
47th International Colloquium on
Automata, Languages, and
Programming

ICALP 2020, July 8–11, 2020, Saarbrücken, Germany
(Virtual Conference)

Edited by

Artur Czumaj
Anuj Dawar
Emanuela Merelli

EA
T

C
S

LIPIcs – Vo l . 168 – ICALP 2020 www.dagstuh l .de/ l ip i c s



Editors

Artur Czumaj
University of Warwick, UK
A.Czumaj@warwick.ac.uk

Anuj Dawar
University of Cambridge, UK
anuj.dawar@cl.cam.ac.uk

Emanuela Merelli
University of Camerino, Italy
emanuela.merelli@unicam.it

ACM Classification 2012
Theory of Computation

ISBN 978-3-95977-138-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-138-2.

Publication date
June, 2020

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ICALP.2020.0

ISBN 978-3-95977-138-2 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-7743-438X
mailto:A.Czumaj@warwick.ac.uk
https://orcid.org/0000-0003-4014-8248
mailto:anuj.dawar@cl.cam.ac.uk
https://orcid.org/0000-0002-1321-4134
mailto:emanuela.merelli@unicam.it
https://www.dagstuhl.de/dagpub/978-3-95977-138-2
https://www.dagstuhl.de/dagpub/978-3-95977-138-2
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.ICALP.2020.0
https://www.dagstuhl.de/dagpub/978-3-95977-138-2
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics


0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ICALP 2020

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics




Contents

Preface
Artur Czumaj, Anuj Dawar, and Emanuela Merelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xv–0:xvi

Organization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xvii–0:xxiv

List of Authors
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0:xxv–0:xxxvi

Invited Talks

An Incentive Analysis of Some Bitcoin Fee Designs
Andrew Chi chih Yao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:1–1:12

Sketching Graphs and Combinatorial Optimization
Robert Krauthgamer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1–2:1

How to Play in Infinite MDPs
Stefan Kiefer, Richard Mayr, Mahsa Shirmohammadi, Patrick Totzke, and
Dominik Wojtczak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3:1–3:18

Track A: Algorithms, Complexity and Games

Scheduling Lower Bounds via AND Subset Sum
Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay . . . . . . . . . . . . . . 4:1–4:15

On the Fine-Grained Complexity of Parity Problems
Amir Abboud, Shon Feller, and Oren Weimann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:1–5:19

Optimal Streaming Algorithms for Submodular Maximization with Cardinality
Constraints

Naor Alaluf, Alina Ene, Moran Feldman, Huy L. Nguyen, and Andrew Suh . . . . . . 6:1–6:19

Dynamic Averaging Load Balancing on Cycles
Dan Alistarh, Giorgi Nadiradze, and Amirmojtaba Sabour . . . . . . . . . . . . . . . . . . . . . . . . 7:1–7:16

Asynchronous Majority Dynamics in Preferential Attachment Trees
Maryam Bahrani, Nicole Immorlica, Divyarthi Mohan, and S. Matthew Weinberg 8:1–8:14

The Power of Many Samples in Query Complexity
Andrew Bassilakis, Andrew Drucker, Mika Göös, Lunjia Hu, Weiyun Ma, and
Li-Yang Tan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9:1–9:18

Medians in Median Graphs and Their Cube Complexes in Linear Time
Laurine Bénéteau, Jérémie Chalopin, Victor Chepoi, and Yann Vaxès . . . . . . . . . . . . 10:1–10:17

Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models
Suman K. Bera, Amit Chakrabarti, and Prantar Ghosh . . . . . . . . . . . . . . . . . . . . . . . . . . 11:1–11:21

Improved Bounds for Matching in Random-Order Streams
Aaron Bernstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12:1–12:13

EA
T

C
S

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:vi Contents

An Optimal Algorithm for Online Multiple Knapsack
Marcin Bienkowski, Maciej Pacut, and Krzysztof Piecuch . . . . . . . . . . . . . . . . . . . . . . . . 13:1–13:17

Space Efficient Construction of Lyndon Arrays in Linear Time
Philip Bille, Jonas Ellert, Johannes Fischer, Inge Li Gørtz, Florian Kurpicz,
J. Ian Munro, and Eva Rotenberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14:1–14:18

New Fault Tolerant Subset Preservers
Greg Bodwin, Keerti Choudhary, Merav Parter, and Noa Shahar . . . . . . . . . . . . . . . . . 15:1–15:19

Bridge-Depth Characterizes Which Structural Parameterizations of Vertex Cover
Admit a Polynomial Kernel

Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16:1–16:19

The Complexity of Promise SAT on Non-Boolean Domains
Alex Brandts, Marcin Wrochna, and Stanislav Živný . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17:1–17:13

A Simple Dynamization of Trapezoidal Point Location in Planar Subdivisions
Milutin Brankovic, Nikola Grujic, André van Renssen, and Martin P. Seybold . . . . 18:1–18:18

Faster Minimization of Tardy Processing Time on a Single Machine
Karl Bringmann, Nick Fischer, Danny Hermelin, Dvir Shabtay, and
Philip Wellnitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19:1–19:12

Fréchet Distance for Uncertain Curves
Kevin Buchin, Chenglin Fan, Maarten Löffler, Aleksandr Popov,
Benjamin Raichel, and Marcel Roeloffzen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20:1–20:20

Counting Homomorphisms in Plain Exponential Time
Andrei A. Bulatov and Amineh Dadsetan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21:1–21:18

From Holant to Quantum Entanglement and Back
Jin-Yi Cai, Zhiguo Fu, and Shuai Shao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22:1–22:16

Counting Perfect Matchings and the Eight-Vertex Model
Jin-Yi Cai and Tianyu Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23:1–23:18

Roundtrip Spanners with (2k − 1) Stretch
Ruoxu Cen, Ran Duan, and Yong Gu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24:1–24:11

New Extremal Bounds for Reachability and Strong-Connectivity Preservers
Under Failures

Diptarka Chakraborty and Keerti Choudhary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25:1–25:20

Matrices of Optimal Tree-Depth and Row-Invariant Parameterized Algorithm for
Integer Programming

Timothy F. N. Chan, Jacob W. Cooper, Martin Koutecký, Daniel Král’, and
Kristýna Pekárková . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26:1–26:19

Dynamic Longest Common Substring in Polylogarithmic Time
Panagiotis Charalampopoulos, Paweł Gawrychowski, and Karol Pokorski . . . . . . . . . 27:1–27:19

Improved Black-Box Constructions of Composable Secure Computation
Rohit Chatterjee, Xiao Liang, and Omkant Pandey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28:1–28:20



Contents 0:vii

Simplifying and Unifying Replacement Paths Algorithms in Weighted
Directed Graphs

Shiri Chechik and Moran Nechushtan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29:1–29:12

Sublinear Algorithms and Lower Bounds for Metric TSP Cost Estimation
Yu Chen, Sampath Kannan, and Sanjeev Khanna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30:1–30:19

Computational Complexity of the α-Ham-Sandwich Problem
Man-Kwun Chiu, Aruni Choudhary, and Wolfgang Mulzer . . . . . . . . . . . . . . . . . . . . . . . 31:1–31:18

Existence and Complexity of Approximate Equilibria in Weighted Congestion
Games

George Christodoulou, Martin Gairing, Yiannis Giannakopoulos, Diogo Poças,
and Clara Waldmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32:1–32:18

On Packing Low-Diameter Spanning Trees
Julia Chuzhoy, Merav Parter, and Zihan Tan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33:1–33:18

Online Two-Dimensional Load Balancing
Ilan Cohen, Sungjin Im, and Debmalya Panigrahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34:1–34:21

Conditionally Optimal Approximation Algorithms for the Girth of a
Directed Graph

Mina Dalirrooyfard and Virginia Vassilevska Williams . . . . . . . . . . . . . . . . . . . . . . . . . . . 35:1–35:20

Symmetric Arithmetic Circuits
Anuj Dawar and Gregory Wilsenach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36:1–36:18

An Efficient PTAS for Stochastic Load Balancing with Poisson Jobs
Anindya De, Sanjeev Khanna, Huan Li, and Hesam Nikpey . . . . . . . . . . . . . . . . . . . . . . 37:1–37:18

Tree Polymatrix Games Are PPAD-Hard
Argyrios Deligkas, John Fearnley, and Rahul Savani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38:1–38:14

Spectral Sparsification via Bounded-Independence Sampling
Dean Doron, Jack Murtagh, Salil Vadhan, and David Zuckerman . . . . . . . . . . . . . . . . . 39:1–39:21

Hard Problems on Random Graphs
Jan Dreier, Henri Lotze, and Peter Rossmanith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40:1–40:14

A Scaling Algorithm for Weighted f -Factors in General Graphs
Ran Duan, Haoqing He, and Tianyi Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41:1–41:17

The Outer Limits of Contention Resolution on Matroids and Connections to the
Secretary Problem

Shaddin Dughmi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42:1–42:18

Extending Partial 1-Planar Drawings
Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg 43:1–43:19

How to Hide a Clique?
Uriel Feige and Vadim Grinberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44:1–44:13

Sampling Arbitrary Subgraphs Exactly Uniformly in Sublinear Time
Hendrik Fichtenberger, Mingze Gao, and Pan Peng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45:1–45:13

ICALP 2020



0:viii Contents

A Water-Filling Primal-Dual Algorithm for Approximating Non-Linear Covering
Problems

Andrés Fielbaum, Ignacio Morales, and José Verschae . . . . . . . . . . . . . . . . . . . . . . . . . . . 46:1–46:15

Scattering and Sparse Partitions, and Their Applications
Arnold Filtser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47:1–47:20

Approximate Nearest Neighbor for Curves – Simple, Efficient, and Deterministic
Arnold Filtser, Omrit Filtser, and Matthew J. Katz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48:1–48:19

Computation of Hadwiger Number and Related Contraction Problems: Tight
Lower Bounds

Fedor V. Fomin, Daniel Lokshtanov, Ivan Mihajlin, Saket Saurabh, and
Meirav Zehavi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49:1–49:18

Node-Max-Cut and the Complexity of Equilibrium in Linear Weighted
Congestion Games

Dimitris Fotakis, Vardis Kandiros, Thanasis Lianeas, Nikos Mouzakis,
Panagiotis Patsilinakos, and Stratis Skoulakis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50:1–50:19

The Online Min-Sum Set Cover Problem
Dimitris Fotakis, Loukas Kavouras, Grigorios Koumoutsos, Stratis Skoulakis, and
Manolis Vardas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51:1–51:16

Efficient Diagonalization of Symmetric Matrices Associated with Graphs of
Small Treewidth

Martin Fürer, Carlos Hoppen, and Vilmar Trevisan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52:1–52:18

Counting Solutions to Random CNF Formulas
Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Kuan Yang . . . . . . . . . . . . . . . 53:1–53:14

Robust Algorithms for TSP and Steiner Tree
Arun Ganesh, Bruce M. Maggs, and Debmalya Panigrahi . . . . . . . . . . . . . . . . . . . . . . . . 54:1–54:18

Cryptographic Reverse Firewalls for Interactive Proof Systems
Chaya Ganesh, Bernardo Magri, and Daniele Venturi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55:1–55:16

Robust Algorithms Under Adversarial Injections
Paritosh Garg, Sagar Kale, Lars Rohwedder, and Ola Svensson . . . . . . . . . . . . . . . . . . 56:1–56:15

Minimum Cut in O(m log2 n) Time
Paweł Gawrychowski, Shay Mozes, and Oren Weimann . . . . . . . . . . . . . . . . . . . . . . . . . . 57:1–57:15

Sparse Recovery for Orthogonal Polynomial Transforms
Anna Gilbert, Albert Gu, Christopher Ré, Atri Rudra, and Mary Wootters . . . . . . . . 58:1–58:16

Hitting Long Directed Cycles Is Fixed-Parameter Tractable
Alexander Göke, Dániel Marx, and Matthias Mnich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59:1–59:18

On the Central Levels Problem
Petr Gregor, Ondřej Mička, and Torsten Mütze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60:1–60:17

Linearly Representable Submodular Functions: An Algebraic Algorithm for
Minimization

Rohit Gurjar and Rajat Rathi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61:1–61:15



Contents 0:ix

d-To-1 Hardness of Coloring 3-Colorable Graphs with O(1) Colors
Venkatesan Guruswami and Sai Sandeep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62:1–62:12

Feasible Interpolation for Polynomial Calculus and Sums-Of-Squares
Tuomas Hakoniemi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63:1–63:14

Active Learning a Convex Body in Low Dimensions
Sariel Har-Peled, Mitchell Jones, and Saladi Rahul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64:1–64:17

Node-Connectivity Terminal Backup, Separately-Capacitated Multiflow, and
Discrete Convexity

Hiroshi Hirai and Motoki Ikeda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65:1–65:19

A Dichotomy for Bounded Degree Graph Homomorphisms with Nonnegative
Weights

Artem Govorov, Jin-Yi Cai, and Martin Dyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66:1–66:18

Sublinear-Space Lexicographic Depth-First Search for Bounded Treewidth
Graphs and Planar Graphs

Taisuke Izumi and Yota Otachi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67:1–67:17

Scheduling in the Random-Order Model
Susanne Albers and Maximilian Janke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68:1–68:18

Online Algorithms for Weighted Paging with Predictions
Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69:1–69:18

Popular Matchings with One-Sided Bias
Telikepalli Kavitha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70:1–70:18

Obviously Strategyproof Single-Minded Combinatorial Auctions
Bart de Keijzer, Maria Kyropoulou, and Carmine Ventre . . . . . . . . . . . . . . . . . . . . . . . . . 71:1–71:17

Knapsack Secretary with Bursty Adversary
Thomas Kesselheim and Marco Molinaro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72:1–72:15

The Iteration Number of Colour Refinement
Sandra Kiefer and Brendan D. McKay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73:1–73:19

Towards Optimal Set-Disjointness and Set-Intersection Data Structures
Tsvi Kopelowitz and Virginia Vassilevska Williams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74:1–74:16

Kinetic Geodesic Voronoi Diagrams in a Simple Polygon
Matias Korman, André van Renssen, Marcel Roeloffzen, and Frank Staals . . . . . . . . 75:1–75:17

Polytopes, Lattices, and Spherical Codes for the Nearest Neighbor Problem
Thijs Laarhoven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76:1–76:14

Deterministic Sparse Fourier Transform with an `∞ Guarantee
Yi Li and Vasileios Nakos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77:1–77:14

Faster Random k-CNF Satisfiability
Andrea Lincoln and Adam Yedidia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78:1–78:12

Succinct Filters for Sets of Unknown Sizes
Mingmou Liu, Yitong Yin, and Huacheng Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79:1–79:19

ICALP 2020



0:x Contents

A (2 + ε)-Factor Approximation Algorithm for Split Vertex Deletion
Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, Geevarghese Philip,
and Saket Saurabh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80:1–80:16

Near Optimal Algorithm for the Directed Single Source Replacement
Paths Problem

Shiri Chechik and Ofer Magen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81:1–81:17

Quantum Distributed Complexity of Set Disjointness on a Line
Frédéric Magniez and Ashwin Nayak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82:1–82:18

Can Verifiable Delay Functions Be Based on Random Oracles?
Mohammad Mahmoody, Caleb Smith, and David J. Wu . . . . . . . . . . . . . . . . . . . . . . . . . . 83:1–83:17

On the Two-Dimensional Knapsack Problem for Convex Polygons
Arturo Merino and Andreas Wiese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84:1–84:16

Proportionally Fair Clustering Revisited
Evi Micha and Nisarg Shah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85:1–85:16

Breaking the Barrier of 2 for the Storage Allocation Problem
Tobias Mömke and Andreas Wiese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86:1–86:19

On the Complexity of Zero Gap MIP*
Hamoon Mousavi, Seyed Sajjad Nezhadi, and Henry Yuen . . . . . . . . . . . . . . . . . . . . . . . 87:1–87:12

Hypergraph Isomorphism for Groups with Restricted Composition Factors
Daniel Neuen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88:1–88:19

On Solving (Non)commutative Weighted Edmonds’ Problem
Taihei Oki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89:1–89:14

A General Stabilization Bound for Influence Propagation in Graphs
Pál András Papp and Roger Wattenhofer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90:1–90:15

Network-Aware Strategies in Financial Systems
Pál András Papp and Roger Wattenhofer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91:1–91:17

Nondeterministic and Randomized Boolean Hierarchies in Communication
Complexity

Toniann Pitassi, Morgan Shirley, and Thomas Watson . . . . . . . . . . . . . . . . . . . . . . . . . . . 92:1–92:19

A Spectral Bound on Hypergraph Discrepancy
Aditya Potukuchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93:1–93:14

Faster Dynamic Range Mode
Bryce Sandlund and Yinzhan Xu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94:1–94:14

An FPT-Algorithm for Recognizing k-Apices of Minor-Closed Graph Classes
Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos . . . . . . . . . . . . . . . . . . . . . . . 95:1–95:20

Contraction: A Unified Perspective of Correlation Decay and Zero-Freeness of
2-Spin Systems

Shuai Shao and Yuxin Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96:1–96:15

Quasi-Majority Functional Voting on Expander Graphs
Nobutaka Shimizu and Takeharu Shiraga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97:1–97:19



Contents 0:xi

Property Testing of LP-Type Problems
Rogers Epstein and Sandeep Silwal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98:1–98:18

Lower Bounds for Dynamic Distributed Task Allocation
Hsin-Hao Su and Nicole Wein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99:1–99:14

On the Degree of Boolean Functions as Polynomials over Zm

Xiaoming Sun, Yuan Sun, Jiaheng Wang, Kewen Wu, Zhiyu Xia, and
Yufan Zheng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100:1–100:19

On Quasipolynomial Multicut-Mimicking Networks and Kernelization of
Multiway Cut Problems

Magnus Wahlström . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101:1–101:14

Hardness of Equations over Finite Solvable Groups Under the Exponential Time
Hypothesis

Armin Weiß . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102:1–102:19

Graph Isomorphism in Quasipolynomial Time Parameterized by Treewidth
Daniel Wiebking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103:1–103:16

Parameterized Inapproximability for Steiner Orientation by Gap Amplification
Michał Włodarczyk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104:1–104:19

Near-Optimal Algorithm for Constructing Greedy Consensus Tree
Hongxun Wu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105:1–105:14

Track B: Automata, Logic, Semantics, and Theory of Programming

Decision Problems in Information Theory
Mahmoud Abo Khamis, Phokion G. Kolaitis, Hung Q. Ngo, and Dan Suciu . . . . . . 106:1–106:20

Invariants for Continuous Linear Dynamical Systems
Shaull Almagor, Edon Kelmendi, Joël Ouaknine, and James Worrell . . . . . . . . . . . . . 107:1–107:15

On Higher-Order Cryptography
Boaz Barak, Raphaëlle Crubillé, and Ugo Dal Lago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108:1–108:16

Cost Automata, Safe Schemes, and Downward Closures
David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Paweł Parys . . . . . . . 109:1–109:18

Sensitive Instances of the Constraint Satisfaction Problem
Libor Barto, Marcin Kozik, Johnson Tan, and Matt Valeriote . . . . . . . . . . . . . . . . . . . .110:1–110:18

The Complexity of Bounded Context Switching with Dynamic Thread Creation
Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and
Georg Zetzsche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111:1–111:16

Two Variable Logic with Ultimately Periodic Counting
Michael Benedikt, Egor V. Kostylev, and Tony Tan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112:1–112:16

Single-Use Automata and Transducers for Infinite Alphabets
Mikołaj Bojańczyk and Rafał Stefański . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113:1–113:14

Weakly-Unambiguous Parikh Automata and Their Link to Holonomic Series
Alin Bostan, Arnaud Carayol, Florent Koechlin, and Cyril Nicaud . . . . . . . . . . . . . . . .114:1–114:16

ICALP 2020



0:xii Contents

On the Size of Finite Rational Matrix Semigroups
Georgina Bumpus, Christoph Haase, Stefan Kiefer, Paul-Ioan Stoienescu, and
Jonathan Tanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115:1–115:13

Rational Subsets of Baumslag-Solitar Groups
Michaël Cadilhac, Dmitry Chistikov, and Georg Zetzsche . . . . . . . . . . . . . . . . . . . . . . . . .116:1–116:16

On Polynomial Recursive Sequences
Michaël Cadilhac, Filip Mazowiecki, Charles Paperman, Michał Pilipczuk, and
Géraud Sénizergues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117:1–117:17

A Recipe for Quantum Graphical Languages
Titouan Carette and Emmanuel Jeandel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118:1–118:17

On the Power of Ordering in Linear Arithmetic Theories
Dmitry Chistikov and Christoph Haase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119:1–119:15

The Post Correspondence Problem and Equalisers for Certain Free Group and
Monoid Morphisms

Laura Ciobanu and Alan D. Logan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120:1–120:16

Timed Games and Deterministic Separability
Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski . . . . . . . . . . . . . . . . . . 121:1–121:16

Dynamic Complexity of Reachability: How Many Changes Can We Handle?
Samir Datta, Pankaj Kumar, Anish Mukherjee, Anuj Tawari, Nils Vortmeier,
and Thomas Zeume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122:1–122:19

The Strahler Number of a Parity Game
Laure Daviaud, Marcin Jurdziński, and K. S. Thejaswini . . . . . . . . . . . . . . . . . . . . . . . . 123:1–123:19

On the Structure of Solution Sets to Regular Word Equations
Joel D. Day and Florin Manea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124:1–124:16

From Linear to Additive Cellular Automata
Alberto Dennunzio, Enrico Formenti, Darij Grinberg, and Luciano Margara . . . . . .125:1–125:13

The Complexity of Knapsack Problems in Wreath Products
Michael Figelius, Moses Ganardi, Markus Lohrey, and Georg Zetzsche . . . . . . . . . . . 126:1–126:18

The Adversarial Stackelberg Value in Quantitative Games
Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin . . . . . . . . . . . . . . . . . 127:1–127:18

The Topology of Local Computing in Networks
Pierre Fraigniaud and Ami Paz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128:1–128:18

The Complexity of Verifying Loop-Free Programs as Differentially Private
Marco Gaboardi, Kobbi Nissim, and David Purser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129:1–129:17

Logical Characterisation of Hybrid Conformance
Maciej Gazda and Mohammad Reza Mousavi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130:1–130:18

Hrushovski’s Encoding and ω-Categorical CSP Monsters
Pierre Gillibert, Julius Jonušas, Michael Kompatscher, Antoine Mottet, and
Michael Pinsker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131:1–131:17



Contents 0:xiii

Descriptive Complexity on Non-Polish Spaces II
Mathieu Hoyrup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132:1–132:17

On Decidability of Time-Bounded Reachability in CTMDPs
Rupak Majumdar, Mahmoud Salamati, and Sadegh Soudjani . . . . . . . . . . . . . . . . . . . . . 133:1–133:19

When Is a Bottom-Up Deterministic Tree Translation Top-Down Deterministic?
Sebastian Maneth and Helmut Seidl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134:1–134:18

Implicit Automata in Typed λ-Calculi I: Aperiodicity in a Non-Commutative Logic
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Preface

This volume contains the papers presented at the 47th International Colloquium on Auto-
mata, Languages and Programming (ICALP 2020), held virtually, hosted by the Saarland
Informatics Campus in Saarbrücken, Germany, during July 8–11, 2020. ICALP is a series of
annual conferences of the European Association for Theoretical Computer Science (EATCS),
which first took place in 1972. ICALP 2020 was co-located with the 35th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2020).

The conference was affected by the outbreak of COVID-19, which had an enormous
impact across the world and the ICALP community was no exception. The original plan had
been to hold ICALP 2020, in conjunction with LICS 2020 at Peking University in Beijing,
China. When it became clear that this would not be possible due to travel restrictions that
were being imposed, and after intensive discussions between the ICALP and LICS steering
committees, together with the PC chairs and conference chairs, it was decided to re-locate
the conferences to Saarbrücken. Eventually, keeping the safety, health and well-being of
ICALP participants as a top priority, it was decided to hold ICALP 2020 entirely online. We
are very grateful to the organizers in Beijing and Saarbrücken and to all members of the
theoretical computer science community for their flexibility and adaptability in this difficult
situation. This first online ICALP is an experiment forced on us by the situation and will no
doubt offer many lessons for the future.

For 15 years, the ICALP conference ran with three tracks. This has been the subject of
much deliberation in the ICALP community in recent years and the decision was taken, with
ICALP 2020, to return to a two-track format. Topics previously included in Track C have
been incorporated into Track A. This year, the ICALP program consisted of the following
two tracks:

Track A: Algorithms, Complexity, and Games.
Track B: Logic, Semantics, Automata and Theory of Programming.

In response to the call for papers, a total of 470 submissions were received: 347 for Track
A and 123 for Track B. Each submission was assigned to at least three Program Committee
members, aided by 857 external subreviewers. The committees decided to accept 138 papers
for inclusion in the scientific program: 102 papers for Track A and 36 for Track B. The
selection was made by the Program Committees based on originality, quality, and relevance
to theoretical computer science. The quality of the manuscripts was very high indeed, and
many deserving papers could not be selected.

The EATCS sponsored awards for both a best paper and a best student paper in each of
the two tracks, selected by the Program Committees.
The best paper awards were given to the following papers:
Track A: Paweł Gawrychowski, Shay Mozes, and OrenWeimann. Minimum cut in O(m log2 n)

time.
Track B: David Barozzini, Lorenzo Clemente, Thomas Colcombet and Paweł Parys. Cost

automata, safe schemes, and downward closures.

The best student paper awards, for papers that are solely authored by students, were
given to the following papers:
Track A: Aditya Potukuchi. A spectral bound on hypergraph discrepancy.
Track B: Erik Paul. Finite sequentiality of finitely ambiguous max-plus tree automata.
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Apart from the contributed talks, ICALP 2020 included invited presentations by Stefan
Kiefer (Oxford University), Robert Krauthgamer (The Weizmann Institute of Science) and
Virginia Vassilevska Williams (MIT). There were also two invited talks joint with LICS 2020:
by Jerôme Leroux (Bordeaux University) and Andrew Chi-Chih Yao (Tsinghua University).
This volume contains all the contributed papers presented at the conference, papers that
accompany the invited talks of Andrew Yao and Stefan Kiefer, and an abstract of the invited
presentation of Robert Krauthgamer.

The program of ICALP 2020 also included presentations of the EATCS Award 2020
to Mihalis Yannakakis, the Gödel Prize 2020 to Robin A. Moser and Gábor Tardos, the
Presburger Award 2020 to Dmitriy Zhuk, and the EATCS Distinguished Dissertation Awards
to Josh Alman, Sándor Kisfaludi-Bak, and Jakub Tarnawski.

The following workshops were held as satellite events of ICALP and LICS 2020 on
July 6–7, 2020:

Algorithmic Aspects of Temporal Graphs (AATG),
Fine-Grained and Parameterized Approximation Algorithms (FG-PAAW),
Verification of Infinite-State Systems (INFINITY),
Logic and Computational Complexity Workshop (LCC 2020),
Logic Mentoring Workshop (LMW),
Programming Research in Mainstream Languages (PRiML).

We wish to thank all authors who submitted extended abstracts for consideration, the
Program Committees for their scholarly effort, and all the referees who assisted the Program
Committees in the evaluation process. We are also grateful to the Conference Co-Chairs
Xiaotie Deng and Holger Hermanns and all the support staff of the Organizing Committee
for organizing ICALP 2020: to our colleagues in Peking University, led by Xiaotie Deng, for
their organizational efforts in the originally planned location in Beijing, and to the colleagues
from Saarbrücken, led by Holger Hermanns, who generously accepted the challenging task of
organizing the conference at short notice, and who were then ready to run the conference
online. Finally, we are grateful to all members of the TCS community who offered their
support in this difficult situation.

We wish to thank CPEC — Center for Perspicuous Computing and Saarland University
in Saarbrücken for their generous support for the conference.

We would like to thank Anca Muscholl, the Chair of the ICALP Steering Committee, for
her continuous support and Paul Spirakis, the president of EATCS, for his generous advice
on the organization of the conference.

July 2020 Artur Czumaj
Anuj Dawar
Emanuela Merelli
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Abstract
In the Bitcoin system, miners are incentivized to join the system and validate transactions through
fees paid by the users. A simple “pay your bid” auction has been employed to determine the
transaction fees. Recently, Lavi, Sattath and Zohar [8] proposed an alternative fee design, called
the monopolistic price (MP) mechanism, aimed at improving the revenue for the miners. Although
MP is not strictly incentive compatible (IC), they studied how close to IC the mechanism is for iid
distributions, and conjectured that it is nearly IC asymptotically based on extensive simulations and
some analysis. In this paper, we prove that the MP mechanism is nearly incentive compatible for
any iid distribution as the number of users grows large. This holds true with respect to other attacks
such as splitting bids. We also prove a conjecture in [8] that MP dominates the RSOP auction in
revenue (originally defined in Goldberg et al. [5] for digital goods). These results lend support to
MP as a Bitcoin fee design candidate. Additionally, we explore some possible intrinsic correlations
between incentive compatibility and revenue in general.
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1 Introduction

Bitcoin, and more broadly blockchain systems, rely on the willingness of honest players to
participate in the system. A good blockchain system should have simple, practical designs
with suitable security guarantees against cheating. The incentive compatibility (IC) concept
which seeks to incentivize the participants to be truthful is playing an increasingly central
role in the design of distributed financial systems.

Recently, Lavi, Sattath and Zohar [8] started a study of the subject of Bitcoin Fee Market
design. In this market, there are two kinds of players: the users who have transaction records
that need to be certified and registered in the bitcoin system, and the miners who create new
blocks to include the transactions and get them certified. Each user declares the maximal
amount she is willing to pay for her transaction, and the miners use a mechanism to decide
which transactions to include and how much fee to charge each user. A primary focus of their
study is the Monopolistic Price (MP) mechanism, which is a natural and practical mechanism,
although not IC in the strict sense (see Section 2 below). Their extensive simulations indicate
that the mechanism does not deviate too much from being IC for most iii distributions, as
the number of users n grows large. An analysis was given for the special case of discrete
distributions of finite size. They suggest that MP might be a good alternative to the “pay
your bid” auction, which is subject to low bids and revenue. It is posed as a conjecture that
the MP mechanism is nearly-IC for general iid distributions.
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1:2 Bitcoin Fee Designs

We will prove that MP is nearly-IC for any iid distribution as n grows large, thus
mathematically validating the strong simulation results obtained in [8]. Note that the
standard IC criterion (in auction market) only addresses one kind of attack, namely, the
reporting of an untruthful bid value. There are other possible attacks by Bitcoin users:
for example, in the multiple strategic bids (MSB) attack discussed in [8], a user could gain
advantage by splitting his transaction into several transactions and bidding separately. This
strategy could even enable a losing transaction to be included in the block. We will also
prove the nearly-IC conjecture for MP with respect to the MSB attack.

We consider another mechanism, called the RSOP (Random Sampling Optimal Price)
auction, which was first defined by Goldberg et al. [5] in the digital goods context and
shown to be truthful. We prove that the RSOP revenue is always dominated by the MP
revenue, as conjectured in [8]. In fact, the revenue difference can be arbitrarily large for some
distributions, prompting us to look more deeply into possible correlation between IC and
revenue in general (Theorem 6-8).

The contributions of the present paper are two-fold. First, we prove the Monopolistic
Price mechanism to be nearly-IC, confirming the previous strong experimental data. This
holds true against the MSB attack as well. We also show MP to dominate the RSOP auction
in revenue. These results lend support to MP as a Bitcoin fee design candidate. Secondly, the
methodology used in our proofs involves sophisticated mathematical analysis. It demonstrates
that theoretical computer science can provide powerful tools to complement system design
for blockchains. Finally, we believe that the emerging area of incentive compatible blockchain
design is an exciting research area with many intriguing problems to solve, for theorists and
system designers alike.

Related Work. The basic model for Bitcoin fee market introduced in [8] in fact resembles
the maximum revenue problem for Digital Goods as considered by Goldberg et al. [4][5]. The
MP mechanism is similar to the optimal omniscient auction in [5]. However, The Bitcoin fee
market differs from digital goods in its additional features: such as the auctioneer may delete
or insert bids, or the users may split bids. This makes the Bitcoin fee design a rich and
relevant new research subject for auction theory and mechanism design. Among those work
closely related to the current subject include Babaioff et al. [1], Kroll et al. [7], Carlsten et
al. [3], Bonneau [2], Huberman et al. [6]. To formulate meaningful incentive models, there is
much research work in Bitcoin which provides important ingredients for consideration. A
more complete survey of related work can be found in [8, Section 1.3].

2 Review of the Models and Known Results

For background, we first review some Bitcoin fee models and mechanisms previously con-
sidered. A miner acts as a monopolist who offers n users to include their transactions in the
miner’s next block for a fee. Each user i has one transaction that needs this service and is
willing to pay a fee up to some value vi. The miner’s problem is to design a mechanism to
extract good revenue. The standard Bitcoin mechanism in use is a pay-your-bid system, where
the miner simply takes the highest bids to fill the capacity of the block. This mechanism
may not receive good revenue, since some bidders may not reveal the true value of the fees
they are willing to pay. In view of this, some alternative mechanisms are proposed in [8] and
their security properties considered, which we will review below.
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2.1 The Monopolistic Price (MP) Mechanism

Suppose user i bids vi for 1 ≤ i ≤ n. Sort v1, · · · , vn into a decreasing sequence b1 ≥ b2 ≥
· · · ≥ bn. Consider the expression k · bk and let k∗(v) be the k maximizing k · bk over all k
(in case of ties, k∗ is taken to be the maximal one). The miner will include all users with
the highest bids b1, b2, · · · bk∗(v) and simply charge each one of them the same fee bk∗(v).
Call this the monopolistic price pmono(v) = bk∗(v). This mechanism gives the miner revenue
MP (v) = k∗ · bk∗(v), which is obviously the maximum revenue obtainable if all accepted bids
must be charged a single price.

The above MP Mechanism is not truthful. To analyze how serious the non-truthfulness
can be, consider the following model. For any user i with bid vi and the vector of bids
v−i = (v1, · · · , vi−1, vi+1, · · · vn) of the other users, let

phonest(vi, v−i) = pmono(vi, v−i), and
pstrategic(v−i) = min{vi |pmono(vi, v−i) ≤ vi}.

The temptation for user i to shade her bids can be measured by the discount ratio δi
defined as:

δi(vi, v−i) =
{

1− pstrategic(v−i)
phonest(vi, v−i) if vi ≥ pstrategic(v−i),

0 otherwise.

This ratio captures the gain a user can obtain by bidding strategically (instead of truthfully).
Assume all true values vi are drawn iid from some distribution F on [0,∞). Two measures
are defined: the worst-case measure and the average case one. For the former, let

δmax(v) = max
i
δi(vi, v−i),

∆max
n = E(v1,··· ,vn)∼F [δmax(v)].

For the latter, let

∆average
n = E(v1,··· ,vn)∼F [δ1(v1, v−1)].

Clearly, for every F and n, we have ∆max
n ≥ ∆average

n , since δmax(v) ≥ δi(vi, v−i) for any v.
For the special case of discrete distributions of finite size, the following is known.

I Theorem A ([8, Theorem 2.3]). For any distribution F with a finite support size,
limn→∞∆max

n (F ) = 0. (This implies also limn→∞∆average
n (F ) = 0 for such F .)

Based on extensive simulations done for a variety of distributions, it was conjectured that
MP is nearly IC for general iid distributions as n gets large.

Nearly IC Conjecture for MP

1. For any distribution F , limn→∞∆average
n (F ) = 0. Specifically ∆average

n (F ) = O( 1
n ).

2. If F has a bounded support, limn→∞∆max
n (F ) = 0. Specifically ∆max

n (F ) = O( 1
n ).

3. There exists a distribution F with an unbounded support such that limn→∞∆max
n (F ) > 0.

In the O-notation above, the constants may depend on F . The main purpose of our
paper is to settle the Nearly IC Conjecture for MP in the positive (see Theorem 1–3).

ICALP 2020
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A stronger attack, called the Multiple Strategic Bids (MSB) attack was also raised
in [8]. They observed that a user could gain advantage by splitting his bid into several
transactions with separate bids; this strategy could enable a losing transaction to be included
in the block. We note that, under this strategy,

pmulti(v−i) = min
{
u · v(u)

i | v
(1)
i ≥ · · · ≥ v(u)

i ≥ pmono(v(1)
i , · · · , v(u)

i , v−i)
}
,

δi(vi, v−i) =
{

1− pmulti(v−i)
phonest(vi, v−i) if vi ≥ pmulti(v−i),

0 otherwise.

We show that the Nearly IC Conjecture for MP remains true under the MSB attack (see
Theorem 4) as conjectured in [8].

2.2 The Random Sampling Optimal Price (RSOP) Auction
We consider another mechanism, called the RSOP (Random Sampling Optimal Price) auction,
first defined by Goldberg et al. [5] in the digital goods context.

IDefinition (RSOP auction). Upon receiving n bids v = (v1, · · · , vn), the auctioneer randomly
partitions the bids into two disjoint sets A and B, and computes the monopolistic price
for each set: PmonoA , PmonoB (with the monopolistic price for an empty set being set to
0). Finally, the set of winning bids is A′ ∪ B′, where A′ = {i ∈ A : vi ≥ PmonoB } and
B′ = {i ∈ B : vi ≥ PmonoA }. The bidders in A′ each pays PmonoB , and the bidders in B′ each
pays PmonoA .

Note the revenue obtained in this auction is

RSOP (v) = |A′| · PmonoB + |B′| · PmonoA .

I Theorem B (Goldberg et al. [5]). The RSOP auction is truthful. For any v = (v1, · · · , vn)
with vi ∈ [1, D] (where D is a constant) for all i, we have

lim
n→∞

max
v

MP (v)
RSOP (v) = 1.

In [8], several variants of RSOP were examined and simulation carried out which led to
the following conjecture.

Dominance Conjecture of MP over RSOP. [8, Conjecture 5.4]
For any v and all choices of A and B, the RSOP revenue is at most the monopolistic price
revenue. That is, RSOP (v) ≤MP (v).

The MP Dominance Conjecture has relevance to the robustness of RSOP against adding
false bids or deleting bids by the auctioneer (see discussions in [8]). In the present paper we
prove the MP Dominance Conjecture to be true.

3 Main Results

In this paper we settle the Nearly-IC Conjecture (even allowing for the MSB attack) and
the MP Dominance Conjecture mentioned above: the former in Theorem 1–4, and the
latter in Theorem 5. Additionally, we investigate the possible correlation between incentive
compatibility and revenue. In this regard, we demonstrate that distributions with unbounded
support can exhibit different characteristics from the bounded ones, and these findings will
be presented in Theorems 6–8.
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3.1 Nearly Incentive Compatibility of MP
We prove the Nearly-IC Conjecture, part (1)-(3), in Theorems 1-3 respectively. Let the
Inverse distribution Inv be defined as PrInv{X > x} = 1

x for x ∈ [1,∞).

I Theorem 1. For any distribution F on bounded support, limn→∞∆max
n (F ) = 0.

I Theorem 2. For any distribution F , limn→∞∆average
n (F ) = 0.

I Theorem 3. For F = Inv, limn→∞∆max
n (F ) > c for all n, where c > 0 is some absolute

constant.

I Theorem 4. With respect to the MSB attack, the MP mechanism is nearly incentive
compatible, i.e., Theorems 1-2 are still valid.

I Remark. The proof of Theorem 4 uses similar techniques as Theorems 1-2 and will be
omitted in this paper. We remark that Theorem 1 can be refined to show that ∆max

n (F ) =
O( 1

nβ
) where β > 0 is a constant independent of F , while the constant in the O-notation

is F -dependent. Similarly, Theorem 2 can be strengthened to ∆average
n (F ) = O( 1

nβ
) when

F satisfies supx x(1− F (x)) < ∞. The analysis follows the same outline as the proofs for
Theorems 1, 2 above but the details are more complicated. They will be left for a later
version of the paper.

3.2 The Effect of IC on Revenue
The following theorem settles the Dominance Conjecture of MP over RSOP.

I Theorem 5. For any v, RSOP (v) ≤MP (v).

Theorem B of Goldberg et al. [5] says that, RSOP yields asymptotically the same revenue
as the MP mechanism when the distribution F has a bounded support [1, D]. We point out
that this is not always true when F has infinite support. For the distribution F = Inv, MP
can extract infinite revenue versus a finite amount by RSOP.

I Theorem 6. For F = Inv,

lim
n→∞

1
n
Ev1,··· ,vn∼F [MP (v)] =∞, while

lim
n→∞

1
n
Ev1,··· ,vn∼F [RSOP (v)] = 1.

One may ask, could the revenue gap between MP and RSOP be attributable to the fact
that RSOP is IC while MP drastically deviates from IC (as demonstrated in Theorem 3)? In
other words, could the property derived in Theorem 3, limn→∞∆max

n (F ) > c, be a necessary
condition for any mechanism to achieve infinite revenue on F = Inv? The following theorem
shows that this is not the case.

Let n ≥ 1 and M be a fee mechanism for n bidders. For a bid vector v = (v1, · · · , vn),
let δmax(M,v) be the maximum of δi(vi, v−i) for any i when M is applied to v. Let
∆max
n (M,F ) = Ev1,··· ,vn∼F [δmax(M,v)]. Also, let M(v) denote the revenue collected by M .

I Theorem 7. For any n and ε > 0, there exists a fee mechanism M for n users such that
∆max
n (M, Inv) ≤ ε and Ev1,··· ,vn∼Inv[M(v)] =∞.

Note that δmax and ∆max
n are not the only ways to quantify a mechanism’s closeness

to being incentive compatible. Two standard ways to define being ε-close to IC (or more
generally, to Nash equilibrium) are

ICALP 2020
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(1) Additively ε-close: p(vi, v−i)− p∗i (v−i) ≤ ε,
(2) Multiplicatively ε-close: p(vi, v−i)− p∗i (v−i) ≤ ε(vi − p(vi, v−i)),
where p∗i (v−i) is defined as the minimum bid value u for user i that would allow her to be
among the winners when the bid vector is v = (u, v−i).

We will show that, adopting the “multiplicatively ε-close” definition, one can obtain
nearly IC mechanisms that derive infinite revenue under the distribution F = Inv.

Let M be any IC mechanism (such as RSOP). For any bid vector v, let pi(v) be the fee
paid by user i (if i is a winner), and ui(v) = vi − pi(v) be the utility. For any 0 ≤ ε < 1, let
Mε be the mechanism that uses the same allocation rule as M , with the fee modified to be
p′i(v) = pi(v) + ε

1+ε ui(v). The following theorem is easy to prove.

I Theorem 8.
(a) Mε is multiplicatively ε-close to IC;

(b) lim
n→∞

1
n
Ev∼F [RMε

(v)] = lim
n→∞

1
n
Ev∼F [RM (v)] + ε

1 + ε
lim
n→∞

1
n
Ev∼F (

∑
i

ui(v)).

Theorem 8 implies that RSOP can be easily modified to become a multiplicatively ε-close-to-IC
mechanism such that, like MP, its revenue is infinite under F = Inv.

We will prove Theorems 1-3, 5 in the following sections. The proof for the Multiple
Strategic Bids model of Theorem 4 is similar in essence to the basic model, and hence will
be omitted. We also leave out the proofs of Theorem 6-8.

4 An Overview of the Proof for Theorem 1

Theorem 1 is the most difficult to prove. In this section we give some intuition and an
overview of the proof.

Let F be a distribution over [0, D]. Let v1, · · · , vn be generated according to iid F , and
denote by b1 ≥ b2 ≥ · · · ≥ bn the sorted list of the v′is. By Claim A9 in [8], δmax(b) =
δ1(b1, b−1), i.e. the maximum discount ratio is achieved by the user with the highest bid.
This leads immediately to a necessary condition on w, the optimal strategic bid by the
highest bidder, as we state below.

I Lemma 1 (Optimal Strategic Bid (OSB) Condition). Let k∗ = k∗(b). If δmax(b) ≥ η, where
0 < η ≤ 1, then there exists w ∈ [0, (1− η)bk∗ ] such that iw · w ≥ k∗ · bk∗ −D, where iw is
defined by biw ≥ w > biw+1.

Lemma 1 states that, in order to have a sizable η, there has to exist a w some distance
away from bk∗ such that iw · w is only a constant D smaller than the sampled maximum
R(b) = k∗ · bk∗ . We will prove Theorem 1 by showing that a random b is stochastically
unlikely to satisfy the OSB necessary condition.

As a start, we prove Theorem 1 when the distribution F has a unique α0 > 0 where
A = supα α(1 − F (α)) is achieved. The law of large number implies that, for large n,
every w ≤ α0(1 − 1

2η) satisfies iw · w < (A − ρ)n (where ρ is some fixed constant) with
overwhelming probability. Coupled with the fact bk∗−α0 = O( 1√

n
) and k∗ ·bk∗ = A·n+O(

√
n)

probabilistically, we see that the OSB condition in Lemma 1 cannot hold. Hence we have
shown Theorem 1 for the case when supα α(1− F (α)) has a maximum achieved at a unique
point α = α0.
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The above argument does not apply when supα α(1− F (α)) achieves maximum value at
multiple points. As an extreme case, consider the Inverse distribution modified as follows:

Inv(D)(x) =
{

1− 1
x for 1 ≤ x < D,

1 for x = D.

In this case, x(1− Inv(D)(x)) = 1 for all 1 ≤ x < D.
Hence the challenge is to prove that, even for extreme cases like the above, the OSB

condition in Lemma 1 cannot be met except with vanishingly small probability. At the top
level, we wish to show that, in any two subintervals I, J ⊆ [0, D] separated by a non-negligible
distance, the maximum values AI = max{j · bj |bj ∈ I} and AJ = max{j · bj |bj ∈ J} cannot
achieve perfect correlation to allow |AI −AJ | = O(1) except with negligible probability for
large n. This claim takes a non-trivial proof since intervals AI and AJ , being taken from the
sorted version b of v, are correlated to a certain degree.

Before proving Theorem 1, we first recast Lemma 1 in an new form which does not
reference the quantity w. The main advantage of Lemma 1A is that, the condition now refers
only to the quantities b1, · · · , bn, thus making it easier to analyze how likely the condition
can be satisfied stochastically.

I Lemma 1A (Optimal Strategic Bid (OSB) Condition). Let k∗ = k∗(b) and 0 < η < 1. If
δmax(b) ≥ η, then there exists bj ∈ [0, bk∗(1− 1

2η)] such that j · bj ≥ k∗ · bk∗ − 2D2

η·bk∗
.

Proof. Take the w as specified in Lemma 1. The following constraints are satisfied: write
i = iw and B = k∗ · bk∗ , then

bk∗ − η · bk∗ ≥ w, (1)
i · w ≥ B −D. (2)

Let ∆j = bk∗ − bj for j ∈ {i, i + 1}. Let 0 ≤ λ < 1 such that w = λbi + λ′bi+1 where
λ′ = 1− λ. It is easy to verify from Eq. (1), (2) that

λ∆i + λ′∆i+1 ≥ η · bk∗ , (3)
λ(i · bi) + λ′ ((i+ 1)bi+1) ≥ B −D. (4)

Note that Eq. (4) implies

max{i · bi, (i+ 1)bi+1} ≥ B −D. (5)

We now prove Lemma 1A.

Case 1. If ∆i >
1
2η · bk∗ , then choose j ∈ {i, i+ 1} depending on which gives the larger j · bj .

This j satisfies Lemma 1A, as a consequence of Eq. (1) and (5).
Case 2. ∆i ≤ 1

2η · bk∗ . Eq. (3) implies λ′D ≥ 1
2η · bk∗ , and thus

λ′ ≥ η · bk∗
2D . (6)

From Eq. (4) and the fact i · bi ≤ B, we have

λ′ ((i+ 1)bi+1) ≥ λ′B −D.

Using Eq. (6), we obtin

(i+ 1)bi+1 ≥ B −
2D2

η · bk∗
.

Taking j = i+ 1 satisfies Lemma 1A. J

ICALP 2020
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5 Proof of Theorem 1

For simplicity of presentation, we assume that F has support [1, D]. Without loss of generality,
we can assume that F (x) < F (D) = 1 for any x < D. Some additional arguments are needed
for the general case [0, D]; we omit them here.

We will demonstrate that for a random b, the condition stated in Lemma 1A occurs with
probability at most O( (logn)2

√
n

). That is, stochastically, the pair (bj , bk∗) with the stated
property rarely exists. First some notation. Let HF (x) = Prz∼F {z ≥ x} = 1− F (x−). To
start the proof, we pick a point D1 ∈ [1, D] with the following properties:
P1: (D1, D] is a forbidden zone for bk∗ . Precisely, for a random b, the probability of

bk∗ ∈ (D1, D] is e−Ω(n).
P2: Prx∼F {x ∈ [D1, D]} > 0.

I Fact 1. D1 exists.

Proof. Let αmax be the maximal α achieving supα{α ·HF (α)}.
Case 1. If αmax = D, then (D1, D] is empty and Prx∼F {x ∈ [D1, D]} = D ·HF (D) > 0.
Case 2. If αmax < D, then choose any D1 ∈ (αmax, D). Choose ∆ = 1

2 (D1 − αmax). Then
for large n, the probability of bk∗ ∈ [0, αmax + ∆] is 1− e−Ω(n), satisfying P1. We also
have Prx∼F {x ∈ [D1, D]} ≥ 1− F (D1) > 0, thus satisfying P2. J

Divide [1, D1] into disjoint intervals of length ε, that is, write [1, D1] = ∪m`=1I` where
I` = [1 + (`− 1)ε, 1 + `ε) for 1 ≤ ` < m, and Im = [1 + (m− 1)ε, 1 +mε]. Take a random
b, which is the sorted list of iid v1, · · · , vn ∼ F . Let Amax` denote the random variable
max{i · bi| bi ∈ I`}. Let Amax>` be the random variable max{i · bi | bi ∈ I`+1 ∪ · · · ∪ Im}. Let
W` denote the event that

Amax>(`+1) −
D2

ε
≤ Amax` ≤ Amax>(`+1).

Now note that, for δmax(b) > 2ε, the OSB condition for (Bj , bk∗) in Lemma 1A can hold
only if either 1) bj ∈ I` and bk∗ ∈ I`+2 ∪ · · · ∪ Im for some `, or 2) bk∗ ∈ (D1, D].

I Lemma 2. Pr{δmax(b) > 2ε} ≤
∑m−2
`=1 Pr{W`}+ e−Ω(n).

Proof. Immediate from property P1 and Lemma 1A. J

The rest of this section is devoted to the proof of the following lemma, which indicates
that Amax` and Amax>(`+1) are not correlated to be nearly identical.

I Lemma 3 (Weak Correlation Lemma). For each 1 ≤ ` ≤ m− 2, Pr{W`} = O( (logn)2
√
n

).

There are two cases to consider.
Case 1. Prx∼F {x ∈ I`+1} > 0;
Case 2. Prx∼F {x ∈ I`+1} = 0.

We give the proof of Case 1. The proof for Case 2 uses the same general idea, and will only
be sketched with details omitted here. Assume we have Case 1. Let G be the distribution
(normalized) when F is restricted to the interval L ≡ I`+1 ∪ I`+2 ∪ · · · ∪ Im ∪ [D1, D]. Let

ρ0 = Prx∼G{x ∈ I`+1} > 0, and
ρ1 = Prx∼G{x ∈ [D1, D]} > 0.

Consider the generation of a random b in the following alternative (but equivalent) way.
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Phase 1. Generate a random integer N so that

Pr{N = s} =
(
n

s

)
qs(1− q)n−s

for 0 ≤ s ≤ n, where q = Prx∼F {x ∈ L}.
Phase 2. Generate n − N iid random numbers v1, · · · , vN−n ∼ F |I1∪···∪I` , and sort them

into decreasing order bN+1, bN+2, · · · , bn. (Note that Amax` is already determined after
the completion of Phase 2.)

Phase 3. Generate v1, v2, · · · , vN ∼ G one number at a time. After step t, we sort the
numbers v1, v2, · · · , vt into decreasing order b(t)1 ≥ b

(t)
2 ≥ · · · ≥ b

(t)
t . Let

A(t) = max{i · b(t)i | b
(t)
i ∈ I`+2 ∪ I`+3 ∪ · · · ∪ Im}.

At time t = N , A(N) is exactly the same random variable as Amax>(`+1).

We prove two facts below, from which Lemma 3 follows immediately.

I Fact 2. In Phase 1, N ≥ 1
2 q n with probability 1− e−Ω(n).

Proof. Chernoff’s bound. J

After Phase 1 and 2, we have N and K = Amax` decided. To prove Lemma 3 we only
need to show that, in Phase 3, there is enough randomness so that A(N) is unlikely to have a
value within an additive constant D2

ε to K.
Let us examine the evolution of A(t) as a random process of infinite length. The random

sequence A(t) satisfies A(0) = 0, and

A(t)


= A(t−1) with probability ρ0,

≥ A(t−1) + 1 with probability ρ1,

≥ A(t−1) otherwise,

for t ≥ 1.

I Fact 3. At t = N , we have

Pr{|A(N) −K| < D2

ε
} = O( (logN)2

√
N

) = O( (logn)2
√
n

).

Proof Sketch. Let s be the total number of times in the above process when either the second
or third selection is made by A(t), for 1 ≤ t ≤ N . Let A(t1), A(t2), · · · , A(ts) be the projected
sequence. Note E(s) = (1 − ρ0)N , V ar(s) = Θ(N), and in fact Pr{s = u} = O( 1√

N
)

for any u. Relabel A(ti) as B(i), and consider the random sequence B(1), B(2), · · · . Let
B(i), B(i+1), · · · , B(i′) be the portion of the sequence in the range [K − D2

ε , K + D2

ε ]. It is
easy to verify that, for the random sequence B(1), B(2), · · · ,

P r{i′ − i+ 1 ≥ D2

ε
(logN)2} = O(N− logN ). (7)

To see this, note that there is at least a constant φ = ρ1
1−ρ0

probability to increase the next
B(j) value by 1 (or more). Thus, to increase the value by D2

ε , it takes only D2

ε
1
φ steps on

average, rarely requiring a (logN)2 factor more steps.
As Pr{s = u} = O( 1√

N
) for any u, we conclude that Pr{B(s) ∈ [K − D2

ε , K + D2

ε ]} ≤

O( (logn)2
√
n

). This completes the proof of Case 1.
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In Case 2, Prx∼F {x ∈ I`+1} = 0. We have lost the source of randomness critical for the
above argument since ρ0 = 0. Yet the source of randomness can be obtained by splitting I`
into I ′` ∪ I

′′

` suitably, so that I ′′` does not contain any bj with j · bj anywhere close to the
level of Amax>(`+1). (This will rely critically on the fact Prx∼F {x ∈ I`+1} = 0.) We omit here
the details of implementing this plan, as well as the necessary handling of discontinuities in
distribution F . This finishes the proof of Lemma 3 and thus Theorem 1. J

6 Proof of Theorem 2

Proof. For any 1 > ε > 0, we show that

∆average
n (F ) ≤ ε (8)

for all sufficiently large n. First pick D > 0 such that F (D) > 1− ε/3. Take n iid vi ∼ F

and let qn,m be the probability of exactly m of the v′is falling into [0, D]. Let ε′ = ε/2. By
the law of large numbers, there exists N1 such that for all n ≥ N1,∑

m≤(1−ε′)n

qn,m < ε/6. (9)

Consider the distribution G, obtained from restricting F to [0, D]. By Theorem 1, there
exists N2 > 0 such that

∆average
m (G) < ε/3 (10)

for all m > N2. We are now set for proving Theorem 2. By definition of ∆average
n , we have

∆average
n (F ) ≤

∑
m>(1−ε′)n

qn,m

[
m

n
∆average
m (G) + n−m

n

]
+

∑
m≤(1−ε′)n

qn,m.

Using Eq. (9)-(10), we obtain for all n > max{N1, N2},

∆average
n (F ) ≤ ( ε3 + ε′) + ε

6 = ε.

This proves Eq. (8) and Theorem 2. J

7 Proof of Theorem 3

Consider n iid random variables v1, · · · , vn distributed according to the Inverse distribution
Inv, and let b1 ≥ · · · ≥ bn be their sorted sequence. Let λ = 40, λ′ = 1, and let Tn be the
event (b1 > λn) ∧ (b2 < λ′n). Let Vn be the event (max2≤i≤n i · bi ≤ λn). Theorem 3 is an
immediate consequence of the following two lemmas.

I Lemma 4. If v satisfies event Tn ∧ Vn, then δmax(v) ≥ 1− λ′

λ .

I Lemma 5.

Pr{Tn ∧ Vn} ≥
1
λ
e−

2
λ′ − 4 e−λ2 .

Lemma 4 and 55 imply

∆max
n (Inv) ≥ c, where

c = (1− λ′

λ
) ·
(

1
λ
e−

2
λ′ − 4 e−λ2

)
> 0.

This proves Theorem 3.
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To prove Lemma 4, note that when Tn ∧ Vn occurs, the highest bidder has a monopolistic
price b1 and a strategic price less than λn. Thus for the highest bidder i, we have δi(v) ≥
1− λn

b1
≥ 1− λ′

λ . This proves Lemma 4.
Lemma 5 follows from the following facts:

I Fact 4. Pr{Tn} ≥ 1
λe
− 2
λ′ .

Proof.

Pr{Tn} =
(
n

1

)
1
λn

(
1− 1

λ′n

)n−1

≥ 1
λ
e−

2
λ′ . J

I Fact 5. Pr{Vn|Tn} ≤ 2 e−λ2 .

Proof. Let y1, · · · , yn be iid distributed according to G, where for t ∈ [1, n],

Prz∼G{z > t} = 1
1− 1

n

(1
t
− 1
n

).

Define Y maxn = max1≤i≤m{i · bi}, where b1 ≥ · · · ≥ bn is the sorted sequence of y1, · · · , yn.
Clearly,

Pr{Vn|Tn} ≤ Pr{Y maxn ≥ λn}.

To prove Fact 5, it suffices to prove:

Pr{Y maxn ≥ λn} ≤ 2 e−λ2 . (11)

For any t ≥ 1, let Mt be the number of yi’s satisfying yi ≥ t, and Bt be the event that
t · Mt ≥ λ

2n. Let tk = 1
2kn for 1 ≤ k ≤ blog2 nc. As the event Y maxn ≥ λn implies

∨1≤k≤blog2 ncBtk , we have

Pr{Y maxn ≥ λn} ≤
blog2 nc∑
i=1

Pr{Btk}. (12)

Observe that E(Mt) = (1− 1
n )nt . Using Chernoff’s bound, we have

Pr{Bt} ≤ e−
λ
2
n
t . (13)

Equation (11) follows from (12) and (13) immediately. This completes the proof of Fact 5
and Theorem 3. J

8 Proof of Theorem 5

Without loss of generality, we assume that A, B are non-empty and that pmonoA ≤ pmonoB .
Let A consist of y1 ≥ · · · ≥ ym and B consist of z1 ≥ · · · ≥ z`, with ys = pmonoA and
zt = pmonoB . Let A′ = {y1, y2, · · · , ys′} and B′ = {z1, z2, · · · , zt′} be the winners from A and
B respectively. By definition of RSOP,

ys ≤ zt′ ,
t′zt′ ≤ t zt.
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It follows that

RSOP (v) = t′ys + s′zt

≤ t′zt′ + s′zt

≤ t zt + s′zt.

Now by definition R(v) ≥ (t+ s′)zt. Theorem 5 follows.
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Abstract
Graph-sketching algorithms summarize an input graph G in a manner that suffices to later answer
(perhaps approximately) one or more optimization problems on G, like distances, cuts, and matchings.
Two famous examples are the Gomory-Hu tree, which represents all the minimum st-cuts in a graph
G using a tree on the same vertex set V (G); and the cut-sparsifier of Benczúr and Karger, which
is a sparse graph (often a reweighted subgraph) that approximates every cut in G within factor
1± ε. Another genre of these problems limits the queries to designated terminal vertices, denoted
T ⊆ V (G), and the sketch size depends on |T | instead of |V (G)|.

The talk will survey this topic, particularly cut and flow problems such as the three examples
above. Currently, most known sketches are based on a graph representation, often called edge and
vertex sparsification, which leaves room for potential improvements like smaller storage by using
another representation, and faster running time to answer a query. These algorithms employ a
host of techniques, ranging from combinatorial methods, like graph partitioning and edge or vertex
sampling, to standard tools in data-stream algorithms and in sparse recovery. There are also several
lower bounds known, either combinatorial (for the graph representation) or based on communication
complexity and information theory.

Many of the recent efforts focus on characterizing the tradeoff between accuracy and sketch size,
yet many intriguing and very accessible problems are still open, and I will describe them in the talk.
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Abstract
Markov decision processes (MDPs) are a standard model for dynamic systems that exhibit both
stochastic and nondeterministic behavior. For MDPs with finite state space it is known that for a
wide range of objectives there exist optimal strategies that are memoryless and deterministic. In
contrast, if the state space is infinite, optimal strategies may not exist, and optimal or ε-optimal
strategies may require (possibly infinite) memory. In this paper we consider qualitative objectives:
reachability, safety, (co-)Büchi, and other parity objectives. We aim at giving an introduction to
a collection of techniques that allow for the construction of strategies with little or no memory in
countably infinite MDPs.
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1 Introduction

Markov decision processes (MDPs) are a standard model for dynamic systems that exhibit
both stochastic and controlled behavior [13]. MDPs play a prominent role in numerous
domains, including artificial intelligence and machine learning [16, 15], control theory [3, 1],
operations research and finance [4, 14], and formal verification [8, 2]. In an MDP, the system
starts in the initial state and makes a sequence of transitions between states. Depending
on the type of the current state, either the controller gets to choose an enabled transition
(or a distribution over transitions), or the next transition is chosen randomly according to a
defined distribution. By fixing a strategy for the controller, one obtains a probability space
of runs of the MDP. The goal of the controller is to maximize the probability of a given
objective (some set of desired runs), or, more generally, to optimize the expected value of a
random variable (some real-valued function on runs).

The type of strategy needed to satisfy an objective optimally (or ε-optimally) is called
the strategy complexity of the objective. There are different types of strategies, depending on
whether one can take the whole history of the run into account (history-dependent; (H)),
or whether one is limited to a finite amount of memory (finite memory; (F)) or whether
decisions are based only on the current state (memoryless; (M)). Moreover, the strategy
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type depends on whether the controller can randomize (R) or is limited to deterministic
choices (D). The simplest type MD refers to memoryless deterministic strategies. Markov
strategies are strategies that base their decisions only on the current state and the number of
steps in the history or the run. Thus they use infinite memory, but only in a very restricted
form by maintaining an unbounded step counter.

For finite MDPs, there exist optimal MD-strategies for many (but not all) objectives
[5, 6, 7, 13], but the picture is more complex for countably infinite MDPs [11, 12, 13]. For
example, given some objective, consider the set of all states for which there exists a strategy
that achieves the objective with positive probability. If the MDP is finite then this set is
finite and thus there exists some minimal nonzero value, which can often be exploited for the
construction of an optimal strategy. These methods do not carry over to infinite MDPs. Here
it is possible, even for reachability objectives, that every state has a strategy that achieves
the objective with positive probability, but no state, except the target itself, can achieve
it almost surely. Such phenomena appear already in infinite-state Markov chains like the
classic gambler’s ruin problem with unfair coin tosses in the player’s favor (0.6 win, 0.4 lose):

0 1 2 3 4 · · ·1
0.6 0.6 0.6 0.6

0.40.40.40.40.4

The probability of ruin is always positive, but less than 1 in every state except the ruin
state itself; cf. [9, Chapter 14]. Another difference to finite MDPs is that optimal strategies
need not exist, even for qualitative objectives like reachability or parity. Even if there is
a sequence of strategies whose success probabilities converge to 1, there may not exist a
strategy with success probability equal to 1. This motivates the investigation of ε-optimal
strategies, which are those strategies such that no other strategy has a success probability
that is more than ε higher.

In this paper we restrict ourselves to MDPs with countable state space. Certain theorems
such as Theorem 3 are known to be false for MDPs with uncountably many states, see [12].
Uncountable MDPs in general have been studied less, and the underlying measure theory is
more complicated.

We aim at providing an introduction to a toolkit for the construction of memoryless
or “low-memory” optimal and ε-optimal strategies for certain qualitative objectives like
reachability and safety. We will illustrate that these techniques can be combined to construct
strategies for more general objectives.

2 Preliminaries

A probability distribution over a countable set S is a function f : S → [0, 1] with
∑
s∈S f(s) = 1.

We write D(S) for the set of all probability distributions over S.

Markov decision processes. In this paper we study Markov decision processes (MDPs)
over countably infinite state spaces. Formally, an MDPM = (S, S2, S#,−→, P ) consists of a
countable set S of states, which is partitioned into a set S2 of controlled states and a set S# of
random states, a transition relation −→ ⊆ S × S, and a probability function P : S# → D(S).
If (s, s′) ∈ −→, we call s′ a successor of s. We assume that every state has at least one
successor. The probability function P assigns to each random state s ∈ S# a probability
distribution P (s) over its set of successor states. A sink is a subset T ⊆ S closed under
the −→ relation. An MDP is acyclic if the underlying directed graph (S,−→) is acyclic.
It is finitely branching if every state has finitely many successors and infinitely branching
otherwise. An MDP without controlled states (S2 = ∅) is a Markov chain.
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Strategies and Probability Measures. A run ρ is an infinite sequence s0s1 · · · of states
such that (si, si+1) ∈ −→ for all i ∈ N. A partial run is a finite prefix of a run. A strategy is
a function σ : S∗S2 → D(S) that assigns to partial runs ρs ∈ S∗S2 a distribution over the
successors of s.

A strategy σ and an initial state s0 ∈ S induce a standard probability measure on sets
of infinite runs, see, e.g., [10]. Such measurable sets of infinite runs are called events or
objectives. We write PσM,s0

(E) for the probability of an event E ⊆ s0S
ω of runs starting

from s0. We may drop the subscriptM when it is understood.

Objectives. Given a set T ⊆ S of states, the reachability objective Reach(T ) is the set of
runs that visit T at least once; and the safety objective Safety(T ) is the set of runs that
never visit T . Parity objectives are defined via a color function Col : S → N with finite
range. The corresponding parity objective is the set of runs such that the largest color that
occurs infinitely often along the run is even. We call a parity objective a C-parity objective
if Col(S) ⊆ C, i.e., the set of colors is restricted to C. Büchi and co-Büchi objectives are
common names for {1, 2}- and {0, 1}-parity objectives, respectively.

Optimal and ε-optimal Strategies. Given an objective E, the value of state s in an MDPM,
denoted by valM,s(E), is the supremum probability of achieving E, i.e., valM,s(E) def=
supσ∈Σ PσM,s(E) where Σ is the set of all strategies. We may drop the subscriptM when
it is understood. For ε > 0 and a state s ∈ S, we say that a strategy is ε-optimal if
PσM,s(E) ≥ valM,s(E)− ε. A 0-optimal strategy is called optimal. An optimal strategy is
almost surely winning if valM,s(E) = 1.

Strategy Classes. Strategies σ : S∗S2 → D(S) are in general randomized (R) in the sense
that they take values in D(S). A strategy σ is deterministic (D) if σ(ρ) is a Dirac distribution
for all partial runs ρ ∈ S∗S2. A strategy is called memoryless (M) or positional if it
only depends on the current state; i.e., a memoryless strategy can be given by a function
σ : S2 → D(S). Thus, the simplest strategies are MD strategies, which are both memoryless
and deterministic (and thus can be given by a function σ : S2 → S).

We also consider strategies with memory, but we do not formalize this here. After each
transition such a strategy updates its memory mode depending on the taken transition and
the previous memory mode. To choose a successor of a controlled state, the strategy can use
its memory and the current state but not the partial run that led to the current state. Every
strategy can be viewed as a strategy with memory (by using partial runs as memory modes).

For example, k-bit strategies use (at most) k bits of memory; they have (at most) 2k
memory modes. Markov strategies use infinite memory but only as a step counter; such
strategies depend only on the current state and the number of steps taken so far. A k-bit
Markov strategy can use both k bits and an (unbounded) step counter.

3 Constructing MD Strategies

In this section we illustrate some techniques to construct MD strategies. We mostly focus on
reachability objectives, which we use as a running example. But many ideas apply also to
other objectives.
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Figure 1 Optimal strategy for reachability may not exist. Here, as in all pictures, we depict
controlled states as squares, and random states as circles.

3.1 Reduction to a Finite Case
Suppose we have a (countable) MDPM = (S, S2, S#,−→, P ), and we are interested in the
reachability objective Reach(T ), i.e., we would like to reach a target set T ⊆ S.

If S is finite, the situation is as good as it could be:

I Lemma 1 (optimal MD strategies in finite MDPs). Let M = (S, S2, S#,−→, P ) be an
MDP, and consider the reachability objective Reach(T ) for some T ⊆ S. If S is finite then
there exists a single MD strategy σ that is optimal for every start state s at the same time;
formally, Pσs (Reach(T )) = vals(Reach(T )) for all s ∈ S.

Spelled out, Lemma 1 says that, if the state space is finite, we can fix for each controlled state
an outgoing transition in a way that maximizes the probability of reaching the target for every
state. The assumption of a finite state space is so powerful that Lemma 1 generalizes from
reachability to parity objectives. In fact, even in finite parity games, where some controlled
states are controlled by a player who wants to maximize the probability of achieving the
parity objective, and the remaining controlled states are controlled by a player who wants to
minimize the probability of achieving the parity objective, both players have optimal MD
strategies for all states [17, Theorem 1].

Lemma 1 does not hold without the assumption of S being finite, as optimal strategies
may not exist, let alone optimal MD strategies. Indeed, consider the MDP in Figure 1. The
controlled states are those in the leftmost column. Suppose you start in the bottom-left
state and you would like to reach the target T consisting only of the bottom-right state.
The higher you climb the ladder of states in the left column, the bigger you can make the
probability to reach T , but eventually you have to turn right and hope for the best. We have
vals(Reach(T )) = 1 for all controlled states s, i.e., we can get the probability of reaching T
arbitrarily close to 1. But we cannot make that probability equal to 1: there is no strategy
that reaches T with probability 1.

Recall that a strategy σ is called ε-optimal for s if Pσs (Reach(T )) ≥ vals(Reach(T ))− ε.
The following lemma says that every state has ε-optimal MD strategies:

I Lemma 2 (non-uniform ε-optimal MD strategies). LetM = (S, S2, S#,−→, P ) be an MDP,
and consider the reachability objective Reach(T ) for some T ⊆ S. For every ε > 0 and
every s ∈ S there exists an MD strategy σ that is ε-optimal for s; formally, Pσs (Reach(T )) ≥
vals(Reach(T ))− ε.
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s

S S′
n

Figure 2 The set S′ consists of those states that are reachable from s within at most n steps.
Due to finite branching, S′ is finite. For n large enough, S′ probably suffices to reach the target.

Proof. First assume that M is finitely branching. Fix s ∈ S and ε > 0, and let τ be
an arbitrary (i.e., not necessarily MD) strategy with Pτs (Reach(T )) ≥ vals(Reach(T ))− ε

2 .
Define a modified reachability objective Reachi(T ) which means reaching T in exactly i steps.
Then we have:

∞∑
i=0

Pτs (Reachi(T )) = Pτs (Reach(T )) ≥ vals(Reach(T ))− ε

2

It follows that we can pick a number n large enough so that
∑n
i=0 Pτs (Reachi(T )) ≥

vals(Reach(T )) − ε. From state s, in at most n steps, strategy τ can only use a finite
subset S′ ⊆ S, asM is finitely branching; see Figure 2. That means, τ manages to reach T
with probability at least vals(Reach(T ))− ε even when it is restricted to the sub-MDP with
state space S′ (think of leaving S′ as losing). But by Lemma 1 this finite sub-MDP has an
optimal MD strategy σ. We may extend the definition of σ outside of S′ in an arbitrary way.
Then, inM, we have Pσs (Reach(T )) ≥ vals(Reach(T ))− ε, as desired.

The assumption thatM is finitely branching can be satisfied using a simple construction:
replace every infinitely branching controlled state

· · ·
· · ·

by

· · ·
· · ·

A similar construction works for random states. Then, construct an MD strategy, as above,
from an arbitrary ε-optimal strategy in the new finitely branching MDP. Any MD strategy
can be transferred back to the original infinitely branching MDP. J

3.2 Ornstein’s Plastering Technique
Ornstein [12] proved in 1969 a uniform version of Lemma 2. That is, for every ε > 0 there
exists a single MD strategy that is ε-optimal for all states:
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I Theorem 3 ([12], uniform ε-optimal MD strategies). Let M = (S, S2, S#,−→, P ) be an
MDP, and consider the reachability objective Reach(T ) for some T ⊆ S. For every ε > 0
there exists a single MD strategy σ that is ε-optimal for every start state s at the same time;
formally, Pσs (Reach(T )) ≥ vals(Reach(T ))− ε for all s ∈ S.

Ornstein actually proved a stronger statement with multiplicative instead of additive error;
i.e., Theorem 3 also holds with vals(Reach(T ))− ε replaced by vals(Reach(T )) · (1− ε).

Proof of Theorem 3. We follow Ornstein’s proof [12]. Without loss of generality, we assume
that T is a sink. Recall that an MD strategy σ can be viewed as a function σ : S2 → S

such that for all s ∈ S2, the state σ(s) is a successor state of s. Starting from the original
MDPM we successively fix more and more controlled states, by which we mean select an
outgoing transition and remove all others. While this is in general an infinite (but countable)
process, it defines an MD strategy in the limit. Visually, we “plaster” the whole state space
by the fixings.

Put the states in some order, i.e., s1, s2, . . . with S = {s1, s2, . . .}. The plastering proceeds
in rounds, one round for every state. LetMi be the MDP obtained fromM after the fixings
of the first i− 1 rounds (withM1 =M). In round i we fix controlled states in such a way
that
(A) the probability, starting from si, of reaching the target T using only random and fixed

controlled states is not much less than the value valMi,si(Reach(T )); and
(B) for all states s, the value valMi+1,s(Reach(T )) is almost as high as valMi,s(Reach(T )).
The purpose of goal (A) is to guarantee good progress towards the target when starting
from si. The purpose of goal (B) is to avoid fixings that would cause damage to the values
of other states.

Now we describe round i. Consider the MDPMi after the fixings from the first i−1 rounds,
and let εi > 0. Recall that we wish to fix a part of the state space so that si has a high
probability of reaching T using only random and fixed controlled states. By Lemma 2 there
is an MD strategy σ such that PσMi,si

(Reach(T )) ≥ valMi,si(Reach(T )) − ε2
i . Fixing σ

everywhere would accomplish goal (A), but potentially compromise goal (B). So instead we
are going to fix σ only for states where σ does well: define

G
def= {s ∈ S | PσMi,s(Reach(T )) ≥ valMi,s(Reach(T ))− εi}

and obtain Mi+1 from Mi by fixing σ on G. (Note that σ does not “contradict” earlier
fixings, because in the MDPMi the previously fixed states have only one outgoing transition
left.) See Figure 3 for an illustration.

We have to check that with this fixing we accomplish the two goals above. Indeed, we
accomplish goal (A): by its definition strategy σ is ε2

i -optimal from si, so the probability of
ever entering S \G (where σ is less than εi-optimal) cannot be large:

PσMi,si
(Reach(S \G)) ≤ εi (1)

In slightly more detail, this inequality holds because the probability that the ε2
i -optimal

strategy σ enters a state whose value is underachieved by σ by at least εi can be at most εi.
We give a detailed proof of (1) in Section 5.1. It follows from the ε2

i -optimality of σ and
from (1) that we have PσMi,si

(Reach(T ) ∧ ¬Reach(S \G)) ≥ valMi,si
(Reach(T ))− εi − ε2

i .
So inMi+1 we obtain for all strategies σ′:

Pσ
′

Mi+1,si
(Reach(T )) ≥ valMi,si

(Reach(T ))− εi − ε2
i (2)
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fixed
T 1

si

G

Figure 3 The blue area has been fixed in the first i − 1 iterations. The smaller ellipse is the
set G, where strategy σ does well. The red area will be fixed using σ. Under σ, a run that starts
from si is likely to lead to the target T without ever leaving G.

We also accomplish goal (B): the difference between Mi and Mi+1 is that σ is fixed
on G, but σ performs well from G on. So we obtain for all states s:

valMi+1,s(Reach(T )) ≥ valMi,s(Reach(T ))− εi (3)

In slightly more detail, this inequality holds because any strategy inMi can be transformed
into a strategy inMi+1, with the difference that once the newly fixed part G is entered, the
strategy switches to the strategy σ, which (by the definition ofMi+1) is consistent with the
fixing and (by the definition of G) is εi-optimal from there. We give a detailed proof of (3)
in Section 5.2. This completes the description of round i.

Let ε ∈ (0, 1), and for all i ≥ 1, choose εi
def= ε

2 · 2
−i. Let σ be an arbitrary MD strategy

that is compatible with all fixings. (This strategy σ is actually unique.) It follows that σ is
playable in allMi. Consider an arbitrary state si. Then it follows from (3) that the value
valMi,si

(Reach(T )) is not much lower than valM,si
(Reach(T )), and from (2) that σ realizes

most of this value, implying for all i ≥ 1:

PσM,si
(Reach(T )) ≥ valM,si(Reach(T ))− ε (4)

We give a detailed proof of (4) in Section 5.3. Thus, the MD strategy σ is ε-optimal for all
states. J

I Remark 4. Instead of Reach(T ) the proof above also works for many other objectives,
including so-called tail events. See Section 3.3 for more discussion about tail events.

3.3 Lévy’s Zero-One Law
Consider a Markov chain M = (S, ∅, S#,−→, P ), i.e., an MDP without controlled states.
Recall that an event is a set of runs s0s1 · · · . For example, in the Markov chain

0 1 2 3 4 · · ·1 2/3 2/3 2/3 2/3

1/31/31/31/31/3

we may define an event E as the set of all runs that start in state 0 and revisit state 0 exactly
once. Starting in state 1, the probability of ever visiting state 0 can be calculated to be 1

2 . It
follows that, starting in state 0, the probability of E is 1

2 · (1−
1
2 ) = 1

4 ; formally, P0(E) = 1
4 .

There are two ways of failing to satisfy E: one is to never revisit state 0, the other is to revisit
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2
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4 · · ·

1
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2

1
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3 4 3 4 · · ·
Figure 4 For the event E (exactly one revisit to state 0), three sample runs starting from state 0

are depicted, along with their values XE
1 , . . . , X

E
9 . The partially covered “green” run revisits state 0

for a second time, causing 0 = XE
7 = XE

8 = . . . Lévy’s zero-one law asserts that XE
i almost surely

converges to 0 or 1.

it more than once. It is because of the latter that for any given finite prefix of a run, we can
never be sure that E will hold. For example, if the run starts with 010123, then we have
already revisited state 0 and it is unlikely that we will ever do so again: the probability is
only 1

2 ·
1
2 ·

1
2 = 1

8 . So, given this prefix 010123, the probability of satisfying E is 7
8 . However,

in this example, no matter what prefix is given, the probability of satisfying E cannot be 1.
Let us define a sequence of random variables, XE

1 , X
E
2 , . . ., so that each XE

i maps a run ρ
to the probability that event E will be satisfied, given the prefix of ρ of length i. For example,
if ρ = 010123234 · · · , then we previously discussed that XE

1 (ρ) = 1
4 and that XE

6 (ρ) = 7
8 . It

is (a consequence of) Lévy’s zero-one law that the sequence XE
1 , X

E
2 , . . .

1 converges to 0 or 1
almost surely (see also Figure 4):

I Theorem 5 (Lévy’s zero-one law for Markov chains). LetM = (S, ∅, S#,−→, P ) be a Markov
chain, s0 ∈ S, and E an event of runs starting in s0. We have limi→∞XE

i ∈ {0, 1} (and
hence this limit exists) almost surely; more formally:

Ps0

({
ρ
∣∣∣ lim
i→∞

XE
i (ρ) ∈ {0, 1}

})
= 1 .

Moreover, up to a null set of runs, the limit is 1 for those runs satisfying E, and 0 for those
runs not satisfying E.

As a consequence, the probability of E is equal to the probability that the limit is 1.
For tail objectives E, Lévy’s zero-one law becomes simpler and clearer. A tail objective is

an objective whose occurrence is independent of any finite prefix. The objective E from the
example above is not a tail objective because the number of revisits to state 0 may change if
we cut off or add a finite prefix. For an example of a tail objective, suppose that the states
of an arbitrary Markov chain are classified as accepting and non-accepting states. The Büchi
objective consists of those runs that visit accepting states infinitely often. Büchi is a tail
objective: for any run we can cut off or add any finite prefix without changing whether the
run satisfies Büchi. We can also view reachability objectives as tail objectives, provided that
the target is a sink, which is often a harmless assumption.

1 It is conventional to write XE
i for XE

i (ρ) if the run (such as a random run produced byM) is understood.
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For tail objectives E, the random variable XE
i depends only on the ith visited state (and

not also on the first i− 1 states as in the general case), and for any run s1s2s3 · · · we have
XE
i = Psi

(E). For a tail objective E and any state s, a picture analogous to Figure 4 would
show each occurrence of state s on the same height, independently of the partial run leading
up to the occurrence. As a consequence of Lévy’s zero-one law, for any tail objective E, the
events

E and
{
s1s2 · · ·

∣∣∣ lim
i→∞

Psi
(E) = 1

}
are equal up to a null set. (5)

This can be used, in conjunction with Ornstein’s Theorem 3 about uniform ε-optimal MD
strategies, to construct almost surely winning MD strategies:

I Theorem 6 ([12], uniform almost surely winning MD strategies). LetM = (S, S2, S#,−→, P )
be an MDP, and consider the reachability objective Reach(T ) for some T ⊆ S. Let S0 ⊆ S
be the set of states from which there exists an almost surely winning strategy. Then there
exists a single MD strategy σ that is almost surely winning for all s ∈ S0 at the same time;
formally, Pσs (Reach(T )) = 1 for all s ∈ S0.

Proof. Obtain fromM an MDPM0 by restricting the state space to S0 and eliminating
all transitions that leave S0. InM0 all states have an almost surely winning strategy, as
an almost surely winning strategy may never enter a state that does not have an almost
surely winning strategy. By Theorem 3 there exists, for M0, a uniform 1

2 -optimal MD
strategy σ. Then PσM0,s

(Reach(T )) ≥ 1
2 holds for all states. For any run s0s1 · · · inM0 we

have PσM0,si
(¬Reach(T )) ≤ 1

2 for all i; in particular, the sequence
(
PσM0,si

(¬Reach(T ))
)
i
does

not converge to 1. Using (5) for E = ¬Reach(T ), we obtain for all s ∈ S0 that Pσs (E) = 0,
hence, Pσs (Reach(T )) = 1. J

3.4 The Flag Construction
We now move from reachability to co-Büchi objectives: here, a subset of states are marked as
“bad”, and the goal is to visit bad states only finitely often. Co-Büchi is more general than
both reachability and safety objectives: for reachability, make the target a sink and mark all
other states as bad; for safety, make the states to be avoided a sink and mark them as bad.

In this section we focus on almost surely winning strategies, and we will argue that for
co-Büchi objectives almost surely winning strategies can be chosen MD. However, this does
not always hold for infinitely branching MDPs, as the example in Figure 5 shows. Therefore,
we assume in the rest of the section that the MDP is finitely branching. We will show:

I Theorem 7 ([11]). LetM = (S, S2, S#,−→, P ) be a finitely branching MDP, and consider
a co-Büchi objective co-Büchi(B) for some set B ⊆ S of bad states. Let S0 ⊆ S be the
set of states from which there exists an almost surely winning strategy. Then there exists a
single MD strategy σ that is almost surely winning for all s ∈ S0 at the same time; formally,
Pσs (co-Büchi(B)) = 1 for all s ∈ S0.

In order to prove Theorem 7, a safety strategy may appear promising: in each state minimize
the probability of ever visiting a bad state again. The appeal of a safety strategy is twofold:

If a safety strategy succeeds in never visiting a bad state again, then clearly it visits bad
states only finitely often.
A safety strategy can be chosen uniformly MD (in finitely branching MDPs): in every
controlled state pick the successor with the best value.2

2 Such an approach for constructing an optimal strategy does not work for reachability or more general
objectives: intuitively, this approach cannot guarantee “progress” towards the goal.
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0.5

Figure 5 In infinitely branching MDPs with co-Büchi objectives, almost surely winning strategies
cannot always be chosen MD. In the MDP above, the bad state is marked red. There exists an
almost surely winning strategy, but it requires memory in order to choose ri for ever higher i.

· · ·1
2

1
2 3
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1
4 7

8

1
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Figure 6 In this MDP (with bad states marked red), a safety strategy always chooses the right
outgoing transition, chasing after the ever smaller chance of entering a safe sink state without
re-entering any bad state. Starting from the leftmost state, the probability that this strategy
achieves the co-Büchi objective is less than 0.72. The “opposite” strategy, which always returns to
the leftmost state, succeeds almost surely.

But a safety strategy alone does not suffice for co-Büchi, as the example in Figure 6 shows.
In the following proof we construct an almost surely winning MD strategy for co-Büchi by
combining an MD strategy for safety with an MD strategy for reachability.

Proof sketch of Theorem 7. Similarly as in the proof of Theorem 6, we can assume without
loss of generality that for all states there exists an almost surely winning strategy. We will
show that there exists a single MD strategy that is almost surely winning for all states.

We have mentioned previously that there exists an MD uniformly optimal safety strategy
σsafe, i.e., for each state, σsafe minimizes the probability of ever revisiting a bad state. For
x ∈ [0, 1] define Safe(x) ⊆ S as the set of states with safety level at least x. By safety
level we mean the probability of never visiting another bad state, assuming σsafe is played.
See Figure 7 for an abstract visualization. We fix σsafe in Safe( 1

3 ), i.e., in the following we
will only consider strategies that are compatible with σsafe in Safe( 1

3 ), see the right side of
Figure 7.

After this fixing, every state still has an almost surely winning strategy. Indeed, consider
any state and its almost surely winning strategy before the fixing. We modify the strategy
as follows. First we play it as before, but if and when we reach Safe( 1

3 ), we switch to σsafe.
Now the probability is at least 1

3 that we never visit a bad state again and thus also achieve
the co-Büchi objective. If we do visit a bad state again, we revert to a strategy that is almost
surely winning from that bad state in the original MDP. We follow that strategy until we
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safety level

0

1

safety level

0

1
3

1

Figure 7 Left: In this diagram the controlled states are arranged according to their safety level.
A safety strategy entails not to pick successor states with smaller safety level, so grey transitions are
not used. Right: The optimal safety strategy σsafe is fixed for the states with safety level at least 1

3 .

safety level

0

1
3

2
3

1

safety level

0

1
3

2
3

1

Figure 8 Left: Starting from a state with safety level at least 2
3 the probability of keeping a

safety level of at least 1
3 forever is at least 1

2 . Right: For the states with safety level less than 1
3 we

aim at reaching safety level at least 2
3 .

possibly reach Safe( 1
3 ) again. At this point we switch again to σsafe, thus forever avoiding

the bad states with a fresh chance of at least 1
3 . Continuing in this way, we win almost

surely. Note that this strategy is not MD, as we have to remember in which phase we are: at
any point we either follow a winning strategy of the original MDP, or follow σsafe. We have
merely argued here that having fixed σsafe in Safe( 1

3 ) has not done any harm.

Before we define an MD strategy for the rest of the state space, consider a state s ∈ Safe( 2
3 ),

i.e., s has an even higher safety level of at least 2
3 . Since Safe(

2
3 ) ⊆ Safe( 1

3 ), the MD strategy
σsafe has been fixed there. Two things might happen starting at s (see the left side of
Figure 8): either the run remains in Safe( 1

3 ) forever and never visits a bad state; or it
eventually leaves Safe( 1

3 ) (or even visits a bad state). The second case (leaving Safe( 1
3 ) or

visiting a bad state) cannot have a very large probability: after all, we start with safety
level at least 2

3 , so if the safety level is very likely to drop below 1
3 , we were not very safe to

start with. Doing the maths shows that the probability of the second case is at most 1
2 . So

starting from Safe( 2
3 ), the probability of avoiding bad states forever is at least 1

2 , no matter
what strategy is played outside of Safe( 1

3 ).
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We still need to define an MD strategy for the part of the state space with safety level
less than 1

3 . Our ambition is to define it so that from every state we reach almost surely
Safe( 2

3 ), see the right side of Figure 8. If we succeed in this goal, then we achieve the co-Büchi
objective almost surely, because every time we reach Safe( 2

3 ) we receive a fresh chance of 1
2

to avoid bad states forever, as just argued.
First we argue that for each state there is some strategy to reach Safe( 2

3 ) almost surely.
Recall that we have shown above that after the fixing in Safe( 1

3 ) every state s still has a
strategy σs to achieve the co-Büchi objective almost surely. We argue that σs reaches Safe( 2

3 )
almost surely. Indeed, whenever a run is outside of Safe( 2

3 ) there is a risk of more than 1
3 to

visit a bad state. It follows that there is a risk of at least 1
3 to visit a bad state within a

finite time horizon. Since σs almost surely achieves the co-Büchi objective, it must avoid
that this risk materializes infinitely often. Hence σs almost surely reaches Safe( 2

3 ).
Using Theorem 6 it follows that, in the MDP after having fixed σsafe in Safe( 1

3 ), there is
uniform almost surely winning MD strategy σreach for Reach(Safe( 2

3 )). In summary, here is
our almost surely winning MD strategy for co-Büchi: in Safe( 1

3 ) play σsafe, and elsewhere
play σreach. The key point is that these two MD strategies are not conflicting. J

I Remark 8. Generalizations of Theorem 7 are also considered in [11]:
1. A similar proof shows a version of Theorem 7 for ε-optimal strategies.
2. Theorem 7 generalizes to {0, 1, 2}-parity objectives, which also encompass Büchi objectives.

The theorem further generalizes from almost surely winning to optimal strategies as
follows: The set S0 ⊆ S can be taken as the set of states from which there exists an
optimal strategy (note that an almost surely winning strategy is optimal). Then there
exists a single MD strategy that is optimal for all states in S0.

3. Theorem 7 does not hold for {1, 2, 3}-parity objectives.

4 Markov Strategies and Generalizations

We describe a technique to prove the existence of ε-optimal Markov strategies (resp. Markov
strategies with one extra bit of memory) for certain types of objectives, based on the work
on Büchi objectives in [10].

Obtaining Markov strategies via acyclic MDPs. Markov strategies are strategies that base
their decisions only on the current state and the number of steps in the history of the run
from some initial state s0. Thus they do use infinite memory, but only in a very restricted
form by maintaining an unbounded step counter. Slightly more general are 1-bit Markov
strategies that use one extra bit of extra memory in addition to a step counter.

The existence of ε-optimal (1-bit) Markov strategies for some objective ϕ on countable
MDPs can be proven by first studying the strategy complexity of ϕ on acyclic MDPs, i.e.,
MDPs where the underlying transition graph is a directed acyclic graph (DAG). Note that
a DAG is more general than a tree. If the transition graph is a tree with root s0 then
there always exist ε-optimal positional strategies for any objective, since the entire history is
implicit in the current state. This does not hold for a DAG, since the same state s could be
reached via (possibly infinitely many) different paths from s0.

However, for every countable MDP M with initial state s0, there is a corresponding
acyclic MDPM′ that encodes the step counter into the states, i.e., the states ofM′ are of
the form (s, i) where s is a state ofM and i ∈ N counts the number of steps. Then for every
ε-optimal positional strategy for ϕ inM′ there is a corresponding ε-optimal Markov strategy
for ϕ in M, and vice-versa [10]. Thus, if ε-optimal positional strategies for ϕ exist in all
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acyclic MDPs then ε-optimal Markov strategies for ϕ exist in general countable MDPs. The
reverse implication does not hold, however, since not all acyclic MDPs encode a step counter,
e.g., if some state has infinite in-degree and can be reached from the initial state via paths of
arbitrary length.

Acyclic and finitely branching MDPs have nice properties that make it easier to infer the
existence of simpler ε-optimal strategies. In the following, we first observe the behavior of
a general ε-optimal strategy, and then show how a 1-bit strategy can closely match it (for
certain types of objectives).

Observing the behavior of an ε-optimal strategy. Consider an acyclic and finitely branch-
ing MDP with initial state s0. (One could also have a finite set of initial states as in [10],
but we use a single state to simplify the presentation.) Let σ be an arbitrary ε-optimal
strategy from the initial state s0. We now observe its behavior, i.e., the induced runs. Let
bubblek({s0}) be the set of states that can be reached from the initial state s0 within at
most k steps. This set is finite for every finite k, since our MDP is finitely branching. Note
that, by acyclicity, any given run can visit a given finite set of states X only finitely often
(at most |X| times). However, this does not imply that the probability of re-visiting X
must eventually become zero. E.g., it is possible that in the i-th state of some run the
probability of re-visiting X (in continuations of this run) is 2−i (i.e., re-visiting X remains
always possible, but does not happen almost surely).

Still, a weaker property does hold in acyclic and finitely branching MDPs. It follows from
acyclicity [10, Lemma 10] that, after a sufficiently large number of steps, runs are arbitrarily
unlikely to visit any given finite set of states again. In particular this holds for the finite set
bubblek({s0}).

Formally, for every k and δ > 0 there exists some l such that the probability of visiting
bubblek({s0}) after step l is ≤ δ. By definition, states outside the set bubblel({s0}) are
reachable only after a number of steps that is strictly larger than l. Therefore, it is unlikely
(probability ≤ δ) to visit bubblek({s0}) again after some state s /∈ bubblel({s0}) has been
visited for the first time.

These observations allow to define a decreasing sequence δi
def= ε · 2−i of small errors and

sufficiently large and increasing numbers ki and li with ki < li < ki+1 for i ≥ 1 such that for
the finite sets Ki

def= bubbleki
({s0}) and Li

def= bubbleli({s0}) it is unlikely (probability ≤ δi)
to visit Ki after leaving Li (for the first time). I.e., runs like π2 in Figure 9 are unlikely.
However, the probability of leaving Ki and later returning to Ki (even multiple times) before
leaving Li may be large.

Note that we still have a lot of freedom to choose the numbers ki and li. For the numbers
ki we just need li < ki+1. The minimal required size of li depends on ki, σ and δi, but li can
be chosen arbitrarily larger than this minimal size.

Let now SEQ be the objective of never visiting a set Ki after leaving Li (for the first
time) for any i ≥ 1. (I.e., SEQ depends on the chosen numbers ki, li.)

The strategy σ is not only ε-optimal for the objective ϕ from state s0, but also 2ε-optimal
for the stronger objective ϕ ∧ SEQ, since

∑
i≥1 δi ≤ ε.

Constructing simpler strategies. For certain types of objectives ϕ (e.g., Büchi objectives),
one can exploit this pattern of SEQ to construct simpler (1-bit) ε-optimal strategies for ϕ in
acyclic and finitely branching MDPs. This then yields ε-optimal 1-bit Markov strategies in
general finitely branching MDPs.
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· · ·
K1 L1 K2 L2 K3

π2

π1

s0

Figure 9 Updates of the extra mode bit along runs π1, π2, drawn in blue while the memory-bit
is one and in red while the bit is zero. The run π2 violates SEQ and is drawn as a dotted line once
it does. Upon entering the green zone of Ki \Ki−1, the runs attain the local objective ϕi and flip
the mode bit.

Suppose that ϕ∧SEQ can be decomposed into an infinite sequence of local sub-objectives
ϕi ∧ SEQ such that, with arbitrarily high probability, satisfying ϕi ∧ SEQ in each finite set
Ki \Ki−1 implies ϕ ∧ SEQ overall, and vice-versa. (E.g., if ϕ is a Büchi objective to visit a
given set of states F infinitely often then ϕi is the objective to visit the subset of F inside
Ki \Ki−1 (i.e., to visit F ∩ (Ki \Ki−1)); cf. [10].) Note that the “vice-versa” part often
depends on the fact that the numbers ki can be chosen sufficiently large to get a sufficiently
high probability of satisfying ϕi inside Ki \Ki−1.

Of course, not every objective ϕ can be decomposed in this way, e.g., in parity objectives,
different runs can win by different colors and local conditions ϕi are insufficient.

Now suppose that in the MDP induced by the finite subspace Ki there exist ε-optimal
positional strategies σi that attain a high probability of ϕi in Ki \Ki−1, and additionally
maintain a high value w.r.t. future objectives ϕj in Kj \Kj−1 for all j > i. I.e., σi has a
high attainment for the local sub-objective without compromising future sub-objectives.

One extra bit. The above suggests a scheme to construct an ε-optimal positional strategy
σ′ for ϕ ∧ SEQ by playing each local positional strategy σi inside Ki \Ki−1.

However, this is not always sufficient. The problem is that, when playing in Ki \Ki−1,
a run might temporarily go back into the set Ki−1 (though not into the states that this
particular run has previously visited, due to acyclicity). If this run has never yet left Li−1,
then going back to Ki−1 is allowed by SEQ and can be necessary (or even unavoidable). (In
contrast, once one has left Li−1, it is possible to henceforth avoid Ki−1 and still attain ϕ
with high probability, as witnessed by the strategy σ.) But back in Ki−1 the strategy σ′
would play σi−1 towards objective ϕi−1 (that had already been attained previously) instead
of focusing on the current objective ϕi. Although the run will inevitably (by acyclicity) exit
Ki−1 again, it might re-visit Ki−1 many times, and thus switch the focus back to ϕi−1 many
times. I.e., the strategy σ′ might attempt to re-attain the previous objective ϕi−1 many
times over, instead of permanently switching the focus to ϕi once ϕi−1 has been attained
once. Switching the focus back to the previous objective ϕi−1 too often is wasteful and might
damage the ability to attain future objectives ϕj for the j ≥ i with high probability, e.g., due
to a trade-off between current and future objectives. So this strategy σ′ might not always
succeed for objective ϕ (e.g., it cannot work for Büchi objectives [10]).
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Instead we want the strategy to always focus on the next objective ϕi after it has
completed the previous objective ϕi−1. To this end, we need one extra bit of memory, called
the mode bit, to distinguish two modes of playing: current-mode and next-mode. The mode
bit is used to remember whether one has already attained ϕi in Ki \Ki−1. Upon attaining
ϕi in Ki \Ki−1, one switches from current-mode to next-mode.

One interprets the content of the mode bit (0 or 1) differently for even and odd numbers i,
so that the next-mode for Ki \Ki−1 is the current-mode for Ki+1 \Ki (and vice-versa). This
means that if the strategy plays in next-mode in Ki \Ki−1 then upon entering Ki+1 \Ki

it automatically switches to current-mode. Dually, if it plays in current-mode in Ki+1 \Ki

and temporarily goes back into Ki \Ki−1 then it automatically switches to next-mode; cf.
Figure 9. The strategy pursues different local goals, depending on the mode bit.

In current-mode, it continues to focus on attaining ϕi in Ki. Temporarily going back to
Ki−1 does not change the focus on ϕi, because current-mode for Ki is next-mode for Ki−1.
By suitably choosing ϕi and ki, one can ensure with high probability that ϕi is attained
only in Ki \ Li−1, i.e., after leaving Li−1. So, since one has already left Li−1 before this
success, it is possible with high probability to avoid Ki−1 afterwards. In particular, after
attaining ϕi in Ki \ Li−1 the strategy switches the mode-bit to next-mode. The value of
the mode bit is the same for next-mode in Ki and for current-mode in Ki−1. However,
there is only a small danger of ever confusing these, since the probability of visiting Ki−1
after leaving Li−1 is small.
In next-mode, the focus is on leaving Ki to reach Ki+1 \ Ki and attaining the next
objective ϕi+1. In particular, upon entering Ki+1 \Ki the mode bit is interpreted as
current mode for Ki+1 \Ki. Moreover, it is then not a problem if the run temporarily
goes back from Li \Ki into Ki, because the focus remains on ϕi+1 (since current-mode
in Ki+1 is next-mode in Ki).

By combining the positional strategies for the local objectives ϕi with the extra mode bit,
one obtains ε-optimal 1-bit strategies on all acyclic finitely branching MDPs. This yields
1-bit Markov strategies on general finitely branching MDPs by the argument above.

For Büchi objectives, one can encode infinite branching into finite branching by a gadget
similar to the one used in the proof of Lemma 2. Moreover, the local strategies σi can be
chosen MD. Thus one obtains deterministic 1-bit Markov ε-optimal strategies. There is also
a matching lower bound.

I Theorem 9 ([10], ε-optimal deterministic 1-bit Markov strategies for Büchi objectives). Given
a countable MDP and a Büchi objective, for every ε > 0 and initial state s0, there exists
an ε-optimal deterministic 1-bit Markov strategy. Moreover, neither randomized Markov
strategies nor randomized finite-memory strategies are sufficient.

I Remark 10. The whole argument can, of course, be generalized. If the strategies for the
local objectives ϕi in acyclic MDPs are not positional but use finite memory, say m bits,
then one obtains (m+ 1)-bit Markov strategies in general MDPs.

5 Missing Proof Details

5.1 Proof of Equation (1)
Proof. For a state s ∈ S \G, define the event Ls as the set of runs that leave G such that s
is the first visited state in S \G. Then we have:

PσMi,si
(Reach(S \G)) =

∑
s∈S\G

PσMi,si
(Ls) (6)
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Since T is a sink and using the Markov property:

PσMi,si
(Reach(T )) = PσMi,si

(¬Reach(S \G) ∧ Reach(T )) +∑
s∈S\G

PσMi,si
(Ls) · PσMi,s(Reach(T )) (7)

By the definition of G it follows:

PσMi,si
(Reach(T )) ≤ PσMi,si

(¬Reach(S \G) ∧ Reach(T )) +∑
s∈S\G

PσMi,si
(Ls) · (valMi,s(Reach(T ))− εi) (8)

On the other hand, σ is ε2
i -optimal for si, hence:

PσMi,si
(Reach(T )) ≥ −ε2

i + valMi,s(Reach(T ))
≥ −ε2

i + PσMi,si
(Reach(T ) ∧ ¬Reach(S \G)) +∑

s∈S\G

PσMi,si
(Ls) · valMi,s(Reach(T ))

(9)

By combining (8) and (9) we obtain:

ε2
i ≥ εi ·

∑
s∈S\G

PσMi,si
(Ls) = εi · PσMi,si

(Reach(S \G)) J

5.2 Proof of Equation (3)

Proof. For a state s′ ∈ G, define the event Es′ as the set of runs that enter G such that s′ is
the first visited state in G. Fix any state s ∈ S and any strategy σi inMi. We transform σi
into a strategy σi+1 in Mi+1 such that σi+1 behaves like σi until G is entered, at which
point σi+1 switches to the MD strategy σ, which we recall is compatible with Mi+1 and
is εi-optimal from G in Mi. To show (3) it suffices to show that Pσi+1

Mi+1,s
(Reach(T )) ≥

Pσi

Mi,s
(Reach(T ))− εi. We have:

Pσi+1
Mi+1,s

(Reach(T )) = Pσi+1
Mi+1,s

(¬Reach(G) ∧ Reach(T )) + as T is a sink∑
s′∈G

Pσi+1
Mi+1,s

(Es′) · Pσi+1
Mi+1,s′(Reach(T )) Markov property

= Pσi

Mi,s
(¬Reach(G) ∧ Reach(T )) + using def. of σi+1∑

s′∈G
Pσi

Mi,s
(Es′) · PσMi,s′(Reach(T ))

Further we have for all s′ ∈ G:

PσMi,s′(Reach(T )) ≥ valMi,s′(Reach(T ))− εi as s′ ∈ G
≥ Pσi

Mi,s′(Reach(T ))− εi
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Plugging this in above, we obtain:

Pσi+1
Mi+1,s

(Reach(T )) ≥ Pσi

Mi,s
(¬Reach(G) ∧ Reach(T )) +∑

s′∈G
Pσi

Mi,s
(Es′) · (Pσi

Mi,s′(Reach(T ))− εi)

≥ Pσi

Mi,s
(¬Reach(G) ∧ Reach(T )) +( ∑

s′∈G
Pσi

Mi,s
(Es′) · Pσi

Mi,s′(Reach(T ))
)
− εi

= Pσi

Mi,s
(Reach(T ))− εi J

5.3 Proof of Equation (4)
Proof. For all i ≥ 1 we have:

PσM,si
(Reach(T )) ≥ valMi,si

(Reach(T ))− εi − ε2
i by (2)

≥ valMi,si
(Reach(T ))− 2εi as εi < 1

≥ valMi,si
(Reach(T ))− ε

2 choice of εi

≥ valM,si
(Reach(T ))−

i−1∑
j=1

εj −
ε

2 by (3)

≥ valM,si
(Reach(T ))− ε choice of εj J
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Abstract
Given N instances (X1, t1), . . . , (XN , tN ) of Subset Sum, the AND Subset Sum problem asks to
determine whether all of these instances are yes-instances; that is, whether each set of integers Xi

has a subset that sums up to the target integer ti. We prove that this problem cannot be solved in
time Õ((N · tmax)1−ε), for tmax = maxi ti and any ε > 0, assuming the ∀∃ Strong Exponential Time
Hypothesis (∀∃-SETH). We then use this result to exclude Õ(n + Pmax · n1−ε)-time algorithms for
several scheduling problems on n jobs with maximum processing time Pmax, assuming ∀∃-SETH.
These include classical problems such as 1||

∑
wjUj , the problem of minimizing the total weight of

tardy jobs on a single machine, and P2||
∑

Uj , the problem of minimizing the number of tardy jobs
on two identical parallel machines.
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1 Introduction

The Subset Sum problem is one of the most fundamental problems in computer science
and mathematics: Given n integers X = {x1, . . . , xn} ⊂ N, and a target value t ∈ N,
determine whether there is a subset of X that sums1 to t. This problem appeared in Karp’s
initial list of 21 NP-complete problems [24], and entire books have been devoted to it and
to its closely related variants [25, 30]. Most relevant to this paper is the particular role
Subset Sum plays in showing hardness for various problems on integers, essentially being

1 Note that we can ignore any numbers xi > t, so we will assume throughout the paper that max(X) ≤ t.
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4:2 Scheduling Lower Bounds via AND Subset Sum

the most basic such problem where hardness arises exclusively from the additive nature
of the problem. In particular, in areas such as operations research, Subset Sum plays a
similar role to that of 3-SAT, serving as the core problem used in the vast majority of
reductions (see e.g. [9, 11, 15, 24, 28, 32]). Many important problems can be shown to be
generalizations of Subset Sum (by easy reductions) including scheduling problems, Knapsack,
and Bicriteria Shortest Path. The broad goal of this paper is to understand the fine-grained
complexity of such important problems, and more specifically whether the complexity of
such generalizations is the same as that of Subset Sum or higher.

While Subset Sum (and its generalizations) is NP-hard, it is well-known that it can be
solved in pseudo-polynomial time O(t · n) with the classical dynamic programming algorithm
of Bellman [6]. Much more recently, this upper bound was improved to Õ(t+ n) [7, 23, 27];
this is a significant improvement in the dense regime of the problem, e.g. if t = O(n2) the
new algorithms achieve quadratic as opposed to cubic time. Most recently, in the dense
regime the fine-grained complexity of Subset Sum was essentially resolved under the Strong
Exponential Time Hypothesis (SETH) by the authors of this paper [1] (the same lower
bound was previously known under the incomparable Set Cover Conjecture [12]). SETH
[21, 22] postulates that there is no O(2(1−ε)n)-time algorithm for deciding the satisfiability
of a k-CNF formula, for some ε > 0 independent of k.

I Theorem 1.1 (Hardness of Subset Sum [1]). Assuming SETH, there is no ε > 0 and δ < 1
such that Subset Sum on n numbers and target t can be solved in time O(t1−ε · 2δn).

The lower bound given by Theorem 1.1 translates directly to several generalizations of
Subset Sum, but does this yield tight lower bounds for the generalizations? Or can we prove
higher lower bound for them? To answer this kind of question, the OR Subset Sum problem
was introduced in [1]: Given N instances (X1, t1), . . . , (XN , tN ) of Subset Sum, determine
whether at least one of these instances is a yes-instance; that is, whether there exists an
i ∈ {1, . . . , N} such that Xi contains a subset that sums up to ti. While it seems natural to
assume that no algorithm can solve this problem faster than solving each of the N Subset
Sum instances independently, it is not clear how to prove this. In fact, an O(N1/10 ·maxi ti)
time algorithm for this problem does not directly break the lower bound for Subset Sum.
Nevertheless, one can still show a tight lower bound by taking a somewhat indirect route:
SAT does have a reduction to its OR variant, and then Theorem 1.1 allows us to reduce OR
SAT to OR Subset Sum.

I Theorem 1.2 (Hardness of OR Subset Sum [1]). Assuming SETH, there are no ε, δ > 0
such that there is an O(N1+δ−ε) time algorithm for the following problem: Given N Subset
Sum instances, each with Oδ,ε(lgN) integers and target O(Nδ), determine whether one of
these instances is a yes-instances.

Thus, while Subset Sum admits2 Õ(n+ t)-time algorithms [7, 23, 27], SETH rules time
Õ(N + t) for OR Subset Sum. For example, when N = O(n) and t = O(n2), Subset Sum can
be solved in time O(n2), but OR Subset Sum has a cubic lower bound according to the above
theorem. This distinction was used in [1] to show a higher lower bound for a generalization of
Subset Sum that is a particularly prominent problem in the operations research community,
the Bicriteria Shortest Path problem [19, 41]: Given a graph G with edge lengths and edge
costs, two vertices s and t, and a budget B, determine whether there is an s, t-path of total
length at most B and total cost at most B. While Theorem 1.1 immediately rules out time

2 The term Õ() is used here and throughout the paper to suppress logarithmic factors.
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B1−ε · 2o(n), it leaves open the possibility of an Õ(B + n) algorithm (as is known to exist for
Subset Sum). As it turns out, Bicriteria Shortest Path can not only encode a single Subset
Sum instance, but even several instances, and thus Theorem 1.2 yields an Ω(n + Bn1−ε)
lower bound under SETH.

1.1 An Analogue of Theorem 1.2 for AND Subset Sum
While the OR variant in Theorem 1.2 is perfectly suited for showing lower bounds for
Bicriteria Shortest Path and other problems of a similar type, there are others, such as the
scheduling problems discussed below, whose type can only capture an AND variant: Given
N instances of Subset Sum, determine whether all are yes-instances. It is natural to wonder
whether there is a fine-grained reduction from SAT to AND Subset Sum (either directly or
indirectly, by first reducing to AND SAT). Intuitively, the issue is that SAT, Subset Sum,
and their OR variants have an ∃ quantifier type, while AND SAT and AND Subset Sum have
a ∀∃ quantifier type. Reducing one type to another seems very challenging, but fortunately,
a morally similar challenge had been encountered before in fine-grained complexity and
resolved to some extent as follows.

First, we can observe that the reduction we are looking for is impossible under the
Nondeterministic Strong Exponential Time Hypothesis (NSETH) [10] which states that
no non-deterministic O(2(1−ε)n)-time algorithm can decide whether a given k-CNF is un-
satisfiable, for an ε > 0 independent of k. This hypothesis was introduced to show non-
reducibility results. Intuitively, NSETH says that even though SAT is easy for nondeterminis-
tic algorithms its complement is not. Therefore, if for a certain problem both it and its
complement are easy for nondeterministic algorithms then a reduction from SAT is impossible.
Note that AND SAT, AND Subset Sum, and their complements admit efficient nondetermi-
nistic algorithms: to prove that the AND is “yes” we can guess a solution in each instance,
and (for the complement) to prove that the AND is “no” we can guess the index of the
instances that is “no”. (Notice that the latter is not possible for the OR variants.)

There are already conjectures in fine-grained complexity that can capture problems with
a ∀∃ type. In the “n2 regime”, where SAT is faithfully represented by the Orthogonal Vectors
(OV) problem3 which has an ∃ type, Abboud, Vassilevska Williams and Wang [2] introduced
a hardness hypothesis about the Hitting Set (HS) problem4 which is the natural ∀∃ type
variant of OV. This hypothesis was used to derive lower bounds that cannot (under NSETH)
be based on OV or SETH, e.g. for graph median and radius [2, 3, 13] and for Earth Mover
Distance [35], and was also studied in the context of model checking problems [18]. Going
back to the “2n regime”, the analogous hypothesis, which implies the HS hypothesis, is the
following.

I Hypothesis (∀∃-SETH). There is no 0 < α < 1 and ε > 0 such that for all k ≥ 3 we can
decide in time O(2(1−ε)n), given a k-CNF formula φ on n variables x1, . . . , xn, whether for
all assignments to x1, . . . , xdα·ne there exists an assignment to the rest of the variables that
satisfies φ, that is, whether:

∀x1, . . . , xdα·ne∃xdα·ne+1, . . . , xn : φ(x1, . . . , xn) = true.

3 Given two sets of n binary vectors of dimension O(log n), decide whether there is a vector in the first set
and a vector of the second set that are orthogonal. SETH implies that this problem cannot be solved in
time O(n2−ε) [40], and essentially all SETH-based n2 lower bounds go through this problem.

4 Given two sets of n binary vectors of dimension O(log n), decide whether for all vectors in the first set
there is an orthogonal vector in the second set. The Hitting Set Hypothesis states that this problem
cannot be solved in time O(n2−ε) for any ε > 0.
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Note that this hypothesis may also be thought of as the Π2-SETH, where Π2 is the second
level of the polynomial hierarchy, and one can also think of higher levels of the polynomial
hierarchy. Indeed, Bringmann and Chaudhury [8] recently proposed such a version, called
Quantified-SETH, in which we can have any constant number q ≥ 1 of alternating quantifier
blocks, with a constant fraction of the variables in each block5. Non-trivial algorithms for
Quantified-SAT exist [37], but none of them can refute even the stronger of these hypotheses.

It is important to note that while ∀∃-SAT is a strictly harder problem than SAT (as
adding more quantifiers can only make the problem harder), in the restricted setting of
∀∃-SETH, where there is a constant fraction of the variables in each quantifier block, the
situation is the opposite! A faster algorithm for SAT does imply a faster algorithm for
∀∃-SAT: exhaustively search over all assignments to the universally quantified αn variables
and for each assignment solve SAT on (1− α)n variables. A reduction in the other direction
is impossible under NSETH6. Therefore, ∀∃-SETH is a stronger assumption than SETH,
which explains why it is helpful for proving more lower bounds, yet it seems equally plausible
(to us). In particular, it gives us a tight lower bound for AND Subset Sum which we will use
to show higher lower bounds for scheduling problems.

I Theorem 1.3 (Hardness of AND Subset Sum). Assuming ∀∃-SETH, there are no ε, δ > 0
such that the following problem can be solved in time O(N1+δ−ε): Given N Subset Sum
instances, each with O(Nε) integers and target O(Nδ), determine whether all of these
instances are yes-instances.

Note that in comparison with the OR Subset Sum case (Theorem 1.2), the size of our
instances is polynomial O(Nε) instead of logarithmic Oδ,ε(logN). We leave it as an open
problem whether this is inherent or Theorem 1.3 can be improved.

It follows from Theorem 1.3 that AND Subset Sum on N instances, each on at most s
integers and with target at most t, cannot be solved in time Õ(Ns+ t(Ns)1−ε). We show
that the same holds for the Partition problem, which is the special case of Subset Sum where
the target is half of the total input sum. This is the starting point for our reductions in the
next section.

I Corollary 1.4. Assuming ∀∃-SETH, there is no ε > 0 such that the following problem
can be solved in time Õ(Ns+ t(Ns)1−ε): Given N Partition instances, each with at most s
integers and target at most t, determine whether all of these instances are yes-instances.

1.2 Scheduling lower bounds
To exemplify the power of Theorem 1.3, we use it to show strong lower bounds for several
non-preemptive scheduling problems that generalize Subset Sum. These problems include
some of the most basic ones such as minimizing the total weight of tardy jobs on a single
machine, or minimizing the number of tardy jobs on two parallel machines. Theorem 1.5
below lists all of these problems; they are formally defined in Section 3 and each requires a
different reduction. To describe the significance of our new lower bounds more clearly, let
us focus on only one of these problems, P2||

∑
Uj , for the rest of this section. The input

to this problem is a set of n jobs, where each job Jj has a processing time pj and a due

5 However, we remark that for the purposes of their paper as well as ours ∀∃-SETH is sufficient; Quantified-
SETH is merely mentioned for inspiration. They were motivated by understanding the complexity of
the polyline simplification problem from geometry (which turns out to have a ∀∀∃ type).

6 This is analogous to the “n2 regime” where HS implies OV but not the other way, assuming NSETH.
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date dj , and the goal is to schedule all jobs on two parallel machines so that the number
of jobs exceeding their due dates is minimal. Let P =

∑
j pj and Pmax = maxj pj denote

the sum of processing times and maximum processing time of the input jobs. Observe that
P ≤ Pmax · n.

The standard dynamic programming algorithm for this problem runs in O(P · n) =
O(Pmax · n2) time [29], and it is not known whether this running time is the best possible.
Nevertheless, there is a well-known easy reduction from Subset Sum on numbers x1, . . . , xn
to P2||

∑
Uj that generates an instance with total processing time P =

∑
xi = O(n · t)

and Pmax = max xi = O(t). Thus, using Theorem 1.1, we can rule out P 1−ε · 2o(n)-time
and P 1−ε

max · 2o(n)-time algorithms for P2||
∑
Uj . However, this leaves open the possibility

of Õ(Pmax + n)-time algorithms, which would be near-linear as opposed to the currently
known cubic algorithm in a setting where Pmax = Θ(n) and P = Θ(n2). One approach for
excluding such an upper bound is to first prove the impossibility of an algorithm for Subset
Sum with running time Õ(maxx∈X x+ n). However, such a result has been elusive and is
perhaps the most interesting open question in this context [4, 16, 17, 27, 33]. Instead, taking
an indirect route, we are able to exclude such algorithms with an Ω(n+ Pmaxn

1−ε) lower
bound under ∀∃-SETH by showing that P2||

∑
Uj can actually encode the AND of several

Subset Sum instances. In particular, in the above regime we improve the lower bound from
linear to quadratic.

I Theorem 1.5. Assuming ∀∃-SETH, for all ε > 0, none of the following problems have
Õ(n+ Pmax · n1−ε)-time algorithms:

1||
∑
wjUj, 1|Rej ≤ R|

∑
Uj, 1|Rej ≤ R|Tmax, and 1|rj ≥ 0, Rej ≤ R|Cmax.

P2||Tmax, P2||
∑
Uj, P2|rj |Cmax, and P2|level-order|Cmax.

All problems listed in this theorem are direct generalizations of Subset Sum, and each
one admits a O(P · n) = O(Pmax · n2)-time algorithm via dynamic programming [29, 36, 38].

We note that the distinction between running times depending on P versus Pmax and n
relates to instances with low or high variance in their job processing times. In several
experimental studies, it has been reported by researchers that the ability of scheduling
algorithms to solve NP-hard problems deteriorates when the variance in job processing time
increases (see e.g. [26, 31, 34]). Our results provide theoretical evidence for this claim by
showing tighter lower bounds on the time complexity of several scheduling problems based
on the maximum processing time Pmax.

2 Quantified SETH Hardness of AND Subset Sum

In the following we provide a proof for Theorem 1.3, the main technical result of the paper.
For this, we present a reduction from Quantified k-SAT to AND Subset Sum which consists
of two main steps. The first step uses a tool presented in [1] which takes a (non-quantified)
k-SAT instance and reduces it to subexponentially many Subset Sum instances that have
relatively small targets. The second step is a new tool, which we develop in Section 2.2,
that takes many Subset Sum instances and reduces them to a single instance with only a
relatively small increase of the output target.

2.1 Main construction
The following two theorems formally state the two main tools that are used in our construction.
Note that for our purpose, the important property here is the manageable increase of the
output target in both theorems. The proof of Theorem 2.1 can be found in [1], while the
proof of Theorem 2.2 is given in Section 2.2.
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4:6 Scheduling Lower Bounds via AND Subset Sum

I Theorem 2.1 ([1]). For any ε > 0 and k ≥ 3, given a k-SAT formula φ on n variables,
we can in time 2εn · nO(1) construct 2εn Subset Sum instances, each with O(n) integers and
target at most 2(1+ε)n, such that φ is satisfiable if and only if at least one of the Subset Sum
instances is a yes-instance.

I Theorem 2.2. Given Subset Sum instances (X1, t1), . . . , (XN , tN ), denoting n = maxi |Xi|
and t = maxi ti, we can construct in time (nN log t)O(1) a single Subset Sum instance (X0, t0),
with |X0| = O(nN) and t0 = t · (nN)O(1), such that (X0, t0) is a yes-instance if and only if
(Xi, ti) is a yes-instance for some i ∈ {1, . . . , N}.

Using the two results above, the proof of Theorem 1.3 follows by combining both
constructions given by the theorems:

Proof of Theorem 1.3. Let φ be a k-SAT formula on n variables and let 0 < α < 1. We
write n1 = bα · nc and n2 = n− n1, so that n1 ≤ αn and n2 ≤ (1− α)n+ 1. Our goal is to
determine whether ∀x1, . . . , xn1∃xn1+1, . . . , xn : φ(x1, . . . , xn) is true.

We enumerate all assignments ∂ of the variables x1, . . . , xn1 , and let φ∂ be the resulting
k-SAT formula on n2 variables after applying ∂. Note that there are 2n1 formulas φ∂ .

For each formula φ∂ , we run the reduction from Theorem 2.1 with parameter ε0, resulting
in a set I∂ of at most 2ε0n2 Subset Sum instances such that φ∂ is satisfiable if and only if at
least one of the instances in I∂ is a yes-instance. Note that each Subset Sum instance in I∂
consists of O(n2) = O(n) integers and has target at most t = 2(1+ε0)n2 . Moreover, running
this reduction for all formulas φ∂ takes time 2n1+ε0n2nO(1).

Next, using Theorem 2.2, we reduce I∂ to a single Subset Sum instance (X∂ , t∂) such
that (X∂ , t∂) is yes-instance if and only if φ∂ is a yes-instance, and so φ is a yes-instance
if and only if all (X∂ , t∂) are yes-instances. Note that we have |X∂ | = O(n · 2ε0n2) and
t∂ = O(2(1+ε0)n2 · (n · 2ε0n2)γ) for some constant γ > 0 that replaces a hidden constant in
Theorem 2.2. Moreover, running this step for all formulas φ∂ takes time O(2n1 · (n2ε0n2)γ),
where again γ > 0 replaces a hidden constant in Theorem 2.2.

Finally, we assume that for some ε′, δ > 0 we can solve AND Subset Sum on N instances,
each with O(Nε′) integers and target O(Nδ), in time O(N1+δ−ε′). Set ε := ε′/(1 + δ) and
note that then we can in particular solve AND Subset Sum on N instances, each with O(Nε)
integers and target O(Nδ), in time O(N (1+δ)(1−ε)); for convenience we use this formulation
in the following. Clearly, we can assume ε < 1. Set

N := 2(1+ε)n1 = Θ(2(1+ε)αn),

and note that the number of instances (X∂ , t∂) is 2n1 ≤ N . In order to apply the assumed
algorithm to the instances (X∂ , t∂), we need to verify that |X∂ | = O(Nε) and t∂ = O(Nδ).
To this end, we set α := 1/(1 + δ) and ε0 := min{εα, ε/(1 + 2γ)}, and check that

|X∂ | = O(n · 2ε0n2) = O(2ε0n) = O(Nε),

t∂ = O(2(1+ε0)n2 · (n · 2ε0n2)γ) = O(2(1+ε0(1+2γ))n2).

Using ε0 ≤ ε/(1 + 2γ) and n2 ≤ (1−α)n+ 1, we further simplify this to t = O(2(1+ε)(1−α)n).
From our setting of α = 1/(1 + δ) it now follows that t = O(2(1+ε)δαn) = O(Nδ). Hence, we
showed that the assumed algorithm for AND Subset Sum is applicable to the at most N
instances (X∂ , t∂). This algorithm runs in time

O(N (1+δ)(1−ε)) = O(2(1+δ)(1−ε)(1+ε)αn) = O(2(1−ε2)n).
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Additionally, as analyzed above, the running time incurred by the reduction is bounded by

O
(
2n1+ε0n2nO(1) + 2n1 · (n2ε0n2)γ

)
= O(2n1+ε0(1+2γ)n2) = O(2αn+ε(1−α)n)

= O(2(1−(1−ε)(1−α))n).

Hence, we can solve the quantified k-CNF formula φ in time O(2(1−min{ε2,(1−ε)(1−α)})n),
which for sufficiently large k violates ∀∃-SETH. J

Next, we infer Corollary 1.4 from Theorem 1.3.

Proof of Corollary 1.4. Fix any δ > 0, and let ε > 0 to be chosen later. For given Subset
Sum instances (X1, t1), . . . , (XN , tN ), each with O(Nε) integers and target O(Nδ), our goal
is to determine whether all of these instances are yes-instances.

For each i, we construct a Partition instance (X∗i , t∗i ) by setting

X∗i := Xi ∪
{( ∑

x∈Xi

x
)

+ ti, 2 ·
( ∑
x∈Xi

x
)
− ti

}
and t∗i := 1

2
∑
x∈X∗

i

x.

It is easy to see that the Partition instance (X∗i , t∗i ) is equivalent to the Subset Sum instance
(Xi, ti). Indeed, the two additional items cannot be put on the same side of the partition, as
their sum is too large. Putting them on different sides of the partition, it remains to split Xi

into a subset Yi ⊆ Xi summing to ti and the remainder Xi \ Yi summing to (
∑
x∈Xi

x)− ti,
to obtain a balanced partition.

Observe that |X∗i | = O(|Xi|) = O(Nε) and t∗i = O(|Xi| · ti) = O(Nδ+ε).
Now assume that we can solve AND Partition on N instances, each with at most s

integers and target at most t, in time O(Ns+ t(Ns)1−ε0) for some ε0 > 0. On the instances
(X∗1 , t∗1), . . . , (X∗n, t∗N ), this algorithm would run in time

Õ(Ns+ t(Ns)1−ε0) = Õ(N1+ε +Nδ+ε+(1+ε)(1−ε0)) = Õ(N1+ε +N1+δ+2ε−ε0).

Finally, we pick ε := min{δ/2, ε0/3} to bound this running time by O(N1+δ−ε). This violates
Theorem 1.3. J

2.2 From OR Subset Sum to Subset Sum
We next provide a proof of Theorem 2.2, the second tool used in our reduction from Quantified
k-SAT to Subset Sum. We will use the notion of average-free sets.

I Definition 2.3 (m-average-free set). A set of integers S is called m-average-free if for all
(not necessarily distinct) integers s1, . . . , sm+1 ∈ S we have:

s1 + · · ·+ sm = m · sm+1 implies that s1 = · · · = sm+1.

I Lemma 2.4 ([5]). Given m ≥ 2, M ≥ 1, and 0 < ε < 1, an m-average-free set S of size M
with S ⊆ [0,mO(1/ε)M1+ε] can be constructed in MO(1) time.

Proof of Theorem 2.2. Let (X1, t1), . . . , (XN , tN ) be N given Subset Sum instances, and
write t = maxi ti and n = maxi |Xi|. We begin by slightly modifying these instances. First,
let t∗ = (n + 1)t, and add to each Xi the integer t∗ − ti. Clearly, there is a subset of Xi

which sums up to ti if and only if there is a subset of Xi ∪{t∗− ti} that sums up to t∗. Next,
we add at most 2(n+ 1) copies of 0 to each instance, ensuring that all instances have the
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4:8 Scheduling Lower Bounds via AND Subset Sum

same number of integers 2(n+ 1), and that any instance which has a solution also has one
which includes exactly n + 1 integers. Note that these modifications only change n by a
constant factor, and t by a factor O(n), which are negligible for the theorem statement.

Therefore, with slight abuse of notation, henceforth we assume that we are given N Subset
Sum instances (X1, t1), . . . , (XN , tN ) with t1 = . . . = tN = t and |X1| = . . . = |XN | = 2n.
Moreover, for any i if there exists a subset Yi ⊆ Xi that sums up to t then we can assume
without loss of generality that |Yi| = n.

We construct an n-average-free set S = {s1, . . . , sN}, with S ⊆ [0, N2 · nO(1)], using
Lemma 2.4. Let Smax = maxs∈S s.

We are now ready to describe our construction of (X0, t0). It will be convenient to view
the integers in (X0, t0) as binary encoded numbers, or binary strings, and to describe how
they are constructed in terms of blocks of consecutive bits. Each integer will consist of seven
blocks of fixed sizes. Starting with the least significant bit, the first block has dlg te bits and
is referred to as the encoding block, the third block has dlgne bits and is referred to as the
counting block, the fifth block has dlog(n · Smax)e = O(log(nN)) bits and is referred to as
the verification block, and the last block consists of a single bit. In between these blocks are
blocks containing dlog(2nN)e bits of value 0, whose sole purpose is to avoid overflows.

For each integer xi,j ∈ Xi, we construct a corresponding integer x0
i,j ∈ X0 as follows (here

the “|”-characters are used only to differentiate between blocks, and have no other meaning):

x0
i,j = 0 | 0 · · · 0 | si | 0 · · · 0 | 0 · · · 01 | 0 · · · 0 | xi,j ,

Additionally, for each i ∈ {1, . . . , N} we construct an integer x0
i ∈ X0 associated with the

instance (Xi, ti) as

x0
i = 1 | 0 · · · 0 | n · (Smax − si) | 0 · · · 0 | 0 · · · 0 | 0 · · · 0 | 0.

The two sets of integers described above constitute X0. To complete the construction of the
output instance, we construct the target integer t0 as

t0 = 1 | 0 · · · 0 | n · Smax | 0 · · · 0 | n | 0 · · · 0 | t∗.

Note that |X0| = O(
∑
i |Xi|) = O(nN) and t0 = t · (nN)O(1), as required by the theorem

statement. Furthermore, the time required to construct (X0, t0) is (nN log t)O(1).
We next argue that (X0, t0) is a yes-instance if and only if (Xi, ti) is a yes-instance for

some i ∈ {1, . . . , N}. Suppose that there exists some i ∈ {1, . . . , N} and some Yi ⊆ Xi for
which

∑
xi,j∈Yi

xi,j = t. By the discussion at the beginning of this proof, we can assume that
|Yi| = n. It is not difficult to verify that all integers in Y0 := {x0

i,j : xi,j ∈ Yi} ∪ {x0
i } sum

up to t0. Indeed, by construction, the bits in the encoding block of these integers sum up
to
∑
xi,j∈Yi

xi,j = t, the bits in the counting block sum up to n, the bits in the verification
block sum up to n · Smax, and the last bit sums up to 1.

Conversely, assume that there is some subset Y0 ⊆ X0 with Σ(Y0) =
∑
x∈Y0

x = t0.
Let y1, . . . , ym ∈ Y0 denote all integers of the form x0

i,j in Y0, and let xi1,j1 , . . . , xim,jm ∈
X1 ∪ · · · ∪XM denote the integers that appear in the encoding blocks of y1, . . . , ym. Observe
that as m ≤ 2nM , by our construction the highest bit in each overflow block of Σ(Y0) must
be 0. It follows that we can argue in each of the encoding block, counting block, verification
block, and last block separately. This yields:∑

` xi`,j`
= t, since if this sum is greater than t then the second block of Σ(Y0) would not

be all zeros, and if
∑
` xi`,j`

< t then the encoding block of Σ(Y0) would not be t.
m = n, by a similar argument in the counting block.



A. Abboud, K. Bringmann, D. Hermelin, and D. Shabtay 4:9

There is exactly one integer of the form x0
i∗ in Y0, for some i∗ ∈ {1, . . . , N}, as otherwise

the most significant bit of Σ(Y0) would not be 1.
i∗ = i1 = · · · = in: Note that x0

i∗ contributes n · (Smax − si∗) to the verification block of
Σ(Y0), and so the remaining n integers in Y0 need to contribute together exactly n · si∗
to this block, since the value of this block is n · Smax in t0. Since S is an n-average-free
set, the only way for this to occur is if all of these integers have si∗ encoded in their
verification blocks, implying that i∗ = i1 = · · · = in.

Let i = i∗ be the index in the last point above. Then
∑
` xi,j`

= t by the first point above,
and so the subset {xi,j1 , . . . , xi,jn} is a solution for the instance (Xi, ti). J

3 Scheduling Lower Bounds

We next show how to apply Corollary 1.4 to obtain Ω(n + Pmax · n1−ε) lower bounds for
several scheduling problems. In particular, we provide a complete proof of Theorem 1.5 in a
sequence of lemmas below, each exhibiting a reduction from AND Subset Sum (or rather
AND Partition) to the scheduling problem at hand.

In each reduction, we start with N Partition instances (X1, t1), . . . , (XN , tN ); these are
Subset Sum instances with ti = 1

2
∑
x∈Xi

x. We write s = maxi |Xi| and t = maxi ti. We
present reductions that transform these given instances into an instance I of a certain
scheduling problem, such that I is a yes-instance if and only if (Xi, ti) is a yes-instance for
all i. The constructed instance I will consist of n = O(Ns) jobs with maximum processing
time Pmax = O(t). Since Corollary 1.4 rules out time Õ(Ns+ t(Ns)1−ε) for AND Partition,
it follows that the scheduling problem is not in time Õ(n + Pmax · n1−ε), for any ε > 0
assuming ∀∃-SETH.

For an instance (Xi, ti), we let xi,j denote the j-th integer in Xi.

3.1 Scheduling Notation and Terminology

In all scheduling problems considered in this paper, we are given a set of jobs J1, . . . , Jn to
be scheduled non-preemptively on one or two identical parallel machines. Each job Jj has a
processing time pj , and according to the specific problem at hand, it may also have a due
date dj , a release date rj , and a weight wj . We always use the same subscript for the job and
its parameters. A schedule consists of assigning each job Jj a machine M(Jj) and a starting
time Sj ∈ N≥0. The completion time of job j in a given schedule is Cj = Sj + pj , and the
makespan of the schedule is its maximum completion time Cmax = maxj Cj . A schedule is
feasible if no two distinct jobs overlap on the same machine; that is, for any pair of distinct
jobs Jj and Jk with M(Jj) = M(Jk) and Sj ≤ Sk we have Sk /∈ [Sj , Cj). Furthermore, when
release dates are present, we require that Sj ≥ rj for each job Jj .

A job Jj is said to be tardy in a given schedule if Cj > dj , and otherwise it is said to
be early. For each job Jj , we let Uj ∈ {0, 1} denote a Boolean variable with Uj = 1 if Jj is
tardy and otherwise Uj = 0. In this way,

∑
Uj denotes the number of tardy jobs in a given

schedule, and
∑
wjUj denote their total weight. We let Tj denote the tardiness of a job Jj

defined by Tj = max{0, Cj − dj}, and we let Tmax = maxj Tj denote the maximum tardiness
of the schedule. Below we use the standard three field notation α|β|γ introduced by Graham
et al. [20] to denote the various problems, where α denotes the machine model, β denotes
the constrains on the problem, and γ is the objective function. Readers unfamiliar with the
area of scheduling are also referred to [32] for additional background.
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4:10 Scheduling Lower Bounds via AND Subset Sum

3.2 Problems on Two Machines
We begin by considering scheduling problems on two parallel identical machines, as here our
reductions are simpler to describe. Recall that in this setting, a schedule consists of assigning
a starting-time Sj and a machine M(Jj) to each input job Jj .

3.2.1 P2|level-order |Cmax

Perhaps the easiest application of Theorem 1.3 is makespan minimization on two parallel
machines when level-order precedence constraints are present [14, 39]. In this problem, jobs
only have processing-times, and they are partitioned into classes J1, . . . ,Jk such that all
jobs in any class Ji must be scheduled after all jobs in Ji−1 are completed. The goal is to
find a feasible schedule with minimum makespan Cmax = maxj Cj .

I Lemma 3.1. P2|level-order|Cmax has no Õ(n+Pmax ·n1−ε)-time algorithm, for any ε > 0,
unless ∀∃-SETH is false.

Proof. First recall that a single Partition instance (X, t) easily reduces to an instance of
P2||Cmax (i.e. without precedence constraints on the jobs) by creating a job with processing
time x for each x ∈ X, and then setting the required makespan C to be C = t. For reducing
multiple Partition instances we can use the precedence constraints: For each instance (Xi, ti)
of Partition, we create a class of jobs Ji which includes a job Ji,j for each xi,j ∈ Xi with
processing time pi,j = xi,j . Then since all jobs in class Ji must be processed after all jobs
in J1, . . . ,Ji−1 are completed, it is easy to see that the P2|level-order |Cmax instance has a
feasible schedule with makespan at most C =

∑
i ti if and only if each Partition instance is a

yes-instance.
Indeed, if each Xi has a subset Yi ⊂ Xi which sums up to ti = 1

2 ·
∑
j xi,j , then we can

schedule all jobs Ji,j associated with elements xi,j ∈ Yi on the first machine (following all
jobs associated with elements in Y1, . . . , Yi−1), and all jobs Ji,j associated with elements
xi,j /∈ Yi on the second machine. This gives a feasible schedule with makespan at most C.
Conversely, a schedule with makespan at most C must have the last job in Ji complete no
later than

∑
i0≤i ti0 , for each i ∈ {1, . . . , N}. This in turn can only be done if each Xi can be

partitioned into two sets that sum up to ti, which implies that each (Xi, ti) is a yes-instance.
Starting from N Partition instances (X1, t1), . . . , (XN , tN ), each with at most s integers

and target at most t, our reduction constructs n ≤ Ns jobs with maximum processing
time Pmax ≤ t. Therefore, any Õ(n+ Pmax · n1−ε)-time algorithm for P2|level-order |Cmax
would yield an Õ(Ns + t(Ns)1−ε)-time algorithm for AND Partition, which contradicts
Corollary 1.4, assuming ∀∃-SETH. J

3.2.2 P2||Tmax and P2||
∑

Uj

We next consider the P2||Tmax and P2||
∑
Uj problems, where jobs also have due dates,

and the goal is to minimize the maximum tardiness and the total number of tardy jobs,
respectively. The reduction here is very similar to the previous reduction. We create for each
i ∈ {1, . . . , N}, and each xi,j ∈ Xi, a job Ji,j with processing time pi,j = xi,j and due date

di,j = di =
i∑

`=1
t` = 1

2 ·
i∑

`=0

∑
j

x`,j .

Observe that for each i ∈ {1, . . . , N}, all jobs Ji,j can be scheduled early if and only if Xi

can be partitioned into two sets summing up to ti. Thus, all jobs can be scheduled early
if and only if all Partition instances are yes-instances. Note that this corresponds to both
objective functions Tmax and

∑
Uj at value 0. Thus, using Corollary 1.4 we obtain:
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I Lemma 3.2. Both P2||Tmax and P2||
∑
Uj have no Õ(n+ Pmax · n1−ε)-time algorithms,

for any ε > 0, assuming ∀∃-SETH.

3.2.3 P2|rj ≥ 0|Cmax

Our final dual machine example is the problem of minimizing makespan when release dates
are present, the classical P2|rj ≥ 0|Cmax problem.

I Lemma 3.3. P2|rj ≥ 0|Cmax has no Õ(n + Pmax · n1−ε)-time algorithm, for any ε > 0,
unless ∀∃-SETH is false.

Proof. Let (X1, t1), . . . , (XN , tN ) be N instances of Partition. For each element xi,j ∈ Xi

we create a job Ji,j with processing time pi,j = xi,j and release date ri,j =
∑
`<i t`. Note

that there is a schedule for this instance with makespan
∑N
i=1 ti, where each job is scheduled

no earlier than its release date, if and only if each Partition instance is a yes-instance. Also
note that the resulting instance has maximum processing time Pmax = maxi ti and total
number of jobs n ≤ N ·maxi |Xi|. As before, using Corollary 1.4 we can now rule out time
Õ(n+ Pmax · n1−ε), assuming ∀∃-SETH. J

3.3 Problems on One Machine
We next consider single machine problems. Obviously, a schedule in this case only needs to
specify a starting time Sj for each job Jj , and in case there are no release dates, a schedule
can be simply thought of as a permutation of the jobs.

3.3.1 1||∑wjUj

One of the most classical single-machine scheduling problems which already appeared in
Karp’s initial list of 21 NP-complete problems [24] is the problem of minimizing the total
weight of tardy jobs. Here each job Jj has a due date dj and weight wj , and the goal is to
minimize

∑
wjUj .

I Lemma 3.4. Assuming ∀∃-SETH, there is no Õ(n + Pmax · n1−ε)-time algorithm for
1||
∑
wjUj, for any ε > 0.

Proof. Let (X1, t1), . . . , (XN , tN ) be N instances of Partition. For each i ∈ {1, . . . , N}, and
for each xi,j ∈ Xi, we create a job Ji,j with the following parameters:

processing time pi,j = xi,j ,
weight wi,j = (N − i+ 1) · xi,j ,
and due date di,j = di =

∑i
`=1 t`.

We argue that there is a schedule for all jobs Ji,j with total weight of tardy jobs at most
W =

∑N
i=1(N − i+ 1) · ti if and only if each Partition instance (Xi, ti) is a yes-instance.

Suppose that each Xi has a subset Yi ⊆ Xi which sums up to ti. Let Ei = {Ji,j : xi,j ∈ Yi}
and Ti = {Ji,j : xi,j /∈ Yi} for i ∈ {1, . . . , N}, and let E =

⋃
i Ei and T =

⋃
i Ti. Then any

schedule of the form E1, . . . , EN , T , where the order inside each subset of jobs is arbitrary,
schedules all jobs in E early, and so the total weight of tardy jobs of such a schedule is at
most the total weight of T which is w(T ) =

∑
i w(Ti) =

∑N
i=1(N − i+ 1) · ti = W .

Conversely, suppose there is a schedule for the jobs Ji,j where the total weight of tardy
jobs is at most W . Let Ei denote the set of early jobs in the schedule with due date di,
for i = {1, . . . , N}, and let E =

⋃
Ei. Then as the total weight of all jobs is 2W , we have

w(E) ≥ W =
∑
i(N − i + 1) · ti. By our construction, this can only happen if we have
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w(Ei) ≥ (N − i+ 1) · ti for each i ∈ {1, . . . , N}, which in turn can only happen if p(Ei) ≥ ti.
Since all jobs in each Ei are early, we have p(Ei) ≤ ti, and so p(Ei) = ti. It follows that for
each i ∈ {1, . . . , N}, the set Yi = {xi,j : Ji,j ∈ Ei} = {pi,j : Ji,j ∈ Ei} sums up to ti. Thus we
have found a solution for each Subset Sum instance (Xi, ti), and so the lemma follows. J

3.3.2 1|Rej ≤ R|∑Uj and 1|Rej ≤ R|Tmax

In scheduling with rejection problems [38], jobs Jj are allowed not to be scheduled (i.e.
rejected) at the cost of wj . Here we consider the case where the total cost of rejected jobs
cannot exceed some prespecified bound R. Under this constraint, the 1|Rej ≤ R|

∑
Uj and

1|Rej ≤ R|Tmax problems focus on minimizing the number of tardy jobs
∑
Uj and the

maximum tardiness of any job Tmax, respectively.
Note that there is a direct reduction from the 1||

∑
wjUj problem to the 1|Rej ≤ R|

∑
Uj

and 1|Rej ≤ R|Tmax problems: An instance of 1||
∑
wjUj has a schedule with total weight

at most W if and only if there are jobs of total weight R = W that can be rejected so that
all remaining jobs can be scheduled early. Thus, the lemma below immediately follows from
Lemma 3.4 above.

I Lemma 3.5. Assuming ∀∃-SETH, both 1|Rej ≤ R|
∑
Uj and 1|Rej ≤ R|Tmax have no

Õ(n+ Pmax · n1−ε)-time algorithms, for any ε > 0.

3.3.3 1|rj ≥ 0, Rej ≤ R|Cmax

In this problem, each job Jj has a processing time pj , a release date rj , and a weight wj , and
the goal is to find a schedule that rejects jobs with total weight at most R and minimizes
the makespan of the remaining non-rejected jobs.

I Lemma 3.6. There is no Õ(n+ Pmax · n1−ε)-time algorithm for 1|rj ≥ 0, Rej ≤ R|Cmax,
for any ε > 0, unless ∀∃-SETH is false.

Proof. Let (X1, t1), . . . , (XN , tN ) be N instances of Partition. For each i ∈ {1, . . . , N}, and
for each xi,j ∈ Xi, we create a job Ji,j with:

processing time pi,j = xi,j ,
weight wi,j = i · xi,j ,
and release date ri,j = ri =

∑i−1
`=1 t`.

We argue that there is a schedule for all jobs Ji,j with makespan at most C =
∑
i ti that

rejects jobs with cost at most R =
∑
i i · ti if and only if each Partition instance (Xi, ti) is a

yes-instance.
Suppose that each Xi has a subset Yi ⊆ Xi which sums up to ti. Let Ei = {Ji,j : xi,j ∈ Yi}

and Ti = {Ji,j : xi,j /∈ Yi} for i ∈ {1, . . . , N}, and let E =
⋃
i Ei and T =

⋃
i Ti. Then any

schedule of the form E1, . . . , EN , where the jobs in T are rejected, respects all release dates
of jobs in E , and has makespan Cmax =

∑
i ti = C. Moreover, the total cost of the rejected

jobs is w(T ) =
∑
i w(Ti) =

∑N
i=1 i · ti = R.

Conversely, suppose there is schedule for the jobs Ji,j that respects all release dates,
rejects jobs with weight at most R, and has makespan at most C. Let Ei denote the set of
non-rejected jobs with release date ri, for i = {1, . . . , N}, and let E =

⋃
Ei. Then as the

total weight of all jobs is 2R, we have w(E) ≤ R =
∑
i i · ti. By our construction, this can

only happen if we have w(Ei) ≥ i · ti for each i ∈ {1, . . . , N}, which in turn can only happen
if p(Ei) ≥ ti. On the other hand, the release date ri+1 of jobs in Ei+1 can be respected only
if p(Ei) ≤ ri+1 =

∑i
`=1 t`, and so p(Ei) = ti. It follows that for each i ∈ {1, . . . , N}, the set

Yi = {xi,j : Ji,j ∈ Ei} = {pi,j : Ji,j ∈ Ei} sums up to ti. Thus, we have found a solution for
each Subset Sum instance (Xi, ti), and so the lemma follows. J
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4 Conclusion

In this paper we considered the AND Subset Sum problem: Given N instances of Subset
Sum, determine whether all instances are yes-instances. We showed that the problem is
essentially as hard as solving N Subset Sum instances independently, and then used this
result to strengthen existing lower bounds for several scheduling problems. Our research is
closely related to the question of whether Subset Sum on input (X, t) can be solved in time
Õ(maxx∈X x+ |X|), which is currently a central open problem in the area [4, 16, 17, 27, 33].
Our results answer this question in the negative for several generalizations of Subset Sum.
We believe that the line of thought in this paper can provide other results in a similar vein.

Observe that almost all scheduling problems considered in this paper do not have a
matching upper-bound of Õ(Pmax · n) to the lower bound constructed in Section 3. The
exception is P2|level-order|Cmax which can be solved in time O(Pmax ·n) by using the known
O(Pmax ·n)-time Subset Sum algorithm [33] (or the faster algorithms given in [7, 27]) on each
class of jobs Ji separately. It would be very interesting to close the gap for other problems
listed in Theorem 1.5. This could be done by either devising an Õ(Pmax · n)-time algorithm
for the problem, or by strengthening our lower bound mechanism.
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Abstract
We consider the parity variants of basic problems studied in fine-grained complexity. We show that
finding the exact solution is just as hard as finding its parity (i.e. if the solution is even or odd)
for a large number of classical problems, including All-Pairs Shortest Paths (APSP), Diameter,
Radius, Median, Second Shortest Path, Maximum Consecutive Subsums, Min-Plus Convolution,
and 0/1-Knapsack.

A direct reduction from a problem to its parity version is often difficult to design. Instead, we
revisit the existing hardness reductions and tailor them in a problem-specific way to the parity
version. Nearly all reductions from APSP in the literature proceed via the (subcubic-equivalent but
simpler) Negative Weight Triangle (NWT) problem. Our new modified reductions also start from
NWT or a non-standard parity variant of it. We are not able to establish a subcubic-equivalence
with the more natural parity counting variant of NWT, where we ask if the number of negative
triangles is even or odd. Perhaps surprisingly, we justify this by designing a reduction from the
seemingly-harder Zero Weight Triangle problem, showing that parity is (conditionally) strictly harder
than decision for NWT.
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1 Introduction

The blossoming field of fine-grained complexity is concerned with understanding the time
complexity of basic computational problems in a precise way. The main approach is to
hypothesize the hardness of a few core problems and then reduce them to a large number of
other problems, establishing tight conditional lower bounds for them. A cornerstone finding
in this field is that there is a class of more than ten problems that are all subcubic equivalent
to the All-Pairs Shortest Paths (APSP) problem, in the sense that if any of them
can be solved in truly subcubic O(n3−ε) time (for some ε > 0) then all of them can. Most
of the problems in this “APSP-class” are related to distance computations in graphs such
as computing the radius of the graph or deciding if the graph contains a negative weight
triangle (NWT). In this work, we investigate the fine-grained complexity of the natural
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parity versions of such problems: are they easier, harder, or do they have the same time
complexity? Depending on the problem, the natural parity version could have a different
type; let us consider the two main types that will appear in this paper and illustrate them
with examples.

Parity Computation: The Radius-Parity problem asks whether the radius of the
graph is even or odd. Similarly, the APSP-Parity problem asks to compute, for each
pair of nodes, whether the distance between them is even or odd. This type is often
natural for optimization problems.
Parity Counting: The NWT-Parity problem asks if the number of negative triangles
in the graph is even or odd, or equivalently, it asks to count the number of negative
triangles modulo 2. Similarly, SAT-Parity asks if the number of satisfying assignments
to a given formula is even or odd. This type is often natural for decision problems where
we are looking for a solution satisfying a certain property1.

The parity computation versions are clearly no harder than the original problem: If we
know the radius exactly we also know its parity (if it is even or odd). In fact, sometimes
knowing the parity can be much easier than computing the entire answer. For instance, while
computing the maximum number of nodes in a matching requires super-linear time, knowing
the parity is trivial (it is always 0). On the other hand, parity counting versions can make
the problem much harder. A famous example is 2-SAT: the decision version takes linear
time but the parity version is probably not in P [42]. Thus, in general, the natural parity
version could be easier or harder than the original problem.

Various questions related to parity arose naturally in different contexts in computer science
throughout the years. For instance, the SAT-Parity problem played a key role in the proof
of Toda’s theorem [40], which is one of the earliest and most fundamental results in the large
body of works on counting complexity [23]. There, parity counting problems are extensively
studied, being of intermediate complexity between the decision problems and the counting
problems (see e.g. [5, 8, 34,41–44]). The first type of problems are less studied in terms of
worst-case complexity but are morally related to hard-core predicates in cryptography [45]
where it is desirable that the parity (least significant bit) of a function is hard to guess. The
motivation for our work is twofold: (1) many of the parity versions are interesting on their
own and we would like to know their complexity, and (2) this investigation could lead to a
deeper understanding of the structure among the original (non-parity) versions.

1.1 Our Results

1.1.1 The APSP Class
Our first set of results concern the APSP equivalence class. We have gone through the
problems in this class from the works of [3, 20, 51] and tried to classify the complexity of
their parity versions. Our first theorem shows that, with the notable exception of Negative
Weight Triangle (NWT), all the parity versions are subcubic-equivalent to APSP and
therefore also to the original (non-parity) problems. These problems and their parity versions
are listed and defined in Table 1 together with our results for each of them and where they
appear in the paper.

1 The parity counting version could be viewed simply as the parity computation version of the counting
version of the problem, so the first type could be considered the “real” parity version. However, parity
counting is widely referred to as the parity version in the literature.
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Table 1 The APSP class: problem definitions, known results, and our results (in bold). We
denote subcubic equivalent as SE and as SER when it is under a randomized reduction. The first
seven problems output a single value and their parity version computes the parity of this value.
The next three problems output multiple values and their parity version computes the parity of
every value. The last two problems are the only parity counting problems, in which we distinguish
between the parity version (asking for the parity of the number of such triangles) and the vertex
parity version (asking for the parity of the number of vertices that belong to such triangles).

Problem Definition Complexity
Median minu

∑
v
d(u, v) SE to APSP [3],

Parity is SE to APSP (Sec. 2)
Wiener Index

∑
u

∑
v
d(u, v) SE to APSP [20],

Parity is SER to APSP (Sec. 3.2, 3.3)
Radius minu maxv d(u, v) SE to APSP [3],

Parity is SE to APSP (Sec. 8)
Sum of
Eccentricities

∑
u

maxv d(u, v) SE to APSP, (Sec. 7),
Parity is SER to APSP (Sec. 3.4)

Integer
Betweenness
Centrality

find the number of vertices pairs
with a shortest path passing
through a given vertex x

SE to APSP [3],
(1 + ε)-approx. is SER to Diameter [3]
Parity is SER to APSP (Sec. 3.5, 3.6)

Second
Shortest Path

given vertices s, t, find the length
of the second shortest s-to-t path

SE to APSP [51],
Parity is SE to APSP (Full version)

Maximum
Subarray

given a matrix, find the maximum
total value in a submatrix

SE to APSP [6,39],
Parity is SE to APSP (Full version)

APSP Compute all distances d(u, v) Parity is SE to APSP (Sec. 4)
Min-Plus
Matrix
Multiplication

given n× n matrices A and B,
compute the matrix C where
C[i, j] = mink{A[i, k] +B[k, j]}

SE to APSP (folklore),
Parity is SE to APSP (Sec. 4)

Replacement
Paths

for every edge e on a shortest
s-to-t path, find the length of the
shortest s-to-t path that avoids e

SE to APSP [51],
Parity is SE to APSP (Full version)

Negative
Weight
Triangle

determine if there is a triangle
of total negative weight

SE to APSP [51], (1 + ε)-approx. Counting
is SER to APSP [19].
Randomized reductions from APSP
and 3SUM to Parity and Counting
(Sec. 5.1, 5.2), Vertex Parity is SER
to APSP (Sec. 3.1)

Zero
Weight
Triangle

determine if there is a triangle of
total zero weight

Reduction from APSP and 3SUM [50],
Randomized reduction to Parity and
Vertex Parity (Sec. 3.1, 5.2)

I Theorem 1. The following problems are subcubic-equivalent:
All-Pairs Shortest Paths and its parity computation,
Min-Plus Matrix Multiplication and its parity computation,
Radius and its parity computation,
Median and its parity computation,
Wiener Index and its parity computation,
Replacement Paths and its parity computation,
Second Shortest Path and its parity computation,
Vertex in Negative Weight Triangle and its parity computation,
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Integer Betweenness Centrality and its parity computation,
Maximum Subarray and its parity computation,
Sum of Eccentricities2 and its parity computation.

This adds more than ten natural problems to the APSP-equivalence class. For all problems
in Theorem 1, the reduction from the parity version to the original problem is straightforward
(since they are parity computation rather than parity counting problems), while the reduction
in the other direction is not. For instance, it is not at all clear how to establish the hardness of
Median-Parity by reducing from Median to it. Instead, we find it much more convenient
to start from NWT which is the canonical APSP-complete problem and the starting point
for nearly all APSP-hardness reductions.

Some of our results take the known reductions from NWT and modify them to establish
the hardness of the parity versions, e.g. for Median-Parity. Notably, reductions of this kind
are deterministic. For other parity problems such as Wiener-Index it is more convenient
to reduce from a parity version of NWT. However, (the most natural) NWT-Parity is a
parity counting problem which makes it seem harder than NWT and therefore inappropriate
as a starting point for reductions. Instead, we identify a different variant that we call NWT-
Vertex-Parity (asking if the number of vertices that belong to a negative triangle is even
or odd) which turns out to be subcubic-equivalent to NWT and a very useful intermediate
problem. Reductions of this kind seem to require randomization.

Finally, we investigate the intriguing NWT-Parity problem. This is the modulo 2
version of the NWT-counting problem (asking for the number of negative triangles) that
was recently studied by Dell and Lapinskas [19] in their work on the fine-grained complexity
of approximate counting. With standard subsampling techniques, one can show that NWT
reduces to NWT-Parity. But are they subcubic-equivalent? We show that such an
equivalence would imply breakthroughs in fine-grained complexity, therefore suggesting that
the parity version is strictly harder. Our next theorem shows that NWT-Parity can solve
a problem that is considered strictly harder than APSP: the problem of deciding whether a
graph has a Zero Weight Triangle (ZWT). As discussed below, if the same reduction
can be shown between the original (non-parity) problems it would be a major breakthrough.

I Theorem 2. There is a deterministic subcubic-reduction from the Zero Weight Triangle
Parity problem to the Negative Weight Triangle Parity problem.

The ZWT problem is considered one of the “hardest” n3-problems since a subcubic
algorithm for it would refute two of the main conjectures in fine-grained complexity: it would
give a subcubic algorithm for APSP and a subquadratic algorithm for 3SUM [35, 50, 51].
The 3SUM Conjecture states that we cannot decide in truly subquadratic O(n2−ε) time if
among a set of n numbers there are three that sum to zero. The class of problems that are
3SUM-hard contains dozens of problems mostly from computational geometry (see [24,28]
for a partial list), but also in other domains, e.g. [4,29,35]. One of the central open questions
in the field is whether the APSP class and the 3SUM class can be unified; in particular,
whether APSP is 3SUM-hard. One way to prove this is to reduce ZWT to APSP, and our
result shows that NWT-Parity to NWT suffices:

I Corollary 3. If the Negative Weight Triangle Parity problem is subcubic-equivalent to the
Negative Weight Triangle problem, then APSP is 3SUM-hard.

2 This natural problem was not considered before to our knowledge, but it is closely related to Median,
Radius, and the other distance computation problems.
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A more quantitative reason for supposing that ZWT is harder than NWT is that their
current upper bounds, while all mildly-subcubic, are significantly far apart. All the problems
in the APSP equivalence class can be solved in n3/2Ω(

√
log n) time [47], which is faster than

O(n3/ logc n) for all c > 0. For ZWT, on the other hand, nothing better than O(n3/ logc n)
is known for a small c ≤ 2, and even small improvements would lead to a faster mildly
subquadratic algorithm for 3SUM beating the current fastest O(n2(log log n)2/ log n) [26].
Dell and Lapinskas [19] achieve an n3/2Ω(

√
log n) upper bound for the approximate counting

version of NWT but not for exact counting. We show that even for the parity version such a
result has breakthrough consequences for 3SUM. For NWT, this (conditionally) separates
the counting and parity versions from the decision and approximate counting versions.

Table 2 The other (non-APSP) problems. We denote subcubic (subquadratic) equivalent as SE
(SQE) and as SER (SQER) when it is under a randomized reduction. As before, the parity version
of problems that output a single (multiple) value(s) computes the parity of this value (all these
values). The last problems is the only parity counting problem, in which the parity version asks for
the parity of the number of vertices that do not belong to any negative triangle.

Problem Definition Complexity
Diameter maxu maxv d(u, v) Parity is SE to Diameter (Sec. 8)
Maximum
Row Sum

maxu

∑
v
d(u, v) Reduction from Co-Negative Triangle

to Parity (Full version)
Reach
Centrality

compute the maximum distance
between a given vertex x and the
closest endpoint of any shortest
path passing through x

SE to Diameter [3], Parity is SE to
Diameter (Full version)

0/1-
Knapsack

given items (wi, vi) and a weight
t, find a subset I that maximizes∑

i∈I
vi subject to

∑
i∈I

wi ≤ t

SQER to Min-Plus Convolution, variants
are SQE to Min-Plus Convolution [17,30],
Parity is SQER to Min-Plus
Convolution, variants are SQE to
Min-Plus Convolution (Sec. 6)

Tree
Sparsity

given a node-weighted tree, find
the maximum weight of a subtree
of size k

SQE to Min-Plus Convolution [7, 17],
Parity is SQE to Min-Plus
Convolution (Full version)

Min-Plus
Convolution

given n-length vectors A and B,
compute the vector C where
C[k] = mini+j=k{A[i] +B[j]}

Reduction to APSP and 3SUM [13,17],
SQE to Parity (Sec. 4.2)

Maximum
Consecutive
Subsums

given an n-length vector A,
compute the vector B where
B[k] = maxi{

∑k−1
j=0 A[i+ j]}

SQE to Min-Plus Convolution [17,31],
Parity is SQE to Min-Plus
Convolution (Sec. 4.3)

Co-Negative
Triangle

find a vertex that does not
belong to any negative triangle

Reduction to Diameter [10],
Reduction to Maximum Row Sum
Parity (Full version)

1.1.2 Other Classes
In our second set of results we ask whether parity computation problems are as hard also
for problems that are outside the APSP class. We have gone through other fine-grained
complexity results from the works of [7, 17, 30, 31] and tried to establish the same results
for the parity versions. All problems we consider are defined in Table 2 together with our
results and where they appear in the paper. The general message is that, in all cases we
considered, the same hardness reductions (if modified carefully) can establish the hardness
of the (seemingly easier) parity version as well. We mention a few concrete examples.
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In the context of distance computations in graphs, the central open question is whether
the Diameter problem is subcubic equivalent to APSP. Meanwhile, Diameter has its own
(smaller) equivalence class which includes problems such as Reach Centrality [3]. We
prove that Diameter-Parity and Reach Centrality-Parity are subcubic equivalent to
Diameter.

Another interesting problem in fine-grained complexity whose importance is rapidly
increasing is the Min-Plus Convolution problem [17]. The naïve algorithm for this
problem runs in O(n2) time, and a truly subquadratic O(n2−ε) algorithm is conjectured to
be impossible. This problem is one of the easiest n2 problems since it can be reduced to both
APSP (i.e. a subcubic algorithm for APSP yields a subquadratic algorithm for Min-Plus
Convolution) and to 3SUM (an opposing situation to that of ZWT). This means that
all of the APSP and 3SUM lower bounds can be based on this conjecture, but also that
Min-Plus Convolution is unlikely to be equivalent to either of them (as it would imply a
unification of the classes). Recently, a few other problems have been shown to be harder,
e.g. [2], or subquadratic-equivalent to it, e.g. Maximum consecutive subsums [17, 31],
0/1-Knapsack [17,30], and a (1 + ε)-approximation for Subset Sum [14]. We prove that
these equivalences hold for the parity versions as well (except the latter problem for which
we did not find a natural parity version). Our reduction from the Maximum consecutive
subsums problem to its parity version in Section 4.3 is quite involved and it uses specific
properties of the addition operator. One can obtain such a reduction indirectly and more
easily via Min-Plus Convolution, however, we believe that our reduction gives more
insight into the problem and into the usage of the addition operator.

I Theorem 4. The following problems are subquadratic-equivalent:
Min-Plus Convolution and its parity computation,
Maximum Consecutive Subsums and its parity computation,
0/1-Knapsack and its parity computation,
Tree Sparsity and its parity computation.

1.2 Related Work
While parity counting problems are extensively studied in classical complexity theory, the
parity computation problems seem to have received less attention. In many cases, the
standard NP-hardness reduction from SAT gives instances in which the solution is always
either k or k − 1, which directly implies the NP-hardness of the parity version as well. Some
of the results in fine-grained complexity also have this property. For example, the quadratic
hardness result for Diameter in sparse graphs [36] shows that it is hard to distinguish
diameter 2 from 3 and immediately gives the same lower bound for parity. However, for
many other problems, such as the ones we consider, this is not the case and a careful
problem-specific treatment is required.

Theorem 2 and its corollaries conditionally separate NWT from its parity and counting
versions. Such separations are famously known in classical complexity, e.g. for 2-SAT [42].
In fine-grained complexity, a (conditional) separation for a variant of the Orthogonal Vec-
tors problem between near-linear time decision [48] and quadratic time exact counting [46]
was recently achieved. Notably, the approximate counting version is also in near-linear
time [19] and the parity version is open.

The parity counting version of the Strong Exponential Time Hypothesis was studied in a
seminal paper on the fine-grained complexity of NP-hard problems [16]. The central question
left open in that paper (and is still wide open, see [1]) is whether SAT can be reduced to
Set-Cover in a fine-grained way; interestingly, the authors have shown such a reduction for
the parity counting versions.
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Exact and approximate counting problems have received a lot of attention in parameterized
[15,22] and fine-grained complexity [18]. In a recent development, the k-Clique counting
problem was shown to have worst-case to average-case reductions [9, 25]. It is likely that our
result for NWT-Parity can be extended to Negative Weight k Clique Parity showing
that it is as hard as Zero Weight k Clique. The decision version of the latter problem
was used as the basis for public-key cryptography schemes [32].

Due to the large amount of works on APSP-hardness and equivalences we did not manage
to exhaustively enumerate all of them and investigate the complexity of the parity versions,
e.g. for problems on stochastic context-free grammars [38] or dynamic graphs [4, 37]. Still,
we expect that the ideas in this work can be extended to show the hardness of those parity
computation problems as well.

Besides parity computation and parity counting, there is a third natural type of parity
problems where we take a problem and replace one of the operations (e.g. summation) with
a parity. For example, the 3XOR problem is a variant of 3SUM where we are given a set of
n binary vectors of size O(log n) and are asked if there is a triple whose bit-wise XOR is all
zero. 3XOR is the subject of study of several papers [11, 12, 21] and it seems just as hard as
3SUM but a reduction in either direction has been elusive [27].

1.3 Preliminaries
In all graph problems we assume that the graphs have n nodes and O(n2) edges. In all
the weighted problems we consider, we assume the weights are integers in [−M, M ] (and
generally it is assumed that M = poly(n)).

Intuitively, a fine-grained reduction [49,51] from problem A with current upper bound
O(na) to problem B with current upper bound O(nb) is a Turing-reduction proving that if B
is solvable in time O(nb−ε), for some ε > 0, then A is solvable in time O(na−ε′), for some
ε′ > 0. More formally, an (a, b)-fine-grained reduction from A to B is a (possibly randomized)
algorithm solving A on instances of size n using t calls to an oracle for B on instances of sizes
n1, . . . , nt, such that for all ε > 0:

∑t
i=1(ni)b−ε ≤ na−ε′ for some ε′ > 0. In this paper, unless

otherwise stated, we assume that the reduction is randomized. A (3, 3)-fine-grained reduction
is called a subcubic-reduction and two problems are called subcubic-equivalent if there are
subcubic-reductions in both ways. Similarly, two problems are subquadratic-equivalent if
there are (2, 2)-fine-grained reductions between them in both ways.

2 APSP to Median Parity

In this section, we show a subcubic reduction from the Negative Weight Triangle
problem (hence also from APSP [51]) on a directed graph G with integral edge weights in
[−M, M ] to Median Parity. We first describe the reduction of [3] from Negative Weight
Triangle to Median and then modify it to become a reduction to Median Parity.

2.1 Negative Weight Triangle to Median [3]
The instance G′ to the Median problem (illustrated in Figure 1) is an undirected graph
constructed as follows. First, for any two (not necessarily different) vertices u, v if there is no
edge (u, v) in G then we add an edge (u, v) of weight w(u, v) = 4M to G (this will not form a
new negative triangle). Each vertex u of G has five copies in G′ denoted uA, uB , uB′ , uC , uC′ .
Let H be a sufficiently large number (say H = 100M). For any two (not necessarily different)
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5:8 On the Fine-Grained Complexity of Parity Problems

vertices u, v of G we add the following edges to G′: (uA, vB) of weight 3H +w(u, v), (uA, vB′)
of weight 3H −w(u, v), (uA, vC) of weight 6H −w(v, u)3, (uA, vC′) of weight 3H + w(v, u)3,
(uA, vA) of weight H, and (uB , vC) of weight 3H + w(u, v).

Figure 1 The graph G′ in the reduction from Negative Weight Triangle to Median.

I Lemma 5 ([3]). G does not contain a negative triangle iff the median of G′ is (16n− 1)H.

Proof. Consider first a vertex uX with X 6= A. We claim that the sum of distances∑
v∈V (G′) dG′(uX , v) is at least (19n − 5)H. To see this, first observe that the sum is

minimized when X = B. This is because shortest paths from vertices in B′ and C ′ go
through A, and because every C-to-A distance is larger than any B-to-A distance by at least
H. We therefore focus on X = B: The distance from uB to uB is zero and the distance from
uB to vB (for v 6= u) is at least 5H (since H is large enough, 3H+w(u, t)+3H+w(t, v) > 5H),
so the sum of distances from uB to all vertices of B is 5H(n−1). Similarly, for every vertex v of
G, the distances from uB to vA, vB′ , vC , vC′ are at least 2H, 5H, 2H, 5H respectively. Overall,
the sum of distances from uB is at least (5n−5)H + 2nH + 5nH + 2nH + 5nH = (19n−5)H.

Next consider a vertex uA. Let F (u, v) = min{0, mint∈V (G){w(v, u) + w(u, t) + w(t, v)}}.
Observe that F (u, v) = 0 if the edge (v, u) is not part of any negative triangle in G, and
F (u, v) < 0 otherwise. We claim that the sum of distances

∑
v∈V (G′) dG′(uA, v) is exactly

(16n−1)H+
∑

v∈V (G) F (u, v). To see this, consider the distances from uA. Distances to vA, vB ,
and vB′ are H (for v 6= u), 3H +w(u, v), and 3H−w(u, v) respectively. Over all such vertices
the sum of the distances is therefore (n− 1)H + 6nH = (7n− 1)H. The distance to vC′ is
3H +w(v, u) and the distance to vC is the minimum between 6H−w(v, u) (using a single edge)
and 3H+w(u, t)+3H+w(t, v) for some vertex t (using two edges, through some tB). Summing
those two distances together, we get 9H + w(v, u) + mint∈V (G){−w(v, u), w(u, t) + w(t, v)} =
9H + F (u, v). Overall, we get that

∑
v∈V (G′) dG′(uA, v) = (16n− 1)H +

∑
v∈V (G) F (u, v) as

claimed. This implies that the median vertex must come from A and that the median value
is (16n− 1)H iff every F (u, v) = 0 (i.e. G does not contain a negative triangle). J

2.2 Negative Weight Triangle to Median Parity
We now modify the above reduction so that it reduces to Median Parity instead of Median.
We assume n is odd (otherwise add an isolated vertex to G). Let Med be the value of the
median of G′. We multiply all the edge weights of G′ by 4n (notice that this multiplies the

3 Notice the different order of the vertices.
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median value Med by 4n). We do this in order to make sure that small changes in edge
weights would not change any shortest path, and also to make sure that subtracting n from
distance sums would not change the median vertex.

We show how to find the median of G′ using O(log n) executions of Median Parity:
Given a set of vertices T ⊆ A (initialized to be A), pick an arbitrary subset S of T of half of
its size. Temporarily (i.e restore weights at the end of the iteration) subtract 1 from all the
S-to-B and S-to-C edges and add 1 to all the S-to-B′ edges. Now solve Median Parity on
G′. If the median value is odd, set T ← S. If the median value is even, set T ← T/S. We
continue recursively for O(log n) steps until T contains a single vertex. We then check if this
vertex participates in a negative triangle in G.

For the correctness of the above procedure, inductively assume that T contains the median
vertex of G′. Notice that the temporary changes to the edge weights do not change the
identity of shortest paths in G′, only their value. In particular, the sum of distances from
every vertex uA ∈ S decreases exactly by n, and for any vertex uA ∈ A\S the sum remains
the same. To see this, consider first a vertex uA ∈ S. The sum of its distances to any vB

and vB′ remains the same (one is larger by 1 and one is smaller by 1) and its distance to
vC is decreased by 1 (recall that the shortest path is either the direct edge (uA, vC) or two
edges (uA, tB), (tB , vC)). Therefore, the sum of distances from uA ∈ S to all vertices of G′

decreases by exactly n. As for vertices in uA ∈ A\S, we do not change weights of edges in
their shortest paths so their sum of distances is unchanged.

If the median is from S, then its sum of distances in G′ was originally Med. Since we
multiplied the edge weights by 4n and subtracted n from its sum, the median value is now
4n ·Med−n. This value is odd and indeed we set T ← S. If on the other hand the median is
not from S, then the sum of distances from any vertex of S was originally at least Med + 1,
and is therefore now at least 4n · (Med + 1)− n. This value is strictly bigger than the value
4n ·Med of the median. The value 4n ·Med is even and indeed we set T ← T/S.

3 Negative Triangle Vertex Parity

In this section, we show that Negative Triangle Vertex Parity (finding if the number
of vertices that belong to a negative triangle is odd or even) is subcubic equivalent to APSP
under randomized reductions. We then use Negative Triangle Vertex Parity in order
to establish a subcubic equivalence with the Parity versions of Wiener Index, Sum of
Eccentricities, and Integer Betweenness Centrality.

3.1 APSP to Negative Triangle Vertex Parity
We now show a probabilistic (one side error) reduction from Negative Weight Tri-
angle (NWT) to Negative Triangle Vertex Parity (NTVP). We assume without
loss of generality that the NWT instance G is undirected (otherwise, we turn G into an
undirected tripartite graph (by adding vertices v1, v2, v3 for every v in V (G) and edges
(u1, v2), (u2, v3), (u3, v1) for every (u, v) in E(G)) with the property that there is a negative
triangle in G iff there is a negative triangle in the tripartite graph). The NTVP instance G′ is
also undirected and is created as follows: Choose V1 ⊆ V (G) uniformly, and let V = V (G)\V1.
For every u1 ∈ V1 we add a vertex u2, and let the union of all u2 vertices be V2. For every
edge (u1, v1) in V1 × V1 we add the edge (u2, v2) and for every edge (u1, v) in V1 × V we add
the edge (u2, v). Notice that the graph induced by V ∪ V2 is G, and the same for V ∪ V1.

Since there are no edges between V1 and V2, every triangle is either in V ∪V1 or in V ∪V2.
Furthermore, for every vertex u1 ∈ V1, if u1 belongs to a negative triangle in G then both u1
and u2 belong to negative triangles in G′, thus contributing 2 (even) to the parity NTVP(G′)
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of the number of vertices that belong to a negative triangle in G′. Therefore, vertices in V1
do not affect the parity NTVP(G′). In other words, NTVP(G′) is the parity of vertices in
V with a negative triangle. If G contains a negative triangle, then the probability of odd
NTVP(G′) is exactly 1/2 (since each vertex with a negative triangle is chosen to be in V

with probability 1/2). If G does not contain a negative triangle, then the probability of
even NTVP(G′) is exactly 1. By repeating this process O(log n) times we can amplify the
probability of success to 1− 1/nc for any constant c.

We remark that the above reduction can also be used to reduce Zero Weight Triangle
to its vertex parity version.

3.2 Negative Triangle Vertex Parity to Wiener Index Parity (Directed)
We handle the directed case here and the undirected case in Section 3.3. Assume n is
even by adding a vertex with no negative triangles, if needed. The reduction graph G′ is
constructed as in [3, 51] (see Figure 2): Each vertex u of G has five copies in G′ denoted
uS , uA, uB , uC , uD. Let H be a sufficiently large even number (say H = 100M). For
every (X, Y ) ∈ {(A, B), (B, C), (C, D)} and u, v ∈ V (G), add the edge (uX , vY ) with weight
2H + 2w(u, v). For every u 6= v ∈ V (G), add an edge (uA, vD) with weight 5H. For every
u ∈ V (G), we add the edge (uS , uA) with weight H + 1 and the edge (uS , uD) with weight
7H. Turn G′ into a clique by replacing any missing edge with an edge of weight 16H.

Figure 2 The graph G′ in the reduction from Negative Triangle Vertex Parity to Wiener Index
Parity. Edges of weight 16H are absent.

We now show that the Negative Triangle Vertex Parity of G (NTVP(G)) is equal to the
Wiener Index Parity of G′ (WIP(G′)). Since H is an even number, the only edges in G′ that
have an odd length are the (uS , uA) edges of length H + 1. Therefore, the parity WIP(G′) is
determined by the S to A ∪B ∪ C ∪D distances.

First observe that the sum of distances from S to A ∪B ∪ C is even. This is because for
any vertex uS in S the following shortest paths consist of a single edge of weight H + 1: the
uS-to-vA (for v = u) path, the uS-to-vB (for v = u or v 6= u) paths, and the uS-to-vC (for
v = u or v 6= u) paths. Thus, the total number of odd edges in the sum of distances from S

to A ∪B ∪ C is n(2n + 1), which is even since n is even.
It remains to consider the distances from S to D. For u 6= v, dG′(uS , vD) = 6H + 1, and

the sum of such distances is n(n− 1)(6H + 1) (even). We are left with the sum of distances
dG′(uS , uD). If u belongs to a negative triangle in G and k is the minimal weight of such
cycle then dG′(uS , uD) = 7H + 2k + 1 (odd). If u does not belong to any negative triangle
then dG′(uS , uD) = 7H (even). Therefore the sum of distances is odd iff there is an odd
number of vertices belonging to a negative triangle.

3.3 Negative Triangle Vertex Parity to Wiener Index Parity
(Undirected)

In undirected graphs, to avoid a trivial Wiener Index Parity of 0, the Wiener Index is defined
as the sum of d(u, v) over every unordered (rather than ordered) pair {u, v}.
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We assume that every triangle has odd length by multiplying every edge-weight by 4 and
adding 1 (this preserves the sign of negative and non-negative triangles). We construct a
graph G′ similarly to [3, 51] and to Section 3.2 but the approach differs in the analysis of
correctness: Each vertex u of G has four copies in G′ denoted uA, uB , uC , uD. Let H = 100M

(sufficiently large even number). For every (X, Y ) ∈ {(A, B), (B, C), (C, D)} and u, v ∈ V (G),
add the edge (uX , vY ) of weight 2H + w(u, v). For every u 6= v ∈ V (G), add an edge (uA, vD)
of weight 5H. For every u = v ∈ V (G), add an edge (uA, uD) of weight 6H.

Let m be the number of edges in G and let W be the sum of edge weights in G. We claim
that WIP(G′) − W is odd iff NTVP(G) is odd: The sum of A-to-B distances is W + 2H ·m.
This sum has the same parity as W , which we cancel out by subtracting W from WIP(G′).
Notice that the sum of B-to-C (A-to-C) distances and the sum of C-to-D (B-to-D) distances
are equal thus by adding both sums the parity of WIP(G′) does not change. Similarly, the
sum of the X-to-X distances for every X ∈ {A, B, C, D} is the same and WIP(G′) is not
changed. We are left with the A-to-D distances. The sum of uA-to-vD distances for u 6= v is
5H · n(n− 1) (even). If u is not in a negative triangle, then d(uA, uD) = 6H (even) by using
the direct edge (uA, uD). If u is in a negative triangle, the uA-to-uD distance is 6H plus the
weight of the minimum weight triangle of u (odd). Therefore WIP(G′) − W is odd iff there
is an odd number of vertices with a negative triangle.

3.4 Negative Triangle Vertex Parity to Sum of Eccentricities Parity
The reduction is obtained by tweaking the reduction of Section 3.3. We add to G′ an
additional vertex y. For every u ∈ V (G), we add the edge (y, uD) of weight 7H and the
edges (y, uA), (y, uB) and (y, uC) each of weight 5H.

Notice that these changes to G′ do not affect the distances between vertices of V (G′)\{y}
since every path that goes through y has weight of at least 10H. Recall that H is an even
number. The eccentricity of a vertex u is defined as maxv d(u, v). The eccentricity of vertices
in B∪C is 5H (even), since their distance to y is 5H and their distance to any other vertex is
bounded by 4H + 2M (i.e. smaller than 5H). The eccentricity of vertices in D is 7H (even),
since their distance to y is 7H and their distance to any other vertex is bounded by 6H

(maximized by a vertex in A). The eccentricity of y is 7H (even). Finally, the eccentricity
of a vertex uA in A is d(uA, uD), since the uA-to-uD distance is at least 6H − 3M and any
other distance is bounded by 5H (maximized by y and some vD). This means that, as shown
in Section 3.3, the parity of

∑
u d(uA, uD) equals NTVP(G).

3.5 Negative Triangle Vertex Parity to Integer Betweenness Centrality
Parity

The reduction is deterministic and uses a similar graph G′ to the one used in the reduction
of [3] from Negative Weight Triangle to Betweenness Centrality: Each vertex u of
G has four copies in G′ denoted uA, uB , uC , uD. Let H = 100M (sufficiently large number).
For every (X, Y ) ∈ {(A, B), (B, C), (C, D)} and u, v ∈ V (G), add the edge (uX , vY ) with
weight 2H + w(u, v). Add a single vertex x and for every vertex v ∈ V (G), add the edges
(uA, x), (x, vD) with weight 3H. Add two sets of vertices Z, O each of size dlog ne. Let
zi ∈ Z, oi ∈ O be the i’th vertex of the sets. If the i’th bit in u’s binary representation is 0,
add an edge (uA, zi) with weight 2H and an edge (oi, uD) with weight 3H. Otherwise, add
an edge (uA, oi) with weight 2H and an edge (zi, uD) with weight 3H. This dependency on
the binary representation assures that every uA and vD are connected with a path (of weight
5H) through O or through Z except for the case where u = v. See Figure 3.
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Figure 3 A representation of G′ in the reduction from Negative Weight Triangle to Integer
Betweenness Centrality Parity.

Consider the Integer Betweenness Centrality Parity of the vertex x in G′. Assume n is
even (otherwise add a vertex to G with no negative triangle). Notice that the only pairs
with a shortest path through x can be of the form (uA, uD) (pairs (uA, vD) with v 6= u have
shorter paths of weight 5H through Z or O). Furthermore, there is a shortest uA-to-uD path
through x iff u is not in a negative triangle. This is because the distance between uA and
uD is the minimum between 6H (going through x) and 6H + w(u, v) + w(v, t) + w(t, u) for
some v, t ∈ V (G). Therefore, the number of pairs (uA, uD) with shortest paths through x

is n minus the number of vertices in a negative triangle, hence the parity of the number of
paths going through x in G′ is the same as the parity of the number of vertices in G with a
negative triangle.

3.6 APSP to Integer Betweenness Centrality Parity
We provide a probabilistic (one sided error) reduction from Negative Weight Triangle
that does not go through Negative Triangle Vertex Parity. We continue from where
we stopped in Section 3.5. Recall that the number of pairs that have a shortest path through
x is n minus the number of vertices in a negative triangle. If there is an odd number of pairs
then we return that a negative triangle exists. Otherwise, there is an even number of vertices
with a negative triangle. We then choose a set S ⊆ V (G) uniformly, and limit A, D to the
vertices in S (B, C remain the same). If the number of paths going through x is odd we
report that there is a negative triangle, otherwise we report that there is none. If a negative
triangle exists, S has an odd number of vertices with a negative triangle with probability
1/2, and we detect an odd number of pairs. Otherwise, S always has 0 (even) vertices with a
negative triangle, and we succeed with probability 1. We can repeat the process O(log n)
times and amplify the probability of success to 1− 1/nc for any constant c.

4 APSP to Min-Plus Matrix Multiplication Parity

4.1 Min-Plus Multiplication to Min-Plus Multiplication Parity
Given two n × n matrices A and B we wish to compute C = A ⊗ B where C[i, j] =
mink{A[i, k] + B[k, j]}. First assume that for every i, j the value C[i, j] is obtained by a
unique index k. Let K be the n× n matrix such that K[i, j] is the unique index k of C[i, j].
We show how to compute K by using Min-Plus Matrix Multiplication Parity.

Define Â = 2A, and for any t ∈ [log n] define kt as the t’th bit of k and B̂t to be the
matrix such that B̂t[k, j] = 2B[k, j] + kt. We compute the parity of Ĉt = Â⊗ B̂t for every
t ∈ [log n]. We claim that the parity of Ĉt[i, j] is the t’th bit of K[i, j]. This is because
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Ĉt[i, j] = mink{2A[i, k] + 2B[k, j] + kt}. The parity of this value is 0 if the unique index k

that minimizes A[i, k] + B[k, j] has kt = 0 and is 1 otherwise. Therefore, from this parity we
can recover the t’th bit of K[i, j].

To remove the assumption on the uniqueness of k, we define matrices A′ and B′ as
A′[i, k] = (n + 1) ·A[i, k] + k and B′[k, j] = (n + 1) ·B[k, j]. Observe that A′ and B′ have the
uniqueness of k property. This is because if A′[i, k1] + B′[k1, j] = A′[i, k2] + B′[k2, j] for some
k1, k2 then (n + 1) · (A[i, k1] + B[k1, j]) + k1 = (n + 1) · (A[i, k2] + B[k2, j]) + k2 and, since
k1 and k2 are smaller than n + 1, it follows that k1 = k2. Furthermore, in order to compute
A⊗B it suffices to compute C ′ = A′⊗B′. Because if A′[i, k1]+B′[k1, j] ≤ A′[i, k2]+B′[k2, j]
then (since k1 and k2 are smaller than n + 1) A[i, k1] + B[k1, j] ≤ A[i, k2] + B[k2, j].

As a corollary, we get that APSP is subcubic equivalent to APSP Parity (i.e. the problem
of deciding the parity of every pairwise distance in the graph): Let M be a bound on the
absolute values in A and B. Create a graph consisting of vertices ai, bi, ci for every i ∈ [n]
and the edges (ai, bj), (bi, cj) with weights A[i, j] + 3M and B[i, j] + 3M respectively for
every i, j. The distance d(ai, cj) = 6M + mink{A[i, k] + B[k, j]} and therefore has the same
parity as (A⊗B)[i, j]. Notice that the reduction can be modified (with a folklore trick) to
show that even computing A ⊗ A Parity is hard. Let D be the n × n matrix with every

element equals to 3M . Let E be the 2n× 2n matrix
[

A B

D D

]
. Then E ⊗E equals

[
X Y

Z W

]
where Y = A⊗B since Y [i, j] = min{(A⊗B)[i, j], (B ⊗D)[i, j]} = (A⊗B)[i, j].

4.2 Min-Plus Convolution to Min-Plus Convolution Parity
Given vectors A and B each of length n, we wish to compute their convolution C where
C[i] = mini=j+k{A[j] + B[k]}. The approach is the same as in Section 4.1. We assume
each value C[i] is obtained by a unique index k, otherwise we multiply A and B by n + 1
and add to each B[k] the value k (as in Section 4.1). Let K be the vector such that K[i]
is the unique index k of C[i]. Define Â = 2A, and for any t ∈ [log n] define kt is the t’th
bit of k and B̂t to be the vector such that B̂t[k] = 2B[k] + kt. Let Ĉt[i] be the convolution
of Â and B̂t. Then the t’th bit of K[i] is the same as the parity of Ĉt[i]. This is because
Ĉt[i] = mini=j+k{2A[j] + 2B[k] + kt}.

4.3 Maximum Consecutive Subsums to Maximum Consecutive
Subsums Parity

Given a vector X of length n, the maximum consecutive subsums problem asks to compute
maxi

∑k
j=1 X[i + j] for every k ∈ [n]. To achieve this, we first compute (in linear time) the

vector A where A[k] =
∑k

j=1 X[j]. The problem then reduces to computing Diff(A) where
Diff(A)[k] = maxi{A[k + i] − A[i]}. In fact, since X[k] = A[k] − A[k − 1], there is also a
reduction in the opposite direction and so the two problems are equivalent (and their parity
versions are equivalent). In this section, we show that given the parity of Diff(A) (i.e. the
parity of every element in Diff(A)) we can compute Diff(A) itself.

Given a vector A, we wish to compute Diff(A). We assume that for every k, the
value Diff(A)[k] = maxi{A[k + i] − A[i]} is obtained by a unique index i. Otherwise, we
multiply every A[k] by (n2 + 1) and add k2 (similarly to Section 4.1). Let I be the vector
of such unique indices, and let J be the vector where J [k] = I[k] + k. By definition,
Diff(A)[k] = A[J [k]]−A[I[k]]. We define At to be the vector such that At[k] = 4 ·A[k] + kt

(where kt is the t’th bit of k). Notice that At[j]−At[i] = 4 · (A[j]−A[i]) + (jt − it) where
(jt − it) ∈ {−1, 0, 1}. Thus, for every k, Diff(A)[k] is maximized when j = J [k] and i = I[k]
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(regardless of the values of jt and it). This is because for every i 6= I[k] and j = k + i it holds
that 4·(A[j]−A[i])+(jt−it) ≤ 4·(A[J [k]]−A[I[k]]−1)+1 < 4·(A[J [k]]−A[I[k]])+(J [k]t−I[k]t).
Observe that that the parity of At[j]−At[i] is jt⊕ it, where ⊕ is the bitwise XOR operation.

For every t ∈ [log n] we compute the parity of Diff(At). The computed parity of Diff(At)[k]
is J [k]t ⊕ I[k]t. Given J [k]1 ⊕ I[k]1, . . . , J [k]log n ⊕ I[k]log n, we want to compute J [k] and
I[k]. Recall that J [k] = k + I[k]. Let c1, . . . , clog n be the carry bits in the binary addition
of I[k] and k. We know that I[k]t ⊕ kt ⊕ ct = J [k]t so by substituting J [k]t ⊕ I[k]t we
compute every ct = J [k]t⊕ I[k]t⊕kt. Given ct, ct+1, kt, and J [k]t⊕ I[k]t we wish to compute
J [k]t and I[k]t. However, this can only be done when J [k]t ⊕ I[k]t = 1. In this case
I[k]t = ¬J [k]t = ct+1. This is because kt⊕ ct = J [k]t⊕ I[k]t = 1 so kt + ct = 1 and therefore
ct+1 = 1 iff I[k]t + kt + ct ≥ 2 iff I[k]t = 1. We are left with the bits where J [k]t = I[k]t.
Let At,p be the vector such that At,p[k] = 4 ·A[k] + (kt → kp) (compared to At, we replace
kt with kt implies kp). For every (t, p) ∈ [log n]2 we compute the parity of Diff(At,p). The
parity of Diff(At,p)[k] is (J [k]t → J [k]p) ⊕ (I[k]t → I[k]p) and is denoted as bt,p. Given
that J [k]t and I[k]t have not been computed yet, we know that J [k]t = I[k]t, hence for
every p it holds that bt,p = (I[k]t → J [k]p) ⊕ (I[k]t → I[k]p). Notice that J [k] > I[k]
therefore there must be an index p′ where I[k]p′ 6= J [k]p′ (which we previously found) thus
bt,p′ = (I[k]t → ¬I[k]p′)⊕ (I[k]t → I[k]p′). Observe that I[k]t = 0 iff bt,p′ = 0. Overall, we
find I[k] for every k using O(log2 n) Diff parity computations and Õ(n) reduction time.

5 Zero Weight Triangle Counting to Negative Triangle Counting

In this section we show a simple but surprising reduction from counting zero weight triangles
to counting negative triangles. We show a deterministic reduction from Zero Weight
Triangle to Negative Triangle Counting and a randomized reduction from Zero
Weight Triangle to Negative Triangle Parity.

5.1 Zero Weight Triangle Counting (Parity) to Negative Triangle
Counting (Parity)

We want to count the number of triangles with weight zero in G. Let ∆ be the number of
triangles in G. We can compute ∆ in matrix-multiplication O(nω) time4. Let ∆0, ∆+, ∆−
be the number of zero, positive, and negative weight triangles in G′ respectively. Given a
subcubic algorithm for Negative Triangle Counting, we can compute ∆−. By negating
weights in G we can compute ∆+ as well. We then compute ∆0 = ∆−∆+ −∆−. This simple
reduction also reduces Zero Weight Triangle Parity to Negative Triangle Parity.

5.2 Zero Weight Triangle to Zero Weight Triangle Parity

Given a graph G, we want to find whether there is a zero weight triangle. We create a
graph G′ as follows: For every vertex u ∈ V (G), we create three copies uA, uB , uC in G′,
and for every edge (u, v) ∈ E(G) we add the edges (uA, vB),(uB , vC), (uC , vA) to G′ (with
the same weight as (u, v)). Notice that there is a zero weight triangle in G iff there is a zero
weight triangle in G′. We now create a graph G′′ by removing from G′ each edge (uB , vC)
with probability 1

2 , and removing from G′ each vertex uA with probability 1
2 . We report that

a zero weight triangle exists in G iff there is an odd number of zero weight triangles in G′′.
We now show that this reduction works with probability at least 1

4 .

4 We can also compute ∆ with Negative Triangle Counting by changing every weight in G to −1.
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If there is no zero weight triangle in G′, we succeed with probability 1. If there is a zero
weight triangle in G′, then let uA be a vertex of G′ that participates in some zero weight
triangle. Since we removed each edge (vB , tC) with probability 1

2 then, with probability 1
2 ,

the vertex uA participates in an odd number of zero weight triangles in G′′. Let ∆0
vA

be the
number of zero weight triangles in G′′ that vA participates in. The total number of zero
weight triangles in G′′ is

∑
v∈V (G) ∆0

vA
=
∑

v∈V (G)\{u}∆0
vA

+ ∆0
uA

. If ∆0
uA

is odd then, with
probability 1

2 , our decision whether to remove uA leads to an odd number of zero weight
triangles in G′′. Overall, the probability of success is therefore at least 1

4 .

6 Min-Plus Convolution to Knapsack Parity

In the knapsack problem, given a set of n items (wi, vi) and a target weight t, we wish to
pick a multiset of items I that maximizes

∑
i∈I vi subject to

∑
i∈I wi ≤ t. When I is required

to be a set (and not a multiset) the problem is called 0/1-knapsack. In the Indexed
Knapsack problem, we have wi = i and t = n. Finally, the Coin Change problem [30,33]
is the same as Indexed Knapsack but with the additional restriction

∑
i∈I i = n.

The Knapsack and the 0/1-knapsack problems are equivalent to Min-plus Convolution
under randomized reductions [17]. The Indexed Knapsack and the Coin Change problem
are equivalent to Min-plus Convolution under deterministic reductions [30]. In this section,
we show that the parity versions of all the above problems are equivalent to Min-plus
Convolution.

6.1 Super-Additivity Testing to Knapsack [17]
Given a vector A[0], . . . , A[n− 1], the Super-Additivity testing problem asks whether
A[i] + A[j] ≤ A[i + j] for every i, j. The problem is subquadratic equivalent to Min-plus
Convolution under deterministic reductions [17]. We now give a brief description of the
reduction in [17] from Super-Additivity testing to Knapsack.

First, it is shown in [17] that we can assume without loss of generality that 0 = A[0] <

A[1] < · · · < A[n − 1] = M . Let D = Mn + 1, the instance of Knapsack consists of two
types of items: Type-A items are (i, A[i]) and Type-B items are (2n− 1− i, D − A[i]). It
remains to show that, when setting t = 2n − 1, the optimal sum of values

∑
i∈I vi equals

D iff A is super-additive. Since D >
∑

i A[i], the optimal solution must take at least one
Type-B item, and it cannot take more than one because the weight would exceeds t. If A is
not super-additive, then for some i, j it holds that A[i] + A[j] > A[i + j] and therefore the
three items {(i, A[i]), (j, A[j]), (2n− 1− i− j, D−A[i + j])} constitute a valid solution whose
value is larger than D. If A is super-additive, then every two Type-A items (i, A[i]), (j, A[j])
can be replaced by (i + j, A[i + j]) without changing the total weight. Thus, for any i, the
solution {(i, A[i]), (2n− 1− i, D −A[i])} is optimal and its value is exactly D.

6.2 Super-Additivity Testing to Knapsack Parity
We now modify the above the reduction to obtain a reduction to Knapsack Parity. We
first remove the item (0, A[0]) (since A[0] = 0 it does not contribute any value). We then
replace every Type-A item (i, A[i]) by (i, 2A[i]), every Type-B item (2n− 1− i, D − A[i])
(with i 6= 1) by (2n − 1 − i, 2(D − A[i])), and the Type-B item (2n − 1 − 1, D − A[1]) by
(2n− 1− 1, 2(D −A[1]) + 1). We show that A is super-additive iff the value of the optimal
solution is odd.

Once again, every optimal solution must consist of exactly one Type-B item since if
there are no Type-B items then the value does not exceed 2D as 2D >

∑
i 2A[i], and with

more than one Type-B items the weight exceeds t = 2n − 1. If A is not super-additive,

ICALP 2020



5:16 On the Fine-Grained Complexity of Parity Problems

then there are i, j such that k = i + j ≥ 2 and A[i] + A[j] > A[k] therefore the items
{(i, 2A[i]), (j, 2A[j]), (2n − 1 − i − j, 2D − 2A[k])} constitute a valid solution whose value
is larger than 2D + 1. Notice that k ≥ 2 since if k = 0 then the total value is 2D (thus
not optimal), and if k = 1 then we include the item (2n− 1− 1, 2(D −A[1]) + 1) and since
t = 2n− 1 we can only add the item (1, 2A[1]) leading to a non-optimal solution with value
2D + 1. Therefore, the optimal solution does not use the item (2n− 1− 1, 2(D −A[1]) + 1)
and hence it has an even value. On the other hand, if A is super-additive, then the solution
{(1, 2A[1]), (2n − 1 − 1, 2(D − A[1]) + 1)} is optimal and has value exactly 2D + 1 (odd).
This is because among the solutions that include a Type-B item (2n− 1− i− j, 2D − 2A[k])
with k 6= 1, once again by super-additivity, {(k, 2A[k]), (2n − 1 − k, 2D − 2A[k])} has the
maximal value of 2D (i.e. smaller than 2D + 1).

6.3 Super-Additivity Testing to 0/1-knapsack Parity
We now show how to modify the above reductions to be reductions to 0/1-knapsack and
0/1-knapsack Parity. In the above reductions, when A is super-additive the optimal
solution does not use any item more than once, and its total value V is either D or 2D + 1.
When A is not super-additive, there is a solution with a higher value than V . There is
only one case where this solution may use the same item more than once. This happens
when A is not super-additive in the following way: A[i] + A[j] ≤ A[i + j] for every i 6= j

but A[i] + A[j] > A[i + j] for some i = j. Therefore, in O(n) time we can check for every i

whether 2A[i] ≤ A[2i] and only if the answer is yes we apply the reduction.
Note that the above reductions also apply to the Indexed Knapsack Parity problem.

This is because the target weight t equals the total number of items 2n−1, and each item has
a unique weight in [2n− 1]. The reductions also apply to Coin Change Parity: When A

is super-additive, the optimal solution for Coin Change (which is also an optimal solution
for Knapsack) has weight 2n− 1 (equal to the number of items) and an odd value (2D + 1).
When A is not super-additive, the optimal solution for Coin Change (which is possibly not
an optimal solution for Knapsack) has weight 2n− 1 (equal to the number of items) and
an even value (larger than 2D + 1).

7 APSP to Sum of Eccentricities

In this section, we show a subcubic reduction from Radius (hence also from APSP) on a
graph G to Sum of Eccentricities on a graph G′. Let R be the radius of G. In order
to compute R it suffices to find whether R ≥ k for any given k ∈ [Mn] (since then we can
binary search for R). The constructed graph G′ is similar to the one in the reduction of [3]
from Diameter to Positive Betweeness centrality: We create G′ by multiplying the
edge weights of G by 2 and then adding a vertex x and the edges (x, u) and (u, x) each of
weight k for every u ∈ V (G).

I Lemma 6. R ≥ k iff the sum of eccentricities of G′ is
∑

u maxv dG′(u, v) = 2kn + k.

Proof. This is the same as claiming that R ≥ k iff
∑

u6=x maxv dG′(u, v) = 2kn. If R ≥ k,
then every vertex u 6= x can use x to get to its furthest vertex with a path of length 2k ≤ 2R.
Observe that any other path would be of length at least 2R (because we have multiplied all
edge weights by 2). Therefore,

∑
u6=x maxv dG′(u, v) = 2kn. If on the other hand R < k, then

the distance in G′ from the radius vertex of G to any other vertex is at most max{2R, k} < 2k

so this vertex adds less than 2k to the sum. All the other vertices add at most 2k to the
sum, and thus

∑
u6=x maxv dG′(u, v) 6= 2kn. J
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8 Radius to Radius Parity and Diameter to Diameter Parity

In this section, we show that computing the Radius R (resp. Diameter D) of a graph G

subcubicaly reduces to computing the parity of R (resp. D). As usual, to compute R, D it
suffices to find whether R, D ≥ k′ for k′ ∈ [Mn]. Let k′ = (k + 1)/2 for some odd k ≥ 1. We
create a reduction graph G′ similarly to [3] and to Section 7: We multiply the edge weights
of G by 2 and add a vertex x with (v, x),(x, v) edges of weight k for every v ∈ V (G).

Consider first the radius of G′. If the radius vertex of G′ is x then its value is k. Otherwise,
its value is either max{2R, k} (by using the edge to x and the same path as in G to all
other vertices) or 2k (by using a path through x). Therefore, the radius of G′ has value
min{k, 2R}. If 2R ≥ k + 1 (i.e R ≥ k′), the radius is k (odd). Otherwise 2R < k + 1 (i.e
R < k′) and the radius is 2R (even). Next consider the diameter of G′. If x is an endpoint
of the diameter of G′ then the diameter value is k. Otherwise, the diameter value is either
2D (by taking the same path as in G) or 2k (by using a path through x). Therefore the
diameter of G′ has value max{k, min{2D, 2k}}. If 2D ≤ k (i.e. D < k′), then the diameter
is k (odd). Otherwise 2D ≥ k + 1 (i.e. D ≥ k′), and the diameter is either 2D or 2k (even in
both cases).
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6:2 Optimal Streaming Algorithms for Submodular Maximization

1 Introduction

In this paper, we study the problem of maximizing a non-monotone submodular function
subject to a cardinality (size) constraint in the streaming model. This problem captures
problems of interest in a wide-range of domains, such as machine learning, data mining,
combinatorial optimization, algorithmic game theory, social networks, and many others. A
representative application is data summarization, where the goal is to select a small subset
of the data that captures the salient features of the overall dataset [2]. One can model
these problems as submodular maximization with a cardinality constraint: the submodular
objective captures how informative the summary is, as well as other considerations such as
how diverse the summary is, and the cardinality constraint ensures that the summary is
small. Obtaining such a summary is very beneficial when working with massive data sets,
that may not even fit into memory, since it makes it possible to analyze the data using
algorithms that would be prohibitive to run on the entire dataset.

There have been two main approaches to deal with the large size of modern data sets: the
distributed computation approach partitions the data across many machines and uses local
computation on the machines and communication across the machines in order to perform
the analysis, and the streaming computation approach processes the data in a stream using
only a small amount of memory and (ideally) only a single pass over the data. Classical
algorithms for submodular maximization, such as the Greedy algorithm, are not suitable in
these settings since they are centralized and require many passes over the data. Motivated
by the applications as well as theoretical considerations, there has been a significant interest
in studying submodular maximization problems both in the distributed and the streaming
setting, leading to many new results and insights [22, 29, 2, 9, 11, 26, 4, 28, 3, 14, 27, 17, 31, 1].

Despite this significant progress, several fundamental questions remain open both in the
streaming and distributed setting. In the streaming setting, which is the main focus of this
paper, submodular maximization is fairly well understood when the objective function is
additionallymonotone – i.e., we have f(A) ≤ f(B) whenever A ⊆ B. For example, the Greedy
approach, which obtains an optimal (1− 1/e)-approximation in the centralized setting when
the function is monotone [30], can be adapted to the streaming model [22, 2]. This yields the
single-threshold Greedy algorithm: make a single pass over the data and select an item if its
marginal gain exceeds a suitably chosen threshold. If the threshold is chosen to be 1

2
f(OPT)

k ,
where f(OPT) is the value of the optimal solution and k is the cardinality constraint, then the
single-threshold Greedy algorithm is guaranteed to achieve 1

2 -approximation. Although the
value of the optimal solution is unknown, it can be estimated based on the largest singleton
value even in the streaming setting [2]. Remarkably, this approximation guarantee is optimal
in the streaming model even if we allow unbounded computational power: Feldman et al.
[19] showed that any algorithm for monotone submodular maximization that achieves an
approximation better than 1

2 requires Ω
(
n
k3

)
memory, where n is the length of the stream.

Additionally, the single-threshold Greedy algorithm enjoys a fast update time of O(ε−1 log k)
marginal value computations per item, and it uses O(ε−1k log k) space.

In contrast, the general problem with a non-monotone objective has proved to be
considerably more challenging. Even in the centralized setting, the Greedy algorithm
fails to achieve any approximation guarantee when the objective is non-monotone. Thus,
several approaches have been developed for handling non-monotone objectives in this setting,
including local search [15, 24, 23], continuous optimization [18, 13, 5] and sampling [6, 16].
The currently best approximation guarantee is 0.385 [5], and the strongest inapproximability
is 0.491 [20], and it remains a long-standing open problem to settle the approximability of
submodular maximization subject to a cardinality constraint.
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Adapting the above techniques to the streaming setting is challenging, and the approx-
imation guarantees are weaker. The main approach for non-monotone maximization in the
streaming setting has been to extend the local search algorithm of Chakrabarti and Kale
[9] from monotone to non-monotone objectives. This approach was employed in a sequence
of works [11, 17, 27], leading to the currently best approximation of 1

3+2
√

2 ≈ 0.1715.1 This
naturally leads to the following questions.

What is the optimal approximation ratio achievable for submodular maximization in the
streaming model? Is it possible to achieve 1

2 − ε approximation using an algorithm that
uses only poly(k, 1/ε) space?
Is there a good streaming algorithm for non-monotone functions based on the single-
threshold Greedy algorithm that works so well for monotone functions?
Can we exploit existing heuristics for the offline problem in the streaming setting?

Our contributions. In this work, we give an affirmative answer to all of the above questions.
Specifically, we give streaming algorithms2 that perform a single pass over the stream and
output a set of size k · poly(1/ε) that can be post-processed using any offline algorithm for
submodular maximization. The post-processing is itself quite straightforward: we simply run
the offline algorithm on the output set to obtain a solution of size at most k. We show that,
if the offline algorithm achieves α-approximation, then we obtain

(
α

1+α − ε
)
-approximation.

Our main result implies that if we post-process using an exact (exponential time) algorithm,
we obtain ( 1

2 − ε)-approximation. This matches the inapproximability result proven by [19]
for the special case of a monotone function. Furthermore, we show that in the non-monotone
case any streaming algorithm guaranteeing ( 1

2 + ε)-approximation for some positive constant
ε must use in fact Ω(n) space.3 Thus, we essentially settle the approximability of the problem
if exponential-time computation is allowed.

The best (polynomial-time) approximation guarantee that is currently known in the
offline setting is α = 0.385 [5]. If we post-process using this algorithm, we obtain 0.2779-
approximation in polynomial time, improving over the previously best polynomial-time
approximation of 0.1715 due to [17]. The offline algorithm of [5] is based on the multilinear
extension, and thus is quite slow. One can obtain a more efficient overall algorithm by
using the combinatorial random Greedy algorithm of [6] that achieves 1

e -approximation.
Furthermore, any existing heuristic for the offline problem can be used for post-processing,
exploiting their effectiveness beyond the worst case.

Our techniques. The two streaming algorithms that we present enjoy the same approx-
imation guarantee, but differ in other properties. Our first algorithm (StreamProcess)
is a combinatorial algorithm that achieves very fast update time and overall running time.
StreamProcess takes inspiration both from the single-threshold Greedy algorithm for
monotone maximization and distributed algorithms that randomly partition the data [26, 4, 3]:
it randomly partitions the elements into 1/ε parts as they arrive in the stream and runs

1 Chekuri et al. [11] claimed an improved approximation ratio of 1
2+e − ε for a cardinality constraint, but

an error was later found in the proof of this improved ratio [10]. We defer the details to the full version.
2 Formally, our algorithms are semi-streaming algorithms, i.e., their space complexity is nearly linear in
k. Since this is unavoidable for algorithms designed to output an approximate solution (as opposed
to just estimating the value of the optimal solution), we ignore the difference between streaming and
semi-streaming algorithms in this paper and use the two terms interchangably.

3 This result is a simple adaptation of a result due to Buchbinder et al. [7]. For completeness, we include
the proof in the full version of the paper.
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6:4 Optimal Streaming Algorithms for Submodular Maximization

the single-threshold Greedy algorithm on each part; this process is repeated independently
and in parallel O(ln(1/ε)/ε) times. Since the main engine behind our algorithm is the very
efficient and practical single-threshold Greedy algorithm, our StreamProcess algorithm
inherits its very efficient update time and practical potential. Compared to the optimal
streaming algorithm for monotone maximization discussed above, our algorithm is quite
similar: the monotone algorithm runs O(log k/ε) instances of single-threshold Greedy, each
of which processes all n items; StreamProcess runs O(ln(1/ε)/ε2) ·O(log k/ε) instances
of single-threshold Greedy, each of which processes O(ε · n) items with high probability.

Our second algorithm (StreamProcessExtension) is based on the multilinear extension
of the submodular function. This algorithm is similar to the single-threshold Greedy algorithm,
but adds fractions of elements rather than whole elements to the solution it maintains. The
extension based approach of this algorithm allows us to save on the space usage. Furthermore,
when the multilinear extension can be evaluated deterministically, this approach leads to
a deterministic algorithm. However, the time complexity of this approach depends on the
complexity of evaluating the multilinear extension, which is quite high if we are only given
value oracle access to f . Thus, given such restricted access, this approach leads to higher
update and overall running time.

We note that combining the single-threshold Greedy with randomization is difficult
because it requires delicate care of the event that the single-threshold Greedy algorithm fills
up the budget. In particular, this was the source of the subtle error mentioned above in one
of the results of [11]. Our approach here for handling this issue is simple in retrospect. In
our combinatorial algorithm, we consider two cases depending on the probability that the
budget is filled up in a run (this is a good event since the resulting solution has good value).
If this probability is sufficiently large (at least ε), we repeat the basic algorithm O(ln(1/ε)/ε)
times to boost the probability of this good event to 1− ε. Otherwise, the probability that
the budget is not filled up in a run is at least 1− ε, and conditioning on this event changes
the probabilities by only a 1− ε factor.

In our extension based algorithm, the decisions of the algorithm are based on the values
taken by derivatives of the extension, which are values of expectations over appropriately
chosen distributions. On the one hand, this allows our algorithm to include a random com-
ponent, which is a component that appears (at least implicitly) in all of the known algorithms
for non-monotone submodular maximization. On the other hand, since expectations have
deterministic values, the algorithm we get is deterministic enough that it suffices for us to
consider at each time only one of two possible cases: the case in which the budget fills up,
and the case in which it does not.

Paper structure. In Section 2, defines the notation that we use and presents some known
lemmata. Section 3 presents and analyzes our combinatorial algorithm (StreamProcess).
Finally, in Section 4, we present and analyze our extension based algorithm.

2 Preliminaries

Basic notation. Let V denote a finite ground set of size n := |V |. We occasionally assume
without loss of generality that V = {1, 2, . . . , n}, and use, e.g., x = (x1, x2, . . . , xn) to denote
a vector in RV . For two vectors x, y ∈ RV , we let x ∨ y and x ∧ y be the vectors such that
(x ∨ y)e = max{xe, ye} and (x ∧ y)e = min{xe, ye} for all e ∈ V . For a set S ⊆ V , we let 1S
denote the indicator vector of S, i.e., the vector that has 1 in every coordinate e ∈ S and 0
in every coordinate e ∈ V \ S. Given an element e ∈ V , we use 1e as a shorthand for 1{e}.
Furthermore, if S is a random subset of V , we use E[1S ] to denote the vector p such that
pe = Pr[e ∈ S] for all e ∈ V (i.e., the expectation is applied coordinate-wise).
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Submodular functions. In this paper, we consider the problem of maximizing a non-
negative submodular function subject to a cardinality constraint. A set function f : 2V → R
is submodular if f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) for all subsets A,B ⊆ V .

Continuous extensions. We make use of two standard continuous extensions of submodular
functions. The first of these extensions is known as the multilinear extension. To define this
extension, we first need to define the random set R(x). For every vector x ∈ [0, 1]V , R(x)
is defined as a random subset of V that includes every element e ∈ V with probability xe,
independently. The multilinear extension F of f is now defined for every x ∈ [0, 1]V by

F (x) = E
[
f
(
R(x)

)]
=
∑
A⊆V

f(A) · Pr[R(x) = A] =
∑
A⊆V

(
f(A) ·

∏
e∈A

xe ·
∏
e/∈A

(1− xe)
)
.

One can observe from the definition that F is indeed a multilinear function of the coordinates
of x, as suggested by its name. Thus, if we use the shorthand ∂eF (x) for the first partial
derivative ∂F (x)

∂xe
of the multilinear extension F , then ∂eF (x) = F (x ∨ 1e)− F

(
x ∧ 1V \{e}

)
.

In the analysis of our extension based algorithm, we need an upper bound on the
possible increase in the value of F (x) when some of the indices of x are zeroed. Corollary 2
provides such an upper bound. It readily follows from the following known lemma by
Buchbinder et al. [6].

I Lemma 1 (Lemma 2.2 from [6]). Let f : 2V → R≥0 be a non-negative submodular function.
Denote by A(p) a random subset of A ⊆ V where each element appears with probability at
most p (not necessarily independently). Then, E[f(A(p))] ≥ (1− p) · f(∅).

In the statement of Corollary 2, and in the rest of the paper, we denote by supp(x) the
support of vector x, i.e., the set {e ∈ V | xe > 0}.

I Corollary 2. Let f : 2V → R≥0 be a non-negative submodular function, let p be a number
in the range [0, 1] and let x, y ∈ [0, 1]V be two vectors such that supp(x) ∩ supp(y) = ∅ and
ye ≤ p for every e ∈ V . Then, the multilinear extension F of f obeys F (x+y) ≥ (1−p) ·F (x).

The analyses of both our algorithms make use of the Lovász extension f̂ of f . The Lovász
extension f̂ : [0, 1]V → R is defined as follows. For every x ∈ [0, 1]V , f̂(x) = Eθ∼[0,1][f({e ∈
V : xe ≥ θ})], where we use the notation θ ∼ [0, 1] to denote a value chosen uniformly
at random from the interval [0, 1]. The Lovász extension f̂ of a non-negative submodular
function has the following properties: (1) convexity: cf̂(x) + (1− c)f̂(y) ≥ f̂(cx+ (1− c)y)
for all x, y ∈ [0, 1]V and all c ∈ [0, 1] [25]; (2) restricted scale invariance: f̂(cx) ≥ cf̂(x) for all
x ∈ [0, 1]V and all c ∈ [0, 1]; (3) it lower bounds the multilinear extension, i.e., F (x) ≥ f̂(x)
for every x ∈ [0, 1]V [32, Lemma A.4].

3 Combinatorial Algorithm

Our combinatorial streaming algorithm is shown in Algorithm 1. For simplicity, we describe
the algorithm assuming the knowledge of an estimate of the value of the optimal solution,
f(OPT). To remove this assumption, we use the standard technique introduced by [2]. The
basic idea is to use the maximum singleton value v = maxe f({e}) as a k-approximation of
f(OPT). Given this approximation, one can guess a 1 + ε approximation of f(OPT) from a
set of O(log(k/α)/ε) values ranging from v to kv/α (α is the approximation guarantee of the
offline algorithm OfflineAlg that we use in the post-processing step). The final streaming

ICALP 2020



6:6 Optimal Streaming Algorithms for Submodular Maximization

algorithm is simply O(log(k/α)/ε) copies of the basic algorithm running in parallel with
different guesses. As new elements appear in the stream, the value v = maxe f({e}) also
increases over time and thus, existing copies of the basic algorithm with small guesses are
dropped and new copies with higher guesses are added. An important observation is that
when we introduce a new copy with a large guess, starting it from mid-stream has exactly
the same outcome as if we started it from the beginning of the stream: all previous elements
have marginal gain much smaller than the guess and smaller than the threshold so they
would have been rejected anyway. We refer to [2] for the full details.

I Theorem 3. There is a streaming algorithm StreamProcess for non-negative, non-
monotone submodular maximization with the following properties (ε > 0 is any desired
accuracy and it is given as input to the algorithm):

The algorithm makes a single pass over the stream.
The algorithm uses O

(
k log(k/α) log(1/ε)

ε3

)
space.

The update time per item is O
(

log(k/α) log(1/ε)
ε2

)
marginal gain computations.

At the end of the stream, we post-process the output of StreamProcess using any offline
algorithm OfflineAlg for submodular maximization. The resulting solution is a α

1+α − ε
approximation, where α is the approximation of OfflineAlg.

Algorithm 1 Streaming algorithm for max|S|≤k f(S). PostProcess uses any offline
algorithm OfflineAlg with approximation α. Lines shown in blue are comments. The
algorithm does not store the sets Vi,j , they are defined for analysis purposes only.

1 StreamProcess(f, k, ε, κ)
2 r ← Θ(ln(1/ε)/ε)
3 m← 1/ε
4 Si,j ← ∅ for all i ∈ [r], j ∈ [m]
5 Vi,j ← ∅ for all i ∈ [r], j ∈ [m] // not stored, defined for analysis purposes only
6 for each arriving element e do
7 for i = 1 to r do
8 choose an index j ∈ [m] uniformly and independently at random
9 Vi,j ← Vi,j ∪ {e} // not stored, defined for analysis purposes only

10 if f(Si,j ∪ {e})− f(Si,j) ≥ κ and |Si,j | < k then
11 Si,j ← Si,j ∪ {e}

12 return {Si,j : i ∈ [r], j ∈ [m]}

13 PostProcess(f, k, ε)
14 κ← α

1+α ·
1
k · f(OPT) // threshold

15 {Si,j} ← StreamProcess(f, k, ε, κ)
16 if |Si,j | = k for some i and j then
17 return Si,j

18 else
19 U ←

⋃
i,j Si,j

20 T ← OfflineAlg(f, k, U)
21 return arg max {f(S1,1), f(T )}
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Algorithm 2 Single threshold Greedy algorithm. The algorithm processes the elements
in the order in which they arrive in the stream, and it uses the same threshold κ as
StreamProcess.

1 STGreedy(f,N, k, κ):
2 S ← ∅
3 for each e ∈ N in the stream order do
4 if f(S ∪ {e})− f(S) ≥ κ and |S| < k then
5 S ← S ∪ {e}

6 return S

In the remainder of this section, we analyze Algorithm 1 and show that it achieves a
α

1+α − ε approximation, where α is the approximation guarantee of the offline algorithm
OfflineAlg.

We divide the analysis into two cases, depending on the probability of the event that a
set Si,1 (for some i ∈ [r]) constructed by StreamProcess has size k. For every i ∈ [r], let
Fi be the event that |Si,1| = k. Since each of the r repetitions (iterations of the for loop of
StreamProcess) use independent randomness to partition V , the events F1, . . . ,Fr are
independent. Additionally, the events F1, . . . ,Fr have the same probability. We divide the
analysis into two cases, depending on whether Pr[F1] ≥ ε or Pr[F1] < ε. In the first case,
since we are repeating r = Θ(ln(1/ε)/ε) times, the probability that there is a set Si,j of
size k is at least 1− ε, and we obtain the desired approximation since f(Si,j) ≥ κ |Si,j | =
κk = α

1+αf(OPT). In the second case, we have Pr
[
F1
]
≥ 1− ε and we argue that

⋃
i,j Si,j

contains a good solution. We now give the formal argument for each of the cases.

The case Pr[F1] ≥ ε

As noted earlier, the events F1, . . . ,Fr are independent and have the same probability. Thus,

Pr
[
F1 ∪ · · · ∪ Fr

]
≤ (1− ε)r ≤ exp(−εr) ≤ ε

since r = Θ(ln(1/ε)/ε). Thus Pr[F1 ∪ · · · ∪ Fr] ≥ 1− ε.
Conditioned on the event F1 ∪ · · · ∪ Fr, we obtain the desired approximation due to the

following lemma. The lemma follows from the fact that the marginal gain of each selected
element is at least κ.

I Lemma 4. We have f (Si,j) ≥ κ |Si,j | for all i ∈ [r], j ∈ [m].

We can combine the two facts and obtain the desired approximation as follows. Let S be the
random variable equal to the solution returned by PostProcess. We have

E[f(S)] ≥ E[f(S)|F1 ∪ · · · ∪ Fr] Pr[F1 ∪ · · · ∪ Fr] ≥ (1− ε)κk = (1− ε) α

1 + α
f(OPT)

The case Pr[F1] < ε

In this case, we show that the solution arg max {f(T ), f(S1,1)} returned on the last line of
PostProcess has good value in expectation. Our analysis borrows ideas and techniques
from the work of Barbosa et al. [3]: the probabilities pe defined below are analogous
to the probabilities used in that work; the division of OPT into two sets based on these
probabilities is analogous to the division employed in Section 7.3 in that work; Lemma 6
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6:8 Optimal Streaming Algorithms for Submodular Maximization

shows a consistency property for the single threshold greedy algorithm that is analogous to
the consistency property shown for the standard greedy algorithm and other algorithms by
Barbosa et al. Barbosa et al. use these concepts in a different context (specifically, monotone
maximization in the distributed setting). When applied to our context – non-monotone
maximization in the streaming setting – the framework of Barbosa et al. requires Ω(

√
nk)

memory if used with a single pass (alternatively, they use Ω(min{k, 1/ε}) passes) and achieves
worse approximation guarantees.

Notation and definitions. For analysis purposes only, we make use of the Lovasz extension
f̂ . We fix an optimal solution OPT ∈ arg max{f(A) : A ⊆ V, |A| ≤ k}. Let V(1/m) be the
distribution of 1/m-samples of V , where a 1/m-sample of V includes each element of V
independently at random with probability 1/m. Note that Vi,j ∼ V(1/m) for every i ∈ [r],
j ∈ [m] (see StreamProcess). Additionally, for each i ∈ [r], Vi,1, . . . , Vi,m is a partition of
V into 1/m-samples.

For a subset N ⊆ V , we let STGreedy(N) be the output of the single threshold greedy
algorithm when run as follows (see also Algorithm 2 for a formal description of the algorithm):
the algorithm processes the elements of N in the order in which they arrive in the stream
and it uses the same threshold κ as StreamProcess; starting with the empty solution and
continuing until the size constraint of k is reached, the algorithm adds an element to the
current solution if its marginal gain is above the threshold. Note that Si,j = STGreedy(Vi,j)
for all i ∈ [r], j ∈ [m]. For analysis purposes only, we also consider STGreedy(N) for sets
N that do not correspond to any set Vi,j .

For each e ∈ V , we define

pe =
{

PrX∼V(1/m) [e ∈ STGreedy(X ∪ {e})] if e ∈ OPT
0 otherwise

We partition OPT into two sets:

O1 = {e ∈ OPT: pe ≥ ε} O2 = OPT \O1

We also define the following subset of O2:

O′2 = {e ∈ O2 : e /∈ STGreedy (V1,1 ∪ {e})} .

Note that (O1, O2) is a deterministic partition of OPT, whereas O′2 is a random subset of
O2. The role of the sets O1, O2, O

′
2 will become clearer in the analysis. The intuition is that,

using the repetition, we can ensure that each element of O1 ends up in the collected set
U =

⋃
i,j Si,j with good probability: each iteration i ∈ [r] ensures that an element e ∈ O1 is

in Si,1 ∪ · · · ∪ Si,m with probability pe ≥ ε and, since we repeat r = Θ(ln(1/ε)/ε) times, we
will ensure that E[1O1∩U ] ≥ (1− ε)1O1 . We also have that E

[
1O′2

]
≥ (1− ε)1O2 : an element

e ∈ O2 \O′2 ends up being picked by STGreedy when run on input V1,1∪{e}, which is a low
probability event for the elements in O2; more precisely, the probability of this event is equal
to pe (since V1,1 ∼ V(1/m)) and pe ≤ ε (since e ∈ O2). Thus E

[
1(O1∩U)∪O′2

]
≥ (1− ε)1OPT ,

which implies that the expected value of (O1 ∩ U) ∪O′2 is at least (1− ε)f(OPT). However,
whereas O1∩U is available in the post-processing phase, elements of O′2 may not be available
and they may account for most of the value of O2. The key insight is to show that S1,1
makes up for the lost value from these elements.

We start the analysis with two helper lemmas, which follow from standard arguments
that have been used in previous works. The first of these lemmas follows from an argument
based on the Lovasz extension and its properties.



N. Alaluf, A. Ene, M. Feldman, H. L. Nguyen, and A. Suh 6:9

I Lemma 5. Let 0 ≤ u ≤ v ≤ 1. Let S ⊆ V \OPT and O ⊆ OPT be random sets such that
E[1S ] ≤ u1V \OPT and E[1O] ≥ v1OPT. Then E[f(S ∪O)] ≥ (v − u)f(OPT).

The following lemma establishes a consistency property for the STGreedy algorithm,
analogous to the consistency property shown and used by Barbosa et al. for algorithms such
as the standard Greedy algorithm. The proof is also very similar to the proof shown by
Barbosa et al.

I Lemma 6. Conditioned on the event |S1,1| < k, we have STGreedy (V1,1 ∪O′2) =
STGreedy (V1,1) = S1,1.

We now proceed with the main analysis. Recall that PostProcess runs the algorithm
OfflineAlg on U to obtain a solution T , and returns the better of the two solutions S1,1
and T . In the following lemma, we show that the value of this solution is proportional to
f(S1,1 ∪ (O1 ∩ U)). Note that S1,1 ∪ (O1 ∩ U) may not be feasible, since we could have
|S1,1| > |O2|, and hence the scaling based on |O2|

k .

I Lemma 7. We have max {f(S1,1), f(T )} ≥ α

1+α
(

1− |O2|
k

)f(S1,1 ∪ (O1 ∩ U)).

Proof. To simplify notation, we let S1 = S1,1. Let b = |O2|. First, we analyze f(T ). Let
X ⊆ S1 be a random subset of S1 such that |X| ≤ b and E[1X ] = b

k1S1 . We can select such
a subset as follows: we first choose a permutation of S1 uniformly at random, and let X̃ be
the first s := min {b, |S1|} elements in the permutation. For each element of X̃, we add it to
X with probability p := |S1|b/(sk). For each e ∈ S1, we have

Pr[e ∈ X] = Pr
[
e ∈ X|e ∈ X̃

]
Pr
[
e ∈ X̃

]
= p

s

|S1|
= b

k

For each e /∈ S1, we have Pr[e ∈ X] = 0. Thus E[1X ] = b
k1S1 .

Since X ∪ ((O1 ∩U) \S1) is a feasible solution contained in U and OfflineAlg achieves
an α-approximation, we have

f(T ) ≥ αf(X ∪ ((O1 ∩ U) \ S1))

By taking expectation over X only (more precisely, the random sampling that we used to
select X) and using that f̂ is a convex extension, we obtain:

f(T ) ≥ αEX [f(X ∪ ((O1 ∩ U) \ S1))] = αEX
[
f̂
(
1X∪((O1∩U)\S1))]

)]
≥ αf̂

(
EX

[
1X∪((O1∩U)\S1)

])
= αf̂

(
b

k
1S1 + 1(O1∩U)\S1

)

Next, we lower bound max {f(S1), f(T )} using a convex combination (1− θ)f(S1) + θf(T )
with coefficient θ = 1/(1 + α

(
1− b

k

)
). Note that 1− θ = θα

(
1− b

k

)
. By taking this convex

combination, using the previous inequality lower bounding f(T ), and the convexity and
restricted scale invariance of f̂ , we obtain:
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max {f(S1), f(T )} ≥ (1− θ)f(S1) + θf(T ) = θα

(
1− b

k

)
f(S1) + θf(T )

≥ θα
(

1− b

k

)
f̂ (1S1) + θαf̂

(
b

k
1S1 + 1(O1∩U)\S1

)
= θα

(
2− b

k

)(1− b
k

2− b
k

f̂ (1S1) + 1
2− b

k

f̂

(
b

k
1S1 + 1(O1∩U)\S1

))

≥ θα
(

2− b

k

)
f̂

(
1− b

k

2− b
k

1S1 + 1
2− b

k

(
b

k
1S1 + 1(O1∩U)\S1

))

= θα

(
2− b

k

)
f̂

(
1

2− b
k

1S1∪(O1∩U)

)
≥ α

1 + α
(
1− b

k

)f(S1 ∪ (O1 ∩ U)). J

(We note that we chose θ to make the coefficients of 1S1 and 1(O1∩U)\S1 equal, and this
allowed us to relate the value of the final solution to f(S1 ∪ (O1 ∩ U)).)

Next, we analyze the expected value of f(S1,1 ∪ (O1 ∩ U)). We do so in two steps: first
we analyze the marginal gain of O′2 on top of S1,1 and show that it is suitably small, and
then we analyze f(S1,1 ∪ (O1 ∩ U) ∪O′2) and show that its expected value is proportional to
f(OPT). We use the notation f(A|B) to denote the marginal gain of A on top of B, i.e.,
f(A|B) = f(A ∪B)− f(B).

I Lemma 8. We have E[f (O′2|S1,1)] ≤ κb+ εf(OPT).

Proof. As before, to simplify notation, we let S1 = S1,1 and V1 = V1,1. We break down the
expectation using the law of total expectation as follows:

E[f (O′2|S1)] = E[f (O′2|S1) | |S1| < k] · Pr[|S1| < k]︸ ︷︷ ︸
≤1

+E[f (O′2|S1) | |S1| = k]︸ ︷︷ ︸
≤f(OPT)

·Pr[|S1| = k]︸ ︷︷ ︸
≤ε

≤ E[f (O′2|S1) | |S1| < k] + εf(OPT)

Above, we have used that f(O′2|S1) ≤ f(O′2) ≤ f(OPT), where the first inequality follows by
submodularity. We have also used that Pr[|S1| = k] = Pr[F1] ≤ ε. Thus it only remains to
show that E[f (O′2|S1) | |S1| < k] ≤ κb.

We condition on the event |S1| < k for the remainder of the proof. By Lemma 6, we have
STGreedy(V1 ∪O′2) = S1. Since |S1| < k, each element of O′2 \ S1 was rejected because its
marginal gain was below the threshold when it arrived in the stream. This, together with
submodularity, implies that f (O′2|S1) ≤ κ |O′2| ≤ κb. J

I Lemma 9. We have E[f(S1,1 ∪ (O1 ∩ U) ∪O′2)] ≥ (1− 2ε)f(OPT).

Proof. We apply Lemma 5 to the following sets:

S = S1,1 \OPT
O = (S1,1 ∩OPT) ∪ (O1 ∩ U) ∪O′2

We show below that E[1O] ≤ ε1V \OPT and E[1O] ≥ (1− ε)1OPT. Assuming these bounds,
we can take u = ε and v = 1− ε in Lemma 5, which gives the desired result.

Since S ⊆ S1,1 ⊆ V1,1 and V1,1 is a (1/m)-sample of V , we have E[1S ] ≤ 1
m1V \OPT =

ε1V \OPT. Thus it only remains to show that, for each e ∈ OPT, we have Pr[e ∈ O] ≥ 1− ε.
Since (O1∩U)∪O′2 ⊆ O, it suffices to show that Pr[e ∈ (O1 ∩ U) ∪O′2] ≥ 1−ε, or equivalently
that Pr[e ∈ (O1 \ U) ∪ (O2 \O′2)] ≤ ε.
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Recall that (O1, O2) is a deterministic partition of OPT. Thus e belongs to exactly one
of O1 and O2 and we consider each of these cases in turn.

Suppose that e ∈ O1. A single iteration of the for loop of StreamProcess ensures
that e is in Si,1 ∪ · · · ∪ Si,m with probability pe ≥ ε. Since we perform r = Θ(ln(1/ε)/ε)
independent iterations, we have Pr[e /∈ U ] ≤ (1− ε)r ≤ exp(−εr) ≤ ε.

Suppose that e ∈ O2. We have

Pr[e ∈ O2 \O′2] = Pr[e ∈ STGreedy (V1,1 ∪ {e})] = pe ≤ ε

where the first equality follows from the definition of O′2, the second equality follows from
the definition of pe and the fact that V1,1 ∼ V(1/m), and the inequality follows from the
definition of O2. J

Lemmas 8 and 9 immediately imply the following:

I Lemma 10. We have E[f (S1,1 ∪ (O1 ∩ U))] ≥ (1− 3ε)f(OPT)− κb.

Finally, Lemmas 7 and 10 give the approximation guarantee:

I Lemma 11. We have E[max {f(S1,1), f(T )}] ≥
(

α
1+α − 3ε

)
f(OPT).

4 Extension based algorithm

Using our extension based algorithm, we prove the following theorem.

I Theorem 12. Assume there exists an α-approximation offline algorithm OfflineAlg
for maximizing a non-negative submodular function subject to cardinality constraint whose
space complexity is nearly linear in the size of the ground set. Then, for every constant
ε ∈ (0, 1], there exists an ( α

1+α − ε)-approximation semi-streaming algorithm for maximizing
a non-negative submodular function subject to a cardinality constraint. The algorithm stores
at most O(kε−2) elements.4

In this section, we introduce a simplified version of the algorithm used to prove Theorem 12.
This simplified version (given as Algorithm 3) captures our main new ideas, but makes two
simplifying assumptions that can be avoided using standard techniques.

The first assumption is that Algorithm 3 has access to an estimate τ of f(OPT) obeying
(1− ε/8) · f(OPT) ≤ τ ≤ f(OPT). Such an estimate can be produced using well-known
techniques, at the cost of a slight increase in the space complexity of the algorithm. In
the full version of this paper we formally show that one such technique due to [21] can be
used for that purpose, and that it increases the space complexity of the algorithm only
by a factor of O(ε−1 logα−1).
The second assumption is that Algorithm 3 has value oracle access to the multilinear
extension F . If the time complexity of Algorithm 3 is not important, then this assumption
is of no consequence since a value oracle query to F can be emulated using an exponential
number of value oracle queries to f . However, the assumption becomes problematic when
we would like to keep the time complexity of the algorithm polynomial and we only have
value oracle access to f . Thus, we explain in the full version of this paper how to drop this

4 Formally, the number of elements stored by the algorithm also depends on logα−1. Since α is typically
a positive constant, or at least lower bounded by a positive constant, we omit this dependence from the
statement of the theorem.
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6:12 Optimal Streaming Algorithms for Submodular Maximization

assumption via sampling. Interestingly, the rounding step and this sampling technique
are the only parts of the extension based algorithm that employ randomness. Since the
rounding can be made deterministic given either exponential time or value oracle access
to F , we get the following observation.

I Observation 13. If OfflineAlg is deterministic, then the algorithm whose existence
is guaranteed by Theorem 12 is also deterministic when it is allowed either exponential
computation time or value oracle access to F .

Algorithm 3 has two constant parameters p ∈ (0, 1) and c > 0 and maintains a fractional
solution x ∈ [0, 1]V . This fractional solution starts empty, and the algorithm adds to it
fractions of elements as they arrive. Specifically, when an element e arrives, the algorithm
considers its marginal contribution with respect to the current fractional solution x. If this
marginal contribution exceeds the threshold of cτ/k, then the algorithm tries to add to x a
p-fraction of e, but might end up adding a smaller fraction of e if adding a full p-fraction of
e to x will make x an infeasible solution, i.e., make ‖x‖1 > k (note that ‖x‖1 is the sum of
the coordinates of x).

After viewing all of the elements, Algorithm 3 uses the fractional solution x to generate
two sets S1 and S2 that are feasible (integral) solutions. The set S1 is generated by rounding
the fractional solution x. Two rounding procedures, named Pipage Rounding and Swap
Rounding, were suggested for this task in the literature [8, 12]. Both procedures run in
polynomial time and guarantee that the output set S1 of the rounding is always feasible,
and that its expected value with respect to f is at least the value F (x) of the fractional
solution x. The set S2 is generated by applying OfflineAlg to the support of the vector x,
which produces a feasible solution that (approximately) maximizes f among all subsets of
the support whose size is at most k. After computing the two feasible solutions S1 and S2,
Algorithm 3 simply returns the better one of them.

Algorithm 3 StreamProcessExtension (simplified) (p, c).

1 Let x← 1∅.
2 for each arriving element e do
3 if ∂eF (x) ≥ cτ

k then x← x+ min{p, k − ‖x‖1} · 1e.
4 Round the vector x to yield a feasible solution S1 such that E[f(S1)] ≥ F (x).
5 Find another feasible solution S2 ⊆ supp(x) by running OfflineAlg with supp(x)

as the ground set.
6 return the better solution among S1 and S2.

Let us denote by x̂ the final value of the fractional solution x (i.e., its value when the
stream ends). We begin the analysis of Algorithm 3 with the following useful observation.

I Observation 14. If ‖x̂‖1 < k, then x̂e = p for every e ∈ supp(x̂). Otherwise (when
‖x̂‖1 = k), this is still true for every element e ∈ supp(x̂) except for maybe a single element.

Proof. For every element e added to the support of x by Algorithm 3, the algorithm sets xe
to p unless this will make ‖x‖1 exceed k, in which case the algorithm set xe to be the value
that will make ‖x‖1 equal to k. Thus, after a single coordinate of x is set to a value other
than p (or the initial 0), ‖x‖1 becomes k and Algorithm 3 stops changing x. J
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Using the last observation we can now bound the space complexity of Algorithm 3, and
show (in particular) that it is a semi-streaming algorithm for a constant p when the space
complexity of OfflineAlg is nearly linear.

I Observation 15. Algorithm 3 can be implemented so that it stores at most O(k/p) elements.

Proof. To calculate the sets S1 and S2, Algorithm 3 needs access only to the elements
of V that appear in the support of x. Thus, the number of elements it needs to store is
O(| supp(x̂)|) = O(k/p), where the equality follows from Observation 14. J

We now divert our attention to analyzing the approximation ratio of Algorithm 3. The
first step in this analysis is lower bounding the value of F (x̂), which we do by considering
two cases, one when ‖x̂‖1 = k, and the other when ‖x̂‖1 < k. The following lemma bounds
the value of F (x̂) in the first of these cases. Intuitively, this lemma holds since supp(x̂)
contains many elements, and each one of these elements must have increased the value of
F (x) significantly when added (otherwise, Algorithm 3 would not have added this element
to the support of x).

I Lemma 16. If ‖x̂‖1 = k, then F (x̂) ≥ cτ .

Proof. Denote by e1, e2, . . . , e` the elements in the support of x̂, in the order of their arrival.
Using this notation, the value of F (x̂) can be written as follows.

F (x̂) = F (1∅) +
∑̀
i=1

(
F
(
x̂ ∧ 1{e1,e2,...,ei}

)
− F

(
x̂ ∧ 1{e1,e2,...,ei−1}

))
= F (1∅) +

∑̀
i=1

(
x̂ei · ∂eiF

(
x̂ ∧ 1{e1,e2,...,ei−1}

))
≥ F (1∅) + cτ

k
·
∑̀
i=1

x̂ei
= F (1∅) + cτ

k
· ‖x̂‖1 ≥ cτ ,

where the second equality follows from the multilinearity of F , and the first inequality holds
since Algorithm 3 selects an element ei only when ∂ei

F
(
x̂ ∧ 1{e1,e2,...,ei−1}

)
≥ cτ

k . The last
inequality holds since f (and thus, also F ) is non-negative and ‖x̂‖1 = k by the assumption
of the lemma. J

Consider now the case in which ‖x̂‖1 < k. Recall that our objective is to lower bound
F (x̂) in this case as well. Towards this goal, we bound the expression F (x̂+ 1OPT\supp(x̂))
from below and above in the following two lemmata.

I Lemma 17. If ‖x̂‖1 < k, then F
(
x̂ + 1OPT\supp(x̂)

)
≥ (1 − p) ·

[
p · f(OPT) + (1 − p) ·

f
(
OPT \ supp(x̂)

)]
.

Proof. Since ‖x̂‖1 < k, Observation 14 guarantees that x̂e = p for every e ∈ supp(x̂). Thus
x̂ = p · 1OPT∩supp(x̂) + p · 1supp(x̂)\OPT, and therefore,

F
(
x̂+ 1OPT\supp(x̂)

)
= F

(
p · 1OPT∩supp(x̂) + p · 1supp(x̂)\OPT + 1OPT\supp(x̂)

)
≥ (1− p) · F

(
p · 1OPT∩supp(x̂) + 1OPT\supp(x̂)

)
≥ (1− p) · f̂

(
p · 1OPT∩supp(x̂) + 1OPT\supp(x̂)

)
= (1− p) ·

[
p · f(OPT) + (1− p) · f

(
OPT \ supp(x̂)

)]
,
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where the first inequality follows from Corollary 2, the second inequality holds since the
Lovász extension lower bounds the multilinear extension, and the last equality follows from
the definition of the Lovász extension. J

In the following lemma, and the rest of the section, we use the notation b = k−1 · |OPT \
supp(x̂)|. Intuitively, the lemma holds since the fact that the elements of OPT \ supp(x̂)
where not added to the support of x implies that their marginal contribution is small.

I Lemma 18. If ‖x̂‖1 < k, then F
(
x̂+ 1OPT\supp(x̂)

)
≤ F (x̂) + bcτ .

Proof. The elements in OPT\ supp(x̂) were rejected by Algorithm 3, which means that their
marginal contribution with respect to the fractional solution x at the time of their arrival
was smaller than cτ/k. Since the fractional solution x only increases during the execution of
the algorithm, the submodularity of f guarantees that this is true also with respect to x̂.
More formally, we get

∂eF (x̂) < cτ

k
∀ e ∈ OPT \ supp(x̂) .

Using the submodularity of f again, this implies

F
(
x̂+ 1OPT\supp(x̂)

)
≤ F (x̂) +

∑
e∈OPT\supp(x̂)

∂eF (x̂) ≤ F (x̂) + |OPT \ supp(x̂)| · cτ
k

= F (x̂) + bcτ. J

Combining the last two lemmata immediately yields the promised lower bound on F (x̂).
To understand the second inequality in the following corollary, recall that τ ≤ f(OPT).

I Corollary 19. If ‖x̂‖1 < k, then F (x̂) ≥ (1−p) ·
[
p ·f(OPT)+(1−p) ·f

(
OPT\supp(x̂)

)]
−

bcτ ≥ [p(1− p)− bc]τ + (1− p)2 · f
(
OPT \ supp(x̂)

)
.

Our next step is to get a lower bound on the expected value of f(S2). One easy way
to get such a lower bound is to observe that OPT ∩ supp(x̂) is a subset of the support
of x̂ of size at most k, and thus, is a candidate to be OPT; which implies E[f(S2)] ≥
α ·f(OPT∩supp(x̂)) since the algorithm OfflineAlg used to find S2 is an α-approximation
algorithm. The following lemma proves a more involved lower bound by considering the
vector (bx̂)∨ 1OPT∩supp(x̂) as a fractional candidate to be OPT (using the rounding methods
discussed above it, it can be converted into an integral candidate of at least the same value).
The proof of the lemma lower bounds the value of the vector (bx̂) ∨ 1OPT∩supp(x̂) using the
concavity of the function F ((t · x̂) ∨ 1OPT∩supp(x̂)) as well as ideas used in the proofs of the
previous claims.

I Lemma 20. If ‖x̂‖1 < k, then E[f(S2)] ≥ αb(1− p− cb)τ + α(1− b) · f(OPT ∩ supp(x̂)).

Proof. Consider the vector (bx̂) ∨ 1OPT∩supp(x̂). Clearly,∥∥(bx̂) ∨ 1OPT∩supp(x̂)
∥∥

1 ≤ b · ‖x̂‖1 +
∥∥1OPT∩supp(x̂)

∥∥
1

≤ |OPT \ supp(x̂)|+ |OPT ∩ supp(x̂)| = |OPT| ≤ k ,

where the second inequality holds by the definition of b since ‖x̂‖1 < k. Thus, due to the
existence of the rounding methods discussed in Section 4, there must exist a set S of size
at most k obeying f(S) ≥ F ((bx̂) ∨ 1OPT∩supp(x̂)). Since S2 is produced by OfflineAlg,
whose approximation ratio is α, this implies E[f(S2)] ≥ α · F ((bx̂) ∨ 1OPT∩supp(x̂)). Thus, to
prove the lemma it suffices to show that F ((bx̂) ∨ 1OPT∩supp(x̂)) is always at least b(1− p−
cb)τ + (1− b) · f(OPT ∩ supp(x̂)).
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The first step towards proving the last inequality is getting a lower bound on F (x̂ ∨
1OPT∩supp(x̂)). Recall that we already showed in the proof of Lemma 18 that

∂eF (x̂) < cτ

k
∀ e ∈ OPT \ supp(x̂) .

Thus, the submodularity of f implies

F (x̂ ∨ 1OPT) ≤ F (x̂ ∨ 1OPT∩supp(x̂)) +
∑

e∈OPT\supp(x̂)

∂eF (x̂)

≤ F (x̂ ∨ 1OPT∩supp(x̂)) + cτ · |OPT \ supp(x̂)|
k

= F (x̂ ∨ 1OPT∩supp(x̂)) + cbτ .

Rearranging this inequality yields

F (x̂ ∨ 1OPT∩supp(x̂)) ≥ F (x̂ ∨ 1OPT)− cbτ ≥ (1− p) · f(OPT)− cbτ ≥ (1− p− cb)τ ,

where the second inequality holds by Corollary 2 since Observation 14 guarantees that every
coordinate of x̂ is either 0 or p. This gives us the promised lower bound on F (x̂∨1OPT∩supp(x̂)).

We now note that the submodularity of f implies that F ((t · x̂) ∨ 1OPT∩supp(x̂)) is a
concave function of t within the range [0, 1]. Since b is inside this range,

F ((bx̂) ∨ 1OPT∩supp(x̂)) ≥ b · F (x̂ ∨ 1OPT∩supp(x̂)) + (1− b) · f(OPT ∩ supp(x̂))
≥ b(1− p− cb)τ + (1− b) · f(OPT ∩ supp(x̂)) ,

which completes the proof of the lemma. J

Using the last two claims we can now obtain a lower bound on the value of the solution
of Algorithm 3 in the case of ‖x̂‖1 < k which is a function of α, τ and p alone. We note
that both the guarantees of Corollary 19 and Lemma 20 are lower bounds on the expected
value of the output of the algorithm in this case since E[f(S1)] ≥ F (x̂). Thus, any convex
combination of these guarantees is also such a lower bound, and the proof of the following
corollary basically proves a lower bound for one such convex combination – for the specific
value of c stated in the corollary.

I Corollary 21. If ‖x̂‖1 < k and c is set to α(1−p)
α+1 , then E[max{f(S1), f(S2)}] ≥ (1−p)ατ

α+1 .

Proof. The corollary follows immediately from the non-negativity of f when p = 1. Thus,
we may assume p < 1 in the rest of the proof.

By the definition of S1, E[f(S1)] ≥ F (x̂). Thus, by Corollary 19 and Lemma 20,

E[max{f(S1), f(S2)}] ≥ max{E[f(S1)],E[f(S2)]}
≥ max{[p(1− p)− bc]τ + (1− p)2 · f

(
OPT \ supp(x̂)

)
,

αb(1− p− cb)τ + α(1− b) · f(OPT ∩ supp(x̂))}

≥ α(1− b)
α(1− b) + (1− p)2 ·

[
[p(1− p)− bc]τ + (1− p)2 · f

(
OPT \ supp(x̂)

)]
+ (1− p)2

α(1− b) + (1− p)2 · [αb(1− p− cb)τ + α(1− b) · f(OPT ∩ supp(x̂))] .

To keep the following calculations short, it will be useful to define q = 1−p and d = 1−b. Using
this notation and the fact that the submodularity and non-negativity of f guarantee together
f
(
OPT \ supp(x̂)

)
+ f

(
OPT ∩ supp(x̂)

)
≥ f(OPT) ≥ τ , the previous inequality implies
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E[max{f(S1), f(S2)}]
ατ

≥ (1− b)[p(1− p)− bc] + b(1− p)2(1− p− bc) + (1− b)(1− p)2

α(1− b) + (1− p)2

= d[q(1− q)− (1− d)c] + q2(1− d)[q − (1− d)c] + dq2

αd+ q2

= d[q − (1− d)c] + q2(1− d)[q − (1− d)c]
αd+ q2 = [d+ q2(1− d)][q − (1− d)c]

αd+ q2

= q[d+ q2(1− d)](dα+ 1)
(α+ 1)(dα+ q2) = d2α+ dαq2 − d2αq2 + d+ q2 − dq2

dα+ q2 · q

α+ 1 , (1)

where the fourth equality holds by plugging in the value we assume for c.
The second fraction in the last expression is independent of the value of d, and the

derivative of the first fraction in this expression as a function of d is

(2dα+ αq2 − 2dαq2 + 1− q2)[dα+ q2]− α(d2α+ dαq2 − d2αq2 + d+ q2 − dq2)
[dα+ q2]2

= 1− q2

[dα+ q2]2 · [q
2(1− α) + dα(dα+ 2q2)] ,

which is always non-negative since both q and α are numbers between 0 and 1. Thus, we get
that the minimal value of the expression (1) is obtained for d = 0 for any choice of q and α.
Plugging this value into d yields

E[max{f(S1), f(S2)}] ≥ qατ

α+ 1 = (1− p)ατ
α+ 1 . J

Note that Lemma 16 and Corollary 21 prove the same lower bound on the expecta-
tion E[max{f(S1), f(S2)}] when c is set to the value it is set to in Corollary 21 (because
E[max{f(S1), f(S2)}] ≥ E[f(S1)] ≥ F (x̂)). Thus, we can summarize the results we have
proved so far using the following proposition.

I Proposition 22. Algorithm 3 is a semi-streaming algorithm storing O (k/p) elements.
Moreover, for the value of the parameter c given in Corollary 21, the output set produced by
this algorithm has an expected value of at least ατ(1−p)

α+1 .

Using the last proposition, we can now prove the following theorem. As discussed at the
beginning of the section, in the full version of this paper we explain how the assumption that
τ is known can be dropped at the cost of increasing of a slight increase in the number of of
elements stored by the algorithm, which yields Theorem 12.

I Theorem 23. For every constant ε ∈ (0, 1], there exists a semi-streaming algorithm that
assumes access to an estimate τ of f(OPT) obeying (1− ε/8) · f(OPT) ≤ τ ≤ f(OPT) and
provides ( α

1+α − ε)-approximation for the problem of maximizing a non-negative submodular
function subject to cardinality constraint. This algorithm stores at most O(kε−1) elements.

Proof. Consider the algorithm obtained from Algorithm 3 by setting p = ε/2 and c as is set
in Corollary 21. By Proposition 22, this algorithm stores only O(k/p) = O(kε−1) elements,
and the expected value of its output set is at least

ατ(1− p)
α+ 1 ≥ α(1− ε/8)(1− ε/2)

α+ 1 ·f(OPT) ≥ α(1− ε)
α+ 1 ·f(OPT) ≥

(
α

α+ 1 − ε
)
·f(OPT) ,

where the first inequality holds since τ obeys, by assumption, τ ≥ (1− ε/8) · f(OPT). J
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Further discussion. Before concluding, let us discuss in more detail the value that should
be assigned to the parameter p of Algorithm 3. In the proof of Theorem 23, we chose p to
be very small. This makes sense whenever α is independent of p since the formula given
by Proposition 22 for the guaranteed value of the output is non-increasing in p. However,
for some choices of OfflineAlg the value of α might depend on p, and thus, it might be
beneficial to choose a value for p which is not very small. To see why α might depend on
p, note that the input passed to OfflineAlg by Algorithm 3 is of size at most dk/pe due
to Observation 14; and therefore, the ratio between the size of the ground set and k in this
input is roughly 1/p. Hence, α depends on p if the approximation ratio of OfflineAlg
depends on the above ratio; which is the case, e.g., for one of the algorithms described in [6].

As a corollary of the above discussion, we get that for some offline algorithms a smart choice
of p can yield a better approximation guarantee than the one stated in Theorem 23. At the
current point this corollary is not very useful since the state-of-the-art offline approximation
algorithm has an approximation ratio which is independent of p; however, this might change
in the future.
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Abstract
We consider the following dynamic load-balancing process: given an underlying graph G with n
nodes, in each step t ≥ 0, one unit of load is created, and placed at a randomly chosen graph node.
In the same step, the chosen node picks a random neighbor, and the two nodes balance their loads
by averaging them. We are interested in the expected gap between the minimum and maximum
loads at nodes as the process progresses, and its dependence on n and on the graph structure.

Variants of the above graphical balanced allocation process have been studied previously by
Peres, Talwar, and Wieder [10], and by Sauerwald and Sun [12]. These authors left as open the
question of characterizing the gap in the case of cycle graphs in the dynamic case, where weights
are created during the algorithm’s execution. For this case, the only known upper bound is of
O(n logn), following from a majorization argument due to [10], which analyzes a related graphical
allocation process.

In this paper, we provide an upper bound of O(
√
n logn) on the expected gap of the above

process for cycles of length n. We introduce a new potential analysis technique, which enables us to
bound the difference in load between k-hop neighbors on the cycle, for any k ≤ n/2. We complement
this with a “gap covering” argument, which bounds the maximum value of the gap by bounding its
value across all possible subsets of a certain structure, and recursively bounding the gaps within
each subset. We provide analytical and experimental evidence that our upper bound on the gap is
tight up to a logarithmic factor.
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1 Introduction

We consider balls-into-bins processes where a sequence of m weights are placed into n bins
via some randomized procedure, with the goal of minimizing the load imbalance between
the most loaded and the least loaded bin. This family of processes has been used to model
several practical allocation problems, such as load-balancing [3, 7, 11], hashing [5], or even
relaxed data structures [2, 1].
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One way to put our results into context is to view them as a variation of the well-known
d-choice process, in which, in each step, a new weight is generated, and is placed in the
least loaded of d uniform random choices. If d = 1, then we have the uniform random
choice scheme, whose properties are well understood. In particular, if we place m = n

unit weights into the bins, then it is known that the most loaded bin will have expected
Θ(logn/ log logn) load, whereas if m = Ω(n logn) we have that the expected maximum load
is m/n+ Θ(

√
m logn/n). Seminal work by Azar, Broder, Karlin, and Upfal [3] showed that,

if we place n unit weights into n bins by the d-choice process with d ≥ 2, then, surprisingly,
the maximum load is reduced to Θ(log logn/ log d). A technical tour-de-force by Berenbrink,
Czumaj, Steger, and Vöcking [4] extended this result to the “heavily-loaded” case where
m� n, showing that in this case the maximum load is m/n+ log logn/ log d+O(1) with
failure probability at most 1/ poly n. An elegant alternative proof for a slightly weaker
version of this result was later provided by Talwar and Wieder [13].

More recently, Peres, Talwar, and Wieder [10] analyzed the graphical version of this
process, where the bins are the vertices of a graph, an edge is chosen at every step, and the
weight is placed at the less loaded endpoint of the edge, breaking ties arbitrarily. (The classic
2-choice process corresponds to the case where the graph is a clique.) The authors focus
on the evolution of the gap between the highest and lowest loaded bins, showing that, for
graphs of β-edge-expansion [10], this gap is O(logn/β), with probability 1− 1/poly n.

An alternative way to frame our results is to consider static load-balancing, where each
node starts with an arbitrary initial load, and the endpoints average their initial loads
whenever the edge is chosen. Then, the balancing process can be mapped to a Markov
chain, whose convergence is well-understood in terms of the spectral gap of the underlying
graph [12]. Sauerwald and Sun [12] considered this static case in the discrete setting, where
the fixed initial load can only be divided to integer tokens upon each averaging step, for
which they gave strong upper bounds for a wide range of graph families.

By contrast to this previous work, in this paper we consider the less complex continuous
averaging case, where exact averaging of the weights is possible, but in the more challenging
dynamic scenario, where weights arrive in each step rather than being initially allocated,
which is closer to the setting of the d-choice process discussed above.

One question left open by previous work concerns the evolution of the gap in the dynamic
case on graphs of low expansion, such as cycles. In particular, for cycles, the only known
upper bound on the expected gap in the dynamic case is of O(n logn), following from [10],
whereas the only lower bound is the immediate Ω(logn) gap lower bound for the clique.
Closing this gap for cycle graphs is known to be a challenging open problem [9]. As suggested
in [10], to deal with the cycle case, there is a need for a new approach, which takes the
structure of the load balancing graph into account.

Contribution. In this paper, we address this question for the case where averaging is
performed on a cycle graph. Let Gap(t) be a difference between highest and lowest loads
of the nodes at time step t. We provide the upper bound on the gap in the dynamic,
heavily-loaded case, via a new potential argument. More formally, for any t > 0, we show
that for a cycle graph with n vertices:

E[Gap(t)] = O(
√
n log(n)). (1)

We complement this result with a lower bound of Ω(n) on the E[Gap(t)2], as well as additional
experimental evidence suggesting that our upper bound is tight within a logarithmic factor.
Our results extend to weighted input. That is, we can allow our input to come from any
distribution W , such that E[W 2] ≤M2, for some M > 0.
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Technical Argument. Our upper bound result is based on two main ideas. The first
introduces a new parametrized hop-potential function, which measures the squared difference
in load between any k-hop neighbors on the graph, where k ≥ 1 is a fixed hop parameter.
Let G = (V,E) be our input graph, where V = {1, 2, ..., n}. Throughout the paper, for any
1 ≤ i ≤ n we assume that the nodes i+ n and i− n are the same as the node i. Let xi(t) be
the load of node i node at step t. Then, we define the k-hop potential as:

φk(t) =
n∑
i=1

(xi(t)− xi+k(t))2.

The first technical step in the proof is to understand the expected (“steady-state”) value
of the k-hop potential. We show that, in expectation, the k-hop potential has a recursive
structure on regular graphs. While the expected values of k-hop potentials cannot be
computed precisely, we can isolate upper and lower bounds on their values for cycles. In
particular, for the k-hop potential on an n-cycle, we prove the following bound:

E[φk(t)] ≤ k(n− k)− 1,∀k ≥ 1. (2)

In the second technical step, we shift gears, aiming to bound the maximum possible value
of the gap between any two nodes, leveraging the fact that we understand the hop potential
for any k ≥ 1. We achieve this via a “gap covering” technique, which characterizes the
maximum value of the gap across all possible subsets of a certain type.

More precisely, in the case of a cycle of length n = 2m, for each node i and hop count
k, we define the set family Aik to be formed of nodes {i, i + 2k, i + 2 × 2k, i + 3 × 2k, . . . }.
(Since we are on a cycle, i = i+ 2m−k2k.) Then for any 1 ≤ i ≤ n and k > 0, we will have

n∑
i=1

GapAi
k−1

(t) ≤
n∑
i=1

GapAi
k
(t) + n√

2k−1

√
φ2k−1(t), (3)

where GapX(t) is the maximal gap inside the set X at time t. Intuitively, this result
allows us recursively characterize the gap value at various “resolutions” across the graph.

Finally, we notice that we can “cover” the gap across between any two nodes by carefully
unwinding the recursion in the above inequality, considering all possible subsets of a well-
chosen structure, and recursively bounding the gaps within each subset. (This step is
particularly delicate in the case where n is not a power of two, see Section 5.) We obtain that

E[Gap(t)] = O(
√
n log(n)), (4)

as claimed. The logarithmic slack is caused by the second term on the right-hand-side of (2).
We note that this technique extends to the case where inserted items are weighted, where the
weights are coming from some distribution of bounded second moment.

Lower Bound. It is interesting to ask whether this upper bound is tight. To examine this
question, we revisit the recursive structure of the k-hop potential, which we used to obtain
the lower bound in Equation 2. We can leverage this structure to obtain a lower bound on
the expected k-hop potential as well. Starting from this lower bound, we can turn the upper
bound argument “inside out,” to obtain a linear lower bound on the expected squared gap:

E[Gap(t)2] = Ω(n). (5)

This second moment bound strongly suggests that our above analysis is tight within
logarithmic factors. We conjecture that the bound is also tight with regards to the expected
gap, and examine this claim empirically in Section 6.

ICALP 2020
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Extensions and Overview. The analysis template we described above is general, and could
be extended to other graph families, such as regular expanders. In particular, we note
that the recursive structure of the k-hop potentials is preserved for such graphs. The main
technical steps in analyzing a new graph family are to (1) identify the right upper bound on
the k-hop potential (the analogue of (1)); and (2) identify the right set family for the gap
covering argument, and its recursive structure (the analogue of (2)). Obtaining tight bounds
for these quantities is not straightforward, since they do not seem to be immediately linked
to well-studied graph properties. Here, we focus on obtaining tight bounds on the gap for
cycles, which is technically non-trivial, and leave the extensions for other graph families as
future work. To substantiate our generality claim, we exhibit an application of our analysis
technique to Harary graphs [6] in a full version of the paper.

We discuss the relation between our results and bounds for the graphical power-of-two
process on a cycle [10] in Section 7.

Related Work. As we have already discussed broad background, we will now mainly focus
on the technical differences from previous work. As stated, we are the first to specifically
consider the dynamic case for continuous averaging on cycles. In the static case with discrete
averaging, the problem has been considered by Sauerwald and Sun [12]. However, their
techniques would not apply in our case, since we consider that weights would be introduced
dynamically, during the processes’ execution.

To our knowledge, the only non-trivial upper bound on the gap of the process we consider
which would follow from previous work is of O(n logn), by the potential analysis of [10]: they
consider 2-choice load balancing, and one can re-do their potential analysis for (continuous)
averaging load balancing, yielding the same bounds. However, as our bounds show, the
resulting analysis is quite loose in the case of cycles, yielding an Ω(

√
n) gap. This is a

consequence of the majorization technique used, which links dynamic averaging on the cycle
and a very weak form of averaging on the clique.

Our potential analysis is substantially different from that of [10], as they track a sum of
exponential potentials across the entire graph. By contrast, our analysis tracks the squared
load differences between k-hop neighbors, establishing recurrences between these potentials.
We notice that this is also different from the usual square potentials used for analyzing
averaging load balancing, e.g. [8], which usually compare against the global mean, as opposed
to pairwise potential differences. Our approach is also different from the classic analyses
of e.g. [3], which perform probabilistic induction on the number of bins at a given load,
assuming a clique.

Generally, our technique can be seen as performing the induction needed to bound the
gap not on the bin loads, as is common in previous work, e.g. [3], but over the topology of
the graph. This approach is natural, since we wish to obtain tight, topology-specific bounds,
but we believe we are the first to propose and analyze it successfully.

2 Averaging on the Cycle: Upper Bounding the Gap

Preliminaries. We consider a cycle graph G = (V,E) where V = {1, 2, ..., n}, such that
each node i is connected to its left and right neighbors, i− 1 and i+ 1 (recall that for any
1 ≤ i ≤ n the nodes i+ n and i− n are the same as the node i).

We consider a stochastic process following real time t ≥ 0, in which, in each step, a weight
w(t) is generated from a same distribution W . We associate a real-valued load value xi(t)
with each node i. In step t, an edge (i, i+ 1) is chosen uniformly at random, and the two
endpoints nodes update their weights as follows:

xi(t+ 1) = xi+1(t+ 1) = xi(t) + xi+1(t) + w(t)
2 .
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We will assume that the second moment of the distribution W is bounded. That is:
E[W 2] ≤M2, for some M > 0. For simplicity, we will assume that weights are normalized
by M . This gives us that E[W 2] ≤ 1.

Let X(t) = (x1(t), x2(t), ..., xn(t)) be the vector of the bin weights after t balls have been
thrown. First, we define the following potential functions:

∀k ∈ {1, 2, . . . , n− 1} : φk(t) :=
n∑
i=1

(xi(t)− xi+k(t))2.

Notice that for every 1 ≤ i ≤ n, we have that φi(t) = φn−i(t). We want to analyze what
is the value of these functions in expectation after an additional ball is thrown, for a given
load vector X(t).

We start with φ1(t+ 1):

E[φ1(t+ 1)|X(t), w(t)] =
n∑
i=1

1
n

((xi(t) + xi+1(t) + w(t)
2 − xi+2(t)

)2

+
(xi(t) + xi+1(t) + w(t)

2 − xi−1(t)
)2

+
∑

j 6=i−1,i,i+1
(xj(t)− xj+1(t))2

)

= n− 3
n

φ1(t) + 1
2 + 1

2n (φ1(t) + 2φ2(t))

= n− 2
n

φ1(t) + 1
2(w(t)2 − φ1(t)

n
) + 1

n
φ2(t).

Now, we proceed with calculating the expected value of φk(t+ 1), for 2 ≤ k ≤ bn/2c:

E[φk(t+ 1)|Xt, w(t)] =
n∑
i=1

1
n

((xi(t) + xi+1(t) + w(t)
2 − xi−k(t)

)2

+
(xi(t) + xi+1(t) + w(t)

2 − xi+1−k(t)
)2

+
(xi(t) + xi+1(t) + w(t)

2 − xi+k(t)
)2

+
(xi(t) + xi+1(t) + w(t)

2 − xi+1+k(t)
)2

+
∑

j 6=i−k,i+1−k,i+k,i+1+k
(xj(t)− xj+k(t))2

)

= n− 2
n

φk(t) + (w(t)2 − φ1(t)
n

) + φk+1(t)
n

+ φk−1(t)
n

.

Note that in the above calculations for φ1(t+ 1) and φk(t+ 1), for k > 1 the terms which
contain w(t) as linear multiplicative term disappear because we can assume that loads
x1(t), x2(t), ..., xn(t) are normalized (this will not change our potentials) and we have:

n∑
i=1

w(t)xi(t) = 0. (6)
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7:6 Dynamic Averaging Load Balancing on Cycles

If we remove conditioning on w(t) and express these equations for k = 1, 2, . . . , n− 1, we get:

E[φ1(t+ 1)|X(t)] = (n−2
n )φ1(t) + 1

2 (E[W 2]− φ1(t)
n ) + φ2(t)

n .

E[φ2(t+ 1)|X(t)] = (n−2
n )φ2(t) + (E[W 2]− φ1(t)

n ) + φ1(t)
n + φ3(t)

n .

. . .

E[φbn2 c(t+ 1)|X(t)] = (n−2
n )φbn2 c(t) + (E[W 2]− φ1(t)

n )

+
φbn2 c−1(t)

n +
φbn2 c+1(t)

n .

. . .

E[φn−2(t+ 1)|X(t)] = (n−2
n )φn−2(t)

+(E[W 2]− φ1(t)
n ) + φn−3(t)

n + φn−1(t)
n .

E[φn−1(t+ 1)|X(t)] = (n−2
n )φn−1(t) + 1

2 (E[W 2]− φ1(t)
n ) + φn−2(t)

n .

Using the above equations we can prove the following:

I Lemma 1. For every t ≥ 0 and 1 ≤ k ≤ n− 1, we have that

E[φk(t)] ≤ (k(n− k)− 1)E[W 2] ≤ k(n− k)− 1. (7)

Proof. Let Φ(t) = (φ1(t), φ2(t), ..., φn−1(t)) be the vector of values of our potentials at time
step t and let Y = (y1, y2, ..., yn−1), be the vector containing our desired upper bounds for
each potential. That is: for each 1 ≤ i ≤ n− 1, we have that yi = (i(n− i)− 1)E[W 2]. An
interesting and easily checkable thing about the vector Y is that

E[Φ(t+ 1)|Φ(t) = Y ] = Y. (8)

Next, consider the vector Z(t) = (z1(t), z2(t), ...zn−1(t)) = Y − Φ(t). Our goal is to show
that for every step t and coordinate i, E[zi(t)] ≥ 0. we have that

E[z1(t+ 1)|X(t)] = y1 − E[φ1(t+ 1)|X(t)]

= (n− 2
n

)y1 + 1
2(E[W 2]− y1

n
) + y2

n
−

(
(n− 2

n
)φ1(t) + 1

2(E[W 2]− φ1(t)
n

) + φ2(t)
n

)

= (n− 2
n

)z1(t)− z1(t)
2n + z2(t)

n
.

and for 2 ≤ i ≤ bn2 c, we have that

E[zi(t+ 1)|X(t)] = (n− 2
n

)zi(t)−
z1(t)
n

+ zi−1(t)
n

+ zi−1(t)
n

.

Hence we get the following equations(recall that zi(t) = zn−i(t)):

n× E[z1(t+ 1)|X(t)] = (n− 2− 1
2 )z1(t) + z2(t).

n× E[z2(t+ 1)|X(t)] = −z1(t) + z1(t) + (n− 2)z2(t) + z3(t).
n× E[z3(t+ 1)|X(t)] = −z1(t) + z2(t) + (n− 2)z3(t) + z4(t).
. . .

n× E[zbn2 c(t+ 1)|X(t)] = −z1(t) + zbn2 c−1(t) + (n− 2)zbn2 c(t) + zbn2 c+1(t).

(9)

Next, using induction on t, we show that for every t ≥ 0

0 ≤ E[z1(t)] ≤ E[z2(t)] ≤ ... ≤ E[zbn2 c(t)]. (10)
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The base case holds trivially since Z(0) = Y . For the induction step, assume that
0 ≤ E[z1(t)] ≤ E[z2(t)] ≤ ... ≤ E[zbn2 c(t)]. First, we have that

nE[z1(t+ 1)] = nEX(t)[E[z1(t+ 1)|X(t)]] = (n− 2− 1
2)E[z1(t)] + E[z2(t)] ≥ 0.

Additionally, we have that:

nE[z1(t+ 1)] = (n− 2− 1
2)E[z1(t)] + E[z2(t)] ≤ (n− 2)E[z1(t)] + E[z2(t)]

≤ (n− 2)E[z2(t)] + E[z3(t)] = nE[z2(t+ 1)].

For 2 ≤ i ≤ bn2 c − 2, we have that

nE[zi(t+ 1)] = −E[z1(t)] + E[zi−1(t)] + (n− 2)E[zi(t)] + E[zi+1(t)]
≤ −E[z1(t)] + E[zi(t)] + (n− 2)E[zi+1(t)] + E[zi+2(t)]
= nE[zi+1(t+ 1)].

Next, observe that by our assumption:
E[zbn2 c+1(t)] = E[zdn2 e−1(t)] ≥ E[zbn2 c−2(t)]. Finally, by using this observation we get that

nE[zbn2 c−1(t+ 1)] = −E[z1(t)] + E[zbn2 c−2(t)] + (n− 2)E[zbn2 c−1(t)] + E[zbn2 c(t)]

≤ −E[z1(t)] + E[zbn2 c+1(t)] + E[zbn2 c−1(t)] + (n− 3)E[zbn2 c−1(t)] + E[zbn2 c(t)]

≤ −E[z1(t)] + E[zbn2 c+1(t)] + E[zbn2 c−1(t)] + (n− 2)E[zbn2 c(t)]

= nE[zbn2 c(t+ 1)].

This completes the proof of the theorem. J

3 Upper Bound on the Gap for n = 2m

In this section we upper bound a gap in expectation for n = 2m case. The proof for the
general case is quite technical but not necessarily more interesting, and is provided in the
Section 5.

We begin with some definitions. For a set A ⊆ {1, 2, . . . , n}, let

GapA(t) = max
i∈A

(xi(t))−min
i∈A

(xi(t)).

Also, let Aik be {i, i+ 2k, i+ 2× 2k, i+ 3× 2k, . . . } (Notice that i = i+ 2m−k2k). Our proof
works as follows: for each 1 ≤ i ≤ n and 0 < k ≤ m, we look at the vertices given by the sets
Aik and Ai+2k−1

k and try to characterise the gap after we merge those sets (Note that this
will give us the gap for the set Aik−1 = Aik ∪A

i+2k−1

k ). Using this result, we are able to show
that

∑n
i=1 GapAik−1

(t) is upper bounded by
∑n
i=1 GapAik(t) plus n times maximum load

difference between vertices at hop distance 2k−1. Next, we use 2k−1 hop distance potential
φ2k−1(t) to upper bound maximum load between the vertices at hop distance 2k−1. Using
induction on k, we are able to upper bound

∑n
i=1 GapAi0(t) in terms of

∑n
i=1 GapAim(t) and∑m

k=1 φ2k−1(t). Notice that by our definitions, for each i, GapAim(t) = 0 (Ami contains only
vertex i) and GapAi0(t) = Gap(t) (Ai0 contains all vertices). Hence, what is left is to use the
upper bounds for the hop distance potentials, which we derived in the previous section.

We start by proving the following useful lemma.
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7:8 Dynamic Averaging Load Balancing on Cycles

I Lemma 2. For any 1 ≤ i ≤ n and k > 0, we have that

2GapAi
k−1

(t) ≤ 2 max
j∈Ai

k−1

|xj(t)− xj+2k−1(t)|+Gap
Ai+2k−1
k

(t) +GapAi
k
(t). (11)

Proof. Fix vertex i. Note that Aik−1 = Aik ∪A
i+2k−1

k . Let u = arg maxj∈Ai
k−1

xj(t) and let
v = arg minj∈Ai

k−1
xj(t). We consider several cases on the membership of nodes u and v, and

bound the gap in each one:
Case 1. u ∈ Aik and v ∈ Aik. Then GapAik−1

(t) = GapAi
k
(t) and we have that

GapAi
k
(t) = |xu(t)− xv(t)|

≤ |xu+2k−1(t)− xu(t)|+ |xv+2k−1(t)− xv(t)|+ |xu+2k−1(t)− xv+2k−1(t)|
≤ |xu+2k−1(t)− xu(t)|+ |xv+2k−1(t)− xv(t)|+Gap

Ai+2k−1
k

(t)

≤ 2 max
j∈Ai

k−1

|xj(t)− xj+2k−1(t)|+Gap
Ai+2k−1
k

(t).

Where we used the fact that both u+ 2k−1 and v + 2k−1 belong to Ai+2k−1

k . This gives
us that

2GapAi
k−1

(t) ≤ 2 max
j∈Ai

k−1

|xj(t)− xj+2k−1(t)|+Gap
Ai+2k−1
k

(t) +GapAi
k
(t). (12)

Case 2. u ∈ Aik and v ∈ Ai+2k−1

k . Then we have that:

GapAi
k−1

(t) = |xu(t)− xv(t)| ≤ |xu(t)− xv+2k−1(t)|+ |xv+2k−1(t)− xv(t)|

≤ GapAi
k
(t) + max

j∈Ai
k−1

(|xj(t)− xj+2k−1(t)|)

and

GapAi
k−1

(t) = |xu(t)− xv(t)| ≤ |xu(t)− xu+2k−1(t)|+ |xu+2k−1(t)− xv(t)|

≤ Gap
Ai+2k−1
k

(t) + max
j∈Ai

k−1

(|xj(t)− xj+2k−1(t)|)

Where we used v + 2k−1 ∈ Aki and u+ 2k−1 ∈ Ai+2k−1

k . Hence, we again get that

2GapAi
k−1

(t) ≤ 2 max
j∈Ai

k−1

|xj(t)− xj+2k−1(t)|+Gap
Ai+2k−1
k

(t) +GapAi
k
(t). (13)

Case 3. u ∈ Ai+2k−1

k and v ∈ Ai+2k−1

k , is similar to Case 1.
Case 4. v ∈ Aik and u ∈ Ai+2k−1

k , is similar to Case 2. J

Next, we upper bound the quantity
∑n
i=1 maxj∈Ai

k
|xj(t)− xj+2k(t)|.

I Lemma 3.
n∑
i=1

max
j∈Ai

k

|xj(t)− xj+2k(t)| ≤ n√
2k
√
φ2k(t). (14)
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Proof. Notice that for any i and i′ ∈ Aik, we have that Aik = Ai
′

k ,
hence maxj∈Ai

k
|xj(t)− xj+2k(t)| = maxj∈Ai

k
|xj(t)− xj+2k(t)| and this means that

n∑
i=1

max
j∈Ai

k

|xj(t)− xj+2k(t)| = n

2k
2k∑
i=1

max
j∈Ai

k

|xj(t)− xj+2k(t)|

≤ n

2k
√

2k

√√√√ 2k∑
i=1

max
j∈Ai

k

|xj(t)− xj+2k(t)|2

≤ n

2k
√

2k
√√√√ n∑

j=1
|xj(t)− xj+2k(t)|2 = n√

2k
√
φ2k(t)

Where we used a fact that sets A1
k, A

2
k, ..., A

2k
k are disjoint. J

Finally, using the two Lemmas above and Theorem 1 we can upper bound the expected
gap at step t:

I Theorem 4. For every t ≥ 0, we have that

E[Gap(t)] = O(
√
n log(n)).

Proof. From Lemma 2 we have that
n∑
i=1

2GapAi
k−1(t) ≤

n∑
i=1

GapAi
k
(t) +

n∑
i=1

Gap
Ai+2k−1
k

(t)

+
n∑
i=1

2 max
j∈Ai

k−1

|xj(t)− xj+2k−1(t)|

= 2
n∑
i=1

GapAi
k
(t) + 2

n∑
i=1

max
j∈Ai

k−1

|xj(t)− xj+2k−1(t)|.

After dividing the above inequality by 2 and applying Lemma 3 we get that:

n∑
i=1

GapAi
k−1

(t) ≤
n∑
i=1

GapAi
k
(t) + n√

2k−1

√
φ2k−1(t).

Notice that
∑n
i=1 Gap

i
0(t) = nGap(t) and we also have that

n∑
i=1

Gapin
2

(t) =
n∑
i=1
|xi(t)− xi+n

2
(t)| ≤

√
n

√√√√ n∑
i=1
|xi(t)− xi+n

2
(t)|2 =

√
n
√
φn

2
(t)

Hence, we get that

nGap(t) =
n∑
i=1

Gapi0(t) ≤
n∑
i=1

Gapin
2

(t) +
m−1∑
k=1

n√
2k−1

√
φ2k−1(t)

≤
√
n
√
φn

2
(t) +

m−1∑
k=1

n√
2k−1

√
φ2k−1(t).
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Next, we apply Jensen and Theorem 1:

nE[Gap(t)] ≤
√
nE
√
φn

2
(t) +

m−1∑
k=1

n√
2k−1

E
√
φ2k−1(t)

≤
√
n
√
E[φn

2
(t)] +

m−1∑
k=1

n√
2k−1

√
E[φ2k−1(t)]

≤
√
n

√(n
2

)2
+
m−1∑
k=1

n√
2k−1

√
2k−1(n− 2k−1)

≤ mn
√
n = n(logn)

√
n.

This gives us the proof of the theorem. J

4 Gap Lower Bound

Next we prove the following theorem, which provides strong evidence that our bound on the
gap is tight within a logarithmic factor.

I Theorem 5. The following limit holds:

lim
t→∞

E[Gap(t)2] = Ω(nE[W 2])).

Proof. In this case we want to prove that not only does vector Z(t) have positive coordinates
in expectation, but also E[zbn2 c] converges to 0 . This will give us that φbn2 c approaches it’s
upper bound (bn2 cd

n
2 e − 1)E[W 2] in expectation. Then, we can show that there exist two

nodes(At distance bn2 c) such that the expected square of difference between their loads is
Ω(nE[w2]).

Recall from Equations 9 that

nE[zbn2 c(t+1)] = −E[z1(t)] + E[zbn2 c+1(t)] + E[zbn2 c−1(t)] + (n− 2)E[zbn2 c(t)].

We also know that Inequalities 10 hold for every t, hence we get that

E[zbn2 c(t+1)] ≤ E[zbn2 c(t)]−
E[z1(t)]

n
.

The above inequality in combination with Inequalities 10 means that

E[zbn2 c(t+ bn2 c+ 1)] ≤ E[zbn2 c(t+ 1)]−
t+bn2 c∑
i=t

E[z1(i)]
n

(15)

≤ E[zbn2 c(t+ 1)]−
E[z1(t+ bn2 c)]

n
(16)

Again by using Equations 9 and Inequalities 10, we can show that for every 1 ≤ i ≤ bn2 c−1:

E[zi(t+ 1)] ≥ E[zi+1(t)]
n

.

This gives us that:

E[z1(t+ bn2 c)] ≥
( 1
n

)
E[z2(t+ bn2 c − 1)] ≥

( 1
n

)2
E[z3(t+ bn2 c − 2)]

≥ . . .

≥
( 1
n

)bn2 c−1
E[zbn2 c(t+ bn2 c − (bn2 c − 1))] =

( 1
n

)bn2 c−1
E[zbn2 c(t+ 1)].
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By plugging the above inequality in inequality 15 we get that

E[zbn2 c(t+ bn2 c+ 1)] ≤ E[zbn2 c(t+ 1)]−
E[z1(t+ bn2 c)]

n

≤ E[zbn2 c(t+ 1)]−
( 1
n

)bn2 c−1
E[zbn2 c(t+ 1)] =

(
1−

( 1
n

)bn2 c−1
)
E[zbn2 c(t+ 1)]

Because
(

1−
(

1
n

)bn2 c−1
)
< 1 and does not depend on t, we get that limt→∞ E[zbn2 c(t)] = 0..

This means that limt→∞ E[φbn2 c(t)] = Ω(n2E[W 2]).
Let Gapbn2 c(t) = max1≤i≤n |xi(t)− xi+bn2 c(t)|. Note that:

Gap(t)2 ≥ Gapbn2 c(t)
2 ≥

φbn2 c
(t)

n . Hence limt→∞ E[Gap(t)2] = Ω(nE[W 2]).
Unfortunately we are not able to obtain the lower bound on the gap, since our approach

uses the fact that the upper bounds on k-hop potentials are ’tight’. Since our potentials are
quadratic, we are not able to derive any kind of lower on for the gap itself. Intuitively, this
will be an issue with any argument which uses convex potential. J

5 Upper Bound on the Gap, General Case

To prove the Theorem 4 for the general case, we need to redefine our sets Aki . In order to do
this, for each k we define 2k dimensional vector ∆k = (δ1

k, δ
2
k, ..., δ

2k
k ). For k = 0, we have that

∆k = (n). For blognc ≥ k > 0 we set ∆k = (αk, δ1
k−1 − αk, αk, δ2

k−1 − αk, ..., αk, δ2k−1

k−1 − αk).
Where,

αk =

b
n

2k−1 c/2, if b n
2k−1 c is even.⌊

d n
2k−1 e/2

⌋
, otherwise.

First we prove the following lemma:

I Lemma 6. For any blognc ≥ k > 0, we have that
(1)

∑2k
i=1 δ

i
k = n.

(2) For any 1 ≤ i ≤ 2k, δik ∈ {d n2k e b
n
2k c} (Notice that this means αk = b n2k c or αk = d n2k e).

Proof. We prove the lemma using induction on k. Base case k = 0 holds trivially. For the
induction step, assume that Properties 1 and 2 hold for k − 1, we aim to prove that they
hold for k as well. We have that

∑2k
i=1 δ

i
k =

∑2k−1

i=1 (αk + δik−1 − αk) =
∑2k−1

i=1 δik−1 = n. To
prove Property 2 we consider several cases:
Case 1. n

2k−1 = 2q, for some integer q.
We have that αk = q, and hence for any 1 ≤ i ≤ 2k−1, δik−1 − αk = q. Since b n2k c = q,
Property 2 holds.

Case 2. n
2k−1 = 2q + 1, for some integer q.

We have that αk = q, and hence for any 1 ≤ i ≤ 2k−1, δik−1 − αk = q + 1. Since b n2k c = q

and d n2k e = q + 1, Property 2 holds.
Case 3. n

2k−1 = 2q + ε, for some integer q and 0 < ε < 1.
We have that b n

2k−1 c = 2q and d n
2k−1 e = 2q + 1. Additionally, αk = q, and hence for any

1 ≤ i ≤ 2k−1, (δik−1 − αk) ∈ {q, q + 1}. Since b n2k c = q and d n2k e = q + 1, Property 2
holds.

Case 4. n
2k−1 = 2q + 1 + ε, for some integer q and 0 < ε < 1.

We have that b n
2k−1 c = 2q + 1 and d n

2k−1 e = 2q + 2. Additionally, αk = q + 1, and hence
for any 1 ≤ i ≤ 2k−1, (δik−1−αk) ∈ {q, q+ 1}. Since b n2k c = q and d n2k e = q+ 1, Property
2 holds. J
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Next, for blognc ≥ k > 0 we set

Aki = {i, i+ δ1
k, i+ δ1

k + δ2
k, ..., i+

2k−1∑
j=1

δjk}.

It is easy to see that for any blognc ≥ k > 0 and i, we have that |Aik| = 2k, Aik =
Aik−1 ∪ A

i+αk
k−1 and Aik−1 ∩ A

i+αk
k−1 = ∅. Also notice that for any u ∈ Aik−1, there exists

v ∈ Ai+αkk−1 , such that u+ αk = v or v + αk = u (For any u ∈ Ai+αkk−1 there exists v ∈ Aik−1
with the same property).

Next we prove the lemma which is similar to the lemma for n = 2m case:

I Lemma 7. For any 1 ≤ i ≤ n and blognc ≥ k > 0, we have that

2GapAi
k
(t) ≤ 2 max

j∈Ai
k

|xj(t)− xj+αk(t)|+Gap
A
i+αk
k−1

(t) +GapAi
k−1

(t). (17)

Proof. Let u = arg maxj∈Ai
k−1

xj(t) and let v = arg minj∈Ai
k−1

xj(t). We consider several
cases:
Case 1. u ∈ Aik−1 and v ∈ Aik−1. Notice that in this case GapAi

k−1
(t) = GapAi

k
(t). Let

u′ ∈ Ai+αkk−1 be the vertex such that u+ αk = u′ or u′ + αk = u and let v′ ∈ Ai+αkk−1 be the
vertex such that v + αk = v′ or v′ + αk = v. We have that

GapAi
k
(t) = |xu(t)− xv(t)|

≤ |xu′(t)− xu(t)|+ |xv′(t)− xv(t)|+ |xu′(t)− xv′(t)|
≤ |xu′(t)− xu(t)|+ |xv′ − xv(t)|+Gap

A
i+αk
k−1

(t)

≤ 2 max
j∈Ai

k

|xj(t)− xj+αk(t)|+Gap
Ai+2k−1
k−1

(t).

This gives us that

2GapAi
k
(t) ≤ 2 max

j∈Ai
k

|xj(t)− xj+αk(t)|+Gap
A
i+αk
k−1

(t) +GapAi
k−1

(t). (18)

Case 2. u ∈ Aik−1 and v ∈ Ai+αkk−1 . Let u′ ∈ Ai+αkk−1 be the vertex such that u + αk = u′ or
u′ + αk = u and let v′ ∈ Aik−1 be the vertex such that v + αk = v′ or v′ + αk = v. We
have that:

GapAi
k
(t) = |xu(t)− xv(t)| ≤ |xu(t)− xv′(t)|+ |xv′(t)− xv(t)|

≤ GapAi
k−1

(t) + max
j∈Ai

k

(|xj(t)− xj+αk(t)|)

and

GapAi
k
(t) = |xu(t)− xv(t)| ≤ |xu(t)− xu′(t)|+ |xu′(t)− xv(t)|

≤ Gap
A
i+αk
k−1

(t) + max
j∈Ai

k

(|xj(t)− xj+αk(t)|)

Hence, we again get that

2GapAi
k
(t) ≤ 2 max

j∈Ai
k

|xj(t)− xj+αk(t)|+Gap
A
i+αk
k−1

(t) +GapAi
k−1

(t). (19)

Case 3. u ∈ Ai+αkk−1 and v ∈ Ai+αkk−1 , is similar to Case 1.
Case 4. v ∈ Aik−1 and u ∈ Ai+αkk−1 , is similar to Case 2. J
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Next, we upper bound
∑n
i=1 maxj∈Ai

k
|xj(t)− xj+αk(t)|.

I Lemma 8.
n∑
i=1

max
j∈Ai

k

|xj(t)− xj+αk(t)| ≤
⌈ n

b n2k c

⌉√
b n2k c

√
φαk(t) (20)

Proof. Notice that for any 1 ≤ u ≤ n and sets Auk , A
u+1
k , ..., A

u+b n
2k
c−1

k are disjoint, because
for any 1 ≤ j ≤ 2k, δjk ≥ b

n
2k c (This means that for any 1 ≤ i ≤ n, distances between

consecutive vertices in Aik are at least b n2k c). Using this fact and Cauchy-Schwarz inequality
we get that

u+b n
2k
c−1∑

i=u
max
j∈Ai

k

|xj(t)− xj+αk(t)|

≤
√
b n2k c

√√√√√u+b n
2k
c−1∑

i=u
max
j∈Ai

k

|xj(t)− xj+αk(t)|2

≤
√
b n2k c

√√√√ n∑
j=1
|xj(t)− xj+αk(t)|2 =

√
b n2k c

√
φαk(t)

Since the above inequality holds for any u we can write that:

n∑
i=1

max
j∈Ai

k

|xj(t)− xj+αk(t)| ≤
⌈ n

b n2k c

⌉√
b n2k c

√
φαk(t) (21)

J

With the above lemmas in place, we are ready to prove Theorem 4 for general n.
From Lemma 7 we have that
n∑
i=1

2GapAi
k

(t) ≤
n∑
i=1

GapAi
k−1

(t) +
n∑
i=1

Gap
A
i+αk
k−1

(t)

+
n∑
i=1

2 max
j∈Ai

k

|xj(t)− xj+αk(t)|

= 2
n∑
i=1

GapAi
k−1

(t) + 2
n∑
i=1

max
j∈Ai

k

|xj(t)− xj+αk(t)|.

After dividing the above inequality by 2 and applying Lemma 8: we get that:

n∑
i=1

GapAi
k
(t) ≤

n∑
i=1

GapAi
k−1

(t) +
⌈ n

b n2k c

⌉√
b n2k c

√
φαk(t).

Notice that for any i, Gapi0(t) = 0. Hence, we get that

n∑
i=1

GapAiblognc
(t) ≤

blognc∑
k=1

⌈ n

b n2k c

⌉√
b n2k c

√
φαk(t).
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Let i′ = arg miniGapAiblognc
(t). Notice that consecutive vertices in Ai′blognc are 1 or 2 edges

apart, hence for any 1 ≤ i ≤ n, either i ∈ Ai′blognc or i+ 1 ∈ Ai′blognc. This gives us that

Gap(t) ≤ GapAi′blognc
(t) + max

i
|xi(t)− xi+1(t)|

= GapAi′blognc
(t) +

√
max
i
|xi(t)− xi+1(t)|2 ≤ GapAi′blognc

(t) +
√
φ1(t).

By combining the above two inequalities we get that

nGap(t) ≤ nGapAi′blognc
(t) + n

√
φ1(t) ≤

n∑
i=1

GapAiblognc
(t) + n

√
φ1(t)

≤
blognc∑
k=1

⌈ n

b n2k c

⌉√
b n2k c

√
φαk(t) + n

√
φ1(t).

Next, we apply Jensen’s inequality and Lemma 1 (We are going to use a looser upper
bound: E[φi(t)] ≤ i(n− i)− 1 ≤ in)

nE[Gap(t)] ≤ nE
√

[φ1(t)] +
blognc∑
k=1

⌈ n

b n2k c

⌉√
b n2k cE

√
φαk(t)

≤ n
√

E[φ1(t)] +
blognc∑
k=1

⌈ n

b n2k c

⌉√
b n2k c

√
E[φαk(t)]

≤ n
√
n+

blognc∑
k=1

(⌈ n

b n2k c

⌉√
b n2k c

√
αkn = O(n

√
n logn).

This completes the proof.

6 Experimental Validation

On the practical side, we implemented our load balancing algorithm with unit weight
increments on a cycle. The results confirm our hypothesis that the gap is of order Θ(

√
n).

In Figure 1 we ran our experiment 100 times and calculated average gap over the all runs.
x-axis shows number of balls thrown(which is the same as the number of increments) and
y-axis is current average gap divided by

√
n. The experiment shows that once the number of

thrown balls is large enough, the gap stays between
√
n and 1.4

√
n.

7 Discussion and Future Work

We have shown that in the case of dynamic averaging on a cycle the gap between highest and
lowest loaded bins is upper bounded by O(

√
n logn) in expectation. Additionally we showed

that the expected square of the gap is lower bounded by Ω(n). It the future, it would be
interesting to further tighten our results, matching our experimental analysis. We conjecture
that the “correct” bound on the expected gap is of Θ(

√
n). As already discussed, we also

plan to extend our results to more general graph families, in particular grid graphs.

Comparison of two-choice and averaging load balancing. Finally, it is interesting to ask
if it possible to extend our gap bounds in the case of the classic two-choice load balancing
process. In particular, it is possible to show that the gap in the case of averaging process is



D. Alistarh, G. Nadiradze, and A. Sabour 7:15

Figure 1 The evolution of average gap divided by square root of n, where n is the number of
bins.

always smaller in expectation than the gap in the case of two choice process? Intuitively this
should be the case, since the load balancing operation in the case of averaging can be viewed
as picking up a random edge, incrementing the load of the less loaded endpoint, and then
averaging the values. The extra averaging step should not make the gap larger. Indeed, the
exponential potential used to analyse the gap in [10] can be used to upper bound the gap for
averaging, since the exponential function is convex and averaging values does not increase it
(by Jensen’s inequality).

Unfortunately, it is not clear if averaging helps to actually decrease the exponential
potential. Additionally, this argument shows that averaging does not make the gap worse if
applied to the particular technique of upper bounding the gap, and it is not clear if the gap
itself is actually smaller, if we use averaging on top of the two-choice process. We conjecture
that there exists a majorization argument which is based on how often the process performs
the averaging step. More precisely, we consider the setting where after the increment step
(using two choice), we perform averaging with probability β. The gap should decrease in
expectation as we increase β. Note that the only result which lower bounds the gap for
the two-choice process on the cycle is the straightforward Ω(logn) lower bound which can
be shown for the clique [10]; so what makes the existence of the majorization argument
interesting is that it would allow us to show that the lower bound we derived on the second
moment of the gap while always performing averaging step on the cycle (β = 1) can be
automatically used as the lower bound on the gap for two choice on the cycle (β = 0). We
plan to investigate this connection in future work.
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Abstract
We study information aggregation in networks where agents make binary decisions (labeled incorrect
or correct). Agents initially form independent private beliefs about the better decision, which
is correct with probability 1/2 + δ. The dynamics we consider are asynchronous (each round, a
single agent updates their announced decision) and non-Bayesian (agents simply copy the majority
announcements among their neighbors, tie-breaking in favor of their private signal).

Our main result proves that when the network is a tree formed according to the preferential
attachment model [5], with high probability, the process stabilizes in a correct majority within
O(n logn/ log logn) rounds. We extend our results to other tree structures, including balanced
M -ary trees for any M .
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1 Introduction

Individuals form opinions about the world both through private investigation and through
discussion with one-another. A citizen, trying to decide which candidate’s economic policies
will lead to more jobs, might form an initial belief based on her own employment history.
However, her stated opinion might be swayed by the opinions of her friends. The dynamics
of this process, together with the social network structure of the individuals, can result in a
variety of societal outcomes. Even if individuals are well-informed, i.e., are more likely to
have correct than incorrect initial beliefs, certain dynamics and/or network structures can
cause large portions of the population to form mistaken opinions.
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A substantial body of work exists modeling these dynamics mathematically, which we
overview in Section 1.2. This paper focuses on the model of asynchronous majority dynamics.
Initially, individuals have private beliefs over a binary state of the world, but no publicly
stated opinion. Initial beliefs are independent: Correct with probability 1/2 + δ, and
Incorrect with probability 1/2 − δ. In each time step, a random individual is selected
to announce a public opinion. Each time an individual announces a public opinion, they
simply copy the majority of their neighbors’ announcements, tie-breaking in favor of their
private belief. This is clearly naive: a true Bayesian would reason about the redundancy of
information among the opinions of her friends, for example. Majority (or other non-Bayesian)
dynamics are generally considered a more faithful model of agents with bounded rationality
(e.g. voters), whereas Bayesian dynamics are generally considered a more faithful model
of fully rational actors (e.g. financial traders). We consider asynchronous announcements1
which are a more faithful model of human decisions (e.g. citizens deciding which candidate
is better).

It’s initially tempting to conjecture that these dynamics in a connected network should
result in a Correct consensus; after all, the majority is initially Correct (with high
probability) by assumption. Nonetheless, it’s well-understood that individuals can fail
miserably to learn. Suppose for instance that the individuals form a complete graph. Then
in asynchronous majority dynamics, whichever individual is selected to announce first will
have their opinion copied by the entire network. As this opinion is Incorrect with constant
probability, there’s a good chance that the entire network makes the wrong decision (this is
known as an information cascade, and is not unique to asynchonous majority dynamics [4, 7]).
So the overarching goal in these works is to understand in which graphs the dynamics stabilize
in correctness with high probability.

For most previously studied dynamics (discussed in Section 1.2), “correctness” means a
Correct consensus. This is because the models terminate in a consensus with probability 1,
and the only question is whether this consensus is correct or not. With majority dynamics,
it is certainly possible that the process stabilizes without a consensus. To see this, suppose
individuals form a line graph. In this case, two adjacent individuals with the same initial
belief are likely to form a “road block” (if both announce before their other neighbors),
sticking to their initial beliefs throughout the process. In this case, with high probability
a constant fraction of individuals terminate with a Correct opinion, but also a constant
fraction terminate with an Incorrect opinion. As consensus is no longer guaranteed, we’re
instead interested in understanding network structures for which the dynamics converge,
with high probability, to a majority of nodes having the Correct opinion (i.e., if a majority
vote were to be taken, would it be correct w.h.p.?).

Prior work shows that, to reach a Correct consensus, it’s sufficient for the social network
to be sparse (every individual has only a constant number of neighbors) and expansive (every
group of individuals have many friends outside the group) [12], and the tools developed
indeed make strong use of both assumptions. Many networks of interest, however, like the
hierarchy of employees in a corporation, are neither sparse nor expansive. Therefore, the
focus of this paper is to push beyond these assumptions and develop tools for more general
graphs.

1 Unlike synchronous models where all agents announce simultaneously.
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1.1 Our Results and Techniques
We focus our attention on trees, the simplest graphs outside the reach of prior techniques.
In addition to modeling certain types of social networks (including hierarchical ones, or
communication networks in which redundancy is expensive), and forming the backbone of
many more, trees already present a number of technical challenges whose absence enabled
the prior results. We study preferential attachment trees, which are well-studied graphs with
rich structure2. Our main result is the following:

I Theorem 1. Let G be a tree. Then with probability 1 − o(1)3, asynchronous majority
dynamics in G stabilizes in a Correct majority if:

G is formed according to the preferential attachment model.4
G is a balanced, M -ary tree of any degree.5

Beyond Prior Tools

In prior work [12], the authors have two key ideas. Without yet getting into full details,
one key idea crucially invokes sparsity to claim that most pairs of nodes u, v have distance
d(u, v) = Ω(lnn/ ln lnn), which allows them to conclude that after O(n lnn/ ln lnn) steps,
most nodes are announcing a Correct opinion.

Still, just the fact that the dynamics hit a Correct majority along the way does not
imply that the Correct majority will hold thru termination. To wrap up, they crucially
invoke expansiveness (building off an argument of [24]) to claim that once there is a Correct
majority, it spreads to a Correct consensus with high probability.

Both properties are necessary for prior work, and both properties fail in trees. For
instance, the star graph is a tree, but d(u, v) ≤ 2 for all u, v (precluding their “majority
at O(n lnn/ ln lnn)” argument). Additionally, trees are not expansive. In particular, the
line graph discussed earlier is a tree which hits a Correct majority at some point (as this
tree happens to be sparse), but does not converge to consensus, so there is no hope for an
argument like this. However, we believe that the process stabilizes in a correct majority in
all trees.

I Conjecture. Let G be any tree. Then the asynchronous majority dynamics stabilizes in a
Correct majority with probability 1− o(1).

New Tools

Our main technical innovation is an approach to reason about majority without going through
consensus. Specifically, we show in Sections 5 and 6 for preferential attachment trees, or
balanced M -ary trees, that with probability 1 − o(1), a 1 − o(1) fraction of nodes have
finalized after O(n lnn/ ln lnn) steps. That is, after O(n lnn/ ln lnn) steps, most (but not
all) of the network has stabilized. The main barrier to extending our results to general
trees is Section 5, as we require additional structure on the graphs to prove that the process
stabilizes quickly. We postpone further details to Section 5, but just wish to highlight this
approach as a fairly significant deviation from prior work.

2 The more general preferential attachment graphs are a popular model of real networks.
3 As n→∞ the probability converges to 1, where n is the number of nodes in G.
4 That is, G is created by adding nodes one at a time. When a node is added, it attaches a single edge to

a random previous node, selected proportional to its degree.
5 That is, G can be rooted at some node v. All non-leaf nodes have M children, and all leaves have the
same distance to v.
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From here, our task is now reduced to showing that a Correct majority exists w.h.p.
after O(n lnn/ ln lnn) steps. Our main insight here is that most nodes with d(u, v) =
O(lnn/ ln lnn) must have some high-degree nodes along the path from u to v. We prove that
such nodes act like a “road block,” causing announcements on either side to be independent
with high probability (and all nodes with d(u, v) = Ω(lnn/ ln lnn) can be handled with
similar arguments to prior work).

1.2 Related Work
Information aggregation in social networks is an enormous field, and we will not come close
to overviewing it in its entirety. Below, we’ll briefly summarize the most related literature,
restricting attention to works that consider two states of the world and independent initial
beliefs are independently Correct with probability 1/2 + δ.

Bayesian Dynamics

In Bayesian models, agents are fully rational and sequentially perform Bayesian updates
to their public opinion based on the public opinions of their neighbors. Seminal works of
Banerjee [4] and Bikchandani, Hirshleifer, and Welch [7] first identified the potential of
information cascades in this model. Subsequent works consider numerous variations, aiming
to understand what assumptions on the underlying network or information structure results
in Correct consensus [28, 3, 2]. Many other works studied repeated interactions of Bayesian
agents in Social Networks [13, 27, 20, 26, 25, 23]. While the high-level goals of these works
align with ours, technically they are mostly unrelated as we consider non-Bayesian dynamics.

Voter and DeGroot Dynamics

Prior work also considered other non-Bayesian dynamics. In voter dynamics, individuals
update by copying a random neighbor [10, 18]. Similar dynamics (such as 3-majority, or
k-majority) are analyzed from a distributed computing perspective with an emphasis on the
rate of convergence to consensus [6, 15, 14]. In the DeGroot model, individuals announce an
opinion in [0, 1] (as opposed to {0, 1}), and update by averaging their neighbors [11, 16]. The
biggest difference between these works and ours is that consensus is reached with probability
1 in these models on any connected graph, which doesn’t hold for majority dynamics.

Majority Dynamics

The works most related to ours consider majority dynamics. Even synchronous majority
dynamics may not result in a consensus (consider again the line graph). These works, like ours,
therefore seek to understand what graph structures result in a Correct majority. Mossel,
Neeman, and Tamuz study synchronous majority dynamics and prove that a Correct
majority arises as long as the underlying graph is sufficiently symmetric, or sufficiently
expansive (in the latter case, they prove that the network further reaches consensus) [24].
Feldman et al. study asynchronous majority dynamics and prove that a Correct consensus
arises when the underlying graph is sparse and expansive [12]. Work of [29] further studies
“retention of information,” which asks whether any recovery procedure (not necessarily
a majority vote) at stabilization can recover the ground truth with high probability. In
connection to these, our work simply pushes the boundary beyond what classes of graphs are
understood in prior work.
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The key difference between the synchronous and asynchronous models is captured by
the complete graph. In asynchronous dynamics, a Correct majority occurs only with
probability 1/2 + δ, whereas in synchronous dynamics a Correct consensus occurs with
probability 1− exp(−Ω(n)). This is because in step one, every node simply announces their
private belief, and in step two everyone updates to the majority, which is Correct with
probability 1− exp(−Ω(n)). So while the models bear some similarity, and some tools are
indeed transferable (e.g. the expansiveness lemma of [24] used in [12]), much of the anlayses
will necessarily diverge.

Preferential Attachment and Balanced M -ary Trees

There is also substantial prior work studying aggregation dynamics in trees. Here, the
most related work is [19, 22], which studies synchronous majority dynamics in balanced
M -ary trees. Less related are works which study “bottom-up” dynamics in balanced M -ary
trees [21, 31, 30], k-majority dynamics in preferential attachment trees [1], or model cascades
themselves as a preferential attachment tree [17]. While these works provide ample motivation
for restricting attention to preferential attachment trees, or balanced M -ary trees, they bear
no technical similarity to ours.

2 Model and Preliminaries

We consider an undirected tree G = (V,E) with |V (G)| = n and |E(G)| = m. We denote by
deg(v) the degree of a node v ∈ V (G), N(v) to be its neighbors {u, (u, v) ∈ E}, and d(u, v)
to be the length of the unique path between u and v, and let P (u, v) denote the ordered
list of vertices on this path (i.e. starting with u and ending with v). We’ll also denote by
D(G) = maxu,v{d(u, v)} the diameter of G.

Individuals initially have one of two private beliefs, which we’ll refer to as Correct (or
1) and Incorrect (or 0). That is, each v ∈ V (G) receives an independent private signal
X(v) ∈ {0, 1}, and Pr[X(v) = 1] = 1/2 + δ, for some constant 0 < δ < 1/2.

Individuals also have a publicly announced opinion (which we will simply refer to as an
announcement). We define Ct(v) ∈ {⊥, 0, 1} to be the public announcement of v ∈ V (G)
at time t. Initially, no announcements have been made, i.e. C0(v) = ⊥ for all v. In
each subsequent step, a single node vt is chosen uniformly at random from V (G) and
updates her announcement (announcements of all other nodes stay the same)6. vt updates
her announcement using majority dynamics. That is, if N t

1(v) denotes the number of v’s
neighbors with a Correct announcement at time t, and N t

0(v) denotes the number of v’s
neighbors with an Incorrect announcement, then:

Ct(v) =


1 if N t−1

1 (v) > N t−1
0 (v), and v = vt,

0 if N t−1
1 (v) < N t−1

0 (v), and v = vt,

X(v) if N t−1
1 (v) = N t−1

0 (v), and v = vt,

Ct−1(v) if v 6= vt.

Note that we will treat δ as an absolute constant. Therefore, the only variable taken
inside Big-Oh notation is n, the number of nodes (and, for instance, when we write o(1) we
mean any function of n that approaches 0 as n approaches ∞).

6 This makes the process asynchronous.
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8:6 Asynchronous Majority Dynamics in Preferential Attachment Trees

As shown in [12], it is easy to see that in any network this process stabilizes with high
probability in O(n2) steps. That is, the network reaches a state where no node will want to
change its announcement and thus the process terminates.

2.1 Concentration Bounds and Tools from Prior Work

Our work indeed makes use of some tools from prior work to get started, which we state
below. The concept of a critical time, defined below, is implicit in [12].

I Definition 2. The critical time7 from u to u, T (u, u), is the first time that node u

announces. The critical time from u to v, T (u, v), is recursively defined as the first time that
v announces after the critical time from u to x, where x is the neighbor of v in P (u, v). We
further denote the critical chain from u to v as the ordered list of critical times from u to x
for all x on P (u, v).

The following lemma is a formal statement of ideas from prior work (a proof appears
in Appendix A of the full version). To parse it, it will be helpful to think of the process
as first drawing a countably infinite sequence S of nodes to announce, which then allows
each Ct(v) to be written as a deterministic function of the random variables {X(u), u ∈ V }.
Lemma 3 below states that in fact, for early enough t, initial beliefs for only a proper subset
of V suffice.

I Lemma 3 ([12]). For all t, and all v, Ct(v) can be expressed as a function of the subset
of signals {X(u), T (u, v) ≤ t}.

The final theorem we take from prior work is due to Mossel et al., and is used to claim that
at minimum the expected number of Correct nodes at termination is at least (1/2 + δ)n.

I Theorem 4 ([24]). Let f be an odd, monotone Boolean function. Let X1, . . . , Xn be input
bits, each sampled i.i.d. from a distribution that is 1 with probability p > 1/2 and 0 otherwise.
Then E[f(X1, . . . , Xn)] > p.

Note that, as long as v has announced at least once by t, Ct(v) is an odd, monotone,
Boolean function in variables {X(u), u ∈ V },8 and therefore Pr[Ct(v) = 1] ≥ 1/2 + δ for all
v and t ≥ T (v, v).

Finally, we’ll make use of the following concentration bound on T (u, v) repeatedly. Its
proof is a simple application of a Chernoff bound and appears in Appendix A of the full
version.

I Lemma 5. For all 0 < β < 1:
Pr[T (u, v) > 8 ·max{ln(1/β), d(u, v) + 1} · n] ≤ β2.
Pr[T (u, v) < (d(u, v) + 1) · β · n] ≤ e−βd(u,v)(1−β)2/3.
Pr[T (u, v) < (d(u, v) + 1) · β · n] ≤ (eβ)d(u,v) = e(1+ln β)·d(u,v).

7 This definition can be naturally extended to any general graph.
8 That is, flipping all X(v) simultaneously to 1−X(v) would cause Ct(v) to flip (odd), and changing any
subset of initial beliefs from 0 to 1 cannot change Ct(v) from 1 to 0 (monotone).
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3 Key Concepts

Before getting into our proofs, we elaborate some key concepts that will be used throughout.
In Proposition 7 below, we analyze the connection between critical chains and switches in
announcements. Intuitively, Proposition 7 is claiming that every fresh announcement can
cause other nodes to switch a previous announcement along critical chains, but that these
are the only switches that can occur.

I Definition 6. Let v change her announcement at t, and her previous announcement be
made at t′ > 0. We say that node u is a cause of v changing her announcement at t if
Ct(u) = Ct(v), and Ct′(u) 6= Ct(v). Observe that every such change in announcement has a
cause.

I Proposition 7. If Ct(v) 6= Ct−1(v), then there exists a node u such that:
t = T (u, v) (i.e. the influence of u just reaches v at time t).
CT (u,u)(u) = Ct(v) (i.e. v is updating to match u’s initial announcement).
Denote u = x0, x1, . . . , xd(u,v) = v the path P (u, v). Then every xi, i > 0, has
CT (u,xi)−1(xi) = Ct−1(v) and CT (u,xi)(xi) = Ct(v), and xi−1 caused this change (i.e.
every node along the path from u to v changed to match u’s initial announcement).

Proof. The proof proceeds by induction on t. Consider t = 1 as a base case. If C1(v) 6=
C0(v) = ⊥, then it must be because v announced at time 1, meaning that 1 = T (v, v) as
desired.

Now assume that for all v and all t′ < t the claim holds, and consider time t. If v does
not announce at time t then the claim vacuously holds. If v announces at time t but does
not change their announcement, then again the claim vacuously holds. If v announces at
time t for the first time, then v itself is the desired u and the claim holds. The remaining
case is if v changes their previous announcement that was made at time t′ < t (and v did
not announce between t′ and t).

Let’s consider the state of affairs at time t′, when v announced some opinion A. This
means that, at time t′, a majority (tie-breaking for X(v)) of v’s neighbors were announcing
A. Yet, at time t, a majority (tie-breaking for X(v)) of v’s neighbors were announcing
B = 1−A. Therefore, some node adjacent to v must have switched its announcement to B
at some t′′ ∈ (t′, t), and stays B till time t (and caused the change). Call this node x. We
now wish to invoke the inductive hypothesis for x at t′′.

The inductive hypothesis claims there there is some u (maybe u = x) such that u made
B as its first announcement, and then every node y along the critical chain from u to x
switched from A to B at T (u, y) (caused by its predecessor), and that t′′ = T (u, x). Let’s
first consider the case that v is not on the path from u to x (and therefore x is on the path
from u to v, since they are adjacent). Then as T (u, x) = t′′ ∈ (t′, t), and v does not announce
in (t′, t), we see that T (u, v) = t (immediately by definition of critical times). Moreover, as
P (u, v) is simply P (u, x) concatenated with v, the inductive hypothesis already guarantees
that u announced B at T (u, u), and that every node y on P (u, v) switched from A to B at
T (u, y). So the last step is to show that in fact v must not be on the path from u to x, and
then the inductive step will be complete.

Finally, we show that we cannot have v on the path from u to x, completing the inductive
step. Assume for contradiction that v were on the path from u to x. Then as t′′ = T (u, x), we
would necessarily have t′ ≥ T (u, v) (immediately from definition of critical times). However,
by hypothesis, Ct′′(v) = Ct

′(v) = A (the first equality is simply because v does not announce
in (t′, t′′]), contradicting the inductive hypothesis that v caused x to change (because of u),
which would imply instead that CT (u,v)(v) = Ct

′′(v) = B. So v cannot be on the path from
u to x. J
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8:8 Asynchronous Majority Dynamics in Preferential Attachment Trees

Below, we make use of Proposition 7 to prove that, in any tree9, the process terminates
quickly (proof in Appendix B of the full version). Note that [12] already proves that the
process on trees terminates with probability 1− o(1) after O(n2) steps, so Corollary 8 is a
strict improvement when the diameter D(G) = o(n).

I Corollary 8. Let Tstable denote the last time that a node changes its announcement. Then
with probability 1− o(1), Tstable ≤ 8 ·max{2 ln(n), D(G) + 1} · n.

Finally, we prove one last proposition which will be used in future sections regarding
the probability that a single node announces Correct throughout the process (the proof
appears in Appendix B of the full version). Beginning with v’s first announcement, because
the graph is a tree, prior to v’s first announcement all of v’s neighbors’ announcements are
independent. Therefore, it initially seems like we should expect v’s initial announcement
to be Correct except with probability exponentially small in deg(v) – indeed, this would
hold if the dynamics were synchronous. However, since the dynamics are asynchronous,
there’s a good chance that v announces before any of its neighbors and simply announces
X(v). That is, the probability that v’s initial announcement is Incorrect is at least 1/2−δ

deg(v) ,
so we cannot hope for such strong guarantees. This observation highlights one (of several)
crucial differences between synchronous and asynchronous dynamics. Still, the proposition
below shows roughly that the only bad event is v announcing before many of its neighbors.
Below for a set S, we’ll use CtS(v) to denote the following modified dynamics: First, set
CtS(v) = Incorrect for all v ∈ S, and all t. Then, run the asynchronous majority dynamics
as normal. In other words, the modified dynamics hard-code an Incorrect announcement
for all nodes in S and otherwise run asynchronous majority dynamics as usual (this extension
will be necessary for a later argument).

I Definition 9. We say that a node v is safe thru T if Ct(v) ∈ {⊥, 1} for all t ≤ T . We
further say that a node v is safe thru T , even against S if CtS(v) ∈ {⊥, 1} for all t ≤ T .

I Proposition 10. For all a, there exist constants10 b, c such that for any S with |S| = a,
v /∈ S and T ≤ n · eb deg(v), v is safe thru T , even against S, with probability at least
1− c/deg(v).

4 Forming an Initial Majority

In this section, we prove that in any tree, a Correct majority forms after a near-linear
number of steps (but may later fade). The main idea is to show that the announcements of
most pairs of nodes are independent with probability 1−o(1), and use Chebyshev’s inequality
to show that the number of Correct announcements therefore concentrates around its
expectation. The independence argument is the crux of the proof. To show it, we consider
three cases depending on the length and degree sequence of the path between a pair of
nodes. If the path is long, then, similar to prior work, there is simply not enough time for
the pair to influence each other. If the path is short, but (some of) the intermediate nodes
have high degrees, then these effectively block influence because the announcements of these
high-degree nodes is effectively independent of what’s happening on the path. Finally, if
the path is short and the intermediate nodes have low degrees, then the pair certainly may
influence each other. However, a counting argument shows there can only be a vanishingly
small fraction of such pairs. The main result of this section is the following:

9 Proposition 7 and Corollary 8 hold for any general graph. Since we are only interested in trees, we
restrict our proofs to just trees for brevity.

10 does not depend on n, but may depend on δ.
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I Theorem 11 (Majority in trees). For sufficiently large n, any tree on n nodes and any
T ≤ n lnn

32 ln lnn , after T steps, with probability at least 1−O(e− lnn/(24 ln lnn)), the announcements
of at least ( 1

2 + δ
2 − e

−T/n) · n nodes are Correct .
Further, for all constants γ > 0, there exists a constant α > 0 such that for sufficiently

large n, when T ≤ n ln1−γ n
ln lnn , after T steps, with probability at least 1−n−α, the announcements

of at least ( 1
2 + δ

2 − e
−T/n) · n nodes are Correct .

First, we analyze the expected number of Correct nodes using Theorem 4 (proof in
Appendix C of the full version). Note that, the probability that a node v has announced by
T is at least (1− e−T/n)11.

I Lemma 12. At any time T , the expected number of nodes v with CT (v) = Correct is at
least (1/2 + δ − e−T/n)n.

From here, we now need to show that the number of Correct announcements concen-
trates around its expectation. To this end, we’ll show that most pairs of nodes can be written
as functions of disjoint initial beliefs, and are therefore independent. Ideas from [12] formally
show that this suffices:

I Definition 13. We say that two nodes u, v are ε-disjoint at t if there exist random variables
Xu, Xv, written as functions of disjoint sets of initial beliefs (and therefore independent),
such that Pr[Ct(u) = Xu] ≥ 1− ε and Pr[Ct(v) = Xv] ≥ 1− ε.

I Lemma 14 (Inspired by [12]). Let εtuv be such that u, v are εtuv-disjoint at t. Then if∑
u,v ε

t
uv = D, the number of Correct nodes at time t is within δn/2 of its expectation

with probability 1− 4n+16D
δ2n2 .

So our remaining task is to upper bound
∑
u,v ε

t
uv, and this is the point where we diverge

from prior work. For a given pair u, v, there are three possible cases. Below, case one is most
similar to prior work, and cases two/three are fairly distinct.

Case One: Long Paths

One possibility is that d(u, v) ≥ f(n), for some f(n) to be decided later. The following
proposition implies that at any time T , the announcements of pairs of nodes at a large
enough distance are almost independent. The proof is provided in Appendix C of the full
version.

I Proposition 15. Let d(u, v) ≥ max{kT, f(n)} for k ≥ 4. Then εTuv ≤ 2e−f(n)/24, and
εTuv ≤ 2e(1−ln k)·f(n).

Case Two: Short Paths A

Another possibility is that d(u, v) < f(n). Here, there will be two subcases. First, maybe
it’s the case that d(u, v) is small and the product of degrees on the path from u to v is small.
In this case, it very well could be that εtuv is large, which is bad. However, we prove that
there cannot be many such pairs (and so in total they contribute o(n2) to the sum). The
following lemma shows in fact that even if we remove the restriction that d(u, v) = O(T ),
there simply cannot be many pairs of nodes such that the product of degrees on P (u, v) is
small (proof in Appendix C of the full version).

11The probability that v wasn’t chosen in all T rounds is
(

1−
(
1− 1

n

)T
)
.
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I Lemma 16. Let K be the set of pairs of nodes (u, v) such that
∏
w∈P (u,v) deg(w) ≤ X.

Then |K| ≤ Xn/2.

Case Three: Short Paths B

The final possibility is that d(u, v) < f(n), and also that
∏
w∈P (u,v) deg(w) is large. In this

case, we will prove that with probability 1− o(1) there is some block in P (u, v) causing u’s
and v’s announcemnts to be independent (proof in Appendix C of the full version).

I Definition 17. We say that a node x ∈ P (u, v) cuts u from v thru T if some node y in
P (u, x) is safe thru T even against Sy, where Sy are y’s (at most) two neighbors in P (u, v).

I Lemma 18. Let T be any time and px be the probability that x cuts u from v thru T and
also cuts v from u thru T . Then u and v are px-disjoint at T .

Next, we wish to show that with good probability there is indeed a node on P (u, v) that
cuts u from v and also v from u (proofs in Appendix C of the full version).

I Lemma 19. There exist absolute constants b, d such that for any pairs of nodes u, v ∈ V
with

∏
w∈P (u,v) deg(w) = X, d(u, v) ≤ ln(X)

d , and T ≤ nebX1/(4d(u,v)) , there exists an x such
that with probability 1−X−1/8, x cuts u from v thru T and also v from u thru T .

I Corollary 20. There exist absolute constants b, d such that for pairs of nodes any u, v ∈
V with

∏
w∈P (u,v) deg(w) = X, d(u, v) ≤ ln(X)

d , and T ≤ nebX
1/(4d(u,v))), u and v are

X−1/8-disjoint at T .

Now, we’ll put together case one, Lemma 18 and Corollary 20 together to prove Theo-
rem 11, which is mostly a matter of setting parameters straight (and appears in Appendix C
of the full version).

To conclude, at this point we have proven that a majority takes hold after n lnn
32 ln lnn steps

for any tree. The remaining work is to prove that it does not disappear.

5 Stabilizing Quickly

In this section, we identify properties of a tree which cause it to stabilize quickly. Our
main theorem will then follow by proving that both balanced M -ary trees and preferential
attachment trees have this property. The main idea is to consider nodes that are “close” to
leaves in the following formal sense:

I Definition 21. We say that a node v is an (X,Y )-leaf in G if there exists a rooting of G
such that v has ≤ X descendants, and the longest path from v to one of its descendants is at
most Y . Note that leaves are (0, 0)-leaves. When we refer to a node’s parent, children, or
descendants, it will be with respect to this rooting.

I Definition 22. We say that a node v is:
finalized at T , if Ct(v) = CT (v) for all t ≥ T .
nearly-finalized at T with respect to u if there exists a t′ ≥ T such that v is finalized at t′
and for all t ∈ (T, t′) when v announces, it either updates Ct(v) = Ct(u), if Ct(u) 6= ⊥,
or Ct(v) = Ct−1(v), if Ct(u) = ⊥.
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Intuitively, a node is finalized if it is done changing its announcement. A node v is nearly-
finalized with respect to u if v is not quite finalized, but changes in u are the only reason
why v would change its announcement (and moreover, v will copy u every announcement
until v finalizes).

The main result of this section is as follows:

I Theorem 23. Let v be an (X,Y )-leaf. Then with probability 1−Xe−T/nY , v is nearly-
finalized at T with respect to its parent.

The main insight for the proof of Theorem 23 will be the following lemmas. Below,
Lemma 24 asserts that once all of v’s children are nearly-finalized with respect to v, any
changes in v’s opinion are to copy its parent, and Lemma 25 builds off this to claim that we
can relate the time until v nearly-finalizes to its critical times. Importantly, Lemma 25 does
not require all critical paths to hit v, but only those from its descendents.

I Lemma 24. Let all of v’s children be nearly-finalized with respect to v at T , and let u
be v’s parent. Let also t > t′ ≥ T be two timesteps during which v announced. Then if
Ct(v) 6= Ct−1(v), we must have Ct(v) = Ct(u).

I Lemma 25. Let Tv := max{T (x, v), x is a descendant of v}. Then v is nearly-finalized at
Tv with respect to its parent.

These above lemmas suffice to prove Theorem 23. The proofs of these lemmas and
Theorem 23 appear in Appendix D of the full version.

We will also need the following implications of Theorem 23. Below, Lemma 26 will be
helpful in proving Corollary 27. Corollary 27 lets us claim that while nearly-finalized nodes
are not themselves finalized, their existence implies the existence of other finalized nodes.
This will be helpful in wrapping up in the following section, since the process only terminates
once nodes are finalized. The proofs of Lemma 26 and Corollary 27 appear in Appendix D
of the full version.

I Lemma 26. For any t > Tv, if a child of v changes their announcement at t, v becomes
finalized at t.

I Corollary 27. For any T , with probability 1− e−T/n, v has b(deg(v)− 1)/2c children who
are finalized at Tv + T .

Moreover, if v is an (X,Y )-leaf and finalized at t ≥ Tv, then with probability 1−Xe−T/nY ,
all of v’s descendants are finalized at t+ T .

6 Wrapping Up: Preferential Attachment and Balanced M-ary Trees

In this section, we show how to make use of Theorem 23 to conclude that a 1− o(1) fraction
of nodes are finalized by n lnn

32 ln lnn . Proofs for the two cases follow different paths, but both
get most of their mileage from the developments in Section 5.

6.1 Preferential Attachment Trees Stabilize Quickly
Let’s first be clear what we mean by a preferential attachment tree.12

12Note that this is the standard definition of preferential attachment used for heuristic arguments, e.g. [5].
Most prior rigorous work uses a slightly modified definition that produces a forest instead of a tree in
order to rigorously analyze (say) the degree distribution [9, 8]. As we are only interested in (fairly loose)
bounds on the degrees, our results are rigorous in the standard model.
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I Definition 28 (Preferential Attachment Tree). n nodes arrive sequentially, attaching a
single edge to a pre-existing node at random proportional to its degree. Specifically:

Let vi denote the ith node to arrive.
Let degt(vi) denote the degree of node vi after a total of t nodes have arrived.
There is a special node v0, which only v1 connects to upon arrival, and no future nodes.
When vi+1 arrives, vi+1 attaches a single edge to a previous node, choosing node vj,
j ∈ [1, i], with probability degi(vj)

2i−1 .

Our main argument for preferential attachment trees is that most nodes are in a “good”
subtree, defined below. All subsequent proofs are in Appendix E of the full version. At a high
level the plan is as follows: first, we prove that because most nodes are (X,Y )-leaves for small
X,Y , these nodes quickly become nearly-finalized. Next, we prove that most such nodes are
part of a small subtree whose parent is likely to be safe thru the entire process. Therefore,
the parent of this subtree is finalized early, and once the subtree becomes nearly-finalized, it
finalizes quickly as well.

I Definition 29. Say that a subtree rooted at v is good if:
v is a (X,Y )-leaf, for X = lnO(1) n and Y = O(ln lnn).
v’s parent has degree at least lnΩ(1) n.

I Proposition 30. Let the subtree rooted at v be good, and let the diameter of the entire
graph be O(lnn). Then with probability 1− o(1), the entire subtree rooted at v is finalized by
n lnn

32 ln lnn .

I Proposition 31. For a tree built according to the preferential attachment model, the
following simultaneously hold with probability 1− o(1).

n− o(n) nodes are in good subtrees.
The diameter of the entire graph is O(lnn).

I Theorem 32. A tree built according to the preferential attachment model stabilizes in a
Correct majority with probability 1− o(1).

The proofs for Proposition 30, Proposition 31, and Theorem 32 appear in Appendix E of
the full version.

6.2 Balanced M-ary Trees Stablize Quickly
Let’s first be clear what we mean by a balanced M -ary tree.

I Definition 33. We say a tree is a balanced M-ary tree if there is a root v such that all
non-leaf nodes have exactly M children, and all root-leaf paths have the same length.

Our plan of attack is as follows (all proofs are in Appendix E of the full version). First, the
case for largeM (say,M > lnn) is actually fairly straight-forward as a result of Proposition 10.
This is because every pair of nodes has a high-degree block on their path, meaning that
the “Case Three” argument used in Section 4 actually applies all the way until the process
terminates. The M ≤ lnn case is more interesting, and requires the tools developed in
Section 5.

Here, the plan is as follows. Corollary 27 roughly lets us claim that all nearly-finalized
nodes must have a decent number of finalized children, and moreover that all these finalized
children have finalized descendents. Iterating this counting inductively through children,
we see that actually most descendents of nearly-finalized nodes of sufficient height must
themselves be finalized.
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Formally, the approach is to first get a bound on the height for which we can claim that
nodes are indeed nearly-finalized with high probability (Corollary 34, immediately from
Theorem 23). ln lnn turns out to be a good choice.

I Corollary 34. Let v be distance h from a leaf. Then v is an (2Mh, h)-leaf, and therefore v
is nearly-finalized with respect to its parent at n lnn

64 ln lnn with probability 1− 2Mh · e− lnn
64h ln lnn =

1− e− lnn
64h ln lnn+h ln(2M).

In particular, if h = o(
√

lnn
ln lnn·lnM ), then v is nearly-finalized with respect to its parent

at n lnn
64 ln lnn with probability 1− o(1).

I Proposition 35. Let v have height h = ln lnn in a balanced M-ary tree for M ≤ lnn.
Then with probability 1 − o(1), at most 2Mh · (2/3)h = o(Mh) descendents of v are not
finalized by n lnn

32 ln lnn .

I Theorem 36. Any M -ary tree stablizes in a Correct majority with probability 1− o(1).

The proofs of Proposition 35 and Theorem 36 appear in Appendix E of the full version.
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The randomized query complexity R(f) of a boolean function f : {0, 1}n → {0, 1} is famously char-
acterized (via Yao’s minimax) by the least number of queries needed to distinguish a distribution D0

over 0-inputs from a distribution D1 over 1-inputs, maximized over all pairs (D0,D1). We ask: Does
this task become easier if we allow query access to infinitely many samples from either D0 or D1?
We show the answer is no: There exists a hard pair (D0,D1) such that distinguishing D∞

0 from D∞
1

requires Θ(R(f)) many queries. As an application, we show that for any composed function f ◦ g we
have R(f ◦ g) ≥ Ω(fbs(f)R(g)) where fbs denotes fractional block sensitivity.
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9:2 The Power of Many Samples in Query Complexity

1 Introduction

Randomized query complexity (see [8] for a classic survey) is often studied using Yao’s minimax
principle [20]. The principle states that for every boolean function f : {0, 1}n → {0, 1}

Yao’s minimax: Rε(f) = maxD Dε(f,D).

Here Rε(f) is the randomized ε-error query complexity of f . More precisely, Rε(f) equals
the least number of queries a randomized algorithm (decision tree) must make to the
input bits xi ∈ {0, 1} of an unknown input x ∈ {0, 1}n in order to output f(x) with
probability at least 1− ε (where the probability is over the coin tosses of the algorithm).
We often set ε = 1/3 and omit ε from notation, as it is well known that this choice only
affects constant factors in query complexity.

D is a distribution over the inputs {0, 1}n. We may assume wlog that D is balanced:
D = 1

2D0 + 1
2D1 where Db is a distribution over f−1(b).

Dε(f,D) is the distributional ε-error query complexity of f relative to D. More precisely,
Dε(f,D) equals the least number of queries a deterministic algorithm must make to an
input x ∼ D in order to output f(x) with probability at least 1− ε (where the probability
is over x ∼ D).

1.1 Correlated samples problem
One way to think about the distributional complexity of f relative to D = 1

2D0 + 1
2D1 is as

the following task: A deterministic algorithm is given query access to a sample from either
D0 or D1 and it needs to decide which is the case. In this work, we ask: Does this task
become easier if we allow query access to an unlimited number of independent samples from
either D0 or D1? In short,

Is it easier to distinguish D∞0 from D∞1 than it is to distinguish D0 from D1?

More formally, we define the correlated samples problem for f relative to D = 1
2D0 + 1

2D1 by

Corrε(f,D) := min
k≥1

Dε(fk, 1
2D

k
0 + 1

2D
k
1 ).

Here fk : ({0, 1}n)k → {0, 1}k is the function that evaluates k copies of f on disjoint inputs.
We also use the notation Dk := D × · · · × D (k times) for the k-fold product distribution. In
particular, under 1

2D
k
0 + 1

2D
k
1 , the function fk outputs either 0k or 1k; the correlated samples

problem is to decide which is the case. We note that the expression to be minimized on the
right side is a non-increasing function of k (access to more samples is only going to help).
We may also assume wlog that k ≤ n (when an algorithm queries a sample for the first time,
we may assume it is the first unqueried sample so far).

Shaltiel examples. It is not hard to give examples of input distributions where access to
multiple correlated samples does help. Such examples were already discussed by Shaltiel [18]
in the context of direct product theorems. For instance, consider the n-bit Xorn function.
It is well known that Rε(Xorn) = n for all ε > 0. Define a balanced input distribution (here
U is a uniform random bit in {0, 1})

D :=
{

0Un−1 with probability 99%,
1U 0n−2 with probability 1%.
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This distribution is hard 99% of the time: if the first bit is 0, an algorithm has to compute
Xorn−1 relative to Un−1, which requires n−1 queries. For the remaining 1%, the distribution
is easy: if the first bit is 1, the output can be deduced from the second bit. Here multiple
correlated samples help a lot (for ε = 1/3):

D(Xorn,D) = Ω(n),
Corr(Xorn,D) = O(1).

Indeed, given a single sample from D, an algorithm is likely to have to solve the hard case of
the distribution. By contrast, given multiple correlated samples, we can query the first bit
for a large constant number of samples. This will give us a high chance to encounter at least
one easy sample.

Error reduction. An important fact (which fails in the single-sample setting!) is that we
can amplify the success probability of any algorithm for correlated samples. This is achieved
by a variant of the usual trick: repeatedly run the algorithm on fresh samples to gain more
confidence about the output.1

I Fact 1.1. Corrε(f,D) ≤ O(log(1/ε)/δ2) · Corr1/2−δ(f,D) for every (f,D).

The aforementioned Shaltiel example (Xorn,D) can alternatively be computed as follows:
By querying the first two bits of a single sample x ∼ D one can predict Xorn(x) to within
error 49.5%. Now apply Fact 1.1 to reduce the error below 1/3 at the cost of a constant-factor
blowup in query cost.

1.2 Main result
We study whether Shaltiel examples can be avoided if we restrict our attention to the hardest
possible input distribution. Namely, we define a distribution-free complexity measure by

Corrε(f) := max
D

Corrε(f,D).

Our main result is that multiple correlated samples do not help for the hardest distribution.

I Theorem 1.2. Corr(f) = Θ(R(f)) for any (partial) boolean function f .

The main challenge in proving Theorem 1.2 is precisely the existence of Shaltiel examples:
How to construct hard distributions that do not contain any hidden easy parts? We resolve it
by building decision trees that can exploit the easy parts not only in its own input distribution,
but in various other distributions as well.

1.3 Application 1: Selection problem
Next we describe a consequence of our main result to a natural query task that we dub the
selection problem. A similar problem, called choose, was studied by [4] in communication
complexity.

1 In more detail: An algorithm T with error 1/2 − δ has |p0 − p1| ≥ 2δ where pi := Pr[T (xi) = 1] for
xi ∼ Dk

i . Reducing error below ε > 0 boils down to distinguishing two random coins with heads-
probabilities p0 and p1. Given multiple samples from one of the coins, Chernoff bounds state that
O(log(1/ε)/δ2) samples are enough to tell which coin the samples came from.

ICALP 2020
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Fix an n-bit function f together with an input distribution D. In the k-selection problem for
(f,D) the input is a random kn-bit string x = (x1, . . . , xk) ∼ Dk, and the goal is to output
(i, f(xi)) for some i ∈ [k]. That is, the algorithm gets access to k independent samples from
D and it selects one of them to solve. We define

k-Selε(f,D) := ε-error query complexity of k-selection for (f,D),
Selε(f,D) := mink≥1 k-Selε(f,D),

Selε(f) := maxD Selε(f,D).

The selection problem is interesting because it, too, is subject to Shaltiel examples: for
(Xorn,D) as described in Subsection 1.1, we have Sel(Xorn,D) = O(1) using the same idea
of searching for an easy sample.

The following relates selection to correlated samples; see Section 5 for the proof.

I Theorem 1.3. The correlated samples problem is easier than selection:

1. Corr(f,D) ≤ O(Sel(f,D)) for every (f,D).
2. There exists an n-bit (f,D) such that Sel(f,D) = Ω(n) but Corr(f,D) = O(1).
3. Selection does not admit efficient error reduction (as in Fact 1.1).

Combining the first item of Theorem 1.3 with our main result (Theorem 1.2) we conclude
that multiple samples do not help in the selection problem for the hardest distribution.

I Corollary 1.4. Sel(f) = Θ(R(f)) for any (partial) boolean function f .

1.4 Application 2: Randomized composition

We give another application of our main result to the randomized composition conjecture
studied in [7, 3, 9, 6]. In fact, this application is what originally motivated our research
project!

For an n-bit function f and an m-bit function g we define their composition

f ◦ g : ({0, 1}m)n → {0, 1} such that (f ◦ g)(x1, . . . , xn) := f(g(x1), . . . , g(xn)).

A composition theorem aims to understand the query complexity of f ◦ g in terms of f and g.
Such theorems are known for deterministic query complexity, D(f ◦g) = D(f)D(g) [17, 19, 14],
and quantum query complexity, Q(f ◦ g) = Θ(Q(f)Q(g)) [12, 16]. The conjecture in the
randomized case is:

I Conjecture 1.5. R(f ◦ g) ≥ Ω(R(f)R(g)) for all boolean functions f and g.

Gavinsky et al. [9] have shown that the conjecture fails if f is allowed to be a relation. They
also show R(f ◦ g) ≥ Ω(R(f)R(g)1/2) for any relation f and partial function g. In a very
recent work (concurrent to ours) Ben-David and Blais [5, 6] have found a counterexample to
the randomized conjecture for partial f and g, albeit with a tiny query complexity compared
to input length; see also Subsection 1.5. The conjecture is still open for total functions.
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Fractional block sensitivity. We show a new composition theorem in terms of fractional
block sensitivity fbs(f), introduced by [19, 10]; see also [13, 2]. This measure is at most
randomized query complexity, fbs(f) ≤ O(R(f)), and it is equivalent to randomized certificate
complexity [1].

Let us define fbs(f) for an n-bit f . We say that a block B ⊆ [n] is sensitive on input x
iff f(x) 6= f(xB) where xB is x but with bits in B flipped. Fix an input x and introduce a
real weight wB ∈ [0, 1] for each sensitive block B of x. Define fbs(f, x) as the optimum value
of the following linear program

max
∑

B
wB

subject to
∑

B3i
wB ≤ 1, ∀i ∈ [n],

wB ≥ 0, ∀B.

Finally, define fbs(f) := maxx fbs(f, x). For comparison, the more usual block sensitivity
bs(f) [15] is defined the same way except with the integral constraint wB ∈ {0, 1}. In
particular bs(f) ≤ fbs(f), and moreover a polynomial gap (power 1.5) between the two is
known for a total function [10].

We make progress towards the composition conjecture; see Section 6 for the proof.

I Theorem 1.6. R(f ◦ g) ≥ Ω(fbs(f)R(g)) for any (partial) boolean functions f and g.

The previous best comparable composition theorem was R(f ◦ g) ≥ Ω(bs(f)R(g)), a proof
of which is virtually the same as for the result that R(Andn ◦ g) ≥ Ω(nR(g)); see [11, §5.1].
In fact, we were originally motivated to consider the correlated samples problem when trying
to strengthen this composition result from block sensitivity to fractional block sensitivity.

1.5 Independent work by Ben-David and Blais
In an independent and concurrent work, Ben-David and Blais [5, 6] have also studied the
randomized composition conjecture and ways of circumventing Shaltiel examples via improved
minimax theorems. They develop a powerful framework for constructing hard Shaltiel-free
distributions, which is general enough to apply not only to query complexity but also, for
instance, to communication complexity. In particular, their framework is able to give an
alternative proof of our main result (Theorem 1.2) as well as our fbs-based composition
theorem (Theorem 1.6). Their proof techniques involve information theory and analysis; by
contrast, our techniques are more elementary and directly tailored to the correlated samples
problem (which does not explicitly appear in their work).

1.6 Roadmap
We will prove our main theorem (Theorem 1.2) in Section 3 and Section 4. Before that, we
introduce our basic notions regarding decision trees in Section 2. In Section 3, we characterize
decision trees as likelihood boosters, emphasizing that a good query algorithm must make
significant progress in terms of boosting the likelihood of one of the outputs (0 or 1) to
much higher than the other, and vice versa. This characterization frees us from considering
inputs from both D0 and D1 simultaneously: if an algorithm is certain about the output
on D1, then it must also make few errors on D0. We thus reduce the proof of Theorem 1.2
to bootstrapping decision trees that can make overall progress across multiple samples to
a decision tree that makes uniform progress. In Section 4, we build such a bootstrapping
algorithm and show that it makes satisfactory progress with a careful analysis. Proofs for
our two applications are in Section 5 and Section 6.

ICALP 2020
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2 Preliminaries

Let f : Σn → {0, 1, ∗} be a partial function for some alphabet Σ (typically Σ = {0, 1}). Let
D0, D1 be distributions supported on f−1(0), f−1(1) respectively. For each x ∈ Σn, let D0(x)
(resp. D1(x)) denote the probability mass on x in distribution D0 (resp. D1). For a subset
S ⊆ Σn, we define Db(S) =

∑
x∈S Db(x) for b = 0, 1. If Db(S) > 0, we define the conditional

distribution Db|S by Db|S(x) = Db(x)
Db(S) when x ∈ S, and Db|S(x) = 0 when x /∈ S. We define

the likelihood-ratio of S as

LR(S) := D1(S)
D0(S) .

Let T be a deterministic decision tree that takes as input a sample x ∈ Σn drawn from
either D0 or D1. For every vertex v in T , we use Input(v) ⊆ Σn to denote the set of strings
that can reach v, or equivalently, the set of strings that agree with all the queries made so
far. Typically, every non-leaf vertex in T corresponds to a query to a certain position in the
sample, but we will allow non-leaf vertices v in T that do not make any query, each of them
having only a single child v′ with Input(v′) = Input(v). We abuse notation slightly and use v
as a shorthand for Input(v), so we have D0(v) =

∑
x∈v D0(x), D1(v) =

∑
x∈v D1(x) and

LR(v) = D1(v)
D0(v) .

Note that the likelihood-ratio LR(v) is non-negative, but could be zero or infinite. We can
eliminate the undefined case (D0(v) = D1(v) = 0) by trimming the unreachable parts of the
decision tree.

Now if the decision tree T takes as input k samples from Σn, it is not hard to see that
Input(v) can be written as a Cartesian product Input(v) = Input1(v)× · · · × Inputk(v), where
Inputj(v) ⊆ Σn is the set of strings that agree with all the queries made to the j-th sample
so far. Again, we abuse notation slightly and use vj as a shorthand for Inputj(v), so we will
often write v = v1 × · · · × vk. We define the overall likelihood ratio of v as the product

OLR(v) := LR(v1) · · · LR(vk) = D1(v1)
D0(v1) · · ·

D1(vk)
D0(vk) .

It is often more convenient to consider the logarithm of likelihood ratios. We will use
natural logarithm throughout the paper, i.e. log(·) = ln(·).

3 Query Algorithms as Likelihood Boosters

Our overarching goal (Theorem 1.2) is to construct an efficient deterministic query algorithm
that distinguishes D0 from D1, assuming the existence of one that distinguishes Dk0 from Dk1 .
As the starting point, we introduce the notion of likelihood boosters as a way of measuring the
progress made by a query algorithm T in distinguishing D0 from D1. The key idea is that, as
more queries are being made, the algorithm narrows down the possibilities of the unknown
input, driving the likelihood of one of the output (0 or 1) much higher than the other. In
fact, we show that T can distinguish D0 from D1 well if and only if a sample drawn from D1
has a high probability of arriving at a leaf of T where most of the remaining possibilities
produce output 1. (Lemma 3.4 and Lemma 3.5).

In the multiple-sample setting, we use the notions of overall likelihood boosters and uniform
likelihood boosters, which have different levels of guarantees, to measure the progress of a
query algorithm on simultaneously classifying each of the samples in the input. We show that



A. Bassilakis, A. Drucker, M. Göös, L. Hu, W. Ma, and L.-Y. Tan 9:7

an efficient query algorithm that distinguishes Dk0 from Dk1 is an efficient overall likelihood
booster (Corollary 3.6). Moreover, we show that an efficient uniform likelihood booster on
multiple samples induces an efficient likelihood booster on a single sample (Lemma 3.7),
which in turn implies an efficient query algorithm that distinguishes D0 from D1 (Lemma 3.4).
These results will enable us to reduce proving Theorem 1.2 to relating overall likelihood
boosters to uniform likelihood boosters, which is the focus of Section 4 (see Theorem 4.1).

We now formally define the three types of likelihood boosters mentioned above:

I Definition 3.1. We say a deterministic decision tree T is a (δ,M)-likelihood booster for
D0,D1 if, with probability at least 1− δ, an input sample drawn from D1 reaches a leaf ` of
T with likelihood ratio LR(`) ≥M .

I Definition 3.2. We say a deterministic decision tree T is a (δ,M)-overall likelihood booster
for Dk0 ,Dk1 if, with probability at least 1− δ, an input drawn from Dk1 consisting of k samples
reaches a leaf ` of T with overall likelihood ratio OLR(`) ≥M .

I Definition 3.3. We say a deterministic decision tree T is a (δ, ε,M)-uniform likelihood
booster for Dk0 and Dk1 if, with probability at least 1− δ, an input x drawn from Dk1 consisting
of k samples reaches a leaf ` = `1 × · · · × `k of T with the property that at least (1 − ε)k
different samples j ∈ {1, · · · , k} satisfy LR(`j) ≥M .

Note that the above definitions do not depend on the actual output of the decision tree
T . We now show in the following two lemmas that likelihood boosters are in some sense
equivalent to query algorithms that distinguish D0 from D1.

I Lemma 3.4. Suppose T is a (δ,M)-likelihood booster for D0,D1. Consider the deterministic
decision tree T ′ that makes exactly the same queries as T and accepts if and only if a leaf `
with LR(`) ≥M is reached. Then T ′ distinguishes D0 from D1 with the following guarantees:
1. (Completeness) T ′ accepts x ∼ D1 with probability at least 1− δ.
2. (Soundness) T ′ accepts x ∼ D0 with probability at most 1/M .

Proof. Completeness follows directly from the definition of likelihood booster. To prove
soundness, consider the set U of leaves ` with LR(`) ≥M . For all ` ∈ U , we have D0(`) ≤
1
MD1(`). Therefore,

∑
`∈U D0(`) ≤ 1

M

∑
`∈U D1(`) ≤ 1

M . This means that a sample from D0
reaches leaves in U with probability at most 1

M , which is exactly the desired soundness. J

I Lemma 3.5. Suppose a deterministic decision tree T can distinguish D0 from D1 with the
following guarantees: T accepts x ∼ D0 with probability at most δ0, and accepts x ∼ D1 with
probability at least 1− δ1. Then T is a (Mδ0 + δ1,M)-likelihood booster for any M > 0.

Proof. Let U denote the set of leaves ` with LR(`) < M . We can partition U as U = U0∪U1,
where U1 corresponds to the leaves at which T accepts. Since T accepts with probability at
most δ0 on D0, we have

∑
`∈U1

D0(`) ≤ δ0. Similarly, we have
∑
`∈U0

D1(`) ≤ δ1. Therefore,∑
`∈U

D1(`) =
∑
`∈U0

D1(`) +
∑
`∈U1

D1(`) ≤
∑
`∈U0

D1(`) +M
∑
`∈U1

D0(`) = δ1 +Mδ0.

In other words, a sample from D1 has probability at most Mδ0 + δ1 of reaching a leaf in U ,
which means that T is a (Mδ0 + δ1,M)-likelihood booster. J

In the multiple-sample setting, if we view the pair Dk0 and Dk1 as D′0 and D′1 in the
single-sample setting with input length multiplied by k, the definition of overall likelihood
ratio coincides with the definition of likelihood ratio in the single-sample setting. Therefore,
we have the following corollary of Lemma 3.5, which essentially shows that an efficient query
algorithm for the correlated samples problem is an efficient overall likelihood booster:

ICALP 2020
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I Corollary 3.6. Suppose a deterministic decision tree T can distinguish Dk0 from Dk1 in that
T accepts x ∼ Dk0 with probability at most δ0, and T accepts x ∼ Dk1 with probability at least
1− δ1. Then T is a (Mδ0 + δ1,M)-overall likelihood booster for any M > 0.

To conclude this section, we show that an efficient uniform likelihood booster in the
multiple-sample setting implies an efficient likelihood booster in the single-sample setting.

I Lemma 3.7. For any (δ, ε,M)-uniform likelihood booster T for Dk0 and Dk1 and any C > 0,
there is a (δ + ε+ 1

C ,M)-likelihood booster T ′ for D0 and D1 with depth(T ′) ≤ C · depth(T )
k .

Proof. Define Q = C · depth(T )
k . We first build a randomized query algorithm A′ for D0

and D1, and later derandomize it as T ′. On input xA′ , A′ generates k random samples
(x1, . . . , xk) ∼ Dk1 , selects a uniformly random index j, replaces xj with A′’s own input xA′ ,
and finally simulates T on the modified k samples (x1, . . . , xA′ , . . . , xk). If T attempts to
make the (bQc+ 1)-th query to the j-th (modified) sample, A′ halts.

It is easy to see that the maximum number of queries made by A′ is at most Q. Moreover,
by Markov’s inequality, if the input xA′ to A′ is drawn from D1, the probability that A′
halts early because of T making more than Q queries to the j-th sample is at most 1

C , since
the average number of queries T makes to the j-th sample for a uniformly random j is at
most depth(T )

k .
We now show that with probability at least 1−(δ+ε+ 1

C ), A′ reaches a leaf ` = `1×· · ·×`k
of T with LR(`j) ≥M when its own input xA′ is drawn from D1. By a union bound, we only
need to show that this holds with probability at least 1− (δ + ε) for the extended version of
A′ that doesn’t halt early. If we switch the order of randomness so that j is chosen after
a leaf of T is reached, this follows easily from the definition of uniform likelihood boosters
(Definition 3.3).

Finally, we derandomize A′. Note that the randomness in A′ only comes from the
randomness in j and in all the generated samples xi except the j-th sample. We can simply
fix them so that the probability of reaching a leaf ` of T with LR(`j) ≥ M is maximized,
assuming that the j-th sample is from D1. Since j and all generated samples other than
the j-th sample have been fixed, the decision tree T now “shrinks” to a decision tree T ′
with only the first bQc queries to the j-th sample remaining, and every leaf ` of T that is
reachable when we run A′ now becomes a leaf `′ of T ′. Shrinking the tree doesn’t affect the
computation history regarding the j-th sample, so we have `′ = Input(`′) = Inputj(`) = `j
and LR(`′) = LR(`j). This proves that T ′ is a (δ + ε+ 1

C ,M)-likelihood booster. J

4 Bootstrapping Overall Booster to Uniform Booster

The results from the previous section (Section 3) reduce proving our main result (Theorem 1.2)
to proving relations between overall likelihood boosters and uniform likelihood boosters. In
this section, we complete this step with the following result:

I Theorem 4.1. Assume that there is a depth-L (0.1, 25)-overall likelihood booster for every
distribution pair Dk0 ,Dk1 . Then there is a depth-O(KL) (0.1, 0.1, 100)-uniform likelihood
booster for every distribution pair DK0 ,DK1 whenever K ≥ 1000k(|Σ|+ 1)n.

We first show how to derive Theorem 1.2 from Theorem 4.1:

Proof of Theorem 1.2. We prove the inequality R(f) ≤ O(Corr(f)) (the converse inequality
is trivial). Suppose we have a depth-L deterministic decision tree that solves the correlated
samples problem on 1

2D
k
0 + 1

2D
k
1 with success probability at least 0.999 (recall that the success
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probability can be amplified by Fact 1.1). That is, the decision tree accepts inputs drawn
from Dk1 with probability at least 0.998 and accepts inputs drawn from Dk0 with probability
at most 0.002. By Corollary 3.6, it is a (0.1, 25)-overall likelihood booster for Dk0 and Dk1 .

By Theorem 4.1, for any pair of distributions DK0 ,DK1 , there is a (0.1, 0.1, 100)-uniform
likelihood booster with depth O(KL). Then by Lemma 3.7, there is a (1/3, 100)-likelihood
booster with depth O(L) for D0 and D1, which by Lemma 3.4 implies a query algorithm for
D0 and D1 with success probability at least 1/3. By the arbitrariness of D0 and D1, we have
R1/3(f) = O(L) via Yao’s minimax, as desired. J

The rest of this section is dedicated to proving Theorem 4.1. We construct the desired
uniform likelihood booster Tbootstrap, described in Subsection 4.1, by applying different
overall likelihood boosters to appropriate sets of samples at different phases of computation.
To quantify the progress made by Tbootstrap, we design a measure based on a “truncated”
log likelihood ratio which handles samples that Tbootstrap is confident about with special
care. As the technical core of the proof, we show that under our carefully constructed
measure, Tbootstrap in expectation makes positive and constant progress during each phase
of computation (Lemmas 4.2 and 4.3). Therefore, Tbootstrap is able to achieve the desired
guarantees after sufficiently many phases.

4.1 Bootstrapping algorithm
We describe our depth-O(KL) (0.1, 0.1, 100)-uniform likelihood booster Tbootstrap taking
K ≥ 1000k(|Σ| + 1)n samples. Recall that each vertex v of Tbootstrap can be written as a
Cartesian product v = v1 × · · · × vK , where vj ⊆ Σn is the set of strings that are consistent
with the queries made to the j-th sample so far. We say that the j-th sample is settled at v if

LR(vj) = D1(vj)
D0(vj)

/∈ [e−100, e100].

Note that it is possible for a sample to be settled in the wrong direction (e.g. LR(vj) < e−100

on input drawn from DK1 ), but we will show that this is not a serious issue.
The query algorithm Tbootstrap proceeds in at most C ·K phases (for some large constant

C > 0). Each phase consists of at most L queries and is described as follows:

Phase s = 1, · · · , C · K:
1. If fewer than k(|Σ|+ 1)n out of the K samples are unsettled, halt.
2. Else, since each vj is determined by a string v∗ in (Σ ∪ {∗})n recording the queries made

so far to the j-th sample, by the Pigeonhole Principle there exist k unsettled samples
j1, · · · , jk with vj1 = · · · = vjk

= v∗.
3. Run the depth-L (0.1, 25)-overall likelihood booster A(v∗), assumed in Theorem 4.1 to

exist, relative to the input-distribution pair

(D0|v∗)k , (D1|v∗)k

on the samples

(xj1 , . . . , xjk ) .

If any query causes one of these samples to become settled (i.e. LR(vji
) /∈ [e−100, e100] for

some i ∈ {1, · · · , k}), halt A(v∗) and go to the next Phase. Otherwise we proceed to the
next Phase after A(v∗) terminates. If fewer than L queries are made in the current phase,
insert dummy vertices that do not make any query (see Section 2) to Tbootstrap so that
each phase corresponds to a path in Tbootstrap with length exactly L.
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9:10 The Power of Many Samples in Query Complexity

4.2 Sub-martingale property of progress measure
It’s not hard to see that the overall likelihood ratio (OLR) is not an effective measure of
progress for Tbootstrap: OLR can rocket to infinity even when there is only one settled sample.
In this subsection, we introduce a better progress measure: overall truncated log likelihood
ratio (OTLLR), and show that it is a sub-martingale along the computation path of any
decision tree (Lemma 4.2). In other words, Tbootstrap always makes non-negative progress in
expectation. We will show that each phase of Tbootstrap makes positive expected progress in
the next subsection (Subsection 4.3).

Let T be a deterministic decision tree that takes as input K samples. For every vertex
v = v1 × · · · × vK of T , we define the truncated log likelihood ratio of vj as

TLLR(vj) :=
{

log(LR(vj)), if | log(LR(vj))| ≤ 100,
500, otherwise.

Note that if log(LR(vj)) slightly exceeds the upper threshold 100, we set TLLR to a much
higher value 500. Also, when log(LR(vj)) drops below the lower threshold -100, we also set
TLLR to 500. Thus, the j-th sample is settled at v if and only if TLLR(vj) = 500.

We define the overall truncated log-likelihood-ratio of v as the sum

OTLLR(v) :=
K∑
j=1

TLLR(vj).

The input x to T determines a computation path from the root of T to a leaf: v0 →
v1 → · · · → vq. The randomness in x transfers to the randomness in the path, so the path is
a stochastic process. We now show that OTLLR(vt) along the path is a sub-martingale when
x is drawn from DK1 :

I Lemma 4.2. Assume that T never queries a settled sample. Assume that the input x to T
is drawn from DK1 , v is a non-leaf vertex with distance t from the root, and v is reachable
(i.e. Pr[vt = v] > 0 on DK1 ). Define ∆t := OTLLR(vt+1)− OTLLR(vt). Then we have

E[∆t|vt = v] ≥ 0.001 · E[(∆t)2|vt = v] ≥ 0.

Proof. Let us condition on vt = v in the whole proof. If v is a dummy vertex that does not
make any query, then ∆t = 0 deterministically and the lemma holds trivially. We assume
that v is not a dummy vertex henceforth.

Suppose sample j is queried at vertex v. We have OTLLR(vt+1) − OTLLR(vt) =
TLLR(vt+1

j ) − TLLR(vtj). Since T never queries a settled sample, we know TLLR(vtj) =

log D1(vt
j)

D0(vt
j
) ∈ [−100, 100].

Let σ ∈ Σ denote the random outcome of the query, and let p0(σ), p1(σ) denote the
probability that the outcome to the query is σ under D0|vt

j
,D1|vt

j
, respectively. Let H ⊆ Σ

denote the set of σ ∈ Σ with |TLLR(vtj)+ log p1(σ)
p0(σ) | > 100. Note that D0(vt+1

j ) = D0(vtj)p0(σ)
and D1(vt+1

j ) = D1(vtj)p1(σ), so

TLLR(vt+1
j ) =

{
TLLR(vtj) + log p1(σ)

p0(σ) , σ /∈ H,
500, σ ∈ H.

Thus, H is precisely the set of outcomes σ ∈ Σ that make sample j settled at vt+1. Let
W = W (σ) denote the difference TLLR(vt+1

j ) − TLLR(vtj). Our goal is to prove E[W ] ≥
0.001 · E[W 2].
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Note that W (σ) ∈ [400, 600] when σ ∈ H and W (σ) = log p1(σ)
p0(σ) ∈ [−200, 200] when

σ /∈ H. We have

E[W ] ≥400
∑
σ∈H

p1(σ) +
∑
σ/∈H

p1(σ) log p1(σ)
p0(σ)

=400
∑
σ∈H

p1(σ) +
∑
σ/∈H

p0(σ) · p1(σ)
p0(σ) log p1(σ)

p0(σ) . (1)

By a helper lemma (Lemma 4.4) proved in Subsection 4.4, we know that

p1(σ)
p0(σ) log p1(σ)

p0(σ) ≥
(
p1(σ)
p0(σ) − 1

)
+ 1

400 ·
p1(σ)
p0(σ)

(
log p1(σ)

p0(σ)

)2
.

Plugging this into (1), we have

E[W ] ≥400
∑
σ∈H

p1(σ) +
∑
σ/∈H

p1(σ)−
∑
σ/∈H

p0(σ) + 1
400

∑
σ/∈H

p1(σ)
(

log p1(σ)
p0(σ)

)2

≥400
∑
σ∈H

p1(σ) +
(∑
σ/∈H

p1(σ)− 1
)

+ 1
400

∑
σ/∈H

p1(σ)
(

log p1(σ)
p0(σ)

)2

=400
∑
σ∈H

p1(σ)−
∑
σ∈H

p1(σ) + 1
400

∑
σ/∈H

p1(σ)
(

log p1(σ)
p0(σ)

)2

=399
∑
σ∈H

p1(σ) + 1
400

∑
σ/∈H

p1(σ)
(

log p1(σ)
p0(σ)

)2

=399
∑
σ∈H

p1(σ) + 1
400

∑
σ/∈H

p1(σ)(W (σ))2

≥ 1
1000

∑
σ∈H

p1(σ)(W (σ))2 + 1
400

∑
σ/∈H

p1(σ)(W (σ))2

≥ 1
1000E[W 2]. J

4.3 Bounding the conditional expectation of progress
In the previous subsection, we showed that OTLLR, as a progress measure, is a sub-martingale.
Now we refine our progress measure to also include the natural measure number of settled
samples, and show that each phase of Tbootstrap makes positive progress in expectation.

Recall that we inserted dummy vertices in Tbootstrap to ensure that each phase corresponds
to a computation path of length exactly L. Therefore, an entire computation path of Tbootstrap
must have length divisible by L: v0 → · · · → vqL. The sub-path vtL → · · · → v(t+1)L is the
computation path of the (t+ 1)-th phase.

Define S(v) as the number of settled samples at vertex v. Our new measure of progress is

P(vt) := S(vt) + OTLLR(vt).

I Lemma 4.3. Assume that the input x to Tbootstrap is drawn from DK1 , v is a non-leaf
vertex with distance tL from the root, and v is reachable (i.e. Pr[vtL = v] > 0 on DK1 ). Then
we have

E[P(v(t+1)L)− P(vtL)|vtL = v] ≥ 0.001.

Before proving the lemma, we first show how it implies Theorem 4.1.
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Proof of Theorem 4.1. We consider an extended version of Tbootstrap that always halts after
exactly C ·K phases: whenever it would halt at line 1, it instead enters dummy phases and
increases its total progress P by 0.001 per phase (so that now P = S + OTLLR + 0.001 ·
number of dummy phases). By Lemma 4.3, the extended algorithm finishes with expected
total progress E[P] ≥ 0.001C ·K on input drawn from DK1 . However, P can never grow too
large: before any dummy phase, P is at most 501K, and there are at most C ·K dummy
phases, so P ≤ 501K + 0.001C ·K. By Markov’s inequality on the non-negative random
variable (501K + 0.001C ·K)− P, we have Pr[P ≤ 501K] ≤ 501K

0.001C·K = 501
0.001C . If we choose

a large enough C, we know that with probability at least 0.99, the total progress exceeds
501K, which means that the extended algorithm enters dummy phases before halting, and
the original algorithm halts at line 1 with all but 0.001 fraction of the samples settled.

It now suffices to show that the fraction of samples settled in the wrong direction (i.e.,
the likelihood ratio drops below e−100) is at most 0.01 with probability at least 0.99. We
first fix j and show that the probability that the j-th sample is settled in the wrong direction
is at most e−100, and then use the linearity of expectation and Markov’s inequality to bound
the overall wrong settlement.

Conditioning on all but the j-th sample, Tbootstrap becomes a deterministic decision tree
T ′ on a single sample. Let U denote the set of leaves ` of T ′ with LR(`) ≤ e−100. We have∑
`∈U D1(`) ≤ e−100∑

`∈U D0(`) ≤ e−100. This means that the probability that a sample
from D1 reaches leaves in U is at most e−100. Thus the probability of wrong settlement for
sample j in Tbootstrap is at most e−100.

By the linearity of expectation, the expected fraction of samples settled in the wrong
direction is at most e−100. Then by Markov’s inequality, with probability at least 0.99, the
fraction of wrong settlement is at most 0.01. J

Proof of Lemma 4.3. S(v(t+1)L)− S(vtL) is either 0 or 1, depending on whether or not a
sample becomes settled in phase t+ 1.

In the case where Pr[S(v(t+1)L)− S(vtL) = 1|vtL = v] ≥ 0.001, we have E[S(v(t+1)L)−
S(vtL)|vtL = v] ≥ 0.001, and by Lemma 4.2 we have E[OTLLR(v(t+1)L)−OTLLR(vtL)|vtL =
v] ≥ 0. Summing these two inequalities up proves the lemma.

From now on, we consider the harder case where Pr[S(v(t+1)L)− S(vtL) = 1|vtL = v] <
0.001. We first prove that

Pr[OTLLR(v(t+1)L)− OTLLR(vtL) ≥ 3|vtL = v] ≥ 0.8. (2)

Recall that in this phase Tbootstrap runs the (0.1, 25)-overall likelihood booster A(v∗) for
(D0|v∗)k and (D1|v∗)k on the samples j1, . . . , jk. If S(v(t+1)L)− S(vtL) = 0, i.e. no sample
becomes settled in this phase, then

OTLLR(v(t+1)L)− OTLLR(vtL) =
k∑
s=1

(
log
D1(v(t+1)L

js
)

D0(v(t+1)L
js

)
− log

D1(vtLjs
)

D0(vtLjs
)

)
.

Conditioning on vtL = v, we have vtLjs
= v∗, since vj1 = · · · = vjk

= v∗. From
Db(v(t+1)L

js
)

Db(v∗) =
Db|v∗(v

(t+1)L
js

), we see that

OTLLR(v(t+1)L)− OTLLR(vtL) = log
k∏
s=1

D1|v∗(v
(t+1)L
js

)

D0|v∗(v
(t+1)L
js

)
.
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Recall that A(v∗) halts early only when a new sample becomes settled, which happens with
probability < 0.001. Therefore, in order to prove (2) by a union bound, we only need to
prove that the extended version of phase t+ 1 where A(v∗) gets to run without early halting
achieves

∏k
s=1

D1|v∗ (v(t+1)L
js

)

D0|v∗ (v(t+1)L
js

)
≥ e3 with probability at least 0.9. This is indeed true because

A(v∗) is a (0.1, 25)-overall likelihood booster for (D0|v∗)k and (D1|v∗)k.
We now prove E[OTLLR(v(t+1)L) − OTLLR(vtL)|vtL = v] ≥ 0.001. We prove it by

contradiction. Suppose E[OTLLR(v(t+1)L) − OTLLR(vtL)|vtL = v] < 0.001. For tL ≤ s <

(t+ 1)L, define ∆(vs) as the conditional expectation E[OTLLR(vs+1)− OTLLR(vs)|vs] and
∆2(vs) as the conditional variance E[(OTLLR(vs+1)− OTLLR(vs)−∆(vs))2|vs]. Note that

∆2(vs) = E[((OTLLR(vs+1)− OTLLR(vs))2|vs]− (∆(vs))2

≤ E[((OTLLR(vs+1)− OTLLR(vs))2|vs].

Thus by Lemma 4.2, we know that ∆(vs) ≥ 0.001 ·∆2(vs) ≥ 0. Now we have

0.001 >E[OTLLR(v(t+1)L)− OTLLR(vtL)|vtL = v]

=
∑

tL≤s<(t+1)L

E[∆(vs)|vtL = v].

By Markov’s inequality, we have Pr
[∑

tL≤s<(t+1)L ∆(vs) ≥ 1|vtL = v
]
≤ 0.001. Now by

a union bound with (2), we have

E


 ∑
tL≤s<(t+1)L

(OTLLR(vs+1)− OTLLR(vs)−∆(vs))

2
∣∣∣∣∣∣∣ vtL = v


=E


(OTLLR(v(t+1)L)− OTLLR(vtL))−

∑
tL≤s<(t+1)L

∆(vs)

2
∣∣∣∣∣∣∣ vtL = v


≥(0.8− 0.001)× (3− 1)2

>3. (3)

Since E
[
OTLLR(vs+1)− OTLLR(vs)−∆(vs)|vs

]
= 0, we have

E
[
(OTLLR(vs1+1)− OTLLR(vs1)−∆(vs1))·
(OTLLR(vs2+1)− OTLLR(vs2)−∆(vs2))|vtL = v

]
= 0

whenever s1 < s2 by further conditioning on vs2 . Thus expanding (3) we have∑
tL≤s<(t+1)L

E[∆2(vs)|vtL = v]

=E

 ∑
tL≤s<(t+1)L

(OTLLR(vs+1)− OTLLR(vs)−∆(vs))2

∣∣∣∣∣∣ vtL = v

 ≥ 3.

Since ∆(vs) ≥ 0.001 ·∆2(vs), we have

0.001 >
∑

tL≤s<(t+1)L

E[∆(vs)|vtL = v] ≥ 0.001 ·
∑

tL≤s<(t+1)L

E[∆2(vs)|vtL = v] ≥ 0.001× 3,

a contradiction.
Now we have shown E[OTLLR(v(t+1)L)−OTLLR(vtL)|vtL = v] ≥ 0.001. Adding it to the

trivial inequality E[S(v(t+1)L)− S(vtL)|vtL = v] ≥ 0 proves the lemma. J
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4.4 A helper inequality
I Lemma 4.4. For all M ≥ 0, t ∈ (0, eM ], we have

t ln t− (t− 1) ≥ 1
M + 2 · t ln2 t.

Proof. Define function h(t) = t ln t− (t− 1)− 1
M+2 · t ln2 t on the interval t ∈ (0, eM ]. Our

goal is to show h(t) ≥ 0. Note that h(1) = 0, so we only need to show h′(t) ≥ 0 for t ≥ 1
and h′(t) ≤ 0 for t ≤ 1. We prove this by calculating h′(t):

h′(t) = ln t− 1
M + 2 · ln

2 t− 2
M + 2 · ln t =

(
1− (ln t) + 2

M + 2

)
ln t.

Note that 1− (ln t)+2
M+2 ≥ 0 because ln t ≤M . Therefore h′(t) ≥ 0 when t ≥ 1 and h′(t) ≤ 0

when t ≤ 1, as desired. J

5 Application 1: Selection Problem

5.1 Bi-correlated samples
To establish a relationship between correlated samples and selection, we first define an
intermediate problem. The bi-correlated samples problem is defined by (here Dab := Da×Db):

biCorrε(f,D) := mink≥1 Dε(f2k, 1
2D

k
01 + 1

2D
k
10),

biCorrε(f) := maxD biCorrε(f,D).

That is, the task is to decide whether f2k outputs (01)k or (10)k as k →∞. We show this is
as hard as correlated samples:

I Lemma 5.1. Corr(f,D) = Θ(biCorr(f,D)).

Proof. It is obvious that biCorr(f,D) ≤ Corr(f,D), so we focus on the converse, Corr(f,D) ≤
O(biCorr(f,D)). The proof is via a hybrid argument. Let T : ({0, 1}n)2k → {0, 1} be an
optimal algorithm for biCorr1/3(f,D) that uses k sample pairs. Letting d(−,−) denote the
statistical distance between two distributions, the fact that T achieves error ε := 1/3 can be
written as

d(T (Dk01), T (Dk10)) ≥ 1− 2ε.

By the triangle inequality,

d(T (Dk01), T (Dk00)) + d(T (Dk00), T (Dk10)) ≥ 1− 2ε.

Either the first or the second term is ≥ (1− 2ε)/2. Say the first (second case is similar):

d(T (Dk01), T (Dk00)) ≥ (1− 2ε)/2 = 1− 2ε′ where ε′ := 1/4 + ε/2 = 5/12.

This means we can turn T into an 5/12-error algorithm for the correlated k-samples problem:
the odd numbered input samples of T the algorithm can generate from D0 on its own; the
even numbered input samples of T are taken from the input to the correlated k-samples
problem. Finally, the error can be reduced to 1/3 via Fact 1.1. J
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5.2 Proof of Theorem 1.3
First item. The following claim together with Lemma 5.1 implies the first item.

B Claim 5.2. biCorrε(f,D) ≤ Selε(f,D).

Proof. Let TSel be an optimal algorithm for Selε(f,D) using k samples. We describe an
algorithm TbiCorr for bi-correlated k-samples with the same error and query cost. Let
x = (xij) for (i, j) ∈ [k]× [2] be the random input to TbiCorr, that is, either (i) x ∼ Dk01 or
(ii) x ∼ Dk10. The algorithm TbiCorr chooses a random string z ∈ [2]k and runs TSel on input
y := (xizi)i∈[k]. Note that y is distributed as Dk in both cases (i) and (ii). Suppose TSel
outputs some (i, f(xizi

)). Assuming this output is correct for selection, and remembering our
choice of zi, we can deduce which case, (i) or (ii), the input x came from, and let TbiCorr guess
accordingly. Hence algorithm TbiCorr is correct every time TSel is, and so the error parameter
is unaffected. C

Second and third item. For separating correlated samples from selection, we again consider
the n-bit Xorn function. Define x ∼ D by the following process:
1. Sample z uniformly from {0, 1}n−2 and let a := Xorn−2(z).
2. Sample b uniformly from {0, 1}.
3. With probability ε := 1%, output x := aaz; with probability 1− ε = 99%, output x := bbz.

Note that the first two bits of x ∼ D are identical and hence Xorn(x) = Xorn−2(z).
Moreover, the first bit is ε-correlated with the function value Xorn(x). This makes (Xorn,D)
easy for the correlated samples problem: The 1-query algorithm that guesses the function
value based on the first bit of the first sample has error ≤ 1/2− ε/2, and this error can be
reduced to 1/3 via Fact 1.1. This shows that Corr(Xorn,D) = O(1).

Next we prove the lower bound Sel(Xorn,D) = Ω(n), which also proves the third item.
Suppose for contradiction that T is a height-(n− 3) deterministic decision tree for k-selection
for (Xorn,D). Consider any leaf ` that claims the i-th sample evaluates to b ∈ {0, 1}. If we
condition Dk by the ≤ n− 3 queries made by `, we note that the function value is still only
slightly biased away from 1/2, that is, Ex∼Dk|`[Xorn(xi)] ∈ 1/2± ε. Hence no leaf of T can
compute selection to within error ≤ 1/3. This concludes the proof of Theorem 1.3.

6 Application 2: Randomized Composition

Goal. In this section we prove Theorem 1.6, namely R(f ◦ g) ≥ Ω(fbs(f)R(g)). By The-
orem 1.2 and Lemma 5.1 (from Subsection 5.1) it suffices to show

biCorr(g) ≤ O(R(f ◦ g)/fbs(f)).

Let T be an optimal 1/10-error algorithm for f ◦ g making q := O(R(f ◦ g)) queries. Our
goal is, given any balanced input distribution D := 1

2D0 + 1
2D1 to the inner function g, to

build a bounded-error algorithm T ′ solving the bi-correlated samples problem for (g,D).

Rarely queried block. By the definition of fbs(f), there is an input y ∈ {0, 1}n to f (say,
f(y) = 0) with sensitive blocks B1, · · · , BN ⊆ [n] and weights w1, · · · , wN ∈ [0, 1] such that∑

j∈[N ] wj = fbs(f), (4)∑
j:Bj3i wj ≤ 1, ∀i ∈ [n]. (5)
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For any z ∈ {0, 1}n, define Dz as the distribution over (x1, · · · , xn) ∈ ({0, 1}m)n where each
xi is drawn independently from Dzi

. Hence we have gn(x) = z for x ∼ Dz. We define

qj := expected # of queries T makes to block Bj on input Dy.

That is, if we denote by it ∈ [n] the block that T queries at time t, then qj is the expected
number of time steps t with it ∈ Bj . By linearity of expectation and (5), we have

∑
j∈[N ] wjqj = E

[∑
j∈[N ] wj

∑
t:it∈Bj

1
]

= E
[∑

t∈[q]
∑
j:Bj3it wj

]
≤ E

[∑
t∈[q] 1

]
≤ q.

Combining this with (4), we know there exists j ∈ [N ], say j = 1 for simplicity, such that

q1 ≤
q

fbs(f) .

Truncated T . Next we modify T so that it makes at most 5q1 queries to block B1 for every
input (not just on average over Dy). Namely, if T makes more than 5q1 queries to block
B1, we simply let T halt and output 1; otherwise its behavior is unchanged. We denote this
“truncated” algorithm by T tr. We claim that T tr still computes f ◦g correctly on average over
both Dy and DyB1 (recall that yB1 is y but with the block B1 flipped; note that f(yB1) = 1
and hence (f ◦ g)(x) = 1 for each x ∼ DyB1 )

Correct for x ∼ DyB1 : Pr[T tr(x) = 1] ≥ Pr[T (x) = 1]
≥ 4/5. (6)

Correct for x ∼ Dy: Pr[T tr(x) = 0] ≥ Pr[T (x) = 0]
− Pr[T (x) makes > 5q1 queries to B1] (7)
≥ 4/5− 1/5 (8)
= 3/5, (9)

where (7) uses the Union Bound and (8) uses the Markov Bound.

Algorithm T ′. We are ready to define the algorithm T ′ for the bi-correlated samples problem
for (g,D). The random input to this problem is z = (zij), (i, j) ∈ [n] × {0, 1}, sampled
either from (i) Dn01 or (ii) Dn10. On input z the algorithm T ′ simply runs T tr on the input
(x1, . . . , xn) ∈ ({0, 1}m)n defined by

xi :=
{
ziyi for i ∈ B1,

∼ Dyi
for i /∈ B1.

That is, for i ∈ B1 the algorithm T ′ simply copies its input bits in z to the bits of x. For
i /∈ B1 the algorithm T ′ uses its own randomness to generate an independent sample from
either D0 or D1. The key observation is that in case (i) we have x ∼ Dy, and in case (ii)
we have x ∼ DyB1 . But T tr can distinguish these two cases to within bounded error by (6)
and (9). Hence T ′ is a bounded-error algorithm for bi-correlated samples with query cost
5q1 ≤ O(q/fbs(f)). This completes the proof of Theorem 1.6.
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Abstract
The median of a set of vertices P of a graph G is the set of all vertices x of G minimizing the sum of
distances from x to all vertices of P . In this paper, we present a linear time algorithm to compute
medians in median graphs, improving over the existing quadratic time algorithm. We also present a
linear time algorithm to compute medians in the `1-cube complexes associated with median graphs.
Median graphs constitute the principal class of graphs investigated in metric graph theory and
have a rich geometric and combinatorial structure. Our algorithm is based on the majority rule
characterization of medians in median graphs and on a fast computation of parallelism classes of
edges (Θ-classes or hyperplanes) via Lexicographic Breadth First Search (LexBFS). To prove the
correctness of our algorithm, we show that any LexBFS ordering of the vertices of G satisfies the
following fellow traveler property of independent interest: the parents of any two adjacent vertices of
G are also adjacent.
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1 Introduction

The median problem (also called the Fermat-Torricelli problem or the Weber problem) is
one of the oldest optimization problems in Euclidean geometry [43]. The median problem
can be defined for any metric space (X, d): given a finite set P ⊂ X of points with positive
weights, compute the points x of X minimizing the sum of the distances from x to the points
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of P multiplied by their weights. The median problem in graphs is one of the principal
models in network location theory [35, 62] and is equivalent to finding nodes with largest
closeness centrality in network analysis [14, 15, 57]. It also occurs in social group choice
as the Kemeny median. In the consensus problem in social group choice, given individual
rankings one has to compute a consensual group decision. By Arrow’s impossibility theorem,
there is no consensus function satisfying natural “fairness” axioms. It is also well-known that
the majority rule leads to Condorcet’s paradox, i.e., to the existence of cycles in the majority
relation. In this respect, the Kemeny median [39, 40] is an important consensus function
and corresponds to the median problem in graphs of permutahedra.

The median problem in Euclidean spaces cannot be solved in a symbolic form [6], but it
can be solved numerically by Weiszfeld’s algorithm [66] and its convergent modifications (see
e.g. [51]) and can be approximated in nearly linear time with arbitrary precision [26]. For
the `1-metric the median problem becomes much easier and can be solved by the majority
rule on coordinates, i.e., by taking as median a point whose ith coordinate is the median
of the list consisting of ith coordinates of the points of P . This kind of majority rule was
used in [38] to define centroids of trees (which coincide with their medians [32, 62]). For
graphs with n vertices, m edges, and standard graph distance, the median problem can be
trivially solved in O(nm) time by solving the All Pairs Shortest Paths (APSP) problem. One
may ask if APSP is necessary to compute the median. However, by [1] APSP and median
problem are equivalent under subcubic reductions. It was also shown in [2] that computing
the medians of sparse graphs in subquadratic time refutes the HS (Hitting Set) conjecture.

In this paper, we show that the medians in median graphs can be computed in optimal
O(m) time (i.e., without solving APSP). Median graphs are the graphs in which each triplet
u, v, w of vertices has a unique median, i.e., a vertex metrically lying between u and v, v
and w, and w and u. They originally arise in universal algebra [4, 18] and their properties
have been first investigated in [45, 49]. It was shown in [24, 54] that the cube complexes
of median graphs are exactly the CAT(0) cube complexes, i.e., cube complexes of global
non-positive curvature. CAT(0) cube complexes, introduced and nicely characterized in [33]
in a local-to-global way, are now one of the principal objects of investigation in geometric
group theory [59]. Median graphs also occur in Computer Science: by [3, 13] they are exactly
the domains of event structures (one of the basic abstract models of concurrency) [50] and
median-closed subsets of hypercubes are exactly the solution sets of 2-SAT formulas [48, 60].
The bijections between median graphs, CAT(0) cube complexes, and event structures have
been used in [20, 21, 25] to disprove three conjectures in concurrency [56, 63, 64]. Finally,
median graphs, viewed as median closures of sets of vertices of a hypercube, contain all most
parsimonious (Steiner) trees [12] and as such have been extensively applied in human genetics.
For a survey on median graphs and their connections with other discrete and geometric
structures, see the books [36, 42], the surveys [10, 41], and the paper [22].

As we noticed, median graphs have strong geometric and metric properties. For the
median problem, the concept of Θ-classes is essential. Two edges of a median graph G are
called opposite if they are opposite in a common square of G. The equivalence relation Θ is
the reflexive and transitive closure of this oppositeness relation. Each equivalence class of Θ
is called a Θ-class (Θ-classes correspond to hyperplanes in CAT(0) cube complexes [58] and
to events in event structures [50]). Removing the edges of a Θ-class, the graph G is split
into two connected components which are convex and gated. Thus they are called halfspaces
of G. The convexity of halfspaces implies via [29] that any median graph G isometrically
embeds into a hypercube of dimension equals to the number q of Θ-classes of G.
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Our results and motivation. In this paper, we present a linear time algorithm to compute
medians in median graphs and in `1-cube complexes associated to median graphs. Our main
motivation and technique stem from the majority rule characterization of medians in median
graphs and the unimodality of the median function [8, 61]. Even if the majority rule is simple
to state and is a commonly approved consensus method, its algorithmic implementation is
less trivial if one has to avoid the computation of the distance matrix. On the other hand,
the unimodality of the median function implies that one may find the median set by using
local search. More generally, consider a partial orientation of the input median graph G,
where an edge uv is transformed into the arc −→uv iff the median function at u is larger than
the median function at v (in case of equality we do not orient the edge uv). Then the median
set is exactly the set of all the sinks in this partial orientation of G. Therefore, it remains to
compare for every edge uv the median function at u and at v in constant time. For this we
use the partition of the edge-set of a median graph G into Θ-classes and; for every Θ-class,
the partition of the vertex-set of G into complementary halfspaces. It is easy to notice that
all edges of the same Θ-class are oriented in the same way because for any such edge uv
the difference between the median functions at u and at v, respectively, can be expressed as
the sum of weights of all vertices in the same halfspace as v minus the sum of weights of all
vertices in the same halfspace as u.

Our main technical contribution is a new method for computing the Θ-classes of a
median graph G with n vertices and m edges in linear O(m) time. For this, we prove that
Lexicographic Breadth First Search (LexBFS) [55] produces an ordering of the vertices of
G satisfying the following fellow traveler property: for any edge uv, the parents of u and v
are adjacent. With the Θ-classes of G at hand and the majority rule for halfspaces, we can
compute the weights of halfspaces of G in optimal time O(m), leading to an algorithm of
the same complexity for computing the median set. We adapt our method to compute in
linear time the median of a finite set of points in the `1-cube complex associated with G.
The method can be applied to compute the total distance (the Wiener index) in optimal
O(m) time and the distance matrix of G in optimal O(n2) time (see the full version [16]).

Related work. The study of medians in median graphs originated in [8, 61] and continued
in [7, 44, 46, 47, 53]. Using different techniques and extending the majority rule for trees [32],
the following majority rule has been established in [8, 61]: a halfspace H of a median graph
G contains at least one median iff H contains at least one half of the total weight of G;
moreover, the median of G coincides with the intersection of halfspaces of G containing
strictly more than half of the total weight. Hence the median set is always convex. It was
shown in [61] that the median function of a median graph is weakly convex (an analog of
a discrete convex function). This convexity property characterizes all graphs in which all
local medians are global [9]. A nice axiomatic characterization of medians of median graphs
via three basic axioms has been obtained in [47]. More recently, [53] characterized median
graphs as closed Condorcet domains, i.e., as sets of linear orders with the property that,
whenever the preferences of all voters belong to the set, their majority relation has no cycles
and also belongs to the set. In the full version [16] we show that the median graphs are the
bipartite graphs in which the medians are characterized by the majority rule.

Prior to our work, the best algorithm to compute the Θ-classes of a median graph G has
complexity O(m logn) [34]. It was used in [34] to recognize median graphs in subquadratic
time. The previous best algorithm for the median problem in a median graph G with n

vertices and q Θ-classes has complexity O(qn) [7] which is quadratic in the worst case. Indeed
q may be linear in n (as in the case of trees) and is always at least d( d

√
n− 1) as shown below
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(d is the largest dimension of a hypercube which is an induced subgraph of G). Additionally,
[7] assumes that an isometric embedding of G in a q-hypercube is given. The description of
such an embedding has already size O(qn). The Θ-classes of a median graph G correspond
to the coordinates of the smallest hypercube in which G isometrically embeds (this is called
the isometric dimension of G [36]). Thus one can define Θ-classes for all partial cubes, i.e.,
graphs isometrically embeddable into hypercubes. An efficient computation (in O(n2) time)
of all Θ-classes was the main step of the O(n2) algorithm of [30] for recognizing partial cubes.
The fellow-traveler property (which is essential in our computation of Θ-classes) is a notion
coming from geometric group theory [31] and is a main tool to prove the (bi)automaticity
of a group. In a slightly stronger form it allows to establish the dismantlability of graphs
(see [19, 23, 24] for examples of classes of graphs in which a fellow traveler order was obtained
by BFS or LexBFS). LexBFS has been used to solve optimally several algorithmic problems
in different classes of graphs, in particular for their recognition (for a survey, see [28]).

Cube complexes of median graphs with `1-metric have been investigated in [65]. The
same complexes but endowed with the `2-metric are exactly the CAT(0) cube complexes.
As we noticed above, they are of great importance in geometric group theory [59]. The
paper [17] established that the space of trees with a fixed set of leaves is a CAT(0) cube
complex. A polynomial-time algorithm to compute the `2-distance between two points in
this space was proposed in [52]. This result was recently extended in [37] to all CAT(0) cube
complexes. A convergent numerical algorithm for the median problem in CAT(0) spaces was
given in [5].

2 Preliminaries

All graphs G = (V,E) in this paper are finite, undirected, simple, and connected; V is the
vertex-set and E is the edge-set of G. We write u ∼ v if u, v ∈ V are adjacent. The distance
d(u, v) = dG(u, v) between two vertices u and v is the length of a shortest (u, v)-path, and the
interval I(u, v) = {x ∈ V : d(u, x) + d(x, v) = d(u, v)} consists of all the vertices on shortest
(u, v)–paths. A set H (or the subgraph induced by H) is convex if I(u, v) ⊆ H for any two
vertices u, v of H; H is a halfspace if H and V \H are convex. Finally, H is gated if for every
vertex v ∈ V , there exists a (unique) vertex v′ ∈ V (H) (the gate of v in H) such that for all
u ∈ V (H), v′ ∈ I(u, v). The k-dimensional hypercube Qk has all subsets of {1, . . . , k} as the
vertex-set and A ∼ B iff |A4B| = 1. A graph G is called median if I(x, y) ∩ I(y, z) ∩ I(z, x)
is a singleton for each triplet x, y, z of vertices; this unique intersection vertex m(x, y, z) is
called the median of x, y, z. Median graphs are bipartite and do not contain induced K2,3.
The dimension d = dim(G) of a median graph G is the largest dimension of a hypercube of
G. In G, we refer to the 4-cycles as squares, and the hypercube subgraphs as cubes.

A map w : V → R+ ∪ {0} is called a weight function. For a vertex v ∈ V , w(v) denotes
the weight of v (for a set S ⊆ V , w(S) =

∑
x∈S w(x) denotes the weight of S). Then Fw(x) =∑

v∈V w(v)d(x, v) is called the median function of the graph G and a vertex x minimizing
Fw is called a median vertex of G. Finally, Medw(G) = {x ∈ V : x is a median of G} is
called the median set (or simply, the median) of G with respect to the weight function w.

3 Facts about median graphs

We recall the principal properties of median graphs used in the algorithms. Some of those
results are a part of folklore for the people working in metric graph theory and some other
results can be found in the papers [45, 46] by Mulder.
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Figure 1 (a) In dashed, the Θ-class Ei of D, its two complementary halfspaces H ′
i and H ′′

i and
their boundaries ∂H ′

i and ∂H ′′
i , (b) two peripheral halfspaces of D, and (c) a LexBFS ordering of D.

From now on, G = (V,E) is a median graph with n vertices and m edges. The first three
properties follow from the definition.

I Lemma 1 (Quadrangle Condition). For any vertices u, v, w, z of G such that v, w ∼ z and
d(u, v) = d(u,w) = d(u, z)−1 = k, there is a unique vertex x ∼ v, w such that d(u, x) = k−1.

I Lemma 2 (Cube Condition). Any three squares of G, pairwise intersecting in three edges
and all three intersecting in a single vertex, belong to a 3-dimensional cube of G.

I Lemma 3 (Convex=Gated). A subgraph of G is convex if and only if it is gated. Each
convex subgraph S of G is the intersection of all halfspaces containing S.

Two edges uv and u′v′ of G are in relation Θ0 if uvv′u′ is a square of G and uv and u′v′
are opposite edges of this square. Let Θ denote the reflexive and transitive closure of Θ0.
Denote by E1, . . . , Eq the equivalence classes of Θ and call them Θ-classes (see Fig. 1(a)).

I Lemma 4. [45] (Halfspaces and Θ-classes). For any Θ-class Ei of G, the graph Gi =
(V,E \Ei) consists of exactly two connected components H ′i and H ′′i that are halfspaces of
G; all halfspaces of G have this form. If uv ∈ Ei, then H ′i and H ′′i are the subgraphs of G
induced by W (u, v) = {x ∈ V : d(u, x) < d(v, x)} and W (v, u) = {x ∈ V : d(v, x) < d(u, x)}.

Two Θ-classes Ei and Ej are crossing if each halfspace of the pair {H ′i, H ′′i } intersects
each halfspace of the pair {H ′j , H ′′j }; otherwise, Ei and Ej are called laminar.

I Lemma 5 (Crossing Θ-classes). Any vertex v∈V (G) and incident edges vv1∈E1, . . . , vvk∈
Ek belong to a single cube of G if and only if E1, . . . , Ek are pairwise crossing.

The boundary ∂H ′i of a halfspace H ′i is the subgraph of H ′i induced by all vertices v′ of H ′i
having a neighbor v′′ in H ′′i . A halfspace H ′i of G is peripheral if ∂H ′i = H ′i (See Fig. 1(b)).

I Lemma 6 (Boundaries). For any Θ-class Ei of G, ∂H ′i and ∂H ′′i are isomorphic and gated.

From now on, we suppose that G is rooted at an arbitrary vertex v0 called the basepoint.
For any Θ-class Ei, we assume that v0 belongs to the halfspace H ′′i . Let d(v0, H

′
i) =

min{d(v0, x) : x ∈ H ′i}. Since H ′i is gated, the gate of v0 in H ′i is the unique vertex of H ′i
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10:6 Medians in Median Graphs in Linear Time

at distance d(v0, H
′
i) from v0. Since median graphs are bipartite, the choice of v0 defines

a canonical orientation of the edges of G: uv ∈ E is oriented from u to v (notation −→uv) if
d(v0, u) < d(v0, v). Let −→Gv0 denote the resulting oriented pointed graph.

I Lemma 7. [46] (Peripheral Halfspaces). Any halfspace H ′i maximizing d(v0, H
′
i) is peripheral.

For a vertex v, all vertices u such that −→uv is an edge of −→Gv0 are called predecessors of
v and are denoted by Λ(v). Equivalently, Λ(v) consists of all neighbors of v in the interval
I(v0, v). A median graph G satisfies the downward cube property if any vertex v and all its
predecessors Λ(v) belong to a single cube of G.

I Lemma 8. [45] (Downward Cube Property). G satisfies the downward cube property.

Lemma 8 immediately implies the following upper bound on the number of edges of G:

I Corollary 9. If G has dimension d, then m ≤ dn ≤ n logn.

We give a sharp lower bound on the number q of Θ-classes, which is new to our knowledge.

I Proposition 10. If G has q Θ-classes and dimension d, then q ≥ d( d
√
n−1) and this bound

is tight.

Proof. Let Γ(G) be the crossing graph Γ(G) of G: V (Γ(G)) is the set of Θ-classes of G and
two Θ-classes are adjacent in Γ(G) if they are crossing. Note that |V (Γ(G))| = q. LetX(Γ(G))
be the clique complex of Γ(G). By the characterization of median graphs among ample
classes [11, Proposition 4], the number of vertices of G is equal to the number |X(Γ(G))| of
simplices of X(Γ(G)). Since G is of dimension d, by [11, Proposition 4], Γ(G) does not contain
cliques of size d+ 1. By Zykov’s theorem [68] (see also [67]), the number of k-simplices in
X(Γ(G)) is at most

(
d
k

) (
q
d

)k. Hence n = |V (G)| = |X(Γ(G))| ≤
∑d

k=0
(

d
k

) (
q
d

)k =
(
1 + q

d

)d

and thus q ≥ d( d
√
n− 1). Let now G be the Cartesian product of d paths of length ( d

√
n− 1).

Then G has ( d
√
n−1+1)d = n vertices and d( d

√
n−1) Θ-classes (each Θ-class of G corresponds

to an edge of one of factors). J

4 Computation of the Θ-classes via LexBFS

The Breadth-First Search (BFS) refines the basepoint order and defines the same orientation
−→
Gv0 of G. BFS uses a queue Q and the insertion in Q defines a total order < on the vertices
of G: x < y iff x is inserted in Q before y. When a vertex u arrives at the head of Q, it is
removed from Q and all not yet discovered neighbors v of u are inserted in Q; u becomes the
parent f(v) of v; for any vertex v 6= v0, f(v) is the smallest predecessor of v. The arcs

−−−→
f(v)v

define the BFS-tree of G. The Lexicographic Breadth-First Search (LexBFS), proposed in [55],
is a refinement of BFS. In BFS, if u and v have the same parent, then the algorithm order
them arbitrarily. Instead, the LexBFS chooses between u and v by considering the ordering
of their second-earliest predecessors. If only one of them has a second-earliest predecessor,
then that one is chosen. If both u and v have the same second-earliest predecessor, then the
tie is broken by considering their third-earliest predecessor, and so on (See Fig. 1(c)). The
LexBFS uses a set partitioning data structure and can be implemented in linear time [55].
In median graphs, the next lemma shows that it suffices to consider only the earliest and
second-earliest predecessors, leading to a simpler implementation of LexBFS:

I Lemma 11. If u and v are two vertices of a median graph G, then |Λ(u) ∩ Λ(v)| ≤ 1.
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Figure 2 Animated proof of Theorem 13.

During the execution of BFS (or LexBFS), one can assume that for each vertex v the set
Λ(v) of its predecessors is computed as an ordered list Λ<(v) (ordered by <). By Lemma 8,
|Λ<(v)| ≤ d := dim(G). Note that < also gives rise to a total order on the edges of G: for
two edges uv and u′v′ with u < v and u′ < v′ we have uv < u′v′ iff u < u′ or if u = u′ and
v < v′. The next lemma characterizes the first edge in the order < of each Θ-class Ei.

I Lemma 12. An edge uv ∈ Ei with d(v0, u) < d(v0, v) is the first edge of Ei iff Λ<(v) = {u}.

A graph G satisfies the fellow-traveler property if for any LexBFS ordering of the vertices
of G, for any edge uv with v0 /∈ {u, v}, the parents f(u) and f(v) are adjacent.

I Theorem 13. Any median graph G satisfies the fellow-traveler property.

Proof. Let < be an arbitrary LexBFS order of the vertices of G and f be its parent map.
Since any LexBFS order is a BFS order, < and f satisfy the following properties of BFS:
(BFS1) if u < v, then f(u) ≤ f(v); (BFS3) if v 6= v0, then f(v) = min<{u : u ∼ v};
(BFS2) if f(u) < f(v), then u < v; (BFS4) if u < v and v ∼ f(u), then f(v) = f(u).
Notice also the following simple but useful property:

I Lemma 14. If abcd is a square of G with d(v0, c) = k, d(v0, b) = d(v0, d) = k+1, d(v0, a) =
k + 2 and f(a) = b, and the edge ad satisfies the fellow-traveler property, then f(d) = c.

We prove the fellow-traveler property by induction on the total order on the edges of
G defined by <. The proof is illustrated by several figures (the arcs of the parent map are
represented in bold). We use the following convention: all vertices having the same distance
to the basepoint v0 will be labeled by the same letter but will be indexed differently; for
example, w1 and w2 are two vertices having the same distance to v0.

Suppose by way of contradiction that e = u1v3 with v3 < u1 is the first edge in the order
< such that the parents f(u1) and f(v3) of u1 and v3 are not adjacent. Then necessarily
f(u1) 6= v3. Set v1 = f(u1) and w3 = f(v3) (Fig. 2a). Since d(v0, v1) = d(v0, v3) and
u1 ∼ v1, v3, by the quadrangle condition v1 and v3 have a common neighbor at distance
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10:8 Medians in Median Graphs in Linear Time

d(v0, v1)−1 from v0. This vertex cannot be w3, otherwise f(u1) and f(v3) would be adjacent.
Therefore there is a vertex w4 ∼ v1, v3 at distance d(v0, v1)−1 from v0 (Fig. 2b). By induction
hypothesis, the parent x3 = f(w4) of w4 is adjacent to w3 = f(v3). Since u1 ∼ v1 = f(u1), v3
and v3 ∼ w3 = f(v3), w4, by (BFS3) we conclude that v1 < v3 and w3 < w4. By (BFS2),
f(v1) ≤ f(v3), whence f(v1) ≤ w3 and since f(v1) 6= f(v3) (otherwise, f(u1) ∼ f(v3)),
we deduce that f(v1) < w3 < w4. Hence f(v1) 6= w4. Set w1 = f(v1). By the induction
hypothesis, f(v1) = w1 is adjacent to f(w4) = x3 (Fig. 2c). By the cube condition applied to
the squares w4v1w1x3, w4v1u1v3, and w4v3w3x3 there is a vertex v2 adjacent to u1, w1, and
w3. Since u1 ∼ v2 and f(u1) = v1, by (BFS3) we obtain v1 < v2. Since v2 is adjacent to w1
and w1 = f(v1), by (BFS4) we obtain f(v2) = f(v1) = w1, and by (BFS2), v2 < v3. Since
f(v2) = w1, by Lemma 14 for v2w1x3w3, we obtain f(w3) = x3 (Fig. 2d). Since v1 < v2,
f(v1) = f(v2) = w1, and v2 ∼ w1, w3, by LexBFS v1 is adjacent to a predecessor different
from w1 and smaller than w3. Since w3 < w4, this predecessor cannot be w4. Denote by w2
the second smallest predecessor of v1 (Fig. 2e) and note that w1 < w2 < w3 < w4.

By the quadrangle condition, w2 and w4 are adjacent to a vertex x5, which is necessarily
different from x3 because G is K2,3-free. By the induction hypothesis, f(w2) and f(v1) = w1
are adjacent. Then f(w2) 6= x3, x5, otherwise we obtain a forbidden K2,3. Set f(w2) = x2.
Analogously, f(x5) = y5 and f(w2) = x2 are adjacent as well as f(x5) = y5 and f(w4) = x3
(Fig. 2f). By (BFS1), x2 = f(w2) < f(w3) = x3 and by (BFS3), x3 = f(w4) < x5. Since
w3 < w4 with f(w3) = f(w4) and w4 is adjacent to x5, by LexBFS w3 must have a predecessor
different from x3 and smaller than x5. This vertex cannot be x2 by (BFS3) since f(w3) = x3.
Denote this predecessor of w3 by x4 and observe that x2 < x3 < x4 < x5. By the induction
hypothesis, the parent of x4 is adjacent to f(w3) = x3. Let y4 = f(x4).

If y4 = y5, applying the cube condition to the squares x3w3x4y5, x3w4x5y5, and x3w4v3w3
we find a vertex w adjacent to x4, v3, and x5. Applying the cube condition to the squares
w4v3wx5, w4v1w2x5, and w4v1u1v3 we find a vertex v adjacent to u1, w2, and w. Since
v ∼ w2, by (BFS3) f(v) ≤ w2 < w3 = f(v3), hence by (BFS2) we obtain v < v3. Therefore
we can apply the induction hypothesis, and by Lemma 14 for u1v1w2v, we deduce that
f(v) = w2. By Lemma 14 for v3w3x4w, we deduce that f(w) = x4 (Fig. 2g). Applying
the induction hypothesis to the edge vw we have that f(v) = w2 is adjacent to f(w) = x4,
yielding a forbidden K2,3 induced by v, x5, x4, w, w2 (Fig. 2g). All this shows that y4 6= y5.
By the quadrangle condition, y5 and y4 have a common neighbor z3 (Fig. 2h).

Recall that x2 < x3 < x4 < x5, and note that by (BFS1), y4 = f(x4) < f(x5) = y5. We
denote by H the subgraph of G induced by the vertices V ′ = {w1, x2, x3, x4, x5, y4, y5, z3}.
The set of edges of H is E′ = {z3y4, z3y5, y4x3, y4x4, y5x2, y5x3, y5x5, x2w1, x3w1}. To
conclude the proof, we use the following technical lemma.

I Lemma 15. Let H = (V ′, E′) (Fig. 3a) be an induced graph of G, where d(v0, w1) =
d(v0, x2) + 1 = · · · = d(v0, x5) + 1 = d(v0, y4) + 2 = d(v0, y5) + 2 = d(v0, z3) + 3 and
f(x5) = y5 and f(x4) = y4, such that x2 < x3 < x4 < x5 and y4 < y5. If G satisfies
the fellow-traveler property up to distance d(v0, w1), then there exists a vertex x0 such that
x0 < x2 and x0 ∼ w1, y4 (Fig. 3b).

Since G contains a subgraph H satisfying the conditions of Lemma 15, there exists a
vertex x0 such that x0 < x2 and x0 ∼ w1, y4 (Fig. 2i). By the cube condition applied to
the squares x3w1x0y4, x3w1v2w3, and x3w3x4y4, there exists w0 ∼ x0, v2, x4 (Fig. 2i). Since
x0 is adjacent to w0, by (BFS3) f(w0) ≤ x0 < x2 = f(w2). By (BFS2), w0 < w2. Recall
that f(v1) = w1 = f(v2) and that w2 is the second-earliest predecessor of v1. Since w0 < w2
and w0 is a predecessor of v2, by LexBFS we deduce that v2 < v1. Since v1 and v2 are
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Figure 3 The induced subgraph H in Lemma 15.

both adjacent to u1 we obtain a contradiction with f(u1) = v1. This contradiction shows
that any median graph G satisfies the fellow-traveller property. This finishes the proof of
Theorem 13. J

Now we use Theorem 13 to compute the Θ-classes of G. We run LexBFS and return
a LexBFS-ordering of V (G) and E(G) and the ordered lists Λ<(v), v ∈ V . Then consider
the edges of G in the LexBFS-order. Pick the first unprocessed edge uv and suppose that
u ∈ Λ<(v). If Λ<(v) = {u}, by Lemma 12, uv is the first edge of its Θ-class, thus we create
a new Θ-class Ei and insert uv as the first edge of Ei. We call uv the root of Ei and keep
d(v0, v) as the distance from v0 to H ′i. Now suppose |Λ<(v)| ≥ 2. We consider two cases:
(i) u 6= f(v) and (ii) u = f(v). For (i), by Theorem 13, uv and f(u)f(v) are opposite edges
of a square. Therefore uv belongs to the Θ-class of f(u)f(v) (which was already computed
because f(u)f(v) < uv). In order to recover the Θ-class of the edge f(u)f(v) in constant
time, we use a (non-initialized) matrix A whose rows and columns correspond to the vertices
of G such that A[x, y] contains the Θ-class of the edge xy when x and y are adjacent and the
Θ-class of xy has already been computed and A[x, y] is undefined if x and y are not adjacent
or if the Θ-class of xy has not been computed yet. For (ii), pick any x ∈ Λ<(v), x 6= u. By
Theorem 13, uv = f(v)v and f(x)x are opposite edges of a square. Since f(x)x appears
before uv in the LexBFS order, the Θ-class of f(x)x has already been computed, and the
algorithm inserts uv in the Θ-class of f(x)x. Each Θ-class Ei is totally ordered by the order
in which the edges are inserted in Ei. Consequently, we obtain:

I Theorem 16. The Θ-classes of a median graph G can be computed in O(m) time.

5 The median of G

We use Theorem 16 to compute the median set Medw(G) of a median graph G in O(m) time.
We also use the existence of peripheral halfspaces and the majority rule.

5.1 Peripheral peeling
The order E1, E2, . . . , Eq in which the Θ-classes Ei of G are constructed corresponds to the
order of the distances from v0 to H ′i: if i < j then d(v0, H

′
i) ≤ d(v0, H

′
j) (recall that v0 ∈ H ′′i ).

By Lemma 7, the halfspace H ′q of Eq is peripheral. If we contract all edges of Eq (i.e., we
identify the vertices of H ′q = ∂H ′q with their neighbors in ∂H ′′q ) we get a smaller median
graph G̃ = H ′′q ; G̃ has q−1 Θ-classes Ẽ1, . . . , Ẽq−1, where Ẽi consists of the edges of Ei in G̃.
The halfspaces of G̃ have the form H̃ ′i = H ′i ∩H ′′q and H̃ ′′i = H ′′i ∩H ′′q . Then Ẽ1, . . . , Ẽq−1

corresponds to the ordering of the halfspaces H̃ ′1, . . . , H̃ ′q−1 of G̃ by their distances to v0.
Hence the last halfspace H̃ ′q−1 is peripheral in G̃. Thus the ordering Eq, Eq−1, . . . , E1 of
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the Θ-classes of G provides us with a set Gq = G,Gq−1 = G̃, . . . , G0 of median graphs such
that G0 is a single vertex and for each i ≥ 1, the Θ-class Ei defines a peripheral halfspace
in the graph Gi obtained after the successive contractions of the peripheral halfspaces of
Gq, Gq−1, . . . , Gi+1 defined by Eq, Eq−1, . . . , Ei+1. We call Gq, Gq−1, . . . , G0 a peripheral
peeling of G. Since each vertex of G and each Θ-class is contracted only once, we do not need
to explicitly compute the restriction of each Θ-class of G to each Gi. For this it is enough
to keep for each vertex v a variable indicating whether this vertex belongs to an already
contracted peripheral halfspace or not. Hence, when the ith Θ-class must be contracted, we
simply traverse the edges of Ei and select those edges whose both ends are not yet contracted.

5.2 Computing the weights of the halfspaces of G

We use a peripheral peeling Gq, Gq−1, . . . , G0 of G to compute the weights w(H ′i) and w(H ′′i ),
i = 1, . . . , q of all halfspaces of G. As above, let G̃ be obtained from G by contracting the
Θ-class Eq. Consider the weight function w̃ on G̃ = H ′′q defined as follows:

w̃(v′′) =
{
w(v′′) + w(v′) if v′′ ∈ ∂H ′′q , v′ ∈ H ′q, and v′′ ∼ v′,
w(v′′) if v′′ ∈ H ′′q \ ∂H ′′q .

(5.1)

I Lemma 17. For any Θ-class Ẽi of G̃, w̃(H̃ ′i) = w(H ′i) and w̃(H ′′i ) = w(H ′′i ).

By Lemma 17, to compute all w(H ′i) and w(H ′′i ), it suffices to compute the weight of the
peripheral halfspace of Ei in the graph Gi, set it as w(H ′i), and set w(H ′′i ) := w(G)−w(H ′i).

Let G be the current median graph, let H ′q be a peripheral halfspace of G, and G̃ = H ′′q
be the graph obtained from G by contracting the edges of Eq. To compute w(H ′q), we
traverse the vertices of H ′q (by considering the edges of Eq). Set w(H ′′q ) = w(G)− w(H ′q).
Let w̃ be the weight function on G̃ defined by Equation 5.1. Clearly, w̃ can be computed in
O(|V (H ′q)|) = O(|Eq|) time. Then by Lemma 17 it suffices to recursively apply the algorithm
to the graph G̃ and the weight function w̃. Since each edge of G is considered only when its
Θ-class is contracted, the algorithm has complexity O(m).

5.3 The median Medw(G)
We start with a simple property of the median function Fw that follows from Lemma 4:

I Lemma 18. If xy ∈ Ei with x ∈ H ′i and y ∈ H ′′i , then Fw(x)− Fw(y) = w(H ′′i )− w(H ′i).

A halfspace H of G is majoritary if w(H) > 1
2w(G), minoritary if w(H) < 1

2w(G), and
egalitarian if w(H) = 1

2w(G). Let Medloc
w (G) = {v ∈ V : Fw(v) ≤ Fw(u),∀u ∼ v} be the set

of local medians of G. We continue with the majority rule:

I Proposition 19. [8, 61]. Medw(G) is the intersection of all majoritary halfspaces and
Medw(G) intersects all egalitarian halfspaces. If H ′i and H ′′i are egalitarian halfspaces, then
Medw(G) intersects both H ′i and H ′′i . Moreover, Medw(G) = Medloc

w (G).

We use Proposition 19 and the weights of halfspaces computed above to derive Medw(G).
For this, we define a new orientation of the edges v′v′′ of each Θ-class Ei of G as follows. If
v′ ∈ H ′i and v′′ ∈ H ′′i , then we direct v′v′′ from v′ to v′′ if w(H ′′i ) > w(H ′i) and from v′′ to
v′ if w(H ′i) > w(H ′′i ). If w(H ′i) = w(H ′′i ), then the edge v′v′′ is not directed. We denote this
partially directed graph by −→G . A vertex u of G is a sink of −→G if there is no edge uv directed
in −→G from u to v. From Lemma 18, u is a sink of −→G if and only if u is a local median of G.
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By Proposition 19, Medloc
w (G) = Medw(G) and thus Medw(G) coincides with the set S(−→G)

of sinks of −→G . Note that in the graph induced by Medw(G), all edges are non-oriented in −→G .
Once all w(H ′i) and w(H ′′i ) have been computed, the orientation −→G of G can be constructed
in O(m) by traversing all Θ-classes Ei of G. The graph induced by S(−→G) can then be found
in O(m).

I Theorem 20. The median Medw(G) of a median graph G can be computed in O(m) time.

I Corollary 21. If w(G) > 0, we can find u, v ∈ V (G) in O(m) such that Medw(G) = I(u, v).

6 The median problem in the cube complex of G

We describe a linear time algorithm to compute medians in cube complexes of median graphs.

6.1 The main result
The problem. Let G be the cube complex of a median graph G obtained by replacing each
graphic cube of G by a unit solid cube and by isometrically identifying common subcubes. We
refer to G as to the geometric realization of G (see Fig. 4(a)). We suppose that G is endowed
with the intrinsic `1-metric d1. Let P be a finite set of points of (G, d1) (called terminals) and
let w be a weight function on G such that w(p) > 0 if p ∈ P and w(p) = 0 if p /∈ P . The goal
of the median problem is to compute the set Medw(G) of median points of G, i.e., the set of
all points x ∈ G minimizing the function Fw(x) =

∑
p∈G w(p)d1(x, p) =

∑
p∈P w(p)d1(x, p).

The input. The cube complex G is given by its 1-skeleton G. Each terminal p ∈ P is given
by its coordinates in the smallest cube Q(p) of G containing p. Namely, we give a vertex v(p)
of Q(p) together with its neighbors in Q(p) and the coordinates of p in the embedding of
Q(p) as a unit cube in which v(p) is the origin of coordinates. Let δ be the sum of the sizes
of the encodings of the points of P . Thus the input of the median problem has size O(m+ δ).

The output. Unlike Medw(G) (which is a gated subgraph of G), Medw(G) is not a sub-
complex of G. Nevertheless we show that Medw(G) is a subcomplex of the box complex Ĝ
obtained by subdividing G, using the hyperplanes passing via the terminals of P . The output
is the 1-skeleton M̂ of Medw(Ĝ) and Medw(Ĝ), and the local coordinates of the vertices of
M̂ in G. We show that the output has linear size O(m).

I Theorem 22. The 1-skeleton M̂ of Medw(G) can be computed in linear time O(m+ δ).

6.2 Geometric halfspaces and hyperplanes
In the following, we fix a basepoint v0 of G. For each point x of G, let Q(x) be the smallest
cube of G containing x and let v(x) be the gate of v0 in Q(x). For each Θ-class Ei defining
a dimension of Q(x), let εi(x) be the coordinate of x along Ei in the embedding of Q(x)
as a unit cube in which v(x) is the origin. For a Θ-class Ei and a cube Q having Ei as a
dimension, the i-midcube of Q is the subspace of Q obtained by restricting the Ei-coordinate
of Q to 1

2 . A midhyperplane hi of G is the union of all i-midcubes. Each hi cuts G in two
components [58] and the union of each of these components with hi is called a geometric
halfspace (see Fig. 4(b)). The carrier Ni of Ei is the union of all cubes of G intersecting hi;
Ni is isomorphic to hi × [0, 1]. For a Θ-class Ei and 0 < ε < 1, the hyperplane hi(ε) is the
set of all points x ∈ Ni such that εi(x) = ε. Let hi(0) and hi(1) be the respective geometric

ICALP 2020



10:12 Medians in Median Graphs in Linear Time

(a) (b) (c)

Figure 4 (a) The cube complex D of D, (b) a hyperplane of D, and (c) the box complex D̂ and
Medw(D) (in gray) defined by 4 terminals of weight 1.

realizations of ∂H ′′i and ∂H ′i. Note that hi(ε) is obtained from hi by a translation. The open
carrier N ◦i is Ni \ (hi(0)∪ hi(1)). We denote by H′i(ε) and H′′i (ε) the geometric halfspaces of
G defined by hi(ε). Let H′′i := H′′i (0) and H′i := H′i(1); they are the geometric realizations of
H ′i and H ′′i . Note that G is the disjoint union of H′i, H′′i , and N ◦i .

6.3 The majority rule for G
The box complex Ĝ. By [65, Theorem 3.16], (G, d1) is a median metric space (i.e., |I(x, y)∩
I(y, z) ∩ I(z, x)| = 1 ∀x, y, z ∈ G). For each p ∈ P and each coordinate εi(p), consider the
hyperplane hi(εi(p)). All such hyperplanes subdivide G into a box complex Ĝ (see Fig. 4(c)).
Clearly, (Ĝ, d1) is a median space. By [65, Theorem 3.13], the 1-skeleton Ĝ of Ĝ is a median
graph and each point of P corresponds to a vertex of Ĝ. The Θ-classes of Ĝ are subdivisions of
the Θ-classes of G. In Ĝ, all edges of a Θ-class of Ĝ have the same length. Let Ĝl be the graph
Ĝ in which the edges have these lengths. Ĝl is a median space, thus Medw(Ĝl) = Medw(Ĝ)
by [61]. By Proposition 19, Medw(Ĝl) is the intersection of the majoritary halfspaces of Ĝ.

I Proposition 23. Medw(G) is the subcomplex of Ĝ defined by M̂ := Medw(Ĝl).

The Ei-median problems. We adapt now Proposition 19 to the continuous setting. For
a Θ-class of G, the Ei-median is the median of the multiset of points of the segment [0, 1]
weighted as follows: the weight wi(0) of 0 is w(H′′i ), the weight wi(1) of 1 is w(H′i), and for
each p ∈ P ∩N ◦i , there is a point εi(p) of [0, 1] of weight wi(εi(p)) = w(p). It is well-known
that this median is a segment [%′′i , %′i] defined by two consecutive points %′′i ≤ %′i of [0, 1] with
positive weights, and for any p ∈ P , εi(p) ≤ %′′i or εi(p) ≥ %′i. Majoritary, minoritary, and
egalitarian geometric halfspaces of G are defined in the same way as the halfspaces of G.

I Proposition 24. Let Ei be a Θ-class of G. Then the following holds:
1. Medw(G) ⊆ H′′i (resp., Medw(G) ⊆ H′i) if and only if H′′i is majoritary (resp., H′i is

majoritary), i.e., ρ′′i = ρ′i = 0 (resp. ρ′′i = ρ′i = 1);
2. Medw(G) ⊆ H′′i ∪N ◦i (resp., Medw(G) ⊆ H′i ∪N ◦i ) and Medw(G) intersects each of the

sets H′′i (resp., H′i) and N ◦i if and only if H′′i (resp. H′i) is egalitarian and H′i (resp.,
H′′i ) is minoritary, i.e., 0 = ρ′′i < ρ′i < 1 (resp. 0 < ρ′′i < ρ′i = 1);

3. Medw(G) ⊆ N ◦i if and only if H′i and H′′i are minoritary, i.e., 0 < ρ′′i ≤ ρ′i < 1;
4. Medw(G) intersects the three sets Hi,H′′i , and N ◦i if and only if H′i and H′′i are egalitarian,

i.e., 0 = ρ′′i ≤ ρ′i = 1 (and thus w(N ◦i ) = 0).
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6.4 The algorithm

Preprocessing the input. We first compute the Θ-classes E1, E2, . . . , Eq of G ordered by
increasing distance from v0 to H ′i. Using this, we can modify the input of the median problem
in linear time O(m+ δ) in such a way that for each terminal p ∈ P , v(p) is the gate of v0 in
Q(p). In this way, the local coordinates of the terminals of P coincide with the coordinates
εi(p) defined in Section 6.2. For each Θ-class Ei, let Pi = P ∩N ◦i = {p ∈ P : 0 < εi(p) < 1},
and for each point v ∈ V (G), let Pv = {p ∈ P : v(p) = v}. By traversing the points of P , we
can compute all sets Pi, 1 ≤ i ≤ q and Pv, v ∈ V and the weights of these sets in time O(δ).

Computing the Ei-medians. We first compute the weights wi(0) = w(H′′i ) and wi(1) =
w(H′i) of the geometric halfspaces H′′i ,H′i of G. For each vertex v of G, let w∗(v) = w(Pv).
Note that w∗(V ) = w(P ). Since v0 ∈ H ′′i , w∗(H ′i) = w(H′i) and w∗(H ′′i ) = w(H′′i ) + w(N o

i )
for each Θ-class Ei. We apply the algorithm of Section 5.2 to G with the weight function w∗
to compute the weights w∗(H ′i) and w∗(H ′′i ) of all halfspaces of G. Since w(N o

i ) = w(Pi) is
known, we can compute w(H′i) = w∗(H ′i) and w(H′′i ) = w∗(H ′′i )− w(Pi). This allows us to
complete the definition of each Ei-median problem which altogether can be solved linearly in
the size of the input [27, Problem 9.2], i.e., in time O(Σq

i=1(|Pi|+ 2)) = O(δ +m).

Computing M̂ . To compute the 1-skeleton M̂ of Medw(G) in Ĝ, we orient the edges of Ei

according to the weights of H′i and H′′i : v′v′′ ∈ Ei with v′ ∈ H′i and v′′ ∈ H′′i is directed from
v′′ to v′ if %′i = %′′i = 1 (H′i is majoritary) and from v′ to v′′ if %′i = %′′i = 0 (H′′i is majoritary),
otherwise the edges of Ei are not oriented. Denote this partially directed graph by −→G and let
S(−→G) be the set of sinks of −→G . A non-directed edge v′v′′ ∈ Ei defines a half-edge with origin
v′′ if %′′i > 0 and a half-edge with origin v′ if %′i < 1 (an edge v′v′′ such that 0 < %′′i ≤ %′i < 1
defines two half-edges).

I Proposition 25. For any vertex v of −→G , all half-edges with origin v define a cube Qv of G.

Proof. For any vertex v and two Θ-classes Ei, Ej defining half-edges with origin v, let vi and
vj be the respective neighbors of v in Ĝ along the directions Ei and Ej . By Proposition 24,
vvi and vvj point to two majoritary halfspaces of Ĝ (and G). Since those two halfspaces
cannot be disjoint, Ei and Ej are crossing. The proposition then follows from Lemma 5. J

For any cube Q of G, let B(Q) ⊆ Q be the subcomplex of Ĝ that is the Cartesian product
of the Ei-medians [%′′i , %′i] over all Θ-classes Ei wich define dimensions of Q. By the definition
of the Ei-medians, B(Q) is a single box of Ĝ and its vertices belong to Ĝ.

I Proposition 26. For any cube Q of G, if Q ∩Medw(G) 6= ∅, then B(Q) = Medw(G) ∩Q.

Proof. If a vertex x of B(Q) is not a median of Ĝ, by Proposition 19, x is not a local median
of Ĝ. Thus Fw(x) > Fw(y) for an edge xy of Ĝ. Suppose that xy is parallel to the edges of Ei

of G. Then εi(x) coincides with %′′i or %′i. Since Fw(x) > Fw(y), the halfspace W (y, x) of Ĝ
is majoritary, contrary to the assumption that εi(x) is an Ei-median point. Thus all vertices
of B(Q) belong to M̂ and by Proposition 23, B(Q) ⊆ Medw(G). It remains to show that
any point of Q \B(Q) is not median. Otherwise, by Proposition 23 and since M̂ is convex,
there exists a vertex y /∈ B(Q) of (M̂ ∩Q) \B(Q) adjacent to a vertex x of B(Q). Let xy be
parallel to Ei. Then εi(x) coincides with %′′i or %′i and εi(y) does not belong to the Ei-median
[%′′i , %′i]. Hence the halfspace W (y, x) of Ĝ is minoritary, contrary to Fw(y) = Fw(x). J
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For a sink v of −→G , let g(v) be the point of Qv such that for each Θ-class Ei of Qv,
εi(g(v)) = %′ if v ∈ H′i and εi(g(v)) = %′′ if v ∈ H′′i . Note that g(v) is the gate of v in B(Qv)
and g(v) is a vertex of M̂ . Conversely, let x ∈ M̂ and consider the cube Q(x). Since B(Q(x))
is a cell of Ĝ, for each Θ-class Ei of Q(x), we have εi(x) ∈ {%′i, %′′i }. Let f(x) be the vertex
of Q(x) such that f(x) ∈ H′′i if εi(x) = %′′i and f(x) ∈ H′i otherwise.

I Proposition 27. For any v ∈ S(−→G), g(v) is the gate of v in M̂ and Medw(G). For any
x ∈ M̂ , x = g(f(x)) is the gate of f(x) in M̂ and Medw(G).

Furthermore, for any edge uv of G with u, v ∈ S(−→G), either g(u) = g(v) or g(u)g(v) is
an edge of M̂ . Conversely, for any edge xy of M̂ , f(x)f(y) is an edge of G.

Proof. By Proposition 24 applied to G, Proposition 19 applied to Ĝ, and the definition of sinks
of
−→
Ĝ , g(v) is a sink of

−→
Ĝ , thus g(v) is a median of Ĝ and G. Since B(Qv) = Medw(G) ∩Qv

is gated and non-empty, the gate of v in Medw(G) belongs to B(Qv) and thus the gate of
v in Medw(G) is the gate of v on B(Qv). Conversely, εi(x) /∈ {0, 1} for any Ei defining a
dimension of Q(x), thus there is an Ei-half-edge with origin f(x). Pick now any Ej-edge
incident to v such that Ej does not define a dimension of Q(x). Without loss of generality,
assume that f(x) ∈ H′j . Then x ∈ H′j , yielding w(H′j) ≥ 1

2w(P ). By Proposition 24, %′j = 1
and thus f(x) is not the origin of an Ej-edge or Ej-half-edge. Consequently, Qf(x) = Q(x)
by Proposition 25 and by the definition of f(x) and g(f(x)), we have x = g(f(x)).

Let v′v′′ be an Ei-edge between two sinks of −→G with v′ ∈ H′i and v′′ ∈ H′′i . Let
x′ = g(v′) and x′′ = g(v′′) and assume that x′ 6= x′′. Let u′, u′′ be the points of v′v′′
such that εi(u′) = %′i and εi(u′′) = %′′i . Note that u′ and u′′ are adjacent vertices of
Ĝ and that u′ ∈ I

Ĝ
(v′, x′) and u′′ ∈ I

Ĝ
(v′′, x′′). In Ĝ, x′′ is the gate of u′′ (and x′ is

the gate of u′) in M̂ . Since d
Ĝ

(u′, x′) + d
Ĝ

(x′, x′′) = d
Ĝ

(u′, x′′) ≤ d
Ĝ

(u′′, x′′) + 1 and
d

Ĝ
(u′′, x′′) + d

Ĝ
(x′, x′′) = d

Ĝ
(u′′, x′) ≤ d

Ĝ
(u′, x′) + 1, we obtain that d

Ĝ
(x′, x′′) ≤ 1.

Any edge x′x′′ of M̂ is parallel to a Θ-class Ei of G. For any Θ-class Ej of Q(x′) (resp.
Q(x′′)) with j 6= i, Ej is a Θ-class of Q(x′′) (resp. Q(x′)) and εj(x′) = εj(x′′). By their
definition, f(x′) and f(x′′) can be separated only by Ei, i.e., dG(f(x′), f(x′′)) ≤ 1. Since f
is an injection from V (M̂) to S(−→G), necessarily f(x′) and f(x′′) are adjacent. J

The algorithm computes the set S(−→G) of all sinks of −→G and for each sink v ∈ S(−→G), it
computes the gate of g(v) of v in M̂ and the local coordinates of g(v) in G. The algorithm
returns

{
g(v) : v ∈ S(−→G)

}
as V (M̂) and

{
g(u)g(v) : uv ∈ E and u, v ∈ S(−→G)

}
as E(M̂).

Proposition 27 implies that V (M̂) and E(M̂) are correctly computed and that M̂ contains
at most n vertices and m edges. Moreover each vertex x of M̂ is the gate g(f(x)) of the
vertex f(x) of Q(x) that has dimension at most deg(f(x)). Hence the size of the description
of the vertices of M̂ is at most O(m). This finishes the proof of Theorem 22.
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We study the problem of coloring a given graph using a small number of colors in several well-
established models of computation for big data. These include the data streaming model, the general
graph query model, the massively parallel communication (MPC) model, and the CONGESTED-
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11:2 Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models

1 Introduction

Graph coloring is a fundamental topic in combinatorics and the corresponding algorithmic
problem of coloring an input graph with a small number of colors is a basic and heavily studied
problem in computer science. It has numerous applications, e.g., in scheduling [67, 49, 48],
air traffic flow management [15], frequency assignment in wireless networks [8, 56], and
register allocation [21, 26, 22]. More recently, vertex coloring has been used to compute seed
vertices in social networks that are then expanded to detect community structures in the
network [54].

Given an n-vertex graph G = (V,E), the task is to assign colors to the vertices in V

so that no two adjacent vertices get the same color. Doing so with the minimum possible
number of colors – called the chromatic number, χ(G) – is famously hard: it is NP-hard to
even approximate χ(G) to a factor of n1−ε for any constant ε > 0 [31, 68, 45]. In the face of
this hardness, it is algorithmically interesting to color G with a possibly suboptimal number
of colors depending upon tractable parameters of G. One such simple parameter is ∆, the
maximum degree: a trivial greedy algorithm colors G with ∆ + 1 colors in linear time.

We study graph coloring in a number of space-constrained and data-access-constrained
settings, including the data streaming model, a query model, and certain distributed comput-
ing models. As expected, coloring using the optimal number of colors is hard in these models.
Abboud et al. [1] show that coloring an n-vertex graph G with χ(G) colors in the p-pass
streaming setting requires Ω(n2/p) space, and checking c-colorability for 3 6 c < n requires
Ω((n− c)2/p) space. In such constrained settings, even finding a coloring with “about ∆”
colors is a fairly nontrivial problem that has been studied from various angles in a flurry
of research over the last decade [5, 10, 23, 24, 40, 59]. In a recent breakthrough (awarded
Best Paper at SODA 2019), Assadi, Chen, and Khanna [5] gave sublinear algorithms for
(∆ + 1)-coloring an input graph in such models.

In this work, we focus on colorings that use “about κ” colors, where κ = κ(G) is the
degeneracy of G, a parameter that improves upon ∆. It is defined as follows: κ = min{k :
every induced subgraph of G has a vertex of degree at most k}. Every graph is (κ + 1)-
colorable. Clearly, κ 6 ∆ and can be much smaller than ∆ for sparse graphs and real-world
graphs; see Table 2. Thus, our aim is to use fewer colors when (∆ + 1)-coloring might be
wasteful. A closely related parameter is α(G), the arboricity of the graph, which is the
minimum number of forests into which the set of edges of G can be partitioned. It is known
that α 6 κ < 2α. A number of works has studied the O(α)-coloring problem in distributed
computing models [11, 12, 35, 36, 47]. However, to the best of our knowledge, such coloring
algorithms were unknown in the data streaming and graph query models.

There is a simple greedy algorithm that runs in linear time and produces a (κ+1)-coloring;
see Section 3. However, just as before, when processing a massive graph under the constraints
of either the space-bounded streaming model or certain distributed computing models, the
inherently sequential nature of the greedy algorithm makes it infeasible. We overcome this
barrier with a very simple framework: decompose the graph into smaller subgraphs so as to
store all the blocks in our limited memory, and then run the greedy algorithm on each block.
We show that this basic framework (with careful implementation in the respective models)
suffices for obtaining the colorings we seek.

On the other hand, we give a number of lower bounds showing that, despite its simplicity,
our algorithmic framework does about as good a job as sublinear algorithms can. In particular,
no randomized algorithm can achieve (κ+O(1))-colorings without spending Ω(n2) space in
the streaming model or Ω(n2) queries in the query model.
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1.1 Our Results and Techniques
Algorithms. We give new graph coloring algorithms, parametrized by the degeneracy κ, in
the following models:
(1) the data streaming model, where the input is a stream of edge insertions and deletions

(i.e., a dynamic graph stream) resulting in the eventual graph to be colored and we are
limited to a work space of Õ(n) bits1, the so-called semi-streaming setting [32];

(2) the general graph query model [38], where we may access the graph using only neighbor
queries (what is the ith neighbor of x?) and pair queries (are x and y adjacent?);

(3) the massively parallel communication (MPC) model, where each of a large number
of memory-limited processors holds a sublinear-sized portion of the input data and
computation proceeds using rounds of communication;

(4) the congested clique model of distributed computation, where there is one processor
per vertex holding that vertex’s neighborhood information and each round allows each
processor to communicate O(logn) bits to a specific other processor; and

(5) the LOCAL model of distributed computation, where there is one processor per vertex
holding that vertex’s neighborhood information and each round allows each processor to
send an arbitrary amount of information to all its neighbors.

Table 1 Summary of our algorithmic results and basic comparison with most related previous
work. In the result marked (?), we require that κ = ω(log2 n).

Model Colors Complexity Parameters Reference

Streaming ∆ + 1 Õ(n) space, Õ(n
√

∆) post-processing time [5]

(one pass) κ+ o(κ) Õ(n) space, Õ(n) post-processing time this paper

Query ∆ + 1 Õ(n3/2) queries [5]

κ+ o(κ) Õ(n3/2) queries this paper

MPC ∆ + 1 O(1) rounds, O(n log3 n) bits per processor [5]

κ+ o(κ) O(1) rounds, O(n log2 n) bits per processor this paper

Congested ∆ + 1 O(1) rounds [23]

Clique O(κ) O(1) rounds [36]
κ+ o(κ)? O(1) rounds this paper

LOCAL
O(κn1/k) O(k) rounds, for k ∈

[
ω(log logn), O(

√
logn)

]
[47]

O(κn1/k logn) O(k) rounds, for k ∈
[
ω(
√

logn), o(logn)
]

this paper

Table 1 summarizes our algorithmic results and provides, in each case, a basic comparison
with the most related result from prior work. We give an elaborate account of the related
works in Section 2.

As we have noted, κ 6 ∆ in every case; indeed, κ could be arbitrarily better than ∆ as
shown by the example of a star graph, where κ = 1 whereas ∆ = n− 1. From a practical
standpoint, it is notable that in many real-world large graphs drawn from various application
domains – such as social networks, web graphs, and biological networks – the parameter κ
is often significantly smaller than ∆. See Table 2 for some concrete numbers. That said,
κ+ o(κ) is, in general, mathematically incomparable with ∆ + 1.

1 The Õ(·) notation hides factors polylogarithmic in n.
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11:4 Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models

Table 2 Statistics of several large real-world graphs taken from the application domains of social
networks, web graphs, and biological networks, showing that the degeneracy, κ, is often significantly
smaller than the maximum degree, ∆. Source: http://networkrepository.com [61].

Graph |V | |E| ∆ κ

soc-friendster 66M 2B 5K 305
fb-uci-uni 59M 92M 5K 17
soc-livejournal 4M 28M 3K 214
soc-orkut 3M 106M 27K 231
web-baidu-baike 2M 18M 98K 83
web-hudong 2M 15M 62K 529

Graph |V | |E| ∆ κ

web-wikipedia2009 2M 5M 3K 67
web-google 916K 5M 6K 65
bio-mouse-gene 43K 14M 8K 1K
bio-human-gene1 22K 12M 8K 2K
bio-human-gene2 14K 9M 7K 2K
bio-WormNet-v3 16K 763K 1K 165

A key contribution here is a conceptual idea and a corresponding technical lemma
underlying all our algorithms. We show that every graph admits a “small” sized low
degeneracy partition (LDP), which is a partition of its vertex set into “few” blocks such
that the subgraph induced by each block has low degeneracy, roughly logarithmic in n.
Moreover, such an LDP can be computed by a very simple and distributed randomized
algorithm: for each vertex, choose a “color” independently and uniformly at random from a
suitable-sized palette (this is not to be confused with the eventual graph coloring we seek;
this random assignment is most probably not a proper coloring of the graph). The resulting
color classes define the blocks of such a partition, with high probability. Theorem 8, the LDP
Theorem, makes this precise. Given an LDP, a generic graph coloring algorithm is to run
the aforementioned greedy algorithm on each block, using distinct palettes for the distinct
blocks. We obtain algorithms achieving our claimed results by suitably implementing this
generic algorithm in each computational model.

Lower Bounds. Recall that a graph with degeneracy κ admits a proper (κ+ 1)-coloring.
As Table 1 makes clear, there are several space-conscious (∆ + 1)-coloring algorithms known;
perhaps we could aim for improved algorithms that provide (κ+ 1)-colorings? We prove that
this is not possible in sublinear complexity in either the streaming or the query model. In
fact, we prove more. We show that distinguishing n-vertex graphs of degeneracy κ from those
with chromatic number κ+ 2 requires Ω(n2) space in the streaming model and Ω(n2) queries
in the general graph query model. This shows that it is hard to produce a (κ+ 1)-coloring
and in fact even to determine the value of κ. These results generalize to the problems of
producing a (κ + λ)-coloring or estimating the degeneracy up to ±λ; the corresponding
lower bounds are Ω(n2/λ2). Furthermore, the streaming lower bounds hold even in the
insertion-only model, where the input stream is simply a listing of the graph’s edges in some
order; compare this with our upper bound, which works even for dynamic graph streams.

A possible criticism of the above lower bounds for coloring is that they seem to depend
on it being hard to estimate the degeneracy κ. Perhaps the coloring problem could become
easier if κ was given to the algorithm in advance? We prove two more lower bounds showing
that this is not so: the same Ω(n2/λ2) bounds hold even with κ known a priori.

In the full version of this paper [18], we present a “combinatorial” lower bound that
addresses a potential criticism of our main algorithmic technique: the LDP. Perhaps a more
sophisticated graph-theoretic result, such as the Palette Sparsification Theorem of Assadi et
al. (see Section 2), could improve the quality of the colorings obtained? We prove that this
is not so: there is no analogous theorem for colorings with “about κ” colors.

http://networkrepository.com
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2 Related Work and Comparisons

Streaming and Query Models. Assadi et al. [5] give a one-pass streaming (∆ + 1)-coloring
algorithm that uses Õ(n) space (i.e., is semi-streaming) and works on dynamic graph streams.
They also give a (∆ + 1)-coloring algorithm in the general graph query model that makes
Õ(n3/2) queries. For these, they establish a beautiful Palette Sparsification Theorem: a
combinatorial result saying that choosing a random O(logn)-sized palette from {1, . . . ,∆+1}
for each vertex allows a compatible list coloring. While we do not get a similarly tight
combinatorial result – there isn’t one, as we just noted – we do achieve faster post-processing
time (Õ(n) versus their Õ(n

√
∆)) in the streaming setting and have a simpler post-processing

algorithm (greedy offline versus matching-based) in the query setting, while keeping other
complexity parameters the same (Table 1). These wins come at the price of a less tight result
– (1 + o(1))κ colors instead of the combinatorially optimal κ+ 1 – but of course our streaming
and query lower bounds show that such slack is necessary. Also, as noted before, we often
have κ� ∆ (Table 2).

For streaming lower bounds, Abboud et al. [1] show that coloring a graph G with χ(G)
colors requires Ω(n2/p) space in p passes. They also show that deciding c-colorability for
3 6 c < n (that might be a function of n) takes Ω((n− c)2/p) space in p passes. Furthermore,
any streaming algorithm that distinguishes between χ(G) 6 3c and χ(G) > 4c must use
Ω(n2/pc2) space. Another recent work on coloring in the streaming model is Radhakrishnan
et al. [60], which studies the problem of 2-coloring an n-uniform hypergraph.

In the query model, there are a number of works studying basic graph problems [39, 57, 25]
but, to the best of our knowledge, Assadi et al. were the first to study graph coloring in
this sense. Also, to the best of our knowledge, there was no previously known algorithm
for O(α)-coloring in the semi-streaming and graph query settings, whereas here we obtain
(κ+ o(κ))-colorings; recall the bound κ 6 2α− 1.

MPC and Congested Clique Models. The MapReduce framework [27] is extensively used
in distributed computing to process massive data sets. Beame, Koutris, and Suciu [16] defined
the Massively Parallel Communication (MPC) model to abstract out key theoretical features
of MapReduce; it has since become a widely used setting for designing and analyzing big
data algorithms, especially for graph problems. Another well studied model for distributed
graph algorithms is Congested Clique [50]. Behnezhad et al. [17] show that Congested Clique
is equivalent to the “semi-MPC model,” defined as MPC with O(n logn) bits of memory per
machine, thanks to simulations in both directions preserving the round complexity.

Harvey et al. [41] gave a (∆ + o(∆))-coloring algorithm in the MapReduce model; it
can be simulated in MPC using O(1) rounds and O(n1+c) space per machine for some
constant c > 0. The aforementioned paper of Assadi et al. [5] gives an O(1)-round MPC
algorithm for (∆+1)-coloring using O(n log3 n) bits of space per machine. Because this space
usage is ω(n logn), the equivalence result of Behnezhad et al. [17] does not apply and this
doesn’t lead to an O(1)-round Congested Clique algorithm. In contrast, our MPC algorithm
can be made to use only O(n logn) bits per machine and κ + o(κ) colors for graphs with
κ = ω(log2 n), and therefore leads to such a Congested Clique algorithm. Chang et al. [23]
gave an O(

√
log logn)-round MPC algorithm with o(n) space per machine and Õ(m) space

in total. Using the improved network decomposition results by Rozhon and Ghaffari [62], this
round complexity can be reduced to O(log log logn). We, however, focus on the quasi-linear
memory per machine regime.

ICALP 2020
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Graph coloring has recently garnered considerable attention in the Congested Clique
model. Parter [58] gave a (∆ + 1)-coloring algorithm using O(log log ∆ · log? ∆) rounds, later
improved to O(log? ∆) by Parter and Su [59]. Chang et al. [23] have recently improved this
to O(1) rounds. They use similar but more involved graph partitioning techniques than
us, as is probably necessary for a stringent (∆ + 1)-coloring. For low-degeneracy graphs,
our algorithm uses fewer colors than all these algorithms while achieving the best possible
asymptotic round complexity (O(1)). Parallel to our work, Ghaffari and Sayyadi [36] gave
an O(1)-round algorithm for the O(α)-coloring problem. Their analysis suggests that they
obtain a (cα)-coloring algorithm, where the constant c > 10. On the other hand, we get
a tight (1 + o(1))κ-coloring. Recall, again, that κ 6 2α − 1 (Fact 2). Hence, we have an
arguably simpler algorithmic framework achieving better results. The main novelty in our
techniques lies in choosing degeneracy as the key parameter (instead of arboricity, which
could lead to results looser by a factor of 2) and in the careful analysis that gives very
sharp – not just asymptotic – bounds on the number of colors. Our algorithm (only the
Congested Clique implementation), however, needs κ = ω(log2 n) or κ = O(1) to keep the
round complexity constant.

The LOCAL Model. There is a deep body of work on graph coloring in this model. Indeed,
graph coloring is one of the most central “symmetry breaking” problems in distributed
computing. We refer the reader to the monograph by Barenboim and Elkin [13] for an
excellent overview of the state of the art. Here, we shall briefly discuss only a few results
closely related to our contribution.

There is a long line of work on fast (∆ + 1)-coloring in the LOCAL model, in the
deterministic as well as the randomized setting [55, 10, 33, 51, 44, 3, 63, 14] culminating in
sublogarithmic time solutions due to Harris [40] and Chang et al. [24]. Barenboim and Elkin
[11, 12] studied fast distributed coloring algorithms that may use far fewer than ∆ colors: in
particular, they gave algorithms that use O(α) colors and run in O(αε logn) time on graphs
with arboricity at most α. Recall again that κ 6 2α− 1, so that a 2α-coloring always exists.
They also gave a faster O(logn)-time algorithm using O(α2) colors. Further, they gave a
family of algorithms that produce an O(tα2)-coloring in O(logt n+ log? n), for every t such
that 2 6 t 6 O(

√
n/α). Our algorithm for the LOCAL model builds on this latter result.

Kothapalli and Pemmaraju [47] focused on arboricity-dependant coloring using very
few rounds. They gave a randomized O(k)-round algorithm that uses O(αn1/k) colors for
2 log logn 6 k 6

√
logn and O(α1+1/kn1/k+3/k22−2k ) colors for k < 2 log logn. We extend

their result to the range k ∈
[
ω(
√

logn), o(logn)
]
, using O(αn1/k logn) colors.

Ghaffari and Lymouri [35] gave a randomized O(α)-coloring algorithm that runs in time
O(logn ·min{log logn, logα}) as well as an O(logn)-time algorithm using min{(2 + ε)α +
O(logn log logn), O(α logα)} colors, for any constant ε > 0. However, their technique does
not yield a sublogarithmic time algorithm, even at the cost of a larger palette.

The LDP Technique. As mentioned earlier, our algorithmic results rely on the concept of
a low degeneracy partition (LDP) that we introduce in this work. Some relatives of this
idea have been considered before. Specifically, Barenboim and Elkin [13] define a d-defective
(resp. b-arbdefective) c-coloring to be a vertex coloring using palette [c] such that every
color class induces a subgraph with maximum degree at most d (resp. arboricity at most b).
Obtaining such improper colorings is a useful first step towards obtaining proper colorings.
They give deterministic algorithms to obtain good arbdefective colorings [12]. However,
their algorithms are elaborate and are based on construction of low outdegree acyclic partial
orientations of the graph’s edges: an expensive step in our space-conscious models.
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Elsewhere (Theorem 10.5 of Barenboim and Elkin [13]), they note that a useful defective
(not arbdefective) coloring is easily obtained by randomly picking a color for each vertex;
this is then useful for computing an O(∆)-coloring.

Our LDP technique can be seen as a simple randomized method to produce an arbdefective
coloring. Crucially, we parametrize our result using degeneracy instead of arboricity and
give sharp – not just asymptotic – bounds on the degeneracy of each color class.

The Degeneracy Parameter. The parameter has been studied under several other names,
such as width [34], linkage [46] and Szekeres-Wilf number [66]. For a graph G, the number
κ(G) + 1 is often called the coloring number of G [28, 65]. It has also been extensively
studied as k-core number in different areas such as data streaming and parallel computing
[29], distributed systems [4], data mining [53], protein networks [6], and social networks[20].
Farach-Colton and Tsai [30] studied the parameter in the streaming model, and gave a
one-pass semi-streaming algorithm that approximates the degeneracy of an input graph
within a multiplicative factor of 1 + ε. Our lower bounds complement this result as we show
that computing the degeneracy κ exactly or more generally within a multiplicative factor of
(1 + κ−(1/2+γ)), for some constant γ, is not possible in the one-pass semi-streaming setting.

Other Related Work. Other work considers coloring in the setting of dynamic graph
algorithms: edges are inserted and deleted over time and the goal is to maintain a valid
vertex coloring of the graph that must be updated quickly after each modification. Unlike
in the streaming setting, there is no space restriction. Bhattacharya et al. [19] gave a
randomized algorithm that maintains a (∆ + 1)-coloring with O(log ∆) expected amortized
update time, later improved to O(1) by Henzinger and Peng [43]. Solomon and Wein [64]
studied the problem for low-arboricity graphs and gave an O(α log2 n)-coloring algorithm
with O(poly(log logn)) update time. Recently, Henzinger et al. [42] designed an O(α logn)-
coloring algorithm with O(log2 n) update time. Barba et al. [9] gave tradeoffs between the
number of colors used and update time. However, the techniques in these works do not seem
to apply in the streaming setting due to fundamental differences in the models.

Estimating the arboricity of a graph in the streaming model is a well studied problem.
McGregor et al. [52] gave a one pass (1+ε)-approximation algorithm to estimate the arboricity
of graph using Õ(n) space. Bahmani et al. [7] gave a matching lower bound. Our lower
bounds for estimating degeneracy are quantitatively much larger but they call for much
tighter estimates.

3 Preliminaries

Throughout this paper, graphs are simple, undirected, and unweighted. In considering a
graph coloring problem, the input graph will usually be called G and we will put n = |V (G)|.
The notation “log x” stands for log2 x. For an integer k, we denote the set {1, 2, . . . , k} by [k].

For a graph G, we define ∆(G) = max{deg(v) : v ∈ V (G)}. We say that G is k-degenerate
if every induced subgraph of G has a vertex of degree at most k. For instance, every forest is
1-degenerate and an elementary theorem says that every planar graph is 5-degenerate. The
degeneracy κ(G) is the smallest k such that G is k-degenerate. The arboricity α(G) is the
smallest r such that the edge set E(G) can be partitioned into r forests. When the graph G
is clear from the context, we simply write ∆, κ, and α, instead of ∆(G), etc.

We note two useful facts: the first is immediate and the second is an easy exercise.

I Fact 1. If an n-vertex graph has degeneracy κ, then it has at most κn edges.
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11:8 Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models

I Fact 2. In every graph, the degeneracy κ and arboricity α satisfy α 6 κ 6 2α− 1.

In analyzing our algorithms, it will be useful to consider certain vertex orderings of graphs
and their connection with the notion of degeneracy, given by Lemma 5 below. Although the
lemma is folklore, it is crucial to our analysis, so we include a proof for completeness.

I Definition 3. An ordering of G is a list consisting of all its vertices (equivalently, a
total order on V (G)). Given an ordering C, for each v ∈ V (G), the ordered neighborhood
NG,C(v) := {w ∈ V (G) : {v, w} ∈ E(G), v C w}, i.e., the set of neighbors of v that appear
after v in the ordering. The ordered degree odegG,C(v) := |NG,C(v)|.

IDefinition 4. A degeneracy ordering of G is an ordering produced by the following algorithm:
starting with an empty list, pick a minimum degree vertex v (breaking ties arbitrarily), append
v to the end of the list, and recurse on G− v if it is nonempty.

I Lemma 5. G is k-degenerate iff there exists an ordering C such that odegG,C(v) 6 k for
all v ∈ V (G).

Proof. Suppose that G is k-degenerate. Let C= (v1, . . . , vn) be a degeneracy ordering. Then,
for each i, odegG,C(vi) is the degree of vi in the induced subgraph H := G \ {v1, . . . , vi−1}.
By definition, H has a vertex of degree at most k, so vi, being a minimum degree vertex in
H, must have degree at most k.

On the other hand, suppose that G has an ordering C such that odegG,C(v) 6 k for
all v ∈ V (G). Let H be an induced subgraph of G. Let v be the leftmost (i.e., smallest)
vertex in V (H) according to C. Then all neighbors of v in H in fact lie in NG,C(v), so
degH(v) 6 odegG,C(v) 6 k. Therefore, G is k-degenerate. J

A c-coloring of a graph G is a mapping ψ : V (G)→ [c]; it is said to be a proper coloring if
it makes no edge monochromatic: ψ(u) 6= ψ(v) for all {u, v} ∈ E(G). The smallest c such that
G has a proper c-coloring is called the chromatic number χ(G). By considering the vertices
of G one at a time and coloring greedily, we immediately obtain a proper (∆ + 1)-coloring.
This idea easily extends to degeneracy-based coloring.

I Lemma 6. Given unrestricted (“offline”) access to an input graph G, we can produce a
proper (κ+ 1)-coloring of G in linear time.

Proof. Construct a degeneracy ordering (v1, . . . , vn) of G and then greedily color the vertices
one by one in the order (vn, . . . , v1). Given a palette of size κ+ 1, by the “only if” direction
of Lemma 5, there will always be a free color for a vertex. J

Of course, the simple algorithm above is not implementable directly in “sublinear” settings,
such as space-bounded streaming algorithms, query models, or distributed computing models.
Nevertheless, we shall use it on suitably constructed subgraphs of our input graph.

We shall use the following form of the Chernoff bound.

I Fact 7. Let X be a sum of mutually independent indicator random variables. Let µ and δ
be real numbers such that EX 6 µ and 0 6 δ 6 1. Then, Pr [X > (1 + δ)µ] 6 exp

(
−µδ2/3

)
.

4 A Generic Framework for Coloring Algorithms

In this section, we give a generic framework for graph coloring that we later instantiate in
various computational models. As a reminder, our focus is on graphs G with a nontrivial
upper bound on the degeneracy κ = κ(G). Each such graph admits a proper (κ+ 1)-coloring;
our focus will be on obtaining a proper (κ+ o(κ))-coloring efficiently.
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As a broad outline, our framework calls for coloring G in two phases. The first phase
produces a low degeneracy partition (LDP) of G: it partitions V (G) into a “small” number of
parts, each of which induces a subgraph that has “low” degeneracy. This step can be thought
of as preprocessing and it is essentially free (in terms of complexity) in each of our models.
The second phase properly colors each part, using a small number of colors, which is possible
because the degeneracy is low. In later sections, we shall see that the low degeneracy allows
this second phase to be efficient in each of the models we consider.

4.1 A Low Degeneracy Partition
In this phase of our coloring framework, we assign each vertex a color chosen uniformly at
random from [`], these choices being mutually independent, where ` is a suitable parameter.
For each i ∈ [`], let Gi denote the subgraph of G induced by vertices colored i. We shall call
each Gi a block of the vertex partition given by (G1, . . . , G`). The next theorem, our main
technical tool, provides certain guarantees on this partition given a suitable choice of `.

I Theorem 8 (LDP Theorem). Let G be an n-vertex graph with degeneracy κ. Let k ∈ [1, n]
be a “guess” for the value of κ and let s > Cn logn be a sparsity parameter, where C is a
sufficiently large universal constant. Put

` =
⌈

2nk
s

⌉
, λ = 3

√
κ` logn , (1)

and let ψ : V (G) → [`] be a uniformly random coloring of G. For i ∈ [`], let Gi be the
subgraph induced by ψ−1(i). Then, the partition (G1, . . . , G`) has the following properties.
(i) If k 6 2κ, then w.h.p., for each i, the degeneracy κ(Gi) 6 (κ+ λ)/`.
(ii) W.h.p., for each i, the block size |V (Gi)| 6 2n/`.
(iii) If κ 6k6 2κ, then w.h.p., the number of monochromatic edges |E(G1)∪· · ·∪E(G`)| 6 s.
In each case, “w.h.p.” means “with probability at least 1− 1/poly(n).”

Proof. Notice that when k 6 (C/2) logn, the condition s > Cn logn results in ` = 1, so the
vertex partition is the trivial one-block partition, which obviously satisfies all the properties
in the theorem. Thus, in our proof, we may assume that k > (C/2) logn.

We start with Item ii, which is the most straightforward. From Equation (1), we have
` 6 4nk/s, so

n

`
>

s

4k >
Cn logn

4k >
C logn

4 .

Each block size |V (Gi)| has binomial distribution Bin(n, 1/`), so a Chernoff bound gives

Pr
[
|V (Gi)| >

2n
`

]
6 exp

(
− n3`

)
6 exp

(
−C logn

12

)
6

1
n2 ,

for sufficiently large C. By a union bound over the at most n blocks, Item ii fails with
probability at most 1/n.

Items i and iii include the condition k 6 2κ, which we shall assume for the rest of the
proof. By Equation (1) and the bounds s > Cn logn and k > (C/2) logn,

` 6

⌈
2k

C logn

⌉
6

4k
C logn 6

8κ
C logn ,
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11:10 Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models

whence, for sufficiently large C,

λ 6 3
√
κ · 8κ

C logn · logn 6 κ . (2)

We now turn to establishing Item i. Let C be a degeneracy ordering for G. For each
i ∈ [`], let Ci be the restriction of C to V (Gi). Consider a particular vertex v ∈ V (G) and
let j = ψ(v) be its color. We shall prove that, w.h.p., odegG,Cj

(v) 6 (κ+ λ)/`.
By the “only if” direction of Lemma 5, we have odegG,C(v) = |NG,C(v)| 6 κ. Now

note that

odegGj ,Cj
(v) =

∑
u∈NG,C(v)

1{ψ(u)=ψ(v)}

is a sum of mutually independent indicator random variables, each of which has expectation
1/`. Therefore, E odegGj ,Cj

(v) = odegG,C(v)/` 6 κ/`. Since λ 6 κ by Equation (2), we may
use the form of the Chernoff bound in Fact 7, which gives us

Pr
[
odegGj ,Cj

(v) > κ+ λ

`

]
6 exp

(
−κ
`

λ2

3κ2

)
= exp

(
−9κ` logn

3κ`

)
6

1
n3 ,

where the equality follows from Equation (1). In words, with probability at least 1−1/n3, the
vertex v has ordered degree at most (κ+ λ)/` within its own block. By a union bound, with
probability at least 1− 1/n2, all n vertices of G satisfy this property. When this happens,
by the “if” direction of Lemma 5, it follows that κ(Gi) 6 (κ+ λ)/` for every i.

Finally, we take up Item iii, which is now straightforward. Assume that the high
probability event in Item i occurs. Then, by Fact 1,

|E(G1) ∪ · · · ∪ E(G`)| 6
∑̀
i=1

κ(Gi) |V (Gi)| 6
κ+ λ

`

∑̀
i=1
|V (Gi)| =

n(κ+ λ)
`

6
2nκ
`

6 s ,

where the final inequality uses the condition κ 6 k and Equation (1). J

It will be convenient to encapsulate the guarantees of this theorem in a definition.

I Definition 9. Suppose graph G has degeneracy κ. A vertex partition (G1, . . . , G`) sim-
ultaneously satisfying the degeneracy bound in Item i, the block size bound in Item ii, and
the (monochromatic) edge sparsity bound in Item iii in Theorem 8 is called an (`, s, λ)-LDP
of G.

It will turn out that an (`, s, λ)-LDP leads to a proper coloring of G using at most κ+λ+`
colors. An instructive setting of parameters is s = Θ((n logn)/ε2), where ε is either a small
constant or a slowly vanishing function of n, such as 1/ logn. Then, a quick calculation
shows that when an accurate guess k ∈ [κ, 2κ] is made, Theorem 8 guarantees an LDP that
has edge sparsity s = Õ(n) and that leads to an eventual proper coloring using (1 +O(ε))κ
colors. When ε = o(1), this number of colors is κ+ o(κ).

Recall that the second phase of our coloring framework involves coloring each Gi separately,
exploiting its low degeneracy. Indeed, given an (`, s, λ)-LDP, each block Gi admits a proper
(κ(Gi) + 1)-coloring. Suppose we use a distinct palette for each block; then the total number
of colors used is∑̀

i=1
(κ(Gi) + 1) 6 `

(
κ+ λ

`
+ 1
)

= κ+ λ+ ` , (3)
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as claimed above. Of course, even if our first phase random coloring ψ yields a suitable LDP,
we still have to collect each block Gi or at least enough information about each block so as
to produce a proper (κ(Gi) + 1)-coloring. How we do this depends on the precise model of
computation; see Sections 5 and 6 here and the full version [18] for further instantiations.

4.2 Applications in Various Models
We now turn to the application of the framework in designing graph coloring algorithms in
specific models of computation for big data, where the focus is on utilizing space sublinear in
the size of the massive input graph. Such models are sometimes termed space-conscious.

In Section 5, we discuss the simulation of our framework in the streaming model. We
present a semi-streaming algorithm in the dynamic model, meaning that edges can be both
inserted and deleted. Our main result is captured in Theorem 10.

I Theorem 10. Set s = dε−2n logne, where ε > 0 is a parameter. There is a one-pass
algorithm that processes a dynamic (i.e., turnstile) graph stream using O(ε−2n log4 n) bits of
space and, with high probability, produces a proper coloring using at most (1 +O(ε))κ colors.
In particular, taking ε = 1/ logn, it produces a (κ+ o(κ))-coloring using Õ(n) space. Each
edge update is processed in Õ(1) time and end-of-stream post-processing takes Õ(n) time.

In Section 6, applying our framework to the general graph query model, we obtain:

I Theorem 11. Given query access to a graph G, there is a randomized algorithm that,
with high probability, produces a proper coloring of G using κ+ o(κ) colors. The algorithm’s
worst-case query complexity, running time, and space usage are all Õ(n3/2).

Besides this, we obtain algorithmic results in certain distributed models of computation,
namely MPC, Congested-Clique, and LOCAL models, where graph coloring is one of the
most heavily studied problems. Our results are stated below. See the full version of our
paper [18] for the corresponding discussions and proofs.

I Theorem 12. There is a randomized O(1)-round MPC algorithm that, given an n-vertex
graph G, outputs a (κ + o(κ))-coloring of G with high probability. The algorithm uses n
processors, each with O(n log2 n) bits of memory.

I Theorem 13. There is a randomized O(1)-round algorithm in the Congested Clique model
that, given a graph G, w.h.p. finds a (κ+O(κ3/4 log1/2 n))-coloring. For κ = ω(log2 n), this
gives a (κ+ o(κ))-coloring.

I Theorem 14. There is a randomized distributed algorithm in the LOCAL model that,
given an n-vertex graph G, an estimate of its arboricity α up to a constant factor, and a
parameter t such that 2 < t 6 O(

√
n/ logn), produces an O(tα logn)-coloring of G in time

O (logt n+ log? n).

5 Streaming Model

We turn to the most intensely studied space-conscious model: the data streaming model.
For graph problems, in the basic model, the input is a stream of non-repeated edges that
define the input graph G: this is called the insertion-only model, since it can be thought of
as building up G through a sequence of edge insertions. In the more general dynamic graph
model or turnstile model, the stream is a sequence of edge updates, each update being either
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11:12 Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models

an insertion or a deletion: the net effect is to build up G. Our algorithm below will work in
this more general model. Later, in we shall give a corresponding lower bound that will hold
even in the insertion-only model (for a lower bound, this is a strength).

We assume that the vertex set V (G) = [n] and the input is a stream σ of at most
m = poly(n) updates to an initially empty graph. An update is a triple (u, v, c), where
u, v ∈ V (G) and c ∈ {−1, 1}: when c = 1, this token represents an insertion of edge {u, v}
and when c = −1, it represents a deletion. Let N =

(
n
2
)
and [[m]] = Z ∩ [−m,m]. It is

convenient to imagine a vector x ∈ [[m]]N of edge multiplicities that starts at zero and is
updated entrywise with each token. The input graph G described by the stream will be the
underlying simple graph, i.e., E(G) will be the set of all edges {u, v} such that xu,v 6= 0 at
the end. We shall say that σ builds up x and G.

Our algorithm makes use of two data streaming primitives, each a linear sketch. (We
can do away with these sketches in the insertion-only setting; see the end of this section.)
The first is a sketch for sparse recovery given by a matrix A (say): given a vector x ∈ [[m]]N
with sparsity ‖x‖0 6 t, there is an efficient algorithm to reconstruct x from Ax. The
second is a sketch for `0 estimation given by a random matrix B (say): given a vector
x ∈ [[m]]N , there is an efficient algorithm that takes Bx and computes from it an estimate
of ‖x‖0 that, with probability at least 1− δ, is a (1 + γ)-multiplicative approximation. It
is known that there exists a suitable A ∈ {0, 1}d×N , where d = O(t log(N/t)), where A
has column sparsity O(log(N/t)); see, e.g., Theorem 9 of Gilbert and Indyk [37]. It is also
known that there exists a suitable distribution over matrices giving B ∈ {0, 1}d′×N with
d′ = O(γ−2 log δ−1 logN(log γ−1 + log logm)). Further, given an update to the ith entry of
x, the resulting updates in Ax and Bx can be effected quickly by generating the required
portion of the ith columns of A and B.

Algorithm 1 One-Pass Streaming Algorithm for Graph Coloring via Degeneracy.

1: procedure Color(stream σ, integer k) . σ builds up x and G; k ∈ [1, n] is a guess for κ(G)
2: choose s, ` as in Equation (1) and t, d, d′, A,B as in the above discussion
3: initialize y ∈ [[m]]d and z ∈ [[m]]d

′
to zero

4: foreach u ∈ [n] do ψ(u)← uniform random color in [`]
5: foreach token (u, v, c) in σ do
6: if ψ(u) = ψ(v) then y← y + cAu,v; z← z + cBu,v

7: if estimate of ‖w‖0 obtained from z is > 5s/4 then abort
8: w′ ← result of t-sparse recovery from y . we expect that w′ = w
9: foreach i ∈ [`] do

10: Gi ← simple graph induced by {{u, v} : w′
u,v 6= 0 and ψ(u) = ψ(v) = i}

11: color Gi using palette {(i, j) : 1 6 j 6 κ(Gi) + 1}; cf. Lemma 6 . net effect is to color G

In our description of Algorithm 1, we use Au,v (resp. Bu,v) to denote the column of
A (resp. B) indexed by {u, v}. The algorithm’s logic results in sketches y = Aw and
z = Bw, where w corresponds to the subgraph of G consisting of ψ-monochromatic edges
only (cf. Theorem 8), i.e., w is obtained from x by zeroing out all entries except those
indexed by {u, v} with ψ(u) = ψ(v). We choose the parameter t = 2s, where s > Cn logn is
the sparsity parameter from Theorem 8, which gives d = O(s logn); we choose γ = 1/4 and
δ = 1/n, giving d′ = O(log3 n).

Notice that Algorithm 1 requires a guess for κ := κ(G), which is not known in advance. Our
final one-pass algorithm runs O(logn) parallel instances of Color(σ, k), using geometrically
spaced guesses k = 2, 4, 8 . . . . It outputs the coloring produced by the non-aborting run that
uses the smallest guess. This leads to this section’s main result (restated from Section 4.2).
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I Theorem 10. Set s = dε−2n logne, where ε > 0 is a parameter. There is a one-pass
algorithm that processes a dynamic (i.e., turnstile) graph stream using O(ε−2n log4 n) bits of
space and, with high probability, produces a proper coloring using at most (1 +O(ε))κ colors.
In particular, taking ε = 1/ logn, it produces a (κ+ o(κ))-coloring using Õ(n) space. Each
edge update is processed in Õ(1) time and end-of-stream post-processing takes Õ(n) time.

Proof. The coloring produced is obviously proper. Let us bound the number of colors used.
One of the parallel runs of Color(σ, k) in Algorithm 1 will use a value k = k? ∈ (κ, 2κ]. We
shall prove that, w.h.p., (a) every non-aborting run with k 6 k? will use at most (1 +O(ε))κ
colors, and (b) the run with k = k? will not abort.

We start with (a). Consider a particular run using k 6 k?. By Item i of Theorem 8, each
Gi has degeneracy at most (κ+ λ)/`; so if w is correctly recovered by the sparse recovery
sketch (i.e., w′ = w in Algorithm 1), then each Gi is correctly recovered and the run uses at
most κ+ λ+ ` colors, as in Equation (3). Using the values from Equation (1), this number
is at most (1 + O(ε))κ. Now, if the run does not abort, then the estimate of the sparsity
‖w‖0 is at most 5s/4. By the guarantees of the `0-estimation sketch, the true sparsity is at
most (5/4)(5s/4) < 2s = t, so, w.h.p., w is indeed t-sparse and, by the guarantees of the
sparse recovery sketch, w′ = w. Taking a union bound over all O(logn) runs, the bound on
the number of colors holds for all required runs simultaneously, w.h.p..

We now take up (b). Note that ‖w‖0 is precisely the number of ψ-monochromatic edges
in G. By Item iii of Theorem 8, we have ‖w0‖ 6 s w.h.p. By the accuracy guarantee of the
`0-estimation sketch, in this run the estimate of ‖w‖0 is at most 5s/4 w.h.p., so the run does
not abort.

The space usage of each parallel run is dominated by the computation of y, so it is
O(d logm) = O(s logn logm) = O(ε−2n log3 n), using our setting of s and the assumption
m = poly(n). The claims about the update time and post-processing time follow directly
from the properties of a state-of-the-art sparse recovery scheme, e.g., the scheme based on
expander matching pursuit given in Theorem 9 of Gilbert and Indyk [37]. J

6 Query Model

We now turn to the general graph query model, a standard model of space-conscious algorithms
for big graphs where the input graph is random-accessible but the emphasis is on the
examining only a tiny (ideally, sublinear) portion of it; for general background see Chapter 10
of Goldreich’s book [38]. In this model, the algorithm starts out knowing the vertex set [n]
of the input graph G and can access G only through the following types of queries.

A pair query Pair({u, v}), where u, v ∈ [n]. The query returns 1 if {u, v} ∈ E(G) and 0
otherwise. For better readability, we shall write this query as Pair(u, v).
A neighbor query Neighbor(u, j), where u ∈ [n] and j ∈ [n−1]. The query returns v ∈ [n]
where v is the jth neighbor of u in some underlying fixed ordering of vertex adjacency
lists; if deg(v) < j, so that there does not exist a jth neighbor, the query returns ⊥.

Naturally, when solving a problem in this model, the goal is to do so while minimizing the
number of queries.

6.1 Sublinear Algorithm
By adapting the combinatorial machinery from their semi streaming algorithm, Assadi
et al. [5] gave an Õ(n3/2)-query algorithm for finding a (∆+1)-coloring. Our LDP framework
gives a considerably simpler algorithm using κ+o(κ) colors, where κ := κ(G). We remark here
that Õ(n3/2) query complexity is optimal (up to polylogarithmic actors), as Assadi et al. [5]
proved a matching lower bound for any (c ·∆)-coloring algorithm, for any constant c > 1.

ICALP 2020



11:14 Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models

I Theorem 11. Given query access to a graph G, there is a randomized algorithm that,
with high probability, produces a proper coloring of G using κ+ o(κ) colors. The algorithm’s
worst-case query complexity, running time, and space usage are all Õ(n3/2).

Proof. The algorithm proceeds in two stages. In the first stage, it attempts to extract
all edges in G through neighbor queries alone, aborting when “too many” queries have
been made. More precisely, it loops over all vertices v and, for each v, issues queries
Neighbor(v, 1),Neighbor(v, 2), . . . until a query returns ⊥. If this stage ends up making
3n3/2 queries (say) without having processed every vertex, then it aborts and the algorithm
moves on to the second stage. By Fact 1, if κ 6

√
n, then this stage will not abort and the

algorithm will have obtained G completely; it can then (κ+ 1)-color G (as in Lemma 6) and
terminate, skipping the second stage.

In the second stage, we know that κ >
√
n. The algorithm now uses a random coloring ψ

to construct an (`, s, λ)-LDP of G using the “guess” k =
√
n, with s = Θ(ε−2n logn) and

`, λ given by Equation (1). To produce each subgraph Gi in the LDP, the algorithm simply
makes all possible queries Pair(u, v) where ψ(u) = ψ(v). W.h.p., the number of queries made
is at most

1
2
∑
i∈[`]

|V (Gi)|2 6
`

2

(
2n
`

)2
6

2n2s

4nk = Θ
(
n3/2 logn

ε2

)
,

where the first inequality uses Item ii of Theorem 8. We can enforce this bound in the worst
case by aborting if it is violated.

Clearly, k 6 2κ, so Item i of Theorem 8 applies and by the discussion after Definition 9,
the algorithm uses (1 +O(ε))κ colors. Setting ε = 1/ logn, this number is at most κ+ o(κ)
and the overall number of queries remains Õ(n3/2), as required. J

7 Lower Bounds

Can we improve the guarantees of our algorithms so that they use at most κ + 1 colors,
rather than κ+ o(κ)? After all, every graph G does have a proper (κ(G) + 1)-coloring. Our
lower bounds answer this with a strong “No” in the data streaming and query models. If we
insist on a coloring that good, we would incur the worst possible space or query complexity:
Ω(n2). In fact, this holds even if κ is known to the algorithm in advance. Moreover, all our
streaming lower bounds hold even if the input stream consists of edge insertions alone.

Our lower bounds generalize to the problem of producing a (κ+ λ)-coloring. We show
that this requires Ω(n2/λ2) space or query complexity. Such generalizations are based on
the following Blow-Up Lemma.

I Definition 15. Let G be a graph and λ a positive integer. The blow-up graph Gλ is
obtained by replacing each vertex of G with a copy of the complete graph Kλ and replacing
each edge of G with a complete bipartite graph between the copies of Kλ at its endpoints.
More succinctly, Gλ is the lexicographical product G[Kλ].

I Lemma 16 (Blow-Up Lemma). For all graphs G and positive integers λ, c, if G has a
c-clique, then Gλ has a (cλ)-clique. Also, κ(Gλ) 6 (κ(G) + 1)λ− 1.

Proof. The claim about cliques is immediate. The bound on κ(Gλ) follows by taking a
degeneracy ordering of G and replacing each vertex v by a list of vertices of the clique that
replaces v in Gλ, ordering vertices within the clique arbitrarily. J
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(b) Gadget graph for Theorem 21.

Figure 1 Gadget constructions for lower bounds.

Streaming Lower Bounds. Our streaming lower bounds use reductions from the index
problem in communication complexity. In the indexN problem, Alice is given a vector
x = (x1, . . . , xN ) ∈ {0, 1}N and Bob is given an index k ∈ [N ]. The goal is for Alice to send
Bob a (possibly random) c-bit message that enables Bob to output xk with probability at
least 2/3. The smallest c for which such a protocol exists is called the one-way randomized
communication complexity, R→(indexN ). As is well known, R→(indexN ) = Ω(N) [2].

We shall in fact consider instances of indexN where N = p2, for an integer p. Using
a canonical bijection between [N ] and [p] × [p], we reinterpret x as a matrix with entries
(xij)i,j∈[p], and Bob’s input as (y, z) ∈ [p]× [p]. We further interpret this matrix x as the
bipartite adjacency matrix of a (2p)-vertex balanced bipartite graph Hx. Such graphs Hx
will be key gadgets in the reductions to follow.

I Definition 17. For x ∈ {0, 1}p×p, a realization of Hx on a list (`1, . . . , `p, r1, . . . , rp) of
distinct vertices is a graph on these vertices whose edge set is {{`i, rj} : xij = 1}.

First Flavor: Degeneracy Not Known in Advance. To prove lower bounds of the first
flavor, we start by demonstrating the hardness of the abstract problem graph-dist.

I Definition 18 (graph-dist problem). Consider two graph families: G1 := G1(n, q, λ),
consisting of n-vertex graphs with chromatic number χ > (q + 1)λ, and G2 := G2(n, q, λ),
consisting of n-vertex graphs with κ 6 qλ− 1. Then graph-dist(n, q, λ) is the problem of
distinguishing G1 from G2 (note that G1 ∩ G2 = ∅): given an input graph G on n vertices,
the problem is to decide whether G ∈ G1 or G ∈ G2, with success probability at least 2/3.

We shall prove that graph-dist is “hard” in the insertion-only streaming setting and in the
query setting, thereby establishing that in these models it is hard to produce a (κ+λ)-coloring.
In fact, our proofs will show that it is just as hard to estimate the parameter κ; this goes to
show that the hardness of the coloring problem is not just because of the large output size.

I Lemma 19. Solving graph-dist(n, q, λ) in one pass requires Ω(n2/λ2) space. More
precisely, there is a constant c > 0 such that for every integer λ > 1 and every sufficiently
large integer q, there is a setting n = n(q, λ) for which every randomized one-pass streaming
algorithm for graph-dist(n, q, λ) requires at least cn2/λ2 bits of space.

Proof. Put p = q − 1. We reduce from indexN , where N = p2, using the following
plan. Starting with an empty graph on n = 3λp vertices, Alice adds certain edges based
on her input x ∈ {0, 1}p×p and then Bob adds certain other edges based on his input
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(y, z) ∈ [p]× [p]. By design, solving graph-dist(n, q, λ) on the resulting final graph reveals
the bit xyz, implying that a one-pass streaming algorithm for graph-dist requires at least
R→(indexN ) = Ω(N) = Ω(p2) = Ω(n2/λ2) bits of memory. The details follow.

First, consider λ = 1. We use the vertex set L]R]C (“]” denotes a disjoint union), where
L = {`1, . . . , `p}, R = {r1, . . . , rp}, and |C| = p. Alice introduces the edges of the gadget
graph Hx (from def. 17), realized on the vertices (`1, . . . , `p, r1, . . . , rp). Bob introduces all
possible edges within C ∪ {`y, rz}, except for {`y, rz}. Let G be the resulting graph (see
Figure 1a).

If xyz = 1, then G contains a clique on C ∪ {`y, rz}, whence χ(G) > p + 2. If, on the
other hand, xyz = 0, then we claim that κ(G) 6 p. By Lemma 5, the claim will follow if we
exhibit a vertex ordering C such that odegG,C(v) 6 p for all v ∈ V (G). We use an ordering
where L ∪ R \ {`y, rz} C `y C {rz} ∪ C and the ordering within each set is arbitrary. By
construction of Hx, each vertex in L∪R \{`y, rz} has total degree at most p. For each vertex
v ∈ {rz} ∪ C, we trivially have odegG,C(v) 6 p because |C| = p. Finally, since xyz = 0, the
vertex rz is not a neighbor of `y; so odegG,C(`y) = |C| = p. This proves the claim.

When λ > 1, Alice and Bob introduce edges so as to create the blow-up graph Gλ,
as in Definition 15. By Lemma 16, if xyz = 1, then Gλ has a (p + 2)λ-clique, whereas if
xyz = 0, then κ(Gλ) 6 (p+ 1)λ− 1. In the former case, χ(Gλ) > (p+ 2)λ = (q+ 1)λ, so that
Gλ ∈ G1(n, q, λ); cf. Definition 18. In the latter case, κ(Gλ) 6 qλ−1, so that Gλ ∈ G2(n, q, λ).
Thus, solving graph-dist(n, q, λ) on Gλ reveals xyz. J

Our coloring lower bounds are straightforward consequences of the above lemma.

I Theorem 20. Given a single randomized pass over a stream of edges of an n-vertex
graph G, succeeding with probability at least 2/3 at either of the following tasks requires
Ω(n2/λ2) space, where λ > 1 is an integer parameter:

(i) produce a proper (κ+ λ)-coloring of G;
(ii) produce an estimate κ̂ such that |κ̂− κ| 6 λ.

Furthermore, if we require λ = O
(
κ

1
2−γ

)
, where γ > 0, then neither task admits a semi-

streaming algorithm.

Proof. An algorithm for either task i and or task ii immediately solves graph-dist with
appropriate parameters, implying the Ω(n2/λ2) bounds, thanks to Lemma 19. For the
“furthermore” statement, note that the graphs in the family G2 constructed in the proof of
Lemma 19 have κ = Θ(n), so performing either task with the stated guarantee on λ would
require Ω(n1+2γ) space, which is not in Õ(n). J

I Remark. Together, Theorem 10 and Theorem 20 say that producing a (κ+ κ/ logO(1) n)-
coloring is possible in semi-streaming space whereas producing a (κ+O

(
κ

1
2−O(1)))-coloring

is not. We leave open the question of whether this gap can be tightened.

Second Flavor: Degeneracy Known in Advance. We now show that the coloring problem
remains just as hard even if the algorithm knows the degeneracy of the graph before seeing
the edge stream.

I Theorem 21. Given as input an integer κ, followed by a stream of edges of an n-vertex
graph G with degeneracy κ, a randomized one-pass algorithm that produces a proper (κ+ λ)-
coloring of G requires Ω(n2/λ2) bits of space. Furthermore, if we require λ = O

(
κ

1
2−γ

)
,

where γ > 0, then the task does not admit a semi-streaming algorithm.
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Proof. We reduce from indexN , where N = p2, using a plan analogous to the one used in
proving Lemma 19. Alice and Bob will construct a graph on n = 5λp vertices, using their
respective inputs x ∈ {0, 1}p×p and (y, z) ∈ [p]× [p].

First, we consider the case λ = 1. We use the vertex set L ] R ] L ] R ] C, where
L = {`1, . . . `p}, R = {r1, . . . , rp}, L = {`1, . . . , `p}, R = {r1, . . . , rp}, and |C| = p. Let x
be the bitwise complement of x. Alice introduces the edges of the gadget graph Hx (from
Definition 17), realized on L∪R, and the edges of Hx realized on L∪R. For ease of notation,
put ` := `y, r := rz, ` := `y, r := rz, and S := C ∪ {`, r, `, r}. Bob introduces all possible
edges within S, except for {`, r} and {`, r}. Let G be the resulting graph (see Figure 1b).

We claim that the degeneracy κ(G) = p+ 2. To prove this, we consider the case xyz = 1
(the other case, xyz = 0, is symmetric). By construction, G contains a clique on the p+ 3
vertices in C ∪ {`, r, `}; therefore, by definition of degeneracy, κ(G) > p+ 2. To show that
κ(G) 6 p + 2, it will suffice to exhibit a vertex ordering C such that odegG,C(v) 6 p + 2
for all v ∈ V (G). To this end, consider an ordering where V (G) \ S C ` C S \ {`} and the
ordering within each set is arbitrary. Each vertex v ∈ V (G) \S has odegG,C(v) 6 deg(v) 6 p

and each vertex v ∈ S \ {`} has odegG,C(v) 6
∣∣S \ {`}∣∣− 1 = p+ 2. As for the vertex `, since

xyz = 1− xyz = 0, by the construction in Definition 17, r is not a neighbor of `; therefore,
odegG,C(`) 6

∣∣S \ {`, r}∣∣ = p+ 2.
Let A be a streaming algorithm that behaves as in the theorem statement. Recall that we

are considering λ = 1. Since κ(G) = p+ 2 for every instance of indexN , Alice and Bob can
simulate A on their constructed graph G by first feeding it the number p+ 2, then Alice’s
edges, and then Bob’s. When A succeeds, the coloring it outputs is a proper (p+ 3)-coloring;
therefore it must repeat a color inside S, as |S| = p + 4. But S has exactly one pair of
non-adjacent vertices: the pair {`, r} if xyz = 0, and the pair {`, r} if xyz = 1. Thus, an
examination of which two vertices in S receive the same color reveals xyz, solving the indexN
instance. It follows that A must use at least R→(indexN ) = Ω(N) = Ω(p2) bits of space.

Now consider an arbitrary λ. Alice and Bob proceed as above, except that they simulate
A on the blow-up graph Gλ. Since G always has a (p+ 3)-clique and κ(G) = p+ 2, the two
halves of Lemma 16 together imply κ(Gλ) = (p+ 3)λ− 1. So, when A succeeds, it properly
colors Gλ using at most (p+ 4)λ− 1 colors. For each A ⊆ V (G), abusing notation, let Aλ
denote its corresponding set of vertices in Gλ (cf. Definition 15). Since |Sλ| = (p+ 4)λ, there
must be a color repetition within Sλ. Reasoning as above, this repetition must occur within
{`, r}λ when xyz = 0 and within {`, r}λ when xyz = 1. Therefore, Bob can examine the
coloring to solve indexN , showing that A must use Ω(N) = Ω(p2) = Ω(n2/λ2) space.

The “furthermore” part follows by observing that κ(Gλ) = Θ
(
|V (Gλ)|

)
. J

Query Lower Bounds. We prove lower bounds of the above two flavors for the graph query
model as well. We describe the proofs in the full version of the paper [18].

I Theorem 22. Given query access to an n-vertex graph G, succeeding with probability at
least 2/3 at either of the following tasks requires Ω(n2/λ2) queries, where λ > 1 is an integer:
(i) produce a proper (κ+ λ)-coloring of G;
(ii) produce an estimate κ̂ such that |κ̂− κ| 6 λ.

I Theorem 23. Given an integer κ and query access to an n-vertex graph G with κ(G) = κ,
an algorithm that, with probability 2/3, produces a proper (κ+ λ)-coloring of G must make
Ω(n2/λ2) queries.
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Combinatorial Lower Bound. Finally, we prove a combinatorial result that shows that
unlike (∆ + 1)-coloring, an analogous Palette Sparsification Theorem (as in Assadi et al. [5])
doesn’t exist for degeneracy-based coloring. Moreover, our result implies that an algorithm
based on such a technique must use at least as many colors as Algorithm 1. We discuss this
in detail in the full version of our paper [18].
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Abstract
We study the problem of computing an approximate maximum cardinality matching in the semi-
streaming model when edges arrive in a random order. In the semi-streaming model, the edges of
the input graph G = (V, E) are given as a stream e1, . . . , em, and the algorithm is allowed to make
a single pass over this stream while using O(npolylog(n)) space (m = |E| and n = |V |). If the order
of edges is adversarial, a simple single-pass greedy algorithm yields a 1/2-approximation in O(n)
space; achieving a better approximation in adversarial streams remains an elusive open question.

A line of recent work shows that one can improve upon the 1/2-approximation if the edges of
the stream arrive in a random order. The state of the art for this model is two-fold: Assadi et al.
[SODA 2019] show how to compute a 2

3 (∼ .66)-approximate matching, but the space requirement
is O(n1.5polylog(n)). Very recently, Farhadi et al. [SODA 2020] presented an algorithm with the
desired space usage of O(npolylog(n)), but a worse approximation ratio of 6

11 (∼ .545), or 3
5 (= .6) in

bipartite graphs.
In this paper, we present an algorithm that computes a 2

3 (∼ .66)-approximate matching using
only O(n log(n)) space, improving upon both results above. We also note that for adversarial streams,
a lower bound of Kapralov [SODA 2013] shows that any algorithm that achieves a 1 − 1

e
(∼ .63)-

approximation requires (n1+Ω(1/ log log(n))) space. Our result for random-order streams is the first to
go beyond the adversarial-order lower bound, thus establishing that computing a maximum matching
is provably easier in random-order streams.
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1 Introduction

Computing a maximum cardinality matching is a classical problem in combinatorial optimiz-
ation, with a large number of algorithms and applications. Motivated by the rise of massive
graphs, much of the recent research on this problem has focused on sub-linear algorithms
that are able to compute a matching without storing the entire graph in memory. One of the
standard sub-linear models for processing graphs is known as the semi-streaming model [17]:
the algorithm has access to a sequence of edges (the stream), and is allowed to make a
single pass over this sequence while only using only O(npolylog(n)) internal memory, where
n is the number of vertices in the graph. Note that the memory used is still significantly
smaller than the number of edges in the graph, and that O(n) memory is also necessary if
we want the algorithm to output the actual edges of the matching. (One typically assume
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12:2 Improved Bounds for Matching in Random-Order Streams

Table 1 Single-pass semi-streaming algorithms known for the maximum matching when edges
arrive in a random order. The space bounds are expressed in terms of O(log(n))-size words, though
many existing results do not state the exact polylog(n) term. The result of Gamlath et al. [18]
works in weighted graphs; all others are restricted to unweighted graphs.

Approximation Factor
Bipartite graphs General graphs Space

Konrad et al. [28] 0.5005 0.5003 O(n)
Gamlath et al. [18] 0.512 0.506 O(n · polylog(n))
Konrad [27] 0.539 - O(n · polylog(n))
Assadi et al. [3] 0.666 0.666 O(n1.5 · polylog(n))
Farhadi et al. [16] 0.6 0.545 O(n · polylog(n))
This paper 0.666 0.666 O(n log(n))

O(log(n))-size words, so that a single edge can be stored in O(1) space; if one were to express
space in terms of the number of bits, all the space bounds in this paper would increase by a
O(log(n)) factor.)

If the edges of the stream arrive in an arbitrary order, a simple greedy algorithm can
compute a maximal matching – and hence a 1/2-approximate maximum matching – in a
single streaming pass and O(n) space. Going beyond a 1/2-approximation with a single pass
is considered one of the main open problems in the area. The strongest lower bound is by
Kapralov [23], who build upon an earlier lower bound of Goel et al. [20]: any algorithm with
approximation ratio ≥ 1− 1/e ∼ .63 requires n1+Ω(1/ log log(n))) space [23]. But we still do
not know where the right answer lies between 1/2 and 1− 1/e.

To make progress on this intriguing problem, several recent papers studied a more relaxed
model, where the graph is still arbitrary, but the edges are assumed to arrive in a uniformly
random order. Konrad et al. were the first to go beyond a 1/2-approximation in this
setting: they showed that in random-order streams, there exists an O(n)-space algorithm
that computes an .5003-approximate matching, or .5005-approximate for bipartite graphs [28].
This was later improved to .506 in general graphs [18] and .539 in bipartite graphs [27].
Assadi et al. then showed an algorithm with an approximation ratio of (2/3 − ε) ∼ .66,
but their algorithm had a significantly larger space requirement of O(n1.5polylog(n)) [3].
Finally, very recently (SODA 2020), Farhadi et al. achieved the current state of the art for
O(npolylog(n)) space; their algorithm achieves an approximation ratio of 6/11 ∼ .545 for
general graphs and 3/5 = .6 for bipartite graphs [16]. A summary of these results can be
found in Table 1.

Although this line of work suggests that computing a maximum matching might be
fundamentally easier in random-order streams, we note that even in bipartite graphs, none of
the previous results go beyond the best known lower bound for adversarial streams mentioned
above [23]: the algorithm of Assadi et al. uses too much space (n1.5 � n1+1/ log log(n)), while
the result of Farhadi et al. has an approximation ratio of .6 < 1− 1/e.

Our result is the first to go beyond the adversarial-order lower bound, thus establishing
that computing a matching is provably easier in random-order streams.

I Theorem 1 (Our Result). Given any (possibly non-bipartite) graph G and any approximation
parameter 1 > ε > 0, there exists a deterministic single-pass streaming algorithm that with
high probability computes a (2/3 − ε)-approximate matching if the edges of G arrive in a
uniformly random order. The space usage of the algorithm is O(n log(n)poly(ε−1)).
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Our result significantly improves upon the space requirement of Assadi et al. [3] and the
approximation ratio of Farhadi et al. [16]. In fact, our algorithm achieves the best of both
those results (see Table 1). On top of that, our result is quite simple; given that it improves
upon a sequence of previous results, we see this simplicity as a plus.

Related Work

If the only requirement is to return an approximate estimate of the size of the maximum
matching, rather than the actual edges, a surprising result by Kapralov et al. shows that
one can get away with very little space: given a single pass over a random-order stream, it is
possible to estimate the size within a 1/polylog(n) factor using only polylog(n) space [24];
a very recent improvement reduces the polylog factors to O(log2(n)) [25]. There is also a
line of work that estimates the size of the matching in o(n) space in adversarial streams for
special classes of graphs as such planar graphs or low-arboricity graphs [14, 8, 30, 11, 31].

There are many one-pass streaming algorithms for computing a maximum matching in
weighted graphs. For adversarial-order streaming, a long line of work culminated in a (1/2−ε)-
approximation using O(n) space [17, 29, 13, 12, 32, 19]. Gamlath et al. recently showed that
for random-order streams, one can achieve an approximation ratio of 1/2 + Ω(1), [18]. See
also other related work on weighted graphs in [8].

There are several results on upper and lower bounds for computing a maximum matching
in dynamic streams (where edges can also be deleted) [26, 10, 6, 9, 5]. Finally, there are
several results that are able to achieve better bounds by allowing the algorithm to make
multiple passes over the stream: some results focus on just two or three passes [28, 15, 22, 27],
while others seek to compute a (1− ε)-approximate matching by allowing a large constant
number (or even log(n)) passes [29, 1, 21, 2].

Overview of Techniques

The basic greedy algorithm trivially achieves a 1/2-approximate matching in adversarial
streams; in fact, Konrad et al later showed that the ratio remains 1/2 + o(1) even in random-
order streams [28]. Existing algorithms for improving the 1/2 ratio in random-order streams
generally fall into two categories. The algorithms in [28, 27, 18, 16] use the randomness
of the stream to compute some fraction of short augmenting paths, thus going beyond the
1/2-approximation of a maximal matching. The result in [3] instead shows that one can
obtain a large matching by constructing a subgraph that obeys certain degree-properties.

Our result follows the framework of [3]. Given any graph G, an earlier result of Bernstein
and Stein for fully dynamic matching defined the notion of an edge-degree constrainted
subgraph (denoted EDCS), which is a sparse subgraph H ⊆ G that obeys certain degree-
properties [7]. They showed that any EDCS H always contains a (2/3 − ε)-approximate
matching. The streaming result of Assadi et al. [3] then showed that given a random-order
stream, it is possible to compute an EDCS H in O(n1.5) space; returning the maximum
matching in H yields a (2/3− ε)-approximate matching in G.

Our result also takes the EDCS as its starting point, but it is unclear how to compute an
EDCS H of G using less than O(n1.5) space. Our algorithm requires two new contributions.
Firstly, we show that it is sufficient for H to satisfy a somewhat relaxed set of properties. Our
main contribution is then to use an entirely different construction of this relaxed subgraph,
which uses the randomness of the stream more aggressively to compute H using low space.

ICALP 2020



12:4 Improved Bounds for Matching in Random-Order Streams

2 Notation and Preliminaries

Consider any graph H = (VH , EH). We define degH(v) to be the degree of v in H and we
define the degree of an edge (u, v) to be degH(u) + degH(v). A matching M in H is a set
of vertex-disjoint edges. All graphs in this paper are unweighted and undirected. We use
µ(H) to denote the size of the maximum matching in H. Unless otherwise indicated, we
let G = (V,E) refer to the input graph and let n = |V | and m = |E|. We note that every
graph referred to in the paper has the same vertex V as the input graph; when we refer to
subgraphs, we are always referring to a subset of edges on this same vertex set.

The input graph G = (V,E) is given as a stream of edges S = 〈e1, . . . , em〉. We assume
that the permutation (e1, . . . , em) of the edges is chosen uniformly at random among all
permutations of E. We use S[i,j] to denote the substream 〈ei, . . . , ej〉, and we use G>i ⊆ G
to denote the subgraph of G containing all edges in {ei+1, . . . , em}.

Our analysis will apply concentration bounds to segments S[i,j] of the stream. Observe
that because the stream is a random permutation, any segment S[i,j] is equivalent to sampling
j− 1 + 1 edges from the stream without replacement. We can thus apply the Chernoff bound
for negatively associated variables (see e.g. the primer in [33]).

I Theorem 2 (Chernoff). Let X1, . . . Xn be negatively associated random variables taking
values in [0, 1]. Let X =

∑
Xi and let µ = E[X]. Then, for any 0 < δ < 1 we have

Pr[X ≤ µ(1− δ)] ≤ exp(−µ · δ
2

2 ),

and

Pr[X ≥ µ(1 + δ)] ≤ exp(−µ · δ
2

3 )

The early and late sections of the stream

Our algorithm will use the first εm edges of the stream to learn about the graph and will
effectively ignore them for the purposes of analyzing the maximum matching. Thus, we
only approximate the maximum matching in the later (1− ε)m edges of stream; because the
stream is random, these edges still contain a large fraction of the maximum matching. We
use the following definitions and lemmas to formalize this intuition.

I Definition 3. We Let Eearly denote the first εm edges of the stream, and Elate denote
the rest: that is, Eearly = {e1, . . . , eεm}, and Elate = {eεm+1, . . . , em}. Define Gearly =
(V,Eearly) and Glate = (V,Elate) = G>εm.

For the probability bounds to work out, we need to assume that µ(G) ≥ 20 log(n)ε−2.
We justify this assumption by observing that every graph G satisfies m ≤ 2nµ(G), so if
µ(G) < 20 log(n)ε−2, then the algorithm can trivially return an exact maximum matching by
simply storing every edge using only O(m) = O(log(n)ε−2) space. This justifies the following:

B Claim 4 (Assumption). We can assume for the rest of the paper that µ(G) ≥ 20 log(n)ε−2.

Combining Claim 4 with Chernoff bound we get the following lemma, which allows us to
focus our analysis on the edges in Glate.

I Lemma 5. Assuming that ε < 1/2, we have that Pr[µ(Glate) ≥ (1− 2ε)µ(G)] ≥ 1− n−5.
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Proof. Fix some maximum matching M = (f1, ..., fµ(G)) of G. Define Xi to be the indicator
variable that edge fi ∈ M appears in Glate. Since the stream is random, and since Glate
contains exactly (1− ε)m edges, we have that E[Xi] = (1− ε) and

∑
E[Xi] = (1− ε)µ(G).

It is also easy to see that the Xi are negatively associated, since these variables correspond
to sampling (1 − ε)m edges without replacement. Recall from Claim 4 that we assume
µ(G) ≥ 20 log(n)ε−2. Applying the Chernoff Bound in Theorem 2 completes the proof. J

Existing Work on EDCS

We now review the basic facts about the edge-degree constrained subgraph (EDCS), which
was first introduced in [7].

I Definition 6. Let G = (V,E) be a graph, and H = (V,EH) a subgraph of G. Given any
parameters β ≥ 2 and λ < 1, we say that H is a (β, λ)-EDCS of G if H satisfies the following
properties:

[Property P1]. For any edge (u, v) ∈ H, degH(u) + degH(v) ≤ β
[Property P2]. For any edge (u, v) ∈ G \H, degH(u) + degH(v) ≥ β(1− λ).

The crucial fact about the EDCS is that it always contains a (almost) 2/3-approximate
matching. The simplest proof of Lemma 7 below is in Lemma 3.2 of [4].

I Lemma 7 ([4]). Let G(V,E) be any graph and ε < 1/2 be some parameter. Let λ, β be
parameters with λ ≤ ε

64 , β ≥ 8λ−2 log (1/λ). Then, for any (β, λ)−EDCS H of G, we have
that µ(H) ≥ ( 2

3 − ε)µ(G). (Note that the final guarantee is stated slightly differently than
in Lemma 3.2 of [4], and to ensure the two are equivalent, we set λ to be a factor of two
smaller than in Lemma 3.2 of [4].)

3 Our Modified Subgraph

Unlike the algorithm of [3], we do not actually construct an EDCS of G, as we do not know
how to do this in less than O(n1.5) space. We instead rely on a more relaxed set of properties,
which we analyze using Lemma 7 as a black-box. We now introduce some of the basic new
tools used by our algorithm. Note that graph G in the lemma and definitions below crucially
refers to any arbitrary graph G, and not necessarily the main input graph of the streaming
algorithm.

I Definition 8. We say that a graph H has bounded edge-degree β if for every edge (u, v) ∈ H,
degH(u) + degH(v) ≤ β.

I Definition 9. Let G be any graph, and let H be a subgraph of G with bounded edge-degree
β. For any parameter λ < 1, we say that an edge (u, v) ∈ G \H is (G,H, β, λ)-underfull if
degH(u) + degH(v) < β(1− λ)

The two definitions above effectively separate the two EDCS properties: any subgraph
H of G with bounded edge-degree β automatically satisfies property P1 of an EDCS, and
underfull edges are then those that violate property P2. We now show that one can always
construct a large matching from the combination of these two parts.

I Lemma 10. Let ε < 1/2 be any parameter, and let λ, β be parameters with λ ≤ ε
128 ,

β ≥ 16λ−2 log (1/λ). Consider any graph G, and any subgraph H with bounded edge-degree β.
Let X contain all edges in G\H that are (G,H, β, λ)-underfull. Then µ(X∪H) ≥ (2/3−ε)µ(G)
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12:6 Improved Bounds for Matching in Random-Order Streams

Proof. Note that it is NOT necessarily the case that H ∪ X is an EDCS of G, because
adding the edges of X to H will increase vertex and edge degrees in H, so H ∪X might not
satisfy property P1 of an EDCS. We thus need a more careful argument.

LetMG be the maximum matching in G, letMH
G = MG∩H and letMG\H

G = MG∩(G\H).
LetXM = X∩MG\H

G . Note that by construction,MG ⊆ H∪MG\H
G , so µ(H∪MG\H

G ) = µ(G).
We now complete the proof by showing that H ∪XM is a (β+ 2, 2λ)-EDCS of H ∪MG\H

G .
Let us start by showing property P2. Recall that X contains all edges (u, v) in G \H for
which degH(u) + degH(v) < β(1 − λ), so by construction XM contains all such edges in
M

G\H
G . Thus, every edge (u, v) ∈ (H ∪MG\H

G ) \ (H ∪ XM ) = M
G\H
G \ XM must have

degH(u) + degH(v) ≥ β(1−λ) ≥ (β+ 2)(1−2λ), where the last inequality is just rearranging
the algebra to fit Property P2 for our new EDCS parameters of β + 2, 2λ.

For property P1, note that XM ⊆ M
G\H
G is a matching, so for every vertex v we have

degH(v) ≤ degH∪XM (v) ≤ degH(v) + 1. Now, for (u, v) ∈ H we had degH(u) + degH(v) ≤ β
(by property P1 of H), and for (u, v) ∈ XM ⊆ X we had degH(u) + degH(v) < β (by
definition of X). Thus, for every (u, v) ∈ H∪XM we have that degH∪XM (u)+degH∪XM (v) ≤
degH(u) + degH(v) + 2 ≤ β + 2.

Note that because of how we set the parameters, β′ = β + 2 < 2β and λ′ = 2λ
satisfy the requirements of Lemma 7. We thus have that µ(H ∪ X) ≥ µ(H ∪ XM ) ≥
(2/3− ε)µ(H ∪MG\H

G ) = (2/3− ε)µ(G). J

4 The Algorithm

4.1 The Two Phases
Our algorithm will proceed in two phases. Once phase I terminates, the algorithm proceeds
to phase II and never returns to phase I. The goal of phase I is to construct a suitable
subgraph H of G. We now state the formal properties that will be guaranteed by phase I.

I Definition 11 (parameters). Throughout this section we use the following parameters.
Let ε < 1/2 be the final approximation parameter we are aiming for. Set λ = ε

128 and set
β = 16λ−2 log (1/λ); note that λ and β are O(poly(1/ε)). Set α = εm

nβ2+1 = O(mn poly(1/ε))
and γ = 5 log(n)mα = O(n log(n)poly(1/ε)).

I Lemma 12. Phase I uses O(nβ) = O(npoly(1/ε)) space and constructs a subgraph H of
G. The phase satisfies the following properties:
1. Phase I terminates within the first εm edges of the stream. That is, Phase I terminates

at the end of processing some edge ei with i ≤ εm.
2. When Phase I terminates at the end of processing some edge ei, the subgraph H ⊆ G

constructed during this phase satisfies the following properties:
a. H has bounded edge-degree β. As a corollary, H has O(nβ) edges.
b. With probability at least 1− n−3, the total number of (G>i, H, β, λ)-underfull edges in

G>i \H is at most γ. (Recall that G>i denotes the subgraph of G that contains all
edges in {ei+1, . . . , em}.)

We now show that if we can ensure the properties of Lemma 12, our main result follows.

Proof of Theorem 1. Let us say that Phase I terminates after edge ei and let H be the
subgraph constructed by Phase I. Phase II of the algorithm proceeds as follows. It initializes
an empty set X. Then, for every edge (u, v) in S[i+1,m], if degH(u) + degH(v) < β(1 − λ)
(that is, if (u, v) is (G>i, H, β, λ)-underfull), the algorithm adds edge (u, v) to X. After the
algorithm completes the stream, it then returns the maximum matching in H ∪X.
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Let us now analyze the approximation ratio. By property 1 of Lemma 12, G>i ⊆ Glate;
thus, X contains all (Glate, H, β, λ)-underfull edges. By property 2a, H has bounded edge-
degree β. Thus, applying Lemma 10, we have that µ(H) ≥ (2/3− ε)µ(Glate). Combining
this with Lemma 5, we get that µ(H) ≥ (2/3 − ε)(1 − 2ε)µ(G) ≥ (2/3 − 3ε)µ(G); using
ε′ = ε/3 thus yields the desired approximation ratio.

For the space analysis, we know from Lemma 12 that Phase I requires O(nβ) space,
which is the space needed to store subgraph H. By Property 2b, the size of X in Phase II is
at most O(n log(n)). The overall space is thus O(n log(n) + nβ) = O(n log(n) + npoly(1/ε)).

Finally, note that the only two probabilistic claims are Lemma 5 and Property 2b of
Lemma 12, both of which hold with probability ≥ 1− n−3. A union bound thus yields an
overall probability of success ≥ 1− 2n−3. J

4.2 Description of Phase I
All we have left is to describe Phase I and prove Lemma 12. See Algorithm 1 for pseudocode
of the entire algorithm. Recall the parameters ε, β, λ, α, γ from Definition 11. Phase I is split
into epochs, each containing exactly α edges from the stream. So in epoch i, the algorithm
looks at S[(i−1)α+1,iα].

Phase I initializes the graph H = ∅. In epoch i, the algorithm goes through the edges
of S[(i−1)α+1,iα] one by one. For edge (u, v), if degH(u) + degH(v) < (1 − λ)β, then the
algorithm adds edge (u, v) to H (Line 5). (Note that the algorithm changes H over time, so
degH(u)+degH(v) always refers to the degrees inH at the time edge (u, v) is being examined.)
After each edge insertion to H, the algorithm runs procedure RemoveOverfullEdges(H) (Line
7); this procedure repeatedly picks an edge (x, y) with degH(x) + degH(y) > β until no such
edge remains. Note that as a result, our algorithm preserves the invariant that H always has
bounded edge-degree β.

In each epoch, the algorithm also has a single boolean FoundUnderfull, which is set
to True if the algorithm ever adds an edge to H during that epoch. At the end of the epoch,
if FoundUnderfull is set to True, then the algorithm simply proceeds to the next epoch.
If FoundUnderfull is False, then the algorithm permanently terminates Phase I and
proceeds to Phase II. (The intuition is that since the ordering of the stream is random, if the
algorithm failed to find an underfull edge in an entire epoch, then there must be relatively
few underfull edges left in the stream, so Property 2b of Lemma 12 will be satisfied.)

Note that FoundUnderfull being false is the only way Phase I can terminate (Line 9);
we prove in the analysis that this deterministically occurs within the first εm edges of the
stream.

4.3 Analysis
We now turn to proving Lemma 12. The hardest part is proving Property 1. Observe that
every epoch that doesn’t terminate Phase I must add at least one edge to H. To prove
Property 1, we use an auxiliary lemma that bounds the total number of changes made to H.

I Lemma 13. Fix any parameter β > 2. Let H = (VH , EH) be a graph, with EH initially
empty. Say that an adersary adds and removes edges from H using an arbitrary sequence of
two possible moves

[Deletion Move]. Remove an edge (u, v) from H for which degH(u) + degH(v) > β

[Insertion Move]. Add an edge (u, v) to H for some pair u, v ∈ V for which degH(u) +
degH(v) < β − 1.

Then, after nβ2 moves, no legal move remains.

ICALP 2020
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Algorithm 1 The algorithm for computing a matching in a random-order stream. After
initialization, the algorithm goes to Phase I. Once the algorithm exits Phase I, it moves on
to Phase II and never returns to Phase I. Line 9 is the only place where the algorithm can
exit Phase I.

Procedure Initilization
Initialize H = ∅ /* H is a global variable modified by Phase I */
Let ε < 1/2 be the main approximation parameter
Set λ = ε

128 , β = 16λ−2 log (1/λ), α = εm
nβ2+1 , γ = 5 log(n)mα (Definition 11).

Go To Phase I
Procedure Phase I

Do Until Termination /* each iteration corresponds to one epoch */
(1) FoundUnderfull ← FALSE
(2) for α Iterations: do /* each epoch looks at exactly α edges. */

(3) Let (u, v) be the next edge in the stream
(4) if degH(u) + degH(v) < β(1− λ) then

(5) Add edge (u, v) to H /* note: this increases degH(u) and
degH(v). */

(6) FoundUnderfull ← TRUE
(7) RemoveOverfullEdges(H)

(8) if FoundUnderfull = FALSE then
(9) Go To Phase II /* permanently exit Phase I. */ ;

/* Else, will move on to the next epoch of Phase I. */

Procedure RemoveOverfullEdges(H)
(1) while there exists (u, v) ∈ H such that degH(u) + degH(v) > β do

(2) Remove (u, v) from H /* note: this decreases degH(u) and
degH(v) */

/* note: when the while loop terminates, H is guaranteed to have
bounded edge-degree β. */

Procedure Phase II
(1) Initialize X ← ∅ /* all underfull edges will be added to X */ ;
(2) foreach remaining edge (u, v) in the stream do

(3) if degH(u) + degH(v) < β(1− λ) then
(4) Add edge (u, v) to X /* note: this does NOT change any

degH(v). */

(5) Return the maximum matching in H ∪X ;

Proof. The proof is similar to that of Proposition 2.4 in [4]. Define the following potential
functions Φ1(H) = (β− 1/2) ·

∑
v∈VH

degH(v), Φ2(H) =
∑

(u,v)∈EH
degH(u) + degH(v), and

the main potential function Φ(H) = Φ1(H) − Φ2(H). Note that initially H is empty so
Φ(H) = 0. We claim that at all times Φ(H) ≤ Φ1(H) ≤ nβ2. To see this, note that every
vertex v ∈ VH always has degH(v) ≤ β, because as long as degH(v) = β, the adversary
cannot perform any insertion moves incident to v. In the rest of the proof, we show that
every Insertion/Deletion move increases Φ(H) by at least 1; combined with the fact that at
all times 0 ≤ Φ(H) ≤ nβ2, we get that there are at most nβ2 moves in total.
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Consider any Deletion Move of edge (u, v). Clearly Φ1(v) decreases by exactly 2β − 1.
We now show that Φ2(v) decreases by at least 2β. One the one hand, Φ2(v) decreases by at
least β + 1 because edge (u, v) no longer participates in the sum, and degH(u) + degH(v)
was > β before the deletion. But at the same time, since degH(u) + degH(v) ≥ β + 1
before the deletion, there are at least β − 1 edges other than (u, v) incident to u or v, and
each of their edge degrees decrease by 1 in the sum for Φ2(H). Thus, Φ2(H) decreases
by at least β + 1 + (β − 1) = 2β, while Φ1(H) decreases by exactly 2β − 1, so overall
Φ(H) = Φ1(H)− Φ2(H) increases by at least one.

Similarly, consider any Insertion Move of edge (u, v). Clearly Φ1(v) increases by exactly
2β−1. We now show that Φ2(v) increases by at most 2β−2. Recall that degH(u)+degH(v) ≤
β − 2 before the insertion, so after the insertion we have that degH(u) + degH(v) ≤ β, so
the edge (u, v) itself contributes at most β to the sum in Φ2. There are also at most β − 2
edges other than (u, v) incident to u or v, each of whose edge degrees increases by 1. Thus,
overall, Φ2(H) increases by at most β + (β − 2) = 2β − 2, so φ(H) increases by at least
(2β − 1)− (2β − 2) = 1. J

Proof of Lemma 12. Property 2a is clearly satisfied by construction, because after any
insertion to H the algorithm runs RemoveOnderfullEdges(H) (line 7) to ensure that H has
bounded edge-degree β. As a result, we clearly have that every vertex degree is at most β,
so Phase I needs only O(nβ) space to store H.

For the proof of Property 1, observe that any changes the algorithm makes to H follow
the rules for Insertion/Deletion moves from Lemma 13, so Algorithm 1 makes at most nβ2

changes to H. (Line 5 of Phase I corresponds to deletion moves in Lemma 13, while line
2 of RemoveOverfullEdges(H) corresponds to insertion moves. Note that line 5 of phase I
actually obeys an even stronger inequality than deletion moves, since β(1 − λ) < β − 1.)
Each epoch that does not terminate Phase I makes at least one change to H, so phase I goes
through at most nβ2 + 1 epochs before termination. Each epoch contains α edges, so overall
Phase I goes through at most α(nβ2 + 1) = εm edges, as desired.

All that remains is to prove Property 2b. As mentioned above, the intuition is simple:
the algorithm only exits Phase I if it fails to find a single underfull edge in the entire epoch
(Line 9), and since the stream is random, such an event implies that there are probably
relatively few underfull edges left in the stream. We now formalize this intuition.

Let Ai be the event that FoundUnderfull is set to FALSE in epoch i. Recall that
epoch i ends on edge eiα; let Bi be the event that the number of (G>iα, H, β, λ)-underfull
edges is more than γ. Note that Property 2b fails to hold if and only if we have Ai ∧ Bi for
some i, so we now upper bound Pr[Ai ∧ Bi]. Our bound relies on the randomness of the
stream. Let Eri contain all edges in the graph that have not yet appeared in the stream at
the beginning of epoch i (r for remaining). Let Eei be the edges that appear in epoch i (e for
epoch), and note that Eei is a subset of size α chosen uniformly at random from Eri . Define
Hi to be the subgraph H at the beginning of epoch i, and define Eui ⊆ Eri to be the set
{(u, v) ∈ Eri | degHi

(u) + degHi
(v) < β(1− λ)} (u for underfull). Observe that because of

event Ai, the graph H does not change throughout epoch i, so an edge that is underfull at
any point during the epoch will be underfull at the end as well. Thus, Ai ∧ Bi is equivalent
to the event that |Eui | > γ but Eui ∩ Eei = ∅.

Let Aki be the event that the kth edge of epoch i is not in Eui . We have that

Pr[Bi ∧ Ai] ≤ Pr[Ai | Bi] = Pr[A1
i | Bi]

α∏
k=2

Pr[Aki | Bi,A1
i , . . . ,Ak−1

i ].
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Now, observe that

Pr[A1
i | Bi] < 1− γ

m

because the first edge of the epoch is chosen uniformly at random from the set of ≤ m

remaining edges, and the event fails if the chosen edge is in Eui , where |Eui | > γ by definition
of Bi. Similarly, for any k,

Pr[Aki | Bi,A1
i , . . . ,Ak−1

i ] < 1− γ

m

because conditioning on the previous events Aji implies that no edge from Eui has yet appeared
in this epoch, so there are still at least γ edges from Eui left in the stream.

Recall from Definition 11 that γ = 5 log(n) · mα . Combining the three above equations
yields that Pr[Bi ∧ Ai] ≤ (1 − γ

m )α = (1 − 5 log(n)
α )α ≤ n−5. There are clearly at most n2

epochs, so union bounding over all of them shows that Property 2b fails with probability at
most n−3, as desired. J

5 Open Problems

We presented a new single-pass streaming algorithm for computing a maximum matching in
a random-order stream. The algorithm achieves a (2/3− ε)-approximation using O(n log(n))
space; these bounds improve upon all previous results for the problem.

But while 2/3 is a natural boundary, there is no reason to believe it is the best possible.
Is there an algorithm with approximation ratio 2/3 + Ω(1)? Is it possible to compute a
(1− ε)-approximate matching in random-order streams? A lower bound of 1− Ω(1) in this
setting would also be extremely interesting.

Another natural open problem is get improved bounds for weighted graphs. Gamlath et
al. [18] recently broke through the barrier of 1/2 and presented an algorithm for weighted
graphs that computes a .506-approximation (or .512 in bipartite graphs) in random-order
streams. Can we improve the approximation ratio to 2/3 in weighted graphs? To (1− ε)?
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Abstract
In the online multiple knapsack problem, an algorithm faces a stream of items, and each item has
to be either rejected or stored irrevocably in one of n bins (knapsacks) of equal size. The gain of
an algorithm is equal to the sum of sizes of accepted items and the goal is to maximize the total gain.

So far, for this natural problem, the best solution was the 0.5-competitive algorithm FirstFit
(the result holds for any n ≥ 2). We present the first algorithm that beats this ratio, achieving the
competitive ratio of 1/(1 + ln(2))−O(1/n) ≈ 0.5906−O(1/n). Our algorithm is deterministic and
optimal up to lower-order terms, as the upper bound of 1/(1 + ln(2)) for randomized solutions was
given previously by Cygan et al. [TOCS 2016].
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1 Introduction

Knapsack problems have been studied in theoretical computer science for decades [13, 14]. In
particular, in the multiple knapsack problem [2, 5, 6, 7, 10, 12, 18], items of given sizes and
profits have to be stored in n bins (knapsacks), each of capacity 1. The goal is to find a subset
of all items that maximizes the total profit and can be feasibly packed into bins without
exceeding their capacities. We consider an online scenario, where an online algorithm is
given a sequence of items of unknown length. When an item is presented to an algorithm,
it has to either irrevocably reject the item or accept it to a chosen bin (which cannot be
changed in the future). The actions of an online algorithm have to be made without the
knowledge of future items.

Proportional case. In this paper, we focus on the most natural, proportional variant
(sometimes called uniform), where item profits are equal to item sizes and the goal is to
maximize the sum of profits of all accepted items.

EA
T

C
S

© Marcin Bienkowski, Maciej Pacut, and Krzysztof Piecuch;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2453-7772
mailto:marcin.bienkowski@cs.uni.wroc.pl
https://orcid.org/0000-0002-6379-1490
mailto:maciej.pacut@univie.ac.at
mailto:kpiecuch@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.ICALP.2020.13
https://arxiv.org/abs/2002.04543
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 An Optimal Algorithm for Online Multiple Knapsack

The single-bin case (n = 1) has been fully resolved: no deterministic online algorithm
can be competitive [16], and the best randomized algorithm ROne by Böckenhauer et al. [4]
achieves the optimal competitive ratio of 0.5.1

Less is known for multiple-bin case (n ≥ 2). Cygan et al. [7] showed that the FirstFit
algorithm is 0.5-competitive and proved that no algorithm (even a randomized one) can
achieve a competitive ratio greater than R, where

R = 1/(1 + ln 2) ≈ 0.5906.

Other variants. Some authors focused on the variant, where the goal is to maximize the
maximum profit over all bins, instead of the sum of the profits. For this objective, optimal
competitive ratios are already known: 0.5-competitive deterministic algorithm was given by
Böckenhauer et al. [4], and the upper bound of 0.5 holding even for randomized solutions
were presented by Cygan et al. [7].

The multiple knapsack problem can be generalized in another direction: profits and sizes
may be unrelated. However, already the unit variant, where the profit of each item is equal
to 1, does not admit any competitive solutions (even randomized ones) [5].

These results together mean that the proportional case studied in this paper is the only
variant, whose online complexity has not been fully resolved yet.

1.1 Our results
The main result of this paper is an (R−O(1/n))-competitive deterministic online algorithm
for the proportional variant of the multiple knapsack problem. We give insights for our
construction in Section 1.3 below and the definition of our algorithm later in Section 2. Given
the upper bound of R for randomized solutions [7], our result is optimal up to lower-order
terms also for the class of randomized solutions.

It is possible to show that for deterministic algorithms, the term O(1/n) in the com-
petitive ratio is inevitable: in the full version of the paper, we show how the upper bound
construction given in [7] can be tweaked and extended to show that the competitive ratio of
any deterministic algorithm is at most R−O(1/n).

1.2 Related work
Some previous papers focused on a removable scenario, where an accepted item can be removed
afterwards from its bin [2, 7, 8, 10, 11]. Achievable competitive ratios are better than their non-
removable counterparts; in particular, the proportional variant admits constant-competitive
deterministic algorithms even for a single bin [10].

The online knapsack problem has been also considered in relaxed variants: with resource
augmentation, where the bin capacities of an online algorithm are larger than those of the
optimal offline one [11, 17], with a resource buffer [9], or in the variant where an algorithm
may accept fractions of items [17].

The hardness of the variants with arbitrary profits and sizes as well as applications to
online auctions motivated another strand of research focused on the so-called random-order
model [1, 3, 15, 19]. There, the set of items is chosen adversarially, but the items are presented
to an online algorithm in random order.

1 An online algorithm is called α-competitive if, for any input instance, its total profit is at least fraction α
of the optimal (offline) solution. While many papers use the reciprocal of α as the competitive ratio,
the current definition is more suited for accounting arguments in our proofs.
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1.3 Algorithmic challenges and ideas
Our algorithm splits items into three categories: large (of size greater than 1/2), medium
(of size from the interval [φ, 1/2]) and small (of size smaller than φ). We defer the actual
definition of φ.

First, we explain what an online algorithm should do when it faces a stream of large
items. Note that no two large items can fit together in a single bin. If an algorithm greedily
collects all large items, then the adversary may give n items of size 1/2 + ε (accepted by
an online algorithm) followed by n items of size 1 (accepted by an optimal offline algorithm
Opt), and the resulting competitive ratio is then 0.5. On the other hand, if an algorithm
stops after accepting some number of large items, Opt may collect all of them.

Our Rising Threshold Algorithm (Rta) balances these two strategies. It chooses
a non-decreasing threshold function f : [0, 1]→ [1/2, 1] and ensures that the size of the i-th
accepted large item is at least f(i/n). While an actual definition of f is given later, to grasp
a general idea, it is worth looking at its plot in Figure 1 (left). A natural adversarial strategy
is to give large items meeting these thresholds, and once Rta fills k bins, present n items of
sizes slightly smaller than the next threshold f((k + 1)/n). These items will be rejected by
Rta but can be accepted by Opt. Analyzing this strategy and ensuring that the ratio is
at least R for any choice of k yields boundary conditions. Analyzing these conditions for
n tending to infinity, we obtain a differential equation, whose solution is the function f used
in our algorithm.

The actual difficulty, however, is posed by medium items. Rta never proactively rejects
them and it keeps a subset of marked medium items in their own bins (one item per one
bin), while it stacks the remaining, non-marked ones (places them together in the same bin,
possibly combining items of similar sizes). This strategy allows Rta to combine a large
item with marked medium items later. However, the amount of marked items has to be
carefully managed as they do not contribute large gain alone. A typical approach would
be to partition medium items into discrete sub-classes, control the number of items in each
class, and analyze the gain on the basis of the minimal size item in a particular subclass. To
achieve optimal competitive ratio, we however need a more fine-grained approach: we use
a carefully crafted continuous function ξ to control the number of marked items larger than
a given value. Analyzing all possible adversarial strategies gives boundary conditions for ξ.
In particular, the value φ that separates medium items from small ones was chosen as the
minimum value that ensures the existence of function ξ satisfying all boundary conditions.

Finally, we note that simply stacking small items in their own bins would not lead to the
desired competitive ratio. Instead, Rta tries to stack them in a single bin, but whenever its
load exceeds φ, Rta tries to merge them into a single medium item and verify whether such
an item could be marked. This allows for combining them in critical cases with large items.

1.4 Preliminaries
We have n bins of capacity 1, numbered from 1 to n. An input is a stream of items from
(0, 1], defined by their sizes. Upon seeing an item, an online algorithm has to either reject
it or place it in an arbitrary bin without violating the bin’s capacity. The load of a bin b,
denoted load(b), is the sum of item sizes stored in bin b. We define the load of a set of items
as the sum of their sizes and the total load as the load of all items collected by an algorithm.
Additionally, for any x ≤ 1/2, we define pile(x) = max{2/3, 2x}. Note that if we put medium
items of sizes at least x (till it is possible) into a bin b, then load(b) ≥ pile(x).

ICALP 2020
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To simplify calculations, for any set Z of items, we define the gain of Z, denoted g(Z), as
their load divided by n; similarly, the total gain is the total load divided by n. Furthermore,
we use min(Z) to denote the minimum size of an item in set Z. If Z is accepted by our online
algorithm, b(Z) denotes the number of bins our algorithm uses to accommodate these items,
divided by n. For any value x ∈ [0, 1], Z≥x is the set of all items from Z of size greater or
equal x. Whenever we use terms g(Z), min(Z) or b(Z) for a set Z that varies during runtime,
we mean these values for the set Z after an online algorithm terminates its execution.

For any input sequence σ and an algorithm A, we use A(σ) to denote the total gain of A
on sequence σ. We denote the optimal offline algorithm by Opt.

1.5 Neglecting lower-order terms
As our goal is to show the competitive ratio R − O(1/n), we introduce a notation that
allows to neglect terms of order 1/n. We say that x is approximately equal to y (we write
x h y) if |x− y| = O(1/n). Furthermore, we say that x is approximately greater than y (we
write x & y) if x ≥ y or x h y; we define relation . analogously. Each of these relations is
transitive when composed a constant number of times.

In our analysis, we are dealing with Lipschitz continuous functions (their derivative is
bounded by a universal constant). For such function h, (i) the relation h is preserved after
application of h, and (ii) an integral of h can be approximated by a sum, as stated in the
following facts, used extensively in the paper.

I Fact 1. Fix any Lipschitz continuous function h and values x h y from its domain. Then,
h(x) h h(y). Furthermore, if h is non-decreasing, then x . y implies h(x) . h(y) and x & y

implies h(x) & h(y).

I Fact 2. For any Lipschitz continuous function h and integers a, b satisfying 1 ≤ a ≤ b ≤ n,
it holds that (1/n) ·

∑b
i=a+1 h(i/n) h

∫ b/n

a/n
h(x) dx.

1.6 Roadmap of the proof
We present our algorithm in Section 2. Its analysis consists of three main parts.

In Section 3, we investigate the gain of Rta on large items and explain the choice of the
threshold function f.
In Section 4, we study properties of medium items, marking routine, function ξ and show
how the marked items influence the gain on other non-large items.
In Section 5, we study the impact of marked items on bins containing large items.

Each of these parts is concluded with a statement that, under certain conditions, Rta is
(R−O(1/n))-competitive (cf. Lemma 5, Lemma 15, Lemma 20 and Lemma 21). In Section 6,
we argue that these lemmas cover all possible outcomes. For succinctness, some technical
claims have been moved to Section 7.

2 Rising Threshold Algorithm

We arrange items into three categories: small, medium and large. We say that an item is
large if its size is in the range (1/2, 1], medium if it is in the range [φ, 1/2], and otherwise it
is small, where we define

ξc = (1 + (2/3) · ln(4/3)) ·R− 2/3 ≈ 0.0372 and (1)
φ = (2/3) · ξc / (2/3−R+ ξc) ≈ 0.2191. (2)
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Figure 1 Left: function f and its integral F. The value of F(x) roughly corresponds to our lower
bound on the gain of Rta when it collects n · x large items. Right: functions P and Q used in
estimating the gain in Section 4 and Section 5; note that their arguments are marked at Y axis.

We further arrange medium items into subcategories M2, M3 and M4: a medium item
belongs to Mi if its size is from range (1/(i+ 1), 1/i]. As we partition only medium items
this way, M4 contains items of sizes from [φ, 1/4]. Note that at most i items of category Mi

fit in a single bin.
At some times (defined precisely later) a group of small items of a total load from [φ, 2φ)

stored in a single bin may become merged, and from that point is treated as a single medium
item. We ensure that such merging action does not violate invariants of our algorithm.

Our algorithm Rta applies labels to bins; the possible labels are E, A, S∗, MS, M2, M3,
M4 and L+. Each bin starts as an E-bin, and Rta can relabel it later. The label determines
the content of a given bin:

an E-bin is empty,
an A-bin (an auxiliary bin) contains small items of a total load smaller than φ and at
most one A-bin exists at any time,
an S∗-bin contains one or multiple small items,
an MS-bin contains a single marked medium item,
an Mi-bin contains one or more medium items of category Mi,
an L+-bin contains a single large item and possibly some other non-large ones.

For any label C, we define a corresponding set, also denoted C, containing all items stored in
bins of label C. For instance, L+ is a set containing all items stored in L+-bins. Furthermore,
we define L as the set of all large items (clearly L ⊆ L+ and b(L) = b(L+)) and the set
M∗ = M2 ]M3 ]M4.

Rta processes a stream of items, and it operates until the stream ends or there are no
more empty bins (even if an incoming item could fit in some partially filled bin). Upon the
arrival of an item, Rta classifies it by its size and proceeds as described below.

Large items. Whenever a large item arrives, Rta compares its size with the threshold
f(b(L) + 1/n), and if the item is smaller, Rta rejects it. The function f : [0, 1]→ [1/2, 1] is
defined as

f(x) =
{

1/2 if x ≤ R,
(2e)x−1 otherwise,

(3)

and depicted in Figure 1 (left). If the item meets the threshold, Rta attempts to put it in
an MS-bin with sufficient space left (relabeling it to L+), and if no such bin exists, Rta puts
the item in any empty bin.
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Medium items. We fix a continuous and decreasing function ξ that maps medium item
sizes to [0, ξc/φ]:

ξ(x) =
{
ξc/x if x ∈ [φ, 1/3],
9ξc · (1− 2x) if x ∈ (1/3, 1/2].

(4)

We say that the subset Z of medium items is ξ-dominated if |Z≥x|/n ≤ ξ(x) for any x ∈ Z.
Intuitively, it means that if we sort items of Z from largest to smallest, then all points (i/n, xi)
are under or at the plot of ξ−1, see Figure 3 (left).

Rta never proactively rejects medium items, i.e., it always accepts them if it has an empty
bin. Some medium items become marked upon arrival; we denote the set of medium marked
items by D. Large or small items are never marked. Marked medium items are never
combined in a single bin with other marked medium items. At all times, Rta ensures that the
set D is ξ-dominated. As no two items from D are stored in a single bin, this corresponds to
the condition b(D≥x) ≤ ξ(x) for any x ∈ D. Each marked item is stored either in an MS-bin
(alone) or in an L+-bin (together with a large item and possibly some other non-marked
items). That is, MS ⊆ D ⊆MS ] L+.

Whenever a medium item arrives, Rta attempts to put it in an L+-bin. If it does not fit
there, Rta verifies whether marking it (including it in the set D) preserves ξ-domination
of D. If so, Rta marks it and stores it in a separate MS-bin. Otherwise, Rta fails to mark
the item and the item is stored in an Mi-bin (where i depends on the item size): it is added
to an existing bin whenever possible and a new Mi-bin is opened only when necessary.

We emphasize that if Rta puts a large item in an MS-bin later (and relabel it to L+), the
sole medium item from this bin remains marked (i.e., in the set D). However, if a medium
item fits in an L+-bin at the time of its arrival, it avoids being marked, even though its
inclusion might not violate ξ-dominance of the set D. Note also that M∗ contains medium
items Rta failed to mark.

Small items. Rta never proactively rejects any small item. Whenever a small item arrives,
Rta attempts to put this item in an L+-bin, in an S∗-bin, and in the A-bin, in this exact
order. If the item does not fit in any of them (this is possible only if the A-bin does not
exist), Rta places it in an empty bin and relabels this bin to A.

If Rta places the small item in an already existing A-bin and in effect its load reaches or
exceeds φ, Rta attempts to merge all its items into a single medium marked item. If the
resulting medium item can be marked and included in D without violating its ξ-dominance,
Rta relabels the A-bin to MS and treats its contents as a single marked medium item from
now on. Otherwise, it simply changes the label of the A-bin to S∗.

3 Gain on large items

In this section, we analyze the gain of Rta on large items. To this end, we first calculate
the integral of function f, denoted F (see Figure 1, left) and list its properties that can be
verified by routine calculations.

F(x) =
∫ x

0
f(y) dy =

{
x/2 if x ≤ R,
R · (2e)x−1 otherwise.

(5)

I Lemma 3. The following properties hold for function F.
1. f−1(c) = 1 +R · ln c and F(f−1(c)) = R · c for any c ∈ (1/2, 1].
2. F(x)/f(x) = min{x,R} for any x ∈ [0, 1].
3. (1/n) ·

∑`
i=1 f(i/n) h

∫ `/n

0 f(x) dx = F(`/n) for any ` ∈ {0, . . . , n}.
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Using Lemma 3, we may bound on the gain of Rta on large items L and use this bound
to estimate its competitive ratio when it terminates with empty bins.

I Lemma 4. It holds that g(L) & F(b(L)) = F(b(L+)). Moreover, g(L) & F(b(L))+g(L≥x)−
x · b(L≥x) for any x ≥ f(b(L)).

Proof. For the first part of the lemma, we sort large items from L in the order they were
accepted by Rta. The size of the i-th large item is at least the threshold f(i/n). Hence, by
Lemma 3, g(L) ≥ (1/n) ·

∑|L|
i=1 f(i/n) h F(|L|/n) = F(b(L)).

To show the second part, we fix any x ≥ f(b(L)) and for each large item of size greater
than x we reduce its size to x. The total gain of the removed parts is exactly g(L≥x)−x·b(L≥x).
The resulting large item sizes still satisfy acceptance thresholds, and thus the gain on the
remaining part of L is approximately greater than F(b(L)). Summing up yields g(L) &
F(b(L)) + g(L≥x)− x · b(L≥x). J

3.1 When RTA terminates with some empty bins
I Lemma 5. If Rta terminates with some empty bins, then it is (R−O(1/n))-competitive.

Proof. Fix an input sequence σ. As Rta terminates with empty bins, it manages to accept
all medium and small items from σ. Furthermore, it accepts large items from σ according
to the thresholds given by function f. Recall that f is non-decreasing: at the beginning it
is equal to 1/2 (Rta accepts any large item) and the acceptance threshold grows as Rta
accepts more large items. Let x = f(b(L) + 1/n) be the value of the acceptance threshold for
large items when Rta terminates. We consider two cases.

b(L) ≤ R− 1/n. The threshold used for each large item is at most x ≤ f(R) = 1/2, i.e.,
Rta accepts all large items. Then, Rta accepts all items and is 1-competitive.
b(L) > R− 1/n. Let N be the set of all non-large items accepted by Rta. By Lemma 4,

Rta(σ) = g(L) + g(N) & F(b(L)) + g(L≥x)− x · b(L≥x) + g(N)
h R · x+ g(L≥x)− x · b(L≥x) + g(N).

where for the last relation we used F(b(L)) h F(f−1(x)) = R · x (by Lemma 3).
As Rta takes all non-large items and all large items that are at least x, the input
sequence σ contains items taken by Rta and possibly some large items smaller than x.
Thus, the gain of Opt on large items is maximized when it takes L≥x and fills the
remaining n− |L≥x| bins with large items from σ smaller than x. The total gain of Opt
is thus at most

Opt(σ) ≤ g(L≥x) + x · (1− b(L≥x)) + g(N) = x+ g(L≥x)− x · b(L≥x) + g(N).

Comparing the bounds on gains of Rta and Opt and observing that the term g(L≥x)−
x · b(L≥x) + g(N) is non-negative, yields Rta(σ) ≥ R ·Opt(σ)−O(1/n). As Opt(σ) ≥
g(L) = Ω(1), we obtain Rta(σ) ≥ (R−O(1/n)) ·Opt(σ). J

As an immediate corollary, we observe that if σ contains large items only, then Rta
is (R − O(1/n))-competitive: If it terminates with empty bins, then its competitive ratio
follows by Lemma 5. Otherwise, it terminates with n large items, and hence, by Lemma 4,
Rta(σ) & F(b(L)) = F(1) = R. On the other hand, Opt(σ) ≤ 1, and therefore the
competitive ratio is at most R−O(1/n) also in this case.
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Figure 2 A geometric interpretation of the second property of Lemma 6: using P to lower-bound
the sum of F(x) and the rectangle c · (1− x) for the case f−1(c) ≤ x (left) and f−1(c) > x (right).

4 Gain on medium items

In the remaining part of the analysis, we make use of the following functions. For any
c ∈ (1/2, 1], let P(c) =

∫ 1
0 min{f(y), c} dy and Q(c) =

∫ 1
0 max{c− f(y), 0} dy. Both functions

are increasing and depicted in Figure 1 (right). As we show below (cf. the last property of
Lemma 6), P(c) lower-bounds the gain of Rta in the case when its load on non-L+ bins is at
least c.

I Lemma 6. Fix any c ∈ (1/2, 1] and any x ∈ [0, 1]. It holds that
1. P(c) = c−R · c · ln(2c),
2. Q(c) = R · c · ln(2c),
3. P(c) + Q(c) = c,
4. F(x) + c · (1− x) ≥ P(c).

Proof of Lemma 6. We fix any c ∈ (1/2, 1] and any x ∈ [0, 1]. For the first property, observe
that

P(c) =
∫ f−1(c)

0
f(y) dy +

∫ 1

f−1(c)
cdy = F(f−1(c)) + c · (1− f−1(c)) = c−R · c · ln(2c),

where for the last equality we used Lemma 3. Similarly, the second property follows as

Q(c) =
∫ f−1(c)

0
c− f(y) dy = c · f−1(c)− F(f−1(c)) = R · c · ln(2c).

The third relation, P(c) + Q(c) = c, follows immediately by the first two. Finally, for the last
relation, we use

F(x)+c ·(1−x) =
∫ x

0
f(y) dy+

∫ 1

x

cdy ≥
∫ x

0
min{f(y), c} dx+

∫ 1

x

min{f(y), c} dy = P(c).

See also Figure 2 for a geometric argument. J

4.1 Boundary conditions on function ξ
We start with a shorthand notation. Let T(a, b) = (a + b − 1/2) · (ξ(b) − ξ(a)), where
a, b ∈ [φ, 1/2] (so that the values of ξ(a) and ξ(b) are well defined).

Our choice of function ξ satisfies the conditions below. In fact, for our analysis to hold,
function ξ could be replaced by any Lipschitz continuous and non-increasing function mapping
[φ, 1/2] to [0, 1] satisfying these properties.
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I Lemma 7. The following properties hold for function ξ:
1. x · ξ(x) is a non-increasing function of x ∈ [φ, 1/2],
2. P(pile(x)) + x · ξ(x) ≥ R for x ∈ [φ, 1/2],
3. P(1− φ) + 2φ · ξ(2φ) ≥ R,
4. 2/3− (2/3− φ) · ξ(x) ≥ R for x ∈ [φ, 1/3],
5. P(1 − φ) + Q(1 − x) + (x + φ − 1) · ξ(x) + max{T (x, y), 0} ≥ R for x ∈ [1/3, 1/2] and

y ∈ [φ, 2φ],
6. P(pile(y)) + Q(1− x) + (x− pile(y)) · ξ(x) + T(x, y) ≥ R for x ∈ [1/3, 1/2] and y ∈ [φ, x],
7. P(2x) + Q(1− x)− x · ξ(x) ≥ R for x ∈ [1/3, 1/2].

4.2 Marked and tight items
We start with a simple bound on the gain of Rta on MS-bins. Recall that these bins store
single marked items.

I Lemma 8. If Rta terminates with at least one MS-bin, then g(MS) ≥ min(MS) · b(MS),
and b(MS) ≤ ξ(min(MS)).

Proof. The first condition follows trivially as each MS-bin contains a single medium item
of size at least min(MS). For the second condition, note that MS ⊆ D, and thus also
MS ⊆ D≥min(MS). As D is ξ-dominated, b(MS) ≤ b(D≥min(MS)) ≤ ξ(min(MS)). J

We now take a closer look at the marked items and their influence on the gain on other
sets of items. We say that a medium marked item x ∈ D is tight if it is on the verge of
violating ξ-domination invariant.

I Definition 9. An item x ∈ D is tight if b(D≥x) > ξ(x)− 1/n.

If an item x ∈ D is tight, then another item of size x or greater cannot be included
in D without violating ξ-domination invariant. Figure 3 (left) illustrates this concept. As
D can only grow, once an item becomes tight, it remains tight till the end. We emphasize
that items smaller than x are not relevant for determining whether x is tight. If D contains
a tight item, then mt(D) denotes the size of the minimum tight item in D. This important
parameter influences the gain both on set D and also on stacking bins M∗ and S∗.

I Lemma 10. If D contains a tight item, then g(D) & mt(D) · ξ(mt(D)).

Proof. Fix a tight item d ∈ D of size mt(D). By Definition 9, b(D≥d) > ξ(d) − 1/n, and
thus g(D) ≥ g(D≥d) ≥ d · b(D≥d) & d · ξ(d). J

4.3 Impact of tight items on stacking bins
By Property 1 of Lemma 7, x · ξ(x) is a non-increasing function of x. Therefore, the smaller
mt(D) is, the larger is the lower bound on g(D) guaranteed by Lemma 10. Now we argue
that the larger mt(D) is, the better is the gain on stacking bins M∗ and S∗.

I Lemma 11. Assume Rta failed to mark a medium item y. Then, a tight item exists and
mt(D) . y.

Proof. Let Dext = D ∪ {y}. By the lemma assumption, Dext is not ξ-dominated, i.e., there
exists an item x ∈ Dext such that b(D≥x

ext) > ξ(x). Note that x ≤ y, as otherwise we would
have D≥x = D≥x

ext, and thus b(D≥x) > ξ(x), which would contradict ξ-domination of D.
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Figure 3 Left: set D of marked items with a tight (gray) item of size x. As x is tight, insertion
of another item of size x (with a dashed border) would violate ξ-domination of D. Right: items
collected by Rta, when it terminates without empty bins and with MS-bins. Gain on L+-sets is split
into three parts, where the first part corresponds to the gain of T∗ (cf. Lemma 17). The minimum
guaranteed load in MS-bins is given by Lemma 8 and in the bins of M∗ ] S∗ by Lemma 13.

Let d ≥ x be the minimum size of an item from D≥x. Then, D≥d = D≥x, and thus

b(D≥d) = b(D≥x) = b(D≥x
ext)− 1/n > ξ(x)− 1/n ≥ ξ(d)− 1/n, (6)

where in the last inequality we used monotonicity of ξ. By (6), d is tight. On the other hand,
ξ-domination of D implies that b(D≥d) ≤ ξ(d). This, combined with (6), yields ξ(d) h ξ(x),
and thus d h x ≤ y. Note that d remains tight till the end of the execution. This concludes
the lemma, as the minimum tight item, mt(D), can be only smaller than d. J

I Lemma 12. If Rta finishes
with at least one M∗-bin, then mt(D) is defined and mt(D) . min(M∗);
with at least one S∗-bin, then mt(D) is defined and mt(D) . 2φ.

Proof. For the first part of the lemma, fix a medium item from M∗ of size min(M∗). By the
definition of Rta, it failed to mark this item. Hence, by Lemma 11, mt(D) is defined and
mt(D) . min(M∗).

Assume now that Rta finishes with at least one S∗-bin. When the first such S∗-bin was
created, Rta placed a small item s < φ in the already existing A-bin of load r < φ, and the
merge action failed, because Rta failed to mark the resulting item of size s+ r. Thus, again
by Lemma 11, mt(D) is defined and mt(D) . s+ r < 2φ. J

To estimate the gain on M∗-bins and S∗-bins, we define

level∗ =


min{pile(mt(D)), 1− φ} if D contains a tight item and S∗ 6= ∅,
pile(mt(D)) if D contains a tight item and S∗ = ∅,
1 if D does not contain any tight item.

(7)

I Lemma 13. It holds that g(M∗ ] S∗) & level∗ · b(M∗ ] S∗).

Proof. If D does not contain a tight item, then, by Lemma 12, both M∗ and S∗ are empty,
and the lemma follows trivially. Thus, in the following we assume that D contains a tight
item and we take a closer look at the contents of S∗-bins and M∗-bins.
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Assume thatM∗ is non-empty. Rta creates a newMi-bin (for i ∈ {2, 3, 4}) if the incoming
medium item of category Mi (of size (1/(i+ 1), 1/i]) does not fit in any of the existing Mi

bins. Hence, each Mi-bin (except at most one) has exactly i items, and therefore its load is
greater than i/(i+ 1) ≥ 2/3 and is also at least i ·min(Mi) ≥ 2 ·min(M∗). Thus,

g(M∗) & max{2/3, 2 ·min(M∗)} ·b(M∗) = pile(min(M∗)) ·b(M∗) & pile(mt(D)) ·b(M∗), (8)

where the second inequality follows by Lemma 12 and by monotonicity of function pile. Note
that (8) holds trivially also when there are no M∗-bins.

If there are no S∗-bins, then, g(M∗ ]S∗) = g(M∗) & pile(mt(D)) · b(M∗) = level∗ · b(M∗ ]
S∗), and the lemma follows.

If there are some S∗-bins, recall that Rta creates a new S∗-bin only if the considered
small item does not fit in any existing S∗-bin. Thus, the load of each S∗-bin (except at most
one) is at least 1− φ, and therefore g(S∗) & (1− φ) · b(S∗). Combining this with (8) implies
g(M∗]S∗) & pile(mt(D)) ·b(M∗)+(1−φ) ·b(S∗) ≥ min{pile(mt(D)), 1−φ} ·b(M∗]S∗). J

4.4 When RTA terminates without empty bins and without MS-bins
Using tight items, we may analyze the case when Rta terminates without empty bins and
without MS-bins, and show that in such case its gain is approximately greater than R. As
the gain of Opt is at most 1, this yields the desired competitive ratio.

I Lemma 14. If Rta terminates without empty bins, then b(L)+b(MS)+b(M∗)+b(S∗) h 1.

Proof. There is at most one A-bin. The remaining bins (at least n− 1 many) are of classes
L+, MS, M∗ or S∗, and thus b(L) + b(MS) + b(M∗) + b(S∗) h 1. J

I Lemma 15. If on input σ, Rta terminates without empty bins and without MS-bins, then
Rta(σ) & R.

Proof. We analyze the gain of Rta on three disjoint sets: L, D and M∗ ] S∗.

Rta(σ) ≥ g(L) + g(M∗ ] S∗) + g(D)
& F(b(L)) + level∗ · (1− b(L)) + g(D) (by L. 4, L. 13 and L. 14)
& P(level∗) + g(D) (by L. 6)

If D does not contain a tight item, then level∗ = 1, and thus Rta(σ) & P(1) = R.
If D contains a tight item, then by Lemma 10, g(D) ≥ mt(D) · ξ(mt(D)), and therefore

Rta(σ) & P(level∗) + mt(D) · ξ(mt(D)). We consider two cases.
If level∗ ≥ pile(mt(D)), then Rta(σ) & P(pile(mt(D))) + mt(D) · ξ(mt(D)) ≥ R, where
the last inequality follows by Property 2 of Lemma 7.
The opposite case, level∗ < pile(mt(D)), is possible only if S∗-bins exist and level∗ = 1−φ.
By Lemma 12, the existence of S∗-bins implies mt(D) . 2φ. As the function x · ξ(x) is
non-increasing (cf. Property 1 of Lemma 7), Rta(σ) & P(1− φ) + 2φ · ξ(2φ) ≥ R. The
last inequality follows by Property 3 of Lemma 7. J

5 Gain on large items revisited

In this section, we assume that Rta terminates without empty bins and with at least one
MS-bin. Recall that Lemma 4 allows us to estimate g(L+) by calculating the gain on large
items alone. Now we show how to improve this bound by taking into account non-large items
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in L+. First, we leverage the fact that if a (marked) medium item is in MS, then Rta must
have failed to combine it with a large item, and we obtain a better lower bound on the size
of each large item. Second, we show that in some cases marked medium items must be in L+
which increases its load. If an MS-bin exists, we define

T∗ =
{

T(min(MS),mt(D)) if mt(D) is defined and min(MS) > max{mt(D), 1/3}
0 otherwise,

thr(MS) = min{1−min(MS), 1/2 + φ}.

Note that T∗ is always non-negative. In particular, T(min(MS),mt(D)) = (min(MS) +
mt(D)−1/2)·(ξ(mt(D))−ξ(min(MS)) ≥ 0 because min(MS)+mt(D) ≥ 1/2 for min(MS) > 1/3
and mt(D) ≥ φ.

I Lemma 16. Assume Rta terminates with at least one MS-bin. Then, the load of any
L+-bin is at least thr(MS).

Proof. Consider any L+-bin b and let y be the large item contained in this bin. If b contains
an additional medium item, then its load is greater than 1/2 + φ, and the lemma follows.
Hence, in the following, we assume that y was not combined with a medium item in a single
bin. As Rta finishes with an MS-bin, we fix a medium item x of size min(MS). We consider
three cases.

Item x arrived (or was created by merging some small items) before the arrival of y. Rta
did not place y in the MS-bin containing x, because y + x > 1. Thus, load(b) ≥ y ≥
1− x = 1−min(MS).
Item x arrived after the arrival of y. (Some small items might be placed together with y
prior to the arrival of x.) As Rta placed x in a separate bin, it did not fit in b, i.e., the
load of b at the time of the arrival of x was greater than 1− x = 1−min(MS).
Item x was created by merging small items after the arrival of y. Let s < x be the small
item that caused the creation of x. Rta placed s in A-bin, because s did not fit in b, i.e.,
the load of b at that time was greater than 1− s > 1− x = 1−min(MS). J

I Lemma 17. Assume that Rta terminates with at least one MS-bin. Then, g(L+) &

T∗ +
∫ b(L)

0 max{f(y), thr(MS)} dy.

Proof. We sort accepted large items by their arrival time and denote the bin containing
the i-th large item by bi. The bin bi contains a large item of size at least f(i/n) because
of the acceptance threshold, and its load is at least thr(MS) by Lemma 16, i.e., load(bi) ≥
max{f(i/n), thr(MS)}.

We now show how to decrease the load in L+-bins, so that the remaining load in bin bi

remains at least max{f(i/n), thr(MS)} and the change in the total gain is approximately equal
to T∗. This claim is trivial for T∗ = 0, so we assume T∗ > 0. This is possible only if a tight
item exists, min(MS) > mt(D) and min(MS) > 1/3. As min(MS) > mt(D), every marked
medium item of size from the interval [mt(D),min(MS)) is in (a separate) L+-bin; let L̃ be
the set of these bins. AsMS ⊆ D≥mt(D), n ·b(L̃) = |D≥mt(D)\MS| = |D≥mt(D)|−|MS|. Using
the tightness of mt(D) and Lemma 8, b(L̃) = b(D≥mt(D))−b(MS) & ξ(mt(D))− ξ(min(MS)).
From each bin of L̃ we remove a load of mt(D) + min(MS)− 1/2. The induced change in the
total gain is then approximately equal to b(L̃) · (mt(D) + min(MS)− 1/2) = T∗.

We now analyze the load of bin bi after the removal. The original load of bin bi was at
least f(i/n) + mt(D), and after removal it is at least f(i/n) + min(MS)− 1/2. This amount is
at least f(i/n) (as min(MS) ≤ 1/2) and at least 1 −min(MS) ≥ thr(MS) (as f(i/n) ≥ 1/2).
Hence, the remaining load of bi is at least max{f(i/n), thr(MS)}.
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Thus, g(L+)−T∗ ≥ 1
n

∑n·b(L)
i=1 max{f(i/n), thr(MS)} h

∫ b(L)
0 max{f(y), thr(MS)} dy. Par-

ticular subsets of L+ are depicted in Figure 3 (right); the removed part of gain T∗ is depicted
as (1). J

I Lemma 18. Assume that Rta terminates with at least one MS-bin. Then, g(L+) + η ·
(1− b(L)) & P(η) + Q(min{thr(MS), η}) + T∗ for any η ∈ (1/2, 1].

Proof. We fix any η ∈ (1/2, 1] and define h = min{thr(MS), η}. By Lemma 17, g(L+)−T∗+
η · (1− b(L)) &

∫ b(L)
0 max{f(y), h}dy +

∫ 1
b(L) η dy. We denote this lower bound by A(b(L))

and we analyze it as a function of b(L). When b(L) < f−1(h), then using h ≤ η we obtain
A(b(L)) =

∫ b(L)
0 hdy +

∫ 1
b(L) η dy ≥

∫ f−1(h)
0 hdy +

∫ 1
f−1(h) η dy = A(f−1(h)). Therefore, we

need to lower-bound the value of A(b(L)) only for b(L) ≥ f−1(h). In such case,

A(b(L)) =
∫ b(L)

0
max{h, f(y)} dy +

∫ 1

b(L)
η dy

=
∫ b(L)

0
f(y) dy +

∫ 1

b(L)
η dy +

∫ b(L)

0
max{h− f(y), 0}dy

≥
∫ 1

0
min{f(y), η}+

∫ 1

0
max{h− f(y), 0} dy = P(η) + Q(h). J

5.1 When RTA terminates without empty bins and with some MS-bins
The following lemma combines our bounds on gains on L+, M∗, S∗ and MS.

I Lemma 19. Assume that Rta run on input σ terminates without empty bins and with at
least one MS-bin. Then, for any η ∈ (1/2, level∗],

Rta(σ) & P(η) + Q(min{η, thr(MS)}) + T∗ + (min(MS)− η) · ξ(min(MS)).

Proof. By the lemma assumptions,

Rta(σ) ≥ g(L+) + g(M∗ ] S∗) + g(MS)
& g(L+) + η · b(M∗ ] S∗) + min(MS) · b(MS) (by L. 13 and L. 8)
h g(L+) + η · (1− b(L+)) + (min(MS)− η) · b(MS). (by L. 14)

Applying the guarantee of Lemma 18 to g(L+) + η · (1− b(L+)) concludes the proof. J

I Lemma 20. Assume that Rta run on input σ terminates without empty bins and with at
least one MS-bin. If min(MS) ≤ 1/3, then Rta(σ) & R.

Proof. As level∗ ≥ 2/3, we may apply Lemma 19 with η = 2/3. Note that thr(MS) ≥ 2/3
for min(MS) ≤ 1/3. Then,

Rta(σ) & P(2/3) + Q(2/3) + (min(MS)− 2/3) · ξ(min(MS))
= 2/3 + (φ− 2/3) · ξ(min(MS)) ≥ R. (by L. 6)

The last inequality follows by Property 4 of Lemma 7. J

I Lemma 21. Assume that Rta run on input σ terminates without empty bins and with at
least one MS-bin. If min(MS) > 1/3, then Rta(σ) & R.
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Proof. As min(M) > 1/3, thr(MS) < 1 − min(MS) ≥ 2/3. Lemma 19 applied with any
η ∈ [2/3, level∗] yields

Rta(σ) & P(η) + Q(1−min(MS)) + T∗ + (min(MS)− η) · ξ(min(MS)). (9)

First, we assume that D has no tight items. Then, level∗ = 1, and we may use (9) with η =
2·min(MS) obtaining Rta(σ) ≥ P(2·min(MS))+Q(1−min(MS))−min(MS)·ξ(min(MS)) ≥ R,
where the last inequality follows by Property 7 of Lemma 7.

Second, we assume that D contains a tight item and we consider three cases.
level∗ < pile(mt(D)). This relation is possible only when level∗ = 1−φ and Rta terminates
with at least one S∗-bin. In this case, Lemma 12 implies that mt(D) ≤ 2φ. We apply (9)
with η = 1− φ obtaining Rta(σ) ≥ P(1− φ) + Q(1−min(MS)) + T∗ + (min(MS) + φ−
1) · ξ(min(MS)), which is at least R by Property 5 of Lemma 7.
level∗ ≥ pile(mt(D)) and min(MS) ≤ mt(D). Using monotonicity of pile, level∗ ≥
pile(min(MS)) = 2 ·min(MS). Applying (9) with η = 2 ·min(MS) yields Rta(σ) & R by
Property 7 of Lemma 7.
level∗ ≥ pile(mt(D)) and min(M) > mt(D). In this case, T∗ = T(min(MS),mt(D)).
Applying (9) with η = pile(mt(D)) yields Rta(σ) & P(pile(mt(D))) + Q(1−min(MS)) +
T(min(MS),mt(D)) + (min(MS)− pile(mt(D)) · ξ(min(MS)), which is at least R by Prop-
erty 6 of Lemma 7. J

6 Competitive ratio of RTA

I Theorem 22. The competitive ratio of Rta for the multiple knapsack problem is at least
R−O(1/n).

Proof. Fix an input σ. If Rta(σ) terminates with some empty bins, then its competitive
ratio follows by Lemma 5.

Hence, below we assume that Rta terminates without empty bins. We presented three
lemmas that cover all possible cases: there are no MS-bins (Lemma 15), there are MS-bins
and min(MS) ≤ 1/3 (Lemma 20), and there are MS-bins and min(MS) > 1/3 (Lemma 21).
In all these cases, we proved Rta(σ) & R. As Opt(σ) ≤ 1, the theorem follows. J

7 Proof of Lemma 7

We start with technical helper claims.

I Fact 23. The functions below are the derivatives of functions P, Q and ξ, respectively.

P′(x) = −R · ln x
Q′(x) = 1 +R · ln x

ξ′(x) =
{
−ξc/x

2 if x < 1/3,
−18ξc if x > 1/3

I Lemma 24. T(x, y) is a non-increasing function of y in the interval [φ, 1/2].

Proof. Recall that T(x, y) = (x + y − 1/2) · (ξ(y) − ξ(x)) is defined for x, y ∈ [φ, 1/2]. As
the function T(x, y) is continuous and differentiable everywhere except y = 1/3, it suffices to
show that its partial derivative ∂yT(x, y) is non-positive (except y = 1/3). We have
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∂yT(x, y) = ξ(y)− ξ(x) + (x+ y − 1/2) · ξ′(y) ≤ ξ(y) + y · ξ′(y),

where for the inequality we used ξ(x) ≥ 0 and (x− 1/2) · ξ′(y) ≥ 0.
If y ≤ 1/3, then ∂yT(x, y) ≤ ξc/y + y · (−ξc/y

2) = 0. If y > 1/3, then ∂yT(x, y) ≤
9ξc · (1− 2y)− 18ξc · y = 9ξc · (1− 4y) < 0, which concludes the proof. J

I Lemma 25. P (2/3) = R− ξc and for any y ∈ [2/3, 1] it holds that P(y) ≥ R+ 3ξc · y− 3ξc.

Proof. For the first part of the lemma, observe that by the definition of ξc (see (1)),

P(2/3) + ξc = 2/3−R · (2/3) · ln(4/3) + (1 + (2/3) · ln(4/3)) ·R− 2/3 = R.

To show the second relation, note that P(2/3) = R − ξc and P(1) = R. Let h(y) =
R+ 3ξc · y− 3ξc be the linear function that coincides with P(y) for y = 2/3 and y = 1. As the
function P is concave on its whole domain (its second derivative P′′(y) = −R/y is negative),
we have P(y) ≥ h(y) for any y ∈ [2/3, 1]. J

Proof of Lemma 7. Note that ξ(1/3) = 3 · ξc and ξ(1/2) = 0, For each property, we define
an appropriate function Gi that we analyze; for all properties except the first one, we show
that the function value is at least R for an appropriate range of arguments.

Property 1. Let G1(x) = x · ξ(x). Then G1(x) = ξc for x ∈ [φ, 1/3], and for x ∈ [1/3, 1/2] it
holds that G1(x) = 9ξc · x · (1− 2x), i.e., the function G1(x) is decreasing. Hence, G1(x)
is non-increasing in the whole domain [φ, 1/2].

Property 2. Let G2(x) = P(pile(x)) + x · ξ(x); we want to show that G2(x) ≥ R for any
x ∈ [φ, 1/2]. For x ∈ [φ, 1/3], it holds that G2(x) = P(2/3) + ξc = R (by Lemma 25).
For x ∈ [1/3, 1/2], G2(x) = P(2x) + x · ξ(x). Using Lemma 25, we obtain G2(x) ≥
R+ 6ξc ·x− 3ξc + 9ξc · (x− 2x2) = R− 18ξc · (x− 1/2) · (x− 1/3) ≥ R. The last inequality
follows as for any x ∈ [1/3, 1/2] the term (x− 1/2) · (x− 1/3) is non-positive.

Property 3. LetG3 = P(1−φ)+2φ·ξ(2φ). It can be verified numerically thatG3 > 0.593 > R.
Property 4. Let G4(x) = 2/3− (2/3− φ) · ξ(x). As the function ξ(x) is decreasing, for any

x ∈ [φ, 1/3] it holds that G4(x) ≥ G4(φ) = 2/3 − (2/3) · ξc/φ + ξc. Substituting the
definition of φ (see (2)), we obtain G4(x) ≥ G4(φ) ≥ 2/3− 2/3 +R− ξc + ξc = R.

Property 5. Let G5(x, y) = G̃5(x) + max{T(x, y), 0}, where G̃5(x) = P(1− φ) + Q(1− x) +
(x+φ−1) ·ξ(x). We want to show that G5(x, y) ≥ R for any x ∈ [1/3, 1/2] and y ∈ [φ, 2φ].

If x ∈ [1/3, 2φ], then already G̃5(x) ≥ R. To show this relation, we estimate its
derivative in the interval [1/3, 2φ]:

G̃′5(x) = −1−R · ln(1− x) + (x+ φ− 1) · ξ′(x) + ξ(x)
= −1−R · ln(1− x)− 36ξc · x− 18ξc · φ+ 27ξc

≤ −1−R · ln(1− 2φ)− 36ξc · (1/3)− 18ξc · φ+ 27ξc < −0.2479 < 0.

Hence, G̃5 is decreasing in the interval [1/3, 2φ], and thus for any x ∈ [1/3, 2φ] it holds
that G5(x, y) ≥ G̃5(x) ≥ G̃5(2φ) > 0.5997 > R.
If x ∈ (2φ, 1/2], then T(x, y) ≥ 0. As T(x, y) is a non-increasing function of y in the
interval [φ, 2φ] (by Lemma 24), it holds that T(x, y) ≥ T(x, 2φ). Therefore,

G5(x, y) ≥ G5(x, 2φ) = P(1−φ)+Q(1−x)− (φ+1/2) · ξ(x)+(x+2φ−1/2) · ξ(2φ).
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We now estimate its partial derivative for x ∈ [2φ, 1/2]:

∂xG5(x, 2φ) = −1−R · ln(1− x)− (φ+ 1/2) · ξ′(x) + ξ(2φ)
≤ −1−R · ln(1/2) + 18ξc · (φ+ 1/2) + 9ξc · (1− 4φ) < −0.0673 < 0.

Therefore G5(x, 2φ) is decreasing as a function of x in the interval [2φ, 1/2]. Thus, for
the considered range of arguments, G5(x, y) ≥ G5(x, 2φ) ≥ G5(1/2, 2φ) > 0.5934 > R.

Property 6. Let

G6(x, y) = P(pile(y)) + Q(1− x) + (x− pile(y)) · ξ(x) + T(x, y)

Fix any pair (x, y) ∈ [1/3, 1/2]× [φ, 1/2], such that y ≤ x. We prove that G6(x, y) ≥ R,
by showing each of the following inequalities

G6(x, y) ≥ G6(x, y′) ≥ G̃6(x, y′) ≥ G̃6(1/2, y′′) ≥ R, (10)

where y′ = max{y, 1/3} and y′′ = y′ + 1/2 − x. The function G̃6 is a lower bound on
function G6 created by using Lemma 25 (and defined formally later).
The first inequality of (10) is trivial for y ≥ 1/3, hence we assume that y < 1/3. In such
case, using the definition of function pile, we get G6(x, y) = P(2/3)+Q(1−x)+(x−2/3) ·
ξ(x) + T(x, y). As T(x, y) is a decreasing function of y, we obtain that T(x, y) ≥ T(x, y′)
and thus also G6(x, y) ≥ G6(x, y′).
To show the second inequality of (10), we first simplify G6(x, y) using that y ≥ 1/3 and
the definition of pile:

G6(x, y) = P(2y) + Q(1− x) + (x− 2y) · ξ(x) + (x+ y − 1/2) · (ξ(y)− ξ(x))

Now, using Lemma 25, we have

G6(x, y) ≥ R+ Q(1− x) + 6ξc · y − 3ξc + (1/2− 3y) · ξ(x) + (x+ y − 1/2) · ξ(y).

We denote the estimate above by G̃6(x, y) and we inspect its two partial derivatives.

∂xG̃6(x, y) = −1−R · ln(1− x) + (1/2− 3y) · ξ′(x) + ξ(y)
∂yG̃6(x, y) = 6ξc − 3 · ξ(x) + ξ(y) + (x+ y − 1/2) · ξ′(y)

The directional derivative along the vector v = (1, 1) is then equal to

∂vG̃6(x, y) = ∂xG̃6(x, y) + ∂yG̃6(x, y)
= −1−R · ln(1− x) + 6ξc − 3 · ξ(x) + 2 · ξ(y)− 18ξc · (x− 2y)
= −1−R · ln(1− x) + 36ξc · x− 3ξc

≤ −1−R · ln(1/2) + 36ξc · (1/2)− 3ξc < −0.0322 < 0.

This means that if we take any point (x, y′) ∈ [1/3, 1/2]× [1/3, 1/2], where y′ ≤ x, and
move along vector v, to point (1/2, y′′) = (1/2, y + 1/2− x), the value of the function G̃6
can only decrease. This concludes the proof of the third inequality of (10).
To show the final inequality of (10), we fix any y′′ ∈ [1/3, 1/2]. Then G̃6(1/2, y′′) =
R + 6ξc · y − 3ξc + y′′ · ξ(y′′) = R − 18ξc · (y′′ − 1/2) · (y′′ − 1/3) ≥ R, where the last
inequality holds as (y′′ − 1/2) · (y′′ − 1/3) is non-positive.

Property 7. Let G7(x) = P(2x) + Q(1 − x) − x · ξ(x). For x ∈ [1/3, 1/2], it holds that
G7(x) = G6(x, x). Hence G7(x) ≥ R for x ∈ [1/3, 1/2] follows by Property 6. J
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14:2 Space Efficient Construction of Lyndon Arrays in Linear Time

1 Introduction & Related Work

The Lyndon array [5] is a well-known combinatorial object on strings and has gained renewed
attention [6, 7, 14, 18, 19, 23] due to its recently discovered central role in combinatorics
on strings, e.g., when computing all the runs in a string [2]. It is known [18, 13] that the
Lyndon array can be computed in linear time from the list of lexicographically sorted suffixes
(the suffix array). Baier [1] introduced the first direct algorithm for computing the Lyndon
array – interestingly as a preliminary step for his new suffix sorting algorithm. However, it
requires Θ(n lgn) bits of additional working space even for just computing the Lyndon array.
Other Lyndon array construction algorithms have been introduced [13, 19, 20], but they all
have the same space bounds.

The Lyndon array has some structural properties that allow for a more space efficient
representation, namely using only 2n+ 2 bits [19]. Thus, it would be desirable to compute
this succinct representation using less than Θ(n lgn) bits of working space, without sacrificing
the linear running time. Previously, no such algorithm was known.

Our Contributions. We introduce the first algorithm that computes the succinct Lyndon
array inO(n) time, using onlyO(n lg lgn/ lgn) bits of additional working space. Alternatively,
our algorithm can construct the plain (O(n lgn)-bits) Lyndon array using only O(1) words
of additional working space, i.e., directly without precomputing the suffix array. In practice,
our approach is up to 10 times faster than previous algorithms for the Lyndon array.

The rest of the paper is organized as follows: In Section 2 we introduce the notation and
definitions that we use throughout the paper. Section 3 provides a new intuitive definition of
the succinct Lyndon array. We introduce our construction algorithm for the succinct Lyndon
array in Sections 4 and 5, and adapt it such that it computes the plain (O(n lgn)-bits) Lyndon
array in Section 6. Finally, we present experimental results for both versions (Section 7),
and summarize our findings (Section 8).

2 Preliminaries

We write lg x for log2 x. For i, j ∈ N, the interval [i, j] represents {x | x ∈ N ∧ i ≤ x ≤ j}.
We use the notation [i, j + 1) = (i − 1, j] = (i − 1, j + 1) = [i, j] for open and half-open
discrete intervals. Our analysis is performed in the word RAM model [17], where we can
perform fundamental operations (logical shifts, basic arithmetic operations etc.) on words of
size w bits in constant time. For the input size n of our problems we assume dlgne ≤ w.

A string (also called text) over the alphabet Σ is a finite sequence of symbols from the
finite and totally ordered set Σ. We say that a string S has length n and write |S| = n, iff S
is a sequence of exactly n symbols. The i-th symbol of a string S is denoted by S[i], while
the substring from the i-th to the j-th symbol is denoted by S[i..j]. For convenience we use
the interval notations S[i..j + 1) = S(i− 1..j] = S(i− 1..j + 1) = S[i..j]. The i-th suffix of
S is defined as Si = S[i..n], while the substring S[1..i] is called prefix of S. A prefix or suffix
of S is called proper, iff its length is at most n− 1. The concatenation of two strings S and
T is denoted by S · T . The length of the longest common prefix (LCP) between S and T is
defined as lcp(S, T ) = max{` | S[1..`] = T [1..`]}. The longest common extension (LCE) of
indices i and j is the length of the LCP between Si and Sj , i.e. lce(i, j) = lcp(Si,Sj). We
can simplify the description of our algorithm by introducing a special symbol $ /∈ Σ that is
smaller than all symbols from Σ. For a string S of length n we define the 0-th suffix S0 = $
as well as the (n + 1)-st suffix and position Sn+1 = S[n + 1] = $. The total order on Σ
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induces a total order on the set Σ∗ of strings over Σ. Let S and T be strings over Σ, and let
` = lcp(S, T ). We say that S is lexicographically smaller than T and write S ≺ T , iff we
have S 6= T and S[`+ 1] < T [`+ 1]. Analogously, we say that S is lexicographically larger
than T and write S � T , iff we have S 6= T and S[`+ 1] > T [`+ 1].

2.1 The Lyndon Array & Nearest Smaller Suffixes
A Lyndon word is a string that is lexicographically smaller than all of its proper suffixes, i.e.
S is a Lyndon word, iff ∀i ∈ [2..n] : Si � S holds [8]. For example, the string northamerica
is not a Lyndon word because its suffix america is lexicographically smaller than itself. On
the other hand, its substring americ is a Lyndon word. The Lyndon array of S identifies
the longest Lyndon word at each position of S:

I Definition 1 (Lyndon Array). Given a string S of length n, the Lyndon array is an array
λ of n integers with λ[i] = max{` | S[i..i+ `) is a Lyndon word}.

I Definition 2 (Nearest Smaller Suffixes). Given a string S and a suffix Si, the next smaller
suffix of Si is Sj, where j is the smallest index that is larger than i and satisfies Si � Sj.
The previous smaller suffix of Si is defined analogously. The next-smaller-suffix array (NSS
array) and previous-smaller-suffix array (PSS array) are arrays of size n defined as follows:

nss[i] = min{j | j ∈ (i, n+ 1] ∧ Si � Sj} pss[i] = max{j | j ∈ [0, i) ∧ Sj ≺ Si}

The Lyndon array and nearest smaller suffixes are highly related to each other. In fact, the
NSS array is merely a different representation of the Lyndon array (Lemma 3), as visualized
in Figure 1a. We conclude the preliminaries by showing a slightly weaker connection between
the PSS array and Lyndon words (Lemma 4).

I Lemma 3 (Lemma 15 [13]). The longest Lyndon word at position i ends at the starting
position of the NSS of Si, i.e. λ[i] = nss[i]− i.

I Lemma 4. Let pss[j] = i > 0, then S[i..j) is a Lyndon word.

Proof. By definition, the string S[i..j) is a Lyndon word iff there exists no k ∈ (i, j) with
S[k..j) ≺ S[i..j). Assume that such a k exists. Since i = pss[j], we know that (a) Sk � Si.
Now assume there is a mismatching character between S[k..j) and S[i..j). Then appending
Sj to both strings preserves this mismatch. This implies that we have S[k..j) ≺ S[i..j)⇐⇒
S[k..j) · Sj ≺ S[i..j) · Sj , and thus Sk ≺ Si, which contradicts (a). Therefore, we know that
(b) S[k..j) = S[i..i+ (j − k)). Then

Sk
(a)
� Si ⇐⇒ S[k..j) · Sj � S[i..i+ (j − k)) · Si+(j−k)

(b)⇐⇒ Sj � Si+(j−k)

which contradicts the fact that pss[j] = i < i+ (j − k). Hence, the described k cannot exist,
and S[i..j) must be a Lyndon word. J

3 Previous-Smaller-Suffix Trees

In this section we introduce the previous-smaller-suffix tree, which simulates access to the
Lyndon array, the NSS array, and the PSS array. The PSS array inherently forms a tree in
which each index i is represented by a node whose parent is pss[i]. The root is the artificial
index 0, which is parent of all indices that do not have a PSS (see Figure 1b for an example).
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Figure 1 Data structures for S = northamerica.

I Definition 5 (Previous-Smaller-Suffix Tree Tpss). Let S be a string of length n. The previous-
smaller-suffix tree (PSS tree) of S is an ordinal tree Tpss with nodes [0, n] and root 0. For
i ∈ [1, n], we define Parent(i) = pss[i]. The children are arranged in ascending order, i.e.
if i is a left-side sibling of j, then i < j holds.

The PSS tree is highly similar to the Left-to-Right-Minima (LRM) tree [3, 9, 22], which
we will briefly explain now. Given an array A[1, n] with artificial minimum A[0] = −∞, let
psv[i] = max{j | j ∈ [0, i) ∧A[j] < A[i]} be the index of the previous smaller value (PSV) of
A[i]. The LRM tree of A is an ordinal tree in which each index i is a child of psv[i], and the
children are ordered ascendingly (i.e. the only difference to the PSS tree is that we consider
previous smaller values instead of previous smaller suffixes). If A is the inverse suffix array of
S, then by definition of the inverse suffix array we have ∀i, j ∈ [1, n] : Si ≺ Sj ⇔ A[i] < A[j].
It follows that the PSS tree of a string is identical to the LRM tree of its inverse suffix array.
Consequently, an important property of the LRM tree also applies to the PSS tree:

I Corollary 6 (Lemma 1 [9]). The nodes of the PSS tree directly correspond to the preorder-
numbers, i.e. node i has preorder-number i (if the first preorder-number is 0).

The corollary allows us to simulate the NSS array with the PSS tree:

I Lemma 7. Given the PSS tree, NSS array and Lyndon array of the same string we have
nss[i] = i+ SubtreeSize(i) and thus λ[i] = SubtreeSize(i).1

Proof. Since the nodes directly correspond to the preorder-numbers (Corollary 6), it follows
that the descendants of i form a consecutive interval (i, r]. Since i + SubtreeSize(i) =
i+ (r − i+ 1) = r + 1 holds, we only have to show nss[i] = r + 1. Assume r = n, then there
is no index larger than i that is not a descendant of i. Clearly, in this case i does not have an
NSS, and thus it follows nss[i] = n+ 1 = r + 1. Assume r < n instead, then Sr+1 must be
lexicographically smaller than all suffixes that begin at positions from [i, r], since otherwise
r + 1 would be a descendant of i. Therefore, Sr+1 is the first suffix that starts right of i and
is lexicographically smaller than Si, which means nss[i] = r + 1. J

1 SubtreeSize(i) denotes the number of nodes in the subtree that is rooted in i, including i itself.
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3.1 Storing the PSS Tree as a BPS
We store the PSS tree as a balanced parentheses sequence (BPS, [21]) of length 2n+ 2, which
takes 2n+ 2 bits. Note that this is less than the ≈ 2.54n bits that are necessary to encode
previous and next smaller values [10] because different suffixes of a text cannot be equal. As a
shorthand for the BPS of the PSS tree we write Bpss. The sequence is algorithmically defined
by a preorder-traversal of the PSS tree, where we write an opening parenthesis whenever we
walk down an edge, and a closing one whenever we walk up an edge. An example is provided
in Figure 1b. Note that the BPS of the PSS tree is identical to the succinct Lyndon array
presentation from [19]. While the BPS itself does not support fast tree operations, it can
be used to construct the data structure from [22], which takes O(n) time and O(n) bits of
working space. This data structure is of size 2n +O(n/ lgc n) bits (for any c ∈ N+ of our
choice) and supports Parent(·) and SubtreeSize(·) operations in O(c2) time, and thus
allows us to simulate access to the Lyndon array in O(c2) time using Lemma 7.

Operations on a BPS Prefix. Since we will be building Bpss from left to right, at any given
point of the algorithm execution we know a prefix of Bpss. It is crucial that we maintain
support for the following queries in constant time:

Given the index oi of an opening parenthesis in Bpss, determine the node i that belongs
to the parenthesis. We have i = rankopen(oi) − 1, where rankopen(oi) is the number of
opening parentheses in Bpss[1..oi].
Given a preorder-number i, find the index oi of the corresponding opening parenthesis in
Bpss. We have oi = selectopen(i) = min{o | rankopen(o) > i}.
Given an integer k ≥ 1, find the index ouncl(k) = selectuncl(k) of the k-th unclosed
parenthesis in Bpss. An opening parenthesis is called unclosed, if we have not written
the matching closing parenthesis yet. For example, there are five opening parentheses in
(()((), but only the first and the third one are unclosed.
There are support data structures of size O(n lg lgn/ lgn) bits that answer rankopen and

selectopen queries in constant time [16]. Since these data structures can be constructed in
linear time by scanning the BPS from left to right, clearly we can maintain them with no
significant time overhead when writing the BPS in an append-only manner. The structure for
selectuncl is a simple modification of the structure for selectopen. Consider the (not necessarily
balanced) parentheses sequence B̂ with B̂[i] = (, iff Bpss[i] is an unclosed parenthesis, and
otherwise B̂[i] = ). Clearly, answering selectuncl on Bpss is equivalent to answering selectopen
on B̂. Thus, if we construct the selectopen data structure by Golynski [16, Section 2.1] for B̂,
then we already have a working index for selectuncl on Bpss. However, this approach comes at
the cost of additional 2n bits of space because we need to explicitly store B̂. In the following
paragraph, we outline how to modify the index such that queries can be answered directly
on Bpss, i.e. without B̂. The reader should be familiar with [16, Section 2.1].

Assume that we want to answer selectopen(i) on B̂. Golynski’s index conceptually splits
B̂ into chunks of size lgn − 3 lg lgn. At the time we actually need to access B̂, we have
already identified the chunk Ĉ = B̂[cx..cx + lgn− 3 lg lgn) and the value p such that the i-th
opening parenthesis in B̂ is exactly the p-th opening parenthesis in Ĉ. Answering the query
is realized by simply retrieving the index j of the p-th opening parenthesis within Ĉ from
a precomputed lookup table. Then, the result of the query is cx + j − 1. We can answer
the query without B̂, if we retrieve the chunk C = Bpss[cx..cx + lgn− 3 lg lgn) directly from
Bpss (instead of retrieving the chunk Ĉ from B̂). We only need to change the precomputed
lookup table such that it returns the index of the p-th unclosed parenthesis within the chunk
instead of the index of the p-th opening parenthesis.
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Figure 2 The partial PSS tree before and after processing index 11 of S = northamerica during
the execution of Algorithm 1. We have p1 = 10, p2 = 8, p3 = 6, p4 = 0, and pm = p3. (Best viewed
in color.)

