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Abstract
Language-integrated query is a powerful programming construct allowing database queries and
ordinary program code to interoperate seamlessly and safely. Language-integrated query techniques
rely on classical results about monadic comprehension calculi, including the conservativity theorem
for nested relational calculus. Conservativity implies that query expressions can freely use nesting
and unnesting, yet as long as the query result type is a flat relation, these capabilities do not lead
to an increase in expressiveness over flat relational queries. Wong showed how such queries can
be translated to SQL via a constructive rewriting algorithm, and Cooper and others advocated
higher-order nested relational calculi as a basis for language-integrated queries in functional languages
such as Links and F#. However there is no published proof of the central strong normalization
property for higher-order nested relational queries: a previous proof attempt does not deal correctly
with rewrite rules that duplicate subterms. This paper fills the gap in the literature, explaining the
difficulty with a previous proof attempt, and showing how to extend the >>-lifting approach of
Lindley and Stark to accommodate duplicating rewrites. We also sketch how to extend the proof to
a recently-introduced calculus for heterogeneous queries mixing set and multiset semantics.
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1 Introduction

The nested relational calculus [2] provides a principled foundation for integrating database
queries into programming languages. Wong’s conservativity theorem [23] generalized the
classic flat-flat theorem [17] to show that for any nesting depth d, a query expression over flat
input tables returning collections of depth at most d can be expressed without constructing
intermediate results of nesting depth greater than d. In the special case d = 1, this implies
the flat-flat theorem, namely that a nested relational query mapping flat tables to flat tables
can be expressed equivalently using the flat relational calculus. In addition, Wong’s proof
technique was constructive, and gave an easily-implemented terminating rewriting algorithm
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28:2 Strongly Normalizing Higher-Order Relational Queries

for normalizing NRC queries to equivalent flat queries; these normal forms correspond closely
to idiomatic SQL queries and translating from the former to the latter is straightforward.
The basic approach has been extended in a number of directions, including to allow for
(nonrecursive) higher-order functions in queries [7], and to allow for translating queries that
return nested results to a bounded number of flat relational queries [4].

Normalization-based techniques are used in language-integrated query systems such as
Kleisli [24] and Links [8], and can improve both performance and reliability of language-
integrated query in F# [3]. However, most work on normalization considers homogeneous
queries in which there is a single collection type (e.g. homogeneous sets or multisets).
Recently, we considered a heterogeneous calculus for mixed set and bag queries [20], and
conjectured that it too satisfies strong normalization and conservativity theorems. However,
in attempting to extend Cooper’s proof of normalization we discovered a subtle problem,
which makes the original proof incomplete.

Most techniques to prove the strong normalization property for higher-order languages
employ logical relations; among these, the Girard-Tait reducibility relation is particularly
influential: reducibility interprets types as certain sets of strongly normalizing terms enjoying
desirable closure properties with respect to reduction, called candidates of reducibility [9].
The fundamental theorem then proves that every well-typed term is reducible, hence also
strongly normalizing. In its traditional form, reducibility has a limitation that makes it
difficult to apply it to certain calculi: the elimination form of every type is expected to be
a neutral term or, informally, an expression that, when placed in an arbitrary evaluation
context, does not interact with it by creating new redexes. However, some calculi possess
commuting conversions, i.e. reduction rules that apply to nested elimination forms: such rules
usually arise when the elimination form for a type (say, pairs) is constructed by means of an
auxiliary term of any arbitrary, unrelated type. In this case, we expect nested elimination
forms to commute; for example, we could have the following commuting conversion hoisting
the elimination of pairs out of case analysis on disjoint unions:

cases (let (a, b) = p in t) of inl(x)⇒ u; inr(y)⇒ v

 let (a, b) = p in cases t of inl(x)⇒ u; inr(y)⇒ v

where p has type A×B, t has type C +D, u, v have type U , and the bound variables a, b are
chosen fresh for u and v. Since in the presence of commuting conversions elimination forms
are not neutral, a straightforward adaptation of reducibility to such languages is precluded.

1.1 >>-lifting and NRCλ

Cooper’s NRCλ [6, 7] extends the simply typed lambda calculus with collection types whose
elimination form is expressed by comprehensions

⋃
{M |x← N}, where M and N have a

collection type, and the bound variable x can appear in M :

Γ ` N : {S} Γ, x : S `M : {T}
Γ `

⋃
{M |x← N} : {T}

(we use typewriter-style braces {·} to indicate collections as expressions or types of NRCλ).
In the rule above, we typecheck a comprehension destructuring collections of type {S} to
produce new collections in {T}, where T is an unrelated type: semantically, this corresponds
to the union of all the collections M [V /x], such that V is in N . According to the standard
approach, we should attempt to define the reducibility predicate for the collection type {S}
as:

Red{S} , {N : ∀x, T,∀M ∈ Red{T},
⋃

{M |x← N} ∈ Red{T}}
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(we use roman-style braces {·} to express metalinguistic sets). Of course the definition above
is circular, since it uses reducibility over collections to express reducibility over collections;
however, this inconvenience could in principle be circumvented by means of impredicativity,
replacing Red{T} with a suitable, universally quantified candidate of reducibility (an approach
we used in [19] in the context of justification logic). Unfortunately, the arbitrary return type
of comprehensions is not the only problem: they are also involved in commuting conversions,
such as:⋃

{M |x←
⋃

{N |y ← P}} 
⋃

{
⋃

{M |x← N}|y ← P} (y /∈ FV (M))

Because of this rule, comprehensions are not neutral terms, thus we cannot use the closure
properties of candidates of reducibility (in particular, CR3 [9]) to prove that a collection
term is reducible. To address this problem, Lindley and Stark proposed a revised notion
of reducibility based on a technique they called >>-lifting [15]. >>-lifting, which derives
from Pitts’s related notion of >>-closure [18], involves quantification over arbitrarily nested,
reducible elimination contexts (continuations); the technique is actually composed of two
steps: >-lifting, used to define the set Red>T of reducible continuations for collections of type
T in terms of RedT , and >>-lifting proper, defining Red{T} = Red>>T in terms of Red>T . In
our setting, if we use SN to denote the set of strongly normalizing terms, the two operations
can be defined as follows:

Red>T , {K : ∀M ∈ RedT ,K[{M}] ∈ SN}

Red>>T , {M : ∀K ∈ Red>T ,K[M ] ∈ SN}

Notice that, in order to avoid a circularity between the definitions of reducible collection
continuations and reducible collections, the former are defined by lifting a reducible term M

of type T to a singleton collection.
In NRCλ, besides commuting conversions, we come across an additional problem con-

cerning the property of distributivity of comprehensions over unions, represented by the
following reduction rule:⋃

{M ∪N |x← P} 
⋃

{M |x← P} ∪
⋃

{N |x← P}

One can immediately see that in
⋃

{M ∪N |x← �} the reduction above duplicates the hole,
producing a multi-hole context that is not a continuation in the Lindley-Stark sense.

Cooper, in his work, attempted to reconcile continuations with duplicating reductions.
While considering extensions to his language, we discovered that his proof of strong normal-
ization presents a nontrivial lacuna which we could only fix by relaxing the definition of
continuations to allow multiple holes. This problem affected both the proof of the original
result and our attempt to extend it, and has an avalanche effect on definitions and proofs,
yielding a more radical revision of the >>-lifting technique which is the subject of this paper.

The contribution of this paper is to place previous work on higher-order program-
ming for language-integrated query on a solid foundation. As we will show, our approach
also extends to proving normalization for a higher-order heterogeneous collection calculus
NRCλ(Set,Bag) [20] and we believe our proof technique can be extended further.

1.2 Summary
Section 2 reviews presents NRCλ and its rewrite system. Section 3 presents the refined
approach to reducibility needed to handle rewrite rules with branching continuations. Section 4
presents the proof of strong normalization for NRCλ. Section 5 outlines the extension to a
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28:4 Strongly Normalizing Higher-Order Relational Queries

higher-order calculus NRCλ(Set,Bag) providing heterogeneous set and bag queries. Sections 6
and 7 discuss related work and conclude. Some of the proofs which were omitted from the
paper due to space constraints and are detailed in the appendix.

