
Offloading Safety- and Mission-Critical Tasks via
Unreliable Connections
Lea Schönberger
Design Automation for Embedded
Systems Group, Faculty of Computer Science,
TU Dortmund University, Germany
lea.schoenberger@tu-dortmund.de

Georg von der Brüggen
Design Automation for Embedded
Systems Group, Faculty of Computer Science,
TU Dortmund University, Germany
georg.von-der-brueggen@tu-dortmund.de

Kuan-Hsun Chen
Design Automation for Embedded
Systems Group, Faculty of Computer Science,
TU Dortmund University, Germany
kuan-hsun.chen@tu-dortmund.de

Benjamin Sliwa
Communication Networks Institute,
Faculty of Electrical Engineering,
TU Dortmund University, Germany
benjamin.sliwa@tu-dortmund.de

Hazem Youssef
Chair of Material Handling and Warehousing,
Faculty of Mechanical Engineering,
TU Dortmund University, Germany
hazem.youssef@tu-dortmund.de

Aswin Karthik Ramachandran
Venkatapathy
Chair of Material Handling and Warehousing,
Faculty of Mechanical Engineering,
TU Dortmund University, Germany
aswin.ramachandran@tu-dortmund.de

Christian Wietfeld
Communication Networks Institute,
Faculty of Electrical Engineering,
TU Dortmund University, Germany
christian.wietfeld@tu-dortmund.de

Michael ten Hompel
Chair of Material Handling and Warehousing,
Faculty of Mechanical Engineering,
TU Dortmund University, Germany
michael.tenHompel@tu-dortmund.de

Jian-Jia Chen
Design Automation for Embedded
Systems Group, Faculty of Computer Science,
TU Dortmund University, Germany
jian-jia.chen@tu-dortmund.de

Abstract
For many cyber-physical systems, e.g., IoT systems and autonomous vehicles, offloading workload
to auxiliary processing units has become crucial. However, since this approach highly depends
on network connectivity and responsiveness, typically only non-critical tasks are offloaded, which
have less strict timing requirements than critical tasks. In this work, we provide two protocols
allowing to offload critical and non-critical tasks likewise, while providing different service levels for
non-critical tasks in the event of an unsuccessful offloading operation, depending on the respective
system requirements. We analyze the worst-case timing behavior of the local cyber-physical system
and, based on these analyses, we provide a sufficient schedulability test for each of the proposed
protocols. In the course of comprehensive experiments, we show that our protocols have reasonable
acceptance ratios under the provided schedulability tests. Moreover, we demonstrate that the system
behavior under our proposed protocols is strongly dependent on probability of unsuccessful offloading
operations, the percentage of critical tasks in the system, and the amount of offloaded workload.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases internet of things, cyber-physical systems, real-time, mixed-criticality, self-
suspension, computation offloading, scheduling, communication

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.18

Funding This work is supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborat-
ive Research Center SFB 876, projects A1, A3, A4, and B4.

Acknowledgements The authors thank Jui-Lin Liang for his support and Niklas Ueter for his
valuable feedback.

© Lea Schönberger, Georg von der Brüggen, Kuan-Hsun Chen, Benjamin Sliwa, Hazem Youssef,
Aswin Ramachandran, Christian Wietfeld, Michael ten Hompel, and Jian-Jia Chen;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 18; pp. 18:1–18:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4671-6541
mailto:lea.schoenberger@tu-dortmund.de
https://orcid.org/0000-0002-8137-3612
mailto:georg.von-der-brueggen@tu-dortmund.de
https://orcid.org/0000-0002-7110-921X
mailto:kuan-hsun.chen@tu-dortmund.de
https://orcid.org/0000-0003-1133-8261
mailto:benjamin.sliwa@tu-dortmund.de
https://orcid.org/0000-0002-7197-9127
mailto:hazem.youssef@tu-dortmund.de
https://orcid.org/0000-0003-1191-2294
mailto:aswin.ramachandran@tu-dortmund.de
https://orcid.org/0000-0001-7653-2589
mailto:christian.wietfeld@tu-dortmund.de
https://orcid.org/0000-0003-3349-4951
mailto:michael.tenHompel@tu-dortmund.de
https://orcid.org/0000-0001-8114-9760
mailto:jian-jia.chen@tu-dortmund.de
https://doi.org/10.4230/LIPIcs.ECRTS.2020.18
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 Offloading Safety- and Mission-Critical Tasks via Unreliable Connections

1 Introduction

Processing large amounts of sensor data within short, pre-defined intervals of time is crucial
for many cyber-physical systems as, e.g., IoT systems, robots, drones, and autonomous
vehicles, in order to accomplish their mission or even to maintain their operability. However,
it may be the case that a system does not have sufficient resources at its disposal to always
perform the necessary operations fast enough and to deliver the required results in time if
these computations are performed merely locally. Since the system hardware can only be
enhanced up to a certain level due to constraints in terms of cost, energy efficiency, size,
and other noteworthy factors, such insufficiencies can be overcome by offloading a share of
the system workload via, e.g., 4G/5G or IEEE802.11p-based [18] wireless connections, while
providing a local fallback mechanism. Nevertheless, wireless connections exhibit a certain
level of unreliability, which must be factored in when deciding which tasks to offload. As
an example, the resulting end-to-end performance within cellular vehicular communication
systems is severely impacted by highly dynamic channel conditions related to shadowing
effects, multipath fading, handover situations, and even technology switches [24]. In addition,
as the available cell resources are shared by the different network participants, the achievable
network performance significantly depends on the traffic patterns of the other active cell
users and the implemented resource scheduling policy of the cell. Different network quality
indicators can be utilized to estimate the end-to-end behavior of data transmissions in terms
of delay and data rate. However, as pointed out in recent analyses [25], the interdependencies
of these factors can significantly differ among multiple mobile network operators due to
varying strategies for network configuration and infrastructure deployment.

Against this background, we aim to allow resource-constrained systems to offload compu-
tation shares not only of non-criticial, but also of safety- and mission-critical tasks, while
ensuring that the timing requirements of safety- and mission-critical tasks are not violated
even in the case of connectivity issues and providing as much service for non-critical tasks as
possible. Accordingly, we strive to specify the system’s offloading behavior in such a way
that it can be verified at design time for all potential scenarios.

Self-Suspension. From a modeling perspective, the considered cyber-physical system can
be reduced to the local system, on which the performed offloading operations are perceived
as tasks being executed, paused, and (in the successful case) resumed after an upper-
bounded interval of time. One concept allowing to model this particular local system view is
self-suspension [7], which characterizes tasks temporarily interrupting their execution and
proceeding as soon as a certain operation is finished, i.e., as soon as a response from the
auxiliary processing unit is received. In fact, the actual time elapsing between the moment
a message is sent to an auxiliary processing unit and the latest safe moment in which a
response may be received could be simply modeled as additional computation time rather
than as so-called suspension time, but this would lead to a pessimistic under-utilization of
computation resources [23, 28]. Instead, for the sake of accuracy, one of the state-of-the-art
models can be applied such as the dynamic self-suspension model (cf. e.g. [12], [15]), the
segmented self-suspension model (cf. e.g. [22]), or a hybrid model, e.g. [27], (for a detailed
overview refer to [6, 7]). In this work, we make use of the segmented self-suspension model,
which allows to precisely depict a specific suspension pattern, i.e., to specify the exact point
in time in which an offloading operation starts as well as a legal upper bound on its duration
(formal descriptions will be given in Sec. 2).



L. Schönberger et al. 18:3

Mixed-Criticality. Modeling a local system as well as successful offloading operations,
however, does not suffice as a basis for verifying the behavior of a cyber-physical system as
considered in this work. De facto, the question remains, how to model and how to handle
unsuccessful offloading operations. To this effect, we benefit from the notion of so-called
mixed-criticality systems, which were formally introduced for the first time by Vestal [26]
and received much attention thenceforward (a comprehensive survey can be found in [5]).
This concept describes systems integrating tasks with different criticality levels on the same
platform and providing distinct system modes, usually one per criticality level. In case of
special events such as fault-occurrence, mixed-criticality systems perform a mode change, i.e.,
switch to another system mode, which permits to maintain the system safety by ensuring
that the timing requirements of all tasks corresponding to the current or a higher system
mode can still be met. For all lower-criticality tasks, however, no more timing guarantees
are provided. Analogously to mode changes in mixed-criticality systems, it is necessary to
carefully anticipate all events that may occur during an offloading operation, e.g., a missing
response due to an unreliable wireless connection, and to specify mechanisms to handle
these deterministically. However, we do not model the contemplated type of cyber-physical
systems as a mixed-criticality system, but rather exploit the characteristics exhibited by the
latter. Namely, we classify the overall set of tasks in the system into a set of critical tasks
(comprising safety- as well as mission-critical tasks) and a set of non-critical tasks, but we
do not specify explicit system modes. Instead, we consider the system to exhibit different
execution behaviors under different circumstances: either a normal execution behavior, under
which timing constraints are satisfied for all tasks, or a local one, under which timeliness
is only guaranteed for critical tasks. The actual system behavior in each possible scenario,
however, needs to be clearly defined and to follow a pre-specified, analyzable, and verifiable
protocol, which will be developed hereinafter.

