(e)}. In other words, T0 is the set of words that are generated by t
before e is encountered (without using the argument), and T1 is the set of words that are
generated before the argument is encountered. If we can convert t and u to t0, t1, and u0
that respectively generate tree representations of T0, T1, and U0, then the whole term t u can
be converted to t0 ⊕ (br t1 u0) (where recall that the binary tree constructor br plays the
role of word concatenation). In this manner, the order-1 term t has been replaced by order-0
terms t0 and t1. As a concrete example, consider an order-1 grammar:

S → T U T x→ a e⊕ bx U → c e.

Then it can be converted to the order-0 grammar:

S → T0 ⊕ (br T1 U0) T0 → a T1 → b U0 → c.

(In the actual translation below, e should actually be passed around as a variable.)
For higher-order grammars, we apply the above transformation inductively (although a

further twist is required as we explain later). For example, consider the grammar (which is a
contrived version of Example 5).

S → T A e T f x→ f(f x) Ax→ ax.

Since the first argument f of T has type o→ o, it is replaced by an order-0 variable f1, which
is bound to a term that generates (the tree representation of) words generated by f before
the argument is encountered. T is then replaced by an order-1 function T1 which, given f1,
generates words generated by T f x before x is encountered. The resulting grammar is thus:

S → T1A1 T1 f1 → br f1 f1 A1 → a.

Note that f(f x) generates x only after the outer call of f uses the argument f x, and then
the inner call of f uses the argument, hence the body br f1 f1 of T1. Notice that the type
of T1 is o→ o, which has order 1. In general, a function of type κ1 → · · · → κk → o` → o
(where ord(κk) > 0) is converted to a tuple of functions of type κ†1 → · · · → κ†k → o, where
(·)† represents recursive applications of the type conversion.

A further twist is required for higher-order cases. For example, consider the grammar:

S → H e (b e) H xy → F (Gxy) F g → g A Gxy h→ (hx)⊕ (h(h y))

K. Asada and N. Kobayashi 22:7

where the types of non-terminals are:

S : o H : o→ o→ o F : ((o→ o)→ o)→ o G : o→ o→ (o→ o)→ o

(the rule and type of A are as before, hence omitted). Based on the idea above, the rule for
S can be translated to:

S → H1 ⊕ (brH2 b),

whereH1 (H2, resp.) generates the words generated byH xy before x (y, resp.) is encountered
in the original grammar. But how can the rules for H1 and H2 be obtained from that of H?
The head symbol F of the body of H has no order-0 argument, so the idea explained above
does not apply. We translate the rules for H, F , and G to:

H1 → F0(G0 e Ω) H2 → F0(G0 Ω e) F0 g0 → g0A1
G0 x0 y0 h1 → (brh1 x0)⊕ (brh1 (brh1 y0)).

Here, F0 g0 generates the words generated by F g before a certain target symbol (say,
z) is encountered, assuming that g0A1 generates the words generated by g A before z is
encountered. In H1, the argument g0 is set to G0 e Ω (so that when x is reached in the original
grammar, the empty word is generated, and when y is reached in the original grammar, no
word is generated) since the target symbol is x, while in H2, g0 is set to G0 Ω e. Similarly,
G0 is a function to generate the words generated by Gxy h in the original grammar before a
certain target symbol is encountered, assuming that the arguments x0 and y0 generate the
words generated by x and y before the target is encountered.

The following is a variation of the example above:

S → H e (b e) H xy → K(Gx) y K k y → F (k y) F g → g A

Gxy h→ (hx)⊕ (h(h y))

where K : (o→ (o→ o)→ o)→ o→ o. We have just introduced an auxiliary step to reduce
H xy to F (Gxy), via K(Gx) y. It can be translated to:

S → H1 ⊕ (brH2 b) H1 → K0(G0 e) H2 → K1(G0 Ω) K0 k0 → F0(k0 Ω)
K1 k1 → F0(k1 e) F0 g0 → g0A1 G0 x0 y0 h1 → (brh1 x0)⊕ (brh1 (brh1 y0)).

Here, K0 is a function to generate the words generated by K k y before a certain target
(embedded in k) is encountered (thus, K0 (G0 e) generates the words generated by K (Gx) y
before the target x is encountered), whereas K1 is a function to generate the words generated
by K k y before y is encountered. Different arguments G0 e and G0 Ω are, therefore, passed
to K0 and K1. In G0 e, the target is set to x (hence x has been replaced by e), whereas in
G0 Ω, the target has not been set yet (and is later set to y when G0 Ω is passed to K1).

Note that the translations above have been chosen to clarify the essence of our transfor-
mation; they do not exactly match the actual translations defined below. Henceforth, we
often write κ1 → · · · → κk ⇒ o` → o for κ1 → · · · → κk → o` → o when either ord(κk) > 0
or k = 0; note that κ1, . . . , κk−1 (but not κk) may be the ground type o. We abbreviate
κ1 → · · · → κk ⇒ o` → o to κ̃⇒ o` → o, and define gar(κ̃⇒ o` → o) := `. We assume that
a given word grammar is normalized to the form (Σ,N ,R, S e), where R does not contain e.

The discussions above suggest that for each term t of an order-n type κ̃⇒ o` → o, with
order-0 variables x1, . . . , xk, we need to consider the following tuple of order-(n− 1) terms in
the target grammar:

(t0, t1, . . . , t`, t`+1, . . . , t`+k, t`+k+1).

FSCD 2020

22:8 Size-Preserving Translations from Word Grammars to Tree Grammars

Here, each element ti of the tuple is a function used to generate (tree representations of) the
words generated by t before a certain target is encountered, where the “target” is:

the i-th ground-type argument (precisely, the i-th argument of the part o` → o in the
type κ̃⇒ o` → o of t) if 1 ≤ i ≤ `,
xi−` if `+ 1 ≤ i ≤ `+ k,
set inside the term t if i = 0, and
set later by the higher-order arguments of t if i = `+ k + 1.

We formalize the translation for terms as a type-based transformation relation of the
form:

K;x1, . . . , xk `N t : κ̃⇒ o` → o (t0, t1, . . . , t`, t`+1, . . . , t`+k, t`+k+1).

where K is a type environment and x1, . . . , xk are order-0 variables; we often omit the
subscript of `N and write ` if N is clear from the context. The relation means that the term
t of type κ̃⇒ o` → o is transformed to the tuple (t0, t1, . . . , t`, t`+1, . . . , t`+k, t`+k+1), where
the role of each term is as described above. The relation is defined by the transformation
rules given in Fig. 1.

The translation N ‡ of the types of nonterminals used in (Tr-Gram) is defined as follows.
We first define the translation of types by:

(κ1 → · · · → κk ⇒ o` → o)† :=

(κ1
† → · · · → κk

† → o)×(κ1
†′ → · · · → κk

†′ → o)` × (κ1
† → · · · → κk

† → o),

(κ1 → · · · → κk ⇒ o` → o)†
′
:= (κ1

†′ → · · · → κk
†′ → o)` × (κ1

† → · · · → κk
† → o),

(κ1 → · · · → κk ⇒ o` → o)†+m :=

(κ1
† → · · · → κk

† → o)×(κ1
†′ → · · · → κk

†′ → o)` × (κ1
† → · · · → κk

† → o)m+1

where m ≥ −1. The translation of type environments is defined by:

(y1 : κ1, . . . , yk : κk)† := (y1,0, . . . , y1,gar(κ1)+1) : κ1
†, . . . , (yk,0, . . . , yk,gar(κk)+1) : κk†.

