
WANDA – a Higher Order Termination Tool
Cynthia Kop
Radboud University, The Netherlands
https://www.cs.ru.nl/~cynthiakop/
c.kop@cs.ru.nl

Abstract
Wanda is a fully automatic termination analysis tool for higher-order term rewriting. In this paper,
we will discuss the methodology used in Wanda. Most pertinently, this includes a higher-order
dependency pair framework and a variation of the higher-order recursive path ordering, as well as
some non-termination analysis techniques and delegation to a first-order tool. Additionally, we will
discuss Wanda’s internal rewriting formalism, and how to use Wanda in practice for systems in two
different formalisms. We also present experimental results that consider both formalisms.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases higher-order term rewriting, termination, automatic analysis, dependency
pair framework, higher-order recursive path ordering

Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.36

Category System Description

Supplementary Material A detailed experimental evaluation and the snapshot of Wanda used in
this paper are available from: https://www.cs.ru.nl/~cynthiakop/experiments/fscd20.

Funding The author is supported by the NWO TOP project “ICHOR”, NWO 612.001.803/7571.

Acknowledgements Thanks go to Carsten Fuhs both for proof-reading and for creating a customised
version of AProVE which gives an explicit example term for non-termination; to Julian Nagele for
using CSI^ho to translate the pattern HRSs in COPS to AFSMs; and to the anonymous reviewers
of FSCD 2020 whose thorough feedback helped to improve the paper.

1 Introduction

Termination of term rewriting systems has been an area of active research for several
decades. This concerns not only the analysis of pure term rewriting, but also many variants,
such as context-sensitive [51], conditional [40] and higher-order [7] term rewriting. Since the
introduction of the annual International Termination Competition [12], automated techniques
in particular have flourished, with many strong provers competing against each other.

Compared to the core area of first-order term rewriting, higher-order term rewriting
provides some unique challenges, for example due to bound variables. Nevertheless, several
tools have participated in the higher-order category of the termination competition (Hot [4],
THOR [8], Sol [28], SizeChangeTool [23], Wanda), each using different methods; these include
both extensions of first-order techniques like recursive and semantic path orderings [30, 14,
29, 9] and dependency pairs [3, 38, 37], and also dedicated methods such as sized types [5].

Wanda, a tool built primarily around dependency pairs, has participated in this category
since 2010 and won most years, including 2019. Wanda was also used as a termination
back-end in the higher-order category of the 2019 International Confluence Competition [11],
with both participants (ACPH [44] and CSI^ho [42]) delegating termination analysis to Wanda.

Despite this history, Wanda is not well-documented: no tool description has ever been
formally published. Implementation choices are outlined in the author’s PhD thesis [35]
alongside termination techniques, but are not easily accessible as understanding these parts
requires an understanding of the whole document. This has led to problems, as critical

© Cynthia Kop;
licensed under Creative Commons License CC-BY

5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020).
Editor: Zena M. Ariola; Article No. 36; pp. 36:1–36:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6337-2544
https://www.cs.ru.nl/~cynthiakop/
mailto:c.kop@cs.ru.nl
https://doi.org/10.4230/LIPIcs.FSCD.2020.36
https://www.cs.ru.nl/~cynthiakop/experiments/fscd20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 WANDA – a Higher Order Termination Tool

details – such as the rewriting formalism Wanda employs, what Wanda actually does and
how to use Wanda in different configurations or for different styles of rewriting – are hard to
find. In addition, there have been substantial updates in recent years.

The present work will address this issue by presenting the usage of and the most important
techniques used in Wanda. To start, the formalism of higher-order rewriting Wanda uses,
AFSMs, is explained in §2, as well as its relation to other popular higher-order formalisms.
Then we will discuss the non-termination and termination techniques used in Wanda (§3–5),
The paper ends with experimental results, practical information and conclusions (§6–8).

Wanda is open-source, and is available at: http://wandahot.sourceforge.net. The
snapshot that was used in the present paper, including all back-ends, is available from:
https://www.cs.ru.nl/~cynthiakop/experiments/fscd20/wanda2020.zip .

Theoretical contribution. Although the focus is on Wanda, this paper also presents some
theoretical results that were previously only published in the author’s PhD thesis:

a transformation from pattern HRSs [43] to Wanda’s internal format, AFSMs;
two simple non-termination techniques (§3.1–3.2);
a new variation of the higher-order recursive path ordering suited to AFSMs (§4.2).

In addition, the results of §2.3 and §4.1, and the “dynamic” part of §5, were previously
presented for a more restricted formalism and are here generalised to AFSMs. The remaining
results in this paper connect and discuss existing work, and explain how it is used in Wanda.

2 Higher-order term rewriting using AFSMs

There is no single, unified approach to higher-order term rewriting; rather, there are several
similar but not fully compatible systems. This is a problem, since users of various kinds of
higher-order TRSs may be interested in termination, and it would be frustrating to adapt
techniques and write different tools for each style. Therefore, Wanda uses a custom format,
AFSMs, which several popular kinds of rewriting systems can be translated into. AFSMs
(Algebraic Functional Systems with Meta-variables) are essentially simply-typed CRSs [32]
and also largely correspond to the formalism in [6]. AFSMs are fully presented in [22].

2.1 Preliminaries: the AFSM formalism
Wanda operates on typed expressions, defined by Definitions 1 and 2.

I Definition 1 (Simple types). We fix a set S of sorts. All sorts are simple types, and if
σ, τ are simple types, then so is σ → τ . Here, → is right-associative.

Denoting ι, κ for a sort, all types have a unique form σ1 → . . .→ σm → ι.
This definition does not have type variables, which occur in polymorphic styles of rewriting.

Wanda does allow them as input, but since the implementation of most termination techniques
does not support polymorphism, we will here consider only the simple types above.

I Definition 2 (Terms and meta-terms). We fix disjoint sets F of function symbols, V of
variables andM of meta-variables, each symbol equipped with a type. Each meta-variable
is additionally equipped with a natural number (its arity). We assume that both V andM
contain infinitely many symbols of all types. The set T (F ,V) of terms over F ,V consists of
expressions s where s : σ can be derived for some type σ by the following clauses:

(V) x : σ if x : σ ∈ V (@) s t : τ if s : σ → τ and t : σ
(F) f : σ if f : σ ∈ F (Λ) λx.s : σ → τ if x : σ ∈ V and s : τ

http://wandahot.sourceforge.net
https://www.cs.ru.nl/~cynthiakop/experiments/fscd20/wanda2020.zip

C. Kop 36:3

Meta-terms are expressions whose type can be derived by the clauses above along with:
(M) Z[s1, . . . , sk] : σk+1 → . . .→ σm → ι

if Z : (σ1 → . . .→ σk → . . .→ σm → ι, k) ∈M and s1 : σ1, . . . , sk : σk

The λ binds variables as in the λ-calculus; unbound variables are called free, and FV (s) is
the set of free variables in s. Meta-variables cannot be bound; we write FMV (s) for the
set of meta-variables occurring in s. A meta-term s is called closed if FV (s) = ∅ (even
if FMV (s) 6= ∅). Meta-terms are considered modulo α-conversion. Application (@) is left-
associative; abstractions (Λ) extend as far to the right as possible. A meta-term s has type σ
if s : σ; it has base type if σ ∈ S. Let head(s) = head(s1) if s = s1 s2; otherwise head(s) = s.

A (meta-)term s has a sub-(meta-)term t, notation s� t, if either s = t or s� t, where
s� t if (a) s = λx.s′ and s′ � t, (b) s = s1 s2 and s2 � t or (c) s = s1 s2 and s1 � t.

Note that every term s has a form t s1 · · · sn with n ≥ 0 and t = head(s) a variable,
function symbol, or abstraction; in meta-terms t may also be a meta-variable application
Z[s1, . . . , sk]. Terms are the objects that we will rewrite; meta-terms are used to define
rewrite rules. Note that all our terms (and meta-terms) are, by definition, well-typed. An
example of a meta-term is λx.λy.sin Z[x]. In the left-hand side of a rule, this meta-term
stands for an arbitrary term of the form λx.λy.sin t where t may contain the bound variable
x, but not the bound variable y. This is more fully defined in Definitions 4 and 5.

