
Attack Detection Through Monitoring of Timing
Deviations in Embedded Real-Time Systems
Nicolas Bellec
University of Rennes, Inria, CNRS, IRISA, France
nicolas.bellec@irisa.fr

Simon Rokicki
University of Rennes, Inria, CNRS, IRISA, France
simon.rokicki@irisa.fr

Isabelle Puaut
University of Rennes, Inria, CNRS, IRISA, France
isabelle.puaut@irisa.fr

Abstract
Real-time embedded systems (RTES) are required to interact more and more with their environment,
thereby increasing their attack surface. Recent security breaches on car brakes and other critical
components have already proven the feasibility of attacks on RTES. Such attacks may change the
control-flow of the programs, which may lead to violations of the system’s timing constraints.

In this paper, we present a technique to detect attacks in RTES based on timing information.
Our technique, designed for single-core processors, is based on a monitor implemented in hardware
to preserve the predictability of instrumented programs. The monitor uses timing information
(Worst-Case Execution Time - WCET) of code regions to detect attacks. The proposed technique
guarantees that attacks that delay the run-time of any region beyond its WCET are detected. Since
the number of regions in programs impacts the memory resources consumed by the hardware monitor,
our method includes a region selection algorithm that limits the amount of memory consumed by
the monitor. An implementation of the hardware monitor and its simulation demonstrates the
practicality of our approach. In particular, an experimental study evaluates the attack detection
latency.

2012 ACM Subject Classification Computer systems organization → Embedded hardware; Security
and privacy → Embedded systems security

Keywords and phrases Real-time systems, security, attack detection, control flow hijacking, WCET
estimation, hardware monitoring

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.8

Acknowledgements We would like to thanks Steven Derrien for the discussions that lead to this
research and Stefanos Skalistis for his insight. We also warmly thank AbsInt for providing the aiT
WCET estimator and modifying it for meeting our needs for region selection.

1 Introduction

Real-Time Embedded Systems (RTES) are becoming more and more present in our lives
(IoT devices, embedded processors in cars, among others). Real-time constraints for these
systems need to be validated through estimation of Worst-Case Execution Time (WCET) of
their tasks [24] and schedulability analysis techniques.

Recent attacks on RTES [14] [7] [15] have shown attackers’ increased attention to these
systems. In particular, the predictability of RTES helps the attacker figure out the timing to
strike, making it easier to mount attacks. Improving the security of RTES is a challenging
task. Indeed, the deployed techniques (Address Space Randomization, Stack Smashing
Protection, Position Independent Executables to cite only a few of them [18,19]) must protect

© Nicolas Bellec, Simon Rokicki, and Isabelle Puaut;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 8; pp. 8:1–8:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicolas.bellec@irisa.fr
mailto:simon.rokicki@irisa.fr
mailto:isabelle.puaut@irisa.fr
https://doi.org/10.4230/LIPIcs.ECRTS.2020.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Attack Detection Through Monitoring of Timing Deviation

the system against attacks, while maintaining the system’s predictability, and with limited
overhead. However, the need for predictability of RTES is also a strength to protect the
system against attacks. Information on the system behavior (typically WCET) is available
offline, and can thus be used to detect anomalous behaviors resulting from attacks.

In this work, we propose to use the inherent predictability of RTES to protect them against
control-flow hijacking attacks for single-core architectures. The new defense mechanism
exploits fine-grained partial WCET estimations of the application to detect attacks. A
custom hardware monitor is in charge of observing the execution time of code regions and
raising the alarm if the region’s execution time is larger than its analyzed WCET, determined
offline. The hardware monitor has a local memory containing the list of regions to monitor,
together with their associated WCET. It then observes the execution at every clock cycle, by
reading the current cycle counter and the program counter (PC) to detect execution times
of code regions that are higher than the region’s WCET. The hardware monitor proceeds
by snooping the PC and cycle counter, and this does not require any modification of the
application under monitoring. The proposed technique can thus be used on legacy code.

The attacks detected by our technique are all those that divert a region of code from its
original control flow for a duration larger than its WCET, whatever the source of the attack.
In particular, software attacks caused by buffer overflows are supported1. The proposed
technique also detects fault attacks, that inject faults into the system via physical access to
the device, using optical or electromagnetic perturbations [22]. On the other hand, attacks
that bypass checks in the code are not detected because they do not cause the observed run
time of a code region to exceed the region’s WCET. Similarly, attacks that are fast enough
are not detected. The guarantee provided by the proposed method is the detection of all
attacks that increases the timing of a region beyond its WCET, whatever their source.

The selection of the regions to be monitored has an impact on the latency of attack
detection: the smaller the WCET of the monitored regions, the faster the attack detection.
On the other hand, monitoring more regions also increases the memory required for the
hardware monitor. Since minimizing resource consumption is essential in any system, the
proposed technique comes with a region selection algorithm that selects the best regions to
monitor under resource constraints for the hardware monitor. The algorithm selects regions
such that all code is covered (to detect attacks whatever their location) and provides a
guarantee on the latency of attack detection. In our experiments, the algorithm reaches the
optimal attack detection latency by selecting 47% of all the existing regions, on average.

Compared to related work on using timing information for detecting attacks (e.g. [27]), our
technique does not impact the system predictability, since the system under monitoring is not
modified. In addition, a technique is proposed to automate the selection of monitored regions.
Compared to techniques using watchdogs to protect the control flow and memory accesses
of programs [13] the technique we propose does not need any program instrumentation. A
deeper comparison with related work is proposed in Section 7.

In summary the contributions of this paper are threefold:
First, we present an algorithm, executed at compile-time, to select a set of regions whose
timing will be monitored at run-time. Together, the regions cover the entire code, such
that attacks can be detected whatever their location. The algorithm provides guarantees
on the attack detection latency (largest WCET of the monitored regions), and operates

1 One may consider that buffer overflows cannot occur in systems using static WCET analysis, because
static WCET estimation tools model the whole system memory and thus detect possible buffer overflows.
However, static WCET estimation tools also accept user-provided annotations such as loop bounds.
Such incorrect annotations can lead to vulnerabilities remaining undetected by the estimation tool.

N. Bellec, S. Rokicki, and I. Puaut 8:3

under hardware constraints for the monitor, in particular limited memory for region
storage. The algorithm is proven to provide the optimal attack detection latency in the
absence of hardware constraints.
Second, we contribute to a hardware monitoring co-processor, that uses WCET informa-
tion on code regions to detect attacks. The practicality of the proposed hardware monitor
is demonstrated using a simulation of the co-processor running along with a Leon 3
processor.
Third, we provide an extensive evaluation of the proposed technique (compile-time
selection of regions and hardware monitor) on a set of benchmarks. We evaluate the
impact of memory constraints on the guaranteed attack detection latency and evaluate
the actual detection latency and hardware cost of the monitor.

The rest of this paper is organized as follows. Section 2 gives an overview of the proposed
time-based program monitoring technique. Section 3 details the algorithm we propose to
select the regions to monitor, under resource constraints. Section 4 then gives implementation
details. Experimental results are provided in Section 5. We discuss the scope and limitations
of the method in Section 6. Related work is described in Section 7. Finally we conclude in
Section 8.

2 Time-based detection of control flow hijacking attacks

The basic principle of our approach is to detect control-flow hijacking attacks by detecting
if the run-time of code regions exceeds their statically estimated WCET. This approach
handles attacks that divert the control-flow of the program to subvert a task (which could
then be used to launch further attacks [3]). The approach is implemented using a dedicated
hardware mechanism that measures the number of cycles spent in code regions and raises
an alarm when the statically estimated WCET of the region is exceeded, meaning that an
attack is under progress.