Finally, we define N ‡ by:

(F1 : κ1, . . . , Fk : κk)‡ := (F1,0, . . . , F1,gar(κ1)) : κ1
†−1, . . . , (Fk,0, . . . , Fk,gar(κk)) : κk†−1.

As in (Tr-Rule), we translate each rule F y1 · · · ym x1 . . . xk → t with N (F) = κ1 →
· · · → κm ⇒ ok → o by the relation:

y1 : κ1, . . . , ym : κm;x1, . . . , xk : o `N t : o (t0, t1, . . . , tk, tk+1).

Note that every t being transformed never contains e since R does not contain e.
We now explain some of the key rules. There are two rules for variables: (Tr-VarG)

for ground type variables x1, . . . , xk, and (Tr-Var) for variables bound in K (note that
some of them also may have ground type o). In (Tr-VarG), the (i + 1)-th component
of the output should represent the words generated before xi is encountered; since xi is
immediately encountered, the component is set to e. The other components are set to
Ω (which generates no word), since no other variable is encountered by reducing xi. In
(Tr-Var), each type binding y : κ in K gets (implicitly) translated to (y0, . . . , y`+1) : κ†. In
the output of translation, the last k + 1 components (which represent the words generated
until x1, . . . , xk and an unknown target are encountered) are set to y`+1, because xi’s are
unknown for the environment. In Example 8 below, we explain why we use y`+1 (rather than

K. Asada and N. Kobayashi 22:9

K;x1, . . . , xk : o `N Ω : o (Ωk+2)
(Tr-Omega)

K;x1, . . . , xk : o `N xi : o (Ωi, e,Ωk−i+1)
(Tr-VarG)

K(y) = κ̃⇒ o` → o

K;x1, . . . , xk : o `N y : κ̃⇒ o` → o (y0, y1, . . . , y`, (y`+1)k+1)
(Tr-Var)

N (F) = κ̃⇒ o` → o

K;x1, . . . , xk : o `N F : κ̃⇒ o` → o (F0, F1, . . . , F`, (F0)k+1)
(Tr-NT)

K;x1, . . . , xk : o `N t : o (t0, . . . , tk+1)
K;x1, . . . , xk : o `N a(t) : o (br a t0, . . . , br a tk+1)

(Tr-Const)

K;x1, . . . , xk : o `N s : κ0 → κ̃⇒ o` → o (s0, . . . , s`+k+1)
K;x1, . . . , xk : o `N t : κ0 (t0, . . . , t`′+k+1) gar(κ0) = `′

K;x1, . . . , xk : o `N s t : κ̃⇒ o` → o
 (s0(t0, . . . , t`′ , t`′+k+1), s1(t1, . . . , t`′ , t`′+k+1), . . . , s`(t1, . . . , t`′ , t`′+k+1),

s`+1(t`′+1, t1, . . . , t`′ , t`′+k+1), . . . , s`+k+1(t`′+k+1, t1, . . . , t`′ , t`′+k+1))

(Tr-App)

K;x1, . . . , xk : o `N s : o`+1 → o (s0, . . . , s`+k+2)
K;x1, . . . , xk : o `N t : o (t0, . . . , tk+1)

K;x1, . . . , xk : o `N s t : o` → o
 (s0 ⊕ (br s1 t0), s2, . . . , s`+1, s`+2 ⊕ (br s1 t1), . . . , s`+k+2 ⊕ (br s1 tk+1))

(Tr-AppG)

K;x1, . . . , xk : o `N s : o (s0, . . . , sk+1)
K;x1, . . . , xk : o `N t : o (t0, . . . , tk+1)

K;x1, . . . , xk : o `N s⊕ t : o (s0 ⊕ t0, . . . , sk+1 ⊕ tk+1)
(Tr-Choice)

N (F) = κ1 → · · · → κm ⇒ ok → o
y1 : κ1, . . . , ym : κm;x1, . . . , xk : o `N t : o (t0, t1, . . . , tk, tk+1)

ỹi = (yi,0, . . . , yi,gar(κi)+1) ỹi
′ = (yi,1, . . . , yi,gar(κi)+1) (1 ≤ i ≤ m)

`N (F y1 · · · ym x1 · · · xk → t)

({
F0 ỹ1 · · · ỹm → t0

}
∪{

Fi ỹ1
′ · · · ỹm′ → ti

∣∣ i ∈ {1, . . . , k}}
) (Tr-Rule)

G = (Σ,N ,R, S e) e does not occur in R
R′ =

⋃
{R′′ | `N (F ỹ x̃→ t) R′′, (F ỹ x̃→ t) ∈ R}

G (br(Σ),N ‡,R′, S1)
(Tr-Gram)

Figure 1 Translation rules from a word grammar to a tree grammar.

FSCD 2020

22:10 Size-Preserving Translations from Word Grammars to Tree Grammars

y0) for the last k + 1 components of (Tr-Var). There are also two rules for applications,
(Tr-App) and (Tr-AppG). (Tr-AppG) is used when the function s has an order-1 type.
The first component of the output is set to s0 ⊕ (br s1 t0), since s t encounters the current
target either when s does so without using t (which is covered by s0), or s uses the argument
t and then t encounters the target (which is covered by br s1 t0). In (Tr-App), the output
is just an application, but we need to choose the function and the argument appropriately
for each component of the output tuple. Note that κ0 in (Tr-App) can be o.

I Example 8. The following example of the translation shows why we need to use y`+1
rather than y0 for the last k + 1 components in (Tr-Var). Let us consider the following
grammar:

S x → F x (Gx) F y g → T (Ag) y T h y → h(h y)
Ag y → g (J y) Gxh→ hx J y z → (b y)⊕ (c z)
S : o→ o, F : o→ ((o→ o)→ o)→ o, T : (o→ o)→ o→ o,

A : ((o→ o)→ o)→ o→ o, G : o→ (o→ o)→ o, J : o→ o→ o.

Then we have the following reduction sequence:

S e −→ F e (G e) −→ T (A(G e))e −→ A(G e)(A(G e)e) −→ G e (J (A(G e)e))

−→ J (A(G e)e) e −→
(
b (A(G e)e)

)
⊕ (c e) −→

(
b (G e(J e))

)
⊕ (c e)

−→
(
b (J e e)

)
⊕ (c e) −→

(
b ((b e)⊕ (c e))

)
⊕ (c e) −→

(
(b (b e))⊕ (b (c e))

)
⊕ (c e).

Thus, the language generated by the grammar is {bb, bc, c}. The translation produces:

S1 → F0 (e, Ω) (G0(e,Ω), G0(Ω,Ω))
F0 (y0, y1) (g0, g1)→

(
T0(A0(g0, g1), A1(g1), A0(g1, g1))

)
⊕
(
br
(
T1(A1(g1), A0(g1, g1))

)
y0
)

T0(h0, h1, h2)→ h0 ⊕ (brh1 h0)
T1(h1, h2)→ brh1 (brh1 e)

A0(g0, g1)→ g0(br J1 Ω, J2, br J1 Ω)
A1(g1)→ g1(br J1 e , J2, br J1 Ω)

G0 (x0, x1) (h0, h1, h2)→ h0 ⊕ (brh1 x0)
J0 → Ω J1 → b J2 → c.