For rewriting, we will additionally employ patterns:

I Definition 3 (Patterns). A meta-term is a pattern if it has one of the forms Z[x1, . . . , xk]
with all xi distinct variables and Z : (σ, k) ∈M for some σ; λx.` with x ∈ V and ` a pattern;
or a `1 · · · `n with a ∈ F ∪ V and all `i patterns (n ≥ 0).

In rewrite rules, meta-variables are used for matching and variables are only used with
binders. In terms, variables can occur both free and bound, and meta-variables cannot occur.
Meta-variables originate in early forms of higher-order rewriting (e.g., [1, 32]), but have also
been used in later formalisms (e.g., [6]). They strike a balance between matching modulo β
and syntactic matching. By using meta-variables, we obtain the same expressive power as
with Miller patterns [41], but without including a reversed β-reduction as part of matching.

In Wanda, function symbols are identified by their name, and variables and meta-variables
by an integer index; using integers makes it very easy to allocate fresh variables when needed.
The indexes are not shown to the user; instead a unique name is generated for printing.

I Definition 4 (Substitution). A substitution γ is a type-preserving mapping from a subset
of V ∪M (the domain of γ) to terms, typically denoted in a form γ = [b1 := s1, . . . , bn := sn]
(here, the domain is {b1, . . . , bn}). Substitutions may have infinite domain, but – denoting
dom(γ) for the domain of γ – we require that there are infinitely many variables x of all types
such that (a) x /∈ dom(γ) and (b) for all b ∈ dom(γ): x /∈ FV (γ(b)).

A substitution is extended to a function from meta-terms to meta-terms as follows:
xγ = γ(x) if x ∈ V ∩ dom(γ)
xγ = x if x ∈ V \ dom(γ)
fγ = f if f ∈ F

(s t)γ = (sγ) (tγ)
(λx.s)γ = λx.(sγ) if x /∈ dom(γ) ∧ x /∈⋃

y∈dom(γ) FV (γ(y))
Z[s1, . . . , sk]γ = Z[s1γ, . . . , skγ] if Z /∈ dom(γ)
Z[s1, . . . , sk]γ = t[x1 := s1γ, . . . , xk := skγ] if γ(Z) = λx1 . . . xk.t

Z[s1, . . . , sk]γ = t[x1 := s1γ, . . . , xn := snγ] (sn+1γ) · · · (skγ) if γ(Z) = λx1 . . . xn.t

∧ n < k

FSCD 2020

36:4 WANDA – a Higher Order Termination Tool

Note that substituting an abstraction is fully defined due to α-conversion and the requi-
rement that there are infinitely many variables not occurring in the domain or range of γ.
Moreover, for fixed k, any meta-term γ(Z) can be written in the form λx1 . . . xn.t with either
n < k and t not an abstraction, or n = k (and t unrestricted). Thus, this is well-defined.

Essentially, applying a substitution with meta-variables in its domain combines a substi-
tution with a β-development. For example, deriv (λx.sin (F [x]))[F := λy.plus y x] equals
deriv (λz.sin (plus z x)), and X[0, nil][X := λx.map (λy.x)] equals map (λy.0) nil. If
dom(γ) contains all meta-variables in FMV (s), then sγ is a term.

I Definition 5 (Rules and Rewriting). A rule is a pair ` ⇒ r of closed meta-terms of the
same type, where ` is a pattern of the form f `1 · · · `n with f ∈ F , and FMV (r) ⊆ FMV (`).
For a set of rules R, reduction is the smallest monotonic relation ⇒R on terms that includes:
(Rule) `γ ⇒R rγ for `⇒ r ∈ R, and γ a substitution with dom(γ)=FMV (`)
(Beta) (λx.s) t ⇒R s[x := t]

Note that we can reduce at any position of a term, even below a λ. We write s⇒β t if s⇒R t

is derived using (Beta). A term s is terminating under R if there is no infinite reduction
s = s0 ⇒R s1 ⇒R . . . , is in normal form if there is no t with s ⇒R t, and is β-normal if
there is no t with s⇒β t. The relation ⇒R is terminating if all terms are terminating.

Although the theory in [35] allows for R to be infinite (mostly with an eye on polymor-
phism), Wanda does not fully support this yet, so we will here limit interest to finite R.

I Example 6. Let F ⊇ {0 : nat, s : nat → nat, nil : list, cons : nat → list →
list, map : (nat→ nat)→ list→ list} and consider the following rules R1:

map (λx.Z[x]) nil ⇒ nil
map (λx.Z[x]) (cons H T) ⇒ cons Z[H] (map (λx.Z[x]) T)

Then map (λy.0) (cons (s 0) nil)⇒R1 cons 0 (map (λy.0) nil)⇒R1 cons 0 nil. Note that
the bound variable y does not need to occur in the body of λy.0 to be matched by λx.Z[x].
However, note also that a term like map s (cons 0 nil) cannot be reduced, because s does
not match λx.Z[x]. We could alternatively consider the rules R2:

map Z nil ⇒ nil
map Z (cons H T) ⇒ cons (Z H) (map Z T)

In the previous example, we had Z : (nat→ nat, 1) ∈M; here, we have Z : (nat→ nat, 0) ∈
M (we will typically leave this implicit since the arity of meta-variables can be read off
from the left-hand sides of the rules). Instead of meta-variable application Z[x], we use
explicit application Z x. Now we do have map s (cons 0 nil)⇒R2 cons (s 0) (map s nil).
However, now we will often need explicit β-reductions; e.g., map (λy.0) (cons (s 0) nil)⇒R2

cons ((λy.0) (s 0)) (map (λy.0) nil)⇒β cons 0 (map (λy.0) nil).

Thus, AFSMs allow us to define essentially the same rules in multiple ways. This flexibility
may seem redundant, but is necessary to enable the analysis of different styles of higher-order
term rewriting, as we will see in §2.2. An AFSM is a pair (T (F ,V),⇒R) of a set of terms
and a reduction relation on that set. To define an AFSM, it suffices to supply F and R;
types of (meta-)variables can be derived from context. This is what Wanda takes as input.

I Example 7. The first map rules from Example 6 can be given to Wanda, in a file map.afsm,
which provides first the signature and then the rules:

C. Kop 36:5

nil : list
cons : nat -> list -> list
map : (nat -> nat) -> list -> list

map (/\x.Z[x]) nil => nil
map (/\x.Z[x]) (cons H T) => cons Z[H] (map (/\x.Z[x]) T)

Note: all identifiers (function symbols, variables and meta-variables) in .afsm files are
expected to be alphanumeric. Characters such as +, - and _ are not allowed in names. The
only exceptions are the exclamation mark symbol (‘!’) and the percentage symbol (‘%’); the
latter may only be used at the start of (meta-)variables.

2.2 Transformations
AFSMs are not meant to be interesting in their own right. Rather, they are defined to
support termination proofs in multiple formalisms. Let us consider the two most relevant.

Higher-order Rewriting Systems (HRSs) [43] are one of the oldest styles of higher-order
term rewriting. Here, rewriting is modulo ⇒β : for terms s, t in η-long β-normal form we
have s⇒R t if there exist a rule `⇒ r and a substitution γ such that `γ ⇒∗β s and rγ ⇒∗β t.
All terms are presented in η-long β-normal form, and rules are pairs of such terms (there are
no meta-variables). The η-long form of a term s is obtained by repeatedly applying the step
“s⇒η λx.(s x)” on all subterms of s where this can be done without creating a β-redex.

In general, the reduction relation ⇒R in an HRS is not computable, but practical
examples typically consider pattern HRSs (PRSs), where for all rules ` ⇒ r and for all
subterms x `1 · · · `m of the left-hand side with x a variable: each `i is the η-long form of a
distinct bound variable. Pattern HRSs are translated to AFSMs in a natural way, by replacing
free variables in the rules by meta-variables, and their applications by meta-applications.