Selecting all regions in a given binary program not only consumes monitor memory but
it is also not always beneficial. For example, selecting a very short region (in terms of
WCET) does little for the protection if there exists a longer selected region, the maximum
attack detection latency then being the duration of the longer region. Consequently, our
approach comes with a compile-time selection of regions that are useful to reduce the attack
detection latency. Region selection guarantees that all attacks modifying the control-flow
for at least a known Maximum Attack Window (MAW) are detected, and operates under
memory constraints for the hardware monitor. Thus the MAW is an upper bound of the
attack detection latency. Region selection is performed on the program binary with no code
modification. The set of regions selected at compile-time has the following properties:

It completely covers the application binary, every reachable instruction is included in at
least one region of the set. This way, attacks can be detected regardless of their location
in the code. This ensures that there are no unprotected instructions.
All regions are perfectly nested: two regions are either completely disjoint or one is fully
included inside the other, such that monitored regions can be represented as a tree. This
allows a simple yet efficient implementation of the monitor, using a stack representing
regions entered and not exited yet.
Regions only have one entry and one exit edge, as further detailed in Section 3.1.

For each selected region, the hardware monitor measures the execution time spent in
the region, ignoring cycles spent in any inner selected regions, and compares it against the
worst-case possible duration. The WCET of a region excluding inner selected regions is

ECRTS 2020

8:4 Attack Detection Through Monitoring of Timing Deviation

called Maximal Inner Duration (MID) of the region. The MID of each region is computed
at compile-time. The Maximum Attack Window (MAW) is the maximal MID of the set of
monitored regions. An illustration of the MID of regions is depicted in Figure 1 for a very
simple example of two regions R1 and R0, with R1 nested in R0. Plain lines at the bottom
of the figure represent the MID of the two regions. Dotted lines at the top of the figure
represent the possible execution times measured at run-time, an execution time higher than
the MID reflecting the occurrence of an attack.

R1

R0

time

MID(R1) = WCET(R1)

O
ff

li
n

e

e
st

im
a

ti
o

n
s

Execution time > MID(R1)

Execution time < MID(R1)

MID(R0) = WCET(R0)T(R1)=0

R
u

n
-t

im
e

v
a

lu
e

s

Figure 1 Maximal Inner Duration (MID) of nested regions.

Selecting the regions to monitor is a critical part of the proposed method, as it impacts
the maximum attack window. The region selection algorithm we propose for solving this
problem is presented in Section 3.

At run time, a dedicated hardware monitor measures the execution time of each region.
As illustrated in Figure 2, the monitor has access to the program counter (PC) value of
the processor at each cycle and uses it to determine whether the execution enters or exits a
region. The monitor maintains a stack containing all regions currently active (entered and
not yet exited) and the value of their cycle counters. The monitor only updates the cycle
counter of the most nested region, currently under execution (stack top). The monitor uses
two scratchpad memories: the Stack Memory (called SM in the following) is used to track
active regions, and the Region Memory (called RM in the following) to store the tree of
monitored regions.

R0

R2

R5

Stack Memory

(SM)

Region Memory

(RM)

R0

R1 R2 R3

R4 R5

Cycle Counter

Hardware monitor

PC

alarmC
P

U

Figure 2 Overview of the monitoring system.

More precisely, at each cycle, the monitor successively tests if the following (non-exclusive)
situations occur:
1. If the PC value corresponds to the exit point of the most nested region, this region is

removed from the stack. The containing region then becomes the most nested region, and
the cycle counter resumes from the value previously stored in the stack for that region.

N. Bellec, S. Rokicki, and I. Puaut 8:5

2. If the PC value corresponds to the entry point of a new region, included in the most
nested region, the counter value of the most nested region is saved on the stack, and the
monitor starts profiling the new region, with a counter starting at zero.

3. In all cases, the monitor increments the cycle counter of the most nested region and
compares it with the value of the MID of the region. If it is greater than the MID, an
attack is detected and an alarm is raised.

The monitor is implemented in such a way that it is able to analyze a new PC value at
each cycle, and thus does not induce any slowdown in the execution of the application.

Due to the mode of operation of the monitor, false positives cannot occur: an execution
time higher than the MID of a region, provided that WCETs are safely estimated, can only
result from a control flow hijacking attack or a fault. On the other hand, attacks may stay
undetected if they are fast enough (faster than the guaranteed attack detection latency).

Hardware constraints
Implementing the hardware monitor requires bounding the size of the Stack Memory (SM)
and Region Memory (RM). Moreover, we want the monitor to analyze a PC value at every
clock cycle. Bounding the resources required for implementing the monitor imposes the
following constraints on the tree of selected regions:

Limited height (maximal number of regions possibly active at the same time) to have
a bounded size for SM
Limited arity. This constraint allows to bound the number of simultaneous accesses
to RM when several sub-regions (children in the region tree) can be entered from the
currently active region.

The region selection algorithm presented in Section 3 assumes that the respective sizes of
RM and SM, as well as the maximum tree arity are known. Selecting the best values for these
parameters is achieved when dimensioning the hardware monitor for a given application.
This impact of hardware constraints on attack detection latency is studied in Section 5.1.4.

3 Off-line selection of monitored regions

This section is devoted to a description of the algorithm we propose to select the regions to
monitor. First, the properties of monitored regions are defined in Section 3.1. The algorithm,
that guarantees a limited attack detection latency under the hardware constraints mentioned
in Section 2 as well as a full program coverage is presented in Section 3.2, and an analysis
of its complexity is sketched in Section 3.3. Moreover, we prove in Section 3.4 that, in the
absence of hardware constraints, the algorithm is optimal (finds the smallest MAW).

3.1 Properties of monitored regions
Monitored regions are Single-Entry Single-Exit (SESE) regions (regions with a single entry
edge and a single exit edge). They are extracted at compile time from the Control Flow
Graph (CFG) of program binaries. For the scope of this paper, we use canonical SESE
regions (simply called SESE regions in the following) as defined in [10]. A canonical SESE
region (a, b) is by definition a SESE region such that no other SESE regions starting at the
edge a (resp. ending at b) is included in (a, b). Canonical SESE regions can be viewed as the
smallest SESE with a as entry edge or b as exit edge. By construction, the smallest size of a
SESE region is a basic block (sequence of machine instructions with no branch except the last

ECRTS 2020

8:6 Attack Detection Through Monitoring of Timing Deviation

instruction). SESE regions are proven in [10] to be properly nested (either completely nested
or disjoint, at the function level), which allows them to be organized as an inter-procedural
region tree. This is illustrated in the left part of Figure 3, where we can see a CFG with the
SESE regions surrounding the nodes they contain. Region R0 is disjoint from R1. Regions
R3, R4 and R5 are nested in R1. The corresponding tree structure is given in the right part
of Figure 3.

4

0

3

1

52

6

7

start

end

R1

R0

R2

R5 R3 R4

root

R0 R1 R2

R5 R3 R4

Tree representationControl-flow graph representation

Basic blocks

Figure 3 Single Entry Single Exit (SESE) regions viewed in the Control Flow Graph of the
application and organized as a tree.

3.2 Region selection algorithm
According to the behavior of the monitor presented in Section 2, and assuming a set of
monitored regions S, an attacker has at most the highest Maximal Inner Duration (MID)
among monitored regions to perform their attack. As defined previously, the highest MID
defines the guaranteed Maximum Attack Window (MAW).

The objective of the region selection problem is to select the monitored regions, that
altogether must cover the entire program, such that their maximum MID is as small as
possible. The selection operates under resource constraints (memory for stack and storage
of region information, maximum number of regions entries/exists to check at every clock
cycle). The region selection algorithm is iterative and greedy (never performs backtracking).
At each iteration, the algorithm optimizes (reduces) the MID of the selected region Rm

having the highest MID. The MID is reduced by selecting one sub-region S of Rm (children
of Rm in the inter-procedural region tree), since by definition, other regions have no impact
on the MID of Rm. The sub-region S is selected using a heuristic that estimates the new
maximum attack window should S be selected. Finally, once S is selected, a new round of
MID estimation takes place, with the new set of selected regions.