The frontier language generated by the output grammar is {bb, bc, c}. If we changed the
definition of (Tr-Var) by replacing yk+1 with y0, then A1(g1) in the body of F0 above would
be replaced with A1(g0). – But then we would wrongly obtain cc as a member of the frontier
language.

The following theorem guarantees that the output of the translation is a valid grammar;
the preservation of the language will be proved later in Section 5.

I Theorem 9. Suppose that G = (Σ,N ,R, S e) is an order-(n + 1) word grammar, and
G G′. Then G′ is a (well-typed) order-n tree grammar.

The well-typedness of G′ follows immediately from the following lemma, which can be proved
by a straightforward induction.

I Lemma 10. If K; x̃ : o `N t : κ (t̃), then N ‡,K† ` (t̃) : κ†+|x̃|. Furthermore for
y ∈ dom(K), y0 does not occur freely in t̃ except for t0.

K. Asada and N. Kobayashi 22:11

4 Complexity and Application

Here we give some complexity results of our translation: an upper bound of the size of an
output grammar and the time complexity of the translation. Based on the complexity results,
we discuss an application of our translation.

For a grammar G, we write AG (or A if G is clear from the context) for the largest arity
of the terminals, variables, and nonterminals occurring in G. Note that, for an input word
grammar G, we have AG ≤ |N | ≤ |G|ch and |G|cy ≤ |G|ch, but it is not necessary the case
that AG ≤ |G|cy (for any κ, {S → F (G e), F fκ→o → e, G xo gκ → e} is well-typed and
AG ≥ ari(κ)). Also note that AG ≥ 1 for an input grammar G (since the start term is S e).
For r = (F x̃ → t) ∈ R, we define |r| := |t| + ari(N (F)), so that |G|cy = |t◦| +

∑
r∈R |r|;

also, we write Rr for R′ such that `N r R′ by (Tr-Rule).

4.1 Complexity
To suppress the blow-up of the cost of our translation, we pre-process an input grammar to
convert it to a certain normal form, as in [8]. A grammar G is in normal form if each rule is
of the form

F z̃ →
(
f1,0(f1,1z̃1,1) · · · (f1,`1 z̃1,`1)

)
⊕ · · · ⊕

(
fk,0(fk,1z̃k,1) · · · (fk,`k

z̃k,`k
)
)
,

where each fh,i is a non-terminal, terminal, or variable; and each zh,i,j is a variable; note
that k and each `h can be 0. (Rigorously, the expression like t1 ⊕ · · · ⊕ tk can be represented
as D[t1] · · · [tk] with D ::= [] | Ω | D ⊕D.) By the following transformation, any grammar G
can be transformed to a grammar in normal form: First note that any rule is of the form

F z̃ →
(
f1,0 t1,1 . . . t1,`1

)
⊕ · · · ⊕

(
fk,0 tk,1 . . . tk,`k

)
where each fh,i is a non-terminal, terminal, or variable, and each th,i is a term (which may
contain ⊕ and Ω). If there exist h and i such that th,i is not of the form fh,iz̃h,i, then
we replace the occurrence th,i with G z̃h,i and add the rule G z̃h,i ỹ → th,i ỹ, where G is a
fresh non-terminal and {z̃h,i} (⊆ {z̃}) is all the free variables occurring in th,i. By repeated
applications of this transformation, we obtain a grammar in normal form; note that the
number of repeated applications is at most |G|cy. The following lemma guarantees that the
preprocessing transformation does not blow up the grammar size; see the full version for the
proof.

I Lemma 11. Let G′ = (Σ,N ′,R′, S e) be the grammar obtained from G = (Σ,N ,R, S e) by
the above transformation. We write A for AG. Then,
1. AG′ ≤ 2A,
2. |N ′| ≤ O(|N | × |G|cy)
3. |G′|cy ∈ O(A× |G|cy),
4. the time complexity of the normal-form transformation is O(A× |G|cy),
5. ord(G′) = ord(G).

We obtain the following complexity results; see Appendix A for the proof.

I Theorem 12. Let G′ be the output of our translation (i.e., the composite of the normal-form
transformation and that of Fig. 1) for an input grammar G = (Σ,N ,R, S e). We write A for
AG. Then,
1. AG′ ∈ O(A2),
2. |G′|cy ∈ O(A4 × |G|cy) and |G′|ch ∈ O(A4 × |G|cy + (|N | × |G|cy)n) where n = ord(G),
3. the time complexity of our translation is O((A3 + |N |)× |G|cy).

FSCD 2020

22:12 Size-Preserving Translations from Word Grammars to Tree Grammars

4.2 Applications
Our translation can be used to bridge results on higher-order word and tree grammars.
Besides applications of our previous translation [1], our new size-preserving transformation
can be applied in contexts where the complexity is critical. For example, Parys [12] showed
that the diagonal problem for higher-order grammars (which is called nondeterministic higher-
order recursion schemes in [12]) is (n− 1)-EXPTIME-complete for order-n word grammars,
and n-EXPTIME-complete for order-n tree grammars. In his paper, the two results, for
words and for trees, were proved separately. By using the result in the present paper, however,
the (n− 1)-EXPTIME-completeness of the diagonal problem for word grammars of order n
immediately follows from the n-EXPTIME-completeness of the diagonal problem for tree
grammars of order n (where, on the hardness part, use the converse transformation given
in [1, Theorem 5]).

5 Correctness of the Translation

Here we prove the following theorem, which states the correctness of the translation.
I Theorem 13. If G G′, then Lw(G) = Lleaf(G′)↑e.

We show this theorem in the following steps:
First, in Section 5.1, we reduce the proof to the case where G is recursion-free (Lemma 15).
This is rather a standard technique, which uses the finite approximation G(m): the
reduction of G(m) imitates that of G up to m-steps, but diverges after m-steps.
Then we show the statement of Theorem 13 with the assumption that G is recursion-free
(Lemma 21). This is the main part, proved by using the subject reduction property. In
the proof of the subject reduction, we modify the reduction −→G of the source grammar
G, by using explicit substitutions. We define the modified reduction in Section 5.2, and
then we show the subject reduction and the correctness for a recursion-free grammar in
Section 5.3.

5.1 Reduction of the correctness to recursion-free grammars
I Definition 14 (recursion-free grammars). A grammar G is called recursion-free if there is
no cyclic dependency on its non-terminals. Precisely, we define a binary relation �G on
nonterminals of G by: F �G F ′ iff F ′ occurs on the right-hand side of the rule for F ; then G
is recursion free if the transitive closure �∗G of �G is irreflexive (i.e., F �∗G F for no F ∈ N).

Here we show the following lemma:
I Lemma 15. Suppose that, for any G and G′, if G is recursion-free and G G′, then
Lw(G) = Lleaf(G′)↑e. Then, for any G and G′, if G G′, then Lw(G) = Lleaf(G′)↑e.
To show this lemma, we define the finite approximation mentioned above. Given terms t,
si (i ∈ I) and variables xi (i ∈ I), we write [si/xi]i∈It for the term obtained by simultaneously
substituting si for xi in t. Given m ≥ 0 and G = (Σ,N ,R, t◦), we define the m-th
approximation G(m) of G as follows.