Appending parentheses to Bpss may invalidate parts of the support data structure for
selectuncl. The reason for this is that we essentially emulate selectuncl on Bpss by answering
selectopen on B̂. Appending a closing parenthesis to Bpss not only translates to appending
a closing parenthesis to B̂, but also means that we have to replace the rightmost opening
parenthesis in B̂ with a closing one. Thus, we may have to change previously computed
parts of the support data structure. This can easily be handled without significant time
overhead by only periodically updating the data structure, and naively keeping track of
newly appended parentheses in between updates. We omit the details.

4 Constructing the PSS Tree

In this section we introduce our construction algorithm for the BPS of the PSS tree, which
processes the indices of the input text in left-to-right order. Processing index i essentially
means that we attach i to a partial PSS tree that is induced by the nodes from [0, i). An
example is provided in Figure 2a. But how can we efficiently determine i’s parent pss[i]?
Consider the nodes on the rightmost path of the partial tree, which starts at i− 1 and ends
at the root 0. We call the set of these nodes PSS closure Pi−1 of i− 1 because it contains
exactly the nodes that can be obtained by repeated application of the PSS function on i− 1.
For j ∈ [1, n] we recursively define P0 = {0} and Pj = {j} ∪ Ppss[j]. Interestingly, pss[i] is a
member of Pi−1:

I Lemma 8. For any index i ∈ [1, n] we have pss[i] = max{j | j ∈ Pi−1 ∧ Sj ≺ Si}.

Proof. If we show pss[i] ∈ Pi−1, then the correctness of the lemma follows from Definition 2.
Assume pss[i] /∈ Pi−1, then there is some index j ∈ Pi−1 with pss[i] ∈ (pss[j], j). By
Definition 2, this implies Spss[i] � Sj . However, we also have j ∈ (pss[i], i), which leads to
the contradiction Spss[i] ≺ Sj . J

Let p1 = i − 1, p2, . . . , pk = 0 be the elements of Pi−1 in descending order, then it follows
from Lemma 8 that there is some m ∈ [1, k] with pss[i] = pm, i.e. node i has to become a
child of pm in the partial PSS tree. In terms of the BPS, we have to append m− 1 closing
parentheses to the BPS prefix. Then, we can simply write the opening parenthesis of node i.
Once again, an example is provided in Figure 2b.
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Algorithm 1 BuildPssBps.

Input: String S of length n
Output: BPS of the PSS Tree of S
1: Bpss ← ( . Open node 0
2: for i = 1 to n do
3: Let Pi−1 = {p1, . . . , pk} with pss[px] = px+1
4: Determine pm = pss[i]
5: Append m− 1 closing parentheses to Bpss . Close nodes p1, . . . , pm−1
6: Append one opening parenthesis to Bpss . Open node i
7: Append |Pn| closing parentheses to Bpss . Close rightmost path

Our construction algorithm for Bpss is based on this simple idea, as outlined by Algorithm 1.
Initially, the BPS only contains the opening parenthesis of the root 0 (line 1). Then, whenever
we process an index i, we use Pi−1 to determine pm (lines 3–4) and extend Bpss by appending
m− 1 closing parentheses and one opening one (lines 5–6). Finally, once all nodes have been
added to the PSS tree, we only have to close all remaining unclosed parentheses (line 7). The
algorithm has two black boxes: How do we determine Pi−1 (line 3), and how do we use it to
find pm (line 4)? The first question is easily answered, since the operations that we support
on the BPS prefix at all times (see Section 3.1) are already sufficient to access each element
of Pi−1 in constant time. Let p1, . . . , pk be exactly these elements in descending order. As
explained earlier, they directly correspond to the unclosed parentheses of the BPS prefix,
such that pk corresponds to the leftmost unclosed parenthesis, and p1 to the rightmost one.
Therefore, we have px = rankopen(selectuncl(k − x+ 1))− 1. It remains to be shown how to
efficiently find pm.

4.1 Efficiently Computing pm

Consider the following naive approach for computing pm: Iterate over the indices p1, . . . , pk
in descending order (i.e. p1 first, pk last). For each index px, evaluate whether Spx ≺ Si holds.
As soon as this is the case, we have found pm. The cost of this approach is high: A naive
suffix comparison between Spx and Si takes lce(px, i) + 1 individual character comparisons,
which means that we spend O(m+

∑m
x=1 lce(px, i)) time to determine m. However, the

following property will allow us to decrease this time bound significantly:

I Corollary 9 (Bitonic LCE Values). Let p1, . . . , pk be exactly the elements of Pi−1 in des-
cending order and let pm = pss[i]. Furthermore, let `x = lce(px, i) for all x ∈ [1, k]. We
have `1 ≤ `2 ≤ · · · ≤ `m−1 as well as `m ≥ `m+1 ≥ · · · ≥ `k.

Proof. Follows from Sp1 � . . . � Spm−1 � Si � Spm � . . . � Spk and simple properties of
the lexicographical order. J

From now on, we continue using the notation `x = lce(px, i) from the corollary. Note that
the longest LCE between i and any of the px occurs either with pm or with pm−1. Let
`max = max(`m−1, `m) be this largest LCE value, then our more sophisticated approach for
determining m only takes O(m+ `max) time. It consists of two steps: First, we determine a
candidate interval (u,w] ⊆ [1, k] of size at most `max that contains m. In the second step we
gradually narrow down the borders of the candidate interval until the exact value of m is
known.

ICALP 2020
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Si =

Sp1 = α

Sp|α|+2 = β

Sp|α|+|β|+3 = γ
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Spu = γ
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Spu+3 =

...

Spw−3 =
Spw−2 =
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Figure 3 Matching character comparisons when determining pm. On the left we have the
suffix Si as well as Sp1 ,Sp2 , . . . ,Spw , which are relevant for the first step. Each prefix α, β, γ, δ
highlights the LCP between the respective suffix Spx and Si. On the right side we have the suffixes
Spu ,Spu+1 , . . . ,Spw , which are relevant for the second step. (Best viewed in color.)

Step 1: Find a candidate interval. Our goal is to find (u,w] = (u, u+ `u + 1] with m ∈
(u,w]. Initially, we naively compute `1 = lce(p1, i), allowing us to evaluate Sp1 ≺ Si
in constant time. If this holds, then we have m = 1 and no further steps are necessary.
Otherwise, let u← 1 and (i) let w ← u+ `u + 1. We already know that u < m holds. Now
we have to evaluate if m ≤ w also holds. Therefore, we compute `w = lce(pw, i) naively,
which allows us to check in constant time if Spw ≺ Si and decide if m ≤ w holds. If this
is not the case, then we assign u ← w as well as `u ← `w and continue at (i). If however
Spw ≺ Si holds, then we have m ≤ w and therefore m ∈ (u,w]. Figure 3 (left) outlines the
procedure.

Step 2: Narrow down (u, w] to the exact value of m. Now we gradually tighten the
borders of the candidate interval. If `u is smaller than `w, then we try to increase u by one.
Otherwise, we try to decrease w by one.

Assume that we have `u < `w, then it follows from Corollary 9 that `u+1 ≥ `u holds.
Therefore, when computing `u+1 we can simply skip the first `u character comparisons. Now
we use `u+1 to evaluate in constant time if Spu+1 � Si holds. If that is the case, then we have
u+ 1 < m and thus we can assign u← u+ 1 and start Step 2 from the beginning. If however
Spu+1 ≺ Si holds, then we have m = u + 1 and no further steps are necessary. In case of
`u ≥ `w we proceed analogously. Once again, Figure 3 (right) visualizes the procedure.

Time Complexity. Step 1 is dominated by computing LCE values. Determining the final
LCE value `w takes `w+1 individual character comparisons and thus Θ(`w+1) time. Whenever
we compute any previous value of `w, we increase w by `w + 1 afterwards. Therefore, the
time for computing all LCE values is bound by Θ(w + `w) = Θ(u+ `u + `w) ⊆ O(m+ `max).
Since initially (u,w] has size at most `max, we call Step 2 at most O(`max) times. With every
call we increase `u or `w by exactly the number of matching character comparisons that we
perform. Therefore, the total number of matching character comparisons is bound by 2`max.
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Thus, the total time needed for Step 2 is bound by O(`max). In sum, processing index i takes
O(m+ `max) time. For the total processing time of all indices (and thus the execution time
of Algorithm 1) we get:

n∑
i=1
O(

m︷ ︸︸ ︷
|Pi−1 ∩ [pss[i], i]| ) +

n∑
i=1
O(

`max︷ ︸︸ ︷
maxpx∈Pi−1lce(px, i) )

= O(n) + O(n2)

(The O(m)-terms sum to O(n) since m− 1 is exactly the number of closing parentheses that
we write while processing i, and there are exactly n+1 closing parentheses in the entire BPS.)
As it appears, the total time bound of the algorithm is still far from linear time. However, it
is easy to identify the crucial time component that makes the algorithm too expensive. From
now on we call the O(m) term of the processing time negligible, while the O(`max) term is
called critical.

Clearly, if we could somehow remove the critical terms, we would already achieve linear
time. There exists a variety of data structures that could help us to achieve this goal by
accelerating suffix comparisons, e.g. the (compressed or sparse) suffix tree, the (compressed)
suffix array, or dedicated data structures for fast LCE queries. However, all of theses data
structures either require more than O(n) bits of construction space, or more than O(n)
construction time, or they are non-deterministic, or their efficiency depends on the alphabet
or the compressability of the text. For example, there exists a linear time construction
algorithm for the sparse suffix tree [15], but it is non-deterministic. This motivates the
techniques that we describe in the following sections, which directly remove the critical terms
without relying on any of the aforementioned data structures. This way, the execution time
of Algorithm 1 decreases to O(n), while the additional working space remains unchanged.

5 Achieving Linear Time

The critical time component for processing index i is `max = maxpx∈Pi−1lce(px, i). When
processing i with the technique from Section 4.1, we inherently find out the exact value of
`max, and we also discover the index pmax for which we have lce(pmax, i) = `max. From now
on, we simply use ` = `max and j = pmax. While discovering a large LCE value ` is costly, it
yields valuable structural information about the input text: There is a repeating substring of
length ` with occurrences S[j..j+ `) and S[i..i+ `). Intuitively, there is also a large repeating
structure in the PSS tree, and consequently a repeating substring in Bpss. This motivates the
techniques shown in this section, which conceptually alter Algorithm 1 as follows: Whenever
we finish processing an index i with critical cost `, we skip the next Ω(`) iterations of the
loop by simply extending the BPS prefix with the copy of an already computed part, which
means that the amortized critical cost per index becomes constant.

Depending on j and ` we choose either the run extension (Section 5.1) or the amortized
look-ahead (Section 5.2) to perform the extension. Algorithm 2 outlines our final construction
algorithm on a higher level, and complements the written description by showing when the
special cases arise. Before going into detail, we point out that S[j..i) is a Lyndon word. As
mentioned earlier, it follows from Corollary 9 that j equals pm or pm−1. Since i is the first
node that is not a descendant of pm−1, we have nss[pm−1] = i. Therefore, if j = pm−1 holds,
we have nss[j] = i, which by definition implies that S[j..i) is a Lyndon word. If however
j = pm = pss[i] holds, then S[j..i) is a Lyndon word because of Lemma 4.
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Algorithm 2 BuildPssBpsLinear.

Input: String S of length n
Output: BPS of the PSS Tree of S
1: Bpss ← (
2: for i = 1 to n do
3: Let Pi−1 = {p1, . . . , pk} with pss[px] = px+1

4: Determine pm = pss[i],
using the technique from Section 4.1, causing critical cost ` and
discovering the index j with lce(j, i) = ` as described in the
beginning of Section 5.

5: Append m− 1 closing parentheses to Bpss
6: Append one opening parenthesis to Bpss

(For any x, let ox be the opening parenthesis of node x.)

7: if ` ≥ 2(i− j) then

8: Apply the run extension as described in Section 5.1.
Let t = b`/(i− j)c + 1. Take Bpss(oj ..oi] and append it (t − 2)
times to Bpss. Continue in line 2 with i← i+ (t− 2) · (i− j).

9: else

10: Apply the amortized look-ahead as described in Section 5.2.
Using Lemma 13, find the largest value χ ∈ [1, b`/4c] that sat-
isfies Bpss[oj ..oj+χ−1] = Bpss[oi..oi+χ−1], and append a copy of
Bpss(oj ..oj+χ−1] to Bpss. Continue in line 2 with i ← i + χ. If
χ < b`/4c, then iteration i+ χ will automatically skip additional
Ω(`) iterations by using the run extension.

11: Append |Pn| closing parentheses to Bpss

5.1 Run Extension

We apply the run extension iff we have ` ≥ 2(i − j). It is easy to see that in this case
S[j..j+ `) and S[i..i+ `) overlap such that the Lyndon word µ = S[j..i) repeats itself at least
three times, starting at index j. We call the substring S[j..i+ `) Lyndon run with period |µ|.
The number of repetitions is t = b`/ |µ|c+ 1 ≥ 3, and the starting positions of the repetitions
are r1, . . . , rt with r1 = j, r2 = i, and generally rx = rx−1 + |µ|. In a moment we will show
that in this particular situation the following lemma holds:

I Lemma 10. Let ox be the index of the opening parenthesis of node x in Bpss. Then we
have Bpss[or1 ..or2 ] = Bpss[or2 ..or3 ] = · · · = Bpss[ort−1 ..ort ].

Expressed less formally, each repetition of µ – except for the last one – induces the same
substring in the BPS. Performing the run extension is as easy as taking the already written
substring Bpss(or1 ..or2 ] = Bpss(oj ..oi], and appending it t− 2 times to Bpss. Afterwards, the
last parenthesis that we have written is the opening parenthesis of node rt, and we continue
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the execution of Algorithm 1 with iteration rt + 1. Thus, we have skipped the processing of
rt − i indices. Since

rt − i = (t− 2) · |µ| ≥ (t− 2) · |µ|
t · |µ|

· ` ≥ 1
3 · ` = Ω(`) ,

it follows that the average critical cost per index from [i, rt] is constant.

Proving the Lemma. It remains to be shown that Lemma 10 holds. It is sufficient to prove
the correctness for t = 3, since the correctness for the general case follows by repeatedly
applying the lemma with t = 3. Therefore, we only have to show Bpss[or1 ..or2 ] = Bpss[or2 ..or3 ].

Isomorphic Subtrees. Since µ is a Lyndon word, it is easy to see that the suffixes at the
starting positions of repetitions are lexicographically smaller than the suffixes that begin
in between the starting positions of repetitions, i.e. we have ∀x ∈ (r1, r2) : Sr1 ≺ Sx and
∀x ∈ (r2, r3) : Sr2 ≺ Sx. Consequently, the indices from (r1, r2) are descendants of r1 in the
PSS tree, and the indices from (r2, r3) are descendants of r2 in the PSS tree, i.e. each of the
intervals [r1, r2) and [r2, r3) induces a tree.

Next, we show that these trees are actually isomorphic. Clearly, the tree induced by
[r1, r2) solely depends on the lexicographical order of suffixes that begin within [r1, r2),
and the tree induced by [r2, r3) solely depends on the lexicographical order of suffixes that
begin within [r2, r3). Assume that the trees are not isomorphic, then there must be a suffix
comparison that yields different results in each interval, i.e. there must be offsets a, b ∈ [0, |µ|)
with a 6= b such that Sr1+a ≺ Sr1+b ⇐⇒ Sr2+a � Sr2+b holds. However, this is impossible,
as shown by the lemma below.

I Lemma 11. For all a, b ∈ [0, |µ|) with a 6= b we have Sr1+a ≺ Sr1+b ⇐⇒ Sr2+a ≺ Sr2+b.

Proof. Assume w.l.o.g. a < b, and let a′ = a + 1 and b′ = b + 1. We can show that the
strings µa′ · µ and µb′ · µ have a mismatch:

µ =

1
↓
a′

↓
b′

↓

µ

a′+|µb′ |
↓
|µ|
↓

µa′ · µ = µa′ µ

µb′ µ

µb′ · µ = µb′ µ

Consider the two hatched areas in the drawing above. The top area highlights the suffix
µa′+|µb′ | of µ, which has length c = |µ| − (a′ + |µb′ |) + 1. The bottom area highlights the
prefix µ[1..c] of µ. Since µ is a Lyndon word, there is no proper non-empty suffix of µ that is
also a prefix of µ. It follows that the hatched areas cannot be equal, i.e. µa′+|µb′ | 6= µ[1..c].
This guarantees a mismatch between µa′ · µ and µb′ · µ. Therefore, appending an arbitrary
string to µa′ · µ and µb′ · µ does not influence the outcome of a lexicographical comparison.
The statement of the lemma directly follows by appending Sr3 and Sr4 respectively:

µa′ · µ ≺ µb′ · µ ⇐⇒ µa′ · µ · Sr3︸ ︷︷ ︸
= Sr1+a

≺ µb′ · µ · Sr3︸ ︷︷ ︸
= Sr1+b

⇐⇒ µa′ · µ · Sr4︸ ︷︷ ︸
= Sr2+a

≺ µb′ · µ · Sr4︸ ︷︷ ︸
= Sr2+b

. J
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µ

r1

r2 − 1
µ

r2

r3 − 1

r3

(a) Increasing run.

pss[r1]

µ

r1

r2 − 1

µ

r2

r3 − 1

r3

(b) Decreasing run.

Figure 4 The run of the Lyndon word µ = S[r1, r2) = S[r2, r3) = S[r3, r3+|µ|) induces isomorphic
subtrees in the PSS tree. If Sr1 ≺ Sr2 , then the roots of the subtrees form a chain (a). Otherwise,
they are siblings (b).

Finally, we show that in the PSS tree the induced isomorphic trees are connected in a
way that ultimately implies Bpss[or1 ..or2 ] = Bpss[or2 ..or3 ]. There are two possible scenarios
for this connection, which depend on the so called direction of the Lyndon run. We call a
run increasing iff Sr1 ≺ Sr2 holds, and decreasing otherwise.

Increasing Runs. First, we focus on increasing runs. It follows from Sr1 ≺ Sr2 ⇐⇒
µ · Sr2 ≺ µ · Sr3 ⇐⇒ Sr2 ≺ Sr3 that Sr1 ≺ Sr2 ≺ Sr3 . Since µ is a Lyndon word, we have
∀x ∈ (r1, r2) : Sr2 ≺ Sx as well as ∀x ∈ (r2, r3) : Sr3 ≺ Sx. Therefore, we have pss[r2] = r1
and pss[r3] = r2, and the isomorphic subtrees are connected as visualized in Figure 4a. It is
easy to see that a preorder-traversal from r1 to r2 yields the same sequence of parentheses
as a preorder-traversal from r2 to r3. Therefore we have Bpss[or1 ..or2 ] = Bpss[or2 ..or3 ], which
means that Lemma 10 holds for increasing runs.

Decreasing Runs. With the same argument as for increasing runs, we have Sr1 � Sr2 � Sr3

in decreasing runs. We also have ∀x ∈ (r1, r2) : Sr2 ≺ Sx as well as ∀x ∈ (r2, r3) : Sr3 ≺ Sx,
which means that pss[r2] ≤ pss[r1] and pss[r3] ≤ pss[r1] hold. In Lemma 12 we will show
that in fact pss[r1] = pss[r2] = pss[r3] holds, such that the isomorphic subtrees are connected
as visualized in Figure 4b. A preorder-traversal from r1 to r2 yields the same sequence
of parentheses as a preorder-traversal from r2 to r3. Therefore we have Bpss[or1 ..or2 ] =
Bpss[or2 ..or3 ], which means that Lemma 10 holds for decreasing runs.

I Lemma 12. In decreasing runs we have pss[r1] = pss[r2] = pss[r3].

Proof. As explained previously, we have pss[r2] ≤ pss[r1] and pss[r3] ≤ pss[r1], and thus only
need to show Spss[r1] ≺ Sr2 and Spss[r1] ≺ Sr3 . We will show below that µ cannot be a prefix
of Spss[r1], from which the statement of the lemma can be deduced easily since the suffixes
Sr2 and Sr3 begin with the prefix µ. Assume for the sake of contradiction that µ is a prefix
of Spss[r1]. If we also assume pss[r1] + |µ| > r1, we get:

S =

pss[r1]
↓

µ

r1
↓

pss[r1]+|µ|
↓

µ

As indicated by the hatched area, this implies that there is a proper non-empty suffix of µ
that is also a prefix of µ, which is impossible because µ is a Lyndon word. Thus we have
pss[r1] + |µ| ≯ r1. Also, we cannot have pss[r1] + |µ| = r1, because then pss[r1] would be
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the starting position of another repetition of µ, which would imply Spss[r1] � Sr1 . It follows
pss[r1] + |µ| < r1, i.e. pss[r1] + |µ| ∈ (pss[r1], r1) and thus Spss[r1]+|µ| � Sr1 . However, this
leads to a contradiction:

Spss[r1] ≺ Sr1 ⇐⇒ µ · Spss[r1]+|µ| ≺ µ · Sr2

⇐⇒ Spss[r1]+|µ| ≺ Sr2

=⇒
Sr1�Sr2

Spss[r1]+|µ| ≺ Sr1 J

5.2 Amortized Look-Ahead
Finally, we show how to amortize the critical cost O(`) of processing index i if the run
extension is not applicable, i.e. if we have ` < 2(i − j). Unfortunately, the trees induced
by the nodes from [j, j + `) and [i, i+ `) are not necessarily isomorphic. However, we can
still identify a sufficiently large isomorphic structure. In a moment we will show that the
following lemma holds:

I Lemma 13. Let ox be the index of the opening parenthesis of node x in Bpss. We
either have Bpss[oj ..oj+b`/4c−1] = Bpss[oi..oi+b`/4c−1], or there is an integer χ < b`/4c with
Bpss[oj ..oj+χ−1] = Bpss[oi..oi+χ−1] and an index h ∈ [i, i+χ) such that S[h..i+`) is a Lyndon
run of the Lyndon word S[h..i+χ). We can determine which case applies, and also determine
the value of χ (if applicable) in O(`) time and O(1) words of additional space.

When performing the amortized look-ahead we first determine which case of the lemma
applies. Then, if Bpss[oj ..oj+b`/4c−1] = Bpss[oi..oi+b`/4c−1], we extend the known prefix of the
BPS by appending a copy of Bpss(oj ..oj+b`/4c−1], and continue the execution of Algorithm 1
with iteration i+ b`/4c. Since this way we skip the processing of b`/4c − 1 = Ω(`) indices,
the average critical cost per index from [i, i + b`/4c) is constant. If, however, the second
case applies, then we determine the value of χ and extend the known prefix of the BPS by
appending a copy of Bpss(oj ..oj+χ−1], allowing us to continue the execution of Algorithm 1
with iteration i+χ. We know that there is some h ∈ [i, i+χ) such that S[h..i+`) is a Lyndon
run of the Lyndon word µ = S[h..i+χ). This run might even be longer: Let `′ = lce(h, i+χ)
(computed naively), then S[h..i+ χ+ `′) is the longest run of µ that starts at index h. If the
run is increasing, then pss[i+ χ] = h holds (see Section 5.1), and the longest LCE that we
discover when processing index i+ χ is `′. If the run is decreasing, then pss[i+ χ] = pss[h]
holds. Also in this case, the longest LCE that we discover when processing index i+ χ is `′,
since lce(pss[i+ χ], i+ χ) is less than |µ| (see proof of Lemma 12). Therefore, the critical
cost of processing index i + χ will be O(`′). However, since the Lyndon run has at least
three repetitions, we will also skip the processing of Ω(`′) indices by using the run extension.
The algorithmic procedure for the second case can be summarized as follows: We process
index i with critical cost O(`) and skip χ− 1 indices afterwards. Then we process index i+χ

with critical cost O(`′) and skip another Ω(`′) indices by using the run extension. Since we
have `′ = Ω(`), the total critical cost is O(`′), and the total number of processed or skipped
indices is Ω(`′). Thus, the average critical cost per index is constant.

Proving Lemma 13. It remains to be shown that Lemma 13 holds. For this purpose, assume
Bpss[oj ..oj+b`/4c−1] 6= Bpss[oi..oi+b`/4c−1]. From now on we refer to Bpss[oj ..oj+b`/4c−1] and
Bpss[oi..oi+b`/4c−1] as left and right side, respectively. Consider the first mismatch between
the two, where w.l.o.g. we assume that the mismatch has an opening parenthesis on the left
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Si+h =

1
↓

d
↓

α

`−h
↓

Si+`
Sj+h = α Sj+`


∧ d < `− x
∧ d = lce(j + h, j + x)
` = lce(j, i)

 =⇒ =⇒
(
⇔ Si+h ≺ Si+x
Sj+h ≺ Sj+x

)
Sj+x = β Sj+`
Si+x =

↑
1
↑
d

β

↑
`−x

Si+`

Figure 5 Proving Lemma 13. Equal colors indicate equal substrings. (Best viewed in color.)

side, and a closing one on the right side. On the left side, the opening parenthesis corresponds
to a node j + x with x ∈ [1, b`/4c) that is a child of another node j + h. Since S[j..j + `) is a
Lyndon word, all nodes from (j, j + `) are descendants of j. Consequently, we have h ∈ [0, x).
Now we look at the right side: Since we have a closing parenthesis instead of an opening one,
we know that i+x is not attached to i+h, but to a smaller node, i.e. we have pss[i+ x] < i+h.
It follows that Sj+h ≺ Sj+x and Si+h � Si+x hold. Let d = lce(j + h, j + x) and assume
d ≤ `− x. Then due to Sj+h ≺ Sj+x we have S[j + h+ d] < S[j + x+ d]. However, since we
have S[j..j + `] = S[i..i+ `], it follows lce(i+ h, i+ x) = d and S[i+ h+ d] < S[i+ x+ d],
which contradicts Si+h � Si+x (see Figure 5). Thus, it holds d = lce(j + h, j + x) ≥
` − x, allowing us to show that S[j + h..j + `) is a Lyndon run with period x − h. Since
pss[j + x] = j+h holds, it follows from Lemma 4 that S[j+h..j+x) is a Lyndon word. Due
to lce(j + h, j + x) > `− x ≥ 3(`/4) ≥ 3(x− h) we know that the Lyndon word repeats at
least four times, and the run extends all the way to the end of S[j..j+ `). Note that since the
opening parenthesis of node j + x causes the first mismatch between Bpss[oj ..oj+b`/4c−1] and
Bpss[oi..oi+b`/4c−1], we have Bpss[oj ..oj+x−1] = Bpss[oi..oi+x−1]. Therefore, χ ← x already
satisfies Lemma 13.

Finally, we explain how to determine χ = x in O(`) time. As described above, if
Bpss[oj ..oj+b`/4c−1] 6= Bpss[oi..oi+b`/4c−1], then there is some offset h < b`/4c such that
S[j+h..j+ `) is a Lyndon run of at least four repetitions of a Lyndon word µ. Consequently,
S[j + b`/4c ..j + `) has the form suf(µ) · µt · pre(µ) with t ≥ 2, where suf(µ) and pre(µ) are a
proper suffix and a proper prefix of µ. A string of this form is called extended Lyndon run.
In Section 5.2.1 we propose an algorithm that checks whether or not S[j + b`/4c ..j + `) is an
extended Lyndon run in O(`) time and constant additional space. If S[j + b`/4c ..j + `) is
not an extended Lyndon run, then we have Bpss[oj ..oj+b`/4c−1] = Bpss[oi..oi+b`/4c−1] and no
further steps are needed to satisfy Lemma 13. Otherwise, the algorithm from Section 5.2.1
also provides the period |µ| of the run, as well as |suf(µ)|. In this case, we try to extend
the extended Lyndon run to the left: We are now not only considering S[j + b`/4c ..j + `),
but S[j..j + `). We want to find the leftmost index j + h that is the starting position of a
repetition of µ. Given |µ| and |suf(µ)|, this can be done naively by scanning S[j..j + b`/4c]
from right to left, which takes O(`) time. If we have h ≥ b`/4c − |µ|, then the first case of
Lemma 13 applies and no further steps are necessary. Otherwise, we let χ← h+ |µ|. This
concludes the proof of Lemma 13 and the description of our construction algorithm.

5.2.1 Detecting Extended Lyndon Runs
In this section, we propose a linear time algorithm that identifies extended Lyndon runs,
i.e. strings of the form suf(µ) · µt · pre(µ) with t ≥ 2, where suf(µ) and pre(µ) are a proper
suffix and a proper prefix of µ. Our approach exploits properties of the Lyndon factorization,
which is defined as follows:
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I Lemma 14 (Lyndon Factorization [5]). Every non-empty string S can be decomposed into
non-empty Lyndon words s1, s2, . . . , sm such that S = s1 ·s2 ·. . .·sm and ∀i ∈ [2,m] : si−1 � si.
There is exactly one such factorization for each string.

I Lemma 15. Let S = suf(µ) · µt · pre(µ) be an extended Lyndon run. Let x1, . . . , xk1 be
the Lyndon factorization of suf(µ), and let y1, . . . , yk2 be the Lyndon factorization of pre(µ).
Then the Lyndon factorization of S is x1, . . . , xk1 , µ, µ, . . . , µ︸ ︷︷ ︸

t times
, y1, . . . , yk2 .

Proof. Clearly, the factorization given by the lemma consists solely of Lyndon words. Thus,
we only have to show x1 � . . . � xk1 � µ � y1 � . . . � yk2 . Since we defined x1, . . . , xk1

and y1, . . . , yk2 to be the Lyndon factorizations of suf(µ) and pre(µ) respectively, we already
know that ∀i ∈ [2, k1] : xi−1 � xi and ∀i ∈ [2, k2] : yi−1 � yi hold. It remains to be shown
that xk1 � µ � y1 holds. Since xk1 is a non-empty suffix of suf(µ) and thus also a non-empty
proper suffix of µ, it follows that xk1 � µ holds. Since y1 is a prefix of pre(µ) and thus also
a prefix of µ, it follows (by definition of the lexicographical order) that µ � y1 holds. J

Lemma 15 implies that the longest factor of the Lyndon factorization of an extended
Lyndon run is exactly the repeating Lyndon word µ. This is the key insight that we use to
detect extended Lyndon runs:

I Lemma 16. Let S be a string of length n. If S is an extended Lyndon run of the form
S = suf(µ) · µt · pre(µ), then we can determine |µ| and |suf(µ)| in O(n) time and O(1) words
of additional space.

Proof. Using Duval’s algorithm [8, Algorithm 2.1], we compute the Lyndon factorization of
S in O(n) time and O(1) words of additional space. The algorithm computes and outputs
the factors one-at-a time and in left-to-right order. Whenever it outputs a factor that is
longer than all previous ones, we store its length l and its starting position d. Note that
since we investigate each factor individually and then immediately discard it, we never need
to store the entire factorization in memory. If S is an extended Lyndon run, then following
Lemma 15 it must have the form S = suf(µ) · µt · pre(µ) with |suf(µ)| = d− 1 and |µ| = l.
Since we know d and l, checking whether S = suf(µ) · µt · pre(µ) holds can be achieved by
performing a simple scan over S. J

6 Algorithmic Summary & Adaptation to the Lyndon Array

We now summarize our construction algorithm for the PSS tree. We process the indices from
left to right using the techniques from Section 4.1, where processing an index means attaching
it to the PSS tree. Whenever the critical time of processing an index is O(`), we skip the
next Ω(`) indices by using the run extension (Section 5.1) or the amortized look-ahead
(Section 5.2). Thus, the critical time per index is constant, and the total worst-case execution
time is O(n). In terms of working space, we only need O(n lg lgn/ lgn) bits to support
the operations described in Section 3.1. The correctness of the algorithm follows from the
description. We have shown:

I Theorem 17. For a string S of length n we can compute its succinct Lyndon array Bpss
in O(n) time using O(n lg lgn/ lgn) bits of working space apart from the space needed for S
and Bpss.
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The algorithm can easily be adapted to compute the Lyndon array instead of the PSS tree.
For this purpose, we use a single array A (which later becomes the Lyndon array), and no
further auxiliary data structures. We maintain the following invariant: At the time we start
processing index i, we have A[j] = pss[j] for j ∈ Pi−1, and A[j] = λ[j] for j ∈ [1, i) \ Pi−1.
As before, we determine pm = pss[i] with the techniques from Section 4.1. In Step 1 and Step
2 we require some access on elements of Pi−1, which we can directly retrieve from A. Apart
from that, the algorithm remains unchanged. Once we computed pm, we set A[i] ← pm
(= pss[i]). Additionally, it follows that i is the first node that is not a descendant of any of
the nodes p1, . . . , pm−1, which means that we have nss[px] = i for any such node. Therefore,
we assign A[px]← i− px (= λ[px]). The run extension and the amortized look-ahead remain
essentially unchanged, with the only difference being that we copy and append respective
array intervals instead of BPS substrings (some trivial shifts on copied values are necessary).
Once we have processed index n, we have A[j] = pss[j] for j ∈ Pn, and A[j] = λ[j] for
j ∈ [1, n] \ Pn. Clearly, all indices px ∈ Pn do not have a next smaller suffix, and we set
A[px] ← n − px + 1 = λ[px]. After this, we have A = λ. Since at all times we only use A
and no auxiliary data structures, the additional working space needed (apart from input and
output) is constant. The linear execution time and correctness of the algorithm follow from
the description. Thus we have shown:

I Theorem 18. Given a string S of length n, we can compute its Lyndon array λ in O(n)
time using O(1) words of working space apart from the space needed for S and λ.

7 Experimental Results

We implemented our construction algorithm for both the succinct and the plain Lyndon array
(LA-Succ and LA-Plain). The C++ implementation is publicly available at GitHub2. As a
baseline we compared the throughput of our algorithms with the throughput of DivSufSort3,
which is known to be the fastest suffix array construction algorithm in practice [12]. Thus,
it can be seen as a natural lower bound for any Lyndon array construction algorithm that
depends on the suffix array. Additionally we consider LA-ISA-NSV, which builds the Lyndon
array by computing next smaller values on the inverse suffix array (see [13], we use DivSufSort
to construct the suffix array). For LA-Succ we only construct the succinct Lyndon array
without the support data structure for fast queries. All experiments were conducted on
the LiDO3 cluster4, using an Intel Xeon E5-2640v4 processor and 64GiB of memory. We
repeated each experiment five times and use the median as the final result. All texts are
taken from the Pizza & Chili text corpus5.

Table 1 shows the throughput of the different algorithms, i.e. the number of input bytes
that can be processed per second. We are able to construct the plain Lyndon array at a
speed of between 41 MiB/s (fib41) and 82 MiB/s (xml), which is on average 9.9 times faster
than LA-ISA-NSV, and 8.1 times faster than DivSufSort. Even in the worst case, LA-Plain
is still 6.8 times faster than LA-ISA-NSV, and 5.2 times faster than DivSufSort (pitches).
When constructing the succinct Lyndon array we achieve around 86% of the throughput
of LA-Plain on average, but never less than 81% (pitches). In terms of memory usage, we
measured the additional working space needed apart from the space for the text and the

2 https://github.com/jonas-ellert/nearest-smaller-suffixes
3 https://github.com/y-256/libdivsufsort
4 https://www.lido.tu-dortmund.de/cms/de/LiDO3/index.html
5 http://pizzachili.dcc.uchile.cl/

https://github.com/jonas-ellert/nearest-smaller-suffixes
https://github.com/y-256/libdivsufsort
https://www.lido.tu-dortmund.de/cms/de/LiDO3/index.html
http://pizzachili.dcc.uchile.cl/
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Table 1 Throughput in MiB/s.
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LA-Plain 60.57 50.83 60.58 62.18 66.13 82.10 53.08 59.09 41.71 62.27
LA-Succ 52.81 46.03 49.49 52.77 57.31 68.56 48.20 50.35 35.30 54.42

LA-ISA-NSV 4.61 4.86 9.13 4.40 7.41 7.11 5.44 6.72 3.81 6.79
DivSufSort 5.53 5.76 11.61 5.21 9.25 8.62 6.57 8.45 4.20 8.45

(succinct) Lyndon array. Both LA-Plain and LA-Succ never needed more than 0.002 bytes of
additional memory per input character (or 770 KiB of additional memory in total), which is
why we do not list the results in detail.

8 Summary

We showed how to construct the succinct Lyndon array in linear time using O(n lg lgn/ lgn)
bits of working space. The construction algorithm can also produce the (non-succinct)
Lyndon array in linear time using only O(1) words of working space. There are no other
linear time algorithms achieving these bounds. Our algorithm performs also extremely well
in practice. We envision applications of these practical algorithms in full-text indexing, such
as an improved implementation of Baier’s suffix array construction algorithm [1], or as a first
step in sparse suffix sorting [11, 4].
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Abstract
Fault tolerant distance preservers are sparse subgraphs that preserve distances between given pairs
of nodes under edge or vertex failures. In this paper, we present the first non-trivial constructions of
subset distance preservers, which preserve all distances among a subset of nodes S, that can handle
either an edge or a vertex fault.

For an n-vertex undirected weighted graph or weighted DAG G = (V,E) and S ⊆ V , we
present a construction of a subset preserver with Õ(|S|n) edges that is resilient to a single
fault. In the single pair case (|S| = 2), the bound improves to O(n). We further provide a
nearly-matching lower bound of Ω(|S|n) in either setting, and we show that the same lower
bound holds conditionally even if attention is restricted to unweighted graphs.
For an n-vertex directed unweighted graphG = (V,E) and r ∈ V, S ⊆ V ,we present a construction
of a preserver of distances in {r} × S with Õ(n4/3|S|5/6) edges that is resilient to a single fault.
In the case |S| = 1 the bound improves to O(n4/3), and for this case we provide another matching
conditional lower bound.
For an n-vertex directed weighted graph G = (V,E) and r ∈ V, S ⊆ V , we present a construction
of a preserver of distances in {r} × S with Õ(n3/2|S|3/4) edges that is resilient to a single vertex
fault. (It was proved in [14] that the bound improves to O(n3/2) when |S| = 1, and that this is
conditionally tight.)
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1 Introduction

Distance Preservers. This paper is about distance preservers, a graph-theoretic primitive
that appears in work on spanners [16, 32, 23, 17, 2, 1, 24], hopsets [2, 28, 27], shortcutting
[27, 2], shortest path algorithms [5, 4, 21, 18], etc.; recently, distance preservers have also
been a popular topic in their own right [17, 20, 16, 12, 25, 18].
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I Definition 1 (Distance Preservers). For a graph G = (V,E) and a set P ⊆ V × V of
“demand pairs”, a subgraph H = (V,EH ⊆ E) is a distance preserver of G,P if

distG(s, t) = distH(s, t) for all (s, t) ∈ P.

When P = S × S for some S ⊆ V , we say that H is a subset distance preserver of G,S.

Most often, the goal is to determine the worst-case tradeoff between the number of demand
pairs and the number of edges needed for a distance preserver. For example, a classic result
in the area is that any p demand pairs in an n-node graph have a distance preserver on
O(np1/2) edges [20].

The subset distance preserver structure P = S × S is quite common in the known
applications of distance preservers (e.g. [4, 21, 18]), and one of the primary reasons distance
preservers were first developed was to address this setting [22]. Despite this, our understanding
of subset distance preservers lags far behind our understanding of the general case. There is
no graph setting in which the structure P = S × S is known to be useful towards proving
sparser distance preservers, and yet our lower bounds get much worse when they are required
to have this structure. To illustrate, one of the main questions in the area is whether one can
generally have a subset preserver with only a constant number of edges per demand pair:

Is there an absolute constant c > 0 such that, for any |P | = n2−c demand pairs in an n-node
graph, there is always a distance preserver on O(|P |) edges?

In the sourcewise setting P = S × V , the answer is clearly yes (build a shortest path
tree rooted at each s ∈ S). In the pairwise setting, i.e. P is arbitrary, it was proved by
Coppersmith and Elkin [20] that the answer is no (even if attention is restricted to undirected
unweighted graphs). But in the intermediate subset setting P = S × S, the question is
completely open: we can neither prove it for undirected unweighted graphs, nor refute it for
directed weighted graphs; all we know is that c ≤ 2

3 [12].

Fault Tolerance. Distance preservers and friends are often applied to networks or distributed
systems where parts can spontaneously fail. A natural additional requirement for these
applications is fault-tolerance, meaning roughly that the preserver is robust to these failures:

I Definition 2 (Fault Tolerant Distance Preservers). For a graph G = (V,E) and demand
pairs P , a distance preserver H of G,P is fault tolerant (FT) if for any vertex or edge x we
have that H \ {x} is still a distance preserver of G \ {x}.1 We say H is vertex (edge) fault
tolerant, abbreviated VFT (EFT), to indicate that x must specifically be a vertex (edge).

The current literature reflects a world in which vertex faults are harder to analyze
than edge faults; many basic questions in the area are closed for EFT but open for (V)FT
[19, 9, 8, 13, 15]. To highlight one example:

For a single demand pair (s, t) in an undirected (possibly weighted) graph G, is there always
an FT distance preserver on O(n) edges?

In [14], it is proved that the answer is yes for the special case of edge failures. The argument
leverages a convenient structural fact about edge failures, which may generally explain some
of the EFT/VFT discrepancy: a shortest path in G \ {x} is always the union of two shortest
paths in G when x is an edge [3], but nothing like this seems to hold when x is a vertex.
Accordingly, the above question is open when the failures can be vertices.

1 One can also consider a version where several nodes/edges fail at once. However, recent lower bounds
have proved that the available preserver quality is quite poor already for f = 2 faults [30, 14], so f = 1
may be the more applicable setting.
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1.1 Our Results
In this work, we show that the P = S × S structure does actually seem to be useful in the
FT setting. For background, it was proved by Bilo et al. [8] that any |S| source nodes in an
n-node undirected weighted graph has an EFT preserver on Õ(n|S|) edges. Our main results
fill in several gaps around this result, extending to the general FT setting and providing
corresponding lower bounds.

I Theorem 3 (Undirected Graphs). For any undirected weighted n-node graph G = (V,E,w)
and set of source nodes S ⊆ V , there is a general FT subset distance preserver on Õ(n|S|)
edges. When |S| = 2, the bound improves to O(n). Moreover, for any given value of |S| there
are examples where Ω(n|S|) edges are needed.

We note that Theorem 3 positively resolves the latter open question mentioned above. We
think this bound Õ(n|S|) is surprising; to explain why, let us compare to the corresponding
bounds in the non-faulty setting. Here the current state-of-the-art [20] is that |S| = σ source
nodes in an n-node graph have a subset distance preserver of size

O
(

min
{
n+ n1/2σ2, nσ

})
.

In particular, when σ ≥
√
n the bound is O(nσ). In other words, following Theorem 3,

one can tolerate a fault in this parameter regime essentially for free. It is more likely
that this reflects the weakness of our current understanding of non-faulty subset distance
preservers, rather a world in which fault tolerance is actually free. Still, the non-faulty subset
distance preserver bounds have resisted improvement for the last 15 years, so the unintuitive
hypothesis of free fault tolerance suggested by Theorem 3 may be hard to refute.

Since Theorem 3 is essentially best possible, for the rest of the paper we investigate to
what extent it extends to other graph settings. For example, what if attention is restricted
to unweighted graphs? Our lower bound construction fundamentally relies on the use of
edge weights, and thus it does not constrain this setting. However, we show that it can be
replaced with a conditional lower bound: it will not be possible to meaningfully improve
Theorem 3 for unweighted graphs without first improving on the non-faulty setting. This
result will use a new parameter for distance preservers that we call the gap. For a graph G
and demand pairs P , the gap is

γ(P ) := max
(s,t),(s′,t′)∈P

distG(s, t)− distG(s′, t′).

Intuitively, the gap measures how close G,P are to a “layered” instance: except for a few
degenerate cases, the gap is 0 if and only if G is a layered graph, P is a subset of the first ×
last layer, and the shortest paths for P cross the layers directly without backtracking. We
use the following technical hypothesis for our unweighted lower bound:

I Hypothesis 4. For any σ = σn, there is an n-node undirected unweighted graph G and
demand pairs P = S × T with

|S| ≤ σ and |T | ≤
√

nσ

(γ(P ) + 1)

such that any distance preserver has Ω(nσ) edges.

We remark that this hypothesis is only plausible when |T | = Ω(σ), and hence we need
γ(P ) = O(n/σ). But the current understanding of non-faulty distance preservers is compatible
with the bounds in Hypothesis 4, even if we were to assume more strongly that γ(P ) = 0.

ICALP 2020
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I Theorem 5. Assuming Hypothesis 4, for any σ = σn, there are examples of undirected
unweighted n-node graphs and node subsets of size |S| = σ where any FT distance preserver
needs Ω(nσ) edges.

Thus Theorem 3 is conditionally tight even for unweighted graphs. Next, we ask if it
extends to directed graphs. For the special case of DAGs, we observe that any replacement
path avoiding a failure can be represented by concatenation of two original shortest paths
linked together by an edge (much like the EFT setting). This allows the above content to
extend directly to preservers for DAGs.

I Theorem 6 (DAGs). The upper and lower bound of Theorem 3 both still hold when the
input graph G is a weighted DAG. If G is an unweighted DAG, then the lower bound of
Theorem 5 still holds as well, assuming that Hypothesis 4 also holds for unweighted DAGs.

The general directed setting is trickier. The question of single-pair FT preservers for
directed weighted graphs was settled in [14]; these need at least Ω(n4/3) and at most O(n3/2)
edges,2 and hence Theorem 3 does not extend to this setting. For directed unweighted graphs,
we provide the first improvements on this upper bound:

I Theorem 7 (Directed Unweighted Graphs). For any directed unweighted n-node graph
G = (V,E), and demand pairs (r, S) ∈ V × 2V there is an FT distance preserver on
Õ(n4/3|S|5/6) edges. When |S| = 1, the bound improves to O(n4/3).

Like before, we show conditional tightness of this bound, although here only in the
single-pair setting. Our lower bound needs the following hypothesis:

IHypothesis 8. There is an n-node directed unweighted graph G and demand pairs P = S×T
with

|S|, |T |, γ(P ) = O(n1/3)

such that any distance preserver has Ω(n4/3) edges.

Hypothesis 8 is more tenuous than Hypothesis 4, as it is right on the boundary of current
techniques. We will discuss the interpretation of these hypotheses more shortly. Still, the
point is that one cannot meaningfully improve our single-fault distance preservers without
first gaining an improved understanding of the non-faulty case:

I Theorem 9. Assuming Hypothesis 8, there are examples of directed unweighted n-node
graphs and single demand pairs where any FT distance preserver needs Ω(n4/3) edges.

We remark that if the goal is just to refute the extension of Theorem 3 to directed
graphs, rather than to show exact tightness of Theorem 7, then one can get by with a weaker
assumption than Hypothesis 8 (e.g. the preserver lower bound can be Ω(n1.01), or one can
trade this off with a relaxation of |S|, |T |, γ(P )).

Lastly, we mention that our techniques give a nontrivial extension of the single-pair result
in [14] to the multi-target setting.

2 More specifically, it was proved that the correct size bound is exactly that of a non-faulty distance
preserver of n demand pairs in an n-node directed weighted graph. Due to [20], this is at least Ω(n4/3)
and at most O(n3/2).
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I Theorem 10 (Directed Weighted Graphs). For any directed weighted n-node graph G =
(V,E) and demand pairs (r, S) ∈ V × 2V , there is an FT distance preserver on Õ(n3/2|S|3/4)
edges.

We recall from [14] that the bound improves to O(n3/2) when |S| = 1, and that this single-pair
bound is unimprovable under the hypothesis that the current bounds for non-faulty distance
preservers of directed weighted graphs are tight.

1.2 Interpretation of Hypotheses
Since our lower bounds rely on Hypotheses 4 and 8, we will give them some more context
here and discuss how likely they are to be true. Currently, except for a certain tiny range of
parameters [12], the state-of-the-art upper bounds for non-faulty S × T preservers are based
entirely on a property called consistency:

I Definition 11 (Consistency). A set of paths Π in a (possibly directed) graph G are consistent
if, for any π1, π2 ∈ Π with nodes u < v ∈ π1, u < v ∈ π2, the subpaths π1[u v], π2[u v]
are equal.

In other words, given any set of consistent paths with endpoints in S×T , one can exploit
the consistency property to prove upper bounds on the total number of edges contained in
the union of all these paths [20, 12]. Interpreting S × T as demand pairs for a preserver, it
is not hard to break shortest path ties in such a way that the chosen paths are consistent,
and so these “consistency bounds” yield preserver upper bounds, which are essentially
state-of-the-art.

With this in mind, let us imagine a weaker version of Hypotheses 4, where we hypothesize
a consistent set of S×T paths with Ω(nσ) edges in their union, the gap γ(S×T ) defined as the
maximum difference between any two path lengths, and |S|, |T | are bounded as before. From
a construction in [16], this hypothesis is true. The similar “consistency-weakened” version of
Hypothesis 8 is also true, from an unpublished construction of Bodwin and Reingold.

So, the truth of Hypotheses 4 and 8 essentially depends on how smoothly one can pass
from consistent paths to unique shortest paths without destroying the other important
properties of the construction, like the edge density and the gap. It is hard to say for sure
whether this will be possible. Our guess is that the consistency bounds can be improved –
and thus Hypotheses 4, 8 are false – but that this will require major new technical ideas that
are not currently in the literature. The main evidence for this is that the consistency bounds
have been polynomially improved for general pairwise preservers, which do not require the
structure P = S×T [16]. But in the P = S×T setting the consistency bounds have resisted
improvement for the last 15 years [20], despite significant research effort, so we feel that
Hypotheses 4, 8 accurately mark the boundaries of current knowledge. Thus we interpret
these hypotheses, and the corresponding lower bounds, as proof that no more progress can
really be made in the FT setting until the non-faulty setting is understood first.

1.3 Related Work
For an n-vertex unweighted graph G and a set of sources S, Parter and Peleg [31] showed
that there exists an S × V FTP with O

(
n3/2|S|1/2) edges. This bound holds also for the

case of a single node failure and when the graph is directed. They also showed that this
result is existentially optimal, namely, there exist n-vertex graphs and a set of sources S
such that any S × V FTP has at least Ω

(
n3/2|S|1/2) edges.

For the more general case of P = S × T , [8] showed an FTP of size Õ
(
n4/3|S|1/3|T |1/3)

under edge failure. An FTP for a single pair in undirected (possibly weighted) graph of linear
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size was explicitly presented in [14], but was also implied by previous replacement-paths
algorithms, e.g., [29].

Considerably much less is known for the multiple fault setting (even for edges faults).
Parter [30] showed an upper bound of O(n5/3) edges for {s} × V (edge) f -FTP with f = 2,
in undirected unweighted graphs. A matching lower bound of Ω

(
|S|1/(f+1) · n2−1/(f+1)) for

sourcewise (P = S × V ) f -FTP was also provided in [30], for any f . Gupta and Khan [26]
extended this result, providing a tight upper bound for sourcewise (S × V ) f -FTP with
f = 2. This bound holds also for the case of a two vertex failures and when the graph is
directed. For the more general case of f failures, Bodwin et al. [14] showed an upper bound
of Õ(f · |S|1/2f · n2−1/2f ) edges for a S × V f -FTP. This result holds under both edge and
vertex faults, and in directed graphs. For weighted graphs, [14] showed that even a single
pair f -FTP with f ≥ 2 has Θ(n2) edges.

Baswana and Khanna [7] proved the existence of a (1+ε) multiplicative vertex FT spanner
for P = {s} × V , with O(n/ε3 + n logn) edges, for any ε > 0. Recently, Bilo et al. [11]
improved this result to O(n logn/ε2), for both edge and vertex single failure. In [10], Bilò et
al. showed construction of approximate FTP to handle multiple edge failures. They showed
that for any f ≥ 1 and for P = {s} × V , we can compute an FTP O(fn) size that after
failure of f edge preserves distance up to a multiplicative stretch of (2f + 1).

1.4 Preliminaries and Tools
Graph Notations. We use the following graph notations and definitions in the context
of a given undirected graph G = (V,E,w) with n = |V |, m = |E| and a weight function
w : E → R+. To avoid complications due to shortest-paths of the same length, we assume
throughout that all shortest path are computed with a consistent tie-breaking function π
that guarantees the uniqueness of the shortest-paths3. For every x, y ∈ V , and a subgraph
G′ ⊆ G, let π(x, y,G′) be the (unique) x-y shortest path in G′, when G′ = G we may simply
write π(x, y). For any path P , let P [x, y] be the subpath of P between x and y and let
P (x, y) = P [x, y] \ {x, y}. For a node v ∈ V , let Tv be the shortest path tree rooted at v.
For v, x ∈ V , let Tv(x) the subtree of Tv rooted at x.

For s, t ∈ V and a failure x ∈ V , the replacement path Ps,t,x is the unique s-t shortest
path in G \ {x}. To avoid cumbersome notation, when s or t are clear from context, we may
omit them from the notation. Let Ds,t,x be the detour segment of the replacement path
defined by Ps,t,x \ π(s, t).

For a path P , let E(P ) denote its edges and V (P ) denote its vertices. Similarly, for
a collection of paths P, we denote their edges and vertices with E(P) =

⋃
P∈P E(P ) and

V (P) =
⋃
P∈P V (P ) respectively. We denote the first and last vertex of a path P by first(P )

and last(P ) respectively. Similarly, for a collection of path P, we denote their sources and
terminals with first(P) =

⋃
P∈P first(P ) and last(P) =

⋃
P∈P last(P ). For a tree T and

vertices u, v let LCA(u, v) denote the least common ancestor of u and v in T .

Heavy Path Decomposition. For a shortest path tree Ts rooted at s, we use the heavy-path
decomposition technique devised by Sleator and Tarjan [33] in order to break the tree Ts into
vertex-disjoint paths with several desired properties. The following lemma summarizes the
main properties of this partitioning scheme (proof can be also found in [7]).

3 See Def. 11 for a formal definition of a consistent tie-breaking.
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I Lemma 12 ([33]). There exist a linear time algorithm that given an n-vertex tree T
computes a path Q in T whose removal breaks T into vertex-disjoint subtrees T1, ..., T` such
that for each i ≤ `:
|V (Ti)| ≤ n/2 and V (Q) ∩ V (Ti) = ∅,
Ti is connected to Q through some edge.

The desired decomposition is obtained by recursively applying Lemma 12 (on each of the
subtrees Ti), getting a partition of T into vertex disjoint paths HP(T ). A useful property of
the decomposition is that for every edge (u, v) ∈ T that does not appear in any of the paths
HP(T ), it holds that |V (Ts(v))| ≤ |V (Ts(u))|/2. This yields the following useful lemma.

I Lemma 13 ([7]). For any vertex v, its path to the root in T intersects at most logn paths
in HP(T ).

2 Fault Tolerant Preservers for Undirected Graphs

2.1 Preservers for Undirected Weighted Graphs
I Theorem 14. Any undirected (possibly weighted) G = (V,E,w) and a set S ⊆ V of sources
has a S × S subset (vertex) fault tolerant preserver H with O(n|S| logn) edges.

The subgraph H simply contains all the S × S replacement paths, that is,

H = {Ps,t,x | s, t ∈ S, x ∈ π(s, t)}.

To prove Theorem 14, we will provide a bound on the size of H.

Size Analysis. A replacement path Ps,t,x is short if it has at most n/|S| edges; otherwise it
is long. Throughout this section, we mainly focus on bounding the number of edges in the
collection of all short replacement paths, denoted throughout by Pshort:

I Lemma 15. |E(Pshort)| = O(n|S| logn).

We start by observing that to prove Theorem 14 it is indeed sufficient to consider only
the short replacement paths.

B Claim 16. Lemma 15 implies Theorem 14.

Proof. Let S∗ be a sample of nodes obtained by including each node independently with
probability p = |S|/n, and let S′ = S∗ ∪ S. For each edge e in a long replacement
path P = Ps,t,x, by standard Chernoff bounds, with constant probability there are nodes
s1, s2 ∈ S′ ∩ P , separated by ≤ n/|S| edges in P , such that e comes between s1 and s2 in P .
We thus have e ∈ Ps1,s2,x, so e is now part of a short replacement path. Hence e is counted in
Lemma 15 with at least constant probability. Since only O(n|S| logn) edges may be counted
in this way, by linearity of expectation it follows that there are O(n|S| logn) total edges in
long replacement paths. C

Road-Map for Proving Lemma 15. From now on, we focus on the collection of short
replacement paths, P = Pshort. We will show the existence of a subgraph H ′ with Õ(|S|n)
edges that contains all the edges of P. This subgraph will be the union of three auxiliary
sub-graphs each containing a different subset of replacement paths. For any source s ∈ S,
we first show the existence of a subgraph Hs of size Õ(n) such that Hs ∪ T (S) include

ICALP 2020



15:8 New Fault Tolerant Subset Preservers

most of the replacement paths which originate at s, where T (S) = ∪sTs. Then, letting
H2 =

⋃
s∈S Hs, we have that |H2| = Õ(n|S|). Finally, the third subgraph H3 will include

a collection of left-over O(|S|2 logn) (short) replacement paths, and thus its size will be
bounded by O(n|S| logn) as well.

Partitioning of Replacement Paths based on Heavy-Path Decomposition. Throughout,
we consider a fixed source node s ∈ S and the set Ps = {Ps,t,x | Ps,t,x ∈ P, t ∈ S} of all its
short replacement paths. We then divide these replacement paths into several subsets based
on the heavy-path decomposition HP(Ts) of the shortest-path tree Ts as follows. For every
path Q ∈ HP(Ts), let

Ps(Q) := {Ps,t,x | x ∈ Q and x 6= LCA(t, last(Q))} and P ′s =
⋃

Q∈HP(Ts)

Ps(Q) .

We will also define a small subset of the left-over replacement paths Ls = Ps \ P ′s. The
analysis shows that |Ls| = O(|S| logn), and since all these replacement paths are short, the
total number of edges in these left-over replacement paths can be bounded by O(|S|n logn).
We next bound the number of edges in each of the subsets Ps(Q), enjoying the fact that the
failures of all the replacement paths in these sets lie on a single path.

Bounding the number of edges in Ps(Q) (failure on a single path). Let Q = 〈x0, ..., xk〉.
Following Baswana and Khanna [7], for every xi ∈ Q, we define the vertex partition of
Ts \ {xi} into

Ui : V (Ts \ Ts(xi)), Di := V (Ts(xi+1)) and Oi := V (Ts) \ (Ui ∪Di ∪ {xi}).

Note that for any i 6= j, Oi and Oj are pairwise disjoint. This property is crucial for our
construction.

I Observation 17. Fix xi ∈ Q. If Ps,t,xi
∈ Ps(Q) and Ps,t,xi

6= π(s, t) then t ∈ Di.

Proof. Since Ui ∪Oi ∪Di = V \ {xi}, we need to rule out two cases. (i) Assume that t ∈ Ui.
In this case xi /∈ π(s, t), and thus Ps,t,xi = π(s, t). (ii) Assume that, t ∈ Oi. In this case,
we must also have that xi = LCA(t, last(Q)) and thus Ps,t,xi

/∈ Ps(Q) (this path will be
included in the left-over set Ls). As Ui ∪Oi ∪Di = V , we conclude that t ∈ Di. J

I Lemma 18. Fix xi ∈ Q and t ∈ S ∩Di. The replacement path P = Ps,t,xi
is of the form

p1(P ) ◦ e1(P ) ◦ p2(P ) ◦ e2(P ) ◦ p3(P ) where e1(P ), e2(P ) are edges, p1(P ) ⊆ Ts, p3(P ) ⊆ Tt
and V (p2(P )) ⊆ Oi. Each of the edges e1(P ), e2(P ) (but not both) and some of the paths
pi(P ), i ∈ {1, 2, 3} might be empty.

Proof. Let Pi = pi(P ) for i ∈ {1, 2, 3}, and ej = ej(P ) for j ∈ {1, 2}. Let z be the first
vertex of the path P (i.e., closest to s) that belongs to Di. Let u be the last vertex of the
path P (i.e., closest to t) that belongs to Ui. Let P1 = P [s, u] and P3 = P [z, t]. We first claim
that P1 ⊂ Ts. To see this, observe that since u ∈ Ui, xi /∈ π(s, u) and thus P1 = π(s, u) ⊆ Ts.
Since P1 = π(s, u), it also implies that u appears strictly before z on the path P .

Next, we show that P3 ⊂ Tt by proving that xi /∈ π(z, t). Assume towards contradiction
otherwise, i.e., that xi ∈ π(z, t). We have that π(z, t) = π(z, xi) ◦ π(xi, t). Since (xi, xi+1)
appears on both of the paths π(z, xi) and π(xi, t), we get an alternative z-t path π(z, xi+1) ◦
π(xi+1, t) that is strictly shorter, leading to a contradiction. As xi /∈ π(z, t), we get that
P3 = π(z, t) ⊂ Tt as required. It remains to consider the path P (u, z). If P ∩Oi = ∅ then
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Figure 1 The partition of the path P = Ps,t,xi suggested in Lemma 18 is presented. P1 = p1(P )
is the portion of P that appears before o, P3 = p3(P ) is the portion of P from z, and the remaining
portion is P2 = p2(P ). In the figure, e1 = e1(P ) and e2 = e2(P ).

we are done. Otherwise, Let o, o′ be the first (resp. last) vertices in Oi on the path P . Note
that it might be the case that o = o′. Letting e1 = (u, o), e2 = (o′, z), and P2 = P [o, o′], we
get that P = P1 ◦ e1 ◦ P2 ◦ e2 ◦ P3 and by definition V (P2) ⊆ Oi. The claim follows. J

From now on, for any path P ∈ Ps(Q), let pi(P ), ej(P ) denote the partition defined in
Lemma 18 (for i ∈ [3], j ∈ [2]). As p1(P ), p3(P ) ⊆ T (S), it remains to mainly bound the
edges contributed by p2(P ) for every P ∈ Ps(Q). To do that, we focus on a fixed failure
xi ∈ Q and define a special graph Gi (which is not necessarily a sub-graph of G) in which
p2(P ) is a shortest path. A similar approach has been taken in [7]. For every xi ∈ Q, define
the graph Gi = (Vi, Ei) such that Vi = Oi ∪ {s} and Ei includes the edges of G[Oi] and the
following additional edges. For each o ∈ Oi with a neighbor in Ui, Ei contains the edge (s, o)
with weight min(u,o)∈E,u∈Ui

{w(π(s, u,G)) + w((u, o))}. Letting τi denote the shortest paths
tree rooted at s in Gi, define

H(s,Q) :=
( ⋃
i<k

(τi ∩G)
)
∪
( ⋃
P∈Ps(Q),j∈{1,2}

ej(P )
)
.

We show the following:

I Lemma 19.
(i) For every Ps,t,xi

∈ Ps(Q), it holds that Ps,t,xi
⊆ T (S) ∪H(s,Q) .

(ii) |E(H(s,Q))| = O(|Ts(first(Q))|+ |Ps(Q)|) .

Proof. (i) Since p1(Ps,t,xi
), p3(Ps,t,xi

) ⊆ T (S) and e1(Ps,t,xi
), e2(Ps,t,xi

) ∈ H(s,Q), it is
sufficient to show that p2(Ps,t,xi) ⊆ τi ∩G. Specifically, we show that p2(Ps,t,xi) is a suffix of
a shortest path rooted in s in the graph Gi.

Let o, o′ be the first (resp., last) nodes in Ps,t,xi ∩Oi. First, observe that the existence
of an edge e = (s, o) ∈ Gi with weight w(e) implies that there exists a path in G[Ui ∪ Oi]
of weight w(e) from s to o, such that all of its vertices are in Ui except the last one. Thus,
if there exists a path of weight W from s to o ∈ O in Gi, it implies that there exists a
path in G[Ui ∪ Oi] of weight W from s to o. We now claim p2(Ps,t,xi

) ⊆ τi ∩ G. Let
u ∈ Ui be the vertex preceding o on the path Ps,t,xi such that e1(Ps,t,xi) = (u, o) (i.e.,
alternatively, u is the last vertex in Ui on the path Ps,t,xi

). By the optimal subpath property,
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15:10 New Fault Tolerant Subset Preservers

Ps,t,xi [s, o′] is a shortest path in G \ {xi}, and by Lemma 18 it is in the subgraph G[Ui ∪Oi].
Recall that V (Ps,t,xi

[s, u]) ⊆ Ui and V (Ps,t,xi
[o, o′]) ⊆ Oi. Thus e1(Ps,t,xi

) is the edge that
minimizes w(π(s, u,G)) + w((u, o)), namely, w((s, o)) = w(π(s, u,G)) + w((u, o)). Therefore
(s, o) ◦ Ps,t,xi [o, o′] is a shortest path from s to o′ in Gi, and p2(Ps,t,xi) ⊆ τi ∩G.

We proceed with (ii). As V (τi∩G) ⊆ Oi, by the mutual disjointness of Oi’s, it follows that∑
i<k

|τi ∩G| ≤
∑
i<k

|Oi| ≤ |Ts(first(Q))| .

The claim follows by noting that contribution of e1(P ) and e2(P ) for every P ∈ Ps(Q) is at
most 2|Ps(Q)|. J

Interestingly, Lemma 19(ii) yields an immediate linear upper bound for single pair preservers.
That is, in the case where S = {s, t} and Q = π(s, t), the set Ps(Q) contains all the
replacement paths. As |Ps(Q)| includes at most one path for each failure, its size is bounded
by |π(s, t)| = O(n).

I Corollary 20 (Single-Pair FT Preservers). Any undirected (possibly weighted) graph G =
(V,E), and a pair of nodes s, t ∈ V has a single-pair FT Preserver of linear size.

Bounding the set P ′
s. So far, we assume that the failing vertex appears on a fixed path

Q ∈ HP(Ts). We next bound the total number of edges in the union of all paths P ′s =⋃
Q∈HP(Ts) Ps(Q). By Lemma 19, every Ps,t,xi

∈ Ps(Q) is contained in T (S) ∪ H(s,Q).
Therefore, it remains to bound the number of edges in the subgraph Hs = ∪Q∈HP(Ts)H(s,Q).

I Lemma 21. |E(Hs)| = O(n logn).

Proof. Since Hs = ∪Q∈HP(Ts)H(s,Q), by Lemma 19 it is sufficient to show that:
(i) ΣQ∈HP(Ts)|Ts(first(Q))| = O(n logn) and
(ii) ΣQ∈HP(Ts)|Ps(Q)| = O(n logn).

Begin with (i). By Lemma 13, for every t ∈ S, the s-t path in Ts intersects with at most
logn paths Q ∈ HP(Ts). Since a vertex t appears in Ts(first(Q)) only if first(Q) ∈ π(s, t), it
holds that each vertex belongs to at most logn such subtrees.

We proceed with (ii) and first show that ΣQ∈HP(Ts)|Ps(Q)| ≤ |P ′s|. Recall that Ps(Q)
includes the replacement paths of P ′s whose failure appears in Q. Since HP(Ts) is a
partition of Ts, every two paths Q 6= Q′ in this partitioning are vertex disjoint. Thus for
Q 6= Q′ ∈ HP(Ts), P ′s(Q) ∩P ′s(Q′) = ∅, implying that {P ′s(Q)}Q∈HP(Ts) is a partition of P ′s
and the claim follows.

Next, we show that |P ′s| = O(n logn) by claiming that for every t ∈ S, there are at most
O(n logn/|S|) replacement paths between s and t in P ′s. Fix t ∈ S and let P ′s(t) = {Ps,t,x |
Ps,t,x ∈ P ′s}. Our goal is to show that |P ′s(t)| ≤ O(n logn/|S|). Note that in the case where
G is unweighted, for every short replacement path Ps,t,x with hop-length of O(n logn/|S|),
it holds that the original shortest path π(s, t) is short as well, and thus it has at most
O(n logn/|S|) vertex failures that require a replacement path. Consider a shortest path
π(s, t) in a weighted graph and let ` := c · n logn/|S|. In the case that π(s, t) has hop-length
less than 2`, the lemma trivially holds. Otherwise, we assume |π(s, t)| > 2`. Let s′ be the
`’th vertex on the path from s, namely π(s, s′) has hop-length of `. Similarly, let t′ be the
`’th vertex on the path from t, namely π(t′, t) has hop-length of `. Observe that any short
replacement path P ∈ P ′s(t) avoids both s′, t′, otherwise its length is larger than `. This
implies that the starting point of any detour of a path in P ′s(t) is before s′ and its ending
point is after t′. We show that there is at most one replacement path P ∈ P ′s(t) for all the
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failures in π(s′, t′). Assume towards contradiction that there are two replacement paths
Pv, Pu ∈ P ′s(t), and u, v ∈ π(s′, t′). As both Pv, Pu avoid π(s′, t′), both avoid u, v. Thus, we
get that both paths are shortest paths in G\{u, v}, which is a contradiction to the uniqueness
of the shortest paths. As any other shortest path must have a failure on π(s, s′) or π(t′, t),
we have that |P ′s(t)| ≤ 1 + 2`. Thus, for any t ∈ S, we have that |P ′s(t)| = O(n logn/|S|),
and |P ′s| = O(n logn), as desired. J

Bounding the number of edges in the left-over subset Ls. It remains to bound the
number of edges contributed by the left-over replacement paths.

B Claim 22. |Ls| = O(|S| logn) and thus |E(Ls)| = O(n logn).

Proof. We first claim that for every fixed t ∈ S, Ls contains O(logn) replacement paths
between s and t. Thus, |Ls| = O(|S| logn). Recall that Ps,t,x ∈ Ls if and only if there
exists a path Q ∈ HP(Ts) such that x ∈ Q and x = LCA(t, last(Q)). Thus, we have
that x ∈ π(s, t) ∩Q. According to Lemma 13, there are at most logn paths from HP(Ts)
intersecting with π(s, t) in Ts. Since an LCA is unique for every pair of nodes, for each such
path Q there is only one failure x such that x = LCA(t, last(Q)). Since each path in Ls
is short, i.e., has at most O(n/|S|) edges, the total number of edges in the paths of Ls is
bounded by O(n|S| logn) as desired. C

We are now ready to complete the proof of Lemma 15.

Proof of Lemma 15. The collection of all short replacement paths P is divided into
⋃
s P ′s

and the left-over sets
⋃
s Ls. By Lemma 19(i), E(P ′s) ⊆ Hs∪T (S). By Lemma 21, |E(Hs)| =

O(n logn) and thus the total number of edges in
⋃
s P ′s is bounded by O(n|S| logn). By

Claim 22, |E(Ls)| = O(n logn) and thus E(
⋃
s Ls) = O(n|S| logn). The lemma follows. J

2.2 Preservers for Undirected Unweighted Graphs
We next extend our constructions to the S × T setting. In [8], such an extension has been
provided for the case of the single edge failure. We obtain the following theorem.

I Theorem 23. For any undirected unweighted G = (V,E) and subsets S, T ⊆ V , one can
compute a (vertex) fault tolerant S × T preserver H with Õ(n4/3|S|1/3|T |1/3) edges.

Proof. The subgraph H simply contains all the S × T replacement paths, i.e., H =
{Ps,t,x | s, t ∈ S, x ∈ π(s, t)}. We will bound size the size of this subgraph, by bounding
the size of subgraph H ′ that contains H. Let R be a random subset of O(n/L) nodes where
L is a parameter to be optimized later. Let ` = dL logne. The subgraph H ′ = H1 ∪H2 is
defined as follows.
1. Let H1 be an W ×W FPT for W = R ∪ S obtained by Theorem 14.
2. Let H2 = {`-length suffix of Ps,t,x | s, t ∈ S × T, x ∈ π(s, t), distG(x, t) ≤ `}.

Correctness. Fix {s, t} ∈ S × T and x ∈ π(s, t). First assume that |Ps,t,x| ≤ `. It then
implies that also |π(s, t)| ≤ ` and thus also that dist(x, t) ≤ `. Concluding that
Ps,t,x ⊆ H2. Next, assume that |Ps,t,x| > `. By Chernoff bound, w.h.p. it holds that
|Ps,t,x ∩R| 6= ∅. Let r ∈ R be the closest vertex to t from R on π(s, t), we then have that
Ps,t,x = Ps,r,x ◦ Pr,t,x, and |Pr,t,x| ≤ ` (as r is the closest vertex to t from R). Since H1
is an W ×W FPT, we have that Ps,r,x ⊂ H1. It is left to show that Pr,t,x is included
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in either H1 or H2. First, assume that dist(x, t) > `. As ` ≥ |Pr,t,x| ≥ |π(r, t)|, it holds
that x /∈ π(r, t) and thus Pr,t,x = π(r, x). Since the W ×W preservers of Theorem 14
contains all BFS trees of the W nodes, it includes the BFS tree Tr, and Pr,t,x ⊂ H1. Next,
assume that dist(x, t) ≤ `. By construction, as |Pr,t,x| ≤ `, it holds that Pr,t,x ⊂ H2.

Size Analysis. By Theorem 14, |E(H1)| = O
(
n(|S|+ n/`) log2 n

)
. In addition, |E(H2)| =

O(|S||T |`2) as it includes ` edges of ` s-t replacement paths for every s, t pair. Letting
` = n2/3(|S||T |)−1/3 gives O(n4/3(|S||T |)1/3 log2 n). This bound matches the state of the
art bound known for one edge failure by [8] (Theorem 11). J

3 Fault Tolerant Preservers for General Directed Graphs

We start by defining a couple of notations needed for our constructions. Recall the for each
pair of vertices s, t ∈ V , and a node fault x ∈ π(s, t), the detour of replacement path Ps,t,x is
represented as Ds,t,x. We denote ∂Ds,t,x to denote the partial subpath of Ds,t,x obtained by
removing the first and last vertex from Ds,t,x.

Any partial detour ∂Ds,t,x is a shortest path in the graph G \π(s, t), so we have following
lemma.

I Lemma 24. For any s, t ∈ V , and x ∈ π(s, t), the path ∂Ds,t,x is a shortest path in
G \ π(s, t).

We now describe the fault-tolerant distance preservers with respect to pair-set {r} × S,
for a given choice of a root node r ∈ V and a set S ⊆ V . Let T represent the shortest path
tree rooted at r in G. We initialize H0 to T . Further for each s ∈ S and failure x ∈ π(r, s),
we add the two edge present in E(Ds,t,x) \E(∂Ds,t,x) to H0. In the process, we add at most
O(n|S|) edges to H.

For a directed path Q, we use “HQ” to represent the minimal sub-graph such that H0+HQ

is a 1-FT distance preserver for pairs in (r × S) when vertex-faults in G are restricted to
path Q. One of our main-contributions in achieving sparseness for (non-acyclic graphs) is
in obtaining tight bound over the size of HQ. This is captured in the Proposition 25 and
Proposition 29.

3.1 Preservers for Directed Weighted Graphs
We obtain the following bound on HQ for directed weighted graphs.

I Proposition 25. For any directed path Q = (y  z) in T (between two vertices y, z with
y being ancestor of z in T ), the graph HQ, for a directed possibly weighted graph G, requires
at most O(|T (y)| |S|3/4

√
|Q|) edges, where |Q| denotes the number of vertices in path Q.

Proof. Let Q be a directed y  z tree-path in T , for some y, z ∈ V with y being ancestor of
z. Let k = |S ∩ T (y)|, and α be an integer parameter to be decided later on. For simplicity
we assume K = k/α is integer. Let S1, . . . , Sα be an arbitrary partition of S ∩ T (y), each of
size K, satisfying the constraint that for each (s, s′) ∈ Si × Si+1, LCA(s, z) is either equal
to or an ancestor of LCA(s′, z). Further let w0 = y, wi be LCA(Si ∪ {z}) for 1 ≤ i ≤ α, and
wα+1 = z. Observe that for i ∈ [1, α], wi is either equal to, or a ancestor of wi+1. Partition Q
in consecutive segments (blocks): B0 = Q[w0, w1], B1 = Q[w1, w2], . . . , Bα = Q[wα, wα+1].
Further, let Li be the number of vertices in Bi, for 0 ≤ i ≤ α. (See Figure 2).

We will analyze the failures in each block separately. Fix an index 1 ≤ i ≤ K. We
distinguish two cases as below.
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Figure 2 Depiction of block-partitioning of y  z tree-path, for K = α = 3. Observe that the
sets S1, S2, . . . , Sα are each of size K = 3.

Analysis of replacement path to vertices in Si on vertex failure in Bi. Consider a pair
(f, s) ∈ Bi×Si. Observe that on failure of f , the partial detour ∂Dr,s,f (of replacement path
Pr,s,f ) is a shortest path in G \Bi[wi,LCA(s, z)]. (Recall Bi[wi,LCA(s, z)] is the sub-path
of Bi comprising of those vertices that are ancestor of s in T ). Furthermore, it follows from
our tie-breaking scheme that none of the vertices of ∂Dr,s,f can lie outside T (y). So, for a
fixed s ∈ Si, to compute an (r, s) FT-preserver containing partial-detours corresponding to
f ∈ Bi, we can simply use Coppersmith-Elkin’s [20] pairwise-distance preserver over graph
G[T (y)] \Bi[wi,LCA(s, z)], where, G[T (y)] is the graph induced by vertices in subtree T (y).

Since fault f has Li choices, this gives a bound of O(|T (y)| ·
√
Li) edges, for a single

s ∈ Si. On summing over |Si| = K = k/α nodes in Si, and each of the α blocks, we get a
bound (say X1):

X1 = O
(
|T (y)| · k

α
·
∑
i∈[1,α]

(√
Li
))

(1)

Analysis of replacement path to vertices in ∪j>iSj on vertex failure in Bi. Consider a
pair (f, s) ∈ Bi×∪j>iSj . Observe that on failure of f , the partial detour ∂Dr,s,f is a shortest
path in G \Bi, since all the vertices in Bi are ancestor of s. So here we will use a distance
preserver over graph G[T (y)] \Bi, and the number of pairs (as well as partial-detours) is at
most |S ∩ T (y)| · Li. Hence, handling failures on Bi incurs us O(|T (y)| ·

√
k Li) cost. On

summing over all blocks, we get a bound (say X2):

X2 = O
(
|T (y)| ·

∑
i∈[0,α]

(√
k · Li

))
(2)

For a given α, we haveX1 ≤ O(|T (y)|·(k2/α)1/2·
√
|Q|) andX2 ≤ O(|T (y)|·(kα)1/2·

√
|Q|),

where |Q| denotes the number of vertices on path Q. Optimizing over α, we get α must be
Θ(
√
k). This provides a bound of at most O(|T (y)|k3/4

√
|Q|) edges on the size of HQ. J

We are now ready to prove our results for directed weighted graphs. Previously it was know
by Bodwin et al. [14] that for a single-pair (r, s) ∈ V × V , we can compute a FTP with at
most O(n1.5) edges. A direct implementation of this result over pairs in {r}×S would result
in a bound of O(n1.5|S|) edges. However using Proposition 25 and heavy-path decomposition,
we are able to obtain a better bound of o(n1.5|S|) size for the {r} × S setting.
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Let Q1 = (y1  z1), . . ., Qγ = (yγ  zγ) be the paths in the heavy-path decomposition of
T (i.e. HP(T )). Then

∑γ
i=1 |T (yi)| is O(n logn) (see Lemma 13). Since ∪γi=1V (Qi) = V (T ),

it follows that to handle all failures in T we incur at most O(n|S|3/4√n logn) cost.
Thus our {r}×S 1-FT distance-preserver for weighted directed graphs require Õ(n3/2|S|3/4)

edges.

I Theorem 26. For any n-node directed weighted graph G = (V,E), (r, S) ∈ V × 2V , there
is a 1-VFT (r × S) distance preserver H on Õ(n3/2|S|3/4) edges.

3.2 Preservers for Directed Unweighted Graphs
Using Proposition 25, together with a deeper insight into shortest-path’s structure in un-
weighted graphs, we provide an alternative and better bound on HQ.

Let Q be a directed y  z tree-path in T , with y being ancestor of z. Let ` (a function
of Q) be a parameter to be chosen later. For a triplet (r, s, x) we say that Dr,s,x is long if
the partial detour ∂Dr,s,x has at least ` nodes, and short otherwise. We separately analyse
the short and long detours.

Long Detours. Let us fix a node s ∈ S ∩ T (y). Let Ws ⊆ V (T (y)) be a random sample
of nodes obtained by including each node in T (y) \ π(r, s) independently with probability
`−1. For each long detour Dr,s,x, for x ∈ π(r, s), with constant probability or higher we
sample a node w ∈Ws. Edges of corresponding partial-detour intersecting a node w ∈Ws is
contained in the union of an in- and out-BFS tree rooted at w. Hence they contain O(|T (y)|)
edges. Unioning over all w ∈ Ws, all long detours that intersect Ws contain O(|T (y)|2/`)
edges in total. Finally, we note that since each long detour is counted with at least constant
probability, there are at most O(|T (y)|2/`) total edges contained in all long detours, for a
single node s. Summing this over s ∈ S gives a bound of O(|S| · |T (y)|2/`).

Short Detours. Let w0 = y, and for i = 1 to α = b|Q|/`c, let wi be the descendant of
wi−1 on Q at a distance ` from it. We partition Q into blocks: B0, B1, . . . , Bα such that Bi
includes wi but excludes wi+1, for i ∈ [0, α]. The following lemma presents the disjointness
relation for short detours corresponding to non-consecutive blocks.

I Lemma 27. For each s ∈ S ∩ T (y) and x ∈ Bi, a short partial detour ∂Dr,s,x lies in
T (wi) \ T (wi+2).

Proof. Consider a fault x ∈ Bi and a node s ∈ S ∩ T (y). Let a, b be respectively the first
and last vertices on Dr,s,x. As x ∈ Bi = Q[wi, wi+1] \ {wi+1}, node a must be at least the
grand parent of wi+1. Thus dist(a,wi+2) ≥ ` + 2, and moreover, distance from a to all
nodes in T (wi+2) is also at least `+ 2. Since distance from a to all vertices in ∂Dr,s,x is at
most `+ 1, this completes the proof that ∂Dr,s,x is disjoint with T (wi+2). J

From a more careful implementation of Proposition 29, it follows that the T (y) term in its
bound can in-fact be replaced by T (wi) \ T (wi+2) term when faults are restricted to Bi (see
Lemma 27). Thus the next lemma follows.

I Lemma 28. To handle short detours for faults on Bi, for i ∈ [0, α], we require at most

O
(
|T (wi) \ T (wi+2)| |S|3/4

√
`
)

edges to be added to H0.
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Since
∑α
i=0 |T (wi) \ T (wi+2)| = O(T (y)), the total cost of the construction of HQ is

O
(
|S| · |T (y)|2/`+ |T (y)| |S|3/4

√
`
)
.

Setting ` := |S|1/6|T (y)|2/3 thus proves the following.

I Proposition 29. For any directed path Q = (y  z) in T (between two vertices y, z with
y being ancestor of z in T ), the graph HQ, for a directed unweighted graph G, requires at
most O(|T (y)|4/3 |S|5/6) edges.

As a direct corollary of Proposition 29, we obtain an O(n4/3) upper bound for single
node-pair preserver. If the input pair is (r, s) ∈ V × V , then taking Q = π(r, s), provides us
the following.

I Corollary 30. For any n-node directed unweighted graph G = (V,E), r, s ∈ V , there is a
1-VFT (r, s) distance preserver H on O(n4/3) edges.

We now use the technique of heavy path decomposition. Let Qi = (yi  zi), 1 ≤ i ≤ γ
be the paths in the heavy-path decomposition of T (i.e. HP(T )). Then

∑γ
i=1 |T (yi)| is

O(n logn). So Proposition 29 directly proves the following.

I Theorem 31. For any n-node directed unweighted graph G = (V,E), (r, S) ∈ V × 2V ,
there is a 1-VFT (r × S) distance preserver H on Õ(n4/3|S|5/6) edges.

4 Fault Tolerant Preservers for Directed Acyclic Graphs

For DAGs, we first present our result for single node-pair case.

I Theorem 32. For every n-node directed graph G = (V,E) and a pair p ∈ V × V , there
exists a FT-vertex preserver H ⊆ G for p with O(n) edges.

Proof. Let p = (s, t), and Q = π(s, t) denote the s-t shortest path. Let T1 (T2) be an
outgoing (incoming) shortest path tree rooted at s (t) in G such that the s-t path in it
overlaps with Q; and let H be initialized to T1 ∪T2. Consider a vertex failure x on Q. Let yx
be the last vertex on the replacement path Ps,t,x lying outside subtree T1(x), and let zx be
its successor. As G is acyclic the zx to t shortest path in G cannot pass through x. Thus we
may assume Q[s, yx] is contained in T1, and Q[zx, t] is contained in T2. So, for each x ∈ Q,
it only remains to add edge (yx, zx) to H, thereby proving the linear size bound. J

In above theorem, we showed that for each x ∈ π(s, t), there is exists an edge ex,s,t =
(yx, zx) such that
1. treepathTs

(s, yx) doesn’t contains x,
2. no shortest-path from zx to t can contain x, and
3. the concatenated path treepathTs

(s, yx) · (yx, zx) · πG(zx, t) is an s-t shortest path in
G \ x,

where Ts, for s ∈ S, denotes the shortest path tree rooted at s.
To extend our construction to S×S setting we proceed as follows. We choose a uniformly

random set S̃ of Θ(|S|) vertices, and let R = S ∪ S̃ and L = n logn
|S| . Initialize H to ∪r∈R(Tr).

Next, for each s, t ∈ R satisfying distG(s, t) ≤ L and each x ∈ πG(s, t), add the edge ex,s,t
to H. Observe that in this process, we include at most O(n|S| logn) edges to H. Thus the
size of H is at most O(n|S| logn).
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It remains to prove the correctness of H. Consider a pair (s, t) ∈ S × S, and a vertex
x ∈ πG(s, t). Let (s = r0, r1, r2, . . . , r` = t) be the vertices in R lying on Ps,t,x, in the
order they appear. (Recall Ps,t,x denote the s to t replacement path in G \ x). With high
probability, length between consecutive ri’s in Ps,t,x is at most L. This shows that with high
probability each segment Ps,t,x[ri, ri+1], for i < `, is present in G \ x.

Therefore, with high probability, H is a S × S fault-tolerant preserver for the input DAG
G, and it comprises of at most O(n|S| logn) edges.

I Theorem 33. Any DAG (possibly weighted) G = (V,E,w) and a set S ⊆ V of sources has
a S × S sourcewise (vertex) fault tolerant preserver H with O(n|S| logn) edges.

Using the same analysis as in Theorem 23, the above result can be extended to obtain a
S × T preserver for unweighted DAGs with O(n4/3(|S||T |)1/3 log2 n) edges.

I Theorem 34. For any unweighted DAG G = (V,E) and subsets S, T ⊆ V , one can compute
a (vertex) fault tolerant S × T preserver H with Õ(n4/3|S|1/3|T |1/3) edges.

5 Lower Bounds for FT Preservers

5.1 Unconditional Lower-Bounds for Weighted Graphs
We show here a construction of a graph G on O(n) vertices with integral edge weights in
range [1, nc] (for some constant c) such that its ({s} × S)-distance preserver requires at least
Ω(n|S|) edges. Our lower bound construction is an adaption of {s} × V (1 + ε)-FTP by [6]
to the {s} × S exact-FTP setting.

The vertex set of V (G) constitutes n + σ vertices, and is union of disjoint sets U =
{u1, u2, . . . , un} and W = {w1, w2, . . . , wσ}. The edge set of E(G) (in both directed as well
as undirected scenario) is the union of the following two sets.

EU = {(un, un−1), . . . , (ui, ui−1), . . . , (u2, u1)}, with wt(ui, ui−1) = 1.
EU,W = {(ui, wj) | i ∈ [1, n], j ∈ [1, σ]}, with wt(ui, wj) = (i · n4).

Say that S = W , and let s = un be the designated source vertex. Let Ts be the shortest
path tree rooted at s in G. It is easy to verify the set EU ∪ ({u1}×W ) constitute the edges of
Ts. Now for any i ∈ [1, n] and j ∈ [1, σ], let Pi,j denote the path (un, un−1, . . . , ui) ◦ (ui, wj).
Then for any i, j, wt(Pi,j) = i · n4 + (n− i).

If vertex ui−1 fails then the shortest path from s to vertex wj (j ∈ [1, σ]) in G is path
Pi,j . Hence each wj must keep all its incoming edges in the FT-preserver. This shows there
exists graphs whose {s} × S FT-preserver must contain Ω(n|S|) edges, thereby, implying the
following result.

I Theorem 35. For any positive integers n and σ (≤ n), there exists an n-vertex (un)directed
weighted graph G = (V,E) with pair (s, S) ∈ V × 2V satisfying |S| = σ whose {s} × S 1-FT-
distance-preserver must contain Ω(n|S|) edges.

5.2 Conditional Lower-Bounds for Undirected Unweighted Graphs
I Hypothesis 36 (Gap S × T Distance Preserver Lower Bounds). For any σ = σn, there
is an n-node undirected unweighted graph G = (V,E) and demand pairs P = S × T with
|S| ≤ σ, |T | ≤

√
nσ/γ(P ) such that any distance preserver of P has Ω(nσ) edges.
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I Theorem 37. Assuming Hypothesis 36, for any σ = σn, there are examples of n-node
undirected unweighted graphs G = (V,E) and node subsets of size |S| = σ where Ω(nσ) edges
are needed for an S × S FT preserver of an undirected unweighted graph.

We first say the construction, which uses ideas from [31]. Let γ = γ(P ) be the gap of
an instance from Hypothesis 36. For i ∈ [σ], we create identical disjoint trees Ti, each on
O(n/σ) nodes, computed as follows. Let

β :=
√

n

σγ
,

and start with β disjoint paths Li,1, . . . , Li,β , where Li,j is path on 2jγ nodes with endpoints
(qi,j , si,j). For j ∈ [β − 1], the parent of qi,j is set to qi,j+1 by adding an edge; thus the node
qi,β =: ri is naturally viewed as the root of Ti, and {si,1, . . . , si,β} are then the leaves. We set

T̃ = {si,j | i ∈ [α], j ∈ [β]}

and take S̃ to be a set of |S̃| = σ new nodes. Noting that
∣∣∣T̃ ∣∣∣ = σβ =

√
nσ/γ, between S̃

and T̃ we may plug in an n-node distance preserver lower bound graph H from Hypothesis
36. We then let

S := S̃ ∪ {r1, . . . , rα}.

This completes the construction. One immediately counts that the number of vertices is

n+

∣∣∣∣∣
α⋃
i=1

Ti

∣∣∣∣∣ = O(n),

and |S| = 2σ, so it remains to argue that an FT subset distance preserver must contain a
non-faulty S̃ × T̃ preserver in the copy of H, which thus has Ω(nσ) edges. Consider nodes
ti,j ∈ T̃ , s ∈ S̃. Following the argument in [31], one can verify that on failure of qi,j−1, every
shortest ri  s path has the form

(qi,β , . . . , qi,j) ◦ Li,j ◦ π(ti,j , s)

where π(ti,j , s) is a shortest ti,j  s path in H.

5.3 Conditional Lower-Bounds for Directed Unweighted Graphs
For directed unweighted graphs, we prove:

IHypothesis 38 (Layered S×T Directed Distance Preserver Lower Bounds). There is an n-node
directed unweighted graph G = (V,E) and demand pairs S×T with |S|, |T |, γ(S×T ) ≤ O(n1/3)
such that any distance preserver of P has Ω(n4/3) edges.

I Theorem 39. Assuming Hypothesis 38, there are examples where Ω(n4/3) edges are needed
for a single-pair 1-VFT preserver of a directed unweighted graph.

To prove Theorem 39, we start with an s t shortest path π of length Θ(n2/3) and an n-
node distance preserver lower bound H from Hypothesis 38, and then we add some additional
nodes and edges to the graph to carefully connect these two parts of the construction. Then,
similar in spirit to our previous lower bounds, we prove that for each s′ ∈ S, t′ ∈ T pair
one can fault a particular node on π so that every shortest s t path passes through s′, t′.
This means one must implicitly keep a (non-faulty) distance preserver of H, which thus has
Ω(n4/3) nodes.
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Abstract

We study the kernelization complexity of structural parameterizations of the Vertex Cover
problem. Here, the goal is to find a polynomial-time preprocessing algorithm that can reduce any
instance (G, k) of the Vertex Cover problem to an equivalent one, whose size is polynomial in the
size of a pre-determined complexity parameter of G. A long line of previous research deals with
parameterizations based on the number of vertex deletions needed to reduce G to a member of a
simple graph class F , such as forests, graphs of bounded tree-depth, and graphs of maximum degree
two. We set out to find the most general graph classes F for which Vertex Cover parameterized by
the vertex-deletion distance of the input graph to F , admits a polynomial kernelization. We give a
complete characterization of the minor-closed graph families F for which such a kernelization exists.
We introduce a new graph parameter called bridge-depth, and prove that a polynomial kernelization
exists if and only if F has bounded bridge-depth. The proof is based on an interesting connection
between bridge-depth and the size of minimal blocking sets in graphs, which are vertex sets whose
removal decreases the independence number.
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1 Introduction

Background and motivation. The NP-complete Vertex Cover problem is one of the
most prominent problems in the field of kernelization [3, 8, 13, 16, 26], which investigates
provably efficient and effective preprocessing for parameterized problems. A parameterized
problem is a decision problem in which a positive integer k, called the parameter, is associated
with every instance x. A kernelization for a parameterized problem is a polynomial-time
algorithm that reduces any parameterized instance (x, k) to an equivalent instance (x′, k′) of
the same problem whose size is bounded by f(k) for some function f , which is the size of
the kernelization. Hence a kernelization guarantees that instances which are large compared
to their parameter, can be efficiently reduced without changing their answer. Of particular
interest are polynomial kernelizations, whose size bound f is polynomial.

An instance (G, k) of Vertex Cover asks whether the undirected graph G has a
vertex set S of size at most k that contains at least one endpoint of every edge. Using
the classic Nemhauser-Trotter theorem [28], one can reduce (G, k) in polynomial time to
an instance (G′, k′) with the same answer, such that |V (G′)| ≤ 2k. Hence when using
the size of the desired solution as the parameter, Vertex Cover has a kernelization
that reduces to instances of 2k vertices, which can be encoded in O(k2) bits. While the
bitsize of this kernelization is known to be essentially optimal [10] assuming the established
conjecture NP 6⊆ coNP/poly, this result does not guarantee any effect of the preprocessing
for instances whose solution has size at least |V (G)|/2. In particular, it does not promise
any size reduction when G is simply a path.

To be able to give better preprocessing guarantees, one can use structural parameters
which take on smaller values than the size of a minimum vertex cover, a quantity henceforth
called the vertex cover number. Such structural parameterizations can conveniently be
described in terms of the vertex-deletion distance to certain graph families F . Note that the
vertex cover number vc(G) of G can be defined as the minimum number of vertex deletions
needed to reduce G to an edgeless graph. Hence this number will always be at least as large
as the feedback vertex number fvs(G) of G, which is the vertex-deletion distance of G to a
forest. In 2011, it was shown that Vertex Cover even admits a polynomial kernelization
when parameterized by the feedback vertex number [21, 22]. This triggered a long line
of follow-up research, which aimed to find the most general graph families F such that
Vertex Cover admits a polynomial kernelization when parameterized by vertex-deletion
distance to F . Polynomial kernelizations were obtained for the families F of graphs of
maximum degree two [27], of graphs of constant tree-depth [5, 23], of the pseudo-forests
where each connected component has at most one cycle [17], and for d-quasi-forests in
which each connected component has a feedback vertex set of size at most d ∈ O(1) [18].
Note that all these target graph classes are closed under taking minors. Using randomized
algorithms with a small error probability, polynomial kernelizations are also known for several
parameterizations by vertex-deletion distance to graph classes that are not minor-closed,
such as Kőnig graphs [25], bipartite graphs [25], and parameterizations based on the linear-
programming relaxation of Vertex Cover [19, 24]. On the negative side, it is known that
Vertex Cover parameterized by the vertex-deletion distance to a graph of treewidth two [9]
does not have a polynomial kernel, unless NP ⊆ coNP/poly. This long line of research into
kernelization for structural parameterizations raises the following question:

How can we characterize the graph families F for which Vertex Cover parameterized
by vertex-deletion distance to F admits a polynomial kernel?

We answer this question for all minor-closed families F , by introducing a new graph parameter.
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Our results. We introduce a new graph parameter that we call bridge-depth. It has a
recursive definition similar to that of tree-depth [30] (full definitions follow in Section 3), but
deals with bridges in a special way. A graph without vertices has bridge-depth zero. The
bridge-depth bd(G) of a disconnected graph G is simply the maximum bridge-depth of its
connected components. The bridge-depth of a connected nonempty graph G is defined as
follows. Let Gcb denote the graph obtained from G by contracting each edge that is a bridge
in G; the order does not matter. Then bd(G) := 1 + minv∈V (Gcb) bd(Gcb \ v). Intuitively, the
bridge-depth of G is given by the depth of an elimination process [6] that reduces G to the
empty graph. One step consists of contracting all bridges and removing a vertex; each of
the remaining connected components is then recursively eliminated in parallel. From this
definition, it is not difficult to see that bd(G) is at least as large as the tree-width of G, but
never larger than the tree-depth or feedback vertex number of G. In particular, any forest
has bridge-depth one.

Using the notion of bridge-depth, we characterize the minor-closed families F for which
Vertex Cover parameterized by vertex-deletion distance to F admits a polynomial kernel.

I Theorem 1.1. Let F be a minor-closed family of graphs, and assume NP 6⊆ coNP/poly.
Vertex Cover parameterized by vertex-deletion distance to F has a polynomial kernelization
if and only if F has bounded bridge-depth.

Theorem 1.1 gives a clean and unified explanation for all the minor-closed families F that
were previously considered individually [5, 17, 18, 22, 27], and generalizes these results as far
as possible. To the best of our knowledge, Theorem 1.1 captures all known (deterministic)
kernelizations for structural parameterizations of Vertex Cover. (There are randomized
kernelizations [19, 24, 25] which apply for distance to classes F that are not minor-closed,
such as bipartite graphs.) For example, we capture the case of F being a forest [22] since
forests have bridge-depth one, and the case of F being graphs of constant tree-depth [5, 23]
since bridge-depth does not exceed tree-depth. In this sense, bridge-depth can be seen as
the ultimate common generalization of feedback vertex number and tree-depth (which are
incomparable parameters) in the context of polynomial kernels for Vertex Cover.

We consider it one of our main contributions to identify the graph parameter bridge-depth
as the right way to capture the kernelization complexity of Vertex Cover parameterizations.

Techniques. To describe our techniques, we introduce some terminology. Let α(G) denote
the independence number of graph G, i.e., the maximum size of a set of pairwise nonadjacent
vertices. A blocking set in a graph G is a vertex set Y ⊆ V (G) such that α(G \ Y ) < α(G).
Hence if Y is a blocking set, then every maximum independent set in G contains a vertex
from Y . Earlier kernelizations for Vertex Cover parameterized by distance to a graph
class F , starting with the work of Jansen and Bodlaender [22], all rely, either implicitly or
explicitly, on having upper-bounds on the size of (inclusion-)minimal blocking sets for graphs
in F [5,17,18,22,27]. For example, it is known that minimal blocking sets in a bipartite graph
have size at most two [18, Cor. 11], while minimal blocking sets in graphs of tree-depth c
have size at most 2c [5, Lemma 1]. Similarly, all the existing superpolynomial kernelization
lower bounds for parameterizations by distance to F , rely on F having minimal blocking
sets of arbitrarily large size. Indeed, if F is closed under disjoint union and has arbitrarily
large blocking sets, it is easy to prove a superpolynomial lower bound (cf. [19, Thm. 1]).

Since all positive cases for kernelization are when minimal blocking sets of graphs in F
have bounded size, while one easily obtains lower bounds when the size of minimal blocking
sets of graphs in F is unbounded, the question rises whether a bound on the size of minimal
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blocking sets is a necessary and sufficient condition for the existence of polynomial kernels.
To our initial surprise, we show that for minor-closed families F , this is indeed the case:
the purely structural property of having bounded-size minimal blocking sets can always be
leveraged into preprocessing algorithms.

For an insight into our techniques, consider an instance (G, k) of Vertex Cover,
together with a vertex set X ⊆ V (G) such that G \X ∈ F for some minor-closed family F
that has bounded-size minimal blocking sets. The goal of the kernelization is then to reduce
to an equivalent instance of size |X|O(1) in polynomial time. Using ideas of the previous
kernelizations [5,22], it is quite simple to reduce the number of connected components of G\X
to size |X|O(1). To obtain a polynomial kernel, the challenge is therefore to bound the size
of each such component C of G \X to |X|O(1), so that the overall instance size becomes
polynomial in |X|. However, the non-existence of large minimal blocking sets does not seem
to offer any handle for reducing the size of individual components of G \X. The route to the
kernelization therefore goes via the detour of bridge-depth. We prove the following relation
between the sizes of minimal blocking sets and bridge-depth.

I Theorem 1.2. Let F be a minor-closed family of graphs. Then F has bounded bridge-depth
if and only if the size of minimal blocking sets of graphs in F is bounded.

Using this equivalence, we can exploit the fact that all minimal blocking sets of F are of
bounded size, through the fact that the bridge-depth of G \X ∈ F is small. This means
that there is a bounded-depth elimination process to reduce G \X to the empty graph. We
use this bounded-depth process in a technical kernelization algorithm following a recursive
scheme, inspired by the earlier kernelization for the parameterization by distance to bounded
tree-depth [5].

Let us now discuss the ideas behind the equivalence of Theorem 1.2. We prove that the
bridge-depth of graphs in a minor-closed family F is upper-bounded in terms of the maximum
size of minimal blocking sets for graphs in F , by exploiting the Erdős-Pósa property in an
interesting way. We analyze an elementary graph structure called necklace of length t, which
is essentially the multigraph formed by a path of t double-edges. If a simple graph G ∈ F
contains a necklace of length t as a minor, then there is a minor G′ of G (which therefore also
belongs to F) that has a minimal blocking set of size Ω(t). Hence to show that bridge-depth
is upper-bounded in terms of the size of minimal blocking sets of graphs in F , it suffices to
show that bridge-depth is upper-bounded by the maximum length of a necklace minor of
graphs in F . Since the definition of bridge-depth allows for the contraction of all bridges in a
single step, it suffices to consider bridgeless graphs. Then we argue that in a bridgeless graph,
any pair of maximum-length necklace minor models intersects at a vertex (cf. Lemma 4.6).
By the Erdős-Pósa property, this implies that there is a constant-size vertex set that hits all
maximum-length necklace minor models, and whose removal therefore strictly decreases the
maximum length of a necklace minor. If the length of necklace minor models is bounded,
then after a bounded number of steps of this process (interleaved with contracting all bridges)
we reduce the maximum length of necklace minor models to zero, which is equivalent to
breaking all cycles of the graph. At that point, the bridge-depth is one by definition, and we
have obtained the desired upper-bound on the bridge-depth in terms of the length of the
longest necklace minor, and therefore blocking set size.

For the other direction of Theorem 1.2, we prove (cf. Theorem 5.4) the tight bound that
a minimal blocking set in a graph G has size at most 2bd(G). We use induction to prove
this statement, together with an analysis of the structure of a tree of bridges whose removal
decreases the bridge-depth. The fact that bipartite graphs have minimal blocking sets of size
at most two, allows for an elegant induction step.
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Related work. In a recent paper, Hols, Kratsch, and Pieterse [19] also analyze the role
of blocking sets in the existence of polynomial kernels for structural parameterizations of
Vertex Cover. Note that our paper is independent from, and orthogonal to [19]: we
consider the setting of deterministic kernelization algorithms for parameterizations to minor-
closed families F , and obtain an exact characterization of which F allow for a polynomial
kernelization. Hols et al. [19] consider hereditary families F and give kernelizations for
several such parameterizations, without arriving at a complete characterization. Some of the
randomized kernelizations they provide do not fit into our framework, but all the deterministic
kernelizations they present are captured by Theorem 1.1. Another contribution of [19] is
to prove that there is a class F with minimal blocking sets of size one where Vertex
Cover cannot be solved in polynomial time. In particular, there is no polynomial kernel
parameterized by the distance to this family F , and thus bounded minimal blocking set size
is not sufficient to get a polynomial kernel. This implies that our minor-closed assumption of
Theorem 1.1 cannot be dropped.

We refer to the survey by Fellows et al. [13] for an overview of classic results and new
research lines concerning kernelization for Vertex Cover. Additional relevant work includes
the work by Kratsch [24] on a randomized polynomial kernel for a parameterization related
to the difference between twice the cost of the linear-programming relaxation of Vertex
Cover and the size of a maximum matching.

Organization. Preliminaries on graphs and complexity are presented in Section 2. Section 3
introduces bridge-depth and its properties. In Section 4 we prove one direction of Theorem 1.2,
showing that large bridge-depth implies the existence of large minimal blocking sets. In
Section 5 we handle the other direction, proving a tight upper-bound on the size of minimal
blocking sets in terms of the bridge-depth. We discuss the kernelization algorithm exploiting
bridge-depth in Section 6, with the technical content being available in the full version of the
article [4] due to space limitations. We conclude the article in Section 7. The proofs of the
results marked with “(?)” have been also deferred to the full version [4].

2 Preliminaries

Graphs. We use standard graph-theoretic notation, and we refer the reader to Diestel [11]
for any undefined terms. All graphs we consider are finite and undirected. Graphs are simple,
unless specifically stated otherwise. A graph G has vertex set V (G) and edge set E(G).
Given a graph G and a subset S ⊆ V (G), we say that S is connected if G[S] is connected,
and we use the shorthand G \ S to denote G[V (G) \ S]. For a single vertex v ∈ V (G), we
use G \ v as a shorthand for G \ {v}. Similarly, for a set of edges T ⊆ E(G) we denote
by G \ T the graph on vertex set V (G) with edge set E(G) \ T . A cycle on three vertices is
called a triangle. For a positive integer i, we denote by [i] the set of all integers j such that
1 ≤ j ≤ i. Given v ∈ V (G), we denote NG(v) = {u | {u, v} ∈ E(G)}, dG(v) = |NG(v)| and
given X ⊆ V (G), we denote NG(X) =

⋃
v∈X NG(v) \X. Given X,Y ⊆ V (G), we denote by

NY
G (X) = NG(X) ∩ Y . We may omit the subscript G when it is clear from the context. For

distinct vertices u and v of a graph G, the graph G′ obtained by identifying u and v is defined
by removing vertices u and v from G, adding a new vertex uv with NG′(uv) = NG({u, v}),
and keeping the other vertices and edges unchanged. Given two adjacent vertices u and v,
we define the contraction of the edge {u, v} as the identification of u and v.
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Given a graph G, we denote by α(G) the size of a maximum independent set in G, by
#cc(G) the number of connected components of G, by diam(G) the diameter of G, and by
∆(G) the maximum degree of G. Given a graph G and a set S ⊆ V (G), we say that S is
a blocking set in G if α(G \ S) < α(G). The maximum size of an inclusion-wise minimal
blocking set of a graph G is denoted by mbs(G).

A graph H is a minor of graph G if H can be obtained from G by a sequence of edge
deletions, edge contractions, and removals of isolated vertices. Let us also recall the definition
of minor in the context of multigraphs. Let H be a loopless multigraph. An H-model M
in a simple graph G is a collection {SM

x | x ∈ V (H)} of pairwise disjoint subsets of V (G)
such that G[SM

x ] is connected for every x ∈ V (H), and such that for every pair of distinct
vertices x, y of H, the quantity |{{u, v} ∈ E(G) | u ∈ SM

x , v ∈ SM
y }| is at least the number

of edges in H between x and y. The vertex set V (M) of M is the union of the vertex sets of
the subgraphs in the collection. We say that a graph G contains a loopless multigraph H as
a minor if G has an H-model.

For the following definitions, we refer the reader to [29] for more details and we only
recall here some basic notations and facts. The tree-depth of a graph G, denoted by td(G), is
defined recursively. The empty graph without vertices has tree-depth zero. The tree-depth of
a disconnected graph is the maximum tree-depth of its connected components. Finally, if G
is a nonempty connected graph then td(G) = 1 + minv∈V (G) td(G \ v). Equivalent definitions
exist in terms of the minimum height of a rooted forest whose closure is a supergraph of G.
The tree-width of G is denoted tw(G) (cf. [2]).

Given a graph family F , an F-modulator in a graph G is a subset of vertices X ⊆ V (G)
such that G\X ∈ F . We denote by dist-to-F(G) the size of a smallest F -modulator in G. For
a graph measure f that associates an integer with each graph, and an integer c, a c-f-modulator
is a modulator to F f

c := {G | f(G) ≤ c}. We denote by c-f-mod(G) := dist-to-F f
c(G), that

is, the size of a smallest c-f-modulator of G. Typical measures f that we consider here
are tree-width, tree-depth, and bridge-depth. Notice that 0-tw-mod(G) corresponds to the
minimum size of a vertex cover of G, and 1-tw-mod(G) corresponds to the minimum size of
a feedback vertex set of G. Finally, IS (resp. VC) denotes the Maximum Independent
Set (resp. Minimum Vertex Cover) problem.

Parameterized complexity. A parameterized problem is a language L ⊆ Σ∗ × N, for some
finite alphabet Σ. For an instance (x, k) ∈ Σ∗ × N, the value k is called the parameter.
For a computable function g : N→ N, a kernelization algorithm (or simply a kernel) for a
parameterized problem L of size g is an algorithm A that given any instance (x, k) of L, runs
in polynomial time and returns an instance (x′, k′) such that (x, k) ∈ L⇔ (x′, k′) ∈ L with
|x′|, k′ ≤ g(k). Consult [8, 12,14,16,31] for background on parameterized complexity.

3 An introduction to bridge-depth

Let G be a graph. An edge e ∈ E(G) is a bridge if its removal increases the number
of connected components of G. We define Gcb as the simple graph obtained from G by
contracting all bridges of G (the order does not matter.) Observe that, as contracting an
edge cannot create a new bridge, Gcb has no bridges, implying that (Gcb)cb = Gcb. Given
a subgraph T of a graph G, we say that T is a tree of bridges if T is a tree and, for every
e ∈ E(T ), e is a bridge in G. Note that a single vertex is, by definition, a tree of bridges. Note
also that with any vertex v ∈ V (Gcb) we can associate, in a bijective way, an inclusion-wise
maximal tree of bridges Tv of G. The set {Tv | v ∈ V (Gcb)} is a minor model of Gcb in G (a
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Gcb-model, from now on). For any u, v ∈ V (Gcb) such that {u, v} ∈ E(Gcb), there is exactly
one edge {u′, v′} ∈ E(G) with u′ ∈ Tu and v′ ∈ Tv. The latter claim can be easily verified
by supposing that there are two such edges, implying that some edge in Tu or Tv is involved
in a cycle, which contradicts the fact that all the edges in Tu and Tv are bridges.

I Definition 3.1. The bridge-depth bd(G) of a graph G is recursively defined as follows:
If G is the empty graph without any vertices, then bd(G) = 0.
If G has ` > 1 connected components {Gi | i ∈ [`]}, then bd(G) = maxi∈[`] bd(Gi).
If G is connected, then bd(G) = 1 + minv∈V (Gcb) bd(Gcb \ v).

Informally, bd behaves like tree-depth except that at each step of the recursive definition
we are allowed to delete trees of bridges instead of just single vertices, as proved in Item 4 of
the following proposition. The following properties of bridge-depth follow from the definitions
in an elementary way, often exploiting the fact that if e is a bridge in G, then e is also a
bridge in any minor of G that still contains e.

I Proposition 3.2. For any graph G the following claims hold:

1. bd(G) = 1 if and only if G is a forest with at least one vertex.
2. bd(Gcb) = bd(G).
3. The parameter bd is minor-closed: if G′ is a minor of G then bd(G′) ≤ bd(G).
4. If G is connected, then bd(G) = 1 + minT bd(G \ V (T )), where the minimum is taken

over all trees of bridges T of G.
5. For any X ⊆ V (G), we have bd(G) ≤ |X|+ bd(G \X).
6. tw(G) ≤ bd(G).

Proof. The first item follows easily from the definition, while the second one uses that
(Gcb)cb = Gcb.

Proof of 3: We prove the claim by induction on |V (G)| + |E(G)|. Suppose that G has
multiple connected components {Gi | i ∈ [#cc(G)]}, and let {G′i | i ∈ [#cc(G′)]} be the
connected components of the minorG′ ofG. Then each connected componentG′j is a minor
of some component Gi of G on fewer than |V (G)| vertices, which gives bd(G′j) ≤ bd(Gi)
by induction. Hence we have bd(G′) = maxj∈[#cc(G′)] bd(G′j) ≤ maxi∈[#cc(G)] bd(Gi) =
bd(G).
We now deal with the case that G is connected. In general, if some graph G∗ is a
minor of G, then G∗ is a minor of a graph G′ obtained from G by removing an edge,
contracting an edge, or removing an isolated vertex. Since G is assumed to be connected,
the third case cannot occur here. Then by induction, we have bd(G∗) ≤ bd(G′), so
it suffices to prove that bd(G′) ≤ bd(G) for any graph G′ obtained by removing or
contracting an edge. Let us first prove that if G′cb is a minor of Gcb, then bd(G′) ≤ bd(G).
Indeed, let v∗ ∈ V (Gcb) such that bd(G) = 1 + bd(Gcb \ v∗), and consider an arbitrary
component G′i of G′. Note that (G′i)cb is a component of (G′)cb, and therefore a minor
of Gcb by hypothesis. If (G′i)cb is a minor of the graph Gcb \ v∗, then by induction and
Item 2 we have bd(G′i) = bd((G′i)cb) ≤ bd(Gcb \ v∗) < bd(G). Otherwise, any minor
model {Sx | x ∈ V ((G′i)cb)} of (G′i)cb in Gcb contains a branch set Sx∗ with v∗ ∈ Sx∗ . But
then bd((G′i)cb) ≤ 1 + bd((G′i)cb \x∗) by definition, and (G′i)cb \x∗ is a minor of Gcb \ v∗,
and therefore has bridge-depth at most bd(G)− 1, so that bd((G′i)cb) ≤ bd(G). Hence
for each component G′i of G′ we have bd(G′i) = bd((G′i)cb) ≤ bd(G), implying bd(G′) ≤
bd(G).
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Thus, it only remains to prove that G′cb is a minor of Gcb. Let us first assume that G′ is
obtained from G by removing an edge e. Let {Tv | v ∈ V (Gcb)} be the Gcb-model in G
given by the trees of bridges. If e is not a bridge, then e is an edge between Tu and Tv

for some vertices u, v ∈ V (Gcb). To obtain G′cb as a minor, we start from Gcb, remove
edge {u, v}, and for any edge e′ between Tu′ and Tv′ (for any u′, v′ ∈ V (Gcb)) that has
become a bridge in G′ because of the removal of e, we contract {u′, v′}. This implies that
G′cb is a minor of Gcb. Otherwise, if e is a bridge, then there exists u ∈ V (Gcb) such
that e ∈ E(Tu), and G′ has two connected components G′1 and G′2. To obtain (G′i)cb as
a minor, for i ∈ [2], we start from Gcb and remove any vertex v such that Tv ∩ V (G′i) = ∅
(notice that u appears both in (G′1)cb and (G′2)cb). Thus, both (G′1)cb and (G′2)cb are
minors of Gcb, hence G′cb as well. The case where G′ is obtained from G by contracting
an edge e can be proved using similar but simpler arguments. Indeed, if e is a bridge in
G, then we have that G′cb = Gcb, and if it is not, if suffices to contract in Gcb the edge
{u, v} with u, v ∈ V (Gcb) such that e is an edge between Tu and Tv.

Proof of 4: Let v ∈ V (Gcb) and Tv be its associated tree of bridges in G. Observe first that
we may have (G \ V (Tv))cb 6= Gcb \ v. Indeed, if for example we consider G composed
of two vertex-disjoint triangles {a, b, c}, {a′, b′, c′} and an edge e = {a, a′}, and if we
consider Tv = {e}, then Gcb \ v is composed of two disjoint edges, whereas (G− V (Tv))cb
is composed of two isolated vertices. However, it is easy to verify that (G \ V (Tv))cb =
(Gcb \ v)cb. Let us now prove that minT bd(G \ V (T )) ≤ minv∈V (Gcb) bd(Gcb \ v).
Let v∗ be a vertex minimizing bd(Gcb \ v). We have minT bd(G \ V (T )) ≤ bd(G \
V (Tv∗)) = bd((G \ V (Tv∗)cb) using Item 2 in the last equality, and bd((G \ V (Tv∗)cb) =
bd((Gcb \ v∗)cb) = bd(Gcb \ v∗) using again Item 2.
For the other inequality, let T 0 be a tree of bridges that minimizes bd(G \ V (T )). If
T 0 is not inclusion-wise maximal, let T ∗ be any inclusion-wise maximal tree of bridges
containing T 0. Note that as G \ V (T ∗) is a subgraph of G \ V (T 0), by Item 3 we get
that bd(G \V (T ∗)) ≤ bd(G \V (T 0)), implying that T ∗ also minimizes bd(G \V (T )). Let
v∗ ∈ V (Gcb) such that Tv∗ = T ∗. We have minv∈V (Gcb) bd(Gcb \ v) ≤ bd(Gcb \ v∗) =
bd((G \ Tv∗)cb) = bd(G \ Tv∗).

Proof of 5: We use induction on |X|, the base case X = ∅ being trivial. For the induction
step, pick an arbitrary v ∈ X, let X ′ := X \ {v}, and G′ := G \X ′. By induction we
have bd(G) ≤ |X ′| + bd(G′). Let G′i be the connected component of G′ containing v.
Using v as a singleton tree of bridges in G′i, Item 4 shows that bd(G′i) ≤ 1 + bd(G′i \ v) ≤
1 + bd(G′ \ v). Since all other components G′j of G′ also occur as components of G′ \ v,
it follows that bd(G′j) ≤ bd(G′ \ v), implying bd(G′) ≤ 1 + bd(G′ \ v) = 1 + bd(G \X)
since G′ \ v = G \X. Hence bd(G) ≤ |X ′|+ 1 + bd(G \X).

Proof of 6: We use induction on |V (G)|; the base case follows directly from the definitions.
It is well-known (cf. [2, Lemma 6]) that the tree-width of G is the maximum tree-
width of its biconnected components. Hence it suffices to prove that for an arbitrary
biconnected component G′ of G, we have tw(G′) ≤ bd(G′). If G′ consists of a single
edge, then tw(G′) = bd(G′) = 1. Otherwise, G′ is a connected bridgeless graph. This
implies (G′)cb = G′, so by Definition 3.1 there is a vertex v ∈ V (G′) such that bd(G′) =
1+bd(G′ \v). Since G′ is a minor of G, we have bd(G′) ≤ bd(G) by Item 3. By induction,
the tree-width of G′ \ v is at most bd(G′ \ v) ≤ bd(G)− 1. Adding vertex v to all bags of
a tree decomposition of this width, gives a valid tree decomposition of G′ of width at
most bd(G′ \ v) + 1 ≤ bd(G′). Hence tw(G′) ≤ bd(G′) for all biconnected components
of G. J
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A (c+ 1)× (c+ 1)-grid is a planar graph of tree-width exactly c+ 1 [2, Cor. 89], which
implies by Item 6 of Proposition 3.2 that its bridge-depth is larger than c. This gives the
following consequence of Proposition 3.2, which will be useful when invoking algorithmic
meta-theorems.

I Observation 3.3. For each c ∈ N, the graphs of bridge-depth at most c form a minor-closed
family that excludes a planar graph. By the Graph Minor Theorem [35], there is a finite set
of forbidden minors Hc such that bd(G) ≤ c if and only if G excludes all graphs of Hc as a
minor. The set Hc contains a planar graph, since some planar graphs have bridge-depth > c.

Observation 3.3, together with known results on minor testing, imply the following.

I Proposition 3.4 (Follows from [1, Thm. 7.1]). For each constant c ∈ N, there is a linear-time
algorithm to test whether the bridge-depth of a given graph G is at most c.

Fomin et al. [15, Thm. 1.3] gave a generic approximation algorithm for finding a small
vertex set that hits forbidden minors from a finite forbidden set containing a planar graph.
By Observation 3.3, deleting vertices to obtain a graph of bounded bridge-depth fits into
their framework.

I Proposition 3.5 (Follows from [15, Thm. 1.3]). For each fixed c ∈ N there is a polynomial-
time algorithm that, given a graph G, outputs a set X ⊆ V (G) such that bd(G \ X) ≤ c

and |X| ≤ O(|Xopt| log2/3 |Xopt|), where |Xopt| is the minimum size of such a set.

The following concept will be crucial to facilitate a recursive approach for reducing graphs
of bounded bridge-depth.

I Definition 3.6. A lowering tree T of a graph G is a tree of bridges (possibly consisting of
a single vertex and no bridges) such that bd(G \ V (T )) = bd(G)− 1.

Item 4 of Proposition 3.2 implies that any connected graph G has a lowering tree.

I Proposition 3.7. For each fixed c ∈ N there is an algorithm that, given a connected graph G
on n vertices of bridge-depth c, computes a lowering tree in O(n2) time.

Proof. Given G, we compute its decomposition into biconnected components, which can
be done in linear time taking into account that having bounded bridge-depth implies a
linear number of edges [20]. From this decomposition, it is straightforward to identify
the inclusion-maximal trees of bridges in G. For each tree of bridges T in G, we can test
whether bd(G \ V (T )) < c = bd(G) in linear time using Proposition 3.4, and we output T
if this is the case. By Proposition 3.2, such a tree T exists. Since G is decomposed into at
most n trees of bridges, and we need a linear-time computation for each T , this results in
an O(n2)-time algorithm. J

4 Bounded minimal blocking sets imply bounded bridge-depth

The goal of this section is to prove one direction of Theorem 1.2, showing that if F has
bounded-size minimal blocking sets, then F has bounded bridge-depth. As explained in
Section 1, we prove this via the intermediate structure of necklace minors and show that the
bridge-depth of a graph G can be upper-bounded in terms of the longest necklace contained
in it as a minor.

ICALP 2020



16:10 Bridge-Depth Characterizes Kernelization Complexity of Vertex Cover

This result can be seen as an analog to the fact that the tree-depth of a graph can be
bounded in terms of the length of the longest simple path it contains (as a subgraph or as a
minor, which is equivalent for paths). A classical proof of this fact (see [29]) is to consider a
depth-first search tree of G, bounding the tree-depth of G by the depth of this tree. However,
it does not seem immediate to find a similar bound for bridge-depth.

We therefore follow another approach, inspired by the following alternative proof that
the tree-depth is upper-bounded by the length of the longest path (which gives a worse
bound). Observe that in a connected graph G, any two longest paths intersect at a vertex.
(If they did not, one could combine them to make an even longer path.) Given a connected
graph G whose longest path has t vertices, we can bound its tree-depth by f(t) :=

∑t
i=1 i as

follows. Let P be a longest path in G. Then the longest path in G \ V (P ) has strictly fewer
than t vertices, and by induction the tree-depth of G \ V (P ) is at most f(t− 1). From the
definition of tree-depth, it follows that the tree-depth of G is at most |V (P )| = t larger than
that of G \ V (P ), so the tree-depth of G is at most f(t).

In the case of bridge-depth, where paths are replaced with necklaces contained as minors,
we cannot afford to remove the entire set of vertices of the corresponding model of a longest
necklace, as the size of this set cannot be bounded in terms of the length t of the necklace.
To overcome this problem, we will prove in Lemma 4.6, similarly to the case of paths, that
there cannot be two vertex-disjoint longest necklaces. Then we resort to the Erdős-Pósa
property, which gives us a set of vertices of size f(t) whose removal decreases the maximum
length of a longest necklace. We now formalize these ideas.

I Definition 4.1. For t ∈ N, the necklace of length t, denoted by Nt, is the multigraph
having t+ 1 vertices {vi | i ∈ [t+ 1]} and two parallel edges between vi and vi+1 for i ∈ [t].

I Observation 4.2. A simple graph G contains Nt as a minor if and only if G contains t+ 1
vertex-disjoint sets Si ⊆ V (G) such that each Si is connected and, for i ∈ [t], there are at
least two edges between Si and Si+1.

I Definition 4.3. The necklace-minor length of a graph G, denoted by nm(G), is the largest
length of a necklace contained in G as a minor, or zero if G contains no such minor.

We need to introduce the Erdős-Pósa property for packing and covering minor models.
Let F be a finite collection of simple graphs. An F-model is an H-model for some H ∈ F .
Two F -models M1 and M2 are disjoint if V (M1) ∩ V (M2) = ∅. Let νF (G) be the maximum
cardinality of a packing of pairwise disjoint F-models in G, and let τF (G) be the minimum
size of a subset X ⊆ V (G) such that G \X has no F-model. Clearly, νF (G) ≤ τF (G). We
say that the Erdős-Pósa property holds for F-models if there exists a bounding function
f : N→ N such that, for every graph G, τF (G) ≤ f(νF (G)).

In the case where F = {H} contains a single connected graph H, Robertson and
Seymour [34] proved the following result.

I Theorem 4.4 (Robertson and Seymour [34]). Let H be a connected graph. The Erdős-Pósa
property holds for H-models if and only if H is planar.

It is worth mentioning that a tight bounding function when H is planar has been recently
obtained by van Batenburg et al. [36]. Theorem 4.4 easily implies the following corollary.

I Corollary 4.5. For every t ≥ 1, the Erdős-Pósa property holds for Nt-models.

Proof. For t ≥ 1, let Ft be the set containing all minor-minimal simple graphs that contain
the necklace Nt as a minor. By definition, a simple graph G contains an Nt-model if and
only if it contains an Ft-model. Clearly, all the graphs in Ft are connected and planar, and
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it is easy to see that |Ft| is bounded by a function of t. For each F ∈ Ft, by Theorem 4.4
there is a function fF such that if G does not contain k vertex-disjoint models of F , then
all the F -models of G can be hit by at most fF (k) vertices. This implies that if G does not
contain k models of any graph in Ft, then the union of all hitting sets has size bounded
by

∑
F∈Ft

fF (k), and since Ft is finite this is a valid bounding function for Nt-models. J

We denote by fNt
the bounding function for Nt-models given by Corollary 4.5. In a connected

bridgeless graph, each pair of maximum-length necklace models intersect at a vertex:

I Lemma 4.6. If G is a connected bridgeless simple graph with nm(G) = t, then νNt(G) = 1.

Proof. Suppose for contradiction that G contains two disjoint modelsM1 andM2 of Nt. For
i ∈ [t+1] and ` ∈ [2], let S`

i be the vertex set ofM ` given by Observation 4.2. Note that these
2t+ 2 subsets of vertices of G are pairwise disjoint, and that for any i ∈ [t], there are at least
two edges between S`

i and S`
i+1. Since G is bridgeless and connected, it is 2-edge-connected

and by Menger’s theorem [11, § 3.3] G contains two edge-disjoint paths between any pair of
vertices. Pick two arbitrary vertices x1 ∈M1, x2 ∈M2, and let P 1, P 2 be two edge-disjoint
paths between them. Consider the subpath Q` of P ` between the last vertex of M1 that is
visited, until the first vertex of M2. Let Q` = (v`

1, . . . , v
`
q`

) where v`
1 ∈ M1 and v`

q`
∈ M2.

Let a` such that v`
1 ∈ S1

a`
and b` such that v`

q`
∈ S2

b`
.

Let us first show that if t is odd, then we can use Q1 to find an Nt′-model M ′ for some
t′ > t by “gluing” M1 and M2, leading to a contradiction. Let S = S1

a1
∪ V (Q1) ∪ S2

b1
. If

a1 >
t+1

2 define A = {S1
1 , . . . , S

1
a1−1}, and otherwise define A = {S1

a1+1, . . . , S
1
t+1}. Similarly,

if b1 >
t+1

2 define B = {S2
1 , . . . , S

2
b1−1}, and otherwise define B = {S2

b1+1, . . . , S
2
t+1}. Note

that the sets A,S,B are pairwise disjoint. Since t is odd, it can be easily checked that
M ′ = A ∪ {S} ∪B is an Nt′ -model in G for some t′ > t; see Figure 1(a) for an illustration.

S1
a1

S1
a2

S2
b1

S2
b2

Q1
Q2

M1

M2

(a)

S1
t
2+1

(b)

Q1

Q2

M1

M2

v1q1= v2q2

v2q2−1v1q1−1

Figure 1 (a) Example with t = 3 and a1 = b1 = 2. (b) Example with t = 4.

Let us now consider the case where t is even. Note first that if there exists ` ∈ [2] such that
a` 6= t

2 + 1 or b` 6= t
2 + 1, then we can use Q` to find an Nt′ -model for some t′ > t as in the

previous case. Hence, it only remains to consider the case where a1 = b1 = a2 = b2 = t
2 + 1,

meaning that Q1 and Q2 are two edge-disjoint paths, both between S1
t
2 +1 and S2

t
2 +1. Let

A = {S1
1 , . . . , S

1
t
2
}, B = {S2

1 , . . . , S
2
t
2
}, and S = S1

a1
∪ (V (Q1) \ {v1

q1
}) ∪ (V (Q2) \ {v2

q2
}). We

claim that M ′ = A ∪ {S, S2
t
2 +1} ∪B is an Nt+1-model. Indeed, note in particular there are

two edges between S and S2
t
2 +1 as we cannot have v1

q1−1 = v2
q2−1 and v1

q1
= v2

q2
because Q1

and Q2 are edge-disjoint and G is a simple graph; see Figure 1(b) for an illustration. J

By combining Corollary 4.5 with Lemma 4.6 we easily get the following corollary.

I Corollary 4.7. Let G be a connected bridgeless graph and t = nm(G). Then G contains a
set of vertices X with |X| ≤ fNt(1) such that nm(G \X) < nm(G), where fNt : N→ N is the
bounding function given by Corollary 4.5.
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Proof. By Lemma 4.6, it follows that νNt
(G) = 1, and therefore by Corollary 4.5

τNt(G) ≤ fNt(νNt(G)) = fNt(1).

Thus, there exists a set X ⊆ V (G) with |X| ≤ fNt(1) such that G \ X has no Nt-model,
implying that nm(G \X) < t. J

We are finally in position to prove the following theorem.

I Theorem 4.8. There is a function f : N→ N such that bd(G) ≤ f(nm(G)) for all graphs G.

Proof. We prove the statement by induction on nm(G), for the function f defined by f(t) :=
1 +

∑t
i=1 fNi

(1). If nm(G) = 0, then G is a forest, and by definition of bridge-depth we get
bd(G) = 1 = f(0). Suppose now that nm(G) = t with t > 0.

Consider the case that G is connected. Then Gcb is also connected and has no bridge,
and thus we can apply Corollary 4.7 and get a set X ⊆ V (Gcb) with |X| ≤ fNt(1) such
that nm(G′) < t, where G′ = Gcb \X. By Item 5 of Proposition 3.2, we get that bd(G) =
bd(Gcb) ≤ |X|+ bd(G′). Let G′1, . . . , G′` be the connected components of G′. As nm(G′) < t,
we get that nm(G′i) < t for every i ∈ [`]. Then, by induction hypothesis it follows that, for
every i ∈ [`] , bd(G′i) ≤ f(t − 1) = 1 +

∑t−1
i=1 fNi

(1). Thus, as bd(G′) = maxi∈[`] bd(G′i) ≤
1 +

∑t−1
i=1 fNi

(1), we get that

bd(G) ≤ |X|+ bd(G′) ≤ fNt(1) + 1 +
t−1∑
i=1

fNi(1) = 1 +
t∑

i=1
fNi(1) = f(nm(G)).

Finally, if G is disconnected, let G1, . . . , G` be its connected components, and note that
bd(G) = maxi∈[`] bd(Gi). Since for every i ∈ [`] it holds that nm(Gi) ≤ nm(G), and since
the function f is non-decreasing, by applying the above case to each connected component
of G we get that

bd(G) = max
i∈[`]

bd(Gi) ≤ max
i∈[`]

f(nm(Gi)) ≤ max
i∈[`]

f(nm(G)) = f(nm(G)). J

Now that we established a relation between bridge-depth and necklace minors, our next
step is to relate necklace minors to blocking sets. For this purpose, we use the known
triangle-path gadget.

I Definition 4.9. A triangle-path of length t is the graph consisting of t vertex-disjoint
triangles, with vertex sets {{ai, bi, ci} | i ∈ [t]}, together with the t− 1 edges {{bi, ai+1} | i ∈
[t − 1]}. The triangle-path-minor length of a graph G, denoted by tpm(G), is the largest
length of a triangle-path contained in G as a minor, or zero if no such minor exists.

A slight variation of this gadget was used by Fomin and Strømme [17, Def. 6]. We observe
the following (cf. [17, Obs. 3–5]).

I Observation 4.10. Let G be a triangle-path of length t ≥ 2. Then mbs(G) ≥ t + 2, as
{a1, c1} ∪ {bt, ct} ∪ {ci | i ∈ [2, t− 1]} is a minimal blocking set.

I Lemma 4.11. For any graph G, tpm(G) ≥ b nm(G)+1
2 c.

Proof. Let t = nm(G), and let {Si | i ∈ [t+ 1]} be an Nt-model in G. Let i ∈ [b t+1
2 c] and

let e1 = {u1, v1} and e2 = {u2, v2} be the two edges between S2i−1 and S2i, with u` ∈ S2i−1
and v` ∈ S2i. If u1 6= u2 then there is a partition A1, A2 of S2i−1 such that ui ∈ Ai and Ai

is connected for i ∈ [2], and we define Li = {A1, A2}, Ri = {S2i}. Otherwise, if u1 = u2,
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then necessarily v1 6= v2, and we define symmetrically Li = {S2i−1} and Ri = {A1, A2}.
In both cases we get that Li ∪ Ri is a model of a triangle, and moreover there is an edge
between a vertex in Ri and a vertex in Li+1 for every i ∈ [b t+1

2 c − 1]. This implies that⋃
i∈[b t+1

2 c]
(Li ∪Ri) is a model of a triangle-path of length b t+1

2 c in G. J

I Corollary 4.12. There is a function g : N → N such that bd(G) ≤ g(tpm(G)) for all
graphs G.

Proof. By Lemma 4.11, we have that tpm(G) ≥ nm(G)/2. By letting g(t) := f(2t), where f
is the function given by Theorem 4.8, we get the desired result. J

I Corollary 4.13. Let F be a minor-closed family of graphs. If F has unbounded bridge-depth
then it contains the family F tp of all triangle-paths.

Using this corollary, we can prove one direction of Theorem 1.2.

I Theorem 4.14. Let F be a minor-closed family of graphs of unbounded bridge-depth. Then
there are graphs in F that have arbitrarily large minimal blocking sets.

Proof. By Corollary 4.13, F contains all triangle-paths. Since a triangle-path of length t
contains a minimal blocking set of size t+ 2 by Observation 4.10, the theorem follows. J

Theorem 4.14 is phrased for graph families, rather than individual graphs. There is no
function h such that bd(G) ≤ h(mbs(G)) for all G: a bipartite grid graph can have arbitrarily
large tree-width and therefore bridge-depth, but its minimal blocking sets have size at most
two (cf. Lemma 5.2).

5 Bounded bridge-depth implies bounded-size blocking sets

In this section we prove the other direction of Theorem 1.2: minimal blocking sets in a
graph G have size at most 2bd(G). We need the following consequence of Kőnig’s theorem.

I Lemma 5.1. Let G be a bipartite graph and let M be a maximum matching in G. Every
maximum independent set of G contains all vertices that are not saturated by M , and exactly
one endpoint of each edge in M .

Proof. Consider a maximum independent set S in G. Then S := V (G) \ S is a minimum
vertex cover of G. By Kőnig’s theorem (cf. [11, Thm. 2.1.1]) we have |S| = |M |. Since S is a
vertex cover it contains at least one endpoint of each edge of M ; since |S| = |M | it contains
exactly one endpoint of each edge of M , and no other vertices of G. So the complement S
contains all vertices that are not saturated by M , and exactly one endpoint of each edge
in M . J

The next lemma shows that minimal blocking sets in a bipartite graph have at most two
vertices. This was known before, see for example [18, Thm. 14]. Our self-contained proof
highlights an additional property of such minimal blocking sets: the two vertices of minimal
blocking sets of size two belong to opposite partite sets. This will be crucial later on.

I Lemma 5.2. Let G be a bipartite graph with partite sets A and B. If Y ⊆ V (G) is a
blocking set in G, then there is a blocking set Y ′ ⊆ Y in G such that one of the following
holds:
|Y ′| = 1, or
Y ′ = {a, b} for some a ∈ A and b ∈ B.
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Proof. Let M be a maximum matching in G, let V (M) be the saturated vertices, and
let U := V (G) \ V (M) be the unsaturated vertices. Let RA∩U be the vertices that can be
reached by an M -alternating path from A∩U (which necessarily starts with a non-matching
edge). Let RB∩Y be the vertices that can be reached by an M -alternating path that starts
with a matching edge from a vertex of B ∩ Y . Note that both types of alternating paths
move from A to B over non-matching edges, and move from B to A over matching edges.

We first deal with some cases in which we easily obtain a blocking set Y ′ as desired.

Case 1: A ∩ Y ∩ RA∩U 6= ∅. Let a ∈ A∩Y ∩RA∩U . Then a ∈ A can be reached by anM -
alternating path P that starts in an unsaturated vertex in the same partite set, implying
that P has even length and ends with a matching edge into a. Hence M ′ := M ⊕ E(P ),
where ⊕ denotes the symmetric difference, is a new maximum matching, and it does not
saturate a ∈ A ∩ Y . Lemma 5.1 applied to M ′ implies that all maximum independent
sets of G contain a, showing that Y ′ := {a} is a blocking set of size one.

Case 2: B ∩ U ∩ RB∩Y 6= ∅. By definition, some u ∈ B ∩ U can be reached by an M -
alternating path P that starts in some vertex b ∈ B ∩ Y that belongs to the same partite
set. Similarly as in the previous case, M ′ := M ⊕ E(P ) is a new maximum matching
that does not saturate b, so by Lemma 5.1 applied to M ′ we conclude that Y ′ := {b} is a
blocking set of size one.

Case 3: A ∩ Y ∩ RB∩Y 6= ∅. By definition, some a ∈ A ∩ Y is reachable by an M -
alternating path P from some b ∈ B ∩ Y , and P starts with a matching edge. Since
it ends in the other partite set, it ends with a matching edge as well; hence both a

and b are saturated. We claim that Y ′ := {a, b} is a blocking set in G, as desired.
Let a = a1, b1, . . . , ak, bk = b be the vertices on P , so that {ai, bi} ∈ M for all i ∈ [k]
and {bi, ai+1} ∈ E(G) \M for i ∈ [k − 1]. By Lemma 5.1, a maximum independent set
in G contains one endpoint of each of the edges {ai, bi} ∈M . A maximum independent
set avoiding a1 therefore has to contain b1, preventing it from containing a2, forcing it
to contain b2, and so on. Hence a maximum independent set avoiding a1 contains bk,
proving that Y ′ := {a, b} = {a1, bk} is a blocking set in G.

Case 4: B ∩ U ∩ RA∩U 6= ∅. Then some unsaturated vertex of A can reach an unsaturated
vertex of B by an M -alternating path P . But then M is not a maximum matching
since M ⊕ E(P ) is larger; a contradiction. Hence this case cannot occur.

Assume now that none of the cases above hold. We will conclude the proof of the lemma
by deriving a contradiction. Let R := RA∩U ∪RB∩Y . The following will be useful.

B Claim 5.3. If a ∈ A ∩R and {a, b} ∈ E(G), then b ∈ B ∩R.

Proof. By definition, a ∈ A ∩R implies a is reachable by some M -alternating path P that
moves to A over matching edges and moves to B over non-matching edges, such that P
starts in a vertex v ∈ (A ∪U) ∪ (B ∩ Y ). But then b is also reachable by such an alternating
path from v: if {a, b} ∈M then, since P ends at a, edge {a, b} must be the last edge of P , so
a prefix of P is an M -alternating path reaching b; if {a, b} /∈M then appending {a, b} to P
yields such an M -alternating path. Hence b ∈ R, and b ∈ B follows since G is bipartite. C

Now consider the following set: S := (A ∩R) ∪ (B \R).
We will prove that S is a maximum independent set of G disjoint from Y , contradicting

the assumption that Y is a blocking set. To see that S is indeed an independent set, consider
any vertex from A ∩ S, which belongs to A ∩ R. By Claim 5.3 all neighbors of a belong
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to B ∩R, and are therefore not contained in S. Hence S is indeed an independent set. To see
that it is maximum, by Lemma 5.1 it suffices to argue it contains all of U and one endpoint
of each edge in M .

To see that S contains all vertices of A ∩ U , note that all such vertices are trivially
in RA∩U and therefore in R, implying their presence in A ∩ R and therefore in S. To see
that S contains all vertices of B ∩ U , it suffices to show that B ∩ U ∩R = ∅, which follows
from the fact that neither Case 2 nor Case 4 is applicable. Hence S contains all vertices of U .

To see that S contains an endpoint of each edge of M , let {a, b} ∈ M be arbitrary
with a ∈ A and b ∈ B. If b /∈ R then clearly b ∈ S, as desired. If b ∈ R, then this is witnessed
by an alternating path P that reaches b and ends with a non-matching edge. Extending P
with the edge {a, b} ∈ M then shows that a ∈ R, so that a ∈ A ∩ R is an endpoint of the
edge contained in S.

Hence S is a maximum independent set in G. Since Case 1 and Case 3 do not apply,
it follows that A ∩R ∩ Y = ∅, so that S ∩ A contains no vertex from Y . Since all vertices
of B ∩ Y are trivially in RB∩Y and therefore in R, it follows that B \R contains no vertex
from Y . Hence S is a maximum independent set in G disjoint from Y , contradicting the
assumption that Y is a blocking set. J

We will use Lemma 5.2 to power the induction step in the proof of the next theorem, which
gives the desired upper-bound on the size of minimal blocking sets in terms of bridge-depth.
The main idea in the induction step is as follows. For a connected graph G, we consider a
tree of bridges T for which bd(G \ V (T )) < bd(G). We can summarize the relevant ways in
which a maximum independent set in G can be composed out of maximum independent sets
for the connected components of G \ E(T ), into a weighted tree T ′ that is obtained from T

by adding a pendant leaf to each vertex. In turn, maximum-weight independent sets in T ′
correspond to maximum independent sets a bipartite graph obtained from T ′ by replacing
each vertex by a set of false twins. Applying Lemma 5.2 to this bipartite graph points to two
vertices that form a blocking set. We can translate this back into two components of G\E(T )
that are sufficient for constructing a blocking set in G, and apply induction using the fact
that bd(G \ V (T )) < bd(G).

I Theorem 5.4 (?). Let G be a graph and YG ⊆ V (G) a blocking set in G. There is a
blocking set Y ′G ⊆ YG in G of size at most 2bd(G).

Note that Theorem 5.4 and Theorem 4.14 together prove Theorem 1.2. We finish the
section by showing that the upper-bound of 2bd(G) on the size of minimal blocking sets
is tight.

I Theorem 5.5. For every c ∈ N, there is a graph G with bd(G) ≤ c that contains a minimal
blocking set of size 2c.

Proof. Recall the notion of triangle-path from Definition 4.9. For t ≥ 2, let a truncated
triangle-path of length t be the graph Ut obtained from a triangle-path of length t by
removing vertices a1 and bt; see Figure 2. Analogously to Observation 4.10, we show
that Yt := {ci | i ∈ [t]} is a minimal blocking set in Ut. Since Yt is an independent set of
size t, while (the remainders of) the triangles in Ut partition the vertices of Ut into t cliques, it
follows that α(Ut) = t. The set Yt is a blocking set, since Ut \Yt is a path on 2(t− 1) vertices,
whose independence number is only t − 1. Finally, it is easy to see that for any y ∈ Yt,
there is a size-t independent set in Ut \ (Yt \ y) that consists of the vertex y and, for every
(remainder of a) triangle in Ut, the vertex closest to y.
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a2 b2 a3 b3 a4 b4 a5 b5

c6c5c4c3c2c1

b1 a6 b6 a7 b7 a8

c7 c8

Figure 2 Truncated triangle path U8 of length 8, illustrating Theorem 5.5. Removing the fat
middle bridge and its incident vertices, leaves two connected components isomorphic to U4.

Hence Ut has a minimal blocking set of size t, for all t ≥ 2. To prove the theorem,
it therefore suffices to show that bd(U2c) ≤ c for all c ∈ N. We prove this by induction
on c. For c = 1, note that the graph U2 is just the four-vertex path. Hence it is a forest,
implying bd(U2) = 1 by Proposition 3.2. For c > 1, consider the graph U2c . By construction,
the middle edge e = {b2c−1 , a2c−1+1} is a bridge in U2c . Let T be the tree in U2c consisting
of the single bridge e. Note that removing V (T ) splits U2c evenly, into two connected
components that are both isomorphic to U2c−1 . By induction, bd(U2c−1) ≤ c − 1. Then
Proposition 3.2 shows that bd(U2c) ≤ 1 + bd(Ut \ V (T )) = 1 + (c− 1) = c. J

6 Kernelization for modulators to bounded bridge-depth

To establish the positive direction of Theorem 1.1, we develop a polynomial kernel for
Vertex Cover parameterized by the size of a modulator X whose removal leaves a graph
of constant bridge-depth; an approximately optimal such set X can be computed using
Proposition 3.5. As the kernelization is technical and consists of many different reduction
rules, with a nontrivial size analysis, the material is deferred to the full version [4]. In
this limited space, we present the high-level idea behind the kernelization and the role of
bridge-depth.

Consider an instance (G, k) of Vertex Cover with a modulator X such that bd(G\X) ∈
O(1). As explained in the introduction, using the fact that minimal blocking sets for the
components C of G \ X have bounded size, the number of such components can easily
be bounded by |X|O(1). To bound the size of individual components, the definition of
bridge-depth ensures that in each connected component C of G \ X there is a tree of
bridges T ⊆ E(C) (called a lowering tree) such that removing the vertex set V (T ) from C

decreases the bridge-depth of C. By designing new problem-specific reduction rules, we
shrink the tree of bridges to size polynomial in the parameter. This is where the main
technical work of the kernelization step lies. It properly subsumes the earlier kernelization for
the parameterization by distance to a forest, which is imported as a black box in all previous
works [5, 17–19, 27]. Having bounded the number of components of G \X, together with
the size of a lowering tree of bridges in each component, we now proceed as follows: in each
component C of G \X we move the vertices from a lowering tree of bridges into the set X.
This blows up |X| by a polynomial factor, but strictly decreases the bridge-depth of the
graph G \X. We then recursively kernelize the resulting instance. When the bridge-depth
of G \X reaches zero, the graph G \X is empty and the kernelization is completed. Full
details can be found in the full version [4].

The negative direction of Theorem 1.1 is much easier to establish. Using the fact that a
minor-closed family F of unbounded bridge-depth contains all triangle paths, a kernelization
lower bound for modulators to such F follows easily using known gadgets.
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7 Conclusion

In this paper we introduced the graph parameter bridge-depth and used it to characterize
the minor-closed graph classes F for which Vertex Cover parameterized by F -modulator
has a polynomial kernel. It would be interesting to see whether the characterization can be
extended to subgraph-closed or even hereditary graph classes. If a characterization exists
of the hereditary graph classes whose modulators lead to a polynomial kernel, it will likely
not be as clean as Theorem 1.1: it will have to deal with the fact that bipartite graphs can
be arbitrarily complex in terms of width parameters, while bipartite modulators allow for a
polynomial kernel. Hence such a characterization has to capture parity conditions of F .

A natural attempt to generalize our approach to deal with bipartite graphs is to consider
the following parameter, which we call bipartite-contraction-depth: we mimic the definition
of bridge-depth (cf. Definition 3.1), except that we redefine the graph Gcb to be the graph
obtained from G by simultaneously contracting all edges that do not lie on an odd cycle.
Note that bipartite-contraction-depth generalizes bridge-depth, in the sense that bridges do
not lie on an odd cycle, and that the bipartite-contraction-depth of a graph with an odd
cycle transversal of size k is at most k+ 1. Having defined this parameter, we would need, in
order to obtain a statement similar to Theorem 4.14, that large bipartite-contraction-depth
implies the existence of structures that allow to obtain kernel lower bounds, similarly to the
fact that large bridge-depth implies the existence of large triangle-paths (cf. Corollary 4.13).
The appropriate structure here seems to be an odd-cycle-path of length t, defined as a set
of t vertex-disjoint odd cycles C1, . . . , Ct, and a set of t − 1 vertex-disjoint paths (of any
length) connecting Ci to Ci+1 for i ∈ [t− 1], in such a way that for every i ∈ {2, . . . , t− 1},
the two attachment vertices in Ci are distinct. Now the expected property would be that
large bipartite-contraction-depth forces long odd-cycle-paths. Unfortunately, this is not true.
Indeed, consider the Escher wall of size h depicted in [33, Fig. 3]. It is proved in [33] that
this graph does not contain two vertex-disjoint odd cycles, but a smallest hitting set for odd
cycles has size h. Since there are no two vertex-disjoint cycles, a longest odd-cycle-path has
length one. On the other hand, it can be easily verified that an Escher wall of size h has
bipartite-contraction-depth Ω(h). Informally, this can be seen by noting that, initially, all
edges lie on an odd cycle, hence a vertex removal is required, and that each such removal
cascades in a constant number of contractions until all edges lie again on an odd cycle. Since
a smallest hitting set for odd cycles of an Escher wall of size h has size h, the claimed bound
follows. Therefore, summarizing this discussion, if one aims at a result similar to Theorem 1.1
that also applies to families F containing bipartite graphs, it seems that significant new ideas
are required.

Another open research direction consists of a further algorithmic exploration of the
merits of bridge-depth. We expect that several polynomial-space fixed-parameter tractable
algorithms that work for graphs of bounded tree-depth [7, 32] can be extended to work with
bridge-depth instead. Which other ways to enrich the recursive definition of tree-depth lead
to novel algorithmic insights? As for kernelization purposes, it is plausible that bridge-depth
also characterizes the existence of polynomial kernels for other problems other than Vertex
Cover, parameterized by the vertex-deletion distance of the input graph to a minor-closed
graph class.
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Abstract
While 3-SAT is NP-hard, 2-SAT is solvable in polynomial time. Austrin, Guruswami, and Håstad
[FOCS’14/SICOMP’17] proved a result known as “(2 + ε)-SAT is NP-hard”. They showed that the
problem of distinguishing k-CNF formulas that are g-satisfiable (i.e. some assignment satisfies at
least g literals in every clause) from those that are not even 1-satisfiable is NP-hard if g

k
< 1

2 and is
in P otherwise. We study a generalisation of SAT on arbitrary finite domains, with clauses that are
disjunctions of unary constraints, and establish analogous behaviour. Thus we give a dichotomy for
a natural fragment of promise constraint satisfaction problems (PCSPs) on arbitrary finite domains.
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1 Introduction

It is a classic result that while 3-SAT is NP-hard [12, 22], 2-SAT can be solved in polynomial-
time [21]. Austrin, Guruswami, and Håstad [2] considered the promise problem (1, g, k)-SAT
(for integers 1 ≤ g ≤ k): given a k-CNF formula with the promise that there is an assignment
that satisfies at least g literals in each clause, find an assignment that satisfies at least one
literal in each clause. They showed that the problem is NP-hard if gk <

1
2 and in P otherwise.

Viewing k-SAT as (1, 1, k)-SAT, this shows that, in a natural sense, the transition from
tractability to hardness occurs just after 2 and not just before 3.
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17:2 The Complexity of Promise SAT on Non-Boolean Domains

The set-satisfiability (SetSAT) problem generalises the Boolean satisfiability problem
to larger domains and we prove that it exhibits an analogous hardness transition. As in
(a, g, k)-SAT, for integer constants 1 ≤ a ≤ g ≤ k and 1 ≤ s < d, an instance of the
(a, g, k)-SetSAT problem is a conjunction of clauses, where each clause is a disjunction of k
literals. However, variables x1, . . . , xn can take values in a larger domain [d] = {1, . . . , d},
while literals take the form “xi ∈ S”, where S is any subset of the domain [d] of size s.
As in the Boolean case, an assignment σ : {x1, . . . , xn} → [d] is g-satisfying if it satisfies at
least g literals in every clause. In (a, g, k)-SetSAT with set size s and domain size d, given
an instance promised to be g-satisfiable, we are to find an a-satisfying assignment. When
s = 1 and d = 2 we recover Boolean promise SAT, whereas when a = g = 1 we recover the
non-promise version of SetSAT.

The most natural case of SetSAT is when we allow all nontrivial unary constraints (sets)
as literals, i.e., the case s = d− 1. (While we defined sets defining literals to have size exactly
s, one can simulate sets of size at most s by replacing them with all possible supersets of
size s; see the proof of [9, Proposition A.5]). More generally one could consider the problem
restricted to any family of literals. Our work deals with the “folded” case: if a set S is
available as a literal, then for all permutations of the domain π, π(S) is also available as
a literal. In this case only the cardinality of S matters, and in fact only the maximum
available cardinality matters, so all such problems are equivalent to (a, g, k)-SetSAT, for
some constants a, g, k, s, d.

1.1 Related work
Our main motivation to study SetSAT as a promise problem is the fact that it constitutes
a natural fragment of so-called promise constraint satisfaction problems (PCSPs), which
are problems defined by homomorphisms between relational structures (see Section 2 for
more details). PCSPs were studied as early as in the classic work of Garey and Johnson [16]
on approximate graph colouring, but a systematic study originated in the paper of Austrin
et al. [2]. In a series of papers [5, 6, 7], Brakensiek and Guruswami linked PCSPs to the
universal-algebraic methods developed for the study of non-uniform CSPs [4]. In particular,
the notion of (weak) polymorphisms, formulated in [2], allowed some ideas developed for
CSPs to be used in the context of PCSPs. The algebraic theory of PCSPs was then lifted to
an abstract level by Barto, Bulín, Krokhin, and Opršal in [10, 3]. Consequently, this theory
was used by Ficak, Kozik, Olšák, and Stankiewicz to obtain a dichotomy for symmetric
Boolean PCSPs [15], thus improving on an earlier result from [6], which gave a dichotomy
for symmetric Boolean PCSPs with folding. Further resent results on PCSPs include the
work of Krokhin and Opršal [20], Brakensiek and Guruswami [8], and Austrin, Bhangale,
and Potukuchi [1].

Variants of the Boolean satisfiability problem over larger domains have been defined using
CNFs by Gil, Hermann, Salzer, and Zanuttini [17] and DNFs by Chen and Grohe [11] but,
as far as we are aware, have not been studied as promise problems before.

1.2 Results
We completely resolve the complexity of (a, g, k)-SetSAT. As our main result, we show that
the complexity of (1, g, k)-SetSAT depends only on the ratio g

k .

I Theorem 1. (1, g, k)-SetSAT with set size s and domain size s+1 is solvable in polynomial
time if g

k ≥
s
s+1 and is NP-hard otherwise.
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Our result generalises the case of (1, g, k)-SAT, where s = 1 and the hardness threshold
is 1

2 . The general case, when a 6= 1 or d > s + 1, follows by simple reductions (cf. [9,
Corollary A.4]). The positive side of the theorem is proved by a simple randomised algorithm
based on classical work of Papadimitriou [23], just as in the Boolean case. The main difficulty
is in proving NP-hardness when the ratio g

k is close to, but below s
s+1 .

Following [2] and the more abstract algebraic framework of [3], the hardness proof relies
on understanding polymorphisms, i.e., high-arity functions f : [d]n → [d] which describe the
symmetries of our computational problem. In the Boolean case, the proof of [2] relies on
showing that every polymorphism depends on only a few variables (in other words, is a
junta), and that this condition suffices for a reduction from the gap label cover problem.
In our case, this condition does not hold, and neither do the various generalisations of it
used in later work on PCSPs [15, 3, 20]. In fact, we show in [9, Section 6] that SetSAT has
significantly richer, more robust polymorphisms, which makes the application of many such
conditions impossible. Our main technical contribution is a new condition that guarantees
an NP-hardness reduction from a multilayered variant of the gap label cover problem.

As in previous work, the combinatorial core of our NP-hardness results for SetSAT relies
on identifying, in every polymorphism f : [d]n → [d], a small set of distinguished coordinates.
The rough idea is that a polymorphism encodes a 1-in-n choice analogously to the long code,
and the reduction relies on being able to decode f with small ambiguity.

The set of distinguished coordinates could be, in the simplest case, those on which f

depends (called essential coordinates) and, as shown in [2], a small set of essential coordinates
is sufficient for hardness of (1, g, k)-SAT if g

k <
1
2 . More generally, the distinguished set

S could be such that some partial assignment to S makes f constant (as a function of its
remaining coordinates), or restricts the range of f (called fixing [2, 15] and avoiding [3] sets,
respectively). As shown in [9, Section 6], the polymorphisms of SetSAT on non-Boolean
domains do not have small sets of coordinates that are essential, fixing, or avoiding. Instead,
in this paper we introduce the notion of a smug set of f . We say that a set S ⊆ [n] is smug
if for some input (a1, . . . , an) to f , the coordinates i whose values ai agree with the output
f(a1, . . . , an) are exactly those in S. We show that every polymorphism of SetSAT has a
smug set of constant size (independent of n) and cannot have many disjoint smug sets.

In previous work, it was crucial that essential coordinates respect minors. We say that (an
m-ary function) g is a minor of (an n-ary function) f if g(x1, . . . , xm) ≈ f(xπ(1), . . . , xπ(n))
for some π : [n]→ [m] (that is, g is obtained from f by identifying or permuting coordinates of
f , or introducing inessential coordinates). In that case, if S contains all essential coordinates
of f , then π(S) contains all essential coordinates of g. This does not hold for smug sets;
instead, if S is a smug set of g, then its pre-image π−1(S) is a smug set of f . The pre-image
may however be much larger. Still, these properties of smug sets are enough to guarantee
that, in any sufficiently long chain of minors, if one chooses a random coordinate in a small
smug set from each function in the chain, then for some two functions in the chain the choices
will agree, respecting the minor relation between them with constant probability. We show
that this condition is sufficient to obtain NP-hardness from a layered gap label cover problem.
See Section 4 for details.

We note that several other properties of label cover variants were used before in the
context of polymorphisms. Guruswami and Sandeep [18] use “smoothness” of NP-hard
label cover instances (introduced by Khot [19]) so that a minor relation π needs to be
respected only if it is injective on a small set S. This allows them to use sets S which are
weakly fixing, i.e. the partial assignment to S which makes f constant does not necessarily
have to assign the same value to all coordinates in S. Layered label cover was introduced

ICALP 2020



17:4 The Complexity of Promise SAT on Non-Boolean Domains

by Dinur, Guruswami, Khot, and Regev [13] to tighten the approximation hardness for
hypergraph vertex cover. In the proof of hardness of hypergraph colouring by Dinur, Regev,
and Smyth [14], as reinterpreted in [3], layered label cover is used to partition polymorphisms
into an arbitrary constant number L of parts, so that only minors within one part need
to be respected. This implies that in any chain of minors with L+ 1 functions, some two
functions will be in the same part and hence the minor between them will be respected; our
approach is hence similar, though apparently more general, in this aspect. Another feature
used in [14, 3] is that the bound on the size of a set of special coordinates or on the number
of disjoint such sets may be any subpolynomial function in n, not necessarily a constant.
These different features of NP-hard label cover instances can be combined; however, this is
not necessary for our result.

2 Preliminaries

Let [n] = {1, 2, . . . , n}. For a set A, we call R ⊆ Ak a relation of arity ar(R) = k and
f : Ak → B a function of arity ar(f) = k.

We take the domain of the variables in SetSAT to be [d] and for a fixed s < d we identify
each literal with the indicator function of some S ⊆ [d], |S| = s: S(x) = 1[x ∈ S]. For a
SetSAT instance (or formula) with n variables x1, . . . , xn, an assignment to the variables is
a function σ : {x1, . . . , xn} → [d]. An assignment σ is called a g-satisfying assignment for
an instance φ if σ satisfies at least g literals in every clause of φ. A 1-satisfying assignment
is usually simply called a satisfying assignment. A formula is called g-satisfiable if there
exists a g-satisfying assignment to its variables, and satisfiable if there exists a 1-satisfying
assignment.

The SAT problem corresponds to the SetSAT problem with d = 2 and s = 1, so SetSAT
does indeed generalise SAT. Note that every SetSAT instance is trivially unsatisfiable when
s = 0 and satisfiable when s = d, so we exclude these cases in our analysis. We now give the
formal definition of (a, g, k)-SetSAT.

I Definition 2. Let 1 ≤ s < d and 1 ≤ a ≤ g ≤ k. The (a, g, k)-SetSAT problem is the
following promise problem. In the decision version, given a SetSAT instance where each clause
has k literals, accept the instance if it is g-satisfiable and reject it if it is not a-satisfiable. In
the search version, given a g-satisfiable SetSAT instance, find an a-satisfying assignment.

We will prove hardness only for the decision version of (a, g, k)-SetSAT and tractability
only for the search version. This suffices since the decision version of (a, g, k)-SetSAT is
polynomial-time reducible to the corresponding search problem. This is discussed in [9,
Appendix A], where it is also shown how to obtain simple hardness results for SetSAT. In
particular, [9, Propositions A.1 and A.3] show that we can focus on the case of (1, g, k)-SetSAT
with d = s+ 1.

Promise CSPs

We describe how the SetSAT problem fits into the general framework of promise CSPs
(PCSPs). For a more in-depth algebraic study of PCSPs, we refer the reader to [3].

A relational structure A is a tuple (A;R1, . . . , Rm) where each Ri is a relation on A.
We say that two relational structures are similar if their relations have the same sequence
of arities. A homomorphism between similar relational structures A = (A;RA

1 , . . . , , R
A
m)

and B = (B;RB
1 , . . . , R

B
m) is a function h : A→ B such that (a1, . . . , aar(RA

i
)) ∈ RA

i implies
(h(a1), . . . , h(aar(RA

i
))) ∈ RB

i for all i. We denote this by A→ B.
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I Definition 3. Let (A,B) be a pair of similar relational structures such that there is a
homomorphism A→ B. The pair (A,B) is called the template of the promise constraint
satisfaction problem PCSP(A,B). The decision version of PCSP(A,B) is as follows:
given as input a relational structure C similar to A and B, decide whether C admits a
homomorphism to A, or does not even admit a homomorphism to B. The promise is that it
is never the case that C→ B but C 6→ A. The search problem asks to find a homomorphism
C→ B, given that there exists a homomorphism C→ A.

Since (a, g, k)-SetSAT is a PCSP where all relations have fixed arity k, it is possible to
transform SetSAT instances from their CNF representation into the PCSP representation
of Definition 3. Let f be a bijection between [dk] and the set of clauses containing k

literals (ignoring the variables they contain). We can represent each SetSAT instance Ψ as
a relational structure C = (C;RC

1 , . . . , R
C
dk ), where C = {x1, . . . , xn} is the set of variables

appearing in Ψ and RC
i is a k-ary relation corresponding to the clause f(i). For each clause

(S1(x1) ∨ . . . ∨ Sk(xk)) of type f(i) in Ψ, we add the tuple (x1, . . . , xk) to RC
i , so that each

RC
i collects the tuples of variables appearing in clauses of type f(i).
Now define RA

i (respectively RB
i ) to be the k-ary relation over [d] containing (a1, . . . , ak)

if and only if (a1, . . . , ak) g-satisfies (respectively a-satisfies) the clause f(i) when the
variable of the j-th literal of f(i) is set to aj , for 1 ≤ j ≤ k. Let A = ([d], RA

1 , . . . , R
A
dk )

and B = ([d], RB
1 , . . . , R

B
dk ). Then (a, g, k)-SetSAT is precisely PCSP(A,B): the identity

function is a homomorphism from A to B, a homomorphism C→ A represents a g-satisfying
assignment to Ψ, and a homomorphism C→ B represents an a-satisfying assignment to Ψ.

Polymorphisms

The following concept from the algebraic study of PCSPs is central to our hardness result.
Let f : Am → B be a function. We say that f is a polymorphism of the template (A,B)

if, for ā1, . . . , ām ∈ RA
i , we have that f(ā1, . . . , ām) ∈ RB

i ; here f is applied componentwise.
We will denote by Pol(A,B) the set of all polymorphisms of the template (A,B). A simple
example of a polymorphism of every template with A = B is a projection, which is a
function p

(m)
i : Am → B of the form p

(m)
i (x1, . . . , xm) = xi. More generally, for every

template, trivial polymorphisms are given by dictators, which are functions p of the form
p(x1, . . . , xm) = f(xi), where f is a homomorphism from A to B.

In particular, f : [d]m → [d] is a polymorphism of (a, g, k)-SetSAT if for every SetSAT
clause C of width k and for every tuple v̄1, . . . , v̄m ∈ [d]k of g-satisfying assignments to C,
we have that f(v̄1, . . . , v̄m) is an a-satisfying assignment to C.

3 Tractability

How big must one make the fraction of satisfied literals in order for the SetSAT problem to
become tractable? The following proposition shows that s

s+1 is sufficient.

I Proposition 4. For 1 ≤ s < d and g
k ≥

s
s+1 , (1, g, k)-SetSAT is solvable in expected

polynomial time.

Proof. Algorithm 1 finds a satisfying assignment to a g-satisfiable formula in expected
polynomial time. The algorithm and its analysis are based on [2, Proposition 6.1], which in
turn is based on Papadimitriou’s randomised algorithm for 2-SAT [23].
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Algorithm 1 Randomised algorithm for (1, g, k)-SetSAT with g
k
≥ s

s+1 .

1: x← arbitrary assignment
2: while x does not satisfy input formula φ do
3: Arbitrarily pick a falsified clause C
4: Randomly choose from C a literal S(xi)
5: Randomly choose a value for xi so that S(xi) is satisfied

return x

Suppose that φ has a g-satisfying assignment x∗. Let xt be the assignment obtained
in iteration t of the algorithm, and let Dt = dist(xt, x∗), where dist(x, y) is the Hamming
distance between x and y. Since Dt −Dt−1 ∈ {−1, 0, 1} for every t, we have

E(Dt −Dt−1) = P(Dt −Dt−1 = 1)− P(Dt −Dt−1 = −1)

≤ k − g
k
− g

k

1
s
≤ 0 if and only if g

k
≥ s

s+ 1 .

The sequence D0, D1, . . . is a random walk starting between 0 and n with steps either
unbiased or biased toward 0. With constant probability, such a walk hits 0 within n2 steps
and so the probability that the algorithm fails to find a satisfying assignment within crn2

steps is at most 2−r for some constant c. J

I Remark 5. The proof of Proposition 4 can be modified to show that Algorithm 1 also finds
a satisfying assignment when each literal corresponds to a set of size at most s. This makes
sense intuitively, as smaller literals give the algorithm a better chance of setting xi equal to
x∗i in Step 5.

We show that if gk ≥
s
s+1 then (1, g, k)-SetSAT has a specific family of polymorphisms

that leads to a deterministic algorithm based on linear programming.
A function f : Am → B is symmetric if f(a1, . . . , am) = f(aπ(1), . . . , aπ(m)) for all

a1, . . . , am ∈ A and all permutations π on [m].

I Definition 6. A symmetric function f : [d]m → [d] is a plurality if

f(x1, . . . , xm) = argmaxa∈[d]{# of occurrences of a in (x1, . . . , xm)},

with ties broken in such a way that f is symmetric.

We will also use the fact that all polymorphisms of SetSAT are conservative; i.e., they
always return one of their input values, as the following proposition shows.

I Proposition 7. All polymorphisms of (1, g, k)-SetSAT are conservative.

Proof. Let f : [d]m → [d] be such that f(a1, . . . , am) = b and b /∈ {a1, . . . , am}. If S is a literal
not containing b, then the clause (S(x1)∨. . .∨S(xk)) is g-satisfied (even k-satisfied) by setting
all xi equal to any one of the aj . Thus taking the m assignments (x1 = · · · = xk = aj)1≤j≤m
and applying f to each component, we get the assignment x1 = · · · = xk = b which clearly
does not 1-satisfy the clause, and so f cannot be a polymorphism. J

I Proposition 8. Let s ≥ 1. If g
k >

s
s+1 then every plurality function is a polymorphism

of (1, g, k)-SetSAT. If g
k = s

s+1 then every plurality function of arity m 6≡ 0 mod s+ 1 is a
polymorphism of (1, g, k)-SetSAT, and no symmetric function of arity m ≡ 0 mod s+ 1 is a
polymorphism of (1, g, k)-SetSAT.
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Proof. Let f be a plurality function of arity m. Given m g-satisfying assignments to a clause
of width k, we are guaranteed to have at least mg satisfying values among the mk total
values. Therefore there is a coordinate i, 1 ≤ i ≤ k, containing at least

⌈
mg
k

⌉
satisfying

values, that is, at least
⌈
mg
k

⌉
values not equal to the value b forbidden by the i-th literal of

the clause. In order for f to be a polymorphism it suffices that
⌈
mg
k

⌉
> s

s+1m, since then b
will appear fewer than m

s+1 times and will never be returned using the plurality rule. But
g
k >

s
s+1 is equivalent to mg

k > s
s+1m, and the latter implies that

⌈
mg
k

⌉
> s

s+1m, so f is a
polymorphism.

In the case that g
k = s

s+1 , the same argument works so long as mg
k is not an integer, since

by taking the ceiling we obtain a value strictly greater than s
s+1m. Since g

k = s
s+1 , we have

g
km = s

s+1m and this is an integer only if m is a multiple of s+ 1.
To show that there are no symmetric polymorphisms when g

k = s
s+1 and m is a multiple of

s+ 1, note that this equality implies that k is divisible by s+ 1. Let M be the (s+ 1)× (s+ 1)
matrix whose first row is 12 · · · s+ 1 and whose i-th row for 2 ≤ i ≤ s+ 1 is obtained from the
(i− 1)-st row by shifting it cyclically to the left by one coordinate. We stack k

s+1 copies of M
on top of each other and take m

s+1 copies of this stack side-by-side to form the k ×m matrix
M ′. If f is symmetric, it returns the same value b when applied to each row of M ′. Every
column of M ′ satisfies exactly an s

s+1 -fraction of the literals in a clause whose k literals all
forbid b. On the other hand, the assignment produced by applying f to each row of M ′ does
not even 1-satisfy this clause, so f is not a polymorphism. J

Proposition 8 has interesting consequences for solvability of (1, g, k)-SetSAT via linear
programming relaxations. By [3, Theorem 7.9], (1, g, k)-SetSAT is solvable by the basic
linear programming relaxation if gk >

s
s+1 (since there exist symmetric polymorphisms of all

arities) but not solvable by the basic linear programming relaxation if gk = s
s+1 (since there

do not exist symmetric polymorphisms of all arities). By [8, Theorem 3.1], (1, g, k)-SetSAT
is solvable by the combined basic linear programming and affine relaxation if gk ≥

s
s+1 (since

there exist symmetric polymorphisms of infinitely many arities). We note that iterative
rounding of the basic linear relaxation could also be used to get a deterministic algorithm
as in [2].

4 Layered label cover and smug sets

An `-layered label cover instance is a sequence of ` + 1 sets X0, . . . , X` (called layers) of
variables with range [m], for some domain size m ∈ N, and a set of constraints Φ. Each
constraint is a function (often called a projection constraint) from a variable x ∈ Xi to a
variable in a further layer y ∈ Xj , i < j: that is, a function denoted φx→y which is satisfied
by an assignment σ : X0 ∪ · · · ∪X` → [m] if σ(y) = φx→y(σ(x)). A chain is a sequence of
variables xi ∈ Xi for i = 0, . . . , ` such that there are constraints φxi→xj

between them, for
i < j. A chain is weakly satisfied if at least one of these constraints is satisfied.

The basis for our hardness result is the hardness of distinguishing fully satisfiable instances
from those where no constant fraction of chains can be weakly satisfied. This follows by a
simple adaptation of a reduction from the work of Dinur, Guruswami, Khot, and Regev [13],
which we defer to the full version [9, Appendix B].

I Theorem 9. For every ` ∈ N and ε > 0, there is an m ∈ N such that it is NP-hard to
distinguish `-layered label cover instances with domain size m that are fully satisfiable from
those where not even an ε-fraction of all chains is weakly satisfied.
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In order to use Theorem 9 to derive hardness for PCSPs, we use the algebraic approach:
every PCSP is equivalent to a promise problem about satisfying minor conditions with
polymorphisms. We give definitions first, following [3], to where we refer the reader for a
more detailed exposition.

For f : An → B, g : Am → B and π : [n]→ [m], we say that g is the minor of f obtained
from π if

g(x1, . . . , xm) ≈ f(xπ(1), . . . , xπ(n)), (1)

where g ≈ f means that the values of g and f agree on every input in Am. We write f π−→ g

as a shorthand for (1). For π : [n]→ [m], the expression f π−→ g is called a minor identity.
A minion on a pair of sets (A,B) is a non-empty set of functions from An to B (for

n ∈ N) that is closed under taking minors.
A bipartite minor condition is a finite set Σ of minor identities where the sets of function

symbols used on the left- and right-hand sides are disjoint. More precisely, Σ is a pair of
disjoint sets U and V of function symbols of arity n and m, respectively, and a set of minor
identities of the form f

π−→ g, where g ∈ U , f ∈ V and π : [n] → [m]. A bipartite minor
condition Σ is satisfied in a minionM if there is an assignment ξ : U ∪ V →M that assigns
to each function symbol a function from M of the corresponding arity so that for every
identity f π−→ g in Σ, we have ξ(f) π−→ ξ(g) inM. A bipartite minor condition is called trivial
if it is satisfied in every minion, or equivalently, in the minion consisting of all projections
on {0, 1}. Since choosing a projection of arity n is the same as choosing an element of [n],
deciding whether a bipartite minor condition is trivial is the same as standard label cover.

We can now define the promise satisfaction of a minor condition problem. For a minion
M and an integer m, PMCM(m) is the following promise problem: given a bipartite minor
condition Σ that involves only symbols of arity at most m, the answer should be YES if
Σ is trivial and NO if Σ is not satisfiable in M (the promise is that either of those two
cases holds, i.e. an algorithm can behave arbitrarily otherwise). Barto et al. [3] show that
PCSP(A,B) is log-space equivalent to PMCM(m), forM = Pol(A,B) and m a constant
depending on A only.

A final piece of notation before we prove a corollary of Theorem 9. A chain of minors is
a sequence of the form f0

π0,1−−→ f1
π1,2−−→ . . .

π`−1,`−−−−→ f`. We shall then write πi,j : [ar(fi)] →
[ar(fj)] for the composition of πi,i+1, . . . , πj−1,j , for any 0 ≤ i < j ≤ `. Note that fi

πi,j−−→ fj .

I Corollary 10 (of Theorem 9). Let M be a minion. Suppose there are constants k, ` ∈ N
and an assignment of a set of at most k coordinates sel(f) ⊆ [ar(f)] to every f ∈M such that
for every chain of minors f0

π0,1−−→ f1
π1,2−−→ . . .

π`−1,`−−−−→ f`, there are 0 ≤ i < j ≤ ` such that
πi,j(sel(fi)) ∩ sel(fj) 6= ∅. Then PMCM(m) is NP-hard, for m large enough. In particular,
ifM = Pol(A,B), then PCSP(A,B) is NP-hard.

Proof. For `, k as in the assumption, let ε := 1
k and let m be as given by Theorem 9. We

reduce an `-layered label cover instance by replacing each variable x with a symbol fx of arity
m and each constraint φx→y : [m]→ [m] by the minor condition fx

φx→y−−−→ fy. If the original
instance was fully satisfiable, the new instance is trivial (i.e., fully satisfiable by projections).

If the constructed instance is satisfied by functions in the minion M, we define an
assignment to the original instance by selecting, for each variable x, a random coordinate
from sel(fx) ⊆ [m] (uniformly, independently). The assumption guarantees a set of constraints
φx→y such that (1) each chain contains at least one and (2) for each such constraint φx→y, we
have φx→y(sel(fx)) ∩ sel(fy) 6= ∅. The random choice then satisfies each of these constraints,
and hence weakly satisfies each chain, with probability at least 1

k = ε. The expected fraction
of weakly satisfied chains is thus at least ε and a standard maximisation-of-expectation
procedure deterministically finds an assignment which certifies this. J
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The following definition is crucial to our results.

I Definition 11. For a function f : Aar(f) → B we say that a set of coordinates S ⊆ [ar(f)]
is a smug set if there is an input vector v̄ ∈ Aar(f) such that S = {i | vi = f(v̄)}.

We will use the following to prove hardness of (1, g, k)-SetSAT.

I Corollary 12. Let M be a minion. Suppose there are constants k, ` ∈ N such that the
following holds, for every f ∈M:

f has a smug set of at most k coordinates,
f has no family of more than ` (pairwise) disjoint smug sets,
if f π−→ g and S is a smug set of g, then π−1(S) is a smug set of f .

Then PMCM(m) is NP-hard, for m large enough. In particular, if M = Pol(A,B), then
PCSP(A,B) is NP-hard.

Proof. For each f ∈M, we define sel(f) as a smug set of at most k coordinates, arbitrarily
chosen (some such set exists by the first condition). Consider a chain f0

π0,1−−→ f1
π1,2−−→

. . .
π`−1,`−−−−→ f`. Suppose to the contrary that for each 0 ≤ i < j ≤ `, πi,j(sel(fi)) is

disjoint from sel(fj), or equivalently, that sel(fi) is disjoint from π −1
i,j (sel(fj)). This implies

that π −1
0,i (sel(fi)) is disjoint from π −1

0,i (π −1
i,j (sel(fj))) = π −1

0,j (sel(fj)). That is, the sets
π −1

0,i (sel(fi)) for i = 0 . . . ` are pairwise disjoint. By the third condition they are smug sets
of f0. But by the second condition this is impossible. J

We note that in the proof of Corollary 12, the exact definition of “smug” is irrelevant, as
long as it satisfies the above three conditions.

It is easy to check that the definition of “smug” satisfies the third condition for any
functions f π−→ g, not necessarily polymorphisms. Indeed, if an input v̄ ∈ Aar(g) to g gives
a smug set S = {j | vj = g(v̄)}, then the corresponding input ū ∈ Aar(f) to f defined as
ui := vπ(i) satisfies f(ū) = g(v̄) and hence gives a smug set {i | ui = f(ū)} = {i | vπ(i) =
g(v̄)} = {i | π(i) ∈ S} = π−1(S).

The definition of “smug” is particularly well-suited to our problem, because whether f is
a polymorphisms or not depends only on its family of smug sets.

I Lemma 13. Let 1 ≤ s and 1 ≤ g < k. A function f : [s+ 1]m → [s+ 1] is a polymorphism
of (1, g, k)-SetSAT if and only if there is no multiset S1, . . . , Sk of smug sets of f , such that
each coordinate ` ∈ [m] is contained in at most k − g of them.

3 3 3 3 3 1 1 2 1 2
3 3 2 2 1 1 2 2 3 3
3 3 2 2 1 1 1 2 3 3
1 2 1 2 1 2 1 2 3 3
1 2 1 2 1 2 1 2 3 3

k = 5

m

−→ 3
f

−→ 2
−→ 1
−→ 3
−→ 3

ō

clause
x1 6= 3
x2 6= 2
x3 6= 1
x4 6= 3
x5 6= 3

∨
∨
∨
∨

b̄

Figure 1 Illustration of Lemma 13. Smug sets S ⊆ [m] are highlighted in each row.

Proof. A function f : [s+ 1]m → [s+ 1] is not a polymorphism if and only if there is a clause
of the form x1 6= b1 ∨ · · · ∨ xk 6= bk (for some column vector b̄ ∈ [s+ 1]k) and a sequence of
m column vectors v̄1, . . . , v̄m ∈ [s + 1]k each of which g-satisfies the clause, but for which
the vector ō = f(v̄1, . . . , v̄m) (with f applied coordinatewise) does not even 1-satisfy the
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clause. The latter is equivalent to saying that oi = bi for i ∈ [k], that is, applying f to the
i-th row gives f(v1

i , . . . , v
m
i ) = bi. The former is equivalent to saying that for each column

v̄ in v̄1, . . . , v̄m, the condition vi 6= bi holds for at least g indices i ∈ [k] of that column.
The two are hence equivalent to saying that for each column v̄`, ` ∈ [m], the condition
v`i = f(v1

i , . . . , v
m
i ) holds for at most k − g indices i ∈ [k] in that column. In other words,

the k row vectors (v1
i , . . . , v

m
i ) for i ∈ [k] have smug sets such that ` is contained in at most

k − g of these sets, for each coordinate ` ∈ [m]. J

Checking the second condition for polymorphisms of our SetSAT problem is easy.

I Lemma 14. For every polymorphism f of (1, g, k)-SetSAT with domain size s + 1, if
S1, . . . , Sn are disjoint smug sets of f , then n < k

k−g .

Proof. Suppose to the contrary that n ≥ k
k−g . Then we can build a multiset containing each

Si up to k − g times until we have exactly k in total. We thus obtain a multiset of k smug
sets such that every coordinate is contained in at most k − g of them. J

5 Finding small smug sets

It is easy to show NP-hardness when g
k ≤

1
2 (cf. [9, Proposition A.8]). We now show a general

reduction by finding a small smug set for (1, g, k)-SetSAT whenever g
k <

s
s+1 .

Consider a polymorphism f : [s+ 1]m → [s+ 1] of (1, g, k)-SetSAT (with set size s and
domain size s+ 1).

I Lemma 15. There exists a smug set of size at most s−1, or a family of s disjoint minimal
smug sets S1, . . . , Ss.

Proof. Suppose that every smug set has size at least s. We show by induction on t that
there is a family of t disjoint minimal smug sets S1, . . . , St. Suppose we found S1, . . . , St for
some 0 ≤ t < s and we want to find St+1. Let T be a set containing one arbitrary coordinate
from each Si, i = 1 . . . t. Let v̄ ∈ [s+ 1]m be the input vector with values t+ 2 on T , i on
Si \T (for i = 1 . . . t) and t+ 1 on the remaining coordinates R := [m] \ (S1 ∪ · · · ∪St). Since
|T | ≤ t < s, T is not smug, so f(v̄) 6= t+ 2. By minimality, Si \T are not smug for i = 1 . . . t,
so f(v̄) 6= i. Therefore, by conservativity of f (Proposition 7), the only remaining option is
f(v̄) = t+ 1. Thus R is smug and disjoint from Si. Taking St+1 to be a minimal smug set
contained in R proves the induction step. J

Together with Lemma 14, Lemma 15 already establishes (via Corollary 12) NP-hardness
when s ≥ k

k−g = g
k−g + 1 (equivalently, gk ≤

s−1
s ): since there cannot be s disjoint smug sets,

every polymorphism has a smug set of size at most s − 1. The proof in the general case,
when g

k <
s
s+1 , extends this approach by first finding (assuming there are no small smug

sets) disjoint minimal smug sets S1, . . . , Ss, then exploiting the fact that each has a special
coordinate whose removal makes it not smug, and using these coordinates to find further
variants of each Si with new special coordinates.

I Lemma 16. Let gk <
s
s+1 (equivalently, s > g

k−g ). Every polymorphism of (1, g, k)-SetSAT
on s has a smug set of size at most g.

Proof. Consider a polymorphism f : [s + 1]m → [s + 1] of (1, g, k)-SetSAT. We prove by
induction on t that there is a smug set of size at most t− 1, or there is a sequence of smug
sets S1, . . . , St and a set T such that (see Figure 2):
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(i) |T | = t and |T ∩ Si| = 1 for i = 1 . . . t (hence Si ∩ T 6= Si′ ∩ T for i 6= i′);
(ii) Si \ T is not smug for i = 1 . . . t;
(iii) Si ∩ Si′ = ∅ if i 6≡ i′ mod s;
(iv) Si ⊇ Si−s \ T for i > s.

t

m

S1

Ss
Ss+1

S2s

Ss+1

S2s
S2s+1 S2s+1 S2s+1

v̄ = 1 1 T 2 2 T T s s T 1 1 T 2 2 T T s T 1 1 T 2 2

Figure 2 Illustration of smug sets obtained in the proof of Lemma 16. Each row represents one
of the sets in the sequence S1, . . . , St. The set T is formed by coordinates with a T and get values
s+ 1. The vector v̄ is used to find the next row St+1.

By Lemma 15 we can start with t = s (by taking any T containing one coordinate from
each Si). Suppose the above is true for t ≥ s and let us prove the same for t+ 1. If there is a
smug set of size at most t then we are done, so assume that T is not smug. Let v̄ ∈ [s+ 1]m
be the input vector with value s+ 1 on T and different values from {1, . . . , s} on St−i \ T
for i = 0 . . . s− 2 and on the set of remaining coordinates R := [m] \ (St ∪ · · · ∪ St−s+2 ∪ T ).
Then by (ii), R is smug.

Observe that R contains St−s+1 \ T , because St, . . . , St−s+2, T are disjoint from that set
by (iii). We define St+1 to be a minimal subset of R among smug sets containing St−s+1 \ T .
By (ii) St−s+1 \ T itself is not smug, so there exists some coordinate ` in St+1 \ St−s+1. We
choose it arbitrarily and set T ′ := T ∪ {`}.

We claim that the sequence of smug sets S1, . . . , St+1 and the set T ′ satisfy the above
conditions. By minimality St+1 \T ′ is not smug, so it satisfies (ii) and by definition it satisfies
(iv). The set St+1 is disjoint from St, . . . , St−s+2, T , because R was. It is also disjoint from
Si for i 6≡ t+ 1 mod s, because for every such i, Si \ T is contained in one of St, . . . , St−s+2;
this proves (iii). In particular ` is not contained in any of these sets, and since it is not
contained in St−s+1, it is in fact not contained in any Si with i < t+ 1. Hence |T ′| = t and
|T ′ ∩ Si| = |T ∩ Si| = 1 for i < t+ 1. Clearly also |T ′ ∩ St+1| = |{`}| = 1. Therefore, (i) is
satisfied, concluding the inductive proof.

Let us now consider sets as guaranteed above for t = g + 1 (assuming there is no smug
set of size at most g). Let v̄ ∈ [s+ 1]m be the input vector with value i+ 1 on St−i \ T for
i = 0 . . . s−1, and value s+1 on the remaining coordinates R := ([m] \ (St ∪ · · · ∪ St−s+1))∪T .
By (ii) the sets St−i \ T are not smug, so R is smug. We claim that the multiset obtained
from {S1, . . . , St} by adding (k − g − 1) copies of the set R contradicts Lemma 13: that is,
each coordinate in [m] is covered at most k − g times by this multiset.

Consider first the coordinates contained in R. By definition of R, they are disjoint from
St−i \ T for i = 0 . . . s− 1. By (iv), they are also disjoint from all sets Si \ T for i = 0 . . . t,
because every such set is contained in one of the former. Hence if a coordinate in R is also
contained in one of S1, . . . , St, then it is contained in T and therefore in at most one of
S1, . . . , St, by (i). In total, it is thus covered at most (k − g − 1) + 1 = k − g times.

ICALP 2020



17:12 The Complexity of Promise SAT on Non-Boolean Domains

Consider now coordinates outside of R. By (iii), they can be covered only by sets
Si with congruent indices i mod s. Since s > g

k−g , we have s(k − g) > g, so there are
t = g + 1 ≤ s(k − g) distinct indices in total in {1, . . . , t}. Hence at most k − g of them can
be pairwise congruent to each other mod s. Thus coordinates outside of R are also covered
at most k − g times. J

This concludes the proof that smug sets satisfy the first condition of Corollary 12 for
polymorphisms of (1, g, k)-SetSAT with set size s and domain size s+ 1, assuming g

k <
s
s+1 .

Therefore, the problem is NP-hard. The full dichotomy then follows by simple reductions,
see [9, Corollary A.4].
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Abstract
We study how to dynamize the Trapezoidal Search Tree (TST) – a well known randomized point
location structure for planar subdivisions of kinetic line segments.

Our approach naturally extends incremental leaf-level insertions to recursive methods and allows
adaptation for the online setting. The dynamization carries over to the Trapezoidal Search DAG
(TSD), which has linear size and logarithmic point location costs with high probability. On a set S

of non-crossing segments, each TST update performs expected O(log2 |S|) operations and each TSD
update performs expected O(log |S|) operations.

We demonstrate the practicality of our method with an open-source implementation, based on
the Computational Geometry Algorithms Library, and experiments on the update performance.
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1 Introduction

Our results on vertical ray shooting in dynamic planar subdivisions and dynamic order
maintenance originate from the search for a simple and practical data structure, with
guarantees, that facilitate building the intersection graph of thin geometric objects, which is
a natural precursor in meshing fracture networks [14]. This note studies how to structure 2D
kinetic and non-kinetic line segment data in a fully-dynamic online setting that supports
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intersection reporting. Beside sweeping plane applications, such data structures are also of
interest for map matching problems [22] and for point location queries in dynamic, constrained
Delaunay triangulations [4].

Most works term the “dynamic point location problem” as to quickly find the first edge
directly above or below a query point, which is vertical ray shooting queries over a dynamic
set of edges. We also use this unfortunate terminology throughout, though there are works
(e.g. [18]) that solve the seemingly more complicated problem of deciding if two query points
are in the same face of the dynamic subdivision. Planar subdivisions are often categorized by
additional geometric properties on the subdivisions’ faces. Authors frequently consider cases
where all faces are convex, or all faces intersect horizontal lines at most twice (monotone
faces). Clearly, monotone faces and faces’ boundaries formed by monotone curves (e.g. line
segments) are distinct properties.

Trapezoids are a key ingredient to simplify the study of geometric problems concerning
sets of line segments S. We use three well known [2, 11, 15, 20] and closely related [13]
structures. These are (i) the trapezoidal decomposition A(S) of a plane induced by S, (ii) the
Trapezoidal Search Tree (TST), and (iii) the Trapezoidal Search DAG (TSD) (see Section 2).
TST T (S, π) and TSD D(S, π) stem from deterministic algorithms, that incrementally insert
the segments in S according to a, typically random, permutation π over S. Decomposition
A(S) has size O(|S|+ k), where k denotes the number of crossing pairs of segments in S.
Since segment boundaries of a general planar subdivision are non-crossing (k = 0), the refined
decomposition A(S) of the boundary segments S is within a constant of the subdivision’s
size, regardless of the face shape.

Chiang and Tamassia’s 1992 survey [9, Chapter 6] reviews several dynamizations for
planar subdivisions. In [10], the two authors describe a dynamization for the special case
of a trapezoidal decomposition A of monotone subdivisions. Using several tree structures,
they achieve O(log |S|) point location query time within an O(|S| log |S|) size structure,
which allows fully-dynamic updates in amortized O(log2 |S|) operations. Also for monotone
subdivisions, Goodrich and Tamassia show with [12] how to maintain interlaced, monotone
spanning trees over the edges of the planar graph and its dual graph. This leads to an O(|S|)
sized structure with an update time of O(log |S|+m), for insertion of a monotone chain of
length m, but point location queries take O(log2 |S|) operations. Cheng and Janardan [8]
show how to achieve equal bounds for more general, connected subdivisions.

Most recent approaches that achieve online, fully-dynamic updates within O(|S|) size and
O(log |S|) query time are extensions of the works of Baumgarten et al. [5] that uses dynamic
fractional cascading to enable vertical ray shooting queries. Arge et al. [3] show a trade-off
improvement, i.e. raising the fan-out of tree nodes to Θ(logε |S|) allows to lower the point
location query time bound to O(log |S|). However, insertions take O(log1+ε |S|) amortized
time and deletions take O(log2+ε |S|) amortized time per update. Chan and Nekrich [7]
added Multi-Colored Segment Trees to the approach and applied de-randomization and de-
amortization techniques to finally derive update bounds of O(log1+ε |S|) for both, insertions
and deletions. To our knowledge, these are currently the best bounds on the pointer machine
(see Table 1 in [7] for an overview). Refining this approach, Munro and Nekrich [17] recently
analyzed the I/O counts in an external memory model with block sizes of Ω(log8 n).

The Randomized Incremental Construction (RIC) of TSDs provides simple, and thereby
practical, point location structures of expected O(|S|) size whose longest search path is with
high probability also in O(log |S|). Their analysis is a celebrated result of Mulmuley [15],
who argues on a random experiment that draws geometric objects, and Seidel [20], who uses a
backward-analysis to bound the expected costs. Vastly unmentioned is Mulmuley’s book [16],



M. Brankovic, N. Grujic, A. van Renssen, and M.P. Seybold 18:3

which extends TSDs to a specialized (offline) dynamic setting of a random insert/delete
string for a fixed set of segments S, in which each element has a probability of 1/|S| to
appear in each update request. The approach thrives on a randomly chosen, fixed order on S,
rotations in the structure, and regular leaf-level insertions and deletions. Several distributed
book chapters finally show that executing such a (+/-)-sequence of m updates has a total
expected cost of O(m logm+ k logm), where k is the number of intersections in the fixed
set S. Schwarzkopf [19] independently describes a similar update model that also leads to a
dynamization. His analysis provides an expected O(log2 n) time bound for update operations
from the sequence, where n denotes the current number of non-crossing segments, but the
expected point location query bound is w.h.p. in O(log2 n).

In [2], Agarwal et al. describe a TST over a static set of segments, that move over time.
Their approach is based on a RIC of TSTs with expected O(|S| log |S|+ k) size whose depth
is w.h.p in O(log |S|). The authors mention a bound on the expected construction time
of O(|S| log2 |S|+ k log |S|) and show that randomization is crucial to resolve a structural
change, due to kinetic (adversarial) movement of the line segments, in expected O(log |S|)
operations. One may, however, form constant velocity trajectories for (point-like) segments
that lead to Ω(n

√
n) many topological updates for any binary space partition method [1].

Insightful work of Hemmer et al. [13] recently revealed a certain bijection between the
search paths of T (S, π) and the “un-folded” search paths of D(S, π) by means of a structural
induction argument (along fixed π) on the two incremental algorithms. The authors show
Las Vegas type point location guarantees for the RIC of TSDs by bounding computation
time of the length of a longest search path in a TSD by means of the size of the related TST.

1.1 Paper Organization and Section Contributions
Our surprisingly simple, thereby practical (c.f. Section 6), approach uses only one search
structure and performs insertions and deletions directly on higher levels of it. Since we
maintain randomness of the priority orders on the segment sets, the expected size and
expected point location query bounds are retained for each state of the structures. Section 2
reviews the basic RIC of TSTs and TSDs in a unified notation and we introduce our natural,
recursive extensions of those basic primitives in Section 3.

Our algorithms therein enable fully-dynamic updates in both data structures in the offline
setting, i.e. the complete ground set of segments S is known in advance. Our extension to
the online setting provides a simpler, randomized solution to the dynamic order-maintenance
problem with expected update cost of O(log |S|) based on an arithmetic coding scheme
on Treaps (c.f. Section 5). Known solutions to this problem provide O(1) amortized
update costs [24] or deterministic worst case O(log2 n) update cost based on de-amortization
techniques [6]. Our algorithms are suitable for pointer machines with arithmetic since they
only compare the spatial location of the input points, intersection points, and priority values.
Our need of constant time arithmetic operations on fixed-point numbers with O(log |S|)-bits
is solely due to the online order-maintanance problem. In particular, the method does not
require indirect addressing of Random Access Memory.

To our knowledge, we provide the first analysis for the update costs of an online fully-
dynamic data structure that originates from the classic RIC method. Though our Section 4
argues for non-crossing segments only, our geometric interpretation of TST nodes provides a
4-ply covering property that enables new proof methods. We show a new form of Backward-
Analysis on the permutation space and a bound on simple “segment searches” for affected
search nodes in the structure (avoiding maintenance of so-called conflict lists or A). For
TSTs, we obtain expected update costs of O(log2 |S|) for insertion and deletion. Which we
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Figure 1 Standard shear transformation (left) and three refined tie-breaking rules for point/point
meets, point/segment meets (geometric), and segment/segment overlaps (lexicographic).

can improve further for TSDs to an expected update cost of O(log |S|) for insertion and
deletion. Hence randomization allows improvements on the amortized deletion bound of
O(log2+ε |S|) in [3] and on the O(log1+ε |S|) deterministic update bounds in [7], without
losing the size or the point location query bounds.

2 Basic Definitions, Algorithms and Properties

A segment s = pq between two distinct points p, q ∈ R2 is the set {p+α(q−p) : α ∈ [0, 1]} of
points in the Euclidean plane. Two segments are called disjoint if s ∩ s′ = ∅ and overlapping
if s ∩ s′ contains more than one point. For the case of one common point, we say that two
segments meet if it is an endpoint that is contained in the other segment and otherwise they
are called intersecting (or crossing). The segment boundaries of a general planar subdivision,
for example, have no intersections, but may well contain points in which arbitrarily many
segments meet. A line, parallel to the y-axis, through a point is called a vertical-cut (e.g.
through an end or intersection point) and the line through the endpoints of a segment is
called an edge-cut. To avoid ambiguity, we denote the open halfspaces of a cut with “−”
and “+”. For vertical-cuts − denotes the one with lower x-coordinates and for edge-cuts −
denotes the one with the lower values of the y-axis.

As in [11, Chapter 6], our presentation assumes that no two distinct points (end or
intersection) have exactly the same x-coordinate, unless they are a common endpoint in which
the segments meet. As usual, this assumption is resolved by an implicit, infinitesimal shear
transformation which translates to a tie-breaking rule in the geometric orientation predicate
that resolves to comparing the y-coordinates. A simple extension of the halfspace partitioning
for the remaining cases (of segments and cuts due to a segment) conceptually moves the
points infinitesimally away from the degeneracy along their segment for a consistent decision.
To also assign co-linear cases consistently we finally resolve to lexicographic comparison (c.f.
Figure 1). We also assume that the whole domain is bounded by a very large rectangle,
which is also a trapezoid. Extensions to unbounded problems are commonly achieved by
careful case treatment of unbounded faces of arrangements (e.g. in [23]).

Our combinatorial analysis (c.f. Section 4) of the proposed dynamization requires more
precise terms to establish a geometric correspondence, which we introduce now in a unified
review of the well known incremental algorithms. We frequently identify a permutation π
from the set of permutations P(S) over S as bijection π : S → {1, . . . , |S|} and call π(s) the
priority of a segment s ∈ S.

2.1 Trapezoidal Search Trees T (S, π)
A TST over a trapezoidal domain ∆ ⊆ R2 is a certain hierarchical Binary Space Partition
with vertical cuts and edge cuts induced by the segments in S. These rooted trees are
defined by inductively applying the deterministic insertion algorithm for the segments of S
in ascending priority order. Hence, the structure is uniquely determined by (S, π).
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Figure 2 Example of TST Leaf-Insert (left) and TSD Leaf-Insert (right) for segments with
priority order sa < sb < sc (middle). The vertical merges of Algorithm 2 are indicated in green.

Every node v of the binary tree is associated with a trapezoidal region ∆(v) ⊆ ∆ and,
on the empty set of segments, T ({}, ()) contains only the root r with ∆(r) = ∆. In TSTs,
every non-leaf node v has two child nodes v−, v+ and stores a cut that signifies the halfspace
partition of ∆(v) in ∆(v−) and ∆(v+), which enables point-location search descents. We
say that this cut destroys the trapezoidal region ∆(v) and use this to extend the priority
assignment to also comprise tree nodes.

We denote the priority of node v with p(v). More precisely, leaves have priority +∞ and
non-leaf nodes have the priority of the segment whose cut insertion destroys the node. E.g.
the cuts that constitute the (3 or 4) boundaries of ∆(v) have smaller priorities than p(v).

Algorithm 1 Leaf-Insert(T , s).

1. Search for the leaf nodes L = {u1, . . . , ul} ⊆ T with ∆(ui) ∩ s 6= ∅.
2. Create refined slabs of these regions by vertically partitioning each ∆(ui) with cuts due

to endpoints of s or intersection points of s with edge-cuts bounding ∆(ui).
3. Partition the intersected slab regions further with the edge cut through s.

See Algorithm 1 for the steps to insert the next segment s in a TST T . Note that nodes’
priorities are monotonically increasing on paths from the root. Procedure Leaf-Insert inserts
3, 2 or 1 cuts on the region of a leaf and the edge-cut is always the last cut that is performed.
We refer to these patterns as vertical-vertical-edge (VVE), vertical-edge (VE), and edge (E)
destruction. To remove unnecessary ambiguity in the tree structure, we use the additional
convention that in a VVE-destruction, the left of the two vertical cuts is inserted first (e.g.
as parent of the right vertical cut). See Figure 2 for an example.

I Theorem 2.1 (TST size and depth [2]). Let S be a set of segments and kS the number of
intersecting pairs among them. The expected size of a TST over S is bounded by

E
π∈P(S)

|T (S, π)| = O(|S| log |S|+ kS) .

The expected leaf depth is O(log |S|) and the maximum leaf depth of T is w.h.p. O(log |S|).

Clearly, any TST over a set of segments S contains at least Ω(|S|+ kS) nodes and there
are certain instances that may have size Ω(|S|3). Agarwal et al. [2] mention an upper bound
of O(|S| log2 |S|+ kS log |S|) expected time for the purely incremental construction.

2.2 Trapezoidal Decomposition A(S) and Search DAG D(S, π)
One may save space in such a search structure by considering a certain planar subdivision A(S)
that is induced from a set of segments S. Given aforementioned discussion of degeneracies,
this subdivision is defined by emitting two vertical rays (in negative and positive y-direction)
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18:6 A Simple Dynamization of Trapezoidal Point Location in Planar Subdivisions

from each end or intersection point until the ray meets the first segment or the bounding
rectangle. Each face of A(S) is a trapezoid with 3 or 4 boundary edges and standard double
counting establishes a size of O(|S|+ kS) for these planar decompositions. Note that A(S)
is independent of segment priorities.

Mulmuley [15] and Seidel [20] consider the incremental process of inserting an additional
segment s and obtaining A(S ∪ {s}) from A(S). Algorithm 2 shows the additional merging
phase, to “contract” pre-existing vertical-cuts (between the regions of the nodes in L)
towards their emission point until they meet s, to maintain the property that the leaf
regions coincide with A(S). Hence, the planar subdivision of the leaves of a TST, i.e.
{∆(v) ⊆ R2 : v ∈ T (S, π), v is leaf}, is a refinement of A(S), regardless of π.

Algorithm 2 Leaf-Insert(D, s).

1. Search for the leaf nodes L = {u1, . . . , ul} ⊆ D with ∆(ui) ∩ s 6= ∅.
2. Create refined slabs of these regions by vertically partitioning each ∆(ui) with cuts due

to endpoints of s or the intersection points of s with edge-cuts bounding ∆(ui).
3. Partition the intersected slab regions further with the edge cut through s.
4. Scan over the vertical cuts between nodes in L that cross s.

Merge the vertical cuts of the refined regions whose emission point is now blocked by s.

Though the resulting search graph is a DAG (also known as History DAG), the basic
data stored with a node is still identical with the binary TST tree nodes (e.g. Figure 2).
One key ingredient for the well known, expected construction time of O(|S| log |S|+ kS),
is to perform the search for affected leaves (c.f. Step 1) quickly. A way to achieve this,
without prior knowledge of all future segment insertions, is to also maintain an explicit
graph representation of the planar subdivision A(S) of the segments S that are currently
contained in the structure. This trick allows to perform only one point location query for,
e.g., the left endpoint of s, followed by a walk along s through A(S). Our Section 3.1 solves
this differently. We summarize the well known aspects of this incremental algorithm in the
following statement.

I Theorem 2.2 (TSD size and depth [11, 15, 20]). Let S be a set of segments and kS the
number of intersecting pairs among them. The expected size of a TSD over S is bounded by

E
π∈P(S)

|D(S, π)| = O(|S|+ kS) .

The expected search path length is O(log |S|) and the maximum search path length of D is
w.h.p. O(log |S|).

The TST and TSD structure also allow simple deletions of segments in a certain decremen-
tal setting, that deletes all segments in descending priority order. That is, the modifications
that the structure undergoes in the steps of Algorithm 2 are simply undone in exactly the
reverse order (steps 4 to 2), causing the same amount of work. This is what Seidel’s classic
backward-analysis, that analyses dropping the last element instead of appending it, exploits.

The insightful work of [13], recently revealed a certain bijection between the search
paths of T (S, π) and the (valid) search paths in D(S, π) by means of a structural induction
argument (along fixed π) on the two incremental algorithms. This allows them to bound the
runtime of computing the length of a longest search path in a TSD D(S, π) by means of the
size of the related TST T (S, π). Based on this technique, our analysis of the update time in
TSTs (c.f. Section 4) carries over to an upper bound in TSDs as well.
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The main geometric difference between the structures is that in TSTs the region of a node
is always a subset of its parents’ region, whereas in TSDs the region of a node may extend
further to the left and right, due to vertical merges, but not across the top and bottom
boundaries. We now describe our recursive algorithms for vertical partitions, vertical merges,
edge partitions, and edge merges that operate on intermediary priority levels.

3 Recursive Primitives for Dynamic Updates

Characteristic for our approach is that insertions and deletions are performed directly on
higher levels of the search structures rather than solely on leaves. We first describe the
recursive primitives for inserting a new segment s in the structure of T (S, π).

We choose a random position p ∈ {1, . . . , |S| + 1} uniformly in which we emplace the
element s, between (p− 1) and p, in the sequence π, calling the resulting priority order π′.
Our recursive algorithms then update the structure T (S, π) exactly to T (S ∪ {s}, π′). More
precisely, we restrict the search (c.f. Step 1 of Algorithms 1 and 2) to those nodes with
priority smaller than p, which leads to a set L of affected subtree roots whose priorities are
larger than p in π′. We conceptually “hang out” these nodes by creating a copy L′ of them
and reverting those in L to leaves, temporarily. The insertion then proceeds in the same
sequence as on regular leaves, but every binary space partition on nodes of L is accompanied
by a matching call with the recursive primitive on the respective subtree of the node’s copy
in L′. After this process, we have a matching root in L′ for each leaf that was created below
L, which we then “hang in” instead of the simple leaf. Given the close relation of the two
structures, it turns out that our recursive primitives, with few changes, already provide the
necessities for dynamic updates of TSDs.

This and the following section assume that priority value comparisons, i.e. π′(s′) > π′(s),
are decidable in constant time. Section 5 shows a new and simple solution, based on
Treaps, to solve the dynamic order maintenance problem sufficiently fast for the online
setting. Given the discussion above on the possible E-, VE- and VVE-destruction patterns,
we simplify notation in this section by denoting with Descend(v) the tuple of 0, 2, 3, or 4
descendants with the next higher priority value than p(v). E.g. Descend(v) = () if v is
a leaf, Descend(v) = (va, vb) if v underwent an E-destruction, Descend(v) = (vl, va, vb) or
Descend(v) = (va, vb, vr) if v underwent a VE-destruction, and Descend(v) = (vl, va, vb, vr)
if v underwent a VVE-destruction. With vl, va, vb and vr we denote the respective left, above,
below and right child of the node’s destruction (e.g. Figure 3).

3.1 Priority Restricted Searches

We use the following top-down refinement process to derive the node set L, such that its
nodes ui are sorted by the sequence in which s stabs ∆(ui) from left-to-right: First locate
the search node u, with maximal p(u) < p(s), that fully contains s in ∆(u). Place u in an
initially empty list. Successively replace the leftmost node u in the list with p(u) < p(s) with
the nodes of Descend(u), whose region intersects s, until all node priorities exceed p(s).

Note that nodes with priority larger than p(s) are not refined and the spatial location of
the regions of the nodes in Descend(·) allows us to easily keep the set L sorted by left-to-right
stabbing sequence of s.
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3.2 Recursive Vertical Partitions and Merges

Our methods are inspired by sorting algorithms on lists of integers, though they move cuts
and child relations among nodes based on the nodes’ priorities. We first introduce the
recursive primitive V-Partition(u, q, v−, v+), where q ∈ R2 denotes the point that induces the
vertical cut c(q), u is an affected tree node, and v−, v+ the roots of the respective, initially
empty, result trees. As outlined above, the primitives update the search structure to the
state that regular leaf insertion (in ascending priority order) would have created under the
presence of vertical cut c(q) splitting ∆(u) in ∆− ∪∆+. (A lengthy, rigorous proof fixes
∆(u) and performs a structural induction argument over the sequence of successive cuts
that destroy the region.) See Figure 3 for the recursive cases by destruction patterns and
Algorithm 3.

The recursive node visits are similar to a search for points on c(q) and V-Partition
performs at most two recursive calls per node in TSTs. Reverting these steps in exactly the
reverse order provides the inverse operation V-Merge(u−, u+, q, v) on two trees with adjacent
search regions (c.f. Algorithm 4). Note that the TSD primitives actually perform fewer
recursive calls, since vertical cuts are contracted in this structure.

3.3 Recursive Edge Partitions and Merges

Based on the recursive primitives for vertical cuts, we now introduce the recursive edge
partition Partition(u, c, v−, v+) on regions ∆(u) that are fully crossed by the edge cut c (c.f.
Algorithm 5). As above, v− and v+ denote the initially empty result trees for the respective
partition of ∆(u) in ∆− ∪∆+.

If the edge cut c does not intersect the edge cut that destroys u, the recursive results
on nodes of Descend(u) only need V-Merge calls on one side of c to produce the result.
E.g. the left case in the figure of Algorithm 5: First a V-Merge call on (v+

a , v
+
r ) and then

with v+
l . For new intersections with c, let i denote the intersection point. We first use

V-Partition(ua, i, val, var) and V-Partition(ub, i, vbl, vbr) to create trees val, vbl and var, vbr
for the respective left and right sides of i, prior to the edge partition with c. Finally, we
use V-Merge to combine those results properly. E.g. the two gray areas in right case in the
figure of Algorithm 5.

Note that for segments from a planar subdivision, the treatment of intersections is not
necessary. The inverse primitive for edge cut merges (of two adjacent regions) can be derived
analogously, by executing the inverse primitives in exactly the reverse order.

4 Counting Search Nodes in Affected Regions

To improve readability in this section, we denote for singleton elements the set union S ∪ {s}
with S+ s and the set difference S \ {s} with S− s. With P(S) we denote the set of bijective
mappings π : S → {1, . . . , |S|}. For S′ ⊆ S we use the predicate “π(S′) ≤ |S′|” to abbreviate
that π(s) ≤ |S′| holds for each s ∈ S′, i.e. the permutation begins with the elements of S′.

The following definitions concern sets of segments and their (deterministic) induced
trapezoidal subdivision A of the plane. For s ∈ S \B, we define FB(s) ⊆ R2 to denote the
region of the faces in A(B) that are intersected by s, that is FB(s) =

⋃
{f∈A(B):f∩s 6=∅} f .

Moreover, for s ∈ B we define the neighborhood zone NB(s) ⊆ R2 to be the union of all
faces of A(B) that are adjacent to s (e.g. s contributes as edge, vertex or intersection cut).
Note that every point in R2 is in at most 4 neighborhood zones and NB+s(s) = FB(s).
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∆(ul)
∆(ur)∆(ub)

∆(ua)

VVE

q

∆(ur)∆(ub)

∆(ua)

VE

q

∆(ub)

∆(ua)

E

q

Figure 3 Cases during recursions of V-Partition(u, q, v−, v+) and V-Merge(u−, u+, q, v).

Algorithm 3 V-Partition(u, q, v−, v+): Assertion: c(q) intersects ∆(u).
Stop if u is a leaf; Let (ul, ua, ub, ur) := Descend(u).

TST: IF c(q) intersects ∆(ua) and ∆(ub)
TSD: IF q ∈ ∆(ua) “q ∈ ∆(ub)” analogue

If present, move ul and its parent’s vertical cut in v−.
If present, move ur and its parent’s vertical cut in v+.
Cut both unoccupied leaves, that is one child of v− and one of v+, with the edge
cut. Let v−a , v−b , v+

a , v
+
b denote these leaves.

V-Partition(ua, q, v−a , v+
a )

TST: V-Partition(ub, q, v−b , v
+
b )

TSD: Set both below pointers on ub instead of v−b and v+
b .

ELSE IF c(q) intersects ∆(ul) “c(q) intersects ∆(ur)” symmetrically
Move ur (if present) , ua, ub and their parents’ cuts in v+.
Let v+

l denote the unoccupied leaf.
V-Partition(ul, q, v−, v+

l )

Algorithm 4 V-Merge(u−, u+, q, v): Assertion: c(q) bounds ∆(u−) and ∆(u+).

IF u− is leaf THEN Move contents of u+ in v and stop. “u+ leaf” analogue
Let (u−l , u−a , u

−
b , u

−
r ) := Descend(u−) and (u+

l , u
+
a , u

+
b , u

+
r ) := Descend(u+).

TST: IF p(u−) = p(u+)
TSD: IF p(u−) = p(u+) and u−b = u+

b “u−a = u+
a ” analogue

If present, move u−l and its parent’s vertical cut in v.
If present, move u+

r and its parent’s vertical cut in the unoccupied leaf of v.
Cut the new unoccupied leaf of v with the edge cut. Let va, vb denote these
leaves.
V-Merge(u−a , u+

a , q, va)
TST: V-Merge(u−b , u

+
b , q, vb)

TSD: Set the below pointer on u−b instead of vb.
ELSE IF p(u−) < p(u+) “>” symmetrically

Move u−l (if present) , u−a , u−b and their parents’ cuts in v.
Let vr denote the unoccupied leaf.
V-Merge(u−r , u+, q, vr)
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Algorithm 5 Partition(u, c, v−, v+): Assertion: c crosses ∆(u) entirely.

∆(ul) ∆(ur)

∆(ub)

∆(ua)

∆(ul) ∆(ur)

∆(ub)

∆(ua)

v−l

v+l
v+a

v−a

v+r

v−r
v+l

v−l

v+r

v−r
v−al

v+br

vbl v−br

v+al varc

c

i

Stop if u is a leaf.
Let (ul, ua, ub, ur) := Descend(u) and l1, l2 denote the vertical cuts destroying ∆(u).
IF c does not intersect ∆(ub) properly “not ∆(ua)” analogue

Allocate new nodes v−l , v
+
l , v

−
a , v

+
a , v

−
r , v

+
r , v

+
ar.

Partition(ul, c, v−l , v
+
l ); Partition(ua, c, v−a , v+

a ); Partition(ur, c, v−r , v+
r )

V-Merge(v+
a , v

+
r , l2, v

+
ar)

V-Merge(v+
l , v

+
ar, l1, v

+)
Place v−l , v−a , ub, v−r below respective cuts under v−.

ELSE IF edge cut of u is steeper than c “less steep” symmetrically
Let i denote the vertical cut (induced by the intersection of the edge-cut and c).
Allocate new nodes v−l , v

+
l , v

−
r , v

+
r as well as var, val, v−al, v

+
al and vbl, vbr, v

−
br, v

+
br.

Partition(ul, c, v+
l , v

−
l ); Partition(ur, c, v+

r , v
−
r )

V-Partition(ua, i, val, var); V-Partition(ub, i, vbl, vbr)
Partition(val, c, v−al, v

+
al); Partition(vbr, c, v−br, v

+
br)

Place V-Merge(v+
l , v

+
al, l1, ·) as left child under cut i below v+.

Place v+
r and its parent’s cut in the unoccupied leaf of v+.

Cut the unoccupied leaf of v+ with the edge cut of u.
Place var and v+

br in these leaves.

Place v−l and its parent’s cut in v−.
Place V-Merge(b−br, v−r , l2, ·) as right child under cut i in v−.
Cut the unoccupied leaf of v− with the edge cut of u.
Place v−al and vbl in these leaves.

Given a TST T (S, π) and some priority value r ∈ {1, . . . , |S|}, we consider partitions
of its nodes in classes T<r, T=r, and T>r, having priority less, equal or larger than r. E.g.
T<1 = ∅ and T>r always contains the leaf nodes. As introduced in Section 2.1, we identify
every node v in T with its associated search region ∆(v) ⊆ R2.

From the refinement property (c.f. Section 2.2), we have that the leaves’ partition
{∆(v) ⊆ R2 : v ∈ T (S, π), p(v) =∞} of the domain is a (set theoretic) refinement ofA(S), for
any S and π ∈ P(S). This applies in particular for a set of segments S≤r = {s ∈ S : π(s) ≤ r}.
Since additional leaf-insertions only refine further, we have that the region ∆(v) of a node
v ∈ T>r is either contained in or disjoint from neighborhood zone NS≤r (s) for any s ∈ S≤r.

This provides the following 4-ply covering property. For any B ⊆ S with a π ∈ P(S) such
that π(B) ≤ |B|, we have that∑

s∈B

∣∣∣{v ∈ T=l(S, π) : ∆(v) ⊆ NB(s)}
∣∣∣ ≤ 4

∣∣∣T=l(S, π)
∣∣∣ , (1)

for each l > |B|.
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T

T<k

T≥k

(a) Partition of nodes in T in T<k and T≥k due
to node priority. Affected nodes are in red and
their subtrees in gray.

s2

s4

s3

s1

(b) The neighborhood zone of s3 (shaded in red)
is F{s1,s2}(s3) = N{s1,s2,s3}(s3).

Figure 4 Illustration of affected subtrees (left) and neighborhood zone refinement (right).

I Definition 4.1 (Affected Nodes). Given a segment s ∈ S of designated priority rank
r ∈ {1, . . . , |S|}, we call a node v of T≥r over S − s affected if and only if ∆(v) ∩ s 6= ∅ and
it is topmost in T . That is, v has no parent u in T≥r with p(u) ≤ p(v).

Clearly, for every v ∈ T≥r whose region ∆(v) intersects s, we have ∆(v) ⊆ FS<r(s) as well.
In other words, the affected nodes correspond precisely to the leaves of T (S<r, π), the tree
over the first r − 1 segments, that are intersected by s. See Figure 4a for an illustration and
Figure 4b for an example. In this example, decomposition A ({s1, s2}) has 7 faces of which
s3 intersects 3. The neighborhood region of s3 is F{s1,s2}(s3) = N{s1,s2,s3}(s3) and shaded
in red. The TST for

(
{s1, s2, s4},

(
s1 s2 s4
1 2 3

))
has 13 leaf regions and the TSD has 10 leaves.

Note that for TST nodes v with priority p(v) ≥ 3, the region ∆(v) is either fully contained
or outside the red zone.

Given a π ∈ P(S−s) and a value p ∈ {1, . . . , |S|}, we call the region F{s′∈(S−s) : π(s′)<p}(s)
the p-neighborhood of s.

I Lemma 4.2 (Zone Covering). Let S be a set of non-crossing segments, p ∈ {1, . . . , |S|} a
fixed value, and s ∈ S. For any l ≥ p, the expected number of priority l nodes of a random
TST over S − s that are in the p-neighborhood of s is upper bounded with

E
π∈P(S−s)

∣∣∣{v ∈ T=l(S − s, π) : ∆(v) ⊆ F
}∣∣∣ ≤ 4

p
E

π∈P(S−s)

∣∣∣T=l(S − s, π)
∣∣∣ ,

where F denotes the p-neighborhood of s.

On a sequence of elements, we call the process to place a new element between the
elements of positions p− 1 and p emplacing at p and dropping is the reverse operation. E.g.
old elements of index less than p remain and those of at least p are moved one position to
the right. We perform a backward analysis and consider dropping the element at position p
in sequences of P(S) instead of emplacing a s ∈ S at position p in sequences of P(S − s).

Proof. The main idea is to group the sequences in P(S) by those having the same cardinality
p subsets B ∈

(
S
p

)
in the first p entries to use that

⋃
s∈B NB(s) = R2, as in Eq. 1.

For π ∈ P(S), we denote with π−1(p) ∈ S the element that π maps to position p and
with π − s we denote the sequence of P(S − s) that results from dropping element s. To
shorten notation, we define a random variable γ that counts the relevant nodes of a tree
within a certain region N ⊆ R2, that is γ(S, π,N) = |{v ∈ T=l(S, π) : ∆(v) ⊆ N}|.
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We count the expected number of nodes within T (S − π−1(p), π − π−1(p)), that fall
into the region N{s∈S : π(s)≤p}

(
π−1 (p)

)
, which is the neighborhood zone of the element at

position p among those with priority at most p.

E
π∈P(S)

γ
(
S − π−1 (p) , π − π−1 (p) , N{s∈S : π(s)≤p}

(
π−1 (p)

))
(2)

= 1
|S|!

∑
B∈(Sp)

∑
s∈B

∑
π∈P(S) :

π(B)≤p, π(s)=p

γ(S − s, π − s,NB(s)) (3)

≤ 1
|S|!

∑
B∈(Sp)

∑
s∈B

4
p

∑
π∈P(S) :

π(B)≤p, π(s)=p

γ(S − s, π − s,R2) (4)

= 4
|S|! p

∑
s∈S

∑
B∈(S−sp−1)

∑
π∈P(S−s) :
π(B)<p

γ(S − s, π,R2) (5)

= 1
|S|
∑
s∈S

4
p

1
|S − s|!

∑
π∈P(S−s)

γ(S − s, π,R2) (6)

= 1
|S|
∑
s∈S

4
p

E
π∈P(S−s)

γ(S − s, π,R2) (7)

Equation (3) is due to regrouping the summation terms by the sequences that have the
same sets of elements B in the first p positions, (4) due to the ordinary1 “camel trick” of
the form

∑
s∈B f(s) =

∑
s∈B

1
|B|
∑
s∈B f(s) and the 4-ply covering. Equation (5) uses the

combinatorial identity
(
n
k

)(
k
1
)

=
(
n
1
)(
n−1
k−1
)
to first choose s ∈ S for position p. Since the terms

in (7) do not depend on the spatial location of s, the bound holds for any s ∈ S. J

We now bound the expected total size of subtrees below affected nodes (c.f. Figure 4a).

I Lemma 4.3 (Subtree Sizes). Let S be a set of non-crossing segments, p ∈ {1, . . . , |S|}
uniformly at random, and s ∈ S. The expected total size of affected subtrees in a random
TST over (S − s) is O

(
log2 |S|

)
.

Proof. We use Lemma 4.2 to bound the number of nodes in T (S − s, π) that have a priority
of at least p and have a region that is in the p-neighborhood of s.

1
|S|

|S|∑
p=1

E
π∈P(S−s)

∣∣∣{v ∈ T≥p(S − s, π) : ∆(v) ⊆ F{s′∈(S−s) : π(s′)<p}(s)
}∣∣∣ (8)

≤ 1
|S|

|S|∑
p=1

4
p

E
π∈P(S−s)

∣∣∣T≥p(S − s, π)
∣∣∣ (9)

≤ 1
|S|

|S|∑
p=1

4
p

E
π∈P(S−s)

∣∣∣T (S − s, π)
∣∣∣ (10)

≤ 1
|S|

|S|∑
p=1

4
p
O (|S − s| log |S − s|) ≤ O

(
log2 |S|

)
(11)

Bound (11) is due to the expected size of the whole tree (c.f. Theorem 2.1). J

1 E.g. proof of Theorem 3.1.4 in [16, p. 90] or proof of Theorem 6.3 in [11, p. 136].
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With a slightly more advanced application of our arguments presented thus far, we now
bound the cost for simple iterated ray-shooting search to find the affected subtree roots for a
query segment that has a designated random priority rank (c.f. Section 3.1).

I Lemma 4.4 (Segment Search). Let S be a set of non-crossing segments, p ∈ {1, . . . , |S|}
uniformly at random, and s ∈ S. The expected time to find the affected nodes within a
random TST over (S − s) is O

(
log2 |S|

)
.

Proof. The search visits only nodes v with regions ∆(v) ∩ s 6= ∅. Since Lemma 4.3 bounds
the size of the result set, we only need to bound the number of nodes with priority smaller p.
We do so by invoking Lemma 4.2 dlog2 pe times.

1
|S|

|S|∑
p=1

E
π∈P(S−s)

∣∣∣{v ∈ T<p(S − s, π) : ∆(v) ∩ s 6= ∅
}∣∣∣ (12)

≤ 1
|S|

|S|∑
p=1

dlog2 pe∑
j=1

E
π∈P(S−s)

∣∣∣{v ∈ T (S − s, π) : 2j−1 < p(v) ≤ 2j , ∆(v) ∩ s 6= ∅
}∣∣∣ (13)

= 1
|S|

|S|∑
p=1

dlog2 pe∑
j=1

4
2j−1 E

π∈P(S−s)

∣∣∣{v ∈ T (S − s, π) : 2j−1 < p(v) ≤ 2j
}∣∣∣ (14)

≤ 1
|S|

|S|∑
p=1

dlog2 pe∑
j=1

4
2j−1O

(
2j log(2j)

)
(15)

= 1
|S|

|S|∑
p=1

dlog2 pe∑
j=1

O (j) ≤ 1
|S|

|S|∑
p=1
O(log2 p) ≤ O

(
log2 |S|

)
(16)

In (13), we use “linearity of expectation” to count search nodes of T<p in batches of
priority intervals of the form (2j−1, 2j ]. Bound (14) is due to invoking Lemma 4.2 for s
according to the priority interval. To bound a batch j in (15) we use Theorem 2.1 on the
whole TST size over the first 2j segments. J

Now we have all necessary arguments for our bound on dynamic update costs in TSTs.

I Theorem 4.5. Let S be a set of non-crossing segments and s ∈ S. The expected cost of
inserting s in a random TST over (S − s) is O(log2 |S|).

Proof. Let 1 ≤ m ≤ |T | denote the total number of nodes within affected subtrees of T ,
prior to the insertion call. We argue that the total number of nodes visited by the insertion
procedure is O(m), which establishes the result based on Lemma 4.3 and 4.4 for non-crossing
segments.

For each root of an affected subtree, we have at most 2 calls of V-Partition to slab the
subtree. After the slabbing stage of the insertion, we have at most 3m nodes in total.

The edge Partition calls on one slab are independent from those of another slab in T .
Neglecting node removals due to V-Merge briefly, the total number of temporarily created
nodes of Partition increases at most by a factor of 2. Since we cannot remove more than
what was created, the total number of nodes that V-Merge may visit is bounded by 6m. J

Given the duality of the update procedures, deletion of a s ∈ S having priority p(s) visits
exactly the same nodes as insertion of s among (S − s) with priority value p(s). Hence
the expected node visits are equal as well. Since our bound on expected update operations
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counts TST search nodes, we may employ the method of Hemmer et al. [13], on the bijection
between TST and TSD search paths, to obtain equal asymptotic bounds for the expected
update costs in TSDs. A more detailed consideration, however, allows an improvement.

4.1 Improved Update Bounds For TSDs

The region of each TSD node may be represented by its top, bottom and vertical boundary
cuts. To use “linearity of expectation”, we decompose the random variable |D(S, π)| in a sum
of O(|S|5) binary indicator variables Ni,i′,i′′,i′′′,j that are 1 if and only if D(S, π) contains a
node whose boundary is constituted by cuts with the priorities i, i′, i′′, i′′′ and gets destroyed
by the segment with priority j. That is |D=l| =

∑
i,i′,i′′,i′′′ Ni,i′,i′′,i′′′,l. The number of these

indicator variables only depends on |S|, but not on π or the spatial location of the segments.

I Lemma 4.6 (Overlap into Zones). Let S be a set of non-crossing segments, p ∈ {1, . . . , |S|}
a fixed value, and s ∈ S. For any l ≥ p, the expected number of priority l nodes of a random
TSD over S − s that overlap the p-neighborhood of s is upper bounded with

E
π∈P(S−s)

∣∣∣{v ∈ D=l(S − s, π) : ∆(v) ∩ F 6= ∅
}∣∣∣ ≤ O(1)

p
E

π∈P(S−s)

∣∣∣D=l(S − s, π)
∣∣∣ ,

where F denotes the p-neighborhood of s.

For the proof recall that, for any subset C ⊆ S and its maximum priority element m ∈ C,
classic Backward Analysis (e.g. Chapter 6 in [11]) shows that the number dC , denoting the
number of faces in A(C −m) that segment m intersects (a.k.a destroys), is expected O(1).
Since the neighborhood zones are a union of faces of A(C −m), element m also intersects no
more than 4 · dC of the neighborhood zones in NC−m.

Proof. The proof is analogue to Lemma 4.2, except from Eq. 4 which uses that every TST
node is in at most 4 neighborhood zones. Given the refined decomposition of |D=l|, showing
that each of the priority l nodes intersects at most O(1) zones of NB gives the statement
due to linearity of expectation.

A priority l <∞ node, i.e. a non-leaf node, is either fully crossed by the segment π−1(l)
or contains an endpoint of it. In the first case, the number of NB zones that the node
region intersects is bounded by 4 · dC , where C = B + π−1(l). For the endpoint case, let
|B| < l′, l′′ < l denote the priorities of the top and bottom segment that bound the node’s
trapezoidal region. Hence, the node does not intersect more than 4(dC′ + dC′′) neighborhood
zones where C ′ = B + π−1(l′) and C ′′ = B + π−1(l′′). The argument for a leaf node, i.e.
l =∞, is analogue to the endpoint case. J

I Corollary 4.7. Let S be a set of non-crossing segments and s ∈ S. The expected cost of
inserting s in a random TSD over (S − s) is O(log |S|).

Proof. Using Lemma 4.6, Equation 11 improves to 1
|S|
∑|S|
p=1O( 1

p |S − s|), which evaluates
to an expected number of O(log |S|) TSD nodes to overlap into the affected zone. Moreover,
Equation 15 improves to 1

|S|
∑|S|
p=1

∑dlog2 pe
j=1 O

( 1
2j−1 2j

)
, which evaluates to an expected

number of O(log |S|) TSD nodes that are visited in the segment search. Since our recursive
update primitives visit a TSD node at most once, using the same arguments as in the proof
of Theorem 4.5 on TSDs provides the expected update cost as stated. J
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5 Offline vs Online – Maintaining Small Codes For Dynamic Orders

To support online emplacement and dropping of additional elements in a sequence π ∈ P(S),
we use a more flexible representation than standard bijections π : S → {1, . . . , |S|}. We
represent sequences as injective mappings τ : S → (0, 1) ⊆ R. If the values of τ are stored
with the elements of S, we can evaluate the required π(s) < π(s′) predicates with comparison
on τ in constant time. However, dynamically extending τ for a new element s /∈ S such that
τ(s) falls with equal probability in the intervals between {τ(s′) : s′ ∈ S} is challenging. E.g.
simple random sampling of τ(s) uniformly out of (0, 1) does not provide this. Since single
registers of the pointer machine model are confined to numbers with only O(log |S|) bits,
simple interval halving strategies may well produce inefficiently long codes for τ as well.

We solve this problem using one additional randomized data structure to maintain orders
among n elements of a totally ordered set of “keys’. Treaps are a conceptual fusion of Binary
Search Trees (BSTs), over the nodes’ key values, and (Min-)Heaps, over the nodes’ priority
values. Insertions and deletions are performed similarly to BSTs and additionally standard
tree rotations are used to maintain the heap property on the randomly chosen priority
values. Seidel and Aragon [21] show not only that Treaps achieve O(logn) depth with high
probability but also that, even if the cost of a rotation is proportional to the whole subtree
size, insertions and deletions still perform expected O(logn) operations.

For our simple in-order numbering scheme in a fixed BST, we consider an injective
mapping from root-to-node paths, which we read as smaller/larger strings over the alphabet
{s, l}, to binary fractional number from (0, 1) ⊆ Q coded as “1”-terminated strings over the
alphabet {0, 1}. More precisely, for the empty path string (the root node r) the associated
value is γ(r) = 0.1(2), s-edges are coded as 0 and l-edges are coded as 1. E.g. the left child
node vs of the root has code γ(vs) = 0.01(2), the right child node vl of the root has code
γ(vl) = 0.11(2), and we have γ(vs) < γ(r) < γ(vl). On paths of a BST, the search tree
property extends to the order of these γ values of the nodes. This allows us to check if u is
before v in the in-order sequence by comparing the values of γ(u) and γ(v). Moreover, this
recursive code definition can be assigned in a top-down fashion for all nodes in a subtree
under v, once γ(v) is assigned.

In order to maintain the proper values τ for a set S, we augment the Treap nodes to
also store the total number of nodes in their subtree. To emplace a new element, we first
choose an integer 1 ≤ p ≤ |S|+ 1 uniformly at random. Next we use the standard Treap
insertion to add a new node resembling the p-smallest key-value as a new leaf. After the
bottom-up re-balancing rotations are finished, we simply re-visit the whole rotated subtree
in a top-down fashion to overwrite the key value of each node v with the new value γ(v).
The deletion of an element is handled analogously. To evaluate an order predicate between
two elements, we simply compare the current key values due to the Treap, which are stored
with the elements of S. We summarize this with the following statement.

I Observation 5.1. Representation of sequences π ∈ P(S) requires no more than O(|S|)
space and dynamic updates take expected O(log |S|) operations. After successful updates,
evaluation of a π(s) < π(s′) predicate on s, s′ ∈ S takes O(1) operations.

6 Implementation and Experiments

We implemented2 our fully-dynamic approach for TSTs based on the exact predicates and
exact construction for line segments of the Computational Geometry Algorithms Library [23].

2 https://github.com/milutinB/dynamic_trapezoidal_map_impl
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(a) Random non-intersecting segments (|S| = 104, kS = 0, kS/|S| = 0).

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

n
o
f.
 T

S
T
 n

o
d

e
s 

|T
|

nof. segments |S|

TST Size with Static vs Dynamic Insertions

Dynamic
Static

2.39*n*log2(n)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

T
S

T
 d

e
p

th

nof. segments |S|

TST Depth with Static vs Dynamic Insertions

Dynamic
Static

3.43*log2(n)

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

To
ta

l 
N

o
d

e
 V

is
it

s

Dynamic Insertion Call

Segment Search

Dynamic
1.32*log2(n)2

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

To
ta

l 
N

o
d

e
 U

p
d

a
te

s

Dynamic Insertion Call

Node visits of vPartition, vMerge and Partition

Dynamic
1.09*log2(n)2

(b) Random segments with few intersections (|S| = 104, kS = 35195, kS/|S| ≈ 3.5).
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(c) Random segments with many intersections (|S| = 103, kS = 120730, kS/|S| ≈ 120.7).

Figure 5 Experimental results on TST size (top left), TST depth (top right), and node visits of
the segment search (bottom left) and updates (bottom right) for RIC TSTs (green) and Dynamic
TSTs (purple). The blue curve indicates the respective function fit on the data of Dynamic TSTs.
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Our experiments focus on evaluating the practicality of the approach and the tightness
of the analysis. We use the standard RIC of TSTs as verification and baseline comparison.
To measure the performance of our segment search and dynamic updates, we count the
total number of node visits during recursions of the update and the search. To capture
the asymptotic behavior in the experiments, we perform many insertion calls, with either
ascending segment priority values (static TST) or a random shuffle of them (dynamic TST).

We created random sets of segments with varying numbers of intersections based on
the 64-bit Mersenne Twister random number generator of the C++ Standard Library. The
experiment without intersections is comprised of horizontal segments, for which we first chose
a y-coordinate uniformly (from the domain range) and then two x-coordinates uniformly (see
Figure 5a). The experiment with few intersections is comprised of short segments, for which
we chose a point, a direction, and a length uniformly at random (on average 3% of the domain
boundary length; see Figure 5b). The experiment on many intersections are generated by
choosing the coordinates of both endpoints uniformly at random (see Figure 5c).

Figure 5 shows the results on the segment search and recursive node visits of updates.
For ease of comparison, we also plot a function fit3 (thick blue lines) of the well known
size and depth bounds (top rows) and our new segment search and update bounds (bottom
rows) as overlay on the experimental data. Note that only on the non-intersecting data set
a comparison of function fit and bounds is meaningful. We do however also provide it for
the other experiments as a “trend line” that indicates the additional costs due to segment
intersections. To allow a better visual perception of the average cost per insertion, Figures 5a
and 5b show every 20th data point and Figure 5c shows every 2nd data point as impulse.

The experiment on non-intersecting segments matches with our analysis of segment search
and update operations on TSTs. As anticipated, TST updates on segments with many
intersections are more expensive.
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Abstract
This paper is concerned with the 1||

∑
pjUj problem, the problem of minimizing the total processing

time of tardy jobs on a single machine. This is not only a fundamental scheduling problem, but also
a very important problem from a theoretical point of view as it generalizes the Subset Sum problem
and is closely related to the 0/1-Knapsack problem. The problem is well-known to be NP-hard, but
only in a weak sense, meaning it admits pseudo-polynomial time algorithms. The fastest known
pseudo-polynomial time algorithm for the problem is the famous Lawler and Moore algorithm which
runs in O(P · n) time, where P is the total processing time of all n jobs in the input. This algorithm
has been developed in the late 60s, and has yet to be improved to date.

In this paper we develop two new algorithms for 1||
∑

pjUj , each improving on Lawler and
Moore’s algorithm in a different scenario:

Our first algorithm runs in Õ(P 7/4) time1, and outperforms Lawler and Moore’s algorithm in
instances where n = ω̃(P 3/4).
Our second algorithm runs in Õ(min{P ·D#, P + D}) time, where D# is the number of different
due dates in the instance, and D is the sum of all different due dates. This algorithm improves
on Lawler and Moore’s algorithm when n = ω̃(D#) or n = ω̃(D/P ). Further, it extends the
known Õ(P ) algorithm for the single due date special case of 1||

∑
pjUj in a natural way.

Both algorithms rely on basic primitive operations between sets of integers and vectors of integers for
the speedup in their running times. The second algorithm relies on fast polynomial multiplication
as its main engine, while for the first algorithm we define a new “skewed” version of (max, min)-
convolution which is interesting in its own right.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Weighted number of tardy jobs, sumsets, convolutions

1 Throughout the paper we use Õ(·) to suppress logarithmic factors.
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1 Introduction

In this paper we consider the problem of minimizing the total processing times of tardy jobs
on a single machine. In this problem we are given a set of n jobs J = {1, . . . , n}, where
each job j has a processing time pj ∈ N and a due date dj ∈ N. A schedule σ for J is a
permutation σ : {1, . . . , n} → {1, . . . , n}. In a given schedule σ, the completion time Cj of
a job j under σ is given by Cj =

∑
σ(i)≤σ(j) pi, that is, the total processing time of jobs

preceding j in σ (including j itself). Job j is tardy in σ if Cj > dj , and early otherwise. Our
goal is find a schedule with minimum total processing time of tardy jobs. If we assign a
binary indicator variable Uj to each job j, where Uj = 1 if j is tardy and otherwise Uj = 0,
our objective function can be written as

∑
pjUj . In the standard three field notation for

scheduling problems of Graham [5], this problem is denoted as the 1||
∑
pjUj problem (the 1

in the first field indicates a single machine model, and the empty second field indicates there
are no additional constraints).

The 1||
∑
pjUj problem is a very natural and fundamental scheduling problem, which

models a very basic scheduling scenario. As it includes Subset Sum as a special case
(see below), the 1||

∑
pjUj problem is NP-hard. However, it is only hard in the weak

sense, meaning it admits pseudo-polynomial time algorithms. The focus of this paper is
on developing fast pseudo-polynomial time algorithms for 1||

∑
pjUj , improving in several

settings on the best previously known solution from the late 60s. Before we describe our
results, we discuss the previously known state of the art of the problem, and describe how
our results fit into this line of research.

1.1 State of the Art
A famous generalization of the 1||

∑
pjUj problem is the 1||

∑
wjUj problem. Here, each job

j also has a weight wj in addition to its processing time pj and due date dj , and the goal
is to minimize the total weight (as opposed to total processing times) of tardy jobs. This
problem has already been studied in the 60s, and even appeared in Karp’s fundamental paper
from 1972 [6]. The classical algorithm of Lawler and Moore [10] for the problem is one of the
earliest and most prominent examples of pseudo-polynomial algorithms, and it is to date the
fastest known algorithm even for the special case of 1||

∑
pjUj . Letting P =

∑
j∈J pj , their

result can be stated as follows:

I Theorem 1.1 ([10]). 1||
∑
wjUj and 1||

∑
pjUj can both be solved in O(P · n) time.

Note that as we assume that all processing times are integers, we have n ≤ P , and so the
running time of the algorithm in Theorem 1.1 can be bounded by O(P 2). In fact, it makes
perfect sense to analyze the time complexity of a pseudo-polynomial time algorithm for either
problems in terms of P , as P directly corresponds to the total input length when integers are
encoded in unary. Observe that while the case of n = P (all jobs have unit processing times)

https://doi.org/10.4230/LIPIcs.ICALP.2020.19
https://arxiv.org/abs/2003.07104
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essentially reduces to sorting, there are several non-trivial cases where n is smaller than P
yet still quite significant in the O(P · n) term of Theorem 1.1. The fundamental question
this paper addresses is:

“Can we obtain algorithms with running times O(P 2−ε), for any fixed ε > 0,
for either 1||

∑
wjUj or 1||

∑
pjUj ?”

For 1||
∑
wjUj there is some evidence that the answer to this question should be no.

Karp [6] observed that the special case of the 1||
∑
wjUj problem where all jobs have the

same due date d, the 1|dj = d|
∑
wjUj problem, is essentially equivalent to the classical

0/1-Knapsack problem. Cygan et al. [4] and Künnemann et al. [9] studied the (min,+)-
Convolution problem (see Section 2), and conjectured that the (min,+)-convolution between
two vectors of length n cannot be computed in Õ(n2−ε) time, for any ε > 0. Under this
(min,+)-Convolution Conjecture, they obtained lower bounds for several Knapsack related
problems. In our terms, their result can be stated as follows:

I Theorem 1.2 ([4, 9]). There is no Õ(P 2−ε) time algorithm for the 1|dj = d|
∑
wjUj

problem, for any ε > 0, unless the (min,+)-Convolution Conjecture is false. In particular,
1||
∑
wjUj has no such algorithm under this conjecture.

Analogous to the situation with 1||
∑
wjUj , the special case of 1||

∑
pjUj where all jobs

have the same due date d (the 1|dj = d|
∑
pjUj problem) is equivalent to the classical Subset

Sum problem. Recently, there has been significant improvements for Subset Sum resulting
in algorithms with Õ(T + n) running times [2, 7], where n is number of integers in the
instance and T is the target. Due to the equivalence between the two problems, this yields
the following result for the 1|dj = d|

∑
pjUj problem:

I Theorem 1.3 ([2, 7]). 1|dj = d|
∑
pjUj can be solved in Õ(P ) time.

On the other hand, due to equivalence of 1|dj = d|
∑
pjUj and Subset Sum, we also know

that Theorem 1.3 above cannot be significantly improved unless the Strong Exponential Time
Hypothesis (SETH) fails. Specifically, combining a recent reduction from k-SAT to Subset
Sum [1] with the equivalence of Subset Sum and 1|dj = d|

∑
pjUj , yields the following:

I Theorem 1.4 ([1]). There is no Õ(P 1−ε) time algorithm for the 1|dj = d|
∑
pjUj problem,

for any ε > 0, unless SETH fails.

Nevertheless, Theorem 1.4 still leaves quite a big gap for the true time complexity of
1||
∑
pjUj , as it can potentially be anywhere between the Õ(P ) time known already for the

special case of 1|dj = d|
∑
pjUj (Theorem 1.3), and the O(Pn) = O(P 2) time of Lawler and

Moore’s algorithm (Theorem 1.1). This is the starting point of our paper.

1.2 Our Results
The main contribution of this paper is two new pseudo-polynomial time algorithms for
1||
∑
pjUj , each improving on Lawler and Moore’s algorithm in a different sense. Our

algorithms take a different approach to that of Lawler and Moore in that they rely on fast
operators between sets and vectors of numbers.

Our first algorithm improves Theorem 1.1 in case there are sufficiently many jobs in the
instance compared to the total processing time. More precisely, our algorithm has a running
time of Õ(P 7/4), and so it is faster than Lawler and Moore’s algorithm in case n = ω̃(P 3/4).

I Theorem 1.5. 1||
∑
pjUj can be solved in Õ(P 7/4) time.
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The algorithm in Theorem 1.5 uses a new kind of convolution which we coined “Skewed
Convolution” and is interesting in its own right. In fact, one of the main technical contributions
of this paper is a fast algorithm for the (max,min)-Skewed-Convolution problem (see definition
in Section 2).

Our second algorithm for 1||
∑
pjUj improves Theorem 1.1 in case there are not too

many different due dates in the problem instance; that is, D# = |{dj : j ∈ J}| is relatively
small when compared to n. This is actually a very natural assumption, for instance in cases
where delivery costs are high and products are batched to only few shipments. Let D denote
the sum of the different due dates in our instance. Then our second result can be stated as
follows:

I Theorem 1.6. 1||
∑
pjUj can all be solved in Õ(min{P ·D#, P +D}) time.

The algorithm in Theorem 1.6 uses basic operations between sets of numbers, such as the
sumset operation (see Section 2) as basic primitives for its computation, and ultimately
relies on fast polynomial multiplication for its speedup. It should be noted that Theorem 1.6
includes the Õ(P ) result of Theorem 1.3 for 1|dj = d|

∑
pjUj as a special case where D# = 1

or D = d.

1.3 Roadmap
The paper is organized as follows. In Section 2 we discuss all the basic primitives that are
used by our algorithms, including some basic properties that are essential for the algorithms.
We then present our second algorithm in Section 3, followed by our first algorithm in Section 4.
Section 5 describes our fast algorithm for the skewed version of (max,min)-convolution, and
is the main technical part of the paper. Finally, we conclude with some remarks and open
problems in Section 6.

2 Preliminaries

In the following we discuss the basic primitives and binary operators between sets/vectors of
integers that will be used in our algorithms. In general, we will use the letters X and Y to
denote sets of non-negative integers (where order is irrelevant), and the letters A and B to
denote vectors of non-negative integers.

Sumsets

The most basic operation used in our algorithms is computing the sumset of two sets of
non-negative integers:

I Definition 2.1 (Sumsets). Given two sets of non-negative integers X1 and X2, the sumset
of X1 and X2, denoted X1 ⊕X2, is defined by

X1 ⊕X2 = {x1 + x2 : x1 ∈ X1, x2 ∈ X2}.

Clearly, the sumset X1⊕X2 can be computed in O(|X1| · |X2|) time. However, in certain
cases we can do better using fast polynomial multiplication. Consider the two polynomials
p1[α] =

∑
x∈X1

αx and p2[β] =
∑
x∈X2

βx. Then the exponents of all terms in p1 · p2 with
non-zero coefficients correspond to elements in the sumset X1 ⊕X2. Since multiplying two
polynomials of maximum degree d can be done in O(d log d) time [3], we have the following:

I Lemma 2.2. Given two sets of non-negative integers X1, X2 ⊆ {0, . . . , P}, one can compute
the sumset X1 ⊕X2 in O(P logP ) time.
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Set of all Subset Sums

Given set of non-negative integers X, we will frequently be using the set of all sums generated
by subsets of X:

I Definition 2.3 (Subset Sums). For a given set of non-negative integers X, define the set
of all subset sums S(X) as the set of integers given by

S(X) =
{∑
x∈Y

x : Y ⊆ X
}
.

Here, we always assume that 0 ∈ S(X) (as it is the sum of the empty set).

We can use Lemma 2.2 above to compute S(X) from X rather efficiently: First, split
X into two sets X1 and X2 of roughly equal size. Then recursively compute S(X1) and
S(X2). Finally, compute S(X) = S(X1)⊕ S(X2) via Lemma 2.2. The entire algorithm runs
in Õ(

∑
x∈X x) time.

I Lemma 2.4 ([7]). Given a set of non-negative integers X, with P =
∑
x∈X x, one can

compute S(X) in Õ(P ) time.

Convolutions

Given two vectors A = (A[i])ni=0, B = (B[j])nj=0, the (◦, •)-Convolution problem for binary
operators ◦ and • is to compute a vector C = (C[k])2n

k=0 with

C[k] =©i+j=kA[i] •B[j].

A prominent example of a convolution problem is (min,+)-Convolution discussed above;
another similarly prominent example is (max,min)-Convolution which can be solved in
Õ(n3/2) time [8]. For our purposes, it is convenient to look at a skewed variant of this
problem:

I Definition 2.5 (Skewed Convolution). Given two vectors A = (A[i])ni=0, B = (B[j])nj=0, we
define the (max,min)-Skewed-Convolution problem to be the problem of computing the vector
C = (C[k])2n

k=0 where the kth entry in C equals

C[k] = max
i+j=k

min{A[i], B[j] + k}

for each k ∈ {0, . . . , 2n}.

The main technical result of this paper is an algorithm for (max,min)-Skewed-Convolution
that is significantly faster than the naive O(n2) time algorithm.

I Theorem 2.6. The (max,min)-Skewed-Convolution problem for vectors of length n can be
solved in Õ(n7/4) time.

3 Algorithm via Sumsets and Subset Sums

In the following section, we provide a proof of Theorem 1.6 by presenting an algorithm for
1||
∑
pjUj running in Õ(min{P ·D#, P +D}) time. Recall that J = {1, . . . , n} denotes our

input set of jobs, and pj and dj respectively denote the processing time and due date of job
j ∈ {1, . . . , n}. Our goal is to determine the minimum total processing time of tardy jobs in
any schedule for J . Throughout the section we let d(1) < · · · < d(D#) denote the D# ≤ n

different due dates of the jobs in J .
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A key observation for the 1||
∑
pjUj problem, used already by Lawler and Moore,

is that any instance of the problem always has an optimal schedule of a specific type,
namely an Earliest Due Date schedule. An Earliest Due Date (EDD) schedule is a schedule
π : J → {1, . . . , n} such that

any early job precedes all late jobs in π, and
any early job precedes all early jobs with later due dates.

In other words, in an EDD schedule all early jobs are scheduled before all tardy jobs, and all
early jobs are scheduled in non-decreasing order of due dates.

I Lemma 3.1 ([10]). Any 1||
∑
pjUj instance has an optimal schedule which is EDD.

TheD#-many due dates in our instance partition the input set of job J in a natural manner:
Define Ji = {j : dj = d(i)} for each i ∈ {1, . . . , D#}. Furthermore, let Xi = {pj : j ∈ Ji} the
processing-times of job in Ji. According to Lemma 3.1 above, we can restrict our attention to
EDD schedules. Constructing such a schedule corresponds to choosing a subset Ei ⊆ Ji for
each due date d(i) such that

∑
j∈E`,`≤i pj ≤ d

(i) holds for each i ∈ {1, . . . , D#}. Moreover,
the optimal EDD schedule maximizes the total sum of processing times in all selected Ei’s.

Our algorithm is given in Algorithm 1. It successively computes sets S1, . . . , SD# , where
set Si corresponds to the set of jobs J1 ∪ · · · ∪ Ji. In particular, Si includes the total
processing-time of any possible set-family of early jobs {E1, . . . , Ei}. Thus, each x ∈ Si
corresponds to the total processing time of early jobs in a subset of J1 ∪ · · · ∪ Ji. The
maximum value x ∈ SD# therefore corresponds to the maximum total processing time of
early jobs in any schedule for J . Thus, the algorithm terminates by returning the optimal
total weight of tardy jobs P − x.

Algorithm 1 SumsetScheduler(J).

1: Let d(1) < . . . < d(D#) denote the different due dates of jobs in J .
2: Compute Xi = {pj : dj = d(i)} for each i ∈ {1, . . . , D#}.
3: Compute S(X1), . . . ,S(XD#).
4: Let S0 = ∅.
5: for i = 1, . . . , D# do

– Compute Si = Si−1 ⊕ S(Xi).
– Remove any x ∈ Si with x > d(i).

6: Return P − x, where x is the maximum value in SD# .

Correctness of our algorithm follows immediately from the definitions of sumsets and
subset sums, and from the fact that we prune out elements x ∈ Si with x > d(i) at each step
of the algorithm. This is stated more formally in the lemma below.

I Lemma 3.2. Let i ∈ {1, . . . , D#}, and let Si be the set of integers at the end of the second
step of 5(i). Then x ∈ Si if and only if there are sets of jobs E1 ⊆ J1, . . . , Ei ⊆ Ji such that∑

j∈
⋃i

`=1
E`
pj = x, and∑

j∈E`,`≤i0 pj ≤ d
(i0) holds for each i0 ∈ {1, . . . , i}.

Proof. The proof is by induction on i. For i = 1, note that S1 = S(X1) \ {x : x > d(1)} at
the end of step 5(1). Since S(X1) includes the total processing time of any subset of jobs in
J1, the first condition of the lemma holds. Since {x : x > d(1)} includes all integers violating
the second condition of the lemma, the second condition holds.
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Let i > 1, and assume the lemma holds for i− 1. Consider some x ∈ Si at the end of the
second step of 5(i). Then by Definition 2.1, we have x = x1 + x2 for some x1 ∈ Si−1 and
x2 ∈ S(Xi) due the first step of 5(i). By definition of S(Xi), there is some Ei ⊆ Ji with
total processing time x2. By our inductive hypothesis there is E1 ⊆ J1, . . . , Ei−1 ⊆ Ji−1
such that

∑
j∈
⋃i

`=1
E`
pj = x1, and

∑
j∈E`,`≤i0 pj ≤ d(i0) holds for each i0 ∈ {1, . . . , i− 1}.

Furthermore, by the second step of 5(i), we know that
∑
j∈E`,`≤i pj = x ≤ d(i). Thus,

E1, . . . , Ei satisfy both conditions of the lemma. J

Let us next analyze the time complexity of the SumsetScheduler algorithm. Steps 1
and 2 can be both performed in Õ(n) = Õ(P ) time. Next observe that step 3 can be done in
total Õ(P ) time using Lemma 2.4, as X2, . . . , XD# is a partition of the set of all processing
times of J , and these all sum up to P . Next, according to Lemma 2.2, each sumset operation
at step 5 can be done in time proportional to the largest element in the two sets, which is
always at most P . Thus, since we perform at most D# sumset operations, the merging step
requires Õ(D# · P ) time, which gives us the total running time of the algorithm above.

Another way to analyze the running time of SumsetScheduler is to observe that the
maximum element participating in the ith sumset is bounded by d(i+1). It follows that we
can write the running time of the merging step as Õ(D), where D =

∑D#
i=1 d

(i). Thus, we
have just shown that 1||

∑
pjUj can be solved in Õ(min{D# · P,D + P}) time, completing

the proof of Theorem 1.6.

4 Algorithm via Fast Skewed Convolutions

We next present our Õ(P 7/4) time algorithm for 1||
∑
pjUj , providing a proof of Theorem 1.5.

As in the previous section, we let d(1) < · · · < d(D#) denote the D# ≤ n different due dates
of the input jobs J , and Ji = {j : dj = d(i)} and Xi = {pj : j ∈ Ji} as in Section 3 for each
i ∈ {1, . . . , D#}.

For a consecutive subset of indices I = {i0, i0 + 1, . . . , i1}, with i0, . . . , i1 ∈ {1, . . . , D#},
we define a vector M(I), where M(I)[x] equals the latest (that is, maximum) time point x0
for which there is a subset of the jobs in

⋃
i∈I Ji with total processing time equal to x that

can all be scheduled early in an EDD schedule starting at x0. If no such subset of jobs exists,
we define M(I)[x] = +∞.

For a singleton set I = {i}, the vector M(I) is easy to compute once we have computed
the set S(Xi):

M({i})[x] =
{
d(i) − x if x ∈ S(Xi) and x ≤ d(i),

+∞ otherwise.
(1)

For larger sets of indices, we have the following lemma.

I Lemma 4.1. Let I1 = {i0, i0 + 1, . . . , i1} and I2 = {i1 + 1, i1 + 2, . . . , i2} be any two sets
of consecutive indices with i0, . . . , i1, . . . , i2 ∈ {1, . . . , D#}. Then for any value x we have:

M(I1 ∪ I2)[x] = max
x1+x2=x

min{M(I1)[x1],M(I2)[x2]− x1}.

Proof. Let I = I1 ∪ I2. Then M(I)[x] is the latest time point after which a subset of
jobs J∗ ⊆

⋃
i∈I Ji of total processing time x can be scheduled early in an EDD schedule.

Let x1 and x2 be the total processing times of jobs in J∗1 = J∗ ∩
(⋃

i∈I1
Ji
)
and J∗2 =

J∗ ∩
(⋃

i∈I2
Ji
)
, respectively. Then x = x1 + x2. Clearly, M(I)[x] ≤ M(I1)[x1], since we

have to start scheduling the jobs in J∗1 at time M(I1)[x1] by latest. Similarly, it holds that
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M(I)[x] ≤M(I2)[x2]− x1 since the jobs in J∗2 are scheduled at latest at M(I2)[x2] and the
jobs in J∗1 have to be processed before that time point in an EDD schedule. In combination,
we have shown that LHS ≤ RHS in the equation of the lemma.

To prove that LHS ≥ RHS, we construct a feasible schedule for jobs in
⋃
i∈I Ji starting

at RHS. Let x1 and x2 be the two values with x1 + x2 = x that maximize RHS. Then there
is a schedule which schedules some jobs J∗1 ⊆

⋃
i∈I1

Ji of total processing time x1 beginning
at time min{M(I1)[x1],M(I2)[x2]− x1} ≤M(I1)[x1], followed by a another subset of jobs
J∗2 ⊆

⋃
i∈I2

Ji of total processing time x2 starting at time min{M(I1)[x1],M(I2)[x2]− x1}+
x1 ≤ M(I2)[x2]. This is a feasible schedule starting at time RHS for a subset of jobs in⋃
i∈I Ji which has total processing time x. J

Note that the equation given in Lemma 4.1 is close but not precisely the equation defined
in Definition 2.5 for the (min,max)-Skewed-Convolution problem. Nevertheless, the next
lemma shows that we can easily translate between these two concepts.

I Lemma 4.2. Let A and B be two integer vectors of P entries each. Given an algorithm for
computing the (max,min)-Skewed-Convolution of A and B in T (P ) time, we can compute in
T (P ) +O(P ) time the vector C = A⊗B defined by

C[x] = max
x1+x2=x

min{A[x1], B[x2]− x1}.

Proof. Given A and B, construct two auxiliary vectors A0 and B0 defined by A0[x] = B[x]+x
and B0[x] = A[x] for each entry x. Compute the (max,min)-Skewed-Convolution of A0
and B0, and let C0 denote the resulting vector. We claim that the vector C defined by
C[x] = C0[x]− x equals A⊗B. Indeed, we have

C0[x]− x = max
x1+x2=x

min{A0[x1], B0[x2] + x} − x

= max
x1+x2=x

min{A0[x1]− x,B0[x2]}

= max
x1+x2=x

min{B[x1] + x1 − x,A[x2]}

= max
x1+x2=x

min{B[x1]− x2, A[x2]}

= max
x1+x2=x

min{A[x1], B[x2]− x1},

where in the third step we expanded the definition of A0 and B0 and in the last step we used
the symmetry of x1 and x2. J

We are now in position to describe our algorithm called ConvScheduler which is
depicted in Algorithm 2. The algorithm first computes the subset sums S(X1), . . . ,S(XD#),
and the set of vectorsM = {M1, . . . ,MD#}. Following this, it iteratively combines every
two consecutive vectors inM by using the ⊗ operation. The algorithm terminates when
M = {M1}, where at this stage M1 corresponds to the entire set of input jobs J . It
then returns P − x, where x is the maximum value with M1[x] < ∞; by definition, this
corresponds to a schedule for J with P−x total processing time of tardy jobs. For convenience
of presentation, we assume that D# is a power of 2.

Correctness of this algorithm follows directly from Lemma 4.1. To analyze its time
complexity, observe that steps 1–4 can be done in Õ(P ) time (using Lemma 2.4). Step 5
is performed O(logD#) = O(logP ) times, and each step requires a total of Õ(P 7/4) time
according to Theorem 2.6, as the total sizes of all vectors at each step is O(P ). Finally,
step 6 requires O(P ) time. Summing up, this gives us a total running time of Õ(P 7/4), and
completes the proof of Theorem 1.5 (apart from the proof of Theorem 2.6).
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Algorithm 2 ConvScheduler(J).

1: Let d(1) < . . . < d(D#) denote the different due dates of jobs in J .
2: Compute Xi = {pj : dj = d(i)} for each i ∈ {1, . . . , D#}.
3: Compute S(X1), . . . ,S(XD#).
4: ComputeM = {M1 = M(1), . . . ,MD# = M(D#)}.
5: while |M| > 1 do

– Compute Mi = M2i−1 ⊗M2i for each i ∈ {1, . . . , |M|/2}.
6: Return P − x, where x is the maximum value with M1[x] <∞.

5 Fast Skewed Convolutions

In the following section we present our algorithm for (max,min)-Skewed-Convolution, and
provide a proof for Theorem 2.6. Let A = (A[i])ni=0 and B = (B[j])nj=0 denote the input
vectors for the problem throughout the section.

We begin by first defining the problem slightly more generally, in order to facilitate our
recursive strategy later on. For this, for each integer ` ∈ {0, . . . , logn}, let A` = bA/2`c
and B` = bB/2`c, where rounding is done component-wise. We will compute vectors
C` = (C`[k])2n

k=0 defined by:

C`[k] = max
i+j=k

min{A`[i], B`[j] + bk/2`c}.

Observe that a solution for ` = 0 yields a solution to the original (max,min)-Skewed-
Convolution problem, and for ` ≥ log 2n the problem degenerates to (max,min)-Convolution.

We next define a particular kind of additive approximation of vectors C`. We say that a
vector D` is a good approximation of C` if C`[k]−2 ≤ D`[k] ≤ C`[k] for each k ∈ {0, . . . , 2n}.
Now, the main technical part of our algorithm is encapsulated in the following lemma.

I Lemma 5.1. There is an algorithm that computes C` in Õ(n7/4) time, given A`, B`, and
a good approximation D` of C`.

We postpone the proof of Lemma 5.1 for now, and instead show that it directly yields
our desired algorithm for (max,min)-Skewed-Convolution:

Proof of Theorem 2.6. In order to compute C = C0, we perform an (inverse) induction on `:
As mentioned before, if ` ≥ log 2n, then we can neglect the “+ bk/2`c” term and compute
C` in Õ(n3/2) = Õ(n7/4) time using a single (max,min)-Convolution computation [8].

For the inductive step, let ` < log 2n and assume that we have already computed C`+1.
We construct the vector D` = 2C`+1, and argue that it is a good approximation of C`.
Indeed, for each entry k, on the one hand, we have:

D`[k] = 2C`+1[k] = 2 · max
i+j=k

min{bA`[i]/2c, bB`[j]/2c+ bk/2`+1c}

≤ max
i+j=k

min{A`[i], B`[j] + bk/2`c} = C`[k];

and on the other hand, we have:

D`[k] = 2C`+1[k] = 2 · max
i+j=k

min{bA`[i]/2c, bB`[j]/2c+ bk/2`+1c}

≥ max
i+j=k

min{A`[i]− 1, B`[j] + bk/2`c − 2} ≥ C`[k]− 2.

Thus, using D` we can apply Lemma 5.1 above to obtain C` in Õ(n7/4) time. Since there are
O(logn) inductive steps overall, this is also the overall time complexity of the algorithm. J
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It remains to prove Lemma 5.1. Recall that we are given A`, B`, and D`, and our goal
is to compute the vector C` in Õ(n7/4) time. We construct two vectors L` and R` with 2n
entries each, defined by

L`[k] = max
{
A`[i0] : A`[i0] ≤ B`[k − i0] + bk/2`c and

D`[k] ≤ A`[i0] ≤ D`[k] + 2

}
,

and

R`[k] = max
{
B`[j0] + bk/2`c : B`[j0] + bk/2`c ≤ A`[k − j0] and

D`[k] ≤ B`[j0] + bk/2`c ≤ D`[k] + 2

}
for k ∈ {0, . . . , 2n}. That is, L`[k] and R`[k] respectively capture the largest value attained
as the left-hand side or right-hand side of the inner min-operation in C`[k], as long as that
value lies in the feasible region approximated by D`[k]. Since D` is a good approximation,
the following lemma is immediate from the definitions:

I Lemma 5.2. C`[k] = max{L`[k], R`[k]} for each k ∈ {0, . . . , 2n}.

According to Lemma 5.2, it suffices to compute L` and R`. We focus on computing L` as
the algorithm for computing R` follows after applying minor modifications.

Let 0 < δ < 1 be a fixed constant to be determined later. We say that an index
k ∈ {0, . . . , n} is light if

|{i : D`[k] ≤ A`[i] ≤ D`[k] + 2}| ≤ nδ.

Informally, k is light if the number of candidate entries A`[i] which can equal C`[k] is relatively
small (recall that D`[k] ≤ C`[k] ≤ D`[k] + 2, as D` is a good approximation of C`). If k is
not light then we say that it is heavy.

Our algorithm for computing L` proceeds in three main steps: In the first step it handles
all light indices, in the second step it sparsifies the input vector, and in the third step it
handles all heavy indices:

Light indices: We begin by iterating over all light indices k ∈ {0, . . . , 2n}. For each light
index k, we iterate over all entries A`[i] satisfying D`[k] ≤ A`[i] ≤ D`[k] + 2, and set
L`[k] to be the maximum A`[i] among those entries with A`[i] ≤ B`[k− i] + bk/2`c. Note
that after this step, we have

L`[k] = max{A`[i0] : A`[i0] ≤ B`[k − i0] + bk/2`c and D`[k] ≤ A`[i0] ≤ D`[k] + 2}

for each light index k.

Sparsification step: After dealing with the light indices, several entries of A` become
redundant. Consider an entry A`[i] for which |{i0 : A`[i]− 2 ≤ A`[i0] ≤ A`[i] + 2}| ≤ nδ.
Then all indices k for which L`[k] might equal A`[i] must be light, and are therefore
already dealt with in the previous step. Consequently, it is safe to replace A`[i] by −∞
so that A`[i] no longer plays a role in the remaining computation.

Heavy indices: After the sparsification step A` contains few distinct values. Thus, our
approach is to fix any such value v and detect whether L`[k] ≥ v. To that end, we
translate the problem into an instance of (max,min)-Convolution: Let (A`v[i])ni=0 be an
be an indicator-like vector defined by A`v[i] = +∞ if A`[i] = v, and otherwise A`v[i] = −∞.
We next compute the vector L`v defined by L`v[k] = bk/2`c+ maxi+j=k min{A`v[i], B`[j]}
using a single computation of (max,min)-Convolution.
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We choose

L`[k] = max{v : L`v[k] ≥ v and D`[k] ≤ v ≤ D`[k] + 2}

for any heavy index k and claim that L`[k] equals max{A`[i0] : A`[i0] ≤ B`[k−i0]+bk/2`c}.
On the one hand, if L`v[k] ≥ v then there are indices i and j with i + j = k for which
A`[i] = v and B`[j] + bk/2`c ≥ A`[i] = v. Thus, the computed value L`[k] is not
greater than

L`[k] ≤ max{A`[i0] : A`[i0] ≤ B`[k − i0] + bk/2`c and D`[k] ≤ A`[i0] ≤ D`[k] + 2}.

On the other hand, for all values v for which A`[i] = v for some i ∈ {0, . . . , n}, we
have if v = A`[i] ≤ B`[k − i] + bk/2`c then A`v[i] = −∞, which in turn implies that
A`v[i] ≥ B`[k − i] + bk/2`c ≥ A`[i] = v. Thus, our selection of L`[k] is also at least as
large as

L`[k] ≥ max{A`[i0] : A`[i0] ≤ B`[k − i0] + bk/2`c and D`[k] ≤ A`[i0] ≤ D`[k] + 2},

and hence, these two values must be equal.

This completes the description of our algorithm. As we argued its correctness above,
what remains is to analyze its time complexity. Note that we can determine in O(logn) time
whether an index k is light or heavy, by first sorting the values in A`. For each light index k,
determining L`[k] can be done in O(nδ) time (on the sorted A`), giving us a total of Õ(n1+δ)
time for the first step. For the second step, we can determine whether a given entry A`[i]
can be replaced with −∞ in O(logn) time, giving us a total of Õ(n) time for this step.

Consider then the final step of the algorithm. Observe that after exhausting the
sparsification step, A` contains at most O(n1−δ) many distinct values: For any surviving
value v, there is another (perhaps different) value v′ of difference at most 2 from v that
occurs at least nδ times in A`, and so there can only be at most O(n1−δ) such distinct
values. Thus, the running time of this step is dominated by the running time of O(n1−δ)
(max,min)-Convolution computations, each requiring Õ(n3/2) time using the algorithm of [8],
giving us a total of Õ(n5/2−δ) time for this step.

Thus, the running time of our algorithm is dominated by the Õ(n1+δ) running time of its
first step, and the Õ(n5/2−δ) running time of its last step. Choosing δ = 3/4 gives us Õ(n7/4)
time for both steps, which is the time promised by Lemma 5.1. Thus, Lemma 5.1 holds.

6 Discussion and Open Problems

In this paper we presented two algorithms for the 1||
∑
pjUj problem; the first running in

Õ(P 7/4) time, and the second running in Õ(min{P ·D#, P + D}) time. Both algorithms
provide the first improvements over the classical Lawler and Moore algorithm in 50 years,
and use more sophisticated tools such as polynomial multiplication and fast convolutions.
Moreover, both algorithms are very easy to implement given a standard ready made FFT
implementation for fast polynomial multiplication. Nevertheless, there are still a few ways
which our results can be improved or extended:

Multiple machines: A natural extension of the 1||
∑
pjUj problem is to the setting of

multiple parallel machines, the Pm||
∑
pjUj . Lawler and Moore’s algorithm can be used

to solve Pm||
∑
pjUj in O(Pm · n) time, where m is the number of machines. A priori,

there is no reason to believe that this cannot be improved to Õ(Pm), or even better.
It is not hard to extend the algorithm in Theorem 1.6 to an algorithm with running
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time Õ(Pm ·D#) for the m parallel machine setting, by using m-variate polynomials for
implementing sumsets in Lemma 2.2. However, a similar extension for the algorithm in
Theorem 1.5 is far less direct.

Even faster skewed convolutions: We have no indication that our algorithm for (max,min)-
Skewed-Convolution is the fastest possible. It would interesting to see whether one can
improve its time complexity, say to Õ(P 3/2). Naturally, any such improvement would
directly improve Theorem 1.5.

Conversely, one could try to obtain some sort of lower bound for the problem,
possibly in the same vein as Theorem 1.2. Improving the time complexity beyond
Õ(P 3/2) seems difficult as this would directly imply an improvement to the (max,min)-
Convolution problem. Indeed, let A, B be a given (max,min)-Convolution instance
and construct vectors A0, B0 with A0[i] = N · A[i] and B0[j] = N · B[j] for N =
2n + 1. If C0 is the (max,min)-Skewed-Convolution of A0 and B0 (that is, C0[k] =
maxi+j=k min{A0[i], B0[j] + k}), then the vector C with C[k] = bC0[k]/Nc is the
(max,min)-Convolution of A and B.

Other scheduling problems: Finally, it will be interesting to see other scheduling problems
where the techniques used in this paper can be applied. A good first place to start might
be to look at other problems which directly generalize Subset Sum.
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1 Introduction

In this paper we investigate the well-studied topic of curve similarity in the context of the
burgeoning area of geometric computing under uncertainty. While classical algorithms in
computational geometry typically assume the input point locations are known exactly, in
recent years there has been a concentrated effort to adapt these algorithms to uncertain
inputs, which can more faithfully model real-world inputs. The need to model such uncertain
inputs is perhaps no more clear than for the location data of a moving object obtained from
physical devices, which is inherently imprecise due to issues such as measurement error,
sampling error, and network latency [42, 43]. Moreover, to ensure location privacy, one may
purposely add uncertainty to the data by adding noise or reporting positions as geometric
regions rather than points. (See the survey by Krumm [35] and the references therein.)

Here we consider both the continuous and discrete Fréchet distance for uncertain curves.
Given the applications above, our uncertain input is given as a sequence of compact regions,
from which a polygonal curve is realised by selecting one point from each region. Our goal is
to find, for a given pair of uncertain curves, the upper bound, lower bound, and expected
Fréchet distance, where the upper (resp. lower) bound Fréchet distance is the maximum
(resp. minimum) distance over any realisation. For the expected Fréchet distance we assume
a probability distribution is provided that describes how each vertex on a curve is chosen
from the compact region. Previously, Ahn et al. [5] considered the lower bound problem
for the discrete Fréchet distance, giving a polynomial-time algorithm for points in constant
dimension. The authors also gave efficient approximation algorithms for the discrete upper
bound Fréchet distance for uncertain inputs, where the approximation factor depends on
the spread of the region diameters or how well-separated they are. Subsequently, Fan and
Zhu showed that the discrete upper bound Fréchet distance is NP-hard for uncertain inputs
modelled as thin rectangles [25]. To our knowledge, we are the first to consider either variant
for the continuous Fréchet case, and the first to consider the expected Fréchet distance.

1.1 Previous Work
Geometric computing under uncertainty. The two most common models of geometric
uncertainty are the locational model [36] and the existential model [46, 48]. In the existential
model the location of an uncertain point is known, but the point may not be present; in the
locational model we know that each uncertain point exists, but not its exact location.

In this paper we consider the locational model. Each uncertain point is a set of potential
locations. We call an uncertain point indecisive if the set of potential locations is finite, or
imprecise if the set is not finite but is a convex region. A realisation of a set of uncertain
points is a selection of one point from each uncertain point. The goal is typically to
compute the realisation of a set of uncertain points that minimises or maximises some
quantity (e.g. area, distance, perimeter) of some underlying geometric structure (e.g. convex
hull, MST) [1, 7, 14, 17, 21, 23, 28, 34, 37, 38, 39, 45, 47]. By assigning a probability
distribution to uncertain points, one can also consider the expectation or distribution of
various measures [2, 4, 32, 41].

Fréchet distance. Computing the Fréchet distance between two precise curves can be done
in near-quadratic time [3, 6, 12], and assuming the Strong Exponential Time Hypothesis
(SETH) it cannot be computed or even approximated well in strongly subquadratic time [9, 15].
However, for several restricted versions the Fréchet distance can be calculated more quickly,
for example for c-packed curves [20], when the edges are long [29], or when the alignment of
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Table 1 Hardness results for the decision problems in this paper. Ahn et al. [5] solve the lower
bound problem for disks, but their algorithm extends to the indecisive curves as well as line segment
imprecision.

indecisive imprecise
disks line segments

discrete Fréchet distance
LB Polynomial [5] Polynomial [5] Polynomial [5]
UB NP-complete NP-complete NP-complete
Exp #P-hard — #P-hard

Fréchet distance
LB Polynomial — NP-complete
UB NP-complete NP-complete NP-complete
Exp #P-hard — —

curves is restricted [11, 40]. Many variants of the problem have been considered: Fréchet
distance with shortcuts [16, 19], weak Fréchet distance [6], discrete Fréchet distance [3, 22],
Fréchet gap distance [24], Fréchet distance under translations [10, 26], and more.

1.2 Our Contributions
In this paper we present an extensive study of the Fréchet distance for uncertain curves. We
provide a wide range of hardness results and present several approximations and polynomial-
time solutions to restricted versions. We are the first to consider the continuous Fréchet
distance in the uncertain setting, as well as the first to consider the expected Fréchet distance.

On the negative side, we present a plethora of hardness results (Table 1; details follow
in Section 2). The hardness of the lower bound case is curious: while the variants discrete
Fréchet distance on imprecise inputs [5] and, as we prove, continuous Fréchet distance on
indecisive inputs both permit a simple dynamic programming solution, the variant continuous
Fréchet distance on imprecise input has just enough (literal) wiggle room to show NP-hardness
by reduction from SubsetSum.

We complement the lower bound hardness result by two approximation algorithms
(Section 3). The first is a FPTAS for general uncertain curves in constant dimension when
the ratio between the diameter of the uncertain points and the lower bound Fréchet distance
is polynomially bounded. The second is a 3-approximation for separated imprecise curves,
but uses a simpler greedy approach that runs in near-linear time.

The NP-hardness of the upper bound by a reduction from CNF-SAT is less surprising,
but requires a careful set-up and analysis of the geometry to then extend it to a reduction
from #CNF-SAT to the expected (discrete or continuous) Fréchet distance. However, by
adding the common constraint that the alignment between the curves needs to stay within
a Sakoe–Chiba [44] band of constant width (see Section 4 for definition and results), we
can solve these problems in polynomial time for indecisive curves. Sakoe–Chiba bands are
frequently used for time-series data [8, 33, 44] and trajectories [11, 18], when the alignment
should (or is expected to) not vary too much from a certain “natural” alignment.

1.3 Preliminaries
Curves. Denote [n] ≡ {1, 2, . . . , n}. Consider a sequence of d-dimensional points π =
〈p1, p2, . . . , pn〉. A polygonal curve π is defined by these points by linearly interpolating
between the successive points and can be seen as a continuous function: π(i + α) = (1 −
α)pi + αpi+1 for i ∈ [n − 1] and α ∈ [0, 1]. The length of such a curve is the number of
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Figure 1 Left: Discrete Fréchet distance, where an optimal coupling is shown in dashed red lines.
Middle: Fréchet distance, dashed green lines indicate specific values for δ for optimal functions φ1,
φ2. Right: Free-space diagram for threshold δ = 2.15. One can draw a monotonous path from
the lower left corner to the upper right corner of the diagram, so the Fréchet distance between
trajectories is below the threshold.

its vertices, |π| = n. Where we deem important to distinguish between points that are a
part of the curve and other points, we denote the polygonal curve by π = 〈π1, π2, . . . , πn〉.
We denote the concatenation of two polygonal curves π and σ of lengths n and m by π ‖ σ;
the new curve follows π, then has a segment between π(n) and σ(1), and then follows σ.
Similarly, p ‖ q (or simply pq) denotes the line segment between points p and q. We can
generalise this notation:∥∥∥

i∈[n]

pi ≡ p1 ‖ p2 ‖ · · · ‖ pn ≡ π .

We denote a subcurve from vertex i to j of curve π as π[i : j] ≡ pi ‖ pi+1 ‖ · · · ‖ pj .

Metrics definitions. Given two points x, y ∈ Rd, denote their Euclidean distance by ‖x−y‖.
For two compact sets X,Y ⊂ Rd, denote their distance by ‖X − Y ‖ = minx∈X,y∈Y ‖x− y‖.
Throughout we treat the dimension d as a small constant.

Let Φn denote the set of all reparametrisations of length n, defined as continuous non-
decreasing functions φ : [0, 1]→ [1, n] where φ(0) = 1 and φ(1) = n. Given a pair of curves π
and σ of lengths n and m, respectively, and corresponding reparametrisations φ1 ∈ Φn and
φ2 ∈ Φm, define widthφ1,φ2(π, σ) = maxt∈[0,1]‖π(φ1(t))− σ(φ2(t))‖.

The width represents the maximum distance between two points traversing the curves from
start to end according to φ1 and φ2 (which allow varying speed, but no backtracking). The
Fréchet distance dF(π, σ) is defined as the minimum possible width over all such traversals:

dF(π, σ) = inf
φ1∈Φn,φ2∈Φm

width
φ1,φ2

(π, σ) = inf
φ1∈Φn,φ2∈Φm

max
t∈[0,1]

‖π(φ1(t))− σ(φ2(t))‖ .

The discrete Fréchet distance ddF(π, σ) is defined similarly, except that we do not traverse
edges of the curves, but must jump from one vertex to the next on either or both curves.
We define a valid coupling as a sequence c = 〈(p1, q1), . . . , (pr, qr)〉 of pairs from [n] × [m]
where (p1, q1) = (1, 1), (pr, qr) = (n,m), and, for any i ∈ [r − 1] we have (pi+1, qi+1) ∈
{(pi + 1, qi), (pi, qi + 1), (pi + 1, qi + 1)} . Let C be the set of all valid couplings on curves of
lengths n and m, then

ddF(π, σ) = inf
c∈C

max
s∈[|c|]

‖π(ps)− σ(qs)‖ ,

where cs = (ps, qs) for all s ∈ [|c|]. Both distances, as well as a common approach to
computing Fréchet distance, are illustrated in Figure 1.
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(0, 0) at 10:01

(1, 1) at 10:05

(0, 2) at 10:07

(2, 4) at 10:12

Figure 2 Left: Trajectory data. Middle: Polygonal curve on the data. Right: Imprecise curve
with disks as imprecision regions and real curve.

Uncertainty model. An uncertain point is commonly represented as a compact region
U ⊂ Rd. Usually, it is a finite set of points, a disk, a rectangle, or a line segment. The
intuition is that only one point from this region represents the true location of the point;
however, we do not know which one. A realisation p of such a point is one of the points
from the region U . When needed we assume the realisations are drawn from U according
to a known probability distribution P. We denote the diameter of any compact set (e.g. an
uncertain point) U ⊂ Rd by diam(U) = maxp,q∈U‖p− q‖. An indecisive point is a special
case of an uncertain point: it is a set of points U = {p1, . . . , pk}, where each point pi ∈ Rd
for i ∈ [k]. Similarly, an imprecise point is a compact convex region U ⊂ Rd. We will often
use disks or line segments as such regions. Note that a precise point is a special case of an
indecisive point (set of size one) and an imprecise point (disk of radius zero).

Uncertain curves and distances. Define an uncertain curve as a sequence of uncertain
points U = 〈U1, . . . , Un〉. A realisation π b U of an uncertain curve is a polygonal curve
π = 〈p1, . . . , pn〉, where each pi is a realisation of the corresponding uncertain point Ui. We
denote the set of all realisations of an uncertain curve U by Real(U) (see Figure 2). In a
probabilistic setting, we write π bP U to denote that each point of π gets drawn from the
corresponding uncertainty region independently according to distribution P.

For uncertain curves U and V , define the upper bound, lower bound, and expected discrete
Fréchet distance (and extend to continuous Fréchet distance dmax

F , dmin
F , dE(P)

F using dF) as:

dmax
dF (U ,V) = max

πbU,σbV
ddF(π, σ) , dmin

dF (U ,V) = min
πbU,σbV

ddF(π, σ) ,

d
E(P)
dF (U ,V) = EπbPU,σbPV [ddF(π, σ)] .

If the distribution is clear from the context, we write dE
F and dE

dF. The definitions above also
apply if one of the curves is precise, as a precise curve is a special case of an uncertain curve.

2 Hardness Results

In this section, we first discuss the hardness results for the upper bound and expected value
of the continuous and discrete Fréchet distance for indecisive and imprecise curves. We then
show hardness of finding the lower bound continuous Fréchet distance on imprecise curves.
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2.1 Upper Bound and Expected Fréchet Distance
We present proofs of NP-hardness and #P-hardness for the upper bound and expected Fréchet
distance for both indecisive and imprecise curves by showing polynomial-time reductions from
CNF-SAT and #CNF-SAT (counting version). We consider the upper bound problem for
indecisive curves and then illustrate how the construction can be used to show #P-hardness
for the expected Fréchet distance (both discrete and continuous). We then illustrate how the
construction can be adapted to show hardness for imprecise curves. All our constructions
are in two dimensions. The missing proofs can be found in the full version [13].

2.1.1 Upper Bound Fréchet Distance on Indecisive Curves
Define the following problem and its continuous counterpart, using dmax

F instead:

I Problem 1. Upper Bound Discrete Fréchet: Given two uncertain curves U and V
and a threshold δ ∈ R+, decide if dmax

dF (U ,V) > δ.

Suppose we are given a CNF-SAT formula C with n clauses, C1 to Cn, on m boolean
variables, x1 to xm. We pick some value 0.12 ≤ ε < 0.25.1 Construct a variable curve, where
each variable corresponds to an indecisive point with locations (0, 0.5 + ε) and (0,−0.5− ε);
the locations are interpreted as assigning the variable True and False. Any realisation of
the curve corresponds to a variable assignment. Each indecisive point is followed by a precise
point that is far away, to force synchronisation with the other curve:

VGj = {(0, 0.5 + ε), (0,−0.5− ε)} ‖ (2, 0) .

Consider a specific clause Ci of the formula. We define an assignment gadget AGi,j for
each variable xj and clause Ci depending on how the variable occurs in the clause.

AGi,j =


(0,−0.5) ‖ (1, 0) if xj is a literal of Ci,
(0, 0.5) ‖ (1, 0) if ¬xj is a literal of Ci,
(0, 0) ‖ (1, 0) otherwise.

Note that if assignment xj = True makes a clause Ci true, then the first precise point of the
corresponding assignment gadget appears at distance 1 +ε from the realisation corresponding
to setting xj = True of the indecisive point in VGj . We can repeat the construction, yielding
a variable clause gadget and an assignment clause gadget:

VCG = (−2, 0) ‖
∥∥∥

j∈[m]

VGj , ACGi = (−1, 0) ‖
∥∥∥

j∈[m]

AGi,j .

Consider the Fréchet distance between the two gadgets. Observe that matching a synchron-
isation point from one gadget with a non-synchronisation point in the other yields a distance
more than 1 + ε, whereas matching synchronisation points pairwise and non-synchronisation
points pairwise will yield the distance at most 1+ε. So we only consider one-to-one couplings,
i.e. we match point i on one curve to point i on the other curve, for all i.

Now, if a realisation corresponds to a satisfying assignment, then for some xj we have
picked the realisation that is opposite from the coupled point on the clause curve, yielding
the bottleneck distance of 1 + ε. If the realisation corresponds to a non-satisfying assignment,
then the synchronisation points establish the bottleneck, yielding the distance 1. So, we can
clearly distinguish between a satisfying and a non-satisfying assignment for a clause.

1 This range is determined by the relative distances in the construction.
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Next, we define the variable curve and the clause curve as follows:

VC = (0, 0) ‖VCG ‖ (0, 0) , CC =
∥∥∥

i∈[n]

ACGi .

Observe that the synchronisation points at (−2, 0) and (−1, 0) ensure that for any optimal
coupling we match up VCG with some ACGi as described before. Also note that all the
points on CC are within distance 1 from (0, 0). Therefore, we can always pick any one of n
clauses to align with VCG, and couple the remaining points to (0, 0); the bottleneck distance
will then be determined by the distance between VCG and the chosen ACGi.

Now consider a specific realisation of VCG. If the corresponding assignment does not
satisfy C, then we can synchronise VCG with a clause that is false to obtain a distance of 1.
If the assignment corresponding to the realisation satisfies all clauses, we must synchronise
VCG with a satisfied clause, which yields a distance of 1 + ε. The construction is shown in
Figures 3 and 4.

We can use similar reasoning to arrive at the same conclusion if we compute the Fréchet
distance instead. The necessary adaptations are presented in the full version [13].

I Theorem 2. The problems Upper Bound Discrete Fréchet and Upper Bound
Continuous Fréchet for indecisive curves are NP-hard.

2.1.2 Expected Fréchet Distance on Indecisive Curves
We show that finding expected discrete Fréchet distance is #P-hard by providing a polynomial-
time reduction from #CNF-SAT, i.e. the problem of finding the number of satisfying
assignments to a CNF-SAT formula. Missing details can be found in the full version [13].
Define the following problem and its continuous counterpart:

I Problem 3. Expected Discrete Fréchet: Find dE(U)
dF (U ,V) for uncertain curves U ,V.

The main idea is to derive an expression for the number of satisfying assignments in terms
of dE(U)

dF (VC,CC). This works, since there is a one-to-one correspondence between boolean
variable assignment and a choice of realisation of VC, so counting the number of satisfying
assignments corresponds to finding the proportion of realisations yielding large Fréchet
distance. We can establish the result for Expected Continuous Fréchet similarly.

I Theorem 4. The problems Expected Discrete Fréchet and Expected Continuous
Fréchet for indecisive curves are #P-hard.

2.1.3 Imprecise Curves
We have so far considered indecisive points; instead, we can look at imprecise points, namely,
line segments or disks. We can show similar hardness results in that setting. We alter the
construction – instead of the point {(0, 0.5+ε), (0,−0.5−ε)}, we either have the disk centred
at (0, 0) with radius 0.5 + ε or the line segment connecting (0,−0.5 − ε) and (0, 0.5 + ε).
Observe that the locations of the indecisive point are still on the disk or the line segment.
We can show that the upper bound decision problem is NP-hard by showing that we can
always consider only the extreme locations on the imprecise points that coincide with the
locations of the indecisive points.

I Theorem 5. The problems Upper Bound Discrete Fréchet and Upper Bound
Continuous Fréchet for imprecise curves modelled as line segments or disks are NP-hard.
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ACGAG

(0, 0)

(0, 0.5)

(0,−0.5)

(1, 0)(−1, 0)

VCGVG(0, 0.5 + ε)

(0,−0.5− ε)

(2, 0)(−2, 0)

Figure 3 Illustration of gadgets used in the basic construction.

(0, 0)
(−2, 0)

(0, 0.5 + ε)

(2, 0)

(0, 0.5 + ε)

(2, 0)

(0,−0.5− ε)

(2, 0) (0, 0)

(−1, 0)

(0,−0.5)

(1, 0)
(0, 0)

(1, 0)

(0,−0.5)

(1, 0)

(−1, 0)

(0, 0.5)

(1, 0)

(0,−0.5)

(1, 0)

(0, 0.5)

(1, 0)

(−1, 0)

(0,−0.5)

(1, 0)

(0, 0.5)

(1, 0)
(0, 0)

(1, 0)

C1

C1

C1
C2

C2

C2

C3

C3

C3

VC

Figure 4 Realisation of VC for assignment x1 = True, x2 = True, x3 = False and the CC for
formula C = (x1 ∨ x3)∧ (¬x1 ∨ x2 ∨¬x3)∧ (x1 ∨¬x2). Note that C = True with the given variable
assignment. Also note that we can choose any of C1, C2, C3 to align with VC; we always get the
bottleneck distance of 1 + ε, as all three are satisfied, so here ddF(VC,CC) = 1 + ε.
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We can also consider the value of expected Fréchet distance on imprecise points. We show
the result only for points modelled as line segments; in principle, we believe that for disks a
similar result holds, but the specifics of our reduction do not allow for clean computations.

We cannot immediately use our construction: we treat subsegments at the ends of the
imprecision segments as True and False, but we have no interpretation for points in the
centre part of a segment. So, we want to separate the realisations that pick any such invalid
points. To that aim, we introduce extra gadgets to the clause curve that act as clauses,
but catch these invalid realisations, so each of them yields the distance of 1. Now we have
three distinct cases: realisation is satisfying, non-satisfying, or invalid. We can derive the
expression connecting dE(U)

dF and the number of satisfying assignments.

I Theorem 6. The problem Expected Discrete Fréchet for imprecise curves modelled
as line segments is #P-hard.

2.2 Lower Bound Fréchet Distance
In this section, we prove that computing the lower bound Fréchet distance is NP-hard. The
missing proofs can be found in the full version [13]. Unlike the upper bound proofs, this
reduction uses the NP-hard problem Subset-Sum. Consider the following problems.

I Problem 7. Lower Bound Continuous Fréchet: Given a polygonal curve π with n
vertices, an uncertain curve U with m vertices, and a threshold δ > 0, decide if dmin

F (π,U) ≤ δ.

I Problem 8. Subset-Sum: Given a set S = {s1, . . . , sn} of n positive integers and a target
integer τ , decide if there exists an index set I such that

∑
i∈I si = τ .

2.2.1 An Intermediate Problem
We start by reducing Subset-Sum to a more geometric intermediate curve-based problem.

I Definition 9. Let α > 0 be some value, and let σ = 〈σ1, . . . , σ2n+1〉 be a polygonal curve.
Call σ an α-regular curve if for all 1 ≤ i ≤ 2n + 1, the x-coordinate of σi is i · α. Let
Y = {y1, . . . , yn} be a set of n positive integers. Call σ a Y -respecting curve if:
1. For all 1 ≤ i ≤ n, σ passes through the point ((2i+ 1/2)α, 0).
2. For all 1 ≤ i ≤ n, σ either passes through the point ((2i− 1/2)α, 0) or ((2i− 1/2)α,−yi).
Intuitively, the above definition requires σ to pass through ((2i+ 1/2)α, 0) as it reflects the
y-coordinate about the line y = 0 (see Figure 5). Thus, if the curve also passes through
((2i− 1/2)α, 0), the two reflections cancel each other. If it passes through ((2i− 1/2)α,−yi),
the lemma below argues that yi shows up in the final vertex height.

I Lemma 10. Let σ be a Y -respecting α-regular curve, and let I be the subset of indices i such
that σ passes through ((2i− 1/2)α,−yi). If σ1 = (α, 0), then σ2n+1 = ((2n+ 1)α, 2

∑
i∈I yi).

The following is needed in the next section, and follows from the proof of the above.

I Corollary 11. For a set Y = {y1, . . . , yn}, let M =
∑n
i=1 yi. For any vertex σi of a

Y -respecting α-regular curve, its y-coordinate is at most 2M and at least −2M .

I Problem 12. RR-Curve: Given a set Y = {y1, . . . , yn} of n positive integers, a value
α = α(Y ) > 0, and an integer τ , decide if there is a Y -respecting α-regular curve σ =
〈σ1, . . . , σ2n+1〉 such that σ1 = (α, 0) and σ2n+1 = ((2n+ 1)α, 2τ).
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(2i− 1
2
)α 2iα (2i+ 1

2
)α

yi

2yi

2βi−1 2βi−1

2βi−1+2yi

0

Figure 5 Passing through ((2i − 1/2)α, 0) does not change the height, and passing through
((2i− 1/2)α,−yi) adds 2yi.

By Lemma 10, Subset-Sum immediately reduces to the above problem by setting Y = S.
Note that for this reduction it suffices to use any positive constant for α; however, we allow
α to depend on Y , as this will ultimately be needed in our reduction to Problem 7.

I Theorem 13. For any α(Y ) > 0, RR-Curve is NP-hard.

2.2.2 Reduction to Lower Bound Fréchet Distance
Let α, τ , Y = {y1, . . . , yn} be an instance of RR-Curve. In this section, we show how to
reduce it to an instance δ, π, U of Problem 7, where the uncertain regions in U are vertical
line segments. The main idea is to use U to define an α-regular curve, and use π to enforce
that it is Y -respecting. Specifically, let M =

∑n
i=1 yi. Then U = 〈v1, . . . , v2n+1〉, where each

vi is a vertical segment whose horizontal coordinate is iα and whose vertical extent is given
by the interval [−2M, 2M ]. By Corollary 11, we have the following simple observation.

I Observation 14. The set of all Y -respecting α-regular curves is a subset of Real(U).

Thus, the main challenge is to define π to enforce that the realisation is Y -respecting. To
that end, we first describe a gadget forcing the realisation to pass through a specified point.

I Definition 15. For any point p = (x, y) ∈ R2 and value δ > 0, let the δ gadget at p,
denoted gδ(p), be the curve: (x, y) ‖ (x, y + δ) ‖ (x, y − δ) ‖ (x, y + δ) ‖ (x, y). See Figure 6a.

I Lemma 16. Let p = (x, y) ∈ R2 be a point, and let ` be any line segment. Then if
dF(`, gδ(p)) ≤ δ, then ` must pass through p.

For our uncertain curve to be Y -respecting, it must pass through all points of the form
((2i + 1/2)α, 0). This condition is satisfied by the lemma above by placing a δ gadget at
each such point. The second condition of a Y -respecting curve is that it passes through
((2i− 1/2)α, 0) or ((2i− 1/2)α,−yi). This condition is much harder to encode, and requires
putting several δ gadgets together to create a composite gadget, which we now describe.

I Definition 17. For any point p = (x, y) ∈ R2 and value δ > 0, let plδ = (x− δ/2, y) and
prδ = (x+ δ/2, y). Define the δ lower composite gadget at p, denoted lcgδ(p), to be the curve
gδ(p) ‖ prδ ‖ gδ(p) ‖ plδ ‖ prδ. See Figure 6b. Define the δ upper composite gadget at q, denoted
ucgδ(q), to be the curve gδ(q) ‖ qlδ ‖ gδ(q). See Figure 6c. Define the δ composite gadget of p
and q, denoted cgδ(p, q), to be the curve lcgδ(p) ‖ ucgδ(q).
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p

δ

δ

(a) gδ(p).

p
plδ prδ

(b) lcgδ(p).

q
qlδ

(c) ucgδ(q).

Figure 6 Depiction of gadgets gδ(p), lcgδ(p), and ucgδ(p). Circles represent zero-area points. For
the right two figures, the red / blue square represents the starting / ending point.

To use this composite gadget, we centre the lower gadget at height −yi and the upper gadget
directly above it at height zero. As the two gadgets are on top of each other, ultimately
we require our uncertain curve to go back and forth once between consecutive vertical line
segments, for which we have the following key property.

I Lemma 18. Let p = (xp,−yp) and q = (xp, 0) be points in R2. Let σ = 〈a, b, c, d〉 be a
three-segment curve such that bx > xp + δ and cx < xp − δ. If dF(σ, cgδ(p, q)) ≤ δ, then:
(i) the segment ab must pass through p,
(ii) the segment cd must pass through q, and
(iii) the segment bc must either pass through p or through q.
In particular, either ab and bc are on the same line, or cd and bc are on the same line.

Let vl, vr be vertical segments lying to the left and right of cgδ(p, q) further than δ away,
and let zl, zr be the points on vl and vr at the same height as q. Consider the uncertain
curve U = 〈U1, U2, U3, U4〉, where U1 = U3 = vl and U2 = U4 = vr. By Lemma 18, if there is
a curve σ b U such that dF(σ, zl ‖ cgδ(p, q) ‖ zr) ≤ δ, then implicitly it defines a single edge
from vl to vr either passing through p or passing through q (see Figure 7b, whose notation is
defined below). The following lemma acts as a rough converse of Lemma 18.

I Lemma 19. Let p = (xp,−yp) and q = (xp, 0) be points in R2, with yp ≤ δ/4. Let
σ = 〈p, b, c, q〉 be a curve such that xp + δ < bx ≤ xp + 1.1δ, xp − 1.1δ ≤ cx < xp − δ, and
−δ/2 ≤ by, cy ≤ δ/2. If bc passes through either p or q, then dF(σ, cgδ(p, q)) ≤ δ.

We now give the reduction from RR-Curve to Problem 7, whose correctness follows
from the lemmas and discussion above. (See the full version [13] for details.) Let α(Y ), τ ,
Y = {y1, . . . , yn} be an instance of RR-Curve. For the reduction to Problem 7, we set
δ = 4M , where M =

∑n
i=1 yi. Theorem 13 allows us to choose how to set α(Y ), and we
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z z z
2i−1 2i+12i

(a) Pictorial representation of λi.

q

q

p

p

u4i−3 u4i−1 u4i−2 u4i

u4i−3 u4i−1 u4i−2 u4i

(b) The two solutions.

Figure 7 On the left, λi. On the right, the two possible solutions with Fréchet distance at most
δ. The top (resp. bottom) corresponds to an α-regular curve passing through q (resp. p).

set α = 2.1δ = 8.4M . Let V = {v1, . . . , v2n+1} be a set of vertical line segments where
all upper (resp. lower) endpoints of the segments have height 2M (resp. −2M), and for
all i, the x-coordinate of vi is iα. Let U = 〈U1, . . . , U4n+1〉 be the uncertain curve such
that U4n+1 = v2n+1, and for all 1 ≤ i ≤ n, U4i−3 = v2i−1, U4i−2 = v2i, U4i−1 = v2i−1, and
U4i = v2i. For 1 ≤ i ≤ 2n + 1, define the points zi = (iα, 0), and for 1 ≤ i ≤ n, define
qi = ((2i− 1/2)α, 0), q′i = ((2i+ 1/2)α, 0), and pi = ((2i− 1/2)α,−yi). For a given value
1 ≤ i ≤ n, consider the curve λi = z2i−1 ‖ cgδ(pi, qi) ‖ z2i ‖ gδ(q′i) (see Figure 7a). Let
s = (α, 0) and t = ((2n+ 1)α, 2τ). Then π = gδ(s) ‖ λ1 ‖ λ2 ‖ · · · ‖ λn−1 ‖ λn ‖ gδ(t).

I Theorem 20. Lower Bound Continuous Fréchet (Problem 7) is NP-hard, even
when the uncertain regions are all equal-length vertical segments with the same height and
the same horizontal distance (to the left or right) between adjacent uncertain regions.

3 Algorithms for Lower Bound Fréchet Distance

In the previous section, we have shown that the decision problem for dmin
F is hard, given a

polygonal curve and an uncertain curve with line-segment-based imprecision model. Interest-
ingly, the same problem is solvable in polynomial time for indecisive curves. The key idea is
that we can use a dynamic programming approach similar to that for computing Fréchet
distance [6] and only keep track of realisations of the last indecisive point considered so
far. (Note that one can also reduce the problem to Fréchet distance between paths in DAG
complexes, studied by Har-Peled and Raichel [31], but this yields a slower running time.)

Consider the setting with an indecisive curve V = 〈V1, . . . , Vn〉 of n points and a precise
curve π = 〈p1, . . . , pm〉 with m points; each indecisive point has k possible realisations,
Vi = {q1

i , . . . , q
k
i }. We can propagate reachability column by column. Define Feas(i, `) to be

the feasibility column for realisation q`i of Ui. This is a set of intervals on the vertical cell
boundary line in the free-space diagram (see Figure 1), corresponding to the subintervals
of one curve within distance δ from a point on the other curve. It is computed exactly the
same way as for the precise Fréchet distance – it depends on the distance between a point
and a line segment and gives a single interval on each vertical cell boundary.
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Represent the standard dynamic program for computing Fréchet distance so that it
operates column by column, grouping propagation of reachable intervals between vertically
aligned cells. Call that procedure Prop(R), where R is the reachability column for point i
and the result is the reachability column for point i+ 1 on one of the curves. The reachability
column is a set of intervals on a vertical line, indicating the points in the free-space diagram
that are reachable from the lower left corner with a monotone path.

Define Reach(i, s) to be the reachability column induced by qsi , where a point is in a
reachability interval if it can be reached by a monotone path for some realisation of the
previous points. Then we iterate over all the realisations of the previous column, getting
precise cells, and propagate the reachable intervals as in the precise Fréchet distance algorithm:

Reach(i+ 1, `) = Feas(i+ 1, `) ∩
⋃
`′∈[k]

Prop(Reach(i, `′)) .

For the column corresponding to U1, we set one reachable interval of a single point at the
bottom for all realisations ps1 for which ‖qs1 − p1‖ ≤ δ.

I Theorem 21. Given an indecisive curve V = 〈V1, . . . , Vn〉 with k options per point, a
precise curve π = 〈p1, . . . , pm〉, and a threshold δ > 0, we can decide if dmin

F (π,V) ≤ δ in
time Θ(mnk2) in the worst case, using Θ(mk) space. We can also report the realisation of V
realising Fréchet distance at most δ, using Θ(mnk) space instead. Call the algorithm that
solves the problem and reports a fitting realisation Decider(δ, π,V).

We can extend this result to two indecisive curves. This result highlights a distinction
between dmin

F and dmax
F and between different uncertainty models. To tackle dmin

F with
general uncertain curves, we develop approximation algorithms.

3.1 Approximation by Grids
Given a polygonal curve π and a general uncertain curve U , in this section we show how to
find a curve σ b U such that dF(π, σ) ≤ (1 + ε)dmin

F (π,U). This is accomplished by carefully
discretising the regions, in effect approximately reducing the problem to the indecisive case,
for which we then can use Theorem 21. Missing proofs can be found in the full version [13].

For simplicity we assume the uncertain regions have constant complexity. Throughout,
we assume dmin

F (π,U) > 0, as justified by the following lemma.

I Lemma 22. Let π be a polygonal curve with n vertices, and U an uncertain curve with m
vertices. Then one can determine whether dmin

F (π,U) = 0 in O(mn) time.

We call an algorithm a (1 + ε)-decider for Problem 7, if when dmin
F (π,U) ≤ δ, it returns

a curve σ b U such that dF(π, σ) ≤ (1 + ε)δ, and when dmin
F (π,U) > (1 + ε)δ, it returns

False (in between either answer is allowed). In this section, we present a (1 + ε)-decider for
Problem 7. We make use of the following standard observation.

I Observation 23. Given a curve π = 〈π1, . . . , πn〉, call a curve σ = 〈σ1, . . . , σn〉 an
r-perturbation of π if ‖πi − σi‖ ≤ r for all i. Since ‖πi − σi‖, ‖πi+1 − σi+1‖ ≤ r, all
points of the segment σiσi+1 are within distance r of πiπi+1. For segments this implies that
dF(πiπi+1, σiσi+1) ≤ r, which implies that dF(π, σ) ≤ r by composing the mappings for all i.

The high-level idea is to replace U with the set of grid points it intersects, however, as our
uncertain regions may avoid the grid points, we need to include a slightly larger set of points.
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I Definition 24. Let U be a compact subset of Rd. We now define the set of points EGr(U)
which we call the expanded r-grid points of U .

Let B(
√
dr) denote the ball of radius

√
dr, centred at the origin. Let Thick(U, r) =

U ⊕B(
√
dr), where ⊕ denotes Minkowski sum. Let Gr be the regular grid of side length r,

and let GTr(U) be the subset of grid vertices from Gr that fall in Thick(U, r). Finally, define

EGr(U) = {p | p = arg min
q∈U

‖q − x‖ for x ∈ GTr(U)} .

The following lemma argues that one can build a decider by using grids as hinted above.
Using this decider, we can solve the corresponding optimisation problem.

I Lemma 25. There is a (1 + ε)-decider for Problem 7 with running time O(mn · (1 +
(∆/(εδ))2d)), for 1 ≥ ε > 0, where ∆ = maxi diam(Ui) is the maximum diameter of an
uncertain region.

I Theorem 26. Let π be a polygonal curve with n vertices, U an uncertain curve with
m vertices, and δ = dmin

F (π,U). Then for any 1 ≥ ε > 0, there is an algorithm which
returns a curve σ b U such that dF(π, σ) ≤ (1 + ε)δ, whose running time is O(mn(log(mn) +
(∆/(εδ))2d)), where ∆ = maxi diam(Ui) is the maximum diameter of an uncertain region.

If the polygonal curve π is replaced with an uncertain curve W, it easy to argue that this
approach extends to approximating dmin

F (W,U).

3.2 Greedy Algorithm
Here we argue that there is a simple 3-decider for Problem 7, running in near-linear time in
the plane. The idea is to greedily and iteratively pick σi ∈ Ui so as to allow us to get as far
as possible along π. Without any assumptions on U , this greedy procedure may walk too
far ahead and get stuck. Thus, here we assume that consecutive Ui are separated to ensure
that optimal solutions do not lag too far behind. Here we also assume the Ui are convex, i.e.
imprecise, and have constant complexity, as it simplifies certain definitions. In this section,
let π = 〈π1, . . . , πn〉 be a polygonal curve and let U = 〈U1, . . . , Um〉 be an imprecise curve.

I Definition 27. Call U γ-separated if for all 1 ≤ i < m, ‖Ui − Ui+1‖ > γ and each Ui is
convex. Define an r-visit of Ui to be any maximal-length contiguous portion of π∩(Ui⊕B(2r))
which intersects Ui ⊕B(r), where ⊕ denotes Minkowski sum. If U is γ-separated for γ ≥ 4r,
then any r-visit of Ui is disjoint from any r-visit of Uj for i 6= j, in which case define the
true r-visit of Ui to be the first visit of Ui which occurs after the true r-visit of Ui−1. (For
U1 it is the first r-visit.)

I Lemma 28. If U is γ-separated for γ ≥ 4r, then for any curve σ b U and any reparamet-
risations f and g such that widthf,g(π, σ) ≤ r, σi must map to a point on the true r-visit of
Ui for all i.

For two points α and β on π, let α ≤ β denote that α occurs before β, and for any points
α ≤ β let π(α, β) denote the subcurve between α and β.

I Definition 29. The δ-greedy sequence of π with respect to U , denoted gs(π,U , δ), is the
longest possible sequence α = 〈α1, . . . , αk〉 of points on π, where α1 = π1, and for any i > 1,
αi is the point furthest along π such that ‖αi − Ui‖ ≤ δ and dF(αi−1αi, π(αi−1, αi)) ≤ 2δ.

I Observation 30. For any i ≤ k, let αi = 〈α1, . . . , αi〉 be the ith prefix of gs(π,U , δ). Then
dF(αi, π(α1, αi)) ≤ 2δ, and αi b Ui ⊕B(δ), where Ui ⊕B(δ) = 〈U1 ⊕B(δ), . . . , Ui ⊕B(δ)〉.
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The following is the main lemma used to argue the correctness of our greedy approach,
and it makes use of helper Lemma 28.

I Lemma 31. If U is 10δ-separated and dmin
F (π,U) ≤ δ, then gs(π,U , δ) has length m and

αm = πn.

The following lemma is the only place where we require the points to be in R2. The proof
is interesting and uses a result from Guibas et al. [30].

I Lemma 32. For π and U in R2, where U is 10δ-separated, gs(π,U , δ) is computable in
O(m+ n logn) time.

I Theorem 33. Let U be 10r-separated for some r > 0. There is a 3-decider for Problem 7
with running time O(m+ n logn) in the plane that works for any query value 0 < δ ≤ r.

Proof. Compute gs(π,U , δ). If it has length m, then let σ = 〈σ1, . . . , σm〉 be any curve in
Real(U) such that ‖σi − αi‖ ≤ δ for all i. If this occurs and if αm = πn, we output σ as our
solution, and otherwise we output False. Thus, the running time follows from Lemma 32.

Observe that if we output a curve σ, then dF(σ, π) ≤ 3δ, using the triangle inequality:

dF(σ, π) ≤ dF(σ, α) + dF(α, π) ≤ δ + 2δ = 3δ .

Thus, we only need to argue that when dmin
F (π,U) ≤ δ, a curve is produced, which is

immediate from Lemma 31. J

4 Algorithms for Upper Bound and Expected Fréchet Distance

As shown in Section 2.1, finding the upper bound and expected discrete and continuous
Fréchet distance is hard even for simple uncertainty models. However, restricting the possible
couplings between the curves makes the problem solvable in polynomial time. In this section,
we use indecisive curves. Define a Sakoe–Chiba time band [44] in terms of reparametrisations
of the curves: for a band of width w and all t ∈ [0, 1], if φ1(t) = x, then φ2(t) ∈ [x−w, x+w].
In the discrete case we only couple point i on one curve to points i± w on the other curve.

4.1 Upper Bound Discrete Fréchet Distance
First of all, let us discuss a simple setting. Suppose we are given a curve σ = 〈q1, . . . , qn〉 of
n precise points and U = 〈U1, . . . , Un〉 of n indecisive points, each of them having ` options,
so for all i ∈ [n] we have Ui = {p1

i , . . . , p
`
i}. We would like to answer the following decision

problem: “If we restrict the couplings to a Sakoe–Chiba band of width w, is it true that
dmax

dF (U , σ) ≤ δ for some given threshold δ > 0?” So, we want to solve the decision problem
for the upper bound discrete Fréchet distance between a precise and an indecisive curve.

In a fully precise setting the discrete Fréchet distance can be computed using dynamic
programming [22]. We create a table where the rows correspond to vertices of one curve, say
σ, and columns correspond to vertices of the other curve, say π. Each table entry (i, j) then
contains a True or False value indicating if there is a coupling between σ[1 : j] and π[1 : i]
with maximum distance at most δ. We use a similar approach.

Suppose we position U to go horizontally along the table, and σ to go vertically. Consider
an arbitrary column in the table and suppose that we fix the realisation of U up to the
previous column. Then we can simply consider the new column ` times, each time picking a
different realisation for the new point on U , and compute the resulting reachability. As we
do this for the entire column at once, we can ensure consistency of our choice of realisation.
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Figure 8 Left: An indecisive and a precise curve. Middle: Distance matrix. “T T” in the bottom
left cell means ‖1− 1a‖ ≤ δ and ‖1− 1b‖ ≤ δ. Right: Computing reachability matrix, column by
column. Note two reachability vectors for the second column.

This procedure will give us a set of binary reachability vectors for the new column, each
vector corresponding to a realisation. The reachability vector is a boolean vector that, for
the cell (i, j) of the table, states whether for a particular realisation π of U [1 : i] the discrete
Fréchet distance between π and σ[1 : j] is below some threshold δ.

An important observation is that we do not need to distinguish between the realisations
that give the same reachability vector: once we start filling out the next column, all we care
about is the existence of some realisation leading to that particular reachability vector. So,
we can keep a set of binary vectors corresponding to reachability in the column.

This procedure was suggested for a specific realisation. However, we can also repeat this
for each previous reachability vector, only keeping the unique results. As all the realisation
choices happen along U , by treating the table column-by-column we ensure that we do not
have issues with inconsistent choices. Therefore, repeating this procedure n times, we fill out
the last column of the table. At that point, if any vector has False in the top right cell,
then there is some realisation π b U such that ddF(π, σ) > δ, and hence dmax

dF (U , σ) > δ.
In more detail, we use two tables, distance matrix D and reachability matrix R. First

of all, we initialise the distance matrix D and the reachability of the first column for all
possible locations of U1. Then we fill out R column-by-column. We take the reachability of
the previous column and note that any cell can be reached either with the horizontal step or
with the diagonal step. We need to consider various extensions of the curve U with one of
the ` realisations of the current point: the distance matrix should allow the specific coupling.
Assume we find that a certain cell is reachable; if allowed by the distance matrix, we can
then go upwards, marking cells above the current cell reachable, even if they are not directly
reachable with a horizontal or diagonal step. Then we remember the newly computed vector;
we only add distinct vectors. The computation is illustrated in Figure 8; missing details can
be found in the full version [13]. We use the following loop invariant to show correctness.

I Lemma 34. Consider column i. Every reachability vector of this column corresponds to at
least one realisation of U [1 : i] and the discrete Fréchet distance between that realisation and
σ[1 : min(n, i+ w)]; and every realisation corresponds to some reachability vector.

I Theorem 35. Problem Upper Bound Discrete Fréchet restricted to a Sakoe–Chiba
time band of width w on a precise curve and an uncertain curve on indecisive points with `
options, both of length n, can be solved in time Θ(4w`n

√
w) in the worst case.

Now we extend our previous result to the setting where both curves are indecisive, so
instead of σ we have V = 〈V1, . . . , Vn〉, with, for each j ∈ [n], Vj = {q1

j , . . . , q
`
j}. Suppose

we pick a realisation for curve V. Then we can apply the algorithm we just described. We
cannot run it separately for every realisation; instead, note that the part of the realisation
that matters for column i is the points from i− w to i+ w, since any previous or further
points are outside the time band. So, we can fix these 2w+ 1 points and compute the column.
We do so for each possible combination on these 2w + 1 points.
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Figure 9 Reachability adjustments. Left: Although the dotted interval is free according to the
distance matrix, only the solid interval is reachable from the cell on the left with a monotone path,
assuming the cell on the left is free. Right: The full interval that is marked as free is reachable.

I Theorem 36. Suppose we are given two indecisive curves of length n with ` options per
indecisive point. Then we can compute the upper bound discrete Fréchet distance restricted
to a Sakoe–Chiba band of width w in time Θ(4w`2w+1n

√
w).

4.2 Expected Discrete Fréchet Distance
To compute the expected discrete Fréchet distance with time bands, we need two observations:
1. For any two precise curves, there is a single threshold δ where the answer to the decision

problem changes – a critical value; it is the distance between two points on the curves.
2. We can modify our algorithm to store associated counts with each reachability vector,

obtaining the fraction of realisations that yield the answer True for a given threshold δ.
We can execute our algorithm for each critical value and get the cumulative distribution
function P(ddF(π, σ) > δ) for π, σ bU U ,V. Using the fact that the cumulative distribution
function is a step function, we compute dE

dF.

I Theorem 37. Suppose we are given two indecisive curves of length n with ` options per
indecisive point. Then we can compute the expected discrete Fréchet distance when constrained
to a Sakoe–Chiba band of width w in time Θ(4w`2w+3n2w2) in the worst case.

4.3 Continuous Fréchet Distance
We can adapt our time band algorithms to handle continuous Fréchet distance. Instead of
the boolean reachability vectors, we use vectors of free space cells, introduced by Alt and
Godau [6, 27]. We need to now store reachability intervals on cell borders (see Figure 9).
The number of these intervals is limited: for any cell, the upper value of the interval is
defined by the distance matrix, so yielding at most `2 values; the lower value of the interval is
defined by the distance matrix or by one of the cells from the same row, yielding exponential
dependency on w. However, the algorithm is still polynomial-time in n.

We can also store the associated counts. We then find critical values, in line with those
arising in precise curve Fréchet distance [6]. This way we adapt our algorithm for computing
expected distance to continuous case, and it runs in time polynomial in n for fixed w and `,
as desired. Further details are provided in the full version [13].

I Theorem 38. Suppose we are given two indecisive curves of length n with ` options per
indecisive point. Then we can compute upper bound Fréchet distance and expected Fréchet
distance restricted to a Sakoe–Chiba band of fixed width w in time polynomial in n.
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Abstract
In the counting Graph Homomorphism problem (#GraphHom) the question is: Given graphs G, H,
find the number of homomorphisms from G to H. This problem is generally #P-complete, moreover,
Cygan et al. proved that unless the Exponential Time Hypothesis fails there is no algorithm that
solves this problem in time O(|V (H)|o(|V (G)|)). This, however, does not rule out the possibility that
faster algorithms exist for restricted problems of this kind. Wahlström proved that #GraphHom
can be solved in plain exponential time, that is, in time O((2k +1)|V (G)|+|V (H)|poly(|V (H)|, |V (G)|))
provided H has clique width k. We generalize this result to a larger class of graphs, and also identify
several other graph classes that admit a plain exponential algorithm for #GraphHom.
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1 Introduction

The Exponential Time Hypothesis (ETH) [16] essentially suggests that the Satisfiability
problem does not admit an algorithm that is significantly faster than the straightforward
brute force algorithm. The ETH has been widely used to obtain (conditional) lower bounds
on the complexity of various problems, see [18] for a fairly recent survey. It however does
not rule out nontrivial algorithms for many other hard problems.

One of such problems is the Graph Homomorphism problem (GraphHOM for short).
A homomorphism from a graph G to a graph H is a mapping ϕ : V (G) → V (H) such
that for any edge ab ∈ E(G) the pair ϕ(a)ϕ(b) is an edge of H. GraphHOM asks, given
graphs G and H, whether or not there exists a homomorphism from G to H [14]. In the
counting version of this problem, denoted #GraphHOM, the goal is to find the number of
homomorphisms from G to H. These two problems can be solved just by checking all possible
mappings from a given graph G to a given graph H, which takes time O∗(|V (H)||V (G)|),
where O∗ denotes asymptotics up to a polynomial factor. Assuming the ETH Cygan et al. [6]
proved that the general GraphHom and therefore #GraphHom cannot be solved in time
O(|V (H)|o(|V (G)|)). A similar bound for the more general Constraint Satisfaction Problem
(CSP) was established in [22], and some related hardness results have also been obtained
in [5].
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21:2 Counting Homomorphisms in Plain Exponential Time

In spite of these results, there are several ways to restrict GraphHom which sometimes
result in a problem admitting a faster algorithm. For graph classes G,H, GraphHom(G,H)
denotes the problem GraphHom in which the input graphs G,H belong to G,H, respectively.
#GraphHOM can be restricted in the same way. Both problems have received much
attention in their own right and as a special case of the general CSP, and much is known
about their computational complexity. We will use the symbol − to indicate that an input
graph is not restricted. In particular, it is known that GraphHom(−,H) is solvable in
polynomial time only if every graph in H contains a loop or is bipartite [15]. It is also
known that #GraphHom(−,H) is solvable in polynomial time only if every graph in H is
complete with all the loops present or is complete bipartite [9]. In the remaining cases these
problems are shown to be NP- and #P-complete, respectively. Similarly, it is known that
GraphHom(G,−) [13] and #GraphHom(G,−) [8] are solvable in polynomial time if and
only if the class of cores of the graphs from G in the former case, and the class G itself in the
latter case have bounded tree width, respectively.

Here we focus on such restrictions that give rise to problems solvable still in exponential
time but much faster than brute force. Specifically, GraphHom(G,H) or #GraphHom(G,H)
are said to be solvable in plain exponential time if there is a solution algorithm running
in time O∗(c|V (G)|+|V (H)|), where c is a constant. In this paper we study problems of the
form #GraphHom(−,H), however, clearly, all the easiness results for #GraphHom(−,H)
also hold for GraphHom(−,H). If the problem #GraphHom(−,H) is solvable in plain
exponential time, we call the class H a plain exponential class.

Plain exponential classes of graphs have received substantial attention in the literature.
The most well known such class is K, the class of all cliques. Note that #GraphHom(−,K)
is equivalent to the #Graph Colouring problem, in which the problem is, given a graph G
and a number k, to find the number of k-colourings of G. A fairly straightforward dynamic
programming algorithm solves this problem in time O∗(3|V (G)|); we outline this algorithm
in Example 8. A more sophisticated algorithm [17] solves #GraphHom(−,K) in time
O∗(2|V (G)|). If H is a class of graphs of tree width k then #GraphHom(−,H) is solvable in
time O∗((k + 3)|V (G)|), see [11]. For the class Dc of graphs of degree at most c the problem
#GraphHom(−,Dc) can be solved in time O∗(c|V (G)|) by a minor modification of the brute
force enumeration algorithm, see Example 7. Finally, Wahlström [23] obtained probably
the most general result so far on plain exponential graph classes, proving that if H only
contains graphs of clique width at most k then #GraphHom(−,H) can be solved in time
O∗((2k+1)|V (G)|+|V (H)|). The algorithm from [23] is also dynamic programming and uses the
representation of (labeled) graphs of bounded clique width through a sequence of operations
such as disjoint union, connecting vertices with certain labels, and relabeling vertices. Such
sequences are called k-expressions.

In this paper we aim at a systematic study of plain exponential classes of graphs. As
the first step we further expand the class of graphs for which plain exponential counting
algorithms are possible by adding one more operation to the construction of graphs of
bounded clique width. In a nutshell, the new operation expands a graph H to a graph H ′ in
such a way that H is a retract of H ′, and the preimages of vertices of H are connected in a
regular way. The new class of graphs includes families of graphs of unbounded clique width,
for instance, hypercubes, grids, cliques with subdivided edges, and therefore is strictly larger
than the class of graphs of bounded clique width. By means of this new set of operations one
can define a new graph “width” measure that we call extended clique width, only this new
measure involves two parameters rather than one. Graphs of extended clique width (k, r)
can also be represented by extended (k, r)-expressions. Let Xk,r denote the class of graphs
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whose extended width parameters are at most k, r, respectively. (In this case we will say
that such a graph has extended clique width at most (k, r).) Although in most cases in this
paper the only parameter that matters is max{k, r}, we think that further stratification is
useful for a number of more precise results.

We then show that given an arbitrary graph G, a graph H of extended clique width
(k, r), and an extended (k, r)-expression Φ representing H, the number hom(G,H) of ho-
momorphisms from G to H can be found in time O∗((2 max(k, r) + 1)2|V (G)|). Similar to
[23], the algorithm is dynamic programming and iteratively computes numbers hom(G′, H ′),
where G′ is an induced subgraph of G and H ′ is a graph represented by a subexpression
of Φ. Clearly, as one cannot assume that an extended (k, r)-expression representing H is
known in advance, this algorithm alone does not guarantee that Xk,r is plain exponential.
However, we also show that given a graph H of extended clique width at most (k, r), an
extended (k, r)-expression representing H can be found in time O∗((4 max(k, r) + 4)|V (H)|).
Combined with the previous result we thus obtain the following

I Theorem 1. For any fixed k, r the class of graphs of extended clique width at most (k, r)
is plain exponential.

Next, we show that the classes of graphs of bounded extended clique width are quite
general. Let Hypercubes denote the class of all hypercubes and let Grids denote the class
of all rectangular grids. Also, for a class H of graphs, K(H) denotes the class of graphs H
obtained as follows. Take H ′ ∈ H, a clique on vertices {v1, . . . , vn}, and for every edge vivj
of the clique, i 6= j, replace this edge with a copy of H ′, that is, connect vi, vj to all vertices
of H ′ and include all the edges of H ′. It is known that all three classes have unbounded
cluque width [20, 3], and K(H) has unbounded clique width even when H contains just one
graph with one vertex.

I Theorem 2. Hypercubes has extended clique width at most (2,1), Grids has extended clique
width at most (6,1). For any class H of extended clique width (k, r), the class K(H) has
extended clique width at most (k + 5,max(r, 1)).

By Theorem 1 this immediately implies that classes Hypercubes and Grids are plain
exponential. For subdivisions of cliques we prove a stronger result.

I Proposition 3. For any plain exponential class H of graphs (not necessarily of bounded
extended clique width), the class K(H) is also plain exponential.

It seems that there are two general reasons for a class of graphs to be plain exponential:
to have bounded (extended) clique width or to have bounded degree. Classes Hypercubes
and K(H) witness that bounded extended clique width (and in fact even bounded clique
width) does not imply bounded degree. By proving that graphs from Xk,r satisfy certain
nontrivial property and showing that a random c-regular graph for c > 3 (unsurprisingly)
does not satisfy this property with high probability, we show that Dc does not have bounded
extended clique width. The two types of classes can be combined together to obtain new
plain exponential classes. Let G,H be graphs. The Cartesian product G�H of G and H is
defined to be the graph with vertex set V (G)× V (H) and edges (u1, v1)(u2, v2) such that
either u1 = u2 and v1v2 ∈ E(H), or v1 = v2 and u1u2 ∈ E(G).

I Theorem 4. Let G be a plain exponential class of graphs and H of bounded degree. Then
G�H = {G�H | G ∈ G, H ∈ H} is plain exponential.
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Note that for another standard graph product, G×H, where edges are given by the rule:
(u1, v1)(u2, v2) is an edge if and only if u1u2 ∈ E(G) and v1v2 ∈ E(H), a similar result is
almost trivial, as we observe in Example 9.

There is no doubt that plain exponential classes are much more diverse than what is
shown above. For instance, for a class G of graphs, let G+d denote the class of graphs G
such that it is possible to remove up to d vertices from G to obtain a graph from G. Then
as is easily seen, G+d is plain exponential whenever G is plain exponential. Also, there are
some odd plain exponential class of graphs (odd in the sense we could not fit it into any of
the types above). Let Kneserk denote the well studied class of Kneser graphs, see, e.g. [19]:
Kneserk is the class of graphs, whose vertices are the k-element subsets of a certain set, and
two vertices are connected if and only if the corresponding subsets are disjoint. A plain
exponential algorithm for Kneserk (for a fixed k) exists, see [2, 21]. We find an alternative
algorithm for this class of graphs.

I Theorem 5. For every k the class Kneserk is plain exponential.

The class Kneserk however does not fit in any of the more general classes of plain
exponential graphs.

Due to space restrictions not all proofs are included in this paper. For the missing proofs
the reader is referred to the full version of the paper [7].

2 Preliminaries: Homomorphisms and Clique width

2.1 Homomorphisms, plain exponential time
By [n] we denote the set {1, . . . , n} and by [[n]] the set {0, 1, . . . , n}. As always we denote
the vertex set of a graph G by V (G), and its edge set by E(G). A homomorphism of a
graph G to a graph H is a mapping ϕ : V (G) → V (H) such that ϕ(u)ϕ(v) ∈ E(H) for
any uv ∈ E(G). By hom(G,H) we denote the number of homomorphisms from G to H.
The Counting Graph Homomorphism problem, #GraphHom, is defined as follows: given
graphs G,H, find the number of homomorphisms from G to H. Its decision version – does
there exist a homomorphism from G to H? – is denoted by GraphHom. For more on
graph homomorphisms see [14]. If H is allowed only from a class H of graphs, the resulting
counting and decision problems are denoted #GraphHom(−,H) and GraphHom(−,H),
respectively.

We will be concerned with the complexity and the best running time of algorithms for
#GraphHom(−,H). In particular, we say that a class H of graphs is plain exponential
if there is an algorithm that solves the problem #GraphHom(−,H) in plain exponential
time: there exists a constant c such that on input G,H, H ∈ H, the algorithm runs in time
O∗(c|V (G)|+|V (H)|), where O∗ means asymptotics up to a factor polynomial in |V (G)|, |V (H)|.
Note that we will always assume that G and H are connected, since otherwise the existence
or the number of homomorphisms from G to H can be deduced from those of their connected
components.

I Example 6. (H-Colouring.) If H consists of just one graph, H, the problems
#GraphHom(−,H), GraphHom(−,H) are known as #H-Colouring andH-Colouring,
respectively. The #H-Colouring problem is solvable in polynomial time if H is a complete
graph with all loops present, or is a complete bipartite graph [9]. The H-Colouring problem
is solvable in polynomial time if H contains a loop or is bipartite [15]. Otherwise these
problems are #P- and NP-complete, respectively. Since the brute force algorithm for this
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problems runs in O(|V (H)||V (G)|) time, #H-Colouring and H-Colouring are always
solvable in plain exponential time. Also, by inspecting the solution algorithms from [9, 15]
these results can be slightly generalized: #GraphHom(−,H) is solvable in polynomial time
whenever every graph from H is a complete graph with all loops, or a complete bipartite
graph. Similarly GraphHom(−,H) is polynomial time solvable if every graph from H

contains a loop or is bipartite.

I Example 7. (Graphs of bounded degree.) As is mentioned in the introduction, if the
degrees of graphs from H are bounded by a number c, the (improved) brute force algorithm
solves #GraphHom(−,H), GraphHom(−,H) in time O∗(c|V (G)|). Let G,H be input
graphs, H ∈ H. Recall that we assume G is connected; otherwise the procedure below has to
be performed for each connected component, and the results multiplied. Order the vertices
v1, . . . , vn of G in such a way that each vertex except for the first one is adjacent to one of
the preceding vertices. Then the brute force algorithm is organized as follows: Assign images
to v1, . . . , vn in turn. There are |V (H)| possibilities to map v1, but then if vi is adjacent
to vj , j < i, the image of vj is fixed, and therefore there are at most c possibilities for the
image of vi. Thus, the algorithm runs in O∗(cn). This approach also allows H to have a
bounded number of vertices of high degree.

I Example 8. (Graphs of bounded clique width.) Let Ck denote the class of all graphs
of clique width at most k (to be defined in Section 2.2). Then #GraphHom(−, Ck),
GraphHom(−, Ck) can be solved in time O∗((2k+ 1)|V (G)|+|V (H)|), implying that Ck is plain
exponential [23].

Here we briefly describe the simple algorithm solving #GraphHom(−,K), where K
is the class of cliques. Given a graph G and a number s (or, equivalently, the clique Ks)
the solution algorithm maintains an array N(S, `) for S ⊆ V and ` ≤ s, which contains the
number of homomorphisms from the subgraph of G induced by S to an `-element clique.
To compute each N(S, `) we go over all subsets S′ ⊆ S, consider the vertices from S′ to be
mapped to the `-th vertex of the `-clique. Then there are N(S − S′, `− 1) ways to map the
remaining vertices, and N(S, `) is the sum of all numbers like this. It is not hard to see
that the running time of this algorithm is O∗(3|V (G)|). It can be improved to run in time
O∗(2|V (G)|) [17], and some further improvements are possible in certain cases [10].

I Example 9. Often plain exponential classes can be combined to obtain a new plain
exponential class. For graphs G,H let G×H denote their product, the graph with vertex
set V (G)× V (H) and edges (u1, v2)(u2, v2) whenever u1u2 ∈ E(G) and v1v2 ∈ E(H). Also,
for graph classes G,H, let G × H denote the class {G × H | G ∈ G, H ∈ H}. If G,H are
plain exponential, then so is G ×H. Indeed, let π1, π2 denote the projection homomorphisms
of G × H onto G and H, respectively; that is, π1 : (u, v) 7→ u and π2 : (u, v) 7→ v.
For any graph T a mapping ϕ : V (T ) → V (G) × V (H) is a homomorphism if and only
if the mappings ϕ1 = π1 ◦ ϕ1 : V (T ) → V (G) and ϕ2 = π2 ◦ ϕ : V (T ) → V (H) are
homomorphisms. In this case ϕ(u, v) = (ϕ1(u), ϕ2(v)). This immediately implies that
hom(T,G×H) = hom(T,G) · hom(T,H), and the result follows.

We will often deal with vertex labeled graphs. It will be convenient to represent labels
on vertices of a graph G as a label function π : V (G) → [k], in which case we say that G
is k-labeled. The graph G = (V,E) equipped with a label function π will be denoted by
G = (V,E, π). The k-labeled graph G is then called a k-labeling of G. Let G1 = (V1, E1, π1)
and G2 = (V2, E2, π2) be k-labeled graph. A mapping ϕ : V1 → V2 is a homomorphism of
k-labeled graph G1 to k-labeled graph G2 if it is a homomorphism of graph G1 = (V1, E1) to
G2 = (V2, E2) respecting the labeling, that is, π2(ϕ(v)) = π1(v) for every v ∈ V1.
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21:6 Counting Homomorphisms in Plain Exponential Time

The following notation will also be useful. Let again G1,G2 be k-labeled graphs, such that
V1, V2 are disjoint. Then G1

⊕
G2 = (V1 ] V2, E1 ] E2, π1 ] π2), where π1 ] π2(v) = π1(v),

if v ∈ V1, and π1 ] π2(v) = π2(v), if v ∈ V2.
Finally, the subgraph of a graph G = (V,E) induced by a set S ⊆ V is denoted by G[S].

For a k-labeled graph G = (V,E, π), by G[S] we denote the k-labeled subgraph induced by
S ⊆ V . Note that the label function of G[S] is π|S , i.e., the restriction of π on the set S.

2.2 Clique width and k-expressions
The simplest way to introduce clique width of a graph is through k-expressions.

I Definition 10. The following operators are defined on k-labeled graphs.
·i: Construct a graph with one vertex, which is labeled i ∈ [k].
ρi→j(G): Relabel all vertices with label i ∈ [k] of a k-labeled graph G to label j ∈ [k].
ηij(G), for i 6= j: Add an edge from every vertex labeled i to every vertex labeled j in G,
i.e. add edges uv for any vertices u, v where u has label i and v has label j.
G1

⊕
G2: The disjoint union of k-labeled graphs G1 and G2.

A k-expression is any (properly formed) formula using the above operators.
Every k-expression represents a k-labeled graph. We say that a graph G = (V,E) is

represented by k-expression Φ, if there exists a k-labeling π of the vertices of G such that Φ
represents G = (V,E, π). A graph has clique width k if k is minimal so that the graph is
represented by a k-expression. The class of all graphs of clique width at most k is denoted
by Ck.

Wahlström in [23] used k-expressions of graphs to show that Ck is plain exponential.
However, k-expressions suitable for his plain exponential algorithm must satisfy an extra
condition. Let Φ be a k-expression representing a k-labeled graph G. Note that any
subexpression of Φ represents a subgraph of G. We say that k-expression Φ is safe if for
every its subexpression Φ1

⊕
Φ2 such that Φ1,Φ2 represent graphs G1,G2, respectively, the

graph Gi equals G[V (Gi)] for i = 1, 2. In other words all edges of G between vertices of Gi,
i = 1, 2, are already edges of Gi.

I Lemma 11 ([23]).
(1) Every graph of clique width k can be represented by a safe k-expression.
(2) A safe k-expression for a graph of clique width k can be found in plain exponential time.

A class G of graphs has bounded clique width if G ⊆ Ck for some k. Classes of bounded
clique width include cliques, cographs, and distance-hereditary graphs [12, 4]. We will also
be interested in nice graph classes that do not have bounded clique width. These include
classes Hypercubes of hypercubes, Grids of rectangular grids, and subdivisions of cliques K(H)
(introduced in Section 1) [20, 3].

3 Extended clique width

3.1 Extended k-expressions
In this section we introduce a more general version of k-expressions, and accordingly a more
general version of clique width. New k-expressions require two more operators on k-labeled
graphs. The first one does not have analogues in k-expressions. Let G be a k-labeled graph
and r a positive integer parameter. The idea behind the inflation operator is the following.
For each vertex v of G we add up to r new copies of v. The set of new copies of v depends
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only on the label of v, and is given by the vector −→M defined below. Let vi1 , . . . , vi` be the
added copies of v, and v itself is considered as v0. Next, some new edges are introduced:
whether or not edge viwj is added depends only on whether vw ∈ V (G), the labels of v, w,
and the numbers i, j. These connections are given by the set S defined below. Finally, the
new copies obtain labels, and the label of vi only depends on the label of v in G and i. This
step is governed by the vector −→σ in the definition below.

We now proceed to a formal definition. Fix natural k, r. By −→M we denote a vector
(M1, . . . ,Mk) where each Mi is a subset of [[r]] containing 0. For such a vector −→M , let

L(−→M) = {(i1, j1, i2, j2) | i1, i2 ∈ [k], j1 ∈Mi1 , j2 ∈Mi2}.

I Definition 12. Let −→M = (M1, . . . ,Mk), {0} ⊆ Mi ⊆ [[r]] for i ∈ [k], σj : [k] → [k]
for j ≤ [[r]], where σ0 is the identity mapping, and S ⊆ L(−→M). Also, S is required to
be a symmetric set, that is, if (i1, j1, i2, j2) ∈ S then (i2, j2, i1, j1) ∈ S. Operator β−→

M,−→σ ,S
transforms a k-labeled graph G = (V,E, π) to a k-labeled graph G′ = (V ′, E′, π′) as follows:

V ′ =
⋃k
i=1 Ci, where Ci = {aj |j ∈ Mi, a ∈ V and π(a) = i}. The vertices a0, a ∈ V ,

are called original vertices of G′ = β−→
M,−→σ ,S(G) and are identified with their corresponding

vertices from V ;
ajbj′ ∈ E′ if and only if ab ∈ E, and (π(a), j, π(b), j′) ∈ S or j = j′ = 0;
π′(aj) = σj(π(a))

The second operator combines disjoint union with a sequence of adding edges operators.

I Definition 13. Let T ⊆ [k] × [k]. Operator ηT takes two k-labeled graphs as input
and produces a k-labeled graph as output. For k-labeled graphs G1 = (V1, E1, π1), and
G2 = (V2, E2, π2), V1, V2 disjoint, the k-labeled graph ηT (G1,G2) = (V,E, π), is defined as
follows:

V = V1 ∪ V2;
E = E1 ∪ E2 ∪ {(a, b) | a ∈ V1, b ∈ V2, π1(a) = i, π2(b) = j, (i, j) ∈ T };
π(a) = π1(a) if a ∈ V1 and π(a) = π2(a) if a ∈ V2.

We refer to this operator as the connect operator.

An extended (k, r)-expression is a (properly formed) expression that involves operators
·i (i ∈ [k]), ρi→j (i, j ∈ [k]), β−→

M,−→σ ,S , and ηT , where
−→
M,−→σ ,S, T are as in Definitions 12, 13.

Similar to k-expressions, extended (k, r)-expressions represent k-labeled graphs, as well as
usual graphs. For an example of extended (k, r)-expression see the construction of hypercubes
in Section 3.2.

Note that if G1 and G2 are two isomorphic k-labeled graphs, and G1 is represented by an
extended (k, r)-expression Φ, then Φ is an extended (k, r)-expression representing G2 as well.

A graph G = (V,E) is said to have extended clique width (k, r) if the pair (k, r) is minimal
such that there is a k-labeling π of G and an extended (k, r)-expression Φ that represents
G = (V,E, π). If such a π exists we also say that Φ represents G. Note that an extended
clique width of a graph is not unique, as pairs of numbers can be incomparable. However, for
our purposes it will usually be enough to assume that k = r: just replace both parameters
with max(k, r). The class of all graphs of extended clique width at most (k, r) is denoted by
Xk,r. A class G of graphs has bounded extended clique width if G ⊆ Xk,k for some k.

The connect operator is clearly a substitute for the operator ηij from Definition 10 of
clique width. In particular, graphs of extended clique width (k, 0) are very close to graphs of
clique width k.
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I Proposition 14. Any graph G that can be represented by a k-expression, can also be
represented by an extended (k, 0)-expression. Therefore, Ck ⊆ Xk,0, that is, every graph that
has clique width k also has extended clique width at most (k, 0).

As is easily seen, the connect operator can be expressed through disjoint union and adding
edges. However, we will need properties similar to the safety of k-expressions. Unfortunately,
the inflation operator does not allow for an equally clean and easy definition of safety, as in
the case of k-expressions, and we use the connect operator instead.

Let G = ηT (G1,G2). It is straightforward from the definition that G[V (G1)] is equal
to G1 and G[V (G2)] is equal to G2, that is, ηT does not add edges inside G1,G2. Also,
if G = β−→

M,−→σ ,S(G1), then again G[V (G1)] is equal to G1. Similar to k-expressions we say
that an extended (k, r)-expression Φ is safe if for each of its subexpressions ηT (Φ1,Φ2) and
β−→
M,−→σ ,S(Φ1) such that Φ1,Φ2 represent graphs G1,G2, respectively, it holds Gi = G[V (Gi)]

for i = 1, 2. The following property is straightforward.

I Lemma 15. Any extended (k, r)-expression is safe.

An extended (k, r)-expression representing G (if one exists) can be found in plain expo-
nential time.

I Theorem 16. There is an algorithm running in time O∗((4 max(k, r) + 4)|V (G)|) that
given a graph G outputs an extended (k, r)-expression for G if one exists, or reports “NO”
otherwise.

Proof (Sketch). One of the ingredients of our algorithm is the problem of deciding whether
two k-labeled graphs are isomorphic. k-labeled graphs G = (V1, E1, π1),H = (V2, E2, π2) are
isomorphic if there exists an isomorphism ϕ from the graph G = (V1, E1) to H = (V2, E2)
such that π1(a) = π2(ϕ(a)) for a ∈ V1. We show that this problem can be reduced to the
ordinary Graph Isomorphism problem and use the celebrated result by Babai [1] that there
is an algorithm that, given graphs G and H, decides whether there exists an isomorphism
between G and H in time O(2log(|V (G)|)O(1)).

I Lemma 17. There is a polynomial time reduction from the problem of deciding the
isomorphism of k-labeled graphs to Graph Isomorphism.

We now describe the main part of the algorithm. Create an array N of size (k + 1)n
whose entries N(G′) are labeled with a k-labeling G′ of a subgraph G′ of G. For every entry
N(G′) the k-labeled graph G′ either has an extended (k, r)-expression or it does not. The
goal is to set the value of each entry N(G′) to some extended (k, r)-expression for G′ if it has
one and to “no” otherwise. Then either for some labeling G of G the entry N(G) contains a
(k, r)-expression for G, or G does not have extended clique width at most (k, r).

Now we consider more detailed possibilities for each G′. There are four cases. Case 1 takes
place if G′ has an extended (k, r)-expression that ends with an inflation operator; Case 2
takes place if G′ has an extended (k, r)-expression that ends with a connect operator; Case 3
takes place if G′ has an extended (k, r)-expression that ends with a sequence of relabeling
operators; and, finally, Case 4 takes place if G′ does not have an extended (k, r)-expression.

All one-element k-labeled graphs are obviously represented by an extended (k,r)-expression.
Let us suppose the values of each entry N(G′), where G′ contains at most n−1 vertices is set
correctly. Then, we want to set the correct values for entries of the array whose associated
k-labeled graph has exactly n vertices. We use the dynamic programming approach that
consists of two phases. In Phase 1, for each entry N(G′) such that G′ has n vertices, we check
if G′ satisfies the conditions of Case 1. Then for each k-labeled graph like this that does not
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satisfy the conditions of Case 1 we check if it falls in Case 2. In Phase 2, by relabeling G′ for
which N(G′) is assigned a value, we find a new extended (k, r)-expression for G′ that do not
satisfy the conditions of Cases 1 and 2, but satisfy the conditions of Case 3. In the end, for
each G′ that belongs to none of Cases 1, 2, or 3, we set the value N(G′) to “no” because it
does not have an extended (k, r)-expression. In the rest of this proof, for a k-labeled graph
G′, we show how to check if it satisfies the conditions of each of Cases 1 and 2.

Let G′ = (V ′, E′, π′) be a k-labeled graph with |V ′| = n and it has an extended (k, r)-
expression that ends with an inflation operator. Then there is an induced subgraph G′1 of G′
such that the result of application of an inflation operator to G′1 is isomorphic to G′, and G′1
has an extended (k, r)-expression. Thus, there exist σi : [k] → [k], i ∈ [[r]], −→M , Mi ⊆ [[r]],
i ∈ [k], S ⊆ L(−→M), and a set V ′1 ⊂ V ′, such that
(A) G′2 = (V ′2 , E′2, π′2) = β−→

M,−→σ ,S(G′[V ′1 ]) is isomorphic to G′, and
(B) G′[V ′1 ] has an extended (k, r)-expression.

Conversely, if there exist V ′1 ⊂ V ′, σi : [k] → [k], i ∈ [[r]], −→M , Mi ⊆ [[r]], i ∈ [k],
S ⊆ L(−→M) satisfying conditions (A),(B), then G′2 has an extended (k, r)-expression that ends
with an inflation operator. As G′2 and G′ are isomorphic, G′ has an extended k-expression
that ends with an inflation operator as well. Thus, the sufficient and necessary conditions for
G′ to have an extended (k, r)-expression that ends with an inflation operator, is that there
exist V ′1 ⊂ V ′, σi : [k]→ [k], i ∈ [[r]], −→M , Mi ⊆ [[r]], i ∈ [k], S ⊆ L(−→M) satisfying (A),(B).

The algorithm now searches through all possible selection of V ′1 ,−→σ ,S, to check if conditions
(A),(B) satisfied for any of them. Let us evaluate the running time of this procedure. Checking
condition (A) takes time O(2log((k+2)n)O(1)) by Lemma 17, while condition (B) can be verified
by looking up the existing entry N(G′[V ′1 ]) in O(1) time. There are 2n choices for V ′1 and
krk choices for −→σ . Vector −→M can be chosen in 2rk ways, and so L(−→M) has at most 22rkk2

elements. Thus, S can be chosen in at most 222rkk2 ways. Thus, the total running time of
filling up N(G′) in this case is upper bounded by

2|V (G)| × krk × 22rkk2 × 222rkk2
×O(2log((k+2)n)O(1)

) = O∗(22|V (G)|).

Now let us suppose that G′ = (V ′, E′, π′) has an extended (k, r)-expression that ends
with a connect operator. Then due to the safety of extended (k, r)-expressions there exist two
induced subgraphs G′1 and G′2 of G′ such that, first, they both are represented by extended
(k, r)-expressions, and, second, there is T ⊆ [k]2, such that ηT (G′1,G′2) is identical to G′.
Thus to find an extended (k, r)-expression for G′ it suffices to go through all partitions of V ′
into sets V ′1 and V ′2 and for each partition check the following two conditions. First, check if
G′1 = G′[V ′1 ] and G′2 = G′[V ′2 ] have an extended (k, r)-expression by looking up the entries
N(G′1), N(G′2). Second, check if there is T ⊆ [k]2 such that ηT (G′1,G′2) is identical to G.
Since there are at most 2|V (G)| ways to partition V ′ into V ′1 and V ′2 , takes time O(2|V (G)|) to
check if G′ falls into Case 2.

So far we have registered an extended (k, r)-expression for every G′ that satisfies the
conditions of Case 1 or Case 2. Now, start Phase 2 and check whether any of the remaining
k-labeled graphs G′ satisfies the conditions of Case 3. In order to do that we go through
all k-labeled graphs G′ with n vertices and such that N(G′) contains an extended (k, r)-
expression Φ, that is initially for all G′ that fall into Cases 1,2. Then we consider every
possible relabeling ρij in turn. If ρij(G′) is a k-labeled graph such that N(G′) does not have
an extended (k, r)-expression, then we set N(ρij(G′)) = ρij(Φ). We repeat this process for
each k-labeled graph G′, until no new entries can be filled. The time required for Phase 2 in

ICALP 2020



21:10 Counting Homomorphisms in Plain Exponential Time

total, for all G′, not only those with n vertices is bounded by number of all k-labelings of
all subgraphs of G times the number of possible operators ρij . As is easily seen, the time
required for Phase 2 in total is

(k + 1)|V (G)| × k2 = O∗((k + 1)|V (G)|)

Time complexity: The array we construct has (k + 1)|V (G)| entries. The time required to
complete Phase 1 for all the entries is bounded by O∗(4|V (G)| × (k + 1)|V (G)|). The time to
complete Phase 2 for all entries is bounded by O∗((k + 1)|V (G)|). Thus the total running
time is O∗((4k + 4)|V (G)|). J

Next we explore what kind of graphs and k-labeled graphs can be represented by extended
(k, r)-expressions.

3.2 Graph classes of bounded extended but not regular clique width
In this section we show that not all graphs of bounded extended clique width also have
bounded clique width. Specifically, we consider the classes Hypercubes of hypercubes, Grids
of rectangular grids, and K(H) of sudivisions of cliques by graphs from a class H. All these
classes have unbounded clique width, as mentioned in Section 2.2.

I Theorem 18.
(1) Hypercubes has extended clique width at most (2,1).
(2) Grids has extended clique width at most (6,1).
(3) If H is a class of graphs of extended clique width (k, r), then K(H) has extended clique

width at most (k + 5,max(r, 1)).

Proof. We present extended (2,1)-expressions for hypercubes and extended (6,1)-expressions
for grids. Extended expressions for subdivide cliques are more involved, and the reader is
referred to the full version of the paper [7].

(1) Let HCn denote an n-dimensional hypercube. An extended (2,1)-expression Φn

representing HCn is constructed by induction on the dimensionality of the hypercube. The
base cases of induction are HC0 and HC1. An extended (2,1)-expression for HC0 is ·1, and
an extended (2,1)-expression for HC1 is η{(1,2)}(·1, ·2).

Suppose that for m ≤ n the graph HCm has an extended (2,1)-expression. Let Φn

be an extended (2,1)-expression for HCn. Let −→M = ({0, 1}, {0, 1}), let σ0 be the iden-
tity mapping on [2], let σ1 : [2] → [2] be given by σ1(1) = 2, σ1(2) = 1, and let S =
{(1, 1, 1, 1), (2, 1, 2, 1), (1, 1, 2, 1), (2, 1, 1, 1), (1, 0, 2, 1), (2, 1, 1, 0), (2, 0, 1, 1), (1, 1, 2, 0)}. Then
it is not hard to see that β−→

M,−→σ ,SΦn is an extended (2,1)-expression for HCn+1.
(2) Let us denote the vertex set of an n×m-grid by Gn,m = [n]× [m]. We proceed by

induction on n,m. First, observe that a 2× 2-grid labeled in an arbitrary way with 4 labels
can be represented by a 4-expression in a straightforward manner. We choose the labeling
π22 of G2,2 given by π22(1, 1) = 1, π22(2, 1) = 2, π22(2, 1) = 3, π22(2, 2) = 4.

Next, we construct a 6-expression (not an extended one) for a 2×m-grid labeled in a specific
way. The labeling π′2m of G2,m we achieve is given by π′2m(1, 1) = · · · = π′2m(1,m− 1) = 1,
π′2m(2, 1) = · · · = π′2m(2,m − 1) = 2, π′2m(1,m) = 3, π′2m(2,m) = 4. Suppose we have
constructed a 6-expression representing a 2 × (m − 1)-grid labeled this way. Then add
vertices (1,m) and (2,m) labeled 5 and 6, respectively, and apply operators η53, η56, η64, and
ρ3→1, ρ4→2, ρ5→3, η6→4. It is straightforward that the resulting labeled graph is a 2×m-grid
labeled in the required way.
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Now starting with the labeled 2×m-grid constructed in the previous step we show by
induction that a n ×m-grid with labeling πnm can be represented by an extended (4,1)-
expression, where πnm is given by πnm(i, j) = 3 for i ≤ n− 2 and j ∈ [m], πnm(n− 1, j) =
1, πnm(n, j) = 2 for j ∈ [m]. The base case for induction, the grid G2,m labeled with π2m can
be obtained from the labeled grid constructed in the previous paragraph by applying operators
ρ3→1 and ρ4→2. Suppose that an extended (4,1)-expression representing Gn−1,m labeled
with πn−1m exists. For the induction step we consider inflation operator with the following
parameters: k = 4, r = 1, −→M = ({0, 1}, {0}, {0}, {0}), S = {(1, 1, 2, 0), (2, 0, 1, 1), (1, 1, 1, 1)},
σ0 is the identity mapping on [4] and σ1(i) = i, except σ1(1) = 4. The operator β−→

M,−→σ ,S
applied to Gn−1,m labeled with πn−1m works as follows: it creates an extra copy of each
vertex with label 1, that is, of n− 2-nd row, and connects each new vertex a1 to every vertex
with label 2, a is connected to. In other words, if a = (n − 2, i), then a1 plays the role of
(n, i) and is properly connected to the only vertex with label 2 vertex (n− 2, i) is connected
to, that is, (n− 1, i). Also, β−→

M,σ,S connects vertices (n, i), (n, i+ 1). Finally, the vertices of
the form (n, i) are assigned label 4. In order to obtain a grid labeled with πnm it suffices to
apply operators ρ1→3, ρ2→1 and ρ4→2. J

4 Counting homomorphism to labeled graphs given an extended
k-expression

In this section we prove our main result.

I Theorem 19. Let G and H be two graphs, and let k-labeled graph H be a k-labeling of
graph H. Given an extended (k, r)-expression Φ for H, hom(G,H) can be found in time
O∗((2(max(k, r) + 1))2|V (G)|)

The following notation and terminology will be used throughout this section. Let
HOM(G,H) denote the set of all homomorphisms from G to H. Let X ⊆ V (G), and
let χ : X → [k] be a label function. A mapping ϕ from X to k-labeled graph H =
(V,E, π) is said to be consistent with χ if for every x ∈ X it holds π(ϕ(x)) = χ(x). Let
homχ(G[X],H), HOMχ(G[X],H), mapχ(G[X],H), and MAPχ(G[X],H), denote the number
of homomorphisms from G[X] to H consistent with χ, the set of all homomorphisms from
G[X] to H consistent with χ, the number of all mappings from G[X] to H consistent with χ,
and the set of all mappings from G[X] to H consistent with χ, respectively.

Observing that an extended (k, r)-expression can be naturally viewed as an extended
(max(k, r),max(k, r))-expression, in what follows we assume k = r. Let Φ be an extended
(k, k)-expression for a k-labeling H of the graph H. We proceed by induction on the structure
of Φ. More precisely, our algorithm will compute entries of an array hom(G[X],H′), where
X ⊆ V (G) and G[X] is a k-labeling of G[X], and H′ is the k-labeled graph represented by a
subexpression of Φ. Since the labeling of H′ is important in this inductive process, we also
cannot avoid labeling the graph G. Operator ·i creating a graph H′ with a single vertex
labeled i gives the base case of induction. In this case hom(G[X],H′) = 1 if all vertices
of X are labeled i and G[X] has no edges; otherwise hom(G[X],H′) = 0. Finally, after
computing the numbers hom(G,H) for all the k-labelings G of G, we complete using the
following observation.

I Observation 20. Let G and H be graphs, and let k-labeled graph H be a k-labeling of H.
Then

hom(G,H) =
∑

χ:V (G)→[k]

homχ(G,H)
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It therefore suffices to show how to compute hom(G[X],H′), where G[X] is an arbitrary
k-labeling of G[X], X ⊆ V (G), and H′ is represented by a subexpression Φ′ of Φ, provided
hom(G[Y ],H′′) is known for all Y ⊂ X, all labelings G[Y ] of G[Y ], and H′′ represented by a
subexpression Φ′′ of Φ′ with Φ′′ 6= Φ′. We consider 3 cases depending on the last operator of
Φ′. In the cases of the relabeling and connect operators the argument is similar to that for
k-expressions. Here we only consider the inflation operator.

4.1 Inflation operator
In this part, we show how to make a recursive step in the case when the last operator of Φ′
is an inflation operator. Before explaining this step, we need several definitions.

A retraction is a homomorphism ψ from a graph G2 to its subgraph G1 such that ψ(v) = v

for each vertex v of G1. In this case the subgraph G1 is called a retract of G2. A retraction
from a k-labeled graph G2 = (V2, E2, π2) to a k-labeled graph G1 = (V1, E1, π1) is defined to
be a retraction from G2 = (V2, E2) to G1 = (V1, E1) preserving the label function π2, that is,
π2(v) = π1(ψ(v)) for all v ∈ V2.

It will be convenient for us to subdivide operator β−→
M,−→σ ,S into two steps: the first one is

expansion of the original graph using −→M and S, and the second is relabeling of some vertices
of the resulting graph using −→σ . More specifically, let H = (V,E, π) be a k-labeled graph, −→M ,
Mi ⊆ [[k]] for i ∈ [k] (recall that we assume k = r), S ⊆ L(−→M), and σi : [k]→ [k], i ∈ [[k]].
Then H′ = (V ′, E′, π′) = α−→

M,S(H) is given by
V ′ =

⋃k
i=1 Ci, where Ci = {aj |j ∈ Mi, a ∈ V and π1(a) = i}. The vertices a0, a ∈ V ,

are called original vertices of H′ = α−→
M,S(H) and are identified with their corresponding

vertices from V ;
(aj , bj′) ∈ E′ if and only if (a, b) ∈ E, and (π(a), j, π(b), j′) ∈ S or j = j′ = 0;
π′(aj) = π(a).

Then, H′′ = (V ′′, E′′, π′′) = β−→
M,−→σ ,S(H), that is, V ′′ = V ′, E′′ = E′, and π′′(aj) = σj(π(a))

for a ∈ V ′′ and j ∈Mπ(a).
As is easily seen, H is an induced subgraph of H′, and a retract. Indeed, the mapping µ

that maps every aj ∈ V (H′) to a (recall that aj is a “copy” of some a ∈ V (H)) is a retraction.
The objective is to find a method to express the number of homomorphisms from induced

subgraphs of G to H′′ given those from induced subgraphs of G to H.

I Lemma 21. Let Y ⊆ V (G) and let γ be a function Y → [k]. There is an algorithm
that given homζ(G[X],H) for all functions ζ from a subset X ⊂ Y to [k] as input, finds
homγ(G[Y ],H′′) in time O((2(k + 1))|V (G)|).

We break this down into two steps. The main result of Step I, which is summarized in
Lemma 22, finds an equality for the number of homomorphisms from G to H′. Then, the
result for Step II analogous to Lemma 22 finds the number of homomorphisms from induced
subgraphs of G to H′′ given those for G and H′. As Step II is substantially simpler than
Step I, we omit it here.

Step I
Let H′ = (V ′, E′, π′) = α−→

M,S(H) and H = (V,E, π). Let Y be a subset of V (G) and γ a
function Y → [k]. Also, set

W(γ) = {ω| ω : Y → [[k]] and ∀a ∈ Y , ω(a) ∈Mγ(a)}.
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For ω ∈W(γ), let

HOMγ(G[Y ],H′, ω) = {ϕ | ϕ ∈ HOMγ(G[Y ],H′) and ∀a ∈ Y, ∃b ∈ V (H) s. t. ϕ(a) = bω(a)}.

For the rest of Step I, let X ′ and X ′′ be two disjoint subsets of V (G) and let χ′ : X ′ → [k]
and χ′′ : X ′′ → [k] be arbitrary functions. Also let X = X ′ ]X ′′ and let χ = χ′ ] χ′′.

Let HOMχ′,χ′′(G[X],H′) denote the set of all elements of HOMχ(G[X],H′) that map a
vertex a from X to an original vertex of H′ (recall that any vertex of H is called an original
vertex of H′) if and only if a ∈ X ′.

For any ϕ ∈ HOMχ′,χ′′(G[X],H′), there is a unique ω ∈ W(χ) such that ϕ is also an
element of HOMχ(G[X],H′, ω). Let us call ω the consistent function of ϕ. We then partition
HOMχ′,χ′′(G[X],H′) into smaller subsets and count the elements in each smaller subset. The
partition splits HOMχ′,χ′′(G[X],H′) into sets of homomorphisms that all share the same
consistent function ω ∈W(χ). As is easily seen, HOMχ(G[X],H′, ω) ∩ HOMχ′,χ′′(G[X],H′)
is such a subset.

Let B(χ′, χ′′) be the set of all ω ∈W(χ) such that ω satisfies the following properties:
(b.1) ω ∈W(χ) and ω(x) = 0 if and only if x ∈ X ′.
(b.2) For every a, b ∈ X such that at least one of them is not an element of X ′, and

ab ∈ E(G) it holds that (χ(a), ω(a), χ(b), ω(b)) ∈ S.
Now, as the set of homomorphisms is subdivided into sufficiently small fragments, it is
possible to show that the number of elements in HOMχ(G[X],H′) such that ω is their
consistent function is the same for any ω ∈ B(χ′, χ′′) and it is zero otherwise.

I Lemma 22. Let G, H, H′, X ′, X ′′, X = X ′ ]X ′′, χ′, χ′′, and χ = χ′ ] χ′′ be defined as
above, then

|HOMχ′,χ′′(G[X],H′)| = |B(χ′, χ′′)| × homχ(G[X],H).

To evaluate the running time of this procedure, note that the algorithm has to enumerate
all possible partitions X ′, X ′′ of X, and all mappings that can be in W(χ). Overall, it
amounts to the number of mappings from X to a k + 1 element set. The number of choices
of X is 2|V (G)|. Thus the running time is bounded by O((2(k + 1))|V (G)|). Lemma 21 now
follows from Lemma 22 and a similar result for Step II.

4.2 Putting pieces together

We are now in a position to prove Theorem 19.

Proof of Theorem 19. By Observation 20, hom(G,H) equals the sum of homχ(G,H) over
all k-label functions χ : V (G) → [k]. For each χ we need to compute homχ(G,H). This
computation is done through dynamic programming and requires finding all the numbers of
the form homχ(G[X],H′), where X ⊆ V (G) and H′ is a graph represented by a subexpression
of Φ. By Lemma 21 and similar results for relabeling and connect operators computing each
such value from the previous values takes O((2k + 1)|V (G)|) time. There are k|V (G)| label
functions χ, and 2|V (G)| subsets of V (G). As the number of subexpressions of Φ introduces
only a polynomial factor, the running time of the algorithm is O∗((2(k + 1)2|V (G)|). J
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5 Beyond bounded extended clique width

In this section we study plain exponential classes that do not have bounded extended clique
width. We start with showing that the class of all graphs with degrees less than a constant
does not have bounded extended clique width, and how it can be combined with any plain
exponential class to produce a new plain exponential class. Then we present two more
plain exponential classes of graphs that so far not representable as derivatives of graph with
bounded degree and/or bounded extended clique width.

5.1 Bounded degrees
To prove that some graph class does not have bounded extended clique width we first identify
two nontrivial properties of graphs whose extended clique width is at most (k, k). Let G be a
graph and N (v) denote the neighborhood of v ∈ V (G). Also, let H be an induced subgraph
of G, and NH(v) = N (v) ∩H for v ∈ V (G).

I Lemma 23. Let G be a connected graph and |V (G)| = n. If G has extended clique width
at most (k, k) then the following two conditions hold:
(1) For any k2

n < α ≤ 1
2 , there exists a subset W ⊆ V (G) with αn

k+1 ≤ |W | ≤ αn such
that there are at most 2k subsets U1, . . . , U` of W with the following property: for every
v ∈ V (G)−W either NH(v) = Ui for some i ∈ [`], or NH(v) = NH(w) ∩ Ui for some
w ∈ V (H) and i ∈ [`].

(2) If in addition the maximal degree of G is d, there is a constant δ(d, k) that only depends
on d and k, such that for any β, δ(d, k) < β < 1

2 , there are subsets U ⊆ W ⊆ V such
that |W | ≥ d|U |, and βn

k+1 < |W | ≤ βn. Also, there is a partition Π of W into |U | classes
such that every vertex from W − U only has neighbors in at most d blocks of Π.

Then to prove that the class of all graphs whose degrees are bounded by a constant, does
not have bounded extended clique width, we prove that a random d-regular graph does not
satisfy the property from Lemma 23(2) with high probability, concluding that Dd does not
have bounded extended clique width.

I Lemma 24. Let d > 3. The probability that a random d-regular graph with n vertices
satisfies the condition of Lemma 23(2) is o(1).

Classes of bounded degree can be combined with any plain exponential class to form
another plain exponential class, as the following theorem shows. Let G1 and G2 be graphs.
The Cartesian product of G1 and G2, denoted by G1�G2, is the graph whose vertex set is
V (G1)× V (G2), and vertices (u1, v1) and (u2, v2) of G1�G2 are connected with an edge if
and only if u1 = u2 and v1v2 ∈ E(G2), or v1 = v2 and u1u2 ∈ E(G1). For classes G,H of
graphs G�H denotes the class {G�H | G ∈ G, H ∈ H}.

I Theorem 25. If D is in plain exponential class of graphs and B has bounded degree, then
B�D is also plain exponential.

Proof. Let d be a bound on the degree of graphs from B. Let H = B�D, B ∈ B, D ∈ D,
and let G be a graph. We are concerned with the number hom(G,H). Without loss
of generality assume V (B) = [r]. Let P be a r-partition of V (G). Then a mapping
h : V (G)→ V (H) is said to be consistent with P if for every v ∈ V (G) such that v ∈ Pi it
holds h(v) ∈ {(i, e)|e ∈ V (D)}. In other words, h maps vertices of each set Pi ∈ V (G) to
vertices of the same copy of D in the Cartesian product.
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Our algorithm will find a set P of r-partitions of V (G) such that if a homomorphism
h : G→ H is consistent with an r-partition P , then P ∈ P . Every r-partition can be viewed
as a mapping from V (G) to V (B). Since B has degree at most d, partitions from P can be
enumerated using a process similar to that in Example 7. Order the vertices v1, . . . , vn of G
in such a way that each vertex except for the first one is adjacent to one of the preceding
vertices. Then a brute force algorithm is organized as follows: Assign images from V (B)
to v1, . . . , vn in turn. Clearly, there are V (B) possibilities to map v1. Suppose that images
from V (B) are assigned to v1, . . . , vj−1 by a mapping π : {v1, . . . , vj−1} → V (B). We claim
that there are just d + 1 possibilities to extend π on vj if we want to keep the possibility
that a homomorphism consistent with the obtained r-partition exists. By the choice of the
order v1, . . . , vn, there is vi, i < j, adjacent with vj . It is possible to assing π(vj) = π(vi).
In this case a consistent homomorphism may map the edge vivj to an edge of the form
(π(vi), e1)(π(vi), e2) for some e1e2 ∈ E(D). Otherwise vivj should be mapped to an edge of
the form (π(vi), e)(π(vj), e). In this case there are at most d possibilities for π(vj). Thus,
the algorithm enumerates all the required r-partitions in time O∗((d+ 1)n).

Now, let P be one of the r-partitions of V (G) generated in the previous step. Let G′P
be a graph that is obtained by contracting every edge of V (G) whose ends are in different
blocks of P . We claim that hom(G′P , D) is equal to the number of homomorphisms of G to
B�D that are consistent with P .

Let x ∈ V (G) and let y ∈ V (G′P ). We use the notation x ∈ y, if y is the result of
contraction of x with 0 or more other vertices of G. Also, the set of all homomorphism
from G to H = B�D that are consistent with P is denoted by HOM(P,G,H). We define a
mapping ϕ from elements of HOM(G′P , D) to elements of HOM(P,G,H) as follows: for every
h′ ∈ HOM(G′P , D) set ϕ(h′) = h, where h is given by h(x) = (i, e), for x ∈ Pi and e = h′(y),
x ∈ y.

We show that ϕ is bijective. First, we show that it is injective. If h′1, h′2 ∈ HOM(G′P , D) are
two different mappings, there is an element y ∈ V (G′P ) such that h′1(y) 6= h′2(y). Therefore,
for every x ∈ V (G) with x ∈ y, ϕ(h′1)(x) 6= ϕ(h′2)(x).

Next we prove that ϕ is also surjective. We define a function ϕ−1 : HOM(P,G,H) →
MAP(G′P , E) such that (ϕ−1 ◦ ϕ) is the identity mapping. Then to complete the proof of
surjectivity it only remains to show that the range of ϕ−1 is HOM(G′P , D).

Note that for any homomorphism from G to H consistent with P , any y ∈ V (G′P ), and
any w1, w2 ∈ y, if h(w1) = (i, e), then h(w2) = (j, e) for some j ∈ [r]. We define ϕ−1 as
follows. For h ∈ HOM(P,G,H) set ϕ−1(h) = h′ such that h′ is given by h′(y) = e, where y
is such that for every x ∈ y, h(x) = (j, e) for some j ∈ [r].

It is straightforward that (ϕ−1 ◦ ϕ) is the identity function. Now observe that for any
y1, y2 ∈ V (G′P ) with y1y2 ∈ E(G′P ) there are x1 ∈ y1 and x2 ∈ y2 such that x1x2 ∈ E(G).
Since y1 and y2 are not contracted in G′P , x1, x2 are in the same block Pj of P for some j ∈ [r].
Therefore, h(x1) = (j, e1), h(x2) = (j, e2), and e1e2 ∈ E(D). Hence h′(y1)h′(y2) = e1e2 is an
edge of E. Thus, h′ maps an edge of G to an edge of H, and it is a homomorphism. The
surjectivity of ϕ follows.

Finally, since all the r-partitions ofG for which there may exist a consistent homomorphism
can be enumerated in plain exponential time, and hom(G′P , D) can also be found in plain-
exponential time for each such partition P , the overall algorithm runs in plain exponential
time. J
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5.2 Subdivided Cliques
Recall that the subdivision of an edge uv by a graph H is a graph with vertex set V (H)∪{u, v}
and edge set E(H)∪

⋃
t∈V (H)

{ut, vt}. The subdivision of a graph G by a graph H is the graph

obtained by replacing every edge uv of G with its subdivision by a copy of H (a disjoint
copy for each edge). Let K(H) denote the class of subdivisions of cliques by graphs from a
class H.

The following theorem is the main result of this section.

I Theorem 26. Let H be a plain exponential class of graphs. Then K(H) is also plain
exponential.

More precisely, if #GraphHom(−,H) can be solved in time O∗(c|V (G)|+|V (H)|), c con-
stant, for any given graphs G and H ∈ H, then #GraphHom(−,K(H)) can be solved in
time O∗(c2(|V (G)|+|V (H)|

1 ), where c1 = max(c, 2).

Theorem 18(3) claims that if H is of bounded extended clique width, then so is K(H),
and then that K(H) is plain exponential follows from Theorem 19. However, in Theorem 26
H does not have to be of bounded extended clique width.

5.3 Kneser Graphs
Kneser graphs give another example of a plain exponential class of graphs.

The Kneser graph KGn,k is the graph whose vertex set is the set of k-element subsets of
a set with n elements, and two vertices are adjacent if and only if the two corresponding
sets are disjoint. By Kneserk we denote the class of all Kneser graphs for a fixed k. The
class Kneserk is plain exponential, as it follows from the results of [2, 21]. Here we give an
alternative algorithm for GraphHom(−,Kneserk).

Let G be a graph, and G(k) denote the graph obtained by replacing each of its vertices
with a clique of size k and replacing each of its edges with a complete bipartite graph on
k + k vertices. For a ∈ V (G) let ψ(a) denote the set of vertices of the clique replacing v
in G(k).

First, we introduce a many to one correspondence between elements of HOM(G(k),Kn)
and HOM(G,KGn,k). Let τ : HOM(G(k),Kn) → HOM(G,KGn,k) be defined by setting
τ(ϕ) : V (G)→ KGn,k to be the mapping v 7→ {ϕ(u)|u ∈ ψ(v)}. Notice that the cardinality
of {ϕ(u)|u ∈ ψ(v)} equals k because G(k)[ψ(v)] is a k-clique and ϕ is a homomorphism from
G(k) to Kn. Therefore τ(ϕ)(v) is always a vertex of KGn,k.

It can be shown that for ϕ ∈ HOM(G(k),Kn), τ(ϕ) is a homomorphism, and moreover
for any element σ of HOM(G,KGn,k), τ(ϕ) = σ for exactly (k!)|V (G)| homomorphisms
ϕ ∈ HOM(G(k),Kn). Therefore

|HOM(G,KGn,k)| = HOM(G(k),Kn)
(k!)|V (G)| .

Since there is an algorithm that computes hom(G(k),Kn) in time O∗(2k|V (G)|), there is an
algorithm that computes hom(G,KGn,k) in the same time.

I Remark 27. The running time of the algorithm above is not plain exponential if k is not
a constant. Bonamy et al. [2] proved that the class Kneser =

⋃
k∈N Kneserk is not plain

exponential unless the ETH fails.

Interestingly, the class of Kneser graphs does not have bounded extended clique width.
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I Theorem 28. The class Kneser2 does not have bounded extended clique width.

To prove this result we use the property of graphs with bounded extended clique width
from Lemma 23 (1).
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1 Introduction

1.1 Holant problems
Holant problems are a broad class of sum-of-products computations. It generalizes other
frameworks such as counting constraint satisfaction problems (#CSP) and counting graph
homomorphisms (#GH). Both have been well studied and full complexity dichotomies have
been established [9, 26, 7, 13, 11, 25, 8, 31, 12]. On the other hand, the understanding of
Holant problems, even restricted to the Boolean domain, is still limited. In this paper, we
focus on Holant problems defined over the Boolean domain.

Holant problems are parameterized by a set of constraint functions, also called signatures.
A signature (over the Boolean domain) of arity n > 0 is a map Zn2 → C. Let F be any
fixed set of signatures. A signature grid Ω = (G, π) over F is a tuple, where G = (V,E)
is a graph without isolated vertices, π labels each v ∈ V with a signature fv ∈ F of arity
deg(v), and labels the incident edges E(v) at v with input variables of fv. We consider all
0-1 edge assignments σ, and each gives an evaluation

∏
v∈V fv(σ|E(v)), where σ|E(v) denotes

the restriction of σ to E(v).
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I Definition 1 (Holant problems). The input to the problem Holant(F) is a signature grid
Ω = (G, π) over F . The output is the partition function

HolantΩ =
∑

σ:E(G)→{0,1}

∏
v∈V (G)

fv(σ|E(v)).

Bipartite Holant problems Holant (F | G) are Holant problems over bipartite graphs H =
(U, V,E), where each vertex in U or V is labeled by a signature in F or G respectively. We
say F is on the left hand side (LHS) and G is on the right hand side (RHS).

Weighted #CSP is a special class of Holant problems. So are all weighted #GH. Other
problems expressible as Holant problems include counting matchings and perfect match-
ings [43], counting weighted Eulerian orientations [38, 15], computing the partition functions
of six-vertex models [41, 16] and eight-vertex models [4, 14], and a host of other vertex
models from statistical physics [5]. It is proved that counting perfect matchings cannot be
expressed by #GH [28, 17]. Thus, Holant problems are provably more expressive.

Progress has been made in the complexity classification of Holant problems. When all
signatures are restricted to be symmetric, a full dichotomy is proved [18]. When asym-
metric signatures are allowed, some dichotomies are proved for special families of Holant
problems by assuming that certain auxiliary signatures are available, e.g., Holant∗, Holant+

and Holantc [20, 2, 22, 3]. Without assuming auxiliary signatures a Holant dichotomy is
established only for non-negative real-valued signatures [37].

1.2 Quantum entanglement theory
Holant problems can be viewed as tensor networks in quantum theory. The partition function
HolantΩ can be used in a (strong) simulation of quantum circuits [44]. A signature grid is
just a tensor network, where each signature is a tensor with its inputs associated with its
incident edges and the Holant value of the signature grid is obtained by contracting all edges.
In this sense, a signature of arity n represents a state of n qubits. In quantum theory, the
basic component of a system is a qubit. The (pure) state |Ψ〉 of n qubits is described by a
vector in C2n . (The standard notion requires quantum states to have norm 1, but in this
paper, normalization by a nonzero scalar makes no difference for complexity, so we work
with states having arbitrary nonzero norms.) A nonzero n-ary signature f is synonymous
with an n-qubit state |f〉 =

∑
x∈{0,1}n f(x)|x〉. In this paper, we use them interchangeably.

When f is a zero signature (i.e., f ≡ 0), we agree that |f〉 is a null state, denoted by N.
A core concept in quantum theory is entanglement. It is perhaps the most distinguishing

characteristic feature separating quantum and classical physics.

I Definition 2 (Quantum entanglement). A state of n qubits (n > 1, representing a multiple
system) is entangled if it cannot be decomposed as a tensor product of single-qubit states
(individual systems). It is genuinely entangled if it cannot be decomposed as a tensor product
of states of proper subsystems. It exhibits multipartite entanglement if it involves a genuinely
entangled state of subsystem of more than two qubits (i.e., it cannot be decomposed as a
tensor product of single-qubit states and 2-qubit states).

Today, entanglement is recognized as an important resource in quantum computing
and quantum information theory. It has been shown that quantum computing speedups
essentially depend on unbounded entanglement [34]. While in quantum information theory,
an entangled state is shared by several parties, one can perform operations on a subsystem
locally without access to the other subsystems. This set-up is commonly used in quantum
teleportation and quantum key distribution [27, 6]. For different information-theoretic tasks,
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different types of entanglement can be used [40]. The classification of them under stochastic
local operation with classical communication (SLOCC) equivalence was proposed in 2000 by
Dür et al. [24], and is an area of active research [46, 39, 36, 35, 1, 30]. Yet so far, even the
classification of entangled 4-qubit states is not completely settled. For more about quantum
entanglement theory, we refer to the survey [33].

1.3 Existing dichotomies inspired by entanglement theory
There are many natural connections between Holant problems and quantum theory. The
introduction of Holant problems is inspired by holographic transformations [45]. Such a
holographic transformation applied separately on each qubit i with a matrix Ai is just a
SLOCC in quantum theory. Also, many known P-time computable signature sets for Holant
problems can be clearly described in the quantum literature [19, 2] and they correspond
directly to sets of states that are of independent interest in quantum theory [23, 32].

Going beyond that, Backens recently applied knowledge from the theory of quantum
entanglement, directly to the study of Holant problems and derived new dichotomy results
[2, 3]. We give a short description for these results in this subsection. We use 〈Φ| to denote
the Hermitian adjoint (complex conjugate) of |Φ〉, and 〈Φ|Ψ〉 to denote the (complex) inner
product of two n-qubit states.

I Definition 3 (Projection). The projection of the i-th qubit of an n-qubit (n > 2) state |Ψ〉
onto a single-qubit state |θ〉 = a|0〉+ b|1〉 is defined as 〈θ|i|Ψ〉 = ā|Ψ0

i 〉+ b̄|Ψ1
i 〉 where ā and

b̄ are complex conjugates of a and b, and |Ψ0
i 〉 and |Ψ1

i 〉 are states of the remaining n − 1
qubits when the i-th qubit of |Ψ〉 is set to 0 and 1 respectively.

I Theorem 4 ([42, 29]). Let |Ψ〉 be a genuinely entangled n-qubit (n > 3) state. For any two
qubits of |Ψ〉, there exist projections of the other n− 2 qubits onto n− 2 many single-qubit
states that result in an entangled 2-qubit state.

This result was presented to show that any pure entangled multipartite quantum state
violates some Bell’s inequality [42]. The original proof [42] was flawed and was corrected
recently [29]. Theorem 4 shows that two particle entanglement can be realized via performing
local projections on a genuinely entangled multiparticle state. It is observed in [2] that
the theorem holds even when restricted to only local projections onto computational or
Hadamard basis states, i.e., |0〉, |1〉, |+〉 = |0〉+ |1〉 and |−〉 = |0〉 − |1〉.

Based on Theorem 4 and the inductive entanglement classification under SLOCC equival-
ence [36, 35, 1], Backens showed that beyond entangled 2-qubit states, genuinely entangled
3-qubit states can be realized via local projections onto computational or Hadamard basis
states (Theorem 12 in [2]). This theorem is equivalent to the following inductive statement.

I Theorem 5 ([2]). Let |Ψ〉 be an n-qubit (n > 4) state exhibiting multipartite entangle-
ment. Then, there exists some i and some |θ〉 ∈ {|0〉, |1〉, |+〉, |−〉} such that 〈θ|i|Ψ〉 exhibits
multipartite entanglement.

I Remark 6. This result shows that multipartite entanglement of an n-qubit (n > 4) state
can be preserved under projections onto states |0〉, |1〉, |+〉 and |−〉.

The Holant+(F) problem is defined as Holant(F ∪ {|0〉, |1〉, |+〉, |−〉}), where single qubit
states |0〉, |1〉, |+〉 and |−〉 represent unary signatures ∆0 = (1, 0), ∆1 = (0, 1), ∆+ = (1, 1)
and ∆− = (1,−1) in the Holant framework. According to Theorem 5, we know that in the
framework of Holant+ problems, a genuinely entangled 3-qubit state can always be realized
from an n-qubit (n > 4) state exhibiting multipartite entanglement. Then, using a genuinely
entangled 3-qubit state, a full dichotomy was proved for Holant+ problems [2]. Later, it was
generalized to Holantc problems [22, 3] where Holantc(F) is defined as Holant(F ∪{|0〉, |1〉}).
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1.4 Our results
In this paper, we consider when multipartite entanglement can be preserved under projections
onto only computational basis states, i.e., |0〉 or |1〉. We have the following result.

I Theorem 7. Let |Ψ〉 be an n-qubit (n > 4) state exhibiting multipartite entanglement and
〈0n|Ψ〉 6= 0. If n > 5 and |Ψ〉 is not of the form a|0n〉+ b|1n〉, or n = 4 and |Ψ〉 is not of the
form a|0000〉+ b|1111〉+ c|0011〉+ d|1100〉 (up to a permutation of the four qubits) where
a, b, c and d can possibly be zero, then there exists some i such that |Ψ0

i 〉 or |Ψ1
i 〉 exhibits

multipartite entanglement.

Under SLOCC equivalence, without loss of generality, we may assume that 〈0n|Ψ〉 6= 0.
The other conditions are all necessary to ensure the preservation of multipartite entanglement
under projections to |0〉 and |1〉. Thus Theorem 7 is a strengthening of Theorem 5. More
importantly, our approach is in the opposite direction to Backens’. While Backens proved
results in quantum entanglement theory to apply it to the complexity classification of
Holant problems, we prove new results in quantum entanglement theory by employing the
machinery from Holant problems. We prove Theorem 7 using a technique developed for Holant
problems called the interplay between the unique prime factorization of signatures and gadget
constructions. This technique is at the heart of a standard approach (arity reduction) to build
inductive arguments for Holant problems [15]. The new result in quantum entanglement
theory sheds light on the classification of entanglement under SLOCC equivalence.

Going one step further, we ask whether we can restrict projections onto only one state |0〉,
while multipartite entanglement is still preserved. The answer is no. Then, one way to salvage
the situation is to consider the self-loop gadget using one of the Bell states, |φ+〉 = |00〉+ |11〉
together with projections onto |0〉.

I Definition 8 (Self-loop). The self-loop on the i-th and j-th qubits of a state |Ψ〉 by the Bell
state |φ+〉 = |00〉+ |11〉 is defined as 〈φ+|ij |Ψ〉 = |Ψ00

ij 〉+ |Ψ11
ij 〉, where |Ψ00

ij 〉 and |Ψ11
ij 〉 are

states of n− 2 qubits when setting the i-th and j-th qubits of |Ψ〉 to 00 and 11 respectively.

I Lemma 9. Let |Ψ〉 be an n-qubit (n > 4) state exhibiting multipartite entanglement. There
exists some choice of three or four of the n qubits such that by performing self-loops by |φ+〉
and projections onto |0〉 of the other qubits, we get

a 3-qubit state exhibiting multipartite entanglement, or
a GHZ type 4-qubit state, i.e., |GHZ4〉 = |0000〉+ |1111〉, or
the state |1〉.

Why do we consider |φ+〉 and |0〉? The state |φ+〉 is synonymous with the binary
equality signature =2. It is always available in the Holant framework as it means merging
two dangling edges in a graph. Moreover, we can show that |0〉 is realizable from any state
of odd number of qubits under some mild assumptions. Then, we can apply Lemma 9 to get
a new dichotomy for Holant problems where at least one signature of odd arity is present.

I Theorem 10. Let F be a set of real-valued signatures containing at least one signature
of odd arity. If F satisfies the tractability condition (T) in Theorem 21, then Holant(F) is
polynomial-time computable; otherwise, Holant(F) is #P-hard.

I Remark 11. Theorem 7 and Lemma 9 hold for complex-valued n-qubit states. However,
Theorem 10 is restricted to real-valued signatures, in which the Hermitian conjugate and the
complex inner product can be represented by a mating gadget in the Holant framework.
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1.5 Surprising discovery of two extraordinary quantum states
What about signature sets containing only signatures of even arity, in which |0〉 cannot be
realized. Since |φ+〉 is always available, we consider whether multipartite entanglement is
preserved under self-loops by |φ+〉 alone. Given an n-qubit (n > 6 is even) state |Ψ〉 exhibiting
multipartite entanglement, are there some i and j such that performing a self-loop by |φ+〉
on the i-th and j-th qubits of |Ψ〉 results in an (n− 2)-qubit state exhibiting multipartite
entanglement? (By the definition of multipartite entanglement, for even n it must be n ≥ 6.)

The answer is no. Here we made a quite surprising discovery: There exist genuinely
entangled 6-qubit and 8-qubit states such that multipartite entanglement is not preserved
under self-loops. Furthermore, it is not preserved under self-loops not only by |φ+〉, but also
by all four Bell states, |φ+〉, |ψ+〉 = |01〉+ |10〉, |φ−〉 = |00〉−|11〉, and |ψ−〉 = |01〉−|10〉. The
self loop of the i-th and j-th qubits of |Ψ〉 by |ψ+〉 is defined as 〈ψ+|ij |Ψ〉 = |Ψ01

ij 〉+ |Ψ10
ij 〉.

Similarly, we can define 〈φ−|ij |Ψ〉 and 〈ψ−|ij |Ψ〉.

I Definition 12 (Bell property). Let |Ψ〉 be a genuinely entangled state. We say that it satisfies
the Bell property if for any two qubits i and j of |Ψ〉 and any Bell state |φ〉, 〈φ|ij |Ψ〉 is a
tensor product of Bell states. It satisfies the strong Bell property if for any i and j and any
Bell state |φ〉, 〈φ|ij |Ψ〉 is a tensor product of the Bell state |φ〉, i.e., 〈φ|ij |Ψ〉 = |φ〉⊗ · · ·⊗ |φ〉.

I Theorem 13. There exist genuinely entangled 6-qubit states that satisfy the Bell property,
and genuinely entangled 8-qubit states that satisfy the strong Bell property.

We first give an 8-qubit state |Ψ8〉 that satisfies the strong Bell property.

|Ψ8〉=|00000000〉+|00001111〉+|00110011〉+|00111100〉+|01010101〉+|01011010〉+|10011001〉+|10010110〉

+|01101001〉+|01100110〉+|10100101〉+|10101010〉+|11000011〉+|11001100〉+|11110000〉+|11111111〉.

|Ψ8〉 can be represented by an 8-ary signature Ψ8. Let S(Ψ8) be the support of Ψ8, i.e.,
S(Ψ8) = {α ∈ Z8

2 | Ψ8(α) 6= 0}. S(Ψ8) has the following structure: the sums of the first four
variables, and the last four variables are both even; the assignment of the first four variables
are either identical to, or complement of the assignment of the last four variables. While it is
not obvious from this description that the support set is an affine subspace of Z8

2, but it is.

S(Ψ8) =
{

(x1, x2, . . . , x8) ∈ Z8
2 |x1 + x2 + x3 + x4 ≡ 0, x1 + x2 + x5 + x6 ≡ 0,
x1 + x3 + x5 + x7 ≡ 0, x2 + x3 + x5 + x8 ≡ 0, mod2

}
.

In other words, take 4 variables x1, x2, x3, x5, (these are not the first 4 variables in the
description above), then on the support the remaining 4 variables are mod 2 sums of

(4
3
)

subsets of {x1, x2, x3, x5}. This will imply that |Ψ8〉 is genuinely entangled. Also, one can
check that 〈φ|12|Ψ8〉 = |φ〉⊗3 for any Bell state |φ〉. Due to the symmetry of |Ψ8〉, the same
result holds by replacing {1, 2} with any {i, j}. Thus, |Ψ8〉 satisfies the strong Bell property.

The 6-qubit state |Ψ6〉 satisfying the Bell property has 32 nonzero coefficients. We give it
in the signature form.

Ψ6(x1, . . . , x6) = χS(Ψ6) · (−1)x1x4+x2x5+x3x6+x4x5+x5x6+x4x6 ,

where χS(Ψ6) is the indicator function on the support S(Ψ6) = {(x1, . . . , x6) ∈ Z6
2 |
∑6
i=1 xi =

0 mod 2} (even parity). Such a support will imply that |Ψ6〉 is genuinely entangled. We can
write Ψ6 as the following 8-by-8 matrix where the assignment of the first three variables in
lexicographic order (from 000 to 111) is the row index and the assignment of the last three
variables in lexicographic order is the column index.
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M123,456(Ψ6) =


1 0 0 1 0 1 1 0
0 −1 1 0 1 0 0 −1
0 1 −1 0 1 0 0 −1
−1 0 0 −1 0 1 1 0
0 1 1 0 −1 0 0 −1
−1 0 0 1 0 −1 1 0
−1 0 0 1 0 1 −1 0
0 1 1 0 1 0 0 1

 .
By the symmetry of |Ψ6〉, one can check that |Ψ6〉 satisfies the Bell property by verifying
〈φ|12|Ψ6〉, 〈φ|45|Ψ6〉 and 〈φ|14|Ψ6〉 are tensor products of Bell states for any bell state |φ〉.

We can use Pauli operations to generate more states satisfying the Bell property. Consider
the following four Pauli operators

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
and Z =

[
1 0
0 −1

]
.

A Pauli operation on an n-qubit state |Ψ〉 is defined as P1⊗P2⊗ . . .⊗Pn|Ψ〉 (which produces
another n-qubit state) where each Pi is a Pauli operator. Let |Ψ6〉 and |Ψ8〉 be states
described above. Let P6 and P8 denote the sets of states realized by performing Pauli
operations on |Ψ6〉 and |Ψ8〉 respectively.

I Theorem 14. Every state in P6 or P8 satisfies the Bell property.

Due to the existence of these 6-qubit and 8-qubit states with such extraordinary properties,
it remains as a difficult task to achieve a full dichotomy for real-valued Holant problems.
On the other hand, we hope such states can be further investigated and perhaps applied to
quantum computing or quantum information theory.

The paper is organized as follows. In Section 2, we give a proof of our main quantum
entanglement result (Theorem 7) by using the theory of signatures. Then we give some
preliminaries for Holant problems in Section 3, and a proof sketch for our dichotomy result
(Theorem 10) in Section 4.

2 Preservation of Multipartite Entanglement under Projections

We use the theory of signatures to prove Theorem 7. Recall that by our definition, a signature
always has arity at least one. A nonzero signature g divides f denoted by g | f , if there is
a signature h such that f = g ⊗ h (with possibly a permutation of variables) or there is a
constant λ such that f = λ · g. In the latter case, if λ 6= 0, then we also have f | g since
g = 1

λ · f . For nonzero signatures f and g, we use f ∼ g to denote both g | f and f | g. A
nonzero signature f is irreducible if f cannot be written as g ⊗ h for some signatures g and
h. This is equivalent to saying that |f〉 is a genuinely entangled state of multiple qubits
or |f〉 is a single-qubit state. Let T1 denote the set of tensor products of unary signatures
and T denote the set of tensor products of unary and binary signatures. Then a state |f〉 of
multiple qubits is entangled iff f /∈ T1, and |f〉 exhibits multipartite entanglement iff f /∈ T.
In terms of the above division relation, the unique prime factorization (UPF) of signatures is
established (see Lemma 2.13 of [15]). The following result is a direct corollary.

I Corollary 15. Let f be a nonzero n-ary signature. Suppose that there are two irreducible
signatures g on variables in A ⊆ [n] and h on variables in B ⊆ [n] such that g | f and h | f .
Then, either A is disjoint with B, or A = B and g ∼ h.
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We use f0
i and f1

i to denote the signature forms of quantum states |f0
i 〉 and |f1

i 〉 realized
by projections onto |0〉 and |1〉. In the Holant framework, these signatures are realized by a
pinning gadget, i.e., connecting the variable xi of f with unary signatures ∆0 = (1, 0) and
∆1 = (0, 1) respectively. We may further pick a variable xj of f ci and pin it to the value
d (c, d ∈ {0, 1}). Obviously, the pinning gadgets on different variables xi and xj commute.
Thus, we have (f ci )dj = (fdj )ci . We denote it by f cdij .

Suppose that g | f where g is on variables in A. Then for any variable xi of f that is
not in A, we have g | f0

i and g | f1
i (By definition, the division relation holds even if f0

i or
f1
i is a zero signature). Thus, the division relation is unchanged under pinning gadgets on

variables out of A. The following lemma shows that a stronger converse is also true.

I Lemma 16. Let f be a signature of arity n > 2. If there exists a signature g on variables
in A ⊆ [n] and some xi not in A such that g | f0

i and g | f1
i , then g | f .

Now, we are ready to prove Theorem 7. We restate it in terms of signatures. We use 0n
and 1n to denote the n-bit all-0 and all-1 strings, and S(f) to denote the support of f .

I Theorem 17. Let f be an n-ary (n > 4) signature, f /∈ T and f(0n) 6= 0. If n > 5 and
S(f) 6⊆ {0n, 1n}, or n = 4 and S(f) 6⊆ {0000, 1111, 0011, 1100} up to any permutation of four
variables, then there exists some i such that f0

i or f1
i is not in T.

Proof. Since f(0n) 6= 0, we have f0
i 6≡ 0 and f00

ij 6≡ 0 (not identically 0) for all indices i and
j. Also, since the support S(f) 6⊆ {0n, 1n}, there exist some s and t such that f01

st 6≡ 0. For a
contradiction, we assume f0

i , f
1
i ∈ T for all i. We consider the following two possible cases.

Case 1. For all indices i, f0
i ∈ T1 (i.e., tensor product of unary signatures).

We will show that in this case, there is a unary signature a(xu) on some variable xu, such
that a(xu) | f . This will lead to a contradiction.

Recall that there exist some s and t such that f01
st 6≡ 0. Then, clearly f1

t 6≡ 0. Since
f1
t ∈ T, in the UPF of f1

t , the variable xs may appear in a unary signature or an irreducible
binary signature. In both cases, since f has arity at least 4, we can pick a variable xu
such that xu and xs appear in two distinct irreducible signatures in the UPF of f1

t (i.e., xu
and xs are not entangled in f1

t ). Then, we show that xu must appear in a unary signature
in the UPF of f1

t . Otherwise, there is an irreducible binary signature b(xu, xv) such that
b(xu, xv) | f1

t . Since xu is not entangled with xs in f1
t , we have v 6= s. Then, b(xu, xv) | f01

st .
On the other hand, we consider f0

s . By our assumption, f0
s ∈ T1 and hence there exists some

unary signature a′(xu) such that a′(xu) | f0
s . Then, a′(xu) | f01

st . Since f01
st 6≡ 0, by Corollary

15, b(xu, xv) ∼ a′(xu). Contradiction. Thus, there exists some a(xu) such that a(xu) | f1
t .

Now we show that a(xu) | f0
t . First, we show that a(xu) | f0

s . Since f0
s ∈ T1, there exists

some unary signature a′(xu) such that a′(xu) | f0
s , and then a′(xu) | f01

st . Also, we have
a(xu) | f01

st since a(xu) | f1
t . Since f01

st 6≡ 0, by Corollary 15, we have a(xu) ∼ a′(xu). Thus,
a(xu) | f0

s . Since f0
t ∈ T1, there exists a unary signature a′′(xu) such that a′′(xu) | f0

t , and
then a′′(xu) | f00

st . Also, we have a(xu) | f00
st since a(xu) | f0

s . Remember that f00
st 6≡ 0. Then,

by Corollary 15, we have a(xu) ∼ a′′(xu). Thus, a(xu) | f0
t .

Since a(xu) | f0
t and a(xu) | f1

t , by Lemma 16, we have a(xu) | f . In other words,
f = a(xu)⊗ g where g is a nonzero signature of arity n− 1 on variables other than xu. Since
f /∈ T, we have g /∈ T. Consider f0

u . We know that it is a nonzero signature and hence f0
u ∼ g.

Thus, f0
u /∈ T. We have reached a contradiction.
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Case 2. There exists some index k and an irreducible binary signature b(xv, xw) such that
b(xv, xw) | f0

k .
We will show that in this case, b(xv, xw) | f . First, we show that b(xv, xw) | f0

i for
all i /∈ {v, w}. We already have b(xv, xw) | f0

k . Consider f0
i for all indices i /∈ {v, w, k}.

Since f0
i ∈ T and f0

i 6≡ 0, there is either a unary signature a(xv) or an irreducible binary
signature b′(xv, xw′) for some w′ 6∈ {i, v} that appears in the UPF of f0

i , i.e., a(xv) | f0
i or

b′(xv, xw′) | f0
i . In the former case, we have a(xv) | f00

ik . In the latter case and if w′ 6= k,
we have b′(xv, xw′) | f00

ik . In the latter case and if w′ = k, then let a′(xv) be the unary
signature realized from b′(xv, xw′) by pinning xw′ = xk to 0, we get a′(xv) | f00

ik . On the
other hand, since b(xv, xw) | f0

k , we have b(xv, xw) | f00
ik . Since f00

ik 6≡ 0, by Corollary 15, we
know that the two cases that a(xv) | f00

ik and a′(xv) | f00
ik cannot occur. Thus, w′ 6= k and

b′(xv, xw′) | f00
ik . By Corollary 15, w′ = w, and b(xv, xw) ∼ b′(xv, xw′). Thus, b(xv, xw) | f0

i

for all i /∈ {v, w}.
Then we want to show that there exists some j /∈ {v, w} such that b(xv, xw) | f1

j .
We first consider the case that there exist some indices i and j where {i, j} is disjoint
with {v, w} such that f01

ij 6≡ 0. We show that b(xv, xw) | f1
j . Since b(xv, xw) | f0

i , we have
b(xv, xw) | f01

ij . By assumption f01
ij 6≡ 0, and then clearly f1

j 6≡ 0. Recall that f1
j ∈ T.

Again, there is either a unary signature a(xv) or an irreducible binary signature b′(xv, xw′)
that appears in the UPF of f1

j , i.e., a(xv) | f1
j or b′(xv, xw′) | f1

j . In the first case since
i 6= v, we can pin xi of f1

j to 0, and we get a(xv) | f01
ij . In the second case and if w′ = i,

again we can get a′(xv) | f01
ij , where a′(xv) = b′(xv, 0), obtained from pinning xi to 0.

But f01
ij 6≡ 0 and b(xv, xw) | f01

ij . Then, in the UPF of f01
ij , it does not have a unary

signature on xv as a factor. Thus, it must be the case that b′(xv, xw′) | f1
j where w′ 6= i.

Then, we have b′(xv, xw′) | f01
ij . Since b(xv, xw) | f01

ij and f01
ij 6≡ 0, by Corollary 15,

w′ = w and b′(xv, xw′) ∼ b(xv, xw), and thus b(xv, xw) | f1
j . Then, by Lemma 16, we

have b(xv, xw) | f . In other words, f = b(xv, xw)⊗ h where h is a nonzero signature of
arity n−2 on variables other than xv and xw. Since f /∈ T, we have h /∈ T. Then consider
f0
v . We know that it is a nonzero signature and h | f0

v . Thus, f0
v /∈ T. Contradiction.

Then we consider the case that f01
ij ≡ 0 for all indices {i, j} that are disjoint with {v, w}.

Consider an n-bit input α of f . We write α as αvαwβ where αv is the input on variable
xv, αw is the input on variable xw, and β is the input on the other n− 2 variables. Then,
f(α) = 0 if β is not the all-0 or all-1 bit string in {0, 1}n−2. It follows that f has at most
eight nonzero entries. We list all its entries by the following 4-by-2n−2 matrix Mvw(f)
with (xv, xw) ∈ {0, 1}2 as the row index (in the order 00, 01, 10, 11) and the assignment
of the other variables in lexicographic order as the column index.

Mvw(f) =


c1 0 . . . . . . 0 c2
c3 0 . . . . . . 0 c4
c5 0 . . . . . . 0 c6
c7 0 . . . . . . 0 c8

 .
Here, c1 = f(0n) 6= 0. Consider signatures f0

v and f1
v . They have the following matrix

forms with the variable xw ∈ {0, 1} as the row index.

Mw(f0
v ) =

[
c1 0 . . . . . . 0 c2
c3 0 . . . . . . 0 c4

]
and Mw(f1

v ) =
[
c5 0 . . . . . . 0 c6
c7 0 . . . . . . 0 c8

]
.

Also consider signatures f0
w and f1

w. They have the following matrix forms with the
variable xv ∈ {0, 1} as the row index.

Mv(f0
w) =

[
c1 0 . . . . . . 0 c2
c5 0 . . . . . . 0 c6

]
and Mv(f1

w) =
[
c3 0 . . . . . . 0 c4
c7 0 . . . . . . 0 c8

]
.
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Consider f0
v . Since f has arity at least 4, f0

v has arity at least 3. Since f0
v ∈ T, the

variable xw either appears in a unary factor a(xw) of f0
v or an irreducible binary factor

b(xw, xw′) of f0
v . In the latter case, we can pick another variable xr of f0

v where r 6= w or
w′, and we consider f00

vr . We know that f00
vr 6≡ 0 since c1 6= 0 and b(xw, xw′) | f00

vr since
b(xw, xw′) | f0

v . Notice that the column with c2 and c4 does not appear inMw(f00
vr ). Thus,

the signature f00
vr is of the form (c1, c3)⊗ (1, 0)⊗(n−2) which is a tensor product of unary

signatures. Contradiction. Thus, there is a unary signature a(xw) such that a(xw) | f0
v .

Then, we have c1c4 = c2c3. Similarly by considering f0
w, we have c1c6 = c2c5. Now, we

consider f1
v , and prove c5c8 = c6c7. If c5 = c7 = 0, then clearly we have c5c8 = c6c7 = 0.

Otherwise, for any r 6= w or v, we have f10
vr = (c5, c7) ⊗ (1, 0)⊗(n−2) 6≡ 0 which is a

tensor product of unary signatures. If there is a binary signature b(xw, xw′) such that
b(xw, xw′) | f1

v , then we can find some r 6= w,w′ such that b(xw, xw′) | f10
vr . Contradiction.

Thus, there is a unary signature a(xw) such that a(xw) | f1
v . Then, we have c5c8 = c6c7.

Similarly by considering f1
w, we have c3c8 = c4c7.

Suppose n > 5. Then f0
v has arity at least 4. We first show that c2 = 0. We consider

f00
vw = [c1, 0, . . . . . . , 0, c2]. Since f0

v ∈ T, we have f00
vw ∈ T. Note that f00

vw has arity
at least 3. Since c1 6= 0, the only possible value of c2 to make f00

vw ∈ T is 0. Thus,
c2 = 0. Since c1c4 = c2c3 = 0 and c1 6= 0, we have c4 = 0. Also, since c1c6 = c2c5 = 0
and c1 6= 0, we have c6 = 0. If c8 = 0, then f = b(xv, xw) ⊗ (1, 0)⊗(n−2) ∈ T. A
contradiction with f /∈ T. Thus, we have c8 6= 0. Since c5c8 = c6c7 = 0 and c8 6= 0,
we have c5 = 0. Also since c3c8 = c4c7 = 0 and c8 6= 0, we have c3 = 0. Consider
f11
vw = [c7, 0, . . . . . . , 0, c8]. Since f11

vw ∈ T and it has arity at least 3, and c8 6= 0, we
have c7 = 0. Thus, f has only two nonzero entries that are on the all-0 input and the
all-1 input. A contradiction with our assumption that S(f) 6⊆ {0n, 1n}.
Suppose n = 4. If c2 = 0, then with the same proof as in the case that n > 5, we
have c4 = c6 = 0, c8 6= 0 and then c3 = c5 = 0. Thus, S(f) ⊆ {0000, 1111, 1100}.
Contradiction. Otherwise, c2 6= 0. Suppose that c2 = kc1. Then c4 = kc3 since
c1c4 = c2c3 and c6 = kc5 since c1c6 = c2c5. If c3 and c4 are not zero, then c8 = kc7
since c3c8 = c4c7. Then, f = b(xv, xw) ⊗ (1, 0, 0, k) ∈ T. Contradiction. Thus,
c3 = c4 = 0. Similarly, if c5 and c6 are not zero, then we still have c8 = kc7 since
c5c8 = c6c7. Then, we have f ∈ T. Contradiction. Thus, c5 = c6 = 0. Then,
S(f) ⊆ {0000, 1111, 0011, 1100}. Contradiction.

Therefore, there exists some i such that f0
i or f1

i is not in T. J

Our result can be used in the classification of entanglement under SLOCC equivalence.
An n-qubit state |Ψ〉 is equivalent to another n-qubit state |Φ〉 under SLOCC if there exist
some invertible 2-by-2 matrices M1, M2, . . ., Mn such that |Ψ〉 = M1 ⊗M2 ⊗ . . .⊗Mn|Φ〉.
Physicists are interested in the classification of SLOCC equivalence classes. For 2-qubit
states there are two SLOCC classes, and for 3-qubit states there are six SLOCC classes [24].
However, for states of 4 or more qubits there are infinitely many SLOCC classes [24]. Then,
the goal is to categorize these classes into some finitely many families with common physical
or mathematical properties. Depending on which properties are used, there are different
approaches. One powerful approach that can possibly handle states of a high number of
qubits is by induction [36, 35, 1, 30]. In this approach, the classification of n-qubit states
relies on the classification of (n− 1)-qubit states.

Consider an n-qubit state |Ψ〉. We can pick some index i and write |Ψ〉 as |Ψ〉 =
|0〉|Ψ0

i 〉+|1〉|Ψ1
i 〉. Families of entanglement classes of |Ψ〉 can be defined according to the types

of entanglements found in the linear span{|Ψ0
i 〉, |Ψ1

i 〉} which is related to the entanglement
types of |Ψ0

i 〉 and |Ψ1
i 〉 themselves. Theorem 7 gives a direct relation between the entanglement
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22:10 From Holant to Quantum Entanglement and Back

types of |Ψ〉 and {|Ψ0
i 〉, |Ψ1

i 〉}. For example, consider a 5-qubit state exhibiting multipartite
entanglement. First, by performing SLOCC using the matrix N2 = [ 0 1

1 0 ] on this state, we
can always get a state |Ψ〉 where the coefficient of |05〉 is nonzero. If |Ψ〉 has the form
a|05〉+ b|15〉, then it is equivalent to |GHZ5〉 = |05〉+ |15〉. Otherwise, we can apply Theorem
7. There exists some i such that |Ψ0

i 〉 or |Ψ1
i 〉 exhibits multipartite entanglement. Then,

in order to classify the state |Ψ〉, we only need to consider possible entanglement types of
{|Ψ0

i 〉, |Ψ1
i 〉} where at least one state exhibits multipartite entanglement. This eliminates

many cases compared to considering all entanglement types of {|Ψ0
i 〉, |Ψ1

i 〉}.

3 Preliminaries for Holant Problems

3.1 Definitions and Notations
Let f be a complex-valued signature. If f(α) = f(α) for all α where f(α) denotes the
complex conjugation of f(α) and α denotes the bit-wise complement of α, we say f satisfies
arrow reversal symmetry (ars). We may use fα to denote f(α).

We use =n to denote the Equality signature of arity n, which takes value 1 on the
all-0 or all-1 inputs and 0 elsewhere. Note that =2 represents the Bell state |φ+〉. Let
EQ = {=1,=2, . . . ,=n, . . .} denote the set of all Equality signatures. Then #CSP(F) is
exactly Holant(EQ | F). Also, let EQk = {=k,=2k, . . . ,=nk, . . .}, and we define #CSPk(F)
to be Holant(EQk | F). The following two reductions are known [10]:

#CSP(F) 6T Holant(=3,F) and #CSP2(F) 6T Holant(=4,F).

Here, 6T denotes P-time Turing reduction. We use 6=2 to denote the binary Disequality
signature with truth table (0, 1, 1, 0). It represents the Bell state |ψ+〉.

A signature f of arity n > 2 can be expressed as a 2× 2n−1 matrix Mi(f), which lists the
2n entries of f with variable xi ∈ {0, 1} as row index and the assignments of the other n− 1
variables in lexicographic order as column index, i.e. Mi(f) =

[
f0,00...0 f0,00...1 ... f0,11...1

f1,00...0 f1,00...1 ... f1,11...1

]
=[

f0
i

f1
i

]
, where fai denotes the row vector indexed by xi = a in Mi(f). For =2, it has the 2-by-2

signature matrix M(=2) = I2 = [ 1 0
0 1 ]. For 6=2, M( 6=2) = N2 = [ 0 1

1 0 ] .

3.2 Holographic Transformation
For an invertible matrix T ∈ GL2(C) and a signature f of arity n, written as a column
vector f ∈ C2n , we denote by Tf = T⊗nf the transformed signature. For a signature set F ,
define TF = {Tf | f ∈ F} to be the set of transformed signatures. For signatures written as
row vectors we define fT−1 and FT−1 similarly.

Let T ∈ GL2(C). The holographic transformation defined by T is the following operation:
given a signature grid Ω = (H,π) of Holant (F | G), for the same bipartite graph H, we get
a new signature grid Ω′ = (H,π′) of Holant

(
FT−1 | TG

)
by replacing each signature in F

or G with the corresponding signature in FT−1 or TG.

I Theorem 18 (Valiant’s Holant Theorem [45]). For any T ∈ GL2(C),

Holant(F | G) ≡T Holant(FT−1 | TG).

Holant(F) is equivalent to its bipartite form Holant (=2| F). A particular holographic
transformation that will be commonly used is the transformation defined by Z−1 = 1√

2

[ 1 −i
1 i

]
,

with Z = 1√
2

[ 1 1
i −i

]
. Since (=2)Z = (6=2), we have Holant (=2| F) ≡T Holant

(
6=2| Z−1F

)
.

We denote Z−1F by F̂ and Z−1f by f̂ . The following relation between f and f̂ is known.

I Lemma 19 (Lemma A.2 in [15]). f is a real valued signature iff f̂ satisfies ars.
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3.3 Gadget Construction
One basic reduction for Holant problems is gadget construction. We say a signature f is
realizable from a signature set F (by gadget construction) if there is a graph G = (V,E,D)
with internal edges E and dangling edges D where each vertex v ∈ V is labeled by a signature
fv from F , and the graph defines the signature f by its sum-of-products with inputs on the
dangling edges. If f is realizable from a set F , then Holant(f,F) ≡T Holant(F).

A basic gadget construction is merging; we connect two variables xi and xj of f using
=2. We use ∂ijf = f00

ij + f11
ij to denote a signature realized by merging, where fabij denotes

the signature obtained by setting (xi, xj) = (a, b) ∈ {0, 1}2. The merging operation using =2
is synonymous with performing a self-loop by the Bell state |φ+〉.

A gadget construction often used in this paper is mating. Given a real-valued signature f
of arity n > m > 1, we connect two copies of f in the following manner: Fix a set S of n−m
variables among all n variables of f . For each xk ∈ S, connect xk of one copy of f with xk of
the other copy using =2. The variables that are not in S are called dangling variables. For
m = 1, there is one dangling variable xi. Then, the mating construction realizes a binary
signature, denoted by mif . It can be represented by matrix multiplication. We have

M(mif) = Mi(f)I⊗(n−1)
2 MT

i (f) =
[
f0i
f1i

] [
f0i

T f1i
T
]

=
[
|f0i |2 〈f0i , f

1
i 〉

〈f0i , f
1
i 〉 |f1i |2

]
. (3.1)

The (complex) inner product 〈·, ·〉 uses complex conjugation. But since f is real-valued, this
is the same as the usual dot product. |f| denotes its 2-norm. In the setting of Holant( 6=2| F̂),
the above mating operation is equivalent to connecting variables in S using 6=2. We denote
the resulting signature by m̂if̂ = m̂if . Note that f̂ satisfies ars since f is real. Thus,

N
⊗(n−1)
2 f̂0i

T
= (f̂0,11...1, f̂0,11...0, . . . , f̂0,00...0)T = (f̂1,00...0, f̂1,00...1, . . . , f̂1,11...1)T = f̂

1
i

T

.

Then, we have

M(m̂if̂) =
[̂

f
0
i

f̂
1
i

] [
0 1
1 0

]⊗(n−1) [
f̂0i

T
f̂1i

T]
=
[̂

f
0
i

f̂
1
i

] [̂
f
1
i

T

f̂
0
i

T]
=
[
〈̂f

0
i , f̂

1
i 〉 |̂f

0
i |2

|̂f
1
i |2 〈̂f

1
i , f̂

0
i 〉

]
. (3.2)

Here, due to ars, the complex inner product can also be represented by mating using 6=2.

3.4 Known results
We give some known signature sets that define tractable, i.e., polynomial time computable,
counting problems. There are three families: product-type signatures, affine signatures and
local affine signatures denoted by P, A and L respectively. Please see the full paper or [22]
for definitions and more details. Problems defined by T are also tractable.

I Definition 20. We say a signature set F is C-transformable if there exists a T ∈ GL2(C)
such that (=2)(T−1)⊗2 ∈ C and TF ⊆ C.

By Theorem 18, if Holant(C) is tractable, then Holant(F) is tractable for any C-
transformable set F . The following tractable results are known [22, 3].

I Theorem 21. For any complex-valued signature set F , Holant(F) is P-time computable if

F ⊆ T, F is P-transformable, F is A-transformable, or F is L-transformable. (T)
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22:12 From Holant to Quantum Entanglement and Back

Based on dichotomy results of #CSP and Holantc [21, 22, 3], the following #P-hardness
results are known.

I Theorem 22. Let F be a set of real-valued signatures. If F does not satisfy condition (T),
then #CSP(F), #CSP2(F) and Holantc(F) are #P-hard.

For reducible signatures, the following reduction was proved by Lin and Wang [37].

I Lemma 23. If a nonzero real-valued signature f has a factorization g ⊗ h where g and h
are also real-valued signatures, then Holant(g, h,F) ≡T Holant(f,F). In this case, we say
that g and h are realizable from f by factorization.

4 Proof Sketch for Theorem 10

We give a proof sketch for Theorem 10.
By Theorem 21, if F satisfies condition (T), then Holant(F) is tractable. We prove #P-

hardness when F does not satisfy condition (T). First, we show that under some holographic
transformations, either one can use a signature of odd arity in F to realize the unary signature
∆0 = (1, 0), or one can realize an equality signature =k for some k > 3.

I Lemma 24. Let F be a set of real-valued signatures containing a signature of odd arity.
Then Holant( 6=2|=k, F̂) 6T Holant(F) for some k > 3, or Holant(∆0, QF) 6T Holant(F)
for some real orthogonal 2-by-2 matrix Q ∈ O2(R).

We first prove the #P-hardness of Holant( 6=2|=k, F̂) given k > 3 and F does not satisfy
condition (T). We give the following reduction.

I Lemma 25. If k > 3, then #CSPk( 6=2,G) ≡T Holant(EQk |6=2,G) 6T Holant( 6=2|=k,G).

Proof. The first equivalence is by definition. For the second reduction, we show that =nk

can be realized on the LHS by induction on n. First, we connect one variable of each of k
copies of 6=2 on the LHS with the k variables of =k on the RHS (Figure 1a). This gadget
realizes =k on the LHS.

Then, suppose that =nk is realizable on the LHS. We take one copy of =nk and two copies
of =k on the LHS, and one copy of =k on the RHS. Remember that k > 3. We connect two
variables of =k on the RHS with one variable of each of the two copies of =k on the LHS,
and connect the other k − 2 variables of =k on the RHS with k − 2 variables of =nk on the
LHS (Figure 1b). This gadget realizes =(n+1)k on the LHS.

Also, connecting k − 1 variables of one copy of =k on the RHS with k − 1 variables of
another copy of =k on the RHS using 6=2 on the LHS realizes 6=2 on the RHS. J

Then, we give a dichotomy of #CSPk( 6=2,G) for any complex-valued signature set G.
This result should be of independent interest. Let ρk = e

iπ
2k be a 4k-th primitive root of

unity, Tk =
[ 1 0

0 ρk
]
, and Adk = T dkA = {T dk f | f ∈ A} where d ∈ [k].

I Theorem 26. Let G be a set of complex-valued signatures. If G ⊆ P or G ⊆ Adk for some
d ∈ [k]. then #CSPk(6=2,G) is tractable; otherwise, #CSPk( 6=2,G) is # P-hard.

When F does not satisfy condition (T), we can show that F̂ /∈ P and F̂ /∈ Adk for any
d ∈ [k]. Combining with Lemma 25 and Theorem 26, we have the following result.

I Lemma 27. Let F be a set of complex-valued signatures. If F does not satisfy condition
(T) and k > 3, then Holant( 6=2|=k, F̂) is #P-hard.
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LHS RHS LHS RHS

(a) (b)

Figure 1 Gadgets realizing =k and =(n+1)k on the LHS.

Next, we prove the #P-hardness of Holant(∆0, QF) given F is a real-valued signature
set not satisfying condition (T) and Q ∈ O2(R). Under this condition, we can show that
QF is also a real-valued signature set not satisfying condition (T). Thus, in order to prove
Holant(∆0, QF) is #P-hard, it suffices to show that Holant(∆0,F) is #P-hard for any real-
valued signature set F not satisfying condition (T). Here, we will apply our entanglement
result (Lemma 9) to the proof of #P-hardness. If ∆1 is realizable from Holant(∆0,F), then
we reduce Holant(∆0,F) from Holantc(F) and we are done by the dichotomy of Holantc(F).
By using ∆0, we first give two conditions that ∆1 can be easily realized by pinning or
interpolation. We show that either Holantc(F) 6T Holant(∆0,F), or every irreducible
f ∈ F satisfies the following important first order orthogonality condition.

I Definition 28 (First order orthogonality). Let f be a complex-valued signature of arity
n > 2, we say that it satisfies first order orthogonality (1st-Orth) if there exists some µ 6= 0
such that for all indices i ∈ [n], the entries of f satisfy the following equations

|f0
i |2 = |f1

i |2 = µ, and 〈f0
i , f

1
i 〉 = 0.

To restate it in the quantum terminology, let |Ψ〉 be a normalized n-qubit (n > 2) state,
i.e., 〈Ψ|Ψ〉 = 1. Then it satisfies first order orthogonality if for every i-th qubit of |Ψ〉,
〈Ψ0

i |Ψ0
i 〉 = 〈Ψ1

i |Ψ1
i 〉 = 1/2 and 〈Ψ0

i |Ψ1
i 〉 = 0.

I Remark 29. When f is a real-valued signature, the inner product is just the ordinary dot
product which can be represented by mating using =2. Thus, f satisfies 1st-Orth iff there
is some real µ 6= 0 such that for all indices i, M(mif) = µI2. On the other hand, when f̂ is
a signature with ars, by equation (3.2), the complex inner product can also be represented
by mating using 6=2. Thus, f̂ satisfies 1st-Orth iff there is some real µ 6= 0 such that for all
i, M(m̂if̂) = µN2. Moreover, f satisfies 1st-Orth iff f̂ satisfies it. Although 1st-Orth
is well-defined for any complex-valued signature, the properties of mif and m̂if̂ crucially
depend on f being real (equivalently f̂ satisfying ars).

Back to the proof of the #P-hardness of Holant(∆0,F). Since F does not satisfy condition
(T), F 6⊆ T. Hence, there is a signature f ∈ F of arity n > 3 such that f /∈ T. In other
words, F contains an n-qubit state exhibiting multipartite entanglement. We will prove
#P-hardness by induction on n. We first consider the base case that n = 3. We show
that an irreducible ternary signature (a genuinely entangled 3-qubit state) satisfying first
order orthogonality has some special forms, from which one can realize =3 or =4 after
some holographic transformations. Then, we can reduce the problem from #CSP(F), or
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22:14 From Holant to Quantum Entanglement and Back

#CSP2(F), or Holant( 6=2|=3, F̂), to Holant(∆0,F). This allows us to finish the proof by
invoking existing dichotomy results for #CSP(F), or #CSP2(F), or the #P-hardness result
we showed above for Holant( 6=2|=k, F̂) where k > 3.

I Lemma 30. Let F be a set of real-valued signatures containing a ternary signature f /∈ T.
If F does not satisfy condition (T), then Holant(∆0,F) is #P-hard.

Then, we consider the inductive step. The general strategy is that we start with a
signature f ∈ F of arity n > 4 that is not in T, and realize a signature g of arity n− 1 or
n− 2 also not in T, by pinning or merging. (By the definition of T, when n = 4, this g must
have arity 3.) By a sequence of reductions (that is constant in length independent of the
problem instance size), we can realize a signature h of arity 3 that is not in T. Then we are
done. In other words, given an n-qubit state with multipartite entanglement, we want to
show that multipartite entanglement is preserved under projections onto |0〉 and self-loops
by |φ+〉. Lemma 9 says that the preservation holds, or |1〉 or |GHZ4〉 is realizable. We give
an inductive restatement of Lemma 9 in the Holant framework.

I Lemma 31. Let f ∈ F be a signature of arity n > 4 and f /∈ T. Then one of the following
alternatives must hold:

∆1 is realizable: Holant(∆0,∆1,F) 6T Holant(∆0,F), or
=4 is realizable: Holant(=4,F) 6T Holant(∆0,F), or
a signature g /∈ T of arity n−1 or n−2 is realizable: Holant(∆0, g,F) 6T Holant(∆0,F).

Proof Sketch. For all indices i and all pairs of indices {j, k}, consider f0
i and ∂jkf . If there

exists i or {j, k} such that f0
i or ∂jkf /∈ T, then we can realize g = f0

i or ∂jkf which has arity
n− 1 or n− 2, and we are done. Otherwise, f0

i and ∂jkf ∈ T for all i and all {j, k}. Under
this assumption, our goal is to show that we can realize ∆1, or there is a unary signature
a(xu) or a binary signature b(xv, xw) such that a(xu) | f or b(xv, xw) | f . Then, we have
f = a(xu) ⊗ g or f = b(xv, xw) ⊗ g for some g of arity n − 1 or n − 2. We know g can be
realized from f by factorization. By the definition of T, we have g /∈ T since f /∈ T, and we
are done. When n > 5, the above induction proof can be achieved by the interplay of the
unique prime factorization, and the commutivity of f0

i (pinning) and ∂jkf (merging) gadgets
on disjoint indices. For n = 4, there is the additional case that =4 can be realized. Thus
for n = 4, it requires more work; we need to combine the induction proof and first order
orthogonality to handle it. J

Remember that Holant(∆0,∆1,F) is just Holantc(F) and #CSP2(F) 6T Holant(=4,F).
By Theorem 22, #CSP2(F) and Holantc(F) are both #P-hard when F does not satisfy
condition (T). Combining with Lemmas 30 and 31, we have the following result.

I Lemma 32. Let F be a set of real-valued signatures. If F does not satisfy condition (T),
then Holant(∆0,F) is #P-hard.

Finally, combining Theorem 21 and Lemmas 24, 27 and 32, we finished the proof of
Theorem 10.

References
1 Miriam Backens. The inductive entanglement classification yields ten rather than eight classes

of four-qubit entangled states. Physical Review A, 97:022329, 2017.
2 Miriam Backens. A new holant dichotomy inspired by quantum computation. In Proceedings

of the 44th International Colloquium on Automata, Languages, and Programming, pages
16:1–16:14, 2017.



J.-Y. Cai, Z. Fu, and S. Shao 22:15

3 Miriam Backens. A complete dichotomy for complex-valued holantc. In Proceedings of the 45th
International Colloquium on Automata, Languages, and Programming, pages 12:1–12:14, 2018.

4 Rodney J Baxter. Eight-vertex model in lattice statistics. Physical Review Letters, 26(14):832,
1971.

5 Rodney J Baxter. The six and eight-vertex models revisited. Journal of statistical physics,
116(1-4):43–66, 2004.

6 Charles H Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and
William K Wootters. Teleporting an unknown quantum state via dual classical and einstein-
podolsky-rosen channels. Physical review letters, 70(13):1895, 1993.

7 Andrei Bulatov, Martin Dyer, Leslie Ann Goldberg, Markus Jalsenius, Mark Jerrum, and
David Richerby. The complexity of weighted and unweighted #csp. Journal of Computer and
System Sciences, 78(2):681–688, 2012.

8 Andrei Bulatov and Martin Grohe. The complexity of partition functions. Theoretical Computer
Science, 348(2-3):148–186, 2005.

9 Andrei A Bulatov. The complexity of the counting constraint satisfaction problem. Journal of
the ACM (JACM), 60(5):1–41, 2013.

10 Jin-Yi Cai and Xi Chen. Complexity Dichotomies for Counting Problems: Volume 1, Boolean
Domain. Cambridge University Press, 2017.

11 Jin-Yi Cai and Xi Chen. Complexity of counting csp with complex weights. Journal of the
ACM (JACM), 64(3):1–39, 2017.

12 Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph homomorphisms with complex values: A dichotomy
theorem. SIAM Journal on Computing, 42(3):924–1029, 2013.

13 Jin-Yi Cai, Xi Chen, and Pinyan Lu. Nonnegative weighted# csp: An effective complexity
dichotomy. SIAM Journal on Computing, 45(6):2177–2198, 2016.

14 Jin-Yi Cai and Zhiguo Fu. Complexity classification of the eight-vertex model. arXiv preprint,
2017. arXiv:1702.07938.

15 Jin-Yi Cai, Zhiguo Fu, and Shuai Shao. Complexity of counting weighted eulerian orientations
with ars. arXiv preprint, 2019. arXiv:1904.02362.

16 Jin-Yi Cai, Zhiguo Fu, and Mingji Xia. Complexity classification of the six-vertex model.
Information and Computation, 259:130–141, 2018.

17 Jin-Yi Cai and Artem Govorov. Perfect matchings, rank of connection tensors and graph
homomorphisms. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 476–495. SIAM, 2019.

18 Jin-Yi Cai, Heng Guo, and Tyson Williams. A complete dichotomy rises from the capture of
vanishing signatures. SIAM Journal on Computing, 45(5):1671–1728, 2016.

19 Jin-Yi Cai, Heng Guo, and Tyson Williams. Clifford gates in the holant framework. Theoretical
Computer Science, 745:163–171, 2018.

20 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Dichotomy for holant* problems of boolean domain.
In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms,
pages 1714–1728. SIAM, 2011.

21 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. The complexity of complex weighted boolean #csp.
Journal of Computer and System Sciences, 80(1):217–236, 2014.

22 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Dichotomy for real holantc problems. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1802–1821.
SIAM, 2018.

23 Jeroen Dehaene and Bart De Moor. Clifford group, stabilizer states, and linear and quadratic
operations over gf (2). Physical Review A, 68(4):042318, 2003.

24 Wolfgang Dür, Guifre Vidal, and J Ignacio Cirac. Three qubits can be entangled in two
inequivalent ways. Physical Review A, 62(6):062314, 2000.

25 Martin Dyer and Catherine Greenhill. The complexity of counting graph homomorphisms.
Random Structures & Algorithms, 17(3-4):260–289, 2000.

ICALP 2020

http://arxiv.org/abs/1702.07938
http://arxiv.org/abs/1904.02362


22:16 From Holant to Quantum Entanglement and Back

26 Martin Dyer and David Richerby. An effective dichotomy for the counting constraint satisfaction
problem. SIAM Journal on Computing, 42(3):1245–1274, 2013.

27 Artur K Ekert. Quantum cryptography based on bell’s theorem. Physical review letters,
67(6):661, 1991.

28 Michael Freedman, László Lovász, and Alexander Schrijver. Reflection positivity, rank con-
nectivity, and homomorphism of graphs. Journal of the American Mathematical Society,
20(1):37–51, 2007.

29 Mariami Gachechiladze and Otfried Gühne. Completing the proof of “generic quantum
nonlocality”. Physics Letters A, 381(15):1281–1285, 2017.

30 Masoud Gharahi Ghahi and Stefano Mancini. Comment on “inductive entanglement classifica-
tion of four qubits under stochastic local operations and classical communication”. Physical
Review A, 98(6):066301, 2018.

31 Leslie Ann Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley. A complexity dichotomy
for partition functions with mixed signs. SIAM Journal on Computing, 39(7):3336–3402, 2010.

32 Daniel Gottesman. The heisenberg representation of quantum computers, talk at. In Interna-
tional Conference on Group Theoretic Methods in Physics. Citeseer, 1998.

33 Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum
entanglement. Reviews of modern physics, 81(2):865, 2009.

34 Richard Jozsa and Noah Linden. On the role of entanglement in quantum-computational
speed-up. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 459(2036):2011–2032, 2003.

35 Lucas Lamata, Juan León, D Salgado, and E Solano. Inductive entanglement classification of
four qubits under stochastic local operations and classical communication. Physical Review A,
75(2):022318, 2007.

36 Lucas Lamata, Juan León, D Salgado, and Enrique Solano. Inductive classification of
multipartite entanglement under stochastic local operations and classical communication.
Physical Review A, 74(5):052336, 2006.

37 Jiabao Lin and Hanpin Wang. The complexity of boolean holant problems with nonnegative
weights. SIAM Journal on Computing, 47(3):798–828, 2018.

38 Milena Mihail and Peter Winkler. On the number of eulerian orientations of a graph. Al-
gorithmica, 16(4-5):402–414, 1996.

39 Akimasa Miyake and Frank Verstraete. Multipartite entanglement in 2×2×n quantum systems.
Physical Review A, 69(1):012101, 2004.

40 Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.
41 Linus Pauling. The structure and entropy of ice and of other crystals with some randomness

of atomic arrangement. Journal of the American Chemical Society, 57(12):2680–2684, 1935.
42 Sandu Popescu and Daniel Rohrlich. Generic quantum nonlocality. Physics Letters A,

166(5-6):293–297, 1992.
43 Leslie G Valiant. The complexity of enumeration and reliability problems. SIAM Journal on

Computing, 8(3):410–421, 1979.
44 Leslie G Valiant. Quantum circuits that can be simulated classically in polynomial time. SIAM

Journal on Computing, 31(4):1229–1254, 2002.
45 Leslie G Valiant. Holographic algorithms. SIAM Journal on Computing, 37(5):1565–1594,

2008.
46 Frank Verstraete, Jeroen Dehaene, Bart De Moor, and Henri Verschelde. Four qubits can be

entangled in nine different ways. Physical Review A, 65(5):052112, 2002.



Counting Perfect Matchings and the Eight-Vertex
Model
Jin-Yi Cai
University of Wisconsin-Madison, Madison, WI, USA
http://pages.cs.wisc.edu/~jyc/
jyc@cs.wisc.edu

Tianyu Liu
University of Wisconsin-Madison, Madison, WI, USA
http://pages.cs.wisc.edu/~tl/
tl@cs.wisc.edu

Abstract
We study the approximation complexity of the partition function of the eight-vertex model on
general 4-regular graphs. For the first time, we relate the approximability of the eight-vertex model
to the complexity of approximately counting perfect matchings, a central open problem in this field.
Our results extend those in [8].

In a region of the parameter space where no previous approximation complexity was known,
we show that approximating the partition function is at least as hard as approximately counting
perfect matchings via approximation-preserving reductions. In another region of the parameter space
which is larger than the region that is previously known to admit Fully Polynomial Randomized
Approximation Scheme (FPRAS), we show that computing the partition function can be reduced to
counting perfect matchings (which is valid for both exact and approximate counting). Moreover, we
give a complete characterization of nonnegatively weighted (not necessarily planar) 4-ary matchgates,
which has been open for several years. The key ingredient of our proof is a geometric lemma.

We also identify a region of the parameter space where approximating the partition function on
planar 4-regular graphs is feasible but on general 4-regular graphs is equivalent to approximately
counting perfect matchings. To our best knowledge, these are the first problems that exhibit this
dichotomic behavior between the planar and the nonplanar settings in approximate counting.
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1 Introduction

The eight-vertex model is defined over 4-regular graphs, the states of which are the set of
even orientations, i.e. those with an even number of arrows into (and out of) each vertex.
There are eight permitted types of local configurations around a vertex – hence the name
eight-vertex model (see Figure 1).

Classically, the eight-vertex model is defined by statistical physicists on a square lattice
region where each vertex of the lattice is connected by an edge to four nearest neighbors. In
general, the eight configurations 1 to 8 in Figure 1 are associated with eight possible weights
w1, . . . , w8. By physical considerations, the total weight of a state remains unchanged if
all arrows are flipped, assuming there is no external electric field. In this case we write
w1 = w2 = a, w3 = w4 = b, w5 = w6 = c, and w7 = w8 = d. This complementary invariance
is known as arrow reversal symmetry or zero field assumption.
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23:2 Counting Perfect Matchings and the Eight-Vertex Model

1 2 3 4 5 6 7 8

Figure 1 Valid configurations of the eight-vertex model.

Even in the zero-field setting, this model is already enormously expressive: the special
case when d = 0 is the zero-field six-vertex model which has sub-models such as the ice
(a = b = c), KDP, and Rys F models; on the square lattice, some other important models
such as the dimer and zero-field Ising models can be reduced to the eight-vertex model [2].
After it was introduced in 1970 by Sutherland [19] and by Fan and Wu [9], Baxter [1, 2]
achieved a good understanding of the zero-field case in the thermodynamic limit on the
square lattice (in physics it is called an “exactly solved model”).

In this paper, we assume the arrow reversal symmetry and further assume that a, b, c, d ≥ 0,
as is the case in classical physics. Given a 4-regular graph G, we label four incident edges of
each vertex from 1 to 4. The partition function of the eight-vertex model with parameters
(a, b, c, d) on G is defined as

ZEV(G; a, b, c, d) =
∑

τ∈Oe(G)

an1+n2bn3+n4cn5+n6dn7+n8 , (1)

where Oe(G) is the set of all even orientations of G, and ni is the number of vertices in
type i in G (1 ≤ i ≤ 8, locally depicted as in Figure 1 where the 4 edges are oriented
counterclockwise starting from the edge on the left) under an even orientation τ ∈ Oe(G).

In terms of the exact computational complexity, a complexity dichotomy is given for
the eight-vertex model on 4-regular graphs for all eight parameters [6]. This is studied in
the context of a classification program for the complexity of counting problems [5], where
the eight-vertex model serves as important basic cases for Holant problems defined by not
necessarily symmetric constraint functions. It is shown that every setting is either P-time
computable (and some are surprising) or #P-hard. However, most cases for P-time tractability
are due to nontrivial cancellations. In our setting where a, b, c, d are nonnegative, the problem
of computing the partition function of the eight-vertex model exactly is #P-hard unless:
(1) a = b = c = d (this is equivalent to the unweighted case); (2) at least three of a, b, c, d
are zero; or (3) two of a, b, c, d are zero and the other two are equal. In addition, on planar
graphs it is also P-time computable for parameter settings (a, b, c, d) with a2 + b2 = c2 + d2,
using the FKT algorithm.

Since exact computation is hard in most cases, one natural question is what is the
approximate complexity of counting and sampling of the eight-vertex model. To our best
knowledge, prior to [8], there is only one previous result in this regard due to Greenberg and
Randall [12]. They showed that on square lattice regions a specific Markov chain (which
flips the orientations of all four edges along a uniformly picked face at each step) is torpidly
mixing when d is large. This means that when sinks and sources have large weights, this
particular chain cannot be used to approximately count or sample eight-vertex configurations
on the square lattice according to the Gibbs measure. Recently, similar torpid mixing results
have been achieved for the six-vertex model on the square lattice [17].

The paper [8] gave the first classification results for the approximate complexity of the
eight-vertex model on general and planar 4-regular graphs, and they conform to phase
transition in physics. In order to state the results, we adopt the following notations assuming
a, b, c, d ≥ 0.
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X = { (a, b, c, d) | a ≤ b+ c+ d, b ≤ a+ c+ d, c ≤ b+ c+ d, d ≤ a+ b+ c};
Y = { (a, b, c, d) | a+ d ≤ b+ c, b+ d ≤ a+ c, c+ d ≤ a+ b};
Z = { (a, b, c, d) | a2 ≤ b2+c2+d2, b2 ≤ a2+c2+d2, c2 ≤ a2+b2+d2, d2 ≤ a2+b2+c2}.

I Remark 1. Y ⊂ X . Z ⊂ X .
Physicists have shown an order-disorder phase transition for the eight-vertex model on the

square lattice between parameter settings outside X and those inside X (see Baxter’s book [3]
for more details). In [8], it was shown that: (1) approximating the partition function of the
eight-vertex model on general 4-regular graphs outside X is NP-hard, (2) there is an FPRAS1
for general 4-regular graphs in the region Y

⋂
Z, and (3) there is an FPRAS for planar

4-regular graphs in the extra region {(a, b, c, d) | a+ d ≤ b+ c, b+ d ≤ a+ c, c+ d ≥ a+ b}⋂
Z.

Figure 2 A Venn diagram of the approximation complexity of the eight-vertex model.

In this paper we make further progress in the classification of the approximate complexity
of the eight-vertex model on 4-regular graphs in terms of the parameters (see Figure 2). For
the first time, the complexity of approximating the partition function of the eight-vertex
model (#EV(a, b, c, d)) is related to that of approximately counting perfect matchings
(#PM).

I Theorem 2. For any four positive numbers a, b, c, d > 0 such that (a, b, c, d) 6∈ Y, the
problem #EV(a, b, c, d) is at least as hard to approximate as counting perfect matchings:

#PM ≤AP #EV(a, b, c, d).

I Remark 3. The theorem is stated for the case where all four parameters are positive. The
same proof also works for the case when there is exactly one zero among the nonnegative
values {a, b, c}. A complete account for four nonnegative values {a, b, c, d} is given in the
Table 1. There is a symmetry among a, b, c for the eight-vertex model on general (not
necessarily planar) 4-regular graphs, so for simplicity in this table we assume a ≤ b ≤ c.

1 Suppose f : Σ∗ → R is a function mapping problem instances to real numbers. A fully polynomial
randomized approximation scheme (FPRAS) [14] for a problem is a randomized algorithm that takes
as input an instance x and ε > 0, running in time polynomial in n (the input length) and ε−1, and
outputs a number Y (a random variable) such that Pr [(1− ε)f(x) ≤ Y ≤ (1 + ε)f(x)] ≥ 3

4 .
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Table 1 Approximation complexity of the eight-vertex model with (a, b, c, d) 6∈ d-SUM2.

d = 0 d > 0

a = b = c = 0 P-time computable (trivial) P-time computable (trivial)

a = b = 0, c > 0 P-time computable (trivial) c = d: P-time computable [6]
c 6= d: NP-hard [8]

a = 0, b, c > 0 NP-hard [8] #PM-hard (in this paper)

a, b, c > 0 NP-hard [7] #PM-hard (in this paper)

The proof of Theorem 2 is in Section 3. Our proof for the hardness result has several
ingredients:
1. We express the eight-vertex model on a 4-regular graph G as an edge-2-coloring problem

on G using Valiant’s holographic transformation [22].
2. We show that a modified version of the edge-2-coloring problem on G is equivalent

to the zero-field Ising model on its crossing-circuit graph denoted by G̃. Thus known
#PM-equivalence result for the Ising model [11, Lemma 7] directly transfers to the
modified version of the edge-2-coloring problem under certain parameter settings.

3. We further show that for any parameter setting outside Y, approximating the partition
function of the eight-vertex model is at least as hard as the #PM-equivalent modified
edge-2-coloring problem via approximation-preserving reductions.

I Theorem 4. For any (a, b, c, d) ∈ Z,

#EV(a, b, c, d) ≤AP #PM.

The proof of Theorem 4 is in Section 4. To prove the #PM-easiness result, we again express
the eight-vertex model in the Holant framework (see Section 2) and show that the constraint
functions of the eight-vertex model in Z can be implemented by constant-size matchgates
with nonnegatively weighted edges (Definition 13). We note that allowing nonnegative edge-
weights does not add more computational power to the unweighted #PM [18, Proposition 5].
The crucial ingredient of our proof is a geometric lemma (Lemma 18) in 3-dimensional space.

This matchgate expressibility is tight: no constraint functions of the eight-vertex model
with parameter settings outside the region Z can be implemented by a matchgate (Lemma 19).
Moreover, the general version of our result also works for the eight-vertex model without the
arrow reversal symmetry. It is open if approximately computing the partition function in
X \ (Y

⋃
Z) is #PM-equivalent or not.

As part of this work, we give a complete characterization of the constraint functions that
can be expressed by 4-ary matchgates in Theorem 15. This solves an important question
that has been open for several years [18, 4]. We believe it is of independent interest.

I Corollary 5. For any four positive numbers a, b, c, d > 0 such that (a, b, c, d) ∈ Z \ Y,

#EV(a, b, c, d) ≡AP #PM.
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Note that for the eight-vertex model in the region3 {(a, b, c, d) | a+ d ≤ b+ c, b+ d ≤
a+c, c+d > a+b}

⋂
Z, computing ZEV(a, b, c, d) is (1) #P-complete in exact computation [6],

(2) #PM-equivalent in approximate computation on general 4-regular graphs (Corollary 5),
and (3) admits an FPRAS in approximate computation on planar 4-regular graphs [8]. To
our best knowledge, these are the first identified problems having these three properties.
Previously the combined results of [10] and [13] proved that counting k-colorings for certain
range of parameters is FPRASable on general graphs but NP-hard in approximate complexity.
The complexity result in this paper is different because the complexity we described in item
(2) above is #PM-equivalent (neither harder nor easier). We note that the complexity status
of #PM is a long standing open problem in the field (neither known to be FPRASable
nor known to be NP-hard to approximate). These results contrast with, in the setting
of approximately counting, the FKT algorithm for exact counting which shows that the
#P-hard problem #PM can be computed in polynomial time on planar graphs.

2 Preliminaries

Given a 4-regular graph G = (V,E), the edge-vertex incidence graph G′ = (UE , UV , E′) is a
bipartite graph where (ue, uv) ∈ UE ×UV is an edge in E′ iff e ∈ E in G is incident to v ∈ V .
We model an orientation (w → v) on an edge e = {w, v} ∈ E from w into v in G by assigning
1 to (ue, uw) ∈ E′ and 0 to (ue, uv) ∈ E′ in G′. A configuration of the eight-vertex model
on G is an edge-2-coloring on G′, namely σ : E′ → {0, 1}, where for each ue ∈ UE its two
incident edges are assigned 01 or 10, and for each uv ∈ UV the sum of values

∑4
i=1 σ(ei) ≡ 0

(mod 2), over the four incident edges of uv. Thus we model the even orientation rule of G on
all v ∈ V by requiring “two-0-two-1/four-0/four-1” locally at each vertex uv ∈ UV .

The “one-0-one-1” requirement on the two edges incident to a vertex in UE is a binary
Disequality constraint, denoted by ( 6=2). The values of a 4-ary constraint function, or a

signature f can be listed in a matrix M(f) =
[
f0000 f0010 f0001 f0011
f0100 f0110 f0101 f0111
f1000 f1010 f1001 f1011
f1100 f1110 f1101 f1111

]
, called the constraint

matrix of f . For the eight-vertex model satisfying the even orientation rule and arrow reversal

symmetry, the signature f at every vertex v ∈ UV in G′ has the form M(f) =
[
d 0 0 a
0 b c 0
0 c b 0
a 0 0 d

]
, if

we draw a vertex with incident edges labeled 1, 2, 3, and 4 locally as the left, down, right,
and up edges respectively according to Figure 1. Thus computing the partition function
ZEV(G; a, b, c, d) is equivalent to evaluating

Z ′(G′; f) :=
∑

σ:E′→{0,1}

∏
u∈UE

(6=2)
(
σ|E′(u)

) ∏
u∈UV

f
(
σ|E′(u)

)
.

where E′(u) denotes the incident edges of u ∈ UE ∪ UV . In fact, in this way we express
the partition function of the eight-vertex model as the Holant sum in the framework for
Holant problems:

ZEV(G; a, b, c, d) = Holant (G′; 6=2 | f)

where we use Holant(H; g | f) to denote the sum
∑
σ:E→{0,1}

∏
u∈U g

(
σ|E(u)

)∏
u∈V f

(
σ|E(u)

)
on a bipartite graph H = (U, V,E). Each vertex in U (or V ) is assigned the signature g
(or f , respectively). The signature g is considered as a row vector (or covariant tensor),

3 This region is the intersection of Y and the extra region {(a, b, c, d) | a+d ≤ b+c, b+d ≤ a+c, c+d ≥
a + b} where there is an FPRAS for planar graphs. Note that the strict inequality c + d > a + b is
needed.
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23:6 Counting Perfect Matchings and the Eight-Vertex Model

whereas the signature f is considered as a column vector (or contravariant tensor). (See [5]
for more on Holant problems.) The following proposition says that an invertible holographic
transformation does not change the complexity of the Holant problem in the bipartite setting.

I Proposition 6 ([22]). Suppose T ∈ C2 is an invertible matrix. Let d1 = arity(g) and
d2 = arity(f). Define g′ = g

(
T−1)⊗d1 and f ′ = T⊗d2f . Then for any bipartite graph H,

Holant(H; g | f) = Holant(H; g′ | f ′).

We denote Holant(G; f) = Holant(G′; =2 | f) and use Holant(f) to denote the problem
whose input is a graph G and output is Holant(G; f); this is equivalent to the usual definition.

3 #PerfectMatchings-hardness

Our proof strategy for Theorem 2 is as follows. In Lemma 7, we express the eight-vertex model
on a 4-regular graph G as a Holant problem; this is an equivalent form of the orientation
problem expressed as an edge-2-coloring problem on G, and is achieved using a holographic
transformation. In Lemma 8, we give an approximation-preserving reduction to show that
this edge-2-coloring problem is at least as hard as a modified version of the edge-2-coloring
problem where weights at some input originally in the support are dropped off. In Lemma 9,
we establish the equivalence between this modified version of the edge-2-coloring problem
and the zero-field Ising model. Thus a known result for the Ising model (Proposition 11)
indicates the #PM-equivalence of this modified version of the edge-2-coloring problem under
certain parameter settings (Corollary 12). It can be deduced from Lemma 7, Lemma 8, and
Corollary 12 that for any (a, b, c, d) with a + d > b + c (and symmetrically b + d > a + c

or c + d > a + b), approximately computing the partition function is at least as hard
as the #PM-equivalent modified edge-2-coloring problem under approximation-preserving
reductions.

I Lemma 7.

2|V (G)| · ZEV(G; a, b, c, d) = Holant
(
G;
[

a+b+c+d 0 0 −a+b+c−d
0 a−b+c−d a+b−c−d 0
0 a+b−c−d a−b+c−d 0

−a+b+c−d 0 0 a+b+c+d

])
.

Proof. Using the binary disequality function ( 6=2) for the orientation of any edge, we can
express the partition function of the eight-vertex model G as a Holant problem on its
edge-vertex incidence graph G′,

ZEV(G; a, b, c, d) = Holant (G′; 6=2 | f) ,

where f is the 4-ary signature with M(f) =
[
d 0 0 a
0 b c 0
0 c b 0
a 0 0 d

]
. Note that, writing the truth table

of ( 6=2) = (0, 1, 1, 0) as a vector and multiplied by a tensor power of the matrix Z−1, where
Z = 1√

2

[ 1 1
i −i

]
we get ( 6=2)(Z−1)⊗2 = (1, 0, 0, 1), which is exactly the truth table of the

binary equality function (=2). Then according to Proposition 6, by the Z-transformation,
we get

Holant (G′; 6=2 | f) = Holant
(
G′; 6=2 ·

(
Z−1)⊗2 | Z⊗4 · f

)
= Holant

(
G′; =2 | Z⊗4f

)
= Holant

(
G; Z⊗4f

)
,

and a direct calculation shows that M(Z⊗4f) = 1
2

[
a+b+c+d 0 0 −a+b+c−d

0 a−b+c−d a+b−c−d 0
0 a+b−c−d a−b+c−d 0

−a+b+c−d 0 0 a+b+c+d

]
.

J
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I Lemma 8. Suppose d > 0 and at most one of a, b, c is zero. Then

Holant
([

a+b+c+d 0 0 −a+b+c−d
0 0 0 0
0 0 0 0

−a+b+c−d 0 0 a+b+c+d

])
≤APHolant

([
a+b+c+d 0 0 −a+b+c−d

0 a−b+c−d a+b−c−d 0
0 a+b−c−d a−b+c−d 0

−a+b+c−d 0 0 a+b+c+d

])
.

Proof. This task can be reduced to

Holant
(
6=2 |

[
d 0 0 a
0 b c 0
0 c b 0
a 0 0 d

]
,

[
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

])
≤AP Holant

(
6=2 |

[
d 0 0 a
0 b c 0
0 c b 0
a 0 0 d

])
(2)

and the analysis can be found in the full version of this paper.

Figure 3 A gadget construction.

Next we show how to get (2). Given the signature f with matrix
[
d 0 0 a
0 b c 0
0 c b 0
a 0 0 d

]
in #EV(a,b,c,d),

we construct a 4-ary signature f̌ with constraint matrix
[
ď 0 0 ǎ
0 b̌ č 0
0 č b̌ 0
ǎ 0 0 ď

]
using a polynomial number

of vertices and edges such that ǎ, b̌, č, and ď are all exponentially close to 1 after normalization,
i.e., to be 2−nC close to 1, for any C > 0, with a construction of nO(1) size in polynomial time.

We assume we start with the following condition:

0 < d ≤ a ≤ b ≤ c. (3)

If this is not the case, we can obtain a 4-ary construction that realizes this condition using
constantly many vertices. With some preliminary construction we can further assume
1 ≤ d ≤ a ≤ b ≤ c ≤ 3

2d initially. (See the full version of this paper for details.) Note that

starting with the signature f with matrix M(f) =
[
d 0 0 a
0 b c 0
0 c b 0
a 0 0 d

]
, we can arbitrarily permute

a, b, c by relabeling the edges, and so we get signatures f1 with M(f1) =
[
d 0 0 b
0 a c 0
0 c a 0
b 0 0 d

]
and f2

with M(f2) =
[
d 0 0 c
0 a b 0
0 b a 0
c 0 0 d

]
. There are two constructions G1 and G2 which we use as basic steps;

both constructions start with a signature f with parameters satisfying (3).
1. G1: connect two vertices with signatures f1 and f2 respectively as in Figure 3. Since

we are in the orientation view, we place the signature ( 6=2) on the two degree 2 vertices
connecting the two degree 4 vertices. Then the signature g1 of the construction G1 is
obtained by matrix multiplication M(g1) = Mxixj ,xsxr

(g1) = M(f1) ·N ·M(f2), where

N =
[

1
1

1
1

]
. Thus

M(g1) =

 (b+c)d 0 0 bc+d2

0 a(b+c) a2+bc 0
0 a2+bc a(b+c) 0

bc+d2 0 0 (b+c)d

 .
The signature g1 has four new parameters, denoted by

(a1, b1, c1, d1) = (a(b+ c), bc+ d2, a2 + bc, (b+ c)d).

ICALP 2020
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We make the following observations and all of them can be easily verified using (3):
d1 is the weight on sink and source and 0 < d1 ≤ a1, b1, c1.
c1 = max(a1, b1, c1, d1).
a1
d1

= a
d ,

b1
d1
≤ b

d ,
c1
d1
≤ c

d .
c1d1 ≤ a1b1 because c1d1 − a1b1 = −(b+ c)(a− d)(bc− ad) ≤ 0.

2. G2: connect two vertices with signatures f2 as in Figure 3. Denote the signature of G2
by g2. We have

M(g2) = M(f2) ·N ·M(f2) =
[ 2cd 0 0 c2+d2

0 2ab a2+b2 0
0 a2+b2 2ab 0

c2+d2 0 0 2cd

]
.

The signature g2 has four new parameters, denoted by

(a2, b2, c2, d2) = (2ab, a2 + b2, c2 + d2, 2cd).

The following observations can also be easily verified using (3):
d2 is the weight on sink and source and if cd ≤ ab, then 0 < d2 ≤ a2, b2, c2.
a2
d2
≤ a

d ,
b2
d2
≤ b

d ,
c2
d2
≤ c

d .
c2−d2
d2

= (c−d)2

2cd ≤ 1
2
(
c−d
d

)2 ≤ ( c−dd )2.
Based on the two basic constructions above, we construct the signature f̌ in logarithmically

many rounds recursively, each of the O(logn) rounds uses the signature constructed in the
previous round. We now describe a single round in this construction, which consists of two
steps. In step 1 we use a signature with some parameter setting (a, b, c, d) satisfying (3) and
apply G1 to two copies of the signature. If the resulting parameter b1 < a1 we switch the
roles of a1 and b1, and obtain (a′1, b′1, c′1, d′1) = (b1, a1, c1, d1), again satisfying (3), as well
as c1d1 ≤ a1b1. In step 2, we apply G2 to two copies of the signature constructed in step 1
(with the switching of the roles of a1 and b1 if it is needed). Denote the parameters of the
resulting signature by (a∗, b∗, c∗, d∗). Altogether each round uses four copies of the signature
from the previous round, starting with the initial given signature. Therefore in polynomial
time we can afford to carry out C logn rounds for any constant C. Note that, if we consider
the normalized quantities (ad ,

b
d ,

c
d ,

d
d ), then the respective quantities in each step G1 and G2

do not increase their distances to 1, i.e.,

0 ≤ a∗

d∗
− 1 ≤ a

d
− 1, 0 ≤ b∗

d∗
− 1 ≤ b

d
− 1, 0 ≤ c∗

d∗
− 1 ≤ c

d
− 1.

This is true even if the G2 construction in step 2 is applied in the case when the roles of a1
and b1 are switched for the signature from step 1, when that switch is required (b1 < a1)
as described. More importantly, based on the properties of G1 and G2, we know that the
(normalized) gap between d and the previous largest entry c shrinks quadratically fast, as
measured by the new c∗ normalized with d∗. More precisely,

0 ≤ c∗

d∗
− 1 ≤

( c
d
− 1
)2
.

Note that c∗ may no longer be the largest among a∗, b∗, c∗; however we will permute them
to get ã, b̃, c̃ so that (3) is still satisfied before proceeding to the next round. This completes
the description of our construction in one round which obtains (ã, b̃, c̃, d̃) from (a, b, c, d).
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We will construct the final signature f̌ by O(logn) rounds of this construction. Also we
will follow each value a, b, c individually as they get transformed through each round. To
state it formally, starting with the normalized triple (ad ,

b
d ,

c
d ), we define a successor triple

(a
∗

d∗ ,
b∗

d∗ ,
c∗

d∗ ), so that each entry has the respective successor (e.g., the entry a
d has successor

a∗

d∗ ). This is well-defined because (a1, b1, c1, d1) and (a2, b2, c2, d2) are homogeneous functions
of (a, b, c, d). Note that even though from one round to the next, we may have to rename
a∗, b∗, c∗ so that the permutated triple ã, b̃, c̃ satisfies (3), the successor sequence as the
rounds progress stays with an individual value. E.g., starting from (a, b, c, d), if after one
round a∗ = max(a∗, b∗, c∗, d∗) = c̃, then the successor of ad after two rounds is (̃c)∗

(d∗)∗ . Now
define (αk, βk, γk) to be the (ordered) triple (ad ,

b
d ,

c
d ) for k = 1, or its successor triple, at the

beginning of the k-th round for k > 1.
Let f̌ be the 4-ary signature constructed after 3(k + 1) rounds. By the Pigeonhole

Principle, after 3(k + 1) rounds, at least one of a, b, c has the property that in at least k + 1
many rounds (let 1 ≤ i0 < i1 < . . . < ik ≤ 3(k + 1) be k + 1 such rounds) the corresponding
a
d ,

b
d ,

c
d or its successors are the maximum (normalized) value in that round, and thus its

next successor gets shrunken quadratically in that round. Suppose this is a; the same proof
works if it is b or c. Let αi be the maximum (normalized) value at the beginning of round i
in k + 1 rounds, where i ∈ {i0, . . . , ik}. Since initially we have 1 ≤ d ≤ a ≤ b ≤ c ≤ 3

2d,

0 ≤ αi1 − 1 ≤ αi0+1 − 1 ≤ (αi0 − 1)2 ≤ 1
22 .

Then

0 ≤ αi2 − 1 ≤ αi1+1 − 1 ≤ (αi1 − 1)2 ≤ 1
222 .

By induction 0 ≤ αik −1 ≤ 1
22k . At the end of 3(k+ 1) rounds, if f̌ has parameters (ǎ, b̌, č, ď),

then

0 ≤ max(ǎ, b̌, č)
ď

− 1 ≤ αik − 1 ≤ 1
22k .

Therefore, after logarithmically many rounds, using polynomially many vertices, we can
get a 4-ary construction with parameters ǎ, b̌, č, and ď that are exponentially close to 1 after
normalizing by ď. Thus (2) is proved. J

Problem : Ising(β).
Instance :Graph G = (V,E).
Output: ZIsing(G;β) :=

∑
σ:V→{0,1}

βmono(σ), where mono(σ) denotes the number of

edges {u, v} such that σ(u) = σ(v).

I Lemma 9. The Ising problem Ising
(
w
x

)
is equivalent to the Holant problem

Holant
([

w 0 0 x
0 0 0 0
0 0 0 0
x 0 0 w

])
. In particular, Ising

(
w
x

)
≡AP Holant

([
w 0 0 x
0 0 0 0
0 0 0 0
x 0 0 w

])
.

I Remark 10. A non-homogenized form of the Ising model is Z̃Ising(G;x,w) :=∑
σ:V→{0,1}

wmono(σ)x|E|−mono(σ). If x 6= 0 then Z̃Ising(G;x,w) = x|E|ZIsing(G; wx ). If x = 0

then in Z̃Ising all vertices in each component must take the same assignment (all 0 or all 1).
In this case both Z̃Ising(G;x,w) and the Holant problem in Lemma 9 are trivially solvable in
polynomial time.
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Proof. For the problem Holant
([w 0 0 x

0 y z 0
0 z y 0
x 0 0 w

])
, the roles of x, y, z are interchangeable by

relabeling the edges. For example, if the signature f(x1, x2, x3, x4) has the constraint matrix[w 0 0 x
0 y z 0
0 z y 0
x 0 0 w

]
, then the signature f(x1, x3, x2, x4) has the constraint matrix

[w 0 0 z
0 y x 0
0 x y 0
z 0 0 w

]
. It follows

that

Holant
([

w 0 0 x
0 0 0 0
0 0 0 0
x 0 0 w

])
and Holant

([
w 0 0 0
0 0 x 0
0 x 0 0
0 0 0 w

])
are exactly the same problem. So to prove the lemma it suffices to prove the equivalence of

Ising
(w
z

)
and Holant

([
w 0 0 0
0 0 z 0
0 z 0 0
0 0 0 w

])
.

First we show that Holant
([

w 0 0 0
0 0 z 0
0 z 0 0
0 0 0 w

])
can be expressed as Ising

(
w
z

)
.

Given a 4-regular graph G = (V,E) as an instance of Holant
([

w 0 0 0
0 0 z 0
0 z 0 0
0 0 0 w

])
, we can

partition E into a set C of circuits (in which vertices may repeat but edges cannot) in the
following way: at every vertex v ∈ V , denote the four edges incident to v by e1, e2, e3, e4 in a
cyclic order according to the local labeling of the signature function; we make e1 and e3 into
adjacent edges in a single circuit, and similarly we make e2 and e4 into adjacent edges in a
single circuit (note that these may be the same circuit). We say each circuit in C is a crossing
circuit of G. For the graph G, we define its crossing-circuit graph G̃ = (C, Ẽ), with possible
multiloops and multiedges, as follows: its vertex set C consists of the crossing circuits; for
every v ∈ V , if circuits C1 and C2 intersect at v, then there is an edge ẽv ∈ Ẽ labeled by v.
Note that it is possible that C1 = C2, and for such a self-intersectison point the edge ẽv is a
loop. Each C ∈ C may have multiple loops, and for distinct circuits C1 and C2 there may be
multiple edges between them. The edge set Ẽ of G̃ is in 1-1 correspondence with V of G.

Observe that the problem Holant
([

w 0 0 0
0 0 z 0
0 z 0 0
0 0 0 w

])
requires that every valid configuration σ

(that contributes a non-zero term) obeys the following rule at each vertex v:
Assuming e1, e2, e3, e4 are the four edges incident to v in cyclic order, then σ(e1) = σ(e3)
(denoted by b1) and σ(e2) = σ(e4) (denoted by b2). That is to say, all edges in a
crossing circuit must have the same assignment (either all 0 or all 1). Therefore, the valid
configurations σ on the edges of G are in 1-1 correspondence with 0, 1-assignments σ′ on
the vertices of G̃.
Under σ, the local weight on v is w if b1 = b2 and is z otherwise. Suppose crossing circuits
C1 and C2 intersect at v (they could be identical). Then in G̃, σ′ has local weight w on
the edge ẽv if σ′(C1) = σ′(C2) and has local weight z otherwise.

This means

Holant
(
G;
[
w 0 0 0
0 0 z 0
0 z 0 0
0 0 0 w

])
= z|V (G)| · ZIsing

(
G̃; w

z

)
.

Next we show that Ising
(
w
z

)
can be expressed as Holant

([
w 0 0 0
0 0 z 0
0 z 0 0
0 0 0 w

])
. Note that every

graph G = (V,E) (without isolated vertices) is the crossing-circuit graph of some 4-regular
graph G. To define G from G, one only needs to do the following: (1) transform each vertex
v ∈ V into a closed cycle Cv; (2) for each loop at v ∈ V , make a self-intersection on Cv; and
(3) for each non-loop edge {u, v} ∈ E (u and v are two distinct vertices), make Cu and Cv
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intersect in a “crossing” way at a vertex in G (by first creating a vertex p on Cu and another
vertex p′ on Cv, then merging p and p′ with local labeling 1, 3 on Cu and 2, 4 on Cv). Then
the above proof holds for the reverse direction. J

I Proposition 11 ([11, Lemma 7]). Suppose β < −1. Then #PM ≡AP Ising(β).

I Corollary 12. Suppose x 6= 0 and w
x < −1. Then #PM ≡AP Holant

([
w 0 0 x
0 0 0 0
0 0 0 0
x 0 0 w

])
.

When a+d > b+ c we have a+b+c+d
−a+b+c−d < −1, so by Corollary 12, Lemma 8, and Lemma 7,

#PM ≡AP Holant
([

a+b+c+d 0 0 −a+b+c−d
0 0 0 0
0 0 0 0

−a+b+c−d 0 0 a+b+c+d

])
≤AP Holant

([
a+b+c+d 0 0 −a+b+c−d

0 a−b+c−d a+b−c−d 0
0 a+b−c−d a−b+c−d 0

−a+b+c−d 0 0 a+b+c+d

])
≡AP #EV(a, b, c, d).

By the symmetry of a, b, c, we have proved Theorem 2.

4 #PerfectMatchings-easiness

In this section, we address two problems:
1. What are the signatures that can be realized by 4-ary matchgates (Definition 13)?

Although the set of signatures that can be realized by planar matchgates with complex
edge weights have been completely characterized [5], the set of signatures that can be
realized by general (not necessarily planar) matchgates with nonnegative real edge weights
is not fully understood, even for matchgates of arity 4. This type of matchgates plays a
crucial role in the study of the approximate complexity of counting problems [18, 4], as
we will see in this paper.
In Theorem 15, we give a complete characterization of signatures of arity 4 that can be
realized by matchgates with nonnegative real edges. Our method is primarily geometric.

2. Theorem 2 shows that for positive parameters (a, b, c, d) 6∈ Y the problem #EV(a, b, c, d)
is at least as hard as counting perfect matchings approximately. Here we ask the reverse
question: For what parameter settings (a, b, c, d) does #EV(a, b, c, d) ≤AP #PM?
We know that

ZEV(G; a, b, c, d) = Holant (G′; 6=2 | f) ,

where f is the 4-ary signature with M(f) =
[
d 0 0 a
0 b c 0
0 c b 0
a 0 0 d

]
. Considering the fact that ( 6=2)

can be easily realized by a matchgate (a vertex with two dangling edges), Theorem 4 is a
direct consequence of Lemma 17 which says that any signature in Z is realizable by some
4-ary matchgate of constant size (with nonnegative edge weights, but not necessarily
planar) (see Definition 13). Our theorem works for the eight-vertex model with parameter
settings SE≤2 (defined below) not necessarily satisfying the arrow reversal symmetry.
Moreover, Lemma 19 indicates that our result is tight in the sense that SE≤2 captures
precisely the set of all signatures that can be realized by 4-ary matchgates (with even
support, i.e., nonzero only on inputs of even Hamming weight). A similar statement holds
for SO≤2 . the corresponding set with odd support.
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I Definition 13. We use the term a k-ary matchgate to denote a graph Γ having k “dangling”
edges, labelled i1, . . . , ik. Each dangling edge has weight 1 and each non-dangling edge e is
equipped with a nonnegative weight we. A configuration is a 0, 1-assignment to the edges. A
configuration is a perfect matching if every vertex has exactly one incident edge assigned 1.
A k-ary matchgate implements the signature f , where f(b1, . . . , bk) for (b1, . . . , bk) ∈ {0, 1}k
is the sum, over perfect matchings, of the product of the weight of edges with assignment 1,
where the dangling edge ij is assigned bj, and the empty product has weight 1.

I Remark 14. Contrary to Definition 13 which does not require planarity, planar matchgates
with complex edge weights has been completely characterized [21, 5]. As computing the
weighted sum of perfect matchings is in polynomial time over planar graphs by the FKT
algorithm [20, 15, 16], problems that can be locally expressed by planar matchgates are
tractable over planar graphs.

I Notation.

SE≤2 = {f | M(f) =
[
d1 0 0 a1
0 b1 c1 0
0 c2 b2 0
a2 0 0 d2

]
satisfying

{
a1a2 ≤ b1b2+c1c2+d1d2
b1b2 ≤ a1a2+c1c2+d1d2
c1c2 ≤ a1a2+b1b2+d1d2
d1d2 ≤ a1a2+b1b2+c1c2

, a1, · · · , d2 ≥ 0.},

SO≤2 = {f | M(f) =
[

0 d1 a1 0
b1 0 0 c1
c2 0 0 b2
0 a2 d2 0

]
satisfying

{
a1a2 ≤ b1b2+c1c2+d1d2
b1b2 ≤ a1a2+c1c2+d1d2
c1c2 ≤ a1a2+b1b2+d1d2
d1d2 ≤ a1a2+b1b2+c1c2

, a1, · · · , d2 ≥ 0.}.

I Theorem 15. Denote byM the set of signatures that can be realized by 4-ary matchgates.
ThenM = SE≤2

⋃
SO≤2 .

I Remark 16. Note that any signature inM must satisfy either even parity (nonzero only
on inputs of even Hamming weight) or odd parity (nonzero only on inputs of odd Hamming
weight). Theorem 15 for the even parity part (SE≤2) is a combination of Lemma 17 and
Lemma 19. The odd parity part can be proved similarly.

I Lemma 17. Suppose f ∈ SE≤2 . Then there is a 4-ary matchgate of constant size whose
signature is f .

(a) (b) (c)

Figure 4 4-ary matchgates.

Proof. We first note that if any of the four inequalities in the definition of S≤2 is an equality,
then the remaining three inequalities automatically hold, since the 8 values a1, . . . , d2 are all
nonnegative.
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Given a signature
[
d1 0 0 a1
0 b1 c1 0
0 c2 b2 0
a2 0 0 d2

]
, first we construct a matchgate for d1d2 = a1a2+b1b2+c1c2.

If d1d2 = 0 then all four products a1a2 = b2b2 = c1c2 = d1d2 = 0, and one can easily adapt
from the following proof to show that the signature is realizable as a matchgate signature. So

it suffices to implement the normalized version
[
a1a2+b1b2+c1c2 0 0 a1

0 b1 c1 0
0 c2 b2 0
a2 0 0 1

]
. Our construction

is a weighted K4 depicted in Figure 4a. Let e1, e2, e3, e4 be the dangling edges incident
to vertices 1, 2, 3, 4, respectively. Denote by wij the weight on the edge between vertex
i and vertex j. One can check that the following weight assignment meets our need:
w12 = a1, w34 = a2, w14 = b1, w23 = b2, w13 = c1, w24 = c2.

For a1a2 = b1b2 + c1c2 + d1d2, without loss of generality we assume a1a2 6= 0 and
we normalize a1 = 1. Then our construction is shown in Figure 4b where we set w11′ =
1, w22′ = 1, w1′2′ = d2, w34 = d1, w1′4 = c2, w2′3 = c1, w1′3 = b2, w2′4 = b1. One can verify

that it realizes the normalized signature
[

d1 0 0 1
0 b1 c1 0
0 c2 b2 0

b1b2+c1c2+d1d2 0 0 d2

]
. The construction for

b1b2 = a1a2 + c1c2 + d1d2 and c1c2 = a1a2 + b1b2 + d1d2 are symmetric to the above case.
It remains to show that the interior
a1a2 < b1b2 + c1c2 + d1d2
b1b2 < a1a2 + c1c2 + d1d2
c1c2 < a1a2 + b1b2 + d1d2
d1d2 < a1a2 + b1b2 + c1c2

(4)

can all be reached. We first deal with the case when all eight parameters are strictly positive
and leave the other cases to the end of this proof. We use a weighted K6 to be our matchgate
depicted in Figure 4c, and set w12 = r1, w34 = r2, w14 = s1, w23 = s2, w13 = t1, w24 =
t2, w15 = p1, w25 = p2, w35 = p3, w45 = p4, w16 = q1, w26 = q2, w36 = q3, w46 = q4, w56 = 1.
Then the matchgate has a singature with the following parameters

a′1 = r1 + p1q2 + p2q1, a′2 = r2 + p3q4 + p4q3,

b′1 = s1 + p1q4 + p4q1, b′2 = s2 + p2q3 + p3q2,

c′1 = t1 + p1q3 + p3q1, c′2 = t2 + p2q4 + p4q2,

d′1 = (r1r2 + s1s2 + t1t2)+ d′2 = 1,
(p3q4 + p4q3)r1 + (p1q2 + p2q1)r2+
(p2q3 + p3q2)s1 + (p1q4 + p4q1)s2+
(p2q4 + p4q2)t1 + (p1q3 + p3q1)t2.

Note that all the edge weights have to be nonnegative. By properly setting the edge weights
in the matchgate, we show that we can achieve any relative ratios among the eight given
positive values a1, a2, b1, b2, c1, c2, d1, d2 that satisfy (4). Our first step is to achieve any
relative ratios among the four product values a1a2, b1b2, c1c2, d1d2 satisfying (4); and the
second step is to adjust the relative ratio within the pairs {a1, a2}, {b1, b2}, {d1, d2} and
{c1, c2} without affecting the product values. This can be justified by the observation that,
by a scaling a global positive constant can be easily achieved, and all appearances of a1 and
a2 in (4) are as a product a1a2, and similarly for b1, b2, c1, c2, d1, d2.

For the fourteen edge weights r1, . . . , q4 to be determined, let
A′ = p1p2q3q4 + p3p4q1q2, R = r1r2 + r1(p3q4 + p4q3) + r2(p1q2 + p2q1),
B′ = p1p4q2q3 + p2p3q1q4, S = s1s2 + s1(p2q3 + p3q2) + s2(p1q4 + p4q1),
C ′ = p1p3q2q4 + p2p4q1q3, T = t1t2 + t1(p2q4 + p4q2) + t2(p1q3 + p3q1),

(5)
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and define
A = A′ + S + T

B = B′ + R + T

C = C′ + R + S

D = A′ + B′ + C′.

(6)

Note that A′, B′, C ′, R, S, T are all nonnegative and so are A,B,C,D.
Our goal is to choose the fourteen edge weights r1, . . . , q4 so that A,B,C,D are all

positive and satisfy
A = 1

2 (b1b2 + c1c2 + d1d2 − a1a2)
B = 1

2 (a1a2 + c1c2 + d1d2 − b1b2)
C = 1

2 (a1a2 + b1b2 + d1d2 − c1c2)
D = 1

2 (a1a2 + b1b2 + c1c2 − d1d2).

(7)

Note that, by definition, the left-side of (7) is precisely the right-side of (7) when a1, . . . , d2 are
replaced by a′1, . . . , d′2 respectively. Denote the products a1a2, b1b2, c1c2, d1d2 by a∗∗, b∗∗, c∗∗,

d∗∗ respectively. Then (7) is a set of four linear equations M ·
[
a∗∗

b∗∗

c∗∗

d∗∗

]
=
[
A
B
C
D

]
, where

M = 1
2

[−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

]
. Note that M is invertible and M−1 = M , so (7) is equivalent

to M ·
[
A
B
C
D

]
=
[
a∗∗

b∗∗

c∗∗

d∗∗

]
, having an identical form. Since the requirement (4) in terms of

a∗∗, b∗∗, c∗∗, d∗∗ translates into the requirement A,B,C,D being strictly positive via M , it
is not surprising that the requirement a∗∗, b∗∗, c∗∗, d∗∗ being strictly positive translates into
the requirement

A < B + C + D

B < A + C + D

C < A + B + D

D < A + B + C,

(8)

and that A,B,C,D are positive is the same as (4).
Furthermore, let

{X=S+T
Y=R+T
Z=R+S

, then the requirement R,S, T being positive is equivalent to

the requirement
{ Y+Z>X
X+Z>Y
X+Y >Z

. This is because
[

0 1 1
1 0 1
1 1 0

]
·
[
R
S
T

]
=
[
X
Y
Z

]
is the same as 1

2

[−1 1 1
1 −1 1
1 1 −1

]
·[

X
Y
Z

]
=
[
R
S
T

]
.

The crucial ingredient of our proof is a geometric lemma in 3-dimensional space. Suppose

a∗∗, b∗∗, c∗∗, d∗∗ are positive and they satisfy (4). This defines
[
Ã
B̃
C̃
D̃

]
= M ·

[
a∗∗

b∗∗

c∗∗

d∗∗

]
. By a scaling

we may assume D̃ = 1. Hence (Ã, B̃, C̃, D̃) are positive and satisfy (8). Thus (Ã, B̃, C̃)
belongs to the set U in the statement of Lemma 18.

By Lemma 18, there exist (strictly) positive tuples (Ã′, B̃′, C̃ ′) and (X̃, Ỹ , Z̃) such that

(Ã, B̃, C̃) = (Ã′, B̃′, C̃ ′) + (X̃, Ỹ , Z̃),

satisfying Ã′ + B̃′ + C̃ ′ = 1 and
{
Ỹ+Z̃>X̃
X̃+Z̃>Ỹ
X̃+Ỹ >Z̃

. By the previous observation this indicates that

there exist (strictly) positive Ã′, B̃′, C̃ ′, R̃, S̃, T̃ such that
{

Ã=Ã′+S̃+T̃
B̃=B̃′+R̃+T̃
C̃=C̃′+R̃+S̃
D̃=Ã′+B̃′+C̃′

.
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We first set pi, qi (1 ≤ i ≤ 4) so that (A′, B′, C ′) = c · (Ã′, B̃′, C̃ ′) for some constant
c. To achieve this, set q1 = q2 = q3 = q4 = 1, and let o1, o2, o3 be positive, and then
set p1 =

√
o2o3
o1

, p2 =
√

o3o1
o2

, p3 =
√

o1o2
o3

, and p4 = 1
p1p2p3

. We have p1p2p3p4 = 1, and

p2p3 = o1, p3p1 = o2, p1p2 = o3. Then set
{
A′=p1p2+ 1

p1p2
=o3+ 1

o3
B′=p2p3+ 1

p2p3
=o1+ 1

o1
C′=p3p1+ 1

p3p1
=o2+ 1

o2

, which can be independently

any positive numbers at least 2, by choosing o1, o2, o3 to be suitable positive numbers. This
allows us to get A′, B′, C ′ such that (A′, B′, C ′) = c · (Ã′, B̃′, C̃ ′) for some constant c. Then
it is obvious that r1, r2, s1, s2, t1, t2 can be set so that (R,S, T ) = c · (R̃, S̃, T̃ ). Compute
A,B,C,D according to (6). As a consequence, (A,B,C,D) = c · (Ã, B̃, C̃, D̃) is a valid
solution.

To adjust the relative ratio between {d1, d2}, say increasing d2
d1

by δ, while keep-
ing all product values and the relative ratios within the other three pairs, just increase
r1, r2, s1, s2, t1, t2 by δ1/2 and increase pi, qi (1 ≤ i ≤ 4) by δ1/4. Similarly, to increase a2

a1

by δ alone without affecting the other products and ratios, just increase r2 by δ1/2 and
p3, p4, q3, q4 by δ1/4, and decrease r1 by δ1/2 and p1, p2, q1, q2 by δ1/4. The other cases are
symmetric.

Finally we deal with the cases when there are zeros among the eight parameters. Note
that at most one of a1a2, b1b2, c1c2, d1d2 is zero, because if at least two products are zero,
say a1a2 = b1b2 = 0, then (4) forces a contradiction that c1c2 < d1d2 and d1d2 < c1c2. In
the case d1d2 = 0:

d1 = 0, d2 6= 0: We make the modification that w12 = w34 = w14 = w23 = w13 = w24 = 0,
i.e. r1, r2, s1, s2, t1, t2 = 0.
d1 = d2 = 0: We make the further modification that w56 = 0.
d1 6= 0, d2 = 0: We connect the four dangling edges in Figure 4c to four degree 2 vertices,
respectively. This switches the role of d1 and d2 in the previous proof.

One can check our proof is still valid in the above three cases. If a1a2 = 0, then we connect
the dangling edges on vertices 1, 2 to two degree 2 vertices (similar to the operation from
Figure 4a to Figure 4b). This switches the role of d1, d2 with a2, a1 and the proof folllows.
The proofs for b1b2 = 0 and c1c2 = 0 are symmetric. J

Now we give the crucial geometric lemma.

I Lemma 18. Let U = {(x, y, z) ∈ R3
>0 | x < y+z+1, y < x+z+1, z < x+y+1, 1 < x+y+z},

V = {(x, y, z) ∈ R3
>0 | x + y + z = 1}, and W = {(x, y, z) ∈ R3

>0 | y + z > x, x + z >

y, x+ y > z}. Then U is the Minkowski sum of V and W , namely, U consists of precisely
those points u ∈ R3, such that u = v + w for some v ∈ V and w ∈W . The same statement
is true for the closures of U , V and W (in the topology of Euclidean space).

Proof. Observe that U , V , and W are the interiors of a polyhedron with 7 facets, a regular
triangle, and a polyhedron with 3 facets, respectively.

The polyhedron for W is the intersection of three half spaces bounded by three planes,{
(π1):y+z≥x
(π2):x+z≥y
(π3):x+y≥z

, where the planes are defined by equalities. Note that these inequalities imply

that x, y, z ≥ 0, thus this polyhedron has only three facets. We can find the intersection of

each pair of the three planes for W as
{
π1∩π2:x=y≥0,z=0
π1∩π3:x=z≥0,y=0
π2∩π3:y=z≥0,x=0

. Note that these intersections lie

on the planes z = 0, y = 0, and x = 0, respectively.

ICALP 2020
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(a) The blue rays are the intersections of the
three facets for W . The red triangle is the
boundary for V . The green rays together
with the red triangle are the intersections of
the seven facets for U .

(b) The tetrahedron in U that is left un-
covered by sliding W along the boundary
of V , but is covered by the rays from the
simplex V in the direction of (1, 1, 1).

Figure 5

Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). Then the triangle for V is just the convex
hull of e1, e2, e3. Suppose we shift the origin of W from 0 to e1 and denote the resulting

(interior of a) polyhedron by W e1 , then we have the defining inequalities
{

(πe1
1 ):y+z≥(x−1)

(πe1
2 ):(x−1)+z≥y

(πe1
3 ):(x−1)+y≥z

,

where the shifted planes are defined by the corresponding equalities. By symmetry, if we shift

the origin of W to e2 and to e3, we have respectively W e2 with
{

(πe2
1 ):(y−1)+z≥x

(πe2
2 ):x+z≥(y−1)

(πe2
3 ):x+(y−1)≥z

, and W e3

with
{

(πe3
1 ):y+(z−1)≥x

(πe3
2 ):x+(z−1)≥y

(πe3
3 ):x+y≥(z−1)

. Note that the shifted planes πe1
1 , πe2

2 , and πe3
3 contain three distinct

facets of U , and they coincide exactly with a facet of W e1 , W e2 , and W e3 , respectively.
By sliding W with its origin along the line x + y = 1, z = 0 from e1 to e2, we have a

partial coverage of U by the shifting copies of W from W e1 and W e2 :
The shifted ray of π1 ∩π2 : x = y ≥ 0, z = 0 moves from πe1

1 ∩π
e1
2 : (x− 1) = y ≥ 0, z = 0

to πe2
1 ∩ π

e2
2 : x = (y − 1) ≥ 0, z = 0. Notice that this is a parallel transport, and stays

on the plane z = 0, and thus it swipes another facet of U on z = 0 bounded by the two
lines x− y = −1 and x− y = 1.
The shifted ray of π1 ∩π3 : x = z ≥ 0, y = 0 moves from πe1

1 ∩π
e1
3 : (x− 1) = z ≥ 0, y = 0

to πe2
1 ∩ π

e2
3 : x = z ≥ 0, (y − 1) = 0; the shifted ray of π2 ∩ π3 : y = z ≥ 0, x = 0 moves

from πe1
2 ∩ π

e1
3 : y = z ≥ 0, (x− 1) = 0 to πe2

2 ∩ π
e2
3 : (y − 1) = z ≥ 0, x = 0. Notice that

both stay on the plane x+ y − z = 1 which is πe1
3 = πe2

3 .
It follows that the part of U satisfying x+ y − z > 1 is covered by the Minkowski sum of W
and the line segment on x+ y = 1, z = 0 from e1 to e2 (which is a side of the triangle V ).

Symmetrically, after sliding W with its origin from e2 to e3 along the line y+z = 1, x = 0
we get the parallel tranport from W e2 to W e3 . Also after sliding W with its origin from e3
back to e1 along the line segment x+ z = 1, y = 0 we get the parallel tranport from W e3

to W e1 . After these, the only subset in U that is left uncovered by shifting copies of W is

U ∩ {(x, y, z) |
{
−x+y+z≤1
x−y+z≤1
x+y−z≤1

} = {(x, y, z) ∈ R3
>0 |

{
x+y+z≥1
−x+y+z≤1
x−y+z≤1
x+y−z≤1

} – a tetrahedron (Figure 5b).

However this subset can be covered by the rays {v + λ(1, 1, 1) | v ∈ V, λ > 0}. Note that
λ(1, 1, 1) ∈W for all λ > 0.

Finally regarding the closures U, V and W , for vn ∈ V and wn ∈W , if vn → v ∈ V and
wn → w ∈ W , then un = vn + wn ∈ U , and un → v + w. So v + w ∈ U . Conversely, if
un → u ∈ U , where un ∈ U , then un = vn + wn for some vn ∈ V and wn ∈ W . As V is
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bounded, there is a convergent subsequence {vnk
}, such that v = limk→∞ vnk

∈ V . Then
wnk

= unk
− vnk

also converges to some w ∈W , and then u = limk→∞(vnk
+ wnk

) = v + w,
is a sum of points from V and W .

This completes the proof. J

I Lemma 19. Suppose f is the signature of a 4-ary matchgate with M(f) =
[
d1 0 0 a1
0 b1 c1 0
0 c2 b2 0
a2 0 0 d2

]
.

Then f ∈ SE≤2 . In particular, if f satisfies arrow reversal symmetry, f ∈ Z.

I Remark 20. The last part d1d2 ≤ a1a2 + b1b2 + c1c2 was proved in [4, Lemma 56]. The
proofs for other three parts are symmetric and similar to the proof for the last part. For
completeness, here we give the proof for the first part a1a2 ≤ b1b2 + c1c2 + d1d2.

Proof. Consider a 4-ary matchgate Γ with signature f . Given that M(f) =
[
d1 0 0 a1
0 b1 c1 0
0 c2 b2 0
a2 0 0 d2

]
,

a1a2 ≤ b1b2 + c1c2 + d1d2 is equivalent as

f(0011)f(1100) ≤ f(0110)f(1001) + f(0101)f(1010) + f(0000)f(1111). (9)

Let I = {i1, i2, i3, i4} be the set of dangling edges of Γ. For X ⊆ I, let MX denote the set
of perfect matchings that include dangling edges in X (by assigning them 1) and exclude
dangling edges in I \X (by assigning them 0). We exhibit an injective map

µ : M{i1,i2} ×M{i3,i4} → [M{i2,i3} ×M{i1,i4}]
⋃

[M{i2,i4} ×M{i1,i3}]
⋃

[M∅ ×MI ]

which is weight-preserving in the sense that for matchings m1,m2,m3,m4 with µ(m1,m2) =
(m3,m4), we have w(m1)w(m2) = w(m3)w(m4). The existence of µ implies (9).

Given (m1,m2) ∈M{i1,i2} ×M{i3,i4}, consider m1 ⊕m2 and note that this is a collection
of cycles together with two paths. Let π be the path connecting the dangling edge i1 to some
other dangling edge; let π′ be the path connecting the remaining two dangling edges. Let
m3 := m1 ⊕ π and m4 := m2 ⊕ π. Then we have the following

If π connects i1 to i2, then m3 ∈M∅ and m4 ∈MI ;
If π connects i1 to i3, then m3 ∈M{i2,i3} and m4 ∈M{i1,i4};
If π connects i1 to i4, then m3 ∈M{i2,i4} and m4 ∈M{i1,i3}.

The construction is invertible, since if (m3,m4) is in the image of the above mapping, then
m3 ⊕m4 = m1 ⊕m2. From m1 ⊕m2, we can recover π (as the unique path that connects i1
to one of the other dangling edges in {i2, i3, i4}). Then we can recover m1 and m2 as m3⊕ π
and m4 ⊕ π respectively. Therefore, µ : (m1,m2)→ (m3,m4) is an injection.

To see that µ is weight-preserving, observe that the each of the edges in π appears in
exactly one of m1 and m2 and in exactly one of m3 and m4 and that mi \ π = mi+2 \ π for
i ∈ {1, 2}. Hence,

w(m1)w(m2) =
∏

e∈m1\π

we ·
∏

e∈m2\π

we ·
∏
e∈π

we =
∏

e∈m3\π

we ·
∏

e∈m4\π

we ·
∏
e∈π

we = w(m3)w(m4).

J
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Abstract
A roundtrip spanner of a directed graph G is a subgraph of G preserving roundtrip distances
approximately for all pairs of vertices. Despite extensive research, there is still a small stretch gap
between roundtrip spanners in directed graphs and undirected graphs. For a directed graph with real
edge weights in [1,W ], we first propose a new deterministic algorithm that constructs a roundtrip
spanner with (2k − 1) stretch and O(kn1+1/k log(nW )) edges for every integer k > 1, then remove
the dependence of size on W to give a roundtrip spanner with (2k− 1) stretch and O(kn1+1/k logn)
edges. While keeping the edge size small, our result improves the previous 2k + ε stretch roundtrip
spanners in directed graphs [Roditty, Thorup, Zwick’02; Zhu, Lam’18], and almost matches the
undirected (2k − 1)-spanner with O(n1+1/k) edges [Althöfer et al. ’93] when k is a constant, which
is optimal under Erdös conjecture.
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1 Introduction

A t-spanner of a graph G is a subgraph of G in which the distance between every pair of
vertices is at most t times their distance in G, where t is called the stretch of the spanner.
Sparse spanner is an important choice to implicitly representing all-pair distances [19], and
spanners also have application backgrounds in distributed systems (see [14]). For undirected
graphs, (2k − 1)-spanner with O(n1+1/k) edges is proposed and conjectured to be optimal
[2, 17]. However, directed graphs may not have sparse spanners with respect to the normal
distance measure. For instance, in a bipartite graph with two sides U and V , if there is a
directed edge from every vertex in U to every vertex in V , then removing any edge (u, v)
in this graph will destroy the reachability from u to v, so its only spanner is itself, which
has O(n2) edges. To circumvent this obstacle, one can approximate the optimal spanner in
terms of edge size (e.g. in [9, 3]), or one can define directed spanners on different distance
measures. This paper will study directed sparse spanners on roundtrip distances.

Roundtrip distance is a natural metric with good property. Cowen and Wagner [7, 8]
first introduce it into directed spanners. Formally, roundtrip distance between vertices u, v
in G is defined as dG(u� v) = dG(u→ v) + dG(v → u), where dG(u→ v) is the length of
shortest path from u to v in G. For a directed graph G = (V,E), a subgraph G′ = (V,E′)
(E′ ⊆ E) is called a t-roundtrip spanner of G if for all u, v ∈ G, dG′(u� v) ≤ t · dG(u� v),
where t is called the stretch of the roundtrip spanner.
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In a directed graphG = (V,E) (n = |V |,m = |E|) with real edge weights in [1,W ], Roditty
et al. [16] give a (2k+ε)-spanner of O(min{(k2/ε)n1+1/k log(nW ), (k/ε)2n1+1/k(logn)2−1/k})
edges. Recently, Zhu and Lam [18] derandomize it and improve the size of the spanner to
O((k/ε)n1+1/k log(nW )) edges, while the stretch is also 2k+ ε. We make a step further based
on these works and reduce the stretch to 2k − 1. Formally, we state our main results in the
following theorems.

I Theorem 1. For any directed graph G with real edge weights in [1,W ] and integer k ≥ 1,
there exists a (2k − 1)-roundtrip spanner of G with O(kn1+1/k log(nW )) edges, which can be
constructed in Õ(kmn logW ) time1.

By a similar scaling method in [16], we can make the size of the spanner independent of
the maximum edge weight W to obtain a (2k − 1)-spanner with strongly subquadratic space.

I Theorem 2. For any directed graph G with real edge weights in [1,W ] and integer k ≥ 1,
there exists a (2k − 1)-roundtrip spanner of G with O(kn1+1/k logn) edges, which can be
constructed in Õ(kmn logW ) time.

Actually, our result almost matches the lower bound following girth conjecture. The girth
conjecture, implicitly mentioned by Erdös [11], says that for any k, there exists a graph
with n vertices and Ω(n1+1/k) edges whose girth (minimum cycle) is at least 2k + 2. This
conjecture implies that no algorithm can construct a spanner of O(n1+1/k) size and less than
2k − 1 stretch for all undirected graph with n vertices [17]. This lower bound also holds for
roundtrip spanners on directed graphs.

Our approach is based on the scaling constructions of the (2k + ε)-stretch roundtrip
spanners in [16, 18]. To reduce the stretch, we construct inward and outward shortest path
trees from vertices in a hitting set [1, 10] of size O(n1/k), and carefully choose the order to
process vertices in order to make the stretch exactly 2k − 1. To further make the size of the
spanner strongly subquatratic, we use a similar approach as in [16] to contract small edges
in every scale, and treat vertices with different radii of balls of size n1−1/k differently.

1.1 Related Works
The construction time in this paper is Õ(kmn logW ). However, there exist roundtrip
spanners with o(mn) construction time but larger stretches. Pachoci et al. [13] proposes an
algorithm which can construct O(k logn)-roundtrip spanner with O(n1+1/k log2 n) edges. Its
construction time is O(mn1/k log5 n), which breaks the cubic time barrier. Very recently,
Chechik et al. [6] give an algorithm which constructs O(k log logn)-roundtrip spanners with
Õ(n1+1/k) edges in Õ(m1+1/k) time.

For spanners defined with respect to normal directed distance, researchers aim to ap-
proximate the k-spanner with minimum number of edges. Dinitz and Krauthgamer [9]
achieve Õ(n2/3) approximation in terms of edge size, and Bermen et al. [3] improves the
approximation ratio to Õ(n1/2).

Another type of directed spanners is transitive-closure spanner, introduced by Bhat-
tacharyya et al. [5]. In this setting the answer may not be a subgraph of G, but a subgraph
of the transitive closure of G. In other words, selecting edges outside the graph is permitted.
The tradeoff is between diameter (maximum distance) and edge size. One of Bhattacharyya
et al.’s results is spanners with diameter k and O((n logn)1−1/k) approximation of optimal
edge size [5], using a combination of linear programming rounding and sampling. Berman et
al. [4] improves the approximation ratio to O(n1−1/[k/2] logn). We refer to Raskhodnikova
[15] as a review of transitive-closure spanners.

1 Õ(·) hides logn factors.
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1.2 Organization
In Section 2, the notations and basic concepts used in this paper will be discussed. In Section 3
we describe the construction of the (2k − 1)-roundtrip spanner with O(kn1+1/k log(nW ))
edges, thus proving Theorem 1. Then in Section 4 we improve the size of the spanner
to O(kn1+1/k logn) and still keep the stretch to (2k − 1), thus proving Theorem 2. The
conclusion and further direction are discussed in Section 5.

2 Preliminaries

In this paper we consider a directed graph G = (V,E) with non-negative real edge weights
w where w(e) ∈ [1,W ] for all e ∈ E. Denote G[U ] to be the subgraph of G induced by
U ⊆ V , i.e. G[U ] = (U,E ∩ (U × U)). A roundtrip path between nodes u and v is a cycle
(not necessarily simple) passing through u and v. The roundtrip distance between u and v
is the minimum length of roundtrip paths between u and v. Denote dU (u � v) to be the
roundtrip distance between u and v in G[U ]. (Sometimes we may also use dU (u � v) to
denote a roundtrip shortest path between u, v in G[U ].) It satisfies:

For u, v ∈ U , dU (u� u) = 0 and dU (u� v) = dU (v � u).
For u, v ∈ U , dU (u� v) = dU (u→ v) + dU (v → u).
For u, v, w ∈ U , dU (u� v) ≤ dU (u� w) + dU (w � v).

Here dU (u → v) is the one-way distance from u to v in G[U ]. We use d(u � v) to denote
the roundtrip distance between u and v in the original graph G = (V,E).

In G, a t-roundtrip spanner of G is a subgraph H of G on the same vertex set V such
that the roundtrip distance between any pair of u, v ∈ V in H is at most t · d(u� v). t is
called the stretch of the spanner.

For a subset of vertices U ⊆ V , given a center u ∈ U and a radius R, define roundtrip
ball BallU (u,R) to be the set of vertices whose roundtrip distance on G[U ] to center u is
strictly smaller than the radius R. Formally, BallU (u,R) = {v ∈ U : dU (u� v) < R}. Then
the size of the ball, denoted by |BallU (u,R)|, is the number of vertices in it. Similarly we
define BallU (u,R) = {v ∈ U : dU (u� v) ≤ R}. Subroutine InOutTrees(U, u,R) calculates
the edge set of an inward and an outward shortest path tree centered at u spanning vertices
in BallU (u,R) on G[U ]. (That is, the shortest path tree from u to all vertices in BallU (u,R)
and the shortest path tree from all vertices in BallU (u,R) to u.) It is easy to see that the
shortest path trees will not contain vertices outside BallU (u,R):

I Lemma 3. The inward and outward shortest path trees returned by InOutTrees(U, u,R)
only contain vertices in BallU (u,R).

Proof. For any v ∈ BallU (u,R), let C be a cycle containing u and v such that the length
of C is less than R. Then for any vertex w ∈ C, dU (u� w) < R, so w must be also in the
trees returned by InOutTrees(U, u,R). J

For all notations above, we can omit the subscript V when the roundtrip distance is
considered in the original graph G = (V,E). Our algorithm relies on the following well-known
theorem to calculate hitting sets deterministically.

I Theorem 4 (Cf. Aingworth et al. [1], Dor et al. [10]). For universe V and its subsets
S1, S2, . . . , Sn, if |V | = n and the size of each Si is greater than p, then there exists a hitting
set H ⊆ V intersecting all Si, whose size |H| ≤ (n lnn)/p, and such a set H can be found in
O(np) time deterministically.
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3 A (2k − 1)-Roundtrip Spanner Algorithm

In this section we introduce our main algorithm constructing a (2k − 1)-roundtrip spanner
with O(kn1+1/k log(nW )) edges for any G. We may assume k ≥ 2 in the following analysis,
since the result is trivial for k = 1.

Our approach combines the ideas of [16] and [18]. In [18], given a length L, we pick
an arbitrary vertex u and find the smallest integer h such that |Ball(u, (h + 1)L)| <
n1/k|Ball(u, h · L)|, then we include the inward and outward shortest path tree centered at
u spanning Ball(u, (h+ 1)L) and remove vertices in Ball(u, h · L) from V . We can see that
h ≤ k, so the stretch is 2k for u, v with roundtrip distance L, and by a scaling approach the
final stretch is 2k + ε. We observe that if h = k − 1, |Ball(u, (k − 1)L)| ≥ n(k−1)/k, so by
Theorem 4 we can preprocess the graph by choosing a hitting set H with size O(n1/k logn)
and construct inward and outward shortest path trees centered at all vertices in H, then we
do not need to include the shortest path trees spanning Ball(u, k · L). The stretch can then
be decreased to 2k − 1 + ε. To make the stretch equal 2k − 1, instead of arbitrarily selecting
u each time, we carefully define the order to select u.

3.1 Preprocessing
We first define a radius R(u) for each vertex u. It is crucial for the processing order of
vertices.

I Definition 5. For all u ∈ V , we define R(u) to be the maximum length R such that
|Ball(u,R)| < n1−1/k, that is, if we sort the vertices by their roundtrip distance to u in G
by increasing order, R(u) is the roundtrip distance from u to the dn1−1/ke-th vertex.

For any u ∈ V , |Ball(u,R(u))| ≥ n1−1/k. By Theorem 4, we can find a hitting set H
intersecting all sets in {Ball(u,R(u)) : u ∈ V }, such that |H| = O(n1/k logn). For all t ∈ H,
we build an inward and an outward shortest path tree of G centered at t, and denote the
set of edges of these trees by E0 and include them in the final spanner. This step generates
O(n1+1/k logn) edges in total, and it is easy to obtain the following statement:

I Lemma 6. For u, v ∈ V such that d(u� v) ≥ R(u)/(k−1), the roundtrip distance between
u and v in the graph (V,E0) is at most (2k − 1)d(u� v).

Proof. Find the vertex t ∈ H such that t ∈ Ball(u,R(u)), that is, d(u� t) ≤ R(u). Then
the inward and outward shortest path trees from t will include d(u� t) and d(t� v). By
R(u) ≤ (k − 1)d(u � v), we have d(u � t) ≤ (k − 1)d(u � v) and d(t � v) ≤ d(t �
u) + d(u � v) ≤ k · d(u � v). So the roundtrip distance of u and v in E0 is at most
d(u� t) + d(t� v) ≤ (2k − 1)d(u� v). J

3.2 Approximating a Length Interval
Instead of approximating all roundtrip distances at once, we start with an easier subproblem
of approximating all pairs of vertices whose roundtrip distances are within an interval
[L/(1+ε), L). Parameter ε is a real number in (0, 1/(2k−2)]. The procedure Cover(G, k, L, ε)
described in Algorithm 1 will return a set of edges which gives a (2k−2)(1+ε)-approximation
of roundtrip distance d(u� v) if R(u)/(k − 1) > d(u� v), for d(u� v) ∈ [L/(1 + ε), L).

Note that in Algorithm 1, initially U = V and the balls are considered in G[U ] = G. In
the end of every iteration we remove a ball from U , and the following balls are based on the
roundtrip distances in G[U ]. However, R(u) does not need to change during the algorithm
and can still be based on roundtrip distances in the original graph G. The analysis for the
size of the returned set Ê and the stretch are as follows.
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Algorithm 1 Cover(G(V,E), k, L, ε).

1: U ← V, Ê = ∅
2: while U 6= ∅ do
3: u← arg maxu∈U R(u)
4: step← min{R(u)/(k − 1), L}
5: h← minimum positive integer satisfying |BallU (u, h · step)| < nh/k

6: Add InOutTrees(U, u, h · step) to Ê
7: Remove BallU (u, (h− 1)step) from U

8: end while
9: return Ê

I Lemma 7. The returned edge set of Cover(G, k, L, ε) has O(n1+1/k) size.

Proof. When processing a vertex u, by the selection of h in line 5, |BallU (u, h · step)| < nh/k

and |BallU (u, (h − 1)step)| ≥ n(h−1)/k. When h ≥ 2 it is because of h’s minimality, and
when h = 1 it is because u ∈ BallU (u, 0). So each time InOutTrees is called, the size of ball
to build shortest path trees is no more than n1/k times the size of ball to remove. During
an execution of Cover(G, k, L, ε), each vertex is removed once from U . Therefore the total
number of edges added in Ê is O(n1+1/k). J

We can also see that if the procedure Cover(G[U ], k, L, ε) is run on a subgraph G[U ]
induced on a subset U ⊆ V , then the size of Ê is bounded by O(|U |n1/k). It is also easy to
see that h is at most k − 1:

I Lemma 8. The h selected at line 5 in Cover(G, k, L, ε) satisfies h ≤ k − 1.

Proof. In G[U ], the ball BallU (u, (k − 1)step) must have size no greater than Ball(u, (k −
1)step) since the distances in G[U ] cannot decrease while some vertices are removed. Since
|Ball(u,R(u))| < n1−1/k and step ≤ R(u)/(k − 1), we get |BallU (u, (k − 1)step)| ≤
|Ball(u, (k − 1)step)| < n1−1/k, thus h ≤ k − 1. J

Next we analyze the roundtrip distance stretch in Ê. Note that in order to make the
final stretch 2k − 1, for the roundtrip distance approximated by edges in Ê we can make the
stretch (2k − 2)(1 + ε), but for the roundtrip distance approximated by E0 we need to make
the stretch at most 2k − 1 as E0 stays the same.

I Lemma 9. For any pair of vertices u, v such that d(u � v) ∈ [L/(1 + ε), L), either
Cover(G, k, L, ε)’s returned edge set Ê can form a cycle passing through u, v with length at
most (2k − 2)(1 + ε)d(u � v), or R(u) ≤ (k − 1)d(u � v), in which case the E0 built in
Section 3.1 can form a detour cycle with length at most (2k − 1)d(u� v) by Lemma 6.

Proof. Consider any pair of vertices u, v with roundtrip distance d = d(u � v) ∈ [L/(1 +
ε), L), and a shortest cycle P going through u, v with length d.

During Cover(G, k, L, ε), consider the vertices on P that are first removed from U . Suppose
w is one of the first removed vertices, and w is removed as a member of BallUc

(c, (hc−1)stepc)
centered at c. This is to say dUc

(c� w) ≤ (hc − 1)stepc.
Case 1: stepc > d. Then

dUc(c� u) ≤ dUc(c� w) + dUc(w � u) ≤ (hc − 1)stepc + d < hcstepc,

and u ∈ BallUc(c, hcstepc). The second inequality holds because Uc is the remaining vertex
set before removing w, so by definition of w, all vertices on P are in Uc. Symmetrically
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v ∈ BallUc(c, hcstepc). InOutTrees(Uc, c, hcstepc) builds a detour cycle passing through
u, v with length < 2hcstepc. By Lemma 8, we have hc ≤ k − 1. Also stepc ≤ L ≤ (1 + ε)d,
therefore we build a detour of length < 2(k − 1)stepc ≤ (2k − 2)(1 + ε)d in Ê.

Case 2: stepc ≤ d. Because d < L, this case can only occur when stepc = R(c)/(k − 1).
Because c is chosen before u, R(u) ≤ R(c) = (k − 1)stepc ≤ (k − 1)d. By Lemma 6, E0 can
give a (2k − 1)-approximation of d. J

3.3 Main Construction

Now we can proceed to prove the main theorem based on a scaling on lengths of the cycles
from 1 to 2nW .

I Theorem 10. For any directed graph G with real edge weights in [1,W ], there exists a
polynomial time constructible (2k − 1)-roundtrip spanner of G with O(kn1+1/k log(nW ))
edges.

Proof. Note that the roundtrip distance between any pair of vertices must be in the range
[1, 2(n− 1)W ]. First do the preprocessing in Section 3.1. Then divide the range of roundtrip
distance [1, 2nW ) into intervals [(1+ε)p−1, (1+ε)p), where ε = 1/(2k−2). Call Cover(G, k, (1+
ε)p, ε) for p = 0, · · · , blog1+ε(2nW )c + 1, and merge all returned edges with E0 to form a
spanner.

First we prove that the edge size is O(kn1+1/k log(nW )). Preprocessing adds O(n1+1/k ·
logn) edges. Cover(G, k, (1 + ε)p, ε) is called for log1+1/(2k−2)(2nW ) = O(k log(nW )) times.
By Lemma 7, each call generates O(n1+1/k) edges. So the total number of edges in the
roundtrip spanner is O(kn1+1/k log(nW )).

Next we prove the stretch is 2k − 1. For any pair of vertices u, v with roundtrip distance
d, let p = blog1+ε dc+ 1, then d ∈ [(1 + ε)p−1, (1 + ε)p). By Lemma 9, either the returned
edge set of Cover(G, k, (1 + ε)p, ε) can form a detour cycle passing through u, v of length
at most (2k − 2)(1 + ε)d = (2k − 1)d, or the edges in E0 can form a detour cycle passing
through u, v of length at most (2k − 1)d.

In conclusion this algorithm can construct a (2k− 1)-roundtrip spanner with O(kn1+1/k ·
log(nW )) edges. J

3.4 Construction Time

The running time of the algorithm in the proof of Theorem 10 is O(kn(m+n logn) log(nW )).
It is also easy to see that the algorithm is deterministic. Next we analyze construction time
in detail.

In preprocessing, for any u ∈ V , R(u) can be calculated by running Dijkstra searches with
Fibonacci heap [12] starting at u, so calculating R(·) takes O(n(m+ n logn)) time. Finding
H takes O(n2−1/k) time by Theorem 4. Building E0 takes O(n1/k logn · (m+ n logn)) time.

A Cover call’s while loop runs at most n times since each time at least one node is removed.
In a loop, u can be found in O(n) time, and all other operations regarding roundtrip balls
can be done in O(m+ n logn) time by Dijkstra searches starting at u on G[U ]. Therefore a
Cover call takes O(n(m+ n logn)) time.

Cover is called O(k log(nW )) times. Combined with the preprocessing time, the total
construction time is O(kn(m+ n logn) log(nW )).
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4 Removing the Dependence on W

In this section we prove Theorem 2. The size of the roundtrip spanner in Section 3 is
dependent on the maximum edge weight W . In this section we remove the dependence by
designing the scaling approach more carefully. Our idea is similar to that in [16]. When we
consider the roundtrip distances in the range [L/(1 + ε), L), all cycles with length ≤ L/n3

have little effect so we can contract them into one node, and all edges with length > (2k−1)L
cannot be in any (2k − 1)L detour cycles, so they can be deleted. Thus, an edge with length
l can only be in O(log1+ε n) iterations for L between l/(2k− 1) and l ·n3 (based on the girth
of this edge). However, the stretch will be a little longer if we directly apply the algorithm
in Section 3 on the contracted graph.

To overcome this obstacle, we only apply the vertex contraction when R(u) is large
(larger than 2(k − 1)L). By making the “step” a little larger than L and ε smaller, when
d < L < step, the stretch is still bounded by (2k−1). When R(u) ≤ 2(k−1)L, we first delete
all node v with R(v) < L/8, then simply apply the algorithm in Section 3 in the original
graph. Since every node u can only be in the second part when R(u)/2(k − 1) ≤ L ≤ 8R(u),
the number of edges added in the second part is also strongly polynomial.

First we define the girth of an edge:

I Definition 11. We define the girth of an edge e in G to be the length of shortest directed
cycle containing e, and denote it by g(e).

It is easy to see that for e = (u, v), d(u� v) ≤ g(e). In O(n(m+ n logn)) time we can
compute g(e) for all edges e in G [12].

Algorithm 2 approximates roundtrip distance d(u � v) ∈ [L/(1 + ε), L). In the p-th
iteration of the algorithm, Gp[Up] is always the subgraph contracted from the subgraph G[U ].
Given vp ∈ Up, let C(vp) be the set of vertices in U that are contracted into vp. We can see
the second part of this algorithm (after line 12) is the same as Algorithm 1 in Section 3.

For the contracted subgraph Gp[Up], we give new definitions for balls and InOutTrees.
Given two vertices up, vp ∈ Up, define

d̂Up(up, vp) = min
u∈C(up),v∈C(vp)

dU (u, v)

Balls in Gp[Up] are defined as follows.

BallUp
(up, r) = {vp ∈ Up : d̂Up

(up, vp) < r}

BallUp
(up, r) = {vp ∈ Up : d̂Up

(up, vp) ≤ r}

In Line 9, NewInOutTrees(Up, up, h · step) is formed by only keeping the edges between
different contracted vertices in InOutTrees(U, u, h · step) from u (see Line 6). In the inward
tree or outward tree of InOutTrees(U, u, h ·step), if after contraction there are multiple edges
from or to a contracted vertex, respectively, only keep one of them. We can see the number of
edges added to Ê is bounded by O(|BallUp

(up, h · step)|). Also in Up, the roundtrip distance
from up to vertices in BallUp

(up, h · step) by edges in NewInOutTrees(Up, up, h · step) is at
most h · step.

In line 3, we can delete long edges since obviously they cannot be included in Ê.
The main algorithm is shown in Algorithm 3.

I Lemma 12. For k ≤ n and n ≥ 12, Algorithm Spanner(G, k) constructs a (2k−1)-roundtrip
spanner of G.
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Algorithm 2 Cover2(G, k, p, ε).

1: L← (1 + ε)p
2: Contract all edges e with g(e) ≤ L/n3 in G to form a graph Gp, let its vertex set be Vp
3: (Delete edges e with g(e) > 2(k − 1)L from Gp)
4: U ← V,Up ← Vp, Ê ← ∅
5: while U 6= ∅ and maxu∈U R(u) ≥ 2(k − 1)L do
6: u← arg maxu∈U R(u), let up be the corresponding vertex in Up
7: step← (1 + 1/n2)L
8: h← minimum positive integer satisfying |BallUp

(up, h · step)| < nh/k

9: Add NewInOutTrees(Up, up, h · step) to Ê
10: Remove BallUp(up, (h− 1)step) from Up, remove corresponding vertices from U

11: end while
12: Remove all vertices u from U with R(u) < L/8
13: while U 6= ∅ do
14: u← arg maxu∈U R(u)
15: step← min{R(u)/(k − 1), L}
16: h← minimum positive integer satisfying |BallU (u, h · step)| < nh/k

17: Add InOutTrees(U, u, h · step) to Ê
18: Remove BallU (u, (h− 1)step) from U

19: end while
20: return Ê

Algorithm 3 Spanner(G(V,E), k).

1: Do the preprocessing in Section 3.1. Let E0 be the added edges
2: ε← 1

4(k−1) .
3: Ê ← E0
4: for p← 0 to blog1+ε(2nW )c+ 1 do
5: Ê ← Ê∪ Cover2(G, k, p, ε)
6: end for
7: return H(V, Ê)

Proof. For any pair of vertices u, v with roundtrip distance d = d(u � v) on G, there
exists a p, such that d ∈ [(1 + ε)p−1, (1 + ε)p). Let L = (1 + ε)p. If R(u) ≤ (k − 1)d
or R(v) ≤ (k − 1)d, by Lemma 6, E0 contains a roundtrip cycle between u and v with
length at most (2k − 1)d. So we assume R(u) > (k − 1)d and R(v) > (k − 1)d. Also, if
there is a vertex w on the shortest cycle containing u and v with R(w) < L/8, then there
will be a vertex t ∈ H so that d(w � t) < L/8, so the roundtrip distance in E0 will be
d(u� t) + d(t� v) < L/4 + 2d ≤ (1 + ε)d/4 + 2d < (2k − 1)d for k ≥ 2, so Line 12 cannot
impact the correctness.

Consider the iteration p of Algorithm 2, let up, vp be the contracted vertices of u, v
respectively. Let P be a shortest cycle going through u, v in G and P ′ be the contracted
cycle going through up, vp in Gp. It is easy to see that each vertex on P corresponds to some
vertex on P ′. Similar as Lemma 8, in Line 8 and Line 16, we have (k − 1) · step ≤ R(u). It
is easy to see that |BallUp(up, (k − 1) · step)| ≤ |BallU (u, (k − 1) · step)| < n1−1/k, which
implies h ≤ k − 1.
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We prove it by the induction on p. When p is small, there is no contracted vertex in
Gp. By the same argument as in Lemma 9, either Cover2(G, k, L, ε)’s returned edge set Ê
contains a roundtrip cycle between u and v with length at most

2hc · stepc ≤ 2(k − 1)(1 + 1/n2)(1 + ε)d = (2k − 3/2)(1 + 1/n2)d ≤ (2k − 1)d

(k ≥ 2, k ≤ n and n ≥ 12) since stepc ≤ (1 + 1/n2)L in Line 7 and Line 15 and hc ≤ k − 1,
or E0 contains a cycle between u and v with length at most (2k − 1)d. Next we assume that
vertices of G contracted in the same vertex in Gp are already connected in Ê, and has the
(2k − 1)-stretch.

During Cover2(G, k, p, ε), if some vertices in P ′ are removed from Up in Line 10, like
Lemma 9, suppose wp ∈ Up is one of the first removed vertices, and wp is removed as a member
of BallUc

(c, (hc − 1)stepc) centered at c. Let w′ ∈ C(wp) be one vertex on P , since there are
at most n original vertices contracted and stepc = (1+1/n2)L, we have dU (c� u) ≤ dUp

(c�
wp)+dU (w′ � u)+n ·L/n3 ≤ (hc−1)stepc+dU (u� v)+L/n2 < (hc−1)stepc+L+L/n2 =
hcstepc, and symmetrically dU (c� v) < hcstepc. Thus NewInOutTrees(Uc, c, hcstepc) builds
a roundtrip cycle passing through up, vp of length < 2hcstepc in current contracted graph.
It follows that dGp[Ê](up, vp) < 2hcstepc ≤ 2(k − 1)(1 + 1/n2)L. Since there are at most
n contracted vertices in the roundtrip cycle between up and vp, and w(e) ≤ g(e) for every
contracted edge e, we have

dG[Ê](u, v) ≤ 2(k− 1)(1 + 1/n2)L+n · (2k− 1)L/n3 ≤ (2k− 3/2)(1 + 3/n2)d ≤ (2k− 1)d.

(k ≥ 2, k ≤ n and n ≥ 12.)
If there is no vertex in P ′ removed from Up in Line 10 and Line 12, then all vertices w in

P have L/8 ≤ R(w) < 2(k − 1)L. By the same argument as in Lemma 9, the second part of
Algorithm 2 also ensures that Ê ∪ E0 contains a roundtrip cycle passing through u, v with
length at most (2k − 1)d. J

I Lemma 13. The subgraph returned by algorithm Spanner(G, k) has O(kn1+1/k logn) edges.

Proof. Preprocessing adds O(n1+1/k logn) edges as in Section 3.1. The edges added in Line 17
is bounded as follows. Consider Algorithm 2, after Line 12, the subgraph only consists of
vertices with R(u) ∈ [L/8, 2(k − 1)L], so each vertex belongs to at most log1+ε 16k such
iterations. Thus the total number of edges added after Line 12 is at most n1+1/k log1+ε 16k =
O(kn1+1/k log k) edges. Next we count the edges added in Line 9.

We remove the directions of all edges in G to get an undirected graph G′, and remove
the directions of all edges in every Gp to get an undirected graph G′p, but define the weight
of an edge e in G′ and every G′p to be the girth g(e) in G. Let F be a minimum spanning
forest of G′ w.r.t. the girth g(e). We can see that in iteration p, if we remove edges in F
with g(e) > 2(k − 1)(1 + ε)p and contract edges e with g(e) ≤ (1 + ε)p/n3 in F , then the
connected components in F will just be the connected components in G′p, which are the
strongly connected components in Gp. This is because of the cycle property of MST: If an
edge e = (u, v) in G′p has g(e) ≤ (1 + ε)p/n3, then in F all edges f on the path connecting
u, v have g(f) ≤ (1 + ε)p/n3, thus u, v are already contracted in F ; If an edge e = (u, v)
in G′p has g(e) ≤ 2(k − 1)(1 + ε)p, then in F all edges f on the path connecting u, v have
g(f) ≤ 2(k − 1)(1 + ε)p, so u, v are in the same component in F .

So the total size of connected components {C : |C| ≥ 2} in G′p is at most 2 times the
number of edges e in F with (1 + ε)p/n3 < g(e) ≤ 2(k − 1)(1 + ε)p, and every edge in F can
be in at most log1+ε 2(k − 1)n3 = O(k logn) number of different G′p. Thus, the total size of
connected components with size at least 2 in all G′p is bounded by O(kn logn). By a similar
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argument of Lemma 7, in each call of Cover2(G, k, p, ε), line 9 will add |C|n1/k new edges to
Ê, for every connected component C with |C| ≥ 2 in G′p. Thus the total number of edges in
the subgraph returned by Spanner(G, k) is bounded by O(kn1+1/k logn). J

Construction Time

The analysis of Spanner’s running time is similar to Section 3.4. Compared with Cover,
Cover2 adds operations of building Gp. We also need to calculate g(·) in preprocessing,
which can done by n Dijkstra searches. Gp can be built in O(m) time. Cover2 is called
log1+ε′(2nW ) = O(k log(nW )) times. Therefore the total construction time is still O(kn(m+
n logn) log(nW )).

5 Conclusion

In this paper we discuss the construction of (2k−1)-roundtrip spanners with O(kn1+1/k logn)
edges. An important and interesting further direction is whether we can find truly subcubic
algorithm constructing such spanners.
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Abstract
In this paper, we consider the question of computing sparse subgraphs for any input directed
graph G = (V,E) on n vertices and m edges, that preserves reachability and/or strong connectivity
structures.

We show O(n+min{|P|
√
n, n
√
|P|}) bound on a subgraph that is an 1-fault-tolerant reachability

preserver for a given vertex-pair set P ⊆ V ×V , i.e., it preserves reachability between any pair of
vertices in P under single edge (or vertex) failure. Our result is a significant improvement over
the previous best O(n|P|) bound obtained as a corollary of single-source reachability preserver
construction. We prove our upper bound by exploiting the special structure of single fault-tolerant
reachability preserver for any pair, and then considering the interaction among such structures
for different pairs.
In the lower bound side, we show that a 2-fault-tolerant reachability preserver for a vertex-pair
set P ⊆ V × V of size Ω(nε), for even any arbitrarily small ε, requires at least Ω(n1+ε/8) edges.
This refutes the existence of linear-sized dual fault-tolerant preservers for reachability for any
polynomial sized vertex-pair set.
We also present the first sub-quadratic bound of at most Õ(k 2k n2−1/k) size, for strong-
connectivity preservers of directed graphs under k failures. To the best of our knowledge no
non-trivial bound for this problem was known before, for a general k. We get our result by
adopting the color-coding technique of Alon, Yuster, and Zwick [JACM’95].
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1 Introduction

One of the major problems in computer science, especially in the era of big data, is to sparsify
input graph while preserving certain properties of it. Let ℘ be any property defined over
a graph. Given a graph G = (V,E), a subgraph H = (V,EH), where EH ⊆ E, is said to
preserve property ℘ if the property ℘ is satisfied by the subgraph H if and only if it is satisfied
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by graph G. Reachability and strong-connectivity are two fundamental graph properties that
we consider in this paper. In case of reachability, given a directed graph G and a set P of
vertex-pairs the objective is to find a subgraph H with as few edges as possible, so that for
any pair (s, t) ∈ P there is a path from s to t in H iff so is in G. This problem has been
studied extensively [16, 10, 1]. In case of strong-connectivity, given a directed graph G the
objective is to find a subgraph H with as few edges as possible so that the strongly-connected
components in G and H are identical. A folklore result shows that for any n-node graph we
can have a strong-connectivity preserving subgraph with at most 2n edges.

In this paper we study the above two problems under the possibility of edge or vertex
failures. In the real world networks are prone to failures. Most of the time such failures are
unavoidable and also unpredictable in physical systems like communication or road networks.
Due to this reason edge (or vertex) failure model draws a huge attention of the researchers
in the recent past. In most of the scenarios such failures are much smaller in number in
comparison to the size of the graph. Thus it is natural to associate a parameter to capture
the number of edge (or vertex) failures, and then try to build fault-tolerant data-structures
of size depending on this failure parameter for various graph theoretic problems. Many
natural graph theoretic questions like connectivity [30, 28, 5, 25], finding shortest paths [18],
graph-structures preserving approximate distances [26, 17, 13, 19, 7, 8, 11, 4] etc. have been
studied in the presence of edge (or vertex) failures.

The main focus of this paper is to understand the extremal structure of paths in directed
graphs under possible (bounded) edge failures. More specifically, our goal is to show
existence (or non-existence) of subgraphs of certain size1 that preserves reachability and
strong-connectivity in the presence of a small number of edge failures.

I Definition 1 (Fault-tolerant Strong-Connectivity Preserver (FT-SCC Preserver)). For any
graph G = (V,E), a subgraph H of G is said to be k-fault-tolerant strong-connectivity preserver
(k-FT-SCC preserver) if for each set F (⊆ E) of k edge failures, the strongly-connected
components in G− F and H − F are identical.

We would like to emphasize that so far there is no non-trivial bound on the size of
k-FT-SCC preserver. In this paper we show an upper bound of Õ(k 2k n2−1/k) on k-FT-SCC
preserver of any n-node (directed) graph. Moreover we show that we can find such a subgraph
efficiently.

I Theorem 2. There is a polynomial time (randomized) algorithm that given any directed
graph G = (V,E) on n vertices and k ≥ 1, computes a k-FT-SCC preserver of G containing
at most Õ(k 2k n2−1/k) edges with probability at least 1− 1/n4.

As a direct application we get a data-structure (oracle) of size sub-quadratic in n, for
reporting strongly-connected components after k failures. The best earlier known bound
for k > 1 failures was Ω(2kn2) [6], whereas for k = 1 it was known by Georgiadis, Italiano,
and Parotsidis [24] that O(n) space and query-time bound is achievable. So ours is the first
truly sub-quadratic (i.e., O(n2−ε) for some ε > 0) sized strong-connectivity oracle for any
constant number of failures. One may observe that there are graphs with n nodes for which
any k-FT-SCC preserver must be of size Ω(2kn).

Next we study the extremal bounds of fault-tolerant reachability preserving subgraphs.

1 Throughout this paper by size of a subgraph we mean the number of edges present in that subgraph.
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I Definition 3 (Fault-tolerant Pairwise Reachability Preserver). For any graph G = (V,E)
and a set P of vertex-pairs, a subgraph H of G is said to be k-fault-tolerant pairwise
reachability preserver for P, denoted by FTRS(P, G), if for each F (⊆ E) of k edge failure,
the reachability relations between pairs in P agree on G− F and H − F .

Baswana, Choudhary and Roditty [5] provided a polynomial time algorithm that given
any n-node directed graph constructs an O(2kn)-sized subgraph that preserves reachability
from a fixed source vertex to all other vertices under k edge failures. As a corollary, to
preserve reachability between arbitrary P pairs, we get an O(2kn|P|)-sized k-fault-tolerant
pairwise reachability preserver. Clearly the bound is extremely bad for large sized set P.
So far we do not know any better bound even for small values of k. On the other hand
in standard static setting (i.e., when k = 0) we know existence of O

(
n+ (n|P|)2/3 )-sized

pairwise reachability preserver [1].
An important question is how much the size of a reachability preserver varies when we

go from standard static (i.e., without any failure) setting to single failure setting, and then
further from single failure to dual failure setting. It is also natural to ask the following
question: What is the bound on the number of pairs in P so that it is possible to obtain
linear sized single-fault-tolerant pairwise reachability preservers. Here we show that this is
possible as long as |P| = O(

√
n). Note that this is also the current best known limit for the

standard static setting [1]. So one cannot hope to improve our bound without improving the
bound for static setting. Below we state our upper bound result.

I Theorem 4. For any directed graph G = (V,E) with n vertices, and a set P of vertex-
pairs, there exists a single-fault pairwise reachability preserver FTRS(P, G) having at most
O
(
n+ min(|P|

√
n, n

√
|P|)

)
edges. Furthermore, we can find such a subgraph in polynomial

time.

Our construction of SCC preservers plays a significant role in obtaining such a sparse
reachability preserver. One may wonder whether the above result can be generalized to
multiple failures, at least for constantly many failures. Unfortunately, we observe a striking
difference between single and multiple (even for two) failures scenario in the context of
pairwise reachability preservers.

I Theorem 5. For every n, p with p = O(n2/3), there is an infinite family of n-node directed
graphs and pair-sets P of size p, for which a dual fault-tolerant pairwise reachability preserver
requires at least Ω(n|P| 18 ) edges.

This shows linear size reachability preserver is not possible under dual failures in general
pairwise setting with the number of pairs being Ω(nε) for any small ε > 0. As a consequence
we get a polynomial separation in size of a pairwise reachability preserver between single and
dual failures. This is in sharp contrast with single-source all destinations setting, wherein,
the size only doubles each time we increase the count of failure by value one [5].

It is worth mentioning that in this paper we show fault-tolerant structures with respect
to edge failures only, however, all our results hold for vertex-failures as well.

1.1 Related Work
A simple version of reachability preserver is when there is a single source vertex s and we
would like to preserve reachability from s to all other vertices. Baswana et al. [5] provided an
efficient construction of a k-fault-tolerant single-source reachability preserver of size O(2kn).
Further they showed that this upper bound on size of a preserver is tight up to some constant
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factor. As an immediate corollary of their result, we get a k-fault-tolerant pairwise reachability
preserver of size O(2kn|P|) (by applying the algorithm of [5] to find subgraph for each source
vertex in pairs of P, and then taking the union of all these subgraphs). We do not know
whether this bound is tight for general k. However for standard static (with no faulty edges)
setting much better bound is known. We know that even to preserve all the pairwise distances,
not just reachability, there is a subgraph of size O

(
n+ min(n2/3|P|, n

√
|P|)

)
[16, 10]. Later

Abboud and Bodwin [1] showed that for any directed graph G = (V,E) given a set S of
source vertices and a pair-set P ⊆ S×V we can construct a pairwise reachability preserver of
size O

(
n+ min(

√
n|P||S|, (n|P|)2/3)

)
. It is further shown that for any integer d ≥ 2 there is

an infinite family of n-node graphs and vertex-pair sets P for which any pairwise reachability
preserver must be of size Ω

(
n2/(d+1)|P|(d−1)/d). Note, for undirected graph storing spanning

forests is sufficient to preserve pairwise reachability information, and thus we can always get
a linear size reachability preserver for undirected graphs. We would like to emphasize that all
the results provided in this paper hold for directed graphs. A problem similar to constructing
reachability preserver is to construct a data-structure (aka. oracle) that can answer queries
of the form whether a vertex is reachable from a fixed source vertex s after multiple edge (or
vertex) failures. As an application of [5] we get such an oracle of size O(2kn) for k edge (or
vertex) failures with query time O(2kn). For just dual failures we have an O(n) size oracle
with O(1) query time due to [15]. In a recent work, Brand and Saranurak [31] obtained a
k-fault-tolerant O(n2) sized reachability oracle that has O(kω) query time, where ω is the
constant of matrix-multiplication.

Finding strongly connected components (SCCs) under edge failures is another important
problem. One specific problem is given a directed graph G to build a data-structure (oracle)
that for any vertices u, v and a set of edges F of size k can answer whether u and v are
in the same SCC in G− F . Using k-fault-tolerant reachability preserver of [5] we can get
such an oracle of size O(2kn2) with query time O(2kn) (see [6]). Moreover, [6] provides
us an algorithm that computes all the SCCs in G − F in time O(2kn log2 n) by using a
data-structure of size O(2kn2). Georgiadis, Italiano and Parotsidis [24] also studied this
problem of computing all the SCCs under single edge failure, and gave a solution with
O(n) query time using a data-structure of size only O(n). However so far we do not know
any solution for computing all the SCCs after more than one edge failures using a data
structure of size O(n2−ε) for any ε > 0. In this paper we give construction of first such
truly sub-quadratic sized data-structure as long as there are only constantly many failures.
For undirected graphs, the optimal bound of O(kn) edges for k-fault-tolerant connectivity
preserver directly follows from k-edge (vertex) connectivity certificate constructions provided
by Nagamochi and Ibaraki [27]. In contrast, for directed graphs, the only known result for
“sparse” certificate of k-edge (vertex) strong-connectivity is for k = 2, due to a series of
works by Georgiadis et al. [22, 23, 21]. Our truly sub-quadratic sized k-FT-SCC preservers
also in turn provides the first truly sub-quadratic sized k-edge (vertex) strong-connectivity
certificates for directed graphs, for k ≥ 3 (see Section 6).

Other closely related problems that have been studied in the fault-tolerant model include
computing distance preservers [18, 29, 28], depth-first-search tree [3], spanners [13, 19],
approximate distance preservers [7, 30, 9], approximate distance oracles [20, 14], compact
routing schemes [14, 12].

1.2 Technical Overview
SCC preserver. Our starting point is a simple construction, which is motivated from some
of the techniques used in [24], of linear (in number of vertices) sized single fault-tolerant SCC
oracle. Then by using that construction as a basic building block we provide a construction
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of fault-tolerant SCC preserver for k edge failures. Using the ideas inspired by color-coding
technique of Alon, Yuster and Zwick [2], we show a generic procedure that converts any
r-fault-tolerant (or even non-fault-tolerant) SCC preserver construction into a (k+r)-FT-SCC
preserver construction. Our technique, especially the first step of our conversion procedure,
is quite similar to that used in [19] to convert any spanner to a r-fault-tolerant spanner
with the same stretch. The first step alone cannot serve our purpose fully, mostly because it
could work (with high probability) only when the SCCs after k faults are of “small size”. To
mitigate this issue we have to handle the large sized SCCs (after k failures) with a completely
different technique. As a consequence our whole proof becomes slightly more intricate than
that in [19].

Our conversion procedure works as follows. In the first step, we sample a set J of edges
and treat J as failure set, and then compute r-fault-tolerant SCC preserver of G−J (residual
graph after removing edges in J). Do this multiple times and take union of all those r-FT
SCC preservers for different random choices of J . Now in the second step, we sample a set
W of “a few” vertices of G, and then for each w ∈ W compute single-source FTRS with
w as the source and single-destination FTRS by treating w as the destination. Then take
union of all these FTRS subgraphs. Finally we claim that with high probability the union
of subgraphs produced by first and the second step is a (k + r)-FT-SCC preserver.

Our correctness proof proceeds as a win-win analysis. For the sake of simplicity let us
provide a high level proof sketch for the case when r = 0. For any set F of edge failures, we
distinguish two cases depending on whether a SCC C in G− F is small or not. Our choice
on size of J ensures that we over-samples F during the first step. Hence if C is of small
size with high probability at least for one random choice of J , C will be completely inside
one strongly connected component after removing J (that also includes F ) from G (in other
words, J “separates” C from F ), leading to C also being a SCC in the final subgraph (after
failure of edges in F ). Next we turn to the case when C is of large size. In that scenario
it is not difficult to show that with high probability W (chosen at random during second
step) and C have some common vertex, and hence C will be preserved due to inclusion of
single-source and single-destination FTRS structure. Our techniques hold even when we are
able to “partially separate” C from F , and that helps us in proving our result for any r (see
Section 3 for the details). So we get that any improvement in size of r-FT-SCC preserver
will directly improve the size of (k + r)-FT-SCC preserver.

FT-Reachability-Preserver. The construction of O(n+
√
n|P|)-sized reachability-preserver

for a pair-set P uses the fact the preservers on general digraphs are reducible to preserver on
DAGs (since the SCCs can always be compressed into “supernodes”, and there is a linear
size certificate for strong-connectivity). In a DAG, it is not very difficult to ensure that
paths between two given pairs meet and diverge only once, which in turn provides a cap
on the maximum number of edges in a preserver. Our approach to FT-reachability is to
try to adapt the constructions for non-faulty setting [1]. However, one major hindrance
we face is that we cannot directly compress SCCs into “supernodes” as they can destroy
2-connectivity structures, and thus the problem is not reducible to DAGs. We start by
observing that FTRS(p) for a pair p = (s, t) is just union of two “maximally disjoint” s− t
paths. The interactions between FTRS(p) for different pairs p help us in achieving our
bound of O(n+

√
n|P|). Our second upper bound of O(n

√
|P|) is much simpler than the

first one. Again we consider union of FTRS(p) structures for all p ∈ P , and then consider all
the vertices that appear in more than

√
|P| “maximally disjoint” paths in total (in all FTRS

structures). Next we remove all those paths and add single-source and single-destination
FTRS structure from those selected vertices. Then we use the properties of single-source and
single-destination FTRS to show that the final subgraph will be a FTRS for the pair-set P .
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These structures as well as linear bound on preserver size for small sized P (at most
O(
√
n) pairs), is not expendable beyond single failure due to the fact that k-FTRS(p) for

any k > 1 cannot be represented as union of o(n) paths (see [15]). In the latter part of this
paper we also show that this is not a drawback of our approach, instead in some sense it is
unavoidable, by proving a size lower bound of any k-fault-tolerant pairwise preserver, for
k ≥ 2. Our lower bound for dual failure is inspired by the following observation: If for a pair
p = (s, t), Qp = (q1, . . . , q`) and Rp = (r1, . . . , rt) are two vertex-disjoint paths from s to t.
Then by playing with failures on Q and R, we can force multiple paths originating from Q and
terminating to R to be present in our 2-FTRS for p. Note that a 2-FTRS, for a single pair p,
would still be linear in size. However, as the number of pairs increases achieving sparsity is
tricky. To obtain a 2-FTRS lower-bound for multiple pairs we embed in between the paths
Qp and Rp, the “hard” distance preserver graph given by Coppersmith and Elkin [16]. We
start with a lower bound distance preserver graph G over pair-set P , and perform its layering
L number of times, for some parameter L. Inspired by techniques of Bodwin et al. [10, 1], we
are able to show that all the paths in the “hard” instance graph from [16] can be assumed to
have equal distance between the relevant pairs. Thus our layered embedded structure also
acts as a non-faulty reachability preserver among pairs with end-points respectively on paths
Qp and Rp.

2 Preliminaries and Tools

Given a directed graph G = (V,E) on n = |V | vertices and m = |E| edges, the following
notations will be used throughout the paper.

H[A] : The subgraph of H induced by vertices in set A.
GR : The graph obtained by reversing all the edges in graph G.
H − F : For a set of edges F , the graph obtained by deleting the edges in F from graph
H.
π(x, y,H) : The shortest path from x to y in graph H.
P ◦Q : The concatenation of two paths P and Q, i.e., a path that first follows P and
then Q.
T (v) : The subtree of a directed tree T rooted at a vertex v ∈ T .
cert(C,H) : An arbitrarily chosen certificate of at most 2(|C| − 1) edges corresponding
to a strongly connected component C in H.

Our algorithm for computing pairwise-reachability and strong-connectivity preservers in a
fault tolerant environment employs the concept of a single-source FTRS which is a sparse
subgraph that preserves reachability from a designated source vertex even after the failure
of at most k edges in G. Observe that in case of no failure, a directed reachability tree has
n− 1 edges and is able to preserve reachability from the source which is a also the root. An
FTRS with respect to a given source is formally defined as follows.

I Definition 6 (FTRS). Let P ⊆ V × V be any set of pairs of vertices. A subgraph H of G
is said to be a k-Fault-Tolerant Reachability-Subgraph of G for P if for any pair (s, t) ∈ P
and for any subset F ⊆ E of k edges, t is reachable from s in G − F if and only if t is
reachable from s in H − F . Such a subgraph H is denoted by k-FTRS(P, G), or simply
FTRS(P, G) when k = 1.

Baswana et al. [5] provide a construction of sparse FTRS for any general k ≥ 1 when
there is a designated source vertex.
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I Theorem 7 ([5]). For any directed graph G = (V,E), a designated source vertex s ∈ V ,
and an integer k ≥ 1, there exists a (sparse) subgraph H of G which is a k-FTRS({s}×V,G)
and contains at most 2kn edges. Moreover, such a subgraph is computable in O(2kmn) time,
where n and m are respectively the number of vertices and edges in graph G.

Our constructions will require the knowledge of the vertices reachable from a vertex s as
well as the vertices that can reach s. So we will be using FTRS defined with respect to a
source vertex ({s} × V case), as well as FTRS defined with respect to a destination vertex
(V × {s} case).

In this paper, we consider fault-tolerant structures with respect to edge failures only.
Vertex failures can be handled by simply splitting a vertex v into an edge (vin, vout), where
the incoming and outgoing edges of v are respectively directed into vin and directed out
of vout.

3 Strong-connectivity Preservers

We show a construction of strong-connectivity preservers that are able to preserve strong-
connectivity relation between vertices in G = (V,E) as long as the number of failures are
bounded by k. For our convenience, we assume that G is strongly connected, if not, we
may apply our construction to each strongly-connected component (SCC) of G. Although
the main contribution of this section is to get a fault-tolerant SCC preserver for general k
failures, let us start with the case when there can be at most one edge failure.

3.1 Construction for single failure
We first give a simple construction of an O(n) size FT-SCC preserver for the scenario of k = 1.
Let s be an arbitrary vertex in G. We initialize H1 to union of subgraphs FTRS({s}× V,G)
and FTRS(V ×{s}, G). The following simple observation describes the significance of H1 in
preserving strong connectivity information.

I Observation 8. Given a directed graph G, let H1 be the union of subgraphs FTRS({s} ×
V,G) and FTRS(V ×{s}, G). For any vertex x and any edge-failure e, if x and s are strongly
connected in G− {e}, then they are also strongly connected in H1 − {e}.

We now introduce a lemma that will be crucial in preserving strong-connectivity between
vertices not (strongly) connected to s after failure.

I Lemma 9. For any n-vertex directed graph G=(V,E) and an ordered list L=(v1, v2, . . . , vn)
of vertices of G, in polynomial time we can compute a subgraph H0 = H0(L) of G with at
most 2n edges satisfying the condition that the SCCs of G[v1 · · · vi] are identical to those in
H0[v1 · · · vi], for 1 ≤ i ≤ n.

Proof. For any i ∈ {1, · · · , n}, let Vi = {v1, . . . , vi} be the subset of V comprising of first i
vertices, and Gi be the subgraph of G induced by the set Vi. We initialize H0 to be an empty
graph on n vertices. The edges of H0 are incrementally computed in n rounds, wherein, in
the ith round we add edges to H0, so as to ensure that the SCCs of H0[v1 · · · vi] are identical
to those in Gi.

For any i ∈ {1, · · · , n}, let γi denote the number of SCCs in graph Gi, and let Ci be the
SCC of vi in graph Gi. Observe that γi ≤ 1+γi−1, where the equality holds for index i if and
only if Ci = {vi}. If Ci,1, Ci,2, . . . , Ci,`i is a decomposition of SCC Ci in Gi−1(= Gi − vi),
then in round i it suffices to add at most 2`i edges corresponding to an out-reachability and
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an in-reachability tree rooted at vi and spanning the “super-nodes” (that is obtained by
contracting all the edges in a component Ci,j) Ci,1, Ci,2, . . . , Ci,`i . Now `i = 1 + γi−1 − γi.
Thus the number of edges in H0 is at most 2(`2 + . . .+ `n) = 2(n− 1 + γ1 − γn) ≤ 2n. J

Construction procedure of 1-FT-SCC preserver

Consider an arbitrarily chosen vertex s in G. Then by treating s as a source vertex, we
compute the directed reachability-tree T rooted at s for graph G. Similarly we compute
a reachability-tree T ′ for reverse graph GR. Let L (resp. L′) represent an ordered list
containing the vertices of T (resp. T ′) sorted in the decreasing order of their depth (where
vertices in the same depth are in an arbitrary order). Next we compute the subgraphs H0(L)
and H0(L′) with the property mentioned in Lemma 9, and finally set H to be the union of
graphs H1 (as defined in Observation 8), H0(L), and H0(L′).

It is easy to see that H contains O(n) edges. We now prove the correctness.
Consider a vertex x in G and a failing edge e = (a, b) such that x and s are not strongly-

connected in G− {e}. Let Cx be the SCC of x in G− {e}. We will show that Cx must be
an SCC in at least one of the graphs: H0(L)− {e} or H0(L′)− {e}.

Observe that x is either not reachable from s in G− {e}, or does not have a path to s
in G− {e}. Without loss of generality, we assume that the first case holds. Thus e = (a, b)
must lie on the tree-path from s to x in T . Then a is a parent of b in T . Observe that since
none of the vertices of Cx can be reachable from s in G− {e}, the entire SCC Cx must lie in
the subtree rooted at b, denoted by Tb. Since L stores vertices of T sorted in the decreasing
order of depth, the vertices of subtree Tb (and hence also Cx) appears before a in the list L.
This implies that Cx must be an SCC in H0(L)− {(a, b)}. This completes the correctness.

So we conclude with the following theorem.

I Theorem 10. There is a polynomial time (deterministic) algorithm that given any directed
graph G = (V,E) on n vertices, computes an 1-FT-SCC preserver of G with at most O(n)
edges.

3.2 A generic construction
In this section we provide a construction for general k failures.

I Lemma 11. If there is an algorithm A that on every n-node directed graph builds a r-fault-
tolerant SCC preserver of size f(n, r), then for any k = Ω(r), there is a randomized algorithm
B that given a directed graph G and a parameter α ∈ [0, 1], computes a (k + r)-FT-SCC
preserver of size O(k2k+r · n2−α logn+ nkα · logn · f(n, r)) with high probability. Moreover,
if A runs in time T (n) then the algorithm B runs in time poly(n)T (n).

Description of Procedure B to compute (k + r)-FT-SCC preserver

Let α ∈ [0, 1] be the input parameter. Procedure B constructs two graphs H1 and H2 as
follows.

H 1 : Repeat the following for L = 16 · nkα · logn number of iterations: Independently
add each edge of G to a set J with probability p = 2

nα , and then use the given algorithm
A to compute a r-FT-SCC preserver of the remaining graph G− J . Set H1 to be union
of these r-FT-SCC preservers, taken over all L iterations.
H 2 : Let q = 16(k + r) · n−α logn, and W be a uniformly random set of nq =

(
16(k +

r) ·n1−α logn
)
vertices in G. Initialize H2 to be union of (k+ r)-FTRS({w}× V,G) and

(k + r)-FTRS(V × {w}, G), taken over all w ∈W .
Finally procedure B outputs a new subgraph H which is union of H1 and H2.
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Correctness of Procedure B

For a set F of edge failures and a vertex x in G, let Cx,F be the SCC containing x in G− F .
We say that the SCC Cx,F is small if it contains at most nα

4 vertices, and large otherwise.
First we will consider the scenario that Cx,F is small. Let F1 and F2 be any two disjoint

subsets of E of size respectively k and r, and let F = F1 ∪ F2. (Observe that Cx,F1 might be
large even though Cx,F is small). Let cert(Cx,F , G−F ) be an arbitrary certificate of at most
2(|Cx,F | − 1) edges corresponding to a strongly connected component of Cx,F . We say an
iteration separates Cx,F from F1 if at that iteration none of the edges of cert(Cx,F , G− F )
is selected in J , but all the edges of F1 lie in J . The probability that a particular iteration
separates Cx,F from F1 is:

(1− p)|cert(Cx,F ,G−F )| · p|F1| ≥
(

1− 2
nα

)2(nα/4)
·
( 2
nα

)k
≥ 1

4 ·
2k

nkα
.

The probability that none of the iterations is able to separate Cx,F from F1 is at most(
1− 2k

4nkα
)16nkα·logn

≤ 1
n4(2k) .

Now, there are nO(k) (assuming k = Ω(r)) choices for pair (F1, F2), and n choices for
x, thus a total of nO(k) different choices for the triplet (Cx,F , F1, F2). By union bound, the
probability that none of the L iterations are able to separate Cx,F from F1, for at least one
choice of (Cx,F , F1, F2), is at most: nO(k)

n4(2k) ≤
1
n5 .

The next claim is immediate from definition of FT-SCC preserves.

B Claim 12. Let F1, F2, J ⊆ E where J contains F1, F be F1 ∪ F2, and C be an SCC in
G− F whose certificate is disjoint with J . Further let H̃ be a r-FT-SCC preserver of G− J .
Then C is also an SCC in H̃ − F2 if |F2| ≤ r.

The above discussion together with Claim 12 completes the analysis of the scenario when
the SCCs are small, and we obtain the following lemma.

I Lemma 13. H1 with high probability preserves small SCCs after k + r failures.

Next, we consider the scenario that Cx,F is large, i.e, contains more than nα

4 vertices. Let
F be a set of k+ r edge failures, and Cx,F be the SCC of x in G−F . In order to ensure that
the SCC Cx,F is preserved in H2−F it suffices to ensure that Cx,F has non-empty intersection
with W . This is because we include in H2 the (k + r)-fault-tolerant in-and-out-reachability
preserves of each of the vertices of W in H2. The probability2 that none of the vertices of
Cx,F lie in random set W is at most:

(1− q)|Cx,F | ≤
(

1− 16(k + r) logn
nα

)nα/4
≤ 1
n4(k+r) .

Again, there are a total of n2(k+r)+1 different choices for the pair (Cx,F , F ). By union
bound, the probability that for at least one choice of (F, x), there is some large SCC Cx,F

having empty intersection with W is at most: n2(k+r)+1

n4(k+r) ≤ 1
n5 . This completes the analysis of

the scenario when the SCCs are large.

2 It is easy to verify that the bound of 1
n4(k+r) holds for both the scenarios: sampling with replacement by

probability q, or just taking W to be a uniformly random subset of vertices of nq size.
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I Lemma 14. H2 with high probability preserves large SCCs after k + r failures.

Now we are ready to prove Lemma 11.

Proof of Lemma 11. Recall, H is the graph obtained by taking the union of the graphs
H1 and H2. From Lemma 13 and Lemma 14, it follows that our construction results in a
valid (k + r)-fault-tolerant SCC preserver. The total number of edges in H is O(k2k+r ·
n2−α logn+ nkα · logn · f(n, r)). J

Now as a corollary of Lemma 11, we directly obtain a k-FT-SCC preserver with sub-
quadratic in n edges, since we know f(n, 0) = O(n). However to get even better bound we
use f(n, 1) = O(n) by Theorem 10. On substituting r = 1 and α = 1/(k + 1) in Lemma 11,
we obtain that a (k + 1)-FT-SCC preserver has at most Õ(k 2k n2−1/(k+1)) edges. Thus the
following theorem is immediate.

I Theorem 15. For every digraph G = (V,E) on n vertices and every k ≥ 1, there is a
polynomial time (randomized) algorithm that with probability at least 1− 1/n4 computes a
k-fault-tolerant SCC preserver of G with at most Õ(k 2k n2−1/k) edges.

4 Reachability Preservers

In this section we will focus on finding a sparse pairwise reachability preserver. Recall that,
for a directed graph G = (V,E) and a set P of vertex-pairs, a 1-fault tolerant reachability
subgraph of G is a subgraph H that preserves the reachability information between all pairs
of vertices in P under single edge failure. We denote such a subgraph by FTRS(P, G), or
simply FTRS(P) if the underlying graph G is clear from the context.

4.1 Upper Bound I
Let us start by showing an existential upper-bound on the number of edges present in an
optimum sized FTRS.

I Theorem 16. For any directed graph G = (V,E) with n vertices, m edges, and a set P of
vertex-pairs, there exists a FTRS(P, G) (or simply FTRS(P)) that contains O(n+ |P|

√
n)

edges.

As a corollary of the above theorem we get a FTRSof linear (in number of vertices) size
whenever number of pairs for which we have to preserve reachability is at most O(

√
n). Note,

for each of O(
√
n) pairs if we use Theorem 7 separately we get a FTRSof size O(n3/2).

Hence our result improves the size of a FTRSby a factor of
√
n. We devote this subsection

to prove the above theorem.
Let Hscc be an 1-fault tolerant SCC preserver of G as obtained by Theorem 10, and Hopt

be an optimum sized subgraph of G such that H := Hscc ∪Hopt is a FTRS(P).
For a pair p = (s, t) ∈ P let Hp denote an optimum (minimum) sized subgraph of H that

is a FTRS(p), i.e., after any single edge failure e, t is reachable from s in Hp − e if and
only if that is also the case in G− e. An optimum sized subgraph of H that is a FTRS(p),
may not be unique. However we arbitrarily choose one such subgraph, and throughout this
section refer to that as Hp. The following proposition is immediate from the definition of
optimum sized FTRS.

I Proposition 17. For any pair p = (s, t) ∈ P, Hp is union of two s− t paths intersecting
only at (s, t)-cut-edges and (s, t)-cut-vertices in H.
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It directly follows from the above proposition that, any minimal (s, t)-cut3 in Hp is of size at
most 2. The following property of any (simple) s− t path in Hp will be useful in studying
the structure of H (especially in proving Claim 21).

I Observation 18. For any pair p = (s, t) ∈ P consider a (simple) s− t path Q in Hp. Let
C be any minimal (s, t)-cut in Hp. Then Q takes exactly one edge from the set C.

Proof. The result trivially holds for a minimal (s, t)-cut of size one. Moreover, by minimality
of Hp, there cannot exists (s, t)-cut of size three or larger in Hp. So we are left to consider
minimal cuts of size two.

Consider a simple s− t path Q in Hp, and let C = (e, e′) be a minimal (s, t)-cut of size
two in Hp. Let Zp = (v0 = s, v1, . . . , v` = t) be the (s, t)-cut-vertices in Hp, in the order they
appear on Q. Let I ⊆ [1, `] be those indices for which (vi−1, vi) is a cut-edge in Hp, and
J be [1, `] \ I. So for each i ∈ J , there exists 2-edge-disjoint paths from vi−1 to vi, in Hp;
let these be respectively denoted by R0

i and R1
i . By definition of cut-vertices, it is easy to

observe that none of the internal vertices of R0
i and R1

i can lie in Zp, for i ∈ J .
Obtain Q̃ from Q by replacing Rzii with R1−zi

i , for zi ∈ {0, 1} and i ∈ J . So Q and Q̃,
both lie in Hp, and intersect only at (s, t)-cut-edges and cut-vertices. Now for the minimal
(s, t)-cut C = {e, e′}, Q will contain one of the cut-edges, say e, and Q̃ will contain the other
cut edge, i.e. e′. This shows that any simple s− t path in Hp contains exactly one of the
edges of a minimal (s, t)-cut of size two. J

For each pair p ∈ P we define critical-edge-set for p, denoted by Cp, as the set of all
edges e in H such that H − e is not a FTRS(p). Sometimes we will also use the notation Cp
to denote the underlying subgraph formed by edges present in Cp. Note, all the edges of
Hopt must be in ∪p∈PCp. Otherwise, if there exists an edge e ∈ Hopt that is not in any of
Cp’s then we can remove e from H while preserving 1-fault tolerant reachability for all pairs
p ∈ P , leading to a contradiction on the optimality of the size of Hopt. So we can deduce the
following observation.

I Observation 19. For any edge e ∈ H, either e ∈ Cp for some pair p ∈ P, or e ∈ Hscc.

Let davg be the average in-degree of H, i.e., davg = |E(H)|/n. Recall that we use E(H)
to denote the set of edges in the subgraph H. Now partition the set of vertices V into two
subsets:
1. The set of light vertices V` containing all the vertices whose in-degree in Hopt is (strictly)

less than davg/2; and
2. The set of heavy vertices Vh containing all the vertices whose in-degree in Hopt is at least

davg/2.
Let E` and Eh respectively be the set of incoming edges to the vertices in V` and Vh, in
graph Hopt. Clearly, |E`| < (davg2 )n = |E(H)|/2.

I Lemma 20. If davg > 12, then for each p ∈ P, |Eh ∩ Cp| ≤ 16|P|/davg.

We defer the proof of the above lemma to the end of this section. Now assuming the
above we show the desired bound on |E(H)|, as stated in Theorem 16. First of all, if
davg ≤ 12 then E(H) is of size O(n). So from now on we assume that davg > 12. Note that
|E(H)| = |E(Hopt)|+ |E(Hscc)|. By the result of the previous section (see Theorem 10) we
know that the graph Hscc has at most O(n) edges. Observe that,

3 A set of edges is said to be an minimal (s, t)-cut if and only if it is a valid (s, t)-cut and any of its
proper subset is not an (s, t)-cut.
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|E(Hopt)| = |E`|+ |Eh| ≤
|E(Hopt)|

2 + |Eh|

⇒|E(H)| ≤ 2(|Eh|+ |E(Hscc)|). (1)

We bound the size of Eh as follows,

|Eh| ≤
∑
p∈P
|Eh ∩ Cp| (since for all e ∈ Hopt, e ∈ Cp for some p ∈ P by Observation 19)

≤
∑
p∈P

16|P|
davg

(by Lemma 20)

= 16|P|2n
|E(H)| . (2)

By combining inequalities (1) and (2) we get that |E(H)| ≤ O(n+ |P|
√
n).

Now it only remains to prove Lemma 20. Before going into the proof we would first like
to make a few important observations regarding the structure of H, which will eventually
help us to bound its size. Consider a (simple) path Q from s to t where (s, t) = p ∈ P, such
that all the edges on Q are in Hp. Since Q is a simple path it gives a natural ordering among
the vertices present on it. Let us denote this ordering relationship by <Q (≤Q and >Q).

B Claim 21. Consider a pair p = (s, t) ∈ P, and let Q be a (simple) s− t path in Hp. For
an edge e = (u, v) ∈ Cp on Q, suppose there are two vertices u1, u2 <Q v, and let Q1 and Q2
be (any arbitrary) u1 − v and u2 − v path respectively, in H − {e}. Then Q1 and Q2 must
share an edge.

Proof. Since e ∈ Cp if we exclude e from H, the remaining subgraph H ′ = H − {e} will not
be a FTRS(p). Observe that e cannot be an (s, t)-cut-edge in H as it violates the existence
of paths Q1 and Q2 in H − {e}. So there must exist an edge f = (uf , vf ) on failure of which
there is an s− t path, in H −{f}, but there is no such path in H ′−{f} = H −{e, f}. Since
there is no s− t path in H − {e, f}, C = {e, f} must be an (s, t)-cut in H (and also in Hp).
Further, since e is not an (s, t)-cut-edge in H, C is a minimal (s, t)-cut in Hp. Let (A,B) be
a partition of V induced by the cut C in H such that s ∈ A and t ∈ B. As Q is a simple
s − t path in Hp, by Observation 18 it passes through cut C only once, thereby implying
u1, u2 ∈ A. Thus, the path Qi from ui to v must pass through an edge in C, for i = 1, 2. As
Q1 and Q2 lie in H − {e}, they both must pass through the edge f , thereby proving the
claim. C

Now using the above claim we prove the following.

B Claim 22. For any pair p = (s, t) ∈ P, let Q be a (simple) s− t path in Hp. For a vertex
v on Q, suppose there are two incoming edges h1 and h2 incident on v, which are not part of
Q. Further, for i = 1, 2, let pi = (si, ti) be a pair satisfying hi ∈ Cpi , and let Qi ∈ Hpi be an
si − ti path containing hi. If vi ( 6= v) is the last vertex in Qi[si, v] that also lies on Q, for
i = 1, 2, then we cannot simultaneously have v1 <Q v as well as v2 <Q v.

Proof. Let us assume on contrary that v1, v2 <Q v. Without loss of generality, we can assume
v1 ≤Q v2. Let f be an edge on whose failure, any s2 − t2 path must pass through the edge
h2. Observe h2 cannot be an (s2, t2) cut-edge, as Q[v2, v] is a v2 − v path avoiding h2, thus
C = {f, h2} is a minimal (s2, t2) cut in H. Note, f must be on Q[v2, v].
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By Claim 21, Q1[v1, v] and Q2[v2, v] must share an edge. Let e = (x, y) be the last such
shared edge. Now even if we exclude h2 from H we still get the following s2 − t2 path:
Q2[s2, y] ◦Q1[y, v] ◦Q2[v, t2] in H −C. Since, C = {f, h2} is an (s2, t2) cut, this contradicts
the assumption that v1, v2 <Q v. C

B Claim 23. For any pair p = (s, t) ∈ P, let Q be a (simple) s− t path in Hp. For a vertex
v on Q, suppose there are two incoming edges h1 and h2 incident on v, which are not part
of Q. Consider the sets Bhi := {q ∈ P|hi ∈ Cq}, for i ∈ {1, 2}. Further, for each i ∈ {1, 2},
suppose for every pair p′ = (s′, t′) ∈ Bhi , the following holds:
1. Neither there is an s′ − v path in Hp′ with hi as its last edge, that is internally vertex-

disjoint with Q,
2. Nor there exists a vertex, say vi <Q v, with a vi − v path in Hp′ with hi as its last edge

that is edge-disjoint with Q.
Then either h1 6∈ Hopt or h2 6∈ Hopt. (Recall, Hopt = H −Hscc.)

Proof. For i = 1, 2, consider a pair (si, ti) ∈ Bhi . Let Qi ∈ Hi be an si−ti path containing hi.
Let ui ∈ V − {v} be the last vertex in Qi[si, v] that also lies on Q. Due to the preconditions
mentioned in the statement of the claim, such a ui must exists, and is necessarily contained
in segment Q[v, t]. Observe Qi[ui, v] is internally vertex disjoint with Q. Next we show that
if u2 ≤Q u1, h2 6∈ Hopt.

Suppose u2 ≤Q u1. Let f be an edge on whose failure, any s2− t2 path must pass through
the edge h2. Observe h2 cannot be an (s2, t2) cut-edge, as Q[u2, u1] ◦Q1[u1, v] is a u2 − v
path avoiding h2, thus C = {f, h2} is a minimal (s2, t2) cut in H. Observation 18 implies
f /∈ Q2. Note, f must be either on Q[u2, u1] or on Q1[u1, v], thereby implying f /∈ Q[v, u2].
Thus u2 and v are strongly connected in H − {f} as the cycle Q2[u2, v] ◦Q[v, u2] is intact
H − {f}. Hence Hscc contains a u2 − v path even after the failure of f , and let R′ be
such a path. Thus even if we exclude h2 from Hopt we still get the following s2 − t2 path:
Q2[s2, u2] ◦R ◦Q2[v, t2] in H − {f}. So due to optimality of Hopt, the edge h2 cannot be in
Hopt (= H −Hscc). Similarly when u1 <Q u2, h1 6∈ Hopt, and this completes the proof. C

Now we are ready to prove Lemma 20.

Proof of Lemma 20. For the sake of contradiction let us assume that for some pair p =
(s, t) ∈ P, |Eh ∩ Cp| > 16|P|

davg
. Recall, by Proposition 17 Hp is union of two (simple) s − t

paths, say Q and Q̃, intersecting only at (s, t)-cut-edges in H. At least one of these two
paths, say Q, must contain at least 8|P|

davg
edges from |Eh ∩ Cp|. Now consider the following

vertex set

Qh := {v ∈ Vh| there exists an edge (u, v) ∈ Q that is also in Eh ∩ Cp}.

Clearly, |Qh| ≥ 8|P|
davg

. Let Qe denote the subset of edges in E(Hopt) that are incident on the
vertices in Qh and not part of the path Q. Next consider the following edge-set

A := {(u, v) ∈ Qe| for some (s′, t′) ∈ P there exists an s′ − v path in H
with (u, v) as its last edge, that is internally vertex-disjoint with Q}.

Observe, it follows from Proposition 17 that |A| ≤ 2|P|. Assuming davg > 12, a simple
counting argument shows that there exists a vertex v ∈ Qh such that number of edges from
Qe−A that are incident on v is at least 3. If not, then since each vertex in Qh is by definition
heavy, |A| ≥ |Qh|(davg2 − 2) ≥ 8|P|

3 assuming davg > 12, which leads to a contradiction.
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It implies that there must exist two vertices u1, u2 on Q where u1 <Q u2, and two edges
h1, h2 ∈ Qe − A (incident on v) such that there are u1 − v path, say Q1, with h1 as its
last edge and u2 − v path, say Q2, with h2 as its last edge in H, where both Q1, Q2 are
edge-disjoint with Q. Now either u1, u2 <Q v, or u1, u2 >Q v.

Since due to optimality of Hopt, h2 ∈ Cp′ for some p′ = (s′, t′) ∈ P, without loss of
generality we can further assume that the path Q2 is in the subgraph Hp′ . Now if u1, u2 <Q v,
by Claim 22 there must be an s′ − v path in H with h2 as its last edge that is internally
vertex-disjoint with Q[s, v]. Thus by the definition of set A, h2 ∈ A, leading to a contradiction.
Now consider the other alternative, i.e., when u1, u2 >Q v. In this case without loss of
generality we can assume that for i = 1, 2 there exists no vertex, say vi <Q v, with a vi − v
path in H with hi as its last edge, that is edge-disjoint with Q. Then by Claim 23 either
h1 6∈ Hopt or h2 6∈ Hopt, which again leads to a contradiction.

Hence we conclude that for all pairs p ∈ P, |Eh ∩ Cp| ≤ 16|P|
davg

for davg > 12. J

A Constructive Algorithm. Observe that the size of an minimal subgraph H which is an
FTRS(P, G), must have size at most O(n+ |P|

√
n). Now, a simple constructive algorithm

is as follows: We initialize H to G. Next for each pair (s, t) ∈ P for each e ∈ E(H) check
if the (s, t)-cut-edges in G and G− {e} are identical, if so, remove e from H. The process
terminates in polynomial time and results in a graph which is a minimal FTRS(P, G).

4.2 Upper Bound II
In this subsection, we present our second construction for pairwise reachability preservers.

I Theorem 24. For any directed graph G = (V,E) with n vertices, m edges, and a set P of
vertex-pairs, there exists a poly-time computable FTRS(P, G) containing at most O(n

√
|P|)

edges.

By Proposition 17, for any pair p = (s, t) ∈ P, FTRS(p) is union of two s − t paths
intersecting only at (s, t) cut-edges and cut-vertices. Let these paths be respectively denoted
by Qs,t and Q̃s,t.

Let C be the collection C =
⋃

(s,t)∈P
{
Qs,t, Q̃s,t

}
, and W be initialized to ∅. For each

vertex v, let freq(v, C) denote the total number of paths in C that contains v. Now we use
the following procedure:

1. While there is a vertex w with freq(w, C) >
√
|P|, we add w to W , and remove all those

paths from C that contains w.
2. Initialize H to union of subgraphs FTRS(w,G) and FTRS(w,GR), taken over all w ∈W .
3. Also add to H the union of edges lying in paths remaining in C.

The size of set W is at most 2
√
|P| since each time a vertex is added to W at least

√
|P|

paths are eliminated from C. By Theorem 7 we can bound the size of both FTRS(w,G) and
FTRS(w,GR) by O(n) for each w ∈ W . After step 2, since for each v ∈ V , freq(v, C) is
bounded by

√
|P|, the number of edges in H is at most O(n

√
|P|). The correctness follows

from the following claim.

B Claim 25. The subgraph H computed by above process is a FTRS(P, G).

Proof. Consider a pair (s, t) ∈ P and an edge failure e ∈ E. Observe that if e lies in both
Qs,t and Q̃s,t, then e must be an (s, t)-cut. In such a scenario there will be no path from
s to t in G − {e} as well as in H − {e}. So let us assume e does not lie in at least one of
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the paths, Qs,t or Q̃s,t. Without loss of generality, we assume Qs,t will remain intact in
G− {e}. We will show that there is an s− t path in H − {e} even when Qs,t /∈ H. Recall
that if Qs,t /∈ H, then Qs,t must contain a vertex from set W , let this vertex be w. Since
there is a path from s to t in G− {e} containing w, there must exists an s−w path, say R1,
in FTRS(V × {w}, G)− {e}, and a w − t path, say R2, in FTRS({w} × V,G)− {e}. The
concatenated path R1 ◦R2 is an s− t path avoiding e. Also R1 ◦R2 lies in H as we include
in H a FTRS({x} × V,G) as well as a FTRS(V × {x}, G), for each x ∈W . It thus follows
that H is a fault-tolerant reachability preserver for the pair (s, t). C

5 Lower Bounds for Pairwise Reachability Preserver under Dual
Failures

In this section, we provide several lower bound results. In our constructions, we will
employ the following lower bound for pairwise distance preservers that was established by
Coppersmith and Elkin in [16], and later reformulated in [1] using standard tricks in [10].

I Theorem 26 ([16, 10, 1]). For any integer d ≥ 2 there are infinitely many n ∈ N such
that for any p ∈ [nf(d), nf(d+1)], where f(d) = 2d2−2d−2

(d2+d−2) , there exists an n-node undirected
unweighted graph G = (V,E) and a pair-set P ⊆ V × V of size |P| = O(p), such that

For each pair (s, t) ∈ P there is a unique shortest path in G between s and t,
These paths are all edge-disjoint and have identical length (which we denote by L), and
The edge set of G is precisely the union of these paths and has size
Ω
(
n2d/(d2+1)p(d2−d)/(d2+1)).

Throughout this section, we will reserve f(d) to refer to the function 2(d2−d−1)
(d2+d−2) .

The construction of our lower-bound graph G = (VG, EG) is as follows. Let H =
(VH , EH), PH be an instance drawn from Theorem 26. Let L be the common distance
between all the pairs in PH , and K = Lr for some parameter r ≥ 1 to be fixed later on. For
each node u in H, add 2K copies of u to G, namely, u1, . . . , u2K . For each edge (u, v) in H
and i ≥ 2, add edges (ui, vi−1) and (vi, ui−1) to G.

Next, for each node v ∈ VH , add two paths vleft := (vleft,1, . . . , vleft,2K) and vright :=
(vright,1, . . . , vright,2K), each on a set of 2K new nodes to G. Also, add an edge from vleft,i
to vi, and vi to vright,i to G, for i ∈ [1, 2K].

Finally, for each (x, y) ∈ PH , create two new vertices sx,y and tx,y, and include (sx,y, tx,y)
in pair-set PG; add directed edges from sx,y to xleft,1, yright,1 and add directed edges from
xleft,2K , yright,2K to tx,y. This completes the description of G, and pair-set PG.

2K copies of H

Figure 1 Dual fault-tolerant reachability preserver: depiction of graph G and pair (sx,y, tx,y)∈PG.
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Observe that
1. |PG| = |PH |;
2. |VG| = Θ(|PH |+ Lr|VH |) = Θ(Lr|VH |), whenever |PH | ≤ O(Lr|VH |); and
3. |EG| = Θ(|PH |+ Lr|EH |) = Θ(Lr+1|PH |) (since |EH | = L|PH | by the description of H

given in Theorem 26).

We first analyze the size of EG. By Theorem 26, we have

L = |EH |
|PH |

= Θ(|VH |
2d
d2+1 |PH |

−(d+1)
d2+1 ). (3)

Let n := |VG| = Θ(|VH | · Lr) and m := |EG| = Θ(|PH | · Lr+1). On multiplying L
2dr
d2+1 on

both sides of Equation 3, we obtain

L
1+ 2dr

d2+1 = Θ
(
|VG|

2d
d2+1 |PG|

−(d+1)
d2+1

)
or, Lr+1 = Θ

(
|VG|

2d(r+1)
d2+2rd+1 |PG|

−(d+1)(r+1)
d2+2rd+1

)
Thus, |EG| = Θ(|PG|Lr+1) = Θ

(
|VG|

2d(r+1)
d2+2rd+1 |PG|

d2+dr−(d+r)
d2+2rd+1

)
(4)

The size of VH is given by |VH | = Θ
(
|VG|
Lr

)
= Θ

(
n

d2+1
d2+2rd+1 |PG|

(d+1)r
d2+2rd+1

)
.

So, the condition |VH |f(d) ≤ |PH | ≤ |VH |f(d+1) translates to(
n

d2+1
d2+2rd+1 |PG|

(d+1)r
d2+2rd+1

)f(d)
≤ |PG| ≤

(
n

d2+1
d2+2rd+1 |PG|

(d+1)r
d2+2rd+1

)f(d+1)

which can be re-stated as: n
(d2+1)f(d)

d2+2rd+1−(d+1)rf(d) ≤ |PG| ≤ n
(d2+1)f(d+1)

d2+2rd+1−(d+1)rf(d+1)

and on simplification is equivalent to

n
2(d2−d−1)

(d2+d+2r−2) ≤ |PG| ≤ n
2(d2+d−1)

(d2+3d+2r) . (5)

We now prove that a dual fault-tolerant reachability preserver of G requires Ω(|EG|)
edges. Consider pair (sx,y, tx,y) in set PG, for a pair (x, y) ∈ PH . Let π(x, y,H) = (x =
w0, w1, . . . , wL = y) be the shortest path between x and y in the undirected graph H.

By construction of G and uniqueness of π(x, y,H), it follows that for any i ∈ [1,K],
there exists a unique path from xi+L to yi in G. Indeed π(xi+L, yi, G) = (w0

i+L, w
1
i+L−1,

w2
i+L−2, . . . , w

L
i ), is the shortest and the only path starting from xi+L = w0

i+L and terminating
to yi = wLi in G. Moreover, there is no path from xi−α+L that terminates to yi+β for non-
negative integers α, β if at least one of them is greater than 0.

On failures of edges (xleft,i+L, xleft,i+L+1) and (yright,i−1, yright,i), the concatenated
path

(sx,y, xleft,1, . . . , xleft,i+L) ◦ π(xi+L, yi, G) ◦ (yright,i, . . . , yright,2L, tx,y)

is the only path from sx,y to tx,y in the surviving part of G.
Thus, a dual fault-tolerant reachability preserver of G must contain π(xi+L, yi, G), for

each i ∈ [1,K] and (x, y) ∈ PH . From the fact that the shortest path between pairs in PH
are all edge-disjoint in H, it directly follows, a dual fault-tolerant reachability preserver of
G must contain Ω(KL|PH |) = Ω(K|EH |) = Ω(|EG|) edges. The above analysis along with
Eq. 4 and Eq. 5 proves our main result, Theorem 27, on dual failure.
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I Theorem 27. For any integer d ≥ 2, any real r ≥ 1, any real c ∈ (0, 1), there are
infinitely many n ∈ N such that for any p ∈ [nf(d,r),min{cn, nf(d+1,r)}], where f(d, r) =

2d2−2d−2
(d2+d+2r−2) , there exists an n-node directed graph G = (V,E) and pair-set P ⊆ V × V of
size |P| = O(p), such that any dual fault-tolerant reachability preserver of G for P, must
have Ω

(
n

2d(r+1)
d2+2rd+1 |P|

(d−1)(d+r)
d2+2rd+1

)
edges.

Note, in the above theorem we need p ≤ cn for c < 1, to ensure that |PH | ≤ O(Lr|VH |) (See
the construction of G from H). Some instances of the above theorem are as below.

Ω(n8/9|P|1/3) edges for n1/3 ≤ |P| ≤ n5/6 (when d = 2, r = 1).
Ω(n12/13|P|4/13) edges for n1/4 ≤ |P| ≤ n5/7 (when d = 2, r = 2).

Non-existence of Linear-sized Dual Fault-Tolerant Preservers. For d = 2, the lower
bound turns to be Ω

(
n

4r+4
4r+5 |P|

r+2
4r+5

)
on the size of preserver, and bound on P becomes

[n
1
r+2 , n

5
r+5 ]. Let ε = 2

(r+2) , so ε 6 2/3 for r > 1. Now for |P| = nε, observe |P| = n
2
r+2

which lies in range [n
1
r+2 , n

5
r+5 ], the lower bound on the size of preserver becomes Ω(n1+ 1

4r+5 )
which is Ω(n1+ε/8). Thus the following non-linearity result is immediate.

I Theorem 28. For every p = nε, for ε ≤ 2/3, there is an infinite family of n-node directed
graphs and pair-sets P of size |P| = p, for which every dual fault-tolerant reachability
preserver of G for P requires at least Ω(n|P| 18 ) edges.

Recall, Theorem 7 implies that for any P of size p there exists a dual fault-tolerant reachability
preserver with at most O(np) edges. Our result proves a wide separation in the size pairwise
1-fault-tolerant and 2-fault-tolerant reachability preservers.

6 Application of FT-SCC Preserver in Connectivity Certificates

In this section we present an application of k-FT-SCC preserver for vertex and edge connec-
tivity certificates for digraphs.

I Definition 29 (k-connectivity certificate). For a graph G = (V,E), a subgraph H = (V,EH)
of G is said to be a k-Edge (Vertex) Connectivity Certificate of G if for each pair of vertices
x, y ∈ V , if there are are at least k-edge (vertex) disjoint paths from x to y, and vice versa
in G, then the same holds true for graph H as well.

Georgiadis et al. [22, 23] showed that for any strongly-connected graph we can compute
a sparse certificate for 2-vertex connectivity and 2-edge-connectivity comprising of just O(n)
edges. However, little is known about extremal size bound of k-connectivity certificates in
digraphs, for a general k.

We below present a generic reduction from (k − 1)-FT-SCC preserver to k-connectivity
in digraphs.

I Lemma 30. Let H be a (k− 1)-FT-SCC preserver of a digraph G, for some integer k ≥ 1.
Then, H is a k-Edge (Vertex) Connectivity Certificate for G.4

4 Note that reverse is not always true, i.e. a k-edge(vertex) connectivity certificate is not a (k−1)-FT-SCC
preserver.
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Proof. Let H be a (k− 1)-FT-SCC preserver of G. Consider a pair of vertices x, y ∈ V , that
are at least k-edge (vertex) connected in G.