The algorithm is sketched in Listing 1. Variable All contains all regions (regardless
of whether they will be selected or not). Variable Selected contains the current set of
selected regions with their MID. Rm is the region under optimization and S the selected
sub-region. Function MaximalRegion returns the region having the highest MID. Function
MIDEstimation(r,s) computes (or re-computes) the MID of region r assuming a null execution

N. Bellec, S. Rokicki, and I. Puaut 8:7

1 # Initialisation
2 for r in All:
3 MIDEstimation (r ,[]);
4 Rm = MaximalRegion (All);
5 Selected . Append (Rm);
6
7 # Main loop
8 while remainingSpace > 0:
9 S = SelectSubRegion (Rm , Selected);

10 if S == None:
11 break
12 Selected . Append (S);
13
14 for r in All:
15 if r in UpperRegions (S):
16 MIDEstimation (r, Selected);
17
18 Rm = MaximalRegion (Selected);

Listing 1 Region selection algorithm

time for the regions in set s. Finally, function SelectSubRegion(r,s) implements the heuristic
and selects a sub-region of r given the current set of selected regions s. In Listing 1, the MID
of all regions is first computed and the region that covers the entire program is selected. The
main loop of the algorithm then iteratively optimizes the region Rm with the highest MID.

There are two ways the algorithm can terminate. The first possibility is that there are
no more sub-regions to select. This happens if all regions in a program have been selected,
or if the region with the highest MID does not contain any unselected sub-region. The
second possibility results from an impossibility to find a sub-region that meets the hardware
constraints. Infringement of hardware constraints is tested in the main loop through variable
remainingSpace (test of limited space for region storage) and in function SelectSubRegion
(test of limited storage for the region stack and limited arity for the region tree).

Function SelectSubRegion(R,Selected) implements the heuristic that calculates a score
for each as-yet-unselected sub-region S of R. The score estimates the new maximum attack
window should R be selected, and then selects the region R having the best (here lowest)
score. The score is computed as follows:

score = max(MID(R, Selected) − T (R, Selected, S), MID(S, Selected))

This score represents the best-case evolution of the MAW, i.e., what the new MAW
would be if there was no other path than the worst-case path in the region. T (R, Selected, S)
represents the contribution of sub-region S to MID(R, Selected). The first parameter of the
max function estimates the new MID of R should its sub-region S be selected. The second
term is the MID of sub-region S. The score is the maximum of the two parameters because
the MAW is defined as the maximum of the MID of all selected regions. As the score is
computed for every sub-regions of Rm, the algorithm likely selects a sub-region that is not a
direct child of Rm.

After a sub-region S has been selected by the algorithm, all the MIDs affected by the
newly selected region S have to be re-estimated. The affected MID are the ones of the regions
that are higher in the inter-procedural region tree and thus include the selected region S.

ECRTS 2020

8:8 Attack Detection Through Monitoring of Timing Deviation

3.3 Complexity of region selection
We first evaluate the worst-case complexity of the region selection algorithm in terms of the
number of operations on the regions. At each iteration, the algorithm selects a sub-region
Rm. Such a selection requires verifying the stack and arity constraints for each sub-region
whose number is, at worst, the number of regions in the program, n. The stack constraint
check consists in finding the longest weighted path in the inter-procedural region tree, whose
depth is at worst the number of regions. We can thus infer that the overall worst-case
complexity of the stack check is O(n2). Verifying the arity requires checking, for each region
already selected inside the maximal region, whether the newly selected sub-region increases
its arity beyond the constraint. The arity of a region can be computed with a slightly
modified depth-first search. Thus the worst-case complexity of arity checking is O(n3). As
the number of iterations of the algorithm is, in the worst-case, the number of regions, we
obtain a worst-case complexity of O(n4) in terms of the number of operations on regions.

As presented in section 5, most of the run-time of the region selection algorithm is spent
in MID estimation. The complexity of MID estimation is equivalent to the complexity of
WCET estimation, and is hidden in the WCET estimation tool. Thus, the most important
complexity metric is the worst-case number of MID estimations. This number can be bounded
as, in the worst-case, the algorithm evaluates the MID of all regions. Thus, the number
of MID estimations cannot exceed n2. In practice, the actual number is far lower, as the
algorithm only has to estimate the MID of the regions higher in the inter-procedural region
tree than the newly selected region, as the MID of other regions is not impacted. The
observed run-time of region selection is studied in Section 5.1.2.

3.4 Maximum Attack Window optimality: proof sketch
The region selection algorithm is an iterative greedy algorithm, which selects a set of regions
to monitor under hardware constraints (see Section 2) and aims at minimizing the MAW.
The proposed algorithm satisfies the following optimality property: if hardware constraints
are ignored, our algorithm selects the regions that minimize the MAW (as if all regions were
selected). Proving this property relies on two lemmas.

I Lemma 1. When a new region is added to the set of selected regions, the MAW cannot
increase.

I Lemma 2. If adding a new region reduces the MAW of an application, then it is a sub-region
of the selected region having the maximal MID.

Only a proof sketch is given for Lemmas 1 and 2 for space considerations. Lemma 1 can
be proven by noting that if a region R has a MID m, then any path within this region has
a MID lower than or equal to m. Thus selecting a sub-region S inside R only lowers or
maintains the time on those paths, and thus the MID with S selected, and consequently the
MAW, does not increase. Lemma 2 is proven using the idea that, as regions are properly
nested, if a selected region S impacts the MID of another region R, then S must be nested
into R to decrease the time of some instructions in at least one path of the affected region.

Assuming Lemmas 1 and 2 hold, let us show that the algorithm selects the regions that
minimize the MAW when the algorithm stops. According to the code of the algorithm, there
are three possible causes for the algorithm to end:
1. Hardware constraints are not met (lines 8 and 9 in the algorithm). This cannot happen

here because we ignore hardware constraints.

N. Bellec, S. Rokicki, and I. Puaut 8:9

2. All regions have been selected. Since according to Lemma 1 the MAW never increases
when selecting a new region, we have then reached the minimal MAW.

3. The region having the maximal MID has no as-yet-unselected sub-regions. Then no
region could reduce the MAW according to Lemma 2.

Consequently, when the algorithm ends, no region could further reduce the MAW. J

4 Implementation

4.1 Target processor and compilation toolchain
Without loss of generality, we target in this paper a Leon 3 core, implementing the SPARC V8
instruction set, and in which we have deactivated the instruction and data caches. Programs
are compiled using the gaisler compiler tool-chain [5]. The Leon 3 processor has branch
delay-slots: the instruction located immediately after a (conditional or unconditional) branch
instruction will always execute, regardless of the outcome of the branch. The processor also
includes a branch predictor.

WCET and MID estimations use the commercial WCET estimation tool aiT for Leon 3,
version 19.04i [2]. aiT implements value analysis using abstract interpretation, to determine
the range of values in registers, automatic detection of loop bounds [6], as well as static
analysis of the processor micro-architecture. This version implements a modification to
the aiT original behavior to prevent the timing analysis of a part of the code (the time
is then given by the user); the modification maintains the value analysis but discards the
micro-architectural analysis.

4.2 Implementation of region selection
Region selection has been implemented in Python3. In a first step, the Control-Flow Graph
is constructed, using the disassembled code of the provided binary. SESE regions are then
extracted from the CFG, using the algorithm presented in [10]. Finally, we perform the
region selection as previously presented in Listing 1. MID estimations are performed using
aiT, by computing the WCET of the targeted regions and using aiT annotations to set the
WCET of selected sub-regions to zero.