I Example 8. Let us consider an example of a pattern HRS:

bind (return x) (λy.f y) ⇒ f x

bind x (λy.return y) ⇒ x

bind (bind x (λy.f y)) (λz.g z) ⇒ bind x (λu.bind (f u) (λv.g v))

It is translated to the following AFSM (meta-variables are indicated with capitals):

bind (return X) (λy.F [y]) ⇒ F [X]
bind X (λy.return y) ⇒ X

bind (bind X (λy.F [y])) (λz.G[z]) ⇒ bind X (λu.bind (F [u]) (λv.G[v]))

This translated system has very similar behaviour to the original PRS, but there is a
critical difference: the PRS is a relation on η-long β-normal terms, while the AFSM is
generally considered as a relation on all terms. It turns out that the restriction to η-long
terms does not affect termination, but the β-normalisation does ([35, Theorem 3.5]):

I Lemma 9. The original PRS (F ,R) is terminating if and only if the translated AFSM
(F ,R′) is terminating using a reduction strategy where ⇒β is preferred to other steps.

That is, we need to β-normalise terms after every reduction step. Wanda can test the
property of termination with a ⇒β-first strategy by being invoked with a runtime argument
--betafirst (e.g., ./wanda.exe --betafirst system.afsm). As a side note, however, the
examples where this requirement makes a difference are rare and typically artificial.

FSCD 2020

36:6 WANDA – a Higher Order Termination Tool

I Example 10. Let F = {a : o, f : o→ o, g : ((o→ o)→ o→ o)→ o} and R given by:

f a ⇒ g (λx.λy.x (f y)) g (λx.λy.h (λz.x z) y) ⇒ h (λz.a) (a)

This PRS is translated to an AFSM with the following rules R′:

f a ⇒ g (λx.λy.x (f y)) g (λx.λy.H[x, y]) ⇒ H[λz.a, a]

While the original PRS is terminating, the same does not hold for the translated AFSM: we
have f a⇒R′ g (λx.λy.x (f y))⇒R′ (λz.a) (f a), where the last term has f a as a subterm.
In an AFSM, it is not mandatory to reduce the β-redex. Wanda concludes non-termination
normally, but cannot find a proof or disproof if the --betafirst argument is provided.

Remark: Wanda has not been optimised for HRSs, and does not take advantage of the
--betafirst argument other than avoiding false claims of non-termination. This is primarily
due to a lack of motivating examples: the annual Termination Competition does not consider
HRSs. However, since the International Confluence Competition [11] does consider HRSs,
and comes with its own benchmark set, this situation is likely to change in the future.

Algebraic Functional Systems (AFSs) [29] are higher-order term rewriting systems with
⇒β as a separate step (i.e., ⇒β ⊆⇒R; unlike HRSs, β-steps are not implicitly done as part
of other steps); this is the format used in the higher-order category of the International
Termination Competition [12]. Rules in an AFS are pairs of terms, not meta-terms, and
there is no pattern Another difference with AFSMs is that AFSMs use applicative (curried)
notation while AFSs use a mixture of functional and applicative term formation; however, this
difference is not significant, since – following [34, 35] – currying does not affect termination.

Using variables rather than meta-variables for matching is not important either: just
replace all free variables by meta-variables. This gives rules like the “alternative” rules R2 in
Example 6. However, the lack of a pattern restriction is very significant.

I Example 11. Let us consider an example of an AFS that cannot be naturally translated
without violating pattern restrictions. We let F = {new : (N→ A)→ A} and R consist of:

new (λx.y) ⇒ y new (λx.new (λy.f x y)) ⇒ new (λx.new (λy.f y x))

Now, the left-hand sides look like patterns. Indeed, they satisfy the requirements for an
HRS-pattern: the free variable f in the second rule is only applied to distinct bound variables.
So if this was an HRS, we could translate it to the following AFSM:

new (λx.Y) ⇒ Y new (λx.new (λy.F [x, y])) ⇒ new (λx.new (λy.F [y, x]))

However, since the original system was an AFS, this is not equivalent. Unlike in HRSs,
matching in AFSs is not modulo beta: like in AFSMs, s rewrites to t by rule `⇒ r if there
exists a substitution γ such that s = `γ and t = rγ. So, in the AFS, the subterm f x y can
only be instantiated by terms of the form s x y. An accurate translation of the second rule
to AFSMs would simply replace f x y by F [] x y, resulting in a non-pattern.

This is important because the AFSM above is non-terminating: new (λx.new (λy.z))
reduces to itself in one step because the meta-variable F can be instantiated by a substitution
λx.λy.z. On the other hand, the original AFS is terminating, as we will see below.

A final difference is that, following [29], AFSs use polymorphic types. Wanda limits
interest to simply-typed AFSs, which is what the Termination Competition uses. Polymorphic
AFSs can be translated to polymorphic AFSMs, but this is not yet well-supported in Wanda.

C. Kop 36:7

Wanda accepts AFSs as input directly (using the xml format of the Termination Com-
petition or a custom human-readable format). Most AFSs can be naturally translated into
AFSMs just by replacing free variables by meta-variables; typically counterexamples look like
they were meant as HRSs, but translated poorly into AFSs. For the examples that cannot be
naturally translated, Wanda first applies the transformations in [34] to create patterns. This
involves introducing fresh symbols appi to replace some of the applications s t by terms of
the form appi s t. New rules may also be introduced, as for instance f (X Y) a⇒ f (X b) Y
is replaced by not only f (appi X Y) a⇒ f (appi X b) Y , but in addition potentially many
rules of the form f (g X1 · · ·Xn Y) a⇒ f (g X1 · · ·Xn a) Y . This is exacerbated when the
AFS is presented in curried (applicative) form rather than functional notation.

I Example 12. The AFS of Example 11 is translated to an AFSM with the following rules:

new (λx.Y) ⇒ Y

new (λx.new (λy.app F x y)) ⇒ new (λx.new (λy.app F u z))
app F X ⇒ F X

This AFSM can be proved terminating by Wanda’s recursive path ordering (§4.2) in combin-
ation with dependency pairs (§5).

It is worth noting that the transformations needed to translate an AFS to an AFSM
with equivalent behaviour can sometimes cause the system to become much more difficult
to analyse, both due to the inclusion of explicit “application” symbols in the rules and the
addition of potentially many new rules. For this reason, Wanda uses the following approach:

create both an accurate translation and an overestimation of the AFS (so that termination
of the overestimation implies termination of the original system, but not the reverse);
this results in translations like those given in Example 11;
try to prove non-termination using the accurate translation;
try to prove termination using the overestimation;
if this fails, try to prove termination using the accurate translation.

2.3 Uncurrying
Following [35, §2.3.1] and [34, §7], uncurrying does not affect termination provided the rules
are (essentially) unchanged. That is, we can denote both rules and terms in a functional
notation, but only if the number of arguments is respected in each rule. To be exact:

I Lemma 13. Let (F ,R) be an AFSM, and let minar(f) denote the largest number k such
that (1) the type of f allows f to be applied to at least k arguments, and (2) every occurrence
of f in R is applied to at least k arguments. Then ⇒R is non-terminating if and only if there
is an infinite reduction s1 ⇒R s2 ⇒R . . . where, in every term si, each symbol f always
occurs with at least minar(f) arguments.

For example, in Example 6, minar(s) = 1 and minar(cons) = minar(map) = 2; thus, we
do not need to consider terms such as map s (cons 0 nil) or map (λx.s x) for termination.
Wanda indicates this by showing terms in functional notation; e.g., map(λx.s(x), cons(0, nil)).

I Example 14. Consider the toy system with F = {a, b : o, f : o→ o→ o, g : o→ (o→
o) → o} and R = { f a X ⇒ g X (f a), g a F ⇒ F b}. Then minar(a) = minar(b) = 0,
minar(g) = 2 and minar(f) = 1 (since f occurs both with 1 or 2 arguments, we must choose
the smaller value). Wanda prints these rules as f(a) X ⇒ g(X, f(a)) and g(a, F)⇒ F b.

We do not η-expand as part of uncurrying. To illustrate why not, note that the above
system is terminating, but its η-long variant, which has a rule f a X ⇒ g (λz.f a z), is not.