Related Work. The idea of cloud-based control for automotive systems is not new, but has
already been addressed in 2012 by Kumar et al. [14], who proposed a cloud-assisted system
for autonomous driving, which, however, is not used to offload control applications, but rather
to provide additional information to the vehicle. In 2015, Esen et al. [9] presented a software
architecture named Control as a Service according to which all control functions are completely
moved to the cloud, while only sensors, actuators, and communication infrastructure remain
in the vehicle. Network latencies have been pointed as a challenge, but no concrete solution
or mechanism to handle suchlike has been proposed, and, moreover, connection losses have
not been addressed at all. In a proof of concept, the authors have modeled network latencies
using discrete stochastic models. In 2018, Adiththan et al. [1] proposed an adaptive offloading
technique for control applications that makes all offloading decisions online based on a network
performance monitor. However, due to the heuristic nature of the approach, the timing
behavior of the system cannot be verified. Beyond that, the authors mentioned the necessity
to handle connectivity losses and large communication delays and stated that in such cases
task executions must be redirected to the local system. Nevertheless, no concrete mechanism
or protocol has been suggested for this purpose. Moreover, the potential consequences have
not been further discussed. Recently, Al Maruf and Azim [17] proposed a strategy for task
offloading in multiprocessor mixed-criticality systems with dynamic scheduling policies under
overload conditions. More precisely, they suggested to select low-criticality tasks based on a
machine learning approach that are offloaded to the cloud and executed in parallel aiming to
reduce the number of deadline misses. Potential connectivity issues have not been taken into
consideration.

ECRTS 2020



18:4 Offloading Safety- and Mission-Critical Tasks via Unreliable Connections

Contributions. In a nutshell, we contribute the following:
We provide two protocols for cyber-physical systems allowing to safely offload critical and
non-critical tasks, which address different system requirements: i) the service protocol
provides as much service for non-critical tasks as possible in any point in time, and ii)
the return protocol allows a fast return to the normal system behavior in the case of an
unsuccessful offloading operation.
In Sec. 4 and Sec. 5, we analyze the worst-case timing behavior of the local system and
examine our proposed protocols by considering all possible transient and ready states
regarding the normal and the local execution behavior. Based on these analyses, we
provide a sufficient schedulability test for each of the proposed protocols.
By means of comprehensive simulations and a case study, we i) show that the acceptance
ratios of our proposed protocols under the provided schedulability tests are reasonable,
and ii) demonstrate that the system behavior under our proposed protocols is strongly
dependent on probability of unsuccessful offloading operations, the percentage of critical
tasks in the system, and the amount of offloaded workload.

2 System Model

We consider a cyber-physical system comprising a set of tasks T that can be divided into
two subsets with different requirements, namely, the set of critical tasks Tcrit, and the set
of non-critical tasks Tnon, such that T = Tcrit ∪ Tnon and Tcrit ∩ Tnon = ∅. While for each
τk ∈ Tcrit timing constraints must be satisfied at any point in time, for each τk ∈ Tnon
timing violations may be unpleasant but not hazardous. According to the classification of
tasks into two subsets, we specify two different system execution behaviors, i.e., normal and
local execution behavior. When the system exhibits normal execution behavior, all timing
requirements of all tasks are satisfied at any point in time, whereas, if the system exhibits
local execution behavior, timing guarantees can only be given for all critical tasks τk ∈ Tcrit.
The degree of service provided with respect to the non-critical tasks τk ∈ Tnon depends on
the particular recovery protocol implemented in the system (cf. Sec. 3).

Each recurrent real-time task τk ∈ T in the considered cyber-physical system is assumed to
have a sporadic arrival pattern and is characterized1 by a tuple (Ck,1, Ck,s, Ck,2, Sk, pk, qk, Dk,

Tk):
Each τk releases an infinite number of task instances denoted as jobs. Tk indicates the
minimum inter-arrival time of τk, i.e., the arrival times of any two consecutive jobs of τk
must be separated by at least Tk.
Dk describes the relative deadline of τk. The absolute deadline of a job of task τk arriving
at time rk is given by rk + Dk if it must be guaranteed that the job meets its deadline.
Throughout this paper, we assume a constrained-deadline task system, in which Dk ≤ Tk
for each task τk.
Ck,1 and Ck,2 denote the worst-case execution times of the first and second computation
segments, respectively.
Ck,s is the worst-case execution time of the typically offloaded task share if executed on
the local system.
pk and qk are the worst-case execution times of the pre- and post-processing routines,
which are executed before and after the offloading operation of a job of task τk, respectively.
Sk is the offloading or suspension time of τk.

1 To provide a better overview, the notation is additionally summarized in Table 1.



L. Schönberger et al. 18:5

Table 1 An overview about the notation.

Notation Meaning
Ck,1 worst-case execution time (WCET) of the first computation segment of τk

Ck,2 WCET of the second computation segment of τk

Ck,s WCET of the computation segment of τk that is typically offloaded if executed
locally

C[
k Ck,1 + pk + qk + Ck,2

C]
k Ck,1 + Sk + Ck,2

Dk relative deadline of τk

hp(τk) set of tasks with higher priority than τk

pk WCET of the offloading pre-processing routine of τk

qk WCET of the offloading post-processing routine of τk

Sk offloading/suspension time of τk

Tk minimum inter-arrival time of τk

T complete task set
Tcrit set of critical tasks
Tnon set of non-critical tasks

rk rk +Dk

Ck,1 Ck,s Ck,2

Figure 1 A job of task τk is executed locally (local execution behavior).

We assume that Tk ≥ Dk > 0 and Ck,1, Ck,s, Ck,2, Sk, pk, qk ≥ 0. Moreover, we make
the natural assumption that pk + qk ≤ Ck,s, since offloading is not meaningful otherwise.
Furthermore, the worst-case execution time of a job of task τk under any possible execution
scenario is greater than 0, i.e., Ck,1 + Ck,s + Ck,2 > 0 and Ck,1 + pk + qk + Ck,2 > 0. For
notational brevity, we denote C]k = Ck,1 + Ck,s + Ck,2 and C[k = Ck,1 + pk + qk + Ck,2.

Throughout this paper, we assume that the local cyber-physical real-time system, termed
local system, is a uniprocessor system, in which tasks are scheduled according to a preemptive
fixed-priority policy. More precisely, each task is assigned a unique priority, i.e., all jobs of
task τk have the same priority. If at any point in time multiple jobs are ready, i.e., eligible
for being executed on the local system, the job having the highest priority is executed. For
each task τk, the unique set of the higher-priority tasks is denoted as hp(τk).

For a job of task τk arriving at time rk the following execution scenarios are possible:
The job is executed locally (cf. Fig. 1). In this case, the worst-case execution time of the
job released at time rk is Ck,1 + Ck,s + Ck,2, i.e., C]k.
The job is offloaded. In this case, the job is first executed locally for up to Ck,1 execution
time units and thereon enters the pre-processing routine for offloading for up to pk
execution time units. Suppose that the first computation segment as well as the pre-
processing routine are finished at time ρ. Then, the considered job is offloaded to the
remote system at time ρ. The actual offloading operation can be either successful or
unsuccessful:

Offloading is successful if the computation result or offloading response is returned to
the local system until time ρ+Sk. In this case, the offloading response is post-processed
for up to qk time units and the second computation segment is executed for up to Ck,2

ECRTS 2020



18:6 Offloading Safety- and Mission-Critical Tasks via Unreliable Connections

rk rk +Dk

Ck,1 pk Sk qk Ck,2

Figure 2 An offloading operation of a job of task τk is performed successfully (normal execution
behavior).

time units (cf. Fig. 2). Accordingly, the execution time of the job of τk on the local
system is at most C[k.
Offloading is unsuccessful otherwise. In this case, at time ρ+ Sk, a local re-execution
of the offloaded task share is performed for up to Ck,s time units followed by the
execution of the second computation segment for up to Ck,2 time units. In this case,
the execution time of the job of τk on the local system is at most C]k+pk. This scenario
will be discussed more in detail hereinafter.

