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Abstract
Over-approximated Worst-Case Execution Time (WCET) estimations for multi-cores lead to safe,
but over-provisioned, systems and underutilized cores. To reduce WCET pessimism, interference-
sensitive WCET (isWCET) estimations are used. Although they provide tighter WCET bounds, they
are valid only for a specific schedule solution. Existing approaches have to maintain this isWCET
schedule solution at run-time, via time-triggered execution, in order to be safe. Hence, any earlier
execution of tasks, enabled by adapting the isWCET schedule solution, is not possible. In this paper,
we present a dynamic approach that safely adapts isWCET schedules during execution, by relaxing
or completely removing isWCET schedule dependencies, depending on the progress of each core. In
this way, an earlier task execution is enabled, creating time slack that can be used by safety-critical
and mixed-criticality systems to provide higher Quality-of-Services or execute other best-effort
applications. The Response-Time Analysis (RTA) of the proposed approach is presented, showing
that although the approach is dynamic, it is fully predictable with bounded WCET. To support our
contribution, we evaluate the behavior and the scalability of the proposed approach for different
application types and execution configurations on the 8-core Texas Instruments TMS320C6678
platform, obtaining significant performance improvements compared to static approaches.
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1 Introduction

The constantly growing processing demand of applications has led the processor manufac-
turing industry towards multi-/many-core architectures. These architectures have multiple
processing elements, called cores, providing massive computing capabilities, by being able
to concurrently execute a high volume of tasks. Hard real-time systems have to provide
timing guarantees, i.e., guarantee that tasks are completed before their respective latency
requirements (deadlines). To rigorously provide such guarantees, deployment approaches
schedule tasks on cores considering the Worst-Case Execution Time (WCET) of tasks.

However, in multi-core architectures, several resources are shared among the cores (such
as memories and interconnects) introducing timing delays (interferences), changing the
timing behavior of tasks and varying their WCET. Indeed, tasks WCETs, which include
interferences, can be 7.5 times larger than the corresponding estimations without interferences,
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both experimentally measured [11, 13] and analytically computed [23, 24]. To account for all
possible interferences, the WCET has to be over-approximated. This over-approximation
practice has led to the “one-out-of-m processors” problem [8], where the additional processing
capacity is negated by the pessimism of the WCET. As a result, the sequential execution
(on a single core) may provide better timing guarantees than any parallel execution, which
seriously undermines the advantages of utilizing multi-cores. To reduce the WCET pessimism,
recent state-of-the-art research [15,16,19,24] has proposed tighter WCET, called interference-
sensitive WCET (isWCET). isWCET are computed by accounting for the interference that
can occur only by the parallel-scheduled tasks. Hence, isWCETs are schedule-dependent,
and they are valid only for the schedule solution they have been estimated for.

In order to guarantee a time-safe execution, this isWCET schedule solution has to be
maintained during execution. Otherwise, additional interferences may occur, which have
not been accounted for. To achieve that, time-triggered execution is usually applied, where
the tasks are executed exactly at their start time assigned in isWCET schedule [18, 19].
Although time-triggered execution is time-safe, it prohibits any improvement on performance.
Performance improvement can create slack, that can be used to increase the Quality-of-Service
in safety-critical systems or execute other best-effort applications in mixed-critical systems.
For example, in cruise control systems, the created slack can be used to further improve
quality of the result produced by the control law, whereas in satellite systems less essential
functions, such as scientific instrument data collection, can be activated [7]. The means to
obtain any performance improvement is through run-time adaptation, using information of
the task actual execution time (AET), that becomes available as the execution progresses.
However, any adaptation occurring at run-time must be safe.

Existing isWCET run-time adaptation approaches [21, 22] allow tasks to be executed
earlier-than-originally scheduled. Despite the potential earlier task execution, these ap-
proaches enforce the partial order of all tasks, provided by the isWCET schedule. In this
way, additional interference due to earlier task execution cannot be introduced, maintaining
the isWCET estimations valid. However, this enforced partial order of tasks limits the per-
formance improvements that can be achieved through run-time adaptation. This limitation
is illustrated in Figure 1, where arrows denote the partial order of tasks. As depicted in
Figure 1a, a static run-time mechanism with enforced partial order can allow an earlier
execution of successor tasks (τ2 and τ3), only when all their predecessor tasks have finished
(τ0 and τ1). However, in permissive cases, τ2 could be executed even earlier, since τ0 has
already finished execution before τ1. Static mechanisms, that enforce the partial order, do
not permit this earlier execution of τ2, as τ2 will insert interference to τ1, which has not
been computed during the creation of the isWCET schedule. Therefore, existing static
mechanisms cannot exploit such opportunities created by the varying actual execution time
of tasks across cores. However, assuming that τ1 started earlier-than-originally scheduled,
some time slack has been created at run-time, which can be exploited to further improve
performance. As depicted in Figure 1b, if the additional isWCET, due to the interferences
inserted by a new task running in parallel (τ2 in this example, with interference illustrated in
a stripped pattern), is less than the time slack, then the partial order of tasks can be safely
relaxed, and τ2 can be executed in parallel with τ1.

In this work, we propose such a dynamic interference-sensitive run-time adaptation
approach (isRA-DYN) that safely relaxes the partial order of tasks. The proposed approach
exploits the actual execution time of tasks across cores to allow concurrent tasks to sustain
more interference, than the one computed during the isWCET schedule, as long as the
timing guarantees are preserved. Compared to existing approaches, the proposed approach
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Figure 1 Motivational example: four tasks running on two cores and their isWCET dependencies.

is capable of exploiting the run-time variability due to a shorter task execution compared
to the isWCET schedule computed offline. This run-time variability is created due to i)
fewer interferences occurred during execution than the maximum possible interferences,
used to offline compute the isWCET schedule, and ii) the executed path is different than
the worst-case path of the task, used to compute the isWCET schedule. We provide the
response timing analysis of the proposed approach, showing that timing guarantees are
satisfied and any run-time adaptation does not alter the timing behavior of the system. To
support our contributions, we perform extensive evaluation of the proposed approach on a
real platform (8-core Texas Instruments TMS320C6678) for three applications and several
execution configurations. The obtained results show that the proposed dynamic approach is
able to provide performance improvements compared to the existing static approaches.

2 System model

Let T denote the set of tasks of an application to be executed on the set of cores K of the
target platform. The tasks of T can be either dependent, or independent, and are periodically
executed in a non-preemptive manner. The proposed dynamic adaptation uses as input a
time-triggered schedule that provides the start/end times of the tasks and their allocation to
cores. Formally, we model such a time-triggered schedule S for the task-set T with the tuple
(µ, β, ε), where µ(τ) denotes the core allocation, i.e., the core k at which task τ is executed,
and β(τ), ε(τ) are the start and end times of the task, respectively. These times refer to the
absolute time elapsed from the start of the period, and shall not be confused with the typical
notion of release time. Such time-triggered schedule can be constructed by a scheduling
algorithm providing timing guarantees, applied offline. Since the approach operates upon the
input time-triggered schedule, any limitation will stem from the task model and scheduling
algorithm, used offline to construct the time-triggered schedule. For clarity reasons, we will
assume that tasks are released at the start of the period and their isWCET does not consider
restrictions on the length of task overlapping or timing of the interference (see Section 6).