FSCD 2020

36:8 WANDA – a Higher Order Termination Tool

3 Non-termination

As Wanda’s focus is on proving termination, the available non-termination techniques are
currently quite minimal. There are three methods. The first two are very quick, and are
applied at the start of the analysis, before termination is considered. The last one is employed
when dependency pairs are initiated, as it is combined with the simplification given in §5.2.

3.1 Detecting obvious loops

An AFSM is clearly non-terminating if there is a reduction s⇒∗R t such that t� sγ for some
γ. To discover such loops, Wanda takes the left-hand side of a rule, replaces meta-variable
applications Z[x1, . . . , xk] by variable applications y x1 · · ·xk, and performs a breadth-first
search on reducts to see whether any instances of the original term appear, not going beyond
the first 1000. If the betafirst runtime argument is given, then reducts are β-normalised
before this test is done. This simple method will not find any sophisticated counterexamples
for termination, but is quick and easy, and often catches mistakes in a recursive call.

In the future, it would be natural to extend this module to use semi-unification [31]
instead of matching, as done for first-order rewriting in [26]. However, this would require the
design of a higher-order semi-unification algorithm. Similarly, Wanda could be strengthened
by creating higher-order variants of existing first-order non-termination techniques (e.g.,
[17, 45, 46]), but this would require substantial new work to develop the theory.

3.2 The ωω counterexample

Wanda also has one truly higher-order non-termination technique, which does not build
on first-order methods. This technique recognises a particular kind of rule that leads to
non-termination in a non-obvious way. The idea is to build a variation of the λ-term ωω in
the untyped λ-calculus, where ω = λx.xx. Note that ωω reduces to itself in one ⇒β-step.

Let a context be a meta-term C[21, . . . ,2n] containing n typed holes 2i, and denote
C[s1, . . . , sn] for the same meta-term with each 2i replaced by si. Wanda identifies rules
`⇒ r where ` has the form C[D[Z], X] such that:

Z : σ1 → . . .→ σn → τ ∈M, where τ is the type of `;
there is some i with X : (σi, 0) ∈M and also D[Z] has type σi;
r can be written as E[Z s1 · · · si−1 X si+1 · · · sn]
X and Z do not appear at other positions in C or D.

If this is satisfied, Wanda concludes non-termination with the following justification. Let γ
be the substitution that maps each Y : π1 → . . .→ πm → ι in the rule, aside from Z andX, to
a term λx1 . . . xm.y x1 · · ·xm (with y a variable), and let ω := Dγ[λx1 . . . xn.Cγ[xi, xi]]. Let
δ := γ ∪ [X := ω,Z := λx1 . . . xn.Cγ[xi, xi]]. Then Cγ[ω, ω] = `δ ⇒R E[(λx1 . . . xn.Cγ[xi,
xi]) s1 · · ·ω · · · sn)]δ ⇒∗β E[Cγ[ω, ω]]δ � Cγ[ω, ω], a loop.

The method above is specialised for AFSMs that originate from AFSs (as used in the
Termination Competition): it is designed for meta-variables that do not take any arguments.
If meta-variables do take arguments, and for instance λx1 . . . xn.Z[x1, . . . , xn] is used instead
of Z, we probably have a similar counter-example – depending on how Z and X are used in
E (it is possible that E[]δ does not contain any copies of 21). Wanda tries to recognise such
variations of the meta-variables, and tests whether the counterexample still applies.

C. Kop 36:9

3.3 Using a first-order tool
Finally, it is clear that an AFSM (F ,R) is non-terminating if there is a subset R′ ⊆ R
such that ⇒R′ is non-terminating. An interesting subset is the set of rules that can be
viewed as first-order (i.e., rules that do not use λ, that only use function symbols with a type
declaration ι1 → . . .→ ιm → ι0 with all ιi ∈ S, and where function symbols only occur fully
applied). This subset is easier to analyse, as known methods for first-order rewriting apply.

Thus, Wanda extracts this first-order part, to pass it to a dedicated first-order (non-)
termination tool. The main problem with this approach is that existing tools do not consider
types. This can make a difference, as shown by an example due to Toyama [50]:

I Example 15. Let F = {0 : a, 1 : a, f : a → a → a → a, g : b → b → b} and
R = {f(X,X,X)⇒ f(0, 1, X), g(X,Y)⇒ X, g(X,Y)⇒ Y }. This system is terminating,
because there is no term of type a that reduces to both 0 and 1. However, there is an
untypable term that loops by these rules: f(0, 1, g(0, 1))⇒R f(g(0, 1), g(0, 1), g(0, 1))⇒R
f(0, g(0, 1), g(0, 1))⇒R f(0, 1, g(0, 1)). Thus, a first-order termination tool (which does
not consider types) would conclude non-termination.

Now, if the first-order subset is orthogonal, then it is terminating if and only if it is
terminating without regarding types as observed in [20] (using a combination of results in [19]
and [27]). Thus, in this case Wanda can use an arbitrary first-order tool without inhibitions.
The same is true if the set of first-order rules uses only one sort. If neither of those cases
holds, Wanda investigates the output of the first-order tool to see whether a non-terminating
term is given, and if so, tests whether it is well-sorted.

Comment: unfortunately, the standard output format for the Termination Competition
does not require tools to output a non-terminating term if NO is answered. Thus, any common
first-order tool can be used if R′ is orthogonal or has only one sort, but otherwise a specialised
tool with the right output format is needed. For this, Wanda uses a custom adaptation of
AProVE [24]. As AProVE is currently not open-source, this is not included in Wanda’s release.

4 Orderings

At the heart of Wanda’s termination techniques are reduction pairs. These are orderings on
terms – generated by an ordering on meta-terms – which can be used both as part of the
dependency pair framework (§5) and on their own to simplify a termination proof.

I Definition 16. A reduction pair is a pair (%,�) of a quasi-ordering and a well-founded
ordering on meta-terms of the same type, such that:

% and � are compatible: � · % is included in �;
% and � are meta-stable: if s % t and γ is a substitution on domain FMV (s)∪FMV (t),
then sγ % tγ (and similar for �);
% is monotonic: if s % t, then s u % t u and u s % u t and λx.s % λx.t

% contains beta: (λx.s) t % s[x := t] if s and t are terms.
A reduction pair is strongly monotonic if moreover � is monotonic.

Strongly monotonic reduction pairs can be used in rule removal: if ` % r for some rules,
and ` � r for the remainder, then the rules in the remainder cannot occur infinitely often in
a reduction sequence, and thus can be “removed” (they no longer need to be considered for
the termination argument). Reduction pairs are also used – without the strong monotonicity
requirement – in the dependency pair framework. It would be possible to also include rule
removal with strongly monotonic reduction pairs in the framework rather than using it as a
separate step; however, using it as a separate step often gives simpler termination proofs,
and makes it possible to assess the strength of these reduction pairs in isolation.

FSCD 2020

36:10 WANDA – a Higher Order Termination Tool

Wanda has two ways to generate reduction pairs: weakly monotonic interpretations and
recursive path orderings. Both ideas extend first-order methods, and use functional notation.
This is an extension of uncurrying, where the remaining applications are replaced by function
application, as follows: in every rule, every subterm of the left- or right-hand side of the form
s t is replaced by @σ,τ (s, t), where s : σ → τ . The set of all symbols @σ,τ that are used in the
rules is added to F , and the corresponding rules @σ,τ (λx.Z[x], Y)⇒ Z[Y] are added to R.

I Example 17. The AFSM of Example 14 is functionalised by replacing f(a) X in the
uncurried rules by @o,o(f(a), X) and F b by @o,o(F, b). Thus, we obtain the rules:

@o,o(f(a), X) ⇒ g(X, f(a)) @o,o(λx.Z[x], Y) ⇒ Z[Y]
g(a, F) ⇒ @o,o(F, b)

4.1 Weakly monotonic algebras
The idea of van de Pol’s weakly monotonic algebras [47] is to assign valuations which map
all function symbols f of type σ to a weakly monotonic functional Jf: an element of JσK,
where JιK is the set of natural numbers for a sort ι and Jσ → τK is the set of those functions
from JσK to JτK that are weakly monotonic (i.e., if a, b ∈ JσK and a ≥ b, then f(a) ≥ f(b) for
f ∈ Jσ → τK, where ≥ is a point-wise comparison). This induces a value on closed terms,
which can be extended to a reduction pair, as explained below.