By Menger’s theorem, it follows that for x and y to be k-edge (vertex) connected in G it
holds that on removal of any set F ⊆ E of k − 1 edges (resp. F ⊆ V of k − 1 vertices) from
G, the surviving graph G− F still contains a path from x to y, and a path from y to x, i.e.
x and y are strongly connected in G− F . Now by definition of (k − 1)-FT-SCC preserver,
we have that on removal of any set F of k − 1 edges or vertices from H, x and y must be
strongly connected in H − F . So another application of Menger’s theorem, proves that x
and y to be k-edge (vertex) connected in H. J

Thus, Lemma 30 together with the FT-SCC preserver construction presented in Theo-
rem 15 provides us a k-connectivity certificate of size sub-quadratic in n, for any k ≥ 3, as
follows.

I Theorem 31. There is a polynomial time (randomized) algorithm that given any directed
graph G = (V,E) on n vertices and k ≥ 2, computes a k-Edge (Vertex) Connectivity
Certificate of G containing at most Õ(k 2k n2− 1

k−1 ) edges with probability at least 1− 1/n4.

7 Conclusion

In this paper we discuss the problem of sparsifying a directed graph while preserving its strong-
connectivity and pairwise reachability structure under edge failures. For SCC preservers,
we provide a construction of a truly sub-quadratic (in number of vertices) sized subgraph
that preserves SCC components under constantly many edge failures. More specifically, we
show an upper bound of Õ(k2kn2−1/k) on the size for any n-node graph with k faulty edges,
whereas we show a lower bound of Ω(2kn). We would like to pose the problem of closing this
gap between upper and lower bound as an open problem.

In case of reachability preserver, we show an upper bound of O
(
n+min(|P|

√
n, n

√
|P|)

)
for any n-node graph and a vertex-pair set P with one faulty edge. This implies linear sized
preserver for O(

√
n) many vertex-pairs, which is also known to be the limit for standard

non-fault tolerant static setting. Unfortunately we do not know how to generalize our single
fault-tolerant pairwise reachability preserver construction to dual fault-tolerant setting. On
the contrary, we show a striking difference between single and dual fault tolerant setting by
proving a super linear lower bound on dual fault-tolerant reachability preserver for Ω(nε) (for
some ε > 0) vertex-pairs. One extremely interesting open problem is to get any non-trivial
(better than O(n|P|)) upper bound on size of a multiple fault-tolerant pairwise reachability
preserver. Other future work lies in improving our size bounds, extending our result to
bi-connectivity and other pairwise structures.
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1 Introduction

Integer programming is a fundamental problem of importance in both theory and practice.
It is well-known that integer programming in fixed dimension, i.e., with a bounded number
of variables, is polynomially solvable since the work of Lenstra and Kannan [21, 26] from
the 1980’s. Much subsequent research has focused on studying extensions and speed-ups of
the results of Kannan and Lenstra. However, on the side of integer programs with many
variables, research has been sparser. Until relatively recently, the most prominent tractable
case is that of totally unimodular constraint matrices, i.e., matrices with all subdeterminants
equal to 0 and ±1; in this case, all vertices of the feasible region are integral and algorithms
for linear programming can be applied.

Besides total unimodularity, many recent results [1, 2, 5, 6, 9, 10, 14, 15] on algorithms
for integer programming exploited various structural properties of the constraint matrix
yielding efficient algorithms for n-fold IPs, tree-fold IPs, multi-stage stochastic IPs, and
IPs with bounded fracture number and bounded tree-width. This research culminated with
an algorithm by Levin, Onn and the third author [25] who constructed a fixed parameter
algorithm for integer programs with bounded (primal or dual) tree-depth and bounded
coefficients. We remark that it is possible to show that the problem is W[1]-hard when
parameterized by tree-depth only [10,24] and NP-hard even for instances with coefficients
and tree-width (even path-width) bounded by two [7, Lemma 102] (also cf. [10, 25]).

The tree-depth of a constraint matrix depends on the position of its non-zero entries
and thus does not properly reflect the true geometric structure of the integer program. In
particular, a matrix with a large (dual) tree-depth may be row-equivalent to another matrix
with small (dual) tree-depth that is susceptible to efficient algorithms. We will overcome this
drawback with tools from matroid theory. To do so, we consider the branch-depth of the
matroid defined by the columns of the constraint matrix and refer to this parameter as to
the branch-depth of the matrix. Since this matroid is invariant under row operations, the
branch-depth of a matrix is row-invariant, i.e., preserved by row operations, and captures
the true simplicity of the geometric structure of the problem, which can be obfuscated in the
case of tree-depth by the choice of the basis.

Our main results can be summarized as follows (we state the results exactly in the next
subsection).

The branch-depth of a matrix A is equal to the minimum dual tree-depth of a matrix
row-equivalent to A (Theorem 1).
There exists a fixed parameter algorithm for computing a matrix with minimum tree-depth
that is row-equivalent to an input matrix (Theorem 32).

Our second result is based on a fixed parameter algorithm for computing the branch-depth
of a vector matroid represented over a finite field (Theorem 28). Computing decompositions
of such matroids is of interest in relation to model checking, in particular monadic second
order model checking is fixed parameter tractable for matroids with bounded branch-width
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that are representable over finite fields [16–18], also see [11]. The existing fixed parameter
algorithm [19, 20] for computing the branch-width of such matroids relies on the upper
bound on the size of excluded minors for branch-width by Geelen et al. [12] and needs to
precompute the (likely very large) list of excluded minors. We could follow a similar path in
the setting of branch-depth, however, we decided to design a completely explicit algorithm.
While this turned out surprisingly challenging, the hidden constants are significantly better,
and we hope that our techniques can be extended to the even more challenging setting of
branch-width.

We remark that our first result in conjunction with existing results on approximating
branch-depth of a matroid (Theorem 6) yields a fixed parameter algorithm for integer
programs with bounded branch-depth (Corollary 4). Since the branch-depth of the constraint
matrix is always at most its dual tree-depth (Proposition 12), our algorithm extends the
algorithm presented in [25] for integer programs with small dual tree-depth. Since the
algorithm from our second result (Theorem 32) preserves that the entry complexity is
bounded (cf. Theorem 3), it can also be used a preprocessing step for the algorithm presented
in [25], which gives another proof of Corollary 4. Our results on fixed parameter tractability
of integer programming cannot be extended to constraint matrices with bounded branch-
width (see the discussion at the end of this section); however, Cunningham and Geelen [3]
(also cf. [27] for detailed proofs and implementation) provided a slicewise pseudopolynomial
algorithm for IPs with non-negative matrices with bounded branch-width, i.e., the problem
belongs to the complexity class XP for unary encoding of input.

1.1 Exact statement of our results
To state our results precisely, we need to fix some notation. We consider the general integer
programming (IP) problem in the standard form:

min {f(x) | Ax = b , l ≤ x ≤ u , x ∈ Zn} , (1)

where A ∈ Zm×n is an integer m×n matrix, b ∈ Zm, l, u ∈ (Z∪{±∞})n, and f : Zn → Z is
a separable convex function, i.e., f(x) =

∑n
i=1 fi(xi) where fi : Z→ Z are convex functions.

In particular, each fi(xi) can be a linear function of xi. We remark that integer programming
is well-known to be NP-hard even when f(x) ≡ 0, or when the largest coefficient ∆ := ‖A‖∞
is 1 (by a reduction from the Vertex Cover problem), or when m = 1 (by a reduction from
the Subset Sum problem). We refer the reader to Section 2 for the definitions of the primal
and dual tree-depth of a matrix A and the branch-depth of A.

We now demonstrate the drawback of the parameterization of integer programs by
tree-depth that we have mentioned earlier. Consider the following matrices A and A′.

A =



1 1 · · · 1 1
2 1 · · · 1 1

1 2
. . . 1 1

...
. . . . . . . . . 1

1 1
. . . 2 1

1 1 · · · 1 2


and A′ =



1 1 · · · 1 1
1 0 · · · 0 0

0 1
. . . 0 0

...
. . . . . . . . . 0

0 0
. . . 1 0

0 0 · · · 0 1


.

The dual tree-depth of the matrix A is equal to the number of its rows while the dual
tree-depth of A′ is two (its dual graph is a star); we remark that the branch-depth of both
matrices A and A′ is also equal to two. Since the matrices A and A′ are row-equivalent,
the integer programs determined by them ought to be of the same computational difficulty.
More precisely, consider the following matrix B:
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B =



1 0 0 · · · 0 0
−1 1 0 · · · 0 0

−1 0 1
. . . 0 0

−1
...

. . . . . . . . . 0

−1 0 0
. . . 1 0

−1 0 0 · · · 0 1


.

Since A′ = BA, it is possible to replace an integer program of the form (1) with an integer
program with a constraint matrix A′ = BA, right hand side b′ = Bb, and bounds l′ = l and
u′ = u, and attempt to solve this new instance of IP which has dual tree-depth two.

In Section 4, we first observe that the branch-depth of a matrix A is at most its dual
tree-depth, and prove that the branch-depth of a matrix A is actually equal to the minimum
dual tree-depth of a matrix A that is row-equivalent to A:

I Theorem 1. Let A be a matrix over a field F. The branch-depth of A is equal to the
minimum dual tree-depth of a matrix A′ that is row-equivalent to A, i.e., that can be obtained
from A by row operations.

The tools developed to prove Theorem 1 together with existing results on matroid branch-
depth yield an algorithm that given a matrix A of small branch-depth yields a matrix B that
transforms the matrix A to a row-equivalent matrix with small dual tree-depth. Recall that
the entry complexity of a matrix A, denoted by ec(A), is the maximum length of the binary
encoding of an entry Ai,j (the length of binary encoding a rational number r = p/q with p

and q being coprime is dlog2 pe+ dlog2 qe+ 1).

I Theorem 2. There exist a computable function g : N→ N and an FPT-parameter algorithm
parameterized by d with running time polynomial in ec(A), n and m that for an input m× n

integer matrix A and an integer d

1. outputs that the branch-depth of A is larger than d, or
2. outputs an invertible rational matrix B ∈ Qm×m such that the dual tree-depth of BA is

at most 4d and the entry complexity of BA is O(g(d) ec(A)).
However, we go further and design a fixed parameter algorithm for computing the branch-
depth of a vector matroid (Theorem 32) and use this algorithm to prove the following
strengthening of Theorem 2.

I Theorem 3. There exist a computable function g′ : N2 → N and an FPT-parameter
algorithm parameterized by d with running time polynomial in ec(A), n and m that for an
input m× n integer matrix A and an integer d

1. outputs that the branch-depth of A is larger than d, or
2. outputs an invertible rational matrix B ∈ Qm×m such that the dual tree-depth of BA is

equal to the branch-depth of A and the entry complexity of BA is at most g′(d, ec(A)).
As explained above, Theorems 2 and 3 allow us to perform row operations to obtain an
equivalent integer program with small dual tree-depth from an integer program with small
branch-depth. In particular, if the instance of an integer program described as in (1) has
bounded branch-depth, then Theorem 3 yields a matrix B such that the instance with
A′ = BA, b′ = Bb, l′ = l and u′ = u has dual tree-depth equal to branch-depth. To apply
the algorithm from [25], we need to transform the matrix A′ into an integer matrix. We
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do so by multiplying each row by the least common multiple of the denominators of the
fractions in this row; note that the value of this least common multiple is at most 22ec(A′)

since there can be at most 2ec(A′) different denominators appearing in the row. In particular,
the entry complexity of the resulting integer matrix is bounded by a function of the entry
complexity of A′. Also note that since the parameter dependence in the algorithm of [7] is
roughly ec(A)tdD(A)2·2tdD(A) , improving the exponent by replacing A with a row-equivalent
matrix with smaller dual tree-depth likely outweighs the increase in the coefficients, which
enters as the base of the exponent. Hence, we obtain the following corollary of the theorem.

I Corollary 4. There exists a computable function g′′ : N2 → N such that integer programs
with n variables and a constraint matrix A can be solved in time polynomial in g′′(bd(A), ec(A))
and n, where bd(A) and ec(A) are the branch-depth and the entry complexity of the matrix
A, i.e., integer programming is fixed parameter tractable when parameterized by branch-depth
and entry complexity.

We note that the results of [7,25] give a strongly fixed-parameter algorithm (i.e., an algorithm
whose number of arithmetic operations does not depend on the size of the numbers involved)
for integer programming in the regimes discussed above if the objective function f is a
linear function (i.e., f(x) = wx for some w ∈ Zn). Hence, the corollary above also gives a
strongly-polynomial algorithm when f is a linear function.

We also remark that existing hardness results imply that the parameterization both by
branch-depth and entry complexity in Corollary 4 is necessary unless FPT =W[1], i.e., it
is not sufficient to parameterize instances only by one of the two parameters. Likewise, it
is not possible to replace the branch-depth parameter by the more permissive notion of
branch-width [3]. In fact, even solving integer programs with constant dual tree-width and
constant entry complexity is NP-hard [25] (the dual tree-width of A is an upper bound on the
branch-width of the vector matroid formed by columns of A). Let us also mention that Fomin
et al. [8] proved lower bounds on the complexity of integer programming parameterized by
branch-width under the exponential-time hypothesis.

The algorithm given in Corollary 4 is parameterized by the branch-depth of the vector
matroid formed by the columns of the matrix A, i.e., it corresponds to the dual tree-depth of
A. It is natural to ask whether the tractability also holds in the setting dual to this one, i.e.,
when the branch-depth of the vector matroid formed by the rows of the matrix A is bounded.
This hope is dismissed in Proposition 14.

2 Notation

In this section, we fix the notation used throughout the paper and present the notions of
tree-depth of a graph and of branch-depth of a matroid, including the results concerning
them that we will need further. To avoid our presentation becoming cumbersome through
adding or subtracting one at various places, we define the depth of a rooted tree to be the
maximum number of edges on a path from the root to a leaf, and define the height of a
rooted tree to be the maximum number of vertices on a path from the root to a leaf, i.e., the
height of a rooted tree is always equal to its depth increased by one. The depth of a vertex
in a rooted tree is the number of edges on the path from the root to that particular vertex.
The height of a rooted forest F is the maximum height of a rooted tree in F . The closure
cl(F ) of a rooted forest is the graph obtained by adding edges from each vertex to all its
descendants. Finally, the tree-depth td(G) of a graph G is the minimum height of a rooted
forest F such that the closure cl(F ) of the rooted forest F contains G as a subgraph. It can
be shown that the path-width of a graph G is at most its tree-depth td(G) decreased by
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one, and in particular, the tree-width of G is at most its tree-depth decreased by one (in
this extended abstract, we do not give the definitions of path-width and tree-width here due
to space limitations). We would like to note that the tree-depth as used in [23] is equal to
the minimum depth of a rooted tree F such that G ⊆ cl(F ), however, we here follow the
definition of tree-depth that is standard; still, we wish to highlight this subtle difference
since [23] is one of our main references.

The primal graph of an m × n matrix A is the graph GP (A) with vertices {1, . . . , n},
i.e., its vertices correspond to the columns of A, where vertices i and j are connected if A

contains a row whose i-th and j-th entries are non-zero. The primal tree-depth tdP (A) of a
matrix A is the tree-depth of its primal graph. Analogously, the dual graph of A is the graph
GD(A) with vertices {1, . . . , m}, i.e., its vertices correspond to the rows of A, where vertices
i and j are connected if A contains a column whose i-th and j-th entries are non-zero, i.e.,
the dual graph GD(A) is isomorphic to the primal graph of the matrix AT . Finally, the dual
tree-depth of A, which is denoted by tdD(A), is the tree-depth of the dual graph tD(A).

We next introduce the notion of branch-depth of a matroid. To keep our presentation
self-contained, we start by recalling the definition of a matroid. A matroid M is a pair (X, I),
where I is a non-empty hereditary collection of subsets of X that satisfies the augmentation
axiom. The collection I is hereditary if for every X ′ ∈ I, I contains all subsets of X ′. The
augmentation axiom asserts that for all X ′ ∈ I and X ′′ ∈ I with |X ′| < |X ′′|, there exists
an element x ∈ X ′′ \X ′ such that X ′ ∪ {x} ∈ I. The sets contained in I are referred to
as independent. The rank r(X ′) of a set X ′ ⊆ X is the size of the maximum independent
subset of X ′; the rank r(M) of a matroid M = (X, I) is the rank of X and an independent
set of size r(M) is a basis of M . A circuit is a set X ′ ⊆ X such that X ′ is not independent
but every proper subset of X ′ is. Two elements of x and x′ are said to be parallel if
r({x}) = r({x′}) = r({x, x′}) = 1, and an element x of M is a loop if r({x}) = 0.

Two particular examples of matroids are graphic matroids and vector matroids. If G

is a graph, then the pair (E(G), I) where I contains all acyclic subsets of edges of G is a
matroid and is denoted by M(G); matroids of this kind are called graphic matroids. If X is a
set of vectors of a vector space and I contains all subsets of X that are linearly independent,
then the pair (X, I) is a matroid; matroids of this kind are vector matroids. In the setting of
vector matroids, the rank of X ′ ⊆ X is the dimension of the linear hull of X ′. If (X, I) is a
vector matroid, we write L (X ′) for the linear hull of the vectors contained in X ′ ⊆ X and
abuse the notation by writing dim X ′ for dimL (X ′).

In what follows, we will need a notion of a quotient of a vector space, which we now
recall. If A is a vector space and K a subspace of A, the quotient space A/K is a vector
space of dimension dim A− dim K obtained from A by considering cosets of A given by K

and inheriting addition and scalar multiplication from A; see e.g. [13] for further details if
needed. One can show show for every subspace K of A, there exists a subspace B of A with
dimension dim A− dim K such that each coset contains a single vector from B, i.e., every
vector w of A can be uniquely expressed as the sum of a vector wB of B and a vector wK of
K. We call the vector wB to be the quotient of w by K. Note that the quotient of a vector
is not uniquely defined by K, however, it becomes uniquely defined when the subspace B

is fixed.
A depth-decomposition of a matroid M = (X, I) is a pair (T, f), where T is a rooted tree

and f is a mapping from X to the leaves of T such that the number of edges of T is the
rank of M and the following holds for every subset X ′ ⊆ X: the rank of X ′ is at most the
number of edges contained in the paths from the root to the vertices f(x), x ∈ X ′. If the
matroid M contains two parallel elements x and x′, we will always assume that f(x) = f(x′).
The branch-depth bd(M) of a matroid M is the smallest depth of a tree T that forms a
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depth-decomposition of M . For example, if M = (X, I) is a matroid of rank r, T is a path
with r edges rooted at one of its end vertices, and f is a mapping such that f(x) is equal to
the non-root end vertex of T for all x ∈ X, then the pair (T, f) is a depth-decomposition of
M . In particular, the branch-depth of any matroid M is well-defined and is at most the rank
of M . We remark that the notion of branch-depth of a matroid given here is the one defined
in [22,23]; another matroid parameter, which is also called branch-depth but is different from
the one that we use here, is defined in [4]. Finally, the branch-depth bd(A) of a matrix A is
the branch-depth of the vector matroid formed by the columns of A. Since the vector matroid
formed by the columns of A and the vector matroid formed by the columns of any matrix
row-equivalent to A are the same, the branch-depth of A is invariant under row operations.

An extended depth-decomposition of a vector matroid M = (X, I) is a triple (T, f, g) such
that (T, f) is a depth-decomposition of M and g is a bijective mapping from the non-root
vertices of T to a basis of the linear hull of X that satisfies that every element x ∈ X is
contained in the linear hull of the g-image of the non-root vertices on the path from f(x) to
the root of T . We next state and prove a simple proposition on the way that the vectors
forming M are expressed as linear combinations of the vectors of the base formed by the
g-image.

I Proposition 5. Let (T, f, g) be an extended depth-decomposition of a vector matroid M .
Let X ′ be a subset of elements of M and let X ′′ be an independent subset of X ′ with r(X ′)
elements. Then for every vector x′ ∈ X ′, there is a vector x′′ ∈ X ′′ such that x′ is contained
in the linear hull of the g-images of the vertices on the path from f(x′′) to the root.

If (T, f, g) is an extended depth-decomposition of a matroid M and all g-images are elements
of the matroid M , then we say that the extended depth-decomposition is principal. Kardoš
et al. [23, Corollary 3.17] designed an algorithm that outputs an approximation of an optimal
depth-decomposition; we state the result here for the case of vector matroids.

I Theorem 6. There exists a polynomial-time algorithm that given a vector matroid M and
an integer d, either outputs that the branch-depth of M is larger than d or outputs a principal
extended depth-decomposition of M of depth at most 4d.

If (T, f, g) is an extended depth-decomposition and u is a vertex of T , then Ku is the linear
hull of the g-images of the vertices on the path from u to the root of T ; in particular, if u

is the root, then Ku contains the zero vector only. It will always be clear from the context
for which extended depth-decomposition of M the spaces Ku are defined since the vertex u

determines which rooted tree T is considered.
A branch of a rooted tree T is a subtree S rooted at a vertex u of T , with u having at

least two children, such that S contains exactly u, one child u′ of u, and all descendants
of u′. In particular, a rooted tree has a branch if and only if it has a vertex with at least
two children. A branch S is primary if every ancestor of the root of S has exactly one child.
Every rooted tree T that is not a rooted path has at least two primary branches and all
primary branches are rooted at the same vertex. We write Ŝ for the set of elements of the
matroid M mapped by f to the leaves of S and ‖S‖ for the number of edges of S. Let S be
a branch of T and S1, . . . , Sk be the other branches with the same root. The branch S is at
capacity if

r
(

X \
(

Ŝ1 ∪ · · · ∪ Ŝk

))
= r(M)− ‖S1‖ − ‖S2‖ − · · · − ‖Sk‖,

where X is the set of all elements of the matroid M . Note that if S is primary, then the left
side of the equality is r(Ŝ) and the right side is h + ‖S‖ in this case, where h is the depth
of the root of S In particular, a primary branch S is at capacity if and only if the rank of
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root
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u
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Figure 1 The trees T and T ′ from the statement of Lemma 8.

Ŝ is equal to the sum of ‖S‖, i.e., if and only if the rank inequality from the definition of
a depth-decomposition holds with equality for the set Ŝ. Finally, a branch S rooted at a
vertex u is solid if the matroid (M/Ku)

[
Ŝ
]
is connected.

3 Optimal extended depth-decompositions

The goal of this section is to show that every vector matroid has an extended depth-
decomposition with depth equal to its branch-depth. To do so, we start with noting that
branches rooted at the root of the decomposition tree are always at capacity; the proof is
left due to space limitations.

I Lemma 7. Let (T, f) be a depth-decomposition of a vector matroid M . If T has a branch
S rooted at the root of T , then S is at capacity.

The following lemma is a core of an argument that every matroid has a depth-decompo-
sition of optimal depth such that each primary branch is at capacity. See Figure 1 for the
illustration of the operation described in the statement of the lemma.

I Lemma 8. Let (T, f) be a depth-decomposition of a vector matroid M . Assume that T

contains a primary branch S that is not at capacity. Let u be the root of S, and let T ′ be the
rooted tree obtained from T by changing the root of S to be the parent of u. Then, (T ′, f) is
a depth-decomposition of M .

Proof. Let X be all elements of M and fix a subset X ′ of X. We need to show that dim X ′

is at most the number e0 of edges on the paths in T ′ from the vertices in the f -image of X ′ to
the root. If X ′ contains an element of X \ Ŝ, then the number of such edges is the same in the
trees T and T ′ and the inequality follows from the fact that (T, f) is a depth-decomposition
of M . Hence, we will assume that X ′ is a subset of Ŝ. Observe that collectively the primary
branches of T different from S contain r− h−‖S‖ edges, where h is the depth of the root of
S. We derive using the fact that (T, f) is a depth-decomposition the following:

e0 + 1 + (r − h− ‖S‖) ≥ dim X ′ ∪ (X \ Ŝ)

= dim X ′ + dim X \ Ŝ − dimL (X ′) ∩ L
(

X \ Ŝ
)

≥ dim X ′ + dim X \ Ŝ − dimL
(

Ŝ
)
∩ L

(
X \ Ŝ

)
= dim X ′ + dim X \ Ŝ − (dim Ŝ + dim X \ Ŝ − dim X)

= dim X ′ − dim Ŝ + r.
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This implies that dim X ′ is at most

e0 + dim Ŝ + 1− h− ‖S‖ ≤ e0,

where the inequality follows using that S is not at capacity, i.e., dim Ŝ < h + ‖S‖. Hence,
(T ′, f) is a depth-decomposition of M . J

We can obtain the following by iteratively applying Lemma 8.

I Lemma 9. Let (T, f) be a depth-decomposition of a vector matroid M = (X, I) of depth d.
There exists a depth-decomposition of M of depth at most d such that every primary branch
is at capacity.

The following lemma describes the way how the structure of the vector matroids is
captured by depth-decompositions such that each primary branch is at capacity.

I Lemma 10. Let (T, f) be a depth-decomposition of a vector matroid M = (X, I) such
that T is not a rooted path and each primary branch of T is at capacity. Let S1, . . . , Sk be
the primary branches of T , and let A1, . . . , Ak be the linear hulls of Ŝ1, . . . , Ŝk, respectively.
Further, let h be the depth of the common root of S1, . . . , Sk in T . There exists a subspace
K of dimension h such that Ai ∩Aj = K for all 1 ≤ i < j ≤ k.

We are now ready to prove the main theorem of this section.

I Theorem 11. Let (T, f) be a depth-decomposition of a vector matroid M = (X, I) of depth
d. There exists an extended depth-decomposition of M of depth at most d.

Proof. The proof proceeds by induction on the rank of M . By Lemma 9, we can assume
that all primary branches of T are at capacity. If T is a rooted path, we assign elements of a
basis of L (X) to the non-root vertices of T arbitrarily, i.e., we choose g to be any bijection
to a basis of L (X), which yields an extended depth-decomposition (T, f, g) of M . Note that
if the rank of M is one, then T is the one-edge rooted path, i.e., this case covers the base of
the induction in particular.

We next assume that T is not a rooted path for the rest of the proof. Let S1, . . . , Sk be
the primary branches of T , and let h be the depth of the common root of S1, . . . , Sk. By
Lemma 10, there exists a subspace K of dimension h such that the intersection of linear
hulls of Ŝi and Ŝj is K for all 1 ≤ i < j ≤ k; let b1, . . . , bh be an arbitrary basis of K.

We define Mi, i = 1, . . . , k, to be the matroid such that the elements of Mi are Ŝi and
X ′ ⊆ Ŝi is independent if and only if the elements X ′ ∪ {b1, . . . , bh} are linearly independent.
In particular, the rank of X ′ ⊆ Ŝi in Mi is equal to dim X ′ ∪K − h. The matroid Mi can
be viewed as obtained by taking the vector matroid with the elements Ŝi ∪ {b1, . . . , bh} and
contracting the elements b1, . . . , bh. In particular, Mi is a vector matroid, and the vector
representation of Mi can be obtained from Ŝi by taking quotients by K. Note that the rank
of Mi is dim Ŝi ∪K − h, i.e., its rank is smaller than the rank of M and we will be able to
eventually apply induction to it.

Let fi be the restriction of f to Ŝi. We claim that (Si, fi) is a depth-decomposition of
Mi. Let X ′ be a subset of Ŝi, and let ei be the number of edges contained in the union of
paths from the elements f(x), x ∈ X ′, to the root of Si. By the definition of Mi, the rank of
X ′ in Mi is equal to dim X ′ ∪K − h. Choose an arbitrary j 6= i, 1 ≤ j ≤ k. Since (T, f) is a
depth-decomposition of M , the intersection of linear hulls of Ŝi and Ŝj is K, and the branch
Sj is at capacity, i.e., dim Ŝj = ‖Sj‖+ h, we obtain that the rank of X ′ in Mi is equal to
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dim X ′ ∪K − h = dim X ′ ∪ Ŝj − dim Ŝj

≤ ei + ‖Sj‖+ h− dim Ŝj = ei.

Hence, (Si, fi) is a depth-decomposition of Mi.
We now apply induction to each matroid Mi and its depth-decomposition (Si, fi), i =

1, . . . , k, to obtain extended depth-decompositions (S′i, f ′i , gi) of Mi such that the depth of S′i
is at most the depth of Si. Let T ′ be a rooted tree obtained from a rooted path of length h

by identifying its non-root end with the roots of S′1, . . . , S′k. Note that the depth of T ′ does
not exceed the depth of T . Further, let f ′ be the unique function from X to the leaves of T

such that the restriction of f ′ to the elements of Mi is fi. Finally, let g be any function from
the non-root vertices of T such that the h non-root vertices of the path from the root are
mapped to the vectors b1, . . . , bh by g and g(v) = gi(v) for every non-root vertex v of Si.

We claim that (T ′, f ′, g) is an extended depth-decomposition of M . We first verify that,
for every x ∈ X, f ′(x) is contained in the linear hull of the g-image of the non-root vertices
on the path from f ′(x) to the root. Fix x ∈ X and let i be such that x ∈ Ŝi. Since (S′i, f ′i , gi)
is an extended depth-decomposition of Mi, x is contained in the linear hull of K and the
gi-images of the non-root vertices on the path from f ′(x) = fi(x) to the root of S′i. Hence, x

is contained in the linear hull of the g-image of the non-root vertices on the path from f ′(x)
to the root of T ′.

Consider now an arbitrary subset X ′ ⊆ X. We have already established that all elements
of X ′ are contained in the linear hull of the g-image of the non-root vertices on the paths
from f ′(x), x ∈ X ′, to the root of T ′. Since the dimension of this linear hull is equal to the
number of non-root vertices on such paths, which is equal to the number of edges of the
paths, it follows that (T ′, f ′) is a depth-decomposition of M . J

4 Optimal tree-depth of a matrix

In this section, we relate the optimal dual tree-depth of a matrix A to its branch-depth. We
start with observing that the branch-depth of a matrix A is at most its dual tree-depth; the
proof is left due to space limitations.

I Proposition 12. If A is an m× n matrix, then bd(A) ≤ tdD(A).

We next establish the main theorem of this section.

I Theorem 13. Let A be an m×n matrix of rank m, M the vector matroid formed by columns
of A, and (T, f, g) an extended depth-decomposition of M . Further, let Im(g) = {w1, . . . , wm}.
The dual tree-depth of the m× n matrix A′ such that the j-th column of A is equal to

m∑
i=1

A′ijwi

is at most the depth of the tree T .

Proof. Let F be the rooted forest obtained from T by removing the root and associate the
i-th row of A′ with the vertex v of F such that g(v) = wi. Note that the height of F is the
depth of T . We will establish that the dual graph GD(A′) is contained in the closure cl(F )
of F . Let i and i′, 1 ≤ i, i′ ≤ m, be such that the vertices of F associated with the i-th and
i′-th rows of A′ are adjacent in GD(A′). This means that there exists j, 1 ≤ j ≤ n, such that
A′ij 6= 0 and A′i′j 6= 0. Let v be the leaf of T such that the j-th column of A is mapped by f
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to v. The definition of an extended depth-decomposition yields that the j-th column is a
linear combination of the g-image of the non-root vertices on the path from v to the root of
T . In particular, the path contains the two vertices of T mapped by g to wi and wi′ ; these
two vertices are associated with the i-th and i′-th rows of A′. Hence, the vertices associated
with the i-th and i′-th rows are adjacent in cl(F ). We conclude that GD(A′) is a subgraph
of cl(F ). J

Proposition 12 and Theorem 11 combine to a proof of Theorem 1.

5 Parameterized algorithms for integer programming

The main purpose of this section is to combine Theorem 1 with the existing approximation
algorithm for branch-depth (Theorem 6) to obtain an approximation algorithm for computing
a row-equivalent matrix with small dual tree-depth if it exists.

Proof of Theorem 2. Let A be an m× n matrix. Without loss of generality, we can assume
that the rows of A are linearly independent, i.e., the rank of A is m. This also implies that
the rank of the column space of A is m, in particular, n ≥ m.

We apply the approximation algorithm described in Theorem 6 to the vector matroid M

formed by the columns of the matrix A, and we obtain an extended depth-decomposition
(T, f, g) of M . If the depth of T is larger than 4d, then the branch-depth of A is larger than
d; we report this and stop. Let Bg be the matrix with the columns formed by the vectors in
Im(g) and let B = B−1

g . Note that the matrix A′ from the statement of Theorem 13 is equal
to BA. By Theorem 13, the dual tree-depth of A′ is at most 4d. The proof that the entry
complexity of A′ is at most O(d · 4d · ec(A)) is left due to space limitations. J

Theorem 2 yields Corollary 4, which asserts that integer programming is fixed parameter
tractable when parameterized by the branch-depth and the entry complexity of the constraint
matrix. We complement this corollary by showing that integer programming is not fixed
parameter tractable when parameterized by the “primal” branch-depth.

I Proposition 14. Integer programming is NP-hard for instances with constraint matrices A

satisfying bd(AT ) = 1 and ec(A) = 1, i.e., for instances such that the vector matroid formed
by rows of the constraint matrix has branch-depth one.

6 Structure of extended depth-decompositions

In this section, we present structural results on extended depth-decompositions that we need
to design a fixed parameter algorithm to compute a depth-decomposition of a vector matroid
with an optimal depth. The proofs of the next two lemmas are left due to space limitations;
we note that the first of the two lemmas can be viewed as a generalization of Lemma 10.

I Lemma 15. Let (T, f) be a depth-decomposition of a vector matroid M and let U be a set
of vertices of T such that every vertex contained in U has at least two children and every
ancestor of a vertex in U with at least two children is contained in U . Assume that every
branch of T rooted at a vertex from U is at capacity. Every vertex u ∈ U can be associated
with a subspace Lu of the linear hull of the elements of M such that the dimension of Lu is
the depth of u and the following holds. Let u be a vertex of U , let S1, . . . , Sk be all branches
rooted at u, and let A1, . . . , Ak be the linear hulls of Ŝ1, . . . , Ŝk, respectively. If each ancestor
of u has a single child, let L0 be the vector space containing the zero vector only; otherwise,
let u′ be the nearest ancestor of u with at least two children, and let L0 be the space Lu′ . It
holds that L (Ai ∪ L0) ∩ L (Aj ∪ L0) = Lu for all 1 ≤ i < j ≤ k.
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I Lemma 16. Let (T, f) be a depth-decomposition of a vector matroid M , u1 a vertex of T

with at least 2 children, and u2, . . . , uk all ancestors of u1 with at least two children (listed
in the increasing distance from u1). Assume that every branch rooted at one the vertices
u1, . . . , uk is at capacity, and let L1 be the space Lu1 from the statement of Lemma 15 applied
with U = {u1, . . . , uk}. Further, let S1 be any branch rooted at u1 and f1 the restriction of
f to S1. The pair (S1, f1) is a depth-decomposition of the vector matroid (M/L1)

[
Ŝ1

]
and

a branch of (S1, f1) is at capacity if and only if it is at capacity in (T, f). In addition, if
(S′1, f ′1) is another depth-decomposition of the vector matroid (M/L1)

[
Ŝ1

]
, then (T ′, f ′) is

a depth-decomposition of the vector matroid M , where T ′ is obtained from T by replacing
S1 with S′1, and the function f ′ is defined as f ′(x) = f ′1(x) for x ∈ Ŝ1, and f ′(x) = f(x)
otherwise.

Lemmas 15 and 16 allow to extend Lemma 8 to all branches.

I Lemma 17. Let (T, f) be a depth-decomposition of a vector matroid M , and S0 a branch
of T rooted at a vertex u0 such that S0 is not at capacity. Suppose that every branch rooted
at an ancestor of u0 is at capacity. Let T ′ be the rooted tree obtained from T by changing the
root of S0 to be the parent of u0. Then, (T ′, f) is a depth-decomposition of M .

Lemmas 15–17 yield an iterative algorithm described in the next theorem.

I Theorem 18. There exists a polynomial time algorithm that given a vector matroid M

and a depth-decomposition (T, f) of M outputs an extended depth-decomposition (T ′, f ′, g) of
M such that the depth of T ′ is at most the depth of T and every branch of T ′ is at capacity.

We obtain the following two statements as corollaries of Theorem 18.

I Corollary 19. Every vector matroid M has a depth-decomposition (T, f) with depth bd(M)
such that every branch of T is at capacity.

I Corollary 20. If (T, f) is a depth-decomposition of a vector matroid M , then there exists
g such that (T, f, g) is an extended depth-decomposition of M .

We conclude this section with a theorem that asserts that every vector matroid has a
depth-decomposition of minimum depth that has a special structure. We need three auxiliary
lemmas.

I Lemma 21. Let M be a vector matroid and M1, . . . , Mk be its components. Further,
let (Ti, fi, gi) be an extended depth-decomposition of Mi. Let T be the rooted tree obtained
from the trees T1, . . . , Tk by identifying the roots of the trees, let f be the mapping from the
elements of M to the leaves of T such that f(x) = fi(x) if x belongs to Mi, and let g be
the mapping such that g(v) = gi(v) if v is a non-root vertex of Ti. The triple (T, f, g) is an
extended depth-decomposition of M .

I Lemma 22. Let (T, f, g) be an extended depth-decomposition of a vector matroid M , and
let u be a vertex with at least two children. If S is a branch rooted at u, then Ŝ is a union of
components of M/Ku.

I Lemma 23. Let (T, f, g) be an extended depth-decomposition of a vector matroid M , and
let u be a vertex with at least two children. Further, let S be a branch rooted at u and
(T ′, f ′, g′) be an extended depth-decomposition of the matroid (M/Ku)

[
Ŝ
]
. Let T ′′ be the

rooted tree obtained by removing from T the branch S and identifying the root of T ′ with
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u, setting f ′′(x) = f ′(x) for elements x ∈ Ŝ and f ′′(x) = f(x) for other elements x of M ,
and setting g′′(v) = g(v) for vertices of T not contained in S and g′′(v) = g′(v) + Ku for
non-root vertices of T ′. The triple (T ′′, f ′′, g′′) is an extended depth-decomposition of M .

We are now ready to prove the final theorem of this section.

I Theorem 24. Every vector matroid M has an extended depth-decomposition (T, f, g) of
depth bd(M) such that every branch of T is both at capacity and solid.

Proof. We start with a depth-decomposition (T, f, g) of M with depth td(M) and modify
it iteratively as follows. At each iteration, we first apply Theorem 18 to obtain a depth-
decomposition such that every branch is at capacity. If every branch is solid, we stop.
If there is a branch S that is not solid, we proceed as follows. Since S is not solid, the
matroid (M/Ku)

[
Ŝ
]
is not connected, where u is the root of S. Let M1, . . . , Mk be the

components of the matroid (M/Ku)
[
Ŝ
]
and let Xu be the set containing all loops of the

matroid (M/Ku)
[
Ŝ
]
. Let (Si, fi, gi) be an extended depth-decomposition of Mi, i = 1, . . . , k,

with depth bd(Mi). Since the branch-depth bd(Mi) of Mi is at most the branch-depth of
(M/Ku)

[
Ŝ
]
, the depth of each of the trees S1, . . . , Sk is at most the depth of S. By

Lemmas 21 and 23, it is possible to replace the branch S with the branches S1, . . . , Sk

rooted at the root of S and assigning the elements of Xu to arbitrary leaves of the branches
S1, . . . , Sk. Note that the depth of the new rooted tree does not exceed the depth of the
original rooted tree. In this way, we obtain a new extended depth-decomposition of M , and
we proceed to the next iteration. The proof that the procedure described above terminates
after at most rbd(M)+1 iterations is left due to space limitations. J

7 Algorithm for finite fields

In this section, we design a fixed parameter algorithm for computing a depth-decomposition
of a vector matroid over a fixed finite field. To do so, we need to introduce additional
notation. Let (T, f, g) be an extended depth-decomposition of a vector matroid M , and
let r be the rank of M . Let u0, . . . , u2r be a depth-first-search transversal of the tree T

(see Figure 2 for illustration). For i ∈ {0, . . . , 2r}, we define Ai to be the linear hull of Kui

and the f -preimage of the leaves among the vertices u0, . . . , ui. Similarly, we define Bi to
be the linear hull of Kui and the f -preimage of the leaves among the vertices ui, . . . , u2r.
The sequence (ui, Ai, Bi)i∈{0,...,2r} is called a transversal sequence for (T, f, g). Note that
Ai ∩Bi = Kui by the fact that Im(g) is a basis of the linear hull of elements of M . If (T, f, g)
is principal and (T ′, f ′, g′) is another extended depth-decomposition of M , we say that a
branch S of T ′ is i-crossed if Ŝ contains the g-image of a vertex on the path from ui to the
root of T .

I Lemma 25. Let M be a vector matroid, (T, f, g) a principal extended depth-decomposition
of M , and (T ′, f ′, g′) an extended depth-decomposition of M such that every branch is solid.
Further, let (ui, Ai, Bi)i∈{0,...,2r} be a transversal sequence for (T, f, g). If S is a branch of
(T ′, f ′, g′) that is not i-crossed, then Ŝ is a subset of Ai or Bi.

We will design a dynamic programming algorithm, which will be constructing an optimal
depth-decomposition of a vector matroid M using the information on the structure of M

captured by an extended depth-decomposition of M produced by an approximation algorithm
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u0 = u12

u1 = u7 = u11

u8 = u10u2 = u4 = u6

u3 u5 u9

Figure 2 An example of a depth-first-search transversal of a rooted tree.

given in Theorem 6. The depth-decomposition will be constructed iteratively for elements of
M in the order in that the leaves that they are assigned to appear in the transversal sequence
of the depth-decomposition produced by the approximation algorithm. Since it would not be
feasible to store all possible “partial” depth-decompositions, we need a more succinct way of
representing an already constructed part of a depth-decomposition, which we now formally
introduce.

Let (T, f, g) be a principal extended depth-decomposition of a vector matroid M with
rank r over a field F, (ui, Ai, Bi)i∈{0,...,2r} a transversal sequence for (T, f, g), and (T ′, f ′, g′)
another extended depth-decomposition of a matroid M . A frontier is a tuple (T0, d, a, b, h)
such that d, a, and b are non-negative integers, T0 is a rooted tree of depth with at most
d leaves, and h is a mapping from non-root vertices of T0 to Fd+a+b such that Im(h) is a
set of linearly independent vectors and for every j = 1, . . . , d, there is a leaf of T0 for which
the j-th unit vector is contained in the linear hull of the h-image of the vertices on the path
from the leaf to the root of T0. We will refer the middle a coordinates of images of h as
A-coordinates and to the last b coordinates as B-coordinates.

The i-frontier of (T ′, f ′, g′) with respect to (T, f, g) and (ui, Ai, Bi)i∈{0,...,2r} is the
frontier (T0, d, a, b, h) such that

T0 is the rooted subtree of T ′ formed by the paths from the f ′-images of U to the root,
where U is the set of g-images of the vertices on the path from ui to the root of T .

The integer d is the depth of ui in T .

The integers a and b are the smallest integers for that there exists an a-dimensional
subspace LA of Ai and a b-dimensional subspace LB of Bi such that the linear hull of
the g′-images of the vertices of T0 (note that T0 is a subtree of T ′) is a subspace of the
linear hull of vu

1 , . . . , vu
d , LA and LB , where vu

1 , . . . , vu
d are g-images of the vertices on the

path from the root of T to ui (in this order).

Finally, h is a mapping from the non-root vertices of T0 to Fd+a+b that satisfies the
following. Let vA

1 , . . . , vA
a be vectors such that vu

1 , . . . , vu
d , vA

1 , . . . , vA
a form a basis of LA,

and let vB
1 , . . . , vB

b be vectors such that vu
1 , . . . , vu

d , vB
1 , . . . , vB

b form a basis of LB. The
value h(v) for a non-root vertex v of T0 is equal to the coordinates of f ′(v) with respect
to the (linearly independent) vectors vu

1 , . . . , vu
d , vA

1 , . . . , vA
a , vB

1 , . . . , vB
a .

The following lemma justifies the definition of an i-frontier. Informally speaking, the
lemma says that two depth-decompositions of a vector matroid M can be combined along
the same i-frontier, i.e., the i-frontier contains all information that needs to be stored when
iteratively constructing a depth-decomposition of M in a dynamic way for the elements of
contained in A0, A1, . . . , A2r.
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I Lemma 26. Let (T, f, g) be a principal extended depth-decomposition of a vector matroid
M , (ui, Ai, Bi)i∈{0,...,2r} a transversal sequence for (T, f, g), and (T ′, f ′, g′) and (T ′′, f ′′, g′′)
two solid extended depth-decompositions of M . Suppose that the i-frontiers of (T ′, f ′, g′) and
(T ′′, f ′′, g′′) with respect to (T, f, g) and (ui, Ai, Bi)i∈{0,...,2r} are the same, and let T0 be the
rooted tree of the i-frontier. Obtain T ′A from T ′ by removing all branches S with Ŝ ⊆ Bi

that are not i-crossed, T ′′B from T ′′ by removing all branches S with Ŝ ⊆ Ai that are not
i-crossed, and T ′′′ by gluing T ′A and T ′′B together on the vertices that correspond to each vertex
of T0. Finally, let f ′′′ be a function from the elements of M to the leaves of T ′′′ defined as
follows. If x ∈ Ai \Bi, then f ′′′(x) = f ′(x). If x ∈ Bi \Ai, then f ′′′(x) = f ′′(x). Lastly, if
x ∈ Ai ∩Bi = Kui

, then f ′′′(x) is any leaf u of T0 such that x ∈ L (g′(Pu)). Then (T ′′′, f ′′′)
is a depth-decomposition of M .

Before stating the main result of this section, we need to observe that the number of
frontiers for any fixed d is bounded.

I Lemma 27. For every integer d and any finite field F, there exist at most d2d+4|F|2d4

choices of a rooted tree T of depth at most d, integers d′ ≤ d, a and b and a mapping h to
Fd′+a+b such that (T, d′, a, b, h) is a frontier.

We can now design a dynamic programming algorithm for computing the branch-depth
of a matroid represented over a fixed finite field. While there are many technical details
that needs to be taken care of, the basic idea of the algorithm is simple: we first obtain an
approximate depth-decomposition using Theorem 6 and then proceed computing along its
depth-first-search transversal possible frontiers; Lemma 26 guarantees that frontiers capture
all information that needs to be carried through dynamic programming, and their number of
frontiers is bounded by Lemma 27.

I Theorem 28. For the parameterization by a positive integer d and a prime power q, there
exists a fixed parameter algorithm that for a vector matroid M over the q-element field either
outputs that bd(M) is larger than d, or outputs a depth-decomposition of M with depth d.

Proof. We first apply the algorithm from Theorem 6. The algorithm either outputs that the
branch-depth of M is larger than d or outputs a principal extended depth-decomposition
(T, f, g) of a vector matroid M with depth at most 4d. For the purpose of the analysis of the
algorithm that we present, fix a solid extended depth-decomposition (Ts, fs, gs) of M with
depth bd(M), which exists by Theorem 24.

Let r be the rank of the matroid M , and let (ui, Ai, Bi)i∈{0,...,2r} be a transversal sequence
for (T, f, g). The algorithm then iteratively for j = 0, . . . , 2r computes a list of all frontiers
(T0, d′, a, b, h), d′ ≤ d for which there there exists a vector matroid M ′ with rank dim Ai + b

such that the restrictions of M and M ′ to the elements contained in the subspace Ai are the
same, and a solid extended depth-decomposition (T ′, f ′, g′) of M ′ of depth at most d such
that (T, d′, a, b, h) is the i-frontier of (T ′, f ′, g′) with respect to (T, f, g) and its transversal
sequence.

Note that the number of such frontiers is bounded by a function of d and q only by
Lemma 27; the number of edges of T can be shown to be d′ + a + b. If the branch-depth
of M is at most d, then the set of such frontiers is non-empty for every j = 0, . . . , 2r: the
matroid M ′ in the i-th iteration can be chosen to be the the union of the restriction of the
matroid M to the elements of Ai and the elements of Ku, where u ranges over all the vertices
on the path from ui to the root of T . A solid extended depth-decomposition (T ′, f ′, g′) can
be obtained from (Ts, fs, gs) by removing all branches S with Ŝ ⊆ Bi that are not i-crossed.
So, if the set of the frontiers becomes empty at any of the iterations, the algorithm can stop
and output that the branch-depth of M is larger than d.
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We now describe the iterations of the algorithm in detail. For j = 0, the list of frontiers
contains a single element (R, 0, 0, 0, h), where R is the rooted tree that contains the root
only and h is the null mapping. We now describe how the algorithm computes the list for
j > 0 assuming that the list is already available for j − 1. The iteration of the algorithm
differs according to whether uj is a parent of uj−1 and uj is a child of uj−1.

We start with describing the case that uj is a parent of uj−1. Let d′ < d be the depth of
uj . Then the depth of uj−1 is d′ + 1. The following is performed for every frontier of the
form (T0, d′ + 1, a, b, h) in the list from the previous iteration, and every leaf u of T0 such
that the linear hull of the h-image of the vertices from u to the root contains the (d′ + 1)-th
unit vector. If the leaves of T0 can be assigned distinct indices i′ = 1, . . . , d′ such that the
linear hull of the h-image of the vertices from each leaf to the root contains contains the i′-th
unit vector, where i′ is the index assigned to the leaf, then we include (T0, d′, a + 1, b, h′)
to the list from the j-th iteration, where h′ is a mapping from the non-root vertices of T0
obtained from h by turning the (d′ + 1)-th coordinate to be one of the A-coordinates and
applying any invertible linear transformation to the a + 1 A-coordinates, i.e., we fix such
a linear transformation L and set h′(v) = L(h(v)) for all vertices v of T0. If there exists
i′ = 1, . . . , d′ such that u is the only leaf for which the linear hull of the h-image of the
vertices from it to the root contains the i′-th unit vector, we continue with the next choice of
(T0, d′, a, b, h′) and u. Otherwise, for every i′ = 1, . . . , d′ there exists another leaf for which
the linear hull of the h-image of the vertices from it to the root contains the i′-th unit vector,
which means that we may be able to remove u from T0. So, let T ′0 be the tree obtained
from T0 by removing the path from u to the nearest ancestor with at least two children
and turn the (d′ + 1)-th coordinate to an A-coordinate. If the linear hull of the h-images
of the vertices of T ′0 restricted to their B-coordinates does not have dimension b, then it is
not possible to modify this frontier by removing u and we continue with the next choice of
(T0, d′, a, b, h′) and u. Otherwise, let a′ be the dimension of the linear hull of the h-images
of the vertices of T ′0 restricted to their A-coordinates and include (T0, d′, a′, b, h′) to the list
from the j-th iteration, where h′ is a mapping obtained from h by mapping its A-coordinates
by a linear transformation L such that L maps a-dimensional vector space to a′-dimensional
vector space and its image has dimension a′.

We next describe the case that uj is a child of uj−1. Again, let d′ ≤ d be the depth of
uj . Then the depth of uj−1 is d′ − 1. The following is performed for every frontier of the
form (T0, d′ − 1, a, b, h) in the list from the previous iteration. For every leaf u and every
i′ = 1, . . . , b such that the unit vector for the i′-th B-coordinate is contained in the linear
hull of the h-image of the vertices from u to the root, we turn the i′-th B-coordinate to
the d′-th coordinate to obtain h′ and include (T0, d′, a, b − 1, h′) to the list from the j-th
iteration. In addition, we perform the following. For every ` = 1, . . . , d, we consider a rooted
path of length ` and identify its root with a vertex T0 in all possible ways that the depth
of the resulting tree T ′ does not exceed d. Let u be the new leaf of T ′0 and let h′ be a
mapping obtained from h by assigning each of the ` new vertices one of the unit vectors for
the i′-th B-coordinates for i′ = b + 1, . . . , b + `. For every invertible linear transformation
L to the b + ` B-coordinates that yields h′′ such that the linear hull of the h′′-images of
the vertices on the path from u to the root of T ′0 contains the unit vector for the (b + `)-th
B-coordinate, we turn the (b + `)-th B-coordinate to the d′-th coordinate to obtain h′′′ and
include (T0, d′, a′, b + `− 1, h′′′) to the list from the j-th iteration.

Assume that all the iterations of the algorithm have been performed. If the list of frontiers
is empty after any iteration, the branch-depth of M exceeds d and the algorithm reports this.
Otherwise, the final list (for j = 2r) contains a single element (R, 0, 0, 0, h) where R is the
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rooted tree that contains the root only. Tracing back to the list for j = 0, we obtain a series
of frontiers (Ti, di, ai, bi, hi), i = 0, . . . , 2r, such that the i-th one can be obtained from the
(i− 1)-th by the operations explained earlier. Note that di is the depth of ui in T . In the
frontier (Ti, di, ai, bi, hi), the first di coordinate of the h-image correspond to the g-image of
the vertices on the path from the root of T to ui (in this order). The way the frontiers were
constructed guarantees consistency between the shape of the frontiers and the basis elements
displayed by frontiers; in particular, the mappings hi are projections of the linear hull of
elements of M to the subspace corresponding to the i-frontier and the linear transformations
used in the steps of the algorithm provides a consistent way of relating these projections
with each other. Hence, there exists an extended depth-decomposition (T ′, f ′, g′) such that
(Ti, di, ai, bi, hi) is the i-frontier of (T ′, f ′, g′) with respect to (T, f, g) and (ui, Ai, Bi)i∈{0,...,j}.
The algorithm computes this extended depth-decomposition (T ′, f ′, g′) and outputs it. J

Theorems 18 and 28 yield the following corollary.

I Corollary 29. For the parameterization by a positive integer d and a prime power q, there
exists a fixed parameter algorithm that for a vector matroid M over the q-element field either
outputs that bd(M) is larger than d, or computes bd(M) and outputs an extended depth-
decomposition of M with depth bd(M) such that every branch of the depth-decomposition is
at capacity.

8 Algorithm for rational matrices

In this section, we adopt the algorithm presented in Section 7 to matroids over rationals; the
proofs are left due to space limitations. We start with two auxiliary lemmas. We remark that
the bound of 22d−1 in Lemma 30 can be replaced with d · 2d−1 using a more careful analysis.

I Lemma 30. Let M be a vector matroid and (T, f) a depth-decomposition of M with depth
d such that every branch is at capacity. There exists a mapping g such that (T, f, g) is an
extended depth-decomposition of M and every element of Im(g) is a linear combination of at
most 22d−1 elements of M .

I Lemma 31. Let A be an integer matrix of branch-depth (over Q) at most d such that all
its entries are between −K and +K. Further, let q be a prime larger than (K22d)22d . The
following holds for any subset X of the columns of A: the vectors contained in X are linearly
independent over Q if and only they are independent over the q-element field.

We derive the following using Theorem 28, Corollary 29, and Lemmas 30 and 31.

I Theorem 32. For the parameterization by positive integers d and K, there exists a fixed
parameter algorithm that for a vector matroid M over Q such that the entries of all vectors in
M have complexity at most K either outputs that bd(M) is larger than d, or computes bd(M)
and outputs an extended depth-decomposition (T, f, g) of M with depth bd(M). Moreover,
the entry complexity of the vectors in Im(g) is bounded by a function of d and K.

Theorem 32 yields Theorem 3.
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Abstract
The longest common substring problem consists in finding a longest string that appears as a
(contiguous) substring of two input strings. We consider the dynamic variant of this problem, in
which we are to maintain two dynamic strings S and T , each of length at most n, that undergo
substitutions of letters, in order to be able to return a longest common substring after each
substitution. Recently, Amir et al. [ESA 2019] presented a solution for this problem that needs
only Õ(n2/3) time per update. This brought the challenge of determining whether there exists a
faster solution with polylogarithmic update time, or (as is the case for other dynamic problems),
we should expect a polynomial (conditional) lower bound. We answer this question by designing
a significantly faster algorithm that processes each substitution in amortized logO(1) n time with
high probability. Our solution relies on exploiting the local consistency of the parsing of a collection
of dynamic strings due to Gawrychowski et al. [SODA 2018], and on maintaining two dynamic
trees with labeled bicolored leaves, so that after each update we can report a pair of nodes, one
from each tree, of maximum combined weight, which have at least one common leaf-descendant of
each color. We complement this with a lower bound of Ω(log n/ log log n) for the update time of
any polynomial-size data structure that maintains the LCS of two dynamic strings, even allowing
amortization and randomization.
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1 Introduction

The well-known longest common substring (LCS) problem, formally stated below, was con-
jectured by Knuth to require Ω(n logn) time. However, in his seminal paper that introduced
suffix trees, Weiner showed how to solve it in linear time (for constant alphabets) [29]. Since
then, this classical question was considered in many different versions, such as obtaining
a tradeoff between the time and the working space [21,27], or computing an approximate
LCS under either the Hamming or the edit distance (see [9,20,28] and references therein), to
name a few.
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Problem: Longest Common Substring
Input: Two strings S and T of length at most n over an alphabet Σ.
Output: A longest substring X of S that is a substring of T .

We consider the dynamic version of this problem where the strings are updated and we
are to report an LCS after each update. That is, we return the length of an LCS and a pair
of starting positions of its occurrences in the strings. The allowed update operations are
substitutions of single letters in either S or T . In fact, with due care, our algorithms can be
adapted to handle all edit operations, i.e. insertions and deletions as well, but we only allow
substitutions for the sake of a clearer exposition of the main ideas.

Dynamic problems on strings are of wide interest. Maybe the most basic question
in this direction is that of maintaining a dynamic text while enabling efficient pattern
matching queries. This is clearly motivated by, say, the possible application in a text editor.
The first structure achieving polylogarithmic update time and optimal query time for this
problem was designed by Sahinalp and Vishkin [26]. Later, the update time was improved
to O(log2 n log logn log∗ n) at the cost of O(logn log logn) additional time per query by
Alstrup et al. [2]. Recently, Gawrychowski et al. [15] presented a data structure that requires
O(log2 n) time per update and allows for time-optimal queries. Other problems on strings
that have been studied in the dynamic setting include maintaining repetitions, such as the
set of square substrings [5] or a longest palindromic substring [4, 7].

As for the LCS problem itself, Amir et al. [6] initiated the study of this question in the
dynamic setting by considering the problem of constructing a data structure over two strings
that returns the LCS after a single edit operation in one of the strings. However, in their
solution, after each edit operation, the string is immediately reverted to its original version.
Abedin et al. [1] improved the tradeoffs for this problem by designing a more efficient solution
for the so-called heaviest induced ancestors problem. Amir and Boneh [3] investigated some
special cases of the partially dynamic LCS problem (in which one of the strings is assumed
to be static); namely, the case where the static string is periodic and the case where the
substitutions in the dynamic string are substitutions with some letter # 6∈ Σ. Finally, Amir
et al. [7] presented the first algorithm for the fully dynamic LCS problem (in which both
strings are subject to updates) that needs only sublinear time per edit operation (insertion
or deletion of a letter) in either string, namely Õ(n2/3). As a stepping stone towards this
result, they designed an algorithm for the partially dynamic LCS problem that takes Õ(

√
n)

time per edit operation.
For some natural dynamic problems, the best known bounds on the query and the update

time are of the form O(nα), where n is the size of the input and α is some constant. Henzinger
et al. [16] introduced the online Boolean matrix-vector multiplication conjecture that can be
used to provide some justification for the polynomial time hardness of many such dynamic
problems in a unified manner. This brings the question of determining if the bound on the
update time in the dynamic LCS problem should be polynomial or subpolynomial.

We answer this question by significantly improving on the bounds presented by Amir
et al. [7] and presenting a solution for the fully dynamic LCS problem that handles each
update in amortized polylogarithmic time with high probability. As a warm-up, we present a
(relatively simple) deterministic solution for the partially dynamic LCS problem that handles
each update in amortized O(log2 n) time.

After having determined that the complexity of fully dynamic LCS is polylogarithmic, the
next natural question is whether we can further improve the bound to polyloglogarithmic. By
now we have techniques that can be used to not only distinguish between these two situations
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but (in some cases) also provide tight bounds. As a prime example, static predecessor for a set
of n numbers from [n2] requires Ω(log logn) time for structures of size Õ(n) [25], and dynamic
connectivity for forests requires Ω(logn) time [24], with both bounds being asymptotically
tight. In some cases, seemingly similar problems might have different complexities, as in the
orthogonal range emptiness problem: Nekrich [22] showed a data structure of size O(n log4 n)
with O(log2 logn) query time for 3 dimensions, while for the same problem in 4 dimensions
Pǎtraşcu showed that any polynomial-size data structure requires Ω(logn/ log logn) query
time [23]. In the full version of this work, we show the following results, each obtained
through a series of reductions, starting from the problem of answering reachability queries in
butterfly graphs that was considered in the seminal paper of Pătraşcu [23].

I Theorem 1. Any structure of Õ(n) size for maintaining an LCS of a dynamic string S
and a static string T , each of length at most n, requires Ω(logn/ log logn) time per update
operation.

I Theorem 2. Any polynomial-size structure for maintaining the LCS of two dynamic strings
of length n requires Ω(logn/ log logn) time per update operation.

Finally, we demonstrate that the difference in the allowed space in the above two lower
bounds is indeed needed. To this end, we show that partially dynamic LCS admits an
O(n1+ε)-space, O(log logn)-update time solution, for any ε > 0.

Techniques and roadmap. We first consider the partially dynamic version of the problem
where updates are only allowed in one of the strings, say S, in Section 3. This problem
is easier as we can use the static string T as a reference point. We maintain a partition
of S into blocks (i.e. substrings of S whose concatenation equals S), such that each block
is a substring of T , but the concatenation of any two consecutive blocks is not. This is
similar to the approach of [8] and other works that consider one dynamic and one static
string. The improvement upon the Õ(

√
n)-time algorithm presented in [7] comes exactly

from imposing the aforementioned maximality property, which guarantees that the sought
LCS is a substring of the concatenation of at most three consecutive blocks and contains
the first letter of one of these blocks. The latter property allows us to anchor the LCS in S.
Upon an update, we can maintain the block decomposition, by updating a constant number
of blocks. It then suffices to show how to efficiently compute the longest substring of T that
contains the first letter of a given block. We reduce this problem to answering a heaviest
induced ancestors (HIA) query. This reduction was also presented in [1, 6], but we describe
the details to make following the more involved solution of fully dynamic LCS easier.

In Section 4 we move to the fully dynamic LCS problem. We try to anchor the LCS in
both strings as follows. For each of the strings S and T we show how to maintain, in logO(1) n

time, a collection of pairs of adjacent fragments (e.g. (S[i . . j − 1], S[j . . k])), denoted by JS
for S and JT for T , with the following property. For any common substring X of S and T

there exists a partition X = X`Xr for which there exists a pair (U`, Ur) ∈ JS and a pair
(V`, Vr) ∈ JT such that X` is a suffix of both U` and V`, while Xr is a prefix of both Ur and
Vr. We can maintain this collection by exploiting the properties of the locally consistent
parsing previously used for maintaining a dynamic collection of strings [15]. We maintain
tries for fragments in the collections and reduce the dynamic LCS problem to a problem on
dynamic bicolored trees, which we solve by using dynamic heavy-light decompositions and
2D range trees.

I C A L P 2 0 2 0
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2 Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. Let S = S[1]S[2] · · ·S[n] be a string of length
|S| = n over an integer alphabet Σ. For two positions i and j on S, we denote by S[i . . j] =
S[i] · · ·S[j] the fragment of S that starts at position i and ends at position j (it is the empty
string ε if j < i). A string Y , of length m with 0 < m ≤ n, is a substring of S if there exists
a position i in S such that Y = S[i . . i+m− 1]. The prefix of S ending at the i-th letter
of S is denoted by S[. . i] and the suffix of S starting at the i-th letter of S is denoted by
S[i . .]. The reverse string of S is denoted by SR. The concatenation of strings S and T is
denoted by ST , and the concatenation of k copies of string S is denoted by Sk. By lcp(S, T )
we denote the length of the longest common prefix of strings S and T .

We define the trie of a collection of strings C = {S1, S2, . . . , Sk} as follows. It is a rooted
tree with edges labeled by single letters. Every string S that is a prefix of some string in C

is represented by exactly one path from the root to some node v of the tree, such that the
concatenation of the labels of the edges of the path, the path-label of v, is equal to S. The
compacted trie of C is obtained by contracting maximal paths consisting of nodes with one
child to an edge labeled by the concatenation of the labels of the edges of the path. Usually,
the label of the new edge is stored as the start/end indices of the corresponding fragment of
some Si. The suffix tree of a string T is the compacted trie of all suffixes of T$ where $ is a
letter smaller than all letters of the alphabet Σ. It can be constructed in O(|T |) time for
linear-time sortable alphabets [11]. For a node u in a (compacted) trie, we define its depth as
the number of edges on the path from the root to u. Analogously, we define the string-depth
of u as the total length of labels along the path from the root to u.

We say that a tree is weighted if there is a weight w(u) associated with each node u of
the tree, such that weights along the root-to-leaf paths are increasing, i.e. for any node u
other than the root, w(u) > w(parent(u)). Further, we say that a tree is labeled if each of
its leaves is given a distinct label.

I Definition 3. For rooted, weighted, labeled trees T1 and T2, two nodes u ∈ T1 and v ∈ T2,
are induced (by `) if and only if there are leaves x and y with the same label `, such that x
is a descendant of u and y is a descendant of v.

Problem: Heaviest Induced Ancestors
Input: Two rooted, weighted, labeled trees T1 and T2 of total size n.
Query: Given a pair of nodes u ∈ T1 and v ∈ T2, return a pair of nodes u′, v′ such that
u′ is ancestor of u, v′ is ancestor of v, u′ and v′ are induced and they have the largest
total combined weight w(u′) + w(v′).

This problem was introduced in [14], with the last advances made in [1]. The next lemma
encapsulates one of the known trade-offs.

I Lemma 4 ([14]). There is a data structure for the Heaviest Induced Ancestors
problem, that can be built in O(n log2 n) time and answers queries in O(log2 n) time.

3 Partially Dynamic LCS

In this section, we describe an algorithm for solving the partially dynamic variant of the LCS
problem, where updates are only allowed on one of the strings, say S, while T is given in
advance and is not subject to change.
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Let us assume for now that all the letters of S throughout the execution of the algorithm
occur at least once in T ; we will waive this assumption later. Also, for simplicity, we assume
that S is initially equal to $|S|, for $ 6∈ Σ. We can always obtain any other initial S by
performing an appropriate sequence of updates in the beginning.

I Definition 5. A block decomposition of string S with respect to string T is a sequence of
strings (s1, s2, . . . , sk) such that S = s1s2 . . . sk and every si is a fragment of T . An element
of the sequence is called a block of the decomposition. A decomposition is maximal if and
only if sisi+1 is not a substring of T for every i ∈ [k − 1].

Maximal block decompositions are not necessarily unique and may have different lengths,
but all admit the following useful property.

I Lemma 6. For any maximal block decomposition of S with respect to T , any fragment
of S that occurs in T is contained in at most three consecutive blocks. Furthermore, any
occurrence of an LCS of S and T in S must contain the first letter of some block.

Proof. We prove the first claim by contradiction. If (s1, s2, . . . , sk) is a maximal block
decomposition of S with respect to T and a fragment of S that occurs in T spans at least four
consecutive blocks si, si+1, si+2, . . . , sj , then si+1si+2 is a substring of T , a contradiction.

As for the second claim, it is enough to observe, that if an occurrence of an LCS in S

starts in some other than the first position of a block b, then it must contain the first letter
of the next block, as otherwise its length would be smaller than the length of block b, which
is a common substring of S and T . J

We will show that an update in S can be processed by considering a constant number of
blocks in a maximal block decomposition of S with respect to T . We first summarize the
basic building block needed for efficiently maintaining such a maximal block decomposition.

I Lemma 7. Let T be a string of length at most n. After O(n log2 n)-time and O(n)-space
preprocessing, given two fragments U and V of T , one can compute a longest fragment of T
that is equal to a prefix of UV in O(log logn) time.

Proof. We build a weighted ancestor queries structure over the suffix tree of T . A weighted
ancestor query (`, u) on a (weighted) tree T , asks for the deepest ancestor of u with weight at
most `. Such queries can be answered in O(log logn) time after an O(n)-time preprocessing
of T if all weights are polynomial in n [12], as is the case for suffix trees with the weight of
each node being its string-depth. We also build a data structure for answering unrooted LCP
queries over the suffix tree of T . In our setting, such queries can be defined as follows: given
nodes u and v of the suffix tree of T , we want to compute the (implicit or explicit) node where
the search for the path-label of v starting from node u ends. Cole et al. [10] showed how to
construct in O(n log2 n) time a data structure of size O(n logn) that answers unrooted LCP
queries in O(log logn) time. With these data structures at hand, the longest prefix of UV
that is a fragment of T can be computed as follows. First, we retrieve the nodes of the suffix
tree of T corresponding to U and V using weighted ancestor queries in O(log logn) time. In
more detail, if U = T [i . . j] then we access the leaf of the suffix tree corresponding to T [i . .]
and access its ancestor at string-depth |U |, and similarly for V . Second, we ask an unrooted
LCP query to obtain the node corresponding to the sought prefix of UV . J

I Lemma 8. A maximal block decomposition of a dynamic string S, with respect to a static
string T , can be maintained in O(log logn) time per substitution operation with a data
structure of size O(n logn) that can be constructed in O(n log2 n) time.

I C A L P 2 0 2 0
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Proof. We keep the blocks on a doubly-linked list and we store the starting positions of blocks
in an O(n)-size predecessor/successor data structure over [n] that supports O(log logn)-time
queries and updates [30]. This allows us to navigate in the structure of blocks, and in
particular to be able to compute the block in which the edit occurred and its neighbors.

Suppose that we have a maximal block decomposition B = (s1, . . . , sk) of S with respect
to T . Consider an operation which updates the letter x located in block si to y, so that
si = sl

ixs
r
i. Consider a block decomposition B′ = (s1, s2, . . . , si−1, s

l
i, y, s

r
i, si+1, . . . , sk) of

string S′ after the update. Note that both sl
i and sr

i may be empty. This block decomposition
does not need to be maximal. However, since B is a maximal block decomposition of S, none
of the strings s1s2, s2s3, . . ., si−2si−1, si+1si+2, si+2si+3, . . ., sk−1sk occurs in T . Thus,
given B′, we repeatedly merge any two consecutive blocks from (si−1, s

l
i, y, s

r
i, si+1) whose

concatenation is a substring of T into one, until this is no longer possible. We have at most
four merges before obtaining a maximal block decomposition B′ of string S′. Each merge is
implemented with Lemma 7 in O(log logn) time. J

As for allowing substitutions of letters that do not occur in T , we simply allow blocks of
length 1 that are not substrings of T in block decompositions, corresponding to such letters.
It is readily verified that all the statements above still hold.

Due to Lemma 6, for a maximal block decomposition (s1, s2, . . . , sk) of S with respect to
T , we know that any occurrence of an LCS of S and T in S must contain the first letter of
some block of the decomposition and cannot span more than three blocks. In other words, it
is the concatenation of a potentially empty suffix of si−1si and a potentially empty prefix of
si+1si+2 for some i ∈ [k] (for convenience we consider the non-existent sis to be equal to
ε). We call an LCS that can be decomposed in such way a candidate of si. Our goal is to
maintain the candidate proposed by each si in a max-heap with the length as the key. We
also store a pointer to it from block si. The max-heap is implemented with an O(n)-size
predecessor/successor data structure over [n] that supports O(log logn)-time queries and
updates [30]. We assume that each block si stores a pointer to its candidate in the max-heap.

After an update, the candidate of each block b that satisfies the following two conditions
remains unchanged: (a) b did not change and (b) neither of b’s neighbors at distance at most
2 changed. For the O(1) blocks that changed, we proceed as follows. First, in O(log logn)
time, we remove from the max-heap any candidates proposed by the deleted blocks or blocks
whose neighbors at distance at most 2 have changed. Then, for each new block and for each
block whose neighbors at distance at most 2 have changed, we compute its candidate and
insert it to the max-heap. To compute the candidate of a block si, we proceed as follows. We
first compute the longest suffix U of si−1si and the longest prefix V of si+1si+2 that occur
in T in O(log logn) time using Lemma 7. Then, the problem in scope can be restated as
follows: given two fragments U and V of T compute the longest fragment of UV that occurs
in T . This problem can be reduced to a single HIA query over the suffix trees of T and TR

as shown in [1, 6] and we provide a brief overview at the end of this section. Combining the
above discussion with Lemmas 4 and 8 we obtain that an LCS can be maintained after an
O(n log2 n) time preprocessing in O(log2 n) time per update. In fact, the bottleneck in the
update time in this approach is in Lemma 4, that is, the HIA structure, as the additional
time in the update is only O(log logn). We can thus obtain a faster data structure at the
expense of slower preprocessing using the following lemma.

I Lemma 9. For any ε > 0, there is a structure for the Heaviest Induced Ancestors
problem, that can be built in O(n1+ε) time and answers queries in constant time.
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Proof. Consider an instance of HIA on two trees T1 and T2 of total size m containing at
most ` leaves, and let b be a parameter to be chosen later. We will show how to construct
a structure of size O(b2m) that allows us to reduce in constant time a query concerning
two nodes u ∈ T1 and v ∈ T2 to two queries to smaller instances of HIA. In each of the
smaller instances the number of leaves will shrink by a factor of b, and the total size of all
smaller instances will be O(m). Let b = nδ, where n is the total size of the original trees.
We recursively repeat the construction always choosing b according to the formula. Because
the depth of the recursion is at most logb n = O(1), this results in a structure of total size
O(n1+ε) for ε = 2δ and allows us to answer any query in a constant number of steps, each
taking constant time.

We select b evenly-spaced (in the order of in-order traversal) leaves of T1 and T2 and call
them marked. Consider a query concerning a pair of nodes u ∈ T1 and v ∈ T2. Let u′′, v′′ be
the nearest ancestors of u and v, respectively, that contain at least one marked leaf in their
subtrees. u′′ and v′′ can be preprocessed in O(m) space and accessed in constant time. We
have three possibilities concerning the sought ancestors u′, v′:
1. u′ is an ancestor of u′′ and v′ is an ancestor of v′′ (not necessarily proper),
2. u′ is a descendant of u′′,
3. v′ is a descendant of v′′.

To check the first possibility, we preprocess every pair of marked leaves x, y. Both u′′ and
v′′ store pointers to some marked leaves in their subtrees, so it is enough to consider a query
concerning two ancestors of marked leaves x, y. This can be solved similarly as preprocessing
two heavy paths for HIA queries in O(log2 n) time [14], except that now we can afford to
preprocess the predecessor for every possible depth on both paths in O(m) space, which
decreases the query time to constant. The overall space is O(b2m).

The second and the third possibility are symmetric, so we focus on the second. By
removing all marked leaves and their ancestors from T1 we obtain a collection of smaller
trees, each containing less than n/b leaves. Because u′ is below u′′, u and u′ belong to the
same smaller tree. For technical reasons, we want to work with O(b) smaller trees, so we
merge all smaller trees between two consecutive marked leaves by adding the subtree induced
by their roots in T1. Now consider the smaller tree T i1 containing u (and, by assumption,
also u′′). We extract the subtree of T2 induced by the leaves of T i1 , call it T i2 , and build a
smaller instance of HIA for T i1 and T i2 . To query the smaller instance, we need to replace
v by its nearest ancestor that belong to T i2 . This can be preprocessed for each i and v in
O(bm) space. By construction, T i1 and T i2 contain less than n/b leaves, and each node of
T1 shows up in at most two trees T i1 . Each node of T2 might appear in multiple trees T i2 ,
but the number of non-leaf nodes in T i2 is smaller than its number of leaves, so the overall
number of non-leaf nodes is smaller than m, and consequently the overall number of nodes is
smaller than 2m.

The construction time can be verified to be at most the size of the structure. J

I Theorem 10. It is possible to maintain an LCS of a dynamic string S and a static string
T , each of length at most n, (i) after an O(n log2 n)-time preprocessing in O(log2 n) time
per substitution operation, or (ii) after an O(n1+ε)-time preprocessing in O(log logn) time
per substitution operation.

We now briefly explain the reduction to HIA in the interests of self-containment and
developing intuition in a relatively easier setting before we move on to the harder problem of
maintaining an LCS of two dynamic strings.
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Let T1 and T2 be the suffix trees of T$ and TR#, respectively, where $ and # are
sentinel letters not in the alphabet and lexicographically smaller than all other letters. Note
that each suffix of T$ corresponds to a leaf in T1; similarly for T2. We label a leaf v of
T1 with the starting position of the suffix of T$ that it represents. For T2, however, we
label the leaf corresponding to TR[i . .]# with n − i + 2. Intuitively, if we consider a split
T = T [. . i− 1]T [i . .], the leaves corresponding to T [i . .]$ in T1 and T [. . i− 1]R# in T2 get
the same label. Further, let the weight of each node in T1 and T2 be its string-depth. Upon
query, we first compute the node p corresponding to V in T1 and the node q corresponding
to UR in T2 using weighted ancestor queries in O(log logn) time. Then the length of the
longest substring of UV is exactly the sum of the weights of the nodes returned by a HIA
query for p and q. (Some technicalities arise when p or q are implicit nodes, which can be
overcome straightforwardly.)

4 Fully Dynamic LCS

In this section, we prove our main result.

I Theorem 11. We can maintain an LCS of two dynamic strings, each of length at most n,
in logO(1) n time per substitution operation.

We start with some intuition. Let us suppose that we can maintain a decomposition of
each string in blocks of length roughly 2k for each level k = 0, 1, . . . , logn with the following
property: any two equal fragments U = S[i . . j] and V = T [i′ . . j′] are “aligned” by a pair of
equal blocks B1 in S and B2 in T at some level k such that 2k = Θ(|U |). In other words, the
decomposition of U (resp. V ) at level k consists of a constant number of blocks, where the
first and last blocks are potentially trimmed, including B1 (resp. B2), and the distance of
the starting position of B1 from position i in S equals the distance of the starting position
of B2 from position i′ in T . The idea is that we can use such blocks as anchors for the LCS.
For each level, for each string B appearing as a block in this level, we would like to design a
data structure that:
a) supports insertions/deletions of strings corresponding to sequences of a constant number

of level-k blocks, each containing a specified block equal to B and a boolean variable
indicating the string this sequence originates from (S or T ), and

b) can return the longest common substring among pairs of elements originating from
different strings that is aligned by a pair of specified blocks (that are equal to B).

For each substitution in either of the strings, we would only need to update O(logn) entries
in our data structures – a constant number of them per level.

Unfortunately, it is not clear how to maintain a decomposition with these properties. We
resort to the dynamic maintenance of a locally consistent parsing of the two strings, due
to Gawrychowski et al. [15]. We exploit the structure of this parsing in order to apply the
high-level idea outlined above in a much more technically demanding setting.

4.1 Locally Consistent Parsing
The authors of [15] settled the time complexity of maintaining a collection of stringsW under
the following operations: makestring(W ) (insert a non-empty string W ), concat(W1,W2)
(insert W1W2 to W , for W1,W2 ∈ W), split(W, i) (split the string W at position i and insert
both resulting strings to W, for W ∈ W), lcp(W1,W2) (return the length of the longest
common prefix of W1 and W2, for W1,W2 ∈ W). Let us note that operations concat and
split do not remove their arguments from W. A substitution can be implemented with a
constant number of calls to such operations.
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I Theorem 12 (Gawrychowski et al. [15]). A collection W of strings of total length n can be
dynamically maintained under operations makestring(W ), concat(W1,W2), split(W, i), and
lcp(W1,W2) with the operations requiring time O(logn+ |W |), O(logn), O(logn) worst-case
time with high probability and O(1) worst-case time, respectively.

At the heart of Theorem 12 lies a locally consistent parsing of the strings in the collection
that can be maintained efficiently while the strings undergo updates. It can be interpreted
as a dynamic version of the recompression method of Jeż [18,19] (see also [17]) for a static
string T . As such, we first describe the parsing of Theorem 12 for a static string T and then
extend the description to the dynamic variant for a collection of strings.

A run-length straight line program (RLSLP) is a context-free grammar which generates
exactly one string and contains two kinds of non-terminals: concatenations with production
rule of the form A→ BC (for symbols B,C) and powers with production rule of the form
A→ Bk (for a symbol B and an integer k ≥ 2), where a symbol can be a non-terminal or a
letter in Σ. Every symbol A generates a unique string denoted by gen(A).

Let T = T0. We can compute strings T1, . . . , TH , where H = O(logn) and |TH | = 1 in
O(n) time using interleaved calls to the following two auxiliary procedures:
RunCompress applied if h is even: for each Br, r > 1, replace all occurrences of Br as a

run by a new letter A. There are no runs after an application of this procedure.1

HalfCompress applied if h is odd: first partition Σ into Σ` and Σr; then, for each pair of
letters B ∈ Σ`, C ∈ Σr such that BC occurs in Th replace all occurrences of BC by a
new letter A.

We can interpret strings T = T0, T1, . . . , TH as an uncompressed parse tree PT(T ), by
considering their letters as nodes, so that the parent of Th[i] is the letter of Th+1 that either
(a) corresponds to Th[i] or (b) replaced a fragment of Th containing Th[i]. We say that
the node representing Th[i] is the node left (resp. right) of the node representing Th[i+ 1]
(resp. Th[i− 1]). Every node v of PT(T ) is labeled with the symbol it represents, denoted by
L(v). For a node v corresponding to a letter of Th, we say that the level of v, denoted by
lev(v), is h. The value val(v) of a node v is defined as the fragment of T corresponding to
the leaf descendants of v and it is an occurrence of gen(A) for A = L(v).

We define a layer to be any sequence of nodes v1v2 · · · vr in PT(T ) whose values are
consecutive fragments of T , i.e. val(vj) = T [rj−1 + 1 . . rj ] for some increasing sequence of ri’s.
The value of a layer C is the concatenation of the values of its elements and is denoted by
val(C). We similarly use gen(·) for sequences of symbols, to denote the concatenation of the
strings generated by them. We call a layer v1v2 · · · vr an up-layer when lev(vi) ≤ lev(vi+1)
for all i, and a down-layer when lev(vi) ≥ lev(vi+1) for all i.

In [15], the authors show how to maintain an RLSLP for each string in the collection,
each with at most c logn levels for some global constant c with high probability. Let T be a
string in the collection. For each fragment U = T [a . . b] of T , one can compute in O(logn)
time a context insensitive decomposition that consists in a layer C(U) of nodes in PT(T ) with
value T [a . . b] and has the following property. It can be decomposed into an up-layer Cup(U)
and a down-layer Cdown(U) such that:

The sequence of the labels of the nodes in Cup(U) can be expressed as a sequence of at
most c logn symbols and powers of symbols dup(U) = Ar0

0 A
r1
1 · · ·Arm

m such that, for all i,
Ari
i corresponds to ri consecutive nodes at level i of PT(T ); ri can be 0 for i < m.

1 A fragment T [i . . j] = Br is a run if it is a maximal fragment consisting of Bs.
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Similarly, the sequence of the labels of the nodes in Cdown(U) can be expressed as a
sequence of at most c logn symbols and powers of symbols ddown(U) = Btmm B

tm−1
m−1 · · ·B

t0
0

such that, for all i, Btii corresponds to ti consecutive nodes at level i of PT(T ); ti can be
equal to 0.

We denote by d(U) the concatenation of dup(U) and ddown(U). Note that U = gen(d(U)) =
gen(A0)r0 · · · gen(Am)rmgen(Bm)tm · · · gen(B0)t0 . See Figure 1 for a visualization. The
parsing of the strings enjoys local consistency in the following way: d(U) = d(V ) for any
fragment V of any string in the collection such that U = V . We will slightly abuse notation
and use the term “context insensitive decomposition” to refer to both d(U) and C(U). In
addition, we also use d(·) for substrings and not just for fragments.

a b a b a b a a b b c d a b a b a b c d

RunCompress

RunCompress

HalfCompress

HalfCompress

RunCompress

RunCompress

HalfCompress

HalfCompress

e f

g g g g g gh h

kk

` m

p q

r

Figure 1 An example PT(T ) for T = T0 = abababaabbcdabababcd. We omit the label of each
node v with a single child u; L(v) = L(u). T3 = kefhkh and T6 = pq. We denote the nodes Cup(T )
by red (filled) squares and the nodes of Cdown(T ) with blue (unfilled) squares. dup(T ) = abg2`,
ddown(T ) = hg3cd and hence d(T ) = abg2`hg3cd.

Let us consider any sequence of nodes corresponding, for some j < m, to Arj

j with rj > 1
or Btjj with tj > 1. We note that Tj must have been obtained from Tj−1 by an application of
HalfCompress, since there are no runs after an application of procedure RunCompress. Thus,
at level j + 1 in PT(T ), i.e. the one corresponding to Tj+1, all of these nodes collapse to a
single one: their parent in PT(T ). Hence, we have the following lemma.

I Lemma 13. Let U be a fragment of T with dup(U) = Ar0
0 A

r1
1 · · ·Arm

m and ddown(U) =
Btmm B

tm−1
m−1 · · ·B

t0
0 . Then we have the following:

The value of Cup(U) is a suffix of the value of a layer Lup of (at most) c logn+ rm − 1
level-m nodes, such that the two layers have the same rightmost node. The last rm nodes
are consecutive siblings with label Am.
The value of Cdown(U) is a prefix of the value of the layer Ldown consisting of the subsequent
(at most) c logn + max(tm − 1, 0) level-m nodes. If tm 6= 0, then the first tm nodes of
Ldown are consecutive siblings with label Bm 6= Am.
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The parse trees of the strings in the collection are not maintained explicitly. However,
we have access to the following pointers and functions, among others, which allow us to
efficiently navigate through them. First, we can get a pointer to the root of PT(T ) for any
string T in the collection. Given a pointer P to some node v in PT(T ) we can get deg(v)
and pointers to the parent of v, the k-th child of v and the nodes to the left/right of v.

Let us now briefly explain how the dynamic data structure of [15] processes a substitution
in T at some position i, that yields a string T ′. First, the context insensitive decompositions
of T [. . i− 1] and T [i+ 1 . .] are retrieved. These, together with the new letter at position i

form a layer of PT(T ′). The sequence of the labels of the nodes of this layer can be expressed
as a sequence of O(logn) symbols and powers of symbols. Then, only the portion of PT(T )
that lies above this layer needs to be (implicitly) computed, and the authors of [15] show how
to do this in O(logn) time. In total, we get PT(T ′) from PT(T ) through O(log2 n) insertions
and deletions of nodes and layers that consist of consecutive siblings.

4.2 Anchoring the LCS
We will rely on Lemma 13 in order to identify an LCS S[i . . j] = T [i′ . . j′] at a pair of topmost
nodes of the context insensitive decompositions of S[i . . j] and T [i′ . . j′] in PT(S) and PT(T ),
respectively. In order to develop some intuition, let us first sketch a solution for the case
that PT(S) and PT(T ) do not contain any power symbols throughout the execution of our
algorithm. For each node v in one of the parse trees, let Z`(v) be the value of the layer
consisting of the (at most) c logn level-lev(v) nodes, with v being the layer’s rightmost node,
and Zr(v) be the value of the layer consisting of the (at most) c logn subsequent level-lev(v)
nodes. Now, consider a common substring X of S and T and partition it into the prefix
X` = gen(dup(X)) and the suffix Xr = gen(ddown(X)). For any fragment U of S that equals
X, Cup(U) is an up-layer of the form v1 · · · vm. Hence, by Lemma 13, X` is a suffix of Z`(vm).
Similarly, Xr is a prefix of Zr(vm). Thus, it suffices to maintain pairs (Z`(v),Zr(v)) for all
nodes v in PT(S) and PT(T ), and, in particular, a pair of nodes u ∈ PT(S) and v ∈ PT(T )
that maximizes lcp(Z`(u)R,Z`(v)R) + lcp(Zr(u),Zr(v)). The existence of power symbols poses
some technical challenges which we overcome below.

For each node of PT(T ), we consider at most one pair consisting of an up-layer and a
down-layer. The treatment of nodes differs, based on their parent. We have two cases.
1. For each node z with deg(z) = 2 and L(z) being a concatenation symbol, for each child v

of z, we consider the following layers:
The up-layer Jup(v) of the (at most) c logn level-lev(v) consecutive nodes of PT(T )
with v a rightmost node.
The down-layer Jdown(v) of the (at most) p level-lev(v) subsequent level-lev(v) nodes
of PT(T ). If the node to the right of v is a child of a node w with more than two
children, then p = c logn+ deg(w). Otherwise p = c logn.

2. For each node z of PT(T ) whose label is a power symbol and has more than one child, we
will consider O(logn) pairs of layers. In particular, for each v, being one of the c logn+ 1
leftmost or c logn+ 1 rightmost children of z, we consider the following layers:

The up-layer Jup(v) defined as the concatenation of (a) the (at most) c logn level-lev(v)
consecutive nodes of PT(T ) preceding the leftmost child of z and (b) all the children
of z that lie weakly to the left of v, i.e. including v.
The down-layer Jdown(v) of the (at most) c logn subsequent level-lev(v) nodes of PT(T )
– with one exception. If v is the rightmost child of z and the node to its right is a child
of a node w with more than two children, then Jdown(v) consists of the c logn+ deg(w)
subsequent level-lev(v) nodes.

I C A L P 2 0 2 0



27:12 Dynamic Longest Common Substring in Polylogarithmic Time

In particular, we create at most one pair (Jup(v), Jdown(v)) of layers for each node v of
PT(T ). Let Y`(v) = val(Jup(v)) and Yr(v) = val(Jdown(v)). Given a pointer to a node z in
PT(T ), we can compute the indices of the fragments corresponding to those layers with
straightforward use of the pointers at hand in O(logn) time. With a constant number of
split operations, we can then add the string Yr(v) to our collection within O(logn) time.
Similarly, if we also maintain TR in our collection of strings, we can add the reverse of Y`(v)
to the collection within O(logn) time. We maintain pointers between v and these strings.
Note that each node of PT(T ) takes part in O(logn) pairs of layers and these pairs can be
retrieved in O(logn) time. Similarly, for each node whose label is a power symbol, subsets
of its children appear in O(logn) pairs of layers; these can also be retrieved in O(logn)
time. Thus, throughout the updates on T , which delete/insert O(log2 n) nodes and layers of
consecutive siblings, we can maintain the pairs of layers in Õ(1) time. These pairs of layers
(or rather the pairs of their corresponding strings maintained in a dynamic collection) will
be stored in an abstract structure presented in the next section. In order to keep the space
occupied by our data structure Õ(n), after every n updates to the collection we delete our
data structure, and initialize a new instance of it for an empty collection, on which we call
makestring(S) and makestring(T ). The cost of this reinitialization can be deamortized using
standard techniques. We summarize the above discussion in the following lemma.

I Lemma 14. We can maintain pairs (Y`(v)R,Yr(v)) for all v in PT(T ) and PT(S), with
each string given as a handle from the dynamic collection, in Õ(1) time per substitution,
using Õ(n) space.

I Remark 15. Note that the above lemma holds in the case that insertions and deletions are
also allowed in S and T , as each such update operation is processed similarly to substitution
and affects Õ(1) pairs (Y`(v)R,Yr(v)). Everything that follows in this section is oblivious to
the kind of operations allowed in S and T .

The following lemma gives us an anchoring property, which is crucial for our approach.

I Lemma 16. For any common substring X of S and T , there exists a partition X = X`Xr

for which there exist nodes u ∈ PT(S) and v ∈ PT(T ) such that:
1. X` is a suffix of Y`(u) and Y`(v), and
2. Xr is a prefix of Yr(u) and Yr(v).

Proof. Let dup(X) = Ar0
0 A

r1
1 · · ·Arm

m and ddown(X) = Btmm B
tm−1
m−1 · · ·B

t0
0 .

B Claim 17. Either rm > 1, tm = 0 and gen(dup(X)) is not a suffix of Ac logn+rm
m or there

exists a node v ∈ PT(T ) such that:
1. gen(dup(X)) is a suffix of Y`(v), and
2. gen(ddown(X)) is a prefix of Yr(v).

Proof. We assume that rm = 1 or gen(dup(X)) is a suffix of Ac logn+rm
m or tm 6= 0 and

distinguish between the following cases.
Case 1. There exists an occurrence Y of X in T , where the label of the parent of the

rightmost node u of Cup(Y ) is not a power symbol. (In this case rm = 1.) Recall here, that
we did not construct any pairs of layers for nodes whose parent has a single child. Let v be
the highest ancestor of u with label Am. If u 6= v then all nodes that are descendants of v
and strict ancestors of u have a single child, while the parent of v does not. In addition, the
label of the parent of v must be a concatenation symbol, since only new letters are introduced
at each level and thus we cannot have new nodes with label Am appearing to the left/right
of any strict ancestor of u. Finally, note that a layer of k level-lev(v) nodes with v a leftmost
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(resp. rightmost) node contains an ancestor of each of the nodes in a layer of k level-lev(u)
nodes with u a leftmost (resp. rightmost) node. Thus, an application of Lemma 13 for u
straightforwardly implies our claim for v.

Case 2. There exists an occurrence Y of X in T , where the label of the parent z of the
rightmost node u of Cup(Y ) is a power symbol. Let W be the rightmost occurrence of X in
T such that the rightmost node w of Cup(W ) is a child of z. We have three subcases.
a) We first consider the case rm = 1. Let us assume towards a contradiction that u is not one

of the c logn+1 leftmost or the c logn+1 rightmost children of z. Then, by Lemma 13 we
have that gen(dup(X)) is a suffix of Ac logn

m and gen(ddown(X)) is a prefix of Ac logn
m . Hence,

there is another occurrence of X |gen(Am)| positions to the right of Y , contradicting our
assumption that Y is a rightmost occurrence.

b) In the case that tm 6= 0, u must be the rightmost child of z since Am 6= Bm.
c) In the remaining case that gen(dup(X)) is a suffix of Ac logn+rm

m , either tm > 0 and we
are done, or gen(Cdown(Y )) is a prefix of the value of the (at most) c logn level-m nodes
to the right of u. In the latter case, either u is already among the rightmost c logn+ 1
children of z or there is another occurrence of X |gen(Am)| positions to the right of Y ,
contradicting our assumptions on Y . C

We have to treat a final case.

B Claim 18. If rm > 1, tm = 0 and gen(dup(X)) is not a suffix of Ac logn+rm
m then there

exists a node v ∈ PT(T ) such that:
1. gen(Ar0

0 A
r1
1 · · ·A

rm−1
m−1 Am) is a suffix of Y`(v), and

2. gen(Am)rm−1gen(ddown(X)) is a prefix of Yr(v).

Proof. In any occurrence of X in T , the label of the parent z of the rightmost node of Cup(Y )
is a power symbol. Let u be the rm-th rightmost node of Cup(Y ). By the assumption that
gen(dup(X)) is not a suffix of Ac logn+rm

m and Lemma 13, u must be one of the c logn leftmost
children of z. C

The combination of the two claims applied to both S and T yields the lemma. J

4.3 A Problem on Dynamic Bicolored Trees
Due to Lemmas 14 and 16, our task reduces to solving the problem defined below in
polylogarithmic time per update, as we can directly apply it to R = {(Y`(u)R,Yr(u)) : u ∈
PT(S)} and B = {(Y`(v)R,Yr(v)) : v ∈ PT(T )}. Note that |R|+ |B| = Õ(n) throughout the
execution of our algorithm.

Problem: LCP for Two Families of Pairs of Strings
Input: Two families R and B, each consisting of pairs of strings, where each string is
given as a handle from a dynamic collection.
Update: Insertion or deletion of an element in R or B.
Query: Return (P,Q) ∈ R and (P ′, Q′) ∈ B that maximize lcp(P, P ′) + lcp(Q,Q′).

Each element of B and R is given a unique identifier. We maintain two compacted
tries TP and TQ. By appending unique letters, we can assume that no string is a prefix of
another string. TP (resp. TQ) stores the string P (resp. Q) for every (P,Q) ∈ R, with the
corresponding leaf colored red and labeled by the identifier of the pair and the string P ′
(resp. Q′) for every (P ′, Q′) ∈ B, with the corresponding leaf colored blue and labeled by the
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identifier of the pair. Then, the sought result corresponds to a pair of nodes u ∈ TP and v ∈ TQ
returned by a query to a data structure for the Dynamic Bicolored Trees Problem
defined below for T1 = TP and T2 = TQ, with node weights being their string-depths.

Problem: Dynamic Bicolored Trees Problem
Input: Two weighted trees T1 and T2 of total size at most m, whose leaves are bicolored
and labeled, so that each label corresponds to exactly one leaf of each tree.
Update: Split an edge into two / attach a new leaf to a node / delete a leaf.
Query: Return a pair of nodes u ∈ T1 and v ∈ T2 with the maximum combined
weight that have at least one red descendant with the same label, and at least one blue
descendant with the same label.

To complete the reduction, we have to show how to translate an update in R or B into
updates in TP and TQ. Let us first explain how to represent TP and TQ. For each edge, we
store a handle to a string from the dynamic collection, and indices for a fragment of this
string which represents the edge’s label. For each explicit node, we store edges leading to
its children in a dictionary structure indexed by the first letters of the edges’ labels. For
every leaf, we store its label and color. An insert operation receives a string (given as a
handle from a dynamic collection), together with its label and color, and should create its
corresponding leaf. A delete operation does not actually remove a leaf, but simply removes
its label. However, in order to not increase the space complexity, we rebuild the whole data
structure from scratch after every m updates. This rebuilding does not incur any extra cost
asymptotically; the time required for it can be deamortized using standard techniques.

I Lemma 19. Each update in R or B implies O(1) updates in TP and TQ that can be
computed in O(logn) time.

Proof. Inserting a new leaf, corresponding to string U , to TP requires possibly splitting
an edge into two by creating a new explicit node, and then attaching a new leaf to an
explicit node. To implement this efficiently, we maintain the set C of path-labels of explicit
nodes of TP in a balanced search tree, sorted in lexicographic order. Using lcp queries
(cf. Theorem 12), we binary search for the longest prefix U ′ of U that equals the path-label
of some implicit or explicit node of TP . If this node is explicit, then we attach a leaf to
it. Otherwise, let the successor of U ′ in C be the path-label of node v. We split the edge
(parent(v), v) appropriately and attach a leaf to the newly created node. This allows us to
maintain TP after each insert operation in O(logn) time.

For a delete operation, we can access the leaf corresponding to the deleted string in
O(logn) time using the balanced search tree. J

It thus suffices to show a solution for the Dynamic Bicolored Trees Problem that
processes each update in polylogarithmic time.

We will maintain a heavy-light decomposition of both T1 and T2. This can be done by
using a standard method of rebuilding as used by Gabow [13]. Let L(u) be the number of
leaves in the subtree of u, including the leaves without labels, when the subtree was last
rebuilt. Each internal node u of a tree selects at most one child v and the edge (u, v) is heavy.
All other edges are light. Maximal sequences of consecutive heavy edges are called heavy
paths. The node r(p) closest to the root of the tree is called the root of the heavy path p and
the node e(p) furthest from the root of the tree is called the end of the heavy path. The
following procedure receives a node u of the tree and recursively rebuilds its subtree.
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1: function decompose(u, r) . r is the root of the heavy path containing u.
2: S ← children(u)
3: v ← argmaxv∈S L(v)
4: if L(v) ≥ 5

6 · L(u) then
5: edge (u, v) is heavy
6: decompose(v, r)
7: S ← S \ {v}
8: for v ∈ S do
9: decompose(v, v)

Every root u of a heavy path maintains the number of insertions I(u) in its subtree since
it was last rebuilt. When I(u) ≥ 1

6 ·L(u), we recalculate the values of L(v) for nodes v in the
subtree of u and call decompose(u, u). This maintains the property that L(e(p)) ≥ 2

3L(r(p))
for each heavy path p and leads to the following.

I Proposition 20. There are O(logm) heavy paths above any node.

As rebuilding a subtree of size s takes O(s) time, by a standard potential argument, we
get the following.

I Lemma 21. The heavy-light decompositions of T1 and T2 can be maintained in O(logm)
amortized time per update.

The main ingredient of our structure is a collection of additional structures, each storing
a dynamic set of points. Each such point structure sends its current result to a max-heap,
and after each update we return the largest element stored in the heap. The problem each of
these point structures are designed for is the following.

Problem: Dynamic Best Bichromatic Point
Input: A multiset of at most m bicolored points from [m]× [m].
Update: Insertions and deletions of points from [m]× [m].
Query: Return a pair of points R = (x, y) and B = (x′, y′) such that R is red, B is
blue, and min(x, x′) + min(y, y′) is as large as possible.

We call the pair of points sought in this problem the best bichromatic pair of points.
In Section 4.4 we explain how to modify range trees in order to obtain the following result.

I Lemma 22. There is a data structure for Dynamic Best Bichromatic Point that
processes each update in O(log2 m) amortized time.

Conceptually, we maintain a point structure for every pair of heavy paths from TP and
TQ. However, the total number of points stored in all structures at any moment is only
O(m log2 m) and the empty structures are not actually created. Consider heavy paths p of
T1 and q of T2. Let ` be a label such that there are leaves u in the subtree of r(p) in T1 and
v in the subtree of r(q) in T2 with the same color and both labeled by `. Then, the point
structure should contain a point (x, y) with this color, where x and y are the string-depths
of the nodes of p and q containing u and v in their light subtrees, respectively. It can be
verified that then the answer extracted from the point structure is equal to the sought result,
assuming that the corresponding pair of nodes belongs to p and q, respectively. It remains
to explain how to maintain this invariant when both trees undergo modifications.

I C A L P 2 0 2 0
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Splitting an edge does not require any changes to the point structures. Each label appears
only once in T1 and T2, and hence by Proposition 20 contributes to only O(log2 m) point
structures. Furthermore, by navigating the heavy path decompositions we can access these
structures efficiently. This allows us to implement each deletion in O(log4 m) amortized time,
employing Lemma 22. To implement the insertions, we need to additionally explain what
to do after rebuilding a subtree of u. In this case, we first remove all points corresponding
to leaves in the subtree of u, then rebuild the subtree, and then proceed to insert points to
existing and potentially new point structures. This can be amortized by the same standard
potential argument if we add another factor of O(log2 n) in the analysis to account for the
fact that we add a point in O(log2 n) point structures for each leaf in the subtree of u. Thus,
insertions require O(log5 n) amortized time as well.

Wrap-up. Lemma 16 reduces our problem to the LCP for Two Families of Pairs of
Strings problem for sets R and B of size Õ(n), so that each substitution in S or T yields
Õ(1) updates to R and B, which can be computed in Õ(1) time due to Lemma 14. The
LCP for Two Families of Pairs of Strings problem is then reduced to the Dynamic
Bicolored Trees Problem for trees T1 and T2 of size Õ(n), so that each update in R or
B yields O(1) updates to the trees, which can be computed in O(logn) time (Lemma 19).
We solve the latter problem by maintaining a heavy-light decomposition of each of the trees
in O(logn) amortized time per update (Lemma 21), and an instance of a data structure for
the Dynamic Best Bichromatic Point problem for each pair of heavy paths. For each
update to the trees, we spend O(log5 n) amortized time to update the point structures.

4.4 Dynamic Best Bichromatic Point
In this section we prove Lemma 22, i.e. design an efficient data structure for the Dynamic
Best Bichromatic Point problem.

With standard perturbation, we can guarantee that all x and y coordinates of points
are distinct. We maintain an augmented dynamic 2D range tree [31] over the multiset of
points. This is a balanced search tree T (called primary) over the x coordinates of all points
in the multiset in which every x coordinate corresponds to a leaf and, more generally, every
node u ∈ T corresponds to a range of x coordinates denoted by x(u). Additionally, every
u ∈ T stores another balanced search tree Tu (called secondary) over the y coordinates of all
points (x, y) ∈ S such that x ∈ x(u). Thus, the leaves of Tu correspond to y coordinates of
such points, and every v ∈ Tu corresponds to a range of y coordinates denoted by y(v). We
interpret every v ∈ Tu as the rectangular region of the plane x(u)× y(v), and, in particular,
each leaf v ∈ Tu corresponds to a single point in the multiset. Each node v ∈ Tu will be
augmented with some extra information that can be computed in constant time from the extra
information stored in its children. Similarly, each node u ∈ T will be augmented with some
extra information that can be computed in constant time from the extra information stored
in its children together with the extra information stored in the root of the secondary tree
Tu. Irrespectively of what this extra information is, as explained by Willard and Lueker [31],
if we implement the primary tree as a BB(α) tree and each secondary tree as a balanced
search tree, each insertion and deletion can be implemented in O(log2 m) amortized time.

Before we explain what is the extra information, we need the following notion. Consider
a non-leaf node u ∈ T and let u`, ur ∈ T be its children. Let v ∈ Tu be a non-leaf node with
children v`, vr ∈ Tu. The regions A = x(u`)× y(v`), B = x(u`)× y(vr), C = x(ur)× y(v`)
and D = x(ur)×y(vr) partition x(u)×y(v) into four parts. We say that two points p = (x, y)
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Figure 2 Left: A 2D range tree. Right: Node representing regions A, B, C, D. The best pair for
each case is denoted by a small square.

and q = (x′, y′) with x < x′ are shattered by v ∈ Tu if and only if p ∈ A and q ∈ D or p ∈ B
and q ∈ C (note that the former is only possible when y < y′ while the latter can only hold
when y > y′).

I Proposition 23. Any pair of points in the multiset is shattered by a unique v ∈ Tu (for a
unique u).

Now we are ready to describe the extra information. Each node u ∈ T stores the best
bichromatic pair with x coordinates from x(u). Each node v ∈ Tu stores the best bichromatic
pair shattered by one of its descendants v′ ∈ Tu (possibly v itself). Additionally, each node
v ∈ Tu stores the following information about points of each color in its region:
1. the point with the maximum x,
2. the point with the maximum y,
3. a point with the maximum x+ y.
We need to verify that such extra information can be indeed computed in constant time from
the extra information stored in the children.

I Lemma 24. Let v ∈ Tu be a non-leaf node, and v`, vr be its children. The extra information
of v can be computed in constant time given the extra information stored in v` and vr.

Proof. This is clear for the maximum x, y and x + y of each color, as we can take the
maximum of the corresponding values stored in the children. For the best bichromatic
pair shattered by a descendant v′ of v, we start with considering the best bichromatic
pair shattered by a descendant v′` of v` and v′r of vr. The remaining case is that the best
bichromatic pair is shattered by v itself. Let A,B,C,D be as in the definition of shattering.
Without losing generality we assume that the sought pair is p = (x, y) and q = (x′, y′) with
x < x′, red p and blue q. We consider two cases:
1. p ∈ A and q ∈ D: the best such pair is obtained by taking p with the maximum x+ y

and any q,
2. p ∈ B and q ∈ C: the best such pair is obtained by taking p with the maximum x and q

with the maximum y.
In both cases, we are able to compute the best bichromatic pair shattered by v using the
extra information stored at the children of v. See Figure 2. J

I Lemma 25. Let u ∈ T be a non-leaf node, and u`, ur be its children. The extra information
of v can be computed in constant time given the extra information stored in v`, vr and the
root of Tu.

Proof. We seek the best bichromatic pair with x coordinates from x(u). If the x coordinates
are in fact from x(u`) or x(ur), we obtain the pair from the children of u. Otherwise, the
pair must be shattered by some v ∈ Tu that is a descendant of the root of Tu, so we obtain
the pair from the root of Tu. J

I C A L P 2 0 2 0
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Abstract
We close the gap between black-box and non-black-box constructions of composable secure multiparty
computation in the plain model under the minimal assumption of semi-honest oblivious transfer.
The notion of protocol composition we target is angel-based security, or more precisely, security with
super-polynomial helpers. In this notion, both the simulator and the adversary are given access to
an oracle called an angel that can perform some predefined super-polynomial time task. Angel-based
security maintains the attractive properties of the universal composition framework while providing
meaningful security guarantees in complex environments without having to trust anyone.

Angel-based security can be achieved using non-black-box constructions in max(ROT, Õ(logn))
rounds where ROT is the round-complexity of semi-honest oblivious transfer. However, current best
known black-box constructions under the same assumption require max(ROT, Õ(log2 n)) rounds. If
ROT is a constant, the gap between non-black-box and black-box constructions can be a multiplicative
factor logn. We close this gap by presenting a max(ROT, Õ(logn)) round black-box construction.
We achieve this result by constructing constant-round 1-1 CCA-secure commitments assuming only
black-box access to one-way functions.
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1 Introduction

Secure multiparty computation (MPC) [79, 24] enables two or more mutually distrustful
parties to compute any functionality without compromising the privacy of their inputs. These
early results [79, 24], along with a rich body of followup work that refined and developed
the concept [25, 5, 65, 7, 73, 8], demonstrated the feasibility of general secure computation
and its significance to secure protocol design. The existence of semi-honest oblivious transfer
(OT) was established by Kilian [49] as the minimal, i.e., necessary and sufficient, assumption
for general secure computation. The focus of this work is on black-box constructions of
composable MPC protocols. We discuss these two aspects.

EA
T

C
S

© Rohit Chatterjee, Xiao Liang, and Omkant Pandey;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 28; pp. 28:1–28:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rochatterjee@cs.stonybrook.edu
mailto:liang1@cs.stonybrook.edu
mailto:omkant@cs.stonybrook.edu
https://doi.org/10.4230/LIPIcs.ICALP.2020.28
https://eprint.iacr.org/2020/494
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 Improved Black-Box Constructions of Composable Secure Computation

Black-Box constructions. A construction is black-box if it does not refer to the code of
any cryptographic primitive it uses, and only depends on their input/output behavior. Such
constructions are usually preferable since their efficiency is not affected by the implementation
details of the underlying cryptographic primitives; moreover, they remain valid and applicable
if the code of the underlying primitives is simply not available, e.g., in case of constructions
based on hardware tokens [64, 23, 46, 28, 38].

Early constructions of general-purpose MPC were non-black-box in nature particularly
due to NP-reductions required by underlying zero-knowledge proofs [24]. Ishai et al. [41]
presented the first black-box construction of general purpose MPC based on enhanced
trapdoor permutations or homomorphic public-key encryption schemes. Together with
the subsequent work of Haitner [36], this provided a black-box construction of a general
MPC protocol under minimal assumptions (i.e., semi-honest OT). The round complexity of
black-box MPC was improved to O(log∗ n) rounds by Wee [78], and to constant rounds by
Goyal [26]. In the two party setting, a constant round construction was first obtained by Pass
and Wee [72], and subsequently a 5-round construction was given by Ostrovsky, Richelson,
and Scafuro [68], which is known to be optimal by the results of Katz and Ostrovsky [47].

Composable security. The notion of security considered in early MPC works is called
standalone security since it only considers a single execution of the protocol. Stronger
notions of security are required for complex environments such as the Internet where several
MPC protocols may run concurrently. This setting is often referred to as the concurrent
setting, and unfortunately, as shown by Feige and Shamir [19], stand-alone security does not
necessarily imply security in the concurrent setting.

To address this issue, Canetti [8] proposed the notion of universally composable (UC)
security which has two important properties: concurrent security and modular analysis. The
former means that UC secure protocols maintain their security in the presence of other
concurrent protocols and the latter means that the security of a larger protocol in the UC
framework can be derived from the UC security of its component protocols. This latter
property is stated as a composition theorem which, roughly speaking, states that UC is
closed under composition [8]. Unfortunately, UC security turns out to be impossible in the
plain model for most tasks [8, 9, 11]. Relaxations of UC that consider composing the same
protocol were also ruled out by Lindell [59, 60].

These strong negative results motivated the search for alternative notions of concurrent
security in the plain model by endowing more power to the simulator such as super-polynomial
resources [69, 75, 6], ability to receive multiple outputs [30, 29], or resorting to weaker notions
such as bounded concurrency [1, 70], input indistinguishability [63], or a combination
thereof [27]. While all of these notions were (eventually) achieved under polynomial hardness
assumptions [75, 4, 62, 12, 21, 55, 71, 52, 50, 32, 6, 22], only angel-based security by
Prabhakaran and Sahai [75] (including its extension to interactive angels by Canetti, Lin,
and Pass [12]) and shielded-oracle security by Broadnax et al. [6] are known to have the
modular analysis property, i.e., admitting a composition theorem along the lines of UC. We
focus on angel-based security in this work since it arguably has somewhat better composition
properties than shielded oracles.1

1 As noted in [6], shielded oracle security does not technically have the modular analysis property and is
actually strictly weaker than angel-based. Nevertheless, it is still “compatible” with the UC framework –
the security of a composed protocol can be derived from that of its components.
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Angel based security is similar to UC except that it allows the simulator as well as the
adversary access to a super-polynomial resource called an “angel” which can perform a
pre-defined task such as inverting a one-way function. Early constructions of angel-based
security were based on non-standard assumptions [75, 4, 62]. The beautiful work of Canetti
et al. [12] presented the first construction under polynomial hardness assumptions, and
the subsequent work of Goyal et al. [32] improved the round complexity to Õ(log λ) under
general assumptions.

The first black-box construction of angel-based security was obtained by Lin and Pass [55],
under the minimal assumption of semi-honest OT. The main drawback of [55] is that it
requires polynomially many rounds even if the underlying OT protocol has constant rounds.
To address this situation, Kiyoshima [50] presented a Õ(log2 λ)-round construction assuming
constant-round semi-honest OT (or alternatively, max(Õ(log2 λ), O(ROT)) rounds where
ROT is OT’s round-complexity). We remark that Broadnax et al. [6] present a constant-
round black-box construction for (the weaker but still composable) shielded-oracle security
(utilizing prior work by Hazay and Venkitasubramaniam [39] who provide a constant-round
protocol in the CRS-hybrid model); however, they require stronger assumptions, specifically,
homomorphic commitments and public-key encryption with oblivious public-key generation.

State of the art. To summarize our discussion above, under the minimal assumption
of polynomially secure semi-honest OT, the best known round complexity of black-box
constructions for angel-based security, and in fact any composable notion with modular
analysis property, is due to Kiyoshima [50] which requires max(Õ(log2 λ), O(ROT)) rounds.
This is in contrast to the non-black-box construction of Goyal et al. [32] which requires
only max(Õ(log λ), O(ROT)) rounds. Therefore, there is a multiplicative gap of Õ(log λ)
between the round-complexities of state-of-the-art black-box and non-black-box constructions
of angel-based MPC if, e.g., semi-honest OT has at most logarithmic rounds.

1.1 Our Results
In this work, we prove the following theorem, thus closing the gap between the round
complexity of black-box and non-black-box constructions of angel-based MPC under minimal
assumptions:

I Theorem 1 (Main). Assume the existence of ROT-round semi-honest oblivious transfer
protocols. Then, there exists a max(Õ(log λ), O(ROT))-round black-box construction of a
general MPC protocol that satisfies angel-based UC security in the plain model.

Note that this yields a Õ(log λ)-round construction under the general assumption of enhanced
trapdoor permutations since they imply constant-round semi-honest OT.

We follow the framework of [12] and its extensions in [55, 50]. The main building block
[12] is a special commitment scheme called a CCA-Secure Commitment. Roughly speaking,
a CCA-secure commitment is a tag-based commitment scheme that maintains hiding even
in the presence of a decommitment oracle O. More specifically, the adversary receives one
commitment from an honest committer and may simultaneously make concurrently many
commitments to O (similar to non-malleable commitments [17]). The oracle immediately
extracts and sends back any value adversary commits successfully provided that it used a
tag that is different from the one used by the honest committer. Lin and Pass [55] show that
O(max(RCCA,ROT))-round black-box angel-based MPC can be obtained from a RCCA-round
CCA commitment and a ROT-round semi-honest OT protocol. Kiyoshima [50] demonstrated
that Õ(k · log λ)-round CCA-secure commitments can be obtained in a black-box manner
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from a k-round commitment scheme with slightly weaker security called “one-one CCA”
where the adversary can open only one session each with the committer as well as the oracle;
they further construct a O(log λ)-round one-one CCA scheme from one-way functions in a
black-box manner.

We instead present a constant round construction of one-one CCA, which implies Õ(log λ)-
round (full) CCA commitments using [50] (and Theorem 1 using [55]):

I Theorem 2 (CCA Secure Commitments). Assume the existence of one-way functions. Then,
there exists a Õ(log λ)-round black-box construction of a CCA-secure commitment scheme.

1.2 Overview of Techniques
Current approaches. Let us briefly review the current approaches for constructing CCA
secure commitments. The main difficulty in constructing CCA secure commitments under
polynomial hardness is to move from the real world – which contains the exponential time
decommitment oracle O– to a hybrid where O’s responses can be efficiently simulated. A
standard way to do this is to use a argument-of-knowledge (AoK): the protocol should require
the (man-in-the-middle) adversary, say A, to give a AoK of the value it commits. The main
difficulty in employing this is that A may open concurrently many sessions with O (referred
here to as “right” side sessions), interleaved in an arbitrary manner; furthermore, these values
have to be extracted immediately within each session irrespective of what happens in other
sessions. This is precisely the issue in constructing (black-box simulatable) concurrent zero-
knowledge (CZK) protocols [18] as well, and ideas from there are applied in this setting too.
A second difficulty is that these extractions must happen without rewinding the commitment
A receives (referred to as “left” side session).

It is worthwhile to quickly recall the (tag based) non-malleable commitment construction
in the original work of [17]. In this construction, A has only one right session; to prove that
the value on the right is (computationally) independent from that on the left, the value on
the right is extracted without rewinding the sensitive parts of the left side commitments.
This is done by creating two types of AoK– one each for two possible values of a bit. These
AoK create rewinding “slots” for extraction such that if A uses a different bit in the tag, it
risks the possibility of having to perform a AoK on its own – i.e., without any “dangerous”
rewinding on the left – in one of the slots (called a “free” slot). These special AoK are
performed for each bit of the tag sequentially so that at least one free slot is guaranteed since
the left and right tags are different by definition. While this requires n rounds n-bit tags, it
is possible to split the tag into n smaller tags of logn bits and run the protocol for each of
them in parallel [17, 57]. Referred to as “LOG trick,” this yields a O(logn)-round protocol.

The key idea for CCA commitments in [12], at a high level, is to ensure that in the
concurrent setting, many free slots exist for each session so that extraction succeeds before
the end of that session. This is achieved by creating a polynomial round protocol consisting
of sequential repetition of special AoK as above and then relying on an analysis that is, at a
high level, similar to early rewinding techniques from CZK literature [76, 10]. Once the issue
of concurrent extraction is handled, the additional ideas in [55] are (again, at a high level)
to enforce this approach using cut-and-choose protocols to obtain a black-box construction.
The work of Goyal et al. [32] shows how to separate the tasks of “concurrent extraction”
and“non-malleability” in this approach by proving a “robust extraction lemma.” This
allows them to follow a structure similar to that of concurrent non-malleable zero-knowledge
(CNMZK) from [3] which matches the round complexity of CZK, i.e., Õ(logn). However,
their approach requires non-black usage of one-way functions. Kiyoshima [50] shows that the
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robust-extraction lemma can actually be applied to the previous black-box protocol of [55] to
get Õ(k·logn) rounds if one has a slightly stronger primitive than non-malleable commitments:
namely k-round 1-1 CCA commitments. To build such commitments, Kiyoshima builds
non-malleability “from scratch” by combining the DDN “LOG trick” with cut-and-choose
components of [55] so that the extraction on right in the standalone setting, can be done
without any dangerous rewinding on left. This however results in O(logn) rounds for 1-1
CCA and Õ(log2 n) for full CCA.

Our approach. We significantly deviate from current approaches for constructing 1-1 CCA
commitments. Instead of attempting to build non-malleability from scratch, our goal is to
have a generic construction built around existing non-malleable commitments. The resulting
protocol will not only have a simpler and more modular proof of security, but will also benefit
from the efficiency and assumptions of the underlying non-malleable commitment (NMCom).
Towards this goal, we return to investigate the structure of CNMZK protocols even for the
simpler case of 1-1 CCA.

Setting aside the issue of round-complexity for the moment, a key idea in the construction
of CNMZK protocols [3, 56, 67, 54] is to have the prover give a non-malleable commitment
(NMCom) which can later be switched to a “trapdoor value” set by the verifier; the non-
malleability of NMCom ensures that A cannot switch his value to a trapdoor on the right
(unless he did so in the real world, which can be shown to be impossible through other means).
The prover later proves that either the statement is true or it committed the trapdoor. The
main problem with this approach is that it requires us to prove a predicate over the value
committed in NMCom which requires non-black-box use of cryptographic primitives.

Non-malleable commit-and-prove. One potential idea to avoid non-black-box techniques is
to turn to black-box commit-and-prove protocols in the literature and try to re-develop them in
the context of non-malleability. Commit-and-prove protocols allow a committer to commit to
a value v so that later, it can prove a predicate φ over the committed value in zero-knowledge.
These protocols can be constructed in constant rounds using the powerful “MPC-in-the-head”
approach introduced by Ishai et al. [42]. The approach allows committing multiple values
v1, . . . , vn and then proving a joint predicate φ over them. One such construction is implicit
in the work of Goyal et al. [31]. Such commitments were also used extensively by Goyal et
al. to build size-hiding commit-and-prove [33] and an optimal four round construction was
obtained by Khurana, Ostrovsky, and Srinivasan [48]. As noted above, if we can develop
an appropriate non-malleable version of such protocols, it is conceivable that they can yield
constant-round 1-1 CCA commitment. However, that non-malleable commitments are not
usually equipped to handle proofs. Thus, such an approach will necessarily have to “open up”
the construction of non-malleable commitments. In particular, like previous constructions,
this approach cannot be based on non-malleable commitments in a black-box manner.

Changing the direction of NMCcom. In order to rely on non-malleable commitments
directly, it is essential that we do not prove anything about the values committed inside
the NMCom. Instead, we should restrict all proofs to be performed only over standard
commitments since for them we can use standard black-box commit-and-prove protocols.
Towards building this property, what if we change the direction of NMCom and ask the
receiver of 1-1 CCA to send non-malleable commitments, which, for example, can be opened
later? More specifically, in our 1-1 CCA protocol, the receiver will send a NMCom to
a random value σ which it will open subsequently. The committer will send a “trapdoor
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commitment” t before it sees σ opened. Later, the committer will commit to the desired value
v and give a AoK that either it knows v or t is a commitment to σ (the “trapdoor”). Observe
that this structure completely avoids any proof directly over non-malleable commitments;
all proofs only need to be performed over ordinary commitments. Therefore, if we use the
commit phase of black-box commit-and-prove protocols to commit to σ and v we can easily
complete the AoK in a black-box manner: the predicate φ in the proof phase will simply test
for the presence of trapdoor σ. Some standard soundness issues arise in this approach but
they can be handled by ensuring that the commit phase is extractable.

Although this approach yields a black-box construction directly from NMCom, it is hard
to prove the 1-1 CCA property. At a high level, this is because of the following: if in the
1-1 CCA game, A schedules the completion of the left NMCom before the right one2, the
simulator in the security proof must extract σ from this NMCom while the right NMCom is
still in play (so that it can generate t to be a commitment to σ). This involves rewinding the
left NMCom (assuming it is extractable) which in turn rewinds the right session.3 A similar
issue arises in the work of Jain and Pandey [44] on black-box non-malleable zero-knowledge
where it is resolved by using a NMCom that is already 1-1 CCA secure. We do not have this
flexibility in our setting.

A possible fix for this issue is to rely on some kind of “delayed input” property: i.e., the
commitment to t will be an extractable commitment that does not require the message m to
be committed until the last round. This property can be obtained by committing to a key k
in an extractable manner and then in the last round committing to m by simply encrypting
with k. This however will no longer be compatible with the black-box commit-and-prove
strategy since we will now have to take encryption into account.

We overcome this issue by making extensive use of extractable commitments. More
specifically, we first prepend the NMCom with a standard “slot-based” extractable commitment
which commits to the same value σ as the NMCom. If the NMCom also has a slot like
extractable structure (e.g., the three round scheme of [34]), we can argue that non-synchronous
adversaries must always leave a free slot either on top or at the bottom of NMCom. For
example, in the troublesome scheduling discussed above, A can be easily rewound in the
last two messages of NMCom (if we use [34]) without rewinding the right NMCom. In other
non-synchronous schedules it will have a free slot in the top extractable commitment on
the left. On the other hand, synchronous adversaries will fail in the NMCom step (and
synchronous non-malleability suffices for our purposes). In summary, this will suffice for us to
show that even if our simulator sets up the trapdoor statement on the left (by committing σ
in t), A cannot do the same on the right. Other NMCom, particularly public-coin extractable
NMCom also seem sufficient.

A second issue here is the intertwining of the left AoK4 with “extractable” components
on the right, e.g., the right AoK (or extractable commitment steps). In order to prove that
A cannot setup the trapdoor, extraction from right AoK will be necessary and this will be
troublesome when changing the witness in the left AoK during hybrids. This issue can be
handled using the sequential repetition technique from [53]: we use k+ 1 AoKs where k is the
(constant) rounds in a single AoK. Also note that other common methods for handling this
issue do not work: e.g., we cannot rely on statistical WI since it requires stronger assumptions

2 Note that NMCom’s direction is opposite to that of 1-1 CCA: the receiver of 1-1 CCA is the sender of
right NMCom.

3 This is not an issue in the synchronous schedule since in that case, the value A commits to in NMCom
is provided to the distinguisher along with the joint view.

4 Observe that the AoK will just be the proof part of appropriate black-box commit-and-prove with right
parameters to ensure black-box property; they will also satisfy witness-indistinguishability [19].
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for constant rounds; we also cannot use proofs that are secure against a fixed number of
rewinds since they usually allow a noticeable probability of extraction which is insufficient
for 1-1 CCA commitments, where extraction must succeed with overwhelming probability.

1.3 Other Related Works
The focus of our work is constructions in the plain model. Hazay and Venkitasubramaniam
[40] gave a black-box construction of an MPC protocol without any setup assumptions
that achieves composable security against an adaptive adversary. UC security can be
achieved by moving to other trusted setup models such as the common reference string model
[14, 9, 35], assuming an honest majority of parties [11], trusted hardware [64, 23, 46, 15],
timing assumptions on the network [45], registered public-key model [2], setups that may
be expressed as a hybrid of two or more of these setups [20], and so on. Lin, Pass, and
Venkitasubramaniam [58, 71] show that a large number of these setup models could be treated
in a unified manner, and black-box analogues of these results were obtained by Kiyoshima,
Lin, and Venkitasubramaniam [51].

2 Preliminaries

Notation. We use λ for the security parameter. We use c
≈ to denote computational

indistinguishability between two distributions. For a set S, we use x $←− S to mean x is
sampled uniformly at random from S. PPT denotes probabilistic polynomial time and negl(·)
denotes negligible function.

We assume familiarity with standard concepts such as commitment schemes, witness
indistinguishability. In the following, we recall the definitions for extractable commitments,
non-malleable commitments and CCA commitments. Definitions for the more basic primitives
and other constructs (such as MPC related definitions) can be found in the full version of
the paper [16].

2.1 Extractable Commitments
I Definition 3 (Extractable Commitment Schemes). A commitment scheme ExtCom = (S,R)
is extractable if there exists an expected polynomial-time probabilistic oracle machine (the
extractor) Ext that given oracle access to any PPT cheating sender S∗ outputs a pair (τ, σ∗)
such that:

Simulation: τ is identically distributed to the view of S∗ at the end of interacting with
an honest receiver R in commitment phase.
Extraction: the probability that τ is accepting and σ∗ = ⊥ is negligible.
Binding: if σ∗ 6= ⊥, then it is statistically impossible to open τ to any value other than
σ∗.

The above construction of ExtCom (Figure 1) is standard [17, 74, 77, 70]. We will refer to it
as the standard ExtCom.
I Remark 4 (Regarding Over-Extraction). Intuitively, Definition 3 stipulates that if the
committer indeed commits to some value, the extractor must be able to extract it. We
remark that it does not rule out what is called the “over-extraction” issue – namely, the
extractor may extract a valid looking value even though none actually exists.

However, this definition suffices for most ZK and MPC applications (e.g. [75, 70, 72]),
including ours. In our arguments specifically, we will employ hybrids where we extract the
value that the adversary commits to using these commitment schemes. Jumping ahead, in
the security proof for our protocol, we will need successful extraction only if the adversary
actually commits to some valid value; otherwise, completing the hybrids is trivial.
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The extractable commitment scheme, based on any commitment scheme Com, works in
the following way. The scheme has 3 rounds if Com is non-interactive.
Input:

Both S and R get security parameter 1λ as the common input.
S gets a string σ as his private input.

Commitmment Phase:
The sender (committer) S commits using Com to λ pairs of strings {(v0

i , v
1
i )}λi=1

where (v0
i , v

1
i ) = (ηi, σ ⊕ ηi) and ηi are random strings in {0, 1}`(λ) for 1 ≤ i ≤ λ.a

Upon receiving a challenge c = (c1, . . . , cλ) from the receiver R, S opens the com-
mitments to (vc1

1 , . . . , v
cλ

λ ).
R checks that the openings are valid.

Decommitment Phase:
S sends σ and opens the commitments to all λ pairs of strings.
R checks that all the openings are valid, and also that σ = v0

1 ⊕ v1
1 = · · · = v0

λ ⊕ v1
λ.

a The scheme supports extraction as long as k = ω(log λ) pairs are used.

Figure 1 Extractable Commitment Scheme 〈S,R〉.

2.2 Non-Malleable Commitments

We follow the definition of non-malleability from [57, 34]. This definition is based on the
comparison between a real execution with an ideal one. In the real interaction, we consider
a man-in-the-middle adversary A interacting with a committer C in the left session, and
a receiver R in the right. We denote the relevant entities used in the right interaction as
“tilde’d” version of the corresponding entities on the left. In particular, suppose that C
commits to v in the left interaction, and A commits to ṽ on the right. Let MIMv denote the
random variable that is the pair (view, ṽ), consisting of the adversary’s entire view of the
man-in-the-middle execution as well as the value committed to by A on the right (assuming
C commits to v on the left). The ideal interaction is similar, except that C commits to some
arbitrary fixed value (say 0) on the left. Let MIM0 denote the pair (view, ṽ) in the ideal
interaction. We use a tag-based (or “identity-based”) specification, and ensure that A uses a
distinct tag ĩd on the right from the tag id it uses on the left. This is done by stipulating
that MIMv and MIM0 both output a special value ⊥id when A uses the same tag in both the
left and right executions. The reasoning is that this corresponds to the uninteresting case
when A is simply acting as a channel, forwarding messages from C on the left to R on the
right and vice versa. We let MIMv(z) and MIM0(z) denote the real and ideal interactions
respectively when the adversary receives auxiliary input z.

I Definition 5 (Non-Malleable Commitment Schemes). A (tag-based) commitment scheme
〈C,R〉 is non-malleable if for every PPT man-in-the-middle adversary A, and for all values
v, we have {MIMv(z)}z∈{0,1}∗

c
≈ {MIM0(z)}z∈{0,1}∗ .

Synchronizing Adversaries. This notion refers to man-in-the-middle adversaries who upon
receiving a message in one session, immediately respond with the corresponding message in
the other session. An adversary is said to be non-synchronizing if it is not synchronizing.
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2.3 CCA Commitments
We define the notion of CCA-secure commitments (and 1-1 CCA security in particular).
These definitions rely on the notion of a decommitment oracle, which provide decommitments
given valid transcripts to a particular (tag based) commitment protocol. Specifically, a
decommitment oracle O for a given commitment protocol acts as follows:
O acts as an honest reciever against some committer C, participating faithfully according
to the specified commitment scheme. C is allowed to pick a tag for this interaction
adaptively.
At the end of this interaction, if the honest reciever were to accept the transcript as
containing a valid commitment with respect to the given tag, O returns the value v
committed by C to it. Otherwise, it returns ⊥.

We denote an adversary with access to the decommitent oracle as AO. CCA security then
essentially constitutes preservation of the hiding property even against adversaries enjoying
such oracle access. More formally, we define the following game INDb(〈C,R〉,A,O, n, z)
(b ∈ {0, 1}) as follows: given the public parameter 1n and auxillary input z, the adversary AO
adaptively generates two challenge values v0, v1 of length n, and a tag tag ∈ {0, 1}n. Then,
AO receives a commitment to vb with tag tag from the challenger. Let y be the output of A
in this game. The output of the game is ⊥ if during the game, A sends O any commitment
using tag tag. Otherwise, the output of the game is y. We abuse notation to denote the
output of the game INDb(〈C,R〉,A,O, n, z) by the same symbol INDb(〈C,R〉,A,O, n, z).

I Definition 6 (CCA Commitment). Let 〈C,R〉 be a tag-based commitment scheme, and O
be an associated decommitment oracle. Then 〈C,R〉 is said to be CCA secure w.r.t. O,
if for every nonuniform P.P.T. machine A, the following ensembles are computationally
indistinguishable:
{IND0(〈C,R〉,A,O, n, z)}n∈N,z∈{0,1}∗

{IND1(〈C,R〉,A,O, n, z)}n∈N,z∈{0,1}∗

It is customary to call any commitment scheme that is CCA secure with respect to some
decommitment oracle as just CCA secure (but in general the oracle is usually also described,
and is of course necessary to prove such security). It is also customary to call the interaction
between the challenger and adversary as the left interaction, and that between adversary
and oracle as the right interaction, in the fashion of non-malleable commitments, where the
security property chiefly considers man in the middle attacks.

Finally, a scheme is 1-1 CCA secure (denoted as CCA1:1) if the corresponding adversary
is only allowed one interaction with the oracle.

3 A New CCA1:1 Commitment Scheme

We will require the following ingredients for our CCA1:1 protocol:
A statistically-binding commitment Com. Naor’s commitment works.
A 3-round slot-based extractable commitment scheme ExtCom; for concreteness we will
use the standard 3-round scheme, shown in Figure 1. based on Naor’s commitment
(the first message ρ of Naor’s commitment is not counted in rounds and assumed to be
available from other parts of the protocol).
An (extractable) commitment scheme ENMC that is non-malleable against synchronizing
adversaries. We will need this protocol to be “compatible with slots” of the ExtCom
defined above. For concreteness, we assume that ENMC is the 3-round commitment
scheme of [34] which satisfies all our requirements.
A k round witness indistinguishable argument of knowledge WIAoK.

ICALP 2020



28:10 Improved Black-Box Constructions of Composable Secure Computation

We stress that all of these ingredients have constant rounds, and can be constructed from
standard OWFs in a black-box manner.

Our Protocol. We now describe our first protocol for CCA1:1 commitments. This protocol
does not specifically try to achieve the black-box usage of cryptographic primitives. This
allows us to focus on proving CCA security. However, it achieves two important properties:
it is based on minimal assumptions, and it has a constant number of rounds. Moreover, the
structure of this protocol is chosen in such a way that later, it will be possible to convert
into a fully black-box construction. We remark that we also directly use identities of length
λ directly (this is in keeping with the [34] construction which does the same).

The formal description of the protocol appears in Figure 2. At a high level, the protocol
proceeds as follows. First, it requires the receiver to commit to a trapdoor string α using
two extractable primitives: ExtCom as well as ENMC. Next, the committer will commit
to an all zero-string β using ExtCom. Jumping ahead, in the security proof a “simulator
machine” on left will set β = α and use it as a “fake witness” in a WIAoK; later we shall
instantiate ExtCom with, roughly speaking, a “black-box commit-and-prove” to obtain a
black-box construction. The receiver simply opens α in the next step, and the committer
commits to the desired value, say v, followed by a proof of knowledge of v or that β = α. A
crucial observation here is that the proofs are not required to deal with values inside ENMC –
by ensuring that ENMC values opened in the protocol execution.

I Theorem 7. The protocol 〈C,R〉CCA (described in Figure 2) is a 1-1 CCA commitment
scheme for all polynomial time adversaries.

The statistical-binding property of protocol 〈C,R〉CCA is straightforward. The computa-
tional hiding property is implied by the 1-1 CCA security as per Definition 6. Due to lack of
space, we present an outline of the proof for non-malleability below. The complete proof is
given in the full version of our paper [16].

Proof for Non-Malleability (Sketch.) We start with a man-in-the-middle adversary A that
participates in the CCA challenge outlined above. Consider any two arbitrary values v0
and v1 in the message space. We will now show indistinguishability between the games
{IND0(〈C,R〉CCA,A,O, n, z)}n∈N,z∈{0,1}∗ and {IND1(〈C,R〉CCA,A,O, n, z)}n∈N,z∈{0,1}∗ . To
this end, we will use a hybrid argument:

Our proof proceeds as follows. We start with the honest committer on the left committing
to some arbitrary value v0. The overall idea is to move to an intermediate hybrid where the
left challenger is able to “set the trapdoor” and go through the WIAoKs without using the
commitment. This will allow us to then replace the initial commitment to v0 to one to v1
(and move back to doing everything on the left “honestly”). Further, we will also maintain
the following invariant across all the hybrids:

I Definition 8 (Invariant Condition (informal)). In the right session, the adversary MIM
cannot set β̃ = α̃ except with negligible probability.

We outline the necessary hybrids to get to this stage below:

Hybrid H0
0 . This is just the original experiment with the honest committer on the left. In

other words, this is the experiment {IND0(〈C,R〉CCA,A,O, n, z)}n∈N,z∈{0,1}∗ . It is straight-
forward to see that the invariant holds in this hybrid: if it does not, then MIM must break
the hiding property of the commitments in Stage 1 or 2 in the right execution to learn α̃.
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We let λ ∈ N denote the security parameter. All primitives used in the protocol by
default have 1λ as part of their input. We omit this detail in the following. Further, we
assume that the execution involves a tag or identity id ∈ {0, 1}λ.
Input: The committer C and reciever R have common input as the security parameter
1λ. Additionally, C has as private input a value v which it wishes to commit to.

Commit Phase: This proceeds as follows:

Stage 0: C commits to the value v using Com and sends the identity id to R.

Stage 1: This consists of the following steps:
(a) R picks a value α $←− {0, 1}λ.
(b) R commits to α1 = α using ExtCom.

Stage 2: R commits to α2 = α using ENMC, using identity id.
For future reference, we denote by CombinedCom the joint execution of Stage 1 and 2 up
to this point. Observe that CombinedCom is a statistically binding commitment scheme.

Stage 3: C now commits to β = 0λ using ExtCom.

Stage 4: This goes as follows:
1. R decommits to both its commitments so far, revealing α1 and α2.
2. C checks these decommitments, aborting if α1 6= α2.

Stage 5: C and R engage in k + 1 WIAoK protocols sequentially. We denote these
WIAoK executions as WIAoKi for i = 1, . . . , k + 1. In all these WIAoKs, C proves the
same (compound) statement which is true if and only if:
(a) there exists randomness η s.t. c = Com(v; η); or
(b) β = α1 = α2, where β is the unique string committed in the transcript of Stage-3.

Note that an honest prover will always use the witness for part-(a) of the above compound
statement, which we refer as the “original witness”. We will refer the witness for part-(b)
of the compound statement. Looking ahead, some hybrids will use the trapdoor witness
to go through the WIAoKs.

Decommit Phase: The committer C decommits to v and β. R checks if these decom-
mitments are valid, and accepts if so.

Figure 2 Protocol 〈C,R〉CCA: CCA1:1 Commitment Scheme.

Hybrid H0
1 . In this hybrid, the decommitment oracle on the right is removed. All messages

are generated as an honest receiver, and the value ṽ committed by the adversary is obtained
by extracting the witness from the final WIAoK on the right.

Hybrid H0
2 . This hybrids proceeds as the previous one except that on the left, we also

extract the value α2 from the stage 2 ENMC.
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In these two hybrids, the adversary’s view up to Stage 4 is identical to that in H0.
Therefore, the invariant must hold in these hybrids (by the same reasoning as in H0

0 ). By
the knowledge soundness of WIAoK, the extracted witness should be the same as the one
returned by the oracle in H0. The entire view of the adversary is therefore unaffected by
these changes, and so is identical to that in H0

0 .

Hybrid H0
3 . This hybrid also proceeds as the previous one except that the value β is now

set to be the extracted value α2.
While it is easy to argue that the adversary cannot detect this change, it may still be able

to use the change in the left ExtCom to change its own ExtCom on the right (note that the
ExtCom scheme is malleable)! This is the primary reason we need the invariant condition, as
it explicitly prevents this exact occurrence. We argue that the invariant holds by considering
separate cases for synchronous and nonsynchronous adversaries. For synchronous adversaries,
we show roughly that if the adversary could identify any change in the left stage 3 ExtCom,
then it must have been influencing the earlier two commitments it made in a malleable
fashion - this is ruled out by the non-malleability of ENMC. As mentioned in the Technical
Overview, this is the most difficult case to deal with, and where our main contribution lies.
For nonsynchronous adversaries, we show instead that there are “extraction opportunities”
on the left where no messages on the right are exchanged for the corresponding duration
(and extraction on the left can be performed unhindered). This relies on carefully setting the
appropriate round complexities for ExtCom and ENMC.

Hybrid H0
4 . In this hybrid, we ask the left execution to use the trapdoor witness in the

Stage 5 WIAoKs (the actual changes happen by constructing a sequence of intermediate
hybrids where the witness is replaced one by one in each WIAoK execution on the left, in
order of occurrence).

In this hybrid, we ensure that any change of witness on the left does not occur during the
same time as extraction of the witness on the right, since the latter involves rewinding and
that can interfere with the witness indistinguishability of the left proof. In the synchronizing
case, it is easy to see the invariant holds in this hybrid since the corresponding changes all
occur after the right stage 3 ExtCom is concluded. For nonsynchronous adversaries, this may
not be the case, but we can use an argument very similar to that used to argue the invariant
in H0

3 . We can also argue indistinguishability of (the view in) this hybrid using the witness
indistinguishability of our WIAoK scheme and the fact that the change in witness on the left,
and extraction of witness on the right, occur at different times.

Finally, we define H1
3 , H1

2 , H1
1 to H1

0 , where for H1
i is just the analogue of H0

i ,
but replacing the initial commitment to v0 with one to v1 on the left. Using the same
arguments above, we can show that both the invariant condition and indistinguishab-
ility views holds among H1

4 , H1
3 down to H1

0 . Note that H1
0 is just the experiment

{IND1(〈C,R〉CCA,A,O, n, z)}n∈N,z∈{0,1}∗ , and hence we show that this is computationally
indistinguishable from {IND0(〈C,R〉CCA,A,O, n, z)}n∈N,z∈{0,1}∗ to A. J

4 Our Black-Box CCA Commitment

Our starting point is to determine how we can make our protocol (in Figure 2) fully black-box.
In fact, we note that the only component that is not already so is our argument system. Note
that we use the arguments to prove statements about the Com in Stage 0 and the ExtCom
in Stage 3. Thus, we look to change these components with a suitable “commit-and-prove”
protocol that is fully black-box. Further, we will require the following properties from the
protocol so that it works with our template:
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1. It should provide us a Com, and an ExtCom scheme. Importantly, this “first part” of the
protocol should alone serve as a valid commitment with desired properties, regardless
of whether we perform a subsequent WIAoK or not. This is in contrast to the definition
(and construction) in [48].

2. Later we should be able to perform WIAoK on a compound statement regarding the
values committed in the above Com and ExtCom;

3. The WIAoK part should make use of Com and ExtCom only in a black-box manner.

We provide a definition of Commit-and-Prove WIAoK (actually ZKAoK) formally in the
full version [16] that captures all the required properties.

We note that there are not many approaches in the literature that achieve what we
want: the work of [48] constructed a round-optimal version of such a primitive, but their
protocol does not fit our needs because we require some properties that are not immediately
avaiable from their construction. We discuss the issues briefly. While their commit stage is a
statistically binding commitment, it cannot be modified to be extractable, which we crucially
need. Further, we will require a multi-commitment property for our proof, namely that the
predicate to be proved can support values used in multiple commit stages; while it is possible
that the [48] protocol can be modified to achieve this property, the modification is unclear.
Yet another issue is that we will use multiple proof modules (for the same proof) in our final
protocol. Again it is not clear how to modify their protocol so that we ensure consistency of
openings while also ensuring extractability from every proof module (note that their protocol
has a challenge-response format that can allow extraction from just two challenges even
across different sessions). We remark however that their protocol does support the delayed
predicate property, which we also rely on.

We therefore build a commit-and-prove protocol suitable to our purposes. Our starting
point is the “MPC-in-the-head” technique from [42]. This approach was originally used to
construct black-box zero-knowledge arguments, by having the prover run a virtual MPC
execution “in its head” and committing to the views of the virtual parties. The verifier then
asks for some of these views to be opened and checks that the opened views are consistent.
This construction achieves honest-verifier ZKAoK.5 To meet our requirements, we want
to turn this construction into commit-and-prove form, and bolster the security to tolerate
malicious verifiers.

There are a few previous works that already take this approach to create commit and
prove protocols. There is the recent work of Hazay, Ishai and Venkitasubramaniam [37], who
make use of a commit and prove style protocol constant round secure 2PC protocols against
malicious adversaries. Their overall design of the construction utilizes the MPC-in-the-head
idea, but by way of using server watchlists which is a slightly different implementation of
this concept first used in [43]. Being a part of their overall 2PC compiler, their protocol is in
the OT-hybrid model, which makes it difficult to adapt to our usage, which is in the plain
model. It is also unclear how to modify their construction to have the multi-commitment
property, as well as make it argument of knowledge, as there is no immediate extraction
algorithm to extract the sender’s committed value from the proof stage.

We instead follow the approach used in the older work of Goyal et al [31], who use two
virtual MPC executions. The first execution is simply a verifiable secret sharing of the value
to be committed (the commitment to all the views serves also to commit to this value), which

5 The authors of [42] also showed how to make it secure against dishonest verifiers. But their technique
results in a construction with polynomially-many rounds, because they employ sequential repetition.
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is sent on to the verifier (we will call this the commit phase). The second execution continues
on from the first, where the virtual parties use their shares to compute some predicate on
the shared value that represents the statement to be proved over the commitment (we will
call this the proof phase).

To obtain security against malicious verifiers, one idea is to have the verifier commit to
its challenge before the prover sends its first message. However, we cannot resort to this since
this would excise the argument of knowledge property from this construction. We therefore
employ a different approach, by building in a coin-tossing protocol into the argument system,
which only uses an extractable commitment scheme. This is similar to the construction
used in [61] to convert ZK arguments to ZKAoKs. It allows the PPT simulator to bias the
coin-tossing result, thus allowing for simulation against dishonest verifiers; meanwhile, the
knowledge extraction strategy in [42] still works.

The remaining task is to build an extractable commitment scheme that is compatible
with the above. To obtain this, we observe that if the predicate φ to be simply the identity
predicate, then we can still extract the committed value (i.e., the “witness” in the proof
phase) as outlined above. Therefore, we view an execution of the above commit-and-prove
protocol (with the identity predicate) as an extractable commitment scheme: hiding follows
from the hiding of the commit phase as well as zero knowledge of the proof phase, and
extractability follows just as mentioned above (i.e., by the argument of knowledge property).
We claim further that this commitment scheme is actually compatible with our commit-
and-prove scheme; this is due to the property of multiple proofs mentioned earlier, wherein
separate proof modules can be performed on the same commitments (by adjusting the
parameters of verifiable secret sharing). In particular, this allows the prover to use this new
extractable commitment scheme, then later perform (black-box) arguments of knowledge for
some statement about the value committed to in this scheme. This suffices for our purposes.
We provide more details and the formal construction in the full version of our paper [16].

Now we can simply integrate these components into our original 1-1 CCA commitment
scheme to obtain a fully black-box instantiation. We present our final protocol and security
proof in the full version [16]. Note that our commit-and-prove scheme is constant round, and
therefore our final protocol is still constant rounds.

5 Angel-Based MPC in Õ(log λ) Rounds

Kiyoshima [50] presents a black-box construction of a CCA-secure commitment scheme with
the following ingredients: (a) a two-round statistically-binding commitment scheme, and a
constant round “strongly extractable” commitment, both of which are known from (black-box)
one-way functions, (b) a concurrently-extractable commitment (due to Micciancio et al., [66]),
with a “robustness parameter” `, and (c) an R-round 1-1 CCA-secure commitment provided
that ` = O(R · log λ · log log λ). The round-complexity of the resulting protocol is O(`). If R
is a constant, this yields a Õ(log λ)-round construction for CCA secure commitments.6 This
yields Theorem 2.

As mentioned in the introduction, the security model that we consider is angel-based
security, or UC security with superpolynomial helpers. Very briefly, this is essentially the
same as the UC model used in [8], except that the adversary (in the real world) and the

6 More precisely, Kiyoshima states his results with a specific value of `, namely, O(log2 λ · log log λ), since
R = O(log λ) in his case. However, his construction and proof work for any value of R if ` is as described
above.
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environment (in the ideal world) both have access to a superpolynomial time functionality
that acts as an oracle or a helper. Formal definitions for this security model can be found
in [12] and [55]. If there is a protocol Π that emulates a functionality H with helper H in
this setting, we say that Π H-EUC-realizes F .

Now, as in [50], we combine Theorem 2 with the following two results due to Canetti et
al. [12, 13] and Lin and Pass [55] respectively to obtain Theorem 1.

I Theorem 9 ([55]). Assume the existence of an RCCA-round robust CCA-secure commitment
scheme 〈C,R〉 and the existence of an ROT-round semi-honest oblivious transfer protocol
〈S,R〉. Then, there is an O(max(RCCA, ROT))-round protocol that H-EUC-realizes FOT.
Furthermore, this protocol uses 〈C,R〉 and 〈S,R〉 only in a black-box way.

I Theorem 10 ([12, 13]). For every well-formed functionality F , there exists a constant-round
FOT-hybrid protocol that H-EUC-realizes FOT .
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Abstract
In the replacement paths (RP ) problem we are given a graph G and a shortest path P between
two nodes s and t 1. The goal is to find for every edge e ∈ P , a shortest path from s to t that
avoids e. The first result of this paper is a simple reduction from the RP problem to the problem of
computing shortest cycles for all nodes on a shortest path.

Using this simple reduction we unify and extremely simplify two state of the art solutions for
two different well-studied variants of the RP problem.

In the first variant (algebraic) we show that by using at most n queries to the Yuster-Zwick
distance oracle [FOCS 2005], one can solve the the RP problem for a given directed graph with
integer edge weights in the range [−M,M ] in Õ (Mnω) time 2 3 . This improves the running time
of the state of the art algorithm of Vassilevska Williams [SODA 2011] by a factor of log6 n.

In the second variant (planar) we show that by using the algorithm of Klein for the multiple-
source shortest paths problem (MSSP ) [SODA 2005] one can solve the RP problem for directed
planar graph with non negative edge weights in O (n logn) time. This matches the state of the art
algorithm of Wulff-Nilsen [SODA 2010], but with arguably much simpler algorithm and analysis.
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1 Introduction

The replacement paths problem is defined as follows. We are given a graph G and a shortest
path P connecting two nodes s and t. The problem is to find for every edge e ∈ P a shortest
path from s to t in the graph (V,E\e). As in previous works, we focus on computing the
lengths of the replacement paths instead of the paths itself. Our results can be modified to
return the paths as well.

1 For the rest of this paper we assume G = (V,E), n = |V |, m = |E|.
2 ω denotes the matrix multiplication exponent (ω < 2.373).
3 The Õ notation suppresses polylogarithmic factors.
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29:2 Replacement Paths in Weighted Directed Graphs

The motivation for studying replacement paths is rooted in the fact that real-world
graphs are vulnerable and are subject to nodes and links failures and having backup paths
is a desirable property. Replacement paths are also well motivated by other important
applications. One application stems from auction theory, where we use replacement paths to
compute the Vickrey pricing of edges owned by selfish agents [15, 7]. In addition, Replacement
paths are also used to compute the k shortest simple paths between two given vertices, as
one can compute the k shortest simple paths by k calls to the replacement paths algorithm.
The k shortest simple paths has many applications in and of itself [4].

1.1 Upper bounds
For undirected graphs with arbitrary (non negative) edge weights, Malik et al. [12] gave an
O(m+n logn) algorithm; Nardelli et al. [14] later improve the running time to O(mα(m,n))4
in the Word RAM model for positive edge weights. For directed graphs with arbitrary edge
weights (possibly negative), Gotthilf and Lewenstein [5] gave anO(mn+n2 log logn) algorithm.
For unweighted directed graphs, Roditty and Zwick [16] gave a randomized combinatorial
algorithm that solves the problem in Õ(m

√
n) time. For directed graphs with integer edge

weights in the range [−M,M ], Weimann and Yuster [17] obtain a randomized algorithm
that runs in Õ(Mn1+ 2

3ω) time. Vassilevska Williams [18] improved the latter by giving a
randomized algorithm that runs in Õ(Mnω) time for w > 2 and in O(Mnω+ε) time for any
ε > 0 for ω = 2. The replacement paths problem was also studied for special family of graphs.
For planar directed graphs with non negative edge weights, Emek, Peleg, and Roditty [3]
obtain a recursive algorithm that runs in O(n log3 n) time. Klein, Mozes, and Weimann [10]
improve the running time to O(n log2 n). At last, Wulff-Nilsen [20] improved the latter by
giving an O(n logn) time algorithm.

1.2 Lower bounds
Hershberger et al. [8] showed a Ω(m

√
n) time lower bound for the replacement paths problem

for directed graphs with non negative edge weights, in the path − comparison model of
Karger et al [9]. Vassilevska-Williams and Williams [19] showed that the replacement paths
problem in directed graphs with arbitrary edge weights is equivalent to the all pairs shortest
paths problem (APSP), under subcubic reductions. Agarwal and Ramachandran [1] showed
that the All-Nodes Shortest Cycles problem (ANSC) for directed graph with arbitrary edge
weights, in which we are required to find for every node a shortest cycle containing it, is
at least as hard as computing the replacement paths problem in directed graphs. This
reduction can be used to solve the replacement paths problem using an oracle to the ANSC
problem. However, the reduction does not preserve the range of the weights. That is, the
reduction they present increases the weights of the graph by a factor of n. This means that
the reduction is not applicable in the algebraic variant, as it would lead to a Õ ((Mn)nω)
solution. Moreover, the reduction does not preserve planarity, and therefore is not applicable
in the planar variant as well.

1.3 Our result
The first result of this paper is a simple linear time reduction from the RP problem to
the problem of computing shortest cycles for all nodes on a shortest path. The reduction
maps the graph G into a new graph Gr with the following properties; The mapping from

4 α(m,n) is the functional inverse of the Ackermann function.
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G to Gr is invertible and is the inverse of itself. i.e. (Gr)r = G. The reduction preserves
the range of the edge weights i.e. if G has integer weights in the range [−M,M ] then
so does Gr. The reduction preserves planarity i.e. if G is planar then so does Gr. The
first property implies that the problem of computing shortest cycles for all nodes on a
shortest path is equivalent to the RP problem. The second property enable us to solve
the RP problem for directed graphs with integer edge weights in the range [−M,M ] in
O(PreprocessA(n,m,M) + n · QueryA(n,m,M)) time, where A is a distance oracle. In
particular, using Yuster-Zwick distance oracle, we solve the problem in deterministic Õ(Mnω)
time. Vassilevska Williams solved the problem using few techniques such as; Node sampling,
graph compression and recursion. The running time of Vassilevska Williams’s algorithm
is at least log

ω
ω−2 (n) · PreprocessA (n,m,M). Therefore, when considering polylogarithmic

factors, our algorithm improves the running time of Vassilevska Williams’s algorithm by
a factor of log

ω
ω−2 (n). Hence, for ω < 2.373 we improve the running time by at least a

factor of log6(n). The third property enable us to solve the RP problem for directed planar
graphs with non negative edge weights using an oracle to the MSSP problem. In particular,
using Klein algorithm for the MSSP problem, we solve the problem in O(n logn) time.
The MSSP problem is as follows; Given a planar graph G, and a list of distance queries
from a source to a target, such that all sources share the same face, answer all distance
queries. In fact, our reduction is to a simpler problem than the MSSP problem, that is,
computing at most O(n) distance queries where both the source and the target are on the
given face. Moreover, the boundary of the face consists of two shortest paths. The fact that
our reduction is to a simpler problem than the MSSP problem gives additional insights on
the RP problem that might lead to further improvements.

2 Preliminaries

2.1 General notations
Let G = (V,E) be a directed graph with n vertices and m edges, and let w be a weight
function over E.

Let P be a path in G. We denote by w(P ) the length of the path P which is defined
as the sum of the weights of the edges along P , and by |P | the number of edges in P . We
assume G does not contain negative cycles, hence the distance between every two nodes
u, v ∈ V is well defined and denoted by d(u, v).

Let e ∈ E, we denote by G\e the graph (V,E\{e}), and by de(u, v) the distance from u

to v in the graph G\e.
Path concatenation: Given two paths Ω1 = 〈u, ..., v〉 Ω2 = 〈v, ..., w〉 we denote by Ω1 · Ω2

the concatenation of Ω1 and Ω2.

Path slicing: Given a path Ω = 〈x0, x1, ..., xk〉, we denote by Ω[xi, ..., xj ] for i ≤ j the
subpath of Ω connecting xi to xj .

We denote the set {0, 1, ..., N} by [N ].

2.2 Distance oracle
I Definition 1. Distance product - Let A be an m×n matrix and B an n× p matrix, where
A and B have entries from Z ∪ {∞}. Then their distance product A ? B is an m× p matrix
defined as

(A ? B)ij = min
k∈[n]

Aik +Bkj
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29:4 Replacement Paths in Weighted Directed Graphs

I Theorem 2 (Alon, Galil and Margalit [2]). One can compute the distance product of two
n× n matrices with entries in [−M,M ] in Õ(Mnω) time.

I Theorem 3 (Yuster-Zwick [21]).Given a directed graph G with edge weights in [−M, ...,M ],
one can compute in Õ(Mnω) time a n× n matrix A, so that the (i, j) entry of the distance
product A ? A is the distance between nodes i and j in G.

By Theorem 3, there exists a distance oracle A with the following preprocessing and query
time; PreprocessA(n,m,M) = Õ(Mnω) and QueryA(n,m,M) = O(n). At the preprocess
step, we compute the matrix A, and we answer a distance query between two nodes, i and j,
by computing the (i, j) entry of A ? A.

2.3 Replacement path
Let G be a weighted directed graph, and let P = 〈v0, ..., vk〉 be a shortest path in G from
s = v0 to t = vk.

We think of the path P = 〈v0, .., vk〉 as going from left to right, so for vi, vj ∈ P whenever
we say vi is to the left (respectively right) of vj we mean i ≤ j (respectively i ≥ j).

I Definition 4. Let D be simple path connecting vi to vj for i < j. We call D a detour
from vi to vj for the path P , if D ∩ P = {vi, vj} and E(D) ∩ E(P ) = ∅ (note that we need
the second requirement for the case that j = i+ 1).

Let D be a detour for the path P , connecting vi to vj . We denote by Prefix(P,D) the path
P [v0, ..., vi] , by Suffix(P,D) the path P [vj , ..., vk], and by S(P,D) (S for segment) the
path P [vi, ...., vj ]. We say the detour D is skipping e = (u, v) if vi is to the left of u and vj
is to the right of v.

When P is clear from the context we abbreviate Prefix(P,D) and simply write Prefix(D)
instead, and similarly for Suffix(D) and S(D).

Figure 1 Partition of the path P , with respect to a detour D, into Prefix(D), S(D) and
Suffix(D).

The following Lemma is folklore.

I Lemma 5. Let P be a shortest path in G connecting two nodes s, t ∈ V , and let e ∈
P . Suppose t is reachable from s in G\e, then there exists a detour D skipping e s.t.
Prefix(D)·D·Suffix(D) is a shortest path from s to t in G\e.

In the next section we present the idea of reducing the RP problem to the problem of
computing shortest cycles for all nodes on a shortest path. The results of this section are
applicable for both the algebraic variant and the planar variant as well. In Section 4 we
focus on directed graphs with integer weights in the range [−M,M ], and in section 5 we
focus on directed planar graphs with non negative weights.
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3 Replacement paths in weighted directed graphs

Let s, t ∈ V , and P = 〈v0 = s, v1, ..., vk = t〉 be a shortest path connecting s to t in G.
We first start with two simple observations.

Observation 1. Let D be a detour of P . If we flip the orientation of P , i.e. replace every edge
e = (u, v) in P , with a new edge er = (v, u), then in the new graph, the concatenation of
D with S(D) forms a directed cycle.

Observation 2. Let e ∈ P , and let D be a detour skipping e. D minimizes w(Prefix(D)) +
w(D) + w(Suffix(D)) if and only if it minimizes w(D) − w(S(D)). This holds, as
P = Prefix(D) · S(D) · Suffix(D).

These two simple observations lead us to consider a new graph where we flip the orientation
of P , and flip the sign of the weights of P . As we prove later, the minimal cycle containing e
in the new graph, corresponds to some detour D skipping e, that minimize the expression
w(D)− w(S(D)). The fact that the weight of the minimal cycle containing e is not smaller
than what we are actually looking for ( min

D skip e
w(D)− w(S(D))), requires some details.

I Definition 6. Let Q = 〈u0, u1, .., uN 〉 be a path in G, we denote by Qr the path
〈uN , ..., u1, u0〉 with new weights wr(ui+1, ui) = −w(ui, ui+1).

In other words, we flip the orientation of Q and flip the sign of it’s weights.

I Definition 7. (See Figure 2 for illustration) Denote by Gr = (V r, Er) the following graph:
V r = V

Er = E ∪ E(P r)\E(P )
and denote by G+ = (V +, E+) the following graph:

V + = V

E+ = E ∪ E(P r)
Finally, let P+ = P ∪ P r

I Remark 8. If there were already edges in the opposite direction of P then we disregard
them. Notice w(v, u) ≥ −w(u, v) (as otherwise we would have a negative cycle), hence after
adding an edge (v, u) with weight of −w(u, v) there is no reason to keep the original weight
of (v, u) when considering shortest paths.

In the following we show that G+ does not contain negative cycles.

Figure 2 An example of transformation of a graph G into Gr and G+.
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I Lemma 9. Consider the graph G+, and let u, v ∈ P+. The simple path from u to v that
lies in P+ is a shortest path (notice u can be to the left of v, to the right of v, or even equal
to v).

Proof. We first show that there is a shortest path (not necessarily simple) from u to v that
is fully contained in P+. Let P ′ = 〈x0 = u, ...., xN = v〉 be a shortest path connecting u to v
in G+. The proof is by induction on the number of edges of P ′. The base case, |P ′| = 0 is
clear, so we assume |P ′| ≥ 1. If the first edge of P ′ belongs to P+, we can easily continue by
induction over P ′[x1, .., xN ] so we assume otherwise. Let xi ∈ P ′ be the first vertex except
x0 itself that belongs to P (xi might be equal to xN ). We partition P ′ into two paths,
P ′1 = P ′[x1, .., xi] P ′2 = P ′[xi, .., xN ]. Notice that the edges of P ′1 are not in P+ (hence the
edges of P ′1 belong to E). We separate to two cases:
1. xi is to the right of x0. In that case we replace P ′1 with the path P1 := P [x0, ..., xi].

w(P ′1) ≥ d(x0, xi) = w(P [x0, ..., xi]), where the first inequality follows as P ′1 is edge
disjoint from P+ and therefore is contained in G.

2. xi is to the left of x0. In that case we replace P ′1 with the path P1 := P r[x0, ..., xi].

Notice P [xi, ..., x0] · P ′1 is a cycle in G hence its weight is non negative, so we have the
following:

w(P ′1) + w(P [xi, ..., x0]) ≥ 0 =⇒ w(P ′1) ≥ −w(P [xi, ..., x0]) = wr(P r[x0, ..., xi]).
Therefore we can replace P ′1 with P1 without increasing the total weight of P ′. By the

induction hypothesis we can replace P ′2 with a path P2 that lies in P+ without increasing
the total weight of P ′. The concatenation of the paths P1 and P2 is a path from u to v that
lies entirely in P+ and it’s length is at most w(P ′).

Finally, notice we can assume the shortest path from u to v that lies in P+, lies entirely
in P or entirely in P r, depending if u is to the left or to the right of v (there is no reason to
go left and right over the same edge as the weights will cancel each other). J

I Corollary 10. The graph G+ does not contain negative cycles (hence Gr as well).

Proof. Let C be a cycle in G+. If C does not contain any vertex in P we are done (since
the cycle C exists in G, and G does not contain negative cycles), so we assume otherwise.
Let v ∈ C ∩ P . Note that C is a path from v to itself. By Lemma 9 we can replace C with a
simple path in P+ from v to itself without increasing the cycle weight, that path is simply
〈v〉 with zero weight. J

I Corollary 11. The path P r is a shortest path in the graph Gr.

Proof. By Lemma 9, P r is a shortest path in G+, hence it’s also a shortest path in Gr (Gr
is a subgraph of G+ that contains P r) J

I Lemma 12. Let e = (u, v) ∈ P . Suppose that v is reachable from u in Gr, then there exists
a shortest cycle in Gr containing er of the form D · S(D)r where D is a detour skipping e.

Proof. Let C = 〈x0, ..., xN 〉 be a minimal cycle in Gr containing er s.t. x0 = v, x1 = u and
xN = v.

Let l ∈ [N ] be the largest index s.t. xl ∈ P and xl is to the left of u in P .
Let r ∈ {l + 1, ..., N} (i.e. r is greater than l) be the smallest index s.t. xr ∈ P (notice

it implies that xr is to the right of v in P ). By Corollary 11 we can replace C[x0, ..., xl]
with P r[v, ..., xl] and C[xr, ..., v] with P r[xr, ..., v] without increasing the weight of the cycle.
The middle part D := C[xl, ..., xr] is a detour skipping e, and P r[xr, ..., xl] = S(D)r. Hence
D · S(D)r is a cycle containing er with weight of at most wr(C). J
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Notice the similarity of Lemma 5 and Lemma 12.

I Definition 13. Let e ∈ P . We denote by Ce the shortest cycle in Gr containing er.
Moreover, by Lemma 12 we may assume that Ce is of the form D · S(D)r for some detour D
skipping e. If er is not contained in any cycle in Gr, then Ce is defined as having weight
infinity (we define this to ease notation).

We denote by dr the distance function over Gr.
I Remark 14. For any edge e = (u, v) ∈ P , wr(Ce) = dr(u, v)− w(u, v).

I Theorem 15. For any edge e = (u, v) ∈ P , de(s, t) = w(P ) +wr(Ce) (= w(P )−w(u, v) +
dr(u, v)).

Proof. From Lemma 5 it follows that de(s, t) = min
D skip e

w(Prefix(D))+w(D)+w(Suffix(D))

(where the right expression equals to ∞ if there is no such detour D).
From Lemma 12 it follows that min

D skip e
w(D)− w(S(D)) = min

C contain er
wr(C).

Hence in total we have:
de(s, t) = min

D skip e
w(Prefix(D)) + w(D) + w(Suffix(D)) = w(P ) + min

D skip e
w(D) −

w(S(D)) = w(P ) + min
C contain er

wr(C) = w(P ) + wr(Ce) J

Figure 3 An example of a shortest path in G\(v1, v2) and the corresponding minimal cycle in Gr.

4 Replacement paths in graphs with integer weights

In this section, we aim to solve the replacement paths problem for directed graphs with integer
weights in [−M,M ]. Let A be a distance oracle for directed graphs with integer weights
in [−M,M ]. We let PreprocessA(n,m,M) be the computation time of A to preprocess
the graph and QueryA(n,m,M) be the computation time of A to answer a distance query.
Finally, we denote by dA(u, v) the answer of the oracle A to the query of the distance from
u to v.

I Theorem 16. Let A be a distance oracle for weighted directed graph with integer weights
in [−M,M ]. Then, there is an algorithm for the replacement paths problem that runs in
O(PreprocessA(n,m,M) + n ·QueryA(n,m,M)) time.

Proof. We first compute Gr in linear time. Then we preprocess Gr to compute a distance
oracle A in PreprocessA(n,m,M) time, and finally for every edge e = (u, v) ∈ P we compute
dr(u, v) using the oracle A in QueryA(n,m,M) time, and store de(s, t)← dr(u, v)− w(e) +
w(P ) (= wr(Ce) + w(P )). The number of calls to the distance query is equal to the number
of edges in P which is bounded by n. The correctness of the algorithm follows directly from
Theorem 15. J
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I Theorem 17. The replacement paths problem for weighted directed graph, with integer
weights in [−M,M ] can be solved in deterministic Õ(Mnω) time.

Proof. We denote byA the distance oracle of Y uster−Zwick (recall Theorem 3). PreprocessA(n,m,M) =
Õ(Mnω) and QueryA(n,m,M) = O(n).

Hence, by Theorem 16 we can solve the replacement paths problem in total time of
Õ(Mnω) +O(n2) = Õ(Mnω). J

Algorithm 1 ReplacementPaths.

1. Input: [G,P, s, t]
2. Compute Gr (for every edge in P , flip its orientation and its sign)
3. Compute a distance oracle A for the graph Gr
4. de(s, t)← dA(u, v)− w(e) + w(P ) for e = (u, v) ∈ P
5. Output: [de(s, t) for e ∈ P ]

5 Replacement paths in planar graphs

In this section we aim to solve the replacement paths problem for directed planar graphs
with non negative edge weights.

I Definition 18 (MSSP problem). Let G be a directed planar graph with arbitrary weights
(possibly negative). Let U = {u1, u2, .., u`} be a set of nodes sharing the same face, T
be a shortest path tree rooted at u1, and L ⊆ U × V be a list of k pairs. The MSSP

(Multiple-source shortest paths) problem is as follows; Given G,T, L, output d (u, v) for all
(u, v) ∈ L.

Let A be an algorithm that solves the MSSP problem. We denote by TA(n, k) the running
time of A to solve the MSSP problem for a graph with n nodes, and a list of k pairs.

I Theorem 19 (Klein [11]). There exists an algorithm A that solves the MSSP problem in
time TA(n, k) = O (n logn+ k logn).

Let e = (u, v) ∈ P . By Theorem 15, de (s, t) = w (P ) + dr (u, v)− w (u, v). That is, in order
to solve the RP problem we need to compute dr (u, v) for every (u, v) ∈ P . We will do so by
invoking the MSSP algorithm. However, there are two slight obstacles with this approach.
The first obstacle is that the nodes of P r are not necessarily belong to the same face. The
second obstacle is that even though the MSSP algorithm can handle negative weights, it
requires a computation of a shortest path tree. The graph Gr contains negative weights,
thus a naive computation of a shortest path tree would be too time consuming, as the best
running time for computing SSSP (single source shortest path) with negative weights in
planar graphs is O

(
n log2 n/ log logn

)
[13]. We will face the first obstacle using a standard

approach of creating a new planar graph, denoted as H1, such that all nodes of P r (more
precisely a copy of them) belong to the same face in H1. For tackling the second obstacle,
notice that the only edges in Gr with negative weights belong to E (P r). We will see how
we can utilize this to compute a shortest path tree rooted at t in time O (n) by creating a
new planar graph, denoted by H2.

I Definition 20. Given three edges e1, e2, e3 ∈ E (Gr) incident with v, we say that e2 is
between e1 and e3 if a counterclockwise traversal of the edges incident with v that begins at
e1 reaches e2 before it reaches e3.
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Let vi ∈ P r\ {s, t}, and let e be an edge incident with vi such that e /∈ E (P r). We say
that e is to the right of P r at vi, if e is between the edge (vi+1, vi) and the edge (vi, vi−1).
Otherwise, we say that e is to the left of P r.

I Definition 21 (See Figure 4 for illustration). We define a new graph, denoted as H1,
obtained from Gr, with the following modifications;

1. For every node vi ∈ {v1, v2, ..., vk−1}, replace vi with two new nodes vli and vri (l for left
and r for right).
Notice that we leave s and t as they are. To ease notations, whenever we write vl0 or vr0 we
actually mean v0 (= s). Similarly whenever we write vlk or vrk we actually mean vk (= t).

2. For every i ∈ [k − 1], x ∈ {l, r}, add an edge
(
vxi+1, v

x
i

)
with weight wr(vi+1, vi).

3. Let v ∈ {v1, v2, ..., vk−1}, and let e be an edge incident with v in Gr such that e /∈ E (P r).
If e is to the left of P r at v, we modify e by substitute v with vl . Otherwise, we modify e
by substitute v with vr.

I Definition 22 (See Figure 4 for illustration). We define a new graph, denoted as H2,
obtained from H1, with the following modifications;

For every i ∈ [k − 1], x ∈ {l, r}, remove the edge
(
vxi+1, v

x
i

)
and add an edge (t, vxi ) with

weight dr (t, vi).

Figure 4 An example of transformation of a planar graph G into Gr,H1 and H2.

I Remark 23. H1 and H2 are planar graphs of size O (n). Moreover, all nodes in the set{
vl0, .., v

l
k, v

r
0, .., v

r
k

}
share the same face in H1.

Let us use the following notation; For every i ∈ [k − 1], x, y ∈ {l, r}, ρxyi = dH1

(
vxi , v

y
i+1

)
.

I Lemma 24. For every i ∈ [k − 1] we have dr(vi, vi+1) = min
{
ρlli , ρ

lr
i , ρ

rl
i , ρ

rr
i

}
.

Proof. Let Q be a path in H1. We can simulate the path Q in the graph Gr, by replacing
every instance of vli and vri with vi. The resulting path has the same length of Q. In
particular this holds for a path from vxi to vyi+1 for any choice of x, y ∈ {l, r}. Therefore
dr (vi, vi+1) ≤ min

{
ρlli , ρ

lr
i , ρ

rl
i , ρ

rr
i

}
. Let Pi be a shortest path from vi to vi+1 in Gr.

By Lemma 12 we can assume Pi is of the form P r[vi, ..., u] · Duv · P r[v, ..., vi+1], where
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u ∈ P r is to the left of vi, v ∈ P r is to the right of vi+1, and Duv is a detour from u

to v skipping the edge (vi, vi+1). The first and last edges of Duv can either be to the
left or to the right of P r. Therefore there are four possible cases for the departure and
entrance orientation of Duv with respect to P r. Let x ∈ {l, r} be the orientation of the
first edge of Duv, and y ∈ {l, r} be the orientation of the last edge of Duv. We can
simulate Pi in the graph H1 by replacing all nodes vj ∈ P r[vi, ..., u] with vxj , and all nodes
vj ∈ P r[v, ..., vi+1] with vyj . The resulting path is a path from vxi to vyi+1, and has the
same length of Pi. Therefore dr (vi, vi+1) ≥ ρxyi ≥ min

{
ρlli , ρ

lr
i , ρ

rl
i , ρ

rr
i

}
. It follows that

dr(vi, vi+1) = min
{
ρlli , ρ

lr
i , ρ

rl
i , ρ

rr
i

}
. J

Our current goal is to compute a shortest path tree rooted at t in the graph H1 in O (n)
time.

I Lemma 25. For all v ∈ V (H1) (= V (H2)), dH1 (t, v) = dH2 (t, v).

Proof. For the first direction, let us prove dH1 (t, v) ≤ dH2 (t, v). Let Q2 be a shortest path
from t to v in H2. We can simulate the path Q2 in the graph H1 as follows; If the first edge
of the path Q2 is of the form (t, vxi ), then replace that edge with a path from t to vxi of
length dr (t, vxi ). The rest of the simulated path is identical to Q2. The resulting path has
the same length as Q2. Therefore dH1 (t, v) ≤ w (Q2) = dH2 (t, v). For the second direction,
let us prove that dH2 (t, v) ≤ dH1 (t, v). Let Q1 be a shortest path from t to v in H1. The
path 〈t = vxk , ..., v

x
1 , v

x
0 = s〉 is a shortest path in H1 for x ∈ {l, r}. Let vxi be the last node

in Q1 that belongs to the set
{
vlk, ..., v

l
1, v

l
0, v

r
k, ..., v

r
1, v

r
0
}
. We can simulate the path Q1 in

the graph H2 as follows; Replace the path Q1 [t, ..., vxi ] with a direct edge (t, vxi ), and the
rest of the simulated path is identical to Q1. The resulting path is of the same length as Q1.
Therefore dH2 (t, v) ≤ w (Q1) = dH1 (t, v). It follows that dH1 (t, v) = dH2 (t, v). J

I Theorem 26 (Henzinger, Klein, Rao and Subramanian [6]). Let G be a directed planar graph
with non negative weights, and let s ∈ V (G). One can compute a shortest path tree rooted at
s in O (n) time.

Notice that the only edges with negative weights in H2 are incident with t. Let c0 =
min {dr (t, vi) | i ∈ [k − 1]}. We modify H2 by increasing the weights of all edges going out
from t by −c0. The modified graph is a planar graph with non negative weights. Therefore
by Theorem 26, we can compute a shortest path tree rooted at t, denoted as T2, in the
modified graph in O (n) time. T2 is a shortest path tree for the graph H2.

Next we show how to modify T2 to a shortest path tree in the graph H1.

I Definition 27. Let A =
{(
vxi+1, v

x
i

)
| i ∈ [k − 1] , x ∈ {l, r}

}
. We define a new tree, denoted

as T1, obtained from T2, with the following modifications;
For every edge e = (u, v) ∈ A, remove the edge (p (v) , v) from T2, and insert the edge

(u, v) with weight dr (u, v) to T2, where p (v) is the parent of v in T2.

Note that for every node vxi for x ∈ {l, r}, the shortest path from t to vxi in T1 is of the same
length as in T2. By Lemma 25, we conclude that T1 is a shortest path tree in H1.

I Corollary 28. One can compute a shortest path tree T1 rooted at t in H1 in O (n) time.

I Theorem 29. Let G be a directed planar graph with non negative weights. Let A be an
algorithm that solves the MSSP problem on a graph with n nodes, and a list of k pairs, in
time TA (n, k). Then, there is an algorithm that solves the replacement paths problem on G,
that runs in O (TA (2n, 4n)) time.
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Proof. By Corollary 28, we can compute H1 and T1 in O (n) time.
Let L1 =

〈(
vxi , v

y
i+1

)
|i ∈ [k − 1], x ∈ {l, r}

〉
be a list of 4k pairs. By invoking A with

(H1, T1, L1) as an input, we have computed ρxyi = dH1

(
vxi , v

y
i+1

)
for all i ∈ [k− 1], x ∈ {l, r},

in TA (2n, 4n) time. Let e = (vi, vi+1) ∈ P . By Theorem 15, de (s, t) = w (P ) − w (e) +
dr (vi, vi+1). By Lemma 24, dr (vi, vi+1) = min

{
ρlli , ρ

lr
i , ρ

rl
i , ρ

rr
i

}
. Thus for every edge e =

(vi, vi+1) ∈ P , we store de (s, t)← w (P )− w (e) + min
{
ρlli , ρ

lr
i , ρ

rl
i , ρ

rr
i

}
. The total running

time to solve the replacement paths problem is O (n) + TA (2n, 4n) = O (TA (2n, 4n)). J

I Theorem 30. Let G be a directed planar graph with non negative weights. Then, there is
an algorithm for the replacement paths problem over G that runs in O (n logn) time.

Proof. We denote by A the algorithm of Klein for the MSSP problem [11]. By Theorem 19,
TA (n, n) = O (n logn). Hence by Theorem 29, we can solve the replacement paths problem
in O (2n log (4n)) = O (n logn) time. J
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Abstract
We consider the problem of designing sublinear time algorithms for estimating the cost of minimum
metric traveling salesman (TSP) tour. Specifically, given access to a n× n distance matrix D that
specifies pairwise distances between n points, the goal is to estimate the TSP cost by performing
only sublinear (in the size of D) queries. For the closely related problem of estimating the weight of
a metric minimum spanning tree (MST), it is known that for any ε > 0, there exists an Õ(n/εO(1))
time algorithm that returns a (1+ε)-approximate estimate of the MST cost. This result immediately
implies an Õ(n/εO(1)) time algorithm to estimate the TSP cost to within a (2 + ε) factor for any
ε > 0. However, no o(n2) time algorithms are known to approximate metric TSP to a factor that is
strictly better than 2. On the other hand, there were also no known barriers that rule out existence
of (1 + ε)-approximate estimation algorithms for metric TSP with Õ(n) time for any fixed ε > 0. In
this paper, we make progress on both algorithms and lower bounds for estimating metric TSP cost.

On the algorithmic side, we first consider the graphic TSP problem where the metric D

corresponds to shortest path distances in a connected unweighted undirected graph. We show that
there exists an Õ(n) time algorithm that estimates the cost of graphic TSP to within a factor of
(2− ε0) for some ε0 > 0. This is the first sublinear cost estimation algorithm for graphic TSP that
achieves an approximation factor less than 2. We also consider another well-studied special case
of metric TSP, namely, (1, 2)-TSP where all distances are either 1 or 2, and give an Õ(n1.5) time
algorithm to estimate optimal cost to within a factor of 1.625. Our estimation algorithms for graphic
TSP as well as for (1, 2)-TSP naturally lend themselves to Õ(n) space streaming algorithms that
give an 11/6-approximation for graphic TSP and a 1.625-approximation for (1, 2)-TSP. These results
motivate the natural question if analogously to metric MST, for any ε > 0, (1 + ε)-approximate
estimates can be obtained for graphic TSP and (1, 2)-TSP using Õ(n) queries. We answer this
question in the negative – there exists an ε0 > 0, such that any algorithm that estimates the cost of
graphic TSP ((1, 2)-TSP) to within a (1 + ε0)-factor, necessarily requires Ω(n2) queries. This lower
bound result highlights a sharp separation between the metric MST and metric TSP problems.

Similarly to many classical approximation algorithms for TSP, our sublinear time estimation
algorithms utilize subroutines for estimating the size of a maximum matching in the underlying
graph. We show that this is not merely an artifact of our approach, and that for any ε > 0, any
algorithm that estimates the cost of graphic TSP or (1, 2)-TSP to within a (1 + ε)-factor, can also
be used to estimate the size of a maximum matching in a bipartite graph to within an εn additive
error. This connection allows us to translate known lower bounds for matching size estimation in
various models to similar lower bounds for metric TSP cost estimation.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms
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1 Introduction

In the metric traveling salesman problem (TSP), we are given n points in an arbitrary metric
space with an n× n matrix D specifying pairwise distances between them. The goal is to
find a simple cycle (a TSP tour) of minimum cost that visits all n points. An equivalent view
of the problem is that we are given a complete weighted undirected graph G(V,E) where the
weights satisfy triangle inequality, and the goal is to find a Hamiltonian cycle of minimum
weight. The study of metric TSP is intimately connected to many algorithmic developments,
and the poly-time approximability of metric TSP and its many natural variants are a subject
of extensive ongoing research (see, for instance, [3, 11,14, 15, 17, 24–28] and references within
for some relatively recent developments). In this paper, we consider the following question:
can one design sublinear algorithms that can be used to obtain good estimates of the cost of
an optimal TSP tour? Since the complete description of the input metric is of size Θ(n2),
the phrase sublinear here refers to algorithms that run in o(n2) time.

A standard approach to estimating the metric TSP cost is to compute the cost of a
minimum spanning tree, and output two times this cost as the estimate of the TSP cost (since
any spanning tree can be used to create a spanning simple cycle by at most doubling the cost).
The problem of approximating the cost of the minimum spanning tree in sublinear time was
first studied in the graph adjacency-list model by Chazelle, Rubinfeld, and Trevisan [7]. The
authors gave an Õ(dW/ε2)-time algorithm to estimate the MST cost to within a (1+ε)-factor
in a graph where average degree is d, and all edge costs are integers in [1..W ]. For certain
parameter regimes this gives a sublinear time algorithm for estimating the MST cost but in
general, this run-time need not be sublinear. Subsequently, in an identical setting as ours,
Czumaj and Sohler [10] showed that for any ε > 0, there exists an Õ(n/εO(1)) time algorithm
that returns a (1 + ε)-approximate estimate of the MST cost when the input is an n-point
metric. This result immediately implies an Õ(n/εO(1)) time algorithm to estimate the TSP
cost to within a (2 + ε) factor for any ε > 0. However, no o(n2) query algorithms are known
to approximate metric TSP to a factor that is strictly better than 2. On the other hand,
there are also no known barriers that rule out existence of (1 + ε)-approximate estimation
algorithms for metric TSP with Õ(n) queries for any fixed ε > 0. In this paper, we make
progress on both algorithms and lower bounds for estimating metric TSP cost.

On the algorithmic side, we first consider the graphic TSP problem, an important case
of metric TSP that has been extensively studied in the classical setting – the metric D
corresponds to the shortest path distances in a connected unweighted undirected graph [17,
18,25]. We give the first Õ(n) time algorithm for graphic TSP that achieves an approximation
factor strictly better than 2.

I Theorem 1.1. There is an Õ(n) time randomized algorithm that estimates the cost of
graphic TSP to within a factor of 2− ε0 for some constant ε0 > 0.

https://doi.org/10.4230/LIPIcs.ICALP.2020.30
https://arxiv.org/abs/2006.05490
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On the other hand, if we are willing to allow a higher sublinear time, we can get a better
approximation ratio.

I Theorem 1.2. There is an Õ(n1.5) time randomized algorithm that estimates the cost of
graphic TSP to within a factor of (27/14).

At a high-level, our algorithm is based on showing the following: if a graph G either lacks
a matching of size Ω(n) or has Ω(n) biconnected components (blocks), then the optimal TSP
cost is not too much better than 2n. Conversely, if the graph G has both a large matching
and not too many blocks, then we can show that the optimal TSP cost is distinctly better
than 2n. Since we do not know an efficient sublinear algorithm to estimate the number of
blocks in a graph G, we work with another quantity that serves as a proxy for this and can
be estimated in Õ(n) time. The main remaining algorithmic challenge then is to estimate
sufficiently well the size of a largest matching. This problem is very important by itself, and
has received much attention [13,19,20,23,30]; please see a detailed discussion of this problem,
and relevant recent developments towards the end of this section. Our Õ(n) query results
utilize the recent result of Kapralov et al. [13] who give an algorithm to approximate the size
of maximum matching to within a constant factor (for some very large constant) in Õ(n)
time in the pair query model (is there an edge between a given pair of vertices?). We also
show that matching size can be estimated to within a factor of 2 in Õ(n1.5) time, crucial to
obtaining the approximation guarantee in Theorem 1.2.

Our approach for estimating graphic TSP cost in sublinear time also lends itself to an
Õ(n) space streaming algorithm that can obtain an even better estimate of the cost. To
our knowledge, no estimate better than a 2-approximation was known previously. In the
streaming model, we assume that the input to graphic TSP is presented as a sequence of
edges of the underlying graph G. Any algorithm for this model, clearly also works if instead
the entries of the distance matrix are presented in the stream – an entry that is 1 corresponds
to an edge of G, and it can be ignored otherwise as a non-edge.

I Theorem 1.3. There is an O(n) space randomized streaming algorithm that estimates the
cost of graphic TSP to within a factor of (11/6) in insertion-only streams.

We next consider another well-studied special case of metric TSP, namely, (1, 2)-TSP
where all distances are either 1 or 2 [2, 5, 22], and obtain the following result.

I Theorem 1.4. There is an Õ(n1.5) time randomized algorithm that estimates the cost of
(1, 2)-TSP to within a factor of 1.625.

Throughout the paper, whenever we refer to a graph associated with a (1, 2)-TSP instance,
it refers to the graph G induced by edges of distance 1 in our {1, 2}-metric. At a high-level,
the idea underlying our algorithm is to analyze the structure of the graph G induced by
edges of distance 1. We design an algorithm to estimate the size of a maximal “matching
pair” of G which is defined to be a pair of edge-disjoint matchings. We show that whenever
the size of a matching pair is large in a graph G, the TSP cost is distinctly smaller than 2n,
and conversely, if this quantity is not large, the TSP cost is close to 2n. The main remaining
algorithm challenge then is to estimate sufficiently well the size of a maximal matching pair,
and we show that this can be done in Õ(n1.5) time.

For (1, 2)-TSP, an Õ(n) query algorithm that estimates the cost of (1, 2)-TSP to within
a factor of 1.75 was claimed in [1] but this result is based on the matching size estimation
results of [20]. Unfortunately, as confirmed by the authors [21], there is a problem with
the proof of one of the statements in the paper – Observation 3.9 – which is crucial for the
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correctness of the main result. As a result, the Õ(d) time result in the neighbor query model
as well as the Õ(n) time result in the adjacency matrix, claimed in [20] can no longer be
relied upon, and we have chosen to make this paper independent of these results [20]. It is
worth mentioning that if the Õ(n)-time matching estimation result of [20] can be shown to
hold, then the run-time of both Theorems 1.2 and 1.4 can be improved to Õ(n) time.

We note that it is easy to show that randomization is crucial to getting better than a
2-approximation in sublinear time for both graphic TSP and (1, 2)-TSP (we include the proof
of these results in the full version of this paper). The algorithms underlying Theorems 1.2
and 1.4, lend themselves to Õ(n) space single-pass streaming algorithms with identical
approximation guarantees. These sublinear time algorithms motivate the natural question if
analogously to metric MST, there exist sublinear time algorithms that for any ε > 0, output
a (1 + ε)-approximate estimate of TSP cost for graphic TSP and (1, 2)-TSP in Õ(n) time.
We rule out this possibility in a strong sense for both graphic TSP and (1, 2)-TSP.

I Theorem 1.5. There exists an ε0 > 0, such that any algorithm that estimates the cost of
graphic TSP ((1, 2)-TSP) to within a (1 + ε0)-factor, necessarily requires Ω(n2) queries.

This lower bound result highlights a sharp separation between the behavior of metric
MST and metric TSP problems. At a high-level, our lower bound is inspired by the work of
Bogdanov et al. [6] who showed that any query algorithm that for any ε > 0 distinguishes
between instances of parity equations (mod 2) that are either satisfiable (Yes) or at most
(1/2 + ε)-satisfiable (No), requires Ω(n) queries where n denotes the number of variables.
However, the query model analyzed in [6] is different from ours (see more details in Section 4).
We first show that the lower bound of [6] can be adapted to an Ω(n2) lower bound in our
model, and then show that instances of parity equations can be converted into instances
of graphic TSP (resp. (1, 2)-TSP) such that for some ε0 > 0, any (1 + ε0)-approximation
algorithm for graphic TSP (resp. (1, 2)-TSP), can distinguish between the Yes and No
instances of the parity equations, giving us the desired result.

Finally, similar to many classical approximation algorithms for TSP, our sublinear time
estimation algorithms utilize subroutines for estimating the size of a maximum matching in
the underlying graph. We show that this is not merely an artifact of our approach.

I Theorem 1.6. For any ε ∈ [0, 1/5), any algorithm that estimates the cost of an n-vertex
instance of graphic TSP or (1, 2)-TSP to within a (1 + ε)-factor, can also be used to estimate
the size of a maximum matching in an n-vertex bipartite graph to within an εn additive error,
with an identical query complexity, running time, and space usage.

This connection allows us to translate known lower bounds for matching size estimation in
various models to similar lower bounds for metric TSP cost estimation. In particular, using
the results of [4], we can show that there exists an ε0 such that any randomized single-pass
dynamic streaming algorithm for either graphic TSP or (1, 2)-TSP that estimates the cost to
within a factor of (1 + ε0), necessarily requires Ω(n2) space.

We conclude by establishing several additional lower bound results that further clarify the
query complexity of approximating TSP cost. For instance, we show that if an algorithm can
access an instance of graphic TSP by only querying the edges of the graph (via neighbor and
pair queries), then any algorithm that approximates the graphic TSP cost to a factor better
than 2, necessarily requires Ω(n2) queries. This is in sharp contrast to Theorem 1.1, and
shows that working with the distance matrix is crucial to obtaining sublinear time algorithms
for graphic TSP. We also show that even in the distance matrix representation, the task of
finding a tour that is (2 − ε)-approximate for any ε > 0, requires Ω(n2) queries for both
graphic TSP and (1, 2)-TSP.
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Matching Size Estimation. As the problem of matching size estimation is intimately
connected to metric TSP cost estimation, we briefly review some relevant work here. This
line of research primarily assumes that we are given a graph G(V,E) with maximum degree
d, that can be accessed via neighbor queries [12]: (a) for any vertex v, we can query its
degree, and (b) for any vertex v and an integer i, we can learn the ith neighbor of v.

Parnas and Ron [23] initiated the study of matching size estimation in sublinear time and
gave an dO(log(d/ε) time algorithm that estimates the matching size to within a constant factor
plus an additive εn error for any ε > 0. Nguyen and Onak [19] presented a new estimation
algorithm and showed that it can estimate the matching size to within a factor of 2 plus an
additive εn error in 2O(d)/ε2 time. We will refer to this approximation guarantee as a (2, ε)-
approximation of matching size. Yoshida et al. [30] strongly improved upon the performance
guarantee obtained in [19], and showed that a (2, ε)-approximation to matching size can
be accomplished in O(d4/ε2) time (in fact, they obtain the stronger (2± ε)-approximation
guarantee). The analysis of [30] was further improved by Onak et al. [20] who showed that
the state of the art for (2, ε)-approximation of matching size. We note that it is known that
any (O(1), ε)-approximate estimate of matching size necessarily requires Ω(d) queries [23], so
the result of [20] is essentially best possible. Unfortunately, as mentioned above, we recently
discovered a subtle mistake in the analysis of Onak et al. [21]. Consequently, the best known
time complexity for obtaining a (2, ε)-approximate estimate is Õ(d2/ε2)); this weaker result
also follows from the work of [20], but does not rely on the incorrect observation in [20].

The difference between a linear dependence versus a quadratic dependence on degree
d is however huge in the sublinear time applications when the graph is not very sparse.
In particular, while an Õ(d) query result translates into an Õ(n) time algorithm in the
adjacency matrix model, an Õ(d2) query result gives only an Õ(n2) time algorithm, which is
clearly not useful. Very recently, Kapralov et al. [13] gave an alternate approach based on a
vertex “peeling” strategy (originally proposed in [23]) that yields an (O(1), ε)-approximation
of matching size in Õ(d/ε2) time. Unfortunately, the constant hidden in the O(1) notation
is very large, and efficiently obtaining a (2, ε)-approximation to matching size remains an
important open problem. Meanwhile, by directly building on the work of [30], we obtain an
Õ(n1.5) time algorithm for a (2, ε)-approximation to matching size in the adjacency matrix
model, and it is this algorithm that is used in the results of Theorem 1.2 and Theorem 1.4.

Other Related Work. We note here that there is an orthogonal line of research that focuses
on computing an approximate solution in near-linear time when the input is presented as
a weighted undirected graph, and the metric is defined by shortest path distances on this
weighted graph. It is known that in this model, for any ε > 0, there is an Õ(m/ε2 + n1.5/ε3)
time algorithm that computes a (3/2 + ε)-approximate solution; here n denotes the number
of vertices and m denotes the number of edges [9], and that a (3/2 + ε)-approximate estimate
of the solution cost can be computed in Õ(m/ε2) time [8]. It is not difficult to show that in
this access model, even when the input graph is unweighted (i.e. a graphic TSP instance),
any algorithm that outputs better than a 2-approximate estimate of the TSP cost, requires
Ω(n + m) time even when m = Ω(n2). Hence this access model does not admit sublinear
time algorithms that beat the trivial 2-approximate estimate.

Organization. In Section 2, we present our algorithms for graphic TSP (Theorem 1.1 and
Theorem 1.2). In section 3, we present the 1.625-approximation algorithm of (1, 2)-TSP
(Theorem 1.4). In Section 4, we present our lower bound result that rules out possibility of a
sublinear-time approximation scheme for both graphic TSP and (1, 2)-TSP (Theorem 1.5).
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In Section 5, we present a strong connection between approximating metric TSP cost
and estimating matching size (Theorem 1.6). We defer to the full version the proofs of
several additional lower bound results on the complexity of approximating graphic TSP and
(1, 2)-TSP cost.

2 Approximation for Graphic TSP Cost

In this section, we exploit well-known properties of biconnected graphs and biconnected
components in graphs to give an algorithm that achieves a (2 − 1

7c0
)-approximation for

graphic TSP if we have an efficient algorithm that approximates the maximum matching
size within a factor of c0. We first relate the cost of the TSP tour in a graph to the costs of
the TSP tours in the biconnected components of the graph. Next we show that if the graph
does not have a sufficiently big matching, it does not have a TSP tour whose length is much
better than 2n. We also show that if a graph has too many degree 1 vertices, or vertices of
degree 2, both whose incident edges are bridges, then it does not have a TSP tour of cost
much better than 2n. We then establish the converse - a graph that has a good matching
and not too many bad vertices (namely, vertices of degree 1 or articulation points of degree
2), then it necessarily has a TSP tour of cost much better than 2n. We design Õ(n) time
test for the second condition, allowing us to approximate the cost of an optimal graphic TSP
tour in sublinear time together with some known techniques for testing the first condition.
In what follows, we first present some basic concepts and develop some tools that will play a
central role in our algorithms.

2.1 Preliminaries
An unweighted graph G = (V,E), defines a graphic metric in V , where the distance between
any two vertices u and v is given by the length of the shortest path between u and v. The
graphic TSP is the Traveling Salesman Problem defined on such a graphic metric. In this
paper our goal is to find a non-trivial approximation to the length of the traveling salesman
tour in sublinear time in a model where we are allowed to make distance queries. In the
distance query model, the algorithm can make a query on a pair of vertices (u, v) and get
back the answer d(u, v), the distance between u and v in G.

In a connected graph G, an edge e is a bridge if the deletion of e would increase the
number of connected components of G. A connected graph with no bridge is called a 2-edge-
connected graph. A maximal 2-edge-connected subgraph of G is called a 2-edge-connected
component. The bridge-block tree of a graph is a tree such that the vertex set contains the
2-edge-connected components and the edge set contains the bridges in the graph.

A connected graph G is called 2-vertex-connected or biconnected if when any one vertex
is removed, the resulting graph remains connected. In a graph which is not biconnected,
a vertex v whose removal increases the number of components is called an articulation
point. It is easy to prove that any biconnected graph with at least 3 vertices does not have
degree 1 vertices. A well-known alternate characterization of biconnectedness is that, a
graph G is biconnected if and only if for any two distinct edges, there is a simple cycle that
contains them.

A biconnected component or block in a graph is a maximal biconnected subgraph. Any
graph G can be decomposed into blocks such that the intersection of any two blocks is either
empty, or a single articulation point. Each articulation point belongs to at least two blocks.
If a block is a single edge, then we call this block a trival block; otherwise it is a non-trivial
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block. A trival block is also a bridge in the graph. The size of a block is the number of
vertices in the block. The following lemma shows the relationship between the number of
blocks and the sum of the sizes of the blocks.

I Lemma 2.1. If a connected graph G has n vertices and k blocks, then the sum of the sizes
of the blocks is equal to n+ k − 1.

Proof. We prove the lemma by induction on the number k of blocks. The base case is when
k = 1. In this case, G itself is a block of size n.

For the induction step, we have k > 1 and thus the graph has at least one articulation
point. Suppose v is an arbitrary articulation point in G. Let V1, V2, . . . , Vj be the set
of vertices in the connected components of G \ {v}. We have

∑j
i=1 |Vi| = n − 1. Let

G1, G2, . . . , Gj be the subgraphs of G induced by V1 ∪ {v}, V2 ∪ {v}, . . . , Vj ∪ {v}. For any
Gi, let ki be the number of blocks in Gi, we have

∑j
i=1 ki = k. By induction hypothesis, the

sum of the sizes of blocks in Gi is |Vi|+ 1 + ki − 1 = |Vi|+ ki. So the sum of the sizes of
blocks in G is

∑j
i=1 |Vi|+ ki = n− 1 + k. J

The block decomposition of a graph has a close relationship with the cost of graphic TSP
of the graph.

I Lemma 2.2 (Lemma 2.1 of [16]). The cost of the graphic TSP of a connected graph
G = (V,E) is equal to the sum of the costs of the graphic TSP of all blocks in the graph.

Together these two lemmas give us a simple lower bound on the cost of the graphic TSP
of a graph G (using the fact that the cost of graphic TSP is at least the number of vertices
in the graph).

I Lemma 2.3. If a graph G has n vertices and k blocks, then the cost of graphic TSP of G
is at least n+ k − 1.

An ear in a graph is a simple cycle or a simple path. An ear which is a path is also
called an open ear and it has two endpoints, whereas for a cycle, one vertex is designated as
the endpoint. An ear decomposition of a graph is a partition of a graph into a sequence of
ears such the endpoint(s) of each ear (except for the first) appear on previous ears and the
internal points (the points that are not endpoints) are not on previous ears. A graph G is
biconnected if and only if G has an ear decomposition such that each ear but the first one
is an open ear [29]. An ear is nontrivial if it has at least one internal point. The following
lemma upper bounds the cost of graphic TSP of a biconnected graph.

I Lemma 2.4 (Lemma 5.3 of [25], also a corollary of Lemma 3.2 of [17]). Given a 2-vertex-
connected graph G = (V,E) and an ear-decomposition of G in which all ears are nontrivial,
a graphic TSP tour of cost at most 4

3 (|V | − 1) + 2
3π can be found in polynomial-time, where

π denotes the number of ears.

We now prove an important lemma that gives an upper bound on the cost of graphic
TSP in a biconnected graph in terms of the size of a matching in the graph.

I Lemma 2.5. Suppose G is a biconnected graph with at least n ≥ 3 vertices. If G has a
matching M , then the cost of graphic TSP of G is at most 2n− 2− 2|M |

3 .

Proof. We first find a spanning biconnected subgraph of G that only contains 2n− 2−M
edges, then use Lemma 2.4 to bound the cost of graphic TSP.
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We construct a spanning biconnected subgraph G? = P0∪P1∪. . . recursively: P0 contains
a single edge in M . If Gi−1 = P0∪P1∪· · ·∪Pi−1 is a spanning subgraph of G, let G? = Gi−1
and finish the construction. Otherwise we construct Pi as follows. Let e be an edge in M
both whose endpoints are not in Gi−1. If there is no such edge, then let e be an arbitrary
edge such that at least one of its endpoints is not in Gi−1. Let e′ be an arbitrary edge in
Gi−1. By the alternate characterization of biconnectedness, there is a simple cycle Ci that
contains both e and e′. Let Pi be the path in Ci that contains e and exactly two vertices in
Gi−1, which are the endpoints of Pi.

Since Pi contains at least one vertex not in Gi−1, the construction always terminates.
Note that P0 ∪ P1 is a cycle, and each Pi (i > 1) is an open ear of G?. So, (P0 ∪ P1, P2, . . . )
is an open ear decomposition of G?, which means G? is biconnected.

Now we prove that the number of edges in G? is at most 2n − 2 −M . Let ni be the
number of vertices in Gi\Gi−1. Let G−1 be the empty graph, so that n0=2. Let pi be the
number of edges in Pi and mi be the number of edges e in M such that e ∩ Gi 6= ∅ and
e∩Gi−1 = ∅. (Here we view an edge as a 2-vertex set.) Note that m0 = 1. Suppose G? = Gk.
Then

∑k
i=1 ni = n,

∑k
i=1 pi is the number of edges in G? and

∑k
i=1mi = |M |. For any i > 0,

Pi is an open ear whose internal points are not in Gi−1. So ni = pi − 1. If there is an edge
e ∈ M such that e ∩ Gi−1 = ∅, then Pi contains both endpoints of an edge in M , which
means mi ≤ ni − 1. If all edges in M already have an endpoint in Gi−1, mi = 0 ≤ ni − 1.
So in both cases, pi = ni + 1 = 2ni − (ni − 1) ≤ 2ni −mi. Also, p0 = 1 = 2n0 − 2−m0. So
the number of edges in G? is

∑k
i=0 pi ≤ 2n0 − 2−m0 +

∑k
i=1(2ni −mi) = 2n− 2− |M |.

As (P0∪P1, P2, P3, . . . , Pk) is an open ear decomposition of G?, the number of ears in G is
k. On the other hand,

∑k
i=0 pi = 1+

∑k
i=1(ni+1) = n−1+k, we have n−1+k ≤ 2n−2−|M |,

which means k ≤ n − 1 − |M |. By Lemma 2.4, the cost of graphic TSP of G? is at most
4
3 (n− 1) + 2

3k ≤ 2(n− 1)− 2
3 |M |.

Since G? is a subgraph of G that contains all the vertices in G, the cost of graphic TSP
of G is at most the cost of graphic TSP of G?, which is at most 2n− 2− 2

3 |M |. J

2.2 Approximation Algorithm for Graphic TSP
We now give our sublinear-time algorithm for approximating the cost of graphic TSP of a
graph G to within a factor strictly smaller than 2.

We call a vertex v a bad vertex if v has degree 1 or is an articulation point with degree 2.
For any given δ > 0, the graphic TSP algorithm performs the following two steps.

1. Obtain an estimate α̂n of the size of maximum matching αn.
2. Obtain an estimate β̂n of the number of bad vertices βn.

The algorithm then output min{2n, (2− 2
7 (α̂− 2β̂))n}.

To perform the second step in Õ(n) distance queries and time, we randomly sample O( 1
δ2 )

vertices. For each sampled vertex, we can obtain the degree with n queries. The following
lemma shows that we can also check whether a degree 2 vertex is an articulation point using
distance queries in O(n) time. Then by the Chernoff bound, we can approximate the number
of bad vertices with additive error O(δn) with a high constant probability.

I Lemma 2.6. Suppose a vertex v in a connected graph G has only two neighbors u and w.
The following three conditions are equivalent:
1. v is an articulation point.
2. The edges (u, v) and (v, w) are both bridges.
3. For any vertex v′ 6= v, |d(u, v′)− d(w, v′)| = 2.
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Proof. We first prove the first two conditions are equivalent. If v is an articulation point,
then v is in two different blocks. So edge (u, v) and (v, w) are in different blocks, which
means v has degree 1 in both blocks. So both blocks are trivial, which means (u, v) and
(v, w) are both bridges. If (u, v) and (v, w) are both bridges, then deleting either (u, v) or
(v, w) will disconnect u and w, which means deleting v will also disconnect u and w.

Next we prove that the third condition is equivalent to the first two. Suppose v is an
articulation point. Since v has degree 2, the graph G \ {v} has only two components, one
containing u and the other containing w. For any vertex v′ 6= v, without loss of generality,
suppose v′ is in the same component as u in G \ {v}. Since (u, v) and (v, w) are both bridges
in G, any path between v′ and w contains u and v. So d(v′, w) = d(v′, u) + 2.

If v is not an articulation point, then u and w are connected in G \ {v}. Let (u =
v0, v1, v2, . . . , vk = w) be the shortest path between u and w in G \ {v}. For any vertex vi on
the path, the distance between vi and u (resp. w) in G \ {v} is i (resp. k − i). Consider the
shortest path between u and vi in G. If this path does not contain v, then it is the same as the
path in G \ {v}. In this case, d(u, vi) = i. If the shortest path contains v, then v must be the
second last vertex on the path and w be the third last one. In this case, d(u, vi) = k − i+ 2.
So d(u, vi) = min{i, k − i + 2}. Similarly, we also have d(vi, w) = min{i + 2, k − i}. Let
v′ = vbk/2c. Since |i− (k − i)| ≤ 1, we have i < k − i + 2 and k − i < i + 2, which means
|d(u, v′)− d(w, v′)| = |i− (k − i)| ≤ 2. J

Next, we prove that if α is small or β is large, the cost of graphic TSP is bounded away
from n. The following lemma shows that if the size of maximum matching of a graph is
small, then the cost of the graphic TSP is large.

I Lemma 2.7. For any ε > 0, if the maximum matching of a graph G has size at most
(1−ε)n

2 , then the cost of graphic TSP of G is at least (1 + ε)n.

Proof. Suppose the optimal TSP tour is (v0, v1, . . . , vn−1, vn = v0). Since the size of
maximum matching in G is at most (1−ε)n

2 , there are at most (1−ε)n
2 edges between pairs

(vi, vi+1) where i is even (resp. odd). So there are at least εn pairs of (vi, vi+1) that have
distance at least 2, which means that the optimal cost of TSP tour of G is

∑n−1
i=1 d(vi, vi+1) ≥

n+ εn = (1 + ε)n. J

The following lemma shows that if β is large, the cost of graphic TSP is large.

I Lemma 2.8. For any ε > 0, if a connected graph G has εn bad vertices, then the cost of
graph-TSP of G is at least (1 + ε)n− 2.

Proof. We first prove by induction on the number of vertices that a graph with k bad vertices
has k − 1 bridges. The base case is when n = 2, the graph has k = 2 bad vertices and
1 = k − 1 bridge.

For the induction step, the graph has n vertices with n ≥ 3. If G has no degree 1 vertices,
then the graph has k articulation points with degree 2. By Lemma 2.6, any edge incident on
a degree 2 articulation point is a bridge. So each bad vertex is incident on 2 bridges. On the
other hand, a bridge is incident on at most 2 vertices. So there are at least 2k

2 = k bridges in
G. Next, suppose G has degree 1 vertices. Let v be an arbitrary such vertex and let u be its
neighbor. Since G is connected and n ≥ 3, u must has degree at least 2, since otherwise u
and v are not connected to other vertices in G. Consider the graph G \ {v}, if u is a bad
vertex in G, u has degree 1 in G \ {v} and is still a bad vertex. So the number of bad vertices
in G \ {v} is k − 1. By induction hypothesis, G \ {v} has at least k − 2 bridges. G has at
least k − 1 bridges since (u, v) is also a bridge.

So G has at least εn− 1 bridges, and the number of blocks in G is at least εn− 1. By
Lemma 2.3, the cost of graph-TSP of G is at least n+ εn− 2 = (1 + ε)n− 2. J
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Finally, the following lemma shows that the cost of graphic TSP is at most (2− 2
7 (α̂−2β))n.

I Lemma 2.9. If a graph has a matching M of size α′n and the graph has βn bad vertices,
the cost of graphic TSP of G is at most (2− 2

7 (α′ − 2β))n.

Proof. Let G1, G2, . . . , Gk be the block decomposition of G. Let ni be the size of Gi. If
|ni| ≥ 3, by Lemma 2.5, the cost of the graphic TSP of Gi is at most 2ni − 3 since any
non-empty graph has a matching of size at least 1. If |ni| = 2, then the graphic TSP of Gi is
exactly 2 = 2ni − 2. Suppose G has ` non-trivial blocks. Then by Lemma 2.2 the cost of
graphic TSP of G is at most

∑k
i=1(2ni − 2)− `, which equals to 2n− 2− ` by Lemma 2.1.

Let mi be the size of maximum matching in Gi if Gi is a non-trivial block, and let
mi = 0 if Gi is a trivial block. By Lemma 2.5, the cost of the graphic TSP of Gi is at most
2ni − 2 − 2mi

3 . For any non-trivial block Gi, M ∩ Gi is a matching in Gi. So the size of
maximum matching in Gi is at least the number of edges in M ∩Gi. So by Lemma 2.2 and
Lemma 2.1, the cost of graphic TSP of G is at most

∑k
i=1(2ni − 2− 2

3mi) = 2n− 2− 2
3 |M

′|,
where M ′ is the set of edges in M that are not bridges in G. Let B be the number of bridges
in G. We have 2n− 2− 2

3 |M
′| ≤ 2n− 2− 2

3 (|M | −B).
So there are two upper bounds of the graphic TSP of G – 2n−2−` and 2n−2− 2

3 (|M |−B).
Which bound is better depends on the number of bridges B.

If B ≤ ( 4
7α
′ + 6

7β)n, the cost of graphic TSP of G is at most

2n− 2− 2
3(|M | −B) ≤ 2n− 2

3(3
7α
′ − 6

7β)n = (2− 2
7(α′ − 2β))n

If B > ( 4
7α
′ + 6

7β)n, consider the bridge-block tree T of G. T has at least B edges
and at least B + 1 vertices. Since T is a tree, there are at least B

2 vertices of degree at
most 2. For any vertex vT of degree at most 2 in T , if the vertex vT represents a single
vertex v in G, then v is either a degree 1 vertex or a degree 2 articulation point in G,
otherwise vT represents a 2-edge-connected component of size at least 2 in G. So There
are at least B

2 − βn ≥ ( 2
7α
′ − 4

7β)n 2-edge-connected components of size at least 2. Since
any 2-edge-connected component of size at least 2 has no bridge, each such component of
G contains at least 1 non-trivial block in G, implying that ` ≥ 2

7 (α′ − 2β)n. So the cost of
graphic TSP of G is at most 2n− 2− ` ≤ (2− 2

7 (α′ − 2β))n. J

We summarize the ideas in this section and prove the following lemma.

I Lemma 2.10. For any c0 > 1 and δ > 0, suppose α̂ ≤ α ≤ c0α̂ + δ and β̂ − δ ≤ β ≤ β̂.
Then (2 − 2

7 (α̂ − 2β̂))n is an approximation of the size of graphic TSP within a factor of
2− 1

7c0
+ δ.

Proof. Let T̂ = (2− 2
7 (α̂− 2β̂))n. Since β̂ ≥ β and α̂ ≤ α, by Lemma 2.9, T ≤ T̂ .

Then we prove that T̂ ≤ (2− 1
7c0

+ δ)T . By Lemma 2.7 and Lemma 2.8, T ≥ max{(2−
2α)n, (1 + β)n− 2}, which means

(2− 1
7c0

+ δ)T ≥ (2− 1
7c0

) max{(2− 2α)n, (1 + β)n} − 4 + δn

On the other hand, T̂ ≤ (2− 2
7 ( αc0
−2β))n+ 6

7δn since c0α̂+δ ≤ α and β̂ ≤ β+δ. For sufficient

large n, we have δn− 4 ≥ 6
7δn, so it is sufficient to prove that

2− 2
7 ( αc0

−2β)
max{2−2α,1+β} ≤ 2− 1

7c0
for

any 0 ≤ α, β ≤ 1 and c0 ≥ 1.
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Let γ = α
c0
−2β, 1+β = 1+( αc0

−γ)/2, so if we fix γ, max{2−2α, 1+β} is minimized when
2− 2α = 1 + ( αc0

− γ)/2. In this case α = (2+γ)c0
4c0+1 and max{2− 2α, 1 + β} = 4c0+2

4c0+1 −
2c0

4c0+1γ.
If γ ≤ 1

2c0
,

2− 2
7 (α− 2β)

max{2− 2α, 1 + β}
≤

2− 2
7γ

4c0+2
4c0+1 −

2c0
4c0+1γ

= 4c0 + 1
7c0

−
2− 4c0+2

7c0
4c0+2
4c0+1 −

2c0
4c0+1γ

≤ 4c0 + 1
7c0

+ 2− 4c0 + 2
7c0

= 2− 1
7c0

If γ > 1
2c0

, 2− 2
7 (α−2β)

max{2−2α,1+β} <
2− 1

7c0
1 = 2− 1

7c0
since β ≥ 0. So T̂ ≤ (2− 1

7c0
+ δ)T . J

By Lemma 2.10, we immediately have the following theorem.

I Theorem 2.11. For any δ > 0 and c0 ≥ 1. Given a graph G with maximum matching size
αn, suppose there is an algorithm that uses pair queries, runs in t time, and with probability
at least 2/3, outputs an estimate of the maximum matching size α̂n such that α̂ ≤ α ≤ c0α̂+δ.
Then there is an algorithm that approximates the cost of graphic TSP of G to within a factor
of 2− 1

7c0
+ δ, using distance queries, in t+ Õ(n/δ2) time with probability at least 3/5.

Proof. We first use the algorithm in the assumption to obtain an estimate α̂n of the size of
maximum matching αn. The following analysis is based on the event that this algorithm is
run successfully, which has probability 2/3.

We then sample N = 100
δ2 vertices. For each sampled vertex v, we first query the distance

between v and every vertex in G to obtain the degree of v. If v has degree 2, suppose
u and w are the neighbors of v. We query the distance from u and w to every vertex in
G. By Lemma 2.6, v is an articulation point if and only if there is no vertex v′ such that
|d(u, v′)− d(w, v′)| ≤ 1. So we can check if v is a bad vertex with O(n) distance queries and
time. Suppose there are βn bad vertices in G and (β̂ − δ/2)N sampled vertices are bad. By
Chernoff bound, the probability that

∣∣∣β − β̂ + δ/2
∣∣∣ > δ/2 is at most 2e δ

2N2
16 < 1/15. We

analyze the performance based on the event that β ≤ β̂ ≤ β + δ.
By Lemma 2.10, (2− 2

7 (α̂− 2β̂)) is a (2− 1
7c0

+ δ) approximation of the size of graphic
TSP of G. The probability of failure is at most 1/3 + 1/15 = 2/5. J

Proof of Theorem 1.2. The following theorem whose proof appears in the full version,
gives an algorithm for matching size estimation that only uses pair queries – given a pair of
vertices, is there an edge between them? Note that any pair query can be simulated by a
single query to the distance matrix in a graphic TSP instance. J

I Theorem 2.12. For any ε > 0, there is an algorithm that uses pair queries, runs in
Õ(n1.5/ε2) time, and with probability 2/3, outputs an estimate of the size of a maximal
matching within an additive error εn.

Substituting the above result in Theorem 2.11 and using the fact that a maximum
matching has size at most twice the size of a maximal matching (setting c0 = 2, and δ = ε),
we obtain Theorem 1.2.

Proof of Theorem 1.1. Kapralov et al. [13] give an algorithm that uses Õ(d) queries to
approximate the size of maximum matching in a graph with average degree d in the neighbor
query model (the approximation ratio is a very large constant). Together with a reduction
in [20], this implies a pair query algorithm that uses Õ(n) queries to estimate matching size
to a constant factor. Combined with Theorem 2.11, this implies Theorem 1.1. J

ICALP 2020



30:12 Sublinear Algorithms and Lower Bounds for Metric TSP Cost Estimation

2.3 An O(n) Space (11
6 )-Approximate Streaming Algorithm

We show here that our approach above can be extended to the insertion-only streaming
model to obtain for any ε > 0, an ( 11

6 + ε)-approximate estimate of the graphic TSP cost
using O(n/ε2) space. Given a stream containing edges of a graph G(V,E), our algorithm
performs the following two tasks simultaneously:

Find a maximal matching M in G – let αn denote its size.
Estimate the number of bridges in the maximal matchingM , say βn, to within an additive
error of εn.

The algorithm outputs (2− 2
3 (α− β))n as the estimated cost of graphic TSP of G.

In an insertion-only stream, it is easy to compute a maximal stream with O(n) space,
we start with M initialized as an empty set, and add a new edge (u, v) into the matching
M iff neither u nor v are already in M . It is also easy to check if the edge is a bridge
in insertion-only stream with O(n) space. We can maintain a disjoint-set data structure.
Whenever an edge arrives (other than e), we merge the connected components of its endpoints.
If there is only one component remaining at the end of the stream, then e is not a bridge.
Otherwise, e is a bridge.

To estimate the number of bridges in the maximal matching, we sample N = 100/ε2

edges in the matching, and run in parallel N tests where each test determines whether or not
the sampled edge is a bridge. We use O(n/ε2) space in total since we sample N = O(1/ε2)
edges. Suppose there are β̄ sampled edges are bridges, then by Chernoff bound, β̂n = β̄|M |

N

is an approximation of βn to within additive error εn with probability at least 9/10.
As stated, this gives us a two-pass algorithm: the first pass for computing the matching

M , and the second pass for estimating the number of bridges in M . However, we can do
both these tasks simultaneously in a single pass as follows: at the beginning of the stream,
we start the process of finding connected components of graph G. Whenever an edge e is
added to M , if |M | < N , then we create a new instance Ie of the connectivity problem
that ignores the edge e. This clearly allows us to test whether or not e is a bridge. Once
|M | > N , then whenever an edge e is added to M , with probability N

|M | , we randomly drop
an existing instance, say Ie′ of connectivity, and create a new instance Ie of connectivity that
only ignores edge e (we insert back the edge e′ into Ie). Since there are at most N instances
of connectivity instance that are running in parallel, the algorithm uses O(nN) = O(n/ε2)
space.

We defer to the full version the details of the analysis showing that the cost estimate
output above is a ( 11

6 + ε)-approximate estimate.

3 (1.625)-Approximation for (1, 2)-TSP Cost in Õ(n1.5) Time

In this section, we give an algorithm that for any δ > 0, approximates the cost of the
minimum (1, 2)-TSP to within a factor of 1.625 + δ with Õ(n1.5/δ2) queries. The idea of the
algorithm is to approximate the size of a maximal “matching pair” of G. In a graph G, a
matching pair (M1,M2) is a pair of edge-disjoint matchings. A maximal matching pair is a
matching pair (M1,M2) such that for any edge e 6∈M1 ∪M2, neither M1 ∪ {e} nor M2 ∪ {e}
is a matching. The size of a matching pair (M1,M2) is the sum of the sizes of M1 and M2.
The following lemma shows that the size of any maximal matching pair is lower bounded by
the size of maximum matching in the graph.

I Lemma 3.1. Suppose M is a matching in a graph G. Then any maximal matching pair
(M1,M2) in G has size at least |M |.
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Proof. Let X1 be the set of vertices matched in both M and M1, and X2 be the set of
vertices matched in both M and M2. We have |X1|+ |X2| ≤ 2 |M1|+ 2 |M2| since M1 and
M2 are both matchings. On the other hand, for any edge e ∈M , if e is either in M1 or M2,
then both of its endpoints are in X1 or X2. If e is neither in M1 or M2, then there are edges
e1 ∈M1 and e2 ∈M2 that share an endpoint with e since (M1,M2) is a maximal matching
pair. So both X1 and X2 contain at least one endpoint of e. In both case e’s endpoints
appear twice in X1 and X2. So |X1|+ |X2| ≥ 2 |M |, which means |M1|+ |M2| ≥ |M |. J

If a graph has a large sized matching pair, then the cost of (1, 2)-TSP is not very large.

I Lemma 3.2. If a graph G with n vertices contains a matching pair (M1,M2) of size X,
then the cost of (1, 2)-TSP of G is at most 2n− 3

4X.

Proof. Since M1 and M2 are both matchings, M1 ∪M2 only contains paths and cycles of
even length. We delete one edge from each cycle in M1 ∪M2, resulting in a graph that only
contains paths. Since the cycles in M1 ∪M2 are of even length, the size of any cycle is at
least 4. We deleted at most 1

4X edges, so G contains a set of vertex disjoint paths (including
some of length 0, corresponding to isolated vertices), with total size at least 3

4X. Construct
a TSP tour by ordering the paths arbitrarily, orienting each one, and connecting the end of
one path with the start of the next, cyclically. The tour contains at least 3

4X edges of weight
1, while the remaining edges are of weight 2. So the cost of the tour is at most 2n− 3

4X. J

By Lemma 3.1, the maximum matching size is upper bounded by the size of any maximal
matching pair. It follows that if the maximum matching size is small, the cost of (1, 2)-TSP
is large.

I Lemma 3.3. For any ε > 0, if the maximum matching of a graph G has size at most
(1−ε)n

2 , then the cost of (1, 2)-TSP of G is at least (1 + ε)n.

The proof of Lemma 3.3 is similar to the proof of Lemma 2.7 and we omit it here. By
Lemma 3.2 and Lemma 3.3, if we can approximate the size of an arbitrary maximal matching
pair, then we will get a good approximation of the cost of the (1, 2)-TSP.

I Theorem 3.4. There is an algorithm that uses pair queries, with probability at least 2/3,
approximates the size of a maximal matching pair with additive error εn using Õ(n1.5/ε2)
time.

The algorithm in Theorem 3.4 is given in the full verstion of this paper. With Theorem 3.4,
we can approximate the cost of (1, 2)-TSP in a graph G by the size of maximal matching
pair.

I Theorem 3.5. For any δ > 0, there is an algorithm that estimates the cost of (1, 2)-TSP
of a graph G within a factor of 1.625 + δ using Õ(n1.5/δ2) queries with probability at least
2/3.

Proof. Let ε = δ/2. We use the algorithm in Theorem 3.4 that approximates the size of a
maximal matching pair. Suppose the output of the algorithm is X̄. Then, by Theorem 3.4,
there is a maximal matching pair of size X such that

∣∣X − X̄∣∣ ≤ εn . We output the cost of
the (1, 2)-TSP of G to be T̄ = 2n− 3

4 (X̄ − εn). Suppose the optimal (1, 2)-TSP has cost T .
By Lemma 3.2, T ≤ 2n− 3

4X ≤ 2n− 3
4 (X̄ − εn) = T̄ . On the other hand, by Lemma 3.3, the

size of maximum matching in G is at least (2n− T )/2. So by Lemma 3.1, X ≥ (2n− T )/2,
which means X̄ ≥ (2n− T )/2− εn. So T̄ ≤ 2n− 3

4 (n− T/2− 2εn) < 1.25n+ 0.375T + δn.
Since T is the cost of (1, 2)-TSP of G, which is at least n, we have T̄ ≤ (1.625 + δ)T . J
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I Remark 3.6. The algorithm can be generalized to insertion-only streaming model. In
insertion-only streaming model, we can compute a maximal matching pair as follows: we
set M1 and M2 as empty set before the stream. Whenever an edge e comes, we first check
if there is an edge in M1 that shares an endpoint with e. If not, then we add e into M1.
Otherwise, we check if there is an edge in M2 that shares and endpoint with e. If not, then
we add e into M2. So we get an algorithm that only uses O(n) space to compute a maximal
matching pair. We have the following corollary.

I Corollary 3.7. There is an insertion-only streaming algorithm that estimates the cost of
(1, 2)-TSP of a graph G within a factor of 1.625 using O(n) space.

4 An Ω(n2) Query Lower Bound for Approximation Schemes

In this section, we prove that there exists an ε0 > 0, such that any query algorithm for
graphic or (1, 2)-TSP that returns a (1 + ε0)-approximate estimate of optimal cost, requires
Ω(n2) queries. In order to prove this, we design a new query model for the 3SAT problem
and show an Ω(n2) query lower bound for 3SAT in this model. We then use a reduction from
3SAT to (1, 2)-TSP in [22] to prove the lower bound for (1, 2)-TSP; with some additional
changes, we also get an identical lower bound for graphic TSP.

The idea of proving query lower bound for APX-hard problems by reduction from 3SAT
is similar to the idea used in [6], and we follow their general approach. However, in [6], the
authors study lower bounds for problems in sparse graphs and hence the query model uses
only neighbor queries. So in their query model, the lower bound for 3SAT is Ω(n). In order
to prove an Ω(n2) query lower bound in the pair query model, we need to design a new query
model for 3SAT.

In the 3SAT problem, we are given a 3CNF instance on n variables, and the goal is
to estimate the largest fraction of clauses that can be satisfied by any assignment. The
algorithm is allowed to perform only one kind of query: is a variable x present in a clause
c? If the answer is yes, then the algorithm is given the full information about all variables
that appear in the clause c. The proof of the next theorem is deferred to the full version of
this paper.

I Theorem 4.1. For any ε > 0, any algorithm that with probability at least 2/3 distinguishes
between satisfiable 3CNF instances and 3CNF instances where at most (7/8 + ε) fraction of
clauses can be satisfied, needs Ω(n2) queries.

4.1 Reduction from 3SAT to (1, 2)-TSP
We will utilize an additional property of the hard instances of 3SAT in Theorem 4.1, namely,
each variable occurs the same constant number of times where the constant only depends on
ε. We denote the number of variables by n, the number of clauses by m, and the number of
occurrences of each variable by k; thus m = kn/3.

We use the reduction in [22] to reduce a 3SAT instance to a (1, 2)-TSP instance. In this
reduction, there is a gadget for each variable and for each clause. Each of these gadgets has size
at most L = Θ(k2). Thus the (1, 2)-TSP contains N vertices where N ≤ L(n+m) = L(k+3)n

3 .
Let Gxj be the gadget of variable xj and Gci be the gadget of clause ci. There is a ground
graph which is the same for each 3SAT instance. Each variable gadget is connected with the
gadgets for clauses that contain that variable. The reduction satisfies the following property.
If the 3SAT instance is satisfiable, then the (1, 2)-TSP instance contains a Hamilton cycle
supported only on the weight 1 edges. On the other hand, if at most m− ` clauses can be
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satisfied in the 3SAT instance, the (1, 2)-TSP cost is at least N + d`/2e. Thus there is a
constant factor separation between the optimal (1, 2)-TSP cost in the two cases. However,
what remains to be shown is that any query algorithm for (1, 2)-TSP can also be directly
simulated on the underlying 3SAT instance with a similar number of queries. The theorem
below now follows by establishing this simulation.

I Theorem 4.2. There is a constant ε0 such that any algorithm that approximates the
(1, 2)-TSP cost to within a factor of (1 + ε0) needs Ω(n2) queries.

Proof. We consider the following stronger queries for (1, 2)-TSP: for any query (u, v), if u is
in a vertex gadget Gxj and v is in a clause gadget Gci (or vice versa) and xj occurs in ci in
the 3SAT instance, then the algorithm is given all the edges incident on Gci . Otherwise the
algorithm just learns if the there is an edge between u and v.

Let ε = 1/16, and let the values of k, L and N correspond to this choice for ε according
to the redution in Section 4.1. Let ε0 = k

32(k+3)L . Consider the (1, 2)-TSP instance reduced
from the 3SAT instance generated by the hard distribution in Theorem 4.1 with ε = 1/16.
If the 3SAT instance is perfectly satisfiable, then the (1, 2)-TSP instance has a Hamilton
cycle of cost N . If the 3SAT instance satisfies at most (15/16)-fraction of clauses, then each
Hamilton cycle in the (1, 2)-TSP instance has cost at least

N + (1/8− ε)m/2 = N + (1/8− ε)kn/6 ≥ (1 + (1/8− ε)k
2(k + 3)L )N = (1 + ε0)N

For any query (u, v) in the (1, 2)-TSP instance, we can simulate it by at most one query
in the corresponding 3SAT instance as follows: if u is in a vertex gadget Gxj and v is in a
clause gadget Gci (or vice versa), then we make a query of xj and ci in the 3SAT instance.
If the 3SAT query returns YES and the full information of ci, then we return all the edges
incident on Gci according to the reduction rule and the full information of ci. If the 3SAT
query returns NO or (u, v) are not in a vertex gadget and a clause gadget respectively, we
return YES if (u, v) is an edge in the ground graph and NO otherwise.

By Theorem 4.1, any algorithm that distinguishes a perfectly satisfiable 3SAT instance
from an instance where at most (15/16)-fraction of the clauses can be satisfied needs Ω(n2)
queries. So any algorithm that distinguishes a (1, 2)-TSP instance containing a Hamilton
cycle of length N from an instance that has minimum Hamilton cycle of cost (1 + ε0)N needs
Ω(n2) queries. J

4.2 Ω(n2) Lower Bound for Graphic TSP
We can reduce an instance of (1, 2)-TSP to an instance of graphic TSP by adding a new
vertex that is adjacent to all other vertices. By doing so, any pair of vertices in the new
graph has a distance at most 2. On the other hand, the cost of graphic TSP in the new
graph differs by at most 1 from the cost of (1, 2)-TSP in the old graph. So the Ω(n2) query
lower bound for (1, 2)-TSP also holds for the graphic TSP problem.

5 A Reduction from Matching Size to TSP Cost Estimation

In this section, we give a reduction from the problem of estimating the maximum matching size
in a bipartite graph to the problem of estimating the optimal (1, 2)-TSP cost. An essentially
identical reduction works for graphic TSP cost using the idea described in Section 4.2.
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We will denote the size of the largest matching in a graph G by α(G). Given a bipartite
graph G(V,E) with n vertices on each side, we construct an instance G′(V ′, E′) of the
(1, 2)-TSP problem on 4n vertices such that the optimal TSP cost on G′ is 5n− α(G). Thus
for any ε ∈ [0, 1/5), any algorithm that can estimate (1, 2)-TSP cost to within a (1+ε)-factor,
also gives us an estimate of the matching size in G to within an additive error of 5εn.

We will now describe our construction of the graph G′. For clarity of exposition, we
will describe G′ as the graph that contains edges of cost 1 – all other edges have cost
2. Suppose the vertex set V of G consists of the bipartition V1 = {v1

1 , v
1
2 , . . . , v

1
n} and

V2 = {v2
1 , v

2
2 , . . . , v

2
n}. We construct the graph G′ as follows: we start with the graph G, then

add three sets of vertices V0, V3 and V4, such that V0 = {v0
1 , v

0
2 , . . . , v

0
n/2} with n/2 vertices,

V3 = {v3
1 , v

3
2 , . . . , v

3
n} with n vertices, and V4 = {v4

1 , v
4
2 , . . . , v

4
n/2} with n/2 vertices. The

graph G′ will only have edges between Vj and Vj+1 (j = {0, 1, 2, 3}). We will denote the set
of edges between Vj and Vj+1 as Ej,j+1. For any vertex v0

i ∈ V0, it connects to v1
2i−1 and v1

2i
in V1. E1,2 has the same edges as the edges in G. Each vertex v2

i ∈ V2 is connected to vertex
v3
i in V3, that is, vertices in V2 and V3 induce a perfect matching (identity matching). Finally,
each vertex in V3 is connected to all the vertices in V4. See Figure 1(a) for an illustration.

V0
V1 V2 V3

V4

(a) The illustration of G′.

V0
V1 V2 V3

V4

(b) The illustration of tour T , where V2 and
V3 are arranged with order (v2

f(1), . . . , v2
f(6)) and

(v3
f(1), . . . , v3

f(6)).

Figure 1 An illustration of the reduction for n = 6.

The lemmas below relate matching size in G to (1, 2)-TSP cost in G′.

I Lemma 5.1. Let M be any matching in G. Then there is a (1, 2)-TSP tour T in G′ of
cost at most 5n− |M |.

Proof. Let f : [n]→ [n] be any bijection from [n] to [n] such that whenever a vertex v1
i is

matched to a vertex v2
j in M , then f(i) = j. Consider the following (1, 2)-TSP tour T : each

vertex v0
i ∈ V0 connects to v1

2i−1 and v1
2i in T ; each vertex v1

i ∈ V1 connects to v0
d(i+1)/2e and

v2
f(i) in T . For any v2

f(i) ∈ V2, it connects to v1
i and v3

f(i) in T . For any vertex v3
f(i) ∈ V3, if

i > 1, it connects to v2
f(i) and v4

di/2e in T ; if i = 1, it connects to v2
f(i) and v4

n/2 in T . See
Figure 1(b) as an illustration. T is clearly a TSP-tour.

All edges in T are also edges in G′ except for possibly some edges between V1 and V2.
If v1

i is matched in M , then (v1
i , v

2
f(i)) is an edge in G′, otherwise it is not in G′ and thus

has weight 2. So T only has n − |M | weight 2 edges, which means T has cost at most
4n+ n− |M | = 5n− |M |. J

I Lemma 5.2. For any (1, 2)-TSP tour T in G, T has cost at least 5n− α(G).
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To prove Lemma 5.2, we first prove an auxiliary claim.

B Claim 5.3. Suppose G = (V1, V2, E) is a bipartite graph which has maximum size α(G).
For any 2-degree subgraph H of G, if there are at most X vertices in V1 has degree 2 in H,
then there are at most α(G) +X vertices in V2 which have degree at least 1 in H. Similarly,
if there are at most X vertices in V2 has degree 2 in H, then there are at most α(G) +X

vertices in V1 which have degree at least 1 in H.

Proof. If there are at most X vertices in V1 has degree 2 in H. We construct H ′ by deleting
an arbitrary edge on each degree 2 vertex in V1, then construct H ′′ by deleing an arbitrary
edge on each degree 2 vertex in V2. Since H ′′ does not have degree two vertex, it is a
matching of G. So the number of degree 1 vertices in V2 in H ′′ is at most α(G). On the
other hand, any vertex in V2 which has degree at least 1 in H ′ also has degree 1 in H ′′. So
there are at most α(G) vertices of degree at least 1 in V2 in H ′. Furthermore, since there are
only X vertices of degree 2 in V1 in H, we delete at most X edges in H when constructing
H ′. So H ′ has at most X more isolate vertices in V2 than in H, which means H has at most
α(G) +X vertices with degree at least 1 in V2.

The second part of the claim follows via a similar argument as the first part of the claim.
C

Proof of Lemma 5.2. Let a01 be the number of edges in T ∩ E0,1, a2,3 be the number of
edges in T ∩ E3,4. Let GX be the intersection graph of G and T . Since the vertices in V0
only connect to the vertices in V1 in G′, and any vertex in T has degree 2, there are at
least n − a01 edges incident on V0 in T are not an edge in G′. On the other hand, since
any vertex in V1 is incident on at at most 1 edge in E0,1, there are at least a01 vertices in
V1 is connected to a vertex in V0 in T , which means there are at most n − a01 vertices in
V1 has degree 2 in GX . By Claim 5.3, there are at most n− a01 + α(G) vertices in V2 has
edge in GX . For any isolate vertex in V2 in T , it has only one edge in G′ connecting to
V3, so this vertex must incident on an edge in T which is not in G′. So there are at least
n− (n− a01 + α(G)) = α(G)− a01 edges incident on V2 in T which is not in G′.

There are 2n edges incident on V3 in T , but among them, there are only a23 edges between
V2 and V3 which is also in G′, and there are at most n edges between V3 and V4 in T since
each vertex has degree only 2. So there are at least 2n− n− a23 = n− a23 edges incident on
V3 which is not in G′. On the other hand, since any vertex in V2 is incident on at at most 1
edge in E2,3, there are at least a23 vertices in V2 is connected to a vertex in V3 in T , which
means there are at most n− a23 vertices in V2 has degree 2 in GX . By Claim 5.3, there are
at most n− a23 + α(G) vertices in V1 has edge in GX . For any isolate vertex in V1 in T , it
has only one edge in G′ connecting to V0, so this vertex must incident on an edge in T which
is not in G′. So there are at least n− (n− a23 + α(G)) = a23 − α(G) edges incident on V1 in
T which is not in G′.

Since any edge has two endpoints, the number of edges in T but not in G′ is at least
((n− a01) + (a01 −α(G)) + (n− a23) + (a23 −α(G)))/2 = n−α(G), which means T has cost
at least 4n+ n− α(G) = 5n− α(G). J

I Corollary 5.4. For any ε ∈ [0, 1/5), any algorithm that can estimate (1, 2)-TSP cost to
within a (1 + ε)-factor, can be used to estimate the size of a largest matching in a bipartite
graph G on 2n vertices to within an additive error of 5εn.

Proof. We use the reduction above to construct a (1, 2)-TSP instance G′ on 4n vertices.
By Lemmas 5.1 and 5.2, the optimal TSP cost for G′ is 5n − α(G). We now run the
(1 + ε)-approximation algorithm for (1, 2)-TSP on graph G′ (note that the reduction can
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be simulated in each of neighbor query model, pair query model, and the streaming model
without altering the asymptotic number of queries used). Suppose the output is C which
satisfies (1− ε)(5n−α(G)) ≤ C ≤ (1 + ε)(5n−α(G)), which means 5n−α(G)− 5εn < C <

5n− α(G) + 5εn. Let α̂ = 5n− C, we have α(G)− 5εn < α̂ < α(G) + 5εn. J
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Abstract
The classic Ham-Sandwich theorem states that for any d measurable sets in Rd, there is a hyperplane
that bisects them simultaneously. An extension by Bárány, Hubard, and Jerónimo [DCG2008]
states that if the sets are convex and well-separated, then for any given α1, . . . , αd ∈ [0, 1], there is a
unique oriented hyperplane that cuts off a respective fraction α1, . . . , αd from each set. Steiger and
Zhao [DCG2010] proved a discrete analogue of this theorem, which we call the α-Ham-Sandwich
theorem. They gave an algorithm to find the hyperplane in time O(n(logn)d−3), where n is the total
number of input points. The computational complexity of this search problem in high dimensions
is open, quite unlike the complexity of the Ham-Sandwich problem, which is now known to be
PPA-complete (Filos-Ratsikas and Goldberg [STOC 2019]).

Recently, Fearnley, Gordon, Mehta, and Savani [ICALP2019] introduced a new sub-class of
CLS (Continuous Local Search) called Unique End-of-Potential Line (UEOPL). This class captures
problems in CLS that have unique solutions. We show that for the α-Ham-Sandwich theorem, the
search problem of finding the dividing hyperplane lies in UEOPL. This gives the first non-trivial
containment of the problem in a complexity class and places it in the company of classic search
problems such as finding the fixed point of a contraction map, the unique sink orientation problem
and the P -matrix linear complementarity problem.
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1 Introduction

The Ham-Sandwich Theorem [41] is a classic result about partitioning sets in high dimensions:
for any d measurable sets S1, . . . , Sd ⊂ Rd in d dimensions, there is an oriented hyperplane H
that simultaneously bisects S1, . . . , Sd. More precisely, if H+, H− are the closed half-spaces
bounded by H, then for i = 1, . . . , d, the measure of Si ∩H+ equals the measure of Si ∩H−.
The traditional proof goes through the Borsuk-Ulam Theorem [30]. The Ham-Sandwich
Theorem is a cornerstone of geometry and topology, and it has found applications in other
areas of mathematics.
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31:2 Computational Complexity of the α-Ham-Sandwich Problem

Let [n] = {1, . . . , n}. The discrete Ham-Sandwich Theorem [28,30] states that for any d
finite point sets P1, . . . , Pd ⊂ Rd in d dimensions, there is an oriented hyperplane H such that
H bisects each Pi, i.e., for i ∈ [d], we have min{|Pi ∩H+|, |Pi ∩H−|} ≥ d|Pi|/2e. We denote
the associated search problem as Ham-Sandwich. Lo, Matoušek, and Steiger [28] gave an
nO(d)-time algorithm for Ham-Sandwich. They also provided a linear-time algorithm for
points in R3, under additional constraints.

There are many alternative and more general variants of both the continuous and the
discrete Ham-Sandwich Theorem. For example, Bárány and Matoušek [5] derived a version
where measures in the plane can be divided into any (possibly different) ratios by fans instead
of hyperplanes (lines). A discrete variant of this result was given by Bereg [7]. Schnider [37]
and Karasev [27] studied generalizations in higher dimensions. Recently Barba, Pilz, and
Schnider [6] showed that four measures in the plane can be bisected with two lines. Higher
dimensional generalizations of this result were presented in [9,25]. Zivaljević and Vrećica [44]
and independently, Dol’nikov [19] proved a result called the Center Transversal Theorem
that interpolates between the Ham-Sandwich Theorem and the Centerpoint Theorem [35].
There is also a no-dimensional version [14] for the Center Transversal Theorem. Schnider [38]
presented a generalization based on this result among others.

Here, we focus on a version that allows for dividing the sets into arbitrary given ratios
instead of simply bisecting them. The sets S1, . . . , Sd ⊂ Rd are well-separated if every
selection of them can be strictly separated from the others by a hyperplane. Bárány, Hubard,
and Jerónimo [4] showed that if S1, . . . , Sd are well-separated and convex, then for any given
reals α1, . . . , αd ∈ [0, 1], there is a unique hyperplane that divides S1, . . . , Sd in the ratios
α1, . . . , αd, respectively. Their proof goes through Brouwer’s Fixed Point Theorem. Steiger
and Zhao [40] formulated a discrete version. In this setup, S1, . . . , Sd are finite point sets.
Again, we need that the (convex hulls of the) Si are well-separated. Additionally, we require
that the Si follow a weak version of general position. Let α1, . . . , αd ∈ N be d integers
with 1 ≤ αi ≤ |Si|, for i ∈ [d]. Then, there is a unique oriented hyperplane H that passes
through one point from each Si and has |H+ ∩ Si| = αi, for i ∈ [d] [40]. In other words, H
simultaneously cuts off αi points from Si, for i ∈ [d]. This statement does not necessarily
hold if the sets are not well-separated, see Figure 1 for an example.

Steiger and Zhao called their result the Generalized Ham-Sandwich Theorem, yet it is
not a strict generalization of the classic Ham-Sandwich Theorem. Their result requires that
the point sets obey well-separation and weak general position, while the classic theorem
always holds without these assumptions. Therefore, we call this result the α-Ham-Sandwich
theorem, for a clearer distinction. Set n =

∑
i∈[d] |Si|. Steiger and Zhao gave an algorithm

that computes the dividing hyperplane in O
(
n(logn)d−3) time, which is exponential in d.

Later, Bereg [8] improved this algorithm to achieve a running time of n2O(d), which is linear
in n but still exponential in d. We denote the associated computational search problem of
finding the dividing hyperplane as Alpha-HS.

No polynomial algorithms are known for Ham-Sandwich and for Alpha-HS if the
dimension is not fixed, and the notion of approximation is also not well-explored. Despite
their superficial similarity, it is not immediately apparent whether the two problems are
comparable in terms of their complexity. Due to the additional requirements on an input for
Alpha-HS, an instance of Ham-Sandwich may not be reducible to Alpha-HS in general.

A dividing hyperplane for Alpha-HS is guaranteed to exist if the sets satisfy the conditions
of well-separation and (weak) general position. Therefore, the search problem Alpha-HS
is total, that is, there is a solution for every valid instance. In general, such problems are
modelled by the complexity class TFNP (Total Function Nondeterministic Polynomial) of
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Figure 1 The red (square) and the blue (round) point sets are not well-separated. Every halfplane
that contains three red points must contain at least five blue points. Thus, there is no halfplane
that contains exactly three red and three blue points.

NP-search problems that always admit a solution. Two popular subclasses of TFNP, originally
defined by Papadimitriou [34], are PPA (Polynomial Parity Argument) and its sub-class
PPAD (Polynomial Parity Arguments on Directed graphs). These classes contain total search
problems where the existence of a solution is based on a parity argument in an undirected or
in a directed graph, respectively. Another sub-class of TFNP is PLS (polynomial local search).
It models total search problems where the solutions can be obtained as minima in a local
search process, while the number of steps in the local search may be exponential in the input
size. The class PLS was introduced by Johnson, Papadimitriou, and Yannakakis [26]. A
noteworthy sub-class of PPAD ∩ PLS is CLS (continuous local search) [18]. It models similar
local search problems over a continuous domain using a continuous potential function.

Up to very recently, these complexity classes had mostly been studied in the context of
algorithmic game theory. These classes have also found relevance in the study of fairness [33]
and markets [10, 12]. However, there have been increasing efforts towards mapping the
complexity landscape of existence theorems in high-dimensional discrete geometry. Computing
an approximate solution for the search problem associated with the Borsuk-Ulam Theorem
is in PPA. In fact, this problem is complete for this class. The discrete analogue of the
Borsuk-Ulam Theorem, Tucker’s Lemma [42], is also PPA-complete [1, 34]. Therefore, since
the traditional proof of the Ham-Sandwich Theorem goes through the Borsuk-Ulam Theorem,
it follows that Ham-Sandwich lies in PPA. In fact, Filos-Ratsikas and Goldberg [21] recently
showed that Ham-Sandwich is complete for PPA. The (presumably smaller) class PPAD
is associated with fixed-point type problems: computing an approximate Brouwer fixed
point is a prototypical complete problem for PPAD. The discrete analogue of Brouwer’s
Fixed Point Theorem, Sperner’s Lemma, is also complete for PPAD [34]. The computational
version of the Hairy Ball Theorem has recently been shown to be PPAD-complete [24]. In a
celebrated result, the relevance of PPAD for algorithmic game theory was made clear when it
turned out that computing a Nash-equilibrium in a three player game is PPAD-complete [17].
Subsequently, this was also shown for the two player game [11]. In discrete geometry, finding
a solution to the Colorful Carathéodory problem [3] was shown to lie in the intersection
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Ham-Sandwich

Alpha-HS UEOPL

TFNP
PPA

PPAD

CLS

PLS

Figure 2 The hierarchy of complexity classes.

PPAD∩PLS [31,32]. This further implies that finding a Tverberg partition (and computing a
centerpoint) also lies in the intersection [29,36,43]. The problem of computing the (unique)
fixed point of a contraction map is known to lie in CLS [18].

Recently, at ICALP 2019, Fearnley, Gordon, Mehta, and Savani defined a sub-class of
CLS that represents a family of total search problems with unique solutions [20]. They
named the class Unique End of Potential Line (UEOPL) and defined it through the canonical
complete problem UniqueEOPL. This problem is modelled as a directed graph. There are
polynomially-sized Boolean circuits that compute the successor and predecessor of each node,
and a potential value that always increases on a directed path. There is supposed to be
only a single vertex with no predecessor (start of line). Under these conditions, there is a
unique path in the graph that ends on a vertex (called end of line) with the highest potential
along the path. This vertex is the solution to UniqueEOPL. Since the uniqueness of the
solution is guaranteed only under certain assumptions, such a formulation is called a promise
problem. Since there seems to be no efficient way to verify the assumptions, the authors allow
two possible outcomes of the search algorithm: either report a correct solution, or provide
any solution that was found to be in violation of the assumptions. This formulation turns
UniqueEOPL into a non-promise problem and places it in TFNP, since a correct solution is
bound to exist when there are no violations, and otherwise a violation can be reported as a
solution. Fearnley et al. [20] also introduced the concept of a promise-preserving reduction
between two problems A and B, such that if an instance of A has no violations, then the
reduced instance of B is also free of violations. This notion is particularly meaningful for
non-promise problems.

Contributions. We provide the first non-trivial containment in a complexity class for the
α-Ham-Sandwich problem by locating it in UEOPL. More precisely, we formulate Alpha-HS
as a non-promise problem in which we allow for both valid solutions representing the correct
dividing hyperplane, as well as violations accounting for the lack of well-separation and/or
(weak) general position of the input point sets. A precise formulation of the problem is
given in Definition 4 in Section 2. We then show a promise-preserving reduction from
Alpha-HS to UniqueEOPL. This implies that Alpha-HS lies in UEOPL, and hence in
CLS ⊆ PPAD ∩ PLS. See Figure 2 for a pictorial description.
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It is not surprising to discover that Alpha-HS lies in PPAD, since the proof of the
continuous version in [4] was based on Brouwer’s Fixed Point Theorem. The observation
that it also lies in PLS is new and noteworthy, putting Alpha-HS into the reach of local
search algorithms. In contrast, given our current understanding of total search problems, it
is unlikely that the problem Ham-Sandwich would be in PLS.

Since Alpha-HS lies in PPAD ⊆ PPA, it is computationally easier than Ham-Sandwich,
which is PPA-complete. This implies the existence of a polynomial-time reduction from
Alpha-HS to Ham-Sandwich. A reduction in the other direction is unlikely. It thus turns
out that well-separation brings down the complexity of the problem significantly.

Often, problems in TFNP come in the guise of a polynomial-size Boolean circuit with
some property. In contrast, Alpha-HS is a purely geometric problem that has no circuit in
its problem definition. Apart from the P -Matrix Linear complementarity problem, this is
one of the few problems in UEOPL and hence in CLS that do not have a description in terms
of circuits.

Our local-search formulation is based on the intuition of rotating a hyperplane until we
reach the desired solution. We essentially start with a hyperplane that is tangent to the
convex hull of each input set, and we deterministically rotate the hyperplane until it hits a
new point. This rotation can be continued whenever the hyperplane hits a new point, until we
reach the correct dividing hyperplane. In other words, we can follow a local-search argument
to find the solution. We show that this sequence of rotations can be modelled as a canonical
path in a grid graph, and we give a potential function that guides the rotation and always
increases along this path. Every violation of well-separation and (weak) general position can
destroy this path. Furthermore, no efficient methods to verify these two assumptions are
known. This poses a major challenge in handling the violations. One of our main technical
contributions is to handle the violation solutions concisely.

An alternative approach would have been to look at the dual space of points where we get
an arrangement of hyperplanes. The dividing hyperplane could then be found by looking at
the correct level sets of the arrangement. However, this approach has the problem that the
orientations of the hyperplanes in the original space and the dual space are not consistent.
This complicates the arguments on the level sets, so we found it more convenient to use
our notion of rotating hyperplanes. We show that we can maintain a consistent orientation
throughout the rotation, and an inconsistent rotation is detected as a violation of the promise.

Outline of the paper. We discuss the background about the α-Ham-sandwich Theorem
and UniqueEOPL in Section 2. In Section 3, we describe our instance of Alpha-HS and
give an overview of the reduction and violation-handling. We conclude in Section 4. The
technical details of the reduction and some proofs can be found in the full version of the
paper in [13].

2 Preliminaries

2.1 The α-Ham-Sandwich problem
For conciseness, we describe the discrete version of α-Ham-Sandwich Theorem [40] here. The
continuous version [4] follows a similar formulation.

Let P1, . . . , Pd ⊂ Rd be a collection of d finite point sets. Let n1, . . . , nd denote the
sizes of P1, . . . , Pd, respectively. For each i ∈ [d] we say that the point set Pi represents a
unique color and let P := P1 ∪ · · · ∪ Pd denote the union of all the points. A set of points
{p1, . . . , pm} is said to be colorful if there are no two points pi, pj both from the same color.
Indeed a colorful point set can have size at most d.
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Weak general position. We say that P has very weak general position [40], if for every
choice of points x1 ∈ P1, . . . , xd ∈ Pd, the affine hull of the set {x1, . . . , xd} is a (d− 1)-flat
and does not contain any other point of P . This definition is sufficient for the result of Steiger
and Zhao, where they simply call it as weak general position. Of course, this definition of
weak general position has no restriction on sets {x1, . . . , xd} that contain multiple points
from the same color. To simplify our proofs we need a slightly stronger form of general
position. We discuss how to deal with very weak general position at the end of Section 3.
We say that P has weak general position if the above restriction also applies to sets having
exactly d− 1 colors. That means, each color may contribute at most one point to the set,
except perhaps one color which is allowed to contribute two points. A certificate for checking
violations of weak general position is a set of d+ 1 points whose affine hull has dimension at
most d− 1, with at least d− 1 colors in the set. Testing whether a point set is in general
position can be shown to be NP-Hard, using the result in [23]. It is easy to see that when
d = 2, weak general position is equivalent to general position.

Well-separation. The point set P is said to be well-separated [4, 40], if for every choice of
points y1 ∈ conv(Pi1), . . . , yk ∈ conv(Pik

), where i1, . . . , ik are distinct indices and 1 ≤ k ≤ d,
the affine hull of {y1, . . . , yk} is a (k − 1)-flat. An equivalent definition is as follows: P
is well-separated if and only if for every disjoint pair of index sets I, J ⊂ [d], there is a
hyperplane that separates the set {∪i∈IPi} from the set {∪j∈JPj} strictly. Formally:

I Lemma 1. Let y1, . . . , yd be a colorful set of points in the corresponding conv(Pi). The
affine hull of y1, . . . , yd has dimension d− 2 or less if and only if there is a partition of [d]
into index sets I, J such that conv ({∪i∈IPi}) ∩ conv ({∪j∈JPj}) 6= ∅.

Given such a colorful set, the partition of [d] can be computed in poly(n, d) time. Vice-
versa, given such a partition, the colorful set can be computed in poly(n, d) time.

A certificate for checking violations of well-separation is a colorful set {x1, . . . , xd} whose
affine hull has dimension at most d− 2. Another certificate is a partition I, J ⊂ [d] such that
the convex hulls of the indexed sets are not separable. Due to Lemma 1, both certificates are
equivalent and either can be converted into the other in polynomial time. To the best of our
knowledge, the complexity of testing well-separation is unknown.

Given any set of positive integers {α1, . . . , αd} satisfying 1 ≤ αi ≤ ni, i ∈ [d], an
(α1, . . . , αd)-cut is an oriented hyperplane H that contains one point from each color and
satisfies |H+ ∩ Pi| = αi for i ∈ [d], where H+ is the closed positive half-space defined by H.

I Theorem 2 (α-Ham-Sandwich Theorem [40]). Let P1, . . . , Pd be finite, well-separated point
sets in Rd. Let α = (α1, . . . , αd) be a vector, where αi ∈ [ni] for i ∈ [d].
1. If an α-cut exists, then it is unique.
2. If P has weak general position, then an α-cut exists for each choice of α.

That means, every colorful d-tuple of P represents an oriented hyperplane that corresponds
to exactly one α-vector. Steiger and Zhao [40] also presented an algorithm to compute the
cut in O(n(logn)d−3) time, where n =

∑d
i=1 ni. The algorithm proceeds inductively in

dimension and employs a prune-and-search technique. Bereg [8] improved the pruning step
to improve the runtime to n2O(d).

2.2 Unique End of Potential Line
We briefly explain the Unique end of potential line problem that was introduced in [20]. More
details about the problem and the associated class can be found in the above reference.
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I Definition 3 (from [20]). Let n,m be positive integers. The input consists of
a pair of Boolean circuits S,P : {0, 1}n → {0, 1}n such that P(0n) = 0n 6= S(0n), and
a Boolean circuit V : {0, 1}n → {0, 1, . . . , 2m − 1} such that V(0n) = 0,

each circuit having poly(n,m) size. The UniqueEOPL problem is to report one of the
following:
(U1). A point v ∈ {0, 1}n such that P(S(v)) 6= v.

(UV1). A point v ∈ {0, 1}n such that S(v) 6= v, P(S(v)) = v, and V(S(v))− V(v) ≤ 0.
(UV2). A point v ∈ {0, 1}n such that S(P(v)) 6= v 6= 0n.
(UV3). Two points v, u ∈ {0, 1}n such that v 6= u, S(v) 6= v, S(u) 6= u, and either

V(v) = V(u) or V(v) < V(u) < V(S(v)).
The problem defines a graph G with up to 2n vertices. Informally, S(·),P(·),V(·) represent
the successor, predecessor and potential functions that act on each vertex in G. The in-degree
and out-degree of each vertex is at most one. There is an edge from vertex u to vertex v if
and only if S(u) = v, P(v) = u and V(u) < V(v). Thus, G is a directed acyclic path graph
(line) along which the potential strictly increases. The condition S(P(x)) 6= x means that
x is the start of the line, P(S(x)) 6= x means that x is the end of the line, and P(S(x)) = x

occurs when x is neither. The vertex 0n is a given start of the line in G.
(U1) is a solution representing the end of a line. (UV1), (UV2) and (UV3) are violations.

(UV1) gives a vertex v that is not the end of line, and the potential of S(v) is not strictly
larger than that of v, which is a violation of our assumption that the potential increases
strictly along the line. (UV2) gives a vertex that is the start of a line, but is not 0n. (UV3)
shows that G has more than one line, which is witnessed by the fact that v and u cannot
lie on the same line if they have the same potential, or if the potential of u is sandwiched
between that of v and the successor of v. Under the promise that there are no violations, G is
a single line starting at 0n and ending at a vertex that is the unique solution. UniqueEOPL
is formulated in the non-promise setting, placing it in the class TFNP.

The complexity class UEOPL represents the class of problems that can be reduced in
polynomial time to UniqueEOPL. This has been shown to lie in CLS and contains three
classical problems in [20]: finding the fixed point of a piecewise-linear contraction map,
solving the P-Matrix Linear complementarity problem, and finding the unique sink of a
directed graph (with arbitrary edge orientations such that each face has a sink) on the
1-skeleton of a hypercube. Note that finding the fixed point of a contraction map is in
CLS [18], but is not known to lie in UEOPL.

A notion of promise-preserving reductions is also defined in [20]. Let X and Y be two
problems both having a formulation that allows for valid and violation solutions. A reduction
from X to Y is said to be promise-preserving, if whenever it is promised that X has no
violations, then the reduced instance of Y also has no violations. Thus a promise-preserving
reduction to UniqueEOPL would mean that whenever the original problem is free of
violations, then the reduced instance always has a single line that ends at a valid solution.

2.3 Formulating the search problem
We formalize the search problem for α-Ham-Sandwich in a non-promise setting:

I Definition 4 (Alpha-HS). Given d finite sets of points P = P1∪ . . .∪Pd in Rd and a vector
(α1, . . . , αd) of positive integers such that αi ≤ |Pi| for all i ∈ [d], the Alpha-HS problem is
to find one of the following:

(G1). An (α1, . . . , αd)-cut.
(GV1). A subset of P of size d+ 1 and at least d− 1 colors that lies on a hyperplane.
(GV2). A disjoint pair of sets I, J ⊂ [d] such that conv({∪i∈IPi}) ∩ conv({∪j∈JPj}) 6= ∅.
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Here a solution of type (G1) corresponds to a solution representing a valid cut, while solutions
of type (GV1) and (GV2) refer to violations of weak general position and well-separation,
respectively. From Theorem 2 we see that a valid solution is guaranteed if no violations are
presented, which shows that Alpha-HS is a total search problem.

3 Alpha-HS is in UEOPL

In this section we describe our instance of Alpha-HS in more detail and briefly outline a
reduction to UniqueEOPL.

Setup. The input consists of d finite point sets P1, . . . , Pd ⊂ Rd each representing a unique
color, of sizes n1, . . . , nd, respectively, and a vector of integers α = (α1, . . . , αd) such that
αi ∈ [ni] for each i ∈ [d]. Let k denote the number of coordinates of α that are not equal
to 1. Without loss of generality, we assume that {α1, . . . , αk} are the non-unit entries in α.
Let P denote the union P1 ∪ · · · ∪ Pd. For each i ∈ [d] we define an arbitrary order ≺i on
Pi. Concatenating the orders ≺1,≺2, . . . ,≺d in sequence gives a global order ≺ on P . That
means, p ≺ q if p ∈ Pi, q ∈ Pj and i < j or p, q ∈ Pj and p ≺j q.

We follow the notation of [40] to define the orientation of a hyperplane in Rd that has
a non-empty intersection with the convex hull of each Pi. For any hyperplane H passing
via {x1 ∈ conv(P1), . . . , xd ∈ conv(Pd)}, the normal is the unit vector n̂ ∈ Rd that satisfies

〈xi, n̂〉 = t for some fixed t ∈ R and each i ∈ [d], and det
∣∣∣∣x1 x2 . . . xd n̂

1 1 . . . 1 0

∣∣∣∣ > 0, where

the columns of the matrix are determined using the order ≺. The positive and negative
half-spaces of H are defined accordingly. In [4, Proposition 2], the authors show that the
choice of n̂ does not depend on the choice of xi ∈ conv(Pi) for any i, if the colors are
well-separated. Notice that if the colors are not well-separated, then the dimension of the
affine hull of {x1, . . . , xd} may be less than d− 1. This makes the value of the determinant
above to be zero, so the orientation is not well-defined.

We call a hyperplane colorful if it passes through a colorful set {p1, . . . , pd} ⊂ P . Oth-
erwise, we call the hyperplane non-colorful. There is a natural orientation for colorful
hyperplanes using the definition above. In order to define an orientation for non-colorful
hyperplanes, one needs additional points from the convex hulls of unused colors on the
hyperplane. Let H ′ denote a hyperplane that passes through points of (d− 1) colors. Let
Pj denote the missing color in H ′. To define an orientation for H ′, we choose a point from
conv(Pj) that lies on H ′ as follows. We collect the points of Pj on each side of H ′, and
choose the highest ranked points under the order ≺j . Let these points on opposite sides
of H ′ be denoted by x and y. Let z denote the intersection of the line segment xy with
H ′. By convexity, z is a point in conv(Pj), so we choose z to define the orientation of
H ′. The intersection point z does not change if x and y are interchanged, giving a valid
definition of orientation for H ′. We can also extend this construction to define orientations
for hyperplanes containing points from fewer than d − 1 colors, but for our purpose this
definition suffices. The α-vector of any oriented hyperplane H is a d-tuple (α1, . . . , αd) of
integers where αi is the number of points of Pi in the closed halfspace H+ for i ∈ [d].

3.1 An overview of the reduction
We give a short overview of the ideas used in the reduction from Alpha-HS to UniqueEOPL.
The details are technical and we encourage the interested reader to go through the details of
our reduction in [13].
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Our intuition is based on rotating a colorful hyperplane H to another colorful hyperplane
H ′ through a sequence of local changes of the points on the hyperplanes such that the
α-vector of H ′ increases in some coordinate by one from that of H. We next define the
rotation operation in a little more detail. An anchor is a colorful (d− 1)-tuple of P which
spans a (d − 2)-flat. The following procedure takes as input an anchor R and some point
p ∈ P \R and determines the next hyperplane obtained by a rotation. The output is (R′, p′),
where R′ is an anchor and p′ ∈ P \R′ is some point.

Procedure (R′, p′) = NextRotate(R, p)
1. Let H denote the hyperplane defined by R ∪ {p} and t1 be the missing color in R.
2. If the orientation of H is not well-defined, report a violation of weak general position and

well-separation.
3. Let P+

t1
be the subset of Pt1 that lies in the closed halfspace H+ and P−t1

be the subset of
Pt1 that lies in the open halfspace H−. Let x ∈ P+

t1
be the highest ranked point according

to the order ≺t1 and y ∈ P−t1
be the highest ranked point according to ≺t1 .

4. If p has color t1 and |P+
t1
| = nt1 , report out of range.

5. We rotate H around the anchor R in a direction such that the hyperplane is moving away
from x along the segment xy until it hits some point q ∈ P .

6. If the hyperplane hits multiple points at the same time, report a violation of weak general
position.

7. If q is not color t1, set R′ := R ∪ {q} \ {r} and p′ = r, where r is a point in R with the
same color as q. Otherwise, set R′ = R and p′ = q.

8. Return (R′, p′).
Figure 3 shows an application of this procedure, rotating H0 to H4 through H1, H2, H3.

This rotation function can be interpreted as a function that assigns each hyperplane to
the next hyperplane. The set of colorful hyperplanes can be interpreted as vertices in a graph
with the rotation function determining the connectivity of the graph.

Canonical path. Each colorful hyperplane H is incident to a colorful set of d points. This
set of points defines d possible anchors, and each anchor can be used to rotate H in a different
fashion. To define a unique sequence of rotations, we pick a specific order as follows: first, we
assume that the colorful hyperplane H whose α-vector is (1, . . . , 1) is given (we show later
how this assumption can be removed). We start at H and pick the anchor that excludes the
first color, then apply a sequence of rotations until we hit another colorful hyperplane with
α-vector (2, 1, . . . , 1). Similarly, we move to a colorful hyperplane with α-vector (3, 1, . . . , 1)
and so on until we reach (α1, 1, . . . , 1). Then, we repeat this for the other colors in order to
reach (α1, α2, 1, . . . , 1) and so on until we reach the target α-vector. This pattern of α-vectors
helps in defining a potential function that strictly increases along the path. We can encode
this sequence of rotations as a unique path in the UniqueEOPL instance, and we call it
canonical path.

A natural way to define the UniqueEOPL graph would be to consider hyperplanes as the
vertices in the graph. However, this leads to complications. Figure 3 shows a rotation from
H0 to H4, with α-vectors (3, 2) and (3, 3) respectively. During the rotation, we encounter
a hyperplane H2 for which its α-vector is (4, 2), which differs from our desired sequence
of (3, 2), . . . , (3, 2), (3, 3). This makes it difficult to define a potential function in the graph
that strictly increases along the path vH0 , . . . , vH4 where vHi

is the vertex representing
hyperplane Hi. One way to alleviate this problem is to not use Hi as a vertex directly, but
the double-wedge that is traced out by the rotation from Hi to Hi+1. If the α-vector is
now measured using the hyperplane that bisects the double-wedge, then we get the desired
sequence of (3, 2), . . . , (3, 2), (3, 3). See Figure 3 for an example.
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H1, α = (3, 2)

H2, α = (4, 2)

H3, α = (3, 2)

H0, α = (3, 2)

H4, α = (3, 3)

+

+

+

+

+

z1

z2

z3

x

y

H12, α = (3, 2)

+

Figure 3 An example showing a sequence of rotations from H0 to H4 through H1, H2, H3.
Red (square) is the first color and purple (disk) is the second color. This sequence represents a
path between two vertices in the UniqueEOPL graph that is generated in the reduction. The
double-wedge is shaded and its angular bisector H12 has the desired α-vector.

With additional overhead, the rotation function can be extended to double-wedges. This
in turn also leads to a neighborhood graph where the vertices are the double-wedges and
the rotations can be used to define the edges. The graph is connected and has a grid-like
structure that may be of independent interest. Due to lack of space, the description of
double-wedges and the associated graph can be found in [13].

Distance parameter and potential function. The α-vector is not sufficient to define the
potential function, since the sequence of rotations between two colorful hyperplanes may
have the same α-vector. For instance, the bisectors of the rotations in H0, . . . ,H3 in Figure 3
all have the same α-vector. Hence, we need an additional measurement in order to determine
the direction of rotation that increases the α-vector.

Similar to how we define the orientation for a non-colorful hyperplane, let H denote a
hyperplane that passes through points of (d− 1) colors. Let Pj denote the missing color in
H. Let x, y ∈ Pj be the highest ranked points under ≺j in H+ and H− respectively. Let z
denote the intersection of xy and H. We define a distance parameter called dist-value of H
to be the distance ‖x− z‖. In Figure 3, we can see that rotating from H0 to H4 sweeps the
segment xy in one direction, with the dist-value of the hyperplanes increasing strictly. This
is sufficient to break ties and hence determine the correct direction of rotation. The precise
statement is given in Lemma 6. We can extend this definition to the domain of double-wedges.
We define a potential value for each vertex on the canonical path in UniqueEOPL using
the sum of weighed components of α-vector and dist-value for the tie-breaker.
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Correctness. We show that if there are no violations, we can always apply Procedure
NextRotate to increment the α-vector until we find the desired solution, which implies that
the canonical path exists. If the input satisfies weak general position, we can see that the
rotating hyperplane always hits a unique point in Step 5, which may be swapped to form a
new anchor in Step 7.

The well-separation condition guarantees that the potential function always increases
along the rotation. Let H1, H2 denote a pair of hyperplanes that are the input and output
of Procedure NextRotate respectively. Let H denote any intermediate hyperplane during
the rotation from H1 to H2 through the common anchor. Let Pj be the color missing from
the anchor and x be the highest ranked point under ≺j in H+

1 . We say that the orientation
of H2 (resp. H) is consistent with that of H1 if x ∈ H+

2 (resp. x ∈ H+). Lemma 5 shows
that the orientations are always consistent when H1 and H2 are non-colorful hyperplanes
even without the assumption of well-separation.

I Lemma 5 (consistency of orientation). Assume that weak general position holds. Let
H1, H2 be the input and output of Procedure NextRotate respectively. Let H denote any
intermediate hyperplane within the rotation. The orientations of H1 (resp. H2) and H are
consistent when H1 (resp. H2) is a non-colorful hyperplane.

Proof. Since H1 is a non-colorful hyperplane, let Pj denote the color missing from H1. H1
and H give the same partition of Pj into two sets because the continuous rotation from H1
to H does not hit any point in Pj . Let x and y be the highest ranked points under ≺j in
each set. Since we have weak general position, the segment xy cannot pass through the
anchor of the rotation so that the orientations of H1 and H are well-defined by the (d− 1)
colored points in the anchor and the intersections of the hyperplanes with the segment xy.
Thus, the determinant defining the normal of the rotating hyperplane from H1 to H for the
orientation is always non-zero. Since the intersection of the rotating hyperplane from H1 to
H and the segment xy moves continuously along xy, by a continuity argument, the normal
of the hyperplane does not flip during the rotation. Without loss of generality, assume that
x ∈ H+

1 . This implies that x is always in the positive half-space of H and hence H has a
consistent orientation as H1. The same proof holds for H2. J

Next, we show that the dist-value is strictly increasing for all the intermediate hyperplanes
in the sequence of rotations from one colorful hyperplane to another colorful hyperplane.

I Lemma 6. Assume that weak general position holds. Let H0 be a colorful hyperplane
and Hk be the first colorful hyperplane obtained by a sequence of rotations by Procedure
NextRotate. We denote by H1, . . . ,Hk−1 the non-colorful hyperplanes obtained from the
above sequence of rotations. The dist-values of H1, . . . ,Hk−1 are strictly increasing.

Proof. Let Pj denote the color missing from H1. Then, H2, . . . ,Hk−1 all miss the color Pj ,
otherwise Hk is not the first colorful hyperplane obtained by the rotations. Therefore, each Hi

gives the same partition of Pj into two sets for i = 1, . . . , k−1 because the continuous rotations
from H1 to Hk−1 does not hit any point in Pj . Let x and y be the highest ranked points
under ≺j in each set. Without loss of generality, assume that x ∈ H+

1 . Since H1, . . . ,Hk−1
are non-colorful hyperplanes, by Lemma 5, the consistent of the orientation can carry from
H1 to H2 and so on. Then we have x ∈ H+

1 , . . . , x ∈ H+
k−1 and y ∈ H−1 , . . . , y ∈ H−k−1.

Let z1 = xy ∩H1, . . . , zk−1 = xy ∩Hk−1. According to Step 5 of Procedure NextRotate,
each rotation is performed by moving away from x along the segment xy. Hence we have
‖x− z1‖ < ‖x− z2‖ < · · · < ‖x− zk−1‖. J
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The last step for proving that the potential function always increases along the canonical
path is to show that the α-vector increases in some coordinate from one colorful hyperplane to
another colorful hyperplane through Procedure NextRotate. This requires the assumption
of well-separation. Lemma 7 shows that if the orientations of H1, H2 and H are inconsistent,
then well-separation is violated. By the contrapositive, if well-separation is satisfied, then
all hyperplanes in the rotation always give consistent orientations. Then, it implies that
rotating from a colorful hyperplane H0 to another colorful hyperplane Hk through a sequence
of non-colorful hyperplanes that miss color Pj , we have H+

0 ∩Pj ⊂ H+
k ∩Pj and Hk contains

one additional point in Pj that is hit by the last rotation. Therefore, αj is increased by 1
and other αis keep the same value because of the way we swap the point of repeated color
with the one in the anchor and the direction of rotation.

I Lemma 7. Assume that weak general position holds. Let H1, H2 be the input and output of
Procedure NextRotate respectively. Let R denote the anchor of the rotation from H1 to H2,
and Pj denote the color missing from R. Let H denote any intermediate hyperplane within
the rotation. If the orientations of H1 (resp. H2) and H are inconsistent, then H1 (resp.
H2) is a colorful hyperplane and we can find a colorful set R ∪ {x′} lying in a (d− 2)-flat
where x′ ∈ conv(Pj), in O(d3) arithmetic operations. The set R∪{x′} witnesses the violation
of well-separation.

Proof. Since the orientations of H1 and H are inconsistent, H1 must be a colorful hyperplane
by Lemma 5. Therefore, the point in H1 that is not in the anchor is in Pj , denoted by p.

Let x and y be the points defined in Lemma 5 such that x, y ∈ Pj , and x and y are on
different sides of H1 and H. The (d − 2)-flat containing R separates H1 and H into two
(d− 1)-dimensional half-subspaces each. Let H+

1,R and H+
R be the half-subspaces intersecting

with xy on H1 and H respectively, and let us denote the intersection points by zp and z,
respectively. The opposite half-subspaces are denoted by H−1,R and H−R , respectively. By
definition of the orientation for non-colorful hyperplanes, the orientation of H is defined by
R∪{z}. Although the orientation of H1 is defined by R∪{p}, if we consider the determinant
defining the orientation using R ∪ {zp}, it gives an orientation consistent with that of H.
Therefore, it must be that p ∈ H−1,R. Then, we can see that the line segment pzp intersects
the (d− 2)-flat of R. We can compute zp and also the intersection point x′ of pzp and the
(d− 2)-flat of R by solving systems of linear equations with d equations and d variables in
O(d3) arithmetic operations. Since x′ ∈ conv(Pj), R ∪ {x′} is a colorful set contained in the
(d− 2)-flat of R. J

In order to guarantee that there is no other path in UniqueEOPL apart from the
canonical path, we introduce self-loops for vertices that are not on the canonical path. The
detailed proof in [13] shows that if there are no violations, then the reduced instance of
UniqueEOPL only gives a (U1) solution, which readily translates to a (G1) solution, so
our reduction is promise-preserving, and this can be done in polynomial time.

Since we do not know the hyperplane with α-vector (1, . . . , 1) in advance, we split the
problem into two sub-problems: in the first we start with any colorful hyperplane. We reverse
the direction of the canonical path determined by the potential and construct an Alpha-HS
instance for which the vertex with α-vector (1, . . . , 1) is the solution. In the second, we use
this vertex as the input to the main Alpha-HS instance. If the input is free of violations,
then both sub-problems give valid solutions and together they answer the original question.
To merge the two sub-problems into one UniqueEOPL instance, we can make two layer
copies of the vertices with an additional flag variable to indicate which copy is in the first
layer. In the first layer, we build the canonical path from any colorful vertex to the colorful
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vertex with α-vector (1, . . . , 1), which connects to the colorful vertex with α-vector (1, . . . , 1)
in the second layer. Similarly, in the second layer, we build the canonical path from the
colorful vertex with α-vector (1, . . . , 1) to the vertex with the target α-vector. Then, we can
also easily modify the potential function accordingly.

An alternative approach is to define the canonical path directly from any colorful vertex
to the target vertex. In this case, each coordinate of the current α-vector may increase or
decrease depending on the signed distance to the target α-vector along the canonical path.
However, the potential function can still be defined in a way that it is strictly increasing
along the path.

Handling violations. The reduction maps violations of Alpha-HS to violations of the
UniqueEOPL instance, and certificates for the violations can be recovered from additional
processing. When a violation of weak general position is witnessed on a vertex that lies on
the canonical path, a hyperplane incident to d colors may contain additional points. This in
turn implies that some α-cut is missing, so that the correct solution for the target may not
exist. For cuts that exist in spite of the violation, reporting either the correct solution or the
violation are sufficient for Alpha-HS.

In addition, the (highest-ranked) points x, y from the missing color that we choose to
define the orientation of a non-colorful hyperplane may form a segment xy that passes through
the (d− 2)-flat spanned by the anchor. In that case the orientation of the hyperplane is not
well-defined. In the reduction, these problematic vertices are removed from the canonical
path, thereby creating some additional starting points and end points in the reduced instance.
These violations can be captured by (U1) with a wrong α-vector or (UV2). Furthermore,
the hyperplanes that contain the degenerate point sets could be represented by different
choices of anchors and an additional point on the plane. Each such pair represents a vertex
in the reduced instance. We join these vertices in the form of a cycle in the UniqueEOPL
instance with all vertices having the same potential value, so that the violations can also be
captured by (UV1) and (UV3).

When a violation of well-separation is witnessed on a vertex on the canonical path, the
orientations of the two hyperplanes paired by Procedure NextRotate may be inconsistent,
which may not guarantee that the α-vector is incremented in one component by one (See
Figure 4). Hence, the canonical path is split into two paths that can be captured by (UV2).
Furthermore, a violation of well-separation also creates multiple colorful hyperplanes with the
same α-vector (See Figure 4, left). Two vertices in the UniqueEOPL graph with the same
potential value, which could correspond to some colorful or non-colorful hyperplanes, can be
reported by (UV3). We show that this gives a certificate of violation of well-separation in
the following lemmas, where m0 is the number of bits used to represent each coordinate of
points of P .

I Lemma 8. Given two colorful hyperplanes Hp, Hq with the same α-vector, we can find a
colorful set {x1 ∈ conv(P1), . . . , xd ∈ conv(Pd)} that lies on a (d− 2)-flat in poly(n, d,m0)
time.

I Lemma 9. Given two non-colorful hyperplanes that both contain d− 1 points and have
the same missing color, α-vector and dist-value, we can find a colorful set of points {x1 ∈
conv(P1), . . . , xd ∈ conv(Pd)} that lies on a (d− 2)-flat in poly(n, d,m0) time.

For the second output (V(v) < V(u) < V(S(v))) of (UV3), there are two cases to consider.
In the first case, if both v and S(v) correspond to the same α-vector, then u also has the same
α-vector and its dist-value is between that of v and S(v). Since rotating the hyperplane from
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H1, α = (3, 2)
+

+

H2, α = (3, 2)

H1, α = (4, 3)

+

+

H2, α = (2, 2)

x

y

Figure 4 The examples show two sets of points that are not well-separated. Purple (circle)
represents the first color and red (square) represents the second color. In both examples the rotation
procedure does not increase the α-vector. Both examples show that the orientation of the hyperplane
may be flipped after the rotation, so the resulting α-vector can go wrong.

v to S(v) does not pass through u, we can find a different hyperplane that is interpolated
by v and S(v) and has the same dist-value as u. Hence, we apply Lemma 9 again to find
a witness of the violation. For the second case that the α-vector of S(v) increases in one
coordinate by one from that of v, since the role of dist-value is dominated by the role of
α-vector in the potential function, the dist-value of u can be arbitrarily large. Therefore, we
may not be able to apply the interpolation technique from the first again. We argue that we
can transform P to a point set P ′ satisfying conv(P ′i ) ⊆ conv(Pi) for all i ∈ [d], such that
the hyperplanes of v and u become colorful. Then, we apply Lemma 8 to show that P ′ is
not well-separated, which also implies that P is not well-separated. The precise statement
and proof are given in [13]. We also show

how to compute a (GV1) solution from a (UV1) solution,
how to compute a (GV1) or (GV2) solution, given a (UV2) or (UV3) solution, and
a (GV1) or (GV2) solution that can occur with a (U1) solution that has the incorrect
α-vector.

We show that converting these solutions always takes poly(n, d) time. The violations may be
detected in either the first sub-problem or the second sub-problem. Our constructions thus
culminate in the promised result:

I Theorem 10. Alpha-HS ∈ UEOPL ⊆ CLS.

Handling very weak general position. We have described our construction for the case
when weak general position holds. If we only assume that very weak general position holds,
then there may exist a hyperplane that passes through more than d points of at most d− 1
colors. Therefore, in Step 5 of Procedure NextRotate the rotating hyperplane may hit
more than one point so that it is not clear how to define the new anchor in Step 7. From the
point of view of the reduction, there are many non-colorful vertices that represent the same
hyperplane. We need a new approach to define a unique path to traverse these vertices with
respect to this hyperplane. In other words, we charge the computational time of finding the
new anchor to traversing these vertices on the path instead of considering it as one operation.

If we consider the space of all the points lying on the hyperplane, we have d− 1 sets of
points each representing a unique color in an affine subspace of d − 1 dimensions. Thus,
we can consider it as a new instance of Alpha-HS in one dimension lower. Let H be the
rotating hyperplane that hits more than one point and contains d− 1 colors. Without loss of
generality, we assume that d is the missing color. We denote by Q = Q1∪Q2∪ . . .∪Qd−1 the
d− 1 sets of points in H such that Qi ⊆ Pi and denote by Q̂i the set of points represented in
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+

+

+

α = (6, 1)

H0, b = (6, 1)
+

H,α = (10, 1)

x

y

R
span(R)+, α = (2)

R′

span(R′)+, α = (5)

H1, α = (6, 1)

q

Figure 5 An example showing the relationship between the α-vector in a subproblem in R and
the α-vector in the original problem in R2. Red (square) is the first color and purple (disk) is the
second color. The orientation of span(R) in H is defined such that it is consistent with H0. b = (6, 1)
is the α-vector of H0. k1 = 4 is the number of red points in H+ \H. The α-vector of the starting
vertex (i.e., R) with respect to H is (6− 4 = 2). The α-vector of the end vertex is (6 + 1− 2 = 5).
We can see that q ∈ span(R′)+ and q moves to the negative side of H1 when rotating from H to H1.

the new coordinate system in Rd−1 for Qi in H. First, we claim that if P is well-separated
and in very weak general position, then Q̂ is also well-separated and in very weak general
position. Since Q ⊂ P , it is clear that well-separation follows. Suppose that Q̂ violates very
weak general position, then there exists a (d− 2)-flat that contains more than d− 1 points of
d− 1 colors in Q. In particular, any (d− 1)-flat spanned by the (d− 2)-flat and any point in
Pd contains more than d points of d colors, which contradicts the fact that P is in very weak
general position.

Suppose that P is well-separated and in very weak general position. Now we define
what is the unique path with respect to Q̂. Let b = (b1, . . . , bd) be the α-vector of the
rotating hyperplane H0 just before rotating to H at the anchor R. In the new instance of
Alpha-HS, we would pick the orientation of (d−2)-flats in Rd−1 such that every point p ∈ Q
lies in H+

0 if and only if the corresponding point p̂ ∈ Q̂ lies in span(R̂)+. Let k1, . . . kd−1
denote the number of points of P1, . . . , Pd−1 in H+, but not in Qi. Then, we can see that
the number of points in Q̂i lying in span(R̂)+ is equal to bi − ki. Thus, the α-vector of
span(R̂)+ is (b1 − k1, . . . , bd−1 − kd−1), which is the α-vector of the starting vertex of the
path. On the other hand, the α-vector of the end vertex is (|Q1|+ 1− b1 + k1, . . . , |Qd−1|+
1 − bd−1 + kd−1). It is because the points in H+

0 \ H0 become in the opposite side after
the rotation passes through H. Therefore, if we rotate at the new anchor with α-vector
(|Q1|+ 1− b1 + k1, . . . , |Qd−1|+ 1− bd−1 + kd−1) in Q̂, then the α-vector of the new rotating
hyperplane is still (b1, . . . , bd). The next question is that if the vertex only stores any d points
of H, we cannot recover b and H0 so that the orientation cannot be defined consistently and
the target α-vector for Q̂ is not known. To handle this problem, we need to redefine the
double-wedge to be (R1, p1, R2, p2) instead of (R, p, q) in such a way that R1 = R2 if the
double-wedge contains exactly d+ 1 points, otherwise R1 ⊂ span(R2 ∪{p2}). For instance, if
(R̂1, q̂1)− > . . .− > (R̂m, q̂m) is the unique path in Q̂, where R̂i is an anchor of size d− 2 so
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that R̂i and q̂i represent a (d− 2)-flat in Rd−1, then the corresponding path in the original
problem is (R, p,R1 ∪ {q1}, p1)− > (R, p,R2 ∪ {q2}, p2)− > . . .− > (R, p,Rm ∪ {qm}, pm),
where pi is some point in H that is picked under ≺ in a way that the tuple is uniquely defined
in the path. Hence, b can be computed from the bisector of (R, p) and (Ri ∪ {qi}, pi), and
the orientation of (d− 2)-flats can also be defined by the bisector. There may exist some
other double-wedge (∗, ∗, Ri ∪ {qi}, pi) that is incident to H, but it will not have the same b.

In conclusion, the unique path in the reduction can be defined recursively as above
in an Alpha-HS instance of one dimension lower. As a result, the representation of the
double-wedges gets more complicated and the size is increased by a factor of O(d). The
potential function becomes a weighted sum of the potential function in each recursive level,
but the number of bits is still in polynomial size. For handling violations, there are not
many changes. Instead of reporting the violation of weak general position, we now report the
violation of very weak general position when the rotating hyperplane in Ri contains more
than i points of i colors. If any recursive subproblem violates very weak general position, it
also implies that the original input P violates very weak general position.

4 Conclusion and future work

We gave a complexity-theoretic upper bound for Alpha-HS. No hardness results are known
for this search problem, and the next question is determining if this is hard for UEOPL. One
challenge is that UniqueEOPL is formulated as Boolean circuits, whereas Alpha-HS is
purely geometric. Emulating circuits using purely geometric arguments is highly non-trivial.
Filos-Ratsikas and Goldberg showed a reduction of this form in [21]. They reduced the
PPA-complete 2D-Tucker circuit to Ham-Sandwich, going via the Consensus-Halving [39],
and the Necklace-splitting problems [2]. A simplified argument was recently presented in [22].
It could be a worthwhile exercise to investigate if their techniques can provide insights for
hardness of Alpha-HS.

Some related problems are determining the complexity of answering whether a point set
is well-separated, whether it is in weak general position, or whether a given α-cut exists
for the point set. A given α-cut may exist even when both assumptions are violated. On
a related note, deciding whether the Linear Complementarity problem has a solution is
NP-complete [15]. The solution is unique if the problem involves a P -matrix, but checking
this condition is coNP-complete [16]. However, using witnesses to verify whether a matrix is
P-matrix or not, a total search version is shown to be in UEOPL. Our result for Alpha-HS
would go in a similar vein, if the complexities of the above problems were better determined.

Another line to work could be to determine the computational complexities of other
extensions of the Ham-Sandwich theorem. For other geometric problems that are total and
admit unique solutions, it could be worthwhile to explore their place in the class UEOPL.
Faster algorithms for computing the α-cut can also be explored.
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Abstract
We study the existence of approximate pure Nash equilibria (α-PNE) in weighted atomic conges-
tion games with polynomial cost functions of maximum degree d. Previously it was known that
d-approximate equilibria always exist, while nonexistence was established only for small constants,
namely for 1.153-PNE. We improve significantly upon this gap, proving that such games in general
do not have Θ̃(

√
d)-approximate PNE, which provides the first super-constant lower bound.

Furthermore, we provide a black-box gap-introducing method of combining such nonexistence
results with a specific circuit gadget, in order to derive NP-completeness of the decision version
of the problem. In particular, deploying this technique we are able to show that deciding whether
a weighted congestion game has an Õ(

√
d)-PNE is NP-complete. Previous hardness results were

known only for the special case of exact equilibria and arbitrary cost functions.
The circuit gadget is of independent interest and it allows us to also prove hardness for a variety

of problems related to the complexity of PNE in congestion games. For example, we demonstrate
that the question of existence of α-PNE in which a certain set of players plays a specific strategy
profile is NP-hard for any α < 3d/2, even for unweighted congestion games.

Finally, we study the existence of approximate equilibria in weighted congestion games with
general (nondecreasing) costs, as a function of the number of players n. We show that n-PNE always
exist, matched by an almost tight nonexistence bound of Θ̃(n) which we can again transform into
an NP-completeness proof for the decision problem.
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1 Introduction

Congestion games constitute the standard framework to study settings where selfish players
compete over common resources. They are one of the most well-studied classes of games
within the field of algorithmic game theory [32, 27], covering a wide range of applications,
including, e.g., traffic routing and load balancing. In their most general form, each player
has her own weight and the latency on each resource is a nondecreasing function of the total
weight of players that occupy it. The cost of a player on a given outcome is just the total
latency that she is experiencing, summed over all the resources she is using.

The canonical approach to analysing such systems and predicting the behaviour of the
participants is the ubiquitous game-theoretic tool of equilibrium analysis. More specifically, we
are interested in the pure Nash equilibria (PNE) of those games; these are stable configurations
from which no player would benefit from unilaterally deviating. However, it is a well-known
fact that such desirable outcomes might not always exist, even in very simple weighted
congestion games. A natural response, especially from a computer science perspective, is to
relax the solution notion itself by considering approximate pure Nash equilibria (α-PNE);
these are states from which, even if a player could improve her cost by deviating, this
improvement could not be by more than a (multiplicative) factor of α ≥ 1. Allowing the
parameter α to grow sufficiently large, existence of α-PNE is restored. But how large does α
really need to be? And, perhaps more importantly from a computational perspective, how
hard is it to check whether a specific game has indeed an α-PNE?

1.1 Related Work
The origins of the systematic study of (atomic) congestion games can be traced back to the
influential work of Rosenthal [30, 31]. Although Rosenthal showed the existence of congestion
games without PNE, he also proved that unweighted congestion games always possess such
equilibria. His proof is based on a simple but ingenious potential function argument, which
up to this day is essentially still the only general tool for establishing existence of pure
equilibria.

In follow-up work [20, 26, 17], the nonexistence of PNE was demonstrated even for special
simple classes of (weighted) games, including network congestion games with quadratic cost
functions and games where the player weights are either 1 or 2. On the other hand, we know
that equilibria do exist for affine or exponential latencies [17, 28, 22], as well as for the class
of singleton1 games [16, 23]. Dunkel and Schulz [13] were able to extend the nonexistence
instance of Fotakis et al. [17] to a gadget in order to show that deciding whether a congestion
game with step cost functions has a PNE is a (strongly) NP-hard problem, via a reduction
from 3-Partition.

Regarding approximate equilibria, Hansknecht et al. [21] gave instances of very simple,
two-player polynomial congestion games that do not have α-PNE, for α ≈ 1.153. This
lower bound is achieved by numerically solving an optimization program, using polynomial

1 These are congestion games where the players can only occupy single resources.
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latencies of maximum degree d = 4. On the positive side, Caragiannis et al. [4] proved that
d!-PNE always exist; this upper bound on the existence of α-PNE was later improved to
α = d+ 1 [21, 9] and α = d [3].

1.2 Our Results and Techniques
After formalizing our model in Section 2, in Section 3 we show the nonexistence of Θ(

√
d

ln d )-
approximate equilibria for polynomial congestion games of degree d. This is the first
super-constant lower bound on the nonexistence of α-PNE, significantly improving upon the
previous constant of α ≈ 1.153 and reducing the gap with the currently best upper bound
of d. More specifically (Theorem 1), for any integer d we construct congestion games with
polynomial cost functions of maximum degree d (and nonnegative coefficients) that do not
have α-PNE, for any α < α(d) where α(d) is a function that grows as α(d) = Ω

(√
d

ln d

)
. To

derive this bound, we had to use a novel construction with a number of players growing
unboundedly as a function of d.

Next, in Section 4 we turn our attention to computational hardness constructions.
Starting from a Boolean circuit, we create a gadget that transfers hard instances of the
classic Circuit Satisfiability problem to (even unweighted) polynomial congestion games.
Our construction is inspired by the work of Skopalik and Vöcking [34], who used a similar
family of lockable circuit games in their PLS-hardness result. Using this gadget we can
immediately establish computational hardness for various computational questions of interest
involving congestion games (Theorem 3). For example, we show that deciding whether a
d-degree polynomial congestion game has an α-PNE in which a specific set of players play a
specific strategy profile is NP-hard, even up to exponentially-approximate equilibria; more
specifically, the hardness holds for any α < 3d/2. Our investigation of the hardness questions
presented in Theorem 3 (and later on in Corollary 7 as well) was inspired by some similar
results presented before by Conitzer and Sandholm [11] (and even earlier in [19]) for mixed
Nash equilibria in general (normal-form) games. To the best of our knowledge, our paper is
the first to study these questions for pure equilibria in the context of congestion games. It is
of interest to also note here that our hardness gadget is gap-introducing, in the sense that
the α-PNE and exact PNE of the game coincide.

In Section 5 we demonstrate how one can combine the hardness gadget of Section 4, in a
black-box way, with any nonexistence instance for α-PNE, in order to derive hardness for the
decision version of the existence of α-PNE (Lemma 4, Theorem 5). As a consequence, using the
previous Ω

(√
d

ln d

)
lower bound construction of Section 3, we can show that deciding whether

a (weighted) polynomial congestion has an α-PNE is NP-hard, for any α < α(d), where
α(d) = Ω

(√
d

ln d

)
(Corollary 6). Since our hardness is established via a rather transparent,

“master” reduction from Circuit Satisfiability, which in particular is parsimonious, one
can derive hardness for a family of related computation problems; for example, we show
that computing the number of α-approximate equilibria of a weighted polynomial congestion
game is #P-hard (Corollary 7).

In Section 6 we drop the assumption on polynomial cost functions, and study the existence
of approximate equilibria under arbitrary (nondecreasing) latencies as a function of the
number of players n. We prove that n-player congestion games always have n-approximate
PNE (Theorem 8). As a consequence, one cannot hope to derive super-constant nonexistence
lower bounds by using just simple instances with a fixed number of players (similar to, e.g.,
Hansknecht et al. [21]). In particular, this shows that the super-constant number of players
in our construction in Theorem 1 is necessary. Furthermore, we pair this positive result
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with an almost matching lower bound (Theorem 9): we give examples of n-player congestion
games (where latencies are simple step functions with a single breakpoint) that do not have
α-PNE for all α < α(n), where α(n) grows according to α(n) = Ω

(
n

lnn
)
. Finally, inspired

by our hardness construction for the polynomial case, we also give a new reduction that
establishes NP-hardness for deciding whether an α-PNE exists, for any α < α(n) = Ω

(
n

lnn
)
.

Notice that now the number of players n is part of the description of the game (i.e., part of
the input) as opposed to the maximum degree d for the polynomial case (which was assumed
to be fixed). On the other hand though, we have more flexibility on designing our gadget
latencies, since they can be arbitrary functions.

Concluding, we would like to elaborate on a couple of points. First, the reader would
have already noticed that in all our hardness results the (in)approximability parameter α
ranges freely within an entire interval of the form [1, α̃), where α̃ is a function of the degree d
(for polynomial congestion games) or of the number of players n; and that α, α̃ are not part
of the problem’s input. It is easy to see that these features only make our results stronger,
with respect to computational hardness, but also more robust. Secondly, although in this
introductory section all our hardness results were presented in terms of NP-hardness, they
immediately translate to NP-completeness under standard assumptions on the parameter α;
e.g., if α is rational (for a more detailed discussion of this, see also the end of Section 2).

Due to space constraints we had to either fully omit, or just give very short sketches of,
the proofs of our results. All proofs can be found in the full version of this paper [8].

2 Model and Notation

A (weighted, atomic) congestion game is defined by: a finite (nonempty) set of resources
E, each e ∈ E having a nondecreasing cost (or latency) function ce : R>0 −→ R≥0; and a
finite (nonempty) set of players N , |N | = n, each i ∈ N having a weight wi > 0 and a set
of strategies Si ⊆ 2E . If all players have the same weight, wi = 1 for all i ∈ N , the game is
called unweighted. A polynomial congestion game of degree d, for d a nonnegative integer, is
a congestion game such that all its cost functions are polynomials of degree at most d with
nonnegative coefficients.

A strategy profile (or outcome) s = (s1, s2, . . . , sn) is a collection of strategies, one for
each player, i.e. s ∈ S = S1 × S2 × · · · × Sn. Each strategy profile s induces a cost of
Ci(s) =

∑
e∈si

ce(xe(s)) to every player i ∈ N , where xe(s) =
∑
i:e∈si

wi is the induced load
on resource e. An outcome s will be called α-approximate (pure Nash) equilibrium (α-PNE),
where α ≥ 1, if no player can unilaterally improve her cost by more than a factor of α.
Formally:

Ci(s) ≤ α · Ci(s′i, s−i) for all i ∈ N and all s′i ∈ Si. (1)

Here we have used the standard game-theoretic notation of s−i to denote the vector of
strategies resulting from s if we remove its i-th coordinate; in that way, one can write
s = (si, s−i). Notice that for the special case of α = 1, (1) is equivalent to the classical
definition of pure Nash equilibria; for emphasis, we will sometimes refer to such 1-PNE as
exact equilibria.

If (1) does not hold, it means that player i could improve her cost by more than α by
moving from si to some other strategy s′i. We call such a move α-improving. Finally, strategy
si is said to be α-dominating for player i (with respect to a fixed profile s−i) if

Ci(s′i, s−i) > α · Ci(s) for all s′i 6= si. (2)
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In other words, if a strategy si is α-dominating, every move from some other strategy s′i to
si is α-improving. Notice that each player i can have at most one α-dominating strategy
(for s−i fixed). In our proofs, we will employ a gap-introducing technique by constructing
games with the property that, for any player i and any strategy profile s−i, there is always a
(unique) α-dominating strategy for player i. As a consequence, the sets of α-PNE and exact
PNE coincide.

Finally, for a positive integer n, we will use Φn to denote the unique positive solution
of equation (x + 1)n = xn+1. Then, Φn is strictly increasing with respect to n, with
Φ1 = φ ≈ 1.618 (golden ratio) and asymptotically Φn ∼ n

lnn (see [9, Lemma A.3]).

Computational Complexity

Most of the results in this paper involve complexity questions, regarding the existence
of (approximate) equilibria. Whenever we deal with such statements, we will implicitly
assume that the congestion game instances given as inputs to our problems can be succinctly
represented in the following way:

all player have rational weights;
the resource cost functions are “efficiently computable”; for polynomial latencies in
particular, we will assume that the coefficients are rationals; and for step functions we
assume that their values and breakpoints are rationals;
the strategy sets are given explicitly.2

There are also computational considerations to be made about the number α appearing
in the definition of α-PNE. For simplicity, throughout this paper we will assume that α is a
rational number. However, all our hardness results are still valid for any real α, while for our
completeness results one needs to assume that α is actually a polynomial-time computable
real. For more details we refer to the full version of our paper [8].

3 The Nonexistence Gadget

In this section we give examples of polynomial congestion games of degree d, that do not have
α(d)-approximate equilibria; α(d) grows as Ω

(√
d

ln d

)
. Fixing a degree d ≥ 2, we construct

a family of games Gd(n,k,w,β), specified by parameters n ∈ N, k ∈ {1, . . . , d}, w ∈ [0, 1], and
β ∈ [0, 1]. In Gd(n,k,w,β) there are n+ 1 players: a heavy player of weight 1 and n light players
1, . . . , n of equal weights w. There are 2(n+ 1) resources a0, a1, . . . , an, b0, b1, . . . , bn where
a0 and b0 have the same cost function c0 and all other resources a1, . . . , an, b1, . . . , bn have
the same cost function c1 given by

c0(x) = xk and c1(x) = βxd.

Each player has exactly two strategies, and the strategy sets are given by

S0 = {{a0, . . . , an}, {b0, . . . , bn}} and Si = {{a0, bi}, {b0, ai}} for i = 1, . . . , n.

The structure of the strategies is visualized in Figure 1.

2 Alternatively, we could have simply assumed succinct representability of the strategies. A prominent
such case is that of network congestion games, where each player’s strategies are all feasible paths
between two specific nodes of an underlying graph. Notice however that, since in this paper we are
proving hardness results, insisting on explicit representation only makes our results even stronger.
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a0 a1 · · · ai · · · an

bn · · · bi · · · b1 b0

Figure 1 Strategies of the game Gd(n,k,w,β). Resources contained in the two ellipses of the same
colour correspond to the two strategies of a player. The strategies of the heavy player and light
players n and i are depicted in black, grey and light grey, respectively.
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Figure 2 Nonexistence of α(d)-PNE for weighted polynomial congestion games of degree d, as
given by (3) in Theorem 1, for d = 2, 3, . . . , 100. In particular, for small values of d, α(2) ≈ 1.054,
α(3) ≈ 1.107 and α(4) ≈ 1.153.

In the following theorem we give a lower bound on α, depending on parameters (n, k, w, β),
such that games Gd(n,k,w,β) do not admit an α-PNE. Maximizing this lower bound over all
games in the family, we obtain a general lower bound α(d) on the inapproximability for
polynomial congestion games of degree d (see (3) and its plot in Figure 2). Finally, choosing
specific values for the parameters (n, k, w, β), we prove that α(d) is asymptotically lower
bounded by Ω(

√
d

ln d ).

I Theorem 1. For any integer d ≥ 2, there exist (weighted) polynomial congestion games of
degree d that do not have α-approximate PNE for any α < α(d), where

α(d) = sup
n,k,w,β

min
{

1 + nβ(1 + w)d

(1 + nw)k + nβ
,

(1 + w)k + βwd

(nw)k + β(1 + w)d

}
(3)

s.t. n ∈ N, k ∈ {1, . . . , d}, w ∈ [0, 1], β ∈ [0, 1].

In particular, we have the asymptotics α(d) = Ω
(√

d
ln d

)
and the bound α(d) ≥

√
d

2 ln d , valid for
large enough d. A plot of the exact values of α(d) (given by (3)) for small degrees can be
found in Figure 2.

Interestingly, for the special case of d = 2, 3, 4, the values of α(d) (see Figure 2) yield
exactly the same lower bounds with Hansknecht et al. [21]. This is a direct consequence of
the fact that n = 1 turns out to be an optimal choice in (3) for d ≤ 4, corresponding to an



G. Christodoulou, M. Gairing, Y. Giannakopoulos, D. Poças, and C. Waldmann 32:7

g5
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x2

g3 g2

g1

inputs C output

(a) valid circuit C.

g5
x1

1

g4
x2

1

g3 g2

1 g1

(b) canonical form of C.

1

x1

x2

g5

g4

g3 g2
g1

(c) directed acyclic graph.

Figure 3 Example of a valid circuit C (having both NOT and NAND gates), its canonical form
(having only NAND gates), and the directed acyclic graph corresponding to C.

instance with only n+1 = 2 players (which is the regime of the construction in [21]); however,
this is not the case for larger values of d, where more players are now needed in order to
derive the best possible value in (3). Furthermore, as we discussed also in Section 1.2, no
construction with only 2 players can result in bounds larger than 2 (Theorem 8).

4 The Hardness Gadget

In this section we construct an unweighted polynomial congestion game from a Boolean
circuit. In the α-PNE of this game the players emulate the computation of the circuit. This
gadget will be used in reductions from Circuit Satisfiability to show NP-hardness of
several problems related to the existence of approximate equilibria with some additional
properties. For example, deciding whether a congestion game has an α-PNE where a certain
set of players choose a specific strategy profile (Theorem 3).

Circuit Model

We consider Boolean circuits consisting of NOT gates and 2-input NAND gates only. We
assume that the two inputs to every NAND gate are different. Otherwise we replace the
NAND gate by a NOT gate, without changing the semantics of the circuit. We further
assume that every input bit is connected to exactly one gate and this gate is a NOT gate. See
Figure 3a for a valid circuit. In a valid circuit we replace every NOT gate by an equivalent
NAND gate, where one of the inputs is fixed to 1. See the replacement of gates g5, g4 and g2
in the example in Figure 3b. Thus, we look at circuits of 2-input NAND gates where both
inputs to a NAND gate are different and every input bit of the circuit is connected to exactly
one NAND gate where the other input is fixed to 1. A circuit of this form is said to be in
canonical form. For a circuit C and a vector x ∈ {0, 1}n we denote by C(x) the output of
the circuit on input x.

We model a circuit C in canonical form as a directed acyclic graph. The nodes of this
graph correspond to the input bits x1, . . . , xn, the gates g1, . . . , gK and a node 1 for all
fixed inputs. There is an arc from a gate g to a gate g′ if the output of g is input to
gate g′ and there are arcs from the fixed input and all input bits to the connected gates.
We index the gates in reverse topological order, so that all successors of a gate gk have a
smaller index and the output of gate g1 is the output of the circuit. Denote by δ+(v) the
set of the direct successors of node v. Then we have |δ+(xi)| = 1 for all input bits xi and
δ+(gk) ⊆ {gk′ | k′ < k} for every gate gk. See Figure 3 for an example of a valid circuit, its
canonical form and the corresponding directed acyclic graph.
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Translation to Congestion Game

Fix some integer d ≥ 1 and a parameter µ ≥ 1 + 2 · 3d+d/2. From a valid circuit in canonical
form with input bits x1, . . . , xn, gates g1, . . . , gK and the extra input fixed to 1, we construct
a polynomial congestion game Gdµ of degree d. There are n input players X1, . . . , Xn for
every input bit, a static player P for the input fixed to 1, and K gate players G1, . . . , GK
for the output bit of every gate. G1 is sometimes called output player as g1 corresponds to
the output C(x).

The idea is that every input and every gate player has a zero and a one strategy,
corresponding to the respective bit being 0 or 1. In every α-PNE we want the players to
emulate the computation of the circuit, i.e. the NAND semantics of the gates should be
respected. For every gate gk, we introduce two resources 0k and 1k. The zero (one) strategy
of a player consists of the 0k′ (1k′) resources of the direct successors in the directed acyclic
graph corresponding to the circuit and its own 0k (1k) resource (for gate players). The static
player has only one strategy playing all 1k resources of the gates where one input is fixed to
1: sP = {1k | gk ∈ δ+(1)}. Formally, we have

s0
Xi

=
{

0k | gk ∈ δ+(xi)
}
and s1

Xi
=
{

1k | gk ∈ δ+(xi)
}

for the zero and one strategy of an input player Xi. Recall that δ+(xi) is the set of direct
successors of xi, thus every strategy of an input player consists of exactly one resource. For
a gate player Gk we have the two strategies

s0
Gk

= {0k} ∪
{

0k′ | gk′ ∈ δ+(gk)
}
and s1

Gk
= {1k} ∪

{
1k′ | gk′ ∈ δ+(gk)

}
consisting of at most k resources each. Notice that all 3 players related to a gate gk (gate
player Gk and the two players corresponding to the input bits) are different and observe that
every resource 0k and 1k can be played by exactly those 3 players.

We define the cost functions of the resources using parameter µ. The cost functions for
resources 1k are given by c1k

and for resources 0k by c0k
, where

c1k
(x) = µkxd and c0k

(x) = λµkxd, with λ = 3d/2. (4)

Our construction here is inspired by the lockable circuit games of Skopalik and Vöcking [34].
The key technical differences are that our gadgets use polynomial cost functions (instead of
general cost functions) and only 2 resources per gate (instead of 3). Moreover, while in [34]
these games are used as part of a PLS-reduction from Circuit/FLIP, we are also interested
in constructing a gadget to be studied on its own, since this can give rise to additional results
of independent interest (see Theorem 3).

Properties of the Gadget

For a valid circuit C in canonical form consider the game Gdµ as defined above. We interpret
any strategy profile s of the input players as a bit vector x ∈ {0, 1}n by setting xi = 0 if
sXi

= s0
Xi

and xi = 1 otherwise. The gate players are said to follow the NAND semantics in
a strategy profile, if for every gate gk the following holds:

if both players corresponding to the input bits of gk play their one strategy, then the gate
player Gk plays her zero strategy;
if at least one of the players corresponding to the input bits of gk plays her zero strategy,
then the gate player Gk plays her one strategy.

We show that for the right choice of α, the set of α-PNE in Gdµ is the same as the set of all
strategy profiles where the gate players follow the NAND semantics.



G. Christodoulou, M. Gairing, Y. Giannakopoulos, D. Poças, and C. Waldmann 32:9

Define

ε(µ) = 3d+d/2

µ− 1 . (5)

From our choice of µ, we obtain 3d/2 − ε(µ) ≥ 3d/2 − 1
2 > 1. For any valid circuit C in

canonical form and a valid choice of µ the following lemma holds for Gdµ.

I Lemma 2. Let sX be any strategy profile for the input players X1, . . . , Xn and let x ∈
{0, 1}n be the bit vector represented by sX . For any µ ≥ 1 + 2 · 3d+d/2 and any 1 ≤ α <

3d/2−ε(µ), there is a unique α-approximate PNE3 in Gdµ where the input players play according
to sX . In particular, in this α-PNE the gate players follow the NAND semantics, and the
output player G1 plays according to C(x).

Proof sketch. We first fix the input players to the strategies given by sX and show that
then all gate players follow the NAND semantics (switching to the strategy corresponding to
the NAND of their input bits is an α-improving move). Secondly, we argue that the input
players have no incentive to change their strategy in any α-PNE where all gate players follow
the NAND semantics. Hence, every strategy profile for the input players can be extended to
an α-PNE in Gdµ that is uniquely defined by the NAND semantics. J

We are now ready to show our main result of this section; using the circuit game described
above, we show NP-hardness of deciding whether approximate equilibria with additional
properties exist.

I Theorem 3. The following problems are NP-hard, even for unweighted polynomial con-
gestion games of degree d ≥ 1, for all α ∈ [1, 3d/2) and all z > 0:

“Does there exist an α-approximate PNE in which a certain subset of players are playing
a specific strategy profile?”
“Does there exist an α-approximate PNE in which a certain resource is used by at least
one player?”
“Does there exist an α-approximate PNE in which a certain player has cost at most z?”

Proof sketch. We use reductions from the NP-hard problem Circuit Satisfiability. For
a circuit C we consider the game Gdµ as described above and focus on the output player G1.
Using Lemma 2 we get a one-to-one correspondence between satisfying assignments for C
and α-PNE in Gdµ where G1 plays her one strategy. J

5 Hardness of Existence

In this section we show that it is NP-hard to decide whether a polynomial congestion game
has an α-PNE. For this we use a black-box reduction: our hard instance is obtained by
combining any (weighted) polynomial congestion game G without α-PNE (i.e., the game
from Section 3) with the circuit gadget of the previous section. To achieve this, it would be
convenient to make some assumptions on the game G, which however do not influence the
existence or nonexistence of approximate equilibria.

3 Which, as a matter of fact, is actually also an exact PNE.
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Structural Properties of G

Without loss of generality, we assume that a weighted polynomial congestion game of degree
d has the following structural properties.

No player has an empty strategy. If, for some player i, ∅ ∈ Si, then this strategy would
be α-dominating for i. Removing i from the game description would not affect the
(non)existence of (approximate) equilibria4.
No player has zero weight. If a player i had zero weight, her strategy would not influence
the costs of the strategies of the other players. Again, removing i from the game description
would not affect the (non)existence of equilibria.
Each resource e has a monomial cost function with a strictly positive coefficient, i.e.
ce(x) = aex

ke where ae > 0 and ke ∈ {0, . . . , d}. If a resource had a more general cost
function ce(x) = ae,0 + ae,1x+ . . .+ ae,dx

d, we could split it into at most d+ 1 resources
with (positive) monomial costs, ce,0(x) = ae,0, ce,1(x) = ae,1x, . . . , ce,d(x) = ae,dx

d.
These monomial cost resources replace the original resource, appearing on every strategy
that included e.
No resource e has a constant cost function. If a resource e had a constant cost function
ce(x) = ae,0, we could replace it by new resources having monomial cost. For each player
i of weight wi, replace resource e by a resource ei with monomial cost cei

(x) = ae,0
wi
x, that

is used exclusively by player i on her strategies that originally had resource e. Note that
cei(wi) = ae,0, so that this modification does not change the player’s costs, neither has
an effect on the (non)existence of approximate equilibria. If a resource has cost function
constantly equal to zero, we can simply remove it from the description of the game.

For a game having the above properties, we define the (strictly positive) quantities

amin = min
e∈E

ae, W =
∑
i∈N

wi, cmax =
∑
e∈E

ce(W ). (6)

Note that cmax is an upper bound on the cost of any player on any strategy profile.

Rescaling of G

In our construction of the combined game we have to make sure that the weights of the
players in G are smaller than the weights of the players in the circuit gadget. We introduce
the following rescaling argument.

For any γ ∈ (0, 1] define the game G̃γ , where we rescale the player weights and resource
cost coefficients in G as

ãe = γd+1−keae, w̃i = γwi, c̃e(x) = ãex
ke . (7)

This changes the quantities in (6) for G̃γ to (recall that ke ≥ 1)

ãmin = min
e∈E

ãe = min
e∈E

γd+1−keae ≥ γd min
e∈E

ae = γdamin,

W̃ =
∑
i∈N

w̃i =
∑
i∈N

γwi = γW,

c̃max =
∑
e∈E

c̃e(W̃ ) =
∑
e∈E

ãe(γW )ke =
∑
e∈E

γd+1aeW
ke = γd+1

∑
e∈E

ce(W ) = γd+1cmax.

In G̃γ the player costs are all uniformly scaled as C̃i(s) = γd+1Ci(s), so that the Nash
dynamics and the (non)existence of equilibria are preserved.

4 By this we mean, if G has (resp. does not have) α-PNE, then G̃, obtained by removing player i from the
game, still has (resp. still does not have) α-PNE.
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Figure 4 Combination of a circuit game (on the left) and a game without approximate equilibria
(on the right). Changes to the subgames are indicated by solid arrows. The new one strategy of G1

consists of 11 and all resources in G̃γ , while the zero strategy stays unchanged. The players of G̃γ
get a new strategy (the dummy resource), and keep their old strategies playing in G̃γ .

The next lemma formalizes the combination of both game gadgets and, furthermore,
establishes the gap-introduction in the equilibrium factor. Using it, we will derive our key
hardness tool of Theorem 5.

I Lemma 4. Fix any integer d ≥ 2 and rational α ≥ 1. Suppose there exists a weighted
polynomial congestion game G of degree d that does not have an α-approximate PNE. Then,
for any circuit C there exists a game G̃C with the following property: the sets of α-approximate
PNE and exact PNE of G̃C coincide and are in one-to-one correspondence with the set of
satisfying assignments of C. In particular, one of the following holds: either
1. C has a satisfying assignment, in which case G̃C has an exact PNE (and thus, also an

α-approximate PNE); or
2. C has no satisfying assignments, in which case G̃C has no α-approximate PNE (and thus,

also no exact PNE).

Proof. Let G be a congestion game as in the statement of the theorem having the above
mentioned structural properties. Recalling that weighted polynomial congestion games of
degree d have d-PNE [3], this implies that α < d < 3d/2. Fix some 0 < ε < 3d/2 − α and take
µ ≥ 1 + 3d+d/2

min{ε,1} ; in this way α < 3d/2 − ε ≤ 3d/2 − ε(µ).
Given a circuit C we construct the game G̃C as follows. We combine the game Gdµ whose

Nash dynamics model the NAND semantics of C, as described in Section 4, with the game
G̃γ obtained from G via the aforementioned rescaling. We choose γ ∈ (0, 1] sufficiently small
such that the following three inequalities hold for the quantities in (6) for G:

γW < 1, γ
∑
e∈E

ae <
µ

µ− 1

(
3
2

)d
, γα2 <

amin

cmax
. (8)

Thus, the set of players in G̃C corresponds to the (disjoint) union of the static, input and
gate players in Gdµ (which all have weights 1) and the players in G̃γ (with weights w̃i). We
also consider a new dummy resource with constant cost cdummy(x) = ãmin

α . Thus, the set of
resources corresponds to the (disjoint) union of the gate resources 0k, 1k in Gdµ, the resources
in G̃γ , and the dummy resource. We augment the strategy space of the players as follows:
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each input player or gate player of Gdµ that is not the output player G1 has the same
strategies as in Gdµ (i.e. either the zero or the one strategy);
the zero strategy of the output player G1 is the same as in Gdµ, but her one strategy is
augmented with every resource in G̃γ ; that is, s1

G1
= {11} ∪ E(G̃γ);

each player i in G̃γ keeps her original strategies as in G̃γ , and gets a new dummy strategy
si,dummy = {dummy}.

A graphical representation of the game G̃C can be seen in Figure 4.
To finish the proof, we need to show that every α-PNE of G̃C is an exact PNE and

corresponds to a satisfying assignment of C; and, conversely, that every satisfying assignment
of C gives rise to an exact PNE of G̃C (and thus, an α-PNE as well).

Suppose that s is an α-PNE of G̃C , and let sX denote the strategy profile restricted to
the input players of Gdµ. Then, as in the proof of Lemma 2, every gate player that is not the
output player must respect the NAND semantics, and this is an α-dominating strategy. For
the output player, either sX is a non-satisfying assignment, in which case the zero strategy
of G1 was α-dominating, and this remains α-dominating in the game G̃C (since only the cost
of the one strategy increased for the output player); or sX is a satisfying assignment. In the
second case, we now argue that the one strategy of G1 remains α-dominating. The cost of
the output player on the zero strategy is at least c01(2) = λµ2d, and the cost on the one
strategy is at most

c11(2)+
∑
e∈E

c̃e(1+γW ) = µ2d+
∑
e∈E

γd+1−keae(1+γW )ke < µ2d+γ
∑
e∈E

ae2d < µ2d+ µ

µ− 13d,

where we used the first and second bounds from (8). Thus, the ratio between the costs is at
least

λµ2d

µ2d + µ
µ−13d = λ

 1
1 + 1

µ−1
( 3

2
)d
 > 3d/2

(
1

1 + 1
µ−13d

)
> 3d/2 − ε(µ) > α.

Given that the gate players must follow the NAND semantics, the input players are also
locked to their strategies (i.e. they have no incentive to change) due to the proof of Lemma 2.
The only players left to consider are the players from G̃γ . First we show that, since s is an
α-PNE, the output player must be playing her one strategy. If this was not the case, then
each dummy strategy of a player in G̃γ is α-dominated by any other strategy: the dummy
strategy incurs a cost of ãmin

α ≥ γd amin
α , whereas any other strategy would give a cost of at

most c̃max = γd+1cmax (this is because the output player is not playing any of the resources
in G̃γ). The ratio between the costs is thus at least

γdamin

γd+1cmaxα
= amin

γcmaxα
> α.

Since the dummy strategies are α-dominated, the players in G̃γ must be playing on their
original sets of strategies. The only way for s to be an α-PNE would be if G had an α-PNE
to begin with, which yields a contradiction. Thus, the output player is playing the one
strategy (and hence, is present in every resource in G̃γ). In such a case, we can conclude
that each dummy strategy is now α-dominating. If a player i in G̃γ is not playing a dummy
strategy, she is playing at least one resource in G̃γ , say resource e. Her cost is at least
c̃e(1 + w̃i) = ãe(1 + w̃i)ke > ãe ≥ ãmin (the strict inequality holds since, by the structural
properties of our game, all of ãe, w̃i and ke are strictly positive quantities). On the other
hand, the cost of playing the dummy strategy is ãmin

α . Thus, the ratio between the costs is
greater than α.
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We have concluded that, if s is an α-PNE of G̃C , then sX corresponds to a satisfying
assignment of C, all the gate players are playing according to the NAND semantics, the output
player is playing the one strategy, and all players of G̃γ are playing the dummy strategies. In
this case, we also have observed that each player’s current strategy is α-dominating, so the
strategy profile is an exact PNE. To finish the proof, we need to argue that every satisfying
assignment gives rise to a unique α-PNE. Let sX be the strategy profile corresponding to this
assignment for the input players in Gdµ. Then, as before, there is one and exactly one α-PNE
s in G̃C that agrees with sX ; namely, each gate player follows the NAND semantics, the
output player plays the one strategy, and the players in G̃γ play the dummy strategies. J

By approximating all numbers occurring in the construction of Lemma 4 (weights,
coefficients, approximation factor) by rationals, we obtain a polynomial-time reduction from
Circuit Satisfiability, and thus the following theorem.

I Theorem 5. For any integer d ≥ 2 and rational α ≥ 1, suppose there exists a weighted
polynomial congestion game which does not have an α-approximate PNE. Then it is NP-
complete to decide whether (weighted) polynomial congestion games of degree d have an
α-approximate PNE.

Proof. Let d ≥ 2 and α ≥ 1. Let G be a weighted polynomial congestion game of degree
d that has no α-PNE; this means that for every strategy profile s there exists a player i
and a strategy s′i 6= si such that Ci(si, s−i) > α · Ci(s′i, s−i). Note that the functions Ci are
polynomials of degree d and hence they are continuous on the weights wi and the coefficients
ae appearing on the cost functions. Hence, any arbitrarily small perturbation of the wi, ae
does not change the sign of the above inequality. Thus, without loss of generality, we can
assume that all wi, ae are rational numbers.

Next, we consider the game G̃γ obtained from G by rescaling, as in the proof of Lemma 4.
Notice that the rescaling is done via the choice of a sufficiently small γ, according to (8),
and hence in particular we can take γ to be a sufficiently small rational. In this way, all
the player weights and coefficients in the cost of resources are rational numbers scaled by a
rational number and hence rationals.

Finally, we are able to provide the desired NP reduction from Circuit Satisfiability.
Given a Boolean circuit C ′ built with 2-input NAND gates, transform it into a valid circuit
C in canonical form. From C we can construct in polynomial time the game G̃C as described
in the proof of Lemma 4. The “circuit part”, i.e. the game Gdµ, is obtained in polynomial
time from C, as in the proof of Theorem 3; the description of the game G̃γ involves only
rational numbers, and hence the game can be represented by a constant number of bits (i.e.
independent of the circuit C). Similarly, the additional dummy strategy has a constant delay
of ãmin/α, and can be represented with a single rational number. Merging both Gdµ and G̃γ
into a single game G̃C can be done in linear time. Since C has a satisfying assignment iff G̃C
has an α-PNE (or α-PNE), this concludes that the problem described is NP-hard.

The problem is clearly in NP: given a weighted polynomial congestion game of degree d
and a strategy profile s, one can check if s is an α-PNE by computing the ratios between the
cost of each player in s and their cost for each possible deviation, and comparing these ratios
with α. J

Combining the hardness result of Theorem 5 together with the nonexistence result of
Theorem 1 we get the following corollary, which is the main result of this section.
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I Corollary 6. For any integer d ≥ 2 and rational α ∈ [1, α(d)), it is NP-complete to decide
whether (weighted) polynomial congestion games of degree d have an α-approximate PNE,
where α(d) = Ω̃(

√
d) is the same as in Theorem 1.

Notice that, in the proof of Lemma 4 and Theorem 5, we constructed a polynomial-time
reduction from Circuit Satisfiability to the problem of determining whether a given
congestion game has an α-PNE. Not only does this reduction map YES-instances of one
problem to YES-instances of the other, but it also induces a bijection between the sets of
satisfying assignments of a circuit C and α-PNE of the corresponding game G̃C . That is,
this reduction is parsimonious. As a consequence, we can directly lift hardness of problems
associated with counting satisfying assignments to Circuit Satisfiability into problems
associated with counting equilibria in congestion games:

I Corollary 7. Let k ≥ 1 and d ≥ 2 be integers and α ∈ [1, α(d)) where α(d) = Ω̃(
√
d) is the

same as in Theorem 1. Then
it is #P-hard to count the number of α-approximate PNE of (weighted) polynomial
congestion games of degree d;
it is NP-hard to decide whether a (weighted) polynomial congestion game of degree d has
at least k distinct α-approximate PNE.

Proof. The hardness of the first problem comes from the #P-hardness of the counting version
of Circuit Satisfiability (see, e.g., [29, Ch. 18]). For the hardness of the second problem,
it is immediate to see that the following problem is NP-complete, for any fixed integer k ≥ 1:
given a circuit C, decide whether there are at least k distinct satisfying assignments for C
(simply add “dummy” variables to the description of the circuit). J

6 General Cost Functions

In this final section we leave the domain of polynomial latencies and study the existence of
approximate equilibria in general congestion games having arbitrary (nondecreasing) cost
functions. Our parameter of interest, with respect to which both our positive and negative
results are going to be stated, is the number of players n. We start by showing that n-PNE
always exist:

I Theorem 8. Every weighted congestion game with n players and arbitrary (nondecreasing)
cost functions has an n-approximate PNE.

Proof. Fix a weighted congestion game with n ≥ 2 players, some strategy profile s, and a
possible deviation s′i of player i. First notice that we can write the change in the cost of any
other player j 6= i as

Cj(s′i, s−i)− Cj(s) =
∑
e∈sj

ce(xe(s′i, s−i))−
∑
e∈sj

ce(xe(s))

=
∑

e∈sj∩(s′
i
\si)

[ce(xe(s′i, s−i))− ce(xe(s))]

+
∑

e∈sj∩(si\s′i)

[ce(xe(s′i, s−i))− ce(xe(s))] (9)
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Furthermore, we can upper bound this by

Cj(s′i, s−i)− Cj(s) ≤
∑

e∈sj∩(s′
i
\si)

[ce(xe(s′i, s−i))− ce(xe(s))]

≤
∑
e∈s′

i

ce(xe(s′i, s−i))

= Ci(s′i, s−i), (10)

the first inequality holding due to the fact that the second sum in (9) contains only nonpositive
terms (since the latency functions are nondecreasing).

Next, define the social cost C(s) =
∑
i∈N Ci(s). Adding the above inequality over all

players j 6= i (of which there are n− 1) and rearranging, we successively derive:∑
j 6=i

Cj(s′i, s−i)−
∑
j 6=i

Cj(s) ≤ (n− 1)Ci(s′i, s−i)

(C(s′i, s−i)− Ci(s′i, s−i))− (C(s)− Ci(s)) ≤ (n− 1)Ci(s′i, s−i)
C(s′i, s−i)− C(s) ≤ nCi(s′i, s−i)− Ci(s). (11)

We conclude that, if s′i is an n-improving deviation for player i (i.e., nCi(s′i, s−i) < Ci(s)), then
the social cost must strictly decrease after this move. Thus, any (global or local) minimizer
of the social cost must be an n-PNE (the existence of such a minimizer is guaranteed by the
fact that the strategy spaces are finite). J

The proof not only establishes the existence of n-approximate equilibria in general
congestion games, but also highlights a few additional interesting features. First, due
to the key inequality (11), n-PNE are reachable via sequences of n-improving moves, in
addition to arising also as minimizers of the social cost function. These attributes give a
nice “constructive” flavour to Theorem 8. Secondly, exactly because social cost optima are
n-PNE, the Price of Stability5 of n-PNE is optimal (i.e., equal to 1) as well. Another, more
succinct way, to interpret these observations is within the context of approximate potentials
(see, e.g., [6, 10, 9]); (11) establishes that the social cost itself is always an n-approximate
potential of any congestion game.

Next, we design a family of games Gn that do not admit Θ
(
n

lnn
)
-PNE, thus nearly

matching the upper bound Theorem 8. In the game Gn there are n = m + 1 play-
ers 0, 1, . . . ,m, where player i has weight wi = 1/2i. In particular, this means that for
any i ∈ {1, . . . ,m}:

∑m
k=i wk < wi−1 ≤ w0. Furthermore, there are 2(m + 1) resources

a0, a1, . . . , am, b0, b1, . . . , bm, where resources ai and bi have the same cost function ci given by

ca0(x) = cb0(x) = c0(x) =
{

1, if x ≥ w0,

0, otherwise;

and for all i ∈ {1, . . . ,m},

cai
(x) = cbi

(x) = ci(x) =

 1
ξ

(
1 + 1

ξ

)i−1
, if x ≥ w0 + wi,

0, otherwise.

Where ξ = Φn−1 is the positive solution of (x+ 1)n−1 = xn.

5 The Price of Stability (PoS) is a well-established and extensively studied notion in algorithmic game
theory, originally studied in [2, 12]. It captures the minimum approximation ratio of the social cost
between equilibria and the optimal solution (see, e.g., [7, 9]); in other words, it is the best-case analogue
of the the Price of Anarchy (PoA) notion of Koutsoupias and Papadimitriou [25].
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The strategy set of player 0 and of all players i ∈ {1, . . . ,m} are, respectively,

S0 = {{a0, . . . , am}, {b0, . . . , bm}}, and Si = {{a0, . . . , ai−1, bi}, {b0, . . . , bi−1, ai}}.

Analysing the costs of strategy profiles in Gn (see [8]) we get the following theorem.

I Theorem 9. For any integer n ≥ 2, there exist weighted congestion games with n players
and general cost functions that do not have α-approximate PNE for any α < Φn−1, where
Φm ∼ m

lnm is the unique positive solution of (x+ 1)m = xm+1.

Similar to the spirit of the rest of our paper so far, we’d like to show an NP-hardness
result for deciding existence of α-PNE for general games as well. We do exactly that in
the following theorem, where now α grows as Θ̃(n). Again, we use the circuit gadget and
combine it with the game from the previous nonexistence Theorem 9. The main difference
to the previous reductions is that now n is part of the input. On the other hand we are not
restricted to polynomial latencies, so we use step functions having a single breakpoint.

I Theorem 10. Let ε > 0, and let α̃ : N≥2 −→ Q be any (polynomial-time computable)
sequence such that 1 ≤ α̃(n) < Φn−1

1+ε = Θ̃(n), where Φm ∼ m
lnm is the unique positive solution

of (x + 1)m = xm+1. Then, it is NP-complete to decide whether a (weighted) congestion
game with n players has an α̃(n)-approximate PNE.

7 Discussion and Future Directions

In this paper we showed that weighted congestion games with polynomial latencies of degree
d do not have α-PNE for α < α(d) = Ω

(√
d

ln d

)
. For general cost functions, we proved that

n-PNE always exist whereas α-PNE in general do not, where n is the number of players and
α < Φn−1 = Θ

(
n

lnn
)
. We also transformed the nonexistence results into complexity-theoretic

results, establishing that deciding whether such α-PNE exist is itself an NP-hard problem.
We now identify two possible directions for follow-up work. A first obvious question would

be to reduce the nonexistence gap between Ω
(√

d
ln d

)
(derived in Theorem 1 of this paper)

and d (shown in [3]) for polynomials of degree d; similarly for the gap between Θ
(
n

lnn
)

(Theorem 9) and n (Theorem 8) for general cost functions and n players. Notice that all
current methods for proving upper bounds (i.e., existence) are essentially based on potential
function arguments; thus it might be necessary to come up with novel ideas and techniques
to overcome the current gaps.

A second direction would be to study the complexity of finding α-PNE, when they are
guaranteed to exist. For example, for polynomials of degree d, we know that d-improving
dynamics eventually reach a d-PNE [3], and so finding such an approximate equilibrium lies
in the complexity class PLS of local search problems (see, e.g., [24, 33]). However, from
a complexity theory perspective the only known lower bound is the PLS-completeness of
finding an exact equilibrium for unweighted congestion games [14] (and this is true even for
d = 1, i.e., affine cost functions; see [1]). On the other hand, we know that dO(d)-PNE can
be computed in polynomial time (see, e.g., [5, 18, 15]). It would be then very interesting to
establish a “gradation” in complexity (e.g., from NP-hardness to PLS-hardness to P) as the
parameter α increases from 1 to dO(d).
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Abstract
Edge connectivity of a graph is one of the most fundamental graph-theoretic concepts. The celebrated
tree packing theorem of Tutte and Nash-Williams from 1961 states that every k-edge connected graph
G contains a collection T of bk/2c edge-disjoint spanning trees, that we refer to as a tree packing;
the diameter of the tree packing T is the largest diameter of any tree in T . A desirable property
of a tree packing for leveraging the high connectivity of a graph in distributed communication
networks, is that its diameter is low. Yet, despite extensive research in this area, it is still unclear
how to compute a tree packing of a low-diameter graph G, whose diameter is sublinear in |V (G)|,
or, alternatively, how to show that such a packing does not exist.

In this paper, we provide first non-trivial upper and lower bounds on the diameter of tree packing.
We start by showing that, for every k-edge connected n-vertex graph G of diameter D, there is a
tree packing T containing Ω(k) trees, of diameter O((101k logn)D), with edge-congestion at most 2.

Karger’s edge sampling technique demonstrates that, if G is a k-edge connected graph, and G[p] is
a subgraph of G obtained by sampling each edge of G independently with probability p = Θ(logn/k),
then with high probability G[p] is connected. We extend this result to show that the diameter of
G[p] is bounded by O(kD(D+1)/2) with high probability. This immediately gives a tree packing of
Ω(k/ logn) edge-disjoint trees of diameter at most O(kD(D+1)/2). We also show that these two
results are nearly tight for graphs with a small diameter: we show that there are k-edge connected
graphs of diameter 2D, such that any packing of k/α trees with edge-congestion η contains at least
one tree of diameter Ω

(
(k/(2αηD))D

)
, for any k, α and η. Additionally, we show that if, for every

pair u, v of vertices of a given graph G, there is a collection of k edge-disjoint paths connecting u
to v, of length at most D each, then we can efficiently compute a tree packing of size k, diameter
O(D logn), and edge-congestion O(logn). Finally, we provide several applications of low-diameter
tree packing in the distributed settings of network optimization and secure computation.
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33:2 On Packing Low-Diameter Spanning Trees

1 Introduction

Edge connectivity of a graph is one of the most basic graph theoretic parameters, with various
applications to network reliability and information dissemination. A key tool for leveraging
high edge connectivity of a given graph is tree packing: a large collection of spanning trees
that are (nearly) edge-disjoint. A celebrated result of Tutte [24] and Nash-Williams [19]
shows that for every k-edge connected graph, there is a tree packing T containing bk/2c
edge-disjoint trees. This beautiful theorem has numerous algorithmic applications, but
unfortunately it provides no guarantee on the diameter of the individual trees in T . In the
worst case, trees in T may have diameter that is as large as Ω(|V (T )|), even if the diameter
of the original graph is very small. Given a graph G and a collection T of trees in G, we say
that the trees in T are edge-disjoint iff every edge of G lies in at most one tree of T , and we
say that they cause edge-congestion η iff every edge of G lies in at most η trees of T . The
diameter of a tree-packing T is the maximum diameter of any tree in T .

The diameter of a graph is a central graph measure that determines the round complexity
of distributed algorithms for various central graph problems, including minimum spanning
tree, global minimum cut, shortest s-t path, and so on. All these problems admit a trivial
lower bound of Ω(D) for the round complexity (where D is the diameter of the graph), and in
fact a stronger lower bound of Ω(D +

√
n), which is almost tight for general n-vertex graphs,

that was shown by Das-Sarma et al. [23]. Despite attracting a significant amount of attention
over the last decade (see e.g., [22, 10, 18, 2, 3, 16, 6, 1, 5, 4]), algorithms that exploit large
edge connectivity of the input graph in the distributed setting are quite rare. The only
examples that we are aware of are recent algorithms for minimum cut by Daga et al. [4] and
by Ghaffari et al. [11].

Censor-Hillel et al. [2] presented several distributed algorithms, that, given a k-edge
connected n-vertex graph of diameter D, computes a fractional tree packing of Ω(k/ logn)
trees that are fractionally edge-disjoint1 in Õ(D+

√
n) rounds. These trees have been used to

parallelize the flow of information, obtaining nearly optimal throughput for store-and-forward
algorithms2. However, as these trees might have diameter as large as Ω(n) in the worst case,
it is not clear how to use them in order to improve the round complexity of the problem at
hand, as opposed to improving the throughput. In particular, in terms of optimizing the
number of communication rounds, it may still be preferable to send the entire information
over a single BFS tree rather than spreading it over many trees of potentially large diameter.

The problem of computing a low-diameter tree packing was studied later by Ghaffari [6]
from the perspective of optimization. Specifically, he studied the multi-message broadcast
problem, where a designated source vertex is required to send k messages to all other nodes
in the network. Denoting by OPT(G) the minimum number of rounds required for the
broadcast on an input graph G, he constructed a tree packing of size k, where both the
diameter and the congestion are bounded by Õ(OPT(G)). While this approach provides a
nearly optimal broadcast scheme, it does not provide absolute upper bounds on the diameter
of the tree packing, and moreover, the congestion caused by the tree packing can be large.

1 In the fractional setting, each tree T in the packing has a weight w(T ) and for each edge e, the sum of
weights of all trees that contain e is at most 1.

2 In this class of algorithms, the nodes can only forward the messages they receive (e.g., network coding
is not allowed).
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A recent work of Ghaffari and Kuhn [10] provides the following negative result for packing
low-diameter trees into a graph: they show that for any large enough n and any k ≥ 1, there
is a k-edge-connected n-vertex graph of diameter Θ(logn), such that, in any partitioning of
the graph into spanning subgraphs, all but O(logn) of the subgraphs have diameter Ω(n/k).
In light of this result, it is natural to consider the following key question:

(1) Is it possible to compute a tree packing whose diameter is strongly sublinear in
|V (G)|, provided that the diameter of the input graph G is sublogarithmic in
|V (G)|?

Our second key question aims at crystallizing the main challenge to computing low-diameter
tree packing. So far, we have compared the diameter of the tree packing to the diameter of
the original graph. However, as observed above, the results of [10] indicate that there may be
a large gap between these two measures, even for graphs whose diameter is logarithmic in n.
A more natural reference point is the following. We say that a graph G is (k,D)-connected, iff
for every pair u, v ∈ V (G) of distinct vertices, there are k edge-disjoint paths connecting u to
v in G, such that the length of each path is bounded by D. Clearly, if there is a tree packing
of edge-disjoint trees of diameter at most D into G, then G must be (k,D)-connected. The
question is whether the reverse is also true, if we allow a small congestion and a small slack
in the diameter of the trees. The celebrated result of Tutte and Nash-Williams shows that, if
every pair of vertices in G has k edge-disjoint paths connecting them, then there are bk/2c
edge-disjoint spanning trees in G. However, this result is not length-preserving, in the sense
that the tree paths may be much longer than the original paths connecting pairs of vertices.
Our goal is then to provide such a length-preserving transformation from collections of short
edge-disjoint paths connecting pairs of nodes in G to a low-diameter tree packing.

(2) Given a (k,D)-connected graph G, can one obtain a tree packing of Ω̃(k) trees of
diameter Õ(D) into G, with small edge-congestion?

In this paper, we address both questions. For the first question, we show two efficient
algorithms, that, given a k-edge connected n-vertex graph G of diameter at most D, construct
a low-diameter tree packing. We complement this result by an almost matching lower bound.
We address the second question by providing an efficient algorithm, that, given a (k,D)-
connected graph G, computes a collection of k spanning trees of diameter at most O(D logn)
each, that cause edge-congestion of O(logn).

Our Results
Our graph-theoretic results consider two main settings: in the first setting, the input graph
is k-edge connected, and has diameter at most D; in the second setting, the input graph
is (k,D)-connected. We only consider unweighted graphs, that is, all edge lengths are unit.
Graphs are allowed to have parallel edges, unless we explicitly state that the graph is simple.
Throughout the paper, we use the term efficient algorithm to refer to a sequential algorithm
whose running time is polynomial in its input size.

Packing Trees into Low-Diameter Graphs. We prove the following two theorems that
allow us to pack low-diameter trees into low-diameter graphs.

I Theorem 1. There is an efficient randomized algorithm, that, given any positive integers
D,n, k, and an n-vertex k-edge-connected graph G of diameter at most D, computes a
collection T ′ = {T ′1, . . . , T ′bk/2c} of bk/2c spanning trees of G, such that each edge of G
appears in at most two of the trees in T ′, and, with high probability, each tree T ′i ∈ T ′ has
diameter O((101k lnn)D).

ICALP 2020
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As we show later, the diameter bound of Theorem 1 is close to the best possible.
Unfortunately, the trees in the packing provided by Theorem 1 may share edges. Next, we
generalize the classical result of Karger [14] to obtain a packing of completely edge-disjoint
trees of small diameter, in the following theorem.

I Theorem 2. There is an efficient randomized algorithm that, given an n-vertex k-edge-
connected graph G of diameter at most D, such that k > 1000 lnn, computes a collection
{T1, . . . , Tr} of r = Ω(k/ lnn) edge-disjoint spanning trees of G, such that with probability
1− 1/poly(n), each resulting tree Ti has diameter O(kD(D+1)/2).

We note that while the diameter bound in Theorem 2 is slightly weaker than that obtained
in Theorem 1, and the number of the spanning trees is somewhat lower, its advantage is that
the resulting trees are guaranteed to be edge-disjoint. Moreover, the algorithm in Theorem 2
is very simple: we construct r graphs G1, . . . , Gr with V (Gi) = V (G) for all i, by sampling
every edge of G into one of these graphs independently. We then compute a spanning tree
Ti in each such graph Gi, and show that its diameter is suitably bounded. As such, this
algorithm is easy to use in the distributed setting.

Lastly, we show that our upper bounds are close to the best possible if k � D, by proving
the following lower bound.

I Theorem 3. For all positive integers n, k,D, η, α such that k/(4Dαη) is an integer and

n ≥ 3k ·
(

k
2Dαη

)D
, there exists a k-edge connected simple graph G on n vertices of diameter

at most 2D + 2, such that, for any collection T = {T1, . . . , Tk/α} of k/α spanning trees of G

that causes edge-congestion at most η, some tree Ti ∈ T has diameter at least 1
4 ·
(

k
2Dαη

)D
.

Note that, in particular, any collection T of Ω(k) trees that are either edge-disjoint,
or cause a constant edge-congestion, must contain a tree of diameter Ω

((
k
cD

)D) for some
constant c. Even if we are willing to allow a polylogarithmic edge-congestion, and to settle

for Θ(k/poly logn) trees, at least one of the trees must have diameter Ω
((

k
Dpoly logn

)D)
.

Moreover, we show that the lower bound from Theorem 3 continues to hold even for the
weaker notion of edge-independent trees3, introduced in [12].

Packing Trees into (k, D)-connected Graphs. We next consider (k,D)-connected graphs
and show an algorithm that computes a tree packing, that is near-optimal in both the number
of trees and in the diameter.

I Theorem 4. There is an efficient randomized algorithm, that, given any positive integers
D, k, n with k ≤ n, and a (k,D)-connected n-vertex graph G, computes a collection T =
{T1, . . . , Tk} of k spanning trees of G, such that, for each 1 ≤ ` ≤ k, tree T` has diameter
at most O(D logn), and with probability at least 1 − 1/poly(n), each edge of G appears in
O(logn) trees of T .

Improved Distributed Algorithms for Highly Connected Graphs. We present several ap-
plications of low-diameter tree packing in the standard CONGEST model of distributed
computation [21]. By the proof of Theorem 2 and the O(logn)-approximation algorithm for
edge connectivity by [10], we obtain the following result.

3 A collection T of spanning trees is edge-independent, iff all trees in T are rooted at the same vertex v∗,
and for every vertex v ∈ V (G), if we denote by P(v) the collection of paths that contains, for each tree
T ∈ T , the unique path connecting v to v∗ in T , then all paths in P(v) are edge-disjoint.
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I Theorem 5. There is a randomized distributed algorithm, that, given an n-vertex graph G
of constant diameter D = O(1) and an integer λ, with high probability solves the problem of
O(logn)-approximate verification of λ-edge connectivity in G in poly(λ · logn) rounds.

This improves upon the state of the art bound of O(
√
n) for graphs with constant diameter

D ≥ 3, and λ ≤ nc for some positive constant c < 1/(2D2). From now on, we restrict
our attention to k-edge connected graphs with a constant diameter D = O(1). We employ
the modular approach for distributed optimization introduced by Ghaffari and Haeupler
in [8] which is based on the notion of low-congestion shortcuts. Roughly speaking, these
shortcuts augment vertex-disjoint connected subgraphs by adding nearly-edge disjoint subsets
of “shortcut” edges (that is, edges that reduce the diameter of each subgraph). Using our
tree packing construction, we provide improved shortcuts for highly connected graphs of
small diameter. This immediately leads to o(

√
n)-round algorithms for several classical graph

problems. For example, we prove the following:

I Theorem 6. There is a randomized distributed algorithm, that, given a k-edge connected
weighted n-vertex graph G of diameter D, such that the nodes know an O(logn) approximation
of k, computes an MST of G in Õ(min{

√
n/k+nD/(2D+1), n/k}) rounds with high probability.

If the nodes do not know an O(logn)-approximation of the value of k, then such an approxi-
mation can be computed in poly(k logn) rounds for D = O(1) using Theorem 5, w.h.p. For
general graphs (of an arbitrary connectivity) with diameter D = 3, 4, Kitamura et al. [15]
showed nearly optimal constructions of MST’s (based on shortcuts) with round complexities
of Õ(n1/4) and Õ(n1/3) respectively. Turning to lower bounds, we slightly modify the con-
struction of Lotker et al. [17] to obtain a lower bound of Ω((n/k)1/3) rounds for computing
an MST in k-edge connected graphs of diameter 4, assuming that k = O(n1/4).

Finally, we consider the basic task of information dissemination, where a given source
vertex s is required to send N bits of information to the designated target vertex t in a
k-edge connected n-vertex graph. This problem was first addressed in [10], who showed a
lower bound of Ω(min{N/ log2 n, n/k}) rounds, provided that the diameter of the graph is
Θ(logn). Using our low-diameter tree packing we obtain the first improved upper bounds
for sublogarithmic diameter. We also show a new lower bound for simple store-and-forward
algorithms, for the regime where D = o(logn).

I Theorem 7. There is a randomized distributed algorithm, that, given any k-edge connected
n-vertex graph G of diameter D with a source vertex s and a destination vertex t, sends an
input sequence of N bits from s to t. The number of rounds is bounded by Õ(N1−1/(D+1)+N/k)
with high probability.

In addition, for all integers n,N,D and k ≤ n, there exists a k-edge connected n-vertex
graph G = (V,E) of diameter 2D, and a pair s, t of its vertices, such that sending N bits from
s to t in a store-and-forward manner requires at least Ω(min{(N/(D logn))1−1/(D+1), n/k}+
N/k +D) rounds.

Applications to Secure Distributed Computation. Recently, Parter and Yogev [20] pre-
sented a general simulation result that converts any non-secure distributed algorithm to an
equivalent secure algorithm, while paying a small overhead in the number of rounds. This
transformation is based on the combinatorial graph structure of low-congestion cycle cover,
namely, a collection of nearly edge-disjoint short cycles that cover all edges in the graph.
The security provided by [20] was limited to adversaries who can manipulate at most one
edge of the graph in a given round; in fact if the graph is only 2-edge connected, no stronger
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security guarantees, in terms of the number of edges that an adversary is allowed to corrupt
is possible. In this paper we provide technical tools for handling stronger adversaries, who
collude with f(k) edges in a k-edge connected graph in each given round. In order to do so,
we define a stronger variant of cycle cover that is adapted to the highly connected setting.
This generalization is formalized by the notion of k-connected cycle cover, in which each edge
in the graph is covered by k almost-disjoint cycles. Our key contribution is an algorithm
that transforms any tree packing with k trees of diameter D into a (k − 1)-connected cycle
cover with cycle length O(D logn) and congestion Õ(k logn). This yields a simple secure
simulation of distributed algorithms in the presence of an adversary who colludes with
O(k/ logn) edges of the graph in each round4. Finally, we also use low-diameter tree packing
to provide a simple store-and-forward algorithm for the problem of secure broadcast.

Organization. We provide the proof of Theorem 1 in Section 2, the proof of Theorem 2 in
Section 3, the proof of Theorem 3 in Section 4, and the proof of Theorem 4 in Section 5. We
discuss applications of our graph theoretic results to distributed computation in Section 6.
Lastly, we discuss open problems in Section 7. Due to lack of space, some of the proofs are
only sketched; the full formal proofs are deferred to the full version of the paper.

2 Low-Diameter Tree Packing with Small Edge-Congestion: Proof of
Theorem 1

We start by showing that, if we are given a graph G, and a collection {T1, . . . , Tk} of edge-
disjoint spanning trees of G, such that the diameter of the tree Tk is at most 2D (but other
trees may have arbitrary diameters), then we can efficiently compute another collection
{T ′1, . . . , T ′k−1} of edge-disjoint spanning trees of G, such that the diameter of each resulting
tree T ′i is bounded by O((101k lnn)D) with high probability.

I Theorem 8. There is an efficient randomized algorithm, that, given any positive integers
D, k, n, an n-vertex graph G, and a collection {T1, . . . , Tk} of k spanning trees of G, such
that the trees T1, . . . , Tk−1 are edge-disjoint, and the diameter of Tk is at most 2D, computes
a collection {T ′1, . . . , T ′k−1} of edge-disjoint spanning trees of G, such that, with probability
at least 1 − 1/poly(n), for each 1 ≤ i ≤ k − 1, the diameter of tree T ′i is bounded by
O((101k lnn)D).

Theorem 1 easily follows by combining Theorem 8 with the results of Kaiser [13], who gave
a short elementary proof of the tree-packing theorem of Tutte [24] and Nash-Williams [19].
His proof directly translates into an efficient algorithm, that, given a k-edge connected graph
G, computes a collection of bk/2c edge-disjoint spanning trees of G. In order to complete the
proof of Theorem 1, we use the algorithm of Kaiser [13] to compute an arbitrary collection
T = {T1, . . . , Tbk/2c} of edge-disjoint spanning trees of G, and compute another arbitrary
BFS tree T ∗ of G. Since the diameter of G is at most D, the diameter of T ∗ is at most
2D. We then apply Theorem 8 to the collection {T1, . . . , Tbk/2c, T

∗} of spanning trees, to
obtain another collection T ′ = {T ′1, . . . , T ′bk/2c} of spanning trees, such that each edge of G
belongs to at most 2 trees of T ′, and with high probability, the diameter of each tree in T ′ is
at most O((101k lnn)D). We note that, since we allow parallel edges, the trees in the set
{T1, . . . , Tbk/2c, T

∗} are edge-disjoint in graph G ∪ E(T ∗).

4 We note that an adversary may choose a different set of O(k/ logn) edges to listen to or to corrupt in
each round.
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The main technical tool that we use in order to prove of Theorem 8 is the following
theorem, that allows one to “fix” a diameter of a connected graph using a low-diameter tree.

I Theorem 9. Let H be a connected graph with |V (H)| ≤ n, and let T be a rooted tree of
depth D, such that V (T ) = V (H). For a real number 0 < p < 1, let R be a random subset
of the edges of T , where each edge e ∈ E(T ) is added to R independently with probability p.
Then with probability at least 1− D

n48 , the diameter of the graph H ∪R is at most ( 101 lnn
p )D.

Theorem 8 easily follows from Theorem 9: For each 1 ≤ i < k, we construct a graph Gi as
follows. Start with Gi = Ti for all 1 ≤ i ≤ k. Compute a random partition E1, . . . , Ek−1 of
the edges of E(Tk), by adding each edge e ∈ E(Tk) to a set Ei chosen uniformly at random
from {E1, . . . , Ek−1} independently from other edges. Using Theorem 9 with p = 1/(k − 1),
it is immediate to see that with high probability, the diameter of each resulting graph Gi
is bounded by O((101k lnn)D). We then let T ′i be a BFS tree of graph Gi, rooted at an
arbitrary vertex. In order to complete the proof of Theorem 1, it is now enough to prove
Theorem 9.

Proof of Theorem 9. Recall that we are given a connected graph H with |V (H)| ≤ n, and a
rooted tree T of depth D, such that V (T ) = V (H), together with a parameter 0 < p < 1. We
let R be a random subset of E(T ), where each edge e ∈ E(T ) is added to R independently
with probability p. Our goal is to show that the diameter of the graph H ∪ R is at most(

101 lnn
p

)D
with probability at least 1− D

n48 . Denote V = V (H) = V (T ). For each 0 ≤ i ≤ D,
let Vi be the set of nodes lying at level i of the tree T (that is, at distance i from the tree
root), and denote V≤i =

⋃i
t=0 Vt. Let H ′ = H ∪R.

We say that a node x ∈ V is good if either (i) x ∈ V≤D−1; or (ii) x ∈ VD, and there is an
edge in R connecting x to a node in VD−1. We assume that V = {v1, . . . , vn′}, where the
vertices are indexed in an arbitrary order. Given an ordered pair (x, x′) of vertices in H,
and a path P connecting x to x′, let σ(P ) be a sequence of vertices that lists all the vertices
appearing on P in their natural order, starting from vertex x (so in a sense, we think of P
as a directed path). For an ordered pair (x, x′) ∈ V of vertices, let Px,x′ be shortest path
connecting x to x′ in H, and among all such paths P , choose the one whose sequence σ(P )
is smallest lexicographically. Observe that Px,x′ is unique, and, moreover, if some pair u, u′
of vertices lie on Px,x′ , with u lying closer to x than u′ on Px,x′ , then the sub-path of Px,x′

from u to u′ is precisely Pu,u′ .
Let M = 50 lnn

p . For a pair x, x′ of vertices of V , we let B(x, x′) be the bad event
that length of Px,x′ is greater than M and there is no good internal node on Px,x′ . Notice
that event B(x, x′) may only happen if every inner vertex on Px,x′ lies in VD, and for each
such vertex, the unique edge of T that is incident to it was not added to R. Therefore,
the probability that event B(x, x′) happens for a fixed pair x, x′ of vertices is at most
(1− p)M = (1− p)(50 lnn)/p ≤ n−50. Let B be the bad event that B(x, x′) happens for some
pair x, x′ ∈ V of nodes. From the union bound over all pairs of nodes in V , the probability
of B is bounded by n−48.

Recall that H is a subgraph of H ′ and distH(·, ·) is the shortest-path distance metric on
H. We use the following immediate observation.

I Observation 10. If the event B does not happen, then for every node x ∈ V , there is a
good node x′ ∈ V such that distH(x, x′) ≤M .
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We prove Theorem 9 by induction on D. The base of the induction is when D = 1.
In this case, T is a star graph. Let c denote the vertex that serves as the center of the
star. For any pair x1, x2 ∈ V of vertices, we denote by x′1 the good node that is closest
to x1 in H, and we define x′2 similarly for x2. Notice that, from the definition of good
vertices, either x′1 = c, or it is connected to c by an edge of R, and the same holds for
x′2. Therefore, distH′(x′1, x′2) ≤ 2 must hold. If the event B does not happen, then, since
H is a subgraph of H ′, distH′(x1, x2) ≤ distH′(x1, x

′
1) + distH′(x′1, x′2) + distH′(x2, x

′
2) ≤

distH(x1, x
′
1)+distH′(x′1, x′2)+distH(x2, x

′
2) ≤ 2M+2 ≤ 101 lnn

p . Therefore, with probability
at least 1− n−48, distH′(x1, x2) ≤ 101 lnn

p .
Assume now that Theorem 9 holds for every connected graph H and every tree T of

depth at most D − 1, with V (T ) = V (H). Consider now some connected graph H, and a
rooted tree T of depth D, with V (T ) = V (H). We partition the edges of E(T ) into two
subsets: set E1 contains all edges incident to the vertices of VD, and set E2 contains all
remaining edges. Let E′1 = E1 ∩R, and let E′2 = E2 ∩R. Notice that the definition of good
vertices only depends on the edges of E′1, and so the event B only depends on the random
choices made in selecting the edges of E′1, and is independent from the random choices made
in selecting the edges of E′2.

Let L be a subgraph of H ′, obtained by starting with L = H, and then adding all edges
of E′1 to the graph. Finally, we define a new graph Ĥ, whose vertex set is V≤D−1, and there
is an edge between a pair of nodes w,w′ in Ĥ iff the distance between w and w′ in L is at
most M + 2. We also let T̂ be the tree obtained from T , by discarding from it all vertices of
VD and all edges incident to vertices of VD. Observe that V (Ĥ) = V (T̂ ) = V≤D−1. The idea
is to use the induction hypothesis on the graph Ĥ, together with the tree T̂ . In order to do
so, we need to prove that Ĥ is a connected graph, which we do next.

I Observation 11. If the event B does not happen, then graph Ĥ is connected.

Proof. Assume that the event B does not happen, and assume for contradiction that graph
Ĥ is not connected. Let C = {C1, . . . , Cr} be the set of all connected components of graph
Ĥ. For every pair Ci, Cj of distinct components of C, consider the set Pi,j = {Px,x′ | x ∈
V (Ci), x′ ∈ V (Cj)} of paths (recall that Px,x′ is the shortest path connecting x to x′ in H
with σ(Px,x′) lexicographically smallest among all such paths). We let Pi,j be a shortest path
in Pi,j . Choose two distinct components Ci, Cj ∈ C, whose path Pi,j has the shortest length,
breaking ties arbitrarily. Assume that Pi,j connects a vertex v ∈ Ci to a vertex u ∈ Cj , so
Pi,j = Pv,u. Recall that H ⊆ L, and so the path Pi,j is contained in graph L. Since we did
not add edge (u, v) to Ĥ, the length of Pi,j is greater than M + 2. Since we have assumed
that event B does not happen, there is at least one good inner vertex on path Pi,j . Let X
be the set of all good vertices that serve as inner vertices of Pi,j .

We first show that for each x ∈ X, x 6∈ V (Ĥ) must hold. Indeed, assume for contradiction
that x ∈ V (Ĥ), so x belongs to some connected component of V (Ĥ). Assume first that
x ∈ V (Ci). Recall that the sub-path of Pi,j from x to u is precisely Px,u, so this path lies in
Pi,j . But its length is less than the length of Pi,j , contradicting the choice of Pi,j . Otherwise,
x belongs to some connected component C` of C with ` 6= i. The sub-path of Pi,j from v to
x is precisely Pv,x, so this path must lie in Pi,`. Since its length is less than the length of
Pi,j , this contradicts the choice of the components Ci, Cj . We conclude that x 6∈ V (Ĥ).

Since V (Ĥ) contains all vertices of V≤D−1, and every vertex in X is a good vertex, it must
be the case that X ⊆ VD. Consider again some vertex x ∈ X. Since x is a good vertex and
x ∈ VD, there must be an edge ex = (x, x′) ∈ E′1, connecting x to some vertex x′ ∈ V≤D−1.
In particular, x′ must belong to some connected component of C, and the edge ex lies in
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graph L. Assume that X = {x1, x2, . . . , xq}, where the vertices are indexed in the order
of their appearance on Pi,j , from v to u. Consider the sequence σ̃ = (v, x′1, x′2, . . . , x′q, u)
of vertices. All these vertices belong to V (Ĥ), and v ∈ Ci, while u ∈ Cj . For convenience,
denote v = x′0 = x0 and u = x′q+1 = xq+1. Then there must be an index 1 ≤ a ≤ q, such
that x′a and x′a+1 belong to distinct connected components of C. Note that the sub-path of
Pi,j between xa and xa+1 is precisely Pxa,xa+1 – the shortest path connecting xa to xa+1 in
H. Since no good vertices lie between xa and xa+1 on this path, and since we have assumed
that event B does not happen, the length of this path is at most M . Therefore, there is a
path in graph L, connecting x′a to x′a+1, whose length is at most M + 2. This path connects
a pair of vertices that belong to different connected components of Ĥ, contradicting the
construction of Ĥ. J

Consider now the tree T̂ and the graph Ĥ. Recall that T̂ is a rooted tree of depth D− 1,
V (T̂ ) = V (Ĥ), |V (Ĥ)| ≤ |V (H)| ≤ n, and, assuming the event B did not happen, Ĥ is a
connected graph. Moreover, set E′2 of edges is a subset of E(T̂ ) = E2, obtained by adding
every edge of E(T̂ ) to E′2 with probability p, independently from other edges. Therefore,
assuming that event B did not happen, we can use the induction hypothesis on the graph
Ĥ, the tree T̂ , and the set E′2 of edges as R. Let B′ be the bad event that the diameter of
Ĥ ∪ E′2 is greater than ( 101 lnn

p )D−1. Note that the event B′ only depends on the random
choices made in selecting the edges of E′2. From the induction hypothesis, the probability
that B′ happens is at most D−1

n48 .
Lastly, we show that, if neither of the events B,B′ happens, then diam(H ′) ≤ ( 101 lnn

p )D.

I Observation 12. If neither of the events B,B′ happens, then diam(H ′) ≤ ( 101 lnn
p )D.

Proof. Consider any pair x1, x2 ∈ V of vertices. It is sufficient to show that, if events B,B′
do not happen, then distH′(x1, x2) ≤ ( 101 lnn

p )D.
Let x′1 be a good node in V (H) that is closest to x1, and define x′2 similarly for x2.

From Observation 10, distH(x1, x
′
1) ≤M . If x′1 ∈ V≤D−1, then we define x′′1 = x′1, otherwise

we let x′′1 be the node of VD−1 that is connected to x′1 by an edge of E′1, and we define
x′′2 similarly for x2. Therefore, x′′1 , x′′2 ∈ V≤D−1 = V (Ĥ), and, assuming event B does not
happen, distH′(x1, x

′′
1) ≤M + 1, and distH′(x2, x

′′
2) ≤M + 1. Since we have assumed that

the bad event B′ does not happen, distĤ∪E′
2
(x′′1 , x′′2) ≤ ( 101 lnn

p )D−1. Recall that for every
edge e = (u, v) ∈ Ĥ ∪ E′2, if e ∈ E′2 then e ∈ E(H ′); otherwise, e ∈ E(Ĥ), and there
is a path in graph H ∪ E′1 of length at most M + 2 connecting u to v in H. Therefore,
distH′(x′′1 , x′′2) ≤ (M + 2) · distĤ(x′′1 , x′′2) ≤ ( 101 lnn

p )D−1 · (M + 2).
Altogether, since M = (50 lnn)/p,

distH′(x1, x2) ≤ distH′(x1, x
′′
1) + distH′(x′′1 , x′′2) + distH′(x2, x

′′
2)

≤
(

101 lnn
p

)D−1
· (M + 2) + (2M + 2)

≤
(

101 lnn
p

)D
. J

The probability that either B or B′ happen is bounded by D
n48 . Therefore, with probability

at least 1− D
n48 , neither of the events happens, and diam(H ′) ≤ ( 101 lnn

p )D. J
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3 Low-Diameter Packing of Edge-Disjoint Trees: Proof of Theorem 2

The main tool in the proof of Theorem 2 is the following theorem.

I Theorem 13. Let k,D, n be any positive integers with k > 1000 lnn, let 707 lnn
k ≤ p ≤ 1

be a real number, and let G be an n-vertex k-edge-connected graph of diameter D. Let G′
be a sub-graph of G with V (G′) = V (G), where every edge e ∈ E(G) is added to G′ with
probability p independently from other edges. Then, with probability at least 1− 1/poly(n),
G′ is a connected graph, and its diameter is bounded by kD(D+1)/2.

Karger [14] has shown that, if G is a k-connected graph, and G′ is obtained by sub-
sampling the edges of G with probability Ω(logn/k), then G′ is a connected graph with
high probability. Theorem 13 further shows that the diameter of G′ is with high probability
bounded by kD(D+1)/2, where D is the diameter of G.

Theorem 2 easily follows from Theorem 13: Let r = bk/(707 lnn)c. We partition E(G)
into subsets E1, . . . , Er by choosing, for each edge e ∈ E(G), an index i independently and
uniformly at random from {1, 2, . . . , r} and then adding e to Ei. For each 1 ≤ i ≤ r, we
define a graph Gi by setting V (Gi) = V (G) and E(Gi) = Ei. Finally, for each graph Gi, we
compute an arbitrary BFS tree Ti, and return the resulting collection T = {T1, . . . , Tr} of
trees. It is immediate to verify that the graphs G1, . . . , Gr are edge-disjoint, and so are the
trees of T . Moreover, applying Theorem 13 to each graph Gi with p = 1/r, we get that with
probability 1− 1/poly(n), diam(Ti) ≤ 2 diam(Gi) ≤ O(kD(D+1)/2). Using the union bound
over all 1 ≤ i ≤ r completes the proof of Theorem 2. It now remains to prove Theorem 13.
We provide a proof sketch here; a formal proof appears in the full version of the paper.

Proof Sketch of Theorem 13: We use the well known result of Karger [14], that shows
that the probability that the graph G′ is not connected is at most O(1/poly(n)). It remains
to bound the diameter of G′. Throughout the proof, for a graph H, we denote by D(H, p)
be the distribution of graphs, where the vertex set of the resulting graph is V (H), and each
edge of H is included in the graph with probability p independently from other edges.

Denote G = (V,E), and let T be a BFS tree of G, rooted at an arbitrary node r of G.
Since G has diameter at most D, the depth of T is at most D. Recall that G′ ∼ D(G, p).
We define a different (but equivalent) sampling algorithm for generating a random graph
G′ from D(G, p) as follows. The algorithm consists of D + 1 phases. In the 0th phase, we
sample all edges in E \ E(T ) independently with probability p each. For each 1 ≤ i ≤ D,
in the ith phase, we sample all edges that connect a vertex at distance (D − i+ 1) from r

to a vertex at distance (D − i) from r in T . Let E′ be the set of all sampled edges at the
end of this algorithm. We denote by G′ = (V,E′) the final graph that we obtain. Clearly,
G′ is generated from the distribution D(G, p). We denote by T ′ the subgraph of T with
V (T ′) = V (T ) and E(T ′) = E(T ) ∩ E′. Clearly, T ′ ∼ D(T, p).

Consider a pair u, u′ ∈ V of distinct vertices. We say that they are joined at phase i for
0 ≤ i ≤ D, if u and u′ belong to the same connected component of the graph induced by all
edges sampled in the first i phases, but they lie in different connected components of the
graph induced by all edges sampled in the first (i− 1) phases. Note that, if G′ is connected,
then every pair (u, u′) of distinct vertices of V are joined at phase i for some 0 ≤ i ≤ D. The
following lemma allows us to bound the diameter of G′.

I Lemma 14. For each 0 ≤ i ≤ D, with probability 1−O(1/poly(n)), for every pair x, y of ver-
tices that are joined at phase i, x and y are at distance at most 7i(101 lnn/p)D+(D−1)+···+(D−i)

in G′.
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Observe that, by applying the union bound over all 0 ≤ i ≤ D, Lemma 14 implies Theorem 13,
since k ≥ 707 lnn/p. We defer the proof of Lemma 14 to the full version of the paper, and
only provide its proof sketch here. Assume for simplicity that the edges in E \ E(T ) only
connect vertices that are at distance D from r in T (this also turns out to be the hardest
case). The proof is by induction on i. In the base case where i = 0, let C be a connected
component of the graph induced by all edges sampled in phase 0. Intuitively, we can view
the algorithm as using a random subgraph of T to “fix” the diameter of C, like in Theorem 9.
Therefore, with high probability, for every pair x, y of vertices of C, the distance from x

to y in C ∪ T ′ is at most (101 lnn/p)D. Similarly, let C ′ be a connected component of the
the subgraph of G induced by all edges sampled in phases 0, 1, . . . , i; we call C ′ a phase-i
cluster. We view C ′ as consisting of a number of phase-(i− 1) clusters C ′′1 , . . . , C ′′k , connected
to each other by edges that were sampled in the ith phase. Therefore, if Ĉ ′ is a graph
obtained from C ′ by contracting each cluster C ′′1 , . . . , C ′′k into a single vertex, then Ĉ ′ is a
connected graph. Denote by Ti the subtree of T induced by all nodes that are at distance at
most (D − i) from r in T , and denote T ′i = T ′ ∩ Ti. Clearly T ′i ∼ D(Ti, p). We can again
view our algorithm as using a random subgraph T ′i of Ti to “fix” the diameter of Ĉ ′, like in
Theorem 9. Therefore, with high probability, for every pair x, y of vertices of Ĉ ′, the distance
from x to y in Ĉ ′ ∪ T ′i is at most (101 lnn/p)D−i. Note however that every vertex of Ĉ ′ is
in fact a contracted level-(i− 1) cluster. Moreover, from the induction hypothesis, if C ′′ is
a level-(i− 1) cluster, and x′, y′ is a pair of vertices in C ′′, then with high probability, the
distance from x′ to y′ in C ′′∪T ′ is at most 7i−1 · (101 lnn/p)D+(D−1)+···+(D−i+1). Therefore,
with high probability, the distance between a pair u, v ∈ V (C ′) of vertices in C ′ ∪ T ′ is at
most 7i · (101 lnn/p)D+(D−1)+···+(D−i).

4 Lower Bound: Proof of Theorem 3

In this section we provide the proof of Theorem 3. We start by proving the following slightly
weaker theorem; we then extend it to obtain the proof of Theorem 3.

I Theorem 15. For all positive integers k,D, η, α such that k/(4Dαη) is an integer, there

exists a k-edge connected graph G with |V (G)| = O

((
k

2Dαη

)D)
and diameter at most 2D,

such that, for any collection T = {T1, . . . , Tk/α} of k/α spanning trees of G that causes

edge-congestion at most η, some tree Ti ∈ T has diameter at least 1
4 ·
(

k
2Dαη

)D
.

Notice that the main difference from Theorem 3 is that the graph G is no longer required
to be simple; the number of vertices of V (G) is no longer fixed to be a prescribed value; and
the diameter of G is 2D instead of 2D + 2.

Proof. For a pair of integers w > 1, D ≥ 1, we let Tw,D be a tree of depth D, such that every
vertex lying at levels 0, . . . , D − 1 of Tw,D has exactly w children. In other words, Tw,D is
the full w-ary tree of depth D. We denote Nw,D = |V (Tw,D)| = 1 + w + w2 + · · ·+ wD ≤
wD+1/(w − 1). We assume that for every inner vertex v ∈ V (Tw,D), we have fixed an
arbitrary ordering of the children of v, denoted by a1(v), . . . , aw(v).

A traversal of a tree T is an ordering of the vertices of T . A post-order traversal on a
tree T , π(T ), is defined as follows. If the tree consists of a single node v, then π(T ) = (v).
Otherwise, let r be the root of the tree and consider the sequence (a1(r), . . . , aw(r)) of its
children. For each 1 ≤ i ≤ w, let Ti be the sub-tree of T rooted at the vertex ai(r). We
then let π(T ) be the concatenation of π(T1), π(T2), . . . , π(Tw), with the vertex r appearing
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at the end of the sequence; see Figure 1 for an illustration. For simplicity, we assume
that V (Tw,D) = {v1, v2, . . . , vNw,D

}, where the vertices are indexed in the order of their
appearance in π(Tw,D), so the traversal visits these vertices in this order.

Next, we define a graph Gw,D, as follows. The vertex set of Gw,D is the same as the
vertex set of Tw,D, namely V (Gw,D) = V (Tw,D). The edge set of Gw,D consists of two
subsets: E1 = E(Tw,D), and another set E2 of edges that contains, for each 1 ≤ i < Nw,D, k
parallel copies of the edge (vi, vi+1). We then set E(Gw,D) = E1 ∪E2. For convenience, we
call the edges of E1 blue edges, and the edges of E2 red edges; see Figures 1 and 2.

Figure 1 Tree T4,2 with vertices indexed
according to post-order traversal.

Figure 2 The edge set E2 in G4,2 (only a
single copy of each edge is shown).

It is easy to verify that graph Gw,D must be k-edge connected, since for any partition of
V (Gw,D), there is some index 1 ≤ i < Nw,D with vi, vi+1 separated by the partition, and so
k parallel edges connecting vi to vi+1 must cross the partition.

We now fix an integer w = k/(2Dαη) (note that w ≥ 2), and we let T = Tw,D be the
corresponding tree and G = Gw,D the corresponding graph. For convenience, we denote

Nw,D by N . Recall that N ≤ wD+1/(w − 1) = O

((
k

2Dαη

)D)
. As observed before, G is

k-edge connected. Since the depth of T is D, and T ⊆ G, it is easy to see that the diameter
of G is at most 2D.

We now consider any collection T = {T1, . . . , Tk/α} of k/α spanning trees of G that
causes edge-congestion at most η. Our goal is to show that some tree Ti ∈ T has diameter
at least 1

4 ·
(

k
2Dαη

)D
.

For convenience, we denote V (G) = V (T ) = V . We say that a vertex x ∈ V is an ancestor
of a vertex y ∈ V if x is an ancestor of y in the tree T , that is, x 6= y, and x lies on the
unique path connecting y to the root of T .

Let L ⊆ V be the set of vertices that serve as leaves of the tree T . We denote by u = v1
a vertex of L that has the lowest index, and by u′ the vertex of L with the largest index.
It is easy to see that u′ = vN−D, as every vertex whose index is greater than that of u′ is
an ancestor of u′. For each 1 ≤ j ≤ k/α, we denote by Pj the unique path that connects u
to u′ in tree Tj . Let P = {Pj | 1 ≤ j ≤ k/α}. It is enough to show that at least one of the

paths Pj has length at least 1
4 ·
(

k
2Dαη

)D
. In order to do so, we show that

∑k/α
j=1 |E(Pj)| is

sufficiently large. At a high level, we consider the red edges (vi, vi+1) (the edges of E2), and
show that many of the paths in P must contain copies of each such edge. This in turn will
imply that

∑
Pj∈P |E(Pj)| is large, and that some path in P is long enough.

For each vertex vi ∈ L such that vi 6= u′, we let Si = {v1, . . . , vi}, and we let Si =
{vi+1, . . . , vN}. Notice that, since u ∈ Si and u′ ∈ Si, every path in P must contain an edge
of EG(Si, Si). Note that the only red edges in EG(Si, Si) are the k parallel copies of the
edge (vi, vi+1). In the next observation, we show that the number of blue edges in EG(Si, Si)
is bounded by Dw.
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I Observation 16. For each vertex vi ∈ L such that vi 6= u′, for every blue edge e ∈
EG(Si, Si), at least one endpoint of e must be an ancestor of vi.

Proof. We consider a natural layout of the tree T , where for every inner vertex x of the tree,
its children a1(x), . . . , aw(x) are drawn in this left-to-right order (see Figure 3). Consider the
path Q connecting the root of T to vi, so every vertex on Q (except for vi) is an ancestor of
vi. All vertices lying to the left of Q in the layout are visited before vi by π(T ). All vertices
lying to the right of Q, and on Q itself (excluding vi) are visited after vi. It is easy to see
that the vertices of Q separate the two sets in T , and so the only blue edges connecting Si
to Si are edges incident to the vertices of V (Q) \ {vi}. J

Figure 3 A layout of the tree T . Vertex vi is shown in green and path Q in red. All vertices
lying to the left of Q in this layout appear before vi in π(T ), and all vertices lying to the right of Q
or on Q (except for vi) appear after vi in π(T ).

Since every vertex of the tree T has at most w children, and since the depth of the tree is
D, we obtain the following corollary of Observation 16.

I Corollary 17. For each vertex vi ∈ L such that vi 6= u′, at most Dw blue edges lie in
EG(Si, Si).

Since the trees in T cause edge-congestion η, at most Dwη trees of T may contain blue
edges in EG(Si, Si). Each of the remaining k

α − Dwη ≥
k

2α trees contains a copy of the
red edge (ei, ei+1) (recall that w = k/(2Dαη).) Therefore,

∑
Pj∈P |E(Pj)| ≥ |L| · k2α ≥

Nk
4α ,

since |L| ≥ |N |/2. We conclude that at least one path Pj ∈ P must have length at least
Nk
4α /

k
α ≥

N
4 , and so the diameter of Tj is at least N

4 . Since N ≥ wD ≥
(

k
2Dαη

)D
, the

diameter of Tj is at least 1
4 ·
(

k
2Dαη

)D
. J

We are now ready to complete the proof of Theorem 3. First, we show that we can turn
the graph G into a simple graph, and ensure that |V (G)| = n, if n ≥ 3k ·

(
k

2Dαη

)D
. Let

G′w,D be the graph obtained from Gw,D as follows. For each 1 ≤ i ≤ N , we replace the vertex
vi with a set Xi = {x1

i , x
2
i . . . , x

k
i } of k vertices that form a clique. For each 1 ≤ i < N , the

k red edges connecting vi to vi+1 are replaced by the perfect matching {(xti, xti+1)}1≤t≤k
between vertices of Xi and vertices of Xi+1. Each blue edge (vi, vj) is replaced by a new

edge (x1
i , x

1
j ). Since n ≥ 3k ·

(
k

2Dαη

)D
> k|V (G)|+ k, we add n− k|V (G)| > k new vertices

that form a clique, and for each newly-added vertex, we add an edge connecting it to x1
N

(recall that the vertex vN is the root of T ). We denote G′ = G′w,D for simplicity. It is not
hard to see that G′ has n vertices and it is k-edge connected. Moreover, G′ has diameter

ICALP 2020



33:14 On Packing Low-Diameter Spanning Trees

at most 2D + 2, since its subgraph induced by vertices of {x1
i }1≤i≤N has diameter 2D, and

every other vertex of G′ is a neighbor of one of the vertices in {x1
i }1≤i≤N . The tree T ′ is

defined exactly as before, except that every original vertex vj is now replaced with its copy
x1
j . Let L denote the set of all leaf vertices in T ′.
Assume that we are given a collection T = {T1, . . . , Tk/α} of k/α spanning trees of G′

that causes edge-congestion at most η. For each 1 ≤ i ≤ k/α, we denote by Qi the unique
path that connects x1

1 to x1
N−D in Ti and denote Q = {Qi | 1 ≤ i ≤ k/α}. For each every leaf

vertex x1
j ∈ L, we define a cut (Wj ,W j) as follows: Wj =

⋃
1≤s≤j Xs and Wj = V (G′) \Wj .

Using reasoning similar to that in Corollary 17, it is easy to see that for every leaf vertex
x1
j ∈ L, the set EG′(Wj ,Wj) of edges contains at most Dw blue edges – the edges of the

tree T ′. Since the trees in T cause edge-congestion at most η, at most Dwη trees of T may
contain blue edges in EG′(Wj ,Wj). Therefore, for each of the remaining k

α − Dwη ≥
k

2α
trees Ti, path Qi must contain a red edge from {(xtj , xtj+1)}1≤t≤k. Therefore, the sum of
lengths of all paths of Q is at least Nk

4α , and so at least one path Qi ∈ Q must have length at

least N
4 . We conclude that some tree Ti ∈ T has diameter at least 1

4 ·
(

k
2Dαη

)D
.

Lastly, we extend our results to edge-independent trees. We use the same simple graph
G′ and the same tree T ′ as before, setting the congestion parameter η = 2. Assume that
we are given a collection T ′ = {T ′1, . . . , T ′k/α} of k/α edge-independent spanning trees of
G′ and let x ∈ V (G′) be their common root vertex. For each 1 ≤ i ≤ k/α, we denote
by Q′i the unique path that connects vertex x1

1 to vertex x1
N−D in tree T ′i , and we denote

Q′ = {Q′i | 1 ≤ i ≤ k/α}. Note that, for each 1 ≤ i ≤ k/α, the path Q′i is a sub-path of
the path obtained by concatenating the path Q′′i , connecting x1

1 to x in T ′i , with the path
Q′′′i , connecting x1

N−D to x in T ′i . Since the trees in T ′ are edge-independent, the paths in
{Q′′i }1≤i≤k/α are edge-disjoint and so are the paths in {Q′′′i }1≤i≤k/α. Therefore, the paths
of Q′ cause edge-congestion at most 2. The remainder of the proof is the same as before and
is omitted here.

5 Tree Packing for (k, D)-Connected Graphs: Proof of Theorem 4

In this section we provide a proof sketch of Theorem 4. The full proof is deferred to the
full version of the paper. The main tool that we use is the following theorem, whose proof
appears in the full version of the paper.

I Theorem 18. There is an efficient algorithm, that, given a (k,D)-connected graph G and
a subset S ⊆ V (G) of its vertices, computes a bi-partition (S′, S′′) of S, and a flow f from
vertices of S′′ to vertices of S′, such that the following hold:
1. every vertex of S′′ sends at least k/2 flow units;
2. every flow-path has length at most 2D;
3. the total amount of flow through any edge is at most 3; and
4. |S′| ≤ |S|2 + 1.

Our algorithm consists of two phases. In the first phase, we define a partition of the
vertices of G into layers L1, . . . , Lh, where h = O(logn). Additionally, for each 1 ≤ i ≤ h,
we define a flow fi in graph G between vertices of Li and vertices of L1 ∪ · · · ∪ Li−1. In
the second phase, we use the layers and the flows in order to construct the desired set of
spanning trees.

Phase 1: Partitioning into layers. We use a parameter h = Θ(logn), whose exact value
will be set later. We now define the layers Lh, . . . , L1 in this order, and the corresponding
flows fh, . . . , f1. In order to define the layer Lh, we let S = V (G), and we apply Theorem



J. Chuzhoy, M. Parter, and Z. Tan 33:15

18 to the graph G and the set S of its vertices, to obtain a partition (S′, S′′) of S, with
|S′| ≤ |S|/2 + 1, and the flow f between the vertices of S′′ and the vertices of S′, where
every vertex of S′′ sends at least k/2 units of flow, each flow-path has length at most 2D,
and the edge-congestion caused by f is at most 3. We then set Lh = S′′ and fh = f , and
continue to the next iteration.

Assume now that we have constructed layers Lh, . . . , Li. We now show how to construct
layer Li−1. Let S = V (G) \ (Lh ∪ · · · ∪ Li). We apply Theorem 18 to the graph G and
the set S of its vertices, to obtain a partition (S′, S′′) of S, with |S′| ≤ |S|/2 + 1, and the
corresponding flow f . We then set Li−1 = S′′, fi−1 = f , and continue to the next iteration.
If we reach an iteration where |S| ≤ 2, we arbitrarily designate one of the two vertices as s
and the other as s′, and compute a flow of value at least k between the two vertices, such
that the edge-congestion of the flow is at most 2, and every flow-path has length at most 2D.
We add vertex s′ to the current layer, and we add vertex s to the final layer L1. If we reach
an iteration where |S| = 1, then we add the vertex of S to the final layer L1 and terminate
the algorithm. The number h of layers is chosen to be exactly the number of iterations in
this algorithm. Notice that h ≤ 2 logn must hold. Also observe that, for all 1 < i ≤ h, flow
fi originates at vertices of Li, terminates at vertices of L1 ∪ · · · ∪ Li−1, uses flow-paths of
length at most 2D, and causes edge-congestion at most 3.

Phase 2: Constructing the trees. In order to construct the spanning trees T1, . . . , Tk, we
start by letting each tree contain all vertices of G and no edges. We then process every vertex
v ∈ V (G) one-by-one. Assume that v ∈ Li, for some 1 ≤ i ≤ h. Consider the following
experiment. Let Q(v) be the set of all flow-paths that carry non-zero flow in fi, and connect
v to vertices of L1 ∪ · · · ∪ Li−1. Let F (v) be the total amount of flow that fi sends on all
paths P ∈ Q(v); recall that F (v) ≥ k/2 must hold. We choose a path P ∈ Q(v) at random,
where the probability to choose a path P is precisely fi(P )/F (v). We repeat this experiment
k times, obtaining paths P1(v), . . . , Pk(v). For each 1 ≤ j ≤ k, we add all edges of Pj(v) to
Tj . Consider the graphs T1, . . . , Tk at the end of this process. Notice that each such graph
Tj may not be a tree. We fist show that the diameter of each such tree is O(D logn).

B Claim 19. For all 1 ≤ j ≤ k, diam(Tj) ≤ O(D logn).

Proof. Fix an index 1 ≤ j ≤ k. Let r be the unique vertex lying in L1. We prove that for
all 1 ≤ i ≤ h, for every vertex v ∈ Li, there is a path connecting v to r in Tj , of length at
most 2D(i− 1), by induction on i. The base of the induction is when i = 1 and the claim
is trivially true. Assume now that the claim holds for layers L1, . . . , Li−1. Let v be any
vertex at layer Li. Consider the path Pj(v) that we have selected. Recall that this path has
length at most 2D, and it connect v to some vertex u ∈ L1 ∪ · · · ∪ Li−1. By the induction
hypothesis, there is a path P in Tj of length at most 2D(i− 2), that connects u to r. Since
all edges of Pj(v) are added to Tj , the path Pj(v) is contained in Tj . By concatenating path
Pj(v) with path P , we obtain a path connecting v to r, of length at most 2D(i− 1). C

Lastly, using standard analysis of the Randomized Rounding technique, we show that,
with probability at least (1 − 1/poly(n)), every edge of G lies in at most O(logn) graphs
T1, . . . , Tk. For each 1 ≤ j ≤ k, we can now let T ′j be a BFS tree of the graph Tj , rooted
at the vertex r. We conclude that each tree T ′j has diameter at most O(D logn), and the
resulting set {T ′1, . . . , T ′k} of trees cause edge-congestion O(logn) with high probability.
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6 Overview of the Applications to Distributed Computation

Our improved distributed algorithms in highly-connected graphs are based on the following
basic tool, which follows by combining Karger’s edge sampling and the diameter-fixing
Theorem 9.

B Claim 20 (Basic Distributed Tool). There is a randomized algorithm that, given a k-edge
connected n-vertex graphG and a congestion bound η ∈ [1, k], computes, in Õ((101k lnn/η)D)
rounds, a collection of k spanning trees that cause total edge-congestion at most O(η · logn),
and have diameter at most O((101k lnn/η)D) each. Moreover, the algorithm can compute k
spanning subgraphs with similar congestion and diameter bounds in O(D + η logn) rounds.
The round complexity, the diameter, and the congestion bounds hold with high probability.

Approximation of Minimum-Cut. Ghaffari and Kuhn [10, 7] gave a very simple approach
for finding an O(logn)-approximation for the minimum cut problem that is based on Karger’s
edge sampling technique. The round complexity of their algorithm is O(

√
n) for constant

diameter graphs. Combining Theorem 13 with Ghaffari and Kuhn’s algorithm immediately
leads to an Õ(λ) algorithm for graphs with constant diameter, where λ is the size of the
minimum-cut.

To provide a more general approach for improved algorithms in highly-connected graphs,
we next describe the notion of low-congestion shortcuts.

Low-Congestion Shortcuts. This notion, introduced by Ghaffari and Haeupler [9], provides
a modular framework for solving global graph problems in the distributed setting.

I Definition 21 (Low-Congestion Shortcuts, [9]). Given a graph G = (V,E), and a partition
S1, . . . , SN of V into disjoint subsets, such that for all 1 ≤ i ≤ N , graph G[Si] is connected,
an (α, β)-shortcut is a collection {H1, . . . ,HN} of subgraphs of G, that satisfy the following:
(1) for each edge e ∈ E, there are at most α subgraphs G[Si] ∪Hi containing e; and
(2) the diameter of each subgraph G[Si] ∪Hi is at most β.
Ghaffari and Haeupler [9] showed that the quality of algorithms for several basic problems
depend on the sum of α (i.e., congestion) and β (i.e., the dilation). The quantity of α+ β

is usually referred to as the quality of the shortcuts. As observed by [9] for every n-vertex
graph G and any collection of vertex-disjoint subsets S1, . . . , SN , there exist (α, β) shortcuts
for with α+ β = O(D +

√
n). Our key result is in providing a nearly optimal construction

for low-congestion shortcuts in highly connected graphs of constant diameter.

I Theorem 22. [Improved Shortcuts in Highly Connected Graphs] There is a randomized
algorithm that, for a sufficiently large n, given any k-connected n-vertex graph G of diameter
D = O(logn/ log logn), together with a partition {S1, . . . , SN} of V (G), such that for all
1 ≤ i ≤ N , G[Vi] is a connected graph, w.h.p. computes (α, β) shortcuts, with

α+ β = Õ(min{
√
n/k + nD/(2D+1)}, n/k),

in Õ(α+ β) rounds.

The construction of the shortcuts from Theorem 22 serves the basis for the proof of
Theorem 6. In the full version of the paper we describe further algorithmic applications of
our results for additional graph problems. The proof of Theorem 7 is based on a careful
implementation of Claim 20.
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7 Open Problems

For brevity, let us say that a collection T of spanning trees of a (k,D)-connected graph
G is an (α,D′)-packing iff |T | ≥ k/α and the diameter of every tree in T is at most D′.
A major remaining open question is: for which values of α and D′ can we guarantee the
existence of an (α,D′)-packing T of edge-disjoint spanning tree in every (k,D)-connected
graph. In particular, is the following statement true: every (k,D)-connected graph G contains
a collection of Ω(k/poly logn) edge-disjoint trees of diameter O(D · poly logn) each. The
only upper bounds that we have are the ones guaranteed by Theorem 2, and we do not have
any lower bounds. We also do not have any upper bounds, except for those guaranteed
by Theorem 1, if we allow a constant, or more generally any sub-logarithmic congestion.
Additionally, obtaining an analogue of the algorithm from Theorem 4 in the distributed
setting remains a very interesting open question.

Finally, most of our results are mainly meaningful for the setting where k = Ω(logn). It
will be very interesting to consider the case of small connectivity k = O(1). One can show
that any k-edge connected graph with k = O(1) of diameter D is a (k, poly(D))-connected
graph. Is it possible to show that any k-edge-connected graph of diameter D, for some
constant k ≥ 3, has at least two edge-disjoint trees of depth at most poly(D)?
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Abstract
In this paper, we consider the problem of assigning 2-dimensional vector jobs to identical machines
online so to minimize the maximum load on any dimension of any machine. For arbitrary number of
dimensions d, this problem is known as vector scheduling, and recent research has established the
optimal competitive ratio as O

( log d
log log d

)
(Im et al. FOCS 2015, Azar et al. SODA 2018). But, these

results do not shed light on the situation for small number of dimensions, particularly for d = 2
which is of practical interest. In this case, a trivial analysis shows that the classic list scheduling
greedy algorithm has a competitive ratio of 3. We show the following improvements over this baseline
in this paper:

We give an improved, and tight, analysis of the list scheduling algorithm establishing a competitive
ratio of 8/3 for two dimensions.
If the value of opt is known, we improve the competitive ratio to 9/4 using a variant of the
classic best fit algorithm for two dimensions.
For any fixed number of dimensions, we design an algorithm that is provably the best possible
against a fractional optimum solution. This algorithm provides a proof of concept that we can
simulate the optimal algorithm online up to the integrality gap of the natural LP relaxation of
the problem.
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1 Introduction

In the online load balancing problem, the goal is to allocate n jobs appearing online on a
set of m identical machines so as to minimize the maximum load on any machine (called
makespan). This problem was introduced in the 1960s by Graham [26, 27], who gave the
list scheduling algorithm that assigns each arriving job to the machine with minimum
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load, and achieves a competitive ratio2 of 2.3 Since then, there has been a long line of
work that aims to improve this constant below 2, both when the optimal value opt is
unknown [10, 37, 1, 19, 18, 11, 25, 28, 2], and when opt is known [9, 40, 4, 38, 39, 21, 20, 12].
The current record is a competitive ratio of 1.916 due to Albers [2] for unknown opt, and
1.5 due to Bohm et al. [12] for known opt.

Recent research has further expanded the scope of this problem to vector jobs that have
multiple dimensions, the resulting problem being called vector scheduling [15, 7, 43, 29, 8, 30].
As earlier, the goal is to minimize the makespan of the assignment, which now represents
the maximum load across all machines and all dimensions. This problem arises in data
centers where jobs with multiple resource requirements have to be allocated to machine
clusters to make efficient use of limited resources such as CPU, memory, and network
bandwidth [24, 44, 41, 17, 31, 32].

It is now known that the right dependence of the competitive ratio for vector scheduling on
the number of dimensions d is Θ(log d/ log log d) [29]. While this gives a satisfactory answer
when the number of dimensions is large, in the practical context, the number of dimensions
is usually small since they represent distinct computational resources. In particular, the
majority of the systems scheduling literature (e.g., see [24] and follow-up papers) considers
only two resources, CPU and memory, since they often tend to be the most critical bottleneck
resources. Unfortunately, the existing bounds for vector scheduling do not shed any light on
this case since we are interested in optimizing the constant in the competitive ratio. In this
paper, we initiate the study of the online 2-dimensional scheduling problem, or 2DSched
in short.

1.1 Results and Techniques
Baseline. Graham’s list scheduling algorithm can be naturally extended to d > 1 dimensions
by assigning each job to the machine that minimizes the makespan after the assignment.
This algorithm has a competitive ratio of 3 for d = 2 (and d+ 1 for general d). To see this,
assume wlog the optimum makespan opt = 1 by scaling. Since the average load on each
dimension is at most opt, it follows that there is always some machine where the sum of
loads on its two dimensions is at most 2. Consequently, this machine has a load of at most 2
on each of its dimensions. Now, note that the load of any single job cannot exceed opt on
any dimension; hence, the maximum load on a machine after the greedy assignment of a job
cannot exceed 3.

Unfortunately, despite the aforementioned recent progress, no existing algorithms are
known to have a competitive ratio better than 3. Thus, our goal is to break the 3-competitive
ratio barrier for the problem. This requires a new approach since the existing analytical
methods are based on potential functions, concentrations, or volume bounds, and they all
seem to inevitably lose a considerable constant factor in the competitive ratio.

A Novel Analytical Technique: Characterizing Reachable States

Our new approach is to directly characterize the set of reachable states of the algorithm.
To illustrate our approach, let us take a close look at the above analysis of list scheduling.
For the analysis to be tight, a configuration (machine loads) must be created where half

2 The competitive ratio of an online minimization problem is the maximum ratio between the objective of
the algorithm and that of an (offline) optimal solution, see e.g., [13].

3 The competitive ratio is actually 2− 1/m for m machines, but we will ignore o(1) terms throughout
since we consider instances of arbitrary problem size in this paper.
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the machines have a load of (roughly, ignoring lower order terms) (2, 0) and the remaining
half have a load of (0, 2). If a job of load (1, 1) now arrives, then the maximum load will
increase to 3 no matter where the job is assigned. But, do we ever create such imbalance in
the configurations of the machines?

To rule out such states/configurations, we need to define the set of reachable states of
the algorithm. Our first contribution is to develop a general framework that allows us to
characterize the set of reachable states of not only the greedy algorithm, but of a much
larger class of algorithms that we call priority-based algorithms. Roughly speaking, these are
algorithms where the newly arriving job is assigned to minimize a “disutility function” that
maps the current load of the machines (i.e., the current state) and the load of the current job
to a real number. For such algorithms, our main observation is that if m machines come to
have load vectors c = (c1, c2, ..., cm) – meaning that this configuration is reachable – then any
pair (ci, cj) is a reachable state for the same algorithm on just two machines. Furthermore,
we identify a specific pair (ci, cj) that captures the essential characteristics of the algorithm
under consideration.

Using this framework, we show that the greedy makespan minimization algorithm that
we described above is 8/3-competitive – and our analysis is tight. We defer the lower bound
to the full version of the paper.

I Theorem 1 (Section 4). There exists a priority-based algorithm that is 8/3-competitive for
the 2DSched problem with unknown opt. Furthermore, this analysis is tight.

If we know the value of opt, then we obtain a better competitive ratio of 2.25 by using a
different algorithm that explicitly minimizes the difference of the loads on the two dimensions
without violating the preset threshold α · opt, where α = 2.25 is the desired competitive
ratio. Again, this analysis is tight, the proof of which we defer to the full version of the
paper. This “balance algorithm” can be thought of as a generalization of the popular best fit
strategy used in bin packing (see [33, 35] for one-dimensional bin packing).

I Theorem 2 (Section 5). There exists a priority-based algorithm that is 2.25-competitive
for the 2DSched problem with known opt. Furthermore, this analysis is tight.

Recall that the minimum makespan problem for d = 1 has been widely studied for both
the known and unknown opt scenarios, and our results obtain corresponding bounds for the
2DSched problem.

As further evidence of the generality of our analysis framework, we also analyze a natural
extension of the popular first fit rule used for bin packing problems. (The reader is referred to
[23, 6] for multi-dimensional first fit bin packing and [16] for a full survey on one-dimensional
first fit bin packing.) In this algorithm, given a target competitive ratio, the algorithm
assigns a new job to the first bin that does not violate the competitiveness guarantee. This
can be implemented as stated if opt is known, and has a tight competitive ratio of 2.5. (The
proof of the next theorem is deferred to the full version of the paper.)

I Theorem 3. The first fit algorithm is 2.5-competitive for the 2DSched problem with
known opt. Furthermore, this analysis is tight.

We also show that if the first fit algorithm is suitably augmented with a framework for
guessing the value of opt and adjusting this guess over time, then it has a competitive ratio
better than the naïve bound of 3 for unknown opt. (The proof of the next theorem is also
deferred to the full version of the paper.)

I Theorem 4. The first fit algorithm is 2.89-competitive for the 2DSched problem with
unknown opt.

ICALP 2020
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While we only showcase the power of our framework by giving tight analyses of the
algorithms described above, we believe that our framework has the potential to find more
applications. This is because it reduces characterizing the reachable states for an arbitrary
number of machines to those for only two machines, making the search space of the worst-case
assignment much more tractable from an analytical perspective. In fact, our framework is
easily extendable to arbitrary d, so that we only need to consider reachable states pretending
that there are only d machines. While we currently know how to analytically characterize
the reachable states only when d = 2, and therefore the results in this paper are only for this
case, it is plausible (and an interesting direction of future work) to further extend such a
characterization to higher dimensions analytically and/or numerically using the fact that
the number of available machines is small. In that case, our framework would be useful in
providing results for online vector scheduling in d > 2 dimensions, e.g., in cases of three or
four dimensions that are also of practical interest.

A Near-optimal Algorithm

We now switch our attention to a different type of algorithmic result. Note that the
competitive ratio of all the known algorithms for d ≥ 2 are based on their comparison against
the fractional optimum. That is, as long as the total load vector is m ·~1, and each job load
vector is at most ~1, an α-competitive algorithm produces a schedule where the load vector on
each machine is at most α ·~1. Note that when d = 1, the competitive ratio 2 is also obtained
against the fractional optimum and even the best competitive ratio 1.916 against the actual
optimum is not far from 2.

Our next result is to give an online algorithm whose competitive ratio nearly matches
the best one can hope for against the fractional optimum for any fixed d. Here our high-level
approach is as follows. We first use a variant of the algorithm in [29] to assign jobs to groups
of machines, ensuring that every group receives at most 1 + ε times its share of the load in
an optimal fractional solution. Then, we assign jobs to machines within each group. We
differentiate between “big” jobs and “small” jobs in this assignment. For the big jobs, we use
discretization to bound the number of job types, and then use an optimal decision tree to
make the actual assignments. Note that the optimal decision tree can be found offline for
every possible job arrival pattern since the total number of big jobs in a group is small, and
the one that matches the online sequence can be pressed into service in the online algorithm.
To assign small jobs using the decision tree, we batch and encapsulate small jobs of similar
load vectors into bin vectors. To enable this online, we pre-allocate some bin vectors. Thus,
we can effectively reduce the problem of assigning small jobs to the scalar bin packing using
pre-allocation and the decision tree.

I Theorem 5 (Section 6). For any d ≥ 1 and ε > 0, assuming that the value of the optimum
makespan4 is known a priori, there exists a deterministic online algorithm for the online
vector load balancing problem whose competitive ratio is (1 + ε)c∗d, where c∗d is the best
competitive ratio one can hope for against the fractional optimum. Furthermore, the running
time of the algorithm is polynomial in n for any fixed d, ε.5 (For a more formal statement of
this result, see Definition 23 and Theorem 24.)

Before closing this section, we note the contrast between the first set of results based on
the new analysis framework, and the last result that yields the nearly best competitive ratio
against the fractional optimum. While the near optimality of the last solution is attractive,

4 More accurately, the value of the fractional optimum makespan.
5 More precisely, the running time is polynomial in n and (d/ε)d(d/ε)O(d)

.
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the first set of algorithms are much more practical since the complexity of obtaining an
optimal decision tree is likely to be prohibitive for the last algorithm. Furthermore, the last
result does not give a numerical performance guarantee, unlike the first set of algorithms.
Indeed, these two sets of results complement each other, and cumulatively provide the first
insights into the 2DSched problem.

1.2 Related Work

The online load balancing problem for 1-dimensional jobs has had a long history. It was
introduced by Graham in the 1960s [26, 27], who gave the list scheduling algorithm with
a competitive ratio of 2. In the last three decades, there have been a series of results for
improving the competitive ratio below 2 and obtaining lower bounds on the competitive
ratio [10, 37, 1, 19, 18, 11, 25, 28, 2]. The best algorithm known is a 1.916-competitive
algorithm due to Albers [2]. These results address the situation where the online algorithm
does not know the value of opt. Azar and Regev [9] introduced the problem of online load
balancing when opt is known, and called this problem bin stretching. For bin stretching,
a series of results [40, 4, 38, 39, 21, 20, 12] have led to a 1.5-competitive algorithm due to
Böhm et al. [12].

Recent research has expanded the scope of this problem to vector jobs, the resulting prob-
lem being called vector scheduling. Matching upper and lower bounds of O(log d/ log log d)
have been derived for d dimensions [15, 7, 43, 29]. Note that since the competitive ratio is
super-constant, opt can be assumed to be known by a standard guess and double trick. All
these results are for an arbitrary number of machines and jobs. There is a large literature on
variations, generalizations, and special cases of these problems, such as optimizing norms
other than makespan, considering non-identical machines, focusing on a small constant
number of machines, handling only jobs of small size, etc. that we omit here for brevity. The
reader is referred to several excellent surveys on the topic, e.g., by Azar [5], Sgall [46, 47],
Pruhs, Sgall, and Torng [45], Albers [3], etc.

The online load balancing problem is also related to the online bin packing problem,
where the capacity of every machine is fixed and the goal is to minimize the number of
machines used. For a single dimension, this problem has been studied since the work of
Johnson in the 1970s; see, e.g., [34, 36] and surveys [22, 48]. For vector jobs, the problem was
introduced by Garey et al. [23] and has been extensively studied in the last few years [7, 6, 8].

We note that some results of a flavor similar to Theorem 5 are known for other scheduling
problems. Specifically, Lübbecke et al. [42] showed online algorithms of competitive ratios
arbitrarily close to the optimum for the objective of minimizing total weighted completion
time and its generalizations on unrelated machines. Various types of priority-based algorithms
have been extensively studied for various scheduling problems. See [14] for the relevant
pointers and follow-up works.

Roadmap

We present the general framework for analyzing priority based algorithms in Section 3 and use
it to analyze the greedy algorithm in Section 4 for unknown opt and the balance algorithm
in Section 5 for known opt. Finally, we present the near-optimal algorithm against the
fractional optimum in Section 6.
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2 Preliminaries

In this paper, we focus on the online 2-dimensional scheduling problem, or 2DSched in short.
In this problem, a set of n jobs V, indexed by j ∈ [n], and represented by 2-dimensional
non-negative vectors vj = (vj(1), vj(2)) arrive in an online sequence. On arrival, a job must
be assigned to one of a given set of m identical machines M , indexed by i ∈ [m]. The goal of
the algorithm is to minimize the makespan, which is defined as the maximum load on any
dimension of any machine. Formally, for any machine i, let V ji denote the set of vectors
assigned to this machine after the arrival of the j’th vector. Then, we say that machine i’s
configuration is given by cji =

∑
vj′∈V

j
i
vj′ , which is (we may omit the superscript j if it is

clear from the context):

(cji (1), cji (2)) =

 ∑
vj′∈V

j
i

vj′(1),
∑

vj′∈V
j

i

vj′(2)

 .

For any value k, we say ci ≤ ~k if ci(1) ≤ k and ci(2) ≤ k; otherwise, we say ci � ~k if at least
one of these inequalities are violated, i.e., if ci(1) > k or ci(2) > k. Analogously, we define
ci ≥ ~k if ci(1) ≥ k and ci(2) ≥ k; otherwise, we say ci � ~k.

Let us denote the optimal offline configuration by opt; overloading notation, let opt also
represent the makespan of this configuration. The online algorithm is said to be α-competitive
if cni ≤ ~a for all i ∈ [m], where a = α · opt. We show two sets of results, the first when the
value of opt is known and the second when opt is unknown to the algorithm. Note that if
opt is unknown, then its value is not used in the definition of the algorithm. Nevertheless,
for the sake of the analysis, we normalize and set opt = 1, which also implies that for all job
vectors vj ∈ V , we have vj(1), vj(2) ∈ [0, 1], and

∑
j∈[n] vj/m ≤ ~1. For convenience, we call

the first coordinate the left coordinate, and the second coordinate the right coordinate. We
call a job a left vector if its left coordinate is larger than or equal to its right coordinate, and
a right vector otherwise.

3 Priority-based Algorithms

In this section, we give a framework to analyze a large class of algorithms that prioritize
machines based on their current load. More specifically, such an algorithm computes a
certain disutility for each machine only using its current load and the arriving job’s load and
assigns it to a machine with the least disutility. Thus, this class of algorithms are completely
determined by the disutility function: u : (c, g) → [0,∞] where c ∈ [0,∞)2 represents a
machine’s current load vector, and g ∈ [0,∞)2 a job’s load vector. Formally, given a set [m] of
machines, the algorithm Priority(u) assigns job j to machine i∗ := arg mini∈[m] u(cj−1

i , vj)
breaking ties arbitrarily but consistently. Here, as mentioned before, cj−1

i denotes machine
i’s load just before assigning job j. After assigning job j, we update cji∗ = cj−1

i∗ + vj while
keeping cji = cj−1

i for all i 6= i∗. If u(cj−1
i , vj) =∞ for all i ∈ [m], then Priority(u) declares

failure.

3.1 Analysis Framework: Zooming in on Jobs Assigned to Two
Machines

Now we present our general framework to analyze the above type of priority-based algorithms.
The key to this framework is to define the set of reachable configurations.
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I Definition 6. We say that an ordered tuple C = (c1, c2, . . . , cm), which we call a con-
figuration, where ci ∈ [0,∞)2, is reachable by Priority(u) if machines have load vectors
c1, c2, . . . , cm after Priority(u) assigns some sequence of jobs [n] to machines [m], such
that ||vj ||∞ ≤ 1 for all j ∈ [n] and

∑
j∈[n] vj ≤ m ·~1. The set of reachable configurations is

denoted by Rm(u).

Unfortunately, it seems extremely challenging to characterize the reachable configurations
for m machines in general. Our key observation is that the priority-based choices made by
our algorithms allows us to focus on the loads of only two machines.

I Observation 7. For any disutility function u and configuration C = (c1, c2, . . . , cm) ∈
Rm(u), and for any pair i 6= j ∈ [m], we have (ci, cj) ∈ R2(u).

Proof. For notional convenience, say machines i and j have load vectors ci and cj , respectively.
Consider the jobs that are assigned to machines i and j. If we assign those jobs to machines
i and j pretending that no other machines exist, the two machines i and j each would get
assigned exactly the same set of jobs. This is because Priority(u) prioritizes machines only
based on their current respective load vector and the arriving job’s load vector. Thus, we
have shown (ci, cj) ∈ R2(u). J

Now, the looming question is which pair of machines we should focus on. If α is the
target competitive ratio we want to establish, we would like to focus on critical machines,
i.e., where one of the coordinates has a load exceeding α− 1 since they cannot accommodate
a job of load vector ~1. Also, we would like to focus on a pair where the “average” load
between the two dimensions is not so high to draw a contradiction – more precisely, a convex
combination of the load vectors of the two machines should be capped by ~1. To denote such
a pair, we will often use the notation p = (pf , ps), where pf , ps ∈ [0,∞)2,

I Definition 8. For an unordered pair of configuration p = (pf , ps), we define
p ∈ L(α) iff pf +~1 � ~α and ps +~1 � ~α, and we say p is overloaded; and
p ∈ F iff for all λ ∈ [0, 1], we have λ · pf + (1− λ) · ps � ~1, and we say p is overflown.

The next lemma shows that there will always be at least one pair of configurations that
has not overflown.

I Lemma 9. For any C = (c1, c2, . . . , cm) ∈ Rm(u) such that ci 6= ~0 for all i ∈ [m], there
exist k 6= ` ∈ [m] such that (ck, c`) /∈ F .

Proof. Let q =
∑

i∈[m]
ci

m ; note q ≤ ~1 since C ∈ Rm(u). Clearly, q is in the convex hull of
the vectors, c1 . . . , cm. However, the convex hull doesn’t include ~0. Since the convex hull is
in two-dimensional space, this means there exists γ ∈ (0, 1], such that γ · q is on the segment
(ck, c`) for some k, ` ∈ [m]. Thus, there exists λ ∈ [0, 1] such that

λ · ck + (1− λ) · c` = γ · q.

As q ≤ ~1, we have (ck, c`) /∈ F . J

The following observation is immediate from the definition of L(α) and F , it will be
useful to first enlist the different cases in terms of these individual coordinate values.

I Observation 10. For any α > 2, if (pf , ps) ∈ L(α) \ F , then we have:
either pf (2), ps(1) > 1 and pf (1), ps(2) < 1;
or, pf (1), ps(2) > 1 and pf (2), ps(1) < 1.
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If the algorithm Priority(u) reaches a state where no machine can accommodate another
job of load ~1, then using Lemma 9, we can find a pair of configurations in L(α) \ F . Then,
using the facts that the pair is overloaded yet not overflown, we can determine the sign of a
certain function V (pf , ps) defined on the configuration’s load vectors; this function will be
useful to draw a contradiction later. Formally, for a pair of configuration (pf , ps), define

V (pf , ps) := pf (2) · (ps(1)− 1) + ps(2) · (1− pf (1))
ps(1)− pf (1) − 1 (1)

I Lemma 11. For α > 2, if (pf , ps) ∈ L(α) \ F , then we have V (pf , ps) ≤ 0.

Proof. Since pf + 1, ps + 1 � ~α and α > 2, we can assume wlog that pf (2) > 1; the other
case pf (1) > 1 can be handled similarly. Then, we must have

ps(2) < 1 and ps(1) > 1 and pf (1) < 1,

since (pf , ps) ∈ L(α) \ F ; see Observation 10. Define

f(λ, k) := λ · pf (k) + (1− λ) · ps(k).

Since (pf , ps) /∈ F , there must exist λ∗ ∈ [0, 1] such that f(λ∗, 1), f(λ∗, 2) ≤ 1. Observe
f(λ, k) is monotonically decreasing in λ when k = 1, and monotonically increasing when
k = 2. For

λ̃ = ps(1)− 1
ps(1)− pf (1) ∈ [0, 1], i.e., 1− λ̃ = 1− pf (1)

ps(1)− pf (1) ,

we have f(λ̃, 1) = 1. Since f(λ, 1) is monotonically decreasing, λ∗ ≥ λ̃. Since f(λ, 2) is
monotonically increasing, we have

f(λ̃, 2) = pf (2) · (ps(1)− 1) + ps(2) · (1− pf (1))
ps(1)− pf (1) ≤ f(λ∗, 2) ≤ 1,

as desired. J

Having established the sign of V (pf , ps), we now observe that it is an increasing function
in any of the coordinates of the two configurations pf , ps.

I Observation 12. For α > 2 and p = (pf , ps) ∈ L(α) \ F we have(
∂V (pf , ps)
∂pf (1) ,

∂V (pf , ps)
∂pf (2) ,

∂V (pf , ps)
∂ps(1) ,

∂V (pf , ps)
∂ps(2)

)
> ~0.

Proof. By taking partial derivatives on pf (1), pf (2), ps(1), ps(2) respectively, we have(
∂V (pf , ps)
∂pf (1) ,

∂V (pf , ps)
∂pf (2) ,

∂V (pf , ps)
∂ps(1) ,

∂V (pf , ps)
∂ps(2)

)
=
(

(pf (2)− ps(2)) · (ps(1)− 1)
(pf (1)− ps(1))2 ,

1− ps(1)
pf (1)− ps(1) ,

(pf (2)− ps(2)) · (1− pf (1))
(pf (1)− ps(1))2 ,

pf (1)− 1
pf (1)− ps(1)

)
> ~0,

where the last inequalities follow from Observation 10. J

I Corollary 13. For any α > 2, if (pf , ps), (p′f , p′s) ∈ L(α) \ F , and pf ≥ p′f and ps ≥ p′s,
then we have V (pf , ps) ≥ V (p′f , p′s).
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We now have all the pieces for the refined analysis of Priority(u). Suppose we want
to show Priority(u) is α-competitive. Towards this end, it is sufficient to show that if
C = (c1, c2, . . . , cm) ∈ Rm(u), then we have ci + ~1 ≤ ~α for some i ∈ [m]. For the sake of
contradiction, suppose not. Then, by Lemmas 9 and 11, we have (ck, c`) ∈ L(α) \F for some
k, ` ∈ [m], and V (ck, c`) ≤ 0. Further, by Observation 7, we know (ck, c`) ∈ R2(u). This
leads to the following lemma.

I Lemma 14. If R2(u) ∩ L(α) \ F = ∅, then Priority(u) is α-competitive.

Note that this lemma allows us to analyze Priority(u) pretending that there are only
two machines. Now showing the condition R2(u) ∩ L(α) \ F = ∅ of the lemma depends on α
and the disutility function u governing Priority(u).

4 Greedy Algorithm: Unknown opt

In this section we consider the natural algorithm that assigns an arriving job to the machine
yielding the minimum makespan. We recover this algorithm by setting the disutility function
u to be the following:

Max(c, g) = ||c+ g||∞ (2)

We call this algorithm Priority(Max). Our goal in this section is to prove the following
theorem.

I Theorem 15 (Upper Bound of Theorem 1). Priority(Max) is 8/3-competitive for the
2DSched problem.

To show Theorem 15, we will set α = 8/3 and use Lemma 14. We begin with an easy
observation, which immediately follows from ||vj ||∞ ≤ 1 for all jobs j. (The latter is a
consequence of normalizing opt in the analysis, and not an assumption on the input.)

I Observation 16. For any p = (ps, pf ) ∈ R2(Max), we have | ||ps||∞ − ||pf ||∞| ≤ 1.

It is straightforward to show Priority(Max) is 3-competitive using this observation.
To obtain a tighter bound, we will show the following:

I Lemma 17. For α = 8/3, we have (R2(Max) ∩ L(α)) \ F = ∅.

Note that Lemma 17 implies Theorem 15 by applying it to Lemma 14. So, the rest of this
section is devoted to proving Lemma 17.

For a pair of configurations (pf , ps), define

H1(pf , ps) := ps(2) + pf (1)− ps(1) + 1
H2(pf , ps) := ps(2) + pf (1)− pf (2) + 1

I Lemma 18. For a pair of configurations p = (pf , ps), we have p /∈ R2(Max) if

min{H1(pf , ps), H2(pf , ps), H1(ps, pf ), H2(ps, pf )} < 0.

Proof. Assume for the sake of contraction that there exists (pf , ps) ∈ R2(Max) such that
the minimum is non-negative. Further, assume that (pf , ps) is one among such configurations
that is reachable by the minimum number of jobs assigned. Clearly, (pf , ps) 6= ((0, 0), (0, 0)).
Since (pf , ps) is unordered, assume wlog that there exist c, g such that pf = c + g and
(c, ps) ∈ R2(Max) and g ≤ ~1 can be assigned to (a machine of load) c according to Priority
(Max), meaning ||c+ g||∞ ≤ ||ps + g||∞. We consider two cases.

ICALP 2020



34:10 Online Two-Dimensional Load Balancing

Case 1. H1(pf , ps) < 0; this is symmetric to H2(ps, pf ) < 0. We have

H1(c, ps) = ps(2) + c(1)− ps(1) + 1 ≤ ps(2) + c(1) + g(1)− ps(1) + 1 = H1(pf , ps) < 0,

which is a contradiction to the minimality of (pf , ps).
Case 2. H2(pf , ps) < 0; this is symmetric to H1(ps, pf ) < 0. In this case we have

0 > H2(pf , ps) = ps(2) + pf (1)− pf (2) + 1 ≥ ps(2)− pf (2) + 1 ≥ ps(2)− pf (2) + g(2);

hence we have ps(2) + g(2) < pf (2). If g(1) < pf (2)− ps(1), then

||c+ g||∞ = ||pf ||∞ ≥ pf (2) > ||ps + g||∞,

which is a contradiction to Priority(Max) assigning g to c. Therefore, we have g(1) ≥
pf (2)− ps(1). Then, we have

H1(c, ps) = ps(2) + c(1)− ps(1) + 1 = ps(2) + pf (1)− g(1)− ps(1) + 1
≤ ps(2) + pf (1)− pf (2) + 1 = H2(pf , ps) < 0,

which is also a contradiction. J

We are now ready to prove Lemma 17.

Proof of Lemma 17. Since (pf , ps) ∈ L(α) \ F and α = 8/3, we assume wlog that pf (2) >
α − 1 = 5/3 and ps(1) > α − 1 = 5/3 (see Observation 10; the other case is symmetric).
Then, we have

H1(pf , ps) = ps(2) + pf (1)− ps(1) + 1 ≥ 0 by Lemma 18,

which yields

ps(2) + pf (1) ≥ 2/3.

Letting pf (1) = x, we have

ps(2) ≥ 2/3− x.

Note that

pf ≥ p′f := (x, 5/3 + ε); and ps ≥ p′s := (5/3 + ε, 2/3− x)

for sufficiently small ε > 0. Thus, (p′s, p′f ) /∈ F . Also notice (p′s, p′f ) ∈ L(α). Therefore, by
Corollary 13, we have

V (pf , ps) ≥ V (p′f , p′s) ≥ 0.

By taking the limit ε→ 0, we have

V (pf , ps) > lim
ε→0

V (p′f , p′s) = (3x− 1)2

3 · (5− 3x) ≥ 0,

which is a contradiction to (pf , ps) ∈ L(α) \ F by Lemma 11. J
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5 Balance Algorithm: Known opt

In this section, we consider another priority-based greedy algorithm, Priority(Bal). The
rule Bal is defined as follows:

Bal(c, g) =
{
d(c) · d(g) c+ g ≤ α · opt
∞ otherwise,

(Bal-α)

where d(v) := v(2)− v(1) measures the signed difference between v’s right load and left load.
In other words, Priority(Bal) tries to minimize the difference between the left and

right loads over all machines, without violating a pre-defined threshold α. Note that this
algorithm needs to know the value of opt, which is wlog assumed to be 1 by scaling. The
Priority(Bal) algorithm keeps the machines in sorted order of the (signed) difference
between the loads on the two coordinates (the left load minus the right load we say that the
machines are maintained in left to right order where the rightmost (resp., leftmost) machine
has the largest difference between the loads on the first and second coordinate (resp., second
and first coordinate). Recall that a left (resp., right) vector is one whose first (resp., second)
coordinate is larger. The Priority(Bal) algorithm assigns a left (resp., right) vector to
the rightmost (resp., leftmost) machine that can accommodate it, i.e., whose load on any
dimension does not exceed the desired competitive ratio α after the assignment. In order
to achieve it, given a left (right) vector the algorithm would prefer to assign to the most
unbalanced right (left) machine that can accommodate the vector.

I Theorem 19 (Upper Bound of Theorem 2). Priority(Bal), knowing opt a priori, is
2.25-competitive for the 2DSched problem.

To prove Theorem 19, thanks to Lemma 14, it suffices to show the following.

I Lemma 20. For α = 2.25, we have (R2(Bal) ∩ L(α)) \ F = ∅.

The remainder of this section is devoted to proving Lemma 20. Instead of analysing
directly R2(Bal), we introduce a slightly modified rule of Bal, which is not subject to α:

Bal-No-Lim(c, g) = d(c) · d(g) (3)

Note that R2(Bal-No-Lim) ∩ {v | v ∈ [0, α]2} ⊆ R2(Bal) and the subtle difference
between R2(Bal-No-Lim) and R2(Bal). The closure R2(Bal-No-Lim) attempts to assign
a vector g to only mitigate the difference of the left and right loads of the two machines. If
we can assign g to the machine i∗ that achieves this, then this assignment would be exactly
the same as Priority(Bal) would make. However, in the closure R2(Bal-No-Lim), if g
would overflow machine i∗, it doesn’t add it to the other machine even if it would be possible
under Priority(Bal). This is summarized in the following observation.

I Observation 21. For two pairs of configuration p = (ca, cb), p′ = (ca + g, cb), such that p′
is reachable in R2(Bal) by assigning a job of load g ∈ [0, 1]2 into (a machine of load) ca in
the pair p, if (ca + g, cb) ∈ R2(Bal) \ R2(Bal-No-Lim) and (ca, cb) ∈ R2(Bal-No-Lim),
then cb + g � ~α and (d(ca)− d(cb)) · d(g) > 0.

For a pair of configuration (cs, cf ), define

H3(cf , cs) := d(cs)− d(cf ) + 1 = cs(2)− cs(1)− cf (2) + cf (1) + 1

I Lemma 22. For a pair of configuration p = (ps, pf ), if H3(pf , ps) < 0 or H3(ps, pf ) < 0,
then we have p /∈ R2(Bal-No-Lim).
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Proof. Assume for the purpose of contradiction that p ∈ R2(Bal-No-Lim). Assume
H3(pf , ps) < 0, since the case H3(ps, pf ) < 0 is symmetric. There must exist a vector g
such that pf = c+ g, and (c, ps) ∈ R2(Bal-No-Lim), for which Priority (Bal-No-Lim)
assigned to c, hence we have

Bal-No-Lim(c)−Bal-No-Lim(ps) = (d(c)− d(ps)) · d(g) ≤ 0.

We consider two cases.

Case 1. g(2) > g(1): Clearly, g(2)−g(1) ≤ 1. However, d(ps)−d(pf )+1 = H3(pf , ps) < 0,
hence

d(ps) < d(pf )− 1 = d(c+ g)− 1 = c(2) + g(2)− c(1)− g(1)− 1 ≤ c(2)− c(1) = d(c).

Therefore, (d(c)− d(ps)) · (g(2)− g(1)) > 0, which is a contradiction.
Case 2. g(2) ≤ g(1): We have

c(2)− c(1)− 1 ≥ c(2) + g(2)− c(1)− g(1)− 1 = pf (2)− pf (1)− 1 > ps(2)− ps(1).

Therefore, we have H3(c, ps) < 0 hence (c, ps) /∈ R2(Bal-No-Lim), which is a contradic-
tion. J

We now have all the pieces to prove Lemma 20.

Proof of Lemma 20. Assume for the purpose of contradiction that there exists a pair
p = (cr, c`) ∈ R2(Bal) ∩ L(α)) \ F . Let

〈
p∅, p1, . . . pn = p

〉
a sequence of reachable pairs i.e.

for all i, pi ∈ R2(Bal) and pi+1 is reachable from pi by a single vector assignment under
Priority(Bal).

Case 1. For all i ∈ [n], pi ∈ R2(Bal-No-Lim). Since p = (cr, c`) ∈ R2(Bal-No-Lim) ∩
L(α), assume wlog that cr(2) > α − 1, c`(1) > α − 1. In addition, since (cr, c`) ∈
R2(Bal-No-Lim), by Lemma 22, we have H3(cr, c`) = c`(2)− c`(1)− cr(2) + cr − 1 ≥ 0.
Therefore, we have

0 ≤ H3(cr, c`) ≤ H3((cr(1), α− 1), (α− 1, c`(1)) = 3− 2 · α+ cr(1) + c`(2).

By setting cr(1) = x , we have c`(2) ≥ 2 · α− 3− x. Note x ∈ [0, 1] since c`(1) > 1 and
(cr, c`) /∈ F . For α = 2.25, we have

V (cr, c`) > V ((x, α− 1), (α− 1, 2 · α− 3− x)) = (4x− 3)2

20− 16x ≥ 0,

which is a contradiction to p ∈ L(α) \ F by Lemma 11.
Case 2. pi /∈ R2(Bal-No-Lim) for some i ∈ [n]. Let i be the first index such that pi /∈
R2(Bal-No-Lim), let pi−1 = (ca, cb), pi = (ca + g, cb). Note that cr ≥ ca and c` ≥ cb.
By Observation 21 we have cb + g � ~α. Assuming wlog that cb(1) + g(1) > α, we have
cb(1) > α− g(1) > 1 since g ≤ ~1 and α > 2. For the same reason, we have cr(2) > α− 1,
and cr(1), c`(2) ≤ 1 (since (cr, c`) ∈ L(α) \ F).

Since V (cr, c`) is monotone increasing, we have V (cr, c`) > V (〈ca(1) + g, α − 1〉, cb).
Moreover, by our assumption pi−1 = (ca, cb) ∈ R2(Bal-No-Lim), by Lemma 22, we have

H3(ca, cb) = cb(2)− cb(1)− ca(2) + ca(1) + 1 ≥ 0,
ca(1) ≥ max{ca(2)− cb(2) + cb(1)− 1, 0} ≥ max{cb(1)− cb(2)− 1, 0}.
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Recall that cr(1) ≤ 1, and we have ca(1) ≥ cb(1)− cb(2)− 1, and g(1) > α− cb(1). Therefore,
1 ≥ cr(1) ≥ g(1) + ca(1) ≥ α − cb(1) + ca(1) ≥ α − cb(2) − 1, which yields cb(2) ≥ α − 2.
Thus,

V (cr, c`) > V (〈α− cb(1) + max{cb(1)− cb(2)− 1, 0}, α− 1〉, 〈cb(1), cb(2)).

We lower bound V by considering two cases:

Case A. If cb(1)− cb(2) < 1, then

V (cr, c`) > V (〈α− cb(1), α− 1〉, 〈cb(1), cb(2)) ≥ V (〈α− cb(1), α− 1〉, 〈cb(1), cb(1)− 1).

Case B. If cb(1)− cb(2) ≥ 1, then

V (cr, c`) > V (〈α−cb(2)−1, α−1〉, 〈cb(1), cb(2)) ≥ V (〈α−cb(2), α−1〉, 〈1+cb(2), cb(2)).

Setting x = cb(1)− 1(≥ α− 2) in the first case and x = cb(2) in the second case, we get
that x ≥ α− 2 in both cases. So, we have

V (cr, c`) > V (〈α− 1− x, α− 1〉, 〈1 + x, x〉) ≥ 0.

By setting α = 2.25, for x ≥ α− 2 = 0.25, we have

V (cr, c`) > V (〈α− 1− x, α− 1〉, 〈1 + x, x〉) = (2x− 1)2

8x− 1 ≥ 0,

which is a contradiction to p ∈ L(α) \ F by Lemma 11. J

6 A Nearly Optimal Algorithm Against the Fractional Optimal
Solution

Recall that all algorithms we developed and analyzed were based on the two most obvious
lower bounds for the optimal solution, the total load vector of all jobs and the maximum
job size on any dimension. Therefore, the benchmark we used can do better than the offline
optimum solution. For example, consider three job vectors (1, 1, 0), (1, 0, 1), (0, 1, 1) to be
scheduled on 2 machines. Since one of the two machines must receive at least two jobs, the
optimum makespan cannot be smaller than 2. However, this instance still has an average
load of 1 on all dimensions and no job has size greater than 1 on any dimensions. In other
words, the benchmark can distribute all jobs equally across all machines. For this reason, we
will call this benchmark the fractional optimum solution.

I Definition 23. For any number of dimensions d ≥ 1, the optimum competitive ratio c∗d
against the fractional optimum solution is defined as

inf
A

sup
J

maxi∈[m],k∈[d] ΛJ,mi (k)
max{||

∑
j∈J vj/m||∞,maxj∈J,k∈[d] vj(k)} ,

where A denotes an arbitrary deterministic online algorithm, J an arbitrary sequence of jobs,
m the number of machines, and ΛJ,mi the load vector of machine i under the assignment of
jobs J to machines [m] by the algorithm A.

Our goal is to develop and analyze an algorithm that performs nearly as well as the
fractional optimum solution.

ICALP 2020



34:14 Online Two-Dimensional Load Balancing

I Theorem 24. For any d ≥ 1 and ε > 0, assuming that the value of the optimum makespan6
is known a priori, there exists a deterministic online algorithm for the vector scheduling
problem whose competitive ratio is (1 + ε)c∗d. Further, the running time is polynomial in n
for any fixed d, ε.7

6.1 Assigning Jobs to Groups
The first stage of the algorithm is executed only when m ≥ (1 + 1

ε )α where α := 250
ε3 log d.

We group machines so that every group has exactly α machines; to simplify the notation we
assume that α is an integer to omit ceilings. The only one possible group that has less than
α machines is discarded. We assign jobs to the (remaining) groups and obtain the following
lemma using an algorithm and analysis very similar to [29]; hence, we defer the details to
the full version of the paper.

I Lemma 25. For a sufficiently small ε > 0, there exists an online algorithm that assigns
jobs to the groups, each consisting of α := 250

ε3 log d machines, such that every group’s total
load is at most (1 + ε)αd~1.

Note that the average load vector a machine should handle increases by a factor of at
most m

m−(α−1) ≤
1+1/ε

1+1/ε−1 = 1 + ε. We also slightly modify each job’s load vector: For each
job j, we minimally increase vj , so that we have vj(k) ≥ (ε/d)||vj ||∞. This is wlog since
increasing job load vectors can only increase the algorithm’s makespan and we fixed the
optimum to be 1.

I Lemma 26. The preprocessing step increases the total load vector to at most (1 + ε)m~1.

Proof. For the sake of contradiction, suppose the total load is more than (1 + ε)m on some
dimension. It means the load increased by more than εm on the dimension. We know that
job j contributes to the increase by at most (ε/d)||vj ||∞. Thus, the increase is at most∑
j(ε/d)||vj ||∞. However, we know

∑
j ||vj ||∞ ≤ md since the total load of all jobs across

all dimensions is md. Therefore, the increase is at most εm, which is a contradiction. J

Since we are only concerned with assigning jobs to groups of machines at this stage, to
simplify notation we pretend each group is a machine. By a machine i, we mean the i-th
group which consists of α machines.

We now restate the problem: We are given m′ = bmα c machines. Let [n] denote the set of
all jobs arriving, which satisfies the following properties.

Property (i): The total job load vector, i.e.,
∑
j∈[n] vj is at most m′α(1 + ε)2~1.

Property (ii): For all j ∈ [n], ||vj ||∞ ≤ 1.
Property (iii): For all j ∈ [n], mink vj(k) ≥ (ε/d)||vj ||∞.

Our goal is to assign jobs to m′ machines so that each group receives jobs of total load at
most (1 + 7ε)α~1, which would immediately imply Lemma 25 by scaling ε.

The algorithm has two procedures. The algorithm pretends there are two sets M1 and
M2 of machines, where |M1| = |M2| = m′. The first procedure assigns all jobs to machines
M1 and identifies a set J2 of jobs, which will be assigned to machines M2 by the second
procedure. However, this is a shadow process: What really happens is that only jobs in

6 More accurately, the value of the fractional optimum makespan.
7 More precisely, the running time is polynomial in n and (d/ε)d(d/ε)O(d)

.
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[n] \ J2 remain on machines M1 and the other jobs J2 are assigned to machines M2. Further,
the algorithm pairs machines between M1 and M2 arbitrarily and combine the load vectors
of the paired machines. To prove Lemma 25, it suffices to show the following two lemmas
(with scaling ε):

I Lemma 27. The makespan of the assignment of [n]\J2 to M1 is at most ((1+ε)5α+1)~1 ≤
(1 + 6ε)α~1.

I Lemma 28. The makespan of the assignment of J2 to M2 is at most εα~1.

We are now ready to describe the algorithm.

First procedure (assignment by a potential function): Let β := (1 + ε)3. Let
f(x) := βx. Each job j is assigned to a machine i ∈ M1 such that Φ(j) is minimized.
For every i ∈ M1, let Λ1

i,j denote machine i’s load vector right after assigning job j to
some machine in M1. If Λ1

i,j(k) ≥ βα+ 1, then j is added to queue J2 so that it can be
scheduled by the second procedure.

Φi,k(j) := f

Λ1
i,j(k)− β

m′

∑
j′∈[j]

vj′(k)

 ∀i ∈M1, j ∈ [n], k ∈ [d]

Φ(j) :=
∑
i∈M1

d∑
k=1

Φi,k(j)

Second procedure (assignment by greedy): This procedure is only concerned with
the jobs J2 that are passed from the first procedure. It allocates each job in J2 (in
the order that the jobs arrive in) to one of the machines in M2 such that the resulting
makespan, maxi∈M2,k∈[d] Λ2

i,j(k) is minimized; here Λ2
i,j is analogously defined as Λ1

i,j is
defined in the first procedure.

Note that Lemma 27 immediately follows due to the way the first procedure is defined.
The proof of Lemma 28 constitutes the heart of the analysis in this stage of the algorithm.
Since this closely follows techniques in [29], we defer the details of this analysis to the full
version of the paper.

6.2 Assigning Jobs to Machines Within Each Group
We need to define a fair amount of notation to formally describe our algorithm. We assume
that the input consists of m machines and the average load of all jobs to be assigned is at
most (1 + ε)m on all dimensions for some ε > 0.

For ease of reference, we list the following definitions.

Let β := ε
2md ; ∆ := ε2

d(1+1/β)d ; and δ := εβ∆/(2dm).
A vector is said to be a type vector if it is in {0, β, 2β, · · · , 1}d\{~0} and has 1 on at least one
dimension. Let Q denote the set of all type vectors. Note that |Q| ≤ (1 + 1/β)d ≤ (2/β)d.
We say a job j is small if ||vj ||∞ < ∆; otherwise it is big.
The volume of a job j is defined as its total size over all dimensions.

We discretize big jobs and small jobs in different manners:

Big jobs: For a big job j, we round its load on every dimension down to the nearest
integer multiple of δ. Let B denote the set of all possible load vectors of big jobs after
discretization.
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Small jobs: For a small job j, let pj = ||vj ||∞. Then, we discretize vj/pj by rounding each
entry down to the nearest integer multiple of β. Let qj denote the resulting discretized
vector of vj/pj ; note that qj ∈ Q. After rounding, we can express each small job j as
pjqj .

We are now ready to describe our algorithm. Below, assume that jobs are already
discretized. We will later show that the effect of discretization is negligible on the competitive
ratio.

6.2.1 Building a decision tree
We build a decision tree T to assign big jobs. To simplify the analysis later, we assume wlog
that the total load vector T receives is exactly m(1 + 4ε)~1. Each node of the decision tree
T corresponds to the current loads of all the m machines. Each node u has at most m|B|
children. Each edge (u,w) is associated with a pair (i, j) where j ∈ B and i ∈ [m], meaning
that if a big job j is assigned to machine i, then the machine loads vectors change from u to
w. Since the total volume of jobs is at most (1 + 4ε)md ≤ 5md and every big job has volume
at least ∆, the decision tree has depth at most 5md/∆ and the number of nodes is at most
(m|B|)5md/∆. We only need to keep nodes whose machine load vectors don’t contradict the
assumption that the total load of all jobs on each dimension is exactly (1 + 4ε)m.

Given that every node of the decision tree T corresponds to a configuration (machine load
vectors) that can be reached via a valid sequence of big jobs along with their assignment, our
goal is to compute the minimum makespan we can achieve from each node u. Formally, if u is
a leaf node, define g(u) to be the makespan norm of the machine load vectors corresponding
to u. Otherwise, let ui,j denote u’s child such that the edge (u, ui,j) is associated with (i, j).
Then, define g(u) := mini maxj g(ui,j).

We can use the tree T to assign big jobs as follows. Let u be the node corresponding to
the current machine load vectors. If a big job j arrives, then we assign j to machine i with
the minimum g(ui,j).

The following observation is immediate due to the optimal nature of the decision tree for
big jobs. In other words, the observation says that the decision tree yields a nearly optimal
algorithm against the fractional optimum.

I Observation 29. Let r denote the root of T . Then, g(r) ≤ (1 + 4ε)c∗d.

Proof. Since we assumed that the total load vector is exactly (1 + 4ε)m~1, the denominator in
Definition 23 is exactly (1 + 4ε). Since we know the decision tree gives an optimal algorithm
for big jobs, we have g(r)/(1 + 4ε) ≤ c∗d, as desired. J

6.2.2 Batching smalls jobs of the same type
We will first describe how we batch small jobs and assign them using the above decision tree
T assuming that we can wait until we collect enough volume of jobs for each type. For each
type vector q ∈ Q, we create a buffer F (q). The buffer has capacity ∆/ε. When a small job
j of vector pjqj arrives, we add it to buffer F (qj); j uses pj space of the buffer. There are
two events that trigger emptying a buffer. When we empty a buffer F (q), we encapsulate the
load vectors of all jobs in F (q) into a “bin” vector (∆/ε)q, and assign it using the decision
tree T . The buffer is emptied when either we cannot add a job j since it would exceed the
capacity ∆/ε or after all jobs arrive.

This procedure is well defined due to the following lemma.
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I Lemma 30. Every bin vector is in B.

Proof. Consider any bin vector (∆/ε)q. To show that this is in B, we need to show the
following three: (i) it has size at least ∆ on some dimensions; (ii) each of its entries is a
multiple of δ; and (iii) it has size no more than 1 on every dimension. First, (i) follows
since ||q||∞ = 1 due to the way we defined small job types. To see (ii), consider q’s entry
on each dimension – we know that its value must be `β for some integer `. So, it suffices
to show that (∆/ε)(`β)/δ is an integer. Recall that δ := εβ∆/(2dm). Thus, we have,
(∆/ε)(`β)/δ = ∆

ε (`β) 2dm
εβ∆ , which is an integer assuming that 1/ε is an integer. To see (iii),

note that the maximum size over all dimensions is at most (∆/ε) = ε
d(1+1/β)d < 1. J

6.2.3 Batching small jobs online
In the online setting we cannot wait to aggregate small jobs of the same type. To handle
this issue, we pre-allocate one “bin” vector of each type. That is, before any jobs arrive,
we pretend that one job of each load vector q arrives and assign it using the decision tree
T . Then, batching jobs of the same type vector q in F (q) is actually done on the machine
that received the bin vector. Therefore, we can assign small jobs upon their arrival without
waiting.

We have fully described our online algorithm to assign jobs upon their arrival. We now
shift our focus to the analysis. When a job j is encapsulated into a type vector v of type
q ∈ Q, we say v contains job j.

I Observation 31. Every bin vector of each type q ∈ Q, possibly except one, has total size
of jobs at least (1− ε)(∆/ε).

Proof. Since small jobs are aggregated only when they are of the same type, for each type
q ∈ Q, we can focus on the scalar quantities, job sizes pj and the buffer size ∆/ε. The
observation follows from the fact that we empty buffer B(q) only when the total size of jobs
in the buffer B(q) exceeds (1− ε)(∆/ε), or at the end after all jobs arrive. The only exception
is due to the pre-allocation, which corresponds to emptying the buffer at the end. J

I Lemma 32. If the total job load vector is at most (1 + ε)m~1, then the decision tree, due to
batching and preallocation, receives jobs of total load vector at most (1 + 4ε)m~1.

Proof. By Observation 31, the total load vector T receives is at most (1 + ε)m~1/(1− ε) ≤
(1 + 3ε)m~1, plus

∑
q∈Q(∆/ε)q. Further, we have

∑
q∈Q(∆/ε)q = |Q|(∆/ε)~1 ≤ (1 + 1/β)d ·

ε2

d(1+1/β)d
1
ε
~1 ≤ ε~1. J

Therefore, the algorithm sends to the decision tree T big jobs (including bin vectors
which are big) of total load vector at most (1 + 4ε)m~1. Note that sending less loads only
helps our algorithm. By Observation 29, our algorithm’s makespan is at most (1 + 4ε)c∗d-
competitive if all jobs are discretized. We now show that when replacing each discretized
vector with the original vector, every machine’s load increases by at most 2ε~1. Knowing that
the optimum makespan is 1, this will mean that the competitive ratio of our algorithm is at
most (1 + 6ε)c∗d-competitive. By scaling ε appropriately, we obtain Theorem 24.

We complete the analysis by proving the following lemma.

I Lemma 33. Restoring the discretized jobs load vectors to their original vectors increases
each machine’s load vector by at most 2ε~1.
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Proof. For the sake of contradiction, suppose the total load increases by more than 2ε on
some fixed dimension d on some fixed machine i. In the first case, suppose at least ε increase
was due to big jobs. Then, since discretizing a big job reduces its load by less than δ on each
dimension, this means that the total number of big jobs assigned to the machine i is at least
ε/δ. Since a big job has a volume ∆ or more, the total volume of jobs assigned to machine i
is at least (ε/δ) ·∆ = ε/(ε∆/2dm) ·∆ = 2dm, which is a contradiction to the fact that each
machine has makespan at most (1 + 4ε), thus volume at most (1 + 4ε)d. Now suppose at least
ε increase was due to small jobs. Let S be the set of all small jobs assigned to machine i. We
know that discretizing a small job j reduces its load by at most pjβ on the fixed dimension
d. Thus, we have

∑
j∈S pjβ > ε. As a result, we have

∑
j∈S pj > ε/β = ε/(ε/2md) = 2md.

This implies that the total volume of the jobs in S is at least
∑
j∈S pj ≥ 2md, which is a

contradiction as before. J

6.3 Putting the Pieces Together
In Section 6.1 we showed if we use the first phase of the algorithm, then we can assign jobs
to groups of machines so that each group has m′ = O( 1

ε3 log d) machines and receives load at
most (1 + ε)m′~1. Otherwise, we can pretend all jobs are assigned to the single group of all
machines. In either case, we can assign jobs to groups of machines so that each group has
m′ = O( 1

ε4 log d) machines and receives load at most (1 + ε)m′~1. Then, using the procedure
in 6.2, we can assign jobs to machines within group, so that each machine’s load vector is
at most (1 + 6ε)c∗d~1. Thus, we have found an online algorithm whose competitive ratio is
(1 + ε)c∗d by appropriately scaling ε.

It now remains to show the running time of our algorithm. Since the running time is
mostly dominated by the second phase, we will focus on the second phase. It is an easy
exercise to see the running time is polynomially bounded by the size of decision tree and
n. As discussed, the number of nodes is (m|B|)5md/∆, where |B| ≤ (2/δ)d. By the above
discussion, we have m = O( 1

ε4 log d). Recall that β := ε
2md , ∆ := ε2

d(1+1/β)d , δ := εβ∆/(2dm).

By calculation, one can show that the tree size is (d/ε)d(d/ε)O(d)

. Thus, we have shown the
running time.

This completes the proof of Theorem 24.

7 Open Problems

This paper gives the first non-trivial results for the online vector scheduling problem with a
small number of dimensions. The most interesting open question is to better understand the
competitive ratio of “practical” algorithms when d > 2. For instance, what is the competitive
ratio of Priority(Max) when d > 2? Or, can we extend Priority(Bal) for d = 2 to
higher dimensions? Even for d = 2, in our analysis, we used as the lower bound the fractional
optimum where job vectors can be fractionally assigned to machines. This is inherently
limited by the integrality gap of the fractional assignment. Can we obtain better lower
bounds for the true optimum, and thereby improve the competitive ratio for the problem?
For instance, for d = 2, is there a 2-competitive algorithm?
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Abstract
The girth is one of the most basic graph parameters, and its computation has been studied for many
decades. Under widely believed fine-grained assumptions, computing the girth exactly is known
to require mn1−o(1) time, both in sparse and dense m-edge, n-node graphs, motivating the search
for fast approximations. Fast good quality approximation algorithms for undirected graphs have
been known for decades. For the girth in directed graphs, until recently the only constant factor
approximation algorithms ran in O(nω) time, where ω < 2.373 is the matrix multiplication exponent.
These algorithms have two drawbacks: (1) they only offer an improvement over the mn running time
for dense graphs, and (2) the current fast matrix multiplication methods are impractical. The first
constant factor approximation algorithm that runs in O(mn1−ε) time for ε > 0 and all sparsities m

was only recently obtained by Chechik et al. [STOC 2020]; it is also combinatorial.
It is known that a better than 2-approximation algorithm for the girth in dense directed

unweighted graphs needs n3−o(1) time unless one uses fast matrix multiplication. Meanwhile, the
best known approximation factor for a combinatorial algorithm running in O(mn1−ε) time (by
Chechik et al.) is 3. Is the true answer 2 or 3?

The main result of this paper is a (conditionally) tight approximation algorithm for directed
graphs. First, we show that under a popular hardness assumption, any algorithm, even one that
exploits fast matrix multiplication, would need to take at least mn1−o(1) time for some sparsity m if
it achieves a (2− ε)-approximation for any ε > 0. Second we give a 2-approximation algorithm for
the girth of unweighted graphs running in Õ(mn3/4) time, and a (2 + ε)-approximation algorithm
(for any ε > 0) that works in weighted graphs and runs in Õ(m

√
n) time. Our algorithms are

combinatorial.
We also obtain a (4 + ε)-approximation of the girth running in Õ(mn

√
2−1) time, improving upon

the previous best Õ(m
√

n) running time by Chechik et al. Finally, we consider the computation
of roundtrip spanners. We obtain a (5 + ε)-approximate roundtrip spanner on Õ(n1.5/ε2) edges in
Õ(m

√
n/ε2) time. This improves upon the previous approximation factor (8 + ε) of Chechik et al.

for the same running time.
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1 Introduction

One of the most basic and well-studied graph parameters is the girth, i.e. the length of the
shortest cycle in the graph. Computing the girth in an m-edge, n-node graph can be done
by computing all pairwise distances, that is, solving the All-Pairs Shortest Paths (APSP)
problem. This gives an Õ(mn) time algorithm for the general version of the girth problem:
directed or undirected integer weighted graphs and no negative weight cycles1.

The Õ(mn) running time for the exact computation of the girth is known to be tight,
up to no(1) factors, both for sparse and dense weighted graphs, under popular hardness
hypotheses from fine-grained complexity [21, 14]. In unweighted graphs or graphs with integer
weights of magnitude at most M , one can compute the girth in Õ(Mnω) time [19, 12, 17, 8]
where ω < 2.373 is the exponent of n× n matrix multiplication [22, 13]. This improves upon
mn only for somewhat dense graphs with small weights, and moreover is not considered very
practical due to the large overhead of fast matrix multiplication techniques.

Due to the subcubic equivalences of [21], however, it is known that even in unweighted
dense graphs, any algorithm that computes the girth in O(n3−ε) time needs to use fast matrix
multiplication techniques, unless one can obtain a subcubic time combinatorial Boolean
Matrix Multiplication (BMM) algorithm. Thus, under popular fine-grained complexity
assumptions, if one wants to have a fast combinatorial algorithm, or an algorithm that is
faster than mn for sparser graphs, one needs to resort to approximation.

Fast approximation algorithms for the girth in undirected graphs have been known since
the 1970s, starting with the work of Itai and Rodeh [12]. The current strongest result shows
a 2-approximation in Õ(n5/3) time [18]; note that if the graph is dense enough this algorithm
is sublinear in the input. Such good approximation algorithms are possible for undirected
graphs because of known strong structural properties. For instance, as shown by Bondy and
Simonovits [4], for any integer k ≥ 2, if a graph has at least 100kn1+1/k edges, then it must
contain a 2k cycle, and this gives an immediate upper bound on the girth. There are no
such structural results for directed graphs, making the directed girth approximation problem
quite challenging.

Zwick [24] showed that if the maximum weight of an edge is M , one can obtain in
Õ(nω log(M/ε)/ε) time a (1 + ε)-approximation for APSP, and this implies the same for
the girth of directed graphs. As before, however, this algorithm does not run fast in sparse
graphs, and can be considered impractical.

The first nontrivial approximation algorithms (both for sparse graphs and combinatorial)
for the girth of directed graphs were achieved by Pachocki et al. [15]. The current best
result by Chechik et al. [6, 7] achieves for every integer k ≥ 1, a randomized O(k log k)-
approximation algorithm running in time Õ(m1+1/k). The best approximation factor that
Chechik et al. obtain in O(mn1−ε) time for ε > 0 is 3, in Õ(m

√
n) time.

1 If the weights are nonnegative, running Dijkstra’s algorithm suffices. If there are no negative weight
cycles, one can use Johnson’s trick to make the weights nonnegative at the cost of a single SSSP
computation which can be achieved for instance in Õ(m

√
n log M) time if M is the largest edge weight

magnitude via Goldberg’s algorithm [11], so as long as the weights have at most Õ(
√

n) bits, the total
time is Õ(mn).
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What should be the best approximation factor attainable in O(mn1−ε) time for ε > 0?
It is not hard to show (see e.g. [20], the construction in Thm 4.1.3) that graph triangle
detection can be reduced to triangle detection in a directed graph whose cycle lengths are all
divisible by 3. This, coupled with the combinatorial subcubic equivalence between triangle
detection and BMM [21] implies that any O(n3−ε) time algorithm for ε > 0 that achieves a
(2− δ)-approximation for the girth implies an O(n3−ε/3) time algorithm for BMM, and hence
fast matrix multiplication techniques are likely necessary for faster (2− ε)-approximation of
the directed girth.

1.1 Our results
We first give a simple extension to the above hardness argument for (2− ε)-approximation,
giving a conditional lower bound on the running time of (2−ε)-girth approximation algorithms
under the so called k-Cycle hardness hypothesis [3, 16, 14].

The k-Cycle hypothesis states that for every ε > 0, there is a k such that k-cycle in
m-edge directed unweighted graphs cannot be solved in O(m2−ε) time (on a O(logn) bit
word-RAM).

The hypothesis is consistent with all known algorithms for detecting k-cycles in directed
graphs, as these run at best in time m2−c/k for various small constants c [23, 2, 14, 9], even
using powerful tools such as matrix multiplication. Moreover, as shown by Lincoln et al.
[14] any O(mn1−ε) time algorithm (for ε > 0) that, for odd k, can detect k-cycles in n-node
m-edge directed graphs with m = Θ(n1+2/(k−1)), would imply an O(nk−δ) time algorithm
for k-clique detection for δ > 0. If the cycle algorithm is “combinatorial”, then the clique
algorithm would be “combinatorial” as well, and since all known O(nk−δ) time k-clique
algorithms use fast matrix multiplication, such a result for k-cycle would be substantial.

In Section 5, with a very simple reduction we show:

I Theorem 1. Suppose that for some constants ε > 0 and δ > 0, there is an O(m2−ε)
time algorithm that can compute a (2− δ)-approximation of the girth in an m-edge directed
graph. Then for every constant k, one can detect whether an m-edge directed graph contains
a k-cycle, in O(m2−ε) time, and hence the k-Cycle Hypothesis is false.

Thus, barring breakthroughs in Cycle and Clique detection algorithms, we know that the
best we can hope for using an O(mn1−ε) time algorithm for the girth of directed graphs is a
2-approximation.

The main result of this paper is the first ever O(mn1−ε) time for ε > 0 2-approximation
algorithm for the girth in directed graphs. This result is conditionally tight via the above
discussion.

I Theorem 2. There is an Õ(mn3/4) time randomized algorithm that 2-approximates the
girth in directed unweighted graphs whp. For every ε > 0, there is a (2 + ε)-approximation
algorithm for the girth in directed graphs with integer edge weights that runs in Õ(m

√
n/ε)

time. The algorithms are randomized and are correct whp.

If one wanted to obtain a (4 + ε)-approximation to the girth via Chechik et al.’s O(k log k)
approximation algorithms, the best running time one would be able to achieve is Õ(m

√
n).

Here we show how to get an improved running time for a (4 + ε) approximation.

I Theorem 3. For every ε > 0, there is a (4 + ε)-approximation algorithm for the girth in
directed graphs with integer edge weights that runs in Õ(mn

√
2−1/ε) time. The algorithm is

randomized and correct whp.
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In fact, we obtain a generalization of the above algorithms that improves upon the
algorithms of Chechik et al. for all constants k.

I Theorem 4. For every ε > 0 and integer k ≥ 1, there is a (2k+ε)-approximation algorithm
for the girth in directed graphs with integer edge weights that runs in Õ(mnαk/ε) time, where
αk > 0 is the solution to αk(1 + αk)k−1 = 1 − αk. The algorithms are randomized and
correct whp.

For example, let’s consider α1 in the above theorem. It is the solution to α1 = 1− α1,
giving α1 = 1/2 and recovering the result of Theorem 2 for weighted graphs. On the other
hand, α2 is the solution to α2(1 + α2) = 1 − α2, which gives α2 =

√
2 − 1 and recovering

Theorem 3. Finally, say we wanted to get a 6 + ε approximation, then we need α3, which is
the solution to α3(1 + α3)2 = 1− α3, giving α3 ≤ 0.354, and thus there’s an Õ(mn0.354/ε)
time (6 + ε)-approximation algorithm. Note that there is only one positive solution to the
equation defining αk in Theorem 4.

As k grows, αk grows as Θ(log k/k), and so the algorithm from Theorem 4 has similar
asymptotic guarantees as the algorithm of Chechik et al. as it achieves an O(` log `) approx-
imation in Õ(mn1/`) time. The main improvements lie in the improved running time for
small constant approximation factors.

Our approximation algorithms on weighted graphs can be found in section 4. If we are
aiming for an algorithm running in T (n,m) time, we first suppose that the maximum edge
weight of the graph is M and we obtain an algorithm in T (n,m) logM time. We show how
to remove the logM factor using standard techniques in the full version [10].

Roundtrip Spanners. Both papers that achieved nontrivial combinatorial approximation
algorithms for the directed girth were also powerful enough to compute sparse approximate
roundtrip spanners.

A c-approximate roundtrip spanner of a directed graph G = (V,E) is a subgraph
H = (V,E′) of G such that for every u, v ∈ V , dH(u, v) + dH(v, u) ≤ c · (dG(u, v) + dG(v, u)).
Similar to what is known for spanners in undirected graphs, it is known [5] that for every
integer k ≥ 2 and every n, every n-node graph contains a (2k − 1 + o(1))-approximate
roundtrip spanner on O(kn1+1/k logn) edges; the o(1) error can be removed if the edge
weights are at most polynomial in n and the result then is optimal, up to log factors under
the Erdös girth conjecture.

The best algorithms to date for computing sparse roundtrip spanners, similarly to the
girth, achieve an O(k log k) approximation in Õ(m1+1/k) time [7]. The best constant factor
approximation achieved for roundtrip spanners in O(mn1−ε) time for ε > 0 is again achieved
by Chechik et al.: a (8 + ε) approximate O(n1.5)-edge (in expectation) roundtrip spanner
can be computed in Õ(m

√
n) expected time. We improve this latter result:

I Theorem 5. There is an Õ(m
√
n log2(M)/ε2) time randomized algorithm that computes

a (5 + ε)-approximate roundtrip spanner on Õ(n1.5 log2(M)/ε2) edges whp, for any n-node
m-edge directed graph with edge weights in {1, . . . ,M}.

2 Preliminary Lemmas

We begin with some preliminary lemmas. The first two will allow us to decrease all degrees
to roughly m/n, while keeping the number of vertices and edges roughly the same. The last
lemma, implicit in [6], is a crucial ingredient in our algorithms.
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The following lemma was proven by Chechik et al. [6]:

I Lemma 6. Given a directed graph G = (V,E) with |V | = n, |E| = m, we can in O(m+ n)
time construct a graph G′ = (V ′, E′) with V ⊆ V ′, so that |V ′| ≤ O(n), |E′| ≤ O(m+n), for
every v ∈ V ′, deg(v) ≤ dm/ne, and so that for every u, v ∈ V , dG′(u, v) = dG(u, v), and so
that any path p between some nodes u ∈ V and v ∈ V in G′ (possibly u = v) is in one-to-one
correspondence with a path in G of the same length.

The proof of the above lemma introduces edges of weight 0, even if the graph was originally
unweighted. In the lemma below which is proved in the the full version [10], we show how for
an unweighted graph we can achieve essentially the same goal, but without adding weighted
edges. This turns out to be useful for our unweighted girth approximation.

I Lemma 7. Given a directed unweighted graph G = (V,E) and |V | = n, |E| = m, we
can in Õ(m + n) time construct an unweighted graph G′ = (V ′, E′) with V ⊆ V ′, so that
|V ′| ≤ O(n logn), |E′| ≤ O(m + n logn), for every v ∈ V ′ out-deg(v) ≤ dm/ne, and so
that there is an integer t such that for every u, v ∈ V , dG′(u, v) = t · dG(u, v), and so that
any path p between some nodes u ∈ V and v ∈ V in G′ (possibly u = v) is in one-to-one
correspondence with a path in G of length 1/t of the length of p.

In particular, the lemma will imply that the girth of G′ is exactly t times the girth of
G, and that given a c-roundtrip spanner of G′, one can in Õ(m+ n) time obtain from it a
c-roundtrip spanner of G. We note that it is easy to obtain the same result but where both
the in- and out-degrees are O(m/n) (see the proof in the full version [10]).

Now we can assume that the degree of each node is no more than O(m/n). This will
allow us for instance to run Dijkstra’s algorithm or BFS from a vertex within a neighborhood
of w nodes in Õ(mw/n) time.

Another assumption we can make without loss of generality is that our given graph G is
strongly connected. In linear time we can compute the strongly connected components and
then run any algorithm on each component separately. We know that any two vertices in
different components have infinite roundtrip distance.

A final lemma (implicit in [6]) will be very important for our algorithms:

I Lemma 8. Let G = (V,E) be a directed graph with |V | = n and integer edge weights in
{1, . . . ,M}. Let S ⊆ V with |S| > c logn (for c ≥ 100/ log(10/9)) and let d be a positive
integer. Let R be a random sample of c logn nodes of S and define S′ := {s ∈ S | d(s, r) ≤
d, ∀r ∈ R}. Suppose that for every s ∈ S there are at most 0.2|S| nodes v ∈ V so that
d(s, v), d(v, s) ≤ d. Then |S′| ≤ 0.8|S|.

Proof. The proof will consist of two parts. First we will show that the number of ordered
pairs s, s′ ∈ S for which d(s, s′), d(s′, s) ≤ d is small. Then we will show that if |S′| > 0.8|S|,
then with high probability, the number of ordered pairs s, s′ ∈ S for which d(s, s′), d(s′, s) ≤ d
is large, thus obtaining a contradiction.

(1) If for every s ∈ S there are at most 0.2|S| nodes v ∈ V so that d(s, v), d(v, s) ≤ d, then
the number of ordered pairs s, s′ ∈ S for which d(s, s′), d(s′, s) ≤ d is clearly at most 0.2|S|2.

(2) Suppose now that |S′| > 0.8|S|. First, consider any s ∈ S for which there are at least
0.1|S| nodes s′ ∈ S such that d(s, s′) > d. The probability that d(s, r) ≤ d for all r ∈ R
is then at most 0.9c logn ≤ 1/n100. Thus, via a union bound, with high probability at least
1− 1/n99, for every s ∈ S′, there are at least 0.9|S| nodes s′ ∈ S such that d(s, s′) ≤ d.

Now, if |S′| > 0.8|S|, with high probability, there are at least 0.8|S| × 0.9|S| = 0.72|S|2
ordered pairs (s, s′) with s, s′ ∈ S and d(s, s′) ≤ d. There are at most

(|S|
2

)
≤ |S|2/2 ordered

pairs (s, s′) such that exactly one of {d(s, s′) ≤ d, d(s′, s) ≤ d} holds. Hence, with high
probability there are at least 0.22|S|2 > 0.2|S|2 ordered pairs (s, s′) with s, s′ ∈ S and both
d(s, s′) ≤ d and d(s′, s) ≤ d. Contradiction. J

ICALP 2020
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3 2-Approximation for the Girth in Unweighted Graphs

Here we show how to obtain a genuine 2-approximation for the girth in unweighted graphs.

I Theorem 9. Given a directed unweighted graph G on m edges and n nodes, one can in
Õ(mn3/4) time compute a 2-approximation to the girth.

Note that this is the first part of Theorem 2. The pseudocode for the algorithm of Theorem
9 can be found in Algorithm 1, and we will refer to it at each stage of the proof.

We will consider two cases for the girth: when it is ≥ nδ and when it is < nδ, for some
δ > 0 we will eventually set to 1/4. We will assume that all out-degrees in the graph are
O(m/n).

3.1 Large girth
Pick a random sample R of 100n1−δ logn nodes, run BFS to and from each s ∈ R. Return

min
s∈R

min
v 6=s

d(s, v) + d(v, s).

If the girth is ≥ nδ, with high probability, R will contain a node s on the shortest cycle
C. Since any cycle must contain two distinct nodes, mins∈R minv 6=s d(s, v) + d(v, s) is the
weight of a shortest cycle that contains some node of R, and with high probability it must
be the girth. Thus in Õ(mn1−δ) time we have computed the girth exactly. See Procedure
HighGirth in Algorithm 1.

3.2 Small girth
Now let us assume that the girth is at most nδ. For a vertex u and integer j ∈ {0, . . . , nδ},
define

Bj(u) := {x ∈ V | d(u, x) = j} and B̄j(u) := {x ∈ V | d(u, x) ≤ j}.

We will try all choices of integers i from 3 to nδ to estimate the girth when it is ≤ i.
Our algorithm first computes a random sample Q of size O(n1−t logn) for a parameter

t, does BFS from and to all nodes in Q, and computes for each i ∈ {1, . . . , nδ}, V ′i = {v ∈
V | ∃q ∈ Q : d(v, q) ≤ i and d(q, v) ≤ i}. The running time needed to do this for all i ≤ nδ
is Õ(mn1−t+δ) 2.

If V ′i 6= ∅, the girth of G must be ≤ 2i.
Now, pick the smallest i for which V ′i+1 6= ∅. Then V ′k = ∅ for all k ≤ i, and we have

certified that the girth is ≤ 2i+ 2. If the girth is ≥ i+ 1, we already have a 2-approximation.
Otherwise, the girth must be ≤ i.

Consider any u ∈ V , and j ≤ i. Suppose that for all j ≤ i, |Bj(u)| ≤ 100nt. Then, for u
and for all v ∈ Bj(u) for j ≤ i, we could compute the distances from u to v in G efficiently:
We do this by running BFS from u but stopping when a vertex outside of ∪ij=0B

j(u) is found.
Note that the number of vertices in ∪ij=0B

j(u) is O(nt · i), and since we assumed that the
degree of every vertex is O(m/n), we get a total running time of O(mnt−1 · i). If this works
for all vertices u, then we would be able to compute all distances up to i exactly in total
time O(m · int) ≤ O(mnt+δ).

2 The running time is actually less, Õ(n2−t+δ + mn1−t) but this won’t matter for our algorithm.
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Unfortunately, however, some Bj(u) balls can be larger than 100nt. In this case, for
every j ≤ i, we will compute a small set of nodes B′j(u) that will be just as good as Bj(u)
for computing short cycles.

B Claim 10. Fix i: 1 ≤ i ≤ nδ. Suppose that for every j ≤ i we are given black box access
to sets B′j(u) ⊆ B̄j(u) of nodes such that (1) In t(n) time we can check whether a node is in
B′j(u), (2) |B′j(u)| ≤ 100nt whp, and (3) for any cycle C of length ≤ i containing u, and
every j ≤ i, any node of C that is in Bj(u) is also in B′j(u).

Then there is an O(mnt−1+δt(n)) time algorithm that can find a shortest cycle through
u, provided that cycle has length ≤ i.

Proof. Let us assume that there is some cycle C of length ≤ i containing u. Also, assume
that we are given the sets B′j(u) for all j ≤ i as in the statement of the lemma.

Then we can compute a modified BFS out of u. We will show by induction that when
considering distance j ≤ i, our modified BFS will have found a set Nj(u) of nodes such that
for every x ∈ Nj(u), d(u, x) ≤ j, and so that for any cycle C of length ≤ i containing u, any
node of C that is in Bj(u) is also in Nj(u).

Initially, N0(u) = {u}, so the base case is fine. Let’s make the induction hypothesis for j
that for every x ∈ Nj(u), d(u, x) ≤ j, and for a shortest cycle C of length ≤ i containing u,
any node of C that is in Bj(u) is also in Nj(u).

Our modified BFS proceeds as follows: Given Nj(u), we go through each z ∈ Nj(u), and
if z ∈ B′j(u), we go through all out-neighbors y of z, and if y has not been visited until now,
we place y into Nj+1(u). See Procedure ModBFS in Algorithm 1 (parameter t is set to 1/2
here).

Clearly, since d(u, z) ≤ j (by the induction hypothesis), we have that d(u, y) ≤ j + 1 for
each out-neighbor y of z. Now consider a shortest cycle C containing u of length ≤ i. To
complete the induction we only care about j < |C|.

Assume that the induction hypothesis for j holds. Let x be the node on C at distance
j + 1 from u along C, and let x′ be its predecessor on C, i.e. the node on C at distance j
from u along C. Since C is a shortest cycle containing u and since x′ 6= x, we must have that
d(u, x′) = j so that x′ ∈ Bj(u). Also, either u = x, or d(u, x) = j + 1 and so x ∈ Bj+1(u).

We know by the induction hypothesis that x′ ∈ Nj(u) and also that x′ ∈ B′j(u) by the
definition of B′j(u). Thus, we would have gone through the edges out of x′, and x would
have been discovered. If u = x, then the cycle C will be found. Otherwise, d(u, x) = j + 1,
and x cannot have been visited until now, so our modified BFS will insert x into Nj+1(u)
thus completing the induction.

The running time of the modified BFS is determined by the fact that there are i ≤ nδ
levels, each of Nj(u)∩B′j(u) contains ≤ O(nt) nodes, and we traverse the O(m/n) edges out
of every x ∈ Nj(u) ∩B′j(u). The running time is thus asymptotically t(n)× nδ × nt ×m/n
which is O(mnt+δ−1t(n)). C

Now we want to explain how to compute the sets B′j(u). We use Lemma 8 from the
preliminaries. Suppose that the girth is at most i and for every k ≤ i, V ′k = ∅.

Let u be a node on a cycle C of length at most i. Let x be any node on C so that
x ∈ Bj(u) for some integer j ≤ i. Then we must have that for every y ∈ B̄j(u) :

d(x, y) ≤ d(x, u) + d(u, y) ≤ |C| − d(u, x) + d(u, y) ≤ i− j + j = i.

This inequality is crucial for our algorithm. See Figure 1 for a depiction of it.
In other words, we obtain that x is in {w ∈ Bj(u) | d(w, y) ≤ i, ∀y ∈ B̄j(u)}.

ICALP 2020
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u

y
j

j

x

g − j

g

Figure 1 Here there is a cycle of length g containing u. A node x on the cycle is at distance j

from u along the cycle and another node y is at distance ≤ j from u. Then the distance from x to y

is at most g since one way to go from x to y is to go from x to u along the cycle at a cost of g − j,
and then from u to y at a cost of ≤ j. If the cycle is a shortest cycle containing u and if x 6= u, then
the distance in the graph from u to x is j, as the path along the cycle needs to be a shortest path.

Suppose that we are able to pick a random sample Rj(u) of c logn vertices from B̄j(u)
(we will show how later). Then we can define

B̄′j(u) := {z ∈ B̄j(u) | d(z, y) ≤ i, ∀y ∈ Rj(u)}.

Using Lemma 8 we will show that if |B̄j(u)| ≥ 10nt, then |B̄′j(u)| ≤ 0.8B̄j(u) and if x is
in {w ∈ Bj(u) | d(w, y) ≤ i, ∀y ∈ B̄j(u)}, then whp x ∈ B̄′j(u). We will then repeat the
argument to obtain B′j(u) of size O(nt).

Consider any s ∈ V with at least 0.2|B̄j(u)| nodes v ∈ V so that d(s, v), d(v, s) ≤ i.
As |B̄j(u)| ≥ 10nt (as otherwise we would be done), 0.2|B̄j(u)| ≥ 2nt, and so with high
probability, for s with the property above, our earlier random sample Q contains some
q with d(s, q), d(q, s) ≤ i, and so V ′i 6= ∅ which we assumed didn’t happen. Thus with
high probability, for every s ∈ V , there are at most 0.2|B̄j(u)| nodes v ∈ V so that
d(s, v), d(v, s) ≤ i. Hence we also have that every z ∈ B̄j(u) has at most 0.2|B̄j(u)| nodes
v ∈ V so that d(s, v), d(v, s) ≤ i.

Thus we can apply Lemma 8 to B̄j(u) and conclude that |B̄′j(u)| ≤ 0.8|B̄j(u)|, while
also any node x ∈ Bj(u) on the cycle C (containing u) is also in B̄′j(u).

We will iterate this process until we arrive at a subset of B̄j(u) that is smaller than 10nt
and still contains all x ∈ Bj(u) on an ≤ i-length cycle C.

We do this as follows. Let Bj0(u) = B̄j(u). For each k = 0, . . . , 2 logn, let Rjk(u) be
a random sample of O(logn) vertices of Bjk(u). Define Bjk+1(u) = {z ∈ Bjk(u) | d(z, y) ≤
i, ∀y ∈ ∪k`=0R

j
`(u)}. We get that for each k, |Bjk(u)| ≤ 0.8k|B̄j(u)| so that at the end of the

last iteration, |Bj2 logn(u)| ≤ 10nt and we can set B′j(u) to Bj2 logn(u).
It is not immediately clear how to obtain the random sample Rjk(u) from Bjk(u) as Bjk(u)

is unknown. We do it in the following way, adapting an argument from Chechik et al. [7]. For
each j ≤ i and k ≤ 2 logn we independently obtain a random sample Sj,k of V by sampling
each vertex independently with probability p = 100 logn/nt. For each of the (in expectation)
O(n1−t+δ log2(n)) vertices in the sets Sj,k we run BFS to and from them, to obtain all their
distances.

Now, for j ≤ i and k, to obtain the random sample Rjk(u) of the unknown Bjk(u), we
assume that we already have Rj`(u) for ` < k, and define

T jk (u) = {s ∈ Sj,k | s ∈ B̄j(u) and d(s, y) ≤ i, ∀y ∈ ∪`<kRj`(u)}.
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Forming the set T jk (u) is easy since we have the distances d(s, v) for all s ∈ Sj,k and v ∈ V ,
so we can check whether s ∈ B̄j(u) and d(s, y) ≤ i, ∀y ∈ ∪`<kRj`(u) in polylogarithmic time
for each s ∈ Sj,k. See Procedure RandomSamples in Algorithm 1.

Now since Sj,k is independent from all our other random choices, T jk (u) is a random sample
of Bjk(u) essentially created by selecting each vertex with probability p. If Bjk(u) ≥ 100nt,
with high probability, T jk (u) has at least 10 logn vertices so we can pick Rjk(u) to be a random
sample of 10 logn vertices of T jk (u), and they will also be a random sample of 10 logn vertices
of Bjk(u).

Once we have the sets Rjk(u) for each u and j ≤ i, k ≤ 2 logn, we run our modified BFS
from each u from Claim 10 where when we are going through the vertices x ∈ Nj(u) we
check whether x ∈ B′j(u) by checking whether d(x, r) ≤ i for every r ∈ ∪kRjk(u). This only
gives a polylogarithmic overhead so we can run the modified BFS in time Õ(mnt−1+δ) time.
We can run it through all u ∈ V in total time Õ(mnt+δ) time, and in this time we will be
able to compute the length of the shortest cycle if that cycle is of length ≤ i.

Putting it all together. In Õ(mn1−δ) time we compute the girth exactly if it is ≥ nδ. In
Õ(mn1−t+δ) time, we obtain i so that we have a 2-approximation of the girth if the girth is
> i. In additional Õ(mn1−t+δ +mnt+δ) time we compute the girth exactly if it is ≤ i.

To optimize the running time we set t = 1/2, 1− δ = 0.5 + δ, obtaining δ = 1/4, and a
running time of Õ(mn3/4). The final algorithm is in Algorithm 1.

4 Weighted Graphs: Girth and Roundtrip Spanner

One of the main differences between our weighted and unweighted algorithms is that for
weighted graphs we do not go through each distance value i up to nδ, but we instead process
intervals of possible distance values [(1 + ε)i, (1 + ε)i+1) for small ε > 0. This will affect
the approximation, so that we will get a (2 + O(ε))-approximation. However, it will also
enable us to have a smaller running time of Õ(m

√
n log(M)/ε), and to be able to output

an Õ(n1.5 log(M)/ε)-edge (5 +O(ε))-approximate roundtrip spanner in Õ(m
√
n log(M)/ε2)

time, where M is the maximum edge weight.
Fix ε > 0. For a vertex u and integer j, define (differently from the previous section)

Bj(u) := {x ∈ V | (1 + ε)j ≤ d(u, x) < (1 + ε)j+1} and B̄j(u) := {x ∈ V | d(u, x) < (1 + ε)j+1}.

We include a boundary case B∅(u) := {x ∈ V | d(u, x) = 0}. Recall that we originally
started with a graph with positive integer weights, but our transformation to vertices of
degree O(m/n) created some 0 weight edges. We note that any distance of 0 involves at least
one of the auxiliary vertices and no roundtrip distance can be 0.

In our algorithms including our (2+ε)-approximation algorithm, we do a restricted version
of Dijkstra from every vertex where before running these Dijkstras, we need to efficiently
sample a set of vertices Rj(u) of size O(logn) from a subset of Bj(u), without computing
the set Bj(u). The following lemma is given as input the target approximation factor 2β, a
parameter i as an estimated size of cycles the algorithm is handling at a given stage and a
parameter α as the target running time Õ(mnα) of our algorithms. It outputs the sample
sets in this running time. The proof of the lemma is similar to the sampling method of the
previous section and is included in the full version [10].
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Algorithm 1 2-Approximation algorithm for the girth in unweighted graphs.

1 Procedure HighGirth(G = (V,E))
2 Let R ⊆ V be a uniform random sample of 100n3/4 logn nodes.
3 foreach s ∈ R do
4 Do BFS from s in G
5 Let g be the length of the shortest cycle found by the BFS searches.
6 Return g.
7 Procedure RandomSamples(G = (v,E), i)
8 foreach j ∈ {1, . . . , i} do
9 foreach k ∈ {1, . . . , 2 logn} do

10 Let Sj,k ⊆ V be a uniform random sample of 100
√
n logn vertices.

11 foreach s ∈ Sj,k do
12 Do BFS to and from s to compute for all v, d(s, v) and d(v, s).

13 foreach u ∈ V do
14 foreach j ∈ {1, . . . , i} do
15 Rj(u)← ∅.
16 foreach k ∈ {1, . . . , 2 logn} do
17 T jk (u)← {s ∈ Sj,k | d(u, s) ≤ j and for all y ∈ Rj(u) : d(s, y) ≤ i}.
18 if |T jk (u)| < 10 logn then
19 Rj(u)← Rj(u) ∪ T jk (u)
20 Exit this loop (over k).
21 else
22 Let Rjk(u) be a uniform random sample of 10 logn nodes from

T jk (u).
23 Rj(u)← Rj(u) ∪Rjk(u).

24 Return the sets Rj(u) for all j ≤ i, u ∈ V , and d(s, v), d(v, s) for all s ∈ ∪j,kSj,k
and v ∈ V .

25 Procedure ModBFS(G = (v,E), u, i, R1(u), . . . , Ri(u)), d(·)
26 // d(·) contains d(s, v), d(v, s) for all s ∈ ∪j,kSj,k and v ∈ V .
27 V isited← empty hash table
28 N0 ← {u}
29 V isited.insert(u)
30 foreach j from 0 to i− 1 do
31 Nj+1 ← empty linked list
32 foreach x ∈ Nj do
33 if for every s ∈ Rj(u), d(x, s) ≤ i then
34 foreach y s.t. (x, y) ∈ E and y /∈ V isited do
35 if y = u then
36 Stop and return j + 1
37 Nj+1.insert(y)
38 V isited.insert(y)

39 Return ∞ // No ≤ i length cycle found through u
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40 Procedure GirthApprox(G = (V,E))
41 ghigh ← HighGirth(G)
42 Let Q ⊆ V be a uniform random sample of 100n1/2 logn nodes.
43 foreach s ∈ Q do
44 Do BFS from and to s in G
45 Let i be the minimum integer s.t. ∃s ∈ Q and ∃v ∈ V with d(s, v) ≤ i+ 1 and

d(v, s) ≤ i+ 1.
46 gmed ← 2(i+ 1)
47 Let i be the min of i and n1/4

48 Run RandomSamples(G, i) to obtain sets Rj(u) for all j ≤ i, u ∈ V , and d(·)
containing d(s, v), d(v, s) for all s ∈ ∪j,kSj,k and v ∈ V

49 foreach u ∈ V do
50 gu ←ModBFS(G, u, i, R1(u), . . . , Ri(u), d(·))
51 g ← min{ghigh, gmed,minu∈V gu}
52 Return g

I Lemma 11. Let M be the maximum edge weight of the graph and suppose that i ∈
{1, . . . , log1+εMn}, β > 0 and 0 < α < 1 are given. Suppose that Q is a given sampled
set of size Õ(nα) vertices. Let d = β(1 + ε)i+1. Let V ′i = {v ∈ V | ∃q ∈ Q : d(v, q) ≤
d and d(q, v) ≤ d}. In Õ(mnα) time, for every u ∈ V and every j = {1, . . . , log(1+ε)(Mn)},
one can output a sample set Rji (u) of size O(log2 n) from Z̄ji (u) = B̄j(u) \ V ′i , where the
number of vertices in Zji (u) = Bj(u) \ V ′i of distance at most d from all vertices in Rji (u) is
at most O(n1−α) whp.

Now we focus on our (2 +O(ε))-approximation algorithm for the girth and (5 +O(ε))-
approximate roundtrip spanner. We are going to prove the following Theorem, which consists
of Theorem 5 and the second part of Theorem 2 with a logM factor added to their running
times.

I Theorem 12. Let G be an n-node, m-edge directed graph with edge weights in {1, . . . ,M}.
Let ε > 0. One can compute a (5 + ε)-roundtrip spanner on Õ(n1.5 log2 M/ε2) edges in
Õ(m

√
n log2(M)/ε2) time, whp. In Õ(m

√
n log(M)/ε) time, whp, one can compute a (2+ε)-

approximation to the girth.

We will start with a sampling approach, similar to that in the unweighted girth approx-
imation. The pseudocode of the girth algorithm can be found in the full version [10].

I Lemma 13. Let G = (V,E) be a directed graph with |V | = n and integer edge weights
in {1, . . . ,M}. Let d be a positive integer, ε ≥ 0, and let Q ⊆ V be a random sample of
100
√
n logn vertices. In Õ(m

√
n) time we can compute shortest paths trees T in(q), T out(q)

into and out of each q ∈ Q. Let H be the subgraph of G consisting of the edges of these trees
T in(q), T out(q). Let V ′ = {v ∈ V | ∃q ∈ Q, d(v, q) ≤ d and d(q, v) ≤ d}. Then:

Girth approximation: If V ′ 6= ∅, then the girth of G is at most 2d.
Additive distance approximation: For any u, v ∈ V , if the shortest u to v path
contains a node of V ′, then dH(u, v) ≤ d(u, v) + 2d.
Sparsity: The number of edges in H is Õ(n1.5).

Proof. Given a directed G = (V,E) with |V | = n, |E| = m and edge weights in {1, . . . ,M},
let us first take a random sample Q ⊆ V of 100

√
n logn vertices. Run Dijkstra’s algorithm

from and to every q ∈ Q. Determine V ′ ⊆ V defined as those v ∈ V for which there is some
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q ∈ Q with d(v, q), d(q, v) ≤ d. If V ′ 6= ∅, we get that the girth of G is at most 2d. Suppose
that we insert all edges of the in- and out- shortest paths trees rooted at all q ∈ Q into a
subgraph H. Then we have only inserted Õ(n1.5) edges as each tree has ≤ n− 1 edges.

Consider some u, v ∈ V such that there is some node x ∈ V ′ on the shortest u− v path.
Let q ∈ Q be such that d(x, q), d(q, x) ≤ d. Then

dH(u, v) ≤ d(u, q) + d(q, v) ≤ d(u, x) + d(x, q) + d(q, x) + d(x, v) ≤ d(u, v) + 2d. J

Our approach below will handle the roundtrip spanner and the girth approximation at the
same time.

We will try all choices of integers i from 0 to log1+ε(Mn) to estimate roundtrip distances
in the interval [(1 + ε)i, (1 + ε)i+1), and to estimate the girth if it is < (1 + ε)i+1.

Fix a choice for i for now.
Our algorithm first applies the approach of Lemma 13 by setting d = (1 + ε)i+2 (we will

see later why). We compute a random sample Q of size O(
√
n logn), do Dijkstra’s from and

to all nodes in Q, and add the edges of the computed shortest paths trees to our roundtrip
spanner H. We also compute

V ′i = {v ∈ V | ∃q ∈ Q : d(v, q) ≤ (1 + ε)i+2 and d(q, v) ≤ (1 + ε)i+2}.

By Lemma 13, if V ′i 6= ∅, the girth of G must be ≤ 2(1 + ε)i+2. For the choice of i where
(1 + ε)i ≤ g ≤ (1 + ε)i+1, we will get an approximation factor of 2(1 + ε)2 ≤ 2(1 + 3ε). Just
as with the algorithm for unweighted graphs, we can pick the minimum i so that V ′i 6= ∅, use
2(1 + ε)i+2 as one of our girth estimates and then proceed from now on with a single value
i− 1 considering only the interval [(1 + ε)i−1, (1 + ε)i).

By Lemma 13, we also get that for any u, v ∈ V for which the u-v shortest path
contains a node of V ′i , H gives a good additive estimate of d(u, v), i.e. d(u, v) ≤ dH(u, v) ≤
d(u, v) + 2(1 + ε)i+2.

Suppose that also (1 + ε)i ≤ d(u � v) ≤ (1 + ε)i+1, and that we somehow also get a
good estimate for d(v, u) (either because the v-u shortest path contains a node of V ′, or by
adding more edges to H), so that also d(v, u) ≤ dH(v, u) ≤ d(v, u) + 2(1 + ε)i+2. Then,

d(u� v) ≤ dH(u� v) ≤ d(u� v) + 4(1 + ε)i+2 ≤ d(u� v)(1 + 4(1 + 3ε)) ≤ d(u� v)(5 + 12ε).

In other words, we would get a 5 +O(ε)-roundtrip spanner, as long as by adding Õ(n1.5)
edges to H, we can get a good additive approximation to the weights of the u-v shortest
paths that do not contain nodes of V ′i , for all u, v with (1 + ε)i ≤ d(u � v) ≤ (1 + ε)i+1.
We will in fact compute these shortest paths exactly. For the girth g itself, we will show
how to compute it exactly, if no node of V ′i hit the shortest cycle, where i is such that
(1 + ε)i−1 ≤ g ≤ (1 + ε)i.

Fix i. Let Zi = V \ V ′i and d = (1 + ε)i+1. We can focus on the subgraph induced by Zi.
Consider any u ∈ Zi, and j ≤ i. Define Zji (u) = Zi ∩Bj(u) and Z̄ji (u) = Zi ∩ B̄j(u). We

also add the boundary case Z∅i = Zi ∩B∅(u) = {x ∈ Zi | d(u, x) = 0}.
If for all j ∈ {∅} ∪ {1, . . . , i}, |Zji (u)| ≤ 100

√
n, running Dijkstra’s algorithm from u in

the graph induced by Zi, up to distance (1 + ε)i+1 would be cheap. Unfortunately, however,
some Zji (u) balls can be larger than 100

√
n. In this case, similarly to our approach for the

unweighted case, we will replace Zji (u) with a set Z ′ji (u) ⊆ Z̄ji (u) of size O(
√
n) with the

guarantee that for any v ∈ V with (1 + ε)i ≤ d(u� v) < (1 + ε)i+1 for which the shortest
u-v path does not contain a node of V ′i , every node of this u-v shortest path that is in Zji (u)
is also in Z ′ji (u).
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The following lemma shows how to use such replacement sets.

I Lemma 14. Let u and i be fixed. Suppose that for every j ∈ {∅} ∪ {1, . . . , i} we are
given black box access to sets Z ′ji (u) ⊆ Z̄ji (u) of nodes such that (1) Checking whether a
node z is in Z ′ji (u) takes t(n) time, (2) |Z ′ji (u)| ≤ 100

√
n whp, and (3) for any v such that

(1 + ε)i ≤ d(u� v) ≤ (1 + ε)i+1, and every j ≤ i, every node on the shortest path P from u

to v that is in Zji (u) is also in Z ′ji (u).
Then there is an Õ(m log(M)t(n)/(ε

√
n)) time algorithm that finds a shortest path from

u to any v with (1 + ε)i ≤ d(u � v) ≤ (1 + ε)i+1 and s.t. the shortest u-v path does not
contain a node of V ′i . The algorithm returns Õ(n0.5 log(M)/ε) edges whose union contains
all these shortest paths.

Proof. Assume we have the sets Z ′ji (u) for j ∈ {∅} ∪ {1, . . . , i} as in the statement of the
lemma.

Then we will define a modified Dijkstra’s algorithm out of u. The algorithm begins by
placing u in the Fibonacci heap with d[u] = 0 and all other vertices with d[·] =∞. When
a vertex x is extracted from the heap with estimate d[x], we determine the j for which
(1 + ε)j ≤ d[x] < (1 + ε)j+1; here j could be the boundary case that we called ∅ if d[x] = 0.
Then we check whether x is in Z ′ji . If it is not, we ignore it and extract a new vertex from the
heap. Otherwise if x ∈ Z ′ji , we go through all its out-edges (x, y), and if d[y] > d[x] +w(x, y),
we update d[y] = d[x] + w(x, y). For any new cycle to u found, we update the best weight
found, and in the end we return it.

Since we only go through the edges of at most O(
√
n log(Mn)/ε) vertices and the

degrees are all O(m/n), the runtime is O(m log(Mn)/(ε
√
n)). For the same reason, the

modified shortest paths tree whose edges we add to our roundtrip spanner has at most
O(
√
n log(Mn)/ε) edges.

Let v be such that (1 + ε)i ≤ d(u � v) ≤ (1 + ε)i+1 and for which the shortest u-v
path does not contain a node of V ′i . We will show by induction that our modified Dijkstra’s
algorithm will compute the shortest path from u to v exactly.

The induction will be on the distance from u. Let’s call the nodes on the shortest u to v
path, u = u0, u1, . . . , ut = v. The induction hypothesis for uk is that uk is extracted from
the heap with d[uk] = d(u, uk). Let us show that uk+1 will also be extracted from the heap
with d[uk+1] = d(u, uk+1). The base case is clear since u is extracted first.

When uk is extracted from the heap, by the induction hypothesis, d[uk] = d(u, uk). Let j
be such that (1 + ε)j ≤ d[uk] < (1 + ε)j+1. As no node on the u-v shortest path is in V ′i ,
we get that uk ∈ Zji . By the assumptions in the lemma, we also have that uk ∈ Z ′ji . Thus,
when uk is extracted, we will go over its edges. In particular, (uk, uk+1) will be scanned, and
d[uk+1] will be set to (or it already was) d[uk] + w(uk, uk+1) = d(u, uk+1). This completes
the induction.

It is also not hard to see that the girth will be computed exactly if u is on a shortest
cycle, the girth is in [(1 + ε)i, (1 + ε)i+1) and V ′i is empty. J

Now we compute the sets Z ′ji (u). First consider u, v ∈ V with (1 + ε)i ≤ d(u � v) <
(1 + ε)i+1. Let x be any node on the u to v roundtrip path (cycle) so that x ∈ Zji (u) for
some integer j ≤ i. Recall that this means (1 + ε)j ≤ d(u, x) < (1 + ε)j+1. Then for every y
with d(u, y) < (1 + ε)j+1 and so for each y ∈ Z̄ji (u) we must have (see Figure 2) that

d(x, y) ≤ d(x, u)+d(u, y) ≤ d(u� v)−d(u, x)+d(u, y) ≤ d(u� v)− (1+ε)j +(1+ε)j+1

= d(u� v) + ε(1 + ε)j ≤ d(u� v) + ε(1 + ε)i ≤ d(u� v)(1 + ε) ≤ (1 + ε)i+2.

ICALP 2020



35:14 Conditionally Optimal Directed Girth

u

y< (1 + ε)j+1

d(u, x) ≥ (1 + ε)j

x

d(u� v)− d(u, x)

d(u� v)

v

So d(x, y) ≤ d(u � v) + ε(1 + ε)j

≤ d(u � v)(1 + ε)

Figure 2 Here u and v have roundtrip distance more than (1 + ε)j . A node x on the shortest u-v
path is at distance at least (1 + ε)j from u, and another node y is at distance at most (1 + ε)j+1

from u. Then the distance from x to y is at most d(u� v)(1 + ε) since one way to go from x to y is
to go from x to u along the u-v roundtrip cycle at a cost of at most d(u� v)− (1 + ε)j , and then
from u to y at a cost of at most (1 + ε)j+1.

In other words, x must be in {w ∈ Z̄ji (u) | d(w, y) ≤ (1 + ε)i+2, ∀y ∈ Z̄ji (u)}.
We apply Lemma 11 for β = (1 + ε) and α = 1/2. It outputs sets Rji (u) of size O(log2 n)

vertices, where the number of vertices in Z̄ji (u) that are at distance (1 + ε)i+2 from all
vertices in Rji (u) is O(

√
n). So all vertices x ∈ Zji (u) that are in a roundtrip path u− v with

(1 + ε)i ≤ d(u � v) < (1 + ε)i+1 are in this set, so we let Z ′ji (u) = {w ∈ Z̄ji (u)|d(w, y) ≤
(1 + ε)i+2, ∀y ∈ Rji (u)}.

Now that we have the random samples, we implement the modified Dijkstra’s algorithm
from Lemma 14 with only a polylogarithmic overhead as follows:

Fix some j. Let’s look at the vertices x with (1 + ε)j ≤ d[x] < (1 + ε)j+1 that the
modified Dijkstra’s algorithm extracts from the heap. Since d[x] is always an overestimate,
d(u, x) ≤ d[x] < (1 + ε)j+1, and so x ∈ B̄j(u). Now, since x is already in B̄j(u), to
check whether x ∈ Z ′ji (u), we only need to check whether x ∈ Zi (easy) and whether
d(x, y) ≤ (1+ε)i+2 for all y ∈ Rji (u) (this takes O(log2 n) time since we have all the distances
to the nodes in the random samples).

The final running time is Õ(m
√
n log2(M)/ε2) since we need to run the above procedure

O(log(Mn)/ε) times, once for each i, and each procedure costs Õ(m log(M)
√
n/ε) time. As

we mentioned before, to estimate the girth to within a (2+ε)-factor, we do not need to run the
procedure for all i but (as with the algorithm for unweighted graphs), only for the minimum
i for which V ′i+1 6= ∅. Thus the running time for the girth becomes Õ(m

√
n log(M)/ε).

4.1 (4 + ε)-Approximation Algorithm for the Girth in Õ(mn
√

2−1)
Time

In this section we are going to prove the modified version of Theorem 3, where a logM factor
is added to the running time with M being the maximum edge weight.

I Theorem 15. For every ε > 0, there is a (4 + ε)-approximation algorithm for the girth in
directed graphs with edge weights in {1, . . . ,M} that runs in Õ(mn

√
2−1 log(M)/ε) time.

Proof. Suppose that we want an Õ(mnα) time girth approximation algorithm. Let β =
2(1 + ε). As a first step, we sample a set Q of Õ(nα) vertices and do in and out Dijkstra
from them.
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We let V ′i = {v ∈ V | ∃q ∈ Q : d(v, q) ≤ β(1+ε)i+1 and d(q, v) ≤ β(1+ε)i+1}. If V ′i 6= ∅
for some i, then we have that the girth g is at most 2β(1 + ε)i+1. If (1 + ε)i ≤ g ≤ (1 + ε)i+1,
this is a 2β(1 + ε) ≤ 4(1 + 3ε) = 4 +O(ε) approximation.

So take the minimum i where V ′i+1 6= ∅. Let g′ = (1 + ε)i+1 be our current upper bound
for the girth g. We initially mark all vertices “on”, meaning that they are not processed yet.
For each on vertex u, we either find the smallest cycle of length at most g′ passing through
u where all vertices of the cycle are on, or conclude that there is no cycle of length at most
g′ passing through u. When a vertex u is processed, we mark it as “off”. We proceed until
all vertices are off.

We apply Lemma 11 for β = 2(1 + ε). Note that since V ′i = ∅, Zji (u) = Bj(u) is all the
vertices at distance [(1 + ε)j , (1 + ε)j+1) from u. The lemma outputs sets Rji (u) ⊆ Zji (u),
where |Rji (u)| = O(log2 n) and the number of vertices in Bj(u) at distance βg′ from Rji (u) is
at most O(n1−α) whp. Fix some on vertex u. We do modified Dijkstra from u up to vertices
with distance at most g′/2 from u as follows:

We begin by placing u in the Fibonacci heap with d[u] = 0 and all other on vertices with
d[·] =∞. When a vertex x is extracted from the heap with estimate d[x], we determine the j
for which (1 + ε)j ≤ d[x] < (1 + ε)j+1; here j could be the boundary case that we called ∅ if
d[x] = 0. Then we check whether d(x, r) ≤ g′− (1 + ε)j + (1 + ε)j′+1 for all r ∈ Rj

′

i (u) for all
j′. If x does not satisfy this condition, we ignore it and extract a new vertex from the heap.
Otherwise, we go through all its out-edges (x, y), and if d[y] > d[x] + w(x, y), we update
d[y] = d[x] + w(x, y). We stop when the vertex u extracted from the heap has d[u] > g′/2.

Let Si(u) be the set of all the vertices visited in the modified out-Dijkstra. Simillarly, let
Ti(u) be all the vertices visited in the analogous modified in-Dijkstra (using an analogous
version of Lemma 11).

Suppose that there is a vertex v with d(u� v) ≤ g′, where all vertices in the uv cycle C
are on. Without loss of generality, suppose that dC(u, v) ≤ g′/2. So d(u, v) ≤ g′/2. Moreover,
suppose that v ∈ Zji (u), i.e. (1 + ε)j ≤ d(u, v) ≤ (1 + ε)j+1. So for any vertex w ∈ Zj

′

i (u)
for some j′ we have that d(v, w) ≤ d(v, u) + d(u,w) ≤ g′ − (1 + ε)j + (1 + ε)j′+1. Since all
vertices on the uv path that is part of the cycle are on and the length of this path is at most
g′/2, we visit v in the out-Dijkstra, i.e. v ∈ Si(u). Similarly, if d(v, u) ≤ g′/2, we visit v in
the in-Dijkstra and so v ∈ Ti(u).

If both Si(u) and Ti(u) have size at most nα, we do Dijkstra from u in the induced
subgraph on Si(u) ∪ Ti(u), and see if there is a cycle of length at most g′ passing through
u (and find the smallest such cycle), which takes O(mn n

α) time. We take the length of this
cycle as one of our estimates. The modified in and out Dijkstras take O(log2 n. lognM

ε .nα.mn ),
as checking the conditions for each x extracted from the heap takes O(log2 n. lognM

ε ) time.
So in Õ( logM

ε nα.mn ) time we process u and mark it as ”off and proceed to another vertex.
Suppose Si(u) has size bigger than nα (the case where Ti(u) has size bigger than nα is

similar). Note that by Lemma 11 we have |Si(u)| ≤ O(n1−α) because for each r ∈ Rji (u),
we have that d(x, r) ≤ g′ − (1 + ε)j + (1 + ε)j+1 ≤ g′ + ε(1 + ε)j ≤ g′ + εg′/2 ≤ βg′. So
it is a subset of vertices that are at distance at most βg′ from all samples in Rji for all j.
Our new goal is the following: We want to either find the smallest cycle of length at most g′
passing through Si(u) that contains no off vertices, or say that there is no cycle of length
≤ g′ passing through any of the vertices in Si(u) whp.

For this, we do another Modified Dijkstra from u as follows:
We begin by placing u in the Fibonacci heap with d[u] = 0 and all other on vertices with

d[·] =∞. When a vertex x is extracted from the heap with estimate d[x], we determine the
j for which (1 + ε)j ≤ d[x] < (1 + ε)j+1; here j could be the boundary case that we called
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∅ if d[x] = 0. Then we check whether d(x, r) ≤ βg′ = 2(1 + ε)g′ for all r ∈ Rji (u). If it is
not, we ignore it and extract a new vertex from the heap. Otherwise, we go through all its
out-edges (x, y), and if d[y] > d[x] + w(x, y), we update d[y] = d[x] + w(x, y). We stop when
the vertex u extracted from the heap has d[u] > 3g′/2.

We show that if there is a cycle of length at most g′ going through v ∈ Si(u) containing
to off vertex, all vertices of the cycle are among the vertices we visit in the modified Dijkstra:
Suppose that d(w � v) ≤ g′, and suppose that v ∈ Zji (u) and w ∈ Zj

′

i (u). Then for every
r ∈ Rj

′

i (u), we have that d(w, r) ≤ d(w, v) +d(v, r) ≤ g′−d(v, w) + g′− (1 + ε)j + (1 + ε)j′+1.
Since d(v, w) ≥ (1 + ε)j′ − (1 + ε)j+1, we have d(w, r) ≤ 2g′ + ε(1 + ε)j′ + ε(1 + ε)j ≤
2g′ + 3εg′/2 + εg′/2 = βg′. Since the uw path that goes through v is a path of length at
most βg′ that has no off vertices, we visit w in the modified Dijkstra.

By Lemma 11 the total number of vertices visited in the modified Dijkstra is at most
O(n1−α). Let the subgraph on these vertices be G′. We recurse on G′, and find a 4 +O(ε)
approximation of the girth in G′. The girth in G′ is a lower bound on the minimum cycle
of length ≤ g′ passing through any vertex in Si(u) that has no off vertex. We take this
value as one of our estimates. So we have processed all vertices in Si(u) and we mark them
off. This takes O(mn .

logM
ε .((n1−α)1+α)), and we have marked off at least nα vertices. So we

spend O(mn .
logM
ε .n1−α2−α) for processing each vertex. Letting 1−α2 −α = α, we have that

α =
√

2− 1. So the total running time is Õ(mn
√

2−1 log(M)/ε). Our final estimate of the
girth is the minimum of all the estimates we get through processing vertices. J

4.2 (2k + ε)-Approximation Algorithm For the Girth
In this section we are going to prove a modified version of Theorem 4, where a logM factor
is added to the running time with M being the maximum edge weight. The proof is a
generalization of the proof of Theorem 15.

I Theorem 16. For every ε > 0 and integer k ≥ 1, there is a (2k + ε)-approximation
algorithm for the girth in directed graphs with edge weights in {1, . . . ,M} that runs in
Õ(mnαk log(M)/ε) time, where αk > 0 is the solution to αk(1 + αk)k−1 = 1− αk.

Suppose that we are aiming for a 2k(1 +O(ε)) approximation algorithm for the girth, in
Õ(mnα logM/ε) time, where we set α later. So basically we want to spend Õ(mn

logM
ε nα)

per vertex. Let β = k + k2ε+ kε = k + O(ε). As before, first we sample a set Q of Õ(nα)
and do in and out Dijkstra from each vertex q ∈ Q. Let imin be the minimum number i
such that the set V ′i = {v ∈ V | ∃q ∈ Q : d(v, q) ≤ β(1 + ε)i+1 and d(q, v) ≤ β(1 + ε)i+} is
non-empty. So our initial estimate of the girth is 2β(1 + ε)imin+1.

Let i = imin − 1 and let g′ = (1 + ε)i+1 be our estimate of the girth. Initially we mark
all vertices as “on”, and as we process each vertex, we either find a smallest cycle of length
at most g′ with no “off” vertex, or we say that there is no cycle of length at most g′ passing
through it whp, and we mark the vertex as off.

We apply Lemma 11 for β = k+k2ε+kε and the set Q as input. It gives us the sets Rji (u)
of size O(log2 n) for all j, such that the number of vertices in B̄j(u) = {w ∈ V |d(u,w) ≤
(1 + ε)j+1} that are at distance at most βg′ from all r ∈ Rji (u) is at most O(n1−α) whp.

We take an on vertex u and do “modified” Dijkstra from (to) u, stopping at distance
g′/2, such that the set of vertices we visit contains any cycle of length g′ that passes through
u that has no off vertex. We explain this modified Dijkstra later.

We call the set of vertices that we visit in the modified out-Dijkstra S1
i (u). If S1

i (u) ≤ nα,
we do an analogous modified in-Dijkstra from u, and let T 1

i (u) be the set of vertices visited
in this in-Dijkstra. If T 1

i (u) ≤ nα, then we do Dijkstra from u in the subgraph induced by
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S1
i (u) ∪ T 1

i (u), and hence find a smallest cycle of length ≤ g′ that passes through u with no
off vertex. We take the length of this cycle as one of our estimates for the girth. If there is
no such cycle, we don’t have any estimate from u. Now we mark u as off and proceed the
algorithm by taking another on vertex. Our modified Dijkstras takes O(log2 n. logMn

ε .mn |S|)
time if S is the set of vertices visited by the Dijkstra. Hence for processing u we spend
O(log2 n. logMn

ε .mn n
α) time.

So suppose that either S1
i (u) or T 1

i (u) have size bigger than nα. Without loss of generality
assume that |S1

i (u)| ≥ nα (the other case is analogous). For 1 ≤ l ≤ k, define sets Sli(u) as
the set of on vertices w ∈ V such that there is a path of length at most (2l − 1)g′/2 from
u to w that contains no off vertex, and if w ∈ Bj(u), then for all r ∈ Rj

′

i (u) for all j′, we
have d(w, r) ≤ (l+ l2ε)g′ + (1 + ε)j′+1 − (1 + ε)j . Once we explain our modified Dijkstras, it
will be clear that S1

i defined here is indeed the set of vertices visited in the first modified
out-Dijkstra.

We set S0
i (u) = {u}. We prove the following useful lemma in the full version [10].

I Lemma 17. For all l ∈ {1, . . . , k}, we have that Sl−1
i (u) ⊆ Sli(u). Moreover, if w ∈ V is

in a cycle of length at most g′ with some vertex in Sl−1
i (u) such that the cycle contains no

off vertex, then we have w ∈ Sli(u).

Our algorithm will do at most k modified Dijkstras from u, where we prove that the set
of vertices visited in the lth Dijkstra is Sli(u). After performing each Dijkstra we decide if
we continue to the next modified Dijkstra from u or proceed to another on vertex.

Suppose that at some point we know that the set Sl−1
i (u) is the set of vertices visited in

the (l − 1)th modified Dijkstra, and we want to proceed to the lth Dijkstra. Our new goal is
the following: We want to catch a minimum cycle of length ≤ g′ passing through Sli with no
off vertex. For this, we do the lth modified Dijkstra form u as follows.

We begin by placing u in the Fibonacci heap with d[u] = 0 and all other on vertices with
d[·] =∞. When a vertex x is extracted from the heap with estimate d[x], we determine the j
for which (1 + ε)j ≤ d[x] < (1 + ε)j+1; here j could be the boundary case that we called ∅ if
d[x] = 0. Then we check whether d(x, r) ≤ (l+ l2ε)g′− (1 + ε)j + (1 + ε)j′+1 for all r ∈ Rj

′

i (u)
for all j′. If x does not satisfy this condition, we ignore it and extract a new vertex from
the heap. Otherwise, we go through all its out-edges (x, y), and if d[y] > d[x] + w(x, y),
we update d[y] = d[x] + w(x, y). We stop when the vertex u extracted from the heap has
d[u] > (2l − 1)g′/2.

It is clear by definition that the set of vertices that this modified Dijkstra visits is Sli(u).
Now if |Sli(u)| ≤ c(|Sl−1

i (u)|.nα)
1

1+α for some constant c, we recurse on the subgraph induced
by Sli(u), i.e. G[Sli(u)], to get an 2k + O(ε) approximation of the girth on this subgraph.
The girth in G[Sli(u)] is a lower bound on the minimum cycle of length ≤ g′ passing through
Sl−1
i (u) with no off vertex. So we take this value as one of our estimates and we mark all

vertices of Sl−1
i (u) as off. The running time of this recursion is Õ(mn

logM
ε |S

l
i(u)|1+α) as the

average degree is O(mn ). Since we process Sl−1
i (u) vertices in this running time, we spend

Õ(mn
logM
ε .|Sli(u)|/|Sl−1

i (u)|) ≤ Õ(mn .
logM
ε .nα) for each vertex.

Note that |Ski (u)| ≤ O(n1−α). This is because for all x ∈ Ski ∩ Bj(u) and for all
r ∈ Rji (u), we have that d(x, r) ≤ (k+k2ε)g′+(1+ε)j+1− (1+ε)j ≤ (k+k2ε)g′+ε(1+ε)j ≤
(k + k2ε)g′ + ε(2k − 1)g′/2 ≤ (k + k2ε+ kε)g′ = βg′. So Ski (u) is a subset of all vertices in
Bj(u) with distance at most βg′ from all r ∈ Rji (u), and so by Lemma 11 it has size at most
O(n1−α).

When all vertices are marked off, we take the minimum value of all the estimates as our
estimate for g.
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Since we have that Sli(u) ≤ O(n1−α), if we set α appropriately, for some l < k we have
that |Sl+1

i (u)| ≤ (|Sli(u)|.nα)
1

1+α . For k = 1, setting α = 1/2 gives us the algorithm of
Theorem 12. For k > 1, the following lemma determines α. The proof of the lemma can be
found in the full version [10].

I Lemma 18. For k > 1, let the sets Sli for l = 1, . . . , k be such that Sli ⊆ Sl+1
i for all l < k,

S1
i ≥ nα and Ski ≤ O(n1−α). Let 0 < α < 1 satisfy α(1 +α)k−1 = 1−α. Then there is l < k

and a constant c such that |Sl+1
i | ≤ c(|Sli|.nα)

1
1+α .

Note that for k = 2, Lemma 18 sets α =
√

2 − 1 and thus gives us the algorithm of
Theorem 15.

5 Hardness

Our hardness result is based on the following k-Cycle hypothesis (see [14, 3, 16]).

I Hypothesis 1 (k-Cycle Hypothesis). In the word-RAM model with O(logm) bit words,
for any constant ε > 0, there exists a constant integer k, so that there is no O(m2−ε) time
algorithm that can detect a k-cycle in an m-edge graph.

All known algorithms for detecting k-cycles in directed graphs with m edges run at best
in time m2−c/k for various small constants c [23, 2, 14, 9], even using powerful tools such
as fast matrix multiplication. Refuting the k-Cycle Hypothesis above would resolve a big
open problem in graph algorithms. Moreover, as shown by Lincoln et al. [14] any algorithm
for directed k-cycle detection, for k-odd, with running time O(mn1−ε) for ε > 0 whenever
m = Θ(n1+2/(k−1)) would imply an O(nk−δ) time algorithm for k-clique detection for δ > 0.
If the cycle algorithm is “combinatorial”, then the clique algorithm would be “combinatorial”
as well, and since all known O(nk−δ) time k-clique algorithms use fast matrix multiplication,
such a result for k-cycle would be substantial.

We will show that under Hypothesis 1, approximating the girth to a factor better than 2
would require mn1−o(1) time, and so up to this hypothesis, our approximation algorithm is
optimal for the girth in unweighted graphs.

I Theorem 19. Suppose that for some constants ε > 0 and δ > 0, there is an O(m2−ε)
time algorithm that can compute a (2− δ)-approximation of the girth in an m-edge directed
graph. Then for every constant k, one can detect whether an m-edge directed graph contains
a k-cycle, in O(m2−ε) time, and hence the k-Cycle Hypothesis is false.

Proof. The proof is relatively simple. Suppose that for some constants ε > 0 and δ > 0,
there is an O(m2−ε) time algorithm that can compute a (2− δ)-approximation of the girth
in an m-edge directed graph.

Now let k ≥ 3 be any constant integer and let G be an n-node, m-edge graph. First
randomly color each vertex of G with one of k colors. Let C be any k-cycle in G. With
probability 1/kk, for each i = 0, . . . , k − 1, the ith vertex of C is colored i.

Now, for each 0 ≤ i ≤ k − 1, let Vi be the vertices colored i. For each vertex u ∈ Vi, and
each directed edge (u, v) out of u, keep (u, v) if and only if v ∈ Vi+1 where the indices are
taken mod k. This builds a graph G′ which is a subgraph of G and contains a k-cycle if G
does with probability ≥ 1/kk.

G′ has two useful properties. (1) Any cycle of G′ has length divisible by k, and (2) (which
follows from (1)) the girth of G′ is k if G′ contains a k-cycle and it is ≥ 2k otherwise.
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As G′ has at most m edges (it is a subgraph of G), we can use our supposedly fast 2− δ
approximation algorithm to determine whether the girth is k or larger in O(m2−ε) time.
By iterating the construction O(kk logn) times, we get that the k-cycle problem in G can
be solved in Õ(kkm2−ε) time, and as k is a constant, we are done. The approach can be
derandomized with standard techniques (e.g. [1]). J
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Abstract
We introduce symmetric arithmetic circuits, i.e. arithmetic circuits with a natural symmetry
restriction. In the context of circuits computing polynomials defined on a matrix of variables, such
as the determinant or the permanent, the restriction amounts to requiring that the shape of the
circuit is invariant under row and column permutations of the matrix. We establish unconditional,
nearly exponential, lower bounds on the size of any symmetric circuit for computing the permanent
over any field of characteristic other than 2. In contrast, we show that there are polynomial-size
symmetric circuits for computing the determinant over fields of characteristic zero.
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1 Introduction

Valiant’s conjecture [23], that VP 6= VNP, is often referred to as the algebraic counterpart
to the conjecture that P 6= NP. It has proved as elusive as the latter. The conjecture is
equivalent to the statement that there is no polynomial-size family of arithmetic circuits for
computing the permanent of a matrix, over any field of characteristic other than 2. Here,
arithmetic circuits are circuits with input gates labelled by variables from some set X or
constants from a fixed field F, and internal gates labelled with the operations + and ×. The
output of such a circuit is some polynomial in F[X], and we think of the circuit as a compact
representation of this polynomial. In particular, if the set of variables X form the entries
of an n × n matrix, i.e. X = {xij | 1 ≤ i, j ≤ n}, then PERMn denotes the polynomial∑
σ∈Symn

∏
xiσ(i), which is the permanent of the matrix.

While a lower bound for the size of general arithmetic circuits computing the permanent
remains out of reach, lower bounds have been established for some restricted classes of circuits.
For example, it is known that there is no sub-exponential family of monotone circuits for the
permanent [17, 18]. An exponential lower bound for the permanent is also known for depth-3
arithmetic circuits [15] over finite fields. In both these cases, the exponential lower bound
obtained for the permanent also applies to the determinant, i.e. the family of polynomials
{DETn}n∈N, where DETn is

∑
σ∈Symn

sgn(σ)
∏
xiσ(i). However, the determinant is in VP

and so there do exist polynomial-size families of circuits for the determinant.
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In this paper, we consider a new restriction on arithmetic circuits based on a natural
notion of symmetry, and we show that it distingushes between the determinant and the
permanent. That is to say, we are able to show nearly exponential lower bounds on the size of
any family of symmetric arithmetic circuits for computing the permanent, while establishing
the existence of polynimial-size symmetric circuits for computing the determinant. We prove
the upper bound on the determinant for fields of characteristic zero, and conjecture that
it holds for all fields. Our lower bound for the permanent is established for all fields of
characteristic other than 2, which is the best that can be hoped for as the permanent and
the determinant coincide for fields of characteristic 2.

We next define (informally) the notion of symmetry we use. A formal definition follows
in Section 3. The permanent and the determinant are not symmetric polynomials in the
usual meaning of the word, in that they are not invariant under arbitrary permutations of
their variables. However, they do have natural symmetries, i.e. permutations of the variables
induced by row and column permutations. Specifically, PERMn is invariant under arbitrary
permutations of the rows and columns of the matrix (xij), while DETn is invariant under
simultaneous permutations of the rows and columns. We say that an arithmetic circuit C
(seen as a labelled directed acyclic graph) for computing DETn is symmetric if the action of
any permutation σ ∈ Sym(n) on its input variables (i.e. taking xij to xσ(i)σ(j)) extends to
an automorphism of C. Similarly, a circuit C for computing PERMn is symmetric if the
action of (σ, π) ∈ Sym(n) × Sym(n) on the inputs (taking xij to xσ(i)π(j)) extends to an
automorphism of C.

This notion of symmetry has been studied previously in the context of Boolean circuits for
deciding graph properties, or properties of relational structures (see [13, 20, 2]). Specifically,
such symmetric circuits arise naturally in the translation into circuit form of specifications of
properties in a logic or similar high-level formalism. Similarly, we can think of a symmetric
arithmetic circuit as a straight-line program which treats the rows and columns of a matrix as
being indexed by unordered sets. Many natural algorithms have this property. For example,
Ryser’s formula for computing the permanent naturally yields a symmetric circuit.

Polynomial-size families of symmetric Boolean circuits with threshold gates form a
particularly robust class, with links to fixed-point logics [2]. This allows us to deploy methods
for proving inexpressiblity in such logics to prove lower bounds on the size of symmetric
circuits. A close link has also been established between the power of such circuits and linear
programming extended formulations with a geometric notion of symmetry [5]. Our lower
bound for the permanent is established by first giving a symmetry-preserving translation of
arithmetic circuits to Boolean circuits with threshold gates, and then establishing a lower
bound there for computing the permanent of a 0-1-matrix.

The lower bounds for symmetric Boolean circuits are based on a measure we call the
counting width of graph parameters (the term is introduced in [11]). This is also sometimes
known as the Weisfeiler-Leman dimension. In short, we have, for each k an equivalence
relation ≡k, known as the k-dimensional Weisfeiler-Leman equivalence, that is a coarse
approximation of isomorphism, getting finer with increasing k. The counting width of a
graph parameter µ is the smallest k, as a function of the graph size n, such that µ is
constant on ≡k-classes of graphs of size n. From known results relating Boolean circuits
and counting width [2, 5], we know that the existence of subexponential size symmetric
circuits computing µ implies a sub-linear upper bound on its counting width. Hence, using
the standard relationship between the permanent of a 0-1-matrix and the number of perfect
matchings in a bipartite graph, we obtain our lower bound for the permanent in fields of
characteristic zero by showing a linear lower bound on the counting width of µ(G) – the
number of perfect matchings in G. Indeed, showing the same for µ(G) (mod p) for every
prime p > 2 establishes the lower bound for the permanent in all odd positive characteristics.
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The linear lower bound on the counting width of the number of perfect matchings is a
result of interest in its own right, quite apart from the lower bounds it yields for circuits for
the permanent. Indeed, there is an interest in determining the counting width of concrete
graph parameters (see, for instance, [4]), and the result here is somewhat surprising. The
decision problem of determining whether a graph has any perfect matching is known to have
constant counting width. Indeed, the width is 2 for bipartite graphs [7]. For general graphs,
it is known to be strictly greater than 2 but still bounded above by a constant [3].

Related Work. Landsberg and Ressayre [19] establish an exponential lower bound on the
complexity of the permanent (specifically over the complex field C) under an assumption of
symmetry, and it is instructive to compare our results with theirs. Their lower bound is for
the equivariant determinantal complexity of the permanent. The determinantal complexity
(DC) of a polynomial p ∈ F[X] refers to the size of the smallest matrix M with entries that
are affine linear forms in X such that det(M) = p. Since every polynomial in VP has DC that
is at most quasi-polynomial, an exponential lower bound on the DC of the permanent would
show that circuits computing PERMn must have size at least 2nδ for some positive δ, and
hence separate VP from VNP. Landsberg and Ressayre establish exponential lower bounds
on any equivariant determinantal representation of the permanent, that is one that preserves
all the symmetries of the permanent function. This includes not just the permutations
on entries that we consider, but the entire projective symmetry group. This does not,
unfortunately, yield any lower bounds for symmetric circuits in the sense we consider. This
is because the translation of circuits to determinantal representations that establishes that
every polynomial in VP has DC at most quasi-polynomial does not preserve symmetries. A
symmetric circuit does not, in general, yield a determinantal representation invariant under
row-column permutations, let alone the much richer group of symmetries considered in [19].
The latter group also includes continuous group actions that have no counterpart in the
realm of circuits and is specific to algebraically-closed fields of characteristic zero. It remains
an interesting question to investigate whether there is a deeper connection between the lower
bounds presented here and their results.

Outline. In Section 2 we introduce some preliminary definitions and notation. In Section 3,
we introduce the key definitions and properties of symmetric circuits. Section 4 establishes
the upper bound for symmetric circuit size for the determinant, by translating Le Verrier’s
method to symmetric circuits. Finally the lower bound for the permanent is established in
Sections 5 and 6. The first of these gives the symmetry-preserving translation from arithmetic
circuits to Boolean circuits with threshold gates, and the second gives the main construction
proving the linear lower bound for the counting width of the number of perfect matchings in
a bipartite graph.

2 Background

In this section we discuss relevant background and introduce notation.
We write N for the positive integers and N0 for the non-negative integers. For m ∈ N0,

[m] denotes the set {1, . . . ,m}. For a set X we write P(X) to denote the powerset of X.

2.1 Counting Width
For any k ∈ N, the k-dimensional Weisfeiler-Leman equivalence (see [8]), denoted ≡k is an
equivalence relation on graphs that provides an over-approximation of isomorphism in the
sense that for isomorphic graphs G and H, we have G ≡k H for all k. Increasing values of
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k give finer relations, so G ≡k+1 H implies G ≡k H for all k. The equivalence relation is
decidable in time nO(k), where n is the size of the graphs. If k ≥ n, then G ≡k H implies
that G and H are isomorphic. The Weisfeiler-Leman equivalences have been widely studied
and they have many equivalent characterizations in combinatorics, logic, algebra and linear
optimization. One of their many uses has been to establish inexpressibility results in logic.
These can be understood through the notion of counting width.

A graph parameter is a function from graphs to N which is isomorphism invariant.
Examples are the chromatic number, the number of connected components or the number of
perfect matchings. For a graph parameter µ and any fixed n ∈ N, there is a smallest value of
k such that µ is ≡k-invariant. This motivates the definition.

I Definition 1. For any graph parameter µ, the counting width of µ is the function ν : N→ N
such that ν(n) is the smallest k such that for all graphs G,H of size n, if G ≡k H, then
µ(G) = µ(H).

The counting width of a class of graphs C is the counting width of its indicator function. This
notion of counting width for classes of graphs was introduced in [11], which we here extend
to graph parameters. Note that for any graph parameter ν(n) ≤ n.

Cai, Fürer and Immerman [8] first showed that there is no fixed k for which ≡k coincides
with isomorphism. Indeed, in our terminology, they construct a class of graphs with counting
width Ω(n). Since then, many classes of graphs have been shown to have linear counting
width, including the class of Hamiltonian graphs and the class of 3-colourable graphs (see [5]).
In other cases, such as the class of graphs that contain a perfect matching, it has been
proved that they have counting width bounded by a constant [3]. Our interest in counting
width stems from the relation between this measure and lower bounds for symmetric circuits.
Roughly, if a class of graphs is recognized by a family of polynomial-sized symmetric threshold
circuits, it has bounded counting width (a more precise statement is given in Theorem 13).

Our lower bound construction in Section 6 is based on the graphs constructed by
Cai et al. [8]. While we review some of the details of the construction in Section 6, a
reader unfamiliar with the construction may wish to consult a more detailed introduction.
The original construction can be found in [8] and a version closer to what we use is given
in [10].

2.2 Circuits
We provide a general definition that incorporates both Boolean and arithmetic circuits.

I Definition 2 (Circuit). A circuit over the basis B with variables X and constants K is
a directed acyclic graph with a labelling where each vertex of in-degree 0 is labelled by an
element of X ∪K and each vertex of in-degree greater than 0 is labelled by an element of B.

Let C = (G,W ), where W ⊂ G×G, be a circuit with constants K. We call the elements of
G gates, and the elements of W wires. We call the gates with in-degree 0 input gates and
gates with out-degree 0 output gates. We call those input gates labelled by elements of K
constant gates. We call those gates that are not input gates internal gates. For g, h ∈ G we
say that h is a child of g if (h, g) ∈W . We write child(g) to denote the set of children of g.
We write Cg to denote the sub-circuit of C rooted at g. Unless otherwise stated we always
assume a circuit has exactly one output gate.

If K is a field F, and B is the set {+,×}, we have an arithmetic circuit over F. If
K = {0, 1}, and B is a collection of Boolean functions, we have a Boolean circuit over the
basis B. We define two Boolean bases here. The standard basis Bstd contains the functions
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∧, ∨, and ¬. The threshold basis Bt is the union of Bstd and {t≥k : k ∈ N}, where for each
k ∈ N, t≥k is defined for a string ~x ∈ {0, 1}∗ so that t≥k(~x) = 1 if, and only if, the number
of 1s in ~x at least k. We call a circuit defined over this basis a threshold circuit. Another
useful function is t=k, which is defined by t=k(x) = t≥k(x)∧¬t≥k+1(x). We do not explicitly
include it in the basis as it is easily defined in Bt.

In general, we require that a basis contain only functions that are invariant under all
permutations of their inputs (we define this notion formally in Definition 4). This is the case
for the arithmetic functions + and × and for all of the Boolean functions in Bt and Bstd. Let
C be a circuit defined over such a basis with variables X and constants K. We evaluate C for
an assignment M ∈ KX by evaluating each gate labelled by some x ∈ X to M(x) and each
gate labelled by some k ∈ K to k, and then recursively evaluating each gate according to its
corresponding basis element. We write C[M ](g) to denote the value of the gate g and C[M ]
to denote the value of the output gate. We say that C computes the function M 7→ C[M ].

It is conventional to consider an arithmetic circuit C over F with variables X to be
computing a polynomial in F[X], rather than a function FX → F. This polynomial is
defined via a similar recursive evaluation, except that now each gate labelled by a variable
evaluates to the corresponding formal variable, and we treat addition and multiplication
as ring operations in F[X]. Each gate then evaluates to some polynomial in F[X]. The
polynomial computed by C is the value of the output gate.

For more details on arithmetic circuits see [22] and for Boolean circuits see [24].

3 Symmetric Circuits

In this section we discuss different symmetry conditions for functions and polynomials. We
also introduce the notion of a symmetric circuit.

3.1 Symmetric Functions
There is a natural extension of a group action on a set X to functions on X and powers of X.

I Definition 3. For any group G, we say that a function F : KX → K, along with an action
of G on X is a G-symmetric function, if for every σ ∈ G, σF = F .

We are interested in some specific group actions, and we define these next.

I Definition 4.
If G = Sym(X), we call a G-symmetric function F : KX → K fully symmetric.
If G = Sym(X) × Sym(Y ), we call a G-symmetric function F : KX×Y → K matrix
symmetric.
If G = Sym(X) we call a G-symmetric F : KX×X → K, with the natural action of G
on X ×X square symmetric.

Examples of fully symmetric functions are those that appear as labels of gates in a
circuit, including +, ×, ∧, ∨ and t≥k. Matrix symmetric functions are those where the input
is naturally seen as a matrix and the result in invariant under aribtrary row and column
permutations. The canonical example for us of a matrix symmetric function is the permanent.
The determinant is not matrix symmetric over fields of characteristic other than 2, but it is
square symmetric. The determinant is also invariant under taking matrix transposes, and we
also consider this variation.

I Definition 5. Let G be the group generated by the diagonal of Sym(X)× Sym(X) and
the permutation σt ∈ Sym(X) × Sym(X) defined such that σt(x, y) = (y, x). A function
F : KX×X → K that is G-symmetric with respect to the natural action of G on X ×X is
said to be transpose symmetric.
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Finally, another useful notion of symmetry in functions is where the inputs are naturally
partitioned into sets.

I Definition 6. If X =
⊎
i∈I Xi, G =

∏
i∈I Sym(Xi), and F : KX → K is G-symmetric

with respect to the natural action of G on X, we say that it is partition symmetric.

Unless otherwise stated we treat the permanent, perm : FX×Y → F as a matrix symmetric
function, and the determinant det : FX×X → F as a transpose symmetric function.

3.2 Symmetric Circuits
Symmetric Boolean circuits have been considered in the literature, particularly in connection
with definability in logic. In that context, we are considering circuits which take relational
structures (such as graphs) as inputs and we require their computations to be invariant under
re-orderings of the elements of the structure. Here, we generalize the notion to arbitrary
symmetry groups, and also consider them in the context of arithmetic circuits. In order to
define symmetric circuits, we first need to define the automorphisms of a circuit.

I Definition 7 (Circuit Automorphism). Let C = (G,W ) be a circuit over the basis B with
variables X and constants K. For σ ∈ Sym(X), we say that a bijection π : G → G is an
automorphism extending σ if for every gate g in C we have that

if g is a constant gate then π(g) = g,
if g is a non-constant input gate then π(g) = σ(g),
if (h, g) ∈W is a wire, then so is (πh, πg)
if g is labelled by b ∈ B, then so is π(g).

We say that a circuit C with variables X is rigid if for every permutation σ ∈ Sym(X)
there is at most one automorphism of C extending σ.

We are now ready to define the key notion of a symmetric circuit.

I Definition 8 (Symmetric Circuit). For a G-symmetric function F : KX → K, a circuit C
computing F is said to be symmetric if for every σ ∈ G, the action of σ on X extends to an
automorphism of C. We say C is strictly symmetric if it has no other automorphisms.

For a gate g in a symmetric circuit C, the orbit of g, denoted by Orb(g), is the the set of
all h ∈ C such that there exists an automorphism π of C with π(g) = h. We write |Orb(C)|
for the maximum size of an orbit in C, and call it the orbit size of C.

Though symmetric arithmetic circuits have not previously been studied, symmetric
Boolean circuits have [13, 20, 2]. It is known that polynomial-size symmetric threshold
circuits are more powerful than polynomial-size symmetric circuits over the standard basis [2].
In particular, the majority function is not computable by any family of polynomial-size
symmetric circuits over the standard basis. On the other hand, it is also known [12] that
adding any fully symmetric functions to the basis does not take us beyond the power of the
threshold basis. Thus, Bt gives the robust notion, and that is what we use here. It is also
this that has the tight connection with counting width mentioned above.

3.3 Polynomials
In the study of arithmetic complexity, we usually think of a circuit over a field F with
variables in X as expressing a polynomial in F[X], rather than computing a function from
FX to F. The distinction is significant when F is a finite field, as it is possible for distinct
polynomials to represent the same function.
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The definitions of symmetric functions given in Section 3.1 extend easily to polynomials.
So, for a group G acting on X, a polynomial p ∈ F[X] is said to be G-symmetric if
σp = p for all σ ∈ G. We define fully symmetric, matrix symmetric, square symmetric
and transpose symmetric polynomials analogously. Every matrix symmetric polynomial is
also square symmetric. Also, every transpose symmetric polynomial is square symmetric.
The permanent PERMn is both matrix symmetric and transpose symmetric, while the
determinant DETn is transpose symmetric, but not matrix symmetric. In this paper, we
treat PERMn as a matrix symmetric polynomial and DETn as a transpose symmetric
polynomial. It is clear that a G-symmetric polynomial determines a G-symmetric function.

An arithmetic circuit C expressing a G-symmetric polynomial is said to be symmetric if
the action of each σ ∈ G on the inputs of C extends to an automorphism of C.

Standard symmetric polynomials are, in our terminology, fully symmetric. In particular,
the homogeneous polynomial

∑
i∈[n] x

r
i is fully symmetric. There is a known lower bound of

Ω(n log r) on the size of any circuit expressing this polynomial [6]. Notably, the matching
upper bound is achieved by a symmetric circuit. Similarly, we have tight upper and lower
bounds for the elementary symmetric polynomials

∑
S⊆[n]:|S|=k

∏
i∈S xi over infinite fields [21].

Again, the upper bound is achieved by symmetric circuits.
The best known upper bound for general arithmetic circuits for expressing the permanent

is given by Ryser’s formula: PERMn = (−1)n
∑
S⊆[n](−1)|S|

∏n
i=1

∑
j∈S xij . It is easily

seen that this expression is symmetric, and it yields a symmetric circuit of size O(2nn2).
Our main result, Theorem 12, gives us a near matching lower bound on the size of symmetric
circuits for expressing PERMn.

A symmetric circuit C expressing a G-symmetric polynomial p is also a symmetric circuit
computing the function determined by p. In establishing our upper bound for the determinant,
we show the existence of small symmetric circuits for the polynomial, and hence also for the
function. For the lower bound on the permanent, we show that there are no small symmetric
circuits for computing the function, hence also none for the polynomial. For a discussion of
functional lower bounds, as opposed to polynomial lower bounds, see [14].

4 An Upper-Bound for the Determinant

In this section we show that for any field F of characteristic 0 there is a polynomial-size
family of symmetric arithmetic circuits over F computing {DETn}. We define this family
using Le Verrier’s method for calculating the characteristic polynomial of a matrix. We
review this method briefly, and direct the reader to Section 3.4.1 in [16] for more detail.

The characteristic polynomial of an n× n matrix M is

det(xIn −M) =
n∏
i=1

(x− λi) = xn − p1x
n−1 + p2x

n−2 − . . .+ (−1)npn,

where λ1, . . . , λn are the eigenvalues of M , counted with multiplicity. It is known that
pn = det(M) and p1 = Tr(M). Le Verrier’s method gives, for each i ∈ [n], the linear
recurrence given by pi = 1

i [pi−1s1 − pi−2s2 + . . . ± si] where p0 = 1 and for each j ∈ [n],
sj = Tr(M j).

The determinant can thus be computed as follows. First, for each k ∈ [n] we compute
entries in the matrix Mk. Then for each k ∈ [n] we compute sk = Tr(Mk). Finally, we
recursively compute each pi and output pn. There is a natural arithmetic circuit Φ with
variables M = {mij : i, j ∈ [n]} implementing this algorithm.
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To see that Φ is symmetric we pick some σ ∈ Sym(n)× Sym(n) such that σ is either
in the diagonal or σ(i, j) = (j, i) for all i, j ∈ [n]. We now retrace the description of the
algorithm implemented by Φ and show how the action of σ on the input gates extends
naturally to an automorphism π of Φ. For each input gate labelled by a variable v let
π(v) = σ(v), and let π fix each constant gate. For each gate v computing (Mk)ij let π(v) be
the gate computing (Mk)σ(i,j). For each k ∈ [n] let vk be the gate computing the trace of
Mk. Then vk is the sum of those gates computing the diagonal of Mk, which is fixed setwise
by π, and so we let π(vk) = vk. We note that each pi is defined in terms of s1, . . . , si and
constants −1, 1, 1

2 , . . . ,
1
i . All of these gates are fixed by π and so we can take π to fix all

remaining gates in the circuit.
It is possible to show that the construction of Φ for a given n ∈ N can be carried out in

time O(n3). In particular, we have the following.

I Theorem 9. For F a field of characteristic 0, there exists a family of symmetric arithmetic
circuits (Φn)n∈N over F computing {DETn} as a family of transpose symmetric polynomials
and for which the function n 7→ Φn is computable in time O(n3).

Le Verrier’s method explicitly involves multiplications by 1
k for k ∈ [n], and so cannot be

directly applied to fields of positive characteristic. There are many known algorithms for
computing the determinant over fields of positive characteristic, and it seems reasonable to
conjecture that some could be implemented symmetrically.

5 From Arithmetic To Boolean Circuits

In this section we establish the following symmetry-preserving translation from arithmetic
circuits to threshold circuits.

I Theorem 10. Let G be a group acting on a set of variables X. Let Φ be a symmetric
arithmetic circuit over a field F with variables X and computing a G-symmetric function. Let
B ⊆ F be finite. Then there is a symmetric threshold circuit C with variables X, such that
for all M ∈ {0, 1}X we have C[M ] = 1 if, and only if, Φ[M ] ∈ B and |Orb(C)| = |Orb(Φ)|.

We use Theorem 10 in Section 6 to transfer a lower bound on threshold circuits to
arithmetic circuits, a crucial step in establishing our lower bound for the permanent.

We prove Theorem 10 by first establishing a similar translation from arithmetic circuits
over a field F to Boolean circuits over a basis BF

arth of partition symmetric functions. We
then complete the proof by replacing each gate labelled by a partition symmetric function
with an appropriate symmetric threshold circuit.

To enable this second step, we show that each partition symmetric function can be
computed by a rigid strictly symmetric threshold circuit. The proof of this result follows
from the fact that if a function F : {0, 1}A → {0, 1} is partition symmetric, then its output
for h ∈ {0, 1}A depends only on the number of elements in each part of A that h maps to 1.
We can thus evaluate F by counting the number of 1s in each part, a procedure which we
now show can be implemented via a symmetric threshold circuit.

I Lemma 11. Let F be a partition symmetric function. There exists a rigid strictly symmetric
threshold circuit C(F ) computing F .

Proof. Let A :=
⊎
q∈QAq be a disjoint union of finite sets Aq indexed by Q, and F :

{0, 1}A → {0, 1} be a partition symmetric function. The fact that F is partition symmetric
means that whether F (h) = 1 for some h ∈ {0, 1}A is determined by the number of a ∈ Aq
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(for each q) for which h(a) = 1. Write hq for this number. Then, there is a set cF ⊆ NQ0 such
that F (h) = 1 if, and only if, (hq)q∈Q ∈ cF . Since each Aq is finite, so is cF . Then F (h) = 1
if, and only if, the following Boolean expression is true:

∨
c∈cF

∧
q∈Q(hq = c(q)). We can

turn this expression into a circuit C with an OR gate at the output, whose children are AND
gates, one for each c ∈ cF , let us call it ∧c. The children of ∧c are a set of gates, one for each
q ∈ Q, let us call it Tc,q, which is labelled by t=c(q) and has as children all the inputs a ∈ Aq.

This circuit C is symmetric and rigid, but not necessarily strictly symmetric, as it may
admit automorphisms that do not respect the partition of the inputs A as

⊎
q∈QAq. To

remedy this, we create pairwise non-isomorphic gadgets Gq, one for each q ∈ Q. Each Gq
is a one-input, one-output circuit computing the identity function. For example, Gq could
be a tower of single-input AND gates, and we choose a different height for each q. We now
modify C to obtain C(F ) by inserting between each input a ∈ Aq and each gate Tc,q a copy
Gaq of the gadget Gq.

Clearly C(F ) computes F . We now argue C(F ) is rigid and strictly symmetric. To see
that it is symmetric, consider any σ ∈

∏
q∈Q Sym(Aq) in its natural action on A. This

extends to an automorphism of C(F ) that takes the gadget Gaq to Gσaq while fixing all gates
Tc,q and ∧c. To see that there are no other automorphisms, suppose π is an automorphism
of C(F ). It must fix the output OR gate. Also π cannot map a gate Tc,q to Tc′,q′ for q′ 6= q

because the gadgets Gq and Gq′ are non-isomorphic. Suppose that π maps ∧c to ∧c′ . Then,
it must map Tc,q to Tc′,q. Since the labels of these gates are t=c(q) and t=c′(q) respectively,
we conclude that c(q) = c′(q) for all q and therefore c = c′. J

We now define for each field F the basis BF
arth. The functions in this basis are intended to

be Boolean analogues of addition and multiplication. Let Q ⊆ F be finite, A =
⊎
q∈QAq be a

disjoint union of non-empty finite sets, and c ∈ F. We define a function +A
Q,c : {0, 1}A → {0, 1}

that given h ∈ {0, 1}A computes the sum over all q of the number of elements of Aq that h
maps to 1, weighted by q, and returns 1 if this sum equals c. We also define an analogous
function for multiplication ×AQ,c : {0, 1}A → {0, 1}. Formally, these functions are defined for
h ∈ {0, 1}A as follows: +A

Q,c(h) = 1 if, and only if,
∑
q∈Q |{a ∈ Aq : h(a) = 1}| · q = c and

×AQ,c(h) = 1 if, and only if,
∏
q∈Q q

|{a∈Aq :h(a)=1}| = c. Both +A
Q,c and ×AQ,c are partition

symmetric. Let BF
arth be the set of all functions +A

Q,c and ×AQ,c.
We aim to prove Theorem 10 by first defining for a given symmetric arithmetic circuit a

corresponding symmetric circuit over a partition symmetric basis. To ensure unambiguous
evaluation, the circuit must include for each gate labelled by a partition symmetric function a
corresponding partition on its children. Let C be a circuit with variables X and let g be a gate
in C labelled by a partition symmetric function F : {0, 1}A → {0, 1}, where A =

⊎
q∈QAq is

a disjoint union of finite non-empty sets. We associate with g a bijection Lg : A→ child(g).
We evaluate g for an input as follows. For M ∈ {0, 1}X we let LMg : A→ {0, 1} be defined
such that LMg (a) = C[M ](Lg(a)) for all a ∈ A. Let C[M ](g) = F (LMg ).

Proof of Theorem 10. For v ∈ Φ let Qv be the set of possible evaluations of v if the input
gates are assigned to 0 or 1, i.e. Qv = {Φ[M ](v) : M ∈ {0, 1}X}. The restriction to 0-1-
matrices ensures that Qv is finite. Let z be the output gate of Φ. If Qz ⊆ B let C be the
circuit consisting of a single gate labelled by 1 and if Qz ∩ B = ∅ let C consist of a single
gate labelled by 0. Suppose that neither of these two cases hold.

We now construct a BF
arth ∪ Bstd-circuit D from Φ by replacing each internal gate v in Φ

with a family of gates (v, q) for q ∈ Qv such that D[M ](v, q) = 1 if, and only if, Φ[M ](v) = q.
Each (v, q) is labelled by a function of the form +A

Q,q or ×AQ,q, depending on if v is an addition
or multiplication gate. We also add a single output gate in D that has as children exactly
those gates (z, q) where q ∈ Qz ∩B. We define D from Φ recursively as follows. Let v ∈ Φ.
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If v is an non-constant input gate in Φ let (v, 1) be an input gate in D labelled by the
same variable as v and let (v, 0) be a NOT-gate with child (v, 1).
If v is a constant gate in Φ labelled by some field element q let (v, q) be a constant gate
in D labelled by 1.
Suppose v is an internal gate. Let Q =

⋃
u∈child(v) Qv. For q ∈ Q let Aq = {u ∈ child(v) :

q ∈ Qu}. Let A =
⊎
q∈QAq. For each c ∈ Qv let (v, c) be a gate in D such that if v is an

addition gate or multiplication gate then (v, c) is labelled by +A
Q,c or ×AQ,c, respectively.

The labelling function L(v,c) : A → child(v, c) is defined for u ∈ A such that if u ∈ Aq
then L(v,c)(u) = (u, q).

We add one final OR-gate w to form D with child(w) = {(z, q) : q ∈ B ∩Qz}.
We now show that D is a symmetric circuit. Let σ ∈ G and π be an automorphism of Φ

extending σ. Let π′ : D → D be defined such that for each gate (v, c) ∈ D, π′(v, c) = (π(v), c)
and for the output gate w, π′(w) = w. It can be verified by induction that π′ is an
automorphism of C extending σ.

We now show that |Orb(D)| = |Orb(Φ)|. It suffices to prove that for v, u ∈ Φ and
c ∈ Qv that u ∈ Orb(v) if, and only if, (u, c) ∈ Orb(v, c). The forward direction follows
from the above argument establishing that D is symmetric. Let v, u ∈ Φ and c ∈ Qv and
suppose (u, c) ∈ Orb(v, c). For each gate t ∈ Φ pick some ct ∈ Qt such that if t = u

or t = v then ct = c and for all t1, t2 ∈ Φ, if Qt1 = Qt2 then ct1 = ct2 . Let π′ be an
automorphism of D such that π′(v, c) = (u, c). Let π : Φ → Φ be defined for t ∈ Φ
such that π′(t, ct) = (π(t), ct). We now show that π is an automorphism of Φ, and so
u ∈ Orb(v). Note that, since π′ preserves the labelling on the gates in D, it follows
that for all t ∈ Φ, Qt = Qπ(t) and so cπ(t) = ct. Let t, t′ ∈ Φ and suppose π(t) = π(t′).
Then π′(t, ct) = (π(t), ct) = (π(t), cπ(t)) = (π(t′), cπ(t′)) = (π(t′), ct′) = π′(t′, ct′), and so
(t, ct) = (t′, ct′) and t = t′. It follows that π is injective, and so bijective. Let t, s ∈ Φ. Then
t ∈ child(s) ⇐⇒ (t, ct) ∈ child(s, cs) ⇐⇒ π′(t, ct) ∈ child(π′(s, cs)) ⇐⇒ (π(t), ct) ∈
child(π(s), cs) ⇐⇒ π(t) ∈ child(π(s)). The first and last equivalences follow from the
construction of the circuit. The remaining conditions for π to be an automorphism can be
easily verified.

Let M ∈ {0, 1}X . We now show by induction that for all v ∈ Φ and c ∈ Qv, Φ[M ](v) = c

if, and only if, D[M ](v, c) = 1. Let v ∈ Φ. If v is an input gate then the claim holds trivially.
Suppose v is an internal gate and let c ∈ Qv. Suppose v is an addition gate. Then (v, c) is
labelled by the function +A

Q,c where Q =
⋃
u∈child(v) Qu, for q ∈ Q, Aq = {u ∈ child(v) : q ∈

Qu}, and A =
⊎
q∈QAq. Then

Φ[M ](v) = c ⇐⇒
∑

u∈child(v)

Φ[M ](u) = c ⇐⇒
∑
q∈Q

|{u ∈ child(v) : Φ[M ](u) = q}| · q = c

⇐⇒
∑
q∈Q

|{u ∈ Aq : D[M ](u, q) = 1}| · q = c

⇐⇒
∑
q∈Q

|{u ∈ Aq : LM
(v,c)(u) = 1}| · q = c

⇐⇒ D[M ](v, c) = 1

A similar argument suffices if v is a multiplication gate. It follows that D[M ](w) = 1 if, and
only if, there exists c ∈ B such that D[M ](z, c) = 1 if, and only if, Φ[M ] ∈ B.

We define C from D by replacing each internal gate (v, c) ∈ D labelled by some F ∈ BF
arth

with the rigid strictly symmetric threshold circuit C(F ) computing F defined in Lemma 11.
C computes the same function as D. Since C(F ) is symmetric, C is symmetric. Since C(F )
is rigid and strictly symmetric, |Orb(C)| = |Orb(D)| = |Orb(Φ)|. J
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6 A Lower-Bound for the Permanent

We now establish the lower bound on symmetric arithmetic circuits for the permanent.

I Theorem 12. If F is a field with char(F) 6= 2, then for any ε > 0 there is no family of
symmetric arithmetic circuits over F of orbit size O(2n1−ε) computing {PERMn}.

Our proof establishes something stronger. We actually show that there are no symmetric
arithmetic circuits of orbit size O(2n1−ε) that compute the function perm(M) for matrices
M ∈ Fn×n. Indeed, the lower bound holds even when restricting the input to matrices
M ∈ {0, 1}n×n. Theorem 12 is proved by showing lower bounds on the counting widths
of functions which determine the number of perfect matchings in a bipartite graph. The
connection of orbit size to counting width comes through the following theorem (see [2, 5]).

I Theorem 13. Let (Cn)n∈N be a family of symmetric threshold circuits of orbit size
s = O(2n1−ε) for some ε > 0 deciding a class of graphs C. Then, the counting width of C is
O( log s

logn ).

If G is a bipartite graph, let µ(G) denote the number of perfect matchings in G and, for a
prime number p, we write µp(G) for the congruence class of µ(G) (mod p). It is well known if
G is a balanced bipartite graph with vertex bipartition V (G) = A∪B, and MG ∈ {0, 1}A×B
is the biadjacency matrix of G, then the permanent of MG (say, over the rational field
Q) is the number of distinct perfect matchings of G. Moreover, since MG is a 0-1-matrix,
permF(MG) = permF′(MG) whenever F′ is a subfield of F. In particular, for any field F of
characteristic zero, permF(MG) = permQ(MG) = µ(G) and for any field F of characteristic
p, permF(MG) = permFp(MG) = µp(G). To avoid unnecessary case distinctions, we write
µc(G) where c is either 0 or a prime p, with the understanding that µ0(G) = µ(G). Then,
we can say that for any field F with char(F) = c, permF(MG) = µc(G).

Combining Theorem 10 with Theorem 13 gives us the following consequences.

I Corollary 14. If there exists a family of symmetric circuits of orbit size s = O(2n1−ε) over
a field F of characteristic c computing {PERMn}, then the counting width of µc is O( log s

logn ).

Proof. Let k be the counting width of µc. Then, by definition, we can find for each n ∈ N, a
pair of balanced bipartite graphs Gn and Hn on at most 2n vertices such that Gn ≡k(n)−1 Hn

but µ(Gn) 6= µ(Hn). Let Bn = {µ(Gn)}. Then, by Theorem 10 and the assumption that
there is a family of symmetric circuits over F computing {PERMn} of orbit size s = O(2n1−ε),
there is a family of symmetric Boolean threshold circuits of orbit size s = O(2n1−ε) which
decides for a matrix M ∈ {0, 1}n×n whether perm(M) ∈ Bn. In other words, when c = 0,
this family of circuits then decides whether a balanced bipartite graph G on 2n vertices has
exactly µ(Gn) perfect matchings, and when c = p for some prime p, it decides whether G
has µp(Gn) perfect matchings, modulo p. It follows by Theorem 13 that the counting width
of this decision problem is O( log s

logn ). Since the counting width of this decision problem is, by
choice of Gn, k, it follows that k = O( log s

logn ). J

Thus, to establish Theorem 12, we aim to prove the following.

I Theorem 15. There are, for each k ∈ N, a pair of balanced bipartite graphs X and Y with
O(k) vertices, such that X ≡k Y , and µ(X)− µ(Y ) = 2l for some l > 0.

Before giving the proof of Theorem 15 we show how Theorem 12 now follows.
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Proof of Theorem 12. By Theorem 15, we have for each k, a pair of graphs X and Y with
O(k) vertices such that µ(X) 6= µ(Y ) and X ≡k Y thus, the counting width of µ is Ω(n).
Moreover, since µ(X)−µ(Y ) is a power of 2, it follows that for any prime p 6= 2, µ(X) 6≡ µ(Y )
(mod p). Hence, the counting width of µp is also Ω(n).

Suppose then that F is a field of characteristic c 6= 2 and that there is a family of
symmetric arithmetic circuits over F of orbit size s = O(2n1−ε) computing {PERMn}. Then,
it follows from Corollary 14 that the counting width of µc is at most k = O( log s

logn ) = O(n1−ε),
giving a contradiction. J

The construction used to prove Theorem 15 is an adaptation of a standard construction
by Cai, Fürer and Immerman [8] which gives non-isomorphic graphs X and Y with X ≡k Y
for arbitrary k (see also [10]). We tweak it somewhat to ensure that both graphs have perfect
matchings (indeed, they are both balanced bipartite graphs). The main innovation is in the
analysis of the number of perfect matchings the graphs contain.

Gadgets. In what follows, G = (V,E) is always a 3-regular 2-connected graph. From this,
we first define a graph X(G). The vertex set of X(G) contains, for each edge e ∈ E, two
vertices that we denote e0 and e1. For each vertex v ∈ V with incident edges f, g and h,
X(G) contains five vertices. One of these we call the balance vertex and denote vb. The
other four are called inner vertices and there is one vS , for each subset S ⊆ {f, g, h} of
even size. For each v ∈ V , the neighbours of vb are exactly the four vertices of the form
vS . Moreover, for each e ∈ {f, g, h}, X(G) contains the edge {e1, vS} if e ∈ S and the edge
{e0, vS} otherwise. There are no other edges in X(G).

f0 f1

g1

g0

h1

h0

v∅ v{g,h} v{f,h}v{f,g}

vb

Figure 1 A gadget in X(G) corresponding to vertex v with incident edges f, g, h.

The construction of X(G) from G essentially replaces each vertex v with incident edges
f, g and h with the gadget depicted in Figure 1, where the dashed lines indicate edges whose
endpoints are in other gadgets. The vertices e0, e1 for each e ∈ {f, g, h} are shared with
neighbouring gadgets.

For any fixed vertex x ∈ V with incident edges f, g, h, the graph X̃x(G) is obtained by
modifying the construction of X(G) so that, for the one vertex x, the gadget contains inner
vertices xS for subsets S ⊆ {f, g, h} of odd size. Again, for each e ∈ {f, g, h}, X(G) contains
the edge {e1, vS} if e ∈ S and the edge {e0, vS} otherwise.

If we remove the balance vertices vb, the graphs X(G) and X̃x(G) are essentially the
Cai-Fürer-Immerman (CFI) graphs associated with G. The balance vertex vb is adjacent to
all the inner vertices associated with v and so does not alter the automorphism structure of
X(G) (or X̃x(G)) at all. Nor do these vertices alter any other essential properties of the CFI
construction. In particular, since G is connected, we have the following lemma.
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I Lemma 16. For any x, y ∈ V , X̃x(G) and X̃y(G) are isomorphic.

With this in mind, we refer simply to the graph X̃(G) to mean a graph X̃x(G) for some
fixed x, and we refer to x as the special vertex of G.

By known properties of the CFI construction, we also have the following (see [10,
Theorem 3]).

I Lemma 17. If the treewidth of G is greater than k, then X(G) ≡k X̃(G).

The purpose of the balance vertices is to change the structure of the perfect matchings.
Indeed, if we let CFI(G) denote the subgraph of X(G) that excludes the balance vertices, it
is easily seen that this contains no perfect matchings. It is a bipartite graph where one part
contains the 4|V | inner vertices and the other part contains the 2|E| = 3|V | edge vertices and
so no perfect matching is possible. But, X(G) is a bipartite graph where in one part we have
the 4|V | inner vertices and in the other the 3|V | edge vertices along with the |V | balance
vertices. In short, this is a 4-regular bipartite graph and so contains perfect matchings. We
next analyse the structure of the set of such perfect matchings. In particular, we show that
X(G) and X̃(G) contain different numbers of perfect matchings.

In the sequel, we write X to denote either one of the graphs X(G) or X̃(G), V (X) to
denote its vertices and E(X) to denote its edges. We continue to use V and E for the vertices
and edges of G. Also, for each v ∈ V , we write Iv to denote the set of four inner vertices in
X associated with v.

Non-Uniform Matchings. Let M ⊆ E(X) be a perfect matching in X. For each v ∈ V
and e ∈ E incident on v, we define the projection pM (v, e) of M on (v, e) to be the value in
{0, 1, 2} which is the number of edges between {e0, e1} and Iv that are included in M . These
satisfy the following equations:

p(u, e) + p(v, e) = 2 for each edge e = {u, v} ∈ E; and

p(v, f) + p(v, g) + p(v, h) = 3 for each vertex v ∈ V with incident edges f, g, h.
The first of these holds because M must include exactly one edge incident on each of e0 and
e1. The second holds becauseM must include an edge between vb and one vertex of Iv. Thus,
the three remaining vertices in Iv must be matched with vertices among f0, f1, g0, g1, h0, h1.

One solution to the set of equations is obtained by taking the constant projection
pM (v, e) = 1 for all such pairs (v, e). Say that a matching M is uniform if pM (v, e) = 1
everywhere and non-uniform otherwise.

I Lemma 18. The number of non-uniform matchings in X(G) is the same as in X̃(G).

Proof. It suffices to prove that for any non-constant projection p, the number of matchings
M with pM = p is the same for both X(G) and X̃(G). For then, taking the sum over all
possible projections gives the result. So, let p be a non-constant projection. Then, for some
edge e = {u, v} ∈ E, we have p(u, e) = 2 and p(v, e) = 0. Then, let X(G)− and X̃(G)−
be the subgraphs of X(G) and X̃(G) respectively obtained by removing the edges between
{e0, e1} and Iv. It is clear that any matching M in X(G) with pM = p is also a perfect
matching in X(G)−, and similarly for X̃(G). However, X(G)− and X̃(G)− are isomorphic.
This follows by an argument analogous to the proof of Lemma 16. Since G is 2-connected,
there is a path p from u to the special vertex x that does not involve the edge e. We can
then define an isomorphism from X(G) to X̃(G) by mapping e0 to e1, for each edge f on
the path p, mapping f0 to f1 and extending this using the induced automorphisms of the
gadgets corresponding to v1, . . . , vt−1. We conclude that the numbers of such matchings are
the same for both. J
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Now, we aim to show that the number of uniform matchings of X(G) is different to that
of X̃(G). For this, it is useful to first analyse the orientations of the underlying graph G.

Orientations. An orientation of G is a directed graph obtained from G by assigning to
each edge {u, v} ∈ E a direction. There are exactly 2|E| distinct orientations of G. We say
that a vertex v ∈ V is odd with respect to an orientation −→G of G if it has an odd number of
incoming directed edges and even otherwise. For an orientation −→G of G, we write odd(−→G)
for the set of its odd vertices. We say that the orientiation −→G is odd if |odd(−→G)| is odd, and
we say it is even otherwise. Since G is 3-regular, it is not hard to see that |V | is always even
and |E| is even if, and only if, |V |/2 is. Moreover, in all orientations of G, |odd(−→G)| = |E|
(mod 2).

I Lemma 19. If |V |/2 is even, then all orientations of G are even. If |V |/2 is odd, then all
orientations of G are odd.

Proof. Note that since G is 3-regular, 3|V | = 2|E|, so |V | is always even. Moreover, |V |/2
is even if, and only if, |E| is. For an orientation −→G , let in(v) denote the number of edges
incoming to the vertex v. Then, |E| =

∑
v in(v). But,

∑
v in(v) ≡ |odd(−→G)| (mod 2). J

Thus, we say that a graph G is odd if |E| is odd, and hence all orientations of G are odd,
and G is even if |E| is even and hence all orientations of G are even.

We can now quantify exactly, for any set S ⊆ V the number of distinct orientations −→G
with odd(−→G) = S. To do this, we first establish an auxilliary lemma.

I Lemma 20. If G = (V,E) is even, then for every set S ⊆ V with |S| even, there is an
orientation −→G of G with odd(−→G) = S. Similarly if G = (V,E) is odd, then for every set
S ⊆ V with |S| odd, there is an orientation −→G of G with odd(−→G) = S.

Proof. It suffices to show, for any set S ⊆ V and any pair of vertices u, v ∈ V , if there
is an orientation −→G of G with odd(−→G) = S, then there is also an orientation −→G ′ with
odd(−→G ′) = S4{u, v}. Now, consider any simple path from u to v in G and let −→G ′ be the
orientation obtained from −→G by reversing the direction of every edge on this path. J

I Lemma 21. For every set S ⊆ V with |S| = |E| (mod 2), there are exactly 2|V |/2+1

distinct orientations −→G with odd(−→G) = S.

Proof. Let A be the V × E incidence matrix of the graph G. This defines a linear trans-
formation from the vector space FE2 to FV2 . The additive group of FE2 has a natural action
on the orientations of G: for a vector π ∈ FE2 , and an orientation −→G , define π−→G to be the
orientation obtained from −→G by changing the orientation of each edge e with π(e) = 1.
Indeed, fixing one particular orientation −→G , the action generates all orientations and gives
a bijective correspondence between the vectors in FE2 and the orientations of G. Similarly,
the additive group of FV2 has a natural action on the powerset of V : for a vector σ ∈ FV2
and a set S ⊆ V , let σS be the set S4{v | σ(v) = 1}. Again, for any fixed set S, this action
generates all subsetes of V and gives a bijection between FV2 and the powerset of V .

Then, it can be seen that odd(π−→G) = (Aπ)odd(−→G). Indeed, if v ∈ V is a vertex with
incident edges f, g, h, then (Aπ)(v) = π(f)+π(g)+π(h) (mod 2). In other words (Aπ)(v) = 1
just in case the direction of an odd number of edges incident on v is flipped by π. Thus,
the set of vertices {v | (Aπ)(v) = 1} are exactly the ones that change from being odd to
even or vice versa under the action of π, i.e. {v | (Aπ)(v) = 1} = odd(−→G)4odd(π−→G) for any
orientation −→G .
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Fixing a particular orientation −→G , the action of FE2 generates all orientation π−→G , and
A maps this to the collection of all sets odd(−→G)4odd(π−→G). Then, by Lemmas 19 and 20
the image of A consists of exactly the set of vectors with an even number of 1s. Hence, the
image of A has dimension |V | − 1 and so its kernel has size 2|E|/2|V |−1. Since |E| = 3|V |/2,
this is 2|V |/2+1. By linearity, the pre-image of any vector v in the image of A has exactly
this size. Thus, for each even size set T ⊆ V , there are exactly 2|V |/2+1 vectors π ∈ FE2 with
odd(π−→G) = T4odd(−→G). J

Matchings in Gadgets. Any uniform perfect matching M of X induces an orientation of G,
which we denote −→GM : any edge e = {u, v} ∈ E is oriented from u to v in −→GM if M contains
an edge between e0 and a vertex in Iu and an edge between e1 and a vertex in Iv.

Furthermore, every orientation arises from some perfect matching. To see this, consider
again the gadget in Figure 1. This has eight subgraphs induced by taking the vertices {vb}∪Iv,
together with exactly one vertex from each of the sets {f0, f1}, {g0, g1} and {h0, h1}. We
claim that each of these eight subgraphs contains a perfect matching. Indeed, it suffices to
verify this for the two cases S = Iv ∪ {vb} ∪ {f0, g0, h0} and T = Iv ∪ {vb} ∪ {f0, g0, h1} as
the other six are obtained from these by automorphisms of the gadget. In what follows, we
also write S and T for the subgraphs of the gadget in Figure 1 induced by these sets. It is
easily seen by inspection that S has exactly four perfect matchings and T has exactly two
perfect matchings.

Hence, for any orientation −→G , we get a matching M ⊆ X with −→GM = −→G by choosing
one matching from each gadget. To be precise, for each vertex v ∈ V , define the relevant
subgraph of X at v to be the subgraph induced by Iv ∪ {vb} along with the vertices e1 for
each edge e incoming at v in −→G and e0 for each edge e outgoing at v in −→G . In X(G), the
relevant subgraph at v is isomorphic to S if v is even in −→G and it is isomorphic to T if v is
odd in −→G . The same is true for all vertices in X̃(G), apart from the special vertex x. For
this one, the relevant subgraph is isomorphic to S if x is odd and to T if x is even. In either
case, we get a perfect matching M with −→GM = −→G by independently choosing exactly one
matching in each relevant subgraph. There are 4 such choices when the relevant subgraph is
like S and 2 choices when it is like T .

Uniform Matchings. It follows that for any orientation −→G of G, the number of uniform
perfect matchings M of X(G) with −→GM = −→G is 2|odd(−→G)|4|V |−|odd(−→G)|. The number of
uniform perfect matchings in X̃(G) depends on whether the special vertex x is odd in −→G or
not. If it is, the number is 2|odd(−→G)|−14|V |−|odd(−→G)|+1 otherwise it is 2|odd(−→G)|+14|V |−|odd(−→G)|−1.
Thus, if we denote the number of uniform perfect matchings in X by #MX, then we have
#MX(G) =

∑
−→
G

2|odd(−→G)|4|V |−|odd(−→G)| where the sum is over all orientations of G. Then,
by Lemma 21, #MX(G) = 2|V |/2+1 ∑

S⊆V : |S|≡|E| (mod 2) 2|S|4|V |−|S|. By the same token,
#MX̃(G) = 2|V |/2+1 ∑

S⊆V : |S|6≡|E| (mod 2) 2|S|4|V |−|S|.
Finally, to show that #MX(G) and #MX̃(G) are different, let Pm denote the number∑
S⊆[2m]:|S|even 2|S|42m−|S| and Qm denote the number

∑
S⊆[2m]:|S|odd 2|S|42m−|S|.

I Lemma 22. For all m ≥ 1, Pm −Qm = 4m.

Proof. We prove this by induction on m. For m = 1, there are exactly two odd sized subsets
and two even sized subsets of [2m]. So Pm = 20 and Qm = 16. For larger values of m, we
have the following identity, where S ranges over subsets of [2m− 2]
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Pm =
∑
|S|even

2|S|42m−|S| + 2
∑
|S|odd

2|S|+142m−|S|−1 +
∑
|S|even

2|S|+242m−|S|

= 16Pm−1 + 16Qm−1 + 4Pm−1

= 20Pm−1 + 16Qm−1.

Here, in the first line, the first sum accounts for all even size subsets of [2m] that exclude the
last two elements, the second one for those that include exactly one of the last two elements
and the third sum for all that include the last two elements.

Similarly, we have

Qm =
∑
|S|odd

2|S|42m−|S| + 2
∑
|S|even

2|S|+142m−|S|−1 +
∑
|S|odd

2|S|+242m−|S|

= 16Qm−1 + 16Pm−1 + 4Qm−1

= 20Qm−1 + 16Pm−1.

Thus, Pm−Qm = 4Pm−1 − 4Qm−1. By, induction hypothesis, the right hand side is 4 · 4m−1

and we’re done. J

Proof of Theorem 15. By a standard expander graph construction (e.g. [1]), for any k, we
can find a 3-regular graph G with treewidth at least k and 2n = O(k) vertices. Then X(G)
and X̃(G) both have O(k) vertices and by Lemma 17 we have X(G) ≡k X̃(G). Moreover,
X(G) and X̃(G) have the same number of non-uniform perfect matchings by Lemma 18.
The number of uniform matchings is 2n+1Pn in one case and 2n+1Qn in the other (which is
which depends on whether n is even or odd). Either way, |µ(X(G)) − µ(X̃(G))| = 23n+1,
which is a power of 2 as required. J

7 Concluding Discussion

We have introduced a novel restriction of arithmetic circuits, which is based on a natural
notion of symmetry. On this basis, we have shown a fundamental difference between
circuits for the determinant and the permanent. The former admits a description through
polynomial-size symmetric circuits and the latter does not.

There are several ways in which our results could be tightened. The first would be to
show the existence of polynomial-size circuits for computing the determinant over arbitrary
fields. Our construction for fields of characteristic zero is based on Le Verrier’s method,
which does not easily transfer to other fields as it relies on division by arbitrarily large
integers. There are general methods for simulating such division on small fields, but it is not
immediately clear if they can be carried out symmetrically. However, there are many efficient
ways of computing a determinant and it seems likely that some method that works on fields
of positive characteristic could be implemented symmetrically. It should be noted, however,
that Gaussian elimination is not such a method. Known results about the expressive power
of fixed-point logic with counting (see, e.g. [9]) tell us that there is no polynomial-size family
of symmetric circuits that can carry out Gaussian elimination. On the other hand, we do
know that the determinant, even over finite fields, can be computed by exactly such a family
of Boolean circuits, as shown by Holm [16]. It is when we restrict to arithmetic circuits, and
also require symmetry, that the question is open.
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The notions of symmetry used in our upper bound for the determinant and the lower
bound for the permanent are slightly different. Essentially, we consider symmetric circuits for
the determinant where we require that each simultaneous row and column permutation extend
to an automorphism of the circuit, while for the permanent we require that each permutation
generated by separate row and column permutations extend to an automorphism of the
circuit. We could improve the result by showing that the lower bound for the permanent
still holds even if we only require the circuits be symmetric with respect to simultaneous row
and column permutations. We think this could be established by adapting our construction
to analyse the counting width of the number of cycle covers of general graphs.

We could consider more general symmetries. For example, the determinant has other
symmetries besides simultaneous row and column permutations. The construction we use
already yields a circuit which is symmetric not only with respect to these but also transposition
of rows and columns. We could consider a richer group that allowed for even permutations
of the rows and columns. Could our upper bound be improved by constructing circuits for
the determinant that are symmetric with respect to larger groups of permutations?

Finally, it is reasonable to think that there are polynomials in VP which do not admit
polynomial-size symmetric arithmetic circuits, by analogy with the case of Boolean circuits.
Can we give an explicit example of such a polynomial?
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Abstract
We give the first polynomial-time approximation scheme (PTAS) for the stochastic load balancing
problem when the job sizes follow Poisson distributions. This improves upon the 2-approximation
algorithm due to Goel and Indyk (FOCS’99). Moreover, our approximation scheme is an efficient
PTAS that has a running time double exponential in 1/ε but nearly-linear in n, where n is the
number of jobs and ε is the target error. Previously, a PTAS (not efficient) was only known for jobs
that obey exponential distributions (Goel and Indyk, FOCS’99).

Our algorithm relies on several probabilistic ingredients including some (seemingly) new results
on scaling and the so-called “focusing effect” of maximum of Poisson random variables which might
be of independent interest.
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1 Introduction

We consider the following fundamental problem in scheduling theory: given n jobs with job
sizes w1, . . . , wn ≥ 0, assign jobs to m machines such that the maximum load of any machine
(i.e., the total size of jobs assigned to the machine) is minimized. In other words, we want to
partition [n] into sets S1, . . . , Sm so as to minimize maxi∈[m]

∑
j∈Si wj . Often referred to as

load balancing or makespan minimization, this is one of the classical NP-complete problems
and along with its many variants, has been extensively studied both in theoretical computer
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science as well as operations research. While the exact problem is hard, this problem admits
a polynomial time approximation scheme (PTAS) [12] and later work improved this to an
efficient PTAS [16, 15, 14, 1]. Several other variants of this problem have also been studied –
this includes (i) the related machines case where the machines can have different speeds [13];
(ii) the unrelated machines case where the job size itself depends on the machine on which
it is scheduled [20]; and (iii) the precedence constrained case where there are precedence
constraints on schedule of jobs [7, 5].

All the aforementioned variants of this problem have the common feature that the job
sizes are known in advance to the algorithm designer. However, in many situations, there
might be uncertainty in the job size. An obvious way to model this uncertainty is via the
framework of stochastic optimization as follows – we have m machines and n jobs where
the size of the ith job is given by the random variable Wi. If we now assign the jobs to m
machines (given by S1, . . . , Sm), then the load of the jth machine is given by the random
variable

∑
i∈Sj Wi. Similar to the case when the job sizes are deterministic, in stochastic

load balancing, one would like to minimize the maximum load. However, since the maximum
load (across machines) is itself a random variable – arguably, the most natural objective is
to then minimize the expected maximum load. In other words, we seek to find a partition of

[n] into sets S1, . . . , Sm so as to minimize E
[

maxj∈[m]
∑
i∈Sj Wi

]
.

Throughout this paper, we assume that the random variables {Wi}ni=1 are independent –
that is the job sizes are independent of each other. Further, note that the algorithm designer
is assumed to know the distribution of the random variables {Wi}ni=1 (though, of course,
not the actual realizations of the loads).

To our knowledge, Kleinberg, Rabani and Tardos [18] were the first to consider this
problem in the algorithms community. They gave a O(1)-factor approximation algorithm
for this problem. Soon thereafter, Goel and Indyk [9] considered the problem of obtaining
better approximation for special classes of random variables – in particular, (i) if each {Wi}
is an exponential random variable, they obtain a PTAS (though not an efficient one); (ii) if
each {Wi} is a Poisson random variable, then they obtain a 2-approximation algorithm. In
fact, this 2-approximation is obtained by considering the (deterministic) instance with loads
{w1, . . . , wn} where wi = E[Wi] and then applying Graham’s heuristic [10] on this instance.

Somewhat more complicated variants of this problem have also been considered – as an
example, Gupta et al. [11] considered the problem of stochastic load balancing on unrelated
machines. Here, the load of job i on machine j is given by a random variable Wi,j . For
this variant, [11] gave a O(1) approximation algorithm (thus extending the guarantee of
[18] to the case of unrelated machines). Similarly, Molinaro [22] considered the problem of
minimizing the expected `p norm of the loads (the version we have can be seen as minimizing
the expected `∞ norm of the loads). Despite all this impressive progress, the only case where
we have a PTAS for stochastic load balancing is when all the loads {Wi} are exponential
random variables. As the main result of this paper, we obtain an efficient PTAS for stochastic
load balancing when all the loads are Poisson random variables.

I Theorem 1. There is an algorithm PoiScheduling(n,m, {λi}ni=1 , ε) that given an in-
stance of the load balancing problem with n jobs and m machines where the size of the
ith job is Wi = Poi (λi) (i.e. a Poisson random variable with mean λi), and a parameter
0 < ε < 1, outputs a job assignment whose expected maximum load satisfies L ≤ (1 + ε)L∗,
where L∗ is the expected maximum load of an optimal assignment. The algorithm runs in
time 22O(1/ε2) +O(n log2 n log log2 n).
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Theorem 1 is the first PTAS for stochastic load balancing with Poisson jobs. Prior to
this result, the best known approximation algorithm for this setting was due to Goel and
Indyk [9] (mentioned earlier) and had an approximation factor of 2. In fact, our PTAS is also
an efficient PTAS – i.e., the running time remains polynomial in n even for some ε = o(1).
In contrast, the PTAS from [9] for exponential random variables was not an efficient PTAS.
Finally, we point out that our running time is doubly exponential in the error parameter ε.
While this can be potentially improved to a singly exponential dependence in ε, it is unlikely
to be improved further – in particular, [6] showed that under the ETH, any PTAS for even
the deterministic load balancing problem must have a singly exponential dependence on ε1.

1.1 Our techniques
At a high level, to design an algorithm for stochastic load balancing, we must come up with
an algorithmically tractable proxy for the objective function E[maxj∈[m]

∑
i∈Sj Wi]. However,

the expected maxima of random variables (and more generally stochastic processes) can
be notoriously difficult to reason about. Indeed, we point out that in the last fifty years,
significant effort in probability theory has been devoted towards understanding the maximum
of even simple families of random variables such as Gaussians [8, 24]. Despite this challenge,
the hope is that by exploiting structural properties of Poisson random variables along with
appropriate algorithmic primitives, we will be able to design an efficient PTAS for stochastic
load balancing for Poisson jobs.

The starting points of our algorithm are two natural heuristics which have previously
been analyzed in the context of stochastic load balancing.
1. The first heuristic is to construct an instance of (deterministic) load balancing where the

size of the ith job is wi = E[Wi]. One can then apply the PTAS (say from [1]) to get an
allocation of the n jobs into m machines. The obvious pitfall here is that the actual job
size is a Poisson random variable which may typically be very far from its mean. In other
words, this heuristic has a good guarantee provided

E[ mmax
j=1

Poi(µj)] ≈
mmax
j=1

[E [Poi(µj)]],

where µj is the expected load size of the jth machine2. Of course, the above relation
may be far from true and indeed, we want to point out that while the left hand side
E[maxmj=1 Poi(µj)] is just a function of µ1, . . . , µj , it is far from being a linear function
of µ1, . . . , µj . It is easy to create an instance where the optimum obtained by replacing
each Poisson load by its expectation is a constant factor away from the true optimum.
Despite this limitation, this heuristic is in fact of both theoretical and practical value.
In particular, from a theoretical aspect, recall that Poi(λ) concentrates around λ (with
standard deviation

√
λ). This can be leveraged to show that if the optimum allocation

must necessarily have at least one machine with a (sufficiently) large load, then the
allocation for the deterministic load balancing problem provides a near optimal allocation
for the stochastic version as well.

2. The second heuristic is a greedy algorithm – namely, we first assign an arbitrary order to
the jobs and iteratively assign each job to the machine with the least current expected load.
This is the same as the Graham’s rule [10], and is precisely how the authors of [9] obtained

1 One can reduce an instance of deterministic load balancing to one of Poisson load balancing by scaling
up all job sizes such that they all become at least ω(ε−2 logm). By Chernoff bounds and union bound
this reduction preserves (1 +O(ε))-approximation.

2 Note that Poi (λ1)+Poi (λ2) = Poi (λ1 + λ2) if Poi (λ1) and Poi (λ2) are independent, so every machine’s
load is still a Poisson random variable.
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a 2-approximation for load balancing Poisson jobs. The underlying rationale for this rule
is the following cruical fact about Poisson random variables. Suppose µ1 ≥ µ2 ≥ µ3 ≥ µ4
such that µ1+µ4 = µ2+µ3. Then, E[max{Poi(µ1),Poi (µ4)}] ≥ E[max{Poi(µ2),Poi(µ3)}].
This fact can in fact be extended to prove that if there is an allocation such that the
expected load is the same across all machines, then that is an optimum allocation. Of
course, such an allocation might not exist – however, heuristically we might hope that if
all the job sizes are small, then we can approximately equalize the expected load on the
machines and that such an allocation might have a near-optimal expected maximum load.

It turns out that these heuristics (even when rigorously analyzed) are not sufficient to provide
a PTAS for stochastic load balancing in all regimes of job sizes and (number of) machines.
Therefore we need some other observations. The first crucial observation is that if there is
a job size λ which is more than the average load (i.e. the total expected job size divided
by m), then in the optimal allocation, such a job is assigned its own separate machine
(Observation 17). This observation can be iteratively applied so that we are now left with
job sizes {λi}n

′

i=1 and m′ machines such that

n′

max
i=1
{λi} ≤

∑n′

i=1 λi
m′

:= µ.

In other words, no job is larger than the average expected load across the m′ machines, i.e.,
µ. With this simplification, we discuss another familiar trick in the context of allocation
problems – namely we create a rounded instance such that each job size (now call it {λ′i}n

′

i=1)
is now in the interval [εµ, 2µ]. The rounding procedure we apply is identical to the rounding
procedure used by [1] in the context of deterministic load balancing. A key property is that
the number of different (expected) job sizes in this modified instance is a constant – i.e., only
dependent on the target error parameter ε.