A time-triggered schedule S defines the partial ordering ≺S of the tasks, i.e., τ ≺S τ ′,
iff task τ finishes its execution before τ ′ starts. Additionally, a schedule S is considered
safe, iff it satisfies the system-defined timing constraints, i.e., each task deadline and/or
a global deadline must be met. Given a safe time-triggered schedule S, let EisRA be the
transitive reduction of the tasks partial order, i.e. (EisRA)∗ ≡≺S . Essentially, EisRA is a set
of scheduling dependencies EisRA, such that a task τ depends only on the tasks {τ ′} that
finished immediately before it, on all cores K, according to β(τ), i.e.:

(τ, τ ′) ∈ EisRA ⇐⇒ 6 ∃ τ ′′ s.t. µ(τ) = µ(τ ′′) ∧ ε(τ) < ε(τ ′′) ≤ β(τ ′)

ECRTS 2020
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Table 1 Notation Summary.

Tasks & Graph
T , τ Task τ belonging to task-set T
K, k Core k from set of cores K

EisRA, Edyn Offline and run-time scheduling dependencies
deg−(τ), deg+(τ) The indegree and outdegree of task τ
pred(τ), succ(τ) Predecessors/successors of task τ
ιE(τ), ιmax(τ) Context-dependent and upper bound of interference of task τ

Time-triggered solution
µ(τ) Core allocation µ(τ) of task τ

β(τ), ε(τ) Start time β(τ) and end time ε(τ) of task τ
Response Time & WCET

Rτ , Sτ , Xτ , Nτ Ready Rτ , relax Sτ , execute Xτ , notify Nτ phase
R(τ), R(Rτ ), Absolute response time of task τ and its phases
R(Xτ ), R(Nτ )

στ Time-slack of task τ
CN[L] The WCET of code snippet L of Algorithm N

CRτ , CSτ CNτ Controller WCET for the corresponding phase

tτR, tτS , tτN ,
Time instance when the corresponding phase can
execute successfully (all branches are not taken)

τ2τ0

τ3τ1Core	1

Core	0

timeβ(τ1)

…

…

Cv1

(a) Time-triggered schedule.

τ1

τ2τ0

τ3Core	1

Core	0

time

…

…

(b) Scheduling dependencies EisRA.

Figure 2 Construction of EisRA scheduling dependencies, based on a given time-triggered schedule.

Figure 2 illustrates the construction of EisRA given a time-triggered schedule. Notice that,
for any task τ in the dependency relation EisRA, the number of incoming edges (denoted as
deg−(τ)) and the number of outgoing edges (denoted as deg+(τ)) is upper bounded by the
number of cores |K|, i.e. deg−(τ) ≤ |K| and deg+(τ) ≤ |K|. The proposed approach relaxes,
whenever possible, the dependency relation EisRA, which we shall denote as Edyn ⊆ EisRA.

The proposed dynamic adaptation mechanism is divided into four phases, namely ready,
relax, execute and notify, which are respectively denoted with Rτ , Sτ , Xτ and Nτ for any
task τ . Since time-triggered schedules refer to absolute time, we shall denote the absolute
response time of the control phases with R(Rτ ), R(Sτ ), R(Xτ ), R(Nτ ).

Finally, given a set of potentially parallel tasks TEτ to task τ , given a dependency relation
E ⊆ EisRA, we assume that the interference ιE(τ) that τ can cause to, and sustain from,
TEτ is computable and upper-bounded by ιmax(τ). This is a realistic assumption, e.g., a task
τ with Worst Case Resource Accesses, WCRA(τ), to an arbitrated resource considering a
fair Round-Robin arbiter with arbitration delay of DRR will cause/sustain [18]:

ιE(τ) = DRR ∗
∑

k∈K\{µ(k)}

min(WCRA(τ),
∑

τ ′∈TEτ ,µ(τ ′)=k

WCRA(τ ′)) (1)

ιmax(τ) = DRR ∗ (|K| − 1) ∗WCRA(τ) (2)
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3 Dynamic isRA (isRA-DYN)

Run-time adaptation mechanisms for hard real-time systems, must guarantee that any
adaptation decision does not violate the real-time constraints and the resulting execution is
correct, i.e., no concurrency issue can occur. Furthermore, compared to traditional WCET
schedules based on pessimistic WCET estimations, adapting interference-sensitive schedules
poses an extra challenge: re-scheduling a task can increase the interference that another
task sustains, as shown in Figure 1, potentially violating the timing guarantees. Static
run-time adaptation [22] can safely adapt interference-sensitive time-triggered schedules by
keeping fixed the partial order of task execution, preventing additional tasks overlaps, thus
unaccounted interference to occur. Yet, static approaches miss adaptation opportunities due
to this fixed partial order, being unable to provide further performance improvements.

Algorithm 1 isRA-DYN mechanism on core k.

Input: Task τ , Array of all status vectors. (statusi[j]: the j-th status bit of the
i-th core)

1 Function is RA-DYN (τ , status[ ]):
2 updateMinStart(k, β(τ))
3 while ¬ isReady(τ , statusk) do
4 if relax(τ , statusk) then
5 break;

6 execute(τ)
7 updateStatus(τ , status)

To address such cases, we propose a dynamic run-time adaptation mechanism, outlined
in Algorithm 1, that is executed independently on each core and for each task. Each task
execution is extended with control phases, ready, relax and notify. During the ready phase
(L. 3), the controller checks if the current active task is ready, i.e., all previous tasks have
finished, and thus, its dependencies have been met. In case the task is not ready, it tries to
relax the partial order (L. 4) and checks again if the task is ready. To achieve a behavior
that allows the partial order to change only when it is safe, a global slack is computed during
execution, which is the minimum time-slack among all cores. The time-slack of a core is
given by the amount by which the execution of its tasks has been sped up. The partial order,
according to EisRA, is allowed to be modified, if the introduced interference by any new task
running in parallel is less than this global slack. This process continues, alternating a ready
phase and a relax phase, until the task becomes ready and it is executed (L. 6). When the
task finishes, the controller performs the notify phase, where it notifies all relevant cores that
the task has finished (L. 7) and updates the necessary information for slack calculation (L. 2).
A core k’ is called relevant for any task τ executed on core k, when there exists an outgoing
edge from task τ towards a task τ ′ on core k’. In order to enforce a particular ordering of the
tasks (either the original partial ordering of EisRA or any relaxation of it Edyn) each core
holds its own status vector (of size |K|). Each bit of the status vector corresponds to a core.
The status vector of each core represents the notifications received from other cores at any
point in time and it must be updated during execution by all cores.