2 Higher-order NRC

NRCλ, a nested relational calculus with non-recursive higher-order functions, is defined by
the following grammar:

types S, T ::= A | S → T | 〈
−−→
` : T 〉 | {T}

terms L,M,N ::= x | c(−→M) | 〈
−−−−→
` = M〉 | M.` | λx.M | (M N)

| ∅ | {M} | M ∪N |
⋃

{M |x← N}
| empty M | where M do N

Types include atomic types A,B, . . . (among which we have Booleans B), record types
with named fields 〈

−−→
` : T 〉, collections {T}; we define relation types as those in the form

{〈
−−→
` : A〉}, i.e. collections of tuples of atomic types. Terms include applied constants c(−→M),

records with named fields and record projections (〈` = M〉, M.`), various collection terms
(empty, singleton, union, and comprehension), the emptiness test empty, and one-sided
conditional expressions for collection types where M do N . In this definition, x ranges over
variable names, c over constants, and ` over record field names. We will allow ourselves
to use sequences of generators in comprehensions, which are syntactic sugar for nested
comprehensions, e.g.:⋃

{M |x← N, y ← R} ,
⋃

{
⋃

{M |y ← R}|x← N}

The typing rules, shown in Figure 1, are largely standard, and we only mention those
operators that are specific to our language: constants are typed according to a fixed signature
Σ, prescribing the types of the n arguments and of the returned expression to be atomic;
empty takes a collection and returns a Boolean indicating whether its argument is empty;
where takes a Boolean condition and a collection and returns the second argument if the
Boolean is true, otherwise the empty set. (Conventional two-way conditionals, at any type,
are omitted for convenience but can be added without difficulty.)

2.1 Reduction and normalization
NRCλ is equipped with a rewrite system whose purpose is to convert expressions of flat
relation type into a sublanguage isomorphic to a fragment of SQL, even when the original
expression contains subterms whose type is not available in SQL, such as nested collections.
The rules for this rewrite system are shown in Figure 2.

Reduction on applied constants can happen when all of the arguments are values in
normal form, and relies on a fixed semantics J·K which assigns to each constant c of signature
Σ(c) = −→An → A′ a function mapping sequences of values of type −→An to values of type A′.
The rules for collections and conditionals are mostly standard. The reduction rule for the
emptiness test is triggered when the argument M is not of relation type (but, for instance,
of nested collection type) and employs comprehension to generate a (trivial) relation that is
empty if and only if M is.

The normal forms of queries under these rewriting rules construct no intermediate nested
structures, and are straightforward to translate to equivalent SQL queries. Cooper [7]
and Lindley and Cheney [14] give details of such translations. Cheney et al. [3] showed
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x : T ∈ Γ
Γ ` x : T

Σ(c) = −→An → A′ (Γ `Mi : Ai)i=1,...,n

Γ ` c(−→Mn) : A′

(Γ `Mi : Ti)i=1,...,n

Γ ` 〈
−−−−−−→
`n = Mn〉 : 〈

−−−−→
`n : Tn〉

Γ `M : 〈
−−−−→
`n : Tn〉 i ∈ {1, . . . , n}

Γ `M.`i : Ti
Γ, x : S `M : T

Γ ` λx.M : S → T

Γ `M : S → T Γ ` N : S
Γ ` (M N) : T

Γ ` ∅ : {T}
Γ `M : T

Γ ` {M} : {T}
Γ `M : {T} Γ ` N : {T}

Γ `M ∪N : {T}
Γ, x : T `M : {S} Γ ` N : {T}

Γ `
⋃

{M |x← N} : {S}

Γ `M : {T}
Γ ` empty M : B

Γ `M : B Γ ` N : {T}
Γ ` where M do N : {T}

Figure 1 Type system of NRC λ.

(λx.M) N  M [N/x] 〈. . . , ` = M, . . .〉.` M c(−→V ) JcK (−→V )⋃
{∅|x←M} ∅

⋃
{M |x← ∅} ∅

⋃
{M |x← {N}} M [N/x]⋃

{M ∪N |x← R}  
⋃

{M |x← R} ∪
⋃

{N |x← R}⋃
{M |x← N ∪R}  

⋃
{M |x← N} ∪

⋃
{M |x← R}⋃

{M |y ←
⋃

{R|x← N}}  
⋃

{M |x← N, y ← R} (if x /∈ FV(M))⋃
{M |x← where N do R}  

⋃
{where N do M |x← R} (if x /∈ FV(M))

where true do M  M where false do M  ∅ where M do ∅ ∅
where M do (N ∪R)  (where M do N) ∪ (where M do R)

where M do
⋃

{N |x← R}  
⋃

{where M do N |x← R}
where M do where N do R  where (M ∧N) do R

empty M  empty (
⋃

{〈〉|x←M}) (if M is not relation-typed)

Figure 2 Query normalization.

how to improve the performance and reliability of LINQ in F# using normalization and
gave many examples showing how higher-order queries support a convenient, compositional
language-integrated query programming style.

3 Reducibility with branching continuations

We introduce here the extension of >>-lifting we use to derive a proof of strong normalization
for NRCλ. The main contribution of this section is a refined definition of continuations with
branching structure and multiple holes, as opposed to the linear structure with a single hole
used by standard >>-lifting. In our definition, continuations (as well as the more general
notion of context) are particular forms of terms: in this way, the notion of term reduction
can be used for continuations as well, without need for auxiliary definitions.

3.1 Contexts and continuations
We start our discussion by introducing contexts, or terms with multiple, labelled holes that
can be instantiated by plugging other terms (including other contexts) into them.

FSCD 2020



28:6 Strongly Normalizing Higher-Order Relational Queries

I Definition 1 (context). Let us fix a countably infinite set P of indices: a context C is a
term that may contain distinguished free variables [p], also called holes, where p ∈ P.

Given a finite map from indices to terms [p1 7→M1, . . . , pn 7→Mn] ( context instantiation),
the notation C[p1 7→M1, . . . , pn 7→Mn] ( context application) denotes the term obtained by
simultaneously substituting M1, . . . ,Mn for the holes [p1], . . . , [pn].

We will use metavariables η, θ to denote context instantiations.

I Definition 2 (support). Given a context C, its support supp(C) is defined as the set of
the indices p such that [p] occurs in C as a free variable:

supp(C) , {p : [p] ∈ FV(C)}

When a term does not contain any [p], we say that it is a pure term; when it is important
that a term be pure, we will refer to it by using overlined metavariables L,M,N,R, . . ..
Under the appropriate assumptions, a multiple context instantiation can be decomposed.

I Definition 3. An instantiation η is permutable iff for all p ∈ dom(η) we have FV(η(p))∩
dom(η) = ∅.

I Lemma 4. Let η be permutable and let us denote by η¬p the restriction of η to indices
other than p. Then for all p ∈ dom(η) we have:

Cη = C[p 7→ η(p)]η¬p = Cη¬p[p 7→ η(p)]

We can now define continuations as certain contexts that capture how one or more
collections can be used in a program.

I Definition 5 (continuation). Continuations K are defined as the following subset of contexts:

K,H ::= [p] | M | K ∪K |
⋃

{M |x← K} | where B do K

where for all indices p, [p] can occur at most once.

This definition differs from the traditional one in two ways: first, holes are decorated
with an index; secondly, and most importantly, the production K ∪K allows continuations
to branch and, as a consequence, to use more than one hole. Note that the grammar above is
ambiguous, in the sense that certain expressions like where B do N can be obtained either
from the production where B do K with K = N , or as pure terms by means of the production
M : we resolve this ambiguity by parsing these expressions as pure terms whenever possible,
and as continuations only when they are proper continuations. An additional complication of
NRCλ when compared to the computational metalanguage for which >>-lifting was devised
lies in the way conditional expressions can reduce when placed in an arbitrary context:
continuations in the grammar above are not liberal enough to adapt to such reductions,
therefore, like Cooper, we will need an additional definition of auxiliary continuations allowing
holes to appear in the body of a comprehension (in addition to comprehension generators).

I Definition 6 (auxiliary continuation). Auxiliary continuations are defined as the following
subset of contexts:

Q,O ::= [p] | M | Q ∪Q |
⋃

{Q|x← Q} | where B do Q

where for all indices p, [p] can occur at most once.
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We can then see that regular continuations are a special case of auxiliary continuations;
however, an auxiliary continuation is allowed to branch not only with unions, but also with
comprehensions.1 We use the following definition of frames to represent flat continuations
with a distinguished hole.