3 Recovery Protocols

Cyber-physical systems can be encountered throughout a broad range of application areas,
each exhibiting individual requirements and thus a need for situationally appropriate system
behavior. For safety-critical cyber-physical systems, the timeliness of critical tasks must be
guaranteed under any circumstances - even in the event of an unsuccessful offloading operation.
Since in this case a larger amount of local resources is required, as explained with respect to
the possible execution scenarios in Sec. 2, less resources remain to serve the non-critical tasks.
However, depending on the actual system characteristics, timing constraints for non-critical
tasks tend to be less strict. It is, for instance, possible that a non-critical task misses its
deadline, but the results are still useful up to a certain degree [4, 3]. Nevertheless, it may be
desirable to return to the normal execution behavior and to re-establish timing guarantees
for both critical and non-critical tasks as soon as possible, especially since a non-critical
task is not necessarily unimportant and thus should provide functionally and temporally
correct results most of the time (further discussion on the relation between criticality and
importance can be found in [10]).

Against this backdrop, we propose two recovery protocols allowing the system to satisfy
its requirements under local execution behavior and to return to normal execution behavior:

The service protocol aims to provide as much service as possible for non-critical tasks,
even under local execution behavior.
The return protocol aims to minimize the amount of time, in which the system exhibits
local execution behavior after an unsuccessful offloading operation.

Independent of the actual protocol, we assume that the local system exhibits normal
execution behavior at time 0, such that offloading is enabled for all tasks in T . The schedule
considers the execution of all tasks until the first moment γ1,↘, in which the offloading
operation of a certain task τk is unsuccessful, i.e., a job of task τk, which has offloaded its
computation at time γ1,↘ − Sk, does not receive the offloading response until time γ1,↘ (cf.
Fig. 3). Immediately after γ1,↘, the local system exhibits local execution behavior. Until
time γ1,↘, three scenarios are possible for each incomplete job of all critical tasks τi in Tcrit:

The job of τi has not been offloaded: In this case, no offloading operation will be performed
for this job, but it is executed locally instead. Since it is possible that the pre-processing
routine for offloading is already active at time γ1,↘, the worst-case execution time of this
job is upper-bounded by Ci,1 + pi + Ci,s + Ci,2, i.e., C]i + pi.



L. Schönberger et al. 18:7

rk γ1,↘

Ck,1 pk Sk Ck,s Ck,2

Figure 3 An unsuccessful offloading operation of τk resulting in the transition to the local system
behavior at time γ1,↘.

The job of τi is already offloaded, but no offloading response was received until time
γ1,↘: In this case, the offloading process is aborted and the job is executed locally as
of time γ1,↘. Therefore, the worst-case execution time of this job is upper-bounded by
Ci,1 + pi + Ci,s + Ci,2, i.e., C]i + pi.
The job of τi is already offloaded and the offloading response has been received prior to
time γ1,↘: In this case, the job continues its final processing. Therefore, the worst-case
execution time of this job is upper-bounded by Ci,1 + pi + qi + Ci,2, i.e., C[i .

After γ1,↘, timing guarantees are only provided for Tcrit. Moreover, offloading is inhibited
for all critical tasks in the near future of γ1,↘, due to the currently unreliable connection
leading to the missing offloading response. The offloading decision for non-critical tasks,
however, depends on the applied recovery protocol:

Service Protocol: Under the service protocol, offloading is inhibited for all instances
of all tasks that are active as long as the system exhibits local execution behavior. The
task share of each τi ∈ T that is offloaded under normal execution behavior is executed
locally within Ci,s units of execution time. Since this leads to a higher workload on the
local system, timeliness cannot be guaranteed for any non-critical task. Nevertheless, no
non-critical task is aborted.
Return Protocol: The return protocol does not inhibit offloading for all tasks, but
only for critical ones under local execution behavior. Non-critical tasks, in contrast, are
offloaded regardless, but neither a re-execution nor a re-transmission is performed if an
offloading response is not received in time. More precisely, the second subtask of τi is
only executed if an offloading response is received, and aborted otherwise. Moreover, a
job of τi in Tnon is aborted whenever it misses its deadline.

As of time γ1,↘, the local system exhibits local execution behavior until the point in
time γ1,↗, in which timing guarantees can be given again for all tasks in T . In the proposed
protocols, two options are considered for the transit from local to normal execution behavior,
which should be chosen depending on the actual system requirements:

Abort-Transit: This option aims to re-establish the normal system execution behavior
as quickly as possible. Suppose that γ1,↗ is the earliest moment (after γ1,↘) in which
there is no incomplete job from Tcrit at γ1,↗. All released but not yet finished instances
of non-critical tasks are discarded.
Idle-Transit: This option re-establishes the normal system execution behavior at the
earliest moment γ1,↗ (after γ1,↘) in which there is no incomplete job from T at γ1,↗.

We note that the above transitions are well-defined and the local system exhibits normal
and local execution behavior in an interleaving manner.

4 Existing Analysis and Workload Characteristics

When the system exhibits normal execution behavior, the same task execution patterns are
identifiable under both proposed protocols, i.e., an offloading operation is performed for each

ECRTS 2020



18:8 Offloading Safety- and Mission-Critical Tasks via Unreliable Connections

task. Hence, each τk ∈ T is a (segmented) self-suspending task consisting of two computation
segments as well as of one suspension interval of length Sk, and can therefore be analyzed
applying any suitable technique.

I Definition 1. Suppose that the system always exhibits normal execution behavior. Then,
for each task τk ∈ T , the worst-case response time Rnormalk is the worst-case response time
of task τk and R1

k is the worst-case response time of the first computation segment of task τk.
By definition, R1

k ≤ Rnormalk . This paper assumes that Rnormalk ≤ Dk ≤ Tk, ∀τk ∈ T .

I Lemma 2. If τk is in Tnon, the worst-case response time of τk under normal execution
behavior is upper-bounded by Rnormalk regardless of the adopted protocol.

Proof. This is based on the definition. J

Regarding the analysis of self-suspending tasks, several misconceptions exist in the
literature. Detailed and correct treatments can be found in a recent survey paper by Chen
et al. [6]. The latest result was developed by Schönberger et al. in [22]. However, instead
of going into detail regarding the analysis of uniprocessor segmented self-suspending task
systems, we assume that one of the existing analyses has been used and each task in T has
been validated to meet its deadline if the system always exhibits normal execution behavior
by applying the analysis given in [22].

The following lemma characterizes the maximum workload of a task τi that can be
executed in a time interval [t, t+ ∆) under the assumption that the local system resumes
from idling at time t, i.e., it idles at t − ε for an infinitesimal ε, under normal execution
behavior and it does not switch from the local execution behavior to the normal execution
behavior before t+ ∆ for ∆ > 0.

I Lemma 3. Suppose that the local system resumes from idling at time t, i.e., it idles at
t − ε for an infinitesimal ε and executes a certain job at time t, under normal execution
behavior and it does not switch from the local execution behavior to the normal execution
behavior before t+ ∆ for ∆ > 0. For a task τi, in which

τi is in T under the service protocol or
τi is in Tcrit under the return protocol,

the amount of execution time for which task τi is executed in time interval [t, t+ ∆) on the
local system is upper-bounded by max{f1(τi,∆), f2(τi,∆)}, where

f1(τi,∆) = pi +
⌈

∆
Ti

⌉
C]i (1)

and

f2(τi,∆) = Ci,s + Ci,2 +
⌈

∆− (Ti − (R1
i + Si))

Ti

⌉
C]i (2)

Recall that C]i is defined as Ci,1 + Ci,s + Ci,2.

Proof. We first consider the simpler case, in which the local system stays in the normal
execution behavior from t to t+ ∆. In this case, there are two scenarios:

Case 1a: if τi does not have any unfinished job before t (cf. Fig. 4), then, the workload
of task τi executed in time interval [t, t+ ∆) is at most

⌈
∆
Ti

⌉
C[i ≤ f1(τi,∆).



L. Schönberger et al. 18:9

t t+ ∆

qi Ci,2 qi Ci,2piCi,1 piCi,1

Figure 4 Execution of a task τi under analysis in [t, t+ ∆) in case 1a of Lemma 3.