Given a meta-term s in functional notation and a function α which maps each variable x : σ
occurring freely in s to an element of JσK and each meta-variable Z : (σ1 → . . .→ σk → τ, k)
to an element of Jσ1 → . . .→ σk → τK, we let [s]Jα be recursively defined as follows:

[x]Jα = α(x) [f(s1, . . . , sk)]Jα = Jf([s1]Jα , . . . , [sk]Jα)
[λx.s]Jα = u 7→ [s]Jα∪[x:=u] [Z[s1, . . . , sk]]Jα = α(Z)([s1]Jα , . . . , [sk]Jα)

(This follows the definition of [·]Jα for functionalised AFSs in [21], but extends it with a case
for meta-variable applications.) For closed meta-terms `, r, let ` � r if [`]Jα > [r]Jα for all α,
and ` % r if [`]Jα ≥ [r]Jα for all α. Then (%,�) is a reduction pair if the valuations J@〈σ,τ〉

are chosen to have J@〈σ,τ〉(F,X) ≥ F (X). It is a strongly monotonic pair if each function
Jf (including each J@〈σ,τ〉) is monotonic over > in the first minar(f) arguments.

In [21], a strategy is discussed to find interpretations based on higher-order polynomials
for AFSs, and an automation using encodings of the ordering requirements into SAT. Wanda
implements this methodology, only slightly adapted to take meta-variables into account.

I Example 18. We consider R2 in Example 6. Let Jnil = 0 and Jcons = (n,m) 7→ n+m+ 1
and Jmap = (f, n) 7→ nf(n) + 2n + f(0) and J@nat,nat = (f, n) 7→ f(n) + n. Then, writing
F := α(Z), n := α(H), m := α(T), we have:

[map(Z, nil)]Jα = F (0) ≥ 0 = [nil]Jα
[map(Z, cons(H,T))]Jα = (n+m+ 1) · F (n+m+ 1) + 2 · (n+m+ 1) + F (0) > (F (n) +
n) + (m · F (m) + 2 ·m+ F (0)) + 1 = [cons(@〈nat,nat〉(Z,H), map(Z, T))]Jα
[@nat,nat(λx.Z[x], H)]Jα = F (H) +H ≥ F (H) = [F [H]]Jα .

4.2 StarHorpo
The recursive path ordering [14] is a syntactic method to extend an ordering on function
symbols to an ordering on first-order terms. There are various extensions (e.g. [18, 30])
including several higher-order variations (e.g. [7, 29]). However, these are mostly designed
for rewriting with plain matching, and adapting them to work well with meta-variables is

C. Kop 36:11

non-trivial. Instead, Wanda uses a specialised definition, built using the same ideas as [29] but
using iterative path orderings [33, 36] as a starting point. This is discussed in detail in [35,
Ch. 5]; here, we note only the end result: a reduction pair that can be used on functionalised
AFSMs and (unlike other higher-order recursive path orderings) is natively transitive.

Following [33, 36], StarHorpo employs a star mark ? to indicate an intent to decrease;
practically, f?σ(s1, . . . , sk) should be seen as an upper bound for all functional meta-terms of
type σ which are strictly smaller than f(s1, . . . , sk). Let s? denote λx1 . . . xn.f?σ(s1, . . . , sk)
if s = λx1 . . . xn.f(s1, . . . , sk). If s has any other form, then s? is undefined.

StarHorpo assumes given a precedence I: a quasi-ordering on all symbols, whose strict
part I is well-founded; we let ≈ denote the equivalence relation I∩J . We assume that there
is a special symbol ⊥σ for each type σ, which is minimal for I (i.e., f I⊥σ for all f); ⊥?σ is
undefined. All symbols are assigned a status in {Lex,Mul}, such that status(f) = status(g)
whenever f ≈ g. Let �f

? denote either the lexicographic or multiset extension of �?, depending
on the status of f. Now the reduction pair (�?,�?) is given by the rules in Figure 1.

(�) s �? t if s? �? t
(Var) x �? x if x ∈ V
(Abs) λx.s �? λx.t if s �? t
(Meta) Z[s1, . . . , sk] �? Z[t1, . . . , tk] if each si �? ti
(Fun) f(s1, . . . , sn) �? g(t1, . . . , tk) if f ≈ g and [s1, . . . , sn] �f

? [t1, . . . , tk]
(Put) f(s1, . . . , sn) �? t if f?σ(s1, . . . , sn) �? t (for f(~s) : σ)
(Select) f?σ(s1, . . . , sn) �? t if si〈f?τ1 (~s), . . . , f?τj (~s)〉 �? t (**)

where si : τ1 → . . .→ τj → σ

(FAbs) f?σ→τ (s1, . . . , sn) �? λx.t if f?τ (s1, . . . , sn, x) �? t
(Copy) f?σ(s1, . . . , sn) �? g(t1, . . . , tk) if f I g and f?τi(~s) �? ti for 1 ≤ i ≤ k
(Stat) f?σ(s1, . . . , sn) �? g(t1, . . . , tk) if f ≈ g and f?τi(~s) �? ti for 1 ≤ i ≤ k

and [s1, . . . , sn] �f
? [t1, . . . , tk]

(Bot) s �? ⊥σ if s : σ

(**)

The notation s〈t1, . . . , tn〉 applies s to t1, . . . , tn in the following sense: s〈〉 = s and
(λx.s)〈t, ~u〉 = s[x := t]〈~u〉 and f(~s)〈t, ~u〉 = f?τ (~s, t)〈~u〉 and also f?σ→τ (~s)〈t, ~u〉 = f?τ (~s, t)〈~u〉.

Figure 1 Rules of StarHorpo.

Note that �? and �? only compare terms of the same type, and that marked symbols f?

may occur with different types (indicated as subscripts) within a term. Symbols f? may also
have varying numbers of arguments, but must always have at least minar(f).

I Example 19. Given a function symbol @ : (σ → τ) → σ → τ (with σ and τ arbitrary
types), we can prove @(λx.Z[x], Y) � Z[Y] as follows:

by (�), because @?
τ (λx.Z[x], Y) �? Z[Y]

by (Select), because Z[@?
σ(λx.Z[x], Y)] �? Z[Y]

by (Meta), because @?
σ(λx.Z[x], Y) �? Y

by (Select) because Y �? Y by (Meta).

Wanda uses StarHorpo in combination with argument functions: each function symbol
f with minar(f) = k is mapped to a functionalised term λx1 . . . xk.s, and in a given
functionalised meta-term, all occurrences of f(t1, . . . , tk) are replaced by s[x1 := t1, . . . , xk :=
tk]. If the reduction pair is required to be strongly monotonic (as is the case for rule removal),
then FV (s) must be {x1, . . . , xk}. Argument functions are a generalisation of argument
filterings [39], and were introduced in [37]. In Wanda, they are not restricted to being used

FSCD 2020

36:12 WANDA – a Higher Order Termination Tool

with dependency pairs (unlike [39, 37]), and s is limited to one of three forms: (1) xi, (2)
f′(xi1 , . . . , xin) (with n ≤ k, all xij distinct), or (3) ⊥σ. This effectively extends argument
filterings with argument permutations and a mapping to one of the minimal constants ⊥σ.

Wanda combines the search for a suitable precedence and status function with the search
for an argument function, using a SAT encoding following [35, Chapter 8.6].

I Example 20. Consider the (first-order) AFSM with just one sort o and the following rules:

f X (s Y) ⇒ g Y (s (s X)) f X Y ⇒ g a b g X (s Y) ⇒ f Y X

Then minar(f) = minar(g) = 2. We use the argument functions π(f) = λx.λy.f′(y, x) and
π(g) = λx.λy.g′(x, y) and π(s) = λx.s′(x) and π(a) = π(b) = ⊥nat to get the requirements:

f′(s′(Y), X) � g′(Y, s′(s′(X))) f′(Y,X) % g′(⊥nat,⊥nat)
g′(X, s′(Y)) � f′(X,Y)

This is easily handled with f′ ≈ g′ I s′, and status(f′) = status(g′) = Lex. This example
relies on a and b being mapped to ⊥nat. Such use of a minimal constant originates in [48].