This rounding step highlights a key technical challenge our algorithm faces – namely, it is
possible that by “multiplicatively dilating” the job sizes, the expected maximum load of the
machines can change significantly. In other words, suppose µ1, . . . , µm ≥ 0, then is it the
case that for any 0 < δ < 1,

E[ mmax
j=1

Poi((1 + δ)µj)] ≈ (1 +O(δ))E[ mmax
j=1

Poi(µj)] ? (1)

While intuitively this looks reasonable, it is not clear if this is true in full generality.
Fortunately for us, we obtain the following dichotomy:
1. When µ is very large (this corresponds to the Case 1 in the analysis), we are able to show

that the first heuristic above provides a PTAS – in other words, just substituting each
stochastic job Wi with a deterministic job wi such that wi = E [Wi] and then applying
the PTAS for the deterministic case [1, 14, 15] gives a PTAS for the stochastic case. The
underlying reason is that in this case, the expected maximum is essentially the same as
the expected heaviest load across the m machines.
The same algorithm also works if µ is in a “certain intermediate range” andm is sufficiently
large (this corresponds to Case 3 in the analysis). In fact, in this case, even the greedy
heuristic described earlier provides a PTAS. The underlying reason why the deterministic
PTAS works is the following: in this regime, the expected maximum remains essentially
the same even if all the loads were to go up by a factor of 2.

2. Outside of the above two cases, our heuristics (greedy or deterministic scheduling) fail
to provably work. However, in these cases, we are able to prove (1). In other words, we
are able to show that dilating or contracting each job size by a factor of (1 + δ) affects
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the expected maximum by only a factor of 1±O(δ). Thus, we can apply the rounding
procedure from [1] to reduce to the case where the number of different job sizes is a
constant. In fact, this is enough to obtain a PTAS for the stochastic load balancing
problem though not an efficient PTAS.
Finally, to get an efficient PTAS, we leverage a third property of the “maximum of
Poisson random variables” – namely, the so-called “focusing effect” [3, 2, 4]. Roughly
speaking, it says that suppose we have m independent Poisson random variables (call
them X1, . . . ,Xm), each with mean µ, then there is an integer I such that (maxmi=1 Xi) ∈
[I, I + 1] with probability 1− o(1) as m→∞. We extend this to (certain instances of)
independent but not identically distributed Poisson random variables. Essentially such a
“focusing effect”, whenever it holds, allows us to express the expected maximum of the
loads of m machines as a linear function of the allocation and then employ an integer
linear program (ILP) to find the optimal allocation.
To explain how an ILP comes into the picture, first of all, we can assume that m (i.e.,
the number of machines) is sufficiently large in terms of the target error parameter δ. If
this is not the case, then we can simply employ dynamic programming to find a good
allocation (it is now an efficient PTAS because m is a constant). Once m is large, we
show the following:
(a) Either there is a transition point t= t(µ1,. . . ,µm) such that max{Poi(µ1),. . . ,Poi(µm)}

sharply concentrates within 1±O(δ) of the transition point. In this case, we want
to find the smallest t∗, for which there is an allocation with loads µ1, . . . , µm such
that t∗ = t(µ1, . . . , µm). We use ILP and binary search to find such t∗. Observe that
in this case, the smallest such t∗ will minimize the expected maximum load (up to
1±O(δ)).

(b) Otherwise, there is a transition point t = t(µ,m) such that max{Poi(µ1), . . . ,Poi(µm)}
sharply concentrates in the set [t − 1, t]. Observe that t only depends on µ and
m, and hence can be easily computed. With the knowledge of t, we now use
an ILP to find an assignment µ1, . . . , µm which maximizes the probability that
max{Poi(µ1), . . . ,Poi(µm)} = t− 1 and thus minimizes the expected maximum load.

1.2 Organization
In Section 2, we formally state the problem, establish some notations, and describe some
properties of Poisson random variables that we will utilize. In Section 3 we give an overview
of our concentration and scaling results for the maximum of Poisson random variables. In
Section 4 we present our efficient polynomial-time approximation scheme and its analysis.

2 Preliminaries

We use Poi (λ) to denote a Poisson random variable with mean λ. Recall that Pr [Poi (λ)=k]=
e−λ · λ

k

k! for k ∈ N. In the stochastic load balancing problem considered in this paper, we are
given n jobs and m machines where the job sizes are independent Poisson random variables
Poi (λ1) ,Poi (λ2) , . . . ,Poi (λn). We will call λi the size of job i. Our goal is to assign the
jobs to the machines so that the expected maximum load

L
def= E

 mmax
j=1

∑
i∈Sj

Poi (λi)

 (2)

is minimized, where Sj is the set of jobs assigned to machine j.
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It is well known that the sum of two independent Poisson random variables also follows a
Poisson distribution, i.e. Poi (λ1)+Poi (λ2) = Poi (λ1 + λ2). Therefore if we let µj =

∑
i∈Sj λi,

we can write (2) as L = E
[
maxmj=1 Poi (µj)

]
. We will call µj the load of machine j.

Henceforth, our analysis of Poisson random variables will mainly serve the purpose of
characterizing the expected maximum load, and therefore we will use µ and µ1, µ2, . . . , µm
to denote the means when stating useful claims about Poisson distributions.

I Definition 2. We write M(m,µ) to denote the random variable whose value is the maximum
of m i.i.d. Poi (µ).

In [9] the authors proved that Poisson distributions are log-concave:

I Proposition 3 ([9]). For any t ≥ 0, the function

ft(µ) = log Pr [Poi (µ) ≤ t] (3)

is decreasing and concave with respect to µ.

For any random variables X and Y taking values on N, we say X stochastically dominates
Y, denoted by X ≥sd Y, if Pr [X ≥ k] ≥ Pr [Y ≥ k] holds for every k ∈ N. Note that for
independent X,Y we have Pr [max {X,Y} ≥ k + 1] = 1−Pr [X ≤ k] Pr [Y ≤ k]. Now by
Proposition 3 we have the following:

I Proposition 4 (Lemma 2.1 of [9]). Given 0 ≤ µ1 ≤ µ′1 ≤ µ′2 ≤ µ2 such that µ1+µ2 = µ′1+µ′2,
it holds that max {Poi (µ1) ,Poi (µ2)} ≥sd max {Poi (µ′1) ,Poi (µ′2)}.

Poisson random variables satisfy exponential tail bounds:

I Proposition 5 (Theorem 4.4, Theorem 4.5 of [21]). Let X be a Poisson random variable
with mean µ. For 0 < δ < 1 we have

Pr [X ≥ (1 + δ)µ] ≤ e−µδ
2/3, (4)

Pr [X ≤ (1− δ)µ] ≤ e−µδ
2/2. (5)

In our analysis we will need to use Stirling’s approximation to deal with factorials:

I Proposition 6 (Stirling’s approximation [23]). For any integer n > 0,

e
(n
e

)n
≤
√

2πn
(n
e

)n
e1/(12n+1) ≤ n! ≤

√
2πn

(n
e

)n
e1/12n ≤ en

(n
e

)n
. (6)

3 Concentration and Scaling Results for Maximum of Poissons

In this section we present our concentration and scaling results for the maximum of independ-
ent Poisson random variables Poi (µ1) ,Poi (µ2) , . . . ,Poi (µm), which will be used to prove
the correctness of our algorithm. Full proofs of these results are deferred to the full version
of the paper.

Throughout we assume µ1 ≥ µ2 ≥ . . . ≥ µm ≥ 0, and define µ = (
∑m
j=1 µj)/m. We use δ

as an error parameter, which measures how well the maximum of Poissons is concentrated.
We consider five different cases based on the relationship between µ, m, and µj ’s, and state
our results for each of them. Note that while the ranges of µ in these cases are disjoint,
we prove our lemmas below for slightly overlapping ranges of µ for ease of analyzing our
algorithm in Section 4.
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Fix δ ∈ (0, 1/10]. We prove our results for the following cases respectively:
Case 1: 6

δ2 logm < µ.

Case 2: 1
21/δ+1 logm < µ ≤ 6

δ2 logm and m ≥ 22
2
δ .

Case 3: 1
mδ

< µ ≤ 1
21/δ+1 logm, m ≥ 2 2

δ log 2
δ , and ∀j, µj ∈ [µ/4, 4µ].

Case 4: 4 logm
m < µ ≤ 1

mδ
, m ≥ 2100/δ2 , and ∀j, µj ∈ [µ/4, 4µ].

Case 5: µ ≤ 4 logm
m , m ≥ 1000(1/δ) log2(1/δ), and ∀j, µj ∈ [µ/4, 4µ].

For Case 1 we show that maxmj=1 Poi (µj) is concentrated within (1 ± O(δ))µ1. For
each of Case 2, Case 3, and Case 4 we define a certain transition point and show that
maxmj=1 Poi (µj) is concentrated around this point. For Case 5 we show that maxmj=1 Poi (µj)
takes value 0 or 1 with high probability. For all cases we show that the maximum value is
robust to contraction or dilation of µj ’s. In particular maxmj=1 Poi (µj) does not blow up by
more than 1 +O(δ) when we scale all µj ’s by 1 + δ. We call these scaling results.

I Lemma 7 (Case 1). Suppose δ ∈ (0, 1/10] and µ > 6
δ2 logm. Then

µ1 ≤ E
[

mmax
j=1

Poi (µj)
]
≤ (1 + 5δ)µ1. (7)

I Lemma 8 (Case 2). Suppose δ ∈ (0, 1/10], 1
21/δ+1 logm < µ ≤ 12

δ2 logm, and m ≥ 22
2
δ .

Define transition point t2 = t2(µ1, µ1, . . . , µm) as the largest integer satisfying3

m∑
j=1

Pr [Poi (µj) ≥ t2] ≥ 1
3 . (8)

Then for any random variable X taking values on N, we have

(1− 6δ)E [max {t2,X}] ≤ E
[
max

{
mmax
j=1

Poi (µj) ,X
}]
≤ (1 + 10δ)E [max {t2,X}] , (9)

and

E
[
max

{
mmax
j=1

Poi ((1 + δ)µj) ,X
}]
≤ (1 + 16δ)E

[
max

{
mmax
j=1

Poi (µj) ,X
}]

. (10)

I Lemma 9 (Case 3). Suppose δ ∈ (0, 1/10], 1
mδ

< µ ≤ 1
21/δ+1 logm, and m ≥ 2 2

δ log 2
δ .

Define transition point t3 = t3(m,µ) = logm
log 1

µ+log logm . Then for any random variable X on
N we have

(1− 4δ) max {t3,X} ≤ max {M(m,µ),X} ≤ (1 + 14δ) max {t3,X} , (11)

and

E [max {M(m, 4µ),X}] ≤ (1 + 20δ) E [max {M(m,µ),X}] . (12)

3 The choice of 1
3 in the definition of t2 is arbitrary. In principle any constant bounded away from both 1

and 0 suffices.
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I Lemma 10 (Case 4). Suppose δ ∈ (0, 1/10], 4 logm
m < µ ≤ 2

mδ
, m ≥ 2100/δ2 , and

µ1, . . . , µm ∈ [µ/4, 4µ]. Define transition point t4 = t4(m,µ) = dγ4(m,µ)e where γ4(m,µ) =
logm

log 4
µ+log logm . Let W be a Bernoulli random variable taking values on t4 − 1 and t4 where

Pr [W = t4 − 1] =
∏m
j=1 Pr [Poi (µj) ≤ t4 − 1]. Then for any random variable X on N we

have

(1− 5δ)E [max {W,X}] ≤ E
[
max

{
mmax
j=1

Poi (µj) ,X
}]
≤ (1 + 16δ)E [max {W,X}] , (13)

and

E
[
max

{
mmax
j=1

Poi ((1 + δ)µj) ,X
}]
≤ (1 + 16δ)E

[
max

{
mmax
j=1

Poi (µj) ,X
}]

. (14)

I Lemma 11 (Case 5). Suppose δ ∈ (0, 1/10], µ ≤ 8 logm
m , m ≥ 1000(1/δ) log2(1/δ),

and ∀j, µj ∈ [µ/4, 4µ]. Let W be a 0/1 Bernoulli random variable with E [W] = 1 −∏m
j=1 Pr [Poi (µj)=0]= 1− e−mµ. Then for any random variable X on N we have

max {W,X} ≤ E
[

mmax
j=1

Poi (µj)
]
≤ (1 + 10δ) max {W,X} , (15)

and

E
[
max

{
mmax
j=1

Poi ((1 + δ)µj) ,X
}]
≤ (1 + 10δ) E

[
max

{
mmax
j=1

Poi (µj) ,X
}]

. (16)

4 An Efficient Polynomial-time Approximation Scheme

Our PTAS for stochastic load balancing is heavily inspired by the approach of [1, 15] for the
deterministic load balancing problem. Thus, we first begin with a recap of their approach.

4.1 Recap of the PTAS for deterministic load balancing
Consider any instance of deterministic load balancing where the job sizes are {λi}ni=1 and
we have m machines – the goal is to find an assignment with smallest maximum load. The
algorithms in [1, 15] proceed in two phases: In phase I, we assign “big” jobs to separate
machines. Here big jobs are the maximal set of jobs whose size is greater than the remaining
average load. In other words, it is the maximal set B ⊆ [n] satisfying that ∀i ∈ B,
λi > (

∑
i/∈B λi)/(m− |B|) := µ. Exploiting the convexity of the objective function (i.e. the

function max {x1, x2, . . . , xm}), [1, 15] show that an optimum assignment (i) assigns the
jobs in B to their own separate machines; (ii) assigns the remaining jobs to the remaining
machines in a way such that each of these machines have a load between µ/2 and 2µ.

With this, we are only left with the problem of assigning the small jobs, i.e., the jobs not in
B. A second key step here is to round the sizes of the remaining jobs, such that (i) the number
of different job sizes is now4 Õ(1/ε) and (ii) the potential number of different assignments
to any single machine is 2Õ(1/ε). Crucially, both these numbers are just dependent on the
target error parameter ε. With this rounding, [1, 14] formulate the problem of finding an
optimal assignment on the remaining (rounded) jobs as an integer linear program with

4 Recall that Õ(f) denotes O(f logc f) for some constant c.
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2Õ(1/ε) variables – referred to as a configuration-IP. The configuration-IP can be solved in
time exponential in the number of variables and linear in the input length using algorithms
in [19, 17].

I Theorem 12 ([17]). There is an algorithm ILP that solves an integer linear program with
p variables in time pO(p)O(n) where n is the length of input.

This leads to an overall running time of 22Õ(1/ε) +O(n logn) [1], where the running time
O(n logn) comes from the pre-processing step of sorting the job sizes (to find the big jobs).

I Theorem 13 ([1]). There is an algorithm DetScheduling that given an instance of the
load balancing problem with n jobs and m machines where the jobs have deterministic sizes
λ1, λ2, . . . , λn, and a parameter 0 < ε < 1, outputs a job assignment whose maximum load is
at most (1 + ε) of the maximum load of an optimum assignment. The algorithm runs in time
22Õ(1/ε) +O(n logn).

The authors in [15] then use a sparsification technique to show that the configuration-IP
has an optimum solution with a small support size, which leads to an improved running time
of 2O(1/ε) log4(1/ε) +O(n logn). Later by improving the runtime of solving the ILP, a running
time of 2O(1/ε) log2(1/ε) +O(n logn) was achieved [16].

4.2 Overview of our approach
We now give an overview of our approach for the stochastic load balancing problem. Recall
that we have n jobs and m machines where the ith job has size Poi(λi). Similar to the
deterministic case [1, 15], we define “big” jobs as the maximal set of jobs whose (expected)
size is greater than the remaining (expected) average load, i.e. the maximal set B ⊆ [n]
satisfying that ∀i ∈ B

λi >

∑
i/∈B λi

m− |B|
. (17)

By Proposition 3, the objective function is convex with respect to the machine loads (similar
to [1, 15]). Thus, we assign the jobs in B to separate machines (see Lines 2–5 of Algorithm 1).

Assigning the small jobs (i.e., the jobs outside B) is however somewhat more complicated.
As stated in Section 1.1, there are two principal difficulties in applying the approaches
from [1, 15] to handling the remaining jobs. One is to discretize the job sizes, and the other
is to formulate the problem of minimizing the expected maximum load as an integer linear
program. The key to circumventing both these difficulties lies in the (technical) results on
concentration and scaling of maximum of Poisson random variables proven in Section 3.
To understand their role, let us begin with some notation. Let m(1) = m− |B| denote the
number of the remaining machines. Consider an assignment of the remaining jobs and let
Poi (µ1) ,Poi (µ2) , . . . ,Poi (µm(1)) be the corresponding distributions of the machine loads.
Suppose µ1 ≥ µ2 ≥ . . . ≥ µm(1) and let µ = (

∑m(1)

j=1 µj)/m(1). By an argument similar to the
deterministic case [1, 15] (see Observation 18), we can restrict ourselves to the case when
µj ∈ [µ/2, 2µ] for all j ∈ [m(1)]. Let δ ∈ (0, 1) be a target error parameter (roughly speaking,
we set δ ≈ Θ(ε)).

Our results in Section 3 first imply that when µ is sufficiently large in terms of 1/δ and
m(1) (the condition of Lemma 7), or µ is in a certain intermediate range but m(1) is large
enough in terms of 1/δ (the condition of Lemma 9), it suffices to find an assignment by
running the deterministic load balancing algorithm in Theorem 13. When µ does not satisfy
the above conditions but m(1) is sufficiently large in terms of 1/δ, we have the following
dichotomy:
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1. maxm(1)

j=1 Poi (µj) is concentrated within (1 ± O(δ)) of a certain transition point t =
t(µ1, . . . , µm(1)) (Lemma 8), or

2. takes value dte − 1 or dte with high probability, where the transition point t = t(m(1), µ)
only depends on m(1) and µ (Lemmas 10 and 11).

Further, in all of the cases,

E
[

mmax
j=1

Poi ((1 + δ)µj)
]
≤ (1 +O(δ))E

[
mmax
j=1

Poi (µj)
]

(18)

(Lemmas 8, 10, and 11). Finally, when m is sufficiently small in terms of δ, we can use
dynamic programming to get an efficient PTAS.

Let us now see how the above structural results are useful in algorithm design – first
of all, (18) immediately allows us to discretize the job sizes by rounding up their means to
the nearest integer power of (1 + δ), with proper handling of jobs with size below a certain
threshold5. Once the job sizes are rounded, the existence of the transition points (rather, the
precise definitions of these transition points in Section 3) can be used to construct integer
linear programs which can find a near optimal solution. As an example, if we are in Case 4
as defined above, by Lemma 10 minimizing the expected maximum is the same as finding
µ1, µ2, . . . , µm(1) such that the probability that the maximum load is dte is minimized. This
finishes our overview of the PTAS.

4.3 Our PTAS
We give a full description of our efficient PTAS in Algorithm 1 as PoiScheduling, which
calls Rounded (Algorithms 2), ILPScheduling (Algorithm 3), and DPScheduling as
subroutines. The detailed description of DPScheduling is deferred to the full version as it
uses mostly standard ideas.

PoiScheduling first handles the “big” jobs in the same way as deterministic case
(Lines 2–5 of Algorithm 1). As before µ denotes the remaining average machine load (i.e.
RHS of (17)) and m(1) denote the number of the remaining machines. PoiScheduling then
does one of the following for the remaining jobs:
1. When µ is large enough to meet the condition of Case 1, or µ and m(1) meet the condition

of Case 3, PoiScheduling directly uses the algorithm for deterministic case as a blackbox
(Lines 7–9 of Algorithm 1).

2. When µ and m(1) meet the condition of Case 2, Case 4, or Case 5, PoiScheduling first
rounds the sizes of the remaining jobs in the same way as [15] (Line 6 of Algorithm 1).
Then for Case 2 it uses integer linear programming in conjunction with a binary search
to find the smallest transition point t2 achievable by an assignment of the remaining
jobs, where the ILPs have linear objective functions and configuration-IP from [1, 15] as
feasibility constraints (Lines 10–12 of Algorithm 1). Case 4 and Case 5 are also handled
by integer linear programs (Lines 13-15 and Lines 16-17 of Algorithm 1 respectively).

3. When none of the conditions of Case 1 -Case 5 is met, namely m(1) ≤ 22O(1/ε) and µ ≤
O(ε−2 logm), PoiScheduling finds an assignment by dynamic programming (Line 19
of Algorithm 1).

PoiScheduling uses Rounded, ILPScheduling and DPScheduling as subroutines.
Roughly speaking, Rounded takes a multi-set of job sizes and a parameter δ as input and
outputs a multi-set of job sizes such that the number of different job sizes only depends

5 The specific rounding scheme we use is identical to the one used in [15].
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on δ. ILPScheduling takes the jobs and the number of machines m, and a function f as
input. The goal of ILPScheduling is to find an assignment with loads µ1, . . . , µm such
that

∑m
j=1 f(µj) is minimized. DPScheduling takes the jobs and number of machine, and

an error parameter ε as input and returns an assignment of jobs with at most (1 + ε) error
with respect to an optimum assignment by a dynamic programming.

By using the algorithm in [17] (Theorem 12) to solve the integer linear programs,
PoiScheduling achieves a running time double exponential in 1/ε and nearly-linear in n.
Note that although the algorithm in Theorem 12 needs integral coefficients, we can compute
the coefficients with a high precision (inverse polynomial precision) which is sufficient to
get our desired approximation and does not affect our running time, so we don’t get into
the details. We also note that while it is possible to use the sparsification technique in [15]
to improve our running time of solving integer linear programs to single exponential in
1/ε, our dynamic program for the case when 1/ε ≥ Ω(log logm) still takes time double
exponential in 1/ε.

The performance of PoiScheduling is characterized in Theorem 1. The performances
of Rounded and DPScheduling are characterized in Lemmas 14 and 15 respectively. We
do not give a separate lemma for ILPScheduling but analyze it in our proofs directly.

Note that Lemma 14 below only gives guarantees for how the job sizes and individual
machine loads change after rounding; the lemma itself does not make assertions about the
expected maximum load. Instead, guarantees for the latter will follow from our scaling
results in Section 3.

I Lemma 14 ([15]). The algorithm {λ′i}
n′

i=1 = Rounded({λi}ni=1 , µ, δ) runs in time O(n).
Suppose all λi ≤ µ, δ ∈ (0, 1), and µ = (

∑n
i=1 λi)/m for an integer m. The number of

different sizes in {λ′i}
n′

i=1 is bounded by O( 1
δ log 1

δ ), and each λ′i = δµ + kδ2µ for some
k ∈ Z≥0, k ≤ 2

δ2 . n′ is bounded by O(m/δ). For any assignment of {λi}ni=1 to m machines
with loads µ1, µ2, . . . , µm, there is an assignment of {λ′i}

n′

i=1 to m machines with loads
µ′1, µ

′
2, . . . , µ

′
m such that all µ′j ≤ (1 + 5δ)µj. Conversely, for any assignment {λ′i}

n′

i=1 to m
machines with loads µ′1, µ′2, . . . , µ′m, there is an assignment of {λi}ni=1 to m machines with
loads µ1, µ2, . . . , µm such that all µj ≤ (1 + 5δ)µ′j , and the latter assignment can be found in
O(n) time given the former assignment if both {λi}ni=1 and {λ′i}

n′

i=1 are sorted.

I Lemma 15. Given jobs {νi}n
(0)

i=1 , {λi}
n(1)

i=1 , number of machines m, and ε ∈ (0, 1
10 ]. Let

m(1) = m−n(0), µ = (
∑n(1)

i=1 λi)/m(1), and δ = max
{

ε
1000m(1) , 2−109/ε2

}
. Suppose all λi ≤ µ,

all νi > µ, and µ ≤ 6000000ε−2 logm(1). Then DPScheduling({νi}n
(0)

i=1 , {λi}
n(1)

i=1 ,m, ε)
finds in O(n(0)ε−4 log2m(1)) + (m(1)/δ)O( 1

δ log 1
δ ) time an assignment with expected maximum

load L ≤ (1 + ε)L∗, where L∗ is the expected maximum load of an optimum assignment.

A detailed proof of Lemma 15 is deferred to the full version of the paper. First we show
how to prove Theorem 1 using the lemma.

4.4 Proof of Theorem 1
The following lemma shows that if Algorithm 1 does not use dynamic programming to find
an assignment, then we have a good approximation.

I Lemma 16. If Algorithm 1 returns an assignment without going into Line 19, then
L ≤ (1 + ε)L∗, where L,L∗ is the expected maximum load of the assignment returned by
Algorithm 1 and the optimum assignment respectively.
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Algorithm 1 PoiScheduling(n,m, {λi}n
i=1 , ε).

Input :Number of jobs n, number of machines m, job sizes {λi}ni=1, and ε ∈ (0, 1)
Output :A job assignment φ : [n]→ [m]

1 µ← (
∑n
i=1 λi)/m, and sort {λi}ni=1 such that λ1 ≤ λ2 ≤ . . . ≤ λn.

2 n(1) ← n and m(1) ← m.
3 while λn(1) > µ do
4 Assign the job with size λn(1) to the empty machine m(1): φ(n(1))← m(1).

5 µ← m(1)µ−λ
n(1)

m(1)−1 , n(1) ← n(1) − 1, and m(1) ← m(1) − 1.

6 δ ← ε
1000 and {λ′i}

n′

i=1 ← Rounded({λi}n
(1)

i=1 , µ, δ).
7 if µ > 6

δ2 logm(1) or
(

1
(m(1))δ < µ ≤ 1

21/δ+1 logm(1) and m(1) ≥ 2 2
δ log 2

δ

)
then

// Case 1, Case 3

8 Create a new instance with m(1) machines and deterministic job sizes {λi}n
(1)

i=1 .
9 Run DetScheduling in Theorem 13 to find a (1 + ε

5 )-optimum assignment
φ′ : [n(1)]→ [m(1)].

10 else if 1
2δ+1 logm(1) < µ ≤ 6

δ2 logm(1) and m(1) ≥ 222/δ then
// Case 2

11 Use binary search to find the smallest t2 ∈ [µ, 100µ logm(1)] s.t. there is an
assignment of {λ′i}

n′

i=1 with loads {µj}m
(1)

j=1 s.t.
∑m(1)

j=1 Pr [Poi (µj) > t2] < 1
3 ; this

is by (opt, φ′)← ILPScheduling({λ′i}
n′

i=1 ,m
(1), x→ Pr [Poi (x) > t2]) for

each guess of t2 and checking if opt < 1
3 .

12 (opt, φ′)← ILPScheduling({λ′i}
n′

i=1 ,m
(1), x→ Pr [Poi (x) > t2]).

13 else if 4 logm(1)

m(1) < µ ≤ 1
(m(1))δ and m(1) ≥ 2100/δ2 then

// Case 4

14 t4 ←
⌈

logm(1)

log 4
µ+log logm(1)

⌉
.

15 Find an assignment of {λ′i}
n′

i=1 with loads {µj}m
(1)

j=1 s.t.
∏m(1)

j=1 Pr [Poi (µj) < t4] is
maximized, by
(opt, φ′)← ILPScheduling({λ′i}

n′

i=1 ,m
(1), x→ − ln(Pr [Poi (x) < t4])).

16 else if µ ≤ 4 logm(1)

m(1) and m(1) ≥ 1000(1/δ) log2(1/δ) then
// Case 5

17 Find an assignment of {λ′i}
n′

i=1 with loads {µj}m
(1)

j=1 s.t.
∏m(1)

j=1 Pr [Poi (µj) = 0] is
maximized, by
(opt, φ′)← ILPScheduling({λ′i}

n′

i=1 ,m
(1), x→ − ln(Pr [Poi (x) = 0])).

18 else
19 φ′ ← DPScheduling({λi}ni=n(1)+1 , {λi}

n(1)

i=1 ,m, ε).

20 If φ′ is an assignment of the rounded jobs {λ′i}
n′

i=1, use Lemma 14 to covert it to an
assignment of {λi}n

(1)

i=1 such every machine’s load overflows by no more than (1 + 5δ).

21 Return the assignment φ ∪ φ′.
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Algorithm 2 Rounded({λi}n
i=1 , µ, δ).

Input : Job sizes {λi}ni=1, µ s.t. all λi ≤ µ, and δ ∈ (0, 1)
Output :Rounded job sizes {λ′i}n

′

i=1
1 n′ ← 0 and S ← 0.
2 for i← 1 to n do
3 if λi ≥ δµ then
4 n′ ← n′ + 1.
5 ν ← (1 + δ)kδµ where k is the unique integer s.t.

(1 + δ)k−1δµ < λi ≤ (1 + δ)kδµ.
6 λn′ ← lδ2µ where l is the unique integer s.t. (l − 1)δ2µ < ν ≤ lδ2µ.
7 else
8 S ← S + λi.

9 S# ← kδµ where k is the unique integer s.t. (k − 1)δµ < S ≤ kδµ.
10 λ′i ← δµ for each i = n′ + 1, . . . , n′ + S#/(δµ) and n′ ← n′ + S#/(δµ).
11 return {λ′i}n

′

i=1

Algorithm 3 ILPScheduling({λi}n
i=1 ,m, f).

Input : Job sizes {λi}ni=1, number of machines m, and a function f : R→ R
Output :An optimum value opt and a job assignment φ : [n]→ [m]

1 µ← (
∑n
i=1 λi)/m.

2 Let π1 < π2 < . . . < πd be all different sizes in {λi}ni=1 and ~π ← (π1, π2, . . . , πd)T .
3 Let nk be the number of jobs with size πk and ~n← (n1, n2, . . . , nd)T (so∑d

k=1 nk = n).
4 Q←

{
~c ∈ Zd≥0 : ~c T~π ≤ 4µ

}
(the set of possible assignments to a single machine).

5 Solve the following integer linear programming using Theorem 12:

min
∑
~c∈Q

x~c f(~c T~π)

s.t.
∑
~c∈Q

x~c = m

∑
~c∈Q

x~c ~c = ~n

x~c ∈ Z≥0, ∀~c ∈ Q. (19)

6 Return the optimum value of the ILP and an assignment φ extracted from its
solution.

We will provide a detailed proof of Lemma 16 in the next section. Roughly speaking,
for Case 1 and Case 3, where we do not use the rounded jobs, using the guarantee of the
deterministic load balancing algorithm we show that the maximum expected load of any
machine is bounded. Then by using the concentration results from Section 3, we can bound
the expected maximum load.

For three other cases, where the assignment obtained is for the rounded jobs, the proof
consists of two main steps. In the first step, we compare the individual machine loads of
the output assignment (of unrounded jobs) and the assignment of the rounded jobs given by
ILPScheduling by Lemma 14. Then by the concentration and scaling results from Section 3,
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we bound the expected maximum load of the output assignment using the transition point
of rounded jobs. In the second step, we bound the expected maximum of an optimum
assignment of rounded jobs by that of an optimum assignment of unrounded jobs by scaling
results from Section 3. Thus, we bound the expected maximum load of an output assignment
by that of an optimum assignment.

Now we prove Theorem 1.

Proof of Theorem 1. First we analyze the running time when PoiScheduling does not
use dynamic programming. If the algorithm invokes the efficient PTAS for deterministic
case in Theorem 13, the running time is bounded by 22Õ(1/ε) + O(n logn). Otherwise the
algorithm will first do the rounding. By Lemma 14 after the rounding the number of different
job sizes in {λ′i}

n′

i=1 becomes O( 1
δ log 1

δ ) = O( 1
ε log 1

ε ) and all job sizes are between δµ and
2µ. Now for each machine of 1, 2, . . . ,m(1), we only need to consider the assignments to
it with load at most 4µ. Therefore each machine can have at most O(1/δ) = O(1/ε) jobs,
and the number of different job profiles that can be assigned to one machine is at most
(1/ε)O(1/ε) = 2O( 1

ε log 1
ε ), which is the number of variables in the ILP. By Theorem 12 the ILP

can be solved in 22O( 1
ε

log 1
ε

)
O(logn) time. Since for Case 2 we need to do a binary search on

interval [µ, 100µ logm(1)], the total running time is bounded by 22O( 1
ε

log 1
ε

)
O(logn log logn).

If PoiScheduling uses dynamic programming, we have δ ≥ 2−109/ε2 and m(1) ≤ 22O(1/ε) .
Therefore the total running time is bounded by 22O(1/ε2) + O(nε−4 log2 n) by Lemma 15.
Combining these two cases gives us the desired running time.

The approximation guarantee directly follows from Lemmas 16 and 15. J

5 Proof of Correctness using Concentration Results

In this section, we will prove the correctness of Algorithm 1 using the concentration results
in Section 3. We refer to the case in Lemma 16 as the case with “large m” and the other
case as the one with “small m”. Here we only give the proof for large m but defer the proof
for small m to the full version of the paper.

5.1 Analysis for large m
In this subsection, we prove that if Algorithm 1 does not call DPScheduling (Line 19),
then L < (1 + ε)L∗ where L∗ is the expected maximum load of an optimum assignment and
L is the expected maximum load of the returned assignment by Algorithm 1. In our analysis,
by large m we mean that the condition on Line 7, 10, 13, or 16 is satisfied. By small m we
mean that none of those conditions is satisfied, i.e. the algorithm calls DPScheduling. In
this subsection, we will also consider the case when the algorithm finishes assigning all jobs
before Line 6.

I Lemma 16. If Algorithm 1 returns an assignment without going into Line 19, then
L ≤ (1 + ε)L∗, where L,L∗ is the expected maximum load of the assignment returned by
Algorithm 1 and the optimum assignment respectively.

Proof of Lemma 16. Let χ be the set of jobs each of which is assigned to a single machine
in the first loop of Algorithm 1. Let Λ be the (multi-)set of the sizes of the jobs in χ. Let
χ = {Poi (λ) |λ ∈ Λ} and X = maxλ∈Λ Poi (λ). Consider µ and m(1) as same as Algorithm 1
after Line 6. Suppose the algorithm returns an assignment where machine j has load µj . Let{
µ

(1)
j

}m(1)

j=1
be the machine loads corresponding to the assignment φ′ obtained before Line 20.
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That is, if φ′ is an assignment of the rounded jobs, µ(1)
j ’s are the corresponding rounded loads.

Without loss of generality, we assume µ(1)
1 ≥ µ(1)

2 ≥ . . . ≥ µ(1)
m(1) . Let µ(1) =

∑m(1)

j=1
µ

(1)
j

m(1) . Note
that if Algorithm 1 does not return an assignment using rounded jobs (Line 9), then µ = µ(1).
There are six possible cases:
Case 0: The algorithm finishes assigning all jobs before Line 6. Then it must be the case
that n ≤ m. Therefore assigning every job to a single machine is the optimum solution.
Case 1: µ > 6

δ2 logm(1) and the algorithm goes to Lines 7–9. First we state an observation.
Note that this is the same observation as Observation 2.1 in [1] for deterministic case.
Both our observation and the one in [1] follow from the convexity of the objective function
with respect to the machine loads.

I Observation 17. There is an optimum assignment such that each job in χ is solely assigned
to a separate machine.

Proof. Suppose in an optimum assignment there is a job in χ with size λi which is assigned
to a machine with another job of size λj and suppose i is the biggest index such that a job
with size λi shares its machine with another job. Let µ′ be the value of µ in Algorithm 1 just
before assigning λi to a machine, so we know λi > µ′. By removing λj from its machine, all
the other machines should have load at least µ′, otherwise we can assign λj to a machine with
load less than µ′ and by Proposition 4, the expected maximum decreases which contradicts the
optimality. But µ′ is the average load of remaining machines (machines that do not contain
any jobs from {λk|k > i}) and now each one has load more than µ′, a contradiction. J

Let L∗DET be the optimum answer of deterministic case for job sizes of {λi}n
(1)

i=1 and m(1)

machines, where n(1) = n−|χ|. Note that L∗ ≥ L∗DET and L∗ ≥ maxλ∈Λ λ, by Observation 17.
Since δ = ε

1000 , by Lemma 7 we get:

L = E
[
max

{
m(1)

max
j=1

Poi (µj) ,X
}]

≤ E
[
max

{
Poi ((1 + ε/5)L∗DET ) , m

(1)

max
j=2

Poi (µj) ,X
}]

(by Theorem 13)

≤ (1 + 5δ) max
{

(1 + ε/5)L∗DET ,max
λ∈Λ

λ

}
(by (7) in Lemma 7)

≤ (1 + ε/200)(1 + ε/5)L∗ < (1 + ε)L∗. (20)

Case 2: The algorithm goes to Lines 10–12. By calling ILPScheduling multiple times,
Algorithm 1 finds the smallest transition point t2 for rounded jobs on m(1) machines as
defined in Lemma 8. Note that if L̂ is the optimum expected maximum for rounded version,
then L̂ ≤ (1 + 80δ)L∗ (by (10) in Lemma 8 and Lemma 14). Since δ = ε

1000 , m
(1) > 22100/ε

and 1
21/δ+1 logm(1) < µ(1) logm(1) ≤ (1 + 5δ) 6

δ2 logm(1) < 12
δ2 logm(1) (Lemma 14), then by

Lemma 8 we get:

L = E
[
max

{
m(1)

max
j=1

Poi (µj) ,X
}]

≤ E
[
max

{
m(1)

max
j=1

Poi
(

(1 + 5δ)µ(1)
j

)
,X
}]

(Lemma 14)
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. . . ≤ (1 + 80δ)E
[
max

{
m(1)

max
j=1

Poi
(
µ

(1)
j

)
,X
}]

(by (10) in Lemma 8)

≤ (1 + 10δ)(1 + 80δ)E [max {t2,X}] (by (9) in Lemma 8)

≤ (1 + 10δ)(1 + 80δ)
1− 6δ L̂ (by (9) in Lemma 8)

≤ (1 + 10δ)(1 + 80δ)2

1− 6δ L∗

< (1 + ε)L∗

Case 3: 1
(m(1))δ < µ ≤ 1

21/δ+1 logm(1) and m(1) ≥ 2 2
δ log 2

δ , and the algorithm goes to
Lines 7–9. First we state an observation which is the same as Observation 2.2 in [1] for
deterministic case and again follows from the convexity of the objective function with respect
to the machine loads

I Observation 18. If for each i, λi ≤ µ, then for each load µj in an optimum assignment
we have µ/2 ≤ µj ≤ 2µ.

Proof. Suppose a machine has load µj > 2µ and a job assigned to the machine is λi. λi ≤ µ,
so µj − λi > µ, so any other machines has load at least µ, a contradiction. So µj ≤ 2µ.

Suppose a machine has load µj < µ/2. So there is a machine with load µk > µ, so it has
at least two jobs assigned. So there is a job λi in µk such that λi ≤ µk/2, by taking it from
µk its load would be µk − λi ≥ µk/2 > µ/2 > µj , a contradiction as by reassigning λi to µj
by Proposition 4 the expected maximum decreases. So µ/2 ≤ µj . J

Since δ = ε
1000 and m(1) > 2 2

δ log 2
δ , the conditions of Lemma 9 holds and we get:

L = E
[
max

{
m(1)

max
j=1

Poi (µj) ,X
}]

≤ E
[
max

{
M(m(1), (1 + ε/5)2µ),X

}]
(Observation 18 and Theorem 13)

≤ E
[
max

{
M(m(1), 4µ),X

}]
(Proposition 3)

≤ (1 + 20δ) E
[
max

{
M(m(1), µ),X

}]
(by (12) in Lemma 9)

< (1 + ε)L∗.

Case 4: The algorithm goes to Lines 13–15. By putting δ = ε
1000 and Observation 18,

an optimum assignment of rounded jobs satisfies the condition of Lemma 10. Let W be
the Bernoulli random variable as described in Lemma 10 but with respect to the machine
loads of an optimum assignment of the rounded jobs, then (1 − 5δ)E [max {W,X}] ≤ L̂

where L̂ is the optimum expected maximum of rounded version. By finding an assignment
maximimizing

∏m(1)

j=1 Pr [Poi (µj) ≤ t4 − 1], the value of E [max {W,X}] would be minimized.
Let the corresponding optimum W be W∗. So we have (1 − 5δ)E [max {W∗,X}] ≤ (1 −
5δ)E [max {W,X}] ≤ L̂. Note that L̂ ≤ (1 + 80δ)L∗ by (14) in Lemma 10 and Lemma 14.
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As 4 logm
m < µ(1) ≤ (1 + 5δ) 1

mδ
≤ 2

mδ
, by Lemma 10:

L = E
[
max

{
m(1)

max
j=1

Poi (µj) ,X
}]

≤ E
[
max

{
m(1)

max
j=1

Poi
(

(1 + 5δ)µ(1)
j

)
,X
}]

(Lemma 14)

≤ (1 + 80δ)E
[
max

{
m(1)

max
j=1

Poi
(
µ

(1)
j

)
,X
}]

(by (14) in Lemma 10)

≤ (1 + 16δ)(1 + 80δ)E [max {W∗,X}] (by (13) in Lemma 10)

≤ (1 + 16δ)(1 + 80δ)
1− 5δ L̂

≤ (1 + 16δ)(1 + 80δ)2

1− 20δ L∗

< (1 + ε)L∗. (21)

Case 5: The algorithm returns an assignment on Line 17. With the same argument as the
previous case, by maximizing

∏m(1)

j=1 Pr [Poi (µj) = 0], the value E [max {W,X}] as defined
in Lemma 11 would be minimized. Let the corresponding optimum W be W∗. So we have
E [max {W∗,X}] ≤ L̂ where L̂ is the optimum expected maximum of rounded jobs with
m(1) machines and L̂ ≤ (1 + 50δ)L∗ by (16) in Lemma 11 and Lemma 14. So we get:

L ≤ E
[
max

{
m(1)

max
j=1

Poi
(

(1 + 5δ)µ(1)
j

)
,X
}]

(Lemma 14)

≤ (1 + 50δ)E
[
max

{
m(1)

max
j=1

Poi
(
µ

(1)
j

)
,X
}]

(by (16) in Lemma 11)

≤ (1 + 10δ)(1 + 50δ)E [max {W∗,X}] (by (15)) in Lemma 11)

≤ (1 + 10δ)(1 + 50δ)L̂
≤ (1 + 10δ)(1 + 50δ)2L∗

< (1 + ε)L∗.

So for all cases we have L < (1 + ε)L∗ and we are done. J
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Abstract
We prove that it is PPAD-hard to compute a Nash equilibrium in a tree polymatrix game with twenty
actions per player. This is the first PPAD hardness result for a game with a constant number of actions
per player where the interaction graph is acyclic. Along the way we show PPAD-hardness for finding
an ε-fixed point of a 2D-LinearFIXP instance, when ε is any constant less than (

√
2− 1)/2 ≈ 0.2071.

This lifts the hardness regime from polynomially small approximations in k-dimensions to constant
approximations in two-dimensions, and our constant is substantial when compared to the trivial
upper bound of 0.5.
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1 Introduction

A polymatrix game is a succinctly represented many-player game. The players are represented
by vertices in an interaction graph, where each edge of the graph specifies a two-player game
that is to be played by the adjacent vertices. Each player picks a pure strategy, or action, and
then plays that action in all of the edge-games that they are involved with. They then receive
the sum of the payoffs from each of those games. A Nash equilibrium prescribes a mixed
strategy to each player, with the property that no player has an incentive to unilaterally
deviate from their assigned strategy.

Constant-action polymatrix games have played a central role in the study of equilibrium
computation. The classical PPAD-hardness result for finding Nash equilibria in bimatrix
games [4] uses constant-action polymatrix games as an intermediate step in the reduction [4,5].
Rubinstein later showed that there exists a constant ε > 0 such that computing an ε-
approximate Nash equilibrium in two-action bipartite polymatrix games is PPAD-hard [16],
which was the first result of its kind to give hardness for constant ε.

These hardness results create polymatrix games whose interaction graphs contain cycles.
This has lead researchers to study acyclic polymatrix games, with the hope of finding
tractable cases. Kearns, Littman, and Singh claimed to produce a polynomial-time algorithm
for finding a Nash equilibrium in a two-action tree graphical game [12], where graphical
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games are a slight generalization of polymatrix games. However, their algorithm does not
work, which was pointed out by Elkind, Goldberg, and Goldberg [10], who also showed that
the natural fix gives an exponential-time algorithm.

Elkind, Goldberg, and Goldberg also show that a Nash equilibrium can be found in
polynomial time for two-action graphical games whose interaction graphs contain only paths
and cycles. They also show that finding a Nash equilibrium is PPAD-hard when the interaction
graph has pathwidth at most four, but there appear to be some issues with their approach.
Later work of Barman, Ligett, and Piliouras [1] provided a QPTAS for constant-action tree
polymatrix games, and then Ortiz and Irfan [14] gave an FPTAS for this case. All three
papers, [1, 10,14], leave as a main open problem the question of whether it is possible to find
a Nash equilibrium in a tree polymatrix game in polynomial time.

Our contribution. In this work we show that finding a Nash equilibrium in twenty-action tree
polymatrix games is PPAD-hard. Combined with the known PPAD containment of polymatrix
games [5], this implies that the problem is PPAD-complete. This is the first hardness result
for polymatrix (or graphical) games in which the interaction graph is acyclic, and decisively
closes the open question raised by prior work: tree polymatrix games cannot be solved in
polynomial time unless PPAD is equal to P.

Our reduction produces a particularly simple class of interaction graphs: all of our games
are played on caterpillar graphs (see Figure 3) which consist of a single path with small
one-vertex branches affixed to every node. These graphs have pathwidth 1, so we obtain a
stark contrast with prior work: two-action path polymatrix games can be solved in polynomial
time [10], but twenty-action pathwidth-1-caterpillar polymatrix games are PPAD-hard.

Our approach is founded upon Mehta’s proof that 2D-LinearFIXP is PPAD-hard [13].
We show that her reduction can be implemented by a synchronous arithmetic circuit with
constant width. We then embed the constant-width circuit into a caterpillar polymatrix
game, where each player in the game is responsible for simulating all gates at a particular
level of the circuit. This differs from previous hardness results [5, 16], where each player is
responsible for simulating exactly one gate from the circuit.

Along the way, we also substantially strengthen Mehta’s hardness result for LinearFIXP.
She showed PPAD-hardness for finding an exact fixed point of a 2D-LinearFIXP instance, and
an ε-fixed point of a kD-LinearFIXP instance, where ε is polynomially small. We show PPAD-
hardness for finding an ε-fixed point of a 2D-LinearFIXP instance when ε is any constant
less than (

√
2 − 1)/2 ≈ 0.2071. So we have lifted the hardness regime from polynomially

small approximations in k-dimensions to constant approximations in two-dimensions, and
our constant is substantial when compared to the trivial upper bound of 0.5.

Related work. The class PPAD was defined by Papadimitriou [15]. Years later, Daskalakis,
Goldberg, and Papadimitriou (DGP) [5] proved PPAD-hardness for graphical games and
3-player normal form games. Chen, Deng, and Teng (CDT) [4] extended this result to
2-player games and proved that there is no FPTAS for the problem unless PPAD = P. The
observations made by CDT imply that DGP’s result also holds for polymatrix games with
constantly-many actions (but with cycles in the interaction graph) for an exponentially
small ε. More recently, Rubinstein [17] showed that there exists a constant ε > 0 such that
computing an ε−NE in binary-action bipartite polymatrix games is PPAD-hard (again with
cycles in the interaction graph).

Etessami and Yiannakakis [11] defined the classes FIXP and LinearFIXP and they proved
that LinearFIXP = PPAD. Mehta [13] strengthened these results by proving that two-
dimensional LinearFIXP equals PPAD, building on the result of Chen and Deng who proved
that 2D-discrete Brouwer is PPAD-hard [3].
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On the positive side, Cai and Daskalakis [2], proved that NE can be efficiently found in
polymatrix games where every 2-player game is zero-sum. Ortiz and Irfan [14] and Deligkas,
Fearnley, and Savani [7] produced QPTASs for polymatrix games of bounded treewidth (in
addition to the FPTAS of [14] for tree polymatrix games mentioned above). For general
polymatrix games, the only positive result to date is a polynomial-time algorithm to compute
a ( 1

2 + δ)-NE [9]. Finally, an empirical study on algorithms for exact and approximate NE in
polymatrix games can be found in [6].

2 Preliminaries

Polymatrix games. An n-player polymatrix game is defined by an undirected interaction
graph G = (V,E) with n vertices, where each vertex represents a player, and the edges of
the graph specify which players interact with each other. Each player in the game has m
actions, and each edge (v, u) ∈ E of the graph is associated with two m×m matrices Av,u

and Au,v which specify a bimatrix game that is to be played between the two players, where
Av,u specifies the payoffs to player v from their interaction with player u.

Each player in the game selects a single action, and then plays that action in all of the
bimatrix games with their neighbours in the graph. Their payoff is the sum of the payoffs
that they obtain from each of the individual bimatrix games.

A mixed strategy for player i is a probability distribution over the m actions of that player,
a strategy profile is a vector s = (s1, s2, . . . , sn) where si is a mixed strategy for player i. The
vector of expected payoffs for player i under strategy profile s is pi(s) :=

∑
(i,j)∈E A

i,jsj . The
expected payoff to player i under s is si ·pi(s). A strategy profile is a mixed Nash equilibrium
if si · pi(s) = max pi(s) for all i, which means that no player can unilaterally change their
strategy in order to obtain a higher expected payoff. In this paper we are interested in the
problem of computing a Nash equilibrium of a tree polymatrix game, which is a polymatrix
game in which the interaction graph is a tree.

Arithmetic circuits. For the purposes of this paper, each gate in an arithmetic circuit will
operate only on values that lie in the range [0, 1]. In our construction, we will use four specific
gates, called constant introduction denoted by c, bounded addition denoted by +b, bounded
subtraction denoted by −b, and bounded multiplication by a constant denoted by ∗bc. These
gates are formally defined as follows.

c is a gate with no inputs that outputs some fixed constant c ∈ [0, 1].
Given inputs x, y ∈ [0, 1] the gate x+b y := min (x+ y, 1).
Given inputs x, y ∈ [0, 1] the gate x−b y := max (x− y, 0).
Given an input x ∈ [0, 1], and a constant c ≥ 0, the gate x ∗b c := min (x ∗ c, 1).

These gates perform their operation, but also clip the output value so that it lies in the
range [0, 1]. Note that the constant c in the ∗bc gate is specified as part of the gate.
Multiplication of two inputs is not allowed.

We will build arithmetic circuits that compute functions of the form [0, 1]d → [0, 1]d. A
circuit C = (I,G) consists of a set I = {in1, in2, . . . , ind} containing d input nodes, and a set
G = {g1, g2, . . . , gk} containing k gates. Each gate gi has a type from the set {c,+b,−b, ∗bc},
and if the gate has one or more inputs, these are taken from the set I ∪G. The connectivity
structure of the gates is required to be a directed acyclic graph.

The depth of a gate, denoted by d(g) is the length of the longest path from that gate to an
input. We will build synchronous circuits, meaning that all gates of the form gx = gy +b gz

satisfy d(gx) = 1 + d(gy) = 1 + d(gz), and likewise for gates of the form gx = gy −b gz. There
are no restrictions on c-gates, or ∗bc-gates.
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The width of a particular level i of the circuit is defined to be w(i) = |{gj : d(gj) = i}|,
which is the number of gates at that level. The width of a circuit is defined to be w(C) =
maxi w(i), which is the maximum width taken over all the levels of the circuit.

Straight line programs. A convenient way of specifying an arithmetic circuit is to write
down a straight line program (SLP) [11].

SLP 1 Example.

x ← 0.5
z ← x +b in1
x ← x *b 0.5
out1 ← z +b x

SLP 2 if and for example.

x ← in1 *b 1
for i in {1, 2, . . . , 10} do

if i is even then
x ← x +b 0.1

end
end
out1 ← x *b 1

Each line of an SLP consists of a statement of the form v ← op, where v is a variable, and
op consists of exactly one arithmetic operation from the set set {c,+b,−b, ∗bc}. The inputs
to the gate can be any variable that is defined before the line, or one of the inputs to the
circuit. We permit variables to be used on the left hand side in more than one line, which
effectively means that we allow variables to be overwritten.

It is easy to turn an SLP into a circuit. Each line is turned into a gate, and if variable v
is used as the input to gate g, then we set the corresponding input of g to be the gate g′
that corresponds to the line that most recently assigned a value to v. SLP 1 above specifies
a circuit with four gates, and the output of the circuit will be 0.75 +b in1.

For the sake of brevity, we also allow if statements and for loops in our SLPs. These
two pieces of syntax can be thought of as macros that help us specify a straight line program
concisely. The arguments to an if statement or a for loop must be constants that do not
depend on the value of any gate in the circuit. When we turn an SLP into a circuit, we unroll
every for loop the specified number of times, and we resolve every if statement by deleting
the block if the condition does not hold. So the example in SLP 2 produces a circuit with
seven gates: two gates correspond to the lines x ← in1 *b 1 and out1 ← x *b 1, while
there are five gates corresponding to the line x ← x +b 0.1, since there are five copies of
the line remaining after we unroll the loop and resolve the if statements. The output of the
resulting circuit will be 0.5 +b in1.

Liveness of variables and circuit width. Our ultimate goal will be to build circuits that
have small width. To do this, we can keep track of the number of variables that are live at
any one time in our SLPs. A variable v is live at line i of an SLP if both of the following
conditions are met.

There exists a line with index j ≤ i that assigns a value to v.
There exists a line with index k ≥ i that uses the value assigned to v as an argument.

The number of variables that are live at line i is denoted by live(i), and the number of
variables used by an SLP is defined to be maxi live(i), which is the maximum number of
variables that are live at any point in the SLP.

I Lemma 1. An SLP that uses w variables can be transformed into a polynomial-size
synchronous circuit of width w.
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(a) Our stronger boundary conditions.
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(b) The mapping from colors to vectors.

Figure 1 Reducing ε-ThickDisBrouwer to 2D-Brouwer.

3 Hardness of 2D-Brouwer

In this section, we consider the following problem. It is a variant of two-dimensional Brouwer
that uses only our restricted set of bounded gates.

I Definition 2 (2D-Brouwer). Given an arithmetic circuit F : [0, 1]2 → [0, 1]2 using gates
from the set {c, +b, −b, ∗b c}, find x ∈ [0, 1]2 such that F (x) = x.

As a starting point for our reduction, we will show that this problem is PPAD-hard. Our
proof will follow the work of Mehta [13], who showed that the closely related 2D-LinearFIXP
problem is PPAD-hard. There are two differences between 2D-Brouwer and 2D-LinearFIXP.

In 2D-LinearFIXP, all internal gates of the circuit take and return values from R rather
than [0, 1].
2D-LinearFIXP takes a circuit that uses gates from the set {c,+,−, ∗c,max,min}, where
none of these gates bound their outputs to be in [0, 1].

In this section, we present an altered version of Mehta’s reduction, which will show that
finding an ε-solution to 2D-Brouwer is PPAD-hard for a constant ε.

Discrete Brouwer. The starting point for Mehta’s reduction is the two-dimensional discrete
Brouwer problem, which is known to be PPAD-hard [3]. This problem is defined over a
discretization of the unit square [0, 1]2 into a grid of points G = {0, 1/2n, 2/2n, . . . , (2n −
1)/2n}2. The input to the problem is a Boolean circuit C : G→ {1, 2, 3} the assigns one of
three colors to each point. The coloring will respect the following boundary conditions.

We have C(0, i) = 1 for all i ≥ 0.
We have C(i, 0) = 2 for all i > 0.
We have C( 2n−1

2n , i) = C(i, 2n−1
2n ) = 3 for all i > 0.

These conditions can be enforced syntactically by modifying the circuit. The problem is to
find a grid square that is trichromatic, meaning that all three colors appear on one of the
four points that define the square.

I Definition 3 (DiscreteBrouwer). Given a Boolean circuit C : {0, 1}n×{0, 1}n → {1, 2, 3}
that satisfies the boundary conditions, find a point x, y ∈ {0, 1}n such that, for each color
i ∈ {1, 2, 3}, there exists a point (x′, y′) with C(x′, y′) = i where x′ ∈ {x, x + 1} and
y′ ∈ {y, y + 1}.
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Our first deviation from Mehta’s reduction is to insist on the following stronger boundary
condition, which is shown in Figure 1a.

We have C(i, j) = 1 for all i, and for all j ≤ ε.
We have C(i, j) = 2 for all j > ε, and for all i ≤ ε.
We have C(i, j) = C(j, i) = 3 for all i > ε, and all j ≥ 1− ε.

The original boundary conditions placed constraints only on the outermost grid points, while
these conditions place constraints on a border of width ε. We call this modified problem
ε-ThickDisBrouwer, which is the same as DiscreteBrouwer, except that the function is
syntactically required to satisfy the new boundary conditions.

It is not difficult to produce a polynomial time reduction from DiscreteBrouwer to
ε-ThickDisBrouwer. It suffices to increase the number of points in the grid, and then to
embed the original DiscreteBrouwer instance into the [ε, 1− ε]2 square in the middle of the
instance.

I Lemma 4. DiscreteBrouwer can be reduced in polynomial time to ε-ThickDisBrouwer.

Embedding the grid in [0, 1]2. We now reduce ε-ThickDisBrouwer to 2D-Brouwer. One
of the keys steps of the reduction is to map points from the continuous space [0, 1]2 to the
discrete grid G. Specifically, given a point x ∈ [0, 1], we would like to determine the n bits
that define the integer bx · 2nc.

Mehta showed that this mapping from continuous points to discrete points can be done
by a linear arithmetic circuit. Here we give a slightly different formulation that uses only
gates from the set {c,+b,−b, ∗bc}. Let L be a fixed constant that will be defined later.

SLP 3 ExtractBit(x, b).

b ← 0.5
b ← x -b b
b ← b *b L

SLP 4 ExtractBits(x, b1, b2, . . . , bn).

for i in {1, 2, . . . , n} do
ExtractBit(x, bi)
y ← bi *b 0.5
x ← x -b y
x ← x *b 2

end

SLP 3 extracts the first bit of the number x ∈ [0, 1]. The first three lines of the program
compute the value b = (x−b 0.5) ∗b L. There are three possibilities.

If x ≤ 0.5, then b = 0.
If x ≥ 0.5 + 1/L, then b = 1.
If 0.5 < x < 0.5 + 1/L, then b will be some number strictly between 0 and 1.

The first two cases correctly decode the first bit of x, and we call these cases good decodes.
We will call the third case a bad decode, since the bit has not been decoded correctly.

SLP 4 extracts the first n bits of x, by extracting each bit in turn, starting with the first
bit. The three lines after each extraction erase the current first bit of x, and then multiply x
by two, which means that the next extraction will give us the next bit of x. If any of the
bit decodes are bad, then this procedure will break, meaning that we only extract the first
n bits of x in the case where all decodes are good. We say that x is well-positioned if the
procedure succeeds, and poorly-positioned otherwise.
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Multiple samples. The problem of poorly-positioned points is common in PPAD-hardness
reductions. Indeed, observe that we cannot define an SLP that always correctly extracts the
first n bits of x, since this would be a discontinuous function, and all gates in our arithmetic
circuits compute continuous functions. As in previous works, this is resolved by taking
multiple samples around a given point. Specifically, for the point p ∈ [0, 1]2, we sample k
points p1, p2, . . . , pk where pi = p+

(
i−1

(k+1)·2n+1 ,
i−1

(k+1)·2n+1

)
. Mehta proved that there exists

a setting for L that ensures that there are at most two points that have poorly positioned
coordinates. We have changed several details, and so we provide our own statement here.

I Lemma 5. If L = (k + 2) · 2n+1, then at most two of the points p1 through pk have
poorly-positioned coordinates.

Evaluating a Boolean circuit. Once we have decoded the bits for a well-positioned point,
we have a sequence of 0/1 variables. It is easy to simulate a Boolean circuit on these values.

The operator ¬ x can be simulated by 1−b x.
The operator x ∨ y can be simulated by x+b y.
The operator x ∧ y can be simulated by applying De Morgan’s laws and using ∨ and ¬.

Recall that C outputs one of three possible colors. We also assume, without loss of generality,
that C gives its output as a one-hot vector. This means that there are three Boolean outputs
x1, x2, x3 ∈ {0, 1}3 of the circuit. The color 1 is represented by the vector (1, 0, 0), the color
2 is represented as (0, 1, 0), and color 3 is represented as (0, 0, 1). If the simulation is applied
to a point with well-positioned coordinates, then the circuit will output one of these three
vectors, while if it is applied to a point with poorly positioned coordinates, then the circuit
will output some value x ∈ [0, 1]3 that has no particular meaning.

The output. The key idea behind the reduction is that each color will be mapped to a
displacement vector, as shown in Figure 1b. Here we again deviate from Mehta’s reduction,
by giving different vectors that will allow us to prove our approximation lower bound.

Color 1 will be mapped to the vector (0, 1) · ε.
Color 2 will be mapped to the vector (1, 1−

√
2) · ε.

Color 3 will be mapped to the vector (−1, 1−
√

2) · ε.
These are irrational coordinates, but in our proofs we argue that a suitably good rational
approximation of these vectors will suffice. We average the displacements over the k different
sampled points to get the final output of the circuit. Suppose that xij denotes output i from
sampled point j. Our circuit will compute

dispx =
k∑

j=1

(x2j − x3j) · ε
k

, dispy =
k∑

j=1

(
x1j + (1−

√
2)(x2j + x3j)

)
· ε

k
.

Finally, we specify F : [0, 1]2 → [0, 1]2 to compute F (x, y) = (x+ dispx · ε, y + dispy · ε).

Completing the proof. To find an approximate fixed point of F , we must find a point where
both dispx and dispy are close to zero. The dotted square in Figure 1b shows the set of
displacements that satisfy ‖x− (0, 0)‖∞ ≤ (

√
2−1) · ε, which correspond to the displacements

that would be (
√

2− 1) · ε-fixed points.
The idea is that, if we do not sample points of all three colors, then we cannot produce a

displacement that is strictly better than an (
√

2− 1) · ε-fixed point. For example, if we only
have points of colors 1 and 2, then the displacement will be some point on the dashed line
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between the red and blue vectors in Figure 1b. This line touches the box of (
√

2− 1) · ε-fixed
points, but does not enter it. It can be seen that the same property holds for the other pairs
of colors: we specifically chose the displacement vectors in order to maximize the size of the
inscribed square shown in Figure 1b.

The argument is complicated by the fact that two of our sampled points may have poorly
positioned coordinates, which may drag the displacement towards (0, 0). However, this effect
can be minimized by taking a large number of samples. We show show the following lemma.

I Lemma 6. Let ε′ < (
√

2− 1) · ε be a constant. There is a sufficiently large constant k such
that, if ‖x− F (x)‖∞ < ε′, then x is contained in a trichromatic square.

Since ε can be fixed to be any constant strictly less than 0.5, we obtain the following.

I Theorem 7. Given a 2D-Brouwer instance, it is PPAD-hard to find a point x ∈ [0, 1]2 s.t.
‖x− F (x)‖∞ < (

√
2− 1)/2 ≈ 0.2071.

Reducing 2D-Brouwer to 2D-LinearFIXP is easy, since the gates {c,+b,−b, ∗bc} can be
simulated by the gates {c,+,−, ∗c,max,min}. This implies that it is PPAD-hard to find an
ε-fixed point of a 2D-LinearFIXP instance with ε < (

√
2− 1)/2.

It should be noted that an ε-approximate fixed point can be found in polynomial time if
the function has a suitably small Lipschitz constant, by trying all points in a grid of width ε.
We are able to obtain a lower bound for constant ε because our functions have exponentially
large Lipschitz constants.

4 Hardness of 2D-Brouwer with a constant width circuit

In our reduction from 2D-Brouwer to tree polymatrix games, the number of actions in the
game will be determined by the width of the circuit. This means that the hardness proof
from the previous section is not a sufficient starting point, because it produces 2D-Brouwer
instances that have circuits with high width. In particular, the circuits will extract 2n bits
from the two inputs, which means that the circuits will have width at least 2n.

Since we desire a constant number of actions in our tree polymatrix game, we need to
build a hardness proof for 2D-Brouwer that produces a circuit with constant width. In this
section we do exactly that, by reimplementing the reduction from the previous section using
gadgets that keep the width small.

Bit packing. We adopt an idea of Elkind, Goldberg, and Goldberg [10], to store many bits
in a single arithmetic value using a packed representation. Given bits b1, b2, . . . , bk ∈ {0, 1},
the packed representation of these bits is the value packed(b1, b2, . . . , bk) :=

∑k
i=1 bi/2i. We

will show that the reduction from the previous section can be performed while keeping all
Boolean values in a single variable that uses packed representation.

Working with packed variables. We build SLPs that work with this packed representation,
two of which are shown below.
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SLP 5 FirstBit(x, b) +0 variables.

// Extract the first bit of x
into b

b ← 0.5
b ← x -b b
b ← b *b L

// Remove the first bit of x
b ← b *b 0.5
x ← x -b b
x ← x *b 2
b ← b *b 2

SLP 6 Clear(I, x) +2 variables.

x’ ← x *b 1
for i in {1, 2, . . . , k} do

b ← 0
FirstBit(x’, b)
if i ∈ I then

b ← b *b 1
2i

x ← x -b b
end

end

The FirstBit SLP combines the ideas from SLPs 3 and 4 to extract the first bit from a
value x ∈ [0, 1]. Repeatedly applying this SLP allows us to read out each bit of a value in
sequence. The Clear SLP uses this to set some bits of a packed variable to zero. It takes as
input a set of indices I, and a packed variable x = packed(b1, b2, . . . , bk). At the end of the
SLP we have x = packed(b′1, b′2, . . . , b′k) where b′i = 0 whenever i ∈ I, and b′i = bi otherwise.

It first copies x to a fresh variable x′. The bits of x′ are then read-out using FirstBit.
Whenever a bit bi with i ∈ I is decoded from x′, we subtract bi/2i from x. If bi = 1, then
this sets the corresponding bit of x to zero, and if bi = 0, then this leaves x unchanged.

We want to minimize the the width of the circuit that we produce, so we keep track of
the number of extra variables used by our SLPs. For FirstBit, this is zero, while for Clear
this is two, since that SLP uses the fresh variables x′ and b.

Packing and unpacking bits. We implement two SLPs that manipulated packed variables.
The Pack(x, y, S) operation allows us to extract bits from y ∈ [0, 1], and store them in
x, while the Unpack(x, y, S) operation allows us to extract bits from x to create a value
y ∈ [0, 1]. This is formally specified in the following lemma.

I Lemma 8. Suppose that we are given x = packed(b1, b2, . . . , bk), a variable y ∈ [0, 1], and
a sequence of indices S = 〈s1, s2, . . . , sj〉. Let yj denote the jth bit of y. The following SLPs
can be implemented using at most two extra variables.

Pack(x, y, S) modifies x so that x = packed(b′1, b′2, . . . , b′k) where b′i = yj whenever
there exists an index sj ∈ S with sj = i, and b′i = bi otherwise.
Unpack(x, y, S) modifies y so that y = y +b

∑j
i=1 bsi/2i

Simulating a Boolean operations. As described in the previous section, the reduction only
needs to simulate or- and not-gates. Given x = packed(b1, b2, . . . , bk), and three indices
i1, i2, i3, we implement two SLPs, which both modify x so that x = packed(b′1, b′2, . . . , b′k).
SLP 7 implements Or(x, i1, i2, i3), which ensures that b′i3

= bi1 ∨ bi2 , and b′i = bi for i 6= i3.
SLP 8 implements Not(x, i1, i2), which ensures that b′i2

= ¬bi1 , and b′i = bi for i 6= i2.
These two SLPs simply unpack the input bits, perform the operation, and then pack

the result into the output bit. The Or SLP uses the Unpack operation to set a = bi1 +b bi2 .
Both SLPs use three extra variables: the fresh variable a is live throughout, and the pack
and unpack operations use two extra variables. The variable b in the Not SLP is not live
concurrently with a pack or unpack, and so does not increase the number of live variables.
These two SLPs can be used to simulate a Boolean circuit using at most three extra variables.
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SLP 7 Or(x, i1, i2, i3) +3 vari-
ables.

a ← 0
Unpack(x, a, 〈i1〉)
Unpack(x, a, 〈i2〉)
Pack(x, a, 〈i3〉)

SLP 8 Not(x, i1, i2) +3 vari-
ables.

a ← 0
Unpack(x, a, 〈i1〉)
b ← 1
a ← b -b a
Pack(x, a, 〈i2〉)

I Lemma 9. Let C be a Boolean circuit with n inputs and k gates. Suppose that x =
packed(b1, . . . , bn), gives values for the inputs of the circuit. There is an SLP Simulate(C, x)
that uses three extra variables, and modifies x so that x = packed(b1, . . . , bn, bn+1, . . . , bn+k),
where bn+i is the output of gate i of the circuit.

Implementing the reduction. Finally, we can show that the circuit built in Theorem 7 can
be implemented by an SLP that uses at most 8 variables. This SLP cycles through each
sampled point in turn, computes the x and y displacements by simulating the Boolean circuit,
and then adds the result to the output.

I Theorem 10. Given a 2D-Brouwer instance, it is PPAD-hard to find a point x ∈ [0, 1]2
with ‖x− F (x)‖∞ <

√
2−1
2 even for a synchronous circuit of width eight.

5 Hardness for tree polymatrix games

Now we show that finding a Nash equilibrium of a tree polymatrix game is PPAD-hard. We
reduce from the low-width 2D-Brouwer problem, whose hardness was shown in Theorem 10.
Throughout this section, we suppose that we have a 2D-Brouwer instance defined by a
synchronous arithmetic circuit F of width eight and depth n. The gates of this circuit will be
indexed as gi,j where 1 ≤ i ≤ 8 and 1 ≤ j ≤ n, meaning that gi,j is the ith gate on level j.

Modifying the circuit. The first step of the reduction is to modify the circuit. First, we
modify the circuit so that all gates operate on values in [0, 0.1], rather than [0, 1]. We
introduce the operators +b

0.1, −b
0.1, and ∗b

0.1, which bound their outputs to be in [0, 0.1].
The following lemma states that we can rewrite our circuit using these new gates. The
transformation simply divides all c-gates in the circuit by ten.

I Lemma 11. Given an arithmetic circuit F : [0, 1]2 → [0, 1]2 that uses gates from
{c,+b,−b, ∗b}, we can construct a circuit F ′ : [0, 0.1]2 → [0, 0.1]2 that uses the gates from
{c,+b

0.1,−b
0.1, ∗b

0.1}, so that F (x, y) = (x, y) if and only if F ′(x/10, y/10) = (x/10, y/10).

Next we modify the structure of the circuit by connecting the two outputs of the circuit
to its two inputs. Suppose, without loss of generality, that g7,1 and g8,1 are the inputs and
that g7,n and g8,n are outputs. Note that the equality x = y can be implemented using the
gate x = y ∗b

0.1 1. We add the following extra equalities, which are shown in Figure 2.
We add gates g9,n−1 = g7,n and g10,n−1 = g8,n.
For each j in the range 2 ≤ j < n− 1, we add g9,j = g9,j+1 and g10,j = g10,j+1.
We modify g7,1 so that g7,1 = g9,2, and we modify g8,1 so that g8,1 = g10,2.
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g1,1 g2,1 · · · g7,1 g8,1 g9,1 g10,1

g1,2 g2,2 · · · g7,2 g8,2 g9,2 g10,2

...
...

...
...

...
...

g1,n g2,n g7,n g8,n g9,n g10,n· · ·

Figure 2 Extra equalities to introduce feedback of g7,n and g8,n to g7,1 and g8,1 respectively.

v1

m1

c1

m2

v2

m3

c2

m4

v3

m5

. . . vn

m2n−1

Figure 3 The structure of the polymatrix game.

Note that these gates are backwards: they copy values from higher levels in the circuit to
lower levels, and so the result is not a circuit, but a system of constraints defined by gates,
with some structural properties. Firstly, each gate gi,j is only involved in constraints with
gates of the form gi′,j+1 and gi′,j−1. Secondly, finding values for the gates that satisfy all of
the constraints is PPAD-hard, since by construction such values would yield a fixed point of F .

The polymatrix game. The polymatrix game will contain three types of players.
For each i = 1, . . . , n, we have a variable player vi.
For each i = 1, . . . , n− 1, we have a constraint player ci, who is connected to vi and vi+1.
For each i = 1, . . . , 2n− 1, we have a mix player mi. If i is even, then mi is connected
to ci/2. If i is odd, then mi is connected to v(i+1)/2.

The structure of this game is shown in Figure 3. Each player has twenty actions, which are
divided into ten pairs, xi and x̄i for i = 1, . . . , 10.

Forcing mixing. The role of the mix players is to force the variable and constraint players
to play specific mixed strategies: for every variable or constraint player j, we want sj(xi) +
sj(x̄i) = 0.1 for all i, which means that the same amount of probability is assigned to each
pair of actions. To force this, each mix player plays a high-stakes hide-and-seek against their
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Figure 4 The hide and seek game that forces cj/2 to play an appropriate mixed strategy. The
same game is used to force v(j−1)/2 mixes appropriately.

opponent, which is shown in Figure 4. This zero-sum game is defined by a 20× 20 matrix Z
and a constant M . The payoff Zij is defined as follows. If i ∈ {xa, x̄a} and j ∈ {xa, x̄a} for
some a, then Zij = M . Otherwise, Zij = 0. For each i the player mi plays against player j,
which is either a constraint player ci′ or a variable player vi′ . We define the payoff matrix
Ami,j = Z and Gj,mi = −Z. The following lemma shows that if M is suitably large, then the
variable and constraint players must allocate probability 0.1 to each of the ten action pairs.

I Lemma 12. Suppose that all payoffs in the games between variable and constraint players
use payoffs in the range [−P, P ]. If M > 40 · P then in every mixed Nash equilibrium s, the
action sj of every variable and constraint player j satisfies sj(xi) + sj(x̄i) = 0.1 for all i.

Gate gadgets. We now define the payoffs for variable and constraint players. Actions xi

and x̄i of variable player vj will represent the output of gate gi,j . Specifically, the probability
that player vj assigns to action xi will be equal to the output of gi,j . In this way, the strategy
of variable player vj will represent the output of every gate at level j of the circuit. The
constraint player cj enforces all constraints between the gates at level j and the gates at
level j + 1. To simulate each gate, we will embed one of the gate gadgets from Figure 5,
which originated from the reduction of DGP [5], into the bimatrix games that involve cj .

The idea is that, for the constraint player to be in equilibrium, the variable players must
play xi with probabilities that exactly simulate the original gate. Lemma 12 allows us to
treat each gate independently: each pair of actions xi and si must receive probability 0.1 in
total, but the split of probability between xi and si is determined by the gate gadgets.

Formally, we construct the payoff matrices Avi,ci and Aci,vi+1 for all i < n by first setting
each payoff to 0. Then, for each gate, we embed the corresponding gate gadget from Figure 5
into the matrices. For each gate ga,j , we take the corresponding game from Figure 5, and
embed it into the rows xa and x̄a of a constraint player’s matrix. The diagrams specify
specific actions of the constraint and variable players that should be modified.
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Figure 5 DGP polymatrix game gadgets.

For gates that originated in the circuit, the gadget is always embedded into the matrices
Avj−1,cj−1 and Acj−1,vj , the synchronicity of the circuit ensures that the inputs for level
j gates come from level j − 1 gates. We have also added extra multiplication gates that
copy values from the output of the circuit back to the input. These gates are of the form
gi,j = gi′,j+1, and are embedded into the matrices Avj ,cj and Acj ,vj+1 .

The following lemma states that, in every Nash equilibrium, the strategies of the variable
players exactly simulate the gates that have been embedded.

I Lemma 13. In every mixed Nash equilibrium s of the game, the following are satisfied for
each gate gi,j.

If gi,j = c, then svj (xi) = c.
If gi,j = gi1,j−1 +b

0.1 gi2,j−1, then svj
(xi) = svj−1(xi1) +b

0.1 svj−1(xi2).
If gi,j = gi1,j−1 −b

0.1 gi2,j−1, then svj (xi) = svj−1(xi1) −b
0.1 svj−1(xi2).

If gi,j = gi1,j′ ∗b
0.1 c, then svj

(xi) = svj′ (xi1) ∗b
0.1 c.

Lemma 13 says that, in every Nash equilibrium of the game, the strategies of the variable
players exactly simulate the gates, which by construction means that they give us a fixed
point of the circuit F . Also note that it is straightforward to give a path decomposition for
our interaction graph, where each node in the decomposition contains exactly two vertices
from the game, meaning that the graph has pathwidth 1. So we have proved the following.

I Theorem 14. It is PPAD-hard to find a Nash equilibrium of a tree polymatrix game, even
when all players have at most twenty actions and the interaction graph has pathwidth 1.

6 Open questions

For polymatrix games, the main open question is to find the exact boundary between
tractability and hardness. Twenty-action pathwidth-1 tree polymatrix games are hard, but
two-action path polymatrix games can be solved in polynomial time [10]. What about
two-action tree polymatrix games, or path-polymatrix games with more than two actions?

For 2D-Brouwer and 2D-LinearFIXP, the natural question is: for which ε is it hard to
find an ε-fixed point? We have shown that it is hard for ε = 0.2071, while the case for ε = 0.5
is trivial, since the point (0.5, 0.5) must always be a 0.5-fixed point. Closing the gap between
these two numbers would be desirable.
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Abstract
We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of
undirected graphs. Given a weighted, undirected graph G on n vertices described by a binary
string of length N , an integer k ≤ log n and an error parameter ε > 0, our algorithm runs in space
Õ(k log(N · wmax/wmin)) where wmax and wmin are the maximum and minimum edge weights in G,
and produces a weighted graph H with Õ(n1+2/k/ε2) edges that spectrally approximates G, in the
sense of Spielmen and Teng [52], up to an error of ε.

Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastava’s
effective resistance based edge sampling algorithm [51] and uses results from recent work on space-
bounded Laplacian solvers [41]. In particular, we demonstrate an inherent tradeoff (via upper and
lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm,
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1 Introduction

The graph sparsification problem is the following: given a weighted, undirected graph G,
compute a graph H that has very few edges but is a close approximation to G for some
definition of approximation. In general, graph sparsifiers are useful for developing more
efficient graph-theoretic approximation algorithms. Algorithms whose complexity depend on
the number of edges in the graph will be more efficient when run on the sparser graph H, and
if H approximates G in an appropriate way, the result on H may be a good approximation
to the desired result on G. In this work, we present an algorithm that can be implemented
deterministically in small space and achieves sparsification in the spectral sense of Spielman
and Teng [52]. (See Section 1.2 below for a more formal statement of our main result.)

1.1 Background
Motivated by network design and motion planning, Chew [10] studied graph spanners, which
are sparse versions of graphs that approximately preserve the shortest distance between each
pair of vertices. Benczúr and Karger [6] defined cut sparsifiers whose notion of approximation
is that every cut of H has size within a (1±ε) factor of the size of the corresponding cut in G.
They showed that every graph G on n vertices has a cut sparsifier H with O(n·logn/ε2) edges
and gave a randomized algorithm for computing such cut sparsifiers. Their algorithm runs
in nearly linear time (i.e., Õ(m) where m is the number of edges in G and the Õ(·) notation
hides polylogarithmic factors) and they used it to give a faster algorithm for approximating
minimum s-t cuts.

Spielman and Teng introduced spectral sparsifiers, which define approximation between
the graph and its sparsifier in terms of the quadratic forms of their Laplacians [52]. The
Laplacian of an undirected graph is the matrix L = D−A where A is the adjacency matrix of
the graph and D is the diagonal matrix of vertex degrees (i.e. Dii equals the weighted degree
of vertex i). H is said to be an ε-spectral approximation of G if for all vectors v ∈ Rn, we
have that v>L̃v ∈ (1± ε) · v>Lv, where L̃ and L are the Laplacians of H and G, respectively.
Spectral sparsifiers generalize cut sparsifiers, which can be seen by observing that when
v ∈ {0, 1}n, v is the characteristic vector of some set of vertices S ⊆ [n] and v>Lv equals the
sum of the weights of the edges cut by S.

Spielman and Teng showed that all graphs have spectral sparsifiers with O(n · logO(1) n/ε2)
edges and gave a nearly linear time randomized algorithm for computing them with high
constant probability. Their spectral sparsifiers were a key ingredient that they used to develop
the first nearly linear time algorithm for solving Laplacian systems. These fast Laplacian
solvers spawned a flurry of improvements and simplifications [16, 26, 28, 27, 30, 31, 34, 44] as
well as extensions to directed graphs [15, 14, 13] and to the space-bounded setting [18, 41, 1].
Spectral sparsification and the nearly linear time Laplacian solvers that use them have been
critical primitives that have enabled the development of faster algorithms for a wide variety
of problems including max flow [37, 11, 17, 24, 33], random generation of spanning trees,
[25, 40, 49], and other problems in computer science [43, 29].

Spielman and Srivastava [51] gave a spectral sparsification algorithm that both simplified
and improved upon the algorithm of Spielman and Teng. They show that randomly sampling
edges, independently with probabilities proportional to their effective resistances produces a
good spectral sparsifier with high probability. Viewing a graph as an electrical network, the
effective resistance of an edge (a, b) is the potential difference induced between them when a
unit of current is injected at a and extracted at b (or vice versa). More formally, the effective
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resistance of an edge (a, b) in a graph with Laplacian L is Rab = (ea−eb)>L+(ea−eb), where
ei denotes the ith standard basis vector and L+ denotes the Moore-Penrose pseudoinverse of
L1. Spielman and Srivastava proved the following theorem.

I Theorem 1 (spectral sparsification via effective resistance sampling [51, 50]). Let G =
(V,E,w) be a weighted graph on n vertices and for each edge (a, b) ∈ E with weight wab,
define pab = min{1, 4 · logn · wab ·Rab/ε2}, where Rab is the effective resistance of (a, b) as
defined above. Construct a sparsifier H by sampling edges from G independently such that
each edge (a, b) in G is added to H with probability pab. For edges that get added to H,
reweight them with weight wab/pab. Let L and L̃ be the Laplacians of G and H, respectively.
Then, with high probability,
1. H has O(n · (logn)/ε2) edges, and,
2. L̃ ε-spectrally approximates L.
Furthermore, this procedure can be implemented to run in time Õ(mε2 · log(wmax/wmin)), where
m is the number of edges in G and wmax, wmin are the maximum and minimum edge weights
of G, respectively.2

The sparsity achieved by the Spielman and Srivastava sparsifiers was improved by Batson,
Spielman and Srivastava [5], who gave a deterministic algorithm for computing ε-spectral
sparsifiers with O(n/ε2) edges, which is asymptotically optimal, however, their algorithm is
less efficient, running in time O(m · n3/ε2). Work on these optimal sparsifiers continued with
another slightly faster deterministic algorithm [53] followed by an O(n2+ε)-time randomized
algorithm [2], and culminating in the randomized algorithms of Lee and Sun who achieved
almost-linear time [35] and finally nearly-linear time [36].

1.2 Our Main Result
In this work we study the deterministic space complexity of computing spectral sparsifiers.
Our main result is a deterministic, nearly-logarithmic space algorithm for computing mild
spectral sparsifiers, that is, graphs with O(n1+α/ε2) edges for any constant α > 0.

I Theorem 2 (see also Theorem 19). Let G be a connected, weighted, undirected graph on
n vertices, k ∈ N an independence parameter and ε > 0 an error parameter. There is a
deterministic algorithm that on input G, k, and ε, outputs a weighted graph H that is an
ε-spectral sparsifier of G and has O(n1+2/k · (logn)/ε2) edges. The algorithm runs in space
O(k log(N ·w)+log(N ·w) log log(N ·w)), where w = wmax/wmin is the ratio of the maximum
and minimum edge weights in G and N is the length of the input.

The closest analogue to spectral sparsifiers in the space-bounded derandomization lit-
erature is the derandomized square of Rozenman and Vadhan [47], a graph operation that
produces a sparse approximation to the square of a graph.3 The derandomized square was
introduced to give an alternative proof to Reingold’s celebrated result that Undirected S-T
Connectivity can be solved in deterministic logspace [46]. Murtagh, Sidford, Reingold,

1 L+ is a matrix with the same kernel as L that acts as an inverse of L on the orthogonal complement of
the kernel. See Section 2.2 for a formal definition.

2 In their original paper, [51], they fix the number of edges in the sparsifier in advance resulting in a
slightly different theorem statement and analysis. The version we cite here and what we model our
algorithm after was presented later in [50].

3 The square of a graph G is a graph on the same vertex set whose edges correspond to all walks of length
2 in G.
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and Vadhan [41] showed that the derandomized square actually produces a spectral sparsifier
of the square of a graph and this was a key observation they used to develop a deterministic,
nearly logarithmic space algorithm for solving Laplacian systems. Later the sparsification
benefits of the derandomized square were also used in nearly logarithmic space algorithms for
deterministically approximating random walk probabilities and for solving Laplacian systems
in Eulerian directed graphs [42, 1].

For a d-regular graph G on n vertices, its square G2 has degree d2 and the derandomized
square computes an ε-spectral approximation to G2 with degree O(d/ε2). On the other hand,
applying our sparsification to G2 results in an ε-spectral approximation with on average
O(nα/ε2) edges adjacent to each vertex for any constant α, which is independent of d and
much sparser when d = ω(nα). Also, our algorithm can sparsify any undirected graph, not
just squares. Our algorithm does not replace the derandomized square, however, because the
derandomized square can be iterated very space efficiently, a property that is used in all of its
applications thus far. Nevertheless, given the success of spectral sparsification and Laplacian
solvers in the nearly-linear time context and the fruit borne of porting these techniques to
the logspace setting, we are hopeful that our spectral sparsifiers will have further applications
in derandomization of space-bounded computation.

1.3 Techniques

Our deterministic space-efficient algorithm is modeled after the effective resistance based
sampling algorithm of Spielman and Srivastava (Theorem 1). Although the Spielman
and Srivastava procedure is randomized and does not achieve optimal sparsity, the known
algorithms that do ([5, 53, 2, 35, 36]) are more involved and often sequential in nature so do
not seem as amenable to small-space implementations.

To derandomize the Spielman-Srivastava algorithm, we follow the standard approach of
first reducing the number of random bits used to logarithmic, and then enumerating over all
random choices of the resulting algorithm. Following [39, 3], a natural way to reduce the
number of random bits used is to do the edge sampling only k-wise independently for some
k � |E| rather than sampling every edge independently from all other edges.

Let k be our bounded-independence parameter. Namely, we are only guaranteed that
every subset of k edges is chosen independently (with the right marginals), however there
may be correlations between the choices in tuples of size k + 1. It is well known that such a
sampling can be performed using fewer random bits. By [51], we know that k = |E| will, with
high probability, produce an ε-spectral sparsifier with O(n · logn/ε2) edges in expectation.
What about much smaller values of k? In Section 3, we prove the following:

I Theorem 3 (informal; see Theorem 9). Let G be a connected weighted undirected graph
on n vertices with Laplacian L, k ∈ N an independence parameter and ε > 0 an error
parameter. Let H be the graph which is the output of Spielman and Srivastava’s sampling-
based sparsification algorithm (Theorem 1), when the edge sampling is done in a k-wise
independent manner, and let L̃ be the Laplacian of H. Then, with high constant probability,
L̃ ε-approximates L and H has O(n1+2/k · (logn)/ε2) edges.

A first thing to observe is that k = logn gives the same result as in [51]. More importantly,
the above shows that the result interpolates: Even for a constant k, Theorem 3 gives a mild
sparsification that sparsifies dense graphs to O(n1+α) expected edges, where α > 0 is an
arbitrarily small constant.
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We prove Theorem 3 by extending the arguments in [51, 50]. For every edge (a, b) ∈ E,
we define a random matrix Xab that corresponds to the choice made by the sparsification
algorithm, in such a way that X =

∑
(a,b)∈E Xa,b relates to the resulting Laplacian L̃.4 Let

Π be the orthogonal projection onto the image of L. Following [51, 50], we show that L̃
ε-spectrally approximates L (equivalently, that H is an ε-spectral sparsifier for G) with high
probability if X −Π has bounded moments. Deriving a tail bound that relies on the first
k moments alone, we can proceed with the analysis as if the Xab’s were truly independent.
More specifically, we bound Tr(EX [(X −Π)k]) using a matrix concentration result due to
Chen, Gittens and Tropp [9]. For the complete details, as well as how our argument differs
from [51, 50], see Section 3.

Getting a Deterministic Algorithm

Theorem 3 readily gives a simple, randomness-efficient algorithm, as k-wise independent
sampling of edges only requires O(k · log(N ·w)) random bits [23, 3] (See Lemma 8). However,
more work is needed to obtain a space-efficient deterministic algorithm. First, we need
to be able to compute the marginal sampling probabilities, which depend on the effective
resistances Rab. Fortunately, the recent work of Murtagh et al. [41] allows us to approximate
the effective resistances using only O(log(N · w) log log(N · w)) space and we show that the
k-wise independent sampling procedure can tolerate the approximation.

Next, to obtain a deterministic algorithm, we can enumerate over all possible random
choices of the algorithm in space O(k · log(N · w)) and compute a candidate sparsifier H
for each. We are guaranteed that at least one (indeed, most) of the resulting graphs H is a
good sparsifier for G but how can we identify which one? To do this, it suffices for us, given
Laplacians L and L̃, to distinguish the case that L̃ is an ε-spectral approximation of L from
the case that L̃ is not a 2 · ε-spectral approximation of L. We reduce that problem to that of
approximating the spectral radius of M = ((L̃−L)L+/ε)2, where L+ is the pseudoinverse of
L, which can be approximated in nearly logarithmic space by [41]. In fact, it will be sufficient
to check whether the trace of a logarithmically high power of M is below a certain threshold
to deduce that the spectral radius of M does not exceed 1. In Section 5.2, we show that the
latter case implies that L̃ indeed ε-approximates L.

The deterministic, nearly logarithmic space Laplacian solver of [41] only worked for
multigraphs, i.e. graphs with integer edge weights. To get our result for arbitrary weighted
graphs, we extend the work of [41] and give a deterministic, nearly logarithmic space
Laplacian solver for arbitrary undirected weighted graphs. Combining this extension with the
k-wise independent analysis of the edge sampling algorithm (Theorem 3) and the verification
procedure described above lets us prove our main result Theorem 2.

1.4 Lower Bounds for Bounded-Independence Sampling
Having established an upper bound on the amount of independence required for the edge-
sampling procedure (Theorem 3), a natural goal would be to come up with a corresponding
lower bound. Theorem 3 tells us that in order to sparsify to Õ(n1+α) expected edges, we
can use k-wise independent sampling for k = 2/α. Can a substantially smaller choice of k
perform just as well? In Section 4, we show that our upper bound of k = 2/α is tight up to
a small constant factor.

4 Specifically, X = L+/2L̃L+/2, where L+/2 is the square-root of the pseudoinverse of L.
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I Theorem 4 (informal; see Theorem 11). For every small enough α > 0 there exist infinitely
many connected graphs G = (V = [n], E) with all effective resistances equal that are d-regular
with d = Ω(nα) and a distribution D ∼ {0, 1}|E| that is k-wise independent for k = b4/3αc
with marginals 1/2 that would fail to produce an ε-spectral sparsifier of G to within any ε > 0
with high probability.

Our family of “bad graphs” will be dense graphs having large girth. Namely, given a
girth g and an integer d ≥ 3, we consider graphs G = (V = [n], E) satisfying d ≥ nγ/g + 1
for some constant 0 < γ < 2 [32]. Getting an infinite family of graphs with γ approaching 2
(and specifically attaining the Moore bound), even non-explicitly, has been the subject of
extensive study (see [21] and references therein). See also Section 4.1 for a further discussion.
Given a sparsification parameter α > 0, we set k ≈ γ/α and take a graph G on n vertices
with girth g = k + 1 and degree d > nγ/g + 1.

Our construction of the distribution D is inspired by Alon and Nussboim [4]: choose a
partition of the vertices V = V0 ] V1 uniformly at random, and for every edge e = (u, v) ∈ E,
include it in the sample if and only if either u, v ∈ V0 or u, v ∈ V1. Clearly, sampling edges
according to D results in a disconnected graph almost surely. However, we show that D is
indeed k-wise independent, relying on the fact that the girth of G is k + 1.

To obtain Theorem 4 we use the family of graphs given by Lazebnik et al. [32] who
obtained γ = 4/3. Indeed, any improvement in γ would bring our upper bound of k ≈ 2/α
and lower bound of k ≈ γ/α closer together.

1.5 Open Problems

An interesting open problem is to achieve improved sparsity, e.g. O(n · (logn)/ε2) matching
[51]. Our algorithm would require space Ω(log2 n) to achieve this sparsity, due to setting
k = Ω(logn). We remark that previous work implies that this can be done in randomized
logarithmic space. Indeed, Doron et al. [18] gave a randomized algorithm for solving
Laplacian systems in logarithmic space (without log log(·) factors), and this implies that one
can approximate effective resistances and hence implement the Spielman-Srivastava edge
sampling with full independence in randomized logspace. It is also an interesting question
whether there is a nearly logspace algorithm (even randomized) that produces spectral
sparsifiers of optimal sparsity (i.e., O(n/ε2) edges).

Finally, while it is not known how to compute spectral sparsifiers of arbitrary directed
graphs, there has been progress on sparsifying Eulerian digraphs in the nearly-linear time
literature [15, 14, 13, 12]. Given the recent advance of a nearly-logarithmic space solver
for Eulerian Laplacian systems [1], an interesting question is sparsifying Eulerian graphs in
small space.

2 Preliminaries

We will work with undirected weighted graphs, G = (V,E,w), where w is a vector of length
|E| and each edge (a, b) ∈ E is associated with a positive weight wab > 0. At times we refer
to undirected multigraphs, which are weighted graphs where all of the weights are integers.
The adjacency matrix of G is a symmetric, real-valued matrix A in which Aij = wij if
(i, j) ∈ E and Aij = 0 otherwise.
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For any matrix A, its spectral norm ‖A‖ is max‖x‖=1 ‖Ax‖2, which is also the largest
singular value of A. For any square matrix A, its spectral radius, denoted ρ(A), is the largest
absolute value of its eigenvalues. When A is real and symmetric, the spectral norm equals the
spectral radius. The spectral norm is sub-multiplicative, i.e., ‖AB‖ ≤ ‖A‖ ‖B‖. We denote
by A> the transpose of A. We denote by 1 the all-ones vector, by 0 the all-zeros vector, and
ea is the vector with 1 in the a-th coordinate and 0 elsewhere, where ea’s dimension will be
understood from context (i.e., ea is the a-th standard basis vector).

The trace of a matrix A ∈ Rn×n, is Tr(A) =
∑
i∈[n] Aii, which also equals the sum of its

eigenvalues. The trace is invariant under cyclic permutations, i.e., Tr(AB) = Tr(BA). The
expectation of a random matrix is the matrix of the coordinate-wise expectations. More
formally, if A is a random matrix, then E[A] = Â where Âij = E[Aij ] for all i, j ∈ [n]. The
trace and the expectation are both linear functions of a matrix and they commute. That is,
for all random matrices A, we have Tr(E[A]) = E[Tr(A)] (see, e.g.,[45]).

2.1 PSD Matrices and Spectral Approximation
A symmetric matrix A ∈ Rn×n is positive semi-definite (PSD), denoted A � 0, if for every
x ∈ Rn it holds that x>Ax ≥ 0, or equivalently, if all its eigenvalues are non-negative. We
write A � B if A−B � 0.

I Definition 5. Let A and B be n× n symmetric PSD matrices. For a real ε > 0, we say
that A is an ε-spectral approximation of B, denoted A ≈ε B, if

(1− ε)B � A � (1 + ε)B.

When A and B share an eigenvector basis v1, . . . , vn, Definition 5 is equivalent to requiring
(1 − ε)µi ≤ λi ≤ (1 + ε)µi, where λ1, . . . , λn are the eigenvalues of A corresponding to
v1, . . . , vn and µ1, . . . , µn are the eigenvalues of B corresponding to v1, . . . , vn.

2.2 The Moore-Penrose Pseudoinverse
Let A be any linear operator. The Moore-Penrose pseudoinverse of A, denoted A+, is defined
as follows. If A = UΣV > is the singular value decomposition (SVD) of A, the pseudoinverse
is given by A+ = V Σ+U> where Σ+ is the matrix obtained by taking the reciprocal of
each nonzero diagonal element of Σ, and leaving the zeros intact. When A is a symmetric
PSD matrix, the SVD coincides with the eigen-decomposition and so if λ1, . . . , λn are the
eigenvalues of A then A+ shares the same eigenvector basis and has eigenvalues λ+

1 , . . . , λ
+
n ,

where λ+
i = 1/λi if λi 6= 0 and λ+

i = 0 otherwise.
Also note that if A is real then A+ is real-valued as well.
A square root of a matrix A is any matrix X that satisfies X2 = A. When A is symmetric

and PSD, it has a unique symmetric PSD square root, which we write as A1/2. If A = UΣU>
is the eigen-decomposition of A then A1/2 = U

√
ΣU> where

√
Σ is obtained by taking the

square root of each diagonal element of Σ. We denote by A+/2 the matrix (A+)1/2 = (A1/2)+.

2.3 The Graph Laplacian and Effective Resistance
Given a graph G on n vertices with an adjacency matrix A and degree matrix D (i.e., D is
a diagonal matrix where Dii =

∑n
j=1 Aij equals the weighted degree of vertex i in G), the

Laplacian of G is the matrix

L = D −A.
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39:8 Spectral Sparsification via Bounded-Independence Sampling

For every undirected weighted graph G = (V,E,w), its Laplacian L is symmetric and PSD,
with smallest eigenvalue 0. The zero eigenvalue has multiplicity one if and only if G is
connected. In this case, ker(LG) = span({1}). For every edge (a, b) ∈ E, define the edge
Laplacian of (a, b) to be

Lab = (ea − eb)(ea − eb)> = (eb − ea)(eb − ea)>.

Note that L =
∑

(a,b)∈E wab · Lab.
It is often helpful to associate G with an electric circuit, where an edge (a, b) ∈ E

corresponds to a resistor of resistance 1/wab. For each pair of vertices a and b, the effective
resistance between them, denoted by Rab, is the energy of the electrical flow that sends one
unit of current from a to b. The effective resistance can be calculated using the pseudoinverse
of the Laplacian:

Rab = (ea − eb)>L+(ea − eb).

(See [8] for more information on Laplacians and viewing graphs as electrical networks). A
useful fact about effective resistances is Foster’s Theorem:

I Theorem 6 ([22]). For every undirected weighted graph G = (V,E,w) on n vertices it
holds that∑

(a,b)∈E

wab ·Rab = n− 1.

2.4 Bounded-Independence Sampling

Given a probability vector p ∈ [0, 1]m, let Bernoulli(p) denote the distribution X over {0, 1}m

where the bits are independent and for each i ∈ [m], E[Xi] = pi. For a set I ⊆ [m] and a
string z ∈ {0, 1}m, we let z|I ∈ {0, 1}|I| be the restriction of z to the indices in I.

I Definition 7. We say a distribution X ∼ {0, 1}m is k-wise independent with marginals
p ∈ [0, 1]m if for every set I ⊆ [m] with |I| ≤ k, it holds that X|I = Bernoulli(p|I). We refer
to X as a k-wise independent sample space with marginals p.

Consider G = (V,E,w) with |E| = m. Throughout, when we say sampling edges in a
k-wise independent manner, we refer to the process of picking an element x ∈ {0, 1}m from
a k-wise independent sample space uniformly at random and taking those edges e ∈ E for
which xe = 1.

For p ∈ [0, 1]m and a positive integer t, we define bpct to be the vector p′ obtained by
truncating every element of p after t bits. Thus, for each i ∈ [m], p′i = 2−tb2tpic, and so
|pi − p′i| ≤ 2−t. The following lemma states that we can construct small k-wise independent
sample spaces with any specified marginals.

I Lemma 8 (following [23, 3]). For every m, k, t ∈ N and p ∈ [0, 1]m there exists an explicit
k-wise independent distribution X ∼ {0, 1}m with marginals bpct, that can be sampled with
r = O(k · max {t, logm}) truly random bits. Furthermore, given ρ ∈ {0, 1}r, the element
x ∈ Supp(X) corresponding to the random bits ρ can be computed in O(k ·max {t, logm})
space.
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3 Sparsification via Bounded-Independence Sampling

In Section 1, we briefly introduced the Spielman-Srivastava sparsification algorithm [51]
based on (truly) independent edge sampling, with probabilities proportional to the effective
resistances of the edges. In this section, we explore the tradeoff between the amount of
independence used in the edge sampling process and the resulting sparsity that can be
achieved.

In particular, we analyze the algorithm Sparsify (see Algorithm 1). The algorithm gets as
input an undirected, weighted, dense graph G = (V,E,w) on n vertices, approximate effective
resistances R̃ab for each edge (a, b) ∈ E, a bounded independence parameter k ≤ logn, a
desired approximation error ε > 0, and a parameter δ > 0 governing the success probability,
and outputs a sparser graph H whose Laplacian ε-spectral approximates the Laplacian of G
with probability at least 1− 2δ.

Algorithm 1 Computing a spectral sparsifier via bounded independence sampling.

Sparsify(G = (V,E,w), {R̃ab}(a,b)∈E , k, ε, δ).
1. Initialize H to be the empty graph on n = |V (G)| vertices.
2. Set s← 18e logn

ε2 ·
(
n
δ

)2/k.
3. For every edge (a, b) ∈ E, set pab ← min

{
1, wab · R̃ab · s

}
.

4. For every edge (a, b) ∈ E, add (a, b) to H with weight wab/pab with probability pab.
Do this sampling in a k-wise independent manner, following Lemma 8.

5. Return H.

First we will analyze Sparsify for the case where the effective resistances are given exactly,
i.e. R̃ab = Rab for all (a, b) ∈ E. Then, in Section 3.2 we will analyze the more general
case where we are given approximations to the effective resistances. This latter case is
useful algorithmically because more efficient algorithms are known for estimating effective
resistances than for computing them exactly, both in the time-bounded and space-bounded
settings [51, 41].

3.1 Sparsification With Exact Effective Resistances
In this section we give our main theorem about Sparsify.

I Theorem 9 (spectral sparsification via bounded independence). Let G = (V,E,w) be an
undirected connected weighted graph on n vertices with Laplacian L and effective resistances
R = {Rab}(a,b)∈E. Let 0 < ε < 1, 0 < δ < 1/2 and let k ≤ logn be an even integer. Let H
be the output of Sparsify(G,R, k, ε, δ) and let L̃ be its Laplacian. Then, with probability at
least 1− 2δ we have:
1. L̃ ≈ε L, and,
2. H has O

(
1

δ1+2/k · logn
ε2 · n1+ 2

k

)
edges.

Spielman and Srivastava showed that by using truly independent sampling (i.e., k = |E|) in
Sparsify, one can compute an ε-spectral sparsification of G with O(n · logn/ε2) edges, with
high constant probability [51]. One immediate consequence of Theorem 9 is that logn-wise
independent sampling suffices to match the sparsity that truly independent sampling achieves.
Another consequence of Theorem 9 is that for any constant 0 < α < 1 and any constant
γ < α/2, for k ≈ 2/(α− 2γ), k-wise independent sampling achieves a spectral sparsifier with
error ε = n−γ and O(n1+α) expected edges, with high constant probability.
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The proof of Theorem 9 is modeled after Spielman and Srivastava’s argument [51]. One
difference is that the sparsification algorithm in [51] fixes the number of edges to be sampled
in advance rather than having the number of edges be a random variable. They then prove
spectral approximation by reducing the problem to a question about concentration of random
matrices, which they resolve with a matrix Chernoff bound due to Rudelson and Vershynin
[48]. We follow a variant of this argument for the case where the number of edges in the
sparsifier is random and use a matrix concentration bound of Chen, Gittens, and Tropp [9].
This variant, for truly independent sampling, has appeared before in [50]. Our argument is
modified to address the fact that we only use k-wise independent sampling, and the proof is
given in the full version of the paper.

3.2 Sparsification With Approximate Effective Resistances
Spielman and Srivastava showed that the original version of spectral sparsification through
effective resistance sampling (with fully independent sampling and fixing the number of edges
in advance) is robust to small changes in the sampling probabilities. In this section we show
the same is true of Sparsify. As said, this is useful because more efficient algorithms are
known for estimating effective resistances than for computing them exactly, and we will also
use this fact for our space-bounded algorithm for sparsification in Section 5.

The lemma below says that if we only have small multiplicative approximations to the
effective resistances then the guarantees of Theorem 9 still hold with a small loss in the
sparsity.

I Lemma 10. Let G = (V,E,w) be an undirected connected weighted graph on n vertices
with Laplacian L. Let 0 < ε < 1, 0 < δ < 1/2 and let k ≤ logn be an even integer. For each
(a, b) ∈ E, let R̃ab be such that

(1− α) ·Rab ≤ R̃ab ≤ (1 + α) ·Rab,

where Rab is the effective resistance of (a, b) and 0 < α < 1. Let R̃ = {R̃ab/(1− α)}(a,b)∈E.
Let H be the output of Sparsify(G, R̃, k, ε, δ) and let L̃ be its Laplacian. Then, with probability
at least 1− 2δ we have:
1. L̃ ≈ε L, and,
2. H has O

(
1+α
1−α ·

1
δ1+2/k · logn

ε2 · n1+ 2
k

)
edges.

A proof of Lemma 10 can be found in the full version. Note that we could equivalently
define Sparsify to take approximate sampling probabilities as input (i.e., (1− α)pab ≤ p̃ab ≤
(1 + α)pab) rather than α-approximate effective resistances and the same lemma applies.

4 Lower Bounds for Bounded-Independence Sampling

In this section we give a lower bound for sampling-based bounded independence sparsification.
Our lower bound will hold even for unweighted, simple, regular graphs in which all the
effective resistances are the same, so for this section, assume G = (V = [n], E) is such a
graph. In Section 3 we measure sparsity in terms of the number of edges in the graph. We use
this measure rather than average degree because in weighted graphs, the degree of a vertex v
typically refers to the sum of the weights of the edges incident to v, whereas in sparsification
algorithms we are trying to minimize the number of edges incident to v, regardless of their
weight. In this section, we will sometimes refer to average degree rather than number of edges.
When we refer to the average degree of a weighted graph, we mean the average number of
edges incident to each vertex. For simple, unweighted graphs, these quantities are the same.
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Fix some α > 0. Theorem 9 tells us that if we want to sparsify G to within error ε and
expected degree s = O

(
nα · logn/ε2), we can do so by sampling each edge with probability

p = s · (n − 1)/|E| in a k-wise independent manner, where k = 2/α (rounded to an even
integer).5 We now prove that k ≥ 4/3α is essential for such a sampling procedure, at least
for constant α.

I Theorem 11 (lower bound for spectral sparsification via bounded independence). Fix c > 0.
For every α ∈ (0, 4/15], there exist infinitely many n’s for which the following holds.

There exists a connected graph G = (V = [n], E) whose effective resistances are all equal
and a distribution D ∼ {0, 1}|E| that is k-wise independent for k = b4/3αc with marginals
1/2 that would fail to sparsify G to within any error ε > 0 and expected degree s = c logn ·nα0 ,
where α0 ≥ (1− 2α)α.

More specifically, sampling a subgraph of G according to D would result in a disconnected
graph with probability at least 1− 2/2n.

We note that a disconnected graph fails to be a good spectral sparsifier of a connected
graph, which is implicit in Theorem 11. Formally:

B Claim 12. Let G and G̃ be undirected graphs on n vertices with Laplacians L and L̃,
respectively. If G is connected and G̃ is disconnected then L̃ 6≈ε L for any ε > 0.

We give a proof of Claim 12 in the full version of the paper.

4.1 Moore-Like Graphs With a Given Girth
Toward proving Theorem 11, we will need, for every bounded-independence parameter k,
an infinite family of graphs satisfying certain properties. Recall that the girth of a graph G
is the length of the shortest cycle in G. We will need an infinite family of girth-g graphs
having large degree. Formally:

I Definition 13. Given γ > 0 and g : N → N, an infinite family of graphs
{Gi = (Vi = [ni], Ei)}i∈N is (g, γ)-Moorish if for every i ∈ N, Gi is connected, has girth
at least g(ni) and is di-regular for some di ≥ nγ/g(ni)

i + 1.

The problem of finding such families of graphs, or even proving their existence in some
regime of parameters, has been widely studied in extremal graph theory. A simple counting
argument ([20], see also [8]) shows that (g, γ)-Moorish families of graphs can only exist when
γ ≤ 2:

I Lemma 14 (the Moore bound, see, e.g., [8]). Every d-regular graph of girth g on n vertices
satisfies n ≥ 2 · ((d− 1)g/2 − 1)/(d− 2).

Still, no families with γ approaching 2 for arbitrary girths are known. The Ramanujan graphs
of Lubotzky, Phillips and Sarnak [38] were shown to obtain γ ≥ 4/3 by Biggs and Boshier [7].
Lazebnik, Ustimenko and Woldar [32] slightly improved upon [38] in the lower-order terms,
but more importantly for us, the family they construct consists of edge-transitive graphs.

5 We used the fact that for every (a, b) ∈ E, pab ← min {1, Rabs} = Rabs = R · s, which can be argued as
follows. When all effective resistances equal R, we have R = (n− 1)/|E| due to Theorem 6. Now, if G
has n · s edges or fewer, then it already achieves the desired sparsity so without loss of generality we
can assume that |E| > n · s. Hence, R · s < (n− 1)s/ns < 1. Also, the resulting graph should indeed be
a weighted one, however all its weights will be the same, 1/p.
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I Theorem 15 ([32]). For every prime power d and even integer g ≥ 6 there exists a d-regular
explicit simple, edge-transitive graph with n ≤ 2dg−b

g−3
4 c−4 vertices and girth g. In particular,

for every prime power d there exists a (g, γ = 4/3)-Moorish family of edge-transitive graphs,
where Im(g) = {6, 8, . . .}.

Intuitively, in an edge-transitive graph the local environment of every edge (i.e., the
vertices and edges adjacent to it) looks the same. More formally, an edge-transitive graph is
one in which any two edges are equivalent under some element of its automorphism group.
As the computation of the effective resistance is not affected by an automorphism, we can
conclude the following claim.

B Claim 16. Let G = (V,E) be an unweighted edge-transitive graph. Then, for every two
edges e = (a, b) and e′ = (a′, b′) in E it holds that Rab = Ra′b′ .

4.2 The Lower Bound Proof
We next prove our main result for this section, showing that Moorish edge-transitive graphs
cannot be sparsified via bounded-independence edge sampling when k is too small. Our
proof can be seen as an extension of an argument by Alon and Nussboim [4], who studied the
bounded independence relaxation of the usual Erdős-Rényi random graph model, where it is
only required that the distribution of any subset of k edges is independent. They provide
upper and lower bounds on the minimal k required to maintain properties that are satisfied
by a truly random graph, and in particular they show that there exists a pairwise independent
distribution D over edges with marginals 1/2 such that a random graph sampled from D is
disconnected almost surely.

As a warm-up, we extend the argument in [4] and show that 3-wise independence also
does not suffice, even for the special case of sparsifying the complete graph.

I Lemma 17. Let G = (V = [n], E) be the complete graph. There exists a distribution
D ∼ {0, 1}|E| that is 3-wise independent with marginals 1/4 such that sampling a subgraph
of G according to D would result in a disconnected graph with probability at least 1− 2/2n.

Proof. We first set some notations. Let G(A, p) be the usual Erdős-Rényi model, in which
each edge between two vertices in A is included in the graph with probability p. Let B(A)
be the natural distribution over complete bipartite graphs: Choose a partition A = A1 ]A2
uniformly at random and include all edges between A1 and A2.

We construct D ∼ {0, 1}|E| as follows. Choose a partition [n] = V0 ] V1 uniformly at
random. On V0, draw a graph from G(V0, 1/2) and on V1, draw a graph from B(V1). Clearly,
sampling G′ according to D would result in a disconnected graph unless V0 = ∅ or V1 = ∅,
which occurs with probability at most 2/2n, so what is left to show is that D is 3-wise
independent with marginals 1/4.

This is equivalent to saying that for every T ⊆ E with |T | ≤ 3, Pr[∀e ∈ T, D(e) = 1] =
1/4|T |. Let us first consider the case |T | = 1, i.e. T = e for a single edge e ∈ E. Notice that
D(e) = 1 only if both endpoints of e appear in the same side of the partition V0 ] V1, which
occurs with probability 1/2, and given that this occurs, e appears in G(V0, 1/2) or B(V1)
with probability 1/2. Thus, Pr[D(e) = 1] = 1/4, as desired.

Next, fix a set T ⊆ E of t ∈ {2, 3} edges and note that we can assume without loss of
generality that these edges form either a path or a triangle (for t = 3), as disjoint paths will
occur independently. If T forms a path, then similarly,
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Pr[T ∈ D−1(1)] = Pr[V (T ) ⊆ V0] · 2−t + Pr[V (T ) ⊆ V1] · 2−t = 2−(t+1) · 2−t + 2−(t+1) · 2−t = 4−t,

which is what we want. If T forms a triangle, then using the fact that a bipartite graph is
triangle-free,

Pr[T ∈ D−1(1)] = Pr[V (T ) ⊆ V0] · 1
8 = 4−3,

concluding the proof. J

The above lemma shows that one cannot sparsify the complete graph via (k = 3)-wise
independent edge sampling. For a general k, we indeed need to resort to Moore-like graphs.

Proof of Theorem 11. Recalling that k = b4/3αc, let g = k + 1 or g = k + 2, whichever is
even. Set d0 to be the first prime power larger than

1 + max
{

262/α8
, (2c)6/α2

}
.

By Theorem 15, for every prime power d ≥ d0 there exists n = n(g, d) and a girth-g,
edge-transitive, d-regular graph graph G = (V = [n], E) (note that by our assumption that
α ≤ 4/15, indeed g ≥ 6). From here onwards, fix such a d and n = n(g, d), observing that
{n(g, d)}d≥d0

is infinite.
Choose α0 so that c logn · nα0 = d/2 so that marginals 1/2 correspond to expected

sparsity s. Using the fact that d ≥ n4/3g + 1, it can be verified that α0 ≥ (1− 2α) · α. Using
the fact that d ≥ n4/3g + 1,

α0 ≥
4
3g −

log(2c logn)
logn ≥ 4

4
α + 6

− log(2c logn)
logn ≥

(
1− 3α

2

)
α− log(2c logn)

logn .

As n ≤ (d− 1)
3g
4 and n ≥ 2 · (d−1)

g
2−1

d−2 ≥ (d− 1)
g
2−1, the latter being the Moore bound, we

have

log(2c logn)
logn ≤

log(2c) + log 3g
4 + log log(d− 1)(

g
2 − 1

)
log(d− 1)

≤ log(2c)
log(d− 1) + 2 · log log(d− 1)

log(d− 1) ≤ α2

2 ,

where we used log(2c)
log(d−1) ≤

α2

6 , log 3g
4 ≤

g
2 − 1 and log log(d−1)

log(d−1) ≤ α2

6 . Thus, overall, α0 ≥
(1− 2α)α.

We now give a k-wise independent distribution with marginals 1/2 that fails to yield a
good spectral sparsifier for G, namely it will be disconnected with high probability.

To do so, construct D ∼ {0, 1}|E| as follows. Choose a partition [n] = V0]V1 uniformly at
random. Each random partition gives rise to an element D ∼ D in which for e = (u, v) ∈ E,
D(e) = 1 (i.e., the edge e is chosen to survive) if and only if either u, v ∈ V0 or u, v ∈ V1.

B Claim 18. The distribution D is k-wise independent with marginals 1/2.

Proof. As in the proof of Lemma 17, it suffices to show that for every set T ⊆ E of t ≤ k

edges of G we have Pr[T ⊆ D−1(1)] = 2−t. First, similar to Lemma 17, note that we can
assume without loss of generality that T is a connected component, since whenever T1 and T2
are over disjoint sets of vertices, Pr[T1 ∪ T2 ⊆ D−1(1)] = Pr[T1 ⊆ D−1(1)] · Pr[T2 ⊆ D−1(1)].
As the girth of G is larger than t, it must be the case that A is a tree.

In such a case, where T contains no cycles, Pr[T ∈ D] is equal to the probability that all
t+ 1 vertices in T belong to the same partition, which is 2 · 2−(t+1) = 2−t. C
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By the way D was constructed, it is clear that sampling G′ according to D would result
in a disconnected graph unless V0 = ∅ or V1 = ∅, which occurs with probability 1− 2/2n,
meaning that G′ almost surely does not ε-approximate G, for any ε. J

We again stress that by the work in Section 3, we know that any k-wise independent
distribution over the edges of G with marginals s · (n− 1)/|E| for k = d2/αe would produce
an ε-spectral sparsifier with expected degree O(s) with high constant probability.

The above also implies that any improvement upon Moorish families of edge-transitive
graphs will improve our lower bound. Assuming the existence of a (g, γ = 2)-Moorish family
of edge-transitive graphs we are able to show that the result of Section 3 is essentially tight.

5 Spectral Sparsifiers in Deterministic Small Space

In this section we show that Sparsify can be derandomized space efficiently.

I Theorem 19 (deterministic small-space sparsification). Let G be an undirected, connected,
weighted graph on n vertices with Laplacian L. There is a deterministic algorithm that, when
given G, an even integer k and 0 < ε < 1 outputs a weighted graph H with Laplacian L̃

satisfying:
1. L̃ ≈ε L, and,
2. H has O

(
logn
ε2 n1+2/k

)
edges.

The algorithm runs in space O(k log(N ·w)+log(N ·w) log log(N ·w)), where w = wmax/wmin
is the ratio of the maximum and minimum edge weights in G and N is the bitlength of the
input.

We use the standard model of space-bounded computation. The machine has a read-only
input tape, a constant number of read/write work tapes, and a write-only output tape. We
say the machine runs in space s if throughout the computation, it only uses s total tape cells
on the work tapes. The machine may write outputs to the output tape that are larger than s
(in fact as large as 2O(s)) but the output tape is write-only. We use the following fact about
the composition of space-bounded algorithms.

I Lemma 20. Let f1 and f2 be functions that can be computed in space s1(n), s2(n) ≥ logn,
respectively, and f2 has output of length `1(n) on inputs of size n. Then f2 ◦ f1 can be
computed in space

O(s2(`1(n)) + s1(n)).

The natural way to derandomize Sparsify would be to iterate over all elements of the
corresponding k-wise independent sample space. More formally, given {pab}(a,b)∈E , let Iab
be the indicator random variable that is 1 if and only if edge (a, b) is chosen. If the Iab’s
are k-wise independent so that Pr[Iab = 1] = pab (or some good approximation of pab), we
are guaranteed to succeed with nonzero probability. Hence, at least one assignment to the
Iab’s taken from the k-wise independent is guaranteed to work. From Section 2.4 we know
the sample space is small enough that we can afford to enumerate over all elements in it.
Towards proving Theorem 19, there are still three issues to consider:
1. Approximating the effective resistances Rab for every (a, b) ∈ E, space efficiently. For-

tunately, we can do this with high accuracy using the result of Murtagh, Reingold,
Sidford, and Vadhan [41] for approximating the pseudoinverse of a Laplacian, which we
state shortly.
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2. Verifying that a given set of random choices in Sparsify provides a sparse and accurate
approximation to the input graph. The sparsity requirement is easy to check. To check
that L̃ ≈ε L, we devise a verification algorithm that uses the algorithm of [41]. The
details are given in Lemma 25.

3. The Laplacian solver of [41] only works for multigraphs (graphs with integer edge weights)
and we want an algorithm that works for general weighted graphs. To fix this, we extend
the work of [41] by giving a simple reduction from the weighted case to the multigraph
case. The details can be found in the full version of the paper.

5.1 Algorithm for Approximating Effective Resistances
A key ingredient in our deterministic sparsification algorithm is a deterministic nearly
logarithmic space algorithm for approximating the pseudoinverse of an undirected Laplacian.

I Theorem 21 ([41]). Given an undirected, connected multigraph G with Laplacian L = D−A
and ε > 0, there is a deterministic algorithm that computes a symmetric PSD matrix L̃+

such that L̃+ ≈ε L+, and uses space O(logN · log log N
ε ), where N is the bitlength of the

input (as a list of edges).

Note that the space complexity above assumes that the multigraph is given as a list of edges.
If we instead think of parallel edges as integer edge weights, then N should be replaced by
N · wmax, where wmax is the maximum edge weight in G since an edge of weight w gets
repeated w times in the edge-list representation. To work with general weighted graphs, we
extend the result of [41].

I Lemma 22 (small space laplacian solver for weighted graphs). Given an undirected connected
weighted graph G = (V,E,w) with Laplacian L = D − A, and 0 < ε < 1, there exists a
deterministic algorithm that computes a symmetric PSD matrix L̃+ such that L̃+ ≈ε L+, and
uses space O(log(N ·w) log log(N ·w/ε)), where w = wmax/wmin is the ratio of the maximum
and minimum edge weights in G and N is the bitlength of the input.

A proof of Lemma 22 can be found in the full version. Lemma 22 immediately gives an
algorithm for computing strong multiplicative approximations to effective resistances.

I Lemma 23. Let G = (V,E,w) be an undirected, connected, weighted graph and let Rab be
the effective resistance of (a, b) ∈ E. There is an algorithm that computes a real number R̃ab
such that

(1− ε) ·Rab ≤ R̃ab ≤ (1 + ε) ·Rab

and uses space O(log(N ·w) · log log N ·w
ε ), where w = wmax/wmin is the ratio of the maximum

and minimum edge weights in G and N is the bitlength of the input.

See the full version for a proof of Lemma 23.
Next we show how we test whether two matrices spectrally approximate each other. We

will need the following claim about the space complexity of matrix multiplication.

B Claim 24. Given n×n matrices M1, . . . ,Mk, their product M1 · . . . ·Mk can be computed
using O(logN · log k) space, where N is the bitlength of (M1, . . . ,Mk).

The proof of Claim 24 uses the natural divide and conquer algorithm and the fact that two
matrices can be multiplied in logarithmic space. A detailed proof can be found in [41].

ICALP 2020



39:16 Spectral Sparsification via Bounded-Independence Sampling

5.2 Testing for Spectral Proximity
In this section we give our deterministic, small-space procedure for verifying that two
Laplacians spectrally approximate one another.

I Lemma 25. There exists a deterministic algorithm that, given undirected, connected,
weighted graphs G̃ and G with Laplacians L̃, L, and ε, α > 0, outputs YES or NO such that
1. If L̃ ≈ε L, then the algorithm outputs YES, and,
2. If L̃ 6≈ε·√1+α L then the algorithm outputs NO.

The algorithm uses space O(log(N · w) · log log N ·w
αε + log(N · w) · log 1

α ), where w =
wmax/wmin is the ratio of the maximum and minimum edge weights in G and G̃ and N is
the bitlength of the input.

The high level idea for the proof is that testing whether two matrices L and L̃ spectrally
approximate each other can be reduced to approximating the spectral radius of a particular
matrix

M =
(

(L̃− L)L+

ε

)2

.

In fact, it will be sufficient to check whether the trace of a sufficiently high power of M is
below a certain threshold to deduce whether the spectral radius of M does not exceed 1. For
intuition, replace the matrices with scalars m, `, and ˜̀where

m = (˜̀− `)2

(ε · `)2 .

Then, m ≤ 1 implies
√
m ≤ 1, which implies |˜̀− `| ≤ ε · ` – the kind of relative closeness we

want between the matrices L̃ and L when aiming for spectral approximation. The proof of
Lemma 25 can be found in the full version.

5.3 Completing the Proof of Theorem 19
We can now prove the main result of this section. As noted above, the algorithm proceeds
by first approximating the sampling probabilities and then sparsifying G where the surviving
edges are chosen from a small k-wise independent sample space whose marginals are set
properly. Each potential sparsifier is checked using the algorithm given in Section 5.2.

Proof of Theorem 19. Set δ = 1
4 , ε̂ = 4ε

5 and

s = 18e logn
ε̂2 ·

(n
δ

)2/k
,

for α soon to be determined. These parameters are chosen in accordance with the parameters
required for Sparsify to succeed with probability 1/2 and approximation error ε̂ (see Lemma 10).
Set α′ = α/(4 +α). We compute approximate effective resistances R̃ab for each edge (a, b) in
G using Lemma 23, so that

(1− α′)Rab ≤ R̃ab ≤ (1 + α′)Rab.

This takes O(log(N · w) log log((N · w)/α)) space. Then, we compute approximate sampling
probabilities as follows:

p̃ab = α′ ·
⌊

1
α′
·min

{
1, wab · R̃ab · s/(1− α′)

}⌋
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That is, we truncate the required (approximate) sampling probabilities to log 1
α′ bits of preci-

sion. In particular, denoting the precise sampling probabilities by p?ab = min {1, wab ·Rab · s},
we have

min{1, wab · R̃ab · s/(1− α′)} − p∗ab ≤ wab · s ·Rab ·
(

1 + α′

1− α′ − 1
)

= p∗ab ·
2α′

1− α′ ≤ α/2

Furthermore, we have an additional error of α′ due to the truncation so |p̃ab − p?ab| ≤
α/2 + α′ ≤ α.

We want to set α so that p̃ab is a multiplicative approximation to p∗ab for all (a, b) ∈ E,
which requires α to be smaller than min(a,b)∈E){p∗ab}.

B Claim 26. Let dmax be the maximum weighted degree over all vertices in G. Then, for all
(a, b) ∈ E, p?ab ≥ 1/dmax.

Proof. Since s > 1 and wab ≥ 1 (all edge weights are positive integers) we have p?ab ≥ Rab.
Let λmin(C) denote the minimal nonzero eigenvalue of a matrix C. To lower bound Rab, we
use the variational characterization of eigenvalues and the definition of effective resistance to
write

Rab = (ea − eb)>L+(ea − eb) ≥ λmin(L+) · ‖ea − eb‖2

= 2
‖L‖

≥ 1
dmax

.

Note that we can indeed consider the minimal nonzero eigenvalue of L+ because ea − eb is
perpendicular to the one-dimensional kernel of L (the all-ones vector). C

In light of the above, we can set α so that 1/α = 2 · dmax = O(N · w) and get a 1/2-
multiplicative approximation to the sampling probabilities.

Now, consider the k-wise independent sample space D ⊆ {0, 1}|E| guaranteed to us by
Lemma 8, substituting t = dlog(1/α′)e. By Lemma 8, each element of D can be sampled
using

O(k ·max{log(1/α′), log |E|}) = O(k · log(N · w))

space. For each element of D, construct the corresponding sparse graph. Note that the
space used to cycle through each element can be reused. Lemma 10 tells us that at least
1− 2δ = 1/2 of the Laplacians of the resulting graphs ε̂-approximate the Laplacian of G and
have

O

(
1 + 1/2
1− 1/2 ·

1
δ1+2/k ·

logn
ε̂2 · n1+ 2

k

)
= O

(
logn
ε2 · n1+ 2

k

)
edges. For each of these graphs, we run the verification algorithm with accuracy para-
meter 9/16, which is guaranteed to find a graph with the above sparsity whose Laplacian
approximates the Laplacian of G with error

ε̂ ·
√

1 + 9
16 = 4ε

5 ·
√

25
16 = ε

in space

O

(
log(N · w) log log 16N · w

9ε̂ + log(N · w) log 16
9

)
= O

(
log(N · w) log log N · w

ε

)
.
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Again, the space used for the verification process can be reused. Adding up the space
complexities gives us a total of

O

(
k log(N · w) + log(N · w) log log N · w

ε

)
space. Note that the final result is vacuous when ε ≤ 1/n so we can without loss of generality
assume that ε ≥ 1/n. This gives a total space complexity of O(k log(N · w) + log(N ·
w) log log(N · w)). J
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Abstract
Many graph properties are expressible in first order logic. Whether a graph contains a clique or a
dominating set of size k are two examples. For the solution size as its parameter the first one is
W[1]-complete and the second one W[2]-complete meaning that both of them are hard problems in
the worst-case. If we look at both problem from the aspect of average-case complexity, the picture
changes. Clique can be solved in expected FPT time on uniformly distributed graphs of size n, while
this is not clear for Dominating Set. We show that it is indeed unlikely that Dominating Set can be
solved efficiently on random graphs: If yes, then every first-order expressible graph property can be
solved in expected FPT time, too. Furthermore, this remains true when we consider random graphs
with an arbitrary constant edge probability. We identify a very simple problem on random matrices
that is equally hard to solve on average: Given a square boolean matrix, are there k rows whose
logical AND is the zero vector? The related Even Set problem on the other hand turns out to be
efficiently solvable on random instances, while it is known to be hard in the worst-case.
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1 Introduction

The worst-case analysis of problems has a long tradition and has led to a complexity theory
that allows us easily to classify many problems. Such complexity theories do not only exist
for the time complexity, but also for other resources such as space. There are complexity
classes for approximations, parallel computations, randomization, parameterized algorithms,
and many more. Usually they come with complete problems under certain reductions.

The average-case analysis of problems is less developed, but Levin showed quite early that
there exist problems that are hard to solve even on random inputs [19]. He considered problems
together with input distributions and defined reductions that take the probability distribution
into account. This also led to complete problems for an analogue of NP in the average-case
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world. This theory has been constantly refined. For example, Gurevich [17] showed some
inherent limitations of these techniques. Ben-David et al. showed a rare connection to the
worst-case world: If all problems in NP with a “simple” probability distribution on the
inputs can be solved in average polynomial time, then NEXPTIME = EXPTIME [1]. Such
connections are extremely rare and the latter one together with all others suffer from a severe
problem: They rely on quite unnatural probability distributions. Up to today no connection
seems to exist that shows, e.g., that if some natural problem in NP is hard to solve on average
under a uniform distribution, then P 6= NP. Such a result would be a big breakthrough.

It has to be noted, however, that it is in general not easy even to find problems that
are hard on average (with a uniform distribution). Having such problems is crucial in
cryptography. The RSA system is based on the assumption that factoring the product of two
primes is hard on average, but we cannot prove today that the existence of an algorithm that
can factor in polynomial time on average would imply some unexpected collapse between
worst-case complexity classes.

Many problems that are hard in the worst-case become easy on average. Take for example
the three-coloring problem on graphs. While NP-complete this problem can be solved in
constant time on average when drawing the graph from a uniform distribution of all graphs
of size n: It is easy to see that you can find a triangle in expected constant time by just
looking for one among the first three vertices, then the next three and so on. Each time you
find a triangle with probability 1

8 and you find a triangle on average with only eight tries.
See for example [4] for a similar but more complicated example.

The same holds for finding any fixed size subgraph or induced subgraph. This means that
p-Clique, the problem of finding a clique of size k, can be solved in expected f(k)poly(n)
time for some function f if the input is a uniformly distributed graph of size n. Parameterized
complexity shows that it is unlikely to solve the same problem in f(k)poly(n) time in the
worst-case [9]. Fountoulakis, Friedrich, and Hermelin showed that finding cliques is in FPT
if the probability in the random graph is an almost arbitrary function of its size [14].

In this paper we look at first-order model checking on uniformly distributed random
graphs and more generally on Erdős–Rényi graphs with a constant edge probability. In this
model we assume that each possible edge in a graph with n vertices exists independently with
a probability of p. While in the worst-case the FO model checking problem seems to become
harder the more quantifier alternations we have, this hierarchy collapses when looking at
the average time complexity. We will show that the dominating set problem is as hard as
the whole model checking problem. We also identify a very natural problem on boolean
matrices that has the same complexity: Does a random boolean matrix have k rows whose
logical AND is the zero vector? We conclude that this matrix problem and the dominating
set problem are hard on average (unless the very general model checking problem is easy,
which would be unexpected). Finally we consider also the Even Set problem, which has been
finally shown to be W[1]-hard in the worst-case [2] and is similar to the above mentioned
matrix problem. Nevertheless it turns out that Even Set can be efficiently solved on random
instances.

Among the techniques “half”-reductions play an important role. While in a reduction f
from A to B you require that w ∈ A iff f(w) ∈ B, we often need only one direction: Showing
“if w ∈ A then f(w) ∈ B” is sufficient if f(w) ∈ B holds with a very small probability. Having
an algorithm for B we can then solve A as follows. Compute f(w) and find out whether
f(w) ∈ B holds. If not, conclude that w /∈ A. If yes, then solve w ∈ A with a very slow, but
simple algorithm. As this happens with a small probability it does not spoil the expected
running time.
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2 Preliminaries

Parameterized complexity
Parameterized complexity was introduced by Downey and Fellows in a series of papers to
investigate further what makes problems hard to solve (see, e.g., [5, 6, 7, 8, 9, 13, 22]).
Instead of measuring the run time solely as a function on the input length, it may also depend
on other parameters of the input. A parameterized problem has therefore a parameter k
and the input length n and we classify a problem as fixed parameter tractable if it can be
solved in time f(k)poly(n) for some computable function f . If an NP-hard problem is fixed
parameter tractable, then it runs in polynomial time for every fixed value of k and the degree
of the polynomial does not depend on k. In particular this means that there exist efficient
algorithms for scenarios where the parameter is small.

In this paper we will look at distributional problems on random graphs and boolean
matrices. Here a distributional problem will be a parameterized problem together with a
probability distribution of the inputs. Usually we will denote such a distributional problem
by stating the problem and the probability distribution separately.

We use the notation of Flum and Grohe [13] for parameterized problems. The first two
important problems we consider are the dominating set problem on undirected graphs and a
simple problem on boolean matrices:

I Definition 1.
p-Dominating Set

Input: A graph G and k ∈ N.
Parameter: k

Problem: Is there a dominating set of size ≤ k for G?

p-Matrix(∧)
Input: A boolean matrix M ∈ {0, 1}n×n and k ∈ N.

Parameter: k

Problem: Are there k rows in M whose logical AND is the zero vector?

Logic on graphs and the zero-one law
We use graphs as a structure (V,E) where V is the vertex set and E the binary edge relation.
Instead of Euv we will write u ∼ v, which expresses that there is an edge between u and
v in an undirected graph. First-order (FO) formulas on graphs are atomic formulas of the
form x = y or x ∼ y or one of the following: φ ∧ ψ, φ ∨ ψ, ¬φ, ∀xφ, ∃xφ, where φ and ψ are
already FO-formulas. The semantics are as expected. A sentence is a formula without free
variables.

I Definition 2. We define the first-order model checking problems on graphs. The more
general problem on relational structures can be reduced to this more special problem [13].

p-MC(FO)
Input: A first-order sentence φ and a graph G

Parameter: |φ|, the length of φ
Problem: Does φ hold in G, i.e., G |= φ?
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For example, the formula ∃x1∃x2 . . . ∃xk∀y
∨
i(xi = y ∨ xi ∼ y) expresses that a graph

has a dominating set of size at most k. If a formula φ holds for a graph G we write G |= φ.
If a formula φ follows from a set of formulas Φ we write Φ |= φ. This is the case iff there is
a formal derivation of φ from Φ, which we write as Φ ` φ. Sometimes we will use colored
graphs, which we represent by a graph G and a coloring function χ mapping vertices to a set
of colors. Formulas can speak about colors via atomic formulas of the form χ(x) = red and
we write (G,χ) |= φ if the formula φ is true for G with colors χ.

By G(n, p) we denote an Erdős–Rényi-graph with n vertices and edge probability p, where
edges exist independently from each other with a probability of exactly p ∈ [0, 1]. Fagin [11]
proved the zero-one law for first-order sentences, which states that for every sentence φ
either limn→∞ Pr[G(n, 1/2) |= φ] = 0 or limn→∞ Pr[G(n, 1/2) |= φ] = 1. With other words,
a graph property that is expressible in first-order logic either holds asymptotically almost
surely or almost never. Given φ as an input, it can be decided whether the limit is 0
or 1 and Grandjean showed that it turns out to be a PSPACE-complete problem [15]. An
important role in the proof of the zero-one law play the so-called extension axioms (not to
be confused with the axiom of extension in Zermelo–Fraenkel set theory). They state that
every constant-size set of vertices is connected in every possible way to other vertices. For a
set or vector of variables x1, . . . , xk we will often write x̄. With this notation an extension
axiom can be written as

∀x̄∀ȳ∃z
(∧
i,j

xi 6= yj →
∧
i

(xi ∼ z ∧ yi 6∼ z)
)
.

For an extension axiom it is easy to see that it holds almost surely, but if we look at the
whole set Φ of all extension axioms it turns out that there is only one countable model
up to isomorphisms, the so-called Rado graph, which contains every finite and countable
infinite graph as an induced subgraph. Hence by the Łoś–Vaught Theorem [20, 23], Φ |= φ

or Φ |= ¬φ for every first-order sentence φ. This means also that either Φ ` φ or Φ ` ¬φ. To
find out out which one is true we can just enumerate all proofs. Note that in a proof only a
finite number of formulas from Φ are used and the proof itself is of course also finite. The
result by Grandjean states that this can be done in polynomial space.

All these observations suggest that FO-model checking should be easy on random graphs:
Just find out from φ alone whether it holds almost surely or almost never. Then verify that
this is indeed the case for the given G. The strategy of using an abundance of witnesses
suggests itself, just as the triangle finding described in the introduction. While this intuition
is correct for purely existential formulas, life becomes much harder when considering formulas
with quantifier alternations.

In worst-case complexity FO-model checking with a fixed number of quantifier alternations
form the complete problems for the A-hierarchy [12]. Among known results about the
relationship to other complexity classes are W[t] ⊆ A[t] and W[1] = A[1]. To today’s
knowledge this hierarchy appears to be proper, see e.g. [3]. A collapse of the A-hierarchy
implies a collapse of both the W-hierarchy and of the polynomial hierarchy.

In this paper we investigate how hard FO-model checking is on average, which could be
interpreted as looking at the average-case analogue to the A-hierarchy. In the worst-case
model checking purely existential formulas is already W[1] = A[1]-complete, while it is easy
to see that you can achieve expected FPT time (because of abundance of witnesses). If
we turn to edge probabilities apart from 1

2 and look at Erdős–Rényi graphs G(n, p) with a
constant p the problem stays in expected FPT time. Grohe showed that for sparse Erdős–
Rényi graphs G(n, d(n)/n) with d(n) = no(1) the whole p-MC(FO) can be solved in expected
FPT time [16]. The latter result also holds for graphs with vertex colors and it turns out
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that for colored random graphs Grohe’s result is optimal with regard to the edge density:
For no ε > 0 and G(n, nε/n) is it possible to solve colored-p-MC(FO) in expected FPT time
unless AW[∗] ⊆ FPT/poly [10].

Universal sets, bisectors, and colorings
I Definition 3. Let n ∈ N and k ∈ N with n ≥ 2k.
1. A family U of functions [n] 7→ {0, 1} is called an (n, k)-universal set if for every subset

M ⊆ [n] of size |M | = k and every M ′ ⊆M there is a function f ∈ U such that f(t) = 0
for every t ∈M ′ and f(t) = 1 for every t ∈M −M ′.

2. A family B of functions [n] 7→ {0, 1} is called a k-universal bisector family if for every
subsetM ⊆ [n] of size |M | = k there is a function f ∈ B such that f(t) = 0 for every t ∈M
and every function f bisects [n] in two sets of almost the same size: |f−1(0)| = dn/2e.

3. A family C of functions [n] 7→ {black,white, gray} is called a k-universal coloring if for
every subset M ⊆ [n] of size |M | = k and every M ′ ⊆M there is a function f ∈ C such
that f(t) = black for every t ∈ M ′ and f(t) = white for every t ∈ M −M ′. Moreover,
|f−1|(gray) = dn/2e for every f ∈ C.

(n, k)-universal sets are a well-known concept that has been used, e.g., in the derandom-
ization of algorithms. Naor, Schulman, and Srinivasan designed such a family that can be
constructed in linear time and has size 2kkO(log k) logn [21].

The concept of a universal bisector is somehow orthogonal to (n, k)-universal sets. Com-
bining both concepts leads to (n, k)-universal colorings that will always color half of the
nodes gray.

A simple idea to build a k-universal bisector family of small size is this: For every size k
subset M of [2k] we define the function

bM : [n]→ {0, 1}, bM (t) =
{

0 if t mod 2k ∈M
1 otherwise,

(1)

where a mod b is the remainder when dividing a by b.
Assume that S ⊆ [n] with |S| ≤ k. If we choose M such that it contains t mod 2k for

every t ∈ S (and some more elements), then clearly bM (i) = 0 for every i ∈ S. Hence, we
have a k-universal bisector family. If n is a multiple of 2k then |b−1

M (0)| = n/2 because every
group of 2k elements is split equally. The last group, however, can be split unevenly leading
to an error of O(k). Algorithmically such a family of functions that bisects with a small
error would be sufficient for our purposes. It is, however, possible to achieve perfect balance
at a small cost in the size of the family, which makes their application slightly easier. The
next lemma shows that universal bisector families exist.

We leave the smallest possible size of such families as an open question as it is not a
critical issue for the results of this paper, but give two comments on the issue: If n = 2k you
have to use all

(2k
k

)
= Θ(k−1/24k) possible balanced bipartitions and it seems that a size of

O∗(4k) is already optimal. If n is much bigger, however, a random perfect bipartition works
with a relatively high probability of Ω∗(2−k) and suggests that families of size O∗(2k) exist,
although it is not immediately clear how to construct families of that size.

I Lemma 4. For every k ∈ N and n ≥ 2k(2k + 1) there is a k-universal bisector family of
size O(4kk). A table of all functions in the family can be computed in time O(4kkn), which
is linear in the size of the table.
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Proof. We use a slight modification of the construction in (1). Let n = 2kd+ r with r < 2k.
Let us call the last r elements of [n] the jokers. We define

bM (t) =


0 if t < 2kd and t mod 2k ∈M ,
1 if t < 2kd and t mod 2k /∈M ,
t mod 2 if t ≥ 2kd.

Such a function bM (t) maps exactly dn/2e elements to 0 and is therefore perfectly balanced,
but those function do not give us a universal family of bisectors. If S contains odd jokers, not
all of S is mapped to 0. We can overcome this problem by using 2k + 1 families build in this
way, but where each family uses a different interval in [n] to place the jokers. In that way for
each S ⊆ [n] of size up to 2k there will be one family where S does not contain a joker (by
the pigeon-hole principle). There is enough space for these intervals if n ≥ 2k(2k + 1) and
the resulting universal family of bisectors has size (2k + 1)4k. J

Combining k-universal bisectors and (n, k)-universal sets leads easily to (n, k)-universal
colorings.

I Lemma 5. For every k ∈ N and n ≥ 2k(2k+1) there is an (n, k)-universal coloring family
of size 8kkO(log k) logn. A table of all functions in the family can be computed in linear time.

Proof. We use a k-universal bisector family B of size O(4kk) from Lemma 4 and an (n, k)-
universal set U of size 2kkO(log k) logn according to [21]. For f ∈ U and g ∈ B we define a
function h : [n]→ {black,white, gray} as follows:

h(v) =


gray if g(v) = 1
black if g(v) = 0 and f(v) = 0
white if g(v) = 0 and f(v) = 1

It is easy to see that the set of all such h’s forms an (n, k)-universal family of colorings. J

3 Results

We define the following three formulas:

φ ≡ ∀x̄∀ȳ∃z
( k∧
i,j=1

xi 6= yj →
k∧
i=1

(xi ∼ z ∧ yi 6∼ z)
)

φ′ ≡ ∀x̄∀ȳ∃z
( k∧
i=1

(
χ(xi) = black ∧ χ(yi) = white

)
→ χ(z) = gray ∧

k∧
i=1

(xi ∼ z ∧ yi 6∼ z)
)

φ′′ ≡ ∀x̄∀ȳ∃z
( k∧
i=1

(
χ(xi) = black ∧ χ(yi) = white

)
→ χ(z) = gray ∧

k∧
i=1

(xi 6∼ z ∧ yi 6∼ z)
)

The next lemma uses k in the formulas φ and φ′ as the parameter.

I Lemma 6. If there is an algorithm that, given a graph G = G(n, 1/2) and a coloring
χ : G → {gray, black,white}, can decide in expected FPT time whether (G,χ) |= φ′, then there
is an algorithm that can decide for G = G(n, 1/2) in expected FPT time whether G |= φ.
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Proof. Let X be a 2k-universal family of colorings. Given a graph G first solve (G,χ) |= φ′

for every χ ∈ X in expected FPT time. If the answer is yes for every χ, then we can conclude
G |= φ, as by using a universal family of colorings, we have covered all distinguishable ways
to color the nodes of G: Assume that (G,χ) |= φ′ for every χ ∈ X, but G 6|= φ. Then there
exist x̄, ȳ where x̄ and ȳ are distinct such that for all z,

∧k
i=1(xi ∼ z ∧ yi 6∼ z) is unsatisfied.

However, as |x̄| = |ȳ| = k and X is a 2k-universal family of colorings, there is in particular a
coloring χ ∈ X such that χ(x̄) = black and χ(ȳ) = white. If we assume that G 6|= φ for these
particular x̄, ȳ, then clearly also (G,χ) 6|= φ′ for these choices of χ and x̄, ȳ.

We cannot tell whether G |= φ holds or not if (G,χ) 6|= φ′ for at least one coloring χ ∈ X.
The probability that this happens is exponentially small in n as we will show in the following.
The negation of φ′ reads

∃x̄∃ȳ∀z
( k∧
i=1

(
χ(xi) = black ∧ χ(yi) = white

)
∧
(
χ(z) = gray→

k∨
i=1

(xi 6∼ z ∨ yi ∼ z)
))

.

Once the coloring and x̄, ȳ are fixed, the probability that a gray vertex z is not connected to
some xi or connected to some yi, is exactly 1− 2−2k. This happens with all n2 +O(k) many
gray vertices with a probability of (1− 2−2k) n

2 +O(k). Altogether the probability of G 6|= φ′ is

∑
χ∈X

P [(G,χ) 6|= φ′] ≤ |X|
(
n

k

)(
n− k
k

)(
1− 1

22k

)n
2 +O(k)

=

= 8knO(k)
(

1 − 1
22k

)n
2 +O(k)

= e−n2−2k−1+O(k logn),

because there are |X| ≤ 8kpoly(n) (Lemma 5) many colorings and at most
(
n
k

)(
n−k
k

)
= nO(k)

ways to choose x̄ and ȳ. In that case, we can solve G |= φ by brute force in nO(k) time. For
big enough n, the expected running time of the complete algorithm then remains in expected
FPT time as long as (G,χ) |= φ′ is decidable in expected FPT time. The tradeoff works as
long as nk is subexponential and for large k the problem is automatically in FPT even in
the worst-case. J

Let Ḡχ = (V,E′) be defined as follows: If χ(u) = gray and χ(v) = black or χ(u) = black
and χ(v) = gray then uv ∈ E′ iff uv /∈ E. Otherwise uv ∈ E′ iff uv ∈ E.

Informally speaking, Ḡχ is the same graph as G, but edges are replaced by non-edges
and vice versa between a vertex pair that is colored black and gray. It is important to note
that if G is random then Ḡχ is also random, although the edge probability of the flipped
edges of Ḡχ are inverted. This poses no problem if the edge probability is 1/2, but wrecks
havoc when it is not. Edge probabilities different from 1/2 are discussed in Section 4.

I Lemma 7. Let G be a graph and χ a coloring. Then (G,χ) |= φ′ iff (Ḡχ, χ) |= φ′′.

Proof. The only difference between φ′ and φ′′ is xi ∼ z versus xi 6∼ z. This subformula is
only relevant when xi is black and z is gray, as it is guarded by that condition. J

A coloring χ : [n]→ {black,white, gray} is balanced if dn/2e numbers are mapped to gray.

I Lemma 8. If we can solve p-Matrix(∧) on random n×n-matrices in expected FPT time,
then we can solve (G,χ) |= φ′′ for every balanced coloring χ on G(n, 1/2) in expected FPT
time.
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Figure 1 A graph G (left) with a node coloring χ and the corresponding graph Ḡχ (right) with
gray-black edges flipped.

Proof. Let G = (V,E) be a random graph with n vertices and χ : G → {gray, black,white}
be a balanced coloring. Assume first that n is even and that V = {v1, . . . , vn/2, u1, . . . , un/2}
where vi are not gray and ui are gray. We construct a matrix M ∈ Fn/2×n/2

2 such that
Mij = 0 iff viuj ∈ E. This matrix is random and therefore we can find out in expected FPT
time whether there are 2k rows i1, . . . , i2k whose logical AND is 0. If this is not the case then
(G,χ) |= φ′′: Choosing x̄ and ȳ corresponds to picking 2k rows i1, . . . , i2k of M . Choosing z
corresponds to picking a column j of M . As M is a no-instance regardless what i1, . . . , i2k
are, the AND of the corresponding rows is never 0. So there is a column j with Mij = 1 for
all i ∈ {i1, . . . , i2k} and correspondingly in G there is a gray z for every black x̄, white ȳ
that is non-adjacent to all of x̄ or ȳ and we can conclude (G,χ) |= φ′′.

Otherwise (if there are no such 2k rows) we can test in time nO(k) whether (G,χ) |= φ′′.
The probability for this to happen is at most

(
n
2k
)
(1− 1

22k )n/2 because there are
(
n
2k
)
ways

to choose 2k rows and for each column the probability is 2−2k that it contains ones in all
selected rows.

It remains to consider an odd n. In that case χ colors dn/2e vertices gray. Using the
above construction leads to a matrix M with one more column than rows. The premise
of the lemma allows us, however, only to assume that p-Matrix(∧) is solvable on square
matrices. If we just remove the last column of M we are left with a random square matrix.
The probability is still exponentially small that the truncated matrix is a yes-instance of
p-Matrix(∧), but if it is a no-instance we can conclude thatM is also a no-instance and then
(G,χ) |= φ′′ follows. Otherwise, we can again use a brute-force solution in time nO(k). J

I Lemma 9. If we can solve p-Dominating Set on G(n, 1/2) in expected FPT time, then
we can solve p-Matrix(∧) on random matrices in expected FPT time.

Proof. (Sketch) Let M ∈ Fn×n2 be a random matrix. Let M̄ = M ⊕ 1 (pointwise negation
of M). Then M contains k rows whose AND is zero iff the directed graph H with M̄ as its
adjacency matrix has a dominating set of size k, which corresponds to the logical OR of k
rows in M̄ to be equal to the one vector.
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Solving p-Dominating Set on G(n, 1/2)y Lemma 9

Solving p-Matrix(∧) on uniformly distributed square matricesy Lemma 8

Solving (G,χ) |= φ′′ on G(n, 1/2)y Lemma 7

Solving (G,χ) |= φ′ on G(n, 1/2)y Lemma 6

Solving G |= φ on G(n, 1/2)y Lemma 10

Solving the FO-model checking problem on G(n, 1/2)y subproblem

Solving p-Dominating Set in G(n, 1/2)

Figure 2 Structure of the main proof. “Solving” means that the problem can be solved in
expected FPT time. A −→ B means that if A is in expected FPT time then so is B.

By using k-universal bisector families we can assume that a dominating set is among the
first third of the vertices and that the k rows of a solution can be found in the upper third
of M̄ . Decompose M̄ into nine blocks and rearrange them as follows:

M̄ =

A B C

D E F

G H I

 → M ′ =

D′ B AT

BT E′ C

A CT F ′


Here BT is the transposed matrix B and A′ is a symmetric matrix built from the upper
triangular part of A. It is easy to see that M ′ is symmetric and random, if M is random.
This means that M ′ is the adjacency matrix of a random, undirected graph G. It is also
clear that if M̄ contains k rows whose logical OR is the one vector, then M ′ contains 3k
such rows and G has a dominating set of size 3k. We can construct G and find out whether
it has a dominating set of size 3k. If not, then we know that M does not contain k rows
whose logical AND is the zero vector. Otherwise, we can run a brute-force nO(k) algorithm,
because the probability that we have to do this is at most

(
n
3k
)
(1− 1

23k )n−3k. J

I Lemma 10. If there is an algorithm that can decide G |= φ on G(n, 1/2) in expected FPT
time, then there is an algorithm that solves p-MC(FO) on G(n, 1/2) in expected FPT time.

Proof. Let Φ be the set of extension axioms and ψ be a first-order formula on the logic of
graphs. Remember that then either Φ ` ψ or Φ ` ¬ψ [11]. We can enumerate all proofs
that use axioms in Φ in ascending order of length. Eventually we will find a proof Φ′ ` ψ
or Φ′ ` ¬ψ for a finite subset Φ′ ⊆ Φ. In our formulation of extension axioms (where x̄
and ȳ have the same size and only xi 6= yj , but not xi 6= xj , yi 6= yj is required), a longer
axiom implies all shorter ones. Therefore there is a single extension axiom φ with 2k + 1
variables such that φ ` ψ or φ ` ¬ψ. The length of φ and k are bounded by a function of
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the length of ψ because the whole proof that we found depends only on ψ. We decide in
expected FPT time on the parameter |φ| and therefore also on the parameter |ψ| whether
G |= φ. If the answer is yes we can conclude whether G |= ψ holds and we are done. The
answer is no only with an exponentially small probability in the number n of vertices if |φ|
is small (for example if |φ| = O(logn)): There are n− 2k possibilities to choose z outside
of x̄ and ȳ and then the probability that z is correctly connected to them is exactly 2−2k.
Hence the probability of no is at most n2k(1− 2−2k)n−2k = Ω(e−n/2k+k logn) and we can use
a brute-force nO(k) algorithm in that case. J

I Theorem 11. p-Dominating Set can be solved on G(n, 1/2) in expected FPT time iff
p-MC(FO) can be solved on G(n, 1/2) in expected FPT time.

Proof. Assume p-Dominating Set can be solved on G(n, 1/2) in expected FPT time. By
Lemmas 9, 8, 7, 6, and 10 we can conclude that p-MC(FO) can be solved on G(n, 1/2)
in expected FPT time. The other direction is trivial as p-Dominating Set is a special
case of p-MC(FO), where the length of the formula is linear in the size of the sought-after
dominating set. See Figure 2 for an overview. J

4 Playing with the probability

Up to now we were looking at the uniform distribution of graphs, which corresponds to an
edge probability of 1/2. It seems at first glance that all the proof techniques should also
work for an arbitrary constant probability of 0 < p < 1. A close look at the proofs, however,
shows that Lemma 7 uses the fact that p = 1/2 in a crucial way: We flip gray–black edges,
which changes their probability from p to 1− p, which is only harmless when p = 1/2. The
next lemma shows that we can prove a variant for an arbitrary edge probability.

I Lemma 12. If we can solve G |= φ′′ on G(n, p) in expected FPT time for some rational
number 0 < p ≤ 1/2, then we can also solve G |= φ′ on G(n, p) in expected FPT time.

Proof. Let G′ be a graph and χ a coloring and Ḡ′χ be the same graph with edges between
a black and gray vertex flipped. Then (Ḡ′χ, χ) |= φ′′ iff (G′, χ) |= φ′. However, if the edge
probability in G′ is p then the edge probability in Ḡ′χ is different: 1− p for gray–black edges
and p for the others. Assume we can change that by turning every gray–black edge that is
present in Ḡ′χ into a non-edge with probability p

1−p such that the resulting probability for
each edge is exactly p. Let us call the resulting graph Ḡ′′χ, which is distributed as G(n, p) if
G′ is distributed as G(n, p).

It is easy to see that (G′, χ) |= φ′ follows from (Ḡ′′χ) |= φ′′ because φ′′ remains true when
removing edges. Nevertheless, the probability of (Ḡ′′χ) |= φ′′ is exponentially close to one.
Therefore we can solve (G′, χ) |= φ′ as follows: First find out whether (Ḡ′′χ, χ) |= φ′′ in
expected FPT time. If the answer is yes, we can conclude that (G′, χ) |= φ′. Otherwise, we
solve (G′, χ) |= φ′ in nO(k) time.

We have, however, assumed that we can delete an edge with probability p/(1− p), which
would be true for a randomized algorithm. Using bisector families iteratively by applying
the next family on the vertices that were mapped to 0 we can assume that the x̄, ȳ that are
witnesses for (Ḡ′′χ, χ) 6|= φ′′ are among the first εn vertices for any ε > 0. Instead of testing
whether φ′′ holds on the whole graph we can now test only the subgraph induced by the first
εn black and white vertices and all gray vertices. There are at most εn2 edges between a
relevant black and some gray vertex. Hence, we need only to simulate εn2 coin tosses with a
heads probability of p(1− p), which is a rational number. Using von Neumann’s trick we can
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simulate such a coin toss using expected O(1) random bits [24]. Chernoff bounds show that
the total number of such bits needed remains O(εn2) with a probability exponentially close
to one. We can thus use the edges between gray vertices, there are

(
n/2

2
)
many, as a coin

toss with probability p. If we run out of simulated random bits, we can use a brute-force
algorithm. J

Finally, we show that changing the probability does not make the problems harder
or easier. This shows a certain robustness of the average-case complexity of p-MC(FO),
p-Matrix(∧), and p-Dominating Set.

I Theorem 13. Let 0 < p, q < 1, p, q ∈ Q. p-MC(FO) can be solved on G(n, p) in expected
FPT time iff dominating set can be solved on G(n, q) in expected FPT time.

Proof. You can check that all steps in Figure 2 work for a probability other than 1/2 except
Lemma 7 (Lemmas 8 and 9 change p to 1− p and together leave it untouched). Plugging
in Lemma 12 instead makes the whole chain work for any 0 < p ≤ 1/2. If we can solve
p-MC(FO) on G(n, p) we can solve it on G(n, 1− p), too, by complementing the graph and
interchanging ∼ and 6∼ in the formula. So far this shows that all problems in Figure 2 are in
expected FPT or none of them on inputs distributed with an edge probability p for the graph
problems and a probability of p that an entry is 1 for p-Matrix(∧), but we still have to
show that we can change the probability to q without making the problem harder or easier.

For this purpose we use p-Matrix(∧). Let M be a matrix with probabilty p and we
assume that p < q, otherwise we can invert the matrix and use 1− p and 1− q. Similar to
the proof of Lemma 12 we use iterated bisectors to reduce the problem of finding k rows to
finding them in the first εn rows. We can then take a square submatrix consisting of the
first εn rows and columns. Using the entries outside of this submatrix as coin tosses with
heads probability p, we simulate coin tosses with a head probability of 1− q/p. As before the
probability is exponentially small that we do not succeed in the simulation (and have to use
a brute-force algorithm). We use the 1− q/p-coins to change a 1 in the submatrix to a 0 with
probability 1− q/p. Then the probability of a 1 in the submatrix becomes q. Now we can
use the postulated algorithm to solve p-Matrix(∧) on the transformed submatrix. If the
answer is no for all bisectors then we can answer no. If the answer is at least once yes, which
happens with an exponentially small probability, we can use a brute-force algorithm. J

The technique used above relies on p and q being rational numbers as we need to simulate
a coin toss with head probability 1− q/p, which is not necessarily possible for uncomputable
probabilies (or even for very inefficiently computable ones).

5 Average Case Complexity of Even Set

The problem p-Matrix(∧) turned out to be as hard as p-MC(FO) on random graphs.
Instead of looking for k rows whose logical AND is the zero vector, we can also consider the
related problem where we look for k rows whose exclusive or is zero. This variant is actually
a problem well-known under the name Even Set and has many other equivalent definitions.

I Definition 14.
p-Even Set

Input: A matrix A ∈ Fn×n2 and a number k > 0
Parameter: k

Problem: Are there k rows in A whose exclusive or is 0?
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This problem was one of the original open problems in Downey and Fellows’ book on
parameterized complexity [8] and one of the few that has not been solved for a long time.
Bhattacharyya et al. recently succeeded to classify the problem as W[1]-hard [2] under
randomized fpt-reductions. As the problem is very similar to p-Matrix(∧) we could expect
that it is similarly hard on random matrices. It turns out, however, that we can solve it on
uniformly distributed boolean square matrices in expected FPT time.

I Theorem 15. p-Even Set can be solved in expected FPT time on uniformly distributed
random square matrices.

Proof (Sketch). Assume thatM is a boolean n/2×n matrix for an even n and Pr[Mij ] = 1/2
independently for every 1 ≤ i ≤ n/2, 1 ≤ j ≤ n. It is easy to see and well-known (see,
e.g., [18]) that the probability that M has not full rank is exponentially small in n.

Hence, we can proceed as follows to solve p-Even Set: First use a universal bisector
family on a square matrix to select half the rows to form an n/2× n matrix. If the original
matrix was a yes-instance of p-Even Set, then it contained k rows whose exclusive or is
the zero vector. Then the same holds for at least one of the transformed n/2× n matrices.
We check all of them for full rank. If all have full rank, then we conclude that the original
matrix was a no-instance. Otherwise we use a brute-force nO(k) algorithm. This happens
with small probability: As the n/2× n-matrices are random, all of them have full rank with
high probability. The proof can easily be adjusted for odd n. J

It has to be noted that p-Even Set might behave quite differently on rectangular matrices.
If a matrix has n columns, but n2 rows it seems impossible to reduce the problem back to a
square matrix and it is quite possible that the problem is then hard on average.

6 Conclusion

We have shown that the dominating set problem, which is with one quantifier alternation
fairly low in the hierarchy of first-order definable properties, is nevertheless as hard to solve
on average as any other problem that is first-order expressible. Stronger evidence for hardness
under random instances would be a theorem that bridges the worlds of average-case and
worst-case complexities. For example, some collapse in the W- or A-hierarchies implied by
an efficient algorithm for dominating set on average instances would be a breakthrough.

A detail that is missing in this paper is the generalization of Theorem 13 to non-rational
probability. We believe that more complicated techniques beyond the scope of this paper
prove a generalization to even non-computable numbers, but we leave it as an open question
to find a simple argument, which probably exists.
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Abstract
We study the maximum weight perfect f -factor problem on any general simple graph G = (V,E, ω)
with positive integral edge weights w, and n = |V |,m = |E|. When we have a function f : V → N+

on vertices, a perfect f -factor is a generalized matching so that every vertex u is matched to exactly
f(u) different edges. The previous best results on this problem have running time O(mf(V )) [Gabow
2018] or Õ(W (f(V ))2.373)) [Gabow and Sankowski 2013], where W is the maximum edge weight,
and f(V ) =

∑
u∈V f(u). In this paper, we present a scaling algorithm for this problem with running

time Õ(mn2/3 logW ). Previously this bound is only known for bipartite graphs [Gabow and Tarjan
1989]. The advantage is that the running time is independent of f(V ), and consequently it breaks
the Ω(mn) barrier for large f(V ) even for the unweighted f -factor problem in general graphs.
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1 Introduction

Suppose we are given an undirected simple graph G = (V,E, ω) on n vertices and m edges,
with positive integer edge weights ω : E → {1, 2, · · · ,W}. Let f : V → N+ be a function
that maps vertices to positive integers. An f -factor is a subset of edges F ⊆ E such that
degF (u) ≤ f(u) for all u ∈ V , and F is a perfect f -factor if degF (u) = f(u) for all u ∈ V . In
this paper we are concerned with computing a perfect f -factor with maximum edge weights1

For polynomial running time algorithms, the previous best result on this problem has
running time 2Õ(mf(V )) [8], where conventionally f(V ) =

∑
v∈V f(v). When edge weights

are small integers, a pseudo-polynomial running time of Õ(W (f(V ))2.373) was obtained using
algebraic approaches by [9]. For unweighted graphs, one can achieve Õ(m

√
f(V )) running

time using algorithms from [13, 6]. Faster algorithms with running time independent of f(V )
were obtained previously but only in bipartite graphs: [11] gave a scaling algorithm that runs
in time Õ(m2/3n5/3 logW ) solving the more general min-cost unit-capacity max-flow problem,

1 Of course, original definition of f -factors means perfect ones (e.g. in [16]), but we follow the definition
from [13] which does not require perfectness for convenience.

2 In this paper Õ(·) hides logn factors.
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and the time bound for bipartite f -factor was later improved to Õ(mmin{n2/3,m1/2}· logW )
in [10], and the time bound for min-cost flow was further improved to Õ(mn1/2) and
Õ(m10/7 logW ) using algebraic approaches [15, 1]. For the maximum weight f -factor problem,
if one is willing to settle for approximate solutions instead of the exact maximum, linear
time algorithms can be found from [13, 2]. A closely related problem is the min-cost perfect
b-matching, in which every edge can be matched multiple times. There are several classical
results for b-matchings [10, 4, 7, 8].

In this paper we prove the following result, which is the first one to break the Ω(mn)
barrier for perfect f -factors in general graphs.

I Theorem 1. There is a deterministic algorithm that computes a maximum weight perfect
f -factor in Õ(mn2/3 logW ) time.

1.1 Technical overview
Our algorithm is based on the scaling approach for maximum weight matching in general
graphs that runs in time Õ(m

√
n logW ) from [3] and the blocking flow method in [5, 14, 12].

Here we begin with a sketch of our idea on finding a perfect f -factor in an unweighted graph.
To generalize it to weighted graphs, we will adapt the scaling algorithmic framework for
maximum weight perfect matching from [3].

The algorithm for the unweighted case uses primal-dual approach for f -factors which
was presented in [8]. It maintains a set of dual variables y : V → Z and z : 2V → N, as well
as a laminar family of blossoms Ω ⊆ 2V and a compatible f -factor F , which are initialized
as y = 0, z = 0, F = Ω = ∅. Basically, the algorithm invokes for Cn2/3 times the Edmonds
search procedure under an approximate complementary slackness constraint on F, y, z,Ω,
where C is a sufficiently large constant. The key idea is that when G is a simple graph,
after that we wish to prove that the total deficiency of the current f -factor F is bounded by
O(n2/3), namely

∑
v∈V (f(v)− degF (v)) ≤ O(n2/3). If this is true, then we only need extra

O(n2/3) rounds of Edmonds searches to reach a perfect f -factor.
Let F ∗ be an arbitrary perfect f -factor. To upper bound the total deficiency

∑
v∈V (f(v)−

degF (v)) ≤ O(n2/3), we need to bound the total number of edge-disjoint augmenting walks
in F ∗ ⊕ F . Consider any augmenting walk which is specified by a sequence of consecutive
edges (u1, u2), (u2, u3), · · · , (u2s−1, u2s), where (u2i−1, u2i) ∈ F ∗, (u2i, u2i+1) ∈ F , and all
ui’s but u1, u2s are saturated vertices (degF (ui) = f(ui)). If we start the search for y-values
of all vertices equal to some positive constant, then y-values of unsaturated vertices remain
equal. Since u1, u2s are both unsaturated vertices, we have y(u1) = y(u2s) = −Cn2/3.

No blossoms. For bipartite graphs, we do not need to consider blossoms, so we can use the
idea from [12, 5]. By approximate complementary slackness we know: y(u2i−1) + y(u2i) ≥
−2, y(u2i)+y(u2i+1) ≤ 0. Then we have y(u2i+1)−y(u2i−1) ≤ 2, y(u2s−1) ≥ Cn2/3. Consider
the sequence of duals: y(u1), y(u3), · · · , y(u2s−1). This sequence starts with a small value
y(u1) = −Cn2/3 but ends with a large value y(u2s−1) ≥ Cn2/3, and so intuitively many
of the differences y(u2i+1)− y(u2i−1) should be positive. However, given the upper bound
y(u2i+1)−y(u2i−1) ≤ 2, we would know many differences y(u2i+1)−y(u2i−1) can only belong
to a very narrow range {1, 2}. In this case, since y(u2i−1)+y(u2i) ≥ −2, y(u2i)+y(u2i+1) ≤ 0,
it must be −1− y(u2i+1) ≤ y(u2i) ≤ −y(u2i+1). In words, this augmenting walk contains an
edge in Vq × V−q, where Vx = {|y(u)− x| ≤ 1 | u ∈ V }, q = y(u2i).

Since there are many different such pairs y(u2i−1), y(u2i+1), intuitively we can imagine
this augmenting walk contains edges in Vq × V−q for Ω(n2/3) different integer q’s. If the
number of augmenting walks is ω(n2/3), there will be Ω(n2/3) different Vq×V−q’s intersecting
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ω(n2/3) augmenting walks each. By the pigeon-hole principle, there exists one such q such
that |Vq ∪ V−q| ≤ O(n1/3). As G is a simple graph, the total number of edge-disjoint
augmenting walks that contains an edge in Vq × V−q is at most |Vq ∪ V−q|2 = O(n2/3), which
comes to a contradiction.

Handling blossoms. The major difficulty for general graphs comes from the blossoms. We
use the generalized blossoms introduced in [8], and utilize the blossom dissolution technique
from [3], but it will become much more complicated for f -factors. To analyze the influence
of blossoms, let us divide Ω into two categories: large and small. A blossom B ∈ Ω is large if
|B| ≥ n1/3. For small blossoms, we know by definition, the total number of edges contained
in any small blossoms is bounded by n4/3. So if F ∗ ⊕F contains ≥ Cn2/3 augmenting walks,
then most augmenting walks contain O(n2/3) small blossom edges. To restore the argument
we discussed in previous paragraphs, we could safely remove those vertices incident to any
edges belonging to small blossoms from the sequence u1, u3, u5, · · · , u2s−1, and we could still
work with a very long sequence of vertices that are not removed (if C is large).

As for large blossoms, we could prove that
∑

large B∈Ω z(B) ≤ O(n4/3). Basically, this is
because the total number of root large blossoms is always bounded by n2/3, and so each round
of Edmonds search could increase this sum by at most n2/3, and therefore the algorithm could
raise

∑
large B∈Ω z(B) to at most Cn4/3 during Cn2/3 executions of Edmonds search. Once

we have a good handle of the total sum
∑

large B∈Ω z(B) ≤ O(n4/3), we could argue that the
“average influence” of large blossoms on each augmenting walk is bounded by O(n2/3), if
F ∗ ⊕ F has more than Cn2/3 augmenting walks.

1.2 Structure of our paper
In Section 2 we define the notations and basic concepts we will use in the paper, while in
Section 3 the algorithm is given. A brief analysis of the running time of the algorithm is
given in Section 4. Due to page limit, many details of the proofs are omitted, which can be
found in the full version of this paper.

2 Preliminaries

2.1 Notations
Our input is a weighted simple graph G = (V,E, ω) without self-loops and a function
f : V → N+. For S ⊆ V , define f(S) =

∑
v∈S f(v), and let δ(S) and γ(S) be sets of edges

with exactly one endpoint and both endpoints in S, respectively, and δ(v) is an abbreviation
for δ({v}). For any edge subset F ⊆ E, define δF (S) = δ(S) ∩ F , ω(F ) =

∑
e∈F ω(e), and

degF (u) = |F ∩ {(u, v) ∈ E}|. F ⊆ E is called an f -factor if degF (u) ≤ f(u) for all u ∈ V .
For an f -factor F , the deficiency of u in F is defined as f(u)−degF (u) and u is saturated
by F if f(u)− degF (u) = 0. When all vertices are saturated, F is called a perfect f -factor.
Edges in F are called matching edges. For a graph G and a subset of vertices U , G[U ]
denotes the subgraph of G induced by U .

2.2 Blowup graphs
Instead of running on the original graph, our algorithm will be operating on an auxiliary
weighted graph G = (V, E , µ) which is called the blowup graph. V contains all original vertices
in V . For each edge e = (u, v) in the original graph, add two vertices eu, ev to V and add
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three edges (u, eu), (eu, ev), (ev, v) to E . All vertices in V are called original vertices, and the
newly added vertices are called auxiliary vertices. Then assign µ(u, eu) = µ(v, ev) = ω(u, v),
µ(eu, ev) = 0 and f(eu) = f(ev) = 1.

The purpose of transferring original graph G to G is mainly to avoid edges contained in
the sets I(B) for disjoint blossoms B. (See subsection Blossom.) Note that the number of
vertices in G is n+ 2m, so we need to carefully analyze the running time. It is easy to see
the following, whose proof is in the full version of this paper.

I Lemma 2. Computing maximum weight perfect f -factor in G and G are equivalent.

2.3 LP formulation
Computing maximum weight perfect f -factor on the blowup graph G = (V, E , µ) can be
expressed as a linear program [8]:

maximize
∑
e∈E

µ(e)x(e)

subject to
∑
e∈δ(v)

x(e) = f(v),∀v ∈ V

∑
e∈γ(B)∪I

x(e) ≤
⌊
f(B) + |I|

2

⌋
,∀B ⊆ V, I ⊆ δ(B)

0 ≤ x(e) ≤ 1,∀e ∈ E

Its dual LP is written as the following.

minimize
∑
v∈V

f(v)y(v) +
∑

B⊆V,I⊆δ(B)

⌊
f(B) + |I|

2

⌋
z(B, I) +

∑
e∈E

u(e)

subject to yz(e) + u(e) ≥ µ(e),∀e ∈ E
z(B, I) ≥ 0, u(e) ≥ 0

Here yz(u, v) is defined as: yz(u, v) = y(u) + y(v) +
∑
B,I:(u,v)∈γ(B)∪I,I⊆δ(B) z(B, I).

2.4 Blossoms
We follow the definitions and the terminology of [8, 13] for f -factor blossoms. A blossom
is specified by a tuple (B, EB , β(B), η(B)), where B ⊆ V is a subset of vertices, EB ⊆ E a
subset of edges, β(B) ∈ B a special vertex which is called the base, and η(B) is either null
or an edge from δ(β(B)) ∩ δ(B). Blossoms follow an inductive definition below.

I Definition 3 (Blossom, [8, 13]). A single vertex v forms a trivial blossom, also called
a singleton. Here B = {v}, EB = ∅, β(B) = v, and η(B) is null. Inductively, let
B0, B1, · · · , Bl−1 be a sequence of disjoint singletons or non-trivial blossoms. Suppose
there exists a closed walk CB = {e0, e1, · · · , el−1} starting and ending with B0 such that
ei ∈ Bi × Bi+1, (Bl = B0). The vertex set B =

⋃l−1
i=0Bi is identified as a blossom if the

following are satisfied.
1. Base. If B0 is a singleton, the two edges incident to B0 on CB, i.e., e0 and el−1, must

both be matched or both be unmatched.
2. Alternation. Fix a Bi, i 6= 0. If Bi is a singleton, exactly one of ei−1 and ei is matched.

If Bi is a non-trivial blossom, η(Bi) = ei−1 or ei.
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The edge set of the blossom B is EB = CB ∪ (∪l−1
i=0EBi) and its base is β(B) = β(B0). If

B0 is not a singleton, η(B) = η(B0). Otherwise, η(B) may either be null or one edge in
δ(B) ∩ δ(B0) that is the opposite type of e0 and el−1.

A blossom is called root blossom if it is not contained in any other blossom. Blossoms
have two different types: light and heavy. If B0 is a singleton, B is light/heavy if e0 and
el−1 are both unmatched/matched. Otherwise, B is light/heavy if B0 is light/heavy.

I Definition 4. Given an f -factor F , an alternating walk on G is a sequence of consecutive
edges (u1, u2), (u2, u3), · · · , (ul−1, ul) such that:

(ui, ui+1) ∈ E are different edges 1 ≤ i < l.
exactly one of (ui−1, ui), (ui, ui+1) belongs to F , 1 < i < l.

This walk is called an augmenting walk if both (u1, u2), (ul−1, ul) /∈ F .

When searching for an augmenting walk, a blossom behaves as a unit in the graph. These
properties are formally stated by the following lemma.

I Lemma 5 ([8, 13]). Let v be an arbitrary vertex in B. There exists an even length
alternating walk P0(v) and an odd length alternating walk P1(v) from β(B) to v using edges
in EB. Moreover, the terminal edge of P0,1(v) incident to β(B) must have a different type
than η(B), if η(B) is defined.

We also introduce the notion of maturity of blossoms below.

I Definition 6 (Mature Blossom, [8, 13]). A blossom is mature with respect to an f -factor F
if the following requirements are satisfied.
1. Every vertex v ∈ B \ {β(B)} is saturated, namely degF (v) = f(v).
2. The deficiency of β(B) is at most 1. Furthermore, if it is 1, then B must be a light

blossom and η(B) is null; otherwise, η(B) is defined.

Our algorithm always keeps a set Ω of mature blossoms and maintains a non-negative value
z(B) for each B ∈ Ω. For each blossom B, define a set I(B) ⊆ δ(B) as I(B) = δF (B)⊕{η(B)}.

2.5 Augmenting path
To find augmentations, we need to work with the contraction graph Ĝ where every root
blossom is contracted to a single node.

I Definition 7 ([8, 13]). Let F , Ω and Ĝ be an f -factor, a set of blossoms and the graph ob-
tained by contracting every root blossom in the Ω, respectively. P̂ = 〈B0, e0, B1, e1, · · · , Bl〉 ∈
Ĝ is called an augmenting path if the following requirements are satisfied.
1. The terminals B0 and Bl must be unsaturated singletons or unsaturated light blossoms.

If P̂ is a closed path (B0 = Bl), B0 must be a singleton and the deficiency of β(B0) is at
least 2. Otherwise B0 and Bl can be either singletons or blossoms and their deficiency
must be positive.

2. If the terminal vertex B0 (Bl) is a singleton, then the incident terminal edges e0 (el−1)
must be unmatched. Otherwise, they can be either matched or unmatched.

3. Let Bi, 0 < i < l be an internal singleton or blossom. If Bi is a singleton, then exactly
one of ei−1 and ei is matched. If Bi is a non-trivial blossom, then η(Bi) = ei−1 or ei.

To avoid misunderstanding, we emphasize the difference between the augmenting path
and the augmenting walk. First they are defined on Ĝ and G respectively. Second, an
augmenting walk can pass through a vertex in G several times but an augmenting path can
pass through a vertex in Ĝ (except the endpoint) only once. In the following parts, these two
concepts are used in different scenarios.
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Next we define a concept of the alternating path, which is weaker than the concept of
the augmenting path.

I Definition 8. Let F , Ω and Ĝ be an f -factor, a set of blossoms and the graph obtained by
contracting every root blossom in the Ω. A simple path P̂ = 〈B0, e0, B1, e1, · · · , Bl〉 is called
an alternating path if it satisfies the following requirements.
1. The terminals B0 must be unsaturated singletons or unsaturated light blossoms.
2. If the terminal vertex B0 is a singleton, then the incident terminal edges e0 must be

non-matching. Otherwise, they can be either matching or non-matching.
3. For each 1 ≤ i < l, if Bi is a singleton, then exactly one of ei−1, ei is matched. Otherwise,

η(Bi) = ei−1 or ei.

2.6 Complementary slackness
Throughout the algorithm, we will be maintaining an f -factor F , a set of mature blossoms
Ω, dual functions y : V → N, z : Ω→ N≥0 and yz : E → N. For an f -factor F , we define two
kinds of complementary slackness: complementary slackness and approximate complementary
slackness.

I Definition 9 (Complementary Slackness). In the blowup graph G, an f -factor F , duals y, z,
as well as a laminar family of blossoms Ω satisfy complementary slackness if the following
requirements hold.
1. Dominance. For each e ∈ E, yz(e) ≥ µ(e).
2. Tightness. For each e ∈ F , yz(e) = µ(e).

I Definition 10 (Approximate Complementary Slackness). In the blowup graph G, an f -factor
F , duals y, z, as well as a laminar family of blossoms Ω satisfy approximate complementary
slackness if the following requirements hold.
1. Dominance. For each e ∈ E, yz(e) ≥ µ(e)− 2.
2. Tightness. For each e ∈ F , yz(e) ≤ µ(e).

I Lemma 11 ([13]). Let F be a perfect f-factor associated with duals y, z and blossoms Ω,
and define F ∗ to be a maximum weight perfect f -factor. Suppose F,Ω, y, z satisfy approximate
complementary slackness, then

µ(F ) ≥ µ(F ∗)− f(V)

Proof. We first define u : E → N as

u(e) =
{
µ(e)− yz(e), if e ∈ F
0, otherwise

According to the approximate domination and tightness properties, we have u(e) ≥ 0 for all
e ∈ E . Moreover, yz(e) + u(e) ≥ µ(e)− 2 for all e ∈ E . This gives the following:

µ(F ) =
∑
e∈F

(yz(e) + u(e))=
∑
v∈V

degF (v)y(v)+
∑
B∈Ω
|F ∩ (γ(B) ∪ I(B))|z(B)+

∑
e∈F

u(e)

=
∑
v∈V

f(v)y(v) +
∑
B∈Ω

⌊
f(B) + |I(B)|

2

⌋
z(B) +

∑
e∈E

u(e)

≥
∑
v∈V

degF∗(v)y(v) +
∑
B∈Ω
|F ∗ ∩ (γ(B) ∪ I(B))|z(B) +

∑
e∈F∗

u(e)

≥
∑
e∈F∗

(µ(e)− 2) ≥ µ(F ∗)− f(V) J
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2.7 Edmonds search
In this subsection, we introduce two different implementations of Edmonds search. Suppose
we have an f -factor F , a set of blossoms Ω, and duals y, z satisfying some kind of slackness
condition. The purpose of Edmonds search is to reduce total deficiency of F by eligible
augmenting paths. We need two different notions of eligibility, namely eligibility and
approximate eligibility, compatible with Definition 9 or Definition 10.

I Definition 12 (Eligibility, [8]). An edge e ∈ E is eligible if yz(e) = µ(e).

I Definition 13 (Approximate Eligibility, [13]). An edge e ∈ E is approximately eligible if it
satisfies one of the following.
1. e ∈ EB for some B ∈ Ω.
2. e /∈ F and yz(e) = µ(e)− 2.
3. e ∈ F and yz(e) = µ(e).

Let Ĝelig be the subgraph of Ĝ consisting of eligible edges. A root blossom B′ ∈ Ω is called
reachable from an unsaturated root blossom B via an alternating path in Ĝelig, if there is an
alternating path that starts at B and ends at B′. To find augmenting paths and blossoms in
Ĝelig, we start from any unsaturated node u0 in the contraction graph Ĝ and grow a search
tree T̂ rooted at u0; this method was also described in [8, 13]. All nodes in T̂ are classified
as outer/inner. Initially the root is outer. Next we use a DFS-like approach to build the
entire T̂ . During the process, we keep track of a tree path 〈u0, e0, u1, · · · , el−1, ul〉 from the
root, which is guaranteed to be an alternating path. According to the type of ul, the next
edge el and node ul+1 are selected by the rules below:
1. ul is outer. If ul is a singleton, then scan the next non-matching edge el and find the

other endpoint ul+1. If ul is a nontrivial blossom, then scan the next edge el and find
the other endpoint ul+1.

2. ul is inner. If ul is a singleton, then scan the next matching edge el and find the other
endpoint ul+1. If ul is nontrivial blossom, then assign el = η(ul) (if it was not scanned
before) and find the other endpoint ul+1.

After finding ul+1, we try to classify it as outer or inner: if ul+1 is a singleton, then
ul+1 is outer if el is matched; otherwise, ul+1 is outer if el = η(ul+1). Issues may arise if
(1) ul+1 was already classified by previous tree searches and there is a conflict between the
new label and the old label; or (2) ul+1 is an unsaturated then the tree search has found a
new augmenting path. In either case we can construct a new blossom or reduce the total
deficiency.

In the end, when all reachable singletons or root blossoms are classified as outer or inner,
let V̂out be the set of all outer singletons or root blossoms, and let V̂in be the set of all inner
singletons or root blossoms. Define Vout,Vin to be the set of all vertices in V contained
in outer and inner root blossoms, respectively. Next we introduce a meta procedure that
will be a basic building block, which is dual adjustment. A dual adjustment performs the
following step: decrement y(v) for all v ∈ Vout, and increment y(v) for all v ∈ Vin; after that,
increment by 2 all z(B) for all B ∈ V̂out, and decrement by 2 all z(B) for all B ∈ V̂in. This
is summarized as the AdjustDuals algorithm 1.

We introduce two different implementations of Edmonds search: the EdmondsSearch
algorithm 2 and the PQ-Edmonds algorithm 3, which both rely on the AdjustDuals subroutine 1.
The EdmondsSearch algorithm searches from all unsaturated root blossoms, and it requires
that the y-values of all unsaturated vertices have the same parity. It reserves approximate
complementary slackness under the approximate eligibility, so it only needs to perform one
step of augmentation before dual-adjustment:
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Algorithm 1 AdjustDuals(F,Ω, y, z).

1 classify every root blossom in Ω as outer or inner;
2 let V̂out/V̂in be the set of all outer/inner root blossoms in Ĝelig including singletons;

let Vout/Vin be the set of all vertices in V contained in outer/inner root blossoms;
3 adjust the duals y, z as follows:

y(v)← y(v)− 1, v ∈ Vout
y(v)← y(v) + 1, v ∈ Vin
z(B)← z(B) + 2, for non-singleton B ∈ V̂out
z(B)← z(B)− 2, for non-singleton B ∈ V̂in

Algorithm 2 EdmondsSearch(F,Ω, y, z).

/* Precondition: y-values of unsaturated vertices must all be of the
same parity */

1 find a maximal set Ψ̂ of a vertex-disjoint augmenting paths in Ĝelig and extend Ψ̂ to a
set Ψ of vertex-disjoint augmenting walks in Gelig;

2 update F ← F ⊕
⋃
P∈Ψ P ;

3 find a maximal set Ω′ of mature blossoms reachable from unsaturated vertices in Ĝelig;
4 update Ω← Ω ∪ Ω′ and Ĝelig;
5 run AdjustDuals(F,Ω, y, z);
6 for every matching edge (u, v) that does not satisfy the dominance condition, choose

an auxiliary node u, y(u)← µ(u, v)− y(v)−
∑
B z(B);

7 recursively remove all root blossoms whose dual values are zero;

I Lemma 14 ([13]). In the EdmondsSearch algorithm, after augmentation and blossom
formation, Ĝelig does not contain any augmenting paths.

Proof. Suppose that, after the augmentation and blossom formation, there is an augmenting
path P in Ĝelig. Since Ψ̂ is maximal, P must intersect some augmenting path P ′ ∈ Ψ̂ at
a vertex v. However, after the augmentation and blossom formation every edge in P ′ will
become ineligible, so the matching edge (v, v′) ∈ P is no longer in Ĝelig, contradicting the
fact that P consists of eligible edges. J

The PQ-Edmonds algorithm searches for augmenting paths only from a set U of unsaturated
vertices whose y-values share the same parity, halting after finding an augmenting path from
vertices in U or making D dual adjustments.

The following two lemmas describe the properties of the EdmondsSearch algorithm and
the PQ-Edmonds algorithm3 which are from [8, 13]. Their proofs are presented in the full
version of this paper.

3 In the original paper [8], their algorithm actually searches from all unsaturated root blossoms. This
slack can be remedied by the following reduction. For each unsaturated vertex v /∈ U , match v to
f(v)− degF (v) new temporary vertices whose duals are equal to −y(v) and the matching edges have
zero weight. The proof is described in the full version of this paper.
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Algorithm 3 PQ-Edmonds(F,Ω, y, z, U,D).

/* Precondition: {y(u)|u ∈ U} must all be of the same parity */
1 while less than D dual adjustments have been made so far do
2 if an augmenting path P from vertices in U is found then
3 update F ← F ⊕ P ;
4 break;
5 end
6 find a maximal set Ω′ of mature blossoms reachable from U in Ĝelig;
7 update Ω← Ω ∪ Ω′ and Ĝelig;
8 run AdjustDuals(F,Ω, y, z);
9 recursively remove all root blossoms whose dual values are zero;

10 end
11 for every matching edge (u, v) that does not satisfy the dominance condition, choose

an auxiliary node u, y(u)← µ(u, v)− y(v)−
∑
B z(B);

I Lemma 15. The EdmondsSearch algorithm preserves approximate complementary
slackness under the approximate eligibility definition. Furthermore, one execution can
be implemented in O(m) time.

I Lemma 16. The PQ-Edmonds algorithm preserves the complementary slackness under
the eligibility definition. Furthermore, one execution can be implemented in O(m logn)
time. Moreover, the y(u) for unsaturated vertex u not in U will not be increased during the
algorithm.

3 The Scaling Algorithm

Our algorithm follows the idea of the scaling algorithm in [3] for maximum weight perfect
matching. The scaling algorithm maintains an f -factor F , a family of blossoms Ω, as well as
duals y, z, and it is divided into dlog(2f(V)W )e iterations. Edge weights µ(e) are rescaled
to 2f(V)µ(e) and they all have dlog(2f(V)W )e bits. Throughout the algorithm we assume
y always assigns integer values and z always assigns even non-negative integers. For any
B ∈ Ω, B is called a large blossom if |B ∩ V | ≥ n1/3, i.e., the number of original vertices in
B is at least n1/3; otherwise it is deemed a small blossom.

Let µ̄ be the edge weight function that keeps track of the scaled edge weights in each
iteration. Initially before the first iteration, assign F,Ω = ∅, y, z, µ̄ = 0. At the beginning of
each iteration, define F0 to be the f -factor from the previous iteration. Empty the matching
F ← ∅, and update weights and duals as following.

µ̄(e)← 2 (µ̄(e) + the next bit of 2f(V)µ(e))
y(u)← 2y(u) + 3
z(B)← 2z(B)

The whole procedure is shown in the Scaling algorithm 5, involving an important sub-
routine: the Dissolve algorithm 4. Note that here we only provide a stretch of the proof ideas,
while the whole proofs can be found in the full version of this paper.
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Algorithm 4 Dissolve(B, y, z,Ω).

1 for u ∈ B or there exists v ∈ B such that (u, v) ∈ I(B) do
2 y(u)← y(u) + z(B)/2;
3 end
4 z(B)← 0 and remove it from Ω;

3.1 Correctness
In this subsection, we will show that the Scaling algorithm indeed returns the maximum
weight perfect f -factor in G, and in the next subsection we will analyze its time complexity.
Some proofs of the statements here are omitted and can be found in the full version of this
paper.

Define ζ(B) = (eu, ev), if (u, eu) = η(B) and ev is the auxiliary vertex adjacent to eu. It
is not hard to see that:

I Lemma 17. For any blossom B ∈ Ω in G, the edge e ∈ δ(B) has the form of (u, eu) where
u ∈ B is an original vertex and eu is an auxiliary vertex.

I Lemma 18. There are two properties right after the scaling step (Line 3-6):
1. For each e ∈ E, µ̄(e) ≤ yz(e).
2. For each e ∈ F0, µ̄(e) ≥ yz(e)− 6.

I Lemma 19. There are two properties right after the blossom dissolution step (Line 7-15):
1. For each (u, v) /∈ F0 ∪

⋃l
i=1 γ(Bi) ∪ I(Bi), µ̄(u, v) ≤ 0.

2. For each (u, v) ∈ E, µ̄(u, v) ≤ 2 min{y(u), y(v)}.

Proof. Let µ̄1, y1, z1,Ω1 be the edge weights, duals and blossoms at the beginning of the step
of blossom dissolution, respectively. Let Ω′1 ⊆ Ω1 be the set of all blossoms that are dissolved
in Line 7-9 before the step of reweighting. By Lemma 18: (Note that for auxiliary edges
adjacent to edges in I(B), blossom dissolution can only cause µ̄(u, v) to become smaller.)

µ̄(u, v) ≤ µ̄1(u, v)− y1(u)− y1(v)−
∑
B∈Ω′1

(u,v)∈γ(B)∪I(B)

z1(B)

≤ yz1(u, v)− y1(u)− y1(v)−
∑
B∈Ω′1

(u,v)∈γ(B)∪I(B)

z1(B)

=
∑

B∈Ω1\Ω′1
(u,v)∈γ(B)∪I(B)

z1(B)

The last term is zero when (u, v) /∈
⋃l
i=1 γ(Bi) ∪ I(Bi).

Hence, by the end of the step of blossom dissolution,

y(u) = 1
2

∑
B∈Ω1\Ω′1

∃(u,w)∈γ(B)∪I(B)

z1(B) ≥ 1
2

∑
B∈Ω1\Ω′1

(u,v)∈γ(B)∪I(B)

z1(B) ≥ 1
2 µ̄(u, v)

By symmetry, we can also prove y(v) ≥ 1
2 µ̄(u, v). Then µ̄(u, v) ≤ 2 min{y(u), y(v)}. J

Next we study what happens during the step of augmentation within small blossoms.
If a matching edge (u, eu) is newly added to F in line 17, for some small blossom Bi,
(u, eu) ∈ IF0(Bi) \ {η(Bi)}. The following statements will be proved in the full version.
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Algorithm 5 Scaling(V, E , µ, f).

1 y, z ← 0, F,Ω← ∅;
2 for iter = 1, · · · , dlog(2f(V)W )e do

/* scaling */
3 µ̄(e)← 2 (µ̄(e) + the next bit of 2f(V)µ(e));
4 y(u)← 2y(u) + 3;
5 z(B)← 2z(B);
6 F0 ← F , F ← ∅;

/* blossom dissolution (Line 7-15) */
7 while exists a large blossom B ∈ Ω, or a root blossom B with z(B) ≤ 12 do
8 run Dissolve(B, y, z,Ω);
9 end

10 µ̄(u, v)← µ̄(u, v)− y(u)− y(v),∀(u, v) ∈ E ;
11 y(u)← 0,∀u ∈ V;
12 let B1, B2, · · · , Bl be all the root small blossoms not dissolved yet;
13 while exists a blossom B ∈ Ω do
14 run Dissolve(B, y, z,Ω);
15 end

/* Ω now becomes empty. */
/* augmentation within small blossoms (Line 16-27) */

16 if (u, v) ∈ IF0(Bj) \ {η(Bj)} for some previous root small blossom Bj then
17 F ← F ∪ {(u, v)};
18 if u ∈ Bj , v /∈ Bj , y(v)← µ̄(u, v)− y(u);
19 end
20 for i = 1, 2, · · · , l do
21 while max{y(u) | degF (u) < f(u), u ∈ Bi} > 6 do
22 let Y1, Y2 be the largest and second largest y values of unsaturated vertices

in Bi;
23 define U ⊆ Bi to be the set of unsaturated vertices whose y values equal to

Y1;
24 define Hi = G[Bi∪ all the endpoints of IF0(Bi) \ {η(Bi)}];
25 run PQ-Edmonds(F,Ω, y, z, U, Y1 − Y2) in subgraph Hi;
26 end
27 end

/* deficiency reduction */
28 run EdmondsSearch(F,Ω, y, z) on the entire graph G for dCn2/3e+ 6 times;
29 end

/* weight adjustment */
30 for an edge (u, v) ∈ E such that yz(u, v) < µ(u, v) do
31 µ(u, v)← yz(u, v);
32 end

/* PQ-deficiency reduction */
33 repeat PQ-Edmonds(F,Ω, y, z, {u | u ∈ V is unsaturated},∞) on the entire graph G

until the total deficiency becomes zero;
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At the beginning of the step of augmentation within small blossoms, µ̄(u, eu) ≥ y(u) +
y(eu)− 6.
After we have added (u, eu) to F and reassigned y(eu) ← µ̄(u, eu) − y(u), the comple-
mentary slackness is preserved. Plus, y(eu) ≥ 1

2 µ̄(u, eu)− 6.
Within the while-loop, for any u ∈ Bi reachable via alternating paths from U , y(u) ≥ Y1.
Plus, y(eu) ≥ 0 at any moment. Also from Lemma 16, the y-values of unsaturated vertices
outside current U cannot increase.

Then we can conclude the correctness of the algorithm:

I Lemma 20. The Scaling algorithm 5 returns a maximum weight perfect f -factor in G.

Proof. First we claim that approximate complementary slackness is maintained until the
step of weight adjustment (Line 30-32). By Lemma 19, the tightness of complementary
slackness is satisfied after the step of blossom dissolution. For each edge e newly added
to F , yz(e) = µ(e) and the dominance of complementary slackness is satisfied. For the
edges in Hi, the PQ-Edmonds preserve complementary slackness by Lemma 16. For the
edge (u, v) where u and v does not belong to any Hi, the duals does not change. For
the edge (u, v) where u ∈ Hi and v does not belong to any Hj , we have µ(u, v) ≤ 0,
µ(u, v) ≤ 2y(v) and y(u) ≥ 0 by Lemma 19. The complementary slackness is maintained
after the step of augmentation within small blossoms. Since complementary slackness is
stronger than approximate complementary slackness and the EdmondsSearch algorithm
preserves approximate complementary slackness by Lemma 15, approximate complementary
slackness is maintained at the end of each iteration.

Let µ, µ′ be the edge weights respectively before and after the step of weight adjustment
on line 30-32. As y, z, µ,Ω satisfy approximate complementary slackness, y, z, µ′,Ω satisfy
complementary slackness, we know for each edge e, µ(e)− µ′(e) ∈ [0, 2]. Since PQ-Edmonds
algorithm preserves complementary slackness by Lemma 16, complementary slackness is
maintained with respect to edge weights µ′ after Algorithm 5. Now, again by µ(e)− µ′(e) ∈
[0, 2],∀e ∈ E , we know, y, z, F,Ω still satisfy approximate complementary slackness with
respect to µ after Algorithm 5 is completed.

After the step of PQ-deficiency reduction, the total deficiency becomes zero. Then,
according to Lemma 11, µ(F ∗)−µ(F ) ≤ f(V). Since for every edge e ∈ E , µ(e) is an integral
multiple of 2f(V), therefore it must be µ(F ) = µ(F ∗). Hence F is a maximum weight perfect
f -factor of G. J

4 Running Time Analysis

Recall that an alternating walk on G is a sequence of edges (u1, u2), (u2, u3), · · · , (ul−1, ul)
such that: (1) (ui, ui+1) ∈ E are different edges; (2) exactly one of (ui−1, ui), (ui, ui+1) belongs
to F , 1 < i < l. And this walk is called an augmenting walk if both (u1, u2), (ul−1, ul) /∈ F .

I Lemma 21. The running time of each iteration is Õ(mn2/3), thus Õ(mn2/3 logW ) for
all iterations.

Proof. We analyze the running time of the t-th iteration, where t ≥ 1. Clearly the scaling
step and the blossom dissolution step only take linear time. By Lemma 15, the deficiency
reduction step takes Õ(mn2/3) in total. So the only technical part is the running time of the
augmentations within small blossoms.

For each small blossom Bi, |Bi ∩ V |, i.e. the number of original vertices in Bi, is less
than n1/3. According to the properties of the blowup graph, the number of vertices in Bi is
O(n2/3). When we add edges in IF0(Bi) \ {η(Bi)} to F , the overall deficiency of vertices in
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Bi is at most 1 + 3
(|Bi∩V |

2
)
< 1.5n2/3. After one execution of the PQ-Edmonds algorithm,

the overall deficiency is reduced by one, or the largest y value of unsaturated vertices in Bi is
equal to Y2; the former case could happen at most 1.5n2/3 times, while the latter case could
happen at most |Bi| = O(n2/3) times since every time this case happens we add at least
one more unsaturated vertex to U . Thus the PQ-Edmonds algorithm is invoked for at most
O(n2/3) times. By Lemma 16, for each small blossom Bi, each instance of the PQ-Edmonds
algorithm takes O(m(Bi) logn) time, where m(Bi) denotes the number of edges in Bi. Thus,
the total running time of the augmentations within small blossoms is Õ(mn2/3). J

Now we only need to analyze the running time for the PQ-deficiency reduction step at
the end of the Scaling algorithm 5.

I Lemma 22. Let Ft denote the f-factor at the end of the t-th scaling iteration. For any
t ≥ 1, Ft−1 ⊕ Ft contains at most O(n2/3) edge-disjoint augmenting walks in G, where
augmenting walks are w.r.t. Ft. (For the F1, we can imagine an arbitrary perfect f-factor
F0, but do not need to compute it explicitly.)

Then we can see the total deficiency of Ft is at most O(n2/3t) for any t ≥ 1, and the
overall running time of our algorithm is bounded by Õ(mn2/3 logW ) by Lemma 16.

The rest of this subsection is devoted to the proof of Lemma 22 in the t-th iteration. With
a slight abuse of notations, let F0 = Ft−1 and F = Ft and when talking about augmenting
walks, we always mean augmenting walks in F0 ⊕ F w.r.t. F . (F -edges are considered as
matching edges and F0-edges are considered as non-matching edges.) Let µ̄old, yold, zold,Ωold
denote the edge weights, duals, and blossoms at the beginning of the blossom dissolution
step, respectively; and let Ωlarge

old be the set of all blossoms in Ωold that were dissolved in the
blossom dissolution phase before the reweighting step. Similarly, µ̄, y, z,Ω denote the edge
weights, duals, and blossoms at the end of the t-th iteration, respectively; and Ωlarge denotes
the set of all large blossoms in Ω.

Instead of directly working with duals y, define variables ŷ for vertices as follows:

ŷ(u) = y(u) + 1
2

∑
X∈Ωlarge s.t.

∃(u,v)∈γ(X)∪I(X)

z(X)

When η(B) ∈ I(B), η(B) is not a matching edge. Then ζ(B) may be a matching edge
and its yz-value will increase by z(B)/2 after the dissolution of blossom B. (Recall that
ζ(B) = (eu, ev), if (u, eu) = η(B).)

Consider any subwalk ρ = 〈u1, u2, · · · , u2s+1〉 of an augmenting walk in F0 ⊕ F starting
with an edge not in F . Then, for 1 ≤ i ≤ s, since (u2i−1, u2i) /∈ F and (u2i, u2i+1) ∈ F , by
approximate complementary slackness we have

y(u2i−1) + y(u2i) +
∑
X∈Ω

(u2i−1,u2i)∈γ(X)∪I(X)

z(X) ≥ µ̄(u2i−1, u2i)− 2 (1)

y(u2i) + y(u2i+1) +
∑
X∈Ω

(u2i,u2i+1)∈γ(X)∪I(X)

z(X) ≤ µ̄(u2i, u2i+1) (2)

Plugging in the definition of ŷ, we get:

ŷ(u2i−1) + ŷ(u2i) +
∑

X∈Ω\Ωlarge

(u2i−1,u2i)∈γ(X)∪I(X)

z(X) ≥ µ̄(u2i−1, u2i)− 2 (3)
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and since (u2i, u2i+1) ∈ F , we have:

ŷ(u2i) + ŷ(u2i+1) = y(u2i) + y(u2i+1) +
∑

X∈Ωlarge

(u2i,u2i+1)∈γ(X)∪I(X)

z(X) + 1
2

∑
X∈Ωlarge

(u2i,u2i+1)∈{η(X),ζ(X)}

z(X)

ŷ(u2i)+ ŷ(u2i+1)+
∑

X∈Ω\Ωlarge

(u2i,u2i+1)∈γ(X)∪I(X)

z(X) ≤ µ̄(u2i, u2i+1)+ 1
2

∑
X∈Ωlarge

(u2i,u2i+1)∈{η(X),ζ(X)}

z(X)

Taking a subtraction we have

ŷ(u2i+1)− ŷ(u2i−1) ≤ 2 + µ̄(u2i, u2i+1)− µ̄(u2i−1, u2i) + 1
2

∑
X∈Ωlarge

(u2i,u2i+1)∈{η(X),ζ(X)}

z(X)

+
∑

X∈Ω\Ωlarge

(u2i−1,u2i)∈γ(X)∪I(X)

z(X)−
∑

X∈Ω\Ωlarge

(u2i,u2i+1)∈γ(X)∪I(X)

z(X)
(4)

By the derivation presented in Lemma 19,

µ̄(u2i, u2i+1) ≤ yzold(u2i, u2i+1)− yold(u2i)− yold(u2i+1)−
∑

X∈Ωlarge
old

(u2i,u2i+1)∈γ(X)∪I(X)

zold(X)

=
∑

X∈Ωold\Ωlarge
old

(u2i,u2i+1)∈γ(X)∪I(X)

zold(X)
(5)

Now, as (u2i−1, u2i) ∈ F0, again by Lemma 18 we are able to prove:

µ̄(u2i−1, u2i) ≥ −6 +
∑

X∈Ωold\Ωlarge
old

(u2i−1,u2i)∈γ(X)∪I(X)

zold(X)− 1
2

∑
X∈Ωlarge

old
(u2i−1,u2i)∈{η(X),ζ(X)}

zold(X) (6)

So for (u2i−1, u2i) not an η-edge or ζ-edge for old large blossoms,

µ̄(u2i−1, u2i) ≥ −6 (7)

Also define the function Z for an augmenting walk ρ as:

Z(ρ) = 1
2

∑
e∈ρ,X∈Ω

e∈{η(X),ζ(X)}

z(X) + 1
2

∑
e∈ρ,X∈Ωold

e∈{η(X),ζ(X)}

zold(X)

Let F̂ , Ω̂, ẑ denote any f -factor together with a compatible set of blossoms as well as
their duals, and let ρ be an arbitrary alternating walk. For any blossom X ∈ Ω̂, define the
following quantity:

Diff(ρ,X, F̂ ) def= |ρ ∩ F̂ ∩ (γ(X) ∪ I(X))| − |ρ ∩ (γ(X) ∪ I(X)) \ F̂ |

By a summation of (4) plugging in (5) and (6) over all 1 ≤ i ≤ s,

ŷ(u2s+1)− ŷ(u1) ≤8s+ Z(ρ)−
∑

X∈Ω\Ωlarge

z(X) ·Diff(ρ,X, F )

−
∑

X∈Ωold\Ωlarge
old

zold(X) ·Diff(ρ,X, F0)
(8)
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We consider augmenting walks ρ = 〈u1, u2, · · · , u2s〉 in F0 ⊕ F starting and ending with
edges not equal to η(X) or ζ(X) for all X ∈ Ωlarge ∪ Ωlarge

old , and u1, u2s are not equal to
β(X) for all X ∈ Ωlarge ∪ Ωlarge

old . This only excludes O(n2/3) augmenting walks. Thus,
ŷ(u1) = ŷ(u2s) = −Cn2/3. For convenience, we only consider augmenting walks starting and
ending with non-matching edges (/∈ F ) not in γ(X) ∪ I(X) for current small blossoms X,
otherwise we can just choose the first and last such edges on every augmenting walk and
consider the subwalk between them, and we can get similar results.

In an augmenting walk satisfying those conditions, since its first and last edges are in F0
and not equal to η or ζ edges of old large blossoms, µ̄(u2s−1, u2s) ≥ −6, and also (u2s−1, u2s)
cannot be in a large blossom, by (1) we have ŷ(u2s−1) ≥ −ŷ(u2s)− 8 = Cn2/3 − 8. Then by
(8), if Z(ρ) is less than n2/3, and Diff(ρ,X, F ) and Diff(ρ,X, F0) are non-negative, then we
can see the length of such an augmenting walk is Ω(n2/3) when C is a large constant. We
have the following statement for Diff(ρ,X, F ) and Diff(ρ,X, F0), which is proven in the full
version.

I Lemma 23. Consider any blossom X ∈ Ω ∪ Ωold and any augmenting walk ρ in F0 ⊕ F ,
in any maximal consecutive subwalk of ρ ∩ (γ(X) ∪ I(X)), the number of matching edges is
at least the number of non-matching edges. (For X ∈ Ω, edges in F are matching edges, and
for X ∈ Ωold, edges in F0 are matching edges.)

So Diff(ρ,X, F ) and Diff(ρ,X, F0) are both nonnegative. It is also not hard to see the
following observations:

For old and new large blossoms,
∑
B∈Ωlarge

old
zold(B) and

∑
B∈Ωlarge z(B) are both O(n4/3).

This is because the number of root large blossoms at a given time are bounded by O(n2/3)
and large blossoms can only be formed and dual-adjusted in the O(n2/3) EdmondsSearch
steps in the deficiency reduction step.
The total number of non-matching edges in γ(B)∪I(B) for all small blossoms B is bounded
by O(n4/3), that is,

∑
B∈Ω\Ωlarge |(γ(B)∪I(B))\F | and

∑
B∈Ωold\Ωlarge

old
|(γ(B)∪I(B))\F0|

are both O(n4/3). This is because the number of edges in γ(B) for every blossom B is
bounded by O(|B|2), the size of root small blossoms is less than n1/3, and every root
blossom has at most one non-matching edge in I(B) \ γ(B),

Therefore, if we assume the number of augmenting walks in F0⊕F is larger than K ·n2/3

for a large constant K, then we still have Ω(n2/3) augmenting walks ρ satisfying the following
conditions:
(a) Starting and ending with edges not equal to η-edge or ζ-edge for all old large blossoms.
(b) Starting and ending with vertices not equal to the base for all old large blossoms.
(c) Z(ρ) < n2/3

(d) The total number of non-matching edges on ρ in γ(X) ∪ I(X) for all old and new small
blossoms X is less than n2/3. As in Lemma 23, the number of maximal consecutive
subwalks in ρ ∩ (γ(X) ∪ I(X)) containing those edges is also bounded by n2/3. We call
all the edges in such subwalks “skip edges”.

Among vertices u1, u2, · · · , u2s−1, we pick the vertices with odd subscript which are
original vertices in G, plus the two endpoints, and obtain the list: u1(= v1), up(= v2), up+6(=
v3), · · · , up+6q(= vq+2), u2s−1(= vq+3), where p is 3,5 or 7. Consider all the differences
ŷ(vi+1) − ŷ(vi) for i = 1, · · · , q + 2. For the subwalk [vi, vi+1] in ρ containing skip edges
or the η or ζ-edges of old or new large blossoms, the sum of the differences ŷ(vi+1)− ŷ(vi)
is at most O(n2/3), by (c),(d) and Lemma 23. For subwalk [vi, vi+1] in ρ which does not
contain skip edges or η or ζ-edges, from (4), ŷ(u2j+1)− ŷ(u2j−1) ≤ 8 for (u2j+1, u2j−1) in
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the subwalk, so ŷ(vi+1)− ŷ(vi) ≤ 24, Since the sum of all ŷ(vi+1)− ŷ(vi) is ŷ(u2s−1)− ŷ(u1),
which is at least 2Cn2/3, if C is a large constant, the number of subwalks [vi, vi+1] in ρ which
does not contain skip edges or η, ζ-edges and satisfies 0 < ŷ(vi+1)− ŷ(vi) ≤ 24 is Ω(n2/3).
Moreover, there are Ω(n2/3) different values of ŷ(vi) in ρ. When vi is not u1 and vi+1 is
not u2s−1, then vi = up+6k and vi+1 = up+6k+6. Then we can see ŷ(up+6k+2) − ŷ(up+6k),
ŷ(up+6k+4)− ŷ(up+6k+2) and ŷ(up+6k+6)− ŷ(up+6k+4) are at most 8, and also by (1),(2),(7)
and Lemma 19, (remember p is odd)

ŷ(up+6k+3) + ŷ(up+6k+4) ≤ 0
ŷ(up+6k+2) + ŷ(up+6k+3) ≥ −8

So we have ŷ(up+6k+3) ≥ −ŷ(up+6k)−16 and ŷ(up+6k+3) ≤ −ŷ(up+6k+6)+8 < −ŷ(up+6k)+8.
Note that up+6k and up+6k+3 are original vertices in G, and their ŷ-values are ≥ −Cn2/3, so
their ŷ-values are also < Cn2/3 + 8.

Given an interval [a, b] of integers, define V[a,b] = {v ∈ V |ŷ(v) ∈ [a, b]}. For an edge
(u, v) ∈ E such that u ∈ V[a,b] and v ∈ V[a′,b′], we say the auxiliary edges (u, eu), (eu, ev), (ev, v)
are “between” the pair of intervals [a, b] and [a′, b′]. If we divide the original vertices in G by
their ŷ-values into intervals of length 48, then every augmenting walk we consider will go
through auxiliary edges between Ω(n2/3) pairs of intervals of the form [a, a+48], [−a,−a+48].
Any constant fraction of those Θ(n2/3) pairs of intervals contains O(n1/3) vertices each, so
there are at most O(n2/3) auxiliary edges between any of such pair of intervals. Thus the
number of augmenting walks satisfying (a),(b),(c),(d) is bounded by O(n2/3).
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Problem
Shaddin Dughmi
Department of Computer Science, University of Southern California, Los Angeles, CA, USA
shaddin@usc.edu

Abstract
Contention resolution schemes have proven to be a useful and unifying abstraction for a variety of
constrained optimization problems, in both offline and online arrival models. Much of prior work
restricts attention to product distributions for the input set of elements, and studies contention
resolution for increasingly general packing constraints, both offline and online. In this paper, we
instead focus on generalizing the input distribution, restricting attention to matroid constraints in
both the offline and online random arrival models. In particular, we study contention resolution
when the input set is arbitrarily distributed, and may exhibit positive and/or negative correlations
between elements. We characterize the distributions for which offline contention resolution is possible,
and establish some of their basic closure properties. Our characterization can be interpreted as
a distributional generalization of the matroid covering theorem. For the online random arrival
model, we show that contention resolution is intimately tied to the secretary problem via two results.
First, we show that a competitive algorithm for the matroid secretary problem implies that online
contention resolution is essentially as powerful as offline contention resolution for matroids, so long
as the algorithm is given the input distribution. Second, we reduce the matroid secretary problem
to the design of an online contention resolution scheme of a particular form.
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1 Introduction

The notion of a contention resolution scheme (CRS) abstracts a familiar task in constrained
optimization: converting a (random) set-valued solution which is ex-ante (i.e., on average)
feasible for a packing problem to one which is ex-post (i.e., always) feasible. Unlike randomized
rounding algorithms more broadly, which in general may be catered to both the constraint and
objective function at hand, a contention resolution scheme is specific only to the constraints
of the problem, and preserves solution quality in a manner which is largely agnostic to
the objective function1 – element by element. Since they were formalized by Chekuri et
al [10], CRSs have been connected to a variety of online and offline computational tasks,
including rounding the solutions of mathematical programs [10], online mechanism design
and stochastic probing [17, 1], and prophet inequalities [17, 25].

1 In its most general form, a CRS approximately preserves all linear objective functions simultaneously,
whereas a monotone CRS approximately preserves all submodular objectives [10].
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Starting with [10], prior work defines an (offline) contention resolution scheme for a set
system (E , I) – where E is a ground set of elements and I ⊆ 2E is a downwards-closed
family of feasible sets – as an algorithm which takes as input the marginal probabilities
x ∈ [0, 1]E of a product distribution D supported on 2E as well as a random set R ∼ D
of active elements, and must output a feasible subset S of R. The contention resolution
scheme is α-competitive if Pr[i ∈ S] ≥ 1

α Pr[i ∈ R] holds for all product distributions of
interest – typically those with marginals x in the convex hull of indicator vectors of I (ex-ante
feasibility). In online contention resolution schemes, first explored by Feldman et al [17]
and subsequently by Adamczyk and Włodarczyk [1] and Lee and Singla [25], the active
elements R arrive sequentially and the decision to include an element in S must irrevocably
be made online.

The existing literature on (offline and online) contention resolution has mostly restricted
attention to ex-ante-feasible and given product distributions, and varied the set system
(e.g. matroids, knapsacks, and their intersections), all the while drawing connections to
applications such as stochastic online problems, approximation algorithms, mechanism design,
and prophet inequalities. In this paper, we restrict our attention to matroid constraints,2 and
instead focus on generalizing the class of input distributions. Our main goal is to understand
the power and limitations of contention resolution, offline and online, in the presence of
correlations in the input distribution and without regard to ex-ante feasibility. A secondary
goal is to understand how knowledge of the distribution influences contention resolution. In
pursuit of both goals, we draw connections between contention resolution and the secretary
problem on matroids, shedding light on challenges posed by the matroid secretary conjecture
in the process.

Results
Our first set of results develops an understanding of offline contention resolution on matroids.
We begin with a characterization of the class of α-uncontentious distributions: those distribu-
tions D ∈ ∆(2E) permitting α-competitive offline contention resolution for a given matroid.
Most notably, we show that a distribution is α-uncontentious if and only if it satisfies a
family of 2|E| inequalities, one for each subset of the ground set. Moreover, we observe that
our inequality characterization is the natural generalization of the matroid base covering
theorem (see e.g. [31]) from covering a set of elements to covering a distribution over sets of
elements. In other words, we show that contention resolution is the natural distributional
generalization of base covering. Leveraging our characterization, we establish some basic
closure properties of the class of uncontentious distributions, and present some examples of
uncontentious distributions exhibiting negative and positive correlation between elements.
Finally, we examine whether knowledge of the distribution D is essential to contention
resolution, and exhibit an impossibility result: any contention resolution scheme which has
nontrivial guarantees for all α-uncontentious distributions cannot be prior-independent, in
that it cannot make do with a finite number of samples from the distribution, even for very
simple matroids.

Our second set of results concerns online contention resolution on matroids in the random
arrival model, and in particular its connection to the matroid secretary problem. First, we
show that a competitive secretary algorithm for a matroid implies that online contention
resolution is essentially as powerful as offline contention resolution for that same matroid:
a γ-competitive secretary algorithm implies that any α-uncontentious distribution permits
γα-competitive online contention resolution.

2 Though some of our results hold beyond matroids; we discuss those in the conclusion section.
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Second, we provide evidence that contention resolution might hold the key to resolving
the matroid secretary conjecture. As our most technically-involved result, we leverage our
characterization of uncontentious distributions to show that the random set of improving
elements in a weighted matroid – as originally defined by Karger [20] – is O(1)-uncontentious.
Since the improving elements can be recognized online, and moreover hold a constant fraction
of the weighted rank of the matroid in expectation, our result can be loosely interpreted as a
reduction from the matroid secretary problem to online contention resolution for a particular
uncontentious distribution. There is one major caveat to this interpretation of our result,
however: not only does the set of active (improving) elements arrive online, but so does
the description of the uncontentious distribution from which that set is drawn. Though
we present our proof of this result in an elementary form, the underlying arguments are
reminiscent of – and inspired by – those often encountered in the analysis of martingales: we
condition on carefully-chosen random variables, and employ a delicate charging argument
between different probability events.

Third, in response to feedback on the previous version of this manuscript, we show that
our aforementioned result – that improving elements are uncontentious – cannot be derived
as a consequence of prior work.

Additional Discussion of Related Work
Contention Resolution Schemes
Contention resolution schemes were introduced by Chekuri et al [10], motivated by the
problem of maximizing a submodular function subject to packing constraints. In particular,
offline CRS were used to transform a randomized rounding algorithm which respects the
packing constraints ex-ante to one which respects them ex-post, at the cost of the competitive
ratio of the CRS. Their focus – like that of all related work prior to ours – was on product
input distributions, in which case the optimal competitive ratio of an offline CRS was shown
to equal the worst-case correlation gap (first studied by [2, 7]) of the weighted rank function
associated with the packing constraint. The characterization result of [10] result forms the
basis for ours.

Online contention resolution was first studied by Feldman et al [17], and applied to a
number of online selection problems. They show that simple packing constraints – such
as matroids, knapsacks, and matchings – permit constant competitive online contention
resolution schemes even when elements arrive in an unknown and adversarial order. Moreover,
they show how to combine competitive online schemes for different constraints in order to
yield competitive online schemes for their intersection. Lee and Singla [25] obtain optimal
online CRS in both the known adversarial-order model as well as the random-arrival model.
Adamczyk and Włodarczyk [1] restrict attention to the random-arrival model, and obtain
a particularly elegant algorithm and argument based on martingales, as well as improved
competitive ratios for intersections of matroids and knapsacks.

Prophet Inequalities
Contention resolution is intimately tied to prophet inequality problems, also known as
Bayesian online selection problems. In the traditional model for these problems, independent
real-valued random variables with known distributions arrive online in a known but adversarial
order, and the goal is to select a subset of the variables with maximum sum, subject to a
packing constraint. An α-competitive algorithm for a Bayesian online selection problem is
also referred to as a prophet inequality with ratio α, for historical reasons. Krengel, Sucheston,
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and Garling [22, 23] proved the first (classical) single-choice prophet inequality with ratio 1/2
for selecting a single variable (i.e., a 1-uniform matroid packing constraint). Motivated by
applications in algorithmic mechanism design, more recent work (e.g. [18, 3, 8, 32]) pursued
prophet inequalities for more general packing constraints. Of particular note is the work of
Kleinberg and Weinberg [21], who proved an optimal prophet inequality with ratio 1/2 for
matroids. Also notable is polylogarithmic prophet inequality for general packing constraints
due to Rubinstein [28]. The (easier) variant of Bayesian online selection problems in which
the variables arrive in a uniformly random order has also received recent interest, resulting
in improved prophet inequalities for various packing constraints [15, 14, 5].

It was shown by Feldman et al [17] that an online CRS yields a prophet inequality with
the same competitive ratio, and in the same arrival model. A weak converse is also true,
as shown by Lee and Singla [25]: a stronger form of prophet inequality – in particular one
which competes against the ex-ante relaxation of the Bayesian online selection problem –
yields an online CRS with the same competitive ratio and in the same arrival model.

Beyond Known Product Distributions
The vast majority of work on contention resolution or prophet inequalities, and all such work
discussed thus far, restricts attention to known product distributions, and crucially exploits
the product structure and knowledge of the distribution. We note the few exceptions next.

Rinott et al [27] and Samuel-Cahn [29] show that the single-choice prophet inequality, and
some slight generalizations, continue to hold for negatively dependent random variables. It is
known [19] that there is no single-choice prophet inequality with ratio better than the number
of variables in the presence of arbitrary positive correlation. Moreover, we are unaware of
any nontrivial positive results for a class of distributions exhibiting positive correlation, in
either prophet inequality or contention resolution models. We note that whereas [25] and [1]
use specially-crafted correlated distributions as benchmarks, their results and techniques do
not appear to shed light on contention resolution or prophet inequalities in the presence of
correlation more generally.

Some work has relaxed the requirement that the distributions be known in prophet
inequality problems. Azar et al [4] study prophet inequality problems when only a single
sample is given from each distribution, and obtain constant competitive ratios for a variety of
constraints. Wang [30] obtains an optimal algorithm for the single-choice prophet inequality,
with ratio 1/2, in the same single-sample model. Correa et al [11] study the single-choice
prophet inequality with i.i.d. variables drawn from an unknown distribution, and characterize
the relationship between the competitive ratio and the number of samples available from the
distribution.

Secretary Problems
In a generalized secretary problem, a set of adversarially chosen variables arrive online in a
random order, and the goal is to select a subset of the variables with maximum sum subject
to a packing constraint. The (classical) single-choice secretary problem, corresponding to
a 1-uniform matroid constraint, was introduced and solved by Dynkin [13]. The matroid
secretary problem was introduced by Babaioff et al [6], and has since spawned a long line
of work. Constant-competitive algorithms have been discovered for most natural matroids
and for some alternative models – see [12] for a semi-recent survey – though the general
conjecture remains open. The state of the art for the general matroid secretary problem is a
O(log log rank)-competitive algorithm due to Lachish [24], which was henceforth simplified
by Feldman et al [16].
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2 Preliminaries

2.1 Matroid Theory Basics
We use standard definitions from matroid theory; for details see [26, 31]. A matroid
M = (E , I) consists of a ground set E of elements, and a family I ⊆ 2E of independent
sets, satisfying the three matroid axioms. A weighted matroid (M, w) consists of a matroid
M = (E , I) together with weights w ∈ RE on the elements. We use the standard notions of
a dependent set, circuit, flat, and minor in a matroid. We denote the rank of a matroidM
as rank(M), and the rank of a set of elements A inM as rankM(A), or rank(A) whenM
is clear from context. Overloading notation, we use rankMw (A) to denote the weighted rank
of a set A – the maximum weight of an independent subset of A – in the weighted matroid
(M, w), though we omit the superscriptM when the matroid is clear from context. We note
that both rank and weighted rank are submodular set functions on the ground set of the
matroid. ForM = (E , I) and A ⊆ E , we denote the restriction ofM to A asM|A, deletion
of A asM\A, and contraction by A asM/A.

When E is clear from context, and S ⊆ E , we use 1S ∈ {0, 1}E to denote the vector
indicating membership in S. We often reference the matroid polytope P(M) of a matroid
M = (E , I), defined as the convex hull of {1S : S ∈ I}, or equivalently as the family of
x ∈ [0, 1]E satisfying

∑
i∈S xi ≤ rankM(S) for all S ⊆ E .

Throughout this paper we assume that any weighted matroid has distinct weights. This
assumption is made merely to simplify some of our proofs, and – using standard tie-breaking
arguments – can be shown to be without loss of generality in as much as our results are
concerned. Under this assumption, we define OPTMw (A) as the (unique) maximum-weight
independent subset of A of minimum cardinality (excluding zero-weight elements), and we
omit the superscript when the matroid is clear from context.

2.2 The Matroid Secretary Problem
In the matroid secretary problem, originally defined by [6] there is matroidM = (E , I) with
nonnegative weights w : E → R+ on the elements. Elements E arrive online in a uniformly
random order Π, and an online algorithm must irrevocably accept or reject an element when
it arrives, subject to accepting an independent set of M. The algorithm is given M at
the outset (as an independence oracle), but the weights w are chosen adversarially before
the order Π is drawn and then are revealed online. The goal of the online algorithm is to
maximize the expected weight of the accepted set of elements. We say that an algorithm is
α-competitive for a class of matroids if for every matroidM in that class and every adversarial
choice of w, the expected weight of the accepted set (over the random choice of Π and any
internal randomness of the algorithm) is at least an α fraction of the maximum weight of an
independent set of (M, w).

The matroid secretary conjecture, posed by [6], postulates that the matroid secretary
problem admits an (online) algorithm which is constant-competitive for all matroids.

2.3 Miscellaneous Notation and Terminology
We denote the natural numbers by N, and the nonnegative real numbers by R+. Given a set
A with weights w ∈ RA, and a subset B ⊆ A, we use the shorthand w(B) =

∑
i∈B wi. We

use [n] as shorthand for the set 1, . . . , n. For a set A, we use ∆(A) to denote the family of
distributions over A, and 2A to denote the family of subsets of A.
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Let A be a finite ground set. For a distribution D supported on 2A, we define the
vector x ∈ [0, 1]A of marginals of D by xi = PrB∼D[i ∈ B], and refer to xi as the marginal
probability of i in D. When marginals x ∈ [0, 1]A are given, we use Ind(x) to denote the
distribution of the random set B ⊆ A which includes each element i ∈ A independently with
probability xi. We also use Indp(A) as shorthand for Ind(x) when xi = p for all i ∈ A.

3 Understanding Contention Resolution

3.1 The Basics of Contention Resolution

The definitions below are parametrized by a given matroidM = (E , I).

I Definition 3.1. A contention resolution map (CRM) φ is a randomized function from 2E
to I with the property that φ(R) ⊆ R for all R ⊆ E. Such a map is α-competitive for a
distribution D ∈ ∆(2E) if, for R ∼ D, we have Pr[i ∈ R] ≤ αPr[i ∈ φ(R)] for all i ∈ E.

The following is known from Chekuri et al [10].

I Theorem 3.2 ([10]). Every product distribution with marginals in P(M) admits an e
e−1 -

competitive CRM.

I Definition 3.3. An online random-order contention resolution map (henceforth online
CRM for short) is a contention resolution map φ which can be implemented as an algorithm
in the online random-arrival model. In the online random-arrival model, E is presented to
the algorithm in a uniformly random order (e1, . . . , en), and at the ith step the algorithm
learns whether ei is active – i.e., ei ∈ R ∼ D – and if so must make an irrevocable decision
on whether to include ei in φ(R).

The following is known from Lee and Singla [25].

I Theorem 3.4 ([25]). Every product distribution with marginals in P(M) admits a e
e−1 -

competitive online CRM.

3.2 Uncontentious Distributions and their Characterization

As shorthand, we refer to distributions which permit competitive (offline) CRMs as uncon-
tentious.

I Definition 3.5. Fix a matroidM = (E , I). For α ≥ 1, we say that a distribution D ∈ ∆(2E)
is α-uncontentious if it admits an α-competitive contention resolution map.

For convenience, we also refer to a random set R ∼ D as α-uncontentious if its distribution D
is α-uncontentious. We prove the following characterization of uncontentious distributions.

I Theorem 3.6. Fix a matroid M = (E , I), and let D be a distribution supported on 2E .
The following are equivalent for every α ≥ 1.
(a) D is α-uncontentious (i.e., admits an α-competitive contention resolution map).
(b) For every weight vector w ∈ RE+, the following holds for R ∼ D: E[rankw(R)] ≥ E[w(R)]

α .
(c) For every F ⊆ E, the following holds for R ∼ D: E[|R ∩ F|] ≤ αE[rank(R ∩ F)].
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Proof. Property (a) implies property (c) by applying an α-CRM φ to R, noting that φ(R)∩F
is necessarily an independent subset of R ∩ F .

E[rank(R ∩ F)] ≥ E[|φ(R) ∩ F|]

=
∑
i∈F

Pr[i ∈ φ(R)]

≥ 1
α

∑
i∈F

Pr[i ∈ R]

= 1
α

E[|R ∩ F|].

Property (c) implies property (b) by a summation argument. Sort and number the
elements E = (e1, . . . , en) in decreasing order of weights w1 ≥ w2 ≥ . . . ≥ wn ≥ 0, where wi
denotes the weight of ei. Denote Ei = {e1, . . . , ei}, and let E0 = ∅, and wn+1 = 0. Recalling
that the greedy algorithm computes the maximum weight independent subset of a matroid:

E[rankw(R)] = E

[
n∑

i=1

wi (rank(R ∩ Ei)− rank(R ∩ Ei−1))

]
(Greedy alg. onM|R)

= E

[
n∑

i=1

(wi − wi+1)rank(R ∩ Ei)

]
(Reverse summations)

≥ 1
α

E

[
n∑

i=1

(wi − wi+1)|R ∩ Ei|

]
((c) and linearity of exp.)

= 1
α

E

[
n∑

i=1

wi (|R ∩ Ei| − |R ∩ Ei−1|)

]
(Reverse summations)

= 1
α

E[w(R)].

Property (b) implies property (a) by a duality argument identical to that presented in
[10]. We present a self-contained proof here. Let x = x(D) ∈ [0, 1]E denote the marginals
of D. The distribution D is α-uncontentious if the optimal value of the following LP, with
variables β and λφ for each deterministic CRM φ, is at least 1

α .

maximize β

subject to
∑
φ λφ PrR∼D[i ∈ φ(R)] ≥ βxi, for i ∈ E .∑
φ λφ = 1

λ � 0

The dual of the preceding LP is the following

minimize µ

subject to
∑
i∈E wi PrR∼D[i ∈ φ(R)] ≤ µ, for all CRM φ.∑
i∈E wixi = 1

w � 0

It is not hard to see that, at optimality, the binding constraint on µ corresponds to the CRM
φ which maps each set R to its maximum weight independent subset according to weights w.
It follows that the optimal value of the dual, and hence the primal, equals the minimum over
all weight vectors w � 0 of the ratio E[rankw(R)]∑

i
wixi

. (b) implies that this quantity is at least 1
α ,

as needed. J
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We note that the equivalence between (a) and (b) is essentially implicit in the arguments
of [10]. Condition (c) is the most notable part of Theorem 3.6, in no small part because
it is reminiscent of the matroid base covering theorem (see e.g., [31]). This theorem can
equivalently be stated as follows: a (deterministic) set T ⊆ E in a matroid M = (E , I)
can be covered by (i.e., expressed as a union of) α ∈ N independent sets if and only if
|S| ≤ α rankM(S) for all S ⊆ T . In light of part (c) of Theorem 3.6, a set T of elements can
be covered by α independent sets if and only if the point distribution on T is α-uncontentious.
Therefore, we can interpret contention resolution as a distributional generalization of base
covering.

3.3 Elementary Properties of Uncontentious Distributions

We state some elementary, yet quite useful, properties of uncontentious distributions.

I Proposition 3.7. Fix a matroidM. Every α-uncontentious distribution D for α ≥ 1 has
marginals x(D) ∈ αP(M).

Proof. Let x = x(D) and R ∼ D. From Theorem 3.6 (c), for every set of ground set elements
F we have∑

i∈F
xi = E[|R ∩ F|] ≤ αE[rankM(R ∩ F)] ≤ α rankM(F).

These are the inequalities describing αP(M). J

I Proposition 3.8. Fix a matroid. A mixture of α-uncontentious distributions is α-uncon-
tentious.

Proof. Follows directly from Theorem 3.6 (b) and linearity of expectations. J

I Proposition 3.9. Fix a matroidM = (E , I), and letM = (E ′, I ′) be a minor ofM, with
E ′ ⊆ E. If a random set R ⊆ E ′ is α-uncontentious inM′, then R is also α-uncontentious
inM.

Proof. An independent set of M′ is also independent in M. Therefore, the proposition
follows by simply applying the same CRM in the context of the larger matroidM. J

I Proposition 3.10. Fix a matroid. Let R be an α-uncontentious random set, and let
R′ ∼ Indp(R) for some p ∈ [0, 1]. The random set R′ is α-uncontentious as well.

Proof. We use Theorem 3.6 (b). For any weight vector w, submodularity of the weighted
rank function implies that E[rankw(R′)] ≥ pE[rankw(R)]. It follows that E[w(R′)] =
pE[w(R)] ≤ pαE[rankw(R)] ≤ αE[rankw(R′)]. J

We note that Proposition 3.10 is tight when both p and α are absolute constants. In
particular, the random set R′ cannot be guaranteed to be α′-uncontentious for a constant
α′ < α, even if p is a very small constant. To see this, consider the a 1-uniform matroid with
elements [n], and the following 2-uncontentious random set R: For every singleton i ∈ [n] we
have Pr[R = {i}] = 1

n+1 , and Pr[R = [n]] = 1
n+1 .
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3.4 Examples of Uncontentious Distributions
We now present some examples of uncontentious distributions in order to develop a feel for
them. As mentioned previously, and shown in [10], every product distribution with marginals
in the matroid polytope is e

e−1 -uncontentious. Combined with Proposition 3.8, this extends
to mixtures of product distributions.

I Proposition 3.11. Fix a matroidM = (E , I), and let D ∈ ∆(2E) be a mixture of product
distributions, each with marginals in P(M). It follows that D is e

e−1 -uncontentious.

Going beyond product distributions and their mixtures, if a distribution satisfies a certain
strong notion of negative correlation, defined in [9], then it also is e

e−1 -uncontentious.

I Proposition 3.12. Fix a matroid M = (E , I), and let D ∈ ∆(2E) be a distribution with
marginals x = x(D) ∈ P(M). Assume that D satisfies the property of increasing submodular
expectations: for every submodular function f we have ER∼D[f(R)] ≥ ES∼Ind(x)[f(S)].3 It
follows that D is e

e−1 -uncontentious.

Proof. This is immediate by combining Theorem 3.6 (b) with the property of increasing
submodular expectations and the fact that Ind(x) is e

e−1 -uncontentious. J

As shown in [9], the property of increasing submodular expectations is stronger than the
following standard notion of negative correlation for R ∼ D: For all sets T , Pr[T ⊆ R] ≤∏
i∈T Pr[i ∈ R] and Pr[T ⊆ R] ≤

∏
i∈T (1−Pr[i ∈ R]).4 However, we can show that there

are distributions exhibiting positive correlation which are also uncontentious for specific
matroids. We now list some examples of uncontentious distributions exhibiting positive
correlation.

I Example 3.13. LetM be a k-uniform matroid with n elements where 2 ≤ k ≤ n. Let the
random set R be empty with probability 1/2, and a uniformly random base ofM otherwise.

It is clear that R is 1-uncontentious, since it is supported on the family of independent sets.
However, for each distinct pair of elements i and j, we have Pr[i ∈ R] = Pr[j ∈ R] = k

2n ,
yet Pr[i ∈ R|j ∈ R] = Pr[j ∈ R|i ∈ R] = k−1

n−1 >
k

2n .

The next example will feature repeatedly in this paper, since it is the random set of
improving elements for the rank 1 matroid.

I Example 3.14. Consider the 1-uniform matroid with elements [n] = {1, . . . , n}. For
k = 0, 1, . . . , n−1, let R = {1, . . . , k} with probability 2−(k+1), and let R = [n] with remaining
probability 2−n. The random set R is 2-uncontentious, as evidenced by the CRM φ with
φ({1, . . . , k}) = {k} and φ(∅) = ∅, and a simple calculation. Note the positive correlation
between elements i < j: Pr[j ∈ R] = 2−j , and Pr[j ∈ R|i ∈ R] = 2i−j > Pr[i ∈ R].

As a generalization of the previous example, we get the following.

I Example 3.15. Let M be a matroid with m pairwise-disjoint bases B1, . . . , Bm. For
each k = 1, . . . ,m − 1, let R = ∪ki=1Bi with probability 2−k, and let R = ∪mi=1Bm with
the remaining probability 21−m. The set R is 2-uncontentious, as evidenced by the CRM
φ(∪ki=1Bi) = Bk. However, for ei ∈ Bi and ej ∈ Bj with i < j, we have Pr[ej ∈ R] = 21−j

and Pr[ej ∈ R|ei ∈ R] = 2i−j > Pr[ej ∈ R].

3 In fact, it suffices for D to satisfy the (weaker) property of increasing expectations for matroid rank
functions (or, equivalently, their weighted sums).

4 A natural question is whether negative correlation suffices for the distribution to be e
e−1 -uncontentious.

This is open as far as we know.
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3.5 Contention Resolution Schemes, Universality, and Prior
Dependence

A contention resolution scheme (CRS) Φ for a matroidM = (E , I) and class of distributions
D ⊆ ∆(2E) is an algorithm which takes as input a (possibly partial) description of a
distribution D ∈ D and a sample R ∼ D, and outputs S ∈ I satisfying S ⊆ R. In effect, Φ is
a collection of contention resolution maps φD, one for each D ∈ D. In much of the prior work
on contention resolution, D was taken to be the class of product distributions with marginals
in P(M), and each D ∈ D is described completely via its marginals x ∈ P(M). In such a
setting, the notion of a CRS offers little beyond the notion of a CRM, as each distribution
gets its own dedicated CRM. More generally, however, we allow D to be an arbitrary class of
distributions, and we allow the description to be partial and/or random; for example, D may
be described by m independent samples from D.

Next, we set the stage by defining some desirable contention resolution schemes, and
establish some limitations on their existence.

I Definition 3.16. Fix a matroid. For β ≥ α > 1, an α-universal β-competitive CRS is a
CRS which is β-competitive for the class of α-uncontentious distributions.

By definition, there exists an (offline) α-universal α-competitive CRS for every α and
every matroid. The notion of a universal scheme becomes more interesting when we restrict
dependence on the prior, as per the following definitions.

I Definition 3.17. Fix a matroid. A contention resolution scheme Φ is said to be prior-
independent if it is not given a complete description of D as input, but rather is given
a set of independent samples from D. When the number of samples is m, we say Φ is a
prior-independent m-sample scheme. The number of samples may be function of the size
of the matroid. If m = 0, we say the scheme is oblivious: the scheme consists of a single
contention resolution map.

We now show that, if a scheme is universal, it cannot be prior-independent with any finite
number of samples, even for very simple matroids.

I Theorem 3.18. LetM be the 1-uniform matroid on n elements. For every finite m, and
every 1 < α ≤ β < n, there does not exist a β-competitive α-universal CRS forM which is
prior independent with m samples.

To prove Theorem 3.18, we first show that a prior-independent universal scheme implies
the existence of an oblivious universal scheme; then we show that an oblivious universal
scheme does not exist for the uniform matroid. This is captured in the two following lemmas.

I Lemma 3.19. Fix a matroidM. If there exists a β-competitive α-universal CRS Φ which
is prior-independent with m samples, then there exists an oblivious β-competitive α-universal
scheme Φ′.

Proof. Let D be any α-uncontentious distribution. Let ε ∈ (0, 1), and let D′ = D′(ε) be
the mixture of D with the point distribution on the empty set with proportions ε and 1− ε
respectively. By Proposition 3.8 and the fact that the point distribution on the empty set is
1-uncontentious, it follows that D′ is α-uncontentious.

The CRS Φ induces a CRM φD′ on the distribution D′, and by assumption φD′ is β-
competitive for D′. Since Φ is prior-independent with m samples, its induced CRM φD′ is a
mixture over CRMs φS , where S = (S1, . . . , Sm) is a random vector of m samples from D′.
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With probability at least (1−ε)m, we have S = ∅m := (∅, . . . , ∅). For φD′ to be β-competitive,
in particular when with probability ε it is queried with a draw R ∼ D, a simple calculation
shows that φ∅m must be β′-competitive for D for β′ = (1−ε)m

1/β+(1−ε)m−1 . As ε tends to 0, β′
tends to β, and a basic analytic argument implies that φ∅m is β-competitive for D. Since D
was chosen arbitrarily among α-uncontentious distributions, and φ∅m does not depend on
D, it follows that the oblivious scheme Φ′ with φ′D = φ∅m for every D is β-competitive and
α-universal. J

I Lemma 3.20. The 1-uniform matroid with n elements does not admit an oblivious β-
competitive α-universal CRS for any 1 < α ≤ β < n.

Proof. Let [n] be the ground set of the matroid, and fix α such that 1 < α < n. An
oblivious CRS consists of a single CRM φ. There exists at least one element i ∈ [n] such that
Pr[i ∈ φ([n])] ≤ 1/n. Let ε = α− 1 > 0, and consider the following random set R: For each
j ∈ [n]\i we have R = {j} with probability 1

n−1+ε , and R = [n] with the remaining probability
ε

n−1+ε . The random set R is α-uncontentious: consider the CRM φ′ with φ′({j}) = j for
j 6= i, and φ′([n]) = i. However, our original CRM φ is no better than n-competitive for R,
since its probability of selecting i is no more than 1

n Pr[R = [n]] = 1
n Pr[i ∈ R]. J

4 An Online Universal CRS from a Secretary Algorithm

We show that competitive matroid secretary algorithms imply that every contention resolution
scheme can be made online, in the random arrival model, without much loss.

I Theorem 4.1. Suppose that there is a γ-competitive online algorithm for the secretary
problem on matroidM. It follows that every α-uncontentious distribution admits an online
γα-competitive contention resolution map. In other words, for every α there exists an online
γα-competitive α-universal contention resolution scheme forM.

We interpret the above theorem as follows: the design of competitive universal online schemes
is a necessary technical hurdle towards resolving the matroid secretary conjecture.

We now proceed with proving Theorem 4.1. LetM = (E , I), and let D ∈ ∆(2E). Recall
that an online CRM operates in the following model: a set of active elements R ∼ D and
a random permutation Π are (independently) sampled by nature, then E arrive online in
order Π. When i ∈ E arrives, it is revealed whether i ∈ R, and if so the online CRS must
determine whether to select i. The online CRM must only select an independent subset of R.

Suppose we are given a secretary algorithm A forM with competitive ratio γ. Without
loss of generality, we assume that A selects only non-zero weight elements. Consider the
following online CRM φw forM, parametrized by a weight vector w ∈ RE+. When element i
arrives, if i ∈ R then it is presented to A with weight wi, and if i 6∈ R then it is presented to
A with weight 0. φw selects precisely the elements selected by A.

I Lemma 4.2. For every distribution D, we have ER∼D[w(φw(R))] ≥ 1
γ ER∼D[rankw(R)].

Proof. Condition on the choice of R, and let w′i = wi if i ∈ R and w′i = 0 otherwise. E
are presented to A in a uniformly random order, with weights w′i, and φw(R) ⊆ R is the
set of elements selected by A. Since A is γ-competitive, it follows that E[w′(φw(R))] ≥
1
γ rankw′(M). Since w′(φw(R)) = w(φw(R)) and rankw′(M) = rankw(R), we are done. J

I Lemma 4.3. If D is α-uncontentious, then ER∼D[w(φw(R))] ≥ 1
γα ER∼D[w(R)].

Proof. Combining the previous lemma with Theorem 3.6 (b). J
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Recall that we are assuming for now that we know the α-uncontentious distribution D,
and we can design an online CRM φD accordingly. φD will be a random mixture of the maps
φw described above; in particular, we will show that there exists a distribution W =W(D)
over weight vectors such that the (randomized) online CRM φW which samples w ∼ W
upfront then invokes φw is an online γα-CRM for D.

For each element i ∈ E , let xi = PrR∼D[i ∈ R]. For each weight vector w and i ∈
E , let yi(w) = PrR∼D[i ∈ φw(R)]. For each distribution W over weight vectors and
element i ∈ E , let yi(W) = PrR∼D[i ∈ φW(R)] = PrR∼D,w∼W [i ∈ φw(R)]. Let Y ={
y(W) :W ∈ ∆(RE+)

}
⊆ [0, 1]E be the family of all inclusion probabilities achievable by some

online CRM of the form φW . It is immediate that Y = convexhull(
{
y(w) : w ∈ RE+

}
), and

hence Y is a convex subset of [0, 1]E .
An online αγ-CRM for D of the form φW exists if and only if Y intersects with the

upwards closed convex set x
αγ + RE+. Suppose for a contradiction that this intersection is

empty; by the separating hyperplane theorem, this implies that there exists w ∈ RE+ such
that 1

αγ

∑
i wixi >

∑
i wiyi for all y ∈ Y. In particular, 1

αγ

∑
i wixi >

∑
i wiyi(w). Since∑

i wixi = ER∼D w(R) and
∑
i wiyi(w) = ER∼D[w(φw(R))], we get a contradiction with

Lemma 4.3. This concludes the proof of the theorem.

5 From Contention Resolution to a Secretary Algorithm?

One might hope that online contention resolution is equivalent to the secretary problem on
matroids. In particular, does a competitive universal online CRS imply a competitive secretary
algorithm? We make partial progress towards this question. In particular, we reduce the
secretary problem to online contention resolution on a particular uncontentious distribution
derived from the matroid and sample of its elements: the distribution of “improving elements”,
as originally defined by Karger [20] for purposes different from ours.

I Definition 5.1. Fix a matroid M = (E , I) with weights w ∈ RE+, and let p ∈ (0, 1).
The random set R of improving elements with parameter p is sampled as follows: Let
S ∼ Indp(E), and let R = R(S) = {i ∈ E : rankw(S ∪ i) > rankw(S)}. Equivalently, R is
the set of elements in E \ S which are not spanned by higher weight elements in S. Another
equivalent definition is R = {i ∈ E \ S : i ∈ OPTw(S ∪ i)}.

The maximum-weight independent subset of the improving elements is (1− p)-approximately
optimal in expectation:

I Fact 5.2. Fix a weighted matroid (M, w), and let R be the random set of improving
elements with parameter p. Each element of OPTw(M) is in R with probability 1− p. It
follows that E[w(R)] ≥ E[rankw(R)] ≥ (1− p)rankw(M).

Note that the random set R of improving elements does not follow a product distribution.
In fact, elements are (weakly) positively correlated in general. This is illustrated by the
special case of the 1-uniform matroid on [n] with weights w1 > w2 > . . . > wn, and p = 1/2:
the distribution of R is as described in Example 3.14. As our main result in this section, we
nevertheless show that the random set of improving elements is uncontentious.

I Theorem 5.3. LetM = (E , I) be a matroid with weights w ∈ RE+, and let p ∈ (0, 1). The
random set of improving elements with parameter p is 1

p -uncontentious.

Theorem 5.3 and Fact 5.2, taken together, essentially reduce the matroid secretary
problem to online contention resolution for the distribution of the random set of improving
elements, with one caveat we will discuss shortly. In particular, consider the following
blueprint for a secretary algorithm:
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1. Let S be the first Binom(|E|, p) elements arriving online.
2. Let R = R(S) ⊆ E \ S be a sample of the set of improving elements with parameter p.
3. After observing S, the elements of E \ S arrive online in random order and are presented

as such to an online contention resolution algorithm, along with their membership status
in R. Note that membership in R can be determined “on the spot” as required for online
contention resolution.5

Now given a β-competitive α-universal online CRS, we set p = 1
α and obtain a β

1−p -competitive
secretary algorithm. However, the following caveat prevents us from proving a formal theorem
of this form: we cannot provide the online CRS with a complete description of the prior
distribution. In particular, the distribution D of improving elements – while fully described
by the weighted matroid (M, w) and the parameter p – can not be fully described to the
contention resolution algorithm prior to its invocation, since entries of w are revealed online.
As such, we learn both the sample R ∼ D and the distribution D gradually as elements arrive.
An oblivious universal online CRS would resolve this difficulty, but unfortunately we proved
in Theorem 3.18 that such a CRS can not exist even for simple matroids and even offline. A
reduction from the matroid secretary problem to contention resolution must therefore require
a CRS which can make do with only partial knowledge of the prior. We leave exploration of
these possibilities for future work, and discuss them further in the Conclusion section.

5.1 Proof of Theorem 5.3
Let p, S, and R be as in Definition 5.1. We prove that R is uncontentious by leveraging
(c) from Theorem 3.6. In particular we will show that, for arbitrary F ⊆ E , we have
E[rank(R ∩ F )] ≥ pE[|R ∩ F |]. We break this up into the following three lemmas.

I Lemma 5.4. E[rank(R ∩ F )] ≥ (1− p) E[|F ∩OPTw(S ∪ F )|]

Proof. Let T = S \ F , and note that S ∪ F = T ] F . We condition on the random variable
T and show conditionally that E[rank(R ∩ F )] ≥ (1− p)|F ∩OPTw(T ] F )|].

Take i ∈ F ∩OPTw(T ] F ). We will show that i is in R, and hence is in R ∩ F , with
probability 1− p. Since i ∈ S ∪ i ⊆ T ]F and i ∈ OPTw(T ]F ), it follows from the matroid
axioms that i ∈ OPTw(S ∪ i). With probability 1 − p we also have i 6∈ S, in which case
i ∈ R by definition. Since F ∩OPTw(T ] F ) is an independent set, the claim follows. J

I Lemma 5.5. |F ∩OPTw(S ∪ F )| ≥ |F ∩OPTw(S)|

Proof. We prove this by induction on a set T with S ⊆ T ⊆ S ∪ F , initialized to T = S at
the base case. Consider how the value of |F ∩OPTw(T )| changes as we add elements of
F \ S to T one by one. When adding an element i ∈ F \ T to T , there are three cases:

i 6∈ OPTw(T ∪ i): In this case, OPTw(T ∪ i) = OPTw(T ) and |F ∩OPTw(T ∪ i)| =
|F ∩OPTw(T )|.
i is not spanned by T , and i ∈ OPTw(T∪i): In this case, OPTw(T∪i) = OPTw(T )∪{i},
and therefore |F ∩OPTw(T ∪ i)| = 1 + |F ∩OPTw(T )|.
i is spanned by T , and i ∈ OPTw(T ∪ i): In this case, elementary application of the
matroid axioms implies that OPTw(T ∪ i) = OPTw(T )∪{i} \ {j} for some j ∈ T . Since
i ∈ F , it follows that |F ∩OPTw(T ∪ i)| is either equal to |F ∩OPTw(T )| or exceeds it
by 1, depending on whether j ∈ F . J

5 Technically, a CRM requires that elements of E – rather than merely E \ S – be presented in uniform
random order along with their membership status in R. This is easily accomplished by appropriately
interleaving the elements of S – none of which are in R – among the elements of E \ S.
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I Lemma 5.6. E[|OPTw(S) ∩ F |] ≥ p
1−p E[|R ∩ F |]

Proof. For each i ∈ F , we will show that Pr[i ∈ OPTw(S)] ≥ p
1−p Pr[i ∈ R], which suffices.

Take i ∈ F , and let S>i = {j ∈ S : wj > wi}. Conditioning on S>i, there are two cases:
i ∈ span(S>i): It follows that i 6∈ OPTw(S) and i 6∈ R, with certainty.
i 6∈ span(S>i): With probability p we have i ∈ S and therefore i ∈ OPTw(S) and
i 6∈ R. With the remaining probability (1 − p) we have i 6∈ S and therefore i ∈ R and
i 6∈ OPTw(S).

In both cases, the conditional probability that i ∈ OPTw(S) is at least p
1−p times the

conditional probability that i ∈ R. The lemma follows. J

5.2 Where Prior Work Fails
There has been speculation in the community that contention resolution for improving
element distributions can be accomplished online using the ideas of Feldman et al [17]. If this
were true, then a stronger (online) form of our Theorem 5.3 would follow. We show that such
conjecture is fatally flawed: there exists no o(n)-competitive online CRS in the worst-case
arrival model, even when both the order and the distribution of improving elements are
known to the algorithm. In other words, any competitive online CRS for improving element
distributions must make and exploit assumptions on the arrival order. This rules out direct
application of the arguments and techniques of Feldman et al [17], which – in holding for
an (unknown) worst-case arrivals – cannot exploit the uniform arrival order. The same
can be said for the work of Lee and Singla [25], which operates in the known worst-case
arrival model.

We prove the following theorem, then elaborate on how algorithms from prior work tend
to fail on simple examples.

I Theorem 5.7. Let M be a matroid on n elements. There is no o(n)-competitive online
CRS for (known) improving element distributions on M in the worst-case arrival model. This
holds even for the 1-uniform matroid, for every constant parameter p of the distribution of
improving elements, and even when the arrival order is known to the algorithm.

Proof. Let {1, . . . , n} denote the ground set of of a 1-uniform matroid, listed in decreasing
order of weight. Let R be the random set of improving elements with parameter p. Note that R
is supported on sets of the form {1, . . . , k} for k = 0, . . . , n. In the special case of p = 1/2, the
distribution of R is as described in Example 3.14. In general, Pr[R = {1, . . . , k}] = p(1− p)k.
The random set R is 1/p uncontentious, as shown by Theorem 5.3. Concretely, the offline
CRM φ({1, . . . , k}) = k is 1

p -competitive.
Now suppose that elements are known to arrive online in the order 1, 2, 3, . . . , n, and

consider an α-competitive online CRM for some α ≥ 1. Let T ⊆ R be the (random) set of
elements selected by the CRM. Conditioned on i ∈ R, the CRM must select i with probability
at least 1

α . Formally, Pr[i ∈ T |i ∈ R] ≥ 1
α .

When element i arrives, the CRM learns whether i ∈ R, and if so must decide whether
to select i. Since the online CRM has only observed elements 1, . . . , i, and must make its
decision on the spot, it cannot distinguish between different sets of the form R = {1, . . . , k}
for k ≥ i. In other words, it cannot distinguish between the different realizations of R which
include i, and must therefore select i with probability at least 1

α in every realization of R
which includes i. Formally, 1

α ≤ Pr[i ∈ T |i ∈ R] = Pr[i ∈ T |R = {1, . . . , k}] for every k ≥ i.
Since i was chosen arbitrarily, we can take k = n and conclude that Pr[i ∈ T |R =

{1, . . . , n}] ≥ 1
α for all i. Feasibility requires that

∑n
i=1 Pr[i ∈ T |R = {1, . . . , n}] ≤ 1.

Therefore, α ≥ n. J
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It is instructive to examine where the algorithm of Feldman et al [17] fails in the special
case of the 1-uniform matroid on n elements, even when improving elements are presented in
a uniformly random order. Indeed, we will argue that no “simple tricks” seem to save the day.
Recall that the algorithm of [17] defines a sequence of nested flats ∅ ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fk,
and runs the greedy online algorithm on each contracted submatroid Fi/Fi−1. The 1-uniform
matroid contains only a single non-empty flat, containing all elements. Therefore, the
algorithm of [17] reduces merely to the naive greedy online algorithm which simply selects
the first element it encounters, which in the case of a uniform arrival order is a uniformly
random improving element.

Now, let [n] = {1, . . . , n} denote the ground set of the 1-uniform matroid listed in
decreasing order of weight, and consider the distribution of improving elements R with
parameter p = 1/2 as described in Example 3.14. Element k is improving with probability 2−k,
yet is selected by the algorithm with probability

∑n−1
i=k 2−(i+1) · 1

i + 2−n · 1
n <

2−k

k = Pr[k∈R]
k .

Intuitively, when k is improving, so are elements 1, . . . , k − 1, which easily span k and are
not distinguished from k by the algorithm. It is easy to show that the algorithm suffers the
same fate for any other choice of p.

One might be tempted to employ other tricks, such as for example “canceling” each
element in R with independent constant probability in order to reduce contention and place
the marginal probability vector deep in the matroid polytope. Such tricks are doomed to fail
all the same: the algorithm groups all elements into the same (unique) flat, and in doing so
does not distinguish between the “uncanceled” elements of R, so cannot select element k
with probability exceeding Pr[k∈R]

k .
It is hopefully now clear that any online CRS for improving element distributions must

make and exploit assumptions on the arrival order. Whereas this rules out obvious extensions
of Feldman et al [17] and Lee and Singla [25], one might hope that the algorithm of Adamczyk
and Włodarczyk [1] might fare better, since they do exploit the random ordering assumption.
Sadly, their algorithm also fails for the 1-uniform matroid: it also does not distinguish
between different improving elements in this special case, and therefore also selects element
k with probability no more than Pr[k∈R]

k . That being said, we are more hopeful that the
techniques of [1], if combined with significant new ideas, might yield progress on online
contention resolution for positively correlated distributions.

6 Conclusions and Open Problems

In this paper, we begin an exploration of the power and limitations of contention resolution
beyond known product distributions, as well as its connections to secretary problems. We
hope that our results are a first step towards broader application of the techniques behind
contention resolution and online selection. Most notably, our results highlight approaches to
resolving the matroid secretary conjecture. We identify several intriguing open questions in
pursuit of these agendas.

Can the result of Theorem 4.1 be shown unconditionally; i.e., can we show a competitive
universal online CRS for matroids without assuming the matroid secretary conjecture? We
believe this to be a reasonable first step towards proving the matroid secretary conjecture.
As we show in Section 5.2, prior work on online contention resolution fails in the presence
of even the modest positive correlation exhibited by (uncontentious) improving element
distributions on simple matroids. Therefore, we believe significant new ideas are required.
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Recalling the caveat to our results from Section 5, can a tighter connection be made
between the secretary problem and contention resolution? Is there a natural model
of contention resolution on matroids which permits a reduction both from and to the
matroid secretary problem? The knee-jerk approaches using duality-like arguments fail
to establish such an equivalence, so new ideas appear to be required.
The caveat to our results from Section 5 suggests that resolving contention with limited
knowledge of the prior is closely related to the matroid secretary conjecture. Recalling
our impossibility result of Theorem 3.18, we can start by examining prior-independent
contention resolution for interesting classes of distributions. For example, is there
a competitive prior-independent (or even oblivious) CRS for ex-ante-feasible product
distributions?
Can Theorem 4.1 be made computationally efficient? Given only oracle access to an
arbitrary uncontentious distribution and an arbitrary algorithm for the matroid secretary
problem, this is unclear.
Is there an analogue of our characterization of uncontentious distributions for prophet
inequality problems? In particular, can we characterize joint distributions of random
variables which permit competitive prophet inequalities with respect to a given matroid?
Do more general set systems permit a characterization of uncontentious distributions
with a finite set of inequalities, a-la Theorem 3.6?

We restricted our attention to matroids in the paper, though some notes are in order on
extensions of our results to more general constraints. In the characterization of Theorem 3.6,
the equivalence of (a) and (b) holds for a general downwards-closed set systems, and is
implicit in the arguments of [10]. The equivalence with (c) exploits the matroid structure,
however. Theorem 4.1 also holds for general downwards-closed set systems, and our proof
does not invoke the matroid assumption. The results and arguments of Section 5, in particular
Theorem 5.3, heavily rely on the matroid structure and do not appear to be easily extensible
beyond matroids. We leave further extensions of our results beyond matroids for future work.
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Abstract
Algorithmic extension problems of partial graph representations such as planar graph drawings or
geometric intersection representations are of growing interest in topological graph theory and graph
drawing. In such an extension problem, we are given a tuple (G, H, H) consisting of a graph G, a
connected subgraph H of G and a drawing H of H, and the task is to extend H into a drawing of G

while maintaining some desired property of the drawing, such as planarity.
In this paper we study the problem of extending partial 1-planar drawings, which are drawings in

the plane that allow each edge to have at most one crossing. In addition we consider the subclass of
IC-planar drawings, which are 1-planar drawings with independent crossings. Recognizing 1-planar
graphs as well as IC-planar graphs is NP-complete and the NP-completeness easily carries over to
the extension problem. Therefore, our focus lies on establishing the tractability of such extension
problems in a weaker sense than polynomial-time tractability. Here, we show that both problems are
fixed-parameter tractable when parameterized by the number of edges missing from H, i.e., the edge
deletion distance between H and G. The second part of the paper then turns to a more powerful
parameterization which is based on measuring the vertex+edge deletion distance between the partial
and complete drawing, i.e., the minimum number of vertices and edges that need to be deleted to
obtain H from G.
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1 Introduction

In the last decade, algorithmic extension problems of partial planar graph drawings have
received a lot of attention in the fields of graph algorithms and graph theory as well as in
graph drawing and computational geometry. In this problem setting, the input consists of a
planar graph G, a connected subgraph H of G, and a planar drawing H of H; the question
is then whether H can be extended to a planar drawing of G. This extension problem is
motivated from applications in network visualization, where important patterns (subgraphs)
are required to have a special layout, or where new vertices and edges in a dynamic graph
must be inserted into an existing (partial) connected drawing, which must remain stable to
preserve its mental map [31]. A major result on the extension of partial planar drawings
is the linear-time algorithm of Angelini et al. [2] which can answer the above question as
well as provide the desired planar drawing of G (if it exists). The result of Angelini et al.
contrasts other extension problems in the context of computational geometry and graph
drawing, which are typically NP-complete [7, 9–13,16,23–26,30,32], even in settings where
recognition is polynomial-time solvable. On the other end of the planarity spectrum, Arroyo
et al. [3, 4] studied drawing extension problems, where the number of crossings per edge is
not restricted, yet the drawing must be simple, i.e., any pair of edges can intersect in at most
one point. They showed that the simple drawing extension problem is NP-complete [3], even
if just one edge is to be added [4].

In this paper, we study the algorithmic extension problem of partial drawings of 1-planar
graphs, one of the most natural and most studied generalizations of planarity [17, 27, 33],
and of partial drawings of IC-planar graphs, a natural restriction of 1-planarity [1, 5, 29, 35].
A 1-planar graph is a graph that admits a drawing in the plane with at most one crossing
per edge; for IC-planarity, we additionally require that no two crossed edges are adjacent.
Unlike planarity testing, recognizing 1-planar graphs is NP-complete [20, 28], even if the
graph is a planar graph plus a single edge [8]. Recognition of IC-planar graphs also remains
NP-complete [6].

Contributions. Given a graph G, a connected subgraph H, and a 1-planar drawing H of
H, the 1-Planar Extension problem asks whether H can be extended by inserting the
remaining vertices Vadd = V (G) \ V (H) and edges Eadd = E(G) \ E(H) of G into H while
maintaining the property of being 1-planar. The IC-Planar Drawing Extension problem
is then defined analogously, but for IC-planarity.

The NP-completeness of these extension problems is a simple consequence of the NP-
completeness of the recognition problem [6,20,28] (see also Section 3). With this in mind, the
aim of this paper is to establish the tractability of the problems when H is almost a complete
1-planar drawing of G. To capture this setting, we turn to the notion of fixed-parameter
tractability [15,19] and consider two natural parameters which capture how complete H is:
the edge deletion distance between H and G (denoted by k), and the vertex+edge deletion
distance between H and G (denoted by κ). More precisely, k is equal to |E(G) \ E(H)|
and κ is equal to |V (G) \ V (H)|+ |E(G[V (H)]) \ E(H)|. We refer to Section 3 for formal
definitions and a discussion of the parameters.

After introducing necessary notation in Section 2 and introducing the problem formally in
Section 3, we consider the edge deletion distance k in Section 4. Our first result is:

I Theorem 1. 1-Planar Drawing Extension is FPT when parameterized by k.
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The proof of Theorem 1 involves the use of several ingredients:
1. Introducing and developing a notion of patterns, which are combinatorial objects that

capture critical information about the potential interaction of newly added edges with H;
2. a pruning procedure that reduces our instance to an equivalent sub-instance where H

has treewidth bounded in k;
3. an embedding graph, which carries information about the drawing H; and finally
4. completing the proof by constructing a formula Φ in Monadic Second Order Logic to

check whether a pattern can “fit” in the embedding graph, using Courcelle’s Theorem [14].

Next, we turn towards the question of whether one can obtain an efficient fixed-parameter
algorithm for the extension problem. In particular, due to the use of Courcelle’s Theorem [14]
to model-check Φ, the algorithm obtained in the proof of Theorem 1 will have a prohibitive
dependency on the parameter k. In this direction, we note that it is not immediately obvious
how one can design an efficient and “formally clean” purely combinatorial algorithm for the
pattern-fitting task (i.e., the task we relegate to model checking Φ in the embedding graph).
At the very least, using a direct translation of the model-checking procedure would come at
a significant cost in terms of presentation clarity.

That being said, one can observe that the main reason for the use of patterns is that it is
not at all obvious where (i.e., in which cell of the drawing) one should place the vertices used
to extend H. Indeed, our second result for parameter k assumes that Vadd = ∅ and avoids
using Courcelle’s Theorem.

I Theorem 2. 1-Planar Drawing Extension parameterized by k can be solved in time
O(k2k · nO(1)) if V (G) = V (H).

This algorithm uses entirely different techniques – notably, it prunes the search space for
inserting each individual edge via a combination of geometric and combinatorial arguments,
and then applies exhaustive branching. We note that the techniques used to prove Theorem 1
and 2 can be directly translated to also obtain analogous results for the IC-planarity setting.

In Section 5, we turn our attention to the vertex+edge deletion distance κ as a parameter,
which represents a more relaxed way of measuring how complete H is than k – indeed, while
κ ≤ k, it is easy to construct instances where κ = 1 but k can be arbitrarily large. For our
third result, we start with IC-planar drawings.

I Theorem 3. IC-Planar Drawing Extension is FPT parameterized by κ.

The proof of Theorem 3 requires a significant extension of the toolkit developed for
Theorem 1. The main additional complication lies in the fact that the number of edges that
are missing from H is no longer bounded by the parameter. To deal with this, we show that
the added vertices can only connect to the boundary of a cell in a bounded number of “ways”
(formalized via a notion we call regions), and we use this fact to develop a more general
notion of patterns and embedding graphs than those used for Theorem 1.

Finally, in Section 6, we present a first step towards the tractability of 1-Planar Drawing
Extension parameterized by κ. We note that the techniques developed for the other
parameterizations and problem variants cannot be applied to solve this case – the main
difference compared to the setting of Theorem 3 is that the “missing” vertices can be incident
to many edges with crossings, which prevents the use of our bounded-size patterns to capture
the behavior of new edges. As our final contribution, we investigate the special case of κ = 2,
i.e., when adding two new vertices.

I Theorem 4. 1-Planar Drawing Extension is polynomial-time tractable if κ ≤ 2.
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We note that even this, seemingly very restricted, subcase of 1-Planar Drawing
Extension was non-trivial and required the combination of several algorithmic techniques
(this contrasts to the case of |Vadd| = 1, whose polynomial-time tractability is a simple
corollary of one of our lemmas). In particular, the algorithm uses a new two-step “delimit-
and-sweep” approach: first, we apply branching to find a curve with specific properties that
bounds the instance by a left and right “delimiter”. The second step is then a left-to-right
sweep of the instance that iteratively pushes the left delimiter towards the right one while
performing dynamic programming combined with branching and network-flow subroutines.

Albeit being a special case, we believe these delimited instances with two added vertices
can play a role in a potential XP algorithm parameterized by κ – the existence of which we
leave open for future work.

Further Related Work. In addition to the given related work on extension problems, it
is also worth noting that identifying a substructure of bounded treewidth and applying
Courcelle’s Theorem to decide an MSO formula on it has been preciously used for a graph
drawing problem by Grohe [21], namely to identify graph drawings of bounded crossing
number. Both the way in which one arrives at bounded treewidth and the nature of the
employed MSO formula are substantially different from our approach, which is not surprising
as the problem of generating drawings from scratch and the problem of extending partial
drawings are in general fundamentally different. Specifically in the case of generating
drawings, the MSO formula could essentially encode the existence of a drawing with bounded
crossing number by inductively planarizing crossings of pairs of edges; here the planarity of
the planarization can of course be captured via excluded K3,3 and K5 minors by MSO. This
approach is not possible in our setting. There are examples of 1-planar graphs which have
partial drawings which cannot be extended to a 1-plane drawing. Thus a planarization with
respect to the added parts of a solution needs to be compatible with the partial drawing and
cannot be encoded by an MSO formula straightforwardly.

2 Preliminaries

Let G be a simple graph, V (G) its vertices, and E(G) its edges. We use standard graph
terminology [18]. For r ∈ N, we write [r] as shorthand for the set {1, . . . , r}. We also assume
a basic understanding of parameterized complexity theory [15,19], Monadic Second Order
(MSO) Logic and Courcelle’s Theorem [14].

A drawing G of G in the plane R2 is a function that maps each vertex v ∈ V (G) to a
distinct point G(v) ∈ R2 and each edge e = uv ∈ E(G) to a simple open curve G(e) ⊂ R2

with endpoints G(u) and G(v). In a slight abuse of notation we often identify a vertex v
and its drawing G(v) as well as an edge e and its drawing G(e). Throughout the paper we
will assume that: (i) no edge passes through a vertex other than its endpoints, (ii) any two
edges intersect in at most one point, which is either a common endpoint or a proper crossing
(i.e., edges cannot touch), and (iii) no three edges cross in a single point. For a drawing G of
G and e ∈ E(G), we use G − e to denote the drawing of G − e obtained by removing the
drawing of e from G, and for J ⊆ E(G) we define G − J analogously.

We assume that readers are familiar with the notion of planarity and faces. The boundary
of a face is the set of edges and vertices whose drawing delimits the face. Further, G induces
for each vertex v ∈ V (G) a cyclic order of its neighbors by using the clockwise order of its
incident edges. This set of cyclic orders is called a rotation scheme. Two planar drawings G1
and G2 of the same graph G are equivalent if they have the same rotation scheme and the
same outer face; equivalence classes of planar drawings are also called embeddings. A plane
graph is a planar graph with a fixed embedding.
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A drawing G is 1-planar if each edge has at most one crossing and a graph G is 1-planar
if it admits a 1-planar drawing. Similarly to planar drawings, 1-planar drawings subdivide
the plane into connected regions, which we call cells in order to distinguish them from the
faces of a planar drawing. The planarization G× of a 1-planar drawing G of G is a graph G×
with V (G) ⊆ V (G×) that introduces for each crossing c of G a dummy vertex c ∈ V (G×) and
that replaces each pair of crossing edges uv,wx in E(G) by the four half-edges uc, vc, wc, xc
in E(G×), where c is the crossing of uv and wx. In addition all crossing-free edges of E(G)
belong to E(G×). Obviously, G× is planar and the drawing G× of G× corresponds to G with
the crossings replaced by the dummy vertices.

3 Extending 1-Planar Drawings

Given a graph G and a subgraph H of G with a 1-planar drawing H of H, we say that a
drawing G of G is an extension of H if the planarization H× of H and the planarization G×
of G restricted to H× have the same embedding. We formalize our problem of interest as:

1-Planar Drawing Extension
Instance: A graph G, a connected subgraph H of G, and a 1-planar drawing H of H.
Task: Find an 1-planar extension of H to G, or correctly identify that there is none.

The IC-Planar Drawing Extension problem is then defined analogously. Both
problem definitions follow previously considered drawing extension problems, where the
connectivity of H is considered a well-motivated and standard assumption [22,30,31].

Given an instance (G,H,H) of 1-Planar Drawing Extension, a solution is a 1-planar
drawing G of G that is an extension of H. We refer to Vadd := V (G) \ V (H) as the added
vertices and to Eadd := E(G) \ E(H) as the added edges. Let Vinc = {v ∈ V (H) | ∃vw ∈
Eadd}, i.e., Vinc is the set of vertices of H that are incident to at least one added edge.
We also distinguish added edges whose endpoints are already part of the drawing, and
added edges with at least one endpoint yet to be added into the drawing – notably, we let
EHadd := {vw ∈ Eadd | v, w ∈ V (H)} and E¬Hadd := Eadd \ EHadd. This distinction will become
important later, since it opens up two options for how to quantify how “complete” the
drawing of H is. It is worth noting that, without loss of generality, we may assume each
vertex in Vadd to be incident to at least one edge in Eadd and hence |Vadd ∪ Vinc| ≤ 2|Eadd|.

Given the NP-completeness of recognizing 1-planar [20, 28] and IC-planar [6] graphs
we get as an immediate consequence that also the corresponding extension problems are
NP-complete. In view of the NP-completeness of the problem, it is natural to ask about its
complexity when H is nearly “complete”, i.e., we only need to extend the drawing H by
a small part of G. In this sense, deletion distance represents the most immediate way of
quantifying how far H is from G, and the parameterized complexity paradigm [15,19] offers
complexity classes that provide a more refined view on “tractability” in this setting.

The most immediate way of capturing the completeness of H in this way is to parameterize
the problem via the edge deletion distance to G – formalized by setting k = |Eadd|. The
aim of Section 4 is to establish the fixed-parameter tractability of 1-Planar Drawing
Extension parameterized by k. A second parameter that we consider is the vertex+edge
deletion distance to G, i.e., the minimum number of vertices and edges that need to be
deleted from G to obtain H. We call this parameter κ and set κ = |Vadd| + |EHadd|. The
parameterization by κ is the topic of Section 5 and 6. Since we can always assume that
each added vertex is incident to at least one added edge, |Vadd| + |EHadd| ≤ |Eadd| and so
parameterizing by κ leads to a more general (and difficult) parameterized problem.
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4 Using Edge Deletion Distance for Drawing Extensions

The main goal of this section is to establish the fixed-parameter tractability of 1-Planar
Drawing Extension parameterized by the edge deletion distance k.

We note that one major obstacle faced by a fixed-parameter algorithm is that it is not
at all obvious how to decide where the vertices in Vadd should be drawn in an augmented
drawing of H. As a follow-up, we will show that when Vadd = ∅ (i.e., V (H) = V (G)), it is
possible to obtain a more self-contained combinatorial algorithm with a significantly better
runtime; this is presented in Subsection 4.2.

4.1 A Fixed-Parameter Algorithm for 1-Planar Drawing Extension

Our first step towards a proof of the desired tractability result is the definition of a pattern,
which is a combinatorial object capturing essential information about a potential 1-planar
extension of H. The formal definition of pattern is given in Definition 1. Definition 2 then
defines the notion of derived patterns, which create a link between solutions to an instance of
1-Planar Drawing Extension and patterns.

To given an intuition of the patterns, assume that a pattern consists of a tuple (S,Q,C)
and let (G,H,H) be a 1-Planar Drawing Extension instance. Then, the general intuition
is that S represents the set of faces in H× which contain at least a part of the drawing of an
edge in Eadd in a hypothetical 1-planar extension G of H. Crucially, our aim is to keep the
size of patterns bounded in k, and so we only “anchor” S to H× by storing information about
which faces will contain individual edges in Eadd, vertices from Vadd, and be adjacent to
individual vertices in Vinc; this is captured by the mapping Q. The third piece of information
we store is C, which represents the cyclic order of how edges in Eadd exit or enter the
boundary of each face (including the case where an edge crosses through an edge into the
same face, i.e., occurs twice when traversing the boundary of that face).

I Definition 1. A pattern for an instance (G,H,H) is a tuple (S,Q,C) where
1. S is a set of at most 2k elements;
2. Q is a mapping from Vadd ∪ Eadd ∪ Vinc which maps: (a) vertices in Vadd to elements

of S, (b) edges in Eadd to ordered pairs of elements of S, and (c) vertices in Vinc to
subsets of S.

3. C is a mapping from S that maps each s ∈ S to a cyclically ordered multiset of pairs
((e1, q1), (e2, q2), . . . , (e`, q`)), where each ei is in Eadd and each qi is in Vinc ∪{crossing}.
Moreover, C must satisfy the following conditions: (a) for each s ∈ S and each tuple
(e, q) ∈ C(s) such that q ∈ Vinc, it must hold that s ∈ Q(q) and e is incident to q in G;
(b) for each e ∈ Eadd and s ∈ S, if e occurs in at least one tuple in C(s), then s ∈ Q(e)
and C(s) contains at most two tuples of the form (e, ∗), where ∗ is an arbitrary element;
(c) for each s ∈ S, each tuple occurs at most once in C(s) with the exception of tuples
containing “crossing”, which may occur twice.

Let P be the set of all patterns for our considered instance (G,H,H). Let #pat(k) =
2k · (22k)3k · ((2k)! · 23k)2k and note that |P| ≤ #pat(k) ∈ 2O(k2 log k). In particular, the
number of possible patterns can be bounded by first considering 2k options for |S|, multiplying
this by the at most (22k)3k-many ways of choosing Q, and finally multiply this by the number
of choices for C which can be bounded as follows: for each s ∈ S, C(s) is a set that forms a
subset (of size at most 2k) of the 3k-cardinality set of tuples (note that e = {a, b} ∈ Eadd
can only occur in the tuples (e, a), (e, b) and (e, crossing)).
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The intuition behind patterns will be formalized in the next definition, which creates a
link between solutions to our instance and patterns.

I Definition 2. Let (G,H,H) be a 1-Planar Drawing Extension instance. For each
solution G of (G,H,H) we define a derived pattern P = (S,Q,C) as follows:

S is the set of faces of H× which have a non-empty intersection with G(e) for some
e ∈ Eadd.
For v ∈ Vadd we set Q(v) to the face f of H× for which G(v) lies inside f , for e ∈ Eadd
we set Q(e) to the set of at most two faces which have a non-empty intersection with
G(e), and for w ∈ Vinc we set Q(w) to all faces in S incident to w in G.
For a face s ∈ S we consider all edges e = uv ∈ Eadd with a non-empty intersection
between G(e) and s. It follows that there is an edge e′ ∈ E(H) on the boundary of s such
that G(e) crosses G(e′), or u ∈ Vinc and u is on the boundary of s, or both. We set C(s) as
the ordered set of these crossing points or vertices when traversing s in clockwise fashion.

Our next task is to define valid patterns; generally speaking, these are patterns which are
not malformed and could serve as derived patterns for a hypothetical solution. One notable
property that every valid pattern must satisfy is that all vertices and edges mapped by Q to
some s ∈ S can be drawn in a 1-planar way while respecting C(s).

I Definition 3. For an instance (G,H,H), a pattern P = (S,Q,C) is valid if there exists a
pattern graph GP with a 1-planar drawing GP satisfying the following properties:

Vadd ∪ Vinc ⊆ V (GP ) and Eadd ⊆ E(GP ).
GP − Eadd is a planar drawing.
S is a subset of the inner faces of GP − Eadd.
Each v ∈ Vadd is contained in the face Q(v) of GP − Vadd − Eadd.
Each e ∈ Eadd is contained in the face(s) Q(e) of GP − Eadd.
Each v ∈ Vinc is incident to the faces Q(v) of GP − Eadd.
When traversing the inner side of the boundary of each face s of GP − Eadd in clockwise
fashion, the order in which each edge e ∈ Eadd is seen in GP together with the information
whether e crosses here or ends in its endpoint in Vinc, is precisely C(s).

Note that the instance (G,H,H) in the definition of a valid pattern is only important
to define Vadd, Vinc, and Eadd. Moreover, observe that for each solution G of an instance
(G,H,H), the derived pattern is valid by definition. An illustration of a pattern graph is
provided in Part (a) of Figure 1. We also remark that, when comparing a pattern graph to a
hypothetical solution which draws an edge into the outer face of H, we will map the outer
face to an inner face of the pattern graph.

I Lemma 4. Given pattern P = (S,Q,C), in time O((k!)k · k2k+1) we can either construct
a pattern graph GP together with the drawing GP satisfying all the properties of Definition 3
or decide that P is not valid.

Proof Sketch. The idea is to build a planarized version G′P of the pattern graph with size
bounded in O(k). To build the graph we introduce for every s ∈ S a cycle containing the
vertices in C(s). We further subdivide each edge on a cycle by dummy vertices and identify
the vertices corresponding to the same vertex in Vinc or the same crossing. Finally we add
each vertex in Vadd and connect it to the necessary vertices on the face’s boundary. Crossings
between these in-face edges can then be guessed since there are only O(k) such crossings.
Finding the drawing G′P that adheres to Definition 3 can then be done by iterating all possible
rotation schemes. To turn G′P into a 1-plane drawing replace all crossing vertices by crossing
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(a) A pattern graph as constructed in Lemma 4.
The face representing s ∈ S is yellow, gray disks are
dummy vertices. Black circles are in Vadd. Squares
are either in Vinc or represent crossings.

(b) An example of an embedding graph. The white
vertices are shadow-vertices, the purple one the face
vertex, and gray edges got added.

Figure 1 Examples for the definition of a pattern and the embedding graph.

edges (see also Part (a) of Figure 1a). For the reverse direction, simply observe that from a
given pattern graph we can delete and contract all “unecessary” vertices and edges. Then all
that remains are the cycles of vertices representing a set C(s) and vertices in Vadd. J

Next, we will define an annotated (“labeled”) graph representation of H and H×’s faces.
The embedding graph H∗ of H is obtained from H× by:
1. subdividing each uncrossed edge e (resulting in vertex ve);
2. creating a vertex for each face f of H× (resulting in vertex vf );
3. traversing the boundary of each face f1 and whenever we see a vertex v (including the

vertices created in Step 1) we create a shadow copy of v and place it right next to v in
the direction we saw v from. Add a cycle connecting the shadow vertices we created in f
in the order they were created, and direct it in clockwise fashion2;

4. connecting vf to all shadow-vertices created by traversing f , and all shadow copies of a
vertex v to the original v.

Observe that the embedding graph is a connected plane graph. We label the vertices of the
embedding graph to distinguish original vertices, edge-vertices, face-vertices, crossing-vertices
and shadow-vertices, and use at most 2k special labels to identify vertices in Vinc. An
illustration of the embedding graph is provided in Part (b) of Figure 1. Next, we show that
it suffices to restrict our attention to the parts of H∗ which are “close” to vertices in Vinc.

I Lemma 5. Let I = (G,H,H) be an instance of 1-Planar Drawing Extension. Let Z
be the set of all vertices in H∗ of distance at least 4k + 7 from each vertex in Vinc. Let G′,
H ′, and H′ be obtained by deleting all vertices in Z from G, H, and H respectively. Then:
1. If I is a YES-instance, then each connected component of G′ contains at most one

connected component of H ′3;

1 formally, we draw a curve in f that closely follows the boundary until it forms a closed curve.
2 Note that this may create multiple shadow copies of a vertex. The reason we use shadow copies of
vertices instead of using the original vertices is that when traversing the inner boundary of a face, a
vertex may be seen multiple times, and such shadow-vertices allow us to pinpoint from which part of
the face we are visiting the given vertex.

3 This can be seen not to hold in general if we allow H to be disconnected.
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2. I is a YES-instance if and only if for each connected component A of H ′ the restriction of
H′ to H ′[A] can be extended to a drawing of the connected component of G′ containing A.
Moreover, given such a 1-planar extension for every connected component of G′, we can
output a solution for I in linear time.

We split the proof of Lemma 5 into proofs for the two individual points.

Proof of Point 1. For the sake of contradiction let J be a connected component of G′
that contains two distinct connected components H ′1 and H ′2 of H ′. Since J is a connected
component, there must be a path P from a vertex v1 ∈ H ′1 to a vertex v2 ∈ H ′2 in J−(H ′1∪H ′2),
and moreover P must have length at most k. By definition, both v1 and v2 are in Vinc. To
complete the proof, it suffices to show that in any solution G, v1 and v2 have distance at
most 4k + 4 in H∗.

Moreover, in any solution G, two consecutive vertices of P are either drawn in the same
face of H× or in two adjacent faces of H×. Observe that the distance in H∗ between two
face-vertices for the faces that share an edge is 4, and that the distance from an original
vertex v to a face-vertex of a face incident to v is 2. Therefore, if (G,H,H) is a YES-instance,
then the distance between v1 and v2 in H∗ must be at most 4k + 4. J

Proof of Point 2. The forward direction is obvious. For the backward direction, let G1, . . . ,

Gr be the connected components of G′ and for i ∈ [r] let Hi and Hi be the restriction of
H ′ and H′, respectively, to Gi. Moreover, let H×i be the planarization derived from Hi and
note that Hi is connected for all i ∈ [r] by Point 1. Now let us fix an arbitrary i ∈ [r] such
that Hi is not empty and let Gi be a 1-planar extension of Hi to Gi.

Observe that each face of H× is completely contained in precisely one face of H×i .
Moreover, if a face f of H×i contains at least two faces f1 and f2 of H×, then both vf1 and
vf2 are at distance at least 4k + 4 of any vertex in Vinc ∩ V (Hi) in H∗. Indeed, if this were
not the case, then w.l.o.g. the vertices on the boundary of vf1 would have distance at most
4k + 6 from some w ∈ Vinc ∩ V (Hi) in H∗, which would mean that f1 is also a face in H×i .
By the same distance-counting argument introduced at the end of the Proof of Point 1, This
implies that no edge in a path P of G from a vertex v ∈ Hi whose internal vertices all lie in
Vadd can be drawn in any face of H× contained in f .

To complete the proof, let G1, . . . , Gp, p ≤ r be the connected components of G′ that
contain a vertex in H and Gp+1, . . . , Gr the remaining connected components of G′. We
obtain a solution G to the instance I by simply taking the union of H and Gi for i ∈ [p]
and then for i ∈ {p+ 1, . . . , r} shifting Gi so that Gi do not intersect any other part of the
drawing. J

Since |Vinc| ≤ 2k, Lemma 5 allows us to restrict our attention to a subgraph of diameter at
most (4k + 7) · 2 · 2k = 16k2 + 28k. This will be especially useful in view of the following
known fact, that allows us to assume that the treewidth of our instances is bounded.

I Proposition 6 ([34]). A planar graph G with radius at most r has treewidth at most 3r+ 1.

I Lemma 7. 1-Planar Drawing Extension is FPT parameterized by k + tw(H∗) if and
only if it is FPT parameterized by k, where H∗ is the embedding graph of H.

Proof. The backward direction is trivial. For the forward direction, assume that that there
exists an algorithm B which solves 1-Planar Drawing Extension in time f(k+ tw(H∗)) ·
|V (G)|c for some constant c and computable function f . Now, consider the following algorithm
A for 1-Planar Drawing Extension: A takes an instance (G0, H0,H0) and constructs
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(G1, H1,H1) by applying Lemma 5. Recall that by Point 1 of Lemma 5, (G0, H0,H0) is
either NO-instance, in which case A correctly outputs “NO”, or each connected component
of G1 contains at most one connected component of H1.

Now let us consider a connected component C of G1 and the embedding graph H∗1 [C] of
H1[C] and let vf be a face-vertex in H∗1 [C]. If vf is at distance at least 4k + 9 from every
vertex in Vinc ∩ C in H∗1 [C], then every vertex on the boundary of f is at distance at least
4k + 7 from every vertex w ∈ Vinc ∩ C in H∗1 [C]. Let v be an arbitrary vertex incident to f
in H1[C]. Since each face of H×0 is completely contained in precisely one face of H×1 [C], it
follows that v is at distance at least 4k + 7 from each vertex w ∈ Vinc ∩ C in H∗. Because
v ∈ V (H1[C]), this contradicts the fact that every vertex in V (H1) is at distance at most
4k + 6 from a vertex w ∈ Vinc in H∗. Hence, every face-vertex in H∗1 [C] is at distance at
most 4k+ 8 from a vertex in Vinc ∩ C. Moreover, every vertex in H∗1 [C] is at distance at most
2 from some face-vertex and there are at most 2k vertices in Vinc ∩ C. Therefore, the radius,
and by Proposition 6 the treewidth, of H∗1 [C] is bounded by O(k2).

Now, for each connected component C of G1, we solve the instance (G1[C], H1[C],H1[C])
using algorithm B. If B determines that at least one such (sub)-instance is a NO-instance,
then A correctly outputs “NO”. Otherwise, A outputs a solution for (G0, H0,H0) that it
computes by invoking the algorithm given by Point 2 of Lemma 5. To conclude, we observe
that A is a fixed-parameter algorithm parameterized by k and its correctness follows from
Lemma 5. J

We now have all the ingredients we need to establish our tractability result.

I Theorem 1. 1-Planar Drawing Extension is FPT when parameterized by k.

Proof Sketch. We prove the theorem by showing that 1-Planar Drawing Extension is
fixed-parameter tractable parameterized by k + tw(H∗), which suffices thanks to Lemma 7.

To this end, consider the following algorithm A. Initially, A loops over all of the at
most #pat(k) many patterns, tests whether each pattern is valid or not using Lemma 4,
and stores all valid patterns in a set P. Next, it branches over all valid patterns in P, and
for each such pattern P = (S = {s1, . . . , s`}, Q,C) it constructs an MSO formula ΦP (F),
where F is a set of at most 7k free variables specified later, the purpose of which is to find
a suitable “placement” for P in H by finding an interpretation in the embedding graph
H∗. In particular, ΦP uses the free variables in F to find a suitable face-vertex xi for each
si ∈ S and a suitable crossing point for each edge mapped to two elements of S, while also
guaranteeing that the cyclic orders specified by C are adhered to. Once we find a suitable
placement for P in H, the algorithm constructs an extension by topologically “inserting” the
pattern graph GP into the identified faces of H× and using the crossing points as well as
vertices in Vinc as “anchors”. J

4.2 A More Efficient Algorithm for Extending by Edges Only
In this subsection we obtain a more explicit and efficient algorithm than in Theorem 1 for
the case where V (G) = V (H). The idea underlying the algorithm is to iteratively identify
sufficiently many 1-planar drawings of each added edge into H that can either all be extended
to a 1-planar drawing of G, or none of them can, which allows us to branch over a small
number of possible drawings for that edge.

Let X =
⋃
uv∈Eadd

{u, v} be the set of all endpoints of edges in Eadd, and let us fix an
order of the added edges by enumerating Eadd = {e1, . . . , ek}. Now, consider a 1-planar
drawing Hi of Hi := H + {e1, . . . , ei−1} and assume that we want to add ei as a curve
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γ(ei). For a cell f in Hi + γ(ei) and vertices x1, x2 on the boundary of f , we denote by
bγ(ei)(f, x1, x2) ⊆ E(Hi+1) the edges on the x1-x2-path along the boundary of f which
traverses this boundary in counterclockwise direction. We explicitly note that bγ(ei)(f, x1, x2)
does not contain any half-edges. In this way bγ(ei)(f, x1, x2) is the set of edges of Hi+1 on
the x1-x2-path along the boundary of f that are not crossed in Hi + γ(ei), and hence may
still be crossed by drawings of ei+1, . . . , ek in a 1-planar extension of Hi + γ(ei) to G.

Let γ1(ei) and γ2(ei) be two possible curves for ei to be drawn into Hi. Then we call
γ1(ei) and γ2(ei) {ei+1, . . . , ek}-partition equivalent if there is a bijection π from the cells of
Hi + γ1(ei) to the cells of Hi + γ2(ei) such that

the vertices in X on the boundaries of the cells are invariant under π, i.e., for each cell f
whose boundary intersects X precisely in X ′ it must hold that π(f) intersects X precisely
in X ′ as well; and
for each pair of cells f, f ′ of Hi + γ1(ei) and ordered pairs of (not necessarily pairwise
distinct) vertices (x1, x2), (x′1, x′2) ∈ X2 that

are on the boundary of f and f ′, respectively, and
the counterclockwise x1-x2-path and the counterclockwise x′1-x′2-path along the bound-
aries of f and f ′, respectively, does not contain any inner vertices in X,

the following must hold:
if |bγ1(ei)(f, x1, x2) ∩ bγ1(ei)(f ′, x′1, x′2)| ≤ k, then
|bγ1(ei)(f, x1, x2) ∩ bγ1(ei)(f ′, x′1, x′2)| = |bγ2(ei)(π(f), x1, x2) ∩ bγ2(ei)(π(f ′), x′1, x′2)|

otherwise
also |bγ2(ei)(π(f), x1, x2) ∩ bγ2(ei)(π(f ′), x′1, x′2)| > k.

Roughly speaking, the first condition guarantees that when extendingHi by {ei+1, . . . , ek}-
partition equivalent drawings of ei, the topological separation of all vertices that might be
important when drawing ei+1, . . . , ek is the same. The second condition ensures that when
extending Hi by {ei+1, . . . , ek}-partition equivalent drawings of ei, the number of edges
whose drawings might be crossed by drawings of {ei+1 . . . , ek} is the same, or so large that
they cannot all be crossed by drawings of {ei+1 . . . , ek}.

I Lemma 8. For any 1 ≤ i ≤ k, if two drawings γ1(ei), γ2(ei) of ei into a drawing Hi of Hi

are {ei+1, . . . , ek}-partition-equivalent, they either both can be extended to a 1-planar drawing
of G, or none of them can.

Proof. We show that we can obtain a 1-planar drawing extension of Hi + γ2(ei) to G =
Hi + {ei+1, . . . , ek} from a 1-planar drawing extension of Hi + γ1(ei) to G. Then the claim
immediately follows by a symmetric argument when γ1(ei) and γ2(ei) are interchanged.

Let π be a bijection between the cells of Hi + γ1(ei) and the cells of Hi + γ2(ei) that
witnesses {ei+1, . . . , ek}-partition equivalence of γ1(ei) and γ2(ei). Assume we are given a 1-
planar drawing extension G1 of Hi+γ1(ei) to G. From this, we will define a 1-planar drawing
extension G2 of Hi + γ2(ei) to G. For e ∈ E(Hi) set G2(e) = Hi(e) and set G2(ei) = γ2(ei).
In this way, G2 is an extension of Hi.

Note that for any cell f of Hi + γ1(ei) the order in which the vertices of X occur on the
boundary of f is the same (up to possibly reversal) in which they occur on the boundary of
π(f) (exactly the same such vertices occur because of {ei+1, . . . , ek}-partition equivalence).
This is due to the fact that Hi + γ1(ei) and Hi + γ2(ei) are obtained from the same drawing
Hi and drawing edges into Hi merely subdivides cells and cannot permute the order on their
boundaries.
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Now we can define G2(ej) for j ∈ {i+1, . . . , k} as follows: For J ⊆ {i+1, . . . , k} such that
G1(ej) intersects two cells f and g of Hi + γ1(ei) for every j ∈ J , it holds that each G1(ej)
crosses the drawing (Hi+γ1(ei))(cj) of an edge cj ∈ E(Hi)∪{ei}. In particular, cj lies on the
shared boundary of f and g. Both f and g contain a vertex in X in their boundary, as each of
them contain at least one endpoint of ej . Hence there are x1, x2 ∈ X that are consecutive on
the boundary of f neglecting everything but X, and y1, y2 ∈ X that are consecutive on the
boundary of g neglecting everything but X such that cj ∈ bγ1(ei)(f, x1, x2)∩ bγ1(ei)(g, y1, y2).
By partition-equivalence the boundaries of π(f) and π(g) each contain an endpoint of each
ej , and because |J | ≤ k, we find distinct c′j ∈ bγ2(ei)(π(f), x1, x2) ∩ bγ2(ei)(π(g), y1, y2) (or
possibly c′j ∈ bγ2(ei)(π(f), x2, x1) ∩ bγ2(ei)(π(g), y2, y1)) for each j ∈ J . Without loss of
generality the cj are indexed in the order in which they occur on the counterclockwise
x1-x2-path along the boundary of f . We re-index the c′j to conform to the same order (up to
reversal), also taking x1 and x2 into account, on π(f). J

The next lemma shows that the number of non-equivalent drawings is bounded by a
function of k, which in turn allows us to apply exhaustive branching to prove the theorem.

I Lemma 9. For any 1 ≤ i ≤ k, the number of ways to draw ei into a drawing Hi of Hi that
are pairwise not {ei+1, . . . , ek}-partition-equivalent is at most 4(2k + 1) · 2(k + 1) ∈ O(k2).

I Theorem 2. 1-Planar Drawing Extension parameterized by k can be solved in time
O(k2k · nO(1)) if V (G) = V (H).

Proof. We can pre-compute the intersection of the boundary of each cell of H with X and
for each pair of cells f, f ′ of H and ordered pairs of vertices x1, x2 ∈ X and x′1, x′2 that are
consecutive on the boundaries of f and f ′ respectively if one neglects everything but X, the
cardinality of the set of edges that are on the clockwise x1-x2-path along the boundary of f
and at the same time on the clockwise x′1-x′2-path along the boundary of f ′ in polynomial
time.

As described in the proof of Lemma 9, at any stage, for 1 ≤ i ≤ k, we can branch on
{ei+1, . . . , ek}-partition-equivalent drawings γ(e) of e using the pre-computed information.
This information can be modified within each branch according to the choice of γ(e) in
constant time because, as described in the proof of Lemma 9 the impact of γ(e) involves only
few values whose modifications can correctly be computed from the updated pre-computed
information up to this stage and the chosen values determining γ(e). Correctness of this
branching follows from Lemma 8. J

5 Using Vertex+Edge Deletion Distance for IC-Planar Drawing
Extension

In this section, we show that IC-Planar Drawing Extension parameterized by κ is fixed-
parameter tractable. We note that an immediate consequence of this is the fixed-parameter
tractability of IC-Planar Drawing Extension parameterized by k.

On a high level, our strategy is similar to the one used to prove Theorem 1, in the
sense that we also use a (more complicated) variant of the patterns along with Courcelle’s
Theorem. However, obtaining the result requires us to extend the previous proof technique
to accommodate the fact that the number of edges incident to Vadd, and hence the size of a
pattern, is no longer bounded by κ. This is achieved by identifying so-called difficult vertices
and regions that split up the neighborhood of each face-vertex in the embedding graph into
a small number of sections (a situation which can then be handled by a formula in Monadic
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Figure 2 An example of H∗ where a vertex v′ ∈ Vinc has several non-difficult shadow copies.
Blue vertices are in Vadd. The green vertex has no difficult shadow copy w.r.t. the blue face in H×.

Second Order logic). Less significant complications are that we need a stronger version of
Lemma 5 to ensure that the diameter of the resulting graph is bounded, and need to be
more careful when using MSO logic in the proof of the main theorem.

Let f be a face of H× and let G be a solution (i.e., an IC-planar drawing of G) for the
instance (G,H,H). Let H∗ be the embedding graph of H, and without loss of generality let
us assume (via topological shifting) that each edge between a vertex a′ on the boundary of
f and a vertex b ∈ Vadd placed by G in f is routed “through” one shadow copy of a′4. Let
V fadd be the subset of Vadd drawn by G in the face f .

Observe that, since shadow vertices are not part of the original instance and instead
merely mark possible “parts” of the face that can be used to access a given vertex, it may
happen that a solution routes several edges through one shadow vertex. We say that a shadow
vertex v ∈ NH∗(vf ) (where NH∗(vf ) denotes the neighborhood of vf in H∗) is difficult w.r.t.
f if G routes at least two edges through v. Note that it may happen that a vertex v′ ∈ Vinc
with more than one neighbor in Vadd has several shadow copies, none of which are difficult
(see Figure 2).

I Lemma 10. There are at most 3κ2 difficult vertices w.r.t. a face f of H×.

Proof. We show that any two of the ` added vertices drawn into f in G are both connected
to at most 3 vertices in NH∗(vf ). Then the claim follows. Assume for contradiction that
v1, v2 ∈ Vadd are drawn into f in G and w1, w2, w3, w4 ∈ NH∗(vf ) are shadow vertices
that each route two edges, one of which is incident to v1 and one of which is incident to
v2. Since H is connected, the boundary of f is connected, and by construction of H∗,
w1, w2, w3, w4 all lie on a cycle in H∗ that does not involve any of {vf ′ | f ′ face in H×}.
Hence the following graph H ′ is a minor of H∗ − {vf ′ | f ′ face in H×}+ Vadd + Eadd: H ′ =
({v1, v2, w1, . . . , w4, vf}, {viwj | i ∈ {1, 2, f}, j ∈ {1, . . . , 4} ∪ {wiw(imod 4)+1 | i ∈ {1, . . . , 4}).
H ′ does not admit a 1-planar drawing in which both v1 and v2 lie on the same side of
the drawing of the w1-w2-w3-w4-cycle and v1 and v2 are each incident to at most one edge
whose drawing is crossed. However the existence of G implies that exactly such a drawing
of H ′ exists. J

4 The reason one distinguishes which shadow copy of a′ the edge is routed through is because this
unambiguously identifies which part of the face the edge uses to access a′.
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A region R of a vertex x ∈ V fadd (or, equivalently, of a face f) is a maximal path (r1, . . . , rp)
in NH∗(vf ) with the following properties: (1) G does not route through any shadow copy
of an edge in R; (2) for each vertex r in R, a uncrossed curve can be drawn in G inside f
between r and x; (3) none of the vertices in R are adjacent to V fadd \ {x}; and (4) r1 and rp
are adjacent to x.

I Lemma 11. There are at most 3κ regions of a face f .

Proof. Consider a path P in H∗[NH∗(vf )] that traverses all ` regions of a vertex v ∈ V fadd.
It contains at least `− 1 pairwise disjoint subpaths P1, . . . , P`−1 of paths connecting regions
of v that are consecutive in P .

For every Pi (i ∈ {1, . . . , `}), by the property that regions are inclusion maximal paths of
vertices with certain properties, we find some vertex x in Pi that has to violate one of these
properties. This can happen in three ways:
(1) x is a shadow copy of an edge and G routes through x,
(2) (1) is not the case and the drawing of some edge e ∈ Eadd separates x from v in H, or
(3) (1) and (2) are not the case and x is adjacent to another vertex w ∈ V fadd \ {v}.
In case (1) there is an edge e ∈ Eadd such that the drawing of e crosses the boundary of f in
H and routes through x.

In case (2) the edge in question has both endpoints on P , thus e ∈ EHadd or the drawing
of e crosses either the boundary of f in H or a drawing of another added edge.

There are at most |EHadd| edges in EHadd and at most |Vadd| edges in Eadd \ EHadd that
can cross another edge in an IC-planar drawing. Moreover, in both cases (1) and (2), the
endpoints of e cannot occur in any Pj with j ∈ {1, . . . , `} \ {i}.

In case (3) either x is contained in a region of w or the drawing of xw in H crosses an
edge and is the only drawing of an edge incident to w that does so. If x is in a region of w, w
is separated from NH∗(vf ) \ Pi by the edges from v to the outermost vertices of the regions
that Pi connects and hence can have no region outside of Pi. There are at most |Vadd| many
such w.

Thus we find at most |EHadd| + |Vadd| + 2|Vadd| such x on P in total and thus ` ≤
|EHadd|+ |Vadd|+ 2|Vadd| ≤ 3κ. This concludes the proof. J

The underlying intuition one should keep about regions and difficult vertices is that a
solution G partitions the shadow vertices into those which (a) have no edges routed through
them, (b) have precisely one edge routed through them (in which case they must be part of
the respective region), and (c) have at least two edges routed through them (in which case
they form a difficult vertex).

In the remainder of this section we give some intuition on how the techniques used to
prove Theorem 1 need to be extended to obtain Theorem 3. Unlike in the proof of Theorem 1
the number of vertices in Vinc is not bounded by κ. Consequently, we cannot track their
exact placement through patterns as defined in Definition 1. To circumvent this, we define
extended patterns that store the necessary details about the cyclic orders in which individual
regions, difficult vertices together with crossings, and endpoints of edges in EHadd as well as
the single edge per vertex in Vadd that is allowed to cross, are supposed to appear inside a
face. Then, as for patterns, we define how an extended pattern is derived from potential
solutions.

The proof then proceeds by following the strategy laid down in Subsection 4.1. In
particular, we define a notion of validity along with pattern graphs for extended patterns
(cf. Definition 3). We show that validity can be checked and pattern graphs can be constructed
efficiently (cf. Lemma 4). We use analogues to Lemma 5 and Lemma 7 to prune our instances
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so that they have bounded treewidth. At this point, we have all the ingredients we need to
prove our final Theorem 3 – the main complication here compared to the proof of Theorem 1
is that we cannot have explicit labels identifying individual vertices in Vinc.

I Theorem 3. IC-Planar Drawing Extension is FPT parameterized by κ.

6 Inserting Two Vertices into a 1-Plane Drawing

In this section we show that 1-Planar Drawing Extension is polynomial-time tractable
in the case where we are only adding 2 vertices to the graph along with their incident edges
(i.e., when |Vadd| = 2 and EHadd = ∅5). Already solving this, at first glance simple, case seems
to require non-trivial insight into the problem. In the following we call the two vertices in
Vadd the red and blue vertex, denoted by r and b, respectively.

On a high level, our algorithm employs a “delimit-and-sweep” approach. First, it employs
exhaustive branching to place the vertices and identify a so-called “initial delimiter” – a
Jordan curve that isolates a part of our instance that we need to focus on. In the second step,
it uses such an initial delimiter to solve the instance via a careful dynamic programming
subroutine. As our very first step, we exhaustively branch to determine which cells r and
b should be drawn in, in O(n2) time, and in each branch we add r and b into the selected
cell(s) (from now on, we consider these embeddings part of H).

The Flow Subroutine. Throughout this section, we will employ a generic network-flow
subroutine that allows us to immediately solve certain restricted instances of 1-Planar
Drawing Extension. In particular, assuming we are in the setting where r and b have
already been inserted into H, consider the situation where:

There is a partial mapping λ from the faces of H× to {R,B}; and
r and b are in different cells of H.

We say a 1-planar extension of H to G is λ-consistent if the drawing of any edge in
E(G) \ E(H) which is incident to r intersects the interior of face F of H× only if λ(F ) = R,
and correspondingly the drawing of any edge in E(G) \E(H) which is incident to b intersects
the interior of face F of H× only if λ(F ) = B (i.e., λ specifies precisely which kind of edges
may enter which face). We use a reduction to network flows to show:

I Lemma 12. Given λ as above, it is possible to determine whether there exists a λ-consistent
1-planar extension of H to G in polynomial time.

Proof Sketch. Consider the max flow instance θ1 constructed as follows. θ1 contains a
universal sink t and a universal source s. We add one vertex for each vertex in NE(G)\E(H)(r),
and a capacity-1 edge from each such “R-vertex” to t. We add one “f -vertex” for each face f
in H× that λ maps to R, and a capacity-1 edge from each such vertex to every R-vertex that
lies on the boundary of f . We add an (unlimited-capacity) edge from s to every f -vertex
whose face contains r (possibly on its boundary). Finally, we add an edge from every f -vertex
whose face contains r to each other f ′-vertex of capacity equal to the number of crossable
edges that lie on the shared boundary of f and f ′. The instance θ2 is constructed in an
analogous fashion for B and b. To conclude the proof, it suffices to show that the drawings
of the edges in Eadd incident to r in a λ-consistent extension G of H to G correspond to
s-t-flows of values |NE(G)\E(H)(r)| and |NE(G)\E(H)(b)| for θ1 and θ2, respectively. J

5 We note that it is trivial to extend the result to the case where the number of added edges is bounded
by a fixed constant, via simple exhaustive branching.
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I Corollary 13. 1-Planar Drawing Extension for |Vadd| = 1 and EHadd = ∅ can be solved
in polynomial time.

Finding an Initial Delimiter. We begin by formally defining the following notion:

I Definition 14. A Jordan curve ω in the plane is an initial delimiter for H if:
1. ω passes through both r and b but through no other vertex of H,
2. whenever ω shares at most one point with the interior of an edge, this point is a proper

crossing between ω and that edge,
3. the intersection between H and the exterior of ω (including ω itself) contains a single

cell cr whose boundary contains r, and a single cell cb whose boundary contains b, and
4. the intersection of the boundary of cr (resp. cb) and ω is a single simple curve containing

r (resp. b) as an interior point.

Intuitively, the third condition means that if we add ω onto H, then there are unique
cells in the exterior of ω for r and b. A solution for our instance, i.e., a drawing G of G,
is ω-compatible if every edge from Eadd is drawn in the exterior region defined by ω. We
state the main result of this subsection below – intuitively, it provides us with a set of
initial delimiters that we can exhaustively branch over, and in each branch we can restrict
our attention to solutions that are compatible with the chosen initial delimiter. To avoid
confusion, we note that the lemma covers the case where r and b are placed in the same
cell f (by branching on and placing a constant number of new edges that “separate” the
boundary of f).

I Lemma 15. For every instance (G,H,H) where |Vadd| ≤ 2 and EHadd = ∅, we can in
polynomial time either solve (G,H,H) or construct a set Q of initial delimiters with the
following property (or both): if (G,H,H) admits a solution, then Q contains at least one ω
such that (G,H,H) also admits an ω-compatible solution.

Dynamic Programming. We can now proceed with a very high-level sketch of how the
algorithm proceeds once we have pre-selected (via branching) an initial delimiter. The
general idea is to perform a left-to-right sweep of H by starting with the boundaries provided
by the initial delimiter. The runtime of the algorithm is upper-bounded by the fact that
it relies on dynamic programming where the maximum size of the records (representing
possible “positions” on our sweep) is polynomial in the input size, and where the possibility
of transitioning from one record to the next can be checked in polynomial time. In particular,
the “steps” we use to move from one record to the next relies on a situational combination
of exhaustive branching and the network-flow subroutine described in Lemma 12.

The intuitive reason we need to combine both of these techniques is that in some parts
of our sweep, we will encounter faces where edges from both r and b may enter – there the
interactions between these edges are too complicated to be modeled as a simple flow problem,
but (as we will show) we can identify separating curves that cut our instance into parts for
which we have a mapping λ that can be applied in conjunction with Lemma 12.

We now formalize the records used by our algorithm: a record is a tuple (αr, αb, T ), where
αr is either a vertex in H or an edge e ∈ Eadd incident to r. αb is defined symmetrically, and
we describe such edges by specifying their endpoint and potential crossing point. T is then
an auxiliary element that specifies the “type” of a given record. Finally, we associate each
record with a delimiter that iteratively pushes our “left” initial delimiter boundary towards
the “right” one; everything to the left of the delimiter can be ignored, since the assumptions
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Figure 3 The five types of records for the dynamic program. The computed delimiters are the
orange curves. r and b are the rectangular vertices, colored disks are in R and B, white disks are ri

and bi depending on their border-color.

we use to select our records guarantee that it cannot be crossed by an edge of the targeted
solution.

While we are forced to omit the majority of the details of the algorithm due to space
constraints, below we at least provide a brief, intuitive summary of the 5 types of records
used (see also Figure 3):

1. Green Pointer. αr = αb is a vertex incident to an edge on the boundary of cr and cb.
2. Double Incursion. One edge “covers” a part of one face that is accessed by the other

edge from the other side.
3. Left Incursion. αr (or αb) crosses into cb (or ca) and heads “left”.
4. Right Incursion. αr (or αb) crosses into cb (or ca) and heads “right”.
5. Slice. One or both edges cross into a face other than cr and cb.

Altogether, by using these records and carefully analyzing the cases that allow us to
transition from one record to the other, we obtain a proof of:

I Theorem 4. 1-Planar Drawing Extension is polynomial-time tractable if κ ≤ 2.

7 Concluding Remarks

In this paper, we initiated the study of the problem of extending partial 1-planar and IC-
planar drawings by providing several parameterized algorithms that target cases where only
a few edges and/or vertices are missing from the graph. Our results follow up on previous
seminal work on extending planar drawings, but the techniques introduced and used here
are fundamentally different [2]. The by far most prominent question left open in our work
concerns the (not only parameterized, but also classical) complexity of 1-Planar Extension
w.r.t. κ. In particular, can one show that the problem is, at least, polynomial-time tractable
for fixed values of κ? While the results presented in Section 6 are a promising start in this
direction, it seems that new ideas are needed to push beyond the two-vertex case.

Follow-up work may also focus on extending other types of beyond planar drawings [17].
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Abstract
In the well known planted clique problem, a clique (or alternatively, an independent set) of size
k is planted at random in an Erdos-Renyi random G(n, p) graph, and the goal is to design an
algorithm that finds the maximum clique (or independent set) in the resulting graph. We introduce
a variation on this problem, where instead of planting the clique at random, the clique is planted by
an adversary who attempts to make it difficult to find the maximum clique in the resulting graph.
We show that for the standard setting of the parameters of the problem, namely, a clique of size
k =

√
n planted in a random G(n, 1

2 ) graph, the known polynomial time algorithms can be extended
(in a non-trivial way) to work also in the adversarial setting. In contrast, we show that for other
natural settings of the parameters, such as planting an independent set of size k = n

2 in a G(n, p)
graph with p = n− 1

2 , there is no polynomial time algorithm that finds an independent set of size k,
unless NP has randomized polynomial time algorithms.
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1 Introduction

The planted clique problem, also referred to as hidden clique, is a problem of central
importance in the design of algorithms. We introduce a variation of this problem where
instead of planting the clique at random, an adversary plants the clique. Our main results
are that in certain regimes of the parameters of the problem, the known polynomial time
algorithms can be extended to work also in the adversarial settings, whereas for other regimes,
the adversarial planting version becomes NP-hard. We find the results interesting for three
reasons. One is that they concern an extensively studied problem (planted clique), but from
a new direction, and we find that the results lead to a better understanding of what aspects
of the planted clique problem are made use of by the known algorithms. Another is that
extending the known algorithms (based on semidefinite programming) to the adversarial
planted setting involves some new techniques regarding how semidefinite programming can
be used and analysed. Finally, the NP-hardness results are interesting as they are proven
in a semi-random model in which most of the input instance is random, and the adversary
controls only a relatively small aspect of the input instance. One may hope that this brings
us closer to proving NP-hardness results for purely random models, a task whose achievement
would be a breakthrough in complexity theory.
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1.1 The random planted clique model
Our starting point is the Erdos-Renyi G(n, p) random graph model, which generates graphs
on n vertices, and every two vertices are connected by an edge independently with probability
p. We start our discussion with the special case in which p = 1

2 , and other values of p will be
considered later. Given a graph G, let ω(G) denote the size of the maximum clique in G,
and let α(G) denote the size of the maximum independent set. Given a distribution D over
graphs, we use the notation G ∼ D for denoting a graph sampled at random according to D.
The (edge) complement of a graph G ∼ G(n, 1

2 ) is by itself a graph sampled from G(n, 1
2 ),

and the complement of a clique is an independent set, and hence the discussion concerning
cliques in G(n, 1

2 ) extends without change to independent sets (and vice versa).
It is well known (proved by computing the expectation and variance of the number of

cliques of the appropriate size) that for G ∼ G(n, 1
2 ), w.h.p. ω(G) ' 2 logn (the logarithm

is in base 2). However, there is no known polynomial time algorithm that can find cliques
of size 2 logn in such graphs. A polynomial time greedy algorithm can find a clique of size
(1 + o(1)) logn. The existence of ρ > 1 for which polynomial time algorithms can find cliques
of size ρ logn is a longstanding open problem.

In the classical planted clique problem, one starts with a graph G′ ∼ G(n, 1
2 ) and a

parameter k. In G′ one chooses at random a set K of k vertices, and makes this set into
a clique by inserting all missing edges between pairs of vertices with K. We refer to K as
the planted clique, and say that the resulting graph G is distributed according to G(n, 1

2 , k).
Given G ∼ G(n, 1

2 , k), the algorithmic goal can be one of the following three: find K, find a
clique of maximum size, or find any clique of size at least k. It is not difficult to show that
when k is sufficiently large (say, k > 3 logn), then with high probability K is the unique
maximum size clique in G ∼ G(n, 1

2 , k), and hence all three goals coincide. Hence in the
planted clique problem, the goal is simply to design polynomial time algorithms that (with
high probability over the choice of G ∼ G(n, 1

2 , k)) find the planted clique K. The question
is how large should k be (as a function of n) so as to make this task feasible.

For some sufficiently large constant c > 0 (throughout, we use c to denote a sufficiently
large constant), if k > c

√
n logn, with high probability the the vertices of K are simply

the k vertices of highest degree in G (see [13]), and hence K can easily be recovered. Alon,
Krivelevich and Sudakov [1] managed to shave the

√
logn factor, designing a spectral

algorithm that recovers K when k > c
√
n. They also showed that c can be made an

arbitrarily small constant, by increased the running time by a factor of nO(log( 1
c )) (this is

done by “guessing” a set K ′ of O(log( 1
c )) vertices of K, and finding the maximum clique in

the subgraph induced on their common neighbors). Subsequently, additional algorithms were
developed that find the planted clique when k > c

√
n. They include algorithms based on the

Lovasz theta function, which is a form of semi-definite programming [7], algorithms based on
a “reverse-greedy” principle [10, 3], and message passing algorithms [4]. There have been
many attempts to find polynomial time algorithms that succeed when k = o(

√
n), but so far

all of them failed (see for example [11, 8, 16]). It is a major open problem whether there is
any such polynomial time algorithm.

Planted clique when p 6= 1
2 was not studied as extensively, but it is quite well understood

how results from the G(n, 1
2 , k) model transfer to the G(n, p, k) model. For p much smaller

that 1
2 , say p = nδ−1 for some 0 < δ < 1 (hence average degree nδ), the problem changes

completely. Even without planting, with high probability over the choice of G ∼ G(n, p)
(with p = nδ−1) we have that ω(G) = O( 1

1−δ ), and the maximum clique can be found in
polynomial time. This also extends to finding maximum cliques in the planted setting,
regardless of the value of k. (We are not aware of such results being previously published,
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but they are not difficult. See Section 2.2.) For p > 1
2 , it is more convenient to instead look

at the equivalent problem in which p < 1
2 , but with the goal of finding a planted independent

set instead of a planted clique. We refer to this model as Ḡ(n, p, k). For G ∼ G(n, p) (with
p = nδ−1) we have that with high probability α(G) = Θ(n1−δ logn). For G ∼ Ḡ(n, p, k) the
known algorithms extend to finding planted independent sets of size k = cn1− δ2 in polynomial
time. We remark that the approach of [1] of making c arbitrarily small does not work for
such sparse graphs.

1.2 The adversarial planted clique model
In this paper we introduce a variation on the planted clique model (and planted independent
set model) that we refer to as the adversarial planted clique model. As in the random
planted clique model, we start with a graph G′ ∼ G(n, p) and a parameter k. However, now a
computationally unbounded adversary may inspect G′, select within it a subsetK of k vertices
of its choice, and make this set into a clique by inserting all missing edges between pairs of
vertices with K. We refer to this model as AG(n, p, k) (and the corresponding model for
planted independent set as AḠ(n, p, k)). As shorthand notation shall use G ∼ AG(n, p, k) to
denote a graph generated by this process. Let us clarify that AG(n, p, k) is not a distribution
over graphs, but rather a family of distributions, where each adversarial strategy (where
a strategy of an adversary is a mapping from G′ to a choice of K) gives rise to a different
distribution.

In the adversarial planted model, it is no longer true that the planted clique is the one
of maximum size in the resulting graph G. Moreover, finding K itself may be information
theoretically impossible, as K might be statistically indistinguishable from some other clique
of size k (that differs from K by a small number of vertices). The three goals, that of finding
K, finding a clique of maximum size, or finding any clique of size at least k, are no longer
equivalent. Consequently, for our algorithmic results we shall aim at the more demanding
goal of finding a clique of maximum size, whereas for our hardness results, we shall want
them to hold even for the less demanding goal of finding an arbitrary clique of size k.

1.3 Our results
Our results cover a wide range of values of 0 < p < 1, where p may be a function of n. For
simplicity of the presentation and to convey the main insights of our results, we present here
the results for three representative regimes: p = 1

2 , p = nδ−1 for 0 < δ < 1, and p = 1−nδ−1.
For the latter regime, it will be more convenient to replace it by the equivalent problem of
finding adversarially planted independent sets when p = nδ−1.

Informally, our results show the following phenomenon. We consider only the case that
p ≤ 1

2 , but consider both the planted clique and the planted independent set problems,
and hence the results can be translated to p > 1

2 as well. For clique, we show (Theorem 1
and Theorem 2) how to extend the algorithmic results known for the random planted clique
setting to the adversarial planted clique setting. However, for independent set, we show that
this is no longer possible. Specifically, when p is sufficiently small, we prove (Theorem 3) that
finding an independent set of size k (any independent set, not necessarily the planted one)
in the adversarial planted independent set setting is NP-hard. Moreover, the NP-hardness
result holds even for large values of k for which finding a random planted independent set is
trivial.

ICALP 2020
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I Theorem 1. For every fixed ε > 0 and for every k ≥ ε
√
n, there is an (explicitly described)

algorithm running in time nO(log( 1
ε )) which almost surely finds the maximum clique in a graph

G ∼ AG(n, 1
2 , k). The statement holds for every adversarial planting strategy (choice of k

vertices as a function of G′ ∼ G(n, 1
2 )), and the probability of success is taken over the choice

of G′ ∼ G(n, 1
2 ).

I Theorem 2. Let p = nδ−1 for 0 < δ < 1. Then for every k, there is an (explicitly
described) algorithm running in time nO( 1

1−δ ) which almost surely finds the maximum clique
in a graph G ∼ AG(n, p, k). The statement holds for every adversarial planting strategy, and
the probability of success is taken over the choice of G′ ∼ G(n, p).

I Theorem 3. For p = nδ−1 with 0 < δ < 1, 0 < γ < 1, and cn1−δ logn ≤ k ≤ 2
3n (where

c is a sufficiently large constant, and the constant 2
3 was chosen for concreteness – any

other constant smaller than 1 will work as well) the following holds. There is no polynomial
time algorithm that has probability at least γ of finding an independent set of size k in
G ∼ AḠ(n, p, k), unless NP has randomized polynomial time algorithms (NP=RP). (The
algorithm is required to succeed against every adversarial planting strategy, and the probability
of success is taken over the choice of G′ ∼ G(n, p).)

1.4 Related work

Some related work was already mentioned in Section 1.1.
Our algorithm for Theorem 1 is based on an adaptation of the algorithm of [7] that

applied to the random planted clique setting. In turn, that algorithm is based on the theta
function of Lovasz [14].

A work that is closely related to ours and served as an inspiration both to the model
that we study, and to the techniques that are used in the proof of the NP-hardness result
(Theorem 3) is the work of David and Feige [2] on adversarially planted 3-colorings. That
work uncovers a phenomenon similar to the one displayed in the current work. Specifically,
for the problem of 3-coloring (rather than clique or independent set) it shows that for
certain values of p, algorithms that work in the random planted setting can be extended
to the adversarial planted setting, and for other values of p, finding a 3-coloring in the
adversarial planted setting becomes NP-hard. However, there are large gaps left open in the
picture that emerges from the work of [2]. For large ranges of the values of p, specifically,
n−1/2 < p < n−1/3 and p < n−2/3, there are neither algorithmic results nor hardness results
in the work of [2]. Unfortunately, the most interesting values of p for the 3-coloring problem,
which are p ≤ c logn

n , lie within these gaps, and hence the results of [2] do not apply to them.
Our work addresses a different problem (planted clique instead of planted 3-coloring), and
for our problem, our analysis leaves almost no such gaps. We are able to determine for which
values of p the problem is polynomial time solvable, and for which values it is NP-hard. See
Section 3 for more details.

Our model is an example of a semi-random model, in which part of the input is determined
at random and part is determined by an adversary. There are many other semi-random
models, both for the clique problem and for other problems. Describing all these models is
beyond the scope of this paper, and the interested reader is referred to [5] and references
therein for additional information.
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2 Overview of the proofs

In this section we provide an overview of the proofs for our three main theorems. Further
details, as well as extensions to the results, appear in the full version of our paper [6].

The term almost surely denotes a probability that tends to 1 as n grows. The term
extremely high probability denotes a probability of the form 1 − e−nr for some r > 0. By
exp(x) for some expression x we mean ex.

2.1 Finding cliques using the theta function
In this section we provide an overview of the proof of Theorem 1. Our algorithm is an
adaptation of the algorithm of [7] that finds the maximum clique in the random planted
model. We shall first review that algorithm, then describe why it does not apply in our
setting in which an adversary plants the clique, and finally explain how we modify that
algorithm and its analysis so as to apply it in the adversarial planted setting.

The key ingredient in the algorithm of [7] is the theta function of Lovasz, denoted by
ϑ. Given a graph G, ϑ(G) can be computed in polynomial time (up to arbitrary precision,
using semidefinite programming (SDP)), and satisfies ϑ(G) ≥ α(G). As we are interested
here in cliques and not in independent sets, we shall consider Ḡ, the edge complement of G,
and then ϑ(Ḡ) ≥ ω(G). The theta function has several equivalent definitions, and the one
that we shall use here (referred to as ϑ4 in [14]) is the following.

Given a graph G = G(V,E), a collection of unit vectors si ∈ Rn (one vector for every
vertex i ∈ V ) is an orthonormal representation of G, if si and sj are orthogonal (si · sj = 0)
whenever (i, j) ∈ E. The theta function is the maximum value of the following expression,
where maximization is over all orthonormal representations {si} of G and over all unit vectors
h (h is referred to as the handle):

ϑ(G) = max
h,{si}

∑
i∈V

(h · si)2 (1)

The optimal orthonormal representation and the associated handle that maximize the
above formulation for ϑ can be found (up to arbitrary precision) in polynomial time by
formulating the problem as an SDP (details omitted). Observe that for any independent set
S the following is a feasible solution for the SDP: choose si = h for all i ∈ S, and choose
all remaining vectors sj for j 6∈ S to be orthogonal to h and to each other. Consequently,
ϑ(G) ≥ α(G), as claimed.

The main content of the algorithm of [7] is summarized in the following theorem. We
phrased it in a way that addresses cliques rather than independent sets, implicitly using
α(Ḡ) = ω(G). We also remind the reader that in the random planted model, the planted
clique K is almost surely the unique maximum clique.

I Theorem 4 (Results of [7]). Consider G ∼ G(n, 1
2 , k), a graph selected in the random

planted clique model, with k ≥ c
√
n for some sufficiently large constant c. Then with extremely

high probability (over choice of G) it holds that ϑ(Ḡ) = ω(G).
Moreover, for every vertex i that belongs to the planted clique K, the corresponding vector

si has inner product larger than 1 − 1
n with the handle h, and for every other vertex, the

corresponding inner product is at most 1
n .

Given Theorem 4, the following algorithm finds the planted clique when G ∼ G(n, 1
2 , k),

and k ≥ c
√
n for some sufficiently large constant c. Solve the optimization problem (1) (on

Ḡ) to sufficiently high precision, and output all vertices whose corresponding inner product
with h is at least 1

2 .

ICALP 2020
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The algorithm above does not apply toG ∼ AG(n, 1
2 , k), a graph selected in the adversarial

planted clique model, for the simple reason that Theorem 4 is incorrect in that model. The
following example illustrates what might go wrong,

I Example 5. Consider a graph G′ ∼ G(n, 1
2 ). In G′ first select a random vertex set T

of size slightly smaller than 1
2 logn. Observe that the number of vertices in G′ that are

in the common neighborhood of all vertices of T is roughly 2−|T |n >
√
n. Plant a clique

K of size k in the common neighborhood of T . In this construction, K is no longer the
largest clique in G. This is because T (being a random graph) is expected to have a clique
K ′ of size 2 log |T | ' 2 log logn, and K ′ ∪K forms a clique of size roughly k + 2 log logn in
G. Moreover, as T itself is a random graph with edge probability 1

2 , the value of the theta
function on T is roughly

√
|T | (see [12]), and consequently one would expect the value of

ϑ(Ḡ) to be roughly k +
√

logn.

Summarizing, it is not difficult to come up with strategies for planting cliques of size k
that result in the maximum clique having size strictly larger than k, and the value of ϑ(Ḡ)
being even larger. Consequently, the solution of the optimization problem (1) by itself is not
expected to correspond to the maximum clique in G.

We now explain how we overcome the above difficulty. A relatively simple, yet important,
observation is the following.

I Proposition 6. Let G ∼ AG(n, p, k) with p = 1/2 and k >
√
n, and let K ′ be the maximum

clique in G (which may differ from the planted clique K). Then with extremely high probability
over the choice of G′ ∼ G(n, 1

2 ), for every possible choice of k vertices by the adversary, K ′
contains at least k −O(logn) vertices from K, and at most O(logn) additional vertices.

Proof. Standard probabilistic arguments show that with extremely high probability, the
largest clique in G′ (prior to planting a clique of size k) is of size at most k

2 . When this
holds, K ′ contains at least k

2 vertices from K. Each of the remaining vertices of K ′ needs to
be connected to all vertices in K ′ ∩K. Consequently, with extremely high probability, K ′
contains at most 2 logn vertices not from K. This is because a G′ ∼ G(n, 1

2 ) graph, with
extremely high probability, does not contain two sets of vertices A and B, with |A| = 2 logn,
|B| = Ω(

√
n), such that all pairs of vertices in A×B induce edges in G.

As |K ′| ≥ k, we conclude that all but O(logn) vertices of K must be members of K ′. J

A key theorem that we prove is:

I Theorem 7. Let G ∼ AG(n, p, k) with p = 1/2 and k = k(n) ≥ 10
√
n. Then k ≤ ϑ(Ḡ) ≤

k+O(logn) with extremely high probability over the choice of G′ ∼ G(n, 1
2 ), for every possible

choice of k vertices by the adversary.

We now explain how Theorem 7 is proved. The bound ϑ(Ḡ) ≥ k was already explained
above. Hence it remains to show that ϑ(Ḡ) ≤ k + O(logn). In general, to bound ϑ(G)
from above for a graph G(V,E), one considers the following dual formulation of ϑ, as a
minimization problem.

ϑ(G) = min
M

[λ1(M)] (2)

Here M ranges over all n by n symmetric matrices in which Mij = 1 whenever (i, j) 6∈ E,
and λ1(M) denotes the largest eigenvalue of M . (Observe that if G has an independent set
S of size k, then M contains a k by k block of 1 entries. A Rayleigh quotient argument then
implies that λ1(M) ≥ k, thus verifying the inequality ϑ(G) ≥ α(G).) To prove Theorem 7 we
exhibit a matrixM as above (for the graph Ḡ) for which we prove that λ1(M) ≤ k+O(logn).
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We first review how a matrix M was chosen by [7] in the proof of Theorem 4. First,
recall that we consider Ḡ, and let E be the set of edges of Ḡ (non-edges of G). We need to
associate values with the entries Mij for (i, j) ∈ E (as other entries are 1). The matrix block
corresponding to the planted clique K (planted independent set in Ḡ) is all 1 (by necessity).
For every (i, j) ∈ E where both vertices are not in K one sets Mij = −1. For every other
pair (i, j) ∈ E (say, i ∈ K and j 6∈ K) one sets Mi,j = −k−di,Kdi,K

, where di,K is the number
of neighbors that vertex i has in the set K. In order to show that λ1(M) = k, one first
observes that the vector xK (with value 1 at entries that correspond to vertices of K, and
value 0 elsewhere) is an eigenvector of M with eigenvalue k. Then one proves that λ2(M),
the second largest eigenvalue of M , has value smaller than k. This is done by decomposing
M into a sum of several matrices, bounding the second largest eigenvalue for one of these
matrices, and the largest eigenvalue for the other matrices. By Weyl’s inequality, the sum of
these eigenvalues is an upper bound on λ2(M). This upper bound is not tight, but it does
show that λ2(M) < k. It follows that the eigenvalue k associated with xK is indeed λ1(M).
Further details are omitted.

We now explain how to choose a matrixM so as to prove the bound ϑ(Ḡ) ≤ k+O(logn) in
Theorem 7. Recall (see Example 5) that we might be in a situation in which ϑ(Ḡ) > α(Ḡ) > k

(with all inequalities being strict). In this case, let K ′ denote the largest independent set
in Ḡ, and note that K ′ is larger than K. In M , the matrix block corresponding to K ′
is all 1. One may attempt to complete the construction of M as described above for the
random planting case, but replacing K by K ′ everywhere in that construction. If one does
so, the vector xK′ (with value 1 at entries that correspond to vertices of K ′, and value 0
elsewhere) is an eigenvector of M with eigenvalue α(Ḡ) > k. However, M would necessarily
have another eigenvector with a larger eigenvalue, because ϑ(Ḡ) > α(Ḡ). Hence we are still
left with the problem of bounding λ1(M), rather than bounding λ2(M). Having failed to
identify an eigenvector for λ1(M), we may still obtain an upper bound on λ1(M) by using
approaches based on Weyl’s inequality (or other approaches). However, these upper bounds
are not tight, and it seems difficult to limit the error that they introduce to be as small as
O(logn), which is needed for proving the inequality λ1(M) ≤ k +O(logn).

For the above reason, we choose M differently. For some constant 1
2 < ρ < 1, we extend

the clique K to a possibly larger clique Q, by adding to it every vertex that has ρk neighbors
in K. (In Example 5, the corresponding clique Q will include all vertices of K ∪ T . In
contrast, if K is planted at random and not adversarially, then we will simply have Q = K.)
Importantly, we prove that if G′ ∼ G(n, 1

2 ), then with high probability |Q| < k +O(logn)
(for every possible choice of planting a clique of size k by the adversary). For the resulting
graph GQ, we choose the corresponding matrix M in the same way as it was chosen for the
random planting case. Now we do manage to show that the eigenvector xQ (with eigenvalue
|Q|) associated with this M indeed has the largest eigenvalue. This part is highly technical,
and significantly more difficult than the corresponding proof for the random planting case.
The reason for the added level of difficulty is that, unlike the random planting case in which
we are dealing with only one random graph, here the adversary can plant the clique in any
one of

(
n
k

)
locations, and our analysis needs to hold simultaneously for all

(
n
k

)
graphs that

may result from such plantings. Further details can be found in [6].
Having established that ϑ(ḠQ) = |Q| ≤ k +O(logn), we use monotonicity of the theta

function to conclude that ϑ(Ḡ) ≤ k +O(logn). This concludes our overview for the proof of
Theorem 7.

Given Theorem 7, let us now explain our algorithm for finding a maximum clique in
G ∼ AG(n, 1

2 , k).
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Given a graph G ∼ AG(n, 1
2 , k), the first step in our algorithm is to solve the optimization

problem (1) on the complement graph Ḡ. By Theorem 7, we will have ϑ(Ḡ) ≤ k + c logn for
some constant c > 0. Let {si} denote the orthonormal representation found by our solution,
and let h be the corresponding handle.

The second step of our algorithm it to extract from G a set of vertices that we shall refer
to as H, that contains all those vertices i for which (h · si)2 ≥ 3

4 .

I Lemma 8. For H as defined above, with extremely high probability, at least k −O(logn)
vertices of K are in H, and most O(logn) vertices not from K are in H.

Proof. Let T denote the set of those vertices in K for which (h · si)2 < 3
4 . Remove T from

G, thus obtaining the graph GT . This graph can be thought of as a subgraph with n− |T |
vertices of the random graph G′ ∼ G(n, 1

2 ), in which an adversary planted a clique of size
k − |T |. We also have that ϑ(ḠT ) ≥ ϑ(Ḡ)−

∑
i∈T (h · si)2 ≥ k − 3

4 |T |. If |T | is large (larger
than c′ logn for some sufficiently large constant c′ > 0), the gap of |T |4 between the size of the
planted clique and the value of the theta function contradicts Theorem 7 for the graph GT .
(Technical remark: this last argument uses the fact that Theorem 7 holds with extremely
high probability, as we take a union bound over all choices of T .)

Having established that T is small, let R be the set of vertices not in K for which
(h · si)2 ≥ 3

4 . We claim that every such vertex i ∈ R is a neighbor of every vertex j ∈ K \ T .
This is because in the orthogonal representation (for Ḡ), if i and j are not neighbors we
have that si · sj = 0, and then the fact that si,sj and h are unit vectors implies that
(h · si)2 < 1− (h · sj)2 ≤ 1

4 . Having this claim and using the fact that |K \T | >
√
n, it follows

that |R| ≤ 2 logn. This is because a G′ ∼ G(n, 1
2 ) graph, with extremely high probability,

does not contain two sets of vertices A and B, with |A| = 2 logn, |B| =
√
n, such that all

pairs of vertices in A×B induce edges in G. J

The third step of our algorithm constructs a set F that contains all those vertices that
have at least 3k

4 neighbors in H.

I Lemma 9. With extremely high probability, the set F described above contains the maximum
clique in G, and at most O(logn) additional vertices.

Proof. We may assume that H satisfies the properties of Lemma 8. Proposition 6 then
implies that with extremely high probability, every vertex of the maximum clique in G has at
least 3k

4 neighbors in H, and hence is contained in F . A probabilistic argument (similar to
the end of the proof of Lemma 8) establishes that F has at most O(logn) vertices not from
K. As K has at most O(logn) vertices not from the maximum clique (by Proposition 6),
the total number of vertices in F that are not members of the maximum clique is at most
O(logn). J

Finally, in the last step of our algorithm we find a maximum clique in F , and this is a
maximum clique in G. This last step can be performed in polynomial time by a standard
algorithm (used for example to show that vertex cover is fixed parameter tractable). For
every non-edge in the subgraph induced on F , at least one of its end-vertices needs to be
removed. Try both possibilities in parallel, and recurse on each subgraph that remains. The
recursion terminates when the graph is a clique. The shortest branch in the recursion gives
the maximum clique. As only O(logn) vertices need to be removed in order to obtain a
clique, the depth of the recursion is at most O(logn), and consequently the running time
(which is exponential in the depth) is polynomial in n.
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This completes our overview of our algorithm for finding a clique in G ∼ AG(n, 1
2 , k)

when k > c
√
n for a sufficiently large constant c > 0. To complete the proof of Theorem 1

we need to also address the case that k > ε
√
n for arbitrarily small constant ε. This we do

(as in [1]) by guessing t ' 2 log c
ε vertices from K (there are nt possibilities to try, and we try

all of them), and considering the subgraph of G induced on their common neighbors. This
subgraph corresponds to a subgraph of G′ ' G(n, 1

2 ) with roughy n′ ' 2−tn vertices, and a
planted clique of size ε

√
n−t ' c

√
n′. Now on this new graph G” we can invoke the algorithm

based on the theta function. (Technical remark. The proof that ϑ(Ḡ”) ≤ k +O(logn) uses
the fact that Theorem 7 holds with extremely high probability.)

The many details that were omitted from the above overview of the proof of Theorem 1
can be found in [6].

2.2 Finding cliques by enumeration
In this section we prove Theorem 2.

Let p = nδ−1 for 0 < δ < 1, and consider first G′ ∼ G(n, p) (hence G′ has average degree
roughly nδ). For every size t ≥ 1, let Nt denote the number of cliques of size t in G′. The
expectation (over choice of G′ ∼ G(n, p)) satisfies:

E[Nt] =
(
n

t

)
p(
t
2) ≤ 1

t!n
δ−1

2 t2+ 3−δ
2 t

The exponent is maximized when t = 3−δ
2(1−δ) . For the maximizing (not necessarily integer) t,

the exponent equals (3−δ)2

8(1−δ) . We denote this last expression by eδ, and note that eδ = O( 1
1−δ ).

The expected number of cliques of all sizes is then:∑
t≥1

E[Nt] ≤ n+
∑
t≥2

1
t!n

δ−1
2 t2+ 3−δ

2 t ≤ neδ

(The last inequality holds for sufficiently large n.) By Markov’s inequality, with probability
at least 1− 1

n , the actual number of cliques in G′ is at most neδ+1. (Stronger concentration
results can be used here, but are not needed for the proof of Theorem 2.)

Now, for arbitrary 1 ≤ k ≤ n, let the adversary plant a clique K of size k in G′, thus
creating the graph G ∼ G(n, p, k). As every subgraph of K is a clique, the total number
of cliques in G is at least 2k, which might be exponential in n (if k is large). However, the
number of maximal cliques in G (a clique is maximal if it is not contained in any larger
clique) is much smaller. Given a maximal clique C in G, consider C ′, the subgraph of C not
containing any vertex from K. C ′ is a clique in G′ (which is nonempty, except for one special
case of C = K). C ′ uniquely determines C, as the remaining vertices in C are precisely the
set of common neighbors of C ′ in K (this is because the clique C is maximal). Consequently,
the number of maximal cliques in G is not larger than the number of cliques in G′.

As all maximal cliques in a graph can be enumerated in time linear in their number
times some polynomial in n (see e.g. [15] and references therein), one can list all maximal
cliques in G in time neβ+O(1) (this holds with probability at least 1− 1

n , over the choice of
G′, regardless of where the adversary plants clique K), and output the largest one.

This completes the proof of Theorem 2.

2.3 Proving NP-hardness results
In this section we provide an overview of the proof of Theorem 3. Our proof is an adaptation
to our setting of a proof technique developed in [2].
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Recall that we are considering a graph G ∼ AḠ(n, p, k) (adversarial planted independent
set) with p = nδ−1 and 0 < δ < 1. Let us first explain why the algorithm described in
Section 2.1 fails when k = cn1− δ2 (whereas if the independent set is planted at random,
algorithms based on the theta function are known to succeed). The problem is that the
bound in Theorem 7 is not true anymore, and instead one has the much weaker bound of
ϑ(G) ≤ k + n1−δ logn. Following the steps of the algorithm of Section 2.1, in the final step,
we would need to remove a minimum vertex cover from F . However, now the upper bound on
the size of this vertex cover is O(n1−δ logn) rather than O(logn). Consequently, we do not
know of a polynomial time algorithm that will do so. It may seem that we also do not know
that no such algorithm exists. After all, F is not an arbitrary worst case instance for vertex
cover, but rather an instance derived from a random graph. However, our NP-hardness result
shows that indeed this obstacle is insurmountable, unless NP has randomized polynomial
time algorithms. We remark that using an approximation algorithm for vertex cover in the
last step of the algorithm of Section 2.1 does allow one to find in G an independent set of
size k − O(n1−δ logn) = (1 − o(1))k, and the NP-hardness result applies only because we
insist on finding an independent set of size at least k.

Let us proceed now with an overview of our NP hardness proof. We do so for the case
that k = n

3 (for which we can easily find the maximum independent set if the planted
independent set is random). Assume for the sake of contradiction that ALG is a polynomial
time algorithm that with high probability over choice of G′ ∼ G(n, p), for every planted
independent set of size k = n

3 , it finds in the resulting graph G an independent set of size k.
We now introduce a class H of graphs that, in anticipation of the proofs that will follow,

is required to have the following three properties. (Two of the properties are stated below
in a qualitative manner, but they have precise quantitative requirements in the proofs that
follow.)

1. Solving maximum independent set on graphs from this class is NP-hard.
2. Graphs in this class are very sparse.
3. The number of vertices in each graph is small.

Given the above requirements, we choose 0 < ε < min[ δ2 , 1− δ], and let H be the class
of balanced graphs on nε vertices, and of average degree 2 + δ. (A graph H is balanced if
no subgraph of H has average degree larger than the average degree of H.) Given a graph
H ∈ H and a parameter k′, it is NP-hard to determine whether H has an independent of
size at least k′ or not. We will reach a contradiction to the existence of ALG by showing
how ALG could be used in order to find in H an independent set of size k′, if one exists. For
this, we use the following randomized algorithm ALGRAND.

1. Generate a random graph G′ ∼ G(n, p).
2. Plant in G′ a random copy of H (that is, pick |H| random vertices in G′ and replace the

subgraph induced on them by H). We refer to the resulting distribution as GH(n,p), and
to the graph sampled from this distribution as GH . Observe that the number of vertices
in GH that have a neighbor in H is with high probability not larger than |H|nδ ≤ n

2 .
3. Within the non-neighbors of H, plant at random an independent set of size k − k′. We

refer to the resulting distribution as GH(n,p,k), and to the graph sampled from this
distribution as G̃H . Observe that with extremely high probability, α(G̃H \H) = k − k′.
Hence we may assume that this indeed holds. If furthermore α(H) ≥ k′, then α(G̃H) ≥ k.

4. Run ALG on G̃H . We say that ALGRAND succeeds if ALG outputs an independent set
IS of size k. Observe that then at least k′ vertices of H are in IS, and hence ALGRAND
finds an independent set of size k′ in H.
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If H does not have an independent set of size k′, ALGRAND surely fails to output such
an independent set. But if H does have an independent set of size k′, why should ALGRAND
succeed? This is because ALG (which is used in ALGRAND) is fooled to think that the
graph G̃H generated by ALGRAND was generated from AḠ(n, p, k), and on such graphs
ALG does find independent sets of size k. And why is ALG fooled? This is because the
distribution of graphs generated by ALGRAND is statistically close to a distribution that
can be created by the adversary in the AḠ(n, p, k) model. Specifically, consider the following
distribution that we refer to as AHG(n, p, k).

1. Generate G′ ∼ G(n, p).
2. The computationally unbounded adversary finds within G′ all subsets of vertices of size
|H| such that the subgraph induced on them is H. (If there is no such subset, fail.)
Choose one such copy of H uniformly at random.

3. As H is assumed to have an independent set of size k′, plant an independent set K of
size k as follows. k′ of the vertices of K are vertices of an independent set in the selected
copy of H. The remaining k − k′ vertices of K are chosen at random among the vertices
of G′ that have no neighbor at all in the copy of H. (Observe that we expect there to be
at least roughly n− |H|nδ ≥ n

2 such vertices, and with extremely high probability the
actual number will be at least n

3 > k − k′.)

I Theorem 10. The two distributions, G̃H ∼ GH(n, p, k) generated by ALGRAND and
G ∼ AHG(n, p, k) generated by the adversary, are statistically similar to each other.

The proof of Theorem 10 appears in [6]. Here we explain the main ideas in the proof.
A minimum requirement for the theorem to hold is that G′ ∼ G(n, p) typically contains
at least one copy of H (otherwise AHG(n, p, k) fails to produce any output). But this by
itself does not suffice. Intuitively, the condition we need is that G′ typically contains many
copies of H. Then the fact that GH(n, p) of ALGRAND adds another copy of H to G′ does
not appear to make much of a difference to G′, because G′ anyway has many copies of H.
Hopefully, this will imply that G′ ∼ G(n, p) and GH ∼ GH(n, p) come from two distributions
that are statistically close. This intuition is basically correct, though another ingredient
(a concentration result) is also needed. Specifically, we need the following lemma (stated
informally).

I Lemma 11. For G′ ∈ G(n, p) (with p and H as above), the expected number of copies of
H in G′ is very high (2nη for some η > 0 that depends on δ and ε). Moreover, with high
probability, the actual number of copies of H in G′ is very close to its expectation.

The proof of Lemma 11 is based on known techniques (first and second moment methods).
It uses in an essential way the fact that the graph H is sparse (average degree barely above 2)
and does not have many vertices (these properties hold by definition of the class H). Armed
with Lemma 11, we then prove the following Lemma.

I Lemma 12. The two distributions G(n, p) and GH(n, p) are statistically similar to each
other.

Lemma 12 is proved by considering graphs G′ ∼ G(n, p) that do contain a copy of H
(Lemma 11 establishes that this is a typical case), and comparing for each such graph the
probability of it being generated by GH(n, p) with the probability of it being generated by
G(n, p). Conveniently, the ratio between these probabilities is the same as the ratio between
the actual number of copies of H in the given graph G′, and the expected number of copies
of H in a random G′ ∼ G(n, p). By Lemma 11, for most graphs, this ratio is close to 1.
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Theorem 10 follows quite easily from Lemma 12. Consequently ALG’s performance on
the distributions GH(n, p, k) and AHG(n, p, k) is similar. By our assumption, ALG finds
(with high probability) an independent set of size k in G ∼ AHG(n, p, k), which now implies
that it also does so for G̃H ∼ GH(n, p, k). But as argued above, finding an independent set
of size k in G̃H ∼ GH(n, p, k) implies that ALGRAND finds an independent set of size k′ in
H ∈ H, thus solving an NP-hard problem. Hence the assumption that there is a polynomial
time algorithm ALG that can find independent sets of size k in G ∼ AḠ(n, p, k) implies that
NP has randomized polynomial time algorithms.

3 Additional results

In the main part of the paper we only described what we view as our main results. The
appendix contains all missing proofs, and some additional results and extensions, not described
above. For example, one may ask for which value of p ≤ 1

2 the transition occurs from being
able to find the maximum independent set in G ∼ AḠ(n, p, k) in polynomial time, to the
problem becoming NP hard. Our results show a gradual transition. For constant p the
problem remains polynomial time solvable, and then, as p continues to decrease, the running
time of our algorithms becomes super polynomial, and grows gradually towards exponential
complexity. Establishing this type of behavior does not require new proof ideas, but rather
only the substitution of different parameters in the existing proofs. Consequently, some
theorems that were stated here only in special cases (e.g., Theorem 7 that was stated only
for p = 1

2 ) are restated in the appendix in a more general way (e.g., replacing 1
2 by p), and a

more general proof is provided.
Though this is not shown in the appendix, our hardness results (for finding adversarially

planted independent sets) also imply a gradual transition, providing NP-hardness results
when p = nδ−1, and as p grows (e.g., into the range p = 1

(logn)c ) the NP-hardness results
are replaced by hardness results under stronger assumptions, such as (a randomized version
of) the exponential time hypothesis. This is because for p = 1

(logn)c we need to limit the
size of the graphs H ∈ H to be only polylogarithmic in n, as for larger sizes the proofs in
Section 2.3 fail.

An interesting range of parameters that remains open is that of p = d
n for some large

constant d. The case of a random planted independent set of size
√

c
dn (for some sufficiently

large constant c > 0 independent of d) was addressed in [9]. In such sparse graphs, the planted
independent set is unlikely to be the maximum independent set. The main result in [9] is a
polynomial time algorithm that with high probability finds the maximum independent set in
that range of parameters. It would be interesting to see whether the positive results extend
to the case of adversarial planted independent set. We remark that neither Theorem 1 nor
Theorem 3 apply in this range of parameters.
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Abstract
We present a simple sublinear-time algorithm for sampling an arbitrary subgraph H exactly uniformly
from a graph G, to which the algorithm has access by performing the following types of queries:
(1) uniform vertex queries, (2) degree queries, (3) neighbor queries, (4) pair queries and (5) edge
sampling queries. The query complexity and running time of our algorithm are Õ(min{m, mρ(H)

#H
})

and Õ( mρ(H)

#H
), respectively, where ρ(H) is the fractional edge-cover of H and #H is the number of

copies of H in G. For any clique on r vertices, i.e., H = Kr, our algorithm is almost optimal as any
algorithm that samples an H from any distribution that has Ω(1) total probability mass on the set
of all copies of H must perform Ω(min{m, mρ(H)

#H·(cr)r }) queries.
Together with the query and time complexities of the (1± ε)-approximation algorithm for the

number of subgraphs H by Assadi et al. [3] and the lower bound by Eden and Rosenbaum [12]
for approximately counting cliques, our results suggest that in our query model, approximately
counting cliques is “equivalent to” exactly uniformly sampling cliques, in the sense that the query
and time complexities of exactly uniform sampling and randomized approximate counting are within
polylogarithmic factor of each other. This stands in interesting contrast to an analogous relation
between approximate counting and almost uniformly sampling for self-reducible problems in the
polynomial-time regime by Jerrum, Valiant and Vazirani [18].
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1 Introduction

“Given a huge real graph, how can we derive a representative sample?” is a first question asked
by Leskove and Faloutsos in their seminal work on graph mining [20], which is motivated
by the practical concern that most classical graph algorithms are too expensive for massive
graphs (with millions or billions of vertices), and graph sampling seems essential for lifting
the dilemma.
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In this paper, we study the question of how to sample a subgraph H uniformly at random
from the set of all subgraphs that are isomorphic to H contained in a large graph G in
sublinear time, where the algorithm is given query access to the graph G. That is, the
algorithm only probes a small portion of the graph while still returning a sample with
provable performance guarantee. Such a question is relevant for statistical reasons: we might
need a few representative and unbiased motifs from a large network [21], or edge-colored
subgraphs in a structured database [4], in a limited time. A subroutine for extracting a
uniform sample of H is also useful in streaming (e.g., [1]), parallel and distributed computing
(e.g., [15]) and other randomized graph algorithms (e.g., [17]).

Currently, our understanding of the above question is still rather limited. Kaufman et
al. gave the first algorithm for sampling an edge almost uniformly at random [19]. Eden
and Rosenbaum gave a simpler and faster algorithm [13]. Both works considered the general
graph model, where an algorithm is allowed to perform the following queries, where each
query will be answered in constant time:

uniform vertex query: the algorithm can sample a vertex uniformly at random;
degree query: for any vertex v, the algorithm can query its degree dv;
neighbor query: for any vertex v and index i ≤ dv, the algorithm can query the i-th
neighbor of v;
pair query: for any two vertices u, v, the algorithm can query if there is an edge between
u, v.

In [13], Eden and Rosenbaum gave an algorithm that takes as input a graph with n

vertices and m edges (where m is unknown to the algorithm), uses Õ(n/
√
m) queries1 in

expectation and returns an edge e that is sampled with probability (1± ε)/m (i.e., almost
uniformly at random). This is almost optimal in the sense that any algorithm that samples an
edge from an almost-uniform distribution requires Ω(n/

√
m) queries. In their sublinear-time

algorithm for approximately counting the number cliques [10] (see below), Eden, Ron and
Seshadhri use a procedure to sample cliques incident to a suitable vertex subset S almost
uniformly at random. However, for an arbitrary subgraph H, it is still unclear how to obtain
an almost uniform sample in sublinear time.

Approximate counting in sublinear-time. In contrast to sampling subgraphs (almost)
uniformly at random, the very related line of research on approximate counting the number
of subgraphs in sublinear time has made some remarkable progress in the past few years.
Feige gave a (2 + ε)-approximation algorithm with Õ(n/

√
m) queries for the average degree,

which is equivalent to estimating the number of edges, of a graph in the model that only uses
vertex sampling and degree queries [14]. He also showed that any (2− o(1))-approximation
for the average degree using only vertex and degree queries requires Ω(n) queries. Goldreich
and Ron then gave a (1 + ε)-approximation algorithm with Õ(n/

√
m) queries for the average

degree in the model that allows vertex sampling, degree and neighbor queries [16].
Eden et al. recently gave the first sublinear-time algorithm for (1± ε)-approximating the

number of triangles [7]. Later, Eden, Ron and Seshadhri generalized it to (1±ε)-approximating
the number of r-cliques Kr [10] in the general graph model that allows vertex sampling,
degree, neighbor and vertex-pair queries. The query complexity and running time of their
algorithms for r-clique Kr counting are Õ( n

(#Kr)1/3 + min{m, m
r/2

#Kr }) and Õ( n
(#Kr)1/3 + mr/2

#Kr )
respectively, for any r ≥ 3, where #Kr is the number of copies of Kr in G. Furthermore,
in boths works it was proved that the query complexities of the respective algorithms are
optimal up to polylogarithmic dependencies on n, ε and r.

1 Throughout the paper, we use Õ(·) to suppress any dependencies on the parameter ε, the size of the
corresponding subgraph H and log(n)-terms.



H. Fichtenberger, M. Gao, and P. Peng 45:3

Later, Assadi et al. [3] gave a sublinear-time algorithm for (1 ± ε)-approximating the
number of copies of an arbitrary subgraph H in the augmented general graph model [2].
That is, besides the aforementioned vertex sampling, degree, neighbor and pair queries, the
algorithm is allowed to perform the following type of queries:

edge sampling query the algorithm can sample an edge uniformly at random.

The algorithm in [3] uses Õ(min{m, m
ρ(H)

#H }) queries and Õ(m
ρ(H)

#H ) time, where ρ(H) is
the fractional edge-cover of H and #H is the number of copies of H in G. For the special
case H = Kr, their algorithm performs Õ(min{m, m

r/2

#Kr }) queries and runs in Õ(m
r/2

#Kr ) time,
which do not have the additive term n

(#Kr)1/3 in the query complexity and running time of
the algorithms in [7, 10]. Eden and Rosenbaum provided simple proofs that most of the
aforementioned results are nearly optimal in terms of their query complexities by reducing
from communication complexity problems [12]. Further investigation of sampling an edge
and estimating subgraphs in low arboricity graphs [8, 9] and approximately counting stars [2]
has also been performed.

Relation of approximate counting and almost uniform sampling. One of our original
motivations is to investigate the relation of approximate counting and almost uniform
sampling in the sublinear-time regime. That is, we are interested in the question whether
in the sublinear-time regime, is almost uniform sampling “computationally comparable” to
approximate counting, or is it strictly harder or easier, in terms of the query and/or time
complexities for solving these two problems? Indeed, in the polynomial-time regime, Jerrum,
Valiant and Vazirani showed that for self-reducible problems (e.g., counting the number of
perfect matchings of a graph), approximating counting is “equivalent to” almost uniform
sampling [18], in the sense that the time complexities of almost uniform sampling and
randomized approximate counting are within polynomial factor of each other. Such a result
has been instrumental for the development of the area of approximate counting (e.g., [23]).
It is natural to ask if similar relations between approximate counting and sampling hold in
the sublinear-time regime.

1.1 Our Results
In this paper, we consider the problem of (almost) uniformly sampling a subgraph in the
augmented general graph model. As mentioned above, this model has been studied in
[2, 3], in which the authors find that “allowing edge-sample queries results in considerably
simpler and more general algorithms for subgraph counting and is hence worth studying
on its own”. On the other hand, allowing edge sampling queries is also natural in models
where neighbor queries are allowed, e.g., in the well-studied bounded-degree model and the
general model: most graph representations that allow efficient neighbor queries (e.g., GEXF,
GML or GraphML) store edges in linear data structures, which often allows efficient (nearly)
uniformly sampling of edges. We refer to [3] for a deeper discussion on allowing edge sampling
queries from both theoretical and practical perspectives.

We prove the following upper bound on sampling subgraphs (exactly) uniformly at random
and provide a corresponding algorithm in Section 3.

I Theorem 1. Let H be an arbitrary subgraph. Let G = (V,E) be a graph with n vertices
and m edges. There exists an algorithm in the augmented general graph model that uses
Õ(min{m, m

ρ(H)

#H }) queries in expectation, and with probability at least 2/3, returns a copy of
H, if #H > 0. Each returned H is sampled according to the uniform distribution over all
copies of H in G. The expected running time of the algorithm is Õ(m

ρ(H)

#H ).
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We stress that our sampler is an exactly uniform sampler, i.e., the returned H is sampled
from the uniform distribution, while to the best of our knowledge, the previous sublinear-time
subgraph sampling algorithms are only almost uniform samplers. That is, they return an
edge or a clique that is sampled from a distribution that is close to the corresponding uniform
distribution. Indeed, it has been cast as an open question if it is possible to sample an edge
exactly uniformly at random in the general graph model in [11].

Our algorithm is based on one idea from [3] (see also [4]) that uses the fractional edge
cover to partition a subgraph H into stars and odd cycles (i.e., Lemma 7). The authors of [3]
also provided a scheme called subgraph-sampler trees for recursively sampling stars and odd
cycles that compose H, while the resulting distribution is not (almost) uniform distribution.
Instead, we show that one can sample stars and odd cycles by using rejection sampling in
parallel (or, more precisely, sequentially but independently of each other) and check whether
they form a copy of H.

To complement our algorithmic result, we give a lower bound on the query complexity
for sampling a clique in sublinear time by using a simple reduction from [12]. We show the
following theorem and present its proof in Section 4.

I Theorem 2. Let r ≥ 3 be an integer. Suppose A is an algorithm in the augmented general
graph model that for any graph G = (V,E) on n vertices and m edges returns an arbitrary
r-clique Kr, if one exists; furthermore, each returned clique Kr is sampled according to a
distribution D, such that the total probability mass of D on the set of all copies of Kr is Ω(1).
Then A requires Ω(min{m, mr/2

#Kr·(cr)r }) queries, for some absolute constant c > 0.

Note that the above theorem gives a lower bound for sampling Kr from almost every
non-trivial distribution D. In particular, it holds if #Kr > 0 and D is a distribution that
is only supported on the set of all copies of Kr, e.g., the (almost) uniform distribution on
these copies. Together with the query and time complexities of the (1± ε)-approximation
algorithm for the number of subgraphs H by Assadi et al. [3] and the lower bound by Eden
and Rosenbaum [12] for approximately counting cliques, our Theorems 1 and 2 imply that
in the augmented general graph model, approximately counting the number of cliques is
equivalent to exactly sampling cliques in the sense that the query and time complexities of
them are within a polylogarithmic factor of each other.

Future Work. Considering real-world applications, it would be interesting to relax the
guarantees of the queries available to the algorithm. In particular, one may not be able to
sample vertices or edges exactly uniformly at random, but only approximately uniformly.
For example, there exist works that consider weaker query models in which even uniform
vertex query is disallowed, and instead they sample vertices almost uniformly at random
by performing random walks from some fixed vertex (see, e.g., [5, 6]). Implementing these
changes in the model would result in a weaker guarantee for the distribution of sampled
subgraphs in Theorem 1 but would be potentially more practical.

2 Preliminaries

Let G = (V,E) be a simple graph with |V | = n vertices and |E| = m edges. For a vertex
v ∈ V , we denote by dv the degree of the vertex, by Γv the set of all the neighbors of v, and
by Ev the set of edges incident to v. We fix a total order on vertices denoted by ≺ as follows:

I Definition 3. For any two vertices u and v, we say that u ≺ v if du < dv or du = dv and
u appears before v in the lexicographic order.
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For any two vertices, we denote by Γuv the set of the shared neighbors of u and v that
are larger than u with respect to “≺”, i.e., Γuv = {w | w ∈ Γu ∩ Γv ∧ u ≺ w}. Sometimes,
we view our graph G = (V,E) as a directed graph (V, ~E) by treating each undirected edge
e = {u, v} ∈ E as two directed edges ~e1 = (u, v) and ~e2 = (v, u). The following was proven
in [7].

I Lemma 4 ([7]). For any vertex v, the number of neighbors w of v such that v ≺ w is at
most

√
2m.

Given a graph H, we say that a subgraph H ′ of G is a copy or an instance of H if H ′ is
isomorphic to H. An isomorphism-preserving mapping from H to a copy of H in G is called
an embedding of H in G.

Rejection Sampling. Given a starting distribution ~p and a target distribution ~q supported
on a set R, let M := maxa∈R ~q(a)

~p(a) . Algorithm 1 is called rejection sampling.

Algorithm 1 Rejection sampling with starting distribution ~p and target distribution ~q.

1: procedure RejectionSampling(~p, ~q)
2: M ← maxa∈R ~q(a)

~p(a)
3: while true do
4: sample a from ~p.
5: sample a number t ∈ [0, 1] uniformly at random.
6: if t ≤ ~q(a)

M ·~p(a) then
7: return a

Observe that when the algorithm terminates, the probability that a is returned is ~q(a)
for every a ∈ R. The following lemma is known.

I Lemma 5 ([22]). The expected number of iterations of RejectionSampling(~p, ~q) is M .

Edge Cover and Graph Decomposition. We use the following definition of the fractional
edge cover of a graph and a decomposition result based on it by Assadi et al. [3].

I Definition 6 (Fractional Edge-Cover Number). A fractional edge-cover of H(VH , EH) is
a mapping ψ : EH → [0, 1] such that for each vertex v ∈ VH ,

∑
e∈EH ,v∈e ψ(e) ≥ 1. The

fractional edge-cover number ρ(H) of H is the minimum value of
∑
e∈EH ψ(e) among all

fractional edge-covers ψ.

Let Ck denote the cycle of length k. Let Sk denote a star with k petals, i.e., Sk =
({u, v1, . . . , vk},∪i∈[k]{u, vk}). Let Kk denote a clique on k vertices. It is known that
ρ(C2k+1) = k + 1/2, ρ(Sk) = k and ρ(Kk) = k/2.

I Lemma 7 ([3]). Any subgraph H can be decomposed into a collection of vertex-disjoint
odd cycles C1, . . . , Co and star graphs S1, . . . , Ss such that

ρ(H) =
o∑
i=1

ρ(Ci) +
s∑
j=1

ρ(Sj).

By a result of Atserias, Grohe and Marx [4], the number of instances of H in a graph G
with m edges is O(mρ(H)).
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3 Sampling an Arbitrary Subgraph H

In this section, we present sampling algorithms for odd cycles and stars and show how to
combine them to obtain a sampling algorithm for arbitrary subgraphs. Note that we do not
need to know the exact number of edges m to run our algorithm; it is sufficient to have a
constant approximation m̂ of m so that m ≤ m̂ ≤ cm for some c > 1. Such an approximation
can be obtained by using the algorithm from [14, 16]. This increases the query complexity
only by a constant factor. For the sake of simplicity, we will continue to use m in the
following.

3.1 Sampling an Odd-Length Cycle
We describe our algorithm SampleOddCycle for sampling a uniformly random odd-length
k-cycle. For any instance of C2k+1 in the input graph, our goal is to guarantee that it will be
sampled with probability 1

mk+1/2 . Let e1, . . . , e2k+1 be a sequence of edges that represents
a cycle of length 2k + 1. While we can use edge sampling to sample every second edge of
the first 2k edges sequentially, i.e., e1, e3, . . . , e2k−1, and query the edges inbetween, i.e.,
e2, . . . , e2k−2, by vertex pair queries, we use a different strategy to sample e2k and e2k+1.
Let {u, v} = e1. If u has low degree, i.e., du ≤

√
2m, we can afford to sample each neighbor

of u with probability 1/
√

2m and fail if no neighbor is sampled. In particular, we need
that a distinguished neighbor x1 of u is sampled with probability at least 1/

√
2m. However,

if du ≥
√

2m, this is too costly. Instead, we invoke rejection sampling with the following
starting distribution and target distribution.

I Definition 8. Let u, v be two vertices such that du >
√

2m. Let ~pu be a (starting)
distribution with support Γu such that:

~pu(w) = 1
du
, w ∈ Γu (1)

Let ~qu be a (target) distribution with support Γu such that:

~qu(w) =
{

1√
2m , w ∈ Γuv(

1− |Γuv|√
2m

)
· 1
du−|Γuv| , w /∈ Γuv

(2)

We note that by Lemma 4, it always holds that |Γuv| ≤
√

2m. Furthermore,∑
w∈Γu

~qu(w) =
∑
w∈Γuv

1√
2m

+
∑
w/∈Γuv

(
1− |Γuv|√

2m

)
· 1
du − |Γuv|

= |Γuv|√
2m

+ (du − |Γuv|)
(

1− |Γuv|√
2m

)
· 1
du − |Γuv|

= 1.

Thus the distribution ~qu is well-defined. LetMu = maxw∈Γu
~qu(w)
~pu(w) (as in Algorithm 1). Then,

Mu is bounded as follows.

I Lemma 9. Let Mu be defined as above. Recall that du >
√

2m. Then Mu = du√
2m .

Proof. If w ∈ Γuv, we have that ~qu(w)
~pu(w) = du√

2m . If w /∈ Γuv, we have that

~qu(w)
~pu(w) =

du(1− |Γuv|√
2m )

du − |Γuv|
= du(

√
2m− |Γuv|)√

2m(du − |Γuv|)
≤ du√

2m
, (3)

where the last inequality uses the fact that du >
√

2m. J
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Algorithm 2 Sampling a wedge.

1: procedure SampleWedge(G, u, v)
2: if du ≤

√
2m then

3: sample a number i ∈ {1, . . .
√

2m} uniformly at random
4: if i > du then
5: return Fail
6: w ← ith neighbor of u
7: else
8: w ← RejectionSampling(~pu, ~qu) . see Definition 8
9: return w

Algorithm 3 Sampling a cycle of length 2k + 1.

1: procedure SampleOddCycle(G, 2k + 1)
2: sample k directed edges (u1, v1), . . . , (uk, vk) u.a.r. and i.i.d.
3: if u1, v1, . . . , uk, vk is a path of length 2k − 1 and u1 ≺ v1, ∀i > 1 : u1 ≺ ui, vi then
4: if SampleWedge(G, u1, vk) returns w and w ≺ v1 then
5: return {(u1, v1), . . . , (uk, vk)} ∪ {(vk, w), (w, u1)}
6: return Fail

As there exists a linear number of automorphisms for every cycle, it is crucial in our
algorithm to define a unique embedding based on the order of vertices for every instance of a
k-cycle. Otherwise, bounding the probability that an instance is sampled exactly uniformly
is hard as some instance might be sampled less likely because, e.g., its edges participate
in many overlapping cycles. We take care of this by enforcing that only uniquely defined
embeddings are sampled in SampleOddCycle. In particular, we sample k directed edges
(u1, v1), . . . , (uk, vk) independently and uniformly at random and require that (i) they induce
a path u1, v1, u2, . . . , vk and (ii) for the first edge (u1, v1), u1 is the smallest vertex according
to the order “≺” among all ui, vi, i ≥ 1. Then, we call SampleWedge on the two ends
u1, vk of this path to close a cycle and define an orientation of this cycle by requiring that
w ≺ v1, where for (vk, w) = e2k+1. If any of these requirements is not met, we have not
sampled the uniquely defined embedding we are looking for, and the algorithm fails.

I Lemma 10. For any instance of an odd cycle C2k+1 in G, the probability that it will be
returned by SampleOddCycle(G, 2k + 1) is 1

(2m)k+1/2 .

Proof. Let C2k+1 be any instance of a cycle of odd length 2k + 1 in G. Let x0 be the
smallest vertex on C2k+1 according to the total order “≺”. Let x1, x2k be the two neighbors
of x0 on C2k+1 such that x1 ≺ x2k. Then, we let xi denote the vertices on C2k+1 such that
(xi, xi+1) ∈ E(C2k+1) for 0 ≤ i ≤ 2k − 1 and (x2k, x0) ∈ E(C2k+1). Note that for any C2k+1,
there is a unique way of mapping its vertices to xi, for 0 ≤ i ≤ 2k. Thus, SampleOddCycle
returns C2k+1 if and only if
1. u1 = x0 and v1 = x2k;
2. ui = x2k−2i+3 and vi = x2k−2i+2 for 2 ≤ i ≤ k;
3. SampleWedge(G, u1, vk) returns x1.

Event 1 occurs with probability 1/(2m), and event 2 occurs with probability 1/(2m)k−1,
as each directed edge is sampled with probability 1/(2m).
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Now we bound the probability of event 3. In the call to SampleWedge, let u := u1
and v := vk, which satisfies that u ≺ v. We first note that if du <

√
2m in Sample-

Wedge(G, u1, vk), then the vertex x1 will be sampled with probability 1/
√

2m. Now we
consider the case that du ≥

√
2m. Then, RejectionSampling(~pu, ~qu) will return x1 with

probability ~qu1(x1) = 1√
2m , as x1 is a common neighbor of u1, vk and u1 ≺ x1. Thus in

both cases, the probability that event 3 occurs is 1√
2m . Therefore, the probability that

SampleOddCycle returns C2k+1 is 1√
2m ·

1
2m · (

1
2m )k−1 = 1

(2m)k+1/2 . J

3.2 Sampling a Star

Similarly to odd cycles, we observe that every k-star admits an exponential number of
automorphisms. Therefore, we enforce a unique embedding of every instance of a k-star in
our sampling algorithm SampleStar. Let e1, . . . , ek be the petals of an instance of a k-star.
We sample e1, . . . , ek sequentially. If these edges form a star, we output it only if the leaves
where sampled in ascending order with respect to “≺”.

Algorithm 4 Sampling a star with k petals.

1: procedure SampleStar(G, k)
2: Sequentially sample k directed edges {(u1, v1), . . . , (uk, vk)} u.a.r. and i.i.d.
3: if u1 = u2 = . . . = uk and v1 ≺ v2 ≺ . . . ≺ vk then
4: return (u1, v1, . . . , vk)
5: return Fail

I Lemma 11. For any instance of a k-star Sk in G, the probability that it will be returned
by the algorithm SampleStar(G, k) is 1

(2m)k .

Proof. Consider any instance of Sk with root x and petals y1, . . . , yk such that y1 ≺
. . . yk. Note that it will be returned by SampleStar if and only if all the directed edges
(x, y1), . . . , (x, yk) are sequentially sampled, which occurs with probability 1/(2m)k. J

3.3 Sampling H

Let H be a subgraph. It can be decomposed into collections of o odd cycles Ci and s stars Sj
as given in Lemma 7. We say that H has a (decomposition) type T = {C1, . . . , Co, S1, . . . , Ss}.

I Definition 12. Given a graph G, for each potential instance H of H, we say that H
can be decomposed into configurations T = {C1, . . . , Co,S1, . . . ,Ss} with respect to type
T = {C1, . . . , Co, S1, . . . , Ss}, if

1. Ci ∼= Ci for any 1 ≤ i ≤ o, and Sj ∼= Sj, for any 1 ≤ i ≤ s

2. all the remaining edges of H between vertices specified in T all are present in G.
We let fT (H) denote the number of all possible configurations T into which H can be
decomposed with respect to T .
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Algorithm 5 Sampling a copy of subgraph H.

1: procedure SampleSubgraph(G,H)
2: Let T = {C1, . . . , Co, S1, . . . , Ss} denote a (decomposition) type of H.
3: for all i = 1 . . . o do
4: if SampleOddCycle(G, |E(Ci)|) returns a cycle C then
5: Ci ← C
6: else
7: return Fail
8: for all j = 1 . . . s do
9: if SampleStar(G, |V (Sj)| − 1) returns a star S then
10: Sj ← S
11: else
12: return Fail
13: Query all edges (

⋃
i∈[o] V (Ci) ∪

⋃
j∈[s] V (Sj))2

14: if S := (C1, . . . , Co,S1, . . . ,Ss) forms a copy of H then
15: flip a coin and with probability 1

f
T

(H) : return S

16: return Fail

I Lemma 13. For any instance of a subgraph H in G, the probability that it will be returned
by the algorithm SampleSubgraph(G,H) is 1

(2m)ρ(H) .

Proof. For any instance H of H in G, and any configuration T = {C1, . . . , CO,S1, . . . ,Ss} of
H with respect to T , H will be returned by SampleSubgraph(G,H) if and only if

1. Ci is returned in Algorithm 5 for each 1 ≤ i ≤ o, and Sj is returned in Algorithm 5 for
any 1 ≤ j ≤ s;

2. the configuration is returned with probability 1
f
T

(H) in Algorithm 5.

By Lemma 10, each Ci will be returned with probability 1
(2m)|E(Ci)|/2

= 1
(2m)ρ(Ci)

. By Lemma
11 each Sj will be returned with probability 1

(2m)|V (Sj)|−1
= 1

(2m)ρ(Sj)
. Thus, T will be

returned with probability

o∏
i=1

1
(2m)ρ(Ci)

·
s∏
j=1

1
(2m)ρ(Sj)

· 1
fT (H) = 1

(2m)ρ(H) ·
1

fT (H) .

Finally, since there are fT (H) configurations of H with respect to T , the instance will be
returned with probability fT (H) · 1

(2m)ρ(H) · 1
f
T

(H) = 1
(2m)ρ(H) . J

3.4 The Final Sampler

Let XH be an estimate of #H. Such an estimate can be obtained by, e.g., the subgraph
counting algorithm of Assadi et al. [3] in expected time Õ(mρ(H)/#H). We show that by
sufficiently many calls to SampleSubgraph, we can obtain a uniformly random sample of
an instance of H with constant probability.
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Algorithm 6 Sampling a copy of subgraph H uniformly at random.

1: procedure SampleSubgraphUniformly(G,H,XH)
2: for all j = 1, . . . , q = 10 · (2m)ρ(H)

/XH do
3: Invoke SampleSubgraph(G,H)
4: if a subgraph H is returned then return H

5: return Fail

I Lemma 14. If #H ≤ XH ≤ 2#H, then Algorithm SampleSubgraphUniformly(G,H,
XH) returns a copy H with probability at least 2/3. The distribution induced by the algorithm
is (exactly) uniform over the set of all instances of H in G.

Proof. Since #H ≤ XH ≤ 2#H, the probability that no instance of H is returned in
q = 10 · (2m)ρ(H)

/XH invocations is at most(
1− #H

(2m)ρ(H)

)q
≤ e−

#H
(2m)ρ(H) ·q <

1
3

by Lemma 13. Let H be an instance of H. By Lemma 13, the probability that Sample-
Subgraph(H) returns H is 1

(2m)ρ(H) . Thus, the probability that SampleSubgraphUni-
formly(G,H) successfully output an instance of H is

#H
(2m)ρ(H) .

Conditioned on the event that SampleSubgraphUniformly(G,H) succeeds, the prob-
ability that any specific instance H will be returned is

pH =
1

(2m)ρ(H)

#H
(2m)ρ(H)

= 1
#H .

That is, with probability at least 2
3 , an instanceH is sampled from the uniform distribution

over all the instances of H in G. J

Finally, we prove the expected query and time complexity of SampleSubgraphUni-
formly.

I Lemma 15. The expected query and time complexity of SampleSubgraph-
Uniformly(G,H,XH) is O(mρ(H)/XH).

Proof. We analyze the query complexity of SampleOddCycle(G, 2k + 1) for du1 <
√

2m
and du1 ≥

√
2m separately. The probability that du1 <

√
2m is at most 1, and the query

complexity is at most O(1) in this case.
To bound the probability that SampleWedge(G, u1, vk) is invoked such that du1 ≥√

2m, recall that sampling an edge uniformly at random is equivalent to sampling a vertex
proportionally to its degree and selecting a neighbor uniformly at random. The probability
to sample a neighbor x of u1 is 1/du1 . There are at most 2m/

√
2m =

√
2m vertices that have

degree at least
√

2m, so the probability that a uniformly random neighbor v1 of u1 has degree
at least

√
2m is at most

√
2m/du1 . Therefore, the probability that v1 has degree at least

√
2m,

which is implied by the check u1 ≺ v1 in line 3, is bounded by
√

2m/du1 . By Lemmas 5 and 9,
the expected number of queries in SampleWedge(G, u1, vk) is at most M ≤ du1/

√
2m

if du1 ≥
√

2m. Thus, the expected query complexity of SampleOddCycle(G, 2k + 1) is
bounded by
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∑
u1∈V

du1<
√

2m

du1

2m ·O(1) +
∑
u1∈V

du1≥
√

2m

du1

2m ·
√

2m
du1

· du1√
2m
≤ O(1) +

∑
u1∈V

du1≥
√

2m

du1

2m = O(1).

The expected query complexity of SampleStar(G, k) is bounded by k ∈ O(1). It follows
that the expected query complexity of SampleSubgraph(G,H) is at most (o+ s+ |H|2) ·
O(1) ⊆ |H|·O(1). The expected query complexity of SampleSubgraphUniformly(G,H) is
O((2m)ρ(H)

/XH ·|H|2) = Õ((2m)ρ(H)
/XH). To bound the expected running time, we observe

that every loop in our algorithm issues at least one query, and we only perform isomorphism
checks on subgraphs of constant size. Thus the running time is still Õ((2m)ρ(H)

/XH). J

The proof of Theorem 1 follows almost directly from Lemmas 14 and 15.

Proof of Theorem 1. For the case that m ≥ mρ(H)/#H, the claim follows from Lemmas 14
and 15. If m < mρ(H)/#H, we can query the whole graph, which requires O(m) degree and
neighbor queries, store the graph and answer the queries of the algorithm from this internal
memory. J

4 Proof of Theorem 2

In this section, we give the proof of Theorem 2, which follows by adapting the proofs for the
lower bounds on the query complexity for approximate counting subgraphs given by Eden
and Rosenbaum [12].

I Theorem 16 (see Theorems 4.7 and B.1 in [12]). For any choices of n,m, r, cr > 0, there
exist families of graphs with n vertices and m edges, F0 and F1, such that

all graphs in F0 are Kr-free,
all graphs in F1 contain at least cr copies of Kr,
and any algorithm in the augmented general graph model that distinguishes a graph G ∈ F0
from G ∈ F1 with probability Ω(1) requires Ω(min{m,mr/2/cr(cr)r}) queries for some
constant c > 0.

Now we prove our Theorem 2.

Proof of Theorem 2. Let A be an algorithm that for any graph G = (V,E) on n vertices
and m edges returns an arbitrary r-clique Kr, if one exists; and each Kr is sampled according
to D, using f(m, r,#Kr) ∈ o(min{m, mr/2

#Kr·(cr)r }) neighbor, degree, pair and edge sampling
queries.

Let n,m, cr > 0 and let F0,F1 be the families from Theorem 16. Consider the following
algorithm A′: run A on a graph from F0 ∪ F1 and terminate A if it did not produce a
Kr after f(m, r, cr) queries. If it output a clique, A′ claims that G ∈ F1, otherwise it
claims that G ∈ F0. By the assumption, A returns a clique after at most f(m, r, cr) queries
with probability Ω(1) if G ∈ F1 because then G contains at least cr copies of Kr and the
probability mass of D on the set of all copies of Kr is Ω(1). Otherwise, G ∈ F0, which
implies that G contains no triangle. Therefore, A cannot output a triangle from G.

It follows that A′ can distinguish F0 and F1, which is a contradiction to Theorem 16. J
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Abstract
Obtaining strong linear relaxations of capacitated covering problems constitute a significant technical
challenge even for simple settings. For one of the most basic cases, the Knapsack-Cover (Min-
Knapsack) problem, the relaxation based on knapsack-cover inequalities has an integrality gap
of 2. These inequalities are exploited in more general problems, many of which admit primal-dual
approximation algorithms.

Inspired by problems from power and transport systems, we introduce a general setting in which
items can be taken fractionally to cover a given demand. The cost incurred by an item is given
by an arbitrary non-decreasing function of the chosen fraction. We generalize the knapsack-cover
inequalities to this setting an use them to obtain a (2 + ε)-approximate primal-dual algorithm. Our
procedure has a natural interpretation as a bucket-filling algorithm which effectively overcomes
the difficulties implied by having different slopes in the cost functions. More precisely, when some
superior segment of an item presents a low slope, it helps to increase the priority of inferior segments.
We also present a rounding algorithm with an approximation guarantee of 2.

We generalize our algorithm to the Unsplittable Flow-Cover problem on a line, also for the
setting of fractional items with non-linear costs. For this problem we obtain a (4 + ε)-approximation
algorithm in polynomial time, almost matching the 4-approximation algorithm known for the classical
setting.
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1 Introduction

Covering problems have been heavily studied by the combinatorial optimization community.
Understanding their polyhedral descriptions, and how to approximate them, is a challenging
and important task even for simple variants. One of the main tools for obtaining strong linear
relaxations of covering problems are the knapsack-cover inequalities, introduced by Carr et
al. [9], and have been used extensively [4, 18, 3, 3, 8, 10, 19, 1, 20, 2, 22]. Although the
inequalities are exponentially many, they can be approximately separated up to a factor of 1+ε
in polynomial time. In many cases they are well adjusted for primal-dual algorithms, which
avoid having to solve the relaxation and yield faster combinatorial algorithms [4, 8, 10, 20].

In the classical Knapsack-Cover problem we are given a set of n items N and a demand
D ∈ N. Each item i has an associated covering capacity ui and cost ci. The objective is
to choose a subset of items covering D at a minimum cost. We introduce a new natural
generalization of this problem motivated by applications on the operation of power systems
and the design of public transport systems. In this version we can choose items partially at
a given cost, which might be non-linear. More precisely, each item i ∈ N have an associated
non-decreasing cost function fi : N → Q≥0 ∪ {∞}. We must choose a number xi ∈ N for
each i such that

∑
i∈N xi ≥ D. The cost of such solution is

∑
i∈N fi(xi). We can reduce the

Knapsack-Cover problem to this setting by considering fi(0) = 0, fi(1) = . . . = fi(ui) = ci

and fi(x) = ∞ for x > ui. We say that we are in the list model if the input contains
the numbers fi(0), fi(1), . . . , fi(D) explicitly as a list. In this case the reduction above is
pseudo-polynomial. On the other hand, if each fi is given by an oracle that outputs fi(x) for
any x, we say that we are in the oracle model. In this case the reduction above can be made
polynomial. We call our newly introduced problem the Non-Linear Knapsack-Cover problem.
Our setting also generalizes the Single-Demand Facility Location problem studied by Carnes
and Shmoys [8]. In this setting each item (facility) has an activation cost bi and then the
cost grows linearly at a rate of ai, that is, fi(0) = 0, fi(x) = bi + cix for x ∈ {1, . . . , ui}, and
fi(x) =∞ otherwise.

More generally, we study the Non-Linear variant of the Unsplittable Flow-Cover problem
on a path (UFP-cover), that extends the Non-Linear Knapsack-Cover problem. In the
original UFP-cover problem, first considered by Bar-Noy et al. [4], we have a discrete interval
I = {1, . . . , k} and a set N of n items, each one characterized by a capacity or height ui,
a cost ci, and a sub-interval Ii ⊆ {1, . . . , k}. We also have a demand Dt for each t ∈ I.
The problem consists on selecting the cheapest set of items such that the total height at
any point in I is at least the demand, that is, we must pick a set S minimizing

∑
i∈S ci

such that
∑

i∈S:Ii3t ui ≥ Dt for all t ∈ I. In this paper we generalize this problem to the
case where items can be taken partially. As before we are giving a non-decreasing function
fi = N→ Q≥0 ∪ {∞} for each item. We can choose to set the height of any item to a value
xi ∈ N by paying a cost fi(xi). We mush choose heights in order to cover the demand at
each point t ∈ I at a minimum total cost

∑
i fi(xi). Notice that this setting generalizes

Non-Linear Knapsack-Cover.
In this article we provide a generalization of the knapsack-cover inequalities to the

Non-Linear Knapsack-Cover problem, which we also apply to Non-Linear UFP-Cover. The
obtained relaxations yield primal-dual algorithms matching the classical settings. Namely,
for Non-Linear Knapsack-Cover we show a 2-approximation algorithm, and for Non-Linear
UFP-Cover a 4-approximation algorithm, both running in polynomial time in the list model.
For the oracle model, they can be adapted to yield a (2 + ε)- and (4 + ε)-approximation,
respectively, in polynomial time. Additionally, we show a rounding technique for the Non-
Linear Knapsack-Cover case also achieving a 2-approximation for the list model, together
with a polynomial time separation algorithm.
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Applications

One of our main motivations for considering non-linear cost functions comes from the Unit
Commitment Problem (UCP), a prominent problem in the operation of power systems. In
its most basic version, a central planner, called Independent System Operator (ISO), must
schedule the production of energy generated from a given set of power plants, in order
to satisfy a given demand. For the case of one time period, the problem corresponds to
Non-Linear Knapsack-Cover. More precisely, items correspond to power plants, and fi(x) is
the cost of producing x units of power by power plant i. A common issue in this setting is
that plants incur fixed costs for starting production, and after the resource is available, a
minimum amount of energy must be produced. It is worth noticing that after paying the
fixed cost the behavior of the cost functions might be non-linear and are often modelled by
convex quadratic functions [24].

On the other hand, Non-Linear UFP-Cover appears in the optimization of transport
systems. Consider an avenue with several bus stops {1, . . . , k}. We interpret the avenue as a
path network where bus stops correspond to edges. Passengers need to move (in a single
direction) within bus stops, and hence, we associate to each passenger a set of consecutive
bus stops (i.e., a path) which they need to traverse. The set of paths defines a flow that needs
to traverse the network. Hence, we obtain a demand Dt at each bus stop t, representing the
total number of passengers (amount of flow) that must traverse it. On the supply side, there
are potential bus transit lines, each covering some sub-path of the avenue, and hence covering
the demand on some subset of consecutive bus stops Ii = {fi, fi + 1, . . . , li} ⊆ {1, . . . , k}. As
the planner of this system, we must choose which lines to operate. Additionally, for each
chosen line, we must choose its operation frequency and the type of vehicle to use. Such
combinations of frequency and vehicle define the amount of passengers (demand) the line can
transport. Assume that for line i and each demand x, we can optimally choose (that is, we
have an oracle) the frequency and vehicle combination to minimize the operating cost of the
line, which we call fi(x). In other words, for each line i, we must choose a demand xi ≥ 0 to
cover, such that the total operation cost

∑
i fi(xi) is minimized. It is not hard to see that

covering the demand at each bus stop guarantees that all passengers can be transported.
Hence, it suffices that

∑
i:t∈Ii

xi ≥ Dt holds for each bus stop t ∈ {1, . . . , k}. Hence, we
obtain an instance of Non-Linear UFP-Cover.

We might wonder what type of cost functions fi one can get in this setting. There is a vast
literature concerning economies of scale in public transport lines: for instance, Mohring [21]
states that there are economies of scale in public transport, Fielbaum et al. [14] show that
they get exhausted. Coulombel and Monchambert [12] propose that the system could face
diseconomies of scale when the demand exceeds certain thresholds. Hence, techniques to
manage non-linear functions (that can have convex and concave regions) are needed.

Related Work

The use of the primal-dual method to derive approximation algorithms is introduced by
Bar-Yehuda and Even [5] and Chvátal [11], becoming one of the major tools for designing
approximation algorithms [23]. Bar-Noy et al. [4] are the firsts to consider the primal-
dual framework based on knapsack-cover inequalities. However, they pose their algorithm
in the equivalent local-ratio framework [6], even before the knapsack-cover inequalities
were introduced and without stating the underlying LP-relaxation. Their techniques yield
a 4-approximation algorithm and their analysis is tight [10]. Additionally, this problem
admits a quasi-polynomial time approximation scheme (QPTAS) [16]. On the other hand,
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Carnes and Shmoys [8] give an explicit description of the primal-dual method, obtaining
a 2-approximation algorithm for Knapsack-Cover, the Single-Demand Facility Location
problem, and the more general Single-item Lot-Sizing problem with Linear Holding Costs.
Cheung et al. [10] consider the Generalized Min-Sum Scheduling problem on a single machine
without release dates; they obtain a (4+ε)-approximation algorithm based on the primal-dual
framework on an LP with knapsack-cover inequalities. Finally, McCormick et al. [20] consider
covering problems with precedence constraints, where they give a primal-dual algorithm
with approximation ratio equal to the width of the precedence relations. We remark that
Non-Linear Knapsack-Cover can be modeled within this framework, but applying this result
to this case yields an unbounded approximation guarantee.

Outside the primal-dual framework, the literature is rich on the use of the knapsack-
cover inequalities and its generalizations together with rounding techniques. The problems
considered include the Min-Sum General Scheduling problem on a single [3] and multiple [22, 2]
machines, the Uniform [18] and Non-Uniform [19] Capacitated Multi-item Lot-sizing problem,
and Capacitated Facility Location [1]. On the other hand, it is not known if there exists a
compact set of constraints matching the strength of the knapsack-cover inequalities. Recently,
Bazzi et al. [7] gave a formulation with an integrality gap of 2 + ε for the Knapsack-Cover
problem with a quasipolinomial number of inequalities.

It is also worth mentioning that the most common technique for dealing with non-linear
cost functions in capacitated covering problems is a doubling technique: split the cost
function in segments where the function doubles. Then, each segment can be considered
independently as a single item. This technique removes the precedence dependence between
different segments, at factor 4 loss in the approximation ratio; see for example [3]. Similarly,
with a randomized shifting strategy an e-approximation is achievable [17, 15]. Our approach
strengthen the knapsack-cover inequalities and allows to avoid the extra loss.

Our Contribution

Let zij be a binary variable that represents whether xi ≥ j in the solution, i.e., if the j-th
unitary segment of item i is taken. Defining gij = fi(j) − fi(j − 1), then the cost of any
solution is

∑
ij gijzij , and for any solution to be feasible it must hold for all i, j that if zij = 1

then zi,j−1 = 1 . In a greedy algorithm, one might be tempted to take segments with low gij .
This fails as such segments might be preceded by another segment with gik � gij for k < j.
This poses two fundamental questions when assessing the value of a segment: (i) how to
take into consideration (mandatory) preceding segments of high cost? (ii) how to take into
account low costs segments to the right, specially considering segments that finally might
not be part of the final solution (since the demand can be completely covered by previous
segments)?

We introduce a natural variant of the knapsack-cover inequalities for non-linear cost
functions. These generalize the basic version of the inequalities, as well the generalization of
Carnes and Shmoys [8] for the Single-Demand Facility Location Problem. Our inequalities are
then used to derive a primal-dual algorithm that helps to handle the fundamental questions
stated above. Our algorithm can be interpreted as a water-filling algorithm. Each segment j
of an item i has a corresponding bucket Bij of capacity gij , representing an inequality in
the dual linear program. All buckets for a given item i are placed on a stairway, where
bucket Bij is on the j-th step of the stairs. A segment is taken, i.e. we set zij = 1, if its
corresponding bucket and all previous ones (which are in lower steps of the stairs) are full.
Water reaches buckets through two mechanisms. Water from an external source is poured
directly into each bucket at a rate of either 1 or 0 (units of water per time unit). The
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first time a bucket Bij becomes full, then the water arriving to this bucket spills to bucket
Bi,j−1, which now fills at a rate of 2 (as long as Bij is still receiving water from the external
source). If Bi,j−1 also becomes full and j > 2, then the water pouring into Bij and Bi,j−1
spills to Bi,j−2 which now fills at a rate of 3, etc. For a bucket to receive water from the
external source it must satisfy two properties: (i) its corresponding segment is not yet in
the primal solution, and (ii) all previous segments of the item are not enough to cover the
remaining demand. Our primal-dual algorithm helps to take care of the tensions implied by
the questions above by making buckets filling faster due to water spilled from higher buckets,
and prevents spilling water from a bucket if they are so high that they are useless to help
covering the remaining demand.

For the case of Non-Linear UFP-Cover, our algorithm works similarly. However, the
primal solution constructed with the algorithm might contain redundant segments due to
sub-intervals of I that might be covered in subsequent steps of the algorithm. For this reason
we need to perform a reverse-delete (or pruning) strategy to remove unnecessary segments,
in the reverse order in which they were introduced in the primal solution.

We notice that, for both algorithms, our analysis is tight as they achieve the same
performance guarantee as their classic variants [8, 10]. Additionally, the integrality gap of
our formulation for the Non-Linear Knapsack-Cover problem is also 2, as the same lower
bound of the the classical setting holds [9].

Finally, we show a rounding technique for the LP relaxation of the Non-Linear Knapsack-
Cover problem and a polynomial time separation algorithm for the generalized knapsack-cover
inequalities in the list model. These results, together with some of the proofs and extra
details, can be found in the full version of this manuscript [13].

2 A Generalization of the Knapsack-Cover Inequalities for
Non-Linear Knapsack-Cover

We first study the Non-Linear Knapsack-Cover problem. Recall that in this setting we
consider a demand D ∈ N and a set N of n items, each with a non-decreasing function fi.
We assume that all fi are defined over a common domain {0, 1, . . . ,m}, for some m ≤ D,
and that fi(0) = 0. Hence, each item i ∈ N has m segments of unit length, indexed by a
common set M = {1, . . . ,m}, each having a unit cost gij = fi(j)− fi(j − 1) ≥ 0. In what
follows we assume that our instance admits a feasible solution. We start by considering the
list model.

It is worth mentioning that the problem described can be solved in polynomial time
(respectively pseudo-polynomial) in the list (respectively oracle) model by a straightforward
adaptation of the classical dynamic program for Knapsack. In the oracle model the problem
is (weakly) NP-hard as it contains Knapsack-Cover as a special case. For this model the
dynamic program can be turned into an FPTAS also by adapting well known rounding
techniques [23]. However, these techniques alone cannot handle Non-Linear UFP-Cover.

2.1 Knapsack-Cover Inequalities for Non-Linear Costs
To write a linear relaxation of this problem, consider a ∈ {0, . . . ,m}N , where ai represents
that all segments j ∈ {1, . . . , ai} have been taken already for item i ∈ N (and ai = 0 represents
that no segment of i is taken yet). We face the residual problem, where we must decide about
segments not taken yet, and we must cover the residual demandD(a) := max{D−

∑
i∈N ai, 0}.

Recall that zij is a variable that indicates whether the j-th segment of item i is taken. Since
we must only cover the residual demand D(a), there is an optimal solution where zij = 0
for j > ai + D(a); therefore, we conclude that for item i we can only take up to segment
mi(a) := min{m, ai +D(a)}.
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Item 1:

Item 2:

F 0
1

1,2

F 1
1 F 2

1

3

F 0
2

3

F 1
2

2

F 2
2

LHS of Inequality (1) for a = (0, 1):

z11 + min{z12, z11}+ min{z13, z12, z11}

+

min{z22, z21}+ min{z23, z22, z21}

Figure 1 Example of an inequality in (1) for a given pair (a, F ), with n = 2 items, m = 3 segments
and demand D = 4. We consider a vector a with a1 = 0, a2 = 1, and hence m1(a) = m2(a) = 3. The
left side of the figure shows a specific index F . On the right is shown the left-hand-side (LHS) of the
convex inequality in (1), where we cover a term with a square if the corresponding term is chosen for
the inequality in (2) indexed by (a, F ). This yields the inequality z11 + z12 + z11 + z21 + z23 ≥ D(a),
where D(a) = 3. That is, 2z11 +z12 +z21 +z23 ≥ D(a), implying that τ(1, 1, a, F ) = 2, τ(1, 2, a, F ) =
τ(2, 1, a, F ) = τ(2, 3, a, F ) = 1, and all the other τ(i, j, a, F ) parameters equal 0.

To obtain a linear program, we relax the condition that zij = 1 implies zik = 1 for
k < j. To do so, note that in a feasible solution variable zij should never be larger than
min {zij , zi,j−1, . . . , zi1}, and hence we can replace in our formulation the appearance of
zij by this minimum. We conclude that the following is a relaxation of the Non-Linear
Knapsack-Cover problem, which we call [GKC]:

min
∑

i∈N,j∈M

gijzij

∑
i∈N

mi(a)∑
j=ai+1

min {zij , zi,j−1, . . . , zi1} ≥ D(a) for all a ∈ {0, . . . ,m}N , (1)

zij ≥ 0 for all i ∈ N, j ∈M.

We call the set of inequalities (1) the knapsack-cover inequalities for non-linear costs. This
relaxation can be easily linearized. Indeed, if a program has a constraint of the form
min{x1, x2} ≥ b, then we can replace it with x1 ≥ b and x2 ≥ b. More generally, if the
constraint is min{x1, x2}+min{x3, x4} ≥ b, then we must consider all constraints xi +xj ≥ b
for all i ∈ {1, 2} and j ∈ {3, 4}. More generally, convex inequality in (1) can be replaced
with exponentially many linear ones. The linear inequalities are constructed by replacing
each summand min {zij , zi,j−1, . . . , zi1} in (1) by one of its terms zij , zi,j−1, . . . , zi1.

Each of the new linear inequalities will be indexed by a pair (a, F ). The chosen notation
will prove useful when describing and analyzing the water-filling algorithm below, as they
will indicate which buckets are spilling water and which are receiving it. Consider a fixed
vector a as above. The index F indicates, for each item i ∈ N and segment j ∈M , which
term zip is selected from the set {zij , . . . , zi1} for each i, j. A given F can be thought as an
array of containers (F k

i )i∈N,k∈{0,...,m−1}. Each item i ∈ N corresponds to a row of this array,
with containers (sets) F 0

i , . . . , F
m−1
i . We distribute the set {ai + 1, . . . ,m} within these

containers, and thus
⋃
· m−1

k=0 F k
i = {ai + 1, . . . ,m}. Assigning an index j ∈ {ai + 1, . . . ,m} to

F k
i represents that in that inequality we select zi,j−k from {zij , . . . , zi1}. See Figure 1 for a

concrete example of this construction. The obtained set of inequalities is given by
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∑
i∈N

m−1∑
k=0

∑
j∈F k

i
:j≤mi(a)

zi,j−k ≥ D(a) for all (a, F ) ∈ F , (2)

where F is the set of all ordered pairs (a, F ) with a ∈ {0, . . . ,m}n, and F satisfies (i)⋃
· m−1

k=0 F k
i = {ai + 1, . . . ,m}, and (ii) if j ∈ F k

i then j − k ≥ 1 for all k, j. Let us consider
now a given pair (a, F ), an item i, and j > ai. The term zij might appear several times in
the respective constraint (2), depending on how many “minimums” are replaced by zij . If
k ∈ F k−j

i , then min{zik, zi,k−1, . . . , zi1} is replaced by zij . Moreover, recall that the residual
demand D(a) will never be covered by a segment zij for j > mi(a), and hence the number
of times that zij appears in the left-hand-side of the inequality is

τ(i, j, a, F ) = |{k ≥ j : k ∈ F k−j
i , k ≤ mi(a)}|. (3)

For a concrete example consider Figure 1.
With this definition, we obtain a linear relaxation that is equivalent to [GKC].

I Lemma 1. The convex program [GKC] is equivalent to

[P-GKC]:min
∑
i∈N

∑
j∈M

zijgij

s.t.
∑
i∈N

m∑
j=1

τ(i, j, a, F ) · zij ≥ D(a) for all (a, F ) ∈ F , (4)

z ≥ 0.

A routinary computation yields that the dual of this linear program, which we call [D-GKC],
is the problem of maximizing

∑
(a,F )∈F D(a)vaF subject to v ≥ 0 and∑

(a,F )∈F

τ(i, j, a, F ) · vaF ≤ gij for all i ∈ N, j ∈M. (5)

2.2 A 2-approximate Primal-Dual Algorithm
We provide a primal-dual 2-approximation algorithm based on the LP-relaxation [P-GKC]
and its dual [D-GKC]. It is worth having in mind the bucket representation of the algorithm
given above in the introduction.

Algorithm description

The water-filling algorithm described in the introduction is an intuitive representation of a
greedy algorithm for the dual [D-GKC]. Each bucket corresponds to a dual inequality: Each
of the inequalities in the dual [D-GKC] represents a bucket, the left hand size corresponds
to the amount of water in the bucket, while the right hand side is its capacity. The greedy
dual algorithm raises dual variables one by one starting from a dual solution v ≡ 0. In
each iteration of the main loop, we raise a variable vaF . The index a is chosen such that
ai represents the largest value ` for which all buckets Bi1, . . . , Bi` are full (or equivalently,
zi1 = . . . = zi` = 1), for each i ∈ N . To choose F , a segment j will belong to F k

i if and only
if the water from the external source falling into bucket Bij (if any) spills down to bucket
Bi,j−k. Number k is chosen such that it is the smallest number for which Bi,j−k is not full,
representing the idea that the water of full buckets falls down to the previous buckets on
the stairs. Also, buckets receiving water from the external source are the buckets Bij with
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46:8 Approximating Non-Linear Covering Problems

ai + 1 ≤ j ≤ mi(a). This way, τ(i, j, a, F ) corresponds to the filling rates of bucket Bij in
the current iteration, which considers the water directly from the external source and the
water spilled from higher buckets. We stop raising variable vaF as soon as one dual inequality
becomes tight, i.e., some bucket Bij becomes full. After, we update the value of z by setting
zik = 1 if Bi` is full for all ` ≤ k. Notice as we do not require that k ≤ mi(a), and hence the
returned primal solution might not satisfy the total demand exactly. Finally, we update a
and F as described above and repeat the main loop until the residual demand D(a) equals 0.
The pseudo-code is given in Algorithm 1. The algorithm calls a sub-routine (Line 14) that
explains how to update F when a bucket gets full but cannot be taken, which is given in
Algorithm 2.

Algorithm 1 Primal-Dual Water-Filling Algorithm for Non-Linear Knapsack-Cover.

1: z, v ← 0; % primal and dual solutions.

2: a← 0; % ai represents the largest value for which buckets Bi1, . . . , Bi,ai are full.

3: F k
i ← ∅ ∀i ∈ N, k ∈M ;

4: F 0
i ←M ; % j ∈ F k

i iff water from bucket Bij falls to bucket Bi,j−k.

5: while D(a) > 0 do
6: Increase vaF until a dual constraint indexed by (i, j), for some item i ∈ N and segment
j ∈M , becomes tight. % Bucket Bij becomes full.

% Update zij:

7: if j = ai + 1 then
8: Let q > ai be the maximum number such that Bi,ai+1, . . . , Biq are full.
9: for ` = j, . . . , q do

10: zi` ← 1; % Take available segments.

11: end for
12: ai ← q;
13: else % If we cannot raise variable zij:

14: F ← Update(F, i, j, a) % Call Algorithm 2 to update the sets F

15: end if
16: end while
17: return v, z.

Algorithm 2 Updating Buckets Subroutine

input a, i, j, F % a, F represent the current state of the buckets, i, j represent which

is the bucket that just got full. We require j > ai + 1.
Let p < j be the maximum number so that Bip is not full.
Let q > j be the minimum number so that Biq is not full (and q = m+ 1 if Bij , . . . , Bim

are all full).
for ` = j, j + 1, . . . , q − 1 do
F `−j

i ← F `−j
i \ {`} and F `−p

i ← F `−p
i ∪ {`} % The water from the external source

falling to Bi`, which was previously spilling to bucket Bij, now spills to bucket Bip.

end for
return F
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Analysis

The algorithm terminates, as each iteration of the main loop (Line 5) corresponds to some
bucket that becomes full, so we enter the while loop at most nm times. The main challenge
is to show that the algorithm is 2-approximate.

It follows directly that the dual solution constructed is feasible through the execution of
the algorithm. The primal solution is feasible as we kept iterating the main loop until the
residual demand D(a) is zero. As in most approximate primal-dual algorithms, the crux of
the analysis is to show that an approximate form of the complementary slackness conditions
are satisfied. This is summarized in the next key lemma.

I Lemma 2. Let v̄, z̄ be the primal and dual solutions computed by the algorithm. Then,for
all (a, F ) ∈ F such that v̄aF > 0, it holds that

∑
i∈N

m∑
j=1

τ(i, j, a, F )z̄ij ≤ 2D(a).

Proof. Let (̄ı, ̄) be the indices of the dual inequality that became tight in the last iteration
of the algorithm, and let z̄, v̄ be the output primal and dual solutions.

Let us fix a variable vaF > 0 and consider the iteration of the main loop of the al-
gorithm where we were raising that variable. For a given item i ∈ N , the expression∑

j≥1 τ(i, j, a, F )z̄ij represents the total number of buckets that are receiving water from
the external source and whose water is spilling to some bucket that ends up in the final
solution. We analyze the last item separately from the other items. Regarding item ı̄, notice
that

∑
j≥1 τ (̄ı, j, a, F )z̄ı̄j ≤ D(a), just because the buckets obtaining water from the external

source are in the interval aı̄ + 1, . . . ,mı̄(a), which are at most D(a) many.
Consider now i 6= ı̄ and a bucket Bij that is “part”of τ(i, j′, a, F ) for some segment j′

included in the final solution, that is, either j′ = j or Bij is pouring into Bij′ , case in which
all the buckets between j and j′ are full in this iteration of the algorithm. Then, as z̄ij′ = 1,
by construction Bij will be taken as well; that is, z̄ij = 1. Additionally, no water (either
directly or indirectly) reaches a bucket Bik with k ≤ ai, and hence τ(i, k, a, F ) = 0. So the
quantity

∑
i∈N\{ı̄}

∑
j≥1 τ(i, j, a, F )z̄ij is upper bounded by the total number of buckets in

the final solution, of items other than ı̄, that are above a. This number cannot be higher than
D(a), otherwise the algorithm would have finished before filling the last bucket Bı̄,̄. J

The proof of the next theorem follows from the previous lemma and standard techniques
from primal-dual analysis. The details are deferred to the full version.

I Theorem 3. Algorithm 1 is a polynomial time 2-approximation algorithm for Non-Linear
Knapsack-Cover in the list model.

The extension of this theorem to the oracle model is given in Section 4.

3 Unsplittable Flow-Cover on the Line

We now show that extending the ideas of Section 2 we can also achieve a 4-approximation for
the Non-Linear UFP-Cover problem. Recall that an instance of this problem is given by an
interval I = {1, . . . , k}, a set N of n items, where each item is characterized by a capacity or
height ui, a cost ci, and a sub-interval Ii ⊆ {1, . . . , k}. We also have a demand Dt for each
t ∈ I.
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46:10 Approximating Non-Linear Covering Problems

In the non-linear case, we can choose the height of each item from within a set M =
{1, . . . ,m}. In other words, each item consists of a list of (vertical) segments, and one must
choose a prefix of them. Again, we first focus on the list model where the costs of segments
gi1, gi2, . . . , gim are given in a list. As before, we use variables zij ∈ {0, 1} to represent if
segment j of item i is in the solution. With this the cost is

∑
i∈N

∑
j∈M zijgij and the

constraint that each demand must be covered is given by∑
i∈N :t∈Ii

∑
j∈M

zij ≥ Dt for all t ∈ I. (6)

Finally, we require that zi,j+1 = 1⇒ zij = 1 for all i ∈ N, j ∈ {1, . . . ,m− 1}.
We now present the problem using the generalized knapsack-cover inequalities, and the

relaxation explained in Section 2, applied to each inequality in (6) separately. For this, define
Dt(a) = max

(
Dt −

∑
i:t∈Ii

ai, 0
)
and τ(i, j, a, F, t) = {k ≥ j : k ∈ F k−j

i , k ≤ mi(a)}, where
mi(a) = min{m, ai +Dt(a)}. The relaxed primal problem, which we call [P-UFP], asks to
minimize

∑
i,j zijgij for z ≥ 0 subject to∑

i:t∈Ii

∑
j≥1

τ(i, j, a, F, t) · zij ≥ Dt(a) for all (t, a, F ) ∈ H

where H is the set of triplets (t, a, F ) where t ∈ I and (a, F ) ∈ F , as defined in Section 2.2.
This yields a dual relaxation [D-UFP], whose objective is max

∑
(a,t,F )∈H vatF ·Dt(a), and

we must optimize over all v ≥ 0 satisfying∑
(a,t,F )∈H:t∈Ii

τ(i, j, a, F, t) · vatF ≤ gij for all i ∈ N, j ∈M. (7)

Algorithm Description

Our primal-dual algorithm is given in Algorithm 3. In this case our approach has two phases.
During the growing phase (Lines 5–15), we construct a dual solution, which then directly
implies a feasible primal solution. In the pruning phase (Lines 16–20) we remove unnecessary
segments from the primal solution. As before, for each item i ∈ N we have a stair of buckets,
where each bucket Bij corresponds to a given inequality in the dual, indexed by j ∈ M
and i ∈ N . In each iteration of the growing phase buckets receive water (that might fall
to inferior buckets) from an external source at a rate of 1 or 0. Once we define the rates,
the water dynamics work in exactly the same way as in Section 2.2: water reaching a given
bucket that is full is spilled to the next bucket to the left until it reaches a bucket that is not
full. The only difference is that only some of the items receive water. More precisely, in a
given iteration of the growing phase, we select t ∈ I with largest unsatisfied demand Dt(a)
(break ties arbitrarily). This is a greedy criterion to increase the dual objective function as
fast as possible. Only buckets for items i ∈ I such that t ∈ Ii receive water from the external
source. For such an item i, the subset of buckets receiving water from the external source
are again buckets Bij with j ∈ {ai + 1, . . . ,mi(a)}. The water dynamics can be emulated
by raising a single dual variable at a time. Notice that the only difference to the dual in
Section 2 is that when raising a given variable vatF , only inequalities for items i ∈ N where
t ∈ Ii are affected, corresponding to the fact that only buckets corresponding to such items
receive water from the external source.

When one or more buckets become full, we pick one of these buckets. As before, a full
bucket means that the corresponding segment (i, j) is available. We take a given segment, that
is, we define a primal variable zij to 1, as soon as all preceding buckets of item i are available.
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In other words, if Bij becomes full for j = ai + 1, then we take set zij = . . . = ziq = 1
where Bij , . . . , Biq are full but Bi,q+1 is not. This is the case even if q > mi(a). All taken
buckets (or segments) are considered to be a “block”, denoted by bij (where j denotes the
first segment of the block). After this we update t and continue with a new iteration of the
main loop of the growing phase.

Although this first phase gives a feasible primal solution, some blocks might have become
redundant, that is, the solution would remain feasible without them. In the second phase we
remove redundant blocks when we can. To do this, we check for each block bij , in reverse
order in which they were added, whether removing the block from the primal solution makes
the given primal unfeasible. If bij is redundant and it is the superior block (i.e., the block
containing the highest segment that is still in the solution) of its item, we remove it; if bij is
redundant but there are blocks over it in the solution when it is checked, we cannot remove
it (the solution would become unfeasible). Note that doing so, all the superior blocks that
are in the final solution are not redundant.

Algorithm 3 Primal-Dual Algorithm for Non-Linear UFP-Cover.

1: z, v ← 0 % primal and dual solutions.

2: a← 0
3: F k

i ← ∅ for all i, k ≥ 1; F 0
i ←M

4: Bi ← ∅ for all i % Set containing the blocks of item i.

5: while Dt(a) > 0 for some t do
6: Select t that maximizes Dt(a) (break ties arbitrarily).
7: Increase vatF until a dual constraint indexed by (i, j), for some item i and segment j,

becomes tight. Break ties in favor of a bucket with smallest index j.
8: if j > ai + 1 then
9: F ← Update(F, i, j, a) % Water pouring into Bij pours into a lower bucket.

10: else
11: Let q > ai be the maximum number such that j′ /∈ F 0

i for all j′ = j + 1, . . . , q % we

take all full buckets that poured into Bi,ai+1, even the ones that are now truncated.

12: Set ai ← q

13: Set Bi ← Bi ∪ bij , with bij = {j, . . . , q} % bij is a block that enters the primal

solution.

14: end if
15: end while
16: for all bij in reversed order in which they are defined in the growing phase do
17: if bij can be removed from the primal solution without leaving any demand unsatisfied

and j ≥ j′ for all j′ such that bij′ ∈ Bi then
% We eliminate redundant blocks, unless they have a superior block over it

18: Bi ← Bi \ bi,j

19: end if
20: end for
21: return z, where zij = 1 for j ≤

∑
bik∈Bi

|bik|.

The proof of correctness is analogous as in Section 2.2. To show the approximation factor
we need the following key lemma.

I Lemma 4. Consider the output (z, v) of the algorithm. Let (a, t, F ) such that vatF > 0.
Then∑

i:t∈Ii

∑
j≥1

τ(i, j, a, F, t) · zij ≤ 4Dt(a).
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Proof. Let us fix a variable vatF > 0 raised in the main loop of the growing phase. Denote
by Bi the set of blocks for each i at the end of the pruning phase. Out of those, consider the
ones that are above a, and that contribute to fulfill the demand in t, that is, Sta = {bij ∈
∪i∈NBi : t ∈ Ii, j ≥ ai + 1}. Let us denote by bi the superior block of each item (i.e. bi = bij

with bij ∈ Sta and j ≥ j′ for all j′ such that bij′ ∈ Bi). For each of these superior blocks,
as they were not removed, it must exist some ti ∈ I such that its demand would become
unsatisfied when removing bi, which is of course also true if we look only at the blocks in
Sta, i.e.,

Dti
(a) >

 ∑
bkj∈Sta

|bkj |

− |bi|. (8)

Inequality (8) is true because we removed the blocks in a reversed order, and the blocks
that conform a were introduced before bi in the growing phase. Let us classify the blocks in
Sta into two subsets, SL

ta = {bi` ∈ Sta : ti ≤ t} and SR
ta = {bi` ∈ Sta : ti > t}.

We divide the proof of Lemma 4 into two analogous inequalities. Let us show that∑
i:t∈Ii

∑
j:bij∈SR

ta

zijτ(i, a, t, F ) ≤ 2Dt(a). (9)

To do this, define tR = min{ti : bi ∈ SR
ta}. Note that tR is covered by every interval Ii with

bi in SR
ta, as they cover t (which is at most tR) and their ti (which is larger or equal than

tR). Define (i1, j1) such that ti1 = tR and bi1 = bi1,j1 . On the one hand, by definition of τ ,
we have that zi1,j1τ(i1, j1, a, t, F ) ≤ τ(i1, j1, a, t, F ) ≤ Dt(a). On the other hand we study∑

i:t∈Ii

∑
j:Bij∈SR

ta,
(i,j) 6=(i1,j1)

zijτ(i, j, a, F, t).

Consider an item i 6= i1, and the iteration while increasing variable vatF . The summands
are the number of buckets that were spilling over each of the segments above ai that are
in the final solution (because we only sum when zij = 1, and buckets Bik for k ≤ ai do
not receive water). This quantity cannot be higher than the sum of the cardinality of all
the blocks above ai in the final solution (recall that when blocks are taken in Line 11, they
include truncated buckets that have poured onto the taken segments). For i1, the same
argument holds, but the superior block bi1 does not need to be considered because it never
poured onto the inferior blocks (otherwise they would have been the same block). Thus it
holds that∑

i:t∈Ii

∑
j:bij∈SR

ta,
(i,j) 6=(i1,j1)

zijτ(i, j, a, F, t) ≤
∑

bij∈SR
ta,

(i,j)6=(i1,j1)

|bij | ≤ DtR(a) ≤ Dt(a). J

With this lemma we can show the following main results. The first proof follows from
standard LP techniques which are completely analogous to the proof of Theorem 3. The
extension to the oracle model is given in Section 4.

I Theorem 5. Algorithm 3 is a polynomial 4-approximation algorithm for Non-Linear
UFP-Cover in the list model.
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4 Arbitrary non-decreasing functions

We now show how to adapt our algorithms in Sections 2 and 3 for the more general oracle
model. Here we assume that each function fi : {0, . . . ,m} → Q≥0 ∪ {∞}, where m ≤ D

is not necessarily polynomially bounded. We assume that each function fi is given by an
oracle, such that a polynomial number of bits is enough to describe all values fi(x). Using
standard techniques, we first approximate each function fi by a piece-wise constant function
with a polynomial number of steps. After, we discuss how to emulate Algorithm 1 and 3 in
polynomial time for such functions.

First of all, by scaling we can assume, without loss of generality, that fi(x) ∈ N ∪ {∞}.

I Lemma 6. Consider ε > 0 and let f : {1, . . . ,m} → N∪{∞} be a non-decreasing function.
Let fmax be the maximum finite value of f(x). There exists a non-decreasing piece-wise
constant function f̃ such that

f(x) ≤ f̃(x) ≤ (1 + ε)f(x) for all x ∈ {1, . . . ,m},

where (f̃(x))x∈N takes at most dlog1+ε fmaxe+ 1 many different values. The function f̃ can
be computed in polynomial time.

Proof. To prove the lemma we can assume that f(x) > 0, as the values f(x) = 0 just
corresponds to separate piece in f̃ . For all other x ∈ {1, . . . ,m}, we can simply set f̃(x) =
(1 + ε)dlog1+ε f(x)e. The constant-wise pieces (intervals) of f̃ can be easily computed in
polynomial time with a binary search approach. J

We now sketch how to adapt the algorithms of Sections 2 and 3 for this scenario. Let f̃i be
the obtained function after applying the last lemma to fi. We partition the set {0, 1, . . . ,m}
in intervals Ji1, Ji2, . . . , Jimi correspondent to the piece-wise constant pieces of f̃i, that is
f̃i(x) = f̃i(x′) if x, x′ ∈ Jik. We denote by uik ∈ N the cardinality of interval Jik ⊆ N. To
adapt the algorithms, note that as they originally deal with unitary segments, a piecewise
constant function can be replaced (preserving the same costs for any solution) by a piecewise
constant function with a pseudopolynomial number of unitary segments. More precisely, if
Jik = {`, ` + 1, . . . , u}, then gi` = f̃i(`) − f̃i(` − 1), and gir = 0 for all r ∈ {` + 1, . . . , u}.
Applying our algorithms to this instance would imply a pseudopolynomial running time.
However, as all but mi many buckets for item i has zero capacity gij , we can handle all of
them simultaneously to make our algorithms run in polynomial time.

To do this, we can process all segments in Jik in a single step: when the algorithm
begins, all their respective buckets but the first one get instantaneously full, so the first one
will receive water at a rate equal to the length of the constant interval (equivalently, the
interval Jij is represented by a bucket of height gij that gets filled at a rate uij). Any time a
bucket pours onto some inferior bucket, its rate also increases by the length of the interval
corresponding to the pouring bucket. Truncations, given by the fact that in a given iteration
only buckets Bij for j ∈ {ai + 1, . . . ,mi(a)} get water from the external source for each item
i, make these rates diminish accordingly. With these rules, the algorithms can be easily
adapted to run in polynomial time implying the following theorems.

I Theorem 7. There exists a polynomial time (2 + ε)-approximation for the Knapsack-Cover
Problem with Non-Linear Costs and arbitrary non-decreasing functions.

I Theorem 8. There exists a (4 + ε)-approximation for the Unsplittable Flow-Cover on the
Line Problem with Non-Linear Costs and arbitrary non-decreasing functions.
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Abstract
A partition P of a weighted graph G is (σ, τ,∆)-sparse if every cluster has diameter at most ∆, and
every ball of radius ∆/σ intersects at most τ clusters. Similarly, P is (σ, τ,∆)-scattering if instead for
balls we require that every shortest path of length at most ∆/σ intersects at most τ clusters. Given
a graph G that admits a (σ, τ,∆)-sparse partition for all ∆ > 0, Jia et al. [STOC05] constructed a
solution for the Universal Steiner Tree problem (and also Universal TSP) with stretch O(τσ2 logτ n).
Given a graph G that admits a (σ, τ,∆)-scattering partition for all ∆ > 0, we construct a solution for
the Steiner Point Removal problem with stretch O(τ3σ3). We then construct sparse and scattering
partitions for various different graph families, receiving many new results for the Universal Steiner
Tree and Steiner Point Removal problems.
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1 Introduction

Graph and metric clustering are widely used for various algorithmic applications (e.g.,
divide and conquer). Such partitions come in a variety of forms, satisfying different require-
ments. This paper is dedicated to the study of bounded diameter partitions, where small
neighborhoods are guaranteed to intersects only a bounded number of clusters.

The first problem we study is the Steiner Point Removal (SPR) problem. Here we are
given an undirected weighted graph G = (V,E,w) and a subset of terminals K ⊆ V of size k
(the non-terminal vertices are called Steiner vertices). The goal is to construct a new weighted
graph M = (K,E′, w′), with the terminals as its vertex set, such that: (1) M is a graph
minor of G, and (2) the distance between every pair of terminals t, t′ in M is distorted by
at most a multiplicative factor of α, formally, ∀t, t′ ∈ K, dG(t, t′) ≤ dM (t, t′) ≤ α · dG(t, t′).
Property (1) expresses preservation of the topological structure of the original graph. For
example if G was planar, so will M be. Whereas property (2) expresses preservation of the
geometric structure of the original graph, that is, distances between terminals. The question
is thus: given a graph family F , what is the minimal α such that every graph in F with a
terminal set of size k will admit a solution to the SPR problem with distortion α.
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Consider a weighted graph G = (V,E,w) with a shortest path metric dG. The weak
diameter of a cluster C ⊆ V is the maximal distance between a pair of vertices in the cluster
w.r.t. dG (i.e., maxu,v∈C dG(u, v)). The strong diameter is the maximal distance w.r.t. the
shortest path metric in the induced graph G[C] (i.e., maxu,v∈C dG[C](u, v)). A partition P
of G has weak (resp. strong) diameter ∆ if every cluster C ∈ P has weak (resp. strong)
diameter at most ∆. Partition P is connected, if the graph induced by every cluster C ∈ P
is connected. Given a shortest path I = {v0, v1, . . . , vs}, denote by ZI(P) =

∑
C∈P 1C∩I6=∅

the number of clusters in P intersecting I. If ZI(P) ≤ τ , we say that I is τ -scattered by P .

I Definition 1 (Scattering Partition). Given a weighted graph G = (V,E,w), we say that a
partition P is (σ, τ,∆)-scattering if the following conditions hold:
P is connected and has weak diameter ∆.
Every shortest path I of length at most ∆/σ is τ -scattered by P, i.e., ZI(P) ≤ τ .

We say that a graph G is (σ, τ)-scatterable if for every parameter ∆, G admits an (σ, τ,∆)-
scattering partition that can be computed efficiently.

The main contribution of this paper is the finding that scattering partitions imply solutions
for the SPR problem. The proof appears in Section 3.1

I Theorem 2 (Scattering Partitions imply SPR). Let G = (V,E,w) be a weighted graph
such that for every subset A ⊆ V , G[A] is (1, τ)-scatterable. Let K ⊆ V be some subset of
terminals. Then there is a solution to the SPR problem with distortion O(τ3) that can be
computed efficiently.

Jia, Lin, Noubir, Rajaraman, and Sundaram [45] 2 defined the notion of sparse partitions,
which is closely related to scattering partitions. Let P be a partition. Given a ball B =
BG(x, r), denote by ZB(P) =

∑
C∈P 1C∩B 6=∅ the number of clusters in P intersecting B.

I Definition 3 (Strong/Weak Sparse Partition). Given a weighted graph G = (V,E,w),
we say that a partition P is (σ, τ,∆)-weak (resp. strong) sparse partition if the following
conditions hold:
P has weak (resp. strong) diameter∆.
Every ball B = BG(v, r) of radius r ≤ ∆/σ intersects at most τ clusters, i.e., ZB(P) ≤ τ .

We say that a graph G admits an (σ, τ)-weak (resp. strong) sparse partition scheme if for
every parameter ∆, G admits an efficiently computable (σ, τ,∆)-weak (resp. strong) sparse
partition.

Jia et al. [45] found a connection between sparse partitions to the Universal Steiner
Tree Problem (UST).3 Consider a complete weighted graph G = (V,E,w) (or a metric space
(X, d)) where there is a special server vertex rt ∈ V , which is frequently required to multicast
messages to different subsets of clients S ⊆ V . The cost of a multicast is the total weight
of all edges used for the communication. Given a subset S, the optimal solution is to use
the minimal Steiner tree spanning S ∪ {rt}. In order to implement an infrastructure for
multicasting, or in order to make routing decisions much faster (and not compute it from
scratch once S is given), a better solution will be to compute a Universal Steiner Tree (UST).
A UST is a tree T over V , such that for every subset S, the message will be sent using the

1 In Observation 2 we argue that (σ, τ,∆)-scattering partition is also (1, τσ,∆)-scattering.
2 Awerbuch and Peleg [8] were the first to study sparse covers (see Definition 5). Their notion of sparse

partition is somewhat different from the one used here (introduced by [45]).
3 A closely related problem is the Universal Traveling Salesman Problem (UTSP), see Section 1.4.
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sub-tree T (S) spanning S ∪ {rt}. The stretch of T is the maximum ratio among all subsets
S ⊆ X between the weight of T (S) and the weight of the minimal Steiner tree spanning
S ∪ {rt}, maxS⊆X w(T (S))

Opt(S∪{rt}) .
Jia et al. [45] proved that given a sparse partition scheme, one can efficiently construct

a UST with low stretch (the same statement holds w.r.t. UTSP as well).

I Theorem 4 (Sparse Partitions imply UST, [45]). Suppose that an n-vertex graph G admits
an (σ, τ)-weak sparse partition scheme, then there is a polynomial time algorithm that given
a root rt ∈ V computes a UST with stretch O(τσ2 logτ n).

Jia et al. [45] constructed (O(logn), O(logn))-weak sparse partition scheme for general
graphs, receiving a solution with stretch polylog(n) for the UST problem. In some instances
the communication is allowed to flow only in certain routes. It is therefore natural to
consider the case where G = (V,E,w) is not a complete graph, and the UST is required
to be a subgraph of G. Busch, Jaikumar, Radhakrishnan, Rajaraman, and Srivathsan [12]
proved a theorem in the spirit of Theorem 4, stating that given a (σ, τ, γ)-hierarchical strong
sparse partition, one can efficiently construct a subgraph UST with stretch O(σ2τ2γ logn).
A (σ, τ, γ)-hierarchical strong sparse partition is a laminar collection of partitions {Pi}i≥0
such that Pi is (σ, τ, γi)-strong sparse partition which is a refinement of Pi+1.4 Busch
et al. constructed a

(
2O(
√

logn), 2O(
√

logn), 2O(
√

logn))-hierarchical strong sparse partition,
obtaining a 2O(

√
logn) stretch algorithm for the subgraph UST problem. We tend to believe

that poly-logarithmic stretch should be possible. It is therefore interesting to construct
strong sparse partitions, as it eventually may lead to hierarchical ones.

A notion which is closely related to sparse partitions is sparse covers.

I Definition 5 (Strong/Weak Sparse cover). Given a weighted graph G = (V,E,w), a
(σ, τ,∆)-weak (resp. strong) sparse cover is a set of clusters C ⊂ 2V , where all the clusters
have weak (resp. strong) diameter at most ∆, and the following conditions hold:

Cover: ∀u ∈ V , exists C ∈ C such that BG(u, ∆
σ ) ⊆ C.

Sparsity: every vertex u ∈ V belongs to at most |{C ∈ C | u ∈ C}| ≤ τ clusters.
We say that a graph G admits an (σ, τ)-weak (resp. strong) sparse cover scheme if for every
parameter ∆, G admits an (σ, τ,∆)-weak (resp. strong) sparse cover that can be computed
efficiently.

It was (implicitly) proven in [45] that given (σ, τ,∆)-weak sparse cover C, one can construct
an (σ, τ,∆)-weak sparse partition. In fact, most previous constructions of weak sparse
partitions were based on sparse covers.

1.1 Previous results
SPR. Given an n-point tree, Gupta [38] provided an upper bound of 8 for the SPR problem
(on trees). This result were recently reproved by the author, Krauthgamer, and Trabelsi [33]
using the Relaxed-Voronoi framework. Chan, Xia, Konjevod, and Richa [14] provided a
lower bound of 8 for trees. This is the best known lower bound for the general SPR problem.
Basu and Gupta [11] provided an O(1) upper bound for the family of outerplanar graphs.5
For general n-vertex graphs with k terminals the author [27, 29] recently proved an O(log k)
upper bound for the SPR problem using the Relaxed-Voronoi framework, improving upon

4 We assume here w.l.o.g. that the minimal distance in G is 1.
5 Actually the manuscript [11] was never published, and thus did not go through a peer review process.
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previous works by Kamma, Krauthgamer, and Nguyen [46] (O(log5 k)), and Cheung [16]
(O(log2 k)) (which were based on the Ball-Growing algorithm). Interestingly, there are no
results on any other restricted graph family, although several attempts have been made (see
[25, 50, 17]).

UST. Given an n-point metric space and root rt, Gupta, Hajiaghayi and Räcke [39]
constructed a UST with stretch O(log2 n), improving upon a previous O(log4 n/ log logn)
result by [45]. [45] is based on sparse partitions, while [39] is based on tree covers. Jia et al.
[45] proved a lower bound of Ω(logn) to the UST problem, based on a lower bound to the
online Steiner tree problem by Alon and Azar [6]. Using the same argument, they [45] proved
an Ω( logn

log logn ) lower bound for the case where the space is the n× n grid (using [43]). Given
a space with doubling dimension ddim, 6 Jia et al. [45] provided a solution with stretch
2O(ddim) · logn, using sparse partitions. Given an n vertex planar graph, Busch, LaFortune,
and Tirthapura [13] proved an O(logn) upper bound (improving over Hajiaghayi, Kleinberg,
and Leighton [42]). More generally, for graphs G excluding a fixed minor, both Hajiaghayi
et al. [42] (implicitly) and Busch et al. [13] (explicitly) provided a solution with stretch
O(log2 n). Both constructions used sparse covers. Finally, Busch et al. [12] constructed a
subgraph UST with stretch polylog(n) for graphs excluding a fixed minor (using hierarchical
strong sparse partitions).

Scattering Partitions. As we are the first to define scattering partitions there is not much
previous work. Nonetheless, Kamma et al. [46] implicitly proved that general n-vertex graphs
are (O(logn), O(logn))-scatterable.7

Sparse Covers and Partitions. Awerbuch and Peleg [8] introduced the notion of sparse
covers and constructed (O(logn), O(logn))-strong sparse cover scheme for n-vertex weighted
graphs.8 Jia et al. [45] induced an (O(logn), O(logn))-weak sparse partition scheme.
Hajiaghayi et al. [42] constructed an (O(1), O(logn))-weak sparse cover scheme for n-
vertex planar graph, concluding an (O(1), O(logn))-weak sparse partition scheme. Their
construction is based on the [48] clustering algorithm. Abraham, Gavoille, Malkhi, and
Wieder [5] constructed (O(r2), 2O(r) · r!)-strong sparse cover scheme for Kr-free graphs.
Busch et al. [13] constructed a (48, 18)-strong sparse cover scheme for planar graphs 9

and (8, O(logn))-strong sparse cover scheme for graphs excluding a fixed minor, concluding
a (48, 18) and (8, O(logn))-weak sparse partition schemes for these families (respectively).
For graphs with doubling dimension ddim, Jia et al. [45] constructed an (1, 8ddim)-weak
sparse scheme. Abraham et al. [3] constructed a (2, 4ddim)-strong sparse cover scheme. In a
companion paper, the author [28] constructed an (O(ddim), O(ddim · log ddim))-strong sparse
cover scheme.10 Busch et al. [12] constructed

(
O(log4 n), O(log3 n), O(log4 n)

)
-hierarchical

strong sparse partition for graphs excluding a fixed minor.

6 A metric space (X, d) has doubling dimension ddim if every ball of radius 2r can be covered by 2ddim

balls of radius r. The doubling dimension of a graph is the doubling dimension of its induced shortest
path metric.

7 This follows from Theorem 1.6 in [46] by choosing parameters t = β = O(logn) and using union bounds
over all n2 shortest paths. Note that they assume that for every pair of vertices there is a unique
shortest path.

8 More generally, for k ∈ N, [8] constructed a (2k − 1, 2k · n
1
k )-strong sparse cover scheme.

9 Busch et al. argued that they constructed (24, 18)-strong sparse covering scheme. However they
measured radius rather than diameter.

10More generally, for a parameter t = Ω(1), [28] constructed
(
O(t), O(2ddim/t · ddim · log t)

)
-sparse cover

scheme.
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1.2 Our Contribution

Scattering Weak

Strong

Doubling

Pathwidth

Trees

Chordal
Planar, Kr-free

?

General graphs

?

Cactus

SPD

Euclidean space

Figure 1 Classification of various graph families according to the possibility of construction
different partitions. Graphs with bounded doubling dimension or SPD 14 (pathwidth) admit strong
sparse partitions with parameters depending only on the dimension/SPDdepth. Trees, Chordal and
Cactus graphs admit both (O(1), O(1))-weak sparse and scattering partitions, while similar strong
partitions are impossible. Rd with norm 2 admit (1, 2d) scattering partition while weak sparse
partition with constant padding will have an exponential number of intersections. Planar graphs
admit (O(1), O(1))-weak sparse partitions, while it is an open question whether similar scattering
partitions exist. Finally, while sparse partitions for general graphs are well understood, we lack a
lower bound for scattering partitions.

Formal statements, and proofs of all our partitions are differed to the full version [31]. The
main contribution of this paper is the definition of scattering partition and the finding that
good scattering partitions imply low distortion solutions for the SPR problem (Theorem 2).
We construct various scattering and sparse partition schemes for many different graph families,
and systematically classify them according to the partition types they admit. In addition, we
provide several lower bounds. The specific partitions and lower bounds are described below.
Our findings are summarized in Table 1, while the resulting classification is illustrated in
Figure 1.

Recall that [45] (implicitly) showed that sparse covers imply weak sparse partitions.
We show that the opposite direction is also true. That is, given a (σ, τ,∆)-weak sparse
partition, one can construct an (σ + 2, τ, (1 + 2

σ )∆)-weak sparse cover. Interestingly, in
addition we show that strong sparse partitions imply strong sparse covers, while the opposite
is not true. Specifically there are graph families that admit (O(1), O(1))-strong sparse
cover schemes, while there are no constants σ, τ , such that they admit (σ, τ)-strong sparse
partitions. Description of our findings on the connection between sparse partitions and sparse
covers, and a classification of various graph families are differed to the full version [31].

The scattering partitions we construct imply new solutions for the SPR problem previously
unknown. Specifically, for every graph with pathwidth ρ we provide a solution to the SPR
problem with distortion poly(ρ), independent of the number of terminals. After trees [38] and
outerplanar graphs [11] 5, this is the first graph family to have solution for the SPR problem
independent from the number of terminals (although attempts were made). Furthermore, we
obtain solution with constant distortion for Chordal and Cactus graphs.11

11Note that the family of cactus graph is contained in the family of outerplanar graph. Basu and Gupta
[11] solved the SPR problem directly on outerplanar graphs with constant distortion. However, this
manuscript was never published. See also 5.
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Table 1 Summery of the various new/old, weak/strong scattering/sparse partitions.
Table footnotes: ♣ More generally, there is a partition P s.t. every ball of radius ∆

8α intersects at
most Õ(n1/α) clusters, for all α > 1 simultaneously. � More generally, it must hold that τ ≥ nΩ(1/σ).
♠ More generally, there is a partition P s.t. every ball of radius Ω( ∆

α
) intersects at most O(2ddim/α)

clusters, for all α > 1 simultaneously. � More generally, it must hold that τ > (1 + 1
2σ )d. F Note

that this lower bound holds chordal/cactus/planar/Kr-free graphs. More generally, it must hold
that τ ≥ Ω(n2/σ+1)).

Family Partition type Padding (σ) #inter. (τ ) Ref.

General
n-vertex
Graphs

Weak O(logn) O(logn) [45]
Scattering O(logn) O(logn) [46]
Strong O(logn) O(logn) This paper ♣

Weak L.B. Ω(logn/log logn) O(logn) This paper �

ddim doubling
dimension

Weak 1 8ddim [45]
Strong O(ddim) Õ(ddim) This paper ♠

Euclidean space(
Rd, ‖ · ‖2

) Scattering 1 2d This paper

Weak L.B.
O(1) 2Ω(d)

This paper �

Ω(d/log d) poly(d)

Trees

Scattering 2 3 This paper
Weak 4 3 This paper

Strong L.B.
logn/log logn logn

This paper F√
logn 2

√
logn

Pathwidth ρ

(SPDdepth 14)
Strong O(ρ) O(ρ2) This paper
Weak 8 5ρ This paper

Chordal
Scattering 2 3 This paper
Weak 24 3 This paper

Kr free Weak O(r2) 2r This paper

Cactus Scattering 4 5 This paper

The weak sparse partitions we construct imply improved solutions for the UST (and
UTSP) problem. Specifically, we conclude that for graphs with doubling dimension ddim a
UST (and UTSP) with stretch poly(ddim) · logn can be efficiently computed, providing an
exponential improvement in the dependence on ddim compared with the previous state of
the art [45] of 2O(ddim) · logn. For Kr-minor free graphs we conclude that an UST (or UTSP)
with stretch 2O(r) · logn can be efficiently computed, providing a quadratic improvement in
the dependence on n compared with the previous state of the art [39] of O(log2 n). 12 Finally,
for pathwidth ρ graphs (or more generally, graph with SPDdepth ρ) we can compute a UST
(or UTSP) with stretch O(ρ · logn), improving over previous solutions that were exponential
in ρ (based on the fact that pathwidth ρ graphs are Kρ+2-minor free).

Before we proceed to describe our partitions we make two observations.

12This result is a mere corollary obtained by assembling previously existing parts together. Mysteriously,
although UTSP on minor free graphs was studied before [42, 13], this corollary was never drawn.
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I Observation 1. Every (σ, τ,∆)-strong sparse partition is also scattering partition and
weak sparse partition with the same parameters.

I Observation 2. Every (σ, τ,∆)-scattering partition is also (1, στ,∆)-scattering partition.

Observation 1 follows as every path of weight σ∆ is contained in a ball of radius σ∆.
Observation 2 follows as every shortest path of length≤ ∆ can be assembled as a concatenation
of at most σ shortest paths of length ≤ ∆

σ .
Next we survey the partitions for various graph families. Formal statements and proofs

are differed to the full version [31].

General Graphs. Given an n-vertex general graph and parameter ∆ > 0 we construct a
single partition P which is simultaneously

(
8k,O(n1/k · logn),∆

)
-strong sparse partition

for all parameters k ≥ 1. Thus we generalize the result of [45] and obtained a strong
diameter guarantee. This partition implies that general graphs are (O(logn), O(logn))-
scatterable (reproving [46] via an easier proof), inducing a solution for the SPR problem
with stretch polylog(|K|). While quantitatively better solutions are known, this one is
arguably the simplest, and induced by a general framework. Further, we provide a lower
bound, showing that if all n-vertex graphs admit (σ, τ)-weak sparse partition scheme, then
τ ≥ nΩ( 1

σ ). In particular there is no sparse partition scheme with parameters smaller than
(Ω(logn/log logn),Ω(logn)). This implies that both our results and [45] are tight up to second
order terms. Although we do not provide any lower bound for scattering partitions, we
present some evidence that general graphs are not (O(1), O(1))-scatterable. Specifically, we
define a stronger notion of partitions called super-scattering and show that general graphs
are not (1,Ω(logn))-super scatterable.

Trees. Trees are the most basic of the restricted graph families. Weak sparse partitions for
trees follows from the existence of sparse covers. Nevertheless, in order to improve parameters
and understanding we construct (4, 3)-weak sparse partition scheme for trees. Further, we
prove that trees are (2, 3)-scatterable. Finally, we show that there are no good strong sparse
partition for trees. Specifically, we prove that if all n-vertex trees admit (σ, τ)-strong sparse
partition scheme, then τ ≥ 1

3 · n
2

σ+1 . This implies that for strong sparse partitions, trees are
essentially as bad as general graphs.

Doubling Dimension. We prove that for every graph with doubling dimension ddim and
parameter ∆ > 0, there is a partition P which is simultaneously

(
58α, 2ddim/α · Õ(ddim),∆

)
-

strong sparse partition for all parameters α ≥ 1. Note that this implies an
(
O(ddim),Õ(ddim)

)
-

strong sparse partition scheme.

Euclidean Space. We prove that the d-dimensional Euclidean space (Rd, ‖ · ‖2) is (1, 2d)-
scatterable 13, while for every (σ, τ)-weak sparse partition scheme it holds that τ > (1 + 1

2σ )d.
In particular, if σ is at most a constant, then τ must be exponential. This provides
an interesting example of a family where scattering partitions have considerably better
parameters than sparse partitions.

13 In Euclidean space, we say that a partition is (σ, τ,∆)-scattering if every interval of length ∆/σ intersects
at most τ clusters.
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SPDdepth.14 We prove that every graph with SPDdepth ρ (in particular graph with
pathwidth ρ) admit

(
O(ρ), O(ρ2)

)
-strong sparse partition scheme. Further, we prove that

such graphs admit (8, 5ρ)-weak sparse partition scheme.

Chordal Graphs. We prove that every Chordal graph is (2, 3)-scatterable.

Cactus Graphs. We prove that every Cactus graph is (4, 5)-scatterable.

1.3 Technical Ideas
Scattering Partition Imply SPR. Similarly to previous works on the SPR problem, we
construct a minor via a terminal partition. That is, a partition of V into k connected clusters,
where each cluster contains a single terminal. The minor is then induced by contracting all
the internal edges. Intuitively, to obtain small distortion, one needs to ensure that every
Steiner vertex is clustered into a terminal not much further than its closest terminal, and that
every shortest path between a pair of terminals intersects only a small number of clusters.
However, the local partitioning of each area in the graph requires a different scale, according
to the distance to the closest terminal. Our approach is similar in spirit to the algorithm of
Englert et al. [25], who constructed a minor with small expected distortion15 using stochastic
decomposition for all possible distance scales. We however, work in the more restrictive
regime of worst case distortion guarantee. Glossing over many details, we create different
scattering partitions to different areas, where vertices at distance ≈ ∆ to the terminal set
are partitioned using a (1, τ,∆)-scattering partition. Afterwards, we assemble the different
clusters from the partitions in all possible scales into a single terminal partition. We use
the scattering property twice. First to argue that each vertex v is clustered to a terminal at
distance at most O(τ) ·D(v) (here D(v) is the distance to the closest terminal). Second, to
argue that every shortest path where all the vertices are at similar distance to the terminal
set, intersect the clusters of at most O(τ2) terminals.

1.4 Related Work
In the functional analysis community, the notion of Nagata dimension was studied. The
Nagata dimension of a metric space (X, d), dimN X, is the infimum over all integers n such that
there exists a constant c s.t. X admits a (c, n+ 1)-weak sparse partition scheme. In contrast,
in this paper our goal is to minimize this constant c. See [53] and the references therein.

A closely related problem to UST is the Universal Traveling Salesman Problem (UTSP).
Consider a postman providing post service for a set X of clients with n different locations
(with distance measure dX). Each morning the postman receives a subset S ⊂ X of the
required deliveries for the day. In order to minimize the total tour length, one solution may
be to compute each morning an (approximation of an) Optimal TSP tour for the set S. An
alternative solution will be to compute a Universal TSP (UTSP) tour. This is a universal
tour R containing all the points X. Given a subset S, R(S) is the tour visiting all the points
in S w.r.t. the order induced by R. Given a tour T denote its length by |T |. The stretch
of R is the maximum ratio among all subsets S ⊆ X between the length of R(S) and the
length of the optimal TSP tour on S, maxS⊆X |R(S)|

|Opt(S)|
.

14Every (weighted) path graph has an SPDdepth 1. A graph G has an SPDdepth ρ if there exist a shortest
path P , such that every connected component in G \ P has an SPDdepth ρ− 1. This family includes
graphs with pathwidth at most ρ, and more. See [2].

15A distribution D over solutions to the SPR problem has expected distortion α if ∀t, t′ ∈
K, EM∼D[dM (t, t′)] ≤ α · dG(t, t′) .
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All the sparse partition based upper bounds for the UST problem translated directly to
the UTSP problem with the same parameters. The first to study the problem were Platzman
and Bartholdi [57], who given n points in the Euclidean plane constructed a solution with
stretch O(logn), using space filling curves. Recently, Christodoulou, and Sgouritsa [18]
proved a lower and upper bound of Θ(logn/ log logn) for the n × n grid, improving a
previous Ω( 6

√
logn/ log logn) lower bound of Hajiaghayi, Kleinberg, and Leighton [42] (and

the O(logn) upper bound of [57]). For general n vertex graphs Gupta et al. [39] proved an
O(log2 n) upper bound, while Gorodezky, Kleinberg, Shmoys, and Spencer [36] proved an
Ω(logn) lower bound. From the computational point of view, Schalekamp and Shmoys [59]
showed that if the input graph is a tree, an UTSP with optimal stretch can be computed
efficiently.

The A Priori TSP problem is similar to the UTSP problem. In addition there is a
distribution D over subsets S ⊆ V and the stretch of tour a R is the expected ratio between
the induced solution to optimal ES∼D |R(S)|

|Opt(S)|
(instead of a worst case like in UTSP). Similarly,

A Priori Steiner Tree was studied (usually omitting rt from the problem). See [44, 59, 36] for
further details. Another similar problem is the Online (or dynamic) Steiner Tree problem.
Here the set S of vertices that should be connected is evolving over time, see [43, 6, 37] and
references therein.

Unlike the definition used in this paper (taken from [45]), sparse partitions were also
defined in the literature as partitions where only a small fraction of the edges are inter-cluster
(see for example [5]). A closely related notion to sparse partitions are padded and separating
decompositions. A graph G is β-decomposable if for every ∆ > 0, there is a distribution D
over ∆ bounded partitions such that for every u, v ∈ V , the probability that u and v belong
to different clusters is at most β · dG(u,v)

∆ . Note that by linearity of expectation, a path I of
length ∆/σ intersects at most 1 + β/σ clusters in expectation. For comparison, in scattering
partition we replace the distribution by a single partition and receive a bound on the number
of intersections in the worst case. See [48, 9, 26, 40, 1, 5, 4, 34, 28] for further details.

Englert et al. [25] showed that every graph which is β-decomposable, admits a distribution
D over solution to the SPR problem with expected distortion O(β log β). 15 In particular
this implies constant expected distortion for graphs excluding a fixed minor, or bounded
doubling dimension.

For a set K of terminals of size k, Krauthgamer, Nguyen and Zondiner [50] showed that if
we allow the minor M to contain at most

(
k
2
)2 Steiner vertices (in addition to the terminals),

then distortion 1 can be achieved. They further showed that for graphs with constant
treewidth, O(k2) Steiner points will suffice for distortion 1. Cheung, Gramoz and Henzinger
[17] showed that allowing O(k2+ 2

t ) Steiner vertices, one can achieve distortion 2t− 1. For
planar graphs, Cheung et al. al. achieved 1 + ε distortion with Õ((kε )2) Steiner points.

There is a long line of work focusing on preserving the cut/flow structure among the
terminals by a graph minor. See [56, 54, 15, 55, 25, 19, 51, 7, 35, 52].

There were works studying metric embeddings and metric data structures concerned with
preserving distances among terminals, or from terminals to other vertices, out of the context
of minors. See [20, 58, 41, 47, 21, 22, 10, 23, 49, 32, 24].

2 Preliminaries

All the logarithms in the paper are in base 2. We use Õ notation to suppress constants and
logarithmic factors, that is Õ(f(j)) = f(j) · polylog(f(j)).
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Graphs. We consider connected undirected graphs G = (V,E) with edge weights w : E →
R≥0. Let dG denote the shortest path metric in G. BG(v, r) = {u ∈ V | dG(v, u) ≤ r} is
the ball of radius r around v. For a vertex v ∈ V and a subset A ⊆ V , let dG(x,A) :=
mina∈A dG(x, a), where dG(x, ∅) =∞. For a subset of vertices A ⊆ V , let G[A] denote the
induced graph on A, and let G \A := G[V \A].

Special graph families. A graph H is a minor of a graph G if we can obtain H from G

by edge deletions/contractions, and vertex deletions. A graph family G is H-minor-free if
no graph G ∈ G has H as a minor. Some examples of minor free graph families are planar
graphs (K5 and K3,3 free), outerplanar graphs (K4 and K3,2 free), series-parallel graphs (K4
free), Cactus graphs (also known as tree of cycles) ( free), and trees (K3 free).

Given a graph G = (V,E), a tree decomposition of G is a tree T with nodes B1, . . . , Bs
(called bags) where each Bi is a subset of V such that the following properties hold:

For every edge {u, v} ∈ E, there is a bag Bi containing both u and v.
For every vertex v ∈ V , the set of bags containing v form a connected subtree of T .

The width of a tree decomposition is maxi{|Bi| − 1}. The treewidth of G is the minimal
width of a tree decomposition of G. A path decomposition of G is a special kind of tree
decomposition where the underlying tree is a path. The pathwidth of G is the minimal width
of a path decomposition of G.

Chordal graphs are unweighted graphs where each cycle of length greater then 4 contains
a chordal. In other words, if the induced graph on a set of vertices V ′ is the cycle graph, than
necessarily |V ′| ≤ 3. Chordal graphs contain interval graphs, subtree intersection graphs and
other interesting sub families. A characterization of Chordal graphs is that they have a tree
decomposition such that each bag is a clique. That is, there is a tree decomposition T of G
where there is no upper bound on the size of a bag, but for every bag B ∈ T the induced
graph G[B] is a clique.

A Cactus graph (a.k.a. tree of cycles) is a graph where each edge belongs to at most one
simple cycle. Alternatively it can be defined as the graph family that excludes K4 minus an
edge ( ) as a minor.

Abraham et al. [2] defined shortest path decompositions (SPDs) of “low depth”. Every
(weighted) path graph has an SPDdepth 1. A graph G has an SPDdepth k if there exist a
shortest path P , such that every connected component in G \ P has an SPDdepth k − 1. In
other words, given a graph, in SPD we hierarchically delete shortest paths from each connected
component, until no vertices remain. See [2] for formal definition (or full version [31]). Every
graph with pathwidth ρ has SPDdepth at most ρ+ 1, treewidth ρ implies SPDdepth at most
O(ρ logn), and every graph excluding a fixed minor has SPDdepth O(logn). See [2, 30] for
further details and applications.

3 From Scattering Partitions to SPR: Proof of Theorem 2

We will assume w.l.o.g. that the minimal pairwise distance in the graph is exactly 1, otherwise
we can scale all the weights accordingly. The set of terminals denoted K = {t1, . . . , tk}. For
every vertex v ∈ V , denote by D(v) = dG(v,K) the distance to its closest terminal. Note
that minv∈V \K D(v) ≥ 1.

Similarly to previous papers on the SPR problem, we will create a minor using terminal
partitions. Specifically, we partition the vertices into k connected clusters, with a single
terminal in each cluster. Such a partition induces a minor by contracting all the internal edges
in each cluster. More formally, a partition {V1, . . . , Vk} of V is called a terminal partition
(w.r.t to K) if for every 1 ≤ i ≤ k, ti ∈ Vi, and the induced graph G[Vi] is connected. For a
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Figure 2 The left side of the figure contains a weighted graph G = (V,E), with weights specified
in red, and four terminals {t1, t2, t3, t4}. The dashed black curves represent a terminal partition
of the vertex set V into the subsets V1, V2, V3, V4. The right side of the figure represents the
minor M induced by the terminal partition. The distortion is realized between t1 and t3, and is
dM (t1,t3)
dG(t1,t3) = 12

4 = 3.

vertex v ∈ Vi, we say that v is assigned to ti. See Figure 2 for an illustration. The induced
minor by the terminal partition {V1, . . . , Vk}, is a minor M , where each set Vi is contracted
into a single vertex called (abusing notation) ti. Note that there is an edge in M from ti to tj
if and only if there are vertices vi ∈ Vi and vj ∈ Vj such that {vi, vj} ∈ E. We determine the
weight of the edge {ti, tj} ∈ E(M) to be dG(ti, tj). Note that by the triangle inequality, for
every pair of (not necessarily neighboring) terminals ti, tj , it holds that dM (ti, tj) ≥ dG(ti, tj).
The distortion of the induced minor is maxi,j dM (ti,tj)

dG(ti,tj) .

3.1 Algorithm
For i ≥ 1, set Ri = {v ∈ V | 2i−1 ≤ D(v) < 2i} to be the set of vertices at distance between
2i−1 and 2i from K. Set R0 = K. We create the terminal partition in an iterative manner,
where initially each set Vi = {ti} is a singleton, and gradually more vertices are joining. We
will denote the stage of the terminal partition after i steps, using a function fi : V → K∪{⊥}.
For a yet unassigned vertex v we write fi(v) =⊥, otherwise the vertex v will be assigned to
fi(v). Initially for every terminal tj , f0(tj) = tj while for every Steiner vertex v ∈ V \K,
f0(v) =⊥. In iteration i we will define fi by “extending” fi−1. That is, unassigned vertices
may be assigned (i.e., for v such that fi−1(v) =⊥ it might be fi(v) = tj), while the function
will remain the same on the set of assigned vertices (fi−1(v) 6=⊥ ⇒ fi(v) = fi−1(v)). We will
guarantee that all the vertices in Ri will be assigned in fi. In particular, after log (maxvD(v))
steps, all the vertices will be assigned. Denote by Vi the set of vertices assigned by
fi. Initially V0 = K = R0. By induction we will assume that ∪j≤i−1Rj ⊆ Vi−1. Let
Gi = G[V \ Vi−1] be the graph induced by the set of yet unassigned vertices. Fix ∆i = 2i−1.
Let Pi be an (1, τ,∆i)-scattering partition of Gi. Let Ci ⊆ Pi be the set of clusters C which
contain at least one vertex v ∈ Ri. All the vertices in ∪Ci will be assigned by fi.

We say that a cluster C ∈ Ci is at level 1, noting δi(C) = 1, if there is an edge {v, uC}
(in G) from a vertex v ∈ C to a vertex uC ∈ Vi−1 of weight at most 2i. In general, δi(C) = l,
if l is the minimal index such that there is an edge {v, uC} from a vertex v ∈ C to a vertex
uC ∈ C ′ of weight at most 2i, such that δi(C ′) = l− 1. In both cases uC is called the linking
vertex of C. Next, we define fi based on fi−1. For every vertex v ∈ Vi−1 set fi(v) = fi−1(v).
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For every vertex not in ∪Ci (or Vi−1) set fi(v) =⊥. For a cluster C ∈ Ci s.t. δi(C) = 1, let
uC ∈ Vi−1 be its linking vertex. For every v ∈ C set fi(v) = fi(uC). Generally, for level l
suppose that fi is already defined on all the clusters of level l − 1. Let C ∈ Ci s.t. δi(C) = l.
Let uC be the linking vertex of C. For every v ∈ C, set fi(v) = fi(uC). Note that for every
cluster, all the vertices are mapped to the same terminal. This finishes the definition of fi.

The algorithm continues until there is fi where all the Steiner vertices are assigned.
Set f = fi. The algorithm returns the terminal-centered minor M of G induced by
{f−1(t1), . . . , f−1(tk)}.

3.2 Basic Properties
It is straightforward from the construction that f−1(t1), . . . , f−1(tk) define a terminal
partition. We will prove that every vertex v will be assigned during either iteration dlogD(v)e
or dlogD(v)e−1 (Claim 9), to a terminal at distance at most O(τ) ·D(v) from v (Corollary 8).
We begin by arguing that in each iteration, the maximum possible level of a cluster is τ .

B Claim 6. For every cluster C ∈ Ci, δi(C) ≤ τ .

Proof. Consider a cluster C ∈ Ci, and let v ∈ C be a vertex s.t. D(v) ≤ 2i. Let P = {v =
v0, . . . , vs} be a prefix of the D(v) length path from v to its closest terminal such that vs
has a neighbor in Vi−1. Note that P has (weighted) length at most 2i−1 = ∆i (as all vertices
v′ for which D(v′) ≤ 2i−1 are necessarily clustered). Pi is a (1, τ,∆i)-scattering partition.
Hence the vertices of P are partitioned to τ ′ ≤ τ clusters C1, . . . , Cτ ′ where vs ∈ C1, v0 ∈ Cτ ′

and there is an edge from Cj to Cj+1 of weight at most 2i−1 < 2i, while the edge from vs
towards Vi−1 is of weight at most 2i. It holds that δi(C1) = 1, and by induction δ(Cj) ≤ j.
In particular δ(C) ≤ τ ′ ≤ τ . C

B Claim 7. For every vertex v which is assigned during the i’th iteration (i.e., v ∈ C ∈ Ci)
it holds that dG(v, f(v)) ≤ 3τ · 2i.

Proof. The proof is by induction on i. For i = 0 the assertion holds trivially as every terminal
is assigned to itself. We will assume the assertion for i − 1 and prove it for i. Let C ∈ Ci
be some cluster, and let v ∈ C. Suppose first that δi(C) = 1. Let uC ∈ Vi−1 be the linking
vertex of C. By the induction hypothesis dG(uC , f(uC)) ≤ 3τ · 2i−1. As the diameter of
C is bounded by 2i−1, and the weight of the edge towards uC is at most 2i we conclude
dG(v, f(v)) ≤ dG(v, uC) + dG(uC , f(uC)) ≤ (2i−1 + 2i) + 3τ · 2i−1 = 3 · 2i−1 + 3τ · 2i−1.
Generally, for δi(C) = l, we argue by induction that for every v ∈ C it holds that dG(v, f(v)) ≤
l · 3 · 2i−1 + 3τ · 2i−1. Indeed, let uC by the linking vertex of C. By the induction hypothesis
it holds that dG(uC , f(uC)) ≤ (l − 1) · 3 · 2i−1 + 3τ · 2i−1. Using similar arguments, it holds
that dG(v, f(v)) ≤ dG(v, uC) + dG(uC , f(uC)) ≤ (2i−1 + 2i) + (l − 1) · 3 · 2i−1 + 3τ · 2i−1 =
l · 3 · 2i−1 + 3τ · 2i−1. Using Claim 6, dG(v, f(v)) ≤ 3τ · 2i−1 + 3τ · 2i−1 = 3τ · 2i as required.

C

I Corollary 8. For every vertex v it holds that dG(v, f(v)) < 6τ ·D(v).

Proof. Let i ≥ 0 such that 2i−1 < D(v) ≤ 2i. The vertex v is assigned at iteration i or
earlier. By Claim 7 we conclude dG(v, f(v)) ≤ 3τ · 2i < 6τ ·D(v). J

B Claim 9. Consider a vertex v such that 2i−1 < D(v) ≤ 2i. Then v is assigned either at
iteration i− 1 or i.
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Proof. Clearly if v remains un-assigned until iteration i, it will be assigned during the i’th
iteration. Suppose that v was assigned during iteration j. Then v belongs to a cluster C ∈ Cj .
In particular there is a vertex u ∈ C such that D(u) ≤ 2j . As C has diameter at most 2j−1,
it holds that

2i−1 < D(v) ≤ D(u) + dG(v, u) ≤ 2j + 2j−1 = 3 · 2j−1 .

i, j are integers, hence j ≥ i− 1. C

3.3 Distortion Analysis

In this section we analyze the distortion of the minor induced by the terminal partition
created by our algorithm. We have several variables that are defined with respect to the
algorithm. Note that all these definitions are for analysis purposes only, and have no
impact on the execution of the algorithm. Consider a pair of terminals t and t′. Let
Pt,t′ = {t = v0, . . . , vγ = t′} be the shortest path from t to t′ in G. We can assume that
there are no terminals in Pt,t′ other than t, t′. This is because if we will prove the distortion
guarantee for every pair of terminals t, t′ such that Pt,t′ ∩K = {t, t′}, then by the triangle
inequality the distortion guarantee will hold for all terminal pairs.

Detours. The terminals t, t′ are fixed. During the execution of the algorithm, for every
terminal tj we will maintain a detour Dtj (or shortly Dj). A detour is a consecutive
subinterval {aj , . . . , bj} of Pt,t′ , where aj ∈ Dj is the leftmost (i.e., with minimal index)
vertex in the detour and bj is the rightmost. Initially Dt = {t} and Dt′ = {t′}, while for
every tj /∈ {t, t′}, Dj = ∅. Every pair of detours Dj ,Dj′ will be disjoint throughout the
execution of the algorithm.

A vertex v ∈ Pt,t′ is active if and only if it does not belong to any detour. It will hold
that every active vertex is necessarily unassigned (while there might be unassigned vertices
which are inactive). Initially, t, t′ are inactive, while all the other vertices of Pt,t′ are active.
Consider the i’th iteration of the algorithm. We go over the terminals according to an
arbitrary order {t1, . . . , tk}. Consider the terminal tj with detour Dj = {aj , . . . , bj} (which
might be empty). If no active vertices are assigned to tj we do nothing. Otherwise, let
a′j ∈ Pt,t′ (resp. b′j) be the leftmost (resp. rightmost) active vertex that was assigned to tj
during the i’th iteration. Set aj to be vertex with minimal index between the former aj and
a′j (a′j if there was no aj). Similarly bj is the vertex with maximal index between the former
bj and b′j . Dj is updated to be {aj , . . . , bj}. All the vertices in {aj , . . . , bj} = Dj become
inactive. Note that a vertex might become inactive while remaining yet unassigned.

Consider an additional detour Dj′ . Before the updating of Dj at iteration i, Dj ,Dj′ are
disjoint. If a′j , b′j were active they cannot belong to Dj′ . Thus after the update, aj , bj did
not belong to Dj′ as well. However, it is possible that after the update Dj and Dj′ are no
longer disjoint. The only such possibility is when Dj′ ⊂ Dj . In such a case, we set Dj′ ← ∅,
maintaining the disjointness property (while not changing the (in)active status of any vertex).

After we nullify all the detours that were contained in Dj , we will proceed to treat the
next terminals in turn. Once we finish going over all the terminals, we proceed to the i+ 1
iteration. Eventually, all the vertices cease to be active, and in particular belong to some
detour. In other words, all the vertices of Pt,t′ are partitioned to consecutive disjoint detours
D`1 , . . . ,D`s .
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Intervals. For an interval Q = {va, . . . , vb} ⊆ Pt,t′ , the internal length is L(Q) = dG(va, vb),
while the external length is L+(Q) = dG(va−1, vb+1) .16 We denote by D(Q) = D(va) the
distance from the leftmost vertex va ∈ Q to its closest terminal. Set cint = 1

7 (“int” for
interval). We partition the vertices in Pt,t′ into consecutive intervals Q, such that for every
Q ∈ Q,

L(Q) ≤ cint ·D(Q) ≤ L+(Q) . (3.1)

Such a partition could be obtained as follows: Sweep along the path Pt,t′ in a greedy
manner, after partitioning the prefix v0, . . . , vh−1, to construct the next interval Q, simply
pick the minimal index s such that L+({vh, . . . , vh+s}) ≥ cint · D(vh). By the minim-
ality of s, L({vh, . . . , vh+s}) ≤ L+({vh, . . . , vh+s−1}) ≤ cint · D(vh) (in the case s =
0, trivially L({vh}) = 0 ≤ cint · D(vh)). Note that such s could always be found, as
L+({vh, . . . , vγ = t′}) = dG(vh−1, t

′) ≥ dG(vh, t′) ≥ D(vh) = D(Q).
Consider some interval Q = {va, . . . , vb} ∈ Q. For every vertex v ∈ Q, by triangle

inequality it holds that D(Q)− L(Q) ≤ D(v) ≤ D(Q) + L(Q). Therefore,

(1− cint)D(Q) ≤ D(v) ≤ (1 + cint)D(Q) . (3.2)

Note that the set Q of intervals is determined before the execution of the algorithm, and is
never changed. In particular, it is independent from the set of detours (which evolves during
the execution of the algorithm).
For an interval Q, we denote by iQ the first iteration when some vertex v belonging to the
interval Q is assigned.

B Claim 10. All Q vertices are assigned in either iteration iQ or iQ + 1.

Proof. Let u ∈ Q be some vertex which is assigned during iteration iQ. Then u belongs to
a cluster C ∈ CiQ , containing a vertex u′ ∈ C such that D(u′) ≤ 2iQ . As C has diameter
at most 2iQ−1, it holds that 2iQ ≥ D(u′) ≥ D(u) − dG(u, u′) ≥ D(u) − 2iQ−1. Hence
D(u) ≤ 3

2 · 2
iQ . It follows that

D(Q)
(3.2)
≤ 1

1− cint
·D(u) ≤ 3

2 ·
1

1− cint
· 2iQ . (3.3)

For every vertex v ∈ Q it holds that,

D(v) ≤ D(Q) + L(Q)
(3.2)
≤ (1 + cint) ·D(Q

(3.3)
≤ 3

2 ·
(1 + cint)
(1− cint)

· 2iQ = 2iQ+1 .

Therefore, in the iQ + 1 iteration, all the (yet unassigned) vertices of Q will necessarily be
assigned. C

I Lemma 11. Consider an interval Q ∈ Q. Then the vertices of Q are partitioned into at
most O(τ2) different detours.

Proof. By definition, by the end of the iQ−1’th iteration all the vertices of Q are unassigned.
We first consider the case where by the end iQ − 1’th iteration some vertex v ∈ Q is inactive.
It holds that v belongs to some detour Dj . As all the vertices of Q are unassigned, necessarily
Q ⊂ Dj . In particular, all the vertices of Q belong to a single detour. This property will not
change till the end of the algorithm, thus the lemma follows.

16For ease of notation we will denote v−1 = t and vγ+1 = t′.



A. Filtser 47:15

Next, we consider the case where by the end of the iQ − 1’th iteration all the vertices of
Q are active. The algorithm at iteration iQ creates an

(
1, τ,∆iQ

)
-scattering partition PiQ .

The length of Q is bounded by

L(Q)
(3.1)
≤ cint ·D(Q)

(3.3)
≤ cint ·

3
2 ·

1
1− cint

· 2iQ = 1
4 · 2

iQ < ∆iQ (3.4)

Hence Q is partitioned by PiQ to τ ′ ≤ τ clusters C1, . . . , Cτ ′ ∈ PiQ . It follows that by the
end of the iQ’th iteration, the inactive vertices in Q are partitioned to at most τ detours. If
all the vertices in Q become inactive, then we are done, as the number of detours covering Q
can only decrease further in the algorithm (as a result of detour nullification). Hence we will
assume that some of Q vertices remain active.

A slice is a maximal sub-interval S ⊆ Q of active vertices. The active vertices in Q are
partitioned to at most τ + 1 slices S1, S2, . . . , Sτ ′′ .17 By the end of the iQ + 1 iteration,
according to Claim 10 all Q vertices will be assigned, and in particular belong to some detour.
The algorithm creates a

(
∆iQ+1, τ, 1

)
-scattering partition PiQ+1 of the unassigned vertices.

By equation (3.4) the length of every slice S is bounded by L(S) ≤ L(Q) ≤ 1
4 · 2

iQ ≤ ∆iQ+1.
Therefore the vertices S intersect at most τ clusters of PiQ+1, and thus will be partitioned
to at most τ detours. Some detours might get nullified, however in the worst case, by the
end of the iQ + 1 iteration, the vertices in ∪iSi are partitioned to at most τ · (τ + 1) detours.
In particular all the vertices in Q are partitioned to at most O(τ2) detours. As the number
of detours covering Q can only decrease further in the algorithm, the lemma follows. J

By the end of algorithm, we will charge the intervals for the detours. Consider the detour
Dj = {aj , . . . , bj} of tj . Let Qj ∈ Q be the interval containing aj . We will charge Qj for the
detour Dj . Denote by X(Q) the number of detours for which the interval Q is charged for.
By Lemma 11, X(Q) = O(τ2) for every interval Q ∈ Q.

Recall that by the end of the algorithm, all the vertices of Pt,t′ are partitioned to
consecutive disjoint detours D`1 , . . . ,D`s , where D`j = {a`j , . . . , b`j} and a`j , b`j belong to
the cluster of t`j . In particular t`1 = t and t`s = t′, as each terminal belongs to the cluster of
itself. Moreover, for every j < s, there is an edge {b`j , a`j+1} in G between the cluster of t`j
to that of t`j+1 . Therefore, in the minor induced by the partition there is an edge between
t`j to t`j+1 . We conclude

dM (t, t′) ≤
s−1∑
j=1

dG(t`j , t`j+1) ≤
s−1∑
j=1

[
dG(t`j , a`j ) + dG(a`j , a`j+1) + dG(a`j+1 , t`j+1)

]
≤

s−1∑
j=1

dG(a`j , a`j+1) + 2
s∑
j=1

dG(t`j , a`j ) .

Note that
∑s−1
j=1 dG(a`j , a`j+1) ≤ dG(t, t′) as Pt,t′ is a shortest path. Denote by Q`j the

interval containing a`j . By Corollary 8,

dG(t`j , a`j ) = dG(a`j , f(a`j )) ≤ O(τ) ·D(a`j )
(3.2)= O(τ) ·D(Q`j )

(3.1)= O(τ) · L+(Q`j ) .

By changing the order of summation we get
s∑
j=1

dG(t`j , a`j ) = O(τ) ·
∑
Q∈Q

X(Q) · L+(Q) = O(τ3) ·
∑
Q∈Q

L+(Q) .

Finally, note that
∑
Q∈Q L

+(Q) ≤ 2 · dG(t, t′) as every edge in Pt,t′ is counted at most twice.
We conclude dM (t, t′) ≤ O(τ3) · dG(t, t′). Theorem 2 now follows.

17Actually, as at least one Q vertex remained active, at the beginning of the iQ + 1 iteration the inactive
vertices of Q partitioned to at most τ − 1 detours. Therefore the maximal number of slices is τ .
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4 Discussion and Open Problems

In this paper we defined scattering partitions, and showed how to apply them in order to
construct solutions to the SPR problem. We proved an equivalence between sparse partitions
and sparse covers. Finally, we constructed many sparse and scattering partitions for different
graph families (and lower bounds), implying new results for the SPR, UST, and UTSP
problems. An additional contribution of this paper is a considerable list of (all but question
(5)) new intriguing open questions and conjectures.
1. Planar graphs: The SPR problem is most fascinating and relevant for graph families

which are closed under taking a minor. Note that already for planar graphs (or even
treewidth 2 graphs), the best upper bound for the SPR problem is O(log k) (same as
general graphs), while the only lower bound is 8. The most important open question
coming out of this paper is the following conjecture:
I Conjecture 1. Every graph family excluding a fixed minor is (O(1), O(1))-scatterable.
Note that proving this conjecture for a family F , will imply a solution to the SPR problem
with constant distortion. Proving the conjecture for planar graphs will be fascinating.
However, it is already open for outerplanar graphs, and graphs with treewidth 2.

2. Scattering Partitions for General Graphs: While we provide almost tight upper
and lower bounds for sparse partitions, for scattering partitions, the story is different.
I Conjecture 2. Consider an n vertex weighted graph G such that between every pair of
vertices there is a unique shortet path. Then G is (1, O(logn))-scatterable. Furthermore,
this is tight.
In the full version [31], we provide some evidence that Conjecture 2 cannot be pushed
further. However, any nontrivial lower bound will be interesting. Furthermore, every
lower bound larger than 8 for the general SPR problem will be intriguing.

3. Doubling graphs: While we constructed strong sparse partition for doubling graphs
(which imply scattering), it has no implication for the SPR problem. This is due to the
fact that Theorem 2 required scattering partition for every induced subgraph. As induced
subgraphs of a doubling graph might have unbounded doubling dimension, the proof fails
to follow through. We leave the required readjustments to future work.

4. Sparse Covers: We classify various graph families according to the type of partitions/-
covers they admit. We currently lack any example of a graph family that admits weak
sparse covers but does not admit strong sparse covers. It will be interesting to find such
an example, or even more so to prove that every graph that admits weak sparse cover,
also has strong sparse cover with (somewhat) similar parameters.
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Abstract
In the (1 + ε, r)-approximate near-neighbor problem for curves (ANNC) under some similarity
measure δ, the goal is to construct a data structure for a given set C of curves that supports
approximate near-neighbor queries: Given a query curve Q, if there exists a curve C ∈ C such that
δ(Q,C) ≤ r, then return a curve C′ ∈ C with δ(Q,C′) ≤ (1 + ε)r. There exists an efficient reduction
from the (1 + ε)-approximate nearest-neighbor problem to ANNC, where in the former problem the
answer to a query is a curve C ∈ C with δ(Q,C) ≤ (1 + ε) · δ(Q,C∗), where C∗ is the curve of C
most similar to Q.

Given a set C of n curves, each consisting of m points in d dimensions, we construct a data
structure for ANNC that uses n · O( 1

ε
)md storage space and has O(md) query time (for a query

curve of length m), where the similarity measure between two curves is their discrete Fréchet or
dynamic time warping distance. Our method is simple to implement, deterministic, and results in
an exponential improvement in both query time and storage space compared to all previous bounds.

Further, we also consider the asymmetric version of ANNC, where the length of the query curves
is k � m, and obtain essentially the same storage and query bounds as above, except that m is
replaced by k. Finally, we apply our method to a version of approximate range counting for curves
and achieve similar bounds.
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48:2 Approximate Nearest Neighbor for Curves

1 Introduction

Nearest neighbor search is a fundamental and well-studied problem that has various applica-
tions in machine learning, data analysis, and classification. This important task also arises
in applications where the recorded instances are trajectories or polygonal curves modeling,
for example, epigenetic and surgical processes, market value fluctuations, population growth,
the number of the requests per hour received at some web-page, and even the response of a
football player in a given situation.

Let C be a set of n curves, each consisting of at mostm points in d dimensions, and let δ be
some distance measure for curves. In the nearest-neighbor problem for curves, the goal is to
construct a data structure for C that supports nearest-neighbor queries, that is, given a query
curve Q of length at most m, return the curve C∗ ∈ C closest to Q (according to δ). The
approximation version of this problem is the (1 + ε)-approximate nearest-neighbor problem,
where the answer to a query Q is a curve C ∈ C with δ(Q,C) ≤ (1 + ε)δ(Q,C∗). We study a
decision version of this approximation problem, which is called the (1 + ε, r)-approximate
near-neighbor problem for curves (ANNC). Here, if there exists a curve in C that lies within
distance r of the query curve Q, one has to return a curve in C that lies within distance
(1+ε)r of Q. Note that there exists a reduction from the (1+ε)-approximate nearest-neighbor
problem to the (1 + ε, r)-approximate near-neighbor problem [14, 22, 13], at the cost of an
additional logarithmic factor in the query time and an O(log2 n) factor in the storage space.

In practice, it is often the case that the query curves are significantly shorter than the
input curves (e.g., Google-search queries). Thus, we also study the asymmetric setting of
(1 + ε, r)-ANNC, where each of the input curves has complexity at most m, while each query
curve has complexity at most k � m.

There are many methods that are used in real-world applications for comparing curves,
and one of the most prevalent is the (discrete) Fréchet distance (DFD for short), which
is often described by the following analogy. Two frogs are hopping from vertex to vertex
along two polygonal curves. At each step, one of the frogs or both frogs may advance to the
next vertex on its curve. The discrete Fréchet distance is defined as the smallest maximum
distance between the frogs that can be achieved in such a joint sequence of hops. Another
useful distance measure for curves or time series is the dynamic time warping distance (DTW
for short), in which instead of taking the smallest maximum distance we take the smallest
sum of distances.

In the last several years, a series of papers have been written investigating the approximate
near-neighbor problem for curves (ANNC) and its variants under the Fréchet distance
[15, 6, 10, 7, 1, 12, 2] (see Table 1), and several different approaches and sophisticated
methods were utilized in order to provide efficient data structures. Up to now, all data
structures for ANNC under DFD have either an exponential in m query time, or an infeasible
storage space bound. In this paper, for the first time, we manage to remove the exponential
factor from the query time, while also significantly reducing the space consumption. Our
approach consists of a discretization of space based on the input curves, which allows us to
prepare a small set of curves that captures all possible queries approximately.

Indyk [15] was the first to give a deterministic near-neighbor data structure for curves
under DFD. The data structure achieves an approximation factor of O((logm+ log logn)t−1)
given some trade-off parameter t > 1. Its space consumption is very high, O(m2|X|)tm1/t ·n2t,
where |X| is the size of the domain on which the curves are defined, and the query time is
(m logn)O(t). In Table 1 we set t = 1 + o(1) to obtain a constant approximation factor.
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Later, Driemel and Silvestri [10] presented a locality-sensitive-hashing scheme for curves
under DFD, improving the result of Indyk for short curves. Their data structure uses
O(24mdn logn) space and answers queries in O(24md logn) time with an approximation factor
of O(d3/2). They also provide a trade-off between approximation quality and computational
performance: for d = O(1), and given a parameter k ∈ [m], a data structure of size
O(22kmk−1n logn+mn) is constructed that answers queries in O(22kmk logn) time with an
approximation factor of O(m/k). They also show that this result can be applied to DTW,
but only for the extreme of the trade-off which gives an O(m) approximation.

Recently, Emiris and Psarros [12] presented near-neighbor data structures for curves
under both DFD and DTW. Their algorithm provides an approximation factor of (1 + ε),
at the expense of increased space usage and preprocessing time. They use the idea that
for a fixed alignment between two curves (i.e., a given sequence of hops of the two frogs),
the problem can be reduced to the near-neighbor problem for points in `∞ product of
`2 spaces. Their basic idea is to construct a data structure for every possible alignment.
Once a query is given, they query all these data structures and return the closest curve
found. This approach is responsible for the 2m factor in their query time. Furthermore,
they generalize this approach using randomized projections of `p-products of Euclidean
metrics (for any p ≥ 1), and define the `p,2-distance for curves (for p ≥ 1), which is exactly
DFD when p = ∞, and DTW when p = 1 (see Section 2). The space used by their data
structure is Õ(n) · (2 + d

logm )O(m1+1/ε·d log(1/ε)) with query Õ(dm1+1/ε · 24m logn) for DFD
and Õ(n) · 1

ε

O(md) space and Õ(d · 24m logn) query for DTW.

Subsequent work. In a recent manuscript, Driemel, Psarros, and Schmidt [9], study the
asymmetric setting of (1 + ε, r)-ANNC under DFD. They follow our approach of preparing
in advance the answers to all relevant queries on a discretization of the space, to construct
a randomized data structure with space in n ·O

(
kd3/2

ε

)dk
and query time in O(dk). They

also show how to derandomize their data structure, at the cost of increasing the space
to d3/2nkε−1 · O

(
kd3/2

ε

)dk
, and the query time to O(d5/2k2ε−1(logn + kd log kd

ε )). This
provides additional evidence that our approach to ANNC, although quite simple and easy to
implement, seems to produce more efficient data structures than those obtained using tools
such as LSH and randomized projections. Moreover, in this version of our manuscript we
show how to improve upon the results in [9] for the asymmetric setting.

Our results. We present a data structure for the (1 + ε, r)-approximate near-neighbor
problem using a bucketing method. We construct a relatively small set of curves I such that
given a query curve Q, if there exists some curve in C within distance r of Q, then one of
the curves in I must be very close to Q. The points of the curves in I are chosen from a
simple discretization of space, thus, while it is not surprising that we get the best query time,
it is surprising that we achieve a better space bound. Moreover, while the analysis of the
space bounds is rather involved, the implementation of our data structures remain simple in
practice.

See Table 1 for a summary of our results. In the table, we do not state our result for
the general `p,2-distance. Instead, we state our results for the two most important cases, i.e.
DFD and DTW, and compare them with previous work. Note that our results substantially
improve the current state of the art for any p ≥ 1. In particular, we remove the exponential
dependence on m in the query bounds and significantly improve the space bounds.
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Our results for the asymmetric setting, where the query curve Q has complexity k � m,
are summarized in Table 2. We show that in the asymmetric setting for DFD, our data
structure can be slightly modified in order to achieve query time and storage space independent
of m. Moreover, the storage space and query time matches those of the symmetric setting,
by replacing m with k.

We also apply our methods to an approximation version of range counting for curves (for
the general `p,2 distance) and achieve bounds similar to those of our ANNC data structure.
Moreover, at the cost of an additional O(n)-factor in the space bound, we can also answer
the corresponding approximation version of range searching, thus answering a question of
Afshani and Driemel [1], with respect to DFD.

We note that our approach with obvious modifications works also in a dynamic setting,
that is, we can construct an efficient dynamic data structure for ANNC as well as for other
related problems such as range counting and range reporting for curves.

Another significant advantage of our approach is that, unlike some of the previous
solutions, our data structure always returns an answer, and never returns a curve at distance
greater than (1 + ε)r from the query curve, i.e., there are no false positives. This is an
important property of our solution, due to the fact that verifying the validity of the answer
(i.e., computing the distance between two curves) cannot be done in strongly subquadratic
time (assuming SETH, see [4]), which is already more than our query time (for d < m).

Table 1 Our approximate near-neighbor data structure under DFD and DTW compared to the
previous results.

Space Query Approx. Comments

DFD

O(m2|X|)m1−o(1)
· n2+o(1) (m logn)O(1) O(1) deterministic, [15]

O(24mdn logn) O(24md logn) O(d3/2) randomized, using LSH [10]

Õ(n) · (2 + d
log m

)O(m1+1/ε·d log( 1
ε

))
Õ(dm1+1/ε · 24m log n) 1 + ε randomized, [12]

n ·O( 1
ε
)md O(md) 1 + ε deter. (rand. construction),

Theorem 9

DTW

O(n logn+mn) O(m logn) O(m) randomized, using LSH,
d = O(1), [10]

Õ(n) · 1
ε

O(md)
Õ(d · 24m logn) 1 + ε randomized, [12]

n ·O( 1
ε
)m(d+1) O(md) 1 + ε deter. (rand. construction),

Theorem 15

More related work. De Berg, Gudmundsson, and Mehrabi [7] described a dynamic data
structure for approximate nearest neighbor for curves (which can also be used for other types
of queries such as range reporting), under the (continuous) Fréchet distance. Their data
structure uses n · O

( 1
ε

)2m space and has O(m) query time, but with an additive error of
ε · reach(Q), where reach(Q) is the maximum distance between the start vertex of the query
curve Q and any other vertex of Q. Furthermore, their query procedure might fail when the
distance to the nearest neighbor is relatively large.

Afshani and Driemel [1] studied (exact) range searching under both the discrete and
continuous Fréchet distance. In this problem, the goal is to preprocess C such that given a
query curve Q of length mq and a radius r, all the curves in C that are within distance r from
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Table 2 Summary of previous and current results for the asymmetric approximate near-neighbor
data structure for curves. All the results in the table are w.r.t. DFD. The approximation ratio is
1 + ε for ε ∈ (0, 1), and our data structures always succeed. Historic note: [9] is a subsequent work
to the first version of this paper arXiv:1902.07562. In this second version we also apply our counting
techniques to the asymmetric cases.

Space Query Deterministic
construction?

Reference

n ·
(
O( kd3/2

ε
)kd
)

O(kd) no [9]

n ·
(
O( kd3/2

ε
)kd+1

)
O( k2d5/2

ε
(logn+ kd log( kd

ε
))) yes [9]

n ·O( 1
ε
)kd O(kd) no Theorem 11

n ·O( 1
ε
)kd O(kd log( nkd

ε
)) yes Theorem 18

Q can be found efficiently. For DFD, their data structure uses O(n(log logn)m−1) space and
has O(n1− 1

d · logO(m) n ·mO(d)
q ) query time, where mq is limited to logO(1) n. Additionally,

they provide a lower bound in the pointer model, stating that every data structure with
Q(n) +O(k) query time, where k is the output size, has to use roughly Ω

(
(n/Q(n))2) space

in the worst case (even for mq = 1). Afshani and Driemel conclude their paper by asking
whether more efficient data structures might be constructed if one allows approximation.

De Berg, Cook IV, and Gudmundsson [6], considered the following range counting problem
under the continuous Fréchet distance. Given a polygonal curve C with m vertices, they
show how to preprocess it into a data structure of size O(k · polylog(m)), so that, given a
query segment s, one can return a constant approximation of the number of subcurves of C
that lie within distance r of s in O( m√

k
· polylog(m)) time, where k is a parameter between

m and m2.
Aronov et al. [2] managed to obtain practical bounds for two cases of the asymmetric

(1 + ε, r)-ANNC under DFD: (i) when Q is a line segment (i.e., k = 2), or (ii) when C consists
of line segments (i.e., m = 2). The bounds on the size of the data structure and query time
are nearly linear in the size of the input and query curve, respectively. Specifically, for the
case where k = 2, they achieve query time O(log4(nε )) and storage space O(n 1

ε4 log4(nε )).
They also provide efficient data structures for several other variants of the problem: the
(exact) NNC where `∞ is used for interpoint distances, and the case where the location of
the input curves is only fixed up to translation.

1.1 Technical ideas
We use a discretization of the space, by laying a d-dimensional uniform grid with edge length
εr√
d
. The main ingredient in our data structure is then a relatively small set I of curves

defined by grid points, which represents all possible queries. For each curve in I we store an
index of a close enough curve from the input set C. Given a query Q sufficiently close to
some curve in C, we find a representative Q′ in I by simply rounding Q’s vertices and return
the index of the curve stored for Q′.

Given a point x ∈ Rd, the number of grid points that are within distance (1 + ε)r from x

is bounded by O( 1
ε )d (Corollary 7). Thus, given a curve C of length m, the total number of

grid points that are within distance (1 + ε)r from one of its vertices is m ·O( 1
ε )d. Naively,

the number of curves needed to represent all possible queries of length m within distance

ICALP 2020
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r of C is bounded by the number of ways to choose m points with repetitions from a set
of grid points of size m ·O( 1

ε )d, which is bounded by mm ·O( 1
ε )md. This infeasible bound

on the storage space might be the reason why more sophisticated solutions for ANNC have
been suggested throughout the years.

One of the main technical contributions of this paper is an analysis leading to a significantly
better bound, if we store only candidate curves that are within distance (1 + ε)r from C.
Actually, in Section 3 we show that for the case of DFD, it is sufficient to store a set of
representative curves of size only O( 1

ε )md for each input curve. The basic idea is to bound
the number of representatives that can be obtained by some fixed alignment between C and
the candidate curve (see Claim 8).

For the general case of `p,2-distance (including DTW), we are minimizing the sum of
distances instead of the maximum distance (as in DFD). Thus, we have to use a more dense
grid (with edge length εr

(2m)1/p
√
d
), and the situation becomes more complicated. First, unlike

DFD, the triangle inequality does not hold for `p,2-distance in general (including DTW).
Second, since DFD is a min-max measure, the choice of different vertices for a representative
curve is “independent” in a sense, whereas for `p,2-distance in general, the choice of different
vertices depends on their sum of distances from the input curve. Using more careful counting
arguments and analysis of the alignment between two curves, we are able to show that in
this case the number of representative curves that our data structure has to store per input
curve is bounded by O( 1

ε )m(d+1) (see Claim 13).
To store the set I we simply use a dictionary, which can be implemented using a hash table

and guarantees a query time linear in the size of the query. To obtain a fully deterministic
solution, one can use a search tree instead. However, a naive implementation using a binary
search tree results in an additional factor of O(log |I|) = O(md log(nε )) to the query time,
i.e., in a query time of O(m2d2 log(nε )). We show how to implement the dictionary using a
prefix tree, exploiting the fact that the vertices of the curves in I are from a relatively small
set of grid points, which improves the query time to O(md log(nmdε )).

For the asymmetric setting (where the length of a query is k � m), we use simplifications
of the input curves in order to obtain bounds that are independent of m. Given a curve C of
length m, a simplification Π of C is a curve of length k � m that is relatively close to C.
Simplifications were used in order to provide approximate solutions in several asymmetric
versions of problems on curves, such as clustering [5], and distance oracles [8, 9].

By the triangle inequality for DFD, every query curve Q within distance r from an input
curve C is at distance at most 2r from the simplification Π (where Π is within distance r
from C). Thus, it is enough to prepare for query curves at distance at most 2r from Π,
which follows from previous arguments. Note that the query time and storage space are
independent of m.

2 Preliminaries

To simplify the presentation, we assume throughout the paper that all the input curves have
exactly the same size, m, and all the query curves have exactly the same size, either m or
k, depending on whether we are considering the standard or the asymmetric version. This
assumption can be easily removed (see Remark 16 at the end of Section 5).

Let C be a set of n curves, each consisting of m points in d dimensions, and let δ be some
distance measure for curves.

I Problem 1 ((1 + ε)-approximate nearest-neighbor for curves). Given a parameter 0 < ε ≤ 1,
preprocess C into a data structure that given a query curve Q, returns a curve C ′ ∈ C, such
that δ(Q,C ′) ≤ (1 + ε) · δ(Q,C), where C is the curve in C closest to Q.
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I Problem 2 ((1 + ε, r)-approximate near-neighbor for curves). Given a parameter r and
0 < ε ≤ 1, preprocess C into a data structure that given a query curve Q, if there exists a
curve Ci ∈ C such that δ(Q,Ci) ≤ r, returns a curve Cj ∈ C such that δ(Q,Cj) ≤ (1 + ε)r.

I Problem 3 (Asymmetric (1 + ε, r)-approximate near-neighbor for curves). Given parameters
r,k, and 0 < ε ≤ 1, preprocess C into a data structure that given a query curve Q of length
k, if there exists a curve Ci ∈ C such that δ(Q,Ci) ≤ r, returns a curve Cj ∈ C such that
δ(Q,Cj) ≤ (1 + ε)r.

Curve alignment. Given two integers m1,m2, let τ := 〈(i1, j1), . . . , (it, jt)〉 be a sequence
of pairs where i1 = j1 = 1, it = m1,jt = m2, and for each 1 < k ≤ t, one of the following
conditions holds:
(i) ik = ik−1 + 1 and jk = jk−1,
(ii) ik = ik−1 and jk = jk−1 + 1, or
(iii) ik = ik−1 + 1 and jk = jk−1 + 1.
We call such a sequence τ an alignment of two curves.

Let P = (p1, . . . , pm1) and Q = (q1, . . . , qm2) be two curves of lengthsm1 andm2, respectively,
in d dimensions. We say that an alignment τ w.r.t. P and Q matches pi and pj if (i, j) ∈ τ .

Discrete Fréchet distance (DFD). The Fréchet cost of an alignment τ w.r.t. P and Q is
σdF (τ(P,Q)) := max(i,j)∈τ ‖pi − qj‖2. The discrete Fréchet distance is defined over the set
T of all alignments as

ddF (P,Q) = min
τ∈T

σdF (τ(P,Q)).

Dynamic time wrapping (DTW). The time warping cost of an alignment τ w.r.t. P and
Q is σDTW (τ(P,Q)) :=

∑
(i,j)∈τ ‖pi − qj‖2. The DTW distance is defined over the set T of

all alignments as

dDTW (P,Q) = min
τ∈T

σDTW (τ(P,Q)).

`p,2-distance for curves. The `p,2-cost of an alignment τ w.r.t. P and Q is σp,2(τ(P,Q)) :=(∑
(i,j)∈τ ‖pi − qj‖

p
2

)1/p
. The `p,2-distance between P and Q is defined over the set T of all

alignments as

dp,2(P,Q) = min
τ∈T

σp,2(τ(P,Q)).

Notice that `p,2-distance is a generalization of DFD and DTW, in the sense that σdF =
σ∞,2 and ddF = d∞,2, σDTW = σ1,2 and dDTW = d1,2. Also note that DFD satisfies the
triangle inequality, but DTW and `p,2-distance (for p 6=∞) do not (see Section 5 for details).

Emiris and Psarros [12] showed that the number of all possible alignments of two curves
is in O(m · 22m). We reduce this bound by counting only alignments that can determine
the `p,2-distance between two curves.1 More formally, let τ be an alignment. If there

1 Since our storage space is already in O( 1
ε )md, and m · 22m ≤ 32m is in O(1)md, we could have used this

larger upper bound. However, in Lemma 4 we show a tight upper bound on the number of relevant
alignments, which may be useful for other applications.
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48:8 Approximate Nearest Neighbor for Curves

exists an alignment τ ′ such that τ ′ ⊂ τ , then clearly σp,2(τ ′(P,Q)) ≤ σp,2(τ(P,Q)), for any
1 ≤ p ≤ ∞ and for any two curves P and Q. In this case, we say that τ cannot determine
the `p,2-distance between two curves.

I Lemma 4. The number of different alignments that can determine the `p,2-distance between
two m-curves (for any 1 ≤ p ≤ ∞) is at most O( 22m

√
m

).

Proof. Let τ = 〈(i1, j1), . . . , (it, jt)〉 be an alignment. Notice that m ≤ t ≤ 2m − 1. By
definition, τ has 3 types of (consecutive) subsequences of length two:
(i) 〈(ik, jk), (ik + 1, jk)〉,
(ii) 〈(ik, jk), (ik, jk + 1)〉, and
(iii) 〈(ik, jk), (ik + 1, jk + 1)〉.

Denote by T1 the set of all alignments that do not contain any subsequence of type
(iii). Then, any τ1 ∈ T1 is of length exactly 2m− 1. Moreover, τ1 contains exactly 2m− 2
subsequences of length two, of which m−1 are of type (i) and m−1 are of type (ii). Therefore,
|T1| =

(2m−2
m−1

)
= O( 22m

√
m

).
Assume that an alignment τ contains a subsequence of the form (ik, jk − 1), (ik, jk), (ik +

1, jk), for some 1 < k ≤ t− 1. Notice that removing the pair (ik, jk) from τ results in a legal
alignment τ ′, such that σp,2(τ ′(P,Q)) ≤ σp,2(τ(P,Q)), for any 1 ≤ p ≤ ∞ and two curves
P,Q. We call the pair (ik, jk) a redundant pair. Similarly, if τ contains a subsequence of the
form (ik − 1, jk), (ik, jk), (ik, jk + 1), for some 1 < k ≤ t− 1, then the pair (ik, jk) is also a
redundant pair. Therefore we only care about alignments that do not contain any redundant
pairs. Denote by T2 the set of all alignments that do not contain any redundant pairs, then
any τ2 ∈ T2 contains at least one subsequence of type (iii).

We claim that for any alignment τ2 ∈ T2, there exists a unique alignment τ1 ∈ T1.
Indeed, if we add the redundant pair (il, jl + 1) between (il, jl) and (il + 1, jl + 1) for each
subsequence of type (iii) in τ2, we obtain an alignment τ1 ∈ T1. Moreover, since τ2 does
not contain any redundant pairs, the reverse operation on τ1 results in τ2. Thus we obtain
|T2| ≤ |T1| = O( 22m

√
m

). J

Points and balls. Given a point x ∈ Rd and a real number R > 0, we denote by Bdp(x,R)
the d-dimensional ball under the `p norm with center x and radius R, i.e., a point y ∈ Rd

is in Bdp(x,R) if and only if ‖x − y‖p ≤ R, where ‖x − y‖p =
(∑d

i=1 |xi − yi|p
)1/p

. Let
Bdp(R) = Bdp(0, R), and let V dp (R) be the volume (w.r.t. Lebesgue measure) of Bdp(R), then

V dp (R) = 2dΓ(1 + 1/p)d

Γ(1 + d/p) Rd,

where Γ(·) is Euler’s Gamma function (an extension of the factorial function). For p = 2 and
p = 1, we get

V d2 (R) = πd/2

Γ(1 + d/2)R
d and V d1 (R) = 2d

d!R
d.

Our approach consists of a discretization of the space using lattice points, i.e., points
from Zd.

I Lemma 5. The number of lattice points in the d-dimensional ball of radius R under the
`p norm (i.e., in Bdp(R)) is bounded by V dp (R+ d1/p).
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Proof. With each lattice point z = (z1, z2, . . . , zd), zi ∈ Z, we match the d-dimensional
lattice cube C(z) = [z1, z1 + 1]× [z2, z2 + 1]× · · ·× [zd, zd + 1]. Notice that z ∈ C(z), and the
`p-diameter of a lattice cube is d1/p. Therefore, the number of lattice points in the `dp-ball
of radius R is bounded by the number of lattice cubes that are contained in a `dp-ball with
radius R+ d1/p. This number is bounded by V dp (R+ d1/p) divided by the volume of a lattice
cube, which is 1d = 1. J

I Remark 6. In general, in all our data structures we do not assume any bound on the
dimension d. However, using dimension reduction techniques, we may assume that d ≤
O( log(nm)

ε2 ). See Section 9 for details.

3 Discrete Fréchet distance (DFD)

Consider the infinite d-dimensional grid with edge length εr√
d
. Given a point x in Rd, by

rounding one can find in O(d) time the grid point x′ closest to x, and ‖x− x′‖2 ≤
εr
2 . Let

G(x,R) denote the set of grid points that are contained in Bd2 (x,R).

I Corollary 7. |G(x, (1 + ε)r)| = O( 1
ε )d.

Proof. We scale our grid so that the edge length is 1, hence we are looking for the number
of lattice points in Bd2 (x, 1+ε

ε

√
d). By Lemma 5 we get that this number is bounded by the

volume of the d-dimensional ball of radius 1+ε
ε

√
d+
√
d ≤ 3

√
d
ε . Using Stirling’s formula we

conclude that

V d2

(
3
√
d

ε

)
= π

d
2

Γ(d2 + 1)
·

(
3
√
d

ε

)d
≤
(α
ε

)d
,

where α is a constant. For example, if d is even, then

V d2

(
3
√
d

ε

)
= π

d
2

(d2 )!
·

(
3
√
d

ε

)d
≤ π

d
2

√
2π(d/2)d/2+1/2e−d/2

·

(
3
√
d

ε

)d
≤
(

12.4
ε

)d
= O

(
1
ε

)d
.

J

Denote by pij the j’th point of Ci, and let Gi =
⋃

1≤j≤mG(pij , (1+ε)r) and G =
⋃

1≤i≤nGi,
then by the above corollary we have |Gi| = m ·O( 1

ε )d and |G| = mn ·O( 1
ε )d. Let Ii be the

set of all curves Q = (x1, x2, . . . , xm) with points from Gi, such that ddF (Ci, Q) ≤ (1 + ε
2 )r.

B Claim 8. |Ii| = O( 1
ε )md and it can be computed in O( 1

ε )md time.

Proof. Let Q ∈ Ii and let τ be an alignment with σdF (τ(Ci, Q)) ≤ (1 + ε
2 )r. For each

1 ≤ k ≤ m let jk be the smallest index such that (jk, k) ∈ τ . In other words, jk is the
smallest index that is matched to k by the alignment τ . Since ddF (Ci, Q) ≤ (1+ ε

2 )r, we have
xk ∈ Bd2(pijk

, (1 + ε
2 )r), for k = 1, . . . ,m. This means that for any curve Q ∈ Ii such that

σdF (τ(Ci, Q)) ≤ (1 + ε
2 )r, we have xk ∈ G(pijk

, (1 + ε
2 )r), for k = 1, . . . ,m. By Corollary 7,

the number of ways to choose a grid point xk from G(pijk
, (1 + ε

2 )r) is bounded by O( 1
ε )d.

We conclude that given an alignment τ , the number of curves Q with m points from Gi
such that σdF (τ(Ci, Q)) ≤ (1 + ε

2 )r is bounded by O( 1
ε )md. Finally, by Lemma 4, the total

number of curves in Ii is bounded by 22m ·O( 1
ε )md = O( 1

ε )md.
To construct Ii we compute, for each of the O( 1

ε )md candidates, its discrete Fréchet dis-
tance to Ci. Thus, we construct Ii in total time O( 1

ε )md · O(m2) = O( 1
ε )md. (The latter

equality is true, since clearly (αε )md · O(m2) ≤ ( cαε )md, i.e., O(m2) ≤ cmd, where α is the
constant from Corollary 7 and c > 1 is a sufficiently large constant.) C
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The data structure. Denote I =
⋃

1≤i≤n Ii, so |I| ≤ n · O( 1
ε )md and we construct I in

total time n ·O( 1
ε )md. Next, we would like to store the set I in a dictionary (a hash table

or a lookup table) D, such that given a query curve Q, one can find Q in D (if it exists) in
O(md) time. We use Cuckoo Hashing [21] to construct a (dynamic) dictionary of linear space,
constant worst-case query and deletion time, and constant expected amortized insertion time.
We insert the curves of I into the dictionary D as follows. For each 1 ≤ i ≤ n and curve
Q ∈ Ii, if Q /∈ D, insert Q into D, and set C(Q)← Ci. The storage space required for D is
O(|I|), and to construct it we perform |I| insertions and look-up operations which take in
total O(|I| ·md) = O(|I|) expected time.

The query algorithm. Let Q = (q1, . . . , qm) be the query curve. The query algorithm is
as follows: For each 1 ≤ k ≤ m find the grid point q′k (not necessarily from G) closest to qk.
This can be done in O(md) time by rounding. Then, search for the curve Q′ = (q′1, . . . , q′m)
in the dictionary D. If Q′ is in D, return C(Q′), otherwise, return NO. The total query time
is then O(md).

Correctness. Consider a query curve Q = (q1, . . . , qm). Assume that there exists a curve
Ci ∈ C such that ddF (Ci, Q) ≤ r. We show that the query algorithm returns a curve C∗ with
ddF (C∗, Q) ≤ (1 + ε)r.

Consider a point qk ∈ Q. Denote by q′k ∈ G the grid point closest to qk, and let
Q′ = (q′1, . . . , q′m). We have ‖qk − q′k‖2 ≤

εr
2 , so ddF (Q,Q′) ≤ εr

2 . By the triangle inequality,

ddF (Ci, Q′) ≤ ddF (Ci, Q) + ddF (Q,Q′) ≤ r + εr

2 = (1 + ε

2)r,

so Q′ is in Ii ⊆ I. This means that D contains Q′ with a curve C(Q′) ∈ C such that
ddF (C(Q′), Q′) ≤ (1 + ε

2 )r, and the query algorithm returns C(Q′). Now, again by the
triangle inequality,

ddF (C(Q′), Q) ≤ ddF (C(Q′), Q′) + ddF (Q′, Q) ≤ (1 + ε

2)r + εr

2 = (1 + ε)r.

We obtain the following theorem.

I Theorem 9. There exists a data structure for the (1 + ε, r)-ANNC under DFD, with
n ·O( 1

ε )md space, n ·O( 1
ε )md expected preprocessing time, and O(md) query time.

Table 3 Comparing our ANN data structure to previous structures, for a fixed ε (say ε = 1/2).

m Reference Space Query Approx.

logn

[10] O(n4d+1 logn) Õ(n4d) d
√
d

[12] nΩ(d log n) Õ(dn4) 1 + ε

Theorem 9 nO(d) O(d logn) 1 + ε

O(1)

[10] 2O(d)n logn 2O(d) · logn d
√
d

[12] dO(d)Õ(n) O(d logn) 1 + ε

Theorem 9 2O(d)n O(d) 1 + ε
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4 The asymmetric setting under DFD

In this section, we show how to easily adapt our data structure to the asymmetric setting,
by using simplifications of length at most k instead of the original input curves.

Bereg et al. [3] showed that given a curve C consisting of m points in 3D, and a parameter
r > 0, there is an algorithm that runs in O(m logm) time and returns a simplification Π
with minimum number of vertices such that ddF (C,Π) ≤ r. Their algorithm generalizes
to higher dimensions, using an approximation algorithm for the minimum enclosing ball
problem (see Kumar et al. [17]). In this section, we use the following generalization of their
original approach ([3], Theorem 1). More details are given in Section 8.

I Lemma 10. Let C be a curve consisting of m points in Rd. Given parameters k ≤ m,
r > 0, and ε ∈ (0, 1], there is an algorithm that runs in O

(
d·m logm

ε +m · poly 1
ε

)
time that

either returns a simplification Π consisting of k points such that ddF (C,Π) ≤ (1 + ε)r, or
declares that for every simplification Π with k points, it holds that ddF (C,Π) > r.

For each Ci ∈ C, using Lemma 10 with parameter ε = 1, we find a curve Πi of length k
such that ddF (Ci,Πi) ≤ 2r. If we fail to find such a curve, then we can ignore Ci, because it
means that ddF (Q,Ci) > r for any curve Q of length k.

To reduce the space consumption of our data structure, we only store candidate curves of
length k that are close enough to the simplifications Πi. However, since the distance between
the simplification Πi and the input curve Ci could be up to 2r, storing the answers for the
set of candidate curves that are within distance (1 + ε

2 )r from Πi is not enough, because a
query Q that is within distance (1 + ε)r from Ci might be as far as (3 + ε)r from Πi. Thus,
instead, we insert into our data structure all the curves that are within distance 4r from Πi.
This allows us to capture all query curves that are within distance r from Ci.

The data structure. We construct our data structure for the original (symmetric) version,
with the following modifications. The set of input curves is P = {Π1, . . . ,Πn} (instead of
C), and the radius parameter is 4r (instead of r), but the grid edge length remains εr√

d
. In

addition, we let I ′i be the set of all curves Q with k points from Gi, such that ddF (Q,Πi) ≤ 4r,
and Ii will be the set of all curves Q ∈ I ′i such that ddF (Q,Ci) ≤ (1 + ε

2 )r. We insert the
curves in Ii into the database D as before: For each Q ∈ Ii, if Q /∈ D, insert Q into D and
set C(Q)← Ci.

Notice that using 4r instead of r, increases the ratio between the radius and the grid edge
length by only a factor of 4, and therefore the bound on |I ′i| does not change, except that
m is replaced by k. Therefore, the bounds on the storage space and query time are similar
to those of the original data structure, where m is replaced by k. Thus, the storage space
is in n · O( 1

ε )kd and the query time is in O(kd). As for the preprocessing time, we get an
additional term of O(nmd logm) for computing the simplifications Π1, . . . ,Πn. We also need
to compute the distances ddF (Ci, Q) in the construction of Ii, for 1 ≤ i ≤ n, which takes
n · O( 1

ε )kd · O(mkd) = nm · O( 1
ε )kd time in total (as kd ≤ 2kd). Thus the total expected

preprocessing time is O(nmd logm) + nm ·O( 1
ε )kd = nm ·

(
O(d logm) +O( 1

ε )kd
)
.

Correctness. Consider a query curve Q, and assume that there exists a curve Ci ∈ C such
that ddF (Ci, Q) ≤ r. Then, Πi is a curve of length k and ddF (Ci,Πi) ≤ 2r. As in the
previous section, let Q′ be the curve computed by the query algorithm, then ddF (Q′, Q) ≤ εr

2 .
By the triangle inequality, we have ddF (Q′, Ci) ≤ ddF (Q′, Q) + ddF (Q,Ci) ≤ (1 + ε

2 )r, and

ddF (Q′,Πi) ≤ ddF (Q′, Ci) + ddF (Ci,Πi) ≤ (1 + ε

2)r + 2r ≤ 4r.
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Therefore our data structure contains Q′, and the query algorithm returns C(Q′), where
ddF (C(Q′), Q′) ≤ (1 + ε

2 )r. Finally, again by the triangle inequality, we have

ddF (C(Q′), Q) ≤ ddF (C(Q′), Q′) + ddF (Q′, Q) ≤ (1 + ε

2)r + εr

2 = (1 + ε)r.

We obtain the following theorem.

I Theorem 11. There exists a data structure for the asymmetric (1 + ε, r)-ANNC under
DFD, with n · O( 1

ε )dk space, nm ·
(
O(d logm) +O( 1

ε )kd
)
expected preprocessing time, and

O(kd) query time.

5 `p,2-distance of polygonal curves

For the near-neighbor problem under the `p,2-distance, we use the same basic approach as in
Section 3, but with two small modifications. The first is that we set the grid’s edge length to

εr
(2m)1/p

√
d
, and redefine G(x,R), Gi, and G, as in Section 3 but with respect to the new edge

length of our grid. The second modification is that we redefine Ii to be the set of all curves
Q = (x1, x2, . . . , xm) with points from G, such that dp,2(Ci, Q) ≤ (1 + ε

2 )r.
We assume without loss of generality from now and to the end of this section that r = 1

(we can simply scale the entire space by 1/r), so the grid’s edge length is ε
(2m)1/p

√
d
. The

following corollary is respective to Corollary 7.

I Corollary 12. |G(x,R)| = O
(

1 + m1/p

ε R
)d

.

Proof. We scale our grid so that the edge length is 1, hence we are looking for the number
of lattice points in Bd2 (x, (2m)1/p

√
d

ε R). By Lemma 5 we get that this number is bounded by
the volume of the d-dimensional ball of radius (1 + (2m)1/p

ε R)
√
d. Using Stirling’s formula

we conclude,

V d2

((
1 + (2m)1/p

ε
R

)√
d

)
= π

d
2

Γ(d2 + 1)
·
((

1 + (2m)1/p

ε
R

)√
d

)d
= αd ·

(
1 + m1/p

ε
R

)d
where α is a constant (approximately 4.13 · 21/p). J

In the following claim we bound the size of Ii, which, surprisingly, is independent of p.

B Claim 13. |Ii| = O( 1
ε )m(d+1) and it can be computed in O( 1

ε )m(d+1) time.

Proof. Let Q = (x1, x2, . . . , xm) ∈ Ii, and let τ be an alignment with σp,2(τ(Ci, Q)) ≤ (1+ ε
2 ).

For each 1 ≤ k ≤ m let jk be the smallest index such that (jk, k) ∈ τ . In other words, jk is
the smallest index that is matched to k by the alignment τ .

Set Rk = ‖xk − pijk
‖2, then we have ‖(R1, . . . , Rm)‖p ≤ σp,2(τ(Ci, Q)) ≤ (1 + ε

2 ).
Let αk =

⌈
m1/p

ε Rk

⌉
. By triangle inequality,

‖(α1, α2, . . . , αm)‖p ≤
m1/p

ε
‖(R1, R2, . . . , Rm)‖p +m1/p

≤ m1/p

ε

(
1 + ε

2

)
+m1/p <

(
2 + 1

ε

)
m1/p.

Clearly, xk ∈ Bd2 (pijk
, αk

ε
m1/p ).
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We conclude that for each curve Q = (x1, x2, . . . , xm) ∈ Ii there exists an alignment
τ such that σp,2(τ(Ci, Q)) ≤ 1 + ε

2 , and a sequence of integers (α1, . . . , αm) such that
‖(α1, α2, . . . , αm)‖p ≤ (2 + 1

ε )m1/p and xk ∈ Bd2(pijk
, αk

ε
m1/p ), for k = 1, . . . ,m. Therefore,

the number of curves in Ii is bounded by the multiplication of three numbers:

1. The number of alignments that can determine the distance, which is at most 22m by
Lemma 4.

2. The number of ways to choose a sequence of m positive integers α1, . . . , αm such that
‖(α1, α2, . . . , αm)‖p ≤ (2 + 1

ε )m1/p, which is bounded by the number of lattice points in
Bmp ((2 + 1

ε )m1/p) (the m-dimensional `p-ball of radius (2 + 1
ε )m1/p). By Lemma 5, this

number is bounded by

V mp ((2 + 1
ε

)m1/p +m1/p) ≤ V mp (4m1/p

ε
) = 2mΓ(1 + 1/p)m

Γ(1 +m/p)

(
4m1/p

ε

)m
= O(1

ε
)m ,

where the last equality follows as mm/p

Γ(1+m/p) = O(1)m.

3. The number of ways to choose a curve (x1, x2, . . . , xm), such that xk ∈ G(pijk
, αk

ε
m1/p ),

for k = 1, . . . ,m. By Corollary 12, the number of grid points in G(pijk
, αk

ε
m1/p ) is

O(1+αk)d, so the number of ways to choose (x1, x2, . . . , xm) is at most Πm
k=1O(1+αk)d =

O(1)md (Πm
k=1(1 + αk))d. By the inequality of arithmetic and geometric means we have

(Πm
k=1(1 + αk)p)1/p ≤

(∑m
k=1(1 + αk)p

m

)m/p
=
(
‖(1 + α1, . . . , 1 + αm)‖p

m1/p

)m
≤
(
‖1‖p + ‖(α1, . . . , αm)‖p

m1/p

)m
≤

(
m1/p + (2 + 1

ε )m1/p

m1/p

)m
= O(1

ε
)m,

so Πm
k=1O(1 + αk)d = O(1)mdO( 1

ε )md = O( 1
ε )md.

Finally, |Ii| ≤ 22m ·O( 1
ε )m ·O( 1

ε )md ≤ O( 1
ε )m(d+1). C

The data structure and query algorithm are similar to those we described for DFD, and
the size of Ii and I is roughly the same (here there is an additional O( 1

ε )m factor in the
space bound). Therefore, the query time, storage space, and preprocessing time are roughly
similar, but we still need to show that the algorithm is correct.

Correctness. Consider a query curve Q = (q1, . . . , qm). Assume that there exists a curve
Ci ∈ C such that dp,2(Ci, Q) ≤ 1. We will show that the query algorithm returns a curve C∗
with dp,2(C∗, Q) ≤ 1 + ε.

Consider a point qk ∈ Q. Denote by q′k ∈ G the grid point closest to qk, and let
Q′ = (q′1, . . . , q′m). We have ‖qk − q′k‖2 ≤ ε

2(2m)1/p . Let τ be an alignment such that the
`p,2-cost of τ w.r.t. Ci and Q is at most 1. Unlike the Fréchet distance, `p,2-distance for
curves does not satisfy the triangle inequality. However, by the triangle inequality under `2
and `p, we get that the `p,2-cost of τ w.r.t. Ci and Q′ is
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σp,2(τ(Ci, Q′)) =

 ∑
(j,t)∈τ

‖pij − q′t‖
p
2

1/p

≤

 ∑
(j,t)∈τ

(
‖pij − qt‖2 + ‖qt − q′t‖2

)p1/p

≤

 ∑
(j,t)∈τ

‖pij − qt‖
p
2

1/p

+

 ∑
(j,t)∈τ

‖qt − q′t‖
p
2

1/p

≤ 1 +
(

2m
(

ε

2(2m)1/p

)p)1/p

≤ 1 + ε

2 .

So dp,2(Ci, Q′) ≤ 1 + ε
2 , and thus Q′ is in Ii ⊆ I. This means that T contains Q′ with a

curve C(Q′) ∈ C such that dp,2(C(Q′), Q′) ≤ 1 + ε
2 , and the query algorithm returns C(Q′).

Now, again by the same argument (using an alignment with `p,2-cost at most 1 + ε
2 w.r.t.

C(Q′) and Q′), we get that dp,2(C(Q′), Q) ≤ 1 + ε
2 +

(
2m
(

ε
2(2m)1/p

)p)1/p
= 1 + ε.

We obtain the following theorem.

I Theorem 14. There exists a data structure for the (1 + ε, r)-ANNC under `p,2-distance,
with n ·O( 1

ε )m(d+1) space, n ·O( 1
ε )m(d+1) expected preprocessing time, and O(md) query time.

As mentioned in the preliminaries section, the DTW distance between two curves equals
to their `1,2-distance, and therefore we obtain the following theorem.

I Theorem 15. There exists a data structure for the (1 + ε, r)-ANNC under DTW, with
n ·O( 1

ε )m(d+1) space, n ·O( 1
ε )m(d+1) expected preprocessing time, and O(md) query time.

I Remark 16 (Dealing with query curves and input curves of varying size). For the case of
DFD, our assumption that all query curves are of length exactly k can be easily removed,
by constructing k data structures D1, . . . ,Dk, where Di is our data structure constructed
for query curves of length i (instead of k), for 1 ≤ i ≤ k. Clearly, the query time does not
change. The storage space is multiplied by k, so in the case of DFD we have storage space
nk ·O( 1

ε )kd, but k < 2kd, so the storage space remains n ·O( 1
ε )kd.

For the case of dp,2 we can deal with queries of all sizes up to m. Our construction in
Section 5 can be modified in a straightforward manner to deal with queries of size k, the space
guarantee however will depend on m, upper bounded by n ·O( 1

ε )m(d+1), as in Theorem 14.
From here, we can use the same approach as above.

6 A deterministic construction using a prefix tree

When implementing the dictionary D as a hash table, the construction of the data structure
is randomized and thus in the worst case we might get higher prepeocessing time. To avoid
this, we can implement D as a prefix tree.

6.1 Discrete Fréchet distance
In this section we describe the implementation of D as a prefix tree in the case of ANNC
under DFD.

We can construct a prefix tree T for the curves in I, where any path in T from the root
to a leaf corresponds to a curve that is stored in it. For each 1 ≤ i ≤ n and curve Q ∈ Ii, if
Q /∈ T , insert Q into T , and set C(Q)← Ci.
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Each node v ∈ T corresponds to a grid point from G. Denote the set of v’s children by
N(v). We store with v a multilevel search tree on N(v), with a level for each coordinate.
The points in G are the grid points contained in nm balls of radius (1 + ε)r. Thus when
projecting these points to a single dimension, the number of 1-dimensional points is at most
nm ·

√
d(1+ε)2r
εr = O(nm

√
d

ε ). So in each level of the search tree on N(v) we have O(nm
√
d

ε )
1-dimensional points, so the query time is O(d log(nmdε )).

Inserting a curve of length m to the tree T takes O(md log(nmdε )) time. Since T is a
compact representation of |I| = n ·O( 1

ε )dm curves of length m, the number of nodes in T
is m · |I| = nm · O( 1

ε )dm. Each node v ∈ T contains a search tree for its children of size
O(d · |N(v)|), and

∑
v∈T |N(v)| = nm · O( 1

ε )dm so the total space complexity is O(nmd) ·
O( 1

ε )md = n · O( 1
ε )md. Constructing T takes O(|I| ·md log(nmdε )) = n log(nmdε ) · O( 1

ε )md
time.

I Theorem 17. There exists a data structure for the (1 + ε, r)-ANNC under DFD, with
n ·O( 1

ε )dm space, n · log(nε ) ·O( 1
ε )md preprocessing time, and O(md log(nmdε )) query time.

Similarly, for the asymmetric case we obtain the following theorem.

I Theorem 18. There exists a data structure for the asymmetric (1 + ε, r)-ANNC under
DFD, with n · O( 1

ε )dk space, nm log(nε ) ·
(
O(d logm) +O( 1

ε )kd
)
preprocessing time, and

O(kd log(nkdε )) query time.

6.2 `p,2-distance
For the case of ANNC under `p,2-distance, the total number of curves stored in the tree T is
roughly the same as in the case of DFD. We only need to show that for a given node v of
the tree T , the upper bound on the size and query time of the search tree associated with it
are similar.

The grid points corresponding to the nodes in N(v) are from n sets of m balls with radius
(1 + ε). When projecting the grid points in one of the balls to a single dimension, the number
of 1-dimensional points is at most m1/p

√
d

ε · (1 + ε), so the total number of projected points is

at most nm
1+ 1

p
√
d

ε · (1 + ε).
Thus in each level of the search tree of v we have O(nm

2√d
ε ) 1-dimensional points, so

the query time is O(d log(nmdε )), and inserting a curve of length m into the tree T takes
O(md log(nmdε )) time. Note that the size of the search tree of v remains O(d · |N(v)|).

We conclude that the total space complexity is O(nm
2√d
ε ) ·O( 1

ε )m(d+1) = n ·O( 1
ε )m(d+1),

constructing T takes O(|I| ·md log(nmd/ε)) = n log(nε ) · O( 1
ε )m(d+1) time, and the total

query time is O(md log(nmdε )).

I Theorem 19. There exists a data structure for the (1 + ε, r)-ANNC under `p,2-distance,
with n ·O( 1

ε )m(d+1) space, n · log(nε ) ·O( 1
ε )m(d+1) preprocessing time, and O(md log(nmdε ))

query time.

7 Approximate range counting

In the range counting problem for curves, we are given a set C of n curves, each consisting of
m points in d dimensions, and a distance measure for curves δ. The goal is to preprocess C
into a data structure that given a query curve Q and a threshold value r, returns the number
of curves that are within distance r from Q.
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In this section we consider the following approximation version of range counting for
curves, in which r is part of the input (see Remark 22). Note that by storing pointers to
curves instead of just counters, we can obtain a data structure for the approximate range
searching problem (at the cost of an additional O(n)-factor to the storage space).

I Problem 20 ((1 + ε, r)-approximate range-counting for curves). Given a parameter r and
0 < ε ≤ 1, preprocess C into a data structure that given a query curve Q, returns the number
of all the input curves whose distance to Q is at most r plus possibly additional input curves
whose distance to Q is greater than r but at most (1 + ε)r.

We construct the dictionary D (implemented as a dynamic hash table, or a prefix tree)
for the curves in I as in Section 5, as follows. For each 1 ≤ i ≤ n and curve Q ∈ Ii, if
Q is not in D, insert it into D and initialize C(Q) ← 1. Otherwise, if Q is in D, update
C(Q) ← C(Q) + 1. Notice that C(Q) holds the number of curves from C that are within
distance (1 + ε

2 )r to Q. Given a query curve Q, we compute Q′ as in Section 5. If Q′ is in D,
we return C(Q′), otherwise, we return 0.

Clearly, the storage space, preprocessing time, and query time are similar to those in
Section 5. We claim that the query algorithm returns the number of curves from C that are
within distance r to Q plus possibly additional input curves whose distance to Q is greater
than r but at most (1 + ε)r. Indeed, let Ci be a curve such that ddF (Ci, Q) ≤ r. As shown
in Section 5 we get dp,2(Ci, Q′) ≤ (1 + ε

2 )r, so Q′ is in Ii and Ci is counted in C(Q′). Now
let Ci be a curve such that dp,2(Ci, Q) > (1 + ε)r. If dp,2(Ci, Q′) ≤ (1 + ε

2 )r, then by a
similar argument (switching the rolls of Q and Q′) we get that dp,2(Ci, Q′) ≤ (1 + ε)r, a
contradiction. So dp,2(Ci, Q′) > (1 + ε

2 )r, and thus Ci is not counted in C(Q′).
We obtain the following theorem.

I Theorem 21. There exists a data structure for the (1 + ε, r)-approximate range-counting
for curves under `p,2-distance, with n ·O( 1

ε )m(d+1) space, n log(nε ) ·O( 1
ε )m(d+1) preprocessing

time, and O(md log(nmdε )) query time. (Under DFD, the exponent in the bounds for the
space and preprocessing time is md rather than m(d+ 1).)

I Remark 22. When the threshold parameter r is part of the query, we call the problem the
(1+ε)-approximate range-counting problem. Note that the reduction from (1+ε)-approximate
nearest-neighbor to (1 + ε, r)-approximate near-neighbor can be easily adapted to a reduction
from (1 + ε)-approximate range-counting to (1 + ε, r)-approximate range-counting, more
details will be given in a full version of this paper.

8 Simplification in d-dimensions

The algorithm of Bereg et al. [3] receives as an input a curve C consisting of m points in R3,
and a parameter r > 0. In O(m logm) time, it returns a curve Π such that ddF (C,Π) ≤ r,
and Π has the minimum number of vertices among all curves within distance r from C. The
algorithm is operating in a greedy manner, by repeatedly executing Megiddo’s [19] minimum
enclosing ball (MEB) algorithm for points in R3, which takes linear time.

We generalize the algorithm of Bereg et al. for curves in Rd, by using an algorithm
presented by Kumar et al. [17] for approximated minimum enclosing ball (AMEB) in Rd.
Formally, given a set A of n points in Rd and a parameter ε ∈ (0, 1], the goal is to find an
enclosing ball of A with radius r > 0, where the minimum enclosing ball of A has radius at
least r

1+ε . The algorithm of [17] can find an AMEB in O(ndε +ε−4.5 log 1
ε ) time. In particular,

given an additional parameter r > 0, this algorithm either returns an enclosing ball of A with
radius (1 + ε)r, or declares that the minimum enclosing ball of A has radius larger than r.
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Next, we describe our modified algorithm. Consider a curve C = (x1, . . . , xm), and denote
C[i, j] = (xi, . . . , xj). The following sub-procedure takes as an input a curve A and returns a
point y and an index s, such that the ball with radius (1 + ε)r centered at y covers the prefix
A[1, s], and (if s < |A|) the minimum enclosing ball of A[1, s+ 1] has radius larger than r.
1. By iterative probing, using an algorithm for AMEB, find some t such that A[1, 2t] can be

covered by a ball of radius (1 + ε)r, while A[1, 2t+1] cannot be covered by a ball of radius
r. If all the points in A can be enclosed by a single ball of radius (1 + ε)r centered at y,
simply return y and |A|.

2. By binary search, again using an algorithm for AMEB, find some s ∈ [2t, 2t+1) such that
A[1, s] can be covered by a ball of radius (1 + ε)r, and A[1, s+ 1] cannot be covered by a
ball of radius r. Let y ∈ Rd be the center of this ball. Return y and s.

Starting from the input A = C[1,m], repeat the above sub-procedure such that in each step
the input is the suffix of C that was not yet covered by the previous steps (i.e. A[s+ 1,m]).
Let (y1, . . . , yq) be the sequence of output points.

Lemma 10 is an easy corollary of the following lemma.

I Lemma 23. Let C be a curve consisting of m points in Rd. Given parameters r > 0,
and ε ∈ (0, 1], the algorithm above runs in O

(
d·m logm

ε +m · ε−4.5 log 1
ε

)
time and returns a

curve Π = (y1, . . . , yq) such that ddF (C,Π) ≤ (1 + ε)r. Furthermore, for every curve Π′ with
less than q points, it holds that ddF (C,Π′) > r.

Proof sketch. We start by analyzing the running time for a single iteration of the sub-
procedure, when using the algorithm of [17] to find an AMEB. The total time for the first
step of the sub-procedure (finding t) is

t+1∑
i=1

O(2i · d
ε

+ ε−4.5 log 1
ε

) = O(2t · d
ε

+ t · ε−4.5 log 1
ε

).

In the second step, there are O(t) executions of [17] on a set of size at most 2t+1, so the total
time for this step is t ·O( 2t·d

ε + ε−4.5 log 1
ε ).

Let mi be the length of the subcurve covered by the point yi that was found in
the i’th iteration of the sub-procedure. The total time spent for finding yi is therefore
logmi ·O(mi·d

ε + ε−4.5 log 1
ε ), and the total running time of the algorithm is

q∑
i=1

logmi ·O
(
mi · d
ε

+ ε−4.5 log 1
ε

)
= O

(
d ·m logm

ε
+m · ε−4.5 log 1

ε

)
,

where we used the the concavity of the log function, and the fact
∑q
i=1mi = m.

Next we argue the correctness. Clearly, ddF (C,Π) ≤ (1 + ε)r. Let s0 = 0, s1, . . . , sq = m

be the sequence of indices (of vertices in C) found during the execution of the algorithm, such
that the ball of radius (1+ε)r around yi covers C[si−1 +1, si]. It follows by a straightforward
induction that every curve Π′ with less that i points will be at distance greater than r from
C[1, si−1 + 1]. The lemma now follows. J

9 Remark on dimension reduction

In general, when the dimension d is large, i.e. d� log(nm), one can use dimension reduction
(using the celebrated Johnson-Lindenstrauss lemma [16]) in order to achieve a better running
time, at the cost of inserting randomness in the prepossessing and query procedure. However,
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such an approach can work only against an oblivious adversary, as it will necessarily fail for
some curves. Recently Narayanan and Nelson [20] (improving [11, 18]) proved a terminal
version of the JL-lemma. Given a set K of k points in Rd and ε ∈ (0, 1), there is a dimension
reduction function f : Rd → RO( log k

ε2 ) such that for every x ∈ K and y ∈ Rd it holds that
‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ (1 + ε) · ‖x− y‖2.

This version of dimension reduction can be used such that the query remains deterministic
and always succeeds. The idea is to take all the nm points from all the input curves to
be the terminals, and let f be the terminal dimension reduction. We transform each input
curve P = (p1, . . . , pm) into f(P ) = (f(p1), . . . , f(pm)), a curve in RO( log nm

ε2 ). Given a query
Q = (q1, . . . , qm) we transform it to f(Q) = (f(q1), . . . , f(qm)). Since the pairwise distances
between every query point to all input points are preserved, so is the distance between the
curves. Specifically, the dp,2 distance w.r.t. any alignment τ is preserved up to a 1 + ε factor,
and therefore we can reliably use the answer received using the transformed curves.
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Abstract

We prove that the Hadwiger number of an n-vertex graph G (the maximum size of a clique minor in
G) cannot be computed in time no(n), unless the Exponential Time Hypothesis (ETH) fails. This
resolves a well-known open question in the area of exact exponential algorithms. The technique
developed for resolving the Hadwiger number problem has a wider applicability. We use it to rule
out the existence of no(n)-time algorithms (up to ETH) for a large class of computational problems
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49:2 Tight Lower Bounds on the Computation of Hadwiger Number

1 Introduction

The Hadwiger number h(G) of a graph G is the largest number h for which the complete
graph Kh is a minor of G. Equivalently, h(G) is the maximum size of the largest complete
graph that can be obtained from G by contracting edges. It is named after Hugo Hadwiger,
who conjectured in 1943 that the Hadwiger number of G is always at least as large as its
chromatic number. According to Bollobás, Catlin, and Erdős, this conjecture remains “one
of the deepest unsolved problems in graph theory” [4].

The Hadwiger number of an n-vertex graph G can be easily computed in time nO(n)

by brute-forcing through all possible partitions of the vertex set of G into connected sets,
contracting each set into one vertex and checking whether the resulting graph is a complete
graph. The question whether the Hadwiger number of a graph can be computed in single-
exponential 2O(n) time was previously asked in [1, 6, 13]. Our main result provides a negative
answer to this open question.

I Theorem 1. Unless the Exponential Time Hypothesis (ETH) is false, there does not exist
an algorithm computing the Hadwiger number of an n-vertex graph in time no(n).

The interest in the complexity of the Hadwiger number is naturally explained by the
recent developments in the area of exact exponential algorithms, that is, algorithms solving
intractable problems significantly faster than the trivial exhaustive search, though still
in exponential time [8]. Within the last decade, significant progress on upper and lower
bounds of exponential algorithms has been achieved. Drastic improvements over brute-force
algorithms were obtained for a number of fundamental problems like Graph Coloring [3]
and Hamiltonicity [2]. On the other hand, by making use of the ETH, lower bounds could
be obtained for 2-CSP [15] or for Subgraph Isomorphism and Graph Homomorphism [6].

Graph Minor (deciding whether a graph G contains a graph H as a minor) is a
fundamental problem in graph theory and graph algorithms. Graph Minor could be seen
as special case of a general graph embedding problem where one wants to embed a graph
H into graph G. In what follows we will use n to denote the number of vertices in G and
h to denote the number of vertices in H. By the theorem of Robertson and Seymour [14],
there exists a computable function f and an algorithm that, for given graphs G and H,
checks in time f(h) · n3 whether H is a minor of G. Thus the problem is fixed-parameter
tractable (FPT) being parameterized by H. On the other hand, Cygan et al. [6] proved
that unless the ETH fails, this problem cannot be solved in time no(n) even in the case when
|V (G)| = |V (H)|. Other interesting embedding problems that are strongly related to Graph
Minor include the following problems.

Subgraph Isomorphism: Given two graphs G and H, decide whether G contains a
subgraph isomorphic to H. This problem cannot be solved in time no(n) when |V (G)| =
|V (H)|, unless the ETH fails [6]. In the special case called Clique, when H is a clique, a
brute-force algorithm checking for every vertex subset of G whether it is a clique of size
h solves the problem in time nO(h). The same algorithm also runs in single-exponential
time O(2nn2). It is also known that Clique is W[1]-hard parameterized by h and cannot
be solved in time f(h) · no(h) for any function f unless the ETH fails [7, 5].
Graph Homomorphism: Given two graphs G and H, decide whether there exists a
homomorphism from G to H. (A homomorphism G→ H from an undirected graph G
to an undirected graph H is a mapping from the vertex set of G to that of H such that
the image of every edge of G is an edge of H.) This problem is trivially solvable in time
hO(n), and an algorithm of running time ho(n) for this problem would yield the failure of
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the ETH [6]. However, for the special case of H being a clique, Graph Homomorphism
is equivalent to h-Coloring (deciding whether the chromatic number of G is at most h),
and thus is solvable in single-exponential time 2n · nO(1) [3, 12]. When the graph G is a
complete graph, the problem is equivalent to finding a clique of size n in H, and then is
solvable in time 2h · hO(1).
Topological Graph Minor: Given two graphs G and H, decide whether G contains
H as a topological minor. (We say that a graph H is a subdivision of a graph G if G
can be obtained from H by contracting only edges incident with at least one vertex of
degree two. A graph H is called a topological minor of a graph G if a subdivision of H
is isomorphic to a subgraph of G.) This problem is, perhaps, the closest “relative” of
Graph Minor. Grohe et al. [11] gave an algorithm of running time f(h) · n3 for this
problem for some computable function f . Similar to Graph Minor and Subgraph
Isomorphism, this problem cannot be solved in time no(n) when |V (G)| = |V (H)|, unless
the ETH fails [6]. However for the special case of the problem with H being a complete
graph, Lingas and Wahlen [13] gave a single-exponential algorithm solving the problem
in time 2O(n).

Thus all the above graph embedding “relatives” of Graph Minor are solvable in
single-exponential time when graph H is a clique. However, from the perspective of exact
exponential algorithms, Theorem 1 implies that finding the largest clique minor is the most
difficult problem out of them all. This is why we find the lower bound provided by Theorem 1
surprising. Moreover, from the perspective of parameterized complexity, finding a clique
minor of size h, which is FPT, is actually easier than finding a clique (as a subgraph) of size h,
which is W[1]-hard, as well as from finding an h-coloring of a graph, which is para-NP-hard.

Theorem 1 also answers another question of Cygan et al. [6], who asked whether deciding
if a graph H can be obtained from a graph G only by edge contractions, could be resolved
in single-exponential time. By Theorem 1, the existence of such an algorithm is highly
unlikely even when the graph H is a complete graph. Moreover, the technique developed
to prove Theorem 1, appears to be extremely useful to rule out the existence of no(n)-time
algorithms for various contraction problems. We formalize our results with the following
F-Contraction problem. Let F be a graph class. Given a graph G and t ∈ N, the task is
to decide whether there exists a subset F ⊆ E(G) of size at most t such that G/F ∈ F (where
G/F is the graph obtained from G by contracting the edges in F ). We prove that in each
of the cases of F-Contraction where F is the family of chordal graphs, interval graphs,
proper interval graphs, threshold graphs, trivially perfect graphs, split graphs, complete split
graphs and perfect graphs, unless the ETH fails, F-Contraction is not solvable in time
no(n). For lack of space, some of these results are relegated to the full version of this paper
(see [9]).

Technical Details. A summary of the reductions presented in this paper is given in Fig. 1.
To prove our lower bounds, we first revisit the proof of Cygan et al. [6] for the ETH-hardness
of a problem called List Subgraph Isomorphism. Informally, in this problem we are given
two graphs G and H on the same number of vertices, as well as a list of vertices in H for
each vertex in G, and we need to find a copy of G in H so that each vertex u in G is mapped
to a vertex v in H that belongs to its list (i.e. v belongs to the list of u). We prove that
the instances produced by the reduction (after some modification) of [6] have a very useful
property that we crucially exploit later. Specifically, we construct a proper coloring of G as
well as a proper coloring of H, and show that every vertex v in H that belongs to the list of
some vertex u is, in fact, of the same color as u.
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 Properly Colored List Subgraph Homomorphism 

Properly Colored List Subgraph Isomorphism 

Cross Matching 

Noisy Structured Clique Contraction 
special case of Clique Contraction 

Hadwiger Number Split Contraction, 
Complete Split Contraction 

Perfect Contraction F-Contraction 
special case of Chordal Contraction, 
Interval Contraction, Proper Interval 
Contraction, Threshold Contraction, 

Trivially Perfect Contraction 
 

Figure 1 A summary of the problems considered in this paper, and the reductions between them.

Having proved the above, we turn to prove the ETH-hardness of a special case of Clique
Contraction where the input graph is highly structured. To this end, we introduce an
intermediate problem called Cross Matching. Informally, in this problem we are given
a graph L with a partition (A,B) of its vertex set, and need to find a perfect matching
between A and B whose contraction gives a clique. To see the connection between this
problem and List Subgraph Isomorphism, think of the subgraph of L induced by one side
of the partition – say, A – as a representation of the complement of G, and the subgraph of
L induced by the other side of the partition as a representation of H. Then, the edges that
go across A and B in a perfect matching can be thought of as a mapping of the vertices of G
to the vertices of H. The crossing edges of L are easily defined such that necessarily a vertex
of G can only be matched to a vertex in its list. In particular, we would like to enforce that
every “non-edge” of the complement of G (which corresponds to an edge of G) would have
to be mapped to an edge of H in order to obtain a clique. However, the troublesome part is
that non-edges of the complement of G may also be “filled” (to eventually get a clique) using
crossing edges rather than only edges of H. To argue that this critical issue does not arise,
we crucially rely on the proper colorings of G and H.

Now, for the connection between Cross Matching and Clique Contraction, note
that a solution to an instance of Cross Matching is clearly a solution to the instance
of Clique Contraction defined by the same graph, but the other direction is not true.
By adding certain vertices and edges to the graph of an instance of Cross Matching, we
enforce all solutions to be perfect matchings between A and B. In particular, we construct the
instances of Clique Contraction in a highly structured manner that allows us to derive
not only the ETH-hardness of Clique Contraction itself, but to build upon them and
further derive ETH-hardness for a wide variety of other contraction problems. In particular,
we show that the addition of “noise” (that is, extra vertices and edges) to any structured
instance of Clique Contraction has very limited effect. Roughly speaking, we show that
the edges in the “noise” and the edges going across the “noise” and core of the graph (that
is, the original vertices corresponding to the structured instance of Clique Contraction)
are not “helpful” when trying to create a clique on the core (i.e. it is not helpful to try to
use these edges in order to fill non-edges between vertices in the core). Depending on the
contraction problem at hand, the noise is slightly different, but the proof technique stays the
same – first showing that the core must yield a clique, and then using the argument above
(in fact, in all cases but that of perfect graphs, we are able to invoke the argument as a black
box) to show that the noise is, in a sense, irrelevant.
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Preliminaries. As we only use standard notations, we present them only in the full version
of this paper.

2 Lower Bound: Prop-Colored List Subgraph Isomorphism

In this section we build upon the work of Cygan et al. [6] and show a lower bound for a
problem called Properly Colored List Subgraph Isomorphism (Prop-Col LSI).
Intuitively, Prop-Col LSI is a variant of Spanning Subgraph Isomorphism where given
two graphs G and H, we ask whether G is isomorphic to some spanning subgraph of H. The
input to the variant consists also of proper colorings of G and H and an additional labeling
of vertices in G by subsets of vertices in H of the same color, so that each vertex in G can
be mapped only to vertices in H contained in its list. Formally, it is defined as follows.

Properly Colored List Subgraph Isomorphism (Prop-Col LSI)
Input: Graphs G and H with proper colorings cG : V (G)→ {1, . . . , k} and cH : V (H)→
{1, . . . , k} for some k ∈ N, respectively, and a function ` : V (G)→ 2V (H) such that for
every u ∈ V (G) and v ∈ `(u), cG(u) = cH(v).
Question: Does there exist a bijective function ϕ : V (G) → V (H) such that (i) for
every {u, v} ∈ E(G), {ϕ(u), ϕ(v)} ∈ E(H), and (ii) for every u ∈ V (G), ϕ(u) ∈ `(u)?

Notice that as the function ϕ above is bijective rather than only injective, we seek a
spanning subgraph. Our objective is to prove the following statement.

I Lemma 2. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col
LSI in time no(n) where n = |V (G)|.

In [6], the authors considered the two problems defined below. Intuitively, the second is
defined as Prop-Col LSI when no proper colorings of H and G are given (and hence the
labeling of vertices in G is not restricted accordingly); the first is defined as the second when
we seek a homomorphism rather than an isomorphism (i.e., the sought function ϕ may not
be injective) and also |V (G)| may not be equal to |V (H)| (thus ϕ may neither be onto).

List Subgraph Homomorphism (LSH)
Input: Graphs G and H, and a function ` : V (G)→ 2V (H) .
Question: Does there exist a function ϕ : V (G) → V (H) such that (i) for every
{u, v} ∈ E(G), {ϕ(u), ϕ(v)} ∈ E(H), and (ii) for every u ∈ V (G), ϕ(u) ∈ `(u)?

List Subgraph Isomorphism (LSI)
Input: Graphs G and H where |V (G)| = |V (H)|, and a function ` : V (G)→ 2V (H).
Question: Does there exist a bijective function ϕ : V (G) → V (H) such that (i) for
every {u, v} ∈ E(G), {ϕ(u), ϕ(v)} ∈ E(H), and (ii) for every u ∈ V (G), ϕ(u) ∈ `(u)?

The proof of hardness of LSI consists of two parts:
Showing ETH-hardness of LSH.
Giving a fine-grained reduction from LSH to LSI.

We cannot use the hardness of LSI as a black box because Prop-Col LSI is a special
case of LSI. Nevertheless, we will prove that the instances generated by the reduction (with
a minor crucial modification) of Cygan et al. [6] have the additional properties required to
make them instances of our special case.
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Figure 2 The reduction in Definition 4. The vertices of G are depicted by black shapes, where
each distinct shape represents a different color (say, square is 1, rectangle is 2 and oval is 3), and
the vertices of G̃ are depicted by circles enclosing the vertex sets identifies with them, where the
color of a vertex is the color of its circle (say, black is 1, green is 2, yellow is 3, red is 4, blue is 5
and grey is 6). Edges (of both graphs) are depicted by black lines. (The graph H̃ is not shown).
Then, the function φB is defined as follows: φB(1) = z, φB(2) = φB(5) = w, φB(3) = x, φB(4) = 0,
and φB(6) = y. Moreover, the function φB′ is defined as follows: φB′ (1) = φB′ (2) = φB′ (4) =
u, φB′ (3) = v, and φB′ (5) = φB′ (6) = 0. With respect to B and B′, the labeling ` is defined
as follows: `(B) = {(R, 4) : R[1] 6= 0, R[2] = R[5] 6= 0, R[3] 6= 0, R[4] = 0, R[6] 6= 0}, and
`(B′) = {(R, 5) : R[1] = R[2] = R[4] 6= 0, R[3] 6= 0, R[5] = R[6] = 0}.

Lower Bound: Properly Colored Subgraph Homomorphism. Adapting the scheme of
Cygan et al. [6] to our purpose, we will first show that finding a homomorphism remains
hard if it has to preserve a given proper coloring:

Properly Colored List Subgraph Homomorphism (Prop-Col LSH)
Input: Graphs G and H with proper colorings cG : V (G)→ {1, . . . , k} and cH : V (H)→
{1, . . . , k} for some k ∈ N, respectively, and a function ` : V (G)→ 2V (H) such that for
every u ∈ V (G) and v ∈ `(u), cG(u) = cH(v).
Question: Does there exist a function ϕ : V (G) → V (H) such that (i) for every
{u, v} ∈ E(G), {ϕ(u), ϕ(v)} ∈ E(H), and (ii) for every u ∈ V (G), ϕ(u) ∈ `(u)?

In [6], the authors gave a reduction from the 3-Coloring problem on n-vertex graphs of
degree 4 (which is known not to be solvable in time 2o(n) unless the ETH fails), which generates
equivalent instances (G′, H ′, `) of LSH where both |V (G′)| and |V (H ′)| are bounded by
O( n

logn ). This proves that LSH is not solvable in time no(n) where n = max{|V (G)|, |V (H)|}
unless the ETH fails. For their reduction, Cygan et al. [6] considered the notion of a
grouping (also known as quotient graph) G̃ of a graph G is a graph with vertex set V (G̃) =
{B1, B2, . . . , Bt} where (B1, B2, . . . , Bt) is a partition of V (G) for some t ∈ N and for any
distinct i, j ∈ {1, . . . , t}, the vertices Bi and Bj are adjacent in G̃ if and only if there exist
u ∈ Bi and v ∈ Bj that are adjacent in G. Specifically, they computed a grouping with a
coloring having specific properties as stated in the following lemma (see also Fig. 2.).
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I Lemma 3 (Lemma 3.2 in [6]). For any constant d ≥ 1, there exist positive integers λ = λ(d),
n0 = n0(d) and a polynomial time algorithm that for a given graph G on n ≥ n0 vertices of
maximum degree d and a positive integer r ≤

√
n
2λ , finds a grouping G̃ of G and a coloring

c̃ : V (G̃)→ [λr] with the following properties:
1. |V (G̃)| ≤ |V (G)|/r;
2. The coloring c̃ is a proper coloring of G̃2;1

3. Each vertex of G̃ is an independent set in G;
4. For any edge {Bi, Bj} ∈ E(G̃), there exists exactly one pair (u, v) ∈ Bi ×Bj such that
{u, v} ∈ E(G).

Now, we describe the reduction of [6]. Here, without loss of generality, it is assumed that
G has no isolated vertices, else they can be removed. An explanation of the intuition behind
this somewhat technical definition is given below it.

I Definition 4. For any instance G of 3-Coloring where G has degree d and a positive
integer r = o(

√
|V (G)|), the instance reduce(G) = (G̃, H̃, `) of LSH is defined as follows.

The graph G̃. Let G̃ and c̃ : V (G̃)→ {1, 2, . . . , L} be the grouping and coloring given by
Lemma 3 where L = λ(d)r. Additionally, for each B ∈ V (G̃), define φB : {1, 2, . . . , L} →
B ∪ {0} as follows: for any i ∈ {1, 2, . . . , L}, if there exists (u, v,B′) such that u ∈ B
and v ∈ B′, {u, v} ∈ E(G) and c̃(B′) = i, then φB(i) = u, and otherwise φB(i) = 0.2

The graph H̃. Let V (H̃) = {(R, l) : R ∈ {0, 1, 2, 3}L, l ∈ L},3 and E(H̃) = {{(R, l), (R′,

l′)} : R[l′] 6= R′[l]}.
The labeling `. For any B ∈ V (G̃), let `(B) contain all vertices (R, l) ∈ V (H̃) such
that c̃(B) = l, and there exists f : B → {1, 2, 3} such that for all i ∈ {1, 2, . . . , L}, either
φB(i) = R[i] = 0 or both φB(i) 6= 0 and f(φB(i)) = R[i].

Intuitively, for every vertex B ∈ V (G̃), the function φB can be interpreted as follows.
It is the assignment, for every possible color i ∈ {1, . . . , L}, of the unique vertex u within
the vertex set identified with B itself that is adjacent to some vertex in the vertex subset
identified with some vertex B′ ∈ V (G̃) colored i, if such a vertex u exists (else the assignment
is of 0). In a sense, B thus stores the information on the identity of each vertex within
it that is adjacent (in G) to some vertex outside of it, where each such internal vertex is
uniquely accessed by specifying the color of the vertex in G̃ whose identified vertex set
contains the neighbor. With respect to the graph H̃ and labeling `, we interpret each vertex
(R, l) ∈ V (H̃) as a “placeholder” (i.e. potential assignment of the sought function ϕ) for any
vertex B ∈ V (G̃) that “complies with the pattern encoded by the pair (R, l)” as follows.
First and straightforwardly, B must be colored l. Here, we remind that the colors of vertices
in G̃ belong to {1, . . . , L}, while vertices in G are colored 1, 2 or 3 only. Then, the second
requirement is that we can recolor (by f) the vertices in B so that the color of each vertex
in B that is adjacent (in G) to some vertex outside B is as encoded by the vector R – that
is, for each color i ∈ {1, . . . , L}, if the vertex φB(i) is defined (i.e., φB(i) 6= 0), then its color
(which is 1, 2 or 3) must be equal to the i-th entry of R. (More intuition is given in Fig. 2.)

Now, we state the correctness of the reduction.

1 The square G2 of a graph G is the graph on vertex set V (G) and edge set {{u, v} : {u, v} ∈ E(G) or
there exists w ∈ V (G) with {u,w}, {v, w} ∈ E(G)}.

2 The uniqueness of u (if it exists), and thus the validity of φB , follows from Properties 2 and 4 in Lemma 3.
3 That is, R is a vector with L entries where each entry is 0, 1, 2 or 3.
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I Lemma 5 (Lemma 3.3 in [6]). For any instance G of 3-Coloring where G is an n-vertex
graph of degree d, and a positive integer r = o(

√
|V (G)|), the instance reduce(G) = (G̃, H̃, `)

is computable in time polynomial in the sizes of G, G̃ and H̃, and has the following properties.
G is a Yes-instance of 3-Coloring if and only if (G̃, H̃, `) is a Yes-instance of LSH.
|V (G̃)| ≤ n/r, and |V (H̃)| ≤ γ(d)r where γ is some computable function of d.

We next prove that we can add colorings to the instance reduce(G) = (G̃, H̃, `) of LSH
in order to cast it as an instance of Prop-Col LSH while making a minor mandatory
modification to the graph H̃.

I Lemma 6. Given an instance reduce(G) = (G̃, H̃, `) of LSH, an equivalent instance
(G̃, H̃ ′, c

G̃
, c
H̃′ , `) of Prop-Col LSH, where H̃ ′ is a subgraph of H̃, is computable in

polynomial time.

Proof. Define c
G̃

= c̃ where c̃ is the coloring of G̃ in Definition 4. Additionally, let H̃ ′ be the
subgraph of H̃ induced by the vertex set {(R, l) ∈ V (H̃) : there exists B ∈ V (G̃) such that
(R, l) ∈ `(B)}. Then, define c

H̃′ : V (H̃ ′)→ {1, 2, . . . , L} as follows: for any (R, l) ∈ V (H̃ ′),
define c

H̃′((R, l)) = l. Notice that, by the definition of V (H̃ ′), every set assigned by ` is
subset of V (H̃ ′).

First, we assert that (G̃, H̃ ′, c
G̃
, c
H̃′ , `) is an instance of Prop-Col LSH. To this end,

we need to verify that the three following properties hold.
1. c

G̃
is a proper coloring of G̃.

2. c
H̃′ is a proper coloring of H̃ ′.

3. For every B ∈ V (G̃) and (R, l) ∈ `(B), it holds that c
G̃

(B) = c
H̃′((R, l)).

By the definition of c
G̃
, it is a proper coloring of G̃2, which is a supergraph of G̃. Thus,

c
G̃

is a proper coloring of G̃.
Now, we argue that c

H̃′ is a proper coloring of H̃ ′. To this end, consider some edge
{(R, l), (R′, l′)} ∈ E(H̃ ′). We need to show that c

H̃′((R, l)) 6= c
H̃′((R′, l′)). By the definition

of c
H̃′ , we have that cH̃′((R, l)) = l and c

H̃′((R′, l′)) = l′, and therefore it suffices to show that
l 6= l′. By the definition of E(H̃) (which is a superset of E(H̃ ′)), we have that R[l′] 6= R′[l].
Thus, necessarily at least one among R[l′] and R′[l] is not 0, and so we suppose w.l.o.g. that
R[l′] is not 0. Furthermore, since (R, l) ∈ V (H̃ ′), we have that there exists B ∈ E(G̃) such
that (R, l) ∈ `(B). Thus,

c̃(B) = l.
There exists f : B → {1, 2, 3} such that for all i ∈ {1, 2, . . . , L}, either φB(i) = R[i] = 0
or both φB(i) 6= 0 and f(φB(i)) = R[i].

From the second property, and because R[l′] 6= 0, we necessarily have that both φB(l′) 6= 0
and f(φB(l′)) = R[l′]. In particular, by the definition of φB, having φB(l′) 6= 0 means
that there exists (u, v,B′) such that u ∈ B, v ∈ B′, {u, v} ∈ E(G) and c̃(B′) = l′. By the
definition of G̃ as a grouping of G, having u ∈ B, v ∈ B′ and {u, v} ∈ E(G) implies that
{B,B′} ∈ E(G̃). Because c̃ is a proper coloring of G̃, this means that c̃(B) 6= c̃(B′). Since
c̃(B) = l and c̃(B′) = l′, we derive that l 6= l′. Hence, c

H̃′ is indeed a proper coloring of H̃ ′.
To conclude that (G̃, H̃ ′, c

G̃
, c
H̃′ , `) is indeed an instance of Prop-Col LSH, it remains to

assert that for every B ∈ V (G̃) and (R, l) ∈ `(B), it holds that c
G̃

(B) = c
H̃′((R, l)). To this

end, consider some B ∈ V (G̃) and (R, l) ∈ `(B). By the definition of ` (recall Definition 4),
(R, l) ∈ `(B) implies that c̃(B) = l. As c

G̃
= c̃, we have that c

G̃
(B) = l. Moreover, the

definition of c
H̃′ directly implies that c

H̃′((R, l)) = l. Thus, c
G̃

(B) = c
H̃′((R, l)).
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Finally, we argue that (G̃, H̃, `) is a Yes-instance of LSH if and only if (G̃, H̃ ′, c
G̃
, c
H̃′ , `)

is a Yes-instance of Prop-Col LSH. In one direction, because H̃ ′ is a subgraph of H̃, it is
immediate that if (G̃, H̃ ′, c

G̃
, c
H̃′ , `) is a Yes-instance of Prop-Col LSH, then so is (G̃, H̃, `).

For the other direction, suppose that (G̃, H̃, `) is a Yes-instance of LSH. Thus, there exists a
function ϕ : V (G̃)→ V (H̃) such that (i) for every {B,B′} ∈ E(G̃), {ϕ(B), ϕ(B′)} ∈ E(H̃),
and (ii) for every B ∈ V (G̃), ϕ(B) ∈ `(B). In particular, directly by the definition of
V (H̃ ′), the second condition implies that for every B ∈ V (G̃), it holds that ϕ(B) ∈ V (H̃ ′).
Thus, because H̃ ′ is an induced subgraph of H̃, it holds that for every {B,B′} ∈ E(G̃),
{ϕ(B), ϕ(B′)} ∈ E(H̃ ′). Therefore, ϕ witnesses that (G̃, H̃ ′, c

G̃
, c
H̃′ , `) is a Yes-instance of

Prop-Col LSH. J

We are now ready to assert the hardness of Prop-Col LSH. The proof, based on
Lemmas 3, 5 and 6, can be found in the full version of this paper.

I Lemma 7. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col
LSH in time no(n) where n = max(|V (G)|, |V (H)|).

From Graph Homomorphism to Subgraph Isomorphism. In this part, we observe that
the reduction of [6] from LSH to LSI can be essentially used as is to serve as a reduction
from Prop-Col LSH to Prop-Col LSI. For the sake of completeness, we give the full
details (and the conclusion of the proof of Lemma 2) in the full version of this paper.

3 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a
lower bound for an intermediate problem called Cross Matching that somewhat resembles
Clique Contraction, and which is defined as follows.

Cross Matching
Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has
one endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

I Lemma 8. Unless the ETH is false, there does not exist an algorithm that solves Cross
Matching in time no(n) where n = |A|.

Proof. Towards a contradiction, suppose that there exists an algorithm, denoted by Matchin-
gAlg, that solves Cross Matching in time no(n) where n is the number of vertices in the
set A in the input. We will show that this implies the existence of an algorithm, denoted by
LSIAlg, that solves Prop-Col LSI in time no(n) where n is the number of vertices in the
input graph G, thereby contradicting Lemma 2 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of
Prop-Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows
(see Fig. 3):

V (L) = V (G) ∪ V (H).
E(L) = E(G) ∪ E(H) ∪ {{u, v} : u ∈ V (G), v ∈ L(u)}.
A = V (G) and B = V (H).
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Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col-

LSI in time n
o(n)

where n = |V (G)|.

TODO

4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
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end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
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Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v
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In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
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Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
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Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v
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In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.
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Our objective is to prove the following statement.
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an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
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Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross
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Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
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Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because
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Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v
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su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
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In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
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Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
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• V (L) = V (G) [ V (H).
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Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because
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Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
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Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
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Figure 3 The construction of an instance of Cross Matching in the proof of Lemma 8.

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|, and notice that |A| = |B| = n. Thus, because MatchingAlg runs in

time |A|o(|A|) = no(n), so does LSIAlg.
For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance

of Prop-Col LSI. This means that there exists a bijective function ϕ : V (G) → V (H)
such that (i) for every {u, v} ∈ E(G), {ϕ(u), ϕ(v)} ∈ E(H), and (ii) for every u ∈ V (G),
ϕ(u) ∈ L(u). Having ϕ at hand, we will show that (L,A,B) is a Yes-instance, which will
imply that the call to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg
returns Yes.

Based on ϕ, we define a subset M ⊆ E(L) as follows: M = {{u, ϕ(u)} : u ∈ A}. Notice
that the containment of M in E(L) follows from the definition of E(L) and Condition (ii)
above. Moreover, by the definition of A, B and because ϕ is bijective, it further follows that
M is a perfect matching in L such that every edge in M has one endpoint in A and the other
in B. Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is
a clique. To this end, we consider two arbitrary vertices x and y of L/M , and prove that
they are adjacent in L/M . Necessarily x is a vertex that replaced two vertices u ∈ A and
u′ ∈ B such that {u, u′} ∈M , and y is a vertex that replaced two vertices v ∈ A \ {u} and
v′ ∈ B \ {u′} such that {v, v′} ∈ M . By the definition of contraction, to show that x and
y are adjacent in L/M , it suffices to show that u and v are adjacent in L or u′ and v′ are
adjacent in L (or both). To this end, suppose that u and v are not adjacent in L, else we are
done. By the definition of E(L), this means that {u, v} /∈ E(G) and hence {u, v} ∈ E(G).
By Condition (i) above, we derive that {ϕ(u), ϕ(v)} ∈ E(H). By the definition of M , we
know that u′ = ϕ(u) and v′ = ϕ(v), therefore {u′, v′} ∈ E(H). In turn, by the definition of
E(L), we get that {u′, v′} ∈ E(L). Thus, the proof of the forward direction is complete.

Now, suppose that LSIAlg returns Yes, which means that the call to MatchingAlg with
(L,A,B) returns Yes. Thus, (L,A,B) is a Yes-instance, which means that there exists a
perfect matching M in G such that every edge in M has one endpoint in A and the other in
B, and G/M is a clique. We define a function ϕ : A→ B as follows. For every u ∈ V (G),
let ϕ(u) = v where v is the unique vertex in B such that {u, v} ∈ M ; the existence and
uniqueness of v follows from the supposition that M is a perfect matching such that every
edge in M has one endpoint in A and the other in B. Furthermore, by the definition of A,B
and the edges in E(L) with one endpoint in A and the other in B, it directly follows that
ϕ is a bijective mapping between V (G) and V (H) such that for every u ∈ V (G), it holds
that ϕ(u) ∈ L(u). Thus, it remains to argue that for every edge {u, v} ∈ E(G), it holds
that {ϕ(u), ϕ(v)} ∈ E(H). To this end, consider some arbitrary edge {u, v} ∈ E(G), and
denote u′ = ϕ(u) and v′ = ϕ(v). Because L/M is a clique and M is a matching that, by the
definition of ϕ, necessarily contains both {u, u′} and {v, v′}, we derive that at least one of
the following four conditions must be satisfied: (i) {u, v} ∈ E(L); (ii) {u′, v′} ∈ E(L); (iii)
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{u, v′} ∈ E(L); (iv) {v, u′} ∈ E(L). Because {u, v} ∈ E(G), we have that {u, v} /∈ E(G) and
therefore {u, v} /∈ E(L). Thus, we are left with Conditions (ii), (iii) and (iv). Now, we will
crucially rely on the proper colorings of G and H to rule out the satisfaction of Conditions
(iii) and (iv).

B Claim 9. For any two edges {x, x′}, {y, y′} ∈ E(L) such that {x, y} ∈ E(G) and
x′, y′ ∈ V (H), it holds that neither {x, y′} nor {y, x′} belongs to E(L).

Proof of Claim 9. Because cG is a proper coloring of G and {x, y} ∈ E(G), it holds that
cG(x) 6= xG(y). Because {x, x′}, {y, y′} ∈ E(L), x, y ∈ V (G) and x′, y′ ∈ V (H), and by the
definition of E(L), it holds that x′ ∈ L(x) and y′ ∈ L(y), and therefore cG(x) = cH(x′) and
cG(y) = cH(y′). Thus, cG(x) 6= cH(y′) and cG(y) 6= cH(x′), implying that y′ /∈ L(x) and
x′ /∈ L(y). In turn, by the definition of E(L), this means that neither {x, y′} nor {y, x′}
belongs to E(L). This completes the proof of the claim. C

We now return to the proof of the lemma. By Claim 9, we are only left with Condition (ii),
that is, {u′, v′} ∈ E(L). However, by the definition of E(L), this means that {u′, v′} ∈ E(H).
As argued earlier, this completes the proof of the reverse direction. J

4 Lower Bounds: Clique Contraction and Hadwiger Number

In this section, we prove a lower bound for Clique Contraction and consequently for
Hadwiger Number, defined as follows.

Clique Contraction
Input: A graph G and t ∈ N.
Question: Is there a subset F ⊆ E(G) of size at most t such that G/F is a clique?

Hadwiger Number
Input: A graph G and h ∈ N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for
Hadwiger Number (called Theorem 1 in the introduction) will follow as a corollary.

I Theorem 10. Unless the ETH is false, there does not exist an algorithm that solves Clique
Contraction in time no(n) where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem called Noisy Structured Clique Contrac-
tion (which will arise in Section 5) along with a special case of it that is also a special case
of Clique Contraction. Then, we will prove a crucial property of instances of Noisy
Structured Clique Contraction, and afterwards we will use this property to prove
Theorem 10 and its corollary. The definition of the new problem is as follows (see Fig. 4).
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Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
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non-edges.
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of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to any
vertex in D, and no vertex in B is adjacent to any vertex in C.
Question: Does there exist a subset F ⊆ E(G) of size at most n such that G[A ∪B ∪
C ∪D ∪X]/F is a clique,a where X = {u ∈ N : there exists a vertex v ∈ A ∪B ∪C ∪D
such that u and v belong to the same connected component of G[F ]}?
a Note that F might contain edges outside G[A ∪B ∪ C ∪D ∪X]. Then, we slightly abuse notation

so that G[A ∪B ∪C ∪D ∪X]/F refers to G[A ∪B ∪C ∪D ∪X]/(F ∩E(G[A ∪B ∪C ∪D ∪X])).

Intuitively, the vertex set X consists of the noise (represented by N) that “interacts” with
non-noise (represented by V (G) \N) through contracted edges (in F ), i.e. the vertices in N
that lie together with at least one vertex in V (G) \N in a component that will be contracted
and thereby replaced by a single vertex. We refer to the special case of Noisy Structured
Clique Contraction where N = ∅ as Structured Clique Contraction. Note that
Structured Clique Contraction is also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the fol-
lowing property, which will be crucial in the proof of Theorem 10 as well as results in
Section 5.

I Lemma 11. Let F be a solution to an instance (G,A,B,C,D,N, n) of Noisy Structured
Clique Contraction. Then, F is a matching of size n in G such that each edge in F has
one endpoint in A and the other in B.

Proof. We first argue that every vertex in A ∪ B is incident to at least one edge in F .
Targeting a contradiction, suppose that there exists a vertex u ∈ A ∪B that is not incident
to any edge in F . Because |A∪B ∪C ∪D| = 6n, |F | ≤ n and G[A∪B ∪C ∪D ∪X]/F is a
clique (where the last two properties follow from the supposition that F is a solution), it
holds that G[A∪B∪C∪D∪X]/F is a clique on at least 5n+ |X| vertices. Hence, the degree
of every vertex in G[A∪B ∪C ∪D ∪X]/F , and in particular of u, should be 5n− 1 + |X| in
G[A ∪B ∪ C ∪D ∪X]/F . However, because no vertex in A is adjacent to any vertex in D
and no vertex in B is adjacent to any vertex in C, the degree of any vertex in A ∪B, and in
particular of u, is at most |A∪B|−1+ |C∪D|/2+ |X| = 4n−1+ |X| in G[A∪B∪C∪D∪X].
Because u is not incident to any edge in F , its degree in G[A ∪ B ∪ C ∪ D ∪ X]/F is at
most its degree in G[A ∪B ∪ C ∪D ∪X]. This is a contradiction, thus we get that indeed
every vertex in A ∪B is incident to at least one edge in F . From this, because |F | ≤ n and
|A ∪B| = 2n, we derive that F is a perfect matching in G[A ∪B].



F. V. Fomin, D. Lokshtanov, I. Mihajlin, S. Saurabh, and M. Zehavi 49:13

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

4

Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

4

Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

4

Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

4

Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

4

Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

4

Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

4

Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

4

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

It remains to argue that every edge in F has one endpoint in A and the other in B. Targeting
a contradiction, suppose that this is false. Because F is a perfect matching in G[A [ B], this
means that there exist two vertices a, a0 2 A such that {a, a0} 2 F . By the definition of Noisy

Structured Clique Contraction, neither a nor a0 is adjacent to any vertex inD. Moreover,
note that D ✓ V (G[A[B[C [D[X]/F ). In particular, the vertex of G[A[B[C [D[X]/F
yielded by the contraction of {a, a0} is not adjacent to any vertex of D in G[A[B[C[D[X]/F .
However, this is a contradiction because G[A [B [ C [D [X]/F is a clique.
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First, note that by construction, |V (H)| = 6n. Thus, because CliConAlg runs in time
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o(n), it follows that MatchingAlg runs in time n
o(n).
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of E(H), M ✓ E(H). We will show that H/M is a clique. As |M | = n, this will mean
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Figure 5 The construction of an instance of Structured Clique Contraction in the proof of
Lemma 12 where dashed lines represent non-edges.

It remains to argue that every edge in F has one endpoint in A and the other in B.
Targeting a contradiction, suppose that this is false. Because F is a perfect matching in
G[A ∪B], this means that there exist two vertices a, a′ ∈ A such that {a, a′} ∈ F . By the
definition of Noisy Structured Clique Contraction, neither a nor a′ is adjacent to
any vertex in D. Moreover, note that D ⊆ V (G[A ∪ B ∪ C ∪ D ∪ X]/F ). In particular,
the vertex of G[A ∪B ∪ C ∪D ∪X]/F yielded by the contraction of {a, a′} is not adjacent
to any vertex of D in G[A ∪ B ∪ C ∪D ∪X]/F . However, this is a contradiction because
G[A ∪B ∪ C ∪D ∪X]/F is a clique. J

We now prove a lower bound for Structured Clique Contraction. Because it is a
special case of Clique Contraction, this will directly yield the correctness of Theorem 10.

I Lemma 12. Unless the ETH is false, there does not exist an algorithm that solves
Structured Clique Contraction in time no(n) where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by CliCon-
Alg, that solves Structured Clique Contraction in time no(n) where n is the number
of vertices in the input graph. We will show that this implies the existence of an algorithm,
denoted by MatchingAlg, that solves Cross Matching in time no(n) where n is the size of
the set A in the input, thereby contradicting Lemma 8 and hence completing the proof.

We define the execution of MatchingAlg as follows. Given an instance (G,A,B) of Cross
Matching, MatchingAlg constructs an instance (H,A,B,C,D, n) of Structured Clique
Contraction as follows (see Fig. 5):

Let n = |A|, and K be a clique on 4n new vertices. Let (C,D) be a partition of V (K)
such that |C| = |D|.
V (H) = V (G) ∪ V (K).
E(H) = E(G) ∪ E(K) ∪ {{a, c} : a ∈ A, c ∈ C} ∪ {{b, d} : b ∈ B, d ∈ D}.

Then, MatchingAlg calls CliConAlg with (H,A,B,C,D, n) as input, and returns the answer.
First, note that by construction, |V (H)| = 6n. Thus, because CliConAlg runs in time

|V (H)|o(|V (H)|) ≤ no(n), it follows that MatchingAlg runs in time no(n).
For the correctness of the algorithm, first suppose that (G,A,B) is a Yes-instance of

Cross Matching. This means that there exists a perfect matching M in G such that every
edge in M has one endpoint in A and the other in B, and G/M is a clique. By the definition
of E(H), M ⊆ E(H). We will show that H/M is a clique. As |M | = n, this will mean
that (H,A,B,C,D, n) is a Yes-instance of Structured Clique Contraction, which will
mean, in turn, that the call to CliConAlg with (H,A,B,C,D, n) as input returns Yes, and
hence MatchingAlg returns Yes.
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Note that V (H/M) = V (K) ∪ V (G/M). To show that H/M is a clique, we consider two
arbitrary vertices u, v ∈ V (H/M), and show that they are adjacent in H/M . If u, v ∈ V (K),
then because K is a clique, it is clear that {u, v} ∈ E(H/M). Moreover, if u, v ∈ G/M , then
because G/M is a clique, it is clear that {u, v} ∈ E(H/M). Thus, one of the vertices u and
v belongs to V (G/M) and the other belongs to V (K). We suppose w.l.o.g. that u /∈ V (K).
Because M is a perfect matching in G such that every edge in M has one endpoint in A
and the other in B, it follows that u resulted from the contraction of the edge between
some a ∈ A and some b ∈ B. If v ∈ C, then {a, v} ∈ E(H), and otherwise v ∈ D and so
{b, v} ∈ E(H). Thus, by the definition of contraction, we conclude that {u, v} ∈ E(H/M).
This completes the proof of the forward direction.

Now, suppose that MatchingAlg returns Yes, which means that the call to CliConAlg with
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I Corollary 13. Unless the ETH is false, there does not exist an algorithm that solves
Hadwiger Number in time no(n) where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Hadwi-
gerAlg, that solves Hadwiger Number in time no(n) where n is the number of vertices in
the input graph. We will show that this implies the existence of an algorithm, denoted by
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For the correctness of the algorithm, first observe that if G is not connected, then no
sequence of edge contractions can yield a clique, and hence it is correct to return No. Thus,
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Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].
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Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?
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instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
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D, and no vertex in B is adjacent to a vertex in D.
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D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
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Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so
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as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
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Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

It remains to argue that every edge in F has one endpoint in A and the other in B. Targeting
a contradiction, suppose that this is false. Because F is a perfect matching in G[A [ B], this
means that there exist two vertices a, a0 2 A such that {a, a0} 2 F . By the definition of Noisy

Structured Clique Contraction, neither a nor a0 is adjacent to any vertex inD. Moreover,
note that D ✓ V (G[A[B[C [D[X]/F ). In particular, the vertex of G[A[B[C [D[X]/F
yielded by the contraction of {a, a0} is not adjacent to any vertex of D in G[A[B[C[D[X]/F .
However, this is a contradiction because G[A [B [ C [D [X]/F is a clique.

We are now ready to prove a lower bound for Structured Clique Contraction. Because
this problem is a special case of Clique Contruction, this will directly yield the correctness
of Theorem 5.1.

Lemma 5.2. Unless the ETH is false, there does not exist an algorithm that solves Structured

Clique Contraction in time n
o(n)

where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by CliConAlg,
that solves Structured Clique Contraction in time n

o(n). We will show that this implies
the existence of an algorithm, denoted by MatchingAlg, that solves Cross Matching in time
n
o(n), thereby contradicting Lemma 4.1 and hence completing the proof.
We define the execution of MatchingAlg as follows. Given an instance (G,A,B) of Cross

Matching, MatchingAlg constructs an instance (H,A,B,C,D, n) of Structured Clique

Contraction as follows (see Fig. ?):

• Let n = |A|, and K be a clique on 4n new vertices. Let (C,D) be a partition of V (K)
such that |C| = |D|.

• V (H) = V (G) [ V (K).

• E(H) = E(G) [ E(K) [ {{a, c} : a 2 A, c 2 C} [ {{b, d} : b 2 B, d 2 D}.

Then, MatchingAlg calls CliConAlg with (H,A,B,C,D, n) as input, and returns the answer of
this call.

First, note that by construction, |V (H)| = 6n. Thus, because CliConAlg runs in time
|V (H)|o(|V (H)|)  n

o(n), it follows that MatchingAlg runs in time n
o(n).

For the correctness of the algorithm, first suppose that (G,A,B) is a Yes-instance of Cross

Matching. This means that there exists a perfect matching M in G such that every edge
in M has one endpoint in A and the other in B, and G/M is a clique. By the definition
of E(H), M ✓ E(H). We will show that H/M is a clique. As |M | = n, this will mean
that (H,A,B,C,D, n) is a Yes-instance of Structured Clique Contraction, which will
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Figure 6 A two-cliques graph (see Definition 15).

5 Lower Bounds for Contraction to Graph Classes Problems

In this section, we prove lower bounds for several cases of the F-Contraction problem,
defined as follows. Here, F is a (possibly infinite) family of graphs.

F-Contraction
Input: A graph G and t ∈ N.
Question: Does there exist a subset F ⊆ E(G) of size at most t such that G/F ∈ F?