I Definition 7 (frame). Frames are defined by the following grammar:

F ::=
⋃

{Q|x} |
⋃

{x← Q} | where B

where for all indices p, [p] can occur at most once.
The operation F p, lifting a frame to an auxiliary continuation with a distinguished hole

[p] is defined by the following rules⋃
{Q|x}p =

⋃
{Q|x← [p]} (p /∈ supp(Q))⋃

{x← Q}p =
⋃

{[p] |x← Q} (p /∈ supp(Q))
(where B)p = where B do [p]

The composition operation Q p©F is defined as:

Q p©F = Q[p 7→ F p]

We generally use frames in conjunction with continuations or auxiliary continuations when
we need to partially expose their leaves: for example, if we write K = K0 p©

⋃
{M |x}, we

know that instantiating K at index p with (for example) a singleton term will create a
redex: K[p 7→ {L}] K0[p 7→M

[
L
/
x
]
]. We say that such a reduction is a reduction at the

interface between the continuation and the instantiation.
We introduce two measures |·|p and ‖·‖p denoting the nesting depth of a hole [p]: the

two measures differ in the treatment of nesting within the body of a comprehension.

I Definition 8. The measures |Q|p and ‖Q‖p are defined as follows:

|[q]|p = ‖[q]‖p =
{

1 if p = q

0 else∣∣M ∣∣
p

=
∥∥M∥∥

p
= 0

|Q1 ∪Q2|p = max(|Q1|p , |Q2|p) ‖Q1 ∪Q2‖p = max(‖Q1‖p , ‖Q2‖p)
|where B Q|p = |Q|p + 1 ‖where B Q‖p = ‖Q‖p + 1

|
⋃

{Q1|x 7→ Q2}|p =


|Q1|p if p ∈ supp(Q1)
|Q2|p + 1 if p ∈ supp(Q2)
0 else

‖
⋃

{Q1|x 7→ Q2}‖p =


‖Q1‖p + 1 if p ∈ supp(Q1)
‖Q2‖p + 1 if p ∈ supp(Q2)
0 else

1 It is worth noting that Cooper’s original definition of auxiliary continuation does not use branching
comprehension (nor branching unions), but is linear just like the original definition of continuation. The
only difference between regular and auxiliary continuations in his work is that the latter allowed nesting
not just within comprehension generators, but also within comprehension bodies (in our notation, this
would correspond to two separate productions

⋃
{M |x← Q} and

⋃
{Q|x← N}).

FSCD 2020



28:8 Strongly Normalizing Higher-Order Relational Queries

NRCλ reduction can be used immediately on contexts (including regular and auxiliary
continuations) since these are simply terms with distinguished free variables; we will also
abuse notation to allow ourselves to specify reduction on hole instantiations: whenever
η(p) N and η′ = η¬p[p 7→ N ], we can write η  η′.

We will denote the set of strongly normalizing terms by SN . For strongly normalizing
terms we can introduce the concept of maximal reduction length.

I Definition 9 (maximal reduction length). Let M ∈ SN : we define ν(M) as the maximum
length of all reduction sequences starting with M . We also define ν(η) as

∑
p∈dom(η) ν(η(p)),

whenever this value is defined.

I Lemma 10. For all strongly normalizing terms M , if M  M ′, then ν(M ′) < ν(M).

I Lemma 11. If Q p©F ∈ SN , then ν(Q) ≤ ν(Q p©F ).

3.2 Renaming reduction
Reducing a plain or auxiliary continuation will yield a context that is not necessarily in the
same class because certain holes may have been duplicated. For this reason, we introduce a
refined notion of renaming reduction which we can use to rename holes in the results so that
each of them occurs at most one time.

I Definition 12. Given a term M with holes and a finite map σ : P → P, we write Mσ for
the term obtained from M by replacing each hole [p] such that σ(p) is defined with [σ(p)].

Even though finite renaming maps are partial functions, it is convenient to extend them
to total functions by taking σ(p) = p whenever p /∈ dom(σ); we will write id to denote the
empty renaming map, whose total extension is the identity function on P.

I Definition 13 (renaming reduction). M σ-reduces to N (notation: M σ
 N) iff M  Nσ.

Conveniently, it can be shown that every renaming reduction chain can be simulated by
a plain reduction chain of the same length and vice-versa: therefore the notion of strongly
normalizing term and the maximal reduction length ν(M) do not depend on whether we use
plain or renaming reduction (this simple result is described in the appendix).

Our goal is to describe the reduction of pure terms expressed in the form of instantiated
continuations. One first difficulty we need to overcome is that, as we noted, the sets of
continuations (both regular and auxiliary) are not closed under reduction; thankfully, we can
prove they are closed under renaming reduction.

I Lemma 14.
1. For all continuations K, if K  C, there exist a continuation K ′ and a finite map σ

such that K σ
 K ′ and K ′σ = C.

2. For all auxiliary continuations Q, if Q C, there exist an auxiliary continuation Q′ and
a finite map σ such that Q σ

 Q′ and Q′σ = C.

Proof sketch. For all C we can find C ′, σ such that C = C ′σ and all the holes in C ′ are
linear. For case 1, we can show by induction on the derivation of K  C ′σ that C ′ satisfies
the grammar for continuations. Case 2 is similar. J

Secondly, given a renaming reduction C
σ
 C ′, we want to be able to express the

corresponding reduction on Cη: due to the renaming σ, it is not enough to change C to C ′,
but we also need to construct some η′ containing precisely those mappings [q 7→ M ] such
that, if σ(q) = p, then p ∈ dom(η) and η(p) = M . This construction is expressed by means
of the following operation.
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I Definition 15. For all pure hole instantiations η and renamings σ, we define ησ as the
hole instantiation such that:

if σ(p) ∈ dom(η) then ησ(p) = η(σ(p));
in all other cases, ησ(p) = η(σ).

The results above allow us to express what happens when a reduction duplicates the
holes in a continuation which is then combined with a hole instantiation.

I Lemma 16. For all contexts C, renamings σ, and hole instantiations η such that, for all
p ∈ dom(η), supp(η(p)) ∩ dom(σ) = ∅, if C σ

 C ′, then Cη σ
 C ′ησ.

Remark. In [6], Cooper attempts to prove strong normalization for NRCλ using a similar,
but weaker result:

If K  C, then for all terms M there exists K ′M such that C[M ] = K ′M [M ] and
K[M ] K ′M [M ].

Since he does not have branching continuations and renaming reductions, whenever a hole is
duplicated, e.g.

K =
⋃

{N1 ∪N2|x← �} 
⋃

{N1|x← �} ∪
⋃

{N2|x← �} = C

he resorts to obtaining a continuation from C simply by filling one of the holes with the
instantiation M :

K ′M =
⋃

{N1|x←M} ∪
⋃

{N2|x← �}

Hence, K ′M [M ] = C[M ]. Unfortunately, subsequent proofs rely on the fact that ν(K) must
decrease under reduction: since we have no control over ν(M), which could potentially be
much greater than ν(K), it may be that ν(K ′M ) ≥ ν(K).

In our setting, by combining Lemmas 14 and 16, we can find a K ′ which is a proper
contractum of K. By Lemma 10, we get ν(K ′) < ν(K), as required by subsequent proofs.

The following result, like many other in the rest of this section, proceeds by well-founded
induction; we will use the following notation to represent well-founded relations:

< stands for the standard less-than relation on N, which is well-founded;
l is the lexicographic extension of < to k-tuples in Nk (for a given k), also well-founded;
≺ will be used to provide a decreasing metric that depends on the specific proof: such
metrics are defined as subsets of l and are thus well-founded.

I Lemma 17. Let Q be an auxiliary continuation, and let η, θ be context instantiations s.t.
their union is permutable. If Qη ∈ SN and Qθ ∈ SN , then Qηθ ∈ SN .

Proof. We assume that dom(η) ∪ dom(θ) ⊆ supp(Q) (otherwise, we can find strictly smaller
permutable η′, θ′ such that Qηθ = Qη′θ′, and their domains are subsets of supp(Q)). We
show Qη ∈ SN and Qθ ∈ SN imply Q ∈ SN , η ∈ SN and θ ∈ SN ; thus we can then prove
the theorem by well-founded induction on (Q, η, θ) using the following metric:

(Q1, η1, θ1) ≺ (Q2, η2, θ2) ⇐⇒ (ν(Q1), ‖Q1‖ , ν(η1)+ν(θ1))l(ν(Q2), ‖Q2‖ , ν(η2)+ν(θ2))

We show that all of the possible contracta of Qηθ are s.n. by case analysis on the contraction.
The important cases are the following:
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Q′ησθσ, where Q σ
 Q′: it is easy to see that ν(ησ) and ν(θσ) are defined because

ν(η) and ν(θ) are; then the thesis follows from the induction hypothesis, knowing that
ν(Q′) < ν(Q) (Lemma 10).
Q0[p 7→ N ]η0θ where Q = Q0 p©F , η = [p 7→M ]η0, and F p[p 7→M ] N by means of a
reduction at the interface. By Lemma 11 we know ν(Q0) ≤ ν(Q); we can easily prove
‖Q0‖ < ‖Q‖. We take η′ = [p 7→ N ]η0: since Qη reduces to Q0η

′ and both terms are
strongly normalizing, we have that ν(η′) is defined. Then we observe (Q0, η

′, θ) ≺ (Q, η, θ)
and obtain the thesis by induction hypothesis. A symmetric case with p ∈ dom(θ) is
proved similarly. J

I Corollary 18. Q[p 7→M ]σ ∈ SN iff for all q s.t. σ(q) = p, we have Q[q 7→M ] ∈ SN .