The algorithm computing the SESE regions provides the smallest SESE regions, with
the minimum region size of one basic-block. Some of these regions are consecutive and thus
can be merged into a larger SESE region, called domain. Including domains in the program
region tree allows to perform the selection of larger regions with less resources. For example,
instead of selecting 4 regions composing a loop body, it is possible to select the domain
representing the fusion of these 4 regions, reducing memory requirements and mitigating
arity constraints. It is still possible to select one of the 4 regions inside the domain to further
reduce the MAW.

4.3 Implementation of the hardware monitor
As described in Section 2, the monitor needs to analyze a new PC value at each cycle (that
may be the same as the one observed at the previous cycle). Based on this observed value, it
decides whether to exit the active region and/or to enter a new one. In the following, we
describe the design of the monitor capable of handling 4096 regions, with a maximal arity of
8 and a stack size of 64.

ECRTS 2020

8:10 Attack Detection Through Monitoring of Timing Deviation

The program region tree is stored in the Region Memory (RM) using an array with 64
bits per region. Those 64 bits are divided in the following way:

24 bits for the address of the entry point (target of the region’s entry edge),
24 bits for the address of the exit point (target of region’s exit edge),
12 bits for encoding the index of the first child in the array (index start with 0), and
4 bits for encoding the number of children.

Moreover, we ensure that all children of a given region are stored consecutively. Hence the
index of the first child of a region gives access to all children. Figure 4 is an example of
representations. We can see that all children of region R1 are stored consecutively, starting
at index 3. In order to save memory, the MID of every region is not stored in RM. Instead,
we use the MAW (highest MID) for all regions. This means that attacks are detected only
when the counter of the current region reaches the MAW and not earlier (for regions whose
MID is lower than the MAW). On the other hand, not saving the MID for every region saves
memory and allows us to monitor more regions. RM is divided into eight banks, a region of
index i being stored in bank i mod 8. Consequently, all children of a region can be accessed
within a single clock cycle.

R0

R1 R2

R3 R4 R5

childrenIndex #children

1 2R0

3 3R1

0 0R2

0 0R3

0 0R4

0 0R5

Figure 4 Example of the tree encoding used in the monitor. For the sake of simplicity, addresses
of entry and exit points of each regions are not depicted in the figure.

The Stack Memory (SM) is encoded using 64-bit registers. In each register, 24 bits are
used to store the counter value. The remaining bits contain a copy of the information on the
region (24 bits for region exit, 12 bits for first children, 4 bits for the number of children)
such that the monitor can test region exit without any access to RM.

The hardware monitor is described at the C level and synthesized into hardware description
language using Mentor Catapult HLS (v10.3a). The system has been simulated at the C
level and is currently being implemented on an Altera FPGA.

5 Experimental evaluation

In this section, we present the experimental study we conducted to evaluate our approach.
This study is separated into two parts.

Section 5.1 is dedicated to an evaluation of the region selection algorithm. We first study
the effectiveness of region selection and the limits in the way we build regions. Then we
measure the execution time of the selection algorithm, ignoring all hardware constraints.
Finally, we evaluate the impact of hardware constraints on the quality of the results
(MAW).
Section 5.2 evaluates the hardware monitor. We first measure the latency of the attack
detection. Then we compare our hardware-based approach against existing software-based
methods. Finally, we evaluate the silicon area required to implement our approach and
compare it with the area of the Leon core.

N. Bellec, S. Rokicki, and I. Puaut 8:11

5.1 Evaluation of the region selection algorithm
5.1.1 Experimental setup
We use the Mälardalen [9] and PolyBench [17] benchmarks to evaluate the region selection
algorithm. The Mälardalen benchmarks are composed of multiple programs written in C
with many different program structures. In particular, among the benchmarks there are
control-oriented programs such as statemate and nsichneu and more simple computational
kernels such as fft1 or fir. The PolyBench benchmarks are computation kernels written in C,
composed mostly of loop nests. To evaluate the region selection algorithm on as realistic
as possible codes, we ruled out all benchmarks with less than 30 regions in the program
structure tree. Furthermore, we eliminated benchmarks that could not be analyzed with only
basic loop bound annotations.

We evaluate our technique on the following 24 programs: 16 from the Mälardalen
benchmarks: adpcm, cnt, compress, crc, fft1, ludcmp, matmult, minver, ndes, nsichneu,
statemate, ud, edn, st, lms and qsort-exam, and 8 from the Polybench benchmarks: gemver,
3mm, ludcmp, covariance, nussinov, adi, fdtd-2d, heat-3d. There are two implementations of
the ludcmp algorithm, one in each benchmark suite. To differentiate them in the next section
we add the prefix poly_ to every program of the PolyBench suite.

5.1.2 Maximum Attack Window (MAW) without hardware constraints
We first estimate the best (i.e. smallest) MAW, obtainable by the selection algorithm when
ignoring hardware constraints (size/arity). In Table 1, we compare, for each benchmark, the
obtained MAW (obtained by the selection algorithm) with the WCET of the benchmark
(equivalent to the MAW at the start of region selection). We also indicate the total number of
regions per benchmark and the number of regions selected by the algorithm. The results show
that 60% of the benchmarks have a MAW below 820 cycles. On the selected architecture, an
instruction takes about 12 cycles (counting the SRAM access time). Thus, for 60% of the
benchmarks, the MAW is about 69 instructions.

For 14 out of 24 benchmarks, the obtained MAW corresponds to a region containing a
single basic block (labeled with a ’b’ in the “Limiting reason” column). For these benchmarks,
the MAW is between 274 and 5 039 cycles, with 50% of these benchmarks having a MAW
below 614 cycles.

For the other 10 benchmarks (labeled with an ’s’), higher values of MAW are obtained due
regions containing a loop with a delay-slot. aiT handles delay-slots as special basic blocks to
handle branch prediction. As the impact of a delay-slot on the WCET may differ depending
on whether the branch is taken or not taken, aiT considers the delay-slot as two basic blocks,
one for each outcome. This prevents us from placing the delay-slot instruction as the last
instruction of a region. Thus, delay-slot instructions are often placed in an upper region in
the region tree. As loops almost always have a header with a delay-slot, the delay-slot is
placed in the region representing the loop. As the loop can iterate many times, the cost of
the delay slot is multiplied by the loop bound, resulting in a region containing only a single
delay-slot instruction but with a high MID. This region can then prevent the improvement
of the MAW if it becomes the region with the highest MID.

For example, we sketch the desired behavior in Figure 5a: the delay-slot is part of the
region R1 and thus the delay-slot execution time is counted once in the MID of R1. Figure
5b depicts the behavior of aiT, which duplicates the delay-slot for each branch outcome. It
also adds guards on the delay-slot block, which forces us to include its execution time in R0.

ECRTS 2020

8:12 Attack Detection Through Monitoring of Timing Deviation

Table 1 Best attainable MAW, obtained when ignoring hardware constraints. For each benchmark,
we provide the WCET of the whole application, the MAW obtained, the total number of regions
and the number of selected regions. The last column gives the limiting factor for MAW reduction:
either the size of the basic block (labeled ’b’) or the way delay slots are handled (labeled ’s’).