N (m) := {F (i) 7→ N (F) | F ∈ dom(N), 0 ≤ i ≤ m}

t
(i)
N := [F (i)/F]F∈N t (for any term t and i ∈ {0, . . . ,m})

R(m)
N := {F (i) x̃→ t

(i−1)
N | (F x̃→ t) ∈ R, 1 ≤ i ≤ m}

∪ {F (0) x̃→ Ω | (F x̃→ t) ∈ R}

G(m) := (Σ,N (m),R(m)
N , (t◦)(m)

N).

K. Asada and N. Kobayashi 22:13

We write t(i) and R(m) for t(i)N and R(m)
N if N is clear from the context.

The following are basic properties of G(m):

I Lemma 16.
1. If G is in the domain of the transformation (i.e., G is of the form (Σ,N ,R, S e) where

Σ is a word alphabet and R does not contain e), then so is G(m).
2. G(m) is a recursion-free grammar.
3. L(G) = ∪mL(G(m)). Hence, Lw(G) = ∪mLw(G(m)) for any word grammar G, and
Lleaf(G)↑e = ∪mLleaf(G(m))↑e for any br-grammar G.

Proof. Item 1 is clear, and also Item 2 is clear (since F (i) �G(m) G(j) implies j = i− 1).
Item 3: Let G = (Σ,N ,R, t◦). To show ∪mL(G(m)) ⊆ L(G), let v ∈ L(G(m)); i.e., there

exist a choice context C and a reduction sequence Π in G(m) from (t◦)(m) to C[v]. Let us
call a rule in {F (0) x̃→ Ω | (F x̃→ t) ∈ R} a bottom rule. We can easily show the following
fact: if t −→ s by some bottom rule r and s −→ u, then there is a term u′ such that t −→ u′

and u′ −→∗ u where the latter rewriting uses only r. By using this fact repeatedly, from
Π, we obtain a choice context C ′ and a reduction sequence Π′ in G(m) from (t◦)(m) to C ′[v]
where Π′ does not use any bottom rule. Then, by dropping the index i of every nonterminal
F (i) in Π′, we obtain a reduction sequence in G from t◦ to C ′′[v] for some C ′′.

Conversely, let v ∈ L(G). We have C and a reduction sequence Π in G from t◦ to C[v]; let
m be the length of Π. Then there exist C ′ and a reduction sequence Π′ in G(m) from (t◦)(m)

to C ′[v] (such that Π is obtained from Π′ by dropping the indices of all the nonterminals in
Π′). Hence v ∈ L(G(m)), and thus L(G) ⊆ ∪mL(G(m)). J

The following lemma is trivial; see the full version for the proof.

I Lemma 17. If G G′ and G(m) G′m, then Lleaf(G′(m))↑e = Lleaf(G′m)↑e.

Now we can show:

Proof of Lemma 15. Let G G′ and G(m) G′m for each m. Then, by the assumption,

Lw(G(m)) = Lleaf(G′m)↑e. (1)

Then,

Lw(G) = ∪mLw(G(m)) (by Lemma 16-3)
= ∪mLleaf(G′m)↑e (by (1))

= ∪mLleaf(G′(m))↑e (by Lemma 17)
= Lleaf(G′)↑e. (by Lemma 16-3). J

5.2 The modified reduction of source grammars
As explained at the beginning of this section, we modify the reduction relation of a word
grammar G = (Σ,N ,R, t◦) by using explicit substitutions. We first extend the set of terms
as follows, which we call extended terms:

t ::= x | e | a(t) | t1 t2 | t1 ⊕ t2 | Ω | {t1/x1, . . . , t`/x`}t0

Here, we write a(t) instead of a t, to emphasize that a is a unary constructor. Recall
that nonterminals are included in variables x. The term {t1/x1, . . . , t`/x`}t0 is an explicit
substitution and is limited to the ground type:

K `ST ti : o (i ∈ {1, . . . , `}) K, x1 : o, . . . , x` : o `ST t0 : o

K `ST {t1/x1, . . . , t`/x`}t0 : o

FSCD 2020

22:14 Size-Preserving Translations from Word Grammars to Tree Grammars

We call the original notions of a term, evaluation context, and choice context a non-
extended term, non-extended evaluation context, and non-extended choice context, respectively,
if we need the clarity. We use the same meta-variables s, t, u for the extended terms, and also
use E and C for the extended evaluation contexts and extended choice contexts defined below.
We avoid this ambiguity as follows: in this subsection, these meta-variables range over the
extended notions unless we declare otherwise; in the next subsection (i.e., in Section 5.3 for the
proof of the correctness for recursion-free grammars), the source term of the transformation
relation is an extended one and the target term is a non-extended one.

We define the extended evaluation contexts by the following grammar:

E ::= [] | a(E) | E ⊕ t | t⊕ E | {t1/x1, . . . , t`/x`}E.

We often abbreviate {t1/x1, . . . , t`/x`}t0 and {t1/x1, . . . , t`/x`}E to {t̃/x̃}t0 and {t̃/x̃}E,
respectively. Then the modified reduction, written as −→es,G (or −→es if G is clear), is
defined as follows:

F ỹ z̃ → u ∈ R
N (F) = κ̃⇒ o` → o |κ̃| = |ỹ| = |s̃| ` = |z̃| = |t̃| z̃ do not occur in E[F s̃ t̃]

E[F s̃ t̃] −→es E[{t̃/z̃}[s̃/ỹ]u]

E[{s̃/z̃}zi] −→es E[si]
x /∈ {z1, . . . , z|s̃|} ∪ dom(N)

E[{s̃/z̃}x] −→es E[x]

E[{s̃/z̃}e] −→es E[e] E[{s̃/z̃}a(t)] −→es E[a({s̃/z̃}t)]

E[{s̃/z̃}(t1 ⊕ t2)] −→es E[({s̃/z̃}t1)⊕ ({s̃/z̃}t2)] E[a(t1 ⊕ t2)] −→es E[a(t1)⊕ a(t2)]

We define the extended choice contexts by: C ::= [] | C ⊕ t | t⊕C. For N `ST t : o, we define
the languages generated by a term and by a grammar with respect to −→es as follows:

Les
w (G, t) = {word(v) | t −→∗es C[v]} Les

w (G) = Les
w (G, t◦).

There is an obvious function ψ from the extended terms to the non-extended terms that
performs every explicit substitution as the real substitution. The following lemma can be
proved in a standard manner; see the full version for the proof.

I Lemma 18. Let G be a word grammar.
1. For any extended term N `ST t : o, we have Lw(G, ψ(t)) = Les

w (G, t). Especially, Lw(G) =
Les

w (G).
2. For any extended terms N ` t, t′ : o, if t −→es t

′, then Les
w (G, t) = Les

w (G, t′).