The following sections explain the controller phases with respect to the dependencies
where relaxation can occur, i.e., scheduling dependencies. In case of data-dependent tasks,
the data-dependencies are never removed.

ECRTS 2020
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(c) Vector and status updates after τ3 is relaxed.
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(d) core1 re-schedules τ3.

Figure 3 Example of control phases for four tasks on two cores. For each task the ready vector is
in curly brackets. The notification vector is in parentheses and illustrated with arrows.

3.1 Ready phase
To implement the ready phase, a ready vector (of size |K|) is required for each task τ . Each
bit in the ready vector represents the core k on which the incoming edge of the scheduling
dependencies originates from, i.e.:

readyV ectorτ [k] = 1 ⇔ (τ ′, τ) ∈ Edyn ∧ µ(τ ′) = k (3)

where readyV ectorτ is the ready vector of task τ . The ready vectors are created offline for
each task τ , based on the dependency relation EisRA, but may be modified during a relax
phase of the same core, or by a notify phase of another core to reflect the dependency relation
Edyn. For instance, in Figure 3a, the ready vector of task τ2 is {11}, since it is has to wait
for i) task τ1 running on core 1 and ii) task τ0 running on core 0, to finish before being
executed. These dependencies ensure that the number of interferences will not increase due
to an earlier execution of τ2. On the other hand, the ready vector of task τ1 is {00}, as no
dependency exists from another task.

The functionality of the ready phase of the controller is described in Algorithm 2. Initially,
the controller tries to gain access to the critical section of the status vector through the
protection mechanism related to core k (L. 2). Once it has been granted, it checks if all task

Algorithm 2 Ready phase of isRA-DYN mechanism on core k.

Input: Task τ , statusk[ ] bit vector.
Output: true if all dependencies readyV ectorτ have been met; otherwise false

1 Function isReady(τ , statusk[ ]):
2 enterSection(k)
3 if (statusk & readyV ectorτ ) = readyV ectorτ then
4 statusk ← statusk ⊕ readyV ectorτ
5 exitSection(k)
6 return true
7 exitSection(k)
8 return false
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dependencies have been already met, encoded by the task’s ready vector (L. 3). If this is
true, the task τ can be executed. For instance, tasks τ0 and τ1 in Figure 3a are considered
ready, since the corresponding bits of the status vectors of Core 0 and Core 1 are clear and
the status vectors are equal with the ready vectors. Before advancing to the execution phase,
the controller has to reset the bits indicated by the ready vector of task τ in its status (L. 4).
In this way, any already-met dependencies from other cores to subsequent tasks on core k
are preserved. Then, the protection mechanism is released and the task is executed.

3.2 Notify phase
To implement the notify phase, a notification vector (of size |K|) is required for each task τ
that describes which cores have to be informed that the task has finished execution. Each
bit in the notification vector represents the core k, to which the outgoing edge of scheduling
dependencies ends, i.e.:

notifyV ectorτ [k] = 1 ⇔ (τ, τ ′) ∈ Edyn ∧ µ(τ ′) = k (4)

where notifyV ectorτ is the notify vector of task τ . The notification vectors are created
offline for each task τ , based on the dependency relation EisRA, but may be modified during
a relax phase of another core to reflect the dependency relation Edyn. For instance, in
Figure 3a, the notification vector of task τ1 is (11); when it finishes execution, it has to
notify task τ2 running on core 0 (bit 0) and task τ3 running on core 1 (bit 1). Through the
notification, the k-th bit in the status vector of core i is set by core k, when the finished task
of core k has an outgoing edge to a task on core i. For example, in Figure 3b, the status
vector of core 0 is 01, since task τ0 finished execution and notified only core 0.

Algorithm 3 describes the functionality of the notify phase of the controller on core k.
After the task τ on core k completes its execution, the controller has to update the status
of all the relevant cores. To do so, for each successor τ ′ of task τ , the controller tries to
gain access to the critical section of the successor’s core protection mechanism (L. 3). If
access is granted, the controller verifies if the dependency still exists (L. 4). If it exists, the
controller tests if the previously occurred update of the core k has been already consumed
by the core µ(τ ′), where τ ′ is mapped to (L. 5). If this is true, the k-th bit in the status of
core µ(τ ′) is set, otherwise it clears the k-th bit from the ready vector of task τ ′, indicating
that the dependency from core k has been met. For instance, Figure 3b illustrates this case

Algorithm 3 Notify phase of isRA-DYN mechanism on core k.

Input: Task τ , Array of all status vectors. (statusi[j]: the j-th status bit of the
i-th core)

1 Function updateStatus(τ , status[ ]):
2 for τ ′ ∈ succ(τ) do
3 enterSection(µ(τ ’))
4 if notifyV ectorτ [µ(τ ′)] = 1 then
5 if statusµ(τ ′)[k] = 0 then
6 statusµ(τ ′)[k]← 1
7 else
8 readyV ectorτ ′ [k]← 0

9 exitSection(µ(τ ’))

ECRTS 2020
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where Core 0 updates its own bit after task τ0 finishes. After the controller has updated all
relevant status, it updates the start time of its active task with the time of the next task
(L. 2, Algorithm 1) and computes the minimum among the active tasks (see Section 3.4).

3.3 Relax phase
In case the task is not ready to be executed, isRA-DYN tries to relax the partial ordering of
the tasks, iff the introduced interference is less than the global slack (the amount that the
execution has already advanced). That is, task τ is allowed to overlap with the active tasks, iff
all active tasks started at least n time units before their time-triggered start time β, and task
τ would introduce interference less than n time units to each one of them. This is illustrated
in Algorithm 4 (L. 2) where the global slack has to be greater than the interference that
task τ will introduce, denoted as ιmax(τ), in addition to the WCET required of executing
the relaxation, denoted as CS .

The relaxation strategy that isRA-DYN follows is an “all-or-nothing” approach, in the
sense that either all the incoming scheduling dependencies, but no data ones, E−τ of task τ
will be removed or the relaxation is postponed for a later invocation. The reasoning behind
such design choice is that it provides short alternation between ready and relax phases. This
minimizes the worst-case response time from the time a task becomes ready to when the
task is executed by the controller. More formally, the result of such relaxation is:

E′dyn = Edyn \ E−τ where E−τ ⊆ pred(τ)× {τ} ⊂ EisRA (5)

To achieve such relaxation, the controller of core k tries to gain access to its critical
section (L. 4) and clears the k-th bit of the notification vector for each predecessor task
τ ′ (L. 5-8), indicating that the dependency has been removed, as illustrated in Figure 3c.
In order to reflect these changes to its own status and ready vectors, it registers which
dependencies have been removed in a local variable, i.e., modMask (L. 8). By definition, a
dependency from a predecessor task τ ′ on the same core k is met, i.e., the notification from

Algorithm 4 Relax phase of isRA-DYN mechanism on core k.