Case 1b: If τi does have an unfinished job before t, then, by the definition that the
local system returns from idling at time t, task τi has been suspended (cf. Fig. 5).
Since the system still exhibits normal execution behavior prior to time t, we know that
there is at most one such suspended job of τi and its arrival time ri cannot be earlier
than t − (R1

i + Si). Therefore, the first job of task τi released after t is released no
earlier than t − (R1

i + Si) + Ti. Since the system exhibits normal execution behavior
from t to t+ ∆, the workload of task τi executed in time interval [t, t+ ∆) is at most
qi + Ci,2 +

⌈
∆−(Ti−(R1

i +Si))
Ti

⌉
C[i ≤ f2(τi,∆).

We then consider another case, in which the local system switches to local execution
behavior at time γ, where t ≤ γ < t+ ∆. There are also two scenarios:

Case 2a: There is no job of τi arriving before t that has not been finished yet by time t
(cf. Fig. 6). From t to γ, at most

⌈
γ−t
Ti

⌉
jobs of task τi are released. Specifically, among

them, the last job of τi offloaded prior to γ may be offloaded unsuccessfully. For this
particular job, its worst-case execution time is Ci,1 + pi + Ci,s + Ci,2 = C]i + pi, whilst
the worst-case execution time of the other

⌈
γ−t
Ti

⌉
− 1 jobs is at most C[i ≤ C

]
i . Moreover,

for any job of τi released after γ, under the service protocol or the return protocol when
τi ∈ Tcrit, its worst-case execution time is at most C]i . Therefore, the workload of τi from
t to t+ ∆ is((⌈∆

Ti

⌉
− 1
)
C]

i

)
+ (C]

i + pi) ≤ pi +
⌈∆
Ti

⌉
C]

i

def
≡ f1(τi,∆)

Case 2b: A job of τi suspended prior to t and its second computation segment is released
at or after t (cf. Fig. 7). Identically to the discussion in Case 1b, the next job of task
τi arrives no earlier than t− (R1

i + Si) + Ti. If the job suspended prior to t is offloaded
unsuccessfully, i.e., its execution time after t is at most Ck,s +Ck,2, the other subsequent
jobs of τi will be executed only locally, until the moment in which the local system
switches to the normal execution behavior again, under the service protocol or under the
return protocol when τi is in Tcrit. Therefore, the workload of τi from t to t+ ∆ is as
defined in f2(τi,∆). If the job suspended prior to t is offloaded successfully, at most of
one of the jobs released after t− (R1

i + Si) + Ti is offloaded unsuccessfully. In this case,
the workload of τi from t to t+ ∆ is at most

qi + Ci,2 + pi +
⌈

∆− (Ti − (R1
i + Si))

Ti

⌉
C]i ≤ f2(τi,∆),

since pi + qi ≤ Ci,s. J

So far, the maximum workload that can be contributed to a time interval [t, t+ ∆) by a
task τi ∈ T under the service protocol and by a task τi ∈ Tcrit under the return protocol
has been analyzed. For the missing case that τi is in Tnon under the return protocol, the
workload in the time interval [t, t+ ∆) can be reduced based on the definition of the protocol
(cf. Sec. 3), as given in the following lemma:

ECRTS 2020



18:10 Offloading Safety- and Mission-Critical Tasks via Unreliable Connections

t t+ ∆

qi Ci,2 qi Ci,2piCi,1 piCi,1 qi

Figure 5 Execution of a task τi under analysis in [t, t+ ∆) in case 1b of Lemma 3.

t γ t+ ∆

piCi,1 Ci,1 Ci,s Ci,2Ci,s Ci,2

Figure 6 Execution of a task τi under analysis in [t, t+ ∆) in case 2a of Lemma 3.

I Lemma 4. For a task τi in Tnon under the return protocol, under the same condition for t
and t+ ∆ as specified in Lemma 3, the amount of execution time that task τi is executed in
the time interval [t, t+ ∆) is upper-bounded by

(⌈
∆
Ti

⌉
+ 1
)
C[i .

Proof. Under the return protocol, a job of task τi in Tnon is aborted whenever it misses its
deadline. Therefore, the number of jobs of τi, which have not yet missed their deadlines in a
time interval [t, t+ ∆), is at most

(⌈
∆
Ti

⌉
+ 1
)
since Di ≤ Ti. Under the return protocol, a

task τi in Tnon is always offloaded if the first computation segment is completed before the
job’s deadline. Any execution of such a job on the local system requires up to C[i execution
time units by definition. Therefore,

(⌈
∆
Ti

⌉
+ 1
)
C[i is the upper bound of the workload. J

5 Timing Analysis

To analyze the worst-case timing behavior of the local system, the timing behavior of each
task τk must be analyzed beginning with the highest-priority task. In the course of this, two
scenarios need to be analyzed:

If τk is in Tcrit, the worst-case response time under local and normal execution behavior
must be analyzed.
If τk is in Tnon, only the worst-case response time under normal execution behavior must
be analyzed.

We note that the worst-case response time of τk in Tnon under local execution behavior is
not of interest, since its jobs may be aborted (cf. Sec. 3).

In our analysis, we assume a concrete fixed-priority preemptive schedule σ for the task set
T from time 0 onwards. For the concrete schedule σ, let γh,↘ be the h-th moment in which
σ switches from normal to local execution behavior. Moreover, let γh,↗ be the h-th moment
in which σ switches from the local behavior to the normal behavior. By the definition of our
protocols (cf. Sec. 3), γh,↘ < γh,↗ < γh+1,↘.

We consider the j-th job of task τk, denoted as τ jk , in schedule σ and assume that at the
arrival time of job τ jk there exists no incomplete job of task τk in the schedule σ. Now, we

t, γ t+ ∆

Ci,s Ci,2 Ci,1 Ci,s Ci,2 Ci,1

Figure 7 Execution of a task τi under analysis in [t, t+ ∆) in case 2b of Lemma 3.



L. Schönberger et al. 18:11

remove all lower-priority jobs from the schedule σ. Since σ is a fixed-priority preemptive
schedule and all tasks in T are independent from each other, the removal of these jobs does
not have any impact on the execution of any remaining job in the schedule σ. Thereon, we
remove all jobs of task τk having arrived before the release of τ jk at time rjk from the schedule
σ. Due to the assumption that the jobs of τk released before rjk have been finished before rjk,
the removal of these jobs of τk does not have any impact on the execution of any remaining
job in the schedule σ.

For simplicity of notation, we remove the index j for the rest of the proof, when the
context is clear. Accordingly, rk denotes the arrival time of the job of τk under analysis and
fk its finishing time. By definition, the next job of τk cannot arrive before rk + Tk.

For the rest of this section, we will focus on the analysis of the case that τk is in Tcrit.

I Lemma 5. Under both service and return protocol as well as both abort- and idle-transit,
for any τk ∈ Tcrit, in the interval [rk, fk), the local system switches at most once from normal
to local behavior. That is, at most one γh,↘ exists in [rk, fk).

Proof. This property results from the definition of the protocols and abort- and idle-transits.
That is, the local system only switches from the local to normal execution behavior when
there is no unfinished job of Tcrit. J

Based on Lemma 5, only four cases need to be considered:
σ is executed under local execution behavior at time rk and under normal execution
behavior at time fk, denoted as L2N.
σ is executed under normal execution behavior at time rk and under normal execution
behavior at time fk, denoted as N2N.
σ is executed under normal execution behavior at time rk and under local execution
behavior at time fk, denoted as N2L.
σ is executed under local execution behavior at time rk and under local execution behavior
at time fk, denoted as L2L.

In the following, we examine each of these cases individually, beginning with those that
do not depend on the implemented recovery protocol, i.e., L2N and N2N. Thereon, the
remaining cases are considered first under the service protocol in Sec. 5.1 and consecutively
under the return protocol in Sec. 5.2.

I Lemma 6. The case L2N is not possible under Abort-Transit and Idle-Transit.

Proof. In both transitions from local to normal execution behavior, no incomplete job exists
in the local system at time γh,↗ for any h ≥ 0. J

I Lemma 7. The response time fk − rk in the case N2N is at most Rnormalk , as defined in
Definition 1.