We also extend the transformation relation to handle explicit substitutions:

K;x1, . . . , xk : o ` si : o (si,0, . . . , si,k+1) (i ∈ {1, . . . , `})
K; z1, . . . , z`, x1, . . . , xk : o ` t : o (t0, . . . , t`+k+1)

K;x1, . . . , xk : o ` {s̃/z̃}t : o
(
t0 ⊕

⊕`
i=1(br ti si,0),

t`+1 ⊕
⊕`

i=1(br ti si,1), . . . , t`+k+1 ⊕
⊕`

i=1(br ti si,k+1)
) (Tr-Sub)

5.3 Correctness for recursion-free grammars
To show the correctness for recursion-free grammars, we use the following substitution lemma
and the subject reduction property:

K. Asada and N. Kobayashi 22:15

I Lemma 19 (substitution lemma). Suppose that u contains no explicit substitutions (i.e.,
no subterms of the form {t̃′/z̃′}s′) and

ỹ : κ̃; z̃ : o ` u : κ′ (u0, . . . , ugar(κ′)+|z̃|, ugar(κ′)+|z̃|+1)
x̃ : o ` s′i : κi (s′i,0, . . . , s′i,`i+k+1) `i = gar(κi) (i = 1, . . . , |κ̃|)
k = |x̃| {x̃} ∩ {z̃} = ∅.

We define the following substitution functions

θj = θ1,j · · · θ|κ̃|,j (j = 0, . . . , k)
θi,0 = [s′i,0/yi,0, s′i,1/yi,1, . . . , s′i,`i

/yi,`i
, s′i,`i+k+1/yi,`i+1] (i = 1, . . . , |κ̃|)

θi,j = [s′i,`i+j/yi,0, s
′
i,1/yi,1, . . . , s

′
i,`i
/yi,`i

, s′i,`i+k+1/yi,`i+1]
(i = 1, . . . , |κ̃|, j = 1, . . . , k + 1).

Then we have:
1. z̃, x̃ : o ` [s̃′/ỹ]u : κ′ (θ0u0, . . . , θ0ugar(κ′)+|z̃|, θ1u0, . . . , θku0, θ0ugar(κ′)+|z̃|+1)
2. θ0ugar(κ′)+|z̃|+1 = θk+1u0.

Proof. Both items can be shown by induction on u and case analysis on the last rule used
for the derivation ỹ : κ̃; z̃ : o ` u : κ′ (u0, . . . , ugar(κ′)+|z̃|+1). See Appendix B. J

I Lemma 20 (subject reduction). If x1, . . . , xk : o ` s : o (s0, . . . , sk+1) and s −→es t,
then there exist t0, . . . , tk+1 such that x1, . . . , xk : o ` t : o (t0, . . . , tk+1) and si ≈ ti for
each i ∈ {1, . . . , k + 1}.

Proof. We use Lemma 19. The proof proceeds by induction on the derivation of x̃:o ` s : o
(s0, . . . , sk+1) and case analysis on evaluation contexts and redexes. See Appendix B. J

Now we show the correctness for recursion-free grammars; as explained already, Theo-
rem 13 follows immediately from this and Lemma 15.

I Lemma 21. Suppose that G is recursion-free. If G G′, then Lw(G) = Lleaf(G′)↑e.

Proof. Since G = (Σ,N ,R, S e) is recursion-free, every term x : o ` s : o is strongly
normalizing with respect to −→es. Since the reduction relation is finitely branching, the
length of reduction sequences from s is bounded. Let #(s) be the length of the longest
reduction sequence from s.

Now we show that

x : o `N s : o (s0, s1, s2) implies Les
w (G, [e/x]s) = Lleaf(G′, s1)↑e (2)

by induction on #(s). If (2) holds, then we can complete the proof as follows: let the rule of
S be S x→ s; then G′ has the rule S1 → s1, and by Lemma 18-1 and (2) we have

Lw(G) = Les
w (G, S e) = Les

w (G, [e/x]s) = Lleaf(G′, s1)↑e = Lleaf(G′)↑e.

In the base case that #(s) = 0, i.e., in the case where s is a normal form, first note that,
given a term t satisfies x1 : o, . . . , xn : o `ST t : o for some x1, . . . , xn, then t is a normal form
with respect to −→es iff t is generated by the following grammar with start symbol w:

w ::= r | w ⊕ w r ::= δ | x | a(r) (a ∈ Σ) δ ::= Ω | {t1/x1, . . . , tk/xk}δ.

FSCD 2020

22:16 Size-Preserving Translations from Word Grammars to Tree Grammars

Then we can show (2) by induction on this grammar. (For the case s = δ, show that
x1, . . . , xk : o ` δ : o (s̃) implies si ≈ Ω for every i, by induction on δ.)

In the case #(s) > 0, suppose s −→es s
′. Hence [e/x]s −→es [e/x]s′. By Lemma 20,

there exist s′0, s′1, and s′2 such that x :o `N s′ : o (s′0, s′1, s′2) and s1 ≈ s′1. By the induction
hypothesis, Les

w (G, [e/x]s′) = Lleaf(G′, s′1)↑e. Then, by Lemma 18-2 and s′1 ≈ s1, we have

Les
w (G, [e/x]s) = Les

w (G, [e/x]s′) = Lleaf(G′, s′1)↑e = Lleaf(G′, s1)↑e. J

6 Conclusion

We have given a new transformation that converts an order-(n + 1) word grammar to an
order-n tree grammar whose frontier language coincides with the word language of the
input grammar, and have proved that, unlike the previous transformations [1, 12], our
transformation is size-preserving, in that the size of the output grammar is polynomial in
the size of an input grammar. The time complexity is also polynomial in the size of input
grammar. These properties allow us to establish a link between algorithms for higher-order
word and tree grammars. As a concrete example of this, we have also applied our result
to the work of Parys [12] on the complexity of the diagonal problems for word and tree
languages..

References
1 Kazuyuki Asada and Naoki Kobayashi. On word and frontier languages of unsafe higher-order

grammars. CoRR, abs/1604.01595, 2016. A summary has been published in Proceedings of
ICALP 2016. URL: http://arxiv.org/abs/1604.01595.

2 Kazuyuki Asada and Naoki Kobayashi. Pumping lemma for higher-order languages. In
44th International Colloquium on Automata, Languages, and Programming, ICALP 2017,
volume 80 of LIPIcs, pages 97:1–97:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ICALP.2017.97.

3 Kazuyuki Asada and Naoki Kobayashi. Lambda-definable order-3 tree functions are well-
quasi-ordered. In 38th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2018, volume 122 of LIPIcs, pages 14:1–14:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.FSTTCS.2018.14.

4 William Blum and C.-H. Luke Ong. The safe lambda calculus. Logical Methods in Computer
Science, 5(1), 2009. doi:10.2168/LMCS-5(1:3)2009.

5 Lorenzo Clemente, Paweł Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem
for higher-order recursion schemes is decidable. In 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2016, pages 96–105. ACM, 2016. doi:10.1145/2933575.2934527.

6 Werner Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20(2):95–207, 1982.
doi:10.1016/0304-3975(82)90009-3.

7 Teodor Knapik, Damian Niwiński, Paweł Urzyczyn, and Igor Walukiewicz. Unsafe gram-
mars and panic automata. In 32nd International Colloquium on Automata, Languages
and Programming, ICALP 2005, volume 3580 of LNCS, pages 1450–1461. Springer, 2005.
doi:10.1007/11523468_117.

8 Naoki Kobayashi. Model checking higher-order programs. Journal of the ACM, 60(3), 2013.
doi:10.1145/2487241.2487246.

9 Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. On the termination problem for
probabilistic higher-order recursive programs. In 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, pages 1–14. IEEE, 2019. doi:10.1109/LICS.2019.8785679.