The following property (whose proof we detail in the appendix) tells us that instantiating
a continuation never shortens the maximal reduction chain.

I Lemma 19. If Qη ∈ SN , then Q ∈ SN and ν(Q) ≤ ν(Qη).

3.3 Candidates of reducibility
We here define the notion of candidates of reducibility: sets of strongly normalizing terms
enjoying certain closure properties that can be used to overapproximate the sets of terms
of a certain type. Our version of candidates for NRCλ is a straightforward adaptation of
the standard definition given by Girard and like that one is based on a notion of neutral
terms, i.e. those terms that, when placed in an arbitrary context, do not create additional
redexes. The set of neutral terms is denoted by NT . Let us introduce the following notation
for Girard’s CRx properties of sets [9]:

CR1(C) , C ⊆ SN
CR2(C) , ∀M ∈ C,∀M ′.M  M ′ =⇒M ′ ∈ C
CR3(C) , ∀M ∈ NT .(∀M ′.M  M ′ =⇒M ′ ∈ C) =⇒M ∈ C

The set CR of the candidates of reducibility is then defined as the collection of those sets of
terms which satisfy all the CRx properties. Some standard results include the non-emptiness
of candidates (in particular, all free variables are in every candidate) and that SN ∈ CR.

3.4 Reducibility sets
In this section we introduce reducibility sets, which are sets of terms that we will use to
provide an interpretation of the types of NRCλ; we will then prove that reducibility sets are
candidates of reducibility, hence they only contain strongly normalizing terms. The following
notation will be useful as a shorthand for certain operations on sets of terms that are used
to define reducibility sets:
C → D , {M : ∀N ∈ C, (M N) ∈ D}
〈
−−−−→
`k : Ck〉 , {M : ∀i = 1, . . . , k,M.`i ∈ Ci}

(p : C)> , {K : ∀M ∈ C.K[p 7→ {M}] ∈ SN}
C>> , {M : ∀p,∀K ∈ (p : C)>,K[p 7→M ] ∈ SN}

The sets (p : C)> and C>> are called the >-lifting and >>-lifting of C. These definitions
refine the ones used in the literature by using indices: >-lifting is defined with respect to a
given index p, while the definition of >>-lifting uses any index.
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I Definition 20 (reducibility). For all types T , the set RedT of reducible terms of type T is
defined by recursion on T by means of the rules:

RedA , SN RedS→T , RedS → RedT
Red〈−−−→`k:Tk〉

, 〈
−−−−−−→
`k : RedTk

〉 Red{T} , Red>>T

Let us use metavariables Θ,Θ′, . . . to denote finite maps from indices to sets of terms in
the form (p1 : C1, . . . , pk : Ck). We extend the notion of >-lifting to such maps by taking the
intersection of all the (pi : Ci)>. This notation is useful to track Θ under renaming reduction.

I Definition 21. Θ> ,
⋂
p∈dom(Θ)(p : Θ(p))>.

I Definition 22. Let Θ be a finite map from indices to sets of terms and σ a renaming: then
we define Θσ as the finite map Θσ(p) = Θ(σ(p)), defined for all p such that σ(p) ∈ dom(Θ).

We now proceed with the proof that all the sets RedT are candidates of reducibility: we
will only focus on collections since for the other types the result is standard. The proofs of
CR1 and CR2 do not differ much from the standard >>-lifting technique.

I Lemma 23 (CR1 for continuations). For all p and all non-empty C, (p : C)> ⊆ SN .

I Lemma 24 (CR1 for collections). If CR1(C), then CR1(C>>).

I Lemma 25 (CR2 for collections). If M ∈ C>> and M  M ′, then M ′ ∈ C>>.

In order to prove CR2 for all types (and particularly for collections), we do not need to
establish an analogous property on continuations; however such a property is still useful for
subsequent results (particularly CR3): its statement must, of course, consider that reduction
may duplicate (or indeed delete) holes, and thus employs renaming reduction.

I Lemma 26 (CR2 for continuations). If K ∈ Θ> and K σ
 K ′, then K ′ ∈ (Θσ)>.

The lemma above could have some unpleasant consequences for our proof: since reducing
an applied continuation of the form K[p 7→ M ] can lead to the duplication of M , every
proof of a statement about the strong normalizability of such an expression that proceeds
by induction on its reduction chains would need to be generalized to n-ary instantiations
of n-ary continuations! Fortunately, instantiations to pure terms are always permutable,
therefore we can simply consider each hole separately, as stated in the following lemma.

I Lemma 27. K ∈ (Θσ)> if, and only if, for all q ∈ dom(Θσ), we have K ∈ (q : Θ(σ(q)))>.
In particular, K ∈ ((p : C)σ)> if, and only if, for all q s.t. σ(q) = p, we have K ∈ (q : C)>.

This is everything we need to prove CR3.

I Lemma 28 (CR3 for collections). Let C ∈ CR, and M a neutral term such that for all
reductions M  M ′ we have M ′ ∈ C>>. Then M ∈ C>>.

Proof. By definition, we need to prove K[p 7→ M ] ∈ SN whenever K ∈ (p : C)> for some
index p. By Lemma 23, knowing that C, being a candidate, is non-empty, we have K ∈ SN .
We can thus proceed by well-founded induction on ν(K) to prove the strengthened statement:
for all indices q, if K ∈ (q : C)>, then K[q 7→M ] ∈ SN . Equivalently, we prove that all the
contracta of K[q 7→M ] are s.n. by cases on the possible contracta:
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K ′[q 7→M ]σ (where K σ
 K ′): to prove this term is s.n., by Lemma 18, we need to show

K ′[q′ 7→M ] ∈ SN whenever σ(q′) = q; by Lemmas 26 and 27, we know K ′ ∈ (q′ : C)>,
and naturally ν(K ′) < ν(K) (Lemma 10), thus the thesis follows by the IH.
K[p 7→M ′] (where M  M ′): this is s.n. because M ′ ∈ C>> by hypothesis.
Since M is neutral, there are no reductions at the interface. J

I Theorem 29. For all types T , RedT ∈ CR.

Proof. Standard by induction on T . For T = {T ′}, we use Lemmas 24, 25, and 28. J

4 Strong normalization

Having proved that the reducibility sets of all types are candidates of reducibility, in order
to obtain strong normalization we only need to know that every well-typed term is in
the reducibility set corresponding to its type: this proof is by structural induction on the
derivation of the typing judgment. Reducibility of singletons is trivial by definition, while
that of empty collections is proved in the same style as [6], with the obvious adaptations.

I Lemma 30 (reducibility for singletons). For all C, if M ∈ C, then {M} ∈ C>>.

I Lemma 31 (reducibility for ∅). For all C, ∅ ∈ C>>.

As for unions, we will prove a more general statement on auxiliary continuations.

I Lemma 32.
For all auxiliary continuations Q,O1, O2 with pairwise disjoint supports, if Q[p 7→ O1] ∈ SN
and Q[p 7→ O2] ∈ SN , then Q[p 7→ O1 ∪O2] ∈ SN .

The proof of the lemma above follows the same style as [6]; however since our definition of
auxiliary continuations is more general, the theorem statement mentions O1, O2 rather than
pure terms: the hypothesis on the supports of the continuations being disjoint is required by
this generalization.

I Corollary 33 (reducibility for unions). If M ∈ C>> and N ∈ C>>, then M ∪N ∈ C>>.

Like in proofs based on standard >>-lifting, the most challenging cases are those dealing
with commuting conversions – in our case, comprehensions and conditionals.