Input: Task τ , statusk[ ] bit vector.
Output: true if task τ is ready after the relaxation; otherwise false

1 Function relax(τ , statusk[ ]): bool
2 if getSlack() ≥ ιmax(τ) + CSτ then
3 modMask ← ¬(1� k)
4 for τ ′ ∈ pred(τ) do
5 if µ(τ ′) == k then continue
6 if ¬isDataDependent(τ ’,τ) then
7 notifyV ectorτ ′ [k]← 0
8 modMask[µ(τ ′)]← 0

9 enterSection(k)
10 statusk ← statusk & modMask

11 readyV ectorτ ← readyV ectorτ & modMask

12 exitSection(k)
13 return readyV ectorτ == 0
14 return false
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core k has already occurred. Hence, the local variable is initialized with all bits set, except
the k-th bit (L. 3). For the same reason, the k-th bit of that task’s τ ′ notification vector
is not reset (L. 6). Finally, the controller resets all the bits of its status and ready vector
that were modified by the relaxation process, according to the local variable (L. 10-11), and
tests (L. 13) if the task is indeed ready (to avoid re-execution of the ready phase), as shown
in Figure 3d. Notice that, in case some of the tasks are data-dependent, the dependency is
preserved (L. 6), thus ensuring proper ordering of data-dependent tasks.

3.4 Global slack computation
In order to relax the partial order of tasks, it is essential to know at run-time the amount of
global slack, i.e., the minimum current time-slack across all cores. The time-slack of a core
expresses the amount of time by which the execution of its tasks has been sped up. Speed-up
occurs when the actual execution of a task is shorter than its isWCET. Formally, we define
time-slack as the difference between the actual response time R(τ) of a task τ and its end
time ε(τ), and shall not be confused with the typical term slack, meaning laxity. As the
actual response time R(τ) is not known a-priori, we use a safe slack approximation στ :

στ = β(τ)− t with max
τ ′∈pred(τ)

R(τ ′) ≤ t ≤ β(τ) (6)

where t is any time instance between the time-triggered start time and when the task becomes
ready, i.e., all its predecessors have finished. Notice that στ is safe since, ε(τ) − R(τ) ≥
β(τ)− max

τ ′∈pred(τ)
R(τ ′), i.e., the difference in response time between two consecutive (in time)

tasks cannot be greater than the isWCET of the latter task, ε(τ) - β(τ).
This safe approximation enables an efficient computation of the global slack, i.e., the

minimum slack of all cores, at any time instance t, in a distributed manner, without requiring
any sort of synchronisation or explicit exchange of information among cores. This is achieved
by subtracting the current time instance t from the minimum start time of all active tasks,
as outlined in Algorithm 5 (L. 9). To avoid inter-core information exchange, a global array
is used to store the start time of the active task on each core and a global variable obtains
the minimum value of the array. The start time of an active task is updated every time a
core has to execute a new task (L. 3 of Algorithm 1). As soon as a core k finishes the notify
phase of a task, it proceeds to its next task τ . As a new task is now active, the controller of

Algorithm 5 Slack computation on core k.

Input: Start time β(τ) of active task τ , Global array startT imes of active tasks τ
and global variable minTime with the minimum value of startT imes.

1 Function updateMinStart(β(τ)):
2 prevStart← startT imes[k]
3 startT imes[k]← β(τ)
4 if minTime = prevStart then
5 for i← 0 to |K| do
6 if minTime > startT imes[i] then
7 minTime← startT imes[i]

8 Function getSlack():
9 return minTime− getCurrentTime()

ECRTS 2020
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core k stores the old start time in a local variable and updates the start time of its active
task with the new one (L. 2-3). If its old start time is equal to the minimum value of the
array, it means that this controller was the owner of the minimum value, and thus, it has
to recalculate the new minimum of the global array (L. 4-7). Otherwise, it delegates this
computation to the controller that is the owner of the minimum value of the array.

3.5 Deadlock freedom
Since isRA-DYN is a distributed approach, it is important to establish its correctness. Here
we prove that isRA-DYN is free from deadlocks, while time-correctness is addressed in
Section 4. As a stepping stone, we first prove its static behavior, i.e., no relaxation occurs.

I Lemma 1. Assuming that each set/reset operation on the k-th bit of the bit-vectors
(status, readyV ector, notifyV ector) is atomic, the static behavior of isRA-DYN is free
from deadlocks.

Proof. Consider two dependent tasks, (τ, τ ′) ∈ EisRA; there are two distinct cases when task
τ finishes its execution and notifies core µ(τ ′):
1. the µ(τ)-bit of the status for core µ(τ ′) is not set (statusµ(τ ′)[µ(τ)] = 0), which results

in setting the bit after notification (L. 6, Algorithm 3).
2. the µ(τ)-bit is already set (statusµ(τ ′)[µ(τ)] = 1) by some other task, which results in

resetting the µ(τ)-bit of readyV ectorτ ′ of task τ ′. (L. 8, Algorithm 3).
At the ready phase of task τ ′ either the µ(τ)-bit of the ready vector is zero, or both the
µ(τ)-bits of the status and the ready vector are set; in both cases task τ ′ is considered
ready w.r.t. its dependency with task τ . In the former case, the value of that status vector
bit is preserved (via XOR with the zero of the ready vector), in order to be reset by the
corresponding task, while in the latter case that bit is reset. Since the value of the µ(τ)-bit of
the status vector is the same before the notify phase and after the ready phase, it is straight
forward to show that isRA-DYN is deadlock-free, via induction on EisRA on all |K| bits. J

I Theorem 2. Assuming that each set/reset operation on the k-th bit of the bit-vectors
(status, readyV ector, notifyV ector) is atomic, isRA-DYN is free from deadlocks.

Proof. Consider two dependent tasks, (τ, τ ′) ∈ Edyn and τ ′ is about to be executed; there
are two distinct cases for task τ ′, namely either it is ready or it could be relaxed. The
former case corresponds to the static behavior, which we have established its correctness
from Lemma 1. In the latter case, there are two options for the µ(τ)-bit of statusµ(τ ′):
1. the µ(τ)-bit has been set by τ
2. the µ(τ)-bit is not set
In both cases the µ(τ)-bit of statusµ(τ ′) is reset, resetting also the µ(τ)-bit of readyV ectorµ(τ ′)
(L. 10-11, Algorithm 4). Since τ ′ is about to execute, if the µ(τ)-bit is set, it cannot have
been set by any other task τ ′′ than τ , as it would have been already reset by the succesive
task of τ ′′ on core µ(τ ′). It is thus, straightforward to show that isRA-DYN is deadlock-free,
via induction on Edyn on all |K| bits. J

In the presented algorithms, the modification of the bit-vectors is protected, satisfying
the assumption for atomic set/reset operation of bits. In particular, since a ready and a
relax phase cannot be executed simultaneously on the same core, it suffices to use a single
protection mechanism per core. Additionally, since data-dependencies are always preserved
(L. 7 in Algorithm 4), the execution with isRA-DYN cannot introduce race conditions to
the application itself. It should be stressed that the global variable, with the minimum start
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time of all active tasks across cores, does not require protection in order to be safe. The
minimum start time is genuinely increasing, as the execution progresses, and its used for the
calculation of the global slack. Accessing the global variable without protection can result in
missing write from another core. This means that the controller uses an older value, which is
smaller then the new one. This only results in smaller global slack computation, and thus,
only missed opportunities of relaxation. This is deliberately done so, in favor of run-time
performance.