Notice that Clique Contraction is the case of F-Contraction where F is the
family of cliques. In this section, we consider the cases of F-Contraction where F is the
family of chordal graphs, interval graphs, proper interval graphs, threshold graphs, trivially
perfect graphs, split graphs, complete split graphs and perfect graphs, also called Chordal
Contraction, Interval Contraction, Proper Interval Contraction, Threshold
Contraction, Trivially Perfect Contraction, Split Contraction, Complete
Split Contraction and Perfect Contraction, respectively. Before we define these
classes formally, it will be more enlightening to first define only the class of chordal graphs
as well as somewhat artificial classes of graphs that will help us prove lower bounds for many
of the classes above in a unified manner.

I Definition 14 (Chordal Graphs). A graph is chordal if it does not contain C` for all ` ≥ 4
as an induced subgraph.

Our first class of graphs is defined as follows (see Fig. 6).

I Definition 15 (Two-Cliques Graphs). A two-cliques graph is a graph G such that there
exist A,B ⊆ V (G) such that A ∪ B = V (G), G[A] and G[B] are cliques, and there do not
exist vertices a ∈ A \B and b ∈ B \A such that {a, b} ∈ E(G). The two-cliques class is the
class of all two-cliques graphs.

It should be clear that the two-cliques class is a subclass of the class of chordal graphs.
Now, we further define a family of classes of graphs as follows.

I Definition 16 (Non-Trivial Chordal Class). We say that a class of graphs F is non-trivial
chordal if it is a subclass of the class of chordal graphs, and a superclass of the two-cliques
class.

Clearly, the class of cliques is not a non-trivial chordal class, and the class of chordal
graphs is a non-trivial chordal class. The rest of this section is divided as follows. First, in
Section 5, we prove a lower bound for any non-trivial chordal class. Then, in Section 5, we
prove a lower bound for some graph classes that are not non-trivial chordal.

Non-Trivial Chordal Graph Classes. Here, our objective is to prove the following theorem.
Afterwards, we will derive lower bounds for several known graph classes as corollaries.
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Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?
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Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.
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is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

It remains to argue that every edge in F has one endpoint in A and the other in B. Targeting
a contradiction, suppose that this is false. Because F is a perfect matching in G[A [ B], this
means that there exist two vertices a, a0 2 A such that {a, a0} 2 F . By the definition of Noisy

Structured Clique Contraction, neither a nor a0 is adjacent to any vertex inD. Moreover,
note that D ✓ V (G[A[B[C [D[X]/F ). In particular, the vertex of G[A[B[C [D[X]/F
yielded by the contraction of {a, a0} is not adjacent to any vertex of D in G[A[B[C[D[X]/F .
However, this is a contradiction because G[A [B [ C [D [X]/F is a clique.

We are now ready to prove a lower bound for Structured Clique Contraction. Because
this problem is a special case of Clique Contruction, this will directly yield the correctness
of Theorem 5.1.

Lemma 5.2. Unless the ETH is false, there does not exist an algorithm that solves Structured

Clique Contraction in time n
o(n)

where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by CliConAlg,
that solves Structured Clique Contraction in time n

o(n). We will show that this implies
the existence of an algorithm, denoted by MatchingAlg, that solves Cross Matching in time
n
o(n), thereby contradicting Lemma 4.1 and hence completing the proof.
We define the execution of MatchingAlg as follows. Given an instance (G,A,B) of Cross

Matching, MatchingAlg constructs an instance (H,A,B,C,D, n) of Structured Clique

Contraction as follows (see Fig. ?):

• Let n = |A|, and K be a clique on 4n new vertices. Let (C,D) be a partition of V (K)
such that |C| = |D|.

• V (H) = V (G) [ V (K).

• E(H) = E(G) [ E(K) [ {{a, c} : a 2 A, c 2 C} [ {{b, d} : b 2 B, d 2 D}.

Then, MatchingAlg calls CliConAlg with (H,A,B,C,D, n) as input, and returns the answer of
this call.

First, note that by construction, |V (H)| = 6n. Thus, because CliConAlg runs in time
|V (H)|o(|V (H)|)  n

o(n), it follows that MatchingAlg runs in time n
o(n).

For the correctness of the algorithm, first suppose that (G,A,B) is a Yes-instance of Cross

Matching. This means that there exists a perfect matching M in G such that every edge
in M has one endpoint in A and the other in B, and G/M is a clique. By the definition
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We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Targeting a contradiction, suppose that there exists an algorithm, de-
noted by NonTrivChordAlg, that solves F-Contraction in time n

o(n). We will show that this
implies the existence of an algorithm, denoted by CliConAlg, that solves Structured Clique

Contraction in time no(n), thereby contradicting Lemma 5.2 and hence completing the proof.
We define the execution of CliConAlgAlg as follows. Given an instance (G,A,B,C,D, n)

of Structured Clique Contraction, CliConAlgAlg constructs an instance (H,n) of F-

Contraction as follows (see Fig. ?):

• Let n = |A|. Moreover, let K and K
0 be two cliques, each on 2n new vertices.

• V (H) = V (G) [ V (K) [ V (K 0).

• E(H) = E(G) [ E(K) [ E(K 0) [ {{u, v} : u 2 V (G), v 2 V (K) [ V (K 0)}.

Then, CliConAlg calls NonTrivChordAlg with (H,n) as input, and returns the answer of this call.
First, note that by construction, |V (H)| = 10n. Thus, because NonTrivChordAlg runs in

time |V (H)|o(|V (H)|)  n
o(n), it follows that CliConAlg runs in time n

o(n).
For the correctness of the algorithm, first suppose that (G,A,B,C,D, n) is a Yes-instance

of Structured Clique Contraction. This means that there exists a subset F ✓ E(G)
of size at most n such that G/F is a clique. By the definition of H, we directly derive that
H/F is a two-cliques graphs, and therefore it belongs to F . Thus, (H,n) is a Yes-instance of
F-Contraction, which means that the call to NonTrivChordAlg with (H,n) as input returns
Yes, and hence CliConAlg returns Yes.

Now, suppose that CliConAlg returns Yes, which means that the call to NonTrivChordAlg

with (H,n) returns Yes. Thus, (H,n) is a Yes-instance, which means that there exists a subset
F ✓ E(H) of size at most n such that H/F 2 F . In particular, H/F is a chordal graph.
Based on Proposition 6.1, we will first show that H[A [ B [ C [D [X]/F is a clique, where
X = {u 2 V (K)[ V (K 0) : there exists a vertex v 2 A[B [C [D such that u and v belong to
the same connected component of H[F ]}.

Targeting a contradiction, suppose that H[A [ B [ C [ D [ X]/F is not a clique, and
therefore there exist two non-adjacent vertices u and v in this graph. By the definition of X,
H[A [ B [ C [ D [ X]/F is equal to the subgraph of H/F induced by the set of vertices
derived from connected components that contain at least one vertex from A [ B [ C [ D. In
particular, u and v are also non-adjacent vertices in H/F . By Proposition 6.1, this implies that
(H/F )[NH/F (u) \ NH/F (v)] is a clique. Let C1 (resp. C2) be the set of connected components
of H[F ] that contain at least one vertex from V (K1) (resp. V (K2)) . Because |F |  n and
|V (K1)| = |V (K2)| = 2n, there exists at least one component C1 2 C1 (resp. C2 2 C2) that does
not contain any vertex from A [ B [ C [D. Let c1 and c2 be the vertices of H/F yielded by
the replacement of C1 and C2, respectively. As all vertices in V (K1) [ V (K2) are adjacent to
all vertices in A [ B [ C [ D, we have that c1, c2 2 NH/F (u) \ NH/F (v). However, there do
not exist a vertex in V (K1) and a vertex in V (K2) that are adjacent in H, and for every vertex
in V (K1) [ V (K2), its neighborhood outside this set is contained in A [ B [ C [D. Thus, c1
and c2 must be non-adjacent in H/F . However, this is a contradiction to the argument that
(H/F )[NH/F (u) \NH/F (v)] is a clique. From this, we derive that H[A [B [ C [D [X]/F is
indeed a clique.

Now, notice that (H,A,B,C,D,E, n) where E = V (K1) [ V (K2) is an instance of Noisy

Structured Clique Contraction. Furthermore, since |F |  n and we have already shown
that H[A[B[C[D[X]/F is a clique, we have that F is a solution to this instance. Therefore,
by Lemma 5.1, F is a matching of size n in H such that each edge in F has one endpoint in A

and the other in B. In particular, F ✓ E(G) and hence X = ;. Because G = H[A[B[C [D],
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Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].
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Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

4

Figure 7 The construction of an instance of F-Contraction in the proof of Theorem 17 where
dashed lines represent non-edges.

I Theorem 17. Let F be any non-trivial chordal graph class. Unless the ETH is false, there
does not exist an algorithm that solves F-Contraction in time no(n) where n = |V (G)|.

For the proof of this theorem, the following well-known property of chordal graphs will
come in handy. This property is a direct consequence of the alternative characterization
of the class of chordal graphs as the class of graphs that admit clique-tree decompositions,
see [10].

I Proposition 18. Let G be a chordal graph, and let u and v be two non-adjacent vertices
in G. Then, G[N(u) ∩N(v)] is a clique.

We are now ready to prove Theorem 17.

Proof of Theorem 17. Targeting a contradiction, suppose that there exists an algorithm,
denoted by NonTrivChordAlg, that solves F-Contraction in time no(n) where n is the
number of vertices in the input graph. We will show that this implies the existence of an
algorithm, denoted by CliConAlg, that solves Structured Clique Contraction in time
no(n) where n is the number of vertices in the input graph, thereby contradicting Lemma 12
and hence completing the proof.

We define the execution of CliConAlg as follows. Given an instance (G,A,B,C,D, n)
of Structured Clique Contraction, CliConAlg constructs an instance (H,n) of F-
Contraction as follows (see Fig. 7):

Let n = |A|. Moreover, let K and K ′ be two cliques, each on 2n new vertices.
V (H) = V (G) ∪ V (K) ∪ V (K ′).
E(H) = E(G) ∪ E(K) ∪ E(K ′) ∪ {{u, v} : u ∈ V (G), v ∈ V (K) ∪ V (K ′)}.

Then, CliConAlg calls NonTrivChordAlg with (H,n) as input, and returns the answer of this call.
First, note that by construction, |V (H)| = 10n. Thus, because NonTrivChordAlg runs in

time |V (H)|o(|V (H)|) ≤ no(n), it follows that CliConAlg runs in time no(n).
For the correctness of the algorithm, first suppose that (G,A,B,C,D, n) is a Yes-instance

of Structured Clique Contraction. This means that there exists a subset F ⊆ E(G)
of size at most n such that G/F is a clique. By the definition of H, we directly derive that
H/F is a two-cliques graphs, and therefore it belongs to F . Thus, (H,n) is a Yes-instance
of F-Contraction, which means that the call to NonTrivChordAlg with (H,n) as input
returns Yes, and hence CliConAlg returns Yes.

Now, suppose that CliConAlg returns Yes, which means that the call to NonTrivChordAlg
with (H,n) returns Yes. Thus, (H,n) is a Yes-instance of F-Contraction, which means
that there exists a subset F ⊆ E(H) of size at most n such that H/F ∈ F . In particular, H/F
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is a chordal graph. Based on Proposition 18, we will first show that H[A∪B ∪C ∪D∪X]/F
is a clique, where X = {u ∈ V (K) ∪ V (K ′) : there exists a vertex v ∈ A ∪B ∪ C ∪D such
that u and v belong to the same connected component of H[F ]}.

Targeting a contradiction, suppose that H[A ∪ B ∪ C ∪D ∪X]/F is not a clique, and
therefore there exist two non-adjacent vertices u and v in this graph. By the definition of X,
H[A ∪ B ∪ C ∪D ∪X]/F is equal to the subgraph of H/F induced by the set of vertices
derived from connected components that contain at least one vertex from A ∪B ∪C ∪D. In
particular, u and v are also non-adjacent vertices in H/F . By Proposition 18, this implies that
(H/F )[NH/F (u)∩NH/F (v)] is a clique. Let C1 (resp. C2) be the set of connected components
of H[F ] that contain at least one vertex from V (K1) (resp. V (K2)). Because |F | ≤ n and
|V (K1)| = |V (K2)| = 2n, there exists at least one component C1 ∈ C1 (resp. C2 ∈ C2) that
does not contain any vertex from A ∪ B ∪ C ∪ D. Let c1 and c2 be the vertices of H/F
yielded by the replacement of C1 and C2, respectively. As all vertices in V (K1) ∪ V (K2)
are adjacent to all vertices in A ∪ B ∪ C ∪ D, we have that c1, c2 ∈ NH/F (u) ∩ NH/F (v).
However, there do not exist a vertex in V (K1) and a vertex in V (K2) that are adjacent in
H, and for every vertex in V (K1) ∪ V (K2), its neighborhood outside this set is contained
in A ∪ B ∪ C ∪ D. Thus, c1 and c2 must be non-adjacent in H/F . However, this is a
contradiction to the argument that (H/F )[NH/F (u) ∩NH/F (v)] is a clique. From this, we
derive that H[A ∪B ∪ C ∪D ∪X]/F is indeed a clique.

Now, notice that (H,A,B,C,D,N, n) where N = V (K1)∪V (K2) is an instance of Noisy
Structured Clique Contraction. Furthermore, since |F | ≤ n and we have already
shown that H[A∪B ∪C ∪D∪X]/F is a clique, we have that F is a solution to this instance.
Therefore, by Lemma 11, F is a matching of size n in H such that each edge in F has one
endpoint in A and the other in B. In particular, F ⊆ E(G) and hence X = ∅. Because
G = H[A ∪ B ∪ C ∪ D], we thus derive that G/F is a clique. Thus, we conclude that
(G,A,B,C,D, n) is a Yes-instance of Structured Clique Contraction. This completes
the proof of the reverse direction. J

Now, we give definitions for several classes of graphs for which lower bounds will follow
from Theorem 18. First, a graph is an interval graph if there exists a set of intervals on
the real line such that the vertices of the graph are in bijection with these intervals, and
there exists edge between two vertices if and only if their intervals intersect. A graph is a
proper interval graph if, in the former definition, we also add the constraint that all intervals
must have the same length. A graph is a threshold graph if it can be constructed from a
one-vertex graph by repeated applications of the following two operations: addition of a
single isolated vertex to the graph; addition of a single vertex that is connected to all other
vertices. A graph is trivially perfect if in each of its induced subgraphs, the maximum size of
an independent set equals the number of maximal cliques.

It is well-known that every graph that is a (proper) interval graph, or a threshold graph,
or a trivially perfect graph, is also a chordal graph (see [10]). Moreover, it is immediate
to verify that the two-cliques class is a subclass of the classes of (proper) interval graphs,
threshold graphs and trivially perfect graphs. Thus, these classes are non-trivial chordal
graphs classes, and therefore Theorem 17 directly implies lower bounds for them:

I Corollary 19. Unless the ETH is false, none of the following problems admits an algorithm
that solves it in time no(n) where n = |V (G)|: Chordal Contraction, Interval Con-
traction, Proper Interval Contraction, Threshold Contraction and Trivially
Perfect Contraction.
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Other Graph Classes. In Section 4, we proved a lower bound for a class of graphs that is
not non-trivial chordal, namely, the class of cliques. In the full version of this paper, we
show that our approach can yield lower bounds also for other classes of graphs that are not
non-trivially chordal, including the classes of Split Graphs, Complete Split Graphs
and Perfect Graphs.
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Abstract
In this work, we seek a more refined understanding of the complexity of local optimum computation
for Max-Cut and pure Nash equilibrium (PNE) computation for congestion games with weighted
players and linear latency functions. We show that computing a PNE of linear weighted congestion
games is PLS-complete either for very restricted strategy spaces, namely when player strategies are
paths on a series-parallel network with a single origin and destination, or for very restricted latency
functions, namely when the latency on each resource is equal to the congestion. Our results reveal a
remarkable gap regarding the complexity of PNE in congestion games with weighted and unweighted
players, since in case of unweighted players, a PNE can be easily computed by either a simple greedy
algorithm (for series-parallel networks) or any better response dynamics (when the latency is equal
to the congestion). For the latter of the results above, we need to show first that computing a
local optimum of a natural restriction of Max-Cut, which we call Node-Max-Cut, is PLS-complete.
In Node-Max-Cut, the input graph is vertex-weighted and the weight of each edge is equal to the
product of the weights of its endpoints. Due to the very restricted nature of Node-Max-Cut, the
reduction requires a careful combination of new gadgets with ideas and techniques from previous
work. We also show how to compute efficiently a (1 + ε)-approximate equilibrium for Node-Max-Cut,
if the number of different vertex weights is constant.
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1 Introduction

Motivated by the remarkable success of local search in combinatorial optimization, Johnson
et al. introduced [25] the complexity class Polynomial Local Search (PLS), consisting of local
search problems with polynomially verifiable local optimality. PLS includes many natural
complete problems (see e.g., [28, App. C]), with Circuit-Flip [25] and Max-Cut [33]
among the best known ones, and lays the foundation for a principled study of the complexity
of local optima computation. In the last 15 years, a significant volume of research on
PLS-completeness was motivated by the problem of computing a pure Nash equilibrium
of potential games (see e.g., [1, 34, 20] and the references therein), where any improving
deviation by a single player decreases a potential function and its local optima correspond to
pure Nash equilibria [29].

Computing a local optimum of Max-Cut under the flip neighborhood (a.k.a. Local-
Max-Cut) has been one of the most widely studied problems in PLS. Given an edge-weighed
graph, a cut is locally optimal if we cannot increase its weight by moving a vertex from one side
of the cut to the other. Since its PLS-completeness proof by Schäffer and Yannakakis [33],
researchers have shown that Local-Max-Cut remains PLS-complete for graphs with
maximum degree five [9], is polynomially solvable for cubic graphs [31], and its smoothed
complexity is either polynomial in complete [2] and sparse [9] graphs, or almost polynomial
in general graphs [7, 10]. Moreover, due to its simplicity and versatility, Max-Cut has
been widely used in PLS reductions (see e.g., [1, 20, 34]). Local-Max-Cut can also be
cast as a game, where each vertex aims to maximize the total weight of its incident edges
that cross the cut. Cut games are potential games (the value of the cut is the potential
function), which has motivated research on efficient computation of approximate equilibria for
Local-Max-Cut [3, 6]. To the best of our knowledge, apart from the work on the smoothed
complexity of Local-Max-Cut (and may be that Local-Max-Cut is P-complete for
unweighted graphs [33, Theorem 4.5]), there has not been any research on whether (and to
which extent) additional structure on edge weights affects hardness of Local-Max-Cut.

A closely related research direction deals with the complexity of computing a pure Nash
equilibrium (equilibrium or PNE, for brevity) of congestion games [32], a typical example
of potential games [29] and among the most widely studied classes of games in Algorithmic
Game Theory (see e.g., [15] for a brief account of previous work). In congestion games (or
CGs, for brevity), a finite set of players compete over a finite set of resources. Strategies are
resource subsets and players aim to minimize the total cost of the resources in their strategies.
Each resource e is associated with a (non-negative and non-decreasing) latency function,
which determines the cost of using e as a function of e’s congestion (i.e., the number of players
including e in their strategy). Researchers have extensively studied the properties of special
cases and variants of CGs. Most relevant to this work are symmetric (resp. asymmetric)
CGs, where players share the same strategy set (resp. have different strategy sets), network
CGs, where strategies correspond to paths in an underlying network, and weighted CGs,
where player contribute to the congestion with a different weight.
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Fabrikant et al. [12] proved that computing a PNE of asymmetric network CGs or
symmetric CGs is PLS-complete, and that it reduces to min-cost-flow for symmetric network
CGs. About the same time [17, 30] proved that weighted congestion games admit a (weighted)
potential function, and thus a PNE, if the latency functions are either affine or exponential
(and [23, 24] proved that in a certain sense, this restriction is necessary). Subsequently,
Ackermann et al. [1] characterized the strategy sets of CGs that guarantee efficient equilibrium
computation. They also used a variant of Local-Max-Cut, called threshold games, to
simplify the PLS-completeness proof of [12] and to show that computing a PNE of asymmetric
network CGs with (exponentially steep) linear latencies is PLS-complete.

On the other hand, the complexity of equilibrium computation for weighted CGs is not
well understood. All the hardness results above carry over to weighted CGs, since they
generalize standard CGs (where the players have unit weight). But on the positive side,
we only know how to efficiently compute a PNE for weighted CGs on parallel links with
general latencies [16] and for weighted CGs on parallel links with identity latency functions
and asymmetric strategies [19]. Despite the significant interest in (exact or approximate)
equilibrium computation for CGs (see e.g., [4, 5, 6, 27] and the references therein), we do
not understand how (and to which extent) the complexity of equilibrium computation is
affected by player weights. This is especially true for weighted CGs with linear latencies,
which admit a potential function and their equilibrium computation is in PLS.

Contributions. We contribute to both research directions outlined above. In a nutshell, we
show that equilibrium computation in linear weighted CGs is significantly harder than for
standard CGs, in the sense that it is PLS-complete either for very restricted strategy spaces,
namely when player strategies are paths on a series-parallel network with a single origin and
destination, or for very restricted latency functions, namely when resource costs are equal to
the congestion. Our main step towards proving the latter result is to show that computing a
local optimum of Node-Max-Cut, a natural and interesting restriction of Max-Cut where
the weight of each edge is the product of the weights of its endpoints, is PLS-complete.

More specifically, using a tight reduction from Local-Max-Cut, we first show, in
Section 3.1, that equilibrium computation for linear weighted CGs on series-parallel networks
with a single origin and destination is PLS-complete (Theorem 1). The reduction results
in games where both the player weights and the latency slopes are exponential. Our result
reveals a remarkable gap between weighted and standard CGs regarding the complexity of
equilibrium computation, since for standard CGs on series-parallel networks with a single
origin and destination, a PNE can be computed by a simple greedy algorithm [18].

Aiming at a deeper understanding of how different player weights affect the complexity
of equilibrium computation in CGs, we show, in Section 3.2, that computing a PNE of
weighted network CGs with asymmetric player strategies and identity latency functions is
PLS-complete (Theorem 2). Again the gap to standard CGs is remarkable, since for standard
CGs with identity latency functions, any better response dynamics converges to a PNE in
polynomial time. In the reduction of Theorem 2, Node-Max-Cut plays a role similar to
that of threshold games in [1, Sec. 4]. The choice of Node-Max-Cut seems necessary, in
the sense that known PLS reductions, starting from Not-All-Equal Satisfiability [12]
or Local-Max-Cut [1], show that equilibrium computation is hard due to the interaction
of players on different resources (where latencies simulate the edge / clause weights), while in
our setting, equilibrium computation is hard due to the player weights, which are the same
for all resources in a player’s strategy.
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Node-Max-Cut is a natural restriction of Max-Cut and settling the complexity of its
local optima computation may be of independent interest, both conceptually and technically.
Node-Max-Cut coincides with the restriction of Max-Cut shown (weakly) NP-complete
on complete graphs in the seminal paper of Karp [26], while a significant generalization of
Node-Max-Cut with polynomial weights was shown P-complete in [33].

A major part of our technical effort concerns reducing Circuit-Flip to Node-Max-
Cut, thus showing that computing a local optimum of Node-Max-Cut is PLS-complete
(Section 5). Since Node-Max-Cut is a very restricted special case of Max-Cut, we have
to start from a PLS-complete problem lying before Local-Max-Cut on the “reduction
paths” of PLS. The reduction is technically involved, due to the very restricted nature of
the problem. In Node-Max-Cut, every vertex contributes to the cut value of its neighbors
with the same weight, and differentiation comes only as a result of the different total weight
in the neighborhood of each vertex. To deal with this restriction, we combine some new
carefully constructed gadgets with the gadgets used by Schäffer and Yannakakis [33], Elsässer
and Tscheuschner [9]. and Gairing and Savani [20]. In general, as a very restricted special
case of Max-Cut, Node-Max-Cut is a natural and convenient starting point for future
PLS reductions, especially when one wants to show hardness of equilibrium computation for
restricted classes of games that admit weighted potential functions (e.g., as that in [17]). So,
our results may serve as a first step towards a better understanding of the complexity of
(exact or approximate) equilibrium computation for weighted potential games.

We also show that a (1+ε)-approximate equilibrium for Node-Max-Cut, where no vertex
can switch sides and increase the weight of its neighbors across the cut by a factor larger than
1 + ε, can be computed in time exponential in the number of different weights (Theorem 3).
Thus, we can efficiently compute a (1 + ε)-approximate equilibrium for Node-Max-Cut, for
any ε > 0, if the number of different vertex weights is constant. Since similar results are not
known for Max-Cut, Theorem 3 may indicate that approximate equilibrium computation for
Node-Max-Cut may not be as hard as for Max-Cut. An interesting direction for further
research is to investigate (i) the quality of efficiently computable approximate equilibria for
Node-Max-Cut; and (ii) the smoothed complexity of its local optima.

Related Work. Existence and efficient computation of (exact or approximate) equilibria for
weighted congestion games have received significant research attention. We briefly discuss
here some of the most relevant previous work. There has been significant research interest
in the convergence rate of best response dynamics for weighted congestion games (see e.g.,
[8, 4, 11, 13, 22]). Gairing et al. [19] presented a polynomial algorithm for computing a
PNE for load balancing games on restricted parallel links. Caragiannis et al. [6] established
existence and presented efficient algorithms for computing approximate PNE in weighted
CGs with polynomial latencies (see also [14, 21]).

Bhalgat et al. [3] presented an efficient algorithm for computing a (3 + ε)-approximate
equilibrium in Max-Cut games, for any ε > 0. The approximation guarantee was improved
to 2 + ε in [6]. We highlight that the notion of approximate equilibrium in cut games is
much stronger than the notion of approximate local optimum of Max-Cut, since the former
requires that no vertex can significantly improve the total weight of its incidence edges that
cross the cut (as e.g., in [3, 6]), while the latter simply requires that the total weight of the
cut cannot be significantly improved (as e.g., in [6]).

Johnson et al. [25] introduced the complexity class PLS and proved that Circuit-Flip is
PLS-complete. Subsequently, Schäffer and Yannakakis [33] proved that Max-Cut is PLS-
complete. From a technical viewpoint, our work is close to previous work by Elsässer and
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Tscheuschner [9] and Gairing and Savani [20], where they show that Local-Max-Cut in
graphs of maximum degree five [9] and computing a PNE for hedonic games [20] are PLS-
complete, and by Ackermann et al. [1], where they reduce Local-Max-Cut to computing a
PNE in network congestion games.

2 Basic Definitions and Notation

Polynomial-Time Local Search (PLS). A polynomial-time local search (PLS) problem L

[25, Sec. 2] is specified by a (polynomially recognizable) set of instances IL, a set SL(x) of
feasible solutions for each instance x ∈ IL, with |s| = O(poly(|x|) for every solution s ∈ SL(x),
an objective function fL(s, x) that maps each solution s ∈ SL(x) to its value in instance x,
and a neighborhood NL(s, x) ⊆ SL(x) of feasible solutions for each s ∈ SL(x). Moreover,
there are three polynomial-time algorithms that for any given instance x ∈ IL: (i) the first
generates an initial solution s0 ∈ SL(x); (ii) the second determines whether a given s is a
feasible solution and (if s ∈ SL(x)) computes its objective value fL(s, x); and (iii) the third
returns either that s is locally optimal or a feasible solution s′ ∈ NL(s, x) with better objective
value than s. If L is a maximization (resp. minimization) problem, a solution s is locally
optimal if for all s′ ∈ NL(s, x), fL(s, x) ≥ fL(s′, x) (resp. fL(s, x) ≤ fL(s′, x)). If s is not
locally optimal, the third algorithm returns a solution s′ ∈ NL(s, x) with f(s, x) < f(s′, x)
(resp. f(s, x) > f(s′, x)). The complexity class PLS consists of all polynomial-time local
search problems. By abusing the terminology, we always refer to polynomial-time local search
problem simply as local search problems.

PLS Reductions and Completeness. A local search problem L is PLS-reducible to a local
search problem L′, if there are polynomial-time algorithms φ1 and φ2 such that (i) φ1 maps
any instance x ∈ IL of L to an instance φ1(x) ∈ IL′ of L′; (ii) φ2 maps any (solution s′ of
instance φ1(x), instance x) pair, with s′ ∈ SL′(φ1(x)), to a solution s ∈ SL(x); and (iii) for
every instance x ∈ IL, if s′ is locally optimal for φ1(x), then φ2(s′, x) is locally optimal for x.

By definition, if a local search problem L is PLS-reducible to a local search problem L′, a
polynomial-time algorithm that computes a local optimum of L′ implies a polynomial time
algorithm that computes a local optimum of L. Moreover, a PLS-reduction is transitive. As
usual, a local search problem Q is PLS-complete, if Q ∈ PLS and any local search problem
L ∈ PLS is PLS-reducible to Q.

Max-Cut and Node-Max-Cut. An instance of Max-Cut consists of an undirected edge-
weighted graph G(V,E), where V is the set of vertices and E is the set of edges. Each
edge e is associated with a positive weight we. A cut of G is a vertex partition (S, V \ S),
with ∅ 6= S 6= V . We usually identify a cut with one of its sides (e.g., S). We denote
δ(S) = {{u, v} ∈ E : u ∈ S ∧ v 6∈ S} the set of edges that cross the cut S. The weight (or
the value) of a cut S, denoted w(S), is w(S) =

∑
e∈δ(S) we. In Max-Cut, the goal is to

compute an optimal cut S∗ of maximum value w(S∗).
In Node-Max-Cut, each vertex v is associated with a positive weight wv and the weight

of each edge e = {u, v} is we = wuwv, i.e. equal to the product of the weights of e’s endpoints.
Again the goal is to compute a cut S∗ of maximum value w(S∗). As optimization problems,
both Max-Cut and Node-Max-Cut are NP-complete [26].

In this work, we study Max-Cut and Node-Max-Cut as local search problems under the
flip neighborhood. Then, they are referred to as Local-Max-Cut and Local-Node-Max-
Cut. The neighborhood N(S) of a cut (S, V \S) consists of all cuts (S′, V \S′) where S and
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S′ differ by a single vertex. Namely, the cut S′ is obtained from S by moving a vertex from
one side of the cut to the other. A cut S is locally optimal if for all S′ ∈ N(S), w(S) ≥ w(S′).
In Local-Max-Cut (resp. Local-Node-Max-Cut), given an edge-weighted (resp. vertex-
weighted) graph, the goal is to compute a locally optimal cut. Clearly, both Max-Cut and
Node-Max-Cut belong to PLS. In the following, we abuse the terminology and refer to
Local-Max-Cut and Local-Node-Max-Cut as Max-Cut and Node-Max-Cut, for
brevity, unless we need to distinguish between the optimization and the local search problem.

Weighted Congestion Games. A weighted congestion game G consists of n players, where
each player i is associated with a positive weight wi, a set of resources E, where each resource
e is associated with a non-decreasing latency function `e : R≥0 → R≥0, and a non-empty
strategy set Σi ⊆ 2E for each player i. A game is linear if `e(x) = aex + be, for some
ae, be ≥ 0, for all e ∈ E. The identity latency function is `(x) = x. The player strategies are
symmetric, if all players share the same strategy set Σ, and asymmetric, otherwise.

We focus on network weighted congestion games, where the resources E correspond to the
edges of an underlying network G(V,E) and the player strategies are paths on G. A network
game is single-commodity, if G has an origin o and a destination d and the player strategies
are all (simple) o− d paths. A network game is multi-commodity, if G has an origin oi and a
destination di for each player i, and i’s strategy set Σi consists of all (simple) oi − di paths.
A single-commodity network G(V,E) is series-parallel, if it either consists of a single edge
(o, d) or can be obtained from two series-parallel networks composed either in series or in
parallel (see e.g., [35] for details on composition and recognition of series-parallel networks).

A configuration ~s = (s1, . . . , sn) consists of a strategy si ∈ Σi for each player i. The
congestion se of resource e in configuration ~s is se =

∑
i:e∈si

wi. The cost of resource e in ~s
is `e(se). The individual cost (or cost) ci(~s) of player i in configuration ~s is the total cost for
the resources in her strategy si, i.e., ci(~s) =

∑
e∈si

`e(se). A configuration ~s is a pure Nash
equilibrium (equilibrium or PNE, for brevity), if for every player i and every strategy s′ ∈ Σi,
ci(~s) ≤ ci(~s−i, s′) (where (~s−i, s′) denotes the configuration obtained from ~s by replacing si
with s′). Namely, no player can improve her cost by unilaterally switching her strategy.

Equilibrium Computation and Local Search. [17] shows that for linear weighted congestion
games, with latencies `e(x) = aex+ be, Φ(~s) =

∑
e∈E(aes2

e + bese) +
∑
i wi

∑
e∈si

(aewi + be)
changes by 2wi(ci(~s)− ci(~s−i, s′)), when a player i switches from strategy si to strategy s′
in ~s. Hence, Φ is a weighted potential function, whose local optimal (wrt. single player
deviations) correspond to PNE of the underlying game. Hence, equilibrium computation
for linear weighted congestion games is in PLS. Specifically, configurations corresponds to
solutions, the neighborhood N(~s) of a configuration ~s consists of all configurations (~s−i, s′)
with s′ ∈ Σi, for some player i, and local optimality is defined wrt. the potential function Φ.

Max-Cut and Node-Max-Cut as Games. Local-Max-Cut and Local-Node-Max-Cut
can be cast as cut games, where players correspond to vertices of G(V,E), strategies
Σ = {0, 1} are symmetric, and configurations ~s ∈ {0, 1}|V | correspond to cuts, e.g., S(~s) =
{v ∈ V : sv = 0}. Each player v aims to maximize wv(~s) =

∑
e={u,v}∈E:su 6=sv

we, that is the
total weight of her incident edges that cross the cut. For Node-Max-Cut, this becomes
wv(~s) =

∑
u:{u,v}∈E∧su 6=sv

wu, i.e., v aims to maximize the total weight of her neighbors
across the cut. A cut ~s is a PNE if for all players v, wv(~s) ≥ wv(~s−i, 1− sv). Equilibrium
computation for cut games is equivalent to local optimum computation, and thus, is in PLS.
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Figure 1 The series-parallel network Fij that corresponds to edge {i, j} ∈ A.

A cut ~s is a (1 + ε)-approximate equilibrium, for some ε > 0, if for all players v,
(1 + ε)wv(~s) ≥ wv(~s−i, 1− sv). Note that the notion of (1 + ε)-approximate equilibrium is
stronger than the notion of (1 + ε)-approximate local optimum, i.e., a cut S such that for all
S′ ∈ N(S), (1 + ε)w(S) ≥ w(S′) (see also the discussion in [6]).

3 Hardness of Computing Equilibria in Weighted Congestion Games

We next show that computing a PNE in weighted congestion games with linear latencies is
PLS-complete either for single-commodity series-parallel networks or for multi-commodity
networks with identity latency functions.

3.1 Weighted Congestion Games on Series-Parallel Networks
I Theorem 1. Computing a pure Nash equilibrium in weighted congestion games on single-
commodity series-parallel networks with linear latency functions is PLS-complete.

Proof sketch. Membership in PLS follows from the potential function argument of [17]. To
show hardness, we present a reduction from Local-Max-Cut.

Let H(V,A) be an instance of Local-Max-Cut with n vertices and m edges. Based on
H, we construct a weighted congestion game on a single-commodity series-parallel network
G with 3n players, where for every i ∈ [n], there are three players with weight wi = 16i.
Network G is a parallel composition of two identical copies of a simpler series-parallel network.
We refer to these copies as G1 and G2. Each of G1 and G2 is a series composition of m
simple series-parallel networks Fij , each corresponding to an edge {i, j} ∈ A. Network Fij
is depicted in Figure 1, where D is assumed to be a constant chosen (polynomially) large
enough. An example of the entire network G is shown in Figure 2.

In each of G1 and G2, there is a unique path that contains all edges with latency
functions `i(x) = Dx/4i, for each i ∈ [n]. We refer to these paths as pui for G1 and pli for
G2. In addition to the edges with latency `i(x), pui and pli include all edges with latencies
`ij(x) = wijx

wiwj
= wijx

16i+j , which correspond to the edges incident to vertex i in H.
Due to the choice of the player weights and the latency slopes, a player with weight wi

must choose either pui or pli in any PNE. We can prove this claim by induction on the player
weights. The players with weight wn = 16n have a dominant strategy to choose either pun or
pln, since the slope of `n(x) is significantly smaller than the slope of any other latency `i(x).
In fact, the slope of `n is so small that even if all other 3n− 1 players choose one of pun or
pln, a player with weight wn would prefer either pun or pln over all other paths. Therefore, we
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Figure 2 An example of the network G constructed in the proof of Theorem 1 for graph H(V, A),
with V = {1, 2, 3, 4} and A = {{1, 2}, {1, 3}, {1, 4}, {2, 4}}. G is a parallel composition of two parts,
each consisting of the smaller networks F12, F13, F14 and F24 (see also Figure 1) connected in series.

can assume that each of pun and pln are used by at least one player with weight wn in any
PNE, which would increase their latency so much that no player with smaller weight would
prefer them any more. The inductive argument applies the same reasoning for players with
weights wn−1, who should choose either pun−1 or pln−1 in any PNE, and subsequently, for
players with weights wn−2, . . . , w1. Hence, we conclude that for all i ∈ [n], each of pui and pli
is used by at least one player with weight wi.

Moreover, we note that two players with different weights, say wi and wj , go through the
same edge with latency `ij(x) = wijx

wiwj
in G only if the corresponding edge {i, j} is present

in H. The correctness of the reduction follows the fact that a player with weight wi aims
to minimize her cost through edges with latencies `ij in G in the same way that in the
Max-Cut instance, we want to minimize the weight of the edges incident to a vertex i
and do not cross the cut. Formally, we next show that a cut S is locally optimal for the
Max-Cut instance if and only if the configuration where for every k ∈ S, two players with
weight wk use puk and for every k 6∈ S, two players with weight wk use plk is a PNE of the
weighted congestion game on G.

Assume an equilibrium configuration and consider a player a of weight wk that uses puk
together with another player of weight wk (if this is not the case, vertex k is not included in
S and we apply the symmetric argument for plk). By the equilibrium condition, the cost of
player a on puk is at most her cost on plk, which implies that

m∑
k=1

2D16k

4k +
∑

j:{k,j}∈A

wkj(2 · 16k + xuj 16j)
16k+j ≤

m∑
k=1

2D16k

4k +
∑

j:{k,j}∈A

wkj(2 · 16k + xlj16j)
16k+j ,

where xuj (resp. xlj) is either 1 or 2 (resp. 2 or 1) depending on whether, for each vertex
j connected to vertex k in H, one or two players (of weight wj) use puj . Simplifying the
inequality above, we obtain that:∑

j:{k,j}∈A

wkj(xuj − 1) ≤
∑

j:{k,j}∈A

wkj(xlj − 1) (1)

Let S = {i ∈ V : xui = 2}. By hypothesis, k ∈ S and the left-hand side of (1) corresponds
to the total weight of the edges in H that are incident to k and do not cross the cut S.
Similarly, the right-hand side of (1) corresponds to the total weights of the edges in H that
are incident to k and cross the cut S. Therefore, (1) implies that we cannot increase the
value of the cut S by moving vertex k from S to V \ S. Since this or its symmetric condition
holds for any vertex k of H, the cut (S, V \ S) is locally optimal. To conclude the proof, we
argue along the same lines that any locally optimal cut of H corresponds to a PNE in the
weighted congestion game on G. J
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3.2 Weighted Congestion Games with Identity Latency Functions
We next prove that computing a PNE in weighted congestion games on multi-commodity
networks with identity latency functions is PLS-complete. Compared to Theorem 1, we
allow for a significantly more general strategy space, but we significantly restrict the latency
functions, only allowing for the player weights to be exponentially large.

I Theorem 2. Computing a pure Nash equilibrium in weighted congestion games on multi-
commodity networks with identity latency functions is PLS-complete.

Proof sketch. We use a reduction from Local-Node-Max-Cut, which as we show in
Theorem 4, is PLS-complete. Our construction draws ideas from [1].

Let H(V,A) be an instance of Node-Max-Cut. We construct a weighted congestion
game on a multi-commodity network G with identity latency functions `e(x) = x such that
equilibria of the congestion game correspond to locally optimal cuts of H.

At the conceptual level, each player i of the congestion game corresponds to vertex i ∈ V
and has weight wi (i.e., equal to the weight of vertex i in H). The key step is to construct
a network G such that for every player i ∈ [n], there are two paths, say pui and pli, whose
cost dominate the cost of any other path for player i. Therefore, in any equilibrium, player i
selects either pui or pli (which corresponds to vertex i selecting one of the two sides of a cut).
For every edge {i, j} ∈ A, paths pui and puj (resp. paths pli and plj) have an edge euij (resp.
elij) in common. Intuitively, the cost of pui (resp. pli) for player i is determined by the set of
players j, with j connected to i in H, that select path puj (resp. plj).

Let ~s be any equilibrium configuration of the weighted congestion game. Each player
i ∈ [n] selects either pui or pli in ~s. Let S = {i ∈ [n] : player i selects pui in ~s}. Applying the
equilibrium condition, we next show that S is a locally optimal cut.

We let Vi = {j : {i, j} ∈ A} be the neighborhood of vertex i in H. By the construction of
G, the individual cost of a player i on path pui (resp. pli) in ~s is equal toK+|Vi|wi+

∑
j∈S∩Vi

wj
(resp. K + |Vi|wi +

∑
j∈Vi\S wj), where K is a large constant that depends on the network

G only. Therefore, for any player i ∈ S, equilibrium condition for ~s implies that

K + |Vi|wi +
∑

j∈S∩Vi

wj ≤ K + |Vi|wi +
∑

j∈Vi\S

wj ⇒
∑

j∈S∩Vi

wj ≤
∑

j∈Vi\S

wj

Multiplying both sides by wi, we get that the total weight of the edges that are incident to i
and cross the cut S is no less than the total weight of the edges that are incident to i and do
not cross the cut. By the same reasoning, we reach the same conclusion for any player i 6∈ S.
Therefore, the cut (S, V \ S) is locally optimal for the Node-Max-Cut instance H(V,A).

To conclude the proof, we argue along the same lines that any locally optimal cut S for
the Node-Max-Cut instance H(V,A) corresponds to an equilibrium in the network G, by
letting a player i select path pui if and only if i ∈ S. J

4 Computing Approximate Equilibria for Node-Max-Cut

We complement our PLS-completeness proof for Node-Max-Cut, in Section 5, with an
efficient algorithm computing (1 + ε)-approximate equilibria for Node-Max-Cut, when
the number of different vertex weights is a constant. We note that similar results are not
known (and a similar approach fails) for Max-Cut. Investigating if stronger approximation
guarantees are possible for efficiently computable approximate equilibria for Node-Max-Cut
is beyond the scope of this work and an intriguing direction for further research.
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Given a vertex-weighted graph G(V,E) with n vertices and m edges, our algorithm, called
BridgeGaps, computes a (1 + ε)3-approximate equilibrium for a Node-Max-Cut, for any
ε > 0, in (m/ε)(n/ε)O(Dε) time, where Dε is the number of different vertex weights in G,
when the weights are rounded down to powers of 1 + ε. We next sketch the algorithm and
the proof of Theorem 3.

For simplicity, we assume that n/ε is an integer and that vertices are indexed in non-
decreasing order of weight, i.e., w1 ≤ w2 ≤ · · · ≤ wn. BridgeGaps first rounds down
vertex weights to the closest power of (1 + ε). Namely, each weight wi is replaced by weight
w′i = (1 + ε)blog1+ε wic. Clearly, an (1 + ε)2-approximate equilibrium for the new instance G′
is an (1 + ε)3-approximate equilibrium for the original instance G. The number of different
weights Dε, used in the analysis, is defined wrt. the new instance G′.

Then, BridgeGaps partitions the vertices of G′ into groups g1, g2, . . ., so that the vertex
weights in each group increase with the index of the group and the ratio of the maximum
weight in group gj to the minimum weight in group gj+1 is no less than n/ε. This can
be performed by going through the vertices, in nondecreasing order of their weights, and
assign vertex i+ 1 to the same group as vertex i, if w′i+1/w

′
i ≤ n/ε. Otherwise, vertex i+ 1

starts a new group. The idea is that for an (1 + ε)2-approximate equilibrium in G′, we only
need to enforce the (1 + ε)-approximate equilibrium condition for each vertex i only for i’s
neighbors in the highest-indexed group (that includes some neighbor of i). To see this, let
gj be the highest-indexed group that includes some neighbor of i and let ` be the lowest
indexed neighbor of i in gj . Then, the total weight of i’s neighbors in groups g1, . . . , gj−1
is less than εw′`. This holds because i has at most n− 2 neighbors in these groups and by
definition, w′q ≤ (ε/n)w′`, for any i’s neighbor q in groups g1, . . . , gj−1. Therefore, we can
ignore all neighbors of i in groups g1, . . . , gj−1, at the expense of one more 1 + ε factor in
the approximate equilibrium condition.

Since for every vertex i, we need to enforce its (approximate) equilibrium condition only
for i’s neighbors in a single group, we can scale down vertex weights in the same group
uniformly (i.e., dividing all the weights in each group by the same factor), as long as we
maintain the key property in the definition of groups (i.e., that the ratio of the maximum
weight in group gj to the minimum weight in group gj+1 is no less than n/ε). Hence, we
uniformly scale down the weights in each group so that (i) the minimum weight in group
g1 becomes 1; and (ii) for each j ≥ 2, the ratio of the maximum weight in group gj−1
to the minimum weight in group gj becomes exactly n/ε. This results in a new instance
G′′ where the minimum weight is 1 and the maximum weight is (n/ε)Dε . Therefore, a
(1 + ε)-approximate equilibrium in G′′ can be computed, in a standard way, after at most
(mε)(n/ε)2Dε ε-best response moves.

Putting everything together and using ε′ = ε/7, so that (1 + ε′)3 ≤ 1 + ε, for all ε ∈ (0, 1],
we obtain the following. We note that the running time of BridgeGaps is polynomial, if
Dε = O(1) (and quasipolynomial if Dε = poly(logn)).

I Theorem 3. For any vertex-weighted graph G with n vertices and m edges and any ε > 0,
BridgeGaps computes a (1 + ε)-approximate pure Nash equilibrium for Node-Max-Cut
on G in (m/ε)(n/ε)O(Dε) time, where Dε denotes the number of different vertex weights in
G, after rounding them down to the nearest power of 1 + ε.

5 PLS-Completeness of Node-Max-Cut

In this section we sketch the proof of Theorem 4 and highlight the main differences of our
reduction from known PLS reductions to Max-Cut [9, 20, 33].

I Theorem 4. Local-Node-Max-Cut is PLS-complete.
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Figure 3 The general structure of the Node-Max-Cut instance constructed in the proof of
Theorem 4. Rectangles denote the main gadgets, circles denote vertices that participate in multiple
gadgets, and circles with bold border denote groups of n such vertices. The small red triangles are
used to indicate the “information flow” through the instance.

As discussed in Section 2, the local search version of Node-Max-Cut is in PLS. To
establish the PLS-hardness of Node-Max-Cut, we present a reduction from Circuit-Flip.
We start with an outline of our construction and a brief discussion of its technical novelty.
Then, in Section 5.1, we discuss our gadget constructions in more detail and present the key
technical steps towards the proof of Theorem 4.

An Outline of the Construction. An instance of Circuit-Flip consists of a Boolean circuit
C with n inputs and m outputs (and wlog. only NOR gates). The value C(s) of an n-bit
input string s is the integer corresponding to the m-bit output string. The neighborhood
N(s) of s consists of all n-bit strings s′ at Hamming distance 1 to s (i.e., s′ is obtained
from s by flipping one bit of s). The goal is to find a locally optimal input string s, i.e., an
s with C(s) ≥ C(s′), for all s′ ∈ N(s). Circuit-Flip was the first problem shown to be
PLS-complete in [25].

Given an instance C of Circuit-Flip, we construct a vertex-weighted undirected graph
G(V,E) so that from any locally optimum cut of G, we can recover, in polynomial time, a
locally optimal input of C. The graph G consists of different gadgets (see Figure 3), which
themselves might be regarded as smaller instances of Node-Max-Cut. Intuitively, each of
these gadgets receives information from its “input” vertices, processes this information, while
carrying it through its internal part, and outputs the results through its “output” vertices.
Different gadgets are glued together through their “input” and “output” vertices.
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Our construction follows the flip-flop architecture (Figure 3), previously used e.g., in
[9, 20, 33], but requires more sophisticated implementations of several gadgets, so as to
conform with the very restricted weight structure of Node-Max-Cut. Next, we outline the
functionality of the main gadgets and how the entire construction works.

Given a circuit C, we construct two Circuit Computing gadgets C` (` always stands
for either A or B), which are instances of Node-Max-Cut that simulate circuit C in the
following sense: Each C` has a set I` of n “input” vertices, whose (cut) values correspond to
the input string of circuit C, and a set V al` of m “output” vertices, whose values correspond
to the output string of C on input I`. There is also a set Next` of n vertices whose values
correspond to a n-bit string in the neighborhood of I` of circuit value larger than that of I`
(if the values of Next` coincide with the values of I`, I` is locally optimal). Lastly, there is a
(set of) vertices Control` that control the behavior of the gadget.

The Circuit Computing gadgets operate in two different modes, determined by Control`:
the write mode, when Control` = 0, and the compute mode, when Control` = 1. If C` operates
in write mode, the input values of I` can be updated to the values of the complementary Next
set (i.e., IA is updated to NextB, and vice versa). When, C` operates in the compute mode,
C` simulates the computation of circuit C and the values of Next` and Val` are updated to
the corresponding values produced by C. Throughout the proof, we let Real-Val(I`) denote
the output string of circuit C on input I` (i.e., the input of C takes the cut values of the
vertices in I`), and let Real-Next(I`) denote a neighbor of I` with circuit value larger than
the circuit value of I`. If I` is locally optimal, Real-Next(I`) = I`.

Our Circuit Computing gadgets CA and CB are based on the gadgets of Schäffer and
Yannakakis [33] (see also Figure 4 for an abstract description of them). Their detailed
construction is described in the next section and their properties are summarized in Theorem 5.

The Comparator gadget compares ValA with ValB , which are intended to be Real-Val(IA)
and Real-Val(IB), respectively, and outputs 1, if ValA ≤ ValB , and 0, otherwise. The result of
the Comparator is stored in the value of the Flag vertex. If Flag = 1, the Circuit Computing
gadget CA enters its write mode and the input values in IA are updated to the neighboring
solution of IB, currently stored in NextB (everything operates symmetrically, if Flag = 0).
Then, in the next “cycle”, the input in IA leads CA to a ValA > ValB (and to a better
neighboring solution at NextA), Flag becomes 0, and the values of IB are updated to NextA.
When we reach a local optimum, IA and IB are stabilized to the same values.

The workflow above is implemented by the Copy and the Equality gadgets. The CopyB
(resp. CopyA) gadget updates the values of IA (resp. IB) to the values in NextB (resp.
NextA), if ValA ≤ ValB and Flag = 1 (resp. ValA > ValB and Flag = 0). When Flag = 1,
the vertices in TB take the values of the vertices in NextB. If the values of IA and NextB are
different, the Equality gadget sets the value of ControlA to 0. Hence, the Circuit Computing
gadget CA enters its write mode and the vertices in IA take the values of the vertices in
NextB. Next, ControlA becomes 1, because the values of IA and NextB are now identical,
and CA enters its compute mode. As a result, the vertices in ValA and NextA take the values
of Real-Val(IA) and Real-Next(IA), and we proceed to the next cycle.

A key notion used throughout the reduction is the bias that a vertex i experiences from a
vertex subset. The bias of vertex i from (or wrt.) V ′ ⊆ V is

∣∣∑
j∈V 1

i
∩V ′ wj −

∑
j∈V 0

i
∩V ′ wj

∣∣,
where V 1

i (resp. V 0
i ) denotes the set of i’s neighbors on the 1 (resp. 0) side of the cut.

Technical Novelty. Next, we briefly discuss the points where our reduction needs to deviate
substantially from known PLS reductions to Max-Cut. Our discussion is unavoidably
technical and assumes familiarity with (at least one of) the reductions in [9, 20, 33].
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Our Circuit Computing gadgets are based on similar gadgets used e.g., in [33]. A key
difference is that our Circuit Computing gadgets are designed to operate with wControl (i.e.,
weight of the Control` vertex) arbitrarily smaller than the weight of any other vertex in the
Circuit Computing gadget. Hence, the Control vertex can achieve a very small bias wrt. the
Circuit Computing gadget (see Theorem 5, Case 3), which in turn, allows us to carefully
balance the weights in the Equality gadget. The latter weights should be large enough, so as
to control the write and compute modes of C`, and at the same time, small enough, so as to
avoid interference with the values of the input vertices I`. The second important reason for
setting wControl sufficiently small is that we need the Control vertex to follow the “output”
of the Equality gadget, and not the other way around.

The discussion above highlights a key difference between Max-Cut and Node-Max-
Cut. Previous reductions to Max-Cut (see e.g., the reduction in [33]) implement Control’s
functionality using different weights for its incident edges. More specifically, Control is
connected with edges of appropriately large weight to the vertices of the circuit gadget,
so that it can control the gadget’s mode, and with edges of appropriately small weight to
vertices outside the circuit gadget, so that its does not interfere with its other neighbors.

For Node-Max-Cut, we need to achieve the same desiderata with a single vertex weight.
We manage to do so by introducing a Leverage gadget. Our Leverage gadget reduces the
influence of a vertex with large weight to a vertex with small weight and is used internally
in the Circuit Computing gadget. Hence, we achieve that Control has small bias wrt. the
circuit gadget and weight comparable to the weights of the circuit gadget’s internal vertices.

Another important difference concerns the implementation of the red marks (denoting
the information flow) between Flag and the Copy gadgets, in Figure 3. They indicate that
the value of Flag should agree with the output of the Comparator gadget. This part of the
information flow is difficult to implement, because the Comparator gadget and the Copy
gadgets receive input from NextA, NextB, ValA and ValB, where the vertex weights are
comparable to the weights of the output vertices in the Circuit Computing gadgets. As a
result, the weights of the vertices inside the Comparator gadget cannot become sufficiently
larger than the weights of the vertices inside the Copy gadgets. [33, 20, 9] connect Flag to
the Copy gadgets with edges of sufficiently small weight, which makes the bias of Flag from
the Copy gadgets negligible compared against its bias from Comparator. Again, the Leverage
gadget comes to our rescue. We use it internally in the Copy gadgets, in order to decrease
the influence of the vertices inside the Copy gadgets to Flag. As a result, Flag’s bias from
the Copy gadgets becomes much smaller than its bias from Comparator (see Lemma 10).

Another key technical difference concerns the design of the Comparator gadget. As
stated in Lemma 10 and explained below, the Comparator gadget manages to compute the
result of the comparison Real-Val(IA) ≤ Real-Val(IB), even if some input vertices may have
incosistent values. In previous work [33, 20, 9], the Comparator guarantees correctness of
the values in both NextB and ValB using appropriately chosen edge weights. With the
correctness of the input values guaranteed, the comparison is not hard to implement. It is
not clear if this decoupled architecture of the Comparator gadget can be implemented in
Node-Max-Cut, due to the special structure of edge weights. Instead, we implement a new
all at once Comparator, which ensures correctness to a subset of its input values enough to
perform the comparison correctly (see also the discussion after Lemma 11 on this point).

5.1 A Technical Overview of the Proof of Theorem 4
In this section, we outline the gadget constructions and the key technical claims used in the
proof of Theorem 4. As shown in Figure 3, our Node-Max-Cut instance consists of the
following gadgets:
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Figure 4 The Circuit Computing gadgets. The dashed circles, labeled I and O, represent all
input and output vertices, respectively.

1. Two Circuit Computing gadgets that calculate the values and next neighbors of solutions.
2. Two Copy gadgets that transfer the solution of one circuit to the other, and vice versa.
3. Two Equality gadgets that determine the (write or compute) mode in which the Circuit

Computing gadgets operate.
4. A Comparator gadget.

Unlike previous similar reductions in the literature (see e.g.,[33, 20, 9]), we introduce
each gadget separately rather than through types of diminishing weight. This is because
in Node-Max-Cut, weights are associated with vertices and each vertex may be part of
multiple gadgets.

The Circuit Computing Gadgets. The Circuit Computing gadgets CA and CB are the
basic primitives of our reduction. They are based on the gadgets introduced by Schäffer and
Yannakakis [33] to establish PLS-completeness of Max-Cut. This type of Circuit Computing
gadgets can be constructed so as to simulate any Boolean circuit C.

The most important vertices are those corresponding to the input and the output of the
simulated circuit C. Another important vertex is Control, which allows the gadget to switch
between the write and the compute mode of operation. Figure 4 is an abstract depiction
of the Circuit Computing gadgets. Theorem 5 describes the local optimum behavior of the
input vertices I` and output vertices Next`, Val` of the Circuit Computing gadgets C`.

I Theorem 5. At any local optimum of the Node-Max-Cut instance in Figure 3, the
following hold:
1. If Control` = 1 and the vertices in Next`, Val` experience 0 bias from any other gadget

beyond C`, then Next` = Real-Next(I`) and Val` = Real-Val(I`).
2. If Control` = 0, then each vertex in I` experiences 0 bias from the internal vertices of C`.
3. Control` experiences wControl` bias from the internal vertices of C`.

Case 1 of Theorem 5 describes the compute mode of the Circuit Computing gadgets. At
any local optimum with ControlA = 1 and with the output vertices of CA being indifferent
wrt. other gadgets, CA computes its output correctly. Case 2 of Theorem 5 describes the
write mode. If at a local optimum ControlA = 0, the vertices in IA have 0 bias from the CA
gadget. As a result, their value is determined by the biases of the CopyB gadget and the
Equality gadget. Case 3 of Theorem 5 bounds the bias that the Equality gadget poses to the
Control vertices, so as to make the computing gadget flip from one mode to the other.

The Copy and Equality Gadgets. The Copy and Equality gadgets are responsible for
transferring the output of one Circuit Computing gadget to the other. More specifically, the
Equality gadget takes as input the nodes IA, IB , TA, TB and assures that the Control vertices
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always have the correct values. Recall that as shown in Theorem 5, Case 3, the bias that the
Equality gadget exerts is enough to dominate the values of the Control nodes. Using that,
we can prove the following lemma:

I Lemma 6. For any local optimum of the Node-Max-Cut instance in Figure 3, we have
that ControlA = (IA = TB) and ControlB = (IB = TA).

The Copy gadget transfers the values of the NextB and NextA to IA and IB , respectively,
when each gadget is in its write mode. This behavior is summarized by the following:

I Lemma 7. At any local optimum point of the Node-Max-Cut instance in Figure 3, the
following hold:
1. If Flag = 1, i.e., NextB writes on IA, then (i) TB = NextB, and (ii) if ControlA = 0,

then IA = TB = NextB.
2. If Flag = 0 i.e., NextA writes on IB, then (i) TA = NextA, and (ii) if ControlB = 0,

then IB = TA = NextA.

Additionally, the Copy gadget has the property of leaving the NextB and NextA vertices
unbiased, when Flag has certain values. This is necessary so that whenever a Circuit
Computing gadget is about to compute, the second condition of Theorem 5, Case 1, can
apply and allow the computation to take place.

I Lemma 8. At any local optimum of the Node-Max-Cut instance in Figure 3:
If Flag = 1, then any vertex in NextA experiences 0 bias from the CopyA gadget.
If Flag = 0, then any vertex in NextB experiences 0 bias from the CopyB gadget.

Having established the above properties of the Copy and Equality gadgets, we can show
the following theorem which asserts that at an local optimum, one of the two circuits has
taken the other’s output as input.

I Theorem 9. At any a local optimum of the Node-Max-Cut instance in Figure 3, the
following hold:

If Flag = 1, then IA = NextB.
If Flag = 0, then IB = NextA.

Proof of Theorem 9. Let a local optimum in which Flag = 1. Let us assume that IA 6=
NextB. Then, by Case 1 of Lemma 7, TB = NextB. As a result, IA 6= TB, which implies
that ControlA = 0, by Lemma 6. Now, by Lemma 7, Case 1.ii, we have that IA = NextB,
which is a contradiction. The same analysis can be applied in case where Flag = 0. J

The Comparator Gadget. The last important gadget in our reduction is the Comparator,
whose construction is technically involved. We first recall that Next` and Val` denote the
actual values that the corresponding vertices have in our construction, while Real-Next(I`)
and Real-Val(I`) denote the values that these vertices are supposed to have, assuming that
the Circuit Computing gadgets operate correctly. We also recall that when Flag = 1 (resp.
Flag = 0), the Circuit Computing gadget CA (resp. CB) recomputes its output values, based
on the (possibly incorrect) outputs of the other Circuit Computing gadget CB (resp. CA).
The construction of the Comparator gadget and the following lemmas ensure that at any
local optimum of the Node-Max-Cut instance in Figure 3, the actual values of the vertices
in Next` and Val` are identical to Real-Next(I`) and Real-Val(I`).

First, connecting certain internal vertices of the Circuit Computing gadgets with the
vertices in NextA and NextB and in the Comparator, we obtain the following pair of lemmas.
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I Lemma 10. At any local optimum of the Node-Max-Cut instance in Figure 3, the
following hold:

If Flag = 1, NextA = Real-Next(IA), ValA = Real-Val(IA) and NextB = Real-Next(IB),
then Real-V al(IA) ≤ Real-V al(IB).
If Flag = 0, NextB = Real-Next(IB), ValB = Real-Val(IB) and NextA = Real-Next(IA),
then Real-V al(IB) ≤ Real-V al(IA).

I Lemma 11. At any local optimum of the Node-Max-Cut instance in Figure 3:
If Flag = 1, then NextB = Real-Next(IB).
If Flag = 0, then NextA = Real-Next(IA).

We should highlight that in the proofs of Lemma 10 and Lemma 11, in the first case
where Flag = 1 (the case where Flag = 0 is symmetric), the correctness of values of the
output vertices NextB (i.e., that NextB = Real-Next(IB), in the first case of Lemma 11) is
not guaranteed by Theorem 5 (as it happens with the correctness of the values of the output
vertices NextA and ValA in the hypothesis of the first case in Lemma 10), but from the
construction of the Comparator gadget. We should also highlight that Lemma 11 does not
imply anything about the correctness of the ValB values, as this cannot be guaranteed in
our construction. Hence, (the first case of) Lemma 10 does not assume anything about ValB
(in particular, it does not assume that ValB = Real-Val(IB), as one might have expected).
However, the Comparator gadget manages to output the right outcome of the comparison
Real-Val(IA) ≤ Real-Val(IB), even if ValB 6= Real-Val(IB). The connections from internal
vertices of the Circuit Computing gadgets to the vertices in NextA and NextB and in the
Comparator, in Figure 3, are crucial towards establishing this property. So, Lemma 10
ensures the robustness of the outcome of the Comparator, even with possibly inconsistent
values in the output vertices ValB . This property of the Comparator gadget is among the key
technical steps (and novelties) in our reduction and is indicative of the difficulty of showing
that Local-Node-Max-Cut is PLS-hard.

Furthermore, similarly to the Copy gadget, the Comparator gadget leaves the vertices of
the Circuit Computing gadgets unbiased wrt. certain values of the Flag vertex.

I Lemma 12. At any local optimum of the instance of Node-Max-Cut in Figure 3:
If Flag = 1, then all vertices of CA experience 0 bias from the Comparator gadget.
If Flag = 0, then all vertices of CB experience 0 bias from the Comparator gadget.

Now using Lemma 8 and Lemma 12, we can prove the correctness of the output vertices
NextA and ValA, when Flag = 1, and of the output vertices NextB and ValB , when Flag = 0.

I Lemma 13. At any local optimum of the instance of Node-Max-Cut of Figure 3:
If Flag = 1, then NextA = Real-Next(IA) and ValA = Real-Val(IA).
If Flag = 0, then NextB = Real-Next(IB) and ValB = Real-Val(IB).

Proof. We only consider the case where Flag = 1 (the same analysis applies to the case
where Flag = 0). By Theorem 9, IA = NextB, and by Lemma 7, TB = NextB. As a
result, IA = TB, and by Lemma 6, ControlA = 1. Then, Lemmas 8 and 12 ensure that the
vertices in NextA and ValA of the Computing Gadget CA experience 0 bias from all the other
gadgets. Therefore, since ControlA = 1, we can apply Theorem 5, Case 1, and conclude that
ValA = Real-Val(IA) and that NextA = Real-Next(IA). J
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Concluding the Proof of Theorem 4. The technical lemmas above are summarized by the
following key technical claim:

I Theorem 14. At any local optimum of the instance of Node-Max-Cut of Figure 3:
If Flag = 1, then (i) Real-Val(IA) ≤ Real-Val(IB), and (ii) NextB = Real-Next(IB).
If Flag = 0, then (i) Real-Val(IB) ≤ Real-Val(IA), and (ii) NextA = Real-Next(IA).

Proof of Theorem 14. We consider a local optimum of the instance in Figure 3 with Flag = 1
(the same argument applies when Flag = 0). By Lemma 11, NextB = Real-Next(IB), and
thus, (ii) is established. Moreover by Lemma 13, NextA = Real-Next(IA) and ValA =
Real-Val(IA). Consequently, by Lemma 10, we conclude Real-Val(IA) ≤ Real-Val(IB). J

With theorems 9 and 14 at hand, the PLS-completeness of Local-Node-Max-Cut
follows easily. For the sake of completeness, we show how we put everything together.

Proof of Theorem 4. For a given circuit C of Circuit-Flip, we construct in polynomial
time the instance of Node-Max-Cut in Figure 3. We next consider any local optimum of
this instance. Without loss of generality, we assume that Flag = 1. Then, by Theorem 9
and Theorem 14, IA = NextB, NextB = Real-Next(IB) and Real-Val(IA) ≤ Real-Val(IB).
Hence, we obtain that

Real-Val(IB) ≥ Real-Val(IA) = Real-Val(NextB) = Real-Val(Real-Next(IB)) .

If IB 6= Real-Next(IB), then Real-Val(IB) > Real-Val(Real-Next(IB)), which is a con-
tradiction. Therefore, IB = Real-Next(IB), meaning that the binary string defined by the
values of IB is a locally optimal solution for Circuit-Flip. J

6 Conclusions and Future Work

In this work, we showed that equilibrium computation in linear weighted congestion games
is PLS-complete either on single-commodity series-parallel networks or on multi-commodity
networks with identity latency functions, where computing an equibrium for (unweighted)
congestion games is known to be easy. The key step for the latter reduction is to show that
local optimum computation for Node-Max-Cut, a natural and significant restriction of
Max-Cut, is PLS-complete. The reductions in Section 3 are both tight [33], thus preserving
the structure of the local search graph. In particular, for the first reduction, we have that
(i) there are instances of linear weighted congestion games on single-commodity series-parallel
networks such that any best response sequence has exponential length; and (ii) that the
problem of computing the equilibrium reached from a given initial state is PSPACE-hard.

However, our reduction of Circuit-Flip to Node-Max-Cut is not tight. Specifically,
our Copy and Equality gadgets allow that the Circuit Computing gadget might enter its
compute mode, before the entire input has changed. Thus, we might “jump ahead” and reach
an equilibrium before Circuit-Flip would allow, preventing the reduction from being tight.

Our work leaves several interesting directions for further research. A natural first
step is to investigate the complexity of equilibrium computation for weighted congestion
games on series-parallel (or extension-parallel) networks with identity latency functions.
An intriguing research direction is to investigate whether our ideas (and gadgets) in the
PLS-reduction for Node-Max-Cut could lead to PLS-hardness results for approximate
equilibrium computation for standard and weighted congestion games (similarly to the results
of Skopalik and Vöcking [34], but for latency functions with non-negative coefficients). Finally,
it would be interesting to understand better the quality of efficiently computable approximate
equilibria for Node-Max-Cut and the smoothed complexity of its local optima.
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Abstract
We consider the online Min-Sum Set Cover (MSSC), a natural and intriguing generalization of the
classical list update problem. In Online MSSC, the algorithm maintains a permutation on n elements
based on subsets S1, S2, . . . arriving online. The algorithm serves each set St upon arrival, using its
current permutation πt, incurring an access cost equal to the position of the first element of St in
πt. Then, the algorithm may update its permutation to πt+1, incurring a moving cost equal to the
Kendall tau distance of πt to πt+1. The objective is to minimize the total access and moving cost
for serving the entire sequence. We consider the r-uniform version, where each St has cardinality r.
List update is the special case where r = 1.

We obtain tight bounds on the competitive ratio of deterministic online algorithms for MSSC
against a static adversary, that serves the entire sequence by a single permutation. First, we show
a lower bound of (r + 1)(1 − r

n+1 ) on the competitive ratio. Then, we consider several natural
generalizations of successful list update algorithms and show that they fail to achieve any interesting
competitive guarantee. On the positive side, we obtain a O(r)-competitive deterministic algorithm
using ideas from online learning and the multiplicative weight updates (MWU) algorithm.

Furthermore, we consider efficient algorithms. We propose a memoryless online algorithm, called
Move-All-Equally, which is inspired by the Double Coverage algorithm for the k-server problem. We
show that its competitive ratio is Ω(r2) and 2O(

√
log n·log r), and conjecture that it is f(r)-competitive.

We also compare Move-All-Equally against the dynamic optimal solution and obtain (almost) tight
bounds by showing that it is Ω(r

√
n) and O(r3/2√n)-competitive.
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1 Introduction

In Min-Sum Set Cover (MSSC), we are given a universe U on n elements and a collection of
subsets S = {S1, . . . , Sm}, with St ⊆ U , and the task is to construct a permutation (or list)
π of elements of U . The cost π(St) of covering a set St (a.k.a. the cover time of St) with a
permutation π is the position of the first element of St in π, i.e., π(St) = min{i |π(i) ∈ St}.
The goal is to minimize the overall cost

∑
t π(St) of covering all subsets of S.

The MSSC problem generalizes various NP-hard problems such as Min-Sum Vertex Cover
and Min-Sum Coloring and it is well-studied. Feige, Lovasz and Tetali [25] showed that the
greedy algorithm, which picks in each position the element that covers the most uncovered
sets, is a 4-approximation (this was also implicit in [11]) and that no (4− ε)-approximation
is possible, unless P = NP. Several generalizations have been considered over the years with
applications in various areas (we discuss some of those problems and results in Section 1.2).

Online Min-Sum Set Cover. In this paper, we study the online version of Min-Sum Set
Cover. Here, the sets arrive online; at time step t, the set St is revealed. An online algorithm
is charged the access cost of its current permutation πt(St); then, it is allowed to change
its permutation to πt+1 at a moving cost equal to the number of inversions between πt and
πt+1, known as the Kendall tau distance dKT(πt, πt+1). The goal is to minimize the total
cost, i.e.,

∑
t

(
πt(St) + dKT(πt, πt+1)

)
. This is a significant generalization of the classic list

update problem, which corresponds to the special case where |St| = 1 for all sets St ∈ S.

Motivation. Consider a web search engine, such as Google. Each query asked might have
many different meanings depending on the user. For example, the query “Python” might
refer to an animal, a programming language or a movie. Given the pages related to “Python”,
a goal of the search engine algorithm is to rank them such that for each user, the pages of
interest appear as high as possible in the ranking (see e.g., [23]). Similarly, news streams
include articles covering different reader interests each. We want to rank the articles so that
every reader finds an article of interest as high as possible. The MSSC problem serves as a
theoretical model for practical problems of this type, where we want to aggregate disjunctive
binary preferences (expressed by the input sets) into a total order. E.g., for a news stream,
the universe U corresponds to the available articles and the sets St correspond to different
user types. The cost of a ranking (i.e., permutation on U) for a user type is the location of
the first article of interest. Clearly, in such applications, users arrive online and the algorithm
might need to re-rank the stream (i.e., change the permutation) based on user preferences.

Benchmarks. For the most part, we evaluate the performance of online algorithms by
comparing their cost against the cost of an optimal offline solution that knows the input
in advance and chooses an optimal permutation π. Note that this solution is static, in the
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sense that it does not change permutations over time. This type of analysis, called static
optimality, is typical in online optimization and online learning. It was initiated in the
context of adaptive data structures by the landmark result of Sleator and Tarjan [44], who
showed that splay trees are asymptotically as fast as any static tree. Since then, it has been
an established benchmark for various problems in this area (see e.g. [13, 30]); it is also a
standard benchmark for several other problems in online optimization (e.g., online facility
location [26,37], minimum metric matching [28,33,39], Steiner tree [38], etc.).

A much more general benchmark is the dynamic Min-Sum Set Cover problem, where
the algorithm is compared against an optimal solution allowed to change permutations over
time. This problem has not been studied even in the offline case. In this work, we define the
problem formally and obtain first results for the online case.

We remark that the online dynamic MSSC problem belongs to a rich class of problems
called Metrical Task Systems (MTS) [15]. MTS is a far-reaching generalization of several
fundamental online problems and provides a unified framework for studying online problems
(we discuss this in more detail in Section 1.2). Indeed, our results suggest that solving the
online dynamic MSSC requires the development of powerful generic techniques for online
problems, which might have further implications for the broader setting of MTS.

Throughout this paper, whenever we refer to online problems, like Min-Sum Set Cover or
list update, we assume the static case, unless stated otherwise.

Previous Work on List Update. Prior to our work, the only version of online MSSC studied
is the special case where |St| = 1 for all sets; this is the celebrated list update problem and it
has been extensively studied (an excellent reference is [14]). It is known that the deterministic
competitive ratio it least 2 − 2

n+1 and there are several 2-competitive algorithms known;
most notably, the Move-to-Front (MTF) algorithm, which moves the (unique) element of St
to the first position of the permutation, and the Frequency Count algorithm, which orders
the elements in decreasing order according to their frequencies.

The dynamic list update problem has also been extensively studied. MTF is known to be
2-competitive [43] and there are several other 2-competitive algorithms [1, 24].

1.1 Our Results
In this work, we initiate a systematic study of the online Min-Sum Set Cover problem. We
consider the r-uniform case, where all request sets have the same size |St| = r. This is
without loss of generality, as we explain in Section 1.3.

The first of our main results is a tight bound on the deterministic competitive ratio of
Online MSSC. We show that the competitive ratio of deterministic algorithms is Ω(r).

I Theorem 1. Any deterministic online algorithm for the Online Min-Sum Set Cover problem
has competitive ratio at least (r + 1)(1− r

n+1 ).

Note that for r = 1, this bound evaluates to 2− 2
n+1 , which is exactly the best known

lower bound for the list update problem.
We complement this result by providing a matching (up to constant factors) upper bound.

I Theorem 2. There exists a (5r + 2)-competitive deterministic online algorithm for the
Online Min-Sum Set Cover problem.

Interestingly, all prior work on the list update problem (case r = 1) does not seem to
provide us with the right tools for obtaining an algorithm with such guarantees! As we
discuss in Section 2, virtually all natural generalizations of successful list update algorithms
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(e.g., Move-to-Front, Frequency Count) end up with a competitive ratio way far from the
desired bound. In fact, even for r = 2, most of them have a competitive ratio depending on
n, such as Ω(

√
n) or even Ω(n).

This suggests that online MSSC has a distinctive combinatorial structure, very different
from that of list update, whose algorithmic understanding calls for significant new insights.
The main reason has to do with the disjunctive nature of the definition of the access cost
π(St). In list update, where r = 1, the optimal solution is bound to serve a request St by
its unique element. The only question is how fast an online algorithm should upgrade it
(and the answer is “as fast as possible”). In MSSC, the hard (and crucial) part behind the
design of any competitive algorithm is how to ensure that the algorithm learns fast enough
about the element et used by the optimal solution to serve each request St. This is evident
in the highly adaptive nature of the deceptively simple greedy algorithm of [25] and in the
adversarial request sequences for generalizations of Move-to-Front, in Section 2.

To obtain the asymptotically optimal ratio of Theorem 2, we develop a rounding scheme
and use it to derandomize the multiplicative weights update (MWU) algorithm. Our analysis
bounds the algorithm’s access cost in terms of the optimal cost, but it does not account for
the algorithm’s moving cost. We then refine our approach, by performing lazy updates to
the algorithm’s permutation, and obtain a competitive algorithm for online MSSC.

We also observe (in Section 1.3) that based on previous work of Blum and Burch [12],
there exists a (computationally inefficient) randomized algorithm with competitive ratio
1 + ε, for any ε ∈ (0, 1/4). This implies that no lower bound is possible, if randomization is
allowed, and gives a strong separation between deterministic and randomized algorithms.

Memoryless Algorithms. While the bounds of Theorems 1 and 2 are matching, our
algorithm from Theorem 2 is computationally inefficient since it simulates the MWU algorithm,
which in turn, maintains a probability distribution over all n! permutations. This motivates
the study of trade-offs between the competitive ratio and computational efficiency. To this
end, we propose a memoryless algorithm, called Move-All-Equally (MAE), which moves all
elements of set St towards the beginning of the permutation at the same speed until the
first reaches the first position. This is inspired by the Double Coverage algorithm from
k-server [20,21]. We believe that MAE achieves the best guarantees among all memoryless
algorithms. We show that this algorithm can not match the deterministic competitive ratio.

I Theorem 3. The competitive ratio of the Move-All-Equally algorithm is Ω(r2).

Based on Theorem 3, we conjecture that an O(r) guarantee cannot be achieved by a
memoryless algorithms. We leave as an open question whether MAE has a competitive ratio
f(r), or a dependence on n is necessary. To this end, we show that the competitive ratio of
MAE is at most 2O(

√
logn·log r) (see Section 4 for details).

Dynamic Min-Sum Set Cover. We also consider the dynamic version of online MSSC.
Dynamic MSSC is much more general and the techniques developed for the static case do
not seem adequately powerful. This is not surprising, since the MWU algorithm is designed
to perform well against the best static solution. We investigate the performance of the MAE
algorithm. First, we obtain an upper bound on its competitive ratio.

I Theorem 4. The competitive ratio of the Move-All-Equally algorithm for the dynamic
online Min-Sum Set Cover problem is O(r3/2√n).

Although this guarantee is not very strong, we show that, rather surprisingly, it is
essentially tight and no better guarantees can be shown for this algorithm.
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I Theorem 5. For any r ≥ 3, the competitive ratio of the Move-All-Equally algorithm for
the dynamic online Min-Sum Set Cover problem is Ω(r

√
n).

This lower bound is based on a carefully crafted adversarial instance; this construction
reveals the rich structure of this problem and suggests that more powerful generic techniques
are required in order to achieve any f(r) guarantees. In fact, we conjecture that the lower
bound of Theorem 1 is the best possible (ignoring constant factors) even for the dynamic
problem and that using a work-function based approach such a bound can be obtained.

1.2 Further Related Work
Multiple Intents Re-ranking. This is a generalization of MSSC where for each set St, there
is a covering requirement K(St), and the cost of covering a set St is the position of the K(St)-
th element of St in π. The MSSC problem is the special case where K(St) = 1 for all sets
St. Another notable special case is the Min-Latency Set Cover problem, which corresponds
to the other extreme case where K(St) = |St| [29]. Multiple Intents Re-ranking was first
studied by Azar et. al. [5], who presented a O(log r)-approximation; later O(1)-approximation
algorithms were obtained [10,32,42]. Further generalizations have been considered, such as
the Submodular Ranking problem, studied by Azar and Gamzu [4], which generalizes both
Set Cover and MSSC, and the Min-Latency Submodular Cover, studied by Im et.al [31].

Prediction from Expert Advice and Randomized MSSC. In prediction from expert advice,
there are N experts and expert i incurs a cost cti in each step. A learning algorithm decides
which expert it to follow (before the cost vector ct is revealed) and incurs a cost of ctit . The
landmark technique for solving this problem is the multiplicative weights update (MWU -
a.k.a. Hedge) algorithm. For an in-depth treatment of MWU, we refer to [3, 27,35].

In the classic online learning setting, there is no cost for moving probability mass between
experts. However, in a breakthrough result, Blum and Burch [12] showed that MWU is
(1 + ε)-competitive against the best expert, even if there is a cost D for moving probability
mass between experts. By adapting this result to online MSSC (regarding permutations as
experts), we can get an (inefficient) randomized algorithm with competitive ratio (1 + ε), for
any constant ε ∈ (0, 1/4). A detailed description is deferred to the full version of this paper.

Metrical Task Systems and Online Dynamic MSSC. The online dynamic Min-Sum Set
Cover problem belongs to a rich family of problems called Metrical Task Systems (MTS). In
MTS, we are given a set of N states and a metric function d specifying the cost of moving
between the states. At each step, a task arrives; the cost of serving the task at state i is
ci. An algorithm has to choose a state to process the task. If it switches from state i to
state j and processes the task there, it incurs a cost d(i, j) + cj . Given an initial state and a
sequence of requests, the goal is to process all tasks at minimum cost.

It is easy to see that the online version of dynamic MSSC problem is a MTS, where the
states correspond to permutations, thus N = n!, and the distance between two states is their
Kendall tau distance. For a request set St, the request is a vector specifying the cost π(St)
for every permutation π.

Several other fundamental online problems (e.g., k-server, convex body chasing) are
MTS. Although there has been a lot of work on understanding the structure of MTS
problems [2,8,9,15,16,22,34,40,41], there is not a good grasp on how the structure relates to
the hardness of MTS problems. Getting a better understanding on this area is a long-term
goal, since it would lead to a systematic framework for solving online problems.
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1.3 Preliminaries
Notation. Given a request sequence S = {S1, . . . , Sm}, for any algorithm ALG we denote
Cost(ALG(S)) or simply Cost(ALG) the total cost of ALG on S. Similarly we denote
AccessCost(ALG) the total access cost of ALG and MovingCost(ALG) the total movement
cost of ALG. For a particular time step t, an algorithm using permutation πt incurs an
access cost AccessCost(ALG(t)) = πt(St). We denote by πt[j] the position of element j ∈ U
in the permutation πt.

Online Min-Sum Set Cover. We focus on the r-uniform case, i.e., when all sets St have size
r � n. This is essentially without loss of generality, because we can always let r = maxt |St|
and add the r − |St| last unrequested elements in the algorithm’s permutation to any set St
with |St| < r. Assuming that r ≤ n/2, this modification cannot increase the optimal cost
and cannot decrease the online cost by more than a factor of 2.

2 Lower Bounds on the Deterministic Competitive Ratio

We start with a lower bound on the deterministic competitive ratio of online MSSC.
I Theorem 1. Any deterministic online algorithm for the Online Min-Sum Set Cover
problem has competitive ratio at least (r + 1)(1− r

n+1 ).
For the proof, we employ an averaging argument, similar to those in lower bounds for

list update and k-server [36, 43]. In each step, the adversary requests the last r elements
in the algorithm’s permutation. Hence, the algorithm’s cost is at least (n− r + 1). Using
a counting argument, we show that for any fixed set St of size r and any i ∈ [n − r + 1],
the number of permutations π with access cost π(St) = i is

(
n−i
r−1
)
r!(n − r)! . Summing

up over all permutations and dividing by n!, we get that the average access cost for St is(
n+1
r+1
) r!(n−r)!

n! = n+1
r+1 . Therefore, the cost of the optimal permutation is a most (n+1)

r+1 , and
the competitive ratio of the algorithm at least (n−r+1)(r+1)

n+1 . The details can be found in the
full version of this paper.

Lower Bounds for Generalizations of Move-to-Front. For list update, where r = 1, simple
algorithms like Move-to-Front (MTF) and Frequency Count achieve an optimal competitive
ratio. We next briefly describe several such generalizations of them and show that their
competitive ratio depends on n, even for r = 2. Missing details can be found in the full
version.
MTFfirst: Move to the first position (of the algorithm’s permutation) the element of St

appearing first in πt . This algorithm is Ω(n)-competitive when each request St consists
of the last two elements in πt. Then, the last element in the algorithm’s permutation
never changes and is used by the optimal permutation to serve the entire sequence!

MTFlast: Move to the first position the element of St appearing last in πt .
MTFall: Move to the first r positions all elements of St (in the same order as in πt).
MTFrandom: Move to the first position an element of St selected uniformly at random.

MTFlast, MTFall and MTFrandom have a competitive ratio of Ω(n) when each request St
consists of a fixed element e (always the same) and the last element in πt, because they all
incur an (expected for MTFrandom) moving cost of Θ(n) per request.

The algorithms seen so far fail for the opposite reasons: MTFfirst cares only about the
first element and ignores completely the second, and the others are very aggressive on using
the second (rth) element. A natural attempt to balance those two extremes is the following.
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MTFrelative: Let i be the position of the first element of St in πt. Move to the first positions
of the algorithm’s permutation (keeping their relative order) all elements of St appearing
up to the position c · i in πt, for some constant c. The bad instance for this algorithm is
when each request St consists of the last element and the element at position bn/cc − 1
in πt; it never uses the nth element and the adversary serves all requests with it at a cost
of 1.

All generalizations of MTF above are memoryless and they all fail to identify the element
by which optimal serves St. The following algorithm tries to circumvent this by keeping
memory and in particular the frequencies of reqested elements.
MTFcount: Move to the first position the most frequent element of St (i.e., the element of St

appearing in most requested sets so far).

This algorithm behaves better in easy instances, however with some more work we
can show a lower bound of Ω(

√
n) on its competitive ratio. Let e1, . . . , en be the ele-

ments indexed according to the initial permutation π0 and b =
√
n. The request sequence

proceeds in m/n phases of length n each. The first n − b requests of each phase are
{e1, e2}, {e1, e3}, . . . , {e1, en−b}, and the last b requests consist of en−b+i and the element at
position n− b at the current algorithm’s permutation, for i = 1, . . . , b. An optimal solution
can cover all the requests by the elements e1, en−b+1, . . . , en with total cost Θ(m + n

√
n).

The elements en−b+1, . . . , en are never upgraded by MTFcount. Hence, the algorithm’s cost
is Θ(m

√
n).

3 An Algorithm with Asymptotically Optimal Competitive Ratio

Next, we present algorithm Lazy-Rounding (Algorithm 2) and analyze its competitive ratio.
The following is the main result of this section:

I Theorem 2. Deterministic online algorithm Lazy-Rounding, presented in Algorithm 2, is
(5r + 2)-competitive for the static version of the Online Min-Sum Set Cover problem.

The remainder of this section is devoted to the proof of Theorem 2. At a high-level, our
approach is summarized by the following three steps:
1. We use as black-box the multiplicative weights update (MWU) algorithm with learning

rate 1/n3. Using standard results from learning theory, we show that its expected access
cost is within a factor 5/4 of OPT, i.e., AccessCost(MWU) ≤ 5

4 Cost(OPT) (Section 3.1).
2. We develop an online rounding scheme, which turns any randomized algorithm A into a

deterministic one, denoted Derand(A), with access cost at most 2r · E[AccessCost(A)]
(Section 3.2). However, our rounding scheme does not provide any immediate guarantee
on the moving cost of Derand(A).

3. Lazy-Rounding is a lazy version of Derand(MWU) that updates its permutation only
if MWU’s distribution has changed a lot. A phase corresponds to a time interval that
Lazy-Rounding does not change its permutation. We show that during a phase:
(i) The upper bound on the access cost increases, compared to Derand(MWU), by a

factor of at most 2, i.e., AccessCost(Lazy-Rounding) ≤ 4r · E[AccessCost(MWU)]
(Lemma 11).

(ii) The (expected) access cost of MWU is at least n2. Since our algorithm moves only
once per phase, its movement cost is at most n2. Thus we get that (Lemma 12):

MovingCost(Lazy-Rounding) ≤ E[AccessCost(MWU)] .
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For the upper bound on the moving cost above, we relate how much MWU’s distribution
changes during a phase, in terms of the total variation distance, to the cost of MWU and
the cost of our algorithm.

Based on the above properties, we compare the access and the moving cost of Lazy-
Rounding against the access cost of MWU and to get the desired competitive ratio:

Cost(Lazy-Rounding) ≤ (4r + 1)E[AccessCost(MWU)] ≤ (5r + 2) Cost(OPT) .

Throughout this section we denote by dTV(δ, δ′) the total variation distance of two discrete
probability distributions δ, δ′ : [N ]→ [0, 1], defined as dTV(δ, δ′) =

∑N
i=1 max{0, δ(i)− δ′(i)}.

3.1 Using Multiplicative Weights Update in Online Min-Sum Set Cover
In this section, we explain how the well-known MWU algorithm [27,35] is used in our context.

The MWU Algorithm. Given n! permutations of elements of U , the algorithm has a
parameter β ∈ [0, 1] and a weight wπ for each permutation π ∈ [n!], initialized at 1.
At each time step the algorithm chooses a permutation according to distribution Ptπ =
wtπ/(

∑
π∈[n!] w

t
π). When request St arrives, MWU incurs an expected access cost of

E[AccessCost(MWU(t))] =
∑
π∈[n!]

Ptπ · π(St)

and updates its weights wt+1
π = wtπ · βπ(St), where β = e−1/n3 ; this is the so-called learning

rate of our algorithm. Later on, we discuss the reasons behind choosing this value.

On the Access Cost of MWU. Using standard results from learning theory [27, 35] and
adapting them to our setting, we get that the (expected) access cost of MWU is bounded by
Cost(OPT). This is formally stated in Lemma 6 (and is proven in the full version).

I Lemma 6. For any request sequence σ = (S1, . . . , Sm) we have that

E[AccessCost(MWU)] ≤ 5
4 · Cost(OPT) + 2n4 lnn .

On the Distribution of MWU. We now relate the expected access cost of the MWU
algorithm to the total variation distance among MWU’s distributions. More precisely, we
show that if the total variation distance between MWU’s distributions at times t1 and t2 is
large, then MWU has incurred a sufficiently large access cost. The proof of the following
makes a careful use of MWU’s properties and is deferred to the full version of this paper.

I Lemma 7. Let Pt be the probability distribution of the MWU algorithm at time t. Then,

dTV(Pt,Pt+1) ≤ 1
n3 · E[AccessCost(MWU(t))].

The following is useful for the analysis of Lazy-Rounding. Its proof follows from Lemma 7
and the the triangle inequality and is deferred to the full version of this paper.

I Lemma 8. Let t1 and t2 two different time steps such that dTV(Pt1 ,Pt2) ≥ 1/n. Then,
t2−1∑
t=t1

E[AccessCost(MWU(t))] ≥ n2 .
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3.2 Rounding
Next, we present our rounding scheme. Given as input a probability distribution δ over
permutations, it outputs a fixed permutation ρ such that for each possible request set S of
size r, the cost of ρ on S is within a O(r) factor of the expected cost of the distribution δ on
S. For convenience, we assume that n/r is an integer. Otherwise, we use dn/re.

Algorithm 1 Greedy-Rounding (derandomizing probability distributions over the permutations).
Input: A probability distribution δ over [n!].
Output: A permutation ρ ∈ [n!].
1: R ← U

2: for i = 1 to n/r do
3: Si ← arg minS∈{R}r Eπ∼δ[π(S)]
4: Place the elements of Si (arbitrarily) from positions (i− 1) · r + 1 to i · r of ρ.
5: R← R \ Si
6: end for
7: return ρ

Our rounding algorithm is described in Algorithm 1. At each step, it finds the request S
with minimum expected covering cost under the probability distribution δ and places the
elements of S as close to the beginning of the permutation as possible. Then, it removes
those elements from set R and iterates. The main claim is that the resulting permutation
has the following property: any request S of size r has covering cost at most O(r) times of
its expected covering cost under the probability distribution δ.

I Theorem 9. Let δ be a distribution over permutations and let ρ be the permutation output
by Algorithm 1 on δ. Then, for any set S, with |S| = r,

ρ(S) ≤ 2r · E
π∼δ

[π(S)] .

Proof Sketch. The key step is to show that if the element used by ρ to serve the request
S was picked during the kth iteration of the rounding algorithm, then Eπ∼δ[π(S)] ≥ k/2.
Clearly, ρ(S) ≤ k · r and the theorem follows. Full proof is in the full version. J

3.3 The Lazy Rounding Algorithm
Lazy-Rounding, presented in Algorithm 2, is essentially a lazy derandomization of MWU.
At each step, it calculates the distribution on permutations maintained by MWU. At the
beginning of each phase, it sets its permutation to that given by Algorithm 1. Then, it sticks
to the same permutation for as long as the total variation distance of MWU’s distribution at
the beginning of the phase to the current MWU distribution is at most 1/n. As soon as the
total variation distance exceeds 1/n, Lazy-Rounding starts a new phase.

The main intuition behind the design of our algorithm is the following. In Section 3.2 we
showed that Algorithm 1 results in a deterministic algorithm with access cost no larger than
2rE[AccessCost(MWU)]. However, such an algorithm may incur an unbounded moving cost;
even small changes in the distribution of MWU could lead to very different permutations
after rounding. To deal with that, we update the permutation of Lazy-Rounding only if
there are substantial changes in the distribution of MWU. Intuitively, small changes in
MWU’s distribution should not affect much the access cost (this is formalized in Lemma 10).
Moreover, Lazy-Rounding switches to a different permutation only if it is really required,
which we use to bounds Lazy-Rounding’s moving cost.
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Bounding the Access Cost. We first show that the access cost of Lazy-Rounding is within
a factor of 4r from the expected access cost of MWU (Lemma 11). To this end, we first
show that if the total variation distance between two distributions is small, then sampling
from those distributions yields roughly the same expected access cost for any request S. The
proof of the following is based on the optimal coupling lemma and can be found in the full
version of this paper.

I Lemma 10. Let δ and δ′ be two probability distributions over permutations. If that
dTV(δ, δ′) ≤ 1/n, for any request set S of size r, we have that

E
π∼δ′

[π(S)] ≤ 2 · E
π∼δ

[π(S)].

We are now ready to upper bound the access cost of our algorithm.

I Lemma 11. AccessCost(Lazy-Rounding) ≤ 4r · E[AccessCost(MWU)].

Proof. Consider a phase of Lazy-Rounding starting at time t1. We have that at any round
t ≥ t1, πt = Greedy-Rounding(Pt1), as long as dTV(Pt,Pt1) ≤ 1/n. By Theorem 9 and
Lemma 10, we have that,

AccessCost(Lazy-Rounding(t)) = πt(St) ≤ 2r · E
π∼Pt1

[π(St)] ≤ 4r E
π∼Pt

[π(St)].

Overall we get, AccessCost(Lazy-Rounding) =
∑m
t=1 πt(St) ≤ 4rE[AccessCost(MWU)]. J

Bounding the Moving Cost. We now show that the moving cost of Lazy-Rounding is upper
bounded by the expected access cost of MWU.

I Lemma 12. MovingCost(Lazy-Rounding) ≤ E[AccessCost(MWU)].

Proof. Lazy-Rounding moves at the end of a phase incurring a cost of at most n2. Let t1
and t2 be the starting times of two consecutive phases. By the definition of Lazy-Rounding,
dTV(P t1 , P t2) > 1/n. By Lemma 8, we have that the access cost of MWU during t1 and t2
is at least n2. We get that

MovingCost(ALG)
E[AccessCost(MWU)] ≤

n2# different phases
n2#different phases = 1. J

Theorem 2 follows from lemmas 11, 12 and 6. The details can be found in the full version.

Algorithm 2 Lazy Rounding.
Input: Sequence of requests (S1, . . . , Sm) and the initial permutation π0 ∈ [n!].
Output: A permutation πt at each round t, which serves request St.
1: start-phase← 1
2: P1 ← uniform distribution over permutations
3: for each round t ≥ 1 do
4: if dtv(Pt,Pstart-phase) ≤ 1/n then
5: πt ← πt−1
6: else
7: πt ← Greedy-Rounding(Pt)
8: start-phase← t

9: end if
10: Serve request St using permutation πt.
11: wt+1

π = wtπ · e−π(St)/n3 , for all permutations π ∈ [n!].
12: Pt+1 ← Distribution on permutations of MWU, Pt+1

π = wtπ/(
∑
π∈[n!] w

t
π).

13: end for
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Algorithm 3 Move-All-Equally.
Input: A request sequence (S1, . . . , Sm) and the initial permutation π0 ∈ [n!]
Output: A permutation πt at each round t.
1: for each round t ≥ 1 do
2: kt ← min{i |πt−1[i] ∈ St}
3: Decrease the index of all elements of St by kt − 1.
4: end for

Remark. Note that to a large extent, our approach is generic and can be used to provide
static optimality for a wide range of online problems. The only requirement is that there is
a maximum access cost Cmax and a maximum moving cost D; then, we should use MWU
with learning rate 1/(D · Cmax) and move when dTV ≥ 1/Cmax. Here we used D = n2 and
Cmax = n. The only problem-specific part is the rounding of Section 3.2. We believe it is an
interesting direction to use this technique for generalizations of this problem, like multiple
intents re-ranking or interpret known algorithms for other problems like the BST problem
using our approach.

4 A Memoryless Algorithm

In this section we focus on memoryless algorithms. We present an algorithm, called Move-All-
Equally (MAE), which seems to be the “right” memoryless algorithm for online MSSC. MAE
decreases the index of all elements of the request St at the same speed until one of them
reaches the first position of the permutation (see Algorithm 3). Note that MAE belongs to
the Move-to-Front family, i.e., it is a generalization of the classic MTF algorithm for the list
update problem. MAE admits two key properties that substantially differentiate it from the
other algorithms in the Move-to-Front family presented in Section 2.

(i) Let et denote the element used by OPT to cover the request St. MAE always moves
the element et towards the beginning of the permutation.

(ii) It balances moving and access costs: if the access cost at time t is kt, then the moving
cost of MAE is roughly r · kt (see Algorithm 3). The basic idea is that the moving cost
of MAE can be compensated by the decrease in the position of element et. This is why
it is crucial all the elements to be moved with the same speed.

Lower Bound. First, we show that this algorithm, besides its nice properties, fails to achieve
a tight bound for the online MSSC problem.

I Theorem 3. The competitive ratio of the Move-All-Equally algorithm is Ω(r2).

In the lower bound instance, the adversary always requests the last r elements of the
algorithm’s permutation. Since MAE moves all elements to the beginning of the permutation,
we end up in a request sequence where n/r disjoint sets are repeatedly requested. Thus the
optimal solution incurs a cost of Θ(n/r) per request, while MAE incurs a cost of Ω(n · r)
per request (the details are in the full version) . Note that in such a sequence, MAE loses
a factor of r by moving all elements, instead of one. However, this extra movement seems
to be the reason that MAE outperforms all other memoryless algorithms and avoids poor
performance in trivial instances, like other MTF-like algorithms.
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Upper Bounds. Let L denote the set of elements used by the optimal permutation on a
request sequence such that |L| = `. That means, OPT has those ` elements in the beginning of
its permutation, and it never uses the remaining n−` elements. Consider a potential function
Φ(t) being the number of inversions between elements of L and U \ L in the permutation of
MAE (an inversion occurs when an element of L is behind an element of U \ L). Consider
the request St at time t and let kt be the access cost of MAE.

Let et be the element used by OPT to serve St. Clearly, in the permutation of MAE, et
passes (i.e., changes relative order w.r.t) kt − 1 elements. Among them, let L be the set of
elements of L and R the elements of U \ L. Clearly, |L| + |R| = kt − 1 and |L| ≤ |L| = `.
We get that the move of et changes the potential by −|R|. The moves of all other elements
increase the potential by at most (r − 1) · `. We get that

kt + Φ(t)− Φ(t− 1) ≤ |L|+ |R| − |R|+ (r − 1) · ` ≤ |L|+ (r − 1) · ` ≤ r · `.

Since the cost of MAE at step t is no more than (r + 1) · kt, we get that the amortized cost
of MAE per request is O(r2 · `). This implies that for all sequences such that OPT uses
all elements of L with same frequencies (i.e, the OPT pays on average Ω(`) per request),
MAE incurs a cost within O(r2) factor from the optimal. Recall that all other MTF-like
algorithms are Ω(

√
n) competitive even in instances where OPT uses only one element!

While this simple potential gives evidence that MAE is O(r2)-competitive, it is not
enough to provide satisfactory competitiveness guarantees. We generalize this approach and
define the potential function Φ(t) =

∑n
j=1 αj · πt(j), where πt(j) is the position of element j

at round t and αj are some non-negative coefficients. The potential we described before is
the special case where αj = 1 for all elements of L and αj = 0 for elements of U \ L.

By refining further this approach and choosing coefficients αj according to the frequency
that OPT uses element j to serve requests (elements of high frequency are “more important”
so they should have higher values αj), we get an improved upper bound.

I Theorem 14. The competitive ratio of MAE algorithm is at most 2O(
√

logn·log r).

Note that this guarantee is o(nε) and ω(logn). The proof is based on the ideas sketched
above but the analysis is quite involved and is deferred to the full version of this paper.

5 Dynamic Online Min-Sum Set Cover

In this section, we turn our attention to the dynamic version of online MSSC. In online
dynamic MSSC, the optimal solution maintains a trajectory of permutations π∗0 , π∗1 , . . . , π∗t , . . .
and use permutation π∗t to serve each request St. The cost of the optimal dynamic solution
is OPTdynamic =

∑
t(π∗t (St) + dKT(π∗t−1, π

∗
t )), where {π∗t }t denotes the optimal permutation

trajectory for the request sequence that minimizes the total access and moving cost.
We remark that the ratio between the optimal static solution and the optimal dynamic

solution can be as high as Ω(n). For example, in the sequence of requests {1}b{2}b . . . {n}b, the
optimal static solution pays Θ(n2b), whereas the optimal dynamic solution pays Θ(n2 + n · b)
by moving the element that covers the next n · b requests to the first position and then
incurring access cost 1. The above example also reveals that although Algorithm 2 is
Θ(r)-competitive against the optimal static solution, its worst-case ratio against a dynamic
solution can be Ω(n).

MAE Algorithm. As a first study of the dynamic problem, we investigate the competitive
ratio of Move-All-Equally (MAE) algorithm from Section 4. We begin with an upper bound.

I Theorem 4. The competitive ratio of the Move-All-Equally algorithm for the dynamic
online Min-Sum Set Cover problem is O(r3/2√n).
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The approach for proving Theorem 4 is generalizing that exhibited in Section 4 for the static
case. We use a generalized potential function Φ(t) =

∑n
j=1 α

t
j · πt(j); i.e, the multipliers αj

may change over time so as to capture the moves of OPTdynamic. To select coefficients αtj we
apply a two-level approach. We observe that there is always a 2-approximate optimal solution
that moves an element of St to the front (similar to classic MTF in list update). We call
this MTFOPT . We compare the permutation of the online algorithm with the permutation
maintained by this algorithm; at each time, elements the beginning of the offline permutation
are considered to be “important” and have higher coefficients αtj . The formal proof is in the
full version.

Next, we show an almost matching lower bound.

I Theorem 5. For any r ≥ 3, the competitive ratio of the Move-All-Equally algorithm for
the dynamic online Min-Sum Set Cover problem is Ω(r

√
n).

Sketch of the Construction. The lower bound is based on a complicated adversarial request
sequence; we sketch the main ideas. Let k be an integer. During a phase we ensure that:
(i) There are 2k “important” elements used by OPT; we call them e1, . . . , e2k. In the

beginning of the phase, those elements are ordered in the start of the optimal permutation
π∗, i.e., π∗[ej ] = j. The phase contains k consecutive requests to each of them, in order;
thus the total number of requests is ≈ 2k2. OPT brings each element ej at the front
and uses it for k consecutive requests; thus the access cost of OPT is 2k2 (1 per request)
and the total movement cost of OPT of order Θ(k2). Over a phase of 2k2 requests,
OPT incurs an overall cost Θ(k2), i.e., an average of O(1) per request.

(ii) The first k + r − 2 positions of the online permutation will be always occupied by the
same set of “not important” elements; at each step the r − 2 last of them will be part
of the request set and MAE will move them to the front. Thus the access cost will
always be k + 1 and the total cost more than (r + 1) · k.

The two properties above are enough to provide a lower bound Ω(r · k); the optimal cost
is O(1) per request and the online cost Ω(r · k). The goal of an adversary is to construct a
request sequence with those two properties for the largest value of k possible.

The surprising part is that although MAE moves all requested elements towards the
beginning of the permutation, it never manages to bring any of the “important” elements in
a position smaller than r+ k− 2. While the full instance is complex and described in the full
version, at a high-level, we make sure that whenever a subsequence of k consecutive requests
including element ej begins, ej is at the end of the online permutation, i.e., πt[ej ] = n. Thus,
even after k consecutive requests where MAE moves it forward by distance k, it moves by k2

positions; by making sure that n− k2 > r + k − 2 (which is true for some k = Ω(
√
n)), we

can make sure that ej does not reach the first r + k − 2 positions of the online permutation.

6 Concluding Remarks

Our work leaves several intriguing open questions. For the (static version of) Online MSSC,
it would be interesting to determine the precise competitive ratio of the MAE algorithm;
particularly whether it depends only on r or some dependency on n is really necessary. More
generally, it would be interesting to determine the best possible performance of memoryless
algorithms and investigate trade-offs between competitiveness and computational efficiency.

For the online dynamic MSSC problem, the obvious question is whether a f(r)-competitive
algorithm is possible. Here, we showed that techniques developed for the list update problem
seem to be too problem-specific and are not helpful in this direction. This calls for the
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use of more powerful and systematic approaches. For example, the online primal-dual
method [18] has been applied successfully for solving various fundamental problems [6,7,17,19].
Unfortunately, we are not aware of a primal-dual algorithm even for the special case of list
update; the only attempt we are aware of is in [45], but this analysis basically recovers
known (problem-specific) algorithms using dual-fitting. Our work gives further motivation
for designing a primal-dual algorithm for list-update: this could be a starting point towards
solving the online dynamic MSSC.

In a broader context, the online MSSC is the first among a family of poorly understood
online problems such as the multiple intents re-ranking problem described in Section 1.2. In
this problem, when a set St is requested, we need to cover it using s ≤ r elements; MSSC is
the special case s = 1. It is natural to expect that the lower bound of Theorem 1 can be
generalized to Ω(r/s), i.e., as s grows, we should be able to achieve a better competitive
ratio. It will be interesting to investigate this and the applicability of our technique to obtain
tight bounds for this problem.
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Abstract
Let M = (mij) be a symmetric matrix of order n and let G be the graph with vertex set {1, . . . , n}
such that distinct vertices i and j are adjacent if and only if mij 6= 0. We introduce a dynamic
programming algorithm that finds a diagonal matrix that is congruent to M . If G is given with a
tree decomposition T of width k, then this can be done in time O(k|T |+ k2n), where |T | denotes
the number of nodes in T .
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1 Introduction and main result

Two matrices M and N are said to be congruent, which is denoted M ∼= N , if there exists a
nonsingular matrix P for which N = PTMP . Matrix congruence naturally appears when
studying Gram matrices associated with a quadratic form on a finite-dimensional vector
space; finding a diagonal matrix D that is congruent to a symmetric matrix M allows us to
classify the quadratic form.

In a different direction, finding a diagonal matrix that is congruent to M allows us to
determine the number of eigenvalues of M in a given real interval. Indeed, fix real numbers
c < d. Let Dc

∼= N = M − cI and Dd
∼= M − dI be diagonal matrices. By Sylvester’s Law

of Inertia [16, p. 568], the number n1 of eigenvalues of M greater than c equals the number
positive entries in Dc. Moreover, the number of eigenvalues equal to c, or less than c, are
given by the number of zero diagonal entries, or by the number of negative entries in Dc,
respectively. As a consequence, if n2 is the number of positive entries in Dd, then n1 − n2 is
the number of eigenvalues of M in the interval (c, d].

Given a symmetric matrix M = (mij) of order n, we may associate it with a graph G
with vertex set [n] = {1, . . . , n} such that distinct vertices i and j are adjacent if and only if
mij 6= 0. We say that G is the underlying graph of M . This allows us to employ structural
decompositions of graph theory to deal with the nonzero entries of M in an efficient way.
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One such decomposition is the tree decomposition, which has been extensively studied since
the seminal paper of Robertson and Seymour [18]. The graph parameter associated with
this decomposition is the treewidth.

A tree decomposition of a graph G = (V,E) is a tree T with nodes 1, . . . ,m, where each
node i is associated with a bag Bi ⊆ V , satisfying the following properties: (1)

⋃m
i=1 Bi = V ;

(2) For every edge {v, w} ∈ E, there exists Bi containing v and w; (3) For any v ∈ V , the
subgraph of T induced by the nodes that contain v is connected.

The width of the tree decomposition T is defined as maxi (|Bi| − 1) and the treewidth
tw(G) of graph G is the smallest k such that G has a tree decomposition of width k. Clearly,
it is always the case that tw(G) < |V |, and for connected graphs, tw(G) = 1 if and only if
G is a tree on two or more vertices. Even though computing the treewidth of a graph is
hard, this is a widely studied parameter and tree decompositions with bounded width are
known for several graph classes. Moreover, there is an extensive literature on approximation
algorithms for this problem. For instance, Fomin et al. [9] devised an algorithm such that,
given an n-vertex graph and an integer k, runs in time O(k7n logn) and either correctly
reports that the treewidth of G is larger than k, or constructs a tree decomposition of G of
width O(k2).

Often, graph widths have been used to design algorithms for NP-complete or even harder
problems that are efficient on graphs of bounded width, by which we mean that their running
time is equal to O(f(k)nc) for a constant c and an arbitrary computable function f , where
k is the width of the graph. Problems that can be solved with such a running time are
called fixed parameter tractable (FPT). For more information, interested readers are referred
to [5, 7, 8, 17], and to the references therein.

On the other hand, graph widths may be quite useful for polynomial time solvable
problems. Indeed, treewidth has a strong connection to the solution of sparse linear systems
and Gaussian elimination. For a long time heuristics have been designed to maintain
sparsity throughout Gaussian elimination. The goal is to minimize the fill-in, defined as
the set of matrix positions that were initially 0, but have received nonzero values during
the computation. Fill-in minimization has been analyzed as a graph problem in the case of
symmetric [19] as well as asymmetric [20] matrices. As in our paper, a nonzero matrix entry
aij is interpreted as an edge (or arc) from vertex i to vertex j. However, unlike here, it was
assumed that the matrix was diagonally dominant, so that all the pivots could be chosen in
the diagonal.

A major source of applications are symmetric positive definite matrices due to their
prevalence. When the ith diagonal pivot is chosen in the symmetric case, then the fill-in
consists of all missing edges between those neighbors of vertex i that have not yet been
eliminated. The minimum k over all elimination orders of the maximal number of higher
numbered neighbors is precisely the treewidth of the graph associated with a symmetric
matrix [2]. When such an optimal elimination order or, equivalently, a tree decomposition
of width k is given, then Gaussian elimination can trivially be done in time O(k2n), if the
pivot can always be chosen in the diagonal. This is clearly the case for symmetric positive
definite matrices. On the other hand, it long seemed impossible to get an efficient algorithm
when off-diagonal pivots have to be chosen. Note that, if the graph corresponding to a
symmetric matrix has treewidth k, then you can always find a diagonal element with at most
k off-diagonal nonzero elements in its row and column. But if this diagonal element is zero,
and the pivot is chosen somewhere else in its row, then there can be an arbitrary number of
nonzero elements in the pivot’s column. The main contribution of this paper is an algorithm
that deals with these diagonal elements.
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The paper of Bodlaender et al. [2] is dedicated to the approximation of treewidth, path-
width, and minimum elimination tree height. (Pathwidth is defined by tree decompositions
where the tree is required to be a path.) In this context, they discuss the important matrix
tasks of Cholesky factorization (A = LLT ) and Gaussian elimination for sparse matrices.
These tasks have efficient FPT algorithms parameterized by treewidth or pathwidth, while
their parallel complexity is determined by the minimum elimination tree height.

A recent paper of Fomin et al. [9] explores topics very similar to ours. For a matrix1 with
a given tree decomposition of width k, these authors present various efficient algorithms. In
time O(k3n) they solve systems of linear equations, compute the determinant and the rank of
a matrix. These problems are also solved by our approach, in the case of symmetric matrices.
They also solve various matching and flow problems and compute an O(k2) approximation
to treewidth in kO(1)n logO(1) n time.

Here, we design a dynamic programming algorithm with running time O(k2n) to find a
diagonal matrix that is congruent to an input symmetric matrix M of order n, provided that
a tree decomposition of width k for the underlying graph G is part of the input. In particular,
for bounded treewidth, we find a linear-time solution to this problem. To achieve our goal,
we were inspired by an algorithm with the same purpose for graphs with small clique-width
(clique-width is defined based on another structural decomposition introduced by Courcelle
and Olariu [4]). This algorithm was proposed by Jacobs and the current authors [12].

Astonishingly, the problem with the treewidth parameter turned out to be more challen-
ging. This is somewhat counterintuitive and unusual, because graphs of bounded treewidth
are also of bounded clique-width. Clearly, there is no direct implication. There are graphs
whose clique-width is exponentially bigger than their treewidth [3]. However the implication
of a running time of 2O(k)n for a polynomially solvable problem is rather unimpressive and
useless. The conclusion in the current paper is stronger. It is also much more useful, because
practical examples of sparse matrices often have small treewidth, while a pattern of large
minors with the same entry, typical of bounded clique-width matrices, is rather unusual.

As [9] and [12], the current paper fits into the recent trend “FPT within P”, which
investigates fundamental problems that are solvable in polynomial time, but for which a
lower exponent may be achieved using an FPT algorithm that is also polynomial in terms of
the parameter k (see [14]). For our problem, it does not seem that O(poly(k)n) algorithms
are possible for graphs of fusion-width or multi-clique-width k [10, 11]. For some problems,
like the independent set problem, there are algorithms whose running time as a function
of these parameters is not worse than as a function of the clique-width, even though the
clique-width can be exponentially larger. An O(k2n) algorithm for multi-clique-width k

would imply the same time bound when k is the clique-width or the tree-width.

I Theorem 1. Given a symmetric matrix M of order n and a tree decomposition T of width
k for the underlying graph of M , algorithm CongruentDiagonal (see Sect. 3) produces a
diagonal matrix D congruent to M in time O(k|T |+ k2n).

Naturally, we assume throughout this paper, that the input matrix M is given in a
compact form because, in standard form, just reading M would already take quadratic time.
A possible representation could be a list of triples (i, j,mij) containing all nonzero entries.
For convenience, we assume the value muv for u 6= v is just attached to the edge uv in
the given tree decomposition. Likewise the value muu is attached to the vertex u. This
representation could be obtained efficiently from the list representation. We will not discuss

1 The matrices in [9] are not necessarily symmetric (in fact, not necessarily square), and they associate
an m× n-matrix with a bipartite graph whose partition classes have size m and n.
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such a transformation even though it is not trivial. An interesting discussion by Bodlaender
et al. [1] shows how a data structure of size O(kn) enables an O(k) test whether two given
vertices are adjacent, a detail that had previously often been overlooked.

Our paper is organized as follows. In Section 2, we define the concept of an edge-explicit
tree decomposition and state auxiliary results about it. We then describe our algorithm in
Section 3 and justify why it works as claimed, ending with an example.

2 Edge-explicit tree decomposition

In this paper, we consider graph decompositions based on the concept of nice tree decomposi-
tion, introduced by Kloks [15]. The current variation is due to Fürer and Yu [13], and to
distinguish it from the original version, we call it an edge-explicit tree decomposition. (Nice
tree decompositions with explicit nodes to introduce edges have been considered by Cygan
et al. [6] before.) A rooted tree decomposition T of a graph G whose nodes are associated
with bags B1, . . . , Bm is edge-explicit if each node i is of one of the following types:
(a) (Leaf) The node i is a leaf of T ;
(b) (Introduce Vertex) The node i introduces vertex v if it has a single child j, v /∈ Bj

and Bi = Bj ∪ {v}.
(c) (Introduce Edges) The node i introduces edges if it has a single child j and |Bi| = |Bj |.

This node is labelled by a vertex v ∈ Bi and inserts all edges {u, v} of E(G) such that
u ∈ Bi.

(d) (Forget) The node i forgets vertex v if i has a single child j, v /∈ Bi and Bj = Bi ∪ {v};
(e) (Join) The node i is a join if it has two children j and `, where Bi = Bj = B`.
Unlike the other operations, the vertex v whose adjacencies are introduced by an Introduce
Edges node must be given as part of the operation. We assume that every edge uv ∈ E is
introduced exactly once. In fact, for every edge uv, we will further suppose that, if j is the
node that introduces the edge uv and it is labelled by vertex v, then the parent of j forgets v.
Another assumption that will simplify our discussion is that Br = ∅ for the root r of the
tree, so that every vertex will be forgotten.

For constant k, Kloks [15] shows how to construct a nice tree decomposition of size at most
4n from a k-tree in time O(n). We want to construct an edge-explicit tree decomposition from
an arbitrary tree decomposition efficiently. With the help of the given tree decomposition of
G of width k, we could embed G into a k-tree, apply the algorithm of Kloks, and finally add
the Introduce Edges nodes. For our application, we want to analyze the dependence of the
time on k precisely. For this purpose, we do a direct construction avoiding the k-trees.

I Lemma 2. From a tree decomposition of width k and m nodes, an edge-explicit tree de-
composition of the same width k with less than 5n nodes can be computed in time O(k(m+n)).

Proof. We assume that all bags are given by a sorted list of their vertices. If these lists were
unsorted, we could trivially sort them all in time O((k log k)m), or in a more sophisticated
manner in time O(km). As an additional preprocessing step, we produce a new node with
empty bag and declare it to be the root. It is connected to an arbitrary node of the original
tree decomposition.

Now we modify the tree decomposition in a sequence of depth-first tree traversals. Some
of these traversals could be combined, but obviously without improving the asymptotic
running time. During the first traversal, every node whose bag is contained in the bag of
its parent is merged with the parent. Initially, the number of nodes m is not bounded by
any function of the number of vertices n, because many subtrees could represent the same
subgraph. From our argument below, it follows that the tree has a size less than 4n after
this step.
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In four more depth-first traversals, we produce an edge-explicit tree decomposition. In
the second traversal, whenever the bag of a node has size less than the size of the bag of
its parent, we add some nodes from the parent until both bags have the same size. This
is a crucial step. Avoiding it, could increase the number of nodes in the fourth depth-first
traversal to Ω(kn).

In the third traversal, all nodes with more than one child are replaced by binary trees
with identical bags such that the original children appear as children of their leaves. In
the fourth traversal, for any node i with a single child j, if necessary, some new nodes are
inserted such that the bags only change by one vertex in each step. This is done from j

to i by a sequence of nodes alternating between Forget nodes and Introduce Vertex nodes
possibly followed by more Forget nodes. Now we have a nice tree decomposition, which we
will show to have at most 4n nodes. Finally, in the fifth depth-first traversal, immediately
below every Forget node of a vertex v, we insert an Introduce Edges node introducing the
edges to v, to make the nice tree decomposition edge-explicit.

Now we count the nodes. Note that the root and the Leaf nodes are incident with a single
edge, the Join nodes are incident with three edges and the other nodes are incident with two
edges. As a consequence, there is one less Join node than Leaf node. Every vertex can be
forgotten only once. Thus the number of Forget nodes is at most n. Between every Leaf
node and the first Join node above it in the tree, there is at least one Forget node, otherwise,
the the leaf would have been merged with its parent in the first traversal. Thus there are
at most n Leaf nodes and at most n − 1 Join nodes. The single child of every Introduce
Vertex node is a Forget node. The same is true for the parent of every Introduce Edges node.
Therefore, the number of Introduce Vertex nodes and and the number of Introduce Edges
nodes are at most n each. J

I Remark 3. The somewhat wasteful second traversal could be avoided. Its effect is to push
Introduce Vertex nodes down the tree in order to avoid some of them when the corresponding
vertices are introduced in leaves. This guarantees a bound of O(n) rather than O(kn) on the
number of Introduce Vertex nodes.

Without changing the asymptotic running time nor the treewidth, a tree decomposition
with typically many smaller bags could be obtained by allowing Introduce Vertex nodes
introducing many vertices at once. For our application, this would work, because handling a
node introducing many vertices could still be done in time O(k2).

For later use, we state an auxiliary result that records facts about an edge-explicit tree
decomposition. We do not include a proof, as it follows directly from the definition of this
concept. Let G = (V,E) be a graph with tree decomposition T , whose bags are B1, . . . , Bm.
For v ∈ V and a node j of T , let T (v) and Tj be the subtree of T induced by the nodes
containing v and the branch of T rooted at j, respectively.

I Lemma 4. In an edge-explicit tree decomposition T of a graph G = (V,E), the following
statements hold.
(a) Every v ∈ V is forgotten exactly once in T .
(b) Let uv ∈ E and let i be the node that introduces the edge uv. If ` is an ancestor of i and

` is a join or a node that introduces a vertex, then {u, v} 6⊆ B`.
(c) For every v ∈ V , the subtree T (v) of T is rooted at the child of the node that forgets v.

Moreover, the leaves of T (v) are precisely the leaves of T that contain v and the nodes
of T that introduce v.

(d) Suppose i forgets vertex v and j is its child. If w /∈ Bi and T (v) ∩ T (w) 6= ∅, then T (w)
is a subtree of Tj. In particular, T (v) is a subtree of Tj.
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3 The Algorithm

We now describe our diagonalization algorithm, which we call CongruentDiagonal. Let M
be a symmetric matrix of order n and let G = (V,E) be the underlying graph with vertex
set V = [n] associated with it. We wish to find a diagonal matrix congruent to M . Let T be
an edge-explicit tree decomposition of G of width k. The algorithm works bottom-up in the
rooted tree T , so we order the nodes 1, . . . ,m of T in post-order and operate on a node i
after its children have been processed. It is well-known that two matrices are congruent if we
can obtain one matrix from the other by a sequence of pairs of elementary operations, each
pair consisting of a row operation followed by the same column operation. In our algorithm
we only use congruence operations that permute rows and columns or add a multiple of a row
and column to another row and column respectively. To achieve linear-time we must operate
on a sparse representation of the graph associated with M , rather than on the matrix itself.

We start with a high-level description of the algorithm, which is summarized below.
Each node i in the tree produces a pair of matrices (N (1)

i , N
(2)
i ), which may be combined

into a symmetric matrix Ni of order at most 2(k + 1). The algorithm traverses the tree
decomposition from the leaves to the root so that, at node i, the algorithm either initializes a
pair (N (1)

i , N
(2)
i ), or it produces (N (1)

i , N
(2)
i ) based on the matrices produced by its children,

transmitting the pair to its parent. During this step, the algorithm may also produce diagonal
elements of a matrix congruent to M . These diagonal elements are not transmitted by a
node to its parent, but are appended to a global array as they are produced. At the end of
the algorithm, the array consists of the diagonal elements of a diagonal matrix D that is
congruent to M .

Algorithm 1 High level description of the algorithm CongruentDiagonal.

CongruentDiagonal(M)
input: an edge-explicit tree decomposition T of the underlying
graph G associated with M of width k and the nonzero entries of M

output: diagonal entries in D ∼= M

Order the nodes of T as 1, 2, . . . ,m in post order
for i from 1 to m do

if is-Leaf(i) then construct (N (1)
i , N

(2)
i )=LeafBox(Bi)

if is-IntroduceVertex(i) then construct (N (1)
i , N

(2)
i )=IntroVertexBox(Bi)

if is-IntroduceEdge(i) then construct (N (1)
i , N

(2)
i )=IntroEdgesBox(Bi)

if is-Join(i) then construct (N (1)
i , N

(2)
i )=JoinBox(Bi)

if is-Forget(i) then construct (N (1)
i , N

(2)
i )=ForgetBox(Bi)

In the remainder, we shall describe each operation in detail and justify that the algorithm
CongruentDiagonal yields the desired output. Step i of the algorithm refers to the ith
iteration of the loop above, and we assume that Step i processes the node i. To describe
the matrix produced by each node, we need the concept of a matrix M = (mij) in row
echelon form. This means that mij = 0 for all j < i. Moreover, let the pivot of row i be
the first j such that mij 6= 0, if such an element exists. We require that distinct rows have
different pivots.

Each matrix Ni produced by a node on the tree has the form

Ni = N
(0)
i N

(1)
i

N
(1)T
i N

(2)
i

, (1)
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where N (0)
i is a matrix of dimension k′i × k′i whose entries are zero, N (2)

i is a symmetric
matrix of dimension k′′i × k′′i and N (1)

i is a k′i × k′′i matrix in row echelon form. Moreover,
0 ≤ k′i ≤ k′′i ≤ k + 1. Observe that k′1 can be zero, in which case we regard N (0)

i and N (1)
i as

empty. An important fact about Ni is that each of its rows (and the corresponding column) is
associated with a vertex of G (equivalently, a row of M). Let V (Ni) denote the set of vertices
of G associated with the rows of Ni. We say that the k′i rows in N

(0)
i have type-i and the

k′′i rows of N (2)
i have type-ii. This is represented by the partition V (Ni) = V1(Ni) ∪ V2(Ni),

where V1(Ni) and V2(Ni) are the vertices of type-i and type-ii, respectively. As it turns
out, the vertices of type-ii are precisely the vertices in Bi. When proving facts about the
algorithm, we shall often refer to the matrix Ni as the result of processing Bi, even if the
actual output is the pair (N (1)

i , N
(2)
i ).

The structure of the matrix Ni is described by the following lemma.

I Lemma 5. For all i ∈ [m], the matrix Ni defined in terms of the pair (N (1)
i , N

(2)
i ) produced

by node i satisfies the following properties:
(a) 0 ≤ k′i ≤ k′′i ≤ k + 1.
(b) N (1)

i is a matrix in row echelon form.
(c) V2(Ni) = Bi.

To give an intuition about how the algorithm works, consider that we are trying to
apply the strategy for Gaussian elimination described in the introduction. Vertices of type-ii
would represent the rows that have never been used to eliminate elements of other rows,
while vertices of type-i would be the nonzero rows that have already been used to eliminate
elements in other rows, but for which the basic strategy of using the diagonal element as a
pivot failed because it was equal to 0. The algorithm keeps these rows in a temporary buffer,
which is maintained in row echelon form to make sure that its size k′ satisfies k′ ≤ k + 1. In
the process of maintaining row echelon form, some of these rows become diagonalised. In
our algorithm, to preserve congruence, we perform the same Gaussian operations on rows
and columns. Any row v of the input matrix M begins as a type-ii row. It can either be
diagonalized during the application of ForgetBox to the node that forgets v, or it becomes a
type-i row at this step, and finally becomes diagonalized in a later application of JoinBox
or ForgetBox. Finally, we discuss the content of the boxes. Let M̃(i) be the matrix that
would be obtained by performing all row and column operations performed by the algorithm
up to step i to the original matrix M . It turns out that, for a type-i row u in Ni and any
row v in the matrix, the entries uv and vu in M̃(i) and Ni coincide, if v ∈ V (Ni), and the
entries uv and vu in M̃(i) are equal to 0, if v /∈ V (Ni). This is consistent with the intuition
that rows of type-i have already been partially diagonalized and that their diagonal elements
are 0. However, this connection does not hold in general for the entries of M̃(i) and N (2)

i ,
as N (2)

i can only capture changes the operations made for nodes in its branch of the tree
decomposition, but vertices of type-ii could simultaneously lie in many different branches.
This needs to be dealt with when looking at the effect of JoinBox.

To record the diagonal entries produced by the algorithm, let Di be the set of all pairs
(v, dv), where v is a vertex of G (equivalently, a row of M) and dv is the diagonal entry
associated with it, produced up to the end of step i. Let π1(Di) and π2(Di) be the projections
of Di onto their first and second coordinates, respectively, so that π1(Di) is the set of rows
that have been diagonalized up to the end of step i and π2(Di) is the (multi)set of diagonal
elements found up to this step. Note that, if we only require the algorithm to produce the
diagonal entries of a diagonal matrix that is congruent to the input matrix, it is not necessary
to actually keep track of the particular pairs in Di.
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Let M0 be the input matrix M . Let M̃(i) be the matrix that is congruent to M obtained
by performing the row and column operations performed by the algorithm up to step i. Let
Mi be the matrix obtained from M by replacing by 0 any entry muv such that u 6= v and
the edge uv has not been introduced in Ti, or such that u = v and T (v) ∩ Ti = ∅. Let
M̃i be the matrix that is congruent to Mi produced by performing the row and column
operations performed by the algorithm for all nodes in Ti, in the order in which they have
been performed. We only keep track of the matrices M̃(i),Mi and M̃i to prove the correctness
of the algorithm, they are not stored by the algorithm. In what follows, given S ⊂ V and
a matrix Q whose rows and columns are indexed by V , we write Q[S] for the principal
submatrix of M indexed by S. Moreover, if u, v ∈ V , Q[u, v] denotes the entry uv in Q.

Our main technical lemmas control the relationship between Ni and the diagonal elements
produced in step i with the matrices Mi, M̃i and M̃(i). At the start of the algorithm, we set
M̃(−1) = M̃(0) = M , D−1 = D0 = ∅, T0 = ∅ and V (N0) = ∅. The matrices N0, M0 and M̃0
are empty.

I Lemma 6. The following facts hold for all i ∈ {0, . . . ,m}.
(a) M̃(i) and M̃i are symmetric matrices congruent to M and Mi, respectively.
(b) Di−1 ⊆ Di.
(c) If a multiple of row (or column) v has been added to a row (or column) u in step i, then

v ∈ π1(Di \Di−1) ∪ V1(Ni) and u ∈ π1(Di \Di−1) ∪ V (Ni).

The second lemma relates subtrees T (v) with the matrices produced by the algorithm.

I Lemma 7. The following facts hold for all i ∈ {0, . . . ,m}.
(a) If v ∈ π1(Di) ∪ V1(Ni) and Ti ∩ T (v) 6= ∅, then T (v) is a subtree of Ti.
(b) Let v be such that T (v) ∩ Ti 6= ∅. Then v ∈ V (Ni) ∪ π1(Di).
(c) If v ∈ π1(Di \Di−1) ∪ V (Ni), then Ti ∩ T (v) 6= ∅.

The third result relates the entries of the matrices Ni and the set D produced by the
algorithm with the entries of M̃(i) and M̃i.

I Lemma 8. The following facts hold for all i ∈ {0, . . . ,m}.
(a) If T (v) ∩ T (w) = ∅ and M̃(i)[v, w] 6= 0, then v, w ∈ V (Nj), where j ≤ i is the largest

index for which T (v) ∩ Tj 6= ∅ or T (w) ∩ Tj 6= ∅. For M̃i, M̃i[v, w] 6= 0 only if
v, w ∈ V (Ni).

(b) If (v, dv) ∈ Di, the row (and column) associated with v in M̃(i), consists of zeros, with
the possible exception of the vth entry, which is equal to dv. If Ti ∩ T (v) 6= ∅, then the
row (and column) associated with v in M̃i satisfy the same property.

(c) If v ∈ V1(Ni), then the row (and column) associated with v in M̃i coincides with the row
(and column) associated with v (restricted to the elements of u ∈ V (Ni)) in M̃(i). The
entries uv and vu are equal to 0 if u /∈ Bi and are equal to the corresponding entries in
Ni if u ∈ Bi. Moreover, the entries uv and vu of M̃(i) for u /∈ V (Ni) are equal to 0.

(d) Assume that u, v ∈ Bi. The entry uv of M̃i is equal to the entry uv of N (2)
i .

The proof of Lemmas 6, 7 and 8 is by induction on i. As M0 = M , Lemma 6(a) is
obviously true for i = 0, while Lemma 8(a) holds by definition of tree decomposition. The
remaining items are vacuously true.

Before detailing each step of the algorithm, we show that, if the above lemmas hold
for i = m, where m is the the number of nodes in the tree decomposition, then Algorithm
CongruentDiagonal correctly computes a diagonal matrix congruent to M . To see why this
is true, by Lemma 6(a), we know that M is congruent to M̃(m). Moreover, by Lemma 8(b),
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if (v, dv) ∈ Dm, then the row (and column) associated with v in M̃(m) consists of zeros,
with the possible exception of the vth entry, which is equal to dv. It remains to prove that
π1(D) = V . To this end, let v ∈ V and let i be the node that forgets v given by Lemma 4(a).
Let j be its child. Since v ∈ Bj , we have T (v) ∩ Ti 6= ∅, so that v ∈ V1(Ni) ∪ π1(Di) by
Lemma 7(b) (we are using that v /∈ Bi = V2(Ni), a consequence of Lemma 5(c)). Then
T (v) ⊂ Ti by Lemma 7(a). If v ∈ π1(Di) we are done, so assume that v ∈ V1(Ni). Let ` be
the parent of i. By Lemma 7(b), v ∈ V1(N`)∪π1(D`). We would again be done if v ∈ π1(D`),
otherwise we repeat the argument to show that v ∈ V (Np), where p is the parent of `. This
argument may be repeated inductively. The result now follows from the fact that the root m
of the tree satisfies Bm = ∅, which implies that V2(Nm) = ∅ by Lemma 5(c). This implies
that V1(Nm) = ∅ by Lemma 5(a), as required.

We now describe each step of Algorithm CongruentDiagonal. When the node is a leaf
corresponding to a bag Bi of size bi, then we apply procedure LeafBox. This procedure only
initializes a matrix Ni to be transmitted up the tree. The matrix Ni is such that k′ = 0 and
k′′ = bi, where N (2)

i is the diagonal matrix such that, for every v ∈ Bi, the entry vv is given
by the element vv in M . Observe that no off-diagonal entries appear in this initialization, as
the edges involving vertices in Bi have yet to be introduced.

LeafBox(Bi)
input: a set Bi of size bi

output: a matrix Ni = (N (1)
i , N

(2)
i )

Set N
(1)
i = ∅

N
(2)
i is a diagonal matrix of order bi

for each vertex v ∈ Bi set entry vv of N
(2)
i as mvv.

Figure 1 Procedure LeafBox.

By construction, the matrix Ni defined by LeafBox satisfies the properties of Lemma 5.
It is not hard to show that, if Lemmas 6, 7 and 8 hold up to the end of step i− 1 and step i
processes a leaf Bi, the lemmas must also hold at the end of step i.

Next, we explain the procedures associated with nodes of type IntroduceVertex and
IntroduceEdge. For vertices, the input is the set Bi, the vertex v that has been introduced
and the matrix Nj = (N (1)

j , N
(2)
j ) obtained after processing the child Bj of Bi. The matrix

Ni is obtained from Nj by adding a new type-ii row/column corresponding to vertex v (this
becomes the last row/column of the matrix). This row is zero everywhere with the exception
of the diagonal entry vv, which is equal to mvv.

For edges, the input is the set Bi, a vertex v ∈ Bi, the set ΓBi
(v) of neighbors of v in Bi

and the matrix Nj = (N (1)
j , N

(2)
j ) produced after processing the child Bj of Bi. The matrix

Ni is obtained from Nj by replacing the entries uv and vu in N (2)
j , which are equal to some

value α, by α+ β, where β is the entry uv in M .
It is obvious that the matrices Ni produced by IntroVertexBox and IntroEdgesBox

satisfy the properties of Lemma 5. In both cases, no row/column operation is performed,
M̃(i) = M̃(i− 1) and Di = Di−1.

We now address the operation associated with nodes of type join. Let i be a node of
type join and let Nj and N` be the matrices transmitted by its children, where j < ` < i.
By Lemma 5(c) and the definition of the join operation, we have V2(Nj) = V2(N`). By
Lemma 7(a), we have V1(Nj) ∩ V1(N`) = ∅.
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IntroVertexBox(Bi, v,Nj)
input: a node i with bag Bi, child j, Bj = Bi − v, and Nj = (N (1)

j , N
(2)
j )

output: a matrix Ni = (N (1)
i , N

(2)
i )

N
(1)
i = N

(1)
j

N
(2)
i = N

(2)
j

Add zero row and zero column v to N
(2)
i

Add diagonal element vv to N
(2)
i as mvv

Add zero column v to N
(1)
i

Figure 2 Procedure IntroVertexBox.

IntroEdgesBox(Bi, v,ΓBi
(v), Nj)

input: v ∈ Bi, ΓBi
(v) and a matrix Nj = (N (1)

j , N
(2)
j )

output: a matrix Ni = (N (1)
i , N

(2)
i )

N
(1)
i = N

(1)
j

N
(2)
i = N

(1)
j

For all u ∈ ΓBi
(v), set entries uv and vu of N

(2)
i as N

(2)
i [uv] +muv

Figure 3 Procedure IntroEdgesBox.

The JoinBox operation first creates a matrix N∗i whose rows and columns are labelled by
V1(Nj) ∪ V1(N`) ∪ V2(Nj) with the structure below. Assume that |V1(Nj)| = r, |V1(N`)| = s

and |Bi| = t.

N∗i =
0r×r 0r×s N

(1)
j

0s×r 0s×s N
(1)
`

N
(1)T
j N

(1)T
` N

∗(2)
i

, (2)

where N∗(2)
i = N

(2)
j +N

(2)
` −Mi[Bi]. We observe that, at this point, Mi[Bi] is a diagonal

matrix, as no edges with both endpoints in Bi may have been introduced by Lemma 4(b).
Note that the matrix

N
∗(1)
i = N

(1)
j

N
(1)
`

is an (r + s)× t matrix consisting of two matrices in row echelon form on top of each other.
We perform row and column operations on N∗i involving rows associated with V1(Nj) (the
left rows) and V1(N`) (the right rows) to turn N∗i into a matrix N∗(1)

i in row echelon form.
To do this, we proceed by steps in which we always add a multiple of a left or right row (and
the corresponding column) to a right row (and the corresponding column): to choose the
next operation, at each step we look at the pivots of the right rows and select the leftmost
such pivot that coincides with a pivot of a left row or with the pivot of another right row
(say w and v are the right and left/right rows that satisfy this, and j is the pivot. At the
first step, v is always a left row). If Rw and Cw are the row and column corresponding to w,
while αj = Rw(j) = Cw(j) and βj = Rv(j) = Cv(j), we define

Rw ← Rw −
αj

βj
Rv, Cw ← Cw −

αj

βj
Cv.
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JoinBox(Bi, Nj , N`)
input: a node i with bag Bi and matrices Nj , N` associated with its two children
output: a matrix Ni = (N (1)

i , N
(2)
i )

N
(2)
i = N

(2)
j +N

(2)
`

For every v ∈ Bi, set the entry vv of N
(2)
i as N

(2)
i [v, v]−mvv

Construct N
(1)∗
i =

[
N

(1)
j

N
(1)
`

]
Do row and column operations on N

(1)∗
i , putting it in row echelon form

For each zero row of N
(1)∗
i (indexed by a vertex u), add (u, 0) to Di

N
(1)
i is N

(1)∗
i with zero row/columns removed

Figure 4 Procedure JoinBox.

This eliminates the pivot of row w. Note that the entries in N (2)
j are not affected by these

operations. Moreover, for all u, v ∈ V1(Nj) ∪ V1(N`), the entry uv in N∗i is equal to 0.
As we do this, we may create rows and columns (associated with the right rows) whose

entries are all zero (for instance, this will certainly happen if r + s > t). If Zi denotes
the set of vertices associated with rows whose entries are all zero, where |Zi| = z, we let
Di = Di−1 ∪ {(v, 0) : v ∈ Zi}, we remove the rows and columns associated with vertices in
Zi from N

∗(1)
i to produce the matrix

Ni = 0k′×k′ N
(1)
i

N
(1)T
i N

(2)
i

, (3)

where k′ = r + s− z, k′′ = t and N (1)
i is a matrix of dimension k′ × k′′ in row echelon form

and N (2)
i = N

∗(2)
i . We observe that Ni satisfies the properties of Lemma 5. Items (b) and

(c) are satisfied by construction. For (a), the inequality k′ ≤ k′′ is a consequence of the fact
that N (1)

i is in row echelon form, while k′′ ≤ k + 1 follows from k′′ = |Bi|. Proving that
Lemmas 6, 7 and 8 hold after step i uses induction and the properties discussed above.

To conclude the description of the algorithm, we describe ForgetBox. Assume that i
forgets vertex v and let j be its child, so that Bi = Bj \ {v}. By Lemma 4(c), we know
that T (v) is a subtree of Tj , and therefore all edges incident with v have been introduced.
This procedure starts with N∗i = Nj and produces a new matrix Ni so that v ∈ V1(Ni) or
v ∈ π1(Di \Di−1).

We look at N∗i in the following way:

N∗i =
dv xv yv

xT
v 0k′×k′ N

∗(1)
i

yT
v N

∗(1)T
i N

∗(2)
i

. (4)

Here, the first row and column represent the row and column in Nj associated with v, while
N
∗(1)
i and N∗(2)

i are given by the submatrices of N (1)
j and N (2)

j obtained by removing the
row and/or column associated with v. In particular xv and yv are row vectors of size k′j and
k′′j − 1, respectively.
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ForgetBox(Bi, v,Nj ,)
input: a node i with bag Bi, child j with Bi = Bj \ {v} and matrix Nj

output: a matrix Ni = (N (1)
i , N

(2)
i )

Ni = Nj

Perform row/column exchange so that Ni has the form of (4)
if xv is empty or 0 then

if yv is empty or 0 then
add (v, dv) to D

remove row v from Ni

else if dv 6= 0 then // Here {yv 6= 0}.
use dv to diagonalize row/column v

add (v, dv) do D and remove row v form Ni

else // Here dv = 0.
Set u = min{w : yw 6= 0}
do row and column operations inserting row v to N

(1)
i

if a zero row is obtained add (v, 0) to D and remove row from Ni

else // Here xv 6= 0.
use operations as in (5) to diagonalize rows u and v

add (v, dv) and (u, du) to D and eliminate rows v and u from Ni.

Figure 5 Procedure ForgetBox.

Depending on the properties of the vectors xv and yv, we proceed in different ways.

Case 1: xv is empty or xv = [0 · · · 0]. If yv = [0 · · · 0] (or yv is empty), we add (v, dv) to Di

and remove the row and column associated with v from N∗i to produce Ni.
If yv 6= [0 · · · 0], there are again two options. If dv = 0, the aim is to turn v into a row

of type-i. To do this, we need to insert yv into the matrix N∗(1)
i in a way that the ensuing

matrix is in row echelon form. Note that this may be done by only adding multiples of rows
of V (N∗(1)

i ) to the row associated with v. At each step, if the pivot αj of the (current) row
associated with v is in the same position of the pivot βj of Ru, the row associated with
vertex u already in N∗(1)

i , we use Ru to eliminate the pivot of Rv:

Rv ← Rv −
αj

βj
Ru, Cv ← Cv −

αj

βj
Cu.

This is done until the pivot of the row associated with v may not be cancelled by pivots
of other rows, in which case the row associated with v may be inserted in the matrix (to
produce the matrix N (1)

i ), or until the row associated with v becomes a zero row, in which
case (v, 0) is added to Di and we remove the row and column associated with v from N∗i
to produce Ni. If dv 6= 0, we use dv to eliminate the nonzero entries in yv and diagonalize
the row corresponding to v. For each element u ∈ Bi such that the component αv of yv

associated with u is nonzero, we perform

Ru ← Ru −
αv

dv
Rv, Cu ← Cu −

αv

dv
Cv.

When all such entries have been eliminated, we add (dv, v) to Di and we let Ni be the
remaining matrix. Observe that, in this case, N (1)

i = N
∗(1)
i , only the elements of N∗(2)

i are
modified to generate N (2)

i .
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Case 2: xv is nonempty and xv 6= [0 · · · 0].
Let u be the vertex associated with the rightmost nonzero component of xv. Let αj be

this component. We use this element to eliminate all the other nonzero entries in xv, from
right to left. Let w be the vertex associated with the entry α`. We perform

Rw ← Rw −
α`

αj
Ru, Cw ← Cw −

α`

αj
Cu.

A crucial fact is that the entries corresponding to the matrix N∗(1)
i in the matrix produced

by these operations is still in row echelon form and has the same pivots as N∗(1)
i . If dv 6= 0,

we still use Ru to eliminate this element:

Rv ← Rv −
dv

2αj
Ru, Cv ← Cv −

dv

2αj
Cu.

At this point, the only nonzero entries in the (k′ + 1) × (k′ + 1) left upper corner of the
matrix obtained after performing these operations are in positions uv and vu (and are equal
to αj). We perform the operations

Ru ← Ru + 1
2Rv, Cu ← Cu + 1

2Cv, Rv ← Rv −Ru, Cv ← Cv − Cu

The relevant entries of the matrix are modified as follows:(
0 αj

αj 0

)
→
(

0 αj

αj αj

)
→
(
−αj 0

0 αj

)
. (5)

We are now in the position to use the diagonal elements to diagonalize the rows associated
with v and u, as was done in Case 1, when xv = [0, . . . , 0] and dv 6= 0. At the end of the
step, we add (v,−αj) and (u, αj) to Di.

Finally, it is time to analyze the complexity of Algorithm CongruentDiagonal, and prove
Theorem 1.

Proof. The correctness of Algorithm CongruentDiagonal follows from the Lemmas and the
justifications of every step of the algorithm as it is described throughout the paper. By
Lemma 2, the time bound of O(k|T |+ k2n) is sufficient to transform an arbitrary given tree
decomposition into an edge-efficient tree decomposition.

For the running time of the main computation, we have to analyze the procedures done at
each type of tree node. LeafBox initializes a matrix in O(k2) trivial steps. IntroVertexBox
and IntroEdgesBox use only O(k) steps. For the other procedures, the main cost comes
from row and column operations. As the matrices have order at most k + 1 each such
operation costs O(k). Regarding ForgetBox, when v is forgotten, either v is turned into a
type-i vertex, or its row and column, and possibly the row and column of another vertex
u, are diagonalized. The latter requires at most O(k) row and column operations. If v is
turned into a type-i vertex, then inserting it into the matrix N (1)

i in row echelon form takes
at most k + 1 row operations. JoinBox can be most time consuming. To insert just one
row vector into a matrix of order k in row echelon form, and preserving this property by
adding multiples of one vector to another, can require up to k+ 1 row operations. Each such
operation can be done in time O(k). To combine two matrices in row echelon form into one
such matrix, up to k + 1 row vectors are inserted. Thus the total time for this operation is
O(k3). This immediately results in an upper bound of O(k3n) for the whole computation.
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12

5

34

Figure 6 Graph with 5 labeled vertices.

To obtain an O(k|T | + k2n) bound for the whole computation, we have to employ a
different accounting scheme for the time spent to merge two matrices in row echelon form
into one during the JoinBox procedure. We notice that every row operation in any N (1)

i

creates at least one 0 entry in some row, meaning that its pivot moves at least one position
to the right or creates a zero row. For every vertex v, its row is added at most once to some
N

(1)
i , namely when v is forgotten. Its pivot can move at most k times and disappear at most

once. Thus for all n vertices together, at most (k + 1)n row operations can occur in all N (1)
i

together. This only uses time O(k2n). Thus, while during a single join procedure, Ω(k2) row
operations might be needed, the average is O(k) such operations per join procedure. J

4 Example

In this section, we illustrate how the algorithm acts on a concrete example. To this end, we
consider the graph in Figure 6. An edge-explicit tree decomposition representing this graph
may be seen in Figure 7.

1,3,4

L

1,2,4

L

1,3,4

E

3

1,2,4

E

2

1,4

F

3

1,4

F

2

1,4,5

V

5

1,4,5

V

5
1,4,5

J

1,5

F

4

1,5

E

5

1

F

5

F

1

Figure 7 An edge-explicit tree representing the graph, where the root is on the right. A label
above describes the type of node, a label below indicates which vertices or edges are introduced or
forgotten.

Note that G is the underlying graph of the symmetric matrix

M =


1 1 1 0 −1
1 0 0 2 0
1 0 1 −1 0
0 2 −1 1 0
−1 0 0 0 −1

 .

Suppose that we want to find the number of eigenvalues greater than 0 (and equal to and
less than 0). We apply our algorithm with c = 0, that is, originally M − cI = M .

Assume that we have ordered the nodes of the tree in Figure 7 in post order so that the
first five nodes are in the upper branch of Figure 7, followed by the five nodes on the lower
branch and by the five nodes starting from the node of type join. When we start, the node
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Leaf calls the LeafBox with bag of vertices {1, 3, 4} producing the matrix N1 =

 1 0 0
0 1 0
0 0 1

,

whereas the node Introduce Edges labelled by vertex 3 introduces edges 13 and 34, leading
to the matrix

N3 =

 1 1 0
1 1 −1
0 −1 1

 .

The node Forget Vertex F3 receives the matrix N3 and, after exchanging rows and columns
1 and 2 (so that vertex 3 corresponds to first row), processes the matrix 1 1 −1

1 1 0
−1 0 1

 .

According to our description, we are in Case 1 of Procedure ForgetBox, with xv empty and
yv = [1,−1] 6= [0, 0]. Since dv = 1, the algorithm diagonalizes the row/columns corresponding
to v. To this end, we perform the operations R2 ← R2 − R1, followed by C1 ← C1 − C2,
producing the matrix

N3 =

 1 0 −1
0 0 1
−1 1 1

 ,

followed by the operations R3 ← R3 +R1, followed by C3 ← C3 + C1, giving 1 0 0
0 0 1
0 1 0

 .

We have diagonalized row 1, corresponding to vertex 3. Hence, the node F3 sets the diagonal

vector D = (v, dv) = (3, 1) and transmits the matrix N4 =
(

0 1
1 0

)
, whose rows are

indexed by vertices 1 and 4, respectively, to its parent. The node V 5 introduces vertex 5,
producing the matrix

N5 =

 0 1 0
1 0 0
0 0 −1

 ,

indexed by the vertices 1, 4 and 5, respectively. We notice that this matrix N is such that
N

(1)
5 is empty and N (2)

5 = N .
Working on the lower branch of the tree of Figure 7 in a similar way, we arrive at node

F2, after exchanging the rows/columns, with the matrix

N∗9 =

 0 1 2
1 1 0
2 0 1

 ,

indexing vertices 2, 1 and 4, respectively. This corresponds to Case 1 of Procedure ForgetBox,
with empty xv and yv = [1, 2], but dv = 0. We notice that, in this particular case, the matrix

N
(1)
9 = [1, 2] is already in row echelon form, so that N9 = (N (1)

9 , N
(2)
9 ), N (2)

9 =
(

1 0
0 1

)
, is

transmitted by F2 to its parent.
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Now the Introduce Vertex node V 5 processes the matrix N9 and produces matrix

N10 =


0 1 2 0
1 1 0 0
2 0 1 0
0 0 0 −1

 ,

where the rows are indexed by the vertices 2, 1, 4 and 5, respectively.
Now the JoinBox procedure will process the matrices N5 and N10. We first do the

operation N (2)
11 = N

(2)
10 +N

(2)
5 −MD[1, 4, 5], where MD[1, 4, 5] is the diagonal matrix whose

rows and columns are indexed by 1, 4 and 5 such that each entry ii is given by mii. We then
merge N (1)

10 on top of N (1)
5 . Since N (1)

5 is empty, these operation produce the matrix

N11 =


0 1 2 0
1 0 1 0
2 1 0 0
0 0 0 −1

 ,

whose rows index the vertices 2, 1, 4 and 5, respectively.
We now process node F4 of the tree, where the vertex 4 is forgotten. We first exchange

rows and columns so that the first row is indexed by 4. The matrix becomes

N∗12 =


0 2 1 0
2 0 1 0
1 1 0 0
0 0 0 −1

 ,

whose rows index the vertices 4, 2, 1 and 5, respectively. We look at this matrix as in equation
(4). We are in case 2 of Procedure ForgetBox with dv = 0,xv = [2],yv = [1, 0], N∗(1)

12 = [1, 0]

and N∗(2)
12 =

(
0 0
0 −1

)
. Since xv = [2], there is no operation to perform in order to put xv

in row echelon form. The goal now is to transform the left upper corner of the above matrix(
0 2
2 0

)
into a diagonal matrix. We perform the operations R2 ← R2 + 1/2R1, C2 ←

C2 + 1/2C1 followed by R1 ← R1 −R2 and C1 ← C1 − C2, obtaining the matrix

N∗12 =


−2 0 −1/2 0

0 2 3/2 0
−1/2 2 2 0

0 0 0 −1

 .

We now use the nonzero pivots obtained in order to diagonalize rows 1 and 2. To achieve
this, we perform the operations R3 ← R3 − 1/4R1, C3 ← C3 − 1/4C1, followed by R3 ←
R3 − 3/4R2, C3 ← C3 − 3/4C2. This produces the matrix

N∗12 =


−2 0 0 0

0 2 0 0
0 0 −1 0
0 0 0 −1

 .

At this point, the first two rows are diagonalized, corresponding to vertices 4 and 2. To the
diagonal vector D = (v, dv) we added the components (4,−2) and (2, 2). Node F4 transmits

the matrix N12 =
(
−1 0

0 −1

)
, corresponding the edges 1 and 5. The Introduce Edges node
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E5 puts the edge 15, and the matrix returned by IntroduceEdgesBox is N13 =
(
−1 −1
−1 −1

)
in the form the Forget node F5 receives it. We see that xv is empty and yv = [−1] and

dv = −1, meaning that we are in case 2. Using dv as pivot we arrive at N∗14 =
(
−1 0

0 0

)
,

adding to the diagonal vector D the component (v, dv) = (5,−1), and returning the matrix
N14 = [0]. The final node F1 forgets the vertex 1. Since the matrix received is [0] already in
diagonal form, it adds to D the component (v, dv) = (1, 0). The diagonal vector D returned
by the algorithm is(

v

dv

)
=
(

3 4 2 5 1
1 −2 2 −1 0

)
,

meaning that M has 2 positive eigenvalues, 2 negative eigenvalues and 0 is an eigenvalue
with multiplicity 1.
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1 Introduction

Let Φ = Φ(k, n,m) be a k-CNF formula on n Boolean variables with m clauses chosen
uniformly at random where each clause has size k ≥ 3. The random formula Φ shows an
interesting threshold behaviour, where the asymptotic probability that Φ is satisfiable drops
dramatically from 1 to 0 when the density α := m/n crosses a certain threshold α?. There
has been tremendous progress on establishing this phase transition and pinpointing the
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53:2 Counting Solutions to Random CNF Formulas

threshold α? [25, 19, 3, 4, 12, 15] guided by elaborate but non-rigorous methods in physics
[28, 27]. The exact value of the threshold α? is established in [15] for sufficiently large k; it
is known that α? = 2k ln 2− 1

2 (1 + ln 2) + ok(1) as k →∞.
In contrast, the “average case” computational complexity of random k-CNF formulas

remains elusive. It is a notoriously hard problem to design algorithms that succeed in finding
a satisfying assignment when the density of the formula Φ is close to (but smaller than)
the satisfiability threshold α?. The best polynomial-time algorithm to find a satisfying
assignment of Φ is due to Coja-Oghlan [8], which succeeds if α < (1− ok(1)) · 2k ln k/k. It is
known that beyond this density bound 2k ln k/k the solution space of the formula undergoes
a phase transition and becomes severely more complicated [2], so local algorithms are bound
to fail to find a satisfying assignment in polynomial time (see for example [24, 9, 11]).

It is also a natural question to determine the number of satisfying assignments to Φ,
denoted by Z(Φ), when the density is below the satisfying threshold. It has been shown
that 1

n logZ(Φ) is concentrated around its expectation [1, 13] for α < (1− ok(1)) · 2k ln k/k.
However, for the k-SAT model, there is no known formula for the expectation E 1

n logZ(Φ)
(though see [35, 14] for progress along these lines for more symmetric models of random
formulas). Regarding the algorithmic question, Montanari and Shah [31] have given an
efficient algorithm to approximate logZ(Φ) if α ≤ 2 log k

k (1 + ok(1)), based on the correlation
decay method and the uniqueness threshold of the Gibbs distribution. Note that this only
gives an approximation to Z(Φ) within an exponential factor. Also, the threshold for α is
exponentially lower than the satisfiability threshold. No efficient algorithm was known to
give a more precise approximation.

In this paper, we address the algorithmic counting problem by giving the first fully
polynomial-time approximation scheme (FPTAS) for the number of satisfying assignments
to random k-CNF formulas, if the density α is less than 2rk, for sufficiently large k and
some constant r > 0. Our bound is exponential in k and goes well beyond the uniqueness
threshold of 2 log k

k (1 + ok(1)) which is required by the correlation decay method.
Our result is related to other algorithmic counting results on random graphs such as

counting colourings, independent sets, and other structures [33, 37, 16, 26] in random graphs.
However, previous methods, such as Markov Chain Monte Carlo and Barvinok’s method,
appear to be difficult to apply to random formulas. Instead, our algorithm is the first
adaptation of Moitra’s method [30] to the random instance setting. We give a high level
overview of the techniques in Section 1.2.

1.1 The model and the main result
For k ≥ 3, let Φ = Φ(k, n,m) denote a k-SAT formula chosen uniformly at random from the
set of all k-SAT formulas with n variables and m clauses. Specifically, Φ has n variables
v1, v2, . . . , vn and m clauses c1, c2, . . . , cm. Each clause ci has k literals `i,1, `i,2, . . . , `i,k and
each literal `i,j is chosen uniformly at random from 2n literals {v1, v2, . . . , vn,¬v1,¬v2, . . . ,

¬vn}. Note that each clause has exactly k literals (repetitions allowed), so there are (2n)km
possible formulas; we use Pr(·) to denote the uniform distribution on the set of all such
formulas. Throughout, we will assume that m = bnαc, where α > 0 is the density of the
formula. We say that an event E holds w.h.p. if Pr(E) = 1− o(1) as n→∞.

For a k-SAT formula Φ, we let Ω = Ω(Φ) denote the set of satisfying assignments of Φ.

I Theorem 1. There is a polynomial-time algorithm A and there are two constants r > 0
and k0 ≥ 3 such that, for all k ≥ k0 and all α < 2rk, the following holds w.h.p. over the
choice of the random k-SAT formula Φ = Φ(k, n, bαnc). The algorithm A, given as input
the formula Φ and a rational ε > 0, outputs in time poly(n, 1/ε) a number Z that satisfies
e−ε|Ω(Φ)| ≤ Z ≤ eε|Ω(Φ)|.
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Throughout this paper, we will assume that k ≥ k0 where k0 is a sufficiently large
constant. We will also assume that the density α of the formula Φ satisfies α < 2k/300/k3, so
r can be taken to be 1/301 in Theorem 1. The constant 300 here is not optimised, but we
do not expect to be able to use the current techniques to improve it substantially. Our main
point is that for a density which is exponential in k, an FPTAS exists for random k-CNF
formulas. Finally, we assume that k2α ≥ 1, otherwise it is well-known (see, e.g., Theorem 3.6
in [34]) that w.h.p. every connected component of Φ, viewed as a hypergraph where variables
correspond to vertices and clauses correspond to hyperedges, is of size O(logn). In this case
we can count the number of satisfying assignments by brute force.

1.2 Algorithm overview
We give a high-level overview of our algorithm here before giving the details. Approximately
counting the satisfying assignments of a k-CNF formula has been a challenging problem
using traditional algorithmic techniques, since the solution space (the set of satisfying
assignments) is complicated and it is not connected, using the transitions of commonly-
studied Markov chains. Recently some new approaches were introduced [30, 20]. Most
notably, the breakthrough work of Moitra [30] gives the first (and so far the only) efficient
deterministic algorithm that can approximately count the satisfying assignments of k-CNF
formulas in which each variable appears in at most d clauses, if, roughly, d . 2k/60. Inspired
by this, Feng et al. [18] have also given a MCMC algorithm which applies when d . 2k/20.

As our goal is to count satisfying assignments of sparse random k-CNF formulas, where
these degree bounds do not hold, but average degrees are small, it is natural to also choose
Moitra’s method in the random instance setting. However, the first difficulty is that Moitra’s
method relies on the fact that the marginal probability of each variable (the probability
that the variable is true in a uniformly-chosen satisfying assignment) is nearly 1/2. This is
necessary because Moitra’s method involves solving a certain linear program (LP) and the
size of this LP is polynomially-bounded only if a certain process couples quickly. The proof
that the process couples quickly relies on the fact that the marginals are nearly 1/2 (and
certainly on the fact that they are bounded away from 0 and 1). In contrast, for a random
k-CNF formula, although the average degree of variables is low, w.h.p. there are variables
with degrees as high as Ω (logn/log logn). In the presence of these high-degree variables, the
marginal probabilities of the variables can be arbitrarily near 0 or 1, instead of 1/2.

Our solution to this issue is to separate out high-degree variables, as well as those that
are heavily influenced by high-degree variables. To do this, we define a process to recursively
label “bad” variables. At the start, all high-degree variables are bad. Then, all clauses
containing more than k/10 bad variables are labelled bad, as are all variables that they
contain. We run this process until no more bad clauses are found. We call the remaining
variables and clauses of the formula “good”. A key property is that all good variables have
an upper bound on their degree and all good clauses contain at least 9k/10 good variables;
this allows us to show that the marginal probabilities of good variables are close to 1/2.

The next step is to attempt to apply Moitra’s method. The goal of Moitra’s method
is to compute more precise estimates for the marginal probabilities of the variables; given
accurate estimates on the marginal probabilities, it is then relatively easy to approximate
the number of satisfying assignments using refined self-reducibility techniques.

Of course, we need to modify the method to deal with the bad variables, which still appear
in the formula. We first explain Moitra’s method and then proceed with our modifications.
The first step is to mark variables, so that every clause contains a good fraction of marked
variables and a good fraction of unmarked variables. Then, for a particular marked variable
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53:4 Counting Solutions to Random CNF Formulas

v, we set up an LP. As noted earlier, the variables of the LP correspond to the states of
a certain coupling process which couples two distributions on satisfying assignments using
the marked variables – the first distribution over satisfying assignments in which v is true,
and the second distribution over satisfying assignments in which v is false. Solving the LP
recovers the transition probabilities of the coupling process and yields enough information to
approximate the marginal probability of v.

In order to guarantee that the size of the LP is bounded by a polynomial in the size
of the original CNF formula, we have to restrict the coupling process. The process can be
viewed as a tree and it suffices to truncate this tree at a suitable level.

Thus, a crucial part of the proof (both in Moitra’s case and in ours) is to show that the
error caused by the truncation is sufficiently small. The reason that the error caused by the
truncation is small is that, with high probability, branches of the coupling tree “die out”
before reaching a large level. The reason for this is that the marginals of marked variables
stay near 1/2, even when conditioning on partial assignments.

In our case where Φ is a random formula, the marginals are not all near 1/2, even
without any conditioning. But the good variables do have marginals near 1/2. So we only
mark/unmark good variables and we “give up” on bad variables. Given that we don’t have
any control over the bad variables, we have to modify the coupling process. Thus, whenever
we meet a bad variable in the coupling process, we have to assume the worst case and treat
this variable and all bad variables connected to it as if they all have failed the coupling,
meaning that the disagreement spreads quickly over bad components.

The most important part of our analysis is to upper bound the size of connected bad
components and how often we encounter them during the coupling processs. Given these
upper bounds, we are able to show that the coupling still dies out sufficiently quickly, so the
error caused by the truncation is not too large. Solving the LP then allows us to estimate
the marginals of the good variables. Given that the bad components have small size, this
turns out to be enough information to estimate the number of satisfying assignments of the
original formula (containing both good and bad clauses).

We conclude this summary by discussing the prospects for improving our work. Although
we have given an efficient algorithm which works for densities that are exponentially large in
k, the densities that we can handle are still small compared to the satisfiability threshold
or to the threshold under which efficient search algorithms exist. Perhaps a modest start
towards obtaining comparable thresholds for approximate counting algorithms would be
to consider models whose state spaces are connected. For example, for monotone k-CNF
formulas where each variable appears in at most d clauses, Hermon et al. [23] showed that
efficient randomised algorithms exist if d ≤ c2k/2 for some constant c > 0, which is optimal
up to the constant c due to complementing hardness results [6]. They also showed that the
same algorithm works for random regular monotone k-CNF formulas, if the degree d ≤ c2k/k
for some c > 0. It remains open whether an average case bound of the same order can be
achieved for random monotone k-CNF formulas.

2 The coupling tree

2.1 Identifying bad variables
We start by identifying bad variables; the method that we use is inspired by [12].

I Definition 2. Let Φ be a k-SAT formula. We say that a variable v of Φ is high-degree if
Φ contains at least ∆ := 2k/300 occurrences of literals involving the variable v.
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The reason that high-degree variables are harmful is that their marginal probabilities
(when we sample uniformly from satisfying assignments) are not bounded away from 0
and 1. Also, any variable that shares clauses with high-degree variables may also have biased
marginals. In our algorithm, we will not be able to control these high degree variables or
other variables that are affected by them. This variables contribute to the “bad” part of
the formula Φ. Formally, denote the set of clauses of Φ by C and the set of variables by
V. For each c ∈ C, let var(c) denote the set of variables in c. For each subset C of C, let
var(C) := ∪c∈Cvar(c). The bad variables and bad clauses of Φ are identified as follows:

1. V0 (the initial bad variables) ← the set of high-degree variables;
2. C0 ← the set of clauses with at least k/10 variables in V0;
3. i← 0;
4. Do the following until Vi = Vi−1:

i← i+ 1;
Vi ← Vi−1 ∪ var(Ci−1);
Ci ← {c ∈ C | var(c) ∩ Vi ≥ k/10};

5. Cbad ← Ci and Vbad ← Vi;
6. Cgood ← C \ Ci and Vgood ← V \ Vi.

I Observation 3. ∀c ∈ Cgood, |var(c) ∩ Vbad| < k/10. ∀c ∈ Cbad, |var(c) ∩ Vgood| = 0.

2.2 Marking good variables and identifying a satisfying assignment
Apart from the fact that we only mark variables in Vgood, our marking follows the approach
of Moitra [30]. Formally, a “marking” is an assignment from Vgood to {marked,unmarked}.
Using Observation 3 and applying the asymmetric version of the Lovász local lemma [17, 36,
22] and the algorithmic version of the local lemma by Moser and Tardos [32] it is easy to
prove the following lemma.

I Lemma 8. There exists a marking on Vgood such that every good clause has at least 3k/10
marked variables and at least k/4 unmarked good variables. It has the property that there
is a partial assignment of bad variables that satisfies all bad clauses. Furthermore, such a
marking can be found in deterministic polynomial time.

We also use the Lovász local lemma to identify a partial assignment Λ∗ that we will use
to apply self-reducibility.

I Lemma 10. Let Φ = Φ(k, n,m) and let v1, v2, . . . , vn be the variables of Φ. In each clause,
order the literals in the order induced by the indices of their variables. Then there is a partial
assignment Λ∗ of truth values to some subset of Vmarked with the property that every clause
c ∈ Cgood is satisfied by its first k/20 literals corresponding to marked variables. Moreover,
Λ∗ can be found in deterministic polynomial time.

2.3 The coupling tree
Fix a prefix Λ of the assignment Λ∗ from Lemma 10. Let ΦΛ be the formula produced by
simplifying Φ under Λ (remove clauses that are satisfied under Λ and remove all false literals).
CΛ denotes the clauses of ΦΛ and VΛ denotes the variables. We also define VΛ

good = Vgood∩VΛ

and CΛ
good = Cgood ∩ CΛ. ΩΛ denotes the set of satisfying assignments of ΦΛ.

For a variable v∗ ∈ VΛ, let ΩΛ
1 be the set of assignments in ΩΛ in which v∗ is true, and

let ΩΛ
2 be the set of assignments in ΩΛ in which v∗ is false. The algorithm estimates the

marginal probability that v∗ is true by solving a certain LP which allows it to estimate the
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53:6 Counting Solutions to Random CNF Formulas

ratio |ΩΛ
1 |/|ΩΛ

2 |. The variables of the LP correspond to the states of a coupling process. The
process couples the uniform distribution on ΩΛ

1 with the uniform distribution on ΩΛ
2 . We

can now describe process via its “coupling tree” TΛ.
For each node ρ there is a partial assignment A1(ρ) ∈ ΩΛ

1 and a partial assignment
A2(ρ) ∈ ΩΛ

2 . The variables set in these partial assignments are Λ ∪ Vset(ρ). The set VI(ρ)
contains “problematic” variables. The details will be clear later. Roughly, these include
variables in Vset(ρ) on which A1(ρ) and A2(ρ) disagree, variables contained in clauses that
are not satisfied in some Ai(ρ), even though all marked variables have already been set,
and variables “affected” by bad variables during the coupling process. Crem(ρ) is the set of
remaining clauses to consider at descendants of ρ in the coupling.

The root of the coupling tree is the node ρ∗ with Vset(ρ∗) = VI(ρ∗) = {v∗}. The
assignment A1(ρ∗) sets v∗ to T and the assignment A2(ρ∗) sets v∗ to F. Crem(ρ∗) = CΛ. Let
n = |V|. In order to ensure that the size of the LP is bounded by a polynomial in n we need
to ensure that the size of the coupling tree is also bounded by a polynomial in n. To do
this, we choose truncation depth L := C0(3k2∆)dlog(n/ε)e where C0 is a sufficiently large
constant. We then truncate the tree as follows.

I Definition 12. A node ρ of the coupling tree is a leaf if |VI(ρ)| ≤ L and every c ∈ Crem(ρ)
has the property that var(c) ⊆ VI(ρ)∪Vset(ρ) or var(c) ⊆ VΛ \(VI(ρ)∪Vset(ρ)). If |VI(ρ)| > L,
then ρ is a truncating node. We denote the set of leaves by L, the set of truncating nodes
by T , and their union by L∗ := L ∪ T .

If ρ is not in L∗ then we define its four children as follows. The “first clause” of ρ is the
first good clause c with a variable in VI(ρ) and a variable in VΛ \ VI(ρ). (The definitions
imply that such a clause exists.) The “first variable” u of ρ is the first (good) variable in
marked(c) \ Vset(ρ). For each of the four pairs (τ1, τ2) where τ1 and τ2 are assignments from
{u} to {T,F}, we create a child ρτ1,τ2 of ρ using the following algorithm.

Algorithm 1 Constructing the child ρτ1,τ2 of a non-truncating node ρ of the coupling tree, where
τ1, τ2 are assignments from {u} to {T,F}, and u is the first variable of ρ.

1: Vset(ρτ1,τ2)← Vset(ρ) ∪ {u};
2: A1(ρτ1,τ2)← combine A1(ρ) with τ1;
3: A2(ρτ1,τ2)← combine A2(ρ) with τ2;
4: (VI , Crem)← (VI(ρ), Crem(ρ));
5: if τ1(u) 6= τ2(u) then
6: VI ← VI ∪ {u};
7: end if
8: for c′ ∈ Crem s.t. c′ is satisfied by both A1(ρτ1,τ2) and A2(ρτ1,τ2) do
9: Crem ← Crem \ {c′};

10: end for
11: while ∃c′ ∈ Crem with var(c′) ∩ VI 6= ∅, var(c′) ∩ (VΛ \ VI) 6= ∅, and marked(c′) \

Vset(ρτ1,τ2) = ∅ do
12: VI ← VI ∪ (var(c′) \ Vset(ρτ1,τ2));
13: Crem ← Crem \ {c′};
14: end while
15: while ∃c′ ∈ Crem ∩ Cbad with var(c′) ∩ VI 6= ∅ do
16: VI ← VI ∪ (var(c′) \ Vset(ρτ1,τ2));
17: Crem ← Crem \ {c′};
18: end while
19: (VI(ρτ1,τ2), Crem(ρτ1,τ2))← (VI , Crem);
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2.4 Key property of the coupling tree for a random formula
Recall that the variables of the LP which is used to estimate the marginal of the variable v∗
of ΦΛ correspond to the states of the coupling on the coupling tree TΛ. We will define two
LP variables P1,ρ and P2,ρ for each node ρ of TΛ. In order to efficiently solve the LP, we
need its size to be bounded by a polynomial in n, so we need the number of nodes of TΛ to
be bounded by a polynomial in n. For a random formula, this follows from the following key
lemma, which is a main technical contribution of our work.

I Lemma 14. W.h.p. over the choice of Φ, for every prefix Λ of Λ∗, every node ρ in TΛ has
the property that |Vset(ρ)| ≤ 3k3αL+ 1.

To see that Lemma 14 implies that the size of the coupling tree is at most a polynomial in n,
note that the depth of the tree does not exceed maxρ∈TΛ |Vset(ρ)| ≤ 3k3αL+ 1 = O(log n

ε ).
Also, each node has at most 4 children.

In the rest of this section, we sketch the proof of Lemma 14. We start by defining some
graphs associated with Φ. The formula Φ naturally corresponds to a bipartite “factor graph”
where one side is variables and the other clauses (a variable has an edge to a clause in the
factor graph if one its literals is contained in the clause). We also use the following two
graphs.

I Definition 3. Let GΦ be the graph with vertex set C (the clauses of Φ) in which two clauses
c and c′ are adjacent if and only if var(c) ∩ var(c′) 6= ∅. We say that a set C ⊆ C of clauses
is connected if the induced subgraph GΦ[C] is connected.

I Definition 4. Let HΦ be the graph with vertex set V (the variables of Φ) in which two
variables v and v′ are adjacent if and only if there exists a clause c ∈ C such that v, v′ ∈ var(c).
We say that a set V ⊆ V of variables is connected if the induced subgraph HΦ[V ] is connected.
Let HΦ,bad be the graph with vertex set Vbad in which two variables v and v′ are adjacent
if and only if there exists a bad clause c ∈ Cbad such that v, v′ ∈ var(c). We say that a set
V ⊆ V of variables is a bad component if V is a connected component in HΦ,bad.

For V ⊆ V , let ΓHΦ(V ) = ∪v∈V ΓHΦ(v) be the neighbourhood of V in HΦ. Let Γ+
HΦ

(V ) =
V ∪ ΓHΦ(V ) be the extended neighbourhood. The proof of Lemma 14 relies on the following
rather abstract fact about random formulas.1

I Lemma 41. W.h.p. over the choice of Φ, there do not exist sets Y ′, Z of clauses and a
set V of variables such that |Y ′| ≥ logn, |V | ≥ |Y ′|, |Z| ≥ 2k2α |V |, Y ′ ∩ Z = ∅, GΦ[Y ′] is
connected, V ⊆ var(Y ′), and every clause in Z contains at least one variable from V .

The lemma says that if you take any “large” set of clauses Y ′ that are connected in GΦ
and any large set V of the variables of Y ′ then there aren’t many clauses outside of Y ′ that
contain variables in V . (There isn’t a large set Z of such clauses.) Obviously, the lemma
doesn’t apply to every Φ, but is highly dependent on the random way in which Φ is chosen.
The proof of Lemma 41 relies crucially on upper-bounding the probability that a set of
clauses Y ′ is connected in GΦ. To do this, we sum over possible trees connecting the clauses
in Y ′. We use the bound from Lemma 39 of the full version, which shows that the probability
that any particular tree T is connected in GΦ is at most (k2/n)|V (T )|−1.

1 We need a more general version in the full paper, but this suffices here. The variable names here are
chosen to make the (single) application in this short version easy.
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53:8 Counting Solutions to Random CNF Formulas

Proof of Lemma 14. Let Λ be a prefix of Λ∗ and let ρ be a node in TΛ. Our goal is to
prove |Vset(ρ)| ≤ 3k3αL+ 1. We first consider the case in which ρ is not a truncating node,
so |VI(ρ)| ≤ L and we show |Vset(ρ)| ≤ 3k3αL. The proof has two parts.
Part 1. Vset(ρ) ⊆ Γ+

HΦ
(VI(ρ)).

To prove Part 1, we consider any u ∈ Vset(ρ) \ VI(ρ) and show that there is a clause c
containing u and containing a variable in VI(ρ).

We first rule out the case that u = v∗ by noting (from the construction of the coupling
tree) that v∗ ∈ VI(ρ) ∩ Vset(ρ).

So consider u ∈ Vset(ρ) \ VI(ρ) and let ρ′ be the ancestor of ρ in the coupling tree such
that u is the first variable of ρ′. The definition of the coupling tree guarantees that ρ′ is
uniquely defined and that it is a proper ancestor of ρ – the definition of “first variable”
guarantees that u /∈ Vset(ρ′), but for all proper descendants ρ′′′ of ρ′, u ∈ Vset(ρ′′′).

Let ρ′′ be the child of ρ′ on the path to ρ. We will show that there is a clause c containing u
and containing a variable in VI(ρ′). Part 1 then follows from the fact that VI(ρ) contains
VI(ρ′). The existence of such a clause c is immediate from the definition of “first variable” –
indeed c is the “first clause” of ρ′.
Part 2. W.h.p., the random formula Φ is such that ∀ρ, |Γ+

HΦ
(VI(ρ))| ≤ 3k3αL.

For Part 2, it is important that the set VI(ρ) is connected in HΦ – this follows from the
construction of the coupling tree. We show (this is Lemma 51) that, w.h.p. over the choice
of Φ, every connected set of variables V ⊆ V satisfies

|Γ+
HΦ

(V )| ≤ 3k3αmax{|V |, k logn}, (1)

which establishes Part 2 since |VI(ρ)| ≤ L.
The proof of (1) is as follows. Let V be a connected of variables and let Y be the set

of neighbours of V in the factor graph of Φ, i.e., Y = {c ∈ C | var(c) ∩ V 6= ∅}. Clearly
|Γ+
HΦ

(V )| ≤ k |Y | and hence it suffices to show that |Y | ≤ 3k2αmax{|V | , k logn}. There are
two cases depending on the size of V .
|V | ≥ k logn. Since V is a connected set of variables, there exists a set Y ′ ⊆ Y such that
|V | /k ≤ |Y ′| ≤ |V | and V ∪ Y ′ is connected in the factor graph of Φ. Hence, Y ′ is a
connected set of clauses and |Y ′| ≥ logn. Let Z = Y \ Y ′. If |Z| ≥ 2k2α |V | then we
obtain a contradiction to Lemma 41, which holds w.h.p. Thus, w.h.p., |Z| ≤ 2k2α |V |
which implies |Y | = |Y ′|+ |Z| ≤ 3k2α |V |, as required.
Otherwise |V | < k logn. If |Γ+

HΦ
(V )| < dk logne then we are finished. Otherwise,

consider an arbitrary connected V ′ ⊃ V such that |V ′| = dk logne. By the argument of
the previous case, the set of neighbours of V ′ in the factor graph, denoted Y ′′, satisfies
that |Y ′′| ≤ 3k2α |V ′| ≤ 3k3α logn. Thus, |Y | ≤ |Y ′′| ≤ 3k3α logn.

This completes the proof of (1), and hence Part 2.
To finish, we consider the case where ρ is a truncating node. Let ρ′ be the parent

of ρ. Parts 1 and 2 imply that |Vset(ρ′)| ≤ 3k3αL. The result follows since |Vset(ρ)| =
|Vset(ρ′)|+ 1. J

3 The linear program

Here we briefly list the constraints in the LP so that we can discuss its analysis. For a node ρ
of the coupling tree, let CI(ρ) be the set of clauses c ∈ CΛ such that var(c) ⊆ VI(ρ) ∪ Vset(ρ).
For i ∈ {1, 2}, let Ni(ρ) be the number of assignments τ to VI(ρ) \ Vset(ρ) such that every
clause in CI(ρ) is satisfied by τ ∪ Ai(ρ). It turns out (see Lemma 15) that Ni(ρ) 6= 0 for
i ∈ {1, 2}, so we define r(ρ) = N1(ρ)/N2(ρ).
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The LP relies on two constants rlower and rupper. The algorithm that uses the LP will
move these closer and closer together by binary search. For each node ρ of the coupling
tree, we introduce two variables P1,ρ and P2,ρ. The constraints are as follows. Constraint
Set 0: For every node ρ of the coupling tree and every i ∈ {1, 2} we add the constraint
0 ≤ Pi,ρ ≤ 1. Constraint Set 1: If ρ ∈ L then we add the constraint rlower P2,ρ ≤ P1,ρ r(ρ)
and the constraint P1,ρ r(ρ) ≤ rupper P2,ρ. Constraint Set 2: For the root ρ∗ of the coupling
tree, we add the constraints P1,ρ∗ = 1 and P2,ρ∗ = 1. For every node ρ of the coupling tree
that is not in L∗, let u be the first variable of ρ. For each X ∈ {T,F} add the constraints
P1,ρ = P1,ρu→X,u→T + P1,ρu→X,u→F and P2,ρ = P2,ρu→T,u→X + P2,ρu→F,u→X . Constraint Set
3: For every node ρ of the coupling tree that is not in L∗, every X ∈ {T,F}, and every
i ∈ {1, 2}, let u be the first variable of ρ and add the constraint Pi,ρu→X,u→¬X ≤ 1

s Pi,ρ.

4 Analysis of the linear program for a random formula and how it
enables us to conclude Theorem 1

The key lemmas demonstrating the purpose of the linear program are as follows.

I Lemma 24. Suppose rlower ≤ |ΩΛ
1 |/|ΩΛ

2 | ≤ rupper. There is a set of variables P = {Pi,ρ}
that satisfies all constraints of the LP.

I Lemma 34. Fix rlower ≤ rupper. W.h.p. over the choice of Φ, the following holds. If the
LP has a solution P using rlower and rupper, then e−ε/(3n)rlower ≤ |ΩΛ

1 |/|ΩΛ
2 | ≤ eε/(3n)rupper.

The full version proves Theorem 1 using these two lemmas. Here we just give the main
idea. First, consider the sub-goal of estimating |ΩΛ

1 |/|ΩΛ
2 | given Φ and a partial assignment Λ

of Λ∗. We can do this with accuracy exp (±ε/n) using the linear program. The proof of
Lemma 57 in the full version uses the Lovász local lemma to establish values for rlower and
rupper that meet the conditions in Lemma 24. Then, by binary search we bring rlower and
rupper closer together until we achieve the desired accuracy (by Lemma 34). The initial values
of rlower and rupper guarantee (see the proof of Lemma 57 for details) that the LP is run at
most O(log(n/ε)) times. Since we have already shown that the size of the LP is bounded by
a polynomial in n/ε the algorithm runs in polynomial time.

Now consider the proof of Theorem 1. Using standard self-reducibility, we can use the
estimates that we have just established to obtain an accurate estimate (within exp (±ε)) of
|ΩΛ∗ |/|Ω|, which is the probability that a random satisfying assignment is consistent with Λ∗.

To finish we need one last key ingredient – we need a method to estimate |ΩΛ∗ |. Since all
good clauses are satisfied by Λ∗, the set CΛ∗ of clauses of ΦΛ∗ consists only of bad clauses.
Now we need one more key lemma.

I Lemma 48. W.h.p. over the choice of Φ, every bad component S has size at most
21600k logn.

Lemma 48 implies that CΛ∗ can be divided into disjoint subsets where each subset of
clauses contains O(logn) variables. The algorithm can then compute the number of satisfying
assignments of each subset by brute force in time poly(n). Then |ΩΛ∗ | is the product of these
numbers.

This concludes the sketch of the proof of Theorem 1 – the details are in the full version.
In the rest of this short version, we briefly discuss the proof of the remaining key lemmas,
Lemmas 48, 34, and 24.
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We start with the proof of Lemma 48. This lemma, which bounds the size of bad
components, is one of the main technical achievements allowing us to extend Moitra’s method
to random CNFs with high density. Here we only have room for a very rough sketch. Recall
that a bad component is a set S of variables that is connected in HΦ,bad. Let HD(S) = V0∩S
be the set of high-degree variables in S. We wish to show that w.h.p., over the choice of Φ,
every bad component S has size at most 21600k logn. This follows from the following two
lemmas, which give a contradiction for large bad components S.

I Lemma 42. W.h.p. over the choice of Φ, every connected set U of variables with size at
least 21600k logn satisfies that |HD(U)| ≤ |U |

21600 .

I Lemma 47. W.h.p. over the choice of Φ, for any bad component S, |S| ≤ 60 |HD(S)|.

The proof of Lemma 42 is deferred to the full version. It uses Lemma 41 and studies
trees in the factor graph of Φ. The following proof sketch concludes the proof of Lemma 48.

Proof Sketch of Lemma 47. Consider the following process P which we will use to work
with bad compoments. The process, for every set S of variables, defines a set of variables
BC(S).
1. Let BC(S) = S.
2. While there is a clause c such that |var(c) ∩ BC(S)| ≥ k/10 and BC(S) \ var(c) 6= ∅

BC(S) := BC(S) ∪ var(c)

Note that Vbad = BC(V0), where V0 is the set of high-degree variables. We show (Lemma
43) that for every bad component S, we have S = BC(HD(S)). Thus, the process P can be
viewed as a “local” process for identifying bad components.

Let S be a bad component. If S contains only an isolated variable, it must be a high-degree
variable and hence HD(S) = S (so we are finished). Otherwise, since a bad component is a
connected component of variables in HΦ,bad, the definition of HΦ,bad ensures that the bad
component has at least k/10 high-degree variables.

Note that |HD(S)| ≤ |V0|. In Lemma 35 of the full version we use Poisson estimates for
the degrees of the variables to show that, w.h.p., |V0| ≤ n/2k

10 .
The next step is to apply a counting argument to show that, w.h.p., for every set of

variables Y such that 2 ≤ |Y | ≤ n/2k, the number of clauses that contain at least k/10
variables from Y is at most 30

k |Y |. This is Corollary 38 of the full version. We apply the
corollary with Y = HD(S), so we find that there are at most 30

k |HD(S)| clauses that contain
at least k/10 variables from HD(S).

Now, we run the process P starting with HD(S). Take Z to be the set of clauses that
contain at least k/10 variables from HD(S) (so, from above, we have |Z| ≤ 30

k |HD(S)| ≤
30
k

n
2k10 ).
The next step is to show that, w.h.p., the number of clauses c such that var(c) ⊆

BC(HD(S)) is at most 2|Z| (which we have already shown to be at most 60 |HD(S)| /k). This
analysis is contained in Corollary 45. It is essentially an analysis of the process P which
follows easily from a lemma of Coja-Oghlan and Frieze [10, Lemma 2.4]. The high-probability
guarantees are universal over Z (hence universal over S).

Since S = BC(HD(S)) and each variable in S is contained in some bad clause, we have

|S| ≤
∣∣∣∣ ⋃
c∈Cbad: var(c)∩S 6=∅

var(c)
∣∣∣∣ ≤ 60 |HD(S)| , as required. J
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We now turn to the proof of Lemma 34. There are two kinds of errors which cause
solutions of the LP to differ from the ratio

∣∣ΩΛ
1
∣∣/∣∣ΩΛ

2
∣∣. The first kind comes from so-called

“`-wrong assignments” and the second kind comes from the truncation of the coupling tree.
To define these more precisely, we need some graph-theoretic notation.

I Definition 25. Given a graph G and any positive integer k, let G≤k be the graph with
vertex set V (G) in which vertices u and v are connected iff there is a path from u to v in G
of length at most k.

The main combinatorial structure that we use is a set D(GΦ), which is based on Alon’s
“2,3-tree” [5]. Similar structures were subsequently used in [30, 21]. The main difference
between our definition and previous ones is that we take into account whether clauses are
connected via good variables.

I Definition 26. Given GΦ, let D(GΦ) be the set of subsets T ⊆ V (GΦ) such that (1) For
any c1, c2 ∈ T , var(c1)∩ var(c2)∩Vgood = ∅; and (2) The graph G≤4

Φ [T ], which is the subgraph
of G≤4

Φ induced by T , is connected.

I Definition 29. An assignment σ ∈ ΩΛ
i is `-wrong if ∃ a size-` set T ∈ D(GΦ) such that

c∗ ∈ T , |T ∩ CΛ
good| ≥ 2 |T | /3, and there is a size d`/2e subset S of T ∩ CΛ

good such that
the restriction of σ to marked variables in clauses in S does not satisfy any clause in S.
Otherwise σ is `-correct.

Proof Sketch of Lemma 34. The constraints in Constraint Set 2 guarantee (see Lemma
18 of the full version) that, for any i ∈ {1, 2} and σ ∈ ΩΛ

i ,
∑
ρ∈L∗:σ∈ΩAi(ρ)∪Λ Pi,ρ = 1. Thus,

|ΩΛ
i | =

∑
σ∈ΩΛ

i
1 =

∑
σ∈ΩΛ

i

∑
ρ∈L∗:σ∈ΩAi(ρ)∪Λ Pi,ρ. Let ` = L/(3k2∆). We start by defining

Zi, Z ′i and Z ′′i as follows for i ∈ {1, 2}.

Zi =
∑
σ∈ΩΛ

i

∑
ρ∈L:σ∈ΩAi(ρ)∪Λ

Pi,ρ,

Z ′i =
∑

σ∈ΩΛ
i
, σ is `-wrong

∑
ρ∈L∗:σ∈ΩAi(ρ)∪Λ

Pi,ρ,

Z ′′i =
∑

σ∈ΩΛ
i
, σ is `-correct

∑
ρ∈T :σ∈ΩAi(ρ)∪Λ

Pi,ρ.

Thus Zi ≤
∣∣ΩΛ
i

∣∣ ≤ Zi + Z ′i + Z ′′i . The full version proves

rlower ≤ Z1/Z2 ≤ rupper. (2)

Z ′i/|ΩΛ
i | ≤ (1− e−ε/(3n))/2 for i ∈ {1, 2}. (3)

Z ′′i /|ΩΛ
i | ≤ (1− e−ε/(3n))/2 for i ∈ {1, 2}. (4)

The lemma follows easily from these. Combining (3) and (4) with the fact that Zi ≤
∣∣ΩΛ
i

∣∣ ≤
Zi + Z ′i + Z ′′i , we get e−ε/(3n) ≤ Zi

|ΩΛ
i |
≤ 1. Plugging in (2) we obtain the result.

To prove (2) we exchange the order of summation in the definition of Zi to get

Zi =
∑
ρ∈L

∑
σ∈ΩΛ

i
:σ∈ΩAi(ρ)∪Λ

Pi,ρ =
∑
ρ∈L

Pi,ρ · |ΩAi(ρ)∪Λ|.

Since ρ ∈ L, we prove (see Lemma 17) that r(ρ) = |ΩA1(ρ)∪Λ|/|ΩA2(ρ)∪Λ| (this is actually
the point of r(ρ)). Constraint Set 1 then guarantees that

rlower ≤
P1,ρ ·

∣∣ΩA1(ρ)∪Λ
∣∣

P2,ρ ·
∣∣ΩA2(ρ)∪Λ

∣∣ = P1,ρ · r(ρ)
P2,ρ·

≤ rupper,which suffices.
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The main ingredient in the proof of (3) is Lemma 30, which shows that the fraction of
assignments in ΩΛ

i that are `-wrong is at most (k∆)−9`. The main ingredient in the proof
of (4) is showing that, w.h.p., for every `-correct σ ∈ ΩΛ

i ,
∑
ρ∈T :σ∈ΩAi(ρ)∪Λ Pi,ρ ≤ (k∆)−8`.

This is handled in Lemmas 32 and 33.
To prove these lemmas (say for i = 1) we consider a sampling procedure for choosing a

node ρ ∈ L∗ conditioned on some σ ∈ ΩΛ
1 . The probability that it reaches any node ρ ∈ L∗

with σ ∈ ΩA1(ρ)∪Λ is designed to be P1,ρ so the goal is to bound the probability that it
reaches the set Υσ = {ρ ∈ T | σ ∈ ΩA1(ρ)∪Λ}. This is where the combinatorial structures
that we have defined come in. We use F(ρ) to denote the set of clauses that “fail” in the
coupling process, contributing variables to VI(ρ). Lemma 28 shows that w.h.p., for every
node ρ ∈ Υσ, there is a set T ⊆ F(ρ) containing the first clause c∗ such that T ∈ D(GΦ),
|T | = ` and |T ∩ Cbad| ≤ |T |/3. This implies that |T ∩ CΛ

good| ≥ 2|T |/3. We therefore need
to upper bound the probability that such a T is contained in F(ρ) when ρ is chosen from
the sampling procedure. T has size ` and contains c∗ and contains enough good clauses. So
it turns out that, since σ is `-correct, a lot of these failed clauses in F(ρ) must have failed
due to disagreements in the coupling. Since T ∈ D(GΦ) these clauses do not share good
variables. The constraints in Constraint Set 3 then imply that the probability of all of
these simultaneous disagreements is unlikely.

That concludes the proof, apart from proving the key Lemma 28. This again relies on
properties about bad components - in particular on Lemma 50, which says that, w.h.p., for
every connected set of clauses Y such that |var(Y )| ≥ 21600k logn, it holds that |Y ∩Cbad| ≤
|Y |/12. This is somewhat similar to the issues that we discussed regarding the proof of
Lemma 48 – we defer the details to the full version. J

Proof Sketch of Lemma 24. Suppose rlower ≤ |ΩΛ
1 |/|ΩΛ

2 | ≤ rupper. Our goal is to show that
there is a set of variables P = {Pi,ρ} that satisfies all constraints of the LP. Here is a suitable
assignment. Let ρ be a node of the coupling tree with first variable u. For X ∈ {T,F}, we
use the notation ψρ,X,1 := |ΩA1(ρu→X,u→X)∪Λ|/|ΩA1(ρ)∪Λ| = |ΩA1(ρu→X,u→¬X)∪Λ|/|ΩA1(ρ)∪Λ|.
This is well-defined since A1(ρu→X,u→X) = A1(ρu→X,u→¬X). In other words, ψρ,X,1 is the
probability that u is assigned value X under the uniform distribution on ΩA1(ρ)∪Λ. We
similarly define ψρ,X,2 := |ΩA2(ρu→X,u→X)∪Λ|/|ΩA2(ρ)∪Λ| = |ΩA2(ρu→¬X,u→X)∪Λ|/|ΩA2(ρ)∪Λ|.

We will next give an inductive definition of a function Q from nodes of the coupling tree
to real numbers in [0, 1]. The way to think about this is as follows – we will implicitly define
a probability distribution over paths from the root of the coupling tree to L∗. For each
node ρ, Q(ρ) will be the probability that ρ is included in a path drawn from this distribution.

Any such path starts at the root, so we define Q(ρ∗) = 1. Once we have defined Q(ρ) for
a node ρ that is not in L∗ we can define Q(·) on the children of ρ as follows. Let u be the
first variable of ρ and consider the four children ρu→T,u→T, ρu→T,u→F, ρu→F,u→T, ρu→F,u→F.
Define the values of Q as follows: Q(ρu→T,u→T) := Q(ρ) min{ψρ,T,1, ψρ,T,2}, Q(ρu→T,u→F) :=
Q(ρ)(ψρ,T,1 − min{ψρ,T,1, ψρ,T,2}), Q(ρu→F,u→F) := Q(ρ) min{1 − ψρ,T,1, 1 − ψρ,T,2}, and
Q(ρu→F,u→T) := Q(ρ)((1− ψρ,T,1)−min{1− ψρ,T,1, 1− ψρ,T,2}). Finally, we define Pi,ρ :=
Q(ρ)|ΩΛ

i |/|ΩAi(ρ)∪Λ|. In the full version, we prove that this assignment satisfies the constraints
of the LP. Mostly, the LP is designed to make this true, though for example to establish the
constraint Pi,ρu→X,u→¬X ≤ 1

s Pi,ρ (Lemma 23) we need to prove that ψρ,X,i is around 1/2.
Like Moitra, we prove this using the Lovász local lemma, so this is why it is essential that
we restrict the LP to good variables. J
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Abstract
Robust optimization is a widely studied area in operations research, where the algorithm takes
as input a range of values and outputs a single solution that performs well for the entire range.
Specifically, a robust algorithm aims to minimize regret, defined as the maximum difference between
the solution’s cost and that of an optimal solution in hindsight once the input has been realized. For
graph problems in P, such as shortest path and minimum spanning tree, robust polynomial-time
algorithms that obtain a constant approximation on regret are known. In this paper, we study
robust algorithms for minimizing regret in NP-hard graph optimization problems, and give constant
approximations on regret for the classical traveling salesman and Steiner tree problems.
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1 Introduction

In many graph optimization problems, the inputs are not known precisely and the algorithm is
desired to perform well over a range of inputs. For instance, consider the following situations.
Suppose we are planning the delivery route of a vehicle that must deliver goods to n locations.
Due to varying traffic conditions, the exact travel times between locations are not known
precisely, but a range of possible travel times is available from historical data. Can we design
a tour that is nearly optimal for all travel times in the given ranges? Consider another
situation where we are designing a telecommunication network to connect a set of locations.
We are given cost estimates on connecting every two locations in the network but these
estimates might be off due to unexpected construction problems. Can we design the network
in a way that is nearly optimal for all realized construction costs?

These questions have led to the field of robust graph algorithms. Given a range of weights
[`e, ue] for every edge e, the goal is to find a solution that minimizes regret, defined as the
maximum difference between the algorithm’s cost and the optimal cost for any edge weights.
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54:2 Robust Algorithms for TSP and Steiner Tree

In other words, the goal is to obtain: minsol maxI(sol(I) − opt(I)), where sol(I) (resp.
opt(I)) denotes the cost of sol (resp. the optimal solution) in instance I, sol ranges over
all feasible solutions, and I ranges over all realizable inputs. We emphasize that sol is a
fixed solution (independent of I) whereas the solution determining opt(I) is dependent on
the input I. The solution that achieves this minimum is called the minimum regret solution
(mrs), and its regret is the minimum regret (mr). In many cases, however, minimizing regret
turns out to be NP-hard, in which case one seeks an approximation guarantee. Namely, a
β-approximation algorithm satisfies, for all input realizations I, sol(I)− opt(I) ≤ β · mr,
i.e., sol(I) ≤ opt(I) + β ·mr.

It is known that minimizing regret is NP-hard for shortest path [34] and minimum
cut [1] problems, and using a general theorem for converting exact algorithms to robust
ones, 2-approximations are known for these problems [12, 23]. In some cases, better results
are known for special classes of graphs, e.g., [24]. Robust minimum spanning tree (mst)
has also been studied, although in the context of making exponential-time exact algorithms
more practical [33]. Moreover, robust optimization has been extensively researched for other
(non-graph) problem domains in the operations research community, and has led to results
in clustering [5, 3, 6, 27], linear programming [21, 28], and other areas [4, 23]. More details
can be found in the book by Kouvelis and Yu [26] and the survey by Aissi et al. [2].

To the best of our knowledge, all previous work in polynomial-time algorithms for
minimizing regret in robust graph optimization focused on problems in P. In this paper,
we study robust graph algorithms for minimizing regret in NP-hard optimization problems.
In particular, we study robust algorithms for the classical traveling salesman (tsp) and
Steiner tree (stt) problems, that model e.g. the two scenarios described at the beginning
of the paper. As a consequence of the NP-hardness, we cannot hope to show guarantees
of the form: sol(I) ≤ opt(I) + β · mr, since for `e = ue (i.e., mr = 0), this would imply
an exact algorithm for an NP-hard optimization problem. Instead, we give guarantees:
sol(I) ≤ α·opt(I)+β ·mr, where α is (necessarily) at least as large as the best approximation
guarantee for the optimization problem. We call such an algorithm an (α, β)-robust algorithm.
If both α and β are constants, we call it a constant-approximation to the robust problem. In
this paper, our main results are constant approximation algorithms for the robust traveling
salesman and Steiner tree problems. We hope that our work will lead to further research in
the field of robust approximation algorithms, particularly for other NP-hard optimization
problems in graph algorithms as well as in other domains.

1.1 Problem Definition and Results

We first define the Steiner tree (stt) and traveling salesman problems (tsp). In both
problems, the input is an undirected graph G = (V,E) with non-negative edge costs. In
Steiner tree, we are also given a subset of vertices called terminals and the goal is to obtain a
minimum cost connected subgraph of G that spans all the terminals. In traveling salesman,
the goal is to obtain a minimum cost tour that visits every vertex in V 1. In the robust
versions of these problems, the edge costs are ranges [`e, ue] from which any cost may realize.

Our main results are the following:

I Theorem 1 (Robust Approximations). There exist constant approximation algorithms for
the robust traveling salesman and Steiner tree problems.

1 There are two common and equivalent assumptions made in the tsp literature in order to achieve
reasonable approximations. In the first assumption, the algorithms can visit vertices multiple times in
the tour, while in the latter, the edges satisfy the metric property. We use the former in this paper.
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I Remark. The constants we are able to obtain for the two problems are very different:
(4.5, 3.75) for tsp (in Section 3) and (2755, 64) for stt (in Section 4). While we did not
attempt to optimize the precise constants, obtaining small constants for stt comparable to
the tsp result requires new ideas beyond our work and is an interesting open problem.

We complement our algorithmic results with lower bounds. Note that if `e = ue, we have
mr = 0 and thus an (α, β)-robust algorithm gives an α-approximation for precise inputs. So,
hardness of approximation results yield corresponding lower bounds on α. More interestingly,
we show that hardness of approximation results also yield lower bounds on the value of β
(see Section 5 for details):

I Theorem 2 (APX-hardness). A hardness of approximation of ρ for tsp (resp., stt) under
P 6= NP implies that it is NP-hard to obtain α ≤ ρ (irrespective of β) and β ≤ ρ (irrespective
of α) for robust tsp (resp., robust stt).

1.2 Our Techniques
We now give a sketch of our techniques. Before doing so, we note that for problems in P
with linear objectives, it is known that running an exact algorithm using weights `e+ue

2
gives a (1, 2)-robust solution [12, 23]. One might hope that a similar result can be obtained
for NP-hard problems by replacing the exact algorithm with an approximation algorithm
in the above framework. Unfortunately, there exists robust tsp instances where using a
2-approximation for tsp with weights `e+ue

2 gives a solution that is not (α, β)-robust for any
α = o(n), β = o(n). More generally, a black-box approximation run on a fixed realization
could output a solution including edges that have small weight relative to opt for that
realization (so including these edges does not violate the approximation guarantee), but
these edges could have large weight relative to mr and opt in other realizations, ruining the
robustness guarantee. This establishes a qualitative difference between robust approximations
for problems in P considered earlier and NP-hard problems being considered in this paper,
and demonstrates the need to develop new techniques for the latter class of problems.

LP relaxation. We denote the input graph G = (V,E). For each edge e ∈ E, the input is a
range [`e, ue] where the actual edge weight de can realize to any value in this range. The
robust version of a graph optimization problem is is then described by the LP

min{r : x ∈ P ;
∑
e∈E

dexe ≤ opt(d) + r, ∀d},

where P is the standard polytope for the optimization problem, and opt(d) denotes the
cost of an optimal solution when the edge weights are d = {de : e ∈ E}. That is, this is the
standard LP for the problem, but with the additional constraint that the fractional solution
x must have regret at most r for any realization of edge weights. We call the additional
constraints the regret constraint set. Note that setting x to be the indicator vector of mrs
and r to mr gives a feasible solution to the LP; thus, the LP optimum is at most mr.

Solving the LP. We assume that the constraints in P are separable in polynomial time (e.g.,
this is true for most standard optimization problems including stt and tsp). So, designing
the separation oracle comes down to separating the regret constraint set, which requires
checking that:

max
d

[∑
e∈E

dexe − opt(d)
]

=

max
d

max
sol

[∑
e∈E

dexe − sol(d)
]

= max
sol

max
d

[∑
e∈E

dexe − sol(d)
]
≤ r.
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Thus, given a fractional solution x, we need to find an integer solution sol and a weight
vector d that maximizes the regret of x given by

∑
e∈E dexe − sol(d). Once sol is fixed,

finding d that maximizes the regret is simple: If sol does not include an edge e, then to
maximize

∑
e∈E dexe − sol(d), we set de = ue; else if sol includes e, we set de = `e. Note

that in these two cases, edge e contributes uexe and `exe− `e respectively to the regret. The
above maximization thus becomes:

max
sol

[ ∑
e/∈sol

uexe +
∑
e∈sol

(`exe − `e)
]

=
∑
e∈E

uexe −min
sol

∑
e∈sol

(uexe − `exe + `e). (1)

Thus, sol is exactly the optimal solution with edge weights ae := uexe − `exe + `e. (For
reference, we define the derived instance of the problem as one with edge weights ae.)

Now, if we were solving a problem in P, we would simply need to solve the problem on
the derived instance. Indeed, we will show later that this yields an alternative technique for
obtaining robust algorithms for problems in P, and recover existing results in [23]. However,
we cannot hope to find an optimal solution to an NP-hard problem. Our first compromise is
that we settle for an approximate separation oracle. More precisely, our goal is to show that
there exists some fixed constants α′, β′ ≥ 1 such that if

∑
e dexe > α′ · opt(d) + β′ · r for

some d, then we can find sol,d′ such that
∑
e d
′
exe > sol(d′) + r. Since the LP optimum

is at most mr, we can then obtain an (α′, β′)-robust fractional solution using the standard
ellipsoid algorithm.

For tsp, we show that the above guarantee can be achieved by the classic mst-based
2-approximation on the derived instance. The details appear in Section 3 and the full paper.
Although stt also admits a 2-approximation based on the mst solution, this turns out to be
insufficient for the above guarantee. Instead, we use a different approach here. We note that
the regret of the fractional solution against any fixed solution sol (i.e., the argument over
which Eq. (1) maximizes) can be expressed as the following difference:∑

e/∈sol

(uexe − `exe + `e)−
∑
e∈E

(`e − `exe) =
∑
e/∈sol

ae −
∑
e∈E

be, where be := `e − `exe.

The first term is the weight of edges in the derived instance that are not in sol. The second
term corresponds to a new stt instance with different edge weights be. It turns out that the
overall problem now reduces to showing the following approximation guarantees on these
two stt instances (c1 and c2 are constants):

(i)
∑

e∈alg\sol

ae ≤ c1 ·
∑

e∈sol\alg

ae and (ii)
∑
e∈alg

be ≤ c2 ·
∑
e∈sol

be.

Note that guarantee (i) on the derived instance is an unusual “difference approximation” that
is stronger than usual approximation guarantees. Moreover, we need these approximation
bounds to simultaneously hold, i.e., hold for the same alg. Obtaining these dual approxima-
tion bounds simultaneously forms the most technically challenging part of our work; a high
level overview is given in Section 4 and technical details are deferred to the full paper.

Rounding the fractional solution. After applying our approximate separation oracles,
we have a fractional solution x such that for all edge weights d, we have

∑
e dexe ≤

α′ · opt(d) + β′ ·mr. Suppose that, ignoring the regret constraint set, the LP we are using
has integrality gap at most δ for precise inputs. Then a natural rounding approach is to
search for an integer solution alg that has minimum regret with respect to the specific
solution δx, i.e., alg satisfies:

alg = argmin
sol

max
d

[
sol(d)− δ

∑
e∈E

dexe

]
. (2)
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Since the integrality gap is at most δ, we have δ ·
∑
e∈E dexe ≥ opt(d) for any d. This

implies that:

mrs(d)− δ ·
∑
e∈E

dexe ≤ mrs(d)− opt(d) ≤ mr.

Hence, the regret of mrs with respect to δx is at most mr. Since alg has minimum regret
with respect to δx, alg’s regret is also at most mr. Note that δx is a (δα′, δβ′)-robust
solution. Hence, alg is a (δα′, δβ′ + 1)-robust solution.

If we are solving a problem in P, finding alg that satisfies Eq. (2) is easy. So, using an
integral LP formulation (i.e., integrality gap of 1), we get a (1, 2)-robust algorithm overall for
these problems. This exactly matches the results in [23], although we are using a different
set of techniques. Of course, for NP-hard problems, finding a solution alg that satisfies
Eq. (2) is NP-hard as well. It turns out, however, that we can design a generic rounding
algorithm that gives the following guarantee:

I Theorem 3. There exists a rounding algorithm that takes as input an (α, β)-robust
fractional solution to stt (resp. tsp) and outputs a (γδα, γδβ + γ)-robust integral solution,
where γ and δ are respectively the best approximation factor and integrality gap for (classical)
stt (resp., tsp).

We remark that while we stated this rounding theorem for stt and tsp here, we actually
give a more general version (Theorem 4) in Section 2 that applies to a broader class of
covering problems including set cover, survivable network design, etc. and might be useful in
future research in this domain.

1.3 Related Work
We have already discussed the existing literature in robust optimization for minimizing regret.
Other robust variants of graph optimization have also been studied in the literature. In
the robust combinatorial optimization model proposed by Bertsimas and Sim [7], edge costs
are given as ranges as in this paper, but instead of optimizing for all realizations of costs
within the ranges, the authors consider a model where at most k edge costs can be set to
their maximum value and the remaining are set to their minimum value. The objective is to
minimize the maximum cost over all realizations. In this setting, there is no notion of regret
and an approximation algorithm for the standard problem translates to an approximation
algorithm for the robust problem with the same approximation factor.

In the data-robust model [13], the input includes a polynomial number of explicitly
defined “scenarios” for edge costs, with the goal of finding a solution that is approximately
optimal for all given scenarios. That is, in the input one receives a graph and a polynomial
number of scenarios d(1),d(2) . . .d(k) and the goal is to find alg whose maximum cost across
all scenarios is at most some approximation factor times minsol maxi∈[k]

∑
e∈sol d

(i)
e . In

contrast, in this paper, we have exponentially many scenarios and look at the maximum of
alg(d)− opt(d) rather than alg(d). A variation of this is the recoverable robust model [9],
where after seeing the chosen scenario, the algorithm is allowed to “recover” by making a
small set of changes to its original solution.

Dhamdhere et al. [13] also studies the demand-robust model, where edge costs are fixed
but the different scenarios specify different connectivity requirements of the problem. The
algorithm now operates in two phases: In the first phase, the algorithm builds a partial
solution T ′ and then one of the scenarios (sets of terminals) Ti is revealed to the algorithm.
In the second phase, the algorithm then adds edges to T ′ to build a solution T , but
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54:6 Robust Algorithms for TSP and Steiner Tree

must pay a multiplicative cost of σk on edges added in the second phase. The demand-
robust model was inspired by a two-stage stochastic optimization model studied in, e.g.,
[30, 29, 31, 13, 14, 25, 18, 19, 20, 8] where the scenario is chosen according to a distribution
rather than an adversary.

Another related setting to the data-robust model is that of robust network design,
introduced to model uncertainty in the demand matrix of network design problems (see the
survey by Chekuri [10]). This included the well-known VPN conjecture (see, e.g., [17]), which
was eventually settled in [15]. In all these settings, however, the objective is to minimize
the maximum cost over all realizations, whereas in this paper, our goal is to minimize the
maximum regret against the optimal solution.

2 Generalized Rounding Algorithm

We start by giving the rounding algorithm of Theorem 3, which is a corollary of the following,
more general theorem:

I Theorem 4. Let P be an optimization problem defined on a set system S ⊆ 2E that seeks
to find the set S ∈ S that minimizes

∑
e∈S de, i.e., the sum of the weights of elements in S.

In the robust version of this optimization problem, we have de ∈ [`e, ue] for all e ∈ E.
Consider an LP formulation of P (called P-LP) given by: {min

∑
e∈E dexe : x ∈ X,x ∈

[0, 1]E}, where X is a polytope containing the indicator vector χS of all S ∈ S and not
containing χS for any S /∈ S. The corresponding LP formulation for the robust version
(called Probust-LP) is given by: {min r : x ∈ X,x ∈ [0, 1]E ,

∑
e∈E dexe ≤ opt(d) + r ∀d}.

Now, suppose we have the following properties:
There is a γ-approximation algorithm for P.
The integrality gap of P-LP is at most δ.
There is a feasible solution x∗ to P-LP that satisfies: ∀d :

∑
e∈E dex

∗
e ≤ α·opt(d)+β ·mr.

Then, there exists an algorithm that outputs an integer solution sol for P that satisfies:

∀d : sol(d) ≤ (γδα) · opt(d) + (γδβ + γ) ·mr.

Proof. The algorithm is as follows: Construct an instance of P which uses the same set
system S and where element e has weight max{ue(1− δx∗e), `e(1− δx∗e)}+ δ`ex

∗
e. Then, use

the γ-approximation algorithm for P on this instance to find an integral solution S, and
output it.

Given a feasible solution S to P, note that:

max
d

[
∑
e∈S

de − δ
∑
e∈E

dex
∗
e] =

∑
e∈S

max{ue(1− δx∗e), `e(1− δx∗e)} −
∑
e/∈S

δ`ex
∗
e

=
∑
e∈S

[max{ue(1− δx∗e), `e(1− δx∗e)}+ δ`ex
∗
e]−

∑
e∈E

δ`ex
∗
e.

Now, note that since S was output by a γ-approximation algorithm, for any feasible
solution S′:∑
e∈S

[max{ue(1−δx∗e), `e(1−δx∗e)}+δ`ex∗e] ≤ γ
∑
e∈S′

[max{ue(1−δx∗e), `e(1−δx∗e)}+δ`ex∗e] =⇒

∑
e∈S

[max{ue(1− δx∗e), `e(1− δx∗e)}+ δ`ex
∗
e]− γ

∑
e∈E

δ`ex
∗
e
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≤ γ[
∑
e∈S′

[max{ue(1− δx∗e), `e(1− δx∗e)}+ δ`ex
∗
e]−

∑
e∈E

δ`ex
∗
e]

= γmax
d

[
∑
e∈S′

de − δ
∑
e∈E

dex
∗
e].

Since P-LP has integrality gap δ, for any fractional solution x, ∀d : opt(d) ≤ δ
∑
e∈E dexe.

Fixing S′ to be the set of elements used in the minimum regret solution then gives:

max
d

[
∑
e∈S′

de − δ
∑
e∈E

dex
∗
e] ≤ max

d
[mrs(d)− opt(d)] = mr.

Combined with the previous inequality, this gives:∑
e∈S

[max{ue(1− δx∗e), `e(1− δx∗e)}+ δ`ex
∗
e]− γ

∑
e∈E

δ`ex
∗
e ≤ γmr =⇒

∑
e∈S

[max{ue(1− δx∗e), `e(1− δx∗e)}+ δ`ex
∗
e]−

∑
e∈E

δ`ex
∗
e ≤ γmr + (γ − 1)

∑
e∈E

δ`ex
∗
e =⇒

max
d

[
∑
e∈S

de − δ
∑
e∈E

dex
∗
e] ≤ γmr + (γ − 1)

∑
e∈E

δ`ex
∗
e.

This implies:

∀d : sol(d) =
∑
e∈S

de ≤ δ
∑
e∈E

dex
∗
e + γmr + (γ − 1)

∑
e∈E

δ`ex
∗
e

≤ δ
∑
e∈E

dex
∗
e + γmr + (γ − 1)

∑
e∈E

δdex
∗
e

= γδ
∑
e∈E

dex
∗
e + γmr ≤ γδ[αopt(d) + βmr] + γmr = γδα · opt(d) + (γδβ + γ) ·mr. J

3 Algorithm for the Robust Traveling Salesman Problem

In this section, we give a robust algorithm for the traveling salesman problem:

I Theorem 5. There exists a (4.5, 3.75)-robust algorithm for the traveling salesman problem.

Recall that we consider the version of the problem where we are allowed to use edges
multiple times in tsp. We present a high level sketch of our ideas here, the details are deferred
to the full paper. We recall that any tsp tour must contain a spanning tree, and an Eulerian
walk on a doubled mst is a 2-approximation algorithm for tsp (known as the “double-tree
algorithm”). One might hope that since we have a (1, 2)-robust algorithm for robust mst,
one could take its output and apply the double-tree algorithm to get a (2, 4)-robust solution
to robust TSP. Unfortunately, this algorithm is not (α, β)-robust for any α = o(n), β = o(n).
Nevertheless, we are able to leverage the connection to mst to arrive at a (4.5, 3.75)-robust
algorithm for tsp.
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Minimize r subject to

∀∅ 6= S ⊂ V :
∑
u∈S,v∈V \S yuv ≥ 2

∀u ∈ V :
∑
v 6=u yuv = 2

∀∅ 6= S ⊂ V, u ∈ S, v ∈ V \S :
∑
e∈δ(S) xe,u,v ≥ yuv

∀d :
∑
e∈E dexe ≤ opt(d) + r

∀u, v ∈ V, u 6= v : 0 ≤ yuv ≤ 1
∀e ∈ E, u, v ∈ V, v 6= u : 0 ≤ xe,u,v ≤ 1
∀e ∈ E : xe ≤ 2

(3)

Figure 1 The Robust TSP Polytope.

3.1 Approximate Separation Oracle
We use the LP relaxation of robust traveling salesman in Figure 1. This is the standard
subtour LP (see e.g. [32]), but augmented with variables specifying the edges used to visit
each new vertex, as well as with the regret constraint set. Integrally, yuv is 1 if splitting the
tour into subpaths at each point where a vertex is visited for the first time, there is a subpath
from u to v (or vice-versa). That is, yuv is 1 if between the first time u is visited and the first
time v is visited, the tour only goes through vertices that were already visited before visiting
u. xe,u,v is 1 if on this subpath, the edge e is used. We use xe to denote

∑
u,v∈V xe,u,v for

brevity. A discussion of why the constraints other than the regret constraint set in (3) are
identical to the standard tsp polytope is included in the full paper.

We now describe the separation oracle RRTSP-Oracle used to separate (3). All
constraints except the regret constraint set can be separated in polynomial time by solving a
min-cut problem. Recall that exactly separating the regret constraint set involves finding
an “adversary” sol that maximizes maxd[

∑
e∈E dexe − sol(d)], and seeing if this quantity

exceeds r. However, since TSP is NP-hard, finding this solution in general is NP-hard.
Instead, we will only consider a solution sol if it is a walk on some spanning tree T , and
find the one that maximizes maxd[

∑
e∈E dexe − sol(d)].

Fix any sol that is a walk on some spanning tree T . For any e, if e is not in T , the
regret of x,y against sol is maximized by setting e’s length to ue. If e is in T , then sol is
paying 2de for that edge whereas the fractional solution pays dexe ≤ 2de, so to maximize the
fractional solution’s regret, de should be set to `e. This gives that the regret of fractional
solution x against any sol that is a spanning tree walk on T is∑

e∈T
(`exe − 2`e) +

∑
e/∈T

uexe =
∑
e∈E

uexe −
∑
e∈T

(uexe − (`exe − 2`e)).

The quantity
∑
e∈E uexe is fixed with respect to T , so finding the spanning tree T that

maximizes this quantity is equivalent to finding T that minimizes
∑
e∈T (uexe− (`exe− 2`e)).

But this is just an instance of the minimum spanning tree problem where edge e has
weight uexe − (`exe − 2`e), and thus we can find T in polynomial time. After finding this
spanning tree, RRTSP-Oracle checks if the regret of x,y against the walk on T is at
least r, and if so outputs this as a violated inequality. If there is some sol,d such that∑
e∈E dexe > 2 · sol(d) + r, then the regret of the fractional solution against a walk on a

spanning tree contained in sol (which has cost at most 2 · sol(d) in realization d) must be
at least r, and thus its regret against T must also be at least r. This gives the following
lemma:
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Minimize r subject to

∀S ⊂ V such that ∅ ⊂ S ∩ T ⊂ T :
∑
e∈δ(S) xe ≥ 1 (4)

∀d such that de ∈ [`e, ue] :
∑
e∈E dexe ≤ opt(d) + r (5)

∀e ∈ E : xe ∈ [0, 1] (6)

Figure 2 The Robust Steiner Tree Polytope.

I Lemma 6. For any instance of robust traveling salesman there exists an algorithm RRTSP-
Oracle that given a solution (x,y, r) to (3) either:

Outputs a separating hyperplane for (3), or
Outputs “Feasible”, in which case (x,y) is feasible for the (non-robust) TSP LP and
∀d :

∑
e∈E dexe ≤ 2 · opt(d) + r.

The formal description of RRTSP-Oracle and the proof of Lemma 6 are given in the
full paper. By using the ellipsoid method with separation oracle RRTSP-Oracle and the
fact that (3) has optimum at most mr, we get a (2, 1)-robust fractional solution. Applying
Theorem 3 as well as the fact that the TSP polytope has integrality gap 3/2 (see e.g. [32])
and the TSP problem has a 3/2-approximation gives Theorem 5.

4 Algorithm for the Robust Steiner Tree Problem

In this section, our goal is to find a fractional solution to the LP in Fig. 2 for robust Steiner
tree. By Theorem 3 and known approximation/integrality gap results for Steiner Tree, this
gives the following theorem:

I Theorem 7. There exists a (2755, 64)-robust algorithm for the Steiner tree problem.

It is well-known that the standard Steiner tree polytope admits an exact separation oracle
(by solving the s, t-min-cut problem using edge weights xe for all s, t ∈ T ) so it is sufficient
to find an approximate separation oracle for the regret constraint set. Unlike tsp, we do
not know how to leverage the approximation for stt via solving an instance of mst, since
this approximation uses information about shortest paths in the stt distance which are not
well-defined when the weights are unknown. In turn, a more nuanced separation oracle and
analysis is required. We present the main ideas of the separation oracle here, and defer the
details to the full paper.

First, we create the derived instance of the Steiner tree problem which is a copy G′ of the
input graph G with edge weights uexe + `e − `exe. As noted earlier, the optimal Steiner tree
T ∗ on the derived instance maximizes the regret of the fractional solution x. However, since
Steiner tree is NP-hard, we cannot hope to exactly find T ∗. We need a Steiner tree T̂ such
that the regret caused by it can be bounded against that caused by T ∗. The difficulty is
that the regret corresponds to the total weight of edges not in the Steiner tree (plus an offset
that we will address later), whereas standard Steiner tree approximations give guarantees
in terms of the total weight of edges in the Steiner tree. We overcome this difficulty by
requiring a stricter notion of “difference approximation” – that the weight of edges T̂ \ T ∗
be bounded against those in T ∗ \ T̂ . Note that this condition ensures that not only is the
weight of edges in T̂ bounded against those in T ∗, but also that the weight of edges not in
T̂ is bounded against that of edges not in T ∗. We show the following lemma to obtain the
difference approximation:
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I Lemma 8. For any ε > 0, there exists a polynomial-time algorithm for the Steiner tree
problem such that if opt denotes the set of edges in the optimal solution and c(S) denotes
the total weight of edges in S, then for any input instance of Steiner tree, the output solution
alg satisfies c(alg \ opt) ≤ (4 + ε) · c(opt \ alg).

The algorithm proving Lemma 8 is a local search procedure proposed by [16] (who
considered the more general Steiner forest) that considers local moves of the following form:
For the current solution alg, a local move consists of adding any path f whose endpoints
are vertices in alg and whose intermediate vertices are not in alg, and then deleting from
alg a subpath a in the resulting cycle such that alg∪ f \ a remains feasible. We extend the
results in [16] by showing that such an algorithm is 4-approximate for Steiner tree. We can
further extend this argument to show that such an algorithm, in fact, satisfies the stricter
difference approximation requirement in Lemma 8 (see the full paper for details).

Recall that the regret caused by T is not exactly the weight of edges not in T , but
includes a fixed offset of

∑
e∈E(`e − `exe). If `e = 0 for all edges, i.e., the offset is 0, then

we can recover a robust algorithm from Lemma 8 alone with much better constants than
in Theorem 7 (we defer the discussion/proof of this result to the full paper). In general
though, the approximation guarantee given in Lemma 8 alone does not suffice because of
the offset. We instead rely on a stronger notion of approximation formalized in the next
lemma that provides simultaneous approximation guarantees on two sets of edge weights:
ce = uexe − `exe + `e and c′e = `e − `exe. The guarantee on `e − `exe can then be used to
handle the offset.

I Lemma 9. Let G be a graph with terminals T and two sets of edge weights c and c′.
Let sol be any Steiner tree connecting T . Let Γ′ > 1, κ > 0, and 0 < ε < 4

35 be fixed
constants. Then there exists a constant Γ (depending on Γ′, κ, ε) and an algorithm that
obtains a collection of Steiner trees alg, at least one of which (let us call it algi) satisfies:

c(algi \ sol) ≤ 4Γ · c(sol \ algi), and
c′(algi) ≤ (4Γ′ + κ+ 1 + ε) · c′(sol).

The fact that Lemma 9 generates multiple solutions (but only polynomially many) is
fine because as long as we can show that one of these solutions causes sufficient regret, our
separation oracle can just iterate over all solutions until it finds one that causes sufficient
regret.

We give a high level sketch of the proof of Lemma 9 here, and defer details to the full
paper. The algorithm uses the idea of alternate minimization, alternating between a “forward
phase” and a “backward phase”. The goal of each forward phase/backward phase pair is to
keep c′(alg) approximately fixed while obtaining a net decrease in c(alg). In the forward
phase, the algorithm greedily uses local search, choosing swaps that decrease c and increase
c′ at the best “rate of exchange” between the two costs (i.e., the maximum ratio of decrease
in c to increase in c′), until c′(alg) has increased past some upper threshold. Then, in the
backward phase, the algorithm greedily chooses swaps that decrease c′ while increasing c
at the best rate of exchange, until c′(alg) reaches some lower threshold, at which point we
start a new forward phase.

We guess the value of c′(sol) (we can run many instances of this algorithm and generate
different solutions based on different guesses for this purpose) and set the upper threshold
for c′(alg) appropriately so that we satisfy the approximation guarantee for c′. For c we
show that as long as alg is not a 4Γ-difference approximation with respect to c then a
forward/backward phase pair reduces c(alg) by a non-negligible amount (of course, if alg is
a 4Γ-difference approximation then we are done). This implies that after enough iterations,
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alg must be a 4Γ-difference approximation as c(alg) can only decrease by a bounded
amount. To show this, we claim that while alg is not a 4Γ-difference approximation, for
sufficiently large Γ the following bounds on rates of exchange hold:

For each swap in the forward phase, the ratio of decrease in c(alg) to increase in c′(alg)
is at least some constant k1 times c(alg\sol)

c′(sol\alg) .
For each swap in the backward phase, the ratio of increase in c(alg) to decrease in
c′(alg) is at most some constant k2 times c(sol\alg)

c′(alg\sol) .
Before we discuss how to prove this claim, let us see why this claim implies that a forward
phase/backward phase pair results in a net decrease in c(alg). If this claim holds, suppose we
set the lower threshold for c′(alg) to be, say, 101c′(sol). That is, throughout the backward
phase, we have c′(alg) > 101c′(sol). This lower threshold lets us rewrite our upper bound
on the rate of exchange in the backward phase in terms of the lower bound on rate of
exchange for the forward phase:

k2
c(sol \ alg)
c′(alg \ sol) ≤ k2

c(sol \ alg)
c′(alg)− c′(sol) ≤ k2

c(sol \ alg)
100c′(sol) ≤ k2

c(sol \ alg)
100c′(sol \ alg)

≤ k2
1

4Γ
c(alg \ sol)

100c′(sol \ alg) = k2

400Γk1
· k1

c(alg \ sol)
c′(sol \ alg) .

In other words, the bound in the claim for the rate of exchange in the forward phase
is larger than the bound for the backward phase by a multiplicative factor of Ω(1) · Γ.
While these bounds depend on alg and thus will change with every swap, let us make the
simplifying assumption that through one forward phase/backward phase pair these bounds
remain constant. Then, the change in c(alg) in one phase is just the rate of exchange for
that phase times the change in c′(alg), which by definition of the algorithm is roughly equal
in absolute value for the forward and backward phase. So this implies that the decrease in
c(alg) in the forward phase is Ω(1) · Γ times the increase in c(alg) in the backward phase,
i.e., the net change across the phases is a non-negligible decrease in c(alg) if Γ is sufficiently
large. Without the simplifying assumption, we can still show that the decrease in c(alg)
in the forward phase is larger than the increase in c(alg) in the backward phase for large
enough Γ using a much more technical analysis. In particular, our analysis will show there is
a net decrease as long as:

min
{

4Γ− 1
8Γ ,

(4Γ− 1)(
√

Γ− 1)(
√

Γ− 1− ε)κ
16(1 + ε)Γ2

}
− (eζ

′(4Γ′+κ+1+ε) − 1) > 0, (7)

where

ζ ′ = 4(1 + ε)Γ′

(
√

Γ′ − 1)(
√

Γ′ − 1− ε)(4Γ′ − 1)(4Γ− 1)
.

Note that for any positive ε, κ,Γ′, there exists a sufficiently large value of Γ for (7) to hold,
since as Γ→∞, we have ζ ′ → 0, so that

(eζ
′(4Γ′+κ+1+ε) − 1)→ 0 and

min
{

4Γ− 1
8Γ ,

(4Γ− 1)(
√

Γ− 1)(
√

Γ− 1− ε)κ
16(1 + ε)Γ2

}
→ min{1/2, κ/(4 + 4ε)}.

So, the same intuition holds: as long as we are willing to lose a large enough Γ value, we can
make the increase in c(alg) due to the backward phase negligible compared to the decrease
in the forward phase, giving us a net decrease.
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It remains to argue that the claimed bounds on rates of exchange hold. Let us argue the
claim for Γ = 4, although the ideas easily generalize to other choices of Γ. We do this by
generalizing the analysis of the local search algorithm. This analysis shows that if alg is a
locally optimal solution, then

c(alg \ sol) ≤ 4 · c(sol \ alg),

i.e., alg is a 4-difference approximation of sol. The contrapositive of this statement is that
if alg is not a 4-difference approximation, then there is at least one swap that will improve it
by some amount. We modify the approach of [16] by weakening the notion of locally optimal.
In particular, suppose we define a solution alg to be “approximately” locally optimal if at
least half of the (weighted) swaps between paths a in alg \ sol and paths f in sol \ alg
satisfy c(a) ≤ 2c(f) (as opposed to c(a) ≤ c(f) in a locally optimal solution; the choice of
2 for both constants here implies Γ = 4). Then a modification of the analysis of the local
search algorithm, losing an additional factor of 4, shows that if alg is approximately locally
optimal, then

c(alg \ sol) ≤ 16 · c(sol \ alg).

The contrapositive of this statement, however, has a stronger consequence than before: if alg
is not a 16-difference approximation, then a weighted half of the swaps satisfy c(a) > 2c(f),
i.e. reduce c(alg) by at least

c(a)− c(f) > c(a)− c(a)/2 = c(a)/2.

The decrease in c(alg) due to all of these swaps together is at least c(alg \ sol) times some
constant. In addition, since a swap between a and f increases c′(alg) by at most c′(f), the
total increase in c′ due to these swaps is at most c′(sol \ alg) times some other constant.
An averaging argument then gives the rate of exchange bound for the forward phase in the
claim, as desired. The rate of exchange bound for the backward phase follows analogously.

This completes the algorithm and proof summary, although more detail is needed to
formalize these arguments. Moreover, we also need to show that the algorithm runs in
polynomial time. These details are given in the full paper.

We now formally define our separation oracle RRST-Oracle in Fig. 3 and prove that it
is an approximate separation oracle in the lemma below:

I Lemma 10. Fix any Γ′ > 1, κ > 0, 0 < ε < 4/35 and let Γ be the constant given in
Lemma 9. Let α = (4Γ′ + κ + 2 + ε)4Γ + 1 and β = 4Γ. Then there exists an algorithm
RRST-Oracle that given a solution (x, r) to the LP in Fig. 2 either:

Outputs a separating hyperplane for the LP in Fig. 2, or
Outputs “Feasible”, in which case x is feasible for the (non-robust) Steiner tree LP and

∀d :
∑
e∈E

dexe ≤ α · opt(d) + β · r.

Proof. It suffices to show that if there exists d, sol such that∑
e∈E

dexe > α · sol(d) + β · r, i.e.,
∑
e∈E

dexe − α · sol(d) > β · r

then RRST-Oracle outputs a violated inequality on line 6, i.e., the algorithm finds a
Steiner tree T ′ such that∑

e/∈T ′

uexe +
∑
e∈T ′

`exe −
∑
e∈T ′

`e > r.
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RRST-Oracle(G(V,E), {[`e, ue]}e∈E , (x, r))
Data: Undirected graph G(V,E), lower and upper bounds on edge lengths

{[`e, ue]}e∈E , solution (x = {xe}e∈E , r) to the LP in Fig. 2
1 Check all constraints of the LP in Fig. 2 except regret constraint set, return any

violated constraint that is found;
2 G′ ← copy of G where ce = uexe − `exe + `e, c′e = `e − `exe;
3 alg← output of algorithm from Lemma 9 on G′;
4 for algi ∈ alg do
5 if

∑
e/∈algi

uexe +
∑
e∈algi

`exe −
∑
e∈algi

`e > r then
6 return

∑
e/∈algi

uexe +
∑
e∈algi

`exe −
∑
e∈algi

`e ≤ r;
7 end
8 end
9 return “Feasible”;

Figure 3 Separation Oracle for LP in Fig. 2.

Notice that in the inequality∑
e∈E

dexe − α · sol(d) > β · r,

replacing d with d′ where d′e = `e when e ∈ sol and d′e = ue when e /∈ sol can only increase
the left hand side. So replacing d with d′ and rearranging terms, we have

∑
e∈sol

`exe +
∑
e/∈sol

uexe > α
∑
e∈sol

`e + β · r =
∑
e∈sol

`e +
[

(α− 1)
∑
e∈sol

`e + β · r

]
.

In particular, the regret of the fractional solution against sol is at least (α−1)
∑
e∈sol `e+β ·r.

Let T ′ be the Steiner tree satisfying the conditions of Lemma 9 with ce = uexe− `exe+ `e
and c′e = `e − `exe. Let E0 = E \ (sol ∪ T ′), ES = sol \ T ′, and ET = T ′ \ sol. Let c(E′)
for E′ = E0, ES , ET denote

∑
e∈E′(uexe− `exe + `e), i.e., the total weight of the edges E′ in

G′. Now, note that the regret of the fractional solution against a solution using edges E′ is:∑
e/∈E′

uexe +
∑
e∈E′

`exe −
∑
e∈E′

`e =
∑
e/∈E′

(uexe − `exe + `e)−
∑
e∈E

(`e − `exe)

= c(E \ E′)−
∑
e∈E

(`e − `exe).

Plugging in E′ = sol, we then get that:

c(E0) + c(ET )−
∑
e∈E

(`e − `exe) > (α− 1)
∑
e∈sol

`e + β · r.

Isolating c(ET ) then gives:

c(ET ) > (α− 1)
∑
e∈sol

`e + β · r −
∑
e∈E0

(uexe − `exe + `e) +
∑
e∈E

(`e − `exe)

= (α− 1)
∑
e∈sol

`e + β · r −
∑
e∈E0

uexe +
∑
e/∈E0

(`e − `exe).
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Since β = 4Γ, Lemma 9 along with an appropriate choice of ε gives that c(ET ) ≤ βc(ES),
and thus:

c(ES) > 1
β

(α− 1)
∑
e∈sol

`e + β · r −
∑
e∈E0

uexe +
∑
e/∈E0

(`e − `exe)

 .
Recall that our goal is to show that c(E0) + c(ES)−

∑
e∈E(`e − `exe) > r, i.e., that the

regret of the fractional solution against T ′ is at least r. Adding c(E0)−
∑
e∈E(`e − `exe) to

both sides of the previous inequality, we can lower bound c(E0) + c(ES)−
∑
e∈E(`e − `exe)

as follows:

c(E0) + c(ES)−
∑
e∈E

(`e − `exe)

>
1
β

(α− 1)
∑
e∈sol

`e + β · r −
∑
e∈E0

uexe +
∑
e/∈E0

(`e − `exe)


+

∑
e∈E0

(uexe − `exe + `e)−
∑
e∈E

(`e − `exe)

= r + α− 1
β

∑
e∈sol

`e + 1
β

∑
e/∈E0

(`e − `exe) + β − 1
β

∑
e∈E0

uexe −
∑
e/∈E0

(`e − `exe)

≥ r + α− 1− β
β

∑
e∈sol

`e + 1
β

∑
e/∈E0

(`e − `exe) + β − 1
β

∑
e∈E0

uexe −
∑
e∈ET

(`e − `exe) ≥ r.

Here, the last inequality holds because by our setting of α, we have

α− 1− β
β

= 4Γ′ + κ+ 1 + ε,

and thus Lemma 9 gives that∑
e∈ET

(`e − `exe) ≤
α− 1− β

β

∑
e∈sol

(`e − `exe) ≤
α− 1− β

β

∑
e∈sol

`e. J

By using Lemma 10 with the ellipsoid method and the fact that the LP optimum is
at most mr, we get an (α, β)-robust fractional solution. Then, Theorem 3 and known
approximation/integrality gap results give us the following theorem, which with appropriate
choice of constants gives Theorem 7:

I Theorem 11. Fix any Γ′ > 1, κ > 0, 0 < ε < 4/35 and let Γ be the constant given in
Lemma 9. Let α = (4Γ′ + κ+ 2 + ε)4Γ + 1 and β = 4Γ. Then there exists a polynomial-time
(2α ln 4 + ε, 2β ln 4 + ln 4 + ε)-robust algorithm for the Steiner tree problem.

5 Lower Bounds

To contextualize our approximation guarantees, we give the following generalized hardness
result for a family of problems which includes many graph optimization problems:

I Theorem 12. Let P be any robust covering problem whose input includes a weighted graph
G where the lengths de of the edges are given as ranges [`e, ue] and for which the non-robust
version of the problem, P ′, has the following properties:
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A solution to an instance of P ′ can be written as a (multi-)set S of edges in G, and has
cost

∑
e∈S de.

Given an input including G to P ′, there is a polynomial-time approximation-preserving
reduction from solving P ′ on this input to solving P ′ on some input including G′, where
G′ is the graph formed by taking G, adding a new vertex v∗, and adding a single edge
from v∗ to some v ∈ V of weight 0.
For any input including G to P ′, given any spanning tree T of G, there exists a feasible
solution only including edges from T .

Then, if there exists a polynomial time (α, β)-robust algorithm for P, there exists a
polynomial-time β-approximation algorithm for P.

Before proving Theorem 12, we note that robust traveling salesman and robust Steiner
tree are examples of problems that Theorem 12 implicitly gives lower bounds for. For both
problems, the first property clearly holds.

For traveling salesman, given any input G, any solution to the problem on input G′
as described in Theorem 12 can be turned into a solution of the same cost on input G by
removing the new vertex v∗ (since v∗ was distance 0 from v, removing v∗ does not affect the
length of any tour), giving the second property. For any spanning tree of G, a walk on the
spanning tree gives a valid TSP tour, giving the third property.

For Steiner tree, for the input with graph G′ and the same terminal set, for any solution
containing the edge (v, v∗) we can remove this edge and get a solution for the input with
graph G that is feasible and of the same cost. Otherwise, the solution is already a solution
for the input with graph G that is feasible and of the same cost, so the second property
holds. Any spanning tree is a feasible Steiner tree, giving the third property.

We now give the proof of Theorem 12.

Proof of Theorem 12. Suppose there exists a polynomial time (α, β)-robust algorithm A

for P. The β-approximation algorithm for P ′ is as follows:
1. From the input instance I of P where the graph is G, use the approximation-preserving

reduction (that must exist by the second property of the theorem) to construct instance
I ′ of P ′ where the graph is G′.

2. Construct an instance I ′′ of P from I ′ as follows: For all edges in G′, their length is fixed
to their length in I ′. In addition, we add a “special” edge from v∗ to all vertices besides
v with length range [0,∞]2.

3. Run A on I ′′ to get a solution sol. Treat this solution as a solution to I ′ (we will show it
only uses edges that appear in I). Use the approximation-preserving reduction to convert
sol into a solution for I and output this solution.

Let O denote the cost of the optimal solution to I ′. Then, mr ≤ O. To see why, note
that the optimal solution to I ′ has cost O in all realizations of demands since it only uses
edges of fixed cost, and thus its regret is at most O. This also implies that for all d, opt(d)
is finite. Then for all d, sol(d) ≤ α · opt(d) + β ·mr, i.e. sol(d) is finite in all realizations
of demands, so sol does not include any special edges, as any solution with a special edge
has infinite cost in some realization of demands.

Now consider the realization of demands d where all special edges have length 0. The
special edges and the edge (v, v∗) span G′, so by the third property of P ′ in the theorem
statement there is a solution using only cost 0 edges in this realization, i.e. opt(d) = 0.

2 We use ∞ to simplify the proof, but it can be replaced with a sufficiently large finite number. For
example, the total weight of all edges in G suffices and has small bit complexity.
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Then in this realization, sol(d) ≤ α · opt(d) + β · mr ≤ β · O. But since sol does not
include any special edges, and all edges besides special edges have fixed cost and their cost
is the same in I ′′ as in I ′, sol(d) also is the cost of sol in instance I ′, i.e. sol(d) is a
β-approximation for I ′. Since the reduction from I to I ′ is approximation-preserving, we
also get a β-approximation for I. J

From [11, 22] we then get the following hardness results:

I Corollary 13. Finding an (α, β)-robust solution for Steiner tree where β < 96/95 is
NP-hard.

I Corollary 14. Finding an (α, β)-robust solution for TSP where β < 121/120 is NP-hard.

6 Conclusion

In this paper, we designed constant approximation algorithms for the robust Steiner tree
and traveling salesman problems. To the best of our knowledge, this is the first instance of
robust polynomial-time algorithms being developed for NP-complete graph problems. While
our approximation bounds for tsp are small constants, that for stt are very large constants.
A natural question is whether these constants can be made smaller, e.g. of the same scale
as classic approximation bounds for stt. While we did not seek to optimize our constants,
obtaining truly small constants for stt appears to be beyond our techniques, and is an
interesting open question. More generally, robust algorithms are a key component in the
area of optimization under uncertainty that is of much practical and theoretical significance.
We hope that our work will lead to more research in robust algorithms for other fundamental
problems in combinatorial optimization, particularly in graph algorithms.
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Abstract
We study interactive proof systems (IPSes) in a strong adversarial setting where the machines of
honest parties might be corrupted and under control of the adversary. Our aim is to answer the
following, seemingly paradoxical, questions:

Can Peggy convince Vic of the veracity of an NP statement, without leaking any information
about the witness even in case Vic is malicious and Peggy does not trust her computer?
Can we avoid that Peggy fools Vic into accepting false statements, even if Peggy is malicious
and Vic does not trust her computer?

At EUROCRYPT 2015, Mironov and Stephens-Davidowitz introduced cryptographic reverse firewalls
(RFs) as an attractive approach to tackling such questions. Intuitively, a RF for Peggy/Vic is an
external party that sits between Peggy/Vic and the outside world and whose scope is to sanitize
Peggy’s/Vic’s incoming and outgoing messages in the face of subversion of her/his computer, e.g. in
order to destroy subliminal channels.

In this paper, we put forward several natural security properties for RFs in the concrete setting
of IPSes. As our main contribution, we construct efficient RFs for different IPSes derived from a
large class of Sigma protocols that we call malleable.

A nice feature of our design is that it is completely transparent, in the sense that our RFs can
be directly applied to already deployed IPSes, without the need to re-implement them.
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1 Introduction

An interactive proof system (IPS) Π = (P,V) allows a prover P to convince a verifier V about
the veracity of a public statement x ∈ L, where L is an NP language and where both P
and V are modeled as interactive PPT machines. The prover is facilitated by possessing a
witness w to the fact that, indeed, x ∈ L, and the interaction with the verifier may consist of
several rounds of communication, at the end of which the verifier outputs a verdict on the
membership of x in L.
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In order to be useful, an IPS should satisfy the following properties:
Completeness: If x ∈ L, the honest prover (almost) always convinces the honest verifier.
Soundness: If x 6∈ L, no (computationally bounded) malicious prover can convince the
honest verifier that x ∈ L. An even stronger guarantee, known as knowledge soundness [9],
is to require that the only way a prover can convince the honest verifier that x ∈ L is to
“know” a valid witness w corresponding to x. Such proofs1 are called proofs of knowledge
(PoKs).
Zero Knowledge (ZK): A valid proof reveals nothing beyond the fact that x ∈ L, and
thus in particular it leaks no information about the witness w, even in case the proof
is conducted in the presence of a (computationally bounded) malicious verifier [36]. A
weaker guarantee, known as witness indistinguishability (WI) [24], is that, whenever there
are multiple witnesses attesting that x ∈ L, no (computationally bounded) malicious
verifier can distinguish whether a proof is conducted using either of two witnesses.

One of the motivations for studying IPSes with the above properties is that they are
ubiquitous in cryptography, with applications ranging from identification protocols [24],
blind digital signatures [42], and electronic voting [16], to general-purpose maliciously secure
multi-party computation [35].

1.1 Sigma Protocols
While WI/ZK PoKs exist for all of NP, based on minimal cryptographic assumptions [23, 34,
33], efficiency is a different story. Fortunately, it is possible to design practical interactive
proofs for specific languages, typically in the form of so-called Sigma protocols. Briefly, a
Sigma protocol is a special type of IPS consisting of just three rounds, where the prover sends
a first message α (the commitment), the verifier sends a random string β (the challenge),
and finally the prover forwards a last message γ (the response). Sigma protocols satisfy two
main properties: The first one, known as special soundness, is a strong form of knowledge
soundness; the second one, known as honest-verifier zero knowledge (HVZK), is a weak form
of the zero knowledge property that only holds against honest-but-curious verifiers.

The applications of Sigma protocols to cryptographic constructions are countless (see,
e.g., [25, 17, 48, 22, 43]). These results are perhaps surprising, as Sigma protocols only satisfy
HVZK and thus guarantee no security in the presence of malicious verifiers. In some cases,
the solution to this apparent paradox is due to a beautiful technique put forward by Cramer,
Damgård, and Schoenmakers [15], which allows to add WI to any Sigma protocol. Moreover,
it is relatively easy to transform any Sigma protocol into an interactive ZK PoK at the cost
of adding a single round of interaction [33].

1.2 Our Question
The standard definitions of security for IPSes (implicitly) rely on the assumption that honest
parties can fully trust their machines. In practice, however, such an assumption may just
be too optimistic, as witnessed by the revelations of Edward Snowden about subversion of
cryptographic standards [45, 7], and in light of the numerous (seemingly accidental) bugs in
widespread pieces of cryptographic software [38, 1, 2].

1 Sometimes, the term “proof” is used to refer to statistically sound IPSes, while computationally sound
IPSes are typically called “arguments”.
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Motivated by the above incidents, we ask the following question which constitutes the
main source of inspiration for this work:

Can we design practical interactive proofs that remain secure even if the machines of
the honest parties running them have been tampered with?

In order to see why the above question is well motivated and not trivial, let us analyze
the dramatic consequences of subverting the prover of ZK IPSes. Clearly, the problem of
subversion-resistant interactive zero knowledge is just impossible in its utmost generality, as
a subverted prover could just reveal the witness to the verifier. However, one may argue that
these kind of attacks are easily detectable, and thus can be avoided.

The problem becomes more interesting if we restrict the subversion to be undetectable,
as suggested by Bellare, Paterson, and Rogaway [11] in their seminal work on subversion of
symmetric encryption, where the authors show how to subvert any sufficiently randomized
cipher in an undetectable manner, using rejection sampling. A moment of reflection shows
that their attack can be adapted to the case of IPSes.2 The solution proposed by [11] is to
rely on deterministic symmetric encryption. Unfortunately, this approach is not viable for
the case of IPSes, as it is well-known that interactive proofs with deterministic provers can
be zero knowledge only for trivial languages [32, §4.5].

Reverse firewalls

The above described undetectable attacks show that the problem of designing IPSes that
remain secure even when run on untrusted machines is simply impossible if we are not
willing to make any further assumption. In this paper, we study how to tackle subversion
attacks against interactive proofs in the framework of “cryptographic reverse firewalls (RFs)”,
introduced by Mironov and Stephens-Davidowitz [40]. In such a setting, both the prover and
the verifier are equipped with their own RF W, also modeled as an interactive PPT machine,
whose scope is solely to sanitize the parties’ incoming and outgoing messages in the face of
subversion.

Importantly, neither the prover nor the verifier put any trust in the RF, meaning that they
are not allowed to share secrets with the firewall itself. The hope is that an uncorrupted3 RF
can provide meaningful security guarantees even in case the honest prover’s and/or verifier’s
machines have been tampered with. Note that a RF can never “create security”, as it does
not even know the inputs to the protocol, but at best can preserve the security guarantees
satisfied by the initial IPS. At the same time, the RF should not ruin the functionality of the
underlying IPS, in the sense that the sanitized IPS should still work in case no subversion
takes place.

Mironov and Stephens-Davidowitz construct general-purpose RFs that can be used in
order to preserve both functionality and security of any two-party protocol. It is important
to note that since ZK/WI IPSes are a special case of secure two-party computation, their
RF constructions already seem to solve our problem.4 However, the solutions in [40] are not

2 In particular, a subverted prover with a hardwired secret key k for a pseudorandom function Fk(·),
could sample the random coins r(i) needed to generate the honest prover’s message m(i) (for round
i ∈ N) multiple times, until Fk(m(i)) leaks one bit of the witness. This attack works provided that at
least one of the prover’s messages has high-enough min-entropy.

3 Clearly, if both the machine of the honest party and the firewall are corrupted, there is no hope for
security. On the other hand, in case the machine is honest and the firewall is corrupt, the underlying
protocol is still secure, since we can simply think of the RF as being part of the adversary [21].

4 At least to some extent, since, strictly speaking, their results for IPSes are incomparable to ours. We
refer the reader to §5.1 for more details.
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practical. In particular, one of their RFs increases the round complexity of the initial IPS,
and, more importantly, it requires to carry out the underlying IPS in the encrypted domain,
thus requiring to completely change the original protocol. In contrast, we seek constructions
of RFs that can be applied directly to existing IPSes, without adding any overhead, and
without the need to re-implement them.

2 Reverse Firewalls for Interactive Proofs

In this section, we give security definitions for RFs applied to IPSes. Our notions can be
seen as special cases of the generic framework by Mironov and Stephens-Davidowitz [40],
who defined security of RFs for the more general case of arbitrary two-party protocols.

Let Π = (P,V) be an IPS for a relation R. A cryptographic reverse firewall is an external
party W that can be attached either to the prover P or to the verifier V, whose scope is
to sanitize incoming and outgoing messages in the face of parties’ subversion. Importantly,
the RF is allowed to keep its own state but cannot share state with any of the parties.
Similarly to [40], we model an interactive Turing machine M as a triple of algorithms
M := (Mnxt,Mrec,Mout) specified as follows: (i) Algorithm Mnxt takes as input the current
state and outputs the next message to be sent; (ii) Algorithm Mrec takes as input an incoming
message, and updates the state; (iii) Algorithm Mout takes as input the final state at the
completion of the protocol, and returns a bit.

I Definition 1 (RF for IPSes). Let Π = (P,V) be an IPS for a relation R. A cryptographic
reverse firewall (RF) for Π is a stateful algorithm W that takes as input a message, its state,
and outputs a sanitized message, together with an updated state. For an interactive Turing
machine M = (Mnxt,Mrec,Mout) ∈ {P,V}, and RF W, the sanitized machine W ◦M := M̂ =
(M̂nxt, M̂rec, M̂out) is specified as follows:

M̂nxt(σ) := W(Mnxt(σ))

M̂rec(σ,m) := Mrec(σ,W(m))

M̂out(σ) := Mout(σ).

As our first contribution, we put forward several natural properties that a RF for an IPS
might satisfy. In particular, we consider the following notions (see the full version [29] for
more formal definitions).

Completeness preservation: The sanitized IPS (i.e., the IPS obtained by sanitizing both
the honest prover’s and the honest verifier’s messages) still satisfies completeness.
Strong soundness preservation: Whenever x 6∈ L, no malicious prover can convince the
verifier that x ∈ L, even if the verifier’s implementation has been arbitrarily subverted.
Strong ZK preservation: A valid proof reveals nothing beyond the fact that x ∈ L, even
in case the proof is conducted in the presence of a malicious verifier talking to a prover
whose implementation has been arbitrarily subverted.
Strong WI preservation: Whenever there are multiple witnesses attesting that x ∈ L, no
malicious verifier talking to a prover whose implementation has been arbitrarily subverted
can distinguish whether a proof is conducted using either of two witnesses.
Strong exfiltration resistance for the prover (resp. verifier): Transcripts produced by
running the sanitized IPS in the presence of a malicious verifier (resp. prover) talking
to a prover (resp. verifier) whose implementation has been arbitrarily subverted are
indistinguishable to transcripts produced by running the sanitized IPS in the presence of
a malicious verifier (resp. prover) talking to the honest prover (resp. verifier).
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For each of the above properties (except for completeness), we also consider a weak variant
which only holds w.r.t. functionality-maintaining provers/verifiers. Intuitively, a prover is
functionality maintaining if, upon input a valid statement/witness pair, it still convinces the
honest verifier with overwhelming probability. Similarly, a verifier is functionality maintaining
if, upon input a valid statement, it still accepts with overwhelming probability in a protocol
run with the honest prover.

What is possible and what is impossible

A moment of reflection shows that soundness preservation is impossible to achieve. In fact,
an arbitrarily subverted verifier might always5 output one, thus automatically accepting
both true and false statements. Such a verifier is still functionality maintaining,6 and thus
this simple attack even rules out weak soundness preservation. One way to circumvent
this impossibility would be to only consider partial subversion, i.e. split the verifier into
two components, one for computing the next messages in the protocol, and the other one
for determining the final verdict on the veracity of a statement; hence, assume the latter
component to be untamperable.

Turning to subversion of the prover, consider the subverted prover that always outputs
the all-zero string. The soundness property of the underlying IPS implies that, for any RF
and for any false statement x 6∈ L, a sanitized transcript in this case can never be accepting.
Moreover, assuming the language L is non-trivial, the latter holds true even in case x is a
true statement, which in turn rules out strong exfiltration resistance. For similar reasons,
strong ZK/WI preservation are also impossible to achieve.

3 Firewall Constructions from Malleable Sigma Protocols

As our second contribution, we formalize a class of Sigma protocols which admit simple, and
very efficient, RFs for the prover. (See the full version [29] for similar constructions dealing
with functionality-maintaining subversion of the verifier.) The main idea is to use the RF
to re-randomize the prover’s messages, in order to destroy any potential subliminal channel
signaling information about the witness. The difficulty, though, is that such re-randomization
must be carried out without knowing a witness, and while at the same time preserving the
completeness property of the underlying IPS.

For the sake of concreteness, let us describe our firewall applied to the classical Sigma
protocol for proving knowledge of a discrete logarithm [49]. Here, the statement consists of a
description of a cyclic group G with generator g and prime order q, together with a value
x ∈ G such that x = gw for some w ∈ Zq. The prover’s first message is a random group
element α = ga ∈ G. Finally, the prover’s last message is γ = a− w · β, where β ∈ Zq is the
verifier’s challenge; the verifier accepts (α, β, γ) if and only if gγ = α · x−β . Our RF sanitizes
the messages α and γ from a possibly subverted implementation of the prover as follows:

α̂ = α · gσ

γ̂ = γ + σ,

for random σ ∈ Zq. Note that gγ̂ = ga · gσ · x−β = α̂ · x−β , and thus the RF preserves
completeness.

5 If one insists on undetectability, the subverted verifier may output 1 upon some hard-wired, randomly
chosen, false statement x 6∈ L.

6 The latter is because completeness is a guarantee that only concerns true statements.
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Prover(x,w) Reverse Firewall Verifier(x)

α = P1(x,w; a)
α−−−−−−−−−−→ (α̂, σ)←$ Maul(α) α̂−−−−−−−−−−→

β←$ {0, 1}`
β←−−−−−−−−−− β←−−−−−−−−−−

γ = P2(x,w, β, a)
γ−−−−−−−−−−→ γ̂ = Bal(γ, σ) γ̂−−−−−−−−−−→

V(x, (α̂, β, γ̂)) ?= 1

Figure 1 Cryptographic reverse firewall for a malleable Sigma protocol.

We now sketch the proof of weak HVZK preservation. Observe that for any α̃ = gã sent
by a functionality-maintaining subverted prover, the distribution of α̂ = gã+σ is uniform
over G and independent of α̃, ã, and in fact it is identical to the distribution of α in an
honest run of the original Sigma protocol (without the firewall). As for γ̂, note that if there
would be two possible values γ, γ′ which make both τ = (α, β, γ) and τ ′ = (α, β, γ′) valid
transcripts, the choice of which response to pick could be used by a functionality-maintaining
subverted prover as a subliminal channel signaling information about the witness. Hence,
we exploit the fact that for any prefix α, β, there exists a unique response γ such that the
verifier accepts upon input x and (α, β, γ).

It follows that the distribution of γ̂ is identical to that of γ in an honest run of the
original Sigma protocol (without the firewall). Putting it all together, we have shown that
the distribution of a sanitized transcript τ̂ = (α̂, β, γ̂) is identical to the distribution of an
honest transcript τ = (α, β, γ). Thus, weak HVZK preservation follows by the fact that
Schnorr’s Sigma protocol is HVZK.

3.1 HVZK Preservation
Let us now explain how to generalize the above idea to a large class of Sigma protocols
that we call malleable. In what follows, given a Sigma protocol Σ = (P,V), we denote by
P1 and P2 the algorithms that compute, respectively, the first prover’s message α, and the
last prover’s message (response) γ. The challenge space is represented7 as {0, 1}`, so that
there are 2` possible challenges, and we write V for the algorithm that the verifier runs upon
statement x and transcript τ to make its final decision. Let A be the space of all possible
prover’s first messages; we assume that membership in A can be tested efficiently, so that V
always outputs ⊥ whenever α 6∈ A.

As for the case of Schnorr’s Sigma protocol, an additional requirement that we need is
that the prover’s responses are unique, meaning that for all x ∈ L, and for any α ∈ A and
β ∈ {0, 1}`, there exists at most one8 value γ such that V(x, (α, β, γ)) = 1.

Intuitively, a Sigma protocol is malleable if there exists an efficient algorithm Maul for
randomizing the prover’s first message α into a value α̂ which is distributed identically to
the first message of an honest prover. Moreover, for any challenge β, given the coins used
to randomize α and any response γ yielding a valid transcript τ = (α, β, γ), there exists an

7 In the case of Schnorr’s Sigma protocol, the challenge space is a cyclic group. However, we can embed
such group in {0, 1}` for some ` ∈ N.

8 This property is met by many natural Sigma protocols, and was already considered in several previous
works [26, 22, 51].
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Prover(x,w) Verifier(x)

pk←$ Gen(1λ) pk−−−−−−−−→
β←$ {0, 1}`

(c, d)←$ Com(pk, β)
c←−−−−−−−−−−

α = P1(x,w; a)
α−−−−−−−−−−→
d←−−−−−−−−−−

β = Open(pk, c, d)
If β 6= ⊥, then γ = P2(x,w, α, β, a)
Else, γ = ⊥

γ−−−−−−−−−−→
V(x, (α, β, γ)) ?= 1

Figure 2 Sigma protocol compiled with standard techniques to obtain full zero knowledge.

efficient algorithm Bal for computing a balanced response γ̂ such that (α̂, β, γ̂) is also valid.
As we show in the full version [29], many natural Sigma protocols are already malleable.
In particular, the latter holds true for Maurer’s unifying protocol [39], which includes the
protocols by Fiat-Shamir [25], Guillou-Quisquater [37], Schnorr [49], Okamoto [41], and many
others as special cases.

Our RF construction is depicted in Fig. 1. Intuitively, the firewall uses the malleability
property of the underlying Sigma protocol in order to re-randomize the prover’s first and
last messages, in such a way that a functionality-maintaining subverted prover cannot signal
information about the witness through them. The theorem below, whose proof appears in
the full version [29], establishes its security.

I Theorem 2. Let Σ = (P = (P1,P2),V) be a malleable Sigma protocol with unique responses,
for a relation R. The RF W of Fig. 1 preserves completeness, and is weakly HVZK preserving
for the prover.

3.2 ZK Preservation
As Sigma protocols are not in general zero knowledge, there is no hope to prove that the
above firewall weakly preserves ZK. However, a standard trick [33] allows to transform any
Sigma protocol into a 5-round IPS satisfying ZK. The idea is to let the prover send the public
key pk of a commitment scheme (Gen,Com,Open) during the first round. Then, during the
second round, the verifier forwards to the prover a commitment c to the challenge β. Finally,
the Sigma protocol is executed as before with the difference that the verifier also needs to
open the commitment, with the prover aborting if the opening is invalid. We depict such a
modified protocol in Fig. 2.

In order to build a RF for this IPS, we need to sanitize the additional messages from the
(possibly subverted, but functionality-maintaining) prover.9 We do so by relying on a special
type of key-malleable commitment, which intuitively allows to maul any public key pk (via
an algorithm MaulKey) into a uniformly random public key p̂k, in such a way that, given
a commitment c with opening d w.r.t. p̂k, it is possible to map (c, d) into a commitment

9 The other messages are sanitized as before, i.e. we still exploit the fact that the underlying Sigma
protocol is malleable.
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Prover(x,w) ZK Reverse Firewall Verifier(x)

pk←$ Gen(1λ) pk−−−−−−−−→ (p̂k, ρ)←$ MaulKey(pk) p̂k−−−−−−−−→
β←$ {0, 1}`

(c, d)←$ Com(p̂k, β)
ĉ←−−−−− ĉ←$ MaulCom(pk, c, ρ) c←−−−−−−−

α = P1(x,w; a)
α−−−−−→ (α̂, σ)←$ Maul(α) α̂−−−−−−−−→
d̂←−−−−− d̂ = BalOpen(d, ρ) d←−−−−−−−

β = Open(pk, ĉ, d̂)
If β 6= ⊥, then
γ = P2(x,w, β, a)

γ−−−−−−→
β = Open(pk, ĉ, d̂)

If β = ⊥, then γ̂ = ⊥
Else, γ̂ = Bal(γ, σ)

γ̂−−−−−−−→
V(x, (α̂, β, γ̂)) ?= 1

Figure 3 Prover’s RF for the protocol in Fig. 2.

ĉ with opening d̂ w.r.t. pk, without changing the message inside the commitment. We
denote by MaulCom and BalOpen, respectively, the algorithms for mauling the commitment
c and the opening d, and additionally require that the distribution of mauled public keys
and commitments is identical, respectively, to that of honestly computed public keys and
commitments. As we show in the full version [29], the standard Pedersen’s commitment [44]
is easily seen to be key malleable, thus yielding a concrete instantiation under the Discrete
Logarithm assumption.

Our RF for the protocol of Fig. 2 is depicted in Fig. 3. The theorem below, whose proof
appears in the full version [29], establishes its security.

I Theorem 3. Let Σ = (P = (P1,P2),V) be a malleable Sigma protocol with unique responses,
for a relation R. Let Γ = (Gen,Com,Open) be a key-malleable commitment scheme with
message space {0, 1}`. The RF W of Fig. 3 preserves completeness, and moreover is weakly
exfiltration resistant and weakly zero-knowledge preserving for the prover.

I Remark 4 (On knowledge soundness). The IPS of Fig. 2 satisfies soundness, but is not in
general a proof of knowledge. However, we would like to note that the prover’s firewall still
works for the standard transformation of a Sigma protocol into a zero-knowledge proof of
knowledge. In such a transformation, a trapdoor commitment scheme is used to commit to
the verifier’s challenge. Then, after the verifier decommits, the prover sends the trapdoor to
the verifier. This allows an extractor to learn the trapdoor, rewind the prover, and open the
commitment to a different challenge, thus learning the response for two different challenges,
which allows it to obtain a witness using special soundness.

The prover’s RF for this protocol stays the same, except that it additionally needs to
provide a trapdoor for the mauled public key p̂k given a trapdoor for the original public key
pk. This is possible, for instance, using Pedersen’s commitment, where given a public key
pk = (g, h = gk) with trapdoor k, we can maul the key to (ĝ = gt1 , ĥ = ht2) for random t1, t2.
Given the trapdoor k for the key pk, the trapdoor for the mauled key p̂k can be computed
as t2t−1

1 k.
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4 Firewalls for Proving Compound Statements

In this section, we show how to construct firewalls for Sigma protocols that prove compound
statements.

Given two Sigma protocols Σ0 and Σ1 for NP languages L0 and L1, it is easy to obtain a
Sigma protocol ΣAND for the NP language LAND = {(x0, x1) : x0 ∈ L0 ∧ x1 ∈ L1} by simply
running Σ0 and Σ1 in parallel, with the verifier sending a single challenge. In a similar vein,
the OR technique by Cramer, Damgård, and Schoenmakers [15] allows to obtain a Sigma
protocol ΣOR for the NP language LOR = {(x0, x1) : x0 ∈ L0 ∨ x1 ∈ L1}. Importantly, if
Σ0 and Σ1 are both perfect HVZK, ΣOR satisfies perfect WI. On the other hand, Garay et
al. [30] showed that if Σ0 and Σ1 are computational HVZK, ΣOR satisfies computational WI,
although the latter holds only in case both statements x0, x1 in the definition of language
LOR are true (but the prover knows either a witness for x0 or for x1).

As long as Σ0 and Σ1 are malleable, it is easy to build RFs for ΣAND and ΣOR using
our techniques. The RF for ΣAND weakly preserves HVZK, whereas the RF for ΣOR weakly
preserves both HVZK and WI.

4.1 AND Composition
Given x0, x1, a prover wishes to prove to a verifier that x0 ∈ L0 and x1 ∈ L1. More precisely,
consider the derived relation:

RAND = {((x0, x1), (w0, w1)) : (x0, w0) ∈ R0 ∧ (x1, w1) ∈ R1}.

Let Σ0 = ((P0
1,P0

2),V0) (resp. Σ1 = ((P1
1,P1

2),V1)) be a Sigma protocol for language L0
(resp. L1). A Sigma protocol ΣAND for the relation RAND can be obtained by running the
two provers of Σ0 and Σ1 in parallel, with the verifier sending a single challenge for both
executions. Fig. 4 shows a RF for the prover of ΣAND, assuming that both Σ0 and Σ1 are
malleable. We prove the following result, whose proof appears in the full version [29].

Prover((x0, x1), (w0, w1)) Reverse Firewall Verifier(x0, x1)

α0 = P0
1(x0, w0; a0)

α1 = P1
1(x1, w1; a1)

α0,α1−−−−−−→
(α̂0, σ0)←$ Maul0(α0)
(α̂1, σ1)←$ Maul1(α1)

α̂0,α̂1−−−−−−→
β ← {0, 1}`

β←−−− β←−−−−−
γ0 = P0

2(x0, w0, β, a0)
γ1 = P1

2(x1, w1, β, a1)
γ0,γ1−−−−−−→

γ̂0 = Bal0(γ0, σ0)
γ̂1 = Bal1(γ1, σ1)

γ̂0 ,̂γ1−−−−−−→
V0(x0, (α̂0, β, γ̂0)) ?= 1
V1(x1, (α̂1, β, γ̂1)) ?= 1

Figure 4 Reverse firewall for the AND composition of Sigma protocols.
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I Theorem 5. Let Σ0 = (P0 = (P0
1,P0

2),V0) and Σ1 = (P1 = (P1
1,P1

2),V1) be malleable Sigma
protocols with unique responses, for relations R0 and R1. The RF W of Fig. 4 preserves
completeness, and is weakly HVZK preserving for the prover of the Sigma protocol ΣAND for
relation RAND.

4.2 OR Composition

Given x0, x1, a prover wishes to prove to a verifier that either x0 ∈ L0 or x1 ∈ L1 (without
revealing which one is the case). More precisely, consider the derived relation

ROR = {((x0, x1), w) : (x0, w) ∈ R0 ∨ (x1, w) ∈ R1}.

Let Σ0 = ((P0
1,P0

2),V0) (resp. Σ1 = ((P1
1,P1

2),V1)) be a Sigma protocol for language L0 (resp.
L1); we denote by S0 (resp. S1) the HVZK simulator for Σ0 (resp. Σ1). A Sigma protocol
ΣOR for the relation ROR has been constructed for the first time in [15], where the authors
showed that ΣOR satisfies both (perfect) special HVZK and (perfect) WI. We describe the
protocol ΣOR in Fig. 5, and depict our RF for the prover in Fig. 6.

Prover((x0, x1), w) Verifier(x0, x1)

αb = Pb1(xb, w; a)
(α1−b, β1−b, γ1−b)←$ S1−b(x1−b)

α0,α1−−−−−−−−−−−−−→
β←$ {0, 1}`

β←−−−−−−−−−−−−
βb = β ⊕ β1−b

γb = Pb2(xb, w, βb, a)
β0,β1,γ0,γ1−−−−−−−−−−−−−−→

β
?= β0 ⊕ β1

V0(x0, (α0, β0, γ0)) ?= 1
V1(x1, (α1, β1, γ1)) ?= 1

Figure 5 OR composition of Sigma protocols, where b ∈ {0, 1} is s.t. (xb, w) ∈ Rb.

As in the case of AND composition, we still rely on the fact that the input Sigma
protocols Σ0,Σ1 are malleable. An additional difficulty, however, stems from the fact that a
functionality maintaining prover could now try to change the distribution of the challenges
β0, β1 in such a way that, even if β0 ⊕ β1 = β, the pair (β0, β1) signals some information
about the witness w or about the hidden bit b. Intuitively, the RF in Fig. 6 tackles this attack
by randomizing the challenges β, β0, β1. The latter requires a different form of malleability
from the underlying Sigma protocols, which we dub instance-dependent malleability, where it
should be possible to maul the prover’s first message in such a way that we can later balance
the prover’s last message as well as the verifier’s challenge.

For the RF in Fig. 6, we prove the following result, whose proof appears in the full
version [29] of this paper.

I Theorem 6. Let Σ0 = (P0 = (P0
1,P0

2),V0) and Σ1 = (P1 = (P1
1,P1

2),V1) be instance-
dependent malleable Sigma protocols with unique responses, for relations R0 and R1. The
RF W of Fig. 6 preserves completeness, and is weakly HVZK/WI preserving for the prover
of the Sigma protocol ΣOR for relation ROR.
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Prover((x0, x1), w) Reverse Firewall(x0, x1) Verifier(x0, x1)

αb = P1−b
1 (xb, w; a)

(α1−b, β1−b, γ1−b)←$ S1−b(x1−b)
α0,α1−−−−−−→

ρ0, ρ1←$ {0, 1}`
(α̂0, σ0)←$ Maul0(x0, α0, ρ0)
(α̂1, σ1)←$ Maul1(x1, α1, ρ1)

α̂0,α̂1−−−−−−→
β←$ {0, 1}`

β←−−−−−
ρ = ρ0 ⊕ ρ1

β̂ = β ⊕ ρ
β̂←−−−−−−−

βb = β̂ ⊕ β1−b

γb = Pb2(xb, w, βb, a)
γ0,γ1,β0,β1−−−−−−−−−−→

β̂0 = β0 ⊕ ρ0

β̂1 = β1 ⊕ ρ1

γ̂0 = Bal0(γ0, σ0)
γ̂1 = Bal1(γ1, σ1)

γ̂0 ,̂γ1,β̂0,β̂1−−−−−−−−−−→
β

?= β̂0 ⊕ β̂1

V0(x0, (α̂0, β̂0, γ̂0)) ?= 1
V1(x1, (α̂1, β̂1, γ̂1)) ?= 1

Figure 6 Reverse Firewall for the basic OR composition of Sigma protocols, where b ∈ {0, 1} is
s.t. (xb, w) ∈ Rb.

5 Previous Work

5.1 Comparison with Mironov and Stephens-Davidowitz
In their original paper, Mironov and Stephens-Davidowitz [40] build RFs for arbitrary two-
party protocols. While their results are related to ours, since IPSes are just a special case of
two-party computation, there are some crucial differences which we highlight below.

The first RF construction sanitizes a specific combination of re-randomizable garbled
circuits and oblivious transfer, for obtaining general-purpose private function evaluation.
The second RF construction sanitizes any two-party protocol, at the price of encrypting the
full transcript under public keys that are broadcast at the beginning of the protocol. Both
constructions can be instantiated based on (variants of) the DDH assumption. When cast to
IPSes, their results yield:

(i) A RF for the prover that weakly preserves ZK. This is comparable to our RF achieving
weak ZK preservation using malleable Sigma protocols and key-malleable commitments.
However, our constructions have the advantage that we do not need to change the
initial IPS, and thus our RF can be applied directly to already existing implementations
in a fully transparent manner (and without introducing any overhead).

(ii) A RF for the prover satisfying a property called strong exfiltration resistance against
an eavesdropper, which means that exfiltration resistance holds w.r.t. an arbitrarily
subverted prover talking to the honest verifier. Note that the latter does not contradict
our impossibility result ruling out strong ZK preservation, as our attacks crucially rely
on the fact that the distinguisher can (passively) corrupt the verifier.

(iii) A RF for the verifier satisfying both strong exfiltration resistance and the following
weak guarantee: No malicious prover can find statements x0, x1 such that it can
distinguish transcripts obtained by talking to an arbitrarily subverted verifier holding
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either input x0 or input x1. Note that the latter does not contradict our impossibility
result that rules out weak soundness preservation, since none of the above guarantees
imply soundness preservation.

We observe that the above results have at least one of the following drawbacks: (i) The RF
is not transparent, i.e. it cannot be applied to the initial protocol as is; (ii) The resulting
sanitized protocol is not efficient, as we first need to encode the function being computed as
a circuit.

Our techniques allow to overcome these limitations in the concrete case of IPSes, as our
RFs are both transparent (i.e. they can be applied directly to already deployed protocols)
and efficient (i.e. the sanitized IPSes have exactly the same efficiency as the original, both in
terms of round and communication complexity). We see this as the main novelty of our work.

5.2 Additional Related Works
Besides the already mentioned constructions, RFs have also been realized in other settings
including digital signatures [5], secure message transmission and key exchange [21, 12], and
oblivious transfer [40, 12].

Moreover, a few other lines of research recently10 emerged to tackle the challenge of
protecting cryptographic algorithms against (different forms of) subversion. We review the
main ones below.

Algorithm substitution attacks

Bellare, Patterson, and Rogaway [11] studied subversion of symmetric encryption schemes in
the form of algorithm substitution attacks (ASAs). In particular, they show that undetectable
subversion of the encryption algorithm is possible, and may lead to severe security breaches;
moreover, they prove that deterministic, stateful, ciphers are secure against the same type of
ASAs. Follow-up works improved the original paper in several aspects [18, 10], and explored
the power of ASAs in other contexts, e.g. digital signatures [5], secret sharing [31], and
message authentication codes [3].

Backdoors

Another form of subversion consists of all those attacks that surreptitiously generate public
parameters (primes, curves, etc.) together with secret backdoors that allow to bypass security.
The study of this type of subversion is motivated by the DUAL_EC_DRBG PRG incident.

A formal study of parameters subversion has been considered for several primitives, includ-
ing pseudorandom generators [20, 19], hash functions [27], non-interactive zero knowledge [8],
and public-key encryption [6].

Cliptography

Russell et al. [46] (see also [47, 4]) consider a different approach to the immunization of
cryptosystems against complete subversion (i.e., when all algorithms can be subverted by the
attacker): offline/online black-box testing. This amounts to introducing an external entity,
called the watchdog, whose goal is to test, either in an online or in an offline fashion, whether
a given cryptographic implementation is compliant with its specification.

10All these research directions have their roots in the seminal works of Young and Yung [52] and
Simmons [50], in the settings of kleptography and subliminal channels.
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Hence, a cryptosystem is deemed secure against complete subversion if there exists a
universal watchdog such that, for every attacker subverting all algorithms, either the watchdog
detects subversion with high probability, or the cryptoscheme remains secure even when
using its subverted implementation.

Self-guarding

Yet another approach towards thwarting subversion is that of self-guarding [28]. The idea
here is to assume a trusted initialization phase in which the honest parties possess a genuine
implementation of the cryptosystem, before subversion takes place. This phase is used
in order to generate samples that will be exploited later, together with additional simple
operations that need to be implemented from scratch, to prevent leakage in the face of
subversion attacks.

6 Conclusion

We showed how to design cryptographic reverse firewalls allowing to preserve security of
interactive proof systems in the face of subversion. Our firewalls apply to a large class
of Sigma protocols meeting a natural malleability property, and can be extended to cover
classical applications of Sigma protocols for designing zero-knowledge proofs and for proving
compound statements.

We leave it as an intriguing open problem to design a reverse firewall for the OR
composition of Sigma protocols that are delayed input, as considered in [13, 14].
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Abstract
In this paper, we study streaming and online algorithms in the context of randomness in the input.
For several problems, a random order of the input sequence – as opposed to the worst-case order
– appears to be a necessary evil in order to prove satisfying guarantees. However, algorithmic
techniques that work under this assumption tend to be vulnerable to even small changes in the
distribution. For this reason, we propose a new adversarial injections model, in which the input
is ordered randomly, but an adversary may inject misleading elements at arbitrary positions. We
believe that studying algorithms under this much weaker assumption can lead to new insights and,
in particular, more robust algorithms. We investigate two classical combinatorial-optimization
problems in this model: Maximum matching and cardinality constrained monotone submodular
function maximization. Our main technical contribution is a novel streaming algorithm for the latter
that computes a 0.55-approximation. While the algorithm itself is clean and simple, an involved
analysis shows that it emulates a subdivision of the input stream which can be used to greatly limit
the power of the adversary.
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1 Introduction

In the streaming model, an algorithm reads the input sequentially from the input stream
while using limited memory. In particular, the algorithm is expected to use memory that is
much smaller than the input size, ideally, linear in the size of a solution. We consider the
most fundamental setting in which the algorithm is further restricted to only read the input
stream once. In this case, the algorithm cannot remember much of the input along the way,
and part of the input is irrevocably lost. Something similar happens for online algorithms:
Here, the input is given to the algorithm one element at a time and the algorithm has to
decide whether to take it into its solution or to discard it. This decision is irrevocable.
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The most common approach to analyze the quality of an algorithm in these models is
worst-case analysis. Here, an adversary has full knowledge of the algorithm’s strategy and
presents a carefully crafted instance to it, trying to make the ratio between the value of the
algorithm’s solution and that of an optimum solution (the approximation ratio; for online
algorithms called the competitive ratio) as small as possible1. While worst-case analysis gives
very robust guarantees, it is also well-known that such an analysis is often very pessimistic.
Not only are good guarantees not possible for many problems, but in many cases worst-case
instances appear quite artificial. Hence, the worst-case approximation/competitive ratio does
not necessarily represent the quantity that we want to optimize.

One way to remedy this is to weaken the power of the adversary and a popular model to
achieve that is the random-order model. Here, an adversary may pick the instance as before,
but it is presented in a uniformly-random order to the algorithm. This often allows for
significantly better provable guarantees. A prime example is the secretary problem: For the
worst-case order it is impossible to get a bounded competitive ratio whereas for the random-
order a very simple stopping rule achieves a competitive ratio of 1/e. Unfortunately, in this
model, algorithms tend to overfit and the assumption of a uniformly-random permutation of
the input is a strong one. To illustrate this point, it is instructive to consider two examples
of techniques that break apart when the random-order assumption is slightly weakened:

Several algorithms in the random-order model first read a small fraction of the input,
say, the first 1% of the input. Such an algorithm relies on the assumption that around 1%
of the elements from an optimum solution are contained in this first chunk. It computes
some statistics, summaries, or initial solutions using this chunk in order to estimate certain
properties of the optimum solution. Then in the remaining 99% of the input it uses this
knowledge to build a good solution for the problem. For examples of such streaming
algorithms, see Norouzi-Fard et al. [29] who study submodular maximization and Gamlath et
al. [13] who study maximum matching. Also Guruganesh and Singla’s [16] online algorithm
for maximum matching for bipartite graphs is of this kind. Note that these algorithms are
very sensitive to noise at the beginning of the stream.

Another common technique is to split the input into fixed parts and exploit that with
high probability the elements of the optimum solution are distributed evenly among these
parts, e.g., each part has at most one optimum element. These methods critically rely on the
assumption that each part is representative for the whole input or that the parts are in some
way homogeneous (properties of the parts are the same in expectation). Examples of such
algorithms include the streaming algorithm for maximum matching [23], and the streaming
algorithm for submodular maximization [1] that achieves the tight competitive ratio 1− 1/e
in the random-order model.

The motivation of this work is to understand whether the strong assumption of uniformly-
random order is necessary to allow for better algorithms. More specifically, we are motivated
by the following question:

Can we achieve the same guarantees as in the uniform-random order but by
algorithms that are more robust against some distortions in the input?

In the next subsection, we describe our proposed model that is defined so as to avoid
overfitting to the random-order model, and, by working in this model, our algorithms for
submodular maximization and maximum matching are more robust while maintaining good
guarantees.

1 We assume that the problem is a maximization problem.
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1.1 The Adversarial Injections Model
Our model – that we call the adversarial-injections model – lies in between the two extremes
of random-order and adversarial-order. In this model, the input elements are divided into
two sets Enoise and Egood. An adversary first picks all elements, puts each element in either
Enoise or Egood, and chooses the input order. Then the elements belonging to Egood are
permuted uniformly at random among themselves. The algorithm does not know if an
element is good or noise. We judge the quality of the solution produced by an algorithm by
comparing it to the best solution in Egood.

An equivalent description of the model is as follows. First, a set of elements is picked
by the adversary and is permuted randomly. Then, the adversary injects more elements at
positions of his choice without knowing the random permutation of the original stream2.
Comparing with the previous definition, the elements injected by the adversary correspond
to Enoise and the elements of the original stream correspond to Egood.

We denote by Eopt ⊆ Egood the elements of a fixed optimum solution of the elements
in Egood. We can assume without loss of generality that Egood = Eopt, because otherwise
elements in Egood \Eopt can be treated as those belonging to Enoise (which only strengthens
the power of the adversary).

1.2 Related Models
With a similar motivation, Kesselheim, Kleinberg, Niazadeh [21] studied the robustness of
algorithms for the secretary problem from a slightly different perspective: They considered
the case when the order of the elements is not guaranteed to be uniformly-at-random but still
contains “enough” randomness with respect to different notions such as entropy. Recently,
Esfandiari, Korula, Mirrokni [8] introduced a model where the input is a combination of
stochastic input that is picked from a distribution and adversarially ordered input. Our
model is different in the sense that the input is a combination of randomly ordered (instead
of stochastic input) and adversarially ordered elements.

Two models that are more similar to ours in the sense that the input is initially ordered
in a uniformly-random order and then scrambled by an adversary in a limited way are [15]
and [3]. First, in the streaming model, Guha and McGregor [15] introduced the notion of
a t-bounded adversary that can disturb a uniformly-random stream but has memory to
remember and delay at most t input elements at a time. Second, Bradac et al. [3] very recently
introduced a new model that they used to obtain robust online algorithms for the secretary
problem. Their model, called the Byzantine model, is very related to ours: the input is
split into two sets which exactly correspond to Egood and Enoise in the adversarial-injections
model. The adversary gets to pick the elements in both of them, but an algorithm will be
compared against only Egood. Then – this is where our models differ – the adversary chooses
an arrival time in [0, 1] for each element in Enoise. He has no control over the arrival times
of the elements in Egood, which are chosen independently and uniformly at random in [0, 1].
The algorithm does not know to which set an element belongs, but it knows the timestamp
of each element, as the element arrives. While the Byzantine model prevents certain kinds of

2 We remark that the assumption that the adversary does not know the order of the elements is important.
Otherwise, the model is equivalent to the adversarial order model for “symmetric” problems such as
the matching problem. To see this, let Eopt correspond to an optimum matching in any hard instance
under the adversarial order. Since a matching is symmetric, the adversary can inject appropriately
renamed edges depending on the order of the edges (which he without this assumption knows) and
obtain exactly the hard instance.
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overfitting (e.g., of the classical algorithm for the secretary problem), it does not tackle the
issues of the two algorithmic techniques we discussed earlier: Indeed, by time t = 0.01, we
will see around 1% of the elements from Eopt. Hence, we can still compute some estimates
based on them, but do not lose a lot when dismissing them. Likewise, we may partition the
timeline, and thereby the input, into parts such that in each part at most one element of
Eopt appears.

Hence, even if our model appears very similar to the Byzantine model, there is this
subtle, yet crucial, difference. The adversarial-injections model does not add the additional
dimension of time, and hence, does not allow for the kind of overfitting that we discussed
earlier. To further emphasize this difference, we now describe why it is strictly harder to
devise algorithms in the adversarial-injections model compared to the Byzantine model. It is
at least as hard as the Byzantine model, because any algorithm for the former also works
for the latter. This holds because the adversarial-injections model can be thought of as
the Byzantine model with additional power to the adversary and reduced power for the
algorithm: The adversary gets the additional power of setting the timestamps of elements in
Egood, but not their identities, whereas the algorithm is not allowed to see the timestamp of
any element.

To show that it is strictly harder, consider online bipartite matching. We show that
one cannot beat 1/2 in the adversarial-injections model (for further details, see Section 2.2)
whereas we observe that the (1/2 + δ)-approximation algorithm [16] for bipartite graphs and
its analysis generalizes to the Byzantine model as well. This turns out to be the case because
the algorithm in [16] runs a greedy algorithm on the first small fraction, say 1% of the input
and “augments” this solution using the remaining 99% of the input. The analysis crucially
uses the fact that 99% of the optimum elements are yet to arrive in the augmentation phase.
This can be simulated in the Byzantine model using timestamps in the online setting as one
sees 1% of Eopt in expectation.

1.3 Our Results
We consider two benchmark problems in combinatorial optimization under the adversarial-
injections model in both the streaming and the online settings, namely maximum matching
and monotone submodular maximization subject to a cardinality constraint. As we explain
next, the study of these classic problems in our new model gives interesting insights: for
many settings we can achieve more robust algorithms with similar guarantees as in the
random-order model but, perhaps surprisingly, there are also natural settings where the
adversarial-injection model turns out to be as hard as the adversarial order model.

The maximum matching problem. We first discuss the (unweighted) maximum matching
problem. Given a graph G = (V,E), a matching M is a subset of edges such that every
vertex has at most one incident edge in M . A matching of maximum cardinality is called
a maximum matching, whereas a maximal matching is one in which no edge can be added
without breaking the property of it being a matching. The goal in the maximum matching
problem is to compute a matching of maximum cardinality. Note that a maximal matching
is 1/2-approximate. Work on maximum matching has led to several important concepts and
new techniques in theoretical computer science [26, 24, 6, 19]. The combination of streaming
and random-order model was first studied by Konrad, Magniez and Mathieu [23], where edges
of the input graph arrive in the stream. We allow a streaming algorithm to have memory
O(npolylog(n)), which is called the semi-streaming setting. This is usually significantly less
than the input size, which can be as large as O(n2). This memory usage is justified, because
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even storing a solution can take Ω(n log(n)) space (Ω(log(n)) for each edge identity). The
question that Konrad et al. answered affirmatively was whether the trivial 1/2-approximation
algorithm that computes a maximal matching can be improved in the random-order model.
Since then, there has been some work on improving the constant [14, 9]. The state-of-the-art
is an approximation ratio of 6/11 ≈ 0.545 proved by Farhadi, Hajiaghayi, Mah, Rao, and
Rossi [9]. We show that beating the ratio of 1/2 is possible also in the adversarial-injections
model by building on the techniques developed for the random-order model.

I Theorem 1. There exists an absolute constant γ > 0 such that there is a semi-streaming
algorithm for maximum matching under adversarial-injections with an approximation ratio
of 1/2 + γ in expectation.

We note that beating 1/2 in adversarial-order streams is a major open problem. In this
regard, our algorithm can be viewed as a natural first step towards understanding this
question.

Now we move our attention to the online setting, where the maximum matching problem
was first studied in the seminal work of Karp, Vazirani, and Vazirani [20]. They gave a tight
(1− 1/e)-competitive algorithm for the so-called one-sided vertex arrival model which is an
important special case of the edge-arrival model considered here. Since then, the online
matching problem has received significant attention (see e.g. [4, 7, 11, 17, 14]). Unlike the
adversarial streaming setting, there is a recent hardness result due to [14] in the adversarial
online setting that the trivial ratio of 1/2 cannot be improved. We also know by [16]
that one can beat 1/2 for bipartite graphs in the random-order online setting. Hence, one
might hope at least for bipartite graphs to use existing techniques to beat 1/2 in the online
adversarial-injections setting and get a result analogous to Theorem 1. But surprisingly so,
this is not the case. We observe that the construction used in proving Theorem 3 in [14] also
implies that there does not exist an algorithm with a competitive ratio of 1/2 + ε for any
ε > 0 in the adversarial-injections model.

Maximizing a monotone submodular function subject to a cardinality constraint. In this
problem, we are given a ground set E of n elements and a monotone submodular set function
f : 2E → R>0. A function is said to be submodular, if for any S, T ⊆ E it holds that
f(S) + f(T ) > f(S ∪ T ) + f(S ∩ T ). It is monotone if f(S) 6 f(T ) for all S ⊆ T ⊆ E. The
problem we consider is to find a set S ⊆ E with |S| 6 k that maximizes f(S). We assume
that access to f is via an oracle.

In the offline setting, a simple greedy algorithm that iteratively picks the element with
the largest marginal contribution to f with respect to the current solution is (1 − 1/e)-
approximate [28]. This is tight: Any algorithm that achieves an approximation ratio of
better than (1 − 1/e) must make Ω(nk) oracle calls [27], which is enough to brute-force
over all k-size subsets. Even for maximum coverage (which is a special family of monotone
submodular functions), it is NP-hard to get an approximation algorithm with ratio better
than 1− 1/e [10].

In the random-order online setting, this problem is called the submodular secretary
problem, and an exponential time 1/e-approximation and polynomial-time (1 − 1/e)/e-
approximation algorithms are the state-of-the-art [22]. In the adversarial online setting, it is
impossible to get any bounded approximation ratio for even the very special case of picking a
maximum weight element. In this case, |Eopt| = 1 and adversarial and adversarial-injections
models coincide; hence the same hardness holds. In light of this negative result, we focus on
adversarial-injections in the streaming setting. Note that to store a solution we only need
the space for k element identities. We think of k to be much smaller than n. Hence, it is
natural to ask, whether the number of elements in memory can be independent of n.
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Table 1 : Comparison of different models for the two studied problems. Here, γ > 0 is a fixed
absolute constant and ε > 0 is any constant.

Maximum matching
Random order Adversarial Injections Adversarial order

Streaming > 6/11 [9] > 1/2 + γ 6 1− 1/e+ ε [18]
Online > 1/2 (folklore) 6 1/2 6 1/2 [14]
Submodular function maximization

Random order Adversarial Injections Adversarial order
Streaming > 1− 1/e− ε [1] > 0.55 > 1/2− ε [2]

6 1− 1/e+ ε [25] 6 1/2 [12]

For streaming algorithms in the adversarial order setting, the problem was first stud-
ied by Chakrabarti and Kale [5] where they gave a 1/4-approximation algorithm. This
was subsequently improved to 1/2 − ε by Badanidiyuru et al. [2]. Later, Norouzi-Fard
et al. [29] observed that in the random-order model this ratio can be improved to bey-
ond 1/2. Finally, Agrawal et al. [1] obtained a tight (1− 1/e)-approximation guarantee in
the random-order model.

The algorithm of Agrawal et al. [1] involves as a crucial step a partitioning the stream in
order to isolate the elements of the optimum solution. As discussed earlier, this approach
does not work under adversarial-injections. However, we note that the algorithm and analysis
by Norouzi-Fard et al. [29] can be easily modified to work under adversarial-injections as
well. Their algorithm, however, has an approximation ratio of 1/2 + 8 · 10−14. In this paper,
we remedy this weak guarantee.

I Theorem 2. There exists a 0.55-approximation algorithm that stores a number of elements
that is independent of n for maximizing a monotone submodular function with a cardinality
constraint k under adversarial-injections in the streaming setting.

We summarize and compare our results with random-order and adversarial-order models for
the problems we study in Table 1. It is interesting to see that in terms of beating 1/2, our
model in the streaming setting agrees with the random-order model and in the online setting
agrees with the adversarial-order model.

2 Matching

In this section, we consider the problem of maximum unweighted matching under adversarial
injections in both streaming and online settings where the edges of the input graph arrive
one after another.

2.1 Streaming Setting
We show that the trivial approximation ratio of 1/2 can be improved upon. We provide a
robust version of existing techniques and prove a statement about robustness of the greedy
algorithm to achieve this.

First, let us introduce some notation which we will use throughout this section. We denote
the input graph by G = (V,E), and let M∗ be a maximum matching. For any matching M ,
the union M ∪M∗ is a collection of vertex-disjoint paths and cycles. When M is clear from
the context, a path of length i > 3 in M ∪M∗ which starts and ends with an edge of M∗ is



P. Garg, S. Kale, L. Rohwedder, and O. Svensson 56:7

called an i-augmenting path. Notice that an i-augmenting path alternates between edges of
M∗ and M and that we can increase the size of M by one by taking all edges from M∗ and
removing all edges from M along this path. We say that an edge in M is 3-augmentable if it
belongs to some 3-augmenting path. Otherwise, we say it is non-3-augmentable. Also, let
M∗ = Eopt; as described in the introduction, this is without loss of generality.

As a subroutine for our algorithm we need the following procedure.

I Lemma 3 (Lemma 3.1 in [13]). There exists a streaming algorithm 3-Aug-Paths with the
following properties:
1. The algorithm is initialized with a matching M and a parameter β > 0. Then a set E of

edges is given to the algorithm one edge at a time.
2. If M ∪E contains at least β|M | vertex disjoint 3-augmenting paths, the algorithm returns

a set A of at least (β2/32)|M | vertex disjoint 3-augmenting paths. The algorithm uses
space O(|M |).

2.1.1 The Algorithm
We now describe our algorithm Match. It runs two algorithms in parallel and selects
the better of the two outputs. The first algorithm simply constructs a maximal matching
greedily by updating the variable M1. The second algorithm also constructs a matching
M

(1)
2 greedily, but it stops once M (1)

2 has |M∗|(1/2− ε) edges. We call this Phase 1. Then,
it finds 3-augmentations using the 3-Aug-Paths algorithm given by Lemma 3. Finally, it
augments the paths found to obtain a matching M2. The constant β used in 3-Aug-Paths
is optimized for the analysis and will be specified there.

Notice that here we assumed that the algorithm knows |M∗|. This assumption can be
removed using geometric guessing at a loss of an arbitrary small factor in the approximation
ratio. We refer the reader to the full version for details.

2.1.2 Overview of the Analysis
We discuss only the intuition here and refer the reader to the full version for a formal
proof. Consider the first portion of the stream until we have seen a small constant fraction
of the elements in Eopt. If the greedy matching up to this point is already close to a
1/2-approximation, this is good for the second algorithm as we are able to augment the
matching using the remaining edges of M∗. The other case is good for the first algorithm:
We will show that the greedy matching formed so far must contain a significant fraction of
the edges in M∗ which we have seen so far. If this happens, the first algorithm outputs a
matching of size a constant fraction more than |M∗|/2.

A technical challenge and novelty comes from the fact that the two events above are not
independent of the random order of Eopt. Hence, when conditioning on one event, we can no
longer assume that the order of Eopt is uniformly at random. We get around this by showing
that the greedy algorithm is robust to small changes in streams. The intuition is that in the
first part of the stream the greedy solution either is large for all permutations of Eopt or it is
small for all permutations. Hence, these are not random events depending on the order, but
two cases in which we can assume a uniform distribution.

2.2 Online Setting
Since we can improve 1/2 for the streaming setting, it is natural to hope that the existing
techniques (e.g., the approach of the previous subsection) can be applied in the online setting
as well. Surprisingly, this is not the case. In other words, the competitive ratio of 1/2 is
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optimal even for bipartite graphs. The technique from the previous subsection breaks apart,
because the algorithm constructs several candidate solutions in parallel by guessing |M∗|.
This is not a problem for a streaming algorithm, however, an online algorithm can only build
one solution.

For a formal proof, we rely on the bipartite construction used in the proof of Theorem 3
from [14]. The authors show that there is no (randomized) algorithm with a competitive
ratio of 1/2 + ε for any ε > 0. More precisely, they show that not even a good fractional
matching can be constructed online. For fractional matchings, randomization does not help
and therefore we can assume the algorithm is deterministic. The original proof is with respect
to adversarial order, but it is not hard to see that it transfers to adversarial injections.

The authors construct a bipartite instance that arrives in (up to) N rounds. In round
i, a matching of size i arrives. The algorithm does not know whether the current round is
the last one or not. Hence, it has to maintain a good approximation after each round. This
forces the algorithm to take edges that do not belong to the optimal matching and eventually
leads to a competitive ratio of 1/2. The same construction works in our model: The edges
from the optimal matching arrive in the last round and their internal order does not affect
the proof. In fact, the construction works for any order of the elements within a round. Thus,
an algorithm cannot exploit the fact that their order is randomized and therefore also cannot
do better than 1/2.

3 Submodular Maximization

In this section, we consider the problem of submodular maximization subject to a cardinality
constraint. The algorithm has query access to a monotone, submodular function f : 2E → R
over a ground set E. Moreover, f is normalized with f(∅) = 0. The goal is to compute
a set S of size at most k that maximizes f(S). We present a 0.55-approximate streaming
algorithm in the adversarial-injections model which only needs the memory to store (O(k))k
many elements. In particular, this number is independent of the length of the stream.

3.1 Notation
For e ∈ E and S ⊆ E we write S + e for the set S ∪ {e} and f(e | S) for f(S + e)− f(S).
Similarly, for A,B ⊆ E let f(A | B) := f(A ∪ B) − f(B). An equivalent definition of
submodularity to the one given in the introduction states that for any two sets S ⊆ T ⊆ E,
and e ∈ E \ T it holds that f(e | S) > f(e | T ).

We denote by σ the stream of elements E, by −∞ and ∞ the start and end of the stream.
For elements a and b, we write σ[a, b] for the interval including a and b and σ(a, b) for the
interval excluding them. Moreover, we may assume that f(∅) = 0, since otherwise, we may
replace the submodular function by f ′ : 2E → R>0, T 7→ f(T )− f(∅).

Denote the permutation of Eopt by π. Let oπi be the i’th element of Eopt in the stream
according to the order given by π. Let Oπ0 = ∅ and Oπi = {oπ1 , . . . , oπi } for all i; hence,
Eopt = Oπk for any π. Finally, let OPT = f(Oπk ).

3.2 The Algorithm
For simplicity we present an algorithm with the assumption that it knows the value OPT.
Moreover, for the set of increases in f , that is I = {f(e | S) : e ∈ E,S ⊆ E}, we assume that
|I| 6 O(k). These two assumptions can be made at a marginal cost in the approximation
ratio and an insignificant increase in memory. This follows from standard techniques. We
refer the reader to the full version for details.
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Figure 1 In this example, function f counts the dots covered by a set of rectangles. On the right,
the tree for stream σ = (A,B,C,D) and k = 2 is depicted. The labels on the edges correspond to
the increase in f . The maximal leaves are highlighted.

As a central data-structure, the algorithm maintains a rooted tree T of height at most
k. Every node except for the root stores a single element from E. The structure resembles
a prefix tree: Each node is associated with the solution, where the elements on the path
from the root to it is selected. The nodes can have at most |I| children, that is, one for each
increase. The basic idea is that for some partial solution S ⊆ E (corresponding to a node)
and two elements e, e′ with f(e | S) = f(e′ | S) we only consider one of the solutions S ∪ {e}
and S ∪ {e′}. More precisely, the algorithm starts with a tree consisting only of the root.
When it reads an element e from the stream, it adds e as a child to every node where (1) the
distance of the node to the root is smaller than k and (2) the node does not have a child
with increase f(e | S), where S is the partial solution corresponding to this particular node.

Because of (1), the solutions are always of cardinality at most k. When the stream is
read completely, the algorithm selects the best solution among all leaves. An example of the
algorithm’s behavior is given in Figure 1.

3.3 Overview of the Analysis
For analyzing the algorithm, we will use a sophisticated strategy to select one of the leaves
and only compare this leaf to the optimum. We emphasize that this selection does not have
to be computed by the algorithm. In particular, it does not need to be computable by a
streaming algorithm and it can rely on knowledge of Eopt and Enoise, which the algorithm
does not have. Since the algorithm always takes the best leaf, we only need to give a lower
bound for one of them. Before we describe this strategy, we analyze the tree algorithm in
two educational corner cases.

The first one shows that by a careful selection of a leaf the algorithm appears to
take elements based on the location of the Eopt, although it does not know them. Let
rπi = argmaxe∈σ(−∞,oπ1 ]f(e), that is, the most valuable element until the arrival of the
first element from Eopt. Here argmax breaks ties in favor of the first element in σ. We
do not know when oπ1 arrives, but we know that the algorithm will have created a node
(with the root as its parent) for rπ1 by then. We define iteratively Rπi = {rπ1 , . . . , rπi } and
rπi+1 = argmaxe∈σ(rπ

i
,oπ
i+1]f(e | Rπi ) for all i. Again, we can be sure that rπi+1, which yields

the best increase for Rπi until the arrival of oπi+1, is a appended to the path rπ1 → · · · → rπi .
This selection is inspired by the following idea. Suppose we could partition the stream

into k intervals such that in each exactly one elements from Eopt appears. Then a sensible
approach would be to start with an empty solution and greedily add the element that yields
the maximal increase to our partial solution in each interval. Clearly one such partition
would be σ(oπi , oπi+1], i = 1, . . . , k. We note that while the selection above is similar, it does
not completely capture this. Although rπi+1 is an element that arrives before oπi+1, we cannot
be certain that it arrives after oπi . We only know that it arrives after rπi .
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Next, we prove that the solution Rπk is a 1/2-approximation. This already shows that the
tree algorithm is 1/2-approximate even in the adversarial order model. By definition of Rπi
and rπi , we have

f(Rπk ) =
k∑
i=1

f(rπi | Rπi−1) >
k∑
i=1

f(oπi | Rπi−1)

=
k∑
i=1

[f(oπi | Rπi−1) − f(oπi | Rπk )] +
k∑
i=1

f(oπi | Rπk ).

Notice that due to submodularity the term f(oπi | Rπi−1)− f(oπi | Rπk ) is always non-negative.
Moreover, if oπi = rπi ∈ Rπk , it collapses to f(oπi | Rπi−1). Thus, we can bound the right term
of the equation and thereby f(Rπk ) with

f(Rπk ) >
k∑
i=1

rπi =oπi

f(oπi | Rπi−1) +
k∑
i=1

f(oπi | Rπk ).

From submodularity and monotonicity of f it follows that
k∑
i=1

f(oπi | Rπk ) > f(Oπk | Rπk ) = f(Oπk ∪Rπk )− f(Rπk ) > f(Oπk )− f(Rπk ).

Hence, we conclude that

2f(Rπk ) > f(Oπk ) +
k∑
i=1

rπi =oπi

f(oπi | Rπi−1).

This shows that Rπk is 1/2-approximate, because Oπk = Eopt. Indeed, if a significant value of
the elements in Eopt are taken, then Rπk is even better than 1/2-approximate.

Recall that the elements Eopt are ordered randomly in the adversarial-injections model.
Hence, the worst-case in the analysis above is that Rπk is disjoint from Eopt for all realizations
of π. However, by a different analysis we can see that this case is in fact well-behaved. This
is because the algorithm would select the same elements rπ1 , . . . , rπk for every realization of π.
Hence, we can safely drop the superscript π in Rπi and rπi . Since for every element o ∈ Eopt
there is some realization of π where oπi = o, yet the algorithm does not pick oπi , we can
bound the increase of each ri by

f(ri | Ri−1) > max
o∈Eopt

f(o | Ri−1) > 1
k

∑
o∈Eopt

f(o | Ri−1).

By submodularity and monotonicity we get
1
k

∑
o∈Eopt

f(o | Ri−1) > 1
k
f(Eopt | Ri−1) > 1

k
(OPT−f(Ri−1)).

This is the same recurrence formula as in the classic greedy algorithm and by simple
calculations we get the closed form

f(Rk) >
(

1−
(

1− 1
k

)k)
OPT >

(
1− 1

e

)
OPT .

In other words, the algorithm is even (1− 1/e)-approximate in this case. In our main proof
we will use a more involved strategy for selecting a leaf. This is to be able to combine the
two approaches discussed above.
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3.4 Analysis
Let us first define the selection of the leaf we are going to analyze. The elements on the
path to this leaf will be denoted by sπ1 , . . . , sπk and we write Sπi for {sπ1 , . . . sπi }. The elements
are defined inductively, but as opposed to the previous section we need in addition indices
n1, . . . , nk. Recall, previously we defined the (i + 1)’th element rπi+1 as the best increase
in σ(rπi , oπi+1]. Here, we use ni+1 to describe the index of the element from Eopt which
constitutes the end of this interval. It is not necessarily oπi+1 anymore. We always start with
n1 = 1, but based on different cases we either set ni+1 = ni + 1 or ni+1 = ni. We underline
that ni is independent of the realization of π. In the following, t ∈ [0, 1] denotes a parameter
that we will specify later.

The element sπi will be chosen from two candidates uπi and vπi . The former is the best
increase of elements excluding oπni , that is,

uπi =

argmaxe∈σ(−∞,oπn1 )f(e) if i = 1,
argmaxe∈σ(sπ

i
,oπni

)f(e | Sπi−1) otherwise.

The latter is defined in the same way, except it includes oπni in the choices, that is,

vπi =

argmaxe∈σ(−∞,oπn1 ]f(e) if i = 1,
argmaxe∈σ(sπ

i−1,o
π
ni

]f(e | Sπi−1) otherwise.

We now define the choice of sπi and ni+1 based on the following two cases. Note that the
cases are independent from the realization of π.
Case 1: Eπ f(uπi | Sπi−1) > t · Eπ f(oπni

| Sπi−1). In this case, we set sπi = uπi and ni+1 =
ni. Notice that this means sπi is chosen independently from oπni . In other words, we did
not see oπni , yet. The element oπni is still each of the remaining elements in Eopt with
equal probability. In the analysis this is beneficial, because the distribution of oπni , . . . , o

π
k

remains unchanged. This is similar to the second case in the previous section.
Case 2: Eπ f(uπi | Sπi−1) < t · Eπ f(oπni

| Sπi−1). Here, set sπi = vπi and ni+1 = ni + 1.
Now the distribution of oπi , . . . , oπk can change. However, a considerable value of sπi over
different π comes from taking oπni . As indicated by the first case in the previous section
this will improve the guarantee of the algorithm.

The solution Sπk corresponds to a leaf in the tree algorithm. Clearly, uπ1 and vπ1 are children
of the root. Hence, sπ1 is also a child. Then for induction we assume sπi is a node, which
implies uπi+1 and vπi+1 are also nodes: The elements uπi+1 and vπi+1 are the first elements after
sπi with the respective gains (f(uπi+1 | Sπi ) and f(vπi+1 | Sπi )). Hence, sπi+1 is a child of sπi .

In order to bound Eπ f(Sπk ), we will study more broadly all values of Eπ f(Sπh ) where h 6 k.
To this end, we define a recursive formula R(k, h) and prove that it bounds Eπ f(Sπh )/OPT
from below. Then using basic calculus we will show that R(k, k) > 0.5506 for all k. Initialize
R(k, 0) = 0 for all k. Then let R(k, h), h 6 k, be defined by

R(k, h) = min
{
t

k
+
(

1− t

k

)
R(k, h− 1) , 1

k
+
(

1− 1 + t

k

)
R(k − 1, h− 1) , 1

1 + t

}
.

I Lemma 4. For all instances of the problem and h 6 k, the solution Sπh as defined above
satisfies Eπ f(Sπh ) > R(k, h) OPT .
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Proof. The proof is by induction over h. For h = 0, the statement holds as R(k, 0) OPT =
0 = Eπ f(Sπ0 ). Let h > 0 and suppose the statement of the lemma holds with h− 1 for all
instances of the problem. Suppose we are given an instance with k > h. We distinguish the
two cases sπ1 = uπ1 and sπ1 = vπ1 .

First, consider Eπ f(uπ1 ) > t · Eπ f(oπ1 ), which implies that sπ1 = uπ1 . Note that uπ1 is the
best element in σ(−∞, oπ1 ), consequently, its choice is independent from the realization of π.
Let us drop the superscript in uπ1 and sπ1 for clarity. We construct a new instance mimicking
the subtree of s1. Formally, our new instance still has the same k elements Eopt, i.e., k′ = k.
The stream is σ′ = σ(sπ1 ,∞) and, the submodular function f ′ : 2U → R, f ′(T ) 7→ f(T | s1).
In this instance we have OPT′ = f ′(Eopt) = f(Eopt | s1) > OPT−f(s1). It is easy to see
that the elements s′π1 , . . . , s′πh−1 chosen in the new instance correspond exactly to the elements
sπ2 , . . . , s

π
h. Hence, with the induction hypothesis we get

Eπ f(Sπh ) = f(s1)+Eπ f(Sπh | s1) = f(s1)+Eπ f ′(S′πh−1) > f(s1)+R(k, h−1)(OPT−f(s1)).

By assumption we have f(s1) > t · Eπ f(oπi ) > t · OPT /k. Together with R(k, h − 1) 6
1/(1 + t) 6 1 we calculate

f(s1) +R(k, h− 1)(OPT−f(s1)) > t

k
OPT +R(k, h− 1)

(
1− t

k

)
OPT .

The right-hand side is by definition at least R(k, h) OPT.
Now we turn to the case Eπ f(uπ1 ) < t·Eπ f(oπ1 ), which means sπ1 = vπ1 is chosen. Similar to

the previous case, we construct a new instance. After taking sπ1 , our new instance has k′ = k−1
elements E′opt = Eopt \ {oπ1}, stream σ′ = σ(s1,∞), and submodular function f ′ : 2E → R,
f(T ) 7→ f(T | sπ1 ). Thus, OPT′ = f ′(E′opt) = f(Eopt \ {oπ1} | sπ1 ) > OPT−f(sπ1 ∪ oπ1 ). We
remove oπ1 from Eopt, because sπ1 = vπ1 depends on it. The distribution of oπ2 , . . . , oπk when
conditioning on the value of oπ1 (and thereby the choice of sπ1 ) is still a uniformly random
permutation of E′opt. Like in the previous case, we can see that S′πh−1 = Sπh \ {sπ1} and we
can apply the induction hypothesis. First, however, let us examine Eπ f(sπ1 ∪ oπ1 ). Since we
know that whenever sπ1 6= oπ1 we have sπ1 = uπ1 , it follows that

Pπ[sπ1 6= oπ1 ] · Eπ[f(s1) | sπ1 6= oπ1 ] 6 Eπ f(uπ1 ) < t · Eπ f(oπ1 ) 6 t · Eπ f(sπ1 ).

Hence, we deduce

Eπ f(sπ1 ∪ oπ1 ) 6 Eπ f(oπ1 ) + Pπ[sπ1 6= oπ1 ] · Eπ[f(s1) | sπ1 6= oπ1 ] 6 Eπ f(oπ1 ) + t · Eπ f(sπ1 ).

We are ready to prove the bound on Eπ f(Sπh ). By induction hypothesis, we get

Eπ f(Sπh ) = Eπ f(sπ1 ) + Eπ f ′(S′πh−1)
> Eπ f(sπ1 ) +R(k − 1, h− 1)(OPT−Eπ f(sπ1 ∪ oπ1 )).

Inserting the bound on Eπ f(sπ1 ∪ oπ1 ) we know that the right-hand side is at least

Eπ f(sπ1 ) +R(k − 1, h− 1)(OPT−Eπ f(oπ1 )− t · Eπ f(sπ1 )).

Using that f(sπ1 ) > f(oπ1 ) for all π and R(k − 1, h − 1) · t 6 t/(1 + t) 6 1 we bound the
previous term from below by

Eπ f(oπ1 ) +R(k − 1, h− 1)(OPT−(1 + t)Eπ f(oπ1 )).
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Figure 2 Values of the recurrence formula for t = 0.8.

Finally, we use that Eπ f(oπ1 ) > OPT /k and R(k − 1, h− 1)(1 + t) 6 1 to arrive at

1
k

OPT +R(k − 1, h− 1)
(

OPT−1 + t

k
OPT

)
> R(k, h) OPT,

which concludes the proof. J

With t = 0.8 we are able to show that for sufficiently large k the minimum in the definition
of R(k, k) is always attained by the first term. Then, after calculating a lower bound on
R(k, k) for small values, we can easily derive a general bound.

I Lemma 5. With t = 0.8 for all positive integers k it holds that R(k, k) > 0.5506 .

Figure 2 contains a diagram (generated by computer calculation), which shows that the
formula tends to a value between 0.5506 and 0.5507 for k ∈ {0, . . . , 10000}. The proof
requires tedious and mechanical calculations and hence is omitted here. We refer the reader
to the full version for complete details.

4 Conclusion and Open Problems

In this paper, we introduced a semi-random model called adversarial-injections with the
motivation of eliminating algorithms that overfit to random-order streams while still being
easier than adversarial-order streams. We studied two classical problems in combinatorial
optimization in this model.

For unweighted matching, we could beat 1/2 in the streaming setting whereas we observed
from [14] that we could not beat 1/2 in the online setting. This also makes our model
non-trivial as there is a separation between the online and streaming setting.

For monotone submodular maximization with cardinality constraint k, we obtained a 0.55
approximation algorithm albeit with a huge memory footprint but importantly independent
of n (universe size). The obvious open question is whether one can design a (1 − 1/e)-
approximation algorithm which stores number of elements that is independent of n. Does
our algorithm have an approximation ratio of 1− 1/e? We observed that the algorithm in
[29] is a 1/2 + ε approximation for a very small ε > 0. The algorithm stores poly(k) elements.
Can one design an algorithm that stores only poly(k) elements and beats 1/2 by a significant
constant or, even better, gets 1− 1/e?
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Abstract
We give a randomized algorithm that finds a minimum cut in an undirected weighted m-edge
n-vertex graph G with high probability in O(m log2 n) time. This is the first improvement to
Karger’s celebrated O(m log3 n) time algorithm from 1996. Our main technical contribution is a
deterministic O(m logn) time algorithm that, given a spanning tree T of G, finds a minimum cut of
G that 2-respects (cuts two edges of) T .
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1 Introduction

The minimum cut problem is one of the most fundamental and well-studied optimization
problems in theoretical computer science. Given an undirected edge-weighted graph G =
(V,E), the problem asks to find a subset of vertices S such that the total weight of all edges
between S and V \ S is minimized. The vast literature on the minimum cut problem can be
classified into three main approaches:

The maximum-flow approach. The minimum cut problem was originally solved by com-
puting the maximum st-flow [3] for all pairs of vertices s and t. In 1961, Gomory and Hu [10]
showed that only O(n) maximum st-flow computations are required, and in 1994 Hao and
Orlin [11] showed that in fact a single maximum st-flow computation suffices. A maximum
st-flow can be found in O(mn log(n2/m)) time using the Goldberg-Tarjan algorithm [9], and
the fastest algorithm to date takes O(mn) time [33, 22]. Faster (though not near-linear time)
algorithms are known (see e.g [8, 25, 27] and references within) when the graph is unweighted
or when the maximum edge weight W is not extremely large.
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The edge-contraction approach. An alternative method is edge contraction. If we can
identify an edge that does not cross the minimum cut, then we can contract this edge without
affecting the minimum cut. Nagamochi and Ibaraki [30, 31] showed how to deterministically
find a contractible edge in O(m) time, leading to an O(mn+ n2 logn)-time minimum cut
algorithm. Karger [14] showed that randomly choosing the edge to contract works well with
high probability. In particular, Karger and Stein [20] showed that this leads to an improved
O(n2 log3 n) Monte Carlo algorithm.

The tree-packing approach. In 1961, Nash-Williams [32] proved that, in unweighted graphs,
any graph with minimum cut c contains a set of c/2 edge-disjoint spanning trees. Gabow’s
algorithm [4] can be used to find such a tree-packing with c/2 trees in O(mc logn) time.
Karger [18] observed that the c edges of a minimum cut must be partitioned among these
c/2 spanning trees, hence the minimum cut 1- or 2-respects some tree in the packing. That
is, one of the trees is such that at most two of its edges cross the minimum cut (these edges
are said to determine the cut). We can therefore find the minimum cut by examining each
tree and finding the minimum cut that 1- or 2-respects it.

Several obstacles need be overcome in order to translate this idea into an efficient minimum
cut algorithm for weighted graphs: (1) we need a weighted version of tree-packing, (2) finding
the packing (even in unweighted graphs) takes time proportional to c (and c may be large),
(3) checking all trees takes time proportional to c, and (4) one needs an efficient algorithm
that, given a spanning tree T of G, finds the minimum cut in G that 2-respects T (finding a
minimum cut that 1-respects T can be easily done in O(m+n) time, see e.g [18, Lemma 5.1]).

In a seminal work, Karger [18] overcame all four obstacles: First, he converts G into an
unweighted graph by conceptually replacing an edge of weight w by w parallel edges. Then,
he uses his random sampling from [16, 14] combined with Gabow’s algorithm [4] to reduce
the packing time to O(m + n log3 n) and the number of trees in the packing to O(logn).
Finally, he designs a deterministic O(m log2 n) time algorithm that given a spanning tree
T of G finds the minimum cut in G that 2-respects T . Together, this gives an O(m log3 n)
time randomized algorithm for minimum cut. Until the present work, this was the fastest
known algorithm for undirected weighted graphs.

Karger’s O(m log2 n) algorithm for the 2-respecting problem finds, for each edge e ∈ T ,
the edge e′ ∈ T that minimizes the cut determined by {e, e′}. He used link-cut trees [35]
to efficiently keep track of the sizes of cuts as the candidate edges e of T are processed in
a certain order (bough decomposition), consisting of O(logn) iterations, and guarantees
that the number of dynamic tree operations is O(m) per iteration. Since each link-cut tree
operation takes O(logn) time, the total running time for solving the 2-respecting problem is
O(m log2 n).

In a very recent paper, Lovett and Sandlund [26] proposed a simplified version of Karger’s
algorithm. Their algorithm has the same O(m log3 n) running time as Karger’s. To solve the
2-respecting problem they use top trees [1] rather than link-cut trees, and use heavy path
decomposition [12, 35] to guide the order in which edges of T are processed. A property of
heavy path decomposition is that, for every edge (u, v) /∈ T , the u-to-v path in T intersects
O(logn) paths of the decomposition. This property implies that the contribution of each
non-tree edge to the cut changes O(logn) times along the the entire process. See also [6] who
use the fact that the bough decomposition, implicitly used by Karger, also satisfies the above
property. The idea of traversing a tree according to a heavy path decomposition, i.e., by first
processing a smaller subtree and then processing the larger subtree has been used quite a few
times in similar problems on trees. See e.g., [2]. While the ideas of Lovett and Sandlund [26]
do not improve on Karger’s bound, their paper has drawn our attention to this problem.
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1.1 Our result and techniques

In this paper, we present a deterministic O(m logn) time algorithm that, given a spanning
tree T of G, finds the minimum cut in G that 2-respects T . Using Karger’s framework, this
implies an O(m log2 n) time randomized algorithm for minimum cut in weighted graphs.

Like prior algorithms for this problem, our algorithm finds, for each edge e ∈ T the edge
e′ ∈ T that minimizes the cut determined by {e, e′}. The difficult case to handle is when
e and e′ are such that neither of them is an ancestor of the other. In Karger’s solution,
handling each edge e = (u, v) ∈ T was done using amortized O(d logn) operations on Sleator
and Tarjan’s link-cut trees [35] where d is the number of non-tree edges incident to u. Since
operations on link-cut trees require O(logn) amortized time, the time to handle all edges is
O(m log2 n) (implying an O(m log3 n) time algorithm for the minimum cut problem). As an
open problem, Karger [18] asked (more than 20 years ago) whether the required link-cut tree
operations can be done in constant amortized time per operation (implying an O(m log2 n)
time algorithm for the minimum cut problem). Karger even pointed out why one could
perhaps achieve this: “We are not using the full power of dynamic trees (in particular, the
tree we are operating on is static, and the sequence of operations is known in advance).” In
this paper, we manage to achieve exactly that. We show how to order the link cut tree
operations so that they can be handled efficiently in batches. We call such a batch a bipartite
problem (see Definition 9).

Perhaps a reason that the running time of Karger’s algorithm has not been improved in
more than two decades is that it is not at all apparent that these bipartite problems can indeed
be solved more efficiently. Coming up with an efficient solution to the bipartite problem
requires a combination of several additional ideas. Like [26], we use heavy path decomposition,
but in a different way. We develop a new decomposition of a tree that combines heavy path
decomposition with biased divide and conquer, and use this decomposition in conjunction
with a compact representation which we call topologically induced subtrees (see Definition 4).
This compact representation turns out to be crucial not only for solving the bipartite problem,
but also to the reduction from the original problem to a collection of bipartite problems.

1.2 Application to unweighted graphs

Karger’s method is inherently randomized and obtaining a deterministic (or at least Las
Vegas) near-linear time algorithm for the minimum cut in undirected weighted graphs
is an interesting open problem. For unweighted graphs, such a deterministic algorithm
was provided by Kawarabayashi and Thorup [21]. Later, Henzinger, Rao, and Wang [13]
designed a faster O(m log2 n(log logn)2) time algorithm. Very recently Ghaffari, Nowicki and
Thorup [7] introduced a new technique of random 2-out contractions and applied it to design
an O(min{m+n log3 n,m logn}) time randomized algorithm that finds a minimum cut with
high probability. We stress that the faster algorithms of Henzinger et al. and Ghaffari et al.
work only for unweighted graphs, that is, for edge connectivity. Interestingly, the latter uses
Karger’s O(m log3 n) time algorithm as a black box, and by plugging in our faster method
one immediately obtains an improved running time of O(min{m + n log2 n,m logn}) for
unweighted graphs.

ICALP 2020
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1.3 Independent work
Independently to our work1, Mukhopadhyay and Nanongkai [29] came up with an O(m logn+
n log4 n) time algorithm for finding a minimal 2-respecting cut. While this improves Karger’s
bound for sufficiently dense graphs, it does not improve it for all graphs, and is randomized.
Our algorithm uses a different (deterministic and simple) approach and strictly dominates
both Karger’s and Mukhopadhyay and Nanongkai’s running time for all graphs. There are
however benefits to the approach of [29] in other settings. Namely, they use it to obtain an
algorithm that requires Õ(n) cut queries to compute the min-cut, and a streaming algorithm
that requires Õ(n) space and O(logn) passes to compute the min-cut.

2 Preliminaries

2.1 Karger’s algorithm
At a high level, Karger’s algorithm [18] has two main steps. The input is a weighted
undirected graph G. The first step produces a set {T1, . . . , Ts} of s = O(logn) spanning trees
such that, with high probability, the minimum cut of G 2-respects at least one of them. The
second step deterministically computes for each Ti the minimum cut in G that 2-respects Ti.
The minimum cut in G is the minimum among the cuts found in the second step.

Karger shows [18, Theorem 4.1] that producing the trees {T1, . . . , Ts} in the first step can
be done in O(m+ n log3 n) time, and that finding the minimum 2-respecting cut for all the
Ti’s in the second step can be done in O(m log3 n) time. We will show that each of the steps
can be implemented in O(m log2 n) time. Showing this for the second step is the main result
of the paper, and is presented in Section 3. For the first step, we essentially use Karger’s
proof. Since the first step was not the bottleneck in Karger’s paper, proving a bound of
O(m+ n log3 n) was sufficient for his purposes. Karger’s concluding remarks suggest that he
knew that the first step could be implemented in O(m log2 n) time. For completeness, we
prove the O(m log2 n) bound by slightly modifying Karger’s arguments and addressing a few
issues that were not important in his proof. Readers proficient with Karger’s algorithm can
safely skip the proof.

I Definition 1 (2-respecting and 2-constraining). Given a spanning tree T and a cut (S, S̄),
we say that the cut 2-respects T and that T 2-constrains the cut if at most 2 edges of T cross
the cut.

I Definition 2 (weighted tree packing). Let G be an unweighted undirected graph. Let T
be a set of spanning trees of G, where each tree T ∈ T is assigned a weight w(T ). We say
that the load of an edge e of G (w.r.t. T ) is `(e) =

∑
T∈T :e∈T w(T ). We say that T is

a weighted tree packing if no edge has load exceeding 1. The weight of the packing T is
τ =

∑
T∈T w(T ).

I Theorem 3. Given a weighted undirected graph G, in O(m log2 n) time, we can construct a
set T of O(logn) spanning trees such that, with high probability, the minimum cut 2-respects
at least one of the trees in T .

Before proving the above theorem, we first describe how to precompute (in O(m log2 n)
time using Matula’s algorithm [28]) a constant factor approximation of the weight c of the
minimum cut in G.

1 To be accurate, their work appeared on arXiv one day after ours.
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Matula’s algorithm [28]. Matula gave an O(m/ε) time algorithm that finds a (2 + ε)
approximation of the minimum cut in an unweighted graph G. The algorithm proceeds in
iterations, where each iteration takes O(m) time, and either finds a (2 + ε) approximate cut,
or produces a subgraph G′ that contains the minimum cut of G, but has only a constant
fraction of the edges of G. Hence there are O(logn) iterations, and the total running time is
O(m) for any fixed ε.

Matula’s algorithm can be easily extended to the weighted setting. Each iteration can
be implemented in O(m logn) time (cf. [15]), and produces a subgraph G′ with a constant
factor of the total edge weight of G. Thus, the algorithm produces a (2 + ε) approximation
of the minimum cut in a weighted graph G in O(m logn logW ) time, where W is the sum of
edge weights in G.

The running time can be decreased to O(m log2 n) at the expense of a worse constant
factor approximation as follows. Let G be a weighted graph. Let c denote the weight of the
minimum cut in G. Compute a maximum spanning tree T of G, and let w∗ be the minimum
weight of an edge in T . It is easy to see [17] that w∗ ≤ c ≤ n2w∗. Contract all edges e
with w(e) > n2w∗. Clearly, this does not affect the minimum cut. If w∗ ≤ n3, then all edge
weights are now bounded by n5, and we can run Matula’s algorithm in O(m log2 n) time, and
obtain a (2 + ε)-approximate minimum cut. Otherwise, set w̃(e)← bw(e)/w∗

n3 c, and delete
all edges with w̃ = 0. Call the resulting graph G̃. Observe that G̃ has integer edge weights
bounded by n5, so we can find a (2 + ε)-approximate minimum cut in G̃ in O(m log2 n) time.
Now scale up the edge weights in G̃ by w∗

n3 . The weight of each edge in G̃ is now off from its
original weight in G by at most w∗

n3 ≤ c
n3 . Thus, the weights of any cut in G̃ and in G differ

by at most c/n. Hence, an (2 + ε)-approximate minimum cut in G̃ is an O(1)-approximate
minimum cut in G.

Proof of Theorem 3. Let (S, S̄) be the partition of the vertices of G that forms a minimum
cut. We assume that all weights are integers, each fitting in a single memory word. Since
edges with weight greater than c never cross the minimum cut, we contract all edges with
weight greater than our estimate for c, so that now the total weight of edges of G is O(mc).

For the sake of presentation we think of an unweighted graph G̃, obtained from G by
replacing an edge of weight w by w parallel edges. We stress that G̃ is never actually
constructed by the algorithm. Let m̃ denote the number of edges of G̃. By the argument
above, m̃ = O(mc). Let p = Θ(logn/c). Let H be the unweighted multigraph obtained by
sampling dpm̃e edges of G̃ (H = G̃ if c < logn). Clearly, the expected value of every cut in
H is p times the value of the same cut in G. By [16, Lemma 5.1], choosing the appropriate
constants in the sampling probability p guarantees that, with high probability, the value of
every cut in H is at least 64/65 times its expected value, and no more than 66/65 times its
expected value. It follows that, with high probability, (i) the minimum cut in H has value
c′ = Θ(logn), and that (ii) the value of the cut in H defined by (S, S̄) is at most 33c′/32.

The conceptual process for constructing H can be carried out by randomly selecting
dpm̃e edges of G (with replacement) with probability proportional to their weights. Since the
total edge weight of G is O(mc), each selection can be easily performed in O(log(mc)) time.
Using a standard technique [24], each selection can actually be done with high probability in
O(logm) time. Thus, the time to construct H is O(pm̃ logm) = O(m log2 n). We emphasize
that H is an unweighted multigraph with m′ = O(m logn) edges, and note that we can
assume no edge of H has multiplicity greater than c′ (we can just delete extra copies).

ICALP 2020
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Next, we apply the following specialized instantiation [36, Theorem 2] of Young’s vari-
ant [38] of the Lagrangian packing technique of Plotkin, Shmoys, and Tardos [34]. It is
shown [36, 38] that for an unweighted graph H with m′ edges and minimum cut of size c′,
the following algorithm finds a weighted tree packing of weight 3c′/8 ≤ τ ≤ c′.
1: `(e) := 0 for all e ∈ E(H)
2: while there is no e with `(e) ≥ 1 do
3: find a minimum spanning tree T w.r.t. `(·)
4: w(T ) = w(T ) + 1/(96 lnm′)
5: `(e) = `(e) + 1/(96 lnm′) for all e ∈ T
6: end while
Karger [18, Lemma 2.3] proves that for a graph H with minimum cut c′, any tree packing

of weight at least 3c′/8, and any cut (S, S̄) of H of value at most 33c′/32, at least a 1/8
fraction of the trees (by weight) 2-constrain the cut (S, S̄). Thus, a tree chosen at random
from the packing according to the weights 2-constrains the cut (S, S̄) with probability at least
1/8. Choosing O(logn) trees guarantees that, with high probability, one of them 2-constrains
the cut (S, S̄), which is the minimum cut in G.

It remains to bound the running time of the packing algorithm. Observe that the
algorithm increases the weight of some tree by 1/(96 lnm′) at each iteration. Since the
weight τ of the resulting packing is bounded by c′, there are at most 96c′ lnm′ = O(log2 n)
iterations. The bottleneck in each iteration is the time to compute a minimum spanning tree
in H. We argue that this can be done in O(m) time even though m′ = O(n logn). To see this,
first note that since H is a subgraph of G, H has at most m edges (ignoring multiplicities of
parallel edges). Next note that it suffices to invoke the MST algorithm on a subgraph of
H that includes just the edge with minimum load among any set of parallel edges. Since
the algorithm always increases the load of edges by a fixed amount, the edge with minimum
load in each set of parallel edges can be easily maintained in O(1) time per load increase by
maintaining a cyclic ordered list of each set of parallel edges and moving to choose the next
element in this cyclic list whenever the load of the current element is incremented. Hence,
we can invoke the randomized linear time MST algorithm [19] on a simple subgraph of H of
size O(m). It follows that the running time of the packing algorithm, and hence of the entire
procedure, is O(m log2 n). J

2.2 Link-cut trees

In our algorithm we will repeatedly use a structure that maintains a rooted tree T with costs
on the edges under the following operations:
1. T.add(u,∆) adds ∆ to the cost of every edge on the path from u to the root,
2. T.path(u) finds the minimum cost of an edge on the path from u to the root,
3. T.subtree(u) finds the minimum cost of an edge in the subtree rooted at u.
All three operations can be supported with a link-cut tree [35] in amortized O(log |T |) time.2
We note that we only require these three operations and do not actually use the link and cut
functionality of link-cut trees. Other data structures might also be suitable. See, e.g., the
use of top-trees in [26].

2 The original paper [35] did not include the third operation. However, as shown in [23, Appendix 17], it
is not difficult to add it.
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2.3 Topologically induced subtrees
For a rooted tree T and a node v we denote by Tv the subtree of T rooted at v. For an edge
e of T we denote by Te the subtree of T rooted at the lower endpoint of e.

Let T be a binary tree with edge-costs and n nodes, equipped with a data structure
that can answer lowest common ancestor (LCA) queries on T in constant time [12]. Let
Λ = {w1, w2, . . . , ws} be a subset of nodes of T . We define a smaller tree TΛ that is equivalent
to T in the following sense:

I Definition 4 (topologically induced tree). We say that a tree TΛ is topologically induced on
T by Λ if for every S ⊆ Λ, the minimum cost edge f ∈ TΛ with TΛ

f ∩ Λ = S has the same
cost as the minimum cost edge e ∈ T with Te ∩ Λ = S.

To be clear, the above definition implies that, for any S ⊆ Λ, there is an edge e ∈ T with
Te ∩ Λ = S, if and only if there is an edge f ∈ TΛ with TΛ

f ∩ Λ = S. The term topologically
induced tree will be justified by the construction in the following lemma.
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w6
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∞

4

Figure 1 On the left: a tree and (in red) a set Λ = {w1, w2, . . . , w6} sorted according to their
preorder numbers. On the right: the corresponding topologically induced tree.

I Lemma 5. There exists an algorithm that, given a binary tree T with edge costs, equipped
with a link-cut data structure, and a list Λ = {w1, w2, . . . , ws} of nodes of T , ordered according
to their visit time in a preorder traversal of T , constructs in O(min{|T |, s log |T |}) time, a
tree TΛ of size O(s) that is topologically induced on T by Λ.

Proof. We define the tree TΛ to be a tree over all nodes wi ∈ Λ, together with the root
and the lowest common ancestor in T of every pair of nodes wi and wj . For any two nodes
u, v ∈ TΛ, u is an ancestor of v in TΛ if and only if u is an ancestor of v in T . Thus, each
edge (u, v) of TΛ corresponds to the u-to-v path in T . The edges on this path in T are exactly
the edges e of T with Te ∩ Λ = TΛ

(u,v) ∩ Λ. Hence, the paths of T corresponding to distinct
edges of TΛ are edge disjoint. We define the cost of the edge (u, v) of TΛ to be the minimum
cost of an edge on the corresponding path in T . It follows that for every ∅ 6= S ⊆ Λ, the
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minimum cost edge f ∈ TΛ with TΛ
f ∩ Λ = S has the same cost as the minimum cost edge

e ∈ T with Te ∩ Λ = S. To guarantee that this condition holds for S = ∅ as well, we choose
the edge e of T with the minimum cost such that Te ∩ Λ = ∅ and proceed as follows if such
an edge exists. We create a new node v and change the root of TΛ to v by making the old
root of TΛ a child of v via an edge with infinite cost. We then add a new edge incident to v,
whose cost is set to the cost of e. This transformation does not change Te ∩ Λ for any edge e
of TΛ, but now that condition with S = ∅ is satisfied for the new edge incident to the root.

We now turn to proving the construction time. We first prove that TΛ consists of at most
2s nodes. This is because TΛ consists only of the root, the nodes wi and LCA(wi, wi+1). To
see this, consider two nodes wi and wj with i < j such that their lowest common ancestor u is
different than wi and wj . Let u` (ur) be the left (right) child of u. Then, wi is a descendant
of u` and wj a descendant of ur. Let i′ be the largest index such that wi′ is in the subtree
rooted at u`. Then u =LCA(wi′ , wi′+1).

We next prove that TΛ can be constructed in O(s) time. We use a method similar to
constructing the Cartesian tree [37, 5] of a sequence: we scan w1, w2, . . . , ws from the left to
right while maintaining the subtree of TΛ induced by w0 = LCA(w1, ws), and w1, w2, . . . , wi.
initially, the subtree of TΛ induced by w0 and w1 is just a single edge (w0, w1). We keep
the rightmost path of the subtree of TΛ induced by w0, w1, . . . , wi on a stack, with the
bottommost edge on the top. To process wi+1, we first find x = LCA(wi, wi+1). Then, we
pop from the stack all edges (u, v) such that u and v are both below (or equal to) x in T .
Finally, we possibly split the edge on the top of the stack into two and push a new edge onto
the stack. The amortized complexity of every step is constant, so the total time is O(s).

Once TΛ is constructed, we set the cost of every edge (u, v) in TΛ to be the minimum cost
of an edge on the u-to-v path in T . This can be done in O(log |T |) time per edge of TΛ by
first calling T.add(u)(∞), then T.path(v) to retrieve the answer, and finally T.add(u)(−∞),
for a total of O(s log |T |) time. Alternatively, we can explicitly go over the edges of the
corresponding paths of T for every edge of TΛ. We had argued above that these paths are
disjoint so this takes O(|T |) in total.

We also need to compute the cost of the edge e of T with minimum cost such that
Te ∩Λ = ∅. To this end, for each v ∈ Λ we add ∞ to the cost of all edges on the path from v

to the root of T . This takes O(min(|T |, s log |T |) by either a bottom up computation on T ,
or using T.add(u,∞) for every v ∈ Λ. We then retrieve the edge with minimum cost in the
entire tree in O(log |T |) time by a call to subtree for the root of T , and then subtract ∞
from the cost of all edges on the path from v to the root of T for every v ∈ Λ. J

We will use the fact that the operation of taking the topologically induced subtree is
composable in the following sense.

I Proposition 6. Let T be a binary tree with edge-costs. Let Λ2 ⊆ Λ1 be subsets of nodes of
T . Let T1 be topologically induced on T by Λ1 and T2 be topologically induced on T1 by Λ2.
Then T2 is topologically induced on T1 by Λ2.

3 Finding a Minimum 2-respecting Cut

Given a graph G and a spanning tree T of G, a cut in G is said to 2-respect the tree T if at
most two edges e, e′ of T cross the cut (these edges are said to determine the cut). In this
section we prove the main theorem of this paper:

I Theorem 7. Given an edge-weighted graph G with n vertices and m edges and a spanning
tree T , the minimum (weighted) cut in G that 2-respects T can be found in O(m logn) time.
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The minimum cut determined by every single edge can be easily found in O(m + n)
time [18, Lemma 5.1]. We therefore focus on finding the minimum cut determined by two
edges. Observe that the cut determined by {e, e′} is unique and consists of all edges (u, v) ∈ G
such that the u-to-v path in T contains exactly one of {e, e′}.

We begin by transforming T (in linear time) into a binary tree. This is standard and
is done by replacing every node of degree d with a binary tree of size O(d) where internal
edges have weight ∞ and edges incident to leaves have their original weight. We also add an
artificial root to T and connect it to the original root with an edge of weight ∞. From now
we will be working with binary trees only.

3.1 Descendant edges
We first describe an O(m logn) time algorithm for finding the minimum cut determined by
all pairs of edges {e, e′} where e′ is a descendant of e in T (i.e. e′ is in the subtree of T
rooted at the lower endpoint of e). To this end we shall efficiently find, for each edge e of
T , the descendant edge e′ that minimizes the weight of the cut determined by {e, e′}, and
return the pair minimizing the weight of the cut.

For a given edge e of T , let Te denote the subtree of T rooted at the lower endpoint of e.
We associate with every node x a list of all edges (u, v) such that x is the lowest common
ancestor of u and v. Note that all these lists can be computed in linear time, and form a
partition of the edges of G. We also compute in O(m) time, for every edge e of T , the total
weight A(e) of all edges with exactly one endpoint in Te (in fact, this is the information
computed by Karger’s algorithm for the 1-respecting case). Note that A(e) includes the
weight of e.

Using a link-cut tree we maintain a score for every edge e of T . All scores are first
initialized to zero. Then, for every edge (u, v) of G, we increase the score of all edges on the
u-to-v path in T by the weight w(u, v) of (u, v). This takes O(logn) time per edge (u, v) by
calling T.add(u,w(u, v)), T.add(v, (u,w(u, v)) and T.add(LCA(u, v),−2(u,w(u, v)). This
initialization takes O(m logn) time. We then perform an Euler tour of T . When the tour
first descends below a node x, for every edge (u, v) in the list of x, we decrease the score of
all edges on the u-to-v path in T by 2w(u, v). Note that, at any point during this traversal,
each edge (u, v) either contributes w(u, v) or −w(u, v) to the score of every edge on the
u-to-v path in T , depending on whether the tour is yet to descend below LCA(u, v) or has
already done so. As above, each update can be implemented in O(logn) time. Since every
edge appears in exactly one list, the total time to perform all the updates is O(m logn).

I Lemma 8. Consider the point in time when the Euler tour had just encountered an edge
e for the first time. At that time, for every descendant edge e′ of e, the weight of the cut
determined by {e, e′} is A(e) plus the score of e′.

Proof. Observe that the weight of the cut determined by {e, e′} is the sum of weights of
all edges with (1) one endpoint in Te − Te′ and the other not in Te, or (2) one endpoint in
Te − Te′ and the other in Te′ . Note that the edges satisfying (1) have exactly one endpoint
in Te, and hence their weight is accounted for in A(e). However, A(e) also counts the weight
of edges (u, v) with one endpoint in Te′ and the other not in Te. Such edges do not cross
the cut. Note that for such edges both e and e′ are on the u-to-v path in T . The fact that
e is on the u-to-v path implies that the traversal has already descended below LCA(u, v).
Hence, (u, v) currently contributes −w(u, v) to the score of e′, offseting its contribution to
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A(e). Next note that the edges satisfying (2) are edges (u, v) with both u and v in Te, which
means that they are not accounted for in A(e), and that the traversal did not yet descend
below LCA(u, v). Hence the contribution of such an edge (u, v) to the score of e′ is indeed
the weight of (u, v). J

By the lemma, the descendant edge e′ of e that minimizes the weight of the cut determined
by {e, e′} is the edge with minimum score in the subtree of e at that time. The score of
this edge e′ can be found in O(logn) time by calling T.subtree(x), where x is the lower
endpoint of e.

3.2 Independent edges
We now describe an O(m logn) time algorithm for finding the minimum cut determined by
all pairs of edges {e, e′} where e is independent of e′ in T (i.e. e is not a descendant of e′
and e′ is not a descendant of e). We begin by showing that the problem can be reduced to
the following bipartite problem:

I Definition 9 (The bipartite problem). Given two trees T1 and T2 with costs on the edges
and a list of non-tree edges L = {(u, v) : u ∈ T1, v ∈ T2} where each non-tree edge has a cost,
find a pair of edges e ∈ T1 and e′ ∈ T2 that minimize the sum of costs of e, of e′, and of all
non-tree edges (u, v) ∈ L where u is in T1e, and v is in T2e′ . The size of such a problem is
defined as the number of non-tree edges in L plus the sizes of T1 and T2.

I Lemma 10. Given an edge-weighted graph G with n vertices and m edges and a spanning
tree T , finding the minimum cut among those determined by a pair of independent edges
{e, e′} can be reduced in O(m logn) time to multiple instances of the bipartite problem of
total size O(m).

Proof. Recall that every node w of T has at most two children. We create a separate
bipartite problem for every node w of T that has exactly two children (x and y). This
bipartite problem will be responsible for finding the minimum cut determined by all pairs of
independent edges {e, e′} where e is in Tx and e′ is in Ty.

Throughout our description, note the distinction between edge weights and edge costs.
The input graph G has edge weights, and the goal is to find the cut with minimum weight.
The bipartite problems we define have edge costs, which are derived from the weights of
edges in the input graph.

We initialize the cost of every edge of G to be zero. Then, for every edge f = (u, v) of
G, we add the weight of f to the cost of every edge on the u-to-v path. We maintain the
costs in a link-cut tree so each f is handled in O(logn) time. Now consider any node w with
exactly two children x and y, and any pair of independent edges {e, e′} where e is in Tx and
e′ is in Ty. Observe that the edges crossing the cut determined by {e, e′} are exactly the
edges f = (u, v) with one endpoint in Te or in Te′ , and the other endpoint not in Te nor in
Te′ . Hence, the weight of the cut determined by {e, e′} equals the sum of the cost of e plus
the cost of e′ minus twice the total weight of all non-tree edges f = (u, v) such that u is in
Te and v is in Te′ .

We therefore define the bipartite problem for w as follows: (1) T1 is composed of the edge
(w, x) and the subtree rooted at x with costs as described above, (2) T2 is composed of the
edge (w, y) and the subtree rooted at y with the costs as described above, and (3) for every
non-tree edge f = (u, v) with weight c such that LCA(u, v) = w the list of non-tree edges L
includes (u, v) with cost −2c. By construction, the solution to this bipartite problem is the
pair of independent edges e, e′ with e ∈ Tx and e′ ∈ Ty that minimize the weight of the cut
in G defined by e and e′.



P. Gawrychowski, S. Mozes, and O. Weimann 57:11

The only issue with the above bipartite problem is that the overall size of all bipartite
problems (over all nodes w) might not be O(m). This is because the edges of T might appear
in the bipartite problems defined for more than a single node w. In order to guarantee that
the overall size of all bipartite problems is O(m), we construct a compact bipartite problem
using the topologically induced trees of Lemma 5.

We construct in O(m) time a constant-time LCA data structure [12] for T . In overall
O(m logn) time, we construct, for each node w ∈ T with exactly two children x and y:
1. A list Lw of all non-tree edges (u, v) with LCA(u, v) = w.
2. A list Λx = {w, x} ∪ {u : (u, v) ∈ Lw and u ∈ Tx}, sorted according to their visit time in

a preorder traversal of T.
3. A list Λy = {w, y} ∪ {v : (u, v) ∈ Lw and v ∈ Ty}, sorted according to their visit time in

a preorder traversal of T.
These lists require O(m) space and can be easily computed in O(m logn) time by going over
the non-tree edges, because each non-tree edge is in the list Lw of a unique node w.

The list L for the compact bipartite problem is identical to the list L for the non-compact
problem. The tree T ◦1 (T ◦2 ) for the compact bipartite problem of w is the topologically tree
induced on (w, x)∪ Tx ((w, y)∪ Ty) by Λx (Λy). This is done in O(|Λx| logn) (O(|Λy| logn))
time by invoking Lemma 5. It follows that the total time for constructing all compact
bipartite problems is O(m logn) and the their total space is O(m).

It remains to argue that the solution to the compact bipartite problem is identical to the
solution to the non-compact one. Observe that the cost of a solution e, e′ for the non-compact
bipartite problem is the cost of e plus the cost of e′ plus the cost of all edges in L with one
endpoint in T1e ∩ Λ and the other endpoint in T2e′ ∩ Λ.

Consider now any pair of edges e and e′ for the non-compact bipartite problem. By
definition of topologically induced trees, the minimum cost edge f ∈ T ◦1 with T ◦1 f∩Λ = T1e∩Λ,
has cost not exceeding that of e. An analogous argument holds for e′ and an edge f ′ of T ◦2 .
Hence, the cost of the optimal solution for the compact problem is not greater than that of
the non-compact problem. Conversely, for any edge f in T ◦1 , there exists an edge e in T1 with
cost not exceeding that of f and T ◦1 f ∩ Λ = T1e ∩ Λ. Hence, the cost of the optimal solution
for the compact problem is not less than that of the non-compact problem. It follows that
the two solutions are the same. J

The proof of Theorem 7 follows from the above reduction and the following solution to
the bipartite problem:

I Lemma 11. A bipartite problem of size m can be solved in O(m logm) time.

Proof. Recall that in the bipartite problem we are given two trees T1 and T2 with edge-costs
and a list of non-tree edges L = {(u, v) : u ∈ T1, v ∈ T2} where each non-tree edge has a cost.
To prove the lemma, we describe a recursive O(m logm) time algorithm that finds, for every
edge e ∈ T1, the best edge e′ ∈ T2 (i.e. the edge e′ that minimizes the sum of costs of e′ and
of all non-tree edges (u, v) ∈ L where u in T1e and v ∈ T2e′).

We begin by applying a standard heavy path decomposition [12] to T1, guided by the
number of non-tree edges: The heavy edge of a node of T1 is the edge leading to the
child whose subtree has the largest number of incident non-tree edges in L (breaking ties
arbitrarily). The other edges are called light. The maximal sets of connected heavy edges
define a decomposition of the nodes into heavy paths.

We define a fragment of the tree T1 to be a subtree of T1 formed by a contiguous subpath
u1 − u2 − · · · − uk of some heavy path of T1, together with all subtrees hanging from this
subpath via light edges. Given a fragment f , let L(f) = {(x1, y1), (x2, y2) . . . , (x`, y`)} be
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the set of edges (x, y) of L with x ∈ f . We define the induced subtree T2(f) to be the
tree topologically induced on T2 by the root of T2 and {y1, y2, . . . , y`}. The size of T2(f) is
|T2(f)| = O(|L(f)|). We also define a modified induced subtree T ′2(f) as follows. Let L↓(f)
be the set of edges (x, y) ∈ L with x in the subtree rooted at the heavy child of the last node
uk of the fragment f (if such a heavy child exists). Consider the tree T2, where the cost of
each edge e′ of T2 is increased by the total cost of all edges (x, y) ∈ L↓(f), where y is in T2e′ .
The modified induced subtree T ′2(f) is defined as the tree topologically induced by the root
of T2 and {y1, y2, . . . , y`} on this modified T2.

u1

uk

w1

w2

w3

v

Figure 2 On the left: A fragment (in light gray) in the tree T1, defined by the top node u1 and
the bottom node uk, both laying on the same heavy path (solid edges). The triangles (in dark gray)
are the subtrees hanging from the heavy paths via light edges (dashed). On the right: The tree T2

(black) connected to the fragment via three non-tree edges (blue). The endpoints w1, w2, w3 of these
edges define the topologically induced tree (in red).

We are now ready to describe the recursion. The input to a recursive call is a fragment f
of T1 and the list (x1, y1), (x2, y2), . . . , (x`, y`) of all non-tree edges in L with xi in f , together
with T2(f) and T ′2(f). A fragment f is specified by the top node (u1) and the bottom node
(uk) of the corresponding subpath of a heavy path of T1. In the first call, f is specified by the
root of T1 and the leaf ending the heavy path of T1 that contains the root. That is, in the first
call f is the entire tree T1. The list of non-tree edges for the first call is the entire list L. The
recursion works by selecting the middle node of the subpath, defined as follows: We define
the light size si of node ui as the number of non-tree edges (x, y) ∈ L where either x = ui or
x is in the subtree rooted at the light child of ui. Note that s1 + s2 + . . .+ sk = |L(f)|. If
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s1 > |L(f)|/2 then the middle node is defined as u1. Otherwise, the middle node is defined
as the node ui such that s1 + . . .+ si−1 ≤ |L(f)|/2 but s1 + . . .+ si > |L(f)|/2. We keep, for
every heavy path P of T1 a list of the nodes of P with non-zero light size, ordered according
to their order on P . We find the middle node ui in O(|L(f)|) time by going over the nodes
in this list one after the other until we encounter the middle node.

After identifying the middle node ui we apply recursion on the following three fragments:
the fragment defined by subpath u1−· · ·−ui−1, the fragment defined by subpath ui+1−· · ·−uk,
and the fragment consisting of the entire subtree rooted at the light child of ui. Before a
recursive call to fragment g, we construct the appropriate T2(g) and T ′2(g). The induced tree
T2(g) can be computed from T2(f) in O(|T2(f)|) = O(|L(f)|) time by invoking Lemma 5 on
T2(f) with Λg = r ∪ {y : (x, y) ∈ L(g)}, where r is the root of T2. Note that we had defined
T2(g) as the topologically induced tree on T2 by Λg, not on T2(f) by Λg. However, since
Λg ⊆ Λf , by Proposition 6, the two definitions are equivalent.

For constructing T ′2(g) from T ′2(f), we first need to increase the cost of each edge ẽ of
T ′2(f) by the total cost of edges in L↓(g) \ L↓(f) that are incident to T ′2(f)ẽ. This can be
done in a single bottom up traversal of T ′2(f) in O(|T ′2(f)|) time. Then, we invoke Lemma 5
on T ′2(f) with Λg to obtain T ′2(g). To summarize, constructing the trees T2(g) and T ′2(g) for
all three recursive subproblems takes O(|L(f)|) time.

The three recursive calls will take care of finding the best edge e′ ∈ T2 for every edge
e ∈ T1 included in one of the recursive problems. It only remains to handle the three edges
that do not belong to any of the recursive problems; the edge between ui and its light child,
the edge (ui−1, ui), and the edge (ui, ui+1). For each such edge e we describe a procedure
that finds its best e′ ∈ T2(f) in time O(|T2(f)|).

Recall that, by definition of the bipartite problem, the best edge e′ for e is the edge e′ of
T2 minimizing the cost of e′ plus the cost of all non-tree edges (x, y) ∈ L with x ∈ T1e, and
y ∈ T2e′ . For the case where e is the edge between ui and its light child, T1e = T1(f)e. We
therefore mark all non-tree edges (x, y) ∈ L(f), where x is in T1(f)e. A non-efficient solution
would work directly on T2 by propagating, in a bottom up traversal of T2, the cost of all
marked edges so that, after the propagation, the cost of every edge e′ in T2 has been increased
by the total cost of all non-tree edges (x, y) ∈ L with x ∈ T1(f)e, and with y ∈ T2e′ . Then
we can take the edge e′ ∈ T2 with minimum cost. However, this would take O(|T2|) = O(m),
which is too slow. Instead, we perform the propagation in T2(f). Namely, in a bottom up
traversal of T2(f), we propagate the cost of all marked edges so that, after the propagation,
the cost of every edge e′ in T2(f) has been increased by the total cost of all non-tree edges
(x, y) ∈ L(f) with x ∈ T1(f)e, and with y ∈ T2(f)e′ . This takes O(|T2(f)|) = O(|L(f)|) time.
Since the propagation process affects all the edges ẽ with the same T2ẽ ∩Λf in the same way,
the definition of topologically induced tree guarantees that the edges with minimum cost in
T2 and in T2(f) have the same cost, so using T2(f) instead of T2 is correct.

The procedure for the cases where e is the edge (ui−1, ui) or (ui, ui+1) is identical, except
that we apply it with T ′2(f) instead of T2(f). This difference stems from the fact that
applying the above procedure on T2(f) only considers the costs of the non-tree edges in L(f),
but not the costs of the non-tree edges in L↓(f), which might also cross cuts involving the
edges (ui−1, ui) or (ui, ui+1). The definition of the costs of edges in T ′2(f) takes into account
the contribution of costs of non-tree edges in L↓(f). The rest of the propagation procedure
and the proof of its correctness remain unchanged.

To analyze the overall running time, let T (m) be the time to handle a fragment f
corresponding to a whole heavy path, and T ′(m) be the time to handle a fragment f
corresponding to a proper subpath of some heavy path, where m = |L(f)|. Then T (m) =
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T ′(m1) + T (m2) + T ′(m3) for some m1,m2,m3, where m1 + m2 + m3 = m since the
subproblems are disjoint, m1,m3 ≤ m/2 by the choice of the middle node, and m2 ≤ m/2
by the definition of a heavy path. This is since the light child of ui does not have more
incident non-tree edges in its subtree than the number of non-tree edges incident to the
subtree of the heavy child ui+1. When f corresponds to a whole heavy path the number of
non-tree edges incident to the subtree of ui+1 is exactly m3. Similarly, for the case where f
does not correspond to a whole heavy path, T ′(m) = T ′(m1) + T (m2) + T ′(m3) for some
m1,m2,m3, where m1 +m2 +m3 = m and m1,m3 ≤ m/2 (but now we cannot guarantee
that m2 ≤ m/2). Considering the tree describing the recursive calls, on any path from
the root (corresponding to the fragment consisting of the whole T1) to a leaf, we have the
property that the value of m decreases by at least a factor of 2 every two steps. Hence,
the depth of the recursion is O(logm). It follows that the total time to handle a bipartite
problem of size m is O(m logm). J
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Abstract
In this paper we consider the following sparse recovery problem. We have query access to a vector
x ∈ RN such that x̂ = Fx is k-sparse (or nearly k-sparse) for some orthogonal transform F. The
goal is to output an approximation (in an `2 sense) to x̂ in sublinear time. This problem has been
well-studied in the special case that F is the Discrete Fourier Transform (DFT), and a long line of
work has resulted in sparse Fast Fourier Transforms that run in time O(k · polylogN). However, for
transforms F other than the DFT (or closely related transforms like the Discrete Cosine Transform),
the question is much less settled.

In this paper we give sublinear-time algorithms – running in time poly(k log(N)) – for solving the
sparse recovery problem for orthogonal transforms F that arise from orthogonal polynomials. More
precisely, our algorithm works for any F that is an orthogonal polynomial transform derived from
Jacobi polynomials. The Jacobi polynomials are a large class of classical orthogonal polynomials
(and include Chebyshev and Legendre polynomials as special cases), and show up extensively in
applications like numerical analysis and signal processing. One caveat of our work is that we require
an assumption on the sparsity structure of the sparse vector, although we note that vectors with
random support have this property with high probability.

Our approach is to give a very general reduction from the k-sparse sparse recovery problem
to the 1-sparse sparse recovery problem that holds for any flat orthogonal polynomial transform;
then we solve this one-sparse recovery problem for transforms derived from Jacobi polynomials.
Frequently, sparse FFT algorithms are described as implementing such a reduction; however, the
technical details of such works are quite specific to the Fourier transform and moreover the actual
implementations of these algorithms do not use the 1-sparse algorithm as a black box. In this work
we give a reduction that works for a broad class of orthogonal polynomial families, and which uses
any 1-sparse recovery algorithm as a black box.
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1 Introduction

In this paper, we consider the following sparse recovery problem. Suppose that we have query
access to a vector x ∈ RN , which has the property that for a fixed orthogonal transform
matrix F, x̂ = Fx is k-sparse (or approximately k-sparse, in the sense that x̂ is close in
`2 distance to a k-sparse vector). The goal is to recover an approximation ẑ to x̂, so that
‖x̂− ẑ‖2 is small with high probability, as quickly as possible.

Variants of this problem have been studied extensively over several decades – we refer
the reader to the book [16] for many examples and references. One particularly well-studied
example is the sparse Fast Fourier Transform (sFFT) – see the survey [18] and the references
therein. In this case, the matrix F is taken to be the Discrete Fourier Transform (DFT)
and a long line of work has produced near-optimal results: algorithms with running time
O(k polylog(N)) and sample complexity O(k logN) [8, 9, 19,23–27]– though not all of these
works achieve both the claimed sample complexity and runtime at the same time.

We study the sparse recovery problem for a more general class of transforms F called
orthogonal polynomial transforms, and in particular those that arise from Jacobi polynomials,
a broad class of orthogonal polynomials (OPs). Jacobi polynomials include as special cases
many familiar families of OPs, including Gegenbauer and in particular Chebyshev, Legendre,
and Zernike1 polynomials, and the corresponding OP transforms appear throughout numerical
analysis and signal processing.

Despite the progress on the sFFT described above, much remains unknown for general
orthogonal polynomial transforms. As discussed more in Section 1.2 below, the sample
complexity of the sparse recovery problem is well understood, and the “correct” answer

1 To be more precise the radial component of a Zernike polynomial is a Gegenbauer and hence, a Jacobi
polynomial.
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is known to be Θ(k polylog(N)) queries to x. However, the algorithmic results that go
along with these sample complexity bounds result in poly(N) time algorithms. Our goal in
this work will be sublinear time algorithms as well as sublinear sample complexity. There
are sublinear-time algorithms available for the special cases of Chebyshev and Legendre
polynomials that work by essentially reducing to the Fourier case [21]. For general Jacobi
polynomials, such reductions are not available. We elaborate in the full version of the paper
why reducing general Jacobi polynomials to the Fourier case does not seem easy. There are
also algorithms based on Prony’s method, some of which work for quite general families of
OPs [29]. However these general results require exact sparsity; to the best of our knowledge
versions of Prony’s method that are provably robust to noise are restricted to classes of OPs
similar to the Fourier transform.

Results

In this work, we give the first (to the best of our knowledge) sublinear-time algorithms with
provable guarantees for the (approximately-)sparse recovery problem for general orthogonal
transforms derived from Jacobi polynomials. We discuss our results in more detail in Section 3
and briefly summarize them here. Our algorithms run in time poly(k log(N)) and given
query access to v = F−1v̂, can find approximations to v̂ when v̂ is approximately k-sparse of
an appropriate form. More precisely, we can handle vectors v̂ = x̂ + ŵ where x̂ is k-sparse
with a “spread-out” support (made precise in Definition 2.3), and ŵ is an adversarial noise
vector with sufficiently small `2 norm. We obtain guarantees of the following flavor: for any
such vector v, we can find ẑ such that ‖ẑ− x̂‖2 ≤ 0.01‖x̂‖2 with high probability.

We note that these results are weaker than the results for the sFFT: our sample complexity
and running time are polynomially larger, and we need stronger assumptions on the sparse
signals. However, we also note that the decade or so of work on the sFFT culminating in
the results above began with similar results (see [17], for example, in which the dependence
on k is an unspecified polynomial) and we hope that this work will similarly be a first step
towards near-optimal algorithms for general orthogonal polynomial transforms.

Techniques

Our techniques follow the outline of existing algorithms for the sFFT, although as we
elaborate on in Section 1.3, the situation for general Jacobi polynomials is substantially
more complicated. More precisely, we first give a very general reduction, which reduces the
k-sparse case to the 1-sparse case. The idea of such a reduction was implicit in the sFFT
literature, but previous work has relied heavily on the structure of the DFT. Our reduction
applies to a broad class of OPs including Jacobi polynomials. Next, we show how to solve
the 1-sparse recovery problem for general Jacobi polynomials. The basic idea is to use known
approximations of Jacobi polynomial evaluations by certain cosine evaluations [35] in order
to iteratively narrow down the support of the unknown 1-sparse vector. We give a more
detailed overview of our techniques in Section 1.3.

Organization

For the rest of the introduction, we briefly introduce orthogonal polynomial transforms,
discuss previous work, and give a high-level overview of our approach. After that we introduce
the formal notation and definitions we need in Section 2, after which we state our results
more formally in Section 3.
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Due to space constraints, proofs of our main results are in the full version of the paper,
including the reduction from k to 1-sparse recovery, the 1-sparse recovery algorithm for
Jacobi polynomials, and the resulting k-sparse recovery algorithm for Jacobi polynomials.

1.1 Orthogonal Polynomial Transforms
Orthogonal polynomials (OPs) play an important role in classical applied mathematics,
mathematical physics, and the numerical analysis necessary to simulate solutions to such
problems. We give more precise definitions in Section 2; briefly, a family of orthogonal
polynomials p0(X), p1(X), . . . is a collection of polynomials defined on an interval D of R,
that are pairwise orthogonal with respect to a (non-negative) weight function w.

Orthogonal polynomials naturally give rise to (discrete) orthogonal polynomial transforms.
In particular, we define the transform as follows– F is an N ×N matrix, with each column
corresponding to an orthogonal polynomial p0, . . . , pN−1 and each row an evaluation point
λ0, . . . , λN−1 in a suitable domain and suitably normalized so that it is an orthogonal matrix
(Definition 2.1). A familiar example might be the DFT: in this language, the DFT matrix is
defined by the polynomials 1, X,X2, . . . , XN−1, evaluated at points λj = ωj where ω is the
Nth root of unity.2 Like the Fourier Transform, it is known that all OP transforms admit
“fast” versions, allowing matrix-vector multiplication in time O(N log2(N)) [15].3 Thus, our
problem of sparse recovery for OP transforms is a natural extension of the sFFT problem,
with applications to several areas mentioned below.

In this work we study Jacobi polynomials (defined formally in Section 2), which are a very
general class of orthogonal polynomials. These include Chebyshev polynomials, Legendre
polynomials, Zernike polynomials and more generally Gegenbauer polynomials. These OP
families show up in many places. For example, Zernike polynomials are a family of orthogonal
polynomials on the unit disk that permit an analytic expression of the 2D Fourier transform
on the disk. They are used in optics and interferometry [36]. They can be utilized to extract
features from images that describe the shape characteristics of an object and were recently
used for improved cancer imaging [39]. Different families of orthogonal polynomials give
rise to different quadrature rules for numerical integration [12,33]. Specifically, Chebyshev
polynomials are used for numerical stability (see e.g. the ChebFun package [3]) as well as
approximation theory (see e.g. Chebyshev approximation [1]). Chebyshev polynomials also
have certain optimal extremal properties, which has resulted in many uses in theoretical
computer science, including in learning theory, quantum complexity theory, linear systems
solvers, eigenvector computation, optimization, and more [28]. Further, Jacobi polynomials
form solutions of certain differential equations [2].

More recently, orthogonal polynomials and orthogonal polynomial transforms have found
applications in various facets of machine learning. For example, Dao et al. [13] leverage the
connection between orthogonal polynomials and quadrature to derive rules for computing

2 We note that in this work we consider a setting slightly different than this example, where D = [−1, 1]
rather than S1.

3 We note that even though the work of [15] has in some sense solved the problem of computing any
OP transform in near-linear time, many practical issues still remain to be resolved and the problem
of computing OP transforms in near-linear time has seen a lot of research activity recently. We just
mention two recent works [6, 7] that present near-linear time algorithms for the Jacobi polynomial
transforms (and indeed their notion of uniform Jacobi transform corresponds exactly to the Jacobi
polynomial transform that we study in this paper). However, these algorithms inherently seem to
require at least linear-time and it is not clear how to convert them into sub-linear algorithms, which is
the focus of our work.
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kernel features in machine learning. The Legendre Memory Unit [38] augments recurrent
neural networks by orthogonalizing the history of features on a sliding Legendre basis;
mathematically, this is essentially an online update of the discrete Legendre Transform.
More directly, Thomas et al. [37] apply parametrized families of structured matrices directly
inspired by orthogonal polynomial transforms (De Sa et al. [14]) as layers in neural networks.
In this context, any form of structured matrix that admits fast operations is valuable, such
as those considered in this work. Although not directly applied yet, all of these applications
have a natural way of incorporating sparsity if the appropriate sparse transforms exist, which
is a particular focus of modern ML in the face of sharply increasing trends in computation.

1.2 Related Work
As previously described, there has been a great deal of work on the sFFT; we refer the
reader to the survey [18] for an overview. There has also been work on non-Fourier OP
transforms. We break up our discussion below into discussion on the sample complexity
(which as mentioned above is largely settled) and the algorithmic complexity (which remains
largely open).

Sample complexity

The sample complexity of OP transforms F has been largely pinned down by the compressed
sensing literature. For example, suppose that F ∈ RN×N is any orthogonal and sufficiently
flat matrix, in the sense that none of the entries of F are too large. Then a result of Haviv
and Regev (sharpening of results by Bourgain, and Rudelson and Vershynin) shows that
m = O(k log2 k logN) samples suffice to establish that the matrix Φ ∈ Rm×N (which is made
up ofm sampled rows from FT ) has the Restricted Isometry Property (RIP) [5,20,34]. Finding
x̂ = Fx from samples of F of corresponds to the problem of finding an (approximately)
k-sparse vector x̂ from the linear measurements Φx̂, which is precisely the compressed sensing
problem. It is known that if Φ satisfies the RIP, then this can be solved (for example with `1
minimization) in time NO(1). On the other hand, recent results by Błasiok et al. show that
this is essentially tight when F are certain Fourier matrices over constant sized prime finite
fields, such as the Hadamard matrix, in that O(k log k logN) queries (for a certain range of
k) to x are needed to compute a k-sparse approximation of Fx [4].

Foucart and Rauhut [16] show that if the orthogonal polynomials satisfy a Bounded
Orthogonal System (BOS) that are suitably flat, then if the m evaluation points λj are
chosen uniformly at random proportional to the weight function w, then the m×N matrix Φ
defined by normalizing PN [i, j] = pj(λi) appropriately satisfies the RIP with high probability
provided that m has an appropriate dependence on N, k, ε, and the flatness of the matrix,
and this again gives an NO(1)-time algorithm to solve the sparse recovery problem.

Rauhut and Ward [32] show that for Jacobi polynomial transforms if the evaluation
points were picked according to the Chebyshev measure, then with O(k polylogN) random
measurements, the corresponding matrix has the RIP (note that the Foucart and Rauhut
sample the evaluation points according to the measure of orthogonality for the Jacobi
polynomials, which in general is not the Chebyshev measure). This result again does not
give a sub-linear time algorithm but was used in the result of [21] which we describe below.

While these approaches can give near-optimal sample complexity, they do not give
sublinear-time algorithms. In fact, it is faster to compute x̂ exactly by computing Fx, if we
care only about the running time and not about sample complexity [15]. Thus, we turn our
attention to sublinear-time algorithms.
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Sublinear-time algorithms for OP transforms

There have been several works generalizing and building on the sFFT results mentioned
above. One direction is to the multi-dimensional DFT (for example in [23, 27]). Another
direction is to apply the sFFT framework to orthogonal polynomials with similar structure.
One example is Chebyshev polynomials and the Discrete Cosine Transform (DCT). It was
observed in [21] that this can be reduced to sFFT in a black box manner, solving the
sparse recovery problem for Chebyshev polynomials and the DCT. A second example of OP
transforms which can essentially be reduced to the sFFT is Legendre polynomials. Hu et
al. [21] seek to recover an unknown k-term Legendre polynomial (with highest magnitude
degree limited to be N/2), defined on [−1, 1], from samples. They give a sublinear two-phase
algorithm: in the first phase, they reduce k-sparse-Legendre to sFFT to identify a set of
candidate Legendre polynomials. The second phase uses the RIP result for BOS to produce
a matrix that is used to estimate the coefficients of the candidate Legendre polynomials. We
note that in this work the setting is naturally continuous, while ours is discrete.

Choi et al. [10, 11] study higher dimensions and obtain sublinear-time algorithms for
more general harmonic expansions in multiple dimensions. These results complement our
work. More precisely, that work shows how to use any algorithm for a univariate polynomial
transform (the work in [11] needs these algorithms to have certain specific properties) to design
an algorithm for a multi-variate polynomial transform where the multi-variate polynomials
are products of univariate polynomials in the individual variables. Thus our improvements
for univariate polynomial transforms can (potentially) be used with [10,11].

Finally, there are sparse OP transforms based on Prony’s method. The work [29] extends
Prony’s method to a very general setting, including Jacobi polynomials, and gives an
algorithm that requires only O(k) queries to recover exactly k-sparse polynomials. However,
these general results work only for exact sparsity and are in general not robust to noise.
There has been work extending and modifying these techniques to settings with noise (for
example, [22,30]), but to the best of our knowledge the only provable results for noise are
for either the sFFT or closely related polynomial families. We note that [31] presents a
Prony-like algorithm for Legendre and Gegenbauer polynomials and demonstrates empirically
that this algorithm is robust to noise, although they do not address the question theoretically.

1.3 Technical overview

Our technical results have two main parts. First, inspired by existing approaches to the
sFFT, we provide a general reduction from the k-sparse recovery problem to the 1-sparse
recovery algorithm, which works for any family of OPs that is sufficiently “flat”: that is,
no entry of the matrix F is too large. Second, we provide a 1-sparse recovery algorithm for
Jacobi polynomials. We give an overview of both parts below.

For what follows, let F be an orthogonal matrix. For simplicity in this overview we will
assume that there is no noise. That is, we want to compute the exactly k-sparse x̂ = Fx
given query access to x. However, we note that our final results do work for approximately
k-sparse vectors v̂ = x̂ + ŵ provided that ‖ŵ‖2 is sufficiently small.
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1.3.1 Reduction to one-sparse recovery

We give a general reduction from the k-sparse recovery problem to the one-sparse recovery
problem, which works for a broad class of OP families defined on a finite interval.4 At a high
level, the idea is as follows. Suppose that x̂ = Fx is k-sparse and b ∈ RN is a “filter”: at
this stage it is helpful to think of it like a boxcar filter, so b is 1 on some interval I and zero
outside of that interval. If we choose this interval randomly, we might hope to isolate a single
“spike” of x̂ with b: that is, we might hope that Dbx̂ is one-sparse, where Db is the diagonal
matrix with b on the diagonal. Suppose that this occurs, so y = Dbx̂ is one sparse. In
order to take advantage of this with a black-box solution to the one-sparse recovery problem
ŷ = Fy, we would need query access to the vector y = F−1Dbx̂ = F−1DbFx, while what
we have is query access to x. Thus, we would like to design b so that F−1DbF is row-sparse.
This would allow us to query a position of y = F−1Dbx̂ using only a few queries from x.

One of our main technical contributions is showing how to design such a vector b, so that
b approximates a boxcar filter and so that F−1DbF is row-sparse for any OP transform F.

Then, given this filter, we can iteratively identify and subtract off “spikes” in x̂ until we
have recovered the whole thing. Of course, the actual details are much more complicated
than the sketch above. First, the one-sparse solver might have a bit of error, which will get
propagated through the algorithm. Second, in our analysis the vector x̂ need not be exactly
k-sparse. Third, b will only approximate a boxcar filter, and this is an additional source of
error that needs to be dealt with. Complete details are in the full version of the paper.

For the reader familiar with the sFFT, this approach might look familiar: most sFFT
algorithms work by using some sort of filter to isolate single spikes in an approximately sparse
signal. Below, we highlight some of the challenges in extending this idea beyond the Fourier
transform. Some of these challenges we have overcome, and one we have not (yet) overcome.
We mention this last open challenge both because it explains the assumption we have to
make on the sparsity structure of x̂, and also because we hope it will inspire future work.

Challenge 1: Choice of filter

One key difficulty in extending sFFT algorithms to general orthogonal polynomials is that
the filters used in the sFFT approach are very specific to the Fourier transform. Indeed,
much of the progress that has been made on that problem has been due to identifying better
and better choices of filter specialized to the Fourier transform. In order to find filters that
work for any OP family, we take a different approach and construct a filter out of low-degree
Chebyshev polynomials. Then we use the orthogonality properties of the OP family to
guarantee that F−1DbF has the desired sparsity properties.

Challenge 2: Explicit black-box reduction

Because our goal is generality (to as broad a class of OPs as possible), we give an explicit
reduction that uses a 1-sparse solution as a black box. To the best of our knowledge, existing
work on the sFFT does not explicitly do this: a reduction of this flavor is certainly implicit
in many of these works, and even explicitly given as intuition, but we are not aware of an
sFFT algorithm which actually uses a 1-sparse recovery algorithm as a black box.

4 We note that our results do not (yet) work for the case when the orthogonality is defined over an infinite
interval. In particular, our reduction does not work for the Hermite and Laguerre polynomials.
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Challenge 3: Equi-spaced evaluation points

The evaluations points in DFT and the DCT are equispaced (in the angular space). This
fact is crucially exploited in sFFT algorithms (as well as the reduction of DCT to DFT – see
the full version of this paper for more details on the reduction). Unfortunately, the roots
of Jacobi polynomials are no longer equally spaced. However, it is known that the roots
of Jacobi polynomials are “spread out” (in a sense made below precise in Definition 2.2),
and we show that this property is enough for our reduction. In fact, our reduction from
k-sparse recovery to 1-sparse recovery works generally for any “flat” OP family with “spread
out” roots.

(Open) Challenge 4: Permuting the coordinates of x̂

In the approach described above, we hoped that an interval I would “isolate” a single spike.
In the sFFT setting, this can be achieved through a permutation of the coordinates of x̂. In
our language, in the sFFT setting it is possible to define a random (enough) permutation
matrix P so that Px̂ has permuted coordinates, and so that F−1DbPF is row-sparse – this
argument crucially exploits the fact that the roots of unity are equispaced in the angle space.
This means that not only can we sample from the one-sparse vector Dbx̂, but also we can
sample from DbPx̂, and then there is some decent probability that any given spike in x̂ is
isolated by b. However, we have not been able to come up with (an approximation to) such
a P that works in the general OP setting. This explains why we require the assumption that
the support of x̂ be reasonably “spread out,” so that we can hope to isolate the spikes by b.
This assumption is made precise in Definition 2.3. We note that if such a P were found in
future work, this would immediately lead to an improved k-sparse recovery result for Jacobi
polynomials, which would work for arbitrary sparse signals x̂.

1.3.2 A one-sparse recovery algorithm for Jacobi polynomials
With the reduction complete, to obtain a k-sparse recovery algorithm for general Jacobi
polynomials we need to solve the one-sparse case. We give an overview of the basic idea
here, with full details in the full version of the paper. First, we note that via well-known
approximations of Jacobi polynomials [35], one can approximate the evaluation of any Jacobi
polynomial at a point in (−1, 1) by evaluating the cosine function at an appropriate angle.
Using some standard local error-correcting techniques (for example, computing cos(A) via
cosA = cos(A+B)+cos(A−B)

2 cosB for a random B), we reduce the 1-sparse recovery problem to
computing some unknown value θ, corresponding to the index of the spike, from noisy values
of cos(wθ) for some integers w ≥ 1, corresponding to evaluations of the Jacobi polynomials
for this index. Since the reduction is approximate, some care has to be taken to handle some
corner cases where the approximation does not hold. In particular, we have to figure out for
which real numbers y ∈ [0, N) does its orbit 〈xy〉 for x ∈ ZN have small order. We give a
result to handle this, which to the best of our knowledge (and somewhat surprisingly) seems
to be new.5 With this out of the way, our algorithm to compute the value of θ from the
evaluations cos(wθ) is based on the following idea. Assuming we already know cos(θ) up
to ±ε, we get a noisy estimate of θ (which lives in the range arccos(cos(θ) ± ε)) and then
use the evaluations at w > 1 to “dilate” the range where we know θ lies, reducing ε. We

5 We thank Stefan Steinerberger for showing us a much simpler proof than our original more complicated
proof, which also gave worse parameters.
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proceed iteratively until the region of uncertainty is small enough that there are only O(1)
possibilities remaining, which we then prune out using the fact that F is orthogonal and flat,
in the sense that none of its entries are too large. (We note that proving F is flat needs a
bit of care. In particular, we need a sharper bound on Jacobi polynomials (than the cosine
approximation mentioned above) in terms of Bessel functions to prove that all entries of F
are small.) Similar ideas have been used for 1-sparse recovery for the DFT (for example,
in [19]), although our situation is more complicated than the DFT because working with
cosines instead of complex exponentials means that we lose sign information about θ along
the way (though it is similar in spirit to the one-sparse recovery algorithm for DFT in [19]).

2 Background and Preliminaries

2.1 Notation
We use bold lower-case letters (x,y) for vectors and bold upper-case letters (P,F) for
matrices. Non-bold notation x, y, U is used for scalars in R. In general, if there is a given
transform F we are considering, then the notation x̂ ∈ RN indicates F · x. We use the
notation x[i] or X[i, j] to index into a vector or matrix, respectively. All of our vectors and
matrices are 0-indexed, i.e. the entries of a vector x ∈ RN are x[0], . . . ,x[N − 1]. We use [N ]
to denote the set {0, . . . , N − 1}. Given a subset S ⊂ [N ], we will denote the complement
set (i.e. [N ] \ S) by Sc.

Given a vector x ∈ RN and an integer 1 ≤ s ≤ N , we define large(s,x) to be the
magnitude of the sth largest value in x (by absolute value).

For any vector u ∈ RN , we define Du ∈ RN×N as the diagonal matrix with u on its
diagonal. For a diagonal matrix D, and any real α we denote Dα to denote the diagonal
matrix with the (i, i) entry being (D[i, i])α. Given a vector x ∈ RN and set S ⊆ [N ], xS
denotes the vector x where all entries out of S are masked to 0. For x ∈ RN , supp(x) ⊆ [N ]
denotes the support (i.e. the set of non-zero positions) of x.

We use x ± h to refer to either the interval [x − h, x + h] or a point in this interval,
whichever is clear from context. Similarly, if S is an interval [a, b] then S ± h is the interval
[a− h, b+ h].

When stating algorithms, we use superscript notation to denote query access. That is
A(x)(z) takes input z and has query access to x.

We use the notation f(n) . g(n) to mean that there is some constant C so that, for
sufficiently large n ≥ n0, f(n) ≤ Cg(n).

The notation J� means Jj for all indices j.

2.2 Orthogonal Polynomials
For the remainder of this paper, we consider polynomials p0(X), p1(X), . . . that form a
normalized orthogonal polynomial family with respect to some compactly supported measure
w(X). By suitably scaling and translating X, we can ensure that the orthogonality is on
[−1, 1].6 In particular deg(pi) = i and for any i, j ≥ 0,∫ 1

−1
pi(X)pj(X)w(X)dX = δi,j , (1)

where δi,j = 1 if i = j and 0 otherwise.

6 See footnote 4.
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Then for given N evaluation points λ0, . . . λN−1, define the orthogonal polynomial trans-
form PN as follows. For any 0 ≤ i, j < N , we have

PN [i, j] = pj(λi).

In other words, the rows of PN are indexed by the evaluation points and the columns are
indexed by the polynomials.

For the rest of the paper, assume λ0 ≤ λ1 ≤ · · · ≤ λN−1 are the roots of pN (X). Then it
is well-known (see e.g. [35]) that

The roots lie in the support of the measure (i.e. λi ∈ [−1, 1]) and are distinct (i.e.
λ0 < λ1 < · · · < λN−1).
There exists Gaussian quadrature weights w` = 1∑N−1

j=0
pj(λ`)2 , i = 0, . . . , N − 1 such that

for any polynomial f(X) of degree at most 2N − 1,

∫ 1

−1
f(X)w(X)dX =

N−1∑
`=0

f(λ`) · w`. (2)

We are now ready to define the orthogonal matrix corresponding to PN that we deal
with in this paper:

I Definition 2.1. Let p0(X), . . . , pN−1(X), . . . be an orthogonal polynomial family, λ0, . . . ,

λN−1 be the roots of pN (X), and w0, . . . , wN−1 be the Gaussian quadrature weights. Define
Dw to be the diagonal matrix with w0, . . . , wN−1 on its diagonal, and

FN = D
1
2
wPN .

Note that by (1) and (2),

FTNFN = PT
NDwPN = IN ,

so FN is an orthogonal matrix. In particular,

PT
NDwPN [i, j] =

N−1∑
k=0

pi(λk)wkpj(λk) =
∫ 1

−1
pi(X)pj(X)w(X) dX = δi,j .

Note that since FN is orthogonal, by definition we have

F−1
N = FTN .

2.2.1 Jacobi Polynomials and Special Cases
In this section we define Jacobi Polynomials, our main object of interest, and point out a few
special cases. We note that families of named orthogonal polynomials {pi(X)} are sometimes
defined through different means, hence are normalized differently up to constants. The
corresponding discrete orthogonal polynomial transform (e.g. Discrete Legendre Transform)
frequently refers to multiplication by P instead of F. In these cases, the transform satisfies
PT
NDwPN = D for a diagonal matrix D corresponding to the normalization. The transform

FN = D
1
2
wPD− 1

2 we consider (note that this matrix is indeed orthogonal) is thus equivalent
up to diagonal multiplication.
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Jacobi polynomials

Jacobi polynomials are indexed by two parameters α, β > −1 and these are polynomials{
P

(α,β)
j

}
j≥0

that are orthogonal with respect to the measure

w(α,β)(X) = (1−X)α · (1 +X)β

in the range [−1, 1]. This definition is not normalized, in the sense that we have PT
NDwPN =

D, where

D[j, j] = 2α+β+1

2j + α+ β + 1 ·
Γ(j + α+ 1)Γ(j + β + 1)
Γ(j + 1)Γ(j + α+ β + 1)

(see [35, Pg. 68, (4.3.3)]).
We record three well-known special cases: Chebyshev polynomials (of the first kind) are

special case of α = β = − 1
2 and Legendre polynomials are the special case of α = β = 0 (up

to potentially a multiplicative factor that could depend on the degree j). Another notable
special case of Jacobi polynomials are the Gegenbauer or ultraspherical polynomials (α = β).
Our results hold for all Jacobi polynomials with α, β ≥ − 1

2 , which include essentially all
named special cases of Jacobi polynomials used in practice.

Chebyshev polynomials of the 1st kind

The Chebyshev polynomials of the 1st kind are orthogonal with respect to the weight measure
w(X) = (1−X2)− 1

2 .
The normalized transform FN has the closed form

FN [i, j] =


√

1
N j = 0√
2
N · cos

[
π
N j
(
i+ 1

2
)]

j = 1, . . . , N − 1.

This is a variant of the Discrete Cosine Transform (DCT-III, or the inverse DCT). It is
well-known that the DCT-III can be “embedded” into a DFT of twice the dimension, and we
work out some of the details of how to use the sparse FFT to compute a sparse DCT in the
full version of the paper.

Legendre polynomials

Legendre polynomials are orthogonal with respect to the uniform measure i.e. w(X) = 1
and play a critical role in multipole expansions of potential functions (whether electrical
or gravitational) in spherical coordinates. They are also important for solving Laplace’s
equation in spherical coordinates.

2.2.2 Roots of Orthogonal Polynomials

Since λi ∈ [−1, 1] for all i, there is a unique θi ∈ [0, π] such that λi = cos θi. Our reduction
holds for orthogonal polynomials that have roots that are “well-separated” in this angle
space:
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I Definition 2.2. Let 0 < C0 < C1. A family of orthogonal polynomials p0(X), p1(X), . . . is
(C0, C1, γ0)-dense if for all large enough d, the following holds.

Let λ0, . . . , λd−1 be the roots of pd, and θi = arccosλi. Then for any i ∈ [d], for any
γ ≥ γ0/d:

C0γd ≤
∣∣∣{θ0, . . . , θd−1} ∩

[
θi −

γ

2 , θi + γ

2

]∣∣∣ ≤ C1γd.

It turns out that any family of Jacobi polynomials has the required property: their roots
are spaced out such that θ` is close to `π/N .

2.3 Sparse Recovery Problem
We will consider approximately k-sparse vectors v̂ = x̂ + ŵ, where x̂ is k-sparse and ‖ŵ‖2 is
sufficiently small. We will require that x̂ has a “spread out” support, defined as follows.

I Definition 2.3. Let k ∈ [N ] and 0 ≤ σ < 1. We say that a vector x ∈ RN is (k, σ)-sparsely
separated if there are k non-zero locations in x and any two non-zero locations are more
than σN indices apart.

It is not hard to see that a vector x with random support of size k is, with constant
probability,

(
k,Ω

( 1
k2

))
-sparsely separated.

In our reduction, we will reduce the k-sparse recovery problem to the special case of
k = 1. Next, we define some notation for the 1-sparse case.

I Definition 2.4. We say that the matrix FN has an (N, ε, δ, µ) one-sparse recovery al-
gorithm with query complexity Q(N, ε, δ, µ) and time complexity T (N, ε, δ, µ) if there exists
an algorithm A with the properties below:

For all y so that ŷ = FNy can be decomposed as

ŷ = ỹ + w,

where ỹ = v · eh is 1-sparse and

‖w‖2 ≤ ε |v| ,

we have:
1. A makes at most Q(N, ε, δ, µ) queries into y = F−1

N (v · eh + w).
2. With probability at least 1− µ, A outputs ṽ · eh with |v − ṽ| ≤ δ |v| in time T (N, ε, δ, µ).

Pre-processing time

Our algorithm requires some pre-processing of FN . Our pre-processing step involves com-
puting the roots λ1, . . . , λN of pN and storing them in an appropriate data structure, and
additionally forming and storing some matrices that we will use in our algorithm. Finding
the roots and creating the data structure can be done in time poly(N), and the rest of the
pre-processing step also takes time poly(N). We note that this is an up-front cost that needs
to be only paid once.

Precision

We note that we need to make certain assumptions on size of the entries in v̂ since otherwise
we would not even be able to read coefficients that are either too large or too small and need
Ω(logN) bits to represent. Towards this end we will make the standard assumption that
‖v̂‖2 = 1. In particular, this allows us to ignore any coefficients that are smaller than say 1

N
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since their contribution to ‖v̂‖2 is at most 1√
N
, which will be too small for our purposes.7 In

particular, this implies that we only have to deal with numbers that need O(logN) bits and
as is standard in the RAM model, basic arithmetic operations on such numbers can be done
in O(1) time. We will implicitly assume this for the rest of the paper (except in the proof of
one lemma, where we will explicitly make use of this assumption).

3 Results

In this section we state our main results. These results follow from more detailed versions
which are stated in the full version of the paper.

We start off with our main result for Jacobi polynomials. We state an informal version
here, and refer the reader to the full version of the paper for the formal result.

I Theorem 3.1 (General Sparse Recovery for Jacobi Polynomial Transform, Informal). Fix
arbitrary parameters α, β ≥ − 1

2 for Jacobi polynomials and let J(α,β)
N be the N×N orthogonal

matrix that arises from it as in Definition 2.1. Then there is an algorithm Recover that
does the following. Let v = x + w where x̂ = J(α,β)

N x is (k,C1/k
2)-sparsely separated, and

suppose that ‖ŵ‖2 . δminh∈supp(x̂) |x̂[h]|. Then with probability at least 0.99, Recover
outputs ẑ such that

‖x̂− ẑ‖2 . δ‖x̂‖2,

with poly
(
k logN
δ

)
queries and running time poly

(
k logN
δ

)
.

I Remark 3.2. The requirement on the noise term might be bad if one entry of x̂ is extremely
small compared to the rest. However in this case we can decrease k and add the very small
entries of x̂ to the noise term ŵ resulting in a potentially better guarantee. We note that
our algorithm iteratively finds the large components of x̂ and in fact has a mechanism for
stopping early when all of the “large-enough” entries have been found.
I Remark 3.3. The (k,O(1/k2))-sparsely separated requirement is chosen to reflect the
separation of a random k-sparse vector (c.f. comment below Definition 2.3). Smaller amounts
of sparse separation are acceptable, which translate accordingly into the query and time
complexity. The full dependence is in the complete result in the full version of the paper.

To prove the above result, we first reduce the k-sparse recovery problem to 1-sparse
recovery problem, in the presence of a small amount of noise. Next, we present an informal
statement of our reduction.

I Theorem 3.4 (Main Reduction, Informal). Let p1, . . . , pN be a (C0, C1, γ0)-dense orthogonal
polynomial family, and let FN be the N × N orthogonal matrix that arises from it as in
Definition 2.1. Suppose that |F−1

N [i, j]| . 1/
√
N for all i, j ∈ [N ]. Suppose that for some

sufficiently small δ > 0, FN has a
(
N,O(δ), δ, O(C0/k

2)
)
one-sparse recovery algorithm with

query complexity Q and running time T .
Then there is an algorithm Recover that does the following. Let v = x + w where

x̂ = FNx is (k,C1/k
2)-sparsely separated, and suppose that ‖ŵ‖2 . δminh∈supp(x̂) |x̂[h]|.

Then with probability at least 0.99, Recover outputs ẑ so that

‖x̂− ẑ‖2 . δ‖x̂‖2,

with poly(k/δC0)Q queries and running time poly(k/δC0)T .

7 More generally, we can ignore smaller coefficients as long as they are polynomial sized in N .
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The final algorithmic piece missing from the result above is the algorithm for 1-sparse
recovery. We provide this missing piece for Jacobi polynomials:

I Theorem 3.5 (1-Sparse Recovery for Jacobi Transform, Informal). There exists a universal
constant C such that the following holds. Consider the Jacobi transform for any fixed
parameters α, β ≥ − 1

2 . There exists an (N, ε, C · ε, γ) 1-sparse recovery algorithm for the
Jacobi transform that makes poly

(
log
(
N
γ

)
· 1
ε

)
queries and takes time poly

(
log
(
N
γ

)
· 1
ε

)
.

4 Open Questions

To conclude, we list a few questions left open by our work.

1. First, it is natural to try and improve our k-sparse recovery algorithm to work for arbitrary
k-sparse support, rather than “well-separated” supports. One natural way to do this is
to address the fourth (open) challenge in Section 1.3 for a general class of OPs.

2. Second, we could hope to handle a more general class of noise ŵ than we currently do.
One could hope to handle any vector v, with an error guarantee that degrades smoothly
with the `2 norm of the “tail” of v. There is a long list of work on “de-noising” the
contribution of the “head” to the “tail” in the sFFT literature that could potentially be
useful here [23–27].

3. Third, we would like to extend our results to hold for OPs defined over infinite intervals
(e.g. Hermite and Laguerre polynomials).

4. Fourth, we would like to solve the sparse recovery for FT (where F is as in Definition 2.1):
i.e. given query access to x figure out a good k-sparse approximation to FTx (recall that
F−1 = FT ). (Note that this problem can be equivalently stated as follows: given query
access to Fy, compute a good k-sparse approximation to y.) Currently our results do
not solve this problem since we cannot show that the existence of a filter b such that
FDbFT is row-sparse. Note that this is not an issue for DFT since it is symmetric.

5. Finally, we would like to reduce the exponent on k in our final runtime. In particular,
for the case of random k-sparse support, the dependence on k in the runtime for Jacobi
transform is k8. We note that we have not tried too hard to optimize the constants
though we believe even getting a quadratic dependence on k with our framework would be
challenging. We would like to stress that the majority of the work in the sFFT literature
has been to make the dependence on k be linear and for such results, it seems very
unlikely that a generic reduction from k-sparse recovery to 1-sparse recovery would work.
In other words, using the knowledge about the 1-sparse recovery algorithm for DFT seems
necessary to get a overall k-sparse FFT with running time kpoly(logn).
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Abstract
In the Directed Long Cycle Hitting Set problem we are given a directed graph G, and the
task is to find a set S of at most k vertices/arcs such that G − S has no cycle of length longer
than `. We show that the problem can be solved in time 2O(`6+`k3 log k+k5 log k log `) · nO(1), that
is, it is fixed-parameter tractable (FPT) parameterized by k and `. This algorithm can be seen
as a far-reaching generalization of the fixed-parameter tractability of Mixed Graph Feedback
Vertex Set [Bonsma and Lokshtanov WADS 2011], which is already a common generalization of the
fixed-parameter tractability of (undirected) Feedback Vertex Set and the Directed Feedback
Vertex Set problems, two classic results in parameterized algorithms. The algorithm requires
significant insights into the structure of graphs without directed cycles of length longer than ` and
can be seen as an exact version of the approximation algorithm following from the Erdős-Pósa
property for long cycles in directed graphs proved by Kreutzer and Kawarabayashi [STOC 2015].

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability; Mathematics of computing → Graph algorithms

Keywords and phrases Directed graphs, directed feedback vertex set, circumference

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.59

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://arxiv.org/abs/2003.05267.

Funding Alexander Göke: Supported by DFG grant MN 59/1-1.
Dániel Marx: Supported by ERC Consolidator Grant SYSTEMATICGRAPH (No. 725978).
Matthias Mnich: Supported by DFG grant MN 59/4-1.

1 Introduction

Feedback Vertex Set (FVS) and its directed variant Directed FVS (DFVS) are among
the most classical problems in algorithmic graph theory: given a (directed) graph G the task
is to find a minimum-size set S ⊆ V (G) of vertices such that G− S contains no (directed)
cycles. Interestingly, the directed version is not a generalization of the undirected one. There
is no obvious reduction from FVS to DFVS (replacing each undirected edge with two arcs of
opposite directions does not work, as this would create directed cycles of length 2).

Both problems received significant amount of attention from the perspective of paramet-
erized complexity. The main parameter of interest there is the optimal solution size k = |S|.
Both problems can easily be solved in time nO(k) by enumerating all size-k vertex subsets
S ⊆ V (G) and then checking whether G − S is acyclic. The interesting question is thus
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whether the problems are fixed-parameter tractable with respect to k, i.e. whether there is an
algorithm with run time f(k) · nO(1) for some computable function f depending only on k.
FVS is one of the most studied problems in parameterized complexity: starting in the early
1990’s, a long series of improved fixed-parameter algorithms [5, 6, 10, 13, 18, 25] lead to
the currently fastest (randomized) algorithm from 2020 with run time 2.7k · nO(1) [20]. The
DFVS problem has also received a significant amount of attention from the perspective of
parameterized complexity. It was a long-standing open problem whether DFVS admits such
an algorithm; the question was finally resolved by Chen et al. who gave a 4kk!k4 ·O(nm)-time
algorithm for graphs with n vertices and m edges. Recently, an algorithm for DFVS with
run time 4kk!k5 · O(n+m) was given by Lokshtanov et al. [22]. A fruitful research direction
is trying to extend the algorithm to more general problems than DFVS. On the one hand,
Chitnis et al. [8] generalized the result by giving a fixed-parameter algorithm for Directed
Subset FVS: here we are given a subset U of arcs and only require the k-vertex set S to hit
every cycle that contains an arc of U . On the other hand, Lokshtanov et al. [21] showed that
the Directed Odd Cycle Transversal problem, where only the directed cycles of odd
length needed to be hit, is W[1]-hard parameterized by solution size.

It is worth noting that very different algorithmic tools form the basis of the fixed-parameter
tractability of FVS and DFVS: the undirected version behaves more like a hitting set-type
problem, whereas the directed version has a more cut-like flavor. These differences motivated
Bonsma and Lokshtanov [4] to consider Mixed FVS, the common generalization of FVS
and DFVS where the input graph contains both directed and undirected edges. In such
mixed graphs, cycles can contain directed arcs and undirected edges, but in particular the
walk visiting an undirected edge twice is not a cycle. They obtained an algorithm for Mixed
FVS with run time 2O(k log k) · nO(1) for k the size of the smallest feedback vertex set.

In this paper we study the following generalization of DFVS: We want to find a minimum
size vertex set S such that all cycles of G − S to have length at most `. For ` = 1 this is
DFVS in loopless graphs. For ` = 2 this is Mixed FVS in mixed graphs. The length of a
longest cycle in a (directed) graph is also known as (directed) circumference of a graph. The
parameterized version of our problem thus reads:

Directed Long Cycle Hitting Set Parameter: k + `.
Input: A directed multigraph G and integers k, ` ∈ N.
Task: Find a set S of at most k vertices such that G− S has circumference at most `.

Note that Directed Long Cycle Hitting Set for ` = 2 generalizes Mixed FVS (and
hence both FVS and DFVS): to see this, subdivide anti-parallel arcs to make all cycles have
length at least three and then replace undirected edges by anti-parallel arcs.

In contrast to FVS and DFVS, even checking feasibility of a given solution is a non-trivial
task. It amounts to checking, for a digraph G and integer `, whether G contains a cycle of
length more than `. This is also known as the Long Directed Cycle problem, which
is obviously NP-hard since it contains the Directed Hamiltonian Cycle problem for
` = |V (G)|−1. However, Long Directed Cycle is fixed-parameter tractable parameterized
by ` [29], hence verifying the solution of Directed Long Cycle Hitting Set is fixed-
parameter tractable in `.

Our contributions. Our main result is a fixed-parameter algorithm for Directed Long
Cycle Hitting Set.

I Theorem 1. There is an algorithm that solves Directed Long Cycle Hitting Set in
time 2O(`6+`k3 log k+k5 log k log `) · nO(1) for n-vertex digraphs G and parameters k, ` ∈ N.
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The result also extends to the arc deletion variant of the problem, as we show both of
them to be equivalent in a parameter preserving way.

The run time in Theorem 1 depends on two parameters, k and `. This is necessary for
the following reason. For ` = 1, Directed Long Cycle Hitting Set corresponds to the
DFVS problem, which is NP-hard. Moreover, the problem is also NP-hard for k = 0, as it
contains the Directed Hamiltonian Cycle problem. This also shows that the run time
cannot be polynomial in k or ` (unless P = NP). Assuming ETH, it is even necessary that
the run time depends exponentially on both k and `. Our algorithm achieves a run time that
is single-exponential in both parameters k and `. It is, in this sense, optimal.

Our algorithm is based on an elaborate combination algorithmic techniques, some of
them used previously, some of them new.

We use the standard opening step of iterative compression, which allows to assume that
each directed cycle of length more than ` goes through a small number of exceptional
vertices.
We do not want to deal with the situation when there are two exceptional vertices x
and y that are in the same strong component of the solution G − S. If we guess that
this happens in the solution, then a way to avoid this problem is to guess a directed
cycle C containing both x and y, and to contract this cycle. In order to guess this cycle,
we essentially need a representative set of x→ y paths, that is, a collection of paths
such that if an (unknown) set S of at most k vertices does not disconnect y from x, then
there is at least one x → y path disjoint from S in our collection. As an interesting
self-contained result, we construct such a collection of size `O(k2 log k) · logn on directed
graphs without cycles of length greater than `.
If we can assume that the exceptional vertices are in different strong components of the
solution, then this defines a separation problem on the exceptional vertices and makes
the directed shadow removal technique of Chitnis et al. [8] relevant to simplify the
structure of the instance. In particular, a major structural goal that we want to achieve
is to ensure that every arc of the input graph lies in a directed cycle of length at most `.
Removing the exceptional vertices breaks the graph into some number of strong compon-
ents with no cycle of length longer than ` in any of them. We call portal vertices the
endpoints of the arcs connecting these strong components with each other and with the
exceptional vertices. We show that the portal vertices can be partitioned into clusters:
portals in each cluster are close to each other, while the distance between any two clusters
is large. Furthermore, every solution has to separate the clusters from each other, defining
another directed multiway cut problem.
In the final step of the algorithm, we would like to use the technique of important
separators to solve the directed multiway cut problem defined above: these are separators
that are maximally “pushed” towards the target of the separations. However, the exact
notion of importance is difficult to define due to the additional constraints of the problem
being solved. Ergo, we perform a detailed analysis of the instance structure to identify
outlet vertices that allows us to represent the additional constraints as separation, and
to formally reduce the problem to branching on the choice of an important separator.

Related work. The structure of long cycles in directed graphs has been of interest for
long time. For instance, Lewin [19] analyzed the density of such graphs, and Kintali [16]
analyzes the directed treewidth of such directed graphs. Algorithmically, though, it was
only recently shown by Kawarabayashi and Kreutzer [15] that the vertex version of the
Erdős-Posa property holds for long directed cycles: namely, they show that any digraph G
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either contains a set of k + 1 vertex-disjoint directed cycles of length at least ` or some
set S of at most f(k, `) vertices that intersects all directed cycles of G with length at least `.
The corresponding questions for directed cycles without length restrictions have also been
well-investigated [2, 26].

Note that an algorithmic proof of the Erdős-Pósa property can be a useful opening step
for a fixed-parameter algorithm: we either find a set of k + 1 arc- or vertex-disjoint cycles
of length at least ` (and thus can reject the instance (G, k, `) as “no”-instance) or obtain
a set S which can serve as a feasible approximate solution. Such an opening step was also
discussed in the well-known fixed-parameter algorithm for DFVS by Chen et al. [7, Remark
5.3], where the function f(k, 1) is known to be near-linear. In our case though, the function
f(k, `) from the Kawarabayashi-Kreutzer result is too large for us to obtain an algorithm for
Directed Long Cycle Hitting Set with run time 2poly(k,`) · nO(1).

Further, directed circumference can be seen as an intermediate step towards a general
algorithmic framework for graph optimization problems related to directed treewidth. In
undirected graphs, treewidth as a graph measure has enjoyed unprecedented success as
a tool towards efficient approximation algorithms and fixed-parameter algorithms. For
instance, as part of their Graph Minors series, Robertson and Seymour [28] showed that
the k-linkage problem is fixed-parameter tractable, heavily relying on the reduction of the
problem to graphs of bounded treewidth. In directed graphs, the situation is again much more
complicated: Johnson et al. [14] introduced the notion of directed treewidth for digraphs.
Yet, for digraphs the k-linkage problem is NP-hard already for k = 2, and no fixed-parameter
algorithm is known which recognizes digraphs of nearly-bounded directed treewidth. On the
positive side, though, digraphs of bounded directed circumference are nicely squeezed between
acyclic digraphs and digraphs of bounded directed treewidth [16]. Also, the arc version of the
k-linkage problem is fixed-parameter tractable on digraphs of directed circumference 2 [3];
the question remains open for digraphs of larger directed circumference.

Returning to the original motivation of studying generalizations of DFVS, Neogi et al. [24]
gave a fixed-parameter algorithm for the problem of finding a set S of size at most k in a
given digraph G such that every strong component of G− S excludes graphs in a fixed finite
family H as (not necessarily induced) subgraphs, when H contains only rooted graphs, or
contains at least one directed path. Göke et al. [12] considered the problem of finding a set S
of size at most k in a given digraph G such that every strong component of G− S has size
at most s; they gave a fixed-parameter algorithm for parameter k + s.

2 Definitions and Notations

In this paper, we mainly consider finite loop-less directed graphs (or digraphs) G with vertex
set V (G) and arc set A(G). We allow multiple arcs and arcs in both directions between
the same pairs of vertices. A walk is a sequence of vertices (v1, . . . , v`) with corresponding
arcs (vi, vi+1) for i = 1, . . . , `− 1 which forms a subgraph of G; the length of a walk is its
number of arcs. A walk is closed if v1 = v`; otherwise, it is open. A path in G is an open
walk where all vertices are visited at most once. A cycle in G is a closed walk in which every
vertex is visited at most once, except for x1 = x` which is visited twice. (Throughout this
entire paper, by “cycle” we always mean directed cycle.) We call G acyclic if G does not
contain any cycle. For two vertices xi, xj of a walk W with i ≤ j we denote by W [xi, xj ]
the subwalk of W starting at xi and ending in xj . For a walk W ending in a vertex x and a
second walk R starting in x, W ◦R is the walk resulting when concatenating W and R.
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For each vertex v ∈ V (G), its out-degree in G is the number d+
G(v) of arcs of the form

(v, w) for some w ∈ V (G) \ {v}, and its in-degree in G is the number d−G(v) of arcs of the
form (w, v) for some w ∈ V (G) \ {v}. For each subset V ′ ⊆ V (G), the subgraph induced
by V ′ is the graph G[V ′] with vertex set V ′ and arc set {(u, v) ∈ A(G) | u, v ∈ V ′}. For
a set X of vertices or arcs, let G −X denote the subgraph of G obtained by deleting the
elements in X from G. For a subgraph G′ and an integer d we denote by R+

G′(X) the set of
vertices that are reachable from X in G′.

A digraph G is strong if either G consists of a single vertex (then G is called trivial),
or for any distinct u, v ∈ V (G) there is a (directed) path from u to v. A strong component
of G is an inclusion-wise maximal induced subgraph of G that is strong. The (directed)
circumference of a digraph G is the length cf(G) of a longest cycle of G; if G is acyclic, then
define cf(G) = 0.

3 Directed Long Cycle Hitting Set Algorithm

The goal of this section is to devise an algorithm for Directed Long Cycle Hitting
Set and thereby proof Theorem 1. We will only consider the vertex deletion variant. This
will suffice, as the arc deletion version can be reduced to the vertex deletion version in a
parameter-preserving way, as we show in the full version.

The algorithm performs a sequence of reductions to special cases of the original Bounded
Cycle Length Vertex Deletion. All these sections are modular and just need the
problem formulation and theorem at the end of the previous section.

Compression. Recall that in the Directed Long Cycle Hitting Set problem we are
given a digraph G and integers k and `. The task then is to find a set of at most k vertices
such that G− S contains no cycles of length more than `.

As already stated in the introduction, checking a solution for correctness is an non-trivial
task. For this we use a fixed-parameter algorithm by Zehavi [29].

I Theorem 2. There is an algorithm that decides in time 2O(`) · nO(1) whether an n-vertex
digraph G contains a cycle of length more than `.

This already solves the case for k = 0. We now want to design an algorithm for general k.
The goal of this subsection is to get an existing solution T for which we have to find a

disjoint solution S of size less than |T |. For this we use the standard techniques of iterative
compression and disjoint solution.

We start our algorithm by applying the iterative compression technique introduced by
Reed, Smith and Vetta [27]. This technique was also used by Chen et al. [7] to show the
fixed parameter tractability of DFVS. We choose an arbitrary enumeration v1, . . . , vn of the
vertices of G. By Gi we denote the digraph G[v1, . . . , vi]. We want to iteratively construct
solutions Si+1 to (Gi+1, k, `) by using the solution Si of (Gi, k, `). We start with the empty
digraph G0 and the empty solution S0 = ∅. This solution is feasible for every choice of G, k
and ` as the empty digraph contains no cycles.

Now, if Si hits all cycles of length more than ` in Gi, then Ti+1 = Si+1 ∪ {vi+1} does
the same for Gi+1 (as Gi − Si = Gi+1 − Ti−1). The only problem now is that Ti+1 may be
to large. Therefore, we consider the compression version of our problem: given an instance
(Gi, k, `) with a solution Ti of size k + 1, find a solution Si of size at most k. If we can
solve this problem, by above procedure we get a solution Sn for the digraph Gn = G and
hence have solved the original problem. This adds a factor of n to the run-time, preserving
fixed-parameter tractability.
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The compression problem can be modified further in two useful ways. The first modi-
fication is to get disjointness of solutions Ti and Si. This can be achieved by guessing the
intersection Ui = Ti ∩ Si by taking all possible subsets of Ti. For every choice we can then
solve the disjoint compression problem (Gi − Ui, k − |Ui|, `) with starting solution Ti \ Ui. If
the non-disjoint instance has a solution, then the instance where we guessed the intersection
correctly has a solution. Otherwise, none of the disjoint instances has a solution. This adds
a factor of 2|Ti| = 2k+1 to the run-time, also preserving fixed-parameter tractability.

The other useful modification is about not solving the problem exactly but instead to
guess a set S of bounded size intersecting Si in at least one vertex. If we have a routine that
for an instance (G′, k′, `′, T ′) of the disjoint compression problem returns us a set S that
is guaranteed to intersect some solution (if a non-empty solution exists), we can branch as
follows. First we check whether the empty solution already solves the problem by Theorem 2.
This solves the the problem for k = 0. Otherwise we call our routine on the instance obtaining
a set S. For every v ∈ S we recurse on the instance (G′ − v, k′ − 1, `, T ′). This adds a factor
of f(k′, `′, n′)k′ to the run-time where f(k′, `′, n′) is an upper bound on the size of S on an
instance (G′, k′, `′, T ′) with n′ = |G′|. This preserves fixed-parameter tractability if we can
write f(k′, `′, n′)k′ as g(k′, `′) · poly(n′) for some appropiate function g. Note that this is the
case even if f(k′, `′, n′) = h1(k′, `′) · logh2(k′,`′)(n′).

After all these reductions we are left with the following problem:

Intersecting Directed Long Cycle Hitting Set Parameter: k + `.
Input: A directed multigraph G, T ⊆ V (G) and integers k, ` ∈ N.

Properties: cf(G− T ) ≤ `

Task: Find a set S ⊆ V (G) \ T that intersects a set S ⊆ V (G) \ T

of size at most k with cf(G− S) ≤ ` if such a set exists.

The set S will often help us to argue about solutions S disjoint from it. This is often
described as branching steps throughout the algorithm but we decided to collect all the
branching here to be more precise about the assumptions needed in the theorems.

Contraction. In the last section we reduced the original Directed Long Cycle Hitting
Set problem to a variant where we are already given a solution T and now want to find a
set S intersecting every solution S disjoint from T . Except for the intersection step, such
reductions have been used by Chen et al. [7] in their algorithm for DFVS. The next key
observation in their algorithm for DFVS is that every vertex of T must lie in their own
strong component of G− S. The reason is that for every directed feedback vertex set S of G,
each strong component of G− S is a single vertex. For Directed Long Cycle Hitting
Set, the situation is way more complicated, as strong components of G− S contain cycles of
length up to `. Moreover, those cycles can concatenate to arbitrarily large strong components.
So it is possible that G− S contains strong components with more than one vertex of T . In
this section, we want to contract (parts of) such components to a single vertex such that
eventually, after contraction, every strong component of G− S contains at most one vertex
of T . A structural result allowing the contraction is the following lemma:

I Lemma 3. Let G be a digraph and let X ⊆ V (G) be such that G[X] is strong and
cf(G[X]) ≤ `. Suppose that the following two properties hold:
1. Every cycle of G has length at most ` or length at least `2.
2. For any a, b ∈ X there cannot be both

a. an a→ b-path Pab of length at least ` in G[X]
b. a b→ a-path Pba of length at most ` in G− (X \ {a, b})
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Let G/X be the digraph obtained by contracting X to a single vertex x.
If cf(G− S) ≤ ` for some S ⊆ V (G) \X, then cf(G/X − S) ≤ `.
If cf(G/X − S′) ≤ ` for some S′ ⊆ V (G/X) \ {x}, then cf(G− S′) ≤ `.

To algorithmically use this result we have to make sure its requirements are fulfilled.
This is easy if G has a cycle C with ` < |C| < `2. We can can detect these cycles in time
2O(`2) ·nO(1) by using color coding (see Alon et al. [1]). If there exists such an cycle, any long
cycle hitting set has to intersect it. Also it’s length is bounded, so we can return it as set S.

To find a set X fulfilling the remaining properties is more difficult. For this we build on
a tool called “k-representative set of paths”.

I Definition 4. Let G be a digraph, x, y ∈ V (G) and k ∈ Z≥0. A set P of x→ y-paths is a
k-representative set of x→ y-paths, if for every set S ⊆ V (G) of size at most k it holds: If
there is an x→ y-path in G− S there is an x→ y-path P ∈ P that is disjoint from S.

In our case such a k-representative set of paths will be useful for constructing a closed
walk visting several vertices of T to use as our set X. Later on the reversed property of
k-representative sets of paths will also be handy: if you hit all paths of P with a set S of
size at most k, then there exist no x→ y-paths in G− S.

Alas, we were not able to find k-representative sets of paths of small size in general graphs.
In the case of strong digraphs of bounded circumference, however, we obtain the following:

I Theorem 5. Let G be a strong digraph, x, y ∈ V (G) and k ∈ Z≥0. Then a k-representative
set of x→ y-paths having size cf(G)O(k2 log k) ·logn can be found in time cf(G)O(k2 log k) ·nO(1).

We need to generalize this tool a bit further as our graph G neither has bounded
circumference nor does it need to be strong. However, we have a set T of small size such
that cf(G− T ) ≤ ` and we are only interested in the strong components of the graph. This
leads us to the following specialized lemma:

I Lemma 6. Let G be a strong digraph, T ⊆ V (G) and k, ` ∈ Z≥0 with cf(G − T ) ≤ `.
Then in time 2O(k`+k2 log k log `)nO(1), we can find a set Q of |T |22O(k`+k2 log k log `) log2 n

closed walks with the following property: If there is a set S ⊆ V (G) of size at most k with
cf(G− S) ≤ ` and there are two vertices of T in the same strong component of G− S then
there is

a closed walk in Q ∈ Q containing two vertices of T that is disjoint from S or
a simple cycle of length at most ` containing two vertices of T .

The lemma allows for a branching procedure that creates several instances. For each
instance we assume that there is a solution S such that no two vertices of T lie in the same
strong component of G − S. We call such a solution isolating long cycle hitting set. The
instances are created in the following way: We keep our original instance just in case it has
an isolating long cycle hitting set. Then we search for a simple cycle C of length at most `
in G visiting at least two vertices of T . Such a cycle can be found by color coding in time
2O(`) · nO(1). If such a cycle exists, we branch into two instances: In the first instance, we
assume that S intersects C and we can just return S = V (C) as solution to our intersection
problem. In the second instance, C is disjoint from S and we have a candidate X for
contraction with Lemma 3. If no such cycle exists we get our candidate applying Lemma 6
by branching on which closed walk of Q is disjoint from S and take that as a candidate X.

We now have to check whether our candidate X fulfills the assumptions of Lemma 3. If
cf(G[X]) > ` then X cannot be disjoint from S in contradiction to our branching assumption
and we give up on this branch. Then we check for every pair a, b ∈ X, if paths Pab and Pba
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as in Lemma 3 exist. If they do we cannot contract X, but Pab ◦ Pba forms a cycle of length
more than `, so it has to be intersected by S. By branching assumption V (Pab) ⊆ X is
disjoint from S and therefore Pba has to intersect S. Luckily, |V (Pba)| ≤ `+ 1 and we can
return S = V (Pba) as set intersecting S. If these paths do not exist we can contract X to a
single vertex to obtain a new instance (G′, k, `, T ′). We continue our branching procedure
with this new instance until we guess that our instance has an isolating long cycle hitting
separator. As the cardinality of T is decreased in each branching step this is the case at
the latest when |T | = 1. Note that this may lead to the strange case that we are indeed
searching for a solution S that is larger than our set T .

The remaining problem can be stated as:

Isolating Long Cycle Hitting Set Intersection Parameter: k + ` + |T |.
Input: A directed multigraph G, integers k, ` ∈ N and a set T ⊆ V (G)

Properties: cf(G− T ) ≤ `

Task: Find a set S intersecting some isolating long cycle hitting set S

of size at most k with respect to T if such a set exists.

The above procedure (and the result of this section) can be summarized as follows.

I Theorem 7. Instances (G, k, `) of Directed Long Cycle Hitting Set can be solved
in time 2O(`2+`k3 log k) · (fii(k, `))k · nO(1) by at most 2O(`k3 log k) · (fii(k, `))k · n2 log2k+2(n)
calls to an algorithm Aii solving the Isolating Long Cycle Hitting Set Intersection
problem, where fii(k, `) is a size bound on the set produced by Aii.

Reducing to Important Hitting Separator. In the previous section we reduced the Direc-
ted Long Cycle Hitting Set problem to the Isolating Long Cycle Hitting Set
Intersection problem, a variant where we are already given a solution T and search for
a solution S disjoint from T of size at most k. Additionally, we know that T has at most
one vertex in each strong component of G− S. For the remainder of this subsection, assume
that there is such a solution S of size at most k.

Intuitively, we did the reduction to the isolating variant in order to apply something
like Skewed Multiway Cut. This was done by Chen et al. [7] in their algorithm for
Directed FVS. They guessed a topological ordering of the vertices of T in G− S and used
Skewed Multiway Cut to cut away the backward paths. This also implied that each
strong component consisted of a single vertex. In our case, though, we still have cycles left,
and a direct construction to Skewed Multiway Cut gives us no control over their length.

We instead guess only a last vertex t ∈ T in some topological ordering of the strong
components of G−S. From here our approach differs significantly from that of Chen et al. [7]
for Directed FVS. Instead of finding all cuts at once, we focus on the t → T \ {t}-cuts
while still hitting long cycles. This is we want to find the strong component of t in G− S.

For this it is useful to see, that two types of arcs may not lie in the strong component
of t in G− S. The first kind of arcs are simply the arcs having their endpoint in T \ {t}, i.e.
arcs in δ−(T \ {t}). This is because S is isolating. The other kind of arcs are the arcs that
lie only on long cycles, i.e. arcs a = (v, w) ∈ A(G) with distG−a(w, v) ≥ `. This follows from
the fact that S hits all long cycles. Therefore, the strong component of t in G− S must be a
subset of the connected component of t in G after above arcs are removed. We call the later
component C?t . We want to focus our search onto that component.
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However, there may also be other arcs and vertices which do not lie in the strong
component of t in G− S which are still in C?t . To make it easier to argue about these, we
use the shadow-covering technique introduced by Chitnis et al. [9] to solve the Directed
Multiway Cut problem. For this we need to define what the shadow of our solution S with
respect to the set T is:

I Definition 8 (shadow). Let G be a digraph and let T, S ⊆ V (G). A vertex v ∈ V (G) is in
the forward shadow fG,T (S) of S (with respect to T ) if S is a T → v-separator in G, and v
is in the reverse shadow rG,T (S) of S (with respect to T ) if S is a v → T -separator in G.
All vertices of G which are either in the forward shadow or in the reverse shadow of S (with
respect to T ) are said to be in the shadow of S (with respect to T ).

Note that S itself is not in its own shadow. The most useful property of the shadow
for our purposes is that every vertex that is not in the shadow of S with respect to T is
reachable from a vertex of T and can reach some (maybe different) vertex of T . In particular,
if a vertex v is not in the shadow of S and reachable from t (our last vertex) in G− S then
it has to lie in the strong component of t in G− S. This is because v can also reach a vertex
of T but there is no T → T \ {t}-walk in G− S.

We use the deterministic algorithm for shadow covering by Chitnis et al. [8]. The following
corollary follows from their paper:

I Corollary 9. Let (G, k, `, T ) be an instance of Isolating Long Cycle Hitting Set In-
tersection. One can construct, in time 2O(k2) ·nO(1), sets Z1, . . . , Zp with p ≤ 2O(k2) log2 n

such that if there is an isolating long cycle hitting set of size at most k, there is isolating
long cycle hitting set S of size at most k and an i ∈ {1, . . . , p} such that Zi ∩ (S ∪ T ) = ∅
and Zi includes the shadow of S with respect to T .

By branching on the possible choices of Zi we can assume that we have a set Z that
covers (read: includes) the shadow of S with respect to T and is disjoint from S and T . Now
every vertex outside of Z is reachable from a vertex of T and can also reach a vertex of T .

Consider now the set Vout ⊆ V (G) \ Z defined as follows. For every v ∈ Vout there is
a v → w-path P with w ∈ V (G) \ Z whose inner vertices are inside Z and one of the
following properties holds. The endpoint w is contained in T \ {t} or P contains an arc
a = (x, y) ∈ A(G) that only lies on long cycles (i.e. distG−a(y, x) ≥ `). The set of these
vertices may not be reached from t in G− S if the other endpoint w is not in S. Because
then w reaches a vertex of T and that gives us either a t→ T \ {t} path in G−S or a closed
walk in G− S containing an arc that only lies on long cycles (which therefore contains itself
a long cycle).

To get rid of the condition that the other endpoint of the path P we apply the tool of
critical vertices also used by Chitnis et al. [8]. For this we use an auxiliary graph (called
torso) which is created by taking all vertices of V (G) \ Z and shrinking paths with interior
points in Z to arcs. By remembering the paths which contained arcs only on long cycle we
get a set U long

t of dangerous arcs that must not be traversable from t. In case they are not
traversable only by the endpoint w lying in S these vertices are called k-critical with respect
to U long

t . Now, we can use the following theorem by Chitnis et al. [8].

I Proposition 10 ([8]). Given a digraph G, a subset U of its arcs, and some t ∈ V (G), in
time 2O(k) · nO(1) we can find a set Fcritical of size 2O(k) that contains all k-critical vertices.

We apply Proposition 10 to G,U long
t , t and k, and add the resulting set Fcritical to our

solution S. If our solution S is still disjoint from S, it cannot contain a k-critical vertex.
This implies that t cannot reach a vertex of Vout in G− S. So S is a t→ Vout-separator in
the strong component C?t .
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But S ∩ C?t may also have other properties like hitting long cycles that intersect or lie
within C?t . To cover these we introduce the notation of important hitting t→ Vout-separators.
These are t→ Vout-separators U that hit all long cycles in a digraph and are backward-range
minimal in the sense that there is no other t → Vout-separators U ′ hitting all cycles with
|U ′| ≤ |U | and R−G−U ′(Vout) ( R−G−U (Vout).

The main result of this section is that it is enough to find a set S intersecting one
important hitting t → Vout-separator U for every backward range R−G−U (Vout) in a strong
digraph (read G[C?t ]). We call the remaining problem Important Hitting Separator in
Strong Digraphs which reads as follows:

Important Hitting Separator in Strong Digraphs Parameter: k + `.
Input: A strong digraph G, integers k, ` ∈ N, t ∈ V (G) and Vout ⊆ V (G).

Properties: cf(G− t) ≤ `, every arc of G lies on a cycle of length at most `.
Task: Find a set Shs intersecting a important hitting t→ Vout-separator

of size at most k in every range equivalence class.

Portals and Clusters. In the previous section we reduced Isolating Long Cycle Hitting
Set Intersection to Important Hitting Separator in Strong Digraphs. In an
intuitive way we replaced the constraint on S of hitting all cycles going through T \ {t}
by a constraint that S needs to be a backward-range minimal t→ Vout-separator. Also we
simplified our graph to be strongly connected and that every arc lies on a short cycle. We
now want to also break the long cycles going only through t into cut constraints. For this we
consider the strong components of G− t. Let C the set of all such components. Our main
interest are now portal vertices.

I Definition 11. Let G be a digraph and let C ⊂ V (G). A vertex v ∈ C is a portal vertex
of C, if ∆G(v) > ∆G[C](v), where ∆H(v) is the number of incident arcs (both in-coming and
out-going) of v in a graph H. We denote by XC the set of all portal vertices of C.

As all arcs of G lie on a short cycles the arcs going between clusters must cycle back to t.

I Lemma 12. Let C ∈ C and v ∈ XC . There is a cycle Ov with v, t ∈ V (Ov) and |Ov| ≤ `.

These cycles allow us to transform paths between portal vertices of the same strong
component into closed walks. Like in the first part of our algorithm we can eliminate cycles
of length between ` + 1 and 2`6 by detecting them and returning them as set Shs as any
hitting separator has to intersect these. This gap between small and large cycles however
allows us to get a similar gap for the distance between portal vertices.

I Lemma 13. For any v1, v2 ∈ XC , either distG[C](v1, v2) ≤ 2`2 or distG[C](v1, v2) ≥ 2`6−2`.

This in turn allows us to cluster the portal vertices of every component. For `max = 2`2
we put all portal vertices at distance at most `max from a portal vertex v into the set Xv.
This defines a partition into clusters:

I Lemma 14. For any C ∈ C and v1, v2 ∈ XC , sets Xv1 and Xv2 are either disjoint or
equal.

Consider now a long cycle O in G. Assume it contains for each strong component C ∈ C
it visits only portal vertices of one of the clusters of C. In strong digraphs of circumference
at most ` (like G[C]) the length of a path can at most be `2 times the distance between its
endpoints. Therefore the length of O inside a single component C can be at most 2`4. We
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already made sure that long cycles in G have length more than 2`6. But we can shortcut O
after the visit of C to a cycle with length between `+ 1 and 2`6 – a contradiction. Therefore
every long cycle has a path between different clusters of some strong component of G− t.

By carefully analyzing the structure of the strong components and guessing vertices of S
(by including them into Shs) we make sure there are neither too many strong components
with more than one cluster nor do these have to many clusters themselves. Moreover, we
were able to restrict t→ Vout-paths to a single strong component.

This means that our sought after solution S forms in each strong component C a
multiway cut between the different cluster Xi of C and additionally cuts all Xi → Vout-paths
in backward-range minimal way. This structure of S we call important cluster separators:

I Definition 15. Let G be a digraph and let X1, . . . , Xt, Y ⊆ V (G) be pairwise disjoint vertex
sets. We call a vertex set U ⊆ V \ (X1 ∪ . . . ∪Xt ∪ Y ) a cluster separator if G− U contains

no path from Xi to Xj for i 6= j and
no path from Xi to Y for i = 1, . . . , t.

A cluster separator U is important if there is no cluster separator U ′ with |U ′| ≤ |U |
and R−G−U ′(Y ) ( R−G−U (Y ).

If Vout = ∅ this boils down to the Directed Multiway Cut problem, which we solve
by the algorithm of Chitnis et al. [9]. It thus remains to solve the case where Vout 6= ∅.

Important Cluster Separator in Strong Digraphs
of Bounded Circumference

Parameter: k + `.

Input: A strong digraph G, integers k, ` ∈ N and sets X1, . . . , Xp, Vout ⊆ V (G).
Properties: cf(G) ≤ `, Xi, Vout 6= ∅, 2 ≤ p ≤ k(k + 1) + 1,

dist(v, w) ≤ 2`2 ∀v, w ∈ Xi, i ∈ {1, . . . , p}.
Task: Find a vertex set Scluster intersecting any important cluster separator

with respect to X1, . . . , X`, Vout of size at most k.

Finding Important Cluster Separators. In this section we want to solve the Important
Cluster Separator in Strong Digraphs of Bounded Circumference problem. This
problem is strongly related to the Directed Multiway Cut Problem. By adding an
additional vertex v? that has an incoming arc from ever vertex of Vout we see that cluster
separator are indeed multiway cuts in this modified graph. The difficulty lies in the notion of
importance we introduced (and needed). That is, we want to intersect all cluster separators S
where R−G−S(Vout) is minimal for their size.

We introduce two definitions to handle this. The first is the concept of the frontier F of
a cluster separator S. These are the vertices that define the backward range from Vout, i.e.
the vertices of S that can reach Vout without going through another vertex of S. The other
concept is that of an outlet. Given an Xi → Xj-path P and two integers α, β ∈ Z≥0, an
(α, β)-outlet of P is a vertex ω of P with the following property: there is a ω → Vout-path Rω
such that every vertex on P except for the α-many preceding and following vertices of ω
on P have distance at least β from Rω. These outlets are in some sense key positions where
Xi → Xj-paths start to significantly differ from Xi → Vout-paths.

For outlets we differentiate between “open” and “closed” outlets. Open outlets are outlets
that lie in R−G−S(Vout), i.e. behind the frontier; the other outlets closed. The frontier F is
therefore separates X =

⋃t
i=1Xi from the open outlets. The rest of our efforts now focuses

on finding a set VΩ such that the frontier F is an important X → (Vout ∪VΩ)-separator. This
set VΩ contains (a subset of) the open outlets for some Xi → Xj-paths. As set of paths tho
search on we take for every ordered pair of distinct Xi, Xj an arbitrary Xi → Xj-path Pi,j .
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The main property we use for finding the set VΩ is some kind of locality argument. As
our graph G is strong and has bounded circumference, the length of any path cannot differ
too much from the distance of its endpoints. So if we know that a path is hit by S not to far
from an outlet, we can guess these vertices. This is done with the help of k-representative
sets of paths: if we know that an ω → Vout-path is hit near ω, we construct a k-representative
set of ω → Vout-paths. We can argue that also one of the paths in this set has to be hit
near ω. So we can guess all the vertices near ω on the paths of the k-representative set for
their intersection with S.

By carefully guessing such potential intersections, and choosing α, β properly, we obtain:
If a path Pi,j has more than γ = poly(k, `) outlets, one of them is open.
If there is a Xi → Xj-path in G− F then Pi,j has an open outlet.

The last step is now to get rid of the Xi → Xj-paths in G − F . We achieve this by
guessing that a so called landing strip in front of an open outlet of Pi,j (which exists by the
second property) is disjoint from S. This landing strip has the task that that if there is a
Xi → Xj-path in G− F than also the open outlet would be reachable. This again works by
the locality of our strong graphs of bounded circumference.

After all these guessing we obtain (for the right guess) a set VΩ such that F is an important
X → (Vout ∪ VΩ)-separator. These we can enumerate by a result of Chitnis et al. [9].

I Proposition 16 ([9]). Let G be a digraph and let X,Y ⊆ V (G) be disjoint non-empty
vertex sets. For every p ≥ 0 there are at most 4p important X − Y -separators of size at
most p, and all these separators can be enumerated in time O(4p · p(n+m)).

Putting Everything Together. Finally, we are able to prove our main result. By combining
the reductions of the previous sections, we get an overall algorithm solving Directed Long
Cycle Hitting Set:

I Theorem 1. There is an algorithm that solves Directed Long Cycle Hitting Set in
time 2O(`6+`k3 log k+k5 log k log `) · nO(1) for n-vertex digraphs G and parameters k, ` ∈ N.

4 k-Representative Sets of Paths

In this section, we show how to obtain a k-representative set of paths of small size in strong
digraphs of bounded circumference. Let us briefly recall the definition.

I Definition 4. Let G be a digraph, x, y ∈ V (G) and k ∈ Z≥0. A set P of x→ y-paths is a
k-representative set of x→ y-paths, if for every set S ⊆ V (G) of size at most k it holds: If
there is an x→ y-path in G− S there is an x→ y-path P ∈ P that is disjoint from S.

Our goal is to prove the following:

I Theorem 5. Let G be a strong digraph, x, y ∈ V (G) and k ∈ Z≥0. Then a k-representative
set of x→ y-paths having size cf(G)O(k2 log k) ·logn can be found in time cf(G)O(k2 log k) ·nO(1).

If all x→ y-paths are short we can use the following result of Monien [23]:

I Proposition 17 ([23]). Let G be a digraph, let x, y ∈ V (G) and let k ∈ N. If every
x → y-path in G has length at most `, then a k-representative set containing at most `k
many x→ y-paths can be found in time `O(k) · nO(1).

Recently, Fomin et al. [11] improved the computation of representative sets of paths, both
in terms of the size of the set and the run time, but Proposition 17 will be sufficient for our
purposes.



A. Göke, D. Marx, and M. Mnich 59:13

A motivational example. Before we give our construction for k-representative sets of paths
in strong digraphs of bounded circumference, we want to consider graphs of treewidth two
and a special example of treewidth three. Strong digraphs of treewidth two are trees with
bidirected arcs. In this case we have that for every pair x, y ∈ V (G) there is an unique
x→ y-path P . Thus, {P} is a feasible k-representative set of paths.

The situation is significantly different even for cf(G) = 3. Consider the strong digraph in
Figure 1.

x y

v11 v12 v13 . . . v1n

v01 v02 v03 . . . v0n

Figure 1 A digraph G with cf(G) = 3 where every k-representative set of x→ y-paths has size
2Ω(k) log n.

There are exactly 2n different x→ y-paths in G; each such path corresponds to a 0− 1
vector of length n. Thus, if we remove a vertex v0

i or v1
i , then only those paths survive that

have 1 or 0 at the i-th coordinate, respectively. Therefore, a collection of paths in this graph
is k-representative only if no matter how we fix the values of k arbitrary coordinates, there
is a vector in the collection satisfying these constraints. Such collections of vectors are also
known as binary covering arrays. Kleitman and Spencer [17] proved that every collection of
vectors of length n satisfying this property has size 2Ω(k) · logn (more precisely, they gave a
lower bound on the dual question of k-independent families, but it can be easily rephrased
into this lower bound).

We will now construct a k-representative set of paths for this graph G by using so called
k-perfect families of hash functions.

I Definition 18. Let F be a family of functions f : U → {1, . . . , k} on the universe U . We
say that F is a k-perfect family of hash functions if for every X ⊆ U of size at most k, there
is an f ∈ F that is injective on X, i.e. f(x) 6= f(x′) for any two distinct x, x′ ∈ X.

We use the following result by Alon et al. [1] for our construction.

I Proposition 19 ([1]). Let U be a universe and k ∈ N. Then there exists a k-perfect
family F of size 2O(k) log |U | that can be constructed in time 2O(k)|U |O(1).

Before considering arbitrary strong digraphs of bounded circumference, let us explain
how k-perfect families of hash functions can be used for the construction in the case
of the digraph G of Figure 1. Let F be a k-perfect family of hash functions over the
universe U = {1, . . . , n} as in Proposition 19. Moreover, let H be the set of all functions
h : {1, . . . , k} → {0, 1}. For (f, h) ∈ F ×H denote by Pf,h the x → y-path in G that uses
the vertices vh(f(i))

i for i = 1, . . . , n. Then we add for every pair (f, h) ∈ F ×H the path Pf,h
to our set P.

Now consider a deletion set S ⊆ V (G) of size at most k such that there is still an
x → y-path in G. Then S contains only vertices of type vji and at most one of v0

i and v1
i

for every i ∈ {1, . . . , n}. In other words, for some X ⊆ U of size at most k and function
g : X → {0, 1}, the vertices vg(i)i form the set S. As F is a k-perfect family of hash functions,
there is an f ∈ F that is injective on X. Now consider the function h defined as follows.
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For every i ∈ X, let h(f(i)) = 1 − g(i); as f is injective on X, this is well-defined and
gives a function h : f(X) → {0, 1}. Complete, h to a function h : {1, . . . , k} → {0, 1} by
choosing the remaining values arbitrarily. We claim that the path Pf,h introduced for this
choice of f and h is disjoint from S. For i /∈ X, it does not matter if Pf,h uses v0

i or v1
i . For

i ∈ X, set S contains vg(i)i . By our definition of h, we have h(f(i)) = 1− g(i), hence Pf,h
uses v1−g(i)

i , avoiding S. Thus Pf,h is indeed disjoint from S.
Our proof of Theorem 5 generalizes this construction to arbitrary strong digraphs of

bounded circumference: we construct the path by concatenating a series of fairly independent
“short jumps.” For each of these short jumps, we construct a k-representative set of paths by
Proposition 17. The choice of which short path to select is determined by a k-perfect family
of hash functions, similarly to the argument in the previous paragraph.

Strong digraphs with bounded circumference. Before we formally start proving Theorem 5,
we establish some structural properties of strong digraphs with bounded circumference.

I Lemma 20. Let G be a digraph and let x, y ∈ V (G). If P1 is an x → y-path and P2
is a y → x-path, then |P1| ≤ (cf(G) − 1)|P2| holds. Consequently, we have distG(x, y) ≤
(cf(G)− 1)distG(y, x).

Proof. Suppose, for sake of contradiction, that |P1| > (cf(G) − 1)|P2|. By x, y ∈ V (P1) ∩
V (P2), we can split P1 into |P2| pairwise disjoint subpaths whose internal vertices are disjoint
from V (P2). Note that there are |V (P1)| − |V (P2)| = (|P1| + 1) − (|P2| + 1) = |P1| − |P2|
of these internal vertices. By pigeonhole principle, at least one of the subpaths has at least⌈
|P1|−|P2|
|P2|

⌉
=

⌈
|P1|
|P2|

⌉
− 1 internal vertices. By our assumption, these are at least cf(G)− 1

many. But than the whole subpath has at least cf(G) + 1 vertices. Since P1 ◦ P2 is a closed
walk, our segment is contained in a closed walk. Moreover, P1 is acyclic and our segment is
internally disjoint from P2. Thus, the segment is even contained in a cycle. But this cycle
then has length at least cf(G) + 1, contradicting the definition of circumference. J

By using that there is always a backward path in strong digraphs, applying above result
twice yields:

I Lemma 21. Let G be a strong digraph and x, y ∈ V (G). Then |P | ≤ (cf(G)−1)2distG(x, y)
for every x→ y-path P .

Proof. Let W be a shortest x→ y-path in G. As G is strong, there is also a y → x-path Q
in G. By Lemma 20 we then have

|P | ≤ (cf(G)− 1)|Q| ≤ (cf(G)− 1)2|W | = (cf(G)− 1)2distG(x, y). J

Similarly to the length, we can also argue about the distance between two paths.

I Lemma 22. Let G be a strong digraph, x, y ∈ V (G) be two vertices, and P1, P2 be
two x → y-paths. For every vertex v of P1, we have distG(P2, v) ≤ 2(cf(G) − 2) and
distG(v, P2) ≤ 2(cf(G)− 2).

Proof. As G is strong, there is a y → x-path Q.

B Claim 23. For i ∈ {1, 2}, we have that
(i) distG(Q, v) ≤ cf(G)− 2 and distG(v,Q) ≤ cf(G)− 2 for every v ∈ Pi, and
(ii) distG(Pi, v) ≤ cf(G)− 2 and distG(v, Pi) ≤ cf(G)− 2 for every v ∈ Q.
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Proof. Let v ∈ Pi. As Pi is acyclic (it is a path), but Pi ◦Q is a closed walk in G, v has to
lie on a cycle O in Pi ◦Q. This cycle has length at most cf(G). Furthermore, O has at least
two vertices in V (Q), as it contains an arc of Q. So there is a path in O from v to a vertex
of Q of length at most |O| − 2 ≤ cf(G)− 2, showing distG(v,Q) ≤ cf(G)− 2. On the other
hand there is also a V (Q)→ v-path (from another vertex of V (Q) ∩ V (O)) in O of length
at most |O| − 2 ≤ cf(G) − 2, showing distG(Q, v) ≤ cf(G) − 2. This shows Statement (i).
Statement (ii) can be seen analogously by switching the roles of Pi and Q. C

Now fix a v ∈ V (P1). By Claim 23, we have that there is a w ∈ V (Q) such that
distG(w, v) = distG(Q, v) ≤ cf(G)− 2. Applying Claim 23 another time and using triangle
inequality we get

distG(P2, v) ≤ distG(P2, w) + distG(w, v) ≤ 2(cf(G)− 2).

Similarly, we get from Claim 23 that there is an u ∈ V (Q) with distG(v, u) = distG(v,Q) ≤
cf(G)− 2. Another application of Claim 23 and the triangle inequality yields

distG(v, P2) ≤ distG(v, u) + distG(u, P2) ≤ 2(cf(G)− 2),

concluding the proof. J

We are now ready to prove Theorem 5.

I Theorem 5. Let G be a strong digraph, x, y ∈ V (G) and k ∈ Z≥0. Then a k-representative
set of x→ y-paths having size cf(G)O(k2 log k) ·logn can be found in time cf(G)O(k2 log k) ·nO(1).

Proof. Let us fix an arbitrary x → y-path R (which exists as G is strong) to guide our
construction. Denote by r the length of R and by v0 = x, v1, . . . , vr−1, vr = y its vertices.
We only consider a subset of vertices zi at distance d = 2cf(G)4 from each other or more
formally zi = vi·d. These zi will be the anchor vertices for our short jumps. We divide
then zi further into k + 1 subsets Zo by taking every (k + 1)st vertex starting at offset o.
Formally we define zoi = zi(k+1)+o and Zo = {zoi }. These subsets have the advantage that
one of these is far away from a deletion set S of size at most k. For this we fix a set S of size
at most k such that an x→ y-path in G− S exists.

B Claim 24. There is some oS ∈ {0, . . . , k} such that
distG(ZoS , S) > 2(cf(G)− 2) and
distG(S,ZoS ) > 2(cf(G)− 2).

Proof. We claim that for every s ∈ S there is at most one value o ∈ {0, . . . , k} such
that distG(Zo, s) ≤ 2cf(G)2. Suppose that distG(w1, s), dist(w2, s) ≤ 2cf(G)2 for some
w1 ∈ Zo1 and w2 ∈ Zo2 with o1 6= o2. Assume, without loss of generality, that w1 is
before w2 on R; then R[w1, w2] has length at least d (as different zi have distance at
least d). By Lemma 20, we have distG(s, w1) ≤ (cf(G)−1)distG(w1, s) ≤ (cf(G)−1) ·2cf(G)2,
thus distG(w2, w1) ≤ distG(w2, s) + distG(s, w1) ≤ 2cf(G)3. Again by Lemma 20, we have
d ≤ |R[w1, w2]| ≤ (cf(G)− 1)distG(w2, w1) < 2cf(G)4, a contradiction. Thus, we have proven
that for each of the k vertices s ∈ S there is at most one value o ∈ {0, . . . , k} such that s
is at distance at most 2cf(G)2 from Zo. Therefore, by the pigeon-hole principle there is
an oS ∈ {0, . . . , k} such that distG(ZoS , S) > 2cf(G)2. By Lemma 20 this also implies
distG(S,ZoS ) > 2cf(G)2/(cf(G)− 1) > 2(cf(G)− 2). This completes the proof of Claim 24.

C
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Thus we know that a small surrounding of one of the Zo’s will be disjoint from S.
Furthermore, Lemma 21 gives a bound on the length of a path P between two consecutive
vertices zoi and zoi+1 of Zo, by |P | ≤ (cf(G)−1)2|R[zoi , zoi+1]| = O(cf(G)7k). This allows us to
introduce sets Poi of k-representative zoi → zoi+1-paths using the algorithm of Proposition 17
and have their size bounded by some B = O(cf(G)7k)k = cf(G)O(k log k) (using k = 2log k

and cf(G) ≥ 2). By duplicating paths as necessary we can assume that every P oi has size
exactly B.

To make sure that our path collections with offset are connected to x and y, we construct
additional sets Pox and Poy as follows: Let zox be the first vertex in Zo after x and zoy
the last vertex before y. Then compute, using the algorithm of Proposition 17, Pox as a
k-representative set of x→ zox-paths and Poy as a k-representative set of zoy → y-paths. As
the distances between these pairs of vertices are bounded by the distance of neighboring
vertices in Zo we can analogously get a size bound of B for Pox and Poy . Note that for some
offsets o either Pox or Poy may align with some Poi ; then we leave out this Poi as we do not
need it anymore. For each o, let Po := {Pox, Poy} ∪ {Poi }i be the set of these relevant sets.

B Claim 25. Every PoS

T ∈ PoS contains a path disjoint from S.

Proof. Consider a set PoS

T with T ∈ {x, y, i} such that the paths in PoS

T are xT → yT -paths.
As above sets are k-representative sets of paths, we must only show that there is any xT → yT -
path in G− S. By assumption there is a x→ y path Q in G− S. By Lemma 22 we can find
a qx ∈ V (Q) such that dist(xT , qx) ≤ 2(cf(G)− 2) and a xT → qx-path Qx in G achieving
this distance. By Claim 24 we know that Qx is disjoint from S and therefore, Qx ◦Q[qx, y]
is a qx → y walk disjoint from S. Let Q̂x be a qx → y-path contained in this walk. Another
application of Lemma 22 yields a vertex qy ∈ V (Q̂) with dist(qy, yT ) ≤ 2(cf(G)− 2) and a
qy → yT -path Qy in G achieving this distance. Again, by Claim 24, Qy is disjoint from S.
Then Q̂x[xT , qy] ◦ Qy contains a xT → yT -path as proposed. This completes the proof of
Claim 25. C

Of course, enumerating all possible tuples of paths would construct too many candidates,
as the size of PoS can be Ω(m). Therefore, we want to use a f(k)-perfect family of hash
functions. This is possible if we can bound the number of intersections with the sets PoS

by f(k).

B Claim 26. The set S intersects at most 2k sets of PoS .

Proof. We show that s ∈ S can intersect for at most two sets that share an endpoint, thus
achieving the claimed size bound. Suppose for contradiction that s intersects two paths Q1
and Q2 out of sets in PoS that do not share an endpoint. Let each Qi be a xi → yi-path,
then we can assume without loss on generality that the order the endpoints appear on R is
x1, y1, x2, y2 and |R[y1, x2] ≥ 2cf(G)5 (by the distance of the zi. On the other hand R[xi, yi]
and Qi connect the same endpoints, hence Lemma 22 implies that there is a t1 ∈ V (R[x1, y1])
with dist(t1, s) ≤ 2(cf(G) − 2) and a t2 ∈ V (R[x2, y2]) with dist(s, t2) ≤ 2(cf(G) − 2) as
s ∈ Q1 ∩ Q2. This implies that dist(t1, t2) ≤ dist(t1, s) + dist(s, t2) ≤ 4(cf(G) − 2). If we
now consider R[t1, t2], we get |R[t1, t2]| ≥ |R[y1, x2] ≥ 2cf(G)5 > (cf(G)− 1)2 · dist(t1, t2) in
contradiction to Lemma 21. This completes the proof of Claim 26. C

We can now construct a 2k-perfect family Ψo of hash functions over the universe Po
for each o. For oS this family contains an element ψ which gives every set of PoS that
is intersected by S a different number in {1, . . . , 2k} (by Claim 26). Further, there is a
map πfree that maps the numbers of {1, . . . , 2k} to a number of {1, . . . , B}, such that for
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every P ∈ PoS which has a path intersected by S, we have that the ψ ◦ πfree(P)th path
of P is not intersected by S. There is such a path by Claim 25. Denote by Qψ,πfree(P) this
path. As we cannot know πfree in advance we create a set Π of all possible functions from
{1, . . . , 2k} to {1, . . . , B}.

We know that for the specific choices of oS , ψ and πfree we get a that the union of paths
in {Qψ,πfree(P)|P ∈ PoS} forms a x→ y walk W in G− S. Every x→ y-path within W is
also disjoint from S. Therefore, the set Px,y,k created as follows contains a path disjoint
from S: For every o ∈ {1, . . . , k + 1}, every ψ ∈ Ψ and every π ∈ Π consider the x→ y-walk⋃
P∈Po Qψ,π(P) and introduce an arbitrary x→ y-path contained in it into Px,y,k.
The size bound on Px,y,k is proven by multiplying the possibilities for each choice:

(k + 1)︸ ︷︷ ︸
choice of o

· 2O(k) logm︸ ︷︷ ︸
|Ψ|

·B2k︸︷︷︸
|Π|

= cf(G)O(k2 log k) logn.

The run time follows similarly. J

We think that k-representative sets of paths could prove a useful tool in many vertex
deletion problems. Together with iterative compression, it allows one to argue about
connectivity structure of the old solution. In our case it led to contraction argument
strengthening the solution structure (Lemma 3) and a focused guessing of solution vertices
(subsection about finding important cluster separators).

There may be other use cases as well. Therefore, we decided to present our result
on k-representative sets of paths in a self-contained way. We hope that this helps other
researchers and improves our understanding of vertex-deletion problems in directed graphs.
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Abstract
The central levels problem asserts that the subgraph of the (2m+ 1)-dimensional hypercube induced
by all bitstrings with at least m+ 1− ` many 1s and at most m+ ` many 1s, i.e., the vertices in the
middle 2` levels, has a Hamilton cycle for any m ≥ 1 and 1 ≤ ` ≤ m+ 1. This problem was raised
independently by Savage, by Gregor and Škrekovski, and by Shen and Williams, and it is a common
generalization of the well-known middle levels problem, namely the case ` = 1, and classical binary
Gray codes, namely the case ` = m+ 1. In this paper we present a general constructive solution
of the central levels problem. Our results also imply the existence of optimal cycles through any
sequence of ` consecutive levels in the n-dimensional hypercube for any n ≥ 1 and 1 ≤ ` ≤ n+ 1.
Moreover, extending an earlier construction by Streib and Trotter, we construct a Hamilton cycle
through the n-dimensional hypercube, n ≥ 2, that contains the symmetric chain decomposition
constructed by Greene and Kleitman in the 1970s, and we provide a loopless algorithm for computing
the corresponding Gray code.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Math-
ematics of computing → Matchings and factors

Keywords and phrases Gray code, Hamilton cycle, hypercube, middle levels, symmetric chain
decomposition

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.60

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://arxiv.org/abs/1912.01566.

Funding This work was supported by the Czech Science Foundation grant GA19-08554S.
Torsten Mütze: was also supported by DFG grant 413902284.

Acknowledgements We thank Jiří Fink for several valuable discussions about symmetric chain
decompositions, and for feedback on an earlier draft of this paper.

1 Introduction

The n-dimensional hypercube, or n-cube for short, is the graph Qn formed by all {0, 1}-strings
of length n, with an edge between any two bitstrings that differ in exactly one bit. This
family of graphs has numerous applications in computer science and discrete mathematics,
many of which are tied to famous problems and conjectures, such as the sensitivity conjecture
of Nisan and Szegedy [29], recently proved by Huang [23]; Erdős and Guys’ crossing number
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problem [8] (see [9]); Füredi’s conjecture [13] on equal-size chain partitions (see [41]); Shearer
and Kleitman’s conjecture [37] on orthogonal symmetric chain decompositions (see [39]); the
Ruskey-Savage problem [32] on matching extendability (see [11, 12]), and the conjectures of
Norine, and Feder and Subi on edge-antipodal colorings [10, 30], to name just a few.

The focus of this paper are Hamilton cycles in the n-cube and its subgraphs. A Hamilton
cycle in a graph is a cycle that visits every vertex exactly once, and in the context of the
n-cube, such a cycle is often referred to as a Gray code. Gray codes have found applications
in signal processing, circuit testing, hashing, data compression, experimental design, and in
solving puzzles like the Towers of Hanoi or the Chinese rings; see Savage’s survey [35]. They
are also fundamental for efficient exhaustive generation algorithms, a topic that is covered in
depth in the most recent volume of Knuth’s ‘The Art of Computer Programming’ [25].

To start with, it is an easy exercise to show that the n-cube has a Hamilton cycle for any
n ≥ 2. One such cycle is given by the classical binary reflected Gray code Γn [14], defined in-
ductively by Γ1 := 0, 1 and Γn+1 := 0Γn, 1ΓR

n , where ΓR denotes the reversal of the sequence Γ,
and 0Γ or 1Γ means prefixing all strings in the sequence Γ by 0 or 1, respectively. For instance,
this construction gives Γ2 = 00, 01, 11, 10 and Γ3 = 000, 001, 011, 010, 110, 111, 101, 100. The
problem of finding a Hamilton cycle becomes considerably harder when we restrict our
attention to subgraphs of the cube induced by a sequence of consecutive levels, where the
k-th level of Qn, 0 ≤ k ≤ n, is the set of all bitstrings with exactly k many 1s in them. One
such instance is the famous middle levels problem, raised in the 1980s by Havel [22] and
independently by Buck and Wiedemann [4], which asks for a Hamilton cycle in the subgraph
of the (2m+ 1)-cube induced by levels m and m+ 1. This problem received considerable
attention in the literature, and a construction of such a cycle for all m ≥ 1 was provided
only recently by Mütze [27]. A much simpler construction was described subsequently by
Gregor, Mütze, and Nummenpalo [19].

1.1 Our results
In this paper we consider the central levels problem, a broad generalization of the middle
levels problem: Does the subgraph of the (2m+ 1)-cube induced by the middle 2` levels, i.e.,
by levels m+ 1− `, . . . ,m+ `, have a Hamilton cycle for any m ≥ 1 and 1 ≤ ` ≤ m+ 1? This
problem was raised independently by Savage [34], Gregor and Škrekovski [20], and by Shen
and Williams [38]. Clearly, the case ` = 1 of the central levels problem is the aforementioned
middle levels problem (solved in [27]). Moreover, the case ` = 2 was solved affirmatively in a
paper by Gregor, Jäger, Mütze, Sawada, and Wille [16] presented at ICALP 2018. Also, the
case ` = m+ 1 is established by the binary reflected Gray code Γ2m+1. Furthermore, the
case ` = m was solved by El-Hashash and Hassan [7], and in a more general setting by Locke
and Stong [26], and the case ` = m− 1 was settled in [20].

The main contribution of this paper is to solve the central levels problem affirmatively in
full generality; see Figure 1 (a)–(d).

I Theorem 1. For any m ≥ 1 and 1 ≤ ` ≤ m+ 1, the subgraph of the (2m+ 1)-cube induced
by the middle 2` levels has a Hamilton cycle.

The most general question in this context is to ask for a Hamilton cycle in Qn that visits
all vertices in any sequence of ` consecutive levels, i.e., the levels need not be symmetric
around the middle, and the dimension n needs not be odd. These graphs are all bipartite,
and to circumvent the imbalances that prevent the existence of a Hamilton cycle for general n
and `, we have to slightly generalize the notion of Hamilton cycles: Firstly, a saturating cycle
in a bipartite graph is a cycle that visits all vertices in the smaller partition class (if it has
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size 1, then a single edge is considered to be a cycle). Secondly, a tight enumeration in a
(bipartite) subgraph of the cube is a cyclic listing of all its vertices where the total number
of bits flipped is exactly the number of vertices plus the difference in size between the two
partition classes. Clearly, if both partition classes have the same size, these two notions are
equal to a Hamilton cycle. In fact, all cases of this more general problem, except the central
levels problem, were solved already in [18], some of them conditional on a “yes” answer to
the central levels problem. Combining Theorem 1 with these previous results, we now also
obtain an unconditional result for this more general question.

I Corollary 2. For any n ≥ 1 and 1 ≤ ` ≤ n+ 1, the subgraph of the n-cube induced by any
sequence of ` consecutive levels has both a saturating cycle and a tight enumeration.

An essential tool in our proof of Theorem 1 are symmetric chain decompositions. This is a
well-known concept from the theory of posets, which we now define specifically for the n-cube
using graph-theoretic language. A symmetric chain in Qn is a path (xk, xk+1, . . . , xn−k) in
the n-cube where xi is from level i for all k ≤ i ≤ n−k, and a symmetric chain decomposition,
or SCD for short, is a partition of the vertices of Qn into symmetric chains. It is well-known
that the n-cube has an SCD for all n ≥ 1, and the simplest explicit construction was given by
Greene and Kleitman [15] (see Section 2.2 below). Streib and Trotter [40] first investigated
the interplay between SCDs and Hamilton cycles in the n-cube, and they described an SCD
in Qn that can be extended to a Hamilton cycle; see Figure 1 (e). Their SCD, however, is
different from the aforementioned Greene-Kleitman SCD. In this paper, we extend Streib
and Trotter’s result as follows; see Figure 1 (f).

I Theorem 3. For any n ≥ 2, the Greene-Kleitman SCD can be extended to a Hamilton
cycle in Qn.

The Greene-Kleitman SCD has found a large number of applications in the literature, e.g.,
to construct symmetric Venn diagrams [21, 33], to solve the Littlewood-Offord problem [3,
Chap. 4], or to learn monotone Boolean functions [25, Sec. 7.2.1.6] (see also [1, 6, 31, 37, 42]).
Knowing that this SCD extends to a Hamilton cycle and that it is a crucial ingredient for
solving the general central levels problem adds to this list of interesting properties and
applications. Observe also that a Hamilton cycle that extends an SCD has the intriguing
property that it minimizes the number of changes of direction from moving up to moving
down, or vice versa, between consecutive levels in the cube. For comparison, the monotone
paths constructed by Savage and Winkler [36] maximize these changes.

Motivated by these results and by the aforementioned conjecture of Ruskey and Savage [32]
that every matching in Qn extends to a Hamilton cycle, we raise the following conjecture:

I Conjecture 4. Every SCD can be extended to a Hamilton cycle in Qn.

Although every SCD of Qn is the union of two matchings, there are matchings in Qn

that do not extend to an SCD; take for example the two edges obtained by starting at
the vertices 0n and 1n and flipping the same bit. Consequently, an affirmative answer to
Conjecture 4 would cover only some cases of the Ruskey-Savage conjecture.

1.2 Efficient algorithms
Our proof of Theorem 1 is constructive and translates directly into an algorithm for computing
the Hamilton cycle in time and space that are polynomial in the size of the graph (the
middle 2` levels of Qn, n := 2m+ 1), which is exponential in n. Often, it is desirable to have
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(a)
` = 1

(b)
` = 2

(c)
` = 3

(d)
` = 4

(e)
Streib-
Trotter

(f)
Greene-
Kleitman

Figure 1 (a)–(d) The Hamilton cycles in Q7,` for ` = 1, 2, 3, 4 constructed as in our proof of
Theorem 1. (e) The Hamilton cycle in Q7 containing an SCD obtained from the Streib-Trotter
construction, with symmetric chains highlighted on the side. (f) The Hamilton cycle in Q7 containing
the Greene-Kleitman SCD obtained from our proof of Theorem 3. In this figure, 1-bits are drawn as
black squares, 0-bits as white squares.
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a “local” algorithm that uses only time and space that are polynomial in n. Ideally, one
might hope for O(n) space to store the current bitstring and some additional data structures,
and O(1) time to compute the next bitstring on the cycle. Such algorithms are known for
the binary reflected Gray code Γn [2], and for the middle levels problem [28], i.e., for the
extreme cases ` = m + 1 and ` = 1 of the central levels problem. There are fundamental
obstacles that prevent us to obtain such a local algorithm from our proof, and it remains
a challenging open problem to find such an algorithm. Our Theorem 3 on the other hand,
can be translated into a simple algorithm that uses only O(n) space and O(1) time in every
iteration to compute the next bitstring along the Hamilton cycle. A pseudocode description
of this algorithm is available in [17]. We also implemented it in C++, available for download
and for demonstration on the Combinatorial Object Server [5].

1.3 Proof ideas
We first describe the ideas for proving Theorem 1. For any m ≥ 1 we define n := 2m+ 1, and
for 1 ≤ ` ≤ m+ 1 we let Qn,` denote the subgraph of Qn induced by the middle 2` levels.
To prove that Qn,` has a Hamilton cycle for general m and `, we combine and generalize the
tools and techniques developed for the cases ` = 1 and ` = 2 in [19] and [16], respectively.
Our proof proceeds in two steps: In a first step, we construct a cycle factor in Qn,`, i.e., a
collection of disjoint cycles which together visit all vertices of Qn,`. In a second step, we use
local modifications to join the cycles in the factor to a single Hamilton cycle. Essentially,
this technique reduces the Hamiltonicity problem in Qn,` to proving that a suitably defined
auxiliary graph is connected, which is much easier.

In fact, the predecessor paper [16] already proved the existence of a cycle factor in Qn,`,
but this construction does not seem to yield a factor that would be amenable to analysis.
In this paper, we therefore construct another cycle factor in Qn,`, based on modifying the
aforementioned Greene-Kleitman SCD of Qn by the lexical matchings introduced by Kierstead
and Trotter [24]. The resulting cycle factor in Qn,` has a rich structure, in particular the
number of cycles and their lengths can be described combinatorially.

The simplest way to join two cycles C and C ′ from this factor to a single cycle is to
consider a 4-cycle F that shares exactly one edge with each of the cycles C and C ′ (the other
two edges of F must then go between C and C ′), and to take the symmetric difference of
the edge sets of C ∪ C ′ and of F , yielding a single cycle (C ∪ C ′)4 F on the same vertex
set as C ∪ C ′. We refer to such a cycle F as a flipping 4-cycle. For example, if we interpret
the binary reflected Gray code Γn as a cycle in Qn, we see that Γn+1 = (0Γn ∪ 1ΓR

n )4 F

where F is the 4-cycle F = 0n+1, 010n−1, 110n−1, 10n. In addition to flipping 4-cycles, we
also use flipping 6-cycles, which intersect with the two cycles to be joined in a slightly
more complicated way, albeit with the same effect of joining them to a single cycle. The
most technical aspect of this part of the proof is to ensure that all flipping cycles used are
edge-disjoint, so that the joining operations do not interfere with each other.

To prove Theorem 3, we proceed by induction from dimension n to n+ 2, treating the
cases of even and odd n separately. We first specify a particular ordering of all chains
of the Greene-Kleitman SCD, and then show that this ordering admits a matching that
alternatingly joins the bottom or top vertices of any two consecutive chains in our ordering.
In fact, there is a close relation between our proofs of Theorem 1 and 3: The aforementioned
construction of a cycle factor in Qn,` is particularly nice for ` = m+ 1, i.e., for the case where
we consider the entire cube. Specifically, in this case our cycle factor contains all chains
from the Greene-Kleitman SCD. These cycles can be joined to a single Hamilton cycle in
such a way, so as to give exactly the aforementioned Hamilton cycle constructed for proving
Theorem 3.
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1.4 Outline of this paper

In Section 2 we discuss the Greene-Kleitman SCD and lexical matchings, and collect some
other preliminaries. In Section 3 we describe our construction of a cycle factor in Qn,`. Due
to space constraints, in this extended abstract we are unable to provide the full details of
the analysis of this cycle factor, and how to join its cycles to a Hamilton cycle. We rather
give an informal high-level sketch of these steps in Section 4. In Section 5 we present our
proof of Theorem 3. The omitted proof details, together with the pseudocode description of
the corresponding loopless algorithm can be found in [17].

2 Preliminaries

For the reader’s convenience, important notations that are introduced in the following and
used repeatedly in the paper are summarized in Table 1 at the end of this paper.

2.1 Bitstrings and lattice paths

For any string x and any integer k ≥ 0, we let xk denote the concatenation of k copies of x.
We often interpret a bitstring x as a path in the integer lattice Z2 starting at the origin (0, 0),
where every 0-bit is interpreted as a �-step that changes the current coordinate by (+1,−1)
and every 1-bit is interpreted as an �-step that changes the current coordinate by (+1,+1);
see Figure 2.

x = 00011011010011 ∈ D14

Figure 2 The correspondence between bitstrings (top) and lattice paths (bottom).

Let D2k denote the set of bitstrings with exactly k many 1s and k many 0s, such that
in every prefix, the number of 0s is at least as large as the number of 1s. We also define
D :=

⋃
k≥0 D2k. Note that D0 = {ε}, where ε denotes the empty bitstring. In terms of

lattice paths, D corresponds to so-called Dyck paths that never move above the line y = 0
and end on this line. If a lattice path x contains a substring u ∈ D, then we refer to this
substring u as a valley in x.

2.2 The Greene-Kleitman SCD

We now describe Greene and Kleitman’s [15] construction of an SCD in the n-cube; see
Figure 3. For any vertex x of the n-cube, we interpret the 0s in x as opening brackets and
the 1s as closing brackets. By matching closest pairs of opening and closing brackets in
the natural way, the chain containing x is obtained by flipping the leftmost unmatched 0
to ascend the chain, or the rightmost unmatched 1 to descend the chain, until no more
unmatched bits can be flipped. It is easy to see that this indeed yields an SCD of the n-cube
for any n ≥ 1. We always work with this SCD due to Greene and Kleitman, and whenever
referring to a chain, we mean a chain from this decomposition.
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1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1
1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1
1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1
1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 1
1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 1
1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
) ) ) ( ( ( ) ( ( ) ( ( ) ( ( ) ) ( ( ( ( )

1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1

x =

Figure 3 Construction of the Greene-Kleitman SCD containing a bitstring x via parenthesis
matching. The highlighted bits are the leftmost unmatched 0 and the rightmost unmatched 1 in
each bitstring.

Each chain C of length h in Qn can be encoded compactly as a string of length n over
the alphabet {0, 1, ∗} in the form

C = u0 ∗ u1 ∗ · · · ∗ uh−1 ∗ uh, (1)

where u0, . . . , uh ∈ D. The symbols ∗ represent unmatched positions, and the vertices along
the chain are obtained by replacing the ∗s by 1s followed by 0s in all possible ways; see (2).
For example, the chain shown in Figure 3 is C = ∗∗∗∗∗01∗01∗010011∗∗∗01, so we have
u0 = u1 = u2 = u3 = u4 = u8 = u9 = ε, u5 = u6 = u10 = 01, and u7 = 010011.

We distinguish four types of chains depending on whether u0 and uh, i.e., the first and
last valleys in (1), are empty or not. These chain types are denoted by [−−], [+−], [++],
and [−+], where the first symbol is − if u0 = ε and + otherwise, and the second symbol is
− if uh = ε and + otherwise. For example, the chain in Figure 3 is a [−+]-chain. We also
use the symbol ? in these type specifications if we do not know whether a valley is empty or
not. Note that there is no [−−]-chain in Qn of length h = 1 unless n = 1.

Given a chain C of length h as in (1), the ith vertex of C from the bottom is

x = u0 1 · · ·ui−1 1ui 0ui+1 · · · 0uh (2)

where i = 0, . . . , h, and this vertex belongs to level k = n−h
2 + i. Note that every vertex x

of Qn can be written uniquely in the form (2), and we refer to this as the chain factorization
of x. For the following arguments, it will be crucial to consider the lattice path representation
of x, with the valleys u0, . . . , uh that are separated by i many �-steps, followed by h − i
many �-steps, i.e., the valley ui is the highest one on the lattice path.

We use Ch,i, 0 ≤ i ≤ h, to denote the set of the ith vertices in all chains of length h.
Moreover, we partition Ch,i into two sets C−h,i and C

+
h,i, depending on whether the valley ui

in (2) is empty or nonempty, respectively. Clearly, C+
h,h are exactly the top vertices of

[?+]-chains of length h and C+
h,0 are exactly the bottom vertices of [+?]-chains of length h,

and similarly with − instead of +. Note that the sets Ch,i are empty if n is odd and h is
even, or vice versa.

2.3 Lexical matchings
Lexical matchings in Qn were introduced by Kierstead and Trotter [24], and they are
parametrized by some integer p ∈ {0, 1, . . . , n− 1}. These matchings are defined as follows;
see Figure 4. We interpret a bitstring x as a lattice path, and we let x� denote the lattice
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0
1

3 2

5 4
8

7

10

6
9

12

11x = 1110001001001001100001

x = M11,↓
n,k (y)

x�

level k = 9
n = 22

M11,↑
n,kM11,↓

n,k

2
1

0

3

5 7

10

8
1211 9

6

4

y = 1110001001001001100101

y = M11,↑
n,k (x)

y�

level k + 1 = 10

Figure 4 Definition of p-lexical matchings between levels 9 and 10 of Q22, where steps flipped
along the p-lexical edge are marked with p. Between those two levels, the vertex x is incident with
p-lexical edges for each p ∈ {0, 1, . . . , 12}, and the vertex y is incident with p-lexical edges for each
p ∈ {0, 1, . . . , 12} \ {4, 6, 9}.

path that is obtained by appending �-steps to x until the resulting path ends at height −1.
If x ends at a height less than −1, then x� := x. Similarly, we let x� denote the lattice
path obtained by appending �-steps to x until the resulting path ends at height +1. If x
ends at a height more than +1, then x� := x. We let Ln,k denote the set of all vertices on
level k of Qn, and we define a matching by two partial mappings Mp,↑

n,k : Ln,k → Ln,k+1 and
Mp,↓

n,k : Ln,k+1 → Ln,k defined as follows: For any x ∈ Ln,k we consider the lattice path x�
and scan it row-wise from top to bottom, and from right to left in each row. The partial
mapping Mp,↑

n,k(x) is obtained by flipping the pth �-step encountered in this fashion, where
counting starts with 0, 1, . . ., if this �-step is part of the subpath x of x�; otherwise x is
left unmatched. Similarly, for any x ∈ Ln,k+1 we consider the lattice path x� and scan it
row-wise from top to bottom, and from left to right in each row. The partial mappingMp,↓

n,k(x)
is obtained by flipping the pth �-step encountered in this fashion if this �-step is part of
the subpath x of x�; otherwise x is left unmatched. It is straightforward to verify that these
two partial mappings are inverse to each other, so they indeed define a matching between
levels k and k + 1 of Qn, called the p-lexical matching, which we denote by Mp

n,k. We also
define Mp

n :=
⋃

0≤k<n M
p
n,k, where we omit the index n whenever it is clear from the context.

In the following, we will only ever use p-lexical edges for p = 0, 1, 2. For instance, it is

C−
1,0 C+

h,i C−
h+2,i

0 ≤ i ≤ h ≤ n− 2

Ch,i

0 ≤ i < h ≤ n

C−
h,i−1

1 < i < h ≤ n

C−
1,1 C−

h+2,i+2 C+
h,iCh,i+1 C−

h,i

Z02M0 M1

Figure 5 Perfect matchings described by Lemma 5. The {0, 1, 2}-lexical edges are drawn solid,
dashed, and dotted, respectively.
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well-known that taking the union of all 0-lexical edges, i.e., the set M0, yields exactly the
Greene-Kleitman SCD [24]. This property is captured by the following lemma, together with
several other explicit perfect matchings, consisting of {0, 1, 2}-lexical edges between certain
sets of vertices from our SCD; see Figure 5.

To state the lemma, for a set M of edges of Qn and disjoint sets X,Y of vertices, we let
M [X,Y ] denote the set of all edges ofM between X and Y . Moreover, for any vertex x ∈ C−h,i,
1 < i < h ≤ n, we consider the chain factorization x = u0 1 · · ·ui−2 1ui−1 1 0ui+1 · · · 0uh

with u0, . . . , uh ∈ D, and we define a neighbor z(x) on the level below by

z(x) :=
{
u0 1 · · ·ui−2 1 0 0ui+1 · · · 0uh if ui−1 = ε,

u0 1 · · ·ui−2 1 0 v 0w 1 0ui+1 · · · 0uh if ui−1 = 0 v 1w with v, w ∈ D.
(3)

Note that (x, z(x)) is a 0-lexical or 2-lexical edge in the first or second case, respectively.

I Lemma 5. For every n ≥ 3, the following sets of edges M [X,Y ] are perfect matchings
in Qn between the vertex sets X and Y .
(i) M0[Ch,i, Ch,i+1] for every 0 ≤ i < h ≤ n;
(ii) M1[C−1,0, C

−
1,1], M1[C+

h,i, C
−
h+2,i+2], and M1[C+

h,i, C
−
h+2,i] for every 0 ≤ i ≤ h ≤ n− 2;

(iii) Z02[C−h,i−1, C
−
h,i] for every 1 < i < h ≤ n, where Z02 := {(x, z(x)) | x ∈ C−h,i}.

The proof of Lemma 5 can be found in [17].

3 Cycle factor construction

We now construct a cycle factor Cn,` in the graph Qn,`, n = 2m+ 1, i.e., in the subgraph of
the n-cube induced by the middle 2` levels. Throughout this section we consider fixed m ≥ 1
and 2 ≤ ` ≤ m+ 1. We construct the cycle factor incrementally, starting with chains from
the Greene-Kleitman SCD and adding {0, 1, 2}-lexical edges between certain sets of vertices,
see Figure 6. In the following, when referring to a subgraph given by a set of edges, we mean
the subgraph of Qn,` induced by those edges. Moreover, we say that a chain is short if its
length is at most 2`− 3, i.e., if it does not span all levels of Qn,`.

Our construction starts by taking all those short chains, formally

X0 :=
⋃

0≤i<h≤2`−3
M0[Ch,i, Ch,i+1]; (4a)

recall Lemma 5 (i). From Lemma 5 (ii) we know that 1-lexical edges perfectly match all
bottom vertices of [−+]-chains of length 1 with all top vertices of [+−]-chains of length 1
along the edges

X1
m := M1[C−1,0, C

−
1,1]. (4b)

Furthermore, for 1 ≤ h ≤ 2`−5, 1-lexical edges perfectly match all top vertices of [?+]-chains
of length h with all top vertices of [?−]-chains of length h + 2, and all bottom vertices of
[+?]-chains of length h with all bottom vertices of [−?]-chains of length h+ 2 along the edges

X1
t :=

⋃
1≤h≤2`−5

M1[C+
h,h, C

−
h+2,h+2], X1

b :=
⋃

1≤h≤2`−5
M1[C+

h,0, C
−
h+2,0], (4c)

respectively. Note that the only vertices of short chains that have degree 1 in the set

X := X0 ∪X1
m ∪X1

t ∪X1
b (4d)

are exactly the vertices of C+
2`−3,2`−3 and C+

2`−3,0; that is, the top vertices of [?+]-chains of
length 2`− 3 and the bottom vertices of [+?]-chains of length 2`− 3.
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Next, between every pair of consecutive levels of Qn,` we take all 0-lexical and 1-lexical
edges that are not incident to a degree-2 vertex in X. Specifically, between these pairs of
levels we take all 0-lexical edges from chains that are not short and all 1-lexical edges between
chains that are not short. In addition, between the top two levels we take all 1-lexical
edges between top vertices of [?+]-chains of length 2`− 3 and top vertices of [?−]-chains of
length 2`− 1, and symmetrically, between the bottom two levels we take all 1-lexical edges
between bottom vertices of [+?]-chains of length 2`− 3 and bottom vertices of [−?]-chains of
length 2`− 1. Formally, these sets of edges are

Y1 := Y ′1 ∪M1[C+
2`−3,0, C

−
2`−1,0], Y` := Y ′` ∪M1[C+

2`−3,2`−3, C
−
2`−1,2`−1], Yk := Y ′k (5a)

for 1 < k < ` where

Y ′k :=
⋃

h≥2`−1
i:=(h−(2`−1))/2+2(k−1)

M0[Ch,i, Ch,i+1] ∪M1[C+
h,i, C

−
h+2,i+2] ∪M1[C+

h,i+1, C
−
h+2,i+1]

(5b)

for 1 ≤ k ≤ `. Note that Y1 and Y` contain all {0, 1}-lexical edges between the bottom two
levels or the top two levels of Qn,`, respectively. We also define

Y :=
⋃

1≤k≤`

Yk. (5c)

As a consequence of these definitions and Lemma 5 (i) and (ii), the only vertices of Qn,` that
have degree 1 in the set X ∪ Y are exactly the vertices of C−2`−1,i for 1 ≤ i ≤ 2`− 2. We thus
add the edges

Z :=
⋃

i=1,3,5,...,2`−3
Z02[C−2`−1,i, C

−
2`−1,i+1] (6)

defined in part (iii) of Lemma 5, which makes

Cn,` := X ∪ Y ∪ Z (7)

a cycle factor in the graph Qn,`.

3.1 Comparison with previous constructions

Our cycle factor construction generalizes the construction for ` = 1 presented in [19, 27],
which simply consisted in taking the union of all 0-lexical and 1-lexical edges between the
middle two levels. It also generalizes the construction for ` = 2 presented in [16], which
also only used {0, 1, 2}-lexical matchings. In fact, all these earlier papers actually used
{m,m− 1,m− 2}-lexical matching edges, but these are isomorphic to {0, 1, 2}-lexical edges
by reversing bitstrings. The earlier construction for ` = 2 seemed rather arbitrary at the
time, but now nicely fits into the general picture shown in Figure 61.

1 As the picture of this construction resembles a rocket, with the tip on the left and the boosters on the
right, one might be tempted to consider this rocket science.
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Figure 6 Illustration of the cycle factor Cn,` for ` = 2, 3, 4. Each bullet represents an entire set
of vertices, as specified in the figure, lines between them specify perfect matchings between these
sets. The {0, 1, 2}-lexical edges are drawn with solid, dashed, and dotted lines, respectively. In the
bottom part, various sets of matching edges are highlighted.

4 Sketch of the remaining proof steps

It turns out that each cycle from the factor Cn,` defined in (7) visits vertices from an interval
of 2r levels, where 2 ≤ r ≤ `, around the middle. We refer to the number 2r as the range of
the cycle, and we say the cycle is short if 2 ≤ r < `, and long if r = `. One can show that
any short cycle with range r has length 8(r − 1), contains exactly one [−−]-chain of length
2r − 1, one [−+]- and one [+−]-chain of length 2r − 3 each, and one [++]-chain of length
2r − 5 (the latter only if r ≥ 3), i.e., short cycles are in bijection with short [−−]-chains.
For long cycles, on the other hand, we are lacking such a detailed understanding of their
structure. However, we are able to identify certain vertices on them, and to describe the
operation of moving along one cycle from one such special vertex to the next one in terms of
certain rotation operations on ordered rooted trees. Consequently, long cycles are obtained
as equivalence classes of ordered rooted trees under such rotations.

As outlined in Section 1.3, to join the cycles in our factor to a Hamilton cycle, we explicitly
construct flipping 4-cycles and 6-cycles. The 4-cycles are used to join short cycles among each
other and to long cycles, in such a way that every short cycle is joined to some long cycle,
possibly via other short cycles. For this we exploit the fact that certain pairs of short chains
from the Greene-Kleitman SCD are connected by many 4-cycles. Specifically, consider any
short chain C of length h ≥ 3, and any chain C ′ of length h− 2 obtained from C by replacing
two consecutive *s at positions a and b by 0 and 1, respectively. Using the definition of
Greene-Kleitman chains, it is easy to check that C and C ′ are connected by h − 2 many
4-cycles, each using a distinct edge of C and C ′, except the two consecutive edges of C that
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flip the coordinates a and b. The Greene-Kleitman SCD has an abundance of such pairs
of heavily connected pairs of chains, and as our cycle factor contains all these short chains,
we can exploit this to join short cycles to each other and to some long cycle in a tree-like
fashion, by considering the short cycles by increasing range. Particular care must be taken
to ensure that all selected flipping 4-cycles are edge-disjoint from each other, so that they do
not interfere with each other in the joining process.

The remaining task is to join long cycles to each other, and for this we use flipping
6-cycles between the topmost two levels of Qn,`, ensuring that they are edge-disjoint from
any flipping 4-cycles, which all live in the levels below. Such a flipping 6-cycle can be used
to connect two long cycles with each other, and this operation can again be interpreted in
terms of an operation on ordered rooted trees, which we call a pull operation. These 6-cycles
have been described and used heavily already in the predecessor papers [16, 19], where it was
shown that they are all edge-disjoint. To complete the proof of Theorem 1, we show that all
long cycles can be joined to each other by flipping 6-cycles, by showing that all equivalence
classes of ordered rooted trees under the aforementioned rotations (which correspond to long
cycles) can be transformed into each other by pull operations (which correspond to flipping
6-cycles). This step of the proof reduces the Hamiltonicity problem in Qn,` to proving that a
suitably defined auxiliary graph is connected, which turns out to be much easier.

5 Proof of Theorem 3

In this section, we prove Theorem 3. All lemmas stated below follow from straightforward
calculations; see [17] for details. For any chain C, we let |C| denotes its length, i.e., the
number of ∗s in C. For any chain C with |C| ≥ 2, we let f(C) and `(C), respectively, denote
the chains obtained by replacing the first two ∗s or the last two ∗s in C by 0 and 1. Note
that if |C| ≥ 2, then we have f(`(∗C∗)) = `(f(∗C∗)).

Our goal is to order the chains of the Greene-Kleitman SCD in Qn, n ≥ 2, so that
any consecutive pair of chains is joined at their top end vertices or bottom end vertices
alternatingly, with the exception of any two consecutive chains of length 1 that are connected
from the bottom end of one of them to the top end of the other, so as to form a Hamilton
cycle. We call such an ordering of chains a cycle ordering. The following simple but powerful
lemma, valid for arbitrary SCDs, shows that the direction in which each chain is traversed
along the Hamilton cycle (upwards or downwards) is determined only by the chain length.

I Lemma 6. Let Λn be a cycle ordering of chains of an SCD in Qn, n ≥ 2. In this Hamilton
cycle, any two chains C and C ′ with |C| ≡ |C ′| (mod 4) are traversed in the same direction.

We now define a cycle ordering Λn, n ≥ 2, for the Greene-Kleitman SCD. The corres-
ponding Hamilton cycle is oriented so that it traverses the longest chain ∗n, which will be
the first in the ordering Λn, from bottom to top. Our construction works inductively, and
the induction step goes from n to n+ 2, with separate rules for even and odd n. The base
cases are n = 0 and n = 1, for which the entire cube consists only of a single vertex and a
single edge, respectively, so for these cases the notion of a cycle ordering is not defined.

For even n, we define Λ0 := ε, and for n ≥ 0 and given Λn =: C1, . . . , CN we define
Λn+2 := ρ(Λn) = ρ(C1), . . . , ρ(CN ) with

ρ(C) :=
{
λ(C) if |C| ≡ n (mod 4),
λ(C)R if |C| 6≡ n (mod 4),

(8)
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and

λ(C) :=
{
∗C∗, f(∗C∗), f(`(∗C∗)), `(∗C∗) if |C| ≥ 2,
∗C∗, 0C1 if |C| = 0.

(9)

We call the chains of λ(C) arising from C the descendants of C. This rule replaces each
chain C in Λn by its descendants λ(C), where the order of descendants can be reversed,
indicated by the superscript R, depending on the length of C modulo 4.

For odd n, we define Λ1 := ∗, and for n ≥ 1 and given Λn we define Λn+2 := ρ(Λn),
where ρ is as before and

λ(C) :=
{
∗C∗, `(∗C∗), `(f(∗C∗)), f(∗C∗) if |C| ≥ 3,
∗C∗, `(∗C∗), f(∗C∗) if |C| = 1.

(10)

I Lemma 7. Λn contains every chain of the Greene-Kleitman SCD exactly once.

even n

|C| ≥ 2

odd n

|C| = 0 |C| ≥ 3 |C| = 1

∗C
∗

f
(∗
C
∗)

f
(`
(∗
C
∗)
)

`(
∗C
∗)

∗C
∗

0
C
1

∗C
∗

`(
∗C
∗)

`(
f
(∗
C
∗)
)

f
(∗
C
∗)

∗C
∗

`(
∗C
∗)

f
(∗
C
∗)

λ(C)

λ(C)

λ(C)

λ(C)

Figure 7 Connections between top and bottom ends of the descendants λ(C) of a chain C, as
guaranteed by Lemma 8. Bold gray edges are used along the Hamilton cycle. Dotted edges are
present but not used.

To complete the proof of Theorem 3, it remains to show that any two consecutive chains
in Λn can be joined by an edge between their top ends or bottom ends alternatingly. For
this we need the following simple lemmas that guarantee these connecting edges.

I Lemma 8. For any n ≥ 2 and any chain C with |C| ≥ 2, the chains C and f(C), and the
chains C and `(C) are connected both at their top and bottom ends in Qn.

All connecting edges between top and bottom ends among the descendants of a chain
guaranteed by Lemma 8 are shown in Figure 7. The next two lemmas are illustrated in
Figure 8.

I Lemma 9. For any n ≥ 2 and any two chains C,C ′ connected at their bottom ends in Qn,
we have that ∗C∗ and ∗C ′∗ are connected at their bottom ends in Qn+2.

I Lemma 10. For any n ≥ 2 and any chain C with |C| ≥ 2 in Qn, we have that `(∗C∗)
and `(∗f(C)∗) are connected at their bottom ends in Qn+2.
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even n + odd n

Lemma 8

C

C ′

λ(C)R

λ(C ′)

Λn Λn+2

C
f(C)

Λn Λn+2

Lemma 9

λ(C)

λ(f(C))R

`(
∗C

∗)

`(
∗f

(C
)∗

)

∗C
∗

∗C
′ ∗

even n

Figure 8 Joining of the descendants of two consecutive chain from Λn in the induction step
n→ n+ 2, via the thick edges guaranteed by Lemmas 9 and 10. The dashed edges are connections
to preceding and subsequent chains on the Hamilton cycle.

Proof of Theorem 3 (even n). We show that Λn, n ≥ 2 even, defined in (9) is a cycle
ordering of the Greene-Kleitman chains, by proving that any consecutive pair of chains
is connected at their top or bottom ends alternatingly, starting with the first chain ∗n of
length n that is traversed from bottom to top. We will also establish the following additional
property P: For any two consecutive chains C and C ′ connected at their top ends, we either
have C = f(C ′) or f(C) = C ′. These invariants can easily be checked for the induction base
case n = 2, which is given by Λ2 = ∗∗, 01.

For the induction step consider n ≥ 2 to be even, and assume that Λn is a cycle ordering
satisfying property P. By Lemma 8, the descendants λ(C) for any chain C from Λn can be
joined as shown on the left hand side of Figure 7, so we only need to check the connections
between the first and last chains among consecutive groups of descendants. Indeed, if C
and C ′ are consecutive in Λn and joined at their bottom ends, then C is traversed from top
to bottom and C ′ from bottom to top in the Hamilton cycle; see the left part of Figure 8.
Consequently, by Lemma 6, we have |C| 6≡ |∗n| = n (mod 4) and |C ′| ≡ n (mod 4), i.e., by (8)
the sequence Λn+2 contains λ(C)R and λ(C ′), and indeed, the bottom vertex of the last
chain of λ(C)R, namely ∗C∗, is connected to the bottom vertex of the first chain of λ(C ′),
namely ∗C ′∗, by Lemma 9. Similarly, if C and C ′ are consecutive in Λn and joined at their
top ends, then C is traversed from bottom to top and C ′ from top to bottom in the Hamilton
cycle; see the right part of Figure 8. Consequently, by Lemma 6, we have |C| ≡ n (mod 4)
and |C ′| 6≡ n (mod 4), i.e., by (8) the sequence Λn+2 contains λ(C) and λ(C ′)R, and indeed,
the bottom vertex of the last chain of λ(C), namely `(∗C∗), is connected to the bottom
vertex of the first chain of λ(C ′)R, namely `(∗C ′∗), using that by property P we have either
C = f(C ′) or f(C) = C ′, so we can invoke Lemma 10. Moreover, property P still holds
for Λn+2 by the definition (9) (note that if |C| = 0, then we have 0C1 = f(∗C∗)). J

The proof of Theorem 3 for odd n is very similar. In [17] we provide all details and
a loopless algorithm for computing this Gray code. An implementation of this algorithm
in C++ is available for download and for demonstration [5].
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Table 1 A glossary for notation used in the paper.

Qn n ≥ 1 the n-dimensional hypercube
Qn,` 1 ≤ ` ≤ m+ 1 the subgraph of Qn induced by the middle 2` levels

n = 2m+ 1, m ≥ 1
D2k k ≥ 0 the set of all Dyck paths (bitstrings) of length 2k
D the set of all Dyck paths
C a chain C = u0 ∗ u1 ∗ · · · ∗ uh−1 ∗ uh of length h ≥ 0 in

the Greene-Kleitman decomposition, ui ∈ D for every i
Ch,i 0 ≤ i ≤ h the set of the ith vertices in all chains of length h
C−

h,i 0 ≤ i ≤ h as above but only in chains with ui = ε

C+
h,i 0 ≤ i ≤ h as above but only in chains with ui 6= ε

Ln,k 0 ≤ k ≤ n the set of vertices on level k in Qn

Mp
n,k 0 ≤ k < n, 0 ≤ p < n the p-lexical matching between Ln,k and Ln,k+1

Mp
n, Mp 0 ≤ p < n the set of all p-lexical edges in Qn

|C| the length of a chain C, i.e., |C| = h for C as above
f(C) |C| ≥ 2 the chain f(C) = u0 0 u1 1 u2 ∗ · · · ∗ uh for C as above
l(C) |C| ≥ 2 the chain l(C) = u0 ∗ · · · ∗ uh−2 0 uh−1 1 uh for C as above
λ(C) a sequence of descendant chains for a chain C, see (9), (10)
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Abstract
A set function f : 2E → R on the subsets of a set E is called submodular if it satisfies a natural
diminishing returns property: for any S ⊆ E and x, y 6∈ S, we have f(S ∪ {x, y})− f(S ∪ {y}) ≤
f(S ∪ {x})− f(S). Submodular minimization problem asks for finding the minimum value a given
submodular function takes. We give an algebraic algorithm for this problem for a special class of
submodular functions that are “linearly representable”. It is known that every submodular function
f can be decomposed into a sum of two monotone submodular functions, i.e., there exist two
non-decreasing submodular functions f1, f2 such that f(S) = f1(S) + f2(E \ S) for each S ⊆ E.
Our class consists of those submodular functions f , for which each of f1 and f2 is a sum of k rank
functions on families of subspaces of Fn, for some field F.

Our algebraic algorithm for this class of functions can be parallelized, and thus, puts the problem
of finding the minimizing set in the complexity class randomized NC. Further, we derandomize our
algorithm so that it needs only O(log2(kn|E|)) many random bits.

We also give reductions from two combinatorial optimization problems to linearly representable
submodular minimization, and thus, get such parallel algorithms for these problems. These problems
are (i) covering a directed graph by k a-arborescences and (ii) packing k branchings with given root
sets in a directed graph.
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1 Introduction

Submodular functions have been studied in a wide variety of contexts like combinatorics,
electrical networks, game theory, and machine learning. For a set E, a submodular function
is a set function f : 2E → R that satisfies a natural diminishing returns property: for any
T ⊆ S ⊆ E and x ∈ E \ S, we have

f(S ∪ {x})− f(S) ≤ f(T ∪ {x})− f(T ).

That is, the marginal value of an element with respect to a set decreases as the set grows.
Another equivalent way to describe submodularity is: for any S, T ⊆ E, we have f(S)+f(T ) ≥
f(S ∪ T ) + f(S ∩ T ). Submodular functions appear in a diverse set of areas. To give a few
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examples, a linear function, maximum number in the given subset, the rank function on a
set of vectors or subspaces, the cut function on the set of vertices of a graph, entropy on a
set of random variables, the coverage function on a collection of subsets, are all submodular.

There are various natural optimization problems involving submodular functions: Sub-
modular Minimization asks for the set that minimizes a given submodular function among
all subsets of the ground set. Similarly, Submodular Maximization asks for the maximizing
set. Note that the these two questions are interesting only for non-monotone submodular
functions like graph cut. There are also constrained versions of minimization and maxim-
ization, for example, optimizing a submodular function over subsets of a given size. The
submodular function might be given by an explicit representation, for example, a given graph
can represent the corresponding cut function. However, not all submodular functions are
succinctly representable, as their number grows as doubly-exponential in the ground set
size [27]. In the most general framework, the function is given via a value oracle, i.e., given
any subset S ⊆ E, the oracle will provide the function value on S.

Submodular minimization is in some sense a discrete version of convex minimization [20],
and thus, admits polynomial time algorithms (even with just the value oracle). The initial
algorithms for it were based on the ellipsoid algorithm [11, 12], but later on combinatorial
algorithms were also obtained [6, 15, 28]. Submodular maximization, on the other hand, is
known to be hard: Max-cut [16] and maximum facility location [5] are instances of submodular
maximization which are NP-hard. Moreover, in the oracle model, there is an exponential
lower bound known on the number of queries required [9].

When we put cardinality constraints, then in fact, both minimization and maximization
problems become hard even for monotone submodular functions. Examples of such maxim-
ization problems that are NP-hard include max-k-cover (set-cover, which is NP-hard [16],
reduces to it) and sparse approximation [7] (for a set E of vectors and fixed vector v, the
function fv(S) = ‖projspan(S)(v)‖2 for S ⊆ E is submodular). Similarly, min-k-vertex-cover
is an example of an NP-hard minimization question (see [13]). Moreover, in the oracle model,
cardinality constrained submodular minimization has a sub-exponential lower bound on the
number of queries (follows from [31]).

Parallel complexity of submodular minimization. In this paper, we investigate the question
of parallel complexity of unconstrained submodular minimization. In the oracle model, the
parallel complexity question can be phrased as follows: if one is allowed to simultaneously
make polynomially many function value queries in one round, how many rounds are required
to find the minimum value (and the minimizing set). The number of rounds required is
also known the adaptivity (see [1]). To the best of our knowledge, the best upper bound
on the adaptivity of submodular minimization is O(n log(nM)) [19], where M is the largest
absolute value the function takes (they use a separation oracle that can be implemented
with one round of n parallel queries to the value oracle). While on the lower bound side,
there is a known impossibility result for one round [2], and Ω̃(n2/k5) query lower bound for
k rounds [1]. Very recently, it was shown that there are no adaptive algorithms that run in
o( log n

log log n ) rounds with poly(n) queries per round [3]. In particular, it is not clear whether
the adaptivity of submodular minimization can be sublinear.

On the other hand, if we consider explicitly given submodular functions, there are
instances for which the minimization problem admits parallel algorithms. Such special cases
of submodular minimization include (s, t)-min-cut (small capacities), maximum bipartite
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matching1, and its generalization linear matroid intersection. These problems have algebraic
algorithms, which just involve randomized reductions to matrix rank computation and thus,
fall into the class randomized NC (RNC) [17, 21, 23, 24]. In recent years, these algorithms
have also been partially derandomized [10, 14], i.e., they can work with only O(log2 n) random
bits. A natural question arises: what is the most general class of submodular functions for
which such algebraic algorithms can work. One would expect such algebraic algorithms for
submodular functions that are linear algebraic in some sense. Towards this, we define a class
of linearly representable submodular functions.

Linearly representable (LR) submodular functions. Suppose we have a family of subspaces
V = {Ve ⊆ Fn}e∈E , for some field F . Recall that the rank function of the family V given
by r(S) = dim(

∑
e∈S Ve) for S ⊆ E is submodular. The rank function is non-decreasing,

and hence, the minimization question for it is not interesting. One can try to consider the
difference of two rank functions, but that is not submodular. Interestingly, there is a way to
construct a non-increasing submodular function from a non-decreasing submodular function:
if a function f(S) is submodular then so is g(S) := f(E\S). So, if we have two non-decreasing
submodular functions f1(S) and f2(S), we can get a non-monotone submodular function by
considering f1(S)+f2(E \S) (since the sum of two submodular functions is also submodular).
In fact, using this way one can arrive at any submodular function. It is known (see [6])
that every submodular function f can be decomposed into two non-decreasing submodular
functions f1 and f2 such that for any S ⊆ E, f(S) = f1(S) + f2(E \ S).

Our contributions
The above facts motivate us to define the following natural class of linear algebraic submodular
functions that are not necessarily monotone. For a ground set E, let S̄ := E \ S.

I Definition 1 (Linearly representable (LR) submodular functions). We call a submodular
function f : 2E → Z linearly representable (LR) by k families of subspaces Vj = {Vj,e ⊆
Fn}e∈E for 1 ≤ j ≤ k and a number ` ≤ k if

f(S) =
∑̀
j=1

rj(S) +
k∑

j=`+1
rj(S̄),

where rj : 2E → Z is the rank function for family Vj.

This class includes many interesting submodular functions like directed graph cut, hy-
pergraph cut, coverage function, integral linear function (up to additive normalization),
and more interestingly, any combination of them in the above form. Our main results are
a randomized algebraic algorithm for minimizing LR submodular functions that puts the
minimization problem in RNC, and an almost complete derandomization of the algorithm;
see Section 3.

I Theorem 2 (Linearly representable submodular minimization). Given an LR submodular
function f : 2E → Z via families of subspaces Vj = {Vj,e ⊆ Fn}e∈E for 1 ≤ j ≤ k and a num-
ber ` ≤ k (Definition 1), we can find a set minimizing f(S) in RNC. Further, the randomized
algorithm can be almost completely derandomized so that it uses only O(log2(kn|E|)) random
bits.

1 For a bipartite graph G(V1∪V2, E), the maximum matching size is equal to |V1|+minS⊆V1 (|N(S)| − |S|)
(Hall’s theorem), where N(S) ⊆ V2 is the set of neighbor of S. The function |N(S)| − |S| is submodular.
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Another way to put the derandomization result is that minimizing an LR submodular
function is in quasi-NC (see [10, 14] for the details of class quasi-NC). Our results also imply
a randomized parallel algorithm and its almost deterministic version for a problem called
linear polymatroid intersection, generalizing the corresponding results for linear matroid
intersection [24, 14].

In the linear polymatroid intersection problem, we are given two families of subspaces,
Vj = {Vj,e ⊆ Fn}e∈E for j = 1, 2, with their rank functions r1, r2, respectively. And the goal
is to find

max{
∑
e∈E

xe | xe ≥ 0 ∀e ∈ E, and
∑
e∈S

xe ≤ r1(S),
∑
e∈S

xe ≤ r2(S) for each S ⊆ E}.

Min-max relation. It is known that this maximum value is equal to minS⊆E r1(S) + r2(S̄)
(see [29, Corollary 46.1c]). Thus, the maximization problem is captured by LR submodular
minimization.

I Corollary 3. Linear polymatroid intersection has a randomized NC algorithm that uses
only O(log2(n|E|)) random bits.

Linear matroid intersection is the special case of linear polymatroid intersection when
each of the above subspaces Vj,e is of dimension 1. Thus, the above min-max relation with a
LR submodular function also holds for linear matroid intersection. Our parallel algorithm has
a crucial difference from the known parallel algorithms [24, 14] for linear matroid intersection.
They give the minimum value of the corresponding LR submodular function, but they do
not lead to a minimizing set, while our algorithm also finds a minimizing set.

Further applications

As mentioned above, LR submodular minimization captures linear matroid intersection
and thus, several other combinatorial optimization problems that reduce to linear matroid
intersection, like bipartite matching, packing spanning trees, finding arborescences (see [29]),
packing a-arborescences [29, Theorem 53.10], and hypergraph min-cut [18]. Since linear
matroid intersection already has parallel algorithms [24, 14], so do these problems.

However, there are also combinatorial problems that reduce to submodular minimization
but are not captured by linear matroid intersection. We show that two such problems, in
fact, reduce to LR submodular minimization (see Section 4.2 for definitions and reductions).

Covering by a-arborescences. For a given directed graph and a number k, decide
whether the edge set is covered by k a-arborescences.
Packing of branchings. For a given directed graph and given subsets R1, R2, . . . , Rk

of vertices, decide whether there exist k edge-disjoint branchings that are rooted at
R1, R2, . . . , Rk, respectively.

To the best of our knowledge, there is no straightforward reduction known from these
problems to linear matroid intersection. Using Theorem 2, we get the following.

I Theorem 4. Covering by a-arborescences and packing of branchings can be solved in RNC
using only O(log2 n) random bits, n being the size of the input graph.

Variants

Furthermore, we list out two problems, one of which is an extension of LR submodular
minimization and the other one is equivalent to it (see Section 4.1).
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1. Minimization with containment constraints: There is a variant of submodular
minimization that appears frequently in combinatorial optimization. Given two subsets
S0 ⊆ S1 ⊆ E, the goal is to minimize the given submodular function f(S) subject to
S0 ⊆ S ⊆ S1. We can extend our algorithm to LR submodular minimization with this
kind of constraints. This is a generalization of the minimum (S0, S̄1) cut problem in a
graph G(V,E) with two given disjoint subsets S0, S̄1 ⊆ V .

2. Separation oracle for a linear polymatroid: Given a family V = {Ve ⊆ Fn}e∈E of
subspaces with its rank function r : 2E → Z, the corresponding polymatroid is a polytope
Pr ⊆ RE defined as

Pr = {x ∈ RE | x ≥ 0,
∑
e∈S

xe ≤ r(S) ∀S ⊆ E}.

Given a rational point β ∈ RE , one needs to decide if β lies in Pr, and if not then find
a violating constraint from the above set. We reduce this problem to LR submodular
minimization assuming the coordinates in β are rational numbers with a polynomially
bounded common denominator.

2 Preliminaries

Complexity Class NC. NC represents the class of problems that can be solved by polynomi-
ally many parallel processors in poly-logartihmic time. RNC, i.e., randomized NC, represents
problems that can be solved with the same resources, but with the use of randomness.

2.1 Submodular functions
For a set E, a submodular function is a set function f : 2E → R for any S, T ⊆ E, we have
f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). If f satisfies this with equality then it is called modular.
There are various properties of submodular functions that are useful for us and are easy to
verify. For S ⊆ E, S̄ will denote E \ S.

If f1 and f2 are submodular then so is f1 + f2.
If f is submodular then so is g(S) = f(S̄).

For a set E and a family of subspaces V = {Ve ⊆ Fn}e∈E , its corresponding rank function
r : 2E → Z is defined to be as r(S) = dim(

∑
e∈S Ve) for S ⊆ E. It is not hard to verify that

the rank function is submodular for any family of subspaces.

2.2 Polynomial identity testing
To design our randomized algorithm, we will need a fundamental result about zeros of
polynomials, which says that if a polynomial is nonzero then at a random point, its evaluation
is nonzero with high probability (see, for example, [25, 30, 33, 8]).

I Lemma 5. Let there be an n-variate degree-d nonzero polynomial P (z1, z2, . . . , zn). If for
each 1 ≤ i ≤ n, the variable xi is substituted with a random number Ri chosen uniformly
and independently from a set of size D then

Pr{P (R1, R2, . . . , Rn) = 0} ≤ d/D.

Note that D should be at least as large as the degree. Throughout the paper, we will
assume that the underlying field is large enough. This lemma gives a simple algorithm to
test if a given polynomial is nonzero: just evaluate it at a random point and output nonzero
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if and only if the evaluation is nonzero. To derandomize our submodular minimization
algorithm, we will need to derandomize this test of nonzeroness of a polynomial. For general
polynomials, there is no non-trivial derandomization known. However, we will need the
derandomization result only for polynomials that have certain special structure.

Let U be a square matrix whose entries are all linear polynomials (degree-1). The
polynomials of interest in our setting will be determinants of such symbolic matrices, where
any particular variable appears in at most one column of the matrix. For this class of
polynomials, an almost complete derandomization of nonzero testing is known. A way to do
deterministic nonzero testing is to obtain a small hitting-set – a set of points such that any
nonzero polynomial in the class of our interest gives a nonzero evaluation on at least one of
the points.

The work of [14] gave a quasi-polynomial size hitting-set for polynomials of the following
form which subsume the above case: P (z) = det(

∑n
i=1Aizi), where each Ai is a rank-1

matrix. The result of [14] can be easily modified to generate a slightly stronger notion of a
hitting-set, though it is not explicitly stated there.

I Lemma 6 ([14]). There is an NC-computable hitting-set generator, that is, a function
h : {0, 1}t → Fn, t = O(log2mn), with the following property: for any nonzero polynomial
P (z) = det(

∑n
i=1Aizi) where each Ai ∈ Fm×m is a rank-1 matrix

Pr
R∈{0,1}t

{P (h(R)) = 0} ≤ 1/poly(mn).

3 Parallel algorithm for linearly representable submodular
minimization

Our first step towards the parallel algorithm is to consider one of the special cases of LR
submodular minimization. We give an algebraic algorithm for this special case. The algorithm
is essentially a reduction to basic linear algebraic operations like computing rank and inverse
of a matrix, which are doable in NC. The reduction is randomized and thus, puts the special
case in RNC. Finally, we reduce the LR submodular minimization problem to this special
case. We start with describing the special case and a solution for it.

3.1 LR submodular minimization for a special case
The special case we first consider is when the submodular function is the difference of a rank
function and a positive linear function. Let V = {Ve ⊆ Fn}e∈E be a family of subspaces
for a ground set E and a field F, and r : 2E → Z be the corresponding rank function. Let
w ∈ ZE

+ be a positive integer vector and define a modular function w(S) :=
∑

e∈S we for any
S ⊆ E. Consider the function defined as f(S) = r(S) − w(S) for S ⊆ E. Note that since
w is modular, so is −w, and hence, f is submodular because both r and −w are. We show
that there is a randomized algebraic algorithm to find a minimizing set for f(S) over S ⊆ E.

I Lemma 7. Given a family of subspaces V = {Ve ⊆ Fn}e∈E with rank function r and a vector
w ∈ ZE

+, there is an RNC algorithm to find the minimizing set S∗ ⊆ E for f(S) = r(S)−w(S)
that uses only O(log2(nw(E))) random bits.

To prove the Lemma 7, we work with a random/generic vectors that belong to any
subspace Ve. Let us first build some terminology towards that. Let Be ⊆ Fn be a basis
for Ve for e ∈ E. For any set S ⊆ E, let us define Sw = {(e, i) | e ∈ S, 1 ≤ i ≤ we}.
Clearly, |Sw| = w(S). We will construct a matrix U whose columns will consist of we many
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generic vectors from the subspace Ve for e ∈ E. Formally, consider a tuple of indeterminates
α = (αe,i,v | (e, i) ∈ Ew, v ∈ Be). Now, construct an n × Ew matrix U over F[α] whose
columns are as follows:

u(e,i) =
∑

v∈Be

αe,i,vv for (e, i) ∈ Ew. (1)

All notions of rank and linear independence for columns of U will be over the field of fractions
F(α). For any set T ⊆ Ew, let UT denote the set of columns of U indexed by elements in T .
Our first step is to show a lower bound on minS f(S) in terms of rank of U .

B Claim 8. For any set S ⊆ E,

f(S) = r(S)− w(S) ≥ rank(U)− |Ew| = rank(U)− w(E). (2)

Proof. Consider the sets Sw ⊆ Ew and S̄w := Ew \ Sw. One can write

rank(U) ≤ rank(USw
) + rank(US̄w

) ≤ r(S) + |S̄w|.

The first inequality is from basic linear algebra. The second inequality holds because every
column in Sw is in the space

∑
e∈S Ve and rank of US̄w

can be at most its cardinality. Writing
|S̄w| = |Ew| − |Sw| = w(E) − w(S) and rearranging the above inequality will give us the
claim. C

Once we obtain this lower bound, a natural approach to find minS f(S) is to find a set
S∗ ⊆ E which satisfies (2) with equality. We describe a construction of such a set. First let
us define T ∗ ⊆ Ew to be the set of elements (e, i) such that the column u(e,i) participates
non-trivially in some linear dependency among the columns of U . Equivalently,

T ∗ := {(e, i) ∈ Ew | rank(U) = rank(UEw\(e,i))}.

Then define

S∗ = {e ∈ E | (e, i) ∈ T ∗ for some i}.

I Lemma 9. S∗ is a set minimizing f(S) over all subsets S ⊆ E.

Proof. As mentioned above, the strategy is to show that S∗ satisfies (2) with equality.
Towards this we will first prove that

rank(UT∗) = r(S∗). (3)

Recall that the columns UT∗ are contained in
∑

e∈S∗ Ve. What we need to show for (3)
is that

∑
e∈S∗ Ve is in the linear span of UT∗ . We show this for each Vẽ, ẽ ∈ S∗.

B Claim 10. For each ẽ ∈ S∗, the subspace Vẽ is in the linear span of columns in UT∗ .

Proof. By definition of S∗, there must be some 1 ≤ ĩ ≤ wẽ so that (ẽ, ĩ) ∈ T ∗. By definition
of T ∗, the column u(ẽ,̃i) non-trivially participates in some linear dependency among the
columns of UT∗ . So, there exists a set J ⊆ T ∗ \ {(ẽ, ĩ)} and a vector Γ ∈ F[α]J such that

u(ẽ,̃i) = UJΓ. (4)

Now, recall that u(ẽ,̃i) is a generic vector in Vẽ, and thus, can be used to express any vector in
Vẽ. Hence, Equation (4) implies that every vector in Vẽ is in the linear span of the columns
in UJ . Below, we argue this point more formally.
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Recall (1) that gives u(ẽ,̃i) as
∑

v∈Bẽ
αẽ,̃i,vv. One can invert (4) to write the vector Γ as a

function of indeterminates {αẽ,̃i,v}v as follows. By basic linear algebra, there is an invertible
submatrix ÛJ of UJ and a truncation û(ẽ,̃i) of u(ẽ,̃i) such that

Γ = Û−1
J û(ẽ,̃i). (5)

Consider any vector v′ ∈ Vẽ. Suppose v′ can be expressed using the basis Bẽ as
∑

v∈Bẽ
δvv.

We can substitute (αẽ,̃i,v)v = (δv)v in the right-hand side of (5) to obtain a vector Γ′. Note
that since the matrix UJ is free of indeterminates {αẽ,̃i,v}v, this substitution in (5) does not
create any issues like division by zero. It will follow that

v′ = UJΓ′.

To conclude, every vector v′ ∈ Vẽ is in the linear span of columns in UT∗ . C

Claim 10 proves Equation (3). Now, we come back to proving that S∗ satisfies (2) with
equality. From (3), we have

f(S∗) = r(S∗)− w(S∗) = rank(UT∗)− w(S∗) ≤ rank(UT∗)− |T ∗|.

The inequality holds because w(S∗) = |S∗w| ≥ |T ∗| by the definition of S∗. By construction
of T ∗, the columns in UEw\T∗ do not participate in any column dependency. Thus, we have
rank(U)− rank(UT∗) = |Ew \ T ∗| = |Ew| − |T ∗|. Putting this in the above inequality, we get

f(S∗) = r(S∗)− w(S∗) ≤ rank(U)− |Ew|.

This together with (2) implies that S∗ is a set that minimizes f(S) over S ⊆ E. J

Proof of Lemma 7: the parallel algorithm
Let us review the construction of the minimizing set S∗ from the previous subsection.

Construct a matrix U , whose columns are generic vectors from the given subspaces. To
be precise U has exactly we generic vectors from Ve for each e ∈ E.
Construct the set T ∗ := {(e, i) ∈ Ew | rank(U) = rank(UEw\(e,i))}.
Construct the set S∗ ⊆ E that contains all those elements e such that T ∗ contains (e, i)
for some 1 ≤ i ≤ we.

The rank computations in the second step can all be done in parallel. Importantly,
rank computation for any matrix over the base field F can be done in NC. However, this
computation is not efficient for U (or its submatrices) as it is a matrix with indeterminates α.
To overcome this, we plan to substitute all the indeterminates with field constants. Observe
that as long as our substitution preserves the ranks of all column subsets of U , one can safely
run the above procedure on the substituted matrix and expect to get the correct answer.

How do we find the right substitution? We argue that a random substitution from a large
enough set of field elements does the job. It is known that the rank of a subset of columns
remains the same with high probability if each indeterminate is replaced with a field element
randomly chosen from a set of size poly(size(U)) = poly(n × w(E)). One can see this by
applying Lemma 5 on the largest nonzero minor. But, note that we need one substitution
that preserves ranks for U and each submatrix UEw\(e,i) simultaneously. One can use union
bound to argue that with high probability, all the desired submatrices preserve their rank.
Note that this algorithm needs to use polynomially many random bits. Next we show how
to reduce this number of random bits.
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Derandomization

To reduce the number of random bits, we use results from deterministic polynomial identity
testing. Recall Lemma 6 that gives a pseudorandom substitution that preserves nonzeroness
of polynomials of the form det(

∑n
i=1Aizi) for rank(Ai) = 1, with high probability. Note

that any minor of U is also a polynomial of this form because any variable αe,i,u appears in
exactly one column of U . Again, one can use union bound to argue that with high probability,
the substitution preserves nonzeroness for all the desired minors of U and each UEw\(e,i)
simultaneously.

To conclude, the pseudorandom substitution from Lemma 6 uses O(log2(nw(E))) random
bits and with that substitution our algorithm will give the correct minimizing set S∗ with
high probability.

3.2 Reduction to the special case
Recall Definition 1 which defines LR submodular functions to be those which can be written
as a sum of a collection of rank functions together with another collection of rank functions
applied on the complement set. We will first argue that the same class of functions is also
captured by just taking sum of a rank function and another rank function applied on the
complement.

I Observation 11. Let f : 2E → Z be an LR submodular function given as

f(S) =
∑̀
j=1

rj(S) +
k∑

j=`+1
rj(S̄),

for some ` ≤ k, where rj is the rank function for a family of subspaces Vj = {Vj,e ⊆ Fn}e∈E

for 1 ≤ j ≤ k. Then f can also be written as

f(S) = r′1(S) + r′2(S̄),

where r′1 and r′2 are the rank functions of the families V ′1 = {⊕`
j=1Vj,e ⊆ F`n}e∈E and

V ′2 = {⊕k
j=`+1Vj,e ⊆ F(k−`)n}e∈E, respectively.

Next, we show that we can, in fact, take one of the rank functions to be modular. That
is, any LR submodular function can be written as a sum of a rank function and a modular
function. In context of general submodular functions, this is a known fact and was used in
the first pseudo-polynomial time submodular minimization [6, Lemma 2.1]. Here, we show a
more specific result for LR submodular functions that says that the new rank function is
also linearly representable and the corresponding family of subspaces can be constructed
efficiently.

I Lemma 12. Given an LR submodular function f(S) by k families of subspaces of Fn as
in Definition 1, one can compute in NC a family of subspaces V = {Ve ⊆ Fkn|E|}e∈E with
rank function r, a vector w ∈ {1, 2, . . . , kn}E, and a constant C such that for each S ⊆ E,

f(S) = r(S)− w(S) + C.

To prove Lemma 12, the first step is to use Observation 11 to get the LR submodular
function in the form r′1(S) + r′2(S̄). Then the next step is to write r′2(S̄) as a sum of a rank
function on S and a modular function, which is what the following lemma does. Final step
is to combine the new rank function with r′1(S) to get a single rank function, again using
Observation 11.
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I Lemma 13. Let V = {Ve ⊆ Fn}e∈E be a family of subspaces with its rank function
r : 2E → Z. Then one can construct in NC another family of subspaces V∗ = {V ∗e ⊆ Fn′}e∈E

with rank function r∗ for some n′ ≤ n|E|, and a vector b ∈ {1, 2, . . . , n}E such that for each
S ⊆ E,

r(S̄) = r∗(S)− b(S) + r(E).

Proof. For each e ∈ E, let be be the dimension of the subspace Ve and Be = {ue,i | 1 ≤ i ≤ be}
be a basis for it. Let E′ = {(e, i) | e ∈ E, 1 ≤ i ≤ be} be a new ground set. Note that
since be ≤ n, we have |E′| ≤ n|E|. Consider an n× |E′| matrix M whose set of columns is
{ue,i}e,i. Without loss of generality, we can assume that M has full row-rank, i.e., n = r(E)
(otherwise we could drop some rows). Let M∗ be a (|E′| − n)× |E′| matrix whose row-space
is the orthogonal complement of the row-space of M (for a construction in NC, see [4, 22]).
The following claim is well known in matroid theory and is used for representation of a dual
matroid (see [26, 2.1.9 and 2.2.8]). For any T ⊆ E′ and matrix M , let MT stand for the set
of columns of M corresponding to the set of indices T .

B Claim 14. For any set T ⊆ E′,

rank(ME′\T ) = rank(M∗T )− |T |+ n.

Let {u∗e,i}e,i be the set of columns of M∗. Consider the family of subspaces V∗ = {V ∗e ⊆
F|E′|−n}e∈E , where V ∗e = span{u∗e,i | 1 ≤ i ≤ be}. Let r∗ : 2E → Z be the rank function of
V∗. Then for any S ⊆ E, take T = {(e, i) | e ∈ S, 1 ≤ i ≤ be} in Claim 14, and we get

r(E \ S) = r∗(S)− b(S) + n. J

Proof of Theorem 2. Lemma 12 gives an NC-reduction from LR submodular minimization
to minimizing functions of the form f(S) = r(S)−w(S)+C. To minimize f(S), it is sufficient
to minimize r(S)− w(S), which is what Lemma 7 does. This concludes the RNC algorithm
for LR submodular functions as claimed in Theorem 2. J

4 Variants and Applications

In this section, we first consider two variants of submodular minimization which can be
reduced to submodular minimization. Here we basically show that this kind of reductions
can also made to work in the setting of LR submodular functions. Later on, we also show
reductions from two combinatorial problems to LR submodular minimization.

4.1 Variants
Submodular minimization with containment constraints. We first consider an extension
of submodular minimization that asks for a minimizing set with containment constraints.
Given a submodular function f : 2E → R and two sets S0 ⊆ S1 ⊆ E, suppose the goal is to
minimize f(S) subject to S0 ⊆ S ⊆ S1. It is known that there is a submodular function g
on the ground set S1 \ S0 such that for any S0 ⊆ S ⊆ S1, f(S) = g(S \ S0) + C ′ for some
constant C ′. If f is linearly representable then we would like to come up with such a function
g that is also linearly representable. Towards this, we will need the following claim.

B Claim 15. Let V = {Ve ⊆ Fn}e∈E be a family of subspaces and r be the corresponding
rank function. Let there be two sets S0 ⊆ S1 ⊆ E. Then we can construct a family of
subspaces V ′ = {V ′e}e∈S1\S0 with rank function r′ such that for each S0 ⊆ S ⊆ S1

r(S)− r(S0) = r′(S \ S0).
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Proof. Let VS0 be the subspace
∑

e∈S0
Ve. For each e ∈ S1 \ S0, we define V ′e to be the

quotient space V ′e = Ve/VS0 . Now, for any S0 ⊆ S ⊆ S1, we have

r′(S \ S0) = dim(
∑

e∈S\S0

V ′e ) = dim

(
∑

e∈S\S0

Ve)/VS0

 = dim(VS/VS0) = r(S)− r(S0).

C

From Lemma 12, any linearly representable submodular function can be given as f(S) =
r(S)− w(S) + C, for a rank functions r(S) on a family of subspaces V, a modular function
w(S) and a constant C. For given two sets S0 ⊆ S1 ⊆ E, let r′ be the function constructed
in Claim 15 from r. For any T ⊆ S1 \ S0 define g(T ) = r′(T )− w(T ) + C. Using Claim 15,
one can verify that for any S0 ⊆ S ⊆ S1,

g(S\S0) = r′(S\S0)−w(S\S0)+C = r(S)−r(S0)−w(S)+w(S0)+C = f(S)−f(S0)+C.

Choose C ′ = C−f(S0) and we get the desired relation. Now, to minimize f under containment
constraints, one can just minimize g on the smaller ground set.

Submodular minimization over non-empty sets. In applications, one often needs to minim-
ize a submodular function over non-empty sets, for example, min-cut in an undirected graph.
To do this, one can go over all elements e ∈ E and minimize f(S) with the containment
constraint {e} ⊆ S (as discussed above). This will give us a minimum value for each choice
of e. The minimum among these values will be the minimum over non-empty subsets.

Separation oracle for a linear polymatroid. Given a family of subspaces V = {Ve ⊆ Fn}e∈E

with its rank function r : 2E → Z, the corresponding polymatroid is a polytope Pr ⊆ RE

defined as

Pr = {x ∈ RE | x ≥ 0,
∑
e∈S

xe ≤ r(S) ∀S ⊆ E.}

Given a rational point β ∈ RE , one needs to decide if β lies in Pr, and if not then find
a violating constriant. The non-negativity constraints are easy to check. The other rank
constraints are equivalent to

min
S⊆E

(r(S)− x(S)) ≥ 0.

Thus, to check if β satisfies the rank constraints, it suffices to minimize the function
f(S) = r(S)− β(S). Moreover, if there is a violating constraint, then the set S∗ minimizing
f(S) will give a violating constraint. If β is an integer vector, we have already seen how to
find S∗ in Lemma 7. When β has rational coordinates, then one can assume them to have a
common denominator q, i.e., βe = pe/q for integers pe, q. Now, the minimization function
becomes q × r(S)− p(S). Now, p(S) is an integral function. To get the multiplicative factor
q in the rank, for each subspace Ve in the family, one can take the direct sum with its copies
as ⊕q

j=1Ve. Note that this is efficient as long as the number q is polynomially bounded.

4.2 Applications
In this section, we show that the two combinatorial problems mentioned in Section 1
reduce to LR submodular minimization. To the best of our knowledge, these problems do
not have any known reduction to linear matroid intersection. We start with defining the
necessary terminology. Branchings and arborescences are directed analogues of forests and
spanning trees.
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I Definition 16 (Branching and Arborescence). For a directed graph G(V,E), a subset B ⊆ E
of edges is a branching if it contains no undirected cycles (i.e, there are no cycles induced by
B if edges in B are considered to be undirected) and for every vertex v, there is at most one
edge in B that is incoming to v. A vertex is a root of B if it has no incoming edges in B.
An arborescence is a branching with exactly one root, that is, it is a rooted tree. If the root
vertex of an arborescence is a, then we call it an a-arborescence.

Covering by a-arborescences

A directed graph G(V,E) is said to be covered by k a-arborescences if there exists subsets
B1, B2, . . . , Bk ⊆ E, each of which is an a-arborescence and E = B1 ∪B2 ∪ · · · ∪Bk. Vidyas-
ankar [32] gave the following characterization for the graph to covered by k a-arborescences.
For any set of vertices S ⊆ V , let H[S] := {u ∈ S | ∃v ∈ V \ S, (v, u) ∈ E} and let
δin(S) := {(v, u) ∈ E | ∃v ∈ V \ S, u ∈ S} be the set of incoming edges in S. Let degin(v)
be the number of incoming edges to v.

I Theorem 17 ([32]). For a vertex a ∈ V and a positive number k, the directed graph
G(V,E) is be covered by k a-arborescences if and only if

degin(a) = 0 and degin(v) ≤ k for each v ∈ V and∑
v∈H[S](k − degin(v)) ≥ k − |δin(S)|, for each non-empty subset S of V \ {a}.

Reduction to submodular minimization. We show that testing the conditions required in
Theorem 17 can be reduced to LR submodular minimization. Testing the first condition is
trivial. We come to the second one. Let us define a function f : 2V \{a} → Z as follows:

f(S) =
∑

v∈H[S]

(k − degin(v)) + |δin(S)|.

We will just show that f(S) is a linearly representable submodular function. Clearly, one can
check the required condition by finding minS⊆V \{a} f(S) and verifying that it is at least k.

For any vertex u ∈ V , let χu ∈ {0, 1}V be the characteristic vector of v. Let us define
two families of subspaces L1 and L2 with rank functions r1 and r2.
L1 = {L1,u ⊆ Rk×|V |}u∈V , where L1,u =

∑
v=u or
(u,v)∈E

⊕k−degin(v)
j=1 span(χv) and

L2 = {L2,u ⊆ Rk×|V |}u∈V , where L2,u = ⊕k−degin(u)
j=1 span(χu)

One can observe that for any set S ⊆ V , r1(S) is just the sum of the quantity k − degin(v)
over all vertices v that are either in S or out-neighbors of S, and r2(S) is sum of the same
quantity over all the vertices of S. Thus, we can write

r1(S)− r2(S) =
∑

v∈H[S̄]

(k − degin(v)), (6)

where S̄ = V \ S. Note that −r2(S) is same as r2(S̄)− r2(V ). Thus,∑
v∈H[S]

(k − degin(v)) = r1(S̄) + r2(S)− r2(V ). (7)

Now, we will express the second part of f(S), that is |δin(S)|, as a LR submodular
function. For any edge e ∈ E, let χe ∈ {0, 1}E be the characteristic vector of e. Let us define
three families of subspaces L3, L4 and L5 with rank functions r3, r4 and r5, respectively.
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L3 = {L3,u ⊆ RE}u∈V , where L3,u = span{χe | e = (u, v) for some v ∈ V }.
L4 = {L4,u ⊆ RE}u∈V , where L4,u = span{χe | e = (v, u) for some v ∈ V }.
L5 = {L5,u ⊆ RE}u∈V , where L5,u = span{χe | e = (u, v) or e = (v, u) for some v ∈ V }.

One can observe that for any set S ⊆ V , r3(S) is the total number of edges which are
outgoing from some vertex in S, r4(S) is the total number of edges which are incoming to
some vertex in S, and r5(S) is the total number of edges that are incident (outgoing or
incoming) to some vertex in S. Thus, one can write

2|δin(S)| = r3(S̄) + r4(S) + r5(S) + r5(S̄)− 2|E|. (8)

Together with (7) and (8), we can write,

2f(S) = 2× (r1(S̄) + r2(S)− r2(V )) + r3(S̄) + r4(S) + r5(S) + r5(S̄)− 2|E|.

The terms r2(V ) and 2|E| are constants here. The other terms give us a linearly representable
submodular function.

Recall that we have to minimize the function f(S) over subsets S that do not contain
the vertex a. We had reduced such a constrained minimization to general minimization in
the previous subsection.

Packing of branchings

For a given directed graph and given subsets R1, R2, . . . , Rk of vertices, we need to decide
if there exist k edge-disjoint branchings that are rooted at R1, R2, . . . , Rk, respectively.
Edmonds (see [29, Theorem 53.1]) gave the following characterization.

I Theorem 18. Let G = (V,E) be a directed graph with R1, R2, . . . , Rk being subsets of V .
Then there exist disjoint branchings B1, B2, . . . , Bk such that Bi has root set Ri for 1 ≤ i ≤ k
if and only if |δin(S)| ≥ |i : Ri ∩ S = ∅| for each non-empty subset S of V .

Let f(S) = |δin(S)| − |i : Ri ∩ S = ∅|. To check the condition in the theorem, it is
sufficient to minimize f(S) over non-empty subsets of V . We have already expressed |δin(S)|
as a linearly representable submodular function in (8). We need to now express the other
part of the function. Let us define

gi(S) :=
{

1 if S ∩Ri 6= ∅
0 otherwise.

One can verify that gi is the rank function of the following family of subspaces: Li = {Li,u ⊆
R}u∈V , where Li,u = {1} if u ∈ Ri and Li,u = {0} otherwise. Now, one can express the
desired function in terms of gi’s.

−|i : Ri ∩ S = ∅| =
k∑

i=1
gi(S)− k.

Together with (8), this gives us a linear representation for f(S) (up to additive constants).

ICALP 2020
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5 Discussion

We have given a parallel algorithm for submodular minimization in the special case of linearly
representable submodular functions. It would be interesting to know if there are other classes
of submodular functions that admit parallel algorithms. More generally, it is not clear if
there can be an efficient parallel algorithm for submodular minimization in the oracle model.

We have given two examples of combinatorial problems that are captured by LR submod-
ular minimization, but are not known to be reducible to linear matroid intersection. One
needs to investigate what are other examples of such problems.
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Abstract
The d-to-1 conjecture of Khot asserts that it is NP-hard to satisfy an ε fraction of constraints of
a satisfiable d-to-1 Label Cover instance, for arbitrarily small ε > 0. We prove that the d-to-1
conjecture for any fixed d implies the hardness of coloring a 3-colorable graph with C colors for
arbitrarily large integers C.

Earlier, the hardness of O(1)-coloring a 4-colorable graphs is known under the 2-to-1 conjecture,
which is the strongest in the family of d-to-1 conjectures, and the hardness for 3-colorable graphs is
known under a certain “fish-shaped” variant of the 2-to-1 conjecture.
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1 Introduction

Determining if a graph is 3-colorable is one of the classic NP-complete problems. Thus,
given a 3-colorable graph it is NP-hard to color it with 3 colors. The best known polynomial
time algorithms for coloring 3-colorable graphs use about n0.2 colors, where n is the number
of vertices in the graph [9]. On the other hand, on the hardness front, we only know that
5-coloring 3-colorable graphs is NP-hard [3].

This embarrassingly large gap between the hardness and algorithmic results has prompted
the quest for conditional hardness results for approximate graph coloring. The canonical
starting point for most strong inapproximability results is the Label Cover problem. Label
Cover refers to constraint satisfaction problems of arity two over a large (but fixed) domain
whose constraint relations are functions. Label Cover is known to be very hard to approximate
even on satisfiable instances.

The Unique Games Conjecture of Khot [10], which asserts strong inapproximability of
Label Cover when the constraint maps are bijections, has formed the basis of numerous tight
hardness results for problems which have defied NP-hardness proofs. However, the imperfect
completeness inherent in the Unique Games Conjecture makes it unsuitable as the basis for
hardness results for graph coloring, where we want all edges to be properly colored under
the coloring.
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In [10], along with the Unique Games Conjecture, Khot introduced the d-to-1 conjecture.
The d-to-1 conjecture says that given a Label Cover instance whose constraint relations
are d-to-1 functions, it is NP-hard to decide if there exists a labelling that satisfies all the
constraints or no labelling can satisfy even an ε fraction of constraints, for arbitrarily small
ε > 0. (The key is that d can be held fixed and achieve soundness ε → 0.) Constraints
similar to 2-to-1 also played an implicit role in the beautiful work of Dinur and Safra on
inapproximability of vertex cover [8].

Based on the 2-to-1 conjecture, Dinur, Mossel and Regev [7], extending the invariance
principle based techniques of [11,15], proved the hardness of coloring graphs that are promised
to be 4-colorable with any constant number of colors. Furthermore, they prove the same
for 3-colorable graphs under a certain “fish shaped” variant of the 2-to-1 conjecture. In this
paper, we prove that the same result can be proved under the weaker assumption of d-to-1
conjecture1, for some (arbitrarily large) constant d.

I Theorem 1. Assume that d-to-1 conjecture is true for some constant d. Then, for every
positive integer t ≥ 3, it is NP-hard to color a 3-colorable graph G with t colors.

We stress that the d-to-1 conjecture insists on perfect completeness (i.e., hardness on
satisfiable instances), and this important feature seems necessary for its implications for
coloring problems, where we seek to properly color all edges. The variant of the 2-to-1
conjecture where one settles for near-perfect completeness was recently established in a
striking sequence of works [5, 6, 12,13].

The result of [7] in fact shows hardness of finding an independent set of density ε in a
3-colorable graph for arbitrary ε > 0 (which immediately implies the hardness of finding a
coloring with 1/ε colors). Our result in Theorem 1 above does not get this stronger hardness
for finding independent sets. But it is conditioned on the d-to-1 conjecture for arbitrary d
rather than the specific 2-to-1 conjecture. We note that proving the d-to-1 conjecture for
some large d could be significantly easier than the 2-to-1 conjecture, so Theorem 1 perhaps
provides an avenue for resolving a longstanding challenge concerning the complexity of
approximate graph coloring.

Our proof of Theorem 1 is a simple combination of two results. First, following the
methodology of [7], we prove that the d-to-1 conjecture implies that coloring a 2d-colorable
graph with O(1) colors is NP-hard. The result of [7] is the d = 2 case of this claim. In
fact, they state in a future work section that the d-to-1 conjecture should imply hardness
of O(1)-coloring q-colorable graphs for some large enough q = q(d). However, they did not
specify the details of the reduction or an explicit value of q, and mention determining the
dependence of q on d as an interesting question. Here we show the conditional hardness
based on d-to-1 conjecture holds for q = 2d (achieving q < 2d seems unlikely with the general
reduction approach of [7]).

The key technical ingredient necessary for such a reduction is a symmetric Markov chain
on [q]d where transitions are allowed only between disjoint tuples and which has spectral
radius bounded away from 1. We show the existence of such a symmetric Markov chain
for q = 2d. We do so via a connection to matrix scaling, which enables us to deduce the
necessary chain at a conceptual level without messy calculations. Specifically, we use the
result [4], which follows from the Sinkhorn-Knopp iterative matrix scaling algorithm [19],

1 For d-to-1 Label Cover, there are two definitions possible, one where the constraint maps are at most
d-to-1 with each element in the range having at most d pre-images, and one where the constraint maps
are exactly d-to-1. In this paper, we stick with the exact variant.
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that if a non-negative symmetric matrix A has total support then there is a symmetric doubly
stochastic matrix supported on the non-zero entries of A. When A is the adjacency matrix
of a graph G, the total support condition is equivalent to every edge of G belonging to a
cycle cover. We describe a graph on [q]d whose edges connect disjoint tuples and where every
edge belongs to a cycle cover.

Our second ingredient is a remarkable yet simple reduction due to Krokhin, Opršal,
Wrochna and Z̆ivný [14], which exploits the relation between the arc-chromatic number and
chromatic number of a digraph [17]. Let b : N→ N be defined by b(n) :=

(
n
bn/2c

)
. Their result

then is that b(t)-coloring b(c)-colorable graphs is polynomial time (in fact logspace) reducible
to t-coloring c-colorable graphs. Since b(n) is increasing and b(n) > n for all n ≥ 4, it follows
that a NP-hardness result for O(1)-coloring q-colorable graphs also implies NP-hardness
of O(1)-coloring 4-colorable graphs. Furthermore, the NP hardness of O(1)-coloring of
3-colorable graphs follows from the above by applying the arc graph reduction twice to K4.

Overview

In Section 2, we define the Label Cover problem, and state the d-to-1 conjecture formally.
We also introduce low degree influences that we need later. In Section 3, we first prove the
existence of the Markov chain with required properties, and then describe the reduction from
Label Cover to Approximate Coloring. We note that the reduction is in fact exactly the
same one used in [7], the difference being in using a different Markov Chain. We present the
reduction and the preliminaries required in this paper for the sake of completeness.

2 Preliminaries

We first formally define the Label Cover problem and then state the hardness conjectures.

2.1 Label Cover
I Definition 2 (Label Cover). In the Label Cover instance, we are given a tuple G =
((V,E), R,Ψ) where
1. (V,E) is a graph on vertex set V with edge set E.
2. Each vertex in V has to be assigned a label from the set Σ = [R] = {1, 2, . . . , R}.
3. For every edge e = (u, v) ∈ E, there is an associated relation Ψe ⊆ Σ × Σ. This

corresponds to a constraint between u and v.
A labeling σ : V → Σ satisfies a constraint associated with the edge e = (u, v) if and only if
(σ(u), σ(v)) ∈ Ψe. Given such an instance, the goal is to distinguish if there is a labeling that
can satisfy all the constraints or no labeling can satisfy a significant fraction of constraints.

We now state the d-to-1 conjecture. As is the case with [7], we will state and use the
exact d-to-1 variant where the constraint maps have exactly d pre-images for each element in
the range. Khot’s original formulation only required that there are at most d pre-images for
each element in the range. The d-to-1 conjecture becomes stronger for smaller d (so that
the 2-to-1 is the strongest form of the conjecture) – this is obvious for the variant where the
maps are at most d-to-1. For the exact variant, if we allow the Label cover graph to have
multiple edges, we can reduce d-to-1 conjecture to (d + 1)-to-1 conjecture using a simple
argument. We present this reduction in Section 4. On that note, we remark without details
that our reduction indeed works with the multigraph variant of d-to-1 conjecture.

ICALP 2020
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I Conjecture 3 ((Exact) d-to-1 Conjecture). For every ε > 0, given a bipartite Label Cover
instance G = ((V = X ∪ Y,E), (dR,R),Ψ) satisfying the following constraints:
(i) We refer to X as the vertices on the left, and Y as the set of vertices on the right. The

vertices belonging to X are to be assigned labels from [dR] while the vertices in Y are
to be assigned labels from [R].

(ii) The constraints are d-to-1 i.e. for every b ∈ [R], there are precisely d values a ∈ [dR]
such that (a, b) ∈ Ψe for every relation Ψe in the instance.

It is NP-hard to distinguish between the following cases:
1. There is a labeling that satisfies all the constraints in G.
2. No labeling can satisfy more than ε fraction of constraints in G.

Similar to the d-to-1 constraints, one can consider d-to-d constraints in the Label Cover.
In order to do so, we define the relation d↔ d on [dR]× [dR]:

d↔ d = {(di− p+ 1, di− q + 1) | 1 ≤ i ≤ R, 1 ≤ p, q ≤ d} .

A constraint ψ ⊆ [dR]× [dR] is said to be d-to-d if there exist permutations π1 and π2 on
[dR] such that (a, b) ∈ ψ iff (π−1

1 (a), π−1
2 (b)) ∈ d↔ d.

In [7], it is proved that Conjecture 3 implies the following conjecture.

I Conjecture 4 (d-to-d conjecture). For every ε > 0 and every t ∈ N, there exists R ∈ N
such that given a Label Cover instance G = ((V,E), dR,Ψ) where all the constraints are
d-to-d, it is NP-hard to distinguish between the following cases:
(i) sat(G) = 1, or
(ii) isatt(G) < ε

Here, sat(G) denotes the maximum fraction of constraints satisfied by any labeling.
Similarly, isat(G) denotes the size of the largest set S ⊆ V such that there exists a labeling
that satisfies all the constraints induced on S. The value isatt(G) denotes the size of largest
set S ⊆ V such that there exists a labeling that assigns at most t labels to each vertex that
satisfies all the constraints induced on S. A constraint between u, v is said to be satisfied by
labeling assigning multiple labels to u and v if and only if there exists at least one pair of
labels to u and v among the multiple labels that satisfy the constraint.

2.2 Low degree influences

Next, we define the low degree influences that we need later. We refer the reader to [7] for a
comprehensive treatment of the same.

Let α0 = 1, α1, . . . , αq−1 be an orthonormal basis of Rq. We can define the set of
functions αx : [q]n → R, x ∈ [q]n as αx(y) = (αx1(y1), αx2(y2), . . . , αxn

(yn)). Observe that
these functions form a basis for the functions from [q]n to R. Let f̂(αx) = 〈f, αx〉, where we
define the inner product between functions f, g : [q]n → R as 〈f, g〉 = q−n

∑
x∈[q]n f(x)g(x).

We define the low degree influence of f as follows:

I Definition 5. For a function f : [q]n → R, the degree k influence of the coordinate i is
defined as follows:

I≤ki (f) =
∑

x:xi 6=0,|x|≤k

f̂2(αx)
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Note that the above definition is independent of the basis α0, α1, . . . , αq−1 that we start with,
as long as α0 = 1. From the above definition, we can infer that for functions f : [q]n → [0, 1],
the sum of low degree influences is bounded by∑

i

I≤ki (f) ≤ k

For a vector x ∈ [q]dR, let x ∈ [qd]R be the corresponding element in [qd]R i.e.

x = ((x1, x2, . . . , xd), (xd+1, xd+2, . . . , x2d), . . . , (xdR−d+1, xdR−d+2, . . . , xdR))

Similarly, for y ∈ [qd]R, let y denote the inverse of above operation. We can extend this
notion to functions as well: For a function f : [q]dR → R, let the function f : [qd]R → R be
defined naturally by

f(y) = f(y)

Similarly, for a function f : [qd]R → R, let f : [q]dR → R be defined as f(x) = f(x).
We need the following lemma:

I Lemma 6. For any function f : [q]dR → R and any k ∈ N and i ∈ [R],

I≤ki (f) ≤
d∑
j=1

I≤dkdi−d+j(f)

Proof. Fix a basis αx of functions from [q]dR → R as above. The functions αx form a basis
for functions from [qd]R → R, where αx(y) = αx(y). Note that f̂(αx) = f̂(αx). Thus we get

∑
i

I≤ki (f) =
∑

x:xi 6=(0,0,...,0),|x|≤k

f̂
2
(αx) =

∑
x:xi 6=(0,0,...,0),|x|≤k

f̂2(αx)

≤
∑

x:xi 6=(0,0,...,0),|x|≤dk

f̂2(αx)

≤
d∑
j=1

∑
x:xdi−d+j 6=0,|x|≤dk

f̂2(αx)

=
d∑
j=1

I≤dkdi−d+j(f) J

Using the invariance principle and Borell’s inequality, [7] prove the following:

I Theorem 7. Let q be a fixed integer, and T be a symmetric Markov chain on [q] with
r(T ) < 1. Then for every ε > 0, there exists a δ > 0 and a positive integer k such that the
following holds: For every f, g : [q]n → [0, 1] if E[f ] > ε,E[g] > ε and 〈f, Tg〉 = 0, then

∃i ∈ [n] : I≤ki (f) ≥ δ, I≤ki (g) ≥ δ

where r(T ) denotes the second largest eigenvalue (in absolute value) of T .
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3 d-to-1 hardness for 3-colorable graphs

In this section, we will prove Theorem 1.

3.1 Reducing chromatic number to 3
The following lemma is present in [14] based on a beautiful result concerning the arc-chromatic
numbers of digraphs from [17].

I Lemma 8 (Theorem 1.8 of [14]). Suppose there exists q ∈ N such that O(1) coloring
q-colorable graphs is NP-hard. Then, O(1) coloring 3-colorable graphs is NP hard.

Let Graph-Coloring(t, c) denote the promise problem of distinguishing if a graph can be
colored with c colors, or cannot even be colored with t colors. The statement is proved by
presenting a reduction from Graph-Coloring(b(t), b(c)) to Graph-Coloring(t, c) in polynomial
time, for the function b(n) :=

(
n
bn/2c

)
. The reduction works by constructing the arc-graph of

the underlying graphs, and using the property of arc graphs that the chromatic number of the
arc graph can be bounded precisely using the chromatic number of the original graph. Since
b is an increasing function and b(n) > n for all n ≥ 4, setting c = 4 and t large enough proves
the statement claimed in the lemma. The reduction from 4-colorable graphs to 3-colorable
graphs is achieved by applying the arc graph construction twice recursively.

Thanks to Lemma 8, we can restrict ourselves to the weaker goal of proving that O(1)
coloring q-colorable graphs is NP-hard for some fixed constant q assuming Conjecture 3. In
fact, following [7], we prove a stronger statement showing hardness of finding independent
sets of ε fraction of vertices for any ε > 0. Combined with Lemma 8, this immediately gives
us Theorem 1.

I Theorem 9. Suppose that Conjecture 4 is true for a constant d. Then, there exists a
constant q = q(d) such that for every ε > 0, given a graph G, it is NP-hard to distinguish the
following cases:
1. G can be colored with q colors.
2. G does not have any independent set of relative size ε.
In fact, we can take q = 2d.

In the remainder of the section, we will prove Theorem 9. We next develop the main
technical ingredient that we will plug into the reduction framework of [7] to establish
Theorem 9.

3.2 A symmetric Markov chain supported on disjoint tuples
A Markov chain T defined on a state space Ω is said to be symmetric if the transition matrix
of T is symmetric, namely for all pairs of states x, y ∈ Ω, the probability of transition from x

to y is equal to the probability of transition from y to x. Symmetry of the Markov chain
ensures that the uniform distribution is stationary which is essential when we compose the
Label Cover-Long Code reduction with the Markov chain. We define the spectral radius
r(T ) of a symmetric Markov chain as the second largest eigenvalue in absolute value of
its transition probability matrix, i.e., if 1 = λ1 ≥ λ2 ≥ . . . ≥ λq are the eigenvalues, then
r(T ) = max(|λ2|, |λq|).

We now show the existence of a symmetric Markov Chain T on [q]d with r(T ) < 1 if
d ≥ 2, q ≥ 2d. Furthermore, there is a nonzero transition probability between two elements
x, y ∈ [q]d only if the support of x and y are disjoint. In [7], such a Markov Chain is shown
to exist for the values (q, d) = (3, 1), (4, 2).
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I Lemma 10. Suppose that q, d ∈ N, q ≥ 2d, d ≥ 2. There exists a symmetric Markov chain T
on [q]d such that r(T ) < 1. Furthermore, if the transition {x1, x2, . . . , xd} ↔ {y1, y2, . . . , yd}
has positive probability in T , then {x1, x2, . . . , xd} ∩ {y1, y2, . . . , yd} = φ.

Proof. We first construct an undirected graph G on [q]d such that there is an edge between
x, y ∈ [q]d only if the support of x and y are disjoint. We then use a matrix scaling algorithm
to obtain a symmetric Markov chain T from the adjacency matrix of G. For the resulting
Markov chain to have r(T ) < 1, we need that the underlying graph G is connected, and is
not bipartite. Furthermore, for the scaling algorithm to produce a valid Markov chain, we
need that every edge of G is present in a cycle cover, where a cycle cover of a graph is a
disjoint union of cycles that covers every vertex in the graph. Note that we allow trivial
2-cycles in a cycle cover, where we just take an edge twice.

We say that two multisets x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ [q]d are of the same
type if the following condition holds: for all pairs of indices i, j ∈ [d], xi = xj if and only if
yi = yj and (xi − xj)(yi − yj) ≥ 0. Note that this is an equivalence relation, and thus each
element x ∈ [q]d uniquely determines its type.

Consider the graph G = (V,E) where the vertex set is V = [q]d. We add two kinds of
edges in this graph. We add an edge between every pair of x, y ∈ [q]d that are of the same
type, and have disjoint support. Let the subset of [q]d of elements that are supported on
single element be denoted by S, i.e.,

S = {(1, 1, . . . , 1), (2, 2, . . . , 2), . . . , (q, q, . . . , q)} .

We also add edges between x and y if their support is disjoint, and at least one of x and y
belongs to S.

First, we claim that G is connected. This follows from the fact that the set of nodes in S
are connected to each other, and every vertex in V is adjacent to at least one vertex in S.
As q ≥ 4, the graph is not bipartite (indeed S induces a q-clique). We will now prove that
every edge in this graph is part of a cycle cover. Given an undirected graph on vertex set V ,
a cycle cover of it is a function σ : V → V that is bijective, and σ(u) = v only when u and v
are adjacent in the underlying graph.

Towards this, we first prove that for every edge in G between multisets of the same type,
there is a cycle cover that uses that edge. For each type, consider the graph obtained by
taking the vertices as multisets of that type, and with edges between two multisets of the
same type if they are disjoint. Note that for every type, this graph is isomorphic to a Kneser
graph KG(q, k) (for some k ≤ d), whose vertex set corresponds to k-element subsets of [q]
and there is an edge between two subsets if they are disjoint.

By symmetry across the subsets, we can infer that the Kneser graphs are regular. Note
that every regular graph contains a cycle cover: For a regular graph H, consider a bipartite
graph H ′ which contains a copy of H on both the left side L, and right side R. There is an
edge between x ∈ L, y ∈ R of H ′ if and only if x, y are adjacent in H. As H is a regular
graph, H ′ is a regular bipartite graph, and thus, contains a perfect matching. This perfect
matching in H ′ directly gives a cycle cover of H. Furthermore, as Kneser graphs are also
vertex-transitive, every edge in these graphs is part of a cycle cover.

Next, we consider edges of G that are between multisets of different types i.e. edges
between multisets x, y where exactly one of x and y is in S. Consider an edge between s ∈ S
and x ∈ V \ S. As q ≥ 2d, every multiset in G is adjacent to at least one multiset of the
same type. Let y be a multiset that is adjacent to x in G and is of the same type as x. Let
s′ ∈ S be chosen such that it is adjacent to y in G. As S is a complete subgraph of G, s and
s′ are adjacent in G. From the previous argument about edges between multisets of the same

ICALP 2020



62:8 d-To-1 Hardness of Graph Coloring

type, we can infer that there is a cycle cover of G where y is mapped to x, and s is mapped
to s′. We can modify this cycle cover by transforming it as follows - (s→ x) can be made
part of cycle cover by transforming (s→ s′), (y → x) to (s→ x), (y → s′) and keeping rest
of the cycle cover intact. Thus, we have proved that every edge of G is part of a cycle cover.

Let A denote the adjacency matrix of the above graph G. Using the Sinkhorn Knopp
iterative algorithm, it is proved in [4] that if a non-negative symmetric matrix A has total
support, then there exists a diagonal matrix D such that DAD is a doubly stochastic matrix.
A square matrix A = (aij) of order n is said to have total support if A 6= 0, and for every
nonzero entry aij of A, there exists a permutation σ of [n] such that σ(i) = j and for all
e ∈ [n], ae,σ(e) 6= 0. When the matrix A is an adjacency matrix of a graph G, the total
support condition translates to the requirement that every edge in G is part of a cycle cover,
a property we have already shown to hold for the graph G.

Thus, we can apply the above scaling result, and view the resulting matrix B = DAD

as the transition matrix of a Markov chain T . As A and D are symmetric, B is symmetric,
i.e., T is symmetric. As A is connected and no principal diagonal element of D is zero, T is
connected as well. Note that every nonzero element of A stays nonzero in T , and A is not
bipartite. The above two facts combined ensure that the spectral radius r(T ) of T is strictly
less than 1. We conclude that there exists a symmetric Markov chain T on state space [q]d
that has both the properties: (i) r(T ) < 1, and (ii) there is nonzero probability of transition
between two multisets only when their support is disjoint. J

3.3 Proof of Theorem 9
Let d be the constant for which Conjecture 3 is true. Thus, Conjecture 4 is true for the same
value d as well. Choose q, T from Lemma 10 such that T is a symmetric Markov chain on
[q]d such that r(T ) < 1.

We now reduce the given d-to-d Label Cover instance to the problem of finding independent
sets in q-colorable graphs. To be precise, given a Label Cover instance G = ((V,E), dR,Ψ),
we output a graph G′ = (V ′, E′) such that
1. Completeness: If G is satisfiable, G′ can be colored with q colors.
2. Soundness: If isatt(G) < ε′, then G′ does not have any independent set of size ε.
The parameters t and ε′ will be set later.

Reduction

Our reduction follows the standard Label Cover Long Code paradigm, and in particular
closely mirrors [7]. We replace each vertex w ∈ V of the Label Cover with a set fw of [q]dR
nodes, each corresponding to a vertex in G′. Consider an edge e = (u, v) where Ψe is an
associated constraint with permutations π1, π2 on [dR] such that (a, b) ∈ Ψe if and only if
(π−1

1 (a), π−1
2 (b)) ∈ d↔ d.

We add an edge between (x1, x2, . . . , xdR) ∈ fu and (y1, y2, . . . , ydR) ∈ fv to E′ if and
only if

∀i ∈ [R], T ((xπ1(di−d+1), xπ1(di−d+2), . . . , xπ1(di)) ↔ (yπ2(di−d+1), yπ2(di−d+2), . . . , yπ2(di))) > 0.

Completeness

Suppose σ : V → [dR] be a labeling satisfying all the constraints of the Label Cover instance
G. We color the node (x1, x2, . . . , xdR) ∈ fw with xσ(w) ∈ [q]. We claim that this is a legit
q-coloring of G′. Suppose that we added an edge between x ∈ fu and y ∈ fv. Let x be colored
with xa and y be colored with yb. As (a, b) ∈ Ψ(u,v), we have (π−1

1 (a), π−1
2 (b)) ∈ d ↔ d.

Thus, there exist i ∈ [R], 1 ≤ p, q ≤ d such that a = π1(di− d+ p) and b = π2(di− d+ q).
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As we have added an edge between x ∈ fu and y ∈ fv, xa 6= yb as the Markov chain T has
nonzero probability only between two elements of [q]d with disjoint support. Thus, there
exists a q-coloring of G′ when G is satisfiable.

Soundness

We prove the contrapositive that if G′ has an independent set of relative size ε, then there
exists a labeling of G with isatt(G) ≥ ε′. Let S ⊆ V ′ be the largest independent set of G′.
We know that |S| ≥ ε|V ′|. This implies that in at least ε′ = ε

2 fraction of the long code
blocks, at least ε

2 fraction of nodes belong to S. Let this subset of V be denoted by Z. Our
goal is to show that there exists a small set of labels τ : Z → 2[dR] to which we can decode
the vertices in Z such that all the constraints induced in Z are satisfied by τ .

For every vertex w ∈ Z, we define functions gw : [q]dR → {0, 1} to be the indicator
functions of set S inside the long code blocks corresponding to w i.e. gw(x) = 1 if and only
if x ∈ S. Consider an edge e = (u, v) corresponding to the constraint Ψe induced in Z. Let
the functions f : [q]dR → {0, 1} and g : [q]dR → {0, 1} be defined such that f(xπ1) = gu(x)
and g(yπ2) = gv(y), where π1 and π2 are the permutations underlying the relation Ψe i.e.
(a, b) ∈ Ψe if and only if (π−1

1 (a), π−1
2 (b)) ∈ d↔ d.

We note that 〈f, Tg〉 is equal to zero. In other words, suppose that x, y ∈ [q]dR, x ∈
fu, y ∈ fv are such that

∀i ∈ [R], T ((xdi−d+1, xdi−d+2, . . . , xdi)↔ (ydi−d+1, ydi−d+2, . . . , ydi)) > 0. (1)

Then, f(x)g(y) = 0. Suppose for contradiction that there exist x, y ∈ [q]dR satisfying the
above condition, and f(x) = g(y) = 1. Let x′ ∈ fu, y′ ∈ fv be such that (x′)π1 = x, (y′)π2 = y.
We have gu(x′) = gv(y′) = 1. That is, both x′ ∈ fu, y′ ∈ fv are in the independent set S.
However, Equation (1) can be rewritten as the following:

∀i ∈ [R], T ((x′π1(di−d+1)), (x′π1(di−d+2)), . . . , x′π1(di)) ↔ (y′π2(di−d+1), y
′
π2(di−d+2), . . . , y

′
π2(di))) > 0.

(2)

Note that this is precisely the condition for adding edges in G′. Thus, Equation (2) implies
that x′ ∈ fu and y′ ∈ fv are adjacent in E′, and thus cannot both be part of the independent
set S. This completes the proof that 〈f, Tg〉 = 0.

Thus, 〈f, Tg〉 is also equal to zero, where f : [qd]R → {0, 1} and g : [qd]R → {0, 1} are the
corresponding functions in [qd]R of f, g. From the definition of Z, E(f) ≥ ε

2 and E(g) ≥ ε
2 .

We apply Theorem 7 to f and g to deduce that there exists i ∈ [R], a positive integer k = k(ε)
and δ = δ(ε) such that I≤ki (f) ≥ δ and I≤ki (g) ≥ δ. This motivates us to define the label set
of vertex w ∈ Z, L(w) as the following -

L(w) := {i ∈ [dR] : I≤dki (gw) ≥ δ

d
}

As the sum of k degree influences of all variables is at most k, the size of L(w) is upper
bounded by kd

δ for every v. Thus, we set the parameter t to be kd
δ .

The final step is to prove that the labeling L is indeed a valid labeling inside edges induced
in Z. Consider an edge e = (u, v) induced in Z with the constraint relation being Ψe such
that (a, b) ∈ Ψe if and only if (π1(a), π2(b)) ∈ d ↔ d. Our goal is to show that there exist
indices σ1, σ2 ∈ [dR] such that σ1 ∈ L(u), σ2 ∈ L(v) and (σ1, σ2) ∈ Ψe. Using Theorem 7, we
can deduce that there exists i ∈ [R] such that I≤ki (f) ≥ δ and I≥ki (g) ≥ δ. Using Lemma 6,
we can conclude that there exist i1, i2 ∈ [dR] such that I≤dki1

(f) ≥ δ
d and I≤dki2

(g) ≥ δ
d such
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that (i1, i2) ∈ d↔ d. Let σ1, σ2 ∈ [dR] be such that i1 = π1(σ1), i2 ∈ σ2. As f(xπ1) = gu(x),
I≤dk
π−1

1 (i1)(gu) ≥ δ
d . And thus, σ1 ∈ L(u), and similarly σ2 ∈ L(v). As (i1, i2) ∈ d ↔ d,

(σ1, σ2) ∈ Ψe, which completes the proof.

4 Reducing multigraph (exact) d-to-1 to (d + 1)-to-1 conjecture

For the version of d-to-1 conjecture where we only require the constraint maps to be at most
d-to-1, the d-to-1 conjecture trivially implies the (d + 1)-to-1 conjecture. O’Donnell and
Wu [16] remark that no such reduction appears to be known for the exact d-to-1 conjecture.
Here we prove that the exact d-to-1 conjecture implies the exact (d+ 1)-to-1 conjecture when
the underlying Label Cover instances are allowed to have parallel edges. We remark that
multigraph version of exact d-to-1 conjecture, which is implied by the simple graph version,
also suffices for our reduction to graph coloring (and indeed all known reductions from d-to-1
Label Cover).

Let G = ((V = X∪Y,E), (dR,R),Ψ) be a Label Cover instance such that every constraint
is of d-to-1 structure. We reduce it to G′ = ((V = X ∪ Y,E′), ((d+ 1)R,R),Ψ′) such that
1. If G is satisfiable, G′ is satisfiable as well.
2. If every labeling violates at least ε fraction of constraints in G, then every labeling violates

at least ε′ = 2ε fraction of constraints in G′.

Reduction

We first change the label set of X from [dR] to [(d + 1)R]. For every constraint ψ in G

between nodes u ∈ X and v ∈ Y , we replace it with R constraints ψ1, ψ2, . . . , ψR between
u and v in the following way: the relation between old labels is the same as ψ i.e. when
x ≤ dR, (x, y) ∈ ψj for j = 1, 2, . . . , R if and only if (x, y) ∈ ψ. When x > dR, (x, y) ∈ ψj if
and only if R divides (x+ j − y). This ensures that each new label is mapped to a different
label in each of the R new constraints. The constraints are clearly of (d+ 1)− to− 1 form.

Completeness

If there is a labeling satisfying all the constraints of G, the same labeling satisfies all the
constraints in G′ as well.

Soundness

Suppose that there is no labeling satisfying at least ε fraction of constraints in G. Note that
this implies that R is at least 1

ε as there is always a labeling satisfying at least 1
R fraction of

constraints: fix a labeling to the vertices on the left, and assign a label to the vertices in R
uniformly at random from [R]. We claim that there is no labeling satisfying more than 2ε
fraction of constraints in G′. Consider an arbitrary labeling of G, σ : V → [(d+ 1)R]. We
can divide the set of edges E′ of G′ into two parts: the edges (u, v) such that σ(u) ≤ dR and
the edges (u, v) such that σ(u) > dR. Let the set of first type of edges where the left vertex
is assigned the new label be denoted by E1, and the set of second type of edges be denoted
by E2. In E1, the fraction of constraints that can be satisfied by σ is at most 1

R ≤ ε. Note
that we can get a labeling σ′ of G by replacing labels of vertices in X with label greater than
dR with an arbitrary label in [dR], and keeping rest of the labels intact. For the edges in E2,
the labelings σ and σ′ coincide. As σ′ can satisfy at most ε fraction of constraints of G, σ
can only satisfy at most ε fraction of overall edges in E′. Thus, overall σ satisfies at most
ε+ 1

R ≤ 2ε fraction of constraints in E′, which proves the required soundness claim.
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5 Conclusion

In this paper, we prove that the d-to-1 conjecture, for arbitrarily large d, implies the
NP-hardness of the longstanding and elusive problem of coloring 3-colorable graphs with
constantly many colors. Note that the d-to-1 conjecture requires the soundness parameter
to be arbitrarily small, independent of d. Currently, the best NP-hardness of d-to-1 Label
Cover achieves a soundness of d−Ω(1). This follows from the PCP Theorem [1,2] combined
with Raz’s parallel repetition [18]. However, this does not yield any explicit constant in the
exponent, obtaining which is an interesting open question. One can also investigate whether
improving the soundness of d-to-1 Label Cover to something quantitatively much stronger,
say inverse exponential in d, would have some implications for inapproximability of graph
coloring.
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Abstract
We prove that both Polynomial Calculus and Sums-of-Squares proof systems admit a strong form of
feasible interpolation property for sets of polynomial equality constraints. Precisely, given two sets
P (x, z) and Q(y, z) of equality constraints, a refutation Π of P (x, z) ∪ Q(y, z), and any assignment a

to the variables z, one can find a refutation of P (x, a) or a refutation of Q(y, a) in time polynomial
in the length of the bit-string encoding the refutation Π. For Sums-of-Squares we rely on the use of
Boolean axioms, but for Polynomial Calculus we do not assume their presence.
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1 Introduction

In this paper we consider the proof systems Polynomial Calculus (PC) and Sums-of-Squares
(SOS). PC is a proof system that is used to derive polynomial equalities from a set of
polynomial equality constraints in a step-by-step fashion similar to traditional logical proof
systems. A PC proof is a compact certificate that the proved polynomial is in the ideal
generated by the constraints. PC was introduced by Clegg et al. [4].

Sums-of-Squares proof system on the other hand is a proof system used to derive
polynomial inequalities from a set of polynomial constraints. As a proof system Sums-
of-Squares was first investigated by Grigoriev and Vorobjov in [6], but it has its roots in
semialgebraic geometry and combinatorial optimization. We refer the reader to [10] for a
thorough presentation of these connections.

Feasible interpolation was introduced by Krajíček in [9] as a framework to prove lengths-
of-proofs lower bounds for propositional proof system from lower bounds on Boolean circuits
or other computational models. The feasible interpolation has been applied to prove lower
bounds for example for Resolution [9] and Cutting Planes [12] from lower bounds on monotone
Boolean and real circuits, respectively. On the negative side Krajíček and Pudlák showed
in [8] that Extended Frege does not admit feasible interpolation with respect to Boolean
circuits unless RSA is not secure against P/poly. This was later extended to Frege in [3] and
to bounded depth Frege in [2] under other cryptographic assumptions.
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We will prove here feasible interpolation for both PC and SOS for equality constrains
P (x, y) and Q(y, z) in disjoint sequences x, y and z of variables. We show that for both
proof systems given a refutation Π of P (x, z) ∪Q(y, z) and an assignment a to the variables
z, one can in polynomial time in the bit-complexity of Π find a refutation of P (x, a) or a
refutation of Q(y, a). Previously, a form of feasible interpolation for PC was proven for
degree bounded PC-refutations by Pudlák and Sgall [13]. We know of no previous results on
feasible interpolation for Sums-of-Squares proofs.

From [4] we know that PC is degree-automatable: any degree d proof can be found in
time nO(d). The same is not true in general for SOS, since the coefficients in a small degree
proof might be exceedingly large. This was first noted by O’Donnell in [11]. O’Donnell
demonstrated a simple system of polynomial constraints that admit a degree 2 proofs of
non-negativity, so that every degree 2 proof necessarily has coefficients of exponential bit-
complexity. Later the example of [11] was strengthened by Raghavendra and Weitz in [14]
by giving a system of constraints over the Boolean cube that have proofs of non-negativity
of degree 2, but any proof of degree less than O(

√
n) must have exponential bit-complexity.

In view of these issues on the bit-complexity of SOS, the question arises whether doubly
exponential coefficients can pose a problem for feasible interpolation. However we show that
we can use the given refutation of P (x, z) ∪Q(y, z) to bound the coefficients appearing in a
refutation of P (x, a) or a refutation of Q(y, a).

Our proofs rely on a ’semantic’ characterizations of refutations with bounded resources. A
standard way to prove lower bounds in proof complexity is to exhibit a ’semantic’ object whose
existence is in contradiction with the existence of refutations with bounded resources. These
include the reduction operators first used in [15] against low-degree PC-refutations, the d-
designs first used in [1] against low-degree Nullstellensatz refutations and pseudoexpectations
first used in [6] against low-degree Sums-of-Squares refutations. In many cases these objects
actually characterize the associated classes of refutations, and thus they, from a logical point
of view, give soundness and completeness theorems for resource bounded refutations. If
soundness of these characterizations can be used to prove lower bounds, the completeness
properties are useful in establishing upper bounds on proofs as exemplified by the proofs of
Theorems 3 and 9 below.

Main results. Let P (x, z) and Q(y, z) be sets of polynomial equations, where x, y and z are
disjoint sequences of variables. Our main results are as follows:

For any finite field F there is a polynomial time algorithm that given a PC-refutation
of P (x, z) ∪Q(y, z), and an assignment a to the variables z, outputs a PC-refutation of
P (x, a) or a PC-refutation of Q(y, a). (Theorem 5)
There is a polynomial time algorithm that given an SOS-refutation of P (x, z) ∪Q(y, z)
over the Boolean hypercube and a Boolean assignment a to the variables z outputs an
SOS-refutation of P (x, a) over the Boolean hypercube or an SOS-refutation of Q(y, a)
over the Boolean hypercube. (Theorem 14)

Proof methods. We study the two systems in two separate parts. Each part follows the
same outline. First we define a suitable class of proofs and its semantic counterpart. We
define proofs over some fixed set of monomials. The idea is to shift the focus from trying to
obtain size-of-proof upper bounds directly to proving the existence of proofs that use only
monomials from some small set S. The corresponding semantic operators are then defined
on the vector space of all polynomials which are linear combinations of elements of S.
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Secondly we prove a feasible disjunction property for the system using the obtained
semantic characterizations. Given a refutation of P (x) ∪Q(y), where x and y are disjoint
sequences of variables, we can define sets Sx and Sy whose size are polynomial in the size of
the given refutation, such that either P (x) has a refutation over Sx or Q(y) has a refutation
over Sy.

Finally we argue that the refutations whose existence is guaranteed by the feasible
disjunction property can be found in time polynomial in the size of the underlying set of
monomials. For PC we give a simple proof search algorithm, and for SOS we use the ellipsoid
algorithm to search for a proof after meeting sufficient conditions for polynomial run-time.

2 Preliminaries

2.1 Polynomials and the Boolean Ideal
A monomial is a product of variables. A term over a field F is a product of a non-zero
element of F, called the coefficient of the term, and a monomial. A polynomial is a finite
sum of terms, i.e. a finite linear combination of monomials. We write F[x] for the set of
all polynomials over a field F. In particular R[x] denotes the set of all monomials with real
coefficients. For any set S of monomials we denote by F[S] the set of all linear combinations
of monomials from S. For any p ∈ R[x] we denote by ‖p‖ the largest absolute value of a
coefficient that appears in p.

For SOS we consider polynomials over n pairs of twin variables x1, . . . , xn, x̄1, . . . , x̄n.
The intended meaning is that the variables range over Boolean values {0, 1} and that a pair
of twin variables assumes opposite values. Accordingly we define the Boolean ideal In to be
the ideal generated by the Boolean axioms {x2

i − xi, xi + x̄i − 1 : i ∈ [n]}. We write p ≡ q

mod In if p− q ∈ In.
The Boolean axioms form a Gröbner basis for the Boolean ideal. This is readily seen

using the Buchberger’s criterion. The important consequence of this for our purposes is
that the multivariate division algorithm with respect to the Boolean axioms leaves a unique
remainder, and in particular the remainder is 0 if and only if p ∈ In. For more information
on multivariate division and Gröbner bases, we refer the reader to [5].

2.2 Polynomial Calculus and Sums-of-Squares proofs
Let Q be a set of polynomials over an arbitrary field F. We think of elements of Q as equality
constraints q = 0. Let p be another polynomial. A PC-proof of p from Q is a sequence
p1, . . . , p` of polynomials such that p` = p and for each i ∈ [`] one of the following hold:
(i) pi ∈ Q;
(ii) there are j, k < i and a, b ∈ F such that pi = apj + bpk;
(iii) there is j < i and a variable x such that pi = xpj .

A PC-proof of p from Q is a certificate that p is in the ideal generated by Q. A
PC-refutation of Q is a PC-proof of 1 from Q.

Let now Q be a set of real polynomials over n pairs of Boolean variables. A Sums-of-
Squares proof of non-negativity of p from Q over the Boolean hypercube is a polynomial
equality of the form

p =
∑
i∈[k]

r2
i +

∑
q∈Q

tqq +
∑
i∈[n]

(
ui
(
x2
i − xi

)
+ vi (xi + x̄i − 1)

)
, (1)
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where ri, tq, ui and vi are arbitrary real polynomials. An SOS refutation of Q over the
Boolean hypercube is a proof of non-negativity of −1. Usually we will simply write the SOS
proof (1) as

p ≡
∑
i∈[k]

r2
i +

∑
q∈Q

tqq mod In

and omit the explicit lifts of the Boolean axioms.

3 Feasible interpolation for Polynomial Calculus

3.1 PC proofs over a set of monomials
Let Q be a set of polynomials over field F and let S be a set of monomials containing all
the monomials in Q and the empty monomial 1. Let Ŝ = S ∪ xS, where xS = {xm : m ∈
S and x is a variable}. A PC-proof of p from Q over S is a PC-proof of p from Q, where
only monomials from the set Ŝ appear, and the inference rule p/xp is only applied when
p ∈ F[S]. Denote by PCS(Q) the set of all p such that there exists a PC-proof of p from Q

over S.
Let now < be a total order on Ŝ satisfying the following two conditions:

(i) 1 ≤ m for any m ∈ Ŝ;
(ii) if m ∈ S and m′ ∈ Ŝ \ S, then m < m′.

The leading monomial of a polynomial p ∈ F[Ŝ], denoted LM(p), is the largest monomial
with respect to < that appears in p with a non-zero coefficient. The leading term of a
polynomial p ∈ F[Ŝ], denoted LT(p) is the term, whose underlying monomial is the leading
monomial of p.

We say that a term t ∈ F[Ŝ] is S-reducible modulo Q if there is p ∈ PCS(Q) such that
t = LT(p). Otherwise the term is S-irreducible modulo Q. The following lemma shows
that any polynomial in F[Ŝ] can be uniquely factorized into a provable and an S-irreducible
component.

I Lemma 1. For any polynomial p ∈ F[Ŝ] there are unique q ∈ F[Ŝ] and r ∈ F[Ŝ] such that
p = q + r;
q ∈ PCS(Q);
r is a sum of S-irreducible terms modulo Q.

Moreover LT(p) ≥ t for each term t in r.

Proof. To prove the existence of such q and r, we construct sequences pi, qi, ri such that
p = pi + qi + ri;
qi ∈ PCS(Q);
ri is a sum of S-irreducible terms.
pm = 0 for some m.

Let p1 = p and q1 = r1 = 0. For step i, let LT(pi) = ti. If ti is S-reducible as witnessed
by q ∈ PCS(Q) let pi+1 = pi − q, qi+1 = qi + q and ri+1 = ri. On the other hand, if ti is
S-irreducible, let pi+1 = pi − ti, qi+1 = qi and ri+1 = ri + ti.

Now pm = 0 for some m, since the rank of the leading term of pi decreases at each step.
By construction, qm and rm satisfy the conditions of the lemma.

To prove the uniqueness of q and r, suppose p = q+ r and p = q′ + r′, i.e. q− q′ = r′ − r.
Now q−q′ ∈ PCS(Q) and so r′−r ∈ PCS(Q), Hence LT(r′−r) is not S-irreducible. However,
since both r and r′ are sums of S-irreducible terms, it follows that LT(r′ − r) = 0 and so
r = r′. Hence also q = q′. J
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Consider now the mapping RQS : F[Ŝ]→ F[Ŝ] that maps each p to the unique sum r of
S-irreducible terms modulo Q such that p− r ∈ PCS(Q). The following lemma gathers four
basic properties of the mapping.

I Lemma 2. The following hold.
(i) If there is no refutation of Q over S, then RQS (1) = 1;
(ii) RQS is a linear function;
(iii) RQS (RQS (p)) = RQS (p) for any polynomial p ∈ F[Ŝ];
(iv) RQS (xm) = RQS (xRQS (m)) for any m ∈ S and any variable x.

Proof. (i) If there is no refutation of Q over S, then, by part (i) of the definition of <, the
constant polynomial 1 is S-irreducible modulo Q. On the other hand 0 ∈ PCS(Q) and so, by
the uniqueness of the factorization, RQS (1) = 1.

(ii) Firstly, we have that p−RQS (p), q−RQS (q) ∈ PCS(Q), and so p+q−(RQS (p)+RQS (q)) ∈
PCS(Q). Now RQS (p) + RQS (q) is a sum of S-irreducible terms modulo Q and so, by the
uniqueness of the factorization, RQS (p+q) = RQS (p)+RQS (q). Similarly ap−aRQS (p) ∈ PCS(Q)
and so RQS (ap) = aRQS (p).

(iii) We have that p−RQS (p), RQS (p)−RQS (RQS (p)) ∈ PCS(Q) and so also p−RQS (RQS (p)) ∈
PCS(Q), where RQS (RQS (p)) is a sum of S-irreducible terms modulo Q. Hence, again by the
uniqueness of the factorization, RQS (p) = RQS (RQS (p)).

(iv) Again, we have that m − RQS (m) ∈ PCS(Q). Now, by Lemma 1, each term t

in RQS (m) satisfies t ≤ m. Hence, by part (ii) of the definition of <, each t in RQS (m)
is in S, and so RQS (m) ∈ F[S]. Hence also xm − xRQS (m) ∈ PCS(Q). It follows that
RQS (xm) = RQS (xRQS (m)). J

3.2 Feasible disjunction for PC
In this section we prove a feasible disjunction property for Polynomial Calculus using the
machinery developed in the previous section. Below P (x) and Q(y) are set of polynomials in
disjoint sequences x and y of variables.

For a set of monomials S, and a sequence x of variables, we denote by Sx the projection
of S onto the variables x, i.e. m ∈ Sx, if only variables from x appear in m, there is some
m′, where no variables from x appear and mm′ ∈ S.

I Theorem 3. Let Π be a PC-refutation of P (x)∪Q(y), and let S be the set of all monomials
appearing in the refutation Π. Then there is a PC-refutation of P (x) over Sx or a PC-
refutation of Q(y) over Sy.

Proof. Suppose towards a contradiction that the conclusion does not hold, and consider
the reduction operators RP (x)

Sx
and RQ(y)

Sy
. Let S′ := {mxmy : mx ∈ Sx and my ∈ Sy}, and

define a linear function R : F[S′]→ F[S′] with

R(mxmy) = R
P (x)
Sx

(mx)RQ(y)
Sy

(my)

for any mxmy ∈ S′ and extend linearly.
We claim now that R has the following properties:

(i) R(1) = 1;
(ii) R(p(x, a)) = 0 for any p(x, a) ∈ P (x, a);
(iii) R(q(y, a)) = 0 for any q(y, a) ∈ Q(y, a);
(iv) R(xim) = R(xiR(m)) if m ∈ S;
(v) R(yim) = R(yiR(m)) if m ∈ S.
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The item (i) holds, since by Lemma 2(i), RP (x)
Sx

(1) = R
Q(y)
Sy

(1) = 1. It is clear that both
(ii) and (iii) hold.

Finally (iv) holds, by Lemma 2, since

R(xim) = RSx
(ximx)RSy

(my)
= RSx(xiRSx(mx))RSy (RSy (my))
= R(xiRSx

(mx)RSy
(my))

= R(xiR(m))

The case (v) is proved similarly.
Now the existence of such R is in contradiction with the assumption that in Π there

appears only monomials from S. Firstly R is defined for all the polynomial appearing in Π.
Secondly, by (ii) and (iii), R maps each axiom in P (x) ∪Q(y) to zero, and, by linearity and
(iv) and (v), respects the inference rules in the sense that R maps the consequent of a rule
to zero whenever it maps the premises to zero. Hence, by induction on the structure of the
refutation, R(1) = 0, against (i). J

3.3 Proof search over S

In this section we show how to find proofs over a given set S of monomials in time polynomial
in |S|. We make this claim only for proofs over a finite field F. In order to avoid pathological
counterexamples we tacitly assume that the size of S is at least the number of distinct
variables in S.

We begin by constructing a basis B for PCS(Q). The construction is given by the
following algorithm, which is a modification of an algorithm from [4].

Algorithm 1 Proof search over S.