10 Naoki Kobayashi and C.-H. Luke Ong. Complexity of model checking recursion schemes
for fragments of the modal mu-calculus. Logical Methods in Computer Science, 7(4), 2011.
doi:10.2168/LMCS-7(4:9)2011.

http://arxiv.org/abs/1604.01595
https://doi.org/10.4230/LIPIcs.ICALP.2017.97
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.14
https://doi.org/10.2168/LMCS-5(1:3)2009
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.1007/11523468_117
https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1109/LICS.2019.8785679
https://doi.org/10.2168/LMCS-7(4:9)2011

K. Asada and N. Kobayashi 22:17

11 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In 21th
IEEE Symposium on Logic in Computer Science, LICS 2006, pages 81–90. IEEE Computer
Society, 2006. doi:10.1109/LICS.2006.38.

12 Paweł Parys. The Complexity of the Diagonal Problem for Recursion Schemes. In 37th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2017, volume 93 of LIPIcs, pages 45:1–45:14. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2018. doi:10.4230/LIPIcs.FSTTCS.2017.45.

13 Mitchell Wand. An algebraic formulation of the Chomsky hierarchy. In Category Theory
Applied to Computation and Control, volume 25 of LNCS, pages 209–213. Springer, 1974.
doi:10.1007/3-540-07142-3_84.

A Proof of Theorem 12

Proof of Theorem 12. On Item 1, see the full version.
Next, we show Item 2: note that, by Lemma 11, we only need to show the following: if G

is already in normal form, then |G′|cy ∈ O(A3 × |G|cy) and |G′|ch ∈ O(A3 × |G|cy + |N |n).
Let: r = (F ỹ x̃→ s) ∈ R, N (F) = κ′1 → · · · → κ′m ⇒ ok → o, K = y1 : κ′1, . . . , ym : κ′m,

and D0 be the derivation tree of K; x̃ : o `N s : o (s0, . . . , sk+1).
Further, let K; x̃ : o `N t : κ̃ ⇒ o` → o (t̃) be an arbitrary judgment in D0, and D

be the sub-derivation-tree of D0 for this judgment. Then we can show ` ≤ A by induction
on the height of D. Next, let h (h′, resp.) be the largest number, in the depth direction, of
uses of (Tr-App) ((Tr-AppG), resp.) in D: precisely, h (h′, resp.) is defined as the least
number p such that in any path of D, the number of (Tr-App) ((Tr-AppG), resp.) in the
path is no more than p. Then for each i ∈ {0, . . . , `+ k + 1}, we can show

|ti| ≤ 2(A+ 2)h2h
′
|t| (3)

by induction on t and case analysis on the last rule of D.
Now let us consider the case D = D0 (and hence t = s). Since G is in normal form,

h, h′ ≤ 2; hence by (3), |si| ≤ O(A2 × |s|) for each i. Also note that, from Item 1,
ari(N ‡(Fi)) ≤ O(A2) for each i. Thus, for each r′ ∈ Rr, we have |r′| ≤ O(A2 × |r|). Since
the cardinality of Rr is no more than A+ 1, we have:

|G′|cy = |S1|+
∑
r∈R

(∑
r′∈Rr

|r′|
)
≤ |S e|+

∑
r∈R

O(A3 × |r|) ≤ O(A3 × |G|cy).

Next we calculate |G′|ch. We define |κ1 × · · · × κk| := |κ1|+ · · ·+ |κk|+ k − 1. We can
show that |κ†|, |κ†′ | ≤ 3|κ|ord(κ) simultaneously by induction on κ. Hence, we have

|N ‡| ≤
∑
F∈N

|N (F)†| ≤
∑
F∈N

3|N (F)|ord(N (F)) ≤ 3
∑
F∈N

|N (F)|n ≤ 3|N |n

and thus |G′|ch ≤ O(A3 × |G|cy + |N |n).
Lastly, we show Item 3. Note that, by Lemma 11, we only need to show the following: if

G is already in normal form, then the transformation given in Fig. 1 takes O(A2|G|cy + |N |)
time.

We implement terms by directed acyclic graphs. The implementation bκc of a type κ
is as follows: Let κ be of the form κ1 → · · · → κk ⇒ o` → o. If k = 0, bκc is the 2-length
array [k, `]. If k > 0, note that κ = κ1 → (κ2 → · · · → κk ⇒ o` → o) and we define bκc
as the 4-length array [k, `, bκ1c, bκ2 → · · · → κk ⇒ o` → oc]. Then, the two operations
that respectively extract k and ` from a type κ = κ1 → · · · → κk ⇒ o` → o and the type

FSCD 2020

https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.45
https://doi.org/10.1007/3-540-07142-3_84

22:18 Size-Preserving Translations from Word Grammars to Tree Grammars

construction κ→ κ′ from κ and κ′ can be performed by O(1). The operation that extracts
the sequence κ1, . . . , κk from a type κ = κ1 → · · · → κk ⇒ o` → o can be performed
by O(ari(κ)). During the computation of G′ from G, we need to extract such a sequence
κ1, . . . , κk just at the top of the derivation tree of (Tr-Rule) for each rewriting rule; then
in the derivation tree, all the typing environments are common and can be shared.

Now let us consider the computation of a derivation tree; look at Fig. 1. To compute the
base transformation rules (i.e., (Tr-Omega), (Tr-VarG), (Tr-Var), and (Tr-NT)), it
takes O(A) time, as the length of the resulting tuple is bounded by O(A). The computation for
one occurrence of (Tr-Choice) in the derivation tree takesO(k) time, i.e., if the computations
for s and t take p and q time, respectively, then that for s ⊕ t takes p + q + O(k) time.
Similarly, the computations for occurrences of (Tr-Const), (Tr-AppG), and (Tr-App)
take O(k), O(`+ k), and O(`′(`+ k)) time, respectively. Thus, the running time for every
node of the derivation tree is O(A2).

Hence, for each rule F ỹ x̃→ t of G, the computation of y1 :κ1, . . . , ym :κm;x1, . . . , xk :o `N
t : o (t0, t1, . . . , tk, tk+1) takes O(A2|t|) time. Also, that of all ỹi and ỹi′ (1 ≤ i ≤ m) takes
O(A2) time. Therefore, that of (Tr-Rule) runs in O(A2|t|) time. Thus the computation of
R′ takes O(A2|G|cy) time.

Also the computation of N ‡ takes O(|N |) time because, for κ = κ1 → · · · → κk ⇒ o` → o,
that of κ† (and simultaneously of κ†′) takes O(|κ1| + · · · + |κk| + k + `) time. Hence, the
computation of (Tr-Gram) runs in O(A2|G|cy + |N |). J

B Proofs for Section 5.3

Due to the space limit, we focus only on some important cases when we perform case analysis
in proofs. See the full version for detailed proofs.

First we show the substitution lemma (Lemma 19), where we use the following lemma:

I Lemma 22 (Weakening). If K;x1, . . . , xk : o ` t : κ (t0, . . . , t`+k+1) where gar(κ) = `,
then K;x0, x1, . . . , xk : o ` t : κ (t0, . . . , t`, t`+k+1, t`+1, . . . , t`+k, t`+k+1).