4 Response time analysis

Introducing run-time mechanisms into time-critical systems can improve system performance,
by better utilisation of the system resources. Nevertheless, the controllers themselves require
processing time, thus they can alter the timing behavior and potentially violate timing
guarantees, if the controller WCET is not properly accounted for. To overcome this issue,
either additional tasks are incorporated into the model, used to derive the safe time-triggered
schedule, or the WCET of the controller is incorporated into the WCET of each task (modulo
some timing alignment). Especially for interference-sensitive system, attention must be paid
to potential interference created by the controller, i.e., accesses to shared variables among
cores (status, ready and notify vectors). If these variables are placed alongside with the task
data, additional interferences must be accounted, due to the parallel execution of a control
phase and a task. Multiple approaches exist to mitigate this effect; the control data can be
placed in a separate memory accessed by a separate bus, when the platform provides such a
feature. Alternatively, shared control data can be placed in the local memories of each core
and accessed through remote reads/writes [2]. If such solutions are not possible, the amount
of induced interference can be controlled, either by using resource-partitioning techniques
common in real-time systems or by bounding the number of invocations of the controller,
e.g., using non-interrupting hardware events [21].

In Algorithm 1, the proposed control mechanism is divided into two alternating phases,
namely ready and relax, followed by two consecutive phases, execute and notify. We consider
the absolute response time of a task τ to be when it finishes execution and the notify phase
has performed all the status updates, i.e., the absolute response time of a task τ is the same
as response time of its update phase:

R(τ) = R(Nτ ) (7)

Notice that, while the execution phase Xτ has a fixed isWCET (without considering the
additional interferences due to relaxation), the ready and notify phases have varying isWCET,
which depends on a number of factors. For any task τ , the isWCET of the ready phase
depends on:
(i) when it will gain access to its critical section, and
(ii) when the task is going to be ready, i.e., all previous tasks have finished and all updates

have been performed.
The WCET of the update phase depends on:
(i) when it will gain access to its critical section,
(ii) the number of cores to notify, and
(iii) when previous tasks, which depended on this core, finish their ready phase (s.t.

status[i][k] = 0).

In order to make our response time analysis accurate, we derive parametric response
times R, based on the number of outgoing edges of a task τ , according to the scheduling
dependencies EisRA. We denote with CN[L] the WCET of the controller part that corresponds
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to the snippet L, i.e., the sequence of lines L of Algorithm N . We perform the RTA for the
most restrictive case, i.e. for tasks with data-dependencies. An RTA for independent tasks,
would at least provide the same response time bounds for the same task set, if not better.

Accessing a critical section. While one core can be only at one control phase at any time
instance, different cores can be in different phases. Hence, for a core to enter any particular
critical section, it may have to wait for all the other cores to finish their critical section. The
WCET of the critical sections of the ready, notify and relax phase, are C2

[3−6], C3
[3−9] and

C4
[9−12], respectively. Thus, the worst-case wait time for a core to access critical section i is:

Ci = (|K| − 1) ∗max
(
C2

[3−6], C
3
[3−9], C

4
[9−12]

)
(8)

Ready Phase. Let tτR be the time instance that task τ , running on core k, becomes ready,
i.e., all predecessor tasks have finished their corresponding notify phases:

tτR = max
τ ′∈pred(τ)

R(τ ′) (9)

The response time of the ready phase, if the controller is invoked precisely at time tτR, is
the WCET of acquiring access to critical section k plus the WCET of executing that section:

R(Rτ ) ≤ tτR + CRτ + CTAR with CRτ = C2
[3−6] + Ck (10)

where CTAR is a timing alignment constant, analysed below. The response time R(Rτ ) is
defined recursively, as it depends on the maximum response time of preceding tasks (tτR). This
will assist us in proving that under any AET, the execution respects the timing guarantees.

Execute Phase. As there are no preemptions during the execution of a task, if ιEdyn(τ)
is the interference that task sustains because of the relaxed dependency relation Edyn, the
response time for the execution phase of the controller is:

R(Xτ ) ≤ R(Rτ ) + Cτ + ιEdyn(τ) (11)

Notify Phase. Following the task execution τ , on core k, the controller updates each core’s
status and the minimum start time of the active tasks. For each outgoing dependency, the
core k has to gain access to a distinct critical section and perform a write to either the status
or the ready vector:

R(Nτ ) ≤ R(Xτ ) + CNτ with (12)

CNτ = C5
[1−7] +

∑
τ ′∈succ(τ)

(
Cµ(τ ′) + C3

[4−8]

)
= C5

[1−7] + deg+(τ) ∗
(
Ck + C3

[4−8]

)
(13)

Since the worst-case waiting time in Equation 8 is constant, we have replaced Cµ(τ ′) with Ck
to derive the final expression.

Relax Phase. Let time instance tτS be a time instance, where task τ running on core k
is not ready yet, i.e., tτS < tτR, but the global slack is large enough to accommodate the
additional interferences. If the relax phase is invoked at time tτS , it has to remove all the



S. Skalistis and A. Kritikakou 4:13

dependencies (excluding the data-dependencies) and acquire access to its critical section, in
order to write the status vector. Hence, its response time is:

R(Sτ ) ≤ tτS+CSτ with (14)
CSτ = C4

[2−4] +
(
deg+(τ)− 1

)
∗ C4

[9−13] + C4
[4−5] + Ck + C4

[5−8] (15)

Notice that the loop body (L. 9-13) in Algorithm 4 is executed only deg+(τ)− 1 times,
since the dependency from the core itself is by default met. This is reflected by the term
(deg+(τ)− 1) ∗ C4

[9−13] + C4
[4−5] in the response time R(Sτ ).

Timing alignment. In the RTA of the ready phase, we assumed that the controller starts
precisely at the time when all the required status updates have been performed (for the
ready phase). Nevertheless, since the tasks can be executed in less time than their isWCET,
there is a possibility that the controller is already inside a relax phase, when the last status
update occurs. In the worst-case, there will be a single data-dependency that is not removed
by the relax phase. Therefore, the timing alignment constant CTAR for the ready phase is:

CTAR = CS − C4
[6−8] + C1

[3] (16)

where CS is the WCET of relax phase, with the maximum number of dependencies, i.e., |K|.

4.1 Safety
Having the WCET and the response time of the controller phases, we need to prove that,
if these costs are added upfront to the isWCET of tasks, the timing guarantees of any
time-triggered schedule are not violated, under any run-time reduction of execution times,
i.e., R(τ) ≤ ε(τ) for all tasks τ .