Initially A = Q and B = ∅;
while A 6= ∅ do

Pick p ∈ A and remove it from A;
while LM(p) ∈ LM(B) do

Let q ∈ B be such that LM(q) = LM(p);
Let p← p− aq, where a is such that LT(p) = aLT(q);

end
If p 6= 0, add p to B;
If p ∈ F[S], add xp to A for every variable x;

end
Output B;

Now B is a linearly independent set of polynomials, since all elements of B have distinct
leading monomials. As all elements of B have distinct leading monomials there is never more
than |S|3 elements in A and thus the algorithm halts after polynomially many steps in |S|.
Hence for any finite field the above algorithm will halt in time polynomial in |S|. In the
following we prove that B is actually a basis for PCS(Q).

I Lemma 4. At the end of the above algorithm span(B) = PCS(Q).

Proof. Clearly each q ∈ B has a proof from Q over S, and so span(B) ⊆ PCS(Q).
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Now suppose p ∈ PCS(Q) and let p1, . . . , p` be a PCR proof of p from Q over S. We show
by induction on the structure of the proof that pi ∈ span(B) for any i ∈ [`]. To see that each
axiom is in B, note that span(A∪B) can only increase at each stage of the algorithm. Hence,
as the algorithm halts with A = ∅, at the end each axiom is in span(B). If pi = apj + bpk
for some j, k < i, and pj , pk ∈ span(B), then clearly pi ∈ span(B).

Finally, suppose that pi = xpj for some j < i and some variable x. Now pj ∈ F[S], and
by induction assumption, pj ∈ span(B). Write pj =

∑
akqk for some ak ∈ F and qk ∈ B.

We claim that qk ∈ F[S] for each k with non-zero ak. To see this, let m be the maximal
monomial that appears in any qk with a non-zero coefficient. Now m appears in only one
of the qk’s, since they all have distinct leading monomials, and so the monomial m has a
non-zero coefficient in pj . Hence m ∈ S, and so qk ∈ F[S] for every k. Now for any k, qk
was added to B and xqk was added to A at some stage of the algorithm. Now, at that
stage xqk ∈ span(A ∪B). However, since the span only increases during the execution of the
algorithm, xqk ∈ span(B) at the end of the algorithm. Hence xpj ∈ span(B) at the end of
the algorithm. J

Now to check whether there is a PC proof of p from Q over S one simply needs to reduce
the polynomial p with respect to the basis B. This is easy to do, since all the elements of
B have distinct leading monomials. In order to construct the proof, one needs proofs for the
basis elements. The construction of these proofs is easily incorporable into the algorithm
above.

3.4 Feasible interpolation
Finally as a consequence of Theorem 3 and Section 3.3 we obtain the feasible interpolation
property for PC over any finite field. Below P (x, z) and Q(y, z) are two sets of polynomials,
where x, y and z are disjoint sequences of variables.

I Theorem 5. For any finite field F, there is a polynomial time algorithm that given a PC-
refutation of P (x, z)∪Q(y, z), and an assignment a to the variables z, outputs a PC-refutation
of P (x, a) or a PC-refutation of Q(y, a).

4 Feasible interpolation for Sums-of-Squares

4.1 Bounded SOS proofs over a set of monomials
Let Q be a set of polynomials and let S be a set of monomials that includes all the monomials
appearing in Q and the empty monomial 1.

Denote by S2 the set of all monomials m such that m = m1m2, where m1,m2 ∈ S. An
SOS proof of non-negativity of some p ∈ R[S2] from Q over S is a polynomial equality of the
form

p ≡
∑
i∈[k]

r2
i +

∑
q∈Q

tqq mod In

where ri, tq ∈ R[S]. We write Q `S p ≥ q if there is a proof of non-negativity of p− q from Q

over S. The proof is R-bounded if ‖tq‖ ≤ R for each q ∈ Q. We need to consider explicitly
bounded proofs in order to later be able to give a polynomial time proof search algorithm.

We prove first the important fact that every polynomial in R[S2] has provable upper
bounds over S modulo the Boolean ideal.

ICALP 2020
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I Lemma 6. For any p ∈ R[S2] there is r ∈ R+ such that

∅ `S r ≥ p.

Proof. Let first m ∈ S, and let a ∈ R. We want to show that there is some b ∈ R+ such that
Q `S b ≥ am. If a < 0, then −am ≡ (

√
−am)2 mod In and so Q `S 0 ≥ am. On the other

hand if a > 0, then a− am ≡ (
√
a−
√
am)2 mod In, and so Q `S a ≥ am.

Let then m1,m2 ∈ S and a ∈ R. We show again that there is some b ∈ R+ such
that Q `S b ≥ am1m2. If a < 0, then −am1 − 2am1m2 − am2 ≡ (

√
−am1 +

√
−am2)2

mod In. On the other hand, by the above paragraph, there are b1, b2 ∈ R+ such that
Q `S b1 ≥ −am1 and Q `S b2 ≥ −am2. Hence Q `S (b1 + b2)/2 ≥ am1m2. If a > 0, then
am1 − 2am1m2 + am2 ≡ (

√
am1 −

√
am2)2 mod In. Again there are b1, b2 ∈ R+ such that

Q `S b1 ≥ am1 and Q `S b2 ≥ am2, and so Q `S (b1 + b2)/2 ≥ am1m2. J

Now we define the objects that we consider to be the semantic counterparts of bounded
refutations over a set of monomials. Let ε > 0. A linear functional E : R[S2] → R is an
ε-pseudoexpectation for Q over S if the following properties hold:
(i) E(1) = 1;
(ii) E(p) = E(q) if p ≡ q mod In;
(iii) E(p2) ≥ 0 for any p ∈ R[S];
(iv) |E(mq)| ≤ ε for any m ∈ S and any q ∈ Q.

The following two lemmas show connections between ε-pseudoexpectations and proofs
with bounded coefficients.

I Lemma 7. If there is an ε-pseudoexpectation for Q over S, then there is no R-bounded
refutation of Q over S for R less than 1/ε|S||Q|.

Proof. Let E be an ε-pseudoexpectation for Q over S, and suppose that

−1 ≡
∑
i∈[k]

r2
i +

∑
q∈Q

tqq mod In

is a refutation over S with ‖tq‖ < 1/ε|S||Q| for any q ∈ Q. Now |E(amq)| ≤ |a|ε for each
m ∈ S, q ∈ Q and a ∈ R. Hence |E(tqq)| < 1/|Q| for each q ∈ Q, and so |E(

∑
q∈Q tqq)| < 1.

Now applying E to both sides of the refutation we obtain that −1 ≥
∑
q∈QE(tqq) > −1. J

I Lemma 8. If there is no R-bounded refutation of Q over S, then there is a (1/R)-
pseudoexpectation for Q over S.

Proof. Suppose there is no R-bounded refutation of Q over S, and consider the following
two sets

A := {p ∈ R[S2] : ∅ `S p ≥ 0}

and

B := {−1 +
∑
q∈Q

tqq : tq ∈ R[S] and ‖tq‖ ≤ R for every q ∈ Q}.

Now, by assumption, A and B are disjoint, A is a convex cone and B is a convex set. Hence,
by the hyperplane separation theorem, there is a non-trivial linear functional L : R[S2]→ R
such that L(p) ≥ 0 for every p ∈ A, and L(p′) ≤ 0 for every p′ ∈ B.
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We want to first argue that L(1) 6= 0. So suppose towards a contradiction that L(1) = 0.
By Lemma 6, for any p ∈ R[S2] there is some R ∈ R+ such that ∅ `S R ≥ p ≥ −R. It follows
that L(R) ≥ L(p) ≥ L(−R), and so L(p) = 0 for every p ∈ R[S2] against the non-triviality
of L.

Now define E(p) = L(p)/L(1) for any p ∈ R[S2]. We claim that E has the desired
properties. We prove the last case. By definition, −1±Rmq ∈ B, and so E(−1±Rmq) ≤ 0
for any m ∈ S and q ∈ Q. Hence |E(mq)| ≤ 1/R. J

4.2 Feasible disjunction for SOS

In this section we prove a feasible disjunction property for SOS. For a refutation

−1 =
∑
i∈[k]

r2
i +

∑
q∈Q

tqq +
∑
i∈[n]

(
ui
(
x2
i − xi

)
+ vi (xi + x̄i − 1)

)
the explicit monomials of the refutation are all the monomials appearing in the polynomials
ri, tq, q, ui, vi, x2

i − xi and xi + x̄i − 1, i.e. the explicit monomials are the monomials that
appear in an explicit representation of the refutation.

I Theorem 9. Let

− 1 =
∑
i∈[k]

r2
i +

∑
p(x)∈P (x)

tpp(x) +
∑

q(y)∈Q(y)

tqq(y)+

∑
i∈[n]

(
ui
(
x2
i − xi

)
+ vi (xi + x̄i − 1)

) ∑
i∈[n′]

(
u′
i

(
y2
i − yi

)
+ v′

i (yi + ȳi − 1)
)

be an SOS refutation of P (x) ∪Q(y) with ‖tp‖, ‖tq‖ ≤ R for every p(x) ∈ P (x) and q(y) ∈
Q(y), let S be the set of explicit monomials appearing in the refutation, and let R′ =
2R|P (x) ∪Q(y)||S|. Then there is a R′-bounded refutation of P (x) over Sx or a R′-bounded
refutation of Q(y) over Sy.

Proof. Suppose towards a contradiction that the conclusion does not hold. Then, by
Lemma 8, there are 1/R′-pseudoexpectations for P (x) over Sx and Q(y) over Sy. Now define
a linear functional E : R[S2]→ R with

E(m) = Ex(mx)Ey(my),

for m ∈ S2 and extend linearly. Here mx and my are the projections of the monomial m to
variables x and y, respectively. We claim that E has the following properties.

(i) E(1) = 1;
(ii) E(m(x2

i − xi)) = 0 for any m ∈ S and any variable xi;
(iii) E(m(xi + x̄i − 1)) = 0 for any m ∈ S and any variable x;
(iv) E(m(y2

i − yi)) = 0 for any m ∈ S and any variable yi;
(v) E(m(yi + ȳi − 1)) = 0 for any m ∈ S and any variable yi;
(vi) E(p2) ≥ 0 for any p ∈ R[S];
(vii) |E(m(p(x))| ≤ 1/R′ for any m ∈ S and any p(x) ∈ P (x);
(viii) |E(m(q(y))| ≤ 1/R′ for any m ∈ S and any q(y) ∈ Q(y).
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The cases (i)-(v) are easy to see. For (vi), write p =
∑
m∈S amm. Now the matrix

(Ey(mym
′
y))m,m′∈S is positive semidefinite and so there are vectors u su ch that Ey(mym

′
y) =∑

u umum′ . Now we have

E(p2) =
∑
m,m′

amam′Ex(mxm
′
x)Ey(mym

′
y)

=
∑
m,m′

∑
u

amumam′um′Ex(mxm
′
x)

= Ex((
∑
m

∑
u

amummx)2) ≥ 0

Finally (vii) holds, since

|E(m(p(x)| = |Ex(mx(p(x))||Ey(my)| ≤ 1/R′,

where the last inequality holds since Ex is an 1/R′-pseudoexpectation for P (x) over Sx and
|Ey(my)| ≤ 1 for all m ∈ S. Case (viii) is proved similarly.

Now the existence of such E is in contradiction with the assumptions about the given
refutation of P (x) ∪Q(y). Although the mapping E does not necessarily fulfill the condition
(ii) of an ε-pseudoexpectation, as E is defined for all the summands in the given refutation,
we reach a contradiction by a similar argument as in Lemma 7. J

4.3 Proof search over S with bounded coefficients
In this section we show how to find the bounded refutation, whose existence is guaranteed
by Theorem 9, in time polynomial in the size of S and logR. Again we tacitly assume that
the size of S is at least the number of distinct variables appearing in S. For proof search we
use the ellipsoid algorithm. Before we can apply the algorithm we need to show that we can
bound the other coefficients appearing in the proof using the bound on the tq polynomials.

As a first step we show that we can bound the coefficients appearing in the sum of squares
part of a given refutation. The next lemma is a simple special case of the main theorem
of [14].

I Lemma 10. Let p ∈ R[S2]. If there is a proof of non-negativity of p from ∅ over S, then
there are ri ∈ R[S] such that

p ≡
∑
i∈[k]

r2
i mod In

and ‖ri‖ is at most polynomial in 2poly(|S|) and ‖p‖ for any i ∈ [k].

Proof. The proof is practically the same as the proof of the main theorem of [14] with only
small differences. We’ll sketch the proof for completeness.

Let vS be a vector of all the monomials in S, and let C be a PSD matrix such that
p ≡ 〈C,vSvTS 〉 mod In. Now denote by MS the averaged matrix Eα∈{0,1}nvS(α)vTS (α) over
all Boolean assignments. Now, by Lemma 6 of [14], the smallest non-zero eigenvalue δ of MS

is at least 1/2poly(|S|).
Let now P =

∑
uuT be a projection to the zero eigenspace of MS . Now, for each u,

uTvS is zero on all Boolean assignments, and thus uTvS ≡ 0 mod In. Hence

〈C,vSvTS 〉 ≡ 〈C, (P + P⊥)vSvTS (P + P⊥)〉 mod In

≡ 〈C,P⊥vSvTSP⊥〉 mod In

≡ 〈P⊥CP⊥,vSvTS 〉 mod In
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Let C ′ = P⊥CP⊥, so that p ≡ 〈C ′,vSvTS 〉. Now, by taking averages on both sides, we
obtain that

Eα∈{0,1}n [p(α)] = 〈C ′,MS〉.

Now the left hand side is at most polynomial in ‖p‖ and |S|. On the other hand the right
hand side is at least δTr(C ′), since every non-zero eigenvalue of MS is at least δ and the zero
eigenspace of C ′ is included in the zero-eigenspace of MS . Since the Frobenius norm of C ′

is bounded by Tr(C ′) we have that each entry of C ′ is at most polynomial in 2poly(|S|) and
‖p‖. Now let ri, i ∈ [k] be such that

∑
i∈[k] r

2
i = 〈C ′,vSvTS 〉. Now each coefficient of ri is

bounded by a polynomial in 2poly(|S|) and ‖p‖. J

I Corollary 11. Let p ∈ R[S2]. If there is an R-bounded proof of p from Q over S, then
there are ri ∈ R[S] such that

p =
∑
i∈[k′]

r2
i +

∑
q∈Q

tqq mod In,

and the absolute value of all the coefficients appearing in each ri is at most polynomial in
2poly(|S|), R and ‖p‖.

Proof. If p ≡
∑
i∈[k] r

2
i +

∑
q∈Q tqq mod In, then p −

∑
q∈Q tqq ≡

∑
i∈[k] r

2
i mod In, and

the result follows from the previous lemma. J

Secondly we need to restrict the search space for the lifts of the Boolean axioms. In our
definition of a proof over a set of monomials, we worked over the Boolean ideal, and thus did
not restrict the lifts of the Boolean axioms in any way. However since the Boolean axioms
form a Gröbner basis for the Boolean ideal, we can show that there is a well-behaved set S̄
of monomials computable from S in time polynomial in |S| such that for any p ∈ R[S2] with
p ≡ 0 mod In there are ui, vi ∈ R[S̄] such that

p = ui(x2
i − xi) + vi(xi + x̄i − 1)

To see this consider any monomial ordering < such that Bn forms a Gröbner basis for In with
respect to <, and define the set Sm for any monomial m with the following algorithm.

Algorithm 2 Construction of the set Sm.

Initially I = {m} and Sm = ∅;
while leading monomial of some Boolean axiom divides LM(I) do

Let p be the first Boolean axiom such that LM(p) divides LM(I);
Let m′ be such that LM(I) = m′LM(p);
Let p′ = m−m′p;
Add m′ to Sm;
Add all the monomials in p′ to I;

end
Output Sm;

The runtime of the above algorithm is polynomial in the degree of m. Now define
S̄ =

⋃
m∈S2 Sm. Now, if S is a set of multilinear monomials, set S̄ can be computed in time

polynomial in |S|.
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I Lemma 12. For each p ∈ R[S2] such that p ≡ 0 mod In there are ui, vi ∈ R[S̄] such that

p =
∑
i∈[n]

(ui(x2
i − xi) + vi(xi + x̄i − 1)).

Moreover the absolute value of the coefficients in ui and vi is bounded by a polynomial in
‖p‖, |S| and the degree of p.

Proof. The proof follows since, as the Boolean axioms form a Gröbner basis for In with
respect to <, we have that p ≡ 0 mod In if and only if p reduces to 0 with the multivariate
division algorithm with respect to the monomial ordering <. The multivariate division
algorithm will construct ui and vi that are linear combinations of monomials from S̄. The
last part follows from the fact that the algorithm halts after polynomially many steps in the
degree of p and |S|. J

Now as a corollary to Corollary 11 and Lemma 12 we have the following

I Corollary 13. Let p ∈ R[S2]. If there is an R-bounded proof of p from Q over S, then
there are ri ∈ R[S] and ui, vi ∈ R[S̄] such that

p =
∑
i∈[k′]

r2
i +

∑
q∈Q

tqq +
∑
i∈[n]

(
ui
(
x2
i − xi

)
+ vi (xi + x̄i − 1)

)
,

and the absolute value of all the coefficients appearing in each si, ui and vi is at most
polynomial in 2poly(|S|), R and ‖p‖.

Now the existence of a proof given by Corollary 13 can be expressed as feasibility of a
set of linear and semidefinite constraints over explicitly bounded variables and so we can
find an approximate solution to the set of constraints in polynomial time using the ellipsoid
algorithm. We will sketch some details below. For details on ellipsoid algorithm see [7].

For each q ∈ Q, let q̄ ∈ RS such that q̄TvS = q, and introduce a vector xq of variables.
Similarly for each m,m′ ∈ S, introduce a variable xm,m′ . In addition, introduce variables
ym,x2

i
, ym,xi

for each i and m ∈ S̄ and variables zm,xi
, zm,x̄i

, zm,i for each i ∈ [n] and m ∈ S̄
Now let p =

∑
k∈S2 akk and introduce for every k ∈ S2 a constraint Ck = ak, where

Ck =
∑

m,m′∈S
mm′=k

(xm,m′ +
∑
q∈Q

q̄mxq,m′)

+
∑
i∈[n]

(
∑
m,∈S̄
mx2

i =k

ym,x2
i

+
∑
m∈S̄
mxi=k

(zm,xi
− ym,xi

) +
∑
m∈S̄
mx̄i=k

zm,x̄i
−
∑
m∈S̄
m=k

zm,i).

Let X be the matrix Xm,m′ = xm,m′ , and add the constraint X � 0. Finally add the
bounding constraints −R′ ≤ x ≤ R′ for each variable for R′ of magnitude polynomial in
2poly(|S|) , R and ‖p‖. Now any feasible solution gives a proof of p from Q with all coefficients
bounded by R′ and vice versa.

For ε > 0, an ε-relaxation of the above constraints is the set of constraints |Ck − ak| ≤ ε,
X � 0 and −R′ − ε ≤ x ≤ R′ + ε for every variable x. Now if there is a feasible solution for
the original set of constraints, the set of solutions of the ε-relaxation has volume at least
1/2poly(log(1/ε),|S|).

Choose now ε = 1/2poly(|S|). Now the ellipsoid method can find a feasible solution to the
ε-relaxation in time polynomial in |S|, logR and log ‖p‖. Any such solution translates into a
polynomial p+ q, where ‖q‖ ≤ ε. Now for each am that appears in q, define qm as follows: if
a > 0 let qm = a(1−m)2, and if a < 0 let qm = −a(m)2. Now adding all qm to p+ q gives
Sums-of-Squares proof of p− ε′ for some ε′ = 1/2poly(|S|).



T. Hakoniemi 63:13

4.4 Feasible interpolation
Finally we obtain the feasible interpolation property for SOS as a corollary to Theorem 9 and
section 4.3. For the theorem below P (x, z) and Q(y, z) are sets of multilinear polynomials
over Boolean variables, where x, y and z are disjoint sequences of variables.

I Theorem 14. Let P (x, z) and Q(y, z) be sets of multilinear polynomials. There is a
polynomial time algorithm that given an SOS-refutation of P (x, z)∪Q(y, z) and an assignment
a to the variables z outputs an SOS-refutation of P (x, a) or an SOS-refutation of Q(y, a).

5 Concluding remarks

We have seen that both Polynomial Calculus and Sums-of-Squares admit a strong form of
feasible interpolation. Using similar methods we can also prove that Sherali-Adams proof
system admits equally strong feasible interpolation property. The proof can be obtained by
a simple modification of the proof for Sums-of-Squares. The proof is actually considerably
simpler since the problem of too large coefficients does not appear with Sherali-Adams proofs.

Sums-of-Squares proofs cannot admit monotone feasible interpolation, since the Clique-
Coloring formulas have small Sums-of-Squares refutations. Pudlák and Sgall prove in [13] that
degree bounded Polynomial Calculus admits monotone feasible interpolation with respect
to monotone polynomial programs. An interesting open question is whether one can prove
monotone feasible interpolation for Polynomial Calculus with respect to monotone circuits.

We only prove feasible interpolation for SOS for sets of equality constraints. If there
are inequality constraints, we can only prove a feasible disjunction property with respect
to monomial size: if there is a refutation of P (x, z) ∪Q(y, z) of monomial size s, then for
any a there is a refutation of P (x, a) or a refutation of Q(y, a) of monomial size O(s). The
problem is that we don’t have nice counterparts of the ε-pseudoexpectations when we add
inequality constraints.

Finally we want to emphasize that although we proved the feasible interpolation for
Sums-of-Squares only over the {0, 1}-values, importantly the argument works also for Boolean
values over the ±1 basis.
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Abstract
Consider a set P ⊆ Rd of n points, and a convex body C provided via a separation oracle. The task
at hand is to decide for each point of P if it is in C using the fewest number of oracle queries. We
show that one can solve this problem in two and three dimensions using O(9P log n) queries, where
9P is the largest subset of points of P in convex position. In 2D, we provide an algorithm which
efficiently generates these adaptive queries.

Furthermore, we show that in two dimensions one can solve this problem using O(�(P, C) log2 n)
oracle queries, where �(P, C) is a lower bound on the minimum number of queries that any algorithm
for this specific instance requires. Finally, we consider other variations on the problem, such as using
the fewest number of queries to decide if C contains all points of P .

As an application of the above, we show that the discrete geometric median of a point set P
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1 Introduction

1.1 Background
Active learning

Active learning is a subfield of machine learning, in which at any time, the learning algorithm
is able to query an oracle for the label of a particular data point. One model for active
learning is the membership query synthesis model [2]. Here, the learner wants to minimize
the number of oracle queries, as such queries are expensive – they usually correspond to
either consulting with a specialist, or performing an expensive computation. In this setting,
the learning algorithm is allowed to query the oracle for the label of any data point in the
instance space. See [21] for a more in-depth survey on the various active learning models.
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Figure 1.1 The shaded region shows the symmetric difference between the hypothesis and true
classifier. (I) Learning halfspaces. (II) Learning arbitrary convex regions.

Figure 1.2 (I) A set of points P . (II) The unknown convex body C. (III) Classifying all points
of P as either inside or outside C.

PAC learning

A classical approach for learning is using random sampling, where one gets labels for the
samples (i.e., in the above setting, the oracle is asked for the labels of all items in the random
sample). PAC learning studies the size of the sample needed. For example, consider the
problem of learning a halfplane for n points P ⊂ R2, given a parameter ε ∈ (0, 1). The first
stage is to take a labeled random sample R ⊆ P . The algorithm computes any halfplane
that classifies the sample correctly (i.e., the hypothesis). The misclassified points lie in the
symmetric difference between the learned halfplane, and the (unknown) true halfplane, see
Figure 1.1. In this case, the error region is a double wedge, and it is well known that its
VC-dimension [22] is a constant (at most eight). As such, by the ε-net Theorem [13], a
sample of size O(ε−1 log ε−1) is an ε-net for double wedges, which implies that this random
sampling algorithm has at most εn error.

A classical example of a hypothesis class that cannot be learned is the set of convex regions
(even in the plane). Indeed, given a set of points P in the plane, any sample R ⊆ P cannot
distinguish between the true region being CH(R) or CH(P ). Intuitively, this is because
the hypothesis space in this case grows exponentially in the size of the sample (instead of
polynomially).

CH(R)
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We stress that the above argument does not necessarily imply these types of hypothesis
classes are unlearnable in practice. In general, there are other ways for learning algorithms
to handle hypothesis classes with high (or even infinite) VC-dimension (for example, using
regularization or assuming there is a large margin around the decision boundary).

Weak ε-nets

Because ε-nets for convex ranges do not exist, an interesting direction to overcome this
problem is to define weak ε-nets [13]. A set of points R in the plane, not necessarily a subset
of P , is a weak ε-net for P if for any convex body C containing at least εn points of P , it
also contains a point of R. Matoušek and Wagner [16] gave a weak ε-net construction of
size O(ε−d(log ε−1)O(d2 log d)), which is doubly exponential in the dimension. The state of
the art is the recent result of Rubin [20], that shows a weak ε-net construction in the plane
of size (roughly) O(1/ε3/2). However, these weak ε-nets cannot be used for learning such
concepts. Indeed, the analysis above required an ε-net for the symmetric difference of two
convex bodies of finite complexity, see Figure 1.1.

PAC learning with additional parameters

If one assumes the input instance obeys some additional structural properties, then random
sampling can be used. For example, suppose that the point set P has at most k points in
convex position. For an arbitrary convex body C, the convex hull CH(P ∩ C) has complexity
at most k. Let R ⊆ P be a random sample, and C ′ be the learned classifier for R. The
region of error is the symmetric difference between C and C ′. In particular, since k-vertex
polytopes in Rd have VC-dimension bounded by O(d2k log k) [15], this implies that the error
region also has VC-dimension at most O(d2k log k). Hence if R is a random sample of size
O(d2k log kε−1 log ε−1), the ε-net Theorem [13] implies that this sampling algorithm has
error at most εn. However, even for a set of n points chosen uniformly at random from the
unit square [0, 1]2, the expected number of points in convex position is O(n1/3) [1]. Since we
want |R| < n, this random sampling technique is only useful when ε is larger than log2 n/n2/3

(ignoring constants).
To summarize the above discussions, random sampling on its own does not seem powerful

enough to learn arbitrary convex bodies, even if one allows some error to be made. In this
paper we focus on developing algorithms for learning convex bodies in low dimensions, where
the algorithms are deterministic and do not make any errors.

1.2 Problem and motivation

The problem

In this paper, we consider a variation on the active learning problem, in the membership
query synthesis model. Suppose that the learner is trying to learn an unknown convex body
C in Rd. Specifically, the learner is provided with a set P of n unlabelled points in Rd, and
the task is to label each point as either inside or outside C, see Figure 1.2. For a query
q ∈ Rd, the oracle either reports that q ∈ C, or returns a hyperplane separating q and C
(as a proof that q 6∈ C). Note that if the query is outside the body, the oracle answer is
significantly more informative than just the label of the point. The problem is to minimize
the overall number of queries performed.
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Hard and easy instances

Note that in the worst case, an algorithm may have to query the oracle for all input points
– such a scenario happens when the input points are in convex position, and any possible
subset of the points can be the points in the (appropriate) convex body. As such, the purpose
here is to develop algorithms that are instance sensitive – if the given instance is easy, they
work well. If the given instance is hard, they might deteriorate to the naive algorithm that
queries all points.

Natural inputs where one can hope to do better, are when relatively few points are in
convex position. Such inputs are grid points, or random point sets, among others. However,
there are natural instances of the problem that are easy, despite the input having many
points in convex position. For example, consider when the convex body is a triangle, with
the input point set being n/2 points spread uniformly on a tiny circle centered at the origin,
while the remaining n/2 points are outside the convex body, spread uniformly on a circle
of radius 10 centered at the origin. Clearly, such a point set can be fully classified using a
sequence of a constant number of oracle queries. See Figure 3.1 for some related examples.

1.3 Additional motivation & previous work

Separation oracles

The use of separation oracles is a common tool in optimization (e.g., solving exponentially
large linear programs) and operations research. It is natural to ask what other problems can
be solved efficiently when given access to this specific type of oracle. For example, Bárány
and Füredi [3] study the problem of computing the volume of a convex body in Rd given
access to a separation oracle.

Other types of oracles

Various models of computation utilizing oracles have been previously studied within the
community. Examples of other models include nearest-neighbor oracles (i.e., black-box access
to nearest neighbor queries over a point set P ) [11], proximity probes (which given a convex
polygon C and a query q, returns the distance from q to C) [18], and linear queries. Recently,
Ezra and Sharir [7] gave an improved algorithm for the problem of point location in an
arrangement of hyperplanes. Here, a linear query consists of a point x and a hyperplane h,
and outputs either that x lies on h, or else which side of h contains x. Alternatively, their
problem can be interpreted as querying whether or not a given point lies in a halfspace h+.
Here, we study the more general problem as the convex body can be the intersection of many
halfspaces.

Furthermore, other types of active learning models (in addition membership query model)
have also been studied within the learning community, see, for example, [2].



S. Har-Peled, M. Jones, and S. Rahul 64:5

Active learning

As discussed, the problem at hand can be interpreted as active learning a convex body in
relation to a set of points P that need to be classified (as either inside or outside the body),
where the queries are via a separation oracle. We are unaware of any work directly on
this problem in the theory community, while there is some work in the machine learning
community that studies related active learning classification problems [6, 9, 21, 14].

For example, Kane et al. [14] study the problem of actively learning halfspaces with access
to comparison queries. Given a halfspace h+ to learn, the model has two types of queries: (i)
label queries (given x ∈ Rd, is x ∈ h+?), and (ii) comparison queries (given x1, x2 ∈ Rd, is
x1 closer to the boundary of h+ than x2?). For example, they show that in the plane, one
can classify all points using O(logn) comparison/label queries in expectation.

1.4 Our results
Due to space constraints, not all of the results listed below are included in this version. We
refer the reader to the full version of the paper [12] for proofs of missing results.

(A) We develop a greedy algorithm, for points in the plane, which solves the problem using
O(9P logn) oracle queries, where 9P is the largest subset of points of P in convex
position. See Theorem 8. It is known that for a random set of n points in the unit
square, E[9P ] = Θ(n1/3) [1], which readily implies that classifying these points can be
solved using O(n1/3 logn) oracle queries. A similar bound holds for the

√
n×
√
n grid.

An animation of this algorithm is on YouTube [10]. We also show that this algorithm
can be implemented efficiently, using dynamic segment trees, see Lemma 9.
We remark that Kane et al. [14] develop a framework and randomized algorithm for
learning a concept C, where the expected number of queries depends near-linearly on a
parameter they define as the inference dimension [14, Definition III.1] of the concept
class. For our problem, one can show that the inference dimension is O(9P ). As a
corollary of their framework, one can obtain a randomized algorithm which solves our
problem where the expected number of queries is O(9P log9P logn). Our algorithm
shaves a logarithmic factor in the number of queries and is deterministic.

(B) The above algorithm naturally extends to three dimensions, also using O(9P logn)
oracle queries. While the proof idea is similar to that of the algorithm in 2D, we believe
the analysis in three dimensions is also technically interesting. See Theorem 10.

(C) For a given point set P and convex body C, we define the separation price �(P,C) of
an instance (P,C), and show that any algorithm classifying the points of P in relation
to C must make at least �(P,C) oracle queries (Lemma 11).
As an aside, we show in [12] that when P is a set of n points chosen uniformly at random
from the unit square and C is a (fixed) smooth convex body, E[�(P,C)] = O(n1/3), and
this bound is tight when C is a disk (our result also generalizes to higher dimensions).
For randomly chosen points, the separation price is related to the expected size of the
convex hull of P ∩ C, which is also known to be Θ(n1/3) [23]. We believe this result
may be of independent interest/

(D) In Section 3 we present an improved algorithm for the 2D case, and show that the
number of queries made is O(�(P,C) log2 n). This result is O(log2 n) approximation to
the optimal solution, see Theorem 12.

(E) We consider the extreme scenarios of the problem: Verifying that all points are either
inside or outside of C. For each problem we present a O(logn) approximation algorithm
to the optimal strategy. The results are presented in the full version of the paper [12].
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(F) Section 4 presents an application of the above results, we consider the problem of
minimizing a convex function f : R2 → R over a point set P . Specifically, the goal is to
compute arg minp∈P f(p). If f and its derivative can be efficiently evaluated at a given
query point, then f can be minimized over P using O(9P log2 n) queries to f (or its
derivative) in expectation. We refer the reader to Lemma 17.
Given a set of n points P in Rd, the discrete geometric median of P is a point p ∈ P
minimizing the function

∑
q∈P ‖p − q‖2. As a corollary of Lemma 17, we obtain an

algorithm for computing the discrete geometric median for n points in the plane. The
algorithm runs in O(n log2 n · (logn log logn+ 9P )) expected time. See Lemma 18. In
particular, if P is a set of n points chosen uniformly at random from the unit square, it
is known E[9P ] = Θ(n1/3) [1] and hence the discrete geometric median can be computed
in O(n4/3 log2 n) expected time.
While there has been ample work on approximating the geometric median (recently,
Cohen et al. [5] gave a (1 + ε)-approximation algorithm to the geometric median in
O(dn log3(1/ε)) time), we are unaware of any exact sub-quadratic algorithm for the
discrete case even in the plane.

I Remark. Throughout this paper, the model of computation we have assumed is unit-cost
real RAM.

2 The greedy algorithm in two and three dimensions

2.1 Preliminaries
For a set of points P ⊆ R2, let CH(P ) denote the convex hull of P . Given a convex
body C ⊆ Rd, two points p, x ∈ Rd \ int(C) are mutually visible, if the segment px
does not intersect int(C), where int(C) is the interior of C. We also use the notation
P ∩ C = {p ∈ P | p ∈ C}.

For a point set P ⊆ Rd, a centerpoint of P is a point c ∈ Rd, such that for any closed
halfspace h+ containing c, we have |h+ ∩ P | ≥ |P | /(d+ 1). A centerpoint always exists, and
it can be computed exactly in O(nd−1 + n logn) time [4].

Let C be a convex body in Rd and q ∈ Rd be a point such that q lies outside C. A
hyperplane h separates q from C if q lies in the closed halfspace h+ bounded by h, and C
is contained in the open halfspace h− bounded by h. This definition allows the separating
hyperplane to contain the point q, and will simplify the descriptions of the algorithms.

2.2 The greedy algorithm in 2D

2.2.1 Operations
Initially, the algorithm copies P into a set U of unclassified points. The algorithm is going
to maintain an inner approximation B ⊆ C. There are two types of updates (Figure 2.1
illustrates the two operations):
(A) expand(p): Given a point p ∈ C \B, the algorithm is going to:

(i) Update the inner approximation: B ← CH(B ∪ {p}).
(ii) Remove (and mark) newly covered points: U ← U \B.

(B) remove(l): Given a closed halfplane l+ such that int(C)∩ l+ = ∅, the algorithm marks
all the points of Ul = U ∩ int(l+) as being outside C, and sets U ← U \ Ul.
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C

Bp

`+

C

B

Figure 2.1 (I) Performing expand(p), and marking points inside C. (II) Performing remove(l),
and marking points outside C.

2.2.2 The algorithm
The algorithm repeatedly performs rounds, as described next, until the set of unclassified
points is empty.

At every round, if the inner approximation B is empty, then the algorithm sets U+ = U .
Otherwise, the algorithm picks a line l that is tangent to B with the largest number of points
of U on the other side of l than B. Let l− and l+ be the two closed halfspace bounded by
l, where B ⊆ l−. The algorithm computes the point set U+ = U ∩ l+. We have two cases:

(A) Suppose |U+| is of constant size. The algorithm queries the oracle for the status of
each of these points. For every point p ∈ U+, such that p ∈ C, the algorithm performs
expand(p). Otherwise, the oracle returned a separating line l, and the algorithm calls
remove(l+).

(B) Otherwise, |U+| does not have constant size. The algorithm computes a centerpoint
c ∈ R2 for U+, and asks the oracle for the status of c. There are two possibilities:
(i) If c ∈ C, then the algorithm performs expand(c).
(ii) If c /∈ C, then the oracle returned a separating line h, and the algorithm performs

remove(h).

2.2.3 Analysis
Let Bi be the inner approximation at the start of the ith iteration, and let z be the first
index where Bz is not an empty set. Similarly, let Ui be the set of unclassified points at the
start of the ith iteration, where initially U1 = U .

I Lemma 1. The number of (initial) iterations in which the inner approximation is empty
is z = O(logn).

Proof. As soon as the oracle returns a point that is in C, the inner approximation is no longer
empty. As such, we need to bound the initial number of iterations where the oracle returns
that the query point is outside C. Let fi = |Ui|, and note that U1 = P and f1 = |P | = n.
Let ci be the centerpoint of Ui, which is the query point in the ith iteration (ci is outside
C). As such, the line separating ci from C, returned by the oracle, has at least fi/3 points
of Ui on the same side as ci, by the centerpoint property. All of these points get labeled
in this iteration, and it follows that fi+1 ≤ (2/3)fi, which readily implies the claim, since
fz < 1, for z =

⌈
log3/2 n

⌉
+ 1. J
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I Definition 2 (Visibility graph). Consider the graph Gi over Ui, where two points p, r ∈ Ui
are connected ⇐⇒ the segment pr does not intersect the interior of Bi.

C p2

p3

p4

p1

C I(p3)

I(p1)

I(p2)

I(p4)

Figure 2.2 Four points and a convex body with their associated circular intervals.

The visibility graph as an interval graph

For a point p ∈ Ui, let Ii(p) be the set of all directions v (i.e., vectors of length 1) such that
there is a line perpendicular to v that separates p from Bi. Formally, a line l separates p
from Bi, if the interior of Bi is on one side of l and p is on the (closed) other side of l (if
p ∈ l, the line is still considered to separate the two). Clearly, Ii(p) is a circular interval
on the unit circle. See Figure 2.2. The resulting set of intervals is Vi = {Ii(p) | p ∈ Ui}. It
is easy to verify that the intersection graph of Vi is Gi. Throughout the execution of the
algorithm, the inner approximation Bi grows monotonically, this in turn implies that the
visibility intervals shrink over time; that is, Ii(p) ⊆ Ii−1(p), for all p ∈ P and i. Intuitively, in
each round, either many edges from Gi are removed (because intervals had shrunk and they
no longer intersect), or many vertices are removed (i.e., the associated points are classified).

I Definition 3. Given a set V of objects (e.g., intervals) in a domain D (e.g., unit circle),
the depth of a point p ∈ D, is the number of objects in V that contain p. Let depth(V) be
the maximum depth of any point in D.

When it is clear, we use depth(G) to denote depth(V), where G = (V, E) is the intersection
graph in Definition 2.

First, we bound the number of edges in this visibility graph G and then argue that in
each iteration, either many edges of G are discarded or vertices are removed (as they are
classified).

I Lemma 4. Let V be a set of n intervals on the unit circle, and let G = (V, E) be the
associated intersection graph. Then |E| = O(αω2), where ω = depth(V) and α = α(G) is the
size of the largest independent set in G. Furthermore, the upper bound on |E| is tight.

Proof. Let J be the largest independent set of intervals in G. The intervals of J divide the
circle into 2 |J | (atomic) circular arcs. Consider such an arc γ, and let K(γ) be the set of all
intervals of V that are fully contained in γ. All the intervals of K(γ) are pairwise intersecting,
as otherwise one could increase the size of the independent set. As such, all the intervals of
K(γ) must contain a common intersection point. It follows that |K(γ)| ≤ ω.
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Let K ′(γ) be the set of all intervals intersecting γ. This set might contain up to 2ω
additional intervals (that are not contained in γ), as each such additional interval must
contain at least one of the endpoints of γ. Namely, |K ′(γ)| ≤ 3ω. In particular, any two
intervals intersecting inside γ both belong to K ′(γ). As such, the total number of edges
contributed by K ′(γ) to G is at most

(3ω
2
)

= O(ω2). Since there are ≤ 2α arcs under
consideration, the total number of edges in G is bounded by O(αω2), which implies the claim.

The lower bound is easy to see by taking an independent set of intervals of size α, and
replicating every interval ω times. J

I Lemma 5. Let P be a set of n points in the plane lying above the x-axis, c be a centerpoint
of P , and S =

(
P
2
)
be set of all segments induced by P . Next, consider any point r on the

x-axis. Then, the segment cr intersects at least n2/36 segments of S.

Proof. If the segment cr intersects the segment p1p2, for p1, p2 ∈ P , then we consider p1
and p2 to no longer be mutually visible. It suffices to lower bound the number of pairs of
points which lose mutual visibility of each other.

r

c`

`+

Consider a line l passing through the point c. Let l+ be the closed halfspace bounded by
l containing r. Note that |P ∩ l+| ≥ n/3, since c is a centerpoint of P , and c ∈ l. Rotate
l around c until there are ≥ n/6 points on each side of rc in the halfspace l+. To see
why this rotation of l exists, observe that the two halfspaces bounded by the line spanning
rc, have zero points on one side, and at least n/3 points on the other side – a continuous
rotation of l between these two extremes, implies the desired property.

Observe that points in l+ and on opposite sides of the segment cr cannot see each other,
as the segment connecting them must intersect cr. Consequently, the number of induced
segments that cr intersects is at least n2/36. J

I Lemma 6. Let Gi be the intersection graph, in the beginning of the ith iteration, and let
mi = |E(Gi)|. After the ith iteration of the greedy algorithm, we have mi+1 ≤ mi − ω2/36,
where ω = depth(Gi).

Proof. Recall that in the algorithm U+ = Ui ∩ l+ is the current set of unclassified points
and l is the line tangent to Bi, where l+ is the closed halfspace that avoids the interior of
Bi and contains the largest number of unlabeled points of Ui. We have that ω = |U+|.

If a remove operation was performed in the ith iteration, then the number of points
of U+ which are discarded is at least ω/3. In this case, the oracle returned a separating
line h between a centerpoint c of U+ and the inner approximation. For the halfspace
h+ containing c, we have ti = |U+ ∩ h+| ≥ |U+| /3 ≥ ω/3. Furthermore, all the points
of U+ are pairwise mutually visible (in relation to the inner approximation Bi). Namely,
mi+1 = |E(Gi − (U+ ∩ h+))| ≤ mi −

(
ti
2
)
≤ mi − ω2/36.
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If an expand operation was performed, the centerpoint c of U+ is added to the current
inner approximation Bi. Let r be a point in l∩ Bi, and let ci be the center point of Ui
computed by the algorithm. By Lemma 5 applied to r, c and U+, we have that at least
ω2/36 pairs of points of U+ are no longer mutually visible to each other in relation to Bi+1.
We conclude, that at least ω2/36 edges of Gi are no longer present in Gi+1. J

I Definition 7. A subset of points X ⊆ P ⊆ R2 are in convex position, if all the points
of X are vertices of CH(X) (note that a point in the middle of an edge is not considered to
be a vertex). The index of P , denoted by 9P , is the cardinality of the largest subset of P of
points which are in convex position.

I Theorem 8. Let C be a convex body provided via a separation oracle, and let P be a set of
n points in the plane. The greedy classification algorithm performs O

(
(9P + 1) logn

)
oracle

queries. The algorithm correctly identifies all points in P ∩ C and P \ C.

Proof. By Lemma 1, the number of iterations (and also queries) in which the inner ap-
proximation is empty is O(logn), and let z = O(logn) be the first iteration such that the
inner approximation is not empty. It suffices to bound the number of queries made by the
algorithm after the inner approximation becomes non-empty.

For i ≥ z, let Gi = (Ui, Ei) denote the visibility graph of the remaining unclassified points
Ui in the beginning of the ith iteration. Any independent set in Gi corresponds to a set of
points X ⊆ P that do not see each other due to the presence of the inner approximation Bi.
That is, X is in convex position, and furthermore |X| ≤ 9P .

For 0 ≤ t ≤ n, let s(t) be the first iteration i, such that depth(Gi) ≤ t. Since the depth
of Gi is a monotone decreasing function, this quantity is well defined. An epoch is a range
of iterations between s(t) and s(t/2), for any parameter t. We claim that an epoch lasts
O(9P ) iterations (and every iteration issues only one oracle query). Since there are only
O(logn) (non-overlapping) epochs till the algorithm terminates, as the depth becomes zero,
this implies the claim.

So consider such an epoch starting at i = s(t). We have m = mi = |E(Gi)| = O(9P t2),
by Lemma 4, since 9P is an upper bound on the size of the largest independent set in Gi. By
Lemma 6, as long as the depth of the intervals is at least t/2, the number of edges removed
from the graph at each iteration, during this epoch, is at least Ω(t2). As such, the algorithm
performs at most O(mi/t

2) = O(9P ) iterations in this epoch, till the maximum depth drops
to t/2. J

2.2.4 Implementing the greedy algorithm
With the use of dynamic segment trees [17] we show that the greedy classification algorithm
can be implemented efficiently.

I Lemma 9. Let C be a convex body provided via a separation oracle, and let P be a set
of n points in the plane. If an oracle query costs time T , then the greedy algorithm can be
implemented in O

(
n log2 n log logn+ T · 9P logn

)
expected time.

Proof. The algorithm follows the proof of Theorem 8. We focus on efficiently implementing
the algorithm once inner approximation is no longer empty. Let U ⊆ P be the subset of
unclassified points. By binary searching on the vertices of the inner approximation B, we can
compute the collection of visibility intervals V for all points in U in O(|U | logm) = O(n logn)
time (recall that V is a collection of circular intervals on the unit circle). We store these
intervals in a dynamic segment tree T with the modification that each node v in T stores
the maximum depth over all intervals contained in the subtree rooted at v. Note that T can
be made fully dynamic to support updates in O(logn log logn) time [17].
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An iteration of the greedy algorithm proceeds as follows. Start by collecting all points
U+ ⊆ U realizing the maximum depth using T . When t = |U+|, this step can be done in
O(logn+ t) time by traversing T . We compute the centerpoint of U+ in O(t log t) expected
time [4] and query the oracle using this centerpoint. Either points of U are classified (and we
delete their associated intervals from T ) or we improve the inner approximation. The inner
approximation (which is the convex hull of query points inside the convex body C) can be
maintained in an online fashion with insert time O(logn) [19, Chapter 3]. When the inner
approximation expands, the points of U+ have their intervals shrink. As such, we recompute
I(p) for each p ∈ U+ and reinsert I(p) into T .

As defined in the proof of Theorem 8, an epoch is the subset of iterations in which the
maximum depth is in the range [t/2, t], for some integer t. During such an epoch, we make
two claims:
1. there are σ = O(n) updates to T , and
2. the greedy algorithm performs O(n/t) centerpoint calculations on sets of size O(t).

Both of these claims imply that a single epoch of the greedy algorithm can be implemented
in expected time O(σ logn log logn + n logn + T · 9P ). As there are O(logn) epochs, the
algorithm can be implemented in expected time O(n log2 n log logn+ T · 9P logn).

We now prove the first claim. Recall that we have a collection of intervals V lying on
the circle of directions. Partition the circle into k atomic arcs, where each arc contains
t/10 endpoints of intervals in V. Note that k = 20n/t = O(n/t). For each circular arc γ,
let Vγ ⊆ V be the set of intervals intersecting γ. As the maximum depth is bounded by t,
we have that |Vγ | ≤ t+ t/10 = 1.1t. In particular, if G[Vγ ] is the induced subgraph of the
intersection graph G, then G[Vγ ] has at most

(|Vγ |
2
)

= O(t2) edges.
In each iteration, the greedy algorithm chooses a point in an arc γ (we say that γ is hit)

and edges are only deleted from G[Vγ ]. The key observation is that an arc γ can only be
hit O(1) times before all points of γ have depth below t/2, implying that it will not be hit
again until the next epoch. Indeed, each time γ is hit, the number of edges in the induced
subgraph G[Vγ ] drops by a constant factor (Lemma 6). Additionally, when G[Vγ ] has less
than

(
t/2
2
)
edges then any point on γ has depth less than t/2. These two facts imply that an

arc is hit O(1) times.
When an arc is hit, we must reinsert |Vγ | = O(t) intervals into T . In particular,

over a single epoch, the total number of hits over all arcs is bounded by O(k). As such,
σ = O(kt) = O(n).

For the second claim, each time an arc is hit, a single centerpoint calculation is performed.
Since each arc has depth at most t and is hit a constant number of times, there are
O(k) = O(n/t) such centerpoint calculations in a single epoch, each costing expected time
O(t log t). J

In Section 4 we present an application of the greedy classification algorithm. Namely, we
present an efficient algorithm for computing the discrete geometric median of a point set
(Lemma 18).

2.3 The greedy algorithm in 3D
Consider the 3D variant of the 2D problem: Given a set of points P in R3 and a convex
body C specified via a separation oracle, the task at hand is to classify, for all the points of
P , whether or not they are in C, using the fewest oracle queries possible.

The greedy algorithm naturally extends, where at each iteration i a plane ei is chosen
that is tangent to the current inner approximation Bi, such that it’s closed halfspace (which
avoids the interior of Bi) contains the largest number of unclassified points from the set Ui.
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If the queried centerpoint is outside, the oracle returns a separating plane and as such points
can be discarded by the remove operation. Similarly, if the centerpoint is reported inside,
then the algorithm calls the expand and updates the 3D inner approximation Bi.

The idea behind the analysis is similar to Theorem 8. The challenge in analyzing the
greedy algorithm in 3D is that mutual visibility between pairs of points is not necessarily
lost as the inner approximation grows. Thus we have to analyze mutual visibility between
triples of points. The analysis considers both the intersection graph Gi between pairs of
points, and a new hypergraph Hi, where there is an edge {p, q, r} in Hi if the triangle in R3

formed by the points p, q, r avoids the inner approximation Bi. The main technical ingredient
involves bounding the number of edges in Hi by the maximum depth and size of the largest
independent set in Gi. Finally, we argue that in each iteration a constant number of edges
are deleted from Hi by the centerpoint property. The full details are presented in [12]. We
obtain the following result.

I Theorem 10 (Proof in [12]). Let C ⊆ R3 be a convex body provided via a separation
oracle, and let P be a set of n points in R3. The greedy classification algorithm performs
O
(
(9P + 1) logn

)
oracle queries. The algorithm correctly identifies all points in P ∩ C and

P \ C.

3 An instance-optimal approximation in two dimensions

Before discussing the improved algorithm, we present a lower bound on the number of oracle
queries performed by any algorithm that classifies all the given points. We then present the
the improved algorithm, which matches the lower bound up to a factor of O(log2 n).

3.1 A lower bound
Given a set P of points in the plane, and a convex body C, the outer fence of P is a
closed convex polygon Fout with minimum number of vertices, such that C ⊆ Fout and
C ∩ P = Fout ∩ P . Similarly, the inner fence is a closed convex polygon Fin with minimum
number of vertices, such that Fin ⊆ C and C ∩ P = Fin ∩ P . Intuitively, the outer fence
separates P \ C from ∂C, while the inner fence separates P ∩ C from ∂C. The separation
price of P and C is

�(P,C) = |Fin|+ |Fout| ,

where |F | denotes the number of vertices of a polygon F . See Figure 3.1 for an example.

I Lemma 11. Given a point set P and a convex body C in the plane, any algorithm that
classifies the points of P in relation to C, must perform at least �(P,C) separation oracle
queries.

Proof. Consider the set Q of queries performed by the optimal algorithm (for this input),
and split it, into the points inside and outside C. The set of points inside, Qin = Q ∩ C has
the property that Qin ⊆ C, and furthermore CH(Qin) ∩ P = C ∩ P – otherwise, there would
be a point of C ∩ P that is not classified. Namely, the vertices of CH(Qin) are vertices of a
fence that separates the points of P inside C from the boundary of C. As such, we have
that |Qin| ≥ |CH(Qin)| ≥ |Fin|.
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Figure 3.1 The separation price, for the same point set, is different depending on how “tight”
the body is in relation to the inner and outer point set.

Similarly, each query in Qout = Q \ Qin gives rise to a separating halfplane. The
intersection of the corresponding halfplanes is a convex polygon H which contains C, and
furthermore contains no point of P \ C. Namely, the boundary of H behaves like an outer
fence. As such, we have |Qout| ≥ |H| ≥ |Fout|.

Combining, we have that |Q| = |Qin|+ |Qout| ≥ |Fin|+ |Fout| = �(P,C), as claimed. J

I Remarks.
1. Naturally the separation price, and thus the proof of the lower bound, generalizes to

higher dimensions. See [12].
2. The lower bound only holds for d ≥ 2. In 1D, the problem can be solved using O(logn)

queries with binary search. The above would predict that any algorithm needs Ω(1)
queries. However it is not hard to argue a stronger lower bound of Ω(logn).

3. In [12], we show that when P is a set of n points chosen uniformly at random from a
square and C is a smooth convex body, E[�(P,C)] = O(n1/3). Thus, when the points
are randomly chosen, one can think of �(P,C) as growing sublinearly in n.

3.2 A sketch of the improved algorithm
We refer to reader to [12] for a complete description of the improved algorithm in 2D. The
idea of the algorithm is conceptually the same as the greedy algorithm of Section 2: at all
times a current inner approximation B ⊆ C and the set of unclassified points U ⊆ P are
maintained. We define a pocket to be a connected region of CH(U ∪B) \B (see Figure 3.2).
The algorithm will repeatedly choose points inside a pocket, and attempt to classify them,
while simultaneously dividing the pocket into two smaller pockets. In this way, we improve
the inner approximation B every time a pocket is handled. The algorithm continues in this
fashion until all points are classified. The analysis involves a careful charging argument.
Roughly speaking, whenever a pocket contains a vertex of Fin or Fout, we can charge the
work of creating and splitting the pocket to such a vertex. Otherwise, a pocket contains no
vertex from either fence. For such a pocket, we prove that when this pocket was created
by the algorithm, all of the points contained in the pocket must lie outside C. When all
points inside a pocket are outside C, we argue that they can all be classified as outside after
O(logn) queries by using centerpoints as the oracle queries.

I Theorem 12 (Proof in [12]). Let C be a convex body provided via a separation oracle,
and let P be a set of n points in the plane. The improved classification algorithm performs
O
([

1 + �(P,C)
]

log2 n
)
oracle queries. The algorithm correctly identifies all points in P ∩C

and P \ C.

ICALP 2020
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B B

Figure 3.2 Unclassified points and their pockets.

4 Application: Minimizing a convex function

Suppose we are given a set of n points P in the plane and a convex function f : R2 → R. Our
goal is to compute the point in P minimizing minp∈P f(p). Given a point p ∈ R2, assuming
that we can evaluate f and the derivative of f at p efficiently, we show that the point in P
minimizing f can be computed using O(9P log2 n) evaluations to f or its derivative.

I Definition 13. Let f : Rd → R be a convex function. For a number c ∈ R, define the level
set of f as Lf (c) =

{
p ∈ Rd

∣∣ f(p) ≤ c
}
. If f is a convex function, then Lf (c) is a convex

set for all c ∈ R.

I Definition 14. Let f : Rd → R be a convex (and possibly non-differentiable) function.
For a point p ∈ Rd, a vector v ∈ Rd is a subgradient of f at p if for all q ∈ Rd, f(q) ≥
f(p) + 〈v, q − p〉. The subdifferential of f at p ∈ Rd, denoted by ∂f(p), is the set of all
subgradients v ∈ Rd of f at p.

It is well known that when the domain for f is Rd and f is a convex function, then ∂f(p)
is a non-empty set of all p ∈ Rd (for example, see [8, Chapter 3]).

Let α = minp∈P f(p). We have that Lf (α)∩P = {p ∈ P | f(p) = α} and Lf (α′)∩P = ∅
for all α′ < α. Hence, the problem is reduced to determining the smallest value r such that
Lf (r) ∩ P is non-empty.

I Lemma 15. Let P be a collection of n points in the plane. For a given value r, let
Cr = Lf (r). The set Cr ∩ P can be computed using O(9P logn) evaluations to f or its
derivative. If T is the time needed to evaluate f or its derivative, the algorithm can be
implemented in O(n log2 n log logn+ T · 9P logn) expected time.

Proof. The Lemma follows by applying Theorem 8. Indeed, let Cr = Lf (r) be the convex
body of interest. It remains to design a separation oracle for Cr.

Given a query point q ∈ R2, first compute c = f(q). If c ≤ r, then report that q ∈ Cr.
Otherwise, c > r. In this case, compute some gradient vector v in ∂f(q). Using the vector
v, we can obtain a line l tangent to the boundary of Lf (c) at q. As Lf (r) ⊆ Lf (c), l is a
separating line for q and Cr, as desired. As such, the number of separation oracle queries
needed to determine Cr ∩ P is bounded by O(9P logn) by Theorem 8.

The implementation details of Theorem 8 are given in Lemma 9. J

The algorithm

Let α = minp∈P f(p). For a given number r ≥ 0, set Pr = Lf (r) ∩ P . We develop a
randomized algorithm to compute α.
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Set P0 = P . In the ith iteration, the algorithm chooses a random point pi ∈ Pi−1 and
computes ri = f(pi). Next, we determine Pri using Lemma 15. In doing so, we modify
the separation oracle of Lemma 15 to store the collection of queries Si ⊆ P which satisfy
f(s) = ri for all s ∈ Si. We set Pi+1 = Pri \ Si. Observe that all points p ∈ Pi+1 have
f(p) < ri. The algorithm continues in this fashion until we reach an iteration j in which
|Pj+1| ≤ 1. If Pj+1 = {q} for some q ∈ P , output q as the desired point minimizing the
geometric median. Otherwise Pj+1 = ∅, implying that Prj = Sj , and the algorithm outputs
any point in the set Sj .

Analysis

We analyze the running time of the algorithm. To do so, we argue that the algorithm invokes
the algorithm in Lemma 15 only a logarithmic number of times.

I Lemma 16. In expectation, the above algorithm terminates after O(logn) iterations.

Proof. Let V = {f(p) | p ∈ P} and N = |V |. For a number r, define Vr = {i ∈ V | i ≤ r}.
Notice that we can reinterpret the algorithm described above as the following random process.
Initially set r0 = maxi∈V i. In the ith iteration, choose a random number ri ∈ Vri−1 . This
process continues until we reach an iteration j in which

∣∣Vrj ∣∣ ≤ 1.
We can assume without loss of generality that V = {1, 2, . . . , N}. For an integer i ≤ N ,

let T (i) be the expected number of iterations needed for the random process to terminate
on the set {1, . . . , i}. We have that T (i) = 1 + 1

i−1
∑i−1
j=1 T (i − j), with T (1) = 0. This

recurrence solves to T (i) = O(log i). As such, the algorithm repeats this random process
O(logN) = O(logn) times in expectation. J

I Lemma 17. Let P be a set of n points in R2 and let f : R2 → R be a convex function. The
point in P minimizing f can be computed using O(9P log2 n) evaluations to f or its derivative.
The bound on the number of evaluations holds in expectation. If T is the time needed to
evaluate f or its derivative, the algorithm can be implemented in O(n log3 n log logn+ T ·
9P log2 n) expected time.

Proof. The result follows by combining Lemma 15 and Lemma 16. J

4.1 The discrete geometric median

Let P be a set of n points in Rd. For all x ∈ Rd, define the function f(x) =
∑
q∈P−x ‖x−q‖2.

The discrete geometric median is defined as the point in P minimizing the quantity
minp∈P f(p).

Note that f is convex, as it is the sum of convex functions. Furthermore, given a point p,
we can compute f(p) and the derivative of f at p in O(n) time. As such, by Lemma 17, we
obtain the following.

I Lemma 18. Let P be a set of points in R2. Then the discrete geometric median of P can
be computed in O(n log2 n · (logn log logn+ 9P )) expected time.

I Remark. For a set of n points P chosen uniformly at random from the unit square, it is
known that in expectation 9P = Θ(n1/3) [1]. As such, the discrete geometric median for
such a random set P can be computed in O(n4/3 log2 n) expected time.

ICALP 2020
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5 Conclusion and open problems

In this paper we have presented various algorithms for classifying points with oracle access
to an unknown convex body. As far as the authors are aware, this problem has not been
studied within the community previously. However we believe that this is an interesting and
natural problem. We now pose some open problems.

(A) Develop a more natural instance-optimal algorithm in 2D which improves upon the
O(log2 n) approximation. Alternatively, develop algorithms in which the number of
queries is parameterized by different functions of the input instance.

(B) An algorithm in 3D which is instance-optimal up to some additional factors (see [12] for
the definition of the separation price in higher dimensions).

(C) Any results beyond three dimensions is unknown. The greedy algorithm (Theorem 8
and Theorem 10) easily extends to Rd. However the analysis in higher dimensions will
most likely reveal that the algorithm makes (ignoring logarithmic factors) of the order
of 9PO(d) queries, which is only interesting when 9P is much smaller than n.
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Abstract
The terminal backup problems [Anshelevich and Karagiozova, 2011] form a class of network design
problems: Given an undirected graph with a requirement on terminals, the goal is to find a minimum
cost subgraph satisfying the connectivity requirement. The node-connectivity terminal backup
problem requires a terminal to connect other terminals with a number of node-disjoint paths. This
problem is not known whether is NP-hard or tractable. Fukunaga (2016) gave a 4/3-approximation
algorithm based on LP-rounding scheme using a general LP-solver.

In this paper, we develop a combinatorial algorithm for the relaxed LP to find a half-integral
optimal solution in O(m log(mUA) ·MF(kn, m+k2n)) time, where m is the number of edges, k is the
number of terminals, A is the maximum edge-cost, U is the maximum edge-capacity, and MF(n′, m′)
is the time complexity of a max-flow algorithm in a network with n′ nodes and m′ edges. The
algorithm implies that the 4/3-approximation algorithm for the node-connectivity terminal backup
problem is also efficiently implemented. For the design of algorithm, we explore a connection between
the node-connectivity terminal backup problem and a new type of a multiflow, called a separately-
capacitated multiflow. We show a min-max theorem which extends Lovász–Cherkassky theorem to
the node-capacity setting. Our results build on discrete convex analysis for the node-connectivity
terminal backup problem.
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1 Introduction

Network design problems are central problems in combinatorial optimization. A large number
of basic combinatorial optimization problems are network design problems. Examples are
spanning tree, matching, TSP, and Steiner networks. They admit a typical formulation
of a network design problem: Find a minimum-cost network satisfying given connectivity
requirements. The present paper addresses a relatively new class of network design problems,

EA
T

C
S

© Hiroshi Hirai and Motoki Ikeda;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 65; pp. 65:1–65:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4784-5110
mailto:hirai@mist.i.u-tokyo.ac.jp
https://orcid.org/0000-0003-2106-2449
mailto:motoki_ikeda@mist.i.u-tokyo.ac.jp
https://doi.org/10.4230/LIPIcs.ICALP.2020.65
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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called terminal backup problems. The problem is to find a cheapest subnetwork in which
each terminal can send a specified amount of flows to other terminals, i.e., the data in each
terminal can be backed up, possibly in a distributed manner, in other terminals.

A mathematical formulation of the terminal backup problem is given as follows. Let
((V,E), S, u, c, a, r) be an undirected network, where (V,E) is a simple undirected graph,
S ⊆ V (|S| ≥ 3) is a set of terminals, u : E → Z+ is a nonnegative edge-capacity function,
c : V \ S → Z+ is a nonnegative node-capacity function, a : E → Z+ is a nonnegative
edge-cost function, and r : S → Z+ is a nonnegative requirement function on terminals. The
goal is to find a feasible edge-capacity function x of minimum cost

∑
e∈E a(e)x(e). Here an

edge-capacity function x is said to be feasible if 0 ≤ x ≤ u and each terminal s ∈ S has a flow
from s to S \{s}, an {s}–(S \{s}) flow, of total flow-value r(s) in the network ((V,E), S, x, c)
capacitated by the edge-capacity x and the node-capacity c.

The original formulation, due to Anshelevich and Karagiozova [1], is uncapacitated (i.e.,
u, c are infinity), requires x to be integer-valued, and assumes r(s) = 1 for all s ∈ S. They
showed that an optimal solution can be obtained in polynomial time. Bernáth et al. [2]
extended this polynomial time solvability to an arbitrary integer-valued requirement r. For
the setting of general edge-capacity (and infinite node-capacity), which we call the edge-
connectivity terminal backup problem (ETB), it is unknown whether ETB is NP-hard or
tractable.

Fukunaga [8] considered the above setting including both edge-capacity and node-capacity,
which we call the node-connectivity terminal backup problem (NTB), and explored intriguing
features of its fractional relaxation. The fractional ETB (FETB) and fractional NTB (FNTB)
are LP-relaxations obtained from ETB and NTB, respectively, by relaxing solution x to be
real-valued. Fukunaga showed the half-integrality property of FNTB, that is, there always
exists an optimal solution that is half-integer-valued. Based on this property, he developed
a 4/3-approximation algorithm for NTB by rounding a half-integral (extreme) optimal
solution. Moreover, he noticed a useful relationship between FETB and multicommodity
flow (multiflow). In fact, a solution of FETB is precisely the edge-support of a multiflow
consisting of the r(s) amount of {s}–(S \ {s}) flow for each s ∈ S. This is a consequence of
Lovász–Cherkassky theorem [5, 21] in multiflow theory. In particular, FETB is equivalent to
a minimum-cost multiflow problem, which is a variant of the one studied by Karzanov [19, 20]
and Goldberg and Karzanov [10].

Utilizing this connection, Hirai [12] developed a combinatorial polynomial time algorithm
for FETB and the corresponding multiflow problem. This algorithm uses a max-flow algorithm
as a subroutine, and brings a combinatorial implementation of Fukunaga’s 4/3-approximation
algorithm for ETB, where he used a generic LP-solver (e.g., the ellipsoid method) to obtain
a half-integral extreme optimal solution.

Our first contribution is the extension of this result to the NTB setting, implying that
the 4/3-approximation algorithm for NTB is also efficiently implemented.

I Theorem 1. A half-integral optimal solution of FNTB can be obtained in O(m log(mUA) ·
MF(kn,m+ k2n)) time.

Here n := |V |, m := |E|, k := |S|, U := maxe∈E u(e), and A := maxe∈E a(e), and MF(n′,m′)
is the time complexity of an algorithm for solving the max-flow problem in the network with
n′ nodes and m′ edges.

As in the ETB case, we explore and utilize a new connection between NTB and a
multiflow problem. We introduce a new notion of a free multiflow with separate node-capacity
constraints or simply a separately-capacitated multiflow. Instead of the usual node-capacity
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constraints, this multiflow should satisfy the separate node-capacity constraints: For each
terminal s ∈ S and each node i ∈ V , the total flow-value of flows connecting s to the other
terminals and flowing into i is at most the node capacity c(i).

Our second contribution is a min-max theorem for separately-capacitated multiflows,
which extends Lovász–Cherkassky theorem to the node-capacitated setting and implies that
a solution of FNTB is precisely the edge-support of a separately-capacitated multiflow. This
answers Fukunaga’s comment: how the computation should proceed in the node capacitated
setting remains elusive [8, p. 799].

I Theorem 2. The maximum flow-value of a separately-capacitated multiflow is equal to
(1/2)

∑
s∈S νs, where νs is the minimum capacity of an {s}–(S \ {s}) cut. Moreover, a

half-integral maximum multiflow exists, and it can be found in O(n ·MF(kn,m+ k2n)) time.

Here, a T–T ′ cut is a union of an edge-subset F ⊆ E and a node-subset X ⊆ V \(T ∪T ′) such
that removing those subsets disconnects T and T ′, and its capacity is defined as u(F ) + c(X).

Our algorithm for Theorem 1 builds on the ideas of Discrete Convex Analysis (DCA)
beyond Zn – a theory of discrete convex functions on special graph structures generalizing
Zn (the grid graph), which has been recently differentiated from the original DCA [23] and
has been successfully applied to algorithm design for well-behaved classes of multiflow and
related network design problems [12, 13, 14, 16]. Indeed, the algorithm in [12] for FETB was
designed as: Formulate the dual of FETB as a minimization of an L-convex function on the
(Cartesian) product of trees, apply the framework of the steepest descent algorithm (SDA),
and show that it is implemented by using a max-flow algorithm as a subroutine.

We formulate the dual of FNTB as an optimization problem on the product of the spaces
of all subtrees of a fixed tree (Section 2.1). We develop a simple cut-descent algorithm for
this optimization problem (Sections 2.2 and 2.3). Then we prove that this coincides with
SDA for an L-convex function defined on the graph structure on the space of all subtrees
(Section 3). Then the number of descents is estimated by a general theory of SDA, and the
cost-scaling method is naturally incorporated to derive the time complexity (Section 2.4).
Theorem 2 is obtained as a byproduct of these arguments. Due to the space limitation, we
omit most of technical proofs, which are given in the full version.

Related work

ETB is a survivable network design problem (SND) with a special skew-supermodular function,
and NTB is a node connectivity version (NSND) with a special skew-supermodular biset
function. In his influential paper [18], Jain devised the iterative rounding method, and obtains
a 2-approximation algorithm for SND, provided that an extreme optimal solution of the LP-
relaxation of SND (with modified skew-supermodular functions) is available. Fleischer, Jain,
and Williamson [7] and Cheriyan, Vempala, and Vetta [4] extended this iterative rounding
2-approximation algorithm to some classes of NSND. One of important open problems in
the literature is a design of a combinatorial 2-approximation algorithm for (V)SND with the
skew-supermodular (biset) function associated with connectivity requirements. One approach
is to devise a combinatorial polynomial time algorithm to find an extreme optimal solution of
its LP-relaxation; the currently known only polynomial time algorithm is a general LP-solver
(e.g., the ellipsoid method). Our algorithm for FNTB, though it is the LP-relaxation of a very
special NSND, may give an insight on such a research direction. On this direction, Feldmann,
Könemann, Pashkovich, and Sanità [6] gave a (2 + ε)-approximation algorithm for SND with
a proper function by solving the LP-relaxation approximately via the multiplicative weights
method [9].
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The notion of a separately-capacitated multiflow, introduced in this paper, is a new
variation of S-paths packing. As seen in [24, Chapter 73], S-paths packing is one of the
well-studied subjects in combinatorial optimization. Recent work [17] developed a fast
algorithm for half-integral nonzero S-paths packing problem on a group-valued graph (with
unit-capacity). Our derivation of Theorem 2 is different with flow-augmenting arguments
such as Cherkassky’s T-operation or those in [17]. It is a future research to develop such
an algorithm for a separately-capacitated multiflow. Also, exploring an integer version of
Theorem 2, an analogue of Mader’s theorem [22], is an interesting future direction.

Notations

Let Z,Z+,R,R+ be the set of integers, nonnegative integers, reals, and nonnegative reals,
respectively. Let Z∗,Z∗+ be the set of half-integers and nonnegative half-integers, respectively,
i.e., Z∗ := Z/2. Let R := R ∪ {+∞} and R := R ∪ {−∞}. Let denote (a)+ := max{a, 0}
for a ∈ R. For a finite set V , we often identify a function on V with a vector in RV . For
i ∈ V , its characteristic function χi : V → R is defined by χi(j) = 1 if j = i and χi(j) = 0
otherwise. For a function f on V and a subset U ⊆ V , we denote f(U) :=

∑
i∈U f(i).

In this paper, all graphs are simple and connected unless otherwise specified. For an
undirected graph on nodes V , the set of edges connecting U1 and U2 (U1, U2 ⊆ V ) is denoted
by δ(U1, U2). If U2 = V \ U1, we simply denote it by δU1. If U1 is a singleton, i.e., U1 = {i},
then we denote δ{i} by δi. An edge connecting i and j is denoted by ij.

2 Node-Connectivity Terminal Backup Problem

Let ((V,E), S, u, c, a, r) be a network. Assume that S = {1, . . . , k} ⊆ V = {1, . . . , n}. By a
perturbation technique, we may assume that a is positive; see Remark 3.

A sufficient and necessity condition for the feasibility of NTB is easily derived from the
Menger’s theorem as follows. A biset is a pair of node subsets X,X+ ⊆ V with X ⊆ X+.
We write X̂ = (X,X+) for a biset. Let Γ(X̂) := X+ \X, and let δ(X̂) := δ(X,V \X+). For
s ∈ S, define a family Cs of bisets by

Cs := {(X,X+) | {s} ⊆ X ⊆ X+ ⊆ V \ (S \ {s})}.

Let C :=
⋃
s∈S Cs. Then an edge-capacity x : E → Z+ is feasible if and only if

x(δ(X̂)) + c(Γ(X̂)) ≥ r(s) (X̂ ∈ Cs, s ∈ S). (1)

We assume that u satisfies (1) throughout the paper (otherwise NTB is infeasible).
Fukunaga [8] developed an approximation algorithm for NTB via the following relaxation

problem FNTB:

(FNTB) Minimize
∑
e∈E

a(e)x(e)

subject to x(δX̂) + c(Γ(X̂)) ≥ r(s) (s ∈ S, X̂ ∈ Cs), (2)
0 ≤ x(e) ≤ u(e) (e ∈ E). (3)

From the assumption, the polytope defined by (2) and (3) is nonempty. Also, it is known [8,
Corollary 3.3] that the polytope is half-integral. Thus FNTB has a half-integral optimal
solution. This can be obtained by a general LP solver [8, Lemma 4.4].
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I Remark 3. If Z := {e ∈ E | a(e) = 0} is nonempty, then we use the following perturbation
technique based on [10, 20]. Recall that U is the maximum edge capacity. Define a positive
edge-cost a′ by a′(e) := 1 for e ∈ Z and a′(e) := (2U |Z| + 1)a(e) for e /∈ Z. Let x∗ be a
half-integral optimal solution of FNTB under the edge-cost a′ (it exists by the half-integrality).
We prove that x∗ is also optimal under the original edge-cost a. It suffices to show that∑

e∈E a(e)x∗(e) ≤
∑
e∈E a(e)x(e) for any feasible half-integral edge-capacity x. It holds

that (2U |Z|+ 1)(
∑
e∈E a(e)x∗(e)−

∑
e∈E a(e)x(e)) =

∑
e∈E a

′(e)x∗(e)−
∑
e∈E a

′(e)x(e)−
x∗(Z) + x(Z) ≤ U |Z| and thus

∑
e∈E a(e)x∗(e)−

∑
e∈E a(e)x(e) ≤ U |Z|/(2U |Z|+ 1) < 1/2.

By the half-integrality, we obtain
∑
e∈E a(e)x∗(e)−

∑
e∈E a(e)x(e) ≤ 0.

2.1 Combinatorial Duality for FNTB
We introduce a combinatorial duality theory for FNTB. For each s ∈ S, consider an infinite
path graph Ps with one endpoint. Glue those k (= |S|) endpoints, and denote the resulting
graph by T. We denote the set of nodes of Ps and T also by Ps and T, respectively. We
give length 1/2 for each edge in T. The glued endpoint is denoted by 0, and the point in Ps
(s ∈ S) having the distance l from 0 is denoted by (l, s). We denote the set of all subtrees
of T by S = S(T). If a subtree T does not contain 0, then it is contained in some Ps. Such
a subtree T is said to be of s-type and is denoted by [l, l′]s, where (l, s) and (l′, s) are the
closest and farthest nodes from 0 in T , respectively. If a subtree T contains 0, then it is said
to be of 0-type and is denoted by [l1, l2, . . . , lk] = [ls]s∈S , where (ls, s) is the node in T ∩ Ps
farthest from 0 for each s ∈ S. We identify a node on T with a subtree consisting of this
node only.

For a 0-type subtree T = [ls]s∈S ∈ S, let sizes(T ) := ls for s ∈ S, and size(T ) :=∑k
s=1 sizes(T ). For an s-type subtree T = [l, l′]s ∈ S, let size(T ) := l′ − l. For two subtrees

T, T ′ ∈ S, we denote the minimum distance between T and T ′ on T by dist(T, T ′), i.e.,
dist(T, T ′) := min{dT(v, v′) | v ∈ T, v′ ∈ T ′}, where dT is the shortest distance on T.

We formulate a dual of FNTB as a problem of assigning a subtree for each node i ∈ V .
That is, subtrees are viewed as node-potentials. So we use pi and p : V → S for denoting
a subtree assigned for node i ∈ V and a potential function, respectively. Formally, let us
consider the following maximization problem DTB.

(DTB) Maximize
∑
s∈S

rs dist(0, ps)−
∑
i∈V \S

ci size(pi)−
∑
ij∈E

uij(dist(pi, pj)− aij)+

subject to p : V → S,
ps ∈ Ps (s ∈ S). (4)

It turns out in the proof of Proposition 4 below that this seemingly strange formulation of
DTB is essentially the LP-dual of FTB. If p : V → S satisfies (4), then it is called a potential.
See Figure 1 for an intuition for a subtree-valued potential p. A potential p is said to be
proper if any pi for i ∈ V is contained in the minimal subtree that contains all ps (s ∈ S).

I Proposition 4. The optimum value of FNTB is at least that of DTB. Moreover, there
exists a proper optimal potential for DTB.

Proof. Let p : V → S be any potential (not necessarily proper). For each s ∈ S, suppose
that ps is written as ps = (Ms, s) for Ms ∈ Z∗+. Define a new proper potential p′ : V → S by

p′i :=
{

[min{l,Ms},min{l′,Ms}]s if pi = [l, l′]s,
[min{l1,M1}, . . . ,min{lk,Mk}] if pi = [l1, . . . , lk].

Then the objective function value of p′ does not decrease. This implies the latter part of the
statement.
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Figure 1 A subtree-valued potential p.

We next show the former part, i.e., the weak duality. The LP dual of FNTB is written as

Maximize
∑
s∈S

∑
X̂∈Cs

(rs − c(Γ(X̂)))π(X̂)−
∑
e∈E

ue

 ∑
X̂∈C:e∈δX̂

π(X̂)− ae

+

subject to π : C → R+.

We show that for any proper potential p : V → S, we can construct π : C → R+ such that∑
X̂∈Cs

π(X̂) = dist(0, ps) (s ∈ S), (5)

∑
X̂∈C:i∈Γ(X̂)

π(X̂) = size(pi) (i ∈ V \ S), (6)

∑
X̂∈C:e∈δX̂

π(X̂) = dist(pi, pj) (ij ∈ E). (7)

Then by
∑
X̂∈C c(Γ(X̂))π(X̂) =

∑
X̂∈C

∑
i∈Γ(X̂) ciπ(X̂) =

∑
i∈V \S ci

∑
X̂∈C:i∈Γ(X̂) π(X̂), the

weak duality follows.
Let e be an edge in T. We define a biset (Xe, X

+
e ) as follows. When we remove e from T,

there appear two connected components. Let Te be the component which does not contain
0 (∈ T). Define Xe, X

+
e ⊆ V by

Xe := {i ∈ V | pi is contained in Te}, X+
e := Xe ∪ {i ∈ V | pi contains e}.

Observe that if e is an edge in Ps and Xe 6= ∅, then (Xe, X
+
e ) ∈ Cs. Then a potential function

π : C → R+ defined by

π(X̂) := 1
2 |{e | X̂ = (Xe, X

+
e )}| (X̂ ∈ C)

satisfies (5)–(7). J

We remark that the technique used in the above proof is based on a tree representation
of a laminar biset family; see also [11] for the relating argument that maps to each node a
subtree as a potential. We also note that our algorithm below will give an algorithmic proof
of the strong duality.



H. Hirai and M. Ikeda 65:7

We next derive from Proposition 4 the complementary slackness condition. Let p : V → S
be a proper potential. By p, we decompose V into S ∪ V0 ∪

⋃
s∈S Vs, where

V0 := {i ∈ V \ S | pi is of 0-type},
Vs := {i ∈ V \ S | pi is of s-type} (s ∈ S).

In the next lemma, we see that it is sufficient to only consider edges ij ∈ E with dist(pi, pj) ≥
aij . Let denote the set of such edges by

E∗ := {ij ∈ E | dist(pi, pj) ≥ aij}.

For i ∈ V0 and s ∈ S, we denote a set of edges in E∗ connecting i and Vs by

Ei,s := {ij ∈ E∗ | j ∈ Vs} (i ∈ V0, s ∈ S).

By the positivity of a, we see that (Ei,1, Ei,2, . . . , Ei,k) is a partition of E∗ ∩ δi. For
i ∈ Vs (s ∈ S), there appear two connected components when we remove pi from T. Let Ti,0
be the component which includes 0 (∈ T), and let Ti,+ be the other component. Then we
define the sets of edges Ei,0 and Ei,+ by

Ei,0 := {ij ∈ E∗ | pj is contained in Ti,0},
Ei,+ := {ij ∈ E∗ | pj is contained in Ti,+}.

By the positivity of a, we see that (Ei,0, Ei,+) is a partition of E∗ ∩ δi.

I Lemma 5. Let x : E → R+ be an edge-capacity function with 0 ≤ x ≤ u, and let p : V → S
be a proper potential. If x and p satisfy the following conditions (A1–5), then x and p are
optimal solutions for FNTB and DTB, respectively:

(A1) For each ij ∈ E, if dist(pi, pj) > aij, then xij = uij.
(A2) For each ij ∈ E, if dist(pi, pj) < aij, then xij = 0.
(A3) For each i ∈

⋃
s∈S Vs, it holds x(Ei,0) = x(Ei,+) ≤ ci. If size(pi) > 0, then x(Ei,0) =

x(Ei,+) = ci.
(A4) For each i ∈ V0 and s ∈ S, it holds x(Ei,s) ≤ ci and x(Ei,s) ≤

∑
s′ 6=s x(Ei,s′). If

sizes(pi) > 0, then x(Ei,s) = ci.
(A5) For each s ∈ S, it holds x(δs) ≥ rs. If dist(0, ps) > 0, then x(δs) = rs.

Proof. Let x and p satisfy (A1–5). For the feasibility of x, it is sufficient to show that, for
each s ∈ S, there exists a flow satisfying the capacities x and c that connects s and S \ {s}
with flow-value rs. To prove this, we decompose x into a separately-capacitated multiflow.
An S-path is a path connecting distinct terminals. Consider the following algorithm, which
takes x as an input and outputs a function λ : P → R+, where P is a set of S-paths:

0. Let P = ∅.
1. Take s ∈ S and an edge sj satisfying x(sj) > 0. If such a pair does not exist, then stop

the algorithm; output (P, λ). Otherwise, let j0 ← s, j1 ← j, µ← x(sj), t← 1.
2. If jt is a terminal, then add P = (j0, j1, . . . , jt) to P and let λ(P ) := µ > 0. Update

x(e)← x(e)− µ on each edge e in P , and return to Step 1. Otherwise go to Step 3.
3. If jt ∈

⋃
s∈S Vs, then jt−1jt ∈ Ejt,+ or jt−1jt ∈ Ejt,0 by (A2) and x(jt−1jt) > 0. In

the former case, take jtjt+1 ∈ Ejt,0 with x(jtjt+1) > 0. Such an edge exists by the
former part of (A3). In the latter case, take jtjt+1 ∈ Ejt,+ with x(jtjt+1) > 0. Update
µ← min{µ, x(jtjt+1)}, t← t+ 1, and return to Step 2.
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If jt ∈ V0, then jt−1jt ∈ Ejt,s (as we will show). Take s′ 6= s with maximum x(Ejt,s
′) (>

0), and take jtjt+1 ∈ Ejt,s
′ with x(jtjt+1) > 0. Such an edge exists by x(jt−1jt) > 0 and

the former part of (A4). Update

µ← min

µ, x(jtjt+1),
min

{∑
s′′′ 6=s′′ x(Ejt,s

′′′)− x(Ejt,s
′′) | s′′ 6= s, s′

}
2

 ,

and t← t+ 1. Note that µ > 0 by the maximality of x(Ejt,s
′). Return to Step 2.

Suppose that we add (j0, j1, . . . , j`) to P in Step 2. Observe that jt+1 is at a side opposite
to jt−1 based on jt for each t = 1, . . . , `− 1. By the positivity of a and (A2), {jt−1, jt, jt+1}
are distinct and

dist(pjt−1 , pjt+1) = dist(pjt−1 , pjt
) + size(pjt

) + dist(pjt
, pjt+1)

if jt ∈
⋃
s∈S Vs, and

dist(pjt−1 , pjt+1) = dist(pjt−1 , pjt) + sizes(pjt) + sizes′(pjt) + dist(pjt , pjt+1)

if jt ∈ V0, where jt−1 ∈ Vs and jt+1 ∈ Vs′ (s 6= s′). Since T is a tree, we can show

dist(pj0 , pj`
) =

`−1∑
t=0

dist(pjt , pjt+1) +
∑

1≤t≤`−1, t 6=t′
size(pjt) + sizej0(pjt′ ) + sizej`

(pjt′ ) (8)

by an induction, where jt′ ∈ V0 (if exists); see also [12, Lemma 3.9]. Hence (j0, j1, . . . , j`) is
a “shortest path on T” from j0 to j`, and j0, . . . , j` are distinct.

Thus after |V | executions of Step 3, the algorithm adds a path P to P in Step 2. Also
the algorithm keeps (A2) and the former parts of (A3–4). To see it for (A4), suppose that
the algorithm adds a path (j0, j1, . . . , jt, . . . , j`) to P in Step 2, where j0 = s ∈ S, jt ∈ V0
and j` = s′ ∈ S. By the above argument, such t is uniquely determined (if exists). Then for
all s′′ 6= s, s′, we have

∑
s′′′ 6=s′′ x(Ejt,s

′′′)− x(Ejt,s
′′) ≥ 2µ. Thus after the decrease of the

value of x along with P , it satisfies that
∑
s′′′ 6=s′′ x(Ejt,s

′′′)− x(Ejt,s
′′) ≥ 0.

After the decrease of the value of x along with a path, it becomes x(e) = 0 for at least
one edge e ∈ E, or becomes

∑
s′ 6=s x(Ei,s′)− x(Ei,s) = 0 for at least one pair of i ∈ V0 and

s ∈ S. The algorithm keeps those values to be zero in the remaining execution, implying
that it terminates after adding at most O(m+ kn) paths to P . To see it, suppose that after
the decrease of the value of x along with a path, it becomes

∑
s′ 6=s x(Ei,s′) − x(Ei,s) = 0

for i ∈ V0 and s ∈ S. If the algorithm chooses a path (j0, . . . , jt = i, . . . , j`) for adding
to P in the remaining execution, then by the maximality of x(Ei,s), it should satisfy that
jt−1jt ∈ Ei,s or jtjt+1 ∈ Ei,s. Thus

∑
s′ 6=s x(Ei,s′)−x(Ei,s) does not change by the decrease

of the value of x along with (j0, . . . , j`).
We have shown the algorithm always terminates in finite steps. For the output f = (P, λ),

let f(e) :=
∑
P∈P:e∈P λ(P ) for e ∈ E, and let f(i) :=

∑
P∈P:i∈P λ(P ) for i ∈ V . Also let

Ps ⊆ P be the subset of paths connecting s to other terminals, and let fs = (Ps, λs) for
s ∈ S. Clearly, it holds that f(e) ≤ x(e) ≤ u(e) for e ∈ E. For i ∈ Vs (s ∈ S), if a path
P ∈ P goes through i, then P must be contained in Ps. Thus by the former part of (A3),
fs(i) = f(i) ≤ x(Ei,0) (= x(Ei,+)) ≤ c(i). Also, fs′(i) ≤ fs(i) ≤ c(i) for any s′ 6= s. On
the other hand, for i ∈ V0, if a path in Ps (s ∈ S) goes through i, then it must include an
edge contained in Ei,s. Thus by the former part of (A4), we have fs(i) ≤ x(Ei,s) ≤ c(i).
Therefore f is a separately-capacitated multiflow. Moreover, fs satisfies the requirement r
by the former part of (A5). Thus x is a feasible solution of FNTB.
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We next show the optimality of x and p. First observe that when the algorithm terminates,
all edges e ∈ E satisfy x(e) = 0. In fact, if there exists an edge e ∈ E with x(e) > 0, then
we can construct an S-path with edges having positive x-values by repeating to apply the
former parts of (A3–4). Thus f(e) = x(e) (e ∈ E) for the original input x. We see that

∑
ij∈E

aijxij −
∑
s∈S

rs dist(0, ps) +
∑

i∈V \S

ci size(pi) +
∑
ij∈E

uij(dist(pi, pj)− aij)+

=
∑
ij∈E

(dist(pi, pj)− aij)+(uij − xij) +
∑
ij∈E

(aij − dist(pi, pj))+xij +
∑
ij∈E

xij dist(pi, pj)

+
∑

i∈V \S

ci size(pi)−
∑
s∈S

rs dist(0, ps)

=
∑
ij∈E

(dist(pi, pj)− aij)+(uij − xij) +
∑
ij∈E

(aij − dist(pi, pj))+xij

+
∑
s∈S

∑
i∈Vs

(ci − f(i)) size(pi) +
∑
i∈V0

∑
s∈S

(ci − fs(i)) sizes(pi) +
∑
s∈S

(f(s)− rs) dist(0, ps), (9)

where we use a+ (d− a)+ = d+ (a− d)+ for a, d ∈ R and∑
ij∈E

f(ij) dist(pi, pj) +
∑
s∈S

∑
i∈Vs

f(i) size(pi) +
∑
i∈V0

∑
s∈S

fs(i) sizes(pi)

=
∑
ij∈E

∑
P∈P,ij∈E(P )

λ(P ) dist(pi, pj)

+
∑
s∈S

∑
i∈Vs

∑
P∈P,i∈V (P )

λ(P ) size(pi) +
∑
i∈V0

∑
s∈S

∑
P∈Ps,i∈V (P )

λs(P ) sizes(pi)

=
∑
st

∑
P∈P:P connects st

λ(P ) dist(ps, pt) =
∑
s∈S

f(s) dist(0, ps)

by (8). We see f(i) = x(Ei,0) (= x(Ei,+)) for i ∈
⋃
s∈S Vs, and fs(i) = x(Ei,s) for i ∈ V0

and s ∈ S. Also f(s) = x(δs) for s ∈ S. Then (9) is zero by (A1–2) and the latter parts of
(A3–5). By Proposition 4, we conclude that x and p are both optimal. J

I Remark 6. Suppose the input edge-capacity x satisfies x(δi) ∈ Z+ for any i ∈ V . Then µ is
always half-integral, and the integrality of x(δi) is also kept in the execution of the algorithm.
Thus the output multiflow is half-integer-valued. This argument will be used for proving a
min-max theorem (Theorem 2) for a separately-capacitated multiflow later.

The decomposition algorithm is based on [11, Lemma 4.5]; see also [14, Lemma 3.3].
The existence of an edge-capacity x satisfying (A1–5) can be checked by solving the

undirected circulation problem. This fact leads a simple descent algorithm for DTB and
FNTB. Notice that a potential p : V → S can be identified with a vector in Sn. For brevity
we write p ∈ Sn below. Let ha = h : Sn → R be a function defined by

h(p) := −
∑
s∈S

rs dist(0, ps) +
∑
i∈V \S

ci size(pi) +
∑
ij∈E

uij(dist(pi, pj)− aij)+ (10)

if p ∈ Sn is a potential and h(p) :=∞ otherwise. Then DTB is precisely a minimization of h
over Sn. Consider the following algorithm DESCENT:
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Algorithm 1 DESCENT.

0. Initialize p ≡ 0 (i.e., p(i) = 0 for any i ∈ V ).
1. Check the sufficiency of the optimality of p by searching x satisfying (A1–5).
2. If x is found, then x and p are optimal; stop.
3. Otherwise find q ∈ Sn with h(q) < h(p); update p by q and go to Step 1.

We give more details of DESCENT in Section 2.3. As for Step 1, we can also do Step 3
by the undirected circulation problem; q is computed by the certificate of the nonexistence of
x. In the following subsections, we introduce the undirected circulation problem and discuss
how to find x or q in each case.

2.2 Checking the Optimality
Let (U,F ) be an undirected graph, and let b : F → R and b : F → R be lower and upper
capacity functions satisfying b(e) ≤ b(e) for each e ∈ F . The graph (U,F ) may contain
self-loops but no multiedges. The circulation problem on ((U,F ), b, b) is the problem of finding
an edge-weight y : F → R satisfying b(e) ≤ y(e) ≤ b(e) for each e ∈ F and

∑
ij∈F y(ij) = 0

for each i ∈ U . Such a y is called a circulation.
Let 3U denote the set of pairs (Y,Z) of two subsets Y,Z ⊆ U with Y ∩ Z = ∅. For

(Y,Z) ∈ 3U , let χY,Z :=
∑
i∈Y χi −

∑
i∈Z χi ∈ RU . Define the cut function κ : 3U → R by

κ(Y,Z) :=
∑
ij∈F
{(χY,Z({i, j}))+b(ij)− (χZ,Y ({i, j}))+b(ij)} ((Y,Z) ∈ 3U ).

It is well-known that the feasibility of the circulation problem is characterized via the cut
function. We can show it by reducing to Hoffman’s circulation theorem. A cut (Y,Z) ∈ 3U
with κ(Y,Z) > 0 is called violating, and is called maximum violating if it attains the maximum
κ(Y,Z) among all violating cuts.

I Lemma 7 (see, e.g., [16, Theorems 2.4, 2.7]). Let ((U,F ), b, b) be an undirected network.
(1) The circulation problem is feasible if and only if κ(Y,Z) ≤ 0 for any (Y, Z) ∈ 3U .
(2) If b and b are integer-valued, then there exists a feasible half-integer-valued circulation

y : E → Z∗+.
(3) Under the same assumption, we can obtain a feasible half-integer-valued circulation or a

maximum violating cut in O(MF(|U |, |F |)) time.

Let us return to our problem. For a given proper potential p ∈ Sn, the existence of
x : E → R+ satisfying (A1–5) reduces to the undirected circulation problem on the following
network Np := ((U,F ), c, c). See Figure 2 for the following construction.

For each i ∈
⋃
s∈S Vs, divide i into two nodes Ui := {i0, i+}, and connect nodes by an

edge i0i+. For representing (A3), let c(i0i+) := −ci, and let c(i0i+) := 0 if size(pi) = 0 and
c(i0i+) := −ci if size(pi) > 0. For each i ∈ V0, divide i into 2k nodes Ui := U0

i ∪ U
+
i , where

U0
i := {i1,0, i2,0, . . . , ik,0} and U+

i := {i1,+, i2,+, . . . , ik,+}, and connect them by edges is,0is,+
for s ∈ S and is,0is

′,0 for distinct s, s′ ∈ S. For representing (A4), let c(is,0is,+) := −ci,
and let c(is,0is,+) := 0 if sizes(pi) = 0 and c(is,0is,+) := −ci if sizes(pi) > 0. Also let
c(is,0is′,0) := 0 and c(is,0is′,0) :=∞. For each s ∈ S, let s0 := s and Us := {s0}, and add a
self-loop s0s0. For representing (A5), let c(s0s0) := −∞ if dist(0, ps) = 0 and c(s0s0) := −rs
if dist(0, ps) > 0, and let c(s0s0) := −rs.
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Figure 2 The undirected network Np.

For each edge ij ∈ E, if dist(pi, pj) < aij , then xij = 0 by (A2). Thus we remove those
edges. Let E> be the set of edges ij ∈ E with dist(pi, pj) > aij , and let E= be the set of
edges ij ∈ E with dist(pi, pj) = aij . We replace endpoints of each edge ij ∈ E> ∪ E=. If
i ∈ V0 and j ∈ Vs, then replace ij with is,+j0. If i ∈ Vs and j ∈ Vs′ (s 6= s′), then replace ij
with i0j0. If i, j ∈ Vs and pi is closer to 0 than pj , i.e., dist(0, pi) < dist(0, pj), then replace
ij with i+j0. We identify those replaced edges with the original edges. Let c(ij) := 0 if
ij ∈ E= and c(ij) := uij if ij ∈ E>, and let c(ij) := uij . U and F are defined as the union
of all nodes and edges in the above, respectively.

I Theorem 8. Let Np = ((U,F ), c, c) be the undirected network constructed from a proper
potential p ∈ Sn. If it has a (half-integer-valued) circulation y : F → R, then an edge-capacity
function x : E → R+ defined by

x(e) :=
{
y(e) if e ∈ E> ∪ E=,

0 otherwise (e = ij with dist(pi, pj) < aij)

satisfies (A1–5).

Proof. We can obtain (A1–5) from definitions immediately. For example, the former part of
(A4) follows from x(Ei,s) = −y(is,0is,+) ≤ −c(is,0is,+) = ci and

x(Ei,s) = −y(is,0is,+) =
∑
s′ 6=s

y(is,0is
′,0) ≤

∑
s′ 6=s
−y(is

′,0is
′,+) =

∑
s′ 6=s

x(Ei,s
′
),

and the latter part of (A4) follows from −y(is,0is,+) ≥ −c(is,0is,+) = ci for i ∈ V0 and s ∈ S
with sizes(pi) > 0. J

2.3 Finding a Descent Direction
If the algorithm in Lemma 7 outputs a circulation in Np, then an optimal edge-capacity is
computed from the circulation, and p is optimal by Lemma 5 and Theorem 8. Otherwise
the algorithm outputs a maximum violating cut. We show that we can find q ∈ Sn with
h(q) < h(p) using the maximum violating cut. A basic idea is to modify each subtree pi,
according to the intersection pattern of the maximum violating cut with Ui, so that the
objective function h decreases. This implies the necessity of Lemma 5 and the strong duality
of Proposition 4.
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We begin with introducing the notion of basic moves for a subtree. For an s-type subtree
T = [l, l′]s, we denote its endpoints by v0(T ) := (l, s) ∈ T and v+(T ) := (l′, s) ∈ T. When
we remove T from T, there appear two connected components. Let T ′0 be the component
containing 0 (∈ T), and T ′+ be the other. We can expand the subtree T by adding a node
next to T . There are two nodes next to T , one is contained in T ′0 and the other is contained
in T ′+. The 0-expansion is the operation to add that node contained in Ti,0 to T , and
the +-expansion is the operation to add that node contained in Ti,+ to T . If T satisfies
size(T ) > 0, then we can shrink T by removing v0(T ) or v+(T ) from T . The 0-shrinkage
is the operation to remove v0(T ) from T , and the +-shrinkage is the operation to remove
v+(T ) from T .

For a 0-type subtree T = [ls]s∈S , we denote its endpoints by vs(T ) := (ls, s) ∈ T for
s ∈ S. When we remove T from T, there appear k (= |S|) connected components. For s ∈ S,
let T ′s be the component which is contained in Ps. As above, we can expand the subtree T by
adding a node next to T . There are k nodes next to T , and each T ′s (s ∈ S) contains exactly
one such a node. The (s,+)-expansion for s ∈ S is the operation to add that node contained
in T ′s to T . If T satisfies sizes(T ) > 0 for s ∈ S, then we can shrink T by removing vs(T )
from T . The (s,+)-shrinkage for s ∈ S with sizes(T ) > 0 is the operation to remove vs(T )
from T . For s ∈ S, if sizes′(T ) = 0 for any other s′ ∈ S, then we can shrink T by removing
0 (∈ T) from T . The (s, 0)-shrinkage for such s ∈ S is the operation to remove 0 from T . We
call these expansion and shrinkages basic moves.

Let (Y, Z) ∈ 3U be a cut. From (Y,Z), the modification pY,Z of p is defined as follows.
For s ∈ S, do:

If s0 ∈ Y , then 0-expand and +-shrink ps.
If s0 ∈ Z, then +-expand and 0-shrink ps.

For i ∈
⋃
s∈S Vs, do:

If i0 ∈ Y , then 0-expand pi. If i0 ∈ Z, then 0-shrink pi.
If i+ ∈ Y , then +-expand pi. If i+ ∈ Z, then +-shrink pi.

For i ∈ V0, do:
If U0

i ∩ (Y ∪ Z) = ∅, then we do the following for each s ∈ S:
If is,+ ∈ Y , then (s,+)-expand pi. If is,+ ∈ Z, then (s,+)-shrink pi.

If is,0 ∈ Z for some s ∈ S, then (s, 0)-shrink pi. Also do the following:
If is,+ ∈ Y , then (s,+)-expand pi. If is,+ ∈ Z, then (s,+)-shrink pi.

There may exists i ∈ V that such a move cannot be defined, e.g., i ∈
⋃
s∈S Vs with

size(pi) ≤ 1/2 and {i0, i+} ⊆ Z, or j ∈ V0 with {js,0, js′,0} ⊆ Z. If the moves can be defined
for all i ∈ V , then the cut (Y,Z) is called movable. For a movable cut (Y,Z) ∈ 3U , we denote
the modified potential by pY,Z .

We cal a node (l, s) ∈ T even if the number of edges between (l, s) and 0 is even, and odd
otherwise. A basic move is said to be upward if the added node is even or the removed node
is odd. A basic move is said to be downward if the added node is odd or the removed node
is even. A movable cut (Y, Z) ∈ 3U is upward-movable (resp. downward-movable) if all basic
moves occurring in the modification from p to pY,Z are basic upward moves (resp. basic
downward moves). Let denote the sets of all upward-movable cuts and downward-movable
cuts byM↑ andM↓, respectively.

I Lemma 9. For (Y, Z) ∈M↑ ∪M↓, it holds h(pY,Z)− h(p) = −κ(Y,Z)/2.

Thus we are motivated to obtain an upward- or downward-movable cut (Y, Z) with a
positive κ(Y, Z) value. The following lemma says that we can do this efficiently given a
maximum violating cut.
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I Lemma 10. Given a maximum violating cut, we can obtain an upward-movable cut
(Y,Z) ∈M↑ and a downward-movable cut (Y ′, Z ′) ∈M↓ satisfying

κ(Y,Z) = max
(Y ′′,Z′′)∈M↑

κ(Y ′′, Z ′′), κ(Y ′, Z ′) = max
(Y ′′,Z′′)∈M↓

κ(Y ′′, Z ′′) (11)

in O(kn) time. Moreover, at least one of κ(Y, Z) and κ(Y ′, Z ′) is positive.

I Theorem 11. Let Np := ((U,F ), c, c) be the undirected network constructed from a proper
potential p ∈ Sn. Suppose that the instance is infeasible. Given a maximum violating cut, we
can obtain a proper potential q ∈ Sn with h(q) < h(p) in O(kn) time.

Proof. By Lemma 10, we can obtain an upward-movable cut (Y,Z) ∈M↑ and a downward-
movable cut (Y ′, Z ′) ∈ M↓ satisfying (11) in O(kn) time. Let (Y ′′, Z ′′) be the cut that
attains maximum κ-value among {(Y,Z), (Y ′, Z ′)}, and let q := pY

′′,Z′′ . Then h(q) < h(p)
by Lemmas 9 and 10. We can make q proper by the procedure given in the first part of the
proof of Proposition 4. J

Now we are ready to present the details of DESCENT. First construct Np from the current
proper potential p ∈ Sn, and run the algorithm given in Lemma 7 to solve the circulation
problem; this corresponds to Step 1 given in the procedure at the end of Section 2.1. If a
feasible half-integer-valued circulation is obtained, then a half-integral optimal edge-capacity
x is computed by Theorem 8; this corresponds to Step 2. Otherwise a maximum violating
cut is obtained, and then a proper potential q ∈ Sn with h(q) < h(p) is computed by
Theorem 11; this corresponds to Step 3. One iteration of this algorithm can be done in
O(MF(kn,m+ k2n)) time.

The value −h(p) is at most mUA (by Proposition 4) and −h(p) ∈ Z∗+. Thus the number
of iterations is at most O(mUA). Actually, this analysis of the time complexity is not tight.
In fact, the number of iterations can be evaluated as O(nA).

If a potential q ∈ Sn is obtained from a potential p by a modification defined by a movable
cut on Np, then we say that q is a neighbor of p, that is, there exists a movable cut (Y ′, Z ′) ∈
3U such that q = pY

′,Z′ . For p, q ∈ Sn, define a distance d̃Sn(p, q) by the minimum length of
a sequence (p = p0, p1, . . . , p` = q) such that pt is a neighbor of pt−1 for all t = 1, . . . , `. Let
opt(h) denote the set of minimizers of h, and let d̃Sn(p, opt(h)) := minq∈opt(h) d̃Sn(p, q).

I Lemma 12. Starting with an initial potential p0 ∈ Sn, DESCENT finds an optimal
potential at most d̃Sn(p0, opt(h)) + 2 iterations.

Lemma 12 can be shown by using DCA beyond Zn. We will discuss it in Section 3.

I Lemma 13. There exists an optimal potential p ∈ opt(h) satisfying that for any i ∈ V , pi
is contained in (2nA, 2nA, . . . , 2nA) ∈ S.

I Theorem 14. DESCENT solves FNTB in O(nA ·MF(kn,m+ k2n)) time.

Proof. We can only consider the potentials satisfying the condition in Lemma 13. Any pair
of such potentials p, q ∈ S satisfies d̃Sn(p, q) = O(nA). Then the statement follows from
Lemma 12. J

We note that Theorem 14 is shown under the positivity assumption of the edge-cost a.
We prove Theorem 2 using Theorem 14.
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Proof of Theorem 2. Let f = (P, λ) be a separately-capacitated multiflow. Recall that
fs = (Ps, λ|Ps

), where Ps ⊆ P is a subset of paths connecting s to other terminals. Let
val f :=

∑
P∈P λ(P ) and val fs :=

∑
P∈Ps

λ(P ) for s ∈ S. Then val fs is at most the capacity
of any {s}–(S \ {s}) cut. Thus val f = (1/2)

∑
s∈S val fs ≤ (1/2)

∑
s∈S νs.

Consider an instance ((V,E), S, u, c, a, r) of FNTB, where a ≡ 1 and rs := νs for each
s ∈ S. Since u clearly satisfies (1), this instance is feasible. Then DESCENT outputs a
half-integral optimal edge-capacity x and an optimal potential p. Since x and p satisfy the
conditions (A1–5), we can apply the decomposition algorithm in the proof of Lemma 5
for x, and obtain a separately-capacitated multiflow f . Then val f = (1/2)

∑
s∈S f(s) ≥

(1/2)
∑
s∈S rs = (1/2)

∑
s∈S νs. Moreover, since x comes from a half-integral circulation

(Theorem 8), x satisfies x(δi) ∈ Z+ for any i ∈ V \ S. In fact, for i ∈
⋃
s∈S Vs, it is observed

from x(δi) = −2y(i0i+), and for i ∈ V0, it is observed from x(δi) =
∑
s∈S −y(is,0is,+) =

2
∑
s<s′ y(is,0, is′,0). Then by Remark 6, the decomposition algorithm outputs a half-integer-

valued multiflow.
The time complexity result follows from that FNTB can be solved in O(n·MF(kn,m+k2n))

time by Theorem 14, and the decomposition algorithm runs in O((m+ kn)n) time. J

2.4 Scaling Algorithm
The time complexity of DESCENT is pseudo-polynomial. We improve it by combining with
a (cost-)scaling method.

Let γ ∈ Z+ be an integer such that 2γ ≥ A. The scaling algorithm consists of γ+1 phases.
In t-th phase, solve DTB with an edge-cost at : E → Z+ defined by at(e) := da(e)/2te (e ∈ E),
i.e., minimize hat

. (Recall ha is defined by (10).) Here d·e is the round-up operator. Note that
all at(e) are positive. Begin with t = µ, and decrease t one-by-one. Then, when t = 0, the
problem coincides with the original DTB. In each t-phase, we use DESCENT to minimize hat

.
At the initial phase t = µ, we run DESCENT with the starting point p0 ∈ Sn, where (p0)i = 0
for all i ∈ V . For t-phase with t ≤ µ− 1, the starting point is determined from the obtained
optimal potential in the previous phase. Let 2[l, l′]s := [2l, 2l′]s and 2[ls]s∈S := [2ls]s∈S . For
a potential p ∈ Sn, define a new potential 2p ∈ Sn by (2p)i := 2pi for i ∈ V .

I Lemma 15. Let p ∈ Sn be an optimal potential for t-phase (t = 1, . . . , µ). Then the
potential 2p ∈ Sn is optimal for DTB with an edge-cost 2at.

Proof. By the strong duality of Proposition 4, there exists a solution x : E → R for FNTB,
such that

∑
e∈E at(e)x(e) = −hat

(p). Then
∑
e∈E 2at(e)x(e) = −h2at

(2p) holds, which
implies the optimality of 2p by (the weak duality of) Proposition 4. J

Observe that at−1 = 2at −
∑
e∈F χe, where F := {e ∈ E | at−1(e) is odd}. The key

property is the following sensitivity result.

I Lemma 16. Let a : E → Z+ be a positive edge-cost. Let e ∈ E be an edge satisfying
a(e) ≥ 2, and a′ := a− χe. Let p ∈ opt(ha). Then d̃Sn(p, opt(ha′)) ≤ 2.

We prove Lemma 16 in Section 3.3 using the notion of discrete convexity.

Proof of Theorem 1. For the initial phase t = µ, an optimal potential can be obtained in
O(n) iterations of DESCENT by Lemmas 12 and 13. For each remaining phase, an optimal
potential can be obtained in O(m) iterations of DESCENT by Lemmas 12, 15 and 16. Thus
O(n+m logA) = O(m logA) iterations of DESCENT are sufficient. Recall that we assume
the positivity of the edge-cost a. When a is not positive, the perturbation (Remark 3) is
needed. Thus the maximum of edge-costs is O(mUA). Then the theorem follows. J
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3 Discrete Convex Analysis for Node-Connectivity Terminal Backup

The theory of DCA beyond Zn gives an algorithm, called the steepest descent algorithm
(SDA), for minimizing L-convex functions on certain graph structures. We first introduce
the L-convexity and SDA, and next show that DESCENT is precisely SDA for an L-convex
function. Then Lemma 12 immediately follows. Finally, we discuss a sensitivity argument,
which shows Lemma 16.

3.1 A General Theory
In this subsection, we briefly introduce a theory of discrete convexity on graph structures
specialized to median graphs. See [15] for further details.

We use basic terminologies of poset and lattice. Let L be a poset (partially ordered set)
with a partial order �. The principal filter Fx and the principal ideal Ix of x ∈ L are defined
as {y ∈ L | y � x} and {y ∈ L | y � x}, respectively. For x, y ∈ L with x � y, the interval
[x, y] is defined as the set of z ∈ L satisfying x � z � y. We consider a (meet-)semilattice
having the minimum element. A median semilattice L is a semilattice that every principal
ideal is a distributive lattice and for any x, y, z ∈ L, the join x ∨ y ∨ z exists if x ∨ y, y ∨ z,
and z ∨ x exist. A Boolean semilattice is a median semilattice that every principal ideal is a
Boolean lattice.

Let G be a (possibly infinite) undirected graph. We denote the set of nodes also by G.
Let d = dG be the shortest path metric on G. The (metric) interval I(u, v) of u, v ∈ G is
the set of w ∈ G satisfying d(u, v) = d(u,w) + d(w, v). A median graph G is a graph that
for any u, v, w ∈ G, I(u, v) ∩ I(v, w) ∩ I(w, u) is a singleton.

We consider an orientation on edges of a median graph G, that takes u↘ v or u↙ v on
each edge uv. An orientation is admissible if for any 4-cycle (u1, u2, u3, u4), u1 ↘ u2 implies
u4 ↘ u3. It is known [13, Lemma 2.4] that an admissible orientation on a median graph is
acyclic. Thus we can define a poset on G by the admissible orientation, i.e., if an edge uv is
oriented as u↙ v, then u � v. G with an admissible orientation is well-oriented if [u, v] is a
Boolean lattice for any u, v with u � v. In a well-oriented median graph G, it is known [15,
Proposition 2] that every principal filter of G is a Boolean semilattice, and every principal
ideal of G is a Boolean semilattice with the reversed order.

We can define an L-convex function on a well-oriented median graph G. For a function
f : G → R, define the effective domain of f as {u ∈ G | f(u) < ∞} and denote by dom f .
If a sequence of nodes (u = u0, u1, . . . , u` = v) satisfies that for any i = 1, . . . , `, there exist
u′, v′ ∈ G with u′ � v′ such that {ui−1, ui} ⊆ [u′, v′], then the sequence is said to be a
∆-path connecting u and v. A subset X ⊆ G is ∆-connected if for any u, v ∈ X, there exists
a ∆-path in X connecting u and v. A function f : G → R is called L-convex if dom f is
∆-connected and the restrictions of f to every principal filter and ideal are submodular. Here
the submodularity on a median semilattice is a rather complicated notion; we give a formal
definition in the full version.

The global optimality of an L-convex function f can be characterized by a local condition;
u ∈ dom f is a minimizer of f if and only if u is a minimizer of f restricted to Fu ∪ Iu. This
induces a natural minimization algorithm, called the steepest descent algorithm (SDA):

Algorithm 2 SDA.

0. Initialize u ∈ G with f(u) <∞.
1. Find a local minimizer v ∈ Fu ∪ Iu of f .
2. If f(v) = f(u), then stop; output u. Otherwise update u by v and go to Step 1.
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The number of iterations of SDA is bounded by the ∆-distance from the initial point
u and minimizers of f . Here the ∆-distance d∆(u, v) of u, v ∈ G is the minimum length
of a ∆-path connecting u to v. Let opt(f) denote the set of minimizers of f , and let
d∆(u, opt(f)) := minv∈opt(f) d

∆(u, v).

I Theorem 17 ([15, Theorem 4.3]). The number of iterations of SDA with the initial point
u ∈ G is at most d∆(u, opt(f)) + 2.

3.2 Discrete Convexity in Node-Connectivity Terminal Backup
We show that the dual objective function h defined in (10) is actually an L-convex function,
and the algorithm DESCENT is precisely SDA. Define a graph on S by connecting two nodes
(subtrees) T, T ′ ∈ S such that T and T ′ can transform to each other by a basic move. If we
can move T to T ′ by a basic downward-move (equivalently, we can move T ′ to T by a basic
upward-move), we give an orientation T ↘ T ′. The graph S is a median graph, but not well-
oriented. To make the graph well-oriented, we add a virtual subtree connecting to nodes (l, s)
and (l + 1/2, s) for each l ∈ Z∗+ and s ∈ S. We denote such a virtual subtree by [l + 1/2, l]s.
Give a natural orientation to each added edge. Let S := S ∪ {[l + 1/2, l]s | l ∈ Z∗+, s ∈ S}.
Extend h to be a function on Sn by h(p) :=∞ if there exists i ∈ V such that pi ∈ S \ S.

I Proposition 18.
(1) S is a well-oriented median graph, and so is Sn.
(2) h is an L-convex function on Sn.
(3) For p, q ∈ Sn, d̃Sn(p, q) = d∆(p, q).
(4) The map (Y, Z) 7→ pY,Z is a bijection between M↑ and Fp ∩ dom h, and M↓ and
Ip ∩ dom h.

Proof of Lemma 12. By Lemma 9 and Proposition 18 (4), the cuts (Y, Z) and (Y ′, Z ′) in
Lemma 10 are minimizers of h on Fp and Ip, respectively. Therefore DESCENT is precisely
SDA for h. Thus the number of iterations can be evaluated by Theorem 17, and the statement
follows from Proposition 18 (3). J

3.3 Sensitivity
To prove Lemma 16, we transform the instance ((V,E), S, u, c, a, r) of FNTB to an edge-
uncapacitated one by a standard technique: Divide each edge e ∈ E into two edges e1, e2,
and add a new node ve into the middle of these two edges. Let the edge-costs of e1 and e2
be the same as the original edge-cost of e, and let the edge-capacities of e1 and e2 be ∞. Let
the node-capacity of the added node be u(e). The number of vertices in the new instance is
|V |+ |E| = n+m, and the number of edges is 2|E| = 2m. We denote the new instance by
((V̄ , Ē), S, ū, c̄, ā, r).

We consider the dual problem DTB for the edge-uncapacitated instance. In this case, we
say that p̄ ∈ Sn+m is a potential for an edge-cost ā if it satisfies (4) and dist(p̄i, p̄j) ≤ āij for
any ij ∈ Ē. Then DTB is a minimization of a function ha : Sn → R defined by

h̄ā(p̄) := −
∑
s∈S

rs dist(0, p̄s) +
∑
i∈V̄ \S

c̄i size(p̄i) (12)

if p̄ is a potential for ā and h̄ā(p̄) :=∞ otherwise.
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Let p ∈ Sn be a potential for the original instance. We can extend p to a potential p̄ for the
edge-uncapacitated instance as follows: For v = i ∈ V , let p̄v := 2pi. For v = vij (ij ∈ E), we
have two cases dist(pi, pj) ≤ aij and dist(pi, pj) > aij . For the former case, let p̄v be any point
in T (i.e., size(p̄v) = 0) satisfying dist(p̄i, p̄v) ≤ aij and dist(p̄v, p̄j) ≤ aij . For the latter case,
let p̄v satisfy dist(p̄i, p̄v) = aij , dist(p̄v, p̄j) = aij and size(p̄v) = 2(dist(p̄v, p̄j)− aij) > 0.

I Proposition 19. Let p ∈ Sn be an optimal potential for the original instance. Then the
extended potential p̄ ∈ Sn+m defined above is optimal for the edge-uncapacitated instance.

We first show Lemma 16 for an edge-uncapacitated instance. For brevity, we assume
that the original instance ((V,E), S, u, c, a, r) is already an edge-capacitated instance. By
Proposition 18 (3), the following is equivalent to Lemma 16.

I Lemma 20. Let a : E → Z+ be a positive edge-cost. Let ij ∈ E be an edge satisfying
a(ij) ≥ 2, and a′ := a− χij. Then for any p ∈ opt(ha), it holds d∆(p, opt(ha′)) ≤ 2.

We prove Lemma 20 via the notion of normal ∆-paths. Let G be an oriented median
graph. For nodes u, v ∈ G with d∆(u, v) = 1, let 〈〈u, v〉〉 be the minimum interval [u′, v′]
such that {u, v} ⊆ [u′, v′]. A ∆-path (u = u0, u1, . . . , u` = v) is the normal ∆-path from
u to v if for any t = 1, . . . , ` − 1 and any interval [u′, v′] with {ut−1, ut} ⊆ [u′, v′] it holds
[u′, v′] ∩ 〈〈ut, ut+1〉〉 = {ut}. The normal ∆-path from u to v is uniquely determined, and
the length ` equals to dG∆(u, v) [3, Theorem 6.24]. Let u → v denote u1, and let u � v

denote u`−1. Also Let u→t v denote ut for t = 0, . . . , `.

I Lemma 21. Let p, q ∈ dom ha. Then

ha(p) + ha(q) ≥ ha(p→ q) + ha(q → p), (13)
ha(p) + ha(q) ≥ ha(p� q) + ha(q � p). (14)

I Lemma 22. Let p, q ∈ Sn and i, j ∈ V . Suppose that dist(qi, qj) < dist((q → p)i, (q → p)j)
and dist(qi, qj) < dist((p � q)i, (p � q)j). Then for any t = 1, . . . , d∆(p, q), it holds
dist((p→t q)i, (p→t q)j) + 1/2 ≤ dist((p→t−1 q)i, (p→t−1 q)j).

Proof of Lemma 20. If p is a potential for a′, then p ∈ opt(ha′). Suppose that p is not a
potential for a′. Take q ∈ opt(ha′) having the minimum ∆-distance from p. Then q ∈ dom ha.
Thus by (13) and p ∈ opt(ha), we have ha(q) ≥ ha(q → p). If (q → p) ∈ dom ha′ , then
ha′(q → p) = ha(q → p) ≤ ha(q) = ha′(q) and thus (q → p) ∈ opt(ha′); a contradiction to
the minimality of q. Hence (q → p) /∈ dom ha′ , and dist((q → p)i, (q → p)j) ≥ a′ij + 1/2 >
a′ij ≥ dist(qi, qj) (by the half-integrality of dist(·, ·)). Similarly we have dist((p� q)i, (p�
q)j) > dist(qi, qj). Then we can apply Lemma 22 and obtain

dist(pi, pj) ≥ dist((p→ q)i, (p→ q)j) + 1/2
≥ dist((p→2 q)i, (p→2 q)j) + 2/2
≥ · · · ≥ dist((p� q)i, (p� q)j) + (d∆(p, q)− 1)/2.

By dist(pi, pj) ≤ aij and dist((p� q)i, (p� q)j) ≥ a′ij + 1/2 = aij − 1/2, we have

d∆(p, q) ≤ 1 + 2(dist(pi, pj)− dist((p� q)i, (p� q)j)) ≤ 2. J

We give a sketch of a proof of Lemma 16 for an edge-capacitated instance. First construct
the edge-uncapacitated instance ((V̄ , Ē), S, ū, c̄, ā, r) as above. Then an optimal potential
p̄ ∈ Sn+m is obtained from p by Proposition 19, and e ∈ E is divided into two edges
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e1, e2 ∈ Ē. By Lemma 20 for e1 and e2, there exists an optimal potential p̄′ for the edge-
uncapacitated instance with d∆(p̄, p̄′) ≤ 4. By halving p̄′, a “quarter-integral” optimal
potential p′ ∈ opt(ha′) is obtained. Lemma 16 is then shown by rounding quarter-integral
components to half-integral.
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Abstract
We consider the complexity of counting weighted graph homomorphisms defined by a symmetric
matrix A. Each symmetric matrix A defines a graph homomorphism function ZA(·), also known
as the partition function. Dyer and Greenhill [10] established a complexity dichotomy of ZA(·)
for symmetric {0, 1}-matrices A, and they further proved that its #P-hardness part also holds
for bounded degree graphs. Bulatov and Grohe [4] extended the Dyer-Greenhill dichotomy to
nonnegative symmetric matrices A. However, their hardness proof requires graphs of arbitrarily
large degree, and whether the bounded degree part of the Dyer-Greenhill dichotomy can be extended
has been an open problem for 15 years. We resolve this open problem and prove that for nonnegative
symmetric A, either ZA(G) is in polynomial time for all graphs G, or it is #P-hard for bounded
degree (and simple) graphs G. We further extend the complexity dichotomy to include nonnegative
vertex weights. Additionally, we prove that the #P-hardness part of the dichotomy by Goldberg et
al. [12] for ZA(·) also holds for simple graphs, where A is any real symmetric matrix.
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1 Introduction

The modern study of graph homomorphisms originates from the work by Lovász and others
several decades ago and has been a very active area [18, 14]. If G and H are two graphs, a
graph homomorphism (GH) is a mapping f : V (G)→ V (H) that preserves vertex adjacency,
i.e., whenever (u, v) is an edge in G, (f(u), f(v)) is also an edge in H. Many combinatorial
problems on graphs can be expressed as graph homomorphism problems. Well-known
examples include the problems of finding a proper vertex coloring, vertex cover, independent
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Hovarau.

EA
T

C
S

© Artem Govorov, Jin-Yi Cai, and Martin Dyer;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 66; pp. 66:1–66:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hovarau@cs.wisc.edu
mailto:jyc@cs.wisc.edu
mailto:M.E.Dyer@leeds.ac.uk
https://doi.org/10.4230/LIPIcs.ICALP.2020.66
https://arxiv.org/abs/2002.02021
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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set and clique. For example, if V (H) = {0, 1} with an edge between 0 and 1 and a loop at
0, then f : V (G)→ {0, 1} is a graph homomorphism iff f−1(1) is an independent set in G;
similarly, proper vertex colorings on G using at most m colors correspond to homomorphisms
from G to H = Km (with no loops).

More generally, one can consider weighted graphs H and aggregate all homomorphisms
from G to H into a weighted sum. This is a powerful graph invariant which can express many
graph properties. Formally, for a symmetric m ×m matrix A, the graph homomorphism
function on a graph G = (V,E) is defined as follows:

ZA(G) =
∑

ξ:V→[m]

∏
(u,v)∈E

Aξ(u),ξ(v).

Note that if H is unweighted, and A is its {0, 1}-adjacency matrix, then each product∏
(u,v)∈E Aξ(u),ξ(v) is 0 or 1, and is 1 iff ξ is a graph homomorphism. Thus in this case ZA(G)

counts the number of homomorphisms from G to H. One can further allow H to have vertex
weights. In this case, we can similarly define the function ZA,D(·) (see Definition 4).

These sum-of-product functions ZA(·) and ZA,D(·) are referred to as the partition functions
in statistical physics [3]. Various special cases of GH have been studied there extensively,
which include the Ising, Potts, hardcore gas, Beach, Widom-Rowlinsom models, etc. [3].

The computational complexity of ZA(·) has been studied systematically. Dyer and
Greenhill [10, 11] proved that, for a symmetric {0, 1}-matrix A, ZA(·) is either in polynomial
time or #P-complete, and they gave a succinct condition for this complexity dichotomy:
if A satisfies the condition then ZA(·) is computable in polynomial time (we also call it
tractable), otherwise it is #P-complete. Bulatov and Grohe [4] (see also [22, 13]) generalized
the Dyer-Greenhill dichotomy to ZA(·) for nonnegative symmetric matrices A. It was further
extended by Goldberg et al. [12] to arbitrary real symmetric matrices, and finally by Cai,
Chen and Lu [7] to arbitrary complex symmetric matrices. In the last two dichotomies,
the tractability criteria are not trivial to state. Nevertheless, both tractability criteria are
decidable in polynomial time (in the size of A).

The definition of the partition function ZA(·) can be easily extended to directed graphs
G and arbitrary (not necessarily symmetric) matrices A corresponding to directed edge
weighted graphs H. Concerning the complexity of counting directed GH, we currently
have the decidable dichotomies by Dyer, Goldberg and Paterson [9] for {0, 1}-matrices
corresponding to (unweighted) simple acyclic graphs H, and by Cai and Chen [6] for all
nonnegative matrices A.

Dyer and Greenhill in the same paper [10] proved a stronger statement that if a {0, 1}-
matrix A fails the tractability condition then ZA(G) is #P-complete even when restricted
to bounded degree graphs G. We note that the complexity of GH for bounded degree
graphs is particularly interesting as much work has been done on the approximate complexity
of GH focused on bounded degree graphs and approximate algorithms are achieved for
them [8, 25, 21, 20, 17, 1, 2, 19, 15]. However, for fifteen years the worst case complexity for
bounded degree graphs in the Bulatov-Grohe dichotomy was open. Since this dichotomy is
used essentially in almost all subsequent work, e.g., [12, 7], this has been a stumbling block.

Our main contribution in this paper is to resolve this 15-year-old open problem. We
prove that the #P-hardness part of the Bulatov-Grohe dichotomy still holds for bounded
degree graphs. It can be further strengthened to apply to bounded degree simple graphs.
We actually prove a broader dichotomy for ZA,D(·), where in addition to the nonnegative
symmetric edge weight matrix A there is also a nonnegative diagonal vertex weight matrix
D. We will give an explicit tractability condition such that, if (A,D) satisfies the condition
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then ZA,D(G) is computable in polynomial time for all G, and if it fails the condition then
ZA,D(G) is #P-hard even restricted to bounded degree simple graphs G. ZA(G) is the special
case of ZA,D(G) when D is the identity matrix. Additionally, we prove that the #P-hardness
part of the dichotomy by Goldberg et al. [12] for all real symmetric edge weight matrices A
still holds for simple graphs. (Although in this case, whether under the same condition on A
the #P-hardness still holds for bounded degree graphs is not resolved in the present paper.)

In order to prove the dichotomy theorem on bounded degree graphs, we have to introduce
a nontrivial extension of the well-developed interpolation method [24]. We use some of
the well-established techniques in this area of research such as stretchings and thickenings.
But the main innovation is an overall design of the interpolation for a more abstract target
polynomial than ZA,D. To carry out the proof there is an initial condensation step where we
combine vertices that have proportionately the same neighboring edge weights (technically
defined by pairwise linear dependence) into a super vertex with a combined vertex weight.
Note that this creates vertex weights even when initially all vertex weights are 1. When
vertex weights are present, an approach in interpolation proof is to arrange things well so
that in the end one can redistribute vertex weights to edge weights. However, when edge
weights are not 0-1, any gadget design must deal with a quantity at each vertex that cannot
be directly redistributed. This dependence has the form

∑mζ(w)
j=1 αζ(w)jµ

deg(w)
ζ(w)j , resulting from

combining pairwise linearly dependent rows and columns, that depends on the vertex degree
deg(w) in a complicated way. (We note that in the 0-1 case all µζ(w)j ∈ {0, 1}, making it in
fact degree independent.)

We overcome this difficulty by essentially introducing a virtual level of interpolation – an
interpolation to realize some “virtual gadget” that cannot be physically realized, and yet
its “virtual” vertex weights are suitable for redistribution. Technically we have to define
an auxiliary graph G′, and express the partition function in an extended framework, called
ZA ,D on G′ (see Definition 6). In a typical interpolation proof, there is a polynomial with
coefficients that have a clear combinatorial meaning defined in terms of G, usually consisting
of certain sums of exponentially many terms in some target partition function. Here, we
will define a target polynomial with certain coefficients; however these coefficients do not
have a direct combinatorial meaning in terms of ZA,D(G), but rather they only have a direct
combinatorial meaning in terms of ZA ,D on G′. In a suitable “limiting” sense, a certain
aggregate of these coefficients forms some useful quantity in the final result. This introduces
a concomitant “virtual” vertex weight which depends on the vertex degree that is “just-right”
so that it can be redistributed to become part of the incident edge weight, thus effectively
killing the vertex weight. This leads to a reduction from ZC(·) (without vertex weight) to
ZA,D(·), for some C that inherits the hardness condition of A, thus proving the #P-hardness
of the latter. This high level description will be made clearer in Section 4. The nature of
the degree dependent vertex weight introduces a substantial difficulty; in particular a direct
adaptation of the proof in [10] does not work.

Our extended vertex-weighted version of the Bulatov-Grohe dichotomy can be used to
correct a crucial gap in the proof by Thurley [23] for a dichotomy for ZA(·) with Hermitian
edge weight matrices A, where this degree dependence was also at the root of the difficulty. 2

2 In [23], the proof of Lemma 4.22 uses Lemma 4.24. In Lemma 4.24, A is assumed to have pairwise
linearly independent rows while Lemma 4.22 does not assume this, and the author appeals to a twin
reduction step in [10]. However, unlike in the 0-1 case [10], such a step incurs degree dependent vertex
weights. This gap is fixed by our Theorem 8.
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2 Preliminaries

In order to state all our complexity results in the strict notion of Turing computability, we
adopt the standard model [16] of computation for partition functions, and require that all
numbers be from an arbitrary but fixed algebraic extension of Q. We use R and C to denote
the sets of real and complex algebraic numbers. Many statements remain true in other fields
or rings if arithmetic operations can be carried out efficiently in a model of computation
(see [5] for more discussions on this issue).

For a positive integer n, we use [n] to denote the set {1, . . . , n}. When n = 0, [0] = ∅.
We use [m : n], where m ≤ n, to denote {m,m+ 1, . . . , n}.

In this paper, we consider undirected graphs unless stated otherwise. Following standard
definitions, the graph G is allowed to have multiple edges but no loops. (However, we will
touch on this issue a few times when G is allowed to have loops.) The graph H can have
multiple edges and loops, or more generally, edge weights. For the graph H, we treat its
loops as edges.

An edge-weighted graph H on m vertices can be identified with a symmetric m ×m
matrix A in the obvious way. We write this correspondence by H = HA and A = AH .

I Definition 1. Let A ∈ Cm×m be a symmetric matrix. The problem EVAL(A) is defined
as follows: Given an undirected graph G = (V,E), compute

ZA(G) =
∑

ξ:V→[m]

∏
(u,v)∈E

Aξ(u),ξ(v).

The function ZA(·) is called a graph homomorphism function or a partition function. When A
is a symmetric {0, 1}-matrix, i.e., when the graph H = HA is unweighted, ZA(G) counts the
number of homomorphisms from G to H. In this case, we denote EVAL(H) = EVAL(AH),
and this problem is also known as the #H-coloring problem.

I Theorem 2 (Dyer and Greenhill [10]). Let H be a fixed undirected graph. Then EVAL(H)
is in polynomial time if every connected component of H is either (1) an isolated vertex, or
(2) a complete graph with all loops present, or (3) a complete bipartite graph with no loops
present. Otherwise, the problem EVAL(H) is #P-complete.

Bulatov and Grohe [4] extended Theorem 2 to EVAL(A) where A is a symmetric matrix
with nonnegative entries. In order to state their result, we need to define a few notions first.

We say a nonnegative symmetric m ×m matrix A is rectangular if there are pairwise
disjoint nonempty subsets of [m]: T1, . . . , Tr, P1, . . . , Ps, Q1, . . . , Qs, for some r, s ≥ 0, such
that Ai,j > 0 iff

(i, j) ∈
⋃
k∈[r]

(Tk × Tk) ∪
⋃
l∈[s]

[(Pl ×Ql) ∪ (Ql × Pl)].

We refer to Tk × Tk, Pl × Ql and Ql × Pl as blocks of A. Further, we say a nonnegative
symmetric matrix A is block-rank-1 if A is rectangular and every block of A has rank one.

I Theorem 3 (Bulatov and Grohe [4]). Let A be a symmetric matrix with nonnegative entries.
Then EVAL(A) is in polynomial time if A is block-rank-1, and is #P-hard otherwise.

There is a natural extension of EVAL(A) involving the use of vertex weights. Both
papers [10, 4] use them in their proofs. A graph H on m vertices with vertex and edge
weights is identified with a symmetric m×m edge weight matrix A and a diagonal m×m
vertex weight matrix D = diag(D1, . . . , Dm) in a natural way. Then the problem EVAL(A)
can be generalized to EVAL(A,D) for vertex-edge-weighted graphs.
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I Definition 4. Let A ∈ Cm×m be a symmetric matrix and D ∈ Cm×m a diagonal matrix.
The problem EVAL(A,D) is defined as follows: Given an undirected graph G = (V,E),
compute

ZA,D(G) =
∑

ξ:V→[m]

∏
w∈V

Dξ(w)
∏

(u,v)∈E

Aξ(u),ξ(v).

Note that EVAL(A) is the special case EVAL(A, Im). We also need to define another EVAL
problem where the vertex weights are specified by the degree.

I Definition 5. Let A ∈ Cm×m be a symmetric matrix and D = {D[[i]]}∞i=0 a sequence of
diagonal matrices in Cm×m. The problem EVAL(A,D) is defined as follows: Given an
undirected graph G = (V,E), compute

ZA,D(G) =
∑

ξ:V→[m]

∏
w∈V

D
[[deg(w)]]
ξ(w)

∏
(u,v)∈E

Aξ(u),ξ(v).

Finally, we need to define a general EVAL problem, where the vertices and edges can
individually take specific weights. Let A be a set of (edge weight) m×m matrices and D a
set of diagonal (vertex weight) m×m matrices. A GH-grid Ω = (G, ρ) consists of a graph
G = (V,E) with possibly both directed and undirected edges, and loops, and ρ assigns to
each edge e ∈ E or loop an A(e) ∈ A and to each vertex v ∈ V a D(v) ∈ D . (A loop is just
an edge of the form (v, v).) If e ∈ E is a directed edge then the tail and head correspond
to rows and columns of A(e), respectively; if e ∈ E is an undirected edge then A(e) must be
symmetric.

I Definition 6. The problem EVAL(A ,D) is defined as follows: Given a GH-grid Ω = Ω(G),
compute

ZA ,D(Ω) =
∑

ξ : V→[m]

∏
w∈V

D
(w)
ξ(w)

∏
e=(u,v)∈E

A
(e)
ξ(u),ξ(v)

We remark that ZA ,D is introduced only as a tool to express a certain quantity in a
“virtual” interpolation; the dichotomy theorems do not apply to this. Definitions 5 and 6
are carefully crafted in order to carry out the #P-hardness part of the proof of Theorem 8.
Notice that the problem EVAL(A ,D) generalizes both problems EVAL(A) and EVAL(A,D),
by taking A to be a single symmetric matrix, and by taking D to be a single diagonal matrix.
But EVAL(A,D) is not naturally expressible as EVAL(A ,D) because the latter does not
force the vertex-weight matrix on a vertex according to its degree.

We refer to [m] as the domain of the corresponding EVAL problem. If A = {A} or
D = {D}, then we simply write ZA,D(·) or ZA ,D(·), respectively.

We use a superscript (∆) and/or a subscript simp to denote the restriction of a correspond-
ing EVAL problem to degree-∆ bounded graphs and/or simple graphs. E.g., EVAL(∆)(A)
denotes the problem EVAL(A) restricted to degree-∆ bounded graphs, EVALsimp(A,D)
denotes the problem EVAL(A,D) restricted to simple graphs, and both restrictions apply in
EVAL(∆)

simp(A,D).
Working within the framework of EVAL(A,D), we define an edge gadget to be a graph

with two distinguished vertices, called u∗ and v∗. An edge gadget G = (V,E) has a signature
(edge weight matrix) expressed by an m×m matrix F , where

Fij =
∑

ξ : V→[m]
ξ(u∗)=i, ξ(v∗)=j

∏
z∈V \{u∗,v∗}

Dξ(z)
∏

(x,y)∈E

Aξ(x),ξ(y)
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Figure 1 The thickening Tpe and the stretching Sre of an edge e = (u, v).

u v u v

Figure 2 The graphs T4S5e (on the left) and S5T4e (on the right) where e = (u, v).

for 1 ≤ i, j ≤ m. When this gadget is placed in a graph identifying u∗ and v∗ with two
vertices u and v in that graph, then F is the signature matrix for the pair (u, v). Note that
the vertex weights corresponding to u and v are excluded from the product in the definition
of F . Similar definitions can be introduced for EVAL(A), EVAL(A,D) and EVAL(A ,D).

We use ≤P
T (and ≡P

T) to denote polynomial-time Turing reductions (and equivalences,
respectively).

Two simple operations are known as thickening and stretching. Let p, r ≥ 1 be integers.
A p-thickening of an edge replaces it by p parallel edges, and a r-stretching replaces it by a
path of length r. In both cases we retain the endpoints u, v. The p-thickening or r-stretching
of G with respect to F ⊆ E(G), denoted respectively by T (F )

p (G) and S(F )
r (G), are obtained

by p-thickening or r-stretching each edge from F , respectively. Other edges, if any, are
unchanged in both cases. When F = E(G), we call them the p-thickening and r-stretching
of G and denote them by Tp(G) and Sr(G), respectively. Tpe and Sre are the special cases
when the graph consists of a single edge e. See Figure 1 for an illustration. Thickenings and
stretchings can be combined in any order. Examples are shown in Figure 2.

For a matrix A, we denote by A�p the matrix obtained by replacing each entry of A with
its pth power. Clearly, ZA(TpG) = ZA�p(G) and ZA(SrG) = ZAr (G). More generally, for the
vertex-weighted case, we have ZA,D(TpG) = ZA�p,D(G) and ZA,D(SrG) = ZA(DA)r−1,D(G).
Here (DA)0 = Im if A and D are m×m.

3 Dichotomy for bounded degree graphs

In addition to the Dyer-Greenhill dichotomy (Theorem 2), in the same paper [10] they also
proved that the #P-hardness part of their dichotomy holds for bounded degree graphs. The
bounded degree case of the Bulatov-Grohe dichotomy (Theorem 3) was left open, and all
known proofs [4, 22, 13] of its #P-hardness part require unbounded degree graphs. All
subsequent dichotomies that use the Bulatov-Grohe dichotomy, e.g., [12, 7] also explicitly or
implicitly (because of their dependence on the Bulatov-Grohe dichotomy) require unbounded
degree graphs. In this paper, we extend the #P-hardness part of the Bulatov-Grohe dichotomy
to bounded degree graphs.

I Theorem 7. Let A be a symmetric nonnegative matrix. If A is not block-rank-1, then for
some ∆ > 0, the problem EVAL(∆)(A) is #P-hard.
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The degree bound ∆ proved in Theorem 7 depends on A, as is the case in Theorem 2.
The authors of [10] conjectured that a universal bound ∆ = 3 works for Theorem 2; whether
a universal bound exists for both Theorems 2 and 7 is open. For general symmetric real or
complex A, it is open whether bounded degree versions of the dichotomies in [12] and [7]
hold. Xia [26] proved that a universal bound does not exist for complex symmetric matrices
A, assuming #P does not collapse to P.

We prove a broader dichotomy than Theorem 7, which also includes arbitrary nonnegative
vertex weights.

I Theorem 8. Let A and D be m ×m nonnegative matrices, where A is symmetric, and
D is diagonal. Let A′ be the matrix obtained from A by striking out rows and columns
that correspond to 0 entries of D on the diagonal. If A′ is block-rank-1, then the problem
EVAL(A,D) is in polynomial time. Otherwise, for some ∆ > 0, the problem EVAL(∆)

simp(A,D)
is #P-hard.

Every 0 entry of D on the diagonal effectively nullifies the corresponding domain element
in [m], so the problem becomes an equivalent problem on the reduced domain. Thus, for a
nonnegative diagonal D, without loss of generality, we may assume the domain has already
been reduced so that D is positive diagonal. In what follows, we will make this assumption.

In Section 5, we will prove the tractability part of Theorem 8. This follows easily from
known results. In Section 6, we will present two technical lemmas, Lemma 9 and Lemma 10
to be used in Section 4. Finally, in Section 7 we prove Theorem 11, showing that the #P-
hardness part of the dichotomy for counting GH by Goldberg et al. [12] for real symmetric
matrix (with mixed signs) is also valid for simple graphs.

4 Hardness proof

We proceed to prove the #P-hardness part of Theorem 8. Let A and D be m×m matrices,
where A is nonnegative symmetric but not block-rank-1, and D is positive diagonal. The
first step is to eliminate pairwise linearly dependent rows and columns of A. (We will see
that this step will naturally create nontrivial vertex weights even if we initially start with
the vertex unweighted case D = Im.)

If A has a zero row or column i, then for any connected input graph G other than a
single isolated vertex, no map ξ : V (G) → [m] having a nonzero contribution to ZA,D(G)
can map any vertex of G to i. So, by crossing out all zero rows and columns (they have the
same index set since A is symmetric) we may assume that A has no zero rows or columns.
We then delete the same set of rows and columns from D, thereby expressing the problem
EVAL(∆)

simp(A,D) for ∆ ≥ 0 on a smaller domain. Also permuting the rows and columns of
both A and D simultaneously by the same permutation does not change the value of ZA,D(·),
and so it does not change the complexity of EVAL(∆)

simp(A,D) for ∆ ≥ 0 either. Having no
zero rows and columns implies that pairwise linear dependence is an equivalence relation,
and so we may assume that the pairwise linearly dependent rows and columns of A are
contiguously arranged. Then, after renaming the indices, the entries of A are of the following
form: A(i,j),(i′,j′) = µijµi′j′A

′
i,i′ , where A′ is a nonnegative symmetric s× s matrix with all

columns nonzero and pairwise linearly independent, 1 ≤ i, i′ ≤ s, 1 ≤ j ≤ mi, 1 ≤ j′ ≤ mi′ ,∑s
i=1mi = m, and all µij > 0. We also rename the indices of the matrix D so that the

diagonal entries of D are of the following form: D(i,j),(i,j) = αij > 0 for 1 ≤ i ≤ s and
1 ≤ j ≤ mi. As m ≥ 1 we get s ≥ 1.
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F1 F2

F3

F4

F5

Figure 3 The gadget R5,3,4.

Then the partition function ZA,D(·) can be written in a compressed form

ZA,D(G) =
∑

ζ:V (G)→[s]

 ∏
w∈V (G)

mζ(w)∑
j=1

αζ(w)jµ
deg(w)
ζ(w)j

 ∏
(u,v)∈E(G)

A′ζ(u),ζ(v) = ZA′,D(G)

where D = {D[[k]]}∞k=0 with D
[[k]]
i =

∑mi
j=1 αijµ

k
ij > 0 for k ≥ 0 and 1 ≤ i ≤ s. Then all

matrices in D are positive diagonal. Note the dependence on the vertex degree deg(w)
for w ∈ V (G). Since the underlying graph G remains unchanged, this way we obtain the
equivalence EVAL(∆)

simp(A,D) ≡P
T EVAL(∆)

simp(A′,D) for any ∆ ≥ 0. Here the subscript simp
can be included or excluded, and the same is true for the superscript (∆), the statement
remains true in all cases. We also point out that the entries of the matrices D[[k]] ∈ D are
computable in polynomial time in the input size of (A,D) as well as in k.

4.1 Gadgets Pn,p and Rd,n,p

We first introduce the edge gadget Pn,p, for all p, n ≥ 1. It is obtained by replacing each edge
of a path of length n by the gadget in Figure 5 from Lemma 10. More succinctly Pn,p is
S2TpSne, where e is an edge.

To define the gadget Rd,n,p, for all d, p, n ≥ 1, we start with a cycle on d vertices
F1, . . . , Fd (call it a d-cycle), replace every edge of the d-cycle by a copy of Pn,p, and append
a dangling edge at each vertex Fi of the d-cycle. To be specific, a 2-cycle has two vertices
with 2 parallel edges between them, and a 1-cycle is a loop on one vertex. The gadget Rd,n,p
always has d dangling edges. Note that all Rd,n,p are loopless simple graphs (i.e., without
parallel edges or loops), for d, n, p ≥ 1. An example of a gadget Rd,n,p is shown in Figure 3.
For the special cases d = 1, 2, examples of gadgets Rd,n,p can be seen in Figure 4.

We note that vertices in Pn,p have degrees at most 2p, and vertices in Rd,n,p have degrees
at most 2p+ 1, taking into account the dangling edges. Clearly |V (Rd,n,p)| = dn(p+ 1) and
|E(Rd,n,p)| = (2np+ 1)d, including the dangling edges.



A. Govorov, J.-Y. Cai, and M. Dyer 66:9

F1

(a) R1,5,5

F1 F2

(b) R2,4,3

Figure 4 Examples of gadgets Rd,n,p for d = 1, 2.

By Lemma 10, we can fix some p ≥ 1 such that B = (A′D[[2]]A′)�p is nondegenerate,
where the superscript [[2]] is from the stretching operator S2 which creates those degree 2
vertices, and the superscript �p is from the thickening operator Tp, followed by S2, which
creates those parallel paths of length 2. The edge gadget Pn,p has the edge weight matrix

L(n) = BD[[2p]]B . . . BD[[2p]]B︸ ︷︷ ︸
D[[2p]] appears n−1 ≥ 0 times

= B(D[[2p]]B)n−1 (1)

= (D[[2p]])−1/2((D[[2p]])1/2B(D[[2p]])1/2)n(D[[2p]])−1/2, (2)

where in the notation L(n) we suppress the index p. The n− 1 occurrences of D[[2p]] in (1)
are due to those n − 1 vertices of degree 2p. Here (D[[2p]])1/2 is a diagonal matrix with
the positive square roots of the corresponding entries of D[[2p]] on the main diagonal, and
(D[[2p]])−1/2 is its inverse. The vertices Fi are of degree 2p+ 1 each, but the contributions by
its vertex weights are not included in L(n).

The constraint function induced by Rd,n,p is more complicated to write down. When it
is placed as a part of a graph, for any given assignment to the d vertices Fi, we can express
the contribution of the gadget Rd,n,p in terms of d copies of L(n), together with the vertex
weights incurred at the d vertices Fi which will depend on their degrees.

4.2 Interpolation using Rd,n,p

Assume for now that G does not contain isolated vertices. We will replace every vertex
u ∈ V (G) of degree d = du = deg(u) ≥ 1 by a copy of Rd,n,p, for all n, p ≥ 1. The
replacement operation can be described in two steps: In step one, each u ∈ V (G) is replaced
by a d-cycle on vertices F1, . . . , Fd, each having a dangling edge attached. The d dangling
edges will be identified one-to-one with the d incident edges at u. If u and v are adjacent
vertices in G, then the edge (u, v) in G will be replaced by merging a pair of dangling edges,
one from the du-cycle and one from the dv-cycle. Thus in step one we obtain a graph G′,
which basically replaces every vertex u ∈ V (G) by a cycle of deg(u) vertices. Then in step
two, for every cycle in G′ that corresponds to some u ∈ V (G) we replace each edge on the
cycle by a copy of the edge gadget Pn,p.

Let Gn,p denote the graph obtained from G by the replacement procedure above. Since all
gadgets Rd,n,p are loopless simple graphs, so are Gn,p for all n, p ≥ 1, even if G has multiple
edges (or had multiloops, if we view a loop as adding degree 2 to the incident vertex). As
a technical remark, if G contains vertices of degree 1, then the intermediate graph G′ has
loops but all graphs Gn,p (n, p ≥ 1) do not. Also note that all vertices in Gn,p have degree
at most 2p+ 1, which is independent of n.
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Next, it is not hard to see that

|V (Gn,p)| =
∑

u∈V (G)

dun(p+ 1) = 2n(p+ 1)|E(G)|,

|E(Gn,p)| = |E(G)|+
∑

u∈V (G)

2npdu = (4np+ 1)|E(G)|.

Hence the size of the graphs Gn,p is polynomially bounded in the size of G, n and p.
Since we chose a fixed p, and will choose n to be bounded by a polynomial in the size

of G, whenever something is computable in polynomial time in n, it is also computable in
polynomial time in the size of G (we will simply say in polynomial time).

We consider ZA′,D(G), and substitute G by Gn,p. We will make use of the edge weight
matrix L(n) of Pn,p in (2). The vertices Fi are of degree 2p+ 1 each in Gn,p, so will each
contribute a vertex weight according to the diagonal matrix D[[2p+1]] to the partition function,
which are not included in L(n), but now must be accounted for in ZA′,D(Gn,p).

Since B is real symmetric and D[[2p]] is positive diagonal, the matrix

B̃ = (D[[2p]])1/2B(D[[2p]])1/2

is real symmetric. Then B̃ is orthogonally diagonalizable over R, i.e., there exist a real
orthogonal matrix S and a real diagonal matrix J = diag(λi)si=1 such that B̃ = STJS. Then
B̃n = STJnS so the edge weight matrix for Pn,p becomes

L(n) = (D[[2p]])−1/2B̃n(D[[2p]])−1/2 = (D[[2p]])−1/2STJnS(D[[2p]])−1/2.

Note that L(n) as a matrix is defined for any n ≥ 0, and L(0) = (D[[2p]])−1, even though
there is no physical gadget P0,p that corresponds to it. However, it is precisely this “virtual”
gadget we wish to “realize” by interpolation.

Clearly, B̃ is nondegenerate as B and (D[[2p]])1/2 both are, and so is J . Then all λi 6= 0.
We can also write L(n)

ij =
∑s
`=1 aij`λ

n
` for every n ≥ 0 and some real aij`’s which depend

on S, D[[2p]], but not on J and n, for all 1 ≤ i, j, ` ≤ s. By the formal expansion of the
symmetric matrix L(n) above, we have aij` = aji`. Note that for all n, p ≥ 1, the gadget
Rdv,n,p for v ∈ V (G) employs exactly dv copies of Pn,p. Let t =

∑
v∈V (G) dv = 2|E(G)|; this

is precisely the number of edge gadgets Pn,p in Gn,p.
In the evaluation of the partition function ZA′,D(Gn,p), we stratify the vertex assignments

in Gn,p as follows. Denote by κ = (kij)1≤i≤j≤s a tuple of nonnegative integers, where the
indexing is over all s(s+ 1)/2 ordered pairs (i, j). There are a total of

(
t+s(s+1)/2−1
s(s+1)/2−1

)
such

tuples that satisfy
∑

1≤i≤j≤s kij = t. For a fixed s, this is a polynomial in t, and thus a
polynomial in the size of G. Denote by K the set of all such tuples κ. We will stratify all
vertex assignments in Gn,p by κ ∈ K, namely all assignments such that there are exactly
kij many constituent edge gadgets Pn,p with the two end points (in either order of the end
points) assigned i and j respectively.

For each κ ∈ K, the edge gadgets Pn,p in total contribute
∏

1≤i≤j≤s(L
(n)
ij )kij to the

partition function ZA′,D(Gn,p). If we factor this product out for each κ ∈ K, we can express
ZA′,D(Gn,p) as a linear combination of these products over all κ ∈ K, with polynomially
many coefficient values cκ that are independent of all edge gadgets Pn,p. Another way to
define these coefficients cκ is to think in terms of G′: For any κ = (kij)1≤i≤j≤s ∈ K, we say
a vertex assignment on G′ is consistent with κ if it assigns exactly kij many cycle edges
of G′ (i.e., those that belong to the cycles that replaced vertices in G) as ordered pairs of
vertices to the values (i, j) or (j, i). (For any loop in G′, as a cycle of length 1 that came
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from a degree 1 vertex of G, it can only be assigned (i, i) for some 1 ≤ i ≤ s.) Let L′ be any
symmetric edge signature to be assigned on each of these cycle edges in G′, and keep the edge
signature A′ on the merged dangling edges between any two such cycles, and the suitable
vertex weights specified by D, namely each vertex receives its vertex weight according to
D[[2p+1]]. Then cκ is the sum, over all assignments consistent with κ, of the products of all
edge weights and vertex weights other than the contributions by L′, in the evaluation of the
partition function on G′. In other words, for each κ ∈ K,

cκ =
∑

ζ : V (G′)→[s]
ζ is consistent with κ

∏
w∈V (G′)

D
[[2p+1]]
ζ(w)

∏
(u,v)∈Ẽ

A′ζ(u),ζ(v),

where Ẽ ⊆ E(G′) are the non-cycle edges of G′ that are in 1-1 correspondence with E(G).
In particular, the values cκ are independent of n. Thus for some polynomially many

values cκ, where κ ∈ K, we have for all n ≥ 1,

ZA′,D(Gn,p) =
∑
κ∈K

cκ
∏

1≤i≤j≤s
(L(n)

ij )kij =
∑
κ∈K

cκ
∏

1≤i≤j≤s
(
s∑
`=1

aij`λ
n
` )kij . (3)

Expanding out the last sum and rearranging the terms, for some values bi1,...,is independent
of n, we get

ZA′,D(Gn,p) =
∑

i1+...+is=t
i1,...,is≥0

bi1,...,is(
s∏
j=1

λ
ij
j )n

for all n ≥ 1.
This represents a linear system with the unknowns bi1,...,is with the rows indexed by n.

The number of unknowns is clearly
(
t+s−1
s−1

)
which is polynomial in the size of the input graph

G since s is a constant. The values
∏s
j=1 λ

ij
j can be clearly computed in polynomial time.

We show how to compute the value∑
i1+...+is=t
i1,...,is≥0

bi1,...,is

from the values ZA′,D(Gn,p), n ≥ 1 in polynomial time. The coefficient matrix of this system
is a Vandermonde matrix. However, it can have repeating columns so it might not be of full
rank because the coefficients

∏s
j=1 λ

ij
j do not have to be pairwise distinct. However, when

they are equal, say,
∏s
j=1 λ

ij
j =

∏s
j=1 λ

i′j
j , we replace the corresponding unknowns bi1,...,is

and bi′1,...,i′s with their sum as a new variable. Since all λi 6= 0, we have a Vandermonde
system of full rank after all such combinations. Therefore we can solve this linear system in
polynomial time and find the desired value

∑
i1+...+is=t
i1,...,is≥0

bi1,...,is .

Now we will consider a problem in the framework of ZA ,D according to Definition 6.
Let G0,p be the (undirected) GH-grid, with the underlying graph G′, and every edge of the
cycle in G′ corresponding to a vertex in V (G) is assigned the edge weight matrix (D[[2p]])−1,
and we keep the vertex-weight matrices D[[2p+1]] at all vertices Fi. The other edges, i.e.,
the original edges of G, each keep the assignment of the edge weight matrix A′. (So in the
specification of ZA ,D , we have A = {(D[[2p]])−1, A′}, and D = {D[[2p+1]]}. We note that G′
may have loops, and Definition 6 specifically allows this.) Then

Z{(D[[2p]])−1,A′},D[[2p+1]](G0,p) =
∑

i1+...+is=t
i1,...,is≥0

bi1,...,is(
s∏
j=1

λ
ij
j )0 =

∑
i1+...+is=t
i1,...,is≥0

bi1,...,is
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and we have just computed this value in polynomial time in the size of G from the val-
ues ZA′,D(Gn,p), for n ≥ 1. In other words, we have achieved it by querying the oracle
EVAL(A′,D) on the instances Gn,p, for n ≥ 1, in polynomial time.

Equivalently, we have shown that we can simulate a virtual “gadget” Rd,0,p replacing
every occurrence of Rd,n,p in Gn,p in polynomial time. The virtual gadget Rd,0,p has the
edge signature (D[[2p]])−1 in place of (D[[2p]])−1/2B̃n(D[[2p]])−1/2 in each Pn,p, since

(D[[2p]])−1/2B̃0(D[[2p]])−1/2 = (D[[2p]])−1/2Is(D[[2p]])−1/2 = (D[[2p]])−1.

Additionally, each Fi retains the vertex-weight contribution with the matrix D[[2p+1]] in Rd,0,p.
We view it as having “virtual” degree 2p+ 1. This precisely results in the GH-grid G0,p.

However, even though G0,p still retains the cycles, since (D[[2p]])−1 is a diagonal ma-
trix, each vertex Fi in a cycle is forced to receive the same vertex assignment value
in the domain set [s]; all other vertex assignments contribute zero in the evaluation of
Z{(D[[2p]])−1,A′},D[[2p+1]](G0,p). This can be easily seen by traversing the vertices F1, . . . , Fd in
a cycle. Hence we can view each cycle employing the virtual gadget Rd,0,p as a single vertex
that contributes only a diagonal matrix of positive vertex weights P [[d]] = (D[[2p+1]](D[[2p]])−1)d,
where d is the vertex degree in G. Contracting all the cycles to a single vertex each, we
arrive at the original graph G. Let P = {P [[i]]}∞i=0, where we let P [[0]] = Is, and for i > 0,
we have P [[i]]

j = wij where wj =
∑mj
k=1 αjkµ

2p+1
jk /

∑mj
k=1 αjkµ

2p
jk > 0 for 1 ≤ j ≤ s. This shows

that we now can interpolate the value ZA′,P(G) using the values ZA′,D(Gn,p) in polynomial
time in the size of G. The graph G is arbitrary but without isolated vertices here. We show
next how to deal with the case when G has isolated vertices.

Given an arbitrary graph G, assume it has h ≥ 0 isolated vertices. Let G∗ denote
the graph obtained from G by their removal. Then G∗ is of size not larger than G and
h ≤ |V (G)|. Obviously, ZA′,P(G) = (

∑s
i=1 P

[[0]]
i )hZA′,P(G∗) = shZA′,P(G∗). Here the

integer s is a constant, so the factor sh > 0 can be easily computed in polynomial time.
Thus, knowing the value ZA′,P(G∗) we can compute the value ZA′,P(G) in polynomial time.
Further, since we only use the graphs Gn,p, n ≥ 1 during the interpolation, each being simple
of degree at most 2p + 1, combining it with the possible isolated vertex removal step, we
conclude EVAL(A′,P) ≤P

T EVAL(2p+1)
simp (A′,D).

Next, it is easy to see that for an arbitrary graph G

ZA′,P(G) =
∑

ζ:V (G)→[s]

∏
z∈V (G)

P
[[deg(z)]]
ζ(z)

∏
(u,v)∈E(G)

A′ζ(u),ζ(v)

=
∑

ζ:V (G)→[s]

∏
z∈V (G)

w
deg(z)
ζ(z)

∏
(u,v)∈E(G)

A′ζ(u),ζ(v)

=
∑

ζ:V (G)→[s]

∏
(u,v)∈E(G)

wζ(u)wζ(v)A
′
ζ(u),ζ(v)

=
∑

ζ:V (G)→[s]

∏
(u,v)∈E(G)

Cζ(u),ζ(v) = ZC(G).

Here C is an s× s matrix with the entries Cij = A′ijwiwj where 1 ≤ i, j ≤ s. Clearly, C is a
nonnegative symmetric matrix. In the above chain of equalities, we were able to redistribute
the weights wi and wj into the edge weights A′ij which resulted in the edge weights Cij ,
so that precisely each edge (u, v) in G gets two factors wζ(u) and wζ(v) since the vertex
weights at u and v were wdeg(u)

ζ(u) and wdeg(v)
ζ(v) respectively. (This is a crucial step in our proof.)
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Because the underlying graph G is arbitrary, it follows that EVAL(A′,P) ≡P
T EVAL(C).

Combining this with the previous EVAL-reductions and equivalences, we obtain

EVAL(C) ≡P
T EVAL(A′,P) ≤P

T EVAL(2p+1)
simp (A′,D) ≡P

T EVAL(2p+1)
simp (A,D),

so that EVAL(C) ≤P
T EVAL(∆)

simp(A,D), by taking ∆ = 2p+ 1.
Remembering that our goal is to prove the #P-hardness for the matrices A,D not

satisfying the tractability conditions of Theorem 8, we finally use the assumption that A
is not block-rank-1. Next, noticing that all µij > 0, by construction A′ is not block-rank-1
either. Finally, because all wi > 0 nor is C block-rank-1 implying that EVAL(C) is #P-hard
by Theorem 3. Hence EVAL(2p+1)

simp (A,D) is also #P-hard. This completes the proof of the
#P-hardness part of Theorem 8.

We remark that one important step in our interpolation proof happened at the strati-
fication step before (3). In the proof we have the goal of redistributing vertex weights to
edge weights; but this redistribution is sensitive to the degree of the vertices. This led us
to define the auxiliary graph G′ and the coefficients cκ. Usually in an interpolation proof
there are some coefficients that have a clear combinatorial meaning in terms of the original
problem instance. Here these values cκ do not have a clear combinatorial meaning in terms
of ZA′,D(G), rather they are defined in terms of an intermediate problem instance G′, which
is neither G nor the actual constructed graphs Gn,p. It is only in a “limiting” sense that a
certain combination of these values cκ allows us to compute ZA′,D(G).

5 Tractability part

The tractability part of Theorem 8 follows easily from known results. For completeness we
outline a proof here. Let A and D be m×m matrices, where A is nonnegative symmetric
block-rank-1 and D is positive diagonal.

First, ZA,D(G) can be reduced to the connected components G1, . . . , Gt of G,

ZA,D(G) =
t∏
i=1

ZA,D(Gi),

so we may as well assume G is connected. We permute the rows and columns of A,D
by the same permutation and then cross out zero rows and columns of A. This does not
change ZA,D. We may assume that A = diag(Ai)ki=1 is block diagonal with nonzero blocks
A1, . . . , Ak, where each block Ai is either a symmetric matrix of rank 1 with no zero entries,
or a symmetric bipartite matrix of the form

( 0 B
BT 0

)
where B has rank 1 and no zero entries.

Then we can write D = diag(Di)ki=1 where each Di is positive diagonal of the corresponding
size. As A is block diagonal and G is connected,

ZA,D(G) =
k∑
i=1

ZAi,Di(G).

So we may as well assume that A is one of these blocks. Also let D = diag(αi)mi=1.

1) A is a symmetric matrix of rank 1 with no zero entries. We can write A = xTx for some
positive row vector x = (xi)mi=1. Then

ZA,D(G) =
∏

u∈V (G)

m∑
i=1

αix
deg(u)
i .
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2) A =
( 0 B
BT 0

)
, where B is `× (m− `) (for some 1 ≤ ` < m) has rank 1 and no zero entries.

We can write B = xT y for some positive row vectors x = (xi)`i=1 and y = (yj)mj=`+1.
Since G is connected, ZA,D(G) = 0 unless G is bipartite. If G is bipartite with a vertex
bipartization V1 ∪ V2, then we only need to consider maps ξ : G→ [m] such that either
ξ(V1) ⊆ [`], ξ(V2) ⊆ [` + 1 : m] or ξ(V1) ⊆ [` + 1 : m], ξ(V2) ⊆ [`], with all other maps
contribute zero to ZA,D(G). Then

ZA,D(G) =
(∏
u∈V1

∑̀
i=1

αix
deg(u)
i

)∏
v∈V2

m∑
j=`+1

αjy
deg(v)
j


+

∏
u∈V1

m∑
j=`+1

αjy
deg(u)
j

(∏
v∈V2

∑̀
i=1

αix
deg(v)
i

)
.

6 Two technical lemmas

We need two technical lemmas. The following lemma is from [10] (Lemma 3.6); for the
convenience of readers we give a proof here.

I Lemma 9. Let A and D be m×m matrices, where A is real symmetric with all columns
nonzero and pairwise linearly independent, and D is positive diagonal. Then all columns of
ADA are nonzero and pairwise linearly independent.

Proof. The case m = 1 is trivial. Assume m ≥ 2. Let D = diag(αi)mi=1, and Π =
diag(√αi)mi=1. Then Π2 = D. We have ADA = QTQ, where Q = ΠA. Let qi denote the ith
column of Q. Then Q has pairwise linearly independent columns. By the Cauchy-Schwartz
inequality,

qTi qj <
(
(qTi qi)(qTj qj)

)1/2
,

whenever i 6= j. Then for any 1 ≤ i < j ≤ m, the ith and jth columns of ADA contain a
submatrix[

qTi qi qTi qj
qTi qj qTj qj

]
,

so they are linearly independent. J

The following is also adapted from [10] (Theorem 3.1).

I Lemma 10. Let A and D be m×m matrices, where A is real symmetric with all columns
nonzero and pairwise linearly independent, and D is positive diagonal. Then for all sufficiently
large positive integers p, the matrix B = (ADA)�p corresponding to the edge gadget in Figure 5
is nondegenerate.

Proof. If m = 1, then any p ≥ 1 works. Let m ≥ 2. Following the proof of Lemma 9, we
have qTi qj <

√
(qTi qi)(qTj qj), for all 1 ≤ i < j ≤ m. Let

γ = max
1≤i<j≤m

qTi qj√
(qTi qi)(qTj qj)

< 1.

Let A′ = ADA = QTQ so A′ij = qTi qj . Then A′ij ≤ γ
√
A′iiA

′
jj for all i 6= j. Consider the

determinant of A′. Each term of det(A′) has the form

±
m∏
i=1

A′iσ(i),
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u v

1

2

...

p− 1

p

Figure 5 The edge gadget S2Tpe, e = (u, v) with the edge weight matrix (ADA)�p.

where σ is a permutation of [m]. Denote t(σ) = |{i | σ(i) 6= i}|. Then
m∏
i=1

A′iσ(i) ≤ γ
t(σ)

m∏
i=1

√
A′ii

m∏
i=1

√
A′σ(i)σ(i) = γt(σ)

m∏
i=1

A′ii.

Consider the p-thickening of A′ for p ≥ 1. Each term of det ((A′)�p) has the form
±
∏m
i=1A

′ p
iσ(i) for some permutation σ of [m]. Now

|{σ | t(σ) = j}| ≤
(
m

j

)
j! ≤ mj ,

for 0 ≤ j ≤ m. By separating out the identity permutation and all other terms, for
p ≥ bln(2m)/ ln(1/γ)c+ 1, we have 2mγp < 1, and

det
(
(A′)�p

)
≥

(
m∏
i=1

A′ii

)p
−

(
m∏
i=1

A′ii

)p m∑
j=1

mjγpj

≥

(
m∏
i=1

A′ii

)p(
1− mγp

1−mγp

)
=
(

m∏
i=1

A′ii

)p(
1− 2mγp

1−mγp

)
> 0. J

7 Hardness for ZA(·) on simple graphs for real symmetric A

There is a more direct approach to prove the #P-hardness part of the Bulatov-Grohe
dichotomy (Theorem 3) for simple graphs. Although this method does not handle degree-
boundedness, we can apply it more generally to the problem EVAL(A,D) when the matrix
A is real symmetric and D is positive diagonal. In particular, we will prove the #P-hardness
part of the dichotomy for counting GH by Goldberg et al. [12] (the problem EVAL(A) without
vertex weights, where A is a real symmetric matrix) for simple graphs.

We first prove the following theorem.

I Theorem 11. Let A and D be m × m matrices, where A is real symmetric and D is
positive diagonal. Then EVAL(A,D) ≤P

T EVALsimp(A,D).

Proof. We may assume A is not identically 0, for otherwise the problem is trivial. Let
G = (V,E) be an input graph to the problem EVAL(A,D). For any n ≥ 1, let Gn = S

(F )
n (G)

where F ⊆ E is the subset consisting of the edges of G each of which is parallel to at least
one other edge. In other words, we obtain Gn by replacing every parallel edge e by its
n-stretching Sne. We will refer to these as paths of length n in Gn. Note that G1 = G.
Moreover, for every n ≥ 2, the graph Gn is simple and loopless, and has polynomial size in
the size of G and n.
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A path of length n ≥ 1 has the edge weight matrix

M (n) = ADA . . . ADA︸ ︷︷ ︸
D appears n−1 ≥ 0 times

= A(DA)n−1 = D−1/2(D1/2AD1/2)nD−1/2.

Here D1/2 is a diagonal matrix with the positive square roots of the corresponding entries of
D on the main diagonal, and D−1/2 is its inverse.

Since A is real symmetric and D is positive diagonal, the matrix Ã = D1/2AD1/2 is real
symmetric. Then Ã is orthogonally diagonalizable over R, i.e., there exist a real orthogonal
matrix S and a real diagonal matrix J = (λi)mi=1 such that Ã = STJS. If A has rank r, then
1 ≤ r ≤ m, and we may assume that λi 6= 0 for 1 ≤ i ≤ r and λi = 0 for i > r.

We have Ãn = STJnS, so the edge weight matrix for a path of length n ≥ 1 can be
written as

M (n) = D−1/2ÃnD−1/2 = D−1/2STJnSD−1/2.

We can write M (n)
ij =

∑r
`=1 aij`λ

n
` by a formal expansion, for every n ≥ 1 and some real

aij`’s that are dependent on D and S, but independent of n and λ`, where 1 ≤ i, j ≤ m and
1 ≤ ` ≤ r. By the formal expansion of the symmetric matrix M (n) above, we have aij` = aji`.
Let t = |F |, which is the number of edges in G subject to the stretching operator Sn to
form Gn.

In the evaluation of the partition function ZA,D(Gn), we stratify the vertex assignments
in Gn as follows. Denote by κ = (kij)1≤i≤j≤m a nonnegative tuple with entries indexed
by ordered pairs of nonnegative numbers that satisfy

∑
1≤i≤j≤m kij = t. Let K denote the

set of all such possible tuples κ. In particular, |K| =
(
t+m(m+1)/2−1
m(m+1)/2−1

)
. For a fixed m, this

is a polynomial in t, and thus a polynomial in the size of G. Let cκ be the sum over all
assignments of all vertex and edge weight products in ZA,D(Gn), except the contributions
by the paths of length n formed by stretching parallel edges in G, such that the endpoints
of precisely kij constituent paths of length n receive the assignments (i, j) (in either order
of the end points) for every 1 ≤ i ≤ j ≤ m. Technically we can call a vertex assignment
on G consistent with κ (where κ ∈ K), if it satisfies the stated property. Note that the
contribution by each such path does not include the vertex weights of the two end points
(but does include all vertex weights of the internal n− 1 vertices of the path). We can write

cκ =
∑

ξ : V (G)→[m]
ξ is consistent with κ

∏
w∈V

Dξ(w)
∏

(u,v)∈E\F

Aξ(u),ξ(v)

for κ ∈ K.
In particular, the values cκ are independent of n. Thus for some polynomially many

values cκ, where κ ∈ K, we have for all n ≥ 1,

ZA,D(Gn) =
∑
κ∈K

cκ
∏

1≤i≤j≤m
(M (n)

ij )kij =
∑
κ∈K

cκ
∏

1≤i≤j≤m
(
r∑
`=1

aij`λ
n
` )kij .

Expanding out the last sum and rearranging the terms, for some values bi1,...,ir independent
of n, we get

ZA,D(Gn) =
∑

i1+...+ir=t
i1,...,ir≥0

bi1,...,ir (
r∏
`=1

λi`` )n (4)

for all n ≥ 1.
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This can be viewed as a linear system with the unknowns bi1,...,ir with the rows indexed
by n. The number of unknowns is

(
t+r−1
r−1

)
which is polynomial in the size of the input graph

G, since r ≤ m is a constant. The values
∏r
`=1 λ

i`
` can all be computed in polynomial time.

We show how to compute the value ZA,D(G) =
∑

i1+...+ir=t
i1,...,ir≥0

bi1,...,ir

r∏
`=1

λi`` , from the values

ZA,D(Gn) where n ≥ 2 in polynomial time (recall that Gn is simple and loopless for n ≥ 2).
The coefficient matrix of the linear system (4) is a Vandermonde matrix. However, it might
not be of full rank because the coefficients

∏r
`=1 λ

i`
` do not have to be pairwise distinct,

and therefore it can have repeating columns. Nevertheless, when there are two repeating
columns we replace the corresponding unknowns bi1,...,ir and bi′1,...,i′r with their sum as a
new variable; we repeat this replacement procedure until there are no repeating columns.
Since all λ` 6= 0, for 1 ≤ ` ≤ r, after the replacement, we have a Vandermonde system of full
rank. Therefore we can solve this modified linear system in polynomial time. This allows

us to obtain the value ZA,D(G) =
∑

i1+...+ir=t
i1,...,ir≥0

bi1,...,ir

r∏
`=1

λi`` , which also has exactly the same

pattern of repeating multipliers
∏r
`=1 λ

i`
` .

We have shown how to compute the value ZA,D(G) in polynomial time by querying
the oracle EVAL(A,D) on polynomially many instances Gn, for n ≥ 2. It follows that
EVAL(A,D) ≤P

T EVALsimp(A,D). J

We are ready to prove the #P-hardness part of the dichotomy by Goldberg et al. [12]
(Theorem 1.1) for simple graphs. Let A be a real symmetric m×m matrix. Assuming that A
does not satisfy the tractability conditions of the dichotomy theorem of Goldberg et al., the
problem EVAL(A) is #P-hard. By Theorem 11 (with D = Im), EVAL(A) ≤P

T EVALsimp(A).
It follows that EVALsimp(A) is #P-hard.

Hence the dichotomy theorem by Goldberg et al. can improve to apply to simple graphs.

I Theorem 12. Let A be a real symmetric matrix. Then either EVAL(A) is in polynomial
time or EVALsimp(A) is #P-hard (a fortiori, EVAL(A) is #P-hard).

Moreover, there is a polynomial time algorithm that, given the matrix A, decides which
case of the dichotomy it is.

I Remark 13. The interpolation argument in Theorem 11 works even if G is a multigraph
possibly with multiple loops at any vertex in the following sense. In Definition 4, we treat
the loops of G as edges. We think of them as mapped to the entries Aii in the evaluation
of the partition function ZA,D. However, we need to slightly change the way we define the
graphs Gn. In addition to n-stretching the parallel edges of G, we also need to n-stretch
each loop of G (i.e., replacing a loop by a closed path of length n). Now F is the set of
parallel edges and loops in G. This way each Gn = S

(F )
n (G) for n ≥ 2 is simple and loopless.

The rest of the proof goes through. In other words, the statement of Theorem 11 extends to
a reduction from the EVAL(A,D) problem that allows input G to have multiloops, to the
standard problem EVALsimp(A,D) not allowing loops.
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Abstract
The lexicographic depth-first search (Lex-DFS) is one of the first basic graph problems studied in
the context of space-efficient algorithms. It is shown independently by Asano et al. [ISAAC 2014]
and Elmasry et al. [STACS 2015] that Lex-DFS admits polynomial-time algorithms that run with
O(n)-bit working memory, where n is the number of vertices in the graph. Lex-DFS is known to
be P-complete under logspace reduction, and giving or ruling out polynomial-time sublinear-space
algorithms for Lex-DFS on general graphs is quite challenging. In this paper, we study Lex-DFS on
graphs of bounded treewidth. We first show that given a tree decomposition of width O(n1−ε) with
ε > 0, Lex-DFS can be solved in sublinear space. We then complement this result by presenting a
space-efficient algorithm that can compute, for w ≤

√
n, a tree decomposition of width O(w

√
n logn)

or correctly decide that the graph has a treewidth more than w. This algorithm itself would be of
independent interest as the first space-efficient algorithm for computing a tree decomposition of
moderate (small but non-constant) width. By combining these results, we can show in particular
that graphs of treewidth O(n1/2−ε) for some ε > 0 admits a polynomial-time sublinear-space
algorithm for Lex-DFS. We can also show that planar graphs admit a polynomial-time algorithm
with O(n1/2+ε)-bit working memory for Lex-DFS.
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1 Introduction

1.1 Background and Motivation
Depth-First Search (DFS) is one of the most fundamental and elementary graph search
algorithms with a huge number of applications. Lexicographic DFS (Lex-DFS) is a popular
variant of DFS, which requires the search head always moves to the first undiscovered
neighbor in the adjacency list of the current vertex (as long as it exists). Recently, the space-
efficient implementation of fundamental graph algorithms, including (Lex-)DFS, receives
much attention [3, 6, 15, 16, 23, 26, 30]. These researches are roughly motivated by the
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two aspects as follows: First, the space matter is serious in the big-data (i.e., too large
inputs) and/or IoT (i.e., too small computational devices) era. Second, the challenge of
proving space-complexity lower bounds for problems within class P still lies at the core of
computational complexity theory. One of the ultimate goals on this research direction is to
prove or disprove the seminal P 6= L conjecture 2. We focus on the space complexity of Lex-
DFS, particularly the algorithms using memory below the trivial O(n logn)-bit bound. This
can be motivated from both sides but much leans against the second one. The sublinear-space
Lex-DFS problem is formulated as the one of outputting the Lex-DFS ordering of all vertices
in streaming way, and its space complexity is measured by the required working-memory
size, as the classical read-only model [25].

To argue the complexity of sublinear-space algorithms, the notion of P-completeness
under logspace reduction plays an important role, which is analogous to NP-completeness in
P 6= NP conjecture. Reif [40] shows that Lex-DFS is P-complete under logspace reduction.
It implies that no Lex-DFS algorithm only using O(logn)-bit working memory exists unless
P = L holds. A counterpart from the upper-bound side is recently obtained by a few
literatures [3, 6, 23, 26]. They focus on the implementation of (Lex-)DFS achieving both
polynomial time and o(n logn)-bit space complexity, where n is the number of vertices in
the input graph. Initiated by Asano et al. [3] and Elmasry et al. [23], a series of papers by
several authors explore the time-space tradeoffs of (Lex-)DFS in the area of o(n logn)-bit
space-complexity. The state-of-the-art bounds are threefolds, O(m log∗ n) running time and
O(n)-bit working memory, O(m+ n) running time and O(n log log(4 +m/n))-bit working
memory, and O(m+ n) running time and O(n log(k) n)-bit working memory for any integer
k > 1, which are all proposed by Hagerup [26]. Looking at hidden coefficients, the smallest-
space algorithm is the one by Asano et al. [3], which achieves a polynomial running time
(with a large exponent) using the working memory of n + o(n) bits. No algorithm so far
attains cn-bit space complexity for c < 1, and obtaining such an algorithm is commonly
recognized as a very challenging problem. This open problem is also supported from yet
another context of computational complexity theory. Lex-DFS on directed graphs is at least
as hard as the directed s-t reachability problem, which is known to be NL-complete and
thus its space-efficient (ideally, logspace) solution is closely related to the seminal L = NL?
problem. In fact, any directed Lex-DFS algorithm achieving O(n1−ε)-bit space complexity
for any small constant ε > 0 would be a breakthrough result on this research line.

1.2 Our Result
In the context of directed s-t reachability, there are many attempts of attaining O(n1−ε)-bit
space complexity for a specific graph class such as planar or bounded treewidth graphs [1,
4, 5, 12, 13, 27, 29], which naturally yields the interest to the feasibility of sublinear-space
Lex-DFS for those classes. It should be noted that Lex-DFS is P-complete even for planar
graphs [2], and thus its difficulty under log-space solvability is the same as the general case.
One of the main results presented in this paper is a sublinear-space Lex-DFS algorithm for
bounded treewidth graphs. The first theorem is stated as follows.

I Theorem 1. Let 0 < ε < 1 be an arbitrary positive constant, G be any n-vertex directed
graph of treewidth w, and (T , {Bx}x∈VT ) be its tree decomposition of width w′ ≥ w, where
T = (VT , ET ) is a tree and each node x in T is associated with a subset Bx of vertices in G.
Assume a polynomial-time algorithm Alg enumerating the vertices in Bx for all x ∈ VT and
the edges in ET . Then there exists a Lex-DFS algorithm of running time O(nO(1/ε)) using
O(ε−1w′nε logn)-bit memory (except for the space used by Alg).

2 L is the class of problems decidable with O(logn)-bit working space (and thus in poly(n) time).
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It should be noted that Lex-DFS does not necessarily lie on the seminal framework known
as Courcelle’s theorem [19] and its logspace version [22] because the output depends on the
order of vertices in the adjacency list of the input graph.

To figure out a “purely” sublinear-space Lex-DFS algorithm, it is necessary to implement
a tree decomposition algorithm using only sublinear space. Elberfeld et al. [22] presents
a logspace tree-decomposition algorithm for w = O(1), but no sublinear-space algorithm
covering the case of w = ω(1) has been known so far. Our second theorem provides a
sublinear-space solution for tree decomposition:

I Theorem 2. There exists an algorithm that, given a graph G of n vertices and w ≤
n1/2, either provides a tree decomposition of width O(wn1/2 logn) or correctly decides that
the treewidth of G is more than w. This algorithm runs in a polynomial time and uses
O(wn1/2 log2 n)-bit space.

To the best of our knowledge, this is the first non-trivial tree-decomposition algorithm
attaining both sublinear-space and polynomial time for w = ω(1). It is also worth noting
that planar graphs admit a space-efficient algorithm of finding a balanced separator of
size O(

√
n) using Õ(

√
n)-bit space [27], which can be translated into a small-space tree

decomposition algorithm of width O(
√
n logn). Putting all the results above together, we

obtain the following consequence:

I Corollary 3. Let ε > 0 be any positive constant. There exist the polynomial-time Lex-DFS
algorithms respectively satisfying the following properties3.

Using O(nε)-bit working memory for directed graphs of treewidth w = O(1).
Using O(wn1/2+ε)-bit working memory for directed graphs of treewidth w = O(n1/2).
Using O(n1/2+ε)-bit working memory for directed planar graphs.

1.3 Related Work
As stated above, the space complexity of Lex-DFS is one of the classical problems in the
context of logspace computability. Following the P-completeness result by Reif [40], Anderson
and Mayr [2] also shows a weaker variant of Lex-DFS (lexicographically first maximal path)
is also P-complete even for planar graphs. The main interest of those earlier results is closely
related to the s-t reachability problem. It is known that the space complexity of undirected
s-t connectivity drops into O(logn) bits for any input graphs, which is proved in Reingold’s
celebrating paper [41]. The best space upper bound of all polynomial-time directed s-t
reachability algorithms is O(n/2Ω(

√
logn)) bits by Barnes et al. [9]. Its near optimality within

a (naturally) restricted class of algorithms, called NNJAG [39], is also shown by Edmonds
et al. [21].

More recently, the space-complexity matter of the directed s-t reachability problem for
specific graph classes receives much attention, and a number of papers try to expand the graph
class allowing sublinear-space directed reachability algorithms. Grid graphs [1, 5, 28], planar
graphs [1, 4, 13, 27], bounded-genus graphs [12], and bounded-treewidth graphs [29] have been
considered so far. Notice that the algorithms presented in [12] and [29] for bounded-genus
graphs and bounded-treewidth graphs respectively require the surface embedding and the
tree decomposition of the input graph (as Theorem 1), but it is not addressed how to compute
them using sublinear space. Our tree-decomposition algorithm (by Theorem 2) yields the first

3 Since one can choose an arbitrary ε > 0, polylog(n) factors are absorbed in the part of nε in the
statements of this corollary.
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purely sublinear-space directed reachability algorithm for graphs of treewidth w = O(n1/2−ε).
Very recently, an O(1)-approximate tree decomposition algorithm using O(wn)-bit space is
presented [31], which attains a non-trivial space complexity for w = o(logn).

Despite relatively rich literatures on directed s-t reachability, the space complexity of
Lex-DFS receives less attention until recently. After the two concurrent results by Asano et
al. [3] and Elmasry et al. [23], a few follow-up papers propose fundamental graph algorithms
using only o(n logn)-bit working memory, which cover Lex-BFS [6, 23], single-source shortest
path [23], biconnected component decomposition [15, 30], s-t numbering [15], maximum
cardinality search [16], and so on. It is also becoming active to consider sublinear-space
algorithms for fundamental non-graph problems [7, 20, 34, 36, 42].

On the side of computational models, the read-only model is one of the classical models to
consider the complexity of working memory. An earlier topic in this model is the time-space
tradeoffs for sorting and/or selection [10, 17, 18, 25, 37, 38]. Recently, more unconventional
models are also investigated; Stream model [33], restore model (algorithms can manipulate
input memory but after the computation the initial input data must be recovered) [14, 32],
and catalytic model (algorithms can use a large memory which are already used for other
purpose, and after the computation the memory state must be recovered to the initial
one) [11]. Some of the results in those models allow a Lex-DFS algorithm using only a small
(exclusive) working memory, but they are incomparable to the ones in the standard read-only
model. Barba et al. [8] provides a general scheme of realizing stack machines using only a
small memory space. While the dominant part of the memory usage in Lex-DFS algorithms
is the storage for a stack, the technique by Barba et al. only applies to the algorithms whose
access pattern to stacks are non-adaptive. Thus that scheme does not work for saving the
space complexity of Lex-DFS algorithms.

1.4 Organization of Paper
In Section 2, we introduce the model, notations, and several auxiliary matters for our Lex-
DFS problem. Sections 3 and 4 respectively show the proofs of Theorem 1 and 2. Finally
the paper is concluded in Section 5.

2 Preliminaries

2.1 Model and Notation
As stated in the introduction, this paper adopts the read-only model [25], where the space
complexity of an algorithm is measured by the number of bits used for the working space,
excluding the memory for inputs and outputs. The input memory is read-only, and the output
memory is write-only. The memory-access model follows the standard RAM of (logn)-bit
words. Let G be any directed input graph of n vertices and m edges, which is stored in
the form of the adjacency list AG. For any graph G, we denote the sets of the vertices and
edges in G by VG and EG respectively. We assume VG = [0, n− 1], that is, each vertex in
VG is uniquely identified by an integer in [0, n− 1]. Letting NG(v) ⊆ VG be the set of v’s
neighbors in G, we refer to the neighbor list of v ∈ VG as AG,v and denote the i-th vertex in
AG,v by AG,v[i] (index i starts from value zero). We use notation u <v u′ for u, u′ ∈ NG(v)
if u precedes u′ in AG,v. We define the inverse mapping of AG,v as A−1

G,v, that is, for any
neighbor u of v, A−1

G,v[u] returns the position of u in AG,v. When we consider a subgraph
H ⊆ G, the adjacency list of H is inherited from that of G. More precisely, when we delete
an edge (u, v) ∈ EG, the adjacency list AH,u after deletion is defined as the one such that
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AH,u[i] = AG,u[i] for any i < A−1
G,u[v] and AH,u[i− 1] = AG,u[i] for any i > A−1

G,u[v]. Since
any subgraph is obtained by iterative deletion of edges (and removal of isolated vertices), the
specification of the adjacency list after deletion of one edge also specifies the adjacency list
AH for any subgraph H.

Letting X be a set of vertices or edges, we denote by G−X the graph obtained from G

by removing all the elements in X (if X is a vertex set, all the edges incident to a vertex
in X are also deleted). The subgraph of G induced by X is denoted by G[X]. If there is a
polynomial-time algorithm Alg enumerating all the elements in X, it naturally provides an
access to the adjacency list AH for H = G[X] or H = G−X without explicitly constructing
it in the working memory (i.e., Alg works as a filter extracting the elements in G[X] or
G−X from the adjacency list of AG). Then we call Alg an emulator of H. The overhead of
accessing to AH is a polynomial time (depending on the running time of Alg) per one access.
Thus we can run any polynomial-time algorithm taking H as its input within a polynomial
time. In the following argument, we often omit the subscript G of the notations defined
above if there is no ambiguity.

2.2 Lex-DFS
In what follows, we fix a starting vertex s of Lex-DFS tasks. A Lex-DFS algorithm is
presented in Algorithm 1. In the algorithm, we introduce the notion of time. At each time,
the search head vcur moves to a neighbor decided by the algorithm. The search starts at
time t = 1 and finishes at time t = 2n. We define ht as the vertex pointed by the search
head at the beginning of time t in the Lex-DFS on G. For vertex v ∈ V , the discovery time
d(v) of v is defined as the first time when the search head moves to v. Similarly, we define
the leaving time l(v) of v as the last time when the search head moves from v. The discovery
time of s is defined as zero. Following the terminology in [3], a vertex v is called a gray
vertex at t if d(v) ≤ t ≤ l(v) holds. The (path) subgraph corresponding to the sequence of
all gray vertices at time t sorted by their discovery times is called the gray path at t, which is
denoted by St4. For any vertex u ∈ VSt

, we also denote by pt(u) and st(u) the (immediate)
predecessor and successor of u in St, and by St(u) the prefix of St terminating at u. We
define pt(s) =⊥ and st(ht) =⊥.

In Algorithm 1, we encapsulate the space-consuming parts of the algorithm by two
abstract procedures called Pivot(t) and Parent(t). The procedure Pivot(t) tries to find
the first undiscovered neighbor of ht with respect to the order <ht

. If there is no undiscovered
neighbor, it returns −1. The procedure Parent(t) returns the predecessor pt(ht) in the
current gray path. It returns −1 if ht = s holds. It is obvious that Lex-DFS is implemented
with the working memory of f(n) + O(logn) bits if both of Pivot(t) and Parent(t) are
implemented with f(n) bits.

2.3 Tree Decomposition and Balanced Separator
We first present the definition of tree decomposition.

I Definition 4. A tree decomposition of an undirected graph G is a pair (T , {Bx}x∈VT ),
where T is a tree and each node x ∈ VT is associated with a subset Bx of vertices in VG
(called the bag x) satisfying the following conditions:

Any edge in G is covered by at least one bag, i.e., ∀(u, v) ∈ EG : ∃x : u, v ∈ Bx.
Letting T (u) be the subgraph of T induced by the bags containing u, for any u ∈ VG, T (u)
is non-empty and connected.

4 Intuitively, the gray path St is the path from s to ht in the Lex-DFS tree of G.
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Algorithm 1 Lex-DFS Algorithm for graph G starting from s.

1: vcur ← s; t← 1 . vcur is the search head
2: while true do
3: v ← Pivot(t) . Find the first undiscovered neighbor of vcur in AG,s.
4: if v = −1 then . All neighbors have been already visited
5: v ← Parent(t) . Find the parent in the gray path
6: if v = −1 then halt . All vertices are visited
7: else
8: Output v . Discovery of a new vertex
9: vcur ← v

10: t← t+ 1

Note that tree decomposition is defined for undirected graphs. When we consider the
tree decomposition of directed graphs G, we naturally adapt the same definition to the
undirected graph obtained from G by omitting the orientation of all edges5. Each bag is
identified by an integer value in [0, |VT | − 1]. Throughout this paper, we assume that any
decomposition tree T is rooted, and that a tree decomposition is encoded as the sequence
(B1, q(1)), (B2, q(2)), . . . , (Bx, q(x)), . . . , (B|VT |−1, q(|VT | − 1)), where q(x) is the ID of the
parent of x in T . The parent of the root bag is defined as −1. A sublinear-space tree
decomposition algorithm must output this sequence in a streaming way. The width w of
a tree decomposition (T , {Bx}x∈VT ) is defined as the maximum bag size minus one, i.e.,
w = (maxx∈VT |Bx|) − 1. The treewidth of a graph G is the minimum width over all tree
decompositions of G. It is a fundamental property that the removal of the vertices in
any (non-leaf) bag Bx from G splits G into several connected components, each of which
corresponds to a subtree of T obtained by the removal of x from T .

Tree decomposition is closely related to the notion of balanced vertex separators. Let
G = (V,E) be any directed graph and µ : VG → N be any vertex-weight function. We define
µ(X) =

∑
v∈X µ(v) for any X ⊆ VG. A vertex subset U ⊆ V is called a weighted α-balanced

separator of G with respect to µ if any weakly-connected component C in G − U satisfies
µ(VC)/µ(VG) ≤ α. If µ is a constant function, it is simply called an α-balanced separator of
G. Throughout this paper, we often consider a subgraph obtained by recursively removing
separators. Let cc(H,U) be the set of connected components in H − U for any graph H
and its vertex subset U ⊆ VH , and vcc(H,U) = {VC | C ∈ cc(H,U)}. The following lemma
holds.

I Lemma 5. Let H0, H1, H2, . . . ,Hk−1 and U0, U1, . . . , Uk−1 be respectively the sequences
of subgraphs of G and their vertex subsets such that Hi ∈ cc(Hi−1, Ui−1) holds. Assuming k
algorithms respectively enumerating the vertices in Ui for each i ∈ [0, k − 1], there exists a
logspace algorithm of enumerating all the vertex subsets in vcc(Hk−1, Uk−1) using them as
black-box subroutines.

Proof. Since the straightforward recursive emulation of Hk−1 takes the overhead exponential
of k, such an approach applies only to the case of k = O(1). Instead of emulating Hi−1−Ui−1
recursively, we use the emulation of G − U for U =

⋃
0≤i≤k−1 Ui. Since we assume the

algorithms of enumerating Ui for all i ∈ [0, k − 1], this emulation works with a polynomial-
time overhead independent of k. We have cc(Hk−1, Uk−1) ⊆ cc(G,U) obviously. While

5 Precisely, if two directed edges (u, v) and (v, u) exist, omitting their orientation causes two multiedges
between u and v. Then those edges are merged into a single undirected edge.
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cc(G,U) might contain a connected component not in cc(Hk−1, Uk−1), one can identify
C ∈ cc(Hk−1, Uk−1) by checking if C has an outgoing edge to a neighbor in Uk−1 because
any component C 6∈ cc(Hk−1, Uk−1) is separated from Hk−1 by U0, U1, . . . or Uk−2. Thus,
letting ∂Uk−1 be the set of vertices in G−

⋃
0≤i≤k−1 Ui adjacent to a node in Uk−1, it suffices

to obtain an algorithm enumerating all the components in cc(G,U) intersecting ∂Uk−1. It is
realized by the following procedure.
1. Let c = 1, and v0, v1, . . . , vl−1 be the sequence of the vertices in ∂Uk−1 sorted by their IDs,

which can be enumerated using logarithmic space and the algorithms for U0, U1, . . . , Uk−1.
2. For each vi, check if a vertex vj satisfying j < i is reachable to vi in G − U . If such a

vertex exists, repeat this step for vi+1 (unless i = l − 1). Otherwise, go to step 3.
3. Enumerate all the vertices reachable from vi as the vertices in the c-th component in

cc(Hk−1, Uk−1). After the enumeration, increment c by one, and go back to step 2 for
vi+1.

The procedure above is implemented with O(logn)-bit space by utilizing the logspace
undirected s-t connectivity algorithm [41] (since cc(Hk−1, Uk−1) is a set of weakly-connected
components, undirected s-t connectivity suffices). Letting vj be the vertex with the minimum
ID in VC ∩ ∂UK−1 for a component C ∈ cc(Hk−1, Uk−1), C is necessarily enumerated when
the procedure above processes vj . In addition, it is never enumerated twice because any
other vertex in VC ∩ ∂Uk−1 has an ID larger than vj and is reachable to vj in G− U . J

The lemma above implies that one can associate an unique integer ID with each connected
component in Hk−1−Uk−1, and can emulate with a polynomial-time overhead the connected
component in Hk−1 − Uk−1 specified by a given ID. We also have the lemma below.

I Lemma 6. Let G = (V,E) be any graph of treewidth w, and 0 < δ < 1 be an arbitrary
positive constant. Assume an algorithm outputting a tree decomposition of width at most w′
for G. Then, there exists an algorithm outputting an O(n−δ)-balanced vertex separator U of
size O(w′nδ) for G, which uses only O(w′nδ logn)-bit space (except for the space used by the
tree-decomposition algorithm).

Proof. Let (T , {Bx}x∈VT ) be the (rooted) tree decomposition constructed by the algorithm.
For any subgraph T ′ ⊆ T and a subset X ⊆ VG, we define vol(T ′, X) = |

⋃
y∈VT ′

By \X|.
We also define T (x) as the subtree of T rooted by x ∈ VT .

The proof is constructive. The algorithm finds the O(nδ) bags whose removal splits T
into a small subtrees T0, T1, . . . , TM−1 satisfying vol(Ti, U) ≤ n1−δ for any i ∈ [1,M ]. The
algorithm manages two sets U ′ and U . The set U ′ stores the set of bag IDs constituting the
vertex subset U , i.e., U =

⋃
x∈U ′ Bx. The construction of U is done by iteratively adding

a vertex in VT to U ′. Let xi be the vertex added to U ′ at the i-th iteration, and Ui and
U ′i be respectively the contents of U and U ′ when |U ′| = i holds. We further define T Ri as
the connected component of T − U ′i containing the root. The algorithm chooses as xi the
deepest vertex in T Ri−1 such that vol(T Ri−1(xi), Ui−1) ≥ n1−δ holds. The iteration terminates
when vol(T Ri , Ui) becomes smaller than n1−δ. Since one iteration decreases vol(T R∗ , U∗) by
at least n1−δ, the algorithm terminates within nδ iterations. In addition, for any children y
of xi, we have vol(T Ri−1(y), Ui−1) < n1−δ because xi is the deepest vertex. It implies that
any connected component in G− U contains at most n1−δ vertices.

The remaining issue is the time and space complexities for implementing the algorithm.
Since the tree decomposition algorithm provides the whole topological information on T ,
one can use it as the adjacency list of T incurring a polynomial-time overhead. Since U ′
is stored in the working memory, it is possible to emulate T Ri for any i. The computation
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of vol(T Ri (x), Ui) for any x ∈ VT R
i

can be done in a polynomial time using the membership
test of v ∈ By for all pairs of v ∈ VG \ Ui and y ∈ VT R

i
(x) \ {x}. Consequently, the proposed

algorithm can be implemented with the storage cost for U and U ′. Since each bag contains
at most w′ vertices, the space complexity is O(w′nδ logn) bits. J

3 Small-Space Lex-DFS Algorithm for Graphs of Bounded Treewidth

3.1 Reduction to (Approximate) Gray-Path Membership
The algorithms shown in [3] reduces the procedures of Pivot(t) and Parent(t) to a single
abstract task called IsGray(u, v), which tests if v belongs to the prefix of the gray path by
u (i.e., tests if v ∈ VSd(u) holds or not). The following lemma is proved in [3].

I Lemma 7 (Asano et al. [3]). Assume that there exists a polynomial-time algorithm
IsGray(u, v) which is executable at any time d(u) ≤ t ≤ l(u) and determines if v ∈ VSd(u)

holds or not. Letting f(n) be the space complexity of that algorithm and g(n) be the space-
complexity of solving the directed s-t reachability problem, we have two polynomial-time
algorithms which respectively implement Pivot(t) and Parent(t) using the memory of
f(n) + g(n) bits.

We slightly extend this lemma by introducing a new primitive called AIsGray(u, v)
(approximate testing of gray vertex), which is a one-sided-error version of IsGray(u, v)
satisfying the following two conditions:
1. If v ∈ VSd(u) holds, AIsGray(u, v) always returns true.
2. If d(v) > d(u) holds, AIsGray(u, v) always returns false.
The following lemma implies that we can replace IsGray(u, v) in Lemma 7 by AIsGray(u, v).

I Lemma 8. Assume a polynomial-time algorithm AIsGray(u, v) executable at any time
d(u) ≤ t ≤ l(u) using f(n)-bit space, and a polynomial-time tree decomposition algorithm
outputting the decomposition of width at most w′ for any input graphs of treewidth w. Then
we have the polynomial-time algorithm which implements IsGray(u, v) using the space of
f(n) +O(w′ logn) bits (except for the space used by the tree decomposition algorithm).

Proof. To implement IsGray(u, v), it suffices to enumerate all the vertices in St(u), which
can be realized by repeatedly using an algorithm outputting st(x) for given x ∈ VSt(u) \ {ht}.
Let V ′(x) be the set of the vertices v′ such that AIsGray(x, v′) returns true. It has been
shown in [3] that st(x) is the first vertex y ∈ N(x) with respect to the order of Ax such that
y is reachable to ht in G− VSt(x). We first show that this fact still holds even if we replace
VSt(x) by V ′(x). Any y preceding st(x) in Ax is unreachable to ht in G− V ′(x) because it
is unreachable in G − VSt(x) and VSt(x) ⊆ V ′(x) holds by the first condition of AIsGray.
Letting X be the graph corresponding to the suffix of St from st(x) to ht, any vertex in
VX has a discovery time larger than d(x), and thus VX ∩ V ′(x) = ∅ holds by the second
condition of AIsGray. It implies that st(x) is reachable to ht in G− V ′(x), and concludes
that st(x) is the first vertex y ∈ N(x) such that y is reachable to ht in G− V ′(x). Since the
procedure AIsGray(x, v′) works as the emulator of G− V ′(x), we can obtain an algorithm
of computing st(x) using any directed s-t reachability algorithm. The algorithm by Jain et
al. [29] matches our goal. It uses any tree decomposition of width w′ as a side information,
and runs in a polynomial time using O(w′ logn)-bit space. The memory complexity is f(n)
bits for AIsGray, and O(w′ logn) bits for deciding s-t reachability and for managing a
constant number of pointers to vertices in VG. J
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Figure 2 Construction of Hi.

3.2 Implementation of AIsGray(u, v)
As utilized in the proof of Lemma 8, directed s-t reachability is solvable using O(w′ logn)-bit
space with the side information of a tree decomposition of width w′ [29]. Thus we have
Lemma 7 with g(n) = O(w′ logn). The remaining part of our algorithm is to implement
AIsGray(u, v) executable at any d(u) ≤ t ≤ l(u). Let U be the set shown in Lemma 6,
and X = {X0, X1, . . . , XN−1} be the set of the connected components in G− U (Figure 1).
At each time t, our algorithm keeps track of the information of (d(x), pt(x), st(x)) for any
x ∈ VSt

∩ U . Specifically, we prepare the dictionary Z which maps any vertex x in U to the
corresponding triple (d(x), pt(x), st(x)) if x ∈ St holds. We refer to the three elements in the
triple for x as Z[x].d, Z[x].p, and Z[x].s respectively. The contents of Z is updated in the
main routine of Lex-DFS when the search head moves. Let `i be the number of connected
components in the subgraph Sd(u)[VXi ]. For each connected component C in Sd(u)[VXi ],
we define its entrance and exit as the vertices with the minimum and maximum discovery
times in VC respectively. Let Ci = Ci,0, Ci,1, . . . , Ci,`i−1 be the sequence of the connected
components in Sd(u)[VXi

] sorted by the discovery times of their entrances. We also define
the exit of Ci,−1 as s, which works as a sentinel value. Let Qi = (qi,0, qi,1, . . . , qi,`i−1) and
Wi = (wi,−1, wi,0, wi,1, . . . , wi,`i−1) be the sequences of the entrances and exits associated
with each component in Ci respectively. Now we construct the graph Hi from G by the
following procedure:
1. Remove all the vertices not in VXi

∪ {s} as well as their incident edges.
2. For all 0 ≤ j ≤ `i − 1, contract the gray path from wi,j−1 to qi,j into an edge. The

positions of qi,j in Awi,j−1 and wi,j−1 in Aqi,j
are equal to those of st(wi,j−1) and pt(qi,j)

respectively.
Note that s = wi,−1 = qi,0 holds if s ∈ VXi

. We illustrate an example of the construction in
Figure 2. Consider the run of any Lex-DFS algorithm in Hi until the discovery of wi,`i−1,
which outputs a vertex set Li ⊆ VXi ∪ {s}. Let L(u) = L0 ∪ L1 ∪ · · · ∪ LN−1 ∪ (Sd(u) ∩ U).
An important fact is that AIsGray(v, u) can be implemented using the query if v ∈ L(u) or
not. The following lemma holds.

I Lemma 9. Let Li be the output sequence of the Lex-DFS running in Hi until the discovery
of wi,`i−1. Any vertex in VSd(u)[VXi

] is contained in Li, and d(x) ≤ d(wi,`i−1) ≤ d(u) holds
for any x ∈ Li.

Proof. For any v ∈ V , let PG,v be the set of all simple paths from s to v in G, and
PG =

⋃
v∈VG

PG,v. For any path P = s, u1, . . . , uj , v in PG,v, we define its word γG(P ) as
the sequence A−1

s [u1], A−1
u1

[u2], . . . , A−1
uk

[v]. Letting ≺ be the lexicographic order over all
words, the minimum path πG(v) ∈ PG,v of a vertex v ∈ V is defined as the one satisfying
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γG(πG(v)) ≺ γG(P ) for any P ∈ PG,v. For any two vertices v, v′ ∈ VHi , the gray paths in
Hi to v and v′ are respectively obtained by contracting several common subpaths in the
gray paths to v and v′ in G. Hence it is easy to check γG(πG(v)) ≺ γG(πG(v′)) holds if and
only if γHi(πHi(v)) ≺ γHi(πHi(v′)) holds for any v, v′ ∈ VHi . Since it is well-known that the
total ordering of VG with respect to ≺ over {γG(πG(v))}v∈VG

is equivalent to the Lex-DFS
ordering of VG, this fact implies that Li contains all the vertices in VXi discovered earlier
than wi,`−1 in the Lex-DFS search in G, and contains no vertex in VXi

whose discovery time
in the Lex-DFS search in G is later than d(wi,`−1). The lemma is proved. J

Since Hi is a minor of G, its treewidth is also bounded by w. Thus we can perform our
Lex-DFS algorithm recursively for graph Hi of O(n1−ε) vertices to output Li. The graph Hi

can be emulated using the subset U and the information stored in Z. Outputting Li for all
i ∈ [0, N − 1] can answer the query if v ∈ L(u) holds or not.

3.3 Algorithm Details for Lex-DFS

The pseudocode of our algorithm is given in Algorithm 2. It is defined as a recursive
procedure Lex-DFS(G, s, u), which outputs the Lex-DFS sequence of G starting from s

until u is discovered. If the procedure runs with u 6∈ VG, it outputs the whole Lex-DFS
sequence of G starting from s. Note that the dictionary Z is independently defined in each
recursive call for the computed separator U . In addition, the size O(nε) of separator U is
fixed independently of recursion depth. That is, the variable n in the size parameter O(nε) is
always the number of vertices in the original input graph, not the number of vertices in the
input graph taken as an argument of Lex-DFS. The main routine Lex-DFS almost follows
Algorithm 1, except for using AIsGray to compute Pivot and Parent and managing Z.
The core of the algorithm is the implementation of AIsGray, in particular, the emulation of
Hi for each Vi (0 ≤ i ≤ N − 1). That part corresponds to the lines 23-30. First, we identify
the set Qi and Wi, which can be done by extracting the nodes x ∈ U satisfying Z[x].s ∈ Vi as
a member of Qi (or those satisfying Z[x].p ∈ Vi as Wi). Since each node in St(u) ∩ U stores
its discovery time in Z, we can add the nodes into Qi or Wi in the order of their discovery
times. Following the order of Qi and Wi, we create the edge set F , which corresponds to the
edges obtained by the contraction of gray subpaths in the step 2 of the construction.

3.4 Complexity

Since Pivot and Parent are called at most 2n times in each recursive call, a polynomial-
time invocations of AIsGray suffices to implement them. Let nc be the upper bound
for the number of invocations of AIsGray in one execution of Pivot or Parent. One
invocation of AIsGray calls Lex-DFS at most n times. Putting all them together, nc+2

recursive invocations of Lex-DFS occur per one call of Lex-DFS. Since the recursion depth
is obviously bounded by O(1/ε), at most O(n(c+2)/ε) calls of Lex-DFS are invoked in total.
By Lemma 5, the input graph to each recursive call can be emulated with a polynomial-time
overhead, and thus one invocation of Lex-DFS excepting the run of recursive calls has a
polynomially-bounded running time. Consequently, the total running time is nO(1/ε).

In each recursive call, the information on U and Z is stored in the working memory. The
space for storing U and Z are bounded by O(w′nε logn) bits. Except for the space used by
the tree decomposition algorithm, the space of O(w′ logn) bits is necessary for implementing
Parent and Pivot from AIsGray. Since the recursion depth is O(1/ε), the total space
complexity is O(w′ε−1nε logn) bits.
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Algorithm 2 Lex-DFS Algorithm for graph G of treewidth k (starting from s).

1: function Lex-DFS(G, s, u)
2: if |VG| ≤ nε then run the standard Lex-DFS algorithm and halt
3: Find a separator U of size O(nε)
4: Initialize Z : U → [0, n− 1]× VG × VG
5: vcur ← s; t← 1
6: output s; Z[s]← (1,⊥,⊥)
7: while true do
8: v ← Pivot(t) using AIsGray(vcur , ·)
9: if v = −1 then . All neighbors have been already visited
10: v ← Parent(t) using AIsGray(vcur , ·)
11: Z[vcur ]← null; Z[v]← (Z[v].d, Z[v].p,⊥)
12: if v = −1 then halt . All vertices are visited
13: else
14: Z[vcur ]← (Z[vcur ].d, Z[vcur ].p, v); Z[v]← (t, vcur ,⊥)
15: Output v
16: if v = u then halt
17: vcur ← v

18: t← t+ 1
19: function AIsGray(u, v)
20: if Z[v] 6= null then return true
21: Let X0, X1, . . . , XN−1 be the connected components in G− U
22: for i = 0, 1, . . . , N − 1 do
23: Q← (); W ← (s)
24: for ∀x ∈ U : Z[x] 6= null in ascending order of Z[x].d do
25: if Z[x].s ∈ VXi then append Z[x].s to Q
26: if Z[x].p ∈ VXi

then append Z[x].p to W
27: if u ∈ VXi then append u to W
28: `i ← |Q|
29: for j = 0, 1, . . . , `i − 1 do
30: F ← F ∪ {(W [j], Q[j])}
31: Hi ← G[Vi] + F . Not explicitly constructed
32: if v ∈ Lex-DFS(Hi, s,W [`i − 1]) then return true
33: return false

4 Tree Decomposition using Small Space

In this section, we present a tree-decomposition algorithm, which usesO(wn1/2 logn)-bit space
and outputs a decomposition of width O(wn1/2 logn) for any undirected graph G = (V,E) of
treewidth w ≤

√
n. We first introduce a space-saving variant of the known weighted balanced

separator algorithm.

I Lemma 10 (Extended from Theorem 1.1 of Fomin et al. [24]). There exists a polynomial-time
algorithm that, given a graph G on n vertices, any vertex-weight function µ, and a positive
integer k, either provides a weighted O(1)-balanced separator of G with respect to µ consisting
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of O(k2) vertices, or concludes that the treewidth of G is more than k. The algorithm uses
the memory space required for finding the minimum unweighted s-t vertex cut in G plus
O(k2 logn) bits.

Proof. We refer to the algorithm proposed in Theorem 1.1 of [24] as Sep. Except for
the space complexity matter, the correctness of the lemma completely follows that of Sep
presented in [24]. Thus it suffices to show how Sep is implemented using the memory space
claimed in this lemma. The algorithm Sep roughly works as follows. Let G be any input
graph of treewidth at most k.
1. First the algorithm Sep constructs any rooted spanning tree T of G, and decomposes it

into a set X of Θ(k) connected subtrees such that at most O(k) vertices can belong to
two or more subtrees in X : Let T (x) be the subtree of T rooted by x. The algorithm
Sep starts with T ′ = T , and for i = 0, 1, . . . , iteratively finds the deepest vertex xi such
that |VT ′(xi)| ≥ αn/k holds for an appropriate constant α. Then the subtree T ′(xi) is
split into several subtrees of size Θ(n/k) sharing xi, each of which becomes a member of
X . After updating T ′ as T ′ ← T ′ − T ′(xi), the algorithm proceeds to the next iteration.

2. For any Xi, Xj ∈ X such that VXi
∩VXj

= ∅, Sep emulates the graph Hi,j obtained from
G by contracting Xi and Xj into two vertices xi and xj . Then it computes the minimum
xi-xj vertex cut in Hi,j . If there exists a pair (i, j) such that the output cut contains at
most k vertices, the algorithm adds it to the separator set U .

3. The steps 1 and 2 are iteratively applied to the largest connected component after the
removal of the computed vertex cut, until U becomes an O(1)-balanced separator of G.
It is proved in [24] that this iteration terminates within O(k) times if the treewidth of
the input graph is at most k.

The small-space implementation of step 1 is very similar with the algorithm shown in the
proof of Lemma 6. With the support of the emulator of T , finding xi and the emulation
of T ′ can be done in the same way as the proof of Lemma 6. The spanning tree T can be
emulated using the logspace undirected connectivity: We introduce an arbitrary logspace-
computable edge-weight function g : EG → N which assigns all edges with different weights.
Let e0, e1, . . . , em−1 be the sequence of all edges sorted in the ascending order of their weights,
and Ei = {e0, e1, . . . , ei−1}. Then an edge ei = (u, v) is contained in the minimum spanning
tree of G with respect to g if and only if u and v is connected in G[Ei], which directly deduces
the emulator of the minimum spanning tree.

Assuming an algorithm computing the set X , Hi,j can be emulated with a polynomial-time
overhead. Thus the step 2 can be implemented within a polynomial time using O(k2 logn)
bits (except for the space used by the vertex-cut algorithm). J

4.1 A Small-Space Balanced Separator Algorithm
Let I(G) be the maximum independent set of G, (if two or more maximum independent sets
exist, an arbitrary one is chosen), and I(G) = V \ I(G) for short. The first key ingredient of
our algorithm is a space-saving algorithm for the minimum s-t vertex cut problem.

I Lemma 11. Let G be any n-vertex undirected graph. For any s, t ∈ VG, the minimum
(unweighted) s-t vertex cut of G can be found in a polynomial time using O(|I(G)| logn) bits.

Proof. The algorithm basically follows the vertex-cut version of Ford-Fulkerson algorithm,
which manages a set of augmenting paths for recognizing the current residual graph (see
Section 3.5 in [35] for example). In the case of unweighted vertex cuts, any set of augmenting
paths is a set of vertex-disjoint s-t paths in G. Letting L be the maximum total length of
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managed s-t paths, the algorithm can be implemented using O(L logn)-bit space. Thus it
suffices to show that L = O(|I(G)|) holds for any instance G. Let R1, R2, . . . , Ry be any set
of vertex-disjoint s-t paths in G. Since no two vertices in I(G) consecutively appears in any
path, we have |VRi ∩ I(G)| ≤ |VRi ∩ I(G)|+ 1 for any i ∈ [1, y]. Then |VRi | ≤ 3|VRi ∩ I(G)|
holds. Since VRi

for all i ∈ [1, y] are mutually disjoint, it follows
∑

1≤i≤y |VRi
| = O(|I(G)|).

The lemma is proved. J

Consider a partition of VG into a family P = {P0, P2, . . . , PN−1} of N subsets such that
G[Pi] is a connected subgraph of G. We denote by G/P the graph obtained by contracting
each subgraph Pi into a single vertex ui with weight µ(ui) = |VPi

| (parallel edges are
merged into the single one). The second key ingredient is to reduce the (approximate)
tree decomposition of G into that of another graph G/P for an appropriate partition P
such that |I(G/P)| becomes small. Since treewidth never increases by edge contraction,
G/P also has a treewidth at most k. Thus we can run the balanced-separator algorithm
obtained from Lemmas 10 and 11 on G/P using only O((|I(G/P)| + k2) logn)-bit space.
For the computed separator B, we replace each ui ∈ B by VPi

. That is, we create a
vertex subset B′ =

⋃
ui∈B VPi

, which is obviously a balanced separator of G consisting of
O(k2 maxi{|VPi

|}) vertices. To attain the space complexity of Theorem 2 following this
approach, we have to construct a polynomial-time algorithm outputting the partition P
satisfying |I(G/P)| = O(kn1/2) and |Pi| = O(n1/2/k) for any Pi ∈ P. In addition, we have
to guarantee that the algorithm uses only O(kn1/2 logn) bits.

We argue the implementation of such an algorithm. Let us define an arbitrary total
ordering of edges in EG. This can be easily realized by any ordering function f : E → N which
can be computed in logarithmic space (e.g., the lexicographic ordering of endpoint ID pairs).
Let e1, e2, . . . , em be the sequence of all edges sorted in this order, and Ei = {e1, e2, . . . , ei}.
For any subgraph H ⊆ G, we also define S(H, v, i) as the set of the vertices which are
reachable from v in H[Ei]. The partition is constructed by the following algorithm:
1. Let P = ∅, R← ∅, and H ← G.
2. Find the minimum ` such that the largest connected component C in H[E`] contains at

least n1/2/k vertices, and add VC to P. Letting v be the vertex with the smallest ID in
VC , we store the pair (v, `) into R.

3. Update H ← G−
⋃

(v,`)∈R S(G, v, `).
4. Repeat steps 2 and 3 until the size of any connected component in H becomes less than

n1/2/k.
5. Letting Q =

⋃
Pi∈P Pi, add VC′ to P for any connected component C ′ in G−Q.

The actual algorithm does not store P explicitly. Except for step 5, the set P is write-only,
and it is easy to verify that steps 1-4 can be implemented only with the space for storing
R. The matter of the space complexity relies on how to restore the set Q in step 5 only
from the information of R. Let Ci be the connected component found in the i-th iteration
of step 2, and (ui, ji) be the entries added to R then. We denote by Hi the graph stored
in H immediately after the i-th iteration of step 2. It is easy to enumerate the vertices in
S(G, u, j) by the logspace undirected s-t connectivity algorithm [41] (recall that we omit the
orientation of edges in considering the tree decomposition for directed graphs), and thus
we obtain an emulator of Hi using the information in R and extra O(logn)-bit space. It
also yields an algorithm for enumerating Ci = S(Hi−1, ui, ji). Consequently, this algorithm
works using only O(|R| logn)-bit space. The following lemma guarantees the correctness of
the output.

I Lemma 12. Let P = {P0, P1, . . . , PN−1} be the partition outputted by the algorithm above.
Then for any Pi ∈ P, |Pi| ≤ 2n1/2/k holds. In addition, |I(G/P)| ≤ kn1/2 holds.
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Proof. We first show that P is actually a partition of VG. By step 5, it is obvious that any
vertex in VG is contained in at least one subset Pi ∈ P. The subset added in step 5 does
not intersect other subsets. Consider any two subsets Ci and Ck added in step 2 (i < k).
By the construction of Ci and Ck, we have Ci = S(Hi−1, ui, ji) and Ck = S(Hk−1, uk, jk).
Since i < k holds, Hk−1 does not contain any vertex in S(G, ui, ji). It implies Hk−1 does
not contain any vertex in Ci = S(Hi−1, uj , ji) because of Hi−1 ⊆ G. That is, Ci and Ck
are mutually disjoint. Next, we bound the size of each Pi. Any subset added in step 5
has a cardinality less than n1/2/k. Since the algorithm finds the smallest ` such that the
cardinality of C becomes at least n1/2/k, any connected component in Hi−1[E`−1] has a size
less than n1/2/k. Thus the size of any connected component in Hi−1[E`] is at most 2n1/2/k.
Finally, we show |I(G/P)| ≤ kn1/2. We call a subset Pi ∈ P a red subset if Pi is added in
step 5, and also call the corresponding vertex ui ∈ VG/P a red vertex. It is obvious that any
red subset Pi has no outgoing edge to other red subsets in G, the set of all red vertices forms
an independent set of G/P. Since the cardinality of any non-red subset is at least n1/2/k,
at most kn1/2 non-red vertices exist in G/P. It implies I(G/P) ≤ kn1/2. The lemma is
proved. J

This lemma also implies that the size of R is at most kn1/2. Thus the space complexity of
the algorithm is bounded by O(kn1/2 logn) bits. The combination of Lemmas 10, 11, and 12
yields the following lemma.

I Lemma 13. There exists a polynomial-time algorithm that, given a graph G on n vertices
and a positive integer k, either provides an O(1)-balanced separator of G consisting of
O(kn1/2) vertices, or concludes that the treewidth of G is more than k. The algorithm uses
O(kn1/2 logn)-bit space.

The remaining part is to transform the separator algorithm into a tree-decomposition
algorithm. The following lemma obviously deduces Theorem 2.

I Lemma 14. Assume an algorithm Alg which outputs an O(1)-balanced separator of size
k(w, n) for any graph G of treewidth w using g(n)-bit space. Then there exists a polynomial-
time tree decomposition algorithm which outputs a tree decomposition of width O(k(w, n) logn)
using O(g(n) + k(w, n) log2 n)-bit working memory.

Proof. The proof is constructive. We refer to the constructed algorithm as Alg. The
algorithm Alg first computes an O(1)-balanced separator U of G, and then recursively
constructs the tree decomposition of each connected component in G−U whose size is larger
than k(w, n). A component having at most k(w, n) vertices is treated as the subgraph with the
tree decomposition consisting of a single bag of the whole component. Let H0, H1, . . . ,H`−1
be the connected components in G − U sorted in the order specified by the enumeration
algorithm of Lemma 5, and Ti be the output sequence of the recursive call for Hi. Defining
the binary operator ◦ for concatenating two sequences, let T = T0 ◦T1 ◦ · · · ◦T`−1. We further
define mi =

∑
0≤j≤i |Ti|. The algorithm Alg modifies the sequence T in the following way:

Any pair (B, q) ∈ Ti is replaced by (B ∪ U, q + mi) if q 6= −1 or (B ∪ U,m`−1) otherwise.
Finally, we append the pair (U,−1) at the tail of T . Intuitively, this modification is for
relabeling bag identifiers to guarantee their uniqueness, and for merging all the subgraph
decompositions into a single one rooted by the last bag (U,−1). It is easy to verify that
the modified sequence is a tree decomposition of G. By Lemma 5, the input graph at any
recursion level is emulated with a polynomial-time overhead. Thus the running time at any
recursion level is a polynomial time. One recursive call remove one bag from the input graph,
the number of recursive calls is bounded by n. Totally the algorithm Alg finishes within a
polynomial time.
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Let wi be the maximum width of all the output tree decompositions at the i-th recursion
level. Then we have the inequality wi+1 ≤ k(w, n)+wi. Since the separator is O(1)-balanced,
the recursion finishes at the depth of O(logn). It implies that the maximum bag size is
O(k(w, n) logn). The modification of the sequence T can be done in a streaming way. Thus
the space complexity of Alg is O(|U | logn) = O(k(w, n) logn) bits per one recursion. The
largest space consumption is at the bottom-level recursion, where Alg uses O(k(w, n) log2 n)
bits in total. J

The lemma above also deduces the consequence for planar graphs in Corollary 3. Since
planar graphs admit a Õ(

√
n)-bit space O(1)-balanced separator algorithm [27], we can use

it instead of Lemma 13.

5 Conclusion

In this paper, we presented a Lex-DFS algorithm for directed graphs of bounded treewidth w.
It is not only the first algorithm solving Lex-DFS using sublinear space for w = ω(1), but also
the first algorithm solving directed s-t reachability in the same situation. One of the key tools
is a new sublinear-space tree decomposition algorithm covering the case of moderate (small
but non-constant) treewidth. The authors believe that this is a strong tool for designing
small-space algorithms for other fundamental graph problems on bounded-treewidth graphs.
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Abstract
Makespan minimization on identical machines is a fundamental problem in online scheduling. The
goal is to assign a sequence of jobs to m identical parallel machines so as to minimize the maximum
completion time of any job. Already in the 1960s, Graham showed that Greedy is (2 − 1/m)-
competitive [18]. The best deterministic online algorithm currently known achieves a competitive
ratio of 1.9201 [14]. No deterministic online strategy can obtain a competitiveness smaller than
1.88 [34].

In this paper, we study online makespan minimization in the popular random-order model, where
the jobs of a given input arrive as a random permutation. It is known that Greedy does not attain a
competitive factor asymptotically smaller than 2 in this setting [32]. We present the first improved
performance guarantees. Specifically, we develop a deterministic online algorithm that achieves
a competitive ratio of 1.8478. The result relies on a new analysis approach. We identify a set of
properties that a random permutation of the input jobs satisfies with high probability. Then we
conduct a worst-case analysis of our algorithm, for the respective class of permutations. The analysis
implies that the stated competitiveness holds not only in expectation but with high probability.
Moreover, it provides mathematical evidence that job sequences leading to higher performance
ratios are extremely rare, pathological inputs. We complement the results by lower bounds for the
random-order model. We show that no deterministic online algorithm can achieve a competitive
ratio smaller than 4/3. Moreover, no deterministic online algorithm can attain a competitiveness
smaller than 3/2 with high probability.
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1 Introduction

We study one of the most basic scheduling problems. Consider a sequence of jobs J =
J1, . . . , Jn that has to be assigned to m identical parallel machines. Each job Jt has an
individual processing time pt, 1 ≤ t ≤ n. Preemption of jobs is not allowed. The goal is to
minimize the makespan, i.e. the maximum completion time of any job in the constructed
schedule. Both the offline and online variants of this problem have been studied extensively,
see e.g. [4, 11, 14, 18, 20, 33] and references therein.

We focus on the online setting, where jobs arrive one by one. Whenever a job Jt is
presented, its processing time pt is revealed. The job has to be scheduled immediately on one
of the machines without knowledge of any future jobs Js, with s > t. Given a job sequence J ,
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68:2 Scheduling in the Random-Order Model

let A(J ) denote the makespan of an online algorithm A on J . Let OPT (J ) be the optimum
makespan. A deterministic online algorithm A is c-competitive if A(J ) ≤ c ·OPT (J ) holds
for all J [38]. The best competitive ratio that can be achieved by deterministic online
algorithms is in the range [1.88, 1.9201]. No randomized online algorithm is known that beats
deterministic ones, for general m.

In this paper we investigate online makespan minimization in the random-order model.
Here an input instance / job sequence is chosen by an adversary. Then a random permutation
of the input elements / jobs arrives. The random-order model was considered by Dynkin [10]
and Lindley [28] for the secretary problem. Over the last years the framework has received
quite some research interest and many further problems have been studied. These include
generalized secretary problems [2, 3, 13, 27, 28], the knapsack problem [2, 27], bin pack-
ing [25], facility location [30], matching problems [16, 21, 29], packing LPs [26] and convex
optimization [19].

We present an in-depth study of online makespan minimization in the random-order
model. As a main contribution we devise a new deterministic online algorithm that achieves a
competitive ratio of 1.8478. After almost 20 years this is the first progress for the pure online
setting, where an algorithm does not resort to extra resources in handling a job sequence.

Previous work. We review the most important results relevant to our work and first address
the standard setting where an online algorithm must schedule an arbitrary, worst-case job
sequence. Graham in 1966 showed that the famous Greedy algorithm, which assigns each job
to a least loaded machine, is (2− 1

m )-competitive. Using new deterministic strategies the
competitiveness was improved in a series of papers. Galambos and Woeginger [15] gave an
algorithm with a competitive ratio of (2− 1

m − εm), where εm tends to 0 as m→∞. Bartal
et al. [4] devised a 1.986-competitive algorithm. The bound was improved to 1.945 [22] and
1.923 [1]. Fleischer and Wahl [14] presented an algorithm that attains a competitive ratio
of 1.9201 as m → ∞. Chen et al. [7] gave an algorithm whose competitiveness is at most
1 + ε times the best possible factor, but no explicit bound was provided. Lower bounds on
the competitive ratio of deterministic online algorithms were shown in [1, 5, 12, 17, 34, 35].
For general m, the bound was raised from 1.707 [12] to 1.837 [5] and 1.854 [17]. Rudin [34]
showed that no deterministic strategy has a competitiveness smaller than 1.88.

For randomized online algorithms, there is a significant gap between the best known
upper and lower bounds. For m = 2 machines, Bartal et al. [4] presented an algorithm
that achieves an optimal competitive ratio of 4/3. To date, there exists no randomized
algorithm whose competitiveness is smaller than the deterministic lower bound, for general
m. The best known lower bound on the performance of randomized online algorithms tends
to e/(e− 1) ≈ 1.581 as m→∞ [6, 37].

Recent research on makespan minimization has examined settings where an online
algorithm is given extra resources when processing a job sequence. Specifically, an algorithm
might have a buffer to reorder the incoming job sequence [11, 24] or is allowed to migrate
jobs [36]. Alternatively, an algorithm has information on the job sequence [8, 9, 23, 24], e.g.
it might know the total processing time of the jobs or even the optimum makespan.

In the random-order model only one result is known for makespan minimization on
identical machines. Osborn und Torng [32] showed that Greedy does not achieve a competitive
ratio smaller than 2 as m→∞. Recently Molinaro [31] studied online load balancing with
the objective to minimize the lp-norm of the machine loads. He considers a general scenario
with machine-dependent job processing times. For makespan minimization he presents an
algorithm that, in the worst case, is O(logm/ε)-competitive and, in the random-order model,
has an expected makespan of (1 + ε)OPT (J ) +O(logm/ε), for any ε ∈ (0, 1].



S. Albers and M. Janke 68:3

Our contribution. We investigate online makespan minimization in the random-order
model, a sensible and widely adopted input model to study algorithms beyond the worst
case. Specifically, we develop a new deterministic algorithm that achieves a competitive ratio
of 1.8478 as m→∞. This is the first improved performance guarantee in the random-order
model. The competitiveness is substantially below the best known ratio of 1.9201 in the
worst-case setting and also below the corresponding lower bound of 1.88 in that framework.

A new feature of our algorithm is that it schedules an incoming job on one of three
candidate machines in order to maintain a certain load profile. The best strategies in the
worst-case setting use two possible machines, and it is not clear how to take advantage of
additional machines in that framework. The choice of our third, extra machine is quite
flexible: An incoming job is placed either on a least loaded, a heavily loaded or – as a new
option – on an intermediate machine. The latter one is the (h+ 1)-st least loaded machine,
where h may be any integer with h ∈ ω(1) and h ∈ o(

√
m).

When assigning a job to a machine different from the least loaded one, an algorithm has
to ensure that the resulting makespan does not exceed c times the optimum makespan, for
the targeted competitive ratio c. All previous strategies in the literature lower bound the
optimum makespan by the current average load on the machines. Our new algorithm works
with a refined lower bound that incorporates the processing times of the largest jobs seen so
far. The lower bound is obvious but has not been employed by previous algorithms.

The analysis of our algorithm proceeds in two steps. First we define a class of stable job
sequences. These are sequences that reveal information on the largest jobs as processing
volume is scheduled. More precisely, once a certain fraction of the total processing volume∑n

t=1 pt has arrived, one has a good estimate on the h-th largest job and has encountered
a certain number of the m+ 1 largest jobs in the input. The exact parameters have to be
chosen carefully.

We prove that with high probability, a random permutation of a given input of jobs is
stable. We then conduct a worst-case analysis of our algorithm on stable sequences. Using
their properties, we show that if the algorithm generates a flat schedule, like Greedy, and can
be hurt by a huge job, then the input must contain many large jobs so that the optimum
makespan is also high. A new ingredient in the worst-case analysis is the processing time of
the h-th largest job in the input. We will relate it to machine load in the schedule and to
the processing time of the (m+ 1)-st largest job; twice the latter value is a lower bound on
the optimum makespan.

The analysis implies that the competitive ratio of 1.8478 holds with high probability.
Input sequences leading to higher performance ratios are extremely rare. We believe that
our analysis approach might be fruitful in the study of other problems in the random-order
model: Identify properties that a random permutation of the input elements satisfies with
high probability. Then perform a worst-case analysis.

Finally in this paper we devise lower bounds for the random-order model. We prove that
no deterministic online algorithm achieves a competitive ratio smaller than 4/3. Moreover, if
a deterministic online algorithm is c-competitive with high probability, then c ≥ 3/2.

2 Strong competitiveness in the random-order model

We define competitiveness in the random-order model and introduce a stronger measure of
competitiveness that implies high-probability bounds. Recall that traditionally a deterministic
online algorithm A is c-competitive if A(J ) ≤ c · OPT (J ) holds for all job sequences
J = J1, . . . , Jn. We will refer to this worst-case model also as the adversarial model.
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In the random-order model a job sequence J = J1, . . . , Jn is given, which may be
specified by an adversary. (Alternatively, a set of jobs could be specified.) Then a random
permutation of the jobs arrives. We define the expected cost / makespan of a deterministic
online algorithm. Let Sn be the permutation group of the integers from 1 to n, which
we consider a probability space under the uniform distribution, i.e. each permutation in
Sn is chosen with probability 1/n!. Given σ ∈ Sn, let J σ = Jσ(1), . . . , Jσ(n) be the job
sequence permuted by σ. The expected makespan of A on J in the random-order model
is Arom(J ) = Eσ∼Sn [A(J σ)] = 1

n!
∑
σ∈Sn

A(J σ). The algorithm A is c-competitive in the
random-order model if Arom(J ) ≤ c ·OPT (J ) holds for all job sequences J .

We next define the notion of a deterministic online algorithm A being nearly c-competitive.
The second condition in the following definition requires that the probability of A not meeting
the desired performance ratio must be arbitrarily small asm grows and a random permutation
of a given job sequence arrives. The subsequent Lemma 2 states that a nearly c-competitive
algorithm is c-competitive in the random-order model.

I Definition 1. A deterministic online algorithm A is called nearly c-competitive if the
following two conditions hold.

The algorithm A achieves a constant competitive ratio in the adversarial model.
For every ε > 0, there exists an m(ε) such that for all machine numbers m ≥ m(ε) and
all job sequences J there holds Pσ∼Sn [A(J σ) ≥ (c+ ε)OPT (J )] ≤ ε.

I Lemma 2. If a deterministic online algorithm is nearly c-competitive, then it is c-
competitive in the random-order model as m→∞.

Proof. Let C be the constant such that A is C-competitive in the adversarial model. We
may assume that C > c. Given 0 < δ ≤ C − c, we show that there exists an m(δ) such
that, for all m ≥ m(δ), we have Arom(J ) ≤ (c+ δ)OPT (J ) for every job sequences J . Let
ε = δ/(C − c+ 1). Since A is nearly c-competitive, there exists an m(ε) such that, for all
m ≥ m(ε) and all inputs J , there holds Pε(J ) = Pσ∼Sn [A(J σ) ≥ (c+ ε)OPT (J )] ≤ ε. Set
m(δ) = m(ε). We obtain

Arom(J ) ≤ (1− Pε(J ))(c+ ε)OPT (J ) + Pε(J ) · C ·OPT (J )
≤ ((1− ε)(c+ ε) + εC)OPT (J )
≤ (c+ ε(C − c+ 1))OPT (J )
= (c+ δ)OPT (J ). J

3 Description of the new algorithm

The deficiency of Greedy is that it tends to generate a flat, balanced schedule in which all
the machines have approximately the same load. An incoming large job can then enforce a
high makespan relative to the optimum one. It is thus crucial to try to avoid flat schedules
and maintain steep schedules that exhibit a certain load imbalance among the machines.

However, in general, this is futile. Consider a sequence ofm identical jobs with a processing
time of, say, Pm+1 (refering to the size of the (m+ 1)-st largest job in an input). Any online
algorithm that is better than 2-competitive must schedule these m jobs on separate machines,
obtaining the flattest schedule possible. An incoming even larger job of processing time
pmax will now enforce a makespan of Pm+1 + pmax. Observe that OPT ≥ max{2Pm+1, pmax}
since there must be one machine containing two jobs. In particular Pm+1 + pmax ≤ 1.5OPT.
Hence sensible online algorithms do not perform badly on this sequence.
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This example summarizes the quintessential strategy of online algorithms that are good
on all sequences: Ensure that in order to create a schedule that is very flat, i.e. such that
all machines have high load λ, the adversary must present m jobs that all are large relative
to λ. In order to exploit this very flat schedule and cause a high makespan the adversary
needs to follow up with yet another large job. But with these m + 1 jobs, the optimum
scheduler runs into the same problem as in the example: Of the m+ 1 large jobs, two have
to be scheduled on the same machine. Thus the optimum makespan is high, compensating
to the high makespan of the algorithm.

Effectively realizing the aforementioned strategy is highly non-trivial. In fact it is the
central challenge in previous works on adversarial makespan minimization that improve upon
Greedy [1, 4, 14, 15, 22]. These works gave us clear notions of how to avoid flat schedules,
which form the basis for our approaches. Instead of simply rehashing these ideas, we want to
outline next how we profit from random-order arrival in particular.

3.1 How random-order arrival helps

The first idea to profit from random-order arrival addresses the lower bound on OPT
sophisticated online algorithms need. In the literature only the current average load has
been considered, but under random-order arrival another bound comes to mind: The largest
job seen so far. In order for an algorithm to perform badly, a large job needs to come close
to the end of the sequence. Under random-order arrival, it is equally likely for such a job to
arrive similarly close to the beginning of the sequence. In this case, the algorithm knows
a better lower bound for OPT. The main technical tool will be our Load Lemma, which
allows us to relate what a job sequence should reveal early from an analysis perspective to
the actual fraction of jobs scheduled. This idea does not work for worst-case orders since
they tend to order jobs by increasing processing times.

Recall that the general challenge of our later analysis will be to establish that there had
to be m large jobs once the schedule gets very flat. In classical analyses, which consider
worst-case orders, these jobs appear with increasing density towards the end of the sequence.
In random orders this is unlikely, which can be exploited by the algorithm.

The third idea improves upon the first idea. Suppose, that we were to modify our
algorithm such that it could handle one very large job arriving close to the end of the
sequence. In fact, assume that it could only perform badly when confronted with h very large
jobs. We can then disregard any sequence which contains fewer such jobs. Recall that the
first idea requires one very large job to arrive sufficiently close to the beginning. Now, as h
grows, the probability of the latter event grows as well and approaches 1. This will not only
improve our competitive ratio tremendously, it also allows us to adhere to the stronger notion
of nearly competitiveness introduced in Section 2. Let us discuss how such a modification is
possible: The first step is to design our algorithm in a way that it is reluctant to use the h
least loaded machines. Intuitively, if the algorithm tries to retain machines of small load it
will require very large jobs to fill them. In order to force these filling jobs to actually be large
enough, our algorithm needs to use a very high lower bound for OPT. In fact, here it uses
another lower bound for the optimum makespan, 2P tm+1, twice the (m+ 1)-st largest job
seen so far at time t. Common analysis techniques can only make predictions about P tm+1 at
the very end of the sequence. It requires very subtle use of the random-order model to work
around this.
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3.2 Formal definition
Formally our algorithm ALG is nearly c-competitive, where c is the unique real root of the
polynomial Q[x] = 4x3 − 14x2 + 16x− 7, i.e.

c = 7+ 3
√

28−3
√

87+ 3
√

28+3
√

87
6 < 1.8478.

Given J , ALG is presented with a job sequence/permutation J σ = Jσ(1), . . . , Jσ(n) that
must be scheduled in this order. Throughout the scheduling process ALG always maintains
a list of the machines sorted in non-increasing order of current load. At any time the load
of a machine is the sum of the processing times of the jobs already assigned to it. After
ALG has processed the first t jobs Jσ(1), . . . , Jσ(t), let M t

1, . . . ,M
t
m be any ordering of the

m machines according to non-increasing load. More specifically, let ltj denote the load of
machine M t

j . Then lt1 ≥ . . . ≥ ltm and lt1 is the makespan of the current schedule.
ALG places each incoming job Jσ(t), 1 ≤ t ≤ n, on one of three candidate machines. The

choice of one machine, having an intermediate load, is flexible. Let h = h(m) be an integer
with h(m) ∈ ω(1) and h(m) ∈ o(

√
m). We could use e.g. h(m) = b 3

√
mc or h(m) = blogmc.

Let

i = d(2c− 3)me+ h ≈ 0.6956m.

ALG will assign the incoming job to the machine with the smallest load, the (h + 1)-st
smallest load or the i-th largest load.

When scheduling a job on a machine that is different from the least loaded one, an
algorithm has to ensure that the resulting makespan does not exceed c∗ times the optimum
makespan, where c∗ is the desired competitiveness. All previous algorithms lower bound
the optimum makespan by the current average machine load. Algorithm ALG works with a
refined lower bound that incorporates the processing time of the largest job and twice the
processing time of the (m+ 1)-st largest job seen so far. These lower bounds on the optimum
makespan are immediate but have not been used in earlier strategies.

Formally, for j = 1, . . . ,m, let Ltj be the average load of the m − j + 1 least loaded
machines M t

j , . . . ,M
t
m, i.e. Ltj = 1

m−j+1
∑m
r=j l

t
r. We let Lt = Lt1 = 1

m

∑t
s=1 ps be the

average load of all the machines. For any j = 1, . . . , n, let P tj be the processing time of the
j-th largest job among the first t jobs Jσ(1), . . . , Jσ(t) in J σ. If t < j, we set P tj = 0. We let
ptmax = P t1 be the processing time of the largest job among the first t jobs in J σ. Finally, let
L = Ln, Pj = Pnj and pmax = pnmax.

The value Ot = max{Lt, ptmax, 2P tm+1} is a common lower bound on the optimum
makespan for the first t jobs and hence OPT (J ), see Proposition 5 in the next section. Note
that immediately before Jσ(t) is scheduled, ALG can compute Lt and hence Ot because Lt
is 1/m times the total processing time of the jobs that have arrived so far.

We next characterize load imbalance. Let

k = 2i−m ≈ (4c− 7)m ≈ 0.3912m

and

α = 2(c− 1)
2c− 3 ≈ 2.7376.

The schedule at time t is the one immediately before Jσ(t) has to be assigned. The schedule
is flat if lt−1

k < αLt−1
i+1. Otherwise it is steep. Job Jσ(t) is scheduled flatly (steeply) if the

schedule at time t is flat (steep).
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ALG handles each incoming job Jσ(t), with processing time pσ(t), as follows. If the
schedule at time t is steep, the job is placed on the least loaded machine M t−1

m . On the
other hand, if the schedule is flat, the machines M t−1

i , M t−1
m−h and M t−1

m are probed in this
order. If lt−1

i +pσ(t) ≤ c ·Ot, then the new machine load on M t−1
i will not violate the desired

competitiveness. The job is placed on this machine M t−1
i . Otherwise, if the latter inequality

is violated, ALG checks if a placement on M t−1
m−h is safe, i.e. if lt−1

m−h + pσ(t) ≤ c ·Ot. If this
is the case, the job is put on M t−1

m−h. Otherwise, Jσ(t) is finally scheduled on the least loaded
machine M t−1

m . A pseudo-code description of ALG is given below. The job assignment rules
are also illustrated in Figures 1 and 2.

Algorithm 1 The scheduling algorithm ALG.

1: Let Jσ(t) be the next job to be scheduled.
2: if the schedule at time t is steep then
3: Assign Jσ(t) to the least loaded machine M t−1

m ;
4: else // the schedule is flat
5: if lt−1

i + pσ(t) ≤ c ·Ot then Assign Jσ(t) to M t−1
i ;

6: else if lt−1
m−h + pσ(t) ≤ c ·Ot then Assign Jσ(t) to M t−1

m−h;
7: else Assign Jσ(t) to M t−1

m ;

k i

Figure 1 A steep schedule. ALG only considers the least loaded machine.
k i

Figure 2 A flat schedule. The three machines considered by ALG are marked for h = 2.

In the next section we will prove the following theorem, Theorem 3, which uses the notion
from Section 2. Lemma 2 then immediately gives the main result, Corollary 4.

I Theorem 3. ALG is nearly c-competitive, with c < 1.8478 defined as above.

I Corollary 4. ALG is c-competitive in the random-order model as m→∞.

From our analysis it can be verified that the number of machines required to be (c+ ε)-
competitive is bounded by a small polynomial of degree 4 in 1/ε. For ease of presentation,
we made no optimizations in that regard.

4 Analysis of the algorithm

4.1 Analysis basics
We present some results for the adversarial model so that we can focus on the true random-
order analysis of ALG in the next sections. First, recall the three common lower bounds
used for online makespan minimization.

ICALP 2020
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I Proposition 5. For any J , there holds OPT (J ) ≥ max{L, pmax, 2Pm+1}. Moreover, for
any permutation Jσ, there holds O1 ≤ O2 ≤ . . . ≤ On ≤ OPT (J ).

Proof. The optimum makespan OPT (J ) cannot be smaller than the average machine load
L for the input, even if all the jobs are distributed evenly among the m machines. Moreover,
the job with the largest processing time pmax must be scheduled non-preemptively on one
of the machines in an optimal schedule. Thus OPT (J ) ≥ pmax. Finally, among the m+ 1
largest jobs of the input, two must be placed on the same machine in an optimal solution.
Hence OPT (J ) ≥ 2Pm+1. For any permutation Jσ, the value Ot cannot decrease as jobs Jt
arrive. J

For any job sequence J = J1, . . . , Jn, let R(J ) = min{ L
pmax

, pmax
L }. Intuitively, this

measures the complexity of J .

I Proposition 6. For any J = J1, . . . , Jn, there holds ALG(J ) ≤ max{1+R(J ), c}OPT (J ).

Proof. Let J = J1, . . . , Jn be an arbitrary job sequence and let Jt be the job that defines
ALG’s makespan. If the makespan exceeds c · OPT (J ), then it exceeds c · Ot. Thus
ALG placed Jt on machine M t−1

m , cf. lines 4 and 5 of the algorithm. This machine was
a least loaded one, having a load of at most L. Hence ALG(J ) ≤ L + pt ≤ L + pmax ≤

L+pmax
max{L,pmax} ·OPT (J ) = (1 +R(J )) ·OPT (J ). J

Since R(J ) ≤ 1 we immediately obtain the following result, which ensures that ALG satisfies
the first condition of a nearly c-competitive algorithm, see Definition 1.

I Corollary 7. ALG is 2-competitive in the adversarial model.

We next identify a class of plain job sequences that we do not need to consider in the
random-order analysis because ALG’s makespan is upper bounded by c times the optimum
on these inputs.

I Definition 8. A job sequence J = J1, . . . , Jn is called plain if n ≤ m or if R(J ) ≤ c− 1.
Otherwise it is called proper.

Let J = J1, . . . , Jn be any job sequence that is processed/scheduled in this order. Observe
that if it contains at most m jobs, i.e. n ≤ m, and ALG cannot place a job Jt on machines
M t−1
i or M t−1

m−h because the resulting load would exceed c ·Ot, then the job is placed on an
empty machine. Using Proposition 6 we derive the following fact.

I Lemma 9. For any plain job sequence J = J1, . . . , Jn, there holds ALG(J ) ≤ c ·OPT (J ).

If a job sequence J is plain (proper), then every permutation of it is. Hence, given Lemma 9,
we may concentrate on proper job sequences in the remainder of the analysis. We finally
state a fact that relates to the second condition of a nearly c-competitive algorithm, see
again Definition 1. The proof is given in the full version.

I Lemma 10. Let J = J1, . . . , Jn be any job sequence that is scheduled in this order and let
Jt be a job that causes ALG’s makespan to exceed (c+ ε)OPT (J ), for some ε ≥ 0. Then
both the load of ALG’s least loaded machine at the time of the assignment as well as pt exceed
(c− 1 + ε)OPT (J ).

Proof. ALG places Jt on machineM t−1
m , which is a least loaded machine when the assignment

is done. If lt−1
m or pt were upper bounded by (c − 1 + ε)OPT (J ), then the resulting load

would be lt−1
m + pt ≤ (c− 1 + ε)OPT (J ) + max{L, pt} ≤ (c− 1 + ε)OPT (J ) +OPT (J ) =

(c+ ε)OPT (J ). J
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4.2 Stable job sequences
We define the class of stable job sequences. These sequences are robust in that they will
admit an adversarial analysis of ALG. Intuitively, the sequences reveal information on the
largest jobs when a significant fraction of the total processing volume

∑n
t=1 pt has been

scheduled. More precisely, one gets an estimate on the processing time of the h-th largest
job in the entire sequence and encounters a relevant number of the m+ 1 largest jobs. If
a job sequence is unstable, large jobs occur towards the very end of the sequence and can
cause a high makespan relative to the optimum one.

We will show that ALG is adversarially (c + ε)-competitive on stable sequences, for a
given ε > 0. Therefore, the definition of stable sequences is formulated for a fixed ε > 0.
Given J , let J σ = Jσ(1), . . . , Jσ(n) be any permutation of the jobs. Furthermore, for every
j ≤ n and in particular j ∈ {h,m+ 1}, the set of the j largest jobs is a fixed set of cardinality
j such that no job outside this set has a strictly larger processing time than any job inside
the set.

I Definition 11. A job sequence J σ = Jσ(1), . . . , Jσ(n) is stable if the following conditions
hold.

There holds n > m.
Once Lt ≥ (c− 1) imL, there holds ptmax ≥ Ph.
For every j ≥ i, the sequence ending once we have Lt ≥ ( jm + ε

2 )L contains at least
j + h+ 2 many of the m+ 1 largest jobs in J .
The sequence ending right before either (a) Lt ≥ i

m (c− 1)εL holds or (b) the h-th largest
job of J is scheduled contains at least h+ 1 many of the m+ 1 largest jobs in J .

Otherwise the job sequence is unstable.

Given ε > 0 and m, let Pε(m) be the infimum, over all proper job sequences J , that a
random permutation of J is stable, i.e.

Pε(m) = inf
J proper

Pσ∼Sn
[J σ is stable].

As the main result of this section we will prove that this probability tends to 1 as m→∞.

I Main Lemma 1. For every ε > 0, there holds lim
m→∞

Pε(m) = 1.

The above lemma implies that for any ε > 0 there exists an m(ε) such that, for all m ≥ m(ε)
and all J , there holds Pσ∼Sn [J σ is stable] ≥ 1 − ε. In Section 4.3 we will show that
ALG is (c + ε)-competitive on stable job sequences. This implies Pσ∼Sn

[ALG(J σ) ≥
(c+ ε)OPT (J )] ≤ ε. Given Lemma 7, we obtain the following corollary.

I Corollary 12. If ALG is adversarially (c+ ε)-competitive on stable sequences, for every
ε > 0 and m ≥ m(ε) sufficiently large, then it is nearly c-competitive.

In the remainder of this section we describe how to establish Main Lemma 1. Full proofs
of all the lemmas of this section are given in the full version. We need some notation. In
Section 3 the value Ltj was defined with respect to a fixed job sequence that was clear from
the context. We adopt the notation Ltj [J σ] to make this dependence visible. We adopt a
similar notation for the variables L, P tj , Pj , ptmax and pmax. For an input J and σ ∈ Sn, we
will use the notation Ltj [σ] = Ltj [J σ]. Again, we use a similar notation for the variables P tj
and ptmax.
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At the heart of the proof of Main Lemma 1 is the Load Lemma. Observe that after t
time steps in a random permutation of an input J , each job has arrived with probability t/n.
Thus the expected total processing time of the jobs seen so far is t/n ·

∑n
s=1 ps. Equivalently,

in expectation Lt equals t/n · L. The Load Lemma proves that this relation holds with high
probability. We set t = ϕn.

I Load Lemma. Given any ε > 0 and ϕ ∈ (0, 1], there exists an m(ε, ϕ) such that for all
m ≥ m(ε, ϕ) and all proper sequences J , there holds

Pσ∼Sn

[∣∣∣∣Lbϕnc[J σ]
ϕL[J σ] − 1

∣∣∣∣ ≥ ε] ≤ ε.
Proof sketch. By scaling all job processing times by a common factor we may assume that
pmax = 1. Then L = Θ(m) because J is proper. The main idea of the proof is to show that
the variance of the random variable Lbϕnc[J σ] lies in O(m) = O(L). Using Chebyshev’s
inequality we show that the probability of Lbϕnc[J σ] deviating by its expected value ϕL by
more than some term in Θ(m−1/4) is in O(m−1/2). The lemma then follows by choosing m
sufficiently large. J

We note that the Load Lemma does not hold for general sequences. A counterexample is a
job sequence in which one job carries all the load, while all the other jobs have a negligible
processing time. The proof of the Load Lemma relies on a lower bound of R(J ), which is
c− 1 for proper sequences.

We present two consequences of the Load Lemma that will allow us to prove that stable
sequences reveal information on the largest jobs when a certain processing volume has been
scheduled. Consider a proper J . Given J σ = Jσ(1), . . . , Jσ(n) and ϕ > 0, let N(ϕ)[J σ] be
the number of jobs Jσ(t) that are among the m+ 1 largest jobs in J and such that Lt ≤ ϕL.

I Lemma 13. Let ε > 0 and ϕ ∈ (0, 1]. Then there holds

lim
m→∞

inf
J proper

Pσ∼Sn
[N(ϕ+ ε)[J σ] ≥ bϕmc+ h+ 2] = 1.

Proof sketch. The Load Lemma basically matches load ratios Lt/L with ratios t/n on
the time line of job arrivals, up to some margin of error. We can then infer that at least
bϕmc+ h+ 1 of the m+ 1 largest jobs are among the first (ϕ+ ε)n jobs in a job sequence
J σ, with a probability that tends to 1 as m → ∞. In expectation (ϕ + ε)(m + 1) of the
m+ 1 largest jobs occur in this prefix, which is strictly more than bϕmc+ h+ 1, for m large
enough. Formally, we show that (a slight variant of) the random variable N(ϕ+ ε)[J σ] is
hypergeometrically distributed and has variance at most m+1. Using Chebyshev’s inequality
we derive Lemma 13. J

I Lemma 14. Let ε > 0 and ϕ ∈ (0, 1]. Then there holds

lim
m→∞

inf
J proper

Pσ∼Sn
[∀ϕ̃≥ϕ N(ϕ̃+ ε)[J σ] ≥ bϕ̃mc+ h+ 2] = 1.

Proof sketch. By rounding the values ϕ̃ we may restrict ourselves to finitely many ϕ̃. Using
the Union Bound and Lemma 13 we can prove Lemma 14. J

Proof sketch for Main Lemma 1. We consider the properties in the definition of stable job
sequences. Since J is proper, there holds n > m. By the Load Lemma the second property
translates to one of the h largest jobs being among the first (c− 1) imn jobs in the permuted
sequence J σ. The corresponding probability is roughly 1− (1− (c− 1) im )h and (quickly)
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approaches 1 as m and thus h tends to infinity. The third property is a consequence of
Lemma 14. For the fourth property we use Lemma 13, considering the sequence ending once
Lt ≥ ( jm + ε

2 )L holds. Finally, the probability of the h-th largest job being preceded by at
least h + 1 of the m + 1 largest jobs approaches 1 since h ∈ o(

√
m). Again a full proof is

given in the full version. J

4.3 An adversarial analysis
In this section we prove the following main result.

I Main Lemma 2. For every ε > 0 and m ≥ m(ε) sufficiently large, ALG is adversarially
(c+ ε)-competitive on stable job sequences.

Consider a fixed ε > 0. Given Lemma 7, we may assume that 0 < ε < 2− c. Suppose that
there was a stable job sequence J σ such that ALG(J σ) > (c+ε)OPT (J σ). We will derive a
contradiction, given thatm is large. In order to simplify notation, in the following let J = J σ
be the stable job sequence violating the performance ratio of c+ ε. Let J = J1, . . . , Jn and
OPT = OPT (J ).

Let Jn′ be the first job that causes ALG to have a makespan greater than (c+ ε)OPT
and let b0 = ln

′−1
m be the load of the least loaded machine Mn′−1

m right before Jn′ is
scheduled on it. The makespan after Jn′ is scheduled, called the critical makespan, is at most
b0 + pn′ ≤ b0 +OPT . In particular b0 > (c− 1 + ε)OPT as well as pn′ > (c− 1 + ε)OPT ,
see Lemma 10. Let

λstart = c−1
1+2c(2−c) ≈ 0.5426 and λend = 1

2(c−1+ε) ≈ 0.5898.

There holds λstart < λend. The critical makespan of ALG is bounded by b0 + OPT <

(1 + 1
c−1+ε )b0 = (c+ ε) b0

c−1+ε = (c+ ε)2λendb0. Since ALG does not achieve a performance
ratio of c+ ε on J we have

Pm+1 ≤ OPT/2 < λendb0. (1)

Our main goal is to derive a contradiction to this inequality.

The impact of the variable Ph

A new, crucial aspect in the analysis of ALG is Ph, the processing time of the h-th largest
job in the sequence J . Initially, when the processing of J starts, we have no information
on Ph and can only infer Pm+1 ≥ λstartb0. The second property in the definition of stable
job sequences ensures that ptmax ≥ Ph once the load ratio Lt/L is sufficiently large. Note
that ALG then also works with this estimate because Ph ≤ ptmax ≤ Ot. This will allow us
to evaluate the processing time of flatly scheduled jobs. In order prove that Pm+1 is large,
we will relate Pm+1 and Ph, i.e. we will lower bound Pm+1 in terms of Ph and vice versa.
Using the relation we can then conclude Pm+1 ≥ λendb0. In the analysis we repeatedly use
the properties of stable job sequences and will explicitly point to it when this is the case.
The omitted proofs of propositions and lemmas are given in the full version of the paper.

We next make the relationship between Ph and Pm+1 precise. Given 0 < λ, let f(λ) =
2cλ − 1 and given w > 0, let g(w) = (c(2c − 3) − 1)w + 4 − 2c ≈ 0.2854 · w + 0.3044. We
set gb(λ) = g

(
λ
b

)
b and fb(w) = f

(
w
b

)
b, for any b > 0. Then we will lower bound Pm+1 by

gb0(Ph) and Ph by fb0(Pm+1). We state two technical propositions.

I Proposition 15. For λ > λstart, we have g(f(λ)) > λ.
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I Proposition 16. For 0 < ε ≤ 1, we have g(1− ε) > λend.

We leave the proof of Proposition 15 to the full version of the paper. Proposition 16
determines the choice of our competitive ratio c. Recall that c is chosen minimal such that
Q[c] = 4c3 − 14c2 + 16c− 7 ≥ 0.

Proof of Proposition 16. We calculate that

g(1− ε)− λend = (c(2c− 3)− 1)(1− ε) + 4− 2c− 1
2(c− 1 + ε)

= 2(c− 1 + ε)(2c2 − 5c+ 3− (2c2 − 3c− 1)ε)− 1
2(c− 1 + ε)

= 4c3 − 14c2 + 16c− 7 + (4− 2c)ε− 2(2c2 − 3c− 1)ε2

2(c− 1 + ε) .

Recall that Q[c] = 4c3 − 14c2 + 16c− 7 = 0. For 0 < ε ≤ 1 we have

(4− 2c)ε− (2c2 − 3c− 1)ε2 ≈ 0.3044 · ε− 0.2854 · ε2 > 0.

Thus we see that g(1− ε)− λend > 0 and can conclude the lemma. J

4.3.1 Analyzing large jobs towards lower bounding Ph and Pm+1

Let b > (c− 1 + ε)OPT be a value such that immediately before Jn′ is scheduled at least
m− h machines have a load of at least b. Note that b = b0 satisfies this condition but we
will be interested in larger values of b as well. We call a machine b-full once its load is at
least b; we call a job J a b-filling job if it causes the machine it is scheduled on to become
b-full. We number the b-filling jobs according to their order of arrival J (1), J (2), . . . and let
t(j) denote the time of arrival of the j-th filling job J (j).

Recall that our main goal is to show that Pm+1 ≥ λendb0 holds. To this end we will prove
that the b0-filling jobs have a processing time of at least λendb0. As there are m such jobs,
the bound on Pm+1 follows by observing that Jn′ arrives after all b0-filling jobs are scheduled
and that its processing time exceeds λendb0 as well. In fact, since OPT ≥ b0, we have

pn′ > (c− 1)OPT > 0.847 ·OPT > λendb0 ≈ 0.5898 · b0. (2)

We remark that different to previous analyses in the literature we do not solely rely on
lower bounding the processing time of filling jobs. By using the third property of stable job
sequences, we can relate load and the size of the (m+ 1)-st largest job at specific points in
the time horizon, cf. Lemma 22.

In the following we regard b as fixed and omit it from the terms filling job and full.
Let λ = max{λstartb,min{gb (Ph) , λendb}}. We call a job large if it has a processing time
of at least λ. Let t̃ = t(m − h) be the time when the (m − h)-th filling job arrived. The
remainder of this section is devoted to showing the following important Lemma 17. Some of
the underlying lemmas, but not all of them, hold if m ≥ m(ε) is sufficiently large. We will
make the dependence clear.

I Lemma 17. At least one of the following statements holds:
All filling jobs are large.
If m ≥ m(ε), there holds P t̃m+1 ≥ λ = max{λstartb,min{gb (Ph) , λendb}}, i.e. there are
at least m+ 1 large jobs once the (m− h)-th filling job is scheduled.

Before we prove the lemma we derive two important implications towards a lower bound of
Pm+1.
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I Lemma 18. We have Pm+1 ≥ λ = max{λstartb0,min{gb0 (Ph) , λendb0}}.

Proof. Apply the last lemma, taking into account that b ≥ b0, and use that there are m
many b0-filling jobs followed by Jn′ . The latter has size at least λ by inequality (2). J

We also want to lower bound the processing time of the (m + 1)-st largest job at time t̃.
However, at that time only m− h filling jobs have arrived. The next lemma ensures that, if
additionally Ph is not too large, this is not a problem.

I Lemma 19. If Ph ≤ (1 − ε)b and m ≥ m(ε), the second statement in Lemma 17 holds,
i.e. P t̃m+1 ≥ λ = max{λstartb,min{gb (Ph) , λendb}}.

The proof of the lemma makes use of the fourth property of stable job sequences.
We introduce late and early filling jobs. We need a certain condition to hold, see Lemma 22,

in order to show that the early filling jobs are large. We show that if this condition is not
met, the fact that the given job sequence is stable ensures that P t̃m ≥ λ.

Let s be chosen maximal such that the s-th filling job is scheduled steeply. If s ≤ i, then
set s = i + 1 instead. We call all filling jobs J (j) with j > i that are scheduled flatly late
filling jobs. All other filling jobs are called early filling jobs. In particular the job J (s+1) and
the filling jobs afterwards are late filling jobs. The following proposition implies that the
fillings jobs after J (m−h), if they exist, are all late, i.e. scheduled flatly.

I Proposition 20. We have s ≤ m− h if m ≥ m(ε).

We need a technical lemma. For any time t, let Lts = 1
m−h−s+1

∑m−h
j=s ltj be the average

load on the machines numbered s to m− h.

I Lemma 21. If Lt(s)−1
s ≥ α−1b holds and m ≥ m(ε), we have Lt(s)−1 >

(
s
m + ε

2
)
· L.

I Lemma 22. If the late filling jobs are large, Lt(s)−1
s ≥ α−1b and m ≥ m(ε), we have

P t̃m+1 ≥ λ.

Proof. Assume that the conditions of the lemma hold. By Lemma 21 we have Lt(s)−1 >(
s
m + ε

2
)
·L. By the third property of stable sequences, at mostm+1−(s+h+2) = m−s−h−1

of the largest m+ 1 jobs appear in the sequence starting after time t(s)− 1. However, this
sequence contains m− h− s late filling jobs. Thus there exists a late filling job that is not
among the m+ 1 largest jobs. As it has a processing time of at least λ, by the assumption of
the lemma, Pm+1 ≥ λ holds.

Now consider the m+ 1 largest jobs of the entire sequence that arrive before J (s) as well
as the jobs J (s+1), . . . , J (m−h). There are at least s + h + 2 of the former and m − h − s
of the latter. Thus we have found a set of at least m+ 1 jobs arriving before (or at) time
t̃ = t(m− h). Moreover, we argued that all these jobs have a processing time of at least λ.
Hence P t̃m+1 ≥ λ holds true. J

We are ready to evaluate the processing time of filling jobs to prove Lemma 17.

I Lemma 23. The processing time of late filling jobs strictly exceeds max{λstartb, gb(Ph)}.

I Lemma 24. If Lt(s)−1
s < α−1b holds, the early filling jobs have a processing time of at

least λendb.

Before proving Lemma 24 let us observe the following, strengthening its condition.
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I Lemma 25. We have

L
t(i+1)−1
i+1 ≤ Lt(i+2)−1

i+2 ≤ . . . Lt(s)−1
s .

Proof. Let i+ 1 ≤ j < s. It suffices to verify that

L
t(j)−1
j ≤ Lt(j)j+1 ≤ L

t(j+1)−1
j+1 .

The second inequality is obvious because for every r the loads ltr can only increase as t
increases. For the first inequality we note that by definition the job J (j) was scheduled
steeply and hence on a least loaded machine. This machine became full. Thus it is not
among the m− j least loaded machines at time t(j). In particular Lt(j)j+1, the average over
the m − j smallest loads at time t(j), is also the average of the m − j + 1 smallest loads
excluding the smallest load at time t(j)− 1. Therefore it cannot be less than Lt(j)−1

j . J

Proof of Lemma 24. Let i < j ≤ s such that J (j) was an early filling job. By Lemma 25 we
have Lt(j)−1

j ≤ L
t(s)−1
s < α−1b = b − b

2(c−1) < b − λendb. By definition J (j) was scheduled
on a least loaded machine M t(j)−1

m which had load less than Lt(j)−1
j < b− λendb before and

at least b afterwards because it became full. In particular J (j) had size λendb.
For k < j ≤ i the job J (j) is scheduled steeply because we have by Lemma 25

l
t(j)−1
k ≥ b > αLt(s)−1

s ≥ αLt(i+1)−1
i+1 ≥ αLt(j)−1

i+1 .

Thus for k < j ≤ i the job J (j) is scheduled on the least loaded machine M t(j)−1
m , whose load

l
t(j)−1
m is bounded by

lt(j)−1
m ≤ Lt(j)−1

i+1 ≤ Lt(s)−1
s < α−1b = b− b

2(c− 1) < b− λendb.

Hence the job J (j) had a size of at least λendb. We also observe that we have

l
t(k)−1
i ≤ lt(k+1)−1

i+1 ≤ . . . ≤ lt(k+(m−i))−1
i+(m−i) = lt(i)−1

m < b− λendb.

In particular for 1 ≤ j ≤ k any filling job J (j) filled a machine with a load of at most
max{lt(k)

m , l
t(k)
i } = l

t(k)
i < b− λendb. Hence it had a size of at least λendb. J

We now conclude the main lemma of this subsection, Lemma 17.

Proof of Lemma 17. By Lemma 23, all late filling jobs are large. We distinguish two cases
depending on whether or not Lt(s)−1

s < α−1b holds. If it does, all filling jobs are large by
Lemma 24 and the first statement in Lemma 17 holds. Otherwise, the second statement in
Lemma 17 holds by Lemma 22. J

4.3.2 Lower bounding Ph and Pm+1

In this section we establish the following relations on Ph and Pm+1.

I Lemma 26. There holds Ph > (1− ε)b0 or Pm+1 ≥ λendb0 if m ≥ m(ε).

For the proof we need a way to lower bound the processing time of a job Jt depending on
P tm+1:

I Lemma 27. Let Jt be any job scheduled flatly on the least loaded machine and let b = lt−1
m−h

be the load of the (h+ 1)-th least loaded machine. Then Jt has a processing time of at least
fb(P tm+1).
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Proof. From the fact that Jt was not scheduled on the (h + 1)-th least loaded machine
M t
m−h we derive that pt > c ·Ot − b ≥ c · P tm+1 − b = fb(P tm+1) holds. J

Proof of Lemma 26. Assume for a contradiction that we had Ph ≤ (1− ε)b0. Let J = Jt
be the smallest among the h last b0-filling jobs. Then J has a processing time p ≤ Ph.
We want to derive a contradiction to that. Let b1 = lt−1

m−h be the load of the (m − h)-
th machine right before J was scheduled. Because this machine was b0-full at that time
we know that b1 ≥ b0 > (c − 1 + ε)OPT holds and it makes sense to consider b1-filling
jobs. Let t̃ be the time the (m − h)-th b1-filling job arrived. By Lemma 17 we have
P t̃m+1 ≥ λ = max{λstartb1,min{gb1 (Ph) , λendb1}}.

If we have λ = λendb1 ≥ λendb0 we have already proven Pm+1 ≥ λendb0 and the lemma
follows. So we are left to treat the case that we have P t̃m+1 ≥ λ = max{λstartb1, gb1 (Ph)}.

Now we can derive the following contradiction:

P t̃m+1 ≥ gb1 (Ph) ≥ gb1 (p) ≥ gb1

(
fb1

(
P t̃m+1

))
= g

(
f

(
P t̃m+1
b1

))
b1 > P t̃m+1.

For the second inequality, we use the monotonicity of gb1(−). The third inequality follows
from Lemma 27 and the last one from Proposition 15. J

4.3.3 Establishing Main Lemma 2
Let m ≥ m(ε) be sufficiently large. The machine number m(ε) is determined by the
proofs of Proposition 20 and Lemma 21, and then carries over to the subsequent lemmas.
Let us assume for a contradiction sake that there was a stable sequence J such that
ALG(J ) > (c+ ε)OPT (J ). As argued in the beginning of Section 4.3, see (1), it suffices
to show that Pm+1 ≥ λendb0. If this was not the case, we would have Ph ≥ (1 − ε)b0 by
Lemma 26. In particular by Proposition 16 we had gb0 (Ph) = g(1− ε)b0 > λendb0. But now
Lemma 18 shows that Pm+1 ≥ max{λstartb0,min{gb0 (Ph) , λendb0}} = λendb0.

We conclude, by Corollary 12, that ALG is nearly c-competitive.

5 Lower bounds

We present lower bounds on the competitive ratio of any deterministic online algorithm in
the random-order model. Theorem 29 implies that if a deterministic online algorithm is
c-competitive with high probability as m→∞, then c ≥ 3/2.

I Theorem 28. Let A be a deterministic online algorithm that is c-competitive in the
random-order model. Then c ≥ 4/3 if m ≥ 8.

I Theorem 29. Let A be a deterministic online algorithm that is nearly c-competitive. Then
c ≥ 3/2.

A basic family of inputs are job sequences that consist of jobs having an identical
processing time of, say, 1. We first analyze them and then use the insight to derive our lower
bounds. Let m ≥ 2 be arbitrary. For any deterministic online algorithm A, let r(A,m) be
the maximum number in N ∪ {∞} such that A handles a sequence consisting of r(A,m) ·m
jobs with an identical processing time of 1 by scheduling each job on a least loaded machine.

I Lemma 30. Let m ≥ 2 be arbitrary. For every deterministic online algorithm A, there
exists a job sequence J such that Arom(J ) ≥ (1 + 1

r(A,m)+1 )OPT (J ). We use the convention
that 1

∞+1 = 0.
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Proof. For r(A,m) =∞ there is nothing to show. For r(A) <∞, consider the sequence J
consisting of (r(A,m) + 1) ·m identical jobs, each having a processing time of 1. It suffices
to analyze the algorithm adversarially as all permutations of the job sequence are identical.
After having handled the first r(A,m) ·m jobs, the algorithm A has a schedule in which every
machine has load of r(A,m). By the maximality of r(A,m), the algorithm A schedules one
of the following m jobs on a machine that is not a least loaded one. The resulting makespan
is r(A,m) + 2. The lemma follows since the optimal makespan is r(A,m) + 1. J

Proof of Theorem 28. Let m ≥ 8 be arbitrary. Consider any deterministic online al-
gorithm A. If r(A,m) ≤ 2, then, by Lemma 30, there exists a sequence J such that
Arom(J ) ≥ 4

3 ·OPT (J ). Therefore, we may assume that r(A,m) ≥ 3. Consider the input
sequence J consisting of 4m− 4 identical small jobs of processing time 1 and one large job
of processing time 4. Obviously OPT(J ) = 4.

Let i be the number of small jobs preceding the large job in J σ. The random variable i
takes any (integer) value between 0 and 4m− 4 with probability 1

4m−3 . Since r(A,m) ≥ 3
the least loaded machine has load of at least l =

⌊
i
m

⌋
when the large job arrives. Thus

A(J σ) ≥ l+ 4. The load l takes the values 0, 1 and 2 with probability m
4m−3 and the value 3

with probability m−3
4m−3 . Hence the expected makespan of algorithm A is at least

Arom(J ) ≥ m

4m− 3 · (0 + 1 + 2) + m− 3
4m− 3 · 3 + 4 = 6m− 9

4m− 3 + 4 > 16
3 = 4

3OPT(J ).

For the last inequality we use that m ≥ 8. J

Proof of Theorem 29. Let m ≥ 2 be arbitrary and let A be any deterministic online
algorithm. If r(A,m) = 0, then consider the sequence J consisting of m jobs with a
processing time of 1 each. On every permutation of J algorithm A has a makespan of 2,
while the optimum makespan is 1. If r(A,m) ≥ 1, then consider the sequence J consisting
of 2m − 2 small jobs having a processing time of 1 and one large job with a processing
time of 2. Obviously OPT (J ) = 2. If the permuted sequence starts with m small jobs,
the least loaded machine has load 1 once the large job arrives. Under such permutations
A(J σ) ≥ 3 = 3

2 · OPT(J ) holds true. The probability of this happening is m−1
2m−1 . The

probability approaches 1
2 and in particular does not vanish, for m→∞. Thus, if A is nearly

c-competitive, then c ≥ 3/2. J
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Abstract
In this paper, we initiate the study of the weighted paging problem with predictions. This continues
the recent line of work in online algorithms with predictions, particularly that of Lykouris and
Vassilvitski (ICML 2018) and Rohatgi (SODA 2020) on unweighted paging with predictions. We
show that unlike unweighted paging, neither a fixed lookahead nor knowledge of the next request
for every page is sufficient information for an algorithm to overcome existing lower bounds in
weighted paging. However, a combination of the two, which we call the strong per request prediction
(SPRP) model, suffices to give a 2-competitive algorithm. We also explore the question of gracefully
degrading algorithms with increasing prediction error, and give both upper and lower bounds for a
set of natural measures of prediction error.
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1 Introduction

The paging problem is among the most well-studied problems in online algorithms. In this
problem, there is a set of n pages and a cache of size k < n. The online input comprises a
sequence of requests for these pages. If the requested page is already in the cache, then the
algorithm does not need to do anything. But, if the requested page is not in the cache, then
the algorithm suffers what is known as a cache miss and must bring the requested page into
the cache. If the cache is full, then an existing page must be evicted from the cache to make
room for the new page. The goal of the online algorithm is to minimize the total number of
cache misses in the unweighted paging problem, and the total weight of the evicted pages in
the weighted paging problem. It is well-known that for both problems, the best deterministic
algorithms have a competitive ratio of O(k) and the best randomized algorithms have a
competitive ratio of O(log k) (see, e.g., [4, 2]).
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Although the paging problem is essentially solved from the perspective of competitive
analysis, it also highlights the limitations of this framework. For instance, it fails to distinguish
between algorithms that perform nearly optimally in practice such as the least recently used
(LRU) rule and very naïve strategies such as flush when full that evicts all pages whenever the
cache is full. In practice, paging algorithms are augmented with predictions about the future
(such as those generated by machine learning models) to improve their empirical performance.
To model this, for unweighted paging, several lookahead models have been proposed where
only a partial prediction of the future leads to algorithms that are significantly better than
what can be obtained in traditional competitive analysis. But, to the best of our knowledge,
no such results were previously known for the weighted paging problem. In this paper, we
initiate the study of the weighted paging problem with future predictions.

For unweighted paging, it is well-known that evicting the page whose next request is
farthest in the future (also called Belady’s rule) is optimal. As a consequence, it suffices
for an online algorithm to simply predict the next request of every page (we call this per
request prediction or PRP in short) in order to match offline performance. In fact, Lykouris
and Vassilvitskii [9] (see also Rohatgi [13]) showed recently that in this prediction model,
one can simultaneously achieve a competitive ratio of O(1) if the predictions are accurate,
and O(log k) regardless of the quality of the predictions. Earlier, Albers [1] used a different
prediction model called `-strong lookahead, where we predict a sequence of future requests
that includes ` distinct pages (excluding the current request). For ` = n− 1, this prediction
is stronger than the PRP model, since the algorithm can possibly see multiple requests for a
page in the lookahead sequence. But, for ` < n− 1, which is typically the setting that this
model is studied in, the two models are incomparable. The main result in [1] is to show that
one can obtain a constant approximation for unweighted paging for ` ≥ k − 2.

Somewhat surprisingly, we show that neither of these models are sufficient for weighted
paging. In particular, we show a lower bound of Ω(k) for deterministic algorithms and
Ω(log k) for randomized algorithms in the PRP model. These lower bounds match, up to
constants, standard lower bounds for the online paging problem (without prediction) (see,
e.g., [11]), hence establishing that the PRP model does not give any advantage to the online
algorithm beyond the strict online setting. Next, we show that for `-strong lookahead, even
with ` = k, there are lower bounds of Ω(k) for deterministic algorithms and Ω(log k) for
randomized algorithms, again asymptotically matching the lower bounds from online paging
without prediction. Interestingly, however, we show that a combination of these prediction
models is sufficient: if ` = n − 1 in the strong lookahead setting, then we get predictions
that subsume both models; and, in this case, we give a simple deterministic algorithm with a
competitive ratio of 2 for weighted paging, thereby overcoming the online lower bounds.

Obtaining online algorithms with predictions, however, is fraught with the risk that the
predictions are inaccurate which renders the analysis of the algorithms useless. Ideally, one
would therefore, want the algorithms to also be robust, in that their performance gracefully
degrades with increasing prediction error. Recently, there has been significant interest in
designing online algorithms with predictions that achieve both these goals, of matching
nearly offline performance if the predictions are correct, and of gracefully degrading as the
prediction error increases. Originally proposed for the (unweighted) paging problem [9], this
model has gained significant traction in the last couple of years and has been applied to
problems in data structures [10], online decision making [12, 6], scheduling theory [12, 8],
frequency estimation [7], etc. Our final result contributes to this line of research.

First, if the online algorithm and offline optimal solution both use a cache of size k, then
we show that no algorithm can asymptotically benefit from the predictions while achieving
sublinear dependence on the prediction error. Moreover, if we make the relatively modest
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assumption that the algorithm is allowed a cache that contains just 1 extra slot than that of
the optimal solution, then we can achieve constant competitive ratio when the prediction
error is small.

1.1 Overview of models and our results
Our first result is a lower bound for weighted paging in the PRP model. Recall that in the
PRP model, in addition to the current page request, the online algorithm is provided the
time-step for the next request of the same page. For instance, if the request sequence is
(a, b, a, c, d, b, . . .), then at time-step 1, the algorithm sees request a and is given position 3,
and at time-step 2, the algorithm sees request b and is given position 6.

I Theorem 1. For weighted paging with PRP, any deterministic algorithm is Ω(k)-competi-
tive, and any randomized algorithm is Ω(log k)-competitive.

Note that these bounds are tight, because there exist online algorithms without prediction
whose competitive ratios match these bounds (see Chrobak et al. [4] and Bansal et al. [2]).

Next, for the `-strong lookahead model, we show lower bounds for weighted paging. Recall
that in this model, the algorithm is provided a lookahead into future requests that includes
` distinct pages. For instance, if ` = 3 and the request sequence is (a, b, a, c, d, b, . . .), then
at time-step 1, the algorithm sees request a and is given the lookahead sequence (b, a, c)
since it includes 3 distinct pages. At time step 2, the algorithm sees request b and is given
(a, c, d). Note the difference with the PRP model, which would not be give the information
that the request in time-step 5 is for page d, but does give the information that the request
in time-step 6 is for page b.

I Theorem 2. For weighted paging with `-strong lookahead where ` ≤ n−k, any deterministic
algorithm is Ω(k)-competitive, and any randomized algorithm is Ω(log k)-competitive.

For weighted paging with `-strong lookahead where n−k+1 ≤ ` ≤ n−1, any deterministic
algorithm is Ω(n− `)-competitive, and any randomized algorithm is Ω(log(n− `))-competitive.

In contrast to these lower bounds, we show that a prediction model that combines features
of these individual models gives significant benefits to an online algorithm. In particular,
combining PRP and `-strong lookahead, we define the following prediction model:

SPRP (“strong per-request prediction”): On a request for page p, the predictor
gives the next time-step when p will be requested and all page requests till that request.

This is similar to (n − 1)-strong lookahead, but is slightly weaker in that it does not
provide the first request of every page at the outset. After each of the n pages has been
requested, SPRP and (n− 1)-strong lookahead are equivalent.

I Theorem 3. There is a deterministic 2-competitive for weighted paging with SPRP.

So far, all of these results assume that the prediction model is completely correct.
However, in general, predictions can have errors, and therefore, it is desirable that an
algorithm gracefully degrades with increase in prediction error. To this end, we also give
upper and lower bounds in terms of the prediction error.

For unweighted paging, Lykouris and Vassilvitski [9] basically considered two measures
of prediction error. The first, called `pd in this paper, is defined as follows: For each input
request pt, we increase `pd by w(pt) times the absolute difference between the predicted
next-arrival time and the actual next-arrival time. For unweighted paging, Lykouris and
Vassilvitskii [9] gave an algorithm with cost O(OPT +

√
`pd · OPT). Unfortunately, we rule

out an analogous result for weighted paging.
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I Theorem 4. For weighted paging with SPRP, there is no deterministic algorithm whose cost
is o(k)·OPT+o(`pd), and there is no randomized algorithm whose cost is o(log k)·OPT+o(`pd).

It turns out that the `pd error measure is closely related to another natural error measure
that we call the `1 measure. This is defined as follows: for each input request pt, if the
prediction qt is not the same as pt, then increase `1 by the sum of weights w(pt) + w(qt).
(This is the `1 distance between the predictions and actual requests in the standard weighted
star metric space for the weighted paging problem.) The lower bound for `pd continues to
hold for `1 as well, and is tight.

I Theorem 5. For weighted paging with SPRP, there is no deterministic algorithm whose cost
is o(k) ·OPT+o(`1), and there is no randomized algorithm whose cost is o(log k) ·OPT+o(`1).
Furthermore, there is a deterministic algorithm with SPRP with cost O(OPT + `1).

One criticism of both the `pd and `1 error measures is that they are not robust to insertions
or deletions from the prediction stream. To counter this, Lykouris and Vassilvitski [9] used a
variant of the classic edit distance measure, and showed a constant competitive ratio for this
error measure. For weighted paging, we also consider a variant of edit distance, called `ed and
formally defined in Section 5, which allows insertions and deletions between the predicted
and actual request streams.2 Unfortunately, as with `pd and `1, we rule out algorithms
that asymptoticaly benefit from the predictions while achieving sublinear dependence on `ed.
Furthermore, if the algorithm were to use a cache with even one extra slot than the optimal
solution, then we show that even for weighted paging, we can achieve a constant competitive
algorithm. We summarize these results in the next theorem.

I Theorem 6. For weighted paging with SPRP, there is no deterministic algorithm whose cost
is o(k)·OPT+o(`ed), and there is no randomized algorithm whose cost is o(log k)·OPT+o(`ed).
In the same setting, there exists a randomized algorithm that uses a cache of size k+ 1 whose
cost is O(OPT + `ed), where OPT uses a cache of size k.

1.2 Related work
We now give a brief overview of the online paging literature, highlighting the results that
consider a prediction model for future requests. For unweighted paging, the optimal offline
algorithm is Belady’s algorithm, which always evicts the page that appears farthest in the
future [3]. For online paging, Sleator and Tarjan [14] gave a deterministic k-competitive
algorithm, and Fiat et al. [5] gave a randomized O(log k)-competitive algorithm; both results
were also shown to be optimal. For weighted online paging, Chrobak et al. [4] gave a
deterministic k-competitive algorithm, and Bansal et al. [2] gave an O(log k)-competitive
randomized algorithm, which are also optimal by extension.

Recently, Lykouris and Vassilvitskii [9] introduced a prediction model that we call
PRP in this paper: on each request p, the algorithm is given a prediction of the next
time at which p will be requested. For unweighted paging, they gave a randomized
algorithm, based on the “marker” algorithm of Fiat et al. [5], with competitive ratio
O(min(

√
`pd/OPT, log k)). Here, `pd is the absolute difference between the predicted arrival

and actual arrival times of requests, summed across all requests. They also perform a tighter
analysis yielding a competitive ratio of O(min(ηed/OPT, log k)), where ηed is the edit distance

2 For technical reasons, neither `ed in this paper nor the edit distance variant in [9] exactly match the
classical definition of edit distance.
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between the predicted sequence and the actual input. Subsequently, Rohatgi [13] improved
the former bound to O(1 + min((`pd/OPT)/k, 1) log k) and also proved a lower bound of
Ω(log min((`pd/OPT)/(k log k), k)).

Albers [1] studied the `-strong lookahead model: on each request p, the algorithm is
shown the next ` distinct requests after p and all pages within this range. For unweighted
paging, Albers [1] gave a deterministic (k − `)-competitive algorithm and a randomized
2Hk−`-competitive algorithm. Albers also showed that these bounds are essentially tight:
if l ≤ k − 2, then any deterministic algorithm has competitive ratio at least k − `, and any
randomized algorithm has competitive ratio at least Ω(log(k − `)).

Finally, we review the paging model in which the offline adversary is restricted to a
cache of size h < k, while the online algorithm uses a larger cache of size k. For this model,
Young [16] gave a deterministic algorithm with competitive ratio k/(k − h+ 1) and showed
that this is optimal. In another paper, Young [15] showed that the randomized “marker”
algorithm is O(log(k/k − h))-competitive and this bound is optimal up to constants.

Roadmap

In Section 2, we show the lower bounds stated in Theorem 1 for the PRP model. The lower
bounds for the `-strong lookahead model stated in Theorem 2 are proven in Section 3. In
Section 4, we state and analyze the algorithm for the SPRP model with no error, thereby
proving Theorem 3. Finally, in Section 5, we consider the SPRP model with errors, and focus
on the upper and lower bounds in Theorems 4, 5, and 6. Detailed proofs of these bounds
appear in the full version of this paper.

2 The Per-Request Prediction Model (PRP)

In this section, we give the lower bounds stated in Theorem 1 for the PRP model. Our
strategy, at a high level, will be the same in both the deterministic and randomized cases: we
consider the special case where the cache size is exactly one less than the number of distinct
pages. We then provide an algorithm that generates a specific input. In the deterministic
case, this input will be adversarial, based on the single page not being in the cache at any
time. In the randomized case, the input will be oblivious to the choices made by the paging
algorithm but will be drawn from a distribution. We will give a brief overview of the main
ideas that are common to both lower bound constructions first, and then give the details of
the randomized construction in this section. The details of the deterministic construction
are deferred to the full paper.

Let us first recall the Ω(k) deterministic lower bound for unweighted caching without
predictions. Suppose the cache has size k and the set of distinct pages is {a0, a1, . . . , ak}. At
each step, the adversary requests the page a` not contained in the cache of the algorithm
ALG. Then ALG incurs a miss at every step, while OPT, upon a miss, evicts the page whose
next request is furthest in the future. Therefore, ALG misses at least k more times before
OPT misses again.

Ideally, we would like to imitate this construction. But, the adversary cannot simply
request the missing page a` because that could violate the predictions made on previous
requests. Our first idea is to replace this single request for a` with a “block” of requests
of pages containing a` in a manner that all the previous predictions are met, but ALG still
incurs the cost of page a` in serving this block of requests.

But, how do we guarantee that OPT only misses requests once for every k blocks? Indeed,
it is not possible to provide such a guarantee. Instead, as a surrogate for OPT, we use an
array of k algorithms ALGi for 1 ≤ i ≤ k, where each ALGi follows a fixed strategy: maintain
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all pages except a0 and ai permanently in the cache, and swap a0 and ai as required to serve
their requests. Our goal is to show that the sum of costs of all these algorithms is a lower
bound (up to constants) on the cost of ALG; this would clearly imply an Ω(k) lower bound.

This is where the weights of pages come handy. We set the weight w(ai) of page ai

in the following manner: w(ai) = ci for some constant c ≥ 2. Now, imagine that a block
requested for a missing page a` only contains pages a0, a1, . . . , a` (we call this an `-block).
The algorithms ALGi for i ≤ ` suffer a cache miss on page ai in this block, while the remaining
algorithms ALGi for i > ` do not suffer a cache miss in this block. Moreover, the sum of
costs of all the algorithms ALGi for i ≤ ` in this block is at most a constant times that of
the cost of ALG alone, because of the geometric nature of the cost function.

The only difficulty is that by constructing blocks that do not contain pages ai for i > `,
we might be violating the previous predictions for these pages. To overcome this, we create
an invariant where for every i, an (i + 1)-block must be introduced after a fixed number
of i-blocks. Because of this invariant, we are sometimes forced to introduce a larger block
than that demanded by the missing page in ALG. To distinguish between these two types of
blocks, we call the ones that exactly correspond to the missing page a regular block, and the
ones that are larger irregular blocks. Irregular blocks help preserve the correctness of all
previous predictions, but the sum of costs of ALGi’s on an irregular block can no longer be
bounded against that of ALG. Nevertheless, we can show that the number of irregular blocks
is small enough that this extra cost incurred by ALGi’s in irregular blocks can be charged off
to the regular blocks, thereby proving the deterministic lower bound:

I Theorem 7. For weighted paging with PRP, any deterministic algorithm is Ω(k)-competitive.

A formal proof of this theorem is deferred to the full paper. Instead, we focus on proving
the lower bound for randomized algorithms.

2.1 Randomized Lower Bound
This subsection is devoted to proving the following theorem:

I Theorem 8. For weighted paging with PRP, any randomized algorithm is Ω(log k)-
competitive.

Here, we still use the same idea of request blocks, but now the input is derived from a fixed
distribution and is not aware of the state of ALG. The main idea is to design a distribution
over block sizes in a manner that still causes any fixed deterministic algorithm ALG to suffer
a large cost in expectation, and then invoke Yao’s minimax principle to translate this to a
randomized lower bound.

Let Hk = 1 + 1/2 + · · · + 1/k ≈ ln k denote the k-th harmonic number. The input is
defined as follows:

1. For 0 ≤ i ≤ k, set ui = (2ckHk + 2)i and let yi = 0 for i < k.
2. Repeat the following:

a. Select a value of ` according to the following probability distribution: Pr[` = j] = c−1
cj+1

for j ∈ {0, 1, . . . , k − 1} and Pr[` = k] = 1
ck .

b. Increase ` until ` = k or y` < 2ckHk.
c. For j from 0 to `,

i. Set all requests from time t + 1 through uj − 1 as aj−1. (Note: If j = 0, then
uj = t+ 1, so this step is empty.)

ii. Set the request at time uj as aj .
iii. Let t = uj .
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d. For 0 ≤ j ≤ `, let uj = t+ (2ckHk + 2)j .
e. For 0 ≤ j < `, let yj = 0. If ` < k, increase y` by one.

Note that if ` is not increased in Step 2b, then this block is regular ; otherwise, it is
irregular. Let vi denote the number of regular i-blocks, and let v′i denote the number of
irregular i-blocks. A j-block is an i-plus block if and only if j ≥ i. We first lower bound the
cost of ALG by the number of blocks.

I Lemma 9. Every requested block increases E [cost(ALG)] by at least a constant.

Proof. At every time step, the cache of ALG is missing some page aj . The probability that
aj is requested in the next block is at least Pr[` = j] ≥ 1

2cj , so the expected cost of serving
this block is at least cj · Pr[` = j] = Ω(1). J

For the rest of the proof, we upper bound the cost of OPT. We first upper bound the
number of regular blocks, and then we use this to bound the number of irregular blocks.

I Lemma 10. For every i ∈ {0, 1, . . . , k}, we have E [vi] ≤ 2c−im.

Proof. Consider the potential function φ(y) =
∑k−1

i=0 yi ≥ 0. The initial value of φ(y) is 0.
Notice that whenever a regular block is generated, φ(y) increases by at most 1, and whenever
an irregular block is generated, φ(y) decreases by at least 2ckHk. Thus, the number of
irregular blocks is at most the number of regular blocks, so the total number of blocks is at
most 2m. The lemma follows by noting that the probability that a block is a regular i-block
is at most c−i. J

I Lemma 11. For every i ∈ {0, 1, . . . , k}, we have E [v′i] ≤ 2m
cikHk

.

Proof. Observe that v′i ≤ 1
2ckHk

(v′i−1 + vi−1) and v′1 ≤ 1
2ckHk

v0. Repeatedly applying this
inequality yields

E [v′i] ≤
i−1∑
j=0

E [vj ]
(2ckHk)i−j

≤
i−1∑
j=0

2c−jm

(2ckHk)i−j
= 2m

ci

i−1∑
j=0

1
(2kHk)i−j

≤ 2m
cikHk

,

where the second inequality holds due to Lemma 10. J

Now let A denote the entire sequence of requests, B the subsequence of A comprising all
regular blocks, and m the number of blocks in B. We bound OPT = OPT(A) in terms of
the optimal cost on B and the number of irregular blocks.

I Lemma 12. Let OPT(A) and OPT(B) denote the optimal offline algorithm on request
sequences A and B respectively. Then cost(OPT(A)) ≤ cost(OPT(B)) + 4c

∑k
i=0 v

′
ic

i.

Proof. Consider the following algorithm ALGA on request sequence A:
1. For requests in regular blocks, imitate OPT(B). That is, copy the cache contents when

OPT(B) serves this block.
2. Upon the arrival of an irregular i-block, let a` denote the page not in the cache.

a. If ` > i, then the cost of serving this block is 0.
b. If 1 ≤ ` ≤ i, evict a0 when a` is requested. Then evict a` and fetch a0 at the end of

this block; the cost of this is 2(ci + 1).
c. If ` = 0, we evict a1 and fetch a0 when a0 is requested. Then we evict a0 and fetch a1

when a1 is requested or at the end of this block (if a1 is not requested in this block).
The cost is 2(c+ 1).
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For each irregular block, notice that the cache of ALGA is the same at the beginning
and the end of the block. So Step 2 does not influence the imitation in Step 1. The cost of
serving an irregular i-block is at most 4ci+1. Combining these facts proves the lemma. J

To bound OPT(B), we divide the sequence B into phases. Each phase is a contiguous
sequence of blocks. Phases are defined recursively, starting with 0-phases all the way through
to k-phases. A 0-phase is defined as a single request. For i ≥ 1, let Mi denote the first time
that an i-plus-block is requested and let Qi denote the first time that c (i− 1)-phases have
appeared. An i-phase ends immediately after Mi and Qi have both occurred. In other words,
an i-phase is a minimal contiguous subsequence that contains c (i− 1)-phases and an i-plus
block. (Notice that for a fixed i, the set of i-phases partition the input sequence.)

For any k-phase, we upper bound OPT by considering an algorithm ALGk
B that is optimal

for B subject to the additional restriction that a0 is not in the cache at the beginning or end
of any k-phase. We bound the cost of ALGk

B in any k-phase using a more general lemma.

I Lemma 13. For any i, let ALGi
B be an optimal algorithm on B subject to the following: a0

is not in the cache at the beginning or the end of any i-phase. Then the cost of ALGi
B within

an i-phase is at most 4ci+1. In particular, in each k-phase, the algorithm ALGk
B incurs cost

at most 4ck+1.

Proof. We shall prove this by induction on i. If i = 0, then the phase under consideration is
one step. To serve one step, we can evict a1 to serve a0, and then evict a0 if necessary for a
total cost of 4c. Now assume that the lemma holds for all values in {0, . . . , i − 1}. Let si

denote the first i-plus block; there are two possible cases for the structure of an i-phase:
1. si appears after the c (i− 1)-phases: In this case, the i-phase ends after this block. Thus,

one strategy to serve the phase is to evict ai at the beginning and evict a0 when ai is
requested within si. These two evictions cost at most 4ci+1.

2. si appears within the first c (i− 1)-phases: By the inductive hypothesis, the algorithm
can serve these c (i− 1)-phases with total cost at most c · 4ci = 4ci+1. J

Finally, we lower bound the expected number of blocks in an i-phase. Since the total
number of blocks is fixed, this allows us to upper bound the number of k-phases in the entire
sequence. The next proposition forms the technical core of the lower bound:

I Proposition 14. For i ≥ 1, the expected number of blocks in an i-phase is at least ciHi/4.

We defer the proof of Proposition 14 to the end of this section; first, we use it to prove
Theorem 8.

Proof of Theorem 8. Let OPT(A) denote the cost of an optimal algorithm on the request
sequence A, and let OPT(B) denote the cost of an optimal algorithm on the regular blocks
B. Then we have the following:

E [cost(OPT(A))] ≤ E [cost(OPT(B))] + 4c
k∑

i=0
ci · E [v′i] (Lemma 12)

≤ E
[
cost(ALGk

B)
]

+ 4c
k∑

i=0
ci · 2m

cikHk
(Lemma 11)

≤ 4ck+1 · E [Nk(B)] + 16cm
Hk

, (Lemma 13)
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where Nk(B) denotes the number of k-phases in B. According to Proposition 14, the
expected number of blocks in a k-phase is at least ckHk/4, which implies E [Nk(B)] ≤ 4m

ckHk
.

Combining this with the above, we get

E [cost(OPT(A))] ≤ 16cm
Hk

+ 16cm
Hk

= O

(
m

Hk

)
.

Since any algorithm incurs at least some constant cost in every block by Lemma 9, its cost is
Ω(m), which concludes the proof. J

Proof of Proposition 14

Let zi be a random variable denoting the number of i-plus blocks in a fixed i-phase. We will
first prove a sequence of three lemmas to yield a lower bound on E [zi].

I Lemma 15. For any i ≥ 1, we have E [zi] = E [zi−1] + Pr{Mi > Qi}.

Proof. Recall that an i-phase ends once it contains c (i− 1)-phases and an i-plus block. In
each of the (i− 1)-phases, the expected number of (i− 1)-plus blocks is E [zi−1], so the total
expected number of (i− 1)-plus blocks in the first c (i− 1)-phases of an i-phase is c ·E [zi−1].

An elementary calculation shows that an (i − 1)-plus block is an i-plus block with
probability 1/c. Thus, in expectation, the first c (i−1)-phases of this i-phase contain E [zi−1]
i-plus blocks.

If there are no i-plus blocks in the first c (i− 1)-phases, then the i-phase ends as soon
as an i-plus block appears. In this case, we have zi = 1, and this happens with probability
exactly Pr{Mi > Qi}. Otherwise, the i-phase ends immediately after the c (i− 1)-phases, in
which case no additional term is added. J

I Lemma 16. For any i ≥ 1, we have Pr{Mi > Qi} ≥ e−2E[zi−1].

Proof. We let v1, . . . , vc denote the number of i-plus blocks in the first c (i− 1)-phases and
let V =

∑c
i=1 vi. As we saw in the proof of Lemma 15, an (i − 1)-plus block is an i-plus

block with probability 1/c, so the probability that an (i− 1)-plus block is an (i− 1)-block is
1− 1/c. Thus, we have

Pr{Mi > Qi} = Ev1,v2,...,vc

[(
1− 1

c

)V
]
≥
(

1− 1
c

)E[V ]
=
(

1− 1
c

)c·E[zi−1]

where the inequality follows from convexity and the second equality holds due to linearity of
expectation. The lemma follows from this and the fact that c ≥ 2. J

I Lemma 17. For any i ≥ 0, we have E [zi] ≥ 1
4Hi.

Proof. When i ≤ 4, we have E [zi] ≥ 1 ≥ 1
4Hi. Now for induction, assume the statement

holds for j < i, and consider the two possible cases:
1. If E [zi−1] ≥ 1

2Hi−1, then Lemma 15 implies E [zi] ≥ E [zi−1] ≥ 1
4Hi.

2. If E [zi−1] < 1
2Hi−1 <

1
2 (1 + ln(i− 1)), then

E [zi] = E [zi−1] + Pr{Mi > Qi} ≥ 1
4Hi−1 + e−2·E[zi−1], where the equality follows from

Lemma 15 and the inequality holds by the induction hypothesis and Lemma 16. Thus,
E [zi] ≥ 1

4Hi−1 + 1
e ·

1
i−1 ≥

1
4Hi. J

Now let Li denote the number of blocks in an i-phase; recall that our goal is to lower
bound its expectation by ciHi/4. The following lemma relates Li to zi.
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I Lemma 18. For any i ≥ 0, we have E [Li] = ci · E [zi].

Proof. When i = 0, the lemma holds because E[L0] = E[z0] = 1, so now we assume i ≥ 1.
Recall that an i-phase contains at least c (i − 1)-phases, so the expected total number of
blocks in the first c (i− 1)-phases of this i-phase is c · E [Li−1].

If there are no i-plus-blocks in these c (i−1)-phases, we need to wait for an i-plus block to
appear in order for the i-phase to end. This is a geometric random variable with expectation
ci. Thus, we have: E [Li] = c · E [Li−1] + ci · Pr{Mi > Qi}. Applying this recursively,

E [Li] = ci

 i∑
j=1

Pr{Mj > Qj}+ E [L0]

 = ci

 i∑
j=1

Pr{Mj > Qj}+ 1


Furthermore, from Lemma 15, we have

E [zi] = E [zi−1] + Pr{Mi > Qi} = E [z0] +
i∑

j=1
Pr{Mj > Qj} = 1 +

i∑
j=1

Pr{Mj > Qj}.

Combining the two equalities yields the lemma. J

We conclude by proving Proposition 14. Fix some i ≥ 1. Using Lemma 18 and Lemma 17,
we get E [Li] = ci · E [zi] ≥ ciHi

4 .

3 The `-Strong Lookahead Model

Now we consider the following prediction model: at each time t, the algorithm can see request
pt as well as L(t), which is the set of all requests through the `-th distinct request. In other
words, the algorithm can always see the next contiguous subsequence of ` distinct pages
(excluding pt) for a fixed value of `. This model was introduced by Albers [1], who (among
other things) proved the following lower bounds on algorithms with `-strong lookahead.

I Lemma 19 ([1]). For unweighted paging with `-strong lookahead where ` ≤ k − 2, any
deterministic algorithm is Ω(k − `)-competitive. For randomized algorithms, the bound is
Ω(log(k − `)).

Notice that Lemma 19 implies that for small values of `, `-strong lookahead provides
no asymptotic improvement to the competitive ratio of any algorithm. The proof proceeds
by constructing a particular sequence of requests and analyzing the performance of any
algorithm on this sequence. By slightly modifying the sequence, we can prove a similar result
for the weighted paging problem.

I Theorem 20. For weighted paging with `-strong lookahead where n − k + 1 ≤ ` ≤
n− 1, any deterministic algorithm is Ω(n− `)-competitive, and any randomized algorithm is
Ω(log(n− `))-competitive.

Proof. We modify the adversarial input in Lemma 19 as follows: insert n− k − 1 distinct
pages with very low weight between every two pages. This causes the lookahead to have
effective size `′ = `− (n− k − 1), because at any point L(t) contains at most `′ pages with
normal weight. Note that if ` ≤ n− k, then `′ ≤ 1, and from Lemma 19, a lookahead of size
1 provides no asymptotic benefit to any algorithm.

If ` ≤ n − 3, then `′ ≤ k − 2. Thus, we can apply Lemma 19 to conclude that for any
deterministic algorithm, the competitive ratio is Ω(k − `′) = Ω(n − ` − 1), and for any
randomized algorithm, the competitive ratio is Ω(log(n− `− 1)). Otherwise, if ` ≥ n− 2,
then the lower bounds continue to hold because when ` = n− 3, they are Ω(1). J
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4 The Strong Per-Request Prediction Model (SPRP)

In this section, we define a simple algorithm called Static that is 2-competitive when the
SPRP predictions are always correct. At any time step t, let L(t) denote the set of pages
in the current prediction. The Static algorithm runs on “batches” of requests. The first
batch starts at t = 1 and comprises all requests in L(1). The next batch starts once the first
batch ends, i.e. at |L(1)|+ 1, and comprises all predicted requests at that time, and so on.
Within each batch, the Static algorithm runs the optimal offline strategy, computed at the
beginning of the batch on the entire set of requests in the batch.

I Theorem 21. The Static algorithm is 2-competitive when the predictions from SPRP are
entirely correct.

Proof. In this proof, we assume w.l.o.g. that evicting page p costs w(p), and fetches can be
performed for free.

Suppose the algorithm runs a total of m batches B1, . . . , Bm. Consider a page p in some
batch Bi where i < m. If p appears again after Bi, then upon seeing the last request for p in
Bi, SPRP will include p in the next batch Bi+1. (If p does not appear again, then the next
batch must be the last batch.) Therefore, the batches satisfy B1 ⊆ B2 ⊆ · · · ⊆ Bm−1.

Now let OPT denote a fixed optimal offline algorithm for the entire sequence, and let
OPTi denote the cost of OPT incurred in Bi. Similarly, let S denote the total cost of Static,
and let Si denote the cost that Static incurs in Bi. So we have OPT =

∑m
i=1 OPTi and

S =
∑m

i=1 Si.
Fix a batch index j ∈ {2, 3, . . . ,m} and let C(OPTj−1) and C(Sj−1) denote the cache

states of OPT and Static immediately before batch Bj . We know that Static runs an
optimal offline algorithm on Bj . One feasible solution is to immediately change the cache
state to C(OPTj−1), and then imitate what OPT does to serve Bj . Since we charge for
evictions, we have

Sj ≤ OPTj +
∑

p∈C(Sj−1)\C(OPTj−1)

w(p), for every j ∈ {2, 3, . . . ,m}.

Consider some p ∈ C(Sj−1)\C(OPTj−1): since p ∈ C(Sj−1), we know p must have appeared
before the start of Bj (because Static does not fetch pages that have never been requested).
Since Bj−1 contains all pages that appeared before, in particular, p must be in Bj−1.
Furthermore, since p 6∈ C(OPTj−1), then at some point while serving Bj−1, OPT must have
evicted p. Thus, Sj ≤ OPTj + OPTj−1. Summing over all j ≥ 2 and S1 ≤ OPT1 proves the
theorem. J

5 The SPRP Model with Prediction Errors

In this section, we consider the SPRP prediction model with the possibility of prediction
errors. We first define three measurements of error and then prove lower and upper bounds
on algorithms with imperfect SPRP, in terms of these error measurements.

Let A denote a prediction sequence of length m, and let B denote an input sequence of
length n. For any time t, let At and Bt denote the t-th element of A and B, respectively.
We also define the following for any time step t:

prev(t): The largest i < t such that Bi = Bt (or 0 if no such if no such i exists).
next(t): The smallest i > t such that Bi = Bt (or n+ 1 if no such i exists).
pnext(t): The smallest i > t such that Ai = Bt (or m+ 1 if no such i exists).
We say two requests Ai = Bj = p can be matched only if pnext(prev(j)) = i. In other
words, Ai must be the earliest occurrence of p in A after the time of the last p in B before
Bj . Furthermore, no edges in a matching are allowed to cross.
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First, we define a variant of edit distance between the two sequences.

I Definition 22. The edit distance `ed between A and B is the total minimum weight of
unmatched elements of A and B.

Next, we define an error measure based on the metric 1-norm distance between corresponding
requests on the standard weighted star metric denoting the weighted paging problem.

I Definition 23. The 1-norm distance `1 between A and B is defined as follows:

`1 =
n∑

i=1
Ai 6=Bi

(w(Ai) + w(Bi)) . (1-norm)

Third, we define an error measure inspired by the PRP model that was also used in [9].

I Definition 24. The prediction distance `pd between A and B is defined as follows:

`pd =
n∑

i=1
w(Bi) · |next(i)− pnext(i)| .

5.1 Lower Bounds

In this section, we give an overview of the lower bounds stated in Theorems 4, 5, and 6.
We focus on the `ed (i.e., Theorem 6) error measurement; the proofs for `1 and `pd follow
similarly. We defer some of the proofs to the full paper.

Our high-level argument proceeds as follows: recall that in Section 2, we showed a lower
bound of Ω(k) on the competitive ratio of deterministic PRP-based algorithms. Given an
SPRP algorithm ALG, we design a PRP algorithm ALG′ specifically for the input generated
by the procedure described in Section 2. (Recall that this input is a sequence of blocks,
where a block is a string of a0’s, a1’s, and so on, ending with a single page a` for some `.)

We show that if ALG has cost o(k) · OPT + o(`ed) (where OPT is the optimal cost of the
SPRP instance), then ALG′ will have cost o(k) · OPT′ (where OPT′ is the optimal cost of
the PRP instance), which contradicts our PRP lower bound of Ω(k) on this input. For the
randomized lower bound, we use the same line of reasoning, but replace Ω(k) with Ω(log k).

Let k′ denote the cache size of ALG′. Recall that the set of possible page requests received
by ALG′ is A = {a0, a1, . . . , ak′} where w(ai) = ci for some constant c ≥ 2. The oracle ALG,
maintained by ALG′, has cache size k = k′ + 1. The set of possible requests received by ALG
is A ∪ {b} where w(b) = 1/v for some sufficiently large value of v. (Thus, the instance for
ALG has k + 1 distinct pages.) Our PRP algorithm ALG′ must define a prediction and an
input sequence for ALG.

The prediction sequence for ALG. For any strings X and Y , let X + Y denote the
concatenation of X and Y and let λ · X denote the concatenation of λ copies of X. Let
L = 2ck′Hk′ + 1, and consider the series of strings: S0 = 2 · a0, and Si = L · Si−1 + ai for
i ∈ {1, . . . , k′}. We fix S := M ·Sk′ , for some sufficiently large M , as the prediction sequence
for the SPRP algorithm. (Observe that S only contains k distinct pages, and the oracle ALG
has cache size k.)
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ALG’ and the request sequence for ALG. Our PRP algorithm ALG′ will simultaneously
construct input for ALG while serving its own requests. Since randomized and fractional
algorithms are equivalent up to constants (see Bansal et al. [2]), we view the SPRP algorithm
ALG from a fractional perspective. Let qi ∈ [0, 1] denote the fraction of page ai not in the cache
of ALG. Notice that the vector q = (q0, q1, . . . , qk′) satisfies

∑k′

i=0 qi ≥ 1. (A deterministic
algorithm is the special case where every qi ∈ {0, 1}.) Similarly, let q′ = (q′0, q′1, . . . , q′k′),
where q′i denotes the amount of request for ai that is not in the cache in ALG′.

When a block ending with ai is requested, ALG′ scans S for the next appearance of ai.
It then feeds the scanned portion to ALG, followed by a single request for page b. In this
case, the prediction error only occurs due to the requests for this page b. After serving this
request b, the cache of ALG contains at most k′ pages in A. This enables ALG′ to mimic
the behavior of ALG upon serving the current block. This process continues for every block:
ALG′ modifies the input by inserting an extra request b into the input for ALG, and mimics
the resulting cache state of ALG. The details of our algorithm ALG′ are given below:

1. Initially, let S be the input for ALG and t = 0. (We will modify S as time passes.)

2. For all 0 ≤ i ≤ k′, let q′i = 1. (Note that the initial value of every qi is also 1.)

3. On PRP request block si = (a0, a1, . . . , ai) (for some unknown i):

a. Let q′ = (q′0, q′1, . . . , q′k′) denote the current cache state.

b. Set q′ = (0,min{1, q′0 + q′1}, q′2, q′3, . . . , q′k′) to serve a0. Note that after we serve a0, the
PRP prediction tells us the value of i.

c. Find the first time t′ after t when S requests ai and set t = t′ + 2.

d. Change the request at time t into b. (Note that the original request is a0.)

e. Run ALG until this b is served to obtain a vector q = (q0, q1, . . . , qk′).

f. If i ≥ 1, set q′ = (min{1,
∑i

j=0 q
′
j}, 0, 0, . . . , 0, q′i+1, q

′
i+2, . . . , q

′
k′); this serves the

requests (a1, a2, . . . , ai).

g. Set q′ = (q0, q1, . . . , qk′).

Bounding the costs. The main idea in the analysis is the following: since the input
sequences to ALG and ALG′ are closely related, and they maintain similar cache states, we
can show that they are coupled both in terms of the algorithm’s cost and the optimal cost.
Therefore, the ratio of Ω(k) for ALG′ (from Theorem 7) translates to a ratio of Ω(k) for ALG.
Furthermore, since the only prediction errors are due to the additional requests for page b,
and this page has a very small weight, the cost of ALG is at least the value of `ed. (The same
line of reasoning is used for randomized algorithms, but Ω(k) is replaced by Ω(log k).)

We now formalize the above line of reasoning with the following lemmas.

I Lemma 25. Using any SPRP algorithm ALG as a black box, the PRP algorithm ALG′

satisfies the following: cost(ALG′) ≤ 2(c+ 1) · cost(ALG).

Proof. Note that q = q′ at the beginning and end of Step 3. For convenience, let q′ denote
the vector at the beginning of Step 3, and let q denote the vector at the end of Step 3. Let
costALG and costALG′ denote the cost of ALG and ALG′ respectively incurred in a fixed Step 3.
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Each time ALG′ enters Step 3, the cost incurred is at most:

Step 3b: q′0 · (1 + c),

Step 3f: (q′0 + q′1) · (1 + c) +
i∑

j=2
q′j · (1 + cj),

Step 3g:

 i∑
j=1

qj · (1 + cj)

+

 k∑
j=i+1

∣∣q′j − qj

∣∣ · (1 + cj)

 .

Summing the above yields the following:

costALG′ ≤ 2(c+ 1) ·

 i∑
j=0

cj ·
(
qj + q′j

)+

 k∑
j=i+1

cj ·
∣∣qj − q′j

∣∣ .

Now we consider ALG. For each j, at the beginning of Step 3, there is q′j amount of aj

not in the cache, and at the end of Step 3, there is qj amount of aj not in the cache.
If j > i, the cost incurred due to aj is at least cj ·

∣∣qj − q′j
∣∣. If j ≤ i, ALG′ must serve aj

at some point in Step 3e, so the incurred cost due to aj is at least cj ·
(
qj + q′j

)
. Summing

the above yields the following:

costALG ≥

 i∑
j=0

cj ·
(
qj + q′j

)+

 k∑
j=i+1

cj ·
∣∣qj − q′j

∣∣ .

Combining the two inequalities above proves the lemma. J

Now let OPT denote the optimal SPRP algorithm for the input sequence served by ALG,
and let OPT′ denote the optimal PRP algorithm for the input sequence served by ALG′. We
can similarly prove the following lemma (proof in full paper):

I Lemma 26. The algorithms OPT and OPT′ satisfy cost(OPT) ≤ 2 · cost(OPT′).

We are now ready to bound the cost of any algorithm with SPRP (proof in full paper):

I Theorem 27. For weighted paging with SPRP, there is no deterministic algorithm whose
cost is o(k) · OPT + o(`ed), and there is no randomized algorithm whose cost is o(log k) ·
OPT + o(`ed).

Proof (Sketch). From Theorem 7, we know ALG′ = Ω(k) ·OPT′. Thus, applying Lemmas 25
and 26, we have ALG = Ω(k) · OPT. Furthermore (as we saw in Section 2), each PRP block
increases ALG by at least a constant. At the same time, for each block, we can show that `ed

increases by at most 2. As a result, we can conclude that ALG = Ω(`1). The theorem follows
by combining these facts. For randomized algorithms, the same line of reasoning holds, but
with Ω(log k) instead of Ω(k). J

5.2 Upper Bounds
In this section, we give algorithms whose performance degrades with the value of the SPRP
error. In particular, we first prove the upper bound in Theorem 6 for the `ed measurement,
and then analyze the Follow algorithm, which proves the upper bound in Theorem 5.

Now we present an algorithm that uses a cache of size k + 1 whose cost scales linearly
with OPT + `ed. Following our previous terminology, let A denote a prediction sequence of
length m, and let B denote an input sequence of length n.
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Our algorithm, which we call Learn, relies on an algorithm that we call Idle. At a high
level, Idle resembles Static (see Section 4): it partitions the prediction sequence A into
batches and runs an optimal offline algorithm on each batch. The Learn algorithm tracks
the cost of imitating Idle: if the cost is sufficiently low, then it will imitate Idle on k of its
cache slots; otherwise, it will simply evict the page in the extra cache slot.

Before formally defining Idle, we consider a modified version of caching. Our cache
has k + 1 slots, where one slot is memoryless: it always immediately evicts the page it just
fetched. In other words, this slot can serve any request, but it cannot store any pages. Let
OPT+1 denote the optimal algorithm that uses a memoryless cache slot.

I Lemma 28. For any sequences A and B, cost(OPT+1(A)) ≤ cost(OPT(B)) + 2`ed, where
`ed is the edit distance between A and B.

Proof. Let M denote the optimal matching between A and B (for `ed). One algorithm for
OPT+1(A) is the following: imitate what OPT(B) does for requests matched by M , and use
the memoryless slot for unmatched requests. The cost of this algorithm is OPT(B)+2`ed. J

Recall that the Static algorithm requires the use of an optimal offline algorithm. Similarly,
for our new problem with a memoryless cache slot, we require a constant-approximation
offline algorithm on A. This can be obtained from the following lemma (proof in full paper):

I Lemma 29. Given a prediction sequence A, there is a randomized offline algorithm whose
cost is at most a constant times the cost of OPT+1(A).

The Idle algorithm

Assume that our cache has size k + 1 and the extra slot is memoryless (as defined above).
For any time step t, let L(t) denote the set of pages predicted to arrive starting at time
t+ 1. At time step 1 (i.e., initially), Idle runs the offline algorithm from Lemma 29 on L(1),
ignoring future requests. After the requests in L(1) have been served, i.e., at time |L(1)|+ 1,
Idle then consults the predictor and runs the offline algorithm on the next “batch”. The
algorithm proceeds in this batch-by-batch manner until the end. We can show that the
competitive ratio of this algorithm is at most a constant (see full paper).

I Lemma 30. On the prediction sequence A, we have cost(Idle) = O(1) · cost(OPT+1(A)).

The Learn algorithm

Before defining the algorithm, we introduce another measurement of error that closely
approximates `ed. Recall that A denotes a prediction sequence of length m and B denotes
an input sequence of length n. In defining `ed, two elements Ai = Bj can be matched only if
pnext(prev(j)) = i, and no matching edges are permitted to cross.

I Definition 31. The constrained edit distance `′ed is the minimum weight of unmatched
elements of A and B, with the following additional constraint: if |P (Ai)| ≥ 2, then Ai can
only be matched with the latest-arriving element in P (Ai).

We note that `′ed is a constant approximation of `ed (proof in full paper):

I Lemma 32. For any sequences A,B, we have `ed ≤ `′ed ≤ 3`ed.

Now we are ready to define the Learn algorithm. For any i ≤ j, we let A(i, j) denote
the subsequence (Ai, Ai+1, . . . , Aj). For any set (or multiset) of pages S, we let w(S) denote
the total cost of pages in S. The algorithm is the following:

ICALP 2020
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1. Let s = 0; the variable s always denotes that we have imitated the Idle algorithm
through the first s requests of the prediction.

2. Let S = ∅ be an empty queue.
3. On the arrival of request p, add p to S.

a. If there is a t (in [s+ 1, L] where L is the end of the current prediction) such that

`′ed(A(s+ 1, t), S) < 1
3(w(A(s+ 1, t)) + w(S)), (1)

then imitate Idle through position t, empty S and let s = t. (If more than one t
satisfies the above, select the minimum.)

b. Otherwise, evict the page in the final slot.

We first observe that the algorithm is indeed feasible (proof in full paper).

I Lemma 33. In the Learn algorithm, Step 3a is feasible, i.e., if t satisfies (1), then At = p.

Now we arrive at the heart of the analysis: we upper bound the cost of Learn against
the cost of Idle (i.e., a surrogate for OPT(B)) and the constrained edit distance `′ed. In
particular, we sketch a proof of the following lemma and defer the full proof to the full paper.

I Lemma 34. The algorithms Learn and Idle satisfy cost(Learn) ≤ cost(Idle) + 12`′ed.

Proof (Sketch). Let cost1 denote the total cost of Step 3a, and cost2 denote the total
cost of Step 3b so that cost(Learn) = cost1 + cost2. From the algorithm, we see that
cost1 ≤ cost(Idle), so now we must prove cost2 ≤ 12`′ed.

Now we establish some notation. Let `′ed((a, b)(c, d)) = `′ed(A(a, b), B(c, d)), and let
wA(a, b) = w(A(a, b)) and wB(a, b) = w(B(a, b)).

We proceed by induction on the number of times we went Step 3a. Consider the first
time we enter Step 3a; suppose we have read the input B(1, b) and we now imitated Idle
through A(1, a) for some values a, b. Since the matched edges for `′ed do not cross, there
exists some c such that `′ed = `′ed(A,B) satisfies

`′ed = `′ed((1, a), (1, c)) + `′ed((a+ 1,m), (c+ 1, n)).

We consider the case where c < b; the other cases follow similarly. Let cost(x, y) denote the
cost incurred by the algorithm when serving B(x, y) and notice that

cost2 ≤ cost(1, c) + cost(c+ 1, b) + cost(b+ 1, n).

The cost of serving B(1, c) is at most the weight of the requested pages, so cost(1, c) ≤ wB(1, c).
Furthermore, we can upper bound cost(c+ 1, b) by a constant times wA(1, a) by analyzing a
particular matching for `′ed((1, a)(1, c)). Combining this together, we have

cost(1, c) + cost(c+ 1, b) ≤ 4(wB(1, c) + wA(1, a)) ≤ 12 · `′ed((1, a), (1, c)),

where the second inequality follows from that we did not enter Step 3a when c arrived.
Finally, applying the inductive hypothesis to B(b+ 1, n) and substituting the definition of c
yields the lemma. J

The proof of Theorem 6 follows from Lemmas 28, 30, and 34.
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The Follow algorithm

Now we show that the Ω(`1) lower bound in Theorem 5 is tight, that is, we will give an
SPRP algorithm Follow that has cost O(1) · (OPT + `1). Recall the Static algorithm
from Theorem 21. The algorithm Follow ignores its input: it simply runs Static on the
prediction sequence A and imitates its fetches/evictions on the input sequence B.

I Theorem 35. The Follow algorithm has cost O(1) · (OPT + `1).

Proof. Recall from Theorem 21 that cost(Static) ≤ O(1) ·OPT(A). Furthermore, we claim
OPT(A) ≤ OPT(B) + 2`1. This is because on A, there exists an algorithm that imitates the
movements of B: say at time t, OPT(B) evicts some element b that had appeared in B at
time v(t). Then OPT(A) can also evict whatever element appeared at time v(t) in A, and if
this is not b, then this cost can be charged to the v(t) term of `1. Each term of `1 is charged
at most twice because a specific request can be evicted and fetched at most once respectively.

By the same argument, we have cost(Follow) ≤ cost(Static) + 2`1. Combining these
inequalities proves the theorem. J

6 Conclusion

In this paper, we initiated the study of weighted paging with predictions. This continues
the recent line of work in online algorithms with predictions, particularly that of Lykouris
and Vassilvitski [9] on unweighted paging with predictions. We showed that unlike in
unweighted paging, neither a fixed lookahead not knowledge of the next request for every
page is sufficient information for an algorithm to overcome existing lower bounds in weighted
paging. However, a combination of the two, which we called the strong per request prediction
(SPRP) model, suffices to give a constant approximation. We also explored the question of
gracefully degrading algorithms with increasing prediction error, and gave both upper and
lower bounds for a set of natural measures of prediction error. The reader may note that the
SPRP model is rather optimistic and requires substantial information about the future. A
natural question arises: can we obtain constant competitive algorithms for weighted paging
with fewer predictions? While we refuted this for the PRP and fixed lookahead models, being
natural choices because they suffice for unweighted paging, it is possible that an entirely
different parameterization of predictions can also yield positive results for weighted paging.
We leave this as an intriguing direction for future work.
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Abstract
Let G = (A ∪B, E) be a bipartite graph where A consists of agents or main players and B consists
of jobs or secondary players. Every vertex has a strict ranking of its neighbors. A matching M is
popular if for any matching N , the number of vertices that prefer M to N is at least the number
that prefer N to M . Popular matchings always exist in G since every stable matching is popular.

A matching M is A-popular if for any matching N , the number of agents (i.e., vertices in A)
that prefer M to N is at least the number of agents that prefer N to M . Unlike popular matchings,
A-popular matchings need not exist in a given instance G and there is a simple linear time algorithm
to decide if G admits an A-popular matching and compute one, if so.

We consider the problem of deciding if G admits a matching that is both popular and A-popular
and finding one, if so. We call such matchings fully popular. A fully popular matching is useful when
A is the more important side – so along with overall popularity, we would like to maintain “popularity
within the set A”. A fully popular matching is not necessarily a min-size/max-size popular matching
and all known polynomial time algorithms for popular matching problems compute either min-size
or max-size popular matchings. Here we show a linear time algorithm for the fully popular matching
problem, thus our result shows a new tractable subclass of popular matchings.
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1 Introduction

Let G = (A∪B,E) be a bipartite graph where vertices in A are called agents and those in B
are called jobs. Every vertex has a strict ranking of its neighbors. Such a graph, also called a
marriage instance, is a very well-studied model in two-sided matching markets. A matching
M in G is stable if there is no blocking pair with respect to M , i.e., no pair (a, b) such that a
and b prefer each other to their respective assignments in M . Gale and Shapley [10] in 1962
showed that stable matchings always exist in G and can be efficiently computed.

Stable matching algorithms have applications in several real-world problems. For instance,
stable matchings have been extensively used to match students to schools and colleges [1, 3]
and one of the oldest applications here is to match medical residents to hospitals [4, 21]. It is
known that all stable matchings in G have the same size [11] and this may only be half the
size of a max-size matching in G. Consider the following instance on 4 vertices a0, a1, b0, b1.

a0 : b1 a1 : b1 � b0 b0 : a1 b1 : a1 � a0.

Here a1 and b1 are each other’s top choices. There is no edge between a0, b0. Note that
Mmax = {(a0, b1), (a1, b0)} has size 2 while the only stable matching S = {(a1, b1)} has size 1.
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Hence forbidding blocking edges constrains the size of the resulting matching. Rather
than empower every edge with a “veto power” to block matchings (this is the notion of
stability), we would like to relax stability so that only a strict majority vote from the entire
vertex set has the power to block matchings. The motivation is to obtain a larger pool of
feasible matchings so as to allow better matchings with respect to our objective.

The notion of popularity is a natural relaxation of stability that captures the notion
of “majority preference”. Preferences of a vertex over its neighbors extend naturally to
preferences over matchings: consider an election between 2 matchings M and N where
vertices are voters. In this M versus N election, every vertex (say, u) votes for the matching
in {M,N} that it prefers, i.e., where it gets a better assignment (being unmatched is its
worst choice), and u abstains from voting if it has the same assignment in both M and N .
Let φ(M,N) (resp., φ(N,M)) be the number of votes for M (resp., N) in this election.

I Definition 1. A matching M is popular if φ(M,N) ≥ φ(N,M) ∀matchings N in G.

So a popular matching never loses a head-to-head election against any matching, i.e., it
is a weak Condorcet winner [5, 6] in the voting instance where matchings are candidates and
vertices are voters. The notion of popularity was introduced by Gärdenfors [12] who showed
that every stable matching is popular. So popular matchings always exist in any marriage
instance. In fact, every stable matching is a min-size popular matching [14] and there are
efficient algorithms to compute a max-size popular matching [14, 16].

Popular matchings are suitable for applications such as matching students to projects
(where students and project advisers have strict preferences) – by relaxing stability to
popularity, we can obtain better matchings in terms of size or our desired objective. We
consider a natural and relevant objective here: observe that the two sides of G = (A ∪B,E)
are asymmetric in this application - students are doers of the projects, i.e., they are the main
or more active players while project advisers are the secondary or more passive players. So
along with overall popularity, we would like to maintain “popularity within the set A”.

That is, we would like the popular matching that we compute to be popular even when
we only count the votes of vertices in A, i.e., there should be no matching that is preferred
by more vertices in A. Popularity within the set A is the notion of popularity with one-sided
preferences and we will refer to this as A-popularity here. In the M versus N election, let
φA(M,N) (resp., φA(N,M)) be the number of vertices in A that vote for M (resp., N).

I Definition 2. A matching M is A-popular if φA(M,N) ≥ φA(N,M) ∀matchings N in G.

A-popular matchings have been well-studied and are relevant in applications such as
assigning training posts to applicants [2] and housing allocation schemes [19] where vertices
on only one side of the graph have preferences over their neighbors. An A-popular matching
need not necessarily exist in a given instance as shown below.

a1 : b1 � b2 � b3 a2 : b1 � b2 � b3 a3 : b1 � b2 � b3.

There are 3 agents here and they have identical preferences. It is easy to check that none
of the matchings in this instance is A-popular. Let M0 = {(a1, b1), (a2, b2), (a3, b3)} and
M1 = {(a1, b3), (a2, b1), (a3, b2)}, we have φA(M1,M0) = 2 > 1 = φA(M0,M1) since a2, a3
prefer M1 to M0 while a1 prefers M0 to M1. Here we are interested in matchings that are
both popular and A-popular.

I Definition 3. A popular matching M is fully popular if M is also A-popular. So for any
matching N in G, we have: φ(M,N) ≥ φ(N,M) and φA(M,N) ≥ φA(N,M).
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There may be exponentially many popular matchings in G = (A∪B,E). So when A is the
more important/active side, say it consists of those doing their projects/internships/jobs, it
is natural to seek a popular matching that is A-popular as well, i.e., a fully popular matching.
Thus we seek a matching M such that (1) a majority of the vertices weakly prefer M to any
matching, i.e., φ(M,N) ≥ φ(N,M) for all matchings N , and moreover, (2) a majority of the
agents (those in A) weakly prefer M to any matching, i.e., φA(M,N) ≥ φA(N,M) for all N .

We show the following result here.

I Theorem 4. There is a linear time algorithm to decide if a marriage instance G = (A∪B,E)
with strict preferences admits a fully popular matching or not. If so, our algorithm returns a
max-size fully popular matching.

Another model for popularity in matchings with main players in A and secondary players
in B is to scale the votes of those in A by a suitable factor c ≥ 1 and count the weighted sum of
votes in favor ofM versus the weighted sum of votes in favor of N in theM versus N election.
That is, M is weighted popular if c · φA(M,N) + φB(M,N) ≥ c · φA(N,M) + φB(N,M) for
every matching N , where c is the scaling factor and φB(·, ·) is analogous to φA(·, ·). No
results are currently known for the weighted popular matching problem with c > 1 in a
marriage instance. Observe that a fully popular matching is a weighted popular matching
for every scaling factor c ≥ 1.

1.1 Background and Related results

The notion of popularity was proposed by Gärdenfors [12] in 1975. Algorithms in the domain
of popular matchings were first studied in 2005 for one-sided preferences or the A-popular
matching problem. Efficient algorithms were given in [2] to decide if a given instance (with
ties permitted in preference lists) admits an A-popular matching or not; in particular, a
linear time algorithm was given for the case with strict preference lists. An efficient algorithm
for the weighted A-popular matching problem, where each agent’s vote is scaled by its weight
(these weights are a part of the input), was given in [20].

Algorithms for popular matchings in a marriage instance G = (A ∪B,E) or two-sided
preferences have been well-studied in the last decade. The max-size popular matching
algorithms in [14, 16] compute special popular matchings called dominant matchings. A
linear time algorithm for finding a popular matching with a given edge e was given in [7]
(such an edge is called a popular edge). It was shown in [7] that if e is a popular edge
then there is either a stable matching or a dominant matching with e. Popular half-integral
matchings in G = (A∪B,E) were characterized in [17] as stable matchings in a larger graph
related to G. The popular fractional matching polytope was analyzed in [15] where the
half-integrality of this polytope was shown. Other than algorithms for min-size/max-size
popular matchings and for popular edge, no other polynomial time algorithms are currently
known for finding popular matchings with special properties.

To complete the picture, it was shown in [9] that it is NP-hard to decide if G admits a
popular matching that is neither a min-size nor a max-size popular matching. A host of
hardness results in [9] painted a bleak picture for efficient algorithms for popular matching
problems (other than what is already known). For instance, it is NP-hard to find a popular
matching in G with a given pair of edges. Thus finding a max-weight (similarly, min-cost)
popular matching is NP-hard when there are weights (resp., costs) on edges.

ICALP 2020
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1.2 Our Result and Techniques
It may be the case that no min-size/max-size popular matching in G is A-popular, however
G admits a fully popular matching: Section 2 has such an example. As there are instances
where it is NP-hard to decide if there is a popular matching that is neither a min-size nor a
max-size popular matching [9], a first guess may be that the fully popular matching problem
is NP-hard.

Though an A-popular matching is constrained to use only some special edges in G (see
Theorem 5), this does not seem very helpful since it is NP-hard to solve the popular matching
problem with forced/forbidden edges [9]. Note that a rival matching (wrt popularity) is
free to use any edge in G. It was not known if there was any tractable subclass of popular
matchings other than the classes of stable matchings [10] and dominant matchings [7, 14, 16].

We show the set of fully popular matchings is a new tractable subclass of popular
matchings: unlike the classes of stable matchings and dominant matchings which are always
non-empty, there need not be a fully popular matching in G. Our algorithm for finding a
fully popular matching is based on the classical Gale-Shapley algorithm and works in a new
graph H; this graph is essentially two copies of G and is a variant of the graph seen in [17]
to study popular half-integral matchings. There is a natural map from stable matchings in
H to popular half-integral matchings in G. Our goal is to compute a stable matching with
sufficient symmetry in H so that we can obtain a popular integral matching in G.

We achieve this symmetry by using properties of both popular and A-popular matchings.
These properties allow us to identify certain edges that have to be excluded from our matching.
If there is no stable matching in H without these edges then we use the lattice structure
on stable matchings [13] to show that G has no fully popular matching. Else we obtain a
matching M in G from this “partially symmetric” stable matching in H. The most technical
part of our analysis is to prove M ’s popularity in G.

2 Preliminaries

Our input is a bipartite graph G = (A ∪B,E) where every vertex has a strict preference list
ranking its neighbors. Let us augment G with self-loops, i.e., each vertex is assumed to be at
the bottom of its own preference list.

We will first present the characterization of A-popular matchings in G – note that
preferences of vertices in B play no role here. For each a ∈ A, define the vertex f(a) to be a’s
top choice neighbor and let s(a) be a’s most preferred neighbor that is nobody’s top choice
neighbor. We assume every a ∈ A has at least one neighbor other than itself, so f(a) ∈ B,
however it may be the case that s(a) = a. Let E′ = E ∪ {(u, u) : u ∈ A ∪B}.

I Theorem 5 ([2]). A matching M in G = (A ∪B,E′) is A-popular if and only if:
1. M ⊆ {(a, f(a)), (a, s(a)) : a ∈ A}.
2. M matches all in A and all in {f(a) : a ∈ A}.

Popular matchings. We will use an LP-based characterization of popular matchings [17, 18]
in a marriage instance G = (A ∪B,E′). Observe that any matching in G can be regarded
as a perfect matching by including self-loops for all vertices left unmatched. Let M be any
perfect matching in G. For any pair of adjacent vertices u, v, let u’s vote for v (vs its partner
M(u)) be 1 if u prefers v to M(u), it is −1 if u prefers M(u) to v, else 0 (i.e., M(u) = v). In
order to check if M is popular or not in G, the following edge weight function wtM will be
useful. Here wtM (a, b) is the sum of votes of a and b for each other.
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Let wtM (a, b) =


2 if (a, b) is a blocking edge to M ;
−2 if both a and b prefer their partners in M to each other;
0 otherwise.

Thus wtM (a, b) = 0 for every (a, b) ∈ M . We need to define wtM for self-loops as well.
For any u ∈ A ∪ B, let wtM (u, u) = 0 if (u, u) ∈ M , else wtM (u, u) = −1. For any perfect
matching N in G, observe that wtM (N) =

∑
e∈N wtM (e) = φ(N,M)− φ(M,N). Thus M is

popular if and only if wtM (N) ≤ 0 for every perfect matching N in G.
Consider the max-weight perfect matching LP in G with the edge weight function wtM .

This linear program is (LP1) given below and (LP2) is the dual of (LP1). The variables xe
for e ∈ E′ are primal variables and the variables yu for u ∈ A ∪B are dual variables. Here
δ′(u) = δ(u) ∪ {(u, u)}.

max
∑
e∈E′

wtM (e) · xe (LP1)

s.t.
∑

e∈δ′(u)

xe = 1 ∀u ∈ A ∪B

xe ≥ 0 ∀ e ∈ E′.

min
∑

u∈A∪B
yu (LP2)

s.t. ya + yb ≥ wtM (a, b) ∀ (a, b) ∈ E
yu ≥ wtM (u, u) ∀u ∈ A ∪B.

M is popular if and only if the optimal value of (LP1) is at most 0. In fact, the optimal
value is exactly 0 since M is a perfect matching in G and wtM (M) = 0. Thus M is popular
if and only if the optimal value of (LP2) is 0 (by LP-duality).

I Theorem 6 ([17, 18]). A matching M in G = (A ∪B,E) is popular if and only if there
exists ~α ∈ {0,±1}n (where |A ∪B| = n) such that

∑
u∈A∪B αu = 0 along with

αa + αb ≥ wtM (a, b) ∀(a, b) ∈ E and αu ≥ wtM (u, u) ∀u ∈ A ∪B.

Proof. Since E is the edge set of a bipartite graph, the constraint matrix of (LP2) is totally
unimodular. So (LP2) admits an optimal solution that is integral. The vector ~α is an integral
optimal solution of (LP2). We have αu ≥ wtM (u, u) ≥ −1 for all u.

We now claim αu ∈ {0,±1} for all vertices u. Since M is an optimal solution to (LP1),
complementary slackness implies αu + αv = wtM (u, v) = 0 for each edge (u, v) ∈M . Thus
αu = −αv ≤ 1 for every vertex u matched to a non-trivial neighbor v in M . Regarding any
vertex u such that (u, u) ∈M , we have αu = wtM (u, u) = 0 (by complementary slackness).
Hence ~α ∈ {0,±1}n. J

For any popular matching M , a vector ~α as given in Theorem 6 will be called a witness
of M ’s popularity. Note that a popular matching may have several witnesses. A stable
matching S has 0n as a witness since wtS(e) ≤ 0 for all e ∈ E′.

Recall that our problem is to compute a fully popular matching, i.e., a popular matching
that is also A-popular. It is easy to construct instances that admit A-popular matchings
but admit no fully popular matching. It could also be the case that no min-size or max-size
popular matching in G = (A ∪B,E) is A-popular, however G has a fully popular matching.
Consider the instance G given in Fig. 1. Vertex preferences are indicated on edges: 1 denotes
top choice, and so on.

We list the vertices f(u) and s(u) for each u ∈ A in this instance. The vertex b′ is not
s(a) since a prefers q′ to b′ and q′ 6= f(u) for any u ∈ A.

ICALP 2020
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1 11 1
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22 22
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1
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q
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q′
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Figure 1 An instance on A = {a, a′, p, p′, x, x′} and B = {b, b′, q, q′, y, y′} where no min-size/max-
size popular matching is A-popular. There is a fully popular matching (on blue edges) here.

We have f(a) = f(a′) = b, f(p) = f(p′) = q, and f(x) = f(x′) = y.
We have s(a) = s(p) = s(p′) = s(x′) = q′, s(x) = y′, and s(a′) = a′.

Since s(u) 6= u for u ∈ {a, p, p′, x, x′}, any A-popular matching M has to match these
5 vertices to neighbors in B (by Theorem 5). So M(a) = f(a) = b which implies M(a′) =
s(a′) = a′, i.e., after pruning self-loops from M , the vertex a′ has to be left unmatched in
M . So M has size 5. It is easy to check that a stable matching (thus any min-size popular
matching) in G has size 4; also any max-size popular matching has size 6. Thus no min-size
or max-size popular matching in G can be fully popular. Interestingly, this instance admits
a fully popular matching: M = {(a, b), (p, q), (p′, q′), (x, y′), (x′, y)} is fully popular.

3 Fully Popular Matchings

The input is a marriage instance G = (A ∪ B,E). Our algorithm will work in a bipartite
graph H which is essentially 2 copies of the graph G as shown in Fig. 2. The vertex set
of H is AL ∪ BL on the left and BR ∪ AR on the right. Here AL = {a` : a ∈ A} and
AR = {ar : a ∈ A}. Similarly, BL = {b` : b ∈ B} and BR = {br : b ∈ B}.

half
Lower

half
Upper

BR

AR

AL

BL

Figure 2 The bipartite graph H consists of 2 copies of the graph G = (A ∪B, E).

The upper half of H consists of the set AL of agents on the left and the set BR of jobs
on the right while the lower half of H consists of the set BL of jobs on the left and the set
AR of agents on the right. Thus every vertex u ∈ A ∪B has two copies in H: one as u` on
the left of H and another as ur on the right of H.

For every edge in E, there will be four edges in H: a pair of parallel edges in the upper
half and a pair of parallel edges in the lower half. In order to distinguish two parallel edges
with the same endpoints, we use superscripts + and − on the endpoints. For (a, b) ∈ E:

in the upper half, we have two parallel edges (a+
` , b
−
r ) and (a−` , b+

r ) between a` and br;
in the lower half, we have two parallel edges (b+

` , a
−
r ) and (b−` , a+

r ) between b` and ar.

Corresponding to every vertex u ∈ A ∪B, there will be a single edge (u−` , u+
r ) in H: this

edge corresponds to the self-loop (u, u) and it will be convenient to use +/− superscripts on
the endpoints of this edge also. These edges (u−` , u+

r ) for all u are the only edges in H that
go across the two halves of H.
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Vertices inH have preferences on their incident edges rather than their neighbors. However
it would be more convenient to say u prefers v− to w+ rather than say u prefers (u+, v−) to
(u−, w+). In fact, H is equivalent to a conventional graph H∗ (with preferences on neighbors)
that was used to study popular half-integral matchings in [17]: there were 4 vertices in H∗
for each u ∈ A ∪B. The graph H is a sparser version of H∗ with only 2 vertices u` and ur
for each u ∈ A ∪B and a pair of parallel edges between every pair of adjacent vertices. We
now describe the preferences of vertices in H.

Every vertex prefers superscript − neighbors to superscript + neighbors: among super-
script − neighbors (similarly, superscript + neighbors), it will be its original preference order.
Consider any vertex u ∈ A ∪B. Suppose u’s preference list in G is v � v′ � · · · � v′′, i.e., v
is u’s top choice, next comes v′, and so on. In H, the preference list of u` is as follows:

v−r � v′−r � · · · � v′′−r︸ ︷︷ ︸
superscript − neighbors

� v+
r � v′+r � · · · � v′′+r � u+

r︸ ︷︷ ︸
superscript + neighbors

,

where vr, v′r, . . . correspond to the copies of v, v′, . . . on the right side of H.
The vertex u+

r is the last choice of u`. In H, the preference list of ur is as follows:

v−` � v
′−
` � · · · � v

′′−
` � u−`︸ ︷︷ ︸

superscript − neighbors

� v+
` � v

′+
` � · · · � v

′′+
`︸ ︷︷ ︸

superscript + neighbors

,

where v`, v′`, . . . correspond to the copies of v, v′, . . . on the left side of H. This is analogous
to u`’s preference list: the main difference is in the position of its “twin” - the vertex ur
prefers u−` to all its superscript + neighbors.

Blocking edges. Let u` ∈ AL ∪BL and vr ∈ AR ∪BR. For any matching M in H, we say
an edge (u+

` , v
−
r ) blocks M if (i) u` prefers v−r to its assignment in M and (ii) vr prefers u+

`

to its assignment in M . Similarly, we say edge (u−` , v+
r ) blocks M if (i) u` prefers v+

r to its
assignment in M and (ii) vr prefers u−` to its assignment in M .

I Definition 7. A matching M in H is stable if no edge in H blocks M .

B Claim 8. Let S be a stable matching in G = (A ∪ B,E). The matching S′ =
{(a−` , b+

r ), (b−` , a+
r ) : (a, b) ∈ S} ∪ {(u−` , u+

r ) : u is unmatched in S} is stable in H.

Proof. We need to show that no edge in H blocks S′. Note that S′ is a perfect matching
in H. Consider any edge (c+

` , d
−
r ) in H where c ∈ A and d ∈ B. Since every vertex prefers

superscript − neighbors to superscript + neighbors, the vertex dr prefers its partner in S′ to
c+
` . So consider any edge (c−` , d+

r ) in H. If (c, d) ∈ S then (c−` , d+
r ) ∈ S′ and so it does not

block S′. If (c, d) /∈ S then it follows from the stability of S in G that either (1) c is matched
to a neighbor b preferred to d or (2) d is matched to a neighbor a preferred to c. In case (1),
c` is matched in S′ to a neighbor b+

r preferred to d+
r ; in case (2), dr is matched in S′ to a

neighbor a−` preferred to c−` . Thus (c−` , d+
r ) does not block S′.

It can analogously be shown that neither (d−` , c+
r ) nor (d+

` , c
−
r ) blocks S′. Also (u−` , u+

r )
for any u ∈ A∪B does not block S′ since u+

r is u`’s least preferred neighbor in H. Hence S′
is a stable matching in H. C

Thus the graph H admits a perfect stable matching. Since all stable matchings in H
have the same size [11], every stable matching in H has to be perfect. We seek to compute a
“special” stable matching in H: one that has no edge that is forbidden. The edges marked
forbidden are those that no fully popular matching uses. The definition of valid edges below is
as given in Theorem 5: any A-popular matching in G can contain only these edges/self-loops.

ICALP 2020
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I Definition 9. Edges/self-loops in {(a, f(a)), (a, s(a)) : a ∈ A} are valid. So are self-loops
in {(b, b) : b 6= f(a) for any a ∈ A}.

All other edges and self-loops are invalid. Thus every a ∈ A has exactly 2 valid edges
incident to it: one of these may be the self-loop (a, a).

An edge e in G is popular if there exists a popular matching M in G such that e ∈M .
Call a vertex stable if it is matched in some (equivalently, every [11]) stable matching. It
is known that every popular matching in G has to match all stable vertices to non-trivial
neighbors [14]. So the self-loop (u, u) is popular if and only if u is unstable.

I Definition 10. Call an edge e in E ∪ {(u, u) : u ∈ A ∪B} legal if e is valid and popular.

Forbidden edges. A fully popular matching, by definition, has to contain only legal edges.
So if (a, b) is not legal then (a+

` , b
−
r ), (a−` , b+

r ), (b+
` , a

−
r ), and (b−` , a+

r ) are forbidden edges in
the stable matching that we seek to compute in H. Similarly, for any u ∈ A ∪B, if (u, u) is
not legal then (u−` , u+

r ) is a forbidden edge in our algorithm.

I Definition 11. A matching M in H is legal if M has no forbidden edge.

Call a matching M in H symmetric if for each edge (a, b) in E, we have both (a`, br) and
(b`, ar) in M or neither (for convenience, we are ignoring +/− superscripts on a`, ar, b`, br),
i.e., loosely speaking, M has the same edges in the upper and lower halves of H. A symmetric
matching M in H will be called a realization of M̃ = {(a, b) : (a`, br) and (b`, ar) are in M}.
Note that M̃ is a matching in G.

I Lemma 12. Every fully popular matching in G has a realization as a legal stable matching
in the instance H.

Proof. Let N be a fully popular matching in G and let ~α ∈ {0,±1}n be a witness of N ’s
popularity (see Theorem 6). For i ∈ {0,±1}, let Ai be the set of vertices a ∈ A with αa = i

and let Bi be the set of vertices b ∈ B with αb = i. Thus we have A = A0 ∪ A1 ∪ A−1
and B = B0 ∪ B1 ∪ B−1. Note that αa + αb = wtN (a, b) = 0 for each edge (a, b) ∈ N :
this is by complementary slackness on (LP2) corresponding to N . So the matching N ⊆
(A0 ×B0) ∪ (A−1 ×B1) ∪ (A1 ×B−1) (see Fig. 3).

A1

A−1 B1

B−1

B0A0

Figure 3 The partition A0 ∪A1 ∪A−1 of A and B0 ∪B−1 ∪B1 of B.

We need to show a realization of N in H that is stable. We will use N ’s witness ~α in
G to define the following matching N∗α in H: this is similar to how popular half-integral
matchings were realized as stable matchings in a larger graph H∗ in [17].

For all (a, b) ∈ N ∩ (A−1 ×B1) do: add edges (a−` , b+
r ) and (b+

` , a
−
r ) to N∗α.

For all (a, b) ∈ N ∩ (A1 ×B−1) do: add edges (a+
` , b
−
r ) and (b−` , a+

r ) to N∗α.
For all (a, b) ∈ N ∩ (A0 ×B0) do: add edges (a−` , b+

r ) and (b−` , a+
r ) to N∗α.
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For each u such that (u, u) ∈ N , add (u−` , u+
r ) to N∗α. Using the constraints that ~α has to

satisfy, it is easy to argue that N∗α is a stable matching in H. Moreover, the fact that N is a
fully popular matching in G implies that N∗α is a legal matching in H: since N is A-popular
(resp., popular) in G, every edge used in N is valid (resp., popular). So N∗α has no forbidden
edge. Thus N∗α is a legal stable matching in H. J

A variant of Gale-Shapley algorithm. A stable matching that avoids all forbidden edges (if
such a matching exists) can be computed in linear time by running a variant of Gale-Shapley
algorithm in H where proposals made along forbidden edges are rejected. Once a proposal
made along a forbidden edge is rejected by a vertex, all further proposals made on worse
edges also have to rejected by this vertex. If some vertex is left unmatched at the end of this
algorithm, then there is no stable matching in H that avoids all forbidden edges; else we have
a desired stable matching in H. We refer to [13] for details on this variant of Gale-Shapley
algorithm.

Thus it can be efficiently checked if H admits a legal stable matching or not. If such a
matching does not exist in H then there is no fully popular matching in G (by Lemma 12).
So we will assume henceforth that there exists a legal stable matching in H. However the
fact that such a stable matching exists in H does not imply that G admits a fully popular
matching. This is because any matching M∗ in H can only be mapped to a half-integral
matching in G.

In order to claim the resulting matching in G is integral, we need M∗ to be symmetric,
i.e., have the same edges in both halves of H. We will not construct such a symmetric stable
matching in H. The matching we compute will have a certain amount of symmetry and
this will be enough to obtain a fully popular matching in G. If H does not admit such a
“partially symmetric” stable matching, then we show that G has no fully popular matching.

3.1 Two partitions of the vertex set
We run Gale-Shapley algorithm that avoids all forbidden edges [13] in H. In this algorithm,
vertices on the left of H propose and vertices on the right of H dispose. When u` ∈ AL ∪BL
proposes to v−r , this proposal is made along (u+

` , v
−
r ): so vr sees this as u+

` ’s proposal; when
u` proposes to v+

r , this proposal is made along (u−` , v+
r ): so vr sees this as u−` ’s proposal. If

u` proposes to a neighbor vr along (u+
` , v

−
r ) or (u−` , v+

r ), then vr accepts u`’s proposal only if
the edge (u, v) is legal; otherwise vr rejects u`’s proposal since this is a forbidden edge. Edges
ranked worse than (u+

` , v
−
r )/(u−` , v+

r ) (as the case may be) will be deleted from the current
instance on whose edges proposals are made – this ensures that once vr receives a proposal
along a certain edge, whether this proposal is accepted or not, vr cannot accept proposals
made along worse edges. Let S0 be the legal stable matching in H that is obtained.

Let UA ⊆ A be the set of agents a such that (a−` , a+
r ) ∈ S0 and let UB ⊆ B be the set of

jobs b such that (b−` , b+
r ) ∈ S0.

We know that H is made up of two halves: the upper half and the lower half. Since S0 is
stable and thus perfect (recall that any stable matching in H is perfect), the set of agents
matched to genuine neighbors – not to their twins – in each half of H is A \UA and similarly,
the set of jobs matched to genuine neighbors in each half of H is B \ UB . We now form sets
A+, A−, B+, B−, A

′
+, A

′
−, B

′
+, B

′
− corresponding to S0: initially they are empty.

ICALP 2020
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For every (a+
` , b
−
r ) ∈ S0 where a ∈ A and b ∈ B: add a to A+ and b to B−.

For every (a−` , b+
r ) ∈ S0 where a ∈ A and b ∈ B: add a to A− and b to B+.

For every (b+
` , a

−
r ) ∈ S0 where a ∈ A and b ∈ B: add b to B′+ and a to A′−.

For every (b−` , a+
r ) ∈ S0 where a ∈ A and b ∈ B: add b to B′− and a to A′+.

Partition of A ∪B \ UB

induced by S0 in the upper half of H

Partition of B ∪ A \ UA

induced by S0 in the lower half of H

UBUA

A− B+ B′− A′+

A+ B− A′−B′+

Figure 4 Two partitions of the set (A ∪B) \ (UA ∪ UB) induced by the matching S0.

We have A \ UA = A+ ∪ A− = A′+ ∪ A′− and B \ UB = B+ ∪ B− = B′+ ∪ B′−. Fig. 4
denotes these partitions of A \ UA and B \ UB induced by the matching S0 in the upper and
lower halves of H. In this figure, the set UA has been included in the upper half and the set
UB in the lower half.

We will use (a−` , ∗) to denote any edge in the set {(a−` , b+
r ) : b ∈ B}∪{(a−` , a+

r )}. Similarly
(∗, a+

r ) denotes any edge in the set {(b−` , a+
r ) : b ∈ B} ∪ {(a−` , a+

r )}. Similarly for (b−` , ∗) and
(∗, b+

r ). Recall that every popular matching has a witness ~α ∈ {0,±1}n (see Theorem 6).

I Lemma 13. Let N be a fully popular matching in G and let ~α be any witness of N . If
a ∈ A− ∩A′+ then αa = 0.

Proof. We have vertex a ∈ A− ∩A′+, where the sets A− and A′+ are defined above. Let D0
be the set of legal stable matchings in H. The set D0 forms a sublattice of the lattice1 of
stable matchings in H and the matching S0 is the (AL ∪BL)-optimal matching in D0 [13].
Since a ∈ A−, we have (a−` , c+

r ) ∈ S0 for some neighbor c+
r of a`. Thus c+

r is the most
preferred partner for a` ∈ AL in all matchings in D0. Recall that every vertex prefers
superscript − neighbors to superscript + neighbors. Hence no matching in D0 matches a` to
a superscript − neighbor, i.e., every legal stable matching in H has to contain (a−` , ∗).

S0 is also the (AR ∪BR)-pessimal matching in D0 [13]. Since a ∈ A′+, we have (d−` , a+
r ) ∈

S0 for some neighbor d−` of ar. So every matching in D0 has to match ar ∈ AR to a neighbor
at least as good as d−` , i.e., every legal stable matching in H has to contain (∗, a+

r ).
Suppose N is a fully popular matching with a witness ~α such that αa ∈ {±1}. If

αa = 1, i.e., if a ∈ A1 (see Fig. 3), then there is a legal stable matching N∗α in H such that
(a+
` , ∗) ∈ N∗α (see the proof of Lemma 12). This contradicts our claim above that every legal

stable matching in H has to contain (a−` , ∗). So αa = −1, i.e., a ∈ A−1. Then there is a legal
stable matching N∗α in H such that (∗, a−r ) ∈ N∗α (by the proof of Lemma 12). This again
contradicts our claim above that every legal stable matching in H has to contain (∗, a+

r ).
Thus αa /∈ {±1}, hence αa = 0. J

1 The meet of 2 stable matchings M and M ′ is the stable matching where every u in AL ∪ BL (resp.,
AR ∪BR) is matched to its more (resp., less) preferred partner in {M(u), M ′(u)}. The join of M and
M ′ is the stable matching where every u in AL ∪ BL (resp., AR ∪ BR) is matched to its less (resp.,
more) preferred partner in {M(u), M ′(u)}.
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The proof of Lemma 14 is analogous to the proof of Lemma 13.

I Lemma 14. Let N be a fully popular matching in G and let ~α be any witness of N . If
b ∈ B+ ∩B′− then αb = 0.

We will use G0 = (A ∪ B,E0) to denote the popular subgraph of G. The edge set E0
of G0 is the set of popular edges, i.e., those present in some popular matching in G. The
subgraph G0 need not be connected and Lemma 15 will be useful to us.

I Lemma 15 ([8]). Let C be any connected component in the popular subgraph G0. For any
popular matching N in G and any witness ~α of N : if αv = 0 for some v ∈ C then αu = 0
for all u ∈ C.

Proof. Consider any popular edge (a, b). So there is some popular matching M with the
edge (a, b). The matching M is an optimal solution to the max-weight perfect matching
LP with edge weight function wtN since wtN (M) = φ(M,N) − φ(N,M) = 0: recall that
M and N are popular matchings in G. We know that ~α is an optimal solution to the dual
LP. So it follows from complementary slackness conditions that αa + αb = wtN (a, b). Since
wtN (a, b) ∈ {±2, 0} (an even number), the integers αa and αb have the same parity.

Let u and v be any 2 vertices in the same connected component in the popular subgraph
G0. So there is a u-v path ρ in G such that every edge in ρ is a popular edge. We have just
seen that the endpoints of each popular edge have the same parity in ~α. Hence αu and αv
have the same parity. Thus αv = 0 implies αu = 0. J

3.2 Our algorithm

Lemmas 13-15 motivate our algorithm which is described as Algorithm 1. The main step of
the algorithm is the while loop that takes any unmarked vertex v in (A− ∩A′+)∪ (B+ ∩B′−).
Initially all vertices are unmarked. Consider the first iteration of the algorithm: let v ∈ A.

Lemma 13 tells us that for any fully popular matching N and any witness ~α of N , we
have αv = 0. Lemma 15 tells us that αu = 0 for every vertex u in the component C, where
C is v’s connected component in G0. The proof of Lemma 12 shows N has a realization N∗α
in H such that N∗α contains (a−` , ∗) and (∗, a+

r ) for every agent a ∈ C.
Thus we are interested in those legal stable matchings in H that contain (a−` , ∗) and

(∗, a+
r ) for every agent a ∈ C. Hence our algorithm forbids all edges (a+

` , ∗) and (∗, a−r ) for
every agent a ∈ C in the stable matching that we compute here. This step is implemented
by making every neighbor reject offers from a+

` (this may induce other rejections) and
symmetrically, ar rejects all offers from superscript + neighbors. Note that the resulting
matching may contain (a−` , a+

r ) for some of the agents a in C. All vertices in C get marked
in this iteration.

Let D1 ⊆ D0 be the set of all legal stable matchings in H that contain (a−` , ∗) and (∗, a+
r )

for every agent a ∈ C. Thus D1 is a sublattice of D0. We know from the proof of Lemma 12
that N∗α ∈ D1 where N is a fully popular matching in G and ~α any witness of N . So if D1 is
empty then we can conclude that G has no fully popular matching.
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Algorithm 1 Input: G = (A ∪B, E) with strict preferences.

1: Compute a legal stable matching S0 in H by running Gale-Shapley algorithm with
forbidden edges.
{Vertices in AL ∪BL propose and those in BR ∪AR dispose.}

2: Let A−, A′+ and B+, B
′
− be as defined earlier (see the start of Section 3.1).

3: Initially all vertices are unmarked and i = 0.
4: while there exists an unmarked vertex v ∈ (A− ∩A′+) ∪ (B+ ∩B′−) do
5: i = i+ 1.
6: Modify Si−1 to Si so as to forbid all edges (a+

` , ∗) and (∗, a−r ) for every agent a in v’s
component in the popular subgraph G0.
(Si is the (AL ∪BL)-optimal legal stable matching in H that avoids all forbidden edges
identified in the first i iterations of the while-loop.)

7: if there is no such legal stable matching Si in H then
8: Return “No fully popular matching in G”.
9: end if

10: Update the sets A−, A′+ and B+, B
′
−: these correspond to Si now.

11: Mark all vertices in v’s component in the popular subgraph G0.
12: end while
13: Return M = {(a, b) ∈ E : (a+

` , b
−
r ) or (a−` , b+

r ) is in Si}.

Let us assume we are now in the i-th iteration and let Di be the set of legal stable
matchings in H that avoid all edges forbidden by our algorithm in the first i iterations. In
other words, Di is the set of those matchings in Di−1 where no edge forbidden in the i-th
iteration is present. We have D0 ⊇ D1 ⊇ · · · ⊇ Di−1 ⊇ Di. For all 0 ≤ j ≤ i, the set Dj
forms a sublattice of the lattice of all stable matchings in H [13].

I Lemma 16. For every fully popular matching N in G and every witness ~α of N , the
realization N∗α is an element of Di.

Proof. We will prove the lemma by induction. We know from Lemma 12 that the base
case is true, i.e., N∗α ∈ D0. By induction hypothesis, let us assume that for every fully
popular matching N and every witness ~α, the realization N∗α is an element of Di−1. Since
the algorithm entered the i-th iteration of the while loop, there was an unmarked vertex x in
(A− ∩A′+) ∪ (B+ ∩B′−) at the start of this iteration.

B Claim 17. For any fully popular matching N and any witness ~α of N , we have αx = 0.

Proof. The matching Si−1 computed in Step 6 of the (i− 1)-th iteration is the (AL ∪BL)-
optimal matching in the lattice Di−1. Hence if (x−` , ∗) ∈ Si−1 for some x` ∈ AL ∪BL then
(x−` , ∗) belongs to every matching in Di−1. The matching Si−1 is also the (AR∪BR)-pessimal
matching in the set Di−1. Hence if (∗, x+

r ) ∈ Si−1 for some xr ∈ AR ∪ BR then (∗, x+
r )

belongs to every matching in Di−1.
If the above claim is false then there is a fully popular matching N and a witness ~α

of N with αx ∈ {±1}. If αx = 1 then there is a legal stable matching N∗α in H such
that (x+

` , ∗) ∈ N∗α. If αx = −1 then there is a legal stable matching N∗α in H such that
(∗, x−r ) ∈ N∗α. Since N∗α ∈ Di−1, both cases contradict our earlier observation that every
matching in Di−1 has to contain (x−` , ∗) and (∗, x+

r ). Thus for any fully popular matching N
and any witness ~α of N , we have αx = 0. C
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Claim 17 along with Lemma 15 tells us that for all vertices u in x’s component C ′ in G0,
we have αu = 0. The proof of Lemma 12 shows us that N∗α contains (a−` , ∗) and (∗, a+

r ) for
every agent a ∈ C ′. Since N∗α ∈ Di−1, it follows that N∗α is an element in Di. This finishes
the proof of this lemma. J

Hence if Di = ∅, i.e., if the algorithm says “no” in Step 8, then there is indeed no fully
popular matching in G. This finishes one part of our proof of correctness. We now need to
show that if our algorithm returns a matching M , then M is a fully popular matching in G.

4 Correctness of our algorithm

In this section we show that the matching returned by Algorithm 1 is a fully popular matching
in G. Let Si be the matching in H computed in the final iteration of Algorithm 1. Let M
be the matching (in G) induced by Si in the upper half of H: this is as defined in Step 13 of
Algorithm 1.

Note that M ⊆ (A+ ×B−) ∪ (A− ×B+), where the sets A+, B−, A−, B+ are defined at
the beginning of Section 3.1: the matching Si replaces S0 in these definitions now. Similarly,
let L be the matching (in G) induced by Si in the lower half of H. So

L = {(a, b) ∈ E : (b+
` , a

−
r ) or (b−` , a

+
r ) is in Si}.

Thus L ⊆ (A′+ × B′−) ∪ (A′− × B′+). Let UA (resp., UB) be the set of vertices u in A

(resp., B) such that (u−` , u+
r ) ∈ Si. The vertices in UA ∪UB are unmatched in both M and L.

Since Si is a legal stable matching in H, it matches all vertices in H using valid edges. Thus
by Theorem 5, M is A-popular.2 We need to show that M is popular in G. Theorem 18 will
be our starting point.

I Theorem 18. The matching M is popular in the subgraph G \ UB. Also, the matching L
is popular in the subgraph G \ UA.

Proof. The popularity of L in G \ UA will be shown using the witness ~β defined below and
the popularity of M in G \ UB will be shown using the witness ~γ defined below.

1. βu = 1 for u ∈ A′+ ∪B′+, βu = −1 for u ∈ A′− ∪B′−, and βu = 0 for u ∈ UB .
2. γu = 1 for u ∈ A+ ∪B+, γu = −1 for u ∈ A− ∪B−, and γu = 0 for u ∈ UA.

Since L ⊆ (A′+×B′−)∪(A′−×B′+), we have
∑
u∈(A∪B)\UA

βu = 0. Note that wtL(u, u) = 0
for u ∈ UB and wtL(u, u) = −1 for all other u. Thus βu ≥ wtL(u, u) for all u ∈ (A∪B) \UA.

Similarly,
∑
u∈(A∪B)\UB

γu = 0. Also, γu ≥ wtM (u, u) for all u ∈ (A ∪B) \ UB .

B Claim 19. βa + βb ≥ wtL(a, b) for all edges (a, b) where a ∈ A \ UA and b ∈ B.

B Claim 20. γa + γb ≥ wtM (a, b) for all edges (a, b) where a ∈ A and b ∈ B \ UB .

We will prove Claim 20 below. The proof of Claim 19 is analogous.
Consider a ∈ UA. We set γa = 0 and we know that (a−` , a+

r ) ∈ Si. Recall that a+
r is

a`’s least preferred neighbor, thus a` must have been rejected by all its more preferred
neighbors in our variant of the Gale-Shapley algorithm in H. That is, every neighbor b+

r of
a` received a proposal from a−` . Since br prefers superscript − neighbors to superscript +

2 In order to apply Theorem 5, we ought to say M ∪ {(u, u) : u ∈ UA ∪ UB} is A-popular.
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neighbors, this means (d−` , b+
r ) ∈ Si for some neighbor d−` that br prefers to a−` , i.e., b

prefers d to a. Thus b ∈ B1 (so γb = 1) and moreover, wtM (a, b) = 0. Hence we have
γa + γb = 1 > wtM (a, b).
We will next show this constraint holds for all edges (a, b) incident to a ∈ A−. There are
2 cases: (1) b ∈ B− and (2) b ∈ B+. In case (1), we have (a−` , c+

r ) and (d+
` , b
−
r ) in Si.

Since every vertex prefers superscript − neighbors to superscript + neighbors, it means
a` proposed to b−r and got rejected, i.e., br prefers its partner d+

` to a+
` . We also claim a`

prefers its partner c+
r to b+

r . This is because br prefers a−` to d+
` (superscript − neighbors

over superscript + neighbors): so if a−` had proposed to br, then br would have rejected
its partner d+

` . This means both a and b prefers their partners in M to each other. Thus
wtM (a, b) = −2 = γa + γb.
In case (2) above, either (i) (a−` , b+

r ) ∈ Si or (ii) (a−` , c+
r ) and (d−` , b+

r ) are in Si: since Si
is stable, a` prefers c+

r to b+
r or br prefers d−` to a−` . Thus wtM (a, b) ≤ 0 = γa + γb.

Finally, we will show this constraint holds for all edges (a, b) incident to a ∈ A+. There
are 2 cases: b ∈ B+ and b ∈ B−. In the first case, we have γa + γb = 2 and since
wtM (a, b) ≤ 2, the constraint wtM (a, b) ≤ γa + γb obviously holds.
In the second case, either (i) (a+

` , b
−
r ) ∈ Si or (ii) (a+

` , c
−
r ) and (d+

` , b
−
r ) are in Si: since

Si is stable, a` prefers c−r to b−r or br prefers d+
` to a+

` . Thus wtM (a, b) ≤ 0 = γa + γb.
This finishes the proof of M ’s popularity in G \ UB (by Theorem 6). J

Thus the matching M is popular in the subgraph G \ UB. However we need to prove
the popularity of M in the entire graph G, i.e., we need to include vertices in UB as well.
Setting γb = 0 for b ∈ UB will not cover edges in A−×UB . Now we will use the fact that L is
popular in G \UA and that M and L have several edges in common (as shown in Lemma 22).

Let Z be the set of all vertices outside UA ∪ UB that got marked in our algorithm. So
these are the marked vertices that are matched in Si to genuine neighbors (not to their twins).
Since we marked entire connected components in the popular subgraph G0 in Algorithm 1,
both M and L match vertices in Z to each other.

Lemma 22 shows that the matching Si has “partial symmetry” across the upper and
lower halves of the graph H; more precisely, M and L are identical on the set Z. This will
be key to showing M ’s popularity. The following lemma will be useful in proving Lemma 22.

I Lemma 21. M and L are stable matchings when restricted to vertices in Z ∪ UA ∪ UB.

Proof. Let ZA = Z∩A and let ZB = Z∩B. It follows from our algorithm that ZA ⊆ A−∩A′+
and ZB ⊆ B+ ∩B′− (see Fig. 5).

We need to show that M (similarly, L) has no blocking edge in (ZA ∪ UA)× (ZB ∪ UB).
Consider any edge (a, b) ∈ ZA × ZB . We know from Claim 20 (in the proof of Theorem 18)
that wtM (a, b) ≤ γa + γb = −1 + 1 = 0. Similarly, wtL(a, b) ≤ βa + βb = 1 − 1 = 0. Thus
(a, b) is not a blocking edge to either M or L.

Thus neither M nor L has a blocking edge in ZA × ZB. Moreover, G has no edge
in UA × UB. This is because each vertex u ∈ UA ∪ UB is unstable – otherwise (u−` , u+

r )
is an unpopular edge and thus forbidden. Consider any edge (a, b) ∈ UA × ZB. We have
wtM (a, b) ≤ γa+γb = 0+1 = 1. Since wtM (a, b) is an even number, this means wtM (a, b) ≤ 0.
Thus (a, b) is not a blocking edge to M .

We will now show that (a, b) is not a blocking edge to L. Since a ∈ UA and b ∈ ZB ⊆ B′−,
we have (a−` , a+

r ) and (b−` , c+
r ) in Si, where c is some neighbor of b. Note that a−` is a+

r ’s
least preferred superscript − neighbor in H. Thus a+

r did not receive any offer from b−` in
Algorithm 1. Because Si is stable, it has to be the case that b` prefers c+

r to a+
r . Since

(c, b) ∈ L, we have wtL(a, b) = 0. Thus (a, b) is not a blocking edge to L.
It can similarly be shown that no edge in ZA ×UB blocks either M or L. Thus M and L

are stable matchings when restricted to vertices in Z ∪ UA ∪ UB . J
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UA

ZA ZB

The upper half of H The lower half of H

A− \ ZA B+ \ ZB

A+

B′− \ ZB

B′+

A′+ \ ZA

A′−B−

UB

ZB ZA

Figure 5 The final picture of the partitions created by M and L in the upper and lower halves of
H, resp. The while-loop termination condition implies (A− \ZA) ⊆ A′− and (A′+ \ZA) ⊆ A+, so on.

I Lemma 22. The matching M restricted to vertices in Z is the same as the matching L
restricted to vertices in Z.

Proof. Consider any connected component C in the popular subgraph G0. The component
C splits into sub-components C ′1, . . . , C ′t when we restrict edges to only those marked “valid”.
We claim there is exactly one stable matching TC′

j
in each such sub-component C ′j . Assume

C ′j contains a job b that is a top choice neighbor for some agent.3 Then b has to be matched
in TC′

j
to its most preferred neighbor a in C ′j , otherwise (a, b) would be a blocking edge to

TC′
j
. Recall that every agent has exactly 2 valid edges incident to it. So fixing one edge (a, b)

in the matching fixes TC′
j
.

In more detail, every agent a′ 6= a in C ′j such that f(a′) = b has to be matched in TC′
j

to s(a′) (call it b′). Given that a′ is matched to b′, every agent a′′ 6= a′ in C ′j such that
s(a′′) = b′ has to be matched in TC′

j
to f(a′′) and so on. Thus the matching TC′

j
gets fixed.

The same happens with every sub-component in C and so the only stable matching in C is
TC = ∪tj=1TC′

j
.

Let C1, . . . , Cr be the connected components of G0 that contain vertices in Z. So all
vertices in ∪ri=1Ci are marked, thus ∪ri=1Ci ⊆ Z ∪ UA ∪ UB. We know from Lemma 21
that both M and L are stable matchings in each Ci, where 1 ≤ i ≤ r. So M (similarly, L)
restricted to ∪ri=1Ci is ∪ri=1TCi

. Thus M and L have the same edges on Z. J

Lemma 22 helps us in defining an appropriate witness ~α to show M ’s popularity in G.
Recall ~γ from Theorem 18: we will set αu = 0 for all u ∈ Z ∪ UB and αu = γu otherwise.
Before we prove the popularity of M in Theorem 25, we need the following two lemmas.

I Lemma 23. For every a ∈ A− \ ZA, a likes M(a) at least as much as L(a).

Proof. Suppose not. Then M(a) = s(a) while L(a) = f(a). We claim f(a) ∈ B+. Otherwise
f(a) ∈ B−, however for every edge (x, y) ∈ A− × B−, we have wtM (x, y) ≤ γx + γy = −2.
But a prefers f(a) to its partner in M , thus wtM (a, f(a)) ≥ 0. Hence f(a) ∈ B+. Since
wtM (x, y) ≤ 0 for every edge (x, y) ∈ A− ×B+, we can conclude that wtM (a, f(a)) = 0, i.e.,
f(a) is matched in M to a neighbor a′ ∈ A− that it prefers to a. Since Si uses only valid
edges, this means f(a) = f(a′), i.e., f(a) is the top choice neighbor of a′.

3 Otherwise C′j consists of a single edge (a, s(a)) for some a ∈ A; if there was another agent u in C′j then
s(u) = s(a) and so one of a, u would be left unmatched in Si, a contradiction to Si’s stability in H.
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We now move to the lower half of H: observe that both a and a′ are in A′−. This
is because there is no unmarked vertex in A− ∩ A′+ by the termination condition of our
while-loop. Note that a is unmarked since a /∈ ZA. Thus a′ is also unmarked since (a, f(a))
and (a′, f(a)) are popular edges – hence a and a′ are in the same connected component in
G0. Since a ∈ A′−, L(a) = f(a) is in B′+. Consider the edge (a′, f(a)) ∈ A′− ×B′+: both a′
and f(a) prefer each other to their respective partners in L. This means wtL(a′, f(a)) = 2.
However for each edge (x, y) ∈ A′− ×B′+, we have wtL(x, y) ≤ βx + βy = 0, a contradiction.
So any a ∈ A− \ ZA likes M(a) at least as much as L(a). J

I Lemma 24. For every a ∈ A+ ∩A′+, a likes M(a) at least as much as L(a).

Proof. Suppose not. ThenM(a) = s(a) while L(a) = f(a). Since a ∈ A′+, L(a) = f(a) ∈ B′−.
This implies f(a) ∈ B− since there is no unmarked vertex in B+ ∩B′− by the termination
condition of our while-loop. We know f(a) is unmarked since a (its partner in L) is unmarked
and this is because a ∈ A+. Since a ∈ A+ and f(a) ∈ B−, we have wtM (a, f(a)) ≤ γa+γb = 0
and so f(a) has to be matched in M to a more preferred neighbor a′ ∈ A+. As argued in
the proof of Lemma 23, it follows from the legality of Si that f(a) is the top choice neighbor
of a′.

Consider the matching L in the lower half of H. Since L(a) = f(a), wtL(a′, f(a)) = 2.
That is, (a′, f(a)) is a blocking edge to L. We need βa′ = βf(a) = 1 to ensure βa′ + βf(a) ≥
wtL(a′, f(a)) = 2. However f(a) ∈ B′− since a ∈ A′+. This means βf(a) = −1, a contradiction.
Thus any a ∈ A+ ∩A′+ likes M(a) at least as much as L(a). J

I Theorem 25. The matching M is popular in G.

Proof. The popularity ofM in G will be shown using ~α defined below: (recall that ZA = Z∩A
and ZB = Z ∩B)

set αu = 0 ∀u ∈ Z ∪ UA ∪ UB .
set αu = 1 ∀u ∈ A+ ∪ (B+ \ ZB) and αu = −1 ∀u ∈ B− ∪ (A− \ ZA).

Since M ⊆ (A+ × B−) ∪ (ZA × ZB) ∪ ((A− \ ZA) × (B+ \ ZB)) (see Fig. 5), we have∑
u∈A∪B αu = 0. Also αu ≥ wtM (u, u) for all vertices u ∈ A ∪B since αu = 0 = wtM (u, u)

for u ∈ UA ∪ UB and αu ≥ −1 = wtM (u, u) for all other u. To use Theorem 6, we need to
show αa + αb ≥ wtM (a, b) for all edges (a, b).

We will first show this constraint holds for edges incident to vertices in UB . It is easy to
show that the neighborhood of UB is in A′+ and also that each a ∈ A′+ prefers its partner
in L to b ∈ UB. This is because (b−` , b+

r ) ∈ Si and b+
r is b`’s least preferred neighbor, thus

b` must have been rejected by all its more preferred neighbors in our algorithm, i.e., every
neighbor a+

r of b` received a proposal from b−` . Since ar prefers superscript − neighbors to
superscript + neighbors, this means (c−` , a+

r ) ∈ Si for some neighbor c−` that ar prefers to
b−` , i.e., a prefers c to b. Thus a ∈ A′+.

We have A′+ = ZA ∪ (A′+ \ ZA) and A′+ \ ZA ⊆ A+ (by the while-loop termination
condition). Lemma 22 and Lemma 24 showed that for a ∈ ZA ∪ (A+ ∩ A′+), we have
M(a) �a L(a), i.e., a likes M(a) at least as much as L(a), and we showed above that each
a ∈ A′+ prefers L(a) to b. Thus wtM (a, b) = 0. Since we set αa = 0 for a ∈ ZA and αa = 1
for a ∈ A+, we have αa + αb ≥ 0 = wtM (a, b).

We now need to show αa +αb ≥ wtM (a, b) holds for all edges (a, b) in G \UB . Recall the
witness ~γ defined in the proof of Theorem 18 to show the popularity of M in the subgraph
G \UB . Observe that it is only for vertices u in Z that we have αu 6= γu. Moreover, αa > γa
for a ∈ ZA. Thus we only have to worry about edges (a, b) in G \ UB where b ∈ ZB and
check that wtM (a, b) ≤ αa + αb. All other edges in G \ UB are covered by ~α (since ~γ covers
these edges). Let b ∈ ZB ⊆ B+ ∩B′−.
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1. Suppose a ∈ UA∪ZA. For any (a, b) ∈ (UA∪A−)×B+, we have wtM (a, b) ≤ γa+γb ≤ 0+1.
Since wtM (a, b) is an even number, this means wtM (a, b) ≤ 0 = αa + αb.

2. Suppose a ∈ A− \ZA. Then a ∈ A′− by the termination condition of the while-loop in our
algorithm. Since wtL(x, y) ≤ βx + βy = −2 for every edge (x, y) ∈ A′− ×B′−, it follows
that b ∈ ZB ⊆ B′− prefers L(b) to a and similarly, a ∈ A′− prefers L(a) to b.
We know from Lemma 22 that M(b) = L(b), so b prefers M(b) to a. We know from
Lemma 23 that M(a) �a L(a) (i.e., a likes M(a) at least as much as L(a)), so a prefers
M(a) to b. Thus wtM (a, b) = −2 < αa + αb since αa = −1 and αb = 0.

3. Suppose a ∈ A+. There are two sub-cases here: (i) a ∈ A′− and (ii) a ∈ A′+. In sub-
case (i), wtL(a, b) ≤ βa + βb = −2. Since M(b) = L(b) (by Lemma 22), it means that b
prefers M(b) to a. Hence wtM (a, b) ≤ 0 < αa + αb since αa = 1 and αb = 0 here.
Consider sub-case (ii). We have wtL(a, b) ≤ βa + βb = 0. So either (1) b prefers L(b) to
a or (2) a prefers L(a) to b. In case (1), we have wtM (a, b) ≤ 0 since M(b) = L(b) (by
Lemma 22). In case (2) also, we have wtM (a, b) ≤ 0 since M(a) �a L(a) (by Lemma 24).
So in both cases we have: wtM (a, b) ≤ 0 < αa + αb since αa = 1 and αb = 0 here.

Thus ~α is a witness of M ’s popularity (by Theorem 6). So M is popular in G. J

Since M is A-popular, Theorem 25 immediately implies that M is fully popular in G.
Moreover, M is a max-size fully popular matching in G, as shown below.

I Lemma 26. The matching M is a max-size fully popular matching in G.

Proof. Observe that UA ∪ UB is the set of vertices left unmatched in the matching M . We
claim the vertices in UA ∪ UB are left unmatched in any fully popular matching N . This
claim holds because the matching Si is the (AL ∪BL)-optimal matching in the lattice Di.
Thus if (a−` , a+

r ) ∈ Si, i.e., if a` is matched to its least preferred neighbor a+
r in Si then a`

has to be matched to a+
r in the realization N∗α of N as well (for any witness ~α of N), i.e.,

(a−` , a+
r ) ∈ N∗α; equivalently, a is left unmatched in N (after removing self-loops from N).

Similarly, if (b−` , b+
r ) ∈ Si then b` has to be matched to its least preferred neighbor b+

r in N∗α
as well, i.e., (b−` , b+

r ) ∈ N∗α; equivalently, b is left unmatched in N . J

Running time of the algorithm. The set of popular edges can be computed in linear time [7].
Similarly, the set of valid edges can be computed in linear time [2]. Gale-Shapley algorithm
and in particular, the variant of Gale-Shapley algorithm used here – to compute a stable
matching that avoids all forbidden edges – can be implemented to run in linear time [13].
Hence it can be shown that Algorithm 1 runs in linear time. Thus Theorem 4 stated in
Section 1 follows.
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Abstract

We consider the setting of combinatorial auctions when the agents are single-minded and have no
contingent reasoning skills. We are interested in mechanisms that provide the right incentives to
these imperfectly rational agents, and therefore focus our attention to obviously strategyproof (OSP)
mechanisms. These mechanisms require that at each point during the execution where an agent is
queried to communicate information, it should be “obvious” for the agent what strategy to adopt in
order to maximise her utility. In this paper we study the potential of OSP mechanisms with respect
to the approximability of the optimal social welfare.

We consider two cases depending on whether the desired bundles of the agents are known or
unknown to the mechanism. For the case of known-bundle single-minded agents we show that OSP
can actually be as powerful as (plain) strategyproofness (SP). In particular, we show that we can
implement the very same algorithm used for SP to achieve a

√
m-approximation of the optimal social

welfare with an OSP mechanism, m being the total number of items. Restricting our attention to
declaration domains with two values, we provide a 2-approximate OSP mechanism, and prove that
this approximation bound is tight. We also present a randomised mechanism that is universally OSP
and achieves a finite approximation of the optimal social welfare for the case of arbitrary size finite
domains. This mechanism also provides a bounded approximation ratio when the valuations lie in a
bounded interval (even if the declaration domain is infinitely large). For the case of unknown-bundle
single-minded agents, we show how we can achieve an approximation ratio equal to the size of
the largest desired set, in an OSP way. We remark this is the first known application of OSP to
multi-dimensional settings, i.e., settings where agents have to declare more than one parameter.

Our results paint a rather positive picture regarding the power of OSP mechanisms in this
context, particularly for known-bundle single-minded agents. All our results are constructive, and
even though some known strategyproof algorithms are used, implementing them in an OSP way is a
non-trivial task.
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1 Introduction

Algorithms might not have direct access to their inputs. This is by now a well-known issue,
motivated by the internet and the self interests thereon. A body of work in computer
science has been devoted to the design of algorithms that can faithfully elicit the input
from their selfish sources. Typically, this is achieved through so-called mechanism design, a
subdiscipline of game theory that studies the design of functions, or mechanisms, where the
input is provided by multiple self-interested agents, and the output, or outcome, needs to
satisfy a set of pre-specified desirable objectives. Each agent has a certain utility for each
outcome. In its most general definition, a mechanism is given by a multi-round interaction
protocol between a central authority and the agents, defining a game wherein the central
authority wants to compute a certain function of the agents’ inputs and the agents choose
a strategy leading to the outcome that maximises their own utility. The main design
requirements for such mechanisms are:
Strategyproofness (SP). There is a strategy for each agent that is guaranteed to result in a

better outcome than any other strategy that the agent may adopt, irrespective of the
other agents’ strategies.

(Approximate) economic efficiency. The outcome of the mechanism must have a quality
that is close to a theoretical optimum; this is often measured in terms of social welfare,
i.e., the sum of all the agents’ utilities.

Combinatorial auctions (CAs) have emerged as the paradigmatic problem in the area,
exemplifying the tension between these two desiderata and the polynomial-time computation
of the outcome. In CAs, we are given a set of items that need to be sold among a set of
agents who are interested in buying the items. These agents express valuations for each of
the items, or certain bundles of items, or even each possible bundle of items, depending on
the level of complexity of the utility model that is assumed. A mechanism in this setting
must determine how the items are allocated to the agents, and how much each agent is going
to be charged.

Whilst it is not known to what extent it is possible to guarantee the properties above
with polynomial-time algorithms, the design of mechanisms that satisfy these objectives is
reasonably well-understood for some sufficiently simple auction settings. This is the case for
the optimization problem of interest to this study, single-minded combinatorial auctions. In
such a setting, there are multiple agents and multiple items to be allocated. An agent’s utility
function has a simple form: It is determined by a valuation of the set of items that the agent
gets allocated, from which a potential payment charged by the mechanism is subtracted. The
valuation function has the following structure: For an agent, say i, there is a number vi and
a subset of items Ri such that her valuation is vi whenever the allocated bundle contains Ri,
and 0 otherwise. The utility of each agent is therefore determined by a single pair (vi, Ri).
This simple setting has been the central object of study of the celebrated paper [17], where
the authors design a simple greedy mechanism that is strategyproof and approximates the
optimal social welfare to within a factor of

√
m, where m is the number of items. It is

well-known that this combinatorial optimisation problem is NP-hard and inapproximable
within a factor of

√
m unless NP = ZPP [14].

In many important cases, however, the implementation of strategyproof mechanisms can
be too complex, unintelligible, unintuitive, or cognitively too demanding due to the limited
ability of typical agents, such as, the capability to carry out contingent reasoning. Even for
the simple setting of one-item auctions, a special case of single-minded agents, it is known
how implementation details matter, see, for example, [2], for a discussion on the differences
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between sealed bid versus ascending bid auctions, and [15] for a related experimental study.
We refer furthermore to [6] and [4] for further reading on the issue of contingent reasoning.
Hence, the theoretically strong mechanisms that have been proposed in past mechanism
design literature may be too difficult to understand and to use for agents with imperfect
rationality.

This problem motivates the design of mechanisms with a reduced cognitive burden for
agents who participate in the mechanism: Mechanisms should be very easy to understand,
and transparent to participate in. While it is somewhat of a challenge to satisfactorily define
formally what a “low cognitive burden” comprises, the concept of obvious strategyproofness
(OSP) which has been introduced in [18] provides a strong and reasonably satisfactory notion
in the context of agents unable to reason contingently. Informally, OSP requires that at each
point during the execution of a mechanism where an agent is queried to reveal information
(i.e., point where an agent is asked to make a decision about how the execution of the
mechanism should proceed), it should be “obvious” for the agent what strategy to adopt in
order to maximise her utility: For the agent, there must be a single choice for which it holds
that all outcomes that can result from that choice are better for her than any other outcome
that can result from an alternative choice. OSP therefore strengthens the classical notion of
strategyproofness.

Our contributions. We study the extent to which OSP mechanisms can return good
approximations to the optimal social welfare in the setting of single-minded combinatorial
auctions. We measure the quality of mechanisms in terms of a relative approximation ratio.
As in much of the literature on OSP, we assume that the set of possible types that the agents
can have (which we refer to as the declaration domain) is publicly known; this is either finite
or contained in a closed interval. As for the agents, we prove results depending on whether
they are known-bundle single-minded – whereby the valuation vi for agent i’s desired bundle
Ri is not known but Ri is – or, unknown-bundle single-minded, for which neither vi nor Ri is
known and must be elicited in an OSP way.

For the case of known-bundle single-minded agents, we provide the following results.
If there are only two possible valuations, i.e., a low valuation L and a high valuation
H, we express the characterisation of OSP mechanisms in [7] conveniently and design a
deterministic OSP mechanism with an approximation ratio of 2, which we show to be
the best possible. We give explicit payment functions for this mechanism and we can
prove that truthtelling agents always have non-negative utility (a property known as
individual rationality (IR)). We furthermore show that if the OSP mechanism were to use
a fixed ordering of agents that does not depend on the instance, then the approximation
guarantee of the mechanism is unbounded.
If the declaration domain is an arbitrarily large finite set, we derive an OSP mechanism
that achieves an approximation ratio of

√
m to the optimal social welfare. This mechanism

can be regarded as an obviously strategy-proof implementation of the mechanism in
[17]. The payments here are implicitly given through the cycle monotonicity technique
developed in [7]. Our mechanism makes use of the fact that the domain is finite and that
the desired bundles are known.
We further provide a randomised OSP and IR mechanism that achieves an approximation
ratio strictly less than d, where d is the cardinality of the declaration domain. In particular,
for arbitrary size finite domains of d valuations V1 < · · · < Vd, our mechanism achieves
a (d − V1/V2 − · · · − Vd−1/Vd)-approximation of the optimal social welfare. The idea
behind this mechanism is to simply draw at random (with a carefully chosen probability
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distribution) one value from the domain and ask agents if their valuation is at least as
big; the mechanism thus stays OSP even if agents had access to the randomness used (i.e.,
they are “universally OSP”). We note that this result improves the aforementioned bound
of 2 for two-value domains, and approaches 2 as V1/V2 → 0. We also generalise this result
for (uncountable) valuations contained in an interval [a, b] and derive the continuous limit
of the above mechanism, which results in an OSP and IR mechanism for this setting that
achieves an approximation ratio of 1 + ln(b/a) to the optimal social welfare. This means
that the approximation ratio only grows logarithmically in the relative size of the interval.

The results above paint a rather positive picture regarding the power of OSP mechanisms
for CAs with known-bundle single-minded agents. Firstly, our upper bound of

√
m, for

finite valuation domains, matches what is known for strategyproofness – this is, to best
of our knowledge, the first case in which OSP has been proved to be as powerful as SP.
([16] proves an asymptotic equivalence for randomised OSP without money for a variant
of a scheduling problem.) The only additional time we need is used to sweep through
the declaration domain of the agents, a seemingly unavoidable step to guarantee an OSP
implementation of direct-revelation mechanisms. Secondly, this result shows that Deferred
Acceptance (DA) auctions, whilst being OSP, are not the right algorithmic approach to
optimise the approximation guarantee of OSP mechanisms. We in fact beat the lower bounds
proved in [5] regarding the approximation guarantee of DA auctions in this setting. This
observation reinforces the findings in [7, 9] concerning the power of DAs vs OSP, in the
context of scheduling related machines. Thirdly, our tight bounds for two-value domains show
(i) how the graph-theoretic approach to OSP in [7] can be made operational; and, (ii) that
the order in which the mechanism queries the set of agents is of crucial importance in the
design of the mechanism. Finally, our randomised OSP mechanisms show how it is possible
to leverage “internal” chance nodes [18] and beat deterministic mechanisms, whilst agents do
not need to compute expectations. This is to our knowledge the first known application of
randomisation over OSP mechanisms.

OSP has so far only been considered for single-parameter settings, i.e., where the agents’
private information is a single number, as no explicit technique is known to implement OSP
mechanisms for higher dimensional settings. However, we complete this paper by giving
the first OSP mechanism for agents with richer declaration domains. We in fact provide
an OSP mechanism for the case of unknown-bundle single-minded agents, that returns an
approximation of the optimal social welfare equal to the maximum size of a desired set Ri.
This is an OSP implementation of the well-known Greedy-by-valuation algorithm for CAs.
To obtain this result, we leverage the cycle monotonicity characterisation of OSP in [7] and
an approach recently used in [10] to deal with long negative cycles. The idea is to give
a structural property of the negative-weight cycles that have more than two vertices, for
mechanisms that satisfy a natural notion of monotonicity between two instances. We then
prove that any such mechanism that additionally queries the agents monotonically (that is,
from an extreme of the domain to the other, irrespective of the desired set) cannot have any
long negative-weight cycle. This is only proved to be a sufficient condition; the extent to
which this is also necessary (proved to be true for single-parameter settings in [10]) will say
whether our bound can be improved or not. This is the main open problem left by our work.

Further Related Work. The notion of OSP introduced in [18] has spawned numerous
subsequent studies in both the computer science and economics community.

In [1], the authors study the OSP concept in the context of stable matchings and provide
a suitable mechanism under an acyclicity assumption, as well as an impossibility result
for a more general setting. The paper [3] further studies this concept for housing markets,
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single-peaked domains, and a general quasi-linear mechanism design setting. In [20] the
authors study OSP mechanisms in general design domains where monetary transfers are not
possible, and they provide a useful characterisation of OSP mechanisms in this setting.

OSP was investigated in machine scheduling domains and set system problems in [7],
published in [9, 8], and furthermore a study was done in [11] where the authors prove that a
restriction on the agents’ declaration called monitoring can help obtain OSP mechanisms
with a good approximation ratio in various mechanism design domains. The paper [16]
builds forth on this by studying machine scheduling in the absence of monetary payments.
For machine scheduling, a generalisation of OSP is furthermore studied in [13] where the
restriction on the ability of agents to reason contingently is weakened, and the authors show
that a large amount of “look-ahead”-ability is required for the agents in any mechanism that
achieves a good approximation ratio in the considered scheduling setting. Another study
that considers OSP under a restriction on the agents’ behavior is [12], where the authors
assume that non-truthful behaviour can be detected and penalised with a certain probability.

In [19] a revelation principle is presented that states that every social choice function
implementable through an OSP mechanism can be implemented using a certain structured
OSP protocol where agents take turns making announcements about their valuations.

2 Preliminaries

In a combinatorial auction we have a set U of m items and a set N of n agents. Each agent
i has a private valuation function vi and, in the general case, is interested in obtaining only
one set in a private collection Si of subsets of U , also called bundles. Thus, the valuation
function maps subsets of items to nonnegative real numbers (vi(∅) is normalised to be 0).
The agents’ valuations are monotone: for S ⊇ T we have vi(S) ≥ vi(T ). In single minded
combinatorial auctions, |Si| = 1, each agent i is interested in obtaining only one particular
subset of U ; we denote i’s desired bundle by Ri. This implies that agent i’s valuation is
the same for all supersets of Ri, while it is 0 otherwise. Formally, consider agent i and let
Si = {Ri}. The valuation function of agent i for a given set S is

vi(S) =
{
vi if S ⊇ Ri,
0 otherwise. (1)

where (with a slight notation overloading) vi ∈ R≥0 is a non-negative real number. Note
that the valuation function of an agent i is fully represented by her desired set Ri and
her valuation for that set vi. The goal is to find a partition (S1, . . . , Sn) of U such that∑n
i=1 vi(Si) –the social welfare (SW)– is maximised. We denote the optimal (maximum

possible) social welfare by SW ∗ (we omit the dependence on the instance as it will be clear
from the context).

We consider two versions of single-minded combinatorial auctions. In the case of unknown-
bundle single-minded agents, we assume that the desired sets Ri and the valuations vi are
private knowledge of the agents, while in the known-bundle single-minded agents case, we
assume that the desired sets Ri are known and only the valuations vi are private knowledge
of the agents. In each case, we refer to the private information of an agent as her type.
Agents are typically asked to declare their types. We use Di, the declaration domain of agent
i, to denote the set of all possible types of agent i. In this paper we will consider declaration
domains that are identical for all agents i, i.e., Di = D. We use b = (b1, . . . , bn) to denote
declaration profiles, so that bi ∈ D stands for an agent i’s demanded set Ri along with the
valuation vi that she has for it.
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We want to design an auction mechanism that interacts with the agents in any sequence,
and outputs (based on this interaction) an allocation Ai of items to each agent i, along with a
payment Pi > 0 that is charged to each agent i. The allocation function satisfies that each item
is allocated to exactly one agent. We refer to such a pair (A = (A1, . . . , An), P = (P1, . . . Pn))
as an outcome. We assume that agents have quasi-linear utility functions, that is, agent i
with type bi has a utility of

ui(bi,b−i) = vi(Ai)− Pi

for outcome (A,P ). Each agent will interact strategically with the mechanism, so as to make
it output an outcome that maximises her utility.

When designing the mechanism, we want to define allocations and payments in such a
way that they induce a certain type of behaviour of the strategically acting agents, while
simultaneously ensuring that the outcome maximises or approximately maximises the social
welfare. In particular, we aim to design obviously strategyproof (OSP) mechanisms. To define
this notion, we view a mechanism in the form of an implementation tree T that captures the
way in which the mechanism interacts with the agents [18, 7].

We now introduce some notation around T before we formally define the OSP notion.
Each internal node u of T is labeled with an agent Q(u), called the divergent agent at u, and
the outgoing edges from u are labeled with sets of types in the declaration domain of Q(u).
At node u, the agent Q(u) is queried and asked to choose an action, that corresponds to
selecting one of u’s outgoing edges. The labels of the outgoing edges of u form a partition of
the current domain of i, denoted as Di(u). The current domain Di(u) is equal to the label
of the last edge e in the path from the root to u that i chose as an action. When player Q(u)
chooses an outgoing edge at node u, we say that the chosen action signals that the type of
Q(u) is in the set of types labeling the chosen edge. If a pair of types in the current domain
of agent i occur in the labels of two distinct outgoing edges of u, we say that i is asked to
separate the two possible types at u. The leaves of the tree will thus be linked to (a set of)
type profiles; and at each leaf the mechanism will return an outcome (A,P ) accordingly;
in other words, each leaf corresponds to an outcome of the mechanism. (Observe that this
means that the domain of A and P is effectively given by the leaves of T .)

A mechanism (viewed in the form of an implementation tree as described above) is said
to be OSP if at each node where an agent is asked to diverge, she always maximises her
utility by choosing the edge (u, u′) with the label containing her own type, in every node.
That is, if we call the latter strategy s, then a mechanism is said to be OSP if the worst
possible outcome after signaling her true type (taken over all the reachable outcomes in the
leaves of the subtree rooted at u′, with respect to s) gives her a utility at least as good as
when she would get the best possible outcome after choosing any other edge (u, u′′) at that
particular point in the implementation tree (taken over all the outcomes in the leaves of the
subtree rooted at u′′). The corresponding utility-maximising strategies played by the players
are called the OSP strategies. In cases where we discuss any particular OSP mechanism, we
use (A(b), P (b)) to denote the outcome (i.e., allocation and payment vector) that results
from agents playing their OSP strategies, i.e., strategy profiles where each agent at every
node in the mechanism follows the edge containing her type.

We call a type profile b compatible with u ∈ T iff for each edge (u′, u′′) on the path
from the root to u, the label of (u′, u′′) contains bQ(u′). We furthermore say that two type
profiles (t,b−i) and (b,b′−i) diverge at u if i = Q(u) and t and b are labels of different edges
outgoing from u (we sometimes will abuse this terminology and we also say that t and b
diverge at u). For every agent i and types t, b ∈ Di, we let uit,b denote a vertex u in the
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implementation tree T , such that (t,b−i) and (b,b′−i) are compatible with u, but diverge at
u for some b−i,b′−i ∈ D−i(u) = ×j 6=iDj(u). Note that such a vertex might not be unique as
agent i will be asked to separate t from b in different paths from the root (but only once
for every such path). We call these vertices of T tb-separating for agent i. For example, the
node r in the tree in Figure 1 is an LH-separating node for agent 1; while v and w are two
LH-separating nodes for agent 2.

1r

2v

3

l1

L

l2

H

L

3

l3

L

l4

H

H

L

2w

3

l5

L

l6

H

L

3

l7

L

l8

H

H

H

Figure 1 An implementation tree with three agents with two-value domains {L, H}; each agent
separates the domain types upon playing; at each leaf li the mechanism computes A(b) and P (b),
b being the declaration vector at li.

We also consider randomised mechanisms that are universally OSP, in Section 5. Such
mechanisms are probability distributions on OSP mechanisms.

Besides the OSP requirement, we would like our mechanisms to satisfy (ex-post) individual
rationality (IR), i.e., when an agent plays an OSP strategy, the agent is guaranteed an outcome
that gives her a non-negative utility. We measure the quality of mechanisms in terms of a
relative approximation ratio, i.e., an upper bound on the ratio of the optimal social welfare
and the social welfare of the outcome of the mechanism.

3 Deterministic mechanisms for known-bundle single-minded agents

We now focus on the case of known-bundle single-minded agents, i.e. the desired sets of
the agents are known by the mechanism, and only the valuations of the agents for their
corresponding desired set is private information. We let vi, i ∈ N denote the valuation of
agent i for her desired bundle, and slightly abusing notation, we use SW (I) =

∑
i∈I vi where

I is a set of agents who can be allocated their desired bundles at the same time.

3.1 Domains of size 2
We first restrict attention to the case where the declaration domain of each agent has two
possible values and begin with a simple and elegant characterisation of individually rational
OSP mechanisms for the case of known-bundle single-minded agents with two-value domains
Di = {L,H}, for i ∈ N .

I Definition 1 (C mechanisms). We define a class C of mechanisms, that only use the
following types of queries:

L-query: The divergent agent is asked to separate L and H. If she signals L then she
will not get her desired bundle (regardless of the future).
H-query: The divergent agent is asked to separate L and H. If she signals H then she is
guaranteed to get her desired bundle.
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I Theorem 2. The class C of mechanisms characterises deterministic IR and OSP mechan-
isms for the case where the declaration domain is {L,H} and the desired bundles are known,
in the following sense:

There exist payments such that every mechanism in C is deterministic IR and OSP.
Every deterministic IR OSP mechanism is equivalent to a mechanism in C with respect
to their allocations, i.e. for every possible valuation profile of the agents, the allocations
resulting from both mechanisms are identical.

Proof. Regarding the first claim, fix the payment of an agent who is allocated her bundle to
be L, and the payment to be 0 otherwise. It should be straightforward to see why pairing
mechanisms in C with these payment yields a deterministic IR mechanism. Moreover, observe
that regardless of the query, if an agent has valuation L, then her utility will be 0 regardless
of her signals and allocation (even if she is allocated her bundle, then she will be asked to
pay L). If an agent has valuation H and she is asked an L-query, she can only get positive
utility for signaling her true valuation H, while if she is asked an H-query, she can guarantee
herself the maximum possible utility under the mechanism (H − L) again by reporting her
true valuation H. This demonstrates that whenever an agent is asked to diverge, she is not
worse off by acting according to her true type in any possible future scenario, hence OSP is
satisfied.

Regarding the second claim, consider any OSP mechanism and its associated implementa-
tion tree T . Clearly, since we are dealing with the case of two-type domains, if T has a node
with more than two children, then this node can be pruned to yield an OSP mechanism where
the node has exactly two children. Furthermore, nodes that have only one child are trivial
and can be removed from the tree. So, at every node in T an agent is asked to separate L
and H, and at any path from the root to a leaf in T each agent is only asked to diverge at
most once.

Next, fix a node u ∈ T and let agent i = Q(u) be the divergent agent at u. Suppose for a
contradiction that if i signals L when queried at u, then it is possible that i gets her desired
bundle, while if i signals H then it is possible that i is not allocated her desired bundle. In
other words, the corresponding subtrees of T have outcomes oL where i gets her desired
bundle when signaling L, and oH where i doesn’t get her desired bundle when signaling H.
In this case the OSP condition would be violated at node u when vi = H, as i’s utility under
oH is lower than under oL (by IR the payment under oH is 0, while the payment under oL is
at most L). We can conclude that at any node w ∈ T , either all possible outcomes when the
divergent agent j = Q(w) signals L do not allocate j’s desired bundle to j, or all outcomes
when j signals H allocate j’s desired bundle to j. These two alternatives correspond to the
L-queries and H-queries in the definition of Q. J

Next, we use the above characterisation theorem1 to provide a tight bound on the
approximability of the optimal social welfare under OSP mechanisms.

I Theorem 3. The IS mechanism described in Algorithm 1 is an OSP mechanism that
achieves an approximation ratio ρ ≤ 2 for the case of known-bundle single-minded agents
and domains of size 2.

Proof. Consider any instance of the problem, let I ⊆ N be the allocation output by IS, and
let I∗ ⊆ [n] be the SW-maximising allocation according to the true valuations. Also fix N to
its value at the last iteration of IS. At the last iteration of IS it holds that every agent in

1 Note that Theorem 2 essentially expresses the cycle monotonicity property of [7] in a convenient way.
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Algorithm 1 The IS mechanism.

1 N ← N (N is the set of agents currently under consideration) Aq ← ∅ (Aq is the set
of agents who have already been queried) I ← ∅ (I is the set of agents currently
allocated their desired bundle) vi = L, for i ∈ N (Our mechanism originally assumes
that all agents have valuation L)

2 Compute the SW-maximising feasible allocation and update set I accordingly
3 while there exists an agent i ∈ N \Aq who is not in I do
4 Perform an L-query to i (break ties arbitrarily)
5 if i signals L then
6 N = N \ {i}
7 else
8 vi = H

9 Compute the SW-maximising feasible allocation of items to agents in N and
update I

10 Return I
11 If an agent i is allocated her desired bundle, i.e. i ∈ I, charge her L, otherwise charge

0.

N \ I has been queried. Mechanism IS belongs to the class C of mechanisms (Definition 1),
and hence by Theorem 2 is IR and OSP. So, we can assume that the agents who have been
queried have signaled their true valuation. Regarding the agents that have not been queried,
the mechanism assumes valuation L when computing the SW-maximising allocation, while
their true valuation could potentially be higher; all these agents have been allocated their
desired bundle. This leads to the conclusion that I is the SW-maximising allocation of N
with respect to the true valuations, which in turn implies that SW (I) ≥ SW (I∗ ∩N ).

We now claim that SW (I) ≥ SW (I∗ \ N ). Observe that any agent who does not belong
to N has valuation L. All these agents were considered in line 2 of Algorithm 1 as having
valuation L indeed; denote SW1 the SW computed in line 2 of Algorithm 1. So, it holds that
SW (I∗ \N ) ≤ SW1 ≤ SW (I), where the second inequality holds because the SW computed
in Algorithm 1 can only increase between rounds.

Combining the above, we derive that SW (I∗) = SW (I∗ ∩N ) + SW (I∗ \ N ) ≤ 2SW (I),
as desired. J

Next, we show that the above bound is tight by designing a family of instances where no
mechanism can achieve an approximation ratio better than 2. This results shows a separation
between obviously strategy proof mechanisms and strategy proof mechanisms, in terms of
social welfare.

I Theorem 4. For the setting that the domain is of size 2 and desired bundles are known,
no OSP and IR mechanism can achieve an approximation ratio better than 2.

Proof. By Theorem 2 we may restrict our analysis to mechanisms in class C as defined in
Definition 1. Consider any such mechanism M ∈ C.

Consider an instance with m items and a set N of n = 2
√
m agents. For i ∈ {1, . . . ,

√
m},

define sets Si = {(i− 1)
√
m, (i− 1)

√
m+ 1, . . . , (i− 1)

√
m+ (

√
m− 1)} and Ti = {i− 1, (i−

1) +
√
m, (i− 1) + 2

√
m, . . . , i+ (

√
m− 1)

√
m}. Let agent i ∈ {1, . . . ,

√
m} desire bundle Si,

and let agent i ∈ {
√
m+ 1, . . . , 2

√
m} desire bundle Ti. Note that the agents are intuitively

split in two equal-sized groups, A and B, such that the desired bundle of an agent in A
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overlaps with the desired bundle of all agents in B and vice versa. Consider such a split
and let G(i) ∈ {A,B} denote the group of agents that i belongs to, and G(i) = N \ G(i).
The valuations of the agents in our instance depend on the sequence of queries made in
the implementation tree T of mechanism M . We let H = n/2 and L = 1, and we define
the valuations of the divergent agents in turn, starting with the first divergent agent and
considering divergent agents in a sequence on the path of T , where previous agents have
signaled their true valuation. Let i refer to the agent whose valuation we define at the
current step:
(i) If agent i is asked an L-query, no agent has been asked an H-query so far, and at least

3 agents in G(i) have not been queried at this point: Set vi = L.
(ii) If i is the first agent that is asked an H-query, and there are at least 3 agents in G(i)

that have not been queried at this point: Set vi = H, set vj = L for each agent j ∈ G(i)
that has not been queried at this point, and set vj = H for each j ∈ G(i) that has not
been queried at this point.

(iii) If no agent has been asked an H-query so far, and exactly 2 agents in G(i) \ {i} have
not been queried at this point: Set vi = H, and set vj = L for every agent j that has
not been queried at this point.

Observe that the above three points yield a complete and consistent specification of the
valuations of all agents.

Clearly, in any mechanism with bounded approximation ratio, one of cases (ii) or (iii)
in the definition of valuations above is realised, since otherwise, M will not allocate any
desired bundle to any agent. Assume first that case (ii) is realised, and let i′ be the agent
who is H-queried at that point. i′ will signal her true valuation H, and will be allocated her
desired bundle by the definition of an H-query. Hence, no agent in G(i′) can be allocated
her desired bundle and there are at least 3 such agents with valuation H. Therefore the
optimal social welfare in this case is at least 3H + (n/2− 3)L, but the mechanism can only
allocate to a subset of G(i), resulting in a social welfare of at most H + (n/2− 1)L. Thus,
the approximation ratio of M in this case is at least

3H + (n/2− 3)L
H + (n/2− 1)L = 2n− 3

n− 1 (2)

on this instance.
Suppose now that case (iii) in the definition of valuations above is realised, and let i∗

be the agent who is queried at that point. By definition of the instance, the optimal social
welfare now is H + (n/2− 1)L. In case M gives the desired bundles to a subset of agents
in G(i∗), then this subset may contain only agent i∗ and the remaining two agents of G(i∗)
who have not been queried yet with valuation L, yielding a social welfare of H + 2L. Recall
that everyone else in G(i∗) has signaled L to an L-query, hence can not be allocated her
desired bundle. In case M gives the desired bundles to a subset of agents in G(i∗), then the
social welfare of M is at most (n/2)L. Thus, the approximation ratio of M in this case is at
least H+(n/2−1)L

max{H+2L,(n/2)L} . By setting H = n/2 and L = 1 we get

H + (n/2− 1)L
max{H + 2L, (n/2)L} = n− 1

n/2 + 2 = 2n− 2
n+ 4 . (3)

The limit of both bounds (2) and (3) as n→∞ is 2, and this proves the claim. J

We now provide a stronger inapproximability bound for the case where the mechanism
is restricted to be instance-independent, i.e., the mechanism’s implementation tree is not
dependent on the demanded bundles of the agents. That is, there is a mapping from nodes
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in the implementation tree to queried players and respective query types, and this mapping
is fixed, i.e., it is not a function of the demanded bundles of the agents. Note that e.g. the
mechanism of Theorem 3 is not instance-independent, because the order in which the players
are queried and the types of queries that the mechanism asks, do depend on the demanded
bundles of the players.

I Theorem 5. No instance-independent mechanism has a bounded approximation ratio.

Proof. Consider any instance-independent OSP and IR mechanism M . We define the
instance (valuations and desired bundles) that yields the upper bound by considering the
sequence of queries made in the implementation tree T ofM . We start with the first divergent
agent and consider divergent agents in a sequence on the path of T , where previous agents
have signaled their true valuation. Let i refer to the ith queried agent, whose valuation is
vi and whose desired bundle is Ri. Let Q(i) denote the set of agents who have not been
queried yet at the time that i is queried by the mechanism. As T is instance-independent,
we may construct an instance with a bad approximation ratio for this mechanism by letting
the agents’ valuation and demanded bundles depend on the sequence of queries that the
mechanism asks. We do this as follows:
(i) If agent i is asked an L-query: Set vi = L and let Ri comprise a single item that does

not belong to the desired bundle of any other agent.
(ii) If agent i is asked an H-query: Set vi = H and vj = H for each agent j ∈ Q(i). Let

Rj comprise a single item, distinct for each j ∈ Q(i) and not being desired by any
previously considered agent. Also, let Ri = ∪

j∈Q(i)Rj .
In any mechanism with a finite approximation ratio, case (ii) in the definition of the instance
above is realised, since otherwise, M will not allocate any desired bundle to any agent.
Suppose ` L-queries are asked before the first H-query on the path of T discussed in the
definition of the instance. The optimal social welfare is at least `L+ (n− `− 1)H, while M
can only obtain social welfare equal to H by allocating to the agent who got the H-query.
Thus, the approximation ratio ρ of M is at least

ρ ≥ `L+ (n− `− 1)H
H

= (n− 1)H − `(H − L)
H

≥ (n− 1)L
H

, (4)

since ` ≤ n− 1. The ratio can be made arbitrarily high, for suitable values of L and H. J

3.2 Large domains
In this section we prove an upper bound of

√
m for the approximation ratio of OSP mechanisms

for known-bundle single minded agents and arbitrary domains. We begin with definitions of
classes of mechanisms that are of interest. First, we define extremal mechanisms. Informally,
the queries of an extremal mechanism always separate an extreme of the current domain of the
queried agent from the rest of her current domain (the same extreme is chosen consistently).
Formally,

I Definition 6 (Extremal mechanism). A mechanism with implementation tree T is an
extremal mechanism if for each internal node u ∈ T , and divergent agent i = Q(u) at u,
agent i’s current domain Di(u) is partitioned by the query at u into a singleton, containing
the maximum element (or minimum element, consistently), and the remaining elements of
Di(u).
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Algorithm 2 An extensive-form implementation of the Greedy algorithm in [17] for
known-bundle single-minded agents.

1 Define function Φi as Φi(x) = x/
√
|Ri|.

2 P ← ∅ (P is the set of bundles that have already been allocated) N ← N (N is the
set of agents currently under consideration) Di ← Di for all i ∈ N (Di is the set of
values in i’s domain currently under consideration)

3 while N 6= ∅ do
4 Let j = arg maxk∈N Φk(maxDk)
5 if there is S in P such that Rj ∩ S 6= ∅ then
6 N = N \ {j}
7 else
8 Ask j if her valuation is maxDj
9 if yes then

10 P ← P ∪ {Rj}
11 N = N \ {j}
12 else
13 Dj = Dj \ {maxDj}

14 Return P

I Definition 7 (Cd mechanisms). We define a class Cd of mechanisms, whose implementation
tree T satisfies:

Consider a divergent agent i who is asked to separate between valuations vi and v′i with
vi < v′i at some internal node u ∈ T . Consider any outcome ovi in the subtree rooted at
u consistent with signaling valuation vi. Then if i is allocated her desired bundle under
ovi , she also gets her desired bundle in all possible outcomes consistent with signaling
valuation v′i at u.

I Theorem 8. Every extremal mechanism that belongs to class Cd is OSP.

Theorem 8 is a special case of Theorem 12 which we present in Section 4. We note that
Theorem 8 is one direction of the characterisation in [10].

I Theorem 9. Algorithm 2 is an OSP mechanism that achieves an approximation ratio
ρ ≤
√
m, for the case of known-bundle single-minded agents.

Proof. The approximation guarantee of the algorithm is well known in the literature, cf. [17].
By Theorem 8, it remains to prove that Algorithm 2 is extremal and belongs to class Cd.
Indeed, observe that queries only take place in line 8 of the algorithm, where the corresponding
divergent agent is asked to separate the maximum value in her current domain from all other
possible values.

We will now prove that the algorithm belongs to class Cd (see Definition 7). Indeed, when
an agent is queried in line 8 then she is allocated her set when replying yes (as feasibility has
been previously guaranteed). Since we only query for the maximum in the current domain of
each agent, this implies that the agent would still be allocated her desired bundle had her
true valuation (and signals) been higher. J
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4 Deterministic mechanisms for unknown-bundle single-minded
agents

In this section we prove an upper bound to the approximability of the optimal social welfare
of single-minded combinatorial auctions by OSP mechanisms. It is now assumed that both
the desired bundle of the agent and her valuation for it belong to her type, hence are private
information. We first define a general class of mechanisms which we prove are OSP. We then
provide an implementation of the known Greedy-by-valuation mechanism and prove that it
belongs to this class.

Let us define the class of valuation-extremal mechanisms. Informally, the queries of a
valuation-extremal mechanism at every node separates extreme valuations in the current
domain of the queried agent from the rest of her current domain (where the same extreme is
chosen consistently). Formally,

I Definition 10 (Valuation-extremal mechanism). A mechanism with implementation tree T is
a valuation-extremal mechanism if for each internal node u ∈ T , and divergent agent i = Q(u)
at u, it holds that either agent i’s current domain, Di(u), comprises a single valuation, or
Di(u) is partitioned by the query at u into a set containing all the pairs (v, S) ∈ Di(u),
where v is the maximum valuation (or minimum valuation, consistently) in Di(u), and the
remaining elements of Di(u).

I Definition 11 (Cud mechanisms). We define a class Cud of mechanisms, whose implementation
tree T satisfies:

Consider a divergent agent i who is asked to separate between (vi, Si) 6= (v′i, S′i) with
v′i ≥ vi and S′ ⊆ S, at some internal node u ∈ T . Consider any outcome o(vi,Si) in
the subtree rooted at u consistent with signalling type (vi, Si). Then if i is allocated her
desired bundle under o(vi,Si), she also gets her desired bundle in all possible outcomes
consistent with signalling type (v′i, S′i) at u.

I Theorem 12. Every valuation-extremal mechanism that belongs to class Cud is OSP.

Theorem 12 extends the result in [10] to the more general case of multi-dimensional agents.
Due to lack of space, the proof is omitted.

Algorithm 3 presents an implementation of the known Greedy-by-valuation mechanism
for the case of unknown-bundle single minded agents.

I Theorem 13. Algorithm 3 is an OSP mechanism that achieves an approximation ratio
ρ ≤ δ for the case of unknown-bundle single-minded agents, where δ is the size of the largest
desired set.

Proof. The approximation guarantee of the algorithm is folklore. By Theorem 12, it remains
to prove that Algorithm 3 is valuation-extremal and belongs to class Cud . Indeed, note that
when an agent is queried in line 4 then she is separating all types with valuation v′, which is
the maximum compatible valuation at this point of the execution, with all types consistent
to smaller values v (regardless of the desired bundles).

We will now prove that the algorithm belongs to class Cud (see Definition 11). Let u be
the node of the implementation tree in which (v, S) is separated from (v′, S′) with v′ ≥ v

and S′ ⊆ S; clearly there is nothing to separate if v = v′ and S = S′. Consider first the case
that v′ > v; u corresponds to a query at line 4. Assume that there exists b−i ∈ D−i(u) for
which S is won by agent i when playing according to (v, S). This means that S is feasible
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Algorithm 3 An extensive-form implementation of the Greedy-by-valuation algorithm.

1 P ← ∅ (P is the set of bundles that have already been allocated) N ← N (N is the
set of agents currently under consideration) Di ← Di for all i ∈ N (Di is the set of
values in i’s domain currently under consideration)

2 while N 6= ∅ do
3 Let j = arg maxk∈N maxDk
4 Ask j if her valuation is maxDj
5 if yes then
6 Ask agent j to reveal her desired set Rj
7 if there is S in P such that Rj ∩ S 6= ∅ then
8 N = N \ {j}
9 else

10 P ← P ∪ {Rj}
11 N = N \ {j}

12 else
13 Dj = Dj \ {maxDj}

14 Return P

at u; since S′ ⊆ S then S′ is also feasible at that point. Therefore, the feasibility check in
line 7 is successful and S′ is won by agent i playing according to (v′, S′) irrevocably at that
point, that is for any b−i ∈ D−i(u), as requested. Consider now the case in which v′ = v

and S′ ⊂ S; u corresponds to a query at line 6. Again, if S is feasible at this point of the
execution, so is S′. Therefore, S′ is allocated if S is, and the proof is complete. J

5 Randomised mechanisms for known-bundle single-minded agents

In this section we consider randomised mechanisms that are universally OSP. We note that
the bounded rationality assumption that motivates OSP does not prevent agents from using
and understanding such a mechanism, as they do not need to compute expected utilities to
determine obvious dominance. We start by presenting a class of randomised mechanisms
that are universally OSP.

I Definition 14 (MR mechanisms). We define a classMR of randomised mechanisms, that
work as follows:

Fix some probability distribution F on the domain D of valuations of all agents. A
mechanism M ∈ MR selects one of the values v in D according to F and asks every
agent if her valuation is at least equal to v. M selects the maximum number of agents
whose requests can be satisfied simultaneously, allocates them their desired bundles and
charges each of them v.

I Lemma 15. Any mechanism M ∈MR is universally OSP.

Proof. We claim that any mechanism that belongs to classMR is a randomisation among
different deterministic OSP mechanisms. Indeed, fix a value v ∈ D and consider the
mechanism that queries all agents if their valuation is at least equal to v and outputs a
feasible solution that allocates their desired bundles to the maximum number of agents who
reply yes. It should be easy to see that if, when queried, an agent signals yes when her true
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valuation is smaller than v, then the best she can achieve is 0 utility, which is what she
would achieve by signalling truthfully. On the other hand, if, when queried, an agent signals
no when her true valuation is at least equal to v, then the best she can achieve is 0 utility,
which is at least what she would achieve by signalling truthfully. J

I Theorem 16. Consider mechanism MF ∈MR (Definition 14), where F is a probability
distribution assigning probability pj to value Vj ∈ D, with Vj > Vj−1, for j ∈ {1, . . . , d} (set
V0 = 0), as follows:

p1 =

d−∑
j≤d

Vj−1

Vj

−1

and pj = p1

(
1− Vj−1

Vj

)
, for j ∈ {2, . . . , d}.

Then MF is a universally OSP randomised mechanism that achieves a min
{
d, 1 + ln

(
Vd

V1

)}
-

approximation of the optimal SW for known-bundle single-minded agents, where d = |D|.

Proof. Lemma 15 straightforwardly implies that MF is universally OSP. Denote by Tj the
set of agents who are allocated their desired bundles after MF selects Vj with probability
pj . Also, let T ∗j denote the set of agents i such that vi = Vj who are allocated their desired
bundle in the optimal allocation.

For the optimal social welfare, SW ∗, it holds that

SW ∗ =
∑
j≤d

Vj · |T ∗j |

We bound the social welfare SW of MF as follows.

SW =
∑
j≤d

pjVj · |Tj | ≥
∑
j≤d

pjVj

 ∑
j≤`≤d

|T ∗` |


=
∑
j≤d

|T ∗j | ·
∑
`≤j

p`V` =
∑
j≤d

|T ∗j |
∑
`≤j

p1

(
1− V`−1

V`

)
V`

= p1
∑
j≤d

|T ∗j |
∑
`≤j

(V` − V`−1) = p1
∑
j≤d

|T ∗j | · Vj

= p1 · SW ∗,

where the inequality holds because by definition of mechanism MF , Tj is the maximum
cardinality set of agents with valuations at least Vj that can be satisfied simultaneously, and
the third equality uses the definition V0 = 0.

Thus, the approximation ratio ρ of this mechanism satisfies

ρ ≤ 1
p1

= d−
∑

2≤j≤d

Vj−1

Vj
(5)

So, the right-hand-side of (5) is strictly less than d. It remains to prove that ρ ≤ 1 + ln(Vd

V1
).

The expression in (5) is maximised if
∑

2≤j≤d Vj−1/Vj is minimised. Letting X1, . . . , Xd−1
denote the ratios V1/V2, . . . , Vd−1/Vd, and letting c denote the ratio V1/Vd, this amounts
to minimising

∑
i∈[d−1] Xi subject to

∏
i∈[d−1] Xi = c. By the inequality of arithmetic and

geometric means it holds that
∑
i∈[d−1] Xi ≥ n · c1/d−1 for any solution to this minimisation

problem, and furthermore this holds with equality for the solution where Xi = c1/d−1 for all
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i ∈ [d− 1]. We conclude from this that the expression in (5)) is maximised if all the ratios
Vj−1/Vj in the summation are equal (for a fixed choice of Vd/V1), and this is achieved by
setting Vj = V

j−1
d−1
d so that Vj−1/Vj = (Vd/V1)−1/(d−1), for all 2 ≤ j ≤ d. Inequality (5) then

yields

ρ ≤ d− (d− 1)
(
Vd
V1

) −1
d−1

≤ 1 + ln
(
Vd
V1

)
, (6)

where the last inequality holds because 1 + ln(Vd/V1) is the limit of the left hand side, and
the left hand side is increasing in d. This completes the proof. J

We note that a similar bound of O (ln (r)) can be achieved in settings where the valuation
space is uncountable and contained in an interval [a, b] with b/a = r. One can define a
continuous version of MF by deriving its limit running on Dε as ε approaches 0. The
mechanism would then work as follows:
(i) Draw a valuation x ∈ [a, b] according to the cumulative distribution function F , with

F (x) = ln(x/a)+1
ln(r)+1 .

(ii) Ask each agent whether her valuation exceeds x.
(iii) Compute the maximum cardinality feasible solution Tx among all yes-responding agents.
A similar analysis to that in the proof of Theorem 16 yields the desired bound.
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Abstract
The random-order or secretary model is one of the most popular beyond-worst case model for online
algorithms. While this model avoids the pessimism of the traditional adversarial model, in practice
we cannot expect the input to be presented in perfectly random order. This has motivated research
on best of both worlds (algorithms with good performance on both purely stochastic and purely
adversarial inputs), or even better, on inputs that are a mix of both stochastic and adversarial parts.
Unfortunately the latter seems much harder to achieve and very few results of this type are known.

Towards advancing our understanding of designing such robust algorithms, we propose a random-
order model with bursts of adversarial time steps. The assumption of burstiness of unexpected
patterns is reasonable in many contexts, since changes (e.g. spike in a demand for a good) are often
triggered by a common external event. We then consider the Knapsack Secretary problem in this
model: there is a knapsack of size k (e.g., available quantity of a good), and in each of the n time
steps an item comes with its value and size in [0, 1] and the algorithm needs to make an irrevocable
decision whether to accept or reject the item.

We design an algorithm that gives an approximation of 1− Õ(Γ/k) when the adversarial time
steps can be covered by Γ ≥

√
k intervals of size Õ( n

k
). In particular, setting Γ =

√
k gives a

(1−O( ln2 k√
k

))-approximation that is resistant to up to a ln k√
k
-fraction of the items being adversarial,

which is almost optimal even in the absence of adversarial items. Also, setting Γ = Ω̃(k) gives a
constant approximation that is resistant to up to a constant fraction of items being adversarial.
While the algorithm is a simple “primal” one it does not possess the crucial symmetry properties
exploited in the traditional analyses. The strategy of our analysis is more robust and significantly
different from previous ones, and we hope it can be useful for other beyond-worst-case models.
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1 Introduction

In standard competitive analysis of online algorithms, one assumes that an adversary
completely defines the input. While this is a useful model for designing algorithms for many
problems, for many others this model is too pessimistic and no algorithm can outperform
the trivial ones. One classical example is the Secretary Problem and its generalizations. In
this problem, one is presented a sequence of n items of values v1, . . . , vn. Upon each arrival,
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72:2 Knapsack Secretary with Bursty Adversary

one has to decide irrevocably if one accepts or rejects the item, without knowing the value of
future items in the sequence. The goal is to select a single item in order to maximize the
value obtained. It is easy to see that in the adversarial model the best guarantee possible is
to obtain expected value that is a 1

n -fraction of the offline optimum, and this is achieved by
the trivial algorithm that chooses one of the n time steps at random and blindly accepts the
item in this time step.

In order to avoid the pessimism of this model and allow for the design of non-trivial
algorithms with hopefully better performance in practice, there has been a push to consider
beyond worst-case models. One of the most prominent such models is the random-order
model, where the adversary can choose the set of items in the instance, but they are presented
in uniformly random order. This model has been studied since at least the 60s and has seen
a lot of developments in the past decade, and several problems are now well-understood
under this model, such as Knapsack and more generally Packing LPs [21, 3, 2, 28, 18, 16, 1],
assignment problems [8, 12, 18], matroid optimization [4, 6, 23, 13, 14], and many more. For
example, for the Secretary Problem in the random-order model one can obtain a 1

e -fraction of
the offline optimal value (as n→∞) with the following classical threshold-based algorithm:
reject the first 1

e -fraction of items but note their maximum value, then select the next element
which exceeds this value if such an element appears.

However, in practice we cannot expect the sequence to arrive exactly in random order.
This has motivated research on best of both worlds, namely algorithms with good performance
on both purely stochastic and purely adversarial inputs [25, 26, 22, 27]. Even more interesting
are algorithms that work well on inputs that are a mix of both stochastic and adversarial
parts. But this seems to be much harder to achieve: in online algorithms we are only aware
of the results of [11] on budgeted allocation (see Section 1.3 for a description of their model
and assumptions), while in online learning results of this type have only been obtained
very recently for multi-armed bandits [29, 24, 30, 15]. We note that all these results are for
settings in which non-trivial guarantees can be achieved for pure adversarial inputs.

Towards advancing our understanding of designing such robust algorithms, we introduce
a model that mixes random-order and adversarial time steps, assuming that the latter comes
in bursts. The random-order times represent when the environment is in a “stationary”
or “predictable” state, while the adversarial times represent “unexpected” patterns. The
assumption of burstiness of unexpected patterns is reasonable in many contexts, since changes
are often triggered by an external common event, e.g., the surge in gun sales after news of
possible changes in gun control regulations. See [19, 20, 9, 7] for examples of the different
ways in which burstiness can be modeled and areas of applications.

1.1 The Bursty Adversary plus Random Order (BARO) model
We describe more formally the general version of the proposed model BARO. Consider an
online problem where decisions are made sequentially and irrevocably at times 1, 2, . . . , n.
In our model, the adversary first chooses some the time steps Adv ⊆ [n] to be “adversarial”
and leaves the others RO = [n] \ Adv as “random-order” times. In order to capture the
burstiness of the adversarial time steps in a clean way, let W be the partition of [n] into
disjoint intervals of length `. We then assume that the adversarial times Adv are covered by
at most Γ intervals in W. Notice that this allows various patterns in the adversarial part of
the input, including individual (non-bursty) adversarial times as well as bursts of size much
larger than `, for a total of up to Γ` adversarial times. As in the standard random-order
model, the items/inputs on the random-order times RO are arbitrary but presented in
uniformly random order. The sequence items/inputs on the adversarial times Adv is fully
adversarial that can be adaptively generated based on an algorithm’s behavior and may even
depend on the order of the items in RO.
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It is important to highlight that the algorithm does not know which time steps are
adversarial or random-order, and that in each time step only one item arrives (i.e., the
adversarial items do not come in batches).

Note that in many problems this adversary can make an instance completely adversarial by
sending “dummy” random-order items. For example, in the Secretary Problem the adversary
can set the value of all random-order items to be 0; so again no non-trivial guarantees is
possible in this case. In order to obtain meaningful guarantees, we compare the algorithm’s
performance only to the optimum over the random-order times RO, which we denote by
OPTRO. Thus, in a maximization problem we say that an algorithm is α-competitive in the
BARO model if the expected value of the algorithm is at least αOPTRO.

1.2 Our Results
In this paper we use the BARO model to obtain a more robust algorithm for the Knapsack
Secretary problem, a well-studied generalization of the Secretary Problem. The offline version
of the problem is the standard Knapsack Problem: there are n items, each with a value
vi ≥ 0 and size wi ∈ [0, 1], and we have a knapsack of size k; the goal is to select a subset of
items with total size at most k, and with total value as large as possible.

Our main result is an algorithm for the Knapsack Problem in the BARO model that is
resistant to a fraction of items being adversarial.

I Theorem 1. There is a
(
1−O

(Γ`
n ln n

Γ`
))

=
(
1−O

(Γ ln k
k ln k

Γ ln k
))
-competitive algorithm

for the Knapsack Problem in the BARO model where the adversarial times can be covered by
Γ ≥
√
k windows of size ` = n ln k

k .

Notice that the term Γ`
n in the guarantee is precisely the fraction of adversarial items

that the algorithm can cope with. For example, setting Γ =
√
k, our algorithm obtains

a (1 − O( ln2 k√
k

))-approximation in the presence of up to a O( ln k√
k

)-fraction of items being
adversarial. For large k this approximation is almost optimal: even in the absence of
adversarial items (and even when all items are unit-sized) the best approximation possible
is 1 − Ω( 1√

k
) [21] (and this is achieved for example by [28, 18, 1, 16]). Note that these

competitive ratios go to 1 as the budget k →∞ (recall the normalization of sizes being at
most 1). Moreover, with Γ = Ω(n` ) the algorithm achieves a constant approximation in the
presence of a constant fraction of adversarial items.

Primal Algorithm with Time-Based Constraints. Our starting point is the primal strategy
for the random-order model, whose high-level idea is the following: At time t, one solves a
knapsack LP with the items seen so far but with budget proportionally scaled to be d tnke,
and pick (a fraction of) the item at time t exactly as prescribed by the optimal LP solution,
if there is space available in the full budget of k.

While this strategy obtains the optimal guarantee in the random-order model [18], it fails
in the presence of adversarial items. One way in which it fails is by picking “too many items”:
Suppose that the first k items are adversarial, have size 1, and they all have infinitesimal
values but sorted in increasing order, and the random-order items have all value and size
equal to 1; it is easy to see that the primal algorithm will pick all the adversarial items,
filling up the budget with items of infinitesimal value. (Similar examples exist where the
adversarial items are not in the beginning of the sequence.) To counter this, in our algorithm
we add additional restrictions, outside of the LP, that the algorithm can only pick a constant
mass of items in each window of size ` ≈ n

k , which is roughly the behavior of the optimal
solution if the n items were in random order.
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However, the algorithm may now fail by picking “too few” items: consider the same
example as before but now all the adversarial items have value 1 + ε, thus slightly more
valuable than the random-order items. The algorithm will then only pick 1 of these adversarial
items (by the new restriction added) and will not pick any of the random-order items, since
the LP will always fill up its budget with the better adversarial items; so the algorithm
obtains value 1 + ε, while the OPTRO = k. To avoid this, we also add additional constraints
to the LP that its solution can select at most a constant number of items in each window of
size ` ≈ n

k (note there are t
nk disjoint such windows in [t] and the LP selects total size ≈ t

nk,
again on average 1 per window).

The main difficulty is analyzing the algorithm in the presence of the additional restric-
tions/constraints. Previous analyses of primal-style algorithms crucially relied on the fact
the LP (and its optimal solution) was invariant to the permutation of items/coordinates.
This brings about some crucial independence properties: Decisions at time t are independent
of the order of the arrivals at times 1, . . . , t − 1 and therefore of the respective decisions.
This property allows for the direct use of known concentration inequalities to control the
total occupation incurred by the algorithm.

Since our new restrictions/constraints are not permutation invariant, we need to use a
different type of analysis. The main handle is what we call the weighted rank of an item:
the sum of the weights of items with higher value density vi

wi
than this item, divided by the

knapsack capacity. That is, it is by how much one would have to scale the knapsack capacity
before the offline optimum would start picking this item. The very high-level idea of the
analysis is intuitive: The higher the weighted rank of an item, the smaller its probability
of being picked by the LP, even with the new constraints. In addition, while there are
complicated dependencies between the events “the algorithms picks the item at time t”, the
weighted ranks of the items in the random-order times are almost independent: they are just
sampled without replacement. We leverage this to obtain custom concentration inequalities
that control the algorithm’s occupation of the different restrictions/constraints.

1.3 Related Work

As already pointed out above, many algorithms have been proposed for online optimization
problems with random arrival order. However, these algorithms usually break when moving to
the BARO model. For concreteness, let us illustrate the effect on Kleinberg’s algorithm [21] for
the multiple-choice secretary problem, a special case of our problem. The algorithm is allowed
up to k selections. Throughout the sequence, it never picks items which are not among the
best k so far. Therefore, we can construct the following counterexample. Consider a sequence
starting with an adversarial burst of k items of very high value, followed by a random-order
sequence with items of smaller values. On this sequence, the algorithm will not pick any
random-order items at all. If n� k, then with high probability (over the randomness of the
algorithm) none of the adversarial items are picked either (the threshold-based algorithm
for the secretary problem is applied to the first ≈ n

k items w.h.p., in which case the first
≈ 1

e
n
k � k items are rejected). This argument transfers immediately to other algorithms,

such as [2, 18]. Other algorithms such as the one by [1] or by [4] use the beginning of the
sequence to estimate the optimal value, which also fails in this sequence.

There is only surprisingly little work when it comes to non-uniform random order model.
Recently, [17] introduced models where the order of the items is “much less random” than
the uniform random order. Among other results, they show that it is possible to obtain
constant-competitive algorithms for the Multiple-choice Secretary Problem under these
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weaker assumptions, and quantify the minimum entropy of the distribution over orders that
admits constant-competitive algorithms for the Secretary Problem. We remark that these
models do not explicitly contain adversarial items.

Closer in spirit to our model, [11] consider online budgeted allocation in an online model
that mixes both stochastic and adversarial inputs. They provide algorithms that are optimal
when the input is totally adversarial, and whose performance improves when the instance
becomes “more stochastic”. There are two crucial differences between our proposed model and
Esfandiari et al.’s model: in the latter, while the adversarial items may appear at any point
in the sequence (i.e., no burstiness assumption), it is assumed that the algorithm knows the
distribution of the items in the non-adversarial times, unlike in our model. Also, unlike the
Knapsack Problem studied here, the budgeted allocation problem has constant-competitive
algorithms even in the adversarial model. Thus, while to some extent an algorithm does not
need to worry about “losing everything” if it is fooled by the adversarial part of the instance,
its design and analysis have to be delicate enough to obtain fine control over the constants
in the competitive-ratio in order to yield interesting results.

In a very recent paper, Bradac et al. [5] present several results for robust secretary
problems in a mixed model very similar to ours, which was inspired by a discussion about a
preliminary version of this present paper. In contrast to our model, there is no assumption
on the number or burstiness of adversarial rounds, making the results incomparable. Our
focus is to understand situations in which we are close to the optimal guarantee without
adversarial rounds. Since their adversary is more powerful, the guarantees are worse in two
ways: (i) Their benchmark is weakened by leaving out the best item. (ii) The guarantees
depend on the overall number of rounds n, whereas ours only depend on k. The techniques
are also quite different.

2 BARO Knapsack: model and algorithm

Model. We consider an online knapsack problem. The algorithm knows upfront the knapsack
size k and the number of items n, and the items are presented online, one-by-one. In the
t-th time step, the current item’s value Vt and size Wt are revealed, and the algorithm needs
to irrevocably decide what fraction Xalg

t ∈ [0, 1] of this item to select. Our algorithm’s
selection is always integral, i.e., Xalg

t ∈ {0, 1}, but our point of comparison is the best
fractional solution. The selections made by the algorithm need to fit the knapsack, namely∑
t∈[n]WtX

alg
t ≤ k with probability 1, and it tries to maximize the total value of its selections:∑

t∈[n] VtX
alg
t . Importantly, the choice in the t-th step has to be made only knowing V1, . . . Vt

and W1, . . . ,Wt (as well as k and n).
The sequences V1, . . . , Vn ≥ 0 and W1, . . . ,Wn ∈ [0, 1] are generated by the following

Bursty Adversary plus Random Order (BARO) model. Let us fix a window size `, and let
W denote the collection of disjoint windows of size ` that partitions the time steps [n],
that is, W = {{1, 2, . . . , `}, {`+ 1, . . . , 2`}, . . . }. For concreteness we will use window size
` := n ln k

k . The adversary first partitions the n times steps into sets Adv (adversarial) and
RO (random-order) with the property that Adv can be covered by Γ windows in W; we use
Wadv ⊆W to denote one such cover, fixed throughout. The adversary also fixes the items
for the random-order times, namely the value/size pairs (v1, w1), (v2, w2), . . . , (v|RO|, w|RO|),
with wi ∈ [0, 1] for all i. Moreover, for each random-order time t ∈ RO, nature samples
without replacement an index It from {1, 2 . . . , |RO|}, i.e., randomly chooses which random-
order item will appear at that time. Then, for each time step t the adversary outputs an
item with value Vt and size Wt ∈ [0, 1] as follows:
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(Adversarial) If t ∈ Adv, the adversary outputs an item with arbitrary value Vt and size
Wt ∈ [0, 1]; this may depend on an algorithm’s behavior and on the It’s.
(Random-order) If t ∈ RO, the adversary outputs the item indexed by It, namely that
with value Vt := vIt and size Wt := wIt .

Note that there is a subtle difference between capital and small letters here. By Vt andWt, we
refer to the value and weight of the item arriving in the t-th step. By vi and wi we refer to the
i-th random-order item specified by the adversary before the random permutation is applied.
Consequently, Vt and Wt are random variables whereas vi and wi are not. Furthermore,
since the It’s are sampled without replacement, the items ((Vt,Wt))t∈RO in the random-order
times are precisely the items (v1, w1), (v2, w2), . . . , (v|RO|, w|RO|) randomly permuted.

Again we highlight that the algorithm does not know which time steps are adversarial
and which are random-order, and that the adversarial items do not come in batches. As
mentioned before, the benchmark for comparison is the offline optimum for the problem on the
random-order items alone, namely OPTRO := max{

∑
i vixi :

∑
i wixi ≤ k, x ∈ [0, 1]|RO|}.

Algorithm. The algorithm we propose is a modification of the primal method of [18] and
can be described as follows. Let Wt be the collection of windows W truncated to the prefix
[t], namely {1, . . . , `}, {`+ 1, . . . , 2`}, . . . , {b t`c`+ 1, . . . , t}. At time t, in order to compute
its selection Xalg

t ∈ {0, 1} of the current item, the algorithm first finds an optimal solution
Xt to the following (random) linear program LPt:

max
∑
t′≤t

Vt′Xt′

s.t.
∑
t′≤t

Wt′Xt′ ≤ ct
t

n
k (main inner budget)

∑
t′∈B

Wt′Xt′ ≤ a1
`

n
k, ∀B ∈Wt (inner constraints)

X ∈ [0, 1]t,

where we introduce the slight budget scaling ct := (1− 4Γ`
t ), and set the constant a1 := 601. If

Xt
t > 0, we say that the algorithm tentatively picks the item at time t. The algorithm checks

if it can permanently pick this item by verifying whether its past selections Xalg
1 , . . . , Xalg

t−1
satisfy the following constraints:∑

t′<t

Wt′Xt′ ≤ k − 1 (main budget)

∑
t′∈Blast

Wt′Xt′ ≤ a4
`

n
k − 1, (outer constraint)

where Blast denotes the last window in Wt−1, and a4 is a sufficiently large constant (set in
Lemma 13). If so, the algorithm fully picks the item, namely it sets Xalg

t = 1; otherwise we
say that it is blocked and it does not pick the item at all, setting Xalg

t = 0.
To get some intuition why the algorithm is reasonable, let us observe how the “offline

optimum” OPTRO builds up over time. We can define random variables X∗t indicating what
fraction of the item arriving at time t is packed in OPTRO. Because the permutation is
uniformly random, these random variables are identically distributed for all t ∈ RO. More
specifically, we have E [VtX∗t ] = OPTRO/|RO| ≈ OPTRO/n and E [WtX

∗
t ] ≤ k/|RO| ≈ k/n.

So, in expectation, slightly scaled versions of the random variables fulfill all constraints
stated above. Our algorithm, of course, does not know X∗t but tries to mimic this process.
Particularly, the goal of (inner constraints) and (outer constraint) is to spread out the choices
made by the algorithm over time so that the consequences of adversarial bursts are mitigated.
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Notice that by construction the solution Xalg returned by the algorithm is always feasible,
namely

∑
t≤nWtX

alg
t ≤ k. Thus, we only need to argue that it obtains enough value.

I Theorem 2 (Total value). The expected value of the solution Xalg returned by the algorithm
satisfies

E

[ ∑
t∈RO

VtX
alg
t

]
≥
(

1−O
(

Γ`
n

ln n

Γ`

))
OPTRO.

Roadmap of the analysis. In Section 3 we upper bound for each random-order time t the
probability that the algorithm tentatively selects that item. Next, we boost this per-time
upper bound into concentration inequalities for the volume of the selections made up to
a given point, and use it to upper bound the probability that the algorithm is blocked by
constraint (main budget) or (outer constraint), in which case it would not be able to make
permanent its tentative selection (Section 4). Using this, we lower bound the value obtained
by the algorithm in each (free) random-order time step (Section 5), and add over all such
time steps to show that the algorithm obtains the desired value (Section 6). Due to space
constraints, the proofs of several lemmas are deferred to the full version of the paper.

Without loss of generality we assume that the random-order times are sorted in decreasing
order of value density, namely v1

w1
≥ v2

w2
≥ . . . ≥ v|RO|

w|RO|
. Also, we say that an item is better

than another if it has higher value density. For simplicity, we also assume that no item has
value or weight equal to 0 (else automatically exclude/include in the solution), and that the
sum of all item sizes is at least the knapsack size k. We also assume that there are no ties in
the value densities vi

wi
; this can be accomplished by infinitesimal perturbations to the values,

for example. We also assume n
2 ≥ k ≥ 80 and that Γ`

n ≤
1
2 , so at most half of the windows

can have adversarial items. With overload of notation, we use It to denote the actual item
(pair (Vt,Wt)) at time t, even when t is an adversarial time.

3 Controlling tentative selections via weighted rank

We use Tt := 1(Xt
t > 0) to denote the indicator of tentative selection by the algorithm at

time t. Our goal in this section is to argue that the algorithm does not tentatively select too
many items. As mentioned before, the main handle for making this formal is the notion of
weighted rank. The weighted rank of the random-order item i is a 1

k scaling of the sum of
the weights of random-order items better than it (recall these items are sorted in decreasing
order of value density vi

wi
).

I Definition 3 (Weighted rank). The weighted rank of the random-order item i is ri :=
1
k

∑
i′<i wi′ (we also define r|RO|+1 = 1

k

∑
i wi for convenience). For a random-order time t,

we use Rt := rIt to denote the total weighted rank of the item It at this time.

As before, one interpretation of the weighted rank ri is the following: considering the
offline problem with only random-order items, ri is by how much we need to scale the
knapsack of size k before the optimal fractional solution wants to pick a strictly positive
fraction of item i. Thus, the higher the rank the worse the item is.

The main result of this section says that the worse the item at time t is, the less likely the
algorithm is to tentatively pick it (the extra conditioning on items (It′)t′∈S will be technically
useful later and may be ignored throughout at a first read).
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I Lemma 4 (UB tentative selection). Consider a random-order time t ≥ 8`(Γ + 1), and a set
S of random-order times with |S| ≤ ln k

4 . Then

Pr
(
Tt = 1

∣∣∣∣ Rt, (It′)t′∈S
)
≤ ψ(Rt), where ψ(γ) =


1, if γ < 1
2
k , if γ ∈ [1, 50]
4ke−

γ
20 ln k, if γ > 50.

For the rest of the section we prove this result. At its heart is the following deterministic
monotonicity property of the LP: Fix a scenario (so the LP is deterministic); if there is a
solution for the LP with only items better than It that saturates the main budget, then It
is not included at all in the optimal LP solution. This is clear if we did not have the inner
constraints: The optimal LP solution is obtained by the greedy procedure, and if we can
saturate the budget with only better items the greedy will stop before reaching It. While
this does not necessarily hold in the presence of general side constraints, we show it still does
under the simple inner constraints. The proof is deferred to the full version of the paper.

I Lemma 5. Consider a time t ∈ [n], and fix a scenario I1, I2, . . . , In. Suppose that there
is a feasible solution X̄ of LPt with

∑
t′≤tWt′X̄t′ = ct

tk
n and whose support only includes

times with items strictly better than It (i.e., X̄t′ > 0 implies that It′ is strictly better than It,
for all t′ ∈ [t]). Then in any optimal solution X∗ of LPt we have X∗t = 0. (Thus, It is not
tentatively selected by our algorithm.)

Our next lemma will leverage this result to show that if there are many items in random-
order-only windows better than It, then the probability of tentatively selecting the latter is
small. Before that, we need to introduce the definition of free time, the ones we will focus on
for most of the analyses.

I Definition 6 (Freet and ROt). A time is free if it does not belong to one of the adversarial
windows Wadv. We use Freet to denote the collection of free times in [t]. Furthermore,
Wfree
t denotes the windows from Wt that only contain free times.
We also use ROt := RO ∩ [t] to denote all the random-order times (free or otherwise)

in [t]. With slight abuse in notation, we also use ROt to denote the cardinality of ROt.

The following estimates follow directly from the assumption that there are at most Γ
adversarial windows, each of size `.

I Observation 7. The following holds: (a) If t ≥ 2 Γ` then |Freet| ≥ t
2 ; (b) 1

ROn
≤

1
|Freen| ≤

1
n (1 + 2Γ`

n ).

I Lemma 8. Consider a random-order time t ≥ 2(Γ`+ 1). For a value γ ≥ 0, let Gγ be the
event that the sum of the sizes of the items in the times Freet that are better than It equals
γct

tk
n (i.e.,

∑
t′∈Freet:It′<It

Wt′ = γct
tk
n ). Then for any set of random-order times S ⊆ RO

with |S| ≤ ln k
4 , we have

Pr(Tt = 1 | Gγ , It, (It′)t′∈S) ≤ 1
2ψ(γ) =

{
1
k , if γ ∈ [1, 50]
2ke−

γ
20 ln k, if γ > 50.

Proof. Condition on It, (It′)t′∈S , and on the set of items {It′}t′∈Freet−1 in the free times in
a way that the event Gγ holds; let ω denote this conditioning. If suffices to show the upper
bound Pr(Tt = 1 | ω) ≤ 1

2ψ(γ), and the lemma follows by taking expectation with respect to
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multiple of these ω’s. Also notice that this conditioning does not fix the relative order of the
items in Freet−1 \ S, thus: (?) The items at times Freet−1 \ S are in random order even
when conditioning on ω.

Let E be the event that there is a feasible solution X for LPt whose support only has
items better than It and that saturates the main budget, i.e.,

∑
t′≤tWt′Xt′ = ct

tk
n . From

Lemma 5, whenever E holds It is not tentatively selected, so it suffices to lower bound the
probability Pr(E | ω).

Case 1: γ ∈ [1, 50]. If for each of the free windows Wfree
t−1 the total size of items better than

It in the window is at most a1`
k
n (not “too many good items” in any free window), then

any (fractional) selection of these items of total size ct tkn gives a feasible solution for LPt
saturating the main budget, so E holds; notice that it is possible to select this much size
because we are in the case γ ≥ 1. The intuition is that since the total size of these good
items is γct tkn ≤ 50 tkn , each window should have about `

t · 50 tkn = 50` kn of their size in it,
so with high probability no window has more than a1`

k
n of their size (recall a1 � 50).

More formally, consider a free window B ∈Wfree
t−1. Let ZB\S =

∑
t′∈B\S 1(It′ < It)·Wt′ be

the sum of sizes of items in B\S better than It, and let Z =
∑
t′∈Freet−1\S 1(It′ < It)·Wt′ .

Notice that under the conditioning ω, Z is a fixed number satisfying Z ≤ γct tkn ≤ γ
tk
n ,

and that ZB\S is a sum of terms sampled without replacement from the terms in Z

(because of observation (?)). Thus, we have

E
[
ZB\S | ω

]
= |B \ S|
|Freet−1 \ S|

E[Z | ω] ≤ `

|Freet−1| − ln k ·
γtk

n

= t

|Freet−1| − ln k · γ`
k

n
≤ 3γ`k

n
,

where the last inequality uses the fact that t ≥ 2Γ`+1, Observation 7, and the assumptions
Γ ≥

√
k and k ≥ 80. Moreover, we can apply the Bernstein’s Inequality for sampling

without replacement (Corollary 2.3 of [16]) conditionally to the sum ZB\S to obtain

Pr
[
ZB\S ≥ 600` k

n

∣∣∣∣ ω] ≤ 2 exp
(
−9

7 3γ`k
n

)
≤ 2 1

k3 ≤
1
k2 ,

where in the first inequality we also used that τ ≥ 3 · 3γ` kn because γ ≤ 50, and in the
last inequality that k ≥ 80. Since |S| ≤ ln k

4 and each item has size at most 1, the items
in B ∩ S have total size less than ` kn . Thus, the conditional probability is at most 1

k2

that the total size of items in B better than It is at least a1`
k
n (“too many good items”).

Since there are fewer than k windows, by taking a union bound over all free windows
B ∈ Wfree

t we see that with probability at least 1 − 1
k none of these windows has too

many good items. Thus, Pr(E | ω) ≥ 1− 1
k .

Case 2: γ > 50. The number of windows in Wfree
t−1 of size ` (i.e., possibly excluding the last

window) is at least num := t
` − Γ − 1. If in each such window the total size of items

better than It is at least 2` kn (“good items everywhere”), then one can (fractionally)
select up to 2` kn -mass of them in each window and get a feasible solution for LPt that
saturates the main budget; this saturation is possible because this can give a total of size
(2` kn ) · num ≥ ct

t
nk of these better items, where the last inequality uses t ≥ 2`(Γ + 1).

Since in this case event E holds, it suffices to lower bound the probability of having
good items everywhere. The intuition again is that by assumption there is total mass
γct

tk
n ≥ 12 tkn of these better items, so each window should have about `

t · 12 tkn = 12` kn
size in it, and with high probability all of them should have at least 2` kn size in it.
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More precisely, considering any fixed window B ∈ Wfree
t−1 it is easy to obtain the

lower estimate E
[
ZB\S

∣∣ ω] ≥ γ`k
3n and again applying Bernstein’s Inequality we get

Pr
[
ZB\S ≤ 2` kn

∣∣ ω] ≤ 2 exp
(
− γ

20 ln k
)
. Taking a union bound over the at most k such

windows, the probability that we have enough good items in each window in Wfree
t−1 of size

` is at least 1− 2ke−
γ
20 ln k. This concludes the proof. J

To conclude the proof of Lemma 4, we show that the item at time t having rank Rt implies
with high probability that GRt holds (actually that the weight in Freet of items better than
It is at least Rtct tkn ); this is a consequence of the definition of rank and concentration. With
these final details, presented in the full version of the paper, we have the proof of Lemma 4.

4 Controlling the probability of being blocked

In this section we show that with good probability, when the algorithm tentatively selects an
item, it also permanently selects it, i.e., it is not blocked by the constraints (main budget)
and (outer constraint). More precisely, let Ot := WtX

alg
t be the actual occupation incurred

by the the algorithm at time t. We use Ft to denote the indicator of the event that the
algorithm is not blocked at time t, i.e., Ft = 1 if (again Blast is the last window in Wt−1)∑

t′∈Blast

Ot′ ≤ a4
`

n
k − 1 and

∑
t′<t

Ot′ ≤ k − 1, (4.1)

otherwise Ft = 0. The following is the main result of this section.

I Lemma 9 (Probability of being blocked). For all free times t ≥ 8`(Γ + 2), the probability of
being blocked is upper bounded as Pr(Ft = 0 | It) ≤ O(1)

k(1− t
n−a5

Γ ln k
k )2 , for some constant a5.

To prove this lemma, we will upper bound the probability that either of the two parts of
(4.1) is violated. For the first part, this will be Lemma 13. The bound for the second part is
Lemma 14. Lemma 9 then follows by a union bound.

While the first part of (4.1) only concerns the occupation from free time steps, the second
part also includes non-free ones. To control this second part, we will nonetheless focus on the
occupation over the free windows; for non-free windows B the outer constraints guarantee∑
t′∈B Ot′ ≤ O( `kn ) = O(ln k), and so all the Γ of these windows combined can consume only

O(Γ ln k) of the budget (so, for example, in the important case Γ =
√
k this is negligible).

For the free time steps, it suffices to upper bound the (permanent) occupation Ot by the
tentative occupation O′t := WtTt: For the algorithm to select the item at time t, it is necessary
but not sufficient that Tt = 1. Therefore, we have Ot ≤ O′t and we focus on controlling the
O′t’s from now on.

As a start, we use Lemma 4 to show that in each free time step the expected tentative
occupation E[O′t] is at most ≈ k

n ; thus, essentially both (4.1) hold in expectation. While what
we actually need is a generalization of this result, we present it to illustrate the techniques in
a clearer way.

I Lemma 10 (UB tentative occupation). For all free times t ≥ 8`(Γ + 1), we have E [O′t] ≤
k

ROn

(
1 +O

( 1
k

))
.

Proof. Since fixing It fixes Wt, using Lemma 4 we have

EO′t = EWtTt = EIt
[
Wt · E[Tt | It]

]
= EIt

[
Wt · Pr(Tt = 1 | It)

] L.4
≤ EIt

[
Wt · ψ(Rt)

]
= 1
ROn

∑
i

wi ψ(ri).
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Since by definition of rank rj = 1
k

∑
j′<j wj′ , we have ri+1 − ri = wi

k , and thus wi =
k ·
∫ ri+1
ri

1 dx. Applying this to the last displayed inequality we get

EO′t ≤
k

ROn

∑
i

∫ ri+1

ri

ψ(ri) dx. (4.2)

Since the item sizes are at most 1, we have ri+1 ≤ ri+ 1
k and so x− 1

k ≤ ri for all x ∈ [ri, ri+1].
Thus, as the function ψ is nonincreasing, the right-hand side of (4.2) is at most

k

ROn

∑
i

∫ ri+1

ri

ψ(x− 1/k) dx ≤ k

ROn

∫ ∞
0

ψ(x− 1/k) dx.

Finally, inspecting ψ(x) we see that it takes value 1 for x < 1, takes value 2
k for x ∈ [1, 50],

and has exponential decay ≤ e−x

k after that. Thus, it is easy to see that the integral on the
right-hand side is at most 1 +O( 1

k ). This concludes the proof. J

However, what we actually need is to show that (4.1) (with O′t’s) holds with good prob-
ability; for that we need concentration inequalities for the sums of the tentative occupations
O′t’s. The biggest problem is that the tentative selections induced by the LP are correlated
in a non-trivial way. In particular, it is not clear whether they are negatively associated: for
example, if the items up to time t− 1 are all “very good” the algorithm will not tentatively
select at times t, t + 1, etc., indicating possibility of positive correlations on these times.
Thus, the O′t’s are also correlated and it is not clear how to apply standard concentrations
inequalities.

4.1 Concentration I: controlling the outer constraint
However, as the example above illustrates, we still have hopes of obtaining good upper
bounds on the probability of multiple tentative selections. In fact, the probability of multiple
selection of items It1 , . . . , Itm is at most the probability that the “worst” of these items is
selected; more precisely:

I Lemma 11. Consider m ≤ ln k
4 random-order times t1, . . . , tm ≥ 8`(Γ + 1). Then

Pr
(
Tt1 = . . . = Ttm = 1

∣∣∣∣ Rt1 , . . . , Rtm) ≤ ψ (max
i
Rti

)
.

Proof. The inequality follows from the fact Pr(X1 = . . . = Xm = 1 | E) ≤ mini Pr(Xi = 1 |
E), Lemma 4, and mini ψ(Rti) = ψ(maxiRti) (by the monotonicity of ψ). J

The main advantage of this bound is that the ranks Rti are “almost” independent
(they would be independent if the input sequence was generated by sampling items with
replacement).

Moreover, this lemma allows us to upper bound products of tentative occupation
∏
iO
′
ti :

for this product to be strictly positive, all these items have to be tentatively selected. In
fact, one can prove such upper bound using a similar strategy as in Lemma 10, with a main
new element: a simple but general comparison for the expectation of a non-negative function
under sampling with and without replacement, that allow us to work with a decoupled
(independent) version R′t1 , . . . , R

′
tm of the ranks. Formally we have the following, which is

deferred to the full version of the paper.
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I Lemma 12 (Control of products). Fix a random-order time t. Consider a set of m ≤ ln k
4

distinct RO times t1, . . . , tm, all of which are at least 8`(Γ + 1) and less than t. Then there
are constants a2, a3 > 1 such that E

[∏
i∈[m]O

′
ti

∣∣∣ It] ≤ (1 + am2
k

)(
1 + 4m2

ROn

)(
k

ROn

)m
≤(

a3
k
n

)m
. In particular, choosing a2 = 500 and a3 = 8a2 is sufficient.

Finally, these product estimates can be converted into raw moments/tail inequalities
using reasonably standard estimates (e.g., Section 3.4 of [10]), giving the desired control of
the outer constraint’s occupation (the proof is deferred to the full version of the paper).

I Lemma 13 (Control of outer constraints). Consider a free time t ≥ 8`(Γ + 1), and let B be

the last window in Wt−1. Then Pr
(∑

t′∈B O
′
t′ > a4`

k
n

∣∣∣∣ It) ≤ 1
k , where a4 ≥ 2e6a3, and

a3 is the constant from Lemma 12.

4.2 Concentration II: control of main budget
In order to obtain Lemma 9 we need to show that the second part of (4.1) holds with
reasonable probability even when t ≈ n; but since EO′t ≈ k

n , the expected cumulative
occupation by the end of the game E[

∑t
t′=1O

′
t′ ] is ≈ k for t ≈ n, so we do not have much

room. So unlike the previous section, we are interested in “‘medium deviations”, where the
variance is the right quantity to look at. While Lemma 12 directly gives that the cumulative
variance until time t is . ( tkn )2, we actually need an upper bound of order O( tkn ), which
is what one would expect from independent Bernoulli’s with success probability k

n . Since
Var(Z) = EZ2 − (EZ)2, to obtain variance upper bounds we will obtain an upper bound on
the second raw moment and a lower bound on the expectation.

For that we actually prove concentration for a modified occupation that upper bounds O′t
in every scenario: Ō′t = WtT̄t, where T̄t := max{Tt,1[Rt ≤ 1]}, that is T̄t equals 1 if either
Tt = 1 or the weighted rank Rt is at most 1. While Lemma 12 still holds for these variables,
we can now get almost matching lower bounds on (E

∑t
t′=1 Ō

′
t′)2, giving the desired variance

bound Var[
∑t
t′=1 Ō

′
t′ ] ≤ O( tkn ). Essentially using the bound in expectation from Lemma 10

and Chebychev’s inequality with this variance control gives the following (see the full version
of the paper).

I Lemma 14 (Control of main budget). For every random-order time t, the probability
we are blocked by the main budget can be upper bounded as Pr

[∑
t′<tO

′
t > k − 1

∣∣ It] ≤
O(1)

k

(
1− t

n−O
(

Γ ln k
k

))2 .

Taking a union bound over Lemma 13 and Lemma 14 proves Lemma 9.

5 Lower bounding the value obtained

Recall that Xalg
t = TtFt, i.e., the item is permanently selected exactly when it is tentatively

selected and it fits the budgets, and that Vt is the value of the item at time t. The following
is then our main lower bound on the value obtained by the algorithm.

I Lemma 15 (Value lower bound). Consider a free time t ≥ 1, 212Γ`. Then E[VtTtFt] ≥(
ct − εt − pt − 2

k

) OPTRO
ROn

, where pt is the bound from Lemma 9 and εt = (a1 + 3)Γ`
t +

√
10 ln k

√
2n
tk .
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To prove this, the first step is to obtain the following “dual” to Lemma 4, which says that
if the item has low (i.e. good) rank then it is fully tentatively selected with good probability.

I Lemma 16. For any free time t ≥ 1, 212Γ` we have that the probability of fully tentatively

selecting item It satisfies: Pr
(
Xt
t = 1

∣∣∣∣ Rt ≤ ct − εt) ≥ 1− 1
k .

This is proved via a “dual” of Lemma 5 plus concentration. Given that good items are
tentatively selected with good probability and it is likely to fit the budget (Lemma 9), final
difficulty in proving Lemma 15 is the correlation between these quantities and the value Vt.
This is why most previous bounds actually work even conditioned on the item It; notice that
fixing It, fixes Vt as a deterministic constant. We sketch the argument.

Proof sketch of Lemma 15. Using the non-negativity of Vt, Tt, and Ft, we have

E[VtTtFt] = EIt [Vt E [TtFt | It]] ≥ EIt
(
Vt E [TtFt | It]

∣∣ Rt ≤ ct − εt)Pr(Rt ≤ ct − εt)

≥
(

1− pt −
1
k

)
EIt
(
Vt
∣∣ Rt ≤ ct − εt)Pr(Rt ≤ ct − εt),

where the second inequality uses Lemmas 16 and 9 (via the definition of pt). Since ct− εt ≈ 1
and essentially OPTRO gets value exactly from items of rank at most 1, the last two factors
in the inequality together give roughly the expected value OPTRO gets in a time step. J

6 Wrapping up: finishing the proof of Theorem 2

To finish the proof we just need to add Lemma 15 over all free time steps except the ones very
early or very late in the sequence. More precisely, let t0 = 1, 212Γ` and γ = 1− (a5 + 1)Γ`

n ,
and define T = {t ∈ Freen : t0 ≤ t ≤ γn}. For t 6∈ T , we use the trivial bound Vt ≥ 0. For
the other time steps we use Lemma 15. With the fact ROn ≤ n we have

E

[ ∑
t∈RO

VtX
alg
t

]
≥
∑
t∈T

E[VtTtFt] ≥
(∑
t∈T

ct −
∑
t∈T

εt −
∑
t∈T

pt −
2n
k

)
OPTRO

n
. (6.3)

We bound each of the remaining sums:∑
t∈T ct = |T | −

∑
t∈T

4Γ`
t ≥ (n−O(Γ`))−

∫ n
t0−1

4Γ`
t dt = n−O(Γ` ln n

Γ` ).∑
t∈T pt ≤ O

( 1
k

)
·
∫ γn

0
1

(1− t
n−a5

Γ ln k
k )2 dt = O

(
n
k

) ∫ γ
0

1
(a−x)2 dx, where in the last step we

set a = 1 − a5
Γ ln k
k and use change of variables x = t

n . The remaining integral equals
1

a−x
∣∣γ
0 ≤

1
a−γ . By our setting of γ we have a− γ = Γ`

n , so we obtain
∑
t∈T pt ≤ O

(
n
Γ
)
.∑

t∈T εt ≤
∫ n
t0−1(a1 + 3)Γ`

t dt+
∫ n
t0−1

√
20n ln k
kt dt ≤ O(Γ` ln n

Γ` ) +O(n
√

ln k√
k

).
Using these bounds on (6.3) and the assumption Γ ≥

√
k concludes the proof of the theorem.

7 Conclusions

A natural follow-up question is how our results could generalize to other settings. In particular,
it would be interesting to extend our algorithm and analysis to packing LPs. The difficulty
in using our technique is that there is no natural notion similar to the weighted rank for this
setting.

It would also be interesting to better understand the limitations and trade-offs in this
and similar models. For example, what regimes of parameter allow constant-competitive or
(1− ε)-competitive algorithms?
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Abstract
The Colour Refinement procedure and its generalisation to higher dimensions, the Weisfeiler-Leman
algorithm, are central subroutines in approaches to the graph isomorphism problem. In an iterative
fashion, Colour Refinement computes a colouring of the vertices of its input graph.

A trivial upper bound on the iteration number of Colour Refinement on graphs of order n is
n− 1. We show that this bound is tight. More precisely, we prove via explicit constructions that
there are infinitely many graphs G on which Colour Refinement takes |G| − 1 iterations to stabilise.
Modifying the infinite families that we present, we show that for every natural number n ≥ 10, there
are graphs on n vertices on which Colour Refinement requires at least n − 2 iterations to reach
stabilisation.
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1 Introduction

Colour Refinement, which is also known as Naïve Vertex Classification or the 1-dimensional
Weisfeiler-Leman algorithm (1-WL), is an important combinatorial algorithm in theoretical
and practical approaches to the graph isomorphism problem. In an iterative fashion, it
refines an isomorphism-invariant partition of the vertex set of the input graph. This process
stabilises at some point and the final partition can often be used to distinguish non-isomorphic
graphs [3]. Colour Refinement can be implemented to run in time O((m+ n) logn), where
n is the order of the input graph and m is its number of edges [6, 29]. Most notably,
its efficient implementations are used in all competitive graph isomorphism solvers (such
as Nauty and Traces [30], Bliss [19] and saucy [7]).

Colour Refinement has been rediscovered many times, one of its first occurences being
in a paper on chemical information systems from the 1960s [31]. The procedure is applied
in plenty of other fields, for example, it can be modified to reduce the dimension of linear
programs significantly [14]. Other applications are in the context of graph kernels [34] or
static program analysis [27]. A recently discovered connection to deep learning shows that
the expressive power of Colour Refinement is captured by graph neural networks [32].

As described above, Colour Refinement computes a stable colouring of its input graph.
It is known that two given graphs result in equal colourings, i.e. are not distinguished by
Colour Refinement, if and only if there is a fractional isomorphism between them [12, 33, 35].
Moreover, the graphs which Colour Refinement identifies up to isomorphism (i.e. distinguishes
from all non-isomorphic ones) have been completely characterised [2, 24].
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To obtain its final colouring, the algorithm proceeds in iterations. In this paper, we
investigate how many iterations it takes for the algorithm to terminate. More specifically,
for n ∈ N, we are interested in WL1(n), the maximum number of iterations required to reach
stabilisation of Colour Refinement among all graphs of order n.

While not directly linked to the running time on a sequential machine, the iteration
number corresponds to the parallel running time of Colour Refinement (on a standard PRAM
model) [17, 25]. Furthermore, via a connection to counting logics, a bound on the iteration
number for graphs of a fixed size directly translates into a bound on the descriptive complexity
of the difference between the two graphs, namely into a bound on the quantifier depth of
a distinguishing formula in the extension of the 2-variable fragment of first-order logic by
counting quantifiers [5, 18]. Moreover, the iteration number of 1-WL equals the depth of a
graph neural network that outputs the stable vertex colouring of the underlying graph with
respect to Colour Refinement [32].

Considering paths, one quickly determines that WL1(n) ≥ n
2 − 1 holds for every n ∈ N.

By contrast, on random graphs, the iteration number is asymptotically almost surely 2 [3].
The best published lower bound on the iteration number of Colour Refinement on n-vertex
graphs is n−O(

√
n) [26]. Concerning the upper bound, the trivial inequality WL1(n) ≤ n−1

holds for every repeated partitioning of a set of size n and it does not take into account any
further properties of the input graph or of the algorithm used to execute the partitioning.
Still, no improvement over this upper bound has been established.

Our first main result reads as follows.

I Theorem 1. For every n ∈ N≥10 with n = 12 or n mod 18 /∈ {6, 12}, it holds that
WL1(n) = n− 1.

Thus, there are infinitely many n ∈ N with WL1(n) = n− 1. We can even determine the
iteration number up to an additive constant of 1 for all n ∈ N (where the precise numbers
for n ≤ 9 can easily be determined computationally), as stated in our second main result.

I Theorem 2. For every n ∈ N≥10, it holds that WL1(n) ∈ {n− 2, n− 1}.

We obtain our bounds via an empirical approach. More precisely, we have designed a
procedure that enables us to systematically generate for all n ≤ 64 graphs of order n that
obey certain constraints (to render the procedure tractable) and on which Colour Refinement
takes n− 1 iterations to stabilise. Analysing the graphs, we have determined the connections
between colour classes during the execution of the algorithm in detail. If the vertex degrees
that are present in the graph are low, then the connections between colour classes of size 2
are restricted. This allows us to develop an elegant graphical visualisation and a compact
string representation of the graphs with low vertex degrees that take n − 1 iterations to
stabilise. Using these encodings, we are able to provide infinite families with n− 1 Colour
Refinement iterations until stabilisation.

Our analysis enables a deep understanding of the families that we present. Via slight
modifications of the graph families, we can then cover a large portion of graph sizes and,
allowing to go from connected graphs to general graphs, we can construct the graphs that
yield Theorem 2.

Due to space limits, we omit some of the proof details here and defer the reader to the
full version for them [21].
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Related work

Colour Refinement is the 1-dimensional version of the so-called Weisfeiler-Leman algorithm.
For every k ∈ N, there exists a generalisation of it (k-WL), which colours vertex k-tuples in
the input graph instead of single vertices only. See [20] for an in-depth study of the main
parameters of Colour Refinement and k-WL.

Similarly as for Colour Refinement, one can consider the number WLk(n) of iterations of
k-WL on graphs of order n. Notably, contrasting our results for Colour Refinement, in [22], it
was first proved that the trivial upper bound of WL2(n) ≤ n2 − 1 is not even asymptotically
tight (see also the journal version [23]). This foundation fostered further work, leading to an
astonishingly good new upper bound of O(n logn) on the iteration number of 2-WL [28].

For fixed k > 1, it is already non-trivial to show linear lower bounds on WLk(n).
Modifying a construction of Cai, Fürer, and Immerman [5], this was achieved by Fürer [9],
who showed that WLk(n) ∈ Ω(n), remaining to date the best known lower bound when
the input is supposed to be a graph. Only when considering structures with relations of
higher arity than 2 as input, better lower bounds on the iteration number of k-WL have
been proved [4].

For k > 2, regarding upper bounds on the iteration number of k-WL, without further
knowledge about the input graph, no significant improvements over the trivial nk − 1 are
known.1 Still, when the input graph has bounded treewidth or is a 3-connected planar graph,
polylogarithmic bounds on the iteration number of k-WL needed to identify the graph have
been published [17, 36].

Although for every k, there are non-isomorphic graphs that are not distinguished by k-
WL [5], it is known that for every graph class with a forbidden minor, a sufficiently high-
dimensional Weisfeiler-Leman algorithm correctly decides isomorphism [13]. Recent results
give new upper bounds on the dimension needed for certain interesting graph classes [15, 16].
A closely-related direction of research investigates what properties the Weisfeiler-Leman
algorithm can detect in graphs [1, 8, 10].

2 Preliminaries

By N, we denote the set of natural numbers, i.e. {1, 2, . . . }. We set N0 := N ∪ {0} and, for
k, ` ∈ N0, we define [k, `] := {n ∈ N0 | k ≤ n ≤ `} and [k] := [1, k]. For a set S, a partition of
S is a set Π of non-empty sets such that

⋃
M∈ΠM = S and for all M,M ′ ∈ Π with M 6= M ′,

it holds that M ∩M ′ = ∅. For two partitions Π and Π′ of the same set S, we say that Π′ is
finer than Π (or Π′ refines Π) if every element of Π′ is a (not necessarily proper) subset of an
element of Π. We write Π � Π′ (and equivalently Π′ � Π) to express that Π′ is finer than Π.
Concurrently, we say that Π is coarser than Π′. Note that if both Π � Π′ and Π′ � Π hold,
then Π = Π′.

For S 6= ∅, the partition {S} is the unit partition of S. The partition
{
{s} | s ∈ S

}
is

called the discrete partition of S. A set of cardinality 1 is a singleton.
All graphs that we consider in this paper are finite and simple, i.e. undirected without

self-loops at vertices. For a graph with vertex set V (G) and edge set E(G), its order is
|G| := |V (G)|. For a vertex v ∈ V (G), we denote by N(v) the neighbourhood of v in G,
i.e. the set {w | {v, w} ∈ E(G)}. Similarly, for a vertex set W , we set N(W ) :=

{
v | v /∈

W, ∃w ∈ W : v ∈ N(w)
}
. The degree of a vertex v is deg(v) := |N(v)|. (Since the graph G

1 The bound nk − 1 is not tight, since the initial partition of the k-tuples already has multiple classes, for
example, one consisting of all tuples of the form (v, v, . . . , v).
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will be clear from the context, we do not need to include it in our notation.) We also set
deg(G) := {deg(v) | v ∈ V (G)}. If there is a d ∈ N0 such that deg(G) = {d}, the graph G is
d-regular. A regular graph is a graph that is d-regular for some d ∈ N0. By a matching, we
mean a 1-regular graph.

Let G be a graph with at least two vertices. If there are sets ∅ 6= P,Q ⊆ V (G) such that
V (G) = P∪Q and P∩Q = ∅ and E(G)∩{{v, w} | v, w ∈ P} = ∅ = E(G)∩{{v, w} | v, w ∈ Q},
then G is bipartite (on bipartition (P,Q)). If, additionally,

{
{v, w} | v ∈ P,w ∈ Q

}
= E(G),

the graph G is complete bipartite.
For k, ` ∈ N0, a (k, `)-biregular graph (on bipartition (P,Q)) is a bipartite graph on

bipartition (P,Q) such that for every v ∈ P , it holds that |N(v)| = k, and for every w ∈ Q,
it holds that |N(w)| = `. A biregular graph is a graph G for which there are P,Q ⊆ V (G)
and k, ` ∈ N0 such that G is (k, `)-biregular on bipartition (P,Q).

For a graph G and a set V ′ ⊆ V (G), we let G[V ′] be the induced subgraph of G on V ′, i.e.
the subgraph of G with vertex set V ′ and edge set E(G) ∩ {{v, w} | v, w ∈ V ′}. We define
G− V ′ := G[V (G) \ V ′]. Furthermore, for vertex sets V1, V2 ⊆ V (G), we denote by G[V1, V2]
the graph with vertex set V1 ∪ V2 and edge set E(G) ∩ {{v1, v2} | v1 ∈ V1, v2 ∈ V2}.

A coloured graph is a tuple (G,λ), where G is a graph and λ : V (G) → C is a function
that assigns colours (i.e. elements from a particular set C) to the vertices. We interpret all
graphs treated in this paper as coloured graphs. If the colouring is not specified, we assume
a monochromatic colouring, i.e. all vertices have the same colour.

For a coloured graph G with colouring λ, a (vertex) colour class of G is a maximal set of
vertices that all have the same λ-colour. Every graph colouring λ induces a partition π(λ) of
V (G) into the vertex colour classes with respect to λ.

3 Colour Refinement

Colour Refinement proceeds by iteratively refining a partition of the vertex set of its input
graph until the partition is stable with respect to the refinement criterion.

I Definition 3 (Colour Refinement). Let λ : V (G) → C be a colouring of the vertices of a
graph G, where C is some set of colours. The colouring computed by Colour Refinement
on input (G,λ) is defined recursively: we set χ0

G := λ, i.e. the initial colouring is λ. For
i ∈ N, the colouring χi

G computed by Colour Refinement after i iterations on G is defined as
χi

G(v) :=
(
χi−1

G (v), {{χi−1
G (w) | w ∈ N(v)}}

)
.

That is, χi
G(v) consists of the colour of v from the previous iteration as well as the

multiset of colours of neighbours of v from the previous iteration. It is not difficult to see
that π(χi−1

G ) � π(χi
G) holds for every graph G and every i ∈ N. Therefore, there is a unique

minimal integer j such that π(χj
G) = π(χj+1

G ). For this value j, we define the output of
Colour Refinement on input G to be χG := χj

G and call χG and π(χG) the stable colouring
and the stable partition, respectively, of G. Accordingly, executing i Colour Refinement
iterations on G means computing the colouring χi

G. We call a graph G with initial colouring
λ and the induced partition π(λ) stable if π(λ) = π(χG). Note that if λ is stable, then for all
P,Q ∈ π(λ) with P 6= Q, the graph G[P ] is regular and the graph G[P,Q] is biregular.

Colour Refinement can be used to check whether two given graphs G and G′ are non-
isomorphic by computing the stable colouring on the disjoint union of the two. If there is a
colour C such that, in the stable colouring, the numbers of vertices of colour C differ in G
and G′, they are non-isomorphic. However, even if they agree in every colour class size in
the stable colouring, the graphs might not be isomorphic. It is non-trivial to describe for
which graphs this isomorphism test is always successful (see [2, 24]).
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I Notation 4. We write WL1(G) for the number of iterations of Colour Refinement on
input G, that is, WL1(G) = j, where j is the minimal integer for which π(χj

G) = π(χj+1
G ).

Similarly, for n ∈ N, we write WL1(n) to denote the maximum number of iterations that
Colour Refinement needs to reach stabilisation on an n-vertex graph.

We call every graph G with WL1(G) = |G| − 1 a long-refinement graph.

I Fact 5. Let G be an uncoloured path with n vertices. Then WL1(G) = bn−1
2 c.

Proof sketch. In the first iteration, the two end vertices are distinguished from all others
because they are the only ones with degree 1. Then in each iteration, the information of
being adjacent to a “special” vertex, i.e. the information about the distance to a vertex
of degree 1, is propagated one step closer to the vertices in the centre of the path. This
procedure takes bn−1

2 c iterations. J

In 2015, Krebs and Verbitsky improved on the explicit linear lower bound for graphs of
order n given by Fact 5 by constructing a family of pairs of graphs whose members of order
n can only be distinguished after n− 8

√
n Colour Refinement iterations (see [26, Theorem

4.6]). Hence, since for a set {v1, . . . , vn} =: S and every sequence π1, . . . , π` of partitions of
S that satisfy

π1 � π2 � · · · �
{
{v1}, . . . {vn}

}
= π`,

it holds that ` ≤ n− 1, we obtain the following corollary.

I Corollary 6. For every n ∈ N, it holds that n− 8
√
n ≤WL1(n) ≤ n− 1.

It has remained open whether any of the two bounds is tight. In preliminary research
conducted together with Gödicke and Schweitzer, towards improving the lower bound, the
first author took up an approach to reverse-engineer the splitting of colour classes. Gödicke’s
implementation of those split procedures led to the following result.

I Theorem 7 ([11]). For every n ∈ {1, 10, 11, 12}, it holds that WL1(n) = n − 1. For
n ∈ [2, 9], it holds that WL1(n) < n− 1.

Unfortunately, due to computational exhaustion, it was not possible to test for larger
graph sizes. Also, the obtained graphs do not exhibit any structural properties that would
lend themselves for a generalisation to larger orders. Using a fast implementation of Colour
Refinement, we could verify that there are exactly 16 long-refinement graphs of order 10, 24
long-refinement graphs of order 11, 32 of order 12, and 36 of order 13. However, again, with
simple brute-force approaches, we could not go beyond this number exhaustively.

4 Compact Representations of Long-Refinement Graphs

In the light of the previous section, the question whether the lower bound obtained by Krebs
and Verbitsky is asymptotically tight has remained open. With the brute-force approach, it
becomes infeasible to test all graphs of orders much larger than 10 exhaustively for their
number of Colour Refinement iterations until stabilisation. Still, knowing that there exist
long-refinement graphs, it is natural to ask whether the ones presented in [11] are exceptions
or whether there are infinitely many such graphs. We show that the latter is the case.

When the input is a coloured graph with at least two vertex colours, the initial partition
already has two elements. Hence, all long-refinement graphs are monochromatic. Therefore,
in the following, all initial input graphs are considered to be monochromatic.
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I Proposition 8. Let G be a graph and let n := |G|. If there exists an i ∈ N0 such that
|{χi+1

G (v) | v ∈ V (G)}| − |{χi
G(v) | v ∈ V (G)}| ≥ 2 holds, then G is not a long-refinement

graph.

Proof. Every pair of partitions π, π′ with π � π′ satisfies |π′| ≥ |π|+1. Thus, every sequence
of partitions of the form

π1 :=
{
{v1, . . . , vn}

}
� π2 � · · · �

{
{v1}, . . . {vn}

}
=: πn

must satisfy |πi| = |πi−1|+ 1 for all i ∈ [2, n]. J

The proposition implies that, in order to find long-refinement graphs, we have to look
for graphs in which, in every Colour Refinement iteration, only one additional colour class
appears. That is, in each iteration, only one colour class is split and the splitting creates
exactly two new colour classes.

I Corollary 9. Let G be a long-refinement graph with at least two vertices. Then there exist
d1, d2 ∈ N0 with d1 6= d2 and such that deg(G) = {d1, d2}.

Proof. This is a direct consequence of Proposition 8: every (monochromatic) regular graph
G satisfies WL1(G) = 0 and if there were more than two vertex degrees present in G, we
would have |{χ1

G(v) | v ∈ V (G)}| − |{χ0
G(v) | v ∈ V (G)}| ≥ 3− 1 ≥ 2. J

We can thus restrict ourselves to graphs with exactly two vertex degrees.

I Notation 10. For a graph G and i ∈ N0, we let πi
G denote the partition induced by χi

G

on V (G), i.e. after i Colour Refinement iterations on G. If G is clear from the context, we
omit it in the expression.

As a result of the regularity conditions that must hold for the bipartite graph G[V1, V2],
we make the following observation. It implies that, in a long-refinement graph, to determine
the class C that is split in iteration i, it suffices to consider the neighbourhood of an arbitrary
class obtained in the preceding iteration.

I Lemma 11. Let G be a graph. Suppose there are i ∈ N and C1, C2, C
′ with πi \ πi−1 =

{C1, C2} and C ′ ∈ πi \ πi+1. Then there are vertices v′1, v′2 ∈ C ′ such that |N(v′1) ∩ C1| 6=
|N(v′2) ∩ C1|.

Proof. Note that there must be a C ∈ πi−1 \ πi with C1 ∪ C2 = C. Since C ′ ∈ πi and
C ∈ πi−1, there is a d ∈ N0 such that for every v ∈ C ′, it holds that d = |N(v) ∩ C|. Since
{C1, C2} = πi \ πi−1 and C ′ /∈ πi+1, there are vertices v′1, v′2 ∈ C ′ such that |N(v′1) ∩ C1| 6=
|N(v′2) ∩ C1| or |N(v′1) ∩ C2| 6= |N(v′2) ∩ C2|. In the first case, we are done. In the second
case, we obtain |N(v′1) ∩ C1| = d− |N(v′1) ∩ C2| 6= d− |N(v′2) ∩ C2| = |N(v′2) ∩ C1|. J

Note that the validity of the lemma depends on the assumption {C1, C2} = πi \ πi−1,
which by Proposition 8 is always fulfilled in long-refinement graphs as long as πi−1 6= πi.

I Corollary 12. No graph with more than one connected component is a long-refinement
graph.

Proof. By Corollary 9, the graph cannot have isolated vertices, since the subgraph formed
by the other connected components would have to be d-regular for some d ≥ 1. Therefore,
the stable partition would not be discrete.
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Suppose G is a long-refinement graph in which every connected component has size at
least 2. Then there is an iteration i for which there is a unique connected component with
vertex set V ′ such that the current partition is discrete on V ′ but not discrete on the other
connected components. Then the vertex sets C1, C2 from Lemma 11 must be subsets of V ′.
However, the lemma implies that no further classes are split because none is adjacent to C1
or C2. J

We can therefore restrict ourselves to connected graphs. The only connected graphs G
with deg(G) = {1, 2} are paths and, by Fact 5, they are not long-refinement graphs. Thus,
the smallest degree pairs for a search for candidates are {1, 3} and {2, 3}.

I Lemma 13. Let G be a long-refinement graph. Then |{v ∈ V (G) | deg(v) = 1}| ≤ 2.

Table 1 displays the adjacency lists of two long-refinement graphs on 12 and 14 vertices,
respectively, which each have exactly one vertex of degree 1.

Table 1 Adjacency lists of long-refinement graphs G with deg(G) = {1, 5} (left) and deg(G) =
{1, 3} (right), respectively.

v N(v)
0 1
1 0,2,3,4,5
2 1,3,5,7,10
3 1,2,4,6,10
4 1,3,5,9,11
5 1,2,4,8,11

v N(v)
6 3,7,8,9,11
7 2,6,8,9,10
8 5,6,7,10,11
9 4,6,7,10,11
10 2,3,7,8,9
11 4,5,6,8,9

v N(v)
0 1
1 0,2,3
2 1,11,13
3 1,10,12
4 5,7,10
5 4,6,10
6 5,9,11

v N(v)
7 4,8,11
8 7,9,13
9 6,8,12
10 3,4,5
11 2,6,7
12 3,9,13
13 2,8,12

The lemma allows us to reduce the decision problem whether there are infinitely many
long-refinement graph with degrees in {1, 2, 3} to the question whether there are such families
with degrees in {2, 3}. The proof of the lemma as well as this reduction can be found in [21].
With the help of the tool Nauty [29], our quest for long-refinement graphs with degrees 2
and 3 was successful. Exploiting the degree restrictions and some other conditions that we
imposed to render the search tractable, it was possible to test for graphs up to order 64.
We found graphs G with n − 1 Colour Refinement iterations, where n = |G|, for all even
n ∈ [10, 64] \ {24, 30, 42, 48, 60} and for all odd n ∈ [11, 63] \ {21, 27, 39, 45, 57, 63}.

In the following, in order to generalise the results, we analyse the obtained graphs. Among
our computational results, the even-order graphs G have the following property in common:
there is an iteration j such that for every c ∈ χj

G(V (G)), it holds that |{v ∈ V (G) | χj
G(v) =

c}| = 2. That is, with respect to their assigned colours, the vertices remain in pairs until
there are no larger colour classes left. Then the first such pair is split into singletons, which
must induce a splitting of another pair, and so on, until the discrete partition is obtained.
(Similar statements hold for the odd-order long-refinement graphs, but are more technical.)
In the following, a pair is a set of two vertices which occurs as a colour class during the
execution of Colour Refinement. That is, vertices v, v′ form a pair if and only if {v, v′} is an
element of πi for some i ∈ N0.

As just argued, there is a splitting order on the pairs, i.e., a linear order ≺ induced by
the order in which pairs are split into singletons. We now examine the possible connections
between pairs.

From now on, we make the following assumption.
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I Assumption 14. G is a long-refinement graph with deg(G) = {2, 3} and such that there is
an i ∈ N0 for which πi contains only pairs. Let ≺ be the splitting order of these pairs.

We call pairs P1, P2 ⊆ V (G) successive if P2 is the successor of P1 with respect to ≺. Note
that for successive pairs P1, P2, in the graph G[P1, P2], every v2 ∈ P2 must have the same
number of neighbours in P1, otherwise it would hold that P2 ≺ P1. By a simple case analysis,
together with an application of Lemma 11, this rules out all connections but matchings for
successive pairs.

I Corollary 15. Let P1 and P2 be successive pairs. Then G[P1, P2] is a matching.

Towards a compact representation of the graphs, we further examine the connections
between pairs P1 and P2 with S(P1) ≺ P2, where S(P1) is the successor of P1 with respect
to ≺.

I Lemma 16. Let P1 be a pair. Then exactly one of the following holds.

P1 6= min(≺) and for every pair P2 with S(P1) ≺ P2, it holds that E(G[P1, P2]) = ∅.
P1 = min(≺) and there are exactly two choices P2, P

′
2 for a pair P ′ with S(P1) ≺ P ′ such

that E(G[P1, P
′]) 6= ∅. Furthermore, there is a vertex v1 ∈ P1 such that G[{v1}, P2] and

G[P1 \ {v1}, P ′2] are complete bipartite and E(G[{v1}, P ′2]) = E(G[P1 \ {v1}, P2]) = ∅.

Proof. Suppose P1 6= min(≺). If P1 = max(≺), the statement trivially holds. Otherwise,
by Corollary 15, every vertex v1 ∈ P1 has exactly one neighbour in S(P1) and exactly one
neighbour in the predecessor of P1, i.e. in the unique pair A(P1) such that P1 = S(A(P1)).
Thus, due to the degree restrictions, v1 can have at most one additional neighbour in a pair
P ′ with P1 ≺ P ′ and P ′ 6= S(P1). However, if v1 had a neighbour in such a P ′, the graph
G[{v1}, P ′] would not be biregular, implying that P ′ = S(P1), a contradiction. Therefore,
N(v1) ⊆ A(P1) ∪ P1 ∪ S(P1) and thus, N(P1) ⊆ A(P1) ∪ S(P1). In particular, for every pair
P2 with P1 ≺ P2 and P2 6= S(P1), it holds that E(G[P1, P2]) = ∅.

Now suppose that P1 = min(≺). Since the splitting of P1 must be induced by a splitting
of a union of two pairs and G[P1, S(P1)] is biregular and G[P1] is regular, we cannot have
N(P1) ⊆ S(P1). Thus, there is a pair P2 with S(P1) ≺ P2 and such that E(G[P1, P2]) 6= ∅.
Let v1 ∈ P1 be a vertex with N(v1) ∩ P2 6= ∅. Then P2 ⊆ N(v1), otherwise P2 = S(P1).
Thus, G[{v1}, P2] is complete bipartite. Therefore and due to the degree restrictions, v1 has
exactly three neighbours: one in S(P1) and two in P2. In particular, for every pair P ′2 with
P2 6= P ′2 6= S(P1), it holds that E(G[{v1}, P ′2]) = ∅.

Let v′1 6= v1 be the second vertex in P1. Since the splitting of P1 induces the splitting
of S(P1), by Proposition 8, for every pair P ′ with P1 6= P ′ 6= S(P1), the graph G[{v′1}, P ′]
must be biregular, i.e. either empty or complete bipartite.

Moreover, since deg(v1) = 3, also deg(v′1) = 3. By Corollary 15, |N(v′1) ∩ S(P1)| = 1.
Therefore, there is exactly one pair P ′2 such that G[{v′1}, P ′2] is complete bipartite and for all
other pairs P ′ with P1 6= P ′ 6= S(P1), the graph G[{v′1}, P ′] is empty.

Suppose P ′2 = P2. Choose i such that πi \ πi+1 = {P1}. Then the unique element
in πi−1 \ πi is a union of two pairs, whose splitting induces the splitting of P1. However,
N(P1) = S(P1) ∪ P2 and both graphs G[P1, S(P1)] and G[P1, P2] are biregular.

Thus, P ′2 6= P2, which concludes the proof. J

Corollary 15 and Lemma 16 characterise G[P1, P2] for all pairs P1 6= P2. Thus, all
additional edges must be between vertices from the same pair. Hence, we can use the
following compact graphical representation to fully describe the graphs of order at least 12
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that we found. As the set of nodes, we take the pairs. We order them according to ≺ and
connect successive pairs with an edge representing the matching. If the two vertices of a pair
are adjacent, we indicate this with a loop at the corresponding node. The only other type of
connection between pairs is constituted by the edges from min(≺) to two other pairs which
form the last colour class of size 4, i.e. a colour class of size 4 in the partition πi for which
πi+1 \ πi+2 = {min(≺)}. We indicate this type of edge with a dotted curve.

An example graph as well as the evolution of the colour classes computed by Colour
Refinement on the graph is depicted in Figure 1.

Figure 1 Top left: A long-refinement graph G on 32 vertices. The subsequent pictures show the
partitions of V (G) after the first 15 Colour Refinement iterations. There are 16 further iterations
not depicted here, which consist in the splitting of the pairs into singletons.

In fact, there is an even more compact representation for our even-order long-refinement
graphs.

I Notation 17. Since ≺ is a linear order, we can also use a string representation to fully
describe the graphs. For this, we introduce the following notation, letting A(P ) and S(P ) be
the predecessor and successor of P , respectively, with respect to ≺.

0 represents a pair of vertices of degree 2.
1 represents a pair P of vertices of degree 3 that is not the minimum of ≺ and for which
N(P ) ⊆ A(P ) ∪ S(P ). (This implies that P ∈ E(G).)
X represents a pair P of vertices of degree 3 that is not the minimum of ≺ and for which
N(P ) 6⊆ A(P ) ∪ S(P ).
S represents the minimum of ≺.

Thus, by Lemma 16, there are exactly two pairs of type X, namely P2 and P ′2 from the
lemma. Now we can use the alphabet Σ = {0, 1, S,X} and the order ≺ to encode the graphs
in strings. The i-th letter of a string is the i-th element of ≺. Note that S is always a pair
of non-adjacent vertices of degree 3 due to the degree restrictions. For example, the string
representation for the graph in Figure 1 is S11100111X1X1110.
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Formally, for every ` ≥ 3 and every string Ξ: [`] → {0, 1,S,X} with Ξ(1) = S and
Ξ−1(X) = {r, r′} for some r, r′ ∈ [`] with r < r′, we define the corresponding graph
G := G(Ξ) with V (G) = {vi,j | i ∈ [`], j ∈ [2]} and

E(G) =
{
{vi,1, vi,2}

∣∣ i ∈ [`],Ξ(i) = 1
}
∪{

{vi,j , vi+1,j}
∣∣ i ∈ [`− 1], j ∈ [2]

}
∪{

{vr,j , v1,1}
∣∣ j ∈ [2]

}
∪{

{vr′,j , v1,2}
∣∣ j ∈ [2]

}
.

We use this encoding in the next section, which contains our main results.

5 Infinite Families of Long-Refinement Graphs

In this section, we present infinite families of long-refinement graphs. We adapt them further
to deduce that WL1(n) ≥ n− 2 holds for all n ∈ N≥10.

For w ∈ {0, 1}∗, the notation (w)k abbreviates the k-fold concatenation of w. We let
1k := (1)k.

Figure 2 A visualisation of the graph with string representation S011XX and the evolution of
the colour classes in the first 5 Colour Refinement iterations on the graph.

I Theorem 18. For every string Ξ contained in the following sets, the graph G(Ξ) is a
long-refinement graph.
{S011XX}
{S1k001kX1X1k0 | k ∈ N0}
{S1k11001kXX1k0 | k ∈ N0}
{S1k0011kXX1k10 | k ∈ N0}
{S011(011)k00(110)kXX(011)k0 | k ∈ N0}
{S(011)k00(110)k1X0X1(011)k0 | k ∈ N0}

We only present the parts of the proof that are most essential for an intuition why the
graphs are indeed long-refinement graphs. The full proof can be found in [21].

Proof. Let G := G(S011XX) (cf. Figure 2). The vertices v2,1 and v2,2 are the only ones of
degree 2. Thus,

π1 =
{
{v2,1, v2,2}, V (G) \ {v2,1, v2,2}

}
,

π2 =
{
{v2,1, v2,2}, {vi,j | i ∈ {1, 3}, j ∈ [2]}, {vi,j | i ∈ [4, 6], j ∈ [2]}

}
.
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Then

π3 =
{
{v1,1, v1,2}, {v2,1, v2,2}, {v3,1, v3,2}, {vi,j | i ∈ [4, 6], j ∈ [2]}

}
,

since the vertices in the S-pair have no neighbours in {vi,j | i ∈ {1, 3}, j ∈ [2]}. Similarly,

π4 =
{
{v1,1, v1,2}, {v2,1, v2,2}, {v3,1, v3,2}, {v4,1, v4,2}, {vi,j | i ∈ [5, 6], j ∈ [2]}

}
,

π5 =
{
{vi,j | j ∈ [2]} | i ∈ [6]

}
.

Now the splitting of the last colour class of size 4 into two X-pairs induces the splitting of
the S-pair into singletons, which is propagated linearly according to ≺, adding 6 further
iterations, thus summing up to 11 iterations.

We now consider the various infinite families of graphs. The proofs for them work
similarly by induction over k. Therefore, we only present the full detailed proof for the family
{S1k001kX1X1k0 | k ∈ N0}, which includes the graph from Figure 1.

For k = 0, the graph G0 := G(S00X1X0) has 14 vertices. It is easy to verify that it
indeed takes 13 Colour Refinement iterations to stabilise. We sketch how Colour Refinement
processes the graph: for this, for i ∈ N0, we let πi

0 denote the partition of V (G0) induced by
χi

G0
, i.e. after i iterations of Colour Refinement on G0. First, vertices are assigned colours

indicating their degrees. That is,

π1
0 =

{
{vi,j | i ∈ {2, 3, 7}, j ∈ [2]}, {vi,j | i ∈ {1, 4, 5, 6}, j ∈ [2]}

}
.

Now

π2
0 =

{
{vi,j | i ∈ {2, 3, 7}, j ∈ [2]}, {vi,j | i ∈ {1, 4, 6}, j ∈ [2]}, {v5,i | i ∈ [2]}

}
,

since the vertices contained in the 1-pair are not adjacent to vertices from 0-pairs. Since no
vertex contained in the S-pair is adjacent to any vertex from the 1-pair, we obtain

π3
0 =

{
{vi,j | i ∈ {2, 3, 7}, j ∈ [2]}, {vi,j | i ∈ {4, 6}, j ∈ [2]}, {v5,i | j ∈ [2]},
{v1,j | j ∈ [2]}

}
.

Furthermore,

π4
0 =

{
{vi,j | i ∈ {3, 7}, j ∈ [2]}, {vi,j | i ∈ {4, 6}, j ∈ [2]}, {v5,i | j ∈ [2]},
{v1,j | j ∈ [2]}, {v2,j | j ∈ [2]}

}
,

π5
0 =

{
{v7,j | j ∈ [2]}, {vi,j | i ∈ {4, 6}, j ∈ [2]}, {v5,i | j ∈ [2]},
{v1,j | j ∈ [2]}, {v2,j | j ∈ [2]}, {v3,j | j ∈ [2]}

}
,

π6
0 =

{
{vi,j | j ∈ [2]} | i ∈ [7]

}
,

i.e. with respect to the order ≺ induced by the string representation, the first 0-pair, the
second 0-pair, and the first X-pair are separated from the others. Once the two X-pairs
form separate colour classes, this induces the splitting of S into two singletons, which is
propagated linearly through the entire string, adding 7 further iterations, thus summing up
to 13 iterations.

For general k ≥ 1, let Gk := G(S1k001kX1X1k0). To count the iterations of Colour
Refinement, we introduce some vocabulary for the pairs in Gk (see also Figure 1). We let
V := {vi,j | i ∈ [2, k+1]∪[k+4, 2k+3]∪[2k+7, 3k+6], j ∈ [2]}. Note that V is the set of vertices
contained in the subgraphs corresponding to the substrings 1k in the string representation.
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Furthermore, for all i ∈ [k + 2], we call the set {vi′,j | i′ ∈ {i, 2k + 5− i, 2k + 5 + i}, j ∈ [2]}
the i-th column and denote it by Vi. The 0-th column is the set {v2k+5,j | j ∈ [2]}. Thus,

V =
⋃

2≤i≤k+1
Vi.

For every j ∈ [2], the sets {vi,j | i ∈ [1, k + 2]}, {vi,j | i ∈ [k + 3, 2k + 4]}, and
{vi,j | i ∈ [2k+ 6, 3k+ 7]} are called rows. In accordance with Figure 1, we fix an ordering on
the rows: the first row is {vi,1 | i ∈ [2k+6, 3k+7]}, the second row is {vi,2 | i ∈ [2k+6, 3k+7]},
. . . , the sixth row is {vi,2 | i ∈ [1, k + 2]}. To be able to refer to the vertices in V and the
adjacent columns more easily, we relabel them: for i ∈ [k + 2], j ∈ [6], the vertex wi,j is
defined to be the unique vertex in the i-th column and the j-th row.

The following observation is the crucial insight for counting the iterations of Colour
Refinement on Gk. We will use it to show that, informally stated, the subgraph Gk[V ] delays
the propagation of the splitting of the colour classes in the remainder of the graph by k
iterations whenever the splitting of a colour class contained in V1 or Vk+2 initiates a splitting
of a colour class contained in V .

B Claim 19. Consider a colouring λ of Gk and its induced partition πk of V (Gk). For
t ∈ N0, let πt

k be the partition induced by χt
Gk

on input (Gk, λ). Suppose Gk, λ, πk satisfy
the following conditions.
1. There exist ` ∈ [6] and I1, . . . , I` ⊆ [6] such that

⋃
i∈[`] Ii = [6] and Ii ∩ Ij = ∅ for

1 ≤ i < j ≤ ` and for every i ∈ [`], it holds that {wk+2,j′ | j′ ∈ Ii} ∈ π0
k. That is, Vk+2 is

a union of colour classes with respect to λ.
2. π1

k =
{
{wk+1,j′ | j′ ∈ Ii}

∣∣ i ∈ [`]
}
∪
{
C \ Vk+1

∣∣C ∈ πk, C \ Vk+1 6= ∅
}
.

3. For all C,C ′ ⊆ Vk+1 with C,C ′ ∈ π1
k, the graph Gk[C] is regular and Gk[C,C ′] is

biregular.
Then for every t ∈ [k], it holds that

πt
k =

⋃
i′∈[t]

{
{wk+2−i′,j′ | j′ ∈ Ii}

∣∣ i ∈ [`]
}
∪

{
C \

( ⋃
i′∈[t]

Vk+2−i′
) ∣∣∣∣C ∈ π0

k, C \
( ⋃

i′∈[t]

Vk+2−i′

)
6= ∅
}
.

The proof of the claim follows by induction on t. For t = 1, the statement is exactly the
second item from the assumptions. The induction step is quite technical and we defer the
reader to the full version for the details [21]. Informally speaking, the idea is to show that,
within one iteration of Colour Refinement, if there is a a column Vi with i ∈ [2, k + 1] whose
partition into row indices is strictly coarser than the partition of the column Vi+1, then Vi

copies the partition from Vi+1 and all other colour classes remain intact.
We call the property described in the claim path propagation from right to left. Modifying

the indices, a similar statement yields path propagation from left to right, as formulated in
the following claim.

B Claim 20. Consider a colouring λ of Gk and its induced partition πk of V (Gk). For
t ∈ N0, let πt

k be the partition induced by χt
Gk

on input (Gk, λ). Suppose Gk, λ, πk satisfy
the following conditions.
1. There exist ` ∈ [6] and I1, . . . , I` ⊆ [6] such that

⋃
i∈[`] Ii = [6] and Ii ∩ Ij = ∅ for

1 ≤ i < j ≤ ` and for every i ∈ [`], it holds that {w1,j′ | j′ ∈ Ii} ∈ πk. That is, the first
column is a union of colour classes with respect to λ.



S. Kiefer and B.D. McKay 73:13

2. π1
k =

{
{w2,j′ | j′ ∈ Ii}

∣∣ i ∈ [`]
}
∪
{
C \ V2

∣∣C ∈ πk, C \ V2 6= ∅
}
.

3. For all C,C ′ ⊆ V2 with C,C ′ ∈ π1
k, the graph Gk[C] is regular and Gk[C,C ′] is biregular.

Then for every t ∈ [k], it holds that

πt
k =

⋃
i′∈[t]

{
{wi′+1,j′ | j′ ∈ Ii}

∣∣ i ∈ [`]
}

∪
{
C \

( ⋃
i′∈[t]

Vi′+1

) ∣∣∣∣C ∈ π0
k, C \

( ⋃
i′∈[t]

Vi′+1

)
6= ∅
}
.

Again, we defer the reader to the full version for the proof details for the path propagation.
We are now ready to analyse the run of Colour Refinement on input Gk. Recall that πt

0
denotes the partition induced by χt

G0
on V (G0) ⊆ V (Gk). For the following arguments, see

also Figure 1.
In π1

k, the vertices are distinguished according to their degrees. We can then use path
propagation from right to left to deduce that

πk+1
k = π1

0 ∪
{
Vi

∣∣ i ∈ [2, k + 1]
}

and thus πk+2
k = π2

0 ∪
{
Vi

∣∣ i ∈ [2, k + 1]
}
,

πk+3
k = π3

0 ∪
{
Vi

∣∣ i ∈ [2, k + 1]
}

and also πk+4
k = π4

0 ∪
{
Vi

∣∣ i ∈ [2, k + 1]
}
.

Now path propagation from left to right yields that

π2k+4
k = π4

0 ∪
{
{wi,j | j ∈ [4]}

∣∣ i ∈ [2, k+1]
}
∪
{
{wi,j | j ∈ {5, 6}}

∣∣ i ∈ [2, k+1]
}

and π2k+5
k = π5

0 ∪ (π2k+4
k \ π4

0). With three more combinations of path propagation from
right to left and path propagation from left to right, we obtain

π6k+13
k = π13

0 ∪
{
{wi,j}

∣∣ i ∈ [2, k + 1], j ∈ [6]
}
,

which is the discrete partition by the induction assumption for k = 0.
This implies that on input Gk, Colour Refinement takes 6k + 13 iterations to stabilise

and, since |Gk| = 6k + 14, it holds that WL1(Gk) = n− 1, where n = |Gk|. J

I Corollary 21. There are infinitely many n ∈ N with WL1(n) = n− 1.

I Corollary 22. For every even n ∈ N≥12 such that n = 12 or n mod 18 /∈ {6, 12}, there is a
long-refinement graph G with |G| = n. The graph G can be chosen to satisfy deg(G) = {2, 3}.

Proof. The string representation S011XX covers n = 12. The first infinite family from
Theorem 18 covers all even n ∈ N≥14 with n = 2 mod 6, i.e. with n mod 18 ∈ {2, 8, 14}.
The second and the third infinite family both cover all even n ∈ N≥16 with n = 4 mod 6, i.e.
with n mod 18 ∈ {4, 10, 16}. The fourth and the fifth infinite family cover all even n ∈ N≥18
with n = 0 mod 18. Thus, among the even graph orders larger than 12, only the ones with
n mod 18 ∈ {6, 12} remain not covered. J

We now turn to the long-refinement graphs G of odd order with vertex degrees in {2, 3}. If
the graph has odd order, we cannot represent it just with pairs. For this, we relax Assumption
14 as follows.

I Assumption 23. G is a long-refinement graph with deg(G) = {2, 3} and such that there is
an i ∈ N0 for which πi contains only pairs and at most one singleton.
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Figure 3 A visualisation of the graph with string representation S1̂11XX and the evolution of
the colour classes in the first 6 Colour Refinement iterations on the graph.

We maintain the vocabulary and notation from the long-refinement graphs of even order,
i.e. 0, 1, S, X will be used in the same way as before. However, in order to fully describe
the odd-order graphs via strings, we have to extend the string alphabet by fresh letters
1̂ and X̂, which represent particular pairs with attached vertices as follows. For a string
Ξ̂ : [`] → {0, 1,S,X, 1̂, X̂}, we define the base string Ξ as the string obtained by removing
hats. More precisely, we replace every X̂ with an X, and we replace every 1̂ with a 1 if it is
non-terminal (i.e. if it is not at position `) and with a 0 otherwise. Let I(Ξ̂) ⊆ [`] be the set
of positions i with Ξ̂(i) ∈ {1̂, X̂}. If, in the base graph G(Ξ), every vertex pair corresponding
to a position in I(Ξ̂) (a hat vertex pair) is adjacent, we call Ξ̂ a hat string.

Similarly as for the even-order long-refinement graphs, to every hat string Ξ̂, we assign
a graph G(Ξ̂). We obtain the graph G(Ξ̂) by subdividing in G(Ξ) each edge connecting a
hat vertex pair with a new fresh vertex, which we call a hat. Additionally, if the vertices
of the hat vertex pair have degree 2, we now insert another edge between them. (This can
only happen if the hat vertex pair corresponds to a terminal 0.) For a hat v̂, we call the
neighbourhood N(v̂) ⊆ V

(
G(Ξ̂)

)
the hat base of v̂. Note that every vertex in the hat base

has degree 3 by construction. Also, a hat always has degree 2 and thus, with respect to
χ1

G(Ξ̂), it has a different colour than its hat base.
Graphically, we represent a hat by a loop attached to the corresponding hat vertex pair,

which we subdivide by inserting a small vertex (see Figure 3). It is not difficult to see that
every graph G(Ξ̂) corresponding to a hat string Ξ̂ has exactly one hat and that the hat is
the first vertex forming a singleton colour class during the execution of Colour Refinement
on G(Ξ̂). Thus, |G(Ξ̂)| = |G(Ξ)|+ 1.

I Theorem 24. For every string Ξ̂ contained in the following sets, the graph G(Ξ̂) is a
long-refinement graph.
{S1̂11XX}
{S0X1X̂} ∪ {S1k1011kX1X1k 1̂ | k ∈ N0}
{S110XX̂} ∪ {S111k1011kXX1k 1̂ | k ∈ N0}
{S1k01k1XX1k 1̂ | k ∈ N0}
{S(011)k00(110)kX1̂X(011)k0 | k ∈ N0}
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Proof sketch. The proof techniques for the infinite families are very similar to the ones
presented for Theorem 18. Therefore, we only sketch the proof on two concrete examples
containing 1̂ and X̂, respectively. To be able to refer to vertices explicitly, recall the
formal definition of G := G(Ξ) from Section 4. Since for a hat string Ξ̂, it holds that
|G(Ξ̂)| = |G(Ξ)|+ 1, we can use the same indexing of vertices, additionally letting v̂ be the
unique hat in G(Ξ̂).

In the graph G := G(S1̂11XX) (cf. Figure 3), the only vertex of degree 2 is v̂. Thus, in
π1, it forms a singleton colour class. In π2, the hat base {v2,1, v2,2} forms a new colour class.

In general, for i ∈ N, we have that πi
G = πi−1

G′ ∪{v̂}, where G′ = G(S011XX) (cf. Theorem
18 and Figure 2).

Thus,

π1 =
{
{v̂}, V (G) \ {v̂}

}
,

π2 =
{
{v̂}, {v2,1, v2,2}, V (G) \ {v̂, v2,1, v2,2}

}
,

π3 =
{
{v̂}, {v2,1, v2,2}, {vi,j | i ∈ {1, 3}, j ∈ [2]}, {vi,j | i ∈ [4, 6], j ∈ [2]}

}
,

π4 =
{
{v̂}, {v1,1, v1,2}, {v2,1, v2,2}, {v3,1, v3,2}, {vi,j | i ∈ [4, 6], j ∈ [2]}

}
,

π5 =
{
{v̂}, {v1,1, v1,2}, {v2,1, v2,2}, {v3,1, v3,2}, {v4,1, v4,2}, {vi,j | i ∈ [5, 6], j ∈ [2]}

}
,

π6 =
{
{v̂}
}
∪
{
{vi,j | j ∈ [2]} | i ∈ [6]

}
.

Now in 6 further iterations, the splitting of the pairs is propagated linearly according to
the order ≺.

Next, let G be the graph G(S0X1X̂), i.e. a member of the first infinite family from
Theorem 24. It has three vertices of degree 2, namely v̂, v2,1, and v2,2, which therefore form
a colour class in π1. Also, the vertices contained in the 1-pair are the only vertices of degree
3 that are not adjacent to any vertex of degree 2. Thus,

π2 =
{
{v̂, v2,1, v2,2}, {v4,1, v4,2}, V (G) \ {v̂, v2,1, v2,2, v4,1, v4,2}

}
,

and similarly,

π3 =
{
{v̂, v2,1, v2,2}, {v4,1, v4,2}, {v1,1, v1,2}, {vi,j | i ∈ {3, 5}, j ∈ [2]}

}
.

Now the hat forms a singleton since, in contrast to the vertices of the 0-pair, it is not adjacent
to any vertex in the S-pair. We obtain:

π4 =
{
{v̂}, {v2,1, v2,2}, {v4,1, v4,2}, {v1,1, v1,2}, {vi,j | i ∈ {3, 5}, j ∈ [2]}

}
,

π5 =
{
{v̂}
}
∪
{
{vi,j | j ∈ [2]} | i ∈ [5]

}
.

Then in 5 further iterations, the splitting of the pairs is propagated linearly according to the
order ≺. J

As an example, Figure 3 shows the evolution of the colour classes of the graph with string
representation S1̂11XX.

I Corollary 25. For every odd n ∈ N≥11 with n mod 18 /∈ {3, 9}, there is a long-refinement
graph G with |G| = n. The graph G can be chosen to satisfy deg(G) = {2, 3}.

Proof. The string representation S1̂11XX covers n = 13. The first infinite family covers
all odd n ∈ N≥11 with n = 5 mod 6, i.e. with n mod 18 ∈ {5, 11, 17}. The second and
the third infinite family both cover all all odd n ∈ N≥13 with n = 1 mod 6, i.e. with
n mod 18 ∈ {1, 7, 13}. The fourth infinite family covers all odd n ∈ N≥15 with n = 15
mod 18. Thus, among the odd orders larger than 10, only the ones with n mod 18 ∈ {3, 9}
are skipped. J
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We summarise the results from Corollaries 22 and 25.

I Corollary 26. For every n ∈ N≥11 such that n = 12 or n mod 18 /∈ {3, 6, 9, 12}, there is a
long-refinement graph G with |G| = n. The graph G can be chosen to satisfy deg(G) = {2, 3}.

The following lemma allows to cover more graph sizes.

I Lemma 27. Let n ∈ N be arbitrary. Suppose there is a long-refinement graph G such that
|G| = n. If there is a d ∈ N with deg(G) = {d, d+ 1} such that |{v ∈ V (G) | deg(v) = d}| 6=
d+ 1, then there is also a long-refinement graph G′ with |G′| = n+ 1.

Proof. We can insert an isolated vertex w into G and insert edges from w to every vertex
v ∈ V (G) with deg(v) = d. In the new graph G′, the vertex w has a degree other than d+ 1,
whereas all other vertices have degree d + 1. Thus, the colour classes in π1

G′ are {w} and
V (G′) \ {w}. After the second iteration, the neighbours of w are distinguished from all other
vertices, just like they are in π1

G. Inductively, it is easy to see that for i ∈ N, it holds that
πi

G′ = πi−1
G ∪

{
{w}

}
. Thus, Colour Refinement takes n − 1 + 1 = n iterations to stabilise

on G′. J

I Corollary 28. For every odd n ∈ N≥11, there is a long-refinement graph G with |G| = n.

Proof. By Corollary 25, it suffices to provide long-refinement graphs of order n for every odd
n ∈ N≥11 with n mod 18 ∈ {3, 9}. We will accomplish this by applying Lemma 27 to suitable
graphs of orders n′ with n′ mod 18 ∈ {2, 8}. Every graph G with a string representation
contained in one of the infinite families from Theorem 18 has an even number of vertices
of degree 2. In particular, it satisfies |{v ∈ V (G) | deg(v) = 2}| 6= 3. Furthermore, every
even graph order larger than 10 not covered by Corollary 22 is a multiple of 6. Hence,
since N := {n ∈ N≥18 | n mod 18 ∈ {2, 8}} contains only even numbers and no multiples
of 6, for every n′ ∈ N , there is a graph of order n′ that satisfies the prerequisites of
Lemma 27 with d = 2. (Actually, we can cover all of these graph orders with the family
{S1k001kX1X1k0 | k ∈ N0}.)

Thus, applying the lemma, we can construct for every n ∈ N≥18 with n mod 18 ∈ {3, 9}
a long-refinement graph G′ of order n. J

Note that, since we apply Lemma 27 to close the gaps, we cannot guarantee anymore
that the vertex degrees are 2 and 3, as we could in Corollary 26.

We are ready to prove Theorem 1.

Proof of Theorem 1. The theorem follows from combining Corollaries 22 and 28 with
Theorem 7. J

Although the theorem leaves some gaps, we can show that, starting from n = 10, the
worst-case number of Colour Refinement iterations until stabilisation on graphs of order n is
always either n− 2 or n− 1.

Proof of Theorem 2. By Theorem 1, we only need to consider the numbers n ≥ 24 for
which n mod 18 ∈ {6, 12}. Since these numbers are all even, for every such n, we can use
Corollary 28 to obtain a long-refinement graph G′ with |G′| = n− 1. Let v be a fresh vertex
not contained in V (G′). Now define G := (V,E) with V := V (G′) ∪ {v} and E := E(G′).
Then πi

G = πi
G′ ∪ {{v}} for every i ∈ N. In particular, WL1(G) = WL1(G′) = n− 2. J
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6 Conclusion

With Theorem 2, it holds for all n ∈ N≥10 that WL1(n) ≥ n− 2. In particular, this proves
that the trivial upper bound WL1(n) = n− 1 is tight, up to an additive constant of 1.

For infinitely many graph orders, the graph G can even be chosen to have vertex degrees
2 and 3, as Theorems 18 and 24 show. We applied Lemma 27 to cover some of the remaining
sizes. However, no order n ∈ N≥18 with n mod 18 ∈ {6, 12} is covered by Theorem 18. Also,
for |G| ∈ {n ∈ N≥18 | n mod 18 ∈ {5, 11}}, all the long-refinement graphs G we have found
satisfy |{v ∈ V (G) | deg(v) = 2}| = 3 (see the first infinite family in Theorem 24). Thus,
these graphs do not satisfy the prerequisites of Lemma 27. Note that we cannot apply the
construction from the proof if |{v ∈ V (G) | deg(v) = d}| = d + 1, since the new graph G′
would be (d + 1)-regular and would thus satisfy WL1(G′) = 0. Hence, it is not clear how
to apply our techniques to construct a long-refinement graph of order 24. Altogether, the
values n ∈ N≥24 with n mod 18 ∈ {6, 12} are precisely the graph orders for which it remains
open whether there is a graph G with WL1(G) = |G| − 1.

A related question is for which values d1 6= d2 there are long-refinement graphs G with
deg(G) = {d1, d2}. It would be nice to know whether we have actually found all long-
refinement graphs G with deg(G) = {2, 3}. Similarly, we can ask for long-refinement graphs
when fixing other parameters. For example, since all long-refinement graphs that we found
have girth at most 4, it would be interesting to know whether there exists any long-refinement
graph with larger girth, or infinite families with unbounded girth.

Also, in the light of the graph isomorphism problem, it is a natural follow-up task to
find for each order n pairs of non-isomorphic graphs G, H for which it takes n− 1 Colour
Refinement iterations to distinguish the graphs from each other. A first step towards this
goal is the search for pairs of long-refinement graphs of equal order. It is easy to see that
for infinitely many n, Theorems 18 and 24 yield such pairs of graphs. Still, for example,
when evaluating the colourings computed by Colour Refinement on the graphs with string
representations S1100XX0 and S001XX10, they differ after less than n− 1 iterations. To
see this, observe that in G(S1100XX0), all vertices of degree 2 have paths of length 3 to
a vertex of degree 2 whose inner vertices only have degrees other than 2. This is not the
case for G(S001XX10) and this property is detected by Colour Refinement after at most 4
iterations. Thus, finding for n ∈ N≥10 two graphs of order n which Colour Refinement only
distinguishes after n− 1 iterations remains a challenge.
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Abstract
In the online set-disjointness problem the goal is to preprocess a family of sets F , so that given two
sets S, S′ ∈ F , one can quickly establish whether the two sets are disjoint or not. If N =

∑
S∈F |S|,

then let Np be the preprocessing time and let Nq be the query time. The most efficient known
combinatorial algorithm is a generalization of an algorithm by Cohen and Porat [TCS’10] which
has a tradeoff curve of p + q = 2. Kopelowitz, Pettie, and Porat [SODA’16] showed that, based on
the 3SUM hypothesis, there is a conditional lower bound curve of p + 2q ≥ 2. Thus, the current
state-of-the-art exhibits a large gap.

The online set-intersection problem is the reporting version of the online set-disjointness problem,
and given a query, the goal is to report all of the elements in the intersection. When considering
algorithms with Np preprocessing time and Nq +O(op) query time, where op is the size of the output,
the combinatorial algorithm for online set-disjointess can be extended to solve online set-intersection
with a tradeoff curve of p + q = 2. Kopelowitz, Pettie, and Porat [SODA’16] showed that, assuming
the 3SUM hypothesis, for 0 ≤ q ≤ 2/3 this curve is tight. However, for 2/3 ≤ q < 1 there is no
known lower bound.

In this paper we close both gaps by showing the following:
For online set-disjointness we design an algorithm whose runtime, assuming ω = 2 (where ω is
the exponent in the fastest matrix multiplication algorithm), matches the lower bound curve of
Kopelowitz et al., for q ≤ 1/3. We then complement the new algorithm by a matching conditional
lower bound for q > 1/3 which is based on a natural hypothesis on the time required to detect a
triangle in an unbalanced tripartite graph. Remarkably, even if ω > 2, the algorithm matches
the lower bound curve of Kopelowitz et al. for p ≥ 1.73688 and q ≤ 0.13156.
For set-intersection, we prove a conditional lower bound that matches the combinatorial upper
bound curve for q ≥ 1/2 which is based on a hypothesis on the time required to enumerate all
triangles in an unbalanced tripartite graph.
Finally, we design algorithms for detecting and enumerating triangles in unbalanced tripartite
graphs which match the lower bounds of the corresponding hypotheses, assuming ω = 2.
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Figure 1 The left graph depicts the gap between the upper bound and lower bound curves for
online SetDisjointness prior to this work. The lower bound tradeoff (red curve) is based on the 3SUM
hypothesis and the upper bound tradeoff (blue curve) is a variation of the algorithm of Cohen and
Porat [14]. The right graph depicts the optimal online SetDisjointness tradeoff (green curve) shown
in this paper, assuming that ω = 2.

1 Introduction

In the online SetDisjointness problem the goal is to preprocess a family F of subsets from
universe U such that given a query pair (S, S′) ∈ F × F , one can quickly establish whether
S and S′ are disjoint or not. The online SetIntersection problem is the reporting version
of the online SetDisjointness problem, where given a query pair (S, S′) ∈ F × F one must
enumerate all of the elements in S ∩ S′.

Set-disjointness problems at large, including both online SetDisjointness and online
SetIntersection, are fundamental algorithmic problems, and have many applications, for
example, in information retrieval [14, 24, 20], graph related problems [28, 5, 29, 33, 34], and
data structures [27, 16, 29]. Moreover, both problems have played a crucial role in obtaining
conditional lower bounds (CLB) in fine-grained complexity. Specifically, many CLBs that
are based on the 3SUM hypothesis1 are reductions from 3SUM to versions of SetDisjointness
or SetIntersection, which are further reduced to other algorithmic problems [32, 1, 29, 27, 5,
4, 22, 23]. The Boolean matrix multiplication (BMM) problem can be interpreted as online
SetDisjointness with the requirement that the answers to all of the queries must be computed
and stored during the preprocessing phase. Thus, the “combinatorial” BMM hypothesis2
and the CLBs that follow [1, 37, 10] are closely related to online SetDisjointness. Another
example is the orthogonal vectors (OV) hypothesis3 [1, 37], which can be interpreted as
asking whether a given family of sets contains two disjoint sets.

1 The 3SUM hypothesis states that in the Word RAM model of computation with O(log n) bit words,
determining whether a set of n integers contains three that sum to 0, requires n2−o(1) time.

2 This hypothesis roughly states that algorithms for n×n BMM that are simple and do not use Strassen-like
techniques must take n3−o(1) time in the Word RAM Model with O(log n) bit words.

3 The OV hypothesis states that in the Word RAM model with O(log n) bit words, an algorithm that
can decide whether a set of n binary vectors of dimension d contains two orthogonal vectors, must take
n2−o(1)dO(1) time.
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Figure 2 The left graph depicts the gap between the upper bound and lower bound curves for
online SetIntersection prior to this work. The green curve (for q ≤ 2

3 ) is optimal, while the blue
curve is an upper bound with no matching lower bound. The right graph depicts the optimal online
SetIntersection tradeoff (green curve) shown in this paper, for all values of q.

Measuring efficiency. We measure the efficiency of algorithms for online SetDisjointness
and online SetIntersection in terms of N =

∑
S∈F |S|. For online SetDisjointness, let Np and

Nq be the preprocessing and query time, respectively. For online SetIntersection, let Np and
Nq + O(op) be the preprocessing and query time, respectively, where op is the size of the
output.

When discussing tradeoffs between p and q we make the standard assumption that the
preprocessing phase must scan the input at least once, and so p ≥ 1. Moreover, there is no
advantage in allowing p > 2 since for p = 2 it is straightforward to obtain a constant query
time. Thus we assume that 1 ≤ p ≤ 2. Similarly, a trivial query algorithm is to scan the
entire instance in O(N) time, so we assume that 0 ≤ q ≤ 1.

A brief history and the gaps. A variation of the algorithm of Cohen and Porat [14] for
online SetDisjointness has p + q = 2 (see Section 2.1). A straightforward variation of this
algorithm also solves online SetIntersection with p+q = 2 (see Section 2.1). To our knowledge,
for any values of p and q, there is no published algorithm with a better upper-bound tradeoff.

Regarding lower bounds, assuming the 3SUM hypothesis, Pǎtraşcu [32] proved that
for online SetDisjointness whenever 1 ≤ p < 4/3 we have q ≥ 1/3. Pǎtraşcu’s CLB is
fairly limited with regard to the range of options for p and q. The CLB tradeoff was later
improved by Kopelowitz, Pettie and Porat [29] to p + 2q ≥ 2 for the full range of p and
0 ≤ q ≤ 1/2. Kopelowitz et al. [29] also showed that, assuming the 3SUM hypothesis, for
online SetIntersection, whenever 4/3 ≤ p < 2 and 0 ≤ q ≤ 2/3 we have p+ q ≥ 2. Thus, the
combinatorial algorithm is tight for q ≤ 2

3 .
In both problems, a large gap remains; see Figures 1 and 2. The goal of this paper is to

close the gaps for both problems.

1.1 Our Results
In this paper we take a step towards closing the gaps for both online SetDisjointness and
online SetIntersection as follows.

ICALP 2020
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New algorithm for online SetDisjointness. For online SetDisjointness we design an algo-
rithm that utilizes fast matrix multiplication (FMM) (see [15, 36, 35, 31]) and, assuming
ω = 2 (where ω is the exponent in the fastest matrix multiplication algorithm), matches the
lower bound curve of Kopelowitz et al. [29] for q ≤ 1/3. The algorithm borrows some ideas
from the fast sparse matrix multiplication algorithm of Yuster and Zwick [38], and is stated
in the following theorem whose proof appears in Section 2.2.

I Theorem 1. There exists an algorithm for the online SetDisjointness problem where

p+ 2
ω−1q = 2, for 0 ≤ q ≤ ω−1

ω+1

2
ω−1p+ q = 1 + 2

ω−1 , for ω−1
ω+1 ≤ q ≤ 1

.

If ω > 2, the time bounds of Theorem 1 can be improved using fast rectangular matrix
multiplication (FRMM) (see [30]). In particular, if we denote by ω(1, 1, k) the exponent of n
in the time required to multiply an n× nk matrix by an nk × n matrix, then the following
corollary is straightforward from the proof of Theorem 1 (see Section 2.2).

I Corollary 2. There exists an algorithm for the online SetDisjointness problem where

p = (1− q) · ω(1, 1, 2− p
1− q ).

We note that, since ω(1, 1, k) = 2 for k ≤ 0.30298 [30, 21], for the range of p ≥ 4
2.30298 =

1.73688 and q ≤ 0.30298
2.30298 = 0.13156, the tradeoff becomes p+ 2q = 2, which is optimal by the

3SUM conjecture.

Unbalanced triangle detection. We complement our new algorithm with a matching CLB
for the case of q ≥ 1/3 which is based on the problem of detecting a triangle in an unbalanced
tripartite graph.

I Problem 3 (Unbalanced Triangle Detection). In the Unbalanced Triangle Detection (UTD)
problem the goal is to determine whether an undirected tripartite graph G = (A ∪B ∪ C,E)
contains a triangle or not, where m1 = |E∩(A×B)|, m2 = |E∩(B×C)|, m3 = |E∩(C×A)|,
and m1 ≤ m2 ≤ m3.

I Hypothesis 4 (UTD hypothesis). Assuming ω = 2, any algorithm for the UTD problem in
the word RAM model with O(logm3) bit words, for any m1 ≤ m2 ≤ m3, has time cost

Ω
(

(m1 ·m2) 1
3 (m3) 2

3−o(1)
)
.

The UTD hypothesis is the natural extension of the popular Triangle Detection hypothe-
sis [1, 11, 26, 32] which states that, assuming ω = 2, the current best known running time
O(m4/3) for triangle detection in m-edge graphs is optimal, up to mo(1) factors . To see this,
just set m1 = m2 = m3 in the UTD hypothesis and the Triangle Detection Hypothesis is
obtained by noting that when it comes to triangle problems, without loss of generality, the
input graph is tripartite4.

4 The reduction works by creating 3 copies of the vertex set, each of which is an independent set, and
placing copies of the original edges between copies of vertices (but each vertex copy is in a different
copy of the vertex set). Each triangle in the original graph appears 6 times.
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We remark an important subtlety in the UTD hypothesis: in order to disprove the
hypothesis, it is enough to design an algorithm that beats the hypothesized lower bound for
a single combination of m1, m2 and m3. Nevertheless, the CLBs that we prove based on the
UTD hypothesis hold even if we restrict the UTD hypothesis to be true for the restricted
cases of m2 = m3.

UTD algorithm. In Section 3 We design a new algorithm for UTD which matches the lower
bounds of the UTD hypothesis if ω = 2. The algorithm is a natural (albeit not exactly
straightforward) extension of the best known algorithms for triangle detection [3].

I Theorem 5. There exists an algorithm for the UTD problem whose time cost is

O
(
m3 + (m1 ·m2)

ω−1
ω+1 (m3)

2
ω+1

)
.

CLB for online SetDisjointness. In Section 4 we prove a CLB for online SetDisjointness
which is conditioned on the UTD hypothesis. The CLB, which matches the upper bound of
Theorem 1 for q ≥ 1

3 , assuming ω = 2, is summarized in the following theorem.

I Theorem 6. Assuming ω = 2, any algorithm for online SetDisjointness that has 1
3 ≤ q < 1

must obey 2p+ q ≥ 3, unless the UTD hypothesis is false.

Assuming that ω = 2, Theorems 6 and 1 combined with the 3SUM CLB of Kopelowitz
et al. [29] provide a (conditionally) optimal curve, as depicted in Figure 1.

Unbalanced triangle enumeration. For set-intersection, we prove a conditional lower bound
that matches the combinatorial upper bound curve for q ≥ 1/2 which is based on a hypothesis
on the time required to enumerate all triangles in an unbalanced tripartite graph.

I Problem 7 (Unbalanced Triangle Enumeration). In the Unbalanced Triangle Enumeration
(UTE) problem the goal is to enumerate all triangles in a given undirected tripartite graph
G = (A ∪B ∪ C,E), where m1 = |E ∩ (A×B)|, m2 = |E ∩ (B × C)|, m3 = |E ∩ (C ×A)|,
and m1 ≤ m2 ≤ m3.

I Hypothesis 8 (UTE hypothesis). Assuming ω = 2, any algorithm for the UTE problem on
a graph with t triangles must have time cost t 1

3 (m1m2m3) 1
3m
−o(1)
3 in the word RAM model

with O(logm3) bit words.

Similar to the UTD hypothesis, the UTE hypothesis implies that, assuming ω = 2, the
current best known running time of O(m+m

4
3 + t

1
3m) for triangle enumeration in m-edge

graphs by Bjørklund et al. [9] is optimal, up to mo(1) factors (just set m1 = m2 = m3).

UTE algorithm. In Section 5 we design a new algorithm for UTE which, assuming ω = 2,
matches the lower bounds of the UTE hypothesis. The algorithm is a natural (albeit not
exactly straightforward) extension of the best known algorithms for output-sensitive triangle
enumeration [9].

I Theorem 9. There exists an algorithm for UTE on graphs with at most t triangles whose
time cost is

Õ

(
m3 +m

2
ω+1
3 (m1m2)

ω−1
ω+1 + t

3−ω
ω+1 (m1m2m3)

ω−1
ω+1

)
.
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CLB for online SetIntersection In Section 6, we prove the following CLB for SetIntersection
based on the UTE hypothesis, which matches the algorithm of Section 2.1 for q ≥ 1/2.

I Theorem 10. Any algorithm for online SetIntersection that has 1
2 ≤ q < 1 must obey

p+ q ≥ 2, unless the UTE hypothesis is false.

1.2 More Related Work
SetDisjointness and SetIntersection. Many existing set intersection data structures, e.g.,
[17, 7, 6], work in the comparison model in which sets are represented as sorted lists or arrays.
The benchmark in this model is the minimum number of comparisons needed to answer a
query. Bille, Pagh, and Pagh [8] used word-packing techniques to evaluate expressions of set
intersections and unions. Their query algorithm finds the intersection of k sets with a total
of n elements in O(n/ w

log2 w
+ k · op) time, where op is the size of the output and w is the size

of a machine word. Cohen and Porat [13] designed a static O(N)-space data structure for
answering online SetIntersection queries in O(

√
N(1 + |S ∩ S′|)) time. Kopelowitz, Porat and

Pettie [28] designed an incremental algorithm for online SetDisjointness where both queries
and element insertions into sets cost O(

√
N

logn/ log logn ) time.
Kopelowitz, Porat and Pettie [28] also designed a fully dynamic algorithm for both

online SetDisjointness and online SetIntersection which uses M words of space, each update
costs O(

√
M logN) expected time, each SetIntersection query costs O(N

√
logN√
M

√
op+ 1)

expected time where op is the size of the output, and each online SetDisjointness query costs
O(N

√
logN√
M

+ logN) expected time. The relationship between the space usage and query
time was also investigated by Afshani and Neilsen [2] and Goldstein et al. [23].

Triangle Enumeration. Itai and Rodeh [25] showed that all t triangles in a graph could be
enumerated in O(m3/2) time. Thirty years ago Chiba and Nishizeki [12] generalized [25] to
show that O(mα) time suffices, where α is the arboricity of the graph. Kopelowitz, Pettie,
and Porat [28] proved that enumerating t triangles takes O(mdα/ logn

log logne+ t) time. Eppstein
et al. [19] designed an algorithm for the w-bit word RAM model running in O(mdα/ w

logw e+ t)
time.

The fastest algorithm for triangle enumeration in general m-edge, n-node graphs is the
algorithm of Bjørklund, Pagh, Williams, and Zwick [9] which if ω = 2, runs in Õ(min{n2 +
nt2/3,m4/3 +mt1/3}) time.

Duraj et al. [18] showed that the related problem of establishing for each edge e in a
graph the number of triangles that contain e is equivalent to several natural range query
problems.

2 SetDisjointness Algorithms

Before we describe our new algorithm, we begin by presenting a simple algorithm for online
SetDisjointness which is a variation of the algorithm of Cohen and Porat [14], and has a
efficiency tradeoff of p+ q = 2. This algorithm is a building block for our new algorithm.

2.1 Heavy-Light Decomposition
I Lemma 11. There exists an algorithm for the online SetDisjointness problem with p+q = 2.

Proof. Let 0 ≤ α ≤ 1. A set S is said to be light if |S| ≤ Nα, and heavy otherwise. Notice
that the number of heavy sets is at most N1−α.
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The algorithm stores each set via a lookup table, and precomputes the answers to all
O(N2−2α) heavy pairs (pairs of heavy sets). Specifically, for a heavy pair S and S′, the
algorithm checks for each element e ∈ S whether e ∈ S′. The sets S and S′ are disjoint if
and only if all of the tests fail. Notice that during the precomputation, an element in a heavy
set is looked up at most N1−α times, once for each heavy set. Since the number of elements
in all heavy sets is at most N , the total preprocessing cost is O(N2−α) time and p = 2− α.

For the query, if both of the queries sets are heavy then the answer is obtained from the
precomputed information, and if at least one query set is light then the algorithm scans the
at most Nα elements in the light set to test whether any of these elements are in the other
set (regardless of whether the other set is heavy or light). Thus, the query cost is O(Nα)
and q = α. Finally, p+ q = 2− α+ α = 2 as required. J

SetIntersection Algorithm. It is fairly straightforward to convert the algorithm of Lemma 11
to also solve online SetIntersection with p + q = 2: for each pair of heavy sets, instead of
storing only an indication of whether the sets are disjoint or not the algorithm stores the
entire intersection.

2.2 Improved algorithm
I Theorem 1. There exists an algorithm for the online SetDisjointness problem where

p+ 2
ω−1q = 2, for 0 ≤ q ≤ ω−1

ω+1

2
ω−1p+ q = 1 + 2

ω−1 , for ω−1
ω+1 ≤ q ≤ 1

.

Proof. The algorithm is similar to the algorithm in the proof of Lemma 11, but with a faster
method for precomputing all of the answers for heavy pairs. Thus, assume without loss of
generality that there are at most N1−α sets, where α is taken from the proof of Lemma 11.

For every element e ∈ U , let fe = |{S ∈ F : e ∈ S}| be the number of sets in F that
contain e. For a parameter 0 ≤ β ≤ 1, an element e ∈ U is said to be frequent if fe > Nβ ,
and rare otherwise. Let F be the set of frequent elements and let R be the set of rare
elements. Notice that |F | ≤ N1−β and

∑
e∈R fe ≤ N .

For each rare element e, there are at most O((fe)2) = O(N2β) heavy pairs that contain e
in their intersection, and enumerating these pairs costs O((fe)2) time. In order to efficiently
enumerate these pairs for all rare elements, the algorithm computes for each element e a list
of sets that contain e by scanning the entire instance in linear time. Given these lists, the
algorithm enumerates all of the heavy pairs that have a rare element in their intersection in
O(
∑
e∈R(fe)2) = O(

∑
e∈RN

βfe) = O(Nβ
∑
e∈R fe) = O(N1+β) time.

The algorithm is now left with the task of establishing which heavy pairs have at least
one frequent element in their intersection. However, enumerating all heavy pairs that have
a frequent element in their intersection is too expensive. In order to reduce the time cost,
the algorithm constructs a Boolean matrix M such that the columns of M correspond to
frequent elements and the rows of M correspond to characteristic vectors of the heavy sets
after removing all of the rare elements. Thus, the size of M is |H| × |F | where H is the set
of heavy sets. Let P = M ·MT where the product is a Boolean product. Notice that pi,j = 1
if and only if there exists an element e such that the both mi,e = 1 and mT

e,j = mj,e = 1.
Thus, the non-zero entries of P exactly correspond to the heavy pairs that have a frequent
element in their intersection. The time cost of computing P using FMM is

O

(
|H|2|F |

min(|H|, |F |)3−ω

)
= O

(
Nω−2α−β+(3−ω)(max(α,β))

)
.
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Thus, the total preprocessing time is Np = O
(
N1+β +Nω−2α−β+(3−ω)(max(α,β))), which is

minimized whenever 1 + β = ω − 2α− β + (3− ω)(max(α, β)), and then p = 1 + β. Recall
that the query time is O(Nα) and so q = α.

If α ≤ β, then β = 1− 2α
ω−1 , the preprocessing time is given by p = 1 + β = 2− 2q

ω−1 , and
so p+ 2

ω−1q = 2. Notice that in order for this case to hold, it must be that α ≤ β = 1− 2α
ω−1

implying that q = α ≤ ω−1
ω+1 .

If α > β, then α = 1 − 2β
ω−1 , the query time is given by q = α = 1 − 2(p−1)

ω−1 , and
so 2

ω−1p + q = 1 + 2
ω−1 . Notice that in order for this case to hold, it must be that

α = 1− 2β
ω−1 ≥ 1− 2α

ω−1 implying that q = α ≥ ω−1
ω+1 . J

I Corollary 2. There exists an algorithm for the online SetDisjointness problem where

p = (1− q) · ω(1, 1, 2− p
1− q ).

Proof. When using FRMM, the cost to compute P is O
(
|H|ω(1,1,log|H|

|F |
|H| )
)

=

O
(
N (1−α)·ω(1,1, 1−β

1−α )
)

time. Thus, the total preprocessing time is

Np = O
(
N1+β +N (1−α)·ω(1,1, 1−β

1−α )
)
, which is minimized whenever 1 + β = (1 − α) ·

ω(1, 1, 1−β
1−α ), and so p = (1− q) · ω(1, 1, 2−p

1−q ). J

3 Unbalanced Triangle Detection Algorithm

I Theorem 5. There exists an algorithm for the UTD problem whose time cost is

O
(
m3 + (m1 ·m2)

ω−1
ω+1 (m3)

2
ω+1

)
.

Proof. The algorithm uses three positive integer parameters to be set later: τA, τB , and τC .
A vertex a ∈ A is said to be light if the number of edges (a, b) ∈ E ∩ (A × B) is at most
τA, and heavy otherwise. Thus, the number of heavy nodes in A is at most m1

τA
. A vertex

b ∈ B is said to be light if the number of edges (b, c) ∈ E ∩ (B×C) is at most τB , and heavy
otherwise. Thus, the number of heavy nodes in B is at most m2

τB
. A vertex c ∈ C is said

to be light if the number of edges (c, a) ∈ E ∩ (C ×A) is at most τC , and heavy otherwise.
Thus, the number of heavy nodes in C is at most m3

τC
.

Light vertices. For each light a ∈ A the algorithm enumerates all pairs of edges touching a
where one edge touches a vertex in B and the other edge touches a vertex in C, and for each
such pair the algorithm tests (in constant time) whether the pair is part of a triangle. If
there exists a triangle that contains a light a ∈ A then one of the enumerated pairs must
be two edges from this triangle and thus the algorithm will detect this triangle. Let dB(a)
be the number of edges of a whose other endpoint is in B, and let dC(a) be the number
of edges of a whose other endpoint is in C. Thus, the total number of pairs for a given
a ∈ A is dB(a) · dC(a). Notice that

∑
a∈A dC(a) = m3, and recall that since a is light then

dB(a) ≤ τA. Thus, the time cost for testing whether there exists a triangle with a light a ∈ A
vertex is

O(
∑
a∈A

dB(a) · dC(a)) ≤ O(τA
∑
a∈A

dC(a)) = O(τA ·m3).

Similarly, the algorithm checks whether there is exists a triangle with a light b ∈ B or a
light c ∈ C in O(τB ·m1 + τC ·m2). Thus, the total cost of detecting whether there exists a
triangle with at least one light vertex is O(m3 + τA ·m3 + τB ·m1 + τC ·m2) time, where the
first m3 term comes for the necessity of scanning the entire graph.
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Heavy vertices. If there is no triangle that contains at least one light vertex, then there can
only be a triangle with three heavy vertices. Here the algorithm utilizes the upper bound on
the number of heavy vertices in each part of the tripartite graph. Without loss of generality,
let a1, a2, . . . , am1

τA

be the set of heavy vertices in A, let b1, b2, . . . , bm2
τB

be the set of heavy
vertices in B, and let c1, c2, . . . , cm3

τC

be the set of heavy vertices in A. Let L be a m1
τA
× m2

τB

Boolean matrix where qi,j = 1 if and only if (ai, bj) ∈ E. Similarly, let R be a m2
τB
× m3

τC
Boolean matrix where ri,j = 1 if and only if (bi, cj) ∈ E, and let T be a m1

τA
× m3

τC
Boolean

matrix where ti,j = 1 if and only if (ai, cj) ∈ E.
The algorithm computes Z = (L · R)

∧
T where the first operator is a BMM and the

second operator is an entry-wise AND.

B Claim 12. Z 6= 0 if and only if there exists a triangle in G whose vertices are all heavy.

Proof. Let X = L · R. If there exists an entry zi,j = 1 then xi,j = ti,j = 1. Since ti,j = 1,
then by definition (ai, cj) ∈ E. Since xi,j = 1, then there must exist an integer 1 ≤ k ≤ m2

τB
such that li,k = 1 and rk,j = 1, and so (ai, bk), (bk, cj) ∈ E, implying that the triangle
(ai, bk, cj) is in G, and all of the vertices of this triangle are heavy.

For the other direction, suppose that the triangle (ai, bk, cj) is in G, and all of the vertices
of this triangle are heavy. Then in particular li,k = rk,i = ti,j = 1. Thus, it must be that
xi,j = 1 and so zi,j = 1. C

The cost of computing Z is dominated by the cost of computing the BMM of L and R,
which is

O

(
m1m2m3

τA · τB · τC · (min(m1
τA
, m2
τB
, m3
τC

))3−ω

)
.

Time cost. The total time cost is

O

(
m3 + τA ·m3 + τB ·m1 + τC ·m2 + m1m2m3

τA · τC · (min(m1
τA
, m2
τB
, m3
τC

))3−ω

)
.

The time cost is minimized when the last four5 terms in the summation are all equal:

τA ·m3 = τB ·m1 = τC ·m2 = m1m2m3

τA · τB · τC · (min(m1
τA
, m2
τB
, m3
τC

))3−ω .

Since m1 ≤ m2 ≤ m3 it must be that τA ≤ τC ≤ τB, and so m2
τB
≤ m3

τC
. Moreover,

m2τA ≤ m2τC = m1τB and so m2
τB
≤ m1

τA
. Thus, min(m1

τA
, m2
τB
, m3
τC

) = m2
τB
. By plugging in

τB = m3
m1
τA and τC = m3

m2
τA, we have

τA ·m3 = m1m2m3

τA · τB · τC · (min(m1
τA
, m2
τB
, m3
τC

))3−ω

= m1m2m3

τA · m3
m1
τA · m3

m2
τA · ( m2

m3
m1

τA
)3−ω = (m1m2)ω−1

τωA · (m3)ω−2 ,

and so τA = (m1m2
m3

)
ω−1
ω+1 . Finally, the time cost is

O(m3 + τA ·m3) = O(m3 + (m1m2)
ω−1
ω+1 (m3)

2
ω+1 ).

5 The reason for focusing only on the last four terms and not on the first term is that the last four terms
contain parameters which we can control, while the first term m3 is always set.
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Notice that with an O(m3) time preprocessing we can ensure that every vertex in
A has at least one edge to B and to C (process the vertices in B and C similarly), by
removing any vertex (and its incident edges) without this property. This procedure never
removes any triangles, and ensures that m1 ≥ max{|A|, |B|}, m2 ≥ max{|C|, |B|}, and
m3 ≥ max{|A|, |C|}. As m3 ≤ |A| · |C| ≤ m1 ·m2, τA ≥ 1. Similarly, τB , τC ≥ 1, so the
thresholds used by the algorithm make sense. J

4 Optimal Conditional Lower Bound for SetDisjointness

I Theorem 6. Assuming ω = 2, any algorithm for online SetDisjointness that has 1
3 ≤ q < 1

must obey 2p+ q ≥ 3, unless the UTD hypothesis is false.

Proof. To prove the theorem we first describe a reduction from the UTD problem to the
online SetDisjointness problem by describing an algorithm for UTD that uses an algorithm
for online SetDisjointness as a black box. We then show that if the online SetDisjointness
algorithm obeys 2p+ q = 3− ε for 1

3 ≤ q ≤ 1, for some constant ε > 0, then there exists an
algorithm contradicting the UTD Hypothesis.

Reduction from UTD to online SetDisjointness. Given an instance G = (A∪B∪C,E) of
UTD, for each x ∈ A∪B define the set Sx to be the set of vertices from C that are neighbors
of x. All of the sets are given as input for the preprocessing phase of the online SetDisjointness
algorithm. Notice that the sum of the sizes of the sets is exactly N = m2 +m3 = Θ(m3),
since each edge touching a vertex in C contributes exactly one element to exactly one of the
sets. Next, for each of the m1 edges (a, b) ∈ E ∪ (A×B), the algorithm performs an online
SetDisjointness query on Sa and Sb. If any of the queries returns a false (meaning that the
intersection of the two sets is not empty) then the algorithm returns that there is a triangle
in G, and otherwise, the algorithm returns that there is no triangle in G.

B Claim 13. There exists an edge (a, b) ∈ E ∩ (A×B) such that Sa ∩ Sb 6= ∅ if and only if
G contains a triangle.

Proof. If there exists a triangle (a, b, c) ∈ A×B × C in G, then both Sa and Sb contain c.
Thus, Sa ∩ Sb 6= ∅. For the other direction, if there exists an edge (a, b) ∈ E ∩ (A×B) such
that Sa ∩ Sb 6= ∅ then there exists some c ∈ Sa ∩ Sb which implies that (a, c), (b, c) ∈ E, and
so (a, b, c) is a triangle in G. C

Finally, the time cost of solving UTD is O(Np +m1 ·Nq) = O((m3)p +m1 · (m3)q).

The lower bound. Suppose that there exists an online SetDisjointness algorithm with
1
3 ≤ q < 1 and 2p+ q = 3− ε for some positive ε > 0. By rearranging,

3(p− 1) = 3(1− q)
2 − 3

2ε.

Thus, there exist constant positive numbers x and εq = 3
4ε such that

3(p− 1) + εq = x = 3(1− q)
2 − εq.

Notice that, since q ≥ 1
3 , then x <

3(1−q)
2 ≤ 1. Moreover, by rearranging, there exists a

constant ε′ = 1
3εq such that

p ≤ x+ 3
3 − ε′
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and

q + x ≤ x+ 3
3 − ε′.

Thus, since the UTD hypothesis holds for any combination of m1,m2 and m3 (as long as
m1 ≤ m2 ≤ m3), we set m1 = (m3)x and m2 = m3 (recall that x < 1). The UTD hypothesis
states that the time cost for solving UTD on this setting of m1,m2 and m3 is Ω

(
(m3) x+3

3

)
,

while the time cost of solving UTD using the reduction is

O((m3)p +m1 · (m3)q) = O((m3)p + (m3)x+q) = O
(

(m3)
x+3

3 −ε
′
)
,

thereby obtaining a contradiction. J

5 Unbalanced Triangle Enumeration

We begin with an algorithm which does not care about the number of triangles in the input.

I Lemma 14. There exists an algorithm for the UTE problem whose time cost is

O (m3 +
√
m1 ·m2 ·m3) .

Proof. The algorithm uses the same definition and treatment of light vertices as in the
algorithm in the proof of Theorem 5, but instead of stopping once a triangle is found, the
algorithm continues until all triangles that contain at least one light vertex are enumerated.
Recall that this process costs O(m3 + τA ·m3 + τB ·m1 + τC ·m2) time.

Heavy vertices. Since there can be at most m1
τA

heavy vertices in A, at most m2
τB

heavy
vertices in B, and at most m3

τC
heavy vertices in C, there can be at most m1·m2·m3

τA·τB ·τC triangles
whose vertices are all heavy. Thus, for each triplet of a heavy vertex a ∈ A, a heavy vertex
b ∈ B, and a heavy vertex c ∈ C, the algorithm spends constant time looking up whether
(a, b, c) is a triangle or not. The time cost of enumerating all such triplets is O

(
m1·m2·m3
τA·τB ·τC

)
.

Time cost. The total time cost is

O(m3 + τA ·m3 + τB ·m1 + τC ·m2 + m1 ·m2 ·m3

τA · τB · τC
).

The time cost is minimized when the last four terms in the summation are all equal:

τA ·m3 = τB ·m1 = τC ·m2 = m1 ·m2 ·m3

τA · τB · τC
.

By plugging in τB = m3
m1
τA and τC = m3

m2
τA, we have

τA ·m3 = m1 ·m2 ·m3

τA · τB · τC
= m1 ·m2 ·m3

τA · m3
m1
τA · m3

m2
τA

= (m1 ·m2)2

(τA)3 ·m3
.

Therefore, τA =
√

m1·m2
m3

, and the total time cost is O(m3+τA ·m3) = O(m3+√m1 ·m2 ·m3).
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Similarly to the UTD algorithm, notice that with an O(m3) time preprocessing we
can ensure that every vertex in A has at least one edge to B and to C (process the
vertices in B and C similarly), by removing any vertex (and its incident edges) without this
property. This procedure never removes any triangles, and ensures that m1 ≥ max{|A|, |B|},
m2 ≥ max{|C|, |B|}, and m3 ≥ max{|A|, |C|}. As m3 ≤ |A| · |C| ≤ m1 · m2, τA ≥ 1.
Similarly, τB , τC ≥ 1, so the thresholds the algorithm uses make sense. J

Now we give an algorithm for UTE, assuming that the input graph has t triangles. Notice
that our algorithm for UTD can count the number of triangles, so we can assume that we
know t.

I Theorem 9. There exists an algorithm for UTE on graphs with at most t triangles whose
time cost is

Õ

(
m3 +m

2
ω+1
3 (m1m2)

ω−1
ω+1 + t

3−ω
ω+1 (m1m2m3)

ω−1
ω+1

)
.

Proof. Let L,D1, D2, D3 be parameters to be chosen later; we will make sure that all of these
parameters are at least 1. Recall that m1 = E∩(A×B),m2 = E∩(B×C),m3 = E∩(A×C).

For every a ∈ A with at most D1 neighbors in C, list all triangles through a by going
through all pairs of neighbors of a. The total time over all low-degree a ∈ A is O(m1D1) time.
Similarly, in O(m2D2) time list all triangles through all b ∈ B with at most D2 neighbors in
A and in O(m3D3) time list all triangles through all c ∈ C with at most D3 neighbors in B.

Now let us set D1 = m3D3
m1

and D2 = m3D3
m2

. As m3 ≥ m1,m2, D1, D2 ≥ 1. This makes
the total time so far O(m3D3).

Any triangle (a, b, c) that has not been listed must have that a has at least D1 neighbors
in C, b has at least D2 neighbors in A and c has at least D3 neighbors in B. Thus we can
restrict to a subset A′ of A of size at most nA = m1/D2 = (m1m2)/(m3D3), a subset B′ of
B of size at most nB = m2/D3 and a subset C ′ of C of size at most nC = m3/D1 = m1/D3.
Notice that

nA = (m1/D3) · (m2/m3) ≤ (m1/D3) = nC ≤ (m2/D3) = nB .

Bjørklund et al. [9] give an Õ(L3−ωnω) time algorithm that given a tripartite graph G′
with n nodes in each partition, every edge e of G′ the algorithm lists L triangles that contain
e, for some parameter L ≥ 1, or all triangles containing e if e is in fewer than L triangles.
Our algorithm reduces to this balanced case.

Since nA ≤ nC ≤ nB , the algorithm splits the larger partitions into parts of size roughly
nA, thereby obtaining (nBnC)/n2

A instances of balanced graphs, where every partition has
nA vertices. On each one of these instances the algorithm executes the algorithm of [9] to
list up to L triangles for every edge in the remaining graph. The running time of this step is

Õ
(
nBnCn

ω−2
A L3−ω) = Õ

(
(m1m2)ω−1

Dω
3m

ω−2
3

L3−ω
)
.

To minimize the total runtime we set

m3D3 = (m1m2)ω−1

Dω
3m

ω−2
3

L3−ω.

This sets D3 = L
3−ω
ω+1 (m1m2/m3)

ω−1
ω+1 . Notice that as long as L ≥ 1, D3 ≥ 1, just as with the

UTD algorithm the algorithm can execute an O(m3) time preprocessing phase to make sure
that m3 ≤ m1m2.
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With this setting of D3, the runtime of this step becomes

O

(
m

2
ω+1
3 (m1m2)

ω−1
ω+1L

3−ω
ω+1

)
.

Now, set L = max{1, 6t/m3}. The total runtime of the algorithm so far becomes:

Õ

(
m3 +m

2
ω+1
3 (m1m2)

ω−1
ω+1 + (m1m2m3)

ω−1
ω+1 T

3−ω
ω+1

)
.

The only triangles remaining are those through edges that are contained in more than
L triangles. As the number of triangles is t and since each triangle has 3 edges, the total
number of edges whose triangles the algorithm has not found is at most 3t/L. Notice that
from the earlier steps of the algorithm we know for every edge e how many triangles contain
e. Thus, the algorithm also knows the 3t/L edges that are left.

If L = 1 and so 6t/m3 ≤ 1, we must have t ≤ m3/6 and so 3t/L = 3t ≤ m3/2. Otherwise,
if L = 6t/m3, then we also get 3t/L = m3/2. In both cases, the total number of remaining
edges is at most m3/2, and so the algorithm recurses, applying the same steps but on an
unbalanced graph with at most m1,m2 and m3/2 edges and still at most t triangles. When
the number of edges becomes constant, the algorithm solves the problem via brute force.

Since in each recursive step the current largest edge set shrinks by a factor of 2, the
number of recursive steps is O(logn) and we at most tack on a logarithmic factor to the
runtime. J

6 Optimal Conditional Lower Bound for SetIntersection

I Theorem 10. Any algorithm for online SetIntersection that has 1
2 ≤ q < 1 must obey

p+ q ≥ 2, unless the UTE hypothesis is false.

Proof. To prove the theorem we first describe a reduction from the UTE problem to the
online SetIntersection problem by describing an algorithm for UTE that uses an algorithm
for online SetIntersection as a black box. We then show that if the online SetIntersection
algorithm obeys p+ q ≥ 2− ε for 1

2 ≤ q < 1 and some constant ε > 0, then there exists an
algorithm contradicting the UTE Hypothesis.

Reduction from UTE to online SetIntersection. The reduction is the same as the reduction
given in the proof of Theorem 6, except that instead of using online SetDisjointness, the
reduction algorithm uses SetIntersection. Specifically, the reduction algorithm does not stop
after it is established that two sets are not disjoint. Instead, for each of the m1 edges
(a, b) ∈ E ∪ (A×B), the algorithm performs an online SetIntersection query, and for each c
in the output the algorithm enumerates triangle (a, b, c). The correctness of the reduction
follows from the following claim.

B Claim 15. For every edge (a, b) ∈ E∩(A×B) there is a bijection between every c ∈ Sa∩Sb
and every triangle in G containing (a, b).

Proof. If there exists a triangle (a, b, c) ∈ A×B × C in G, then both Sa and Sb contain c,
and so c ∈ Sa ∩ Sb. For the other direction, for every edge (a, b) ∈ E ∩ (A×B) and every
c ∈ Sa ∩ Sb, the edges (a, c) and (b, c) must be in E, and so (a, b, c) is a triangle in G. C

As in the proof of Theorem 6, the sum of the sizes of the sets in the online SetIntersection
instance is exactly N = m2 +m3 = Θ(m3), and the size of the output is O(t). Finally, the
time cost of solving UTE is O(Np +m1 ·Nq + t) = O((m3)p +m1 · (m3)q + t).
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The lower bound. Suppose that there exists an online SetIntersection algorithm with
1
2 ≤ q < 1 and p+ q ≤ 2− ε for some positive ε > 0. Without loss of generality, assume that
ε < 2− 2q, which is okay since q < 1.

By rearranging, 2p− 2 ≤ 2− 2q − 2ε. Thus, there exists a constant positive number x
such that

2p− 2 + ε ≤ x ≤ 2− 2q − ε.

Notice that since q ≥ 1
2 then x < 2 − 2q ≤ 1. Moreover, by rearranging, there exists a

constant ε′ > 0 such that p ≤ 1 + x
2 − ε

′ and q + x ≤ 1 + x
2 − ε

′.

Since the UTE hypothesis holds for any combination of m1,m2 and m3 (as long as
m1 ≤ m2 ≤ m3), we set m3 = m2 and m1 = (m3)x. Moreover, let t = (m3)y where
y = 1 + x

2 − ε
′.

Notice that the maximum number of triangles in an unbalanced tripartite graph with
edge set sizes m1,m2,m3 is √m1m2m3 = m

1+x/2
3 , so that the number of triangles we need

to list here is just a bit smaller than this.
The UTE hypothesis states that the time cost for solving UTE on this setting of m1,m2

and m3 is

Ω
(
t

1
3 (m1m2m3) 1

3

)
= Ω

(
m

2+x+y
3

3

)
= Ω

(
m

(1+ x
2 )− 1

3 ε
′

3

)
.

However, the time cost of solving UTE using the reduction is

O((m3)p +m1 · (m3)q + t) = O((m3)p + (m3)x+q + (m3)y)

= O((m3)1+ x
2−ε

′
) << Ω((m3)1+ x

2−
ε′
3 ),

where the last transition is due to ε′ > 0. Thus, we have obtained a contradiction. J
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Abstract
We study the geodesic Voronoi diagram of a set S of n linearly moving sites inside a static simple
polygon P with m vertices. We identify all events where the structure of the Voronoi diagram
changes, bound the number of such events, and then develop a kinetic data structure (KDS) that
maintains the geodesic Voronoi diagram as the sites move. To this end, we first analyze how often a
single bisector, defined by two sites, or a single Voronoi center, defined by three sites, can change.
For both these structures we prove that the number of such changes is at most O(m3), and that this
is tight in the worst case. Moreover, we develop compact, responsive, local, and efficient kinetic
data structures for both structures. Our data structures use linear space and process a worst-case
optimal number of events. Our bisector KDS handles each event in O(logm) time, and our Voronoi
center handles each event in O(log2 m) time. Both structures can be extended to efficiently support
updating the movement of the sites as well. Using these data structures as building blocks we obtain
a compact KDS for maintaining the full geodesic Voronoi diagram.
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1 Introduction

Polygons are one of the most fundamental objects in computational geometry. As such, they
have been used for many different purposes in different contexts. Within the path planning
community, polygons are often used to model different regions. A simple example is when
we have a robot moving within a building: in such a case we model all possible locations
that a robot can reach by a polygon (the walls or any obstacle in the way form the boundary
of this polygon). Then, the goal is to find a path that connects the source point and the
destination and that minimizes some objective function. There are countlessly many results
that depend on the exact function used (distance traveled [10], time needed to reach [18],
number of required turns [27], etc.) Paths that minimize distance are often called geodesics.

Two of the most fundamental problems in this setting are constructing shortest path maps
and augmented Voronoi diagrams. A shortest path map (or SPM for short) is a partition of
the space into regions so that points in the same region travel in the same way to the fixed
source [10, 13]. The exact definition of “in the same way” depends on the exact problem
setting, but it often means that paths are combinatorially the same, that is, they have the
same internal vertices. Augmented Voronoi diagrams are a generalization of SPMs for the
case in which we have more than one fixed source and we are interested in the topology of
the path to the closest source [3]. See Fig. 1 for an illustration. These structures are of
critical importance in obtaining efficient solutions to related problems such as finding center
points, closest pairs, nearest neighbors, and constructing spanners [22, 23].

It often happens that while we are moving to our destination, that destination is also
moving. For example, when two agents try to meet, one wants to evade the other, or one
simply needs to meet up with a second one that is doing a different task [17]. Since it is very
costly to recompute the solution after each infinitesimal movement, the aim is to somehow
maintain some information from which we can easily obtain the solution, and update this
information only when the solution has significant changes. A data structure that can handle
such a setting is known as a kinetic data structure (or KDS for short) [6]. There is a wide
range of problems that have been studied in this setting. We refer to the survey by Basch et
al. [6] for an overview of these results.

Surprisingly, there is very little work that combines all three of the above concepts
(polygons, shortest paths, and kinetic data structures). We are aware of only two results.
Aronov et al. [5] present a KDS for maintaining the shortest path map of a single point

p

s

r

q

Figure 1 The (augmented) geodesic Voronoi diagram of four moving sites p, q, r, and s.
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moving inside a simple polygon, and Karavelas and Guibas [14] give a KDS to maintain a
constrained Delaunay triangulation of a set of moving points. This allows them to maintain
nearest neighbors and the geodesic hull.

We present the first KDS to maintain the full (augmented) geodesic Voronoi diagram of
a set of point sites moving inside a simple polygon, thus generalizing the above results. We
carefully analyze when and how often it can change. To this end, we prove tight bounds on
the number of combinatorial changes in a single bisector, and on the trajectory of a Voronoi
center. Our results provide an important tool for maintaining related structures in which
the agents (sites) move linearly within the simple polygon (e.g. minimum spanning trees,
nearest-neighbors, closest pairs, etc.).

Related Work. Our data structures are based on the Kinetic Data Structures (KDS)
framework introduced by Basch et al. [6]. In this framework motions are assumed to be
known in advance. Each KDS maintains a set of certificates that together certify that the
KDS currently correctly represents the target structure. Typically these certificates involve a
few objects each and represent some simple geometric primitive. For example a certificate
may indicate that three points form a clockwise oriented triangle. As the points move these
certificates may become invalid, requiring the KDS to update. This requires repairing the
target structure and creating new certificates. Such a certificate failure is called an (internal)
event. An event is external if the target structure also changes. The performance of a
KDS is measured according to four measures. A KDS is considered compact if it requires
little space, generally close to linear, responsive if each event is processed quickly, generally
polylogarithmic time, local if each site participates in few events, and efficient if the ratio
between external and internal events is small, generally polylogarithmic. Note that for
efficiency it is common to compare the worst-case number of events for either case.

Let S be a set of n point sites moving linearly in a space P , that is, each point moves
with a fixed speed and direction. The Voronoi diagram VDP (S) of S is a partition of P into
n regions, one per site s ∈ S, such that for any point q in such a region Vs is closer to s than
to any other site from S. Guibas et al. [11] studied maintaining the Voronoi diagram in case
P = R2 and distance is measured by the Euclidean distance. They prove that VDR2(S) may
change Ω(n2) times, and present an a KDS that handles at most O(n3β4(n)) events, each
in O(logn) time. Here, βz(n) = λz(n)/n and λz(n) is the maximum length of a Davenport-
Schinzel sequence of n symbols of order z [25]. Their results actually extend to slightly more
general types of movement. It is one of the long outstanding open problems if this bound
can be improved [8, 9]. Only recently, Rubin [24] showed that if all sites move linearly and
with the same speed, the number of changes is at most O(n2+ε) for some arbitrarily small
ε > 0. For arbitrary speeds, the best known bound is still O(n3β4(n)). When the distance
function is specified by a convex k-gon the number of changes is O(k4n2βz(n)) [2]. Here, and
throughout the rest of the paper z denotes some small constant.

Let P be a simple polygon with m vertices, and let π(s, q) be the shortest path between s
and q that stays entirely inside P . We measure length of a path by the sum of the Euclidean
edge lengths. Such a shortest path π(s, q) is known as a geodesic, and its length as the
geodesic distance between s and q. With some abuse of notation we use π(s, q) to denote
both the shortest path and its length.

Aronov was the first to study the geodesic Voronoi diagram [3]. He proved that when the
sites in S are static, VDP (S) has complexity O(n + m). The same bound applies for the
augmented geodesic Voronoi diagram. Moreover, he presented an O((n+m) log(n+m) logn)
time algorithm for constructing VDP (S), which was improved to O((n+m) log(n+m)) by
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Table 1 The different types of events at which the geodesic Voronoi diagram changes, and their
number. At an a, b-collapse event two vertices of VDP (S) with degrees a and b collide and one
disappears. Similarly, at an a, b-expand one such a vertex appears. At a vertex event a vertex of
VDP (S) collides with a vertex of P .

Event Lower bound Upper bound

1, 2-collapse/expand Ω(m2n) O(m2n2)
1, 3-collapse/expand Ω(mnmin{n,m}) O(m2n2 min{mβz(n), n})
2, 2-collapse/expand Ω(m3n) O(m3nβ4(n))
2, 3-collapse/expand Ω(mn2 +m3n) O(m3n2β4(n)βz(n))
3, 3-collapse/expand Ω(mn2 +m2n) O(m3n3βz(n))
vertex Ω(m2n) O(m2nβ4(n))

Papadopoulou and Lee [23]. Recently, there have been several improved algorithms [16, 21]
which ultimately lead to an optimal O(m+ n logn) time algorithm by Oh [20]. Furthermore,
Agarwal et al. [1] recently showed that finding the site in S closest to an arbitrary query
point q ∈ P – a key application of geodesic Voronoi diagrams – can be achieved efficiently
even if sites may be added to, or removed from, S. Note however, that their result cannot be
used directly to maintain a substructure of the Voronoi diagram (e.g. an MST).

There are no known results on maintaining an (augmented) geodesic Voronoi diagram
when multiple sites S move continuously in a simple polygon P . In case there is only one site
s, Aronov et al. [5] presented a KDS that maintains the shortest path map SPMs of s. Their
data structure uses O(m) space, and processes a total of O(m) events in O(logm) time each1.
Karavelas and Guibas [14], provide a KDS to maintain a constrained Delaunay triangulation
of S. This allows them to maintain the geodesic hull of S w.r.t. P , and the set of nearest
neighbors in S (even in case P has holes). Their KDS processes O((m+n)3βz(n+m)) events
in O(log(n+m)) time each.

Organization and Results. We present a kinetic data structure to maintain the geodesic
Voronoi diagram VDP (S) of a set S of n sites moving linearly inside a simple polygon P
with m vertices. To this end, we prove a tight O(m3) bound on the number of combinatorial
changes in a single bisector, and develop a compact, efficient, and responsive KDS to maintain
it (Section 3). Our KDS for the bisector uses O(m) space and processes events in O(logm)
time. We then show that the movement of the Voronoi center cpqs – the point equidistant to
three sites p, q, s ∈ S – can also change O(m3) times (Section 4). We again show that this
bound is tight, and develop a compact, efficient, and responsive KDS to maintain cpqs. The
space usage is linear, and handling an event takes O(log2 m) time. Both our KDSs can be
made local as well, and therefore efficiently support updates to the movement of the sites.
Building on these results we then analyze the full Voronoi diagram VDP (S) of n moving
sites (Section 5). We identify the different types of events at which VDP (S) changes, and
bound their number. Table 1 gives an overview of our bounds. We then develop a compact
KDS to maintain VDP (S). Omitted proofs are in the full version of this paper [15].

1 The original description by Aronov et al. [5] uses a dynamic convex hull data structure that supports
O(log2 m) time queries and updates. Instead, we can use the data structure by Brodal and Jacob [7]
which supports these operations in O(logm) time.
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2 Preliminaries

We first review some properties of geodesic Voronoi diagrams and shortest path maps that we
will use. Let SPMs be the shortest path map of s, hence for all points in a region of SPMs

the shortest path from s has the same internal vertices. Each such region R is star-shaped
with respect to the last internal vertex v on the shortest path. Often it will be useful to refine
R into triangles incident to v. We refer to the resulting subdivision of P as the extended
shortest path map. With some abuse of notation we will use SPMs to denote this subdivision
as well. An edge in SPMs that starts in a vertex v that is colinear with the last edge in
π(s, v) is called an extension segment Evs = Ev.

Let T = R denote the time domain. We consider each site s ∈ S as a function from T to
P . For functions we will not distinguish between the function itself and its graph. We say
that a function is simple if it is continuous, i.e. if it has no break points.

Given two sites p and q, the bisector Bpq is the set of all points that are equidistant to p
and q. If no vertex of P lies on the bisector, then Bpq is a piecewise curve connecting two
points on ∂P . Each curve on Bpq is a subarc of a hyperbola [3, 19].

I Lemma 1 (Aronov [3]). VDP (S) consists of O(n) vertices with degree 1 or 3, and O(m)
vertices of degree 2. For each degree 2 vertex v there is are p, q ∈ S so that v lies on the
bisector Bpq and v lies on extension segment of SPMp or SPMq. All edges of VDP (S) are
hyperbolic arc segments. Every vertex v of P contributes at most one extension segment Ev.

I Lemma 2 (Aronov et al. [5]). Let s be a point moving linearly inside a simple polygon P
with m vertices. The extended shortest path map SPMs changes at most O(m) times.

I Lemma 3. Let v be a vertex of P , there are O(mnβ4(n)) time intervals in which v has a
unique closest site s ∈ S, and the distance from v to s over time is a hyperbolic function.

3 A Single Bisector

Fix a pair of sites p and q, and let bpq(t) and bqp(t) be the endpoints of the bisector Bpq

defined so that p lies to the right of Bpq(t) when following the bisector from bpq(t) to bqp(t).
As p and q move, the structure of Bpq changes at discrete times, or events. We distinguish
between the following types of events (see Fig. 2):

vertex events, at which an endpoint of Bpq coincides with a vertex of P ,
1, 2-collapse events, at which a degree 2 vertex (an interior vertex) of Bpq disappears as
it collides with a degree 1 vertex (an endpoint),
1, 2-expand events, at which a new degree 2 vertex appears from a degree 1 vertex,

v vuu

1, 2-collapse 2, 2-collapse

vertex

1, 2-expand 2, 2-expand
v

Figure 2 The types of events during which the structure of Bpq changes.
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q p

bpq

q p

bpq
v

q

bpq

evp

v

p

R
u

v

Evp

Figure 3 A vertex event at v may coincide with a 1, 2-expand event. At the time of the event all
points in R are equidistant to p and q, and bpq jumps from v to evp.