Benchmark WCET MAW overall selected Limiting reason
regions regions

lms 9 404 429 1 609 76 35 s
qsort-exam 220 542 614 45 25 b

edn 1 774 300 3 155 78 32 b
st 3 218 793 8 001 60 18 s

poly_ludcmp 1 300 575 626 961 43 31 s
poly_heat-3d 916 894 881 1 953 35 9 b
poly_gemver 20 264 113 961 33 22 s
poly_nussinov 3 906 470 200 493 39 21 b
poly_3mm 254 765 399 450 44 24 b
poly_adi 552 919 400 1 456 33 18 b

poly_fdtd-2d 289 221 703 1 346 38 19 s
poly_covariance 379 138 134 801 34 21 s

ndes 1 225 593 661 101 38 b
matmult 3 339 921 340 53 24 b
compress 1 758 363 166 358 102 79 s
statemate 144 066 2 970 362 21 b
ludcmp 113 587 421 64 29 b
adpcm 2 116 152 16 001 175 17 s
fft 439 514 1 117 75 17 b

minver 35 614 5 039 62 8 b
crc 764 776 4 355 33 16 s
ud 103 136 398 56 27 b

nsichneu 231 282 21 891 755 753 s
cnt 79 166 274 36 17 b

R1

delay-slot

R2

R0
(a) Desired behavior.

R1

R2

delay-slotdelay-slot

R0
(b) Actual behavior.

Figure 5 Delay-slot handling example.

N. Bellec, S. Rokicki, and I. Puaut 8:13

As R0 contains the loop, the MID of R0 depends on the number of iterations. This situation
occurs in the st benchmark, which contains a 1 000-iterations loop and a delay-slot whose
WCET is estimated at 8 cycles. This results in an indivisible region of 8 001 cycles that
blocks the improvement to the MAW.

5.1.3 Run-time of region selection without hardware constraints

The run-time of region selection, when ignoring hardware constraints, is given in Figure
6. Each benchmark is represented by a bar with the total time of MID estimations (aiT
runtime) as one part (top) of the bar and the run-time of the rest of the region selection
algorithm as the other part (bottom). We do not represent nsichneu as it would have flatten
all the other benchmarks but we give the different times.

0

40

80

120

ad
pc

m
cn

t
co

m
pr

es
s

cr
c

ed
n

fft lm
s

lu
dc

m
p

m
at

m
ul

t
m

in
ve

r
nd

es
po

ly
_3

m
m

po
ly

_a
di

po
ly

_c
ov

ar
ia

nc
e

po
ly

_f
dt

d−
2d

po
ly

_g
em

ve
r

po
ly

_h
ea

t−
3d

po
ly

_l
ud

cm
p

po
ly

_n
us

si
no

v
qs

or
t−

ex
am

st
st

at
em

at
e

ud

benchmarks

tim
e

(s
) type

MID estimation (aiT)

Other (Python)

Selection time per benchmark

Figure 6 Run-time of the region selection algorithm. nsichneu is not presented to be able to avoid
flattening the other benchmarks. For nsichneu, MID estimations (aiT) = 4 440 s, Other (Python) =
317 s.

These results empirically show that most of the computation time of the selection
algorithm comes from the MID estimations by aiT. We also observe that the overall execution
time remains acceptable for all represented benchmarks. In all benchmarks except nsichneu,
region selection is performed in less than 200s. nsichneu takes more time due to its structure
that forces the selection algorithm to select almost all the regions, which requires many MID
estimations. Most programs do not have a structure as specific as the one of nsichneu and
for them, the selection algorithm run-time remains very low.

5.1.4 Impact of hardware constraints

This section studies the impact of hardware constraints on the quality of region selection.

ECRTS 2020

8:14 Attack Detection Through Monitoring of Timing Deviation

First, we observed that the required stack size in the benchmarks never exceeds 12 and
the required size per stack element is 64 bits only. Thus, this factor has little importance on
the resources consumed by the monitor. Consequently, we limit our analysis to the impact of
limited memory for RM and limited arity for the region tree.

We first evaluate how limited size for RM impacts the obtained MAW. To do so, we
extract the MAW for each iteration of the region selection algorithm without constraints. We
can then have a representation of the MAW obtained if the selection algorithm had stopped
due to limited RM size, without other constraints (stack / arity). The obtained curves depict
the obtained MAW as a function of the number of selected regions, with each point being a
newly selected region (which is equivalent to an increase of the RM size by 64 bits). Most of
the curves have the same shape as ud, presented in Figure 7a.

For most benchmarks, the threshold plummets at the beginning of the selection and then
decreases slowly or stabilizes, corresponding to two phases. The only benchmark for which
the MAW decreases at approximately a constant rate is nsichneu as depicted in Figure 7b.
This is due to the particular structure of this benchmark, imposing a one-by-one selection of
a very small region at each iteration. Interestingly, on this benchmark, the algorithm does
select from the most to the less interesting regions, as the slope of the curve decreases with
the number of regions selected.

The best attainable MAW is reached when selecting a mean of 47% of the overall regions,
with a standard deviation of 20% (noted 47±20%). When selecting the regions, 90% of the
reduction is performed by selecting only 24%±19% of the regions selected at the end. The
first selected regions are often very interesting to efficiently reduce the MAW. The large
standard deviations are mostly due to the disparity in the complexities of the benchmarks.

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●0

10000

20000

30000

40000

50000

0 10 20
memory

m
ax

im
al

_m
id

(a) ud.

●●●

30000

60000

90000

0 200 400 600
memory

m
ax

im
al

_m
id

(b) nsichneu.

Figure 7 MAW evolution with the number of selected regions.

The second studied hardware constraint is the arity constraint. To evaluate its influence,
we perform the selection in three configurations, all without constraining the size of RM:
unbounded arity, arity of 8 and arity of 4. The resulting MAW is given in Table 2.

The results indicate that for an arity of 8, all benchmarks except nsichneu have a MAW
less than 2 times higher than with no arity constraint. 21 out of the 24 benchmarks have
the same MAW as when the arity is unbounded. nsichneu remains a special case due to its
structure, which makes the selection rely exclusively on the arity to reduce the MAW. We
see in that case that the structure of the code has a strong impact on the capacity of our
method to protect it.

N. Bellec, S. Rokicki, and I. Puaut 8:15

For an arity of 4, 16 out of 24 benchmarks are not affected by the constraint. Among the
affected 8 benchmarks, the increase in the MAW is so low that there is almost no difference
in the protection for 3 of them. However, the other benchmarks except compress, see their
MAW increase by a factor of 6 or more compared to a system with no arity constraint. In
these cases, the attack window may be considered too large to efficiently protect the program
and a superior arity is then required. compress is special as it has a very high MAW to begin
with, so even a factor below two makes its MAW skyrocket even more. We conclude that
arity has an important impact on the obtained MAW, but it seems that there is no need to
increase the arity to more than 8 to have good results for almost all benchmarks.

Table 2 MAW in function of arity for all benchmarks (no limit on RM size).

Benchmark No 4 8 Benchmark No 4 8
bound bound

adpcm 16 001 16 001 16 001 cnt 274 274 274
compress 166 358 313 124 196 406 crc 4 355 4 355 4 355

edn 3 155 145 340 3 155 fft 1 117 1 117 1 117
lms 1 609 1 609 1 609 ludcmp 421 621 421

matmult 340 340 340 minver 5 039 5 039 5 039
ndes 661 707 661 nsichneu 21 891 227 184 223 200

poly_3mm 450 450 450 poly_adi 1 456 1 456 1 456
poly_covariance 801 801 801 poly_fdtd-2d 1 346 1 346 1 346
poly_gemver 961 961 961 poly_heat-3d 1 953 1 953 1 953
poly_ludcmp 961 961 961 poly_nussinov 493 518 493
qsort-exam 614 4 047 1 262 st 8 001 8 001 8 001
statemate 2 970 3 014 2 970 ud 398 398 398

5.2 Evaluation of the hardware monitor
This section evaluates the hardware monitor, in terms of observed detection latency and
implementation overheads.

5.2.1 Observed attack detection latency
The experiments reported in this section have two objectives: to demonstrate that the
proposed approach effectively detects control-flow deviations and evaluate the achieved attack
detection latency.