I Lemma 34. Let K, L, N be such that K[p 7→ N
[
L
/
x
]
] ∈ SN and L ∈ SN . Then

K[p 7→
⋃

{N |x← {L}}] ∈ SN .

Proof. In this proof, we assume the names of bound variables are chosen so as to avoid
duplicates, and are distinct from the free variables. We proceed by well-founded induction
on (K, p,N,L) using the following metric:

(K1, p1, N1, L1) ≺ (K2, p2, N2, L2)
⇐⇒ (ν(K1[p1 7→ N1

[
L1
/
x
]
]) + ν(L1), ‖K1‖p1

, size(N1))
l(ν(K2[p2 7→ N2

[
L2
/
x
]
]) + ν(L2), ‖K2‖p2

, size(N2))

Now we show that every contractum must be a strongly normalizing:
K[p 7→ N

[
L
/
x
]
]: this term is s.n. by hypothesis.
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K ′[p 7→
⋃

{N |x← {L}}]σ, where K σ
 K ′. Lemma 10 allows us to prove ν(K ′[p 7→

N
[
L
/
x
]
]σ) < ν(K[p 7→ N

[
L
/
x
]
]) (since the former is a contractum of the latter), which

implies ν(K ′[q 7→ N
[
L
/
x
]
]) ≤ ν(K ′[p 7→ N

[
L
/
x
]
]σ) < ν(K[p 7→ N

[
L
/
x
]
]) for all

q s.t. σ(q) = p by means of Lemma 19 (because [q 7→ N
[
L
/
x
]
] is a subapplication

of [p 7→ N
[
L
/
x
]
]σ); then we can apply the IH to obtain, for all q s.t. σ(q) = p,

K ′[q 7→
⋃

{N |x← {L}}] ∈ SN ; by Lemma 18, this implies the thesis.
K[p 7→ ∅] (when N = ∅): this is equal to K[p 7→ ∅

[
L
/
x
]
], which is s.n. by hypothesis.

K[p 7→
⋃

{N1|x← {L}}∪
⋃

{N2|x← {L}}] (whenN = N1∪N2); by IH (since size(Ni) <
size(N1∪N2), and all other metrics do not increase) we prove K[p 7→

⋃
{Ni|x← {L}}] ∈

SN (for i = 1, 2), and consequently obtain the thesis by Lemma 32.
K0[p 7→

⋃
{
⋃

{M |y ← N}|x← {L}}], where K = K0 p©
⋃

{M |y}; since we know, by
the hypothesis on the choice of bound variables, that x /∈ FV(M), we note that K0[p 7→⋃

{M |y ← N}
[
L
/
x
]
] = K[p 7→ N

[
L
/
x
]
]; furthermore, we know ‖K0‖p < ‖K‖p; then

we can apply the IH to obtain the thesis.
K0[p 7→

⋃
{where B do N |x← {L}}] (when K = K0 p© where B): since we know, from

the hypothesis on the choice of bound variables, that x /∈ FV(B), we note that K0[p 7→
(where B do N)

[
L
/
x
]
] = K[p 7→ N

[
L
/
x
]
]; furthermore, we know ‖K0‖p < ‖K‖p; then

we can apply the IH to obtain the thesis.
reductions within N or L follow from the IH by reducing the induction metric. J

I Lemma 35 (reducibility for comprehensions). Assume CR1(C), CR1(D), M ∈ C>> and for
all L ∈ C, N

[
L
/
x
]
∈ D>>. Then

⋃
{N |x←M} ∈ D>>.

Proof. We assume p, K ∈ (p : D)> and prove K[p 7→
⋃

{N |x←M}] ∈ SN . We start by
showing that K ′ = K p©

⋃
{N |x} ∈ (p : C)>, or equivalently that for all L ∈ C, K ′[p 7→

{L}] = K[p 7→
⋃

{N |x← {L}}] ∈ SN : since CR1(C), we know L ∈ SN , and since
N
[
L
/
x
]
∈ D>>, K[p 7→ N

[
L
/
x
]
] ∈ SN ; then we can apply Lemma 34 to obtain K ′[p 7→

{L}] ∈ SN and consequently K ′ ∈ (p : C)>. But then, since M ∈ C>>, we have K ′[p 7→
M ] = K[p 7→

⋃
{N |x←M}] ∈ SN , which is what we needed to prove. J

Reducibility for conditionals is proved in a similar manner. However, to consider all the
conversions commuting with where, we need to use the more general auxiliary continuations.

I Lemma 36. Let Q, B, O such that Q[p 7→ O] ∈ SN , B ∈ SN , and supp(Q)∩supp(O) = ∅.
Then Q[p 7→ where B do O] ∈ SN .

Proof sketch. We proceed by well-founded induction on (Q,B,O, p) using the following
metric:

(Q1, B1, O1, p1) ≺ (Q2, B2, O2, p2) ⇐⇒
(ν(Q1[p1 7→ O1]) + ν(B1), |Q1|p1

, size(O1)) l (ν(Q2[p2 7→ O2]) + ν(B2), |Q2|p2
, size(O2))

We show every contractum must be a strongly normalizing term; we apply the IH to
new auxiliary continuations obtained by placing pieces of O into Q or vice-versa: the
hypothesis on the supports of Q and O is used to ensure that the new continuations are
well-formed. The use of |·|p rather than ‖·‖p is needed to ensure that contractions in the
form Q[p 7→ where B do

⋃
{O1|x← O2}]  (Q p©

⋃
{x← O2})[p 7→ where B do O1] do

not increase the metric. J

I Corollary 37 (reducibility for conditionals).
If B ∈ SN and N ∈ Red{T}, then where B do N ∈ Red{T}.
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Finally, reducibility for the emptiness test is proved in the same style as [6].

I Lemma 38. For all M and T such that Γ ` M : {T} and M ∈ Red>>T , we have
empty(M) ∈ SN .

4.1 Main theorem
Before stating and proving the main theorem, we introduce some auxiliary notation.

I Definition 39.
1. A substitution ρ satisfies Γ (notation: ρ � Γ) iff, for all x ∈ dom(Γ), ρ(x) ∈ RedΓ(x).
2. A substitution ρ satisfies M with type T (notation: ρ �M : T ) iff Mρ ∈ RedT .

As usual, the main result is obtained as a corollary of a stronger theorem generalized to
substitutions into open terms, by using the identity substitution idΓ.

I Lemma 40. For all Γ, we have idΓ � Γ.

I Theorem 41. If Γ `M : T , then for all ρ such that ρ � Γ, we have ρ �M : T

Proof. By induction on the derivation of Γ ` M : T . When M is empty, a singleton, a
union, an emptiness test, or a conditional, we use Lemmas 31, 30, 33, 38, and 37. For
comprehensions such that Γ `

⋃
{M1|x←M2} : {T}, we know by IH that ρ �M2 : {S} and

for all ρ′ � Γ, x : S we have ρ′ �M1 : {T}: we prove that for all L ∈ RedS , ρ [L/x] � Γ, x : S,
hence ρ [L/x] ` M1 : {T}; then we obtain ρ �

⋃
{M1|x←M2} : {T} by Lemma 35.

Non-collection cases are standard. J

I Corollary 42. If Γ `M : T , then M ∈ SN .

5 Heterogeneous Collections

In a short paper [20], we introduced a generalization of NRC called NRC (Set,Bag), which
contains both set-valued and bag-valued collections (with distinct types denoted by {T}
and HT I), along with mapping from bags to sets (deduplication δ) and from sets to bags
(promotion ι). We conjectured that this language also satisfies a normalization property. Here,
we prove this claim, even extending NRC (Set,Bag) to a richer language NRCλ(Set,Bag)
with higher-order (nonrecursive) functions.

L,M,N ::= . . . | f | HMI | M ]N |
⊎

HM |x← NI
| wherebag M do N | emptybag M | δM | ιM

The notations f, HMI, M ] N ,
⊎

HM |x← NI denote empty and singleton bags, bag
disjoint union and bag comprehension; the language also includes conditionals and emptiness
tests on bags. We omit the typing rules, and observe that the reduction rules involving bag
operations correspond to those for set operations, and additionally include the following:

δf ∅ δHMI {M} δ(M ]N) δM ∪ δN διM  M

δ
⊎

HM |x← NI 
⋃

{δM |x← δN} δ(wherebag M do N) where M do δN
ι∅ f ι{M} HMI ι(where M do N) wherebag M do ιN

SN for NRCλ(Set,Bag) is proved by first translating the language to a version of NRCλ

retaining the operations δ and ι that we call NRCλδι, by means of a forgetful translation b·c
mapping empty bags, bag unions and bag comprehensions to the corresponding set constructs.
We prove that every contraction in NRCλ(Set,Bag) is translated to a contraction in NRCλδι,
and thus obtain SN for NRCλ(Set,Bag) as a corollary of SN for NRCλδι.
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I Theorem 43. If Γ `M : T in NRCλ(Set,Bag), then bΓc ` bMc : bT c in NRCλδι.