Proof. Straightforward induction on t. J

Proof of Lemma 19. First we show the second item of the lemma. We have:

θ0ugar(κ′)+|z̃|+1 = θk+1ugar(κ′)+|z̃|+1 = θk+1u0

where the former equation follows from Lemma 10, and the latter one can be shown by
straightforward induction on u and case analysis on the last rule used for the derivation
ỹ : κ̃; z̃ : o ` u : κ′ (u0, . . . , ugar(κ′)+|z̃|+1), where we unfold the definition of θk+1 only in
the case of (Tr-Var).

Next we show the first item, again by induction on u and case analysis on the last rule
used for the derivation ỹ : κ̃; z̃ : o ` u : κ′ (u0, . . . , ugar(κ′)+|z̃|+1).

Case of (Tr-Var): Let the last rule be the following:

K(yi′) = κ̃⇒ o`i′ → o

ỹ : κ̃; z̃ : o ` yi′ : κ̃⇒ o`i′ → o (yi′,0, yi′,1, . . . , yi′,`i′ , (yi′,`i′ +1)|z̃|+1)

Now [s̃′/ỹ]u = [s̃′/ỹ]yi′ = s′i′ , and by the assumption and the weakening lemma

K. Asada and N. Kobayashi 22:19

(Lemma 22),

z̃, x̃ : o ` s′i′ : κi′

(s′i′,0, . . . , s′i′,`i′ , (s′i′,`i′ +k+1)|z̃|, s′i′,`i′ +1, . . . , s
′
i′,`i′ +k, s

′
i′,`i′ +k+1)

= (θ0yi′,0, . . . , θ0yi′,`i′ , (θ0yi′,`i′ +1)|z̃|, θ1yi′,0, . . . , θkyi′,0, θ0yi′,`i′ +1)

as required.
Case of (Tr-App): Let the last rule be the following:

ỹ : κ̃; z̃ : o ` s : κ′0 → κ̃′ ⇒ o` → o (s0, . . . , s`+|z̃|+1)
ỹ : κ̃; z̃ : o ` t : κ′0 (t0, . . . , t`′+|z̃|+1) gar(κ′0) = `′

ỹ : κ̃; z̃ : o ` s t : κ̃′ ⇒ o` → o (
s0(t0, . . . , t`′ , t`′+|z̃|+1), s1(t1, . . . , t`′ , t`′+|z̃|+1), . . . , s`(t1, . . . , t`′ , t`′+|z̃|+1),
s`+1(t`′+1, t1, . . . , t`′ , t`′+|z̃|+1), . . . , s`+|z̃|+1(t`′+|z̃|+1, t1, . . . , t`′ , t`′+|z̃|+1)

)
By induction hypothesis and (Tr-App), we have:

z̃, x̃ : o ` [s̃′/ỹ]s : κ′0 → κ̃′ ⇒ o` → o (θ0s0, . . . , θ0s`+|z̃|, θ1s0 . . . , θks0, θ0s`+|z̃|+1)

z̃, x̃ : o ` [s̃′/ỹ]t : κ′0 (θ0t0, . . . , θ0t`′+|z̃|, θ1t0 . . . , θkt0, θ0t`′+|z̃|+1) gar(κ′0) = `′

z̃, x̃ : o ` [s̃′/ỹ]s [s̃′/ỹ]t : κ̃′ ⇒ o` → o (
θ0s0(θ0t0, . . . , θ0t`′ , θ0t`′+|z̃|+1),
θ0s1(θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1), . . . , θ0s`(θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1),
θ0s`+1(θ0t`′+1, θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1), . . . , θ0s`+|z̃|(θ0t`′+|z̃|, θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1)
θ1s0(θ1t0, θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1), . . . , θks0(θkt0, θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1),
θ0s`+|z̃|+1(θ0t`′+|z̃|+1, θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1)

)
Then it is enough to show

θjs0(θjt0, θ0t1, . . . , θ0t`′ , θ0t`′+|z̃|+1) = θj
(
s0(t0, t1, . . . , t`′ , t`′+|z̃|+1)

)
(j ∈ {1, . . . , k})

i.e., θ0ti = θjti (i ∈ {1, . . . , `′, `′ + |z̃|+ 1}, j ∈ {1, . . . , k})

which follows from Lemma 10.
Case of (Tr-AppG): Let the last rule be the following:

ỹ : κ̃; z̃ : o ` s : o`+1 → o (s0, . . . , s`+|z̃|+2)
ỹ : κ̃; z̃ : o ` t : o (t0, . . . , t|z̃|+1)

ỹ : κ̃; z̃ : o ` s t : o` → o (
s0 ⊕ (br s1 t0), s2, . . . , s`+1, s`+2 ⊕ (br s1 t1), . . . , s`+|z̃|+2 ⊕ (br s1 t|z̃|+1)

)
By induction hypothesis and (Tr-AppG), we have:

z̃, x̃ : o ` [s̃′/ỹ]s : o`+1 → o (θ0s0, . . . , θ0s`+|z̃|+1, θ1s0 . . . , θks0, θ0s`+|z̃|+2)

z̃, x̃ : o ` [s̃′/ỹ]t : o (θ0t0, . . . , θ0t|z̃|, θ1t0, . . . , θkt0, θ0t|z̃|+1)

z̃, x̃ : o ` [s̃′/ỹ]s [s̃′/ỹ]t : o` → o (
θ0s0 ⊕ (br θ0s1 θ0t0), θ0s2, . . . , θ0s`+1,

θ0s`+2 ⊕ (br θ0s1 θ0t1), . . . , θ0s`+|z̃|+1 ⊕ (br θ0s1 θ0t|z̃|),
θ1s0 ⊕ (br θ0s1 θ1t0), . . . , θks0 ⊕ (br θ0s1 θkt0),
θ0s`+|z̃|+2 ⊕ (br θ0s1 θ0t|z̃|+1)

)
Then it is enough to show θ0s1 = θjs1 for j = 1, . . . , k, which follows from Lemma 10. J

FSCD 2020

22:20 Size-Preserving Translations from Word Grammars to Tree Grammars

Now we prove the subject reduction lemma:

Proof of Lemma 20. We restate Lemma 20 as follows with different meta-variables s′, t′, s′i, t′i
for convenience of the proof:

If x1, . . . , xk : o ` s′ : o (s′0, . . . , s′k+1) and s′ −→es t
′, then there exist t′0, . . . , t′k+1

such that x1, . . . , xk : o ` t′ : o (t′0, . . . , t′k+1) and s′i ≈ t′i for each i ∈ {1, . . . , k + 1}.