Let CRτ , CNτ , CSτ denote the WCET of the control phases, and CTAR the timing
alignment constants, as analysed in the previous sections. Assume a safe solution (µ, β, ε),
derived by a safe scheduling algorithm, such that it includes the controller WCETs in the
isWCET of each task:

ε(τ)− β(τ) = CRτ + CTAR + Cτ + CNτ + CSτ (17)

Before proving the safety of the approach, we establish some properties regarding the
impact of relaxations to isWCET of the task and control phases.

I Property 1. Relaxation does not increase the WCET of control phases (CRτ , CNτ , CSτ ).

Proof. The WCET of the control phases depends on the indegree and outdegree of each
task τ according to the dependency relation EisRA (Equations 10, 13, 15). The dependency
relation Edyn is a genuinely decreasing relation (Equation 5) starting from EisRA, thus the
WCET of the control phases decreases with each relaxation. J

I Property 2. Given a relaxed dependency relation Edyn ⊆ EisRA, a task τ can suffer
additional interference at most equal to its slack:

στ ≥ ιEdyn(τ) (18)

Proof. In case task τ is the task with the minimum start time among the active tasks, then
στ ≥ ιmax(τ) (L. 2 in Algorithm 4). Otherwise, let τmin be the task with minimum start
time, i.e., β(τ) ≥ β(τmin). By equation 6:

στ − t ≥ στmin − t =⇒ στ ≥ στmin (19)

Therefore, στ ≥ ιmax(τ) ≥ ιEdyn(τ). J
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I Theorem 3. For any safe scheduling solution, derived by adding the controller costs (CRτ ,
CNτ , CSτ , CTAR ) to the isWCET (Cτ ) of the tasks T , the isRA-DYN execution is safe
under any AET, i.e.:

R(τ) ≤ ε(τ) (20)

Proof. Proof by induction on the dependency relation Edyn.
Base Case: For tasks τ with no predecessors (pred(τ) = ∅, β(τ) = 0) from Eq. 7 and Eq. 12
we establish:

R(τ) ≤ R(Xτ ) + CNτ
(11)===⇒ R(τ) ≤ R(Rτ ) + Cτ + CNτ + ιEdyn(τ) (10)===⇒ (21)

R(τ) ≤ tτR + CRτ + CTAR + Cτ + CNτ + ιEdyn(τ) (9)==⇒ (22)

R(τ) ≤ max
τ ′∈pred(τ)

R(τ ′) + CRτ + CTAR + Cτ + CNτ + ιEdyn(τ) (23)

Since pred(τ) = ∅, the response time of the predecessors is zero. Also no adaptation can
occur since β(τ) = 0, thus no additional interference is introduced, i.e. ιEdyn(τ) = 0:

R(τ) ≤ 0 + CRτ + CTAR + Cτ + CNτ + 0 (17)===⇒ (24)

R(τ) ≤ ε(τ)− β(τ) β(τ)=0=====⇒ R(τ) ≤ ε(τ) (25)

Induction step: Suppose that (20) holds for all predecessors of task τ . Starting from
equation (23) and through equation (6) we establish:

R(τ) ≤ β(τ)− στ + CRτ + CTAR + Cτ + CNτ + ιEdyn(τ) (17)===⇒ (26)

R(τ) ≤ ε(τ)− στ + ιEdyn(τ) (27)

By Property 2 we know that ιEdyn(τ)− στ ≤ 0, therefore, concluding the proof. J

We have therefore established that isRA-DYN is timely safe, and relaxes the dependency
relation when enough global slack exists to accommodate the additional interference. Further-
more, the execution is work-conserving, w.r.t. Edyn, which improves run-time performance,
as shown in Section 5.

5 Experimental Evaluation

5.1 Experimental Setup
Platform. A real multi-core COTS platform, i.e., the TMS320C6678 chip (TMS in short)
of Texas Instrument [25] is used for the experiments. The platform characteristics are
depicted in Table 2. The isRA-DYN mechanism is implemented as a bare-metal library,
with low-level functions for the controller phases using TMS hardware semaphores. The
isRA-DYN semaphore implementation is applicable to any platform, since semaphores are a
fundamental building block. In the rare case that no such hardware support exists, a software
implementation can be used. However, the isRA-DYN approach can be implemented by
other protection mechanisms.

Benchmarks. To experimentally evaluate our isRA-DYN approach, we have conducted
experiments using three different applications with respect to the number of tasks, WCET,
and WCRA taken from the StreamIT benchmarks [26]: i) Discrete Cosine Transformation
(DCT), ii) Mergesort (MERGE), and iii) Fast Fourier Transformation (FFT).
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Table 2 Benchmark and platform characteristics.

(a) Benchmark.

No. Seq. WCET No.
tasks (cycles) WCRA

DCT 32 981,120 69,808
MERGE 47 669,026 55,415
FFT 47 275,891 41,981

(b) TMS platform.

DSP Instr. Freq. L1P L1D L2
char. 8 1 GHz 32 KB 32 KB 512 KB
DSPs 8 NoC TeraNet (Delay: 11 cycles)

L3 4 MB DDR3 512 MB Sem. 32 cycles

WCET and WCRA acquisition. Since no existing static WCET analysis tool supports
the TMS platform, a measurement-based approach has been used to acquire the WCET
of each task. Obtaining safe and context-independent measurements requires to eliminate
the sources of timing variability [6], by disabling data-caches, removing interferences (i.e.,
the task is executed alone on one core) and providing input data to enforce the worst-case
path. To perform our measurements on the real platform, we used the local timer of the core.
To increase the reliability of the measurements, we have followed the approach of multiple
executions. Each task has been executed 50 times, which has been shown to provide a small
standard deviation [14], and maintained the largest observed value. The application has been
compiled with -O0, i.e., no optimizations, in order to obtain the WCRA of each task by the
produced binary. Table 2 depicts the overall WCET, WCRA and number of tasks of each
benchmark, used to obtain the offline near-optimal solutions.

Data-placement. The controller data are placed on the on-chip Multicore Shared SRAM
Memory (MSM), while application data are placed in the off-chip main memory (DDR3),
ensuring that the isRA-DYN does not interfere with the task’s execution.

Comparison. The evaluation of the proposed approach can be achieved by comparing
run-time execution time of the tasks allocated on each core (a.k.a. makespan) obtained by
the proposed dynamic approach (isRA-DYN) and the static run-time approach (isRA-LOCK)
that enforces the partial order of tasks [22]. The offline isWCET schedule has been generated
by [24] and it is used as an input to both approaches. To attribute the observed gains to
isRA-DYN, any system parameter, that may lead to timing variability at run-time, should
be controlled and explored independently, whenever possible. These parameters are mainly
the interferences, the different execution paths of the benchmarks and the impact of caches.
Therefore, we initially explore the timing variability that each benchmark can have, when
executed on TMS platform and a single system parameter is tuned each time. Then, we
present the gains provided by isRA-DYN and isRA-LOCK by comparing the makespan
under different variations at the timing variability of benchmarks. Last, but not least, we
compare the overhead of isRA-DYN and isRA-LOCK approaches.