I Lemma 44. For all terms M of NRCλ(Set,Bag), if M  M ′, we have bMc bM ′c in
NRCλδι. Consequently, if bM ′c ∈ SN in NRCλδι, then M ′ ∈ SN in NRCλ(Set,Bag).

I Theorem 45. If Γ `M : T in NRCλδι, then M ∈ SN in NRCλδι.

I Corollary 46. If Γ `M : T in NRCλ(Set,Bag), then M ∈ SN in NRCλ(Set,Bag).

6 Related Work

This paper builds on a long line of research on normalization of comprehension queries,
a model of query languages popularized over 25 years ago by Buneman et al. [2] and
inspired by Trinder and Wadler’s work on comprehensions [21, 22]. Wong [23] proved
conservativity via a strongly normalizing rewrite system, which was used in Kleisli [24], a
functional query system, in which flat query expressions were normalized to SQL. Libkin
and Wong [12, 13] investigated conservativity in the presence of aggregates, internal generic
functions, and bag operations, and demonstrated that bag operations can be expressed
using nested comprehensions. However, their normalization results studied bag queries by
translating to relational queries with aggregation, and did not consider higher-order queries,
so they do not imply the normalization results for NRCλ(Set,Bag) given here.

Cooper [7] first investigated query normalization (and hence conservativity) in the presence
of higher-order functions. He gave a rewrite system showing how to normalize homogeneous
(that is, pure set or pure bag) queries to eliminate intermediate occurrences of nesting or of
function types. However, although Cooper claimed a proof (based on >>-lifting [15]) and
provided proof details in his PhD thesis [6], there unfortunately turned out to be a nontrivial
lacuna in that proof, and this paper therefore (in our opinion) contains the first complete
proof of normalization for higher-order queries, even for the homogeneous case.

Since the fundamental work of Wong and others on the Kleisli system, language-integrated
query has gradually made its way into other systems, most notably Microsoft’s .NET
framework languages C# and F# [16], and the Web programming language Links [8].
Cheney et al. [3] formally investigated the F# approach to language-integrated query and
showed that normalization results due to Wong and Cooper could be adapted to improve it
further; however, their work considered only homogeneous collections. In subsequent work,
Cheney et al. [4] showed how use normalization to perform query shredding for multiset
queries, in which a query returning a type with n nested collections can be implemented by
combining the results of n flat queries; this has been implemented in Links [8].

Several recent efforts to formalize and reason about the semantics of SQL are comple-
mentary to our work. Guagliardo and Libkin [10] presented a semantics for SQL’s actual
behaviour in the presence of set and multiset operators (including bag intersection and
difference) as well as incomplete information (nulls), and related the expressiveness of this
fragment of SQL with that of an algebra over bags with nulls. Chu et al. [5] presented a
formalised semantics for reasoning about SQL (including set and bag semantics as well as
aggregation/grouping, but excluding nulls) using nested relational queries in Coq, while
Benzaken and Contejean [1] presented a semantics including all of these SQL features (set,
multiset, aggregation/grouping, nulls), and formalized the semantics in Coq. Kiselyov et
al. [11] has proposed language-integrated query techniques that handle sorting operations
(SQL’s ORDER BY).

However, the above work on semantics has not considered query normalization, and to
the best of our knowledge normalization results for query languages with more than one
collection type were previously unknown even in the first-order case. We are interested in
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extending our results for mixed set and bag semantics to handle nulls, grouping/aggregation,
and sorting, thus extending higher-order language integrated query to cover all of the most
widely-used SQL features. Normalization of higher-order queries in the presence of all of
these features simultaneously remains an open problem, which we plan to consider next. In
addition, fully formalizing such normalization proofs also appears to be a nontrivial challenge.

7 Conclusions

Integrating database queries into programming languages has many benefits, such as type
safety and avoidance of common SQL injection attacks, but also imposes limitations that
prevent programmers from constructing queries dynamically as they could by concatenating
SQL strings unsafely. Previous work has demonstrated that many useful dynamic queries
can be constructed safely using higher-order functions inside language-integrated queries;
provided such functions are not recursive, it was believed, query expressions can be normalized.
Moreover, while it is common in practice for language-integrated query systems to provide
support for SQL features such as mixed set and bag operators, it is not well understood in
theory how to normalize these queries in the presence of higher-order functions. Previous work
on higher-order query normalization has considered only homogeneous (that is, pure set or
pure bag) queries, and in the process of attempting to generalize this work to a heterogeneous
setting, we discovered a nontrivial gap in the previous proof of strong normalization. We
therefore prove strong normalization for both homogeneous and heterogeneous queries for
the first time.

As next steps, we intend to extend the Links implementation of language-integrated
query with heterogeneous queries and normalization, and to investigate (higher-order) query
normalization and conservativity for the remaining common SQL features, such as nulls,
grouping/aggregation, and ordering.
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A Proofs

This appendix expands on some results whose proofs were omitted or only sketched in the
paper.

Since under plain reduction each term can be reduced only in a finite number of ways, it
is easy to see that ν(M) is defined for any strongly normalizing term M ; however, under
renaming reduction, a term may be reduced in an infinite number of ways because, ifM  N ,
there may be infinite R, σ such that N = Rσ. Fortunately, we can prove that to any renaming
reduction chain there corresponds a plain reduction chain of the same length, and vice-versa:
consequently, the set of strongly normalizing terms is the same under the two notions of
reduction, and ν(M) refers to the maximal length of reduction chains starting at M either
with or without renaming.

I Lemma 47. For all contexts C, terms N and indices p, if C[p 7→ N ] ∈ SN , we have
C ∈ SN ; if p ∈ supp(C), then N ∈ SN .

FSCD 2020

http://dx.doi.org/10.14778/3151113.3151116
http://dx.doi.org/10.1007/978-3-319-71237-6_18
http://dx.doi.org/10.1007/978-3-319-71237-6_18
http://dx.doi.org/10.1016/0020-0190(94)90099-X
http://dx.doi.org/10.1016/0020-0190(94)90099-X
http://dx.doi.org/10.1006/jcss.1997.1523
http://dx.doi.org/10.1145/2103786.2103798
http://dx.doi.org/10.1007/11417170_20
http://dx.doi.org/10.1145/1142473.1142552
http://dx.doi.org/10.1145/128765.128768
http://dx.doi.org/10.1016/S1571-0661(05)80685-1
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.36
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.36
http://dx.doi.org/10.1145/3315507.3330202
http://dx.doi.org/10.1109/TENCON.1989.176921
http://dx.doi.org/10.1017/S0960129500001560
http://dx.doi.org/10.1017/S0960129500001560
http://dx.doi.org/10.1006/jcss.1996.0037
http://dx.doi.org/10.1017/S0956796899003585


28:18 Strongly Normalizing Higher-Order Relational Queries

Proof of Lemma 11. If Q p©F ∈ SN , then ν(Q) ≤ ν(Q p©F ).

By induction on the possible reduction sequences in Q, we show there exists a corres-
ponding reduction sequence with the same length in Q p©F . J

I Lemma 48. If M  N , then Mσ  Nσ.

I Lemma 49.
1. If M · · · ︸ ︷︷ ︸

n times
N , then M id

 · · · id
 ︸ ︷︷ ︸

n times
N

2. If M σ1 · · · σn N , then M · · · ︸ ︷︷ ︸
n times

Nσn · · ·σ1

Proof. The first part of the lemma is trivial. For the second part, proceed by induction on
the length of the reduction chain: in the inductive case, we have M σ1 · · · σn M ′

σn+1
 N by

hypothesis and M  · · ·  M ′σn · · ·σ1 by induction hypothesis; to obtain the thesis, we
only need to prove that

M ′σn · · ·σ1  Nσn+1 · · ·σ1

In order for this to be true, by Lemma 48, it is sufficient to show that M ′  Nσn+1; this is
by definition equivalent to M ′ σn+1

 N , which we know by hypothesis. J

I Corollary 50. Suppose M ∈ SN : if M σ
 M ′, then ν(M ′) is defined and ν(M ′) < ν(M).