5 Dependency Pairs

After trying to prove non-termination using the methods in §3.1–3.2, and removing as many
rules as possible with strongly monotonic reduction pairs, control is passed to the dependency
pair (DP) framework. Like the first-order DP framework [25], this is an extendable framework
for termination (and non-termination), which new termination methods can easily be plugged
into in the form of “processors”. This framework encompasses all remaining termination
techniques, but does not currently contain any processors for non-termination. The DP
framework is detailed in [37, 22] and [35, Ch. 6–7]. Let us here consider a high-level overview.

5.1 The DP framework
The relatively simple form of the DP framework in Wanda operates on pairs (P,R) called
DP problems. For a given AFSM, an initial pair is generated, which must be proved “finite”
(also called “non-looping” in [2, 37]). If this property applies, then the AFSM is terminating.

Now, a processor is a function that maps a DP problem ρ to a finite set of DP problems.
Wanda has a list of processors M such that ρ is finite if and only if all elements of M(ρ)
are finite; moreover, either M(ρ) = {ρ}, or all elements of M(ρ) are strictly smaller than ρ
(counting the number of elements in P and R). Wanda then applies the following algorithm:
1. Let A be the set containing just the initial DP problem (P,R).
2. If A = ∅ then return YES.
3. Otherwise, choose an arbitrary element ρ ∈ A.
4. Find the first processor M in the list of processors such that M(ρ) 6= {ρ}.
5. If such a processor cannot be found, then the process has failed; return MAYBE.
6. Otherwise, let A := (A \ {ρ}) ∪M(ρ), and go back to Item 2.

Note that, throughout the process, we retain the following property: the original AFSM
is terminating if the initial DP problem is finite, which holds if and only if all elements in A
are finite. This is why the conclusion in Item 2 is correct.

The processors used are, in order: the dependency graph, the subterm criterion, the
computable subterm criterion, formative rules, and reduction pairs with usable rules (first
polynomial interpretations, then StarHorpo). All processors are explained in [35, 22].

C. Kop 36:13

5.2 Delegation to a first-order prover
Following [20], the framework starts (as part of Item 1 in §5.1) by identifying the first-order
rules in the AFSM. These are functionalised and passed to an external first-order termination
tool; if the full AFSM is not orthogonal then additionally all rules in Cε = {cι(X,Y) ⇒
X, cι(X,Y)⇒ Y | ι ∈ S} are added (with cι : ι→ ι→ ι fresh function symbols).1

If the tool detects termination, then this is stored, as it allows all dependency pairs for
these first-order rules to be omitted from the set of generated DPs. If the tool returns NO and
no Cε rules were added, then non-termination is concluded as explained in §3.3. Otherwise,
the remaining cases of §3.3 are tested with a dedicated non-termination prover.

5.3 Static and Dynamic DPs
To complete item 1 – so to generate the initial DP problem (P,R) – there are two different
approaches, originating from distinct lines of work around the same period [37, 38]. In both
cases, an AFSM (F ,R) gives an initial DP problem (

⋃
{DP(ρ) | ρ ∈ R}, R∪OptionalExtra),

where the set DP(ρ) of dependency pairs generated for a given rule varies between the two
approaches. In both cases, the elements of DP(ρ) with ρ a first-order rule may be omitted if
the first-order part was proved terminating following §5.2. Unlike the name suggests (as this
differs from the first-order definition), these dependency pairs are actually triples of a pattern
of the form f `1 . . . `n, a meta-term r and a set; this is discussed in more detail in [35, 22].

In the dynamic approach, each DDP(ρ) contains triples whose second component r has
a form g r1 · · · rm or Z[r1, . . . , rm]; the latter kind is called a “collapsing” DP. In the static
approach, SDP(ρ) contains no collapsing DPs, but may have DPs where FMV (r) 6⊆ FMV (`).
Both fresh meta-variables in r and collapsing DPs are complications not present in the
first-order setting, which make some of the processors weaker. The static approach for
generating DPs can only be used if some restrictions on the AFSM are satisfied, but when
applicable often gives an easier termination proof than the dynamic one.

The notion of a finite problem and the processors used in Wanda can all be defined generally
enough to apply for both the static and dynamic approach. Hence, once the initial DP problem
is generated, the same DP framework can be used for both. Wanda tries dynamic DPs first, and
if this fails, falls back to static DPs. However, if

⋃
{SDP(ρ) | ρ ∈ R} ⊆

⋃
{DDP(ρ) | ρ ∈ R},

this first step is omitted and only the static approach is tried.

I Example 21. For R1 in Example 6, the dynamic approach generates ({(1), (2)},R1) with:

(1) map] (λx.Z[x]) (cons H T) V map] (λx.Z[x]) T (∅)
(2) map] (λx.Z[x]) (cons H T) V Z[H] (∅)

The static approach generates ({(1)},R1). Thus, Wanda does not try the dynamic approach.

6 Experimental results

To test the power of both Wanda as a whole, and individual techniques, various configurations
of Wanda were tested on two data sets: (1) the “higher order union beta” benchmarks in
the Termination Problem DataBase [13] (which are used in the International Termination

1 These rules allow for the construction of a term that can be reduced to all elements of an arbitrary
finite set of terms with the same type. They are trivially discarded by many termination techniques,
but may complicate analysis because they turn the system non-confluent.

FSCD 2020

36:14 WANDA – a Higher Order Termination Tool

YES NO MAYBE TIMEOUT Avg. time
Full 188 16 25 32 1.14

Only rule removal 123 0 118 20 1.13
Only StarHorpo 111 0 141 9 0.24

Only interpretations 59 0 156 46 0.07
Only dependency pairs 186 0 42 33 1.02

only static DPs 152 0 86 23 0.55
only dynamic DPs 167 0 58 36 1.30
no first-order tool 183 9 47 22 0.90
no overestimation 155 16 25 65 0.75

Figure 2 Experimental results on the TPDB (261 benchmarks).

Competition [12]), and (2) the pattern HRSs in the COPS (Confluence Problems) database
[10] (which are used in the International Confluence Competition [11]), most of which were
translated to AFSMs by the tool CSI^ho [42]. Wanda was executed with a timeout of 60
seconds, on a Lenovo Thinkpad T420, using AProVE [24] as a first-order termination prover,
and MiniSAT [16] as a SAT-solver. The results are discussed below. Note that the average
time only takes YES and NO results into account; in particular, TIMEOUTs are not considered.

An evaluation page with detailed results is available at:

https://www.cs.ru.nl/~cynthiakop/experiments/fscd20/

6.1 Benchmarks from the TPDB
The results on the termination problem database are given in Figure 2. The first test is
Wanda’s default behaviour, the next three use only rule removal (with both techniques or
only one), and the next three use only the DP framework (either full or with only one way
of generating the initial DP problem). The final tests disable specific features in the full
version: using a first-order termination tool, and overestimating AFSs as described in §2.2.
The longest successful evaluation is 20.46 seconds, so not close to the 60 second timeout.

The tests show that rule removal is not as effective as dependency pairs, but does help
a little: when it is disabled, Wanda loses two benchmarks (and does not gain any). This
could be avoided by implementing rule removal as a processor in the DP framework, but this
has thus far not been done (the implementation is not entirely straightforward due to the
different requirements imposed by the DP framework). The effect of rule removal on speed is
variable: rule removal often succeeds fast, but may take a long time to fail. Thus, when both
are tried, the solution speed could go either way. Within rule removal, StarHorpo is much
more powerful than polynomial interpretations, but the techniques are incomparable: there
are 12 benchmarks that can be handled by interpretations but not StarHorpo.

Also the two styles of dependency pairs are incomparable: the dynamic approach seems
to give a bit more power, but there are benchmarks that can be handled with static DPs
and not with dynamic ones. Moreover, the static approach is significantly faster.