The experiments operate on traces obtained using Modelsim SE-64 10.5a, that performs
a cycle-accurate simulation of the Leon 3 core while it executes code. We post-processed
the traces produce by Modelsim to extract the trace of PC values at each cycle and remove
the C values corresponding to the instructions canceled after branch misspredictions. The C
version of our monitor is configured with the result of our region selection algorithm with
stack and memory constraints set at 1024 and arity constraint set at 8 as for our hardware
evaluation (see section 5.2.3). It scans the trace to detects when the execution enters or
exits. We simulate a scenario where the attacker escapes from the standard execution
path from an unknown path and never returns back. This is done by modifying the PC
value in the execution trace at a cycle picked randomly. Then we verify that the proposed
hardware monitor detects the attack, and we measure the latency between the attack and
its detection. For each application, the attack is inserted at 100 000 random points. Due to

ECRTS 2020

8:16 Attack Detection Through Monitoring of Timing Deviation

experimental limitations, some optimizations on the estimation of the MAW are disabled for
this experiment. Consequently, the MAW used here are different from the MAW presented in
Table 1. Results of this experiment are presented in Table 3, giving the mean and standard
deviation of the attack latency, expressed as a percentage of the MAW.

Table 3 Latency of the detection of an attack using the proposed mechanism. The number of
cycles between the attack and its detection are provided as a percentage of the MAW determined
statically.

Benchmark Mean latency Standard deviation latency
(% of MAW) (% of MAW)

crc 99 % 0.8 %
lms 94 % 5.7 %

minver 68 % 29.8 %
fft 94 % 4.9 %

qsort-exam 97 % 2.7 %

We observe that all attacks are detected by the monitor. The latency is often close to
the MAW as the attacks often take place in regions with a MID far lower than the MAW.
Consequently, even if the attack is triggered close to the end of the region, the alarm is raised
when the counter reaches the MAW. The minver application has a different behavior: most
of the execution takes place in the region having the limiting MID. Thus, when the attack is
triggered at the end of the region, it is detected quickly. We can see in Table 3 that minver
has a latency of 64% of its maximal MAW.

5.2.2 Evaluation of overheads as compared to software approaches
As we opted for a hardware implementation of the monitor, our approach has no impact on
the execution time. In comparison, software-based approaches require to read a cycle counter
from memory and to compare the value with the MAW. Depending on the implementation,
this software implemented monitoring system could even require a system call, as in the work
from Zimmer at al. [27].

In this experiment, we evaluate the overhead of our technique if it were implemented in
software. We use the execution traces extracted during the previous experiment to count
the number of times a region is entered or exited during the execution. Then, we define
three scenarios with different penalties for switching of region (entry / exit), corresponding
to different implementation strategies for the monitoring system (e.g. with/without system
calls, optimized or not). In the fast-soft scenario, monitoring a region requires 10 cycles at
each region switch. In the medium-slow, it requires 20 cycles and in the slow-soft it requires
200 cycles.

Table 4 summarizes the results of this experiment. The first column provides for each
application simulated, the number of times the monitor switches from one region to another.
The other columns correspond to the performance penalty due to the software implemented
monitoring of regions. We provide both the number of cycles spent in monitoring and the
overhead relatively to the original execution time of the application. We can see that a
software based approach can add a significant overhead in the execution time. Even for the
fast-soft scenario, the overhead reaches 51% for qsort-exam. For medium-soft and slow-soft,
the monitoring overhead is often larger than the original execution time. Of course, this
overhead could be reduced by increasing the size of the monitored regions, but this also
increases the detection latency. The hardware monitors does not affect the execution time of
the application.

N. Bellec, S. Rokicki, and I. Puaut 8:17

Table 4 Comparison between the overheads of the hardware monitor (hardware) and the state
of art assumed with a constant overhead at each region switch (entry or exit) in the worst-case
scenario for a subset of the benchmarks.

Benchmark Region switch
Overhead (cycle / % of execution time)

0/switch 10/switch 20/switch 200/switch
(hardware) (fast-soft) (medium-soft) (slow-soft)

crc 1 718

0

17 180 34 360 343 600
19% 39% 387%

lms 6 134 61 340 122 680 1 226 800
5% 10% 99%

minver 12 120 240 2 400
1% 3% 29%

fft 1 090 10 900 21 800 218 000
28% 56% 556%

qsort-exam 306 3 060 6 120 61 200
51% 103% 1029%

5.2.3 Hardware overhead of monitor

The last experiments estimate the hardware cost of the monitor. We have synthesized both
the Leon core and the monitor, targeting a 28 nm technology from STMicroelectronics and a
working frequency of 50 MHz (default frequency of the Leon core). As the cost is dominated
by memory, this cost is separated from the other costs when giving the results.

Table 5 Area cost of the Leon core and of the proposed hardware monitor. Results are given for
different core configurations, with memory ranging from 64 kB to 512 kB, and a monitor capable of
monitoring 1 024 regions (which corresponds to 8 kB).

Leon Memory Size 64 kB 128 kB 256 kB 512 kB
Monitor Size 8 kB (1 024 monitored regions)
Leon Area (µm2) 128 197 229 117 430 957 834 637

core only 27 277
memory only 100 920 201 840 403 680 807 360

Monitor Area (µm2) 28 598
monitor only 15 983
memory only 12 615

Overhead 22% 12% 7% 3%

Results are reported in Table 5. The first two lines are a summary of the configurations
studied. Then, area results for the Leon core and for the proposed monitor (in µm2) are
presented. For both of them, we provide the area consumed ignoring the memories and the
area of the memories. The last line gives the area overhead due to the use of the proposed
approach. We can see that, depending on the core configuration, the overhead of the monitor
goes from 22% to 3%. All these results corresponds to a monitor handling up to 1 024 regions.
This value was picked knowing that the biggest application we studied requires 80 regions
(ignoring nsichneu that requires 700 regions). We can estimate that doubling the number of
region handled by the monitor would double the area consumed by the memories.

ECRTS 2020

8:18 Attack Detection Through Monitoring of Timing Deviation

6 Discussion

As any security mechanism, the design we propose has a limited scope that we discuss in
this section. Since our work heavily relies on WCET estimation techniques and tools, their
limitations impact the quality of our work. In particular, the pessimism of WCET estimates,
even on small regions such as basic blocks, induces higher bounds for our detection and thus
more time for the attacker to bend the program behavior.

We selected an implementation of the monitor that uses the same bound for all regions, to
reduce the hardware overhead of the design. Storing the bound of each region in the memory
and checking the elapsed time against this bound would certainly improve the security of the
protection, at the expense of a higher hardware overhead to store all these data.

Using debug interfaces already present on the processor is an interesting idea to use this
protection with less hardware overhead. For example, we could implement the monitor in
software and use another core to run it in order to reduce the intrusiveness). Extension to
debug-interface is left to future work. Another way to improve the protection would be to use
less pessimistic WCET estimations (e.g. using hybrid methods) but this may provide unsound
WCET estimates which would detect attacks where there are not (i.e. false-positive).

A second limitation is the type of attacks that can be detected by our protection. Our
protection targets attacks that would modify the control-flow and not return at the right
place in time. Our design does not try to prevent attacks that are not based on control-flow
hijacking (e.g. data-only attacks [12]).

Finally, our current design does not yet handle multi-tasking operating system and
multi-processor. We believe that multi-processors can be easily handled by dispatching the
task on the processors off-line and using one monitor per processor. Multi-tasking operating
systems on the other hand requires to detect context switches such that it also switches the
monitor context. It also requires to partitioning the memory of the monitor to maintain
the context of suspended tasks while running another task. To ensure that the right task is
being monitored, the protection must also protect the scheduling. Finally, the protection
have to protect the operating system itself. This is left to future work.