Proof. By Lemma 49, for any plain reduction chain there exists a renaming reduction chain
of the same length, and vice-versa. Thus, since plain reduction lowers the length of the
maximal reduction chain (Lemma 10), the same holds for renaming reduction. J

Proof of Lemma 14.
1. For all continuations K, if K  C, there exist a continuation K ′ and a finite map σ

such that K σ
 K ′ and K ′σ = C.

2. For all auxiliary continuation Q, if Q C, there exist an auxiliary continuation Q′ and
a finite map σ such that Q σ

 Q′ and Q′σ = C.

Let C be a contractum of the continuation we wish to reduce. This contractum will not,
in general, satisfy the side condition that holes must be linear; however we can show that,
for any context with duplicated holes, there exists a structurally equal context with linear
holes. Operationally, if C contains n holes, we generate n different fresh indices in P, and
replace the index of each hole in C with a different fresh index to obtain a new context
C ′: this induces a finite map σ : supp(C ′) → supp(C) such that C ′σ = C. By structural
induction on the derivation of the reduction and by case analysis on the structure of K (or
on the structure of Q) we show that C ′ must also satisfy the grammar in Definition 5 (resp.
Definition 6); furthermore, C ′ satisfies the linearity condition by construction, which proves
it is a continuation K ′ (resp. an auxiliary continuation Q′). J

I Lemma 51. For all contexts C and hole instantiations η, if C  C ′, then Cη  C ′η.

I Lemma 52. For all contexts C, finite maps σ, and hole instantiations η such that, for all
p ∈ dom(η), supp(η(p)) ∩ dom(σ) = ∅, we have Cση = Cησσ.

Proof. By structural induction on C. The interesting case is when C = [p]. If σ(p) ∈ dom(η),
we have [p]ση = [σ(p)] η = η(σ(p)) = η(σ(p))σ = [p] ησσ; otherwise, [p]ση = [p] =
[p] ησσ. J
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Proof of Lemma 16. For all contexts C, renamings σ, and hole instantiations η such that,
for all p ∈ dom(η), supp(η(p)) ∩ dom(σ) = ∅, if C σ

 C ′, then Cη σ
 C ′ησ.

By definition of σ
 , we have C  C ′σ; then, by Lemma 51, we obtain Cη  C ′ση; by

Lemma 52, we know C ′ση = C ′ησσ; then the thesis Cη σ
 C ′ησ follows immediately by the

definition of σ
 . J

I Lemma 53.
If M  M ′ and p ∈ supp(Q), then Q[p 7→M ] id

 Q[p 7→M ′].

Proof. By induction on the structure of Q, we show that for each reduction in the hypothesis,
we can construct a corresponding reduction proving the thesis. J

I Lemma 54 (classification of reductions in applied continuations). Suppose Qη  N , where
η is permutable, and dom(η) ⊆ supp(Q); then one of the following holds:
1. there exist an auxiliary continuation Q′ and a finite map σ such that N = Q′ησ, where

ησ is permutable, and Q σ
 Q′: in this case, we say the reduction is within Q;

2. there exist auxiliary continuations Q1, Q2, an index q ∈ supp(Q1), a variable x, and a
term L such that Q = (Q1 q©

⋃
{x← {L}})[q 7→ Q2], and N = Q1[q 7→ Q2

[
L
/
x
]
]η∗,

where we define η∗(p) = η(p)
[
L
/
x
]
for all p ∈ supp(Q2), otherwise η∗(p) = η(p): this is

a reduction within Q too;
3. there exists a permutable η′ such that N = Qη′ and η  η′: in this case we say the

reduction is within η;
4. there exist an auxiliary continuation Q0, an index p such that p ∈ supp(Q0) and p ∈

dom(η), a frame F and a term M such that N = Q0[p 7→ M ]η¬p, Q = Q0 p©F , and
F p[p 7→ η(p)] M : in this case we say the reduction is at the interface.

Furthermore, if Q is a regular continuation K, then the Q′ in case 1 can be chosen to be a
regular continuation K ′, and case 2 cannot happen.

Proof. By induction on Q with a case analysis on the reduction rule applied. J

Proof of Lemma 19. If Qη ∈ SN , then Q ∈ SN and ν(Q) ≤ ν(Qη).

We proceed by well-founded induction on (Q, η) using the metric:

(Q1, η1) ≺ (Q2, η2) ⇐⇒ ∃σ : Qη1
σ
 Q′η2

For all contractions Q σ
 Q′, by Lemma 53 we know Qη

σ
 Q′ησ: then we can apply the IH

with (Q′, ησ) to prove Q′: thus we conclude Q ∈ SN .
To prove ν(Q) ≤ ν(Qη), it is sufficient to see that for each reduction step in Q we have a

corresponding reduction step in Qη: thus the reduction chains starting in Qη must be at
least as long as those in Q. J

I Lemma 55. Suppose CR1(C): then for all indices p, q, [p] ∈ (q 7→ C)>.

Proof. To prove the lemma, it is sufficient to show that for all M ∈ C we have [p][q 7→
{M}] ∈ SN . This term is equal to either {M} (if p = q) or to [p] (otherwise); both terms
are s.n. (in the case of {M}, this is because CR1 holds for C, thus M ∈ SN ). J

Proof of Lemma 23. For all p and all non-empty C, (p : C)> ⊆ SN .

We assume K ∈ (p : C)> and M ∈ C: by definition, we know that K[p 7→ {M}] ∈ SN ;
then we have K ∈ SN by Lemma 47. J
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Proof of Lemma 24. If CR1(C), then CR1(C>>).

We need to prove that if M ∈ C>>, then M ∈ SN . By the definition of C>>, we know
that for all p, K[p 7→M ] ∈ SN whenever K ∈ (p : C)>. Now assume any p, and by Lemma 55
choose K = [p]: then K[p 7→M ] = M ∈ SN , which proves the thesis. J

I Lemma 56. If K ∈ SN is a continuation, then for all indices p we have K[p 7→ ∅] ∈ SN .

Proof. We proceed by well-founded induction, using the metric:

(K1, p1) ≺ (K2, p2) ⇐⇒ (ν(K1), ‖K1‖p1
) l (ν(K2), ‖K2‖p2

)

K ′[p 7→ ∅]σ, where K σ
 K ′: by Lemma 18, we need to show K ′[q 7→ ∅] ∈ SN whenever

σ(q) = p; this follows from the IH, with ν(K ′) < ν(K) by Lemma 10.
K0[p 7→ ∅], where K = K0 p©F for some frame F : by Lemma 11 we have ν(K0) ≤ ν(K);
furthermore, we can easily prove that ‖K0‖p < ‖K‖p; then the thesis follows immediately
from the IH. J

Proof of Lemma 31. For all C, ∅ ∈ C>>.

Immediate from Lemma 56, by unfolding the definition of C>>. J

Proof of Lemma 32. For all Q-continuations Q,O1, O2 with pairwise disjoint supports, if
Q[p 7→ O1] ∈ SN and Q[p 7→ O2] ∈ SN , then Q[p 7→ O1 ∪O2] ∈ SN .

We assume p ∈ supp(Q) (otherwise, Q[p 7→ O1] = Q[p 7→ O2] = Q[p 7→ O1 ∪ O2], and
the thesis holds trivially). Then, by Lemma 47, Q[p 7→ O1] ∈ SN and Q[p 7→ O2] ∈ SN
imply Q ∈ SN , O1 ∈ SN , and O2 ∈ SN : thus we can proceed by well-founded induction on
(Q, p,O1, O2) using the following metric:

(Q1, p1, O1
1, O

1
2) ≺ (Q2, p2, O2

1, O
2
2)

⇐⇒ (ν(Q1),
∥∥Q1

∥∥
p1 , ν(O1

1) + ν(O1
2)) l (ν(Q2),

∥∥Q2
∥∥
p2 , ν(O2

1) + ν(O2
2))

to prove that if Q[p 7→ O1] ∈ SN and Q[p 7→ O2] ∈ SN , then Q[p 7→ O1 ∪ O2] ∈ SN .
Equivalently, we will consider all possible contracta and show that each of them must
be a strongly normalizing term; we will apply the induction hypothesis to new auxiliary
continuations obtained by placing pieces of Q into O1 and O2: the hypothesis on the supports
of the continuations being disjoint is used to make sure that the new continuations do not
contain duplicate holes and are thus well-formed. By cases on the possible contracta:

Q1[q 7→ Q2
[
L
/
x
]
][p 7→ (O1

[
L
/
x
]
) ∪ (O2

[
L
/
x
]
)] (where Q = (Q1 q©

⋃
{x← {L}})[q 7→

Q2], q ∈ supp(Q1), p ∈ supp(Q2)): let Q′ = Q1[q 7→ Q2
[
L
/
x
]
], and note that Q  Q′,

hence ν(Q′) < ν(Q); note Q[p 7→ O1] Q′[p 7→ O1
[
L
/
x
]
], hence since the former term

is s.n., so must be the latter, and hence also O1
[
L
/
x
]
∈ SN ; similarly, O2

[
L
/
x
]
; then

we can apply the IH with (Q′, p, O1
[
L
/
x
]
, O2

[
L
/
x
]
) to obtain the thesis.