Proof. This is identical to self-suspension task systems. Suppose that γh,↗ ≤ rk < γh,↘.
We can remove all the jobs in the schedule σ before γh,↗ without changing any execution
in σ after γh,↗. Therefore, the jobs arriving in [γh,↗, fk) are exactly the same as the task
system analyzed in Definition 1. J

5.1 Analysis of the Service Protocol
Unlike the cases L2N and N2N, the cases N2L and L2L must be analyzed under each protocol
separately, since the timing behavior of a task τk in Tcrit under analysis differs depending on

ECRTS 2020



18:12 Offloading Safety- and Mission-Critical Tasks via Unreliable Connections

how the actual system execution behavior is specified. For case N2L, the worst case response
time of task τk can be obtained by means of the following lemma:

I Lemma 8. Under the service protocol, the response time fk − rk in the case N2L is
upper-bounded by the minimum positive value of ∆, for which

∆ = pk + C]k +
∑

τi∈hp(τk)

max{f1(τi,∆), f2(τi,∆)} (3)

if ∆ ≤ Tk.

Proof. By definition of case N2L, the execution behavior of the local system changes at time
γh,↘, in which rk ≤ γh,↘ < fk.

There are two cases to be considered:
Case 1: In the interval [rk, γh,↘), the schedule σ does not idle at all.
Case 2: In the interval [rk, γh,↘), the schedule σ idles at some time prior to γh,↘.

We note that the schedule σ is busy from γh,↘ to fk, since σ is a work-conserving schedule
and there is no suspending behavior between γh,↘ and fk under the service protocol.

Proof of Case 1: Let t be the earliest moment such that the schedule σ is busy from t

to rk. We note that such t exists. Under the above construction, the schedule σ is busy from
t to fk and idles right prior to t. If we alter the arrival time of the job τk from rk to t, its
response time becomes fk − t, which is no less than fk − rk.

If the job τ jk is not offloaded, its execution time is at most Ck,1 + Ck,s + Ck,2. If the job
τ jk is offloaded successfully, its execution time is at most Ck,1 + pk + qk + Ck,2. If the job τ jk
is offloaded unsuccessfully, its execution time is at most Ck,1 + pk + Ck,s + Ck,2. Under the
assumption that pk+qk ≤ Ck,s in Section 2, we know that its execution time is upper-bounded
by the maximum of the above three scenarios, which is at most Ck,1+pk+Ck,s+Ck,2 = pk+C]k.

Since the local system idles prior to t under normal execution behavior, the interference
of the higher-priority tasks can be derived from Lemma 3. Therefore, the worst-case response
time of τk in this case is the minimum positive value of ∆ such that

∆ = pk + C]k +
∑

τi∈hp(τk)

max{f1(τi,∆), f2(τi,∆)} (4)

Proof of Case 2: Let t′ be the latest moment such that schedule σ is busy from t′ to
fk. We note that such t′ exists since the schedule idles at some moment in [rk, γh,↘). By
definition, t′ − rk ≤ R1

k + Sk.
We now analyze an upper bound of fk − t′. Since the schedule σ idles prior to time

t′, the job of τk must have been offloaded. If the offloading operation is successful, the
execution time of task τk in the interval [t′, fk) is at most qk +Ck,2. If the job τ jk is offloaded
unsuccessfully, its execution time in the interval [t′, fk) is at most Ck,s + Ck,2. Under our
assumption that pk + qk ≤ Ck,s in Section 2, we know that its execution time in the interval
[t′, fk) is at most Ck,s + Ck,2.

The interference of the higher-priority jobs in the time interval [t′, fk) is obtained using
Lemma 3. Since t′ − rk ≤ R1

k + Sk and the interference of a higher-priority task τi from t′ to
t′ + ∆ is at most max{f1(τi,∆), f2(τi,∆)}, the worst-case response time of τk in Case 2 is
R1
k + Sk + ∆, where ∆ is the minimum positive value with

∆ = Ck,s + Ck,2 +
∑

τi∈hp(τk)

max{f1(τi,∆), f2(τi,∆)} (5)

Because Ck,s + Ck,2 ≤ C]k, the worst-case response time obtained by Eq. (4) dominates the
one from Eq. (5), which concludes this lemma. J



L. Schönberger et al. 18:13

Having examined the case N2L under the service protocol, we subsequently consider the
case L2L for a task τk in Tcrit under analysis. The worst-case response time of task τk in
this case can be determined by the following lemma:

I Lemma 9. Under the service protocol, the response time fk − rk in the case L2L is
upper-bounded by the worst-case response time derived in Lemma 8 if ∆ ≤ Tk.

Proof. We note that the schedule σ is busy from rk to fk, since σ is a work-conserving
schedule and there is no suspending behavior between rk and fk under the service protocol.
Based on the schedule σ, we examine the following two moments2:

Let t be the earliest moment such that schedule σ is busy from t to rk.
Let t′ be the latest moment such that local system switches from normal to local execution
behavior before or at rk.

We note that both t and t′ exist. There are two scenarios to be analyzed:
t ≤ t′: The local system exhibits normal execution behavior prior to time t′. We can
change the release time of job τk to t′ without decreasing its response time. Then, the
analysis of Case 1 in Lemma 8 can be applied directly, since the worst-case execution
time of τk is at most C]k in this scenario.
t > t′: The schedule σ idles at t− ε for an infinitesimal ε and the local system exhibits
local execution behavior from t′ to t. Therefore, the idle time in schedule σ is due to the
removal of the lower-priority tasks from the original schedule. In this case, there exists
no unfinished job of any hp(τk) at time t. All jobs released by τk and hp(τk) are executed
locally. Therefore, the classical critical instant theorem by Liu and Layland [16] can be
applied. The worst-case response time in this case is at most the minimum positive value
of ∆, for which

∆ = C]k +
∑

τi∈hp(τk)

⌈
∆
Ti

⌉
C]i (6)

if ∆ ≤ Tk. This case is dominated by Eq. (4). J

Resulting from the above analyses, the schedulability of a task τk in Tcrit under the
service protocol can be verified by the following theorem:

I Theorem 10. Consider the service protocol. Suppose that Definition 1 holds, i.e., every
task τk in T meets its deadline under normal execution behavior. Every task τk in Tcrit meets
its deadline under local execution behavior if there exists a ∆ with 0 < ∆ ≤ Dk such that the
condition in Eq. (3) holds.

Proof. According to Lemma 9, the scenario L2L is dominated by N2L. By Lemma 6, L2N is
not possible under both protocols in this paper. By Lemma 7, the worst-case response time
due to N2N is at most Rnormalk . By Definition 1, Rnormalk ≤ Di. Therefore, the only condition
to check the feasibility is to verify the scenario N2L based on Eq. (3) in Lemma 8. J

5.2 Analysis of the Return Protocol
The return protocol is designed to reduce the workload on the local system so that a faster
transit from local to normal execution behavior is possible. Under the return protocol,
the execution time of a job of τi in Tnon on the local system is always no more than C[i

2 We note that the schedule σ is already modified by removing lower-priority jobs. Therefore, it is possible
that the reduced schedule idles but the local system exhibits local execution behavior.

ECRTS 2020



18:14 Offloading Safety- and Mission-Critical Tasks via Unreliable Connections

independent of the system execution behavior. The analysis of the service protocol in
Lemma 8 and Lemma 9 can be slightly changed to accommodate such workload reduction
under the return protocol, as stated in the following lemmata:

I Lemma 11. Under the return protocol, the response time fk − rk in case N2L is upper
bounded by the minimum positive value of ∆, for which

∆ = pk + C]k +
∑

τi∈hp(τk)⊂Tcrit

max{f1(τi,∆), f2(τi,∆)}+
∑

τi∈hp(τk)⊂Tnon

(⌈
∆
Ti

⌉
+ 1
)
C[i

(7)

if ∆ ≤ Tk.

Proof. The proof is almost identical to the proof of Lemma 8 by considering different
interferences of the higher-priority task τi using Lemma 3 when τi is in Tcrit or Lemma 4
when τi is in Tnon. We note that the main argument in the proof of Lemma 8 that the local
system is busy from γh,↘ to fk remains valid, since task τk is in Tcrit and cannot offload
from γh,↘ to fk. J

I Lemma 12. Under the return protocol, the response time fk − rk in the case L2L is upper
bounded by the worst-case response time derived in Lemma 11 if ∆ ≤ Tk.

Proof. The proof is identical as a patch of Lemma 9 by considering different interferences
of the higher-priority task τi using Lemma 3 when τi is in Tcrit or Lemma 4 when τi is in
Tnon. J

Resulting from the above analyses, the schedulability of a task τk in Tcrit under the return
protocol can be verified by the following theorem:

I Theorem 13. Consider the return protocol. Suppose that Definition 1 holds, i.e., every
task τk in T meets its deadline under normal execution behavior. Every task τk in Tcrit meets
its deadline under local execution behavior if there exists a ∆ with 0 < ∆ ≤ Dk such that the
condition in Eq. (7) holds.