The proof proceeds by induction on the derivation of x1, . . . , xk : o ` s′ : o (s′0, . . . , s′k+1).
Let s′ be of the form E[s′′] where s′′ is the redex of −→es. The case where E 6= [] can be

proved easily by induction hypothesis (as the transformation rules are compositional). So we
consider only the case where E = []. We perform case analysis on the redex s′′(= s′):

Case where s′ = F s̃ t̃ −→es {t̃/z̃}[s̃/ỹ]u: In this case,

F ỹ z̃ → u ∈ R N (F) = κ̃⇒ o` → o |κ̃| = |ỹ| = |s̃| ` = |z̃| = |t̃|,

and z̃ do not occur in F s̃ t̃.
By the derivation of x̃ : o ` (s′ =) F s̃ t̃ : o (s′0, . . . , s′k+1), we have:

x̃ : o ` F : κ̃⇒ o` → o (F0, F1, . . . , F`, (F0)k+1)
x̃ : o ` si : κi (si,0, . . . , si,`i+k+1) gar(κi) = `i (i = 1, . . . , |s̃|) (4)
x̃ : o ` ti : o (ti,0, . . . , ti,k+1) (i = 1, . . . , |t̃|) (5)
(s′0, . . . , s′k+1) = (v`+1,0, . . . , v`+1,k+1)

where for i = 1, . . . , |s̃| and j = 1, . . . , |t̃|(= `), we define:

(v′1,0, . . . , v′1,`+k+1) := (F0, F1, . . . , F`, (F0)k+1)
(v′i+1,0, . . . , v

′
i+1,`+k+1) :=(

v′i,0(si,0, . . . , si,`i , si,`i+k+1),

v′i,1(si,1, . . . , si,`i , si,`i+k+1), . . . , v′i,`(si,1, . . . , si,`i , si,`i+k+1),

v′i,`+1(si,`i+1, si,1, . . . , si,`i , si,`i+k+1), . . . , v′i,`+k+1(si,`i+k+1, si,1, . . . , si,`i , si,`i+k+1)
)

(v1,0, . . . , v1,`+k+1) := (v′|s̃|+1,0, . . . , v
′
|s̃|+1,`+k+1)

(vj+1,0, . . . , vj+1,`+k+1−j) :=(
vj,0 ⊕ (br vj,1 tj,0), vj,2, . . . , vj,`+1−j ,

vj,`+2−j ⊕ (br vj,1 tj,1), . . . , vj,`+k+2−j ⊕ (br vj,1 tj,k+1)
)
.

Then we have

(s′0, s′1, . . . , s′k+1) = (v`+1,0, v`+1,1, . . . , v`+1,k+1)

=
(
v`,0 ⊕ (br v`,1 t`,0), v`,2 ⊕ (br v`,1 t`,1), . . . , v`,k+2 ⊕ (br v`,1 t`,k+1)

)
=
((
v`−1,0 ⊕ (br v`−1,1 t`−1,0)

)
⊕ (br v`−1,2 t`,0),(

v`−1,3 ⊕ (br v`−1,1 t`−1,1)
)
⊕ (br v`−1,2 t`,1), . . . ,(

v`−1,k+3 ⊕ (br v`−1,1 t`−1,k+1)
)
⊕ (br v`−1,2 t`,k+1)

)
= . . .

=
(
v1,0 ⊕ (br v1,1 t1,0)⊕ · · · ⊕ (br v1,` t`,0),

v1,`+1 ⊕ (br v1,1 t1,1)⊕ · · · ⊕ (br v1,` t`,1), . . . ,

v1,`+k+1 ⊕ (br v1,1 t1,k+1)⊕ · · · ⊕ (br v1,` t`,k+1)
)

(6)

K. Asada and N. Kobayashi 22:21

and

v1,0 = F0(s1,0, . . . , s1,`1 , s1,`1+k+1) · · · (s|s̃|,0, . . . , s|s̃|,`|s̃| , s|s̃|,`|s̃|+k+1)

v1,j = Fj(s1,1, . . . , s1,`1 , s1,`1+k+1) · · · (s|s̃|,1, . . . , s|s̃|,`|s̃| , s|s̃|,`|s̃|+k+1) (j = 1, . . . , `)

v1,`+j = F0(s1,`1+j , s1,1, . . . , s1,`1 , s1,`1+k+1) · · · (s|s̃|,`|s̃|+j , s|s̃|,1, . . . , s|s̃|,`|s̃| , s|s̃|,`|s̃|+k+1)

(j = 1, . . . , k + 1).

Next let us consider t′ = {t̃/z̃}[s̃/ỹ]u. For some ũ, we have

ỹ : κ̃; z̃ : o ` u : o (u0, . . . , u`+1). (7)

By (7), (4), and the substitution lemma (Lemma 19), we have

z̃, x̃ : o ` [s̃/ỹ]u : o (θ0u0, θ0u1, . . . , θ0u`, θ1u0, . . . , θku0, θ0u`+1) (8)
θ0u`+1 = θk+1u0 (9)

where

θj = θ1,j · · · θ|κ̃|,j (j = 0, . . . , k)
θi,0 = [si,0/yi,0, . . . , si,`i

/yi,`i
, si,`i+k+1/yi,`i+1] (i = 1, . . . , |κ̃|)

θi,j = [si,`i+j/yi,0, . . . , si,`i
/yi,`i

, si,`i+k+1/yi,`i+1] (i = 1, . . . , |κ̃|, j = 1, . . . , k + 1).

Further, by (5), (8), and (Tr-Sub), we have

x̃ : o ` (t′ =) {t̃/z̃}[s̃/ỹ]u : o (t′0, . . . , t′k+1)

where

(t′0, t′1, . . . , t′k, t′k+1) :=(
(θ0u0)⊕

⊕`
i=1(br (θ0ui) ti,0),

(θ1u0)⊕
⊕`

i=1(br (θ0ui) ti,1), . . . , (θku0)⊕
⊕`

i=1(br (θ0ui) ti,k),

(θ0u`+1)⊕
⊕`

i=1(br (θ0ui) ti,k+1)
)
.

(10)

Now, by (Tr-Rule), the transformed grammar has the following rules

F0 ỹ1 · · · ỹ|ỹ| → u0, Fj ỹ1
′ · · · ỹ|ỹ|

′ → uj (j = 1, . . . , `)

where

ỹi = (yi,0, . . . , yi,gar(κi)+1) ỹi
′ = (yi,1, . . . , yi,gar(κi)+1) (i = 1, . . . , |ỹ|).

Then,

v1,0 −→∗ θ0u0 (11)
v1,j −→∗ θ0uj (j = 1, . . . , `) (12)
v1,`+j −→∗ θju0 (j = 1, . . . , k) (13)
v1,`+k+1 −→∗ θk+1u0 = θ0u`+1 (14)

FSCD 2020

22:22 Size-Preserving Translations from Word Grammars to Tree Grammars

where: the equation in (14) is just (9); and for (12) note that y1,0, . . . , y|κ̃|,0 do not occur
in uj by Lemma 10. Then, we have

(s′0, s′1, . . . , s′k, s′k+1)

=
(
v1,0 ⊕

⊕`
i=1(br v1,i ti,0), (∵ (6))

v1,`+1 ⊕
⊕`

i=1(br v1,i ti,1), . . . , v1,`+k ⊕
⊕`

i=1(br v1,i ti,k)

v1,`+k+1 ⊕
⊕`

i=1(br v1,i ti,k+1)
)

≈
(
(θ0u0)⊕

⊕`
i=1(br (θ0ui) ti,0),

(θ1u0)⊕
⊕`

i=1(br (θ0ui) ti,1), . . . , (θku0)⊕
⊕`

i=1(br (θ0ui) ti,k),

(θ0u`+1)⊕
⊕`

i=1(br (θ0ui) ti,k+1)
)

(∵ (11)-(14))

= (t′0, t′1, . . . , t′k, t′k+1) (∵ (10))

as required. J

	Introduction
	Preliminaries
	Higher-order grammars
	The main result

	The Transformation
	Complexity and Application
	Complexity
	Applications

	Correctness of the Translation
	Reduction of the correctness to recursion-free grammars
	The modified reduction of source grammars
	Correctness for recursion-free grammars

	Conclusion
	Proof of Theorem 12
	Proofs for Section 5.3