Q′[p 7→ O1 ∪ O2]σ (where Q σ
 Q′): by Lemma 18, we need to prove that, for all

q s.t. σ(q) = p, Q′[q 7→ O1 ∪ O2] ∈ SN ; since Q[p 7→ O1] ∈ SN , we also have
Q′[p 7→ O1]σ ∈ SN , which implies Q′[q 7→ O1] ∈ SN by Lemma 18; for the same reason,
Q′[q 7→ O2] ∈ SN ; by Lemma 10, ν(Q′) < ν(Q), thus the thesis follows by IH.
Q1[p 7→ (

⋃
{Q2|x← O1}) ∪ (

⋃
{Q2|x← O2})] (where Q = Q1 p©

⋃
{Q2|x}):

by Lemma 11, ν(Q1) ≤ ν(Q); we also know ‖Q1‖p < ‖Q‖p; take O′1 :=
⋃

{Q2|x← O1}
and note that, since Q[p 7→ O1] = Q0[p 7→ O′1], we have O′1 is a subterm of a strongly
normalizing term, thus O′1 ∈ SN ; similarly, we define O′2 :=

⋃
{Q2|x← O2} and show

it is s.n. in a similar way; then (Q1, p, O
′
1, O

′
2) reduce the metric, and we can prove the

thesis by IH.
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Q1[p 7→ (
⋃

{O1|x← Q2}) ∪ (
⋃

{O2|x← Q2})] (where Q = Q1 p©
⋃

{x← Q2}): by
Lemma 11, ν(Q1) ≤ ν(Q); we also know ‖Q1‖p < ‖Q‖p; take O′1 :=

⋃
{O1|x← Q2}

and note that, since Q[p 7→ O1] = Q1[p 7→ O′1], we have O′1 is a subterm of a strongly
normalizing term, thus O′1 ∈ SN ; similarly, we define O′2 :=

⋃
{O2|x← Q2} and show

it is s.n. in a similar way; then (Q1, p, O
′
1, O

′
2) reduce the metric, and we can prove the

thesis by IH.
Q0[p 7→ (where B do O1)∪ (where B do O2)] (where Q = Q0 p© where B): by Lemma 11,
ν(Q0) ≤ ν(Q); we also know ‖Q0‖p < ‖Q‖p; take O′1 := where B do O1 and note that,
since Q[p 7→ O1] = Q0[p 7→ O′1], we have O′1 is a subterm of a strongly normalizing
term, thus O′1 ∈ SN ; similarly, we define O′2 := where B do O2 and prove it is strongly
normalizing in the same way; then (Q0, p, O

′
1, O

′
2) reduce the metric, and we can prove

the thesis by IH.
Contractions within O1 or O2 reduce ν(O1) + ν(O2), thus the thesis follows by IH. J

Reducibility for conditionals similarly to comprehensions. However, to consider all the
conversions commuting with where, we need to use the more general auxiliary continuations.

I Lemma 57. If Q[p 7→ M ∪ N ] ∈ SN , then Q[p 7→ M ] ∈ SN and Q[p 7→ N ] ∈ SN ;
furthermore, we have:

ν(Q[p 7→M ]) ≤ ν(Q[p 7→M ∪N ])
ν(Q[p 7→ N ]) ≤ ν(Q[p 7→M ∪N ])

Proof. We assume p ∈ supp(Q) (otherwise, Q[p 7→ M ] = Q[p 7→ N ] = Q[p 7→ M ∪ N ],
and the thesis holds trivially), then we show that any contraction in Q[p 7→ M ] has a
corresponding non-empty reduction sequence in Q[p 7→ M ∪ N ], and the two reductions
preserve the term form, therefore no reduction sequence of Q[p 7→ M ] is longer than the
maximal one in Q[p 7→M ∪N ]. The same reasoning applies to Q[p 7→ N ]. J

Proof of Lemma 36. Let Q, B, O such that Q[p 7→ O] ∈ SN , B ∈ SN , and supp(Q) ∩
supp(O) = ∅. Then Q[p 7→ where B do O] ∈ SN .

In this proof, we assume the names of bound variables are chosen so as to avoid duplicates,
and distinct from the free variables. We proceed by well-founded induction on (Q,B,O, p)
using the following metric:

(Q1, B1, O1, p1) ≺ (Q2, B2, O2, p2) ⇐⇒
(ν(Q1[p1 7→ O1]) + ν(B1), |Q1|p1

, size(O1)) l (ν(Q2[p2 7→ O2]) + ν(B2), |Q2|p2
, size(O2))

We will consider all possible contracta and show that each of them must be a strongly
normalizing term; we will apply the induction hypothesis to new auxiliary continuations
obtained by placing pieces of O into Q or vice-versa: the hypothesis on the supports of Q and
O being disjoint is used to make sure that the new continuations do not contain duplicate
holes and are thus well-formed. By cases on the possible contracta:

Q1[q 7→ Q2
[
L
/
x
]
][p 7→ (where B do O)

[
L
/
x
]
], where Q = (Q1 q©

⋃
{x← {L}})[q 7→

Q2], q ∈ supp(Q1), and p ∈ supp(Q2); by the freshness condition we know x /∈ FV(B), thus
(where B do O)

[
L
/
x
]

= where B do (O
[
L
/
x
]
); we take Q′ = Q1[q 7→ Q2

[
L
/
x
]
] and

O′ = O
[
L
/
x
]
, and note that ν(Q′[p 7→ O′]) < ν(Q[p 7→ O]), because the former term is a

contractum of the latter: then we can apply the IH to prove Q′[p 7→ where B do O′] ∈ SN ,
as needed.
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Q′[p 7→ where B do O]σ, where Q σ
 Q′. We know ν(Q′[p 7→ O]σ) < ν(Q[p 7→ O]) by

Lemma 10 since the latter is a contractum of the former. By Lemma 18, for all q s.t.
σ(q) = p we have ν(Q′[q 7→ O]) ≤ ν(Q′[p 7→ O]σ); we can thus apply the IH to obtain
Q[q 7→ where B do O] ∈ SN whenever σ(q) = p. By Lemma 18, this implies the thesis.
Q1[p 7→ where B do

⋃
{Q2|x← O}], where Q = Q1 p©

⋃
{Q2|x}; we take O′ =⋃

{Q2|x← O}, and we note that Q[p 7→ O] = Q1[p 7→ O′] and |Q1|p < |Q|p; we
can thus apply the IH to prove Q1[p 7→ where B do O′] ∈ SN , as needed.
Q[p 7→ ∅], where O = ∅: this term is strongly normalizing by hypothesis.
Q[p 7→ (where B do O1) ∪ (where B do O2)], where O = O1 ∪O2; for i = 1, 2, we prove
Q[p 7→ Oi] ∈ SN and ν(Q[p 7→ Oi]) ≤ ν(Q[p 7→ O]) by Lemma 32, and we also note
size(Oi) < size(O); then we can apply the IH to prove Q[p 7→ where B do Oi] ∈ SN ,
which implies the thesis by Lemma 32.
Q[p 7→

⋃
{where B do O1|x← O2}], where O =

⋃
{O1|x← O2}; we take

Q′ = Q p©
⋃

{x← O2} and we have that Q′[p 7→ where B do O1] is equal to Q[p 7→⋃
{where B do O1|x← O2}]; we thus note ν(Q′[p 7→ O1]) = ν(Q[p 7→ O]), |Q′|p = |Q|p,

and size(O1) < size(O), thus we can apply the IH to prove Q′[p 7→ where B do O1] ∈ SN ,
as needed.
Reductions within B or O make the induction metric smaller, thus follow immediately
from the IH. J
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