Worth noting is that there are 16 benchmarks Wanda can prove non-terminating, of
which 7 are found by AProVE. Of the remainder, manual checking shows that 7 have obvious
loops, and 2 admit the ωω example. For termination, using AProVE gives a modest gain (five
benchmarks). The last row deserves some further discussion. Due to unclear documentation
on the competition’s format, the 85 newest benchmarks in this database are all “fake HRS”:
like the system in Example 11, the left-hand sides often have subterms such as F x y where

https://www.cs.ru.nl/~cynthiakop/experiments/fscd20/

C. Kop 36:15

YES NO MAYBE TIMEOUT Avg. time
Full 43 30 19 1 0.09

Only rule removal 37 0 56 0 0.11
Only StarHorpo 33 0 60 0 0.17

Only interpretations 21 0 72 0 0.01
Only dependency pairs 43 0 49 1 0.51

only static DPs 37 0 56 0 0.26
only dynamic DPs 40 0 52 1 0.77
no first-order tool 43 30 19 1 0.07

Figure 3 Experimental results on the COPS database (93 benchmarks).

F is a free variable. Wanda spends more time on these benchmarks than others, since not
only the true translation to AFSM is considered, but also an overestimation that is often
easier to handle. When overestimating is disabled, Wanda is faster, but significantly weaker.

The first-order tool. It is worth noting that more than fifty benchmarks in this database
are actually first-order systems with one or two (typically trivial) higher-order rules. Indeed,
about 25 of Wanda’s TIMEOUTs are due to AProVE timing out on a complicated first-order
fragment. This raises the question whether the choice of first-order tool is significant.

The answer is ambiguous. For non-termination, Wanda relies on an explicit counter-
example, which only the customised version of AProVE provides; without it, Wanda loses 7
NOs. For termination, comparing Wanda’s performance when instead coupled with NaTT or
MU-TERM, we found that NaTT outperforms both AProVE and MU-TERM by 13 benchmarks.
However, this advantage is local: the “higher-order union beta” category of the TPDB has
seven sub-directories, each representing a batch of (often similar) benchmarks that were
added at the same time. On six of those seven, Wanda performs almost identically whichever
first-order tool is used: MU-TERM and AProVE give one benchmark that NaTT fails, and all
other answers are the same. In the seventh, NaTT wins 14 benchmarks over the others.

Looking at all benchmarks, we observe: the only cases where using a first-order tool helps,
are combinations of a challenging first-order TRS and a quite simple higher-order part: it
can be handled with static DPs and one of the subterm criterion processors [22]. Which
first-order tool is the best for the job depends only on the form of the first-order part.

6.2 Benchmarks from COPS
Figure 3 shows the experimental results on AFSMs translated from the Confluence Problems
database (COPS) [10]. Here, unlike the benchmarks from the TPDB, meta-variables are
used with arguments. Even so, the comparative results between rule removal and full Wanda,
and between static, dynamic and full dependency pairs, are similar to the TPDB results.
There are relatively far more NO answers, which seems to be because COPS contains more
non-terminating systems (and quite a few trivially so). This is explained by the purpose of
the database: confluence is harder to prove for non-terminating than terminating systems.

7 Practical use

Wanda is designed to run on a Linux terminal, and is invoked by supplying one or more
input files, and zero or more runtime parameters that customise the behaviour. Runtime
parameters range from purely aesthetical commands (e.g., to indicate that Wanda should

FSCD 2020

36:16 WANDA – a Higher Order Termination Tool

use coloured output), to commands that make Wanda output properties of the given system
(e.g., to indicate whether a system has η-long form) or that modify the termination checking
behaviour (e.g., the previously mentioned betafirst parameter). Wanda has a fixed strategy
– that is, techniques are always applied in the same order – but certain techniques can be
disabled for practical experiments; this was done in §6. The full range of parameters is
documented in the README.txt file included with the distribution. Some pertinent commands
are:

-d 〈methods〉 disables the given methods; for example, use ./wanda.exe -d nt,poly,dp
to disable non-termination analysis, algebra interpretations and dependency pairs; this
forces Wanda to generate a proof using StarHorpo, if one can be found;

-i 〈tool〉 tells Wanda to use the given first-order termination tool as back-end, which must
be located in the resources/ sub-directory. If not given, Wanda uses the file “firstorder-
prover”. Similarly, -n 〈tool〉 tells Wanda to use the given tool for non-termination
analysis when this is done in a separate step.

In standard usage, Wanda takes an input file describing an AFSM or AFS, performs
an analysis following §3–5 and then prints YES (a termination proof was found), NO (a
non-termination proof was found) or MAYBE (neither could be proved). In the first two cases,
this is followed by a human-readable proof. If more than one input file is supplied, Wanda
prints the name of each file, followed by the answer and possibly proof. A timeout may be
supplied (following the standard for the termination competition) but is ignored.

8 Conclusions and directions for future work

This paper has discussed the various techniques used in Wanda, and how they are applied.
Wanda is only one of several higher-order tools, and interestingly, incomparable to others:
there are benchmarks that Wanda can handle and other tools cannot, and vice versa. This is
because all tools that have participated in the Termination Competition have focused on
different techniques. For Wanda, the main termination approach is the DP framework.

There are many directions for improvement. Most pertinently, due to the presence of a
large database of termination benchmarks in the competition format [13], Wanda has been
optimised for AFSs and is decidedly weak in the presence of meta-variables with arguments.
Moreover, non-termination analysis is very limited and does not take advantage of the DP
framework. Other improvements could be to further extend first-order termination techniques,
to build on primarily higher-order techniques like sized types [5], and to support AFSMs with
polymorphic types. Automatic certification as has been done for first-order rewriting [49]
would be a highly interesting direction to pursue, but would require a vast amount of work to
build up the formalisation library. Finally, Wanda’s usability could be substantially improved
by the addition of a web interface, for example using the EasyInterface toolkit [15].

A complete discussion of most techniques in Wanda and the technology behind automating
them is available in the author’s PhD thesis [35]. Wanda is open-source and available from
http://wandahot.sourceforge.net/. The snapshot that was used in the present paper
(including both open- and closed-source back-ends) is available from the evaluation pages:

https://www.cs.ru.nl/~cynthiakop/experiments/fscd20/

http://wandahot.sourceforge.net/
https://www.cs.ru.nl/~cynthiakop/experiments/fscd20/

C. Kop 36:17

References
1 P. Aczel. A general Church-Rosser theorem, 1978. Unpublished Manu-

script, University of Manchester. http://www.ens-lyon.fr/LIP/REWRITING/MISC/
AGeneralChurch-RosserTheorem.pdf.

2 T. Aoto and Y. Yamada. Argument filterings and usable rules for simply typed dependency
pairs. In Proceedings of FroCoS, volume 5749 of LNAI, pages 117–132. Springer, 2009.

3 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical
Computer Science, 236(1-2):133–178, 2000.

4 F. Blanqui. HOT – an automated termination prover for higher-order rewriting. URL:
http://rewriting.gforge.inria.fr/hot.html.

5 F. Blanqui. A type-based termination criterion for dependently-typed higher-order rewrite
systems. In Proceedings of RTA, volume 3091 of LNCS, pages 24–39. Springer, 2004.

6 F. Blanqui, J. Jouannaud, and M. Okada. Inductive-data-type systems. Theoretical Computer
Science, 272(1-2):41–68, 2002.

7 F. Blanqui, J. Jouannaud, and A. Rubio. The computability path ordering: The end of a
quest. In Proceedings of CSL, volume 5213 of LNCS, pages 1–14. Springer, 2008.

8 C. Borralleras and A. Rubio. THOR – an automatic tool for proving termination of higher-order
rewriting. URL: https://www.cs.upc.edu/~albert/term.html.

9 C. Borralleras and A. Rubio. A monotonic higher-order semantic path ordering. In Proceedings
of LPAR, volume 2250 of LNAI, pages 531–547. Springer, 2001.