7 Related work

Many methods exist to protect systems, including real-time systems, against attacks. A first
class of techniques is to prevent the attacks from happening, for instance by hardening the
binary using checksums, or by modifying the memory layout of programs, or by introducing
some randomness when generating schedules. Address Space Layout Randomization (ALSR)
randomizes the start address of the key memory regions of a process (code, data, stack,
libraries) to guard against buffer overflows. The use of ASLR in small embedded systems (for
example, on 8 or 16-bits architectures) is less effective than in 32 or 64-bits architectures, as
the system does not always contain enough entropy for them to be efficient [18]. In addition,
when timing guarantees are required, WCET estimation techniques have to be re-designed for
supporting the presence of unknown addresses for memory regions. The research presented
in [8] proposes WCET estimation techniques (in particular instruction cache analysis) for
different diversification granularities. This work was able to compute a far tighter WCET
estimate than the one obtained with all miss assumption (i.e., equivalent to a system without
a cache). However, a rough analysis of the data provided in this paper shows that the cost
of fine grain diversification can be up to a 50% worst-case overhead, which is often too much
for industrial purposes [21]. Another level at which diversification can be used in real-time

N. Bellec, S. Rokicki, and I. Puaut 8:19

systems is at the schedule level. In [11], the goal is to prevent targeted side-channel attacks
on other tasks by shuffling the schedule while conserving the deadlines criteria, either off-line
or on-line.

A second class of techniques, complementary to prevention, is to let the attacker perform
some actions and detect them before they cause harm to the system. Detection techniques use
monitoring techniques, implemented either in hardware or in software, to look for the results
of the attack, and not the causes. The sensitivity of the monitor is used to trade-off the
security the monitor provides against how much it interferes with the system. The technique
proposed in this paper is a detection technique.

Detection techniques differ by the class of information they monitor.Yoon et al. [26]
monitors system calls at run-time and compares them to a list of system calls under normal
execution. Walls et al. [23] presents a software technique that checks the integrity of the
control flow of a program by monitoring the target of indirect branches and comparing
them to the value for a normal execution. Hardware for control flow integrity verification is
presented in [1]. Zimmer et al. [27] monitors execution times of code snippets of different
granularities and compares them against estimated WCETs, to detect attacks such as control-
flow hijacking. Like [27] we use timing information for attack detection. However, our
research differs from [27] in several aspects: (i) we use dedicated hardware instead of software
for detection of timing violations, and then have no impact on the predictability of monitored
programs; (ii) we propose an algorithm to automate the selection of monitored regions and
thus provide guarantees on the attack detection latency. In addition, in comparison to [27],
we do not need Best-Case Execution Times (BCET) in our approach, a metric that is not
currently supported by state-of-the-art WCET estimation tools.

Watchdogs have been intensively studied to protect against faults in RTES [13] [25].
In [13], the authors present a survey of different techniques to protect the control flow and
memory accesses. The control-flow protection uses signatures inserted at the beginning of
each protected block. These signatures are read by the watchdog which can ensure that
the block corresponds to the signature and that the received signatures follow a correct
order. In [25], the authors use the WCET of a block as a signature to ensure the correct
timing behavior of the program. However, it does not handle computed branches. All these
techniques require an instrumentation of the program that slows down the program while
our solution can be applied without modification of the program. The second point is that
these techniques are not focused on security. A fault happening naturally has a very low
probability of modifying the signature or modifying the instructions while maintaining a
correct signature. On the other hand, a well-crafted attack could subvert the system by
modifying the time allocated for a block and transmitted to the watchdog.

A crucial characteristic of a monitor – that impacts its security, responsiveness and
invasiveness – is if the monitor is made on dedicated hardware or in software by the system.
Hardware-based monitors have better responsiveness as they can monitor the system faster
than software can. As they use dedicated hardware, this kind of monitor uses less system
resources, thus reducing the invasiveness of the monitor and reducing its impact on the
determinism. Finally, the security is reinforced because hardware is dedicated to the
monitoring and can thus be isolated from the system as well as protect the system itself.
However, these advantages come with the cost of developing dedicated hardware for each
type of required monitor [20] [16] or using a dedicated co-processor [4]. The monitor proposed
in this paper is fully implemented in hardware, and is shown not to impact the predictability
of software. Protection of the monitor itself against attacks, although not addressed in the
current status of our work, should be facilitated by the limited and well-delimited amount of
information used for the monitor operation.

ECRTS 2020

8:20 Attack Detection Through Monitoring of Timing Deviation

8 Conclusion and future work

We have presented in this paper a technique to detect attacks in real-time systems based on
WCET of code regions. A monitor, implemented in hardware, tests if a code region exceeds
its WCET a the result of an attack, and raises an alarm should this happen. Experimental
results show that the Maximum Attack Window guaranteed by our approach is as short as a
basic block (tens of instructions for most codes).

Two factors limit the MAW guaranteed by our approach. The first one is the presence
of delay-slots in the targeted architecture. Delay-slots, as detailed in Section 5, artificially
enlarge the MAW, because they are accounted for in the enclosing selected region. This
issue will not appear on architectures without delay-slots, but unfortunately would need a
deep change in aiT to have a more precise estimation of the MAW. The other factor that
prevents an extremely small MAW is the presence of long basic blocks in some applications.
Addressing this issue would require to split long basic blocks in several regions, which would
add complexity to the region selection algorithm. A promising direction would be to subtly
change the algorithm as follows: in case the MAW is the duration of one basic block the
basic block is split in two equal-length (in terms of number of instructions) regions.

Another way to improve the efficiency of attack detection would be to use Best Case
Execution Times (BCET) in addition to WCETs. We did not further follow this direction
for technical reasons, because state-of-the-art WCET estimation tools are strictly oriented
towards worst-case performance and do not provide BCET values.

For the scope of this paper, we addressed the monitoring of a single task on a mono-
processor system. Extending this work for multi-processors and multi-tasks operating systems
is left for future work.

As for the hardware implementation of the monitor, the monitor is currently described
as C code and synthesized into VHDL using using the High Level Synthesis (HLS) tool
Catapult. Functional correction has been demonstrated through simulations. Ongoing work
concerns the integration of the monitor on an FPGA board embedding the Leon 3 core. We
also plan as future work to protect the monitor itself, in particular its memory, against fault
attacks, using redundancy techniques. The monitor will then be tested against real attacks,
including fault attacks, and the observed attack detection latencies will be observed and
compared to the guaranteed latency.

References

1 F. A. T. Abad, J. V. D. Woude, Y. Lu, S. Bak, M. Caccamo, L. Sha, R. Mancuso, and
S. Mohan. On-chip control flow integrity check for real time embedded systems. In 2013
IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications
(CPSNA), pages 26–31, August 2013. doi:10.1109/CPSNA.2013.6614242.

2 AbsInt GmbH. ait worst-case execution time estimation tool. https://www.absint.com/ait/.
Last accessed: 2020/01/22.

3 Chien-Ying Chen, Sibin Mohan, Rodolfo Pellizzoni, Rakesh B. Bobba, and Negar Kiyavash.
A Novel Side-Channel in Real-Time Schedulers. In 2019 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 90–102, April 2019. ISSN: 1545-3421.
doi:10.1109/RTAS.2019.00016.