Proof. According to Lemma 12, the case L2L is dominated by N2L. By Lemma 6, L2N is not
possible under both protocols in this paper. By Lemma 7, the worst-case response time due
to N2N is at most Rnormalk . By Definition 1, Rnormalk ≤ Di. Therefore, the only condition to
check the feasibility is to verify the case N2L under the return protocol based on Eq. (7) in
Lemma 11. J

6 Evaluation

To evaluate our proposed protocols, we perform comprehensive experiments using synthesized
data as well as a case study regarding a robot. In the following, we first clarify the setup
for both experiments in Sec. 6.1, before we discuss our findings in Sec. 6.2 and Sec. 6.3,
respectively.

6.1 Experiment Setup
In our simulations based on synthetic data, we examine the system behavior under each
protocol depending on different aspects, namely, 1a) the system utilization under normal
execution behavior, 1b) the probability that an offloading operation is performed unsuccess-
fully, 1c) the percentage of critical tasks in the task set (CT), and 1d) the interval out of



L. Schönberger et al. 18:15

which the task periods are generated. More precisely, we measure the amount of time the
considered system exhibits local execution behavior in experiments 1a-I) and 1b) - 1d), and
the number of synthesized task sets that pass the schedulability tests in Theorem 10 and
Theorem 13, respectively, i.e., the so-called acceptance ratio, in experiment 1a-II). For the
purpose of analyzing the system execution behavior, we developed an event-based miss rate
simulator, which will be released together with the submitted paper.

For each scenario, i.e., 1a) - 1d)3, we generate sets of 10 non-suspending sporadic
tasks, whereat the task utilization values for a given system utilization4 are generated by
means of the UUniFast method [2]. The task periods in experiments 1a) - 1c) are specified
according to a log-uniform distribution over the interval [1ms, 100ms] (detailed explanations
regarding this approach can be found in [8]) and according to a uniform distribution over the
intervals [1ms, 2ms], [1ms, 10ms], [1ms, 20ms], [1ms, 50ms], and [1ms, 100ms] in experiment
1d). The worst-case execution time under normal execution behavior is given as Ck = Tk ·Uk.
Moreover, we set deadlines as implicit, i.e., Dk = Tk. Thereon, we transform all non-
suspending sporadic tasks into self-suspending tasks consisting of two computation segments
as well as one suspension interval, as predefined in the system model in Section 2. For this
purpose, we choose the length of each task’s suspension interval according to a uniform
random distribution out of the interval Sk ∈ [0.01 · (Tk − Ck), 0.1 · (Tk − Ck)]. To generate
the corresponding local computation segments ck,s, we choose a scaling factor α = 2 such that
Ck,s = Sk · α, whereas Ck is divided into Ck,1 and Ck,2. Priorities are assigned on the task-
level according to the rate-monotonic (RM) approach. We assume the probability that a task
τk offloads unsuccessfully to follow a Poisson distribution, i.e., 1−exp(−λ ·Sk), which models
that for an offloading operation with longer suspension time the probability of experiencing
an unsuccessful offloading operation is higher. We set λ to 0.01 · 1

ms , 0.05 · 1
ms , 0.1 ·

1
ms , 0.5 ·

1
ms ,

and 1 · 1
ms in experiment 1a) and 1b), and to 0.1 · 1

ms otherwise. The percentage of critical
tasks in the system (CT ) is set to 10%, 20%, 30%, 40%, 50%, and 60% in experiment 1c) and
to 20% otherwise. Each experiment was repeated 100 times, except experiment 1a-I), which
was repeated 10 times. For experiments 1a-I) and 1b)-1d), only task sets were considered
that passed the schedulability tests in Theorem 10 and Theorem 13.

In experiment 2), we consider a Robotnik RB-1 Base robot platform [19], which is capable
of performing loading operations of logistics objects in a highly unstructured environment,
using the Robot Operating System (ROS) [20]. We simulated the navigation of the robot
in a virtual map in a Gazebo-based environment [11] and measured the timing data of
the move_base node during a time frame of 60 seconds using the Real-Time Scheduling
Framework for ROS (ROSCH) [21] and RESCH [13]. More precisely, the execution times
of the topics the move_base node, i.e., the main node used for the robot navigation in
ROS, subscribed to, were measured, i.e., /rb1_base/front_laser/scan, which is the laser
scanner data topic, /rb1_base/robotnik_base_control/odom, which is the odometry topic
containing motor encoder readings and is used for localization, and /tf, which contains the
transformations between different ROS 3D coordinate frames.

Resulting from this, three periodic, implicit-deadline tasks have been obtained, as shown
in Table 2, which are transformed into self-suspending tasks analogously to the tasks in
experiment 1), while considering the cases that 20%, 40%, and 60% of the task workload are

3 Please note that we also tested other configurations, but since the results were similar, we restrain from
discussing them in this section.

4 Please note that the utilization indicated in all figures always refers to the utilization under normal
execution behavior. The system utilization under local execution behavior is in all cases higher and
varies depending on the properties of the individual task sets.

ECRTS 2020



18:16 Offloading Safety- and Mission-Critical Tasks via Unreliable Connections

offloaded. Moreover, we assume that Tcrit = {τodom} and Tnon = {τlaser, τtf}. We simulate
the system behavior using the event-based miss rate simulator from experiments 1) with
λ = 0.1 · 1

ms . For each offloading case, the simulation was repeated 100 times.

Table 2 Periodic, implicit-deadline tasks, measurements of a Robotnik RB-1 Base robot platform.
Note that the frequency of task τlaser is 15.5 Hz.

Task Worst-Case Execution Time [ms] Period [ms]
τlaser 6.732 64.516
τodom 1.046 60.0
τtf 0.333 60.0

6.2 Simulation Results

0 10 20 30 40 50 60 70
Utilization (%)

0

5

10

15

20

25

30

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)

: 0.1 1
ms , CT: 20%

Return Protocol
Service Protocol

Figure 8 Experiment 1a-I): The percentage of
time the system exhibits local execution behavior
depending on the system utilization.

0 20 40 60 80 100
Utilization (%)

0

20

40

60

80

100
Ac

ce
pt

an
ce

 R
at

io
 (%

)
CT: 20%

Return Protocol
Service Protocol

Figure 9 Experiment 1a-II): The acceptance
ratios of the schedulability tests of the service
and the return protocol.

0.01 0.05 0.1 0.5 1
(1/ms)

0

20

40

60

80

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)

Service Protocol, Uti.: 30%, CT: 20%

(a) The percentage of local execution behavior for
different probabilities of unsuccessful offloading op-
erations under the service protocol.

0.01 0.05 0.1 0.5 1
(1/ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)

Return Protocol, Uti.: 30%, CT: 20%

(b) The percentage of local execution behavior for
different probabilities of unsuccessful offloading op-
erations under the return protocol.

Figure 10 Experiment 1b): The percentage of time the system exhibits local execution behavior
during the simulation for different probabilities of unsuccessful offloading operations under the
service and the return protocol with a system utilization of 30% and 20% critical tasks.



L. Schönberger et al. 18:17

In Fig. 8, the results of experiment 1a-I) are depicted, namely, the mean value over all
experiment repetitions of the percentage of simulation time, in which the system exhibits
local execution behavior, as a function of the system utilization under normal execution
behavior. While the percentage of time the system exhibits local execution behavior under
the return protocol is always 0 or close to 0, the values under the service protocol vary largely
between 0 and approximately 30%. From these results, we conclude that the percentage
of time the system exhibits local execution behavior is not only dependent on the system
utilization, but very likely also on other factors, which are discussed hereinafter.

As the outcome of experiment 1a-II), Fig. 9 portrays the acceptance ratios for the
schedulability tests in Theorem 10 and Theorem 13, i.e., the percentage of generated task
sets passing the schedulability tests for the service and the return protocol, respectively.
The service protocol achieves an acceptance ratio of (close to) 100% until approximately
20% system utilization, which approaches 0% at approximately 70% system utilization. The
acceptance ratio of the return protocol, in contrast, is (close to) 100% until approximately
40%, before it decreases and finally reaches 0% at approximately 95% system utilization.
Please note that similar results were obtained under different configurations.

The following figures, i.e., Fig. 10 - Fig. 13, can be understood as follows: An orange line
marks the median, whereas a box comprise three quartiles of the data points, i.e., the lower
margin indicates the 25-percent-mark Q1 and the upper margin indicates the 75-percent-mark
Q3. The distance between the 25- and 75-mark is denoted interquartile range IQ. The lower
whisker indicates Q1 − 1.5 · IQ, the upper whisker Q3 + 1.5 · IQ, and circles mark outlier
points.