10 Community. Confluence Problems (COPS). URL: https://cops.uibk.ac.at/?q=prs.
11 Community. The international Confluence Competition (CoCo). URL: http://coco.nue.

riec.tohoku.ac.jp/.
12 Community. Termination Portal. URL: http://www.termination-portal.org/wiki/

Termination_Competition.
13 Community. Termination Problem DataBase (TPDB). URL: http://termination-portal.

org/wiki/TPDB.
14 N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science, 17(3):279–

301, 1982.
15 J. Doménech, S. Genaim, E.B. Johnsen, and R. Schlatte. EasyInterface: A toolkit for rapid

development of GUIs for research prototype tools. In Proceedings of FASE, volume 10202 of
LNCS, pages 379–383. Springer, 2017.

16 N. Eén and N. Sörensson. An extensible SAT-solver. In Proceedings of the 6th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’03), volume 2919 of
LNCS, pages 502–518. Springer, 2004. See also http://minisat.se/.

17 F. Emmes, T. Enger, and J. Giesl. Proving non-looping non-termination automatically. In
Proceedings of IJCAR, volume 7364 of LNAI, pages 225–240. Springer, 2012.

18 M. Ferreira and H. Zantema. Syntactical analysis of total termination. In Proceedings of ALP,
volume 850 of LNCS, pages 204–222. Springer, 1994.

19 C. Fuhs, J. Giesl, M. Parting, P. Schneider-Kamp, and S. Swiderski. Proving termination by
dependency pairs and inductive theorem proving. Journal of Automated Reasoning, 47(2):133–
160, 2011.

20 C. Fuhs and C. Kop. Harnessing first order termination provers using higher order dependency
pairs. In Proceedings of FroCoS, volume 6989 of LNAI, pages 147–162. Springer, 2011.

21 C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewriting. In Proceedings of
RTA, volume 15 of LIPIcs, pages 176–192. Dagstuhl, 2012.

22 C. Fuhs and C. Kop. A static higher-order dependency pair framework. In Proceedings of
ESOP, volume 11423 of LNCS, pages 752–782, 2019.

23 G. Genestier. SizeChangeTool: A termination checker for rewriting dependent types. In Proceed-
ings of HOR, pages 14–19, 2019. URL: https://hal.archives-ouvertes.fr/hal-02442465/
document.

FSCD 2020

http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf
http://rewriting.gforge.inria.fr/hot.html
https://www.cs.upc.edu/~albert/term.html
https://cops.uibk.ac.at/?q=prs
http://coco.nue.riec.tohoku.ac.jp/
http://coco.nue.riec.tohoku.ac.jp/
http://www.termination-portal.org/wiki/Termination_Competition
http://www.termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB
http://minisat.se/
https://hal.archives-ouvertes.fr/hal-02442465/document
https://hal.archives-ouvertes.fr/hal-02442465/document

36:18 WANDA – a Higher Order Termination Tool

24 J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. frohn, C. Fuhs, J. Hensel, C. Otto,
M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Analyzing
program termination and complexity automatically with AProVE. Journal of Automated
Reasoning, 58(1):3–31, 2017.

25 J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combining
techniques for automated termination proofs. In Proceedings of LPAR, volume 3452 of LNAI,
pages 301–331. Springer, 2005.

26 J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination of higher-
order functions. In Proceedings of FroCoS, volume 3717 of LNAI, pages 216–231. Springer,
2005.

27 B. Gramlich. Abstract relations between restricted termination and confluence properties of
rewrite systems. Fundamenta Informaticae, 24(1-2):3–23, 1995.

28 M. Hamana. PolySOL – an automatic tool for confluence and termination of polymorphic
second-order systems. URL: http://www.cs.gunma-u.ac.jp/hamana/polysol/.

29 J. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proceedings of LICS,
IEEE, pages 402–411, 1999.

30 S. Kamin and J.-J. Lévy. Two generalizations of the recursive path ordering, 1980. Unpublished
Manuscript, University of Illinois.

31 D. Kapur, P. Musser, D. Narendran, and J. Stillman. Semi-unification. In Proceedings of
FSTTCS, volume 338 of LNCS, pages 435–454, 1988.

32 J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems:
introduction and survey. Theoretical Computer Science, 121(1-2):279–308, 1993.

33 J.W. Klop, V. van Oostrom, and R. de Vrijer. Iterative lexicographic path orders. In Essays
dedicated to Joseph A. Goguen on the Occasion of his 65th Birthday, volume 4060 of LNCS,
pages 541–554. Springer, 2006. Festschrift.

34 C. Kop. Simplifying algebraic functional systems. In Proceedings of CAI, volume 6742 of
LNCS, pages 201–215. Springer, 2011.

35 C. Kop. Higher Order Termination. PhD thesis, VU University Amsterdam, 2012.
36 C. Kop and F. van Raamsdonk. A higher-order iterative path ordering. In Proceedings of

LPAR, volume 5330 of LNAI, pages 697–711, 2008.
37 C. Kop and F. van Raamsdonk. Dynamic dependency pairs for algebraic functional systems.

Logical Methods in Computer Science, 8(2):10:1–10:51, 2012. Special Issue for RTA ’11.
38 K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method based on

strong computability for higher-order rewrite systems. IEICE Transactions on Information
and Systems, 92(10):2007–2015, 2009.

39 K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation. In Proceedings
of PPDP, volume 1702 of LNCS, pages 47–61. Springer, 1999.

40 S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional term rewriting
systems. Information Processing letters, 95(4):446–453, 2005.

41 D. Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.

42 J. Nagele. CoCo 2016 participant: CSI^ho 0.2. ; tool webpage: http://cl-informatik.
uibk.ac.at/software/csi/ho/. URL: http://coco.nue.riec.tohoku.ac.jp/2016/papers/
csiho.pdf.

43 T. Nipkow. Higher-order critical pairs. In Proceedings of LICS, pages 342–349. IEEE, 1991.
44 K. Onozawa, K. Kikuchi, T. Aoto, and Y. Toyama. ACPH: System description for CoCo 2016.

URL: http://coco.nue.riec.tohoku.ac.jp/2016/papers/acph.pdf.
45 É. Payet. Loop detection in term rewriting using the eliminating unfoldings. Theoretical

Computer Science, 403(2-3):307–327, 2008.
46 É. Payet. Guided unfoldings for finding loops in standard term rewriting. In Proceedings of

LOPSTR, volume 11408 of LNCS, pages 22–37, 2018.

http://www.cs.gunma-u.ac.jp/hamana/polysol/
http://cl-informatik.uibk.ac.at/software/csi/ho/
http://cl-informatik.uibk.ac.at/software/csi/ho/
http://coco.nue.riec.tohoku.ac.jp/2016/papers/csiho.pdf
http://coco.nue.riec.tohoku.ac.jp/2016/papers/csiho.pdf
http://coco.nue.riec.tohoku.ac.jp/2016/papers/acph.pdf

C. Kop 36:19

47 J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University of
Utrecht, 1996.

48 R. Thiemann, G. Allais, and J. Nagele. On the formalization of termination techniques based
on multiset orderings. In Proceedings of RTA, volume 15 of LIPIcs, pages 339–354. Dagstuhl,
2012.

49 R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Proceedings
of TPHOLs, volume 5674 of LNCS, pages 452–468. Springer, 2009.

50 Y. Toyama. Counterexamples to termination for the direct sum of term rewriting systems.
Information Processing Letters, 25(1):141–143, 1987.

51 H. Zantema. Termination of context-sensitive rewriting. In Proceedings of RTA, volume 1232
of LNCS, pages 172–186, 1997.

FSCD 2020

	Introduction
	Higher-order term rewriting using AFSMs
	Preliminaries: the AFSM formalism
	Transformations
	Uncurrying

	Non-termination
	Detecting obvious loops
	The omega omega counterexample
	Using a first-order tool

	Orderings
	Weakly monotonic algebras
	StarHorpo

	Dependency Pairs
	The DP framework
	Delegation to a first-order prover
	Static and Dynamic DPs

	Experimental results
	Benchmarks from the TPDB
	Benchmarks from COPS

	Practical use
	Conclusions and directions for future work