4 Ronny Chevalier, Maugan Villatel, David Plaquin, and Guillaume Hiet. Co-processor-based
behavior monitoring: Application to the detection of attacks against the system management
mode. In Proceedings of the 33rd Annual Computer Security Applications Conference, Orlando,
FL, USA, December 4-8, 2017, pages 399–411, 2017. doi:10.1145/3134600.3134622.

https://doi.org/10.1109/CPSNA.2013.6614242
https://www.absint.com/ait/
https://doi.org/10.1109/RTAS.2019.00016
https://doi.org/10.1145/3134600.3134622

N. Bellec, S. Rokicki, and I. Puaut 8:21

5 Cobham Gaisler. Compiler toolchain for the leon processor. https://www.gaisler.com/. Last
accessed: 2020/01/22.

6 Christoph Cullmann and Florian Martin. Data-Flow Based Detection of Loop Bounds. In
Christine Rochange, editor, 7th International Workshop on Worst-Case Execution Time
Analysis (WCET’07), volume 6 of OpenAccess Series in Informatics (OASIcs), Dagstuhl,
Germany, 2007. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.
WCET.2007.1193.

7 N. Falliere, L. O. Murchu, and E. Chien. W32. stuxnet dossier. White paper, Symantec Corp.,
Security Response, 5:6, 2011.

8 Joachim Fellmuth, Thomas Göthel, and Sabine Glesner. Instruction caches in static WCET
analysis of artificially diversified software. In 30th Euromicro Conference on Real-Time
Systems, ECRTS 2018, July 3-6, 2018, Barcelona, Spain, pages 21:1–21:23, 2018. doi:
10.4230/LIPIcs.ECRTS.2018.21.

9 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The mälardalen wcet
benchmarks - past, present and future. In Proceedings of the 10th International Workshop on
Worst-Case Execution Time Analysis, July 2010. URL: http://www.es.mdh.se/publications/
1895-.

10 Richard Johnson, David Pearson, and Keshav Pingali. The program structure tree: Computing
control regions in linear time. SIGPLAN Not., 29(6):171–185, June 1994. doi:10.1145/
773473.178258.

11 Kristin Krüger, Marcus Völp, and Gerhard Fohler. Vulnerability analysis and mitigation
of directed timing inference based attacks on time-triggered systems. In 30th Euromicro
Conference on Real-Time Systems, ECRTS 2018, July 3-6, 2018, Barcelona, Spain, pages
22:1–22:17, 2018. doi:10.4230/LIPIcs.ECRTS.2018.22.

12 Tingting Lu and Junfeng Wang. Data-flow bending: On the effectiveness of data-flow integrity.
Computers & Security, 84:365–375, July 2019. doi:10.1016/j.cose.2019.04.002.

13 A. Mahmood and E.J. McCluskey. Concurrent error detection using watchdog processors—a
survey. IEEE Transactions on Computers, 37(2):160–174, February 1988. doi:10.1109/12.
2145.

14 Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passenger vehicle. Black
Hat USA, 2015.

15 Sen Nie, Ling Liu, and Yuefeng Du. Free-fall: hacking tesla from wireless to can bus. Briefing,
Black Hat USA, pages 1–16, 2017.

16 C. Pilato, K. Wu, S. Garg, R. Karri, and F. Regazzoni. Tainthls: High-level synthesis
for dynamic information flow tracking. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pages 1–1, 2018. doi:10.1109/TCAD.2018.2834421.

17 Louis-Noël Pouchet and Tomofumi Yuki. PolyBench/C. URL: http://web.cse.ohio-state.
edu/~pouchet.2/software/polybench/.

18 Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan
Boneh. On the effectiveness of address-space randomization. In Proceedings of the 11th ACM
Conference on Computer and Communications Security, CCS ’04, pages 298–307, New York,
NY, USA, 2004. ACM. doi:10.1145/1030083.1030124.

19 Peter Silberman and Richard Johnson. A comparison of buffer overflow prevention implement-
ations and weaknesses. IDEFENSE, August, 2004.

20 C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek. Hdfi: Hardware-
assisted data-flow isolation. In 2016 IEEE Symposium on Security and Privacy (SP), pages
1–17, May 2016. doi:10.1109/SP.2016.9.

21 Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in memory. In
2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22,
2013, pages 48–62, 2013. doi:10.1109/SP.2013.13.

ECRTS 2020

https://www.gaisler.com/
https://doi.org/10.4230/OASIcs.WCET.2007.1193
https://doi.org/10.4230/OASIcs.WCET.2007.1193
https://doi.org/10.4230/LIPIcs.ECRTS.2018.21
https://doi.org/10.4230/LIPIcs.ECRTS.2018.21
http://www.es.mdh.se/publications/1895-
http://www.es.mdh.se/publications/1895-
https://doi.org/10.1145/773473.178258
https://doi.org/10.1145/773473.178258
https://doi.org/10.4230/LIPIcs.ECRTS.2018.22
https://doi.org/10.1016/j.cose.2019.04.002
https://doi.org/10.1109/12.2145
https://doi.org/10.1109/12.2145
https://doi.org/10.1109/TCAD.2018.2834421
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1109/SP.2016.9
https://doi.org/10.1109/SP.2013.13

8:22 Attack Detection Through Monitoring of Timing Deviation

22 N. Timmers, A. Spruyt, and M. Witteman. Controlling PC on ARM using fault injection.
In 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 25–35,
August 2016. doi:10.1109/FDTC.2016.18.

23 Robert J. Walls, Nicholas F. Brown, Thomas Le Baron, Craig A. Shue, Hamed Okhravi, and
Bryan C. Ward. Control-flow integrity for real-time embedded systems. In 31st Euromicro
Conference on Real-Time Systems, ECRTS 2019, July 9-12, 2019, Stuttgart, Germany., pages
2:1–2:24, 2019. doi:10.4230/LIPIcs.ECRTS.2019.2.

24 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem - overview of methods and survey of tools. ACM Trans.
Embedded Comput. Syst., 7(3):36:1–36:53, 2008. doi:10.1145/1347375.1347389.

25 Julian Wolf, Bernhard Fechner, Sascha Uhrig, and Theo Ungerer. Fine-grained timing and
control flow error checking for hard real-time task execution. In 7th IEEE International
Symposium on Industrial Embedded Systems (SIES’12), pages 257–266, June 2012. ISSN:
2150-3117. doi:10.1109/SIES.2012.6356592.

26 Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, and Lui Sha. Learning
execution contexts from system call distribution for anomaly detection in smart embedded
system. In Proceedings of the Second International Conference on Internet-of-Things Design
and Implementation, IoTDI 2017, Pittsburgh, PA, USA, April 18-21, 2017, pages 191–196,
2017. doi:10.1145/3054977.3054999.

27 Christopher Zimmer, Balasubramanya Bhat, Frank Mueller, and Sibin Mohan. Time-based
intrusion detection in cyber-physical systems. In ACM/IEEE 1st International Conference on
Cyber-Physical Systems, ICCPS ’10, Stockholm, Sweden, April 12-15, 2010, pages 109–118,
2010. doi:10.1145/1795194.1795210.

https://doi.org/10.1109/FDTC.2016.18
https://doi.org/10.4230/LIPIcs.ECRTS.2019.2
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1109/SIES.2012.6356592
https://doi.org/10.1145/3054977.3054999
https://doi.org/10.1145/1795194.1795210

	Introduction
	Time-based detection of control flow hijacking attacks
	Off-line selection of monitored regions
	Properties of monitored regions
	Region selection algorithm
	Complexity of region selection
	Maximum Attack Window optimality: proof sketch

	Implementation
	Target processor and compilation toolchain
	Implementation of region selection
	Implementation of the hardware monitor

	Experimental evaluation
	Evaluation of the region selection algorithm
	Experimental setup
	Maximum Attack Window (MAW) without hardware constraints
	Run-time of region selection without hardware constraints
	Impact of hardware constraints

	Evaluation of the hardware monitor
	Observed attack detection latency
	Evaluation of overheads as compared to software approaches
	Hardware overhead of monitor

	Discussion
	Related work
	Conclusion and future work