In Fig. 10, the percentage of time the system exhibits local execution behavior under
different probabilities of unsuccessful offloading operations, i.e., the outcome of experiment
1b), is presented with respect to the service protocol (cf. Fig. 10a) and the return protocol
(cf. Fig. 10b). In general, despite some outliers, the time the system exhibits local execution
behavior increases with an increasing probability of unsuccessful offloading operations. If λ
is low, i.e., 0.01 · 1

ms and 0.05 · 1
ms , both protocols lead in the majority of cases to a quite low

percentage of time with local execution behavior. If, however, λ is high, i.e., 1 · 1
ms , the service

protocol leads to a significantly higher percentage of time under local execution behavior
(median approximately 5%, Q3 approximately 75%, upper whisker approximately 95%) than
the return protocol (median approximately 0.08%, Q3 approximately 0.15%, upper whisker
approximately 0.28%). This follows from the different handling of non-critical tasks under
the particular protocol if the system exhibits local execution behavior. The outliers can, in
general, be explained by the fact that different tasks can suffer from unsuccessful offloading
operations, leading to different consequences (consider, e.g., a task with a short period in
contrast to a task with a long period).

Fig. 11 illustrates the percentage of time the system exhibits local execution behavior
under different percentages of critical tasks in the system with respect to the service protocol
(cf. Fig. 11a) and the return protocol (cf. Fig. 11b), i.e., the results of experiment 1c). It is
evident that the percentage of time the system exhibits local execution behavior increases with
an increasing percentage of critical tasks in the system, although the increase is larger under
the service protocol than under the return protocol (except one outlier under a percentage of
critical tasks of 60% in Fig. 11b). However, comparing the medians in Fig. 11a to those in
Fig. 10a, it can be stated that the effect the percentage of critical tasks in the system has on
the percentage the system exhibits local execution behavior is less than the impact of the
probability of unsuccessful offloading operations.

ECRTS 2020



18:18 Offloading Safety- and Mission-Critical Tasks via Unreliable Connections

10 20 30 40 50 60
Critical Tasks (%)

0

20

40

60

80

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)
Service Protocol, : 0.1 1

ms , Uti.: 30%

(a) The percentage of local execution behavior for
different percentages of critical tasks in the system
under the service protocol.

10 20 30 40 50 60
Critical Tasks (%)

0

5

10

15

20

25

30

35

40

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)

Return Protocol, : 0.1 1
ms , Uti.: 30%

(b) The percentage of local execution behavior for
different percentages of critical tasks in the system
under the return protocol.

Figure 11 Experiment 1c): The percentage of time the system exhibits local execution behavior
during the simulation for different percentages of critical tasks in the system under the service and
the return protocol with a system utilization of 30% and λ = 0.1 · 1

ms
.

[1,2] [1,10] [1,20] [1,50] [1,100]
Periods in Interval (ms)

0

20

40

60

80

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)

Service Protocol, : 0.1 1
ms , Uti.: 30%, CT: 20%

(a) The percentage of local execution behavior for
different period intervals under the service protocol.

[1,2] [1,10] [1,20] [1,50] [1,100]
Periods in Interval (ms)

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)

Return Protocol, : 0.1 1
ms , Uti.: 30%, CT: 20%

(b) The percentage of local execution behavior for
different period intervals under the return protocol.

Figure 12 Experiment 1d): The percentage of time the system exhibits local execution behavior
during the simulation for different intervals used for the period generation with UUnifast under the
service and the return protocol with a system utilization of 30%, 20% critical tasks and λ = 0.1 · 1

ms
.

In Fig. 12, the percentage of time the system exhibits local execution behavior under
different probabilities of unsuccessful offloading operations, i.e., the outcome of experiment
1d), is depicted with respect to the service protocol (cf. Fig. 12a) and the return protocol (cf.
Fig. 12b). Under both protocols, no clear correlation is discernible between the percentage
of time the system exhibits local execution behavior and the intervals out of which the task
periods are generated except with respect to the interval [1, 100]. Although the medians are
close to 0% under each protocol in this case, a slight increase of the percentage of time with
local execution behavior is visible. As mentioned regarding the results of experiment 1b),
this may result from widely differing task periods leading to an increased amount of time
under local execution behavior if a task with a long period offloads unsuccessfully.



L. Schönberger et al. 18:19

6.3 Case Study
In Fig. 13, the results of experiment 2), i.e., of our case study considering the task set
obtained from a Robotnik RB-1 Base robot (cf. Sec. 6.1), are visualized. From Fig. 13b,
Fig. 13d, and Fig. 13f, it is discernible that the amount of offloaded workload per task has
no significant impact on the percentage of time the system exhibits local execution behavior.
Under the service protocol, in contrast, a clear increase of the time the system exhibits local
execution behavior for higher probabilities of unsuccessful offloading operations, i.e. for
λ ∈

{
0.5 · 1

ms , 1 ·
1
ms

}
, is visible with an increasing amount of offloaded workload per task

(cf. Fig. 13a, Fig. 13c, and Fig. 13e). In consequence, it can be concluded that the amount
of offloaded workload per task has strong impact on the system execution behavior under
the service protocol and thus should be taken into consideration at system design time.

7 Conclusion

In this work, we proposed two protocols for cyber-physical systems by means of which critical
and non-critical tasks can be offloaded safely, namely, the service protocol and the return
protocol (cf. Sec. 3). We analyzed the worst-case timing behavior of the local cyber-physical
system and, based on these analyses, we provided a sufficient schedulability test for each of
the proposed protocols (cf. Sec. 4 and Sec. 5). In the course of comprehensive experiments
and a case study involving a Robotnik RB-1 Base robot (cf. Sec. 6), we showed that our
protocols have reasonable acceptance ratios under the provided schedulability tests. Moreover,
we demonstrated that the system behavior under our proposed protocols depends on different
factors, namely, on the probability of unsuccessful offloading operations, the percentage of
critical tasks in the system, and the amount of offloaded workload. Not least, evidence was
found that the percentage of time the system exhibits local execution behavior also depends
on the actual task experiencing an unsuccessful offloading operation and, in consequence,
also on the interval out of which task periods are chosen.

References
1 A. Adiththan, S. Ramesh, and S. Samii. Cloud-assisted control of ground vehicles using

adaptive computation offloading techniques. In 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 589–592, 2018. doi:10.23919/DATE.2018.8342076.

2 Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005.

3 Georg von der Brüggen, Kuan-Hsun Chen, Wen-Hung Huang, and Jian-Jia Chen. Systems with
dynamic real-time guarantees in uncertain and faulty execution environments. In Real-Time
Systems Symposium (RTSS), Porto, Portugal, 2016. URL: https://ieeexplore.ieee.org/
document/7809865.

4 Georg von der Brüggen, Lea Schönberger, and Jian-Jia Chen. Do nothing, but carefully:
Fault tolerance with timing guarantees for multiprocessor systems devoid of online adaptation.
In The 23rd IEEE Pacific Rim International Symposium on Dependable Computing (PRDC
2018), Taipei, Taiwan, 2018. URL: https://ieeexplore.ieee.org/document/8639554.

5 Alan Burns and Robert I. Davis. A survey of research into mixed criticality systems. ACM
Comput. Surv., 50(6):82:1–82:37, 2018. doi:10.1145/3131347.

6 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang, Björn Brandenburg,
Konstantinos Bletsas, Cong Liu, Pascal Richard, Frédéric Ridouard, Neil Audsley, Raj
Rajkumar, Dionisio de Niz, and Georg von der Brüggen. Many suspensions, many prob-
lems: A review of self-suspending tasks in real-time systems. Real-Time Systems, 2018.
doi:10.1007/s11241-018-9316-9.

ECRTS 2020

https://doi.org/10.23919/DATE.2018.8342076
https://ieeexplore.ieee.org/document/7809865
https://ieeexplore.ieee.org/document/7809865
https://ieeexplore.ieee.org/document/8639554
https://doi.org/10.1145/3131347
https://doi.org/10.1007/s11241-018-9316-9


18:20 Offloading Safety- and Mission-Critical Tasks via Unreliable Connections

0.01 0.05 0.1 0.5 1
(1/ms)

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)
Service Protocol, Case Study, 20% offloaded

(a) The percentage of local execution behavior for
different probabilities of unsuccessful offloading op-
erations under the service protocol and 20% of-
floaded workload per task.