5.2 Evaluation results
Characterization of timing variability. The main system parameters that can alter the
execution time are the occurring interferences, the diverse execution paths of the bench-
marks and the caches. In this first experimental section, we tune each of these parameters
independently in order to characterize its impact to the timing variability per benchmark.
To compute the timing variability, the execution time of the best observed case and the
worst observed case are compared. Table 3 shows the timing variability due to caches and
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Table 3 Benchmark timing variability.

(a) Interference variability

Caches Path DCT MERGE FFT
Disabled Best-Path 32.13% 46.67% 55.03%

Worst-Path 44.80% 43.78% 52.70%
Enabled Best-Path 0.43% 0.91% 3.58%

Worst-Path 0.32% 0.91% 3.29%

(b) Cache variability (No interferences)

Path DCT MERGE FFT
Best-Path 73.83% 69.03% 69.40%

Worst-Path 76.57% 68.60% 69.38%

(c) Path variability (No interferences)

Caches DCT MERGE FFT
Disabled 46.65% 12.84% 0.15%
Enabled 40.51% 14.69% 0.46%

diverse paths (computed without any interferences, i.e., running the benchmark alone on a
core), and the timing variability due to interferences, when all cores are running the same
benchmark. We observe that even when the application is executed in isolation, the impact
of caches in execution time is quite high for all applications, with 71.14% on average. The
impact of different execution paths depends on the application type, thus it is higher for the
DCT, since it is an application that has several execution paths and, much smaller for FFT,
which is a single-path application. Last but not least, we observe an important impact of the
interferences, with 45.85% on average, with disabled caches. When caches are enabled the
interference impact is reduced, since the cache sizes are large enough to keep the data locally.

Makespan comparison. We perform an exhaustive set of experiments to explore and
quantify the behavior of the proposed approach. We have used three configurations, i.e., two,
four and eight application instances on two, four and eight cores, respectively. In addition,
in order to explore the behavior of isRA-DYN with respect to the timing variability, due to
interferences, caches, and multiple execution paths of the application, we have performed
experiments, where we insert at each task a timing variability from 0% up to 40%, on average.
Each experiment has been executed twenty consecutive iterations. During the execution, we
observed no timing violations according to the offline solution. Due to page limitations, we
only present the measured makespan of each core for the eight core configuration in Figure 4,
in the form of box plot. However, we thoroughly analyze the behavior of our approach by
providing the gains of the proposed isRA-DYN compared to isRA-LOCK for all experiments.
The gain is given by computing the makespan gain, i.e., (isRA−LOCK)−(isRA−DYN)

(isRA−LOCK) , for each
core. Tables 5, 4 and 6 depict the average makespan gain per core and the average makespan
gain across all cores, for all configurations.
a) General observations: The first and important observation is that the behavior of isRA-
LOCK is similar, in terms of minimum, maximum and average makespan, for all cores for
all benchmarks, under any timing variability. This behavior of isRA-LOCK is due to the
fixed partial task order. This behaviour motivates the use of a dynamic approach that can
explore the variability occurring at run-time. Compared to the isRA-LOCK, the makespan
distribution of the isRA-DYN among cores is varying. As isRA-DYN performs partial order
relaxations, allows earlier task execution and additional interference to occur, which varies the
core’s makespan. When the variability is increased, this variation becomes more important.
b) Minimum timing variability (0%): This experimental set-up is the worst for the proposed
approach, since the timing variability of the benchmarks is eliminated as much as possible.
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(a) DCT.

(b) MERGE.

(c) FFT.

Figure 4 Eight core configuration: isRA-DYN and isRA-LOCK makespan per core.
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To achieve that, the same execution path is used among executions and caches are disabled.
However, it is not possible to eliminate the interferences occurring from the parallel execution
of tasks. For all the experiments, we observe that the behaviour of isRA-DYN improves
over the behavior of isRA-LOCK, in all cores, as the number of cores increases. More
precisely, for the configuration with two cores and 0% variability, isRA-DYN provides a small
gain (from 0.08% for MERGE up to 0.22% for FFT, with an average of 0.145% among all
applications). As the number of cores is increased, the gains are also increased, especially
for MERGE. Compared to the two core configuration, the gain is increased on average by a
factor of x3.11 for DCT, x36.63 for MERGE and x1.93 for FFT, when four cores are used,
and by x2.95 for DCT, x44.64 for MERGE and x4.28 for FFT. The high gain factor of the
MERGE benchmark is due to the low gain when only two cores are used. The lower gain,
when only two cores are used, is attributed to the small number of interferences occurring
during execution in combination with a bit higher run-time overhead, due to the relax
phase, compared to isRA-LOCK. However, as the number of cores is increased, the number
of occurring interference is increased, and thus, the gain is higher. As the only source of
timing variability is the interferences in this experimental, the achieved gain of isRA-DYN
verifies that the proposed approach is capable of exploring the occurring interferences during
execution, compared to isRA-LOCK.
c) Tuning timing variability (from 5% to 40%): To quantitatively characterize the behavior
of the proposed approach, when other sources of timing variability occur on top of the
interferences, we insert an average variability of 5%, 10%, 20% and 40% in the WCET of
the tasks (WCRA remains unchanged). For all the experiments, we observe that as task
variability is inserted, isRA-LOCK fails to take advantage of it during execution, due to its
fixed partial order policy. On the other hand, as the variability is increased, the proposed
approach provides higher gains. More precisely, we observe that with the configuration with
two cores (which is the configuration with the minimum possible interferences), the gains
of isRA-DYN are significant compared to isRA-LOCK. In particular, with an increasing
timing variability of 5%, the average gains are increased to 1.125% for DCT, 0.935% for
MERGE, and 0.490% for FFT (with an average of 0.85% for all benchmarks). Tables 5, 4
and 6 show that with timing variability increasing, the gains are increased. Considering all

Table 4 MERGE: Average gains (%) per core (C) and among all cores (A).