2, 2-collapse events at which a degree 2 vertex disappears by colliding with an other
degree 2 vertex, and
2, 2-expand events, at which a new degree 2 vertex appears from a degree 2 vertex.

In Section 3.1 we prove that there are at most O(m2) vertex and 1, 2-collapse events, and
at most O(m3) 2, 2-collapse events. The number of expand events can be similarly bounded.
Some of these events may actually happen simultaneously. See for example Fig. 3, where Bpq

changes when a vertex event and a 1, 2-expand event coincide. So we are double-counting
these simultaneous events. Despite this, we show that our O(m3) bound on the number of
changes of Bpq is tight in the worst case. In Section 3.2 we then argue that there is a KDS
that can maintain Bpq efficiently.

3.1 Bounding the Number of Events
We start by showing that a bisector Bpq of p and q may change Ω(m3) times. We then argue
that there is also an O(m3) upper bound on the number of such changes.

I Lemma 4. The bisector Bpq(t) can change Ω(m3) times.

Proof. The main idea is to construct a bisector Bpq, a piecewise hyperbolic curve, of
complexity Ω(m) in the middle of a region that consists of Ω(m2) cells. These cells are
defined by the extension segments in SPMp and SPMq that extend from the vertices on two
convex chains of the polygon; one chain on either side of Bpq. See the top area in Fig. 4. In
each cell the distance functions to p and q are different, thus if Bpq moves across a cell this
causes a change in the bisector. The two upper convex chains in P have size Ω(m) and are
placed such that as p moves towards the left (and q remains in place), the bisector sweeps
from left to right over Ω(m2) middle cells, thus causing Ω(m2) changes to Bpq.

p q

Figure 4 The bisector Bpq may be involved in Ω(m3) 2, 2-collapse events.
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Next, we argue that Bpq can be moved back and forth across these cells Ω(m) times by
adding two convex chains of size Ω(m) to the bottom of the polygon, just above p and q. This
way we can ensure that p and q alternate being the closest to the top of the polygon. Thus,
when p is closest the bisector will move to the right and when q is the closest the bisector
will move to the left. By making p and q move at the same speed and having the segments
defining the convex chain on q’s side start and end in the middle of where the segments
of the convex chain on p’s side, we can cause this alternation. It follows that the bisector
sweeps over the Ω(m2) middle cells Ω(m) times and thus it changes Ω(m3) times. J

In the above proof one can observe that the counted events are only the 2,2-collapse
events. For 2,2-collapse and 2,2-expand events there is also a O(m3) upper bound. For other
events there is a O(m2) upper bound (proofs are in the full version [15]). Hence the bisector
Bpq may change at most O(m3) times. Even though the entire bisector may change O(m3)
times, the trajectories of its intersection points with the boundary of P have complexity at
most O(m2). The following theorem summarizes these results.

I Theorem 5. Let p and q be two points moving linearly inside P . The bisector Bpq of p
and q can change O(m3) times. This bound is tight in the worst case. The trajectories of the
endpoints of Bpq have O(m2) edges, each corresponding to a low-degree algebraic curve.

3.2 A Kinetic Data Structure to Maintain a Bisector
We first describe a simple, yet naive, KDS to maintain Bpq that is not responsive and then
show how to improve it to obtain a responsive KDS.

A Non-Responsive KDS to Maintain a Bisector. Our naive KDS for maintaining Bpq

stores: (i) the extended shortest path maps of p and q using the data structure of Aronov et
al. [5], (ii) the vertices of Bpq, ordered along Bpq from bpq to bqp in a balanced binary search
tree, and (iii) for every vertex u of Bpq, the cell of SPMp and of SPMq that contains u. Since
all cells in SPMp and SPMq are triangles, this requires only O(1) certificates per vertex. We
store these certificates in a priority queue Q.

At any time where Bpq changes combinatorially (i.e. at an event) the shortest path to
a vertex v of Bpq changes combinatorially, which indicates a change in the SPM cells that
contain v. Hence, we detect all events. Conversely, when any vertex v of Bpq moves to a
different SPM cell there is a combinatorial change in the bisector, so each event triggered
by parts (ii) and (iii) of the KDS is an external event. The events at which SPMp or SPMq

changes are internal (unless they also cause a change in a shortest path to a vertex of Bpq).
The changes to SPMp and SPMq are handled as in Aronov et al. and we update our

other structures accordingly (see the full version for details [15]). This leads to a compact
and efficient KDS to maintain the bisector. However, when the shortest path from p or q
to some polygon vertex v changes this affects all bisector vertices whose shortest paths go
through v. Hence, a single change in SPMp or SPMq may lead to a large number of updates
to the certificates of bisector vertices. Therefore, the KDS is not responsive. To solve this
issue we need a more refined data structure.

A Responsive KDS to Maintain a Bisector. First we dissect in some more detail the
anatomy of a bisector. Each bisector consists of two endpoints which are degree 1 vertices
and a chain of degree 2 vertices connecting them. We can further divide this chain based on
which parts are directly visible from the sites defining the bisector. This division results in
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Figure 5 A bisector can be split into at most five pieces, here separated by degree 2 vertices
marked as crosses.

at most 5 pieces, as illustrated in Fig. 5; some pieces may not be present in every bisector.
First there is a double-visible piece that is visible from both sites p and q. Since P is a simple
polygon, this piece consists of a single line segment. Adjacent to the double-visible piece on
either side there may be a single-visible piece that is only visible to p or to q, but not both.
Lastly, there are up to two non-visible pieces that are not directly visible from either p or q.

We will still store the bisector vertices in a balanced binary tree ordered along the bisector,
but we will store the certificates for the degree 2 vertices a little differently. For each of the
at most four degree 2 vertices that separate the pieces as well as the degree 1 endpoints, we
store the cells of SPMp and SPMq that contain them. Then we observe that for internal
vertices of the single-visible piece there can be no events. Each of these internal vertices lies
on an extension segment of a single convex chain of vertices in the simple polygon and these
extension segments do not intersect. Therefore no 2,2-collapses can occur.

The non-visible pieces are trickier, since 2,2-collapses may occur when a vertex moving on
an extension segment of SPMq moves to a different cell of SPMp. Fortunately such potential
events on a single non-visible bisector piece are related and form a strict ordering, regardless
of the exact distance functions of the various vertices to p and q.

We define event points to be the locations at which 2,2-collapses that may occur. Consider
two degree 2 vertices v and w that are internal to a non-visible piece of bisector between
sites p and q, such that v and w are adjacent on the bisector and we have that v is on an
extension segment of SPMp and w is on an extension segment of SPMq. Let the event point
epv,w denote the intersection between these two extension segments. A 2,2-event between
v and w corresponds to the event point being on the bisector between p and q. Without
loss of generality assume that the event point currently lies in the Voronoi cell of p. We can
then use the certificate π(epv,w, p) < π(epv,w, q) to detect the 2,2-event between v and w.
As we saw above maintaining these certificates explicitly is not efficient as any change in
the shortest path towards p or q requires us to recompute the failure time. Instead we will
store all event points in the Voronoi cell of p in one balanced binary tree ordered along the
bisector and those in q in another. For each node in such a tree, we maintain the event point
in its subtree that will be the first to be on the bisector, similar to a kinetic tournament
(this, in turn requires maintaining distances between some of the relevant event points in the
subtree). With this representation, we have to compute explicit failure times only for the two
event points stored in the roots of the trees. Using these ideas we obtain the following result:
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p

q

Bpq

s1

s2

t1

t2

ep2

ep1

ep1

ep2

Figure 6 On the left is a schematic drawing of the event points ep1 and ep2 with their shortest
paths towards p and q. On the right how (the certificates of) ep1 and ep2 are stored in the BST.

I Theorem 6. Let p and q be two sites moving linearly inside a simple polygon P with m
vertices. There is a KDS that maintains the bisector Bpq that uses O(m) space and processes
at most O(m3) events, each of which can be handled in O(logm) time. Additionally it can
support movement changes of p and q in O(logm) time and splitting the bisector at any
given vertex in O(log2 m) time.

Proof. For a single non-visible bisector piece between sites p and q, Consider event points
ep1 and ep2 where ep2 is a child of ep1 in the tree. Let s1 and t1 denote the first polygon
vertex on the shortest path from ep1 towards p and q respectively and let s2 and t2 be defined
symmetrically. See Fig. 6. Then we can rewrite the certificate for ep1 as

π(ep1, s1)+π(s1, p) < π(ep1, t1)+π(t1, q) ≡ π(ep1, s1)−π(ep1, t1) < π(t1, q)−π(s1, p),

and the certificate for ep2 similarly. Then observe that if s1 = s2 and t1 = t2, then ep1 will
be on the bisector before ep2 if and only if π(ep1, s1)− π(ep1, t1) > π(ep2, s2)− π(ep2, t2).
This creates a strict ordering of the event points in the Voronoi cell of p. Unfortunately in
many cases the first vertex on the path towards p or q will not be the same for every vertex
on the bisector. Therefore we introduce an offset value to allow comparing event points that
have different first vertices on their paths towards p and q.

If s1 6= s2 and t1 6= t2, we should compare based on a common node on the paths towards
p and q, which may be any combination of s1 or s2 and t1 or t2. As these cases are analogous,
we consider the case where s1 and t2 are on the shortest paths towards p and q respectively
for both event points. (Intuitively s1 and t2 are further towards p and q). Now the values we
would like to compare are π(ep1, s1)− π(ep1, t2) > π(ep2, s1)− π(ep2, t2). However these are
not what we stored. With some rewriting, we find that the above inequality holds if and
only if

π(ep1, s1)− π(ep1, t1) > π(ep2, s2)− π(ep2, t2)− π(s1, s2)− π(t1, t2).

We call −π(s1, s2)− π(t1, t2) the offset of ep2 with respect to ep1. Each node will store the
maximum event value in its subtree as follows. For a leaf the maximum is its own event value.
For an internal node, it is the maximum over its own event value and the maximum values
of its children with the offset added. The maximum value of the root can then be used to
determine the first time an 2, 2-event happens among the bisector vertices stored in the tree.
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Note that the above data structure stores only a constant number of certificates directly
involving p or q, all of which are stored at the root of the tree. Therefore, it can be made to
support changes in the movement of p and q in O(logm) time. Furthermore, we can support
splitting the bisector at a vertex in O(log2 m) time, since a split affects O(logm) nodes in the
balanced binary search tree, and recomputing the offsets (and thus updating the certificates)
takes O(logm) time per node.

By replacing part (iii) of the naive structure with this data-structure we are still guaranteed
to detect all events, but now when SPMp changes, we have to update only a constant number
of certificates (rather than Θ(m)). As the certificates are stored in a binary tree it is easy to
add or remove vertices when the bisector is expanded or shrinks. This proves the theorem. J

4 A Voronoi Center

Let cpqs(t) be the point equidistant to p(t), q(t), and s(t) if it exists. By Aronov et al. [4]
(Lemma 2.3.5) there is indeed at most one such a point. We refer to cpqs as the Voronoi
center of p, q, and s. Note that there may be times at which cpqs does not exist. We identify
five types of events at which cpqs may appear or disappear, or at which the movement of
cpqs can change (see Fig. 7). They are:

1, 3-collapse events in which cpqs collides with the boundary of the polygon (in a bisector
endpoint) and disappears from P ,
1, 3-expand events in which cpqs appears on the boundary of P as two bisector endpoints
intersect, creating a point equidistant to all three sites,
vertex-events where cpqs appears or disappears strictly inside P , as two sites, say p and q,
are equidistant to a vertex v that appears on the shortest paths to cpqs,
2, 3-collapse events where one of the geodesics from either p, q, or s to cpqs loses a vertex,
2, 3-expand events where one of the shortest paths gains a new vertex.

Observe that, as the name suggests, at a 1, 3-collapse event the Voronoi center (a degree 3
vertex in VDP ({p, q, s})) disappears as it collides with the endpoint of a bisector (a degree 1
vertex). Similarly, at a 2, 3-collapse event a degree 2 vertex on one of the bisectors disappears
as it collides with a degree 3 vertex (the Voronoi center cpqs). As in case of the bisector,
some of these events may coincide. In the next section, we bound the number of events, and
thus the complexity of the trajectory of cpqs. We then present a kinetic data structure to
maintain cpqs in Section 4.2.

cpqs
cpqsu

1, 3-collapse 2, 3-collapse

1, 3-expand 2, 3-expand

cpqs

v

q
p

sBpq

v

q

p
sBpq

v

q
p

sBpq

cpqs

vertex

Figure 7 The events that can happen during the movement of a Voronoi center.



M. Korman, A. van Renssen, M. Roeloffzen, and F. Staals 75:11

p

q

s

Bpq
cpqs

Cs

Cp

Cq

E

Fp

Ds

Fq

Figure 8 A polygon in which the trajectory of a voronoi center cpqs has complexity Ω(m3).

4.1 Bounding the Number of Events
We give a construction in which the trajectory of cpqs has complexity Ω(m3), and then prove
a matching upper bound.

I Lemma 7. The trajectory of the Voronoi center cpqs of three points p, q, and s, each
moving linearly, may have complexity Ω(m3).

Proof. The main idea is that we can construct a trajectory for cpqs of complexity Ω(m2), even
when two of the three sites, say p and q, are static. We place p and q so that their bisector
Bpq, a piecewise hyperbolic curve of complexity Ω(m), intersects an (almost) horizontal line
E Ω(m) times. We can realize this using two convex chains Fp and Fq in ∂P . See Fig. 8 for
an illustration. We now construct a third convex chain Ds in ∂P and place the third site s
so that the extension segments in SPMs incident to the vertices of Ds all lie very close to E.
Thus, each such segment intersects Bpq Ω(m) times. We choose the initial distances so that
the voronoi center cpqs lies on the rightmost segment of Bpq. Now observe that as s moves
away from Ds, the center cpqs(t) will move to the left on Bpq, and thus it will pass over
all Ω(m2) intersection points of Bpq with the extension segments of the vertices in Ds. At
each such time, the structure of one of the shortest paths π(p(t), cpqs(t)), π(q(t), cpqs(t)), or
π(s(t), cpqs(t)) changes (they gain or lose a vertex from Fp, Fq, or Ds, respectively). Hence,
the trajectory of cpqs changes Ω(m2) times.

Next, we argue that we can make cpqs “swing” back and forth Ω(m) times by having p
and q move as well. The voronoi center cpqs will then encounter every intersection point on
Bpq Ω(m) times. It follows that the complexity of the trajectory of cpqs is Ω(m3) as claimed.

The idea is to add two additional convex chains, Cs and Cp, that make the bisector Bps

between p and s “zigzag” Ω(m) times throughout the movement of p and s. We can achieve
this using a similar construction as in Lemma 4. To make sure that the bisector Bpq = Bpq(t)
between p and q remains static, we create a third chain Cq, which is a mirrored copy of Cp,
and we make q move along a trajectory identical to that of p. See Fig. 8. Finally, observe
that cpqs(t) = Bpq ∩ Bps(t), and thus cpqs(t) will indeed encounter all Ω(m2) intersection
points on Bpq Ω(m) times. The lemma follows. J

I Lemma 8. The number of 1, 3-collapse events is at most O(m2).

I Theorem 9. The trajectory of the Voronoi center cpqs has complexity O(m3). Each edge
is a constant degree algebraic curve.
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Figure 9 In black the certificates that we maintain in order to detect: (a) events where bsp

changes movement, (b) 1, 3-collapse, 2, 3-collapse and 2, 3-expand events, and (c) 1, 3-expand events.

4.2 A Kinetic Data Structure to Maintain a Voronoi Center
Our KDS for maintaining cpqs stores: (i) the extended shortest path maps of p, q, and s, (ii)
the cells of these shortest path maps containing cpqs (when cpqs lies inside P ), and (iii) the
endpoints of all bisectors (for all pairs), and their cyclic order on ∂P . In particular, for each
such endpoint bsp we keep track of the cells of SPMp and SPMs that contain it. See Fig. 9.
At any time we maintain O(m) certificates, which we store in a global priority queue.

Observe that at 1, 3-collapse, 2, 3-collapse, and 2, 3-expand events the shortest path from
cpqs to one of the sites changes combinatorially. Hence, we can detect all such events. At a
vertex event a vertex is equidistant to two sites, say p and q. At such a time, one of the two
endpoints of Bpq leaves an edge of P , and thus exits a shortest path map cell in SPMp (and
SPMq). Since we explicitly track all bisector endpoints, we can thus detect this vertex event
of cpqs. Finally, at every 1, 3-expand event two such bisector endpoints collide, and thus
change their cyclic order along ∂P . We detect such events due to certificates of type (iii).

Any time at which cpqs changes cells in a shortest path map the movement of cpqs

changes combinatorially. Hence, any failure of a certificate of type (ii) is an external event
(a 1, 3-collapse, 2, 3-collapse, or 2, 3-expand). The certificates of types (i) and (iii) may be
internal or external.

I Theorem 10. Let p, q and s be three sites moving linearly inside a simple polygon P with
m vertices. There is a KDS that maintains the Voronoi center cpqs that uses O(m) space and
processes at most O(m3) events, each of which can be handled in O(log2 m) time. Updates
to the movement of p, q, and s, can be handled in O(log2 m) time.

Proof. Certificate failures of type (i) are handled exactly as described by Aronov et al. [5].
This takes O(log2 m) time. Note that changes to the shortest path maps may affect the
certificates that guarantee that cpqs or a bisector endpoint lies in a particular SPM cell. In
these cases we trigger a type (ii) or type (iii) certificate failure. At a certificate failure of
type (ii) at which cpqs exits a shortest path map cell, we remove all certificates of type (ii)
from the event queue. Next, for each site p, q, and s, we compute the new cell in the shortest
path map containing cpqs (if cpqs still lies inside P ). Finally, we create the appropriate new
type (ii) certificates. Since all cells have constant complexity, the total number of certificates
affected is also O(1). Computing them can easily be done in O(log2 m) time.

Certificate failures of type (iii) where the movement of a bisector endpoint changes are
handled using the same approach as in Section 3.2. Furthermore, at such an event we check
if cpqs appears or disappears, that is, if the event is actually a vertex event of cpqs. This can
be done in O(log2 m) time [21]. If cpqs disappears then we delete all type (ii) certificates.
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Figure 10 (a) Voronoi edges cannot intersect in their interior. (b) The 3, 3-collapse/expand
events.

If cpqs appears then we locate the cell of SPMp, of SPMq, and of SPMs that contains cpqs,
and insert new type (ii) certificates that certify this. Finding the cells and updating the
certificates can be done in O(log2 m) time. At a certificate failure of type (iii) where two
bisector endpoints collide, we check if the intersection point is equidistant to all three sites,
and is thus a 1, 3-expand event. Similarly to the approach described above, we add new type
(ii) certificates in this case. Again this takes O(log2 m) time.

Maintaining the extended shortest path maps requires handling O(m) events [5]. Events
where cpqs crosses a boundary of an extended SPM correspond to changes in the trajectory
of cpqs. By Theorem 9 there are at most O(m3) such events. This dominates the O(m2)
events that we have to handle to maintain the bisector endpoints in cyclic order around ∂P
(Theorem 5 and Lemma 8).

Since in addition to SPMp, SPMq, and SPMs, we maintain only a constant amount of
extra information. Since the KDS to maintain such a shortest path map SPMs is local and
can be updated to changes in the movement of s in O(log2 m) time. The same applies for our
data structure as well. Thus we obtain a compact, responsive, local, and efficient KDS. J

5 The Geodesic Voronoi Diagram

In this section we consider maintaining the geodesic Voronoi diagram VDP (S) as the sites
in S move. As a result of the sites in S moving, the Voronoi vertices and edges in VDP (S)
will also move. However, we observe that all events involving Voronoi edges involve their
endpoints; two edges cannot start to intersect in their interior as this would split a Voronoi
region, see Fig. 10(a). Similarly, the interior of a Voronoi edge cannot start to intersect the
polygon boundary. This means we can distinguish the following types of events that change
the combinatorial structure of the Voronoi diagram.

Edge collapses, at which an edge between vertices u and v shrinks to length zero. Let du, dv,
with du ≤ dv, be the degrees of u and v, respectively. We then have a du, dv-collapse.
Edge expands. These are symmetric to edge collapses.
Vertex events, where a degree 1 vertex of VDP (S) crosses over a polygon vertex.

Indeed, we have seen most of these events when maintaining an individual bisector
or Voronoi center (a degree 3 vertex in VDP (S)). The only new types of events are the
3, 3-collapse and 3, 3-expand events which involve two degree 3 vertices. They are depicted
in Fig. 10.(b). We again note that some of these events may happen simultaneously.

I Theorem 11. Let S be a set of n sites moving linearly inside a simple polygon P with m
vertices. During the movement of the sites in S, the combinatorial structure of the geodesic
Voronoi diagram VDP (S) changes at most O(m3n3βz(n)) times. In particular, the events at
which VDP (S) changes, and the number of such events, are listed in Table 1.
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Figure 11 A vertex event may cause a bisector (here Bpq) to split, and a degree 3 vertex crossing
an SPM extension segment may merge two bisectors.

We prove these bounds in the full version [15]. For most of the lower bounds we generalize
the constructions from Sections 3 and 4. For the upper bounds we typically fix a site or vertex
(or both), and map the remaining sites to a set of functions in which we are interested in the
lower envelope. In Section 5.1 we develop a kinetic data structure to maintain VDP (S).

5.1 A KDS for a Voronoi Diagram
In this section we develop a KDS to maintain the Voronoi diagram of S. Our KDS essentially
stores for each site the extended shortest path map of its Voronoi cell, and a collection of
certificates that together guarantee that the shortest paths from the sites to all Voronoi
vertices remain the same (and thus the KDS correctly represents VDP (S)). The main
difficulties that we need to deal with are shown in Fig. 11. Here, r becomes the site closest
to vertex v, and as a result a part of the polygon moves from the Voronoi cell Vp of p to the
Voronoi cell Vr of r. Our KDS should therefore support transplanting this region from the
SPM representation of Vp into Vr or vice versa. Moreover, part of the bisector Bpq becomes a
bisector Bpr, which means that any certificates internal to the bisector (such as those needed
to detect 2,2-events) change from being dependent on the movement of p to being dependent
on the movement of r. Next, we show how to solve the first problem, transplanting part
of the shortest path map. Our KDS for the bisector from Theorem 6 essentially solves the
second problem. All that then remains is to describe how to handle each event.

5.1.1 Maintaining Partial Shortest Path Maps
To support transplanting a part of SPMs into SPMq we extend the data structure of
Aronov et al. [5]. Observe that SPMs is a tree rooted at s, and we transplant only subtrees,
rooted at some polygon vertex v. Our representation of SPMs should support: (i) link
operations in which we add the subtree rooted at v as a child of u, (ii) cut operations in
which we cut an edge (u, v), (iii) shortest path queries in which we report the length of the
shortest path from some vertex u to the root s, and (iv) principal-child queries in which we
report the principal child c of some non-root node u. The principal child is the child of u for
which the angle between cu and up(u), where p(u) is the parent of u, is minimal. We need
this operation to support updating the certificates of SPMs

2. To support these operations,

2 Since the root is the only node storing a moving point, all certificates involve only nodes from the first
three layers of the tree. Hence, it suffices to compute the principal child only for direct children of the
root.
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we store SPMs twice: once in a link-cut tree [26] and once in an Euler tour tree [12]. Both
these structures support link and cut operations in O(logm) time. The link-cut trees support
query operations on node-to-root paths, and hence we use them to answer shortest path
queries in O(logm) time (plus O(k) time to report the actual path, if desired). The Euler
tour trees support query operations on subtrees, and hence we use them to answer principal
child queries. In particular, we maintain the children of u in cyclic order around u, starting
with c. This way link and cut operations still take O(logm) time, and the principal child of
u can be reported in constant time.

5.1.2 The data structure
The full KDS thus consists of an extended shortest path map for every Voronoi cell maintained
as described above; and certificates for each degree three vertex, degree one vertex, and each
bisector. For every degree three vertex cpqs we maintain the cells of SPMp, SPMq and SPMs

that contain it and its distance to neighboring vertices. For every degree one vertex bpq, we
store the cells of SPMp and SPMq that contain it, which edge of P it is on, and if applicable
its separation from neighboring degree one vertices on the same edge. For each bisector, we
store the data structure of Theorem 6. Our data structure uses a total of O(n+m) space.

It is not to difficult to see that this certificate structure captures all external events.
For collapse and expand events involving degree three vertices we explicitly certify that the
distance to its adjacent vertices is non-zero. For events involving degree one vertices we
explicitly track which edge contains each such a vertex. This allows us to detect vertex
events. Furthermore, we maintain distance of each degree one vertex to other degree one
vertices on the same edge. Thus we can detect 1,3-expand events. Furthermore, we maintain
which cells of the SPM the vertex is contained in, which allows us to detect 1,2-expand
and 1, 2-collapse events. What remains are the 2,2-events. These are detected by the data
structure of Theorem 6.

5.1.3 Handling events
Handling the events is similar to what we described in Sections 3.2 and 4.2. Hence, we
describe only what is new or different here.

At all external-events we have to update the shortest path map representations of the
Voronoi cells. In most cases, this involves adding or removing a single vertex to the shortest
path map. This can easily be handled using local computations in O(log2 m) time. In case
of vertex events, we may have to move an entire region in SPMs to SPMp. Since all shortest
paths in such a region go via the vertex involved, we can perform these updates in O(log2 m)
time using the above data structure.

Since there are now n sites, we maintain O(n+m) certificates, and thus updating the
event queue takes O(log(n + m)) time. Furthermore, we now have multiple degree three
vertices, and thus we have to handle 3, 3-collapse and expand events. These are handled
in a similar fashion to the other events; we update the Voronoi regions, and compute new
certificates certifying the movement of the vertices involved from scratch. All these updates
can be done in O(log2 m+ logn) time.

At a vertex event where p and r are equidistant to a vertex v, the region R that moves
from SPMp to SPMr may now be bounded by a bisector Brq rather than Bpq (see Fig. 11).
Since, at the time of the event, the relevant parts of Bpq and Brq coincide we can obtain
the new part of Brq by splitting Bpq, and updating the movement of the associated sites. In
particular, replacing the function expressing the distance p to v by the distance from r to v.
Our bisector KDS allows such updates in O(log2 m) time.
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Finally, we may have to update the certificates associated with the Voronoi vertices as
a result of changes to the individual shortest path maps. For example, when a site s can
no longer see polygon vertex v, this affects all Voronoi certificates of vertices for which the
shortest path goes through v. While our KDS for the bisector (Theorem 6) can update the
affected certificates of such a change efficiently, this unfortunately does not hold for the
certificates associated with degree one or degree three vertices. Updating these requires
O(k(log2 m + logn)) time, where k is the number of neighbors of s in VDS(P ). It is an
interesting open question to try and handle such events implicitly as well. We therefore
obtain the following result:

I Theorem 12. Let S be a set of n sites moving linearly inside a simple polygon P with m
vertices. There is a KDS that maintains the geodesic Voronoi diagram VDP (S) that uses
O(n+m) space and processes at most O(m3n3βz(n)) events, each of which can be handled
in O(k(log2 m+ logn)) time, where k is the number of neighbors of the affected Voronoi cell.
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Abstract
We study locality-sensitive hash methods for the nearest neighbor problem for the angular distance,
focusing on the approach of first projecting down onto a random low-dimensional subspace, and then
partitioning the projected vectors according to the Voronoi cells induced by a well-chosen spherical
code. This approach generalizes and interpolates between the fast but asymptotically suboptimal
hyperplane hashing of Charikar [STOC 2002], and asymptotically optimal but practically often
slower hash families of e.g. Andoni–Indyk [FOCS 2006], Andoni–Indyk–Nguyen–Razenshteyn [SODA
2014] and Andoni–Indyk–Laarhoven–Razenshteyn–Schmidt [NIPS 2015]. We set up a framework for
analyzing the performance of any spherical code in this context, and we provide results for various
codes appearing in the literature, such as those related to regular polytopes and root lattices. Similar
to hyperplane hashing, and unlike e.g. cross-polytope hashing, our analysis of collision probabilities
and query exponents is exact and does not hide any order terms which vanish only for large d, thus
facilitating an easier parameter selection in practical applications.

For the two-dimensional case, we analytically derive closed-form expressions for arbitrary spherical
codes, and we show that the equilateral triangle is optimal, achieving a better performance than the
two-dimensional analogues of hyperplane and cross-polytope hashing. In three and four dimensions,
we numerically find that the tetrahedron and 5-cell (the 3-simplex and 4-simplex) and the 16-cell (the
4-orthoplex) achieve the best query exponents, while in five or more dimensions orthoplices appear
to outperform regular simplices, as well as the root lattice families Ak and Dk in terms of minimizing
the query exponent. We provide lower bounds based on spherical caps, and we predict that in
higher dimensions, larger spherical codes exist which outperform orthoplices in terms of the query
exponent, and we argue why using the Dk root lattices will likely lead to better results in practice
as well (compared to using cross-polytopes), due to a better trade-off between the asymptotic query
exponent and the concrete costs of hashing.
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1 Introduction

Given a large database of high-dimensional vectors, together with a target data point which
does not lie in this database, a natural question to ask is: which item in the database is the
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most similar to the query? And can we somehow preprocess and store the database in a
data structure that allows such queries to be answered faster? These and related questions
have long been studied in various contexts, such as machine learning, coding theory, pattern
recognition, and cryptography [14,19,20,25,30,32], under the headers of similarity search
and nearest neighbor searching. Observe that a naive solution might consist of simply storing
the data set in a big list, and to search this list in linear time to find the nearest neighbor to
a query point. This solution requires an amount of time and space scaling linearly in the size
of the data set, and solutions we are interested in commonly require more preprocessed space
(and time), but achieve a sublinear query time complexity to find the nearest neighbor.

Depending on the context of the problem, different solutions for these problems have
been proposed and studied. For the case where the dimensionality of the original problem is
constant, efficient solutions are known to exist [8]. Throughout the remainder of the paper,
we will therefore assume that the dimensionality of the data set is superconstant. In the late
1990s, Indyk–Motwani [22] proposed the locality-sensitive hashing framework, and until today
this method remains one of the most prominent and popular methods for nearest neighbor
searching in high-dimensional vector spaces, both due to its asymptotic performance when
using theoretically optimal hash families [4, 5], and due to its practical performance when
instantiated with truly efficient locality-sensitive hash functions [1,13,16]. And whereas many
other methods scale poorly as the dimensionality of the problem increases, locality-sensitive
hashing remains competitive even in high-dimensional settings.

Although solutions for both asymptotic and concrete settings have been studied over the
years, there is often a separation between both worlds: some methods work well in practice
but do not scale optimally when the parameters increase (e.g. Charikar’s hash family [16]);
while some other methods are known to achieve a superior performance for sufficiently large
parameter sizes, but may not be quite as practical in some applications due to large hidden
order terms in the asymptotic analysis (e.g. hash families studied in [3–5] and filter families
from [6,11,17]). Moreover, the latter methods are often not as easy to deploy in practice due
to these unspecified hidden order terms, making it hard to choose the scheme parameters that
optimize the performance. A key problem in this area thus remains to close the gap between
theory and practice, and to offer solutions that interpolate between quick–and–dirty simple
approaches that might not scale well with the problem size, and more sophisticated methods
that only start outperforming these simpler methods as the parameters are sufficiently large.

1.1 Related work
In this paper we will focus on methods for solving the nearest neighbor problem for the
angular distance, which is closely related to the nearest neighbor problem in various `p-norms:
as shown by Andoni and Razenshteyn [7], a solution for the nearest neighbor problem for
the angular distance (or the Euclidean distance on the sphere) can be optimally extended to
a solution for the `2-norm for all of Rd. Solutions for the `2-norm can further be translated
to e.g. solutions for the `1-norm via appropriate embeddings.

For the angular distance, perhaps the most well-known and widely deployed approach for
finding similar items in a large database is to use the hyperplane hash family of Charikar [16].
For spherically-symmetric, random data sets on the sphere of size n, it can find a nearest
neighbor at angle at most e.g. θ = π

3 in sublinear time Õ(nρ) and space Õ(n1+ρ), with
ρ ≈ 0.5850. Various improvements later showed that smaller query exponents ρ can be
achieved in sufficiently high dimensions [3, 5], the most practical of which is based on cross-
polytopes or orthoplices [4,24,35]: for large d and for the same target angle θ = π

3 , the query
time complexity scales as nρ+o(1) with ρ = 1/3. Note that the convergence to the limit is
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rather slow [4, Theorem 1] and depends on both d and n being sufficiently large – for fixed
d and large n, the exponent is still larger than 1/3. In certain practical applications with
moderate-sized data sets, hyperplane hashing still appears to outperform cross-polytope
hashing and other advanced hashing and filtering schemes [2,11,12,28,29] due to its low cost
for hashing, and the absence of lower order terms in the exponent.

Related to the topic of this paper, various other works have further observed the relation
between finding good locality-sensitive hash families for the angular distance and finding “nice”
spherical codes that partition the sphere well, and allow for efficient decoding [3,4,11,15,35,36].
The requirements on a spherical code to be a good spherical code are somewhat intricate
to state, and to date it is an open problem to exactly quantify which spherical codes are
the most suited for nearest neighbor searching. It may well be possible to improve upon the
state-of-the-art orthoplex (cross-polytope) locality-sensitive hash family [4,31] in practice
with a method achieving the same asymptotic scaling, but with a faster convergence to the
limit, and thus potentially a better performance in practice for large problem instances.

1.2 A framework for evaluating spherical codes
As a first contribution of this paper, we provide a framework for analyzing the performance of
arbitrary spherical codes in the context of locality-sensitive hashing for the angular distance,
where we focus on the approach of (1) projecting down onto a random low-dimensional
subspace, and (2) partitioning the resulting subspace according to the Voronoi cells induced
by a spherical code. More specifically, we relate the collision probabilities appearing in the
analysis of these hash functions to so-called orthant probabilities of multivariate normal
distributions with non-trivial correlation matrices. Below we informally state this relation for
general spherical codes, which provides us a recipe for computing the collision probabilities
(and the query exponent) as a function of the set of vertices C of the corresponding spherical
code. Here a hash family being (θ, p1, p2)-sensitive means that uniformly random vectors on
the sphere collide with probability at most p2, and target nearest neighbors at angle at most
θ from a random query vector collide in a random hash function with probability at least p1.
Further details and a more formal statement can be found in the full version.

I Theorem 1 (Spherical code locality-sensitive hashing). Let C ⊂ Sk−1 be a k-dimensional
spherical code, and consider a hash family where:

We first project onto a k-dimensional subspace using a random matrix A ∼ N (0, 1)k×d;
We then assign hash values based on which c ∈ C is nearest to the projected vector.

Then for any θ ∈ (0, π2 ), this family is (θ, p1, p2)-sensitive, where p2 can be expressed in terms
of the relative volumes of the Voronoi cells induced by C, and p1 can be expressed as a sum
of orthant probabilities Prz∼N (0,Σi) (z ≥ 0), where each Σi has size (2k)× (2k).

The locality-sensitive hashing exponent ρ = log p1/ log p2 describes the distinguishing power
of a hash family, as for large n this tells us that we can solve the (average-case) nearest
neighbor problem with target angle θ in query time Õ(nρ) with space Õ(n1+ρ). The theorem
above essentially provides us a recipe which, given any spherical code C and target angle θ
as input, tells us how to compute these probabilities p1 and p2 (and thus ρ) exactly.

While the above theorem is somewhat abstract, we show how to explicitly construct
the correlation matrices Σi appearing in the theorem, allowing us to always at least obtain
numerical estimates on the performance of different spherical codes in the context of nearest
neighbor searching. We further study how to reduce the dimensionality of the problem (and
in particular, the sizes of the matrices Σi) when the spherical code exhibits many symmetries,
such as being isogonal, and we show how using only the relevant vectors of each code word
can further simplify the computations. In most cases the resulting orthant probabilities will
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still remain too complex to evaluate analytically, but in some cases we can obtain exact
expressions this way.

1.3 A survey of known spherical codes
One and two dimensions. Using this new framework, in the full version we then apply it
to various spherical codes, starting in very low dimensions. For the one-dimensional case we
rederive the celebrated result of Charikar [16] for one-dimensional spherical codes, noting that
the collision probability analysis in fact dates back to an old result from the late 1800s [33].
Applying the same framework to two-dimensional codes, among others we establish a general
formula for collision probabilities and query exponents for arbitrary polygons, as well as a
more compact description of the collision probabilities for regular polygons.

I Theorem 2 (Collision probabilities for regular polygons). Let C ⊂ S1 consist of the vertices of
the regular c-gon, for c ≥ 2, and let θ ∈ (0, π2 ). Then the corresponding project–and–partition
hash family H is (θ, p1, p2)-sensitive, with:

p1 = 1
c

+ c

(
π − θ

2π

)2
− c

(arccos(− cos θ cos 2π
c )

2π

)2

, p2 = 1/c. (1)

As a direct corollary of the above theorem, we establish that triangular locality-sensitive
hashing achieves a superior asymptotic performance to hyperplane hashing, and achieves the
lowest query exponents ρ among all regular polygons.

I Corollary 3 (Triangular locality-sensitive hashing). Consider the hash family where we first
project onto a random plane using a random projection matrix A ∼ N (0, 1)2×d, and then
decode to the nearest corner of a fixed equilateral triangle centered at (0, 0). Then, for target
angles θ ∈ (0, π2 ), this hash family achieves query exponents ρ of the form:

ρ = ln
[

1
3 + 3

(
π − θ

2π

)2
− 3

(arccos( 1
2 cos θ)

2π

)2]/
ln
[

1
3

]
. (2)

Among all such project–and–partition hash families based on regular k-gons, this family
achieves the lowest values ρ for any target angle θ ∈ (0, π2 ).

Note again that the above statement of ρ is exact, and does not hide any order terms in
d or n – in fact, the collision probabilities do not depend on d at all, due to our choice
of A being Gaussian. Further note that the 2-gon in the plane corresponds to the one-
dimensional antipodal code of Charikar, and triangular hashing therefore strictly improves
upon hyperplane hashing for any θ in terms of the query exponent ρ. For instance, we
can find neighbors at angle at most π

3 in time Õ(nρ) with ρ ≈ 0.56996, offering a concrete
but minor improvement over the hyperplane hashing approach of Charikar [16] with query
exponent ρ ≈ 0.5850. This is the best we can do with any two-dimensional isogonal spherical
code, and we numerically predict that this code achieves the lowest values ρ among all (not
necessarily isogonal) two-dimensional spherical codes as well.

Three and four dimensions. For three-dimensional codes, through numerical integration of
the resulting orthant probabilities we conclude that the tetrahedron appears to minimize the
query exponent ρ out of all three-dimensional codes, beating the three-dimensional analogues
of e.g. the cross-polytope and hypercube, as well as various sphere packings and other regular
polytopes appearing in the literature, such as the Platonic and Archimedean solids. In four
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dimensions an interesting phenomenon occurs: the so-called 5-cell (4-simplex) and 16-cell
(4-orthoplex) are optimal in different regimes, with the 5-cell inducing a more coarse-grained
partition of the space and achieving a better performance when the nearest neighbor lies
relatively far away from the data set, and the 16-cell inducing a more fine-grained partition,
and working better when the nearest neighbor lies relatively close to the target vector. This
crossover effect is also visualized in Figure 1, and it strengthens our intuition that as the
dimensionality goes up, or as the nearest neighbor lies closer to the query, more fine-grained
partitions are necessary to obtain the best performance. An overview of some of the exponents
ρ for various low-dimensional spherical codes, for different target angles θ ∈ π

12{1, 2, 3, 4, 5},
is given in Table 1. The best exponents ρ are highlighted in bold.

Five and more dimensions. For higher-dimensional spherical codes, we obtain further
improvements in the query exponents ρ through the use of suitable spherical codes, as shown
in Table 1 and Figures 1–4. For dimensions 5 and 6, the corresponding orthoplices achieve a
better performance than the simplices, and the exotic polytopes 121 and 221, related to the
root lattice E6, seem useful in the context of nearest neighbor searching as well.

In the full version we further study the performance of the following five non-trivial
infinite families of spherical codes. Color codes below correspond to the same colors used in
Table 1 and Figures 1–4 to differentiate these families of codes.

The simplices Sk on k + 1 vertices;
The orthoplices Ok on 2k vertices (also known as cross-polytopes [4, 36]);
The hypercubes Ck on 2k vertices (as studied in [27]);
The expanded simplices Ak on k(k + 1) vertices;
The rectified orthoplices Dk on 2k(k − 1) vertices.

The latter two families are connected to the root lattices Ak and Dk, while the first three are
related to the lattice Zk. We conjecture that, should other nice families of dense lattices be
found (e.g. the recent [37]), these may give rise to suitable spherical codes in nearest neighbor
applications as well. For each of the above five families we give closed-form expressions on
the correlation matrices Σ, but the resulting orthant probabilities that need to be evaluated
for computing ρ do not appear to admit simple closed-form expressions. Apart from the
family of hypercubes, these are all asymptotically optimal (with ρ→ (1− cos θ)/(1 + cos θ)
as k →∞), although the convergence to the limit may differ for each family.

1.4 Lower bounds via spherical caps
Although this work tries to be exhaustive in covering as many (families of) spherical codes as
possible, better spherical codes may exist, achieving even lower query exponents ρ. As these
codes may be hard to find, and as it may be difficult to rule out the existence of other, better
spherical codes, the next best thing one might hope for is a somewhat tight lower bound
on the performance of any k-dimensional spherical code in our framework, which hopefully
comes close to the performance of the spherical codes we have considered in this survey.

As has been established in several previous works on nearest neighbor searching on the
sphere [3, 5, 6, 11,17,26], ideally we would like the hash regions induced by the partitions to
take the shape of a spherical cap. Such a shape minimizes the angular radius, given that the
region has a fixed volume, and in a sense it is the most natural and smoothest shape that a
region on a sphere can take. So in a utopian world, one might hope that a spherical code
partitions the sphere into c regions, and each region corresponds exactly to a spherical cap of
volume Vol(Sk−1)/c. Clearly such spherical codes do not exist for k > 2 and c > 2, but such
an extremal example does give us an indication on the limits of what might be achievable in
dimension k, and how the optimal ρ decreases with k. Note that random spherical codes
might approach this utopian setting in high dimensions.
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Following the above reasoning, and using a classic result of Baernstein–Taylor [10], we
state a formal lower bound on the performance parameter ρ of any k-dimensional spherical
code of size c, and by minimizing over c for given k, one obtains a lower bound for any
spherical code living in k dimensions. Here Ix(a, b) denotes the regularized incomplete beta
function, which comes from computing the volume of a sphere in k dimensions, while ‖ · ‖
denotes the Euclidean norm.

I Theorem 4 (Spherical cap lower bounds). Let C ⊂ Sk−1 be a spherical code, and let H
be the associated project–and–partition hash family. Then the parameter ρ for C, for target
angle θ ∈ (0, π2 ), must satisfy:

ρ(θ) ≥ ρk(θ) := min
c≥2

ρk(c, θ), (3)

where, with αk(c) denoting the solution α to 1
2 · I1−α2(k−1

2 , 1
2 ) = 1

c , ρk(c, θ) is given by:

ρk(c, θ) := log
{

Pr
x,y∼N (0,1)k

(
x1

‖x‖
≥ αk(c), x1 cos θ + y1 sin θ

‖x cos θ + y sin θ‖ ≥ αk(c)
)}/

log
(

1
c

)
.

The above minimization over c ≥ 2 concerns the possible code sizes, and ρk(c, θ) describes
the parameter ρ one would obtain when indeed, the code consisted of c equivalent regions of
equal volume, and each region was shaped like a spherical cap. Equivalently, one could state
that any spherical code of size exactly c must satisfy ρ(θ) ≥ ρk(c, θ).

Numerical evaluation of these expressions ρk(c, θ), and the resulting minimization over
c, leads to the values in Table 1 in the rows indicated by spherical caps. The superscripts
denote the values c that numerically solve the minimization problems. These results in low
dimensions suggest that, especially for small angles, the optimal code size should increase
superlinearly with the dimension. This inspires the following conjecture, stating that the use
of orthoplices is likely not optimal in higher dimensions.

I Conjecture 5 (Orthoplices are suboptimal for large k). For arbitrary θ ∈ (0, π2 ), there
exists a dimension k0 ∈ N such that, for all dimensions k ≥ k0, there exist spherical codes
C ⊂ Sk−1 whose query exponents ρ in the project–and–partition framework are smaller than
the exponents ρ of the k-orthoplex.

Actually finding such spherical codes, or finding families of spherical codes that outperform
orthoplices may again be closely related to the problem of finding nice families of dense
lattices with efficient decoding algorithms. We informally conjecture that in high dimensions,
and for sufficiently large code sizes c, random spherical codes may be close to optimal. If we
care only about minimizing ρ, then a further study might focus on (1) getting a better grip
of the optimal scaling of c = c(k) with k, and (2) estimating the asymptotic performance of
using random spherical codes of size c(k), for large k. We predict this will lead to better
values ρ than those obtained with cross-polytope hashing.

1.5 Selecting spherical codes in practice
Although the exponent ρ, and therefore the probabilities p1 and p2, directly imply the main
performance parameters to assess the asymptotic performance of a locality-sensitive hash
family, in practice we are always dealing with concrete, non-asymptotic values n, d, and θ
– if the convergence to the optimal asymptotic scaling is slow, or if the hash functions are
too expensive to evaluate in practice, then hash families with lower query exponents ρ may
actually be less practical for small, concrete values of n and d than fast hash families with
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larger ρ. For example, the hash family from [3] may be “optimal”, but appears to be only of
theoretical interest. In practice one needs to find a balance between decreasing ρ and using
hash functions which are fast to evaluate.

As a more concrete example, consider how hyperplane hashing [16] allows us to partition
a sphere in 2k regions with a single random projection matrix A ∈ Rk×d (or equivalently k
matrices A1, . . . ,Ak ∈ R1×d merged into one large matrix). For cross-polytope hashing [4]
a k-dimensional projection would only divide the k-dimensional sphere into 2k regions.
As the total required number of hash buckets in the data structure is often roughly the
same, regardless of the chosen hash family,1 this means that if we wish to divide the
sphere into 2k hash regions with cross-polytope hashing, we would need m = k/ log2(2k)
independent random projection matrices A1, . . . ,Am ∈ Rk×d to hash a vector to one of 2k
buckets. So even though the resulting partitions for cross-polytope hashing generate smaller
exponents ρ, in practice this improvement may not offset the additional costs of computing
the projections/rotations, which is almost a linear factor O(d) more than for hyperplane
hashing. So especially for data sets of small/moderate sizes, hyperplane hashing may be
more practical than cross-polytope hashing, as also observed in e.g. [12, 25,28,29].

We explicitly quantify the trade-off between the complexity of the hash functions and the
asymptotic query exponents ρ in Figure 3, where on the vertical axis we plotted the query
exponents ρ as computed in this paper, and on the horizontal axis we plotted the number of
bits extracted per row of a projection matrix; for hyperplane hashing we extract 1 bit per
projection, while e.g. for cross-polytope hashing in dimension k we only extract log(2k)/k
bits per projection. Depending on the application, it may be desirable to choose hash families
with slightly larger values ρ, if this means the cost of the hashing becomes less. Figure 3
makes a case for using hashes induced by the root lattices Dk, as well as those induced by
exotic polytopes such as the 221-polytope; compared to e.g. the 5-orthoplex, the D10 lattice
achieves lower values ρ and extracts more bits per projection, while the 221-polytope further
improves upon D10 by extracting more hash bits per projection.

To further illustrate how these trade-offs might look in a real-world setting, Figure 4
describes a case study for average-case nearest neighbor searching with different sizes n for
the data sets. For small data sets, hyperplane hashing is quite competitive, and the best
other spherical codes are those induced by the Dk lattices (for small k), and spherical codes
generated by the polytopes 121, 131 and 221. This case study matches the recommendations
from Figure 3. For large n, the role of ρ becomes more prominent, and higher-dimensional
orthoplices and Dk lattices attain the best performance. In the full version we further
describe how one might choose the best codes in practice.

1.6 Summary and open problems
With the project–and–partition framework outlined in this paper, we can now easily formalize
and analyze the performance of any spherical code in this framework, and analyze the
collision probabilities and query exponents either analytically (by attempting to simplify
the corresponding multivariate orthant probabilities) or numerically (by evaluating these
multivariate integrals with mathematical software, such as the mvtnorm package [21]). We
observed that already in two dimensions, it is possible to improve upon hyperplane hashing
with a smaller exponent ρ by using triangular partitions, and we described closed-form

1 While a hash family with lower query exponents ρ does require a smaller number of hash buckets per
hash table, this effect is marginal compared to the increase in the number of projections/rotations
required by e.g. cross-polytope hashing compared to hyperplane hashing.
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formulas for the resulting parameters ρ. In three and four dimensions the improvements in
the exponent ρ become more significant, with e.g. the tetrahedron, the 5-cell, and the 16-cell
achieving the best exponents ρ in these dimensions. For higher dimensions the simplices and
orthoplices seem to achieve the best performance in theory, thus making a strong case for
the use of these partitions as advertised in [4, 24, 35, 36], and as observed in nearest neighbor
benchmarks [9, 13,31]. The family of Dk lattices and the generalized m-max hash functions
however seem to offer better practical trade-offs between the asymptotic performance in
terms of ρ and the costs of computing hashes, as discussed in the full version.

Finding better spherical codes. An important open problem, both for our project–and–
partition framework and for arbitrary hash families for the angular distance, is to find (if
they exist) other nice families of spherical codes which achieve an even better performance
than the family of orthoplices. Numerics in the full version suggest that as k increases,
the optimal code size c should increase faster than the linear scaling of c = 2k offered by
orthoplices. Finding the optimal scaling of c as a function of k, and finding nicer spherical
codes closely matching this appropriate scaling of c is left for future work.

Faster pseudorandom projections. To make e.g. hyperplane and cross-polytope hashing
more practical, various ideas were proposed in e.g. [1, 4] to work with sparse projections and
pseudorandom rotation matrices. Similar ideas can be used for any hash family, to reduce the
cost of multiplication by a random Gaussian matrix A. Concretely, one can often replace it
with a sparse, “sufficiently random” pseudorandom matrix A while still achieving good query
exponents ρ in practice. Depending on how these pseudorandom projections are instantiated,
this may lead to a different practical evaluation than what we described in our practical case
analyses. In particular, as this reduces the relative cost of the hashing, this will further favor
schemes which reduce ρ at the cost of increasing the (naive) complexity of hashing.

Using orthogonal projection matrices. In our framework, we focused on projecting down
onto a low-dimensional subspace using Gaussian matrices A ∼ N (0, 1)k×d. For k � d, using
Gaussian matrices or orthogonal matrices (i.e. AAT = Ik) is essentially equivalent [18,23],
but for large k it may be beneficial to use proper rotations induced by orthogonal matrices.
For instance, recent work [27] showed that for hypercube hashing in the ambient space,
there is a clear gap between using random or orthogonal matrices; using orthogonal matrices
generally works better than using random Gaussian projection matrices.

The main issue when analyzing the same framework with orthogonal matrices is that the
dependence on d then does not disappear; the distribution of Ax then relies on both k and
d, rather than only on k. Our framework is in a sense dimensionless, as the performance can
be computed without knowledge of d, and for k = 2 this even allowed us to obtain explicit
analytic expressions for the collision probabilities for arbitrary k-gons. Using orthogonal
matrices, the collision probabilities will likely become complicated functions of d, and
comparing different spherical codes may then become a more difficult task. We leave it as an
open problem to adjust the above framework to the setting where A is orthogonal, and to
see how much can be gained by using orthogonal rather than Gaussian matrices2.

The remainder of the paper can be found in the full version at [arXiv:1907.04628].

2 Note that one obtains different asymptotics when analyzing the hypercube for Gaussian [16] and
orthogonal projection/rotation matrices [27]. For constant k = O(1) and large d both approaches are
asymptotically equivalent, but for large k = O(d) we expect orthogonal matrices to give better results.

https://arxiv.org/abs/1907.04628
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Table 1 Parameters ρ for various spherical codes. Sphere packings are from [34]. Rows labeled
“spherical caps” are lower bounds (Theorem 4). Superscripts refer to the number of caps minimizing
ρθ. Bold values indicate the best values ρ encountered up to this dimension. Results for k = 1, 2, d,
were obtained analytically; for k = 3, 4, 5, 6 most results were obtained through numerical integration
and Monte Carlo simulation.

k spherical code c ρ( π12 ) ρ(π6 ) ρ(π4 ) ρ(π3 ) ρ( 5π
12 )

1 spherical caps 0.1255(2) 0.2630(2) 0.4150(2) 0.5850(2) 0.7776(2)

hyperplane 2 0.1255 0.2630 0.4150 0.5850 0.7776

2 spherical caps 0.1194(3) 0.2518(3) 0.4005(3) 0.5700(3) 0.7666(3)

triangle (S2) 3 0.1194 0.2518 0.4005 0.5700 0.7666
square (O2, C2, D2) 4 0.1255 0.2630 0.4150 0.5850 0.7776
pentagon 5 0.1343 0.2788 0.4346 0.6040 0.7905
hexagon (A2) 6 0.1438 0.2954 0.4544 0.6222 0.8022

3 spherical caps 0.1117(5) 0.2389(4) 0.3846(4) 0.5548(4) 0.7561(4)

tetrahedron (S3) 4 0.1155 0.2445 0.3910 0.5600 0.7592
sphere packing 5 0.1170 0.2481 0.3965 0.5664 0.7644
octahedron (O3) 6 0.1159 0.2465 0.3952 0.5661 0.7649
sphere packing 7 0.1207 0.2554 0.4065 0.5772 0.7725
cube (C3) 8 0.1255 0.2630 0.4150 0.5850 0.7776
sphere packing 9 0.1217 0.2591 0.4129 0.5850 0.7786
icosahedron 12 0.1255 0.2678 0.4255 0.5983 0.7883
cuboctahedron (A3, D3) 12 0.1294 0.2728 0.4301 0.6017 0.7900
dodecahedron 20 0.1509 0.3077 0.4692 0.6360 0.8112

4 spherical caps 0.1050(7) 0.2285(6) 0.3730(6) 0.5433(5) 0.7466(5)

5-cell (S4) 5 0.1126 0.2392 0.3840 0.5527 0.7537
sphere packing 6 0.1128 0.2401 0.3861 0.5555 0.7564
sphere packing 7 0.1120 0.2392 0.3852 0.5553 0.7567
16-cell (O4) 8 0.1107 0.2368 0.3822 0.5528 0.7553
sphere packing 10 0.1136 0.2426 0.3909 0.5623 0.7622
sphere packing 13 0.1133 0.2439 0.3939 0.5666 0.7663
tesseract (C4) 16 0.1255 0.2630 0.4150 0.5850 0.7776
runcinated 5-cell (A4) 20 0.1216 0.2586 0.4128 0.5855 0.7795
octacube (D4) 24 0.1202 0.2577 0.4140 0.5877 0.7823

5 spherical caps 0.0997(13) 0.2203(10) 0.3630(8) 0.5342(7) 0.7415(6)

5-simplex (S5) 6 0.1105 0.2354 0.3785 0.5469 0.7493
5-orthoplex (O5) 10 0.1076 0.2299 0.3733 0.5433 0.7483
121-polytope 16 0.1080 0.2330 0.3794 0.5516 0.7554
expanded 5-simplex (A5) 30 0.1167 0.2494 0.4007 0.5735 0.7713
5-hypercube (C5) 32 0.1255 0.2630 0.4150 0.5850 0.7776
rectified 5-orthoplex (D5) 40 0.1139 0.2471 0.4009 0.5757 0.7739

6 spherical caps 0.0955(18) 0.2135(15) 0.3552(11) 0.5263(9) 0.7357(8)

6-simplex (S6) 7 0.1089 0.2319 0.3742 0.5422 0.7458
6-orthoplex (O6) 12 0.1065 0.2260 0.3670 0.5361 0.7431
221-polytope 27 0.1038 0.2258 0.3712 0.5442 0.7510
131-polytope 32 0.1062 0.2314 0.3788 0.5520 0.7564
expanded 6-simplex (A6) 42 0.1133 0.2427 0.3917 0.5642 0.7647
rectified 6-orthoplex (D6) 60 0.1107 0.2404 0.3915 0.5661 0.7673
hypercube (C6) 64 0.1255 0.2630 0.4150 0.5850 0.7776

d lower bound 0.0173 0.0718 0.1716 0.3333 0.5888
simplex (Sd) d+ 1 0.0173 0.0718 0.1716 0.3333 0.5888
orthoplex (Od) 2d 0.0173 0.0718 0.1716 0.3333 0.5888
expanded simplex (Ad) d(d+ 1) 0.0173 0.0718 0.1716 0.3333 0.5888
rectified orthoplex (Dd) 2d(d−1) 0.0173 0.0718 0.1716 0.3333 0.5888
hypercube (Cd; A orth.) 2d 0.0799 0.1800 0.3151 0.5201 0.7686
hypercube (Cd; A Gaussian) 2d 0.1255 0.2630 0.4150 0.5850 0.7776
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Figure 1 Comparison of the improvements in the query exponent ρ over hyperplane hashing [16]
with query exponents ρhyp. The horizontal blue line denotes the baseline hyperplane hashing
approach, with ρ − ρhyp ≡ 0. Lower curves denote improvements to ρhyp using various spherical
codes. The measurements at the five vertical gridlines correspond to the values in Table 1. For
instance, at θ = π/6 the triangle has query exponent approximately 0.011 lower than hyperplane
hashing (which has exponent 0.2630), leading to ρ ≈ 0.2520; from Table 1 we get the more precise
estimate ρ ≈ 0.2518; while the theory in the full version allows us to compute ρ exactly through a
closed-form expression. The polytopes in this figure are those achieving the lowest exponents ρ in
their respective dimensions at one of these grid lines, as highlighted in boldface in Table 1.
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Figure 2 Query exponents ρ for project–and–partition hash families based on the spherical codes
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Figure 3 A comparison between different spherical codes in terms of the query exponent ρ (vertical
axis) and the bits of information extracted from each row of the projection matrix A (horizontal
axis). The top figure corresponds to target angle θ = π

4 (or approximation factor c =
√

2 +
√

2), the
bottom figure to target angle θ = π

3 (or c =
√

2). Codes further down generate hash functions with
a more discriminative power (a lower value ρ), while codes further to the right extract more bits per
projection, therefore requiring fewer inner product computations to compute hash values. So for our
purposes, the best codes would be as far to the right and as far down as possible. Hypercubes Ck
all achieve the same value ρ and the same value log2(c)/k = 1.
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Figure 4 Comparison of the query cost estimates t·`·k for different parameters n ∈ {105, 107, 1010}
and θ ∈ {π4 ,

π
3 }, when using t = nρ hash tables and a hash length ` = log(n)/ log(1/p2). The curves

correspond to the regular convex polytope families and the root lattice families Ak and Dk, while
single black points for k ≤ 6 correspond to spherical codes described in Table 1. As n increases,
the role of a smaller ρ becomes bigger, and so larger spherical codes with smaller values ρ become
more suitable choices than those with bigger values ρ but with lower hash costs. The cost of the
projections increases linearly with k, while ρ decreases rather slowly with k, suggesting that for each
n and θ there is an optimal spherical code dimension k � d to project down to, and an optimal
spherical code in this dimension to use. Note that other spherical codes than those from the five
families of codes sometimes achieve better query cost estimates; in particular, the 221-polytope
(which is connected to the E6 lattice) might be useful in practice as well, and we cannot rule out the
existence of other exotic spherical codes with good properties for nearest neighbor searching.
One of the conclusions one might draw from these figures is that indeed orthoplices (cross-polytopes)
perform very well [4], but depending on the parameters it may be better to use the Dk lattices
instead – the trends suggest that as k increases further, the query costs of using the Dk lattices will
be smaller than those of the orthoplices.
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Abstract
In this paper we revisit the deterministic version of the Sparse Fourier Transform problem, which
asks to read only a few entries of x ∈ Cn and design a recovery algorithm such that the output of
the algorithm approximates x̂, the Discrete Fourier Transform (DFT) of x. The randomized case
has been well-understood, while the main work in the deterministic case is that of Merhi et al. (J
Fourier Anal Appl 2018), which obtains O(k2 log−1 k · log5.5 n) samples and a similar runtime with
the `2/`1 guarantee. We focus on the stronger `∞/`1 guarantee and the closely related problem of
incoherent matrices. We list our contributions as follows.

1. We find a deterministic collection of O(k2 log n) samples for the `∞/`1 recovery in time
O(nk log2 n), and a deterministic collection of O(k2 log2 n) samples for the `∞/`1 sparse re-
covery in time O(k2 log3 n).

2. We give new deterministic constructions of incoherent matrices that are row-sampled submatrices
of the DFT matrix, via a derandomization of Bernstein’s inequality and bounds on exponential
sums considered in analytic number theory. Our first construction matches a previous randomized
construction of Nelson, Nguyen and Woodruff (RANDOM’12), where there was no constraint on
the form of the incoherent matrix.

Our algorithms are nearly sample-optimal, since a lower bound of Ω(k2 + k log n) is known,
even for the case where the sensing matrix can be arbitrarily designed. A similar lower bound of
Ω(k2 log n/ log k) is known for incoherent matrices.
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1 Introduction

Compressed sensing is a subfield of discrete signal processing, based on the principle that a
high-dimensional signal can be approximately reconstructed, by exploiting its sparsity, in
fewer samples than those demanded by the Shannon-Nyquist theorem. An important subtopic
is the Sparse Fourier Transform, where we desire to detect and approximate the largest
coordinates of a high-dimensional signal, given a few samples from its Fourier spectrum.
Fewer samples play a crucial role, for example, in medical imaging, where reconstructing an
image corresponds exactly to reconstructing a signal from its Fourier representation. Thus,
the number of Fourier coefficients needed for (approximate) reconstruction is proportional to
the radiation dose a patient receives as well as the time the patient needs to remain in the
scanner. Furthermore, exploiting the sparsity of the signal has given researchers the hope
of defeating the FFT algorithm of Cooley and Tukey, in the special (but of high practical
value) case where the signal is approximately sparse. Thus, since FFT serves as an important
computational primitive, and has been recognized as one of the 10 most important algorithms
of the 20th century [16], every place where it has found application can possibly be benefited
from a faster algorithm. The main intuition and hope is that signals arising in practice
often exhibit certain structure, such as concentration of energy in a small number of Fourier
coefficients.

Since vectors in practice are never exactly sparse, and it is impossible to reconstruct a
generic vector x̂ ∈ Cn from o(n) samples, researchers resort to approximation. More formally,
a sparse recovery scheme consists of a sample set S ⊆ {1, . . . , n} and a recovery algorithm
R such that for any given x ∈ Cn, the scheme approximates x̂ by x̂′ = R(xS), where xS
denotes the vector of x restricted to the coordinates in S. The fineness of approximation is
measured with respect to the best k-sparse approximation to x̂. The breakthrough work of
Candès, Tao and Donoho [12, 20] first showed that k logO(1) n samples of x ∈ Cn suffices to
reconstruct a O(k)-sparse vector x̂′ which is “close” to the best k-approximation of x̂. More
formally, the reconstruction x̂′ satisfies the so-called `2/`1 guarantee, i.e.,

‖x̂− x̂′‖2 ≤
1√
k
‖x̂−k‖1,

where x̂−k is the tail vector, obtained from restricting x̂ to its smallest n− k coordinates
in magnitude. The strength of their algorithms lies in the uniformity, in the sense that the
samples at the same coordinates can be used to approximate every x ∈ Cn. However, the
running time is polynomial in the vector length n, giving thus only sample-efficient, but
not necessarily time-efficient algorithms. Furthermore, the samples are not obtained via
a deterministic procedure, but are chosen at random. Regarding non-uniform randomized
algorithms that run in sublinear time, numerous researchers have worked on the problem
and obtained a series of algorithms with different recovery guarantees [29, 46, 42, 24, 3,
27, 30, 31, 43, 38, 53, 34, 33, 39, 40, 41, 50]. See Table 1 for a list of common recovery
guarantees. The state of the art is the seminal algorithm of Kapralov [40], which shows
that O(k logn) samples and O(k logO(1) n) time are simultaneously possible for the `2/`2
guarantee (which is strictly stronger1 than the `2/`1). The fastest algorithm is due to [30],
needing O(k logn · log(n/k)) time and samples. We note also the algorithm of Indyk and
Kapralov [33] that runs in O(n log2 n) time, uses O(k logn) samples but gives a stronger

1 Here we mean that given an algorithm giving the `2/`2 guarantee, one can create an algorithm, using
the `2/`2 algorithm as a black box, with sparsity parameter k′ = O(k), achieving the `2/`1 guarantee
with the same order of number of samples.
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Table 1 Common guarantees of sparse recovery. Only the `2/`2 case requires a parameter C > 1.
The guarantees are listed in the descending order of strength.

Guarantee Formula Deterministic Lower Bound
`∞/`2 ‖x̂− x̂′‖∞ ≤ ‖x̂−k‖2/

√
k Ω(n) [17]

`2/`2 ‖x̂− x̂′‖2 ≤ C‖x̂−k‖2 Ω(n) [17]
`∞/`1 ‖x̂− x̂′‖∞ ≤ ‖x̂−k‖1/k Ω(k2 + k log n) [23, 21]
`2/`1 ‖x̂− x̂′‖2 ≤ ‖x̂−k‖1/

√
k Ω(k log(n/k)) [23, 21]

`∞/`2 guarantee than the `2/`2 guarantee in the previous two papers. We refer the reader
to the next section for comparison of the different guarantees appearing in the literature.
Recently there has been also considerable work on recovering k-sparse signals from their
continuous Fourier Transform, see [9, 55, 14, 6].

Although our understanding on randomized algorithms is almost complete, there are still
important gaps in our knowledge regarding deterministic schemes. The following natural
open-ended question has theoretical and practical interest and remains in principle highly
unexplored, touching a variety of fields including (sublinear-time) algorithms, pseudoran-
domness and computational complexity, Additive Combinatorics [10] and analytic number
theory.

I Question 1. What are the best bounds we can obtain for the different versions of the
deterministic Sparse Fourier Transform problem?

With sublinear runtime, the earliest work of Iwen [36, 37] gives O(k2 log4 n) samples and
time, albeit in a significantly easier (although similar) model: where one wants to learn a
band-limited function f : [0, 2π)→ C and can evaluate f at any point. In the discrete case
which we are interested in, the state of the art is the work of Merhi et al. [47], which obtains
O(k2 log11/2 n/ log k) samples and the same runtime. A recent work of Bittens et al. [8]
showed that the quadratic dependence can be dropped if the signals are sufficiently structured,
namely, if the Fourier coefficients are generated by an unknown but small degree polynomial.
On the related problem of the Walsh-Hamadard Transform, Indyk and Cheraghchi [15]
showed that roughly O(k1+α logO(1)+6/α n) samples and similar run-time are possible, if
one resorts to a slightly weaker guarantee. Interestingly, their approach resides in a novel
connection between the Walsh-Hadamard matrix and linear lossless condensers. However,
this connection does not extend to the Fourier Transform over Zn, which is our focus and
the most interesting case. Interesting ideas appear also in the work of Akavia [1, 2], where
it is shown how to approximate the Fourier Transform of an arithmetic progression in
poly-logarithmic time in the length of the progression; due to the worse dependence on the
quality of approximation, however, that work obtained an algorithm with sample complexity
(k · (signal-to-noise ratio))4.

The papers above showed how to achieve the `2/`1 guarantee in a number of samples
that is quadratic in the signal sparsity. It is already known that a nearly linear dependence
is possible [12]; however, we do not have efficient deterministic algorithms for finding these
samples. The work of [12], as well as subsequent works, proceeds by sampling with repetition
rows of the DFT matrix, and showing that the RIP condition (see Definition 5) holds, which in
turn implies the desired result, but via a super-linear algorithm. The state-of-the-art analysis
of such row subsampling is due to Haviv and Regev [32], who showed that O(k log2 k logn)
samples suffice. A lower bound of Ω(k logn) rows for this subsampling process has been
shown in [7]. In this paper, we follow a different avenue and give a new set of schemes for
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the Sparse Fourier Transform which allow uniform reconstruction. Although our dependence
is still quadratic in k, it is necessary, in contrast to the previous works: our results satisfy
the strictly stronger `∞/`1 guarantee, for which a quadratic lower bound is known [23], and
hence one cannot hope for a sub-quadratic dependence. We also note the deterministic
algorithm of [41], which needs a cubic dependence on k but solves a somewhat different
problem of finding the multidimensional sparse Fourier transform of a signal with at most k
non-zeros in the frequency domain, and thus is not robust to noise.

The focus of our work is the `∞/`1 guarantee, defined formally as follows.

I Definition 2 (`∞/`1 guarantee). A sparse recovery scheme is said to satisfy the `∞/`1
guarantee with parameter k, if given access to vector x, it outputs a vector x̂′ such that

‖x̂− x̂′‖∞ ≤
1
k
‖x̂−k‖1. (1)

`∞/`1 versus `2/`1: A matter of “find all” versus “miss all”

As we have discussed, previous works satisfied the `2/`1 guarantee, while our target is the
`∞/`1 guarantee. Any algorithm for the latter guarantee also satisfies the former one. But,
as we shall demonstrate in Section 2.3, the `∞/`1 guarantee is much stronger: there exists
an infinite family of vectors for which an `2/`1 algorithm might detect none of the heavy
frequencies, while an `∞/`1 algorithm must detect all of them. This happens because the
`∞/`1 is a worst-case guarantee, in the sense that it requires detection of every frequency
just above the noise level, in contrast to the `2/`1, which should be regarded as an average-
case guarantee in the sense that it allows missing a subset of the heavy frequencies if they
carry the energy proportional to the noise level.

Previous Work on `∞/`1 with arbitrary linear measurements

All approaches described above concerned Fourier measurements, but compressed sensing
has a long history using arbitrary linear measurements, for example [19, 56, 35, 25, 28,
48, 26, 45, 44, 49]. Regarding `∞/`1, the work of [51] indicated a connection between
the aforementioned guarantee and incoherent matrices. More specifically, it was shown
that given a (1/k)-incoherent matrix one can design an algorithm satisfying the `∞/`1
guarantee. The existence of a matrix with O(k2 min{logn, (logn/ log k)2}) rows was also
proved. Reconstruction needed Ω(nk) time, something which was partially remedied by
Li and Nakos [44] with a scheme of O(k2 logn · log∗ k) measurements and poly(k, logn)
decoding time. Incoherent matrices are interesting objects on their own, and have been
studied before, as they can be used to obtain RIP matrices. Deterministic constructions of
O(k2(logn/ log k)2) rows were obtained by DeVore [18] using deep results from the theory
of Gelfand widths and by Amini and Marvasti [5] via binary BCH code vectors, where
the zeros are replaced by −1s. We note that incoherent matrices matching this bound
also follow immediately from the famous Nisan-Wigderson combinatorial designs [52], and
serve as a cornerstone for constructions of pseudorandom generators and extractors [59].
Incoherent matrices are also connected with ε-biased codes, and thus an almost optimal
strongly explicit construction can be obtained by the recent breakthrough work of [57].
On the lower bound side, Alon has shown that Ω(k2 logn/ log k) rows are necessary for a
(1/k)-incoherent matrix [4].
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Our Contribution

In this work we offer several new results for the Sparse Fourier Transform problem across
different axis, some of which are nearly optimal. We show how to find in polynomial time
a deterministic collection of samples from the time domain, such that we can solve the
Sparse Fourier Transform problem in linear and sublinear time and achieve nearly optimal
sample complexity. For the closely related problem of incoherent matrices from DFT rows,
which is of independent interest, we obtain a nearly optimal derandomized construction via
Bernstein’s inequality. We also demonstrate strongly explicit constructions, by invoking
heavy number-theoretical machinery.

We note that the bounds of our constructions have been known for more than a decade if
the sensing/incoherent matrix is allowed to be arbitrary. However, the previous arguments
did not facilitate the frequent and relevant scenario where we have access to rows only from
the Fourier ensemble. Part of our work is to show that some of these results carry over to the
significantly more constrained case. We also note that any progress to deterministic `2/`1
schemes with subquadratic sample complexity is connected to the very challenging problem
of obtaining a deterministic DFT row-subsampled RIP matrices with subquadratic number
of rows2 which possibly out of reach at the moment.

2 Technical Results

2.1 Preliminaries
For a positive integer n, we define [n] = {0, 1 . . . , n− 1} and we shall index the coordinates
of a n-dimensional vector or the rows/columns of an n×n matrix from 0 to n− 1. We define
the Discrete Fourier Transform (DFT) matrix F ∈ Cn×n to be the unitary matrix such that
Fij = 1√

n
e2π
√
−1·ij/n, and the Discrete Fourier Transform of a vector x ∈ Cn to be x̂ = Fx.

For a set S ⊆ [n] we define xS to be the vector obtained from x after zeroing out the
coordinates not in S. We also define H(x, k) to be the set of the indices of the largest k
coordinates (in magnitude) of x, and x−k = x[n]\H(x,k). We say x is k-sparse if x−k = 0.
We also define ‖x‖p =

(∑n−1
i=0 |xi|p

)1/p for p ≥ 1 and ‖x‖0 to be the number of nonzero
coordinates of x.

For a matrix F ∈ Cn×n and subsets S, T ⊆ [n], we define FS,T to be the submatrix of F
indexed by rows in S and columns in T .

The median of a collection of complex numbers {zi} is defined to be mediani zi =
mediani Re(zi) +

√
−1 mediani Im(zi), i.e., taking the median of the real and the imaginary

component separately.
For two points x and y on the unit circle, we use |x− y|◦ to denote the circular distance

(in radians, i.e. modulo 2π) between x and y.

2.1.1 `∞/`1 Gurantee and incoherent matrices
The quality of the approximation is usually measured in different error metrics, and the
main recovery guarantee we are interested in is called the `∞/`1 guarantee, as defined in
Definition 2. Other types of recovery guarantee, such as the `∞/`2, the `2/`2 and the

2 Note that [10] breaks the quadratic barrier for RIP matrices but does not use the Fourier ensemble; the
rows are picked from the discrete chirp-Fourier ensemble, where the linear functions are substituted by
quadratic polynomials.
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`2/`1, are defined similarly, where (1) is replaced with the respective expression in Table 1.
Note that these are definitions of the error guarantee per se and do not have algorithmic
requirements on the scheme.

Highly relevant with the `∞/`1 guarantee is a matrix condition which we call incoherence.

I Definition 3 (Incoherent Matrix). A matrix A ∈ Cm×n is called ε-incoherent if ‖Ai‖2 = 1
for all i (where Ai denotes the i-th column of A) and |〈Ai, Aj〉| ≤ ε.

I Lemma 4 ([51]). There exist an absolute constant c > 0 such that for any (c/k)-incoherent
matrix A, there exists a `∞/`1-scheme which uses A as the measurement matrix and whose
recovery algorithm runs in polynomial time.

2.1.2 The Restrictred Isometry Property and its connection with
incoherence

Another highly relevant condition is called the renowned restricted isometry property, intro-
duced by Candès et al. in [11]. We show how incoherent matrices are connected to it.

I Definition 5 (Restricted Isometry Property). A matrix A ∈ Cm×n is said to satisfy the
(k, ε) Restricted Isometry Property (RIP), if for all x ∈ Cn with ‖x‖0 ≤ k, it holds that
(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2.

Candès et al. proved in their breakthrough paper [11] that any RIP matrix can be used
for sparse recovery with the `2/`1 error guarantee. The following formulation comes from [22,
Theorem 6.12].

I Lemma 6. Given a (2k, ε)-RIP matrix A with ε < 4/
√

41, we can design a `2/`1-scheme
that uses A as the measurement matrix and has a recovery algorithm that runs in polynomial
time.

Although randomly subsampling the DFT matrix gives an RIP matrix with O(klog2klogn)
rows [32], no algorithm for finding these rows in polynomial time is known; actually, even
for o(k2) · poly(logn) rows the problem remains wide open3. It is a very important and
challenging problem whether one can have an explicit construction of RIP matrices from
Fourier measurements that break the quadratic barrier on k.

We state the following two folklore results, connecting the two different guarantees, and
their associated combinatorial objects. This indicates the importance of incoherent matrices
for the field of compressed sensing.

I Proposition 7 (folklore). An `∞/`1 scheme with a measurement matrix of m rows and
recovery time T induces an `2/`1 scheme of a measurement matrix of O(m) rows and recovery
time O(T + ‖x̂′‖0), where x̂′ is the output of the `∞/`1 scheme.

I Proposition 8 (folklore). A (c/k)-incoherent matrix is also a (k, c)-RIP matrix.

3 In fact, one of the results of our paper gives the state-of-the-art result even for this problem, with
O(k2 log n) rows, see Theorem 12.
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Table 2 Comparison of our results and the previous results. All O- and Ω-notations are suppressed.
The result in the first row follows from Lemma 6 and the RIP matrix in [32].Our algorithms adopt
the common assumption in the sparse FT literature that the signal-to-noise ratio is bounded by nc

for some absolute constant c > 0.

Samples Run-time Guarantee
Explict

Construction Lower Bound
[32] k log2 k log n poly(n) `2/`1 No k log(n/k)
[47] k2 log5.5 n/ log k k2 log5.5 n/ log k `2/`1 Yes k log(n/k)
Theorem 9 k2 log n nk log2 n `∞/`1 Yes k2 + k log n[51]
Theorem 10 k2 log2 n k2 log3 n `∞/`1 Yes k2 + k log n[51]

2.2 Our results
2.2.1 Sparse Fourier Transform Algorithms
I Theorem 9 (Deterministic SFT with super-linear time). Let n be a power of 2. There exist
a set S ⊆ [n] with |S| = O(k2 logn) and an absolute constant c > 0 such that the following
holds. For any vector x ∈ Cn with ‖x̂‖∞ ≤ nc‖x̂−k‖1/k, one can find an O(k)-sparse vector
x̂′ ∈ Cn such that

‖x̂− x̂′‖∞ ≤
1
k
‖x̂−k‖1,

in time O(nk log2 n) by accessing {xi}i∈S only. Moreover, the set S can be found in poly(n)
time.

I Theorem 10 (Deterministic SFT with sublinear time,). Let n be a power of 2. There exist a
set S ⊆ [n] with |S| = O(k2 log2 n) and an absolute constant c > 0 such that the following
holds. For any vector x ∈ Cn with ‖x̂‖∞ ≤ nc‖x̂−k‖1/k, one can find an O(k)-sparse vector
x̂′ ∈ Cn such that

‖x̂− x̂′‖∞ ≤
1
k
‖x̂−k‖1,

in time O(k2 log3 n) by accessing {xi}i∈S only. Moreover, the set S can be found in poly(n)
time.

I Remark 11. The condition ‖x̂‖∞ ≤ nc‖x̂−k‖1/k upper bounds the “signal-to-noise ratio”,
a common measure in engineering that compares the level of a desired signal to the level
of the background noise. This is a common assumption in most algorithms in the Sparse
Fourier Transform literature, see, e.g. [30, 33, 39, 13, 40], where the `2-norm variant ‖x̂‖∞ ≤
nc‖x̂−k‖2/

√
k was assumed.

2.2.2 From DFT to incoherent matrices
This section contains deterministic constructions of incoherent matrices.

An Explicit Construction: Derandomization in poly(n) time

I Theorem 12 (Incoherent matrices by derandomized subsampling of DFT). There exists a set
S ⊆ [n] with of cardinality O(k2 logn) such that the matrix

√
n
mFS,[n] is (1/k)-incoherent.

Moreover, S can be found in poly(n) time.

The above Theorem yields immediately a different algorithm for `∞/`1 Sparse Fourier
Tranform with O(k2 logn) samples, via the reduction in [51].
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Strongly explicit constructions: Derandomization in sub-linear time

I Theorem 13 (Incoherent matrices from DFT via low-degree polynomials). Let ε > 0 be a
constant small enough, p be a prime and d ≥ 2 be an integer. There exists a strongly explicit
construction of an O(mε( 1

m + p
md )21−d)-incoherent matrix M ∈ Cm×p such that the rows of√

mM are rows of the DFT matrix (a row may appear more than once). The hidden constant
in the O-notation depends on d and ε. Finding the indices of the rows takes Õ(m) time.

To get an idea of the above result one could for example set d = 3 and observe that the
results translates to the following: for every k ≥ p1/8 one can get a (1/k)-incoherent matrix
with O(k4+ε) rows. One needs the condition on k (or equivalently the condition on m) to
bound the term p/md. The larger the degree d, the looser this condition, but also the worse
the dependence of m on k. For example, when d = 4, we can expand the regime of k to
approximately k ≥ p1/24, but obtain approximately m = O(k8+ε).

The following is a different construction, incomparable with Theorem 13 in multiple ways.
First, the construction runs in sublinear time in p but it is not strongly explicit. Second, it
gives different trade-offs between the sparsity parameter and the number of rows. Last but
not least, the construction depends on the factorization of p− 1.

I Theorem 14 (Incoherent matrices from DFT via multiplicative subgroupss). Let p be a prime
number. For every divisor d of p−1 such that d > √p we can find in time O(d log p) a matrix
M ∈ Cd×p with rows being the rows of the DFT matrix such that 1

dM is (√p/d)-incoherent.

This result could give (depending on the factorization of p − 1) a better polynomial
dependence of m on k in the high-sparsity regime. If p− 1 has a large divisor about p1−γ ,
this would yield a matrix with sparsity parameter k ≈ pγ and m ≈ k1/γ−1 rows. For example,
when γ = 1/4, we obtain k ≈ p1/4 and m ≈ k3, which cannot be obtained from Theorem 13.
In general, Theorem 14 will yield useful matrices as long as p− 1 has divisors in the range
[√p, p − 1], ideally as many as possible. An extreme case is Fermat primes, which have
(log p)/2 divisors in the aforesaid interval.

The reader might ask the question if the polynomial dependence of k on p is necessary;
ideally one would like a logarithmic dependence, since the polynomial dependence is interesting
only in the high-sparsity regime. Regarding strongly explicit constructions, we provide some
evidence why this might be a very hard problem in the remark below.
I Remark 15. The inferiority of our bounds in the low-sparsity regime is justifiable to some
extent: it is because of a common obstacle that has persisted more than a century in the
theory of exponential sums, due to the lack of techniques to account for sparse character
sums (either additive or multiplicative). In general, the fewer summands the sum has, the
harder it is to prove a tight cancellation bound. Thus, owing to the use of heavy machinery
from analytic number theory and more specifically the theory of exponential sums over finite
fields, our bounds for strongly explicit constructions are quite suboptimal.

2.3 Comparing `2/`1 with `∞/`1

In this subsection we elaborate why `∞/`1 is much stronger than `2/`1, and not just a
guarantee that implies `2/`1. Let γ < 1 be a constant and consider the following scenario.
There are three sets A,B,C of size γk, (1− γ)k, n− k respectively, and for every i ∈ A we
have |x̂i| = 2

k‖x̂C‖1 = 2
k‖x̂−k‖1, while every coordinate in B and C has the equal magnitude.

It follows immediately that

‖x̂C‖1 = n− k
n− γk

‖x̂B∪C‖1.
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Now assume that k ≤ γn, then (n− γk)/(n− k) ≤ 1 + γ. We claim that the zero vector
is a valid solution for the `2/`1 guarantee, since

‖~0− x̂‖2
2 = ‖x̂A‖2

2 + ‖x̂B∪C‖2
2

≤ γk · 4
k2 ‖x̂−k‖

2
1 + 1

(n− γk)‖x̂B∪C‖
2
1

≤ 4γ
k
‖x̂−k‖2

1 + n− γk
(n− k)2 ‖x̂C‖

2
1

≤
(

4γ
k

+ 1 + γ

n− k

)
‖x̂−k‖2

1

≤ 5γ
k
‖x̂−k‖2

1,

where the last inequality follows provided it further holds that k ≤ γn/(2γ + 1). Hence when
γ ≤ 1/5, we see that the zero vector satisfies the `2/`1 guarantee.

Since ~0 is a possible output, we may not recover any of the coordinates in S, which is
the set of “interesting” coordinates. On the other hand, the `∞/`1 guarantee does allow
the recovery of every coordinate in S. This is a difference of recovering all γk versus 0
coordinates. We conclude from the discussion above that in the case of too much noise, the
`2/`1 guarantee becomes much weaker than the `∞/`1, possibly giving meaningless results
in some cases.

3 Overview

Sparse Fourier Transform Algorithms

We first show how to achieve the for-all schemes, i.e., schemes that allow universal re-
construction of all vectors, and then derandomize them. Similarly to the previous works
[31, 33, 40], our algorithm hashes, with the filter in [40], the spectrum of x to O(k) buckets
using pseudorandom permutations, and repeat O(k logn) times with fresh randomness. The
main part of the analysis is to show that for any vector x̂ ∈ Cn and any set S ⊆ [n] with
|S| ≤ k, each i ∈ S, in a constant fraction of the repetitions, receives “low noise” from all
other elements, under the pseudorandom permutations. This will boil down to a set of
Θ(n2) inequalities involving the filter and the pseudorandom permutations. We prove these
inequalities with full randomness, and then derandomize the pseudorandom permutations
using the method of conditional expectations. This will give us Theorem 9. To do so, we
choose the pseudorandom permutations one at a time, repetition by repetition, and keep
an (intricate) pessimistic estimator , which we update accordingly. Our argument extends
the arguments in [51] and [54], and could be of independent interest. To compare with [51]
we have the following observation. The construction in [51] consists of O(k logn) matrices,
joined vertically, each having O(k) rows and exactly one 1 per column. This ensures a small
incoherence of the concatenated matrix and gives the `∞/`1 guarantee. In the Fourier case,
the convolution with the filter functions behaves analogously: instead of having exactly one
non-zero element, each column in the `-th matrix has a contiguous segment of 1s of size
≈ n/k (where the center of that segment is depends on the choice of the `-th pseudorandom
permutation) and polynomially decaying entries away from this segment. Moreover, the
positions of the segments across the columns are not fully independent and are defined
via the pseudorandom permutations. We show that even in this more restricted setting,
derandomization is possible in polynomial time. Several details are omitted in the preceding
high-level discussion and we suggest the reader look at the corresponding sections for the
complete argument.
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The sublinear-time algorithm (Theorem 10) is obtained by bootstrapping the deran-
domized scheme above with an identification procedure in each bucket, as most previous
algorithms have done (e.g. [30]). The major difference is that our identification procedure
needs to be deterministic. We show an explicit set of samples that allow the implementation
of the desired routine. To illustrate our idea, let us focus on the following 1-sparse case:
x̂ ∈ Cn and |x̂i∗ | ≥ 3‖x̂[n]\i∗‖1 for some i∗, which we want to locate. Let

θj =
(

2π
n
j

)
mod 2π,

and consider the logn samples x0, x1, x2, x4, . . . , x2r−1 , . . . .
Observe that (ignoring 1/

√
n factors)

xβ = x̂i∗e
√
−1βθi∗ +

∑
j 6=i∗

x̂je
√
−1βθj ,

we can find βθi∗ + arg x̂i∗ up to π/8, just by estimating the phase of xβ . Thus we can
estimate βθi∗ up to π/4 from the phase of xβ/x0. If i∗ 6= j, then there exists a β ∈
{1, 2, 22, . . . , 2r−1, . . .} such that |βθi∗ −βθj |◦ > π/2, and so βθj will be more than π/4 away
from the phase of the measurement. Thus, by iterating over all j ∈ [n], we keep the index j
for which βθj is within π/4 from arg(xβ/x0), for every β that is a power of 2 in Zn.

Unfortunately, although this is a deterministic collection of O(logn) samples, the above
argument gives only O(n logn) time. For sublinear-time decoding we use x1/x0 to find
a sector S0 of the unit circle of length π/4 that contains θi∗ . Then, from x2/x0 we find
two sectors of length π/8 each, the union of which contains θi∗ . Because these sectors are
antipodal on the unit circle, the sector S0 intersects exactly one of those, let the intersection
be S1. The intersection is a sector of length at most π/8. Proceeding iteratively, we halve
the size of the sector at each step, till we find θi∗ , and infer i∗. Plugging this idea in the
whole k-sparse recovery scheme yields the desired result. Our argument crucially depends on
the fact that in the `1 norm the phase of θi∗ will always dominate the phase of all samples
we take.

Incoherent Matrices from the Fourier ensemble

Our first result for incoherent matrices (Theorem 12) is more general and works for any
matrix that has orthonormal columns with entries bounded by O(1/

√
n). We subsample the

matrix, invoke a Chernoff bound and Bernstein’s inequality to show the small incoherence of
the subsampled matrix. We follow a derandomization procedure which essentially mimics
the proof of Bernstein’s inequality, keeping a pessimistic estimator which corresponds to the
sum of the generating functions of the probabilities of all events we want to hold, evaluated
at specific points. We obtain an explicit construction, i.e. a derandomization in poly(n)
time. This argument could be of independent interest for its generality. As there are many
technical obstacles to overcome, we suggest the reader take a careful look at the proof to
gain a clearer picture of the argument.

Our next results (Theorem 13 and Theorem 14) construct strongly explicit incoherent
matrices by making use of technology from the fruitful theory of exponential sums in
analytic number theory and additive combinatorics. Roughly speaking, to bound a complex
exponential sum over a set S, one would expect that specific choices of the set S lead to
non-trivial bounds, i.e. o(|S|), since cancellation takes place in the summation. Ideally,
one would desire that the exponentials behave like a random walk and give the optimal



Y. Li and V. Nakos 77:11

cancellation of O(
√
|S|). This intuition is clearly not true, but the results by Weyl and

others show that certain sets S can exhibit a nicer behaviour. We exploit their results to
build incoherent matrices by taking the rows of the DFT matrix indexed by the “nice” sets.
This connection also yields an immediate improvement on the lower bound of an exponential
sum obtained by Winterhof [60].

4 Open Problems and Future Direction

A direction of research is to design deterministic schemes that break the quadratic barrier
for signals with structured Fourier support. For example, subsampling the rows of the
DFT matrix to obtain RIP matrices depends highly on the structure of the vectors we
would like to preserve. The more additive structure the support of a k-sparse vector x has,
the worse is the concentration of a random Fourier coefficient of x. Equivalently, the less
additive structure the support of x has, the flatter its Fourier transform is, and hence, the
better concentration bounds we obtain. The concentration in the extreme case, when the
support of x is “dissociated”, is captured by the renowned Rudin’s inequality in additive
combinatorics (see, e.g. [58, Lemma 4.33]). We thus believe that it is an interesting direction
to use machinery from the field of additive combinatorics and the relevant fields in order to
obtain new constructions and algorithms, at least for interesting subclasses of structured
signals.
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Abstract
We describe an algorithm to solve the problem of Boolean CNF-Satisfiability when the input formula
is chosen randomly.

We build upon the algorithms of Schöning 1999 and Dantsin et al. in 2002. The Schöning algorithm
works by trying many possible random assignments, and for each one searching systematically in
the neighborhood of that assignment for a satisfying solution. Previous algorithms for this problem
run in time O(2n(1−Ω(1)/k)).

Our improvement is simple: we count how many clauses are satisfied by each randomly sampled
assignment, and only search in the neighborhoods of assignments with abnormally many satisfied
clauses. We show that assignments like these are significantly more likely to be near a satisfying
assignment. This improvement saves a factor of 2nΩ(lg2 k)/k, resulting in an overall runtime of
O(2n(1−Ω(lg2 k)/k)) for random k-SAT.
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1 Introduction

The Boolean Satisfiability problem, known as SAT for short, is one of the best-known and
most well-studied problems in computer science (e.g. [28, 1, 19, 3, 14]). In its general form,
it describes the following problem: given an input formula φ composed of conjunctions,
disjunctions, and negations of a list of Boolean-valued variables (x1, x2, . . . , xn), determine
whether or not there exists an assignment of variables to Boolean values such that φ evaluates
to TRUE. SAT was the first problem shown to be NP-complete [12, 24].

Every Boolean formula φ can be written in conjunctive normal form, meaning that it is
written as the logical conjunction of a series of disjunctive clauses. Each disjunctive clause
takes as its value the logical disjunction of a series of literals, which takes on either the same
value of one of the variables xi or the negation of that value.
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If we constrain the input formula φ to contain only disjunctive clauses that are of size k
or smaller, then that more constrained problem is known as k-Satisfiability, or k-SAT for
short. When k > 2 it is known to be NP-complete [22]. As k grows, the best known runtime
of the worst-case k-SAT problem, O(21−1/Θ(k)), grows [21, 28].

It is well-known that in real-world Boolean Satisfiability problems, SAT solvers often
vastly outperform the best known theoretical runtimes [15, 31]. One possible explanation
for this gap in performance is that most input formulas are easily solved without much
computation being necessary, but that there exists a “hard core” of difficult-to-solve formulas
that are responsible for the apparent difficulty of worst-case SAT.

Another possible explanation for this gap in performance is that, in practice, people
usually care about highly structured formulas that are much easier to solve than typical
formulas – according to this explanation, there would be an “easy core” of tractable formulas
that are responsible for the apparent simplicity of most practical SAT problems.

To try to distinguish between these two explanations, one can study random Satisfiability:
Boolean Satisfiability for which the input formula φ is chosen according to some known
uniform probability distribution DΦ, and where we expect to be able to return the correct
answer (satisfiable or unsatisfiable) with probability that is exponentially close to 1 in the size
of the input. Random k-SAT is a very well studied problem (e.g. [3, 16, 27, 10, 7, 26, 33]).

Typically, attention is restricted to k-CNF formulas whose ratio of clauses to variables is
at the threshold, meaning that the number of clauses m is drawn from a Poisson distribution
centered at dkn, where n is the number of variables and dk is a function of k close to
2k ln(2)− 1

2 (1 + ln(2)) [16]. Such formulas are conjectured to be the hardest instances for
a given n [13, 31]. It was shown by Ding, Sly, and Sun [16] that away from this threshold,
formulas are either overwhelmingly satisfied or overwhelmingly unsatisfied, making the
problem less interesting. Notably, away from this threshold one can simply return True or
False based on the number of clauses and give the correct answer with high probability. For
our purposes, this is a very useful guarantee to have; this is why we use their definition
throughout the paper. We go into much greater detail about DΦ and the threshold in
Section 2.

Away from the threshold, polynomial-time algorithms for SAT have been found and
analyzed, first by Chao and Franco [26], and later by Coja-Oghlan et al. [10, 7]. Additionally,
a recent result by Vyas and Williams [33] re-analyzes the algorithm of Paturi et al. [29]
in the case when the input is drawn from a random distribution, and finds the algorithm
to run faster on average in this case by a factor of 2nΩ(lg k)/k, giving a running time of
O(2n(1−Ω(lg k)/k)).

We build upon the work of Schöning [30] and Dantsin et al [14] to solve random k-SAT
in time O(2n(1−Ω(lg2 k)/k)). This represents an algorithmic improvement of 2nΩ(lg2 k)/k over
the runtime of the algorithm of Paturi et al. as analyzed by Vyas and Williams in [33].

1.1 A New Algorithm
In this paper, we restrict our attention to the problem of random k-CNF Satisfiability in
the limit of large k, which approaches general Boolean CNF-Satisfiability. Our algorithm
improves upon the previous best known algorithm for solving random k-SAT in the limit
of large k, assuming that the input formulas are chosen according to a known uniform
distribution.

Our algorithm improves the running time of k-CNF Satisfiability at the threshold by
modifying the algorithms of Schöning and Dantsin et al. to only explore in the neighborhood
of those sampled assignments that pass an additional test. By adding this test, we get
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a 2nΩ(lg2 k)/k improvement in the runtime of the algorithm. The test is simple: we count
how many clauses are satisfied, and if that number is large, only then do we search in
the neighborhood of the assignment. In Appendix G.2 of our full version [25], we provide
additional motivation for why our improved running time is remarkable.

I Theorem 1 (Main Theorem Informal). Let φ be drawn uniformly at random from for-
mulas at the threshold (defined formally in Section 2). There exists an algorithm, α-
SampleAndTest (described in Section 3), such that:

If φ is satisfiable, then with probability at least 1−3·2−n/(3 ln(2)2k), α-SampleAndTest re-
turns an assignment ~a that satisfies φ.
If φ is not satisfiable, then α-SampleAndTest will return False with certainty.
α-SampleAndTest(φ) will run in time O(2n(1−Ω(lg2 k)/k)).

A key technique in the proof of our result is connecting a different distribution over inputs
(the planted k-SAT distribution) to the uniformly random k-SAT distribution. Reductions
between planted k-SAT and random k-SAT have been shown in previous work as well
[6, 4, 33]. In the planted k-SAT distribution, an assignment, ~a, is picked first. The formula
φ is selected uniformly over k-SAT clauses conditioned on ~a satisfying those clauses. As a
result, the planted distribution has a bias towards picking formulas that have many satisfying
assignments, relative to the uniform distribution over all satisfiable formulas. For this
reason, the planted distribution tends to generate easier-to-solve formulas φ than the uniform
distribution [18]. We also find that the planted distribution is more easily analyzed.

It would be possible, and simpler, to analyze our algorithm only in the planted distribution
over formulas. This would not, however, correspond to a complete analysis of the algorithm
in the random case. In this work, we begin by analyzing the performance of our algorithm
when run on inputs drawn from the planted distribution. We show that algorithms with a
sufficiently low probability of failure in the planted distribution over input formulas continue
to have a low probability of failure in the uniform distribution over input formulas; see Lemma
37 of our full version [25]. Similar reductions have been proven in previous work [6, 4, 33].

The bulk of the analysis of our algorithm presented in this paper will focus on four
quantities. Informally:
1. The true positive rate pTP describes the fraction of all assignments that are both close to

a satisfying assignment in Hamming distance and satisfy a large number of clauses.
2. The false negative rate pFN describes the fraction of all assignments that are close to a

satisfying assignment in Hamming distance, but do not satisfy a large number of clauses.
3. The false positive rate pFP describes the fraction of all assignments that are not close to

any satisfying assignment in Hamming distance, but satisfy a large number of clauses.
4. The true negative rate pTN describes the fraction of all assignments that are neither close

to any assignment in Hamming distance, nor satisfy a large number of clauses.

By showing that the true positive rate is large enough relative to the false positive rate,
we show that we do not too often perform a “useless search,” i.e. one that will not find a
satisfying assignment. And by showing that the true positive rate is large enough relative to
the total number of possible assignments, we show that we eventually do find a satisfying
assignment without needing to take too many samples. See Fig. 1 for an illustration of these
concepts.

To show that our algorithm achieves the desired runtime, we must demonstrate two things.
First, we must show that false positives are sufficiently rare; in other words, conditioned
on an assignment passing our test, it is sufficiently likely to be a small-Hamming-distance
assignment. We prove this in Appendix A of our full version [25]. Second, we must show
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Figure 1 A histogram of how many clauses are satisfied by every possible assignment. In this
example, there are n = 16 variables, m = 163 clauses, and k = 4 literals per clause. For the example,
we take T = 155.5 to be the clause-satisfaction threshold above which we explore further, and αn = 4
to be the small-Hamming-distance threshold at which the exhaustive search algorithm finishes. (In
actual runs of the algorithm, both of these parameters are selected more conservatively; we chose
these parameters for clarity.)

that true positives are sufficiently common; in other words, conditioned on an assignment
being close in Hamming distance to a satisfying assignment, it is sufficiently likely to pass
our test. We prove this in Appendix B of our full version [25].

We also note that our algorithm can potentially be used as the seed for a worst-case
algorithm. Informally, the correctness of the analysis in this paper depends only on the false
positive and false negative rates being sufficiently low. As long as the inputs are guaranteed
to come from a family of formulas for which this is the case, our algorithm will work even in
the worst case. Or, to put it another way, to build a working worst-case algorithm using
our algorithm as a template, one may now restrict one’s attention to solving input formulas
for which assignments in the neighborhood of the solution do not have an abnormally-high
number of satisfied clauses; our algorithm can solve the others.

1.2 Previous work
Satisfiability and k-SAT have been thoroughly studied. We will cover some of the previous
work in the area, focusing on the Random k-SAT problem.

Structural Results About Random k-SAT

To make the study of the Satisfiability of random formulas interesting, it is important to
choose the probability distribution over formulas Dφ judiciously. In particular, Dφ must
contain formulas where the ratio of Boolean variables to disjunctive clauses is such that the
resulting formulas are neither overwhelmingly satisfiable, nor overwhelmingly unsatisfiable.
Let n be the number of variables, and m be the number of clauses. If n� m, then nearly all
formulas chosen uniformly from Dφ will be satisfiable; if m� n, then nearly all formulas will
be unsatisfiable. In order for the problem of correctly identifying formulas as satisfiable or
unsatisfiable to be nontrivial, we must choose m and n to be at the right ratio. Throughout
this paper we will refer to the ratio of m to n as the density of a formula.
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In work by Ding, Sly and Sun [16], it was shown that a sharp threshold exists between
formulas which are satisfied with high probability and those that are unsatisfied with high
probability. More precisely, they describe what happens when the number of clauses m is
drawn from a Poisson distribution with mean dkn. When the number of clauses drawn is
below (dk − ε)n, only an exponentially small fraction of formulas will be unsatisfiable; when
the number of clauses drawn is greater than (dk + ε)n, only an exponentially small fraction
of formulas will be satisfiable. This holds true for any ε > 0 constant in n.

Previous Average-Case k-SAT Algorithms

Feldman et al. studied planted random k-SAT and found that given m = Ω(n lgn) clauses,
the planted solution can be determined using statistical queries [18]. Feldman et al. also
conjecture that planted k-SAT is easier than random k-SAT more generally. Previous
work has shown a connection between algorithms that work in the planted distribution
and algorithms that work in the random distribution [4, 6, 33]. An algorithm was found
by Valiant which runs in time O(2n(1−Ω(log(k))/k)) at the threshold [32], improving upon
PPSZ [28]. Additionally, Vyas and Williams [33] obtained the same runtime by re-analyzing
the algorithm of Paturi et al. [29] in the random case.

Some studies of random k-SAT have focused on refutation [9, 8, 20, 5]. Refutation
aims to return a short certificate of unsatisfiability. For example Coja-Oghlan, Goerdt,
and Lanka give an algorithm that provides refutations with high probability when k = 3
and m > ln(n)6n3/2. Refutation is quite difficult; note that the m is much larger than the
threshold which sits at Θ(2kn). We, however, focus on returning a satisfying assignment if
the formula is satisfied with high probability.

Some studies of random k-SAT focus on the case where k is small (e.g. [9, 8, 2, 17]). We,
however, focus on the asymptotic behavior when k is large.

Worst-Case k-SAT Algorithms

The previously best-known worst-case k-SAT algorithms for large k are due to Paturi et al. who
get a running time of O(2n(1−Ω(1)/k)) [28]. Previous work by Schöning gave an algorithm
to solve k-SAT in the worst case with an expected running time of O(2n(1−Ω(1)/k)) [30].
Dantsin et al. make the algorithm deterministic [14]. Our algorithm is a modification of
the algorithms of both Schöning’s and Dantsin et al. Their algorithm runs by choosing an
assignment at random, and searching in the immediate neighborhood of that assignment by
repeatedly choosing an unsatisfied clause and flipping a variable in that clause to satisfy
it. They perform the search near the randomly chosen assignment via an exhaustive search.
Their algorithm is an improvement over a naive brute-force algorithm because of the savings
that result from only considering variable-flips that could possibly cause the formula to
become satisfied (rather than also exploring variable-flips that can’t possibly be helpful).

2 Preliminaries

In this section we will give the definition of random k-CNF Satisfiability (random k-CNF
SAT) at the threshold. We additionally present definitions of several important distributions
and functions that are used later in the paper.
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Notation for This Paper

We use x ∼ D to indicate that x is a random value drawn from the distribution D.
We use the standard notation that lg(n) = log2(n).
We use f(x) = O∗ (g(x)) to denote that there exists some constant c such that f(x) =

O (g(x)xc). So, to say it another way, f(x) grows at most as quickly as g(x), ignoring
polynomial and constant factors.

We often use “small-Hamming-distance assignment” to mean an assignment that is a
small Hamming distance from a satisfying assignment.

Definitions for This Paper

I Definition 2. Let Dreplace(n, k) be the uniform distribution over clauses on k variables
where those k variables are chosen with replacement (e.g. (x̄∨x∨ y) would be a valid clause).
Under this definition, there are nk2k possible clauses.

I Definition 3. The density of a formula φ with m clauses and n variables is m/n.

We will now define the satisfiability threshold. Informally, this is a density of clauses such
that formulas drawn from below this threshold are with high probability (whp) satisfied, and
those formulas drawn from above the threshold are whp unsatisfied.

I Definition 4. The satisfiability threshold, dk, is a ratio of clauses to variables such that
for all ε > 0:

If m is drawn from Pois[(dk − ε)n], the Poisson distribution with mean (dk − ε)n, and φ
is formed by picking m clauses independently at random from Dreplace(n, k), then φ is
whp satisfied.
If m is drawn from Pois[(dk + ε)n], the Poisson distribution with mean (dk + ε)n, and φ
is formed by picking m clauses independently at random from Dreplace(n, k), then φ is
whp unsatisfied.

I Definition 5. Let dk be the density of clauses such that SAT is at its threshold.

Note that it is not immediate that a satisfiability threshold exists for any given k. However,
Jian Ding, Allan Sly, and Nike Sun showed that this threshold exists for sufficiently large
k [16]. It has been proven that

2k ln(2)− 1
2(1 + ln(2))− εk ≤ dk ≤ 2k ln(2)− 1

2(1 + ln(2)) + εk,

where εk is a term that tends to 0 as k grows [23, 11]. It follows that there exists a large enough
k such that 2k ln(2)− 1 ≤ dk. Also, there exists a large enough k such that 2k ln(2) ≥ dk.

This density determines the distribution over the number of clauses put in the formula.
Specifically, m is drawn from Pois[dkn]. However, we can say that with high probability the
number of clauses is nearly dkn (see Lem. 9).

For many proofs it is convenient to assume k is large (e.g. when k is large, 2k > 10k not
just asymptotically but also numerically). We will now define k?. It will be a value such
that k = k? is large enough that both dk is known to be close to 2k ln(2)− 1

2 (1 + ln(2)) and
large enough for our proofs that depend on k being large.

I Definition 6. Let εk = |dk − 2k ln(2) + 1
2 (1 + ln(2))|.

I Definition 7. Let kε be the minimum value such that for all k ≥ kε we have that εk <
1+ln(2)

2 .
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I Definition 8. Let k? = max (60, kε).

Our choice of 60 in the above is somewhat arbitrary. When k ≥ 60 the proofs in Appendix
C of our full version [25] are simpler, so we analyze our core algorithm in that regime.

I Lemma 9. If εk < 1+ln(2)
2 then Pr[m > (dk +1)n]+Pr[m < (dk−1)n] ≤ 2 ·2−n/(3 ln(2)2k).

Proof. We apply the multiplicative form of the Chernoff bound. We have that (dk +
1)n/(dkn) = 1 + 1/dk. We also have that (dk − 1)n/(dkn) = 1− 1/dk. This gives us

Pr[m > (dk + 1)n] + Pr[m < (dk − 1)n] ≤ 2−(dk)−2dkn/3 + 2−(dk)−2dkn/2.

Which means

Pr[m > (dk + 1)n] + Pr[m < (dk − 1)n] ≤ 2−n/(3dk) + 2−n/(2dk).

P r[m > (dk + 1)n] + Pr[m < (dk − 1)n] ≤ 2 · 2−n/(3(ln(2)2k− 1
2 (1+ln(2))).

P r[m > (dk + 1)n] + Pr[m < (dk − 1)n] ≤ 2 · 2−n/(3 ln(2)2k). J

It follows that if our algorithm works efficiently for all values of m ∈ [(dk− 1)n, (dk + 1)n],
then it works with high probability at the threshold.

Below are some definitions used in later sections.

I Definition 10. Let DΦ(n, k) be the distribution over formulas φ where all clauses are
chosen independently from Dreplace and the number of clauses is chosen from a Poisson
distribution with mean dkn.

I Definition 11. Let DR(m,n, k) be the distribution over formulas φ where all m clauses
are chosen independently from Dreplace.

I Definition 12. Let DS(m,n, k) be the uniform distribution over satisfied formulas φ where
all m clauses are chosen from Dreplace.

I Definition 13. Let Dpc(n, k,~a) (which we refer to as “the planted-clause distribution”) be
the uniform distribution over the (2k − 1)nk clauses c which are satisfied by ~a.

I Definition 14. Let Dpa(m,n, k,~a) (which we refer to as “the planted distribution”) be the
distribution over formulas φ where every clause is picked IID from Dpc(n, k,~a). Note that
this is equivalent to the uniform distribution over formulas φ which are satisfied by ~a and
where all m clauses are in the support of Dreplace.

I Definition 15. Let U~a(n) be the uniform distribution over assignments of length n, {0, 1}n.

I Definition 16. Let NumClausesSAT(φ,~v) be the number of clauses in φ satisfied by the
assignment ~v.

IDefinition 17. Let NumClausesUnSAT(φ,~v) be the number of clauses in φ left unsatisfied
by the assignment ~v.
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3 Algorithm

We will describe our algorithm for random k-SAT in this section.
Informally, our algorithm works as follows. Given an input formula, we will sample many

randomly-chosen assignments. On those that have a high number of satisfied clauses, we
will run the deterministic algorithm for finding a satisfying assignment given an assignment
that is within a Hamming distance of at most αn of that satisfying assignment (i.e. a
small-Hamming-distance assignment).

Unsurprisingly, in the average case, small-Hamming-distance assignments satisfy more
clauses than random assignments1. In fact, for many choices of criterion there will be
a discrepancy between the values achieved by small-Hamming-distance assignments and
random assignments. Lemma 30 of our full version [25], which characterizes this discrepancy,
is general enough to be applied immediately to analyzing algorithms that make use of any
clause-specific criterion.

We note the following from previous work:

I Lemma 18 (Small Hamming Distance Search [14]). There is a deterministic algorithm
SAT-from-α-Small-HD(φ,~v) which given

a k-CNF formula φ on m clauses and n variables, and
an assignment ~v which has Hamming distance αn from a true satisfying assignment ~a∗,

will return a satisfying assignment within Hamming distance αn of ~v if one exists in kαn

time.

This algorithm simply takes the assignment ~a and branches on the first unsatisfied clause,
trying all possible variable flips. For each assignment resulting from these possible variable
flips, the algorithm repeats the process in what is now the first unsatisfied clause, until it
either finds a satisfying assignment or has searched αn flips from the original assignment.
This will deterministically yield a satisfying assignment, should one exist, within a Hamming
distance of αn of the original assignment.

So, if we find a small-Hamming-distance assignment and run SAT-from-α-Small-
HD(φ,~a) on this assignment, we are guaranteed to find the satisfying assignment. Therefore,
we could randomly sample points until we expect to find an assignment at Hamming distance
αn from the satisfying assignment (call this an α-small-Hamming-distance assignment). This
is indeed what Schöning’s algorithm does for α = Θ(1/k) [30].

A general class of improvements to this algorithm work by running SAT-from-α-Small-
HD(φ,~a) on only a cleverly-chosen subset of these sampled assignments. In our case, we
choose this set to be assignments that satisfy an unusually large number of clauses, but in
principle one could use any membership criterion for this set.

LetM be the runtime of the membership test for the set of assignments, and let pTP , pFP ,
pFN , and pTN represent the fraction of assignments that are true positives, false positives,
false negatives, and true negatives respectively. Here, just as in Section 1.1, we use “positive”
or “negative” to mean an assignment that passes or doesn’t pass the test for membership,
respectively. The truth or falsehood of that positive or negative represents whether or not
that assignment actually has a satisfying assignment within small Hamming distance.

1 Consider changing one variable’s assignment at random; in this case, almost all clauses will remain
satisfied. This phenomenon persists even when we flip several variables at once.
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We will have to draw samples until we would have found a satisfying assignment with
high probability were one to exist. Next, we will have to run SAT-from-α-Small-HD(φ,~a)
at least once to find the satisfying assignment itself. Finally, we will have to run it once
more for every false positive we find. Hence, the the generalized running time of this class of
algorithms is

O∗
(
M

pTP
+ kαn +

(
pFP
pTP

)
kαn

)
. (1)

This general formula is a powerful tool for analyzing the runtimes of algorithms from this
class. For example, if we apply it to analyzing the algorithm of [14], i.e. the special case where
the test we use always returns a positive, we see that the third term in Equation (1) dominates,
and that pFP ≈ 1 and pTP ≈

( nαn)
2n , giving an overall expected runtime of O∗(2n(1−Θ( 1

k )))
when we choose α = Θ( 1

k+1 ) (using tail bounds to convert
(
n
αn

)
to an exponential). In

Appendix G.3 of our full version [25] we discuss a different deterministic search algorithm
with a slightly improved runtime (yielding no relevant improvement on the runtime of the
overall algorithm for our analysis).

Our algorithm presents improvements for large k, but for small k we will simply use the
previous algorithm of Dantsin et al [14].

I Lemma 19 (Algorithm for Small k [14]). For k ≤ k? there exists a deterministic algorithm,
DantsinLS, that solves k-SAT in the worst case in time 2n(1−γ) for some constant γ > 0.

We will now give pseudocode for the α-SampleAndTest algorithm in Algorithm 1. Let
NumClausesSAT(φ,~a) return the number of clauses in φ satisfied by the assignment ~a. In
Appendix G.1 of our full version [25] we describe a different set of concepts with which the
algorithm can be understood.

Note that our algorithm as stated is non-constructive due to our use of the constant k?.
Other than this constant, our algorithm is explicit. While k? is known to be constant [11], its
exact value is currently unknown. We note in Appendix E of our full version [25] that finding
the value of k? is an open problem which, if solved, would make our algorithm constructive.

3.1 Correctness and Running Time

We will include the theorem statement of correctness and running time here. Its proof
depends on bounds on the false positive rate and the true positive rate, which we prove in
later sections. In particular, we show in Appendix A of our full version [25] that conditioned
on an assignment passing the test, it is sufficiently likely to be an α-small-Hamming-distance
assignment. We additionally show in Appendix B of our full version [25] that conditioned
on an assignment being an α-small-Hamming-distance assignment, it is sufficiently likely to
pass the test.

Note that much of our probability of returning the wrong value comes from our bounds
on the probability that we are drawing a formula with length m < (dk − 1)n. If we knew m

to be fixed and greater than (dk − 1)n, we would have a lower error probability.
We will show that α-SampleAndTest(φ) has one-sided error and returns the correct

answer with high probability. Note that it returns the correct answer with high probability
even conditioned on the input being unsatisfied or satisfied. We use Theorem 26 of our full
version [25] to bound the false positive rate and use Lemma 43 of our full version [25] to
bound the true positive rate, which gives us the desired result.
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Algorithm 1 α-SampleAndTest(φ).

α-SampleAndTest(φ):
1 if k < k? then
2 return DantsinLS(φ)

end
3 Initialize S to the empty set.
. For k ≥ k? we run our variant of local search:

4 for i ∈ [0, n2 · 2n/
(
n
αn

)
] do

5 Sample an assignment ~a uniformly at random from {0, 1}n.
. Only keep assignments which satisfy abnormally many clauses.

6 if NumClausesSAT(φ,~a) ≥ (1− 1−(1−α)2k

2k−1 )m then
7 Add ~a to S.
8 if |S| > 4n32n/

((
n
αn

)
kαn

)
+ 1 then

9 return False
end

10 Run SAT-from-α-Small-HD(φ,~a).
11 If an assignment was found, return it.

end
end

12 return False

In the theorem that follows, we choose α such that αn is an integer. Specifically, we
choose:

α =
b lg(k)

16k nc
n

.

Note that when we choose α to take on this value, it will always lie in the range
lg(k)
20k ≤ α ≤

lg(k)
16k for large n.

I Theorem 20. Assume φ is drawn from DΦ(n, k). Let α = bn lg(k)/(16k)c
n .

Conditioned on there being at least one satisfying assignment to φ, α-SampleAndTest(φ)
will return some satisfying assignment with probability at least 1− 3 · 2−n/(3 ln(2)2k).

Conditioned on there being no satisfying assignment to φ, α-SampleAndTest(φ) will
return False with probability 1.

α-SampleAndTest(φ) will run in time

O
(

2n(1−Ω(lg2(k)/k)
)
.

Proof. Proof given in Appendix D of our full version [25]. J

References
1 Scott Aaronson. P=?NP. Electronic Colloquium on Computational Complexity (ECCC), 24:4,

2017. URL: https://eccc.weizmann.ac.il/report/2017/004.
2 D. Achioptas and G. B. Sorkin. Optimal myopic algorithms for random 3-sat. In Proceedings

41st Annual Symposium on Foundations of Computer Science, pages 590–600, November 2000.
doi:10.1109/SFCS.2000.892327.

https://eccc.weizmann.ac.il/report/2017/004
https://doi.org/10.1109/SFCS.2000.892327


A. Lincoln and A. Yedidia 78:11

3 Dimitris Achlioptas. Random satisfiability. In Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 245–270. IOS Press, 2009. doi:10.3233/
978-1-58603-929-5-245.

4 Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase transitions. In
49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October
25-28, 2008, Philadelphia, PA, USA, pages 793–802, 2008. doi:10.1109/FOCS.2008.11.

5 Sarah R. Allen, Ryan O’Donnell, and David Witmer. How to refute a random CSP. In IEEE
56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, pages 689–708, 2015. doi:10.1109/FOCS.2015.48.

6 Eli Ben-Sasson, Yonatan Bilu, and Danny Gutfreund. Finding a randomly planted assignment
in a random 3CNF. Technical report, In preparation, 2002.

7 Amin Coja-Oghlan. A better algorithm for random k-SAT. SIAM Journal on Computing,
39(7):2823–2864, 2010.

8 Amin Coja-Oghlan, Colin Cooper, and Alan M. Frieze. An efficient sparse regularity concept.
SIAM J. Discrete Math., 23(4):2000–2034, 2010. doi:10.1137/080730160.

9 Amin Coja-Oghlan, Andreas Goerdt, and André Lanka. Strong refutation heuristics for
random k-sat. Combinatorics, Probability & Computing, 16(1):5–28, 2007. doi:10.1017/
S096354830600784X.

10 Amin Coja-Oghlan, Michael Krivelevich, and Dan Vilenchik. Why almost all k-CNF formulas
are easy. In Proceedings of the 13th International Conference on Analysis of Algorithms, to
appear, 2007.

11 Amin Coja-Oghlan and Konstantinos Panagiotou. The asymptotic k-SAT threshold. Advances
in Mathematics, 288:985–1068, 2016. doi:10.1016/j.aim.2015.11.007.

12 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio,
USA, pages 151–158, 1971. doi:10.1145/800157.805047.

13 Stephen A Cook and David G Mitchell. Finding hard instances of the satisfiability problem.
In Satisfiability Problem: Theory and Applications: DIMACS Workshop, volume 35, pages
1–17, 1997.

14 Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon M. Kleinberg,
Christos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A deterministic (2-
2/(k+1))n algorithm for k-SAT based on local search. Theor. Comput. Sci., 289(1):69–83,
2002. doi:10.1016/S0304-3975(01)00174-8.

15 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In C. R. Ramakrishnan
and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

16 Jian Ding, Allan Sly, and Nike Sun. Proof of the Satisfiability Conjecture for large k. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, June 14-17, 2015, pages 59–68, 2015. doi:10.1145/2746539.
2746619.

17 Olivier Dubois, Yacine Boufkhad, and Jacques Mandler. Typical random 3-sat formulae and
the satisfiability threshold. In Proceedings of the Eleventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’00, pages 126–127, Philadelphia, PA, USA, 2000. Society for
Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=338219.
338243.

18 Vitaly Feldman, Will Perkins, and Santosh Vempala. On the complexity of random satisfiability
problems with planted solutions. Electronic Colloquium on Computational Complexity (ECCC),
21:148, 2014. URL: http://eccc.hpi-web.de/report/2014/148.

19 Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algorithms for the satisfiability
(SAT) problem: A survey. In Satisfiability Problem: Theory and Applications, Proceedings of a
DIMACS Workshop, Piscataway, New Jersey, USA, March 11–13, 1996, pages 19–152, 1996.
doi:10.1090/dimacs/035/02.

ICALP 2020

https://doi.org/10.3233/978-1-58603-929-5-245
https://doi.org/10.3233/978-1-58603-929-5-245
https://doi.org/10.1109/FOCS.2008.11
https://doi.org/10.1109/FOCS.2015.48
https://doi.org/10.1137/080730160
https://doi.org/10.1017/S096354830600784X
https://doi.org/10.1017/S096354830600784X
https://doi.org/10.1016/j.aim.2015.11.007
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/S0304-3975(01)00174-8
https://doi.org/10.1145/2746539.2746619
https://doi.org/10.1145/2746539.2746619
http://dl.acm.org/citation.cfm?id=338219.338243
http://dl.acm.org/citation.cfm?id=338219.338243
http://eccc.hpi-web.de/report/2014/148
https://doi.org/10.1090/dimacs/035/02


78:12 Faster Random k-CNF Satisfiability

20 Hiêp Hàn, Yury Person, and Mathias Schacht. Note on strong refutation algorithms for
random k-sat formulas. Electronic Notes in Discrete Mathematics, 35:157–162, 2009. doi:
10.1016/j.endm.2009.11.027.

21 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

22 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium
on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J.
Watson Research Center, Yorktown Heights, New York, USA, pages 85–103, 1972. URL: http:
//www.cs.berkeley.edu/%7Eluca/cs172/karp.pdf, doi:10.1007/978-1-4684-2001-2_9.

23 Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, and Yannis C. Stamatiou. Approxim-
ating the unsatisfiability threshold of random formulas. Random Struct. Algorithms, 12(3):253–
269, 1998. doi:10.1002/(SICI)1098-2418(199805)12:3<253::AID-RSA3>3.0.CO;2-U.

24 Leonid A. Levin. Universal search problems. Problems of Information Transmission, 9(3),
1973.

25 Andrea Lincoln and Adam Yedidia. Faster random k-cnf satisfiability. arXiv preprint, 2019.
arXiv:1903.10618.

26 Chao Ming-Te and John Franco. Probabilistic analysis of a generalization of the unit-clause
literal selection heuristics for the k-satisfiability problem. Information Sciences, 51(3):289–314,
1990.

27 Eugene Nudelman, Kevin Leyton-Brown, Holger H. Hoos, Alex Devkar, and Yoav Shoham.
Understanding random SAT: beyond the clauses-to-variables ratio. In Principles and Practice
of Constraint Programming - CP 2004, 10th International Conference, CP 2004, Toronto,
Canada, September 27 - October 1, 2004, Proceedings, pages 438–452, 2004. doi:10.1007/
978-3-540-30201-8_33.

28 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-SAT. J. ACM, 52(3):337–364, 2005. doi:10.1145/1066100.
1066101.

29 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chicago J.
Theor. Comput. Sci., 1999, 1999. URL: http://cjtcs.cs.uchicago.edu/articles/1999/11/
contents.html.

30 Uwe Schöning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In
40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 410–414, 1999. doi:10.1109/SFFCS.1999.814612.

31 Bart Selman, David G. Mitchell, and Hector J. Levesque. Generating hard satisfiability
problems. Artificial Intelligence, 81(1):17–29, 1996. Frontiers in Problem Solving: Phase
Transitions and Complexity. doi:10.1016/0004-3702(95)00045-3.

32 Greg Valiant. Faster random SAT. Personal communication.
33 Nikhil Vyas and Ryan Williams. On super strong ETH. In Mikolás Janota and Inês Lynce,

editors, Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd International
Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, volume 11628 of Lecture
Notes in Computer Science, pages 406–423. Springer, 2019. doi:10.1007/978-3-030-24258-9_
28.

https://doi.org/10.1016/j.endm.2009.11.027
https://doi.org/10.1016/j.endm.2009.11.027
https://doi.org/10.1006/jcss.2000.1727
http://www.cs.berkeley.edu/%7Eluca/cs172/karp.pdf
http://www.cs.berkeley.edu/%7Eluca/cs172/karp.pdf
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1002/(SICI)1098-2418(199805)12:3<253::AID-RSA3>3.0.CO;2-U
http://arxiv.org/abs/1903.10618
https://doi.org/10.1007/978-3-540-30201-8_33
https://doi.org/10.1007/978-3-540-30201-8_33
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/1066100.1066101
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
https://doi.org/10.1109/SFFCS.1999.814612
https://doi.org/10.1016/0004-3702(95)00045-3
https://doi.org/10.1007/978-3-030-24258-9_28
https://doi.org/10.1007/978-3-030-24258-9_28


Succinct Filters for Sets of Unknown Sizes
Mingmou Liu
State Key Laboratory for Novel Software Technology, Nanjing University, China
http://tcs.nju.edu.cn/files/people/mingmou
liu.mingmou@smail.nju.edu.cn

Yitong Yin
State Key Laboratory for Novel Software Technology, Nanjing University, China
http://tcs.nju.edu.cn/yinyt/
yinyt@nju.edu.cn

Huacheng Yu
Princeton University, NJ, USA
https://www.cs.princeton.edu/~hy2/
yuhch123@gmail.com

Abstract
The membership problem asks to maintain a set S ⊆ [u], supporting insertions and membership
queries, i.e., testing if a given element is in the set. A data structure that computes exact answers
is called a dictionary. When a (small) false positive rate ε is allowed, the data structure is called
a filter.

The space usages of the standard dictionaries or filters usually depend on the upper bound on
the size of S, while the actual set can be much smaller.

Pagh, Segev and Wieder [28] were the first to study filters with varying space usage based on
the current |S|. They showed in order to match the space with the current set size n = |S|, any
filter data structure must use (1 − o(1))n(log(1/ε) + (1 − O(ε)) log logn) bits, in contrast to the
well-known lower bound of N log(1/ε) bits, where N is an upper bound on |S|. They also presented
a data structure with almost optimal space of (1 + o(1))n(log(1/ε) +O(log logn)) bits provided that
n > u0.001, with expected amortized constant insertion time and worst-case constant lookup time.

In this work, we present a filter data structure with improvements in two aspects:

it has constant worst-case time for all insertions and lookups with high probability;

it uses space (1 + o(1))n(log(1/ε) + log logn) bits when n > u0.001, achieving optimal leading
constant for all ε = o(1).

We also present a dictionary that uses (1 + o(1))n log(u/n) bits of space, matching the optimal space
in terms of the current size, and performs all operations in constant time with high probability.
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1 Introduction

Membership data structures are fundamental subroutines in many applications, including
databases [9], content delivery network for web caching [24], image processing [17], scanning
for viruses [14], etc. The data structure maintains a set of keys from a key space [u],1
supporting the following two basic operations:

insert(x): insert x into the set;
lookup(x): return YES if x is in the set, and NO otherwise.

When false positive errors are allowed, such a data structure usually is referred as a filter.
That is, a filter with false positive rate ε may answer YES with probability ε when x is not in
the set (but it still needs to always answer YES when x is in the set).

In the standard implementations, a initialization procedure receives the key space size u
and a capacity N , i.e., an upper bound on the number of keys that can simultaneously exist
in the database. Then it allocates sufficient space for the data structure, e.g., a hash table
consisting of Θ(N) buckets. Thereafter, the memory usage is always staying at the maximum,
as much space as N keys would take. It introduces inefficiency in the space, when only few
keys have been inserted so far. On the other hand, it could also happen that only a rough
estimation of the maximum size is known (e.g. [16, 1, 22]). Therefore, to avoid overflowing,
one has to set the capacity conservatively. The capacity parameter given to the initialization
procedure may be much more than the actual need. To avoid such space losses, a viable
approach is to dynamically allocate space such that at any time, the data structure occupies
space depending only on the current database size (rather than the maximum possible).

For exact membership data structures, it turns out that such promise is not too hard to
obtain if one is willing to sacrifice an extra constant factor in space and accept amortization:
When the current database has n keys, we set the capacity to 2n; after n more keys are
inserted, we construct a new data structure with capacity equal to 4n and transfer the whole
database over. The amortized cost to transfer the database is O(1) per insertion. Raman
and Rao [29] showed that the extra constant factor in space is avoidable, they designed a
succinct2 membership data structure using space (1 + o(1)) log

(
u
n

)
,3 where n is the current

database size, supporting insertions in expected amortized constant time, and lookup queries
in worst-case constant time.

For filters, the situation is more complicated. The optimal space to store at most N
keys while supporting approximate membership queries with false positive rate ε is N log 1/ε
[8, 23] (Pagh, Pagh and Rao [27] achieved (1 + o(1))N log 1/ε bits). However, the above trick
to reduce the space may not work in general. This is because the filter data structures do
not store perfect information about the database, and therefore, it is non-trivial to transfer
to the new data structure with capacity 4n, as one might not be able to recover the whole
database from the previous data structure. In fact, Pagh, Segev and Wieder [28] showed an
information theoretical space lower bound of (1− o(1))n(log 1/ε+ (1−O(ε)) log logn) bits,
regardless of the insertion and query times. That is, one has to pay extra ≈ log logn bits
per key in order to match the space with the current database size. They also proposed a
data structure with a nearly matching space of (1 + o(1))n log 1/ε+O(n log logn) bits when
n > u0.001, while supporting insertions in expected amortized constant time and lookup

1 Throughout the paper, [u] stands for the set {0, . . . , u− 1}.
2 A succinct data structure uses space equal to the information theoretical minimum plus an asymptotically

smaller term called redundancy.
3 All logarithms are base 2.
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queries in worst-case constant time. When ε is at least 1/poly logn, the extra log logn bits
per key is dominating. It was proposed as an open problem in [28] whether one can make
the log logn term succinct as well, i.e., to pin down its leading constant.

On the other hand, an amortized performance guarantee is highly undesirable in many
applications. For instances, IP address lookups in the context of router hardware [7, 19], and
timing attacks in cryptography [21, 20, 26, 25]. When the database size is always close to
the capacity (or when the space is not a concern), it was known how to support all operations
in worst-case constant time [13, 3] with high probability. That is, except for a probability
of 1/polyn, the data structure handles every operation in a sequence of length polyn in
constant time.4 However, it was not known how to obtain such a guarantee when the space
is succinct with respect to the current database size, i.e., (1 + o(1)) log

(
u
n

)
. For filters, Pagh

et al. [28] showed it is possible to get worst-case constant time with high probability, at the
price of a constant factor more space O(n log 1/ε+ n log logn). They asked if there is a data
structure which enjoys the succinct space usage and the worst-case constant time with high
probability simultaneously.

1.1 Main Results
In this paper, we design a new dynamic filter data structure that answers both questions.
Our data structure has both worst-case constant time with high probability and is succinct
in space in terms of the current database size.

I Theorem 1 (Dynamic filter – informal). There is a data structure for approximate mem-
bership with false positive rate ε that uses space (1 + o(1))n(log(1/ε) + log logn) bits, where
n > u0.001 is the current number of keys in the database, such that every insertion and lookup
takes constant time in the worst case with high probability.

We also present a dictionary data structure with the space depending on the current n. A
dictionary is a generalization of membership data structures, it maintains a set of key-value
pairs, supporting

insert(x, y): insert a key-value pair (x, y) for x ∈ [u] and v-bit y ;
lookup(x): if ∃(x, y) in the database, output y; otherwise output NO.

By setting v = 0, the lookup query simply tests if x is in the database.

I Theorem 2 (Dynamic dictionary – informal). There is a dictionary data structure that uses
space (1 + o(1))n(log(u/n) + v+O(log log log u)) bits, where n > u0.001 is the current number
of key-value pairs in the database, such that every insertion and lookup takes constant time
in the worst case with high probability.

1.2 Related Work
Membership with Constant Time Worst-Case Guarantee. The FKS perfect hashing [15]
stores a set of n fixed (i.e., static) keys using O(n) space, supporting membership queries in
worst-case constant time. Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der Heide, Rohnert
and Tarjan [12] introduced an extension of the FKS hashing, which is the first dynamic
membership data structure with worst-case constant query time and the expected amortized
constant insertion time. Later, Dietzfelbinger and Meyer auf der Heide [13] improved

4 This is stronger guarantee than expected constant time, since when the unlikely event happened, one
could simply rebuild the data structure in linear time. The expected time is still a constant.
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the insertion time to worst-case constant, with an overall failure probability of 1/polyn.
Demaine, Meyer auf der Heide, Pagh and Pǎtraşcu [11] improved the space to O(n log(u/n))
bits of space. Arbitman, Naor and Segev [2] proved that a de-amortized version of cuckoo
hashing [19] has constant operation time in the worst case with high probability.

On the other hand, filters can be reduced to dictionaries with a hash function h : [u]→
[n/ε], and thus, all the dictionaries imply similar upper bounds for filters [8].

Succinct Membership. Raman and Rao [29] presented the first succinct dictionary with
constant time operations, while the insertion time is amortized. Arbitman, Naor and Segev [3]
refined the schema of [2], suggested a succinct dictionary with worst case operation time
with high probability.

By using the reduction from [8] and the succinct dictionary from [29], Pagh, Pagh and
Rao [27] provided a succinct filter with constant time, while the insertion time is amortized
due to [29]. Bender, Farach-Colton, Goswami, Johnson, McCauley and Singh [5] suggested a
succinct adaptive filter5 with constant time operation in the worst case with high probability.

Membership for Sets of Unknown Sizes. The data structure of Raman and Rao [29] can
be implemented such that the size of the data structure always depends on the “current n”.
Pagh, Segev and Wieder [28] were the first to study dynamic filters in this setting from a
foundational perspective. As we mentioned above, they proved an information-theoretical
space lower bound of (1− o(1))n(log(1/ε) + (1−O(ε)) log logn) bits for filter, and presented
a filter data structure using n(log(1/ε) +O(log logn)) bits of space with constant operation
time when n > u0.001. Indeed, the insertion time is expected amortized, since the succinct
dictionary of Raman and Rao is applied as a black box (it was not clear if any succinct
dictionary with worst-case operational time can be generalized to this setting).

Very recently, Bercea and Even [6] proposed a succinct membership data structure for
maintaining dictionaries and random multisets with constant operation time. While their
data structure is originally designed for the case where an upper bound N on the keys is
given (and the space usage is allowed to depend on N), we note that it is possible to extend
their solution and reduce the space to depend only on the current n. However, their data
structure assumes free randomness, and straightforward extension results in an additive
Ω(n log log u) term in space. The redundancy makes their data structure space-inefficient for
filters, since the space lower bound is (1− o(1))n(log(1/ε) + (1−O(ε)) log logn).

1.3 Previous Construction
As we mentioned earlier, for dynamic membership data structures, if we are willing to pay
an extra constant factor in space, one way to match the space with the “current” n is to
set the capacity to be 2n. When the data structure is full after another n insertions, we
double the capacity, and transfer the database to the new data structure. However, the
standard way to construct an efficient filter is to hash [u] to [n/ε] (where ε is the false
positive rate) and store all n hash values in a membership data structure, which takes
O(n log 1/ε) bits of space. As we insert more keys and increase the capacity to 4n, the range
of the hash value needs to increase as well. Unfortunately, it cannot be done, because the
original keys are not stored, and we have lost the information in order to save space (this
is exactly the point of a filter). On the other hand, we could choose to keep the previous

5 In an adaptive filter, for a negative query x, the false positive event is independent of previous queries.
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data structure(s), and only insert the future keys to the new data structure. For each query,
if it appears in any of the (at most logn) data structures, we output YES. By setting the
false positive rate for the data structure with capacity 2i to O(ε/i2), the overall false positive
rate is at most ε ·

∑
iO(1/i2) ≤ ε by union bound. The total space usage becomes roughly

n log(log2 n/ε) = n(log 1/ε+O(log logn)).
To avoid querying all logn filters for each query, the previous solution by Pagh et

al. [28] uses a single global hash function h that maps [u] to log(u/ε)-bit strings for all logn
filters. For a key x in the i-th data structure (with capacity 2i), one simply takes the first
i+ log 1/ε+ 2 log i bits of h(x) as its hash value. Then querying the i-th data structure on y
is to check whether the (i+ log 1/ε+ 2 log i)-bit prefix of h(y) exists. Since all filters use the
same hash function, the overall task is to check whether some prefix of h(y) appears in the
database, which now consists of strings of various lengths. Note that there are very few short
strings in the database, the previous solution extends all short strings to length log(n/ε) by
duplicating the string and appending all possible suffixes, e.g., a string of length log(n/ε)− c
is duplicated into 2c strings by appending all possible c-bit suffixes. Then all strings are
stored in one single dictionary (longer strings are stored according to their first log(n/ε)
bits), and the query becomes to check if the log(n/ε)-bit prefix of h(y) is in the dictionary,
which is solved by invoking Raman and Rao [29]. One may verify that duplicating the short
strings does not significantly increase the total space, and comparing only the log(n/ε)-bit
prefix of a longer string does not increase the false positive rate by much.

1.4 Our Techniques
Our new construction follows a similar strategy, but the “prefix matching” problem is solved
differently. Given a collection of 2i−1 < n ≤ 2i strings of various lengths, we would like to
construct a data structure such that given any query h(y), we will be able to quickly decide
if any prefix of h(y) appears in the database. The first observation is that the short strings
in the database can be easily handled. In fact, all strings shorter than i bits can be stored
in a “truth table” of size 2i = O(n). That is, we simply store for all i-bit strings, whether
any of its prefix appears in the database. For a query h(y), by checking the corresponding
entry of its i-bit prefix, one immediately resolves all short strings. On the other hand, for
strings longer than logm bits, we propose a new (exact) membership data structure, and
show that it in fact, automatically solves prefix matching when all strings are long. Before
describing its high-level construction in Section 1.4.1, let us first see what it can do and how
it is applied to our filter construction.

When the capacity is set to m, the membership data structure stores n ≤ m keys
from [u] using space n(log(u/m) + O(log log log u)) + O(m) bits, supporting insertion and
membership query in worst-case constant time with high probability. When applying
to prefix matching, it stores n strings of length at most ` (and more than logm) using
n(log(2`/m) +O(log log `)) +O(m) bits. Using this data structure with the capacity set to
m = 2i, we are able to store the database succinctly when m/2 < n ≤ m. As we insert more
keys to the database, the capacity needs to increase. Another advantage of our membership
data structure is that the data can be transferred from the old data structure with capacity
m to a new one with capacity 2m in O(m) time. More importantly, the transfer algorithm
runs almost “in-place”, and the data structure remains “queryable” in the middle of the
execution. That is, one does not need to keep both data structures in full, at any time the
total memory usage is still n(log(2`/n) +O(log log `)) +O(m), and the data structure can
be queried. Therefore, as n is increasing from m/2 to m, we gradually build a new data
structure with capacity 2m. Every time a key is inserted, the background data-transfer
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algorithm is run for constant steps. By the time n reaches m, we will have already transferred
everything to the new data structure, and will be ready to build the next one with capacity
4m. Overall, the data structure is going to have logn stages, the i-th stage handles the
(2i−1 + 1)-th to the 2i-th insertion. In each stage, the database size is doubled, and the data
structure also gradually doubles its capacity. This guarantees that the total space is succinct
with respect to the current database size, and every operation is handled in constant time
with high probability.

Finally, to pin down the leading constant in the extra O(log logn) bits, we show that
for the n-th inserted key x for 2i−1 < n ≤ 2i, storing the (i + log(i/ε) + log log log u)-bit
prefix of h(x) balances the false positive rate and the space. Since our new membership data
structure only introduces an extra ≈ log log i ≈ log log logn bits of space per key, it is not
hard to verify that the total space of our construction is (1 + o(1))n(log(1/ε) + log logn).

1.4.1 Membership Data Structure

In the following, let us briefly describe how our new membership data structure works. The
data structure works in the extendable array model, as the previous solution by Raman and
Rao. See Section 2.2.2 or [29] for more details.

Our main technique contribution is the idea of data block. Without the data blocks, our
data structure degenerates into a variant of the one proposed in [6]. Instead of a redundancy
of O(n log log log u) bits, the degeneration contributes a redundancy of O(n log log u) bits,
which makes the data structure space-inefficienct for filters as we discussed early.

For simplicity, let us for now assume that we have free randomness, and the first step is
to randomly permute the universe. Thus, we may assume that at any time, the database is a
uniformly random set (of certain size). We divide the universe into m/ log u buckets, e.g.,
according to the top log(m/ log u) bits of the key. Then with high probability, every bucket
will have O(log u) keys. We will then dynamic allocate space for each bucket. Note that
given that a key is a bucket b, we automatically know that its top log(m/ log u) bits is “b”.
Therefore, within each bucket, we may view the keys have lengths only log u− log(m/ log u) =
log((u log u)/m), or equivalently, the universe size being (u log u)/m (recall that the goal is
to store each key using ≈ log(u/m) bits on average).

To store the keys in a bucket, we further divide it into data blocks consisting of
O(log u/ log log u) keys each, based on the time of insertion. That is, the first O(log u/ log log u)
keys inserted to this bucket will form the first data block, the next O(log u/ log log u) keys
will be the second data block, etc. Since each data block has few enough keys, they can
be stored using a static constructions (supporting only queries) using nearly optimal space
of ≈ log

( (u logu)/m
O(logu/ log logu)

)
, which is log((u log log u)/m) = log(u/m) + log log log u bits per

key, or a dynamic constructions use log(u/m) + O(log log u) bits per key. The latest data
block, which we always insert the new key into, is maintained using the dynamic construc-
tion. When it becomes full, we allocate a new data block, and at the same time, we run a
in-place reorganization algorithm in the background. The reorganization algorithm runs in
O(log u/ log log u) time, and convert the dynamic construction into the static construction,
which uses less space. For each insertion in the future, the reorganization algorithm is run
for constant steps, thus, it finishes before the next data block becomes full. Finally, for each
bucket, we maintain an adaptive prefixes structure [4, 5] to navigate the query to the relevant
data block. Roughly speaking, when all O(log u) keys in the bucket are random, most keys
will have a unique prefix of length log log u. In fact, Bender et al. [4, 5] showed that for every
keys, the shortest prefix that is unique in the bucket can be implicitly maintained in constant



M. Liu, Y. Yin, and H. Yu 79:7

time, and the total space for all O(log u) keys is O(log u) bits with high probability.6 We
further store for each such unique prefix, which data block contains the corresponding key.
It costs O(log log log u) bits per key. Given a query, the adaptive prefix structure is able
to locate the prefix that matches the query in constant time, which navigates the query
algorithm to the (only) relevant data block. We present the details in Section 4.

2 Preliminaries

2.1 String Notations
Let {0, 1}≤` ,

⋃
0≤i≤`{0, 1}i and {0, 1}∗ ,

⋃
i≥0{0, 1}i. Given a string x ∈ {0, 1}`, we use

|x| = ` to denote its length. We denote by a◦ b the concatenation of two strings a, b ∈ {0, 1}∗.
We denote the concatenation of k ones or zeros by 1k or 0k, respectively.

For x, y ∈ {0, 1}∗, we use x v y (or y w x) to denote that y is a prefix of x, formally:

x v y ⇐⇒ x = y ◦ a for some a ∈ {0, 1}∗. (1)

Note that our notation is unconventional: we use x v y for y prefixing x, to reflect that the
Hamming cube identified by x is contained by the Hamming cube for its prefix y.

For two strings x, y such that |x| ≤ |y|, to compare x and y in lexicographical order, we
compare x◦ ⊥|y|−|x| and y in lexicographical order, where ⊥ is a special symbol which is
smaller than any other symbol.

Recall that an injection (code) on strings is a prefix-free code if no codeword is a prefix of
another codeword.

B Claim 3. There is a prefix-free code PFC : {0, 1}≤` → {0, 1}`+1 for strings of length ≤ `.

Proof. Given any x ∈ {0, 1}≤`, the codeword PFC(x) is 1`−|x| ◦ 0 ◦ x. C

2.2 Computational Models
2.2.1 Random Access Machine
Throughout the paper, we use w to denote the word size: each memory word is a Boolean
string of w bits. We assume that the total number of memory words is at most 2w, and
each memory word has an unique address from [2w], so that any pointer fits in one memory
word. We also assume CPU has constant number of registers of size w, and any datapoint
fits in constant number of words (i.e. w = Ω(v + log u)). During each CPU clock tick, CPU
may load one memory word to one of its register, write the content of some register to
some memory word, or execute the basic operations on the registers. Specifically, the basic
operations include four arithmetic operations (addition, subtraction, multiplication, and
division), bitwise operations (AND, OR, NOT, XOR, shifting), and comparison.

2.2.2 Memory Models
We use a memory access model known as the extendable arrays [29] to model the dynamic
space usage.

The extendable array is one of the most fundamental data structures in practice. It is
implemented by the standard libraries of most popular programming languages, such as
std::vector in C++, ArrayList in java and list in python.

6 The O(log u)-bit representation is implicit.
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I Definition 4 (Extendable arrays). An extendable array of length n maintains a sequence
of n fixed-sized elements, each assigned a unique address from [n], such that the following
operations are supported:

access(i): access the element with address i;
grow: increment the length n, creating an arbitrary element with address n+ 1;
shrink: decrement the length n, remove the element with address n.

A collection of extendable arrays supports
create(r): create an empty extendable array with element of size r and return its name;
destroy(A): destroy the empty extendable array A;
access(A, i), grow(A), shrink(A): apply the corresponding operations on array A.

Each of above operations takes constant time. The space overhead of an extendable array
is O(w) + nr, where w, n, r are the word size, the length of the array, and the element size
respectively. Indeed, the space overhead of a collection of extendable arrays is O(|A|w) +∑

A∈A nArA, where A, nA and rA are the set of extendable arrays, the length of array A,
and the element size of array A respectively.

We also consider the following allocate-free model.

I Definition 5 (Allocate and free). In the allocate-free model, there are two built-in procedures:
allocate(b): return a pointer to a block of b consecutive memory words which is unini-
tialized;
free(p): free the block of consecutive memory words which is pointed by p and have been
initialized to 0s.

Each of above operations takes constant time. The total space overhead is O(|A|w) +∑
A∈A nAw, where A is set of all memory blocks and nA is the length of memory block A.

We discuss the space usages of our data structures in allocate-free model in Section 7.
To avoid the pointer being too expensive in the dynamic memory models, we assume

w = Θ(log u).

2.3 Random Functions
I Definition 6 (k-wise independent random function). A random function h : [u] → [r] is
called k-wise independent if for any distinct x1, · · · , xk ∈ [u], and any y1, · · · , yk ∈ [r],

Pr
h

∧
i≤k

h(xi) = yi

 = 1/rk.

I Theorem 7 ([31, 10]). Let [u] be a universe, w = Ω(log u), c1 > 0, r = poly(u), and
k = uo(1). There exists a data structure for a random function h : [u]→ [r] such that

with probability ≥ 1− 1/u, the data structure is constructed successfully;
upon successful construction of the data structure, h is k-wise independent;
the data structure uses space uc1 bits;
for each x ∈ [u], h(x) is evaluated in Õ(1/c1) time in the worst case in the RAM model.

I Theorem 8 (Chernoff bound with limited independence [30]). Let X1, · · · , Xn be arbitrary
k-wise independent boolean random variables with Pr[Xi = 1] = p for any i ∈ [n]. Let
X ,

∑
iXi, µ , E[X] = np, then for any δ > 0, it holds that

Pr [X ≥ (1 + δ)µ ] ≤ exp(−µδ2/2),

as long as k ≥ d µδ1−pe.
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2.4 Adaptive Prefixes
Given a sequence S = (x1, x2, . . .) of strings, let αm(S) = {αm(x1), αm(x2), . . .} be a
collection of prefixes, such that for every xi ∈ S, the αm(xi) is the shortest prefix, of length
at least m, of the binary representation of xi, such that αm(xi) prefixes no other xj ∈ S.
Note that for any string y, there is at most one x ∈ S such that αm(x) w y as long as αm(S)
exists. In particular, αm(S) does not exist if there are i 6= j such that xi = xj .

The prefixes are stored in lexicographical order, thus we refer k-th prefix as the prefix
with rank k in lexicographical order.

I Theorem 9 (Refined from [4, 5]). Let c0, c1 > 1 be two constants where c0 > c1. For
a random sequence S = (x1, · · · ) of strings drawn from ({0, 1}c0 logu)≤c3 logu uniformly at
random with replacement, with probability at least 1− u−c1 , the prefix collection αlog logu(S)
exists and can be represented with at most c2 log u bits, where c2 > 0 is determined by c1, c3.
Furthermore, the following operations are supported in constant time:

insert(y): update the representation by inserting a new string y ∈ {0, 1}c0 logu to S, when
there is at most one x ∈ S such that αlog logu(x) w y;
lookup(y): given any query y ∈ {0, 1}c0 logu, return the rank of the only z ∈ αlog logu(S)
that prefixes y, and return NO if there does not exist such a z;
lowerbound(y): given any query y ∈ {0, 1}log logu, return the lowest rank of all z ∈
αlog logu(S) that z v y, and return 0 if there is no z v y in the collection;

For completeness, a proof is provided in the full version of this paper.

3 Data Structures for Sets of Unknown Sizes

In this section, we present our filter and dictionary data structures for sets of unknown sizes.

3.1 The Succinct Dynamic Filters
The following theorem is a formal restatement of Theorem 1.

I Theorem 10 (Dynamic filter – formal). Let 0 < ε < 1, [u] the data universe, and δ = u−C ,
where C > 1 is an arbitrary constant. Assume the word size w = Θ(log u). There exists a
data structure for approximate membership for subsets of unknown sizes of [u], such that
1. for any n = ω(log u) and n < u, the data structure uses n(log(1/ε) + log logn +

O(log log log u)) bits of space after insertions of any n key, and extra uc precomputed bits
that are independent of the input, where 0 < c < 1 is an arbitrary small constant;

2. each insertion and membership query takes O(1) time in the worst case;
3. after each insertion, a failure may be reported by the data structure with some probability,

and for any sequence of insertions, the probability that a failure is ever reported is at
most δ, where the probability is taken over the precomputed random bits;

4. conditioned on no failure, each membership query is answered with false positive rate at
most ε.

As we mentioned in the introduction, our data structure has logn stages when handling
n insertions. The i-th stage is from the insertion of the (2i−1 + 1)-th key to the 2i-th key –
the database size doubles after each stage.

The main strategy is to reduce the problem of (approximate) membership to (exact)
prefix matching. More formally, in the prefix matching problem, we would like to maintain a
set of binary strings {s1, s2, . . .} of possibly different lengths, supporting

insert(s): add string s to the set;
query(y): decide of any string s in the set is a prefix of y.
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To this end, our filter first applies a global hash function h such that h : [u] → [uc2 ] is
(c1 log u)-wise independent according to Theorem 7, where c1 > 0 is a constant to be fixed
later, and c2 is a sufficiently large constant (which in fact, is the c0 in Theorem 9). To insert
a key x in stage i, we calculate its hash value h(x), and then insert the `i-bit prefix of h(x),
for some parameter `i. To answer a membership query y, we simply calculate h(y) and
search if any prefix of h(y) is in the database. If no prefix of h(y) is in the database, we
output NO; otherwise, we output YES. It is easy to see that this strategy will never output
any false negatives. On the other hand, by union bound, if the query y is not in the set, the
probability that the query algorithm outputs YES is at most

logu∑
i=1

2i · 2−`i ,

since h is (c1 log u)-wise independent (in particular, it is pairwise independent), then the
probability that the `i-bit prefix of h(y) matches with the prefix of the hash value h(x) of
key x is 2−`i . Hence, by setting

`i , i+ log(1/ε) + log i+ log log log u+ 2, (2)

the false positive rate is at most

logu∑
i=1

2i · 2−i−log(1/ε)−log i−log log logu−2 = ε ·
logu∑
i=1

1
4i log log u < ε.

We use Dc1 logu to denote the distribution of the random insertion sequence y1, y2, . . . , yn
for prefix matching constructed above. Formally, Dc1 logu is the distribution of a se-
quence of random strings y1, y2, . . . , yn obtained from (c1 log u)-wise independent sequence
z1, z2, . . . , zn ∈ [uc2 ] by truncating: ∀1 ≤ j ≤ n, yj = (zj)≤`i

, where i = dlog je.

I Lemma 11 (Prefix matching). Let δ = u−C , where C > 1 is an arbitrary constant. There
exist a constant c1 and a deterministic data structure for prefix matching such that
1. for any n = ω(log u) and n < u, the data structure uses n(`dlogne− logn+O(log log log u))

bits of space after n insertions, and extra uc precomputed bits, where 0 < c < 1 is an
arbitrary small constant;

2. each insertion and query takes O(1) time in the worst case;
3. after each insertion, a failure may be reported by the data structure, and for a random

sequence of insertions drawn from Dc1 logu, the probability that a failure is ever reported
is at most δ, where the probability is taken over Dc1 logu;

4. every query is answered correctly if no “fail” is reported.

We present the construction in Section 4. Using this prefix matching data structure, the
space usage of the filter is

n(`dlogne − logn+O(log log log u)) = n(log(1/ε) + log logn+O(log log log u)) bits,
and uc bits for storing h by Theorem 7 and for the precomputed lookup tables described
in the appendix of the full version of this paper, both independent of the operation
sequence.

Each insertion and query can be handled in constant time given the data structure does not
fail. This proves Theorem 10.
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3.2 The Succinct Dynamic Dictionaries
The data structure for prefix matching also works well as a dictionary data structure for the
insertions with keys are sampled uniformly at random. A worst-case instance can be converted
into a random instance by a random permutation π : [u] → [u]. Assuming an idealized
(c1 log u)-wise independent random permutation whose representation and evaluation are
efficient, the data structure for prefix matching in Lemma 11 can be immediately turned to
a dictionary. However, the construction of k-wise independent random permutation with low
space and time costs is a longstanding open problem [18].

We show that our data structure can solve the dictionary problem in the worst case
unconditionally, at the expense of extra uc bits of space for storing random bits which are
independent of the input.

I Theorem 12 (Dynamic dictionary – formal). Let [u] × {0, 1}v be the data universe, and
δ = u−C , where C > 1 is an arbitrary constant. Assume the word size w = Θ(v + log u).
There exists a data structure for dictionary for sets of unknown sizes of key-value pairs from
[u]× {0, 1}v, such that
1. for any n = ω(log u) and n < u, the data structure uses n(log(u/n) + v+O(log log log u))

bits of space after insertions of any n key-value pairs, and extra uc precomputed bits that
are independent of the input, where 0 < c < 1 is an arbitrary small constant;

2. each insertion and query takes O(1) time in the worst case;
3. after each insertion, a failure may be reported by the data structure with some probability,

and for any sequence of insertions, the probability that a failure is ever reported is at
most δ, where the probability is taken over the precomputed random bits;

4. conditioned on no failure, each query is answered correctly.

The details of the data structure are postponed to Secion 6.

4 Prefix Matching Upper Bound

In this section, we prove Lemma 11.
Recall the distribution Dc1 logu of random insertion sequence y1, y2, . . . , yn assumed in

Lemma 11. Given an insertion sequence ȳ = (y1, y2, . . . , yn) ∼ Dc1 logu, we define the core
set B(ȳ) , {x ∈ ȳ : ∀x′ ∈ ȳ, x = x′ ∨ x′ 6w x}, and its subset B(a,b] , {x ∈ B : |x| ∈ (a, b]}
for any a < b. Let D(a,b]

c1 logu denote the distribution of B(a,b]. We say that a random sequence
Y of strings is drawn from D(a,b]

c1 logu if it can be obtained by permuting the random core set
B(a,b].

We show that Lemma 11 is true as long as there exist a family of deterministic data
structures for prefix matching with known capacity m. An instance of the data structure
D = D(m, `) is parameterized by capacity m < u, and string length upper bound ` ≥ logm.
The data structure uses uc bits extra space whose contents are precomputed lookup tables,
and supports following functionalities with good guarantees:

initialize(D) and destroy(D): subroutines for initializing and destroying D respectively.
The data structure is successfully initialized (or destroyed) after invoking initialize(D)
(destroy(D)) consecutively for O(m) times. When successfully initialized, D uses space
O(m) bits. The initialize(D)’s are invoked before all other subroutines and destroy(D)’s
are invoked after all other subroutines.
insert(D,x): insert string x to D, where logm < |x| ≤ `. After n insertions, D uses at
most n(`− logm+ 2 log log log u) + O(m) bits. Each insertion may cause D to fail. A
failure ever occurs for a random insertion sequence Y with probability at most u−2C , as
long as Y is drawn from D(logm,`]

c1 logu , where c1 is suitably determined by constant C.
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query(D,x): return one bit to indicate whether there exists a prefix of x in D. The
correct answer is always returned as long as D has not failed.
decrement(D): try to delete an arbitrary string y in D and return the y if y is deleted.
An invoking may delete nothing and hence nothing is returned, but it guarantees that the
total number of such empty invoking is at most m. Each invoking that successfully deletes
a string frees space `− logm bits. The decrement(D)’s are invoked after all insertions.

B Claim 13. Given the deterministic data structures supporting above functionalities in
constant time in the worst case, Lemma 11 is true.

Proof. We use an auxiliary structure called truth table to deal with short strings. A truth
table Ti is a bitmap (i.e. array of bits) of length 2i and supports the required functionalities
in the worst cases:

Ti is initialized to the all-0 string 02i , where each invoking of initialize(Ti) extends Ti by
one 0 until Ti is of length 2i, and each invoking of destroy(Ti) shrinks Ti by one bit until
Ti is fully destroyed;
to insert x where |x| = i, we set Ti[x+ 1]← 1;7

to query x where |x| = i, we return YES if Ti[x+ 1] = 1 and return NO if otherwise;
to decrement Ti, we maintain a j that traverses from 1 to 2i, and at each time set
Ti[j]← 0, return j − 1 if Ti[j] = 1, and increment j by 1.

Initially, the prefix matching data structure required by Lemma 11 consists of T0, T1
and D0 = D(1, `0), D1 = D(2, `1) respectively with capacities 1, 2, and string lengths `0, `1,
where `i is defined in Eq(2).

To insert x, which is the n-th insertion, we set i← dlogne, invoke insert(Di, x) if there is
no prefix of x has been inserted. Then we execute the following procedure for 10 times to
maintain our data structure:
1. If Ti−1 is non-empty, we decrement it by invoking decrement(Ti−1). If a y is returned, we

insert it into Ti by invoking insert(Ti, y ◦ 0) and insert(Ti, y ◦ 1).
2. If Di−1 is non-empty, we invoke decrement(Di−1). If a y is returned, we insert it into

Di by invoking insert(Di, y) when |y| > i and insert y into Ti by invoking insert(Ti, y)
otherwise.

3. If Ti−1 (orDi−1) is empty but not destroyed yet, we invoke destroy(Ti−1) (or destroy(Di−1)).
4. If Ti−1 (or Di−1) has been destroyed, we invoke initialize(Ti+1) (or initialize(Di+1) for

Di+1 = D(2i+1, `i+1) with capacity 2i+1 and string length upper bound `i+1), where `i
is defined in Eq(2).

A failure is reported whenever a failure is reported during insertion to Di.
Clearly, for any integer n ∈ [2i, 2i+1), after n insertions, all inserted strings are stored in

either Di−1, Ti−1 or Di, Ti. By the time n reaches 2i+1, Di+1, Ti+1 have been initialized, all
inserted strings are stored in Di, Ti, and Di−1, Ti−1 have been destroyed.

Consider the insertion sequence for a fixed Di. Observe that the strings inserted into Di

must be in the core set B(i,`i](ȳ). Therefore the insertion sequence is drawn from D(i,`i]
c1 logu,

which means that insertions to each Di ever failed with probability at most δ. By union
bound, a failure is ever reported with probability at most

∑logu
i=1 u−2C ≤ u−C = δ.

Overall, the data structure uses at most n(`dlogne− logn+O(log log log u)) ≤ n(log(1/ε)+
log logn+O(log log log u)) bits after n insertions, besides the uc precomputed bits.

7 For A, a list or array of items, we let A[i] denote the i-th item of A.
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Suppose n strings has been inserted, let i← dlogne. To query x, we invoke query(Di−1, x),
query(Di, x), query(Ti−1, x≤i−1), query(Ti, x≤i) simultaneously, and return YES if any one of
the invokings returns YES.

Obviously each insertion and query takes constant time in the worst case, and it is easy
to check that every query is correctly answered as long as no failure is reported. C

5 Succinct Prefix Matching with Known Capacity

We now describe the data structures required by Claim 13. The pseudocodes are given in
the appendix of the full version of this paper.

The data structure consists of a main table and m/ log u subtables.
We partition each binary string x into four consecutive parts: st(x), hd(x), hs(x), rt(x)

of lengths log(m/ log u), log(log u/ log log u), log log log u, |x| − logm respectively. Roughly
speaking, a datapoint x will be distributed into a subtable according to st(x), then be put
into a data block of size log u/ log log u according to the order it is inserted, therefore we can
save |st(x)|+ |hd(x)| −O(1) bits for each datapoint by properly encoding.

Main Table. The main table consists of m/ log u entries, each of which contains a pointer
to a subtable. Each insertion/query x is distributed into an entry of the main table addressed
by st(x). Recall the word size w = Θ(log u). The main table uses mw/ log u = O(m) bits.

Recall that ȳ = (y1, y2, . . . , yn) ∼ Dc1 logu is transformed from a (c1 log u)-wise indepen-
dent sequence Z = (z1, z2, · · · , zn) by truncating. The insertion sequence Y is drawn from
D(logm,`]
c1 logu by permuting B(logm,`], the restriction of the core set B(ȳ) to the strings whose

lengths ranges within (logm, `].
Let Yi, Zi denote the subsequences of Y,Z which contain all the strings that have prefix i,

respectively. By definitions, |Yi| ≤ |Zi|. Recall that Z are (c1 log u)-wise independent. Due
to Theorem 8, the load of entry i exceeds c3 log u with probability

Pr [ |Yi| ≥ c3 log u ] ≤ Pr [ |Zi| ≥ c3 log u ] ≤ exp(−(c3 − 1)2 log u/2), (3)

as long as c1 ≥ d2(c3 − 1)2e. Therefore the max-load of entries of the main table is upper
bounded by c3 log u with probability at least 1− (m/ log u) exp(−(c3−1)2 log u/2). The data
structure reports failure if any entry of the main table overflows. In the rest of the proof, we
fairly assume |Yi| ≤ |Zi| ≤ c3 log u for all i.

Observe that a datapoint x can be identified with hd(x)◦hs(x)◦rt(x) if the entry i = st(x)
it is distributed into is fixed. Therefore we let Y ′i , Z ′i denote the subsequences generated from
Yi, Zi by discarding the left-most log(m/ log u) bits.

Subtable. Each subtable i consists of the following parts to be specified later:
a collection of fingerprints αlog logu(Y ′i ) and its indicator list Ii;
an (extendable) array of navigators Ni;
an (extendable) array of data blocks Ai;
two buffers, Bi,u, Bi,r;
constant many other local variables.

All the datapoints are stored in array Ai. Given a datapoint x, it is easy to see that the
addresses of the entries which contains the information of x is high correlated with the order
it is inserted, since any insertion takes constant time in the worst case. Hence we take the
fingerprints αlog logu(Y ′i ), indicators Ii, navigators Ni, and a tricky way to encode a data
block as clues to locate the entries which maintain x. Recall that new insertions is put into
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the latest data block using a dynamic construction, and we reorganize the full dynamic data
block into a static construction. We use buffer Bi,u to maintain the dynamic block, and use
buffer Bi,r to “de-amortize” the reorganization.

At first consider a static version of our data structure. In the static version, the buffers
and the indicator list are unnecessary. Let ni , |Yi|.

Fingerprints. The collection of fingerprints αlog logu(Y ′i ) is obtained by applying Theorem 9
on Y ′i with guarantee c1 ≥ c3. Note that Z ′i are mutually independent as long as c1 ≥ c3. Due
to Theorem 9, there exists a constant c′′ > 0 such that a fingerprint collection αlog logu(Z ′i)
for Z ′i can be represented in c′′ log u bits with probability 1− u−c5 .

We show that there exists a injective function P : [|Y ′i |] → [|Z ′i|] such that ∀j ∈
[|Y ′i |], Y ′i [j] w Z ′i[P (j)]. Due to the injective function P and the guarantee that Y is
prefix-free, the fingerprint collection of Y ′i can be represented with the same space and
probability guarantees as above.

We define P : [|Yi|]→ [|Zi|] by P (j) , min{k ∈ [|Zi|] : Yi[j] w Zi[k]}. By the definition,
for any y ∈ Yi, there is z ∈ Z such that y w z. Recall that all the strings in Yi has prefix
i. Hence for any y ∈ Yi, z ∈ Z such that y w z, it holds that i w z, i.e. z ∈ Zi. Thus for
any j ∈ [|Yi|], {k ∈ [n] : Yi[j] w Zi[k]} 6= ∅. Therefore P is well-defined. On the other hand,
for distinct j, l ∈ [|Yi|], {k ∈ [n] : Yi[j] w Zi[k]} and {k ∈ [n] : Yi[l] w Zi[k]} are disjoint,
since Yi is prefix-free and there is no such z that x, y prefix z simultaneously for distinct
x, y ∈ Yi. Therefore P is injective. Recall that Y ′i , Z ′i are generated by removing the prefix i
from the strings in Yi, Zi: ∀j, Yi[j] = i ◦ Y ′i [j], Zi[j] = i ◦ Z ′i[j]. Therefore P works for Y ′i , Z ′i
too, i.e. ∀j ∈ [|Y ′i |], Y ′i [j] w Z ′i[P (j)].

A failure is reported if any fingerprint collection can not be represented within c′′ log u
bits, which occurs with probability at most u−c5 .

The fingerprints are sorted lexicographically, so that by the j-th fingerprint we mean the
j-th in lexicographical order. For simplicity, we write αi , αlog logu(Y ′i ).

A failure is reported if there are more than c4 log u/ log log u datapoints share identical
hd(x) and hs(x), which occurs with probability at most(

c3 log u
c4 log u/ log log u

)
( 1
log u )c4 logu/ log logu < u−(c4−0.01). (4)

The fingerprints cost O(log u) bits per subtable if no failures.

Navigators. Ni is an array of pointers. For any datapoint, the rank of its fingerprint is
synchronized with the index of its navigator. In particular, for the k-th fingerprint in αi,
Ni[k] is the address of the data block which maintains the datapoint with the fingerprint.
A data block maintains up to log u/ log log u datapoints, thus there are at most c3 log log u
data blocks. The navigators cost at most ni log log log u+O(ni) bits of space.

Data Blocks. Ai is interpreted as an array of data blocks, with each data block holding up
to log u/ log log u datapoints.

Consider the following succinct binary representation (called pocket dictionary in [6]) of a
collection of datapoints F ∈

({0,1}`

m

)
: The representation consists of two parts header(F ) and

body(F ). Let header(x), body(x) denote the left-most logm bits and the right-most `− logm
bits of x. Let n′i , |{x ∈ F |header(x) = i}|, and F = (x1, · · · , xm) sorted lexicographically.
Then header(F ) , 0◦1n′0◦0◦1n′1◦0 · · · 1n

′
m−1 and body(F ) , body(x1)◦body(x2) · · ·◦body(xm).

It is easy to see that this representation uses 2m+m(`− logm) bits of space.
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Our static data block is a variant of this representation. Let (x1, · · · , xlogu/ log logu) be
the sorted list of datapoints maintained by data block j. Data block j consists of a list
of headers (hd(x1), · · · , hd(xlogu/ log logu)), a list of identities (hs(x1), · · · , hs(xlogu/ log logu))
and an array of the rest part of datapoints (rt(x1), · · · , rt(xlogu/ log logu)). The header
list are represented in the same way as in the pocket dictionary, the identity list is the
concatenation hs(x1)◦hs(x2) · · ·◦hs(xx/ log logu), and the rest part array is the concatenation
PFC(rt(x1)) ◦ PFC(rt(x2)) · · · ◦ PFC(rt(xx/ log logu)), where PFC(·) is the prefix-free code in
Claim 3.

Recall that |hd(x)| = log(log u/ log log u), |hs(x)| = log log log u. Therefore the data
blocks for the subtable cost at most O(ni) + ni(`− logm+ log log log u) bits of space.

Query in a Static Data Block. Recall that the fingerprints are sorted in lexicographical
order, and the indices of the navigators are synchronized with the ranks of corresponding
fingerprints. Also note that a navigator costs log log log u + O(1) bits, there are at most
c4 log u/ log log u datapoints share hd(x) ◦ hs(x) with any query x. By putting everything
together, we can retrieve all the navigators of the datapoints which have the same hd(x)◦hs(x)
with query x, and learn a k′ such that the unique suspected datapoint is the k′-th datapoint
among the datapoints which share the hd(x) ◦ hs(x) in its data block. On the other hand,
we can retrieve the header list and identity list with constant number of memory accesses.
Consequently, we can retrieve the rest part of the suspected datapoint efficiently. See the
pseudocode in the appendix of the full version of this paper for more details.

The space usage is upper bounded by m+ (m/ log u) ·O(log u) + n log log log u+O(n) +
n(`− logm+ log log log u) ≤ n(`− logm+ 2 log log log u) +O(m) bits. And the query time
is clearly constant.

Insertion. The new insertions will be put into a data block under construction temporarily,
and the data block will be reorganized to the static version as long as the data block is
full (which means, there are log u/ log log u datapoints stored in it). A data block under
construction consists of two incomplete lists for headers and identities, and an (extendable)
array of the rest parts of datapoints. Note that the space usages of incomplete lists are
identical with the ones of the complete lists, it wastes at most O(log u) bits per dynamic
data block.

Reorganizing a data block (i.e. sorting a data block) can be expensive, therefore we
finish this work during the procedure that a new data block under construction is being
filled. Hence there are two dynamic data blocks, one under construction and one under
reorganization, besides the static ones.

Note that the collection of fingerprints αi can be updated dynamically with small costs.
To retrieve the datapoint y with fingerprint α(y), the only things we need are the address of
the data block which maintains y and the in-block index of y. (recall that hd(y) and hs(y)
are known due to the fingerprint collection.) It is easy to learn the address as long as we
know that y is in a dynamic data block, since there are at most two dynamic blocks. We use
the buffers to record the in-block index, and use the indicators to inform whether y is in a
dynamic data block.

The list of indicators is a string from {1, 2, 3}ni . The value of i-th indicator implies
which kind of data block the datapoint corresponding to i-th fingerprint is stored in. For a
static data block, the query algorithm works in previous way. For a dynamic data block, the
address of the data block can be easily learnt with the counter ni.

ICALP 2020



79:16 Succinct Filters for Sets of Unknown Sizes

The two buffers are arrays of pointers from [log u/ log log u]logu/ log logu, so they fit in
constant number of memory cells. In particular, for a indicator Ii[j] which is the k-th
indicator has value 2 (or 3), Bi,u[k] (or Bi,r[k]) is the in-block index of the rest part which
corresponds to j-th fingerprint.

The new insertion is not a prefix of some preceded insertion due to our guarantees.
Therefore, to insert x, we simply append hs(x), rt(x) to the identity list and rest part array,
update the header list, fingerprint collection, and indicator list, and insert a proper pointer
into Bi,u, which overall takes constant time. And to query x in a dynamic data block, where
x corresponds to a datapoint y stored in the data block, we need to retrieve the address of
the data block with counter ni and the in-block index of y with the buffers, then retrieve
rt(y). See the pseudocodes in the appendix of the full version of this paper for more details.

Reorganizing a Data Block. The reorganization procedure starts as long as the data block
under construction is full. Informally, the reorganization procedure works as follows:
1. Update the list of indicators and copy Bi,r ← Bi,u. (We guarantee that the preceded

reorganization process has been finished before the buffer Bi,u is full)
2. Insert the address of the data block in proper positions of the navigator list.
3. Sort the array of rest parts and the list of identities according to the pointers in the

buffer Bi,r while keep the buffer updated. Note that the sorting can be done within time
cost O(log u/ log log u): we enumerate j ∈ [log u/ log log u], find j′ such that Bi,r[j′] = j,
swap hsj , rtj , Bi,r[j] with hsBi,r[j], rtBi,r[j], Bi,r[j′] one by one, where hsj , rtj is the j-th
item of the corresponding list and array.

4. Update indicator list.
The total time cost is O(log u/ log log u), which can be simulated by log u/ log log u operations,
each costing O(1) time, within a data block. See the appendix of the full version of this
paper for more details.

The two dynamic data blocks waste at most O(log u) bits on the two incomplete lists for
headers and identities, therefore we uses at most extra O(m) bits of space.

Setting the Constant Parameters. Our data structure may fail at the load balancing on
subtables, constructing the fingerprint collections for subtables, and the load balancing on
headers of fingerprint collections. By the union bound, the failure probability is at most

m

log u
(

exp(−(c3 − 1)2 log u/2) + u−c5
)

+m2−(c4−0.01) logu, (5)

when c1 ≥ max{d2(c3 − 1)2e, c3}. Since m < u ,the failure probability can be as small as
δ = u−2C if we set the constants c1, c3, c4, c5 to be sufficiently large.

The initialize, decrement, and destroy subroutines are easy to implement, which are
postponed to the appendix of the full version of this paper

6 Unconditional Succinct Dictionary

We show that our data structure can solve the dictionary in the worst case unconditionally.
In our data structure for prefix matching, the randomness is used only for:
1. load balancing on the subtables;
2. the representation of the adaptive prefixes;
3. load balancing on the hd(x) ◦ hs(x)’s.
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Note that we should decode st(x) from subtable index i, decode hd(x) ◦ hs(x) from bucket
index in adaptive prefixes, and decode hd(x) from bucket index in data block. To achieve
the identical guarantees with prefix matching, we apply a weaker but strong enough random
permutation.

I Definition 14 (Feistel permutation). Given any x ∈ [u], let xL, xR respectively denote
the logm left-most bits and the log(u/m) right-most bits of the binary representation of x,
so that x = xL ◦ xR. Given any f : {0, 1}log(u/m) → {0, 1}logm, the Feistel permutation
πf : [u]→ [u] is defined as

πf (x) = (xL ⊕ f(xR)) ◦ xR.

It is easy to verify that πf is indeed a permutation. In fact, πf (πf (x)) = x for any x and f .
Our dictionary data structure works with three (c1 log u)-wise independent hash functions

f : [u logu
m ]→ [m/ log u], g : [u/m]→ [log u], and h : [u/m]→ [uc2 ]. Given a key x ∈ [u], we

let st′(x) = πf (x), hd′(x) ◦ hs′(x) = πg(hd(x) ◦ hs(x) ◦ rt(x)) and hss(x) = h(rt(x)). Then
we distribute x into subtable st′(x), insert/query hd′(x) ◦ hs′(x) ◦ hss(x) to the fingerprint
collection, and encode hd′(x) ◦ hs′(x) ◦ rt(x), instead of hd(x) ◦ hs(x) ◦ rt(x), in its data
block.

Consider two datapoints x, x′. If hd(x) ◦ hs(x) ◦ rt(x) 6= hd(x′) ◦ hs(x′) ◦ rt(x′), then
st′(x) and st′(x′) are independent; otherwise st′(x) 6= st′(x′). Therefore for any i, c,

Pr [ |{x ∈ Y : st′(x) = i}| ≥ c ] ≤ Pr [ |{x ∈ Y ′ : st(x) = i}| ≥ c ] , (6)

where Y are the insertion sequence, Y ′ are (c1 log u)-wise independent random insertion
sequence. Hence the load balancing is not worse than the one in the prefix matching case.

Due to Theorem 9 and Eq(6), the fingerprint collection works with the same guarantees.
Clearly hd(x) ◦ hs(x) = (hd′(x) ◦ hs′(x))⊕ g(rt(x)), st(x) = st′(x)⊕ f(hd(x) ◦ hs(x) ◦ rt(x)),
thus the keys can be retrieved precisely. For the values, we store rt(x) and its value together
as a tuple in the data block.

7 Upper Bounds in Allocate-Free Model

We mimic the extendable arrays in the allocate-free model. For simplicity, we modify the
navigator list from extendable array to an array of length c3 log u.

Suppose we are dealing with Di. The main table can be implemented easily since it
has fixed length. Let s = c3(log u)(log(1/ε) + log i + O(log log log u)) be the space usage
upper bound of any single subtable. For a subtable i, we maintain a pointers array of length
d
√
s/we to mimic the extendable array. Every pointer in the array points to a memory block

of d
√
swe bits. Therefore we waste at most

(2i/ log u) ·O(w ·
√
s/w +

√
sw) = O(2i

√
log(1/ε) + log i+ log log log u)

bits of space. In conclusion, after n insertions our data structure for filters uses at most

n(log(1/ε) + log logn+O(log log log u)) +O(n
√

log(1/ε) + log logn+ log log log u)

bits of space in the allocate-free model.
Similarly, our data structure for dictionaries uses at most

n(log(u/n) + v +O(log log log u)) +O(n
√

log(u/n) + v + log log log u)

bits of space after n insertions in the allocate-free model.
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dictionariis dynamicis pauco spatio utentibus. In Latin American Symposium on Theoretical
Informatics, pages 349–361. Springer, 2006.

12 Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans
Rohnert, and Robert Endre Tarjan. Dynamic perfect hashing: Upper and lower bounds. In
29th Annual Symposium on Foundations of Computer Science, pages 524–531. IEEE, 1988.

13 Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class of hash
functions and dynamic hashing in real time. In International Colloquium on Automata,
Languages, and Programming, pages 6–19. Springer, 1990.

14 O. Erdogan and Pei Cao. Hash-av: fast virus signature scanning by cache-resident filters. In
GLOBECOM ’05. IEEE Global Telecommunications Conference, 2005., volume 3, pages 6
pp.–, November 2005. doi:10.1109/GLOCOM.2005.1577953.

15 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with 0(1)
worst case access time. J. ACM, 31(3):538–544, 1984.

16 Deke Guo, Jie Wu, Honghui Chen, and Xueshan Luo. Theory and network applications of
dynamic bloom filters. In Proceedings IEEE INFOCOM, pages 1–12. IEEE, 2006.

17 Mai Jiang, Chunsheng Zhao, Zaifeng Mo, and Jing Wen. An improved algorithm based on
bloom filter and its application in bar code recognition and processing. EURASIP Journal on
Image and Video Processing, 2018(1):139, December 2018. doi:10.1186/s13640-018-0375-6.

18 Eyal Kaplan, Moni Naor, and Omer Reingold. Derandomized constructions of k-wise (almost)
independent permutations. Algorithmica, 55(1):113–133, 2009.

19 Adam Kirsch and Michael Mitzenmacher. Using a queue to de-amortize cuckoo hashing in
hardware. In Proceedings of the Forty-Fifth Annual Allerton Conference on Communication,
Control, and Computing, volume 75, 2007.

http://arxiv.org/abs/1711.01616
http://arxiv.org/abs/1911.05060
https://doi.org/10.1109/GLOCOM.2005.1577953
https://doi.org/10.1186/s13640-018-0375-6


M. Liu, Y. Yin, and H. Yu 79:19

20 Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Annual International Cryptology Conference, pages 104–113. Springer, 1996.

21 Richard J Lipton and Jeffrey F Naughton. Clocked adversaries for hashing. Algorithmica,
9(3):239–252, 1993.

22 Yi Liu, Xiongzi Ge, David Hung-Chang Du, and Xiaoxia Huang. Par-bf: A parallel partitioned
bloom filter for dynamic data sets. The International Journal of High Performance Computing
Applications, 30(3):259–275, 2016. doi:10.1177/1094342015618452.

23 Shachar Lovett and Ely Porat. A lower bound for dynamic approximate membership data
structures. In IEEE 51st Annual Symposium on Foundations of Computer Science, pages
797–804, 2010.

24 Bruce M. Maggs and Ramesh K. Sitaraman. Algorithmic nuggets in content delivery. SIG-
COMM Comput. Commun. Rev., 45(3):52–66, July 2015. doi:10.1145/2805789.2805800.

25 Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. ACM Transactions
on Algorithms (TALG), 15(3):1–30, 2019.

26 Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: the
case of aes. In Cryptographers’ track at the RSA conference, pages 1–20. Springer, 2006.

27 Anna Pagh, Rasmus Pagh, and S Srinivasa Rao. An optimal bloom filter replacement. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages
823–829, 2005.

28 Rasmus Pagh, Gil Segev, and Udi Wieder. How to approximate a set without knowing its
size in advance. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
pages 80–89. IEEE, 2013.

29 Rajeev Raman and Satti Srinivasa Rao. Succinct dynamic dictionaries and trees. In Inter-
national Colloquium on Automata, Languages, and Programming, pages 357–368. Springer,
2003.

30 Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–hoeffding bounds for
applications with limited independence. SIAM Journal on Discrete Mathematics, 8(2):223–250,
1995.

31 Mikkel Thorup. Simple tabulation, fast expanders, double tabulation, and high independence.
In 54th Annual Symposium on Foundations of Computer Science, pages 90–99. IEEE, 2013.

ICALP 2020

https://doi.org/10.1177/1094342015618452
https://doi.org/10.1145/2805789.2805800




A (2 + ε)-Factor Approximation Algorithm for
Split Vertex Deletion
Daniel Lokshtanov
University of California, Santa Barbara, CA, USA
daniello@ucsb.edu

Pranabendu Misra
Max Planck Institut für Informatik, Saarland Informatics Campus, Saarbrücken, Germany
pmisra@mpi-inf.mpg.de

Fahad Panolan
IIT Hyderabad, India
fahad@iith.ac.in

Geevarghese Philip
Chennai Mathematical Institute, UMI ReLaX, Chennai, India
gphilip@cmi.ac.in

Saket Saurabh
Institute of Mathematical Sciences, Chennai, India
University of Bergen, Norway
saket@imsc.res.in

Abstract

In the Split Vertex Deletion (SVD) problem, the input is an n-vertex undirected graph G and
a weight function w : V (G)→ N, and the objective is to find a minimum weight subset S of vertices
such that G − S is a split graph (i.e., there is bipartition of V (G − S) = C ] I such that C is a
clique and I is an independent set in G− S). This problem is a special case of 5-Hitting Set and
consequently, there is a simple factor 5-approximation algorithm for this. On the negative side, it is
easy to show that the problem does not admit a polynomial time (2− δ)-approximation algorithm,
for any fixed δ > 0, unless the Unique Games Conjecture fails.

We start by giving a simple quasipolynomial time (nO(log n)) factor 2-approximation algorithm
for SVD using the notion of clique-independent set separating collection. Thus, on the one hand SVD
admits a factor 2-approximation in quasipolynomial time, and on the other hand this approximation
factor cannot be improved assuming UGC. It naturally leads to the following question: Can SVD
be 2-approximated in polynomial time? In this work we almost close this gap and prove that for
any ε > 0, there is a nO(log 1

ε
)-time 2(1 + ε)-approximation algorithm.
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1 Introduction

The Hitting Set problem encompasses a large number of well studied problems in Computer
Science. Here, the input is a family F of sets over an n-element universe U and a weight
function w : U → N, and the objective is to compute a hitting set of minimum weight. A
hitting set is a subset S ⊆ U such that for any F ∈ F , F ∩ S 6= ∅ and the weight of S is
w(S) =

∑
u∈S w(u). This problem generalizes a number of other well studied problems in

computer science, and consequently it is very hard to approximate: it can not be approximated
within a factor 2log1−δc(n) n in polynomial time, for any constant c < 1/2, unless SAT can
be decided in slightly subexponential time, where δc(n) = 1/(log logn)c [11]. A restricted
version of this problem, is the d-Hitting Set problem, where d ∈ N and the cardinality
of every set in F is at most d. This problem also generalizes a number of well studied
problems, and it admits a simple factor d-approximation algorithm: Solve the natural LP
relaxation and select all elements whose corresponding variable in the LP is set to at least
1/d. Unfortunately, this simple algorithm is likely to be the best possible. That is, assuming
Unique Game Conjecture (UGC), there is no c-factor approximation algorithm for d-Hitting
Set, for any c < d in the general case [7].

A number of vertex deletion problems on graphs can be considered as special cases
of d-Hitting Set, and it is of great interest to devise factor-α approximation algorithm
for them where α < d, or rule out any such algorithm. For example, in the Vertex
Cover problem, the input is a graph G and a weight function w : V (G) → N, and the
objective is to find a subset of vertices of minimum weight that hits all edges in G. This is
same as 2-Hitting Set, and assuming the Unique Games Conjecture we cannot do better
than a factor-2 approximation in polynomial time. However, there are other examples of
vertex deletion problems on graphs, that are special cases of d-Hitting Set, for which
we can indeed do better than a factor-d approximation. Consider the Cluster Vertex
Deletion problem, where the input is a graph G and a weight function w : V (G) → N,
and the objective is to find a minimum weight subset S of vertices such that S is a cluster
graph. Equivalently, S hits all induced paths of length 3 in G. Hence, it is a special case
of 3-Hitting Set and admits a simple 3-approximation algorithm. You et al. [13] showed
that the unweighted version of Cluster Vertex Deletion admits a 5/2 approximation
algorithm. Recently, this was improved to factor 9/4 by Fiorini et al. [5]. The problem
also admits an approximation-preserving reduction from Vertex Cover and hence there
is a lower bound of 2 on the approximation-factor assuming UGC [5]. Fiorini et al. [5]
have conjectured that Cluster Vertex Deletion admits a 2-approximation algorithm.
Another example is the Tournament Feedback Vertex Set (TFVS) problem, which is
equivalent to hitting all directed triangles in a digraph. It is very well studied in the realm
of approximation algorithms [3, 1, 10, 9], and very recently a 2-approximation algorithm was
designed by Lokshtanov et al. [9], matching the lower-bound under UGC [12]. Similarly, a
number of such “implicit” d-Hitting Set problems are studied in Computer Science, and it
is of great interest to settle their approximation complexity.

In this work we study another implicit d-Hitting Set problem called Split Vertex
Deletion(SVD) (defined below). A subset S of vertices in a graph G is a split vertex
deletion set if G− S is a split graph (i.e., there is bipartition of V (G− S) = C ] I such that
C is a clique and I is an independent set in G− S).

Split Vertex Deletion (SVD)
Input: An undirected graph G and a weight function w : V (G)→ N.
Output: A split vertex deletion set S ⊆ V (G) of G of the smallest weight (an optimum
split vertex deletion set of G).
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A graph G is a split graph if and only if it does not contain C4, C5 and 2K2 as induced
subgraphs in G [6]. This implies that SVD is special case of 5-Hitting Set and hence
it admits a simple 5-approximation algorithm. Furthermore, it is interesting to note that
we can obtain a 2-approximation algorithm for SVD in time nO(logn) using the notion of
clique-independent set separating collection [4]. For a graph G, a clique-independent set
separating collection is a family C of vertex subsets of V (G) such that for a clique C and
an independent set I in G such that C ∩ I = ∅, there is subset X in the collection C such
that C ⊆ X and I ⊆ V (G) \X. Thus, if there is a “small” clique-independent set separating
collection, then we can enumerate such a collection C and solve Vertex Cover of G[X]
and G − X for each X ∈ C. Notice that for any X ∈ C, the union of the two solutions
of the two Vertex Cover instances on G[X] and G − X, respectively, is a solution to
SVD. Moreover, the best c-approximation solutions over all choices of X, is a c-approximate
solution of SVD. It is known that for any n-vertex graph, there is clique-independent set
separating collection of size nO(logn) and this can be enumerated in time linear in the size of
the collection [4]. This along with a 2-approximation algorithm of Vertex Cover leads to
an nO(logn)-time 2-approximation algorithm for SVD. There is also a simple approximation
preserving reduction from Vertex Cover to SVD, which shows that we cannot improve
upon factor 2-approximation algorithm, unless UGC fails. The reduction is as follows: Given
an instance (G,w) of Vertex Cover, we add a large complete graph H of size 2|V (G)|
into G with weight of each vertex in H to be max{w(u) : u ∈ V (G)}. One can easily verify
that this is an approximation preserving reduction.

Thus, on the one hand SVD admits a 2-approximation in quasipolynomial (nO(logn))
time, and on the other hand this approximation factor cannot be improved assuming UGC.
It naturally leads to the following question: Can SVD be 2-approximated in polynomial
time? This is precisely the question we address in this paper, and obtain the following result.

I Theorem 1. Let G be a graph on n vertices, w a weight function on V (G) and let ε > 0
be a constant. Then there exists a randomized algorithm that runs in time O(ng(ε)) and
outputs S ⊆ V (G) such that G − S is a split graph and w(S) ≤ 2(1 + ε)w(OPT ) with
probability at least 1/2. Here OPT is a minimum weight split vertex deletion set of G, and
g(ε) = 6 + 8 log(80(1 + 12

ε )) · log( 30
ε )/ log(4/3).

Overview of Theorem 1. At a very high level the algorithm described in Theorem 1 is
inspired from the algorithm developed for factor 2-approximation algorithm for TFVS [9].
In TFVS knowing just one vertex is sufficient to completely split the instance into two
independent sub-instances and thus leading to a natural divide and conquer scheme. However,
in our case (SVD) the instances don’t become truly independent before every vertex is
classified as either potential clique or potential independent set vertex. Classifying all the
vertices requires several new ideas and insights in the problem. This classification could
be vaguely viewed as a polynomial time algorithm that quickly navigates through sets in
clique-independent set separating collection C, and almost reaches a correct partition.

Our algorithm in fact finds a (2 + ε)-factor approximate solution for a more general
annotated variant of the problem, where the solution must obey certain additional constraints.

Annotated Split Vertex Deletion (A-SVD)
Input: An undirected graph G, a weight function w : V (G) → N, and a partition of
V (G) into three parts V (G) = C ] I ]U , where at most two of these parts may be empty.
Output: A set S? ⊆ V (G) of G of the smallest weight such that G− S? is a split graph
with a split partition (C?, I?) where C? ⊆ (C ∪ U) and I? ⊆ (I ∪ U) hold.

ICALP 2020
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A feasible solution to an instance (G,w, (C, I, U)) of Annotated Split Vertex Dele-
tion is a split vertex deletion set S of G such that the split graph G−S has a split partition
(C ′, I ′) where no vertex in the specified set I goes to the split part C ′ and no vertex in the
specified set C goes to the independent part I ′. Thus, each vertex in the set I is either
deleted as part of S or ends up in the independent set I ′ in graph G− S, and each vertex in
C is either deleted or ends up in the clique C ′ in G− S. There are no restrictions on where
the vertices in the “unconstrained” set U may go. We call a feasible solution of A-SVD an
annotated split vertex deletion set of the instance (G,w, (C, I, U)); the A-SVD problem asks
for an optimum annotated split vertex deletion set of the input instance.

First we show that we can, in polynomial time, find 2-factor approximate solutions to A-
SVD instances which are of the form (G,w, (C, I, U = ∅)) ( Lemma 12). Let (G,w, (C, I, U))
be an instance of A-SVD, let OPT be an (unknown) optimum solution to (G,w, (C, I, U)),
let (C? ⊆ (C ∪ U), I? ⊆ (I ∪ U)) be a split partition of G − OPT , and let C?U = (C? ∩
U), I?U = (I? ∩ U). We show that if w(C?U \ {c?}) ≤

ε·w(OPT )
2 holds for some c? ∈ C?U or

w(I?U \{i?}) ≤
ε·w(OPT )

2 holds for some i? ∈ I?U then we can, in polynomial time, find a (2+ε)-
factor approximate solution to (G,w, (C, I, U)) (Lemma 16, Lemma 18). These constitute
the base cases of our algorithm. It is not difficult to see that moving a vertex x ∈ C?U to the
set C and moving a vertex y ∈ I?U to the set I are approximation-preserving transformations.
At a high level, our algorithm starts with an arbitrary instance (G,w, (C, I, U)) of A-SVD,
correctly identifies – with a constant probability of success – a good fraction of vertices which
belong to the sets C?U or I?U , and moves these vertices to the sets C or I, respectively. It
then recurses on the resulting instance, till it reaches one of the base cases described above.

We now briefly and informally outline how our algorithm identifies vertices as belonging
to C?U or I?U . Consider the bipartite subgraph H of G induced by the pair (C?U , I?U ). Define
the weight of an edge to be the product of the weights of its two end-points, and suppose
the total weight of edges in H is at least half the maximum possible weight. Then each of a
constant fraction (by weight) of the vertices in I?U has a constant fraction (by weight) of C?U
in its neighborhood (Lemma 4). If we can identify one of these special vertices of I?U then we
can safely move all its neighbors in U to the set C while reducing the weight of C?U by a
constant fraction. The catch, of course, is that we have no idea what the set I?U is.

To get around this, we find an approximate solution X of the Split Vertex Deletion
instance defined by the induced subgraph G[U ]. Let (CX , IX) be a split partition of G−X.
We show that we can, in polynomial time and with constant probability, sample a vertex
from the set X ∪ (IX \ C?U ) (Lemma 26). We further show that the weight of X ∪ (IX \ C?U )
is at most a constant multiple of the weight of I?U (Lemma 22). So if I?U ⊆ (X ∪ (IX \ C?U ))
holds then we can, with good probability, sample a vertex from the set I?U . The hard part
is when this condition does not hold. We show using a series of lemmas (summarized in
Lemma 25) that we can, even in this case, sample a vertex from one of the two sets C?U , I?U
with constant probability. A symmetric analysis applies when the total weight of non-edges
across (C?U , I?U ) is at least half the maximum possible weight.

2 Preliminaries

We use ] to denote the disjoint union of sets. Moreover, when we write X ] Y we implicitly
assert that the sets X and Y are disjoint. We use V (G) (respectively, E(G)) to denote the
vertex set (respectively, the edge set) of graph G. For a subset S ⊆ V (G) of vertices of G we
use G[S] to denote the subgraph of G induced by S and G− S to denote the subgraph of
G obtained by deleting all vertices in S (and their incident edges) from G. A non-edge in
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a graph G is any 2-subset {x, y} ⊆ V (G) of vertices such that xy is not an edge in G. For
the sake of brevity we use the notation xy to denote a non-edge {x, y}. For a finite set U ,
weight function w : U → N, and subset X ⊆ U we use wX to denote the weight function w
restricted to the subset X, and w(X) to denote the sum

∑
x∈X w(x) of weights of all the

elements in X. For the sake of brevity we drop the subscript X from the expression wX
when there is no risk of ambiguity.

The operation of sampling (or picking) proportionately at random from U according to
the weight function w chooses one element from U , where each element x ∈ U is chosen
with probability w(x)/w(U). We use G to denote the complement of a graph G, defined as
follows: The vertex set of G is V (G). For every two vertices {u, v} ⊆ V (G) there is an edge
uv in G if and only if uv is not an edge in graph G. A vertex cover of graph G is any subset
S ⊆ V (G) of its vertex set such that the graph G− S has no edges. A clique in graph G is
any non-empty subset S ⊆ V (G) of its vertex set such that (i) |S| = 1, or (ii) if |S| ≥ 2 then
for every two vertices u, v in S, the edge uv is present in graph G.

I Observation 2. For an undirected graph G and any S ⊆ V (G), the vertex set V (G) \ S is
a clique in G if and only if S is a vertex cover of the complement graph G.

For a graph G and two disjoint vertex subsets X,Y ⊆ V (G) ; X ∩ Y = ∅ the bipartite
subgraph of G induced by the pair (X,Y ) has vertex set X ∪ Y and edge set {xy | x ∈ X, y ∈
Y, xy ∈ E(G)}. Note that the bipartite subgraph of G induced by the pair (X,Y ) is not
necessarily identical to the subgraph G[X ∪ Y ] induced by the subset X ∪ Y , and is defined
even if the induced subgraph G[X ∪ Y ] is not bipartite. For a bipartite graph H with vertex
bipartition V (H) = V1 ] V2 we define Ê(H) = {v1v2 | v1 ∈ V1, v2 ∈ V2, v1v2 /∈ E} to be
the set of all non-edges of H with one end in V1 and the other end in V2. Further, for a
weight function w : V (H)→ N defined on the vertex set of a bipartite graph H we define
the weight of its edge set to be w(E(H)) =

∑
v1v2∈E(H)(w(v1) · w(v2)) and the weight of its

set of non-edges to be w(Ê(H)) =
∑
v1v2∈Ê(H)(w(v1) · w(v2)).

I Definition 3. Let G be an undirected graph and w : V (G) → N a weight function. Let
X,Y be two disjoint vertex subsets of G and let H be the bipartite subgraph of G induced by
the pair (X,Y ). Let w(E(H)) and w(Ê(H)) be defined as above. We say that (X,Y ) is a
heavy pair if w(E(H)) ≥ w(X)·w(Y )

2 holds, and is a light pair if w(Ê(H)) ≥ w(X)·w(Y )
2 holds.

I Lemma 4 (♣). 1 Let H = (V,E) be a bipartite graph, let V = V1 ] V2 be a bipartition of
H, and let w : V (H) → N be a weight function. Then (V1, V2) is either a heavy pair or a
light pair. Moreover,
1. Suppose (V1, V2) is a heavy pair, and let X = {x ∈ V1 | w(N(x)) ≥ w(V2)

4 } be the set of
all vertices x in the set V1 such that the total weight of the neighborhood of x in the set
V2 is at least one-fourth the total weight of the set V2. Then w(X) > w(V1)

4 .
2. Suppose (V1, V2) is a light pair, and let Y = {y ∈ V1 | w(V2 \N(y)) ≥ w(V2)

4 } be the set
of all vertices y in the set V1 such that the total weight of the non-neighbors of y in the
set V2 is at least one-fourth the total weight of the set V2. Then w(Y ) > w(V1)

4 .

For a graph G given together with a weight function w : V (G)→ N, an optimum vertex
cover of G is any vertex cover of G with the least total weight.

1 Proofs of statements labeled with a ♣ will appear in the full version of the paper.
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Weighted Vertex Cover (wVC)
Input: An undirected graph G and a weight function w : V (G)→ N.
Output: An optimum vertex cover S ⊆ V (G) of G

I Theorem 5 ([2]). There is an algorithm which, given an instance (G,w) of Weighted
Vertex Cover as input, runs in O(|E(G)|) time and outputs a vertex cover S of G whose
weight is at most twice the weight of an optimum vertex cover of G.

3 The Algorithm

Let (G,w) be an instance of Split Vertex Deletion. Since deleting vertices conserves
the property of being a split graph one can safely add zero-weight vertices to any split vertex
deletion set. So we assume without loss of generality that w(v) ≥ 1 holds for every v ∈ V (G).
Split Vertex Deletion is NP-complete by the meta-result of Lewis and Yannakakis [8],
and has a simple 5-factor approximation algorithm based on the Local Ratio Technique.

I Theorem 6 (♣). There is a deterministic algorithm which, given an instance (G,w) of
SVD, runs in O(|V (G)|6) time and outputs a split vertex deletion set S ⊆ V (G) of G such
that w(S) ≤ 5 · w(OPT ) where OPT is an optimum split vertex deletion set of G.

We describe a randomized polynomial-time algorithm which outputs a (2 + ε)-factor
approximate solution for this problem for any fixed ε > 0.

Note that in an instance (G,w, (C, I, U)) of Annotated Split Vertex Deletion the
set C is not necessarily a clique, nor is I necessarily an independent set in G. But we have
the following.

I Observation 7. Let S be a feasible solution of an A-SVD instance (G,w, (C, I, U)) and
let (C ′, I ′) be a split partition of G − S where C ′ ⊆ (C ∪ U) and I ′ ⊆ (I ∪ U) hold. Then
C \ S ⊆ C ′ and I \ S ⊆ I ′ hold. Hence C \ S is a clique in G and I \ S is an independent
set in G.

From Observations 2 and 7 we get

I Corollary 8. Let S be a feasible solution of an A-SVD instance (G,w, (C, I, U)). Let V CC
be an optimum solution of the wVC instance (G[C], w) and let V CI be an optimum solution
of the wVC instance (G[I], w). Then w(V CC) ≤ w(S ∩ C) and w(V CI) ≤ w(S ∩ I) hold.

A-SVD is clearly a generalization of SVD: Given an instance (G,w) of SVD, construct
the instance (G,w, (C = ∅, I = ∅, U = V (G))) of A-SVD. Every split vertex deletion set
of graph G is a feasible solution of the A-SVD instance, and every annotated split vertex
deletion set of (G,w, (∅, ∅, V (G))) is a split vertex deletion set of graph G. It follows that
for any constant c, a c-factor approximate solution to the A-SVD instance is a c-factor
approximate solution to the SVD instance as well.

We can find feasible solutions to an A-SVD instance (G,w, (C, I, U)) by computing
vertex covers for certain pairs of subgraphs derived from G.

I Observation 9 (♣). Let (G,w, (C, I, U)) be an instance of A-SVD.
1. Let V1 be a vertex cover of the graph G[I ] U ] and let V2 be a vertex cover of the graph

G[C]. Then V1 ] V2 is a feasible solution to (G,w, (C, I, U)).
2. Let V3 be a vertex cover of the graph G[I] and let V4 be a vertex cover of the graph

G[C ] U ]. Then V3 ] V4 is a feasible solution to (G,w, (C, I, U)).
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Figure 1 Illustration of Definition 13.

I Observation 10 (♣). Let (G,w, (C, I, U)) be an instance of A-SVD and let u ∈ U .
1. Let V1 be a vertex cover of the graph G[I ] (U \ {u})] and let V2 be a vertex cover of the

graph G[C ∪ {u}]. Then V1 ] V2 is a feasible solution to (G,w, (C, I, U)).
2. Let V3 be a vertex cover of the graph G[I ∪ {u}] and let V4 be a vertex cover of the graph

G[C ] (U \ {u})]. Then V3 ] V4 is a feasible solution to (G,w, (C, I, U)).

Observation 9 has some interesting consequences. For instance, it implies that when the
“unconstrained” set U in an A-SVD instance is empty, an optimum solution to the A-SVD
instance corresponds to optimum solutions of two Weighted Vertex Cover instances
derived from the A-SVD instance in a natural fashion.

I Lemma 11 (♣). Let S? be an optimum solution to an A-SVD instance (G,w, (C, I, U = ∅)).
Then the set (S? ∩ I) is an optimum solution to the wVC instance (G[I], w), and the set
(S? ∩ C) is an optimum solution to the wVC instance (G[C], w).

This in turn implies that given an A-SVD instance in which the unconstrained set U is
empty, we can find a 2-factor approximate solution to the instance in polynomial time.

I Lemma 12 (♣). There is a deterministic algorithm that finds a 2-factor approximate
solution to an A-SVD instance that is of the form (G,w, (C, I, U = ∅)), in O(|E(G)|) time.

This idea generalizes as follows. Let OPT be an optimum solution to an A-SVD instance
(G,w, (C, I, U)). Suppose the split graph G−OPT has a split partition (C?, I?) such that
vertices from the unconstrained set U contribute a small weight to either the clique C? or
the independent set I?. Then a variant of the algorithm in the proof of Lemma 12 yields a
small-factor approximate solution to the instance, in polynomial time. We state this formally
in Lemma 16 below, for which we need some notation (see Figure 1).

I Definition 13. Let (G,w, (C, I, U)) be an instance of A-SVD, and let ε ≥ 0 be a constant.
Let OPT ⊆ V (G) be an optimum solution of (G,w, (C, I, U)) and let (C?, I?) be a split
partition of the split graph G? = (G − OPT ) such that C? ⊆ (C ∪ U) and I? ⊆ (I ∪ U)
hold. Let C?U = (C? ∩ U) be the set of vertices from the unconstrained set U which become
part of the clique C? and let I?U = (I? ∩ U) be the set of vertices from U which become
part of the independent set I? in G?. Let UOPT = (U ∩ OPT ), COPT = (C ∩ OPT ) and
IOPT = (I ∩OPT ).
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Further, let X be a 5-factor approximate solution of the Split Vertex Deletion
instance (G[U ], wU ) defined by the induced subgraph G[U ], and let (CX , IX) be a split
partition of the split graph G[U ]−X.

I Remark 14. Given an instance (G,w, (C, I, U)) of A-SVD we can, using Theorem 6,
compute such a set X and partition (CX , IX) in polynomial time.

I Observation 15 (♣). Let (G,w, (C, I, U)), X, IX , CX , I?U , C?U be as in Definition 13. Then
both |I?U \ (X ∪ (IX \ C?U ))| ≤ 1 and |C?U \ (X ∪ (CX \ I?U ))| ≤ 1 hold.

I Lemma 16 (♣). Let (G,w, (C, I, U)), ε, OPT,C?U , I?U be as in Definition 13. Let S1 be
a 2-factor approximate solution for the wVC instance (G[I ∪ U ], w) and S2 a 2-factor
approximate solution for the wVC instance (G[C], w). Let S12 = (S1 ∪ S2). Let S3 be
a 2-factor approximate solution for the wVC instance (G[C ∪ U ], w) and S4 a 2-factor
approximate solution for the wVC instance (G[I], w). Let S34 = (S3 ∪ S4). Then the sets
S12 and S34 can be computed in O(|E(G)|) time. Further,
1. If w(C?U ) ≤ ε·w(OPT )

2 holds then the set S12 is a (2 + ε)-factor approximate solution for
the Annotated Split Vertex Deletion instance (G,w, (C, I, U)).

2. If w(I?U ) ≤ ε·w(OPT )
2 holds then the set S34 is a (2 + ε)-factor approximate solution for

the Annotated Split Vertex Deletion instance (G,w, (C, I, U)).
I Remark 17. Note that these two cases are neither exclusive nor exhaustive.

By repeatedly applying the procedure in the proof of Lemma 16 and taking the minimum,
we can find a (2 + ε)-factor approximate solution in polynomial time even in the more general
case where there is at most one “heavy” vertex in C?U or I?U that

I Lemma 18 (♣). Let (G,w, (C, I, U)), ε, OPT,C?U , I?U be as in Definition 13. For each
vertex u ∈ U let Su1 be a 2-factor approximate solution for the wVC instance (G[I ∪
(U \ {u})], w), Su2 a 2-factor approximate solution for the wVC instance (G[C ∪ {u}], w),
and let Su12 = Su1 ∪ Su2 . Let Su3 be a 2-factor approximate solution for the wVC instance
(G[C ∪ (U \ {u})], w), Su4 a 2-factor approximate solution for the wVC instance (G[I ∪
{u}], w), and let Su34 = Su3 ∪ Su4 . Finally, let S† be a set of the form Su12 of the minimum
weight and let S‡ be a set of the form Su34 of the minimum weight, both minima taken over
all vertices u ∈ U .

The sets S† and S‡ can be computed in O(|V (G)| · |E(G)|) time. Further,
1. If w(C?U \{c?}) ≤

ε·w(OPT )
2 holds for some vertex c? ∈ C?U then the set S† is a (2+ε)-factor

approximate solution for the A-SVD instance (G,w, (C, I, U)).
2. If w(I?U \{i?}) ≤

ε·w(OPT )
2 holds for some vertex i? ∈ I?U then the set S‡ is a (2+ε)-factor

approximate solution for the A-SVD instance (G,w, (C, I, U)).
I Remark 19. Note that these two cases are neither exclusive nor exhaustive.

I Definition 20. Let (G,w, (C, I, U)), ε, OPT,C?, I?, C?U , I?U be as in Definition 13. We say
that (G,w, (C, I, U)) is an easy instance if U = ∅ holds, or if at least one of the following
holds: (i) w(C?U ) ≤ ε·w(OPT )

2 , (ii) w(I?U ) ≤ ε·w(OPT )
2 , (iii) w(C?U \ {c?}) ≤

ε·w(OPT )
2 holds

for some vertex c? ∈ C?U , (iv) w(I?U \ {i?}) ≤
ε·w(OPT )

2 holds for some vertex i? ∈ I?U . We
say that (G,w, (C, I, U)) is a hard instance otherwise.

From Lemma 12, Lemma 16 and Lemma 18 we get

I Corollary 21. There is an algorithm which, given an easy instance (G,w, (C, I, U)) of
A-SVD and a constant ε > 0 as input, computes a (2 + ε)-factor approximate solution for
(G,w, (C, I, U)) in deterministic polynomial time.
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I Lemma 22 (♣). Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε, C?U , I?U , X,
IX , CX be as in Definition 13. Then the following hold:
1. w(X ∪ (IX \ C?U )) < (1 + 12

ε ) · w(I?U )
2. w(X ∪ (CX \ I?U )) < (1 + 12

ε ) · w(C?U )

Recall the notion of heavy and light pairs from Definition 3.

I Lemma 23 (♣). Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε,OPT,C?, I?,
C?U , I

?
U be as in Definition 13. Suppose (I?U , C?U ) is a heavy pair. Let I© = {v ∈

I?U ; w(N(v) ∩ C?U ) ≥ w(C?U )
4 } be the set of vertices in I?U which have a “heavy” neigh-

borhood in C?U , and let i© be a heaviest vertex in I©, i.e. a vertex of maximum weight.
Let C© = {v ∈ C?U ; w((I?U \ {i©}) \ (N(v) ∩ I?U )) ≥ w(I?U\{i

©})
4 } be the set of vertices

in C?U which have a “heavy” non-neighborhood in the subset I?U \ {i©}, and let c© be a
heaviest vertex in C©. Let I� = {v ∈ (I?U \ {i©}) ; w(N(v) ∩ (C?U \ {c©})) ≥

w(C?U\{c
©})

4 }
be the set of vertices in I?U \ {i©} which have a “heavy” neighborhood in C?U \ {c©}, and let
C� = {v ∈ (C?U \ {c©}) ; w((I?U \ {i©}) \ (N(v) ∩ I?U )) ≥ w(I?U\{i

©})
4 } be the set of vertices

in (C?U \ {c©}) which have a “heavy” non-neighborhood in I?U \ {i©}.
Then at least one of the following statements holds:

(1a) Picking a vertex proportionately at random from the set X ∪ (IX \ C?U ) yields a vertex
v ∈ I© with probability at least 1/(20(1 + 12

ε )).
(1b) Picking a vertex proportionately at random from the set X ∪ (IX \ C?U ) yields a vertex

v ∈ I� with probability at least 1/(4(1 + 12
ε )).

(2a) Picking a vertex proportionately at random from the set X ∪ (CX \ I?U ) yields a vertex
v ∈ C© with probability at least 1/(20(1 + 12

ε )).
(2b) Picking a vertex proportionately at random from the set X ∪ (CX \ I?U ) yields a vertex

v ∈ C� with probability at least 1/(4(1 + 12
ε )).

I Lemma 24 (♣). Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε,OPT,C?, I?,
C?U , I

?
U be as in Definition 13. Suppose (I?U , C?U ) is a light pair. Let C‖ = {v ∈ C?U ; w(I?U \

(N(v) ∩ I?U )) ≥ w(I?U )
4 } be the set of vertices in C?U which have a “heavy” non-neighborhood

in I?U , and let c‖ be a heaviest vertex in C‖. Let I‖ = {v ∈ I?U ; w(N(v) ∩ (C?U \ {c‖})) ≥
w(C?U\{c

‖})
4 } be the set of vertices in I?U which have a “heavy” neighborhood in the subset

C?U \ {c‖}, and let i‖ be a heaviest vertex in I‖. Let C‡ = {v ∈ (C?U \ {c‖}) ; w((I?U \ {i‖}) \
(N(v) ∩ I?U )) ≥ w(I?U\{i

‖})
4 } be the set of vertices in C?U \ {c‖} which have a “heavy” non-

neighborhood in I?U \{i‖}, and let I‡ = {v ∈ (I?U \{i‖}) ; w(N(v)∩(C?U \{c‖})) ≥
w(C?U\{c

‖})
4 }

be the set of vertices in (I?U \ {i‖}) which have a “heavy” neighborhood in C?U \ {c‖}.
Then at least one of the following statements is true.

(1a) Picking a vertex proportionately at random from the set X ∪ (CX \ I?U ) yields a vertex
v ∈ C‖ with probability at least 1/(20(1 + 12

ε )), or
(1b) Picking a vertex proportionately at random from the set X ∪ (CX \ I?U ) yields a vertex

v ∈ C‡ with probability at least 1/(4(1 + 12
ε )).

(2a) Picking a vertex proportionately at random from the set X ∪ (IX \ C?U ) yields a vertex
v ∈ I‖ with probability at least 1/(20(1 + 12

ε )), or
(2b) Picking a vertex proportionately at random from the set X ∪ (IX \ C?U ) yields a vertex

v ∈ I‡ with probability at least 1/(4(1 + 12
ε )).

From Lemma 23 and Lemma 24 we get
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I Lemma 25. Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε,OPT,C?, I?, C?U ,
I?U be as in Definition 13. Then one of the following statements is true.
(1a) Picking a vertex proportionately at random from X ∪ (IX \ C?U ) yields a vertex from
{v ∈ I?U | w(N(v) ∩ C?U ) ≥ w(C?U )

4 } with probability at least 1/20(1 + 12
ε ).

(1b) Picking a vertex proportionately at random from X ∪ (IX \ C?U ) yields a vertex from
{v ∈ I?U | w(N(v) ∩ (C?U \ {c?})) ≥

w(C?U\{c
?})

4 } with probability at least 1/20(1 + 12
ε ), for

some vertex c? ∈ C?U .
(2a) Picking a vertex proportionately at random from X ∪ (CX \ I?U ) yields a vertex from
{v ∈ C?U | w(I?U \N(v)) ≥ w(I?U )

4 } with probability at least 1/20(1 + 12
ε ).

(2b) Picking a vertex proportionately at random from X ∪ (CX \ I?U ) yields a vertex from
{v ∈ C?U | w((I?U \ {i?}) \N(v)) ≥ w(I?U\{i

?})
4 } with probability at least 1/20(1 + 12

ε ), for
some vertex i? ∈ I?U .

Proof. From Lemma 4 we get that (I?U , C?U ) is either a heavy pair or a light pair. If (I?U , C?U )
is a heavy pair then Lemma 23 applies, and at least one of the four options of that lemma
holds. Option (1a) of Lemma 23 implies option (1a) of the current lemma. Option (1b) of
Lemma 23 implies option (1b) of the current lemma. Options (2a) and (2b) of Lemma 23
both imply option (2b) of the current lemma.

If (I?U , C?U ) is a light pair then Lemma 24 applies, and at least one of the four options
of that lemma holds. Option (1a) of Lemma 24 implies option (2a) of the current lemma.
Option (1b) of Lemma 24 implies option (2b) of the current lemma. Options (2a) and (2b)
of Lemma 24 both imply option (1b) of the current lemma.

Thus in every case, one of the four options of the current lemma holds. J

I Lemma 26 (♣). Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε,OPT,C?, I?,
C?U , I

?
U be as in Definition 13.

1. There is a randomized polynomial-time algorithm which, given (G,w, (C, I, U)) as input,
picks a vertex proportionately at random from the set X ∪ (IX \ C?U ) with probability
at least 1

2 . That is, the algorithm runs in polynomial time and outputs a vertex v, and
the following hold with probability at least 1

2 : (i) v ∈ X ∪ (IX \ C?U ), and (ii) for any
x ∈ (X ∪ (IX \ C?U )), Pr[v = x] = w(x)/w(X ∪ (IX \ C?U )).

2. There is a randomized polynomial-time algorithm which, given (G,w, (C, I, U)) as input,
picks a vertex proportionately at random from the set X ∪ (CX \ I?U ) with probability
at least 1

2 . That is, the algorithm runs in polynomial time and outputs a vertex v, and
the following hold with probability at least 1

2 : (i) v ∈ X ∪ (CX \ I?U ), and (ii) for any
x ∈ (X ∪ (CX \ I?U )), Pr[v = x] = w(x)/w(X ∪ (CX \ I?U )).

3.1 Polynomially Bounded Weights
Let us first consider instances (G,w) of SVD which have polynomially bounded weights.
Let n = |V (G)|. Recall that w(v) ≥ 1 holds for each vertex v of G. We say that the weight
function w is polynomially bounded if, in addition,

∑
v∈V (G) w(v) ≤ c1n

c0 holds for every
v ∈ V (G) and some constants c0, c1. For such instances we have the following theorem.

I Theorem 27. There exists a randomized algorithm that given a graph G, a polynomially
bounded weight function w on V (G) and ε > 0, runs in time O(nf(ε)) and outputs S ⊆ V (G)
such that G − S is a split graph and w(S) ≤ (2 + ε)w(OPT ) with probability at least 1/2,
where OPT is a minimum weight split vertex deletion set of G. Here, f(ε) = 6 + log(80(1 +
12
ε )) · 4c0 log(c1)/ log(4/3), where c0, c1 are constants such that w(V (G)) ≤ c1 · nc0 .
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Algorithm 1 Approximation algorithm for the case of polynomially bounded weights.

Input: An instance (G,w, (C, I, U)) of A-SVD, a tuples (βC1 , βC2 , βI1 , βI2) and ε > 0.
Output: A (2 + ε)-factor approximate solution to (G,w, (C, I, U)).

1: procedure ASVD-Approx((G,w, (C, I, U)), ε, βC1 , βC2 , βI1 , βI2))
2: if U = ∅ then
3: Compute a 2-approximation S using Lemma 12
4: return S

5: end if
6: X ← 5-approximate solution to (G[U ], w) from Theorem 6
7: IX , CX ← the independent set and the clique in the split partition of G[U ]−X.
8: Compute the sets S12 and S34 as described in Lemma 16.
9: Compute the sets S† and S‡ as described in Lemma 18.
10: if βC1 ≥ 0 and βC2 ≥ 0 and βI1 ≥ 0 and βI2 ≥ 0 then
11: for all j ∈ {1, 2, . . . , b(ε)} do . b(ε) = d80(1 + 12

ε )e.
12: Sample a vertex vI proportionally at random from the set X ∪ (IX \ C?U )

using Lemma 26.
13: Set ZC ← N(vI) ∩ U .
14: Set C ′ ← C ∪ ZC
15: Set U ′ ← U \ ZC
16: Set SCj,1 ← ASVD-Approx((G,w, (C ′, I, U ′)), ε, βC1 − 1, βC2 , βI1 , βI2)
17: Set SCj,2 ← ASVD-Approx((G,w, (C ′, I, U ′)), ε, βC1 , βC2 − 1, βI1 , βI2)
18: Sample a vertex vC proportionally at random from the set X ∪ (CX \ I?U )

using Lemma 26.
19: Set ZI ← U \N(vC).
20: Set I ′ ← I ∪ ZI
21: Set U ′ ← U \ ZI
22: Set SIj,1 ← ASVD-Approx((G,w, (C, I ′, U ′)), ε, βC1 , βC2 , βI1 − 1, βI2)
23: Set SIj,1 ← ASVD-Approx((G,w, (C, I ′, U ′)), ε, βC1 , βC2 , βI1 , βI2 − 1)
24: end for
25: else
26: for all j ∈ {1, 2, . . . , b(ε)} do
27: SCj,1, S

C
j,2, S

I
j,1, S

I
j,2 ← V (G), V (G), V (G), V (G)

28: end for
29: end if
30: S ← a min weight set in

⋃
j=1,2,...b(ε){SCj,1, SCj,2, SIj,1, SIj,2}

⋃
{S12, S34, S

†, S‡}.
31: return S

32: end procedure

Proof. Let us fix an optimum solution OPT to (G,w). We treat the instance (G,w) of SVD
as an instance (G,w, (C = ∅, I = ∅, U = V (G))) of A-SVD, and apply Algorithm 1 to it,
along with the given value of ε and four integers βC1 , βC2 , βI1 , βI2 each set to dlog4/3(w(V (G)))e.
Note that, as w is polynomially bounded, we have w(V (G)) ≤ c1n

c0 for some constants
c0, c1, and hence β′ ≤ c2 log(n) for every β′ ∈ {βC1 , βC2 , βI1 , βI2} where c2 is a constant. We
will show that the value β = 1 + βC1 + βC2 + βI1 + βI2 ≤ 1 + 4c2 log(n) is an upper-bound on
the depth of the recursion tree of Algorithm 1, and that in each recursive call this value
drops by 1. Hence the depth of recursion is bounded by β. Each recursive call is made on
more constrained sub-instances of A-SVD where the underlying graph G, weight function w,
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and the value of ε remain fixed. When one of {βC1 , βC2 , βI1 , βI2} falls to −1, we argue that the
current instance must be an easy instance (see Definition 20), assuming all the recursive
calls leading the current call were “good” (as defined below). During its run the algorithm
also computes a 5-approximate solution X to (G[U ], w) using Theorem 6; let (IX , CX) be a
fixed split partition of G[U ] −X. We have a split partition (C?, I?) of G − OPT and we
define I?U = I? ∩U,C?U = C? ∩U . These sets, introduced in Definition 13, play an important
role in Algorithm 1 and its analysis.

To argue the correctness of Algorithm 1, we require the following definition. An invocation
ASVD-Approx(G,w, (C, I, U), ε, βC1 , βC2 , βI1 , βI2) is good if the following conditions are true:

βC1 ≥ log4/3(w(C?U )),
βC2 ≥ log4/3(w(C?U \ {c})) for some c ∈ C?U ,
βI1 ≥ log4/3(w(I?U )), and
βI2 ≥ log4/3(w(I?U \ {i})) for some i ∈ I?U .

Note that the definitions of C?U and I?U depend only on (G,w, (C, I, U)) and on the
optimum solution OPT that was fixed at the beginning. These sets are hypothetical and
unknown, and we can’t directly test if an invocation of Algorithm 1 is a good invocation.
However, observe that in the initial call, U = V (G) and we set each of βC1 , βC2 , βI1 , βI2 to
dlog4/3(w(V (G)))e, and hence the initial invocation is good. We will argue that if the
current invocation is good and the instance of A-SVD is a hard instance (see Definition 20),
then each recursive call made by the algorithm is good with a constant probability (which
depends on ε). Then (via an induction) we argue that a good recursive call will return a
(2 + ε)-approximate solution with probability at least 1

2 , and hence with constant probability
we obtain a (2 + ε)-approximate solution from a recursive call. To boost the probability of
success to 1

2 , we need to repeat this process constantly many times, so we make constantly
many recursive calls. Finally, to bound the running time, we argue that the depth of the
recursion tree is bounded by β = O(logn), and we make constantly many recursive calls in
each invocation of the algorithm. So the total number of calls made to this algorithm, which
is upper-bounded by the size of the recursion tree, is nO(1). This means that in polynomial
time, with probability at least 1/2, we obtain a (2 + ε)-approximate solution to (G,w). Let
us now present these arguments formally.

Let us recall the optimum solution OPT to (G,w) that was fixed at the beginning. We say
that an instance (G,w, (C, I, U)) is a nice instance if the solution OPT is also an optimum
solution to this A-SVD instance. This means that a split partition (C?, I?) of G − OPT
satisfies, C? ∩ I = ∅ and I? ∩ C = ∅. Note that this condition is trivially satisfied at the
beginning for the starting instance (G,w, (C = ∅, I = ∅, U = V (G)). Let us consider an
invocation of Algorithm 1 on a nice instance of (G,w, (C, I, U)) with polynomially bounded
weight function w and βC1 , βC2 , βI1 , βI2 such that it is a good invocation. Let S denote the
solution returned by it. We will show that S is a (2+ε)-approximate solution with probability
at least 1

2 , by an induction on |U |. Suppose that |U | = 0, i.e. U = ∅. Then Lemma 12
ensures that S is a 2-approximate solution. This forms the base case of our induction on |U |.

Now suppose that |U | > 0, and we have two cases depending on whether (G,w, (C, I, U))
is an easy instance or not. If it is an easy instance, then either the premise of Lemma 16 or
the premise of Lemma 18 holds. Hence, one of S12, S34, S

†, S‡ is a (2 + ε)-approximation
to (G,w, (C, I, U)). Moreover, we claim that if any one of βC1 , βC2 , βI1 , βI2 drops to −1, then
the instance (G,w, (C, I, U)) is an easy instance. Consider the case when βC2 = −1. Then
log4/3(w(C?U \ {c})) = −1 for some c ∈ C?U . This means w(C?U \ {c}) < 3/4, and since
w(v) ≥ 1 for every v ∈ V (G), it must be the case that C?U = {c}. Hence, the premise of
Lemma 18 holds and we obtain a (2 + ε)-approximate solution for (G,w, (C, I, U)). Similar
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arguments apply to the other cases, i.e. when βC1 = −1, or βI1 = −1 or βI2 = −1, and we
can obtain a (2 + ε)-approximation in all these cases. Therefore, in all these cases S is a
(2 + ε)-approximation to (G,w, (C, I, U)).

Now, consider the case when the given instance is a hard instance, i.e. U 6= ∅ and the
premises of Lemma 16 and Lemma 18 don’t hold. In this case βC1 , βC2 , βI1 , βI2 ≥ 0. Recall that
X is a 5-approximate solution to SVD in the subgraph G[U ], and hence w(X) ≤ 5 ·w(OPT ).
We will make recursive calls on instances of A-SVD of the form (G,w, (C ′, I ′, U ′)) such
that C ⊆ C ′, I ⊆ I ′ and U ′ ( U . Suppose that (G,w, (C ′, I ′, U ′)) is a nice instance. Then
by the induction hypothesis, as |U ′| < |U |, we can assume that Algorithm 1 returns a
(2 + ε)-approximate solution Ŝ to this instance with probability at least 1/2. This is an
approximate solution to the current instance as well:

B Claim 28. Ŝ is a (2 + ε)-approximate solution to (G,w, (C, I, U))

Proof. Observe that, since Ŝ is feasible solution to the nice instance (G,w, (C ′, I ′, U ′)), there
is a split partition (C

Ŝ
, I
Ŝ

) of G − Ŝ such that C ′ ∩ I
Ŝ

= ∅ and I ′ ∩ C
Ŝ

= ∅. Therefore,
we have C ∩ I

Ŝ
= ∅ and I ∩ C

Ŝ
= ∅, i.e. Ŝ is a feasible solution to (G,w, (C, I, U)). Since

w(Ŝ) ≤ (2 + ε)w(OPT ), the claim is true. C

Let us now consider the recursive calls made by the algorithm for each j ∈ {1, 2, . . . , b(ε) =
d80(1 + 12

ε )e}, and argue that with a constant probability (depending on ε) we can obtain a
(2+ε)-approximation to the given instance. In each recursive call, one of βC1 , βC2 , βI1 , βI2 drops
by exactly 1. Let us fix j ∈ {1, 2, . . . , b(ε)} and consider the two vertices vI , vC sampled
using Lemma 26. Since (G,w, (C, I, U)) is a hard instance, the following hold.

With probability at least 1/2, vI ∈ X ∪ (IX \ C?U ), and for any x ∈ (X ∪ (IX \ C?U )),
Pr[vI = x] = w(x)/w(X ∪ (IX \ C?U )).
With probability at least 1/2, vC ∈ X ∪ (CX \ I?U ), and for any x ∈ (X ∪ (CX \ I?U )),
Pr[vC = x] = w(x)/w(X ∪ (CX \ I?U )).

By the induction hypothesis, any good invocation ASVD-Approx(G,w, (C ′, I ′, U ′), ε, β̂C1 ,
β̂C2 , β̂

I
1 , β̂

I
2) where (G,w, (C ′, I ′, U ′)) is a nice instance and |U ′| < |U | holds, returns a (2 + ε)-

approximate solution to (G,w, (C ′, I ′, U ′)) with probability at least 1
2 . We now have four

cases, depending on which of the four statements in Lemma 25 is true for (G,w, (C, I, U)).
In each case we will argue that with constant probability, we make a good recursive call on a
nice instance and obtain a (2 + ε)-approximate solution from it.
(i) Suppose that statement (1a) of Lemma 25 is true. That is, picking a vertex proportion-

ally at random fromX∪(IX\C?U ) yields a vertex from {v ∈ I?U | w(N(v)∩C?U ) ≥ w(C?U )
4 }

with probability at least 1/20(1+ 12
ε ). Then vI ∈ {v ∈ I?U | w(N(v)∩C?U ) ≥ w(C?U )

4 } with
probability at least 1/40(1+ 12

ε ). As vI ∈ I?U , every vertex in ZC = N(vI)∩U must either
be in OPTU or in C?U . Furthermore, w(ZC∩C?U ) ≥ w(C?U )

4 . Let U ′ = U\ZC , C ′ = C∪ZC
and consider the invocation ASVD-Approx(G,w, (C ′, I, U ′), ε, βC1 −1, βC2 , βI1 , βI2). Let
us argue that it is a good invocation. By definition C?U ′ = C? ∩ U ′ satisfies w(C?U ′) ≤
3
4w(C?U ). Therefore, as βC1 ≥ log4/3(w(C?U )), we have βC1 − 1 ≥ log4/3(w(C?U ′)). Fur-
thermore, observe that β2

C ≥ log4/3(w(C?U ′ \ {c?})), and I, βI1 , βI2 remain unchanged.
Hence, assuming that the current invocation is good, this invocation is also good. Let us
argue that (G,w, (C ′, I, U ′)) is a nice instance, i.e. OPT is an optimum solution to it.
Towards this, recall that C ′ = C ∪ZC where ZC = N(vI)∩U and vI ∈ I?U ⊆ I?. Hence,
every vertex in ZC is either in OPT or in C?, i.e. ZC ∩ I? = ∅. Since OPT is feasible
for (G,w, (C, I, U)) we have that C ∩ I? = ∅. Therefore, C ′ ∩ I? = (C ∪ ZC) ∩ I? = ∅,
and hence OPT is a feasible solution for (G,w, (C ′, I, U ′)). Finally, as any feasible
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solution for (G,w, (C ′, I, U ′)) is also feasible for (G,w), OPT is an optimum solution
for (G,w, (C ′, I, U ′)). Now |U ′| < |U |, and by the induction hypothesis, this invocation
returns a solution SCj,1 to (G,w, (C ′, I, U ′)) with probability at least 1/2. By Claim 28,
SC1,j is a (2 + ε)-approximate solution to (G,w, (C, I, U)). Hence, we obtain a solution
SC1,j that is a (2 + ε)-approximation to (G,w, (C, I, U)), and this event happens with
probability at least 1/80(1 + 12

ε ). Note that βC1 drops by 1 in the recursive call .
(ii) Suppose that statement (1b) of Lemma 25 is true. That is, picking a vertex propor-

tionately at random from X ∪ (IX \ C?U ) yields a vertex from {v ∈ I?U | w(N(v) ∩
(C?U \ {c?})) ≥

w(C?U )\{c?}
4 } with probability at least 1/20(1 + 12

ε ), for some vertex
c? ∈ C?U (as determined by Lemma 25). Then, with probability at least 1/40(1 + 12

ε ),
vI ∈ {v ∈ I?U | w(N(v) ∩ (C?U \ {c?})) ≥

w(C?U )\{c?}
4 }. As vI ∈ I?U , every vertex in

ZC = N(vI) ∩ U must either be in OPT or in C?U . Let C ′ = C ∪ ZC , U ′ = U \ ZC and
consider the invocation ASVD-Approx(G,w, (C ′, I, U ′), ε, βC1 , βC2 − 1, βI1 , βI2). Let us
argue that it is a good invocation. Let Ĉ = (C?U \{c?})\N(vI) and C?U ′ = C?∩U ′, and
note that either C?U ′ = Ĉ or C?U ′ = Ĉ∪{c?}. Since w(Ĉ) ≤ 3

4w(C?U \{c?}) by the choice
of vI , we have log4/3(w(Ĉ)) ≤ log4/3(w(C?U \{c?})−1 ≤ βC2 −1. Therefore, if C?U ′ = Ĉ,
then for any arbitrary c′ ∈ C?U ′ we have βC2 − 1 ≥ log4/3(w(C?U ′ \ {c′})); otherwise
C?U ′ = Ĉ ∪ {c?}, and βC2 − 1 ≥ log4/3(w(C?U ′ \ {c?})). Furthermore, observe that βC1 is
unchanged and C?U ′ ⊆ C?U , we have log4/3(w(C?U ′)) ≤ βC1 . Similarly, I, βI1 , βI2 are also
unchanged. Hence, this invocation is good. Next, as in the previous case, we can argue
that (G,w, (C ′, I, U ′) is a nice instance. Then, as |U ′| < |U |, by the induction hypo-
thesis the invocation returns a (2 + ε)-approximate solution SCj,2 to (G,w, (C ′, I, U ′))
with probability at least 1/2. By Claim 28, SCj,2 is a (2 + ε)-approximate solution to
(G,w, (C, I, U)). Hence, we obtain a solution SCj,2 that is a (2 + ε)-approximation to
(G,w, (C, I, U)), and this event happens with probability at least 1/80(1 + 12

ε ). Note
that βC2 drops by 1 in recursive call made here.

(iii) Suppose that statement (2a) of Lemma 25 is true. This case is symmetric to Case-(i),
above, where the arguments are made with respect to vC ∈ X ∪ (CX \ I?U ). Here
vC ∈ {v ∈ C?U | w(I?U \ N(v)) ≥ w(I?U )

4 } with probability at least 1/40(1 + 12
ε ).

We consider the instance (G,w, (C, I ′, U ′)) where ZI = U \ N(vC), I ′ = I ∪ ZI and
U ′ = U\ZI . We can argue that this invocation is good and the instance (G,w, (C, I ′, U ′))
is nice. Then, as |U ′| ≤ |U |, by the induction hypothesis, this invocation returns a
(2 + ε)-approximate solution to (G,w, (C, I ′, U ′)) with probability at least 1/2. Let
SIj,1 denote this solution, and we argue that it is also a (2 + ε)-approximate solution to
(G,w, (C, I, U)). In conclusion, we obtain a solution SIj,1 that is a (2+ε)-approximation
to (G,w, (C, I, U)), and this event happens with probability at least 1/80(1 + 12

ε ). Note
that βI1 drops by 1 in recursive call made here.

(iv) Suppose that statement (2b) of Lemma 25 is true. This case is symmetric to Case-(ii)
above. Here we have a vertex vC ∈ {v ∈ C?U | w(I?U \N(v)) ≥ w(I?U )

4 } with probability at
least 1/40(1+ 12

ε ). We make a recursive call ASVD-Approx(G,w, (C, I ′, U ′), ε, βC1 , βC2 ,
βI1 , β

I
2 − 1), where I ′ = I ∪ ZI , U ′ = U \ ZI and ZI = U \N(vC). Here, we obtain a

solution SIj,2 that is a (2 + ε)-approximation to (G,w, (C, I, U)), and this event happens
with probability at least 1/80(1 + 12

ε ). Note that βI2 drops by 1 in recursive call made
here.

Therefore, if (G,w, (C, I, U)) is a hard instance, then for each j ∈ {1, 2, . . . , b(ε)}, one of
SCj,1, S

C
j,2, S

I
j,1, S

I
j,2 is a (2+ε)-approximate solution to it with probability at least 1/80(1+ 12

ε ).
Note that the recursive calls made for any two distinct j, j′ ∈ {1, 2, . . . , b(ε)} are independent
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events. Therefore, by setting b(ε) = d80(1+ 12
ε )e, we obtain that with probability at least 1/2

there exists j ∈ {1, 2, . . . , b(ε)} such that one of SCj,1, SCj,2, SIj,1, SIj,2 is a (2 + ε)-approximate
solution to (G,w, (C, I, U)).

Finally, let us bound the running time of this algorithm. Towards this, we must bound the
total number of calls made to Algorithm 1, when run on an instance (G,w) with polynomially
bounded weights. Observe that, we start with an instance (G,w, (C = ∅, I = ∅, U = V (G)))
of A-SVD along with βC1 , βC2 , βI1 , βI2 set to dlog4/3(w(V (G))e = c2 log(n) for some constant
c2. Then, for each instance (G,w, (C, I, U)), we make b(ε) recursive calls and at least one
of βC1 , βC2 , βI1 , βI2 drops by 1 in each of these calls. Additionally U drops to a strict subset
in each of these calls. Hence in a finite number of steps, either U becomes empty, or
one of βC1 , βC2 , βI1 , βI2 becomes equal to −1, and we reach an easy instance. Observe that
this must happen at some point before the depth of recursion exceeds β = 1 + 4c2 log(n).
Hence, the number of recursive calls made for the instance (G,w) is upper bounded by
b(ε)β = O(nh(ε)) where h(ε) = log(80(1 + 12

ε )) · 4c0 log(c1)/ log(4/3). Recall that c0, c1 are
constants such that w(V (G)) ≤ c1 · nc0 . Observe that in each recursive call, we spend O(n6)
time (excluding the recursive calls). Hence the total running time is upper-bounded by nf(ε)

where f(ε) = 6 + log(80(1 + 12
ε )) · 4c0 log(c1)/ log(4/3). Alternatively, this bound on the

running time can be obtained from the Master Theorem. J

3.2 General Weight Functions
In this section, we extend Theorem 27 to instances of SVD with general weight function. In
particular we show that given an instance with general weights, we can construct an instance
with polynomially-bounded weights such that an approximate solution to the new instance
can be lifted back to the original instance.
I Lemma 29 (♣). Let (G,w) be an instance of SVD, and ε > 0 be a constant. Then we can
construct another instance (G′, w′) of SVD such that G′ is a subgraph of G and given any α-
approximate solution to (G′, w′) where α ≤ 5, we can obtain an (α+ ε)-approximate solution
to (G,w). Moreover, the weight function w′ is polynomially bounded, and w′(V (G′)) ≤ 30n2

ε .
We have the following corollary of Theorem 27 and Lemma 29.

I Theorem 30. There exists a randomized algorithm that given a graph G, a weight function
w on V (G) and ε > 0, runs in time O(ng(ε)) and outputs S ⊆ V (G) such that G−S is a split
graph and w(S) ≤ 2(1 + ε)w(OPT ) with probability at least 1/2, where OPT is a minimum
weight split vertex deletion set of G. Here, g(ε) = 6 + 8 log(80(1 + 12

ε )) · log( 30
ε )/ log(4/3).

Proof. Given the instance (G,w) and ε, we apply Lemma 29 and obtain an instance
(G′, w′), where w′(V (G′)) ≤ 30n2

ε . We then apply Theorem 27 to (G′, w′) and ε and
obtain a solution S′ to it. This algorithm runs in time |V (G′)|g(ε) ≤ ng(ε, where g(ε) =
6 + 8 log(80(1 + 12

ε )) · log( 30
ε )/ log(4/3), and with probability at least 1/2 S′ is a (2 + ε)-

approximate solution to (G′, w′). Then by Lemma 29, S′ can be lifted to a 2(1+ε)-approximate
solution S to (G,w). J

4 Conclusion

One of the natural open question is to obtain a polynomial time 2-approximation algorithm
for SVD and match the lower bound obtained under UGC. It will be interesting to find other
implicit d-Hitting Set problems and find its correct “approximation complexity”. Towards
this we restate the conjecture of Fiorini et al. [5] about a concrete implicit 3-Hitting Set
problem: there is a 2-approximation algorithm for Cluster Vertex Deletion matching
the lower bound under UCG.
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Abstract
In the Single Source Replacement Paths (SSRP) problem we are given a graph G = (V,E), and a
shortest paths tree K̂ rooted at a node s, and the goal is to output for every node t ∈ V and for
every edge e in K̂ the length of the shortest path from s to t avoiding e.

We present an Õ(m
√
n+ n2) time randomized combinatorial algorithm for unweighted directed

graphs1. Previously such a bound was known in the directed case only for the seemingly easier
problem of replacement path where both the source and the target nodes are fixed.

Our new upper bound for this problem matches the existing conditional combinatorial lower
bounds. Hence, (assuming these conditional lower bounds) our result is essentially optimal and
completes the picture of the SSRP problem in the combinatorial setting.

Our algorithm naturally extends to the case of small, rational edge weights. In the full version
of the paper, we strengthen the existing conditional lower bounds in this case by showing that any
O(mn1/2−ε) time (combinatorial or algebraic) algorithm for some fixed ε > 0 yields a truly sub-cubic
algorithm for the weighted All Pairs Shortest Paths problem (previously such a bound was known
only for the combinatorial setting).
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1 Introduction

In the replacement paths (RP) problem, we are given a graph G and a shortest path P

between two vertices s and t and the goal is to return for every edge e in P the length
d(s, t,G − e), where G − e is the graph obtained by removing the edge e from G, and
d(s, t,G − e) is the distance between s and t in the resulted graph. In some cases the goal
is to provide the shortest path itself and not only its length. The interest in replacement
path problems stems from the fact that failures and changes in real world networks are
inevitable, and in many cases we would like to have a solution or a data structure that can

1 As usual, n is the number of vertices, m is the number of edges and the Õ notation suppresses
poly-logarithmic factors.
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adapt to these failures. The replacement paths problem is a notable example where we would
like to have backup paths between two distinguished vertices in the event of edge failures.
The replacement paths problem is also very well motivated as it is used as an important
ingredient in other applications such as the Vickrey pricing of edges owned by selfish agents
from auction theory [14, 6]. Another application of the replacement path problem is finding
the k shortest simple paths between a pair of vertices. The k shortest simple paths problem
can be solved by invoking the replacement paths algorithm k times and adding a very small
weight to the path found in each invocation. The k shortest simple paths problem has many
applications by itself [4]. The replacement paths problem has been extensively studied and
the literature covers many aspects of this problem with many near optimal solutions in many
of the cases (see e.g. [11, 13, 12, 15, 3, 9, 19, 16, 2]).

In this paper we consider a natural and important generalization of the replacement
paths problem, referred to as the single source replacement paths (SSRP) problem, which is
defined as follows. Given a graph G and a shortest paths tree K̂ rooted at a node s, the
SSRP problem is to compute the values of d(s, t,G − e) for every vertex t ∈ V (G) and for
every edge e ∈ E(K̂). Note that as the number of edges in K̂ is n − 1, there are O(n2)
different distances we need to evaluate. It follows that the size of the SSRP output is O(n2).

Despite of its natural flavor, the picture of the SSRP problem is not yet complete in
many of the cases. To the best of our knowledge the first paper that considered the SSRP
problem is by Hershberger et al. [7] who referred to the problem as edge-replacement shortest
paths trees and showed that in the path-comparison model of computation of Karger et
al. [8], there is a lower bound of Ω(mn) comparisons in order to solve the SSRP problem for
arbitrarily weighted directed graphs.

For the directed weighted case it was shown by Vassilevska Williams and Williams [18]
that any truly sub-cubic algorithm for the simpler problem of RP in directed, arbitrarily
weighted graph admits a truly sub-cubic algorithm for the arbitrarily weighted All Pairs
Shortest Paths (APSP) problem. The conditional lower bound from [18] holds only for the
directed case, and quite interestingly for the undirected arbitrarily weighted case, the classical
RP problem admits a near linear time algorithm [11, 13, 12]. However, the SSRP problem in
undirected graphs appears to be much harder than the RP problem. In [2] it was shown by
Chechik and Cohen that any truly sub-cubic solution for the SSRP problem in undirected
arbitrarily weighted graphs, admits a truly sub-cubic algorithm for the arbitrarily weighted
APSP problem. Therefore, it seems there is no hope to solve the SSRP problem in weighted
graphs, both in the directed and undirected case. Meaning that if we seek for truly sub-cubic
algorithms for the SSRP problem we must either consider unweighted graphs or restrict the
edge weights in some other way.

One way to restrict the weights is to consider only bounded integer edge weights. This
restriction was considered by Grandoni and Vassilevska Williams [5], who were also the ones
to name this problem the single source replacement paths problem. Grandoni and Vassilevska
Williams [5] gave the first non trivial upper bound for the SSRP problem. They showed
that one can bypass the cubic lower bounds by using fast matrix multiplications and by
restricting the weights to be integers in a bounded range. More precisely, they showed that
for graphs with positive integer edge weights in the range [1,M ], SSRP can be computed in
Õ(Mnω) time (here ω < 2.373 is the matrix multiplication exponent [17, 10]). This matches
the current best known bound for the simpler problem of RP for directed graph with weights
[−M,M ], by Vassilevska Williams [16]. Quite interestingly, for integer edge weights in the
range [−M,M ], the authors of [5] gave a higher upper bound of Õ(M

1
4−ω n2+ 1

4−ω ) time,
which creates an interesting gap between the SSRP problem and the RP problem for negative
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integer weights. Grandoni and Vassilevska Williams [5] conjectured that the gap between
these two problems is essential and in fact they conjectured that the SSRP problem with
negative weights is as hard as the directed APSP problem.

The algorithm described in [5] uses fast matrix multiplication tricks in order to break the
trivial cubic upper bound, such algorithms are known as “algebraic algorithms”. Algorithms
that do not use any matrix multiplication tricks are known as “combinatorial algorithms”.
The interest in combinatorial algorithms mainly stems from the assumption that in practice
combinatorial algorithms are much more efficient since the constants and sub-polynomial
factors hidden in the matrix multiplication bounds are considered to be very high.

The SSRP problem was also recently considered in the combinatorial setting by Chechik
and Cohen in [2] for undirected unweighted graphs. Specifically, Chechik and Cohen in [2]
gave an Õ(m

√
n+n2) time randomized algorithm for SSRP in undirected unweighted graphs.

Moreover, using conditional lower bounds Chechik and Cohen also showed that under some
reasonable assumptions any combinatorial algorithm for the SSRP problem in unweighted
undirected graphs requires Ω̃(m

√
n) time.

Since there is little hope to solve the weighted case, the only missing piece in the picture
of combinatorial SSRP is the case of directed unweighted graphs.

For the directed unweighted case it was shown earlier by Vassilevska Williams and Williams
[18], using a conditional combinatorial lower bound that under some reasonable assumptions
any combinatorial algorithm for the directed unweighted RP (and hence SSRP) problem
requires Ω̃(m

√
n) time. For the seemingly easier problem of replacement paths Roditty and

Zwick [15] showed a near optimal solution of Õ(m
√
n) time for directed unweighted graphs.

Note that in the undirected unweighted case there is an essential gap between the RP
and the SSRP problems. A natural question is whether such a gap also exists in the
directed unweighted case. In this paper we show that this is not the case by providing a
combinatorial near optimal Õ(m

√
n+ n2) time algorithm for the case of directed unweighted

graphs, which up to the n2 factor (that is unavoidable as the output itself is of size O(n2))
matches the running time of the algorithm in [15] (and also matches the running time of the
undirected case in [2]). We therefore (up to poly-logarithmic factors) complete the picture of
combinatorial SSRP.

Our main result is as follows.

I Theorem 1.1. There exists an Õ(m
√
n+ n2) time combinatorial algorithm for the SSRP

problem on unweighted directed graphs. Our randomized algorithm is Monte Carlo with a
one-sided error, as we always output distances which are at least the exact distances, and with
high probability (of at least 1− n−C for any constant C > 0) we output the exact distance.

Note that for unweighted directed graphs where m = Õ(n1.5) our algorithm runs in Õ(n2)
time, which is the time it takes just to output the result. Namely, in this range of density
our algorithm surpasses the current best algebraic SSRP algorithm [5] (which has a running
time complexity of Õ(nω)) as long as ω > 2.

We will note that while we focus on the case of edge failures, in the directed case there is
a well known reduction showing that edge failures can be used to simulate vertex failures.
The reduction is as follows, replace every vertex v with two vertices vin and vout, and connect
them by a direct edge (vin, vout). Then, for every incoming edge (u, v) add the edge (u, vin),
and for every outgoing edge (v, u) add the edge (vout, u). The failure of the vertex v is now
simulated by the failure of the edge (vin, vout).

Our main novelty is in the introduction of a tool which we refer to as weight functions.
This tool proved to be very useful in order to apply a divide and conquer approach and could
perhaps be utilized in other related problems.
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1.1 Rational Weights
While we describe an algorithm for the problem of SSRP in unweighted graphs, our algorithm
(much like the directed RP algorithm [15]) can be easily generalized to solve the case of
weighted graphs for rational edge weights in the range [1, C], for every constant C ≥ 1, in
the same time complexity. This is because the only place our algorithm (and the algorithm
from [15]) uses the fact that the graph is unweighted is in the claim that a path of length l
contains Θ(l) vertices, which is used in order to utilize sampling techniques. As this is also
true for rational weights in the range [1, C], our algorithm generalizes for this case trivially.

Algebraic algorithms inherently can not perform on graphs with rational weights. This is
since algebraic algorithms use a reduction from a problem known as min-plus product 2 to
the problem of matrix product, and this reduction works only for integer weights. Since in
some use-cases (like the k-simple paths problem) it is very useful to have rational weights,
this shows another potential interest in combinatorial algorithms.

We note that in order to store rational numbers, we must make some common assump-
tions regarding the model of computation. More specifically, we assume that computing
the summation of n edge weights can be performed in Õ(n) time and that all numbers we
are dealing with can be stored in one (or O(1)) space unit. A realistic option is working
in a word-RAM model, and considering only rational edge weights which are of the form
m
2k , where the two integers m and 2k fit in the size of O(1) computer words. This way, the
summation of O(n) numbers also fits in O(1) computer words. This way of representing
rational numbers is reminiscent of the floating-point representation, that is commonly used
in practical applications.

In Section 7 in the full version of this paper, we show that any algorithm (combinatorial
or not) for the SSRP problem for graphs with rational edge weights from the range [1, 2),
that runs in O(mn1/2−ε) time for any fixed ε > 0 implies a truly sub-cubic algorithm for
APSP over graphs with arbitrary integer weights. The claim is formally stated in Theorem
7.1. Previously such a conditional lower bound was only known for combinatorial algorithms
using a reduction from Boolean Matrix Multiplication (see [2]).

2 Preliminaries

We will use the following notation: N = {0, 1, 2, ...},N+ = {1, 2, 3, ...},∀a ∈ N+ : [a] =
{1, 2, ..., a}. Let G be a weighted directed graph then E(G) denotes the set of edges in G
and V (G) the set of nodes. For a vertex v we say that v ∈ G if v ∈ V (G) and for an edge
e we say that e ∈ G if e ∈ E(G). Let u, v ∈ V (G) be two vertices, we denote by d(u, v,G)
the distance from u to v in the graph G, and denote by R(u, v,G) some shortest path from
u to v in G. Let P ⊆ G be a path from u to v, we define |P | = |E(P )| = |V (P )| − 1. We
also denote the length of P by d(P ). Note that d(R(u, v,G)) = d(u, v,G). For a set of edges
A ⊆ E(G) we denote the graph (V (G), E(G) \A) by G−A. For an edge e we shortly denote
G− {e} by G− e, and for a path P we shortly denote G− E(P ) by G− P .

We denote by GR the graph obtained by reversing the directions of all edges - that is
the graph obtained by replacing each edge (v, u) ∈ E(G) with the edge (u, v) with the same
weight. Given a sub-graph H ⊆ G we denote by G[H] the sub-graph of G induced by the
nodes in V (H).

2 Also known as funny matrix multiplication or distance product, see [1, 20]
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Let P ⊆ G be a shortest path from a node s to a node t. Let u, v ∈ V (P ) be two nodes
in P , we say that u is before v in P if d(u, t,G) ≥ d(v, t,G) and that u is after v in P if
d(u, t,G) ≤ d(v, t,G), For an edge e = (u, v) ∈ E(P ) and a node a ∈ V (P ) we say that a is
before e in the path P if a is before u in P and say that a is after e in P if a is after v
in the path P .

The following sampling Lemma is a folklore.

I Lemma 2.1 (Sampling Lemma). Consider n balls of which R are red and n−R are blue.
Let C > 0, N > 0 be two numbers such that R > C · ln(N). Let B be a random set of balls
such that each ball is chosen to be in B independently at random with probability C·ln(N)

R .
Then w.h.p (with probability at least 1 − 2

Nc ) there is a red ball in B and the size of B is
Õ(n/R).

The following separation Lemma was used extensively in many divide and conquer algorithms
on graphs including the algebraic SSRP algorithm from [5].

I Lemma 2.2 (Separator Lemma). Given a tree K with n nodes rooted at a node s, one can
find in O(n) time a node t that separates the tree K into 2 edge disjoint sub-trees S, T such
that E(S) ∪ E(T ) = E(K), V (T ) ∩ V (S) = {t} and n

3 ≤ |V (T )|, |V (S)| ≤ 2n
3

WLOG we always assume that s ∈ V (S), which implies that t must be the root of T . Note
that it might be the case that t = s.

2.1 The Generalized SSRP Problem
We next describe a generalization of the directed-SSRP problem that our algorithm works
with. We start by describing the notation of weight functions, a new concept we developed
that allows us to compress a lot of information into one recursive call of the algorithm. In
the next section we will give more intuition about the weight functions and this specific
generalization.

I Definition 2.3 (Weight Function). Let G be an unweighted directed graph. Let s ∈ V (G)
be some special source node. A function w : V (G) → N ∪ {∞} is a weight function (with
respect to the source node s) if w(v) ≥ d(s, v,G) for every vertex v ∈ V (G). We refer to this
requirement as the weight requirement.

For a source node s ∈ V (G) and a weight function w (with respect to the source node s)
we define the weighted directed graph Gw by taking the unweighted graph G, and assigning
each edge the weight 1. We then add for every node v ∈ V (G) the edge (s, v) and assign
to it the weight w(v). Note that G is a sub-graph of Gw. Also, note that by the weight
requirement, for every two nodes u, v ∈ V (G) : d(u, v,G) = d(u, v,Gw).

The generalized SSRP problem is now defined as follows. The input consists of the
following:

An unweighted directed graph H and a source vertex s ∈ V (H)
A BFS tree K in H rooted at the source s (E(K) ⊆ E(H))
A set of weight functions W (with respect to source node s)
A set of queries Q ⊆ E(K)× V (H)×W

The goal is to output for every (e, x, w) ∈ Q the distance d(s, x,Hw − e). Note that
this problem is indeed a generalization of the classic SSRP problem. In order to solve the
SSRP problem on the initial graph G and the BFS tree K̂, we simply define a single weight
function w : V (G)→ N ∪ {∞} that is defined to be w ≡ ∞. We then invoke our algorithm
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with the graph G, the BFS tree K̂, the set of weight functions W = {w}, and the query set
Q = E(K̂)× V (G)×W . Note that G and Gw are the same graph in the sense that for every
edge e ∈ E(G) and destination x ∈ V (G) we have that d(s, x,G−e) = d(s, x,Gw−e). Hence,
invoking our algorithm for the generalized SSRP would suffice. As we will only work with
the generalized SSRP problem, we here after refer to it as the SSRP problem for simplicity.

3 Overview

Our algorithm uses a divide and conquer approach. Each recursive call works on a different
sub-tree (K) of the original BFS tree (K̂), where both the destination and the edge failure
are within this sub-tree (for the case when the edge failure and the destination are not in
the same sub-tree our algorithm solves this in a non recursive manner to be described later
in case 1 of the algorithm overview). The vertices of the sub-tree K induce a sub-graph H of
the original graph G. Denote by n = |V (G)|,m = |E(G)|, nH = |V (H)|,mH = |E(H)|.

The first step of our algorithm is to separate the input BFS tree K into two edge disjoint
sub-trees S and T using a balanced tree separator (see Lemma 2.2). We denote the root of
the BFS tree K by s. We assume WLOG that the root of S is s and the root of T is some
node t. It might be the case that s = t. We define P as the path from s to t in the BFS tree
K. Note that P ⊆ S. An illustration of this separation can be found in Figure 1.

Let K ′ be one of the two sub-trees of K (that is S or T ). If a replacement path is fully
contained in the graph induced by K ′ then simply using the recursive call is enough in order
to compute its length. The more challenging case is when the replacement path contains
vertices that are not in K ′.

In [5] the authors used a somewhat similar divide and conquer approach. Consider a
recursive call on a sub-tree K ′ and consider the case when the edge failure and destination
node are both in K ′. In their algorithm, the authors of [5] used sampling techniques and a
truncated version of the algebraic APSP algorithm (as presented in [21]) in order to create a
compressed version of the subgraph induced over K ′ (by adding shortcuts between vertices
in K ′), which (w.h.p) preserves all information needed in order to compute the true distance.

However, in the combinatorial setting, one cannot use this sort of compression process
for several reasons. Firstly, after the first call to the compression step (as described in the
algorithm in [5]), the resulted graph could be very dense, maybe even complete. Since the
conditional lower bound of Ω̃(m

√
n+ n2) for a combinatorial SSRP ([2, 18]) depends on

the number of edges, we do not want to receive such dense graphs. Secondly, as we are in
the combinatorial setting, we cannot use fast matrix multiplication in the compression step,
which is a critical part of the algorithm described in [5]. Lastly, after the compression step
the resulted graph is weighted which leaves us with a substantially more difficult problem.
In fact in the combinatorial setting there is no sub-cubic time algorithm that solves the even
seemingly easier problem of weighted RP (see [18] for conditional lower bounds).

So in the combinatorial setting we must devise a new, more restricted, compression
technique. We will essentially show that if we add weighted edges only from the source s
to all other vertices, and restrict the weights to be such that the weight of the edge (s, v)
is at least d(s, v,H), then solving replacement path on such a graph still requires only
Õ(mH

√
nH + n2

H) time. We therefore would like to add only edges between s and all other
nodes. However, this quickly proves to be difficult, and it seems that if we add only weighted
edges from s to the compressed graph we either “under-shoot” and do not represent all
replacement paths, or we “over-shoot” and represent replacement paths that does not really
exist in the graph H − e (for some edge failure e) - such paths will be called untruthful paths.
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We have devised a technique to fix the over-shooting. That is, we give the recursive
call weights that may represent untruthful replacement paths in H − e, but we force the
recursive call to restrict the replacement paths it searches for, so we will be able to fix them
before the algorithm outputs them, while maintaining optimality. The way we do so is by a
novel concept we call weight functions. The idea is that the unweighted graph H will come
equipped with a set of functions W , such that every w ∈ W is a function from V (H) to
N ∪ {∞} and for every vertex v it holds that w(v) ≥ d(s, v,H). For every weight function
w ∈W the weighted graph Hw is defined by adding for every node v ∈ V the edge (s, v) with
weight w(v). The goal of the algorithm is then outputting d(s, v,Hw − e) for every triplet
x ∈ V,w ∈ W, e ∈ E(K). By restricting the algorithm to only use a single, specific weight
function we achieve enough “control” to fix the untruthful paths. In order to maintain the
desired running time it will be critical to keep the number of weight functions (|W |) at most
Õ(
√
n) (where n is the number of nodes of the original graph G).

3.1 Algorithm Overview
In the remainder of this section we sketch the ideas of our algorithm in high level. For the sake
of simplicity, the algorithm in this section runs in Õ(n2.5) time rather than Õ(m

√
n+ n2)

time. At the end of this section we will briefly describe how one can use some simple
techniques to reduce the running time to the near optimal of Õ(m

√
n+ n2). While sketching

the algorithm, we also ignore the query set Q, as it is only necessary when reducing the
running time of the algorithm to Õ(m

√
n+ n2). So the goal of the algorithm in this section

is to estimate d(s, x,Hw − e) for every e ∈ E(K), x ∈ V (H) and w ∈ W . The complete
algorithm and proof of correctness can be found in Sections 4 and 5 in the full version of
this paper.

In our algorithm we distinguish between a few cases according to where the edge failure
and the destination are with respect to S and T . Note that for each edge failure e and
destination node x we clearly know in which case we are. In each such case we distinguish
between different sub-cases according to different properties of the replacement path. Clearly
we do not know the replacement path a-priori, meaning that we do not know in which
sub-case we are. So when proving the correctness of our algorithm in Section 5 we show that
the estimation created for every sub-case is always at least the real value of d(s, x,Hw − e),
that is, we do not underestimate. Then we show that for the true sub-case (the sub-case
describing the true replacement path) our estimation matches the true value of d(s, x,Hw−e)
w.h.p. By returning the minimum estimation from all of the sub-cases we are guaranteed to
return the true distance w.h.p. To distinguish between the different sub-cases we first define
two useful characterization of replacement paths in Hw.

I Definition 3.1 (Weighted paths). Let e ∈ E(K), x ∈ V (H), w ∈ W , and let R be a path
from s to x in the graph Hw − e. The path R will be called weighted if it uses some edge
from E(Hw)− E(H). R will be called unweighted if it is fully contained in H − e.

The following crucial observation allows us to handle many cases involving weighted
replacement paths

I Observation 3.2. Let e ∈ P be an edge failure, x ∈ H be a destination node and w ∈W
be a weight function. If the replacement path R(s, x,Hw − e) is weighted then it leaves P at
s and does not intersect with P until after the edge failure.

To see why this observation is true, first note that all the edges in E(Hw) − E(H) begin
at s by definition, so R(s, x,Hw − e) indeed leaves P at s. Also, R(s, x,Hw − e) does not
intersect with P until after the edge failure as otherwise R(s, x,Hw − e) could have used
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the path P to get from s to the intersection point, which is a shortest path by the weight
requirements. In other words, the use of the weighted edge is unnecessary. An illustration of
such path can be seen in Figure 6.

For edge failures from P we also define the following useful characterization

I Definition 3.3 (Jumping and Departing Paths). Let e ∈ E(P ), x ∈ V (H), w ∈W , and let
R be a path from s to x in the graph Hw − e. The path R will be called jumping if it uses
some node u such that u ∈ P and u is after the edge failure e in the path P . A path that is
not jumping will be called departing.

First case – the failure is in P and the destination is in T

This case can be solved in a non-recursive manner, using observation 3.2 and somewhat
similar observations to those that were used in [5]. We distinguish between 3 different forms
the path R(s, x,Hw − e) can take:
Case 1.1: R(s, x,Hw − e) is departing and weighted.

Using observation 3.2, we can conclude that R(s, x,Hw − e) is edge-disjoint from P as it
does not intersect with P before the edge failure nor after (since it is departing). This
implies that the length of R(s, x,Hw − e) is d(s, x,Hw − P ). This value can easily be
computed by running Dijkstra’s algorithm from s in the graph Hw − P for every weight
function w.

Case 1.2: R(s, x,Hw − e) is departing and unweighted.
An illustration of this case can be seen in Figure 3. In this case one can use a technique
similar to the one used in [5] in order to compute length of the replacement path w.h.p.
That is, if e is among the last √nH edges of P , then we can use a brute force solution to
compute d(s, x,H − e). If e is of distance at least √nH from t, then the length of the
detour of R(s, x,Hw − e) is at least √nH as this path departs before e and gets to T . So
by sampling a set of nodes B of size Õ(√nH), we hit every such detour w.h.p. Assuming
we hit the detour using the pivot node b ∈ B, we can compute d(s, b,H − e) rather easily,
and have that d(s, x,H − e) = d(s, b,H − e) + d(b, x,H − P ).
In the full algorithm we denote the estimation obtained by the pivots sampling by
Depart(s, x, e). We show how to compute this estimation in step 5 of the full algorithm
and prove its correctness in Claims 5.1 and 5.2.

Case 1.3: R(s, x,Hw − e) is jumping.
As observed by the authors of [5], taking care of jumping replacement paths in the case
when x ∈ T essentially reduces to solving the RP problem, where the source node is s
and the destination node is t. This is since a jumping replacement path passes WLOG
through the separator node t.
So we focus on computing the length of R(s, t,Hw−e) for every e ∈ P and w ∈W . Using
observation 3.2, if R(s, t,Hw − e) is weighted then its length is min

u after e in P
{d(s, u,Hw −

P ) + d(u, t,H)} as it does not intersect with P until after the edge failure and from the
intersection node the replacement path can go to t using the shortest path P (as this
subpath does not contain the edge failure e). Computing this value naively for every
w ∈W and e ∈ P takes Õ(|W |nH2) time.
If R(s, t,Hw − e) is unweighted, the algorithm of [15] can be used to compute its length.
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Second case – the failure is in T and the destination is in T

We solve this case recursively. The recursive call will be invoked over the subgraph H[T ].
Because the root of the tree T is t and not s, we must change the source of our SSRP. This
implies that replacement paths that use the path P to get from s to t will be d(s, t,H) units
shorter in the recursive call than they truly are. So when we compress different forms of
replacement paths using weight functions, for normalization reasons we must also subtract
d(s, t,H) from the weight function. For simplicity, we ignore this issue in the overview, but
keep in mind that we always need to subtract d(s, t,H) from every weight function before
the algorithm passes them to the recursion call, and add this value back when it receives the
recursion’s estimation.

We distinguish between two possible forms of the replacement path: weighted and
unweighted. Rather interestingly we will see that this separation provides enough information
about the structure of the replacement path in order to compress it, and find its length
recursively.

Case 2.1: The path R(s, x,Hw − e) is weighted.
We claim that in this case, the only node from S that R(s, x,Hw − e) uses is s. To see
this note that for every node u from S that is not s, the path from s to u in the BFS
tree K does not contain the edge failure e, since e ∈ T . By the weight requirement this
path is a shortest path in Hw. Hence, if a weighted replacement path uses a node u from
S, it can use the path from s to u in K. In other words, the use of a weighted edge
was unnecessary. So in this case the replacement path is almost completely contained
within H[T ]. Therefore, in order to take care of this case, we simply need to pass the
weight function w to the recursive call. We formally prove the correctness of this case in
Claim 5.20.

Case 2.2: The path R(s, x,Hw − e) is unweighted.
Let u be the last node of R(s, x,Hw − e) that is from S. If u is t, then we can separate
R(s, x,Hw−e) into two subpaths: a path from s to t - that is the shortest path P WLOG,
and the shortest path from t to x in H[T ]− e. We can use the recursive call over H[T ]
to compute the length of the second sub-path, and when we add d(s, t,H) we will get the
length of R(s, x,Hw − e).
The more interesting case is when u 6= t. Let v denote the node right after u on
R(s, x,Hw − e). In this case we say that v gets “helped from above” by u, as illustrated
in Figure 8. Since u is the last node in R(s, x,Hw − e) that belongs to S the sub-path
of R(s, x,Hw − e) from v to x is fully contained in H[T ] − e. So we only need to
compress the sub-path of R(s, x,Hw − e) from s to v. In order to do so we define a new
weight function cT : V (T ) → N ∪ {∞} where for every vertex v , cT (v) is defined to
be min

u∈V (S)−{t}:(u,v)∈E(H)
{d(s, u,H) + 1}. The sub-path of R(s, x,Hw − e) from s to v is

represented in the graph H[T ]cT
− e as the weighted edge (t, v). So by passing cT to the

recursion and computing d(t, x,H[T ]cT
− e) we will be able to obtain the length of the

replacement path. We formally prove the correctness of this case in Claim 5.19.
We note that cT is truthful, in the sense that for every edge failure e ∈ T , cT (v) is the
length of some path from s to v in H − e. This is since the path from s to u in K is of
length d(s, u,H) and does not contain e (as previously claimed), and the edge (u, v) is of
length 1 and is not in T because u is not in T . We formally prove that cT is truthful as
part of Claim 5.18.
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Third case – the failure is in E(S)− E(P ) and the destination is in S

We handle this case similarly to the way we handled the second case. However we still
sketch the algorithm for this case as it will introduce the notation of a “help from bellow”
replacement path, which will be useful in the fourth case. We solve this case recursively. The
recursive call will be invoked over the subgraph H[S]. In order to take care of this case we
distinguish between two forms of the replacement path R(s, x,Hw − e).

Case 3.1: The path R(s, x,Hw − e) uses only nodes from S.
In this case simply passing the weight function w to the recursive call would suffice in
order to compute the length of R(s, x,Hw − e).

Case 3.2: R(s, x,Hw − e) uses a node from V (T )− {t}.
Let u be the last node in R(s, x,Hw − e) that belongs to V (T ) − {t}. Note that the
path from s to u in the BFS tree K uses only edges from P and T , meaning that it
does not use the edge failure e ∈ E(S)− E(P ). Hence, WLOG we may assume that the
sub-path from s to u in R(s, x,Hw − e) is the path from s to u in the BFS tree K as this
is a shortest path by the weight requirements. Note that this implies in particular that
R(s, x,Hw − e) is unweighted. An illustration of this case can be found in Figure 4. We
name this kind of paths “help from bellow” replacement paths. Let v be the node right
after u in R(s, x,Hw − e). Since u was the last node in R(s, x,Hw − e) that belongs to
V (T )− {t} the sub-path of R(s, x,Hw − e) from v to x is fully contained in H[S]− e.

So we only need to compress the sub-path of R(s, x,Hw − e) from s to v. In order to do
so we define a new weight function cS : V (S)→ N ∪ {∞} where for every vertex v , cS(v) is
defined to be min

u∈V (T )−{t}:(u,v)∈E(H)
{d(s, u,H) + 1}. The sub-path of R(s, x,Hw − e) from s

to v is represented in the graph H[S]cS
by the weighted edge (s, v). So by passing the weight

function cS to the recursive call over H[S], and computing d(s, x,H[S]cS
− e), we will be

able to compute the length of R(s, x,Hw − e). We formally prove the correctness of this case
in Claim 5.23.

We also claim that this function is truthful for edge failures from E(S)− E(P ) in the
sense that for every e ∈ E(S)−E(P ), cS(v) is the weight of some path from s to v in H − e.
This is since the path from s to u in K is of length d(s, u,H) and does not contain e (as
previously claimed), and the edge (u, v) is of length 1 and is not in S because u is not in S.
We formally prove this fact as part of Claim 5.22.

Note that the weight function cS is untruthful for edge failures from P , as the path from
s to u in K contains the entire path P . But if we consider the recursion’s estimation for
d(s, x,H[S]cS

− e) only for an edge failure e ∈ E(S) − E(P ), we are promised that this
estimation represents the length of a true path in H − e. If we were to add weighted edges
instead of weight functions, we would lose the ability to consider d(s, x,H[S]cS

− e) as an
estimation for d(s, x,Hw − e) only for specific edge failures.

Fourth case – the failure is in P and the destination is in S

This case is the most complicated case in our algorithm. Since we cannot allow three recursive
calls (in order to obtain the desired running time) and because we see no efficient way to
solve this case in a non-recursive manner, we will need to use the same recursive call over
H[S] as in the previous case (the third case). We will do so by adding more weight functions.

We begin by making two simple observations that take care of some easy cases, so we
could focus on the more involved ones.
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If the replacement path R(s, x,Hw − e) uses no nodes from T then one can simply use a
recursive call over the graph H[S] to compute its length.
If R(s, x,Hw − e) is departing, then since we may assume it contains nodes from T , we
can use observations similar to those made in cases (1.1) and (1.2) in order to compute
its length.

So we now focus on the more interesting case when R(s, x,Hw − e) uses nodes from T and
is jumping. Note that since R(s, x,Hw − e) is jumping it must leave the path P at some
node vi before the edge failure and return to P at some node vj after the edge failure. We
will in fact still need to separate this case into 3 further sub-cases, depending on the order
R(s, x,Hw − e) uses nodes from T . These 3 cases present the true power of weight functions,
and their ability to compress graphs in a way that is sometimes untruthful but fixable.

Case 4.1: R(s, x,Hw − e) uses a node from T after it uses vj . An illustration for this case
can be found in Figure 5.

We claim that in this case the length of R(s, x,Hw− e) is d(s, x,H[S]cS
− e)− d(s, t,H)+

d(s, t,Hw − e). While formally proving the correctness of this claim is rather technical we
attempt to give some intuition for this claim. Note that since R(s, x,Hw − e) uses a node
from T after it uses vj , it passes WLOG through t (as vj is after the edge failure). So we
can split R(s, x,Hw − e) into two sub-paths: the replacement path from s to t - which is of
length d(s, t,Hw − e), and the path from t to x - which we denote by R[t, x].

Lets us consider the path P ◦R[t, x]. We claim that even though the path R[t, x] contains
nodes from T , the recursive call over H[S] can evaluate the length of the path P ◦R[t, x]. This
is because, roughly speaking, the path P ◦R[t, x] is a sort of “help from bellow” replacement
path - as described in the the third case in which e ∈ E(S) − E(P ). So like in the “help
from bellow” case, the path P ◦ R[t, x] would be represented in H[S]cS

− e as a weighted
replacement path. When we receive the length of this weighted replacement path we remove
P and replace it with the replacement path from s to t. That is, we subtract d(s, t,H)
and add d(s, t,Hw − e). We formally prove the correctness of this estimation in Claim
5.12.As stated in the beginning of the overview, we do not know a-priori if the replacement
path indeed falls in this sub-case, so we have to make sure that we never underestimate
d(s, x,Hw − e). We formally prove this in Claim 5.6.In this case we see that weight functions
allow us to assign weights that are untruthful for some edge failures, but give us enough
control in order to fix the untruthful replacement paths.

Note that d(s, x,H[S]cS
− e) is used regardless of which weight function w the true

replacement path uses. The fact that we use one recursive call over all weight functions,
allows us to compute this term only once, which we could not do if the algorithm would have
used a different recursive call for each weight function.

Case 4.2: R(s, x,Hw − e) is weighted and it uses no nodes from T after vj . An illustration
for this case can be found in Figure 6.

Let (s, v) be the weighted edge in the replacement path R(s, x,Hw−e). Note that (s, v) is
not in P (as P contains only unweighted edges from H). Hence, by definition the replacement
path leaves the path P at s, that is, vi = s.

This implies that the sub-path from s to vj is edge disjoint to P and so its length is
d(s, vj , Hw −P ). So for every weight function w ∈W , we would have wished to define a new
weight function w|P such that w|P (vj) = d(s, vj , Hw − P ) for every vj ∈ P . We will then
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ask the recursive call to estimate d(s, x,H[S]w|P − e). This will indeed suffice in order to
compute the length of the replacement path recursively, as R(s, x,Hw − e) uses no nodes
from T after vj .

However, by doing so we increase the number of weight function passed to the recursive
call by a factor of 2. This sort of exponential growth will prevent us from achieving
the desired running time. So instead we define a new weight function w|S such that
w|S(x) = d(s, x,Hw − P ) if x ∈ P and w|S(x) = w(x) if x /∈ P . Note that for every x it
holds that w|S(x) ≤ w(x) , since the distance d(s, x,Hw − P ) is at most the weight of the
edge (s, x) ∈ Hw which is w(x). This implies that the w|S function preserves information
from both w and w|P . So instead of passing w to the recursive call, we pass w|S . Later
in Claim 5.5 we prove that the new w|S function is truthful in the sense that for every
e ∈ S, x ∈ S it holds that d(s, x,H[S]w|S − e) is at least d(s, x,Hw − e), meaning we do not
create underestimations by using w|S instead of w. In the full version of the algorithm, we
prove the correctness of this case in Claim 5.13.

So as one can see, weight functions allow us to specifically choose special nodes and decrease
their weights in order to compress more information, without sacrificing the truthfulness of
the weight function.

Case 4.3: R(s, x,Hw − e) is unweighted, it uses no nodes from T after vj .

This is the most involved and interesting case our algorithm handles. Note that since we
assume R(s, x,Hw − e) uses a node from T , and since R(s, x,Hw − e) uses no nodes from T

after vj , then the sub-path of R(s, x,Hw − e) from vi to vj must contain a node from T . An
illustration for this case can be found in Figure 7. Similarly to Case 1.2, we may assume
that the edge failure is not among the last √nH edges of P as otherwise we can use a brute
force solution to compute the length of the replacement path. Since the sub-path from vi to
vj uses a node from T , its length is at least d(vi, t,H) that is at least √nH . So w.h.p we
have sampled some pivot node b ∈ B on this sub-path. Note that the sub-path from s to
b is departing as the replacement path returns to P only at vj . So we can easily compute
d(s, b,H − e) as stated before in Case 1.2.

To compress the sub-path from b to vj we define a weight function wb for every pivot
node. We would have wished to define wb(vj) = d(b, vj , H − P ), recursively compute
d(s, x,H[S]wb

− e) and add d(s, b,H− e) when receiving the answer from the recursion. This
will indeed suffice in order to compress the length of the sub-path from vi to vj as it is edge
disjoint to P . However this is not a valid weight function as it does not necessarily fulfill
the weight requirements. So instead we define wb(vj) = d(s, b,H) + d(b, vj , H − P ) which is
a valid weight function, and we fix the output of the recursion by replacing d(s, b,H) with
d(s, b,H − e), i.e. subtracting the former and adding the latter. As in case 4.1, we need to
prove that we never underestimate d(s, x,H − e). This is formally done in Claim 5.7.

As we can see, while the weight function wb is untruthful, in the sense that wb(vj) is not
necessarily the distance of a path from s to vj in H − e, we are able to fix this untruthfulness
as we know what pivot b ∈ B is used in each weight function wb. In a sense if we could
have used a different recursive call for every b ∈ B we could have used edges from s rather
than weight functions but this would be very inefficient. The weight functions allow us to
compress all these recursive calls into one.

In the full version of the algorithm we denote the estimation made using the wb functions
by Pivot(s, x, e). We show how to compute this estimation in step 9 of the algorithm and
prove the correctness of this case in Claim 5.14.
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3.2 Running Time Analysis
First we note that the number of weight functions in each recursive call increases by Õ(√nH)
in each level of the recursion, as we add the cS , cT and {wb}b∈B weight functions, and
|B| = Õ(√nH). Since the number of the weight functions in the first call to the algorithm
is 1 (the function w ≡ ∞), and since the depth of the recursion is logarithmic we have
that |W | = Õ(

√
n) at all times. So if we simply analyze the non-recursive parts of the

algorithm, we can conclude the algorithm spends Õ(n2
H

√
n) times on the recursive call over

the sub-graph H. One can rather easily see that since the BFS trees in each level of the
recursion are edge disjoint sub-trees of the original BFS tree K̂, the total number of vertices
in each level of the recursion is at most 2n. We prove this formally in Section 6. So the total
time the algorithm spends on each level of the recursion is Õ(n2.5). Since the depth of the
recursion is logarithmic the running time of the algorithm is Õ(n2.5).

3.3 Going From Õ(n2.5) to Õ(m
√

n + n2)
In this section we sketch the ideas of improving the running time from Õ(n2.5) to Õ(m

√
n+n2).

We first note that as the number of weight functions in our algorithm is Õ(
√
n) in each

recursive call then even outputting d(s, x,Hw−e) for every triplet w ∈W,x ∈ V (H), e ∈ E(K)
is impossible (in the desired running time) as there are Õ(n2.5

H ) such triplets. In order to
overcome this issue, the algorithm does not output distances to all such triplets but rather
each recursive call is given as input a set of queries Q that is a small subset of all possible
triplets (that is Q ⊆ E(K)× V (H)×W ) and the goal is to output the distances only for the
given set of queries. Initially, Q is set to be E(K̂)× V (G)× {w}, where w ≡ ∞, and so its
size is |Q| = Õ(n2). Each recursive call over a graph H will make sure to ask only Õ(nH2)
new queries (queries which it didn’t received). Since the total number of vertices in each
level is at most 2n, the number of new queries added at each level of the recursion is Õ(n2).
Since the depth of the recursion is logarithmic, the total number of queries asked is Õ(n2).

Secondly, recall that in Case 1.3, where the edge failure is in E(P ) and the destination is
t, the algorithm computes the value of min

u is after e in P
{d(s, u,Hw − P ) + d(u, t,H)} naïvely

for every e ∈ E(P ), w ∈W . This computation costs Õ(|W |n2
H) time. However for a specific

function w ∈W , this value can be computed for all e ∈ E(P ) in Õ(nH) time using a simple
dynamic programming argument which will be shown in Section 5.2 in the complete algorithm.
Hence, we can reduce the running time of this part to Õ(|W |nH).

Finally, and most importantly, when handling departing unweighted paths (Case 1.2)
and when using the wb weight function (Case 4.3) the algorithm samples a set B of pivots of
size Õ(√nH). Then for every edge failure e ∈ P and destination node x ∈ V (H) we iterate
over B and find the pivot that provides the smallest distance estimation. This implies that
the algorithm spends Õ(|B||P ||V (H)|) time to find these pivots, which is again Õ(n2.5

H ) time.
The problem is that our estimation for the distance between an edge failure and the separator
node t is too loose. On the one hand when sampling B we say that this distance is at least√
nH , but on the other hand when bounding |P | we say that it is at most O(nH).
In order to solve this problem we use a standard scaling trick. More specifically, we

consider a logarithmic number of sub-paths {Pk}, where Pk is the sub-path of P induced by
the vertices {v ∈ V (P ) : 2k+1√nH ≥ d(v, t,H) ≥ 2k√nH}. P0 is defined to be the sub-path
of P induced by the last 2√nH vertices of P . Note that the set of paths {Pk} is an edge
disjoint partition of P , and that |Pk| = O(2k√nH). An illustration for this partition can be
seen in Figure 2. For every index k 6= 0 we then sample a random set Bk of size Õ(

√
nH

2k )
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using the sampling lemma 2.1. Now, if we consider an edge failure e ∈ Pk for k 6= 0, we know
that the distance from e to t is at least 2k√nH . So when we wish to estimate the length of
the departing replacement path in Case 1.2 or send the query (e, x, wb) to the recursive call
over H[S] in Case 4.3, we only need consider pivot nodes b that are from Bk.

Figures
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Figure 1 Tree separation.

P0

Contain ≈
2√nH vertices each

P1

Contains ≈
4√nH vertices

P2P3

Contains ≈ 8√nH vertices

s t... ... ... ... ... ... ... ...

Figure 2 The Pk partition.
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Figure 3 Departing replacement path in H.
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s vi t

v x ue

Figure 4 R(s, x,Hw − e) is a “help from below” path.

s vi vj t

x vr

e

Figure 5 Case 4.1: R(s, x,Hw − e) uses a node from T after it uses vj .

s x vj te

Figure 6 Case 4.2: R(s, x,Hw − e) is weighted, it uses no nodes from T after vj .
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s vi vj t

vr

x

b

e

Figure 7 Case 4.3: R(s, x,Hw − e) is unweighted, it uses a node from T in the sub-path from vi
to vj , and uses no nodes from T after vj .

s t

x

vu

e

Figure 8 R(s, x,Hw − e) is a “help from above” path.
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Abstract
Given x, y ∈ {0, 1}n, Set Disjointness consists in deciding whether xi = yi = 1 for some index i ∈ [n].
We study the problem of computing this function in a distributed computing scenario in which
the inputs x and y are given to the processors at the two extremities of a path of length d. Each
vertex of the path has a quantum processor that can communicate with each of its neighbours
by exchanging O(logn) qubits per round. We are interested in the number of rounds required for
computing Set Disjointness with constant probability bounded away from 1/2. We call this problem
“Set Disjointness on a Line”.

Set Disjointness on a Line was introduced by Le Gall and Magniez [12] for proving lower bounds
on the quantum distributed complexity of computing the diameter of an arbitrary network in the
CONGEST model. However, they were only able to provide a lower bound when the local memory
used by the processors on the intermediate vertices of the path is severely limited. More precisely,
their bound applies only when the local memory of each intermediate processor consists of O(logn)
qubits.

In this work, we prove an unconditional lower bound of Ω̃
( 3√

nd2+
√
n
)
rounds for Set Disjointness

on a Line with d+ 1 processors. This is the first non-trivial lower bound when there is no restriction
on the memory used by the processors. The result gives us a new lower bound of Ω̃

( 3√
nδ2 +

√
n
)
on

the number of rounds required for computing the diameter δ of any n-node network with quantum
messages of size O(logn) in the CONGEST model.

We draw a connection between the distributed computing scenario above and a new model
of query complexity. In this model, an algorithm computing a bi-variate function f (such as Set
Disjointness) has access to the inputs x and y through two separate oracles Ox and Oy, respectively.
The restriction is that the algorithm is required to alternately make d queries to Ox and d queries
to Oy, with input-independent computation in between queries. The model reflects a “switching
delay” of d queries between a “round” of queries to x and the following “round” of queries to y. The
technique we use for deriving the round lower bound for Set Disjointness on a Line also applies to
this query model. We provide an algorithm for Set Disjointness in this query model with query
complexity that matches the round lower bound stated above, up to a polylogarithmic factor. In
this sense, the round lower bound we show for Set Disjointness on a Line is optimal.
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1 Introduction

1.1 Context
The field of Distributed Computing aims to model a collection of processors or computers
communicating with each other over some network with the goal of collectively solving a
global computational task. This task may depend on the structure of the network and on
some additional data distributed among the computers. For instance, one may want to
compute the distance between two nodes of the network, or its diameter, a proper colouring,
a spanning tree, or even all-pairs shortest paths. In the context of cloud computing, data
centres serve as special nodes of the network where data are stored. These centres are
usually spread all over the world in order to minimise access time by clients. Since some
operations need to be performed in order to synchronise the centres, the distance between
these centres influence the quality of the network. For instance, one may want to decide if
there is any inconsistency between two or more remote databases, or check for the availability
of a common slot for booking some service.

In this work, we focus on the case of two remote data centres deployed on two nodes
of a distributed network, and consider the problem of computing Set Disjointness. This
fundamental problem, which we denote by Dn, consists in deciding whether two n-bit input
strings x and y modelling two remote databases have the bit 1 at the same position. (This
may indicate a schedule conflict, for instance.) The problem has been studied extensively
in Communication Complexity [20], due to its many applications in other contexts (see, for
example, the survey by Chattopadhyay and Pitassi [6]). In the most basic setting, two remote
parties, Alice and Bob, hold the inputs x and y, respectively. They communicate with each
other directly in order to solve the problem, while minimising the total length of the messages
exchanged. Depending upon the model of computation and the type of communication
channel connecting the players, the messages may be deterministic, randomised, or quantum.

The two-party communication model may be too simplistic in some scenarios, since it
assumes instantaneous communication and full access to the input (by the party that is
“given” the input). To address the first issue, we may include the communication delay as a
multiplicative factor in the communication complexity. However, this would not account for
a potentially more sophisticated use of the communication channel between the two parties.
Consider the case when the channel consists of a chain of d devices, say, repeaters. One
could use the channel as a network of processors in order to minimise the communication
delay, for instance using cached memories. With regard to the second issue – pertaining to
access to the input – the standard two-party model may not be suitable when the inputs are
massive, and may only be accessed in small parts. Such access is better modelled as in Query
Complexity, in which inputs are accessed by querying oracles (see, e.g., Refs. [5, 7, 2]).

Motivated by a concrete problem in distributed computing, we define a new model of
query complexity, two-oracle query complexity with a “switching delay”. In this model we
consider a single computer with access to two oracles, one for each input x or y, such that
switching between queries to the two inputs involves a time delay d. The delay accounts
for the lag in communication between the parties holding the inputs, for instance when the
inputs are not physically at the same place. It might be advantageous to balance this delay
by making several accesses to the same input, say x, before switching to the other input y;
we also incorporate this feature in the model. The new model attempts to address both the
issues discussed above, and is described more precisely in Section 4.1.
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There are several bridges between query complexity and communication complexity, but
we are not aware of any previous work in a query model such as the one above. The two
models – communication through a chain of d devices, and two-oracle query algorithms with
a switching delay of d – share some similarities but also have fundamental differences. In
the first model, one node has full access to half of the input. In the second model, all the
information obtained so far from the inputs x and y is kept in the same memory registers,
even when the algorithm switches between inputs.

In this work, we show that the above refinements of the two-party communication
model and the query model differ significantly from their standard versions for solving Set
Disjointness in the quantum setting. Such a difference does not occur in the setting of
deterministic or randomised computing, and we do not know whether such a difference arises
for another “natural” problem.

1.2 Application to quantum distributed computing
This study was initially motivated by a problem left open by Le Gall and Magniez [12] in the
context of distributed computing with congestion (CONGEST model). They demonstrated
the superiority of quantum computing for computing the diameter δ of some n-node net-
work (Diameter problem). They designed a quantum distributed algorithm using Õ(

√
nδ )

synchronised rounds, where simultaneous messages of O(logn) qubits are exchanged at each
round between neighbouring nodes in the network. They also established a lower bound of
Ω̃(
√
n+ δ) rounds.
Classically the congested distributed complexity of Diameter is well understood, and

requires Θ̃(n) rounds [9, 16, 8]. The lower bound is based on the construction of a two-party
communication protocol for Set Disjointness from any distributed algorithm for Diameter.
From n-bit inputs x, y, two pieces of a Θ̃(n)-node network are constructed by the two players.
Then the pieces are connected by paths of length d. The diameter of the resulting network is
either d+ 4 or d+ 5 depending on the solution to Set Disjointness with inputs (x, y). Finally,
the classical lower bound of Ω(n) for the communication complexity of Set Disjointness
implies the same lower bound on the number of rounds for any distributed algorithm for
computing Diameter.

In the quantum setting, the situation is much more complex since Set Disjointness has
communication complexity Θ(

√
n ) [17, 1]. This leads to the lower bound of Ω̃(

√
n + δ)

rounds for computing the diameter of a quantum congested network, which is significantly
smaller than the upper bound stated above. Nonetheless, Le Gall and Magniez improved
the lower bound for a restricted set of protocols in which each node has memory of size at
most poly(logn) qubits. For this, they used a more refined lower bound for Set Disjointness
for bounded-round protocols.

Recall that the number of rounds in a two-party protocol is the number of messages
exchanged, where the length of the messages may vary. Braverman, Garg, Ko, Mao, and
Touchette [3] showed that the communication complexity of r-round two-party quantum
protocols for Set Disjointness is Ω̃(n/r + r). Using this, Le Gall and Magniez showed that
any quantum distributed protocol for Diameter with congestion O(logn) and memory-size
poly(logn) per node requires Ω̃(

√
nδ ) rounds. However, without any restriction on the

memory size of the nodes, no better bound than Ω̃(
√
n+ δ) was known.

1.3 Contributions
We prove that solving Set Disjointness with the two n-bit inputs given to the processors at the
extremities of a line of d+ 1 quantum processors requires Ω̃( 3

√
nd2 ) rounds of communication

of messages of size O(logn) (Theorem 3). As a corollary, we get a new lower bound of
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Ω̃( 3
√
nδ2 ) rounds for quantum distributed protocols computing the diameter δ of an n-node

network with congestion O(logn) (Corollary 4). This bound improves on the previous
bound of Ω̃(

√
n ) rounds when δ ∈ Ω̃( 4

√
n ). The improvement is obtained by a more refined

analysis of a reduction similar to one due to Le Gall and Magniez [12].
We observe that the technique used to derive the above round lower bound for Set

Disjointness also applies to two-oracle query algorithms with switching delay d (Theorem 11).
We show that this bound, and the bound of Ω(

√
n ) coming from the standard query complexity

model, are tight to within polylogarithmic factors in different ranges of the parameters n
and d (Theorem 12). This hints at the possibility that the round lower bound for Set
Disjointness may be tight. We hope that these results and, more generally, the models we
study also provide a better understanding of quantum distributed computing.

2 Preliminaries

We assume that the reader is familiar with the basic notions of quantum information and
computation. We recommend the texts by Nielsen and Chuang [14] and Watrous [19], and
the lecture notes by de Wolf [7] for a good introduction to these topics. We briefly describe
some notation, conventions, and the main concepts that we encounter in this work.

We write pure quantum states using the ket notation, for example as |ψ〉. By a quantum
register, we mean a sequence of quantum bits (qubits). We assume for simplicity (and without
loss of generality) that the computations do not involve any intermediate measurements, i.e.,
they are unitary until the measurement that is made to obtain the output in the final step of
the computation.

We use the notation Õ(·) to indicate that we are suppressing factors that are poly-
logarithmic in the stated expression. For a positive integer k, we denote the set {1, 2, . . . , k}
by [k]. In the sequel, we consider the computation of Boolean bi-variate functions f : {0, 1}n×
{0, 1}n → {0, 1} in several models of computation.

2.1 Quantum distributed computing in the CONGEST model
We consider the quantum analogue of the standard CONGEST communication model [15].
The topology of the network is given by some graph G = (V,E). Each node in the network
has a distinct identifier and represents a processor. Initially, the nodes know nothing about
the topology of the network except the set of edges incident on them, and the total number of
nodes |V |. The nodes of the network do not share any entanglement at the beginning of the
protocol. Communication protocols are executed with round-based synchrony. In each round,
each node may perform some quantum computation on its local memory and the message
registers it uses to communicate with its neighbours. Then each node transfers one message
with b qubits to each adjacent node to complete that round. The parameter b is called the
congestion or bandwidth of the communication channels. Unless explicitly mentioned, we
assume that the congestion b is of order logn, and |V | = poly(n). All links and nodes in the
network (corresponding to the edges and vertices of G, respectively) are reliable and do not
suffer any faults.

In this paper we consider the special case of a d-line network, where G consists in a
single path of length d. The nodes/processors at the extremities receive inputs x, y ∈ {0, 1}n,
respectively, and the intermediate nodes get no input. In this setting, the quantum distributed
complexity of f on a d-line is the minimum number of rounds of any quantum protocol that
computes f with probability at least 2/3 and congestion O(logn). We assume that d ≤ n;
otherwise the complexity of any non-trivial function f of both its arguments is Θ(d).
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2.2 Quantum information theory
We refer the reader to the texts by Nielsen and Chuang [14] and Watrous [19] for the basic
elements of quantum information theory.

Unless specified, we take the base of the logarithm function to be 2. Whenever we
consider information-theoretic quantities involving quantum registers, we assume they are in
a quantum state that is implied by the context. For ease of notation, we identify the register
with the quantum state.

For a register X the von Neumann entropy of X is defined as S(X) := −Tr(X logX). If
the state space of X has dimension k, then S(X) ≤ log k. Suppose that the registers WXY Z

are in some joint quantum state. The mutual information I(X : Y ) of X and Y is defined
as I(X : Y ) := S(X) + S(Y ) − S(XY ). The conditional mutual information I(X : Y |Z)
of X and Y given Z is defined as I(X : Y |Z) := I(X : Y Z)− I(X : Z). Conditional mutual
information is invariant under the application of an isometry to any of its three arguments.
The quantity also satisfies the following important property.

I Lemma 1 (Data Processing Inequality). I(X : WY |Z) ≥ I(X : Y |Z).

We may also bound conditional mutual information as follows.

I Lemma 2. I(X : WY |Z) ≤ 2 S(W ) + I(X : Y |Z).

2.3 Quantum communication complexity
We informally describe a two-party quantum communication protocol without shared entan-
glement for computing a bi-variate Boolean function f(x, y) of n-bit inputs x, y. For a formal
definition, we refer the reader to an article by Touchette [18]. In such a protocol, we have two
parties, Alice and Bob, each of whom gets an input in registers X and Y , respectively. In
the protocols we consider, the inputs are classical, i.e., the joint quantum state in the input
registers XY is diagonal in the basis (|x, y〉 : x, y ∈ {0, 1}n). Alice and Bob’s goal is to
compute the value of the function on the pair of strings in the input registers by interacting
with each other.

The protocol proceeds in some number m ≥ 1 of rounds. At the cost of increasing the
number of rounds by 1, we assume that Alice sends the message in the first round, after
which the parties alternate in sending messages. Each party holds a work register in addition
to the input register. Initially, Alice has work register A0, Bob has B0. We denote the work
register with Alice at the end of round k ∈ [m] by Ak and that with Bob by Bk.

The qubits in the work registers A0B0 are initialised to a fixed pure state |0̄〉. Suppose
that Alice is supposed to send the message in the k-th round, for some k ∈ [m]. Alice
applies an isometry controlled by her input register X to the work register Ak−1 to obtain
registers AkMk. She then sends the message register Mk to Bob. Bob’s work register at the
end of the k-th round is then Bk := MkBk−1. After the m-th round (the last round), the
recipient of the last message, say Bob, measures his work register Bk, possibly controlled by
his input register Y , to produce the binary output of the protocol.

The length of a message is the number of qubits in the message register for that round.
The communication complexity of the protocol is the sum of the length of the m messages
in it. We say the protocol computes the function f with success probability p if for all
inputs x, y, the probability that the protocol outputs f(x, y) is at least p. The goal of the two
parties is to compute the function while minimising the communication between themselves.
The quantum communication complexity of f is the minimum communication complexity of
a quantum protocol that computes f with success probability at least 2/3.

ICALP 2020



82:6 Quantum Distributed Complexity of Set Disjointness on a Line

We analyse the conditional information loss of two-party protocols, a notion introduced
by Jain, Radhakrishnan, and Sen [10]. We define this notion following the convention and
notation given above. In particular, we assume that Alice sends the messages in the odd
rounds and Bob sends the messages in the even rounds. Suppose the input registers XY
are initialised to a pair of inputs drawn from a joint distribution over {0, 1}n × {0, 1}n. We
identify the registers with the jointly distributed input random variables. Suppose Z is some
random variable correlated with XY . The conditional information loss IL(Π |XY Z) of a
two-party protocol as above is defined as

IL(Π |XY Z) :=
∑

i∈[m], i odd

I(X : BiY |Z) +
∑

i∈[m], i even

I(Y : AiX |Z) ,

where the registers are implicitly assumed to be in the state given by the protocol. Since
Alice sends the messages in the odd rounds, and Bob in the even rounds, this quantity
measures the cumulative information about the inputs leaked to the other party, over the
course of the entire protocol.

2.4 Quantum query complexity
For a thorough introduction to the quantum query model, see, for example, the lecture
notes by de Wolf [7] and the survey by Ambainis [2]. In this work, we study algorithms for
computing a bi-variate Boolean function f(x, y) as above, using two unitary operators Ox

and Oy that provide access to the n-bit inputs x and y, respectively. For any z ∈ {0, 1}n, the
operator Oz acts as Oz|i, b〉 = |i, b⊕ zi〉 on the Hilbert space H spanned by the orthonormal
basis {|i, b〉 : i ∈ [n], b ∈ {0, 1}}. We call operators of the form Oz an oracle, and each
application of such an operator a query.

A query algorithm A with access to two oracles Ox and Oy is an alternating sequence of
unitary operators U0,Oz1 , U1,Oz2 , U2,Oz3 , U3, . . . ,Ozt , Ut, where the operators Ui act on a
Hilbert space of the form H⊗W and are independent of the inputs x, y, and the zi ∈ {x, y}.
The computation starts in a fixed state |0̄〉 ∈ H ⊗W, followed by the sequence of unitary
operators to get the final state UtOzt

· · ·U3Oz3U2Oz2U1Oz1U0|0̄〉. Finally, we measure the
first qubit in the standard basis to obtain the output A(x, y) of the algorithm. We say the
algorithm computes f with success probability p if for all inputs x, y, we have A(x, y) = f(x, y)
with probability at least p.

As in the standard quantum query model, we focus on the number of applications of the
operators Ox and Oy in an algorithm, and ignore the cost of implementing unitary operators
that are independent of x and y. The query complexity of an algorithm is the number of
queries made by the algorithm (t in the definition above). The quantum query complexity of
a function f is the minimum query complexity of any quantum algorithm that computes f
with probability at least 2/3.

3 Set Disjointness on a Line

3.1 The problem and results
The Set Disjointness problem Ln,d on a line was introduced recently by Le Gall and Mag-
niez [12] in the context of distributed computing. It is a communication problem involving d+1
communicating parties, A0,A1, . . . ,Ad, arranged on the vertices of a path of length d. The
edges of the path denote two-way quantum communication channels between the players.
Parties A0 and Ad receive n-bit inputs x, y ∈ {0, 1}n, respectively. The communication
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protocol proceeds in rounds. In each round, parties Ai−1 and Ai may exchange b qubits in
each direction, for each i ∈ [d], i.e., the bandwidth of each communication channel is b. The
goal of the parties is to determine if the sets x and y intersect or not. I.e., they would like to
compute the Set Disjointness function Dn(x, y) :=

∨n
i=1(xi ∧ yi).

We are interested in the number of rounds required to solve Ln,d. We readily get a
quantum protocol Πd for this problem with O(

√
nd ) rounds by following an observation

due to Zalka [22] on black-box algorithms that make “parallel” queries. Let Π denote the
optimal two-party quantum communication protocol for Set Disjointness due to Aaronson and
Ambainis [1]. In Πd, we partition the n-bit inputs into d parts of length n/d each. Parties A0
and Ad then simulate Π on each of the d corresponding pairs of inputs independently.
The protocol Π runs in

√
n/d rounds with O(1) qubits of communication per instance of

length n/d, per round. So the total communication to or from A0 due to one round of
the d runs of Π is O(d). Since O(d) qubits can be transmitted across the path of length d
in O(d) rounds of the multi-party protocol, the protocol Πd simulates the d parallel runs
of Π in O(

√
nd ) rounds. Since Π finds an intersection with probability at least 3/4 whenever

there is one, and does not err when there is no intersection, the protocol Πd also has the
same correctness probability.

Le Gall and Magniez observed that a lower bound of Ω(
√
n/b) for the number of rounds

follows from the Ω(
√
n ) lower bound due to Razborov [17] on the quantum communication

complexity of Set Disjointness in the two-party communication model. This is because two
parties, Alice and Bob, may use any r-round protocol for Ln,d to solve Set Disjointness
with 2rb qubits of communication: Alice simulates A0 and Bob simulates the actions of the
remaining parties A1,A2, . . . ,Ad. An Ω(d) lower bound is also immediate due to the need for
communication between A0 and Ad.

Le Gall and Magniez devised a more intricate simulation of a protocol for Ln,d by two
parties, thereby obtaining a two-party protocol for Set Disjointness. Using this, they obtained
a round lower bound of Ω̃(

√
nd ) for Ln,d when the bandwidth b of each communication channel

(in each round) and the local memory of the players A1,A2, . . . ,Ad−1 are both O(logn) qubits.
We show that a similar simulation leads to an unconditional round lower bound of Ω(nd2/b)1/3

by studying the conditional information loss of the resulting two-party protocol, a quantity
introduced and analysed by Jain, Radhakrishnan, and Sen [10].

I Theorem 3. Any quantum communication protocol with error probability at most 1/3 for
the Set Disjointness problem Ln,d on the line requires Ω( 3

√
nd2/b ) rounds.

This bound dominates the straightforward bound of Ω(
√
n/b) mentioned above when d ≥

4
√
n/b, i.e., when d ≥ 4

√
n/ logn when b = logn. However, we do not know if either bound

is achievable in their respective parameter regimes. We study the optimality via a related
query model in Section 4.

Using the reduction from Ln,d to the problem of computing the diameter described in
the proof of Theorem 1.3 in Ref. [12], we get a new lower bound for quantum distributed
protocols for the diameter problem in the CONGEST model.

I Corollary 4. Any quantum distributed protocol for computing the diameter δ of n-node
networks with congestion O(logn) requires Ω̃( 3

√
nδ2 ) rounds.

3.2 Overview of the proof
We begin by giving an overview of the proof of Theorem 3. It rests on a simulation of a
protocol for Ln,d by a two-party protocol for Set Disjointness similar to one designed by
Le Gall and Magniez [12, Theorem 6.1]. (In fact, the simulation works for any multi-party
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protocol over the path of length d that computes some bi-variate function g(x, y) of the
inputs given to A0 and Ad.) The idea underlying the simulation is the following. Suppose
we have a protocol Πd for the problem Ln,d. In the two-party protocol Π, Alice begins by
holding the registers used by parties A0,A1, . . . ,Ad−1. She then simulates all the actions –
local operations and communication – of the parties A0,A1, . . . ,Ad−1 from the first round
in Πd, except for the communication between Ad−1 and Ad. This is possible because these
actions do not depend on the input y held by Ad. She can continue simulating the actions
of A0,A1, . . . ,Ad−2 from the second round, except the communication between Ad−2 and Ad−1,
as these do not depend on the message from Ad from the first round in Πd. Continuing
this way, Alice can simulate the actions of A0,A1, . . . ,Ad−i from round i of Πd, except the
communication between Ad−i and Ad−i+1, for all i ∈ [d], all in one round of Π. These actions
constitute Alice’s local operations in the first round of Π.

Alice then sends Bob the local memory used by parties A1, . . . ,Ad−1 in Πd, along with
the qubits sent by Ai−1 to Ai in round i, for each i ∈ [d]. (Alice retains the input x and the
memory used by party A0.) This constitutes the first message from Alice to Bob in Π.

Given the first message, Bob can simulate the remaining actions of A1,A2, . . . ,Ad from
the first d rounds of Πd, except for the communication from A1 to A0. These constitute his
local operations in the second round of Π. He then sends Alice the qubits sent by A1 to A0
in round d of Πd along with the local memory used by the parties Ai, for i ∈ [d− 1]. (Bob
retains the input y and the local memory used by party Ad.) This constitutes the second
message in Π.

In effect, the simulation implements the first d rounds of Πd in two rounds of Π (see
Figure 2). The same idea allows Alice and Bob to simulate the rest of the protocol Πd while
implementing each successive block of d rounds of Πd in two rounds of Π, with communic-
ation per round of the order of d(b + s), where b is the bandwidth of the communication
channels in Πd, and s is a bound on the number of qubits of local memory used by any of
the parties A1, . . . ,Ad−1. Building on the detailed description of protocols on the line in
Section 3.3, we describe the simulation formally in Section 3.4, and show the following.

I Lemma 5. Given any r-round quantum protocol Πd for Ln,d over communication channels
with bandwidth b in which each party uses local memory at most s, there is a two-party
quantum protocol Π for Set Disjointness Dn that has 2dr/de rounds, total communication of
order r(b+ s), and has the same probability of success.

The communication required by a k-round bounded-error two-party protocol for Set
Disjointness is Ω(n/(k log8 k)) [3, Theorem A]. This gives us the lower bound of Ω̃(

√
nd )

due to Le Gall and Magniez on the number of rounds r in Πd, when b+ s is of order logn.
In fact, we may derive an unconditional lower bound on the number of rounds from the

same reduction, one that holds without any restriction on the local memory used by the
parties in Πd. This is because the state of the registers of any party Ai, with i ∈ [d− 1], in
an r-round protocol has support on a fixed subspace of dimension at most (2b)r, independent
of the inputs, at any moment in the protocol. This follows from an argument due to Yao [21],
by considering a two party protocol obtained by grouping all parties except Ai together. So
the state of party Ai at any point in the protocol can be mapped to one over r log(2b) qubits.
Using this for the bound s on the local memory, bandwidth b ∈ O(logn), and the same
reasoning as before, we get a lower bound of Ω̃(nd)1/3 on the number of rounds r in Πd.

We refine the analysis further to obtain Theorem 3, by appealing to an information-
theoretic argument. The key insight is that regardless of the size of the local memory
maintained by the parties Ai, for i ∈ [d − 1], the new information they get about either
input x or y in one round is bounded by b, the length of the message from A0 or Ad,
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respectively. Thus, the total information contained in the memory and messages of these
parties about the inputs may be bounded by rb at any point in the protocol (see Lemma 8).
This carries over to the information contained in the messages between Alice and Bob in the
two-party protocol Π derived from Πd. The conditional information loss of the two-party
protocol may then be bounded by rbm, where m is the number of rounds in Π (for suitable
distributions over the inputs).

I Lemma 6. Let XY Z be jointly distributed random variables such that X,Y ∈ {0, 1}n,
and X and Y are independent given Z. The conditional information loss of the two-party
protocol Π for Set Disjointness Dn mentioned in Lemma 5 is bounded as IL(Π |XY Z) ∈
O(r2b/d).

We derive this as Corollary 9 in Section 3.5.
We now appeal to the following result due to Jain et al. [10] on the conditional information

loss of bounded-round protocols for Set Disjointness. This result is implicit in the proof of
the Ω(n/m2) lower bound on the communication required by m-round quantum protocols
for Set Disjointness.

I Theorem 7 (Jain, Radhakrishnan, Sen [10]). There is a choice of distribution for XY Z
such that X,Y ∈ {0, 1}n, the random variables X and Y are independent given Z, and for
any bounded-error two-party quantum communication protocol Γ for Set Disjointness Dn

with m rounds, the conditional information loss IL(Γ |XY Z) is at least Ω(n/m).

Since the number of rounds m in the two-party protocol Π is at most 2dr/de, we conclude
the Ω(nd2/b)1/3 lower bound stated in Theorem 3.

3.3 Formal description of protocols on the line
In order to establish the lemmas stated in Section 3.2, we introduce some conventions and
notation associated with multi-party protocols on the line of the sort we study for Ln,d. By
using unitary implementations of measurements, we assume that all the local operations
in the protocol, except the final measurement to obtain the outcome of the protocol, are
unitary. We also assume that the parties do not share any entangled state at the beginning
of the protocol, and that the input registers X with A0 and Y with Ad are read-only. I.e., the
input registers may only be used as control registers during the protocol, and are retained by
the respective parties throughout.

For ease of exposition, we use subscripts on the registers held by all the parties to
implicitly specify the state of the register and the party which last modified the state of
the register. At the beginning of round t + 1, for t ∈ {0, 1, . . . , r − 1}, party A0 holds
registers XA0,t L1,t, party Ad holds registers Rd−1,t Ad,t Y , and for i ∈ [d− 1], party Ai holds
registers Ri−1,t Ai,t Li+1,t. The registers Li,t and Ri,t, for i ∈ [0, d] and t ∈ [0, r], all have b
qubits. Except in the first round, the first subscript at the beginning of the round, say i,
indicates that party Ai held the register in the previous round, and sent the register to the
neighbour that holds it in the current round.

At the beginning of the first round, registers X and Y are initialized to the input to
the protocol. The qubits in the remaining registers are all initialized to a fixed pure state,
say |0〉, independent of the inputs.

In round t + 1, each party Ai applies a unitary operation to the registers they hold.
We view the unitary operation as an isometry Ui,t+1 that maps the registers to another
sequence of registers with the same dimensions. The registers XA0,t L1,t with A0 are mapped
to XA0,t+1 R0,t+1. The registers Rd−1,t Ad,t Y with Ad are mapped to Ld,t+1 Ad,t+1 Y .
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<latexit sha1_base64="82DCbQjUA2efBpZ6h5jOUzGElvg=">AAAB83icbVA9SwNBFHwXNcb4FbW0WQyCVbgLipYRG8sEzAfkjrC32UuW7O0du3tCOPIjbNJYKCJY+Ucs7cQ/4+aSQhMHFoaZ93iz48ecKW3bX1ZubX0jv1nYKm7v7O7tlw4OWypKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2Rzczv31PpWKRuNPjmHohHggWMIK1kVw3xHqogvR60qv2SmW7YmdAq8RZkHIt3/j+mD681XulT7cfkSSkQhOOleo6dqy9FEvNCKeTopsoGmMywgPaNVTgkCovzTJP0KlR+iiIpHlCo0z9vZHiUKlx6JvJLOOyNxP/87qJDq68lIk40VSQ+aEg4UhHaFYA6jNJieZjQzCRzGRFZIglJtrUVDQlOMtfXiWtasU5r1w0nHKtCnMU4BhO4AwcuIQa3EIdmkAghik8wbOVWI/Wi/U6H81Zi50j+APr/QdbgpWa</latexit>

A3

<latexit sha1_base64="8zfIlv4NKkGFPdAB7cSNYxuxfFE=">AAAB83icbVC7SgNBFL3rI8b4ilraDAbBKuxGRcuIjWUC5gHZJcxOZpMhs7PLzKwQlnyETRoLRQQrf8TSTvwZJ5sUmnhg4HDOvdwzx485U9q2v6yV1bX13EZ+s7C1vbO7V9w/aKookYQ2SMQj2faxopwJ2tBMc9qOJcWhz2nLH95M/dY9lYpF4k6PYuqFuC9YwAjWRnLdEOuBCtLrcfesWyzZZTsDWibOnJSqufr3x+ThrdYtfrq9iCQhFZpwrFTHsWPtpVhqRjgdF9xE0RiTIe7TjqECh1R5aZZ5jE6M0kNBJM0TGmXq740Uh0qNQt9MZhkXvan4n9dJdHDlpUzEiaaCzA4FCUc6QtMCUI9JSjQfGYKJZCYrIgMsMdGmpoIpwVn88jJpVsrOefmi7pSqFZghD0dwDKfgwCVU4RZq0AACMUzgCZ6txHq0XqzX2eiKNd85hD+w3n8AXQaVmw==</latexit>

A0,0

<latexit sha1_base64="3yRa+aXXLrYQUI5kcxCtIDzOjy8=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLiI1lBHOBZAmzk0kyZHZ2mTkrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIpTDoup/OwuLS8spqZi27vrG5tZ3b2a2aKNGMV1gkI10PqOFSKF5BgZLXY81pGEheC/pXo7x2x7URkbrFQcz9kHaV6AhG0Vq1y1bqnrjDVi7vFtyxyDx4U8iX9r/fzddbr9zKfTTbEUtCrpBJakzDc2P0U6pRMMmH2WZieExZn3Z5w6KiITd+Oh53SI6s0yadSNunkIzd3x0pDY0ZhIGtDCn2zGw2Mv/LGgl2LvxUqDhBrtjko04iCUZktDtpC80ZyoEFyrSwsxLWo5oytBfK2iN4syvPQ7VY8E4LZzdevlSEiTJwAIdwDB6cQwmuoQwVYNCHe3iEJyd2Hpxn52VSuuBMe/bgj5zXH08Vk08=</latexit>

L1,0

<latexit sha1_base64="APrYCf9wLKDy2y2/XVdypWOVZLs=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI2FRQRzgWQJs5NJMmR2dpk5K4QlD2FjoYitvfgidr6Cvb2TS6GJPwx8/P85zDkniKUw6LqfzsLi0vLKamYtu76xubWd29mtmijRjFdYJCNdD6jhUiheQYGS12PNaRhIXgv6l6O8dse1EZG6xUHM/ZB2legIRtFatetW6p24w1Yu7xbcscg8eFPIl/a/383XW6/cyn002xFLQq6QSWpMw3Nj9FOqUTDJh9lmYnhMWZ92ecOioiE3fjoed0iOrNMmnUjbp5CM3d8dKQ2NGYSBrQwp9sxsNjL/yxoJdi78VKg4Qa7Y5KNOIglGZLQ7aQvNGcqBBcq0sLMS1qOaMrQXytojeLMrz0O1WPBOC2c3Xr5UhIkycACHcAwenEMJrqAMFWDQh3t4hCcndh6cZ+dlUrrgTHv24I+c1x9hipNb</latexit>

R0,0

<latexit sha1_base64="khUiKZOhx59jwFHQWOaP9YLM3fQ=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI1lFHOBZAmzk0kyZHZ2mTkrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIpTDoup/OwuLS8spqZi27vrG5tZ3b2a2aKNGMV1gkI10PqOFSKF5BgZLXY81pGEheC/qXo7x2x7URkbrFQcz9kHaV6AhG0Vq1m1bqnrjDVi7vFtyxyDx4U8iX9r/fzddbr9zKfTTbEUtCrpBJakzDc2P0U6pRMMmH2WZieExZn3Z5w6KiITd+Oh53SI6s0yadSNunkIzd3x0pDY0ZhIGtDCn2zGw2Mv/LGgl2LvxUqDhBrtjko04iCUZktDtpC80ZyoEFyrSwsxLWo5oytBfK2iN4syvPQ7VY8E4LZ9devlSEiTJwAIdwDB6cQwmuoAwVYNCHe3iEJyd2Hpxn52VSuuBMe/bgj5zXH2k/k2A=</latexit>

A1,0

<latexit sha1_base64="PkKz75le1duby1Y6VjSfCqnIKvQ=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLiI1lBHOBZAmzk0kyZHZ2mTkrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIpTDoup/OwuLS8spqZi27vrG5tZ3b2a2aKNGMV1gkI10PqOFSKF5BgZLXY81pGEheC/pXo7x2x7URkbrFQcz9kHaV6AhG0Vq1y1bqnbjDVi7vFtyxyDx4U8iX9r/fzddbr9zKfTTbEUtCrpBJakzDc2P0U6pRMMmH2WZieExZn3Z5w6KiITd+Oh53SI6s0yadSNunkIzd3x0pDY0ZhIGtDCn2zGw2Mv/LGgl2LvxUqDhBrtjko04iCUZktDtpC80ZyoEFyrSwsxLWo5oytBfK2iN4syvPQ7VY8E4LZzdevlSEiTJwAIdwDB6cQwmuoQwVYNCHe3iEJyd2Hpxn52VSuuBMe/bgj5zXH1Cck1A=</latexit>

L2,0

<latexit sha1_base64="HlAVk1x2SQ3JD8J09FCweSYde3s=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI2FRQRzgWQJs5OTZMjs7DIzK4QlD2FjoYitvfgidr6Cvb2TS6GJPwx8/P85zDkniAXXxnU/nYXFpeWV1cxadn1jc2s7t7Nb1VGiGFZYJCJVD6hGwSVWDDcC67FCGgYCa0H/cpTX7lBpHslbM4jRD2lX8g5n1Firdt1KiyfusJXLuwV3LDIP3hTypf3vd/311iu3ch/NdsSSEKVhgmrd8NzY+ClVhjOBw2wz0RhT1qddbFiUNETtp+Nxh+TIOm3SiZR90pCx+7sjpaHWgzCwlSE1PT2bjcz/skZiOhd+ymWcGJRs8lEnEcREZLQ7aXOFzIiBBcoUt7MS1qOKMmMvlLVH8GZXnodqseCdFs5uvHypCBNl4AAO4Rg8OIcSXEEZKsCgD/fwCE9O7Dw4z87LpHTBmfbswR85rz9jEZNc</latexit>

L3,0

<latexit sha1_base64="FiVGEreOh+2jxr/gQ/8b+4Diut4=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaBmwsLCKYCyRLmJ3MJkNmZ4eZWSEseQgbC0Vs7cUXsfMV7O2dXApN/GHg4//PYc45geRMG9f9dDILi0vLK9nV3Nr6xuZWfnunpuNEEVolMY9VI8CaciZo1TDDaUMqiqOA03rQvxzl9TuqNIvFrRlI6ke4K1jICDbWql+305Njd9jOF9yiOxaaB28KhfLe97v+eutV2vmPVicmSUSFIRxr3fRcafwUK8MIp8NcK9FUYtLHXdq0KHBEtZ+Oxx2iQ+t0UBgr+4RBY/d3R4ojrQdRYCsjbHp6NhuZ/2XNxIQXfsqETAwVZPJRmHBkYjTaHXWYosTwgQVMFLOzItLDChNjL5SzR/BmV56HWqnonRbPbrxCuQQTZWEfDuAIPDiHMlxBBapAoA/38AhPjnQenGfnZVKacaY9u/BHzusPZJiTXQ==</latexit>

R1,0

<latexit sha1_base64="UTxUq7uw/raqOQkj99iqI3dzqQE=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI1lFHOBZAmzk0kyZHZ2mTkrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIpTDoup/OwuLS8spqZi27vrG5tZ3b2a2aKNGMV1gkI10PqOFSKF5BgZLXY81pGEheC/qXo7x2x7URkbrFQcz9kHaV6AhG0Vq1m1bqnbjDVi7vFtyxyDx4U8iX9r/fzddbr9zKfTTbEUtCrpBJakzDc2P0U6pRMMmH2WZieExZn3Z5w6KiITd+Oh53SI6s0yadSNunkIzd3x0pDY0ZhIGtDCn2zGw2Mv/LGgl2LvxUqDhBrtjko04iCUZktDtpC80ZyoEFyrSwsxLWo5oytBfK2iN4syvPQ7VY8E4LZ9devlSEiTJwAIdwDB6cQwmuoAwVYNCHe3iEJyd2Hpxn52VSuuBMe/bgj5zXH2rGk2E=</latexit>

A2,0

<latexit sha1_base64="PvzP6gcxlYVOU2TOIBe+36oqR9w=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLiI1lBHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9qlNfuUGkeyVsziNEPaVfyDmfUWKt22UqLJ+6wlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzm68fKkIE2XgAA7hGDw4hxJcQxkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP1Ijk1E=</latexit>

Y

<latexit sha1_base64="41IGFeqg1CxWD9v6bBK5HJZXH90=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIWZoOhFDHjxmIBZJBlCT6cmadOz0N0jhJAn8OJBEa/6EL6HF/Ft7CwHTfyh4eP/q+iq8hPBlXacbyuztLyyupZdtzc2t7Z3crt7NRWnkmGVxSKWDZ8qFDzCquZaYCORSENfYN3vX43z+j1KxePoRg8S9ELajXjAGdXGqty2c3mn4ExEFsGdQf7yw75I3r/scjv32erELA0x0kxQpZquk2hvSKXmTODIbqUKE8r6tItNgxENUXnDyaAjcmScDgliaV6kycT93TGkoVKD0DeVIdU9NZ+Nzf+yZqqDc2/IoyTVGLHpR0EqiI7JeGvS4RKZFgMDlEluZiWsRyVl2tzGNkdw51dehFqx4J4UTituvlSEqbJwAIdwDC6cQQmuoQxVYIDwAE/wbN1Zj9aL9TotzViznn34I+vtB/8skAM=</latexit>

A3,0

<latexit sha1_base64="A4qITtInGCB2TtcQLmS6NbKYUIc=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaRmwsI5gLJEuYncwmQ2Znh5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjmB5Ewb1/10MguLS8sr2dXc2vrG5lZ+e6em40QRWiUxj1UjwJpyJmjVMMNpQyqKo4DTetC/GuX1O6o0i8WtGUjqR7grWMgINtaqX7bTk2N32M4X3KI7FpoHbwqF8t73u/5661Xa+Y9WJyZJRIUhHGvd9Fxp/BQrwwinw1wr0VRi0sdd2rQocES1n47HHaJD63RQGCv7hEFj93dHiiOtB1FgKyNseno2G5n/Zc3EhBd+yoRMDBVk8lGYcGRiNNoddZiixPCBBUwUs7Mi0sMKE2MvlLNH8GZXnodaqeidFs9uvEK5BBNlYR8O4Ag8OIcyXEMFqkCgD/fwCE+OdB6cZ+dlUppxpj278EfO6w9TqpNS</latexit>

R2,0

<latexit sha1_base64="HMszw0rXjF7m5rGmQkGaQ8OueaI=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI1lFHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9ylNfuUGkeyVsziNEPaVfyDmfUWKt200qLJ+6wlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzq69fKkIE2XgAA7hGDw4hxJcQRkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP2xNk2I=</latexit>

(1)

U0,1

<latexit sha1_base64="3LYjipOgCCbUyqWIose/6la4D2E=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNyhaBmwsI7hJIFnC7GQ2GTIzu8zMCmHJQ9hYKGJrL76Ina9gb+/kUmjiDwMf/38Oc84JE860cd1PJ7e0vLK6ll8vbGxube8Ud/fqOk4VoT6JeayaIdaUM0l9wwynzURRLEJOG+Hgapw37qjSLJa3ZpjQQOCeZBEj2Fir4Xcy99QbdYolt+xOhBbBm0GpevD9rr/e+rVO8aPdjUkqqDSEY61bnpuYIMPKMMLpqNBONU0wGeAebVmUWFAdZJNxR+jYOl0Uxco+adDE/d2RYaH1UIS2UmDT1/PZ2Pwva6UmugwyJpPUUEmmH0UpRyZG491RlylKDB9awEQxOysifawwMfZCBXsEb37lRahXyt5Z+fzGK1UrMFUeDuEITsCDC6jCNdTABwIDuIdHeHIS58F5dl6mpTln1rMPf+S8/gBvYpNk</latexit>

(2)

(3)

0/1

measurement

U1,1

<latexit sha1_base64="MTfH6bNZolIVBsjDrbyhcLeBVGk=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhJyhaBmwsI7hJIFnC7GQ2GTI7u8zMCmHJQ9hYKGJrL76Ina9gb+/kUmjiDwMf/38Oc84JEsG1cd1PJ7e0vLK6ll8vbGxube8Ud/fqOk4VZR6NRayaAdFMcMk8w41gzUQxEgWCNYLB1Thv3DGleSxvzTBhfkR6koecEmOthtfJ8CkedYolt+xOhBYBz6BUPfh+119v/Vqn+NHuxjSNmDRUEK1b2E2MnxFlOBVsVGinmiWEDkiPtSxKEjHtZ5NxR+jYOl0Uxso+adDE/d2RkUjrYRTYyoiYvp7PxuZ/WSs14aWfcZmkhkk6/ShMBTIxGu+OulwxasTQAqGK21kR7RNFqLEXKtgj4PmVF6FeKeOz8vkNLlUrMFUeDuEITgDDBVThGmrgAYUB3MMjPDmJ8+A8Oy/T0pwz69mHP3JefwBw6ZNl</latexit>

U2,1

<latexit sha1_base64="+JGKrwqv0jxH96WYfo+BuBSU0kc=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNyhaBmwsI7hJIFnC7GQ2GTIzu8zMCmHJQ9hYKGJrL76Ina9gb+/kUmjiDwMf/38Oc84JE860cd1PJ7e0vLK6ll8vbGxube8Ud/fqOk4VoT6JeayaIdaUM0l9wwynzURRLEJOG+Hgapw37qjSLJa3ZpjQQOCeZBEj2Fir4Xeyyqk36hRLbtmdCC2CN4NS9eD7XX+99Wud4ke7G5NUUGkIx1q3PDcxQYaVYYTTUaGdappgMsA92rIosaA6yCbjjtCxdbooipV90qCJ+7sjw0LroQhtpcCmr+ezsflf1kpNdBlkTCapoZJMP4pSjkyMxrujLlOUGD60gIlidlZE+lhhYuyFCvYI3vzKi1CvlL2z8vmNV6pWYKo8HMIRnIAHF1CFa6iBDwQGcA+P8OQkzoPz7LxMS3POrGcf/sh5/QFycJNm</latexit>

U3,1

<latexit sha1_base64="4/0TTpKssDxFy0AAXZv2BUdtI5Y=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsRkXLgI1lBDcJJEuYncwmQ2Zml5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjlhwpk2rvvpLCwuLa+s5tby6xubW9uFnd2ajlNFqE9iHqtGiDXlTFLfMMNpI1EUi5DTeti/GuX1O6o0i+WtGSQ0ELgrWcQINtaq++3s9MQbtgtFt+SOhebBm0Kxsv/9rr/eetV24aPViUkqqDSEY62bnpuYIMPKMMLpMN9KNU0w6eMubVqUWFAdZONxh+jIOh0Uxco+adDY/d2RYaH1QIS2UmDT07PZyPwva6YmugwyJpPUUEkmH0UpRyZGo91RhylKDB9YwEQxOysiPawwMfZCeXsEb3bleaiVS95Z6fzGK1bKMFEODuAQjsGDC6jANVTBBwJ9uIdHeHIS58F5dl4mpQvOtGcP/sh5/QFz95Nn</latexit>

U3,2

<latexit sha1_base64="x3Kl/rlF73lG7GsLcQsP1vfAwrY=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsRkXLgI1lBDcJJEuYncwmQ2Zml5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjlhwpk2rvvpLCwuLa+s5tby6xubW9uFnd2ajlNFqE9iHqtGiDXlTFLfMMNpI1EUi5DTeti/GuX1O6o0i+WtGSQ0ELgrWcQINtaq++3s9KQ8bBeKbskdC82DN4ViZf/7XX+99artwkerE5NUUGkIx1o3PTcxQYaVYYTTYb6Vappg0sdd2rQosaA6yMbjDtGRdTooipV90qCx+7sjw0LrgQhtpcCmp2ezkflf1kxNdBlkTCapoZJMPopSjkyMRrujDlOUGD6wgIlidlZEelhhYuyF8vYI3uzK81Arl7yz0vmNV6yUYaIcHMAhHIMHF1CBa6iCDwT6cA+P8OQkzoPz7LxMShecac8e/JHz+gN1fJNo</latexit>

U3,3

<latexit sha1_base64="1xGYj8Qqb7ULa1DA3Vdxp3KMbcY=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhN1G0XLCxjOAmgWQJs5PZZMjs7DIzK4QlD2FjoYitvfgidr6Cvb2TS6GJPwx8/P85zDknSDhT2rY/rdzS8srqWn69sLG5tb1T3N2rqziVhHok5rFsBlhRzgT1NNOcNhNJcRRw2ggGV+O8cUelYrG41cOE+hHuCRYygrWxGl4nq55WR51iyS7bE6FFcGZQcg++39XXW7/WKX60uzFJIyo04ViplmMn2s+w1IxwOiq0U0UTTAa4R1sGBY6o8rPJuCN0bJwuCmNpntBo4v7uyHCk1DAKTGWEdV/NZ2Pzv6yV6vDSz5hIUk0FmX4UphzpGI13R10mKdF8aAATycysiPSxxESbCxXMEZz5lRehXik7Z+XzG6fkVmCqPBzCEZyAAxfgwjXUwAMCA7iHR3iyEuvBerZepqU5a9azD39kvf4AdwGTaQ==</latexit>

U2,3

<latexit sha1_base64="rz2wxzP1dwkgQHald1O+otGnoCI=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsRkXLgI1lBDcJJEuYncwmQ2Zml5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjlhwpk2rvvpLCwuLa+s5tby6xubW9uFnd2ajlNFqE9iHqtGiDXlTFLfMMNpI1EUi5DTeti/GuX1O6o0i+WtGSQ0ELgrWcQINtaq++2sfHI6bBeKbskdC82DN4ViZf/7XX+99artwkerE5NUUGkIx1o3PTcxQYaVYYTTYb6Vappg0sdd2rQosaA6yMbjDtGRdTooipV90qCx+7sjw0LrgQhtpcCmp2ezkflf1kxNdBlkTCapoZJMPopSjkyMRrujDlOUGD6wgIlidlZEelhhYuyF8vYI3uzK81Arl7yz0vmNV6yUYaIcHMAhHIMHF1CBa6iCDwT6cA+P8OQkzoPz7LxMShecac8e/JHz+gN1epNo</latexit>

U1,3

<latexit sha1_base64="2iQf1KlZX4MHnpxI14wR0+IZyuA=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsRkXLgI1lBDcJJEuYncwmQ2Zml5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjlhwpk2rvvpLCwuLa+s5tby6xubW9uFnd2ajlNFqE9iHqtGiDXlTFLfMMNpI1EUi5DTeti/GuX1O6o0i+WtGSQ0ELgrWcQINtaq++3MOzkdtgtFt+SOhebBm0Kxsv/9rr/eetV24aPViUkqqDSEY62bnpuYIMPKMMLpMN9KNU0w6eMubVqUWFAdZONxh+jIOh0Uxco+adDY/d2RYaH1QIS2UmDT07PZyPwva6YmugwyJpPUUEkmH0UpRyZGo91RhylKDB9YwEQxOysiPawwMfZCeXsEb3bleaiVS95Z6fzGK1bKMFEODuAQjsGDC6jANVTBBwJ9uIdHeHIS58F5dl4mpQvOtGcP/sh5/QFz85Nn</latexit>

U0,3

<latexit sha1_base64="5Ioq5F/llO12wcjVnDBQcJJQDbM=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsRkXLgI1lBDcJJEuYncwmQ2Zml5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjlhwpk2rvvpLCwuLa+s5tby6xubW9uFnd2ajlNFqE9iHqtGiDXlTFLfMMNpI1EUi5DTeti/GuX1O6o0i+WtGSQ0ELgrWcQINtaq++3MPTkdtgtFt+SOhebBm0Kxsv/9rr/eetV24aPViUkqqDSEY62bnpuYIMPKMMLpMN9KNU0w6eMubVqUWFAdZONxh+jIOh0Uxco+adDY/d2RYaH1QIS2UmDT07PZyPwva6YmugwyJpPUUEkmH0UpRyZGo91RhylKDB9YwEQxOysiPawwMfZCeXsEb3bleaiVS95Z6fzGK1bKMFEODuAQjsGDC6jANVTBBwJ9uIdHeHIS58F5dl4mpQvOtGcP/sh5/QFybJNm</latexit>

U0,2

<latexit sha1_base64="lfmLGj9BeLuQi8z3nxEfosqCGdw=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNyhaBmwsI7hJIFnC7GQ2GTI7O8zMCmHJQ9hYKGJrL76Ina9gb+/kUmjiDwMf/38Oc84JJWfauO6nk1taXlldy68XNja3tneKu3t1naSKUJ8kPFHNEGvKmaC+YYbTplQUxyGnjXBwNc4bd1RplohbM5Q0iHFPsIgRbKzV8DuZe1oZdYolt+xOhBbBm0GpevD9rr/e+rVO8aPdTUgaU2EIx1q3PFeaIMPKMMLpqNBONZWYDHCPtiwKHFMdZJNxR+jYOl0UJco+YdDE/d2R4VjrYRzayhibvp7PxuZ/WSs10WWQMSFTQwWZfhSlHJkEjXdHXaYoMXxoARPF7KyI9LHCxNgLFewRvPmVF6FeKXtn5fMbr1StwFR5OIQjOAEPLqAK11ADHwgM4B4e4cmRzoPz7LxMS3POrGcf/sh5/QFw55Nl</latexit>

U1,2

<latexit sha1_base64="ZtthzgcixvGWrtrMXbPrRrdr7Co=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNyhaBmwsI7hJIFnC7GQ2GTIzu8zMCmHJQ9hYKGJrL76Ina9gb+/kUmjiDwMf/38Oc84JE860cd1PJ7e0vLK6ll8vbGxube8Ud/fqOk4VoT6JeayaIdaUM0l9wwynzURRLEJOG+Hgapw37qjSLJa3ZpjQQOCeZBEj2Fir4Xcy77Qy6hRLbtmdCC2CN4NS9eD7XX+99Wud4ke7G5NUUGkIx1q3PDcxQYaVYYTTUaGdappgMsA92rIosaA6yCbjjtCxdbooipV90qCJ+7sjw0LroQhtpcCmr+ezsflf1kpNdBlkTCapoZJMP4pSjkyMxrujLlOUGD60gIlidlZE+lhhYuyFCvYI3vzKi1CvlL2z8vmNV6pWYKo8HMIRnIAHF1CFa6iBDwQGcA+P8OQkzoPz7LxMS3POrGcf/sh5/QFybpNm</latexit>

U2,2

<latexit sha1_base64="yqv9eF7K/ZbfB+n0LkFKK3TyKiY=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhd1G0DNhYRnCTQLKE2clsMmR2dpmZFcKSh7CxUMTWXnwRO1/B3t7ZJIUm/jDw8f/nMOecIOFMadv+tApLyyura8X10sbm1vZOeXevoeJUEuqRmMeyFWBFORPU00xz2kokxVHAaTMYXuV5845KxWJxq0cJ9SPcFyxkBGtjNb1u5p664265YlftidAiODOo1A6+39XX26DeLX90ejFJIyo04ViptmMn2s+w1IxwOi51UkUTTIa4T9sGBY6o8rPJuGN0bJweCmNpntBo4v7uyHCk1CgKTGWE9UDNZ7n5X9ZOdXjpZ0wkqaaCTD8KU450jPLdUY9JSjQfGcBEMjMrIgMsMdHmQiVzBGd+5UVouFXnrHp+41RqLkxVhEM4ghNw4AJqcA118IDAEO7hEZ6sxHqwnq2XaWnBmvXswx9Zrz9z9ZNn</latexit>

X

<latexit sha1_base64="v0o5ACgr3ftHt/xR4/YfqJjRFAc=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJWkKLoRC25ctmAv0IYymZ60YyeTMDMRSugTuHGhiFt9CN/Djfg2Ti8Lrf4w8PH/5zDnnCDhTGnX/bJyS8srq2v5dXtjc2t7p7C711BxKinWacxj2QqIQs4E1jXTHFuJRBIFHJvB8GqSN+9QKhaLGz1K0I9IX7CQUaKNVWt1C0W35E7l/AVvDsXLd/siefu0q93CR6cX0zRCoSknSrU9N9F+RqRmlOPY7qQKE0KHpI9tg4JEqPxsOujYOTJOzwljaZ7QztT92ZGRSKlRFJjKiOiBWswm5n9ZO9XhuZ8xkaQaBZ19FKbc0bEz2drpMYlU85EBQiUzszp0QCSh2tzGNkfwFlf+C41yyTspnda8YqUMM+XhAA7hGDw4gwpcQxXqQAHhHh7hybq1Hqxn62VWmrPmPfvwS9brN/2okAI=</latexit>

X

<latexit sha1_base64="v0o5ACgr3ftHt/xR4/YfqJjRFAc=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJWkKLoRC25ctmAv0IYymZ60YyeTMDMRSugTuHGhiFt9CN/Djfg2Ti8Lrf4w8PH/5zDnnCDhTGnX/bJyS8srq2v5dXtjc2t7p7C711BxKinWacxj2QqIQs4E1jXTHFuJRBIFHJvB8GqSN+9QKhaLGz1K0I9IX7CQUaKNVWt1C0W35E7l/AVvDsXLd/siefu0q93CR6cX0zRCoSknSrU9N9F+RqRmlOPY7qQKE0KHpI9tg4JEqPxsOujYOTJOzwljaZ7QztT92ZGRSKlRFJjKiOiBWswm5n9ZO9XhuZ8xkaQaBZ19FKbc0bEz2drpMYlU85EBQiUzszp0QCSh2tzGNkfwFlf+C41yyTspnda8YqUMM+XhAA7hGDw4gwpcQxXqQAHhHh7hybq1Hqxn62VWmrPmPfvwS9brN/2okAI=</latexit>

X

<latexit sha1_base64="v0o5ACgr3ftHt/xR4/YfqJjRFAc=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJWkKLoRC25ctmAv0IYymZ60YyeTMDMRSugTuHGhiFt9CN/Djfg2Ti8Lrf4w8PH/5zDnnCDhTGnX/bJyS8srq2v5dXtjc2t7p7C711BxKinWacxj2QqIQs4E1jXTHFuJRBIFHJvB8GqSN+9QKhaLGz1K0I9IX7CQUaKNVWt1C0W35E7l/AVvDsXLd/siefu0q93CR6cX0zRCoSknSrU9N9F+RqRmlOPY7qQKE0KHpI9tg4JEqPxsOujYOTJOzwljaZ7QztT92ZGRSKlRFJjKiOiBWswm5n9ZO9XhuZ8xkaQaBZ19FKbc0bEz2drpMYlU85EBQiUzszp0QCSh2tzGNkfwFlf+C41yyTspnda8YqUMM+XhAA7hGDw4gwpcQxXqQAHhHh7hybq1Hqxn62VWmrPmPfvwS9brN/2okAI=</latexit>

X

<latexit sha1_base64="v0o5ACgr3ftHt/xR4/YfqJjRFAc=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJWkKLoRC25ctmAv0IYymZ60YyeTMDMRSugTuHGhiFt9CN/Djfg2Ti8Lrf4w8PH/5zDnnCDhTGnX/bJyS8srq2v5dXtjc2t7p7C711BxKinWacxj2QqIQs4E1jXTHFuJRBIFHJvB8GqSN+9QKhaLGz1K0I9IX7CQUaKNVWt1C0W35E7l/AVvDsXLd/siefu0q93CR6cX0zRCoSknSrU9N9F+RqRmlOPY7qQKE0KHpI9tg4JEqPxsOujYOTJOzwljaZ7QztT92ZGRSKlRFJjKiOiBWswm5n9ZO9XhuZ8xkaQaBZ19FKbc0bEz2drpMYlU85EBQiUzszp0QCSh2tzGNkfwFlf+C41yyTspnda8YqUMM+XhAA7hGDw4gwpcQxXqQAHhHh7hybq1Hqxn62VWmrPmPfvwS9brN/2okAI=</latexit>

X

<latexit sha1_base64="v0o5ACgr3ftHt/xR4/YfqJjRFAc=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJWkKLoRC25ctmAv0IYymZ60YyeTMDMRSugTuHGhiFt9CN/Djfg2Ti8Lrf4w8PH/5zDnnCDhTGnX/bJyS8srq2v5dXtjc2t7p7C711BxKinWacxj2QqIQs4E1jXTHFuJRBIFHJvB8GqSN+9QKhaLGz1K0I9IX7CQUaKNVWt1C0W35E7l/AVvDsXLd/siefu0q93CR6cX0zRCoSknSrU9N9F+RqRmlOPY7qQKE0KHpI9tg4JEqPxsOujYOTJOzwljaZ7QztT92ZGRSKlRFJjKiOiBWswm5n9ZO9XhuZ8xkaQaBZ19FKbc0bEz2drpMYlU85EBQiUzszp0QCSh2tzGNkfwFlf+C41yyTspnda8YqUMM+XhAA7hGDw4gwpcQxXqQAHhHh7hybq1Hqxn62VWmrPmPfvwS9brN/2okAI=</latexit>

X

<latexit sha1_base64="v0o5ACgr3ftHt/xR4/YfqJjRFAc=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJWkKLoRC25ctmAv0IYymZ60YyeTMDMRSugTuHGhiFt9CN/Djfg2Ti8Lrf4w8PH/5zDnnCDhTGnX/bJyS8srq2v5dXtjc2t7p7C711BxKinWacxj2QqIQs4E1jXTHFuJRBIFHJvB8GqSN+9QKhaLGz1K0I9IX7CQUaKNVWt1C0W35E7l/AVvDsXLd/siefu0q93CR6cX0zRCoSknSrU9N9F+RqRmlOPY7qQKE0KHpI9tg4JEqPxsOujYOTJOzwljaZ7QztT92ZGRSKlRFJjKiOiBWswm5n9ZO9XhuZ8xkaQaBZ19FKbc0bEz2drpMYlU85EBQiUzszp0QCSh2tzGNkfwFlf+C41yyTspnda8YqUMM+XhAA7hGDw4gwpcQxXqQAHhHh7hybq1Hqxn62VWmrPmPfvwS9brN/2okAI=</latexit>

Y

<latexit sha1_base64="41IGFeqg1CxWD9v6bBK5HJZXH90=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIWZoOhFDHjxmIBZJBlCT6cmadOz0N0jhJAn8OJBEa/6EL6HF/Ft7CwHTfyh4eP/q+iq8hPBlXacbyuztLyyupZdtzc2t7Z3crt7NRWnkmGVxSKWDZ8qFDzCquZaYCORSENfYN3vX43z+j1KxePoRg8S9ELajXjAGdXGqty2c3mn4ExEFsGdQf7yw75I3r/scjv32erELA0x0kxQpZquk2hvSKXmTODIbqUKE8r6tItNgxENUXnDyaAjcmScDgliaV6kycT93TGkoVKD0DeVIdU9NZ+Nzf+yZqqDc2/IoyTVGLHpR0EqiI7JeGvS4RKZFgMDlEluZiWsRyVl2tzGNkdw51dehFqx4J4UTituvlSEqbJwAIdwDC6cQQmuoQxVYIDwAE/wbN1Zj9aL9TotzViznn34I+vtB/8skAM=</latexit>

Y

<latexit sha1_base64="41IGFeqg1CxWD9v6bBK5HJZXH90=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIWZoOhFDHjxmIBZJBlCT6cmadOz0N0jhJAn8OJBEa/6EL6HF/Ft7CwHTfyh4eP/q+iq8hPBlXacbyuztLyyupZdtzc2t7Z3crt7NRWnkmGVxSKWDZ8qFDzCquZaYCORSENfYN3vX43z+j1KxePoRg8S9ELajXjAGdXGqty2c3mn4ExEFsGdQf7yw75I3r/scjv32erELA0x0kxQpZquk2hvSKXmTODIbqUKE8r6tItNgxENUXnDyaAjcmScDgliaV6kycT93TGkoVKD0DeVIdU9NZ+Nzf+yZqqDc2/IoyTVGLHpR0EqiI7JeGvS4RKZFgMDlEluZiWsRyVl2tzGNkdw51dehFqx4J4UTituvlSEqbJwAIdwDC6cQQmuoQxVYIDwAE/wbN1Zj9aL9TotzViznn34I+vtB/8skAM=</latexit>

Y

<latexit sha1_base64="41IGFeqg1CxWD9v6bBK5HJZXH90=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIWZoOhFDHjxmIBZJBlCT6cmadOz0N0jhJAn8OJBEa/6EL6HF/Ft7CwHTfyh4eP/q+iq8hPBlXacbyuztLyyupZdtzc2t7Z3crt7NRWnkmGVxSKWDZ8qFDzCquZaYCORSENfYN3vX43z+j1KxePoRg8S9ELajXjAGdXGqty2c3mn4ExEFsGdQf7yw75I3r/scjv32erELA0x0kxQpZquk2hvSKXmTODIbqUKE8r6tItNgxENUXnDyaAjcmScDgliaV6kycT93TGkoVKD0DeVIdU9NZ+Nzf+yZqqDc2/IoyTVGLHpR0EqiI7JeGvS4RKZFgMDlEluZiWsRyVl2tzGNkdw51dehFqx4J4UTituvlSEqbJwAIdwDC6cQQmuoQxVYIDwAE/wbN1Zj9aL9TotzViznn34I+vtB/8skAM=</latexit>

Y

<latexit sha1_base64="41IGFeqg1CxWD9v6bBK5HJZXH90=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIWZoOhFDHjxmIBZJBlCT6cmadOz0N0jhJAn8OJBEa/6EL6HF/Ft7CwHTfyh4eP/q+iq8hPBlXacbyuztLyyupZdtzc2t7Z3crt7NRWnkmGVxSKWDZ8qFDzCquZaYCORSENfYN3vX43z+j1KxePoRg8S9ELajXjAGdXGqty2c3mn4ExEFsGdQf7yw75I3r/scjv32erELA0x0kxQpZquk2hvSKXmTODIbqUKE8r6tItNgxENUXnDyaAjcmScDgliaV6kycT93TGkoVKD0DeVIdU9NZ+Nzf+yZqqDc2/IoyTVGLHpR0EqiI7JeGvS4RKZFgMDlEluZiWsRyVl2tzGNkdw51dehFqx4J4UTituvlSEqbJwAIdwDC6cQQmuoQxVYIDwAE/wbN1Zj9aL9TotzViznn34I+vtB/8skAM=</latexit>

Y

<latexit sha1_base64="41IGFeqg1CxWD9v6bBK5HJZXH90=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIWZoOhFDHjxmIBZJBlCT6cmadOz0N0jhJAn8OJBEa/6EL6HF/Ft7CwHTfyh4eP/q+iq8hPBlXacbyuztLyyupZdtzc2t7Z3crt7NRWnkmGVxSKWDZ8qFDzCquZaYCORSENfYN3vX43z+j1KxePoRg8S9ELajXjAGdXGqty2c3mn4ExEFsGdQf7yw75I3r/scjv32erELA0x0kxQpZquk2hvSKXmTODIbqUKE8r6tItNgxENUXnDyaAjcmScDgliaV6kycT93TGkoVKD0DeVIdU9NZ+Nzf+yZqqDc2/IoyTVGLHpR0EqiI7JeGvS4RKZFgMDlEluZiWsRyVl2tzGNkdw51dehFqx4J4UTituvlSEqbJwAIdwDC6cQQmuoQxVYIDwAE/wbN1Zj9aL9TotzViznn34I+vtB/8skAM=</latexit>

Y

<latexit sha1_base64="41IGFeqg1CxWD9v6bBK5HJZXH90=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIWZoOhFDHjxmIBZJBlCT6cmadOz0N0jhJAn8OJBEa/6EL6HF/Ft7CwHTfyh4eP/q+iq8hPBlXacbyuztLyyupZdtzc2t7Z3crt7NRWnkmGVxSKWDZ8qFDzCquZaYCORSENfYN3vX43z+j1KxePoRg8S9ELajXjAGdXGqty2c3mn4ExEFsGdQf7yw75I3r/scjv32erELA0x0kxQpZquk2hvSKXmTODIbqUKE8r6tItNgxENUXnDyaAjcmScDgliaV6kycT93TGkoVKD0DeVIdU9NZ+Nzf+yZqqDc2/IoyTVGLHpR0EqiI7JeGvS4RKZFgMDlEluZiWsRyVl2tzGNkdw51dehFqx4J4UTituvlSEqbJwAIdwDC6cQQmuoQxVYIDwAE/wbN1Zj9aL9TotzViznn34I+vtB/8skAM=</latexit>

A0,3

<latexit sha1_base64="pQgjBA4Vy2Bi7pUksW+IRcpkCCU=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaRmwsI5gLJEuYncwmQ2Znh5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjmB5Ewb1/10MguLS8sr2dXc2vrG5lZ+e6em40QRWiUxj1UjwJpyJmjVMMNpQyqKo4DTetC/GuX1O6o0i8WtGUjqR7grWMgINtaqX7ZT9/hk2M4X3KI7FpoHbwqF8t73u/5661Xa+Y9WJyZJRIUhHGvd9Fxp/BQrwwinw1wr0VRi0sdd2rQocES1n47HHaJD63RQGCv7hEFj93dHiiOtB1FgKyNseno2G5n/Zc3EhBd+yoRMDBVk8lGYcGRiNNoddZiixPCBBUwUs7Mi0sMKE2MvlLNH8GZXnodaqeidFs9uvEK5BBNlYR8O4Ag8OIcyXEMFqkCgD/fwCE+OdB6cZ+dlUppxpj278EfO6w9TpJNS</latexit>

A1,3

<latexit sha1_base64="/ZtS4dnQgZDuICXz6ea5/oLpjZE=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaRmwsI5gLJEuYncwmQ2Znh5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjmB5Ewb1/10MguLS8sr2dXc2vrG5lZ+e6em40QRWiUxj1UjwJpyJmjVMMNpQyqKo4DTetC/GuX1O6o0i8WtGUjqR7grWMgINtaqX7ZT7/hk2M4X3KI7FpoHbwqF8t73u/5661Xa+Y9WJyZJRIUhHGvd9Fxp/BQrwwinw1wr0VRi0sdd2rQocES1n47HHaJD63RQGCv7hEFj93dHiiOtB1FgKyNseno2G5n/Zc3EhBd+yoRMDBVk8lGYcGRiNNoddZiixPCBBUwUs7Mi0sMKE2MvlLNH8GZXnodaqeidFs9uvEK5BBNlYR8O4Ag8OIcyXEMFqkCgD/fwCE+OdB6cZ+dlUppxpj278EfO6w9VK5NT</latexit>

A1,2

<latexit sha1_base64="z/qXalftkmSrV106lOcU2IDkw2U=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLiI1lBHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9qlNfuUGkeyVsziNEPaVfyDmfUWKt22Uq9k+Kwlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzm68fKkIE2XgAA7hGDw4hxJcQxkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP1Omk1I=</latexit>

A1,1

<latexit sha1_base64="VC4UWn/D7kTFvCf7m3dqOpvDrtU=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhJ0S0jNhYRjAXSJYwO5lNhszOLjOzQljyEDYWitjaiy9i5yvY2zu5FJr4w8DH/5/DnHP8WHBtXPfTySwtr6yuZddzG5tb2zv53b26jhJFWY1GIlJNn2gmuGQ1w41gzVgxEvqCNfzB1Thv3DGleSRvzTBmXkh6kgecEmOtxmUnxad41MkX3KI7EVoEPINC5eD7XX+99aud/Ee7G9EkZNJQQbRuYTc2XkqU4VSwUa6daBYTOiA91rIoSci0l07GHaFj63RRECn7pEET93dHSkKth6FvK0Ni+no+G5v/Za3EBBdeymWcGCbp9KMgEchEaLw76nLFqBFDC4QqbmdFtE8UocZeKGePgOdXXoR6qYjLxbMbXKiUYKosHMIRnACGc6jANVShBhQGcA+P8OTEzoPz7LxMSzPOrGcf/sh5/QFSIZNR</latexit>

A2,1

<latexit sha1_base64="ifqxIeVL1kMUP6WoXBqCgJ3r+p8=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLiI1lBHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9qlNfuUGkeyVsziNEPaVfyDmfUWKt22UqLJ96wlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzm68fKkIE2XgAA7hGDw4hxJcQxkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP1Ook1I=</latexit>

A2,2

<latexit sha1_base64="Qgwigdj6tnXz1gYVRlo+eW9LE5E=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsLoqWERvLCOYCyRJmJ7PJkJnZZWZWCEsewsZCEVt78UXsfAV7eyeXQhN/GPj4/3OYc06YcKaN6346C4tLyyurubX8+sbm1nZhZ7em41QRWiUxj1UjxJpyJmnVMMNpI1EUi5DTeti/GuX1O6o0i+WtGSQ0ELgrWcQINtaqX7Yz/8QftgtFt+SOhebBm0KxvP/9rr/eepV24aPViUkqqDSEY62bnpuYIMPKMMLpMN9KNU0w6eMubVqUWFAdZONxh+jIOh0Uxco+adDY/d2RYaH1QIS2UmDT07PZyPwva6YmuggyJpPUUEkmH0UpRyZGo91RhylKDB9YwEQxOysiPawwMfZCeXsEb3bleaj5Je+0dHbjFcs+TJSDAziEY/DgHMpwDRWoAoE+3MMjPDmJ8+A8Oy+T0gVn2rMHf+S8/gBVLZNT</latexit>

A2,3

<latexit sha1_base64="e/mImFBKR03o9rg88e34LV1IMPs=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaRmwsI5gLJEuYncwmQ2Znh5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjmB5Ewb1/10MguLS8sr2dXc2vrG5lZ+e6em40QRWiUxj1UjwJpyJmjVMMNpQyqKo4DTetC/GuX1O6o0i8WtGUjqR7grWMgINtaqX7bT0vHJsJ0vuEV3LDQP3hQK5b3vd/311qu08x+tTkySiApDONa66bnS+ClWhhFOh7lWoqnEpI+7tGlR4IhqPx2PO0SH1umgMFb2CYPG7u+OFEdaD6LAVkbY9PRsNjL/y5qJCS/8lAmZGCrI5KMw4cjEaLQ76jBFieEDC5goZmdFpIcVJsZeKGeP4M2uPA+1UtE7LZ7deIVyCSbKwj4cwBF4cA5luIYKVIFAH+7hEZ4c6Tw4z87LpDTjTHt24Y+c1x9WspNU</latexit>

A0,1

<latexit sha1_base64="xbZOUf1JtyGEtXrE7RYYxBeWmKo=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLiI1lBHOBZAmzk0kyZHZ2mTkrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIpTDoup/OwuLS8spqZi27vrG5tZ3b2a2aKNGMV1gkI10PqOFSKF5BgZLXY81pGEheC/pXo7x2x7URkbrFQcz9kHaV6AhG0Vq1y1bqnnjDVi7vFtyxyDx4U8iX9r/fzddbr9zKfTTbEUtCrpBJakzDc2P0U6pRMMmH2WZieExZn3Z5w6KiITd+Oh53SI6s0yadSNunkIzd3x0pDY0ZhIGtDCn2zGw2Mv/LGgl2LvxUqDhBrtjko04iCUZktDtpC80ZyoEFyrSwsxLWo5oytBfK2iN4syvPQ7VY8E4LZzdevlSEiTJwAIdwDB6cQwmuoQwVYNCHe3iEJyd2Hpxn52VSuuBMe/bgj5zXH1Cak1A=</latexit>

A0,2

<latexit sha1_base64="SvcbCeiiWDsir2lK1gMBeADbu0s=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLiI1lBHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9qlNfuUGkeyVsziNEPaVfyDmfUWKt22Urdk+Kwlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzm68fKkIE2XgAA7hGDw4hxJcQxkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP1Ifk1E=</latexit>

A3,3

<latexit sha1_base64="iLe83iuXYlkx1OVqm1p5PAUKYSM=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsJoqWERvLCOYCyRJmJ7PJkNnZYWZWCEsewsZCEVt78UXsfAV7eyeXQhN/GPj4/3OYc04gOdPGdT+dhcWl5ZXVzFp2fWNzazu3s1vTcaIIrZKYx6oRYE05E7RqmOG0IRXFUcBpPehfjfL6HVWaxeLWDCT1I9wVLGQEG2vVL9tp6aQ0bOfybsEdC82DN4V8ef/7XX+99Srt3EerE5MkosIQjrVueq40foqVYYTTYbaVaCox6eMubVoUOKLaT8fjDtGRdToojJV9wqCx+7sjxZHWgyiwlRE2PT2bjcz/smZiwgs/ZUImhgoy+ShMODIxGu2OOkxRYvjAAiaK2VkR6WGFibEXytojeLMrz0OtWPBOC2c3Xr5chIkycACHcAwenEMZrqECVSDQh3t4hCdHOg/Os/MyKV1wpj178EfO6w9YOZNV</latexit>

A3,3

<latexit sha1_base64="iLe83iuXYlkx1OVqm1p5PAUKYSM=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsJoqWERvLCOYCyRJmJ7PJkNnZYWZWCEsewsZCEVt78UXsfAV7eyeXQhN/GPj4/3OYc04gOdPGdT+dhcWl5ZXVzFp2fWNzazu3s1vTcaIIrZKYx6oRYE05E7RqmOG0IRXFUcBpPehfjfL6HVWaxeLWDCT1I9wVLGQEG2vVL9tp6aQ0bOfybsEdC82DN4V8ef/7XX+99Srt3EerE5MkosIQjrVueq40foqVYYTTYbaVaCox6eMubVoUOKLaT8fjDtGRdToojJV9wqCx+7sjxZHWgyiwlRE2PT2bjcz/smZiwgs/ZUImhgoy+ShMODIxGu2OOkxRYvjAAiaK2VkR6WGFibEXytojeLMrz0OtWPBOC2c3Xr5chIkycACHcAwenEMZrqECVSDQh3t4hCdHOg/Os/MyKV1wpj178EfO6w9YOZNV</latexit>

A0,2

<latexit sha1_base64="SvcbCeiiWDsir2lK1gMBeADbu0s=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLiI1lBHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9qlNfuUGkeyVsziNEPaVfyDmfUWKt22Urdk+Kwlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzm68fKkIE2XgAA7hGDw4hxJcQxkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP1Ifk1E=</latexit>

A0,1

<latexit sha1_base64="xbZOUf1JtyGEtXrE7RYYxBeWmKo=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLiI1lBHOBZAmzk0kyZHZ2mTkrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIpTDoup/OwuLS8spqZi27vrG5tZ3b2a2aKNGMV1gkI10PqOFSKF5BgZLXY81pGEheC/pXo7x2x7URkbrFQcz9kHaV6AhG0Vq1y1bqnnjDVi7vFtyxyDx4U8iX9r/fzddbr9zKfTTbEUtCrpBJakzDc2P0U6pRMMmH2WZieExZn3Z5w6KiITd+Oh53SI6s0yadSNunkIzd3x0pDY0ZhIGtDCn2zGw2Mv/LGgl2LvxUqDhBrtjko04iCUZktDtpC80ZyoEFyrSwsxLWo5oytBfK2iN4syvPQ7VY8E4LZzdevlSEiTJwAIdwDB6cQwmuoQwVYNCHe3iEJyd2Hpxn52VSuuBMe/bgj5zXH1Cak1A=</latexit>

A2,3

<latexit sha1_base64="e/mImFBKR03o9rg88e34LV1IMPs=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaRmwsI5gLJEuYncwmQ2Znh5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjmB5Ewb1/10MguLS8sr2dXc2vrG5lZ+e6em40QRWiUxj1UjwJpyJmjVMMNpQyqKo4DTetC/GuX1O6o0i8WtGUjqR7grWMgINtaqX7bT0vHJsJ0vuEV3LDQP3hQK5b3vd/311qu08x+tTkySiApDONa66bnS+ClWhhFOh7lWoqnEpI+7tGlR4IhqPx2PO0SH1umgMFb2CYPG7u+OFEdaD6LAVkbY9PRsNjL/y5qJCS/8lAmZGCrI5KMw4cjEaLQ76jBFieEDC5goZmdFpIcVJsZeKGeP4M2uPA+1UtE7LZ7deIVyCSbKwj4cwBF4cA5luIYKVIFAH+7hEZ4c6Tw4z87LpDTjTHt24Y+c1x9WspNU</latexit>

A2,2

<latexit sha1_base64="Qgwigdj6tnXz1gYVRlo+eW9LE5E=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsLoqWERvLCOYCyRJmJ7PJkJnZZWZWCEsewsZCEVt78UXsfAV7eyeXQhN/GPj4/3OYc06YcKaN6346C4tLyyurubX8+sbm1nZhZ7em41QRWiUxj1UjxJpyJmnVMMNpI1EUi5DTeti/GuX1O6o0i+WtGSQ0ELgrWcQINtaqX7Yz/8QftgtFt+SOhebBm0KxvP/9rr/eepV24aPViUkqqDSEY62bnpuYIMPKMMLpMN9KNU0w6eMubVqUWFAdZONxh+jIOh0Uxco+adDY/d2RYaH1QIS2UmDT07PZyPwva6YmuggyJpPUUEkmH0UpRyZGo91RhylKDB9YwEQxOysiPawwMfZCeXsEb3bleaj5Je+0dHbjFcs+TJSDAziEY/DgHMpwDRWoAoE+3MMjPDmJ8+A8Oy+T0gVn2rMHf+S8/gBVLZNT</latexit>

A2,1

<latexit sha1_base64="ifqxIeVL1kMUP6WoXBqCgJ3r+p8=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLiI1lBHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9qlNfuUGkeyVsziNEPaVfyDmfUWKt22UqLJ96wlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzm68fKkIE2XgAA7hGDw4hxJcQxkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP1Ook1I=</latexit>

A1,1

<latexit sha1_base64="VC4UWn/D7kTFvCf7m3dqOpvDrtU=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhJ0S0jNhYRjAXSJYwO5lNhszOLjOzQljyEDYWitjaiy9i5yvY2zu5FJr4w8DH/5/DnHP8WHBtXPfTySwtr6yuZddzG5tb2zv53b26jhJFWY1GIlJNn2gmuGQ1w41gzVgxEvqCNfzB1Thv3DGleSRvzTBmXkh6kgecEmOtxmUnxad41MkX3KI7EVoEPINC5eD7XX+99aud/Ee7G9EkZNJQQbRuYTc2XkqU4VSwUa6daBYTOiA91rIoSci0l07GHaFj63RRECn7pEET93dHSkKth6FvK0Ni+no+G5v/Za3EBBdeymWcGCbp9KMgEchEaLw76nLFqBFDC4QqbmdFtE8UocZeKGePgOdXXoR6qYjLxbMbXKiUYKosHMIRnACGc6jANVShBhQGcA+P8OTEzoPz7LxMSzPOrGcf/sh5/QFSIZNR</latexit>

A1,2

<latexit sha1_base64="z/qXalftkmSrV106lOcU2IDkw2U=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLiI1lBHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9qlNfuUGkeyVsziNEPaVfyDmfUWKt22Uq9k+Kwlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzm68fKkIE2XgAA7hGDw4hxJcQxkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP1Omk1I=</latexit>

A0,3

<latexit sha1_base64="pQgjBA4Vy2Bi7pUksW+IRcpkCCU=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaRmwsI5gLJEuYncwmQ2Znh5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjmB5Ewb1/10MguLS8sr2dXc2vrG5lZ+e6em40QRWiUxj1UjwJpyJmjVMMNpQyqKo4DTetC/GuX1O6o0i8WtGUjqR7grWMgINtaqX7ZT9/hk2M4X3KI7FpoHbwqF8t73u/5661Xa+Y9WJyZJRIUhHGvd9Fxp/BQrwwinw1wr0VRi0sdd2rQocES1n47HHaJD63RQGCv7hEFj93dHiiOtB1FgKyNseno2G5n/Zc3EhBd+yoRMDBVk8lGYcGRiNNoddZiixPCBBUwUs7Mi0sMKE2MvlLNH8GZXnodaqeidFs9uvEK5BBNlYR8O4Ag8OIcyXEMFqkCgD/fwCE+OdB6cZ+dlUppxpj278EfO6w9TpJNS</latexit>

A1,3

<latexit sha1_base64="/ZtS4dnQgZDuICXz6ea5/oLpjZE=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaRmwsI5gLJEuYncwmQ2Znh5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjmB5Ewb1/10MguLS8sr2dXc2vrG5lZ+e6em40QRWiUxj1UjwJpyJmjVMMNpQyqKo4DTetC/GuX1O6o0i8WtGUjqR7grWMgINtaqX7ZT7/hk2M4X3KI7FpoHbwqF8t73u/5661Xa+Y9WJyZJRIUhHGvd9Fxp/BQrwwinw1wr0VRi0sdd2rQocES1n47HHaJD63RQGCv7hEFj93dHiiOtB1FgKyNseno2G5n/Zc3EhBd+yoRMDBVk8lGYcGRiNNoddZiixPCBBUwUs7Mi0sMKE2MvlLNH8GZXnodaqeidFs9uvEK5BBNlYR8O4Ag8OIcyXEMFqkCgD/fwCE+OdB6cZ+dlUppxpj278EfO6w9VK5NT</latexit>

A3,1

<latexit sha1_base64="b+vvH7DgSQHUjuK/6UepRDh0nWo=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaRmwsI5gLJEuYncwmQ2Znh5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjmB5Ewb1/10MguLS8sr2dXc2vrG5lZ+e6em40QRWiUxj1UjwJpyJmjVMMNpQyqKo4DTetC/GuX1O6o0i8WtGUjqR7grWMgINtaqX7bTk2Nv2M4X3KI7FpoHbwqF8t73u/5661Xa+Y9WJyZJRIUhHGvd9Fxp/BQrwwinw1wr0VRi0sdd2rQocES1n47HHaJD63RQGCv7hEFj93dHiiOtB1FgKyNseno2G5n/Zc3EhBd+yoRMDBVk8lGYcGRiNNoddZiixPCBBUwUs7Mi0sMKE2MvlLNH8GZXnodaqeidFs9uvEK5BBNlYR8O4Ag8OIcyXEMFqkCgD/fwCE+OdB6cZ+dlUppxpj278EfO6w9VL5NT</latexit>

A3,2

<latexit sha1_base64="SkrK0i3M17nOrhPRnQg5x3EDaQk=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaRmwsI5gLJEuYncwmQ2Znh5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjmB5Ewb1/10MguLS8sr2dXc2vrG5lZ+e6em40QRWiUxj1UjwJpyJmjVMMNpQyqKo4DTetC/GuX1O6o0i8WtGUjqR7grWMgINtaqX7bTk+PSsJ0vuEV3LDQP3hQK5b3vd/311qu08x+tTkySiApDONa66bnS+ClWhhFOh7lWoqnEpI+7tGlR4IhqPx2PO0SH1umgMFb2CYPG7u+OFEdaD6LAVkbY9PRsNjL/y5qJCS/8lAmZGCrI5KMw4cjEaLQ76jBFieEDC5goZmdFpIcVJsZeKGeP4M2uPA+1UtE7LZ7deIVyCSbKwj4cwBF4cA5luIYKVIFAH+7hEZ4c6Tw4z87LpDTjTHt24Y+c1x9WtJNU</latexit>

A3,1

<latexit sha1_base64="b+vvH7DgSQHUjuK/6UepRDh0nWo=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaRmwsI5gLJEuYncwmQ2Znh5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjmB5Ewb1/10MguLS8sr2dXc2vrG5lZ+e6em40QRWiUxj1UjwJpyJmjVMMNpQyqKo4DTetC/GuX1O6o0i8WtGUjqR7grWMgINtaqX7bTk2Nv2M4X3KI7FpoHbwqF8t73u/5661Xa+Y9WJyZJRIUhHGvd9Fxp/BQrwwinw1wr0VRi0sdd2rQocES1n47HHaJD63RQGCv7hEFj93dHiiOtB1FgKyNseno2G5n/Zc3EhBd+yoRMDBVk8lGYcGRiNNoddZiixPCBBUwUs7Mi0sMKE2MvlLNH8GZXnodaqeidFs9uvEK5BBNlYR8O4Ag8OIcyXEMFqkCgD/fwCE+OdB6cZ+dlUppxpj278EfO6w9VL5NT</latexit>

A3,2

<latexit sha1_base64="SkrK0i3M17nOrhPRnQg5x3EDaQk=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaRmwsI5gLJEuYncwmQ2Znh5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjmB5Ewb1/10MguLS8sr2dXc2vrG5lZ+e6em40QRWiUxj1UjwJpyJmjVMMNpQyqKo4DTetC/GuX1O6o0i8WtGUjqR7grWMgINtaqX7bTk+PSsJ0vuEV3LDQP3hQK5b3vd/311qu08x+tTkySiApDONa66bnS+ClWhhFOh7lWoqnEpI+7tGlR4IhqPx2PO0SH1umgMFb2CYPG7u+OFEdaD6LAVkbY9PRsNjL/y5qJCS/8lAmZGCrI5KMw4cjEaLQ76jBFieEDC5goZmdFpIcVJsZeKGeP4M2uPA+1UtE7LZ7deIVyCSbKwj4cwBF4cA5luIYKVIFAH+7hEZ4c6Tw4z87LpDTjTHt24Y+c1x9WtJNU</latexit>

R0,3

<latexit sha1_base64="zr7X+yxX+UZ2fE3AM53/EJN7UF0=">AAAB7nicbZC7SgNBFIbPxFuMt3jpbAaDYCFhNypaBmwso5gLJEuYncwmQ2Znl5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjl+LLg2jvOJMguLS8sr2dXc2vrG5lZ+e6emo0RRVqWRiFTDJ5oJLlnVcCNYI1aMhL5gdb9/Ocrrd0xpHslbM4iZF5Ku5AGnxFirftNOneOTYTtfcIrOWHge3CkUynvf7/rrrVdp5z9anYgmIZOGCqJ103Vi46VEGU4FG+ZaiWYxoX3SZU2LkoRMe+l43CE+tE4HB5GyTxo8dn93pCTUehD6tjIkpqdns5H5X9ZMTHDhpVzGiWGSTj4KEoFNhEe74w5XjBoxsECo4nZWTHtEEWrshXL2CO7syvNQKxXd0+LZtVsol2CiLOzDARyBC+dQhiuoQBUo9OEeHuEJxegBPaOXSWkGTXt24Y/Q6w9tzpNj</latexit>

R1,3

<latexit sha1_base64="tky1DM4ZiMO15BXesOtIxekmqps=">AAAB7nicbZC7SgNBFIbPxFuMt3jpbAaDYCFhNypaBmwso5gLJEuYncwmQ2Znl5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjl+LLg2jvOJMguLS8sr2dXc2vrG5lZ+e6emo0RRVqWRiFTDJ5oJLlnVcCNYI1aMhL5gdb9/Ocrrd0xpHslbM4iZF5Ku5AGnxFirftNO3eOTYTtfcIrOWHge3CkUynvf7/rrrVdp5z9anYgmIZOGCqJ103Vi46VEGU4FG+ZaiWYxoX3SZU2LkoRMe+l43CE+tE4HB5GyTxo8dn93pCTUehD6tjIkpqdns5H5X9ZMTHDhpVzGiWGSTj4KEoFNhEe74w5XjBoxsECo4nZWTHtEEWrshXL2CO7syvNQKxXd0+LZtVsol2CiLOzDARyBC+dQhiuoQBUo9OEeHuEJxegBPaOXSWkGTXt24Y/Q6w9vVZNk</latexit>

R1,2

<latexit sha1_base64="zPSASOjWmKzR4zdw8ru8lrrNx04=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI1lFHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9ylNfuUGkeyVsziNEPaVfyDmfUWKt200q9k+Kwlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzq69fKkIE2XgAA7hGDw4hxJcQRkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP23Qk2M=</latexit>

R1,1

<latexit sha1_base64="Ecz2YeEE5Z+SwbQHPaQ1OpxfP2E=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhJ0S0DNhYRjEXSJYwO5lNhszOLjOzQljyEDYWitjaiy9i5yvY2zu5FJr4w8DH/5/DnHP8WHBtXPfTySwtr6yuZddzG5tb2zv53b26jhJFWY1GIlJNn2gmuGQ1w41gzVgxEvqCNfzB5Thv3DGleSRvzTBmXkh6kgecEmOtxk0nxad41MkX3KI7EVoEPINC5eD7XX+99aud/Ee7G9EkZNJQQbRuYTc2XkqU4VSwUa6daBYTOiA91rIoSci0l07GHaFj63RRECn7pEET93dHSkKth6FvK0Ni+no+G5v/Za3EBBdeymWcGCbp9KMgEchEaLw76nLFqBFDC4QqbmdFtE8UocZeKGePgOdXXoR6qYjLxbNrXKiUYKosHMIRnACGc6jAFVShBhQGcA+P8OTEzoPz7LxMSzPOrGcf/sh5/QFsS5Ni</latexit>

R2,1

<latexit sha1_base64="YCZ2YwKDbOXApnsc+u5ilX9IvDg=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI1lFHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9ylNfuUGkeyVsziNEPaVfyDmfUWKt200qLJ96wlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzq69fKkIE2XgAA7hGDw4hxJcQRkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP23Sk2M=</latexit>

R2,2

<latexit sha1_base64="5l9XUYoucZOGJMwzeKuOlztXJBk=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsLoqWARvLKOYCyRJmJ7PJkJnZZWZWCEsewsZCEVt78UXsfAV7eyeXQhN/GPj4/3OYc06YcKaN6346C4tLyyurubX8+sbm1nZhZ7em41QRWiUxj1UjxJpyJmnVMMNpI1EUi5DTeti/HOX1O6o0i+WtGSQ0ELgrWcQINtaq37Qz/8QftgtFt+SOhebBm0KxvP/9rr/eepV24aPViUkqqDSEY62bnpuYIMPKMMLpMN9KNU0w6eMubVqUWFAdZONxh+jIOh0Uxco+adDY/d2RYaH1QIS2UmDT07PZyPwva6YmuggyJpPUUEkmH0UpRyZGo91RhylKDB9YwEQxOysiPawwMfZCeXsEb3bleaj5Je+0dHbtFcs+TJSDAziEY/DgHMpwBRWoAoE+3MMjPDmJ8+A8Oy+T0gVn2rMHf+S8/gBvV5Nk</latexit>

R2,3

<latexit sha1_base64="nY3OxJt7Xg22ku9XMSp/cxFYEtw=">AAAB7nicbZC7SgNBFIbPxFuMt3jpbAaDYCFhNypaBmwso5gLJEuYncwmQ2Znl5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjl+LLg2jvOJMguLS8sr2dXc2vrG5lZ+e6emo0RRVqWRiFTDJ5oJLlnVcCNYI1aMhL5gdb9/Ocrrd0xpHslbM4iZF5Ku5AGnxFirftNOS8cnw3a+4BSdsfA8uFMolPe+3/XXW6/Szn+0OhFNQiYNFUTrpuvExkuJMpwKNsy1Es1iQvuky5oWJQmZ9tLxuEN8aJ0ODiJlnzR47P7uSEmo9SD0bWVITE/PZiPzv6yZmODCS7mME8MknXwUJAKbCI92xx2uGDViYIFQxe2smPaIItTYC+XsEdzZleehViq6p8Wza7dQLsFEWdiHAzgCF86hDFdQgSpQ6MM9PMITitEDekYvk9IMmvbswh+h1x9w3JNl</latexit>

R0,1

<latexit sha1_base64="a+Sdjk60QrCkWI0LMTICeBznXxo=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI1lFHOBZAmzk0kyZHZ2mTkrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIpTDoup/OwuLS8spqZi27vrG5tZ3b2a2aKNGMV1gkI10PqOFSKF5BgZLXY81pGEheC/qXo7x2x7URkbrFQcz9kHaV6AhG0Vq1m1bqnnjDVi7vFtyxyDx4U8iX9r/fzddbr9zKfTTbEUtCrpBJakzDc2P0U6pRMMmH2WZieExZn3Z5w6KiITd+Oh53SI6s0yadSNunkIzd3x0pDY0ZhIGtDCn2zGw2Mv/LGgl2LvxUqDhBrtjko04iCUZktDtpC80ZyoEFyrSwsxLWo5oytBfK2iN4syvPQ7VY8E4LZ9devlSEiTJwAIdwDB6cQwmuoAwVYNCHe3iEJyd2Hpxn52VSuuBMe/bgj5zXH2rEk2E=</latexit>

R0,2

<latexit sha1_base64="PoACVMRdPOYpn3IZMPdGnpJYXlU=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI1lFHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9ylNfuUGkeyVsziNEPaVfyDmfUWKt200rdk+Kwlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzq69fKkIE2XgAA7hGDw4hxJcQRkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP2xJk2I=</latexit>

R0,1

<latexit sha1_base64="a+Sdjk60QrCkWI0LMTICeBznXxo=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI1lFHOBZAmzk0kyZHZ2mTkrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIpTDoup/OwuLS8spqZi27vrG5tZ3b2a2aKNGMV1gkI10PqOFSKF5BgZLXY81pGEheC/qXo7x2x7URkbrFQcz9kHaV6AhG0Vq1m1bqnnjDVi7vFtyxyDx4U8iX9r/fzddbr9zKfTTbEUtCrpBJakzDc2P0U6pRMMmH2WZieExZn3Z5w6KiITd+Oh53SI6s0yadSNunkIzd3x0pDY0ZhIGtDCn2zGw2Mv/LGgl2LvxUqDhBrtjko04iCUZktDtpC80ZyoEFyrSwsxLWo5oytBfK2iN4syvPQ7VY8E4LZ9devlSEiTJwAIdwDB6cQwmuoAwVYNCHe3iEJyd2Hpxn52VSuuBMe/bgj5zXH2rEk2E=</latexit>

R0,2

<latexit sha1_base64="PoACVMRdPOYpn3IZMPdGnpJYXlU=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI1lFHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9ylNfuUGkeyVsziNEPaVfyDmfUWKt200rdk+Kwlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzq69fKkIE2XgAA7hGDw4hxJcQRkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP2xJk2I=</latexit>

R0,3

<latexit sha1_base64="zr7X+yxX+UZ2fE3AM53/EJN7UF0=">AAAB7nicbZC7SgNBFIbPxFuMt3jpbAaDYCFhNypaBmwso5gLJEuYncwmQ2Znl5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjl+LLg2jvOJMguLS8sr2dXc2vrG5lZ+e6emo0RRVqWRiFTDJ5oJLlnVcCNYI1aMhL5gdb9/Ocrrd0xpHslbM4iZF5Ku5AGnxFirftNOneOTYTtfcIrOWHge3CkUynvf7/rrrVdp5z9anYgmIZOGCqJ103Vi46VEGU4FG+ZaiWYxoX3SZU2LkoRMe+l43CE+tE4HB5GyTxo8dn93pCTUehD6tjIkpqdns5H5X9ZMTHDhpVzGiWGSTj4KEoFNhEe74w5XjBoxsECo4nZWTHtEEWrshXL2CO7syvNQKxXd0+LZtVsol2CiLOzDARyBC+dQhiuoQBUo9OEeHuEJxegBPaOXSWkGTXt24Y/Q6w9tzpNj</latexit>

R1,1

<latexit sha1_base64="Ecz2YeEE5Z+SwbQHPaQ1OpxfP2E=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhJ0S0DNhYRjEXSJYwO5lNhszOLjOzQljyEDYWitjaiy9i5yvY2zu5FJr4w8DH/5/DnHP8WHBtXPfTySwtr6yuZddzG5tb2zv53b26jhJFWY1GIlJNn2gmuGQ1w41gzVgxEvqCNfzB5Thv3DGleSRvzTBmXkh6kgecEmOtxk0nxad41MkX3KI7EVoEPINC5eD7XX+99aud/Ee7G9EkZNJQQbRuYTc2XkqU4VSwUa6daBYTOiA91rIoSci0l07GHaFj63RRECn7pEET93dHSkKth6FvK0Ni+no+G5v/Za3EBBdeymWcGCbp9KMgEchEaLw76nLFqBFDC4QqbmdFtE8UocZeKGePgOdXXoR6qYjLxbNrXKiUYKosHMIRnACGc6jAFVShBhQGcA+P8OTEzoPz7LxMSzPOrGcf/sh5/QFsS5Ni</latexit>

R1,2

<latexit sha1_base64="zPSASOjWmKzR4zdw8ru8lrrNx04=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI1lFHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9ylNfuUGkeyVsziNEPaVfyDmfUWKt200q9k+Kwlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzq69fKkIE2XgAA7hGDw4hxJcQRkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP23Qk2M=</latexit>

R1,3

<latexit sha1_base64="tky1DM4ZiMO15BXesOtIxekmqps=">AAAB7nicbZC7SgNBFIbPxFuMt3jpbAaDYCFhNypaBmwso5gLJEuYncwmQ2Znl5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjl+LLg2jvOJMguLS8sr2dXc2vrG5lZ+e6emo0RRVqWRiFTDJ5oJLlnVcCNYI1aMhL5gdb9/Ocrrd0xpHslbM4iZF5Ku5AGnxFirftNO3eOTYTtfcIrOWHge3CkUynvf7/rrrVdp5z9anYgmIZOGCqJ103Vi46VEGU4FG+ZaiWYxoX3SZU2LkoRMe+l43CE+tE4HB5GyTxo8dn93pCTUehD6tjIkpqdns5H5X9ZMTHDhpVzGiWGSTj4KEoFNhEe74w5XjBoxsECo4nZWTHtEEWrshXL2CO7syvNQKxXd0+LZtVsol2CiLOzDARyBC+dQhiuoQBUo9OEeHuEJxegBPaOXSWkGTXt24Y/Q6w9vVZNk</latexit>

R2,1

<latexit sha1_base64="YCZ2YwKDbOXApnsc+u5ilX9IvDg=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI1lFHOBZAmzk5NkyOzsMjMrhCUPYWOhiK29+CJ2voK9vZNLoYk/DHz8/znMOSeIBdfGdT+dhcWl5ZXVzFp2fWNzazu3s1vVUaIYVlgkIlUPqEbBJVYMNwLrsUIaBgJrQf9ylNfuUGkeyVsziNEPaVfyDmfUWKt200qLJ96wlcu7BXcsMg/eFPKl/e93/fXWK7dyH812xJIQpWGCat3w3Nj4KVWGM4HDbDPRGFPWp11sWJQ0RO2n43GH5Mg6bdKJlH3SkLH7uyOlodaDMLCVITU9PZuNzP+yRmI6F37KZZwYlGzyUScRxERktDtpc4XMiIEFyhS3sxLWo4oyYy+UtUfwZleeh2qx4J0Wzq69fKkIE2XgAA7hGDw4hxJcQRkqwKAP9/AIT07sPDjPzsukdMGZ9uzBHzmvP23Sk2M=</latexit>

R2,2

<latexit sha1_base64="5l9XUYoucZOGJMwzeKuOlztXJBk=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsLoqWARvLKOYCyRJmJ7PJkJnZZWZWCEsewsZCEVt78UXsfAV7eyeXQhN/GPj4/3OYc06YcKaN6346C4tLyyurubX8+sbm1nZhZ7em41QRWiUxj1UjxJpyJmnVMMNpI1EUi5DTeti/HOX1O6o0i+WtGSQ0ELgrWcQINtaq37Qz/8QftgtFt+SOhebBm0KxvP/9rr/eepV24aPViUkqqDSEY62bnpuYIMPKMMLpMN9KNU0w6eMubVqUWFAdZONxh+jIOh0Uxco+adDY/d2RYaH1QIS2UmDT07PZyPwva6YmuggyJpPUUEkmH0UpRyZGo91RhylKDB9YwEQxOysiPawwMfZCeXsEb3bleaj5Je+0dHbtFcs+TJSDAziEY/DgHMpwBRWoAoE+3MMjPDmJ8+A8Oy+T0gVn2rMHf+S8/gBvV5Nk</latexit>

R2,3

<latexit sha1_base64="nY3OxJt7Xg22ku9XMSp/cxFYEtw=">AAAB7nicbZC7SgNBFIbPxFuMt3jpbAaDYCFhNypaBmwso5gLJEuYncwmQ2Znl5lZISx5CBsLRWztxRex8xXs7Z1cCk38YeDj/89hzjl+LLg2jvOJMguLS8sr2dXc2vrG5lZ+e6emo0RRVqWRiFTDJ5oJLlnVcCNYI1aMhL5gdb9/Ocrrd0xpHslbM4iZF5Ku5AGnxFirftNOS8cnw3a+4BSdsfA8uFMolPe+3/XXW6/Szn+0OhFNQiYNFUTrpuvExkuJMpwKNsy1Es1iQvuky5oWJQmZ9tLxuEN8aJ0ODiJlnzR47P7uSEmo9SD0bWVITE/PZiPzv6yZmODCS7mME8MknXwUJAKbCI92xx2uGDViYIFQxe2smPaIItTYC+XsEdzZleehViq6p8Wza7dQLsFEWdiHAzgCF86hDFdQgSpQ6MM9PMITitEDekYvk9IMmvbswh+h1x9w3JNl</latexit>

L1,1

<latexit sha1_base64="R4EAXMAbdGdP/OPJjsVd61SFxUI=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhJ0S0DNhYWEQwF0iWMDuZTYbMzi4zs0JY8hA2ForY2osvYucr2Ns7uRSa+MPAx/+fw5xz/FhwbVz308ksLa+srmXXcxubW9s7+d29uo4SRVmNRiJSTZ9oJrhkNcONYM1YMRL6gjX8weU4b9wxpXkkb80wZl5IepIHnBJjrcZ1J8WneNTJF9yiOxFaBDyDQuXg+11/vfWrnfxHuxvRJGTSUEG0bmE3Nl5KlOFUsFGunWgWEzogPdayKEnItJdOxh2hY+t0URAp+6RBE/d3R0pCrYehbytDYvp6Phub/2WtxAQXXsplnBgm6fSjIBHIRGi8O+pyxagRQwuEKm5nRbRPFKHGXihnj4DnV16EeqmIy8WzG1yolGCqLBzCEZwAhnOowBVUoQYUBnAPj/DkxM6D8+y8TEszzqxnH/7Ief0BYw+TXA==</latexit>

L2,1

<latexit sha1_base64="pbZaW/he0ih8ZUNoaR1ydngONyo=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI2FRQRzgWQJs5OTZMjs7DIzK4QlD2FjoYitvfgidr6Cvb2TS6GJPwx8/P85zDkniAXXxnU/nYXFpeWV1cxadn1jc2s7t7Nb1VGiGFZYJCJVD6hGwSVWDDcC67FCGgYCa0H/cpTX7lBpHslbM4jRD2lX8g5n1Firdt1KiyfesJXLuwV3LDIP3hTypf3vd/311iu3ch/NdsSSEKVhgmrd8NzY+ClVhjOBw2wz0RhT1qddbFiUNETtp+Nxh+TIOm3SiZR90pCx+7sjpaHWgzCwlSE1PT2bjcz/skZiOhd+ymWcGJRs8lEnEcREZLQ7aXOFzIiBBcoUt7MS1qOKMmMvlLVH8GZXnodqseCdFs5uvHypCBNl4AAO4Rg8OIcSXEEZKsCgD/fwCE9O7Dw4z87LpHTBmfbswR85rz9klpNd</latexit>

L3,1

<latexit sha1_base64="FitxSB57Vz2gTldLM+Nt9UsDq9Y=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaBmwsLCKYCyRLmJ3MJkNmZ4eZWSEseQgbC0Vs7cUXsfMV7O2dXApN/GHg4//PYc45geRMG9f9dDILi0vLK9nV3Nr6xuZWfnunpuNEEVolMY9VI8CaciZo1TDDaUMqiqOA03rQvxzl9TuqNIvFrRlI6ke4K1jICDbWql+305Njb9jOF9yiOxaaB28KhfLe97v+eutV2vmPVicmSUSFIRxr3fRcafwUK8MIp8NcK9FUYtLHXdq0KHBEtZ+Oxx2iQ+t0UBgr+4RBY/d3R4ojrQdRYCsjbHp6NhuZ/2XNxIQXfsqETAwVZPJRmHBkYjTaHXWYosTwgQVMFLOzItLDChNjL5SzR/BmV56HWqnonRbPbrxCuQQTZWEfDuAIPDiHMlxBBapAoA/38AhPjnQenGfnZVKacaY9u/BHzusPZh2TXg==</latexit>

L3,2

<latexit sha1_base64="QyEsotj+plX7/Q5yPRHE2Knaq5Q=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaBmwsLCKYCyRLmJ3MJkNmZ4eZWSEseQgbC0Vs7cUXsfMV7O2dXApN/GHg4//PYc45geRMG9f9dDILi0vLK9nV3Nr6xuZWfnunpuNEEVolMY9VI8CaciZo1TDDaUMqiqOA03rQvxzl9TuqNIvFrRlI6ke4K1jICDbWql+305Pj0rCdL7hFdyw0D94UCuW973f99dartPMfrU5MkogKQzjWuum50vgpVoYRToe5VqKpxKSPu7RpUeCIaj8djztEh9bpoDBW9gmDxu7vjhRHWg+iwFZG2PT0bDYy/8uaiQkv/JQJmRgqyOSjMOHIxGi0O+owRYnhAwuYKGZnRaSHFSbGXihnj+DNrjwPtVLROy2e3XiFcgkmysI+HMAReHAOZbiCClSBQB/u4RGeHOk8OM/Oy6Q040x7duGPnNcfZ6KTXw==</latexit>

L2,2

<latexit sha1_base64="kt8B+RlyGMdZ48QX7fBFFvskEJg=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsLoqWARsLiwjmAskSZiezyZCZ2WVmVghLHsLGQhFbe/FF7HwFe3snl0ITfxj4+P9zmHNOmHCmjet+OguLS8srq7m1/PrG5tZ2YWe3puNUEVolMY9VI8SaciZp1TDDaSNRFIuQ03rYvxzl9TuqNIvlrRkkNBC4K1nECDbWql+3M//EH7YLRbfkjoXmwZtCsbz//a6/3nqVduGj1YlJKqg0hGOtm56bmCDDyjDC6TDfSjVNMOnjLm1alFhQHWTjcYfoyDodFMXKPmnQ2P3dkWGh9UCEtlJg09Oz2cj8L2umJroIMiaT1FBJJh9FKUcmRqPdUYcpSgwfWMBEMTsrIj2sMDH2Qnl7BG925Xmo+SXvtHR24xXLPkyUgwM4hGPw4BzKcAUVqAKBPtzDIzw5ifPgPDsvk9IFZ9qzB3/kvP4AZhuTXg==</latexit>

L1,2

<latexit sha1_base64="sRfPicU0DLrkVXR7USUl9xBiyfk=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI2FRQRzgWQJs5OTZMjs7DIzK4QlD2FjoYitvfgidr6Cvb2TS6GJPwx8/P85zDkniAXXxnU/nYXFpeWV1cxadn1jc2s7t7Nb1VGiGFZYJCJVD6hGwSVWDDcC67FCGgYCa0H/cpTX7lBpHslbM4jRD2lX8g5n1Firdt1KvZPisJXLuwV3LDIP3hTypf3vd/311iu3ch/NdsSSEKVhgmrd8NzY+ClVhjOBw2wz0RhT1qddbFiUNETtp+Nxh+TIOm3SiZR90pCx+7sjpaHWgzCwlSE1PT2bjcz/skZiOhd+ymWcGJRs8lEnEcREZLQ7aXOFzIiBBcoUt7MS1qOKMmMvlLVH8GZXnodqseCdFs5uvHypCBNl4AAO4Rg8OIcSXEEZKsCgD/fwCE9O7Dw4z87LpHTBmfbswR85rz9klJNd</latexit>

L3,3

<latexit sha1_base64="N2FtsbUTwFB973UfjcjHiDUJ/bU=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsJoqWARsLiwjmAskSZiezyZDZ2WFmVghLHsLGQhFbe/FF7HwFe3snl0ITfxj4+P9zmHNOIDnTxnU/nYXFpeWV1cxadn1jc2s7t7Nb03GiCK2SmMeqEWBNORO0apjhtCEVxVHAaT3oX47y+h1VmsXi1gwk9SPcFSxkBBtr1a/baemkNGzn8m7BHQvNgzeFfHn/+11/vfUq7dxHqxOTJKLCEI61bnquNH6KlWGE02G2lWgqMenjLm1aFDii2k/H4w7RkXU6KIyVfcKgsfu7I8WR1oMosJURNj09m43M/7JmYsILP2VCJoYKMvkoTDgyMRrtjjpMUWL4wAImitlZEelhhYmxF8raI3izK89DrVjwTgtnN16+XISJMnAAh3AMHpxDGa6gAlUg0Id7eIQnRzoPzrPzMildcKY9e/BHzusPaSeTYA==</latexit>

L2,3

<latexit sha1_base64="o89uAvSnZhONHj6t1RNc6yIYV/s=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaBmwsLCKYCyRLmJ3MJkNmZ4eZWSEseQgbC0Vs7cUXsfMV7O2dXApN/GHg4//PYc45geRMG9f9dDILi0vLK9nV3Nr6xuZWfnunpuNEEVolMY9VI8CaciZo1TDDaUMqiqOA03rQvxzl9TuqNIvFrRlI6ke4K1jICDbWql+309LxybCdL7hFdyw0D94UCuW973f99dartPMfrU5MkogKQzjWuum50vgpVoYRToe5VqKpxKSPu7RpUeCIaj8djztEh9bpoDBW9gmDxu7vjhRHWg+iwFZG2PT0bDYy/8uaiQkv/JQJmRgqyOSjMOHIxGi0O+owRYnhAwuYKGZnRaSHFSbGXihnj+DNrjwPtVLROy2e3XiFcgkmysI+HMAReHAOZbiCClSBQB/u4RGeHOk8OM/Oy6Q040x7duGPnNcfZ6CTXw==</latexit>

L1,3

<latexit sha1_base64="erci+e3H4biA+dURXizmEoF7kFI=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaBmwsLCKYCyRLmJ3MJkNmZ4eZWSEseQgbC0Vs7cUXsfMV7O2dXApN/GHg4//PYc45geRMG9f9dDILi0vLK9nV3Nr6xuZWfnunpuNEEVolMY9VI8CaciZo1TDDaUMqiqOA03rQvxzl9TuqNIvFrRlI6ke4K1jICDbWql+3U+/4ZNjOF9yiOxaaB28KhfLe97v+eutV2vmPVicmSUSFIRxr3fRcafwUK8MIp8NcK9FUYtLHXdq0KHBEtZ+Oxx2iQ+t0UBgr+4RBY/d3R4ojrQdRYCsjbHp6NhuZ/2XNxIQXfsqETAwVZPJRmHBkYjTaHXWYosTwgQVMFLOzItLDChNjL5SzR/BmV56HWqnonRbPbrxCuQQTZWEfDuAIPDiHMlxBBapAoA/38AhPjnQenGfnZVKacaY9u/BHzusPZhmTXg==</latexit>

L1,1

<latexit sha1_base64="R4EAXMAbdGdP/OPJjsVd61SFxUI=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhJ0S0DNhYWEQwF0iWMDuZTYbMzi4zs0JY8hA2ForY2osvYucr2Ns7uRSa+MPAx/+fw5xz/FhwbVz308ksLa+srmXXcxubW9s7+d29uo4SRVmNRiJSTZ9oJrhkNcONYM1YMRL6gjX8weU4b9wxpXkkb80wZl5IepIHnBJjrcZ1J8WneNTJF9yiOxFaBDyDQuXg+11/vfWrnfxHuxvRJGTSUEG0bmE3Nl5KlOFUsFGunWgWEzogPdayKEnItJdOxh2hY+t0URAp+6RBE/d3R0pCrYehbytDYvp6Phub/2WtxAQXXsplnBgm6fSjIBHIRGi8O+pyxagRQwuEKm5nRbRPFKHGXihnj4DnV16EeqmIy8WzG1yolGCqLBzCEZwAhnOowBVUoQYUBnAPj/DkxM6D8+y8TEszzqxnH/7Ief0BYw+TXA==</latexit>

L2,1

<latexit sha1_base64="pbZaW/he0ih8ZUNoaR1ydngONyo=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI2FRQRzgWQJs5OTZMjs7DIzK4QlD2FjoYitvfgidr6Cvb2TS6GJPwx8/P85zDkniAXXxnU/nYXFpeWV1cxadn1jc2s7t7Nb1VGiGFZYJCJVD6hGwSVWDDcC67FCGgYCa0H/cpTX7lBpHslbM4jRD2lX8g5n1Firdt1KiyfesJXLuwV3LDIP3hTypf3vd/311iu3ch/NdsSSEKVhgmrd8NzY+ClVhjOBw2wz0RhT1qddbFiUNETtp+Nxh+TIOm3SiZR90pCx+7sjpaHWgzCwlSE1PT2bjcz/skZiOhd+ymWcGJRs8lEnEcREZLQ7aXOFzIiBBcoUt7MS1qOKMmMvlLVH8GZXnodqseCdFs5uvHypCBNl4AAO4Rg8OIcSXEEZKsCgD/fwCE9O7Dw4z87LpHTBmfbswR85rz9klpNd</latexit>

L3,1

<latexit sha1_base64="FitxSB57Vz2gTldLM+Nt9UsDq9Y=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaBmwsLCKYCyRLmJ3MJkNmZ4eZWSEseQgbC0Vs7cUXsfMV7O2dXApN/GHg4//PYc45geRMG9f9dDILi0vLK9nV3Nr6xuZWfnunpuNEEVolMY9VI8CaciZo1TDDaUMqiqOA03rQvxzl9TuqNIvFrRlI6ke4K1jICDbWql+305Njb9jOF9yiOxaaB28KhfLe97v+eutV2vmPVicmSUSFIRxr3fRcafwUK8MIp8NcK9FUYtLHXdq0KHBEtZ+Oxx2iQ+t0UBgr+4RBY/d3R4ojrQdRYCsjbHp6NhuZ/2XNxIQXfsqETAwVZPJRmHBkYjTaHXWYosTwgQVMFLOzItLDChNjL5SzR/BmV56HWqnonRbPbrxCuQQTZWEfDuAIPDiHMlxBBapAoA/38AhPjnQenGfnZVKacaY9u/BHzusPZh2TXg==</latexit>

L3,2

<latexit sha1_base64="QyEsotj+plX7/Q5yPRHE2Knaq5Q=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaBmwsLCKYCyRLmJ3MJkNmZ4eZWSEseQgbC0Vs7cUXsfMV7O2dXApN/GHg4//PYc45geRMG9f9dDILi0vLK9nV3Nr6xuZWfnunpuNEEVolMY9VI8CaciZo1TDDaUMqiqOA03rQvxzl9TuqNIvFrRlI6ke4K1jICDbWql+305Pj0rCdL7hFdyw0D94UCuW973f99dartPMfrU5MkogKQzjWuum50vgpVoYRToe5VqKpxKSPu7RpUeCIaj8djztEh9bpoDBW9gmDxu7vjhRHWg+iwFZG2PT0bDYy/8uaiQkv/JQJmRgqyOSjMOHIxGi0O+owRYnhAwuYKGZnRaSHFSbGXihnj+DNrjwPtVLROy2e3XiFcgkmysI+HMAReHAOZbiCClSBQB/u4RGeHOk8OM/Oy6Q040x7duGPnNcfZ6KTXw==</latexit>

L3,3

<latexit sha1_base64="N2FtsbUTwFB973UfjcjHiDUJ/bU=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsJoqWARsLiwjmAskSZiezyZDZ2WFmVghLHsLGQhFbe/FF7HwFe3snl0ITfxj4+P9zmHNOIDnTxnU/nYXFpeWV1cxadn1jc2s7t7Nb03GiCK2SmMeqEWBNORO0apjhtCEVxVHAaT3oX47y+h1VmsXi1gwk9SPcFSxkBBtr1a/baemkNGzn8m7BHQvNgzeFfHn/+11/vfUq7dxHqxOTJKLCEI61bnquNH6KlWGE02G2lWgqMenjLm1aFDii2k/H4w7RkXU6KIyVfcKgsfu7I8WR1oMosJURNj09m43M/7JmYsILP2VCJoYKMvkoTDgyMRrtjjpMUWL4wAImitlZEelhhYmxF8raI3izK89DrVjwTgtnN16+XISJMnAAh3AMHpxDGa6gAlUg0Id7eIQnRzoPzrPzMildcKY9e/BHzusPaSeTYA==</latexit>

L2,2

<latexit sha1_base64="kt8B+RlyGMdZ48QX7fBFFvskEJg=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsLoqWARsLiwjmAskSZiezyZCZ2WVmVghLHsLGQhFbe/FF7HwFe3snl0ITfxj4+P9zmHNOmHCmjet+OguLS8srq7m1/PrG5tZ2YWe3puNUEVolMY9VI8SaciZp1TDDaSNRFIuQ03rYvxzl9TuqNIvlrRkkNBC4K1nECDbWql+3M//EH7YLRbfkjoXmwZtCsbz//a6/3nqVduGj1YlJKqg0hGOtm56bmCDDyjDC6TDfSjVNMOnjLm1alFhQHWTjcYfoyDodFMXKPmnQ2P3dkWGh9UCEtlJg09Oz2cj8L2umJroIMiaT1FBJJh9FKUcmRqPdUYcpSgwfWMBEMTsrIj2sMDH2Qnl7BG925Xmo+SXvtHR24xXLPkyUgwM4hGPw4BzKcAUVqAKBPtzDIzw5ifPgPDsvk9IFZ9qzB3/kvP4AZhuTXg==</latexit>

L2,3

<latexit sha1_base64="o89uAvSnZhONHj6t1RNc6yIYV/s=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaBmwsLCKYCyRLmJ3MJkNmZ4eZWSEseQgbC0Vs7cUXsfMV7O2dXApN/GHg4//PYc45geRMG9f9dDILi0vLK9nV3Nr6xuZWfnunpuNEEVolMY9VI8CaciZo1TDDaUMqiqOA03rQvxzl9TuqNIvFrRlI6ke4K1jICDbWql+309LxybCdL7hFdyw0D94UCuW973f99dartPMfrU5MkogKQzjWuum50vgpVoYRToe5VqKpxKSPu7RpUeCIaj8djztEh9bpoDBW9gmDxu7vjhRHWg+iwFZG2PT0bDYy/8uaiQkv/JQJmRgqyOSjMOHIxGi0O+owRYnhAwuYKGZnRaSHFSbGXihnj+DNrjwPtVLROy2e3XiFcgkmysI+HMAReHAOZbiCClSBQB/u4RGeHOk8OM/Oy6Q040x7duGPnNcfZ6CTXw==</latexit>

L1,3

<latexit sha1_base64="erci+e3H4biA+dURXizmEoF7kFI=">AAAB7nicbZC7SgNBFIbPxluMt3jpbAaDYCFhNypaBmwsLCKYCyRLmJ3MJkNmZ4eZWSEseQgbC0Vs7cUXsfMV7O2dXApN/GHg4//PYc45geRMG9f9dDILi0vLK9nV3Nr6xuZWfnunpuNEEVolMY9VI8CaciZo1TDDaUMqiqOA03rQvxzl9TuqNIvFrRlI6ke4K1jICDbWql+3U+/4ZNjOF9yiOxaaB28KhfLe97v+eutV2vmPVicmSUSFIRxr3fRcafwUK8MIp8NcK9FUYtLHXdq0KHBEtZ+Oxx2iQ+t0UBgr+4RBY/d3R4ojrQdRYCsjbHp6NhuZ/2XNxIQXfsqETAwVZPJRmHBkYjTaHXWYosTwgQVMFLOzItLDChNjL5SzR/BmV56HWqnonRbPbrxCuQQTZWEfDuAIPDiHMlxBBapAoA/38AhPjnQenGfnZVKacaY9u/BHzusPZhmTXg==</latexit>

L1,2

<latexit sha1_base64="sRfPicU0DLrkVXR7USUl9xBiyfk=">AAAB7nicbZC7SgNBFIbPeo3xFi+dzWAQLCTsBkXLgI2FRQRzgWQJs5OTZMjs7DIzK4QlD2FjoYitvfgidr6Cvb2TS6GJPwx8/P85zDkniAXXxnU/nYXFpeWV1cxadn1jc2s7t7Nb1VGiGFZYJCJVD6hGwSVWDDcC67FCGgYCa0H/cpTX7lBpHslbM4jRD2lX8g5n1Firdt1KvZPisJXLuwV3LDIP3hTypf3vd/311iu3ch/NdsSSEKVhgmrd8NzY+ClVhjOBw2wz0RhT1qddbFiUNETtp+Nxh+TIOm3SiZR90pCx+7sjpaHWgzCwlSE1PT2bjcz/skZiOhd+ymWcGJRs8lEnEcREZLQ7aXOFzIiBBcoUt7MS1qOKMmMvlLVH8GZXnodqseCdFs5uvHypCBNl4AAO4Rg8OIcSXEEZKsCgD/fwCE9O7Dw4z87LpHTBmfbswR85rz9klJNd</latexit>

Figure 1 A multi-party communication protocol on the line with 4 parties and 3 rounds, of the
type we study for Ln,d. For t ≥ 1, the subscripts i, t on a register indicate that the register was an
“output” of the isometry applied by party Ai in round t, and that it is in the corresponding state.
For example, the register R1,3 was produced by the isometry applied by A1 in the third round.

For i ∈ [d− 1], the registers Ri−1,t Ai,t Li+1,t with Ai are mapped to Li,t+1 Ai,t+1 Ri,t+1. So
for t ≥ 1, the subscripts i, t on a register indicate that the register was an “output” of the
isometry applied by party Ai in round t, and that it is in the corresponding state.

As the final action in round t+ 1, for t < r, if i > 0, party Ai sends Li,t+1 to the party
on the left (i.e., to Ai−1) and receives Ri−1,t+1 from her; and if i < d, she sends Ri,t+1 to
the party on the right (i.e., to Ai+1) and receives register Li+1,t+1 from her.

After the r rounds of the protocol have been completed, party A0 makes a two-outcome
measurement, possibly depending on her input, on the registers A0,r L1,r. The outcome is
the output of the protocol. Figure 1 depicts such a protocol.

3.4 The two-party simulation
We now prove Lemma 5, by giving a formal description of the two-party protocol Π for Set
Disjointness Dn derived from a protocol Πd for Ln,d. We use the notation and convention
defined in Section 3.3 in our description below. For simplicity, we assume that the number
of rounds r in Πd is a multiple of d, by adding dummy rounds with suitable local operations,
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if necessary. Since Dn depends non-trivially on both inputs, the number of rounds r required
to compute the function over a path of length d is at least d. So the addition of dummy
rounds may at most double the number of rounds.

Round A0

<latexit sha1_base64="0cgJqj0XqF1RthbOYXrkpVhAFn8=">AAAB83icbVA9SwNBFHwXNcb4FbW0WQyCVbgLipYRG8sEzAfkjrC32UuW7O0du3tCOPIjbNJYKCJY+Ucs7cQ/4+aSQhMHFoaZ93iz48ecKW3bX1ZubX0jv1nYKm7v7O7tlw4OWypKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2Rzczv31PpWKRuNPjmHohHggWMIK1kVw3xHqogvR60rN7pbJdsTOgVeIsSLmWb3x/TB/e6r3Sp9uPSBJSoQnHSnUdO9ZeiqVmhNNJ0U0UjTEZ4QHtGipwSJWXZpkn6NQofRRE0jyhUab+3khxqNQ49M1klnHZm4n/ed1EB1deykScaCrI/FCQcKQjNCsA9ZmkRPOxIZhIZrIiMsQSE21qKpoSnOUvr5JWteKcVy4aTrlWhTkKcAwncAYOXEINbqEOTSAQwxSe4NlKrEfrxXqdj+asxc4R/IH1/gNYepWY</latexit>

A1

<latexit sha1_base64="PhCX2RWOmQrYYl8BYN40IfgWsKc=">AAAB83icbVA9SwNBFHwXNcb4FbW0WQyCVbgLipYRG8sEzAfkjrC32UuW7O0du3tCOPIjbNJYKCJY+Ucs7cQ/4+aSQhMHFoaZ93iz48ecKW3bX1ZubX0jv1nYKm7v7O7tlw4OWypKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2Rzczv31PpWKRuNPjmHohHggWMIK1kVw3xHqogvR60nN6pbJdsTOgVeIsSLmWb3x/TB/e6r3Sp9uPSBJSoQnHSnUdO9ZeiqVmhNNJ0U0UjTEZ4QHtGipwSJWXZpkn6NQofRRE0jyhUab+3khxqNQ49M1klnHZm4n/ed1EB1deykScaCrI/FCQcKQjNCsA9ZmkRPOxIZhIZrIiMsQSE21qKpoSnOUvr5JWteKcVy4aTrlWhTkKcAwncAYOXEINbqEOTSAQwxSe4NlKrEfrxXqdj+asxc4R/IH1/gNZ/pWZ</latexit>

A2

<latexit sha1_base64="82DCbQjUA2efBpZ6h5jOUzGElvg=">AAAB83icbVA9SwNBFHwXNcb4FbW0WQyCVbgLipYRG8sEzAfkjrC32UuW7O0du3tCOPIjbNJYKCJY+Ucs7cQ/4+aSQhMHFoaZ93iz48ecKW3bX1ZubX0jv1nYKm7v7O7tlw4OWypKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2Rzczv31PpWKRuNPjmHohHggWMIK1kVw3xHqogvR60qv2SmW7YmdAq8RZkHIt3/j+mD681XulT7cfkSSkQhOOleo6dqy9FEvNCKeTopsoGmMywgPaNVTgkCovzTJP0KlR+iiIpHlCo0z9vZHiUKlx6JvJLOOyNxP/87qJDq68lIk40VSQ+aEg4UhHaFYA6jNJieZjQzCRzGRFZIglJtrUVDQlOMtfXiWtasU5r1w0nHKtCnMU4BhO4AwcuIQa3EIdmkAghik8wbOVWI/Wi/U6H81Zi50j+APr/QdbgpWa</latexit>

A3

<latexit sha1_base64="8zfIlv4NKkGFPdAB7cSNYxuxfFE=">AAAB83icbVC7SgNBFL3rI8b4ilraDAbBKuxGRcuIjWUC5gHZJcxOZpMhs7PLzKwQlnyETRoLRQQrf8TSTvwZJ5sUmnhg4HDOvdwzx485U9q2v6yV1bX13EZ+s7C1vbO7V9w/aKookYQ2SMQj2faxopwJ2tBMc9qOJcWhz2nLH95M/dY9lYpF4k6PYuqFuC9YwAjWRnLdEOuBCtLrcfesWyzZZTsDWibOnJSqufr3x+ThrdYtfrq9iCQhFZpwrFTHsWPtpVhqRjgdF9xE0RiTIe7TjqECh1R5aZZ5jE6M0kNBJM0TGmXq740Uh0qNQt9MZhkXvan4n9dJdHDlpUzEiaaCzA4FCUc6QtMCUI9JSjQfGYKJZCYrIgMsMdGmpoIpwVn88jJpVsrOefmi7pSqFZghD0dwDKfgwCVU4RZq0AACMUzgCZ6txHq0XqzX2eiKNd85hD+w3n8AXQaVmw==</latexit>

(1)

(2)

(3)

A4

<latexit sha1_base64="fWWG71CFG3oekRNsSUVcDbn2xTg=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUii4rblxWsA/oDCWTZtrQJDMkGaEM/Q03LhRx68+4829Mp7PQ1gOBwzn3ck9OmHCmjet+O6WNza3tnfJuZW//4PCoenzS1XGqCO2QmMeqH2JNOZO0Y5jhtJ8oikXIaS+c3i383hNVmsXy0cwSGgg8lixiBBsr+b7AZqKj7HY+bA6rNbfu5kDrxCtIDQq0h9UvfxSTVFBpCMdaDzw3MUGGlWGE03nFTzVNMJniMR1YKrGgOsjyzHN0YZURimJlnzQoV39vZFhoPROhncwzrnoL8T9vkJroJsiYTFJDJVkeilKOTIwWBaARU5QYPrMEE8VsVkQmWGFibE0VW4K3+uV10m3UvWb96qFZazWKOspwBudwCR5cQwvuoQ0dIJDAM7zCm5M6L86787EcLTnFzin8gfP5A/LOkZU=</latexit>

(4)

(5)

(6)

(7)

(8)

(9)

Figure 2 A depiction of the two-party simulation of a multi-party communication protocol of the
type we study for Ln,d. Here, we have 5 parties and show the simulation of the first 8 rounds of
the original protocol. Each round in the two-party protocol is delineated by thick green lines. The
black rectangular boxes represent the isometries implemented by Alice, and the black arrows going
across the thick green lines represent the communication from her to Bob. The red rectangular
boxes represent the isometries implemented by Bob, and the red arrows going across the thick green
lines represent the communication from him to Alice. The green arrows indicate that the input
register and the local memory of the parties at the extremities are retained by them throughout.

In the protocol Π, Alice initially holds all the registers with parties Ai for i < d at the
beginning of the first round, and Bob holds the registers with Ad. All of the registers are
initialized as in Πd. The simulation implements blocks of d successive rounds of Πd with two
rounds in Π, with Alice sending the message in the first of the two rounds and Bob in the
second. See Figure 2 for a depiction of the simulation.

Assume that k blocks of d rounds each of Πd have been implemented with 2k rounds in Π,
for some k ∈ [0, r/d− 1]. We describe how the (k + 1)-th block is implemented. Let t := kd.
We maintain the invariant that at the beginning of the (2k + 1)-th round in Π, Alice holds
the registers XA0,t L1,t, and the registers Ri−1,t Ai,t Li+1,t, for all i ∈ [d− 1]. Alice’s local
operations in round 2k + 1 are as follows. For each j ∈ {t+ 1, t+ 2, t+ 3, . . . , t+ d} in
increasing order (where j denotes a round in Πd),
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1. Alice applies the isometry U0,j to the registers XA0,j−1 L1,j−1 to get registers XA0,j R0,j .
2. For each l with 1 ≤ l ≤ d − (j − t) (denoting a party from Πd), Alice applies the

isometry Ul,j to the registers Rl−1,j−1 Al,j−1 Ll+1,j−1 to get registers Ll,j Al,j Rl,j .
3. For each l with 1 ≤ l ≤ d− (j − t), Alice swaps registers Rl−1,j and Ll,j .
At this point, Alice has implemented the left upper triangular “space-time slice” of the (k+1)-
th block of d rounds of Πd. She holds the registers

XA0,t+d R0,t+d R0,t+d−1 A1,t+d−1 R1,t+d−1 R1,t+d−2 A2,t+d−2 R2,t+d−2

R2,t+d−3 A3,t+d−3 R3,t+d−3 · · · Rd−3,t+2 Ad−2,t+2 Rd−2,t+2 Rd−2,t+1 Ad−1,t+1 Rd−1,t+1 ,

(3.1)

in the state implicitly specified by the subscripts. (The registers have been grouped into threes,
in the order of the parties that hold them in Πd.) She sends all the registers except XA0,t+d

to Bob. This concludes the (2k + 1)-th round of Π.
We also maintain the invariant that at the beginning of the (2k + 2)-th round of Π, Bob

bolds all the registers in Eq. (3.1) except XA0,t+d, in addition to the registers Rd−1,t Ad,tY ,
where t = kd. Bob’s local operations in round 2k + 2 are as follows. For each j ∈
{t+ 1, t+ 2, t+ 3, . . . , t+ d} in increasing order (where j denotes a round in Πd that Bob
intends to complete),
1. Bob applies the isometry Ud,j to the registers Rd−1,j−1 Ad,j−1Y to get registers Ld,j Ad,jY .
2. For each l with d− (j − t− 1) ≤ l ≤ d− 1 (denoting a party from Πd), Bob applies the

isometry Ul,j to the registers Rl−1,j−1 Al,j−1 Ll+1,j−1 to get registers Ll,j Al,j Rl,j .
3. For each l with d− (j − t− 1) ≤ l ≤ d, Bob swaps registers Rl−1,j and Ll,j .
At this point, Bob holds the registers

L1,t+d R0,t+d A1,t+d L2,t+d R1,t+d A2,t+d L3,t+d R2,t+d A3,t+d L4,t+d

· · · Rd−2,t+d Ad−1,t+d Ld,t+d Rd−1,t+d Ad,t+dY , (3.2)

in the state implicitly specified by the subscripts. The registers are thus all in the state at
the end of the (kd+ d)-th round in Πd. Bob sends all the registers except Ad,t+dY to Alice.
This concludes the (2k + 2)-th round of Π, and the simulation of the (k + 1)-th block of
rounds of Πd.

At the end of the simulation of the (r/d)-th block of rounds of Πd, Alice measures the
registers A0,r L1,r as in Πd to obtain the output. This completes the description of the
two-party simulation. The correctness of the simulation follows by induction, by observing
that Alice and Bob implement all the local operations and communication in Πd in the
correct order and with the correct registers. Lemma 5 thus follows.

3.5 Conditional information loss of the two-party protocol
We are now ready to bound the conditional information loss of the two-party protocol Π
derived from the multi-party protocol Πd. Suppose the input registers X and Y in Πd (and
therefore in Π) are initialised to a pair of n-bit strings drawn from some joint distribution.
We use XY to also denote the corresponding random variables. Suppose that Z is a random
variable jointly distributed with XY such that X and Y are independent given Z.

We first bound the information contained about any input in the registers held by all
other players in Πd, conditioned on Z. For ease of notation, for t ≥ 0, we denote by Dt the
entire sequence of registers held by the parties Ai, with i ≥ 1, in the state at the end of
the t-th round of Πd. Similarly, we denote by Ct the entire sequence of registers held by the
parties Ai, with i ≤ d− 1, in the state at the end of the t-th round of Πd.
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I Lemma 8. For all t ≥ 0, we have I(X : Dt |Z) ≤ 2tb, and I(Y : Ct |Z) ≤ 2tb.

Proof. We prove the bound on I(X : Dt |Z) by induction. The second bound is obtained
similarly.

The base case t = 0 is immediate, as the state of the registers of the parties Ai, for i ∈ [d−1]
is independent of the inputs, and the input Y is independent of X given Z.

Assume that the bound holds for t = j, with j ≥ 0. Let Gj+1 denote the sequence of
registers with all the parties Ai, for i ≥ 2, after the isometry in round j + 1 has been applied.
Then we have

I(X : L1,j+1 A1,j+1 R1,j+1Gj+1 |Z) = I(X : Dj |Z) ≤ 2jb ,

by the induction hypothesis. Let Hj+1 denote all the registers of the parties Ai, for i ≥ 2,
after the communication in round j + 1. Then L2,j+1 Hj+1 and R1,j+1 Gj+1 consist of the
same set of registers, but in different order. By the properties of entropy and conditional
mutual information mentioned below,

I(X : Dj+1 |Z) = I(X : R0,j+1 A1,j+1 L2,j+1 Hj+1 |Z)
= I(X : R0,j+1 A1,j+1 R1,j+1 Gj+1 |Z)
≤ 2 S(R0,j+1) + I(X : A1,j+1 R1,j+1 Gj+1 |Z)
≤ 2b+ I(X : L1,j+1 A1,j+1 R1,j+1Gj+1 |Z)
≤ 2b+ 2jb .

The first inequality follows from Lemma 2, the second by the property that S(B) is bounded
from above by the number of qubits in the register B and the data processing inequality
(Lemma 1), and the final one by the induction hypothesis. J

For k ∈ [2r/d], denote the message registers in the k-th round of the two-party protocol Π
in the corresponding state together by Mk. Denote the registers with Alice at the end of
the k-th round, in the corresponding state, by Ek, and the registers with Bob at the end of
the k-th round, in the corresponding state, by Fk. Next, we observe from the definition of the
protocol Π, that for odd numbered rounds 2k−1, the state given by registerDkd is obtained by
an isometry on the registers M2k−1F2k−2. The registers M2k−1F2k−2 (in the state implicitly
specified by their definition) are precisely the registers Bob holds at the end of round 2k − 1
of Π. Moreover, for even numbered rounds 2k, the state given by the registers E2k−1M2k is
precisely the state given by the register Ckd in Πd. The registers E2k−1M2k are precisely the
registers Alice holds at the end of round 2k of Π. Therefore, by Lemma 8 and the definition
of conditional information loss, we have:

I Corollary 9. For all k ∈ [r/d], we have

I(X : M2k−1F2k−2 |Z) = I(X : Dkd |Z) ≤ 2kdb , and
I(Y : E2k−1M2k |Z) = I(Y : Ckd |Z) ≤ 2kdb .

Consequently, the conditional information loss of Π is bounded as IL(Π |XY Z) ≤ 4r2b/d.

4 Two-oracle query algorithms with a switching delay

In this section, we define a new model of query complexity, two-oracle query complexity with
a “switching delay”, motivated by the study of Set Disjointness on a Line Ln,d. The lower
bound technique we use to establish Theorem 3 extends to the analogue of Set Disjointness Dn
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in this model, with a switching delay of d queries. As a consequence, it yields the same lower
bound on query complexity. Furthermore, we design a quantum algorithm that matches
this bound up to a polylogarithmic factor, thus showing that the lower bound is, in a sense,
optimal. We may also interpret this result as showing a limitation of the lower bound
technique.

4.1 The new query model
Turning to the definition of the query model, we consider query algorithms for computing
bi-variate functions f : {0, 1}n × {0, 1}n → {0, 1}. We define the quantum version of the
model; the classical versions may be defined analogously. The inputs x, y to the algorithm
are provided indirectly, through oracles Ox and Oy, as defined in Section 2.4. The query
algorithm is defined in the standard manner, as an alternating sequence of unitary operators
independent of the inputs x, y, and queries Ox or Oy, applied to a fixed initial state (that is
also independent of the inputs). Thus, the sequence of queries to the inputs is pre-determined.
However, we define the complexity of the algorithm differently. In addition to the queries,
we charge the algorithm for switching between a query to x and a query to y. We include
a cost of d in the complexity whenever the algorithm switches between a query to x and a
query to y. This cost parallels the cost of accessing the inputs in the distributed computing
scenario in which the inputs are physically separated by distance d.

We may simplify the above model as follows, at the expense of increasing the complexity
by a factor of at most 2. In the simplified model, we require that the queries be made in
rounds. In each round, the algorithm makes d queries, but exclusively to one of the inputs x
or y. Further, the algorithm alternates between the two oracles Ox and Oy in successive
rounds. The complexity of the algorithm is now defined in the standard manner, as the
total number of queries in the algorithm. Thus the complexity equals d times the number of
rounds.

It is straightforward to verify that any algorithm with complexity q in the first model has
complexity at most 2q in the second model, for computing any function f that depends on
both inputs (i.e., when the algorithm in the first model queries both oracles). Furthermore,
any algorithm with complexity q in the second model has complexity at most 2q in the first
model. The two models are thus equivalent up to a factor of two in complexity.

The second model is also relevant in a “semi-parallel” scenario, where a sequence of d
queries are made to x independently of the answers to d other queries made to y during the
same time steps. Up to a factor of 2 in complexity, this semi-parallel model can be simulated
by the second model above. We thus adopt the second model in the definition below.

I Definition 10. A two-oracle delay-d quantum query algorithm is a query algorithm A with
(predetermined) access to two oracles O1,O2, which may be decomposed into some number
of contiguous sequences of unitary operators called rounds such that each round contains d
queries to the same oracle, and the algorithm alternates between the two oracles in successive
rounds. The round complexity of A is the number r of rounds in a decomposition of A as
above. The delay-d query complexity of A is d× r.

We define the quantum two-oracle delay-d round complexity of a bi-variate function f
as the minimum round-complexity of any two-oracle delay-d quantum query algorithm
computing f with probability of error at most 1/3, given oracles Ox,Oy for the inputs x, y.
We define the quantum two-oracle delay-d query complexity of f similarly. We may assume
that d ≤ n, as otherwise, an algorithm can learn x and y in two rounds.

Adapting the tools developed in Section 3 we get the following lower bound.
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I Theorem 11. Let d ≤ n. The quantum two-oracle delay-d round complexity of Set
Disjointness Dn is Ω(

√
n/d) and Ω( 3

√
n/(d logn) ). The quantum two-oracle delay-d query

complexity is Ω(
√
n ) and Ω( 3

√
nd2/ logn ).

Note that the first expression for either bound dominates when d4 ∈ O(n log2 n).
We briefly sketch the proof of Theorem 11. The query lower bound follows from the one on

rounds. The Ω(
√
n/d) lower bound on rounds follows by observing that Set Disjointness Dn

simplifies to the unordered search problem (OR function on n bits) in the standard quantum
query model when we set y to be the all 1s string. For the second lower bound, we view a
query to an oracle Ox or Oy as the exchange of of 2(logn+ 1) qubits between the algorithm
and the oracle. So we can use any r-round algorithm for computing f in the two-oracle
delay-d query model to derive a two-party communication protocol for computing f also
with r rounds. The two parties run the query algorithm, sending all its registers to the
corresponding player, whenever the algorithm switches between queries to x and queries
to y. In each round, the state of the algorithm (therefore the corresponding message)
accumulates at most 2d(logn+1) qubits of additional information about either input. This is
a consequence of the same kind of reasoning as in Lemma 8. Thus the conditional information
loss of the resulting two-party protocol may be bounded by 2r2d(logn+ 1). By Theorem 7,
this is Ω(n/r), so we get the Ω( 3

√
n/(d logn) ) lower bound for the number of rounds stated

in Theorem 11.

4.2 Algorithm for Set Disjointness

Finally, we present an algorithm in the two-oracle model that matches the lower bounds
stated in Theorem 11, up to polylogarithmic factors.

I Theorem 12. Let d ≤ n. The quantum two-oracle delay-d round and query complexity of
Set Disjointness Dn are

O(
√
n logn/d) and O(

√
n logn ), respectively, when d4 ≤ n log3 n; and

O( 3
√
n/d ) and O( 3

√
nd2 ), respectively, when d4 ≥ n log3 n.

Proof. We present a quantum two-oracle delay-d query algorithm with a parameter t ∈ [n],
which gives the round and query bounds for suitable choices of t depending on how large d is
as compared with n.

The quantum algorithm runs in two stages. First, it searches for a subset I ⊆ [n] of
size t such that it contains an index i ∈ [n] with xi = yi = 1. If it succeeds in finding such a
subset I, in the second stage, the algorithm looks for an index i ∈ I such that xi = yi = 1.
For this, it sequentially runs through the indices in I and checks if the requisite condition is
satisfied. The second stage can thus be implemented in O(max {1, t/d}) rounds. The choice
of t is such that the number of rounds in the first stage always dominates, and gives us the
stated bounds.

We describe the first stage next. In order to identify a subset I containing an index i
as above, if there is any, we implement a search algorithm based on a quantum walk on
the Johnson Graph J(n, t), following the framework due to Magniez, Nayak, Roland, and
Santha [13]. The vertices of J(n, t) are t-subsets of [n]. There is an edge between two
vertices I, I ′ in J(n, t) iff I and I ′ differ in exactly 2 elements: (I \ I ′) ∪ (I ′ \ I) = {i, j} for
distinct elements i, j ∈ [n].

The three building blocks of such an algorithm are as follows.
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Set-up: Construct the following starting superposition:
1(

n
t

)1/2

∑
I⊆[n] : |I|=t

|(i, xi) : i ∈ I〉 .

Checking: Check whether xi = yi = 1 for some i ∈ I:

|(i, xi) : i ∈ I〉 7→
{
−|(i, xi) : i ∈ I〉, if xi = yi = 1 for some i ∈ I ;
|(i, xi) : i ∈ I〉, otherwise.

Update: Replace some index j ∈ I by an index k 6∈ I, and update the corresponding bit xj

to xk:

|(i, xi) : i ∈ I〉|j〉|k〉 7→ |(i, xi) : i ∈ (I \ {j}) ∪ {k}〉|k〉|j〉 .

Let ε be the probability that a uniformly random t-subset of [n] contains an index i such
that xi = yi = 1, given that such an element i exists. We have ε ∈ Ω(t/n). Then, according
to Theorem 1.4 in Ref. [13], there is an algorithm based on quantum walk that finds a
subset I such that xi = yi = 1 for some i ∈ I, if there is any such subset, with constant
probability > 1/2. The algorithm uses one instance of Set-up, and O(

√
1/ε ) alternations of

one instance of Checking with a sequence of O(
√
t ) instances of Update, interspersed with

other unitary operations that are independent of the inputs x, y. (The spectral gap of the
Johnson graph needed in the analysis of the algorithm may be derived from the results in
Ref. [11], for example.)

Note that Set-up uses t queries to x, and thus can be implemented in max(1, 2dt/de)
rounds. Update only requires 2 queries to x. Thus a sequence of

√
t sequential Update

operations can be implemented in order max(1, 2
√
t/d) rounds. We would like to use the

Grover algorithm for unordered search to implement the checking step. The Grover algorithm
incurs non-zero probability of error in general, while the algorithm due to Magniez et al.
assumes that the checking step is perfect. We therefore use an algorithm for unordered search
with small error due to Buhrman, Cleve, de Wolf, and Zalka [4] to implement Checking with
error at most c

√
t/n for a suitable positive constant c with order

√
t log(n/t) queries to y.

Using standard arguments, this only increases the error of the quantum walk algorithm by a
small constant, say 1/10. In effect, Checking (with the stated error) can be implemented in
order max(1,

√
t logn/d) rounds. Thus the bound on the round complexity of the quantum

walk algorithm is of the order of

max
{

1, t
d

}
+
√
n

t

(
max

{
1,
√
t logn
d

}
+ max

{
1,
√
t

d

})
. (4.1)

In order to derive the bounds stated in the theorem, we optimise over t. We con-
sider intervals of values for t such that each of the expressions involving maximisation in
Eq. (4.1) simplifies to one of the terms. The intervals are given by partitioning [n] at the
points d, d2/ logn, d2. (Note that d need not be smaller than d2/ logn.) We optimise the
number of rounds within each interval, which in turn gives us a relation between d and n for
which the rounds are minimised.

We first consider d ≤ logn, so that d2/ logn ≤ d, and t in the intervals

[1, d2/ logn], [d2/ logn, d], [d, d2], and [d2, n] .

We optimise the number of rounds with t in each of these intervals, to find that the number
of rounds is O(

√
n logn/d) when t := d. The optimal values of t in the other intervals also

give the same bound, but we stay with t = d so as to minimise the rounds in the second
stage of the algorithm.

Next we consider d ≥ logn, so that d ≤ d2/ logn ≤ d2. We again optimise over t in four
intervals, and get the following bounds:
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1. t ∈ [1, d]: O(
√
n/d ) when t := d.

2. t ∈ [d, d2/ logn]: O( 3
√
n/d ) when t := 3

√
nd2, provided d4 ≥ n log3 n. If d4 ≤ n log3 n, we

get O(
√
n logn/d) when t := d2/ logn.

3. t ∈ [d2/ logn, d2]: O(
√
n logn/d) when t := d2/ logn provided d4 ≤ n log3 n; If d4 ≥

n log3 n, we get O(d/ logn) with the same value of t.
4. t ∈ [d2, n]: O(

√
n logn/d) when t := d2 provided d4 ≤ n logn; If d4 ≥ n logn, we get O(d)

with the same value of t.
Since

√
n/d ≥

√
n logn/d when d ≥ logn,

√
n logn/d ≤ d when d4 ≥ n logn, and (n/d)1/3 ≤

d/ logn when d4 ≥ n log3 n, we conclude the bounds on round complexity stated in the
theorem:

O(
√
n logn/d) with t := d when d ≤ logn, or with t := d2/ logn when log4 n ≤ d4 ≤

n log3 n , and
O( 3
√
n/d ) with t := 3

√
nd2 when d4 ≥ n log3 n .

The bounds on query complexity follow. J

Note that in the range of parameters such that n log2 n ≤ d4 ≤ n log3 n, the upper
bound

√
n logn/d is at most

√
logn times the lower bound 3

√
n/d logn . So the bounds

in Theorems 11 and 12 are indeed within polylogarithmic factors of each other for all values
of d, n (such that d ≤ n).

5 Conclusion

In this work, we studied a fundamental problem, Set Disjointness, in two concrete com-
putational models. Set Disjointness on the Line Ln,d reveals new subtleties in distributed
computation with quantum resources. It again puts the spotlight on the “double counting”
of information in conditional information loss. One may think that the more sophisticated
notion of quantum information cost introduced by Touchette [18], along with the results due
to Braverman et al. [3], might help us overcome this drawback. Indeed, quantum information
cost helps us overcome the limitation(s) of the former quantity in the case of Set Disjointness
in the standard two-party communication model. Surprisingly, these techniques do not seem
to help in obtaining a better lower bound for Ln,d. We believe that new ideas may be needed
to characterise the its asymptotic round complexity.

The two-oracle query model we introduce gives us a different perspective on Set Dis-
jointness on a Line. It hints at the possibility of a better communication protocol for Ln,d,
although we may also interpret the optimal algorithm in this model as highlighting the
limitation of the information loss technique. More generally, the new query model is tailored
towards the study of distributed algorithms on the line and could shed light on protocols for
other similar problems. Moreover, the model could also be of relevance in other distributed
computation scenarios.
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Abstract
Boneh, Bonneau, Bünz, and Fisch (CRYPTO 2018) recently introduced the notion of a verifiable
delay function (VDF). VDFs are functions that take a long sequential time T to compute, but
whose outputs y := Eval(x) can be efficiently verified (possibly given a proof π) in time t� T (e.g.,
t = poly(λ, log T ) where λ is the security parameter). The first security requirement on a VDF,
called uniqueness, is that no polynomial-time algorithm can find a convincing proof π′ that verifies
for an input x and a different output y′ 6= y. The second security requirement, called sequentiality, is
that no polynomial-time algorithm running in time σ < T for some parameter σ (e.g., σ = T 1/10) can
compute y, even with poly(T, λ) many parallel processors. Starting from the work of Boneh et al.,
there are now multiple constructions of VDFs from various algebraic assumptions.

In this work, we study whether VDFs can be constructed from ideal hash functions in a black-box
way, as modeled in the random oracle model (ROM). In the ROM, we measure the running time by
the number of oracle queries and the sequentiality by the number of rounds of oracle queries. We
rule out two classes of constructions of VDFs in the ROM:

We show that VDFs satisfying perfect uniqueness (i.e., VDFs where no different convincing
solution y′ 6= y exists) cannot be constructed in the ROM. More formally, we give an attacker
that finds the solution y in ≈ t rounds of queries, asking only poly(T ) queries in total.

We also rule out tight verifiable delay functions in the ROM. Tight verifiable delay functions,
recently studied by Döttling, Garg, Malavolta, and Vasudevan (ePrint Report 2019), require
sequentiality for σ ≈ T − T ρ for some constant 0 < ρ < 1. More generally, our lower bound also
applies to proofs of sequential work (i.e., VDFs without the uniqueness property), even in the
private verification setting, and sequentiality σ > T − T/2t for a concrete verification time t.
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1 Introduction

A verifiable delay function (VDF) [5] with domain X and range Y is a function that takes
long sequential time T to compute, but whose output can be efficiently verified in time t� T

(e.g., t = poly(λ, log T ) where λ is a security parameter). More precisely, there exists an
evaluation algorithm Eval that on input x ∈ X computes a value y ∈ Y and a proof π in time
T . In addition, there is a verification algorithm Verify that takes as input a domain element
x ∈ X , a value y ∈ Y , and a proof π and either accepts or rejects in time t. In some cases, a
VDF might also have a setup algorithm Setup which generates a set of public parameters pp
that is provided as input to Eval and Verify.1 Typically, we require that the setup is also fast:
namely, Setup runs in time s = poly(λ, log T ) as well. The two main security requirements
for a VDF are (1) uniqueness which says that for all inputs x ∈ X , no adversary running in
time poly(λ, T ) can find y′ 6= Eval(x) and a proof π′ such that Verify(x, y′, π′) = 1; and (2)
sequentiality with some parameter σ < T , which says that no adversary running in sequential
time σ can compute y = Eval(x). The sequential time σ allows the adversary to have up to
poly(λ, T ) parallel processors.

Verifiable delay functions have recently received extensive study, and have found numer-
ous applications to building randomness beacons [5, 13] and cryptographic timestamping
schemes [19]. Driven by these exciting applications, a sequence of recent works have developed
constructions of verifiable delay functions from various algebraic assumptions [14,24,28,29].
However, existing constructions still leave much to be desired in terms of concrete efficiency,
and today, there are significant community-driven initiatives to construct, implement, and
optimize more concretely-efficient VDFs [16]. One of the bottlenecks in existing constructions
of VDFs is their reliance on structured algebraic assumptions (e.g., groups of unknown
order [4, 26] or isogenies over pairing groups [14]).

A natural question to ask is whether we can construct VDFs generically from unstructured
primitives, such as one-way functions, collision-resistant hash functions, or stronger forms of
hash functions. In this work, we study whether black-box constructions of VDFs are possible
starting from hash functions or other symmetric primitives. Specifically, we consider black-
box constructions of VDFs from ideal hash functions (modeled as a random oracle). Similar
to previous work (cf. [2, 21]) in the parallel random oracle model (ROM), we measure the
running time of the adversary by the number of oracle queries it makes and the sequentiality
of the adversary by the number of rounds of oracle queries it makes. However, we simply
refer to the parallel ROM as the ROM.

1.1 Our Results
In this work, we rule out the existence of VDFs with perfect uniqueness (i.e., VDFs where for
any x ∈ X , there does not exist any (y′, π) such that Verify(x, y′, π) = 1 and y′ 6= Eval(x))
in the random oracle model. Specifically, we construct an adversary that asks O(t) rounds
of queries and a total number of poly(T ) queries and breaks the uniqueness of VDFs with
respect to some oracle.

A natural class of VDFs with perfect uniqueness is the class of permutation VDFs where
the function Eval(·) implements a permutation on the domain (specifically, X = Y), and
verification consists of inverting y and checking if it is x or not. Recently, Abusalah et al. [1]

1 Ideally, the public parameters can be sampled by a public-coin process [5, 24, 29]. Otherwise, we require
a trusted setup to generate the public parameters [14,28].
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constructed permutation VDFs in the ROM, but they additionally relied on the assumptions
used in the sloth functions of Lenstra and Wesolowski [20]. Our work shows that relying on
some kind of structured assumption is necessary to achieve permutation VDFs.

We next show that in the “tight” regime of sequentiality, as recently studied in the
concurrent work of Döttling et al. [10] (i.e., when the sequentiality parameter σ is quite close
to T ), even proofs of sequential work (PoSW) [7,12,22,25] cannot be based on random oracles.
In particular, our result essentially applies to settings where σ � T · (1− 1/t) where t is the
verification time. A proof of sequential work is a relaxation of a VDF without the uniqueness
or the public-verifiability properties. Thus, our lower bound for ruling out tight PoSW also
rules out tight VDFs in the ROM. We note, however, that since (even publicly-verifiable)
PoSW satisfying weaker notions of sequentiality (e.g., σ = T/2) are known to exist in the
ROM [22], it is not clear whether this lower bound for PoSW can be extended to rule out
(non-tight) VDFs, and we leave this as an intriguing open question.

We note that both of our lower bounds are proven in settings that have already been
studied in previous (or concurrent) work. Namely, by ruling out permutation VFDs in the
ROM, our first main result complements the previous work on permutation VDFs [1] by
showing that the random oracle alone is not sufficient to realize such strong VDFs. Moreover,
our second result shows that when it comes to the tight regime of sequentiality (studied in
the concurrent work of [10]), VDFs as well as more relaxed notions like proofs of sequential
work cannot be based on symmetric primitives in a black-box way.

1.1.1 Our Techniques
At a technical level, the proofs of our lower bounds start from the techniques of Mahmoody,
Moran, and Vadhan [21] for ruling out time-lock puzzles in the random oracle model. In
fact, for a special case of perfectly-unique VDFs where the VDF is a permutation on its
domain X = Y, which we refer to as a “permutation VDF” (cf., [1, 18,20]), we can use the
impossibility result of [21] as a black-box by reducing the task of constructing time-lock
puzzles in the ROM to constructing permutation-VDFs in the ROM.

For the more general case of perfectly-unique VDFs (that are not necessarily permutations)
we cannot use the result of [21] as a black-box, but we can still adapt the ideas from their
work that are reminiscent of similar techniques also used in [6, 23, 27]. Namely, our attacker
will sample full executions of the evaluation function Eval in its head, while respecting answers
to queries that it has already learned from the real oracle. At the end of each simulated
execution, it will ask all previously-unasked queries in a single round to the oracle (and use
those values in subsequent simulated executions). We show that using just O(t) rounds of
this form, we can argue that in most of these rounds, the adversary does not hit any “new
query” in the verification process. Consequently, in most of the executions it is consistent
with the verification procedure with respect to some oracle O′, and thus by the perfect
uniqueness property, the answer in those executions should be the correct one. Finally, by
taking a majority vote over the executions, we obtain the correct answer with high probability.
Observe that this argument critically relies on perfect uniqueness. The main open question
remaining is whether a similar lower bound for computational uniqueness holds for VDF in
the ROM or not. In this setting, the security requirement is that no efficient adversary can
find a different value y′ 6= Eval(x) with a proof π′ that passes verification. (See Section 3.1.)

We then adapt this technique to additionally rule out tight proofs of sequential work in
the ROM. Roughly, a scheme satisfies tight sequentiality if no adversary running in sequential
time σ = T − T ρ for constant ρ < 1 can compute (y, π) such that Verify(x, y, π) = 1. More
generally, we consider a setting of parameters where σ > T · (1 − 1/2t), where t denotes
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the number of queries made by Verify. In this setting, we can construct an algorithm that
simulates the answers to some but not all of the oracle queries made by the evaluation
algorithm. The algorithm answers the remaining queries based on the real oracle evaluations.
To simplify the description, in the following, assume that the setup algorithm is essentially
nonexistent, and that the public parameter is fixed and publicly known ahead of time. Since
the scheme is assumed to be tightly sequential, as long as the algorithm simulates sufficiently-
many queries (e.g., T/2t queries), it is possible to reduce the number of rounds of queries
made to the real oracle (i.e., from T to T − T/2t). Moreover, if the number of “simulated
responses” is small enough and if the set of queries for which the algorithm simulates is
chosen at random, then there is a good chance that none of the simulated queries are asked
during verification. If both of these properties hold simultaneously, then the algorithm
successfully computes a response that verifies, thus breaking tight sequentiality. We provide
the formal analysis in Section 3.2. However, the formal version of this argument needs to
also incorporate the query complexity of the setup algorithm as well, leading to a weaker
attack that only applies when σ > T · (1− 1/2(s+t)). However, in Section 4, we describe how
to extend our lower bounds on tight proofs of sequential work (and correspondingly, tight
VDFs) to additionally rule out tight proofs of sequential work with an expensive setup phase
as well as tight proofs of sequential work in the random permutation model. In particular, we
show how to leverage preprocessing to essentially eliminate the dependency of the attack’s
online phase on the query complexity of the setup.

1.2 Related Work
Verifiable delay functions are closely related to the notion of (publicly-verifiable) proofs of
sequential work (PoSW) [1, 8, 11, 22]. The main difference between VDFs and PoSWs is
uniqueness. More specifically, a VDF ensures that for every input x, an adversary running in
time poly(λ, T ) can only find at most one output y (accompanied with a possibly non-unique
proof π) that the verifier would accept (and if it does, the verifier is also convinced that the
prover performed T sequential work). In contrast, a PoSW does not provide any guarantees
on uniqueness. In particular, for every input x, there might be many possible pairs (y, π)
that the verifier would accept, and as a result, in this setting there is no longer a need to
distinguish between the output y and the proof π. Even more generally, proofs of work need
not be publicly-verifiable [12], and one could only require sequentiality against adversaries
who do not know a secret verification key generated during the setup. We emphasize that
the uniqueness property in VDFs is important both for applications as well as constructions.
Indeed, publicly-verifiable proofs of sequential work can be constructed in the random oracle
model [8, 11,22], while our work rules out a broad class of VDFs in the same model.

Time-lock puzzles. Time-lock puzzle [25] are closely related to VDFs as they are also based
on the notion of sequentiality. In a time-lock puzzle, a puzzle generator can generate a puzzle
x together with a solution y in time t� T , but computing y from x still requires sequential
time T . The main difference between VDFs and time-lock puzzles is that time-lock puzzles
might require knowledge of a secret key for efficient verification (in time t). In contrast,
VDFs are publicly-verifiable (in time t). However, similar to VDFs, the output of a time-lock
puzzle is unique. Mahmoody et al. [21] leverage this very uniqueness property and the fact
that the solution is known ahead of the time to the verifier (because it is sampled during the
puzzle generation) to show an impossibility result for time-lock puzzles in the random oracle
model. While VDFs also require unique solutions, these solutions might not be known when
we directly sample an input.
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Concurrent work. In an independent and concurrent work, Döttling et al. [10] introduce
and provide an in-depth study of tight verifiable delay functions. Their work both provides a
positive construction of tight VDFs (from algebraic assumptions) as well as a negative result
on the existence of tight VDFs in the random oracle model. In this work, we show that the
lower bound on tight VDFs also extends to (even privately-verifiable) proofs of sequential
work. At the same time, we note that (even publicly-verifiable) proofs of sequential work
do exist in the non-tight regime (e.g., σ = T/2) in the ROM [22]. Thus, whether or not
this lower bound in the random oracle model on tight VDFs can be extended to arbitrary
(non-tight) VDFs or not still remains an intriguing open question.

2 Preliminaries

Throughout this work, we use λ to denote the security parameter. For an integer n ∈ N,
we write [n] to denote the set {1, 2, . . . , n}. We write poly(λ) to denote a quantity that is
bounded by a fixed polynomial in λ and negl(λ) to denote a function that is λ−ω(1). For
a distribution D, we write x ← D to denote that x is drawn from D. For a randomized
algorithm Alg, we write y ← Alg(x) to denote the process of computing y by running Alg
on input x with (implicitly-defined) randomness r of the appropriate length (based on the
length of x). For a finite set S, we write x $←S to denote that x is sampled uniformly at
random from S. We say that an algorithm is efficient if it runs in probabilistic polynomial
time in the length of its input. We now review the definition of a verifiable delay function.

I Definition 1 (Verifiable Delay Function [5]). A verifiable delay function is a tuple of
algorithms ΠVDF = (Setup,Eval,Verify) with the following properties:

Setup(1λ, T ) → pp: On input the the security parameter λ and the time bound T , the
setup algorithm outputs the public parameters pp. The public parameter determines a
(uniformly) samplable input space Xpp and an output space Ypp. When the context is
clear, we simply denote them as X and Y.
Eval(pp, x) → (y, π): On input the public parameters pp and an element x ∈ X , the
evaluation algorithm outputs a value y ∈ Y and a (possibly empty) proof π. Moreover,
in case Eval is randomized, the first output y should be determined by x and pp (and be
independent of the randomness used). We will typically refer to y as the “output” of the
VDF on x, and since y is unique, when the context is clear, we simply write y = Eval(pp, x)
to denote the output of the VDF on x.
Verify(pp, x, y, π) → {0, 1}: On input the public parameters pp, an element x ∈ X , a
value y ∈ Y, and a proof string π ∈ {0, 1}∗, the verification algorithm outputs a bit (1
means accept and 0 means reject).

Moreover, the algorithms must satisfy the following efficiency requirements:
The setup algorithm Setup runs in time poly(λ, log T ).
The evaluation algorithm Eval runs in time T .
The verification algorithm Verify runs in time poly(λ, log T ).

For simplicity of notation, in the following sections, we sometimes write s (resp., t) to
denote the running time of Setup (resp., Verify). This additionally allow us to state our
results more generally while also explicitly stating how our results depend on the precise
bounds on the running time of Setup and Verify.
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Completeness. We now define the completeness requirement on VDFs.

I Definition 2 (Completeness of VDF). A VDF ΠVDF = (Setup,Eval,Verify) has completeness
error γ if for all λ ∈ N and T ∈ N,

Pr
[

Verify(pp, x, y, π) = 1 : pp← Setup(1λ, T ), x $←Xpp
(y, π)← Eval(pp, x)

]
≥ 1− γ.

Unless stated otherwise, we assume γ = 0. For our first lower bound, we need perfect
completeness γ = 0, but our second lower bound in the tight regime directly extends to more
generalized settings where the completeness error γ is negl(λ) (or even a small constant).

Security. The two main security requirements we require on a VDF are uniqueness and
sequentiality. We define these below.

I Definition 3 (Uniqueness of VDF). A VDF ΠVDF = (Setup,Eval,Verify) satisfies uniqueness
for a class A of adversaries with error ε(λ), if for all adversaries Adv ∈ A, we have that

Pr
[
y 6= Eval(pp, x) ∧ Verify(pp, x, y, π) : pp← Setup(1λ, T )

(x, y, π)← Adv(1λ, 1T , pp) = 1
]
≤ ε(λ).

We say that ΠVDF satisfies statistical uniqueness if A is the set of all (computationally
unbounded) adversaries and ε(λ) is negligible. We say ΠVDF satisfies perfect uniqueness if
we further require ε(λ) = 0. We say that ΠVDF is computationally unique if A is the class of
poly(λ, T )-time adversaries and ε(λ) is negligible.

I Definition 4 (Sequentiality of VDF). A VDF ΠVDF = (Setup,Eval,Verify) is σ-sequential
(where σ may be a function of λ, T and t) if for all adversaries Adv = (Adv0,Adv1), where
Adv0,Adv1 both run in total time poly(λ, T ) and Adv1 runs in parallel time at most σ, we
have that

Pr

y = Eval(pp, x) :
pp← Setup(1λ, T )

stAdv ← Adv0(1λ, 1T , pp)
x

$←X , y ← Adv1(stAdv, x)

 = negl(λ).

We can view Adv0 as a “preprocessing” algorithm that precomputes some initial state stAdv
based on the public parameters and Adv1 as the “online” adversarial evaluation algorithm.

I Definition 5 (Decodable VDF [5]). Let t be a function of λ and T . A VDF ΠVDF =
(Setup,Eval,Verify) is t-decodable if there is no extra proof (i.e., π = ⊥) and there is a
decoder Dec with the following properties:

Dec runs in time t.
For all x ∈ X , if y = Eval(pp, x), then Dec(pp, y) = x.

We say that ΠVDF is strongly decodable, if for all y′ 6= y = Eval(pp, x), it holds that
Dec(pp, y) 6= x. Finally, we say a VDF is efficiently (strongly) decodable if it is (strongly)
t-decodable for t = poly(λ, log T ).

I Remark 6 (Strongly Decodable VDFs and Perfect Uniqueness). Strong decodability (Defini-
tion 5) implies perfect uniqueness (Definition 3). However, the reverse is not true in general.
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I Definition 7 (Random Oracle Model (ROM)). A random oracle O implements a truly
random function from {0, 1}∗ to range R.2 Equivalently, one can use “lazy evaluation” to
simulate the behavior of a random oracle as follows:

If the oracle has not been queried on x ∈ {0, 1}∗, sample y $←R. The oracle returns y
and remembers the mapping (x, y).
If the oracle was previously queried on x ∈ {0, 1}∗, return the previously-chosen value of
y ∈ R associated with x.

I Remark 8 (Hardness in the Random Oracle Model). Note that constructions with uncondi-
tional security in the ROM use the oracle as the only source of hardness. In particular, as
stated above, the number of rounds of queries to the oracle model the cost of the parallel
computation. If one allows other sources of computational hardness, existing constructions
of VDFs trivially also exist relative to the ROM (by ignoring the random oracle).

I Definition 9 (VDFs in the ROM). We define uniqueness and sequentiality of a VDF in the
ROM by allowing the components Setup,Eval,Verify of a VDF to be oracle-aided algorithms
in the ROM and adjusting their notion of time and parallel time (in Definitions 3 and 4
according to Definition 7 and Remark 8). In particular, for sequentiality, we measure the
running time of the adversary by the number of rounds of oracle queries the adversary makes
(this is to model the capabilities of a parallel adversary). Furthermore, for the uniqueness
property, we require that the probability of the adversary succeeding is taken over the random
coins of Setup and of the adversary, but not over the choice of oracle.

3 Lower Bounds for VDFs in the Random Oracle Model

In this section, we first show that perfectly unique VDFs (Definition 3) are impossible in the
random oracle model. Then, as a corollary, we obtain barriers for strongly decodable VDFs
as well. In particular, if a VDF in the ROM is perfectly unique, it means that for every
sampled random oracle O ← O, perfect uniqueness holds. Moreover, our result shows that a
recent construction of [1] for reversible VDFs that is of the form of a permutation function
and uses the sloth functions from [20] cannot be modified to only rely on a random oracle.

We then turn our attention to the case of tight VDFs (and more generally, tight proofs of
sequential work) and show that they cannot be constructed in the ROM as well.

3.1 Case of Perfectly Unique VDFs
In this section, we give a lower bound for perfectly unique VDFs in the random oracle model.
Specifically, we prove the following theorem:

I Theorem 10 (Lower Bounds for Perfectly Unique VDFs in the ROM). Suppose ΠVDF =
(Setup,Eval,Verify) is a VDF in the ROM with perfect uniqueness and perfect completeness
in which (for a concrete choice of λ), Setup runs in time s, Eval runs in time T , and Verify
runs in time t. Then, there is an adversary Adv that breaks sequentiality (Definition 4) by
asking a total of 2T · (s+ t) queries in 2(s+ t) rounds of queries.

2 There are multiple possible ways to model a random oracle in the literature. We describe three
possibilities here. Sometimes, the range R is {0, 1}λ where λ is a security parameter; other times, it is
simply {0, 1}, and sometimes it is a “length preserving” mapping that maps each input x to a string of
the same length.
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Before proving Theorem 10, we observe that this result already rules out the possibility of
constructing strongly decodable VDFs (which are forced to be perfectly unique; see Remark 6)
in the ROM. In fact, a special case of this theorem for the class of “permutation VDFs” can
be derived from the impossibility result of [21] for time-lock puzzles [25].3 We first define
this class of special VDFs below and prove their impossibility in the ROM as a warm up.

3.1.1 Warm Up: The Special Case of Permutation VDFs
Permutation VDFs. As a special case of strongly decodable VDFs, one can further restrict
the mapping from X to Y to be a permutation (instead of just being an injective function).
Indeed, the recent construction of [1] has this exact property as they construct decodable/re-
versible VDFs where the evaluation function is a permutation on its domain. Indeed, [1] uses
random oracles together with the sloth function from [20] to construct their permutation
VDF, and thus it was left open whether random oracle would suffice for permutation VDFs.
Our result rules this possibility out.

I Proposition 11. Let ΠVDF be a permutation VDF in the ROM with a decoder Dec that
runs in time t, and a setup algorithm Setup that runs in time s. Then, there is an adversary
that breaks sequentiality (Definition 4) in O(s+ t) rounds of queries and O(T · (s+ t)) queries.

Proof. Previously, Mahmoody et al. [21] showed an impossibility result for time-lock puzzles
in the ROM. To prove the claim, we show how to construct a time-lock puzzle from a
permutation VDF. The result then follows from the lower bound of [21]. The construction is
as follows. The puzzle-generator would first run the setup algorithm Setup of the VDF to
get the public parameter pp. Then, it samples y $←X = Y (here, we use the fact that X is
efficiently-samplable, and that X = Y) and sets x← Dec(pp, y). It outputs x as the puzzle
(and keeps y as the solution). Since Setup and Dec for a VDF are both efficient (i.e., run in
time poly(λ, t)), the puzzle-generator is also efficient.

We can now use the result of [21] which shows that any time-lock puzzle in the ROM
where the puzzle-generation algorithm makes k queries and the puzzle-solving algorithm
makes T queries can be broken by an adversary making O(k) rounds of queries and a total of
O(k · T ) queries. For the time-lock puzzle based on the permutation VDF, k = s+ t, where
s is the number of queries made by the Setup algorithm and t is the number of queries made
by the Dec algorithm. J

3.1.2 Proof of Theorem 10 in the General (Perfectly Unique) Case
We now give the proof of Theorem 10. It follows the ideas from [21] for ruling out time-lock
puzzles in the ROM, but this time, we cannot simply reduce the problem to the setting of
time-lock puzzles, and we need to go into the proof and extend it to our setting. We begin
with an informal overview of the proof before providing the formal analysis.

Proof overview. We begin with an informal description of the main ideas behind the lower
bound. Our goal is to construct an adversary that can efficiently find an output that passes
verification, while asking fewer than T rounds of queries to the random oracle. To do so,
we consider an algorithm that implements the honest evaluation algorithm, but instead of

3 In a time-lock puzzle, there is a puzzle-generation algorithm that runs in time t and samples a puzzle x
together with a solution y, and an evaluation algorithm that runs in sequential time T that takes an
input x and outputs the solution y.
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Algorithm 1 The adversary Adv that breaks sequentiality of the VDF.

1. At the beginning of the game, the adversary Adv receives the public parameters pp and a
challenge x ∈ X from the sequentiality challenger.

2. Initialize a query set QAdv ← ∅ and a set of query-answer pairs PAdv ← ∅.
3. Let d = 2(s+ t) + 1.
4. For i ∈ [d], do the following:

a. Initialize P (i)
Adv ← ∅ and Q(i)

Adv ← ∅.
b. Execute (yi, πi) ← Eval(pp, x) where the random oracle queries (made by Eval) are

answered using the following procedure. On every oracle query q:
If q ∈ QAdv, then reply with the value r where (q, r) ∈ PAdv.
Otherwise, choose a uniformly random value r $←R (where R is the range of the
random oracle O) and add (q, r) to P (i)

Adv and add q to Q(i)
Adv.

c. If i < d, then in one round, for all (q, ?) ∈ P (i)
Adv, query the real oracle O to get r ← O(q)

as the answer; and then add (q, r) to PAdv and add q to QAdv.
5. Output Maj(y1, ..., yd) where Maj denotes the majority operation (which outputs ⊥ if no

majority exists).

issuing queries to the actual random oracle, the algorithm will instead sometimes simulate
the outputs from those queries itself (i.e., by sampling from the output distribution of the
random oracle). Of course, if one of these “faked” or “simulated” queries was asked to the
oracle by another algorithm in the system (e.g., by Setup or Verify), then our algorithm will
almost certainly fail. On the other hand, if none of the simulated queries were asked to the
oracle, then our attacker wins (because the set of “faked” queries and real queries together
form an oracle that is consistent). This means that as long as the number of queries Setup
and Verify make are much smaller than T and our algorithm is able to “identify” or “learn”
those queries with fewer than T rounds of queries to the random oracle, then the algorithm
succeeds in breaking sequentiality of the VDF.

Proof of Theorem 10. Without loss of generality, assume that Eval asks no repeated queries
in a single execution. We construct an attacker Adv that breaks sequentiality of the VDF as
follows. Our adversary is entirely online (i.e., there is no separate preprocessing step).

We now show that Adv in Algorithm 1 satisfies the properties needed in Theorem 10. Let
QS be the queries made by the setup algorithm Setup(1λ, T ) to sample pp and QV be the
queries made by Verify(pp, x, y) where y = Eval(pp, x) is the true solution.

For i ∈ [d], we define Hi to be the event where there is a query q ∈ Q(i)
Adv ∩ (QS ∪QV )

during the ith round of emulation that was not previously asked by the adversary: q 6∈ QAdv
at that moment. Equivalently, when q is asked, it holds that q ∈ (Q(i)

Adv ∩ (QS ∪QV )) \QAdv.
The following claim shows that Hi cannot happen for too many rounds i.

B Claim 12. If I = {i : Hi holds}, then |I| ≤ s+ t.

Proof. If event Hi occurs as a result of some query q, then at the end of round i, Adv queries
the oracle O on the input q. By construction, since q ∈ (Q(i)

Adv ∩ (QS ∪QV )) \QAdv, it must
be the case that Adv makes a new query on an input that was previously queried by either
the Setup or Verify algorithms (but not queried in any of the previous rounds). However,
since Setup and Verify together ask a combined total of (at most) s+ t queries, this event
cannot happen more than s+ t times. C
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B Claim 13. If Hi does not happen, then yi = y.

Proof. Let yi 6= y for a round i in which Hi has not happened. This means that the
set of oracle query-answer pairs used during Setup, and the ith emulation of Eval by Adv
are consistent. Namely, there is an oracle O′, relative to which, we have pp ← SetupO

′
,

(y′, π′)← EvalO
′
(pp, x), and VerifyO

′
(pp, x, y, π) = 1. However, this shows that the perfect

uniqueness property is violated relative to O′, because for input x, there is a “wrong” solution
y (i.e., y 6= y′ = EvalO

′
(pp, x)) together with some proof π for y such that the verification

passes VerifyO
′
(pp, x, y, π) = 1. C

By the above two claims, it holds that yi = y for at least s+t+1 values of i ∈ [2(s+t)+1],
and thus the majority gives the right answer y for Adv. J

3.2 Lower Bound for Tight Proofs of Sequential Work
We can apply similar techniques to rule out tight proofs of sequential work [22] in the random
oracle model. At a high level, a (publicly-verifiable) proof of sequential work is a VDF without
uniqueness. Namely, for an input x, there can be many pairs (y, π) that passes verification.
In this setting, there is no need to distinguish y and π. While we have constructions of
(publicly-verifiable) proofs of sequential work in the ROM, our results show that tight proofs
of sequential work (see [10] for more discussion on this tightness notion) are impossible in
this setting. In particular, the following barrier applies to settings where the sequentiality
parameter σ is very close to T (e.g., this does not apply to σ = T/2). The following definition
derives publicly-verifiable proofs of sequential work [7, 12,22,25] as a relaxation of VDFs.4

I Definition 14 (Publicly-Verifiable Proofs of Sequential Work). A publicly-verifiable proof of
sequential work is a relaxation of a VDF where the uniqueness property is not needed. Hence,
there is no need to distinguish between an output y and a proof π. In particular, y = π can
be the only (not-necessarily-unique) output of Eval that is still sequentially hard to compute.

Proofs of sequential work in the ROM. While Definition 9 defines the notion of a VDF
in the ROM, the same definition extends to the setting of (publicly-verifiable) proofs of
sequential work in the ROM as well. Namely, we measure the running time in terms of the
total number of oracle queries and the parallel time by the the number of rounds of oracle
queries. We now show how to adapt our techniques for ruling our perfectly-unique VDFs in
the ROM to also rule out tight proofs of sequential work.

I Theorem 15 (Attacking Proofs of Sequential Work in the ROM). Suppose ΠPSW =
(Setup,Eval,Verify) is a publicly-verifiable proof of sequential work in the ROM in which
(for a concrete choice of λ), Setup runs in time s, Eval runs in time T , and Verify runs in
time t. Then, for any 1 < G < T there is an adversary Adv that asks a total of at most T −G
queries and breaks sequentiality (Definition 4) with probability at least 1− (s+ t) ·G/T .

I Corollary 16 (Ruling Out Tight Proofs of Sequential Work in the ROM). Let λ be a security
parameter and T be the time bound parameter. For any choice of s, t = poly(λ, log T ), there
does not exist a proof of sequential work in the ROM with sequentiality σ = T · (1− 1/2(s+t)).
More generally, for any constant 0 < ρ < 1, there does not exist a proof of sequential work in
the ROM with sequentiality σ = T − T ρ.

4 Definition 14 is even more general as it allows a setup phase.
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Proof. The first statement follows by instantiating Theorem 15 with G = T/2(s+t). For
this setting of parameters, Theorem 15 implies an adversary that breaks sequentiality with
probability at least 1/2 and making only T −G = T · (1− 1/2(s+t)) queries. For the more
general statement, we take T to be a sufficiently large polynomial in the security parameter
λ such that s, t < T 1−ρ/4. Note that this is always possible since s, t = poly(λ, log T ); that
is, both s, t are poly-logarithmic in T and 0 < ρ < 1 is constant. Then, we can again set
G = T − σ = T ρ and appeal to Theorem 15 to obtain an adversary that makes T −G = σ

queries and breaks sequentiality with probability at least 1/2. J

I Remark 17 (Secretly-Verifiable Tight Proofs of Sequential Work). We note that Theorem 15
also holds for secretly-verifiable proofs of sequential work as well. The proof for the secretly-
verifiable setting is identical to that for the publicly-verifiable setting. For simplicity of
notation we write the proof for the publicly-verifiable version (Definition 4) which uses pp as
both the evaluation and the verification key.
I Remark 18 (Other Extensions). The extension from Remark 17 on ruling out secretly-
verifiable tight proofs of sequential work relies on the same proof as that of Theorem 15. In
Section 4, we show two extensions of this result by adapting the proof of Theorem 15. These
include extending the lower bound to: (1) the setting where the Setup algorithm is “slow”
(i.e., runs in time proportional to T ); and (2) the random permutation model (rather than
the random oracle model). We refer to Section 4 for the details on those extensions.

Proof of Theorem 15. Again, without loss of generality, we assume that Eval asks no
repeated queries in a single execution. The attacker’s algorithm Adv is defined as follows:

Algorithm 2 The adversary Adv that breaks sequentiality for the proof of sequential work.

1. At the beginning of the game, the adversary Adv receives the public parameters pp and a
challenge x ∈ X from the sequentiality challenger.

2. Pick a random set S ⊆ [T ] of size T −G.
3. Execute (y, π)← Eval(pp, x) where the ith oracle query qi is answered as follows:

If i ∈ S, compute the response ri ← O(qi) from the true oracle O.
Otherwise sample a uniformly random ri ← R as the response for the query qi.

4. Output (y, π).

To analyze Algorithm 2, we compare the output of the attacker’s experiment (Real) with
the output in an “ideal” experiment (Ideal) where all of the oracle queries are answered using
the real oracle. We define these two experiments below:

1. Sample pp← Setup(1λ, T ).
2. Sample x $←X .
3. In Experiment Real, run Algorithm 2 to obtain a pair (y, π). In Experiment Ideal,

run Algorithm 2, except use the real oracle O to answer all of the oracle queries
made by Eval (in Step 3 of Algorithm 2).

4. The output of the experiment is 1 if Verify(pp, x, y, π) = 1 and 0 otherwise.

Figure 1 The Real and Ideal experiments.

In the following, we write Prreal[·] (resp., Prideal[·]) to denote the probability of an event E in
the Real (resp., Ideal) experiment.

ICALP 2020



83:12 Can Verifiable Delay Functions Be Based on Random Oracles?

Events. Let QV be the set of oracle queries made by Verify and QS be the set of oracle
queries made by Setup. Let QAdv be the set of oracle queries qi that appears in Step 3 of
Algorithm 2 where i /∈ S. Namely, these are the set of oracle queries qi that Adv answers
with uniformly random values in Real. We now define the following two events:

Let W be the event that Verify(pp, x, y, π) = 1 when (y, π) is the output of the adversary
(i.e., W is the event that the adversary wins and the experiment outputs 1).
Let B be the “bad” event where (QV ∪QS) ∩QAdv 6= ∅. Namely, this is the event that
adversary makes up an answer to a query that is asked either by the setup algorithm or
the verification algorithm.

With these definitions, the following claim trivially holds in the ideal experiment (by perfect
completeness of the underlying proof of sequential work5), as all of the oracle queries qi are
computed using the real oracle O(qi).

B Claim 19. Prideal[W ] = 1.

The following lemma states that until event B happens, the two experiments are identical.

I Lemma 20. Prreal[B] = Prideal[B]. Moreover, conditioned on the event B not happening,
the two experiments are identically distributed. In particular, for any event like W , it hold
that Prreal[W ∨B] = Prideal[W ∨B].

Proof. Here, we make a crucial use of the fact that the oracle O is random. To prove
the lemma, we run the two games in parallel using the same randomness for any query
that is asked by any party, step by step. Namely, we start by executing the evaluation
algorithm identically as much as possible until event B happens. More formally, we run
both experiments by using fresh randomness to answer any new query asked during the
execution, and we will stop the execution as soon as event B happens. Since until the event
B happens both games proceed identically (in a perfect sense) and consistently according to
their own distribution, it means that until event B happens, the two games have the same
exact distributions. J

We now observe that the probability of the event B is small in the ideal game, and
conclude that it is indeed small in both games.

B Claim 21. Prideal[B] ≤ (s+ t) · GT .

Proof. In this game, the set S is independent of all other components in the experiment, so
we can choose S at the end of the experiment (after QS and QV have been determined). By
definition of QAdv, we have that |QAdv| ≤ G. This means that for any query q ∈ QS ∪QV
that is also queried by Eval(pp, x), the probability that q ∈ QAdv is at most G/T . The claim
now follows by a union bound. C

The above claims complete the proof of Theorem 15, as we now can conclude that the
probability of W in both experiments is “close”:∣∣Pr

real
[W ]− Pr

ideal
[W ]

∣∣ ≤ Pr
ideal

[B].

We already know that Prideal[W ] = 1, therefore, we conclude that

Pr
real

[W ] ≥ Pr
ideal

[W ]− Pr
ideal

[B] ≥ 1− (s+ t) · G
T
. J

5 Note that this argument extends also to the setting where we have completeness error γ (i.e., completeness
holds with probability 1− γ over the choice of the public parameters). This modification introduces a γ
loss in the adversary’s advantage in the real game.
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4 Extensions to the Lower Bounds

In this section, we briefly discuss several extensions of our lower bounds on perfectly unique
VDFs and tight proofs of sequential work by extending the proofs of Theorems 10 and 15.

4.1 Handling Expensive Setup Phase
Our lower bounds in Theorems 10 and 15 construct an adversary whose running time depends
on both t (the verification time) as well as s (the setup time). When these bounds t, s are
only poly(λ, log T ), the running time of our attacker is much smaller compared to T , and
thus, breaks the sequentiality of the scheme. However, one might argue that since the setup
is executed only once, it is reasonable to consider a scenario where s is potentially as large
as T . In this case, both of our lower bounds in Theorems 10 and 15 become meaningless.

Case of expensive public setup. If the setup algorithm is public coin (i.e, the randomness
to Setup is publicly known), then both Theorems 10 and 15 directly extend to the setting
where s = poly(λ, T ). Specifically, in this setting, the setup queries can be discovered publicly
(i.e., by emulating an execution of Setup). Thus, the adversary can learn the oracle’s values
on the set of queries QS made by Setup. In the online phase, the adversary carries out its
attack by incorporating the knowledge of QS when answering oracle queries. In other words,
if during the emulation of the Eval algorithm, the adversary encounters a query q ∈ QS , it
will use the known answer (saved as part of the state stAdv) instead of asking it from the
oracle or guessing its answer.

Case of expensive private setup for Theorem 15. When the setup algorithm uses private
randomness, the above argument for extending Theorems 10 and 15 no longer applies.
Nonetheless, we can still show how the proof of Theorem 15 (for ruling our tight proofs of
sequential work) can be extended to this setting as well.

I Theorem 22 (Attacking Tight Proofs of Sequential Work with Expensive Setup in the ROM).
Suppose ΠPSW = (Setup,Eval,Verify) is a publicly-verifiable proof of sequential work in the
ROM in which (for a concrete choice of λ, T ), Setup runs in time s, Eval runs in time T ,
Verify runs in time t, and completeness error is at most γ (see Definition 2). Then, for any
ε < 1 and 1 < G < T , there is an adversary Adv = (Adv0,Adv1) where Adv0 runs in time
poly(s, T, t, 1/ε) and Adv1 makes at most T −G queries (and run in total time poly(T )) and
breaks sequentiality (Definition 4) with probability at least 1− ε− t ·G/T − γ.

Before proving Theorem 22, we first derive a corollary, formally stating the range of tight
sequentiality for which we rule out PoSWs in the ROM.

I Corollary 23 (Ruling Out Tight Proofs of Sequential Work with Expensive Setup in the
ROM). Let λ be a security parameter and T be the time bound parameter. For any choice of
s = poly(λ, T ), t = poly(λ, log T ), and completeness error γ = negl(λ), there does not exist a
proof of sequential work in the ROM with sequentiality σ = T · (1− 1/2t) and completeness
error γ. In particular, for any constant 0 < ρ < 1, there does not exist a proof of sequential
work in the ROM with sequentiality σ = T − T ρ and completeness error γ.

Proof. The proof is identical to that of Corollary 16, except here, we use the attack algorithm
from Theorem 22 that relies on a preprocessing step with time complexity poly(λ, T ). The
only difference is that we now also need to make sure ε+ γ < 1/2, which is easily satisfied
whenever γ = negl(λ). For example, take ε = 1/3. J
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Algorithm 3 The adversary Adv0 that precomputes the ε-heavy queries of the Setup algorithm.

1. Initialize a set Q← ∅.
2. Repeat the following procedure k = s/ε = poly(λ, T ) times:

a. Sample x $←X .
b. Compute (y, π)← Eval(pp, x). Whenever Eval makes a query q to the oracle O, add

the pair (q,O(q)) to Q.
3. Output stAdv = Q.

We now give the proof of Theorem 22.

Proof of Theorem 22. Here, Adv0 will perform a precomputation and compute the so-called
“ε-heavy” queries [3,17] of the setup algorithm. More precisely, we aim to find queries that are
asked by the setup and have noticeable chance of being queried again during the evaluation.
In particular, Algorithm Adv0 outputs a set Q consisting of input-output pairs of the oracle
O. The online algorithm Adv1 then follows Algorithm 2 from the proof of Theorem 15, except
whenever Eval makes a query q where q ∈ Q, Adv1 replies with the precomputed value of
O(q) in Q. We now describe Adv0:

We define Adv1 as in Algorithm 2, except in Step 3, if the query qi is contained in
stAdv = Q, then the adversary always replies with the precomputed value of O(qi) in Q.
Otherwise, it uses the same procedure as in Algorithm 3. The rest of the analysis proceeds
similar to that in the proof of Theorem 15. Namely, let QS denote the set of oracle queries
made by Setup and QV be the set of queries made by Verify in the real/ideal experiments.
We define the events W and B exactly as in the proof of Theorem 15. We now show an
analog of Claim 21:

B Claim 24. Prideal[B] ≤ ε+ t · GT .

Proof. Recall that the event B occurs if (QV ∪QS) ∩QAdv 6= ∅. We consider the following
two setting. (All probabilities are stated in the ideal experiment.)

Consider the probability that QV ∩ QAdv 6= ∅. By the same argument as in the proof
of Claim 21, this event occurs with probability at most |QV | ·G/T ≤ t ·G/T over the
randomness of S.
Consider the probability that QS ∩QAdv 6= ∅. Take any query q ∈ QS and consider the
event Hq that q ∈ QAdv and q /∈ stAdv. By construction of Algorithm 3, for Hq to happen,
the first k iterations of Adv0 should not query q during Eval, and yet q is queried in
the next (actual) execution of Eval. However, it is easy to show that for any Bernoulli
variable (of arbitrary probability α) the probability of missing it k times and hitting it
on the (k + 1)st iteration is at most 1/k. Since Setup makes at most s queries, |QS | ≤ s,
so by a union bound,

Pr[QS ∩QAdv 6= ∅] ≤ s

k
= ε.

The claim now follows by a union bound. C

The rest of the proof of Theorem 22 proceeds identically to the proof of Theorem 15 and
noting that the probability of W in the ideal game is 1− γ. J
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4.2 Extending to the Random Permutation Oracle Model
Random oracles can be used to instantiate all symmetric primitives (including the ideal
cipher model [9,15]) with one exception: the random permutation oracle R that implements a
random permutation on {0, 1}n for all n ∈ N. Indeed there are impossibility results showing
that such a construction does not exist [23,27]. We can extend the proof of Theorem 15 to
rule out constructions of tight proofs of sequential work in the random permutation oracle
as well by developing a preprocessing attack and then using standard techniques based on
the fact that a random permutation oracle and a random oracle over a large domain is
statistically indistinguishable to any query-bounded algorithm [17].

Case of large input domains. More formally, let n be such that (T + s + t)2/2n ≤ ε.
Then, first suppose the only domain used by the three algorithms (Setup,Eval,Verify) is
{0, 1}n. In this case, the probability that a random oracle used by these three algorithms
Setup,Eval,Verify has any collision during the course of their execution is at most (T +
s + t)2/2n ≤ ε. However, whenever there are no collisions, there is no way to distinguish
between random permutations or random oracles. Therefore, our attack in Theorem 15 would
automatically work (as is) up to a loss of ε in the success probability. This argument also
works if the three algorithms (Setup,Eval,Verify) ask their queries from input domains with
different size as long as for any domain {0, 1}n that they query, n satisfies (T +s+ t)2/2n ≤ ε.

General case. The above argument fails when any of the algorithms (Setup,Eval,Verify)
ask their queries from any domain {0, 1}n where n is small (and as such, (T + s+ t)2/2n > ε).
However, the total number of queries over all such domains is at most

τ = |{0, 1}1|+ |{0, 1}2|+ · · ·+ |{0, 1}n|,

where (T + s+ t)2/2n = ε, which means

τ = 2 + 4 + · · ·+ (T + s+ t)2

ε
<

2(T + s+ t)2

ε
= poly(λ, T ).

Therefore, a preprocessing adversary Adv0 can ask all of these τ = poly(λ, T ) queries from
the real oracle O and send them together with their answers to the online adversary Adv1
who will then use the answers to these queries whenever needed without asking them from
O or guessing their answers. In this case, the analysis of our attack is identical to the
aforementioned case with inputs drawn from a large domain.

5 Conclusion and Open Questions

In this work, we initiated a formal study of the assumptions behind VDFs and provided new
lower bounds on basing VDFs with perfect uniqueness in the random oracle model as well as
stronger lower bounds in the tight security regime in which the sequentiality guarantees a
very close running time to the honest execution. The second lower bound applies not only to
VDFs but also to relaxations of it such as sequential proofs of work. While our first lower
bound captures existing notions [1], they do not extend to the full range of VDF notions.

The main open question remaining is whether we can extend our first lower bound to
rule out VDFs satisfying computational uniqueness in the ROM, and ideally do so allowing
negligible completeness error as well. Alternatively, the fact that our current lower bound
critically relies on the perfect uniqueness property may suggest new approaches to basing
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VDFs on weaker assumptions. Namely, any such approach must either rely on non-black-box
techniques or leverage imperfect soundness in a critical manner. Both of these possibilities
represent intriguing avenues for further research.

References
1 Hamza Abusalah, Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Michael Walter.

Reversible proofs of sequential work. In EUROCRYPT, pages 277–291, 2019.
2 Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard

functions. In STOC, pages 595–603, 2015.
3 Boaz Barak and Mohammad Mahmoody. Merkle’s key agreement protocol is optimal: An

o(n2) attack on any key agreement from random oracles. J. Cryptology, 30(3):699–734, 2017.
4 Ingrid Biehl, Johannes A. Buchmann, Safuat Hamdy, and Andreas Meyer. A signature scheme

based on the intractability of computing roots. Des. Codes Cryptogr., 25(3):223–236, 2002.
5 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In

CRYPTO, pages 757–788, 2018.
6 Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich. Limits on the power

of zero-knowledge proofs in cryptographic constructions. In TCC, pages 559–578, 2011.
7 Jin-yi Cai, Richard J. Lipton, Robert Sedgewick, and Andrew Chi-Chih Yao. Towards

uncheatable benchmarks. In Structure in Complexity Theory Conference, pages 2–11, 1993.
8 Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In EUROCRYPT,

pages 451–467, 2018.
9 Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The random oracle model and

the ideal cipher model are equivalent. In CRYPTO, pages 1–20, 2008.
10 Nico Döttling, Sanjam Garg, Giulio Malavolta, and Prashant Nalini Vasudevan. Tight verifiable

delay functions. IACR Cryptology ePrint Archive, 2019:659, 2019.
11 Nico Döttling, Russell W. F. Lai, and Giulio Malavolta. Incremental proofs of sequential work.

In EUROCRYPT, pages 292–323, 2019.
12 Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In CRYPTO,

pages 139–147, 1992.
13 Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous verifiable

delay functions. IACR Cryptology ePrint Archive, 2019:619, 2019.
14 Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay functions

from supersingular isogenies and pairings. In ASIACRYPT, pages 248–277, 2019.
15 Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence of the random

oracle model and the ideal cipher model, revisited. In STOC, pages 89–98, 2011.
16 Matt Howard and Bram Cohen. Chia network announces 2nd VDF competition with $100,000

in total prize money, 2019.
17 Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way

permutations. In STOC, pages 44–61, 1989.
18 Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,

and Bryan Ford. Enhancing bitcoin security and performance with strong consistency via
collective signing. In USENIX Security Symposium, pages 279–296, 2016.

19 Esteban Landerreche, Marc Stevens, and Christian Schaffner. Non-interactive cryptographic
timestamping based on verifiable delay functions. IACR Cryptology ePrint Archive, 2019:197,
2019.

20 Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and trx. IACR
Cryptology ePrint Archive, 2015:366, 2015.

21 Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock puzzles in the random
oracle model. In CRYPTO, pages 39–50, 2011.

22 Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable proofs of sequential
work. In ITCS, pages 373–388, 2013.



M. Mahmoody, C. Smith, and D. J. Wu 83:17

23 Takahiro Matsuda and Kanta Matsuura. On black-box separations among injective one-way
functions. In TCC, pages 597–614, 2011.

24 Krzysztof Pietrzak. Simple verifiable delay functions. In ITCS, pages 60:1–60:15, 2019.
25 R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto, 1996.
26 Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.
27 Steven Rudich. Limits on the Provable Consequences of One-way Functions. PhD thesis, EECS

Department, University of California, Berkeley, 1988. URL: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/1988/6060.html.

28 Barak Shani. A note on isogeny-based hybrid verifiable delay functions. IACR Cryptology
ePrint Archive, 2019:205, 2019.

29 Benjamin Wesolowski. Efficient verifiable delay functions. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 379–407. Springer, 2019.

ICALP 2020

http://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/6060.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/6060.html




On the Two-Dimensional Knapsack Problem for
Convex Polygons
Arturo Merino
Technische Universität Berlin, Germany
merino@math.tu-berlin.de

Andreas Wiese
Universidad de Chile, Santiago, Chile
awiese@dii.uchile.cl

Abstract
We study the two-dimensional geometric knapsack problem for convex polygons. Given a set of
weighted convex polygons and a square knapsack, the goal is to select the most profitable subset of
the given polygons that fits non-overlappingly into the knapsack. We allow to rotate the polygons
by arbitrary angles. We present a quasi-polynomial time O(1)-approximation algorithm for the
general case and a polynomial time O(1)-approximation algorithm if all input polygons are triangles,
both assuming polynomially bounded integral input data. Also, we give a quasi-polynomial time
algorithm that computes a solution of optimal weight under resource augmentation, i.e., we allow to
increase the size of the knapsack by a factor of 1 + δ for some δ > 0 but compare ourselves with
the optimal solution for the original knapsack. To the best of our knowledge, these are the first
results for two-dimensional geometric knapsack in which the input objects are more general than
axis-parallel rectangles or circles and in which the input polygons can be rotated by arbitrary angles.
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84:2 On the Two-Dimensional Knapsack Problem for Convex Polygons

1 Introduction

In the two-dimensional geometric knapsack problem (2DKP) we are given a square knapsack
K := [0, N ]× [0, N ] for some integer N and a set of n convex polygons P where each polygon
Pi ∈ P has a weight wi > 0; we write w(P ′) :=

∑
Pi∈P′ wi for any set P ′ ⊆ P. The goal

is to select a subset P ′ ⊆ P of maximum total weight w(P ′) such that the polygons in P ′
fit non-overlapping into K if we translate and rotate them suitably (by arbitrary angles).
2DKP is a natural packing problem, the reader may think of cutting items out of a piece
of raw material like metal or wood, cutting cookings out of dough, or, in three dimensions,
loading cargo into a ship or a truck. In particular, in these applications the respective items
can have various kinds of shapes. Also note that 2DKP is a natural geometric generalization
of the classical one-dimensional knapsack problem.

Our understanding of 2DKP highly depends on the type of input objects. If all polygons
are axis-parallel squares there is a (1 + ε)-approximation with a running time of the form
Oε(1)nO(1) (i.e., an EPTAS) [6], and there can be no FPTAS (unless P = NP) since the
problem is strongly NP-hard [11]. For axis-parallel rectangles there is a polynomial time
(17/9 + ε) < 1.89-approximation algorithm and a (3/2 + ε)-approximation if the items can be
rotated by exactly 90 degrees [5]. If the input data is quasi-polynomially bounded there is
even a (1 + ε)-approximation in quasi-polynomial time [2], with and without the possibility
to rotate items by 90 degrees. For circles a (1 + ε)-approximation is known under resource
augmentation in one dimension if the weight of each circle equals its area [12].

To the best of our knowledge, there is no result known for 2DKP for shapes different than
axis-parallel rectangles and circles. Also, there is no result known in which input polygons
are allowed to be rotated by angles different than 90 degrees. However, in the applications
of 2DKP the items might have shapes that are more complicated than rectangles or circles.
Also, it makes sense to allow rotations by arbitrary angles, e.g., when cutting items out of
some material. In this paper, we present the first results for 2DKP in these settings.

1.1 Our contribution
We study 2DKP for arbitrary convex polygons, allowing to rotate them by arbitrary angles.
Note that due to the latter, it might be that some optimal solution places the vertices of the
polygons on irrational coordinates, even if all input numbers are integers. Our first results
are a quasi-polynomial time O(1)-approximation algorithm for general convex polygons and
a polynomial time O(1)-approximation algorithm for triangles.

By rotation we can assume for each input polygon that the line segment defining its
diameter is horizontal. We identify three different types of polygons for which we employ
different strategies for packing them, see Figure 1a). First, we consider the easy polygons
which are the polygons whose bounding boxes fit into the knapsack without rotation. We
pack these polygons such that their bounding boxes do not intersect. Using area arguments
and the Steinberg’s algorithm [13] we obtain a O(1)-approximation for the easy polygons.
Then we consider the medium polygons which are the polygons whose bounding boxes easily
fit into the knapsack if we can rotate them by 45 degrees. We use a special type of packing
in which the bounding boxes are rotated by 45 degrees and then stacked on top of each
other, see Figure 1b). More precisely, we group the polygons by the widths of their bounding
boxes and to each group we assign two rectangular containers in the packing. We compute
the essentially optimal solution of this type by solving a generalization of one-dimensional
knapsack for each group. Our key structural insight for medium polygons is that such a
solution is O(1)-approximate. To this end, we prove that in OPT the medium polygons of
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Figure 1 (a) An easy, a medium, and a hard polygon and their bounding boxes (b): Triangles
packed in a top-left packing (c) The geometric DP subdivides the knapsack along the dashed lines
and then recurses within each resulting area.

each group occupy an area that is by at most a constant factor bigger than the corresponding
containers, and that a constant fraction of these polygons fit into the containers. In particular,
we show that medium polygons with very wide bounding boxes lie in a very small hexagonical
area close to the diagonal of the knapsack. Our routines for easy and medium polygons run
in polynomial time.

It remains to pack the hard polygons whose bounding boxes just fit into the knapsack
or do not fit at all, even under rotation. Note that this does not imply that the polygon
itself does not fit. Our key insight is that there can be only O(logN) such polygons in the
optimal solution, at most O(1) from each group. Therefore, we can guess these polygons
in quasi-polynomial time, assuming that N is quasi-polynomially bounded. However, in
contrast to other packing problems, it is not trivial to check whether a set of given polygons
fits into the knapsack since we can rotate them by arbitrary angles and we cannot enumerate
all possibilities for the angles. However, we show that by losing a constant factor in the
approximation guarantee we can assume that the placement of each hard polygon comes
from a precomputable polynomial size set and hence we can guess the placements of the
O(logN) hard polygons in quasi-polynomial time.

I Theorem 1. There is a O(1)-approximation algorithm for 2DKP with a running time of
(nN)(lognN)O(1) .

If all hard polygons are triangles we present even a polynomial time O(1)-approximation
algorithm. We split the triangles in OPT into two types, for one type we show that a constant
fraction of it can be packed in what we call top-left-packings, see Figure 1b). In these packings,
the triangles are sorted by the lengths of their longest edges and placed on top of each other
in a triangular area. We devise a dynamic program (DP) that essentially computes the most
profitable top-left-packing. For proving that this yields a O(1)-approximation, we need some
careful arguments for rearranging a subset of the triangles with large weight to obtain a
packing that our DP can compute. We observe that essentially all hard polygons in OPT
must intersect the horizontal line that contains the mid-point of the knapsack. Our key
insight is that if we pack a triangle in a top-left-packing then it intersects this line to a
similar extent as in OPT. Then we derive a sufficient condition when a set of triangles fits
in a top-left-packing, based on by how much they overlap this line.
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Rj

Rj′

Figure 2 Left: Assume that the polygon (black line segments) is a medium polygon contained in
the set Pj . Then the diagonal (dashed) line segment must lie into the dark-gray area and the whole
polygon must be contained in the light-gray area. Right: The containers for the medium polygons
of the different groups. Within each container, the polygons are stacked on top of each other such
that their respective bounding boxes do not intersect.

For the other type of triangles we use a geometric dynamic program. In this DP we
recursively subdivide the knapsack into subareas in which we search for the optimal solution
recursively, see Figure 1c). In the process we guess the placements of some triangles from
OPT. Again, by losing a constant factor we can assume that for each triangle in OPT there
are only a polynomial number of possible placements. By exploiting structural properties
of this type of triangles we ensure that the number of needed DP-cells is bounded by a
polynomial. A key difficulty is that we sometimes split the knapsack into two parts on which
we recurse independently. Then we need to ensure that we do not select some (possibly high
weight) triangle in both parts. To this end, we globally select at most one triangle from each
of the O(logN) groups (losing a constant factor) and when we recurse, we guess for each
subproblem from which of the O(logN) groups it contains a triangle in OPT. This yields
only 2O(logN) = NO(1) guesses.

I Theorem 2. There is a O(1)-approximation algorithm for 2DKP with a running time of
(nN)O(1) if all input polygons are triangles.

Then we study the setting of resource augmentation, i.e., we compute a solution that fits
into a larger knapsack of size (1 + δ)N × (1 + δ)N for some constant δ > 0 and compare
ourselves with a solution that fits into the original knapsack of size N ×N . We show that
then the optimal solution can contain only constantly many hard polygons and hence we can
guess them in polynomial time.

I Theorem 3. There is a O(1)-approximation algorithm for 2DKP under (1 + δ)-resource
augmentation with a running time of nOδ(1).

Finally, we present a quasi-polynomial time algorithm that computes a solution of weight
at least w(OPT) (i.e., we do not lose any factor in the approximation guarantee) that is
feasible under resource augmentation. This algorithm does not use the above classification of
polygons into easy, medium, and hard polygons. Instead, we prove that if we can increase
the size of the knapsack slightly we can ensure that for the input polygons there are only
(logn)Oδ(1) different shapes by enlarging the polygons suitably. Also, we show that we need to
allow only a polynomial number of possible placements and rotations for each input polygon,
without sacrificing any polygons from OPT. Then we use a technique from [1] implying
that there is a balanced separator for the polygons in OPT with only (logn)Oδ(1) edges and
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which intersects polygons from OPT with only very small area. We guess the separator,
guess how many polygons of each type are placed inside and outside the separator, and then
recurse on each of these parts. Some polygons are intersected by the balanced separator.
However, we ensure that they have very small area in total and hence we can place them
into the additional space of the knapsack that we gain due to the resource augmentation.
This generalizes a result in [2] for axis-parallel rectangles.

I Theorem 4. There is an algorithm for 2DKP under (1 + δ)-resource augmentation with a
running time of nOδ(logn)O(1) that computes a solution of weight at least w(OPT).

In our approximation algorithms, we focus on a clean exposition of our methodology for
obtaining O(1)-approximations, rather than on optimizing the actual approximation ratio.
Due to space constraints, most proofs and details had to be ommited in this extended
abstract.

1.2 Other related work
Prior to the results mentioned above, polynomial time (2 + ε)-approximation algorithms for
2DKP for axis-parallel rectangles were presented by Jansen and Zhang [10, 9]. For the same
setting, a PTAS is known under resource augmentation in one dimension [7] and a polynomial
time algorithm computing a solution with optimum weight under resource augmentation in
both dimensions [6]. Also, there is a PTAS if the weight of each rectangle equals its area [3].
For squares, Jansen and Solis-Oba presented a PTAS [8].

2 Constant factor approximation algorithms

In this section we present our quasi-polynomial time O(1)-approximation algorithm for
general convex polygons and our polynomial time O(1)-approximation algorithm for triangles.,
assuming polynomially bounded input data. Our strategy is to partition the input polygons
P into three classes, easy, medium, and hard polygons, and then to devise algorithms for
each class separately.

Let K := [0, N ]× [0, N ] denote the given knapsack. We assume that each input polygon
is described by the coordinates of its vertices which we assume to be integral. First,
we rotate each polygon in P such that its longest diagonal (i.e., the line segment that
connects the two vertices of largest distance) is horizontal. For each polygon Pi ∈ P
denote by (xi,1, yi,1), ..., (xi,ki , yi,ki) the new coordinates of its vertices. Observe that due
to the rotation, the resulting coordinates might not be integral, and possibly not even
rational. We will take this into account when we define our algorithms. For each Pi ∈ P
we define its bounding box Bi to be the smallest axis-parallel rectangle that contains Pi.
Formally, we define Bi := [min` xi,`,max` xi,`]× [min` yi,`,max` yi,`]. For each polygon Pi
let `i := max` xi,` −min` xi,` and hi := max` yi,` −min` yi,`. If necessary we will work with
suitable estimates of these values later, considering that they might be irrational and hence
we cannot compute them exactly.

We first distinguish the input polygons into easy, medium, and hard polygons. We say
that a polygon Pi is easy if Bi fits into K without rotation, i.e., such that `i ≤ N and hi ≤ N .
Denote by PE ⊆ P the set of easy polygons. Note that the bounding box of a polygon
in P \ PE might still fit into K if we rotate it suitably. Intuitively, we define the medium
polygons to be the polygons Pi whose bounding box Bi fits into K with quite some slack if
we rotate Bi properly and the hard polygons are the remaining polygons (in particular those
polygons whose bounding box does not fit at all into K).
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Formally, for each polygon Pi ∈ P we define h′i :=
√

2N − `i. The intuition for h′i is that
a rectangle of width `i and height h′i is the highest rectangle of width `i that still fits into K.

I Lemma 5. Let Pi ∈ P. A rectangle of width `i and height h′i fits into K (if we rotate it
by 45°) but a rectangle of width `i and of height larger than h′i does not fit into K.

Hence, if hi is much smaller than h′i then Bi fits into K with quite some slack. Therefore,
we define that a polygon Pi ∈ P \ PE is medium if hi ≤ h′i/8 and hard otherwise. Denote
by PM ⊆ P and PH ⊆ P the medium and hard polygons, respectively. We will present
O(1)-approximation algorithms for each of the sets PE ,PM ,PH separately. The best of the
computed sets will then yield a O(1)-approximation overall.

For the easy polygons, we construct a polynomial time O(1)-approximation algorithm in
which we select polygons such that we can pack their bounding boxes as non-overlapping
rectangles using Steinberg’s algorithm [4], see Section 2.1. The approximation ratio follows
from area arguments.

I Lemma 6. There is a polynomial time algorithm that computes a solution P ′E ⊆ PE with
w(OPT ∩ PE) ≤ O(w(P ′E)).

For the medium polygons, we obtain a O(1)-approximation algorithm using a different
packing strategy, see Section 2.2.

I Lemma 7. There is an algorithm with a running time of nO(1) that computes a solution
P ′M ⊆ PM with w(OPT ∩ PM ) ≤ O(w(P ′M )).

The most difficult polygons are the hard polygons. First, we show that in quasi-polynomial
time we can obtain a O(1)-approximation for them, see Section 2.3.

I Lemma 8. There is an algorithm with a running time of (nN)(lognN)O(1) that computes a
solution P ′H ⊆ PH with w(OPT ∩ PH) ≤ O(w(P ′H)).

Combining Lemmas 6, 7, and 8 yields Theorem 1. If all polygons are triangles, we obtain a
O(1)-approximation even in polynomial time. The following lemma is proved in Section 2.3.1
and together with Lemmas 6 and 7 implies Theorem 2.

I Lemma 9. If all input polygons are triangles, then there is an algorithm with a running
time of (nN)O(1) that computes a solution P ′H ⊆ PH with w(OPT ∩ PH) ≤ O(w(P ′H)).

Orthogonal to the characterization into easy, medium and hard polygons, we subdivide the
polygons in P further into classes according to the respective values `i. More precisely, we
do this according to their difference between `i and the diameter of K, i.e.,

√
2N . Formally,

for each j ∈ Z we define Pj := {Pi ∈ P|`i ∈ [
√

2N − 2j ,
√

2N − 2j−1)} and additionally
P−∞ := {Pi ∈ P|`i =

√
2N}. Note that for each polygon Pi ∈ P we can compute the group

Pj even though `i might be irrational.

2.1 Easy polygons
We present a O(1)-approximation algorithm for the polygons in PE . First, we show that the
area of each polygon is at least half of the area of its bounding box. We will use this later
for defining lower bounds using area arguments.

I Lemma 10. For each Pi ∈ P it holds that area(Pi) ≥ 1
2area(Bi).

On the other hand, it is known that we can pack any set of axis-parallel rectangles into K,
as long as their total area is at most area(K)/2 and each single rectangle fits into K.



A. Merino and A. Wiese 84:7

I Theorem 11 ([13]). Let r1, ...,rk be a set of axis-parallel rectangles such that
∑k
i=1area(ri)≤

area(K)/2 and each individual rectangle ri fits into K. Then there is a polynomial time
algorithm that packs r1, ..., rk into K.

We first compute (essentially) the most profitable set of polygons from PE whose total area
is at most area(K) via a reduction to one-dimensional knapsack.

I Lemma 12. In time (nε )O(1) we can compute a set of polygons P ′ ⊆ PE such that
w(P ′) ≥ (1− ε)w(OPT ∩ PE) and

∑
Pi∈PE area(Pi) ≤ area(K).

The idea is now to partition P ′ into at most 7 sets P ′1, ...,P ′7. Hence, one of these sets must
contain at least a profit of w(P ′)/7. We define this partition such that each set P ′j contains
only one polygon or its polygons have a total area of at most area(K)/4.

I Lemma 13. Given a set P ′ ⊆ PE with
∑

Pi∈PE
area(Pi) ≤ area(K). In polynomial time

we can compute a set P ′′ ⊆ P ′ with w(P ′′) ≥ 1
7w(P ′) and additionally

∑
Pi∈P′′

area(Pi) ≤

area(K)/4 or |P ′′| = 1.

If |P ′′| = 1 we simply pack the single polygon in P ′′ into the knapsack. Otherwise, using
Lemmas 10 and 12 and Theorem 11 we know that we can pack the bounding boxes of the
polygons in P ′′ into K. Note that their heights and widths might be irrational. Therefore,
we slightly increase them such that these values become rational, before applying Theorem 11
to compute the actual packing. If as a result the total area of the bounding boxes exceeds
area(K)/2 we partition them into two sets where each set satisfies that the total area of the
bounding boxes is at most area(K)/2 or it contains only one polygon and we keep the more
profitable of these two sets (hence losing a factor of 2 in the approximation ratio). This
yields a O(1)-approximation algorithm for the easy polygons and thus proves Lemma 6.

2.2 Medium polygons
We describe a O(1)-approximation algorithm for the polygons in PM . In its solution, for
each j ∈ Z we will define two rectangular containers Rj , R′j for polygons in PM ∩Pj , each of
them having width

√
2N − 2j−1 and height 2j−3, see Figures 2. Let R := ∪j{Rj , R′j}. First,

we show that we can pack all containers in R into K (if we rotate them by 45°).

I Lemma 14. The rectangles in R can be packed non-overlappingly into K.

For each j ∈ Z we will compute a set of polygons P ′j ⊆ PM ∩ Pj of large weight. Within
each container Rj , R′j we will stack the bounding boxes of the polygons in P ′j on top of each
other and then place the polygons in P ′j in their respective bounding boxes, see Figure 2.
In particular, a set of items P ′′j ⊆ Pj fits into Rj (or R′j) using this strategy if and only if
h(P ′′j ) :=

∑
Pi∈P′′j

hi ≤ 2j−3. Observe that for a polygon Pi ∈ Pj with Pi ∈ PH it is not
necessarily true that hi ≤ 2j−3 and hence for hard polygons this strategy is not suitable. We
compute the essentially most profitable set of items P ′j that fits into Rj and R′j with the
above strategy. For this, we need to solve a variation of one-dimensional knapsack with two
knapsacks (instead of one) that represent Rj and R′j . The value hi for a polygon Pi might
be irrational, therefore we work with a (1 + ε)-estimate of hi instead. This costs only a factor
O(1) in the approximation guarantee.

I Lemma 15. Let ε > 0. For each j ∈ Z there is an algorithm with a running time of nO( 1
ε )

that computes two disjoint sets P ′j,1,P ′j,2 ⊆ Pj ∩ PM such that h(P ′j,1) ≤ 2j−3 and h(P ′j,2) ≤
2j−3 and w(P∗j,1 ∪ P∗j,2) ≤ O(w(P ′j,1 ∪ P ′j,2)) for any disjoint sets P∗j,1,P∗j,2 ⊆ Pj ∩ PM
such that h(P∗j,1) ≤ 2j−3 and h(P∗j,2) ≤ 2j−3.
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For each j ∈ Z with Pj ∩ PM 6= ∅ we apply Lemma 15 and obtain sets P ′j,1,P ′j,2. We pack
P ′j,1 into Rj and P ′j,2 into R′j , using that h(P ′j,1) ≤ h(Rj) and h(P ′j,2) ≤ h(R′j). Then we
pack all containers Rj , R′j for each j ∈ Z into K, using Lemma 14.

Let P ′M :=
⋃
j P ′j,1 ∪ P ′j,2 denote the selected polygons. We want to show that P ′M has

large weight; more precisely we want to show that w(OPT ∩ PM ) ≤ O(w(P ′M )). First, we
show that for each j ∈ Z the polygons in Pj ∩ PM ∩OPT have bounded area. To this end,
we show that they are contained inside a certain (irregular) hexagon (see Figure 2) which
has small area if the polygons Pi ∈ Pj are wide, i.e., if `i is close to

√
2N . The reason is

that then Pi must be placed close to the diagonal of the knapsack and on the other hand hi
is relatively small (since Pi is medium), which implies that all of Pi lies close to the diagonal
of the knapsack. For any object O ⊆ R2 we define area(O) to be its area.

I Lemma 16. For each j it holds that area(Pj ∩ PM ) ≤ O(area(Rj ∪R′j)).

Using this, we can partition Pj ∩ PM ∩OPT into at most O(1) subsets such that for each
subset P ′ it holds that h(P ′) ≤ 2j−3 and hence P ′ fits into Rj (and R′j) using our packing
strategy above. Here we use that each medium polygon Pi ∈ Pj satisfies that hi ≤ 2j−3.

I Lemma 17. For each j ∈ Z there are disjoint set P∗j,1,P∗j,2 ⊆ Pj ∩ PM ∩ OPT with
w(Pj ∩ PM ∩OPT) ≤ O(w(P∗j,1 ∪ P∗j,2)) such that h(P∗j,1) ≤ 2j−3 and h(P∗j,2) ≤ 2j−3.

By combining Lemmas 14, 15 and 17 we obtain the proof of Lemma 7.

2.3 Hard polygons

We first show that for each class Pj there are at most a constant number of polygons from
Pj ∩ PH in OPT, and that for only O(logN) classes Pj it holds that Pj ∩ PH 6= ∅.

I Lemma 18. For each j ∈ Z it holds that |Pj ∩ PH ∩OPT| ≤ O(1). Also, if Pj ∩ PH 6= ∅
then j ∈ {jmin, ..., jmax} with jmin := −dlogNe and jmax := 1 +

⌈
log((

√
2− 1)N)

⌉
.

We describe now a quasi-polynomial time algorithm for hard polygons, i.e., we want
to prove Lemma 8. Lemma 18 implies that |PH ∩ OPT| ≤ O(logN). Therefore, we can
enumerate all possibilities for PH ∩OPT in time nO(logN). For each for each enumerated set
P ′H ⊆ PH we need to check whether it fits into K. We cannot try all possibilities for placing
P ′H into K since we are allowed tof rotate the polygons in P ′H by arbitrary angles. To this
end, we show that there is a subset of PH ∩OPT of large weight which contains only a single
polygon or it does not use the complete space of the knapsack but leaves some empty space.
We use this empty space to move the polygons slightly and rotate them such that each of
them is placed in one out of (nN)O(1) different positions that we can compute beforehand.
Hence, we can guess all positions of these polygons in time (nN)O(logN). We define that a
placement of a polygon Pi ∈ P inside K is a polygon P̃i such that d+ rotα(Pi) = P̃i ⊆ K

where d ∈ R2 and rotα(Pi) is the polygon that we obtain when we rotate Pi by an angle α
clockwise around its first vertex.

I Lemma 19. For each polygon Pi ∈ PH we can compute a set of (nN)O(1) possible
placements Li in time (nN)O(1) such that there exists a set P ′H ⊆ PH ∩OPT with w(PH ∩
OPT) ≤ O(w(P ′H)) which can be packed into K such that each polygon Pi is packed according
to a placement in Li.

This yields the proof of Lemma 8.
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2.3.1 Hard triangles
In this section we present a O(1)-approximation algorithm in polynomial time for hard
polygons assuming that they are all triangles, i.e., we prove Lemma 9. Slightly abusing
notation, denote by OPT the set P ′H obtained by applying Lemma 19. We distinguish the
triangles in OPT into two types: edge-facing triangles and corner-facing triangles. Let
Pi ∈ OPT ∩ PH , let e1, e2 denote the two longest edges of Pi, and let v∗i the vertex of Pi
adjacent to e1 and e2. Let R(1)

i and R
(2)
i be the two rays that originate at v∗i and that

contain e1 and e2, respectively, in the placement of Pi in OPT. We have that R(1)
i \ {v∗i } and

R
(2)
i \ {v∗i } intersect at most one edge of the knapsack each. If R(1)

i \ {v∗i } and R
(2)
i \ {v∗i }

intersect the same edge of the knapsack then we say that Pi is edge-facing, if one of them
intersects a horizontal edge and the other one intersects a vertical edge we say that Pi is
corner-facing. The next lemma shows that there can be only O(1) triangles in OPT ∩ PH
that are neither edge- nor corner-facing, and therefore we compute a O(1)-approximation
with respect to the total profit of such triangles by simply selecting the input triangle with
maximum weight.

I Lemma 20. There can be at most O(1) triangles in OPT∩PH that are neither edge-facing
nor corner-facing.

Let pTL, pTR, pBL, and pBR denote the top left, top right, bottom left, and bottom right
corners of K, respectively, and let pM :=

(
N/2
N/2
)
, pL :=

( 0
N/2
)
, and pR :=

(
N
N/2
)
, see Figure 3.

By losing a factor O(1) we assume from now on that that OPT contains at most one hard
triangle from each group Pj , using Lemma 18.

Let OPTEF ⊆ OPT ∩ PH denote the edge-facing hard triangles in OPT and denote by
OPTCF ⊆ OPT ∩ PH the corner-facing hard triangles in OPT. In the remainder of this
section we present now O(1)-approximation algorithms for edge-facing and for corner-facing
triangles in PH . By selecting the best solution among the two we obtain the proof of
Lemma 9.

Edge-facing triangles

We define a special type of solutions called top-left-packings that our algorithm will compute.
We will show later that there are solutions of this type whose profit is at least a constant
fraction of the profit of OPTEF.

For each t ∈ N let pt := pM + t
N2

(1
0
)
. Let P ′ = {Pi1 , ..., Pik} be a set of triangles that

are ordered according to the groups Pj , i.e., such that for any Pi` , Pi`+1 ∈ P ′ with Pi` ∈ Pj
and Pi`+1 ∈ Pj′ for some j, j′ it holds that j ≤ j′. We define a placement of P ′ that we call
a top-left-packing. First, we place Pi1 such that v∗i1 concides with pTL and one edge of Pi1
lies on the diagonal of K that connects pTL and p0. Note that there is a unique way to place
Pi1 in this way. Iteratively, suppose that we have packed triangles {Pi1 , ..., Pi`} such that
for each triangle Pi`′ in this set its respective vertex v∗i`′ coincides with pTL, see Figure 1c).
Intuitively, we pack Pi`+1 on top of Pi` such that v∗i`+1

coincides with pTL. Let t be the
smallest integer such that the line segment connecting pt and pR has empty intersection with
each triangle Pi1 , ..., Pi` according to our placement. We place Pi`+1 such that v∗i`+1

concides
with pTL and one of its edges lies on the line that contains pTL and pt. There is a unique
way to place Pi`+1 in this way. We continue until we placed all triangles in P ′. If all of
them are placed completely inside K we say that the resulting solution is a top-left-packing
and that P ′ is top-left-packable. We define bottom-right-packing and bottom-right-packable
symmetrically, mirroring the above definition along the line that contains pBL and pTR.
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In the next lemma we show that there is always a top-left-packable or a bottom-right-
packable solution with large profit compared to PH ∩OPT or there is a single triangle with
large profit.

I Lemma 21. There exists a solution P∗H ⊆ PH ∩ OPTEF such that w(PH ∩ OPTEF) ≤
O(w(P∗H)) and
P∗H is top-left-packable or bottom-right-packable and for each j we have that |P∗H ∩Pj | ≤ 1,
or it holds that |P∗H | = 1.

Proof sketch. Let L be the line segment connecting pL with pR. Essentially, we can assume
that the length of the longest edge of each triangle is close to

√
2N (the length of the diagonal

of the knapsack), e.g., (1− ε)
√

2N for some ε > 0. One can show that this holds for all but
Oε(1) hard triangles in OPT. Our key observation is that in any packing each hard triangle
Pi intersects L by the same amount (up to constant factors). Using this, we partition OPTEF
into O(1) groups such that in any packing each group intersects L by a smaller amount than
OPTEF in the original packing. This guarantees that the bottom edge of each triangle fits
in the top-left-packing for each group. Using that in the original packing the triangles in
OPTEF were edge-facing, we show that also the entire triangle fits. J

We describe now a polynomial time algorithm that computes the most profitable solution
that satisfies the properties of Lemma 21. To find the most profitable solution P∗H that
satisfies that |P∗H | = 1 we simply take the triangle with maximum weight, let Pi∗ be this
triangle. We establish now a dynamic program that computes the most profitable top-
left-packable solution; computing the most profitable bottom-right-packable solution works
analogously. Our DP has a cell corresponding to pairs (j, t) with j, t ∈ Z. Intuitively, (j, t)
represents the subproblem of computing a set P ′H ⊆ PH of maximum weight such that
P ′H ∩ Pj′ = ∅ for each j′ < j and |P ′H ∩ Pj′′ | ≤ 1 for each j′′ ≥ j and such that P ′H is
top-left-packable inside the triangular area Tt defined by the line that contains pTL and
pt, the top edge of K, and the right edge of K. Given a cell (j, t) we want to compute a
solution DP (j, t) associated with (j, t). Intuitively, we guess whether the optimal solution
P ′H to (j, t) contains a triangle from PH ∩ Pj . Therefore, we try each triangle Pi ∈ PH ∩ Pj
and place it inside Tt such that v∗i concides with pTL and one of its edges lies on the line
containing pTL and pt. Let t′(Pi) denote the smallest integer such that t′(Pi) ≥ t and pt′(Pi)
is not contained in the resulting placement of Pi inside Tt. We associate with Pi the solution
Pi∪DP (j+1, t′(Pi)). Finally, we define DP (j, t) to be the solution of maximum profit among
the solutions Pi ∪DP (j + 1, t′(Pi)) for each Pi ∈ PH ∩ Pj and the solution DP (j + 1, t).

We introduce a DP-cell DP (j, t) for each pair (j, t) ∈ Z2 where jmin ≤ j ≤ jmax and
0 ≤ t ≤ log1+1/n

(
N
2
)
. Note that due to Lemma 18 for all other values of j we have that

Pj ∩PH = ∅. Also note that pt /∈ K if t ≥ N2/2. This yields at most (nN)O(1) cells in total.
Finally, we output the solution DP (jmin, 0).

In the next lemma we prove that our DP computes the optimal top-left-packable solution
with the properties of Lemma 21.

I Lemma 22. There is an algorithm with a running time of (nN)O(1) that computes the
optimal solution P ′ ⊆ PH such that P ′ is top-left-packable or bottom-right-packable and such
that for each j we have that |P ′ ∩ Pj | ≤ 1.

We execute the above DP and its counterpart for bottom-right-packable solutions to
obtain a top-left-packable solution P ′1 and a bottom-right-packable solution P ′2. We output
the most profitable solution among {Pi∗},P ′1,P ′2. Due to Lemma 21 this yields a solution
with weight at least Ω(w(PH ∩OPT)).
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pTL pTR

pBRpBL

pMpL pR

P̃i

Rup
i

v̄i

Li

v∗i

Figure 3 Left: The points pT L, pT R, pBL, pBR, pL, pM , pR. Right: A corner-facing triangle, its
vertices v∗

i and v̄i, and the lines Li and Rup
i .

I Lemma 23. There is an algorithm with a running time of (nN)O(1) that computes a
solution P ′H ⊆ PH such that w(OPTEF) ≤ O(w(P ′H)).

Corner-facing triangles

We present now a O(1)-approximation algorithm for the corner-facing triangles in OPT, i.e.,
our algorithm computes a solution P ′ ⊆ P of profit at least Ω(w(OPTCF)). We first establish
some properties for OPTCF. We argue that by losing a constant factor we can assume that
each triangle in OPTCF intuitively faces the bottom-right corner.

I Lemma 24. By losing a factor 4 we can assume that for each triangle Pi ∈ OPTCF we
have that R(1)

i \{v∗i } intersects the bottom edge of the knapsack and and R(2)
i \{v∗i } intersects

the right edge of the knapsack, or vice versa.

In the following lemma we establish a property that will be crucial for our algorithm. For
each Pi ∈ OPTCF let Rup

i denote the ray originating at v∗i and going upwards. We establish
that we can assume that Rup

i does not intersect with any triangle Pi′ ∈ OPTCF, see Figure 3.

I Lemma 25. By losing a factor O(1) we can assume that for each Pi, Pi′ ∈ OPTCF it holds
that Rup

i ∩ Pi′ = ∅.

Our algorithm is a dynamic program that intuively guesses the placements of the triangles
in OPTCF step by step. To this end, each DP-cell corresponds to a subproblem that is
defined via a part K ′ ⊆ K of the knapsack and a subset of the groups J ⊆ {jmin, ..., jmax}.
The goal is to place triangles from

⋃
j∈J Pj of maximum profit into K ′. Formally, each

DP-cell is defined by up to two triangles Pi, Pi′ , placements P̃i, P̃i′ for them, and a set
J ⊆ {jmin, ..., jmax}; if the cell is defined via exactly one triangle Pi then there is also a value
dir ∈ {left,mid}. The corresponding region K ′ is defined as follows: if the cell is defined
via zero triangles then the region is the whole knapsack K. Otherwise, let v̄i denote the
right-most vertex of P̃i, i.e., the vertex of P̃i that is closest to the right edge of the knapsack
(see Figure 3). Let Li denote the vertical line that goes through v̄i (and thus intersects the
top and the bottom edge of the knapsack). If the cell is defined via one triangle Pi then
observe that K \ (P̃i ∪Rup

i ∪ Li) has three connected components,
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v̄i∗
Pi∗

Li∗

Pi∗

v̄i∗

Pi

v̄i∗

Pi

Pi∗

Pi

Pi′Pi∗

1. 2. 3. 4.

Figure 4 The cases in the transition of the DP for corner-facing triangles (see Lemma 26).

one on the left, surrounded by Rup
i , parts of P̃i, the left edge of the knapsack, and parts

of the top and bottom edge of the knapsack
one on the right, surrounded by Li, the right edge of the knapsack, and parts of the top
and bottom edge of the knapsack, and
one in the middle, surrounded by the top edge of the knapsack, P̃i, and Li.

If dir = left then the region of the cell equals the left component, if dir = mid then the
region of the cell equals the middle component. Assume now that the cell is defined via two
triangles Pi, Pi′ . Assume w.l.o.g. that v̄i is closer to the right edge of the knapsack than v̄i′ .
Then K \ (P̃i ∪ P̃i′ ∪Rup

i ∪R
up
i′ ∪ Li′) has one connected component that is surrounded by

P̃i, P̃i′ , R
up
i , R

up
i′ , Li′ and we define the region of the cell to be this component. Observe that

the total number of DP-cells is bounded by (nN)O(1), using that there are only (nN)O(1)

possible placements for each triangle.
We describe now a dynamic program that computes the optimal solution to each cell.

Assume that we are given a cell C for which we want to compute the optimal solution. We
guess the triangle Pi∗ in the optimal solution to this cell such that v̄i∗ is closest to the right
edge of the knapsack, and its placement P̃i∗ in the optimal solution to C. Let j∗ such that
Pi∗ ∈ Pj∗ . We will prove in the next lemma that the optimal solution to C consists of Pi∗
and the optimal solutions to two other DP-cells, see Figure 4.

I Lemma 26. Let C be a DP-cell, let J ⊆ {jmin, ..., jmax}, and let Pi ∈ P`, Pi′ ∈ P`′ be two
triangles with ` < `′ and let P̃i, P̃i′ be placements for them. Then there are disjoint sets
J ′, J ′′ ⊆ J such that
1. if C = (J), then its optimal solution consists of Pi∗ and the optimal solutions to the cells

(J ′, Pi∗ , P̃i∗ , left) and (J ′′, Pi∗ , P̃i∗ ,mid),
2. if C = (J, Pi, P̃i, left) then its optimal solution consists of Pi∗ and the optimal solutions

to the cells (J ′, Pi∗ , P̃i∗ , left) and (J ′′, Pi, P̃i, Pi∗ , P̃i∗),
3. if C = (J, Pi, P̃i,mid) then its optimal solution consists of Pi∗ and the optimal solutions

to the cells (J ′, Pi∗ , P̃i∗ ,mid) and (J ′′, Pi, P̃i, Pi∗ , P̃i∗),
4. if C = (J, Pi, P̃i, Pi′ , P̃i′) then the optimal solution to C consists of Pi∗ and the optimal

solutions to the cells (J ′, Pi, P̃i, Pi∗ , P̃i∗) and (J ′′, Pi∗ , P̃i∗ , Pi′ , P̃i′).

We guess the sets J ′, J ′′ ⊆ J according to Lemma 26 and store in C the solution consisting
of Pi∗ , and the solutions stored in the two cells according to the lemma. At the end, the
cell C = ({jmin, ..., jmax}) (whose corresponding region equals to K) contains the optimal
solution. By combining Lemmas 23 and 27 we obtain the proof of Lemma 9.

I Lemma 27. There is an algorithm with a running time of (nN)O(1) that computes a
solution P ′ ⊆ P such that w(OPTCF) ≤ O(w(P ′)).
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2.4 Hard polygons under resource augmentation
Let δ > 0. We consider the setting of (1 + δ)-resource augmentation, i.e., we want to compute
a solution P ′ ⊆ P that is feasible for a knapsack of size (1 + δ)N × (1 + δ)N and such that
w(OPT) ≤ O(w(P ′)) where OPT is the optimal solution for the original knapsack of size
N × N . Note that increasing K by a factor of 1 + δ is equivalent to shrinking the input
polygons by a factor of 1 + δ.

Given a polygon P defined via coordinates (x1, y1), ..., (xk, yk) ∈ R2 we define shr1+δ(P )
to be the polygon with coordinates (x̄1, ȳ1), ..., (x̄k, ȳk) ∈ R2 where x̄k′ = xk′/(1 + δ) and
ȳk′ = yk′/(1 + δ) for each k′. For each input polygon Pi ∈ P we define its shrunk counterpart
to be P̄i := shr1+δ(Pi). Based on P̄ we define sets P̄E , P̄M , P̄H and the set P̄j for each
j ∈ Z in the same way as we defined PE ,PM ,PH and Pj based on P above.

For the sets P̄E and P̄M we use the algorithms due to Lemmas 6 and 7 as before. For
the hard polygons P̄H we can show that there are only Oδ(1) groups P̄j that are non-empty,
using that we obtained them via shrinking the original input polygons. Intuitively, this is
true since ¯̀

i ≤
√

2N
1+δ for each P̄i ∈ P̄ where ¯̀

i denotes the length of the longest diagonal of
P̄i, and hence P̄j ∩ P̄H = ∅ if j < log

(
δ

1+δ
√

2N
)
.

I Lemma 28. We have that P̄j = ∅ if j < log
(

δ
1+δ
√

2N
)
. Hence, there are only log

( 1+δ
δ

)
+1

values j ∈ Z such that P̄j 6= ∅.

Lemmas 18 and 28 imply that |OPT ∩ P̄H | ≤ O(log
( 1+δ

δ

)
) where OPT denotes the optimal

solution for the polygons in P̄. Let P̄ ′H ⊆ P̄H denote the set due to Lemma 19 when
assuming that P̄H are the hard polygons in the given instance. Therefore, we guess P̄ ′H
in time nO(log( 1+δ

δ )). Finally, we output the solution of largest weight among P̄ ′H and the
solutions due applying to Lemmas 6 and 7 to the input sets P̄E and P̄M , respectively. This
yields the proof of Theorem 3.

3 Optimal profit under resource augmentation

In this section we also study the setting of (1 + δ)-resource augmentation, i.e., we want to
compute a solution P ′ which is feasible for an enlarged knapsack of size (1 + δ)N × (1 + δ)N ,
for any constant δ > 0. We present an algorithm with a running time of n(log(n)/δ)O(1) that
computes such a solution P ′ with w(P ′) ≥ OPT where OPT is the optimal solution for
the original knapsack of size N ×N . In particular, we here do not lose any factor in our
approximation guarantee.

First, we prove a set of properties that we can assume “by (1 + δ)-resource augmentation”
meaning that if we increase the size of K by a factor 1 + δ then there exists a solution of
weight w(OPT) with the mentioned properties, or that we can modify the input in time
nO(1) such that it has these properties and there still exists a solution of weight w(OPT).

3.1 Few types of items
We want to establish that the input polygons have only (log(n)/δ)O(1) different shapes. Like
in Section 2 for each polygon Pi ∈ P denote by Bi its bounding box with width `i and height
hi. Note that `i ≥ hi. The bounding boxes of all polygons Pi ∈ P such that hi ≤ δNn have a
total height of at most δN . Therefore, we can pack all these polygons into the extra capacity
that we gain by increasing the size of K by a factor 1 + δ and therefore ignore them in the
sequel.
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I Lemma 29. By (1 + δ)-resource augmentation we can assume for each Pi ∈ P that
`i ≥ hi ≥ δN/n and that area(Pi) = Ω(area(K)δ2/n2).

Next, intuitively we stretch the optimal solution OPT by a factor 1 + δ which yields a
container Ci for each polygon Pi ∈ OPT which contains Pi and which is slightly bigger
than Pi. We define a polygon P ′i such that Pi ⊆ P ′i ⊆ Ci and that globally there are only
(log(n)/δ)Oδ(1) different ways P ′i can look like, up to translations and rotations. We refer to
those as a set S of shapes of input objects. Hence, due to the resource augmentation we can
replace each input polygon Pi by one of the shapes in S.

I Lemma 30. By (1 + δ)-resource augmentation we can assume that there is a set of shapes
S with |S| ≤ (log(n)/δ)Oδ(1) such that for each Pi ∈ P there is a shape S ∈ S such that
Pi = S and S has only Λ = (1/δ)O(1) many vertices.

Finally, we ensure that for each polygon Pi ∈ P we can restrict ourselves to only (n/δ)O(1)

possible placements in K.

I Lemma 31. By (1 + δ)-resource augmentation, for each polygon Pi ∈ P we can compute a
set Li of at most (n/δ)O(1) possible placements for Pi in time (n/δ)O(1) such that if Pi ∈ OPT
then in OPT the polygon Pi is placed inside K according to one placement P̃i ∈ Li.

3.2 Recursive algorithm
We describe our main algorithm. First, we guess how many polygons of each of the shapes
in S are contained in OPT. Since there are only (log(n)/δ)Oδ(1) different shapes in S we can
do this in time n(log(n)/δ)Oδ(1) . Once we know how many polygons of each shape we need to
select, it is clear which polygons we should take since if for some shape Si ∈ S we need to
select ni polygons with that shape then it is optimal to select the ni polygons in P of shape
Si with largest weight. Therefore, in the sequel assume that we are given a set of polygons
P ′ ⊆ P and we want to find a packing for them inside K.

Our algorithm is recursive and it generalizes a similar algorithm for the special case of
axis-parallel rectangles in [1]. On a high level, we guess a partition of K given by a separator
Γ which is a polygon inside K. It has the property that at most 2

3 |OPT| of the polygons
of OPT lie inside Γ and at most 2

3 |OPT| of the polygons of OPT lie outside Γ. We guess
how many polygons of each shape are placed inside and outside Γ in OPT. Then we recurse
separately inside and outside Γ. For our partition, we are looking for a polygon Γ according
to the following definition.

I Definition 32. Let ` ∈ N and ε > 0. Let P̄ be a set of pairwise non-overlapping polygons
in K. A polygon Γ is a balanced ε̂-cheap `-cut if

Γ has at most ` edges,
the polygons contained in Γ have a total area of at most 2/3 · area(P̄),
the polygons contained in the complement of Γ, i.e., in K \ Γ, have a total area of at
most 2/3 · area(P̄), and
the polygons intersecting the boundary of Γ have a total area of at most ε̂ · area(P̄).

In order to restrict the set of balanced cheap cuts to consider, we will allow only polygons
Γ such that each of its vertices is contained in a set Q of size (n/δ)O(1) defined as follows.
We fix a triangulation for each placement P ′i ∈ Li of each polygon Pi ∈ P ′. We define a
set Q0 where for each placement P ′i ∈ Li for Pi we add to Q0 the positions of the vertices
of P ′i . Also, we add the four corners of K to Q0. Let V denote the set of vertical lines
{(x̄, ȳ)|ȳ ∈ R} such that x̄ is the x-coordinate of one point in Q0. We define a set Q1 where
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for each placement P ′i ∈ Li of each Pi ∈ P ′, each edge e of a triangle in the triangulation of
P ′i , and each vertical line L ∈ V we add to Q1 the intersection of e and L. Also, we add to
Q1 the intersection of each line in L ∈ V with the two boundary edges of K. Let Q2 denote
the set of all intersections of pairs of line segments whose respective endpoints are in Q0 ∪Q1.
We define Q := Q0 ∪Q1 ∪Q2. A result in [1] implies that there exists a balanced cheap cut
whose vertices are all contained in Q.

I Lemma 33 ([1]). Let ε > 0 and let P ′ be a set of pairwise non-intersecting polygons in
the plane with at most Λ edges each such that area(P ) < area(P ′)/3 for each P ∈ P. Then
there exists a balanced O(εΛ)-cheap Λ( 1

ε )O(1)-cut Γ whose vertices are contained in Q.

Our algorithm is recursive and places polygons from P ′, trying to maximize the total area of
the placed polygons. In each recursive call we are given an area K̄ ⊆ K and a set of polygons
P̄ ⊆ P ′. In the main call these parameters are K̄ = K and P̄ = P ′. If P̄ = ∅ then we return
an empty solution. If there is a polygon Pi ∈ P̄ with area(Pi) ≥ area(P̄)/3 then we guess a
placement P ′i ∈ Li and we recurse on the area K \ P ′i and on the set P̄ \ {Pi}. Otherwise,
we guess the balanced cheap cut Γ due to Lemma 33 with ε := δ

Λ log(n/δ) and for each shape
S ∈ S we guess how many polygons of P ′ with shape S are contained in Γ∩ K̄, how many are
contained in K̄ \Γ, and how many cross the boundary of Γ (i.e., have non-empty intersection
with the boundary of Γ). Note that there are only n(Λ log(n/δ))O(1) possibilities to enumerate.
Let P̄in, P̄out, and P̄cross denote the respective sets of polygons. Then we recurse on the area
Γ ∩ K̄ with input polygons P̄in and on the area K̄ \ Γ with input polygons P̄out. Suppose
that the recursive calls return two sets of polygons P̄ ′in ⊆ P̄ in and P̄ ′out ⊆ P̄out that the
algorithm managed to place inside the respective areas Γ∩ K̄ and K̄ \Γ. Then we return the
set P̄ ′in∪P̄ ′out for the guesses of Γ, P̄ in, P̄out, and P̄cross that maximize area(P̄ ′in∪P̄ ′out). If we
guess the (correct) balanced cheap cut due to Lemma 33 in each iteration then our recursion
depth is O(log3/2(n2/δ2)) = O(log(n/δ)) since the cuts are balanced and each polygon has
an area of at least Ω(area(K)δ2/n2) (see Lemma 29). Therefore, if in a recursive call of the
algorithm the recursion depth is larger than O(log(n/δ)) then we return the empty set and do
not recurse further. Also, if we guess the correct cut in each node of the recursion tree then
we cut polygons whose total area is at most a δ

log(n/δ) -fraction of the area of all remaining
polygons. Since our recursion depth is O(log(n/δ)), our algorithm outputs a packing for a
set of polygons in P ′ with area at least (1 − δ

log(n/δ) )O(log(n/δ))w̄(P̄) = (1 − O(δ))area(P̄).
This implies the following lemma.

I Lemma 34. Assume that there is a non-overlapping packing for P ′ in K. There is an
algorithm with a running time of n(Λ log(n/δ))O(1) that computes a placement of a set of
polygons P̄ ′ ⊆ P ′ inside K such that area(P̄ ′) ≥ (1−O(δ))area(P ′).

It remains to pack the polygons in P̃ ′ := P ′ \ P̄ ′. The total area of their bounding boxes is
bounded by

∑
Pi∈P̃′ Bi ≤ 2area(P̃ ′) ≤ O(δ)area(P ′) ≤ O(δ)area(K). Therefore, we can pack

them into additional space that we gain via increasing the size of K by a factor 1 +O(δ),
using the Next-Fit-Decreasing-Height algorithm [4].

I Theorem 35. There is an algorithm with a running time of n(log(n)/δ))O(1) that computes
a set P ′ with w(P ′) ≥ OPT such that P ′ fits into K under (1 + δ)-resource augmentation.
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Abstract

In this work, we study fairness in centroid clustering. In this problem, k cluster centers must be
placed given n points in a metric space, and the cost to each point is its distance to the nearest
cluster center. Recent work of Chen et al. [8] introduces the notion of a proportionally fair clustering,
in which no group of at least n/k points can find a new cluster center which provides lower cost
to each member of the group. They propose a greedy capture algorithm which provides a 1 +

√
2

approximation of proportional fairness for any metric space, and derive generalization bounds for
learning proportionally fair clustering from samples in the case where a cluster center can only be
placed at one of finitely many given locations in the metric space.

We focus on the case where cluster centers can be placed anywhere in the (usually infinite)
metric space. In case of the L2 distance metric over Rt, we show that the approximation ratio of
greedy capture improves to 2. We also show that this is due to a special property of the L2 distance;
for the L1 and L∞ distances, the approximation ratio remains 1 +

√
2. We provide universal lower

bounds which apply to all algorithms.

We also consider metric spaces defined on graphs. For trees, we show that an exact proportionally
fair clustering always exists and provide an efficient algorithm to find one. The corresponding question
for general graph remains an interesting open question.

Finally, we show that for the L2 distance, checking whether a proportionally fair clustering
exists and implementing greedy capture over an infinite metric space are NP-hard problems, but
(approximately) solvable in special cases. We also derive generalization bounds which show that an
approximately proportionally fair clustering for a large number of points can be learned from a small
number of samples. Our work advances the understanding of proportional fairness in clustering, and
points out many avenues for future work.
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1 Introduction

Machine learning algorithms are increasingly being used for decision making in applications
where they affect human lives; popular examples include resume screening, evaluation of loan
applications, bail decisions, etc. [27]. This has led to growing concern as to whether these
algorithms, which may view humans as “data points”, treat them fairly [3, 25]. Consequently,
research on designing fair machine learning algorithms is proliferating [24, 22].

Much of this literature focuses on fairness in classification [36, 35, 19], but the study
of fairness in other settings such as regression [1] and clustering [8] is also on the rise. In
this paper, we focus on fairness in clustering, specifically, in centroid clustering. In this
problem, we are given a set N of data points in a metric space, and a set M of possible
locations for cluster centers in the same metric space. Given k ∈ N, the task is to select a set
X ⊆M consisting of |X| = k cluster centers and assign each data point to a cluster center –
usually the closest – with the goal that data points are close to their assigned cluster centers.
Clustering has diverse applications in market research, pattern recognition, data analysis,
image segmentation, and facility location. In applications like image segmentation or market
research, often the goal is to simply identify different clusters of points among the data.
However, in facility location [14, 21, 15], where data points may represent locations of houses
in the neighborhood and cluster centers may represent locations where public facilities (such
as parks) will be built, it is of paramount importance that the facilities be distributed to
fairly serve the population.

Adapting an example given by Chen et al. [8], imagine that there is a dense urban
area with a population of 10,000, and far from it, there are 10 small communities with a
population of 100 each. The communities are closer to each other compared to how far they
are from the urban area, but still well distinguished. With k = 11, a standard clustering
algorithm such as k-means would identify the urban area as one cluster, and each small
community as one cluster. However, building just one park that serves 10,000 people in the
urban area, while each community of 100 people gets its own park violates the principle of
equal entitlement [23]; this principle would suggest that when allocating 11 parks among
a total of 11,000 people, the urban area consisting of 10,000 people should be allocated
their proportional share of 10 parks, and one park should serve the 10 smaller communities
consisting of 1,000 people altogether.

This notion of what a group deserves – group fairness – has been extensively studied
in machine learning, and a variety of definitions have been proposed [7, 16, 24, 19, 32].
Borrowing from a long line of literature on fair resource allocation [34, 30, 12, 10], Chen et
al. [8] proposed a novel definition of fairness in clustering that perfectly fits our motivation.
Given a metric d over a set N of n points and a setM of feasible cluster centers, they say
that a k-clustering X satisfies proportional fairness if there is no group of points S ⊆ N
with |S| ≥ n/k and a new cluster location y ∈M such that d(i, y) < minx∈X d(i, x) for each
member i ∈ S. Most fairness definitions in machine learning protect groups of individuals
that are pre-defined based on certain protected attributes [4, 5, 9, 28] or that are sufficiently
large [20]. In contrast, proportional fairness guarantees fairness to arbitrarily defined groups
of all possible sizes. This may be helpful given recent observations that protecting groups
defined based on individual attributes may allow an algorithm to circumvent fairness [20],
or that information about which groups to protect may not be known in advance [17]. For
references to other related work, we direct the reader to the work of Chen et al. [8].
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1.1 Our Contribution
We build upon the work of Chen et al. [8]. While their work considers the metric d and the
set of feasible cluster center locationsM to be arbitrary (and |M| to be typically finite),
we focus on the case where the metric consists of usual distance functions such as L1, L2,
or L∞ over Rt, and cluster centers can be placed anywhere in the infinite metric space (i.e.
M = Rt). While this change is seemingly simple, the infinite cardinality ofM requires new
algorithmic tools and generalization bounds, which we provide in this work. In some cases,
we show that this in fact allows us to provide stronger approximation guarantees.

In Section 3, we analyze the greedy capture algorithm introduced by Chen et al. in the
case where d ∈ {L1, L2, L∞} andM = Rt. Chen et al. show that the algorithm provides
1 +
√

2 ≈ 2.414 approximation to proportional fairness for all metric spaces. We show that
for d = L2 and M = Rt, it actually provides a better 2-approximation. We prove this
via a refinement of the result of Chen et al.: we express the approximation ratio obtained
by the algorithm in terms of a new characteristic of the metric that we term Apollonius
radius, and show that this radius is small for the L2 distance, allowing us to achieve a better
approximation ratio. However, we show that for L1 and L∞, the approximation ratio of
greedy capture is no better than 1 +

√
2.

In Section 4, we provide universal lower bounds which apply to all algorithms. Specifically,
we show that for d = L2 and M = Rt, no algorithm achieves better than 2/

√
3 ≈ 1.155

approximation ratio, whereas for d ∈ {L1, L∞} andM = Rt, we get a lower bound of 1.4.
Note that these lower bounds are existential, and not computational.

In Section 5, we consider the case whereM is the set of nodes of an unweighted graph,
and d measures the shortest distance between two nodes on the graph. When the graph is a
tree, we show that an exact proportionally fair clustering necessarily exists, and provide an
efficient algorithm to find one. When the graph is arbitrary, but k ≥ n/2 clusters need to
be placed, we show that a proportionally fair clustering again necessarily exists and can be
computed efficiently. Whether an exact proportionally fair clustering exists for all graphs
remains an interesting open question.

Next, in Section 6, we show that for d = L2 andM = Rt for t ≥ 2, checking whether a
proportional clustering exists is NP-hard. When t is large, even implementing the greedy
capture algorithm is NP-hard. However, this problem becomes efficiently solvable when t is
constant, and when t is large, using a PTAS for an important sub-routine of greedy capture,
we can efficiently compute a 2 · (1 + ε)-proportionally fair clustering for any fixed ε > 0.

Finally, in Section 7, we consider the problem of generalization: would a clustering
that is proportionally fair with respect to samples drawn from N remain (approximately)
proportionally fair with respect to the entire set N ? Chen et al. provide a positive answer
for the case whenM is finite. Using the framework of VC dimension, we show that, when
d = L2, the answer remains positive even whenM = Rt.

2 Preliminaries

Let N be a set of n data points (or agents), which lie in a metric space (X , d), where
d : X × X → R is a distance function satisfying the triangle inequality. For most of this
work, we consider the case where X = Rt for some t ∈ N, but in Section 5, we consider the
case where X is the set of nodes of a graph. We also focus on special distance functions
such as the Euclidean distance (L2), the Manhattan distance (L1), and the L∞ distance. Let
M⊆ X be a the set of locations where cluster centers can be placed. In this work, we focus
on the case whereM = X . Let k ∈ N. We denote by [M]k the set of all subsets of M of size
k. A k-clustering is a set X ∈ [M]k containing k locations for cluster centers. We refer to
each x ∈ X as an open cluster center.

ICALP 2020
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The cost to agent i ∈ N induced by a cluster center x ∈M is the distance d(i, x), and
the cost to agent i ∈ N induced by a k-clustering X is the minimum distance from i to any
cluster center, i.e., d(i,X) , minx∈X d(i, x). Agent i is interested in minimizing her cost.

A set of points S ⊆ N containing at least dn/ke is entitled at least one cluster center. If
they can find a new cluster center that is better for each of them, we consider it a violation
of fairness. Formally:

I Definition 1. Given ρ ≥ 1, we say a k-clustering X ∈ [M]k is ρ-proportionally fair if
there is no S ⊆ N with |S| ≥ dn/ke and y ∈ M such that ρ · d(i, y) < d(i,X) for all i ∈ S.
If such a coalition S and point y exist, we refer to S as a blocking coalition and y as the
center that they deviate to. When ρ = 1, we simply call this proportional fairness.

The reason to define ρ-proportionally fair solutions for ρ > 1 is because (exactly)
proportionally fair solutions may not exist [8].

In Section 5, we consider the problem of proportional fairness on graphs. Specifically,
given an undirected graph G = (V,E), we assume that N ⊆ V ,M = V (i.e. every node in
the graph is a feasible cluster center), and the distance between two nodes u, v ∈ V , denoted
by d(u, v), is the length of the shortest path connecting them. Notice that d satisfies the
triangle inequality.

3 Greedy Capture

In this section, we study the greedy capture algorithm defined by Chen et al. [8]. Put
succinctly, the algorithm starts with X = ∅. It grows a ball at every location inM at the
same rate. As soon as a ball contains at least dn/ke points, the corresponding center is
added to X and all the points covered by the ball are removed. As balls continue growing,
balls centered at previously added locations in X also continue growing with them and any
new points covered by such balls are immediately removed. We refer the reader to the work
of Chen et al. for full description of the algorithm. They show that for any metric space,
greedy capture is guaranteed to find a (1 +

√
2)-proportionally fair clustering.

We begin by providing a refined analysis of greedy capture by expressing the approximation
ratio in terms of a characteristic of the metric we call the Apollonius radius.

I Definition 2. Given ρ ≥ 1, the ρ-Apollonius radius of a metric (X , d) is defined as
AX ,d(ρ) = supx,y∈X ∆(ρ, x, y)/d(x, y), where ∆(ρ, x, y) is the radius of the smallest ball
centered at some point in X that contains the entire set {p ∈ X : ρ · d(p, y) ≤ d(p, x)}.

The reason that we term it the Apollonius radius is because the renowned Greek geometer
Apollonius of Perga was famously interested in the set {p ∈ Rt : ρ · d(p, y) ≤ d(p, x)} for
d = L2, and showed that this set is a ball already when ρ > 1. This special structure of L2

is what will allow us to achieve a better approximation guarantee for it.

I Theorem 3. For any metric (X , d) andM = X , greedy capture finds a ρ-proportionally
fair clustering, where ρ ≥ 1 is the smallest positive number satisfying AX ,d(ρ) · ρ+1

ρ ≤ 1.

Proof. Let X be the clustering returned by the algorithm. Suppose that X is not ρ-
proportionally fair for some ρ. Then, there exist S ⊆ N with |S| ≥ dn/ke and y ∈M such
that ρ · d(j, y) < d(j,X) for all j ∈ S.

Note that this implies y /∈ X. Let i be the first point in S that was covered during the
execution of greedy capture; suppose it was covered by a ball located at x ∈ X.
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Note that for each j ∈ S, we have ρ · d(j, y) < d(j,X) ≤ d(j, x). Hence, S ⊆ {p ∈ X :
ρ · d(p, y) < d(p, x)}. Hence, by definition of ρ-Apollonius radius, there exists a ball of
radius at most AX ,d(ρ) · d(x, y) that contains all points in S. Since i was the first point in S
covered by the ball centered at x, we must have d(i, x) ≤ AX ,d(ρ) · d(x, y), otherwise greedy
capture would have selected the ball of radius at most AX ,d(ρ) · d(x, y) covering all points
of S prior to i being covered by the ball centered at x. Further, since i ∈ S, we also have
d(i, y) < d(i, x)/ρ. Using the triangle inequality, we get

d(x, y) ≤ d(i, x) +d(i, y) < d(i, x) · ρ+ 1
ρ
≤ AX ,d(ρ) · ρ+ 1

ρ
·d(x, y)⇒ AX ,d(ρ) · ρ+ 1

ρ
> 1.

We have proved that if X is not ρ-proportionally fair, then AX ,d(ρ) · ρ+1
ρ > 1. Hence,

whenever AX ,d(ρ) · ρ+1
ρ ≤ 1, we have that X is ρ-proportionally fair. J

Let us argue that Theorem 3 is in fact a refinement of the (1 +
√

2)-approximation proved
by Chen et al. [8] that holds for all metrics.

I Theorem 4. For any metric (X , d), the ρ-Apollonius radius is AX ,d(ρ) ≤ 1
ρ−1 . Hence,

greedy capture finds a (1 +
√

2)-proportionally fair clustering for every metric.

Proof. Consider the set {p ∈ X : ρ·d(p, y) ≤ d(p, x)}. For any point p in this set, we have that
ρ ·d(p, y) ≤ d(p, x) ≤ d(p, y)+d(x, y) by the triangle inequality. Hence, d(p, y) ≤ d(x, y) · 1

ρ−1

for all p in the set. Thus, a ball centered at y ∈ M with radius d(x,y)
ρ−1 certainly covers the

entire set. Hence, AX ,d(ρ) ≤ 1
ρ−1 . Next, for ρ = 1 +

√
2, we have

AX ,d(ρ) · ρ+ 1
ρ
≤ ρ+ 1
ρ · (ρ− 1) = 1.

Hence, by Theorem 3, greedy capture finds a (1 +
√

2)-proportionally fair clustering. J

Next, we show that for d = L2, the ρ-Apollonius radius is slightly better, leading to a
better 2-approximation guarantee for greedy capture.

I Theorem 5. For the metric space (Rt, L2), where t ∈ N, the ρ-Apollonius radius is
ARt,L2(ρ) ≤ ρ

ρ2−1 , and hence, greedy capture finds a 2-proportionally fair clustering.

Proof. For the L2 norm in a Euclidean space, it is well-known that given x, y ∈ Rt and
ρ > 1, the set of points {p ∈ Rt : ρ · d(p, y) ≤ d(p, x)} is a ball of radius d(x, y) · ρ

ρ2−1 . This
is a simple algebraic exercise; its two-dimensional variant was known to Apollonius himself,
after whom the result is named (the derivation is widely available online, e.g., see [11]). This
immediately implies that ARt,L2(ρ) ≤ ρ

ρ2−1 .
Now, we have that

AX ,d(ρ) · ρ+ 1
ρ
≤ ρ

ρ2 − 1 ·
ρ+ 1
ρ

= 1
ρ− 1 .

This quantity is at most 1 when ρ is at least 2. Hence, by Theorem 3, greedy capture finds a
2-proportionally fair clustering for this metric. J

The obvious next question then is whether this refinement also provides an improved
approximation bound for other distance metrics. Unfortunately, for two other prominent
distance metrics, L1 and L∞, the answer is no. We show this by providing a direct
counterexample where greedy capture finds a clustering that is no better than (1 +

√
2)-

proportionally fair. The proof of the next result appears in the full version of the paper.

I Theorem 6. For the metric space (Rt, d) where t ≥ 2 and d ∈ {L1, L∞}, andM = Rt, there
exists an example in which the clustering produced by greedy capture is not ρ-proportionally
fair for ρ < 1 +

√
2.
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4 Universal Lower Bounds

In this section, we show lower bounds on approximation to proportional fairness that apply
to all algorithms, as opposed to the lower bounds in the previous section that apply only
to greedy capture. Chen et al. [8] show that when N , M, and the metric are arbitrary,
ρ-proportional fairness cannot be guaranteed for ρ < 2. They also consider the special case
where N =M, and prove a slightly weaker lower bound of 1.5. One question that they do
not address is whether greedy capture provides better than (1 +

√
2)-approximation in this

special case; in the full version, we show that this is not the case.
In this section, we turn our attention to the case of our interest: M = X = Rt and

d ∈ {L1, L2, Linf}. When t = 1, it is easy to notice that an exactly proportionally fair
clustering always exists.1 When t ≥ 2, we provide a lower bound of 2/

√
3 for d = L2 and a

lower bound of 1.4 for d ∈ {L1, L∞}.

I Theorem 7. For the metric space (Rt, L2) where t ≥ 2 andM = Rt, there is an example
in which no clustering is ρ-proportionally fair for ρ < 2/

√
3 ≈ 1.155.

Proof. Once again, we set t = 2 without loss of generality. Consider an instance in which
|N | = 6 and k = 3. Suppose |N | consists of two isomorphic sets of 3 points each, where each
set of 3 points forms an equilateral triangle of length 1 and the two sets are sufficiently far
from each other. Then, by the pigeonhole principle, under any clustering X, at least one set
of 3 points, say {p1, p2, p3}, must derive their costs from a single cluster center x.

Let a denote the circumcenter of their triangle. Then, d(a, p1) = d(a, p2) = d(a, p3) =
1/
√

3. Hence, d(a, p1) + d(a, p2) + d(a, p3) =
√

3. Notice that in an equilateral triangle, the
circumcenter is also the Fermat point, which minimizes the sum of distances from the three
vertices. Hence, for the cluster center x, we have d(x, p1) +d(x, p2) +d(x, p3) ≥

√
3. Without

loss of generality, assume d(x, p1) ≥ d(x, p2) ≥ d(x, p3). Then, d(x, p1) + d(x, p2) ≥ 2/
√

3.
Now, p1 and p2 can deviate, choose a location y on the line joining p1 and p2 such that

d(y, p1)/d(y, p2) = d(x, p1)/d(x, p2). Since d(y, p1) + d(y, p2) = d(p1, p2) = 1, this reduces
the cost to each point by a factor of 2/

√
3. Hence, the clustering is not ρ-proportionally fair

for ρ < 2/
√

3. J

Note that the lower bound of 1.155 is significantly lower than the upper bound of 2
obtained by greedy capture for L2 as shown in Theorem 5. Closing the gap is an interesting
open question. Next, we show a lower bound for L1 and L∞. The proof appears in the full
version of the paper.

I Theorem 8. For the metric space (Rt, d), where t ≥ 2 and d ∈ {L1, L∞}, and M = Rt,
there is an example in which no clustering is ρ-proportionally fair for ρ < 1.4.

5 Clustering in Graphs

In this section, we consider the special case where the metric space (X , d) is induced by an
undirected graph G = (V,E). Specifically, we let X = V be the set of nodes of the graph,
and assume that d(x, y) measures the length of the shortest path between nodes x and y. As
in the previous sections, we restrict our attention to theM = X case, i.e., when every point
of the metric space is a feasible cluster center.

1 For instance, opening a cluster at every n/k-th data point from left to right is proportionally fair.
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Graphs are an important special case since clustering and facility location in graphs and
networks are very well studied. However, while objectives such as truthfulness [2] and social
welfare maximization (or social cost minimization) [13] have received significant attention,
fairness has not.

We study proportional fairness for this setting. Our first result shows that when the
graph G = (V,E) is a tree, an exact proportionally fair clustering always exists, and can be
computed by an efficient algorithm. Intuitively, the algorithm works as follows. We first
root the tree at an arbitrary node r to obtain a rooted tree (G, r). We denote with h the
height of the rooted tree, and with level(x) the height of node x relative to the root r (with
level(r) = 1). Let ST(x) denote the subtree of node x (i.e. the set of nodes v such that with
level(v) ≥ level(x) and the unique path from v to r contains x). The algorithm starts from
the highest level (the leaves), opens a center every time it finds a node whose subtree contains
at least dn/ke nodes, and deletes this subtree from the graph. At the end, the cost to each
node is still defined using the closest node at which a center is opened by the algorithm.

Algorithm 1 Proportionally Fair Clustering for Trees.

1: Root the tree G at an arbitrary node r
2: X ← ∅
3: Gh ← G

4: for ` = h to 1 do
5: G`−1 ← G`

6: for every x ∈ V with level(x) = ` and |ST(x)| ≥ dn/ke do
7: X ← X ∪ {x}
8: G`−1 ← G`−1 \ ST(x)
9: if G0 6= ∅ then
10: X ← X ∪ {r}

return X

I Theorem 9. Let G = (V,E) be an undirected tree, (V, d) be the metric induced by G,
N ⊆ V ,M = V , and k ∈ N. Then, Algorithm 1 yields a proportionally fair clustering.

Proof. Let X be the clustering returned by Algorithm 1. First, we notice that X contains
at most k centers. This is because every time the algorithm opens a center in the for loop, it
deletes at least dn/ke nodes from the graph. Hence, the for loop can add at most k centers.
If it adds exactly k centers, then the remaining graph must be empty, and the if condition
is not executed. If it adds at most k − 1 centers, then even if the root node is added later,
there would be at most k centers.

Next, suppose for contradiction that X is not proportionally fair. Hence, there exists a
set S ⊆ V with |S| ≥ dn/ke and y ∈ V such that d(i, y) < d(i,X) for all i ∈ S.

For each node i ∈ V , define p(i) to be its closest ancestor in X (i.e. p(i) ∈ X and
i ∈ ST(p(i)), and p(i) is the node of maximum level satisfying these two conditions). Note
that because the algorithm always opens a center at the root node, p(i) is well-defined for
each node i.

Further, note that for each i ∈ S, d(i,X) ≤ d(i, p(i)). And for nodes j /∈ ST(p(i)),
d(i, j) > d(i, p(i)). Hence, the cost to i can only reduce if the deviating center is in ST(p(i)).
We now consider two cases.

Case 1: ∃i, i′ ∈ S : p(i) 6= p(i′). First, suppose that p(i) and p(i′) are siblings (i.e.
ST(p(i))∩ST(p(i′)) = ∅). As i can only improve if the deviating center is in ST(p(i)) and
i′ can only improve if the deviating center is in ST(p(i′)), we obtain that no deviating
center y can reduce the cost to i and i′ simultaneously, which is a contradiction.
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Next, suppose that p(i) ∈ ST(p(i′)). Then, we must have y ∈ ST(p(i)), otherwise the
cost to i would not reduce. But then, d(i′, p(i)) ≤ d(i′, y). Hence, the cost to i′ does not
reduce due to y, which is also a contradiction.
The remaining case of p(i′) ∈ ST(p(i)) is symmetric to the last case.

Case 2: ∀i ∈ S, p(i) = p∗. Let O = X ∩ ST(p∗) \ {p∗} be the set of open centers in
ST(p∗) except p∗ itself. Note that by definition of p∗, we have that if i ∈ S, then i /∈ ST(o)
for any o ∈ O.
This implies that if y ∈ ST(o) for some o ∈ O, then for every point i ∈ S, we have
d(i, y) ≥ d(i, o) ≥ d(i,X), meaning that y would not reduce the cost to any point in S.
Hence, y ∈ ST(p∗) \ ∪o∈O ST(o).
In other words, if center p∗ was opened in the iteration with index ` (let ` = 0 if p∗ is the
root node that was opened outside of the for loop), then S ∪ {y} ∈ G` (any point from S

or y could not have been deleted in any previous iteration). However, for y to reduce the
cost to each i ∈ S, we must have S ⊆ ST(y). However, then, y is a node of higher level
than p∗ that still contains at least |S| ≥ dn/ke points, so it must have been removed in a
previous iteration. This is the desired contradiction.

This concludes the proof. J

We remark that Theorem 9 identifies the broadest class of interesting metrics to date
for which an exact proportionally fair clustering is known to always exist. This raises an
immediate question: what about graphs that are not trees? We can consider the universal
lower bound for the (R2, L1) metric from Theorem 8. If we construct a very dense grid
graph (in which the shortest path distance mimics the L1 distance in the plane) in the
relevant region of R2 from that example, we can derive the same lower bound of 1.4 on the
approximation ratio to proportional fairness for graphs. Whether better lower bounds exist is
an open question. Similarly, the 1 +

√
2 upper bound of greedy capture holds for all metrics,

including those induced by a graph. However, whether its approximation ratio or running
time can be improved for graphs, possibly with special properties such as planarity, remains
to be seen.

It is worthwhile noting the special case of N = M = V , i.e., when every node of the
graph is also a data point (besides being a feasible cluster center location). In this case, we
do not know whether an exact proportionally fair clustering always exists, and leave this as
an interesting open question. That said, we do note that if G is connected and we want to
place a large number of clusters k ≥ n/2, then it can be shown that a proportionally fair
clustering exists. This is because a dominating set2 of any size k ≥ n/2 is guaranteed to
exist in a graph with n nodes [26] and can be computed efficiently [18]. If nodes in such
a set are chosen as the cluster centers, then every node in the graph already has cost at
most 1. So to deviate, all nodes in the blocking coalition must achieve cost 0. However, since
the blocking coalition must contain at least dn/ke ≥ 2 nodes, this is impossible. Thus, the
questions of existence and computation of a proportionally fair clustering in general graphs
with N =M = V become trivial when k ≥ n/2, but remain open when k < n/2.

2 A set of nodes is called a dominating set if every node in the graph is either in this set or adjacent to a
node in this set.
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v1 ∨ v3 ∨ v4

c1

v1 ∨ v3 ∨ v4

c2

v1 ∨ v2 ∨ v3

c3

v1 v2 v3 v4 v5 v6 v7

¬v3 ∨ ¬v4 ∨ ¬v5

c5

¬v1 ∨ ¬v2 ∨ ¬v6

c4

Figure 1 An example of labelling clauses and variables.

vi,1 v̄i,1 ai,1 bi,1 vi,2 v̄i,2 ai,2 bi,2 . . . vi,m v̄i,m ai,m bi,m

Figure 2 The variable gadget corresponding to variable vi. Directed edges indicate the closest
neighbour of each node.

6 Computational Aspects

In this section, we consider computational aspects of two problems: the problem of checking
whether a proportionally fair clustering exists, and the problem of implementing the greedy
capture algorithm whenM = Rt. We begin by considering the former problem. The full
proof appears in the full version of the paper, but we provide a sketch here.

I Theorem 10. Given X = R2, finite N ⊂ X , finite M ⊂ X , k ∈ N, and d = L2, checking
whether a proportionally fair clustering exists is NP-hard.

Proof Sketch. We first show a reduction which creates an instance of proportionally fair
clustering with n/k = 2, and later show how to extend this to the case where n/k is any even
integer. We use a polynomial-time reduction from the planar monotone rectilinear 3-SAT
problem, where each clause cj consists of only positive or only negative literals, each variable
vi is represented by a rectangle on the x-axis and each positive (resp. negative) clause is
represented by a rectangle above (resp. below) the x-axis with three vertical lines or legs
to its three variables. The graph that connects clauses to literals is planar. Figure 1 shows
what a planar monotone rectilinear 3-SAT instance looks like.

Let I be an instance of a planar monotone rectilinear 3-SAT which consists of l boolean
variables and m monotone clauses. Given I, we construct an instance I ′ of proportionally
fair clustering with |N | = Θ(lm2) andM = Θ(lm2) such that I is satisfiable if and only if
there exists a proportionally fair clustering in I ′.

First, for each variable vi, we construct a variable gadget which contains points vi,j , v̄i,j ,
ai,j and bi,j for j ∈ [m]. They are all on the line, and belong to both N andM. This gadget
is shown in Figure 2. The point vi,j (resp. v̄i,j) corresponds to the positive (resp. negative)
literal of vi, specifically reserved for clause cj (whether or not it appears in that clause). We
set the distances in a way that the closest node to any node is the node on its right, while
the closest node to the last node bi,m is its previous node ai,m.

All variable gadgets are located on the x-axis in such a way that the gadget of variable
vi is on the left of the gadget of variable vi+1, and from left to right, the distances between
two adjacent variable gadgets are slightly decreasing. (The exact construction is provided in
the full proof.)
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Next, we construct two clause gadgets, a basic and an auxiliary one, for each clause. The
auxiliary gadget of each clause is sufficiently far from all other gadgets in the construction.
It consists of 3 points and 3 feasible centers such that at least two centers must be placed
within each such gadget, otherwise, ρ-proportional fairness is violated for all ρ < 1.214. The
purpose of this gadget is to make fewer than a proportional number of centers available for
the rest of the construction.

In the basic gadget of a clause, we add points that form a rectangle with three legs.
The interaction of this gadget with variable gadgets is shown in Figure 3. Let yj be the
y-coordinate where we place all the points that consist the virtual rectangle of cj . We choose
the values of yi, i ∈ [m], such that each point in a basic gadget has as closest neighbour a
point in the same gadget. Let cj be a positive clause which contains the positive literals
of variables vq, vs and vt with q < s < t (respectively, if the clause is negative). We add a
virtual rectangle in the interval [(vq,j , yj), (vt,j , yj)] and add the three virtual legs that are
vertical at x-coordinates vq,j , vs,j , and vt,j , respectively. First, we place 2m(t − s) points
in the interval [(v̄s,j , 0), (vt,j , 0)]. Denote these points as r1

j,k, k ∈ [1, 2m(t− s)], where the
x-coordinate of r1

j,k is less than the x-coordinate of r1
j,k+1, and we set the distances such

that r1
j,k has as its closest neighbor r1

j,k+1. Second, we place in a similar way 2m(s − q)
points in the interval [(vq,j , yj), (as,j−1, yj)] (or [(vqj , yj), (as−1,m, yj)] if j = 1). We denote
these points as r2

j,k, k ∈ [1, 2m(s − q)], where the x-coordinate of point r2
j,k is larger than

the x-coordinate of point r2
j,k+1, and we set the distances such that r2

j,k has as its closest
neighbor r2

j,k+1.
It remains to construct the legs of each clause. First, we place 2nj points (see the full

version for the exact value of nj), denoted by l1j,k, k ∈ [1, 2nj ], with x-coordinate equal to vq,j
and y-coordinate less than yj . Specifically, we locate l1j,1 in a position such that the leftmost
point in the rectangle of cj has as its closest neighbor l1j,1, the closest neighbor of every
l1j,k, k ∈ [1, 2nj − 1], is l1j,k+1, and the closest neighbor of l1j,2nj

is vq,j . For the remaining
legs, we add points at exactly the same y-coordinates of the points in the first leg, but with
x-coordinates equal to vs,j and vt,j . Denote the points of the middle and the right leg as l2j,k
and l3j,k, k ∈ [1, 2tnj ], respectively.

Lastly, for each clause we add one more point, denoted by oj in a location such that it
is the circumcenter of the triangle with nodes r1

j,1, r2
j,1, and l2j,1, and these are the (tied)

closest neighbors of oj . Figure 3 shows this entire construction for an example instance which
consists of 2 positive clauses (only one of which is shown in the figure) and 3 variables.

In this construction, note that each clause gadget (the union of basic and auxiliary gadgets)
has an even number of points equal to 2n′j + 4 (for some n′j ; see the full version for details),
and each variable gadget has 4m of points. Hence, we choose k = 2ml +

∑m
j=1(n′j + 2m), so

that n/k = 2. Now, we are ready to prove that I is satisfiable if and only if there exists a
proportionally fair clustering in I ′.

Note that in each variable gadget we need at least 2m cluster centers in order for the
clustering to be proportionally fair. This is because every pair of adjacent points can deviate
if neither of them is a cluster center. There are only two ways to place exactly 2m centers:
we can either open centers at vi,j and ai,j for all j ∈ [4m], or open centers at v̄i,j and bi,j for
j ∈ [4m]. The first choice corresponds to an assignment where xi is set to true, while the
second corresponds to an assignment where xi is set to false.

As we mentioned earlier, the auxiliary gadget of each clause needs at least two cluster
centers placed within it, otherwise a proportionally fair clustering cannot exist. This leaves
n′j centers for every basic clause gadget. However, each basic gadget needs at least n′j centers.
To see this, notice that from point r2

j,1 to the last point of the left leg, we need to add one
center at every other point. Similarly, from point r1

j,1 to the last point of the right leg, we
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v1,1 v̄1,1 . . . b1,2 v2,1 v̄2,1 . . . b2,2 v3,1 v̄3,1 . . .. . . b3,2

l11,4

l11,3

l11,2

l11,1

l21,4

l21,3

l21,2

l21,1

l31,4

l31,3

l31,2

l31,1l31,4 l31,4 y ≈ 7

l31,4 l31,4 y ≈ 5

l31,4 l31,4 y ≈ 3

l31,4 l31,4 y ≈ 1

r2
1,1

r2
1,1

r2
1,1

r1
1,1

r2
1,1

r2
1,1

r2
1,4

r2
1,1

r2
1,1

r1
1,4

r2
1,1

r2
1,1

. . . . . .l31,4 l31,4 y = 9
o1

Figure 3 The rectangle and the legs of clause c1 = v1 ∨ v2 ∨ v3 in an instance with m = 2 and
l = 3. A directed edge from one node points to the closest neighbor of the node.

also need a center at every other point. The same holds for the middle leg. As these are
2n′j points in total, this requires at least n′j centers in an alternating pattern. Notice that at
least one of r1

j,1, r2
j,1 and l2j,1 must also be an open center, otherwise oj can deviate with one

of them. This is possible only if at least one of the corresponding variable nodes is an open
center. The reason is that the last point of at least one leg is not an open center and this
point should not want to deviate with its closest node (which corresponds to the literal of
the clause). This happens if and only if this node is a center, and so the clause is satisfied.

This shows that I is satisfiable if and only if I ′ admits a proportionally fair clustering. J

Next, we consider implementing the greedy capture algorithm whenM = Rt. Note that
because the naive description of greedy capture requires simultaneously growing a ball from
each point inM, it is easy to implement whenM is finite (as shown by Chen et al. [8]) but
difficult whenM is infinite.

To avoid this issue, one may consider restricting the set of feasible cluster center locations
to a finite setM′, and hope that running greedy capture (or any algorithm for that matter)
on this finite set still yields a clustering that is approximately fair with respect to the original
infiniteM. To that end, we show that restricting toM′ = N (i.e. choosing cluster centers
from the set of data points) can only worsen the approximation factor of an algorithm by a
factor of at most 2. The proof appears in the full version.

I Theorem 11. For any metric space (X , d), k ∈ N, N ,M ⊆ X , and ρ ≥ 1, any ρ-
proportionally fair k-clustering with respect to (N ,M′ = N ) is 2ρ-proportionally fair with
respect to (N ,M).

For the metric (Rt, L2), where t ∈ N, recall that greedy capture produces a 2-proportionally
fair clustering whenM = Rt. Hence, Theorem 11 implies that running it onM′ = N , for
finite N , would yield a 4-proportionally fair clustering in polynomial time. However, for this
special case, we can in fact efficiently achieve 2 + ε approximation for any constant ε > 0, as
we discuss below.
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Let us consider the first cluster center added by greedy capture when M = Rt. It
is the center of a smallest ball that contains at least n/k of the n given points. The
problem of finding the smallest ball containing at least p of n given points is a well-studied
problem in computational geometry. This is known to be NP-hard [31], which is what makes
implementing greedy capture hard whenM = Rt.

However, when t is constant, the problem is known to be solvable efficiently [31]; we show
that in this case, greedy capture can also be implemented efficiently, and we can achieve the
2-approximation from Theorem 5.

Further, even when t is large, the problem admits a PTAS [31]. We show that this PTAS
can be used to approximately implement greedy capture, and the approximation ratio only
slightly worsens. The proof of the next result appears in the full version.

I Theorem 12. Let t ∈ N, finite N ⊂ Rt, and k ∈ N be given as input. Suppose M = Rt
and d = L2. Then, the following hold.
1. The clustering returned by greedy capture algorithm cannot be computed in polynomial

time unless P = NP .
2. If t is constant, then it can be computed in polynomial time.
3. Even if t is not constant, for any constant ε > 0, there exists a polynomial-time algorithm

which finds a (2 + ε)-proportionally fair clustering.

7 Learning Fair Clustering

A key concern in machine learning is generalization. In our context, the question is whether
a clustering that is (approximately) proportionally fair with respect to random samples taken
from an underlying population would remain (approximately) proportionally fair with respect
to the whole population. A positive answer to this question could be useful in two ways.

First, sometimes we may have access only to samples from an underlying population. In
this case, we can rest assured that by computing a clustering that is fair with respect to the
samples, it is also fair with respect to the population. Second, even if the entire population
is known, it may be very large. As we noticed in Section 6, finding a proportionally fair
clustering or even running the greedy capture algorithm is NP-hard; thus, these tasks may be
infeasible for a large population. However, it may be possible to do so on a smaller sample
taken from the population, which is where the generalization guarantee can be useful.

Chen et al. [8] show that generalization indeed holds for proportional fairness. Specifically,
they define the following relaxation of ρ-proportional fairness.

I Definition 13. We say that a k-clustering X is ρ-proportionally fair to (1 + ε)-deviations
with respect to N if for all S ⊆ N with |S| ≥ |N | · (1 + ε)/k and all y ∈M, there exists at
least one i ∈ S such that ρ · d(i, y) ≥ d(i,X).

Chen et al. show that if N ⊆ N is a uniformly random sample of size |N | = Ω
(
k3

ε ln |M|δ
)
,

and if X is ρ-proportionally fair with respect to N , then X is ρ-proportionally fair to (1 + ε)-
deviations with respect to N with probability at least 1− δ.

Unfortunately, this bound depends on |M|, and breaks down when |M| is infinite, which
is the focus of our work. We establish a stronger guarantee that does not depend on |M| by
utilizing the framework of VC dimension [33] for binary classifiers. First, we show that there
is a natural family of binary classifiers associated with a given clustering.

I Definition 14. Given a set of points N , a k-clustering X ∈ [M]k, and y ∈M, define the
binary classifier hX,y : N → {0, 1} such that hX,y(i) = 1 if and only if ρ · d(i, y) < d(i,X).
Define the “error” of this classifier on a set of points S ⊆ N as errS(hX,y) = (1/|S|) ·∑

i∈S hX,y(i).
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Intuitively, hX,y(i) = 1 if and only if i can be part of a coalition that complains about
the unfairness of X by demonstrating y as a location that provides them ρ-improvement.
The use of the term “error” may be confusing. Unlike in traditional classification context,
where there is a true classifier and the error is measured in terms of the fraction of points on
which a given classifier differs from the true classifier, in our case the “error” is simply the
fraction of points that can deviate. One can equivalently think of the “true classifier” as the
one that outputs 0 on every point.

Note that X is ρ-proportionally fair to (1 + ε)-deviations with respect to N if and only if
errN (X, y) ≤ 1+ε

k for all y ∈M. Our goal is to show that given a sufficiently large random
sample N ⊆ N , if we have a clustering X that is ρ-proportionally fair with respect to N ,
then it is ρ-proportionally fair to (1 + ε)-deviations with respect to N with high probability.
However, note that we have no control over what X or y are. This is where the stronger
“uniform convergence” guarantee – this establishes that |errN (hX,y)− errN (hX,y)| is bounded
for all X, y – becomes useful. Let us begin by introducing the VC dimension and a well-known
uniform convergence guarantee that depends on the VC dimension.

I Definition 15 (VC Dimension). Let N be a set of points. Let H be a family of binary
classifiers over N . We say that H shatters S ⊆ N if for every labeling ` : S → {0, 1}, there
exists a classifier h ∈ H such that h(i) = `(i) for all i ∈ S. The VC dimension of H, denoted
dimVC(H), is the size of the largest S that can be shattered by H.

I Proposition 16 ([29]). Let H be a family of binary classifiers over a set of points N . If
N ⊆ N is a uniformly random sample with |N | ≥ Ω

(
dimVC(H)+ln(1/δ)

ε2

)
, then with probability

at least 1− δ, |errN (h)− errN (h)| ≤ ε for all h ∈ H.

We show that the family of classifiers {hX,y|X ∈ [M]k, y ∈M} has finite VC dimension
whenM = Rt with finite t. This, along with Proposition 16, gives us the desired result.

I Theorem 17. Fix ε, δ > 0, ρ ≥ 1, k, t ∈ N, and metric (Rt, d) where d = L2. Let N be
a set of points and M = Rt be the set of feasible cluster centers. Let N ⊆ N be sampled
uniformly at random with |N | ≥ Ω

(
k2·(tk ln k+ln(1/δ))

ε2

)
. Then, with probability at least 1− δ,

every k-clustering X ∈ [M]k that is ρ-proportionally fair with respect to N is ρ-proportionally
fair to (1 + ε)-deviations with respect to N .

Proof. Given a pair of points x and y, note that the set of points i such that ρd(i, y) ≥ d(i, x)
is a half-space in Rt when ρ = 1 and a ball in Rt when ρ > 1. Hence, given X ∈ [M]k, the
set of points i satisfying ρd(i, y) ≥ d(i,X) is the union of k half-spaces or balls in Rt. It is
known that the VC dimension of unions of k half-spaces or balls in Rt is O(tk ln k) [6].

Substituting this bound in Proposition 16, we get that |N | ≥ Ω
(
k2·(tk ln k+ln(1/δ))

ε2

)
is

sufficient to ensure that with probability at least 1− δ, errN (hX,y) ≤ errN (hX,y) + ε/k for
all X, y. In particular, when X is ρ-proportionally fair with respect to N , this ensures that
with probability at least 1− δ, X is ρ-proportionally fair to (1 + ε)-deviations with respect
to N . J

While we do not formally consider the case of infinite set of points (|N | = ∞) in this
work, one can define N as a distribution over infinitely many points, and ask whether a
probability mass of at least 1/k has a beneficial deviation. Note that Theorem 17 applies to
this case as well because it does not depend on |N |. On the other hand, note that Theorem 17
applies only for L2 distance metric; deriving generalization bounds for other distance metrics
remains an interesting challenge for future work.
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8 Discussion

In this work, we advanced the study of proportionally fair clustering in a metric space, and
focused on the case where the set of possible cluster centerM is the entire (usually infinite)
metric space. Our work leaves a number of open questions.

The most immediate question is to bridge the gap between our lower and upper bounds
on the approximation ratio to proportional fairness from Sections 3 and 4. In particular,
we believe that for L2, the lower bound of 2/

√
3 from Theorem 7 may be achievable. This

specific number is reminiscent of Jung’s theorem, which states that for L2 distance in R2

(which is where the lower bound stems from), any set of points with diameter at most 1 is
contained in a ball of radius at most 1/

√
3. This could be useful in closing the gap for L2.

Section 5 leaves open an important question which is whether a proportionally fair clustering
exists for all graphs when N =M is the set of all nodes of the graph. Our hardness results
from Section 6 and learnability results from Section 7 only apply to the L2 distance because
they use results and techniques from the literature that are only available for L2. Deriving
similar results for other distance metrics would be very interesting. While Chen et al. [8]
show that achieving bounded approximation to proportional fairness is incompatible with
achieving bounded approximation to three classic objective functions (k-center, k-means, and
k-median), it would be interesting to study the tradeoff between fairness and these objectives
in special cases (such as graphs).

In this paper, our focus was on the case where the set of possible cluster centersM is
the entire metric space. In the case where the metric is induced by a graph G = (V,E)
(Section 5), it is also interesting to consider the case whereM⊂ V . Does a proportionally
fair clustering always exist for trees whenM⊂ V , or for general graphs when N =M⊂ V ?
These questions remain open.

More broadly, we find proportional fairness to be a very elegant fairness solution concept
for clustering. Adapting this idea of proportional fairness to other machine learning settings
such as regression or classification can lead to many avenues for future work.
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Abstract
Packing problems are an important class of optimization problems. The probably most well-known
problem if this type is knapsack and many generalizations of it have been studied in the literature
like Two-dimensional Geometric Knapsack (2DKP) and Unsplittable Flow on a Path (UFP). For
the latter two problems, recently the first polynomial time approximation algorithms with better
approximation ratios than 2 were presented [Gálvez et al., FOCS 2017][Grandoni et al., STOC 2018].
In this paper we break the barrier of 2 for the Storage Allocation Problem (SAP), a problem which
combines properties of 2DKP and UFP. In SAP, we are given a path with capacitated edges and a set
of tasks where each task has a start vertex, an end vertex, a size, and a profit. We seek to select the
most profitable set of tasks that we can draw as non-overlapping rectangles underneath the capacity
profile of the edges where the height of each rectangle equals the size of the corresponding task.