0.01 0.05 0.1 0.5 1
(1/ms)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)

Return Protocol, Case Study, 20% offloaded

(b) The percentage of local execution behavior for
different probabilities of unsuccessful offloading op-
erations under the return protocol and 20% of-
floaded workload per task.

0.01 0.05 0.1 0.5 1
(1/ms)

0.0

0.1

0.2

0.3

0.4

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)

Service Protocol, Case Study, 40% offloaded

(c) The percentage of local execution behavior for
different probabilities of unsuccessful offloading op-
erations under the service protocol and 40% of-
floaded workload per task.

0.01 0.05 0.1 0.5 1
(1/ms)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Lo

ca
l E

xe
cu

tio
n 

Be
ha

vi
or

 (%
)

Return Protocol, Case Study, 40% offloaded

(d) The percentage of local execution behavior for
different probabilities of unsuccessful offloading op-
erations under the return protocol and 40% of-
floaded workload per task.

0.01 0.05 0.1 0.5 1
(1/ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)

Service Protocol, Case Study, 60% offloaded

(e) The percentage of local execution behavior for
different probabilities of unsuccessful offloading op-
erations under the service protocol and 60% of-
floaded workload per task.

0.01 0.05 0.1 0.5 1
(1/ms)

0.00

0.01

0.02

0.03

0.04

0.05

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)

Return Protocol, Case Study, 60% offloaded

(f) The percentage of local execution behavior for
different probabilities of unsuccessful offloading op-
erations under the return protocol and 60% of-
floaded workload per task.

Figure 13 Experiment 2): The percentage of time the robot exhibits local execution behavior
during the simulation for different probabilities of unsuccessful offloading operations and different
percentages of offloaded workload under the service and the return protocol.



L. Schönberger et al. 18:21

7 Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and Cong Liu. State of the art for
scheduling and analyzing self-suspending sporadic real-time tasks. In 23rd IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications, RTCSA, pages
1–10, 2017. doi:10.1109/RTCSA.2017.8046321.

8 Robert I. Davis, Attila Zabos, and Alan Burns. Efficient exact schedulability tests for fixed
priority real-time systems. Computers, IEEE Transactions on, 57(9):1261–1276, 2008.

9 Hasan Esen, Masakazu Adachi, Daniele Bernardini, Alberto Bemporad, Dominik Rost, and
Jens Knodel. Control as a service (caas): Cloud-based software architecture for automotive
control applications. In Proceedings of the Second International Workshop on the Swarm at
the Edge of the Cloud, SWEC ’15, page 13–18, New York, NY, USA, 2015. Association for
Computing Machinery. doi:10.1145/2756755.2756758.

10 Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Eduardo Tovar. How realistic is the
mixed-criticality real-time system model? In Proceedings of the 23rd International Conference
on Real Time and Networks Systems, RTNS ’15, page 139–148, New York, NY, USA, 2015.
Association for Computing Machinery. doi:10.1145/2834848.2834869.

11 Gazebo. Gazebo. robot simulation made easy. http://gazebosim.org/.
12 W.-H. Huang, J. Chen, and C. Liu. Pass: Priority assignment of real-time tasks with dynamic

suspending behavior under fixed-priority scheduling. In 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1–6, 2015. doi:10.1145/2744769.2744891.

13 Shinpei Kato, R Rajkumar, and Yutaka Ishikawa. A loadable real-time scheduler suite for
multicore platforms. Technical Report CMU-ECE-TR09-12, 2009.

14 Swarun Kumar, Shyamnath Gollakota, and Dina Katabi. A cloud-assisted design for autonom-
ous driving. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, MCC ’12, page 41–46, New York, NY, USA, 2012. Association for Computing
Machinery. doi:10.1145/2342509.2342519.

15 C. Liu and J. Chen. Bursty-interference analysis techniques for analyzing complex real-time
task models. In Real-Time Systems Symposium (RTSS), pages 173–183, 2014.

16 C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM, 20(1):46–61, 1973. doi:10.1145/321738.321743.

17 M. A. Maruf and A. Azim. Extending resources for avoiding overloads of mixed-criticality
tasks in cyber-physical systems. IET Cyber-Physical Systems: Theory Applications, 5(1):60–70,
2020.

18 Institute of Electrical and Electronic Engineers. 802.11p-2010 - IEEE standard for information
technology– local and metropolitan area networks– specific requirements– part 11: Wireless
LAN medium access control (MAC) and physical layer (PHY) specifications amendment
6: Wireless access in vehicular environments. https://standards.ieee.org/standard/802_
11p-2010.html, 2017.

19 Robotnik. Mobile robot RB-1 base. https://www.robotnik.eu/mobile-robots/
rb-1-base-2/.

20 ROS. Robot operating system (ROS). https://www.ros.org/.
21 Y. Saito, F. Sato, T. Azumi, S. Kato, and N. Nishio. Rosch:real-time scheduling framework for

ROS. In 2018 IEEE 24th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 52–58, 2018. doi:10.1109/RTCSA.2018.00015.

22 Lea Schönberger, Wen-Hung Huang, Georg von der Brüggen, Kuan-Hsun Chen, and Jian-Jia
Chen. Schedulability analysis and priority assignment for segmented self-suspending tasks. In
The 24th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), Hakodate, Japan, 2018.

23 Lea Schönberger, Wen-Hung Huang, Georg von der Brüggen, and Jian-Jia Chen. Schedulability
analysis and priority assignment for segmented self-suspending tasks. Technical report, TU
Dortmund, 2018.

ECRTS 2020

https://doi.org/10.1109/RTCSA.2017.8046321
https://doi.org/10.1145/2756755.2756758
https://doi.org/10.1145/2834848.2834869
http://gazebosim.org/
https://doi.org/10.1145/2744769.2744891
https://doi.org/10.1145/2342509.2342519
https://doi.org/10.1145/321738.321743
https://standards.ieee.org/standard/802_11p-2010.html
https://standards.ieee.org/standard/802_11p-2010.html
https://www.robotnik.eu/mobile-robots/rb-1-base-2/
https://www.robotnik.eu/mobile-robots/rb-1-base-2/
https://www.ros.org/
https://doi.org/10.1109/RTCSA.2018.00015


18:22 Offloading Safety- and Mission-Critical Tasks via Unreliable Connections

24 Benjamin Sliwa, Robert Falkenberg, Thomas Liebig, Nico Piatkowski, and Christian Wietfeld.
Boosting vehicle-to-cloud communication by machine learning-enabled context prediction.
IEEE Transactions on Intelligent Transportation Systems, 2019.

25 Benjamin Sliwa and Christian Wietfeld. Empirical analysis of client-based network quality
prediction in vehicular multi-MNO networks. In 2019 IEEE 90th Vehicular Technology
Conference (VTC-Fall), Honolulu, Hawaii, USA, 2019.

26 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution
time assurance. In 28th IEEE International Real-Time Systems Symposium (RTSS 2007),
pages 239–243, 2007. doi:10.1109/RTSS.2007.47.

27 Georg von der Brüggen, Wen-Hung Huang, and Jian-Jia Chen. Hybrid self-suspension models
in real-time embedded systems. In 23rd IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, RTCSA, pages 1–9, 2017. doi:10.1109/
RTCSA.2017.8046328.

28 Georg von der Brüggen, Wen-Hung Huang, Jian-Jia Chen, and Cong Liu. Unipro-
cessor scheduling strategies for self-suspending task systems. In Proceedings of the 24th
International Conference on Real-Time Networks and Systems (RTNS), pages 119–128,
2016. URL: http://dl.acm.org/ft_gateway.cfm?id=2997497&ftid=1804918&dwn=1&CFID=
691780547&CFTOKEN=64912419.

https://doi.org/10.1109/RTSS.2007.47
https://doi.org/10.1109/RTCSA.2017.8046328
https://doi.org/10.1109/RTCSA.2017.8046328
http://dl.acm.org/ft_gateway.cfm?id=2997497&ftid=1804918&dwn=1&CFID=691780547&CFTOKEN=64912419
http://dl.acm.org/ft_gateway.cfm?id=2997497&ftid=1804918&dwn=1&CFID=691780547&CFTOKEN=64912419

	Introduction
	System Model
	Recovery Protocols
	Existing Analysis and Workload Characteristics
	Timing Analysis
	Analysis of the Service Protocol
	Analysis of the Return Protocol

	Evaluation
	Experiment Setup
	Simulation Results
	Case Study

	Conclusion