MERGE
Timing 2 cores 4 cores
Var. (%) CO C1 A CO C1 C2 C3 A
0 0.08 0.08 0.08 1.90 6.17 1.81 1.84 2.930
5 1.03 0.84 0.935 2.10 7.40 2.46 2.56 3.630
10 2.29 2.09 2.190 4.04 9.37 4.48 4.63 5.630
20 4.84 4.76 4.800 9.59 13.06 9.59 10.09 10.583
40 9.35 9.29 9.32 16.80 19.85 17.96 17.50 18.028
Timing 8 cores
Var. (%) CO C1 C2 C3 C4 C5 C6 C7 A
0 1.96 5.42 1.64 5.30 2.06 5.37 1.69 5.13 3.571
5 4.58 8.01 3.62 7.84 4.56 8.07 3.76 8.22 6.083
10 7.78 11.43 7.19 11.15 7.98 11.60 6.40 11.52 9.381
20 14.90 17.27 13.70 17.69 14.95 13.40 15.25 17.77 15.616
40 24.49 24.92 23.04 26.11 25.31 25.17 20.91 24.78 24.341
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Table 5 DCT: Average gains (%) per core (C) and among all cores (A)

DCT
Timing 2 cores 4 cores
Var. (%) CO C1 A CO C1 C2 C3 A
0 0.14 0.13 0.135 0.46 0.41 0.40 0.41 0.42
5 1.10 1.15 1.125 1.51 1.69 1.56 1.66 1.605
10 2.56 2.63 2.595 3.67 4.95 4.04 3.83 4.123
20 5.94 5.58 5.760 6.28 10.77 7.95 7.61 8.153
40 11.35 10.48 10.915 13.85 17.23 16.48 14.54 15.525
Timing 8 cores
Var. (%) CO C1 C2 C3 C4 C5 C6 C7 A
0 0.36 0.44 0.33 0.42 0.36 0.46 0.42 0.40 0.398
5 0.64 1.16 0.75 1.06 0.70 1.06 0.71 1.05 0.891
10 3.77 6.17 4.37 5.78 3.87 5.73 5.76 5.49 5.118
20 11.68 14.56 11.90 14.21 12.21 14.51 13.08 13.86 13.251
40 21.30 23.49 21.87 23.44 21.46 23.64 21.78 21.33 22.288

benchmarks, we observe an average gains of 2.09% (10%), 4.95% (20%), and 9.33% (40%).
The maximum gain for 40% variability is 11.35% observed for C0 running DCT. As the
number of cores is increased, the gains are also increased. This occurs due to the fact that
the proposed approach is able to take advantage of both the inserted timing variability and
the occurring interferences. When four cores are used, the average gain over all benchmarks
is 1.89%, 3.82%, 8.46% and 15.86%, for 5%, 10%, 30% and 40% variability, respectively. The
maximum gain for 40% variability is 19.85% observed for C1 running MERGE. When eight
cores are used, the gains are even higher, i.e., with an average gain over all benchmarks equal
to 3.45%, 7.11%, 14.22% and 23.26%, for 5%, 10%, 30% and 40% variability, respectively.
The maximum gain for 40% variability is 25.31% observed for C4 running MERGE.

5.3 Controller cost
Table 7 depicts the corresponding WCET values for the isRA-DYN and isRA-LOCK ap-
proaches. Due to the additional relax phase, the overhead of the isRA-DYN controller is
higher than isRA-LOCK controller. Despite the increased overhead, isRA-DYN can provide
further performance improvements, as it has been shown in the previous paragraphs.

6 Related Work

The run-time mechanisms are categorized whether: i) the considered tasks are only time-
critical or also best-effort, ii) the WCET is pessimistic or interference-sensitive, and iii) the
adaptation is static or dynamic. A detailed survey of the state-of-the-art is available in [4].

The run-time mechanisms considering only time-critical tasks must guarantee the timely
execution of the complete task set. The mechanisms that consider the pessimistic WCET are
typically based on static decisions, i.e., the execution of a new task can start as soon as a task
finishes earlier than its pessimistic WCET. Typical examples of such approaches come from
scheduling theory, e.g. [1, 5]. However, the use of pessimistic WCET over-approximates the
interferences having a negative impact in performance and in schedulability. To tackle with
over-approximated WCETs due to interferences, several approaches incorporate interference
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Table 6 FFT: Average gains (%) per core (C) and among all cores (A).

FFT
Timing 2 cores 4 cores
Var. (%) CO C1 A CO C1 C2 C3 A
0 0.22 0.22 0.220 0.51 0.39 0.42 0.38 0.425
5 0.50 0.48 0.490 0.40 0.40 0.44 0.36 0.400
10 1.49 1.48 1.485 1.67 1.78 1.67 1.68 1.700
20 3.75 4.80 4.275 6.70 7.24 7.10 6.75 6.948
40 7.45 8.05 7.750 13.76 14.81 13.61 14.00 14.045
Timing 8 cores
Var. (%) CO C1 C2 C3 C4 C5 C6 C7 A
0 0.68 1.69 0.85 0.88 0.82 0.98 0.73 0.90 0.942
5 3.04 4.15 3.04 3.58 3.22 3.56 3.03 3.31 3.366
10 6.44 7.38 6.40 7.09 6.53 7.53 6.35 6.99 6.839
20 13.33 14.23 13.45 14.28 13.65 14.41 13.02 14.00 13.797
40 22.79 23.59 22.90 23.64 22.97 24.65 22.53 22.23 23.163

Table 7 Control phases WCET.

isRA-LOCK WCET isRA-DYN WCET
Fixed Cost Cost/Edge Fixed Cost Cost/Edge

CRτ 355 251 355 251
CNτ 260 263 260 263
CSτ - - 183 201
CTAR 45 - 45 -

analysis and provide interference-sensitive WCETs, such as [17, 19, 24]. In general, these
approaches provide improved timing guarantees, since they compute a context-dependent
upper-bound of the interferences for a particular schedule. To improve the provided upper-
bounds, some approaches take into account the length of task overlapping, e.g. [17], or the
precise timing of the requests, e.g. [20], or even provide contention-free schedules, e.g. [19];
a detailed survey of such approaches can be found in [12]. To further reduce the impact
of the inherent pessimism in any kind of WCET estimations, several run-time mechanisms
have been proposed. In [21, 22, 24], the authors provide a run-time approach suitable for
interference-sensitive WCET. However, these approaches act upon static decisions, being
unable to modify the partial order of tasks, created offline during the interference-sensitive
scheduling. In contrast, the proposed isRA-DYN approach embraces dynamic decisions
allowing safe modification of the isWCET scheduling, leading to performance improvements.

The run-time mechanisms for time-critical and best-effort tasks assume the timely
execution of time-critical tasks, when they run in isolation. Based on this assumption, they
decide the best-effort tasks execution, so as to still guarantee the timely execution of time-
critical tasks. Such approaches use different confidence levels in the WCET estimation [3],
compute the remaining WCET in isolation for the time-critical tasks [9–11], use resource
usage capacities [15, 16] and partitioning of the memory accesses [27]. The isRA-DYN
approach is orthogonal to these approaches, since it focuses on providing timing guarantees
for the time-critical tasks.
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7 Conclusion

In this work, we propose a dynamic interference-sensitive run-time adaptation technique
isRA-DYN that alleviates the limitations of the existing isRA-LOCK, since it allows to
safely relax the partial order of isWCET schedule solutions, whenever this is possible. We
have presented the corresponding RTA for our technique and have formally argued regarding
its safety, under any execution. The obtained results show that isRA-DYN outperforms
isRA-LOCK as it can exploit variability in actual execution of tasks. When using two cores,
the interferences are few and without any variability, the isRA-DYN provides small gains.
However, with increasing variability, even with under few interferences, isRA-DYN provide
significant gains. As the number of cores is increased, isRA-DYN provides better gains.
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