The problem SAP appears naturally in settings of allocating resources like memory, bandwidth,
etc. where each request needs a contiguous portion of the resource. The best known polynomial
time approximation algorithm for SAP has an approximation ratio of 2 + ε [Mömke and Wiese,
ICALP 2015] and no better quasi-polynomial time algorithm is known. We present a polynomial
time (63/32 + ε) < 1.969-approximation algorithm for the important case of uniform edge capacities
and a quasi-polynomial time (1.997+ε)-approximation algorithm for non-uniform quasi-polynomially
bounded edge capacities. Key to our results are building blocks consisting of stair-blocks, jammed
tasks, and boxes that we use to construct profitable solutions and which allow us to compute
solutions of these types efficiently. Finally, using our techniques we show that under slight resource
augmentation we can obtain even approximation ratios of 3/2 + ε in polynomial time and 1 + ε in
quasi-polynomial time, both for arbitrary edge capacities.
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1 Introduction

Packing problems play an important role in combinatorial optimization. The most basic
packing problem is knapsack where we are given a knapsack of a certain capacity, a set of
items with different sizes and profits, and we are looking for a subset of items of maximum
profit that fit into the knapsack. Many generalizations of it have been studied. For example,
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in the Two-dimensional Geometric Knapsack problem (2DKP) the items are axis-parallel
rectangles and we seek to find the most profitable subset of them that fit non-overlappingly
into a given rectangular knapsack. Another generalization of the knapsack problem is called
Unsplittable Flow on a Path (UFP). We are given a path with capacities on its edges and
each item can be interpreted as a commodity of flow that needs to send a given amount of
flow from its start vertex to its end vertex in case that we select it. If the path consists of a
single edge then UFP is identical to knapsack.

In this paper, we study the Storage Allocation Problem (SAP) which combines properties
of 2DKP and UFP: We are given a path (V,E) where each edge e ∈ E has a capacity ue ∈ N,
and a set of tasks T where each task i ∈ T is specified by a size di ∈ N, a profit wi ∈ N, a
start vertex si ∈ V , and an end vertex ti ∈ V . Let P (i) denote the path between si and ti for
each i ∈ T . The goal is to select a subset of tasks T ′ ⊆ T and define a height level h(i) ≥ 0
for each task i ∈ T ′ such that the resulting rectangle [si, ti)× [h(i), h(i) + di) lies within the
profile of the edge capacities, and we require that the rectangles of the tasks in T ′ are pairwise
non-overlapping. Formally, for each task i ∈ T ′ we require that h(i) + di ≤ ue for each edge
e ∈ P (i) and additionally for any two tasks i, i′ ∈ T ′ we require that if P (i)∩P (i′) 6= ∅, then
[h(i), h(i) + di) ∩ [h(i′), h(i′) + di′) = ∅. Note that since we can choose h(i) we can define
the vertical position of the rectangle of each task i but not its horizontal position. Again, if
E has only one edge then the problem is identical to knapsack.

The problem SAP is motivated by settings in which tasks need a contiguous portion of
an available resource, e.g., a consecutive portion of the computer memory or a frequency
bandwidth. Observe that in contrast to UFP, in many applications of SAP the instances
have uniform edge capacities, e.g., if the available memory or frequency spectrum does not
change over time. From a mathematical perspective, SAP and UFP are closely related. Every
feasible SAP-solution T ′ satisfies

∑
i∈T ′:e∈P (i) di ≤ ue on each edge e. This is exactly the

condition when a solution to UFP is feasible (UFP and SAP have the same type of input).
In SAP we require additionally that we can represent the tasks in T ′ as non-overlapping
rectangles. Also, if all edges have the same capacity then SAP can be seen as a variant of
2DKP in which the horizontal coordinate of each item i is fixed and we can choose only the
vertical coordinate.

For quite some time, the best known polynomial time approximation ratios for 2DKP
and UFP had been 2 + ε [24, 2]. Recently, the barrier of 2 was broken for both problems
and algorithms with strictly better approximation ratios have been presented [16, 20]. For
SAP, the best known approximation ratio is still 2 + ε [27], even for uniform edge capacities
and if we allow quasi-polynomial running time. In contrast, for 2DKP and UFP, better
quasi-polynomial time algorithms had been known earlier [3, 9, 1].

1.1 Our contribution
In this paper, we break the barrier of 2 for SAP and present a polynomial time (63/32 + ε) <
1.969-approximation algorithm for uniform edge capacities and a quasi-polynomial time
(1.997 + ε)-approximation algorithm for non-uniform edge capacities in a quasi-polynomial
range. Key to our results is to identify suitable building blocks to construct profitable
near-optimal solutions such that we can design algorithms that find profitable solutions
of this type. We call a task small if its demand is small compared to the capacity of the
edges on its path and large otherwise. One can show that each edge can be used by only
relatively few large tasks which allows for a dynamic program that finds the best solution
with large tasks only. However, there can be many small tasks using an edge and hence this
approach fails for small tasks. We therefore consider boxable solutions in which the tasks
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Figure 1 Left: a boxable solution in which the (gray) tasks are assigned into the (orange) boxes.
Right: A stair-block into which small tasks (light gray) and large tasks (dark gray) are assigned. All
small tasks need to cross the vertical dashed line and all large tasks need to be placed on the right
of it underneath the dashed horizontal line. Therefore, the orange area denotes the space that is
effectively usable for the tasks that we assign into the stair-block.

are assigned into rectangular boxes such that each edge is used by only (logn)O(1) of these
boxes, see Fig. 1. Using the latter property, we present a quasi-polynomial time algorithm
that essentially finds the optimal boxable solution. Furthermore, for many types of instances
we prove that there exist boxable solutions with high profit.

There are, however, instances for which it is not clear how to construct boxable solutions
that yield a better approximation ratio than 2. This is where our second building block
comes into play which are stair-blocks. Intuitively, a stair-block is an area into which we
assign small and large tasks such that the small tasks are jammed between the large tasks
and the capacity profile of the edges, see Fig. 1. We prove the crucial insight that if we fail to
construct a good boxable solution then this is because a lot of profit of the optimum is due to
small tasks in stair-blocks. We therefore devise a second algorithm that computes solutions
for such instances, yielding an approximation ratio better than 2. The algorithm is based on
a configuration-LP with a variable for each possible set of large tasks in each stair-block and
additionally variables for placing the small tasks in the remaining space. We separate it via
the dual LP in which the separation problem turns out to be a variation of SAP with large
tasks only. Then we sample the set of large tasks according to the probabilities implied by
the LP solution. As a result, there are some small tasks that we cannot pick anymore since
they would overlap the sampled large tasks. For some small tasks this will happen with very
large probability so most likely we will lose their profit. This is problematic if they represent
a large fraction of the profit of the LP. We therefore introduce additional constraints that
imply that if the latter happens then we can use another rounding routine for small tasks
only that yields enough profit.

I Theorem 1. There is a quasi-polynomial time (1.997 + ε)-approximation algorithm for
SAP if the edge capacities are quasi-polynomially bounded integers.

Recall that in many applications of SAP the instances have uniform edge capacities. For
our polynomial time algorithm for this setting the above building blocks are not sufficient
since for example in our boxable solutions above an edge can be used by more than constantly
many boxes and hence we cannot enumerate all possibilities for those in polynomial time.
We therefore identify types of boxable solutions that are more structured and that allow us
to find profitable solutions of these types in polynomial time. The first such type are boxable
solutions in which each edge is used by only constantly many boxes. A major difficulty is
here that for a small task there are possibly several boxes that we can assign it to and if
we assign it to the wrong box then it occupies space that we should have used for other
tasks instead (in our quasi-polynomial time algorithm above we use a method to address
this which inherently needs quasi-polynomial time). We solve this issue by guessing the
boxes in a suitable hierarchical order which is not the canonical linear order given by their
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Figure 2 Left: a laminar boxable solution that consists of boxes of geometrically increasing sizes
whose paths form a laminar family. Right: a jammed solution in which a set of small tasks (light
gray) that are placed underneath some large tasks (dark gray). The small tasks are relatively large
compared to the (orange) space underneath the large tasks.

respective leftmost edges and we assign the tasks into the boxes in the guessed order. With
a double-counting argument we show that with our strategy we obtain a solution which has
essentially at least the profit of the large tasks in the optimal boxable solution of the first
type plus half of the profit of the small tasks. Our second special type of boxable solutions is
the case in which the paths of the boxes form a laminar family and the sizes of the boxes are
geometrically increasing, see Fig. 2. Even though there can be Ω(logn) such boxes using an
edge, we devise an algorithm with polynomial running time for this kind of solutions. It is a
dynamic program inspired by [20] that guesses the boxes in the order given by the laminar
family and assigns the tasks into them. Finally, there can be small tasks such that in the
optimal solution the large tasks take away so much space that with respect to the remaining
space those small tasks actually become relatively large. We say that a solution consisting of
such small and large tasks forms a jammed solution which is our third type of building block,
see Fig. 2. We extend an algorithm in [27] for instances with large tasks only to compute
essentially the most profitable jammed solution. Our key technical lemma shows that for
any instance there exists a profitable solution that uses only the building blocks above and
we provide a polynomial time algorithm that finds such a solution.

I Theorem 2. There is a polynomial time (63/32 + ε) < 1.969-approximation algorithm for
SAP for uniform edge capacities.

We would like to note that we did not attempt to optimize our approximation ratios up
to the third decimal place but instead we focus on a clean exposition of our results (which are
already quite complicated). Finally, we study the setting of (1 + η)-resource augmentation
where we can increase the capacity of each edge by a factor of 1 + η for an arbitrarily small
constant η > 0 while the compared optimal solution cannot do this. In this case we obtain
even better approximation ratios and improve the factor of 2 for arbitrary edge capacities
even with a polynomial time algorithm. Key for these results is to show that using the
resource augmentation we can reduce the general case to the case of a constant range of edge
capacities and then establish that there are essentially optimal boxable solutions in which
each edge is used by a constant number of boxes. Using our algorithmic tools from above
this implies the following theorem.

I Theorem 3. In the setting of (1 + η)-resource augmentation there exists a polynomial
time (3/2 + ε)-approximation algorithm and a quasi-polynomial time (1 + ε)-approximation
algorithm for SAP with arbitrary edge capacities.

Due to space constraints, this extended abstract intends to give only an overview of our
methodology. For a complete presentation of our results we refer to [28].
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1.2 Other related work
Previous to the mentioned (2 + ε)-approximation algorithm for SAP [27], Bar-Noy et al. [6]
found a 7-approximation algorithm if all edges have the same capacities which was improved
by Bar-Yehuda et al. to a (2 + ε)-approximation [7]. Bar-Yehuda et al. [8] presented the
first constant factor approximation algorithm for SAP for arbitrary capacities, having an
approximation ratio of 9 + ε. A related problem is the dynamic storage allocation problem
(DSA) where in the input we are given a set of tasks like in SAP and we all need to pack all
of them as non-overlapping rectangles, minimizing the maximum height of a packed item.
The best known approximation ratio for DSA is a (2 + ε)-approximation which in particular
uses a (1 + ε)-approximation if all tasks are sufficiently small [11]. This improves earlier
results [25, 26, 17, 18].

For 2DKP for squares there is an EPTAS [21] which improves earlier PTASs [22, 23].
For rectangles, there was a (2 + ε)-approximation known [24, 23] which was improved to a
(17/9 + ε)-approximation [16]. There is a PTAS if the profit of each item is proportional
to its area [5]. Also, there is a QPTAS for quasi-polynomially bounded input data [1]. For
UFP there is a long line of work on the case of uniform edge capacities [29, 6, 12], the
no-bottleneck-assumption [13, 15], and the general case [3, 4, 14, 10, 2] which culminated in
a QPTAS [3, 9], PTASs for several special cases [19, 9], a (2 + ε)- approximation [2], which
was improved to a (5/3 + ε)-approximation [20].

2 Overview

In this section we present an overview of our methodology for our algorithms. Let ε > 0 and
assume that 1/ε ∈ N. First, we classify tasks into large and small tasks. For each task i ∈ T
let b(i) := mine∈P (i) ue denote the bottleneck capacity of i. For constants µ, δ > 0 we define
that a task i is large if di > δ · b(i) and small if di ≤ µ · b(i). The constants δ, µ are chosen
to be the values δi∗ and µi∗ due to the following lemma, which in particular ensures that the
tasks i with µ · b(i) < di ≤ δ · b(i) contribute only a marginal amount to the optimal solution
OPT whose weight we denote by opt.

I Lemma 4. We can compute a set (µ1, δ1), . . . , (µ1/ε, δ1/ε) such that for each tuple (µk, δk)

we have εO
(

(1/ε)1/ε
)
≤ µk ≤ ε10δ

1/ε
k , δi ≤ ε and for one tuple (µk∗ , δk∗) it holds that

w(OPT ∩ {i ∈ T | µk∗ · b(i) < di ≤ δk∗ · b(i)}) ≤ ε · opt.

Let TL and TS denote the sets of large and small input tasks, respectively. For each edge
e let Te ⊆ T denote the set of tasks i ∈ T for which e ∈ P (i). We will show later that for
many instances there are profitable solutions that are boxable which intuitively means that
the tasks can be assigned into rectangular boxes such that each edge is used by only few
boxes. A box B is defined by a start vertex sB , an end vertex tB , and a size dB . We define
P (B) to be the path of B which is the path between sB and tB . A set of tasks T ′ ⊆ T fits
into B if

for each i ∈ T ′ we have that P (i) ⊆ P (B), and
there is a value h(i) ∈ [0, dB) for each i ∈ T ′ such that (T ′, h) is feasible if each edge
e ∈ P (B) has capacity dB , and
|T ′| = 1 or we have di ≤ ε8 · dB for each i ∈ T ′.

We say that a set of boxes B and a height level assignment h : B → N forms a feasible
solution (B, h) if the boxes in B interpreted as tasks form a feasible solution with h (see
Fig. 1), i.e., if the set (T (B), h′) is feasible where T (B) contains a task i(B) for each B ∈ B
such that P (i(B)) = P (B), di = di(B) and h′(i(B)) = h(B).

ICALP 2020
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eL eM eR

f

. . . . . .

Figure 3 A stair-block SB = (eL, eM , eR, f, T ′
L, h′). The black tasks are the tasks in T ′

L. The
orange area denotes the area that is effectively usable for the tasks that we assign to SB. The light
and dark gray tasks are small and large tasks, respectively, that together fit into SB.

I Definition 5. A solution (T ′, h′) is a β-boxable solution if there exists a set of boxes
B = {B1, . . . , B|B|} and a partition T ′ = T ′1∪̇ . . . ∪̇T ′|B| such that

for each j ∈ [|B|], T ′j fits into the box Bj and if T ′j ∩ TL 6= ∅ then |T ′j | = 1,
each edge e ∈ E is used by the paths of at most β boxes in B,
there is a height level h′(B) for each box B ∈ B such that (B, h′) is feasible.

In the following lemma we present an algorithm that essentially computes the optimal
β-boxable solution. We will use it later with β = (logn)O(1). Assume in the sequel that we
are given a SAP-instance where ue ≤ n(logn)c for some c ∈ N for each e ∈ E.

I Lemma 6. Let β ∈ N and let (Tbox, hbox) be a β-boxable solution. There is an algorithm
with running time n(β logn/awε)O(c) that computes a β-boxable solution (T ′, h′) with w(T ′) ≥
w(Tbox)/(1 + ε).

Our second type of solutions are composed by stair-blocks (see Fig. 1 and Fig. 3).
Intuitively, a stair-block is an area underneath the capacity profile defined by a function
f : E → N0 and three edges eL, eM , eR, where eM lies between eL and eR. The corresponding
area contains all points above each edge between eL and eM whose y-coordinate is at least
ueL and all points above each edge e between eM and eR whose y-coordinate is in [fe, ueM ).
Additionally, there are some tasks T ′L ⊆ TL ∩ (TeM ∪ TeR) and a function h′ : T ′L → N0 that
assigns height levels to them where the intuition is that those tasks are given in advance and
fixed. We require that each of them intersects the mentioned area below ueL , i.e., for each
i ∈ T ′L we have that h′(i) + di ≤ ueL and there is an edge e ∈ P (i)∩PeM ,eR \ {eM} such that
h′(i) + di > fe where PeM ,eR is the path that starts with eM and ends with eR. Also, we
require that f(e) = ueL for e = eM and each edge e on the left of eM .

Given a stair-block, we will assign tasks T ′′ into the mentioned area such that we require
that all small tasks in T ′′ use eM and for each large tasks i ∈ T ′′ we require that P (i) ⊆ PeM ,eR .
Due to the former condition, not all points with x-coordinate between eL and eM are actually
usable for tasks assigned to SB and the usable ones form a staircase shape (see Fig. 1).
Formally, we say that a solution (T ′′, h′′) fits into a stair-block SB = (eL, eM , eR, f, T ′L, h′) if
P (i) ⊆ PeM ,eR and fe ≤ h′′(i) ≤ ueM−di for each i ∈ T ′′∩TL and each e ∈ P (i), h′′(i′) ≥ ueL
and i′ ∈ TeM for each i′ ∈ T ′′ ∩ TS , and additionally (T ′L ∪ T ′′, h′ ∪ h′′) forms a feasible
solution. Also, we require that h′′(i) < di for each i ∈ T ′′ ∩ TL which is a technical condition
that we need later in order to be able to compute a profitable stair solution efficiently. A
set of tasks T ′′ fits into a stair-block SB, if there is a function h′′ such that the solution
(T ′′, h′′) fits into SB. We will need later that the function f is simple and to this end we say
that a stair-block SB = (eL, eM , eR, f, T ′L, h′) is a γ-stair-block if f is a a step-function with
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at most γ steps. Note that it can happen that eR lies on the left of eL and then we define
PeM ,eR to be the path that starts with eR and ends with eM (one may imagine that Fig. 1 is
mirrored).

We seek solutions that consist of stair-blocks and large tasks that are compatible with
each other. To this end, for a stair-block SB = (eL, eM , eR, f, T ′L, h′) we define P (SB) to
be the path starting with the edge on the right of eL and ending with eR. A large task i
with height h(i) is compatible with SB if i /∈ T ′L and intuitively i does not intersect the area
of the stair-block, i.e., if h(i) ≥ ueM or h(i) + di ≤ fe for each e ∈ P (i) ∩ P (SB). We say
that a task i ∈ TL with height h(i) is part of SB if i ∈ T ′L and h(i) = h′(i). We say that
stair-blocks SB = (eL, eM , eR, f, T ′L, h′) and SB = (ēL, ēM , ēR, f̄ , T̄ ′L, h̄′) are compatible if for
each task i ∈ T̄ ′L ∩ T ′L we have h′(i) = h̄′(i), each task i ∈ T̄ ′L \ T ′L is compatible with SB,
each task i ∈ T ′L \ T̄ ′L is compatible with SB, and there is no task i ∈ T that fits into both
SB and SB (for suitable heights h′′(i) and h̄′′(i)). Intuitively, a stair-solution consists of a
set of stair-blocks and a set of large tasks T 0

L that are all compatible with each other.

I Definition 7. A solution (T ′′, h′′) is a γ-stair-solution if there exists a set of γ-stair-blocks
{SB1, . . . ,SBk} and partitions T ′′ ∩ TL = T 0

L∪̇T 1
L∪̇ . . . ∪̇T kL and T ′′ ∩ TS = T 1

S∪̇ . . . ∪̇T kS such
that for each j ∈ [k], the tasks T jL∪T

j
S fit into SBj , for any j, j′ ∈ [|SB|] the stair-blocks SBj

and SBj′ are compatible, for each stair-block SBj and each task i ∈ T 0
L with height h′′(i),

the task i is compatible with SBj or part of SBj , and each edge is contained in the path P (i)
of at most γ tasks i ∈ T 0

L and in the path P (SBj) of at most γ stair-blocks SBj.

Our main structural lemma is that there exists a boxable solution or a stair solution
whose profit is large enough so that we can get an approximation ratio better than 2.

I Lemma 8 (Structural lemma). There exists a (logn/δ2)O(c+1)-boxable solution Tbox such
that w(Tbox) ≥ opt/(1.997 + ε) or there exists a (logn/O(δ))O(c+1)-stair-solution Tstair
with w(TS ∩ Tstair) ≥ 1

αw(TL ∩ Tstair) for some value α ≥ 1 such that w(Tstair ∩ TL) +
1

8(α+1)w(Tstair ∩ TS) ≥ opt/(1.997 + ε).

If the first case of Lemma 8 applies then the algorithm due to Lemma 6 yields a (1.997+ε)-
approximation. In the second case the following algorithm yields a (1.997 + ε)-approximation
which completes the proof of Theorem 1.

I Lemma 9. Let (Tstair, hstair) be a γ-stair solution with w(TS ∩Tstair) ≥ 1
αw(TL∩Tstair) for

some value α ≥ 1. There is an algorithm with running time (n ·maxe ue)Oδ(γ
2 log(maxe ue)) that

computes a stair solution (T ′, h′) with w(T ′) ≥ (1−O(ε))(w(Tstair∩TL)+ 1
8(α+1)w(Tstair∩TS)).

2.1 Uniform edge capacities
Assume now that all edge capacities are identical, i.e., that there exists a value U such that
ue = U for each edge e ∈ E but that not necessarily U ≤ n(logn)c . For this case we want to
design a polynomial time (63/32 + ε)-approximation algorithm. The above building blocks
are not sufficient since the corresponding algorithms need quasi-polynomial time. Therefore,
first we consider special cases of boxable solutions for which we design polynomial time
algorithms. We begin with such an algorithm for β-boxable solutions for constant β that
intuitively collects all the profit from the large tasks in the optimal β-boxable solution and
half of the profit of its small tasks.

I Lemma 10. Let β ∈ N and let (Tbox, hbox) be a β-boxable solution. There is an algorithm
with running time nO(β3/ε) that computes a solution (T ′, h′) with w(T ′) ≥ w(Tbox ∩ TL) +
(1/2− ε)w(Tbox ∩ TS).

ICALP 2020
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B1

E1

B2

E2

Figure 4 A jammed solution with two subpaths E1, E2 corresponding horizontal line segments
E1 ×B1 and E1 ×B2, and small tasks (light gray) that are jammed in the respective orange areas
between the large tasks (dark gray).

Next, we define laminar boxable solutions which are boxable solutions in which the paths
of the boxes form a laminar family and the sizes of the boxes are geometrically increasing
through the levels (see Fig. 2). A set of boxes B = {B1, . . . , B|B|} with a height assignment
h : B → N is a laminar set of boxes if

the paths of the boxes form a laminar family, i.e., for any two boxes Bk, Bk′ we have that
P (Bk) ⊆ P (Bk′), P (Bk′) ⊆ P (Bk), or P (Bk) ∩ P (Bk′) = ∅,
there is a box B∗ ∈ B with P (B) ⊆ P (B∗) for each B ∈ B,
for each box B ∈ B we have that dB = (1 + ε)k for some k ∈ N0,
for each box B ∈ B with dB = (1 + ε)k for some integer k ≥ 1 there is a box B′ ∈ B with
P (B) ⊆ P (B′), dB′ = (1 + ε)k−1, and h(Bk) = h(Bk−1) + dBk−1 .

We define P (B) := P (B∗). A β-laminar boxable solution is now a boxable solution whose
boxes can be partitioned into sets B = {B0,B1, . . . ,B|B|−1} such that the boxes in the sets
B1, . . . ,B|B|−1 are laminar sets of boxes whose respective paths P (Bj) are pairwise disjoint
and each edge is used by at most β boxes from B0. Also, each box in B0 contains exactly one
large task and each box in B1, . . . ,B|B|−1 contains only small tasks. We design a polynomial
time algorithm for finding profitable laminar boxable solutions.

I Lemma 11. Let (Tlam, hlam) be a β-laminar boxable solution. There is an algorithm
with a running time of nO(β+1/ε2) that computes a β-laminar boxable solution (T ′, h′) with
w(T ′) ≥ w(Tlam ∩ TL) + w(Tlam ∩ TS)/(2 + ε).

The next class of solutions are pile boxable solutions. A set of boxes B = {B1, . . . , B|B|}
with a height assignment h : B → N is called a β-pile of boxes if |B| ≤ β, P (Bk) ⊇ P (Bk+1),
h(Bk) = (k − 1)U/|B| and dBk = U/|B| for each k. We define P (B) := P (B1). A β-pile
boxable solution is, similarly as above, a boxable solution whose boxes can be partitioned
into sets of boxes B = {B0,B1, . . . ,B|B|−1} such that the boxes in the sets B1, . . . ,B|B|−1 are
β-piles of boxes whose respective paths P (Bj) are pairwise disjoint and each edge is used by
at most β boxes in B0. For β-pile boxable solutions we design a polynomial time algorithm
that finds essentially the optimal solution of this type.

I Lemma 12. Let (Tpile, hpile) be a β-pile boxable solution. There is an algorithm with a
running time of nO(β+1/δ) that computes a β-pile boxable solution (T ′, h′) with w(T ′) ≥
w(Tpile)/(1 + ε).

Finally, we define jammed solutions (which are not defined via boxes). Intuitively, they
consist of large and small tasks such that the small tasks are placed in areas between some
horizontal line segments and the large tasks such that the small tasks are relatively large
compared to the free space on each edge in these areas (see Fig. 2 and Fig. 4). Formally,
given a solution (T ′, h′) where we define T ′L := T ′ ∩ TL, let E′ ⊆ E be a subpath, and let
B ≥ 0 such that intuitively no task i ∈ T ′L crosses the line segment E′ × B, i.e., for each



T. Mömke and A. Wiese 86:9

task i ∈ T ′L we have that E′ ∩ P (i) = ∅ or h′(i) ≥ B or h′(i) + di ≤ B. The reader may
imagine that we draw the line segment E′ ×B in the solution given by the large tasks T ′L
and that we are interested in small tasks that are drawn above E′ ×B. For each edge e ∈ E′
let u′e := mini∈T ′

L
:e∈P (i)∧h(i)≥B h(i) − B and define u′e := U − B if there is no task i ∈ T ′L

with e ∈ P (i) and h(i) ≥ B. A task i ∈ T ′ ∩ TS is a δ′-jammed tasks for (T ′L, E′, B, h′) if
P (i) ⊆ E′, B ≤ h′(i) ≤ h′(i) + di ≤ u′e for each edge e ∈ P (i), and there exists an edge
e′ ∈ P (i) such that di > δ′u′e′ , i.e., intuitively i is relatively large for the edge capacities u′.

I Definition 13. A solution solution (T ′, h′) is a δ′-jammed-solution if there are pairwise
disjoint subpaths E1, . . . , Ek ⊆ E, values B1, . . . , Bk, and a partition T ′S := T ′ ∩ TS =
T ′S,1∪̇ . . . ∪̇T ′S,k such that T ′S,` is a set of δ′-jammed tasks for (T ′L, E`, B`, h′) for each ` ∈ [k]
with T ′L := T ′ ∩ TL.

I Lemma 14. Let (Tjam, hjam) be a δ′-jammed solution. There is an algorithm with a
running time of nOε(1/(δ·δ′)3) that computes a O(δ′)-jammed solution (T ′, h′) with w(T ′) ≥
w(Tlam)/(1 + ε).

Our key structural lemma for the case of uniform edge capacities shows that for each
instance there exists a solution of one of the above types for which the respective algorithm
finds a solution of profit at least opt/(63/32 + ε). Then Theorem 2 follows from combining
Lemmas 10, 11, 12, 14, and 15.

I Lemma 15 (Structural lemma, uniform capacities). Given a SAP-instance (T,E) where
ue = U for each edge e ∈ E and some value U . There exists at least one of the following
solutions

a Oε(1)-boxable solution (Tbox, hbox) such that
w(Tbox ∩ TL) + w(Tbox ∩ TS)/2 ≥ OPT/(63/32 + ε)
a laminar boxable solution (Tlam, hlam) with
w(Tlam ∩ TL) + w(Tlam ∩ TS)/2 ≥ OPT/(63/32 + ε)
a Oε(1)-pile boxable solution (Tpile, hpile) with w(Tpile) ≥ OPT/(63/32 + ε)
a jammed-solution (Tjam, hjam) with w(Tjam) ≥ OPT/(63/32 + ε).

2.2 Resource augmentation
We consider now again the case of arbitrary edge capacities but under (1 + η)-resource
augmentation. First, we show that due to the latter we can reduce the general case to the
case of a constant range of edge capacities.

I Lemma 16. If there is an α-approximation algorithm with a running time of nO(f(η,M))

for the case of (1 + η)-resource augmentation where η < 1 and ue ≤Mue′ for any two edges
e, e′ then there is an α(1 + ε)-approximation algorithm with a running time of nO(f(η,1/(εη)))

for the case of (1 +O(η))-resource augmentation.

Next, we show that if we are given an instance with a constant range of edge capacities,
under (1 + η)-resource augmentation we can guarantee that there is an (1 + ε)-approximative
Oε,η(1)-boxable solution. Then Theorem 3 follows by combining Lemmas 6, 10, 16, and 17
with the (1 + ε)-approximation algorithm for sufficiently small tasks in [27].

I Lemma 17. Given an instance where ue ≤ Mue′ for any two edges e, e′ with optimal
solution (T ∗, h∗). If we increase the edge capacities by a factor of 1 + η, there is a Oε,η(1)-
boxable solution (T ′, h′) such that w(T ′) ≥ w(T ∗)/(1 + ε).
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3 Structural lemma for uniform capacities

In the remaining part of this subsection, we sketch the proof of Lemma 15. Consider an
optimal solution (OPT, h). We define OPTL := OPT ∩ TL and OPTS := OPT ∩ TS .

Recall that our goal is to improve the approximation ratio of 2. Observe that OPTL alone
is a 1/δ-boxable solution and hence if w(OPTL) ≥ 1

(63/32+ε)opt then we obtain a 1/δ-boxable
solution with the desired properties. Similarly, the set OPTS yields a pile boxable solution
with exactly 1 box B with P (B) = E and dB = U . Therefore, if w(OPTS) ≥ 1

(63/32+ε)opt
then we are done. The reader may imagine that w(OPTS) = w(OPTL) = 1

2opt. We split
the small tasks in OPTS into three sets OPTS,top,OPTS,mid,OPTS,bottom. Intuitively, we
draw a strip of height δU at the bottom of the capacity profile and a strip of height δU at
the top of the capacity profile and assign to OPTS,top all tasks in OPTS whose top edge
lies in the top strip, we assign to OPTS,bottom all tasks in OPTS whose bottom edge lies
in the bottom strip, and we assign to OPTS,mid all other small tasks. Formally, we define
OPTS,top := {i ∈ OPTS | h(i) + di > (1 − δ)U}, OPTS,bottom := {i ∈ OPTS | h(i) < δU},
and OPTS,mid := OPTS \ (OPTS,top ∪OPTS,bottom).

Small tasks at bottom and large tasks. We define solutions that consists of OPTL and sub-
sets of OPTS,bottom. For each edge e let u′e := mini∈T ′

L
:e∈P (i) h(i) and define u′e := U if there

is no task i ∈ T ′L with e ∈ P (i). One may think of u′ as a pseudo-capacity profile for which
OPTS,bottom is a feasible solution. We the following lemma and obtain sets OPTS,bottom,L,
OPTS,bottom,S with w(OPTS,bottom,L ∪OPTS,bottom,S) ≥ (1− ε)w(OPTS,bottom).

I Lemma 18. Given a solution (T ′, h′) for a SAP instance where maxe ue ≤ n(logn)c for
some constant c. Then there are sets T ′L ⊆ T ′ and T ′S ⊆ T ′ with w(T ′L∪T ′S) ≥ (1−O(ε))w(T ′)
and there is an η = Oε,δ(1) such that
1. for each edge e it holds that |T ′L ∩ Te| ≤ (logn)Oε,δ(c), and
2. for each task i ∈ T ′L there is an edge e ∈ P (i) with di ≥ ηue,
3. there is a boxable solution for T ′S in which each edge e is used by at most (logn)Oε(c)

boxes,
4. these boxes form groups of laminar sets of boxes.

We have that for each task i ∈ OPTS,bottom,L there is an edge e ∈ P (i) with di >

δu′e, therefore OPTS,bottom,L is a set of δ-jammed tasks for (OPTL, E, 0, h) and hence
OPTL ∪ OPTS,bottom,L forms a δ-jammed-solution. Also, OPTL ∪ OPTS,bottom,S forms a
laminar boxable solution. Hence, if w(OPTS,bottom,S) or w(OPTS,bottom,L) is sufficiently
large then we are done. Therefore, the reader may imagine that w(OPTS,bottom,S) =
w(OPTS,bottom,L) = 0.

Small tasks at top and large tasks. We mirror OPT along the y-axis and do a symmetric
construction with OPTS,top: we apply Lemma 18 which yields sets OPTS,top,L,OPTS,top,S
and a δ-jammed solution OPTL ∪ OPTS,top,L and a laminar boxable solution OPTL ∪
OPTS,top,S . Like before, the reader may imagine that w(OPTS,top,S) = w(OPTS,top,L) = 0
and hence w(OPTS,mid) = w(OPTS) = 1

2opt.

Small and large tasks in the middle. Next, we split the large tasks OPTL into three sets
OPTL,top, OPTL,mid, and OPTL,bottom. Intuitively, OPTL,top consists of all tasks in OPTL
whose top edge lies in the strip of height δU at the top of the capacity profile, OPTL,bottom
consists of all tasks in OPTL whose bottom edge lies in the strip of height δU at the bottom
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of the capacity profile, and OPTL,mid contains all remaining tasks in OPTL. Formally,
OPTL,top := {i ∈ OPTL|h(i) + di > (1− δ)U}, OPTL,bottom := {i ∈ OPTL|h(i) < δU}, and
OPTL,mid := OPTL \ (OPTL,top ∪OPTL,bottom).

Observe that no task in OPT \ (OPTL,bottom ∪OPTS,bottom) touches the rectangle E ×
[0, δU). Using this, we define a boxable solution Tbox that will consist essentially of all tasks in
the set OPT\(OPTL,bottom ∪OPTS,bottom). Intuitively, we will use the free space E× [0, δU)
in order to untangle the interaction between the large and small tasks. More precisely, Tbox
will be a Oδ(1)-boxable solution in which all small tasks are assigned into boxes of height Θδ(U)
each. More formally, we apply the following lemma to OPT \ (OPTL,bottom ∪OPTS,bottom)
and denote by (T ′box, h

′
box) the resulting solution.

I Lemma 19. Given a solution (T ′, h′) such that no task touches the rectangle E × [0, δU).
Then there exists a Oδ(1)-boxable solution (T ′, hbox).

We apply Lemma 19 to the solution obtained by taking OPT \ (OPTL,top ∪OPTS,top)
and shifting each task up by δU units. Let (T ′′box, h

′′
box) denote the resulting solution. Assume

w.l.o.g. that w(OPTL,top) ≤ w(OPTL,bottom). Observe that if w(OPTL,mid) ≥ γopt then

w(T ′ ∩ TL) ≥ w(OPTL,bottom) + w(OPTL,mid)

≥ 1
2w(OPTL,top ∪OPTL,bottom) + w(OPTL,mid)

≥ 1 + γ

2 w(OPTL)

and w(T ′ ∩ TS) ≥ w(OPTS \ OPTS,bottom). Therefore, the reader may imagine now that
w(OPTL,mid) = 0.

Types of points in the middle

We distinguish points in the rectangle E × [0, U ] into different types and identify each task
i ∈ OPT with a rectangle Ri := P (i)× [h(i), h(i) + di]. For each point p let `p denote the
maximally long horizontal line segment in E × [0, U ] that contains p and that does not touch
the relative interior of a task in OPTL,top ∪OPTL,bottom. We say that p is a top-point if no
endpoint of `p touches a task in OPTL,bottom, p is a sandwich-point if one of the end-points
of `p touches a task in OPTL,top and the other end-point touches task in OPTL,bottom, and
p is a bottom-point if no endpoint of `p touches a task in OPTL,top and at least one endpoint
of `p touches a task in OPTL,bottom. Note that here we do not define stair-points since the
edges have uniform capacities. Let Ctop, Csw, Cbottom denote the set of connected components
of top- sandwich-, and bottom-points, respectively.

Each edge is used by at most three connected components in Ctop ∪ Csw ∪ Cbottom.

I Lemma 20. Each edge e can be used by at most one connected component of top-points,
by at most one connected component of sandwich-points, and by at most one connected
component of bottom-points.

Let OPTS,cross ⊆ OPTS,mid denote the tasks in OPTS,mid that intersect at least two
different connected components, e.g., a connected component of top-points and a connected
component of sandwich-points.

I Lemma 21. Each edge is used by at most 2 different tasks in OPTS,cross.

In particular, OPTL ∪OPTS,cross forms a O(1/δ)-boxable solution. If w(OPTS,cross) is
sufficiently large we are therefore done. The reader may imagine that w(OPTS,cross) = 0.
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Top points. Consider a connected component C of top-points. Let OPTS,mid,top(C) ⊆
OPTS,mid denote the tasks in OPTS,mid contained in C. We apply Lemma 18 and obtain
the sets OPTS,mid,top,S(C) and OPTS,mid,top,L(C). Let

OPTS,mid,top,S :=
⋃

C∈Ctop

OPTS,mid,top,S(C)

and

OPTS,mid,top,L :=
⋃

C∈Ctop

OPTS,mid,top,L(C).

We obtain that OPTL,top ∪ OPTL,bottom ∪ OPTS,mid,top,L is a δ-jammed solution and
OPTL,top ∪ OPTL,bottom ∪ OPTS,mid,top,S is a laminar boxable solution. Intuitively, if
w(OPTS,mid,top,L) or w(OPTS,mid,top,S) is sufficiently large then we are done. The reader
may therefore imagine that both quantities are zero.

Bottom points. We do a symmetric operation for all connected components C of bottom-
points, obtaining respective sets OPTS,mid,bottom,S ,OPTS,mid,bottom,L, a δ-jammed solution

OPTL,top ∪OPTL,bottom ∪OPTS,mid,bottom,L,

and a laminar boxable solution

OPTL,top ∪OPTL,bottom ∪OPTS,mid,bottom,S .

Like before, the reader may imagine that w(OPTS,mid,bottom,S) = w(OPTS,mid,bottom,L) = 0.

Sandwich points. Finally, let OPTS,mid,sw denote all points in OPTS,mid that are contained
in a connected component in Csw. We assume first that w(OPTL,top) ≥ w(OPTL,bottom).
We define a solution consisting of some tasks in OPTS,mid,sw and additionally all tasks in
OPTL,top. Let C ∈ Csw and denote by OPTS,mid(C) the set of tasks in OPTS,mid that
are contained in C. Let E′ denote the maximally long subpath between two vertices v, v′
such that for each x ∈ [v, v′] the vertical line through x, i.e., {x} × R, has non-empty
intersection with C. Note that the rectangle E′ × [0, δU ] has empty intersection with each
tasks in OPTL,top ∪OPTS,mid. Intuitively, we use this free space in order to push all tasks
in OPTS,mid(C) down by δU units. Then they all fit into Oε(1) boxes that have non-empty
intersection with the tasks in OPTL,top.

I Lemma 22. Given C ∈ Csw. There is a pile of boxes B = {B1, . . . , B1/δ} (with a
height assignment h : B → N0) such that P (B) ⊆ E′ and there are pairwise disjoint sets
T1, . . . , T|B| ⊆ OPTS,mid(C) such that for each j, the tasks in Tj fit into Bj. The weight of
tasks in the boxes is at least

∑
j w(Tj) ≥ (1− ε)w(OPTS,mid(C)).

Let OPTS,mid,sw :=
⋃
C∈Csw

OPTS,mid,S(C). We apply Lemma 22 to each component
C ∈ Csw and hence we obtain a pile boxable solution whose profit is at least

(1− ε)w (OPTL,top ∪OPTS,mid,sw) .

In a similar way we can construct a pile boxable solution of profit at least

(1− ε)w (OPTL,bottom ∪OPTS,mid,sw) .
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I Lemma 23. There is a pile boxable solution (T ′sw, h′sw) with profit at least

(1− ε)w (OPTL,top ∪OPTS,mid,sw ∪OPTS,cross)

and a pile boxable solution (T ′′sw, h′′sw) with profit at least

(1− ε)w (OPTL,bottom ∪OPTS,mid,sw ∪OPTS,cross) .

Intuitively, since w(OPTL,mid) = 0 we have w(OPTL,top) ≥ opt/4 or w(OPTL,bottom) ≥
opt/4. Also, since w(OPTS,mid,top) = w(OPTS,mid,bottom) = w(OPTS,cross) = 0 and
w(OPTS,mid) = opt/2 we have that w(OPTS,mid,sw) = opt/2. Hence, (T ′sw, h′) or (T ′′sw, h′′)
satisfies the claim of the lemma. Formally, our candidate solutions are

OPT(1) := OPTS ,

OPT(2) := OPTL ∪OPTS,bottom,S ,

OPT(3) := OPTL ∪OPTS,bottom,L ,

OPT(4) := OPTL ∪OPTS,top,S

OPT(5) := OPTL ∪OPTS,top,L ,

OPT(6) := T ′box ,

OPT(7) := T ′′box ,

OPT(8) := OPTL ∪OPTS,cross ,

OPT(7) := OPTL,top ∪OPTL,bottom ∪OPTS,mid,top,S ,

OPT(8) := OPTL,top ∪OPTL,bottom ∪OPTS,mid,top,L ,

OPT(9) := OPTL,top ∪OPTL,bottom ∪OPTS,mid,bottom,S ,

OPT(10) := OPTL,top ∪OPTL,bottom ∪OPTS,mid,bottom,L ,

OPT(11) := T ′sw , and

OPT(12) := T ′′sw .

The sets OPT(1),OPT(9), and OPT(10) are pile boxable solutions, OPT(2),OPT(4),OPT(7),
and OPT(9) are laminar boxable solutions, OPT(3),OPT(5),OPT(8), and OPT(10) are δ-
jammed solutions, and finally OPT(7) and OPT(8) are Oδ(1)-boxable solutions.

Our insights above determine constraints of a linear program which provides an upper
bound on the approximation ratio. Using LP duality, we are able to prove that the obtained
value is at most 63/32, which completes the proof of Lemma 15.

4 Structural lemma for arbitrary capacities

In this section we prove Lemma 8. We first limit the number of large tasks per edge that
can appear in a feasible solution.

I Lemma 24. For each edge e and each feasible solution (TSOL, hSOL) it holds that |TSOL ∩
TL ∩ Te| ≤ (log ue)/δ2.

Consider an optimal solution (OPT, h). Define OPTL := OPT ∩ TL and OPTS :=
OPT∩TS . Since we assumed the maximum edge capacity to be quasi-polynomially bounded,
Lemma 24 shows that each edge can be used by at most 1/δ2(logn)O(1) large tasks in OPT.
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top-points

bottom-points

sandwich-points

stair-points

stair-points

(1 + δ)k+1

(1 + δ)k

Figure 5 The different types of points within a corridor Ck. Note that the small tasks are not
shown in the figure.

Therefore, the tasks in OPTL alone form a boxable solution. Since our goal is to improve the
approximation ratio of 2 in [27], we are done if w(OPTL) ≥ ( 1

2 +γ)OPT for some γ > 0. The
reader may therefore imagine that w(OPTL) ≤ OPT/2 and hence that w(OPTS) ≥ OPT/2.

We partition the large tasks OPTL into two groups. We define OPTL,↓ := {i ∈ OPTL |
h(i) < di} and OPTL,↑ := {i ∈ OPTL | h(i) ≥ di}. In the next lemma we show that there is
a boxable solution that contains essentially all tasks in OPTS ∪OPTL,↑.

I Lemma 25. For an arbitrary 0 < ε ≤ 1/3 there exists a boxable solution with profit at
least (1− ε)w(OPTS ∪OPTL,↑).

Intuitively, if now w(OPTL,↑) ≥ γOPT for some γ > 0 then w(OPTS ∪ OPTL,↑) ≥
( 1

2 + γ)OPT and we are done, due to Lemma 6 and Lemma 25. The reader therefore may
imagine that w(OPTL,↑) = 0 and w(OPTS) = OPT/2 and hence also w(OPTL,↓) = OPT/2.

Next, we define solutions that either consist of OPTL,↓ or of a subset of OPTL,↓ and
additionally some small tasks. We will prove that one of the constructed sets or OPTS ∪
OPTL,↑ has large profit. In the sequel, we will identify the vertices {v1, . . . , v|V |} of (V,E)
with the coordinates 1, . . . , |V | and a path P between vertices vi, vi′ with the closed interval
[i, i′]. For each task i ∈ OPT define its rectangle Ri := P (i) × [h(i), h(i) + di]. We will
identify a task i with its rectangle Ri.

We define (logn)Oδ(1) corridors. We draw a horizontal line `(k) with y-coordinate y =
(1 + δ)k for each k ∈ N. For each k ∈ N we define the area R× [`(k), `(k+1)) to be the corridor
Ck. Consider a task i ∈ OPTL. Observe that for each task i ∈ OPTL the rectangle Ri has
to be intersected by at least one line `(k) since di > δ · b(i). Also, observe that for each edge
e and each corridor Ck there can be at most two tasks i, i′ ∈ OPTL whose respective paths
P (i), P (i′) use e and whose respective rectangles Ri, Ri′ intersect Ck. If there are two such
task i, i′ then for one of them its rectangle must intersect `(k) and for the other its rectangle
must intersect `(k+1).

Let Ck be a corridor. For a task i ∈ OPTL with Ri ∩ Ck 6= ∅ we say that i is a top-
large-task for Ck if h(i) ∈ [(1 + δ)k, (1 + δ)k+1), a bottom-large-task for Ck if h(i) + di ∈
[(1+δ)k, (1+δ)k+1), and a cross-large-task for Ck if h(i) < (1+δ)k and h(i)+di ≥ (1+δ)k+1.
We partition the area of Ck that is not used by large tasks into connected components of
points. For each point p, let `p denote the maximally long horizontal line segment that
contains p and that neither crosses a large task nor the capacity profile. We say that p is
a top-point if each endpoint of `p touches a top-large-task or the capacity profile; p is a
sandwich-point if one of the end-points of `p touches a top-large-task and the other end-point
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touches a bottom-large-task; p is a stair-point if one end-point of `p touches a bottom-
large-task and the other end-point touches the capacity profile; and p is a bottom-point, if
both end-points of `p touch a bottom-large-task, see Fig. 5. In each corridor Ck this yields
connected components of top-, bottom-, sandwich-, and stair-points. In the remaining proof
(see [28]) we show that for each of these types there exists a (logn/δ)Oε(c)-boxable solution
or a (logn/δ)Oε(c)-stair solution that contains all tasks in OPTL,↓ and a constant fraction
of the small tasks in all connected components of the respective type, or of the small tasks
that overlap more than one type of points. Hence, we obtain an approximation ratio strictly
better than 2, unless essentially all small tasks lie in connected components of sandwich
points. For this case, intuitively we prove that there is a (logn/δ)Oε(c)-boxable solution
that contains all profit from the small tasks and a 1/4-fraction of the profit of the tasks in
OPTL,↓. We show that the best of our solutions yields an approximation ratio of 1.997 + ε

which proves Lemma 8.

5 Compute stair solution

In this section we prove Lemma 9. To this end, we first show how to compute a solution
for a single stair-block SB. Then we devise a dynamic program that intuitively sweeps the
path from left to right, guesses the stair-blocks and the other large tasks, and then uses the
subroutine for a single stair-block to assign tasks into each stair-block. Suppose that we are
given a γ-stair-block SB = (eL, eM , eR, f, T ′L, h′). Let T̄ denote the set of tasks i ∈ T such
that {i} fits into SB. In the sequel, we prove the following lemma.

I Lemma 26. Let T ∗ ⊆ T̄ be an unknown set of tasks that fits into SB such that w(TS∩T ∗) ≥
1
αw(TL ∩ T ∗) for some value α ≥ 1. There is a (n ·maxe ue)Oδ(log(maxe ue)) time algorithm
that computes a set T̂ that fits into SB such that

w(T̂ ) ≥ (1−O(ε)))
(
w(TL ∩ T ∗) + 1

8(α+ 1) · w(TS ∩ T ∗)
)
.

First, we guess w(TL ∩ T ∗) up to a factor 1 + ε, i.e., we guess a value W such that
w(TL ∩ T ∗) ∈ [W, (1 + ε)W ). One can show that (n/ε)O(1) many guesses for W suffice. Our
algorithm is based on a linear program that uses configurations for the sets of large tasks
that fit into SB. Formally, we define a pair C = (T̄ ′, h̄′) to be a configuration if T̄ ′ ⊆ T̄ ,
w(T̄ ′) ∈ [W, (1 + ε)W ), h̄′ is a function h̄′ : T̄ ′ → N such that h̄′(i) < di for each task i ∈ T̄ ′,
and (T̄ ′, h̄′) fits into SB. Let C denote the set of all configurations. We introduce a variable
yC for each configuration C ∈ C. Intuitively, yC = 1 indicates that the computed solution
contains exactly the set of large tasks in C, each of them drawn at the height level determined
by C. For each small task j ∈ T̄S := T̄ ∩ TS and each t ∈ {0, . . . , b(j)− dj} we introduce a
variable xj,t indicating whether j is contained in the solution and drawn at height t. Note
that we do not need variables xj,t for t > b(j)− dj since the upper edge of j has to have a
height of at most b(j).

We add constraints that ensure that the rectangles corresponding to the selected tasks do
not overlap. To this end, for each small tasks j ∈ T̄S and each possible height t ∈ {0, . . . , b(j)−
dj} we define a “rectangle” p(j, t) = {(e, t′) | e ∈ P (j) and t ≤ t′ < t+ dj}. For a pair (e, t)
the reader may imagine that it represents the point whose x-coordinate is the mid-point of the
edge e and whose y-coordinate is t. Similarly, for a configuration C = (T̄ ′, h̄′) ∈ C we define
the “points” covered by C to be p(C) := {(e, t′) | ∃i ∈ T̄ ′ : e ∈ P (i) and h̄′(i) ≤ t′ < h̄′(i)+di}
and wC := w(T̄ ′).
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Denote by LPSB the linear program below where for convenience we assume that all
non-existing variables are set to zero.

max
∑
C∈C yCwC +

∑
j∈T̄S ,t xj,twj (1)

s.t.
∑
C : (e,t)∈p(C) yC (2)

+
∑

j∈T̄S ,t′ : (e,t)∈p(j,t′)

xj,t′ ≤ 1 for all e ∈ PeM ,eR , t ≥ 0 (3)

∑
C : (e,t)∈p(C) yC +

∑
t′ : t′≤t xj,t′ ≤ 1 for all e ∈ PeM ,eR , t ≥ 0, j ∈ T̄S ∩ Te (4)∑

C∈C yC = 1 (5)∑
t≥0 xj,t ≤ 1 for all j ∈ T̄S (6)

xj,t, yC ≥ 0 for all j ∈ T̄S , t ∈ N, t ≤ b(j)− dj , C ∈ C

The first set of constraints (3) expresses intuitively that no two rectangles overlap. Then
(4) strengthens this condition by stating that if a configuration C covers a point (e, t) then
no small task j using e can be selected such that it covers a point (e, t′) with t′ ≤ t (note
that if C covers (e, t) then it also covers each point (e, t′) with t′ ≤ t). Constraint (5) ensures
that we select exactly one configuration. A task j still cannot be drawn at two positions
simultaneously, which we ensure with (6). In the LP above, we introduce constraints (3) and
(4) for each t ≥ 0, however, it is sufficient to state those for each t such that t ∈ N since
di ∈ N for each task i ∈ T and we introduce the variables xj,t only for values t with t ∈ N.
This yields an equivalent formulation with only (nmaxe ue)O(1) constraints (apart from the
non-negativity constraints). The number of variables in LPSB is exponential. However, we
can solve it in polynomial time via a suitable separation oracle for the dual.

I Lemma 27. There is an algorithm with running time (nmaxe ue)Oδ(log(maxe ue)) that
computes an optimal solution to LPSB.

5.1 The rounding algorithm
Let (x∗, y∗) denote the optimal solution to LPSB. We round (x∗, y∗) via randomized rounding.
First, we sample a configuration Ĉ using the distribution determined by y∗, i.e., for each
configuration C ∈ C, we obtain Ĉ = C with probability yC . Define ȳĈ := 1 and ȳC := 0 for
each C ∈ C \ {Ĉ}. Then we construct a new solution x for the small tasks where intuitively
we remove all pairs (j, t) that overlap with Ĉ, i.e., such that p(j, t) ∩ p(Ĉ) 6= ∅. For each
pair of the latter type we define xj,t := 0 and we define xj,t := x∗j,t for all other pairs (j, t).
Observe that x is a solution to the LP that is obtained by taking LPSB and removing all
variables yC and constraint (5). Denote by LP′SB the resulting LP. We can round it via
randomized rounding with alteration, using that for two pairs (j, t), (j′, t′) with j, j′ ∈ TS
the corresponding rectangles p(j, t), p(j′, t′) overlap if and only if they overlap on a “vertical
line segment above eM”, i.e., on ∪t′′∈[t,t+dj)∩[t′,t′+dj′ )(eM , t

′′).

I Lemma 28. Given a solution x to LP′SB. In polynomial time we can compute an integral
solution x̄ to LP′SB with expected value

∑
j∈T̄S ,t x̄j,twj ≥

1
4
∑
j∈T̄S ,t xj,twj such that the

support of x̄ is contained in the support of x.

Let (x̄, ȳ) denote the resulting solution. Secondly, we compute the optimal solution to
LP′SB (hence ignoring the configurations of large tasks) and round it via Lemma 28, let
(x̄′, ȳ′) denote the resulting solution. In the sequel we prove that the most profitable solution
among (x̄, ȳ) and (x̄′, ȳ′) satisfies the claim of Lemma 9. Since we sampled Ĉ according to



T. Mömke and A. Wiese 86:17

the distribution given by y∗, we have that E[wĈ ] =
∑
C∈C y

∗
CwC . Recall that we discarded

all pairs (j, t) such that p(j, t) overlaps with p(Ĉ). Hence, there are some pairs (j, t) that are
discarded with very high probability. We call such a pair problematic where formally we
say that a pair (j, t) with j ∈ T̄S and t ∈ N is problematic if

∑
C∈C:p(C)∩p(j,t)6=∅ y

∗
C > 1− η

for some value η > 0 to be defined later. Let TS! denote the set of all problematic pairs. In
the following lemma we prove that their contribution to the profit of (x∗, y∗) is only small
and hence we can afford to ignore them, unless (x̄′, ȳ′) already has enough profit. Here we
crucially need constraint (4). We define optLP :=

∑
C∈C y

∗
CwC +

∑
j∈T̄S ,t x

∗
j,twj .

I Lemma 29. We have that
∑

(j,t)∈TS!
x∗j,twj ≤ 4ηoptLP or the profit of (x̄′, ȳ′) is at least

optLP ≥ w(TL ∩ T ∗) + w(TS ∩ T ∗).

Assume now that the first case of Lemma 29 applies. We argue that then the problematic
pairs contribute at most half of the profit of all pairs (for all small tasks) and hence we can
ignore the problematic pairs.

I Lemma 30. Assume that η ≤ 1
8

1/α−O(ε)
1+1/α−O(ε) . Then

∑
(j,t)/∈TS!

x∗j,twj ≥ 1
2
∑
j∈T̄S ,t x

∗
j,twj.

Proof sketch. Let us pretend that
∑
C∈C y

∗
CwC = w(TL ∩ T ∗). Then

∑
j∈T̄S ,t x

∗
j,twj ≥

w(TS ∩ T ∗) since (x∗, y∗) is the optimal fractional solution. Therefore,
∑
j∈T̄S ,t x

∗
j,twj ≥

1
α

∑
C∈C y

∗
CwC and (1 + 1

α )
∑
j∈T̄S ,t x

∗
j,twj ≥ 1

α

(∑
C∈C y

∗
CwC +

∑
j∈T̄S ,t x

∗
j,twj

)
= 1

αoptLP .
This implies that

∑
j∈T̄S ,t x

∗
j,twj ≥ optLP /(α + 1). Since

∑
(j,t)∈TS!

x∗j,twj ≤ 4ηoptLP ≤
optLP
2(α+1) ≤

1
2
∑
j∈T̄S ,t x

∗
j,twj the claim follows. J

Each non-problematic pair is discarded only with probability at most 1 − η. Therefore,
the expected profit of the auxiliary solution x is at least an η-fraction of the profit of the
non-problematic pairs. Due to Lemma 30 we can neglect the profit due to problematic pairs.
For η := 1−O(ε)

8(α+1) the claim of Lemma 26 follows from some simple calculation.

Arbitrary stair-solutions

In order to compute a profitable γ-stair-solution we device a DP that intuitively sweeps
the path from left to right and guesses the stair-blocks in the optimal stair-solution. For
each stair-block we invoke the algorithm above. Since each edge can be used by at most γ
stair-blocks and large tasks we obtain a running time of n(γ logn)O(c/δ) . Since we require the
stair-blocks to be compatible, there can be no task that can be assigned to more than one
stair-block, even if the subproblems for each stair-block is solved independently. Recall that
for a large task i ∈ TL we required that h(i) < di for its computed height h(i) and hence
we cannot assign it into two stair-blocks, even if it would fit into the respective areas of the
stair-blocks. We defer the details to the full version of the paper [28].
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Abstract
The class MIP∗ is the set of languages decidable by multiprover interactive proofs with quantum
entangled provers. It was recently shown by Ji, Natarajan, Vidick, Wright and Yuen that MIP∗ is
equal to RE, the set of recursively enumerable languages. In particular this shows that the complexity
of approximating the quantum value of a non-local game G is equivalent to the complexity of the
Halting problem.

In this paper we investigate the complexity of deciding whether the quantum value of a non-local
game G is exactly 1. This problem corresponds to a complexity class that we call zero gap MIP∗,
denoted by MIP∗0, where there is no promise gap between the verifier’s acceptance probabilities in
the YES and NO cases. We prove that MIP∗0 extends beyond the first level of the arithmetical
hierarchy (which includes RE and its complement coRE), and in fact is equal to Π0

2, the class of
languages that can be decided by quantified formulas of the form ∀y ∃z R(x, y, z).

Combined with the previously known result that MIPco
0 (the commuting operator variant of

MIP∗0) is equal to coRE, our result further highlights the fascinating connection between various
models of quantum multiprover interactive proofs and different classes in computability theory.
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1 Introduction

A two-player non-local game is played between a verifier and two cooperating players named
Alice and Bob who cannot communicate with each other once the game starts. During the
game, the verifier samples a pair of questions (x, y) from a joint distribution µ, sends x to
Alice and y to Bob, who respond with answers a and b respectively. The verifier accepts if
and only if D(x, y, a, b) = 1 for some predicate D. The quantum value of a non-local game
G, denoted by ωq(G), is defined to be the supremum of the verifier’s acceptance probability
over all possible finite dimensional quantum strategies of Alice and Bob for the game G.
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What is the complexity of computing the quantum value of non-local games? In [16],
Slofstra proved that the problem of determining whether a given game G has ωq(G) = 1 is
undecidable. Recently, it was shown that approximating ωq(G) up to any additive constant is
also an uncomputable problem [11]. In particular, there is a computable reduction from Turing
machines M to non-local games GM such that if M halts (when run on an empty input),
then ωq(GM ) = 1, and otherwise ωq(GM ) ≤ 1

2 . Since determining whether a given Turing
machine halts (i.e. the Halting problem) is undecidable, so is the problem of determining
whether the quantum value of a non-local game is 1 or at most 1

2 .
Conversely, one can reduce the problem of approximating the quantum value of non-

local games to the Halting problem; there is an algorithm that for every non-local game G
exhaustively searches over finite-dimensional strategies of increasing dimension to find one
that succeeds with probability close to 1 (above 0.99, say). If ωq(G) = 1 then the algorithm
is guaranteed to find such a strategy; otherwise if ωq(G) ≤ 1/2 the algorithm will run forever.
In complexity-theoretic terms, this shows that the class MIP∗, the set of languages decidable
by multiprover interactive proofs with quantum provers, is equal to RE, the set of recursively
enumerable languages (i.e. the class for which the Halting problem is complete).

In this paper, we return to the problem originally investigated by Slofstra [16]: what is the
complexity of deciding if ωq(G) is exactly equal to 1 for nonlocal games G? This corresponds
to the complexity class that we call zero gap MIP∗, denoted by MIP∗0. In this model of
interactive proofs, in the YES case (i.e. x ∈ L), there is a sequence of finite-dimensional
prover strategies that cause the verifier to accept with probability approaching 1. In the NO
case (i.e. x /∈ L), all finite-dimensional prover strategies are rejected with positive probability
– but could be arbitrarily close to 0. It is easy to see that MIP∗ ⊆ MIP∗0 and thus MIP∗0
contains undecidable languages. Furthermore, we know that MIP∗0 cannot be equal to MIP∗;
the results of [16, 5] imply that coRE, the complement of RE, is also contained in MIP∗0. Since
RE 6= coRE, this implies that MIP∗0 strictly contains MIP∗ = RE.

What problems can be reduced to the task of exactly computing the quantum value
of non-local games, rather than “just” approximating it? We characterize the class MIP∗0
by showing that it is equal to Π0

2, a class that belongs to the arithmetical hierarchy from
computability theory. The arithmetical hierarchy is defined by classes of languages decidable
via formulas with alternating quantifiers. For example, the class RE is equal to the class Σ0

1,
which is the set of languages L of the form {x : ∃y.R(x, y) = 1} for some decidable predicate
R. The class coRE is equal to Π0

1, the set of languages of the form {x : ∀y.R(x, y) = 1}. The
class Π0

2 is the set of languages L of the form {x : ∀y.∃z.R(x, y, z) = 1}.
An equivalent definition of the class Π0

2 is that it is the set of languages L such that there
is a Turing machine A that has oracle access to the Halting problem, and x /∈ L if and only
if A(x) = 1. It is known that Π0

2 strictly contains Σ0
1 = RE. This shows that MIP∗0 contains

problems that are harder (in a computability sense) than the Halting problem.
We specifically show that there exists a computable reduction from Π0

2 languages to the
problem of deciding whether a three-player non-local game G has quantum value 1. It is
likely that a similar reduction holds for two-player non-local games but we leave this for
future work. We also show that the problem of deciding if a non-local game has quantum
value 1 can be reduced to a Π0

2 language, thus establishing the equality MIP∗0 = Π0
2.

This paper, combined with the results of [11] and [16], paints a fascinating landscape
about the complexity of quantum multiprover interactive proofs, in which there are four
different complexity classes to consider. The first two are MIP∗ and MIP∗0, which we defined
already. The second two are MIPco and its zero-gap variant MIPco

0 . The class MIPco stands
for languages that are decidable by quantum multiprover interactive proofs in the commuting
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operator model: here, the provers are allowed to use infinite-dimensional quantum strategies,
and the measurement operators of Alice only need to commute with those of Bob (rather
than be in tensor product).

∆0
1

MIP∗ = Σ0
1 Π0

1 = MIPco
0

?= MIPco

∆0
2

Σ0
2 Π0

2 = MIP∗0

Figure 1 The computability landscape of quantum multiprover interactive proofs. Arrows denote
inclusion. The set ∆0

1 denotes the set of all decidable languages. The set Σ0
1 denotes the recursively

enumerable languages, and Π0
1 denotes the set of co-recursively enumerable languages. It is known

that MIPco ⊆ MIPco
0 , but unknown whether they are equal.

One of the consequences of the fact that MIP∗ = RE is that MIPco 6= MIP∗. This is
because MIPco ⊆ coRE, due to the fact that the commuting operator value of a non-local
game can be upper-bounded using a convergent sequence of semidefinite programs [14, 4]. It
is also the case that MIPco

0 ⊆ coRE, and in fact equality holds due to [16, 3]. It remains an
open question to determine if MIPco = MIPco

0 = coRE.
There are a number of curious and counter-intuitive aspects about this landscape of

complexity for non-local games. First, if MIPco = coRE, then there would be a pleasing
symmetry in that MIP∗ = RE and MIPco = coRE (even though the “co” refer to different
things on each side of the equation!). On the other hand, we have that MIP∗0 = Π0

2 and
MIPco

0 = coRE, meaning that – in the zero gap setting – there are more languages that can be
verified with provers using (a limit of) finite-dimensional strategies than can be decided with
provers using infinite-dimensional commuting operator strategies! Of course, in the setting
of interactive proofs, giving provers access to more resources can change the complexity of
the interactive proof model in unexpected ways.

1.1 Proof overview

We prove the lower bound Π0
2 ⊆ MIP∗0 by combining two components: first we leverage

the result of [11] that MIP∗ = RE as a black box, which implies that there is a quantum
multiprover interactive proof for the Halting problem. Next, we use a compression theorem
for quantum multiprover interactive proofs that was proved in [5]. A compression theorem,
roughly speaking, states that given a verifier V for a quantum multiprover interactive protocol
(which can be modeled as a Turing machine with tapes to receive/send messages to the
provers), one can compute a much more time-efficient verifier V ′ whose quantum value is
related in some predictable way to the quantum value of V . Several recent results about the
complexity of non-local games crucially rely on proving compression theorems with various
properties [10, 5, 13, 11].
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In more detail, the compression theorem of [5] (which in turn is a refinement of the
compression theorem of [10]) states that given a description of a verifier V , one can compute
a description of a three-player1 non-local game GV (which is a multiprover protocol with
only one round of interaction) whose properties are as follows:
1. The time complexity of the verifier in GV is polylogarithmic in the time complexity of V .
2. The quantum value of the protocol executed by V is related to the quantum value of GV

in the following manner:

ωq(GV ) ≥ 1
2 + 1

2ωq(V )

and furthermore if ωq(V ) < 1 then ωq(GV ) < 1.
The utilization of the compression theorem of [5] is the reason why the main result of this
paper holds for three-player non-local games, rather than two.

We call this compression theorem a “zero gap” compression theorem, because it does not
preserve any promise gap on the value of the input verifier V : if the value of V is promised
to be either 1 or 1/2, then GV is only guaranteed to have value either 1 or 3/4. If we iterate
this compression procedure, then we get a promise gap that goes to zero. In contrast, the
compression theorem used to prove MIP∗ = RE is gap-preserving.

The zero gap compression theorem was used to prove that coRE ⊆ MIP∗0 in [5]. At
a high level, this is shown by constructing a verifier that recursively calls the zero gap
compression procedure on itself. In this paper, we follow this approach, except we also embed
an MIP∗ protocol for RE inside the verifier that is recursively calling the zero gap compression
procedure; this composition of protocols allows the verifier to verify languages in Π0

2.

1.2 Further remarks
MIP∗ = RE is equivalent to gap-preserving compression

As mentioned, the key to proving MIP∗ = RE [11] was establishing a gap-preserving com-
pression theorem for non-local games, albeit for a special case of non-local games satisfying
a so-called “normal form” property. In Section 4, we present a relatively simple – but in
our opinion quite interesting – observation that MIP∗ = RE is in some sense, equivalent to a
gap-preserving compression theorem.

A proof of MIP∗
0 = Π0

2 under weaker assumptions?

One might wonder if there might be an elementary way of proving that MIP∗0 = Π0
2, without

relying on the statement that MIP∗ = RE. For example, the results of [16, 5] show that
coRE ⊆ MIP∗0 and furthermore [16] shows that coRE = MIPco0 . These previous “zero-
gap results” do not appear to have the same mathematical consequences as MIP∗ = RE
(e.g. yielding a negative answer to Connes’ embedding problem if RE ⊆ MIP∗(2), the two-
player variant of MIP∗), which suggests the intuition that characterizing the complexity of
exactly computing the quantum (or commuting operator) value of nonlocal games may be
fundamentally easier than characterizing the complexity of approximating it.

This intuition is not entirely correct: the “zero-gap” statement MIP∗0 = Π0
2 is already

enough to yield a negative answer to Tsirelson’s problem: there exists a k where k-partite
commuting operator correlations cannot be approximated by finite dimensional correlations.

1 The results of [5] are stated for games with 15 players, but can be improved to hold for 3-player games
by using a different error correcting code in the construction.
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Put another way, if Tsirelson’s problem has a positive answer, then the commuting operator
and quantum values of games are always equal, and then MIP∗0 = MIPco0 = coRE. However,
Π0

2 strictly contains coRE – thus Tsirelson’s problem has a negative answer. Furthermore,
Tsirelson’s problem for k = 2 is known to be equivalent to Connes’ embedding problem [6,
12, 15].

This suggests that our characterization of the class MIP∗0 must necessarily involve a
nontrivial tool such as MIP∗ = RE.

1.3 Open problems
We list some open problems.
1. Just as the complexity statement MIP∗ = RE has consequences for questions in pure

mathematics (such as the Connes’ embedding problem), does the equality MIP∗0 = Π0
2

have any implications for operator algebras? We believe there may be a connection to
model-theoretic approaches to the Connes’ embedding problem (see, e.g., [8, 7]).

2. What is the complexity of MIPco? Is it equal to coRE?
3. Can the reduction from Π0

2 languages to the problem of deciding whether ωq(G) = 1 be
improved to hold for two-player games G?

4. We showed that, essentially, MIP∗ = RE implies a gap-preserving compression theorem.
Can one show that it also implies in a black-box fashion, a zero gap compression theorem,
of the same kind as proved in [5]? This then proves that MIP∗ = RE directly implies
MIP∗0 = Π0

2.
5. Does MIP∗0 = Π0

2 imply MIP∗ = RE in a “black-box” fashion?

2 Preliminaries

We write N to denote the natural numbers {1, 2, 3, . . .}. All logarithms are base 2. For a
string x ∈ {0, 1}∗ let |x| denote the length of x. We let

log∗(n) =
{

0, n ≤ 1
1 + log∗(log(n)), n > 1

denote the iterated logarithm function.

2.1 Turing machines and the arithmetical hierarchy
A total Turing machine is one that halts on every input. Fix a string encoding of Turing
machines, and for a Turing machine M , let |M | denote the length of the encoding of M .

I Proposition 1 (Universal Turing machine). There exists a universal constant C > 0 and a
universal Turing machine U that, given an input pair (M,x) where M is an encoding of a
Turing machine, computes M(x) in time C max(|M |,TIME(M,x))2, where TIME(M,x) is
the number of steps taken by M on input x before it halts.

I Definition 2. The i-th level of the arithmetical hierarchy contains 3 classes Σ0
i , Π0

i , and
∆0
i . The class Σ0

i is the set of languages defined as

L = {x ∈ {0, 1}∗ : ∃y1∀y2∃y3 · · · QyiR(x, y1, · · · , yi) = 1}

for some total Turing machine R, where Q is the ∀ quantifier when i is even and otherwise
is the ∃ quantifier. The class Π0

i is the complement of Σ0
i , and ∆0

i = Σ0
i ∩Π0

i .

In particular the first level of the arithmetical hierarchy corresponds to the classes
Σ0

1 = RE, Π0
1 = coRE, and ∆0

1 the set of decidable languages RE ∩ coRE.
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2.2 Interactive verifiers
In this section, we model multiprover interactive protocols, which is specified by a verifier V ,
as a randomized algorithm. In the protocol, the verifier V interacts with multiple provers,
and at the end of the protocol the verifier outputs a bit indicating whether to accept or
reject. A verifier can be identified with the interactive protocol it executes, and vice versa.

In more detail, define a k-input, r-prover verifier V to be a randomized interactive Turing
machine that has k designated input tapes, r communication tapes, a single workspace tape,
and a single output tape. An interaction with r provers is executed in the following way:
the Turing machine V alternates between computation and communication phases; in the
computation phase, the Turing machine behaves like a normal Turing machine with k+ r+ 2
tapes, and it may halt and indicate accept or reject on the output tape. It can also pause its
computation and go into a communication phase, in which case the contents of each of i-th
communication tape is read by the i-th prover, who then edits the i-th communication tape
with its answer. After all the provers have finished with their responses, the next computation
phase resumes. This is the standard way of modeling interactive Turing machines [1]. In this
formulation, a non-local game is simply specified by a 0-input, 2-prover verifier V that has
only one communication phase.

Given a k-input, r-prover verifier V , define its time complexity with respect to a k-tuple
of inputs (x1, . . . , xk) to be the maximum number of time steps taken by the verifier V
when it is initialized with (x1, . . . , xk) on its k input tapes, over all possible responses of the
r-provers, before it halts. We denote this by TIME(V (x1, . . . , xk)).

We now define, in a somewhat informal level, finite-dimensional prover strategies (or
simply a strategy) S for the interaction specified by a k-input, r-prover verifier V . This is a
specification of the following data:
1. Local dimension d ∈ N,
2. A state |ψ〉 ∈ (Cd)⊗r, and
3. For every prover i, for every round t ∈ N, for every string π ∈ {0, 1}∗, a POVM {Ma

i,t,π}a
acting on Cd.

Given a verifier V , a k-tuple (x1, . . . , xk), and a prover strategy S for V , the interaction
proceeds as follows: at the beginning of the protocol, the provers share the state |ψ〉, and
the verifier’s input tapes are initialized to (x1, . . . , xk). At round t, the i-th prover performs
the measurement {Ma

i,t,π}a on its local space to obtain an outcome a, where π is the history
of all the messages seen by prover i in all previous rounds (including the message from the
verifier in the t-th round). It then writes outcome a on the i-th communication tape of the
verifier. Thus at each round the shared state between the provers depend on the outcomes
of their measurements, and evolves probabilistically over time. The value of strategy S in
the interaction with verifier V on input (x1, . . . , xk) is defined to be the probability that the
verifier halts and accepts. We denote this by ωq(V (x1, . . . , xk),S). The quantum value of
verifier V on input (x1, . . . , xk) is defined to be the supremum of ωq(V (x1, . . . , xk),S) over
all finite-dimensional strategies S, which we denote by ωq(V (x1, . . . , xk)).

I Definition 3. Let m, r ∈ N and let 0 ≤ s ≤ c ≤ 1. The class MIP∗[m, r, c, s] is defined to
be the set of languages L for which there exists a verifier V and a polynomial p(n) with the
following properties:
1. V is a 1-input, r-prover verifier that halts after m communication phases.
2. For all x, TIME(V (x)) ≤ p(|x|).
3. If x ∈ L, then ωq(V (x)) ≥ c.
4. If x /∈ L, then ωq(V (x)) < s.
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We define the class MIP∗ to be the union of MIP∗[m, r, c, s] for all m, r ∈ N and c > s.
We define the class MIP∗0 to be the union of MIP∗[m, r, 1, 1] over all m, r ∈ N. In other words,
in the YES case (i.e., x ∈ L), there is a sequence of finite-dimensional prover strategies that
are accepted with probability approaching 1. In the NO case (i.e., x /∈ L), there exists a
positive ε > 0 (that generally depends on x) such that all finite dimensional strategies are
rejected with probability at least ε.

2.3 Compression of quantum multiprover interactive protocols

In this section we formally present the two main ingredients used in our proof: the zero gap
compression procedure of [5], and the reduction from the Halting problem to the problem of
approximating the quantum value of a quantum multiprover interactive protocol.

First we introduce the definition of λ-boundedness, which specifies how both the descrip-
tion and time complexity of a verifier is bounded by a polynomial with exponent λ.

I Definition 4. Let λ ∈ N. A (k+1)-input r-prover verifier V is λ-bounded if for all integers
n ∈ N, x1, . . . , xk ∈ {0, 1}∗, we have TIME(V (n, x1, ..., xk)) ≤ λ(n · |x1| · · · |xk|)λ.

Here, we assume that the first input to a verifier V is an integer n ∈ N which intuitively
specifies a “complexity” parameter.

I Theorem 5 (Zero-gap compression [5, Theorem 6.1]). Let r ≥ 3 be an integer. There exists
a universal constant Ccomp ∈ N such that for every λ ∈ N, there exists a Turing machine
COMPRESSλ with the following properties. Given as input a (k + 1)-input r-prover verifier
V , the Turing machine COMPRESSλ outputs a (k + 1)-input r-prover verifier V # in time
Ccomp(|V | · λ)Ccomp with the following properties: for all x1, . . . , xk ∈ {0, 1}∗, we have
1. if V is λ-bounded, then ωq(V #(n, x1, ...xk)) ≥ 1

2 + 1
2ωq(V (2n, x1, ...xk)),

2. if V is λ-bounded and ωq(V (2n, x1, ...xk)) < 1, then ωq(V #(n, x1, ...xk)) < 1,
3. for all integers n ∈ N, x1, . . . , xk ∈ {0, 1}∗, we have TIME(V #(n, x1, ..., xk)) ≤ Ccomp(λ ·

n · |x1| · · · |xk|)Ccomp .
The zero-gap compression theorem, as presented here, differs from the one presented in [5,
Theorem 6.1]. For example, verifiers in [5] are described using so-called “Gate Turing
Machines” (GTMs). However, using the same oblivious Turing machine simulation techniques
as discussed in the appendix of [5], from a verifier V (as defined in this paper), we can obtain
a GTM that specifies the same interactive protocol. Another difference, as remarked in the
introduction, is that here the compression result applies to protocols with three or more
players, whereas it is stated for protocols with 15 or more players in [5]. However, the results
of [5] can be adapted to the case of three players by using a [[3, 1, 2]]3 error detecting code
with qutrits (instead of using the 7-qubit Steane code with qubits) [2].

Next we present the main result of [11], which presents a computable reduction from the
Halting problem to the problem of approximating the quantum value of a non-local game.

I Theorem 6 (MIP∗ = RE [11]). There exists a Turing machine H and a universal constant
CHALT ∈ N with the following properties. Given as input a Turing machine M , it runs in
time CHALT|M |CHALT and outputs a 0-input 2-prover verifier VHALT,M such that
1. If M halts on empty tape then ωq(VHALT,M ) = 1, and otherwise ωq(VHALT,M ) ≤ 1

2 .
2. TIME(VHALT,M ) ≤ CHALT|M |CHALT .
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3 MIP∗
0 = Π0

2

We start this section by showing the upper bound MIP∗0 ⊆ Π0
2.

I Theorem 7. MIP∗0 ⊆ Π0
2

Proof. Let L ∈ MIP∗0. There exists a 1-input r-prover verifier V such that x ∈ L iff
ωq(V (x)) = 1 for all x ∈ {0, 1}∗. Let Sε,d be an ε-net for the space of strategies of dimension
d; in particular, for every dimension-d strategy S there exists a strategy S ′ ∈ Sε,d such
that for all verifiers V we have that |ωq(V,S)− ωq(V,S ′)| ≤ ε (in other words, the winning
probability of the strategies differ by at most ε). Because the set of strategies over a finite
dimensional Hilbert space of a fixed dimension is a compact set [9], we can take Sε,d to be
a finite set. Let Sε =

⋃
d∈N Sε,d, and let {Sε(1),Sε(2), . . .} be an enumeration of strategies

in Sε.
Consider the following total Turing machine T : On input triple (x,m, n) where x ∈

{0, 1}∗,m, n ∈ N. It outputs 1 if and only ωq(V (x),S1/2m(n)) ≥ 1− 1/m. Now it is easy to
verify that

L = {x : ∀m. ∃n. T (x,m, n) = 1},

and therefore L is a Π0
2 language.

To see this, let x ∈ L. Then ωq(V (x)) = 1, and for any gap (i.e. 1
m ) there exists a

strategy S such that ωq(V (x), S) ≥ 1 − 1
2m . Choosing ε = 1/2m, then there must also

exist a strategy S′ ∈ S1/2m such that ωq(V (x), S′) ≥ ωq(V (x), S)− 1
2m ≥ 1− 1

m . Therefore
∀m. ∃n. T (x,m, n) = 1.

Likewise, if x /∈ L then there exists m ∈ N for which ωq(V (x)) < 1− 1
m and so no strategy

can win with probability greater or equal to 1− 1
m . Therefore ∃m. ∀n. T (x,m, n) = 0. J

Now we prove the reverse inclusion. Fix an L ∈ Π0
2 and let R be a total Turing machine

such that L = {x ∈ {0, 1}∗ : ∀m.∃n.R(x,m, n) = 1}. To prove L ∈ MIP∗0, we construct
a 2-input 3-prover verifier V that takes as input m ∈ N and x ∈ {0, 1}∗, and has the key
property that ω∗(V (m,x)) = 1 if and only if ∀m′ ≥ log∗(m).∃n.R(x,m′, n) = 1. Therefore
ωq(V (1, x)) = 1 if and only if x ∈ L.

We first give the explicit description of a 3-input 3-prover verifier V ′ below. We then use
that to construct V . In the description of V ′, we refer to the Turing machine Rx,m. For every
x ∈ {0, 1}∗ and m ∈ N, Rx,m is the Turing machine that on the empty tape enumerates over
n ∈ N and accepts if R(x,m, n) = 1, otherwise it loops forever.

Now let V be the 2-input 3-prover verifier that on the input (m,x) runs V ′(m,x, V ′).
Informally, V (m,x) first decides ∃n.R(x, log∗(m), n) = 1 by simulating the verifier in
VHALT,Rx,log∗(m) from Theorem 6. Recall that the existence of the MIP∗ protocol
VHALT,Rx,log∗(m) is due to MIP∗ = RE and the fact that ∃n.R(x, log∗(m), n) = 1 is an
RE predicate. Now if R(x, log∗(m), n) = 0 for all n, then Rx,log∗(m) never halts. This in turn
implies that V rejects with probability at least 1/2. Otherwise, if ∃n.R(x, log∗(m), n) = 1,
V proceeds to run the compression algorithm to obtain V ′# = COMPRESSλ(V ′). It then
executes V ′#(m,x, V ′). Informally speaking, due to the compression theorem, the execution
of V ′#(m,x, V ′) has the same effect as recursively executing V (2m, x). Now the first duty of
the verifier V (2m, x) is to decide ∃n.R(x, 1 + log∗(m), n) = 1. So we can apply the above
reasoning this time on V (2m, x) instead of V (m,x). Following this reasoning ad infinitum,
we establish that ωq(V (m,x)) = 1 if and only if ∀m′ ≥ log∗(m).∃n.R(x,m′, n) = 1. This is
made precise in the proof of Theorem 9.
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Input: (m,x,W ) where m ∈ N, x ∈ {0, 1}∗, W is a 3-input 3-prover verifier.
Perform the following steps:
1. Compute VHALT,Rx,log∗(m) = H(Rx,log∗(m)) (where H is from Theorem 6).
2. Execute the interactive protocol specified by the verifier VHALT,Rx,log∗(m) . If

the verifier VHALT,Rx,log∗(m) rejects then reject, otherwise continue.
3. Compute W# = COMPRESSλ(W ) (where COMPRESSλ is from Theorem

5).
4. Execute the interactive protocol specified by the verifier W#(m,x,W ) and

accept if and only if the verifier W#(m,x,W ) accepts.

Figure 2 Specification of the 3-input 3-prover verifier V ′.

Note that Theorem 5 relates V #(m,x) to V (2m, x). That is the reason log∗(m) (as
opposed to m) is appearing in Figure 2. Note that as m increases, log∗(m) ranges over all
nonnegative integers.

In order to apply Theorem 5 to compress V in step 3, we must ensure that the verifier is
λ-bounded for some λ ∈ N.

B Claim 8. There exists a λ ∈ N such that V is λ-bounded.

Proof. We bound the running time of V by bounding the running time of each of the steps
in its specification. The time to generate Rx,log∗(m), in step 1, is C((|R| · |x| · m)) for
some constant C. The time to generate the encoding of VHALT,Rx,log∗(m) is CHALT(|R| · |x| ·
m)CHALT . This also bounds the running time of VHALT,Rx,log∗(m) . Therefore the time to
simulate VHALT,Rx,log∗(m) is bounded by C2

HALT(|R| · |x| ·m)2CHALT . The time to simulate
COMPRESSλ(V ) is C2

comp(|V | · λ)2Ccomp . The time to simulate V #(m,x) is bounded by
C2
comp(λ ·m · |x|)2Ccomp . Therefore the running time of V (m,x) is bounded above by

2C2
HALT(|R| · |x| ·m)2CHALT +C(|R| · |x| ·m)+C2

comp(|V | ·λ)2Ccomp +C2
comp(λ ·m · |x|)2Ccomp .

The values Ccomp, CHALT, C, and |R| are all constants so we can choose λ ∈ N sufficiently
large so that λ(m · |x|)λ is larger then the quantity above and therefore V is λ-bounded. C

Now that we established that V is λ-bounded, we can apply Theorem 5 to get the main
theorem of this paper.

I Theorem 9. x ∈ L if and only if ωq(V (1, x)) = 1

Proof. First suppose x ∈ L. Then ∀m.∃n.R(x,m, n) = 1. Since the Turing machine
Rx,m halts for every m ∈ N, by Theorem 6, ωq(VHALT,Rx,m) = 1. Therefore ωq(V (p, x)) =
ωq(V #(p, x)), for any p ∈ N, by construction (step 4). Now, from Theorem 5, we have

ωq(V (p, x)) ≥ 1
2 + ωq(V (2p, x))

2 ,

and by k applications of the theorem, we obtain

ωq(V (p, x)) ≥ ωq(V (

k︷ ︸︸ ︷
22...2p

, x))
2k +

k∑
i=1

1
2i .

for every k. Taking the limit k →∞, we have ωq(V (p, x)) = 1 for all p ∈ N. In particular
ωq(V (1, x)) = 1.
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Now suppose x /∈ L. Then ∃m.∀n.R(x,m, n) = 0. We prove that ω(V (1, x)) < 1. Let
p be the smallest integer for which R(x, log∗(p), n) = 0 for every n. In other words, the
Turing machine Rx,log∗(p) does not halt. Therefore by Theorem 6 we have that ωq(V (p, x)) ≤
ωq(VHALT,Rx,log∗(p)) ≤ 1

2 .
If p = 1, we are done. Suppose p > 1. For all k < p, the game VHALT,Rx,log∗(k)

never rejects since the Turing machine Rx,log∗(k) halts, by the minimality of p. Therefore
ωq(V (k, x)) = ωq(V #(k, x)). So by recursively applying Theorem 5, we have that

ωq(V (p, x)) < 1 =⇒ ωq(V (1, x)) < 1.

Since ωq(V (p, x)) ≤ ωq(VHALT,Rx,log∗(p)) ≤ 1
2 then ωq(V (1, x)) < 1. J

I Corollary 10. Π0
2 ⊆ MIP∗0.

Proof. Let L ∈ Π0
2 then L = {x ∈ {0, 1}∗ : ∀m.∃n.R(x,m, n) = 1}. Let U be the 1-input

3-prover verifier, that on input x executes the verifier V (1, x) where x ∈ {0, 1}∗. By Claim
8, TIME(U(x)) = TIME(V (1, x)) ≤ λ(1 + |x|)λ and by Theorem 9, x ∈ L iff ω∗(U(x)) = 1.
Thus U is an MIP∗0 protocol for the language L, and L ∈ MIP∗0. J

This concludes the proof of the main result of this paper.

4 MIP∗ = RE implies gap-preserving compression

As mentioned in the introduction, the key to proving MIP∗ = RE in [11] was establishing a
gap-preserving compression theorem for non-local games. Here we observe that the reverse
holds: MIP∗ = RE implies a gap-preserving compression theorem.

I Theorem 11. If MIP∗ = RE, then there exists a Turing machine COMPRESS, with the
following properties. Given as input a k-input r-prover verifier V , COMPRESS outputs a
k-input 2-prover verifier V # in time polynomial in the description length of V , with the
following properties:
1. if ωq(V (x1, ..., xk)) = 1 then ωq(V #(x1, ..., xk)) = 1
2. if ωq(V (x1, ..., xk)) ≤ 1

2 then ωq(V #(x1, ..., xk)) ≤ 1
2

3. The runtime of the verifier V # is polynomial in the description length of V and its input.

Proof. COMPRESS is the Turing machine that, when given input a verifier V , it returns
the description of the verifier V # from Figure 3.

In the description of V #, we refer to the Turing machine TV,(x1,...,xk). For every k-input
r-prover verifier V and x1, . . . , xk ∈ {0, 1}∗, TV,(x1,...,xk) is the Turing machine that on empty
tape enumerates over finite-dimensional quantum strategies for V (x1, ..., xk) and only accepts
if it finds a strategy that wins the game with probability greater than 1

2 . It does this via
enumerating over ε-nets (for ε = 1

4 ) for strategies of dimension d for all d ∈ N, as with the
proof of Theorem 7.

By Theorem 6, if the Turing machine TV,(x1,...,xk) halts then

ωq(VHALT,TV,(x1,...,xk)) = 1,

otherwise ωq(VHALT,TV,(x1,...,xk)) ≤ 1
2 . Also the runtime of VHALT,TV,(x1,...,xk) is p(|V |+ |x1|+

...+ |xn|), for some polynomial p.
Then if ωq(V (x1, ..., xk)) = 1 the Turing machine TV,(x1,...,xk) finds a strategy that wins

with probability greater than 3
4 and halts. Therefore

ωq(V #(x1, ..., xk)) = ωq(VHALT,TV,(x1,...,xk)) = 1.
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Input: (x1, ..., xk), where x1, . . . , xk ∈ {0, 1}∗
Perform the following steps:

1. Compute VHALT,TV,(x1,...,xk) = H(TV,(x1,...,xk)) (where H is from Theorem 6).
2. Execute the interactive protocol specified by the verifier VHALT,TV,(x1,...,xk)

and accept if and only if the verifier accepts.

Figure 3 Specification of the compressed verifier V #.

Otherwise, if ωq(V (x1, ..., xk)) ≤ 1
2 then there is no strategy that wins the game with

probability 1
2 and the Turing machine TV,(x1,...,xk) never halts. Therefore

ωq(V #(x1, ..., xk)) = ωq(VHALT,TV,(x1,...,xk)) ≤
1
2 . J

Note that in this gap-preserving compression theorem, the time complexity of the verifier
V # is polynomial in the description length of V and its input – rather than the time
complexity of V .
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Abstract
We consider the isomorphism problem for hypergraphs taking as input two hypergraphs over the
same set of vertices V and a permutation group Γ over domain V , and asking whether there is
a permutation γ ∈ Γ that proves the two hypergraphs to be isomorphic. We show that for input
groups, all of whose composition factors are isomorphic to a subgroup of the symmetric group on
d points, this problem can be solved in time (n+m)O((log d)c) for some absolute constant c where
n denotes the number of vertices and m the number of hyperedges. In particular, this gives the
currently fastest isomorphism test for hypergraphs in general. The previous best algorithm for the
above problem due to Schweitzer and Wiebking (STOC 2019) runs in time nO(d)mO(1).

As an application of this result, we obtain, for example, an algorithm testing isomorphism of
graphs excluding K3,h as a minor in time nO((log h)c). In particular, this gives an isomorphism test
for graphs of Euler genus at most g running in time nO((log g)c).
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1 Introduction

Luks’s algorithm [21] is an important cornerstone of the algorithmic theory of the Graph
Isomorphism Problem. With some additional improvements given later [6], it tests in time
nO(d/ log d) whether two given n-vertex graphs of maximum degree d are isomorphic. In
the last four decades, Luks’s algorithm has developed to a central building block for many
algorithms tackling the isomorphism problem. Indeed, Luks’s algorithmic framework has
been used as a subroutine to design, for example, isomorphism tests for graphs of bounded
genus [27], graphs of bounded tree-width [15], graphs excluding some fixed graph as a minor
[31], and even graph classes that exclude some fixed graph as a topological minor [13].
Further examples include color-t-bounded graphs [4], defined by Babai et al. in the context
of isomorphism testing of strongly regular graphs, unit square graphs [28], and graphs of
bounded rank-width [17]. Moreover, Luks’s algorithm has also played a role in the area of
computational group theory for example for computing normalizers for certain groups [23].

Additionally, Luks’s algorithm also forms the basis for Babai’s recent quasipolynomial
isomorphism test [1] as well as the corresponding canonization algorithm [2]. Indeed, Babai’s
algorithm follows the recursive framework of Luks’s algorithm and attacks the obstacle cases
where the recursion performed by Luks’s algorithm does not lead to the desired running
time. Hence, a natural question to ask is whether it is possible extend the group-theoretic
methods added in Babai’s algorithm to the setting of bounded degree graphs in order to
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obtain improved algorithms also for the isomorphism problem for graphs of small degree.
This question was answered in the affirmative by Grohe, Schweitzer and the author of this
paper in [14] providing an isomorphism test for graphs of maximum degree d running in time
nO((log d)c) for some constant c.

With the large number of applications of Luks’s algorithmic framework [21] over the last
decades it is natural to ask for improvements of other algorithms that exploit Luks’s methods
as a subroutine. However, up to this point, the only application of the improved isomorphism
test for graphs of small degree is a faster fixed-parameter tractable isomorphism test for
graphs of bounded tree-width [15]. The reason for this mainly lies in the fact that most of
the algorithms exploiting Luks’s framework as a subroutine actually use this framework to
solve more general problems than Luks’s original algorithm.

To be more precise, Luks’s original algorithm [21] attacks the String Isomorphism Problem.
The input to the String Isomorphism Problem are two strings x, y : Ω → Σ, where Ω is a
finite set and Σ a finite alphabet, and a permutation group Γ ≤ Sym(Ω) (given by a set
of generators). The task of the String Isomorphism Problem is to decide whether there
exists some γ ∈ Γ that transforms x into y. In order to solve the isomorphism problem for
graphs of bounded degree, Luks [21] provides a polynomial-time algorithm solving the String
Isomorphism Problem for all input groups Γ in the class Γ̂d1, the class of groups all of whose
composition factors are isomorphic to a subgroup of Sd (the symmetric group on d points).
To give a faster isomorphism test for graph of small degree, Grohe et al. [14] follow the same
route of considering the String Isomorphism Problem and provide an algorithm solving the
problem in time nO((log d)c) for the class of Γ̂d-groups.

On the other hand, many algorithms exploiting the methods of Luks do so by solving more
general problems. Indeed, a common extension is the Hypergraph Isomorphism Problem
for Γ̂d-groups. Here, the input consists of two hypergraphs H1 = (V, E1) and H2 = (V, E2)
over the same set of vertices and a Γ̂d-group Γ ≤ Sym(V ), and the task is to decide whether
there is some γ ∈ Γ that transforms H1 into H2. As observed by Miller [26], with some small
modifications, Luks’s algorithm for the String Isomorphism Problem immediately extends to
the Hypergraph Isomorphism Problem. To be more precise, by an extension of the arguments
of Luks [21], the Hypergraph Isomorphism Problem for Γ̂d-groups can be solved in time
(m+ n)O(d) where n denotes the number of vertices and m the number of edges. This fact
is exploited by several of the algorithms mentioned above. For example, this includes the
isomorphism tests for graphs of bounded genus [27], graphs excluding some fixed graph as a
(topological) minor [31], color-t-bounded graphs [4], and unit square graphs [28]. Recently,
an improved algorithm for the Hypergraph Isomorphism Problem for Γ̂d-groups running in
time nO(d)mO(1) was presented by Schweitzer and Wiebking [34]. While the algorithm of
Schweitzer and Wiebking significantly improves the running for large numbers of hyperedges,
this is irrelevant for the applications described above where the number of hyperedges is
typically linearly bounded in the number of vertices of the original input graph.

The main contribution of this paper is to provide an algorithm for the Hypergraph
Isomorphism Problem for Γ̂d-groups running in time (n + m)O((log d)c) for some absolute
constant c. Besides its potential applications outlined above, the Hypergraph Isomorphism
Problem is of course also interesting in its own right. Indeed, there is also a long history
of studying the Hypergraph Isomorphism Problem in itself. One of the first results in this
direction was an algorithm testing isomorphism of hypergraphs in time 2O(n) [22] where

1 In [21] this class is denoted by Γd. However, in the more recent literature, Γd often refers to a more
general class of groups.
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n denotes the number of vertices. Assuming the hyperedges are not too large, this result
was improved by Babai and Codenotti in [5] to a running of nÕ(k2·

√
n) where Õ(·) hides

polylogarithmic factors and k denotes the maximal size of a hyperedge. Again assuming
small hyperedges, another improvement follows from the work of Grohe et al. [14] resulting
in an isomorphism test for hypergraphs running in time nO(k·(logn)c) for a constant c.

Results. The main result of this paper is a faster algorithm for the Hypergraph Isomorphism
Problem for Γ̂d-groups.

I Theorem 1. The Hypergraph Isomorphism Problem for Γ̂d-groups can be solved in time
(n+m)O((log d)c) for some absolute constant c where n denotes the number of vertices and m
the number of edges of the input hypergraphs.

An immediate consequence of this result is the fastest algorithm for testing isomorphism
of hypergraphs in general (assuming the number of hyperedges is moderately exponentially
bounded in the number of vertices, i.e., m = 2O(n1−ε) for some ε > 0).

I Corollary 2. The Hypergraph Isomorphism Problem can be solved in time (n+m)O((logn)c)

for some absolute constant c where n denotes the number of vertices and m the number of
edges of the input hypergraphs.

In particular, this result removes the dependence on k, the maximal size of a hyperedge,
in the running time. Observe that this improvement is significant if k is large and m is small
compared to

(
n
k

)
(which is typical for many applications). Also, the last theorem generalizes

the corresponding result for the String Isomorphism Problem for Γ̂d-groups obtained in [14].
For the algorithm, we take a similar route than the algorithm from [14] first normalizing

the input to ensure a suitable variant of Babai’s Unaffected Stabilizers Theorem [1]. Based on
this variant, Grohe et al. are able to extend the Local Certificates Routine, a key subroutine
of Babai’s quasipolynomial-time algorithm [1], to the setting of Γ̂d-groups. Unfortunately,
when going from strings to hypergraphs, there is no simple extension of the Local Certificates
Routine even in the normalized setting from [14]. Intuitively speaking, the reason is that the
Local Certificates Routine crucially exploits that positions in disjoint sets can be permuted
independently of each other which is not the case for hypergraphs.

To circumvent this problem we introduce a novel simplification routine which is repeatedly
executed during the Local Certificates Routine. The idea for the simplification is based on
the following observation. Suppose that all hyperedges are identical on a window W ⊆ V

(i.e., E1 ∩W = E2 ∩W for all hyperedges E1, E2 ∈ E). In this case each permutation in
Γ(V \W ) (the subgroup that fixes each position outside of W ) is an automorphism as required
by the Local Certificates Routine since there are no additional dependencies between W

and V \W coming from the hyperedges. The main idea is to always reduce to this simple
case. Intuitively speaking, this is achieved as follows. Two hyperedges E1, E2 ⊆ V are
W -equivalent if E1 ∩W = E2 ∩W . The algorithm creates, for each equivalence class, a
copy of the vertex set and associates all hyperedges from the equivalence class with this
copy. After this modification, each copy satisfies the requirement that all hyperedges are
W -equivalent (actually, to realize this modification, we shall consider a more general problem).
This enables us to implement a Local Certificates Routine for hypergraphs which builds the
central subroutine of our isomorphism test. Unfortunately, while this settles the original
problem, it also creates several additional issues that need to be addressed and which require
various extensions of existing techniques making the entire algorithm quite complicated.

ICALP 2020
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With the Hypergraph Isomorphism Problem for Γ̂d-groups being used as a subroutine in
a number of algorithms, it is natural to ask for the implications of this result. One of the first
examples in this direction is Miller’s algorithm for testing isomorphism of graphs of bounded
genus [27]. However, Miller’s algorithm reduces the isomorphism problem for graphs of genus
g to the Hypergraph Isomorphism Problem where the input group is a Γd-tower rather than
a Γ̂d-group where d = O(g). The class of Γd-towers extends the class Γ̂d by, intuitively
speaking, allowing to combine groups that are “almost” Γ̂d-groups along a specified partition
of the domain.

Since it is already completely unclear how to extend the algorithm of Grohe et al. [14]
to Γd-towers it is not possible to use Miller’s algorithm directly. To still obtain a faster
isomorphism test for graphs of small genus, we strengthen Miller’s result and develop a
reduction from the isomorphism problem for graphs of genus g to the Hypergraph Isomorphism
Problem for Γ̂d-groups where d := 4g + 2. Actually, our reduction works for any graph class
that excludes K3,h as a minor (graphs of genus g exclude K3,4g+3 as a minor [32, 18]).

To build the reduction, we introduce t-CR-bounded graphs which extend the notion of
color-t-bounded graphs introduced in [4]. Intuitively speaking, a vertex-colored graph is
t-CR-bounded if the vertex-coloring of the graph can be turned into a discrete coloring
(i.e., each vertex has its own color) by repeatedly applying the standard Color Refinement
algorithm (see, e.g., [10, 19]) and by splitting color classes of size at most t. We show that the
isomorphism problem for t-CR-bounded graphs can be solved in time nO((log t)c) by providing
a reduction to the Hypergraph Isomorphism Problem for Γ̂t-groups. While this result may
already be interesting in its own right, the main purpose of the isomorphism problem for
t-CR-bounded graphs in this paper is to serve as an intermediate problem.

We continue to prove that the isomorphism problem for graph classes that exclude K3,h
as a minor is polynomial-time reducible to testing isomorphism of t-CR-bounded graphs
where t := h− 1. This implies the following theorem.

I Theorem 3. The Graph Isomorphism Problem for graphs that exclude K3,h as a minor
can be solved in time nO((logh)c) for some absolute constant c where n denotes the number of
vertices of the input graphs.

The previous best algorithm for this setting is due to Ponomarenko [31] who provided a
polynomial-time isomorphism test for graph classes that exclude an arbitrary minor. While
Ponomarenko does not provide a precise analysis on the running time of his algorithm,
the exponent depends at least linearly on h when excluding Kh as a minor. Hence, in the
case of excluding K3,h as a minor, the above theorem significantly improves on all previous
algorithms.

Finally, exploiting the fact that K3,h has Euler genus linear in h [32, 18], we obtain the
following corollary.

I Corollary 4. The Graph Isomorphism Problem for graphs of Euler genus at most g can
be solved in time nO((log g)c) for some absolute constant c where n denotes the number of
vertices of the input graphs.

While the isomorphism problem for graphs of bounded genus is also fixed-parameter
tractable [20] (again, the author does not analyze the dependence of the running time on g),
the algorithm from the previous corollary is guaranteed to be faster as soon as the genus
passes a threshold that is polylogarithmic in the number of vertices. Also, I remark that the
isomorphism problem for graphs of bounded genus can be solved in logarithmic space [12].
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As a another application of the isomorphism problem for t-CR-bounded graphs, we
consider the isomorphism problem for hereditarily finite sets (see also [34]). Intuitively
speaking, a hereditarily finite set over ground set V is any type of combinatorial object that
can be built by iteratively taking sets and tuples over previously created objects. In particular,
hereditarily finite sets include graphs, vertex- and arc-colored graphs, hypergraphs and
relational structures. We further extend our previous result on the Hypergraph Isomorphism
Problem for Γ̂d-groups and show that isomorphism for any pair of hereditarily finite sets with
a Γ̂d-group can be tested in time (n+m)O((log d)c) where n denotes the size of the ground
set and m the size of the hereditarily finite sets. In case m is only moderately exponential
in n (i.e., m = 2O(n1−ε) for some fixed ε > 0) this improves over a previous algorithm of
Schweitzer and Wiebking [34] (although it should be noted that Schweitzer and Wiebking
actually solve a slightly more general problem).

Related Work. Another extension of Babai’s quasipolynomial-time algorithm has been
independently proposed by Daniel Wiebking [37] providing another proof that the isomorphism
problem for arbitrary hereditarily finite sets can be solved in quasipolynomial time. However,
Wiebking not only solves the isomorphism problem for hereditarily finite sets as defined in
this paper, but actually provides an algorithm for an extended setting where also implicitly
represented labeling cosets are allowed as atomic objects for the hereditarily finite sets. Also,
Wiebking gives a canonization algorithm which extends Babai’s recent canonization algorithm
for graphs [2].

But on the other hand, the algorithmic framework of Wiebking [37] is not able to exploit
any restrictions on the input group. Hence, the two results are incomparable with respect to
the power of the algorithms obtained.

This is also highlighted by the applications. While the results of this paper allow the
design of an algorithm solving the isomorphism problem for graphs of Euler genus at most g
running in time nO((log g)c), Wiebking utilizes his algorithm to build an isomorphism test for
graphs of tree-width at most k running in time nO((log k)c).

2 Preliminaries

Graphs. A graph is a pair G = (V (G), E(G)) with vertex set V (G) and edge set E(G).
Unless stated otherwise, all graphs are undirected and simple graphs, i.e., there are no
loops or multiedges. In this setting an edge is denoted as vw where v, w ∈ V (G). The
neighborhood of a vertex v is denoted NG(v) := {w ∈ V (G) | vw ∈ E(G)}. The degree of a
vertex v ∈ V (G), denoted degG(v), is the size of its neighborhood. Also, for a set of vertices
X ⊆ V (G), the neighborhood of X is defined as NG(X) :=

(⋃
v∈X NG(v)

)
\X. Usually, we

omit the index G if it is clear from the context and simply write N(v), N(X) and deg(v).
For X ⊆ V (G) the induced subgraph on X is G[X] := (X, {vw | v, w ∈ X, vw ∈ E(G)}).
Also, G−X := G[V (G) \X] denotes the induced subgraph on the complement of X.

Two graphs G and H are isomorphic if there is a bijection ϕ : V (G)→ V (H) such that
vw ∈ E(G) if and only if ϕ(v)ϕ(w) ∈ E(H). In this case ϕ is an isomorphism from G

to H, which is also denoted by ϕ : G ∼= H. Moreover, Iso(G,H) denotes the set of all
isomorphisms from G to H. The automorphism group of G is Aut(G) := Iso(G,G). Observe
that, if Iso(G,H) 6= ∅, it holds that Iso(G,H) = Aut(G)ϕ := {γϕ | γ ∈ Aut(G)} for every
isomorphism ϕ ∈ Iso(G,H). The Graph Isomorphism Problem takes as input two graphs G
and H and asks whether they are isomorphic.
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A (vertex-)colored graph is a tuple G = (V (G), E(G), χV ) where χV : V (G) → C is a
mapping and C is some finite set of colors. A vertex- and arc-colored graph is a tuple
G = (V (G), E(G), χV , χE) where χV : V (G)→ C is a vertex-coloring and χE : {(v, w) | vw ∈
E(G)} → C is an arc-coloring, where C is again some finite set of colors. Note that an
uncolored graph can be interpreted as a vertex- and arc-colored graph where each vertex is
assigned the same color as well as each (directed) edge is assigned the same color. The vertex
color classes of a (colored) graph are the sets χ−1

V (c) where c ∈ C. A vertex-coloring χV is
discrete if all color classes are singletons, i.e., χV (v) 6= χV (w) for all distinct v, w ∈ V (G).

Permutation Groups. Next, we establish the basic notation for permutation groups required
for this work. For a general background on group theory I refer to [33] whereas background
on permutation groups can be found in [11].

A permutation group acting on a set Ω is a subgroup Γ ≤ Sym(Ω) of the symmetric group.
The size of the permutation domain Ω is called the degree of Γ and, throughout this work,
is denoted by n = |Ω|. If Ω = [n] then we also write Sn instead of Sym(Ω). Also, Alt(Ω)
denotes the alternating group on the set Ω and, similar to the symmetric group, we write An
instead of Alt(Ω) if Ω = [n]. For γ ∈ Γ and α ∈ Ω we denote by αγ the image of α under the
permutation γ. The set αΓ := {αγ | γ ∈ Γ} is the orbit of α. The group Γ is transitive if
αΓ = Ω for some (and therefore every) α ∈ Ω.

For α ∈ Ω the group Γα := {γ ∈ Γ | αγ = α} ≤ Γ is the stabilizer of α in Γ. The
group Γ is semi-regular if Γα = {id} for all α ∈ Ω (id denotes the identity element of the
group). For A ⊆ Ω and γ ∈ Γ let Aγ := {αγ | α ∈ A}. The pointwise stabilizer of A is the
subgroup Γ(A) := {γ ∈ Γ | ∀α ∈ A : αγ = α}. The setwise stabilizer of A is the subgroup
ΓA := {γ ∈ Γ | Aγ = A}. For a Γ-invariant set A ⊆ Ω we denote by Γ[A] the induced natural
action of Γ on A (i.e., restricting every permutation to the set A).

In order to perform computational tasks for permutation groups efficiently it is infeasible
to list all elements of a permutation group. Instead, permutation groups are represented by
generating sets of small size. A set S ⊆ Γ, where Γ ≤ Sym(Ω), is a generating set for Γ if
every γ ∈ Γ can be written as a product γ = s1s2 . . . sk of elements s1, . . . , sk ∈ S. Indeed,
most algorithms for permutation groups are based on so-called strong generating sets, which
can be chosen of size quadratic in the degree of the group and can be computed in polynomial
time given an arbitrary generating set (see, e.g., [35]). This enables the design of efficient
algorithms for many basic computational problems for permutation groups (e.g., membership
tests, computing the order of a group, the orbits of a group, and generating sets for pointwise
stabilizers). For detailed background on algorithms for permutation groups I refer to [35].

Groups with Restricted Composition Factors. In this work we shall be interested in a
particular subclass of permutation groups, namely groups with restricted composition factors.
Let Γ be a group. A subnormal series is a sequence of subgroups Γ = Γ0 D Γ1 D · · · D
Γk = {id}. The length of the series is k and the groups Γi−1/Γi are the factor groups of
the series, i ∈ [k]. A composition series is a strictly decreasing subnormal series of maximal
length. For every finite group Γ all composition series have the same family of factor groups
considered as a multi-set (cf. [33]). A composition factor of a finite group Γ is a factor group
of a composition series of Γ.

I Definition 5. For d ≥ 2 let Γ̂d denote the class of all groups Γ for which every composition
factor of Γ is isomorphic to a subgroup of Sd.
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We want to stress the fact there are two similar classes of groups both typically denoted
by Γd in the literature. One is the class we define as Γ̂d introduced by Luks [21] while the
other one used in [3] in particular allows simple groups of Lie type of bounded dimension as
composition factors.

3 Isomorphism for Hypergraphs

In the following we provide a very high-level sketch of the algorithm solving the Hypergraph
Isomorphism Problem for Γ̂d-groups. For all details I refer to the full version of this paper [30].

3.1 The Generalized String Isomorphism Problem

For the purpose of building a recursive algorithm, we consider a slightly different problem
that crucially allows us to modify instances in a certain way exploited later on.

Let Γ ≤ Sym(Ω) be a group and let P be a partition of the set Ω. The partition P is
Γ-invariant if Pγ = P for all γ ∈ Γ where Pγ := {P γ | P ∈ P}. A P-string is a pair (P, x)
where P ∈ P and x : P → Σ is a string over a finite alphabet Σ. For σ ∈ Sym(Ω) the string
xσ is defined by xσ : Pσ → Σ: α 7→ x(ασ−1). A permutation σ ∈ Sym(Ω) is a Γ-isomorphism
from (P, x) to a second P-string (Q, y) if σ ∈ Γ and (Pσ, xσ) = (Q, y).

I Definition 6. The Generalized String Isomorphism Problem takes as input a permutation
group Γ ≤ Sym(Ω), a Γ-invariant partition P of the set Ω, and P-strings (P1, x1), . . . , (Pm, xm)
and (Q1, y1), . . . , (Qm, ym), and asks whether there is some γ ∈ Γ such that

{(P γ1 , x
γ
1), . . . , (P γm, xγm)} = {(Q1, y1), . . . , (Qm, ym)}.

We usually denote X = {(P1, x1), . . . , (Pm, xm)} and Y = {(Q1, y1), . . . , (Qm, ym)}. Also,
IsoΓ(X,Y) denotes the set of Γ-isomorphisms from X to Y and AutΓ(X) := IsoΓ(X,X).

It is easy to see that the Hypergraph Isomorphism Problem can be reduced to the
Generalized String Isomorphism Problem choosing P to be the trivial partition consisting of
one block and adding strings xE : V → {0, 1} for each hyperedge E where xE(v) = 1 if and
only if v ∈ E.

For the rest of this section we denote by n := |Ω| the size of the domain, and m denotes
the size of X and Y (we always assume |X| = |Y|, otherwise the problem is trivial). The
goal of this section is to provide an algorithm solving the Generalized String Isomorphism
Problem for Γ̂d-groups in time (n+m)O((log d)c) for some absolute constant c.

We start by introducing some additional notation. For every P ∈ P define X[[P ]] :=
{x : P → Σ | (P, x) ∈ X} and also let mX(P ) := |X[[P]]|. We say that X is completely occupied
if mX(P ) ≥ 1 for every P ∈ P. Also, we say that X is simple if mX(P ) ≤ 1 for every P ∈ P.

We will assume throughout this work that all sets of P-strings encountered are completely
occupied, also if not explicitly stated. Note that an instance, which is not completely occupied,
can be easily turned into one, that is completely occupied, by introducing additional P-strings.
Also, for a set A ⊆ Ω and a set of P-strings X define

X[A] := {(P ∩A, x[A ∩ P ]) | (P, x) ∈ X, P ∩A 6= ∅}

to be the subinstance induced by A where x[A ∩ P ] denotes the substring induced by A ∩ P .
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3.2 Normalization of the Group Action
The main hurdle to build the algorithm for the Generalized String Isomorphism Problem is
an extension of the Local Certificates Routine introduced by Babai for his quasipolynomial
time isomorphism test [1]. Similar to [14], our algorithm exploits a variant of the Unaffected
Stabilizers Theorem for Γ̂d-group which builds the theoretical foundation for the Local
Certificates algorithm.

However, this variant of the Unaffected Stabilizers Theorem for Γ̂d-groups additionally
requires the input group to have an almost d-ary sequence of partitions.

For a partition B of the set Ω and S ⊆ Ω let B[S] := {B ∩ S | B ∈ B, B ∩ S 6= ∅} denote
the induced subpartition of B on the set S. Let B′ be a second partition of Ω. We say that
B′ refines B, denoted B′ � B, if for every B′ ∈ B′ there is some B ∈ B such that B′ ⊆ B.
If additionally B′ 6= B the partition B′ strictly refines B which is denoted B′ ≺ B. Also,
for a group Γ ≤ Sym(Ω) such that B and B′ are Γ-invariant, let ΓB[B′[B]] ≤ Sym(B′[B])
denote the induced natural action of ΓB on B′[B] for every B ∈ B. Finally, recall that a
group Γ ≤ Sym(Ω) is semi-regular if the only element with fixed points is the identity.

I Definition 7 (Almost d-ary Sequences of Partitions). Let Γ ≤ Sym(Ω) be a group and let
{Ω} = B0 � · · · � Bk = {{α} | α ∈ Ω} be a sequence of Γ-invariant partitions. The sequence
B0 � · · · � Bk is almost d-ary if for every i ∈ [k] and B ∈ Bi−1 it holds that
1. |Bi[B]| ≤ d, or
2. ΓB [Bi[B]] is semi-regular.

Since not every Γ̂d-group Γ ≤ Sym(Ω) has an almost d-ary sequence of partitions, the
first step of the algorithm is to normalize the input group. By a simple adaption of the
arguments from [14] (see also [29]) we can obtain the following theorem normalizing the
input to the Generalized String Isomorphism Problem.

I Theorem 8. Let (Γ,P,X,Y) be an instance of the Generalized String Isomorphism Problem
where Γ ≤ Sym(Ω) is a Γ̂d-group.

Then there is a set Ω∗, a monomorphism ϕ : Γ→ Sym(Ω∗), an almost d-ary sequence of
partitions B∗0 � B∗1 � · · · � B∗` for Γϕ, and an instance (Γϕ,P∗,X∗,Y∗) of the Generalized
String Isomorphism Problem such that the following properties are satisfied:
1. |Ω∗| ≤ nfnorm(d)+1 where fnorm(d) = O(log d),
2. there is some i ∈ [k] such that P∗ = B∗i , and
3. γ ∈ IsoΓ(X,Y) if and only if ϕ(γ) ∈ IsoΓϕ(X∗,Y∗) for every γ ∈ Γ.
Moreover, given Γ ≤ Sym(Ω), there is an algorithm computing the desired objects in time
polynomial in the input size and the size of Ω∗.

Hence, in the following we restrict ourselves to the case where the input group has an
almost d-ary sequence of partitions. In particular, this allows us to use the variant of the
Unaffected Stabilizers Theorem proved in [14].

3.3 Creating Global Automorphisms from Local Information
The variant of the Unaffected Stabilizers Theorem from [14] provides us with the group-
theoretic foundation to extend Babai’s Local Certificates Routine [1] to the setting of
hypergraphs. However, there is a second problem in generalizing the Local Certificates
Routine that needs to be addressed.

Let Γ ≤ Sym(Ω) be a Γ̂d-group, P a Γ-invariant partition of Ω, and X,Y two sets of P-
strings. In a nutshell, the Local Certificates Routine considers a Γ-invariant window W ⊆ Ω
such that Γ[W ] ≤ Aut(X[W ]) (i.e., the group Γ respects X restricted to the window W ) and
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aims at creating automorphisms of the entire structure X (from the local information that Γ
respects X on the window W ). In order to create these automorphisms the Local Certificates
Routine considers the group Γ(Ω\W ) fixing every point outside of W . Intuitively speaking,
the Unaffected Stabilizers Theorem (resp. the variant suitable for Γ̂d-groups) guarantees
that the group Γ(Ω\W ) is large. For the String Isomorphism Problem it is easy to see Γ(Ω\W )
consists only of automorphisms of the input string since there are no dependencies between
the positions within the window W and outside of W . However, for the Generalized String
Isomorphism Problem, this is not true anymore. In other words, in order to compute Aut(X),
it is not possible to consider X[W ] and X[Ω \W ] independently.

Our solution to this problem is guided by the following simple observation. Suppose that
X[W ] is simple, i.e., mX[W ](P ) = 1 for all P ∈ P[W ]. In this case it is possible to consider
X[W ] and X[Ω \W ] independently as the next lemma indicates.

I Lemma 9. Let Γ ≤ Sym(Ω) be a permutation group, let P be a Γ-invariant partition of Ω
and X a set of P-strings. Also suppose W ⊆ Ω is a Γ-invariant window such that X[W ] is
simple and Γ[W ] ≤ Aut(X[W ]). Then Γ(Ω\W ) ≤ Aut(X).

Proof. Let γ ∈ Γ(Ω\W ) and (P, x) ∈ X. It suffices to show that (P γ , xγ) ∈ X. First suppose
P ⊆W . Then (P, x) ∈ X[W ] and (P γ , xγ) ∈ X[W ]. Moreover, P γ ⊆W sinceW is Γ-invariant.
Hence, (P γ , xγ) ∈ X.

Otherwise P∩(Ω\W ) 6= ∅. Since αγ = α for all α ∈ Ω\W it follows that P γ∩P 6= ∅. Using
the fact that P is Γ-invariant this implies that P γ = P . To complete the proof it is argued
that xγ = x. Let α ∈ P . If α /∈W then xγ(α) = xγ(αγ) = x(αγγ−1) = x(α). So assume α ∈W .
Since γ[W ] ∈ Aut(X[W ]) it holds that ((P∩W )γ , (x[P∩W ])γ) = (P∩W, (x[P∩W ])γ) ∈ X[W ].
But this means (x[P ∩W ])γ = x[P ∩W ] since X[W ] is simple. Hence xγ(α) = x(α). J

Let W ⊆ Ω be a Γ-invariant set such that X[W ] ≤ Aut(X[W ]) (this is the case during the
Local Certificates Routine). In order to solve the problem described above in general, the
basic idea is to modify the instance in such a way that X[W ] becomes simple. This allows us
to apply Lemma 9 and eventually, to extend the Local Certificates Routine to our setting.
This modification is one of the key conceptual contributions of this work.

Consider a set P ∈ P. In order to “simplify” the instance we define an equivalence
relation on the set X[[P ]] of all strings contained in P . Two P-strings (P, x1) and (P, x2)
are W -equivalent if they are identical on the window W , i.e., x1[W ] = x2[W ]. For each
equivalence class we create a new block P ′ containing exactly the strings from the equivalence
class. Since the group Γ respects the induced subinstance X[W ] it naturally acts on the
equivalence classes. This process is visualized in Figure 1 and formalized below.

Consider the natural homomorphism ψ : Γ → Sym(X[W ]). Now let Ω′ :=
⋃
P∈P P ×

{x[W ∩ P ] | (P, x) ∈ X} and P′ := {P × {x[W ∩ P ]} | (P, x) ∈ X}. Also define

X′ :=
{(
P × {x[W ∩ P ]}, x′ : P × {x[W ∩ P ]} → Σ: (α, x[W ∩ P ]) 7→ x(α)

) ∣∣∣ (P, x) ∈ X
}

and similarly define Y′ for the instance Y. Note that X′ and Y′ are sets of P′-strings.
Finally, the group Γ faithfully acts on the set Ω′ via (α, z)γ = (αγ , zγ) yielding an injective
homomorphism ψ : Γ → Sym(Ω′). Define Γ′ := Γψ. It can be easily checked that the
updated instance is equivalent to the original instance. Also, X′[W ′] is simple where
W ′ := {(α, z) ∈ Ω′ | α ∈W}.

While this simplification allows us to treat X′[W ′] and X′[W ′ \ Ω′] independently and
thus solves the above problem, it creates several additional issues that need to be addressed.
First, this modification may destroy the normalization property (i.e., the existence of an
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X

P1 P2

a b a a a b b a b

a a a b a b a a a

a a a b a a a b a

a b a a a b a b a

a a b b b b b a a

a b a a a a a b b

a b a a a b a a b

a b a a b a a b b

X′

P1 × {abaa} P1 × {aaab} P2 × {aba} P2 × {aab}

a b a a a b b a b a a a b a b a a a

a a a b a a a b aa b a a a b a b a

a a b b b b b a aa b a a a a a b b

a b a a a b a a b

a b a a b a a b b

Figure 1 A set X of P-strings is given in the top and the “simplified” instance X′ is given below.
The window W is marked in gray. Note that X′[W ′] is simple where W ′ denotes the window marked
in gray in the bottom part of the figure.

almost d-ary sequence of partitions). As a result, the Local Certificates Routine constantly
needs to renormalize the input instances which requires a precise analysis of the increase in
size occurring from the renormalization (see Theorem 8). In order to be able to still analyze
the progress made by the recursion, we introduce the notion of a virtual size of an instance.

I Definition 10. Let P be a partition of Ω and suppose X is a set of P-strings. The d-virtual
size of X is defined by s :=

∑
P∈P |P | · (mX(P ))fnorm(d)+1.

Here, fnorm(d) = O(log d) refers to the normalization cost defined in Theorem 8. Hence,
the d-virtual size s of X is bounded by (m+ n)O(log d) and it suffices to analyze the running
time of all subroutines in terms of the virtual size of the input instances. Intuitively speaking,
the idea of the virtual size is to take into account the cost of all potential renormalization
steps which means that, when the algorithm renormalizes an instance, while its actual size
might grow significantly, its virtual size does not. This allows us to measure the progress
made by the recursive algorithm although instances might grow significantly.

The renormalization of instances also creates another problem. In the aggregation of
local certificates, the outputs of the Local Certificates Routine are compared with each other
requiring the outputs to be isomorphism-invariant. However, the renormalization procedure
is not isomorphism-invariant. Our solution to this problem is to run the Local Certificates
Routine in parallel on all pairs of test sets compared later on. This way, we can ensure that
all instances are normalized in the same way.

This simplification procedure is formalized by the next technical theorem which combines
all the requirements outlined above, including the renormalization steps, into a single
statement.

I Theorem 11. Let Γ ≤ Sym(Ω) be a Γ̂d-group and P be a Γ-invariant partition of Ω. Also
suppose {Ω} = B0 � B1 � · · · � B` = {{α} | α ∈ Ω} forms an almost d-ary sequence of
Γ-invariant partitions such that P = Bi for some i ∈ [`]. Let (Xi)i∈[p] be a list of sets of
P-strings. Also let W ⊆ Ω be a Γ-invariant set such that Γ[W ] ≤ Aut(Xi[W ]) for all i ∈ [p].
Moreover, assume that Xi[W ] = Xj [W ] for all i, j ∈ [p].

Then there is an equivalence relation ∼ on the set [p] such that Xi ∼=Γ Xj implies i ∼ j
for all i, j ∈ [p], and for each equivalence class A ⊆ [p], we get the following:
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A set Ω∗, a group Γ∗ ≤ Sym(Ω), elements λi ∈ Γ for all i ∈ A, a monomorphism
ϕ : Γ∗ → Γ, a window W ∗ ⊆ Ω∗, a sequence of partitions {Ω∗} = B∗0 � B∗1 � · · · � B∗k =
{{α} | α ∈ Ω∗}, and a list of P∗-strings (X∗i )i∈A, such that the following properties are
satisfied:
(A) the sequence B∗0 � · · · � B∗k forms an almost d-ary sequence of Γ∗-invariant partitions,
(B) W ∗ is Γ∗-invariant and Γ∗[W ∗] ≤ Aut(X∗i [W ∗]) for all i ∈ A,
(C) there is some i ∈ [k] such that P∗ = B∗i ,
(D) IsoΓ(Xi,Xj) = λ−1

i (IsoΓ∗(X∗i ,X∗j ))ϕλj for all i, j ∈ A,
(E) X∗i [W ∗] is simple for all i ∈ A,
(F) for s the virtual size of Xi and s∗ the virtual size of X∗i it holds that s∗ ≤ s, and
(G) for s the virtual size of Xi[Ω \W ] and s∗ the virtual size of X∗i [Ω∗ \W ∗] it holds that

s∗ ≤ s.
Moreover, there is an algorithm computing the desired objects in time p2 · (n+m)O((log d)c)

for some absolute constant c.

3.4 The Local Certificates Routine
In this subsection the Local Certificates Routine originally introduced in [1] is lifted to
the Generalized String Isomorphism Problem for Γ̂d-group which builds the crucial step of
extending the group-theoretic techniques of Babai’s quasipolynomial time isomorphism test
to the setting of this paper.

Let Γ ≤ Sym(Ω) be a permutation group and let (Γ,P,X,Y) be an instance of the Gen-
eralized String Isomorphism Problem. Furthermore let ϕ : Γ→ Sk be a giant representation,
i.e., a homomorphism ϕ : Γ → Sk such that Γϕ ≥ Ak. For the description of the Local
Certificates Routine we extend the notation of set- and point-wise stabilizers for the group
Γ to the action on the set [k] defined via the giant representation ϕ. For a set T ⊆ [k] let
ΓT := ϕ−1((Γϕ)T ) and Γ(T ) := ϕ−1((Γϕ)(T )).

The basic approach of the Local Certificates Routine is to consider test sets T ⊆ [k] of
logarithmic size.

I Definition 12. A test set T ⊆ [k] is full if (AutΓT
(X))ϕ[T ] ≥ Alt(T ). A certificate of

fullness is a subgroup ∆ ≤ AutΓT
(X) such that ∆ϕ[T ] ≥ Alt(T ). A certificate of non-fullness

is a non-giant Λ ≤ Sym(T ) such that (AutΓT
(X))ϕ[T ] ≤ Λ.

The central part of the algorithm is to determine for each test set T ⊆ [k] (of size t
approximately logarithmic in d) whether T is full and, depending on the outcome, compute a
certificate of fullness or a certificate of non-fullness. Actually, in order to decide isomorphism,
non-fullness certificates are also required for pairs of test sets. All of this is achieved by the
following theorem.

I Theorem 13. Let P be a partition of Ω, X and Y two sets of P-strings. Let s be the
d-virtual size of X and Y. Also let Γ ≤ Sym(Ω) a Γ̂d-group that has an almost d-ary sequence
of partitions B0 � · · · � B` such that P = Bi for some i ∈ [`]. Furthermore suppose there
is a giant representation ϕ : Γ → Sk and let k ≥ t > max{8, 2 + log2 d}. Finally, define
T = {(X, T ), (Y, T ) | T ⊆ [k], |T | = t}. For every (Z1, T1), (Z2, T2) ∈ T one can compute
(i) if T1 is full with respect to Z1, a group ∆ := ∆(Z1, T1) ≤ AutΓT1

(Z1) such that
∆ϕ[T1] ≥ Alt(T1), or

(ii) if T1 is not full with respect to Z1, a non-giant group Λ := Λ(T1,Z1, T2,Z2) ≤ Sym(T1)
and a bijection λ := λ(T1,Z1, T2,Z2) : T1 → T2 such that{

γϕ|T1

∣∣∣ γ ∈ IsoΓ(Z1,Z2) ∧ T (γϕ)
1 = T2

}
⊆ Λλ.
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Moreover, the output is isomorphism-invariant, i.e., for every two pairs (Z1, T1), (Z2, T2) ∈ T
and (Z′1, T ′1), (Z′2, T ′2) ∈ T and isomorphisms γi ∈ IsoΓ((Zi, Ti), (Z′i, T ′i )), i ∈ {1, 2}, it holds
that
(a) if T1 is full with respect to Z1, then (∆(T1,Z1))γ1 = ∆(T ′1,Z′1), and
(b) if T1 is not full with respect to Z1, then

ϕ(γ−1
1 )Λ(T1,Z1, T2,Z2)λ(T1,Z1, T2,Z2)ϕ(γ2) = Λ(T ′1,Z′1, T ′2,Z′2)λ(T ′1,Z′1, T ′2,Z′2).

Moreover, there are numbers s1, . . . , sr ≤ s/2 such that
∑r
i=1 si ≤ 4k2t · t! · s and, for each

i ∈ [r] using a recursive call to the Generalized String Isomorphism Problem for instances of
d-virtual size at most si, and kO(t) · t! · (n+m)O((log d)c) additional computation steps, an
algorithm can compute all desired objects.

The algorithm is similar to the standard Local Certificates Routine implement in Babai’s
quasipolynomial-time isomorphism test [1]. A main difference is that, in each iteration, the
algorithm runs the subroutine implemented in Theorem 11 to “simplify” all instances as
described in the previous subsection. This guarantees that, throughout the execution of the
algorithm, the prerequisites of Lemma 9 are satisfied allowing for the construction of global
automorphisms from local information.

3.5 An Algorithm for the Generalized String Isomorphism Problem
With the Local Certificates Routine for sets of P-strings presented above it is possible to
provide an algorithm for the Hypergraph Isomorphism Problem assuming the input group
is equipped with an almost d-ary sequence of partitions. The algorithm mostly follows the
same patterns as in [14] giving the corresponding result for the String Isomorphism Problem
by replacing the Local Certificates Routine.

I Theorem 14. There is an algorithm that, given a partition P of Ω, a Γ̂d-group Γ ≤ Sym(Ω),
two sets of P-strings X,Y and an almost d-ary sequence of partitions B0 � · · · � B` for
Γ such that P = Bi for some i ∈ [`], computes a representation for IsoΓ(X,Y) in time
(n+m)O((log d)c), for an absolute constant c.

Combining Theorem 8 and 14 gives the main technical result of this work.

I Theorem 15. The Generalized String Isomorphism Problem for Γ̂d-groups can be solved
in time (n+m)O((log d)c) for some constant c.

As an immediate consequence we obtain one of the main results of this paper.

I Corollary 16 (Theorem 1 restated). The Hypergraph Isomorphism Problem for Γ̂d-groups
can be solved in time (n+m)O((log d)c) for some constant c.

4 Color Refinement and Small Color Classes

In the following two sections we present applications of the improvement obtained for the
Hypergraph Isomorphism Problem for Γ̂d-groups. Towards this end, we first introduce the
notion of t-CR-bounded graphs and present an isomorphism test for such graphs running
in time nO((log t)c). The notion of t-CR-bounded graphs generalizes color-t-bounded graphs
considered in [4] in the context of the isomorphism problem for strongly regular graphs.
But more importantly, the isomorphism problem for t-CR-bounded graphs can serve as an
intermediate problem for designing faster isomorphism tests for important classes of graphs.
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For example, there is a simple polynomial-time Turing reduction from the isomorphism
problem for graphs of maximum degree d to the isomorphism problem for d-CR-bounded
graphs. Hence, our results may be seen as a generalization to the isomorphism test for graphs
of small degree presented in [14]. Moreover, in the next section, we present a polynomial-
time Turing reduction from the isomorphism problem for graphs of genus at most g to the
isomorphism problem for (4g + 2)-CR-bounded graphs. As a result, isomorphism for graphs
of genus at most g can be tested in time nO((log g)c).

The definition of t-CR-bounded graphs builds on the Color Refinement algorithm, a
simple combinatorial algorithm that iteratively refines a vertex-coloring in an isomorphism-
invariant manner and which forms a fundamental algorithmic tool in the context of the
Graph Isomorphism Problem (see, e.g., [4, 7, 8, 24, 25, 36]). We start by formally defining
the outcome of the Color Refinement algorithm in the next subsection.

4.1 The Color Refinement Algorithm
Let G be a graph with vertex coloring χV : V (G)→ CV and arc coloring χE : {(v, w) | vw ∈
E(G)} → CE . The Color Refinement algorithm is a procedure that, given a vertex- and
arc-colored graph G, iteratively computes an isomorphism-invariant refinement χCR[G] of the
vertex-coloring χV .

Let χ1, χ2 : V → C be colorings of vertices where C is some finite set of colors. The
coloring χ1 refines χ2, denoted χ1 � χ2, if χ1(v) = χ1(w) implies χ2(v) = χ2(w) for all
v, w ∈ V . The colorings χ1 and χ2 are equivalent, denoted χ1 ≡ χ2, if χ1 � χ2 and χ2 � χ1.

Given a vertex- and arc-colored graph G, the Color Refinement algorithm computes an
isomorphism-invariant coloring χCR[G] as follows. The initial coloring for the algorithm is
defined as χ(0)[G] := χV , the vertex-coloring of the input graph. The initial coloring is
refined by iteratively computing colorings χ(i)[G] for i > 0. For i > 0 define χ(i)[G](v) :=
(χ(i−1)[G](v),Mi(v)) where

Mi(v) :=
{{(

χ(i−1)[G](w), χE(v, w), χE(w, v)
)
| w ∈ NG(v)

}}
.

From the definition of the colorings it is immediately clear that χ(i+1)[G] � χ(i)[G]. Now let
i ∈ N be the minimal number such that χ(i)[G] ≡ χ(i+1)[G]. For this i, the coloring χ(i)[G]
is called the stable coloring of G and is denoted by χCR[G].

The Color Refinement algorithm takes as input a (vertex- and arc-colored) graph G and
computes (a coloring that is equivalent to) χCR[G]. I remark that this can be implemented in
time almost linear in the number of vertices and edges (see, e.g., [9]).

4.2 Splitting Small Color Classes
Having defined the Color Refinement algorithm, we can now define the notion of t-CR-
bounded graphs. The basic idea behind t-CR-bounded graphs is the following. Suppose
(G,χ) is a vertex-colored graph. Then (G,χ) is t-CR-bounded if it is possible to transform χ

into a discrete coloring (i.e., a coloring where each vertex has its own color) by repeatedly
performing the following two operations: applying the Color Refinement algorithm and
completely splitting color classes of size at most t (i.e., assigning every vertex in such a color
class its own color).

For formal reasons, we actually define t-CR-bounded pairs where an additional set
S ⊆ V (G) is provided each vertex of which may also be individualized. The intuition behind
this is that we may already have good knowledge about the structure of the automorphism
group of (G,χ) on the set S which can be exploited for isomorphism testing.
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I Definition 17. A pair (G,S), where G = (V,E, χV , χE) is a vertex- and arc-colored graph
and S = χ−1

V (c) for some color c (not necessarily in the image of χV , i.e., S may be the
empty set), is t-CR-bounded if the sequence (χi)i≥0 reaches a discrete coloring where

χ0(v) :=
{

(v, 1) if v ∈ S
(χV (v), 0) if v /∈ S

,

χ2i+1 := χCR[V,E, χ2i, χE ] and

χ2i+2(v) :=
{

(v, 1) if |χ−1
2i+1(χ2i+1(v))| ≤ t

(χ2i+1(v), 0) otherwise

for all i ≥ 0. A graph G is t-CR-bounded if the pair (G, ∅) is t-CR-bounded.

I remark that the name “t-CR-bounded” is inspired by color-t-bounded graphs [4] defined
in a similar manner where the letters CR refer to the Color Refinement algorithm. Also, I
note that a similar notion of graphs has been exploited in [28] for designing a polynomial-time
isomorphism test for unit square graphs.

I Theorem 18. Let (G1, S1) and (G2, S2) be two t-CR-bounded pairs and also let Γ ≤
Sym(S1) be a Γ̂t-group and θ : S1 → S2 a bijection. Then a representation for the set

IsoΓθ((G1, S1), (G2, S2)) := {σ : G1 ∼= G2 | σ|S1 ∈ Γθ}

can be computed in time nO((log t)c) for some absolute constant c.

I Corollary 19. The Graph Isomorphism Problem for t-CR-bounded graphs can be solved in
time nO((log t)c) for some absolute constant c.

In particular, this includes color-t-bounded graphs considered in [4] in the context of the
isomorphism problem for strongly regular graphs.

The algorithm underlying Theorem 18 actually describes a polynomial-time Turing
reduction from the isomorphism problem for t-CR-bounded graphs to the Hypergraph
Isomorphism Problem for Γ̂t-groups. This result may be of independent interest.

I Lemma 20. There is a polynomial-time Turing reduction from the Graph Isomorphism
Problem for t-CR-bounded graphs to the Hypergraph Isomorphism Problem for Γ̂t-groups.

4.3 Hereditarily Finite Sets
As the first application to the isomorphism problem for t-CR-bounded pairs we consider
hereditarily finite sets. Intuitively speaking, a hereditarily finite set over ground set V is
any type of combinatorial object that can be build by iteratively taking sets and tuples over
previously created objects.

In this section we extend the algorithm for solving the Hypergraph Isomorphism Problem
for Γ̂d-groups to work on any type of hereditarily finite set.

Let V be finite set of elements (e.g., the vertex of a graph). The class of hereditarily finite
sets over universe (ground set) V is inductively defined as follows. Each v ∈ V is an atom
which in particular is a hereditarily finite set. Also, for hereditarily finite sets A1, . . . ,Ak
(over universe V ) the set {A1, . . . ,Ak} as well as the tuple (A1, . . . ,Ak) is a hereditarily finite
set (over universe V ). Examples of hereditarily finite sets include graphs, hypergraphs and
relational structures.
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In order to apply the isomorphism test for t-CR-bounded graphs, we can transform a
hereditarily finite set A over ground set V into a graph G(A) in the natural way so that the
pair (G(A), V ) is 0-CR-bounded.

I Corollary 21. Let A1 and A2 be two hereditarily finite sets over the universe V and let
Γ ≤ Sym(V ) be a Γ̂d-group. Then a representation for the set IsoΓ(A1,A2) := {γ ∈ Γ |
γ : A1 ∼= A2} can be computed in time (n+m)O((log d)c) for some absolute constant c where
n := |V | and m := |V (G(A1))|.

I Corollary 22. The isomorphism problem for hereditarily finite sets can be solved in time
(n+m)O((logn)c).

I remark that a variant of the previous corollary was independently obtained by Daniel
Wiebking [37] (see Related Work).

5 Isomorphism for Graphs of Bounded Genus

Next, we present a second, slightly more involved application of our results and give an
algorithm solving the isomorphism problem for graphs of Euler genus at most g in time
nO((log g)c) for some absolute constant c. Actually, we prove a more general result.

Recall that a graph H is a minor of another graph G if H can be obtained from G by
removing vertices as well as removing and contracting edges. Also define Km,n to be the
complete bipartite graph with m vertices on the left side and n vertices on the right side.
Let h ≥ 3 and define Ch to be the class of graphs that exclude K3,h as a minor.

We present a polynomial-time reduction from the isomorphism problem for the class
Ch to the isomorphism problem for t-CR-bounded graphs where t := h− 1. The following
lemma is the key tool for the reduction. Intuitively, it investigates the structure of certain
colorings that are stable with respect to the Color Refinement algorithm for graphs in the
class Ch. Recall that a graph G is 3-connected if there are no two vertices v, w ∈ V (G) such
that G− {v, w} is disconnected.

I Lemma 23. Let (G,χ) be a 3-connected, colored graph that excludes K3,h as a minor and
suppose V1 ] V2 = V (G) such that
1. each v ∈ V1 forms a singleton color class with respect to χ,
2. χ is stable with respect to the Color Refinement algorithm,
3. |V1| ≥ 3, and
4. N(V2) = V1.
Then there is a color class U ⊆ V2 with respect to χ of size |U | ≤ h− 1.

Proof. Let C := im(χ), C1 := χ(V1) and C2 := χ(V2). Also define H to be the graph with
vertex set V (H) := C and edge set

E(H) = {c1c2 | ∃v1 ∈ χ−1(c1), v2 ∈ χ−1(c2) : v1v2 ∈ E(G)}.

Let C ′ ⊆ C2 be the vertex set of a connected component of H[C2]. Then |NH(C ′)| ≥ 3 since
each v ∈ V1 forms a singleton color class with respect to χ and G is 3-connected.

Now let c1, c2, c3 ∈ NH(C ′) be distinct and also let vi ∈ χ−1(ci) for i ∈ [3]. Also let T
be a spanning tree of H[C ′ ∪ {c1, c2, c3}] such that c1, c2, c3 ∈ L(T ) where L(T ) denotes the
set of leaves of T . Moreover, let T ′ be the subtree of T obtained from repeatedly removing
all leaves c ∈ C ′. Hence, L(T ′) = {c1, c2, c3}. Then there is a unique color c such that
degT ′(c) = 3. Also, for i ∈ [3], define C ′i to be the set of internal vertices on the unique path
from ci to c in the tree T ′.
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Since |χ−1(ci)| = 1 and χ is stable with respect to the Color Refinement algorithm it
holds that

G
[
χ−1(C ′i ∪ {ci})

]
is connected. Let Ui := χ−1(C ′i∪{ci}), i ∈ [3]. Also let U = χ−1(c) and suppose that |U | ≥ h.
Then N(Ui) ∩ U 6= ∅ by the definition of the tree T . Moreover, this implies U ⊆ N(Ui)
since χ is stable with respect to the Color Refinement algorithm. Hence, G contains a minor
isomorphic to K3,h. J

I Corollary 24. Let (G,χV , χE) ∈ Ch be a 3-connected, vertex- and arc-colored graph and
let v1, v2, v3 ∈ V (G). Also define χ∗V (vi) := (i, 1) for i ∈ [3] and χ∗V (v) := (χV (v), 0) for all
v ∈ V (G) \ {v1, v2, v3}. Then (G,χ∗V , χE) is (h− 1)-CR-bounded.

Proof. Let (χi)i≥0 be the sequence of colorings obtained from the definition of (h− 1)-CR-
bounded graphs (Definition 17) for the graph (G,χ∗V , χE). Let χ∗ := χi for the minimal
i ≥ 0 such that χi ≡ χi+1.

Suppose towards a contradiction that χ∗ is not discrete (i.e., not every color class is
a singleton). Let V2 := {v ∈ V (G) | |(χ∗)−1(χ∗(v))| > 1} and let V1 := NG(V2). Then
|V1| ≥ 3 since |V (G) \ V2| ≥ 3 and G is 3-connected. Also note that χ∗|V1∪V2 is a stable
coloring for the graph G[V1 ∪ V2]. Hence, by Lemma 23, there is some color c such that
1 < |(χ∗)−1(c)| ≤ h− 1. But this contradicts the definition of the coloring χ∗ (cf. Definition
17). J

The last corollary gives some insights into the structure of the automorphism group of
graphs G ∈ Ch.

I Theorem 25. Let G ∈ Ch be a 3-connected graph and let v1, v2, v3 ∈ V (G) be distinct
vertices. Then (Aut(G))(v1,v2,v3) is a Γ̂h−1-group.

Also, the corollary can be used to design an isomorphism test for the class Ch.

I Corollary 26 (Theorem 3 restated). The Graph Isomorphism Problem for the class Ch can
be solved in time nO((logh)c) for some absolute constant c.

Proof. Let G1, G2 ∈ Ch. By standard decomposition techniques it suffices to consider the
case where G1 and G2 are (vertex- and arc-colored) 3-connected graphs.

Suppose G1 = (V1, E1, χ
1
V , χ

1
E) and G2 = (V2, E2, χ

2
V , χ

2
E). Let v1, v2, v3 ∈ V (G1) be

three arbitrary vertices. For every w1, w2, w3 ∈ V (G2) it is checked whether there is some
isomorphism ϕ : G1 ∼= G2 such that ϕ(vi) = wi for all i ∈ [3]. Towards this end, define
χ̂1
V (vi) = (i, 1) for i ∈ [3] and χ̂1

V (v) = (χ1
V (v), 0) for all v ∈ V (G1) \ {v1, v2, v3}. Similarly,

define χ̂2
V (wi) = (i, 1) for i ∈ [3] and χ̂2

V (w) = (χ2
V (w), 0) for all w ∈ V (G2) \ {w1, w2, w3}.

Hence, it needs to be checked whether Ĝ1 ∼= Ĝ2 where Ĝj := (Vj , Ej , χ̂jV , χ
j
E), j ∈ [2]. By

Corollary 24 the graphs Ĝ1 and Ĝ2 are (h− 1)-CR-bounded. Hence, isomorphism of the two
graphs can be tested within the desired time by Corollary 19. J

Note that the algorithm from the corollary describes a polynomial-time Turing reduction
from the Graph Isomorphism Problem for Ch to the Graph Isomorphism Problem for (h− 1)-
CR-bounded graphs. In combination with Lemma 20 this means the the Graph Isomorphism
Problem for Ch is polynomial-time Turing reducible to the Hypergraph Isomorphism Problem
for Γ̂h−1-groups.

Since the class of graphs of Euler genus at most g excludes K3,4g+3 as a minor [32, 18],
we obtain the following result.

I Corollary 27 (Corollary 4 restated). The Graph Isomorphism Problem for graphs of genus
at most g can be solved in time nO((log g)c) for some absolute constant c.
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6 Conclusion

We provided a faster algorithm for the Hypergraph Isomorphism Problem for Γ̂d-groups
running in time (n + m)O((log d)c) for some absolute constant c. As an application, we
obtained, for example, an algorithm testing isomorphism of graphs excluding K3,h as a minor
in time nO((logh)c). In particular, this gives an isomorphism test for graphs of Euler genus at
most g running in time nO((log g)c).

With the Hypergraph Isomorphism Problem for Γ̂d-groups being exploited as a subroutine
in a number of algorithms testing isomorphism, it seems plausible to hope for further
applications beyond the ones presented in this paper. Indeed, a very recent work by Grohe,
Wiebking and the present author [16] gives an isomorphism test running in time nO((logh)c)

for n-vertex graphs excluding an arbitrary h-vertex graph as a minor. This algorithm crucially
builds on the isomorphism test for hypergraphs as well as the notion of t-CR-bounded graphs.
Actually, extending the applicability of our techniques further, it might be possible to provide
an algorithm with a similar running time for all classes excluding only a topological minor
building on a decomposition theorem for such graph classes due to Grohe and Marx [13].

Another open question concerns the complexity of testing isomorphism of hypergraphs
for a given Γ̂d-group. The algorithm presented in this work is significantly faster than the
previous best algorithm [34] running in time nO(d)mO(1) only for small numbers of hyperedges.
Indeed, for large numbers of hyperedges m = nΩ(d), our algorithm becomes slower than the
algorithm due to Schweitzer and Wiebking [34]. Can the Hypergraph Isomorphism Problem
for Γ̂d-groups be solved in time nO((log d)c)mO(1) for some absolute constant c? Observe that
it is already completely unclear whether isomorphism of hypergraphs can be tested in time
nO((logn)c)mO(1) for some absolute constant c.
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On Solving (Non)commutative Weighted
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Abstract
In this paper, we consider computing the degree of the Dieudonné determinant of a polynomial
matrix A = A` + A`−1s + · · · + A0s`, where each Ad is a linear symbolic matrix, i.e., entries of
Ad are affine functions in symbols x1, . . . , xm over a field K. This problem is a natural “weighted
analog” of Edmonds’ problem, which is to compute the rank of a linear symbolic matrix. Regarding
x1, . . . , xm as commutative or noncommutative, two different versions of weighted and unweighted
Edmonds’ problems can be considered. Deterministic polynomial-time algorithms are unknown for
commutative Edmonds’ problem and have been proposed recently for noncommutative Edmonds’
problem.

The main contribution of this paper is to establish a deterministic polynomial-time reduction from
(non)commutative weighted Edmonds’ problem to unweighed Edmonds’ problem. Our reduction
makes use of the discrete Legendre conjugacy between the integer sequences of the maximum
degree of minors of A and the rank of linear symbolic matrices obtained from the coefficient
matrices of A. Combined with algorithms for noncommutative Edmonds’ problem, our reduction
yields the first deterministic polynomial-time algorithm for noncommutative weighted Edmonds’
problem with polynomial bit-length bounds. We also give a reduction of the degree computation
of quasideterminants and its application to the degree computation of noncommutative rational
functions.
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1 Introduction

The background of this paper goes back to Edmonds [10]. In 1967, Edmonds posed a question
whether there exists a polynomial-time algorithm to compute the rank of a linear (symbolic)
matrix B over a field K, which is in the form

B = B0 +B1x1 + · · ·+Bmxm,
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where B0, B1 . . . , Bm ∈ Kn×n and x1, . . . , xm are commutative symbols. Here, B is re-
garded as a matrix over the polynomial ring K[x1, . . . , xm] or the rational function field
K(x1, . . . , xm). In case where B is the Edmonds or Tutte matrix of a bipartite or nonbipar-
tite graph G, the rank computation for B corresponds to solving the maximum matching
problem on G. More generally, Lovász [27] showed that Edmonds’ problem is equivalent
to a linear matroid intersection problem if all Bi are of rank 1, and to a linear matroid
parity problem if all Bi are skew-symmetric matrices of rank 2. For general linear matrices,
the celebrated Schwartz–Zippel lemma [34] provides a simple randomized algorithm if |K|
is large enough [27]. However, no deterministic polynomial-time algorithm still has been
known; the existence of such an algorithm would imply nontrivial circuit complexity lower
bounds [22, 36].

Recent studies [11, 17, 20] address the noncommutative version of Edmonds’ problem
(nc-Edmonds’ problem). This is a problem of computing the noncommutative rank (nc-rank)
of B, which is the rank defined by regarding x1, . . . , xm as pairwise noncommutative, i.e.,
xixj 6= xjxi if i 6= j. In this way, B is viewed as a matrix over the free ring K〈x1, . . . , xm〉
generated by noncommutative symbols x1, . . . , xm. The nc-rank of B is precisely the rank of
B over a skew (noncommutative) field K<(x1, . . . , xm>) , called a free skew field, which is the
quotient of K〈x1, . . . , xm〉 defined by Amitsur [2]. We call a linear matrix over K having
noncommutative symbols an nc-linear matrix over K. The recent studies [11, 17, 20] revealed
that nc-Edmonds’ problem is deterministically tractable. For the case where K is the set
Q of rational numbers, Garg et al. [11] proved that Gurvits’ operator scaling algorithm [16]
deterministically computes the nc-rank of B in poly(n,m) arithmetic operations on Q.
Algorithms over general field K were later given by Ivanyos et al. [20] and Hamada–Hirai [17]
exploiting the min-max theorem established for nc-rank. In [16] and [20] applied to the case
of K = Q, bit-lengths of intermediate numbers are proved to be bounded by a polynomial of
the input bit-length.

In this paper, we shall consider “weighted” versions of commutative and noncommutative
Edmonds’ problem introduced by Hirai [18]. First, consider commutative symbols x1, . . . , xm
and an extra commutative symbol s. Define a matrix

A = A` +A`−1s+ · · ·+A0s
`, (1)

where Ad = Ad,0 +Ad,1x1 + · · ·+Ad,mxm ∈ K[x1, . . . , xm]n×n is a linear matrix over K for
d = 0, . . . , `. We call (1) a linear polynomial matrix over K. The weighted Edmonds’ problem
(WEP) is the problem to compute the degree (in s) of the determinant of A. Analogously to
Edmonds’ problem, WEP includes a bunch of weighted combinatorial optimization problems
as special cases, such as a maximum weighted perfect matching problem, a weighted linear
matroid intersection problem and a weighted linear matroid parity problem; see [18, Section 5].

Defining noncommutative weighted Edmonds’ problem (nc-WEP) requires some more
involved algebraic notions due to noncommutativity. Let x1, . . . , xm be noncommutative
symbols and s an extra symbol that commutes with any element in K〈x1, . . . , xm〉. An
nc-linear polynomial matrix A over K is a matrix in the form of (1) with each Ad regarded as
an nc-linear matrix. Then A can be viewed as a matrix over the rational function (skew) field
F (s) over F := K<(x1, . . . , xm>) . Since entries of A are noncommutative, the determinant of
A is nontrivial. Here, we employ the Dieudonné determinant [9], which is a noncommutative
generalization of the usual determinant defined for matrices over skew fields. We denote the
Dieudonné determinant of A by DetA. The Dieudonné determinant retains useful properties
of the usual determinant such as DetAB = DetADetB. While the value of DetA is no
longer in F (s), its degree (in s) is well-defined [8, 35]. See Section 2.1 for the definition of
Dieudonné determinant.
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The nc-WEP is the problem to compute deg Det of a given nc-linear polynomial matrix.
Hirai [18] formulated the dual problem of nc-WEP as the minimization of an L-convex
function on a uniform modular lattice, and gave an algorithm based on the steepest gradient
descent. Hirai’s algorithm uses poly(n,m, `) arithmetic operations on K while no bit-length
bound has been given for K = Q.

A weighted combinatorial optimization problem often reduces to an unweighted problem.
This paper explores a reduction from (nc-)WEP (a weighted problem) to (nc-)Edmonds’
problem (an unweighted problem). The main result of this paper is the following.

I Theorem 1. The (nc-)WEP deterministically reduces to (nc-)Edmonds’ problem for an
(nc-)linear matrix of size `n2 with m symbols.

Theorem 1 provides an efficient randomized algorithm for WEP through the Schwartz–
Zippel lemma and a deterministic polynomial-time algorithm for nc-WEP via the rank
computation algorithms [11, 18, 20] for nc-linear matrices. This algorithm for nc-WEP is
much different from Hirai’s algorithm [18]; in particular, while Hirai’s algorithm calls an
oracle of nc-Edmonds’ problem polynomially many times, our algorithm calls it only once
(the matrix size would be augmented instead). Furthermore, in case of K = Q, our reduction
does not exponentially swell the input bit-length because every entry of the nc-linear matrix
constructed in this reduction is some coefficient of an entry in the input nc-linear polynomial
matrix. Thus, by employing an algorithm [11, 18] for nc-Edmonds’ problem with bit-length
bounds, we obtain the following.

I Theorem 2. We can deterministically solve nc-WEP in poly(n,m, `) arithmetic operations
on K. In addition, if K = Q, the bit-lengths of intermediate numbers are bounded by a
polynomial of the input bit-length.

We also give a reduction from computing the degree of a quasideterminant [12, 13],
which is another noncommutative analogy of the determinant, to computing the degree of
Dieudonné determinant. This can be applied to the degree computation of noncommutative
rational functions represented as a noncommutative formula with division. See Section 4 for
details.

Techniques

Let A be an n× n (nc-)linear polynomial matrix over a field K and put F := K(x1, . . . , xm)
or K<(x1, . . . , xm>) . Slightly generalizing (nc-)WEP, we consider the problem to compute

dk(A) := max{deg DetA[I, J ] | |I| = |J | = k} (2)

for given k, where A[I, J ] denotes the submatrix of A indexed by a row set I and a column
set J . Clearly deg DetA = dn(A). In view of combinatorial optimization, computation of
dk(A) corresponds to solving weighted problems under cardinality constraints.

Our reduction scheme is based on a method, which we call matrix expansion, that con-
structs an (nc-)linear matrix Ωµ(A) ∈ Fµn×µn obtained by arranging the coefficient matrices
of A. Through a canonical form of A called the Smith–McMillan form, it is shown that
the integer sequences of (d0(A), d1(A), . . . , dr(A)) with r := rankA and (ω0(A), ω1(A), . . .)
with ωµ(A) := rank Ωµ(A) are concave and convex, respectively. In addition, they are in the
relation of the discrete Legendre conjugate, that is, they satisfy

dk(A) = min
µ≥0

(ωµ(A)− kµ) (0 ≤ k ≤ r), (3)

ωµ(A) = max
0≤k≤r

(dk(A) + kµ) (µ ≥ 0). (4)
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The Legendre conjugacy is an important duality relation on discrete convex and concave
functions treated in discrete convex analysis [32]. The formulas (3) and (4) are a generalization
of results on matrix pencils over fields given by Murota [33] and on polynomial matrices over
algebraically closed fields by Moriyama–Murota [28]. For proving the conjugacy, equalities
connecting dk(A) and ωµ(A) are necessary. We present a new short and simple connection
which works even on skew fields through the multiplicativity of Ωµ, i.e.,

Ωµ(A)Ωµ(B) = Ωµ(AB). (5)

The conjugacy formula (3) reduces the computation of dk(A) to a one-dimensional discrete
convex optimization problem, which can be efficiently done by binary search. In each iteration,
the objective function can be evaluated by solving (nc-)Edmonds’ problem. Moreover, we
derive direct formulas with respect to r and dr(A) from (3), which proves Theorem 1.

Related Work

In the field of computer algebra, algorithms were proposed for computing various kinds of
canonical forms of a polynomial matrix A ∈ F [s]n×n (or of its generalization) such as the
Jacobson normal form [26], the Hermite normal form [14], the Popov normal form [23] and
their weaker form called a row-reduced form [1, 4]. These algorithms iteratively solve systems
of linear equations over F whose coefficient matrices are variants of expanded matrices Ωµ(A)
under the name of “linearized matrices” [23] or “striped Krylov matrices” [4]. While these
algorithms can compute deg DetA, their running time is bounded in terms of the number of
operations on F . Hence if F = K(x1, . . . , xm) or F = K<(x1, . . . , xm>) , the expression size
of intermediate numbers might be exponentially large.

Combinatorial relaxation [29, 30] is another framework for deg-det computation based
on combinatorial optimization. Hirai’s algorithm [18] for nc-WEP can also be viewed as a
variant of combinatorial relaxation. Unlike the matrix expansion, it is difficult to give bit
complexity bounds for combinatorial relaxation algorithms because they iteratively perform
the Gaussian elimination on the same matrix and thus the magnitude of its entries might
swell.

Organization

The rest of this paper is organized as follows. Section 2 provides preliminaries on matrices and
polynomials over skew fields. Section 3 describes our proposed reductions after introducing
the matrix expansion and the Legendre conjugacy. Section 4 describes the computation of the
degree of quasideterminants and its application to the degree computation of noncommutative
rational functions.

2 Preliminaries

Let Z denote the set of integers and N the set of nonnegative integers. For n ∈ N, we denote
the set {1, 2, . . . , n} by [n] and {0, 1, 2, . . . , n} by [0, n].

2.1 Matrices over Skew Fields
A skew field, or a division ring is a ring F such that every nonzero element has a multiplicative
inverse in F . A right (left) F -module is especially called a right (left) F -vector space. The
dimension of a right (left) F -vector space V is defined as the rank of V as a module, that is,
the cardinality of any basis of V . The usual facts from linear algebra on independent sets
and generating sets in vector spaces are valid even on skew fields [25].
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A square matrix A ∈ Fn×n is said to be nonsingular if there exists a unique n×n matrix
over F , denoted by A−1, such that AA−1 and A−1A are the identity matrix In of size n. A
square matrix is singular if it is not nonsingular. The rank rankA of a matrix A ∈ Fn×n′ is
the dimension of the right F -vector space spanned by the column vectors of A, and is equal
to the dimension of the left F -vector space spanned by the row vectors of A. The rank is
invariant under (right and left) multiplications of nonsingular matrices. It is observed that a
square matrix A ∈ Fn×n is nonsingular if and only if rankA = n.

The Bruhat decomposition uniquely factors a nonsingular matrix A ∈ Fn×n into the
product of four n × n matrices over F as A = LDPU , where L is lower unitriangular, D
is diagonal, P is a permutation matrix and U is upper unitriangular [7, Theorem 2.2 in
Section 11.2]. Here, a lower (upper) unitriangular matrix is a lower (upper) triangular matrix
whose diagonal entries are 1. Let F×ab := F×/ [F×, F×] denote the abelianization of the
multiplicative subgroup F× = F \ {0} of F , where [F×, F×] :=

〈{
aba−1b−1

∣∣ a, b ∈ F×}〉
is the commutator subgroup of F×. The Dieudonné determinant DetA of a nonsingular
matrix A ∈ Fn×n, which is decomposed as A = LDPU , is an element of F×ab defined by

DetA := sgn(P )e1e2 · · · en mod
[
F×, F×

]
,

where sgn(P ) ∈ {−1,+1} is the sign of the permutation P and e1, . . . , en ∈ F× are the
diagonal entries of D [9]. For a singular matrix A ∈ Fn×n, define DetA as 0 for convenience.
In case where F is commutative, the Dieudonné determinant coincides with the usual
determinant. As the usual determinant, the Dieudonné determinant satisfies the following
properties [3, Chapter 4.1]:
(D1) DetAB = DetADetB for A,B ∈ Fn×n.

(D2) Det
(
A ∗
O B

)
= Det

(
A O

∗ B

)
= DetADetB for A ∈ Fn×n and B ∈ Fn′×n′ , where

blocks in O and ∗ represent zero and any matrices of appropriate size, respectively.

2.2 Polynomials over Skew Fields
Let us consider the polynomial ring F [s] over a skew field F , where s is an indeterminate
that commutes with any element of F . A nonzero polynomial p ∈ F [s] is uniquely written as
p =

∑`
d=0 a`−ds

d, where a0, . . . , a` ∈ F with a0 6= 0. The addition and the multiplication
in F [s] are naturally defined. The degree deg p of p is defined by deg p := ` and we set
deg 0 := −∞. Then the minus of the degree enjoys the discrete valuation property, that is,
deg satisfies deg(p+ q) ≤ max{deg p,deg q} and deg pq = deg p+ deg q for p, q ∈ F [s].

The polynomial ring F [s] is a (right and left) Ore domain, i.e., for each p, q ∈ F [s] \ {0},
there exists u, u′, v, v′ ∈ F [s] \ {0} such that pu = pv and u′p = v′q. This property enables
F [s] to have the (right and left) Ore quotient ring, which is a skew field of fractions each of
whose elements is expressed as f = pq−1 = q′−1p′ for some p, p′, q, q′ ∈ F [s] with q, q′ 6= 0.
Elements of F (s) are called rational functions over F and F (s) is called the rational function
field over F . See [7, Section 9.1] and [15, Chapter 6] for the construction of F (s). The
degree on F [s] is uniquely extended to a valuation on F (s) by deg f := deg p − deg q for
f = pq−1 ∈ F (s); see [8, Proposition 9.1.1]. A rational function f ∈ F (s) is said to be proper
if deg f ≤ 0.

The Laurent series field F ((s−1)) over F in s−1 is the set of formal power series over F
in the form of

f =
∞∑

d=−`
ads
−d (6)
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for some ` ∈ Z and a−`, a−`+1, . . . ∈ F . This skew field has the natural addition and
multiplication. The rational function field F (s) can be embedded in F ((s−1)) [6, Proposi-
tion 7.1]. Namely, any rational function f ∈ F (s) can be uniquely expanded in form of (6).
In particular, ` coincides with deg f .

Let A ∈ F (s)n×n be a square matrix over F (s), called a rational function matrix over
F . The degree of the Dieudonné determinant of A is well-defined since all commutators
of F (s)× have degree zero. Note that deg Det of singular matrices are −∞. The following
properties on deg Det are easily seen from (D1) and (D2).
(MV1) deg DetAB = deg DetA+ deg DetB for A,B ∈ F (s)n×n.

(MV2) deg Det
(
A ∗
O B

)
= deg Det

(
A O

∗ B

)
= deg Det(A) + deg Det(B) for A ∈ F (s)n×n

and B ∈ F (s)n
′×n′ .

Recall the notation dk(A) in (2) for A ∈ F (s)n×n
′
. Note that d1(A) is the maximum

degree of an entry in A, and we call d1(A) the degree of A. Similarly to (6), A can be
uniquely expanded as

A =
∞∑

d=−`
Ads

−d (7)

with ` = d1(A) and some A−`, A−`+1, . . . ∈ F (s)n×n
′
. The following proposition gives lower

and upper bounds on dk(A).

I Proposition 3. Let A ∈ F (s)n×n
′
be a rational function matrix over a skew field F . For

k ∈ [0, n∗] with n∗ := min{n, n′}, the following hold:
(1) dk(As`) = dk(A) + `k for ` ∈ Z.
(2) dk(A) ≤ `k, where ` is the degree of A.
(3) dk(A) > −∞ if and only if k ≤ rankA. In addition, if A is a polynomial matrix, then

dk(A) ≥ 0 for k ≤ rankA.

Proof. (1) follows from the fact that for any k × k submatrix A[I, J ] of A, it holds

deg DetA[I, J ]s` = deg Det(A[I, J ] · s`Ik)
= deg DetA[I, J ] + deg det s`Ik
= deg DetA[I, J ] + `k.

(2) Let α1, . . . , αk be the exponents of the Smith–McMillan form of a nonsingular k × k
submatrix A[I, J ] of A. Then the claim follows from deg DetA[I, J ] = α1 + · · · + αk and
` ≥ α1 ≥ · · · ≥ αk.

(3) The former part is obtained from the fact that rankA is equal to the maximum size
of a nonsingular submatrix of A. The latter part can be proved using the Smith normal form,
see e.g. [18, Lemma 2.11]. J

A rational function matrix is said to be proper if its degree is nonpositive. A square
rational function matrix is said to be biproper if it is proper and nonsingular, and its inverse
is also proper. We abbreviate proper and biproper rational function matrices as proper and
biproper matrices, respectively. It is easy to see that the product of proper matrices are
proper, which implies that the product of biproper matrices are biproper again. Equivalent
conditions for proper matrices to be biproper are established as follows.
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I Lemma 4 ([18, Lemma 2.10]). Let A ∈ F (s)n×n be a square proper matrix over a skew
field F . Then the following are equivalent:
(1) A is biproper.
(2) deg DetA = 0.
(3) The coefficient matrix A0 of s0 in the expansion (7) of A is nonsingular.

A biproper transformation is a transformation of a rational function matrix A ∈ F (s)n×n
′

in the form A 7→ SAT , where S ∈ F (s)n×n and T ∈ F (s)n
′×n′ are biproper matrices. Under

biproper transformations, we can establish a canonical form of rational function matrices,
called the Smith–McMillan form. This is well-known for complex rational function matrices
as the Smith–McMillan form at infinity [31, 37] in the context of control theory.

I Proposition 5 (Smith–McMillan form). Let A ∈ F (s)n×n
′
be a rational function matrix of

rank r over a skew field F . There exist biproper matrices S ∈ F (s)n×n, T ∈ F (s)n
′×n′ and

integers α1 ≥ α2 ≥ · · · ≥ αr such that

SAT =
(

diag(sα1 , . . . , sαr ) O

O O

)
.

The integer αi is uniquely determined by

αi = di(A)− di−1(A) (8)

for i ∈ [r]. In particular, dk(A) is invariant under biproper transformations for k ∈ [0, r].

Proof. The proof is the same as that for nonsingular A ∈ F (s)n×n in [18, Proposition 2.9],
which iteratively determines αi from i = 1 to n, except that the iterations stops when
i = r. J

Solving (8) for dk(A), we obtain

dk(A) =
k∑
i=1

αi (9)

for k ∈ [0, r]. This is a key identity that connects dk(A) and the Smith–McMillan form of A.
It is worth mentioning that all αi are nonpositive for a proper matrix A since α1 is equal to
the degree d1(A) of A by (8).

3 Computing the Degree of Dieudonné Determinant

Let A =
∑`
d=0 A`−ds

d ∈ F [s]n×n
′
be a polynomial matrix over a skew field F ; we typically

consider an (nc-)linear polynomial matrix with F := K(x1, . . . , xm) or K<(x1, . . . , xm>) . In
this section, we give reductions of computing dk(A) and rankA to rank computations over
F . Instead of A, we deal with a proper matrix obtained from A by

As−` =
∑̀
d=0

Ads
−d ∈ F (s)n×n

′
. (10)

The value of dk(A) can be recovered from that of (10) through Proposition 3 (1).
Section 3.1 introduces matrix expansion which is our key tool. Section 3.2 connects the

sequence of dk to the rank of expanded matrices via the Legendre conjugacy. Making use of
them, we give reductions and algorithms in Section 3.3, which proves Theorem 1.

ICALP 2020



89:8 On Solving (Non)commutative Weighted Edmonds’ Problem

3.1 Matrix Expansion
For a proper matrix A ∈ F (s)n×n

′
and µ ∈ N, we define the µth-order expanded matrix

Ωµ(A) of A as the following µn× µn′ block matrix

Ωµ(A) :=



A0 A1 A2 · · · · · · Aµ−1

O A0 A1 A2
...

... O A0 A1
. . .

...
...

. . . . . . . . . A2
...

. . . A0 A1

O · · · · · · · · · O A0


∈ Fµn×µn

′
,

where A0, . . . , Aµ−1 ∈ Fn×n
′ are matrices in the expansion (7) of A. Note that Ωµ(A) is an

(nc-)linear matrix over K. Expanded matrices satisfy the multiplicativity (5).

I Lemma 6. Let A ∈ F (s)n×n
′
and B ∈ F (s)n

′×n′′ be proper matrices over a skew field F .
Then it holds (5) for any µ ∈ N.

Proof. Expand A and B by (7) as A =
∑∞
d=0 Ads

−d and B =
∑∞
d=0 Bds

−d. By

AB =
( ∞∑
d=0

Ads
−d

)( ∞∑
d=0

Bds
−d

)
=
∞∑
d=0

Ad

 d∑
j=0

Bd−js
−j

 =
∞∑
j=0

(
j∑
d=0

AdBd−j

)
s−j ,

the (i, j)th block in Ωµ(AB) is
∑j−i
d=0 AdBd−j if i ≤ j and O otherwise. This coincides with

the (i, j)th block in Ωµ(A)Ωµ(B). J

Let ωµ(A) denote the rank of Ωµ(A). The following lemma claims that ωµ(A) coincides
with that of the Smith–McMillan form of A.

I Lemma 7. Let A ∈ F (s)n×n
′
be a proper matrix over a skew field F . Then it holds

ωµ(A) = ωµ(D) for µ ∈ N, where D is the Smith–McMillan form of A.

Proof. Let S ∈ F (s)n×n and T ∈ F (s)n
′×n′ be biproper matrices such that SAT = D. From

Lemma 6, we have ωµ(D) = rank Ωµ(SAT ) = rank Ωµ(S)Ωµ(A)Ωµ(T ). Let S0 and T0 be
the coefficient matrices of s0 in the expansion (7) of S and T , respectively. Since S0 and
T0 are nonsingular by Lemma 4,the block matrices Ωµ(S) and Ωµ(T ) are also nonsingular.
Therefore we have ωµ(D) = ωµ(A). J

Let 0 ≥ α1 ≥ · · · ≥ αr be the exponents of the Smith–McMillan form of A with
r := rankA. Put

Nd := |{i ∈ [r] | −αi ≤ d}| (11)

for d ∈ N. Lemma 7 leads us to the following lemma; a similar result based on the Kronecker
canonical form is also known for matrix pencils over a field [21, Theorem 2.3].

I Lemma 8. Let A ∈ F (s)n×n
′
be a proper matrix over a skew field F . For µ ∈ N, it holds

ωµ(A) =
µ−1∑
d=0

Nd, (12)

where Nd is defined in (11).
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Proof. LetD =
∑∞
d=0 Dds

−d be the Smith–McMillan form of A and α1, . . . , αr the exponents
of diagonal entries of D, where r := rankA. The ith diagonal entry of Dd is 1 if i ≤ r and
αi = −d, and 0 otherwise. Thus each row and column in Ωµ(D) has at most one nonzero
entry. Hence ωµ(D), which is equal to ωµ(A) by Lemma 7, is equal to the number of nonzero
entries in Ωµ(D). It is easily checked that the (µ − d)th block row of Ωµ(D) contains Nd
nonzero entries for d = 0, . . . , µ− 1. J

The equality (12) is a key identity that connects ωµ(A) and the Smith–McMillan form of
A. We remark that, for d ∈ N, the equality (12) can be rewritten as

Nd = ωd+1(A)− ωd(A). (13)

3.2 Legendre Conjugacy of dk(A) and ωµ(A)

Let A ∈ F (s)n×n
′
be a proper matrix of rank r and α1 ≥ . . . ≥ αr the exponents of the

Smith–McMillan form of A. Put dk := dk(A) for k = 0, . . . , r. From αk ≥ αk+1 and (8), the
inequality dk−1 +dk+1 ≤ 2dk holds for all k ∈ [r−1]. In addition, for µ ∈ N, put ωµ := ωµ(A)
and define Nµ by (11). From Nµ−1 ≤ Nµ and (13), we have ωµ−1 +ωµ+1 ≥ 2ωµ for all µ ≥ 1.
These two inequalities for dk and ωµ indicate the concavity of dk and the convexity of ωµ in
the following sense.

A (discrete) function f : Z→ Z ∪ {+∞} is said to be convex if

f(x− 1) + f(x+ 1) ≥ 2f(x)

for all x ∈ Z. We call a function g : Z → Z ∪ {−∞} concave if −g is convex. An integer
sequence (ak)k∈K indexed by K ⊆ Z can be identified with a function ǎ : Z → Z ∪ {+∞}
by letting ǎ(k) be ak if k ∈ K and +∞ otherwise. We can also identify a with â : Z →
Z ∪ {−∞} defined by â(k) := ak if k ∈ K and â(k) := −∞ otherwise. In this way,
we identify integer sequences (d0, d1, . . . , dr) and (ω0, ω1, ω2, . . .) with discrete functions
ď : Z→ Z ∪ {−∞} and ω̂ : Z→ Z ∪ {+∞}, respectively. From the argument in the previous
paragraph, (d0, d1, . . . , dr) is concave and (ω0, ω1, ω2, . . .) is convex.

Let f : Z → Z ∪ {+∞} be a function such that f(x) ∈ Z for some x ∈ Z. The concave
conjugate of f is a function f◦ : Z→ Z ∪ {−∞} defined by

f◦(y) := inf
x∈Z

(f(x)− xy)

for y ∈ Z. Similarly, for a function g : Z → Z ∪ {−∞} with g(y) ∈ Z for some y ∈ Z, the
convex conjugate of g is a function g• : Z→ Z ∪ {+∞} given by

g•(x) := sup
y∈Z

(g(y) + xy)

for x ∈ Z. The maps f 7→ f◦ and g 7→ g• are referred to as the concave and convex discrete
Legendre transform, respectively. In general, f◦ is concave and g• is convex. In addition, if f
is convex and g is concave,

(f◦)• = f, (g•)◦ = g (14)

hold. Hence the Legendre transformation establishes a one-to-one correspondence between
discrete convex and concave functions. See [32] for details of discrete convex/concave functions
and their Legendre transform.

Indeed, as explained in Section 1, the sequences of dk and ωµ are in the relation of
Legendre conjugate. This can be shown from the key identities (9) and (12) that connect
dk(A) and ωµ(A) through the Smith–McMillan form of A.

ICALP 2020



89:10 On Solving (Non)commutative Weighted Edmonds’ Problem

x

y

µ

−α1

−α2

−αr−1

−αr

O 1 2 r − 1 r· · ·

ωµ

∑r
i=1 min{−αi, µ}

Figure 1 Graphic explanation of (15).

I Theorem 9. Let A ∈ F (s)n×n
′
be a proper matrix of rank r over a skew field F . Then (3)

and (4) hold.

Proof. Put dk := dk(A) for k = 0, . . . , r and ωµ := ωµ(A) for µ ∈ N. Since (d0, d1, . . . , dr) is
concave and (ω0, ω1, ω2, . . .) is convex, (3) and (4) are equivalent by (14). We show (4).

First we give an equality

ωµ = rµ−
r∑
i=1

min{−αi, µ} (15)

for µ ∈ N, where α1 ≥ . . . ≥ αr are the exponents of the Smith–McMillan form of A.
Figure 1 graphically shows this equality. Let x and y be the coordinates along the horizontal
and vertical axes in Figure 1, respectively. For i = 1, . . . , r, the height of the dotted
rectangle with i− 1 ≤ x < i is min{−αi, µ}. Hence the area of the dotted region is equal to∑r
i=1 min{−αi, µ}. In addition, the width of the white rectangle with d ≤ y < d+ 1 is equal

to Nd for d = 0, . . . , µ− 1, where Nd is defined by (11). Hence the area of the white stepped
region is equal to N0 + · · · + Nµ−1 = ωµ by (12). Now we have (15) since the sum of the
areas of these two regions is rµ.

Substituting (9) into the right hand side of (4), we have

max
0≤k≤r

(dk + kµ) = max
0≤k≤r

k∑
i=1

(αi + µ) =
k∗∑
i=1

αi + k∗µ, (16)

where k∗ is the maximum 0 ≤ k ≤ r such that αk + µ ≥ 0. Since min{−αi, µ} is −αi if
i ≤ k∗ and is µ if i > k∗, it holds

r∑
i=1

min{−αi, µ} = −
k∗∑
i=1

αi + (r − k∗)µ. (17)

From (16) and (17), we have

max
0≤k≤r

(dk + kµ) = rµ−
r∑
i=1

min{−αi, µ},

in which the right hand side is equal to ωµ by (15). J
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3.3 Reductions and Algorithms
Let A = A0 + A1s

−1 + · · · + A`s
−` ∈ F (s)n×n

′
be the proper matrix (10) of rank r. The

expression (15) of dk(A) indicates that dk(A) is equal to the optimal value of an minimization
problem with objective function

fk(µ) := ωµ(A)− kµ. (18)

Since fk is convex, it is minimized by the minimum µ such that fk(µ+ 1)− fk(µ) ≥ 0. This
can be found by the binary search in O(logM) evaluations of fk, where M is an upper bound
on a minimizer of fk. The following lemma claims that we can adopt `r as the upper bound.

I Lemma 10. Let A =
∑`
d=0 Ads

−d ∈ F (s)n×n
′
be the proper matrix (10) of rank r. Then

the following hold:
(1) The exponents α1, . . . , αr of the Smith–McMillan form of A are at least −`r.
(2) For k ∈ [0, r], the function fk in (18) has a minimizer µ∗ satisfying 0 ≤ µ∗ ≤ `r.

Proof. The claims are trivial if r = 0. Suppose r ≥ 1.
(1) It suffices to show αr ≥ −`r. Since A is proper, dr−1(A) is nonpositive. In addi-

tion, since As` is a polynomial matrix of rank r, we have 0 ≤ dr(As`) = dr(A) + `r by
Proposition 3 (1) and (3). Thus αr = dr(A)− dr−1(A) ≥ −`r holds.

(2) From Lemma 8, the objective function fk can be written as

fk(µ) =
µ−1∑
d=0

(Nd − k)

for µ ∈ N. Hence fk is minimized by the maximum µ ∈ N such that Nµ + k < 0. Note
that such µ exists since fk has the minimum value. From the definition (11) of Nd, it holds
Nd = N−αr for all d ≥ −αr. Hence fk has a minimizer less than or equal to −αr, which is
at most `r by (1). J

Finally, we show direct formulas of rankA and dr(A) for a proper matrix A in (10). These
formulas naturally yield efficient algorithms to compute them, which proves Theorem 1.

I Lemma 11. Let A =
∑`
d=0 Ads

−d ∈ F (s)n×n
′
be the proper matrix (10) of rank r. Then

it holds r = ωln∗+1(A)− ωln∗(A) and dr(A) = ωlr(A)− lr2, where n∗ := min{n, n′}.

Proof. We first show the formula on r. We have ω`n∗+1(A)−ω`n∗(A) = N`n∗ by (13). Since
−αi is at most `r ≤ `n∗ for all i ∈ [r] by Lemma 10 (1), we have r = N`n∗ .

Next we show the formula on dr(A). From (3) and (12), it holds

dr(A) = min
µ≥0

µ−1∑
d=0

(Nd − r). (19)

Since N0 ≤ N1 ≤ · · · ≤ N`r = N`r+1 = · · · = r by Lemma 10 (1), the minimum value of the
right hand side of (19) is attained by µ = `r. Thus we are done. J

I Remark 12. In view of combinatorial optimization, our algorithms are regarded as pseudo-
polynomial time algorithms since the running time depends on a polynomial of the maximum
exponent ` of s instead of poly(log `). Thus it is natural to try to solve the following problem:
Sparse Degree of Determinant (SDD)

Input : A = A1s
w1 + · · ·+Ams

wm ∈ K[s]n×n, where 0 ≤ w1 ≤ . . . ≤ wm are integers.
Output: deg detA.
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However, setting wk := (n + 1)k for k ∈ [m] would make the rank of A the same as
that of a linear matrix A1x1 + · · · + Amxm ∈ K[x1, . . . , xm]n×n (known as the Kronecker
substitution [24]). Since giving a deterministic polynomial-time algorithm for Edmonds’
problem has still been open for more than half a century, SDD is also a quite challenging
problem.

4 Computing the Degree of Quasideterminants

The quasideterminant [12, 13] is another noncommutative analogy of the determinant than
the Dieudonné determinant. Let A ∈ Fn×n be a square matrix over a skew field F . Fix
i, j ∈ [n] and put I := [n] \ {i}, J := [n] \ {j}. The (i, j)th quasideterminant |A|i,j of A is
defined if A[I, J ] nonsingular as

|A|i,j := A[{i}, {j}]−A[I, {j}]A[I, J ]−1
A[{i}, J ] ∈ F.

Analogous to the usual determinant, A is nonsingular if and only if at least one quasideter-
minant of A is defined and nonzero [12, Proposition 1.4.6]. When A is nonsingular, |A|i,j is
defined if and only if the (i, j)th entry a of A−1 is nonzero, and if this is the case, |A|i,j = a−1

holds.
Through the Dieudonné determinant, we can compute the degree of a quasideterminant

of rational function matrices without computing the quasideterminant.

I Proposition 13. Let A ∈ F (s)n×n be a square rational function matrix over a skew field
F . Then for i, j ∈ [n] with S := A[[n] \ {i}, [n] \ {j}] being nonsingular, it holds

deg |A|i,j = deg DetA− deg DetS.

Proof. We assume i = j = 1 without loss of generality. Express A as

A =
(
a r

c S

)
,

where a ∈ F (s), r ∈ F (s)1×(n−1) and c ∈ F (s)(n−1)×1. By elementary row and column
operations, it holds

A =
(
a r

c S

)
=
(

1 rS−1

0 In−1

)(
|A|i,j 0

0 S

)(
1 0

S−1c In−1

)
,

where we used |A|i,j = a− rS−1c. Hence deg DetA = deg |A|i,j + deg DetS, as required. J

Proposition 13 can be applied to the problem of computing the degree of a noncommutative
rational function (nc-rational function) expressed by a noncommutative formula (nc-formula).
Let K be a field and consider pairwise noncommutative symbols x1, . . . , xm. An nc-rational
function is an element of the free skew field K<(x1, . . . , xm>) . An nc-formula (with division)
Φ is a binary tree, whose every leaf is labeled with an element of {x1, . . . , xm} ∪K and every
non-leaf node is labeled with “+”, “×” or “÷”. Each node computes an nc-rational function
in the obvious way, and the output of Φ is the rational function computed by the root. The
size of Φ is the number of nodes.

Cohn [5] showed that for an nc-formula of size r computing f , we can construct a
nonsingular n× n nc-linear matrix B with n = poly(r) such that the top-left entry of B−1

is f . In addition, the top-left entry of B−1 is nonzero if and only if the submatrix of B
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without the first row and column is nonsingular as mentioned above. Therefore, as indicated
by Hrubeš–Wigderson [19], the problem of checking if an nc-formula represents zero can be
reduced to nc-Edmonds’ problem.

We can consider a weighted analog of this reduction. Unlike the commutative case, an
nc-rational function f ∈ K<(x1, . . . , xm>) cannot always be expressed as the ratio of two
noncommutative polynomials. Nevertheless, we can define the (total) degree of f as the
degree (in s) of the rational function g ∈ K<(x1, . . . , xm>) (s) obtained by replacing each xi
with xis. Then given an nc-formula computing f , we construct an nc-linear polynomial
matrix A such that |A|1,1 = f−1 and reduce the degree computation of f to nc-WEP using
Proposition 13. By Theorem 2, we have:

I Theorem 14. We can deterministically compute the degree of the nc-rational function
represented by an nc-formula of size r over a field K in poly(r) arithmetic operations on K.
If K = Q, the bit-lengths of intermediate numbers are polynomially bounded.

References
1 S. A. Abramov and M. A. Barkatou. On solution spaces of products of linear differential

or difference operators. ACM Communications in Computer Algebra, 48(4):155–165, 2014.
doi:10.1145/2733693.2733719.

2 S. A. Amitsur. Rational identities and applications to algebra and geometry. Journal of
Algebra, 3(3):304–359, 1966.

3 E. Artin. Geometric Algebra. Interscience Publishers, Inc., New York, NY, 1957. doi:
10.1002/9781118164518.

4 B. Beckermann, H. Cheng, and G. Labahn. Fraction-free row reduction of matrices of Ore
polynomials. Journal of Symbolic Computation, 41(5):513–543, 2006. doi:10.1016/j.jsc.
2005.10.002.

5 P. M. Cohn. The embedding of firs in skew fields. Proceedings of the London Mathematical
Society, s3-23(2):193–213, 1971. doi:10.1112/plms/s3-23.2.193.

6 P. M. Cohn. Free Rings and Their Relations, volume 19 of London Mathematical Society
Monograph. Academic Press, London, 2nd edition, 1985.

7 P. M. Cohn. Algebra, volume 3. John Wiley & Sons, Chichester, 2nd edition, 1991.
8 P. M. Cohn. Skew Fields. Theory of General Division Rings. Cambridge University Press,

Cambridge, 1995.
9 J. Dieudonné. Les déterminants sur un corps non commutatif. Bulletin de la Société Mathé-

matique de France, 71:27–45, 1943.
10 J. Edmonds. Systems of distinct representatives and linear algebra. Journal of Research of

the National Bureau of Standards, 71B(4):241–245, 1967. doi:10.6028/jres.071B.033.
11 A. Garg, L. Gurvits, R. Oliveira, and A. Wigderson. Operator scaling: theory and appli-

cations. Foundations of Computational Mathematics, 20(2):223–290, 2020. doi:10.1007/
s10208-019-09417-z.

12 I. Gelfand, S. Gelfand, V. Retakh, and R. Lee Wilson. Quasideterminants. Advances in
Mathematics, 193(1):56–141, 2005. doi:10.1016/j.aim.2004.03.018.

13 I. M. Gel’fand and V. S. Retakh. Determinants of matrices over noncommutative rings.
Functional Analysis and Its Applications, 25(2):91–102, 1991. doi:10.1007/BF01079588.

14 M. Giesbrecht and M. S. Kim. Computing the Hermite form of a matrix of Ore polynomials.
Journal of Algebra, 376:341–362, 2013. doi:10.1016/j.jalgebra.2012.11.033.

15 K. R. Goodearl and R. B. Warfield, Jr. An Introduction to Noncommutative Noetherian.
Cambridge University Press, Cambridge, 2nd edition, 2004.

16 L. Gurvits. Classical complexity and quantum entanglement. Journal of Computer and System
Sciences, 69(3):448–484, 2004.

ICALP 2020

https://doi.org/10.1145/2733693.2733719
https://doi.org/10.1002/9781118164518
https://doi.org/10.1002/9781118164518
https://doi.org/10.1016/j.jsc.2005.10.002
https://doi.org/10.1016/j.jsc.2005.10.002
https://doi.org/10.1112/plms/s3-23.2.193
https://doi.org/10.6028/jres.071B.033
https://doi.org/10.1007/s10208-019-09417-z
https://doi.org/10.1007/s10208-019-09417-z
https://doi.org/10.1016/j.aim.2004.03.018
https://doi.org/10.1007/BF01079588
https://doi.org/10.1016/j.jalgebra.2012.11.033


89:14 On Solving (Non)commutative Weighted Edmonds’ Problem

17 M. Hamada and H. Hirai. Maximum vanishing subspace problem, CAT(0)-space relaxation,
and block-triangularization of partitioned matrix, 2017. arXiv:1705.02060.

18 H. Hirai. Computing the degree of determinants via discrete convex optimization on Euclidean
buildings. SIAM Journal on Applied Geometry and Algebra, 3(3):523–557, 2019.

19 P. Hrubeš and A. Wigderson. Non-commutative arithmetic circuits with division. Theory of
Computing, 11(14):357–393, 2015. doi:10.4086/toc.2015.v011a014.

20 G. Ivanyos, Y. Qiao, and K. V. Subrahmanyam. Constructive non-commutative rank com-
putation is in deterministic polynomial time. Computational Complexity, 27(4):561–593,
2018.

21 S. Iwata and R. Shimizu. Combinatorial analysis of generic matrix pencils. SIAM Journal on
Matrix Analysis and Applications, 29(1):245–259, 2007.

22 V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1–2):1–46, 2004.

23 M. Khochtali, J. Rosenkilde né Nielsen, and A. Storjohann. Popov form computation for
matrices of Ore polynomials. In Proceedings of the 42nd International Symposium on Symbolic
and Algebraic Computation (ISSAC ’17), pages 253–260, New York, NY, 2017. ACM Press.
doi:10.1145/3087604.3087650.

24 L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen Grössen. Journal für
die reine und angewandte Mathematik, 92:1–122, 1882.

25 T. Y. Lam. Lectures on Modules and Rings, volume 189 of Graduate Texts in Mathematics.
Springer, New York, NY, 1999.

26 V. Levandovskyy and K. Schindelar. Computing diagonal form and Jacobson normal form
of a matrix using Gröbner bases. Journal of Symbolic Computation, 46(5):595–608, 2011.
doi:10.1016/j.jsc.2010.10.009.

27 L. Lovász. Singular spaces of matrices and their application in combinatorics. Boletim da
Sociedade Brasileira de Matemática, 20(1):87–99, 1989.

28 S. Moriyama and K. Murota. Discrete Legendre duality in polynomial matrices (in Japanese).
The Japan Society for Industrial and Applied Mathematics, 23(2):183–202, 2013.

29 K. Murota. Combinatorial relaxation algorithm for the maximum degree of subdetermi-
nants: Computing Smith-McMillan form at infinity and structural indices in Kronecker form.
Applicable Algebra in Engineering, Communication and Computing, 6(4-5):251–273, 1995.

30 K. Murota. Computing the degree of determinants via combinatorial relaxation. SIAM Journal
on Computing, 24(4):765–796, 1995. doi:10.1137/S0097539791201897.

31 K. Murota. Matrices and Matroids for Systems Analysis. Springer, Berlin Heidelberg, 2000.
32 K. Murota. Discrete Convex Analysis. SIAM, Philadelphia, 2003.
33 K. Murota. Legendre duality in combinatorial study of matrix pencils. Japan Journal of

Industrial and Applied Mathematics, 29(2):205–236, 2012.
34 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal

of the ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.
35 L. Taelman. Dieudonné determinants for skew polynomial rings. Journal of Algebra and Its

Applications, 5(1):89–93, 2006.
36 L. G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual ACM

Symposium on Theory of Computing (STOC ’79), pages 249–261, New York, NY, 1979. ACM
Press. doi:10.1145/800135.804419.

37 G. C. Verghese and T. Kailath. Rational matrix structure. IEEE Transactions on Automatic
Control, 26(2):434–439, 1981.

http://arxiv.org/abs/1705.02060
https://doi.org/10.4086/toc.2015.v011a014
https://doi.org/10.1145/3087604.3087650
https://doi.org/10.1016/j.jsc.2010.10.009
https://doi.org/10.1137/S0097539791201897
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/800135.804419


A General Stabilization Bound for Influence
Propagation in Graphs
Pál András Papp
ETH Zürich, Switzerland
apapp@ethz.ch

Roger Wattenhofer
ETH Zürich, Switzerland
wattenhofer@ethz.ch

Abstract
We study the stabilization time of a wide class of processes on graphs, in which each node can
only switch its state if it is motivated to do so by at least a 1+λ

2 fraction of its neighbors, for
some 0 < λ < 1. Two examples of such processes are well-studied dynamically changing colorings
in graphs: in majority processes, nodes switch to the most frequent color in their neighborhood,
while in minority processes, nodes switch to the least frequent color in their neighborhood. We
describe a non-elementary function f(λ), and we show that in the sequential model, the worst-case
stabilization time of these processes can completely be characterized by f(λ). More precisely,
we prove that for any ε > 0, O(n1+f(λ)+ε) is an upper bound on the stabilization time of any
proportional majority/minority process, and we also show that there are graph constructions where
stabilization indeed takes Ω(n1+f(λ)−ε) steps.
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1 Introduction

Many natural phenomena can be modeled by graph processes, where each node of the graph
is in a state (represented by a color), and each node can change its state based on the states
of its neighbors. Such processes have been studied since the dawn of computer science, by,
e.g., von Neumann, Ulam, and Conway. Among the numerous applications of these graph
processes, the most eminent ones today are possibly neural networks, both biological and
artificial.

Two fundamental graph processes are majority and minority processes. In a majority
process, each node wants to switch to the most frequent color in its neighborhood. Such
a process is a straightforward model of influence spreading in networks, and as such, it
has various applications in social science, political science, economics, and many more
[29, 9, 12, 18, 23].

In contrast, in aminority process, each node wants to switch to the least frequent color in its
neighborhood. Minority processes are used to model scenarios where the nodes are motivated
to anti-coordinate with each other, like frequency selection in wireless communication, or
differentiating from rival companies in economics [24, 6, 7, 11, 8].
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Majority and minority processes have been studied in several different models, the most
popular being the synchronous model (where in each step, all nodes can switch simultaneously)
and the sequential model (where in each step, exactly one node switches). Since in many
application areas, it is unrealistic to assume that nodes switch at the exact same time, we
focus on the sequential model in this paper. We are interested in the worst-case stabilization
time of such processes, i.e. the maximal number of steps until no node wants to change its
color anymore.

Our main parameter describes how easily nodes will switch their color. Previously, the
processes have mostly been studied under the basic switching rule, when nodes are willing
switch their color for any small improvement. However, it is often more reasonable to assume
a proportional switching rule, i.e. that nodes only switch their color if they are motivated
by at least, say, 70% of their neighbors to do so. In general, we describe such proportional
processes by a parameter λ ∈ (0, 1), and say that a node is switchable if it is in conflict with
a 1+λ

2 portion of its neighborhood. The stabilization time in such proportional processes
(possibly as a function of λ) has so far remained unresolved.

The reason we can analyze proportional majority and minority processes together is
that both can be viewed as a special case of a more general process of propagating conflicts
through a network, where the cost of relaying conflicts through a node is proportional to the
degree of the node. This more general process could also be used to model the propagation of
information, energy, or some other entity through a network. This suggests that our results
might also be useful for gaining insights into different processes in a wide range of other
application areas, e.g. the behavior of neural networks.

In the paper, we provide a tight characterization of the maximal possible stabilization time
of proportional majority and minority processes. We show that for maximal stabilization,
a critical parameter is the portion ϕ of the neighborhood that nodes use as “outputs”, i.e.
neighbors they propagate conflicts to. Based on this, we prove that the stabilization time of
proportional processes follows a transition between quadratic and linear time, described by
the non-elementary function

f(λ) := max
ϕ∈(0, 1−λ

2 ]

log
(

1−ϕ
λ+ϕ

)
log
(

1−ϕ
ϕ

) . (1)

More specifically, for any ε > 0, we show that on the one hand, O(n1+f(λ)+ε) is an upper
bound on the number of steps of any majority/minority process, and on the other hand,
there indeed exists a graph construction where the processes last for Ω(n1+f(λ)−ε) steps.

2 Related Work

Various aspects of both majority and minority processes on two colors have been studied
extensively. This includes basic properties of the processes [17, 36], sets of critical nodes
that dominate the process [12, 15, 20], complexity and approximability results [21, 3, 10],
threshold behavior in random graphs [14, 26], and the analysis of stable states in the process
[16, 33, 4, 5, 34, 24]. Modified process variants have also been studied [35, 25], with numerous
generalizations aiming to provide a more realistic model for social networks [2, 1].

However, the question of stabilization time in the processes has almost exclusively been
studied for the basic switching rule (defined in Section 3.2). Even for the basic rule, apart
from a straightforward O(n2) upper bound, the question has remained open for a long time
in case of both processes. It has recently been shown in [13] and [27] that both processes can
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exhibit almost-quadratic stabilization time in case of basic switching, both in the sequential
adversarial and in the synchronous model. On the other hand, the maximal stabilization
time under proportional switching has remained open so far.

It has also been shown that if the order of nodes is chosen by a benevolent player, then
the behavior of the two processes differs significantly, with the worst-case stabilization time
being O(n) for majority processes [13] and almost-quadratic for minority processes [27]. In
weighted graphs, where the only available upper bound on stabilization time is exponential, it
has been shown that both majority and minority can indeed last for an exponential number
of steps in various models [22, 28]. The result of [28] is the only one to also study the
proportional switching rule, showing that the exponential lower bound also holds in this case;
however, since the paper studies weighted graphs with arbitrarily high weights, this model
differs significantly from our unweighted setting.

Stabilization time has also been examined in several special cases, mostly assuming the
synchronous model. The stabilization of a slightly different minority process variant (based
on closed neighborhoods) has been studied in special classes of graphs including grids, trees
and cycles [30, 31, 32]. The work of [19] describes slightly modified versions of minority
processes which may take O(n5) or O(n6) steps to stabilize, but provide better local minima
(stable states) upon termination. For majority processes, stabilization has mostly been
studied from a random initial coloring, on special classes of graphs such as grids, tori and
expanders [14, 26].

Various aspects of majority processes have also been studied under the proportional
switching rule, including sets of critical nodes that dominate the process, and sets of nodes
that always preserve a specific color [38, 37]. However, to our knowledge, the stabilization
time of the processes with proportional switching has not been studied before.

3 Model and Notation

3.1 Preliminaries

We define our processes on simple, unweighted, undirected graphs G(V,E), with V denoting
the set of nodes and E the set of edges. We denote the number of nodes by n = |V |. The
neighborhood of v is denoted by N(v), the degree of v by deg(v) = |N(v)|.

We also use simple directed graphs in our proofs. A directed graph is called a DAG if it
contains no directed cycles. A dipartitioning of a DAG is a disjoint partitioning (V1, V2) of
V such that each source node is in V1, and all edges between V1 and V2 all go from V1 to V2.
We refer to the set of edges from V1 to V2 as a dicut.

Given an undirected graph G with edge set E, we also define the directed edge set of G
as Ê = {(u, v), (v, u) | (u, v) ∈ E}, i.e. the set of directed edges obtained by taking each edge
with both possible orientations.

A coloring is a function γ : V → {black, white}. A state is a current coloring of G. Under
a given coloring, we define Ns(v) = {u ∈ N(v)|γ(v) = γ(u)} and No(v) = {u ∈ N(v)|γ(v) 6=
γ(u)} as the same-color and opposite-color neighborhood of v, respectively.

We say that there is a conflict on edge (u, v), or that (u, v) is a conflicting edge, if
u ∈ No(v) in case of a majority process, and if u ∈ Ns(v) in case of a minority process.
In general, we denote the conflict neighborhood by Nc(v), meaning Nc(v) = No(v) and
Nc(v) = Ns(v) in case of majority and minority processes, respectively. We occasionally also
use N¬c(v) = N(v) \Nc(v).
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If a node v has more conflicts than a predefined threshold (depending on the so-called
switching rule in the model, discussed later) in the current state, then v is switchable.
Switching v changes its color to the opposite color. If edge (u, v) becomes (ceases to be) a
conflicting edge when node v switches, then we say that v has created this conflict (removed
this conflict, respectively).

A majority/minority process is a sequence of steps (states), where each state is obtained
from the previous state by a set of switchable nodes switching. In this paper, we examine
sequential processes, when in each step, exactly one node switches. Such a process is stable
when there are no more switchable nodes in the graph. By stabilization time, we mean the
number of steps until a stable state is reached.

3.2 Model and switching rule
We study the worst-case stabilization time of majority/minority processes, that is, the
maximal number of steps achievable on any graph, from any initial coloring. In other words,
we assume the sequential adversarial model, when the order of nodes (i.e., the next switchable
node to switch in each time step) is chosen by an adversary who maximizes stabilization
time.

It only remains to specify the condition that allows a node to switch its color. The most
straightforward switching rule is the following:

I Rule I (Basic Switching). Node v is switchable if |Nc(v)| − |N¬c(v)| > 0.

An equivalent form of this rule is |Nc(v)| > 1
2 · deg(v). This rule is shown to allow up

to Θ̃(n2) stabilization time for both majority [13] and minority [27] processes. However, it
is often more realistic to assume a proportional switching rule, based on a real parameter
λ ∈ (0, 1):

I Rule II (Proportional Switching). Node v is switchable if |Nc(v)| − |N¬c(v)| ≥ λ · deg(v).

Since we have |Nc(v)|+ |N¬c(v)| = deg(v), this is equivalent to saying that v is switchable
exactly if |Nc(v)| ≥ 1+λ

2 · deg(v). In the limit when λ is infinitely small (or, equivalently, as
1+λ

2 approaches 1
2 from above), we obtain Rule I as a special case of Rule II.

In case of Rule I, whenever a node v switches, it is possible that the total number of
conflicts in the graph decreases by 1 only. On the other hand, Rule II implies that the
switching of v decreases the total number of conflicts at least by λ · deg(v) (we say that
v wastes these conflicts), so in case of Rule II, the total number of conflicts can decrease
more rapidly, allowing only a smaller stabilization time. Our findings show that the maximal
number of steps is different for every distinct λ.

3.3 On the f(λ) function
While the processes have a symmetric definition on each edge by default, it turns out that in
order to maximize stabilization time, each edge has to be used in an asymmetric way. The
most important parameter at each node v is the ratio of neighbors v uses as “inputs” and as
“outputs”. That is, the optimal behavior for each node v is to select ϕ ·deg(v) of its neighbors
as outputs (for some ϕ ∈ (0, 1)), and create all new conflicts on the edges leading to these
output nodes, and similarly, mark the remaining (1− ϕ) · deg(v) neighbors as inputs, and
only remove conflicts from the edges coming from these input nodes. Note that with Rule
II, whenever a node switches, it can create at most

(
1− 1+λ

2
)
· deg(v) = 1−λ

2 · deg(v) new
conflicts, so it is reasonable to assume ϕ ∈

(
0, 1−λ

2
]
.
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Figure 1 Plot of f(λ) and ϕ∗(λ) for λ ∈ (0, 1).

Our results show that if all nodes select ϕ as their output rate, then the maximal
achievable stabilization time is a function of

log
(

1−ϕ
λ+ϕ

)
log
(

1−ϕ
ϕ

) . (2)

As such, the largest stabilization time can be achieved by maximizing this expression by
selecting the optimal ϕ value, as shown in the definition of f in Equation 1. We denote
the optimal value of ϕ (i.e., the argmax of Equation 2) by ϕ∗. The function f has no
straightforward closed form, as such a form would require solving

(λ+ 1) · ϕ · log
(

1− ϕ
ϕ

)
= (λ+ ϕ) log

(
1− ϕ
λ+ ϕ

)
,

for ϕ, with λ as a parameter. We discuss f in more detail in the full version of the paper.
Figure 1 shows the values of f and ϕ∗ as a function of λ. The figure shows that both

f(λ) and ϕ∗(λ) are continuous, monotonically decreasing and convex.
It is visible that limλ→0 f(λ) = 1 and limλ→1 f(λ) = 0. This is in line with what we

would expect: the simple switching rule allows a stabilization time up to Θ̃(n2) [13, 27], while
even for any large λ < 1, it is still straightforward to present a graph with Ω(n) stabilization
time. Our main result is showing that f(λ) describes the continuous transition between these
two extremes.

4 General intuition behind the proofs

Note that initially, each node v can have at most deg(v) conflicts on its incident edges, and
each time when v switches, it wastes λ ·deg(v) conflicts. Therefore, if each node were to “use”
its own initial conflicts only, then each node could switch at most 1

λ times, and stabilization
time could never go above O(n).

Instead, the idea is to take the high number of conflicts initially available at high-degree
nodes, and use these conflicts to switch the less wasteful low-degree nodes many times.
Specifically, we could have a set of Θ(n)-degree nodes that initially have Ω(n2) conflicts
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altogether on their incident edges, and somehow relay these conflicts to another set of O(1)-
degree nodes, which only waste O(1) conflicts at each switching. However, due to the large
difference both in degree and in the number of switches, it is not possible to connect these
two sets directly; instead, we need to do this through a range of intermediate levels, which
exhibit decreasing degree and increasingly more switches. In order to maximize stabilization
time, our main task is to move conflicts through these levels as efficiently (i.e., wasting as
few conflicts in the process) as possible.

The formula of f(λ) describes the efficiency of this process. The rate of inputs to outputs
1−ϕ
ϕ determines the factor by which the degree decreases at every new level. If ϕ is chosen

small, then 1−ϕ
ϕ is high, so we only have a few levels until we reach constant degree, and

hence the number of switches is increased only a few times. On the other hand, the increase
in the number of switches per level is expressed by 1−ϕ

λ+ϕ , which is a decreasing function of ϕ.
If ϕ is too large, then although we execute this increase more times, each of these increases
is significantly smaller.

With a degree decrease rate of 1−ϕ
ϕ , we can altogether have about log 1−ϕ

ϕ
(n) levels until

the degree decreases from Θ(n) to Θ(1). If we increase the number of switches by a factor of
1−ϕ
λ+ϕ each time, then the O(1)-degree nodes will exhibit

(
1− ϕ
λ+ ϕ

)log 1−ϕ
ϕ

(n)
= n

log( 1−ϕ
λ+ϕ )

log( 1−ϕ
ϕ ) ≤ nf(λ) (3)

switches, with an equation only if ϕ = ϕ∗(λ). Having Θ̃(n) nodes in the last level, this sums
up to about n1+f(λ) switches altogether.

4.1 Conflict propagation systems
The upper bound on stabilization time is easiest to present in a general form that only focuses
on this flow of conflicts in the graph. We define a simpler representation of the processes
which only keeps a few necessary concepts to describe the flow of conflicts, and ignores e.g.
the color of nodes or the timing of the switches at each node. In fact, we only require the
number of times s(v) each v ∈ V switches, and the number c(u, v) of conflicts that were
created by node u and then removed by node v, for each (u, v) ∈ Ê.

For simplicity, given a function c : Ê → N, let us introduce the notation cin(v) :=∑
u∈N(v) c(u, v) and cout(v) :=

∑
u∈N(v) c(v, u).

I Definition 1 (Conflict Propagation System, CPS). Given an undirected graph G, a conflict
propagation system is an assignment s : V → N and c : Ê → N such that
1. for each v ∈ V , we have cin(v) + deg(v) ≥ λ · deg(v) · s(v) + cout(v),
2. for each v ∈ V , we have cout(v) ≤ 1−λ

2 · deg(v) · s(v), and
3. for each (u, v) ∈ Ê, we have c(u, v) ≤ s(u).

With the choice of s(v) and c(u, v) described above, any proportional majority or minority
process indeed satisfies these properties, and thus provides a CPS. Hence if we upper bound
the stabilization time (i.e. the total number of switches

∑
v∈V s(v)) of any CPS, this

establishes the same bound on the stabilization time of any majority/minority process.
Condition 1 is the most complex of the three; it expresses the amount of “input conflicts”

cin(v) required to switch v an s(v) times altogether. Every time after v switches, it has
at most 1−λ

2 · deg(v) conflicts on the incident edges, so it needs to acquire λ · deg(v) new
conflicts to reach the threshold of 1+λ

2 · deg(v) and be switchable again; this results in the
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λ · deg(v) · s(v) term. Moreover, if in the meantime, the neighboring nodes remove some
of the conflicts from the incident edges (expressed by cout(v)), then this also has to be
compensated for by extra input conflicts. Finally, the extra deg(v) term comes from the (at
most) deg(v) conflicts that are already on the incident edges in the initial coloring. For a
detailed discussion of this condition, see the full version of the paper.

Condition 2 also holds, since each time when v switches, it creates at most 1−λ
2 · deg(v)

conflicts on the incident edges. Each time u switches, it can only create one conflict on
a specific edge, so condition 3 also follows. Hence any majority/minority process indeed
provides a CPS.

Finally, we need a technical step to get rid of the extra deg(v) term in condition 1. Note
that this term becomes asymptotically irrelevant as s(v) grows; hence, our approach is to
handle fewer-switching nodes separately, and require condition 1 only for nodes with large
s(v). More formally, we select a constant s0, and we refer to nodes v with s(v) < s0 as base
nodes. We then consider Relaxed CPSs, where, given this extra parameter s0, condition 1 is
replaced by:

1R. for each v ∈ V with s(v) ≥ s0, we have cin(v) ≥ λ · deg(v) · s(v) + cout(v),

This relaxation comes at the cost of an extra ε additive term in the exponent of our upper
bound.

5 Upper bound proof

We now outline the proof of the upper bound on the number of switches. A more detailed
discussion of this proof is available in the full version of the paper.

5.1 Properties of an optimal construction
We start by noting that since moving a conflict through a node is wasteful, it is suboptimal
to have two neighboring nodes that both transfer a conflict to each other, or more generally,
to move a conflict along any directed cycle. Therefore, in a CPS with maximal stabilization
time, the conflicts are essentially moved along the edges of a DAG. To formalize this, given a
CPS, let us say that a directed edge (u, v) ∈ Ê is a real edge if c(u, v) > 0.

I Lemma 2. There exists a CPS with maximal stabilization time where the real edges form
a DAG.

Proof. Among the CPSs on n nodes with maximal stabilization time, let us take the CPS P
where the sum

∑
e∈Ê c(e) is minimal. Assume that there is a directed cycle along the real

edges of this CPS, and let c(e0) denote the minimal value of function c along this cycle.
Now consider the CPS P ′ where the value of c on each edge of this directed cycle is

decreased by c(e0). Since in each affected node, the inputs and outputs have been decreased
by the same value, P ′ still satisfies all three conditions, and thus it is also a valid CPS.
Moreover, P ′ has the same amount of total switches as P . However, since c(e0) > 0, the sum
of c(e) values in P ′ is less than in P , which contradicts the minimality of P . J

Hence for the upper bound proof, we can assume that the real edges of the CPS form a
DAG. In the rest of the section, we focus on this DAG composed of the real edges of the
CPS. We first show that for convenience, we can also assume that each base node is a source
in this DAG.

I Lemma 3. There exists a CPS with maximal stabilization time where each base node is a
source node of the DAG.
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Proof. Note that by removing an input edge (u, v) of a base node v (that is, setting c(u, v)
to 0), the remaining CPS is still valid, since node v does not have to satisfy condition 1R,
and in node u, only the sum of outputs was decreased. Therefore, we can remove all the
input edges of each base node, and hence base nodes will all become source nodes of the
DAG. J

I Lemma 4. For each directed edge (u, v) in the DAG where u is a source node, c(u, v) = O(1).
More specifically, c(u, v) ≤ s0.

Proof. If u is a base node, then s(u) ≤ s0, so c(u, v) ≤ s0 due to condition 3. Otherwise,
condition 1R must hold, and since u has no input nodes, we get 0 ≥ cout(u) +λ ·deg(u) · s(u),
hence cout(u) = 0, so c(u, v) = 0 for every v. Thus c(u, v) ≤ s0. J

5.2 Edge potential
As a main ingredient of the proof, we define a way to measure how close we are to propagating
conflicts optimally.

I Definition 5 (Potential). Given a real edge e ∈ Ê, the potential of e is defined as P (e) =
c(e)1/f(λ).

For simplicity of notation, we also use P to denote the function x→ x1/f(λ) on real numbers
instead of edges.

Intuitively speaking, the potential function describes the cost of sending a specific number
of conflicts through a single edge, in terms of the number of initial conflicts used up for this.
Note that since f(λ) < 1, the function P is always convex. This shows that sending a high
number of conflicts through a single edge is more costly than sending the same amount of
conflicts through multiple edges.

As the following lemma shows, the potential is defined in such a way that the total
potential can never increase when passing through a node in the DAG; the best that a node
can do is to preserve the input potential if it relays conflicts optimally.

I Lemma 6. For any non-source node v of the DAG, with input edges from Nin(v) and
output edges to Nout(v), we have∑

u∈Nin(v)

P (u, v) ≥
∑

u∈Nout(v)

P (v, u).

Proof. If v is not a source, then by Lemma 3 it is not a base node, and thus has to satisfy con-
dition 1R. In our DAG, cin and cout correspond to

∑
u∈Nin(v) c(u, v) and

∑
u∈Nout(v) c(v, u),

respectively. Assume that we fix the value of cin and cout. Since the potential function P
is convex, the incoming potential (left side) is minimized if cin is split as equally among
the input neighbors as possible. On the other hand, the outgoing potential (right side) is
maximized if cout is split as unequally among outputs as possible, so all output edges present
in the DAG have the maximal possible number of switches, meaning c(v, u) = s(v) for every
u ∈ Nout(v).

Assume that a fraction ϕ of v’s incident edges are outgoing, i.e. |Nout(v)| = ϕ · deg(v)
and |Nin(v)| = (1− ϕ) · deg(v). By condition 1R, we have cin ≥ λ · deg(v) · s(v) + cout; with
cout = ϕ · deg(v) · s(v), this gives cin ≥ (λ + ϕ) · deg(v) · s(v). If split evenly among the
(1− ϕ) · deg(v) inputs, this means

cin
|Nin(v)| ≥

(λ+ ϕ) · deg(v) · s(v)
(1− ϕ) · deg(v) =

(
λ+ ϕ

1− ϕ

)
· s(v)
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switches for each input node. The inequality on the potential then comes down to

∑
u∈Nin(v)

P (u, v) ≥ (1− ϕ) · deg(v) ·
(
λ+ ϕ

1− ϕ · s(v)
)1/f(λ)

≥

≥ ϕ · deg(v) · s(v)1/f(λ) ≥
∑

u∈Nout(v)

P (v, u).

To show that the inequality in the middle holds, we only require(
λ+ ϕ

1− ϕ

)1/f(λ)
≥ ϕ

1− ϕ,

or, put otherwise,

1
f(λ) log

(
λ+ ϕ

1− ϕ

)
≥ log

(
ϕ

1− ϕ

)
.

Since ϕ
1−ϕ < 1 (thus its logarithm is negative), we get

log
(
λ+ϕ
1−ϕ

)
log
(

ϕ
1−ϕ

) =
log
(

1−ϕ
λ+ϕ

)
log
(

1−ϕ
ϕ

) ≤ f(λ).

This holds by the definition of f(λ). Note that this also shows that equality can only be
achieved if the output rate ϕ is indeed chosen as the argmax value ϕ∗(λ). J

Lemma 6 provides the key insight to the main idea of our proof: if we process the nodes
of a DAG according to a topological ordering, always maintaining a dicut of outgoing edges
from the already processed part of the DAG, then this potential cannot ever increase when
adding a new node.

I Lemma 7. Given a dicut S of a dipartitioning in the DAG, we have∑
e∈S

P (e) = O(n2).

Proof (Sketch). Each dipartitioning can be obtained by starting from the trivial diparti-
tioning where V1 only contains the source nodes of the DAG, and then iteratively adding
nodes one by one to this initial V1. The number of outgoing edges from this initial V1 (the
set of source nodes) is upper bounded by |E| = O(n2). According to Lemma 4, the number
of switches (and hence the potential) on each edge of the dicut is at most constant, so the
sum of potential in this initial dicut is also O(n2).

Now consider the process of iteratively adding nodes to this initial V1 to obtain a specific
dipartitioning. Whenever we add a new node v to V1, the incoming edges of v are removed
from the dicut, and the outgoing edges of v are added to the dicut. According to Lemma 6,
the potential on the outgoing edges of v is at most as much as the potential on the incoming
edges, so the sum of potential can not increase in any of these steps. Therefore, when arriving
at the final V1, the sum of potential on the cut edges is still at most O(n2). J

5.3 Upper bounding switches
Finally, we present our main lemma that uses the previous upper bound on potential in order
to upper bound the number of switches in the CPS.
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I Lemma 8. Given a CPS and an integer a ∈ {1, ..., n}, let A = {v ∈ V |a ≤ deg(v) < 2a }.
For the total number of switches s(A) =

∑
v∈A s(v), we have

s(A) = O
(
n1+f(λ) · a−f(λ)

)
.

Proof (Sketch). If the input edges of the nodes in A would form the dicut of a dipartitioning,
then we could directly use Lemma 7 to upper bound the number of switches in A through
the potential of the input edges. However, the nodes of A might be scattered arbitrarily in
the DAG, and if there is a directed path from one node in A to another, then the “same”
potential might be used to switch more than one node in A. Thus we cannot apply Lemma 7
directly. Instead, our proof consists of two parts.

1. First, we define so-called responsibilities for the nodes in A. Given a node v0 ∈ A,
the idea is to devise two different functions: (i) a function ∆c(e), defined on each edge e
which is contained in any directed path starting from v0, and (ii) a function ∆s(v), which
is defined on any node v that is reachable from v0 on a directed path. Intuitively, we will
consider the conflicts ∆c(e) and the switches ∆s(v) to be those that are indirectly “the
effects of the switches of v0”. More specifically, ∆c and ∆s are chosen such that if they are
removed (subtracted from the CPS), then v0 has no output edges in the DAG anymore, and
the resulting assignment s′(v) = s(v)−∆s(v) and c′(e) = c(e)−∆c(e) still remains a valid
CPS. Hence the subtraction results in a CPS where v0 has no directed path to other nodes
in A anymore. This shows that we can keep on executing this step for each v0 ∈ A until no
two nodes in A are connected by a directed path, at which point we can apply Lemma 7 to
the resulting graph.

Whenever we process such a node v0 ∈ A, we define the responsibility of v0 as R(v0) :=
s(v0) +

∑
∆s(v), where the sum is understood over all the nodes v ∈ A that are reachable

from v0. The main idea is that we “reassign” these switches to v0 from other nodes
in A. This method is essentially a redistribution of switches in the CPS, so we have∑
v∈A s(v) =

∑
v∈AR(v) altogether.

Furthermore, our definition of ∆s(v) will ensure that R(v0) = O(1) ·s(v0). Intuitively, this
can be explained as follows. Recall that with Rule II, the ratio of output to input conflicts
is always upper bounded by a constant factor (below 1) at every node, since switching
always wastes a specific proportion of conflicts. Hence, over any path starting from v0, the
number of outputs that can be attributed to v0 forms a geometric series. As the ratio of the
geometric series is below 1, the total amount of conflicts caused by v0 this way is still within
the magnitude of the input conflicts of v0. Since each node in A has similar degree (and thus
requires similar number of input conflicts for one switching), these conflicts can only switch
nodes in A approximately the same number of times as v0 can be switched by its own inputs.
A detailed discussion of this responsibility technique is available in the full version of the
paper.

2. For the second part of the proof, we show the claim in this modified CPS with no
directed path between nodes in A. This implies that there exists a dipartitioning where the
nodes of A are in V2, but all their input nodes are in V1. This means that all the input edges
of each node in A are included in the dicut S of the partitioning.

Consider a node v ∈ A. Due to condition 1R, v has at least λ ·deg(v) · s(v) input conflicts.
Even if these are distributed equally on all incident edges of v (this is the case that amounts
to the lowest total potential, since P is convex), this requires a total input potential of

deg(v) · P (λ · s(v)) = deg(v) · s(v)1/f(λ) · λ1/f(λ)
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at least. Recall that Lemma 7 shows that the total potential on all edges in S is O(n2). Our
task is hence to find an upper bound on

∑
v∈A s(v), subject to∑

v∈A
deg(v) · s(v)1/f(λ) · λ1/f(λ) = O(n2).

Since the last factor on the left side is a constant, we can simply remove it and include it
in the O(n2) term. Furthermore, the degree of each node in A is at least a, so by lower
bounding each degree by a, we get∑

v∈A
s(v)1/f(λ) = O(n2) · 1

a
.

Given this upper bound on
∑
v∈A P (s(v)), since the function P is convex, the sum of switches∑

v∈A s(v) is maximal when each node in A switches the same amount of times (i.e. there is
an s such that s(v) = s for every v ∈ A), giving

|A| · s1/f(λ) = O(n2) · 1
a
.

With this upper bound, |A| · s is maximal if |A| is as large as possible and s as small as
possible (again because P grows faster than linearly). Clearly |A| ≤ n, so assuming |A| = n,
we get

s1/f(λ) = O(n) · 1
a
,

which means that

s = O(nf(λ)) · a−f(λ),

and thus for the total number of switches in A, we get

|A| · s = O(n1+f(λ)) · a−f(λ). J

It only remains to sum up this bound for the appropriate intervals to obtain our final
bound. Let us consider the intervals [1, 2), [2, 4), [4, 8), ..., i.e. a = 2k for each factor of 2
up to n, which is a disjoint partitioning of the possible degrees. Note that for these specific
values of a, the sum

∑∞
k=0(2k)−f(λ) converges to a constant according to the ratio test.

In other words, the sum is dominated by the number of switches of the lowest (constant)
degree nodes, and hence, the total number of switches in the graph can be upper bounded
by O(1) · n1+f(λ).

Recall that since we work with Relaxed CPSs, we lose an ε in the exponent of this upper
bound when we carry the result over to an original CPS.

I Theorem 9. In any CPS with parameter λ, we have
∑
v∈V s(v) = O(n1+f(λ)+ε) for any

ε > 0.

Since we have established that every majority/minority process provides a CPS, the upper
bound on their stabilization time also follows.

I Corollary 10. Under Rule II with any λ ∈ (0, 1), every majority/minority process stabilizes
in time O(n1+f(λ)+ε) for any ε > 0.
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ϕ
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Figure 2 Consecutive levels of the lower bound construction.

6 Lower bound construction

Having established the most efficient way to relay conflicts, the high-level design of the
matching lower bound construction is rather straightforward, following the level-based idea
described in Section 4.

Given λ, we first determine the optimal output rate ϕ = ϕ∗(λ). We then create a
construction consisting of distinct levels, where each level has the same size, and each consists
of a set of nodes that have the same degree. Since the degree should decrease by a factor
of ϕ

1−ϕ in each new level from top to bottom, we can add L = log 1−ϕ
ϕ

(n) such levels to the
graph. If each of these level has Θ( n

logn ) nodes, then with the appropriate choice of constants,
the total number of nodes is below n.

Each node in the construction is only connected to other nodes on the levels immediately
above or below its own. All conflicts are propagated down in the graph, from upper to lower
levels, so the upper neighbors of a node are always used as inputs, while the lower neighbors
are always used as outputs. For the optimal propagation of conflicts, each node v must have
the optimal input-output rate, i.e. an up-degree of (1 − ϕ) · deg(v) and a down-degree of
ϕ · deg(v). Thus each consecutive level pair forms a regular bipartite graph, with ϕ

1−ϕ of the
degree of the level pair above. The construction is illustrated in Figure 2.

Our parameters λ and ϕ also determine that the number of switches should increase by a
factor 1−ϕ

λ+ϕ on each new level. If we can always increase the switches at this rate, then each
node on the lowermost level will switch(

1− ϕ
λ+ ϕ

)log 1−ϕ
ϕ

(n)
= n

log( 1−ϕ
λ+ϕ )

log( 1−ϕ
ϕ ) = nf(λ),

times, where the last equation holds because we are using ϕ = ϕ∗(λ). Since there are
Θ̃(n) nodes on the lowermost level, the switches in this level already amount to a total of
Θ̃(n1+f(λ)), matching the upper bound.

However, note that when ϕ∗(λ) or 1−ϕ
λ+ϕ is irrational, we can only use close enough rational

approximations of these values. This comes at the cost of losing a small ε in the exponent.

I Theorem 11. Under Rule II with a wide range of λ values, there is a graph construction
and initial coloring where majority/minority processes stabilize in time Ω(n1+f(λ)−ε) for any
ε > 0.

This level-based structure describes the general idea behind our lower bound construction.
However, the main challenge of the construction is in fact designing the connection between
subsequent levels. In particular, this connection has to make sure that conflicts are indeed
always relayed optimally, i.e. no potential is wasted between any two levels.
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Recall from the proof of Lemma 6 that this is only possible if between any two consecutive
switches of a node v, it is exactly a λ+ϕ

1−ϕ fraction of v’s upper neighbors that switch. Moreover,
these switching λ+ϕ

1−ϕ · deg(v) upper neighbors always have to be of the right color, i.e. they
need to switch to the opposite of v’s current color in case of majority processes, and to the
same color in case of minority processes. Since the upper neighbors of v are in the same level,
we also have to ensure that throughout the entire process, each upper neighbor switches the
same number of times altogether.

These conditions impose heavy restrictions on the possible ways to connect two subsequent
levels. If the conditions hold for a node v (i.e. the sequence of switches of v’s upper neighbors
can be split into λ+ϕ

1−ϕ · deg(v)-size consecutive appropriate-colored subsets, in an altogether
balanced way), then we say that v’s upper neighbors follow a valid control sequence.

On the other hand, in order to argue about levels in general, we want each level to behave
in a similar way. The easiest way to achieve this is to have a one-to-one correspondence
between the nodes of different levels, and ensure that each level repeats the same sequence
of steps periodically, but in a different pace. That is, we want to connect the levels in such a
way that when a level exhibits a specific pattern of switches, then this allows the nodes of
the next level to replicate the exact same pattern of switches, but more times.

Thus the key task in our lower bound constructions is to develop a so-called control
gadget, which is essentially a bipartite graph that fulfills these two requirements: it admits a
scheduling of switches such that (i) the upper neighborhood of each lower node follows a
valid control sequence, and (ii) while the upper level executes a sequence s times, the lower
level executes the same sequence 1−ϕ

λ+ϕ · s times. Given such a control gadget, we can connect
the subsequent level pairs of our construction using this gadgets. This allows us to indeed
increase the number of switches by a 1−ϕ

λ+ϕ factor in each new level, resulting in a total of
Θ̃(n1+f(λ)) switches as described above.

However, developing a control gadget is a difficult combinatorial task in general: it
depends on many factors including divisibility questions, and whether our parameters can
be expressed as a fraction of small integers. A detailed discussion of control gadget design
and the λ values covered by Theorem 11 is available in the full version of the paper. In
particular, we present a method which allows us to develop a control gadget for every small λ
value below a threshold of approximately 0.476 (more specifically, as long as λ+ϕ

1−ϕ ≤
3
5 ). The

same technique also provides a control gadget for some larger λ values above the threshold,
but only when the corresponding switch increase ratio 1−ϕ

λ+ϕ can be expressed as a fraction
of relatively small integers. Furthermore, the full version also describes a simpler solution
technique to the control gadget problem; this leaves a slightly larger gap to the upper bound,
but it works for any λ without much difficulty.
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Abstract
We study the incentives of banks in a financial network, where the network consists of debt contracts
and credit default swaps (CDSs) between banks. One of the most important questions in such a
system is the problem of deciding which of the banks are in default, and how much of their liabilities
these banks can pay. We study the payoff and preferences of the banks in the different solutions to
this problem. We also introduce a more refined model which allows assigning priorities to payment
obligations; this provides a more expressive and realistic model of real-life financial systems, while it
always ensures the existence of a solution.

The main focus of the paper is an analysis of the actions that a single bank can execute in
a financial system in order to influence the outcome to its advantage. We show that removing
an incoming debt, or donating funds to another bank can result in a single new solution that is
strictly more favorable to the acting bank. We also show that increasing the bank’s external funds
or modifying the priorities of outgoing payments cannot introduce a more favorable new solution
into the system, but may allow the bank to remove some unfavorable solutions, or to increase its
recovery rate. Finally, we show how the actions of two banks in a simple financial system can result
in classical game theoretic situations like the prisoner’s dilemma or the dollar auction, demonstrating
the wide expressive capability of the financial system model.
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1 Introduction

The world’s financial system is a complex network where financial institutions such as banks
are connected via various kinds of financial contracts. If some financial institutions go
bankrupt, then others might suffer as well; the financial network might experience a ripple
effect. Two of the most common financial contracts are (i) debt contracts (some bank owes a
specific amount of money to another bank) and (ii) Credit Default Swaps (CDSs). A CDS
is a simple financial derivative where the payment obligation depends on the defaulting of
another bank in the system. The combination of debt contracts and CDSs turns out to
provide a simple and yet expressive model, which is able to capture a wide range of interesting
phenomena in real-life financial markets [10, 22, 18, 17].

Given a set of banks and a set of payment obligations between these banks, one of the
most natural questions is to decide which of the banks can fulfill these obligations, and
which of them cannot, and hence are in default. The problem of deciding what portion of
obligations banks can fulfill is known as the clearing problem. One can easily encounter
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a situation when this problem has multiple different solutions in a financial system. It is
natural to study how much the individual banks prefer these solutions, i.e. what is their
payoff in specific solutions of the system.

In this paper we study the problem from the point of view of a single bank v. We analyze
whether some simple actions of v can improve its situation in the network. In a financial
system, the complex interconnection between the banks can easily result in situations where
banks can achieve a better outcome in surprising and somewhat counterintuitive ways. For
example, being on the receiving end of a debt contract is generally considered beneficial,
because the bank obtains payment from this contract. However, in a system with debts and
CDSs, it is also possible that if a bank v nullifies a debt contract as a creditor, then (through
a number of intermediate steps in the network) this results in an even higher total payoff for
v. Such phenomena are crucial to understand, since if banks indeed execute these actions to
obtain a better outcome, then these opportunities will determine how the financial system
changes and evolves in the future.

We begin with a description of the financial system model recently developed by Schulden-
zucker et. al. [22], which serves as the base model for our findings. We then introduce a
more refined version of this model which also assigns priorities to each contract, and assumes
that banks have to fulfill their payment obligations in the order defined by these priorities.
We show that besides being more expressive and realistic, this augmented model still ensures
the existence of a solution.

Our main contribution is an analysis of various different actions that banks in the system
can execute in order to increase their final payoff when the system is cleared. We first show
that by removing an incoming debt (partially or entirely) or by donating extra funds to
another bank, a bank might be able to increase its payoff. We then show that investing more
external assets or reprioritizing its outgoing payments can also allow a bank to influence
the system. However, these actions do not allow a bank to introduce more favorable new
solutions, but they can allow the bank to remove unfavorable solutions from the system, or
increase its own recovery rate.

Finally, we present some simple examples where two banks try to influence the financial
system simultaneously, resulting in situations that are identical to the classical prisoner’s
dilemma or dollar auction game. This suggests that financial systems in this model can
exhibit very rich behavior, and if two or more banks execute these actions simultaneously,
this can easily lead to complex game-theoretic settings.

2 Related Work

Numerous studies on the properties of financial systems are directly or indirectly based
on the financial system model introduced by Eisenberg and Noe in [11]. This model only
assumes simple debt contracts between banks. Different studies have later also extended this
model with default costs [21], cross-ownership relations [25, 12] or so-called covered CDSs
[17]. The related literature has studied the propagation of shocks in many different variants
of these models [2, 8, 5, 4, 1, 13].

One disadvantage of these models is that they can only describe long positions of banks
on each other, meaning that a worse situation for one bank is always worse (or the same) for
any other bank. For example, if a bank is unable to pay its debt, then its creditor receives
less money, and it might not be able to pay its debts either. This already enables the model
to capture many interesting phenomena, e.g. how a small shock causes a ripple effect in the
network. However, long positions imply that there is a solution in these systems which is
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simultaneously the best for all banks. As such, the models cannot represent the opposing
interests of banks in many real-world situations, and thus these models are not so interesting
from a game-theoretic point of view.

On the other hand, a more realistic model was recently introduced by Schuldenzucker,
Seuken and Battiston [22]; we assume this model of financial systems in our paper. Besides
debt contracts, this new model also allows credit default swaps between banks, which are
essentially financial derivatives where banks are betting on the default of another bank. CDSs
are a prominent kind of derivative that played a significant role in the 2008 financial crisis
[14]; as such, they have been studied in various works in the financial literature [9, 18, 10].
While the model still remains relatively simple with these two kind of contracts, it now also
allows us to model short positions, when it is more favorable for a bank if another bank
is worse off. This increases the expressive power of the model dramatically, allowing us to
capture a wide range of properties of practical financial systems.

The work of Schuldenzucker et. al. analyzes their model from a complexity-theoretic
perspective. The authors show that in the base variant of this model, each system has at least
one solution; however, if we also assume so-called default costs, then some systems might not
have a solution at all. In case of default costs, they also describe sufficient conditions for the
existence of a solution. Their follow-up work shows that it is computationally hard to decide
if a solution exists, and also to find or approximate a solution of the system [23].

However, to our knowledge, the model has not been analyzed from a game-theoretic
perspective before. Our paper aims to lay the foundations of such an analysis, by evaluating
a variety of simple (and yet realistic) actions that allow nodes to influence the network due to
the presence of short positions. Since banks often have conflicting interests in these systems,
these actions can easily lead to interesting game-theoretical dilemmas.

The only similar game-theoretic analysis we are aware of is the recent work of Bertschinger
et. al. [6], set in the original model of Eisenberg and Noe. Instead of having institutional
rules for payment obligations in case of default, [6] assumes that banks can freely select
the order of paying their outgoing debts, or even decide to make partial payments in some
contracts. The paper discusses the properties of Nash-Equilibria and Social Optima in this
setting. While this has a connection to our observations in Section 5.3, we analyze the results
of such actions in a significantly more complex model with CDSs.

In general, measuring the sensitivity or complexity of a financial network has also been
exhaustively studied [15, 3, 5, 4]. The topic also has a major importance for financial
authorities in practice, who regularly conduct stress tests to analyze real-world financial
systems. The clearing problem, in particular, also plays an important role in the European
Central Bank’s stress test framework [7], for example.

3 Financial system model

The model introduced by [22] describes a financial network as a set of banks (i.e. nodes),
denoted by V , with different kinds of financial contracts (i.e. directed edges) between specific
pairs of banks. Banks in our examples are usually denoted by u, v or w. Every bank in the
system has a predefined amount of external assets, denoted by ev for bank v.

3.1 Debt and CDS contracts
We assume that each contract in the system is between two specific banks u and v. A
contract obliges u (the debtor) to pay a specific amount of money to bank v (the creditor),
either unconditionally or based on a specific event. The amount of payment obligation in the
contract is the weight (in financial terms: the notional) of the contract.
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While these contracts might be connected to earlier transactions between the banks (e.g.
a loan offered by v to u in the past which results in a debt contract from u to v in the
present), we assume that these initial payments are implicitly represented in the external
assets of banks, and thus the external assets and the contracts together provide all the
necessary information to describe the current state of the system.

The outgoing contracts of bank v altogether specify a given amount of total payment
obligations for v. If v is unable to fulfill all these obligations, then we say that v is in default.
In this case, we are interested in the portion of liabilities that v is still able to pay, known
as the recovery rate of v and denoted by rv. The definition implies that we always have
rv ∈ [0, 1], and v is in default exactly if rv < 1. The recovery rates of all banks is represented
together in a recovery rate vector r ∈ [0, 1]V .

The model allows two kinds of contracts between banks in the system. In case of a simple
debt contract, u has to pay a specific amount to v unconditionally, i.e. in any case. On the
other hand, credit default swaps (CDSs) are ternary financial contracts, made in reference to
a third bank w known as the reference entity. A CDS describes a conditional debt which
only requires u to pay a specific amount to v if w is in default. In particular, if the weight of
the CDS is δ and the recovery rate of w is rw, then the CDS incurs a payment obligation of
δ · (1− rw) from u to v.

In practice, CDSs often describe an insurance policy on debt contracts for the creditor
bank. If v is the creditor of a debt coming from w, and v suspects that w might go into
default and thus will be unable to pay some of its debt, then v can enter into a CDS as a
creditor with some other bank u in the system, in reference to w. If w indeed defaults and
cannot pay its liabilities to v, then v instead receives some payment from u. Nonetheless,
there could be other reasons for banks to enter CDS contracts, e.g. speculative bets about
future developments in the market.

3.2 Assets and liabilities
Since payment obligations in CDSs depend on the recovery rate of other banks, the assets
and liabilities of a bank are defined as a function of the vector r. The liability of u towards v
is the sum of payment obligations from all simple debt contracts and CDSs, i.e.

lu,v(r) = cu,v +
∑
w∈V

cwu,v · (1− rw),

where cu,v denotes the weight of the simple debt from u to v, and cwu,v denotes the weight
of the CDS from u to v with reference to w (understood as 0 if the contracts do not exist).
The total liabilities of u is then the sum of liabilities to all other banks, i.e.

lu(r) =
∑
v∈V

lu,v(r).

In contrast to this, the actual payment from u to v can be lower than lu,v(r) if u is in
default. In this case, the model assumes that u makes payments based on the principle of
proportionality, i.e. it uses all of its assets to make payments to creditors, in proportion
to the respective liabilities. In practice, this means that u can pay an ru portion of each
liability, and thus its payment to v is defined as pu,v(r) = ru · lu,v(r).

On the other hand, the assets of v is the sum of its external assets and its incoming
payments, i.e.

av(r) = ev +
∑
u∈V

pu,v(r).



P.A. Papp and R. Wattenhofer 91:5

2

2 2

u v

w

2 1

0

Figure 1 Example financial system with three banks. External assets are shown in rectangles
besides the nodes, simple debt contracts are shown as blue arrows from debtor to creditor, and CDSs
are shown as brown arrows from debtor to creditor, with a dotted line specifying the reference entity.

Recall that a recovery rate describes the portion of liabilities that a bank can pay. Hence
given the assets and liabilities of each bank v, the recovery rate rv must satisfy rv = 1 if
av(r) ≥ lv(r), and rv = av(r)

lv(r) otherwise. A vector r is called a solution (in financial terms: a
clearing vector) if it describes an equilibrium point for these equalities, i.e. if for each bank
v, rv satisfies this constraint for the assets and liabilities defined by r. Previous work has
expressed this by defining the update function f : [0, 1]V → [0, 1]V as

fv(r) =
{

1, if av(r) ≥ lv(r)
av(r)
lv(r) , if av(r) < lv(r)

,

and defining a solution as a fixed point of the update function.
In order to model the utility function of nodes in the system, we define the payoff (in

financial terms: equity) of a bank v as the amount of remaining assets after payments if a
node is not in default, and 0 otherwise, i.e. qv(r) = max(av(r)− lv(r), 0). We assume that
the aim of each bank is to maximize its own payoff.

Note that assets, liabilities and payoffs are always defined with regard to a certain recovery
rate vector r. However, in order to simplify notation, we do not show r explicitly when it is
clear from the context, and instead we simply write e.g. av or qv.

Figure 1 shows an example financial system with three banks u, v and w, with a consistent
notation to that of [22, 23]. The system has eu = 2, ev = 1 and ew = 0. There are two
debts of weight 2 in the system: one from u to v, the other from u to w. Finally, the system
contains a CDS from w to v (also of weight 2), which is in reference to bank u.

Regardless of recovery rates, bank u has liabilities lu = 4 and assets au = 2, so ru = 1
2 in

any case. This implies that u can only make payments of ru · 2 = 1 to both v and w. Given
ru = 1

2 , the CDS induces a liability of 2 · (1 − ru) = 1 from w to v. Since w receives an
incoming payment of pu,w = 1 from u, we have aw = lw = 1, so w can still pay its liability
and has a recovery rate of rw = 1. Finally, v has incoming payments pu,v = 1 and pw,v = 1,
external assets ew = 1, and no liabilities. This implies av = 3 and lv = 0, and thus rv = 1.
Hence (ru, rv, rw) = ( 1

2 , 1, 1) is the only solution of the system, providing a payoff of qu = 0,
qw = 0 and qv = 3 to the banks.

We also use two sanity assumptions introduced by previous work to exclude degenerate
cases [22]. First, we assume that no bank enters into a contract with itself or in reference to
itself. Furthermore, since CDSs are regarded as an insurance on debt, we require that if a
bank w is a reference entity of some CDS, then w is the debtor of at least one debt contract
of positive weight.
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4 Payments with priorities

While the principle of proportionality is a simple and natural assumption, financial systems
often have more complex payment rules in practice. Thus we also introduce a more general
model of payments with priorities.

That is, we assume that there is a constant number of priority classes P , and each
contract belongs to one of these priority classes. If a node v is in default, then it first spends
all its assets to fulfill its liabilities in the highest priority class. If v does not have enough
assets to fulfill all such obligations, it spends all its assets on the payments for these edges,
proportionally to the amount of liabilities. On the other hand, if v has more assets than
highest-priority liabilities, then v pays for all the liabilities in this highest priority level, and
continues using the rest of its assets for the lower-priority liabilities in a similar fashion.

More formally, in our modified model, each contract in the network receives another
priority parameter (besides its weight), which is an integer in {1, ..., P}. The value 1 denotes
the highest priority (i.e. liabilities that have to be paid first), while class P denotes the
lowermost priority level.

Given a clearing vector r, for each node v, let l(ρ)
v denote the total amount of liabilities

of v due to edges on priority level ρ. Let us also introduce the notation l(≤ρ)
v =

∑ρ
i=1 l

(i)
v .

Assume that v has total assets of av, and a liability of lv,u on priority level ρ towards another
node u. Then the payment of v to u is defined as

pv,u =


0, if av ≤ l(≤ρ−1)

v

av−l(≤ρ−1)
v

l
(ρ)
v

· lv,u, if av ∈
(
l
(≤ρ−1)
v , l

(≤ρ)
v

)
lv,u, if av ≥ l(≤ρ).

v

For an example, consider a modified version of the network in Figure 1. Assume we
now have 2 priority levels: the debt from u to w is on the higher level, while the other two
contracts are on the lower level. For the case of u, this still means lu = 4, au = 2 and ru = 1

2
as before. However, now u uses its 2 units of assets to pay its full liability to w, since this
contract has higher priority than the debt to v. Hence pu,v = 0 and pu,w = 2, resulting in
aw = 2. Since ru = 1

2 still implies lw = 1 for the CDS, the rest of the payments and recovery
rates remain unchanged: we still have pw,v = 1 and rw = rv = 1. However, the payoffs of the
banks in the system are now qu = 0, qw = 1 and qv = 2.

The main motivation for introducing payment priorities is that in many cases, it is very
close to what happens in real-world financial systems. In many countries, economic laws
provide a specific priority list for companies to follow when paying their debts in case of a
default. This might start with salaries and other payments to the employees of the company
first, then specific kind of debt contracts, and so on.

Another advantage of priorities is that we can often use them to replace so-called default
costs. Default costs (also studied in [22, 23]) are an extension of the original model, assuming
that when banks go into default, they immediately lose a specific portion of their assets.
This represents the fact that in practice, once a company goes into default, it has a range
of immediate payment obligations (e.g. employees’ wages) before it can make payments to
other banks. If we instead represent the bank’s employees as a separate node in the network,
and model this payment obligation with a high-priority edge, then this might allow us to
model some of these obligations without the use of default costs.

This observation is crucial because the introduction of default costs comes at a significant
price: intuitively speaking, default costs introduce a point of discontinuity into the update
function, and as a result, some financial systems do not have a solution at all [22]. In contrast
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to this, without default costs, systems always have at least one solution, as shown by a
fixed-point argument in [22]. We point out that the same fixed-point theorem proof also
applies in our model with payment priorities: even though the functions pu,v(r) and av(r)
become significantly more complicated, they are still continuous.

This shows that by introducing priorities, we obtain a model that is significantly more
realistic on one hand, but also ensures the existence of a solution at the same time.

I Theorem 1. Every financial system with payment priorities has at least one solution.

Proof (sketch). The proof of this claim is identical to the same proof in the original financial
system model, described in the results of [22]. The main idea of the proof is to apply the
fixed-point theorem of Kakutani [16], which ensures the existence of a fixed point of the
update function f , and thus a solution. This proof can still be applied after the introduction
of priorities, since both av(r) and lv(r) still remain a continuous function of r, and so does the
update function fv(r) = min(av(r)

lv(r) , 1), at least in the domain where lv(r) > 0. The technical
part of the proof is slightly more complicated, since one has to consider the lv(r) = 0 case
separately. For more details on this proof, we refer the reader to the work of [22]. J

5 Influencing the financial system

We now discuss a wide range of actions that a bank can execute in order to obtain a more
favorable outcome in the system. Note that except for Section 5.3 which explicitly studies
readjusting priorities, all the results also hold in the base model without priorities.

5.1 Removing an incoming debt
One of the most natural actions for a bank v would be to simply cancel a debt contract
in which v is a creditor. Since the creditor is considered the beneficiary of a debt, in some
financial/legal frameworks, the regulations may indeed allow a bank to nullify an incoming
debt contract. However, in case of a financial system with short positions, it is actually
possible that in the end, this indirectly increases the payoff of v.

I Theorem 2. Removing an incoming debt of v can increase the payoff of v.

More precisely, our claim is as follows: there exists a financial system S such that (i) S
has only one solution r, in which v has payoff qv and an incoming debt contract, and (ii)
in the modified financial system S′ obtained by removing this debt, there is again only one
solution r′, in which the payoff q′v satisfies q′v > qv.

Proof. Consider the network in Figure 2. Note that the unlabeled nodes in this system can
always pay all their liabilities, so their recovery rate is always 1. Originally, the system has
au = 1 and lu = 2, thus ru = 1

2 in any case. This implies aw = 2 · (1 − 1
2 ) = 1, and thus

rw = 1. With rw = 1, v obtains no payment from its incoming CDS at all, so the payoff of v
in this only solution is qv = pu,v = ru · 1 = 1

2 .
One the other hand, consider the system obtained by removing the debt contract from u

to v. In this case, au = lu = 1, and thus ru = 1. This means that w receives no incoming
payments at all, and with aw = 0, we have rw = 0. As a result, v obtains a payment of
2 · (1− rw) = 2 from its incoming CDS, so we have qv = 2. J

The proof shows that releasing an outgoing debt increases the recovery rate of u, which
indirectly yields an extra payoff for v. Note that v could also achieve this result by donating
funds to u, i.e. by increasing eu by 1. This is even more realistic in a legal framework: the
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Figure 2 A bank v removing one of its
incoming debts.
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Figure 3 A bank v removing a γ0 portion
of an incoming debt.

owner(s) of bank v can simply donate a specific amount to bank u, who would accept it in
hope of avoiding default. Naturally, this is only a favorable step to v if by donating x units
of money, it can increase its own payoff by more than x.

I Theorem 3. Donating external assets to another node u can be a favorable step.

More precisely, there is a system S such that (i) S has only one solution r, in which
node v has payoff qv, and (ii) in the system S′ obtained by replacing external funds of u by
e′u := eu + x, there is again only one solution r′ which satisfies q′v > qv + x.

The proof of the theorem is identical to that of Theorem 2: if v increases eu by x = 1 in
Figure 2, then again ru = 1, which ultimately provides a payoff of qv = 3 (as opposed to the
original 1

2 ). Note that in general, this action may allow banks to improve their position by
affecting a bank that is arbitrarily far in the topology of the network.

While our main focus in the paper is a theoretical analysis of these improvement techniques,
we point out that these operations are not only theoretical anomalies in the model; there
are known examples when some institutions indeed applied similar techniques in real-world
financial networks [19].

We also note that one could prove Theorems 2 and 3 on a smaller example system, where
v only has an incoming debt from u and a larger outgoing CDS in reference to u. We have
chosen this slightly larger example since it allows us to use a similar proof structure for all
our claims in this section.

Finally, if v can increase its payoff by releasing an incoming debt, it is natural to wonder
if it is always optimal for v to erase the entire debt, or whether it could be beneficial to only
reduce the amount in some cases. We show that reducing a debt to a given portion γ0 of its
original weight can also be an optimal strategy.

I Theorem 4. For each constant γ0 ∈ [0, 1], there is a financial system where bank v achieves
its maximal payoff by reducing an incoming debt by a γ0 portion of its original weight.

Proof. Consider a modified version of our previous systems, as shown in Figure 3. We show
that for any γ0 parameter, the optimal action of v in this system is to let go of γ0 portion of
the incoming debt from u, i.e. to reduce its weight to 1− γ0.

Assume that v reduces the incoming debt by a γ portion for some γ ∈ [0, 1], and let us
analyze the final payoff of v as a function of γ. Note that a choice of γ = γ0 implies that
au = lu exactly, and thus ru = 1, rw = 0 and qv = (1− γ0) + 2 = 3− γ0 as a result. Hence
we have to show that qv < 3− γ0 in any other case.



P.A. Papp and R. Wattenhofer 91:9

First consider the case when γ < γ0. Since u has lu = 1 + (1− γ) = 2− γ > 2− γ0, u is
in default. Then ru = 2−γ0

2−γ , and thus w receives an incoming payment of

aw = 2
γ0
·
(

1− 2− γ0

2− γ

)
= 2 · (γ0 − γ)
γ0 · (2− γ) .

This is a decreasing function in γ, and it equals 1 exactly for γ = 0, so aw < 1 for any γ > 0,
and thus w is in default with rw = aw. Then the amount v receives from the CDS is

2 · (1− rw) = 2 ·
(

1− 2 · (γ0 − γ)
γ0 · (2− γ)

)
= 2 · γ · (2− γ0)

γ0 · (2− γ) .

Since qv = (1− γ) · ru + 2 · (1− rw), we need to show that

3− γ0 > (1− γ) · 2− γ0

2− γ + 2 · γ · (2− γ0)
γ0 · (2− γ) .

After multiplying this by γ0 · (2− γ), expanding the brackets and removing terms that cancel
out, we are left with γ0 · (4− γ0) > γ · (4− γ0), which naturally holds since γ < γ0.

On the other hand, if γ > γ0, then au > lu, and thus ru = 1. This means rw = 0, so v
receives an amount of 2 from the CDS, and has a total payoff of (1− γ) + 2 = 3− γ, which
is again less than 3− γ0. Thus selecting γ = γ0 is indeed the best option for v. J

5.2 Investing more external assets
In light of Theorem 3, it is natural to ask if v can also increase its payoff by increasing its
own external assets. In practice, this could easily happen in multiple ways, e.g. by creating
more shares to raise capital for the bank, or by the owners of the bank investing further
funds into the bank. If increasing ev by x would allow v to increase its payoff by more than
x in the only solution, then the owners of v would indeed be motivated to invest these extra
funds into the bank.

However, somewhat surprisingly, it turns out that this is not possible in the same way as
in previous cases: we cannot increase the payoff of v by more than x in the only solution of
the system. More specifically, if a vector r′ is a solution to the new system and provides a
payoff of q′v, then r′ was already a solution of the original system with a payoff of q′v − x.

I Theorem 5. Assume that every solution of system S provides a payoff of at most qv for v.
Then setting e′v = ev + x cannot introduce a new solution r′ with q′v > qv + x.

Proof. Assume that such a new solution r′ is introduced. Since payoff is always nonnegative,
qv ≥ 0, and thus q′v > x in r′. This means that we have a′v > x+ l′v in r′. Hence, even if e′v
was reduced by x (back to its original value ev), then v could still pay all of its liabilities;
thus the same recovery vector r′ and the same payments on each edge also provide a solution
in the original system S. The payoff of v in this solution is q′v − x, which is larger than qv by
assumption. This contradicts the fact that qv was the maximal payoff for v in S. J

Naturally, if v is in default, the recovery rate of v can indeed be increased in the only
solution by injecting extra funds. However, an increase of rv does not translate to an increase
in payoff, so it is a waste for the owners of v to invest resources for this.

On the other hand, while it is not possible to produce a new, more favorable solution
for v, it is possible to invalidate solutions that are unfavorable to v. That is, if the original
financial system had multiple solutions with different payoffs for v, and v is unsure which
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Figure 4 A bank v increasing its own ex-
ternal assets.

2
δ

1 1
1

1

w

u v

2 0

0

0

1

δ

Figure 5 A bank v readjusting the priority
of its outgoing contracts.

of these solutions will be implemented by a financial authority, then it is possible that v
can inject extra funds to remove a solution where its payoff is much smaller than in other
solutions. This may allow v to increase its worst-case payoff, or its payoff in expectation (in
case of a randomized choice of solution).

I Theorem 6. Given a financial system S with two solutions, it is possible that setting
e′v = ev + x removes a solution which is unfavorable to v.

More precisely, there is a system S such that (i) S has two solutions r1 and r2, with
solution r2 satisfying qv = 0, and (ii) in the system S′ obtained by setting e′v := ev + x, the
only solution is r′ = r1, satisfying q′v > x.

Proof. Consider the system in Figure 4, which has two solutions. The design of the system
ensures ru = rv and rw = 1− ru. If rv = 1, then this implies ru = 1 and rw = 0, in which
case v has av = 100, giving a solution with qv = 99. On the other hand, if rv < 1, then it
has to satisfy

rv = 100 · (1− rw)
1 = 100 · ru = 100 · rv.

This is only satisfied if rv = 0, so this is the only other solution, providing qv = 0.
Now assume that v invests x = 1 extra funds to have ev = 1. In this case, the system

always has rv = 1, hence ru = 1 and rw = 0. This implies that v obtains a payment of
100 in the CDS, resulting in a payoff of qv = 100. Even if we subtract the extra x = 1
investment, v has an extra payoff of 99, and thus it has indeed increased its worst-case payoff
significantly. J

5.3 Readjusting priorities
Assuming payments with priorities as discussed in Section 4, it is also interesting to know if
a node can improve its situation by readjusting the priorities of its outgoing edges. That is,
in a more flexible regulation framework, banks may be allowed to choose to some extent the
order in which they fulfill their payment obligations. However, we show that similarly to the
previous case, readjusting the priorities of outgoing edges cannot introduce a better solution.

I Theorem 7. Assume that every solution of system S provides a payoff of at most qv for v.
Then redefining v’s outgoing priorities cannot introduce a new solution r′ with q′v > qv.
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Proof. Assume that such a new solution r′ is introduced. Payoff is nonnegative, so qv ≥ 0,
and thus q′v > 0. This implies that a′v > l′v in r′, i.e. v is able to pay all of its liabilities in
every outgoing contract. However, in this case, the priorities on the outgoing edges do not
matter; hence r′ is a solution of S′ regardless of how the priorities of outgoing contracts are
chosen. In particular, r′ is already a solution of the initial system S before the priorities
were reorganized, giving the same payoff q′v in S. This contradicts the fact that qv was the
maximal payoff for v in S. J

However, it is again possible that v can increase its recovery rate by readjusting priorities.
Recall that in the previous case of increasing the bank’s own external assets, we did not
explore this possibility, since it required the bank v to invest extra funds while not yielding
(the same amount of) extra payoff. However, readjusting priorities is an action that v might
be able to execute free of charge. Thus if we define the recovery rate as the secondary
objective function of a bank (i.e. even if v is in default and thus has 0 payoff, it is not
oblivious to the outcome, and prefers a higher recovery rate), then redefining priorities may
allow v to achieve a more preferred outcome without having to invest any extra funds.

I Theorem 8. Redefining v’s outgoing priorities can increase the recovery rate of v.

Proof. Consider the system in Figure 5 with a choice of δ = 1
2 . Originally, each contract

is in the same (lower) priority class. Bank v never has enough assets to pay its liabilities,
hence u is also in default. In this case, we have ru = rv and rw = 2− 2 · ru, so v receives
δ · (1− rw) = δ · (2 · rv − 1) funds from the CDS. This means that

rv = δ · (2 · rv − 1) + 1
2 ,

which, after reorganization, gives δ − 1 = 2 · (δ − 1) · rv, and thus rv = 1
2 . This is the only

solution of the system if δ 6= 1.
Now assume that v is able to raise the debt towards u to the higher priority level. In

this new system, v first fulfills its payment obligation to u, which is always possible from its
external assets. Hence ru = 1 in this case, implying rw = 0 and thus a payment of 1

2 to v in
the CDS. This implies rv = 3

4 in the only solution of the new system. J

We again point out that the previous work of Bertschinger et. al. [6] discusses a similar
phenomenon in debt-only networks, i.e. how redefining the priorities of v’s outgoing payments
can result in an increased recovery rate for v.

Finally, we show that redefining priorities can allow v to remove an unfavorable solution,
and thus increase its worst-case or expected payoff as in the previous subsection.

I Theorem 9. Given a financial system S with two solutions, redefining v’s outgoing
priorities can remove a solution which is unfavorable to v.

Proof. Consider the system in Figure 5 with a choice of δ = 100. As discussed in the proof
of Theorem 8, if rv < 1, then the only solution is rv = 1

2 . However, the large δ value now
allows another solution in the original system: if rv = 1, then ru = 1 and rw = 0, ensuring
that v indeed has enough funds to pay its liabilities. The two solutions come with payoffs of
qv = 0 and qv = 98, respectively.

Now if v raises its debt towards u to the higher priority level, then ru = 1 is always
guaranteed, so rw = 0 and thus v indeed has a payoff of 98 in the only solution. J
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6 Game-theoretic dilemmas in financial systems

Finally, we briefly show that the attempts of banks to influence the system can also easily
lead to situations that can be described by classical game-theoretic settings.

We first show an example where if two nodes simultaneously try to influence the system
to their advantage, then the resulting situation is essentially identical to the well-known
prisoner’s dilemma [20]. We then show that with some modifications to this network, we can
also obtain financial systems that represent other well-known two-player-two-strategy games,
e.g. the chicken or stag hunt game [20]. Finally, we show a different network design that
allows us to model the multiple-round setting of a dollar auction [24].

6.1 Prisoner’s dilemma

For an example of the prisoner’s dilemma, consider the financial system in Figure 6, where
banks v1 and v2 want to influence the system to achieve a better outcome. Assume that in
the current legal framework, the only step available to these banks is to completely remove
their incoming debt contract from u (as in Theorem 2); both banks can decide whether
to execute this step or not. Note that canceling a debt increases the recovery rate of u,
which indirectly implies a larger payment on the CDS for both v1 and v2, and thus can be
beneficial for both banks. Applying prisoner’s dilemma terminology, we also refer to the step
of canceling the debt as cooperation, and the step of not canceling the debt as defection.

Now let us analyze the payoff of v1 and v2 in each strategy profile. Note that rw = 1− ru,
so the payment on the CDSs for both v1 and v2 is 3 · (1− rw) = 3 · ru in any case.

If both of the nodes cooperate (i.e. both debts are removed), then u can pay its remaining
liabilities, thus ru = 1. This implies a payment of 3 on the CDS, which is the only asset of
the acting nodes in this case; hence qv1 = qv2 = 3.

If both of the nodes defect (no debt is removed), then we only have ru = 1
3 , resulting in a

payment of 1 from the CDS. However, in this case, both v1 and v2 also get a direct payment
of 5 · ru = 5

3 from the defaulting u, which adds up to a total payoff of 8
3 = 2.6̇.

Finally, assume that only one of the nodes cooperate (say, v1). With only one of the
outgoing debts removed, u will have a recovery rate of ru = 1

2 . This results in a payment of
3
2 on the CDS for both nodes. However, note that v2 still has an incoming debt contract
from u, and receives a payment of 5 · ru = 5

2 on this contract. This implies qv1 = 3
2 = 1.5,

while qv2 = 4 for the strategy profile. The symmetric case yields qv1 = 4 and qv2 = 1.5.
Since the payoffs are ordered exactly as in a prisoner’s dilemma, we obtain an essentially

equivalent situation if the two banks are not allowed to coordinate. For both players, defection
is always a dominant strategy. E.g. for v2, defection yields a payoff of 4 (instead of only 3)
if v1 cooperates, and it yields a payoff of 2.6̇ (instead of only 1.5) if v1 defects. Thus the
Nash-Equilibrium is obtained when both players defect, with qv1 = qv2 = 2.6̇. However, both
players would be better off with mutual cooperation, which gives qv1 = qv2 = 3.

Note that we only assumed for convenience that banks can only remove their entire debt;
the behavior is similar if v1 and v2 can freely select the portions γ1 and γ2 of incoming debt
that they keep. In particular, by differentiating the payoff qv1 = 3+5·γ1

1+γ1+γ2
, one can show that

defection is indeed the best response of v1 for any choice of γ2, and vice versa.



P.A. Papp and R. Wattenhofer 91:13

1 3 3

5

5

5

1

w

u

v2

v1

1 0

5

0

0

6

Figure 6 Representation of a prisoner’s
dilemma in a financial system.
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Figure 7 Representation of a stag hunt
game in a financial system.

6.2 Stag Hunt

Next, we analyze the financial system in Figure 7, which represents the coordination game
known as stag hunt [20]. We again assume that the two acting nodes v1 and v2 can only
execute the action of completely removing their incoming debt contract from u1 and u2,
respectively. As before, we refer to the decisions of removing and not removing the debt as
cooperation and defection, respectively.

Recall that canceling an incoming debt and donating funds to another bank are very
similar operations in some sense. With a slight modification to our system, we could also
present the same example game in a setting where the acting banks must decide to donate
or not donate a specific amount of funds to a bank. For our example systems, we select the
action that allows a simpler presentation.

Let us analyze the payoffs in the different strategy profiles. If both players cooperate,
then both u1 and u2 will only have a liability of 2, which implies ru1 = ru2 = 1. In this case,
w receives no payment from either of the CDSs, resulting in rw = 0. This means that both
v1 and v2 get a payment of 3 from their incoming CDSs. With their debt contracts canceled,
we get qv1 = qv2 = 3.

If both players defect and keep their debt contract, then both u1 and u2 will have a
recovery rate of only 1

2 . This implies a payment of 1 to w on both CDSs, so w avoids default
with rw = 1. This means that the acting nodes will not receive any payment on the CDS.
On their debt contracts, they both receive 1

2 · 2, i.e. qv1 = qv2 = 1.
Finally, assume that v1 cooperates but v2 defects. In this case, we end up with recovery

rates of ru1 = 1 and ru2 = 1
2 . Thus w only receives payment on the CDS that is in reference

to u2. However, this payment of 1
2 · 2 is already enough for w to fulfill its liabilities, and

hence rw = 1. Again, v1 and v2 do not receive any payment on the CDS. However, v2 still
has an incoming debt contract that ensures a payment of 1

2 · 2 = 1, while v1 has no assets at
all. Thus the solution provides qv1 = 0 and qv2 = 1. In a symmetric manner, the case when
v2 cooperates and v1 defects incurs qv1 = 1, qv2 = 0.

Thus the system represents a game where the players are incentivized to coordinate their
strategies. Both the case when both banks cooperate and when both banks defect is a pure
Nash-Equilibrium, with mutual cooperation being the social optimum. However, if a bank is
unsure whether the other bank will cooperate, it might be motivated to defect in order to
avoid the risk of getting no payoff at all.
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in a financial system.
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6.3 Chicken game

We also provide an example of the chicken game (also known as the hawk-dove game [20]),
when the pure Nash-Equilibria are obtained in the asymmetric strategy profiles.

Consider the financial system in Figure 8, and assume the acting banks v1 and v2 now
have the options to either donate 1 unit or money to another bank, or do not donate money
at all. Due to the structure of the network, the nodes are motivated to donate this 1 unit of
money to u, since this results in a payment on their incoming CDS contract. We again refer
to donating a unit of money to u as cooperation, and not donating as defection.

If both nodes defect, then u still has no assets at all, implying ru = 0. This results in
rw = 1, and hence the acting nodes receive no incoming payment, so qv1 = qv2 = 0.

If both nodes cooperate, then u has more than enough assets to pay its liabilities, resulting
in ru = 1 and rw = 0. This means that both nodes get a payment of 3 in the CDS. After
subtracting the amount they have donated, we get qv1 = qv2 = 2.

However, to ensure that u does not go into default, it is enough if only one of the two
nodes make a donation. I.e. if v1 cooperates but v2 defects, then u still has 1 asset, which
already implies ru = 1, rw = 0 and a payment of 3 to both v1 and v2 on their incoming
CDS. After subtracting the donated funds, this gives qv1 = 2 and qv2 = 3. Similarly, if v2
cooperates and v1 defects, we obtain qv1 = 3, qv2 = 2.

The payoffs show that there is no dominant strategy in the game: if v1 cooperates, then
the best response of v2 is to defect, while if v1 defects, then the best response of v2 is to
cooperate. This implies that the two pure Nash-Equilibria are obtained in the strategy
profiles when the banks choose the opposite strategies.

Note that we can easily generalize this setting to the case of more than 2 acting nodes,
resulting in the so-called volunteer’s dilemma. For any k, we can add distinct banks
v1, v2, ..., vk that are all connected to the financial network in the same way (through an
incoming CDS of weight 3 in reference to w), and all have the same two options of either
donating 1 unit of money to u or not acting at all. Note that we also have to ensure that
the (currently unlabeled) debtor of the CDSs to these acting nodes has enough resources to
make payments on these CDSs in any case, i.e. it must have external assets of at least 3 · k.

In this case, we obtain a game where again only one volunteer bank vi is required to
make a donation to u, and this already ensures a payoff of 3 for every other bank (and a
payoff of 2 for vi). In this game, the pure Nash-Equilibria are the strategy profiles where
exactly one bank cooperates, and the remaining banks all defect.
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6.4 Dollar auction
Finally, we show a representation of the dollar auction game [24] in financial systems. We
find this example network even more interesting because it builds on a threshold behavior in
the financial system model, i.e. that a minor difference in assets can lead to a completely
different outcome.

Consider the system in Figure 9, and assume that banks u′ and v′ want to influence this
system by donating extra funds to banks u or v (as in Theorem 3). Note that the payoff
of u′ and v′ depends on the recovery rates of u and v, respectively, which in turn have a
recovery rate depending on each other. Due to the design of the system, u′ prefers bank u to
be in default, and thus it wants to increase ev; similarly, v′ prefers bank v to be in default,
so it wants to increase eu. We assume that 1 unit of money is a very high amount in our
context, and thus u′ and v′ cannot donate enough to ensure that u or v pays its debt entirely
from external assets; i.e. we assume that eu, ev < 1 even after the donation of extra funds.

For a convenient analysis, we assume that there is a small minimum amount ε of funds
that u′ or v′ can donate in one step. In our example, we choose a δ value in the magnitude
of this ε, e.g. δ = 6ε.

Let us now analyze the recovery rates of u and v in the solutions of the system.

The vector ru = rv = 1 cannot be a solution, since it would imply no payment on the
incoming CDSs, and thus these recovery rates would only be possible if eu, ev ≥ 1.
If a vector ru = 1, rv < 1 is a solution, then since v receives no incoming payments, we
must have rv = ev

1 = ev. Thus bank u has assets of eu + 1− ev, which has to be at least
1 for ru = 1 to hold. Hence this is only a solution if eu + 1− ev ≥ 1, i.e. eu ≥ ev. In a
symmetric manner, rv = 1, ru = eu is only a solution if ev ≥ eu.
If ru < 1, rv < 1 in a solution, then ru = eu + 1 − rv and rv = ev + 1 − ru must hold.
This implies eu = ev, and ru + rv = 1 + eu. Hence if eu = ev, then any ru, rv with
ru + rv = 1 + eu provides a solution.

Thus as long as eu, ev < 1, the behavior of the system is as follows:
If eu < ev, then the only solution is ru = eu, rv = 1. This means qu′ = δ · (1− eu) and
qv′ = 0.
If eu > ev, then the only solution is ru = 1, rv = ev. This implies qu′ = 0 and
qv′ = δ · (1− ev).
If eu = ev, then any ru, rv ≤ 1 with ru + rv = 1 + eu is a solution of the system. In the
general case, qu′ = δ · (1− ru) and qv′ = δ · (1− rv).

This describes a setting that is very similar to a dollar auction. In the beginning, with
eu = ev = 0, we have a range of different solutions, and a choice among these depends on a
financial authority. One of the banks (say, bank u′) decides to donate a small ε amount of
funds to v; then with ev = ε > eu = 0, bank u′ receives a payment of δ · (1− 0) in the only
resulting solution. At this point, the payoff of v′ is 0; however, at the cost of donating 2 · ε
funds to u, it could achieve eu = 2ε > ev = ε, thus resulting in a single solution with a payoff
of qv′ = δ · (1− ε). Since this increases the payoff of v′ by δ · (1− ε) at the cost of only 2ε,
this is indeed a rational step for the appropriate δ and ε values. However, then u′ is again
motivated to donate 2ε more funds to increase ev over eu again, and so on.

Assuming that both u′ and v′ has at most 1
2 funds to donate, we always have eu, ev ∈ [0, 1

2 ].
This shows that e.g. if we have eu > ev, then the payoff of bank v′ is always within

qv′ = δ · (1− ev) ∈ [δ/2 , δ] = [3ε , 6ε].
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Hence in every step, it is indeed rational for v′ to donate another 2ε funds, since it increases
its payoff from 0 to at least 3ε. After a couple of rounds, u′ and v′ will have both donated
significantly more money than their payoff of at most 6ε. However, the banks are still always
tempted to execute the next donation step to mitigate their losses.
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Abstract
We investigate the power of randomness in two-party communication complexity. In particular,
we study the model where the parties can make a constant number of queries to a function with
an efficient one-sided-error randomized protocol. The complexity classes defined by this model
comprise the Randomized Boolean Hierarchy, which is analogous to the Boolean Hierarchy but
defined with one-sided-error randomness instead of nondeterminism. Our techniques connect the
Nondeterministic and Randomized Boolean Hierarchies, and we provide a complete picture of the
relationships among complexity classes within and across these two hierarchies. In particular,
we prove that the Randomized Boolean Hierarchy does not collapse, and we prove a query-to-
communication lifting theorem for all levels of the Nondeterministic Boolean Hierarchy and use it
to resolve an open problem stated in the paper by Halstenberg and Reischuk (CCC 1988) which
initiated the study of this hierarchy.
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1 Introduction

A classic example of the power of randomness in communication is the Equality function:
Alice gets an n-bit string x, Bob gets an n-bit string y, and they want to know whether x
equals y. Though Equality is maximally hard for deterministic communication [35], it can
be solved by a randomized protocol using O(1) bits of communication (in the public-coin
model) using the fingerprinting technique. Although this example (known for over 40 years)
demonstrates the power of randomized communication in the standard two-party setting,
many questions remain about the exact power of randomness in communication.
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Much is still not understood about the power of randomness in other important com-
munication settings beyond the standard two-party model. For example, in the Number-
on-Forehead (NOF) model, even for three parties, no explicit function is known to exhibit
a superpolylogarithmic separation between randomized and deterministic communication
[25] (despite the fact that linear lower bounds for randomized NOF protocols were proven
over 30 years ago in the seminal paper [3]). Another example concerns randomness in the
context of nondeterministic two-party protocols (so-called Arthur–Merlin and Merlin–Arthur
models). While strong lower bounds are known for Merlin–Arthur protocols [22] (though
even here, explicit linear lower bounds remain elusive), no strong lower bounds are known
for Arthur–Merlin protocols computing any explicit function – such bounds are necessary
for making progress on rigidity bounds and circuit lower bounds, and also important for
delegation [29, 12, 1].

We wish to highlight that even in the standard setting of plain randomized two-party
communication protocols, many fundamental questions remain poorly understood. Our
goal in this paper is to make progress on some of these questions. Much is known about
the limitations of randomness – e.g., strong (indeed, linear) lower bounds are known for
the classic Set-Disjointness function [2, 21, 30, 4], which can be viewed as showing that
coNPcc 6⊆ BPPcc (where we use cc superscripts to indicate the communication analogues
of classical complexity classes). However, surprisingly little is known about the power
of randomness. Most known efficient randomized protocols for other functions, such as
Greater-Than, can be viewed as oracle reductions to the aforementioned Equality
upper bound: Greater-Than ∈ PEquality. Until recently, it was not even known whether
BPPcc = PEquality (assuming the classes are defined to contain only total two-party functions),
i.e., whether Equality is the “only” thing randomness is good for. Chattopadhyay, Lovett,
and Vinyals [8] answered this question in the negative by exhibiting a total function that is
in BPPcc (indeed, in coRPcc) but not in PEquality (though the upper bound is still a form
of fingerprinting). Since Equality ∈ coRPcc, we have PEquality ⊆ PRPcc where the latter
class contains functions with efficient deterministic protocols that can make (adaptive) oracle
queries to any function in RPcc. In fact, [8] exhibited a strict infinite hierarchy of classes
within PRPcc, with PEquality at the bottom, and with subsequent levels having increasingly
powerful specific oracle functions.

However, it remains open whether BPPcc = PRPcc for total functions (intuitively, whether
two-sided error can be efficiently converted to oracle queries to one-sided error). It is even
open whether BPPcc ⊆ PNPcc for total functions [15], although this is known to be false if the
classes are defined to allow partial functions [26]. We obtain a more detailed understanding
of the structure of PRPcc by focusing on restricting the number of oracle queries (rather than
restricting the RPcc function as in [8]). For constants q = 0, 1, 2, 3, . . ., the class PRP[q]cc

‖
consists of all two-party functions with an efficient (polylogarithmic communication cost)
deterministic protocol that can make q many nonadaptive queries to an oracle for a function
in RPcc. Even if partial functions are allowed, it was not known whether these classes form
a strict infinite hierarchy, i.e., whether PRP[q]cc

‖ ( PRP[q+1]cc
‖ for all q. One of our main

contributions (Theorem 1) implies that this is indeed the case, even for total functions. Our
proof introduces new lower bound techniques.

With NPcc in place of RPcc,
⋃

q PNP[q]cc
‖ forms the communication version of the Boolean

Hierarchy from classical complexity, which was previously studied by Halstenberg and
Reischuk [16, 17, 18]. We also prove results (Theorem 2 and Theorem 3) that resolve a 31-
year-old open question posed in their work.

⋃
q PRP[q]cc
‖ can be viewed as the communication

version of the Randomized Boolean Hierarchy, which has not been studied explicitly in
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previous works. Overall, we obtain a complete understanding of the relationships among
the classes within and across the Nondeterministic and Randomized Boolean Hierarchies in
communication complexity. In the following subsection we discuss the relevant communication
complexity classes and describe our theorems in detail.

1.1 Background and our contributions
Forgetting about communication complexity for a moment, the Boolean Hierarchy in classical
complexity theory consists of problems that have a polynomial-time algorithm making a
constant number of queries to an NP oracle. This hierarchy has an intricate relationship
with other complexity classes, and its second level (DP) captures the complexity of certain
“exact” versions of optimization problems. It consists of an infinite sequence of complexity
classes NP(q) for q = 1, 2, 3, . . . (where NP(1) = NP and NP(2) = DP). Among the several
equivalent ways of defining these classes [34, 7, 23, 32], perhaps the simplest is that NP(q)
consists of all decision problems that can be computed by taking the parity of the answers
to a sequence of q NP problems on the given input. As illustrated in Figure 1, it is known
that these levels are intertwined with the classes PNP[q]

‖ of all decision problems solvable in
polynomial time using q nonadaptive NP queries (for constant q) [23, 32, 5]:

NP(q) ⊆ PNP[q]
‖ ⊆ NP(q + 1) and coNP(q) ⊆ PNP[q]

‖ ⊆ coNP(q + 1)

(by closure of PNP[q]
‖ under complementation). Here, coNP(q) means co(NP(q)) rather than

(coNP)(q).
Analogous to the above Nondeterministic Boolean Hierarchy, one can define the Random-

ized Boolean Hierarchy by using RP (one-sided error randomized polynomial time) instead
of NP in the definitions [6]. The analogous inclusions like in Figure 1 hold among all the
classes RP(q), coRP(q), and PRP[q]

‖ , by similar arguments. Although the (suitably defined)
Polynomial Hierarchy over RP is known to collapse to its second level, which equals BPP
[36], the Boolean Hierarchy over RP has not been widely studied.

Recall the basic (deterministic) model of communication [35, 24], where Alice is given an
input x and Bob is given an input y, and they wish to collaboratively evaluate some function
F (x, y) of their joint input by engaging in a protocol that specifies how they exchange bits of
information about their inputs. Many classical complexity classes (P, RP, NP, and so on) have
natural two-party communication analogues [2] (including the classes in the Nondeterministic
and Randomized Boolean Hierarchies). The area of structural communication complexity,
which concerns the properties of and relationships among these classes, is undergoing a
renaissance and has turned out to yield new techniques and perspectives for understanding
questions in a variety of other areas (circuit complexity, proof complexity, data structures,
learning theory, delegation, fine-grained complexity, property testing, cryptography, extended
formulations, etc.) [15]. For any classical time-bounded complexity class C, we use Ccc to
denote its communication complexity analogue – the class of all two-party functions on n
bits that admit a protocol communicating at most polylog(n) bits, in a model defined by
analogy with the classical C.

Halstenberg and Reischuk [16, 17] initiated the study of the Nondeterministic Boolean
Hierarchy in two-party communication complexity. They observed that the inclusions shown
in Figure 1 hold for the communication versions of the classes, by essentially the same
proofs as in the time-bounded setting. They also proved that NP(q)cc 6= coNP(q)cc, which
simultaneously implies that each of the inclusions is strict: NP(q)cc ( PNP[q]cc

‖ ( NP(q + 1)cc.
The communication version of the Randomized Boolean Hierarchy has not been explicitly

studied as far as we know, but as mentioned earlier it is interesting since Equality ∈ coRPcc

and many randomized protocols have been designed by reduction to this fact (such as
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P

NP(1)
NP =

coNP(1)
= coNP

PNP[1]

NP(2)
DP =

coNP(2)
= coDP

PNP[2]
‖

NP(3)

coNP(3)

PNP[3]
‖

NP(4)

coNP(4)

PNP[4]
‖

. . . PNP
‖ PNP

Figure 1 Relations between classes in the Boolean Hierarchy. Here, C1 → C2 represents C1 ⊆ C2.

Greater-Than ∈ PRPcc). What can we say about the power of a fixed number of queries
to an RPcc oracle? Our first contribution strengthens the aforementioned separation due to
Halstenberg and Reischuk.

I Theorem 1. For total functions, coRP(q)cc 6⊆ NP(q)cc for every constant q.

Since RPcc ⊆ NPcc, Theorem 1 simultaneously implies that each of the inclusions in the
Randomized Boolean Hierarchy is strict: RP(q)cc ( PRP[q]cc

‖ ( RP(q + 1)cc, and thus the
hierarchy does not collapse. Previously, no separation beyond the first level seemed to be
known in the literature. Our proof of Theorem 1 is completely different from (and more
involved than) Halstenberg and Reischuk’s proof of coNP(q)cc 6⊆ NP(q)cc, which used the
“easy-hard argument” of [20].

In [16, 17], Halstenberg and Reischuk asked whether the inclusion PNP[q]cc
‖ ⊆ NP(q + 1)cc∩

coNP(q + 1)cc is strict. When q = 0, this is answered by the familiar results that Pcc =
NPcc ∩ coNPcc when the classes are defined to contain only total functions [18], whereas
Pcc ( NPcc ∩ coNPcc (indeed, Pcc ( ZPPcc) holds when partial functions (promise problems)
are allowed. For q > 0, we resolve this 31-year-old open question by proving that the situation
is analogous to the q = 0 case.

I Theorem 2. For total functions,

PNP[q]cc
‖ = NP(q + 1)cc ∩ coNP(q + 1)cc and PRP[q]cc

‖ = RP(q + 1)cc ∩ coRP(q + 1)cc

for every constant q.

I Theorem 3. For partial functions, RP(q + 1)cc ∩ coRP(q + 1)cc 6⊆ PNP[q]cc
‖ for every con-

stant q.

Since RPcc ⊆ NPcc, Theorem 3 implies that

PNP[q]cc
‖ ( NP(q + 1)cc ∩ coNP(q + 1)cc and PRP[q]cc

‖ ( RP(q + 1)cc ∩ coRP(q + 1)cc

for partial functions. Taken together, Theorem 1, Theorem 2, and Theorem 3 complete the
picture of the relationships among the classes within and across both hierarchies, for both
total and partial functions.

1.2 Query-to-communication lifting
Our proof of Theorem 3 uses the paradigm of query-to-communication lifting [28, 11, 9, 14,
10, 13, 33]. This approach to proving communication lower bounds has led to breakthroughs
on fundamental questions in communication complexity and many of its application areas.
The idea consists of two steps:
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(1) First prove an analogous lower bound in the simpler setting of decision tree depth
complexity (a.k.a. query complexity). This step captures the combinatorial core of the
lower bound argument without the burden of dealing with the full power of communication
protocols.

(2) Then apply a lifting theorem, which translates the query lower bound into a commu-
nication lower bound for a related two-party function. This step encapsulates the
general-purpose machinery for dealing with protocols, and can be reused from one
argument to the next.

The availability of a lifting theorem greatly simplifies the task of proving certain com-
munication lower bounds, because it divorces the problem-specific aspects from the generic
aspects. The format of a lifting theorem is that if f : {0, 1}n → {0, 1} is any partial function
and g : X × Y → {0, 1} is a certain “small” two-party function called a gadget, then the
communication complexity of the two-party composed function f ◦ gn : Xn × Yn → {0, 1} –
in which Alice gets x = (x1, . . . , xn), Bob gets y = (y1, . . . , yn), and their goal is to evaluate
(f ◦gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)) – should be approximately the query complexity of
the outer function f . One direction is generally straightforward: given a query upper bound
for f , a communication upper bound for f ◦ gn is witnessed by a protocol that simulates the
decision tree for f and evaluates g(xi, yi) whenever it queries the ith bit of the input to f ;
the number of bits of communication is at most the number of queries made by the decision
tree times the (small) cost of evaluating a copy of g. The other direction is the challenging
part: despite Alice and Bob’s ability to send messages that depend in arbitrary ways on all
n coordinates, they nevertheless cannot do much better than just simulating a decision tree,
which involves “talking about” one coordinate at a time.

A lifting theorem must be stated with respect to a particular model of computation,
such as deterministic, one-sided error randomized, nondeterministic, etc., which we associate
with the corresponding complexity classes. Indeed, lifting theorems are known for P [28, 14],
RP [13], NP [11, 9], and many other classes. It is convenient to recycle complexity class
names to denote the complexity of a given function in the corresponding model, e.g., Pdt(f)
is the minimum worst-case number of queries made by any decision tree that computes f ,
and Pcc(F ) is the minimum worst-case communication cost of any protocol that computes
F . With this notation, the deterministic lifting theorem from [28, 14] can be stated as: for
all f , Pcc(f ◦ gn) = Pdt(f) ·Θ(logn) where g : [m]× {0, 1}m → {0, 1} is the “index” gadget
defined by g(x, y) = yx with m := n20. (Note that Pcc(g) = O(logn) since Alice can send
her logm-bit “pointer” to Bob, who responds with the pointed-to bit from his string.) The
index gadget has also been used in lifting theorems for several other complexity classes.

We prove lifting theorems for all classes in the Nondeterministic Boolean Hierarchy, with
the index gadget.

I Theorem 4. For every partial function f : {0, 1}n → {0, 1} and every constant q,
(i) NP(q)cc(f ◦ gn) = NP(q)dt(f) ·Θ(logn)
(ii) PNP[q]cc

‖ (f ◦ gn) = PNP[q]dt
‖ (f) ·Θ(logn)

where g : [m]× {0, 1}m → {0, 1} is the index gadget defined by g(x, y) = yx with m := n20.

Only part (ii) is needed for proving Theorem 3, but part (i) forms an ingredient in the
proof of (ii) and is of independent interest.

The most closely related lifting theorem to Theorem 4 is the one for PNP [10], corresponding
to computations that make an unbounded number of adaptive queries to an NP oracle. In
that paper, the overall idea was to approximately characterize PNP complexity in terms of
decision lists (DL), and then prove a lifting theorem directly for DLs. Briefly, a conjunction
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DL (introduced by [31]) is a sequence of small-width conjunctions each with an associated
output bit, and the output is determined by finding the first conjunction in the list that
accepts the given input. A rectangle DL is similar but with combinatorial rectangles instead
of conjunctions. The proof from [10] shows how to convert a rectangle DL for f ◦ gn into a
conjunction DL for f .

The gist of our arguments for both parts of Theorem 4 is to approximately characterize
(via different techniques than for PNP) these classes in terms of DLs with a bounded number of
alternations (how many times the associated output bit flips as we walk down the entire DL).
The DL lifting argument from [10] does not preserve the number of alternations, but we show
how it can be adapted to do this. Our techniques also yield an approximate lifting theorem
for PNP

‖ (corresponding to computations that make an unbounded number of nonadaptive
NP oracle queries), but we omit the details.

2 Preliminaries

We assume familiarity with deterministic computation in query and communication complexity
[19, 24]. Recall the following standard definitions of nondeterministic and one-sided error
randomized models:

An NPdt decision tree is a DNF formula Φ. Given an input z, the output of such a
decision tree is Φ evaluated on z. A function f is computed by Φ if f(z) = Φ(z) on all
inputs z for which f(z) is defined. The cost of Φ is the maximum width (number of
literals) in any conjunction in Φ.
An NPcc protocol is a set R of combinatorial rectangles. Given an input (x, y), the output
of such a protocol is R(x, y) := 1 iff there exists an R ∈ R containing (x, y). A two-party
function F is computed by R if F (x, y) = R(x, y) on all inputs (x, y) for which F (x, y) is
defined. The cost of R is dlog(|R|+ 1)e, which intuitively represents the number of bits
required to specify a rectangle in R or indicate that the input is in no such rectangle.
An RPdt decision tree is a distribution T over deterministic decision trees. Given an input
z, the output of such a decision tree is computed by sampling a deterministic decision
tree T from T and evaluating T (z). A function f is computed by T if for all z ∈ f−1(0),
PrT∼T [T (z) = 1] = 0 and for all z ∈ f−1(1), PrT∼T [T (z) = 1] ≥ 1/2. The cost of T is
the maximum number of bits queried in any T in its support.
An RPcc protocol is a distribution Π over deterministic communication protocols. Given an
input (x, y), the output of such a protocol is computed by sampling a deterministic protocol
Π from Π and evaluating Π(x, y). A function F is computed by Π if for all (x, y) ∈ F−1(0),
PrΠ∼Π[Π(x, y) = 1] = 0 and for all (x, y) ∈ F−1(1), PrΠ∼Π[Π(x, y) = 1] ≥ 1/2. The cost
of Π is the maximum number of bits exchanged in any Π in its support.

Let C be an arbitrary complexity class name representing a model of computation (such
as NP or RP). We let Ccc(F ) denote the communication complexity of a two-party function
F in the corresponding model: the minimum cost of any Ccc protocol computing F . We let
Cdt(f) denote the query complexity of a Boolean function f in the corresponding model: the
minimum cost of any Cdt decision tree computing f . Often we will abuse notation by having
F or f refer to an infinite family of functions, where there is at most one function in the
family for each possible input length. In this case, Ccc(F ) or Cdt(f) will be the complexity
parameterized by the input length n; we typically express this with asymptotic notation.
When written by itself, Ccc or Cdt denotes the class of all families of functions with complexity
at most polylogarithmic in n, in the corresponding model. We will always clarify whether a
class Ccc or Cdt is meant to contain partial functions or just total functions, since this is not
explicit in the notation.
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∧

¬Π4(x, y)∨

Π3(x, y)∧

¬Π2(x, y)Π1(x, y)

Figure 2 A visualization of a C(4)cc protocol, where each Πi is a Ccc protocol.

For RPcc and RPdt, the constant 1/2 in the success probability is arbitrary: by amplifica-
tion, choosing a different positive constant in the definition would only affect the complexity
of any function by a constant factor. Also note that NPdt(f) ≤ RPdt(f) for all f , and since
we defined RPcc using the public-coin model, we have NPcc(F ) ≤ RPcc(F ) +O(logn) for all
F (by decreasing the number of random bits for sampling a protocol to O(logn) and using
nondeterminism to guess an outcome that results in output 1).

2.1 Nondeterministic and Randomized Boolean Hierarchies
In the following definitions, restrict C to be either NP or RP. We will use two different but
equivalent definitions of the constituent levels of the Nondeterministic and Randomized
Boolean Hierarchies. Our “official” definition is in terms of the following “decision list
functions” (also known as “odd-max-bit”):

I Definition 5. ∆q : {0, 1}q → {0, 1} is defined inductively as follows:
∆1(z1) := z1.
If q is odd, ∆q(z1, . . . , zq−1, zq) := ∆q−1(z1, . . . , zq−1) ∨ zq.
If q is even, ∆q(z1, . . . , zq−1, zq) := ∆q−1(z1, . . . , zq−1) ∧ (¬zq).

In other words, letting ⊕ : N → {0, 1} denote the parity function, we have ∆q(z) := ⊕(i)
where i is the greatest index such that zi = 1 (or i = 0 if z is all zeros).

I Definition 6. A C(q)cc protocol is an ordered list of q many Ccc protocols Π = (Π1, . . . ,Πq).
Given an input (x, y), the output of the protocol is Π(x, y) := ∆q(Π1(x, y), . . . ,Πq(x, y)). The
cost of a C(q)cc protocol is the sum of the costs of the component Ccc protocols.

See Figure 2 for an example of such a protocol. The Nondeterministic Boolean Hierarchy
is
⋃

constant q NP(q)cc and the Randomized Boolean Hierarchy is
⋃

constant q RP(q)cc. We are
also interested in the complement classes coNP(q)cc and coRP(q)cc. As is standard, when we
write coC(q)cc we refer to the class co(C(q)cc) (that is, functions that are the negations of
functions in C(q)cc) as opposed to (coC)(q)cc (that is, where the component protocols are
coCcc protocols).

There are analogous definitions in query complexity:

I Definition 7. A C(q)dt decision tree is an ordered list of q many Cdt decision trees
T = (T1, . . . , Tq). Given an input z, define the output as T (z) := ∆q(T1(z), . . . , Tq(z)).
The cost of a C(q)dt decision tree is the sum of the costs of the component Cdt decision trees.

Our alternative definition of the Nondeterministic and Randomized Boolean Hierarchies
simply replaces ∆q with the parity function ⊕q : {0, 1}q → {0, 1}.
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I Lemma 8. For C ∈ {NP,RP}, if the definitions of C(q)cc and C(q)dt are changed to use ⊕q

in place of ∆q, it only affects the complexity measures C(q)cc(F ) and C(q)dt(f) by a constant
factor (depending on q).

Wagner [32] showed that these alternative characterizations are equivalent for the classical
Nondeterministic Boolean Hierarchy, and Halstenberg and Reischuk [17] observed the same
(up to a constant factor) in communication complexity. This latter proof uses only the
property that NPcc is closed under intersection and union; that is, if NPcc(F1),NPcc(F2) ≤ k,
then NPcc(F1 ∧ F2) and NPcc(F1 ∨ F2) are both O(k). Observe that since this property also
holds for RPcc, NPdt, and RPdt, their proof works for these models of computation as well.
In fact, in all of these models, the cost of the intersection or union of i cost-k computations
is at most ik.

We use both definitions in this paper. We found that the ∆q definition makes it easier to
prove the lifting theorems, and the ⊕q definition makes it easier to prove concrete upper and
lower bounds.

2.2 Parallel queries
In the following definitions, restrict C to be either NP or RP.

I Definition 9. A PC[q]cc
‖ protocol consists of a deterministic protocol Πdet that maps an

input (x, y) to two things: a function out : {0, 1}q → {0, 1} and an ordered list of q many Ccc

protocols (Π1, . . . ,Πq). The output is then out(Π1(x, y), . . . ,Πq(x, y)). The cost of a PC[q]cc
‖

protocol is the communication cost (depth) of Πdet plus the maximum over (x, y) of the sum
of the costs of the Ccc protocols produced by Πdet(x, y).

I Definition 10. A PC[q]dt
‖ decision tree consists of a deterministic decision tree Tdet that

maps an input z to two things: a function out : {0, 1}q → {0, 1} and an ordered list of q
many Cdt decision trees (T1, . . . , Tq). The output is then out(T1(z), . . . , Tq(z)). The cost of a
PC[q]dt
‖ decision tree is the query cost (depth) of Tdet plus the maximum over z of the sum of

the costs of the Cdt decision trees produced by Tdet(z).

The following lemma states that at each leaf of Πdet or Tdet, we can replace the q “C
oracle queries” with one “C(q) oracle query” (where some leaves may output the oracle’s
answer, while other leaves output the negation of it). This was shown in classical time-
bounded complexity using the so-called “mind-change argument” [5], and this argument can
be translated directly to communication and query complexity. For example, [17] used this
method to show that PNP[q]cc

‖ ⊆ NP(q + 1)cc ∩ coNP(q + 1)cc. We will only need to use the
result for C = NP.

I Lemma 11. For C ∈ {NP,RP}, we have PC[q]cc
‖ (F ) = Θ(PC(q)[1]cc(F )) and PC[q]dt

‖ (f) =
Θ(PC(q)[1]dt(f)) for every constant q.

3 Separations

In this section we prove our separation results (Theorem 1 and Theorem 3).

3.1 Proof of Theorem 1
I Theorem (Restatement of Theorem 1). For total functions, coRP(q)cc 6⊆ NP(q)cc for every
constant q.
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Fix any constant q. Let ⊕qNonEq : ({0, 1}n)q × ({0, 1}n)q → {0, 1} be the two-party
total function where Alice’s and Bob’s inputs are divided into q blocks x = (x1, . . . , xq) and
y = (y1, . . . , yq) with each xi, yi ∈ {0, 1}n, and which is defined by ⊕qNonEq(x, y) := 1 iff
there are an odd number of blocks i such that xi 6= yi. Note that RP(q)cc(⊕qNonEq) = O(1)
by Lemma 8 and the standard fact that RPcc(NonEq) = O(1). Thus ⊕qNonEq ∈ coRP(q)cc.
We will now prove that NP(q)cc(⊕qNonEq) = Ω(n).

Suppose for contradiction ⊕qNonEq has an NP(q)cc protocol of cost k ≤ n/2q, say
Π = (R1, . . . ,Rq) where each Ri is a nonempty set of rectangles. By Lemma 8 we may
assume the protocol outputs 1 iff the input is contained in an odd number of the rectangle
unions

⋃
R∈Ri

R for i ∈ [q], in other words, Π(x, y) := ⊕q(R1(x, y), . . . ,Rq(x, y)). Note
that, assuming Ri has cost ki, the total number of rectangles in these unions is at most∑

i |Ri| ≤
∏

i(|Ri|+ 1) ≤
∏

i 2ki = 2k.
We will iteratively construct a sequence of rectangles Qj for j = 0, . . . , q such that (i)

there are at least j many values of i for which Qj ⊆
⋃

R∈Ri
R, and (ii) Qj contains an input

where exactly j blocks are unequal. We obtain the contradiction when j = q: by (ii) some
input (x, y) ∈ Qq has xi 6= yi for all i and thus ⊕qNonEq(x, y) = 1 − ⊕(q), yet by (i) we
have Ri(x, y) = 1 for all i and thus Π(x, y) = ⊕(q), contradicting the supposed correctness
of Π.

We will actually maintain stronger invariants than the above (i) and (ii): For (i), we will
actually have for some j values of i – we assume they are 1, . . . , j for notational convenience
– some individual rectangle Ri ∈ Ri contains Qj . For (ii), Qj will actually have the following
form: for some fixed strings aj = (a1, . . . , aj) ∈ ({0, 1}n)j and bj = (b1, . . . , bj) ∈ ({0, 1}n)j

such that ai 6= bi for all i ∈ [j], and for some nonempty set Sj ⊆ ({0, 1}n)q−j , we have
Qj := {ajs : s ∈ Sj} × {bjs : s ∈ Sj}, which we abbreviate as ajSj × bjSj . Defining a
diagonal input in Qj to be one of the form (ajs, bjs) for any particular s ∈ Sj , we see that
each diagonal input has exactly j unequal blocks, as needed for (ii).

In fact, we will maintain not just that Sj is nonempty, but that it is sufficiently large.
Specifically, the deficiency of Sj , defined as D∞(Sj) := n(q − j)− log |Sj |, will be at most
(2j − 1)(2k+ 1). At the end, since (2q − 1)(2k+ 1) <∞, this guarantees that Sq will contain
at least one element from ({0, 1}n)q−q. The latter set only has one element, namely the
empty tuple, so this means Qq will contain the single input (aq, bq), which has all blocks
unequal.

We start with S0 = ({0, 1}n)q, which indeed has D∞(S0) = 0 = (20 − 1)(2k + 1), and
thus Q0 is the rectangle of all possible inputs. Now supposing we already have aj , bj ,
and Sj satisfying all the properties from the previous two paragraphs, we explain how to
obtain aj+1, bj+1 ∈ {0, 1}n and Sj+1 ⊆ ({0, 1}n)q−(j+1) so these properties again hold (with
aj+1 := ajaj+1 and bj+1 := bjbj+1).

We first observe that each diagonal input in Qj must be contained in at least one
rectangle from Rj+1 ∪ · · · ∪ Rq. This is because such an input (x, y) is already contained
in the rectangles R1 ∈ R1, . . . , Rj ∈ Rj , and these cannot be the only values of i such that
Ri(x, y) = 1 since otherwise we would have Π(x, y) = ⊕(j) while ⊕qNonEq(x, y) = 1−⊕(j),
contradicting the supposed correctness of Π. Now pick one of the (at most 2k) rectangles
from Rj+1 ∪ · · · ∪ Rq that contains the largest fraction (at least 1/2k) of diagonal inputs
from Qj , and assume this rectangle is Rj+1 ∈ Rj+1 for notational convenience. Defining
S̃j := {s ∈ Sj : (ajs, bjs) ∈ Rj+1}, we see that D∞(S̃j) ≤ D∞(Sj)+k ≤ (2j−1)(2k+1)+k.

Since Rj+1 is a rectangle, it must in fact contain the entire rectangle ajS̃j × bjS̃j . Since
ajS̃j × bjS̃j ⊆ ajSj × bjSj = Qj , by assumption it is also contained in each of R1, . . . , Rj . In
the end, we will ensure Qj+1 is a subrectangle of ajS̃j × bjS̃j , which will maintain property
(i): Qj+1 is contained in each of R1, . . . , Rj+1.
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To maintain (ii), we will find some aj+1 6= bj+1 and then define Sj+1 := {s : aj+1s ∈
S̃j and bj+1s ∈ S̃j}. Then aj+1S

j+1 ⊆ S̃j and bj+1S
j+1 ⊆ S̃j ensure that Qj+1 :=

aj+1Sj+1 × bj+1Sj+1 is indeed a subrectangle of ajS̃j × bjS̃j , as we needed for (i). The fact
that this can be done with a not-too-small Sj+1 is encapsulated in the following technical
lemma, which we prove shortly:

I Lemma 12. Consider any bipartite graph with left nodes U and right nodes V , and suppose
1 ≥ ε ≥ 2/|U |. If an ε fraction of all possible edges are present in the graph, then there exist
distinct nodes u, u′ ∈ U that have at least (ε2/2) · |V | common neighbors.

Specifically, take U := {0, 1}n and V := ({0, 1}n)q−(j+1) (so |V | = 1 if j = q−1, but that is
fine), put an edge between u ∈ U and v ∈ V iff uv ∈ S̃j , and let ε := |S̃j |/2n(q−j) = 1/2D∞(S̃j).
Notice that ε ≥ 2/|U | holds since D∞(S̃j) ≤ (2j − 1)(2k + 1) + k ≤ 2j+1k − 1 ≤ n − 1
follows from our assumption that k ≤ n/2q. Thus Lemma 12 guarantees we can pick strings
aj+1 6= bj+1 (corresponding to the nodes u, u′) such that Sj+1 (the set of common neighbors)
has size at least (ε2/2) · 2n(q−(j+1)). Thus

D∞(Sj+1) := n(q − (j + 1))− log |Sj+1| ≤ log(2/ε2) = 2D∞(S̃j) + 1
≤ 2

(
(2j − 1)(2k + 1) + k

)
+ 1 =

(
2(2j − 1) + 1

)
(2k + 1)

= (2j+1 − 1)(2k + 1)

as we needed for (ii). This finishes the proof of Theorem 1.

Proof of Lemma 12. Let du and dv denote the degrees of nodes u ∈ U and v ∈ V , and let
du,u′ denote the number of common neighbors of u, u′ ∈ U . Summing over ordered pairs
u, u′ of not-necessarily-distinct left nodes, we have∑

u,u′∈U

du,u′ =
∑

v∈V

d2
v ≥

( ∑
v∈V

dv

)2
/|V | = ε2 · |U |2 · |V |

by Cauchy–Schwarz and the assumption
∑

v∈V dv = ε · |U | · |V |. Now sampling u, u′

independently uniformly at random from U , we have

ε2 · |V | ≤ E
u,u′

[du,u′ ] ≤ E
u,u′

[du,u′ | u 6= u′] + E
u

[du] · Pr
u,u′

[u = u′]

(the conditioning is valid by the assumption |U | ≥ 2). Since Eu[du] = ε · |V | and Pru,u′ [u =
u′] = 1/|U |, rearranging gives

E
u,u′

[du,u′ | u 6= u′] ≥ ε2 · |V | − ε · |V |/|U | ≥ (ε2/2) · |V |

where the last inequality holds by the assumption 1/|U | ≤ ε/2. Thus there must be some
u 6= u′ such that du,u′ is at least this large. J

3.2 Proof of Theorem 3
I Theorem (Restatement of Theorem 3). For partial functions, RP(q + 1)cc∩coRP(q + 1)cc 6⊆
PNP[q]cc
‖ for every constant q.

To prove this result, we require the query complexity separation coRP(q)dt 6⊆ NP(q)dt.

I Definition 13. Fix any constant q. Let ⊕qGapOr : ({0, 1}n)q → {0, 1} be the partial
function where the input is divided into q blocks z = (z1, . . . , zq) having the promise that each
zi ∈ {0, 1}n is either all zeros or at least half ones (call such an input valid), and which is
defined by ⊕qGapOr(z) := 1 iff an odd number of blocks i are such that zi is nonzero.
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Note that RP(q)dt(⊕qGapOr) = O(1) by Lemma 8 and the fact that RPdt(GapOr) = 1.
The full version of this paper [27] contains a proof of the following lemma:

I Lemma 14. NP(q)dt(⊕qGapOr) = Ω(n).

We now proceed to the proof of Theorem 3.
Fix any constant q. Let Which⊕q+1GapOr : ({0, 1}2n)2(q+1) → {0, 1} be the following

partial function: The input is divided into two halves z = (z0, z1), and each half is divided
into q + 1 blocks zh = (zh

1 , . . . , z
h
q+1) having the promise that each zh

i ∈ {0, 1}2n is either all
zeros or at least a quarter ones, and moreover it is promised that the number of nonzero
blocks in z0 has the opposite parity as the number of nonzero blocks in z1 (call such an input
valid). The partial function is defined by

Which⊕q+1GapOr(z) =

{
1 if the number of nonzero blocks is odd in z0 and even in z1

0 if the number of nonzero blocks is even in z0 and odd in z1

We henceforth abbreviate Which⊕q+1GapOr as f . Note that RP(q + 1)dt(f) = O(1)
by applying the RP(q + 1)dt decision tree for ⊕q+1GapOr on z0 (adapted for the different
block length and different threshold for fraction of ones in a block). By symmetry (focusing
on z1), we also have RP(q + 1)dt(f) = O(1). Letting g : [m]× {0, 1}m → {0, 1} be the index
gadget with m := N20 where N := 4(q + 1)n, this implies that

RP(q + 1)cc(f ◦ gN ) = O(logn) and coRP(q + 1)cc(f ◦ gN ) = O(logn)

(by the “easy direction” of RP(q + 1) lifting) and thus f◦gN ∈ RP(q + 1)cc∩coRP(q + 1)cc. We
will now prove that PNP[q]dt

‖ (f) = Ω(n), which by Theorem 4.(ii) implies that PNP[q]cc
‖ (f◦gN ) =

Ω(n logn).
We show this by reduction from Lemma 14. We henceforth abbreviate ⊕qGapOr as f ′.

Supposing f has a PNP[q]dt
‖ decision tree T of cost k ≤ n/2, say with deterministic phase Tdet,

we will use it to construct an NP(q)dt decision tree T ′ of cost at most k for f ′.
By Lemma 11 we may assume that each leaf of Tdet produces a single NP(q)dt decision

tree and chooses whether to output the same or opposite answer as that decision tree. Follow
the root-to-leaf path in Tdet where all queries are answered with zero. Let ρ ∈ ({0, ∗}2n)2(q+1)

be the partial assignment with at most k ≤ n/2 zeros that records these queries (so an input
leads to this leaf iff it is consistent with ρ). Let Tleaf = (Φ1, . . . ,Φq) be the NP(q)dt decision
tree of cost at most k produced at this leaf, where each Φi is a DNF. By symmetry, we
assume (without loss of generality) that this leaf chooses to output the same answer as Tleaf.

Given any valid input z′ to f ′, we show how to map it to a valid input z to f such that
(i) f ′(z′) = f(z), (ii) z is consistent with ρ, and (iii) each bit of z either is fixed or is some
preselected bit of z′. Since (iii) implies that Tleaf(z) can be viewed as an NP(q)dt decision
tree T ′(z′) by substituting a constant or variable of z′ in for each variable of z (which does
not increase the width of any conjunction), and T ′ would correctly compute f ′ since

f ′(z′) = f(z) = T (z) = Tleaf(z) = T ′(z′)

by (i), correctness of T , (ii), and (iii) respectively, this would show that NP(q)dt(f ′) ≤ k ≤
n/2, which we know is false from Lemma 14.

To define z, we start with ρ (that is, we place zeros everywhere ρ requires, thus ensuring
(ii)). Since ρ has at most n zeros in each block (indeed, at most n/2 zeros total), we can
then place more zeros in such a way that each block now has exactly n zeros and n stars.
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Next we replace the stars in z0
q+1 with ones and replace the stars in z1

q+1 with zeros. Finally,
for each i ∈ [q], we fill in the stars of z0

i with a copy of z′i and fill in the stars of z1
i with

another copy of z′i. This construction satisfies (iii).
To verify (i), first observe that since each block of z′ is either all zeros or at least half

(n/2) ones, this ensures each block of z is either all zeros or at least a quarter (2n/4) ones.
Furthermore, if z′ has exactly ` nonzero blocks then the number of nonzero blocks is `+ 1
in z0 (since z0

q+1 is nonzero) and ` in z1 (since z1
q+1 is all zeros). Hence if f ′(z′) = 1 (` is

even) then f(z) = 1 (since ` + 1 is odd and ` is even), and if f ′(z′) = 0 (` is odd) then
f(z) = 0 (since `+ 1 is even and ` is odd). Thus f ′(z′) = f(z), and this finishes the proof of
Theorem 3.

4 Total function collapse

I Theorem (Restatement of Theorem 2). For total functions,

PNP[q]cc
‖ = NP(q + 1)cc ∩ coNP(q + 1)cc and PRP[q]cc

‖ = RP(q + 1)cc ∩ coRP(q + 1)cc

for every constant q.

In this section we will present intuition for the proof of the nondeterministic case of
Theorem 2. For the complete proof, see the full version of this paper [27].

This proof is similar to the argument for the q = 0 case (that is, for total functions,
Pcc = NPcc ∩ coNPcc). In that proof, Alice and Bob can use the fact that the rectangles
in the NPcc protocol’s 1-monochromatic covering of F are disjoint from the rectangles in
the coNPcc protocol’s 0-monochromatic covering. Specifically, if F (x, y) = 1, then (x, y)
is in some 1-rectangle, which is row-disjoint or column-disjoint from each 0-rectangle. (If
a 1-rectangle and 0-rectangle shared a row and a column, they would intersect, which is
not possible for a total function.) Therefore, Alice and Bob can repeatedly eliminate from
consideration at least half of the remaining 0-rectangles, by identifying a 1-rectangle that
either has x in its row set but is row-disjoint from at least half the remaining 0-rectangles, or
has y in its column set but is column-disjoint from at least half the remaining 0-rectangles.
If (x, y) is indeed in a 1-rectangle, then this process can always continue until there are no
0-rectangles left. If (x, y) is in a 0-rectangle, then this process will never eliminate that
rectangle, so the process will halt with a nonempty set of 0-rectangles.

We repeat a similar argument, but using the “top level” of the NP(q + 1)cc and the
coNP(q + 1)cc protocols for F as our monochromatic rectangle sets. Here we think of a
coNP(q + 1)cc protocol as computing F by applying ∆q+1 (with negations pushed to the
leaves) to the indicators for q + 1 rectangle unions. Depending on the parity of q, the
rectangle union Rq+1 queried at depth 1 of the NP(q + 1)cc protocol will correspond to either
1-monochromatic rectangles or 0-monochromatic rectangles for F . The rectangle union R′q+1
queried at depth 1 of the coNP(q + 1)cc protocol will be the opposite color of monochromatic
rectangles. Crucially, this means that no input is in a rectangle from both of these sets (as
we are assuming F is total). See Figure 3 for an illustration.

A key observation is that a deterministic protocol similar to the one used in the q = 0 case,
ran using these top-level rectangle sets, will return the correct answer under the promise that
(x, y) is in one of these rectangles. Say, for example, that (x, y) is in some rectangle in the
1-monochromatic top-level set. Then the deterministic protocol will successfully eliminate all
0-rectangles from the other top-level set, and will announce that the answer is 1. If (x, y) was
in one of the 0-rectangles, then that rectangle will never be eliminated, and so the protocol
would announce that the answer is 0.
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NP(4)cc protocol

∧

¬R4(x, y)∨

R3(x, y)∧

¬R2(x, y)R1(x, y)

coNP(4)cc protocol

∨

R′4(x, y)∧

¬R′3(x, y)∨

R′2(x, y)¬R′1(x, y)

Figure 3 If a total function has an NP(4)cc protocol and a coNP(4)cc protocol, then the rectangle
unions from the NPcc functions at depth one of each protocol are disjoint.

If (x, y) is in the top-level rectangle union for one of the protocols, then (x, y) is not in
the top-level rectangle union of the other protocol, so F (x, y) can be computed by the other
protocol but where the top level is skipped (resulting in only q many NPcc oracle queries).
This boils down to the observation that ∆q+1(z1, . . . , zq, 0) = ∆q(z1, . . . , zq).

What if (x, y) is in neither top-level rectangle union? Then we can make no guarantees
about the behavior of the deterministic protocol – it might answer 0 or 1 (which we interpret
as merely a “guess” for F (x, y)). However, in this case both protocols correctly compute
F (x, y) even if the top level is skipped. Therefore, we will still get the correct answer no
matter which guess is produced by the deterministic protocol.

5 Query-to-communication lifting theorems

I Theorem (Restatement of Theorem 4.). For every partial function f : {0, 1}n → {0, 1} and
every constant q,
(i) NP(q)cc(f ◦ gn) = NP(q)dt(f) ·Θ(logn)
(ii) PNP[q]cc

‖ (f ◦ gn) = PNP[q]dt
‖ (f) ·Θ(logn)

where g : [m]× {0, 1}m → {0, 1} is the index gadget defined by g(x, y) = yx with m := n20.

In this section we present the proof for Theorem 4.(i), as well as the necessary background.
The full version of this paper [27] contains the proof of Theorem 4.(ii). The high-level idea
of the latter proof is to convert a PNP(q)[1]cc protocol for f ◦ gn into a PNP(q)[1]dt decision tree
for f by using the P lifting theorem of Raz and McKenzie [28, 14] to handle the deterministic
phase, followed by our NP(q) lifting theorem to handle the single NP(q) oracle query.

5.1 Decision lists
The reason we call ∆q a “decision list function” is that it highlights the connection between
the Boolean Hierarchy classes and the decision list models of computation:

I Definition 15. A rectangle decision list LR is an ordered list of pairs (R1, `1), (R2, `2), . . .
where each Ri is a combinatorial rectangle, `i ∈ {0, 1} is a label, and the final rectangle in
the list contains all inputs in the domain. For an input (x, y), the output LR(x, y) is `i where
i is the first index for which (x, y) ∈ Ri. The cost of LR is the log of the length of the list.

I Definition 16. A conjunction decision list LC is an ordered list of pairs (C1, `1), (C2, `2), . . .
where each Ci is a conjunction, `i ∈ {0, 1} is a label, and the final conjunction in the list
accepts all inputs in the domain. For an input z, the output LC(z) is `i where i is the first
index for which Ci(z) = 1. The cost of LC is the maximum width of any conjunction in
the list.
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Note that the restriction on the final rectangle/conjunction is without loss of generality.
The complexity measures DLcc(F ) and DLdt(f) are the minimum cost of any rectangle/con-
junction decision list computing F or f , and the classes DLcc and DLdt contain those functions
with complexity at most polylog(n).

We now define q-alternating decision lists to have the additional restriction that the
sequence of output labels `1, `2, . . . only flips between 0 and 1 at most q times, and furthermore
the last label is 0. This restriction partitions the list into contiguous levels where all labels
in the same level are equal; without loss of generality the last level consists only of the final
“catch-all” entry. For convenience, in the list entries we replace the labels with the level
numbers themselves.

I Definition 17. A q-alternating rectangle decision list LR is an ordered list of pairs
(R1, `1), (R2, `2), . . . where each Ri is a combinatorial rectangle, `i ∈ {0, 1, . . . , q} is a level
such that `i ≥ `i+1 for all i, and the final rectangle in the list contains all inputs in the
domain and is the only rectangle at level 0. For an input (x, y), the output LR(x, y) is ⊕(`i)
where i is the first index for which (x, y) ∈ Ri. The cost of LR is the log of the length of
the list.

I Definition 18. A q-alternating conjunction decision list LC is an ordered list of pairs
(C1, `1), (C2, `2), . . . where each Ci is a conjunction, `i ∈ {0, 1, . . . , q} is a level such that
`i ≥ `i+1 for all i, and the final conjunction in the list accepts all inputs in the domain and
is the only conjunction at level 0. For an input z, the output LC(z) is ⊕(`i) where i is the
first index for which Ci(z) = 1. The cost of LC is the maximum width of any conjunction in
the list.

The complexity measures DL(q)cc(F ) and DL(q)dt(f) are the minimum cost of any q-
alternating rectangle/conjunction decision list computing F or f , and the classes DL(q)cc

and DL(q)dt contain those functions with complexity at most polylog(n).
It turns out that q-alternating decision lists are equivalent to NP(q) in both communication

and query complexity. As this follows almost immediately from the definition of ∆q, we omit
the proof here.

I Lemma 19. DL(q)cc(F ) = Θ(NP(q)cc(F )) and DL(q)dt(f) = Θ(NP(q)dt(f)) for every
constant q. Thus, DL(q)cc = NP(q)cc and DL(q)dt = NP(q)dt for partial functions.

This can be contrasted with the lemma from [10] stating that DLcc = PNPcc and DLdt =
PNPdt for partial functions.

5.2 Query-to-communication lifting for NP(q)
The big-O direction of Theorem 4.(i) follows immediately from the same fact for NP: for
every f , NPcc(f ◦ gn) = NPdt(f) ·O(logn) holds by replacing each of the nO(k) conjunctions
in a width-k DNF with mk rectangles (each of which contains inputs where the gadget
outputs satisfy the conjunction), for a total of nO(k)mk = 2k·O(log n) rectangles. In the rest
of this section we prove the big-Ω direction. By Lemma 19 it suffices to show

DL(q)cc(f ◦ gn) = DL(q)dt(f) · Ω(logn).

5.2.1 Technical preliminaries
Our proof is closely related to the PNP lifting theorem of Göös, Kamath, Pitassi, and
Watson [10], so we start by recalling some definitions and lemmas that were used in that
work. We will need to tweak some of the statements and parameters, though.
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Define G : [m]n× ({0, 1}m)n → {0, 1}n as G := gn. This partitions the input domain into
2n slices G−1(z) = {(x, y) : g(xi, yi) = zi for all i ∈ [n]}, one for each z ∈ {0, 1}n. For a
set Z ⊆ {0, 1}n, let G−1(Z) :=

⋃
z∈Z G

−1(z). Consider sets A ⊆ [m]n and B ⊆ ({0, 1}m)n.
For I ⊆ [n], we let AI := {xI : x ∈ A} and BI := {yI : y ∈ B} be the projections onto the
coordinates of I. Themin-entropy of a random variable x is H∞(x) := minx log(1/Pr[x = x]).
We say A is δ-dense if the uniform random variable x over A satisfies the following: for
every nonempty I ⊆ [n], H∞(xI) ≥ δ|I| logm (that is, the min-entropy of the marginal
distribution of x on coordinates I is at least a δ fraction of the maximum possible for a
distribution over [m]I). The deficiency of B is D∞(B) := mn− log |B|.

I Lemma 20 ([10, Lemma 11]). If A ⊆ [m]n is 0.8-dense and B ⊆ ({0, 1}m)n has deficiency
at most n4, then G(A × B) = {0, 1}n, that is, for every z ∈ {0, 1}n there are x ∈ A and
y ∈ B with G(x, y) = z.

Here the density parameter is δ = 0.8 and the deficiency is D∞(B) ≤ n4, instead of
δ = 0.9 and D∞(B) ≤ n2 as in the original. Lemma 20 still holds because our gadget size
has increased: we use m := n20, whereas [10] used m := n4. This can be verified by a simple
substitution in the proof.

The next lemma is altered somewhat from the original. For a proof, see the full version [27].

I Lemma 21 (A more general version of [10, Claim 12]). Let X ⊆ [m]n be 0.85-dense. If
A′ ⊆ X satisfies |A′| ≥ |X |/2k+1 then there exist an I ⊆ [n] of size |I| < 20(k + 1)/ logm
and an A ⊆ A′ such that A is fixed on coordinates I and 0.8-dense on all other coordinates.

5.2.2 The simulation
We exhibit an algorithm that takes a q-alternating rectangle decision list LR for f ◦ gn of cost
k, and converts it to a q-alternating conjunction decision list LC for f of cost O(k/ logn).
The argument from [10] does exactly this except without preserving the bound on the number
of alternations. In [10] the argument is formulated using a “dual” characterization of DLdt,
but it has the effect of building LC in order, obtaining each conjunction by “extracting” it
from one of the rectangles in LR. The trouble is that the rectangles are not necessarily
“extracted from” in order: after extracting a conjunction from some rectangle, the next
conjunction that gets put in LC may be extracted from a rectangle that is earlier in LR.
Thus LC may end up with more alternations than LR.

To fix this, we convert the argument to a “primal” form and argue that it still works
when we force the rectangles to be extracted from in order. The high-level view is that we
iterate through the rectangles of LR in order, and for each we extract as many conjunctions
as we can until the rectangle becomes “exhausted”, at which time we remove the remaining
“error” portion of the rectangle (by deleting few rows and columns) and move on to the next
rectangle. With this modification, the rest of the technical details from [10] continue to work,
and it now preserves the number of alternations.

At any step of this process, we let X × Y be the remaining rows and columns (after
having removed the error portion of all previous rectangles in LR), and we let Z ⊆ {0, 1}n be
the remaining inputs to f (which have not been accepted by any previous conjunctions we
put in LC). Suppose (Ri, `i) is our current entry in LR. The goal is to find a subrectangle
A×B ⊆ Ri ∩ (X × Y ) that is “conjunction-like” in the sense that G(A×B) is exactly the
inputs accepted by some small-width conjunction C, and such that among all remaining
inputs z ∈ Z, C only accepts those with f(z) = ⊕(`i). These properties would ensure it is
safe to put (C, `i) next in LC.

ICALP 2020
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Algorithm 1 Simulation algorithm.

In: LR = (R1, `1), . . . , (R2k , `2k ) and X ⊆ [m]n, Y ⊆ ({0, 1}m)n

Out: LC
1: initialize X ← X , Y ← Y, Z ← domain of f , LC ← empty list
2: for i = 1 to 2k do
3: while Z 6= ∅ do
4: for each x ∈ X, let Yx := {y ∈ Y : (x, y) ∈ Ri ∩G−1(Z)}
5: let A′ := {x ∈ X : |Yx| ≥ 2mn−n4}
6: if |A′| ≤ |X |/2k+1 then
7: update X ← X rA′

8: update Y ← Y r
⋃

x∈XrA′ Yx

9: break out of inner loop
10: else |A′| > |X |/2k+1

11: let A ⊆ A′, I ⊆ [n], α ∈ [m]I be such that:
12: |I| = O(k/ logn), AI is fixed to α, and A[n]rI is 0.8-dense
13: pick any x′ ∈ A and choose β ∈ ({0, 1}m)I to maximize |{y ∈ Yx′ : yI = β}|
14: let C be the conjunction “zI = gI(α, β)”
15: update LC by appending (C, `i) to it
16: update Z ← Z r C−1(1)

Combining Lemma 20 and Lemma 21 (using X = [m]n) suggests an approach for finding
a conjunction-like subrectangle: If A′ is not too small, we can restrict it to A that is fixed
on few coordinates I and dense on the rest (by Lemma 21). If B is also not too small (low
deficiency) and fixed on coordinates I, then G(A×B) is fixed on I and takes on all possible
values on the remaining coordinates (by Lemma 20, which still works with [n] r I in place of
[n]). In other words, G(A×B) = C−1(1) for a small-width conjunction C, as desired.

The other property we needed to ensure is that if this C is the first conjunction in LC
to accept a particular z, then f(z) = ⊕(`i) (so LC is correct). This will follow if we know
there is some (x, y) ∈ G−1(z) such that Ri is the first rectangle in LR to contain (x, y),
as that guarantees f(z) = f(G(x, y)) = (f ◦ gn)(x, y) = ⊕(`i). It turns out this will hold
automatically if A×B ⊆ Ri ∩ (X × Y ), because A×B touches the slice of every z that is
accepted by C, and all inputs (x, y) ∈ G−1(Z) that were in some Rj with j < i have already
been removed from X × Y .

Our algorithm for building LC from LR is shown in Algorithm 1. It is described as starting
from some arbitrary initial rectangle X × Y. For the purpose of proving Theorem 4.(i) we
only need to take X = [m]n and Y = ({0, 1}m)n, but when we invoke this as a component in
the proof of Theorem 4.(ii) we will need to start from some X × Y that is merely “dense ×
large” rather than the full input domain, so we state this more general version now.

I Lemma 22. If LR computes f ◦ gn on X × Y and has cost k, and if X is 0.85-dense
and D∞(Y) ≤ n3, then LC produced by Algorithm 1 computes f and has cost O(k/ logn).
Moreover, if LR is q-alternating then so is LC.

Proof. To verify the cost, just note that lines 11 and 12 always succeed by Lemma 21 (since X
is 0.85-dense and |A′| ≥ |X |/2k+1), so when a conjunction is added to LC on lines 14 and 15, it
has width |I| < 20(k+ 1)/ logm = O(k/ logn). On line 13, defining B := {y ∈ Yx′ : yI = β}
we have |B| ≥ |Yx′ |/2m|I| ≥ 2mn−n4−m|I| = 2m(n−|I|)−n4 (since x′ ∈ A ⊆ A′) and therefore



T. Pitassi, M. Shirley, and T. Watson 92:17

D∞(B[n]rI) ≤ n4 (relative to ({0, 1}m)[n]rI). Thus by applying Lemma 20 to A[n]rI

(which is 0.8-dense) and B[n]rI we have g[n]rI(A[n]rI ×B[n]rI) = {0, 1}n−|I| and therefore
G(A×B) = C−1(1). (Lemma 20 works with the same parameters even though the sets are
now on fewer than n coordinates.)

The algorithm terminates because Z always shrinks on line 16: for any y ∈ B we have
G(x′, y) ∈ Z (from the definition of Yx′) and C(G(x′, y)) = 1 (since x′I = α and yI = β and
thus G(x′, y)I = gI(α, β)).

The algorithm maintains the invariant that for all j < i, Rj ∩ (X × Y ) ∩ G−1(Z) = ∅.
This vacuously holds at the beginning, and is clearly maintained in the else case because i
stays the same and nothing gets added to X, Y , or Z. Lines 7 and 8 maintain the invariant
in the if case because the removed rows and columns cover all of Ri ∩ (X × Y ) ∩G−1(Z)
and i goes up by 1.

Next we argue that when the algorithm terminates, Z must be empty. In each iteration
of the outer loop, we throw out at most |X |/2k+1 rows and at most |X | · 2mn−n4 ≤ mn ·
2mn−n4 ≤ 2mn−n3

/2k+1 ≤ |Y|/2k+1 columns. (We throw out columns in Yx for x 6∈ A′, all
of these Yx had the property |Yx| < 2mn−n4 , we do this for at most |X | values of x, and
n4−n logm ≥ n3 +k+1.) Since the outer loop executes 2k times, by the end at most half the
rows of X and half the columns of Y have been discarded, so |X| ≥ |X |/2 and |Y | ≥ |Y|/2.
This means X is essentially as dense as X (only a −1 loss in any H∞(xI)) and Y is essentially
as low-deficiency as Y (only a +1 loss in D∞). Thus Lemma 20 (with a tiny perturbation of
the parameters, which does not affect the result) shows that G(X × Y ) = {0, 1}n. However,
the last rectangle that is processed, R2k , contains all of X ×Y by definition (since we assume
LR is correct on X ×Y). So, the invariant guarantees (X × Y )∩G−1(Z) = ∅ at termination.
This can only happen if G−1(Z) = ∅ and thus Z = ∅ (since G(X × Y ) = {0, 1}n).

We now argue that LC is correct. Consider any z in the domain of f . Since Z is
empty at termination, z must be accepted by some conjunction in LC. Let (C, `i) be the
first entry such that C(z) = 1, so z ∈ Z during the iteration of the inner loop when this
entry was added. Since in this iteration we have G(A × B) = C−1(1) and z ∈ C−1(1),
there is some (x, y) ∈ A × B with G(x, y) = z. Since A × B ⊆ Ri we have (x, y) ∈ Ri.
Since A × B ⊆ X × Y , we have (x, y) ∈ (X × Y ) ∩ G−1(Z) and thus (x, y) cannot be in
Rj for any j < i since Rj ∩ (X × Y ) ∩ G−1(Z) = ∅ by the invariant. In summary, Ri is
the first rectangle in LR that contains (x, y). By correctness of LR on X × Y, we have
⊕(`i) = (f ◦ gn)(x, y) = f(G(x, y)) = f(z). Thus LC also correctly outputs ⊕(`i) on input z.

The “moreover” part is straightforward to verify: the levels assigned to conjunctions in
LC come from the levels assigned to rectangles in LR (namely {0, . . . , q}), in the same order
(which is non-increasing). J
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Abstract
Let H be a t-regular hypergraph on n vertices and m edges. Let M be the m× n incidence matrix
of H and let us denote λ = maxv∈1⊥

1
‖v‖‖Mv‖. We show that the discrepancy of H is O(

√
t+ λ).

As a corollary, this gives us that for every t, the discrepancy of a random t-regular hypergraph with
n vertices and m ≥ n edges is almost surely O(

√
t) as n grows. The proof also gives a polynomial

time algorithm that takes a hypergraph as input and outputs a coloring with the above guarantee.
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1 Introduction

The main aim of this paper is to give a spectral condition that is sufficient for the discrepancy
of a regular hypergraph to be small. This is proved via the partial coloring approach
while using some combinatorial properties of the hypergraph that are given by this spectral
condition. This immediately implies, via an old proof technique of Kahn and Szemerédi, that
for every t, the discrepancy of a random t-regular hypergraph on n vertices and m ≥ n edges
is almost surely O

(√
t
)
. Previously, a result of this form was proved by Ezra and Lovett [11]

who show that the discrepancy of a random t-regular hypergraph on n vertices and m ≥ n
edges is O(

√
t log t) almost surely as t grows. More recently, Bansal and Meka [3] showed

that for random t-regular hypergraphs on n vertices and m edges, the discrepancy is O
(√
t
)

almost surely provided t = Ω
(
(log logm)2). To state our result formally, we make some

definitions.
Let H = (V,E) be a hypergraph, with V as the set of vertices, and E ⊆ 2V as the set of

(hyper)edges. Let X = {χ : V → {±1}}, be the set of ±1 colorings of V , and for χ ∈ X , and
e ∈ E, denote χ(e) :=

∑
v∈e χ(v). The discrepancy of H, denoted by disc(H) is defined as:

disc(H) := min
χ∈X

max
e∈E
|χ(e)|.

We call a hypergraph t-regular if every vertex is present in exactly t hyperedges. These
will be the main focus of this paper. For a hypergraph H, let M = M(H) be the |E| × |V |
incidence matrix of H, i.e., M has rows indexed by E, columns indexed by V , and entries
are M(e, v) = 1 if v ∈ e and 0 otherwise. We will use ‖ · ‖ to denote the Euclidean norm
throughout the paper. Our main result is the following:
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I Theorem 1. Let H be a t-regular hypergraph on n vertices and m edges with M as its
incidence and let λ = maxv⊥1,‖v‖=1 ‖Mv‖. Then

disc(H) = O
(√

t+ λ
)
.

Moreover, there is an Õ((max{n,m})7) time algorithm that takes the hypergraph H as input
and outputs the coloring with the above guarantee.

1.1 Background
The study of hypergraph discrepancy, which seems to have been first defined in a paper
of Beck [4], has led to some very interesting results with diverse applications (see, for
example [18, 9]). One of the most interesting open problems in discrepancy theory is what is
commonly known as the Beck-Fiala conjecture, regarding the discrepancy of general t-regular
hypergraphs.

I Conjecture 2 (Beck-Fiala conjecture). For a t-regular hypergraph H, we have

disc(H) = O(
√
t).

Although this conjecture is usually stated for bounded degree hypergraphs (as opposed to
regular ones), this is not really an issue. One can always add hyperedges containing just a
single vertex and make it regular, which increases the discrepancy of the original hypergraph
by at most one. Beck and Fiala [5] also proved that for any t-regular hypergraph H,

disc(H) ≤ 2t− 1.

This is more commonly known as the Beck-Fiala theorem. Essentially the same proof
can be done a bit more carefully to get a bound of 2t− 3 (see [6]). Given Conjecture 2, it is
perhaps surprising that the best upper bound, due to Bukh [8], is “stuck at” 2t− log∗ t for
large enough t.

It is possible that one of the reasons that the discrepancy upper bounds are so far away
from the conjectured bound (assuming it’s true) is our inability to handle many “large”
hyperedges. Indeed, if one is offered the restriction that each hyperedge is also of size O(t)
(regular and “almost uniform”), then a folklore argument using the Lovász Local Lemma
shows that the discrepancy is bounded by O(

√
t log t). The proof of Theorem 1 also relies on

being able to avoid dealing with large edges (which are few, if any, in number).

1.2 Discrepancy in random settings
Motivated by the long-standing open problem of bounding discrepancy of general t-regular
hypergraphs, Ezra and Lovett [11] initiated the study of discrepancy of random t-regular
hypergraphs. By random t-regular hypergraph, we mean the hypergraph sampled by the
following procedure: We fix n vertices V and m (initially empty) hyperedges E. Each vertex
in V chooses t (distinct) hyperedges in E uniformly and independently to be a part of. They
showed that if m ≥ n, then the discrepancy of such a hypergraph is almost surely O(

√
t log t)

as t grows. The proof idea is the following: First observe that most of the hyperedges have
size O(t). For the remaining large edges, one can delete one vertex from every hyperedge
and make them pairwise disjoint. This allows one to apply a folklore Lovász Local Lemma
based argument, but with a slight modification which makes sure that the large edges have
discrepancy at most 2. More recently, Bansal and Meka [3] reduced the discrepancy bound to
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O(
√
t) almost surely as long as t = Ω

(
(log logn)2) for all m and n. A corollary of Theorem 1

states that one can get the bound of O(
√
t) for every (not necessarily growing) t = t(n) as n

grows and m ≥ n. More formally,

I Corollary 3. There is an absolute constant C > 0 such that the following holds: Let Ht be
a random t-regular hypergraph on n vertices and m ≥ n hyperedges where t = o(

√
m). Then,

P
(

disc(Ht) ≤ C
√
t
)
≥ 1− o(1)

The theorem that implies Corollary 3 from Theorem 1 is the following:

I Theorem 4. Let M be the incidence matrix of a random t-regular set system on n vertices,
where t = o(

√
m), and m ≥ n edges. Then with probability at least 1− nΩ(1),

max
v⊥1,‖v‖=1

‖Mv‖ = O
(√

t
)
.

A couple of remarks here: First, observe that it suffices to prove Theorem 4 for m = n.
Indeed, let M and N be random m×m and m× n random matrices (m > n) respectively
distributed by choosing t random 1’s in each column independently. Notice that the distribu-
tion of N is exactly the same as that of the first n columns of M . Then, setting Mn to be
the matrix consisting of the first n columns of M , we observe that λ(Mn) ≤ λ(M). Second,
we point out that t = o(

√
m) is just a limitation of the proof technique in [13] (also see [7])

that we use to prove this theorem. Although we believe that Theorem 4 should hold for all
t < m, we do not make any attempt to verify this, especially since the result of Bansal and
Meka [3] already takes care of the discrepancy of random hypergraphs in this case. Although
many variations of Theorem 4 are known and standard, one needs to verify it for our setting
too. It should come as no surprise that the proof follows that of Kahn and Szemerédi’s 1

in [13], which is postponed to Section 3.2.

1.3 The partial coloring approach
Most of the bounds and algorithms on hypergraph discrepancy proceed via a partial coloring
approach. In general, a partial coloring approach [4] works by coloring a fraction of the (still
uncolored) vertices in each step, while ensuring that no edge has discrepancy more than the
desired bound. Perhaps the most famous successful application of this is Spencer’s celebrated
“six standard deviations” result [22], which gives a bound of 6

√
n for any hypergraph on n

vertices and n edges. The original proof of Spencer was not algorithmic, i.e., it did not give
an obvious way to take as input a hypergraph on n vertices and n edges, and efficiently
output a coloring that achieves discrepancy O(

√
n). In fact, Alon and Spencer([1], §14.5)

suggested that such an algorithm is not possible. However, this was shown to be incorrect
by Bansal [2] who showed an efficient algorithm to do the same task. However, the analysis
of this algorithm still relied on the (non-algorithmic) discrepancy bound of 6

√
n. Later,

Lovett and Meka [17] gave a “truly constructive” proof of the fact that the discrepancy is
O(
√
n). This proof did not rely on any existing discrepancy bounds and the novel and simple

analysis proved to be extremely influential. The proof of Theorem 1 will rely on a somewhat
technical feature of the main partial coloring from this work. More recently, a result due to
Rothvoss [21] gives a simpler proof of the same O(

√
n) bound, which is also constructive,

and more general.

1 [13] is combination of two papers that prove the same result upto a constant factor: one by Friedman
using the so-called trace method, and the other by Kahn and Szemerédi using a more combinatorial
approach which is flexible enough to be easily adapted here.
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1.4 Proof sketch

The proof of Theorem 1 is proved via the aforementioned partial coloring approach. The main
source of inspiration is a later paper of Spencer [23], which computes the discrepancy of the
projective plane (i.e., the hypergraph where the vertices are the points and the hyperedges
are the lines of PG(2, q)) upto a constant factor. A more general bound was also obtained by
Matoušek [19], who upper bounds the discrepancy of set systems of bounded VC-dimension
(note that the projective plane has VC-dimension 2).

We also use the aforementioned result of Lovett and Meka [17] heavily, in particular, the
partial coloring theorem. Informally, this says that one can “color” roughtly an α fraction of
the hypergraph with real numbers in [−1, 1] so that (1) at least half the vertices get colors 1
or −1 and (2) every edge e has discrepancy O(

√
e). We now sketch the proof.

Consider the following “dream approach” using partial coloring: In every step, one colors
an α fraction of vertices. Suppose that at the start, every edge has size O(t) and that each
step of partial coloring colors exactly an α fraction of the remaining uncolored vertices
(i.e., these vertices are colored from {−1, 1}). Then the discrepancy of an edge e is at most
O
(∑

i

√
αi|e|

)
= O(

√
t). Of course, this is too much to hope for, since some edges can

potentially be large, and more importantly, there is no guarantee on how much of each edge
gets colored in this partial coloring procedure.

This is precisely where the spectral condition on M saves us. One can establish standard
combinatorial “pseudorandomness” properties of H in terms of λ. In particular, if λ is small,
then an α fraction of V (H) take up an α fraction of most edges. This means, intuitively,
that in the partial coloring approach, if one colors an α fraction of the vertices, then most
of the edge sizes will have also reduced by an α fraction. The partial coloring method of
Lovett and Meka (and, curiously, none of the older ones) also allows one to color in such a
way that Ω(n) edges can be made to have discrepancy zero in each step. This allows one to
maintain that in every round of the partial coloring, the edges that don’t behave according
to the “dream approach”, i.e., those that are too large (i.e., Ω(t)) or don’t reduce by an α
fraction can be made to have discrepancy zero in the next step. Thus, most other edges
reduce in size by an α fraction. This lets one not have to deal with the discrepancy of these
“bad” edges until they become small.

2 Proof of Theorem 1

2.1 Preliminaries and notation

We will need the aforementioned partial coloring theorem due to Lovett and Meka:

I Theorem 5 ([17]). Given a family of sets M1, . . . ,Mm ⊆ [n], a vector x0 ∈ [−1, 1]n,
positive real numbers c1, . . . , cm such that

∑
i∈[m] exp

(
−c2i /16

)
≤ n/16, and a real number

δ ∈ [0, 1], there is a vector x ∈ [−1, 1]n such that:
1. For all i ∈ [m], 〈x− x0,1Mi

〉 ≤ ci
√
|Mi|.

2. |xi| ≥ 1− δ for at least n/2 values of i.

Moreover, this vector x can be found in Õ((m+ n)3δ−2) time.

Lovett and Meka initially gave a randomized algorithm for the above. It has since been
made deterministic [16].
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2.1.1 A technical remark

The reason we use the Lovett-Meka partial coloring, as opposed to Beck’s partial coloring
is not just the algorithmic aspect that the former offers, but also because it also offers the
technical condition:∑

i∈[m]

exp
(
−c2i /16

)
≤ n/16.

This means one can set Ω(n) edges to have discrepancy 0. To compare, we first state
Beck’s partial coloring lemma (for reference, see [18]):

I Theorem 6 (Beck’s partial coloring lemma). Given a family of sets M1, . . . ,Mm ⊆ [n], and
positive real numbers c1, . . . , cm such that

∑
i∈[m] g(ci) ≤ n/5, where

g(x) =
{
e−x

2/9 x > 0.1
ln(1/x) x ≤ 0.1

there is a vector x ∈ {−1, 0, 1}n such that:
1. For all i ∈ [m], 〈x,1Mi

〉 ≤ ci
√
|Mi|.

2. |xi| = 1 for at least n/2 values of i.

If one ignores the algorithmic aspect, Beck’s partial coloring, while assigning vertices
to {−1, 1, 0} (instead of [−1, 1], thus making it a “partial coloring” in the true sense) only
guarantees that Ω

(
n

log t

)
edges can be made to have discrepancy 0. Although [17] did not

really need this particular advantage, they do mention that this feature could potentially
be useful elsewhere. This seemingly subtle advantage turns out to be crucial in the proof
of Theorem 1, where we set Ω(n) edges (that will be called “bad” and “dormant” edges) to
have discrepancy 0.

Henceforth, let V and E denote the vertices and edges of our hypergraph respectively. We
will need a “pseudorandomness” lemma that informally states that an α fraction of vertices
takes up around an α fraction of most edges:

I Lemma 7. For any S ⊆ V with |S| = αn where α ∈ (0, 1) and a positive real number
K, there is a subset E′ ⊂ E of size at most K−2 · αn such that for every e 6∈ E′, we have
||e ∩ S| − α|e|| ≤ Kλ, where λ = maxv⊥1,‖v‖=1 ‖Mv‖.

Proof. Consider a vector v ∈ Rn where v(i) = 1− α for i ∈ S and −α otherwise. Clearly,
v ∈ 1⊥ and so

‖Mv‖2 ≤ λ2 · ‖v‖2 = λ2α(1− α)n. (1)

On the other hand, Mv(e) = (1− α)|e ∩ S| − α|e \ S| = |e ∩ S| − α|e|, and so

‖Mv‖2 =
∑
e

(|e ∩ S| − α|e|)2. (2)

Putting (1) and (2) together, we get that there at most K−2 · αn edges e such that
||e ∩ S| − α|e|| ≥ Kλ. J
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Since this proof is via partial coloring, let us use i to index the steps of the partial coloring.
For a partial coloring χ : V → [−1, 1], we call the set of vertices u for which |χ(u)| < 1 as
uncolored. Let us use V i to denote the still uncolored vertices at step i and for an edge
e ∈ E, let us denote ei := e ∩ V i. In every step, we invoke Theorem 5 setting δ = 1

n to get
the partial coloring, so will have |V i| ≤ 2−in. Let t′ := max{t, λ} 2.

We call an edge dormant at step i if |ei| > 100t′. Let us call an edge bad in step i if∣∣|ei| − 2−i|e|
∣∣ ≥ 10λ. Edges that are neither dormant not bad are called good. Finally, we

say that e is dead in step i if |ei| ≤ 100λ.
Informally, the roles of these sets are as follows: In the partial coloring step i, we ensure

that an edge e edges only get nonzero discrepancy if it is good, i.e., if |ei| is close to what
is expected and is not too large. Even dead edges can be good or bad, and we will not
distinguish them while coloring the vertices. However, in the analysis we will break the total
discrepancy accumulated by e into two parts: Before it is dead and after. The main point is
to bound the discrepancy gained before it becomes dead. After it becomes dead, we simply
bound the discrepancy incurred since by its remaining size, i.e., at most 100λ.

First, we make two easy observations:

B Claim 8. If |V i| = 2−in, then at step i, the number of dormant edges is at most 1
1002−in.

Proof. This is just Markov’s inequality, using the fact that the average edge size is
|V i|t
m ≤ |V

i|t′
m . C

B Claim 9. If |V i| = 2−in, then at step i, the number of bad edges is at most 1
1002−in.

Proof. This is by setting K = 10 and α = 2−i in Lemma 7. C

2.2 Partial coloring using Lemma 7

Proof of Theorem 1. Setting V 0 = V , we proceed by partial coloring that colors exactly half
the remaining uncolored vertices at each stage. For a step i ≥ 0, suppose that |V i| = 2−in.
We will describe a partial coloring given by χi : V i → [−1, 1] that colors half the vertices of
V i.

For ` ≥ 1, let A` := {e ∈ E | |e| ∈ [100 ·2`t′, 100 ·2`+1t′)}, and A0 := {e ∈ E | |e| < 200t′}.
Observe that the edges in A` for ` ≥ 1 are either bad or dormant in steps i < `. Also observe
that |A`| ≤ 2−`

100n for ` ≥ 1, Define constants {ce}e∈E as follows:

ce =


4
√

2 ln
( 1

2`−i
)

if e ∈ A` for ` ≥ 1 is good

4
√

ln
(

200t′
2−i|e|

)
if e ∈ A0 is good

0 otherwise.

2 In fact, we may assume w.l.o.g. that λ ≤ t and so t′ = t since in the other case, the Beck-Fiala Theorem
gives us that the discrepancy is O(t) = O(λ). However, this is not needed and the techniques here also
handle this case with this minor change.
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Let B = Bi and D = Di denote the bad and dormant edges respectively. We handle the
edges in A0 and E \A0 separately. For edges in E \A0, we have:

∑
e∈E\A0

e−
c2
e

16 ≤
∑

e∈E\(B∪D∪A0)

e−
c2
e

16 + |B|+ |D|

≤
∑

1≤`≤i

∑
e∈A`

e2 ln(2`−i) + 2−in
50

=
∑

1≤`≤i
|A`|22(`−i) + 2−in

50

≤ n

100
∑
`≤i

2−` · 22`−2i + 2−in
50

= 2−in
100

∑
`≤i

2`−i + 2−in
50

≤ 2−in
25 .

The second inequality above follows from Claim 8 and Claim 9. For the other case, we
have

∑
e∈A0

e−
c2
e

16 ≤
∑
e∈A0

e
ln
(

2−i|e|
200t

)
= 2−i

200
∑
e∈E

|e|
t′

= 2−in
200 .

Here we have used the fact that since the hypergraph is t-regular, we have
∑
e∈E |e| =

nt ≤ nt′. Putting these together, we have

∑
e∈E

e−
c2
e

16 ≤ 2−in
200 + 2−in

50 ≤ |V
i|

20 .

Therefore, Theorem 5 guarantees that there is a fractional coloring χi : V i → [−1, 1] such
that
1. |χi(v)| ≥ 1− 1

n for at least half of V i.
2. All the bad and dormant edges get discrepancy 0.
3. A good and live edge e gets discrepancy at most ce

√
|ei|.

Finally, we pick an arbitrary subset of all the vertices v such that |χi(v)| ≥ 1 − 1
n of

size exactly (1/2) · |V i| and round them to the nearest integer. It is easy to see that since
every edge has size at most n, this rounding, over all the steps of the partial coloring adds
discrepancy of at most 1 for every edge. This completes step i of the partial coloring and we
are left with 2−(i+1)n uncolored vertices for the next step.

For an edge e, let i be a round where e had incurred non-zero discrepancy and ei was
not dead. Since only good edges incur nonzero discrepancy, |ei| = 2−i|e| ± 10λ. Since e is
also not dead at step i, we must have that |ei| ≥ 100λ. This gives us that 2−i|e| ≥ 90λ and
therefore (1/2) · 2−i|e| ≤ |ei| ≤ 2 · 2−i|e|. So, if e ∈ A` where ` ≥ 1, the total discrepancy
incurred by e at step i without the rounding step is at most

4
√

2 ln(1/2j−i)ei ≤ 8
√

200 ln(1/2`−i) · (2`−i) · t′.
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Here, we have used the fact that |e| ≤ 100 · 2`+1t′. If e ∈ A0, the discrepancy incurred by
e at step i without the rounding is at most

4

√
2 ln

(
200t′
2−i|e|

)
ei ≤ 8

√
200 ln(1/2−i) · (2−i) · t′.

Therefore, the discrepancy of an edge e ∈ A` for ` ≥ 0 until it becomes dead is at most∑
i≥`

8
√

200 ln(1/2`−i) · (2`−i) · t′ = O(
√
t′) = O(

√
t+ λ).

Here we have used the fact that t′ = max{t, λ}. Finally, rounding the color of every vertex
to its nearest integer increases the discrepancy by at most 1. When the edge becomes dead,
we simply bound its discrepancy by its size O(λ).

It remains to check that each of the O(logn) stages of partial coloring can be done in
time Õ((m+ n)3n2), and the constants {ce}e∈E take Õ(mn) time to compute at each stage,
thus establishing the algorithmic part. J

3 Proof of Theorem 4

3.1 A martingale inequality
We will state a martingale inequality that we will use in the proof of Theorem 4. A sequence
of random variables X0, X1, . . . , Xn martingale with respect to another sequence of random
variables Z0, Z1, . . . , Zn such that for all i ∈ [n − 1], we have Xi = fi(Z1, . . . Zi) for some
function fi, and E[Xi+1|Zi, . . . , Z1] = Xi.

A martingale is said to have the C-bounded difference property if |Xi+1 −Xi| ≤ C.
The variance of a martingale is the quantity:

σ2 =
∑

i∈[n−1]

sup
(Z1,...,Zi)

E[(Xi+1 −Xi)2|Z1, . . . , Zi].

We get good large deviation inequalities for martingales with bounded differences and vari-
ances (see, for example, [10], Theorem 6.3 and Theorem 6.5). For a martingaleX0, X1, . . . , Xn

with respect to Z0, Z1, . . . , Zn, with the C-bounded difference property and variance σ2, we
have

P(|Xn −X0| ≥ λ) ≤ e−
t2

2(σ2+Cλ/3) . (3)

3.2 Proof of Theorem 4
We shall now prove Theorem 4. Recall that we only need to prove the case where m = n,
As mentioned before, we adapt the proof technique of Kahn and Szemerédi for our random
model (also see [7]). We have that the regularity is t� m1/2.

We shall prove that for every x, and y such that ‖x‖ = ‖y‖ = 1 and x ⊥ 1, we have that
|ytMx| ≤ O(

√
t). First, we “discretize” our problem by restricting x to belong to the ε-net

T :=
{
x ∈

(
ε√
m
Z
)m
| ‖x‖ ≤ 1 and x ⊥ 1

}
and y belonging to

T ′ :=
{
y ∈

(
ε√
m
Z
)m
| ‖y‖ ≤ 1

}
for a small enough constant ε.
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B Claim 10 ([13], Proposition 2.1). If for every x ∈ T , and y ∈ T ′, we have that ‖ytMx‖ ≤ α,
then we have that for every z ∈ Rm such that ‖z‖ = 1, we have that ‖Mz‖ ≤ (1− 3ε)−1α.

Proof. Let z = argmax‖z‖=1 ‖Mz‖. We shall use the fact that there are x ∈ T , and y ∈ T ′

such that ‖x− z‖ ≤ ε, and
∥∥∥y − Mz

‖Mz‖

∥∥∥ ≤ ε. With this in mind, we have:

‖Mz‖ =
〈

Mz

‖Mz‖
,Mz

〉
= 〈y + w1,M(x+ w2)〉

= ytMx+ 〈w1,Mx〉+ 〈y,Mw2〉+ 〈w1,Mw2〉.

Where |w1|, |w2| ≤ ε. We note that each of the terms 〈w1,Mx〉 and 〈y,Mw2〉, and
〈w1,Mw2〉 are upper bounded by ε‖Mz‖, and 〈w1,Mw2〉 ≤ ε2‖Mz‖. Combining this, and
using the fact that ε2 ≤ ε, we have

‖Mz‖ ≤ (1− 3ε)−1ytMx ≤ (1− 3ε)−1α. C

So now, will need to only union bound over T ∪ T ′. It is not hard to see that each of
these has size at most |T |, |T ′| ≤

(
Cv
ε

)m for some absolute constant Cv.
Indeed, we have:

|T | ≤
(√

m

ε

)m
Vol {x ∈ Rm | ‖x‖ ≤ 1 + ε}

≤
(√

m

ε

)m
· 1√

πm

(
2πe
m

)m/2
(1 + ε)m

≤
(
Cv
ε

)m
for some constant Cv.
We split the pairs [m]× [m] = L ∪ L where L := {(u, v) | |xuyv| ≥

√
t/m}, which we will

call “large entries” and write our quantity of interest:∑
(u,v)∈[m]×[m]

xuMu,vyv =
∑

(u,v)∈L

xuMu,vyv +
∑

(u,v)∈L

xuMu,vyv.

For the large entries: For a set of vertices A ⊂ [m] and a set of edges B ⊂ [m], let
us denote I(A,B) to be the number of vertex-edge incidences in A and B. Let us use
µ(A,B) := E[|I(A,B)|].

I Lemma 11. There is a constant C such that, for every set A of vertices and every set B of
hyperedges where |A| ≤ |B|, we have that with probability at least 1−m−Ω(1), I := |I(A,B)|
and µ := µ(A,B) satisfy at least one of the following:
1. I ≤ Cµ
2. I log (I/µ) ≤ C|B| log (m/|B|).

This lemma is sufficient to show that the large pairs do not contribute too much, as
shown by the following lemma, which is the main part of the proof of Kahn and Szemerédi.

I Lemma 12 ([13], Lemma 2.6, [7], Lemma 17). If the conditions given in Lemma 11 are
satisfied, then

∑
(u,v)∈L |xuMu,vyv| = O(

√
t) for all x, y ∈ T .

Notice that since we are bounding
∑

(u,v)∈L |xuMu,vyv| = O(
√
t), which is much stronger

than what we really need, it is okay to consider both x and y from T .
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Proof of Lemma 11. First, we observe that it is enough to consider |B| ≤ m/2, since
otherwise, |I(A,B)| ≤ d|A| ≤ 2µ(A,B). Let Bi(a, b) denote the event that there is an A of
size a and a B of size b which do not satisfy either of the conditions (with a fixd constant
C to be specified later) and |I(A,B)| = i. Before, we prove the lemma, let us make some
observations, which (in hindsight) help us compute the probabilities much easier. Let A be a
set of a vertices and B be a collection of b edges, such that a ≤ b ≤ m/2.

The point here is that we basically want to evaluate the sum:

P

(⋃
a,b,i

Bi(a, b)

)
≤
∑

i

P

(⋃
a,b

Bi(a, b)

)

=
∑

i≤log2 m

P

(⋃
a,b

Bi(a, b)

)
+

∑
i≥log2 m

P

(⋃
a,b

Bi(a, b)

)
.

The first observation is that every term in the second sum is small. Towards this, we have
the straightforward claim.

B Claim 13. For a set of vertices A and edges B and a set of possible incidences J ⊂ A×B,
we have that P(I(A,B) = J) ≤

( 2t
m

)|J|.
Proof. W.L.O.G, let A = {1, . . . , a}, and for i ∈ A, let ti = I({i}, B). We have that:

P(I(A,B) = J) =
∏
i∈A

(
m−b
t−ti

)(
m
t

) ≤∏
i∈A

2(m− b)t−ti
(t− ti)!

t!
mt
≤
∏
i∈A

(
2t
m

)ti
≤
(

2t
m

)|J|
. C

Here, the first inequality uses the fact that t = o(
√
m). Therefore, we have:

P (Bi(a, b)) ≤
(
m

a

)(
m

b

)(
ab

i

)(
2t
m

)i
≤
(
m

b

)2(
e
abt

mi

)i
≤
(
m

b

)2 (µ
i

)i
(e)i.

If i ≥ 2eµ and i ≥ log2m, this probability is at most 22m · 2− log2 m � m−Ω(logm). Thus

∑
i≥log2 m

P

⋃
a,b

Bi(a, b)

 ≤∑
a,b

∑
i≥log2 m

P (Bi(a, b)) ≤ m−Ω(logm).

It remains to deal with the sum
∑
i≤log2 m Pr

(⋃
a,b Bi(a, b)

)
. For these summands, we

have that if |I(A,B)| ≤ log2m and I log(I/µ) > Cb log(m/b), then

I logm ≥ I log(I/µ) > Cb log(m/b) ≥ Cb.

and so Cb ≤ log3m. The first inequality above comes from the observation that I ≤ ab and
so I/µ ≤ m/t ≤ m. Now, using that I logm ≥ Cb log(m/ log3m), we have that I ≥ Cb/2.

Therefore, we only need to evaluate the sum:
log2 m∑
i=Cb/2

P (Bi(a, b)) ≤
(
m

a

)(
m

b

) log2 m∑
i=Cb/2

(
ab

i

)(
10et
m

)i
≤
(
m

b

)2 log2 m∑
i=Cb/2

(
10e2abt

im

)i

≤ log2m
(em
b

)2b
(

20e2at

Cm

)Cb/2
= m2b−Cb/2b−2baCb/2tCb/2(20e2)2b

≤ m2b−Cb/4bCb/2−2b(20e2)2b

= m−Ω(b).

We have used the fact that t = o(
√
m), b ≥ a and b ≤ log3m. Thus union bounding over

log3mmany values of a and b, we have
∑
a,b≤log3 m

∑
i≤log2 m P

(⋃
a,b Bi(a, b)

)
= m−Ω(1). J
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For the small entries: Bounding the contribution from the small entries is much easier.
The analysis given here is slightly different to the one given in [13] and [7]. However, it does
not make much of a difference, and is still, essentially, the same large deviation inequality.
We will first compute the expected value of the quantity of interest using the following claim:

B Claim 14. We have that:∣∣∣∣∣∣
∑

(u,v)∈L

xuyv

∣∣∣∣∣∣ ≤ m√
t
.

Proof. Since
∑
xi = 0, we have (

∑
xi) (

∑
yi) =

∑
(u,v)∈L xuyv +

∑
(u,v)∈L xuyv = 0 or∣∣∣∣∣∣

∑
(u,v)∈L

xuyv

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

(u,v)∈L

xuyv

∣∣∣∣∣∣ .
To bound this, we note that

1 =
(∑

x2
u

)(∑
y2
u

)
≥

∑
(u,v)∈L

x2
uy

2
v ≥
√
t

m

∣∣∣∣∣∣
∑

(u,v)∈L

xuyv

∣∣∣∣∣∣ =
√
t

m

∣∣∣∣∣∣
∑

(u,v)∈L

xuyv

∣∣∣∣∣∣ .
which gives us what we want. C

Given Claim 14 above, we can easily compute the expectation:

E

 ∑
(u,v)∈L

xuMu,vyv

 = t

m

∑
(u,v)∈L

xuyv ∈ [−
√
t,
√
t].

B Claim 15. We have that with high probability,
∑

(u,v)∈L xuMu,vyv = O(
√
t).

Proof. We set up a martingale and use the method of bounded variances. Let us write the
quantity that we wish to estimate as

X :=
∑

(u,v)∈B

xuMu,vyv.

We imagine M being sampled one column at a time, and in each column, t entries are
sampled. For column i, let us denote these by ei,1, . . . , ei,t. Clearly, X = X(e1,1, . . . , em,t).
Denote Xi,j := E[X|e1,1, . . . , ei,j ]. For distinct k, k′ ∈ [m], it is easy to see that we have the
“Lipschitz property”:

|E[X|e1,1, . . . , ei,j−1, ei,j = k]−E[X|e1,1, . . . , ei,j−1, ei,j = k′]| ≤ |xiyk|+ |xiyk′ |.

Therefore, we have a bounded difference property on |Xi,j −Xi,j−1| as follows:

|Xi,j −Xi,j−1| =

∣∣∣∣∣E[X|e1,1, . . . , ei,j−1, ei,j ]

− 1
m− j + 1

∑
k′∈[m]\{ei,1,...,ei,j−1}

E[X|e1,1, . . . , ei,j−1, ei,j = k′]

∣∣∣∣∣
≤ |xej ||yi|+

1
m− j + 1

∑
k′∈[m]\{ei,1,...,ei,j−1}

1[(k′, i) ∈ L]|xk′yi|
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We will use that the above quantity is bounded by 2
√
t

m since we only consider |xejyi|
where (ej , i) ∈ L. However, another way to upper bound the above is by using

1
m− j + 1

∑
k′∈[m]\{ei,1,...,ei,j−1}

1[(k′, i) ∈ L]|xk′yi|

≤ 1
m− j + 1

∑
k′∈[m]\{ei,1,...,ei,j−1}

|xk′yi|

≤ |yi|
n− j + 1

∑
k′∈[m]

|xk′ |

≤ 2|yi|√
m
.

Using this, we now compute the variance of the martingale:

Var(Xi,j −Xi,j−1|e1,1, . . . , ei,j−1) ≤ 1
m− j + 1

∑
k∈[m]

(
|xkyi|+

2|yi|√
m

)2

≤ 2
m− j + 1

∑
k∈[m]

(
|xkyi|2 + 4y2

i

m

)

≤ 10y2
i

m− j + 1 .

Where the last inequality uses that
∑
k x

2
k ≤ 1. Therefore, the variance of the martingale

is at mostt · 10
m−t

∑
i y

2
i ≤ 20t

m =: σ2. This is because
∑
i y

2
i ≤ 1. Therefore, by the bounded

variance martingale inequality (3), using |Xi −Xi−1| ≤ 2
√
t

m =: C:

P(X ≥ (D + 1)
√
t) ≤ exp

{
− D2t

2σ2 + tC/3

}
≤ exp

{
− D2t

40t
m + 2t

3m

}
≤ exp

{
−Ω(D2m)

}
.

For a large enough constant D, this lets us union bound over all x, y ∈ T , whose number
can be bounded by

(
Cv
ε

)m. C

4 Conclusion

We have given an upper bound on t-regular hypergraph discrepancy in terms of t and a
spectral property of the incidence matrix. However, when one restricts attention to random
t-regular hypergraphs, the O(

√
t) bound is achieved only when m = Ω(n). In the case where

m = o(n), one can replace λ in Theorem 1 by λ′ where

λ′(H) := max
U⊂V
|U |=16m

max
v⊥1,
‖v‖=1,

supp(v)⊆U

‖Mv‖

and the proof would remain the same. This is because using the partial coloring theorem
(Theorem 5), one may assign colors to all but at most 16m vertices while maintaining that
the discrepancy of every edge is 0. However, when H is a random t regular hypergraph with
n vertices and m = o(n) edges, we need not have λ′(H) = O

(√
t
)
(in fact, the guess would

be O(
√
tn/m)). The problem is that Claim 15 (In Section 3.2) does not extend. However,

in this regime, we believe that with high probability, the discrepancy is much lower than
√
t

(in contrast to λ growing).
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Recently, Franks and Saks [12] showed that for n = Ω̃(m3), the discrepancy is O(1)
almost surely. Independently, Hoberg and Rothvoss [14] considered a different model of
random hypergraphs with n vertices and m edges and each vertex-edge-incidence is an i.i.d.
Ber(p) random variable. They show that if n = Ω̃(m2), the discrepancy is O(1) almost surely.
Both [12] and [14] used similar Fourier analytic techniques inspired by [15]. Moreover, it
was an open question in [14] whether the hypergraph with i.i.d Ber(1/2) incidences where
n = O(m logm) almost surely has discrepancy O(1). This was shown to be true by the
author [20].

We argue that this is an interesting regime for random regular hypergraphs, as this
kind of discrepancy bound is not implied by the Beck-Fiala conjecture. The case where
n = Ω(m logm), is of particular interest, since we believe there is a phase transition for
constant discrepancy at this point. On the one hand, we do not know if the discrepancy
bound given by Corollary 3 is the truth, and on the other hand, we do not know if random
regular hypergraphs with, for example, n = Θ(m1.5) almost surely has discrepancy O(1). We
conclude with a conjecture, building on an open problem (open problem 1) in [12]:

I Conjecture 16. There is an absolute constant K > 0 such that the following holds. Let
t > 0 be any integer and H be a random t-regular hypergraph on n vertices and K n

logn edges.
Then with high probability,

disc(H) = O(1).
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Abstract
In the dynamic range mode problem, we are given a sequence a of length bounded by N and asked
to support element insertion, deletion, and queries for the most frequent element of a contiguous
subsequence of a. In this work, we devise a deterministic data structure that handles each operation
in worst-case Õ(N0.655994) time, thus breaking the O(N2/3) per-operation time barrier for this
problem. The data structure is achieved by combining the ideas in Williams and Xu (SODA 2020)
for batch range mode with a novel data structure variant of the Min-Plus product.
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1 Introduction

Given a sequence of elements a1, a2, . . . , an, the dynamic range mode problem asks to support
queries for the most frequent element in a specified subsequence al, al+1, . . . , ar while also
supporting insertion or deletion of an element at a given index i. The mode of a sequence of
elements is one of the most basic data statistics, along with the median and the mean. It is
frequently computed in data mining, information retrieval, and data analytics.

The range mode problem seeks to answer multiple queries on distinct intervals of the
data sequence without having to recompute each answer from scratch. Its study in the data
structure community has shown that the mode is a much more challenging data statistic
to maintain than other natural range queries: while range sum, min or max, median, and
majority all support linear space dynamic data structures with poly-logarithmic or better
time per operation [22, 7, 16, 12, 10], the current fastest dynamic range mode data structure
prior to this paper requires a stubborn O(n2/3) time per operation [9]. Indeed, range mode
is one of few remaining classical range queries to which our currently known algorithms may
be far from optimal. As originally stated by Brodal et al. [4] and mentioned by Chan et
al. [6] in 2011 and 2014, respectively, “The problem of finding the most frequent element
within a given array range is still rather open.”

The current best conditional lower bound, by Chan et al. [6], reduces multiplication
of two

√
n ×
√
n boolean matrices to n range mode queries on a fixed array of size O(n).

This indicates that if the current algorithm for boolean matrix multiplication is optimal,
then answering n range mode queries on an array of size O(n) cannot be performed in time
better than O(n3/2−ε) time for ε > 0 with combinatorial techniques, or O(nω/2−ε) time for
ε > 0 in general, where ω < 2.373 [25, 13] is the square matrix multiplication exponent.
This reduction can be strengthened for dynamic range mode by reducing from the online
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matrix-vector multiplication problem [17]. Using O(n) dynamic range mode operations on
a sequence of length O(n), we can multiply a

√
n ×
√
n boolean matrix with

√
n boolean

vectors given one at a time. This indicates that a dynamic range mode data structure taking
O(n1/2−ε) time per operation for ε > 0 is not possible with current knowledge.

Previous attempts indicate the higher O(n2/3) per operation cost as the bound to
beat [6, 9]. Indeed, Õ(n2/3) time per operation1 can be achieved with a variety of techniques,
but crossing the O(n2/3) barrier appears much harder.

Progress towards this goal has been established with the recent work of Williams and
Xu [26]. They show that by appealing to Min-Plus product of structured matrices, n range
mode queries on an array of size n can be answered in Õ(n1.4854) time, thus beating the
combinatorial lower bound for batch range mode. This result also shows a separation between
batch range mode and dynamic range mode: while batch range mode can be completed
in O(n1/2−ε) time per operation, such a result for dynamic range mode would imply a
breakthrough in the online matrix-vector multiplication problem.

Range mode is not the first problem shown to be closely related to the Min-Plus product
problem. It is well-known that the all-pairs shortest paths (APSP) problem is asymptotically
equivalent to Min-Plus product [11], in the sense that a T (n) time algorithm to compute the
Min-Plus product of two n × n matrices implies an O(T (n)) time algorithm for APSP in
n-node graphs and vice versa. Although it is not known how to perform Min-Plus product of
two arbitrary n× n matrices in time O(n3−ε) for ε > 0, several problems reduce to Min-Plus
products of matrices A and B which have nice structures that can be exploited. The simplest
examples result by restricting edge weights in APSP problems [23, 24, 28, 5, 27]. Bringmann
et al. [3] show Language Edit Distance, RNA-folding, and Optimum Stack Generation can be
reduced to Min-Plus product where matrix A has small difference between adjacent entries
in each row and column. Finally, the recent work of Williams and Xu [26] reduces APSP
in certain geometric graphs, batch range mode, and the maximum subarray problem with
entries bounded by O(n0.62) to a more general structured Min-Plus product, extending the
result of Bringmann et al. All of the above structured Min-Plus products are solvable in
truly subcubic O(n3−ε) time for ε > 0, improving algorithms in the problems reduced to said
product.

The connection and upper bound established by Williams and Xu [26] of batch range mode
to Min-Plus product suggest other versions of the range mode problem may be amenable to
similar improvements. In particular, the ability to efficiently compute a batch of range mode
queries via reducing to a structured Min-Plus product suggests that one might be able to
improve the update time of dynamic range mode in a similar way.

1.1 Our Results
In this paper, we break the O(n2/3) time per operation barrier for dynamic range mode. We
do so by adapting the result of Williams and Xu [26]. Specifically, we define the following
new type of data structure problem on the Min-Plus product that can be applied to dynamic
range mode, which may be of independent interest. Then we combine this data structure
problem with the algorithm of Williams and Xu.

I Problem 1 (Min-Plus-Query problem). During initialization, we are given two matrices
A,B. For each query, we are given three parameters i, j, S, where i, j are two integers, and
S is a set of integers. The query asks mink 6∈S{Ai,k +Bk,j}.

1 We use the Õ(·) notation to hide poly-logarithmic factors.
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Our performance theorem is the following.

I Theorem 2. There exists a deterministic data structure for dynamic range mode on a
sequence a1, . . . , an that supports query, insertion, and deletion in worst-case Õ(N0.655994)
time per operation, where N is the maximum size of the sequence at any point in time. The
space complexity of the data structure is Õ(N1.327997).

Our result shows yet another application of the Min-Plus product to an independently-
studied problem, ultimately showing a dependence of the complexity of dynamic range mode
on the complexity of fast matrix multiplication. Further, in contrast to many other reductions
to Min-Plus in which we must assume a structured input on the original problem [23, 24, 28,
5, 27, 26], our algorithm works on the fully general dynamic range mode problem. In this
sense, our result is perhaps most directly comparable to the batch range mode reduction of
Williams and Xu [26] and the Language Edit Distance, RNA-folding, and Optimum Stack
Generation reductions of Bringmann et al. [3].

1.2 Discussion of Technical Difficulty

Despite the new Õ(n1.4854) time algorithm for batch range mode [26], we cannot directly
apply the result to dynamic range mode. The main issue is the element deletion operation.
In the range mode algorithm of Williams and Xu (and in many other range mode algorithms),
critical points are chosen evenly distributed in the array, and the algorithm precomputes the
range mode of intervals between every pair of critical points. In [26], the improvement is
achieved via a faster precomputation algorithm, which uses a Min-Plus product algorithm
for structured matrices. However, if element deletion is allowed, the results stored in the
precomputation will not be applicable. For example, an interval between two critical points
could contain x copies of element a, x− 1 copies of element b, and many other elements with
frequencies less than x− 1. During precomputation, the range mode of this interval would
be a. However, if we delete two copies of a, there is no easy way to determine that the mode
of this interval has now changed to b.

We overcome this difficulty by introducing the Min-Plus-Query problem, as defined in
Section 1.1. Intuitively, in the Min-Plus-Query problem, a large portion of the work of the
Min-Plus product is put off until the query. It also supports more flexible queries. Using
the Min-Plus-Query problem as a subroutine, we will be able to query the most frequent
element excluding a set S of forbidden elements. For instance, in the preceding example, we
would be able to query the most frequent element that is not a. This is the main technical
contribution of the paper.

Another major difference between our algorithm for dynamic range mode and the batch
range mode algorithm of Williams and Xu [26] is the need for rectangular matrix multiplication.
In our algorithm, we treat elements that appear more than about N2/3 times differently
from the rest (a similar treatment is given in the dynamic range mode algorithm of Hicham
et al. [9]). However, the number of critical points we use is about N1/3; thus the number of
critical points and frequent elements differ. This contrasts with batch range mode, where
elements that appear more than about

√
n times are considered frequent and the number of

critical points used coincides with the number of frequent elements. The consequence of this
difference is that a rectangular matrix product is required for dynamic range mode, while a
square matrix product sufficed in [26].
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2 Related Work

The range mode problem was first studied formally by Krizanc et al. [18]. They study
space-efficient data structures for static range mode, achieving a time-space tradeoff of
O(n2−2ε) space and O(nε logn) query time for any 0 < ε ≤ 1/2. They also give a solution
occupying O(n2 log logn/ logn) space with O(1) time per query.

Chan et al. [6] also study static range mode, focusing on linear space solutions. They
achieve a linear space data structure supporting queries in O(

√
n) time via clever use of

arrays, which can be improved to O(
√
n/ logn) time via bit-packing tricks. Their paper

also introduces the conditional lower bound which reduces multiplication of two
√
n×
√
n

boolean matrices to n range mode queries on an array of size O(n). As mentioned, combined
with the presumed hardness of the online matrix vector problem [17], this result indicates a
dynamic range mode data structure must take greater than O(n1/2−ε) for ε > 0 time per
operation. Finally, Chan et al. [6] also give the first data structure for dynamic range mode.
At linear space, their solution achieves O(n3/4 logn/ log logn) worst-case time per query
and O(n3/4 log logn) amortized expected time update, and at O(n4/3) space, their solution
achieves O(n2/3 logn/ log logn) worst-case time query and amortized expected update time.

Recently, Hicham et al. [9] improved the runtime of dynamic range mode to worst-case
O(n2/3) time per operation while simultaneously improving the space usage to linear. Prior
to this paper, this result was the fastest data structure for dynamic range mode.

A cell-probe lower bound for static range mode has been devised by Greve et al. [15].
Their result states that any range mode data structure that uses S memory cells of w-bit
words needs Ω( logn

log(Sw/n) ) time to answer a query.
Via reduction to a structured Min-Plus product, Williams and Xu [26] recently showed

that n range mode queries on a fixed array of size n can be answered in Õ(n1.4854) time.
Williams and Xu actually show how to compute the frequency of the mode for each query.
We can adapt this method to find the element that is mode using the following binary search.
For query [l, r], we ask the frequency of the mode in range [l, (l + r)/2]. If it is the same, we
repeat the search with right endpoint in range [(l + r)/2, r]; if it is not, we repeat the search
with right endpoint in range [l, (l + r)/2]. Using this method, we can binary search until we
determine when the frequency of the mode changes, thus finding the element that is mode
in an additional O(logn) queries. The algorithm of Williams and Xu can also be used to
speed up the preprocessing time of the O(n) space, O(

√
n) query time static range mode

data structure to Õ(n1.4854) time.
Both static and dynamic range mode have been studied in approximate settings [2, 15, 8].

3 Preliminaries

We formally define the Min-Plus product problem and the dynamic range mode problem.

I Problem 3 (Min-Plus product). The Min-Plus product of an m× n matrix A and an n× p
matrix B is the m× p matrix C = A ? B such that Ci,j = mink{A[i, k] +B[k, j]}.

I Problem 4 (Dynamic Range Mode). In the dynamic range mode problem, we are given an
initially empty sequence and must support the following operations:

Insert an element at a given position of the sequence.
Delete one element of the sequence.
Query the most frequent element of any contiguous subsequence. If there are multiple
answers, output any.

It is guaranteed that the size of the array does not exceed N at any point in time.
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We use ω to denote the square matrix multiplication exponent, i.e. the smallest real
number such that two n× n matrices can be multiplied in nω+o(1) time. The current bound
on ω is 2 ≤ ω < 2.373 [13, 25]. In this work, we will use fast rectangular matrix multiplication.
Analogous to the square case, we use ω(k) to denote the exponent of rectangular matrix
multiplication, i.e., the smallest real number such that an n × nk matrix and an nk × n
matrix can be multiplied in nω(k)+o(1) time. Le Gall and Urrutia [14] computed smallest
upper bounds to date for various values of k. In this work, we are mostly interested in values
of ω(k) listed in Figure 1.

k Upper Bound on ω(k)
1.75 3.021591

2 3.251640

Figure 1 Upper bounds for the exponent of multiplying an n×nk matrix and an nk×n matrix [14].

It is known that the function ω(k) is convex for k > 0 (see e.g. [19], [20]), so we can use
values of ω(p) and ω(q) to give upper bounds for ω(k) as long as p ≤ k ≤ q.

I Fact 5. When 0 < p ≤ k ≤ q, ω(k) ≤ k−p
q−pω(q) + q−k

q−pω(p).

Combining Figure 1 and Fact 5, we obtain the following bound on ω(k) when k ∈ [1.75, 2].

I Corollary 6. When 1.75 ≤ k ≤ 2, ω(k) ≤ 0.920196k + 1.41125.

4 Main Algorithm

A main technical component for our dynamic range mode algorithm is the use of the Min-
Plus-Query problem, which is formally defined in Section 1. We are given two matrices
A,B. For each query, we are given three parameters i, j, S, and we need to compute
mink 6∈S{Ai,k +Bk,j}.

If we just use the Min-Plus-Query problem, we can only compute the frequency of the
range mode. Although we can binary search for the most frequent element as described in
Section 2, we are also able to return the witness from the Min-Plus-Query problem organically.
This construction may be of independent interest.

I Problem 7 (Min-Plus-Query-Witness problem). During initialization, we are given two
matrices A,B. For each query, we are given three parameters i, j, S, where i, j are two
integers, and S is a set of integers. We must output an index k∗ /∈ S such that Ai,k∗+Bk∗,j =
mink 6∈S{Ai,k +Bk,j}.

If A is an n× ns matrix and B is an ns × n matrix, then the naive algorithm for Min-
Plus-Query just enumerates all possible indices k for each query, which takes O(ns) time
per query. In order to get a faster algorithm for dynamic range mode, we need to achieve
Õ(n2+s−ε) preprocessing time and Õ(ns−ε + |S|) query time, for some ε > 0, where A,B are
some special matrices generated by the range mode instance. Specifically, matrix B meets
the following two properties:
1. Each row of B is non-increasing;
2. The difference between the sum of elements in the j-th column and the sum of elements

in the (j + 1)-th column is at most ns, for any j.
Williams and Xu [26] give a faster algorithm for multiplying an arbitrary matrix A with
such matrix B, which leads to a faster algorithm for static range mode. We will show that
nontrivial data structures exist for the Min-Plus-Query problem for such input matrices A
and B. Such a data structure will lead to a faster algorithm for dynamic range mode.
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In the following lemma, we show a data structure for the Min-Plus-Query problem when
both input matrices have integer weights small in absolute value.

I Lemma 8. Let s ≥ 1 be a constant. Let A and B be two integer matrices of dimension
n× ns and ns × n, respectively, with entries in {−W, . . . ,W} ∪ {∞} for some W ≥ 1. Then
we can solve the Min-Plus-Query problem of A and B in Õ(Wnω(s)) preprocessing time and
Õ(|S|) query time. The space complexity is Õ(Wn2 + n1+s).

Proof. The algorithm uses the idea by Alon, Galil and Margalit in [1], which computes the
Min-Plus product of A,B in Õ(Wnω(s)) time.

In their algorithm, they first construct matrix A′ defined by

A′i,k =
{

(ns + 1)Ai,k+W if Ai,k 6=∞,
0 otherwise.

We can define B′ similarly. Then the product A′B′ captures some useful information about
the Min-Plus product of A and B. Namely, for each entry (A′B′)i,j , we can uniquely write it
as
∑
t≥0 r

i,j
t (ns + 1)t for integers 0 ≤ ri,jt ≤ ns. Note that ri,jt exactly equals the number of

k such that Ai,k +Bk,j = t− 2W . Thus, we can use A′B′ to compute the Min-Plus Product
of A and B.

In our algorithm, we use a range tree to maintain the sequence ri,jt for each pair of
i, j. The preprocessing takes Õ(Wnω(s)) time, which is the time to compute A′B′ and the
sequences ri,jt .

During each query, we are given i, j, S. We enumerate each k ∈ S, and decrement
ri,jAi,k+Bk,j+2W in the range tree if Ai,j + Bk,j < ∞. After we do this for every k ∈ S, we
query the range tree for the smallest t such that ri,jt 6= 0, so t − 2W is the answer to the
Min-Plus-Query query. After each query, we need to restore the values of ri,j , which can
also be done efficiently. The query time is Õ(|S|), since each update and each query of range
tree takes Õ(1) time. The space complexity should be clear from the algorithm. J

In the previous lemma, the data structure only answers the Min-Plus-Query problem. In
all subsequent lemmas, the data structure will be able to handle the Min-Plus-Query-Witness
problem.

In the next lemma, we use Lemma 8 as a subroutine to show a data structure for the
Min-Plus-Query-Witness problem when only matrix A has small integer weights in absolute
value.

I Lemma 9. Let s ≥ 1 be a constant. Let A and B be two integer matrices of dimension
n × ns and ns × n, respectively, where A has entries in {−W, . . . ,W} ∪ {∞} for some
W ≥ 1, and B has arbitrary integer entries represented by polylog n bit numbers. Then for
every integer 1 ≤ P ≤ ns, we can solve the Min-Plus-Query-Witness problem of A and B
in O(n

s

P Wnω(s)) preprocessing time and O(|S| + P ) query time. The space complexity is
Õ(Wn2+s

P + n1+2s

P ).

Proof. For simplicity, assume P is a factor of ns. We sort each column of matrix B and
put entries whose rank is between (`− 1)P + 1 and `P into the `-th bucket. We use Kj,` to
denote the set of row indices of entries in the `-th bucket of the column j. We use Lj,` to
denote the smallest entry value of the bucket Kj,`, and use Hj,` to denote the largest entry
value. Formally,

Lj,` = min
k∈Kj,`

Bk,j and Hj,` = max
k∈Kj,`

Bk,j .
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For each ` ∈ [ns/P ], we do the following2. We create an ns × n matrix B` and initialize
all its entries to ∞. Then for each column j, if Hj,` − Lj,` ≤ 2W (we will call it a
small bucket), we set B`k,j := Bk,j − Lj,` − W for all k ∈ Kj,`. We will handle the
case Hj,` − Lj,` > 2W (large bucket) later. Clearly, all entries in B` have values in
{−W, . . . ,W} ∪ {∞}, so we can use the algorithm in Lemma 8 to preprocess A and B` and
store the data structure in D`. Also, for each pair (i, j), we create a range tree T i,jsmall on
the sequence (A ?B1)i,j , (A ?B2)i,j , (A ?B3)i,j , . . ., (A ?Bns/P )i,j , which stores the optimal
Min-Plus values when k is from a specific small bucket. This part takes Õ(n

s

P Wnω(s)) time.
The space complexity is ns

P times more than the space complexity of Lemma 8, so space
complexity of this part is Õ(Wn2+s

P + n1+2s

P ).
We also do the following preprocessing for buckets where Hj,` − Lj,` > 2W . We first

create a 0/1 matrix Ā where Āi,k = 1 if and only if Ai,k 6= ∞. Then for each ` ∈ [ns/P ],
we create a 0/1 matrix B̄` such that B̄`k,j = 1 if and only if k ∈ Kj,` and Hj,` − Lj,` > 2W .
Then we use fast matrix multiplication to compute the product ĀB̄`. If Kj,` is a large
bucket, the (i, j)-th entry of ĀB̄` is the number of k ∈ Kj,` such that Ai,k <∞; if Kj,` is
a small bucket, the (i, j)-th entry is 0. For each pair (i, j), we create a range tree T i,jlarge on
the sequence (ĀB̄1)i,j , (ĀB̄2)i,j , (ĀB̄3)i,j , . . . , (ĀB̄n

s/P )i,j . This part takes Õ(n
s

P n
ω(s)) time,

which is dominated by the time for small buckets. The space complexity is also dominated
by the data structures for small buckets.

Now we describe how to handle a query (i, j, S). First consider small buckets. In O(|S|)
time, we can compute the set of small buckets Kj,` that intersect with S. For each such Kj,`,
we can query the data structure D` with input (i, j, S ∩Kj,`) to get the optimum value when
k ∈ Kj,`. For each small bucket that intersects with S, we can set its corresponding value in
the range tree T i,jsmall to ∞, then we can compute the optimum value of all small buckets that
do not intersect with S by querying the minimum value of the range tree T i,jsmall. After this
query, we need to restore all values in the range tree. It takes Õ(|S|) time to handle small
buckets on query.

Now consider large buckets. Intuitively, we want to enumerate indices in all large buckets
Kj,` such that there exists an index k ∈ Kj,` ∩ ([ns] \ S) where Ai,k <∞. However, doing so
would be prohibitively expensive. We will show that we only need two such buckets. Consider
three large buckets l1 < l2 < l3. Pick any k1 ∈ Tj,l1 , k3 ∈ Tj,l3 such that Ai,k1 <∞. Since

Ai,k1 +Bk1,j ≤W + Lj,l2 < W +Hj,l2 − 2W < Ai,k3 +Bk3,j ,

k3 can never be the optimum. Thus, it suffices to find the smallest two buckets such that
there exists an index k ∈ Kj,` ∩ ([ns] \ S) where Ai,k <∞, and then enumerate all indices in
these two buckets. To find such two buckets, we can enumerate over all indices k ∈ S, and
if Ai,k < ∞ we can decrement the corresponding value in the range tree T i,jlarge. Thus, we
can compute the two smallest buckets by querying the two earliest nonzero values in the
range tree. We also need to restore the range tree after the query. The range tree part takes
Õ(|S|) time and scanning the two large buckets requires O(P ) time. Thus, this step takes
Õ(|S|+ P ) time.

At this point, we will know the bucket that contains the optimum index k∗. Thus, we can
iterate all indices in this bucket to actually get the witness for the Min-Plus-Query-Witness
query. It takes O(P ) time to do so.

In summary, the preprocessing time, query time, and space complexity meet the promise
in the lemma statement. J

2 We use [n], with n integer, to denote the set {1, 2, . . . , n}.
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In the following lemma, we show a data structure for the Min-Plus-Query-Witness problem
when the matrix B has the bounded difference property, which means that nearby entries in
each row have close values. The proof adapts the strategy of [26].

I Lemma 10. Let s ≥ 1 be a constant. Let A be an n × ns integer matrix, and let B be
an ns × n integer matrix. It is guaranteed that there exists 1 ≤ ∆ ≤ min{n,W}, such that
for every k, |Bk,j1 − Bk,j2 | ≤ W as long as dj1/∆e = dj2/∆e. Then for every L = Ω(∆),
we can solve the Min-Plus-Query-Witness problem of A and B in Õ(∆2 ns

L Wnω(s) + n2+s

∆ )
preprocessing time and Õ(L) query time, when |S| < L. The space complexity is Õ(∆2Wn2+s

L +
∆2n1+2s

L + n2+s

∆ ).

Proof. Preprocessing Step 1: Create an Estimation Matrix
First, we create a matrix B̂, where B̂k,j = Bk,dj/∆e∆. By the property of matrix B,

|B̂k,j −Bk,j | ≤W for every k, j. For each pair (i, j), we compute the L-th smallest value of
Ai,k+B̂k,j among all 1 ≤ k ≤ ns, and denote this value by ĈLi,j . Notice that ĈLi,j = ĈLi,dj/∆e∆,
so it suffices to compute ĈLi,j when j is a multiple of ∆, and we can infer other values correctly.
It takes O(ns) time to compute each ĈLi,j , so this step takes O(n2+s/∆) time.

If we similarly define CLi,j as the L-th smallest value of Ai,k +Bk,j among all 1 ≤ k ≤ ns,
then |CLi,j − ĈLi,j | ≤W by the following claim, whose proof is omitted for space constraint.

B Claim. Given two sequences (ak)mk=1 and (bk)mk=1 such that |ak − bk| ≤W , then the L-th
smallest element of a and the the L-th smallest element of b differ by at most W .

Also, in Õ(n2+s/∆) time, we can compute a sorted list Li,jsmall of indices k sorted by the
value Ai,k + B̂k,j − ĈLk,j , for every i, and every j that is a multiple of ∆.

The space complexity in this step is not dominating.

Preprocessing Step 2: Perform Calls to Lemma 9
For some integer ρ ≥ 1, we will perform ρ rounds of the following algorithm. At the r-th

round for some 1 ≤ r ≤ ρ, we randomly sample jr ∈ [n], and let Ari,k := Ai,k +Bk,jr − ĈLi,jr

and Brk,j := Bk,j −Bk,jr . Clearly, Ari,k +Brk,j = Ai,k +Bk,j − ĈLi,jr . For each pair (i, k), we
find the smallest r such that |Ari,k| ≤ 3W . We keep these entries as they are and replace
all other entries by ∞. For every (i, k), there exists at most one r such that Ari,k 6= ∞.
Then we use Lemma 9 to preprocess Ar and Br for every 1 ≤ r ≤ ρ. Thus, this part takes
O(ρn

s

P Wnω(s)) time, for some integer P to be determined later. Note that this parameter
also affects the query time. This step stores ρ copies of the data structure from Lemma 9, so
the space complexity is Õ(ρWn2+s

P + ρn
1+2s

P ).
Note that this step is the only step that uses randomization. We can use the method of

[26], Appendix A, to derandomize it. We omit the details for simplicity.

Preprocessing Step 3: Handling Uncovered Pairs
For a pair (i, k), if Ari,k 6=∞ for any r, we call (i, k) covered; otherwise, we call the pair

(i, k) uncovered. For each pair (i, j), we enumerate all k such that |Ai,k + B̂k,j − ĈLi,j | ≤ 2W
and (i, k) is uncovered. Notice that since Ai,k + B̂k,j − ĈLi,j = Ai,k + B̂k,dj/∆e∆ − ĈLi,dj/∆e∆,
we only need to exhaustively enumerate all k ∈ [ns] when j is a multiple of ∆. Thus, if the
total number of (i, k, j) where |Ai,k + B̂k,j − ĈLi,j | ≤ 2W and (i, k) is uncovered is X, then
we can enumerate all such triples (i, k, j) in O(X + n2+s/∆) time.

It remains to bound the total number of triples that satisfy the condition. Fix an arbitrary
pair (i, k), and suppose the number of j such that |Ai,k + B̂k,j − ĈLi,j | ≤ 2W is at least
(10 + s)n lnn/ρ. Then with probability at least 1− (1− (10+s) lnn

ρ )ρ ≥ 1− 1
n10+s , we pick a

jr where |Ai,k + B̂k,jr − ĈLi,jr | ≤ 2W . Therefore,
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|Ari,k| =
∣∣∣Ai,k +Bk,jr − ĈLi,jr

∣∣∣ ≤ ∣∣∣Ai,k + B̂k,jr − ĈLi,jr

∣∣∣+
∣∣∣B̂k,jr −Bk,jr

∣∣∣ ≤ 3W,

which means (i, k) is covered. Therefore, with high probability, all pairs of (i, k) where the
number of j such that |Ai,k + B̂k,j − ĈLi,j | ≤ 2W is at least (10 + s)n lnn/ρ will be covered.
In other words, X = O(n1+s · n lnn/ρ) = Õ(n2+s/ρ).

For each pair (i, j), if we enumerate more than L indices k, we only keep the L values
of k that give the smallest values of Ai,k + Bk,j . We call this list Li,jtriple. From previous
discussion, the time cost in this step is Õ(n2+s/ρ+ n2+s/∆). Since we need to store all the
triples, the space complexity is O(n2+s/ρ).

Handling Queries
Now we discuss how to handle queries. For each query (S, i, j), let k∗ = arg mink 6∈S Ai,k +

Bk,j be the optimum index. Consider two cases:
(i, k∗) is covered. By definition of being covered, there exists a round r such that
Ari,k∗ = Ai,k∗ +Bk∗,jr − ĈLi,jr , so Ari,k∗ +Brk∗,j = Ai,k∗ +Bk∗,j − ĈLi,jr . Therefore, we can
query the data structure in Lemma 9 for every Ar and Br and denote br as the result.
The answer is given by the smallest value of br + ĈLi,jr over all r. The witness is given by
the data structure of Lemma 9.
Note that when querying Ar and Br, we only need to pass the set {k ∈ S : Ari,k 6=∞}.
For every k ∈ S, there is at most one r such that Ari,k 6=∞, so the total size of the sets
passing to the data structure of Lemma 9 is |S|. Thus, this case takes O(|S|+ ρP ) time.
(i, k∗) is uncovered. There are still two possibilities to consider in this case.

Possibility I: Ai,k∗ + B̂k∗,j − ĈLi,j < −2W . In this case,

Ai,k∗ +Bk∗,j ≤ Ai,k∗ + B̂k∗,j +W < ĈLi,j −W,

so the optimum value is smaller than ĈLi,j . By reading the list Li,dj/∆e∆small , we can
effectively find all such k where Ai,k + B̂k,j − ĈLi,j < −2W in time linear to the number
of such k. The number of such k is at most L, by the definition of ĈLi,j . Thus, this
part takes O(L) time.
Possibility II: Ai,k∗ + B̂k∗,j − ĈLi,j ≥ −2W . In fact, in this case, we further have

Ai,k∗ + B̂k∗,j − ĈLi,j ≤ Ai,k∗ +Bk∗,j − CLi,j + 2W ≤ 2W,

where Ai,k∗ + Bk∗,j − CLi,j ≤ 0 because |S| < L. Therefore, in this case, we have
|Ai,k∗ + B̂k∗,j − ĈLi,j | ≤ 2W , so we can enumerate all indices in Li,jtriple and take the
best choice. This takes O(L) time.

Time and Space Complexity
In summary, the preprocessing time is

Õ

(
ρ
ns

P
Wnω(s) + n2+s/∆ + n2+s/ρ

)
,

and the query time is Õ(L+ ρP ). To balance the terms, we can set ρ = ∆ and P = L
∆ to

achieve a Õ(∆2 ns

L Wnω(s) + n2+s

∆ ) preprocess time and a Õ(L) query time. Note that since
we need P ≥ 1, we must have L = Ω(∆).
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From the preprocessing steps, the space complexity is Õ(ρWn2+s

P + ρn
1+2s

P + n2+s/ρ).
Plugging in ρ = ∆ and P = L

∆ reduces this to

Õ

(
∆2Wn2+s

L
+ ∆2n1+2s

L
+ n2+s

∆

)
,

as given in the statement of the lemma. J

The next lemma is our last data structure for Min-Plus-Query-Witness problems.

I Lemma 11. Let s ≥ 1 be a constant. Let A be an n × ns integer matrix and B be an
ns × n integer matrix. Suppose matrix B satisfies
1. Each row of B is non-increasing;
2. The difference between the sum of elements in the j-th column and the sum of elements

in the (j + 1)-th column is at most ns, for any j.
Then for every positive integer L = Ω(nω(s)−2), we can solve the Min-Plus-Query-Witness
problem of A and B in Õ(n 8

5 +s+ 1
5ω(s)L−

1
5 ) preprocessing time and Õ(L) query time, when

|S| < L. The space complexity is Õ(L− 1
5n

18
5 +s− 4

5ω(s) +L−
3
5n

9
5 +2s− 2

5ω(s) +L−
1
5n

8
5 +s+ 1

5ω(s)).

Proof. Let ∆,W ≥ 1 be small polynomials in n to be fixed later. Define I(j) to be the
interval [j −∆ + 1, j].

Let j′ be any multiple of ∆. By property 2 of matrix B,
∑ns

k=1Bk,j −
∑ns

k=1Bk,j+1 ≤ ns
for any j ∈ I(j′). Thus, we have

ns∑
k=1

Bk,j′−∆+1 −
ns∑
k=1

Bk,j′ ≤ ∆ns.

By averaging, there are at most ∆ns/W indices k ∈ [ns] such that Bk,j′−∆+1 − Bk,j′ >
W . We create a new matrix B̂, initially the same as matrix B. For each k such that
Bk,j′−∆+1 − Bk,j′ > W , and for each j ∈ I(j′), we set B̂k,j as M , where M is some large
enough integer. After this replacement, B̂k,j′−∆+1− B̂k,j′ ≤W for any k and any j′ multiple
of ∆. Also, since B̂k,j′−∆+1 ≥ B̂k,j ≥ B̂k,j′ for any j ∈ I(j′), we have that |B̂k,j1−B̂k,j2 | ≤W
as long as dj1/∆e = dj2/∆e. Therefore, we can use Lemma 10 to preprocess A and B̂ in
O(∆2 ns

L Wnω(s) + n2+s

∆ ) time. The space complexity is Õ(∆2Wn2+s

L + ∆2n1+2s

L + n2+s

∆ ).
On the other hand, note that B̂ differs with B on at most n1+s∆/W entries, so we need

to do some extra preprocessing to handle those entries. For each pair (i, j), we initialize
a range tree T (i,j) whose elements are all ∞ (it takes Õ(1) time to initialize each range
tree if we implement it carefully). Then for every k such that Bk,j 6= B̂k,j , we set the k-th
element in T (i,j) as Ai,k +Bk,j . The total number of operations we perform in all the range
trees are O(n2+s∆/W ), so this part takes Õ(n2+s∆/W ) time. The space complexity is also
Õ(n2+s∆/W ).

During a query (S, i, j), we first query the data structure in Lemma 10 on matrix A and
B̂ with parameters (S, i, j). Then we query the minimum value from the range tree T (i,j)

after setting all Ai,k +Bk,j as ∞ for k ∈ S. Taking the minimum of these two queries gives
the answer. The optimum index k∗ is either given by the data structure of Lemma 10 or can
be obtained from the range tree.

Thus, the preprocessing time of the algorithm is

Õ(∆2n
s

L
Wnω(s) + n2+s

∆ + n2+s∆/W ),
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and the query time is Õ(L). We get the desired preprocessing time by setting ∆ =
L1/5n

2
5−

1
5ω(s) and W = ∆2. Since we need ∆ ≥ 1, we require that L = Ω(nω(s)−2).

In Lemma 10, we also requires that L = Ω(∆), but this is always true when L = Ω(nω(s)−2).
By previous discussion, the space complexity is Õ(∆2Wn2+s

L + ∆2n1+2s

L + n2+s

∆ +n2+s∆/W ).
Plugging in the value for ∆ and W simplifies the complexity to

Õ(L−1/5n18/5+s−4ω(s)/5 + L−3/5n9/5+2s−2ω(s)/5 + L−1/5n8/5+s+ω(s)/5). J

Finally, we can apply the data structure of Lemma 11 to prove Theorem 2.

Proof of Theorem 2. For clarity, we will use element to refer to a specific item ai of the
sequence and use value to refer to all elements of a given type. Given a pointer to an element
of the sequence ai, we assume the ability to look up its index i in the sequence in Õ(1) time
by storing all elements of the sequence in a balanced binary search tree with worst-case time
guarantees (e.g. a red-black tree). Thus we can go from index i to element ai and back via
appropriate rank and select queries on the balanced binary search tree. We may also add or
remove an element ai from the sequence, and thus the binary search tree, in Õ(1) time.

Let T1, T2, T3 be three parameters of the algorithm. Parameter T1 is a threshold that
controls the number of “frequent” colors, T2 controls how frequently the data structure is
rebuilt, and T3 represents the size of blocks in the algorithm.

We call values that appear more than N/T1 times frequent and all other values infrequent.
Thus, there are at most T1 frequent values at any point in time. Note that a fixed value
can change from frequent to infrequent, or from infrequent to frequent, via a deletion or
insertion.

Infrequent Values
First, we discuss how to handle infrequent values. We maintain N

T1
balanced search

trees BST 1, . . . ,BST N
T1
. For balanced search tree BST k, we prepare the key/value pairs

in the following way. Fix a given value of the sequence. Say all its occurrences are at
indices i1, i2, . . . , it. Then we insert the key/value pairs (ix, ix+k−1) to BST k for every
1 ≤ x ≤ t− k + 1. However, the indices themselves would need updating when sequence a
is updated. Instead of inserting the indices themselves, we insert corresponding pointers
to the nodes of the binary search tree that holds sequence a. That way we can perform all
comparisons using binary search tree operations in Õ(1) time, without needing to update
indices when sequence a changes. We also augment each balanced search tree BST i so
that every subtree stores the smallest value y of any pair (x, y) in the subtree. After an
insertion or deletion, we need to update a total of O(( NT1

)2) pairs. Thus, we can maintain
these balanced search trees in Õ(( NT1

)2) time per operation.
During a query [l, r], we iterate through all the balanced search trees BST 1, . . . ,BST N

T1
.

If there exists a pair (i1, i2) ∈ BST k such that l ≤ i1 ≤ i2 ≤ r, then the range mode is
at least k. Thus, if the range mode is an infrequent value, we can find its frequency and
corresponding value by querying the balanced search trees. The query time is Õ( NT1

), which
is not the dominating term.

Newly Modified Values
We now consider how to handle frequent values. We handle newly modified values and

unmodified values differently. We will rebuild our data structure after every T2 operations,
and call values that are inserted or deleted after the last rebuild newly modified values.

For every value, we maintain a balanced search tree of occurrences of this value in the
sequence. It takes Õ(1) time per operation to maintain such balanced search trees. Thus,
given an interval [l, r], it takes Õ(1) time to query the number of occurrences of a particular
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value in the interval. We use this method to query the number of occurrences of each newly
modified value. Since there can be at most T2 such values, this part takes Õ(T2) time per
operation.

Data Structure Rebuild
It remains to handle the frequent, not newly modified values during each rebuild. In this

case, we will assume we can split the whole array roughly equally into a left half and right
half. We can recursively build the data structure on these two halves so that we may assume
a range mode query interval has left endpoint in the left half and right endpoint in the right
half. The recursive construction adds only a poly-logarithmic factor to the complexity.

We split the left half and the right half into consecutive segments of length at most T3,
so that there are O(N/T3) segments. We call the segments P1, P2, . . . , Pm in the left half
and Q1, Q2, . . . , Qm in the right half, where segments with a smaller index are closer to the
middle of the sequence.

Let v1, v2, . . . , vl be the frequent values during the rebuild. We create a matrix A such that
Ai,k equals the negation of the number of occurrences of vk in segments P1, . . . , Pi; similarly,
we create a matrix B such that Bk,j equals the negation of the number of occurrences of vk
in segments Q1, . . . , Qj . Note that the negation of the value Ai,k +Bk,j is the frequency of
value vk in the interval from Pi to Qj . It is not hard to verify that matrix B satisfies the
requirement of Lemma 11. We take the negation here since Lemma 11 handles (min,+)-
product instead of (max,+)-product. Then we use the preprocessing part of Lemma 11 with
matrices A,B, and L = T2. If we let T1 = N t1 , T2 = N t2 , T3 = N t3 , then in the notation
of Lemma 11, n = m = O(N/T3) = O(N1−t3) and ns = O(T1) = O(N t1), so s = t1

1−t3 and
L = N t2 . Thus, by Lemma 11 the rebuild takes

Õ(N (1−t3)( 8
5 + t1

1−t3
+ 1

5ω( t1
1−t3

))− 1
5 t2)

time. Since we perform the rebuild every T2 operations, the amortized cost of rebuild is

Õ(N (1−t3)( 8
5 + t1

1−t3
+ 1

5ω( t1
1−t3

))− 6
5 t2)

per operation.
Now we discuss how to handle queries for frequent, unmodified elements. For a query

interval [l, r], we find all the segments inside the interval [l, r]. The set of such segments
must have the form P1,∪ · · · ∪ Pi ∪Q1 ∪ · · · ∪Qj for some i, j. We scan through all elements
in [l, r] \ (P1 ∪ · · · ∪ Pi ∪Q1 ∪ · · · ∪Qj), and use their frequency to update the answer. Since
the size of segments is O(T3), the time complexity to do so is Õ(T3).

For the segments P1, . . . , Pi, Q1, . . . , Qj , we query the data structure in Lemma 11 with S
being the set of newly modified elements. The answer will be the most frequent element in the
interval from Pi to Qj that is not newly modified. By Lemma 11 this takes O(L) = O(N t2)
time per operation.

Time and Space Complexity
In summary, the amortized cost per operation is

Õ(N2−2t1 +N t2 +N t3 +N (1−t3)( 8
5 + t1

1−t3
+ 1

5ω( t1
1−t3

))− 6
5 t2).

To balance the terms, we set t1 = 1− 1
2 t2, and t3 = t2. The time complexity thus becomes

Õ(N t2 +N (1−t2)( 8
5 + 1−0.5t2

1−t2
+ 1

5ω( 1−0.5t2
1−t2

))− 6
5 t2).
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By observation, we can note that the optimum value of 1−0.5t2
1−t2 lies in [1.75, 2]. Thus, we

can plug in Corollary 6 and use t2 = 0.655994 to balance the two terms. This gives an
Õ(N0.655994) amortized time per operation algorithm.

The space usage has two potential bottlenecks. The first is the space to store
BST 1, . . . ,BST N

T1
for handling infrequent elements, which is Õ(N

2

T1
). The second is the

space used by Lemma 11, which is

Õ(N−t2/5N (1−t3)(18/5+s−4ω(s)/5) +N−3t2/5N (1−t3)(9/5+2s−2ω(s)/5) +N−t2/5N (1−t3)(8/5+s+ω(s)/5)).

By plugging in the values for t2, t3 and s, the space complexity becomes Õ(N1.327997), with
the Õ(N

2

T1
) term being the dominating term.

Worst-Case Time Complexity
By applying the global rebuilding of Overmars [21], we can achieve a worst-case time

bound. The basic idea is that after T2 operations, we don’t immediately rebuild the Min-
Plus-Query-Witness data structure. Instead, we rebuild the data structure during the next
T2 operations, spreading the work evenly over each operation. To answer queries during
these T2 operations, we use the previous build of the Min-Plus-Query-Witness data structure.
By this technique, the per-operation runtime can be made worst-case. J
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Abstract
Let G be a graph class. We say that a graph G is a k-apex of G if G contains a set S of at most k
vertices such that G \ S belongs to G. We prove that if G is minor-closed, then there is an algorithm
that either returns a set S certifying that G is a k-apex of G or reports that such a set does not
exist, in 2poly(k)n3 time. Here poly is a polynomial function whose degree depends on the maximum
size of a minor-obstruction of G, i.e., the minor-minimal set of graphs not belonging to G. In the
special case where G excludes some apex graph as a minor, we give an alternative algorithm running
in 2poly(k)n2 time.
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1 Introduction

Graph modification problems are fundamental in algorithmic graph theory. Typically, such a
problem is determined by a graph class G and some prespecified setM of local modifications,
and the question is, given a graph G and an integer k, whether it is possible to transform
G to a graph in G by applying k modification operations from M. A plethora of graph
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problems can be formulated for different instantiations of G and M. Applications span
diverse topics such as computational biology, computer vision, machine learning, networking,
and sociology [24]. As reported by Roded Sharan in [48], already in 1979, Garey and Johnson
mentioned 18 different types of modification problems [25, Section A1.2]. For more on graph
modification problems, see [9, 24], as well as the running survey in [13]. In this paper we
focus our attention on the vertex deletion operation. We say that a graph G is a k-apex of a
graph class G if there is a set S ⊆ V (G) of size at most k such that the removal of S from G

results in a graph in G. In other words, we consider the following meta-problem.

Vertex Deletion to G
Input: A graph G and a non-negative integer k.
Question: Find, if exists, a set S ⊆ V (G) certifying that G is a k-apex of G.

To illustrate the expressive power of Vertex Deletion to G, if G is the class of edgeless (resp.
acyclic, planar, bipartite, (proper) interval, chordal) graphs, we obtain the Vertex Cover
(resp. Feedback Vertex Set, Vertex Planarization, Odd Cycle Transversal,
(proper) Interval Vertex Deletion, Chordal Vertex Deletion) problem.

By the classical result of Lewis and Yannakakis [39], Vertex Deletion to G is NP-hard
for every non-trivial graph class G. To circumvent its intractability, we study it from the
parameterized complexity point of view and we parameterize it by the number k of vertex
deletions. In this setting, the most desirable behavior is the existence of an algorithm running
in time f(k) · nO(1), where f is a function depending only on k. Such an algorithm is called
fixed-parameter tractable, or FPT-algorithm for short, and a parameterized problem admitting
an FPT-algorithm is said to belong to the parameterized complexity class FPT. Also, the
function f is called parametric dependence of the corresponding FPT-algorithm, and the
challenge is to design FPT-algorithms with small parametric dependencies [14,17,20,42].

Unfortunately, we cannot hope for the existence of FPT-algorithms for every graph
class G. Indeed, the problem is W-hard1 for some classes G that are closed under induced
subgraphs [40] or, even worse, NP-hard, for k = 0, for every class G whose recognition
problem is NP-hard, such as some classes closed under subgraphs or induced subgraphs (for
instance 3-colorable graphs), edge contractions [11], or induced minors [18].

On the positive side, a very relevant subset of classes of graphs does allow for FPT-
algorithms. These are classes G that are closed under minors2, or minor-closed. To see this,
we define Gk as the class of the k-apices of G, i.e., the yes-instances of Vertex Deletion
to G, and observe that if G is minor-closed then the same holds for Gk, for every k. This,
in turn, implies that for every k, Gk can be characterized by a set Fk of minor-minimal
graphs not in Gk; we call these graphs the obstructions of Gk and we know that they are
finite because of the Robertson and Seymour theorem [46]. In other words, we know that
the obstruction set of Gk is bounded by some function of k. Then one can decide whether a
graph G belongs to Gk by checking whether G excludes all members of the obstruction set of
Gk, and this can be checked by using the FPT-algorithm in [45] (see also [19]).

As the Robertson and Seymour theorem [46] does not construct Fk, the aforementioned
argument is not constructive, i.e., it is not able to construct the claimed FPT-algorithm. An
important step towards the constructibility of such an FPT-algorithm was done by Adler
et al. [2], who proved that the parametric dependence of the above FPT-algorithm is indeed
a constructible function.

1 Implying that an FPT-algorithm would result in an unexpected complexity collapse; see [17].
2 A graph H is a minor of a graph G if it can be obtained from a subgraph of G by contracting edges.
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The task of specifying (or even optimizing) this parametric dependence for different
instantiations of G occupied a considerable part of research in parameterized algorithms.
The most general result in this direction says that, for every t, there is some c such that
if the graphs in G have treewidth at most t, then Vertex Deletion to G admits an
FPT-algorithm that runs in ck · nO(1) time [22,34]. Reducing the constant c in this running
time has attracted research on particular problems such as Vertex Cover [12] (with
c = 1.2738), Freedback Vertex Set [36] (with c = 3.619), Apex-Pseudoforest [10]
(with c = 3), Pathwidth 1 Vertex Deletion (with c = 4.65) [15] (see also [29] for further
related results). The first step towards a parameterized algorithm for Vertex Deletion
to G for cases where G has unbounded treewidth was done in [41] and later in [30] for
the Planarization problem, and the best parameterized dependence for this problem is
2O(k·log k) ·n, achieved by Jansen et al. [28]. These results were later extended by Kociumaka
and Marcin Pilipczuk [37], who proved that if Gg is the class of graphs of Euler genus at
most g, then Vertex Deletion to Gg admits a 2Og(k2 log k) · nO(1) step3 algorithm.

Our results. In this paper we give an explicit FPT-algorithm for Vertex Deletion to G
for every minor-closed graph class G. In particular, our main results are the following:

I Theorem 1. If G is a minor-closed graph class, then Vertex Deletion to G admits
an algorithm of time 2poly(k) · n3, for some polynomial poly whose degree depends on G.

We say that a graph H is an apex graph if it is a 1-apex of the class of planar graphs.

I Theorem 2. If G is a minor-closed graph class excluding some apex graph, then Vertex
Deletion to G admits an algorithm of time 2poly(k) · n2, for some polynomial poly whose
degree depends on G.

Very recently, Fomin et al. [23] gave an FPT-algorithm of Os,k(n4) time for the following
problem: for a fixed finite family of graphs F , each on at most s vertices, decide whether an
n-vertex input graph G contains a k-apex of the class of graphs that exclude the graphs in F
as topological minors4. For every graph H, there is a finite set H of graphs such that a graph
G contains H as a minor if and only if G contains a graph in H as a topological minor. Based
on this observation, the result of Fomin et al. [23] implies that for every minor-closed graph
class G, Vertex Deletion to G admits an O(h(k, s) · n4) time FPT-algorithm,where s is
the maximum size of an obstruction of G. Notice that this implication is a solid improvement
on Vertex Deletion to G with respect to the result of [2], where only the computability
of h is proved. However, as mentioned in [23], even for fixed values of s, the dependence of h
on k is humongous. Therefore, Theorem 1 can be seen as orthogonal to the result of [23].

Our techniques. We provide here just a very succinct enumeration of the techniques that
we use in order to achieve Theorem 1 and Theorem 2; a more detailed description with the
corresponding definitions is provided, along with the algorithms, in the next sections.

Our starting point to prove Theorem 1 is to use the standard iterative compression
technique of Reed et al. [44]. This allows us to assume that we have at hand a slightly too
large set S ⊆ V (G) such that G \ S ∈ G. We then run the algorithm of Lemma 11 (whose
proof uses [1, 3, 31, 43]) that either reports that we have a no-instance, or concludes that the

3 Given a tuple t = (x1, . . . , x`) ∈ N` and two functions χ, ψ : N → N. We write χ(n) = Ot(ψ(n)) in
order to denote that there exists a computable function φ : N` → N such that χ(n) = O(φ(t) · ψ(n)).

4 The definition is as minors, except that only edges incident to degree-two vertices are contracted.
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treewidth of G is polynomially bounded by k, or finds a large wall R in G. In the second case,
we use the main algorithmic result of Baste et al. [5] (Proposition 3) to solve the problem
parameterized by treewidth, achieving the claimed running time. In the latter case, we apply
Proposition 12 (whose proof uses [8, 32,33]) to find in R a large flat wall W together with
an apex set A. We find in W a packing of an appropriate number of pairwise disjoint large
enough subwalls. Two possible scenarios may occur. If the “interior” of each of these subwalls
has enough neighbors in the set apex S ∪ A, we apply a combinatorial result (Lemma 15)
that guarantees that every possible solution should intersect S ∪A, and we can branch on it.
On the other hand, if there exists a subwall whose interior W has few neighbors in S ∪A,
we argue that we can define from it a flat wall in which we can apply the irrelevant vertex
technique of Robertson and Seymour [45] (Lemma 14). We stress that this flat subwall is not
precisely a subwall of W but a tiny “tilt” of a subwall of W , a new concept that is necessary
for our proofs. The application of the irrelevant vertex technique requires a lot of technical
care. For this, we use and enhance some of the ingredients introduced by Baste et al. [5].

In order to achieve the improved running time claimed in Theorem 2, we do not use
iterative compression. Instead, we directly invoke Lemma 11. If the treewidth is small, we
proceed as above. If a large wall is found, we apply Proposition 12 and we now distinguish
two cases. If a large flat wall whose flaps have bounded treewidth is found, we find an
irrelevant vertex using Lemma 14. Otherwise, inspired by an idea of Marx and Schlotter [41],
we exploit the fact that G excludes an apex graph, and we use flow techniques to either
find a vertex that should belong to the solution, or to conclude that we are dealing with a
no-instance.

Organization. We provide in Section 2 some definitions and preliminary results. In Section 3
we state several algorithmic and combinatorial results that will be used when finding an
irrelevant vertex and when applying the branching argument discussed above. In Section 4
we present the algorithms claimed in Theorem 1 and Theorem 2. We conclude in Section 5
with some directions for further research. All the missing proofs are available in the full
version of the paper [47].

2 Definitions and preliminary results

Before we explain our techniques, we give some necessary definitions. They concern funda-
mental tools from the Graph Minors series of Robertson and Seymour that are heavily used
in our algorithms and proofs. But first, we restate the problem in a more convenient way.

2.1 Restating the problem
Let F be a finite non-empty collection of non-empty graphs. We use F ≤m G to denote that
some graph in F is a minor of G.

Let G be a minor-closed graph class and F be the set of its minor-obstructions. Clearly,
Vertex Deletion to G is the same problem as asking, given a graph G and some k ∈ N,
whether G contains a vertex set S of at most k vertices such that F 6≤m G \ S. Following the
terminology of [4–7,22,23,34,35], we call this problem F-M-Deletion. In order to prove
Theorem 1, we apply the iterative compression technique (introduced in [44]; see also [14])
and we give a 2poly(k) · n2 time algorithm for the following problem.

F-M-Deletion-Compression
Input: A graph G, a k ∈ N, and a set S of size k + 1 such that F �m G \ S.
Objective: Find, if exists, a set S′ ⊆ V (G) of size at most k such that F �m G \ S′.
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Some conventions. In what follows we always denote by F the obstruction set of the
minor-closed class G of the instantiation of Vertex Deletion to G that we consider. Also,
given a graph G, we define its apex number to be the smallest integer a for which G is an
a-apex of the class of planar graphs. We define three constants depending on F that will
be used throughout the paper whenever we consider such a collection F . We define aF as
the minimum apex number of a graph in F , we set sF = max{|V (H)| | H ∈ F}, and we set
`F = max{|E(H)|+ |V (H)| | H ∈ F}. We also agree that n is the size of the input graph G.
We can always assume that G has OsF (k · n) edges, otherwise we can directly conclude that
(G, k) is a no-instance (for this, use the fact that F-minor free graphs are sparse [38,50]).

We present here the main result of [5]. We will use this in order to solve F-M-Deletion
on instances of bounded treewidth.

I Proposition 3. Let F be a finite collection of graphs. There exists an algorithm that given
a triple (G, tw, k) where G is a graph on n vertices and of treewidth at most tw, and k is a
non-negative integer, it outputs, if it exists, a vertex set S of G of size at most k such that
F �m G \ S. This algorithm runs in 2OsF (tw log tw) · n time.

2.2 Definitions
We give here a minimal set of definitions and concepts that are necessary to support the
description of our results. Some of them are given precisely, and for some of them we just
provide enough intuition.

Renditions. Let ∆ be a closed disk, i.e., a set homeomorphic to the set {(x, y) ∈ R2 |
x2 + y2 ≤ 1}. Given a subset X of ∆, we denote its closure by X̄ and its boundary by
bor(X). A ∆-painting is a pair Γ = (U,N) where N is a finite set of points of ∆, N ⊆ U ⊆ ∆,
U \N has finitely many arcwise-connected components, called cells, such that, for every cell
c, c̄ is a closed disk, bor(c) ∩∆ ⊆ N, and |bor(c) ∩N | ≤ 3. We use the notation U(Γ) := U,

N(Γ) := N and denote the set of cells of Γ by C(Γ). Notice that, given a ∆-painting Γ,
the pair (N(Γ), {c ∩N | c ∈ C(Γ)}) is a hypergraph whose hyperedges have cardinality at
most three, and Γ can be seen as a plane embedding of this hypergraph in ∆. Let G be a
graph, and let Ω be a cyclic permutation of a subset of V (G) that we denote by V (Ω). By an
Ω-rendition of G we mean a triple (Γ, σ, π), where (a) Γ is a ∆-painting for some closed disk
∆, (b) π : N(Γ)→ V (G) is an injection, and (c) σ assigns to each cell c ∈ C(Γ) a subgraph
σ(c) of G, such that
(1) G =

⋃
c∈C(Γ) σ(c),

(2) for distinct c, c′ ∈ C(Γ), σ(c) and σ(c′) are edge-disjoint,
(3) for every cell c ∈ C(Γ), π(c ∩N) ⊆ V (σ(c)),
(4) for every cell c ∈ C(Γ), V (σ(c)) ∩

⋃
c′∈C(Γ)\{c} V (σ(c′)) ⊆ π(c ∩N), and

(5) π(N(Γ)∩ bor(∆)) = V (Ω), such that the points in N(Γ)∩ bor(∆) appear in bor(∆) in
the same ordering as their images, via π, in Ω.

We say that an Ω-rendition (Γ, σ, π) of G is tight if the following conditions are satisfied:
(1) For every c ∈ C(Γ), the graph σ(c) \ π(c ∩ N), when non-null, is connected and the

neighborhood of its vertex set in G is π(c ∩N).
(2) For every c ∈ C(Γ) there are |c ∩N | vertex-disjoint paths in G from π(c ∩N) to the set

V (Ω).
(3) If there are two points x, y of N such that e = {π(x), π(y)} ∈ E(G), then there is a

c ∈ C(Γ) such that σ(c) is the two-vertex connected graph (e, {e}).
It is easy to see that given an Ω-rendition of a graph G where V (Ω) contains at least three
vertices that are in a cycle of G, a tight Ω-rendition of G can be constructed in O(n+m)
steps.
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Walls. We avoid here the detailed definition of an r-wall. As an intuitive alternative we
provide the graph G in Figure 1 where an elementary 7-wall Ŵ is the graph with red and
green vertices that has as edges the vertical and horizontal segments between a red and a
green vertex. The 7-wall W is the spanning subgraph of G that is a subdivision of Ŵ with

Figure 1 A graph G with a 7-wall and a flat 5-wall in it.

the black vertices as subdivision vertices. The pegs of Ŵ are depicted by the squared vertices,
while the corners of Ŵ are the endpoints of the highest and the lowest horizontal path of Ŵ ,

depicted by the fat squared vertices (the corners are also pegs). Notice that a wall W can
occur in several ways from the elementary wall Ŵ , depending on the way the vertices in the
perimeter of Ŵ are subdivided. Each of them gives a different selection (P,C) of pegs and
corners of W. We insist that, for every r-wall, the number r is always odd: for this, whenever
an r-wall appears with r even, we agree to round it up to the next odd r + 1.

Flat walls. Given a graph G, we say that a pair (L,R) ∈ 2V (G)× 2V (G) is a separation of G
if L ∪R = V (G) and there is no edge in G between L \R and R \ L. An r-wall has a planar
embedding where the boundary/ies of its external/internal face/es define its perimeter and
its bricks. The center of the wall W is the path between a red and a green vertex depicted
in the dashed red rectangle in Figure 1. Let G be a graph and let W be an r-wall of G. We
say that W is a flat r-wall of G if there is a separation (X,Y ) of G and a choice (P,C) of
pegs and corners for W such that:

V (W ) ⊆ Y,
P ⊆ X ∩ Y ⊆ V (D(W )), and
if Ω is the cyclic ordering of the vertices X ∩Y as they appear in D(W ), then there exists
an Ω-rendition (Γ, σ, π) of G[Y ].

A subwall of W is every subgraph W ′ of W that is located “orthocanonically” in W and
the wall W (r) is the unique r-subwall of W with the same center as W. A subwall is called
internal if it does not intersect the perimeter of W. In Figure 1, W contains only one internal
5-subwall W ′ = W (5) and many internal 3-subwalls, among them the wall W ′′′ = W (3)

(depicted in blue). Of course, the graph G in Figure 1 contains also other walls as subgraphs
such as the wall W ′′ consisting of the purple, green, and blue edges.

Compass and flaps. Given a flat wall W of a graph G as above, we call G[Y ] the compass
of W in G, denoted by compass(W ). We call (X,Y ) the separation certifying the flat wall W
and X ∩ Y is called the frontier of W. The ground set of W is ground(W ) := π(N(Γ)). We
clarify that ground(W ) may consist of vertices of the compass of W that are not necessarily
vertices of W (this is not the case in the simple example of Figure 1). We also call the



I. Sau, G. Stamoulis, and D.M. Thilikos 95:7

Figure 2 The rendition of the compass of the flat 5-wallW ′′ of Figure 1. Trivial flaps are depicted
in purple.

graphs in flaps(W ) := {σ(c) | c ∈ C(Γ)} flaps of the wall W. For each flap F ∈ flaps(W ) we
define its base as the set ∂F := V (F )∩ ground(W ). A flap F ∈ flaps(W ) is trivial if |∂F | = 2
and it consists of one edge between the two vertices in ∂F. As an example, the wall W ′′ in
Figure 1, formed by all the fat edges (purple, green, and blue), is a flat wall. The pegs are
the diamond vertices, the corners are the fat diamond vertices, and the rendition has two
types of flaps: those whose base has three vertices, that are inside the light-blue disks, and
those that are trivial flaps and are the purple fat edges that are outside of the light-blue
disks (see also Figure 2 for the rendition of W ′′). Notice that none of the internal subwalls
of W is a flat wall.

Tilts. Given a wall W ′, we define its inpegs as the vertices of its perimeter that are incident
to edges of W that are not in its perimeter. The interior of W ′ is the subgraph of W ′
induced by the union V (W ′ \ V (P )) and its inpegs. We say that a wall W ′′ is a tilt of a wall
W ′ if W ′′ and W ′ have identical interiors. For instance, in Figure 1 the wall W ′′ is a tilt of
W ′ = W (5).

Partially disk-embedded graphs. We say that a graph G is partially disk-embedded in
some closed disk ∆, if there is some subgraph K of G that is embedded in ∆ such that
(V (G) ∩∆, V (G) \ int(∆)) is a separation of G, where int is used to denote the interior of
a subset of the plane. From now on, we use the term partially ∆-embedded graph G to
denote that a graph G is partially disk-embedded in some closed disk ∆. We call the graph
K = G ∩∆ compass of the ∆-embedded graph G and we assume that G is accompanied by
an embedding of its compass in ∆, that is the set G ∩∆. We say that G is a ∆-embedded
graph if it is partially ∆-embedded graph and G ⊆ ∆ (the whole G is embedded in ∆).

Levelings. Let W be a flat wall of a graph G. Following [5], we define the leveling of W
in G, denoted by W̃ , as the bipartite graph where one part is the ground set of W, the
other part is the set of flaps of W, and, given a pair (v, F ) ∈ ground(W ) × flaps(W ), the
set {v, F} is an edge of W̃ if and only if v ∈ ∂F. Again, keep in mind that W̃ may contain
(many) vertices that are not in W. Notice that the incidence graph of the plane hypergraph
(N(Γ), {c ∩ N | c ∈ C(Γ)}) is isomorphic to W̃ via an isomorphism that extends π and,
moreover, bijectively corresponds cells to flaps. This permits us to treat W̃ as a ∆-embedded
graph where bor(∆) ∩ W̃ is the frontier of W. We call the vertices of ground(W ) (resp.
flaps(W )) ground-vertices (resp. flap-vertices) of W̃ . See Figure 3 for an example of a leveling.

ICALP 2020
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Figure 3 The leveling of the flat 5-wall W ′′ of Figure 1. The green vertices are the flap-vertices
and the non-green vertices are the ground-vertices.

Recall that each edge e of compass(W ) belongs to exactly one flap of W. If both of the
endpoints of e are in the boundary of this flap, then this flap should be a trivial one and we
say that e is a short edge of compass(W ). We define the graph W • as the graph obtained
from W if we subdivide once every short edge in W. The next observation is a consequence
of the following three facts: flap-vertices of W̃ have degree at most three, all the vertices of a
wall have degree at most three, and every separation (A,B) of order at most three of a wall
is trivial.

I Observation 4. If W is a flat wall of a graph G, then the leveling W̃ of W in G contains
a subgraph WR that is isomorphic to some subdivision of W • via an isomorphism that maps
each ground vertex to itself.

We call the graph WR as in Observation 4 representation of the flat wall W in the
∆-embedded graph W̃ , and therefore we can see it as a ∆-embedded subgraph of W̃ . Notice
that the above observation permits to bijectively map each cycle of W to a cycle of WR that
is also a cycle of W̃ . That way, each cycle C of W corresponds to a cycle C of WR denoted by
CR and we call CR the representation of C in W̃ . From now on, we reserve the superscript
“R”-notation to denote the correspondence between W (resp. C) and WR (resp. CR).

We define the function flaps : C(W )→ 2flaps(W ) so that, for each cycle C of W, flaps(C)
contains each flap F of W that, when seen as a flap-vertex of the ∆-embedded graph
W̃ , belongs to the closed disk bounded by CR. The following result is very similar to [33,
Lemma 6.1]. The proof is strongly based on the notion of levelings.

I Lemma 5. Let a, r, r′ ∈ N, where r > r′ ≥ 3. Also, let G be a graph, let (A,W ) be an
(a, r)-apex wall pair of G, and let W ′ be an internal r′-subwall of W . Then W ′ has a tilt
W ′′ such that (A,W ′′) is an (a, r′)-apex wall pair of G. Moreover,
1. the compass of W ′′ in G \A is a subgraph of the compass of W in G \A and
2. if P ′ is the perimeter of W ′, then the vertex set of the compass of W ′′ in G\A is a subset

of
⋃⋃⋃⋃⋃⋃⋃⋃⋃
flaps(P ′).

Morever, given G, (A,W ), and W ′, the (a, r′)-apex wall pair (A,W ′′) can be constructed in
O(n) time.

From now on we refer to an (A,W ′′) as in Lemma 5 as an (a, r′)-apex wall pair generated
by the internal r′-subwall W ′ of W and we keep in mind that the compasses of all such
flat walls W ′′ may differ only on their perimeter. The proof of Lemma 5 also implies the
following.
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I Observation 6. Let W be a flat wall of a graph G, and WR be the representation of W in
the leveling W̃ of W in G. Then for every internal subwall W̄ of WR there exist an internal
subwall W ′ of W and a tilt W ′′ of W ′ such that

W̄ is the representation of W ′ in the leveling W̃ of W ,
W ′′ is a flat wall, and
the vertex set of the compass of W ′′ in G is a subset of

⋃⋃⋃⋃⋃⋃⋃⋃⋃
flaps(P ′), where P ′ is the

perimeter of W ′.
Moreover, given G, W , and W̄ , the flat wall W ′′ can be constructed in O(n) steps.

Boundaried graphs. Let t ∈ N. A t-boundaried graph is a triple G = (G,B, ρ) where G is
a graph, B ⊆ V (G), |B| = t, and ρ : B → [t] is a bijection. We say that G1 = (G1, B1, ρ1)
and G2 = (G2, B2, ρ2) are isomorphic if there is an isomorphism from G1 to G2 that extends
the bijection ρ−1

2 ◦ ρ1. The triple (G,B, ρ) is a boundaried graph if it is a t-boundaried
graph for some t ∈ N. As in [45], we define the detail of a boundaried graph G = (G,B, ρ)
as detail(G) := max{|E(G)|, |V (G) \ B|}. We denote by B(t) the set of all (pairwise non-
isomorphic) t-boundaried graphs. We also set B =

⋃
t∈N B(t).

Folios. We say that a t-boundaried graph G1 = (G1, B1, ρ1) is a minor of a t-boundaried
graph G2 = (G2, B2, ρ2), denoted by G1 �m G2, if there is a sequence of removals of
non-boundary vertices, edge removals, and edge contractions in G2, disallowing contractions
of edges with both endpoints in B2, that transforms G2 to a boundaried graph that is
isomorphic to G1 (during edge contractions, boundary vertices prevail). Note that this
extends the usual definition of minors in graphs without boundary.

We say that (M,T ) is a tm-pair if M is a graph, T ⊆ V (M), and all vertices in V (M) \T
have degree two. We denote by diss(M,T ) the graph obtained from M by dissolving all
vertices in V (M) \ T . A tm-pair of a graph G is a tm-pair (M,T ) where if M is a subgraph
of G. We call the vertices in T branch vertices of (M,T ).

If M = (M,B, ρ) ∈ B and T ⊆ V (M) with B ⊆ T, we call (M, T ) a btm-pair and we define
diss(M, T ) = (diss(M,T ), B, ρ). Note that we do not permit dissolution of boundary vertices,
as we consider all of them to be branch vertices. If G = (G,B, ρ) is a boundaried graph and
(M,T ) is a tm-pair of G where B ⊆ T, then we say that (M, T ), where M = (M,B, ρ), is
a btm-pair of G = (G,B, ρ). Let Gi = (Gi, Bi, ρi), i ∈ [2]. We say that G1 is a topological
minor of G2, denoted by G1 �tm G2, if G2 has a btm-pair (M, T ) such that diss(M, T ) is
isomorphic to G1. We define the `-folio of G = (G,B, ρ) ∈ B as `-folio(G) = {G′ ∈ B |
G′ �tm G and G′ has detail at most `}.

Homogeneous walls. Let G be a graph and W be a flat wall of G. Let also (Γ, σ, π) be a
rendition of the compass of W in G. Recall that Γ = (U,N) is a ∆-painting for some closed
disk ∆. Given a flap F, we denote by Ω(F ) the counter-clockwise ordering of the vertices of ∂F
as they appear in the corresponding cell of C(Γ). Notice that as |∂F | ≤ 3, this cyclic ordering
is significant only when |∂F | = 3, in the sense that (x1, x2, x3) remains invariant under
shifting, i.e., (v1, v2, v3) ≡ (v2, v3, v1) but not under inversion, i.e., (v1, v2, v3) 6≡ (v3, v2, v1).

Given a graph G, we say that the pair (A,W ) is an (r, a)-apex wall pair of G if A is
a subset of a vertices from G and W is a flat r-wall of G \ A. Let G be a graph and let
(A,W ) be an (a, r)-apex wall pair of G. For each cell F ∈ flaps(W ) with tF = |∂F |, we
fix ρF : ∂F → [a + 1, a + tF ] such that (ρ−1

F (a + 1), . . . , ρ−1
F (a + tF )) ≡ Ω(c). We also fix

a bijection ρA : A → [a]. For each flap F ∈ flaps(W ), we define the boundaried graph
FA := (G[A ∪ F ], A ∪ ∂F, ρA ∪ ρF ) and we denote by FA the underlying graph of FA. We
call FA augmented flap of (A,W ). Notice that G[V (compass(W )) ∪A] =

⋃
F∈flaps(W ) F

A.
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Given some ` ∈ N, we say that two flaps F1, F2 ∈ flaps(W ) are (A, `)-equivalent, denoted
by F1 ∼A,` F2, if `-folio(FA1 ) = `-folio(FA2 ). For each F ∈ flaps(W ), we define the (a, `)-color
of F, denoted by (a, `)-color(F ), as the equivalence class of ∼A,` to which FA belongs.

Let W̃ be the leveling of W in G \ A and let WR be the representation of W in W̃ .

Recall that W̃ is a ∆-embedded graph. For each cycle C of W , we define the (a, `)-palette
of C, denoted by (a, `)-palette(C), as the set of all the (a, `)-colors of the flaps that appear
as vertices of W̃ in the closed disk bounded by CR in ∆ (recall that by CR we denote the
representation of C in W̃ ).

Let a, `, r, q ∈ N, where r > q ≥ 3 and let (A,W ) be an (a, r)-apex wall pair of a graph
G. We say that (A,W ) is an (`, q)-homogeneous (a, r)-apex wall pair of G if every internal
brick B of W that is not a brick of W (q) has the same (a, `)-palette (seen as a cycle of W ).
If we drop the demand that “B is not a brick of W (q)” then we simply say that (A,W ) is an
`-homogeneous (a, r)-apex wall pair of G.

The following observation is a consequence of the fact that, given a wallW and an internal
subwall W ′ of W , every internal brick of a tilt W ′′ of W ′ is also an internal brick of W .

I Observation 7. Let a, r, r′ ∈ N, where r > r′ ≥ 3. Also, let G be a graph, let (A,W )
be an (a, r)-apex wall pair of G, and let W ′ be an internal r′-subwall of W . If (A,W ) is
(`, q)-homogeneous for some `, q ∈ N where r > q ≥ 3, then every (a, r′)-apex wall pair
(A,W ′′) generated by W ′ is (`, q)-homogeneous.

The following result is from [5, Lemma 4.3] and implies that if the wall of an apex wall
pair is polynomially large on r, then its compass contains a homogeneous flat r-wall.

I Proposition 8. There is a function f1 : N3 → N such that if `, r, a ∈ N, where r ≥ 3, G is
a graph, and (A,W ) is an (a, f1(`, r, a))-apex wall pair of G, then W has a r-subwall W ′ such
that every (a, r)-apex wall pair of G that is generated by W ′ is `-homogeneous. Moreover, it
holds that f1(`, r, a) = O(rca,`), for some constant ca,` depending on a and `.

We refer to the constant ca,` of Proposition 8, when a = aF and ` = `G as the palette-variety
of F . This constant reflects the price of homogeneity: the degree of the polynomial overhead
that we need to pay in order to force homogeneity in a flat wall.

Treewidth. A tree decomposition of a graph G is a pair (T, χ) where T is a tree and
χ : V (T ) → 2V (G) such that (1)

⋃
t∈V (T ) χ(t) = V (G), (2) for every edge e of G there

is a t ∈ V (T ) such that χ(t) contains both endpoints of e, and (3) for every v ∈ V (G),
the subgraph of T induced by {t ∈ V (T ) | v ∈ χ(t)} is connected. The width of (T, χ)
is defined as w(T, χ) := max

{
|χ(t)| − 1

∣∣ t ∈ V (T )
}
. The treewidth of G is defined as

tw(G) := min
{

w(T, χ)
∣∣ (T, χ) is a tree decomposition of G

}
.

The following is the main result of [8]. We will use it to compute a tree decomposition of
a graph of bounded treewidth.

I Proposition 9. There is an algorithm that, given an graph G on n vertices and an integer
k, it outputs either a report that tw(G) > k, or a tree decomposition of G of width at most
5k + 4. Moreover, this algorithm runs in 2O(k) · n steps.

The following result is derived from [1]. We will use it in order to find a wall in a bounded
treewidth graph, given a tree decomposition of it.

I Proposition 10. There is an algorithm that, given a graph G on m edges, a graph H

on h edges without isolated vertices, and a tree decomposition of G of width at most k,
it outputs, if it exists, a minor of G isomorphic to H. Moreover, this algorithm runs in
2O(k log k) · hO(k) · 2O(h) ·m steps.
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3 Auxiliary algorithmic and combinatorial results

3.1 Two algorithmic results
We are now in position to state some results that will support our algorithms.

I Lemma 11. There exist a function f2 : N→ N and an algorithm as follows:
Find-Wall(G, r, k)
Input: A graph G, an odd r ∈ N≥3, and a k ∈ N.
Output: One of the following:

Either a report that G has treewidth at most f2(sF ) · r + k, or
an r-wall W of G, or
a report that (G, k) is a no-instance of F-M-Deletion.

Moreover, this algorithm runs in 2OsF (r2+(k+r) log(k+r)) · n steps.

The proof of Lemma 11 combines the algorithm of Perkovič and Reed in [43] for computing
the treewidth of a graph, as well as the excellent analysis of the algorithm provided in [3].
We also use the upper bound for the treewidth of an Kh-minor free graph without an r-wall
by [31], the dynamic programming algorithm of [1] for finding a wall in a graph of bounded
treewidth, and the single-exponential FPT-approximation algorithm for treewidth in [8].

The next result follows from [33, Theorem 1.9] and the proof of [32, Theorem 5.2].

I Proposition 12. There are functions f3 : N→ N, f4 : N→ N and an algorithm as follows:
Clique-Or-Flat-Wall(G, r, t,W )
Input: A graph G on n vertices and m edges, an odd integer r ≥ 3, a t ∈ N≥1, and an
R-wall W in G, where R = f3(t) · r.
Output: Either a minor of G isomorphic to Kt, or
(1) a set A ⊆ V (G) of size at most 12288t24,

(2) a flat r-wall W̄ of G \A such that V (W̄ ) ∩A = ∅, and
(3) a separation (X,Y ) of G \A that certifies that W̄ is a flat wall and an Ω-rendition of

G[Y ] with flaps of treewidth at most f4(t) · r, where Ω is a cyclic ordering of X ∩ Y
determined by the order on the perimeter of W̄ .

Moreover, this algorithm runs in 2Ot(r)(m+ n) time.

Proposition 12, without the bound on the treewidth of the flaps, has been proven
in [33, Theorem 1.9]. However, in [33, Theorem 1.9] W̄ is a tilt of some r-subwall of W with
a different function f3

′ for the relation between R and r and has running time O(t24(n+m)).
In Proposition 12 the bound on the treewidth of the flaps is obtained if we plug [33,

Theorem 1.9] in the proof of [32, Theorem 5.2], taking into account the linear dependence
between R and r. The parameterized dependence 2Ot(r) of the algorithm follows because
of the use of the linear FPT-approximation algorithm for treewidth in [8] so as to compute
the tree decompositions of the flaps. Another stronger version of Proposition 12, where no
R-wall W is given in the input, appears in [23, Lemma 3.2], running in 2Ot(r58) · n log2 n

time. We do not need this stronger version as, for our problem, the R-wall W will be found
by the algorithm of Lemma 11.

3.2 Finding an irrelevant vertex
The irrelevant vertex technique was introduced in [45] for providing an FPT-algorithm for the
Disjoint Paths problem. Moreover, this technique has appeared to by quite versatile and is
now a standard tool of parameterized algorithm design (see e.g., [14, 49]). The applicability
of this technique for F-M-Deletion is materialized by the algorithm of Lemma 14.
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Given a graph G, a set A ⊆ V (G), |A| = a, and an r-wall W of G, we say that (A,W ) is
an (a, r)-apex-wall pair if W is a flat r-wall of G \A.

I Lemma 13. There is a function f5 : N4 → N such that if a, `, q, k ∈ N, q ≥ 3, G is a graph,
and (A,W ) is an `-homogeneous (a, f5(a, `, q, k))-apex wall pair of G, then for every (a, q)-
apex wall pair (A, Ŵ ) generated by W (q), it holds that (G, k) and (G \ V (compass(Ŵ )), k)
are equivalent instances of F-M-Deletion. Moreover, f6(a, `, q, k) = Oa,`,q(k).

Sketch of the proof. The proof considers k+ 1 subwalls of W which, in turn, generate k+ 1
flat walls (by taking their tilts) whose compasses are all disjoint except at some territory T
of constant size containing the center of W that is common for all these walls. If now S is
a solution to F-M-Deletion for the instance (G, k) then one, say Wi, of these k + 1 flat
walls will have a compass that does not intersect S (except from some constant size territory
Tiaround the center of Wi that contains T ). We then claim that S′ = S \Ti is a new solution
of F-M-Deletion that avoids the center of W. To prove that this is the case, we assume to
the contrary that some graph L in F appears as a minor in G′ = G \ S′. But this means
that part of the realization of H in G′ meets some vertex in the center of W and therefore it
traverses compass(Wi). We arrive to a contradiction by providing an alternative realization
of L that is routed away from Ti. For this rerouting we use the main combinatorial result
of [5] that guarantees that there is a function f6 : N3 → N such that, for every a, `, q ∈ N
and every graph G, if (A,W ) is an (`, q)-homogeneous (a, f6(a, `, q))-apex wall pair of G,
there is an (a, q)-apex wall pair of G generated by W (q) whose compass is irrelevant. For
this it is enough to pick f5(a, `, q, k) = O(k · f6(a, `, q) + q). J

I Lemma 14. There exist a function f7 : N4 → N and an algorithm with the following
specifications:
Find-Irrelevant-Wall(G, q, k, b, A,W )
Input: A graph G on n vertices, two integers k, q ∈ N, a b ∈ N≥3, and an (a, f7(a, `F , b, k))-
apex wall pair (A,W ) of G whose all flaps have treewidth at most q.
Output: A flat b-wall Ŵ of G\A such that (G, k) and (G\V (compass(Ŵ )), k) are equivalent
instances of F-M-Deletion.
Moreover, f7(a, `F , b, k) = Oa,`F ((k + b)ca,`F ) for some constant ca,`F depending on a and
`F . This algorithm runs in 2Oa,`F (q log q+(k+b) log(k+b)) · n time.

Proof. We set f7(a, `F , b, k) := f1(`F , r, a), where r = f5(a, `, b, k). The algorithm considers
each one of the

(
f7(a,`F ,b,k)

r

)
internal r-subwalls W ′ of W and constructs an (a, r)-wall pair

(A,W ′′) generated by W ′. This can be done in O(n) time because of Lemma 5.
From Proposition 8 there is a choice of W ′ such that (A,W ′′) is `F -homogeneous. To

check whether (A,W ′′) is `F -homogeneous we do the following. Let B be the set of all
flaps of W ′′ that, when seen as flap vertices of W̃ , appear in the closed disk bounded by
the representation of B in W̃ , where B is an internal brick of W ′′ that is not a brick of
W ′′(b). For every flap F ∈ B, we consider the boundaried graph FA. Using the fact that
tw(FA) ≤ q+ a, we apply the algorithm of Proposition 9 which outputs a tree decomposition
of FA of width at most 5(q + a) + 4. Then by applying the algorithm of Proposition 10, we
compute `F -folio(FA) in 2Oa,`F (q log q) time. Then, it is easy to check in linear time whether
(A,W ′′) is `F -homogeneous.

After we find W ′, we again use Lemma 5 in order to construct a flat b-wall Ŵ of G \A
generated by W ′(b). The algorithm outputs Ŵ , and this is correct because of Lemma 13. J
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3.3 Combinatorial results for branching

We now give a combinatorial result that will justify a branching step of our algorithm, i.e.,
its recursive application on a set of Os(k) vertices. Given a graph G and a set A ⊆ V (G),
we say that a graph H is an A-fixed minor of G if H can be obtained from a subgraph G′ of

Figure 4 A 9-grid and its central 5-subgrid.

G where A ⊆ V (G′), after contracting edges without endpoints in A (see Figure 4 for the
definition of an r-grid and its central subgrids that we will need later). A graph H is an
A-apex r-grid if it can be obtained by an r-grid Γ after adding a set A of new vertices and
some edges between the vertices of A and V (Γ). We call Γ underlying grid of H.

Next we identify a combinatorial structure that guarantees the existence of a set of
q = Os(k) vertices that intersects every solution S of F-M-Deletion on imput (G, k).
This will permit branching on q simpler instances of the form (G′, k − 1).

I Lemma 15. There exist three functions f8, f9, f10 : N2 → N, such that if F is a finite set
of graphs, G is a graph, k ∈ N, and A ⊆ V (G), |A| = aF , such that G contains as an A-fixed
minor an A-apex f8(sF , k)-grid H where each vertex v ∈ A has at least f9(sF , k) neighbors
in the central (f8(sF , k) − f10(sF , k))-grid of H \ A, then for every solution S of F-M-
Deletion for the instance (G, k), it holds that S ∩A 6= ∅. Moreover, f8(sF , k) = OsF (k3/2),
f9(sF , k) = OsF (k3), and f10(sF , k) = OsF (k).

We conjecture that Lemma 15 is tight, in the sense that it cannot be proved for some
f9(sF , k) = OsF (k3−ε).

Notice that in the special case where aF = 1, then Lemma 15 can be improved by using
the main combinatorial result of [16]. In particular [16, Lemma 3.1] easily implies that, in
this case, f8(sF , k) = OsF (k), f9(sF , k) = OsF (k2), and f10(sF , k) = OsF (

√
k). In [47], we

prove that these bounds can be improved to f8(sF , k) = OsF (
√
k), f9(sF , k) = OsF (k), and

f10(sF , k) = OsF (1). We will use these improved bounds for the proof of Theorem 2.
We conclude this subsection with one additional definition that will be useful for the

application of Lemma 15 in our main algorithm.

Canonical partitions. We define the canonical partition of an r-wall W to be a collection
Q = {Qext, Q1, . . . , Qq} of (r− 2)2 + 1 connected subgraphs of W such that their vertex sets
form a partition of V (W ) as indicated in Figure 5.

Figure 5 A 5-wall and its canonical partition Q. The orange bag is the external bag Qext.
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Let (A,W ) be an (a, r)-apex wall pair of a graph G and let W̃ be the ∆-embedded
graph that is the leveling W̃ of W in G \ A. Let also WR be the representation of W in
W̃ . Consider a canonical partition Q of WR. We enhance the graphs of Q so to include in
them all the vertices of W̃ by applying the following procedure. We set Q̃ := Q and, as
long as there is a vertex x ∈ V (W̃ ) \ V (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Q̃)5 that is adjacent to a vertex of a graph Q ∈ Q̃,

update Q̃ := Q̃ \ {Q} ∪ {Q̃}, where Q̃ = W̃ [{x} ∪ V (Q)]. We just defined a partition of the
vertices of W̃ into subsets inducing connected graphs. We call such a partition canonical
partition of W̃ . Notice that a canonical partition of W̃ is not unique (since the sets in Q can
be “expanded” arbitrarily when introducing the vertex x).

4 The algorithms

4.1 The general algorithm
I Lemma 16. Let F be a finite collection of graphs. There is an algorithm solving F-M-
Deletion-Compression in 2Os(k2(cF +2) log k) · n2 time.

Proof. For simplicity, in this proof, we use c instead of cF , s instead of sF , ` instead of `F ,
a instead of aF , and remember that ` = Os(1) and a = Os(1). We set

b = f7(k, a, `) = O(kc), x = f9(s, k), l = (12288s24 + k + 1) · x,

m = f8(s, k), p = f10(s, k), h = max{m− p, d
√
l + 1 · be},

r = h+ p+ 2, R = f3(s) · r, and notice that R = Os(kc+2).

Recall that, in the definition of R, the constant c is the palette-variety of F . We present
the algorithm Solve-Compression, whose input is a quadruple (G, k′, k, S) where G is a
graph, k′ and k are non-negative integers where k′ ≤ k, and S is a subset of V (G) such that
|S| = k and F �m G \ S. The algorithm returns, if it exists, a solution for F-M-Deletion
on (G, k′). Certainly, we may assume that k′ < k, otherwise S is already a solution and we
are done. The steps of the algorithm are the following:
Step 1. Run the algorithm Find-Wall of Lemma 11 with input (G\S,R, 0). This outputs, in
2Os(k2(c+2)) ·n time, either a report that tw(G\S) ≤ f2(s) ·R, or an R-wallW0 of G\S. Notice
that Find-Wall(G \ S,R, s) never outputs the third case, since (G \ S, 0) is a yes-instance of
F-M-Deletion. In the first possible output, we know that tw(G) ≤ f2(s) ·R+k = Os(kc+2),
and we call the algorithm of Proposition 3 with input (G, f2(s) · R + k, k′) and return a
correct answer in 2Os(kc+2 log k) · n steps. In the second possible output, the algorithm moves
to the second step.
Step 2. Call Clique-Or-Flat-Wall of Proposition 12 on (G \S, r, s,W0). Since F �m G \S
and F ≤m Ks, the algorithm outputs, in time 2Os(r) · (m+ n) = 2Os(kc+2) · n, the following:

A set A ⊆ V (G) \ S of size at most 12288s24,

a flat r-wall W of G \ (S ∪A) such that V (W ) ∩A = ∅, and
a separation (X,Y ) of G \ A that certifies that W is a flat wall, and an Ω-rendition of
G[Y ] with flaps of treewidth at most q = f4(s) · r, where Ω is a cyclic ordering of X ∩ Y
determined by the order on the outer cycle of W.

Let W̃ be the leveling ofW and letWR be the representation ofW in the ∆-embedded graph
W̃ (W̃ and WR can straighforwardly be constructed in O(n) steps using the Ω-rendition of
G[Y ]). Let also W̄ = (WR)(r−p), i.e., W̄ is the central (r − p)-subwall of WR.

5 If S is a collection of objects where the operation ∪ is defined, then we denote
⋃⋃⋃⋃⋃⋃⋃⋃⋃
S =

⋃
X∈S X.



I. Sau, G. Stamoulis, and D.M. Thilikos 95:15

Consider a family W̄ = {W̄1, . . . , W̄l+1} of l+ 1 internal b-subwalls of W̄ , such that if Di

is the closed disk in ∆ bounded by the perimeter, denoted by P̄i, of W̄i, then Di ∩Dj = ∅,
for i 6= j. We are allowed to do this since r − p− 2 ≥ d

√
l + 1 · be. By flaps(Di) we denote

all the flaps corresponding to flap-vertices of W̃ that are inside Di in the embedding of
W̃ in ∆. For every i ∈ [l + 1], we compute, in O(n) time, the set Ai =

{
v ∈ S ∪ A |

v is adjacent in G to a vertex of
⋃⋃⋃⋃⋃⋃⋃⋃⋃
flaps(Di)

}
and we proceed to the last step.

Step 3. The algorithm examines two cases:
Case A: For every i ∈ [l + 1], it holds that |Ai| > a. In this case the algorithm recursively
calls Solve-Compression with input (G \ x, k′ − 1, |S \ x|, S \ x), for every x ∈ S ∪A, and
if one of these new instances is a yes-instance, certified by a set S̄, then return S̄ ∪ {x},
otherwise return that (G, k′) is a no-instance.

We now prove that the above branching step of the algorithm is correct. Let W̃ be the
leveling of W in G \ (S ∪ A). We define G̃ as the graph obtained from G \ (S ∪ A) if we
remove all the vertices of the compass of W and take the union of the resulting graph with
W̃ . Notice that G̃ is partially ∆-embedded in the sense that the part of G that is embedded
in ∆ is W̃ . Notice that G̃ is not necessarily a contraction of G \ (S ∪A), and this is because
the trivial flaps appear in W̃ as induced paths of length two instead of edges. Therefore, if
Ğ is the graph obtained from G̃ after dissolving each flap-vertex corresponding to a trivial
flap, then

Ğ is a contraction of G \ (S ∪A),
Ğ is a partially ∆-embedded graph whose compass is a dissolution of W̃ , and
Ğ contains an r-wall W̆ that is a dissolution of WR and W̆ is embedded in ∆ so that its
perimeter is a dissolution of the perimeter of WR.

Consider a canonical partition Q̃ of W̃ . Let Q̆ be the collection of connected subgraphs of
Ğ that are obtained if we apply to the graphs in Q̃ the same dissolutions that we used to
transform G̃ to Ğ (we just take care that the edge contracted during each dissolution has both
endpoints in some bag). Moreover, we enhance Q̆ by adding in its external bag all the vertices
of Ğ that are not points of ∆. Notice that the vertex sets of the graphs in this new Q̆ define a
partition of V (Ğ). Let now Ğ+ be the graph obtained if we apply in G the same contractions
that transform G \ (S ∪ A) to its contraction Ğ. Let a∗ = |S ∪ A| ≤ 12288s24 + k + 1. We
now construct a minor of Ğ+ by contracting all edges of each member of Q̆ to a single
vertex and removing the vertex to which the external bag was contracted. We denote the
resulting graph by Ḡ and we observe that Ḡ contains as a spanning subgraph an S ∪A-apex
(r − 2)-grid Γ. Recall that Γ is a S ∪ A-fixed minor of G. Let Γ̄ be the underlying grid of
Γ and let Γ̄1, . . . , Γ̄l+1 be the “packing” of the h-central grid Γ̄′ of Γ̄, corresponding to the
walls in W̄, where each Γ̄i is a b-grid. We can assume the existence of this packing because
h ≥ d

√
l + 1 · be. The initial assumption that |Ai| > a, for i ∈ [l+ 1], implies that ∀i ∈ [l+ 1],

there are more than a apices of Γ that are adjacent to vertices of Γ̄i.
For every v ∈ S ∪A, let Nv be the set of neighbors of v in Γ̄′ and let N̄ =

⋃
v∈S∪ANv.

Let A∗ be the set of vertices of S ∪ A with |Nv| ≥ x. We claim that |A∗| ≥ a. Suppose to
the contrary that |A∗| < a. This implies that the vertices in (S ∪A) \A∗ are adjacent to at
most x · |(S ∪ A) \ A∗| ≤ l vertices in N̄ . This, in turn implies that there is an i ∈ [l + 1]
such that there are no vertices in (S ∪ A) \ A∗ adjacent to vertices of Γ̄i. Thus, for this i,
there are at most a apex vertices of Ḡ that are adjacent to vertices of Γ̄i, a contradiction to
the conclusion of the previous paragraph. We arbitrarily remove vertices from A∗ so that
|A∗| = a.

Consider now the A∗-apex (r − 2)-grid H = Γ \ ((S ∪A) \A∗), and as each vertex in A∗
has at least x neighbors in V (Γ̄′) and r − 2 ≥ m, Lemma 15 can be applied for k′, A∗, H.
This implies that (G, k′) is a yes-instance of F-M-Deletion if and only if there is some
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v ∈ A∗ such that (G \ v, k′ − 1) is a yes-instance of F-M-Deletion. This completes the
correctness of the branching step in Case A.
Case B: there is an i ∈ [l + 1] such that |Ai| ≤ a. Since W̄i is an internal b-subwall of WR,
there is a subgraph of compass(W ) that is a flat b-wall W ′′i of G \ (S ∪A) such that the set of
vertices of the compass of W ′′i is a subset of

⋃⋃⋃⋃⋃⋃⋃⋃⋃
flaps(Di) (as we argued in Subsection 3.2, W ′′i

is a tilt of the subwall of W represented by W̄i and can be found in O(n) time). This implies
that if A′′i is the set of vertices from S ∪A that are adjacent with vertices of the compass of
W ′′i in G \ (S ∪A), then A′′i ⊆ Ai. Thus (A′′,W ′′i ) is an (|A′′i |, b)-apex wall pair in G.

We now apply Find-Irrelevant-Wall of Lemma 14 for (G, k, q, 3, A′′i ,W ′′i ) and pick
a vertex v in the center of the obtained 3-wall. According to Lemma 14, it holds that
(G, k) and (G \ v, k) are equivalent instances of F-M-Deletion, v can be detected in
2Oa,`(k log k) · n time, and the algorithm correctly calls recursively Solve-Compression with
input (G \ v, k′, k, S).

Recall that |S ∪A| ≤ k + 1 + 12288s24 = Os(k). Therefore, if T (n, k′, k) is the running
time of the above algorithm, then T (n, k′, k) ≤ 2Os(k2(c+2))n+ max{T (n− 1, k′, k),Os(k) ·
T (n, k − 1, k)} which, given that k′ ≤ k, implies that T (n, k′, k) = 2Os(k2(c+2))n2.

Notice now that the output of Solve-Compression on (G, k, k + 1, S) gives a solution
for F-M-Deletion-Compression on this instance. J

4.2 The apex-minor free case
In this subsection we prove that, in the case where aF = 1, there is an algorithm that
solves F-M-Deletion in time 2OsF (k2(c+1)) · n2, where c = ca,`F and a = 12288(sF )24. The
existence of such an algorithm implies Theorem 2.

Let G be graph and let W be an r-wall in G. The drop, denoted by DW ′ , of a q-subwall
W ′ of W , where q ≤ r, is defined as follows: Contract in G the perimeter of W to a single
vertex v. DW ′ is the unique biconnected component of the resulting graph that contains the
interior of W ′. We call the vertex v the pole of the drop DW ′ .

The algorithm. Our algorithm avoids iterative compression in the fashion that this is done
by Marx and Schlotter in [41] for the Planarization problem. The algorithm has three
main steps. We first set s = sF , a = 12288s24, b′ = f7(a, k, `F ) = Os(kca,`F ), and we define

b =f3(s) · 2b′ + 2 l =f9(s, k) · k p =f10(s, k)

h = max{f8(s, k)− p, b ·
√
l + 1} r =h+ p+ 2 R = f3

′(s) · r + k = Os(kc+1).

Step 1. Run the algorithm Find-Wall of Lemma 11 with input (G,R, k) and, in 2Os(k2(c+1)) ·n
time, either report a no-answer, or conclude that tw(G) ≤ f2(s) · R + k and solve F-M-
Deletion in O(2Os(kc+1) log k · n) time using the algorithm of Proposition 3, or obtain an
R-wall W • of G. In the third case, consider all the

(
R
b

)
= 2Os(kc log k) b-subwalls of W

and for each one of them, say W ′, construct its drop DW ′ , consider in DW ′ the central
(b − 2)-subwall W̄ of W ′, and run the algorithm Clique-Or-Flat-Wall of Proposition 12
with input DW ′ , 2b′, s, and W̄ . This takes time 2Os(kc) · n. If for some of these drops the
result is an (|A′|, 2b′)-apex wall pair (W ′′, A′) where |A′| ≤ a and its flaps have treewidth at
most q = f4(2b′) · r, then apply Step 2, otherwise apply Step 3.
Step 2. Consider the leveling W̃ of W ′′ and, in the representation WR of W ′′ in W̃ ,

pick a b′-wall W̄ whose flap vertices do not correspond to a flap containing the pole of
DW ′ . Then use W̄ in order to find an (|A′|, b′)-apex wall pair (W ′′′, A′) of DW ′ whose
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compass does not contain the pole of DW ′ . Notice that (A′,W ′′′) is also an (|A′|, b′)-apex
wall pair of G, therefore the algorithm can apply Find-Irrelevant-Vertex of Lemma 14 for
(G, k, q, 3, A′,W ′′′) and obtain, in 2Os(k log k) · n time, an “irrelevant” flat 3-wall and a vertex
v in its center such that (G, k) and (G \ v, k) are equivalent instances of F-M-Deletion.
Then the algorithm runs recursively on the equivalent instance (G \ v, k).

Step 3. Consider all the
(
R
r

)
= 2Os(kc log k) r-subwalls of W •, and for each one W ′ of them,

consider its central h-subwall W̄ and compute the canonical partition Q of W̄ . Then for
each internal bag Q of Q add a new vertex vQ and make it adjacent with all vertices in Q,
then add a new vertex xall and make it adjacent with all xQ’s, and in the resulting graph,
for every vertex y of G that is not in the union of the internal bags of Q, check, in time
O(k ·m) = Os(k · n) (using standard flow techniques), if there there are f9(s, k) internally
vertex-disjoint paths from xall to y. If this is indeed the case for some y, then y should
belong to every solution of F-M-Deletion for the instance (G, k) and the algorithm runs
recursively on the equivalent instance (G \ y, k − 1). If no such y exists, then report that
(G, k) is a no-instance of F-M-Deletion.

Notice that the third step of the algorithm, when applied takes time 2Os(kc log k) · n2.
However, it cannot be applied more than k times during the course of the algorithm. As the
first step runs in time 2Os(k2(c+1)) log k · n , and the second step runs in time 2Os(k log k) · n,
they may be applied at most n times, and the claimed time complexity follows.

5 Concluding remarks

Limitations of the irrelevant vertex technique. An intriguing open question is whether
Vertex Deletion to G admits an algorithm in time 2OsF (kc) · nO(1) for some universal
constant c (i.e., not depending on the class G). Clearly, this is not the case of the algorithms
of Theorem 1 and Theorem 2, running in time 2OsF (k2(c+2) log k) ·n3 and 2OsF (k2(c+1) log k) ·n2,
respectively, where c is the the palette-variety of the minor-obstruction set F of G which,
from the corresponding proofs, is estimated to be c = 2O(sF

2·log sF ) and c = 2O(sF
24·log sF ),

respectively (recall that sF is the maximum size of a minor-obstruction of G). We tend to
believe that this dependence is unavoidable if we want to use the irrelevant vertex technique,
as it reflects the price of homogeneity, as we mentioned in the end of Subsection 2.2.
Having homogeneous walls is critical for the application of this technique when G is more
general than surface embeddable graphs (in the bounded genus case, all subwalls are already
homogeneous). Is there a way to prove that this behavior is unavoidable subject to some
complexity assumption? An interesting result of this flavor concerning the existence of
polynomial kernels for Vertex Deletion to G was given by Giannopoulou et al. [26] who
proved that, even for minor-closed families G that exclude a planar graph, the dependence
on G on the degree of the polynomial kernel, which exists because of [22], is unavoidable
subject to reasonable complexity assumptions.

Variants. Our approach can be easily modified so to deal with several variants of the
Vertex Deletion to G problem such as the annotated version of the problem where the
input comes with a set of vertices that we are permitted to remove, the weighted version
where the vertices carry positive weights, the counting version where we are asked to count
the number of (minimal) solutions, or the colored version where the vertices of the input
graph are partitioned into k parts and we are requested to pick one vertex from each part.
The details can be found in the full version of the paper [47].
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Other modification operations. Another direction is to consider graph modification to a
minor-closed graph class for different modification operations. Our approach becomes just
simpler in the case where the modification operation is edge removal or edge contraction.
In these two cases, we immediately get rid of the branching part of our algorithms, and
only the irrelevant vertex part needs to be applied. Another challenge is to combine all
aforementioned modifications. This is more complicated (and tedious) but not more complex.
What is really more complex is to additionally consider edge additions. We leave it as an
open research challenge (a first step was done for the case of planar graphs [21]).

Lower bounds. Concerning lower bounds for Vertex Deletion to G under the Expo-
nential Time Hypothesis [27], we are not aware of any lower bound stronger than 2o(k) ·nO(1)

for any minor-closed class G. This lower bound already applies when F = {K2}, i.e., for the
Vertex Cover problem [7,27].
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Abstract
We study complex zeros of the partition function of 2-spin systems, viewed as a multivariate
polynomial in terms of the edge interaction parameters and the uniform external field. We obtain
new zero-free regions in which all these parameters are complex-valued. Crucially based on the
zero-freeness, we are able to extend the existence of correlation decay to these complex regions
from real parameters. As a consequence, we obtain an FPTAS for computing the partition function
of 2-spin systems on graphs of bounded degree for these parameter settings. We introduce the
contraction property as a unified sufficient condition to devise FPTAS via either Weitz’s algorithm
or Barvinok’s algorithm. Our main technical contribution is a very simple but general approach
to extend any real parameter of which the 2-spin system exhibits correlation decay to its complex
neighborhood where the partition function is zero-free and correlation decay still exists. This result
formally establishes the inherent connection between two distinct notions of phase transition for
2-spin systems: the existence of correlation decay and the zero-freeness of the partition function via
a unified perspective, contraction.
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1 Introduction

Spin systems originated from statistical physics to model interactions between neighbors on
graphs. In this paper, we focus on 2-state spin (2-spin) systems. Such a system is specified
by two edge interaction parameters β and γ, and a uniform external field λ. An instance
is a graph G = (V,E). A configuration σ is a mapping σ : V → {+,−} which assigns one
of the two spins + and − to each vertex in V . The weight w(σ) of a configuration σ is
given by w(σ) = βm+(σ)γm−(σ)λn+(σ), where m+(σ) denotes the number of (+,+) edges
under the configuration σ, m−(σ) denotes the number of (−,−) edges, and n+(σ) denotes
the number of vertices assigned to spin +. The partition function ZG(β, γ, λ) of the system
parameterized by (β, γ, λ) is defined to be the sum of weights over all configurations, i.e.,
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ZG(β, γ, λ) =
∑

σ:V→{+,−}

w(σ).

It is a sum-of-product computation. If a 2-spin system is restricted to graphs of degree
bounded by ∆, we say such a system is ∆-bounded.

In classical statistical mechanics the parameters (β, γ, λ) are usually non-negative real
numbers, and such 2-spin systems are divided into the ferromagnetic case (βγ > 1) and
the antiferromagnetic case (βγ < 1). The case βγ = 1 is degenerate. When (β, γ, λ) are
non-negative numbers and they are not all zero, the partition function can be viewed as the
normalizing factor of the Gibbs distribution, which is the distribution where a configuration
σ is drawn with probability PrG;β,γ,λ(σ) = w(σ)

ZG(β,γ,λ) . However, it is meaningful to consider
parameters of complex values. By analyzing the location of complex zeros of the partition
function, the phenomenon of phase transitions was discovered by statistical physicists. One
of the first and also the best known result is the Lee-Yang theorem [21] for the Ising model,
a special case of 2-spin systems. This result was later extended to more general models by
several people [1, 34, 37, 29, 24]. In this paper, we view the partition function ZG(β, γ, λ) as
a multivariate polynomial over these three complex parameters (β, γ, λ). We study the zeros
of this polynomial and the relation to the approximation of the partition function.

Partition functions encode rich information about the macroscopic properties of 2-spin
systems. They are not only of significance in statistical physics, but also are well-studied
in computer science. Computing the partition function of 2-spin systems given an input
graph G can be viewed as the most basic case of Counting Graph Homomorphisms (#GH)
[11, 5, 14, 8] and Counting Constraint Satisfaction Problems (#CSP) [10, 9, 6, 12, 7], which
are two very well studied frameworks for counting problems. Many natural combinatorial
problems can be formulated as 2-spin systems. For example, when β = γ, such a system
is the famous Ising model. And when β = 0 and γ = 1, ZG(0, 1, λ) is the independence
polynomial of the graph G (also known as the hard-core model in statistical physics); it
counts the number of independent sets of the graph G when λ = 1.

Related work
For exact computation of ZG(β, γ, λ), the problem is proved to be #P-hard for all complex
valued parameters but a few very restricted trivial settings [2, 8, 9]. So the main focus is to
approximate ZG(β, γ, λ). This is an area of active research, and many inspiring algorithms
are developed. The pioneering algorithm developed by Jerrum and Sinclair gives a fully
polynomial-time randomized approximation scheme (FPRAS) for the ferromagnetic Ising
model [19]. This FPRAS is based on the Markov Chain Monte Carlo (MCMC) method which
devises approximation counting algorithms via random sampling. Later, it was extended
to general ferromagnetic 2-spin systems [15, 26]. The MCMC method can only handle
non-negative parameters as it is based on probabilistic sampling.

The correlation decay method developed by Weitz [43] was originally used to devise
deterministic fully polynomial-time approximation schemes (FPTAS) for the hardcore model
up to the uniqueness threshold of the infinite regular tree. It turns out to be a very powerful
tool for devising FPTAS for antiferromagnetic 2-spin systems [44, 22, 23, 39]. Combining
with hardness results [40, 13], an exact threshold of computational complexity transition of
antiferromagnetic 2-spin systems is identified and the only remaining case is at the critical
point. On the other hand, for ferromagnetic 2-spin systems, limited results [44, 17] have been
obtained via the correlation decay method. Although correlation decay is usually analyzed
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in 2-spin systems of non-negative parameters, it can be adapted to complex parameters. An
FPTAS was obtained for the hard-core model in the Shearer’s region (a disc in the complex
plane) via correlation decay in [18].

Recently, a new method developed by Barvinok [3], and extended by Patel and Regts
[30] is the Taylor polynomial interpolation method that turns complex zero-free regions of
the partition function into FPTAS of corresponding complex parameters. Suppose that the
partition function ZG(β, γ, λ) has no zero in a complex region containing an easy computing
point, e.g., λ = 0. It turns out that, probably after a change of coordinates, logZG(β, γ, λ)
is well approximated in a slightly smaller region by a low degree Taylor polynomials which
can be efficiently computed. This method connects the long-standing study of complex zeros
to algorithmic studies of the partition function of physical systems. Motivated by this, more
recently some complex zero-free regions have been obtained for hard-core models [4, 32],
Ising models [27, 31], and general 2-spin systems [16].

Our contribution
In this paper, we obtain new zero-free regions of the partition function of 2-spin systems.
Crucially based on the zero-freeness, we are able to extend the existence of correlation
decay to these complex regions from real parameters. As a consequence, we obtain an
FPTAS for computing the partition function of bounded 2-spin systems for these parameter
settings. Our result gives the first zero-free regions in which all three parameters (β, γ, λ) are
complex-valued and new correlation decay results for bounded ferromagnetic 2-spin systems.
Our main technical contribution is a very simple but general approach to extend any real
parameter of which the bounded 2-spin system exhibits correlation decay to its complex
neighborhood where the partition function is zero-free and correlation decay still exists. We
show that for bounded 2-spin systems, the real contraction1 property that ensures correlation
decay exists for certain real parameters directly implies the zero-freeness and the existence
of correlation decay of corresponding complex neighborhoods.

We formally describe our main result. We use ζζζ ∈ C3 to denote the parameter vector
(β, γ, λ). Since the case β = γ = 0 is trivial, by symmetry we always assume γ 6= 0.

I Theorem 1. Fix ∆ ∈ N. If ζζζ0 ∈ R3 satisfies real contraction for ∆, then there exists a
δ > 0 such that for any ζζζ ∈ C3 where ‖ζζζ − ζζζ0‖∞ < δ, we have

ZG(ζζζ) 6= 0 for every graph2 G of degree at most ∆;
the ∆-bounded 2-spin system specified by ζζζ exhibits correlation decay.

As a consequence, there is an FPTAS for computing ZG(ζζζ).

This result formally establishes the inherent connection between two distinct notions
of phase transition for bounded 2-spin systems: the existence of correlation decay and the
zero-freeness of the partition function, via a unified perspective, contraction. The connection
from the existence of correlation decay of real parameters to the zero-freeness of corresponding
complex neighborhoods was already observed for the hard-core model [32] and the Ising
model without external field [27]. In this paper, we extend it to general 2-spin systems, and
furthermore we establish the connection from the zero-freeness of complex neighborhoods
back to the existence of correlation decay of such complex regions.

Now, we give our zero-free regions. We first identify the sets of real parameters of which
bounded 2-spin systems exhibit correlation decay.

1 See Definition 11. In many cases, the existence of correlation decay boils down to this property.
2 This is true even if G contains some vertices pinned by a feasible configuration (Definition 7).
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I Definition 2. Fix integer ∆ ≥ 3. We define the following four real correlation decay sets.
1. S∆

1 = {ζζζ ∈ R3 | ∆−2
∆ <

√
βγ < ∆

∆−2 , β, γ > 0 and λ ≥ 0},
2. S∆

2 = {ζζζ ∈ R3 | βγ < 1, β ≥ 0, γ > 0, λ ≥ 0, and ζζζ is up-to-∆ unique (Definition 14)},
3. S∆

3 = {ζζζ ∈ R3 | βγ > ∆
∆−2 , β, γ > 0 and 0 ≤ λ < γ

t∆−1[(∆−2)βγ−∆]} where t = max{1, β},
4. and S∆

4 = {ζζζ ∈ R3 | βγ > ∆
∆−2 , β, γ > 0 and λ > (∆−2)βγ−∆

βr∆−1 } where r = min{1, 1/γ}.
When context is clear, we omit the superscript ∆.

The set S∆
1 was given in [44] and S∆

2 was given in [23]. To our best knowledge, S∆
1

and S∆
2 cover all non-negative parameters of which bounded 2-spin systems are known to

exhibit correlation decay. The sets S∆
3 and S∆

4 are obtained in this paper3. They give new
correlation decay results and hence FPTAS for bounded ferromagnetic 2-spin systems. When
β < γ and λ is sufficiently large, it is known that approximating the partition function of
ferromagnetic 2-spin systems over general graphs is #BIS-hard [26]. Our result S∆

4 shows
that there is an FPTAS for such a problem when restricted to graphs of bounded degree.
When β < 1 < γ, the FPTAS obtained from S∆

3 is covered by [17].

I Theorem 3. Fix integer ∆ ≥ 3. For every ζζζ0 ∈ S∆
i (i ∈ [4]), there exists a δ > 0 such

that for any ζζζ ∈ C3 where ‖ζζζ − ζζζ0‖∞ < δ, we have
ZG(ζζζ) 6= 0 for every graph G of degree at most ∆; (G may contain a feasible configuration.)
the ∆-bounded 2-spin system specified by ζζζ exhibits correlation decay.

Then via either Weitz’s algorithm or Barvinok’s algorithm, there is an FPTAS for computing
the partition function ZG(ζζζ).

I Remark 4. The choice of δ does not depend on the size of the graph, only on ∆ and ζζζ0.

Organization
This paper is organized as follows. In Section 2, we briefly describe Weitz’s algorithm [43].
We introduce real contraction as a sufficient condition for the existence of correlation decay
of real parameters, and we show that sets S∆

i (i ∈ [4]) satisfy it. In Section 3, we briefly
describe Barvinok’s algorithm [3]. We introduce complex contraction as a generalization
of real contraction, and we show that it gives a unified sufficient condition for both the
zero-freeness of the partition function and the existence of correlation decay of complex
parameters. Finally, in Section 4, we prove our main result that real contraction implies
complex contraction. This finishes the proof of Theorem 3. We use the following diagram
(Figure 1) to summarize our approach to establish the connection between correlation decay
and zero-freeness. We expect it to be further explored for other models.

Independent work
After a preliminary version [36] of this manuscript was posted, we learned that based on similar
ideas, Liu simplified the proofs of [32] and [27], and generalized them to antiferromagnetic
Ising models (β = γ < 1) in chapter 3 of his Ph.D. thesis [25], where similar zero-freeness
results (a complex neighborhood of S∆

2 restricted to β = γ) were obtained. We mention
that by using the unique analytic continuation and the inverse function theorem, our main
technical result (Theorem 24) is generic; it does not rely on a particularly chosen potential
function. Thus, in our approach we can work with any existing potential function based

3 Since we do not assume β 6 γ or β > γ, S∆
3 and S∆

4 are essentially the same by swapping β and γ and
replacing λ with 1/λ. However, if one restrict to β 6 γ, then S∆

3 is no longer the same as S∆
4 .
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Zero-Freeness

Barvinok’s Algorithm

&&
S∆
i

(i ∈ [4])
Lemma 15 // Real

Contraction
Theorem 24 // Complex

Contraction

Lemma 19

77

Lemma 20
''

FPTAS

Correlation Decay

Weitz’s Algorithm

88

Figure 1 The structure of our approach.

argument for correlation decay even if the potential function does not have an explicit
expression, for instance, the one used in [23] when β 6= γ. Furthermore, we mention also that
based on the zero-freeness, we obtain new correlation decay results for complex parameters
(Lemma 20). Note that Barvinok’s algorithm requires an entire region in which the partition
function is zero-free and there is an easy computing point in this region. However, our
correlation decay results show that one can always devise an FPTAS for these parameter
settings via Weitz’s algorithm, even if Barvinok’s algorithm fails.

2 Weitz’s Algorithm

In this section, we describe Weitz’s algorithm and introduce real contraction. We first
consider positive parameters ζζζ ∈ R3

+. An obvious but important fact about ζζζ being positive
is that ZG(ζζζ) 6= 0 for any graph G. This is true even if G contains arbitrary number of
vertices pinned to spin + or −. Then, the partition function can be viewed as the normalizing
factor of the Gibbs distribution.

2.1 Notations and definitions

Let ζζζ ∈ R3
+. We use pv(ζζζ) to denote the marginal probability of v being assigned to spin +

in the Gibbs distribution, i.e., pv(ζζζ) = Z+
G,v

(ζζζ)
ZG(ζζζ) , where Z+

G,v(ζζζ) is the contribution to ZG(ζζζ)
over all configurations with v being assigned to spin +. We know that pv(ζζζ) is well-defined
since ZG(ζζζ) 6= 0. (Later, we will extend the definition of pv(ζζζ) to complex parameters ζζζ.)

Let σΛ ∈ {0, 1}Λ be a configuration of some subset Λ ⊆ V . We allow Λ to be the
empty set. We call vertices in Λ pinned and other vertices free. We use pσΛ

v (ζζζ) to denote
the marginal probability of a free vertex v (v /∈ Λ) being assigned to spin + conditioning

on the configuration σΛ of Λ, i.e., pσΛ
v (ζζζ) = Z

σΛ,+
G,v

(ζζζ)
Z
σΛ
G

(ζζζ) , where ZσΛ
G (ζζζ) is the weight over all

configurations where vertices in Λ are pinned by the configuration σΛ, and ZσΛ,+
G,v (ζζζ) is the

contribution to ZσΛ
G (ζζζ) with v being assigned to spin +. Correspondingly, we can define

ZσΛ,−
G,v (ζζζ). Let RσΛ

G,v(ζζζ) := Z
σΛ,+
G,v

(ζζζ)

Z
σΛ,−
G,v

(ζζζ)
= p

σΛ
v (ζζζ)

1−pσΛ
v (ζζζ) be the ratio between the two probabilities

that the free vertex v is assigned to spin + and −, while imposing some condition σΛ. Since
ZG(ζζζ) 6= 0 for any graph G with arbitrary number of pinned vertices, both pσΛ

v (ζζζ) and
RσΛ
G,v(ζζζ) are well-defined. When context is clear, we write pv(ζζζ), pσΛ

v (ζζζ) and RσΛ
G,v(ζζζ) as pv,

pσΛ
v and RσΛ

G,v for convenience.
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96:6 A Unified Perspective of Correlation Decay and Zero-Freeness of 2-Spin Systems

Since computing the partition function of 2-spin systems is self-reducible, if one can
compute pv for any vertex v, then the partition function can be computed via telescoping
[20]. The goal of Weitz’s algorithm is to estimate pσΛ

v , which is equivalent to estimating RσΛ
G,v.

For the case that the graph is a tree T , RσΛ
T,v can be computed by recursion. Suppose that

a free vertex v has d children, and s1 of them are pinned to +, s2 are pinned to −, and k
are free (s1 + s2 + k = d). We denote these k free vertices by vi(i ∈ [k]) and let Ti be the
corresponding subtree rooted at vi. We use σiΛ to denote the configuration σΛ restricted to
Ti. Since all subtrees are independent, it is easy to get the following recurrence relation,

RσΛ
T,v =

ZσΛ,+
T,v (ζζζ)

ZσΛ,−
T,v (ζζζ)

=
λ1+s1βs1

∏k
i=1

(
βZ

σiΛ,+
Ti,vi

(ζζζ) + Z
σiΛ,−
Ti,vi

(ζζζ)
)

λs1γs2
∏k
i=1

(
Z
σiΛ,+
Ti,vi

(ζζζ) + γZ
σiΛ,−
Ti,vi

(ζζζ)
) = λβs1

γs2

k∏
i=1

βRσiΛTi,vi + 1

R
σiΛ
Ti,vi

+ γ

.
I Definition 5 (Recursion function). Let s = (s1, s2, k) ∈ N3 (including 0). A recursion
function Fs for 2-spin systems is defined to be

Fs(ζζζ,x) := λβs1γ−s2
k∏
i=1

(
βxi + 1
xi + γ

)
,

where ζζζ = (β, γ, λ) ∈ C × (C\{0}) × C and x = (x1, . . . , xk) ∈ (C\{−γ})k. We define
Fζζζ,s(x) := Fs(ζζζ,x) for fixed ζζζ with γ 6= 0, and Fx,s(ζζζ) := Fs(ζζζ,x) for fixed x.

I Remark 6. Every recursion function is analytic on its domain.
For a general graph G, Weitz reduced computing RσΛ

G,v to that in a tree T , called the
self-avoiding walk (SAW) tree, and Weitz’s theorem [43] states that RσΛ

G,v = RσΛ
T,v. (Please

see [43], [17] or the full paper for more details.) We want to generalize Weitz’s theorem to
complex parameters ζζζ ∈ C3. First, we need to make sure that RσΛ

G,v and pσΛ
v are well-defined

for any vertex v /∈ Λ. This requires that ZσΛ
G (ζζζ) 6= 0 for any graph G and any configuration

σΛ. Now, pσΛ
v no longer has a probabilistic meaning. It is just a ratio of two complex

numbers. However, one can easily observe that for some special parameters, there are trivial
configurations such that ZσΛ

G,v(ζζζ) = 0. We will rule these cases out as they are infeasible.

I Definition 7 (Feasible configuration). Let ζζζ ∈ C3. Given a graph G = (V,E) of the 2-spin
system specified by ζζζ, a configuration σΛ on some vertices Λ ⊆ V is feasible if

σΛ does not assign any vertex in G to spin + when λ = 0, and
σΛ does not assign any two adjacent vertices in G both to spin + when β = 0.

I Remark 8. Let σΛ be a feasible configuration. If we further pin one vertex v /∈ Λ to spin
−, and get the configuration σΛ′ on Λ′ = Λ ∪ {v}, then σΛ′ is still a feasible configuration.
Thus, given ζζζ ∈ C3, if ZσΛ

G (ζζζ) 6= 0 for any graph G and any arbitrary feasible configuration
σΛ on G, then both pσΛ

v and RσΛ
G,v are well-defined.

Given RσΛ
G,v is well-defined for some ζζζ ∈ C3, we can still compute it by recursion via SAW

tree. We first consider the case that λ 6= 0. Let σΛ be a feasible configuration. It is easy
to verify that the corresponding configuration on the SAW tree is also feasible and Weitz’s
theorem still holds. For the case that λ = 0, it is obvious that RσΛ

G,v ≡ 0 for any graph G,
any free vertex v and any feasible configuration σΛ. This is equal to the value of recursion
functions Fs(ζζζ,x) at λ = 0. We agree that RσΛ

G,v can be computed by recursion functions
when λ = 0, although Weitz’s theorem does not hold for this case. For the case that β = 0,
we have RσΛ

G,v = 0 if one of the children of v is pinned to +. Then, we may view v as it is
pinned to −. Thus, for β = 0, we only consider recursion functions Fs where s1 = 0.
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y x

F (y) Fϕ(x)

F Fϕ

ϕ

ϕ−1

ϕ

ϕ−1

Figure 2 Commutative diagram between F and Fϕ.

2.2 Correlation decay and real contraction

The SAW tree may be exponentially large in size of G. In order to get a polynomial time
approximation algorithm, we may run the tree recursion at logarithmic depth and hence in
polynomial time, and plug in some arbitrary values at the truncated boundary. We have
the following notion of strong spatial mixing (SSM) to bound the error caused by arbitrary
guesses. It was originally introduced for non-negative parameters. Here, we extend it to
complex parameters.

I Definition 9 (Strong spatial mixing). A 2-spin system specified by ζζζ ∈ C3 on a family G of
graphs is said to exhibit strong spatial mixing if for any graph G = (V,E) ∈ G, any v ∈ V ,
and any feasible configurations σΛ1 ∈ {0, 1}Λ1 and τΛ2 ∈ {0, 1}Λ2 where v /∈ Λ1 ∪Λ2, we have

1. ZσΛ1
G (ζζζ) 6= 0 and ZτΛ2

G (ζζζ) 6= 0, and

2.
∣∣pσΛ1
v − pτΛ2

v

∣∣ ≤ exp(−Ω(dist(v, S))).
Here, S ⊆ Λ1 ∪ Λ2 is the subset on which σΛ1 and τΛ2 differ (If a vertex v is free in one
configuration but pinned in the other, we say that these two configurations differ at v), and
distG(v, S) is the shortest distance from v to any vertex in S.

I Remark 10. When ζζζ ∈ R3
+, condition 1 is always satisfied. Condition 2 is a stronger form

of SSM of real parameters (see Definition 5 of [23]). For real values, by monotonicity one
need to consider only the case that Λ1 = Λ2 (the two configurations are on the same set
of vertices). Here, we need to consider the case that Λ1 6= Λ2. This is necessary to extend
Weitz’s algorithm to complex parameters.

In statistical physics, SSM implies correlation decay. If SSM holds, then the error caused
by arbitrary boundary guesses at logarithmic depth of the SAW tree is polynomially small.
Hence, Weitz’s algorithm gives an FPTAS. A main technique that has been widely used to
establish SSM is the potential method [33, 22, 23, 38, 17]. Instead of bounding the rate of
decay of recursion functions directly, we use a potential function ϕ(x) to map the original
recursion to a new domain (See Figure 2 for the commutative diagram).

Let Fs(ζζζ,y) be a recursion function (s = (s1, s2, k) ∈ N3). We use Fϕs (ζζζ,x) to denote the
composition ϕ(Fs(ζζζ,ϕϕϕ−1(x))) where y = ϕϕϕ−1(x) denotes the vector (ϕ−1(x1), . . . , ϕ−1(xk)).
Correspondingly, we define Fϕζζζ,s(x) for fixed ζζζ, and Fϕx,s(ζζζ) for fixed x. We will specify the
domain on which Fϕs is well-defined per each ϕ that will be used. For positive ζζζ, a sufficient
condition for the bounded 2-spin system of ζζζ exhibiting SSM is that there exists a “good”
potential function ϕ such that Fϕζζζ,s satisfies the following contraction property.
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I Definition 11 (Real contraction). Fix ∆ ∈ N. We say that ζζζ ∈ R3 satisfies real contraction
for ∆ if there is a real compact interval J ⊆ R where λ ∈ J , −γ /∈ J and −1 /∈ J , and a real
analytic function ϕ : J → I where ϕ′(x) 6= 0 for all x ∈ J , such that
1. Fζζζ,s(Jk) ⊆ J for every s with ‖s‖1 ≤ ∆−1 and −1 /∈ Fζζζ,s(Jk) for every s with ‖s‖1 = ∆;
2. there exists η > 0 s.t.

∥∥∥∇Fϕζζζ,s(x)
∥∥∥

1
≤ 1− η for every s with ‖s‖1 ≤ ∆− 1 and all x ∈ Ik.

We say ϕ defined on J is a good potential function for ζζζ.

I Remark 12. Since ϕ is analytic and ϕ′(x) 6= 0 for all x ∈ J , the function ϕ is invertible
and the inverse ϕ−1 : I → J is also analytic by the inverse function theorem (Theorem 22).
Also for every s with ‖s‖1 ≤ ∆ − 1, since Fζζζ,s(Jk) ⊆ J and −γ /∈ J , the function Fζζζ,s(x)
is analytic on Jk. Thus, Fϕζζζ,s(x) is well-defined and analytic on Ik, and then ∇Fϕζζζ,s(x) is
well-defined on Ik. Note that I is also a real compact interval since J is a real compact
interval and ϕ is a real analytic function.

Since −1 /∈ J , Fζζζ,s(Jk) ⊆ J implies that −1 /∈ Fζζζ,s(Jk). Thus, real contraction implies
that−1 /∈ Fζζζ,s(Jk) for all ‖s‖1 ≤ ∆. The reason why we require Fζζζ,s(Jk) ⊆ J for ‖s‖1 ≤ ∆−1,
but only require −1 /∈ Fζζζ,s(Jk) for ‖s‖1 = ∆ is that in a tree of degree at most ∆, only the
root node may have ∆ many children, while other nodes have at most ∆− 1 many children.

I Lemma 13. If ζζζ ∈ R3
+ satisfies real contraction for ∆, then the ∆-bounded 2-spin system

of ζζζ exhibits SSM. Thus there is an FPTAS for computing the partition function ZG(ζζζ).

Proof. The proof directly follows from the argument of the potential method, see [23, 17].
The FPTAS follows from Weitz’s algorithm. J

Now, we give the sets of non-negative parameters that satisfy real contraction.

I Definition 14 (Uniqueness condition [23]). Let ζζζ ∈ R3 be antiferromagnetic (βγ < 1) with

β ≥ 0, γ > 0 and λ ≥ 0, and fd(x) = λ
(
βx+1
x+γ

)d
. We say ζζζ is up-to-∆ unique, if λ = 0 or

λ > 0 and there exists a constant 0 < c < 1 such that for every integer 1 ≤ d ≤ ∆− 1,

|f ′d(x̂d)| =
d(1− βγ)x̂d

(βx̂d + 1)(x̂d + γ) ≤ c,

where x̂d is the unique positive fixed point of the function fd(x).

Let S∆
i (i ∈ [4]) be the correlation decay sets defined in Definition 2. The set S∆

1 was
given in [44] and S∆

2 was given in [23]. Directly following their proofs, it is easy to verify
that both sets satisfy real contraction . The sets S∆

3 and S∆
4 are obtained in this paper, and

we show that they also satisfy real contraction.

I Lemma 15. Fix ∆ ≥ 3. For every ζζζ ∈ S∆
i (i ∈ [4]), it satisfies real contraction for ∆.

Proof. We only give a proof for sets S∆
3 and S∆

4 . For a proof of sets S∆
1 and S∆

2 , please
refer to the full paper. The case that λ = 0 is easy to check. We only consider that λ 6= 0.

Since βγ > ∆
∆−2 > 1, we have 1/γ < β. We pick the interval J = [λr∆−1, λt∆−1] where

r = min{1, 1/γ} and t = max{1, β}, and the potential function ϕ = log(x). Clearly, ϕ is
analytic on J and ϕ′(x) 6= 0 for all x ∈ J . Also, we know that λ ∈ J , −γ /∈ J and −1 /∈ J ,
and −1 /∈ Fζζζ,s(Jk) for every ‖s‖1 = ∆. Since β > 0 and γ > 0, for all x > 0,

r ≤ min{β, 1/γ} ≤ βx+ 1
x+ γ

≤ max{β, 1/γ} ≤ t.
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Thus, for all x ∈ Jk,

Fζζζ,s(x) = λβs1γ−s2
k∏
i=1

(
βxi + 1
xi + γ

)
∈
[
λr‖s‖1 , λt‖s‖1

]
⊆
[
λr∆−1, λt∆−1] .

Hence, Fζζζ,s(Jk) ⊆ J for every ‖s‖1 ≤ ∆− 1. Condition 1 of real contraction is satisfied.
Let I = ϕ(J). Consider the gradient ∇Fϕζζζ,s(x) for every ‖s‖1 ≤ ∆ − 1 and all x ∈ Ik.

Note that Fϕζζζ,s(x) = log λ+ s1 log β − s2 log γ +
∑k
i=1 log

(
βexi+1
exi+γ

)
, and exi = ϕ−1(xi) ∈ J

and e−xi ∈ [ 1
λt∆−1 ,

1
λr∆−1 ] when xi ∈ I.

If ζζζ ∈ S∆
3 , then (∆− 2)βγ −∆ < γ

λt∆−1 . Thus,∣∣∣∣∣∂F
ϕ
ζζζ,s

∂xi

∣∣∣∣∣ = βγ − 1
βexi + γe−xi + 1 + βγ

≤ βγ − 1
γ

λt∆−1 + 1 + βγ
<

βγ − 1
(∆−2)βγ −∆ +1 +βγ

= 1
∆−1 .

Otherwise, ζζζ ∈ S∆
4 and then λβr∆−1 > (∆− 2)βγ −∆. Thus,∣∣∣∣∣∂F

ϕ
ζζζ,s

∂xi

∣∣∣∣∣ = βγ − 1
βexi + γe−xi + 1 + βγ

≤ βγ − 1
βλr∆−1 + 1 + βγ

<
βγ − 1

(∆−2)βγ −∆ +1 +βγ
= 1

∆−1 .

Thus, in both cases, there exists some η > 0 such that
∥∥∥∇Fϕζζζ,s(x)

∥∥∥
1
≤ 1 − η for every

‖s‖1 ≤ ∆− 1 and all x ∈ Ik. Condition 2 of real contraction is satisfied. J

In order to generalize the correlation decay technique to complex parameters, we need to
ensure that the partition function is zero-free. Now, let us first take a detour to Barvinok’s
algorithm which crucially relies on the zero-free regions of the partition function. After we
carve out our new zero-free regions, we will come back to the existence of correlation decay
of complex parameters.

3 Barvinok’s Algorithm

In this section, we describe Barvinok’s algorithm and introduce complex contraction. Let
I = [0, t] be a closed real interval. We define the δ-strip of I to be {z ∈ C | |z − z0| <
δ, z0 ∈ I}, denoted by Iδ. It is a complex neighborhood of I. Suppose a graph polynomial
P (z) =

∑n
i=0 aiz

i of degree n is zero-free in Iδ. Barvinok’s method [3] roughly states
that for any z ∈ Iδ, P (z) can be (1 ± ε)-approximated using coefficients a0, . . . , ak for
some k = O(eΘ(1/δ) log(n/ε)), via truncating the Taylor expansion of the logarithm of the
polynomial. For the partition function of 2-spin systems, these coefficients can be computed
in polynomial time [30, 28]. For the purpose of obtaining an FPTAS, we will view the
partition function as a univariate polynomial ZG;β,γ(λ) in λ and fix β and γ. The following
result is known.

I Lemma 16. Fix β, γ ∈ C and ∆ ∈ N. Let G be a graph of degree at most ∆. If
ZG;β,γ(λ) 6= 0 lies in a δ-strip Iδ of I = [0, t], then there is an FPTAS for computing
ZG;β,γ(λ) for λ ∈ Iδ.

Proof. This lemma is a generalization of Lemma 4 in [16], where β and γ are both real. The
generalization to complex valued parameters directly follows from the argument in [28]. J
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3.1 Zero-freeness and complex contraction
With Lemma 16 in hand, the main effort is to obtain zero-free regions of the partition function.
For this purpose, we will still view ZG(ζζζ) as a multivariate polynomial in (β, γ, λ). A main
and widely used approach to obtain zero-free regions is the recursion method [41, 35, 4, 32, 27].
This method is related to the correlation decay method.

Assuming Z−G,v(ζζζ) 6= 0 for some vertex v, then ZG(ζζζ) 6= 0 is equivalent to RG,v =
Z+
G,v

(ζζζ)
Z−
G,v

(ζζζ) 6= −1. As pointed above, the ratio RG,v can be computed by recursion via the
SAW tree in which v is the root. Roughly speaking, the key idea of the recursion method
is to construct a contraction region Q ⊆ C where λ ∈ Q and −1 /∈ Q such that for all
recursion functions Fζζζ,s with ‖s‖1 ≤ ∆− 1, Fζζζ,s(Qk) ⊆ Q, and for all Fζζζ,s with ‖s‖1 = ∆,
−1 /∈ Fζζζ,s(Qk). This condition guarantees that with the initial value RG,v` = λ where v` is
a free leaf node in the SAW tree of which the degree is bounded by ∆, the recursion will
never achieve −1. Hence, we have ZG(ζζζ) 6= 0 by induction. Again, we may use a potential
function ϕ : Q→ P to change the domain, and we prove Fϕζζζ,s(P k) ⊆ P .

Now, we introduce the following complex contraction property as a generalization of real
contraction. This property gives a sufficient condition for the zero-freeness of the partition
function.

I Definition 17 (Complex contraction). Fix ∆ ∈ N. We say that ζζζ ∈ C3 satisfies complex
contraction for ∆ if there is a closed and bounded complex region Q ⊆ C where λ ∈ Q,
−γ /∈ Q and −1 /∈ Q, and an analytic and invertible function ϕ : Q→ P where the inverse
ϕ−1 : P → Q is also analytic and P is convex, such that
1. Fζζζ,s(Qk) ⊆ Q for every s with ‖s‖1 ≤ ∆−1 and −1 /∈ Fζζζ,s(Qk) for every s with ‖s‖1 = ∆;
2. there exists η > 0 s.t.

∥∥∥∇Fϕζζζ,s(x)
∥∥∥

1
≤ 1− η for every s with ‖s‖1 ≤ ∆− 1 and all x ∈ P k.

I Remark 18. Similar to the remark of Definition 11, the function Fϕζζζ,s(x) is well-defined
and analytic on P k. Here, we directly assume that the inverse ϕ−1 is analytic instead of
ϕ′(x) 6= 0 for the sake of simplicity of our proof.

I Lemma 19. If ζζζ ∈ C3 satisfies complex contraction for ∆, then ZσΛ
G (ζζζ) 6= 0 for any graph

G of degree at most ∆ and any feasible configuration σΛ.

Please refer to the full paper for a proof of Lemma 19. Such a proof only uses condition
1 of complex contraction. However, condition 2 combining with the zero-freeness result of
Lemma 19 gives a sufficient condition for bounded 2-spin systems of complex parameters
exhibiting correlation decay. This is a generalization of Lemma 13. Also, please refer to the
full paper for a proof.

I Lemma 20. If ζζζ ∈ C3 satisfies complex contraction for ∆, then the ∆-bounded 2-spin system
of ζζζ exhibits SSM. Thus, there is an FPTAS for computing ZG(ζζζ) via Weitz’s algorithm.

4 From Real Contraction to Complex Contraction

In this section, we prove our main result. We first give some preliminaries in complex analysis.
The main tools are the unique analytic continuation and the inverse function theorem. Here,
we slightly modify the statements to fit for our settings. Please refer to [42] for the proofs.

I Theorem 21 (Unique analytic continuation). Let f(x) be a (real) analytic function defined
on a compact real interval I ⊆ R. Then, there exists a complex neighborhood Ĩ ⊆ C of I,
and a (complex) analytic function f̃(x) defined on Ĩ such that f̃(x) ≡ f(x) for all x ∈ I.
Moreover, if there is another (complex) analytic function g̃(x) also defined on Ĩ such that
g̃(x) ≡ f̃(x) for all x ∈ I and the measure m(I) 6= 0, then g̃(x) ≡ f̃(x) for all x ∈ Ĩ. We call
f̃(x) the unique analytic continuation of f(x) on Ĩ.
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I Theorem 22 (Inverse function theorem). For a real analytic function ϕ defined on a real
interval J ⊆ R, if ϕ′(x) 6= 0 for all x ∈ J , then ϕ is invertible on J and the inverse ϕ−1 is
also analytic on ϕ(J). For a complex analytic function ψ defined on U ⊆ C, if ψ′(z) 6= 0 for
some z ∈ U , then there exists a complex neighborhood D of z such that ψ is invertible on D
and the inverse is also analytic.

Combining the above theorems, we have the following result.

I Lemma 23. Let ϕ : J → I be a real analytic function, and ϕ′(x) 6= 0 for all x ∈ J where J
and I are real compact intervals. Then, there exists an analytic continuation ϕ̃ on a complex
neighborhood J̃ of J such that ϕ̃ is invertible on J̃ and the inverse ϕ̃−1 is also analytic.

Proof. If m(J) = 0, i.e., J = {x}, then by Theorem 21 there exists an analytic continuation
ϕ̃ of ϕ. Since ϕ̃′(x) = ϕ′(x) 6= 0, by Theorem 22, there is a neighborhood of x on which ϕ̃ is
invertible and the inverse ϕ̃−1 is analytic.

Otherwise, m(J) 6= 0. Since ϕ(x) is analytic and ϕ′(x) 6= 0 for all x ∈ J , the function ϕ
is invertible and by Theorem 22, the inverse ϕ−1 : I → J is analytic on I. By Theorem 21,
there exists an analytic continuation ϕ̃−1 of ϕ−1 defined on a neighborhood Ĩ1 of I. Similarly,
there exists an analytic continuation ϕ̃ of ϕ defined on a neighborhood J̃ of J . We use Ĩ to
denote the image ϕ̃(J̃). Since ϕ̃ is analytic, by the open mapping theorem Ĩ is an open set in
the complex plane. Clearly, we have ϕ(J) = I ⊆ Ĩ. We can pick J̃ small enough while still
keeping J ⊆ J̃ such that the image Ĩ = ϕ̃(J̃) ⊆ Ĩ1 and still I ⊆ Ĩ. Thus, the composition
ϕ̃−1 ◦ ϕ̃ is a well-defined analytic function on J̃ . Clearly, we have that

ϕ̃−1 ◦ ϕ̃(x) = ϕ−1 ◦ ϕ(x) ≡ x for all x ∈ J.

Since m(J) 6= 0, by Theorem 21, we have that ϕ̃−1 ◦ ϕ̃(x) ≡ x for all x ∈ J̃ .
Thus, ϕ̃ is invertible on J̃ and the inverse ϕ̃−1 = ϕ̃−1 is analytic. J

Now, we are ready to prove our main result.

I Theorem 24. If ζζζ0 satisfies real contraction for ∆, then there exists a δ > 0 such that for
every ζζζ ∈ C3 with ‖ζζζ − ζζζ0‖∞ < δ, ζζζ satisfies complex contraction for ∆.

Proof. Let ϕ : J → I be a good potential function for ζζζ0. By Definition 11 and Lemma 23,
there exists a neighborhood J̃ of J such that the analytic continuation ϕ̃ : J̃ → Ĩ of ϕ on J̃
is invertible. Here Ĩ = ϕ̃(J̃) is a neighborhood of I, and the inverse ϕ̃−1 is also analytic on Ĩ.
We use Bδ := {z ∈ C3 | ‖z−ζζζ0‖∞ < δ} to denote the 3-dimensional complex ball around ζζζ0 of
radius δ in terms of the infinity norm. Recall that we define Iε = {z ∈ C | |z−z0| < ε, z0 ∈ I}.
Given a set U ⊆ Ck, we use U to denote its closure.

We first show that we can pick a pair of (δ1, ε1) such that for every s with ‖s‖1 ≤ ∆− 1,
the composition

F ϕ̃s (ζζζ,x) = ϕ̃(Fs(ζζζ, ϕ̃ϕϕ−1(x))) is well-defined and analytic on Bδ1 × Ikε1 .

Given some s with ‖s‖1 ≤ ∆ − 1, we consider the function Fs(ζζζ,x). We know that it is
analytic on a neighborhood of {ζζζ0} × Jk and by real contraction we have Fs(ζζζ0, J

k) ⊆ J .
Then, we can pick some δs and a neighborhood J̃s of J that are small enough such that
Fs(ζζζ,x) is analytic on Bδs × J̃ks , and Fs(Bδs , J̃

k
s ) ⊆ J̃ . Let

δ1 = min
‖s‖1≤∆−1

{δs} and J̃1 =
⋂

‖s‖1≤∆−1

J̃s.
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Since there is only a finite number of s with ‖s‖1 ≤ ∆−1, we have that δ1 > 0, and J̃1 is open
and it is a neighborhood of J . Then, Fs(Bδ1 , J̃1) ⊆ J̃ for every s with ‖s‖1 ≤ ∆− 1. Since
ϕ̃−1 is analytic on Ĩ and ϕ̃−1(I) = J , similarly we can pick a small enough neighborhood Ĩ1
of I where Ĩ1 ⊆ Ĩ such that ϕ̃−1(Ĩ1) ⊆ J̃1. For every z0 ∈ I, we can pick an εz0 such that the
disc Bz0,εz0 := {z ∈ C | |z − z0| < εz0} is in Ĩ1. Recall that I is a compact real interval, by
the finite cover theorem, we can uniformly pick an ε1 such that I ⊆ Iε1 ⊆ Ĩ1. Thus, F

ϕ̃
s (ζζζ,x)

is well-defined and analytic on Bδ1 × Ikε1 for every s with ‖s‖1 ≤ ∆ − 1. In fact, F ϕ̃s is a
(multivariate) analytic continuation of Fϕs . Since I is a compact interval, in the following
when we pick a neighborhood Ĩ of I, without loss of generality, we may always pick Ĩ as an
ε-strip Iε of I.

Then, we show that we can pick a pair of (δ2, ε2) where δ2 < δ1 and ε2 < ε1, a constant
M > 0 and a constant η > 0 such that for every s with ‖s‖1 ≤ ∆− 1,

∥∥∥∇F ϕ̃ζζζ,s(x)
∥∥∥

1
≤ 1− η and

∥∥∥∇F ϕ̃x,s(ζζζ)
∥∥∥

1
≤M

for all ζζζ ∈ Bδ2 and all x ∈ Ikε2 . By real contraction, there is an η′ > 0 such that
∥∥∥∇F ϕ̃ζζζ0,s(x)

∥∥∥
1
≤

1− η′ for every s with ‖s‖1 ≤ ∆− 1 and all x ∈ Ik. Given some s with ‖s‖1 ≤ ∆− 1, since
F ϕ̃s (ζζζ,x) is analytic on Bδ1 × Ikε1 , by continuity we can pick some δs < δ1 and εs < ε1 such
that

∥∥∥∇F ϕ̃ζζζ,s(x)
∥∥∥

1
≤ 1− η′

2 for all ζζζ ∈ Bδs and all x ∈ Ikεs
. In addition, let

Ms = sup
ζζζ∈Bδs ,x∈Ikεs

∥∥∥∇F ϕ̃x,s(ζζζ)
∥∥∥

1
,

and we know that Ms < +∞ since F ϕ̃ is analytic on Bδs × Ikεs
which is closed and bounded.

Finally, let

η = η′

2 , δ2 = min
‖s‖1≤∆−1

{δs}, ε2 = min
‖s‖1≤∆−1

{εs}, and M = max
‖s‖1≤∆−1

{Ms}.

These choices will satisfy our requirement.
For the case that ‖s‖1 = ∆, we show that we can pick a pair of (δ3, ε3) where δ3 < δ1 and

ε3 < ε1 such that for every s with ‖s‖1 = ∆, we have −1 /∈ Fs(Bδ3 , J̃k2 ) where J̃2 = ϕ̃−1(Iε3)
is a closed neighborhood of J . Since Fs is analytic, by real contraction, −1 /∈ Fζζζ0,s(Jk) which
is closed. Again by continuity we can pick some (δ3, ε3) that satisfy our requirement.

Since ζζζ0 = (β0, γ0, λ0) satisfies real contraction, we have λ0 ∈ J , −γ0 /∈ J and −1 /∈ J .
Recall that J = ϕ̃−1(I). Again, since ϕ̃−1 is analytic, by continuity we can pick some
ε ≤ min{ε2, ε3} such that λ0 ∈ ϕ̃−1(Iε) (an open set), −γ0 /∈ ϕ̃−1(Iε) (a closed set) and
−1 /∈ ϕ̃−1(Iε). Moreover, we can pick some δ4 small enough such that the disc Bλ0,δ4 :=
{z ∈ C | |z − λ0| < δ4} is in ϕ̃−1(Iε), and the disc B−γ0,δ4 := {z ∈ C | |z − (−γ0)| < δ4}
is disjoint with ϕ̃−1(Iε). Let P = Iε and Q = ϕ̃−1(Iε). Clearly, P is convex. For every ζζζ
with ‖ζζζ − ζζζ0‖∞ < δ, we have λ ∈ Q, −γ /∈ Q and −1 /∈ Q. In addition, we know that Q is
closed and bounded since P is closed and bounded and ϕ̃−1 is analytic on P . Finally, let
δ = min{δ2, δ3, δ4, εηM }. We show that for every s with ‖s‖1 ≤ ∆− 1, F ϕ̃s (Bδ, P k) ⊆ P , which
implies that Fs(Bδ, Qk) ⊆ Q.
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Consider some x ∈ P k. By the definition of P , there exists an x0 ∈ Ik such that
‖x− x0‖∞ ≤ ε. Also, consider some ζζζ ∈ Bδ, and we have ‖ζζζ − ζζζ0‖∞ < δ. Then, for every s
with ‖s‖1 ≤ ∆− 1, consider F ϕ̃s (ζζζ,x)− F ϕ̃s (ζζζ0,x0). We have∣∣∣F ϕ̃s (ζζζ,x)− F ϕ̃s (ζζζ0,x0)

∣∣∣
≤
∣∣∣F ϕ̃s (ζζζ,x)− F ϕ̃s (ζζζ0,x)

∣∣∣+
∣∣∣F ϕ̃s (ζζζ0,x)− F ϕ̃s (ζζζ0,x0)

∣∣∣
≤ sup
ζζζ′∈Bδ

∥∥∥∇F ϕ̃x,s(ζζζ ′)
∥∥∥

1
· ‖ζζζ − ζζζ0‖∞ + sup

x′∈Pk

∥∥∥∇F ϕ̃ζζζ0,s(x′)
∥∥∥

1
· ‖x− x0‖∞

≤Mδ + (1− η) · ε ≤ ε.

The second inequality above uses the fact that both Bδ and P k are convex, which ensures
that the line between ζζζ0 and ζζζ is in Bδ and the line between x0 and x is in P k. By real
contraction, we know that F ϕ̃s (ζζζ0,x0) ∈ I since x0 ∈ Ik. Thus, we have F ϕ̃s (ζζζ,x) ∈ P. Thus,
for every ζζζ with ‖ζζζ − ζζζ0‖∞ < δ, we have that λ ∈ Q, −γ /∈ Q and −1 /∈ Q, and
1. Fζζζ,s(Qk) ⊆ Q for every s with ‖s‖1 ≤ ∆−1 and −1 /∈ Fζζζ,s(Qk) for every s with ‖s‖1 = ∆;
2. there exists η > 0 s.t.

∥∥∥∇Fϕζζζ,s(x)
∥∥∥

1
≤ 1− η for every s with ‖s‖1 ≤ ∆− 1 and all x ∈ P k.

The function ϕ̃ : Q→ P is a good potential function for ζζζ. J

Combining Lemmas 15, 19, 20 and Theorem 24, we have the following result.

I Theorem 25. Fix ∆ ≥ 3. For every ζζζ0 ∈ S∆
i (i ∈ [4]), there exists a δ > 0 such that for

any ζζζ ∈ C3 where ‖ζζζ − ζζζ0‖∞ < δ, we have
ZσΛ
G (ζζζ) 6= 0 for every graph G of degree at most ∆ and every feasible configuration σΛ;

the ∆-bounded 2-spin system specified by ζζζ exhibits correlation decay.
Then via either Weitz’s or Barvinok’s algorithm, there is an FPTAS for computing ZG(ζζζ).

I Remark 26. The choice of δ does not depend on the size of the graph, only on ∆ and ζζζ0.
In particular, let D be a compact set in S∆

i for some i ∈ [4]. Then there is a uniform δ such
that for all ζζζ in a complex neighborhood Dδ of radius δ around D, i.e., ζζζ ∈ Dδ := {z ∈ C3 |
‖z− z0‖∞ < δ, z0 ∈ D}, ZG(ζζζ) 6= 0 for every graph G of degree at most ∆. In addition, in
order to apply Barvinok’s algorithm, by Lemma 16, we need to make sure that the zero-free
regions contain λ = 0 (an easy computing point). This is true for S∆

1 , S∆
2 and S∆

3 . For
parameters in S∆

4 , we will reduce the problem to a case in S∆
3 by swapping β and γ and

replacing λ by 1/λ. Then, one can apply Barvinok’s algorithm.
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Abstract
Consider a distributed graph where each vertex holds one of two distinct opinions. In this paper, we
are interested in synchronous voting processes where each vertex updates its opinion according to
a predefined common local updating rule. For example, each vertex adopts the majority opinion
among 1) itself and two randomly picked neighbors in best-of-two or 2) three randomly picked
neighbors in best-of-three. Previous works intensively studied specific rules including best-of-two and
best-of-three individually.

In this paper, we generalize and extend previous works of best-of-two and best-of-three on
expander graphs by proposing a new model, quasi-majority functional voting. This new model
contains best-of-two and best-of-three as special cases. We show that, on expander graphs with
sufficiently large initial bias, any quasi-majority functional voting reaches consensus within O(logn)
steps with high probability. Moreover, we show that, for any initial opinion configuration, any
quasi-majority functional voting on expander graphs with higher expansion (e.g., Erdős-Rényi graph
G(n, p) with p = Ω(1/

√
n)) reaches consensus within O(logn) with high probability. Furthermore,

we show that the consensus time is O(logn/ log k) of best-of-(2k + 1) for k = o(n/ logn).
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1 Introduction

Consider an undirected graph G = (V,E) where each vertex v ∈ V initially holds an opinion
σ ∈ Σ from a finite set Σ. In synchronous voting process (or simply, voting process), in each
round, every vertex communicates with its neighbors and then all vertices simultaneously
update their opinions according to a predefined protocol. The aim of the protocol is to reach a
consensus configuration, i.e., a configuration where all vertices have the same opinion. Voting
process has been extensively studied in several areas including biology, network analysis,
physics and distributed computing [10, 32, 30, 22, 26, 2]. For example, in distributed
computing, voting process plays an important role in the consensus problem [22, 26].

This paper is concerned with the consensus time of voting processes over binary opinions
Σ = {0, 1}. Then voting processes have state space 2V . A state of 2V is called a configuration.
The consensus time is the number of steps needed to reach a consensus configuration.
Henceforth, we are concerned with connected and nonbipartite graphs.
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1.1 Previous works of specific updating rules
In pull voting, in each round, every vertex adopts the opinion of a randomly selected
neighbor. This is one of the most basic voting process, which has been well explored in the
past [33, 27, 14, 18, 8]. In particular, the expected consensus time of this process has been
extensively studied in the literature. For example, Hassin and Peleg [27] showed that the
expected consensus time is O(n3 logn) for all non-bipartite graphs and all initial opinion
configurations, where n is the number of vertices. From the result of Cooper, Elsässer, Ono,
and Radzik [14], it is known that on the complete graph Kn, the expected consensus time is
O(n) for any initial opinion configuration.

In best-of-two (a.k.a. 2-Choices), each vertex v samples two random neighbors (with
replacement) and, if both hold the same opinion, v adopts the opinion. Otherwise, v keeps its
own opinion. Doerr, Goldberg, Minder, Sauerwald, and Scheideler [21] showed that, on the
complete graph Kn, the consensus time of best-of-two is O(logn) with high probability1 for
an arbitrary initial opinion configuration. Since best-of-two is simple and is faster than pull
voting on the complete graphs, this model gathers special attention in distributed computing
and related area [25, 15, 16, 17, 19, 20, 37]. There is a line of works that study best-of-two
on expander graphs [15, 16, 17], which we discuss later.

In best-of-three (a.k.a. 3-Majority), each vertex v randomly selects three random neighbors
(with replacement). Then, v updates its opinion to match the majority among the three.
It follows directly from Ghaffari and Lengler [25] that, on Kn with any initial opinion
configuration, the consensus time of best-of-three is O(logn) w.h.p. Kang and Rivera [28]
considered the consensus time of best-of-three on graphs with large minimum degree starting
from a random initial configuration. Shimizu and Shiraga [37] showed that, for any initial
configurations, best-of-two and best-of-three reach consensus in O(logn) steps w.h.p. if the
graph is an Erdős-Rényi graph G(n, p)2 of p = Ω(1).

Best-of-k (k ≥ 1) is a generalization of pull voting, best-of-two and best-of-three. In each
round, every vertex v randomly selects k neighbors (with replacement) and then if at least
bk/2c+ 1 of them have the same opinion, the vertex v adopts it. Note that the best-of-1 is
equivalent to pull voting. Abdullah and Draief [1] studied a variant of best-of-k (k ≥ 5 is
odd) on a specific class of sparse graphs that includes n-vertex random d-regular graphs3
Gn,d of d = o(

√
logn) with a random initial configuration. To the best of our knowledge,

best-of-k has not been studied explicitly so far.
In Majority (a.k.a. local majority), each vertex v updates its opinion to match the majority

opinion among the neighbors. This simple model has been extensively studied in previous
works [6, 9, 24, 34, 35, 40]. For example, Majority on certain families of graphs including
the Erdős-Rényi random graph [6, 40], random regular graphs [24] have been investigated.
See [35] for further details.

Voting process on expander graphs

Expander graph gathers special attention in the context of Markov chains on graphs, yielding
a wide range of theoretical applications. A graph G is λ-expander if max{|λ2|, |λn|} ≤ λ,
where 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 are the eigenvalues of the transition matrix P of the

1 In this paper “with high probability” (w.h.p.) means probability at least 1− n−c for a constant c > 0.
2 Recall that the Erdős-Rényi random graph G(n, p) is a graph on n vertices where each of possible

(
n
2

)
vertex pairs forms an edge with probability p independently.

3 An n-vertex random d-regular graph Gn,d is a graph selected uniformly at random from the set of all
labelled n-vertex d-regular graphs.
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simple random walk on G. For example, an Erdős-Rényi graph G(n, p) of p ≥ (1 + ε) logn
n for

an arbitrary constant ε > 0 is O(1/√np)-expander w.h.p. [12]. An n-vertex random d-regular
graph Gn,d of 3 ≤ d ≤ n/2 is O(1/

√
d)-expander w.h.p. [13, 39].

Cooper et al. [14] showed that the expected consensus time of pull voting is O(n/(1− λ))
on λ-expander regular graphs for any initial configuration. Compared to pull voting, the
study of best-of-two on general graphs seems much harder. Most of the previous works
concerning best-of-two on expander graphs put some assumptions on the initial configuration.
Let A denote the set of vertices of opinion 0 and B = V \A. Cooper, Elsässer, and Radzik [15]
showed that, for any regular λ-expander graph, the consensus time is O(logn) w.h.p. if∣∣|A| − |B|∣∣ = Ω(λn). This result was improved by Cooper, Elsässer, Radzik, Rivera, and
Shiraga [16]. Roughly speaking, they proved that, on λ-expander graphs, the consensus time
is O(logn) if |d(A)− d(B)| = Ω(λ2d(V )), where d(S) =

∑
v∈S deg(v) denotes the volume of

S ⊆ V . To the best of our knowledge, the worst case consensus time of best-of-k on expander
graphs has not been studied.

1.2 Our model

In this paper, we propose a new class functional voting of voting process, which contains
many known voting processes as a special case. Let A ⊆ V be the set of vertices of opinion 0
and A′ be the set in the next round. Let B = V \A and B′ = V \A′. For v ∈ V and S ⊆ V ,
let N(v) = {w ∈ V : {v, w} ∈ E} and degS(v) = |N(v) ∩ S|.

I Definition 1.1 (Functional voting). Let f : R→ R be a function satisfying f([0, 1]) = [0, 1]
and f(0) = 0. A functional voting with respect to f is a synchronous voting process defined as

Pr[v ∈ A′] = f

(
degA(v)
deg(v)

)
if v ∈ B,

Pr[v ∈ B′] = f

(
degB(v)
deg(v)

)
if v ∈ A.

We call the function f a betrayal function and the function

Hf (x) := x
(
1− f(1− x)

)
+ (1− x)f(x)

an updating function.

Since f(0) = 0, consensus configurations are absorbing states. The intuition behind the
updating function Hf is that, letting α = |A|/n and α′ = |A′|/n, on a complete graph Kn

(with self-loop), the functional voting with respect to f satisfies E[α′] = |A|
n

(
1− f

(
|B|
n

))
+

|B|
n f

(
|A|
n

)
= Hf (α).

Functional voting contains many existing models as special cases. For example, pull voting,
best-of-two, and best-of-three are functional votings with respect to x, x2 and 3x2 − 2x3,
respectively. In general, best-of-k is a functional voting with respect to

fk(x) =
k∑

i=bk/2c+1

(
k

i

)
xi(1− x)k−i. (1)
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	0

	0.5

	1

	0 	0.5 	1

Hf(x)

x

pull	voting
best-of-three
best-of-seven

Figure 1 The updating functions Hf (x) of pull voting (solid line), best-of-three (dashed line) and
best-of-seven (dotted line). One can easily observe that best-of-three and best-of-seven are quasi-
majority functional voting. Intuitively speaking, quasi-majority functional voting has an updating
function Hf with the property so-called “the rich get richer”, which coincides with Definition 1.2.

It is straightforward to check that Hfk
(x) = fk(x) if k is odd and Hfk

(x) = fk+1(x) if k is
even. Majority is a functional voting with respect to

f(x) =


0 if x < 1

2 ,
1
2 if x = 1

2 ,

1 if x > 1
2

(2)

if a vertex adopts the random opinion when it meets the tie.

Quasi-majority functional voting

In this paper, we focus on functional voting with respect to f satisfying the following property.

I Definition 1.2 (Quasi-majority). A function f is quasi-majority if f satisfies the following
conditions.
(i) f is C2 (i.e., the derivatives f ′ and f ′′ exist and they are continuous).
(ii) 0 < f(1/2) < 1,
(iii) Hf (x) < x whenever x ∈ (0, 1/2).
(iv) H ′f (1/2) > 1,
(v) H ′f (0) < 1.

A voting process is a quasi-majority functional voting if it is a functional voting with respect
to a quasi-majority function f .

Note that Hf (x) is symmetric (i.e., Hf (1 − x) = 1 − Hf (x)) and thus the condition (iii)
implies Hf (x) > x for every x ∈ (1/2, 1). Intuitively, the conditions (iii) to (v) ensure the
drift towards consensus. The conditions (i) and (ii) are due to a technical reasons.

For each constant k ≥ 2, best-of-k is quasi-majority functional voting but pull voting
and Majority are not. Indeed, if Hfk

is the updating function of best-of-k, then H ′f2`
(x) =

H ′f2`+1
(x) = (2`+ 1)

(2`
`

)
x`(1− x)`. It is straightforward to check that this function satisfies

the conditions (iii) to (v) if ` 6= 0 (pull-voting). See Figure 1 for depiction of the updating
functions of pull voting, best-of-three and best-of-seven.
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1.3 Our result
In this paper, we study the consensus time of quasi-majority functional voting on expander
graphs4. Let Tcons(A) denote the consensus time starting from the initial configuration
A ⊆ V . For a graph G = (V,E), let π = (π(v))v∈V denote the degree distribution defined as

π(v) = deg(v)
2|E| . (3)

Note that
∑
v∈V π(v) = 1 holds. We denote by ‖x‖p :=

(∑
v∈V |xv|p

)1/p the `p norm of
x ∈ RV . For π ∈ [0, 1]V and A ⊆ V , let π(A) :=

∑
v∈A π(v). Let

δ(A) := π(A)− π(V \A) = 2π(A)− 1

denote the bias between A and V \A.

I Theorem 1.3 (Main theorem). Consider a quasi-majority functional voting with respect
to f on an n-vertex λ-expander graph with degree distribution π. Then, the following holds:
(i) Let C1 > 0 be an arbitrary constant and ε : N→ R be an arbitrary function satisfying

ε(n) → 0 as n → ∞. Suppose that λ ≤ C1n
−1/4, ‖π‖2 ≤ C1/

√
n and ‖π‖3 ≤ ε/

√
n.

Then, for any A ⊆ V , Tcons(A) = O(logn) w.h.p.
(ii) Let C2 be a positive constant depending only on f . Suppose that λ ≤ C2 and
‖π‖2 ≤ C2/

√
logn. Then, for any A ⊆ V satisfying |δ(A)| ≥ C2 max{λ2, ‖π‖2

√
logn},

Tcons(A) = O(logn) w.h.p.
The following result indicates that the consensus time of Theorem 1.3(i) is optimal up to a
constant factor.

I Theorem 1.4 (Lower bound). Under the same assumption of Theorem 1.3(i), Tcons(A) =
Ω(logn) w.h.p. for some A ⊆ V .

See the full version [38] for the proof of Theorem 1.4.

I Theorem 1.5 (Fast consensus for H ′f (0) = 0). Consider a quasi-majority functional voting
with respect to f on an n-vertex λ-expander graph with degree distribution π. Let C > 0 be a
constant depending only on f . Suppose that H ′f (0) = 0, λ ≤ C and ‖π‖2 ≤ C/

√
logn. Then,

for any A ⊆ V satisfying |δ(A)| ≥ C max{λ2, ‖π‖2
√

logn}, it holds w.h.p. that

Tcons(A) = O

(
log logn+ log |δ(A)|−1 + logn

log λ−1 + logn
log(|π‖2

√
logn)−1

)
.

For example, for each constant k ≥ 2, best-of-k is quasi-majority with H ′f (0) = 0.
I Remark 1.6. Roughly speaking, for p ≥ 2, ‖π‖p measures the imbalance of the degrees.
For any graphs, ‖π‖p ≥ n−1+1/p and the equality holds if and only if the graph is regular.
For star graphs, we have ‖π‖p ≈ 1.

Results of best-of-k

Our results above do not explore Majority since it is not quasi-majority. A plausible approach
is to consider best-of-k for k = k(n) = ω(1) since each vertex is likely to choose the majority
opinion if the number of neighbor sampling increases. Also, note that the betrayal function fk

4 Throughout the paper, we consider sufficiently large n = |V |.
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of best-of-k given in (1) converges to that of Majority (i.e., fk(x)→ f(x) as k →∞ for each
x ∈ [0, 1], where f is the betrayal function (2) of Majority). On the other hand, if k = O(1),
there is a tremendous gap between best-of-k and Majority: For any functional voting on the
complete graph Kn, Tcons(A) = Ω(logn) for some A ⊆ V from Theorem 1.4. Majority on
Kn reaches the consensus in a single step if |A| < |V \A| − 1. This motivates us to consider
best-of-k for k = k(n) → ∞ as n → ∞. For simplicity, we focus on best-of-(2k + 1) and
prove the following result (see the full version [38] for the proof).

I Theorem 1.7. Let k = k(n) be such that k = ω(1) and k = o(n/ logn). Let C be an
arbitrary positive constant. Consider best-of-(2k + 1) on an n-vertex λ-expander graph with
degree distribution π such that λ ≤ Ck−1/2n−1/4, ‖π‖2 ≤ Cn−1/2 and ‖π‖3 ≤ Ck−1/6n−1/2.
Then, Tcons(A) = O

(
logn
log k

)
holds w.h.p. for any A ⊆ V .

1.4 Application
Here, we apply our main theorem to specific graphs and derive some useful results.

For any p ≥ (1 + ε) logn
n for an arbitrary constant ε > 0, G(n, p) is connected and

O(1/√np)-expander w.h.p [12, 23].

I Corollary 1.8. Consider a best-of-k on an Erdős-Rényi graph G(n, p) for an arbitrary
constant k ≥ 2. Then, G(n, p) w.h.p. satisfies the following:
(i) Suppose that p = Ω(n−1/2). Then

(a) for any A ⊆ V , Tcons(A) = O(logn) w.h.p.
(b) for some A ⊆ V , Tcons(A) = Ω(logn) w.h.p.

(ii) Suppose that p ≥ (1 + ε) logn
n for an arbitrary constant ε > 0. Then, for any A ⊆ V sat-

isfying |δ(A)| ≥ C max
{

1
np ,
√

logn
n

}
, Tcons(A) = O

(
log logn+ log |δ(A)|−1 + logn

log(np)

)
w.h.p., where C > 0 is a constant depending only on f .

In Corollary 1.8(i), we stress that the worst-case consensus time on G(n, p) was known for
p = Ω(1) [37]. If logn

log(np) = O(log logn) (or equivalently, np = nΩ(1/ log logn)), Corollary 1.8(ii)
implies Tcons(A) = O(log logn+ log |δ(A)|−1) w.h.p.

I Corollary 1.9. Let k = k(n) be such that k = ω(1) and k = O(
√
n). Consider best-of-

(2k + 1) on G(n, p) for p = Ω(k/
√
n). Then, for any A ⊆ V , Tcons(A) = O

(
logn
log k

)
holds

w.h.p.

From Corollary 1.9, best-of-nε on G(n, n−1/2+ε) for any constant ε ∈ (0, 1/2) reaches con-
sensus in O(1) steps. It is known that Majority on G(n,Cn−1/2) satisfies Tcons(A) ≤ 4 for
large constant C and random A ⊆ V with constant probability [6].

For 3 ≤ d ≤ n/2, n-vertex random d-regular graph Gn,d is connected and O(1/
√
d)-

expander w.h.p. [13, 39].

I Corollary 1.10. Consider a best-of-k on an n-vertex random d-regular graph Gn,d for an
arbitrary constant k ≥ 2. Then, Gn,d w.h.p. satisfies the following:
(i) Suppose that d = Ω(n1/2) and d ≤ n/2. Then,

(a) for any A ⊆ V , Tcons(A) = O(logn) w.h.p.
(b) for some A ⊆ V , Tcons(A) = Ω(logn) w.h.p.

(ii) Suppose that d ≥ C and d ≤ n/2 for a constant C > 0 depending only on f . Then,
for any A ⊆ V satisfying |δ(A)| ≥ C max

{
1
d ,
√

logn
n

}
, it holds w.h.p. that Tcons(A) =

O
(

log logn+ log |δ(A)|−1 + logn
log d

)
.
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I Corollary 1.11. Let k = k(n) be such that k = ω(1) and k = O(
√
n). Consider best-of-

(2k + 1) on an n-vertex random d-regular graph Gn,d such that d = Ω(k
√
n) and d ≤ n/2.

Then, for any A ⊆ V , Tcons(A) = O
(

logn
log k

)
holds w.h.p.

See the full version [38] for other specific results and examples of quasi-majority functional
voting.

1.5 Related work
In asynchronous voting process, in each round, a vertex is selected uniformly at random and
only the selected vertex updates its opinion. Cooper and Rivera [18] introduced linear voting
model. In this model, an opinion configuration is represented as a vector v ∈ ΣV and the
vector v updates according to the rule v ←Mv, where M is a random matrix sampled from
some probability space. This model captures a wide variety model including asynchronous
push/pull voting and synchronous pull voting. Note that best-of-two and best-of-three are not
included in linear voting model. Schoenebeck and Yu [36] proposed an asynchronous variant
of our functional voting. The authors of [36] proved that, if the function f is symmetric
(i.e., f(1− x) = 1− f(x)), smooth and has “majority-like” property (i.e., f(x) > x whenever
1/2 < x < 1), then the expected consensus time is O(n logn) w.h.p. on G(n, p) with p = Ω(1).
This perspective has also been investigated in physics (see, e.g., [10]).

Several researchers have studied best-of-two and best-of-three on complete graphs initially
involving k ≥ 2 opinions [5, 4, 7, 25]. For example, the consensus time of best-of-three is
O(k logn) if k = O(n1/3/

√
logn) [25]. Cooper, Radzik, Rivera, and Shiraga [17] considered

best-of-two and best-of-three on regular expander graphs that hold more than two opinions.
Recently, Cruciani, Natale, and Scornavacca [20] studied best-of-two with a random initial

configuration on a clustered regular graph. Shimizu and Shiraga [37] obtained phase-transition
results of best-of-two and best-of-three on stochastic block models.

2 Preliminary and technical result

2.1 Formal definition
Let G = (V,E) be an undirected and connected graph. Let P ∈ [0, 1]V×V be the matrix
defined as

P (u, v) :=
1{u,v}∈E

deg(u) ∀(u, v) ∈ V × V (4)

where 1Z denotes the indicator of an event Z. For v ∈ V and S ⊆ V , we write P (v, S) =∑
s∈S P (v, s).
Now, let us describe the formal definition of functional voting. For a given A ⊆ V , let

(Xv)v∈V be independent binary random variables defined as

Pr[Xv = 1] = f
(
P (v,A)

)
if v ∈ B,

Pr[Xv = 0] = f
(
P (v,B)

)
if v ∈ A,

(5)

where B = V \A. For A ⊆ V and (Xv) above, define A′ = {v ∈ V : Xv = 1}. Note that this
definition coincides with Definition 1.1 since P (v,A) = degA(v)

deg(v) . Then, a functional voting is
a Markov chain A0, A1, . . . where At+1 = (At)′.

For A ⊆ V , let Tcons(A) denote the consensus time of the functional voting starting from
the initial configuration A. Formally, Tcons(A) is the stopping time defined as

Tcons(A) := min {t ≥ 0 : At ∈ {∅, V }, A0 = A} .
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2.2 Technical background
Consider best-of-two on a complete graph Kn (with self loop on each vertex) with a current
configuration A ⊆ V . Let α = |A|/n. We have P (v,A) = α for any v ∈ V and A ⊆ V .
Then, for any A ⊆ V , E[α′] = Hf (α) = 3α2 − 2α3. Thus, in each round, α′ = 3α2 − 2α3 ±
O(
√

logn/n) holds w.h.p. from the Hoeffding bound. Therefore, the behavior of α can be
written as the iteration of applying Hf .

The most technical part is the symmetry breaking at α = 1/2. Note that Hf (1/2) = 1/2
and thus, the argument above does not work in the case of |α − 1/2| = o(

√
logn/n). To

analyze this case, the authors of [21, 11] proved the following technical lemma asserting that
α w.h.p. escapes from the area in O(logn) rounds.

I Lemma 2.1 (Lemma 4.5 of [11] (informal)). For any constant C, it holds w.h.p. that
|α− 1/2| ≥ C

√
logn/n in O(logn) rounds (the hidden constant factor depends on C) if

(i) For any constant h, there is a constant C0 > 0 such that, if |α− 1/2| = O(
√

logn/n)
then Pr[|α′ − 1/2| > h/

√
n] > C0.

(ii) If |α−1/2| = O(
√

logn/n) and |α−1/2| = Ω(1/
√
n), Pr[|α′−1/2| ≤ (1+ε)|α−1/2|] ≤

exp(−Θ((α− 1/2)2n)) for some constant ε > 0.

Intuitively speaking, the condition (ii) means that the bias |α′ − 1/2| is likely to be at
least (1 + ε)|α− 1/2| for some constant ε > 0. The condition (ii) is easy to check using the
Hoeffding bound. The condition (i) means that α′ has a fluctuation of size Ω(1/

√
n) with a

constant probability. We can check condition (i) using the Central Limit Theorem (the Berry-
Esseen bound). The Central Limit Theorem implies that the normalized random variable
(α′ − E[α′])/

√
Var[α′] converges to the standard normal distribution as n→∞. In other

words, α′ has a fluctuation of size Θ(
√

Var[α′]) with constant probability. Now, to verify
the condition (i), we evaluate Var[α′]. On Kn, it is easy to show that Var[α′] = Θ(1/n),
which implies the condition (i).

The authors of [16, 17] considered best-of-two on expander graphs. They focused on
the behavior of π(A) instead of α. Roughly speaking, they proved that E[π(A′) − 1/2] ≥
(1 + ε)(π(A)− 1/2)−O(λ2). At the heart of the proof, they showed the following result.

I Lemma 2.2 (Special case of Lemma 3 of [17]). Consider a λ-expander graph with degree
distribution π. Then, for any S ⊆ V ,

∣∣∑
v∈V π(v)P (v, S)2 − π(S)2

∣∣ ≤ λ2π(S)
(
1− π(S)

)
.

Then, from the Hoeffding bound, we have E[π(A′)− 1/2] ≥ (1 + ε)(π(A)− 1/2)− O(λ2 +
‖π‖2

√
logn)). Thus, if the initial bias |π(A)− 1/2| is Ω(max{λ2,

√
logn/n}), we can show

that the consensus time is O(logn).
Unfortunately, we can not apply the same technique to estimate Var[π(A′)] on expander

graphs, and due to this reason, it seems difficult to estimate the worst-case consensus time
on expander graphs. Actually, any previous works put assumptions on the initial bias due to
the same reason. It should be noted that Lemma 2.1 is well-known in the literature. For
example, Cruciani et al. [20] used Lemma 2.1 from random initial configurations.

The technique of estimating E[π(A′)] by Cooper et al. [16, 17] is specialized in best-of-two.
Thus, it is not straightforward to prove the estimation of E[π(A′)] for voting processes other
than best-of-two.

2.3 Our technical contribution
For simplicity, in this part, we focus on a quasi-majority functional voting with respect to a
symmetric function f (i.e., f(1− x) = 1− f(x) for every x ∈ [0, 1]) on a λ-expander graph
with degree distribution π. For example, f(x) = 3x2 − 2x3 of best-of-three is a symmetric
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function. Note that f = Hf if f is symmetric. Similar results mentioned in this subsection
holds for non-symmetric f (see Lemma 3.5 and 3.6 of the full version [38]). For a C2 function
h : R→ R, let

K1(h) := max
x∈[0,1]

|h′(x)| , K2(h) := max
x∈[0,1]

|h′′(x)|

be constants5 The following technical result enables us to estimate E[π(A′)] and Var[π(A′)]
of functional voting.

I Lemma 2.3. Consider a functional voting with respect to a symmetric C2 function f on
a λ-expander graph with degree distribution π. Let g(x) := f(x)(1 − f(x)). Then, for all
A ⊆ V ,

∣∣E[π(A′)]−Hf (π(A))
∣∣ ≤ K2(f)

2 λ2π(A)
(
1− π(A)

)
,∣∣∣Var[π(A′)]− ‖π‖22g

(
π(A)

)∣∣∣ ≤ K1(g)λ
√
π(A)

(
1− π(A)

)
‖π‖3/23 .

Note that, if f is symmetric, the corresponding functional voting satisfies that Pr[v ∈
A′] = f(P (v,A)) for any v ∈ V . Thus we have

E[π(A′)] =
∑
v∈V

π(v)f
(
P (v,A)

)
, Var[π(A′)] =

∑
v∈V

π(v)2g
(
P (v,A)

)
.

To evaluate E[π(A′)] and Var[π(A′)] above, we prove the following key lemma that is a
generalization of Lemma 2.2 and implies Lemma 2.3.

I Lemma 2.4 (Special case of Lemmas 3.2 and 3.3). Consider a λ-expander graph with degree
distribution π. Then, for any S ⊆ V and any C2 function h : R→ R,∣∣∣∣∣∑

v∈V
π(v)h

(
P (v, S)

)
− h
(
π(S)

)∣∣∣∣∣ ≤ K2(h)
2 λ2π(S)

(
1− π(S)

)
,∣∣∣∣∣∑

v∈V
π(v)2h

(
P (v, S)

)
− ‖π‖22h

(
π(S)

)∣∣∣∣∣ ≤ K1(h)λ
√
π(S)

(
1− π(S)

)
‖π‖3/23 .

Non-symmetric functions

For general f , we prove the following.

I Lemma 2.5. Consider a functional voting with respect to a C2 function f on a λ-expander
graph. Let g(x) := f(x)(1− f(x)). Then, for all A ⊆ V ,∣∣E[π(A′)]−Hf

(
π(A)

)∣∣ ≤ K2(f)λ
(
|2π(A)− 1|+ λ

)
π(A)

(
1− π(A)

)
,∣∣∣Var[π(A′)]− ‖π‖2

2g
(1

2

)∣∣∣ ≤ K1(g)
(

1
2‖π‖

2
2 |2π(A)− 1|+ 2‖π‖3/2

3 λ

√
π(A)

(
1− π(A)

))
.

We refer the proof of Lemma 2.5 to the full-version [38] due to the page limitation.

5 For example, for f(x) = 3x2 − 2x3 of best-of-three, f ′′(x) = 6− 12x and K2(f) = 6. It should be noted
that we deal with f not depending on G except for best-of-k with k = ω(1).
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2.4 Proof sketch of Theorem 1.3
We present proof sketch of Theorem 1.3(i). From the assumption of Theorem 1.3(i) and
Lemma 2.3, if |π(A)− 1/2| = o(1), we have Var[π(A′)] = Θ(‖π‖22g(π(A))) = Θ(‖π‖22g(1/2 +
o(1))) = Θ(1/n). Moreover, E[π(A′)] = Hf (π(A)) ± O(π(A)/

√
n) holds for any A ⊆ V .

Hence, from the Hoeffding bound, π(A′) = Hf (π(A)) +O(
√

logn/n) holds w.h.p. for any
A ⊆ V .

If |π(A)− 1/2| = O(
√

logn/n), we use Lemma 2.1 to obtain an O(logn) round symmetry
breaking. In this phase, since |π(A) − 1/2| = o(1), Var[π(A′) − 1/2] = Θ(1/n). Then,
from the Berry-Esseen bound, we can check the condition (i). To check the condition
(ii), we invoke the condition H ′f (1/2) > 1 of the quasi-majority function. From Taylor’s
theorem and the assumption of Lemma 2.1(ii) (π(A)−1/2 = Ω(1/

√
n)), E[π(A′)−1/2] =

Hf (π(A))−Hf (1/2)−O(1/
√
n) ≈ (1 + ε1)(π(A)− 1/2) for some positive constant ε1 > 0.

Note that Hf (1/2) = 1/2.
If C1

√
logn/n ≤ |π(A)− 1/2| ≤ C2 for sufficiently large constant C1 and some constant

C2 > 0, we use the Hoeffding bound and then obtain π(A′) − 1/2 ≈ (1 + ε1)(π(A) −
1/2)−O(

√
logn/n) ≥ (1 + (ε1/2))(π(A)− 1/2) w.h.p. Hence, O(logn) rounds suffice to

yield a constant bias. (Note that this argument holds when |π(A)− 1/2| ≤ C2 due to the
remainder term of Taylor’s theorem.)
If C3 ≤ π(A) < 1/2, it is straightforward to see that π(A′) = Hf (π(A)) +O(

√
logn/n) ≤

π(A) − ε2 w.h.p. for some constant ε2 > 0. Note that we invoke the property that
Hf (x) < x whenever 0 < x < 1/2.
If π(A) ≤ C3 for sufficiently small constant C3, we use the Markov inequality to show
π(At) = O(n−3) w.h.p. for some t = O(logn). Since π(A) ≥ 1/n2 whenever A 6= ∅, this
implies that the consensus time is O(logn) w.h.p. Note that, since H ′f (0) < 1, we have
E[π(A′)] ≤ Hf (π(A)) + O(π(A)/

√
n) ≈ H ′f (0)π(A) + O(π(A)/

√
n) ≤ (1 − ε3)π(A) for

some constant ε3 > 0.

In the proof of Theorem 1.7, we modify Lemma 2.1 and apply the same argument.

3 Reversible Markov chains and Proof of Lemma 2.4

In this section, we prove Lemma 2.4 by showing Lemmas 3.2 and 3.3, which are generalizations
of Lemma 2.4 in terms of reversible Markov chain. This enables us to evaluate E[π(A′)] and
Var[π(A′)] for functional voting with respect to a C2 function f (see the full version [38] for
functional voting with respect to non-symmetric f).

3.1 Technical tools for reversible Markov chains
To begin with, we briefly summarize the notation of Markov chain, which we will use in this
section6. Let V be a set of size n. A transition matrix P over V is a matrix P ∈ [0, 1]V×V
satisfying

∑
v∈V P (u, v) = 1 for any u ∈ V . Let π ∈ [0, 1]V denote the stationary distribution

of P , i.e., a probability distribution satisfying πP = π. A transition matrix P is reversible
if π(u)P (u, v) = π(v)P (v, u) for any u, v ∈ V . It is easy to check that the matrix (4) is

6 For further detailed arguments about reversible Markov chains, see e.g., [29].
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a reversible transition matrix and its stationary distribution is (3). Let λ1 ≥ · · · ≥ λn
denote the eigenvalues of P . If P is reversible, it is known that λi ∈ R for all i. Let
λ = max{|λ2|, |λn|} be the second largest eigenvalue in absolute value7.

For a function h : R→ R and subsets S, T ⊆ V , consider the quantity Qh(S, T ) defined as

Qh(S, T ) :=
∑
v∈S

π(v)h
(
P (v, T )

)
. (6)

The special case of h(x) = x, that is, Q(S, T ) :=
∑
v∈S π(v)P (v, T ), is well known as edge

measure [29] or ergodic flow [3, 31]. Note that, for any reversible P and subsets S, T ⊆ V ,
Q(S, T ) = Q(T, S) holds. The following result is well known as a version of the expander
mixing lemma.

I Lemma 3.1 (See, e.g., p.163 of [29]). Suppose P is reversible. Then, for any S, T ⊆ V ,

|Q(S, T )− π(S)π(T )| ≤ λ
√
π(S)π(T )

(
1− π(S)

)(
1− π(T )

)
.

We show the following lemma which gives a useful estimation of Qh(S, T ).

I Lemma 3.2. Suppose P is reversible. Then, for any S, T ⊆ V and any C2 function
h : R→ R,∣∣∣Qh(S, T )− π(S)h

(
π(T )

)
− h′

(
π(T )

)(
Q(S, T )− π(S)π(T )

)∣∣∣ ≤ K2(h)
2 λ2π(T )

(
1− π(T )

)
.

Proof of Lemma 3.2. From Taylor’s theorem, it holds for any x, y ∈ [0, 1] that

|h(x)− h(y)− h′(y)(x− y)| ≤ K2(h)
2 (x− y)2.

Hence∣∣∣Qh(S, T )− π(S)h
(
π(T )

)
− h′

(
π(T )

)(
Q(S, T )− π(S)π(T )

)∣∣∣
=

∣∣∣∣∣∑
v∈S

π(v)
(
h
(
P (v, T )

)
− h
(
π(T )

)
− h′

(
π(T )

)(
P (v, T )− π(T )

))∣∣∣∣∣
≤
∑
v∈S

π(v)
∣∣∣h(P (v, T )

)
− h
(
π(T )

)
− h′

(
π(T )

)(
P (v, T )− π(T )

)∣∣∣
≤
∑
v∈S

π(v)K2(h)
2

(
P (v, T )− π(T )

)2 ≤ K2(h)
2

∑
v∈V

π(v)
(
P (v, T )− π(T )

)2
≤ K2(h)

2 λ2π(T )
(
1− π(T )

)
.

The last inequality follows from Corollary A.2 of the full version [38]. J

Next, consider

Rh(S, T ) :=
∑
v∈S

π(v)2h
(
P (v, T )

)
(7)

for a function h : R → R and S, T ⊆ V . For notational convenience, for S ⊆ V , let
π2(S) :=

∑
v∈S π(v)2. We show the following lemma that evaluates Rh(S, T ).

7 If P is ergodic, i.e., for any u, v ∈ V , there exists a t > 0 such that P t(u, v) > 0 and GCD{t > 0 :
P t(x, x) > 0} = 1, 1 > λ2 and λn > −1. For example, the transition matrix of the simple random walk
on a connected and non-bipartite graph is ergodic.
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I Lemma 3.3. Suppose that P is reversible. Then, for any S, T ⊆ V and any C2 function
h : R→ R,∣∣Rh(S, T )− π2(S)h

(
π(T )

)∣∣ ≤ K1(h)‖π‖3/23 λ
√
π(T )

(
1− π(T )

)
.

Proof. We first observe that∣∣h(x)− h(y)
∣∣ ≤ K1(h)|x− y| (8)

holds for any x, y ∈ [0, 1] from Taylor’s theorem. Hence,∣∣∣Rh(S, T )− π2(S)h
(
π(T )

)∣∣∣
=

∣∣∣∣∣∑
v∈S

π(v)2
(
h
(
P (v, T )

)
− h
(
π(T )

))∣∣∣∣∣ ≤∑
v∈S

π(v)2
∣∣∣h(P (v, T )

)
− h
(
π(T )

)∣∣∣
≤
∑
v∈S

π(v)2K1(h)
∣∣P (v, T )− π(T )

∣∣ ≤ K1(h)
∑
v∈V

π(v)2∣∣P (v, T )− π(T )
∣∣.

Then, applying the Cauchy-Schwarz inequality and Corollary A.2 of the full version [38],

∑
v∈V

π(v)2∣∣P (v, T )− π(T )
∣∣ ≤

√√√√(∑
v∈V

π(v)3

)(∑
v∈V

π(v)
(
P (v, T )− π(T )

)2)

≤ ‖π‖3/23 λ
√
π(T )

(
1− π(T )

)
and we obtain the claim. J

I Remark 3.4. The results of this paper can be extended to voting processes where the
sampling probability is determined by a reversible transition matrix P . This includes
voting processes on edge-weighted graphs G = (V,E,w), where w : E → R denotes an
edge weight function. Consider the transition matrix P defined as follows: P (u, v) =
w({u, v})/

∑
x:{u,x}∈E w({u, x}) for {u, v} ∈ E and P (u, v) = 0 for {u, v} /∈ E. A weighted

functional voting with respect to f is determined by Pr[v ∈ A′|v ∈ B] = f(P (v,B)) and
Pr[v ∈ B′|v ∈ A] = f(P (v,A)). For simplicity, in this paper, we do not explore the weighted
variant and focus on the usual setting where P is the matrix (4) and its stationary distribution
π is (3).

3.2 Proof of Lemma 2.4
For the first inequality, by substituting V to S of Lemma 3.2, we obtain

∣∣∣Qh(V, T ) −

h
(
π(T )

)∣∣∣ ≤ K2(h)
2 λ2π(T )

(
1 − π(T )

)
. Note that Q(V, T ) = Q(T, V ) = π(T ) from the re-

versibility of P . Similarly, we obtain the second inequality by substituting V to S of
Lemma 3.3. J

4 Proofs of Theorems 1.3 and 1.5

Consider a quasi-majority functional voting with respect to f on an n-vertex λ-expander
graph with degree distribution π. Let A0, A1, . . . , be the sequence given by the functional
voting with initial configuration A0 ⊆ V . Theorems 1.3 and 1.5 follow from the following
lemma.
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I Lemma 4.1. Consider a quasi-majority functional voting with respect to f on an n-vertex
λ-expander graph with degree distribution π. Let εh(f) := H ′f (1/2)− 1, εc(f) := 1−H ′f (0)
and K(f) := max{K2(f),K2(Hf )} be three positive constants depending only on f . Then,
the following holds:

(I) Let C1 > 0 be an arbitrary constant and ε : N→ R be an arbitrary function satisfying
ε(n) → 0 as n → ∞. Suppose that λ ≤ C1n

−1/4, ‖π‖2 ≤ C1/
√
n and ‖π‖3 ≤ ε/

√
n.

Then, for any A0 ⊆ V such that |δ(A0)| ≤ c1 logn/
√
n for an arbitrary constant c1 > 0,

|δ(At)| ≥ c1 logn/
√
n within t = O(logn) steps w.h.p.

(II) Suppose that λ ≤ εh(f)
2K(f) . Then, for any A0 ⊆ V s.t. 2 max{K(f),8}

εh(f) max{λ2, ‖π‖2
√

logn}
≤ |δ(A0)| ≤ εh(f)

K(f) , |δ(At)| ≥
εh(f)
K(f) within t = O(log |δ(A0)|−1) steps w.h.p.

(III) Let c2, c3 be two arbitrary constants satisfying 0 < c2 < c3 < 1/2 and ε(f) :=
minx∈[c2,c3]

(
x−Hf (x)

)
be a positive constant depending f, c2, c3. Suppose that λ ≤

ε(f)
2K(f) and ‖π‖2 ≤ ε(f)

4
√

logn
. Then, for any A0 ⊆ V satisfying c2 ≤ π(A0) ≤ c3,

π(At) ≤ c2 within constant steps w.h.p.
(IV) Suppose that λ ≤ εc(f)

2K(f) and ‖π‖2 ≤ εc(f)2

32K(f)
√

logn
. Then, for any A0 ⊆ V satisfying

π(A0) ≤ εc(f)
8K(f) , π(At) = 0 within t = O(logn) steps w.h.p.

(V) Suppose that H ′f (0) = 0, λ ≤ 1
10K(f) and ‖π‖2 ≤ 1

64K(f)
√

logn
. Then, for any A0 ⊆ V

satisfying π(A0) ≤ 1
7K(f) , it holds w.h.p. that π(At) = 0 within

t = O

(
log logn+ logn

log λ−1 + logn
log(‖π‖2

√
logn)−1

)
steps.

Proof of Theorem 1.3(ii). Since ‖π‖2 ≥ 1/
√
n, we have |δ(A0)| = Ω(

√
logn/n). This

implies that Phase (II) takes at most O(logn). Thus, we obtain the claim since we can merge
Phases (II) to (IV) by taking appropriate constants c2, c3 in Phase (III). J

Proof of Theorem 1.3(i). Under the assumption of Theorem 1.3(i), for any positive constant
C, a positive constant C ′ exists such that C(λ2 + ‖π‖2

√
logn) ≤ C ′ logn√

n
. Thus, we can

combine Phase (I) and Theorem 1.3(ii), and we obtain the claim. J

Proof of Theorem 1.5. Combining Phases (II), (III) and (V), we obtain the claim. J

In the rest of this section, we show Phases (I) to (V) of Lemma 4.1. For notational
convenience, let

α := π(A), α′ := π(A′), αt := π(At), δ := δ(A) = 2α− 1, δ′ := δ(A′), δt := δ(At).

4.1 Phase (I): 0 ≤ |δ| ≤ c1 logn/
√
n

We use the following lemma to show Lemma 4.1(I).

I Lemma 4.2 (Lemma 4.5 of [11]). Consider a Markov chain (Xt)∞t=1 with finite state space
Ω and a function Ψ : Ω → {0, . . . , n}. Let C3 be arbitrary constant and m = C3

√
n logn.

Suppose that Ω,Ψ and m satisfies the following conditions:
(i) For any positive constant h, there exists a positive constant C1 < 1 such that

Pr
[
Ψ(Xt+1) < h

√
n
∣∣Ψ(Xt) ≤ m

]
< C1.
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(ii) Three positive constants γ,C2 and h exist such that, for any x ∈ Ω satisfying h
√
n ≤

Ψ(x) < m,

Pr [Ψ(Xt+1) < (1 + γ)Ψ(Xt) |Xt = x] < exp
(
−C2

Ψ(x)2

n

)
.

Then, Ψ(Xt) ≥ m holds w.h.p. for some t = O(logn).

Let us first prove the following lemma concerning the growth rate of |δ|, which we will use in
the proofs of (I) and (II) of Lemma 4.1.

I Lemma 4.3. Consider a quasi-majority functional voting with respect to f on an n-
vertex λ-expander graph with degree distribution π. Let εh(f) := H ′f (1/2)− 1 and K(f) :=
max{K2(f),K2(Hf )} be positive constants depending only on f . Suppose that λ ≤ εh(f)

2K(f) .
Then, for any A ⊆ V satisfying 2K(f)

εh(f) λ
2 ≤ |δ| ≤ εh(f)

K(f) ,

Pr
[
|δ′| ≤

(
1 + εh(f)

8

)
|δ|
]
≤ 2 exp

(
−εh(f)2δ2

128‖π‖22

)
.

Proof. Combining Lemma 2.5 and Taylor’s theorem, we have∣∣∣∣E[δ′]−H ′f
(

1
2

)
δ

∣∣∣∣ = 2
∣∣∣∣E[α′]− 1

2 −H
′
f

(
1
2

)(
α− 1

2

)∣∣∣∣
= 2

∣∣∣∣E [α′]−Hf (α) +Hf (α)−Hf

(
1
2

)
−H ′f

(
1
2

)(
α− 1

2

)∣∣∣∣
≤ 2K2(f)λ (|δ|+ λ)α(1− α) +K2(Hf )

(
α− 1

2

)2

≤
(
K(f)

2 λ+ K(f)
4 |δ|

)
|δ|+ K(f)

2 λ2 (9)

Note that Hf (1/2) = 1/2 from the definition. From assumptions of λ ≤ εh(f)
2K(f) , |δ| ≤

εh(f)
K(f)

and λ2 ≤ εh(f)
2K(f) |δ|, we have

∣∣∣H ′f ( 1
2
)
δ
∣∣∣− |E[δ′]| ≤

∣∣∣H ′f ( 1
2
)
δ −E[δ′]

∣∣∣ ≤ 3
4εh(f)|δ|. Hence, it

holds that∣∣E[δ′]
∣∣ ≥ ∣∣∣∣H ′f (1

2

)
δ

∣∣∣∣− 3
4εh(f)|δ| = (1 + εh(f))|δ| − 3

4εh(f)|δ| =
(

1 + εh(f)
4

)
|δ|.

We observe that, for any κ > 0,

Pr
[
|δ′| ≤

∣∣E[δ′]
∣∣− κ] ≤ 2 exp

(
− κ2

2‖π‖22

)
(10)

from Corollary A.4 of the full version [38]. Note that δ′ =
∑
v∈V π(v)(2Xv−1) for independent

indicator random variables (Xv)v∈V (see (5) for the definition of Xv). Thus,

Pr
[
|δ′| ≤

(
1 + εh(f)

8

)
|δ|
]

= Pr
[
|δ′| ≤

(
1 + εh(f)

4

)
|δ| − εh(f)

8 |δ|
]

≤ Pr
[
|δ′| ≤

∣∣E[δ′]
∣∣− εh(f)

8 |δ|
]
≤ 2 exp

(
−εh(f)2δ2

128‖π‖22

)
and we obtain the claim. J
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Proof of Lemma 4.1(I). We check the conditions (i) and (ii) of Lemma 4.2 with letting
Ψ(A) = bn|δ(A)|c and m = c1

√
n logn.

Condition (i). First, we show the following claim that evaluates Var[δ′].

B Claim 4.4. Under the same assumption as Lemma 4.1(I),

εvar(f)
n

≤ Var[δ′] ≤ 5C2
1
n

holds, where εvar(f) := f(1/2)(1− f(1/2)) is a positive constant depending only on f .

Proof of the claim. From Lemma 2.5 and assumptions, we have∣∣∣∣Var[δ′]
4 − ‖π‖22g

(
1
2

)∣∣∣∣ =
∣∣∣∣Var[α′]− ‖π‖22g

(
1
2

)∣∣∣∣ ≤ K1(g)
(
‖π‖22

|δ|
2 + ‖π‖3/23 λ

)
≤ K1(g)

n

(
C2

1c1
logn√
n

+ C1ε
3/2
)

= 1
n
· o(1).

Note that Var[δ′] = Var[2α′ − 1] = 4 Var[α′]. Since ‖π‖22 ≥ 1/n, we have

εvar(f)
n

≤ 4εvar(f)− o(1)
n

≤ Var[δ′] ≤ 4C2
1 + o(1)
n

≤ 5C2
1
n
. C

From Corollary A.6 of the full version [38] with letting Yv = π(v)(2Xv − 1), we have

Pr
[
|δ′| ≤ x

√
εvar(f)
n

]
≤ Pr

[
|δ′| ≤ x

√
Var[δ′]

]
≤ Φ(x) + 5.6‖π‖33

Var[δ′]3/2

≤ Φ(x) + 5.6 ε3

n3/2 ·
n3/2

εvar(f)3/2 = Φ(x) + o(1) (11)

for any x ∈ R, where Φ(x) = 1√
2π

∫ x
−∞ e−y2/2dy. Thus, for any constant h > 0, there exists

some constant C > 0 such that Pr[Ψ(A′) < h
√
n | Ψ(A) ≤ m] < C, which verifies the

condition (i).

Condition (ii). Set h = 2K(f)
εh(f) C

2
1 and assume h

√
n ≤ Ψ(A) < m. Then

2K(f)
εh(f) λ

2n ≤ 2K(f)
εh(f) C

2
1
√
n = h

√
n ≤ Ψ(A) ≤ |δ|n = o(n).

Thus, we can apply Lemma 4.3 and positive constants γ,C exist such that, for any h
√
n ≤

Ψ(A) ≤ c1
√
n logn, Pr[Ψ(A′) < (1 + γ)Ψ(A)] < exp

(
−C Ψ(A)2

n

)
. Note that ‖π‖22 = Θ(1/n)

from the assumption. Thus the condition (ii) holds and we can apply Lemma 4.2. J

4.2 Phase (II): 2 max{K(f),8}
εh(f) max{λ2, ‖π‖2

√
logn} ≤ |δ| ≤ εh(f)

K(f)

Proof of Lemma 4.1(II). Since |δ| ≥ 16
εh(f)‖π‖2

√
logn from assumptions, applying Lemma

4.3 yields Pr
[
|δ′| ≤

(
1 + εh(f)

8

)
|δ|
]
≤ 2

n2 . Thus, it holds with probability larger than (1−

2/n2)t that |δt| ≥
(

1 + εh(f)
8

)t
|δ0| and we obtain the claim by substituting t = O(log |δ0|−1).

J
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4.3 Phase (III): 0 < c2 ≤ α ≤ c3 < 1/2
Proof of Lemma 4.1(III). We first observe that, for any κ > 0,

Pr
[
|α′ −E[α′]| ≥ κ‖π‖2

√
logn

]
≤ 2n−2κ (12)

from the Hoeffding theorem. Note that α′ =
∑
v∈V π(v)Xv for independent indicator random

variables (Xv)v∈V . Hence, applying Lemma 2.5 yields

|α′ −Hf (α)| ≤ |α′ −E[α′]|+ |E[α′]−Hf (α)| ≤ ‖π‖2
√

logn+ K2(f)
4 (|δ|+ λ)λ (13)

with probability larger than 1− 2/n2. Then, for any α ∈ [c2, c3], it holds with probability
larger than 1− 2/n2 that

α′ ≤ Hf (α) + K(f)
2 λ+ ‖π‖2

√
logn ≤ α− ε(f) + ε(f)

4 + ε(f)
4 ≤ α− ε(f)

2 .

Thus, for α0 ∈ [c2, c3], αt ≤ c2 within t = 2(c3 − c2)/ε(f) = O(1) steps w.h.p. J

4.4 Phase (IV): 0 ≤ α ≤ εc(f)
8K(f)

We show the following lemma which is useful for proving (IV) and (V) of Lemma 4.1.

I Lemma 4.5. Let ε ∈ (0, 1] be an arbitrary constant. Consider functional voting on an
n-vertex connected graph with degree distribution π. Suppose that, for some α∗ ∈ [0, 1] and
K ∈ [0, 1 − ε], E[α′] ≤ Kα holds for any A ⊆ V satisfying α ≤ α∗ and ‖π‖2 ≤ εα∗

2
√

logn
.

Then, for any A0 ⊆ V satisfying α0 ≤ α∗, αt = 0 w.h.p. within O
(

logn
logK−1

)
steps.

Proof. For any α ≤ α∗, from (12) and assumptions of E[α′] ≤ α and ‖π‖2 ≤ εα∗

2
√

logn
, it

holds with probability larger than 1− 2/n4 that

α′ ≤ E[α′] + 2‖π‖2
√

logn ≤ Kα+ εα∗ ≤ (1− ε)α∗ + εα∗ = α∗.

Thus, for any α0 ≤ α∗, we have

E[αt] =
∑
x≤a∗

E [αt|αt−1 = x] Pr [αt−1 = x] +
∑
x>a∗

E [αt|αt−1 = x] Pr [αt−1 = x]

≤
∑
x≤a∗

KxPr [αt−1 = x] + Pr [αt−1 > a∗] ≤ K E[αt−1] + 2t
n4

≤ · · · ≤ Ktα0 + 2t2

n4 ≤ K
t + 2t2

n4 .

This implies that, E[αt] = O(n−3) within t = O
(

logn
logK−1

)
steps. Let πmin := minv∈V π(v) ≥

1/(2|E|) ≥ 1/n2. We obtain the claim from the Markov inequality, which yields Pr[αt =
0] = 1−Pr[αt ≥ πmin] ≥ 1− E[αt]

πmin
= 1−O(1/n). J

Proof of Lemma 4.1 of (IV). Combining Lemma 2.5 and Taylor’s theorem,∣∣E[α′]−H ′f (0)α
∣∣ =

∣∣E[α′]−Hf (α) +Hf (α)−Hf (0)−H ′f (0)(α− 0)
∣∣

≤ K2(f)λ (|δ|+ λ)α(1− α) + K2(Hf )
2 α2

≤ 2K(f)λα+ K(f)
2 α2. (14)
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Hence, for any α ≤ εc(f)
8K(f) , we have E[α′] ≤

(
H ′f (0) + 2K(f)λ+ K(f)

2 α
)
α ≤

(
1− εc(f)

2

)
α.

Letting ε = εc(f)/2, K = 1 − εc(f)/2 and α∗ = εc(f)
8K(f) , from the assumption, ‖π‖2 ≤

εc(f)2

32K(f)
√

logn
= εα∗

2
√

logn
. Thus, we can apply Lemma 4.5 and we obtain the claim. J

4.5 Phase (V): H ′f(0) = 0 and 0 ≤ α ≤ 1
7K(f)

Proof of Lemma 4.1(V). In this case, from (14),

E[α′] ≤ 2K(f)λα+ K(f)
2 α2. (15)

We consider the following two cases.

Case 1. max
{
λ,

√
‖π‖2
√

logn
K(f)

}
≤ α ≤ 1

7K(f) : In this case, combining (12) and (15), it

holds with probability larger than 1− 2/n2 that

α′ ≤
(

2K(f)λ
α

+ K(f)
2 + ‖π‖2

√
logn

α2

)
α2 ≤ 7K(f)

2 α2.

Applying this inequality iteratively, for any α0 ≤ 7K(f)−1,

αt ≤
7K(f)

2 α2
t−1 ≤ · · · ≤

2
7K(f)

(
7K(f)

2 α0

)2t

≤ 2
7K(f)22t .

holds with probability larger than (1− 2/n2)t. This implies that, within t = O(log logn)

steps, αt ≤ max
{
λ,

√
‖π‖2
√

logn
K(f)

}
w.h.p. Note that max

{
λ,

√
‖π‖2
√

logn
K(f)

}

≥
√
‖π‖2
√

logn
K(f) ≥

√√
logn/n
K(f) since ‖π‖22 ≥ 1/n.

Case 2. α ≤ max
{
λ,

√
‖π‖2
√

logn
K(f)

}
: Set α∗ = max

{
λ,

√
‖π‖2
√

logn
K(f)

}
≥
√
‖π‖2
√

logn
K(f) ,

K = 5K(f)
2 λ + 1

2

√
K(f)‖π‖2

√
logn and ε = 1/4. Then, from λ ≤ 1

10K(f) and ‖π‖2 ≤
1

64K(f)
√

logn
, we have K ≤ 1− ε,

‖π‖2 = (
√
‖π‖2)2 ≤

√
‖π‖2

8
√
K(f)

√
logn

=
√
‖π‖2

√
logn

K(f)
ε

2
√

logn
≤ εα∗

2
√

logn
,

E[α′] ≤
(

2K(f)λ+ K(f)
2 α

)
α ≤

(
2K(f)λ+ K(f)

2 λ+ 1
2

√
K(f)‖π‖2

√
logn

)
α = Kα.

Thus, applying Lemma 4.5, we obtain the claim. J

5 Conclusion

In this paper we propose functional voting as a generalization of several known voting
processes. We show that the consensus time is O(logn) for any quasi-majority functional
voting on O(n−1/2)-expander graphs with balanced degree distributions. This result extends
previous works concerning voting processes on expander graphs. Possible future direction of
this work includes
1. Does O(logn) worst-case consensus time holds for quasi-majority functional voting on

graphs with less expansion (i.e., λ = ω(n−1/2))?
2. Is there some relationship between best-of-k and Majority?
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Abstract
Given query access to a set of constraints S, we wish to quickly check if some objective function
ϕ subject to these constraints is at most a given value k. We approach this problem using the
framework of property testing where our goal is to distinguish the case ϕ(S) ≤ k from the case
that at least an ε fraction of the constraints in S need to be removed for ϕ(S) ≤ k to hold. We
restrict our attention to the case where (S, ϕ) are LP-Type problems which is a rich family of
combinatorial optimization problems with an inherent geometric structure. By utilizing a simple
sampling procedure which has been used previously to study these problems, we are able to create
property testers for any LP-Type problem whose query complexities are independent of the number
of constraints. To the best of our knowledge, this is the first work that connects the area of LP-Type
problems and property testing in a systematic way. Among our results are property testers for a
variety of LP-Type problems that are new and also problems that have been studied previously such
as a tight upper bound on the query complexity of testing clusterability with one cluster considered
by Alon, Dar, Parnas, and Ron (FOCS 2000). We also supply a corresponding tight lower bound for
this problem and other LP-Type problems using geometric constructions.
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1 Introduction

Many problems in combinatorial optimization can be represented as a pair (S, ϕ) where S is
a set of constraints and ϕ is a function of the constraints that we would like to minimize.
This class includes many problems that are NP-hard, even for the decision version of some
problems where we would like to determine if ϕ(S) is at most some constant k. For instance,
let S be constraints that say two nodes in a graph are connected by an edge (so S can be
thought of as a set of edges) and ϕ be the chromatic number of a graph with those edges.
Then it is NP-complete to determine if ϕ(S) ≤ 3.

In this work, we consider a relaxation of the above hard class of problems by using the
framework of property testing. Specifically, given a value parameter k and distance parameter
ε, we wish to determine if ϕ(S) ≤ k or if (S, ϕ) is ε-far from ϕ(S) ≤ k, where ε-far means
that at least ε|S| many of the constraints of S need to be removed for ϕ(S) ≤ k to hold.
We assume we have query access to the constraints and knowledge of ϕ and our goal is to
perform property testing while minimizing the number of constraints of S we access.
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Even under the property testing setting, this question is too broad. Therefore, we focus
our attention to LP-Type Problems, formally described in Definition 1. Informally, these
problems have an underlying geometrical structure, much like that of linear programs, which
can be used to create efficient testing algorithms.

Our main result is a general algorithm that is able to perform property testing for any
LP-Type problem with O(δ/ε) queries where δ is the dimension of the LP-Type problem,
formally defined in Section 2. In many cases, this bound is tight such as testing clusterability
using one cluster considered in [1]. To the best of our knowledge, this is the first work that
connects the area of LP-Type problems and property testing in a systematic way. The class
of these problems is quite general and includes problems which have been previously studied
individually in property testing, such as testing clusterability of points in [1], and newer
testing problems, such as determining if a set of linear constraints is feasible or “far” from
feasible. We also give a matching lower bound for many of these problems using geometric
constructions. For a comprehensive overview of our contributions, see Section 2.2.

1.1 Related Work
Many problems in property testing can be modeled as a set of constraints and some op-
timization function over these constraints. These include well studied graph problems such
as bipartiteness, expansion, k-colorability, and many other problems [14, 15, 16, 23]. This
line of work was initiated by Goldreich and Ron and there are many results in the area of
graph property testing. For more information about graph property testing, see [13] and the
references within. Overall, these testing problems differ from our setting where our queries
are essentially access to random constraints.

This model where queries are accesses to constraints have also been studied in the case
where we wish to test properties of a metric space and queries are access to points (see
[19, 1, 21]). There are instances of these problems that are also examples of LP-Type
problems that we consider. For more information, see Section 2.2.

LP-Type problems have a rich literature and there have been many previous work on
them, including general algorithms to solve LP-Type problems [25, 6, 26, 18]. The algorithms
for these problems have runtimes that are generally linear in the number of constraints, but
exponential in the dimension of the LP-Type problem (see Definition 3). This is in contrast
to our testing algorithms that have no dependence on the number of constraints.

Furthermore, many properties of LP-Type problems have been generalized to a larger
class of problems called violator spaces [11, 4]. We do not explicitly consider them here since
these problems do not yield any additional interesting property testing applications but our
results carry over to this setting in a straightforward manner.

There are previous works on geometric property testing, for example, testing convexity
of point sets [7, 20], testing disjointness of geometric bodies [9], and testing properties of
two dimensional images [22, 24, 2, 3]. While many of these work share the paradigm of
“sample few objects and test” that is common among many property testers, including ours,
the problems considered in these works are very different than the problems we focus on
(see 2.2).

There is also existing work on property testing for constraint satisfaction problems
(CSPs) where given an instance of a CSP, one is given query access to an assignment of the
variables and the task is to determine if the assignment is “close” or “far” from satisfying
the instance [5]. This is different than our setting where we wish to check if ϕ(S) ≤ k where
ϕ is a function of the constraints in S.
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The paper of Czumaj and Sohler cited in [8] is closest in spirit to our work, as it also
introduces a framework for property testing for a general class of problems which they refer
to as abstract combinatorial problems (ACPs). This class of problems are similar to LP-type
problems as they both include a set of constraints and consider a restricted set of subsets
called a basis (see Section 2 for a formal definition of LP-Type problems). Furthermore, [8]
exploit the combinatorial structure of ACPs to develop testing algorithms, just as we do for
LP-Type problems. However, there are some key differences between ACPs and LP-Type
problems, such as the fact that LP-Type problems are equipped with a function φ that is
optimized over a set of constraints. LP-Type problems also have a clean correspondence
between dimension and the number of “violators” for a particular basis as formulated in
Lemma 11 and Corollary 13, which lets us automatically translate between the dimension
and the property testing query complexity.

In terms of concrete property testing problems, [8] also consider the smallest enclosing
ball problem (see Section 2.2). We achieve a better query complexity bound than [8] for this
problem, but it is important to note that the results of [8] also hold for the general problem
of clustering with multiple balls while we only consider one ball. However, the rest of the
problems considered in [8] do not overlap with the problems we present in this paper and
furthermore, the problems we study are inherently geometric in nature. Lastly, while ACPs
are the invention of the authors in [8], there exists rich literature for LP-Type problems
outside of the domain of property testing.

Lastly, we note that using a few samples to determine information about your underlying
data has also been studied in the PAC-learning literature. In that setting, the goal is to
learn a classifier of your dataset and recently, the question of optimal sample complexity
for PAC learning has been settled, see for instance [17]. The key differences between the
PAC learning setting and our work is that our “datapoints” do not necessarily come with a
label. For instance, the PAC learning framework would be valid in the example where we
have labeled points in Rd and we wish to learn a separator from a family class such as balls.
However, this framework would not apply if we wished to compute the smallest enclosing ball
of the points. We do consider one instance where a PAC learning framework would apply
and that is problem of property testing if a set of labeled points are linearly separable or
far from it (for more information, see Section 2.2). In this example, a valid approach would
be to use the PAC learning framework and learn a linear classifier. Instead of pursuing this
route, we are able to cast this problem as an example of a LP-Type problem and achieve the
optimal sample complexity using the theory we develop.

1.2 Organization
In Section 2, we formally define the class of LP-Type problems. In Section 2.2 we outline
our contributions. In Section 3, we present our algorithms and prove their correctness and in
Section 4, we apply our algorithm to specific LP-Type problems. Finally, we complement
some of these problems with lower bounds in Section 5.

2 Preliminaries

2.1 Notation and Definitions
We define LP-Type problems as well as some related concepts. These definitions are
standard in the literature for LP-Type problems but we reproduce them below for the sake
of completeness. For more information, see [26, 18, 12].
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I Definition 1 (LP-Type Problem). Let S be a finite set and ϕ be a function that maps
subsets of S to some value. We say (S, ϕ) is a LP-Type problem if ϕ satisfies the following
two properties:

Monotonicity: if A ⊆ B ⊆ S then ϕ(A) ≤ ϕ(B)
Locality: For all A ⊆ B ⊆ S and elements x ∈ S, if ϕ(A) = ϕ(B) = ϕ(A ∪ {x}), then
ϕ(A) = ϕ(B ∪ {x}).

In general, one should think of S as a set of constraints, and ϕ as some objective function we
wish to minimize (or equivalently, maximize) over these constraints. The canonical example
of a LP-Type problem is a linear program where S is a set of linear constraints and ϕ is a
linear functional.

Just as linear programs can be associated with a dimension, which is the number of
variables, LP-Type problems in general also have a natural definition of dimension which
influences the runtime of many algorithms for LP-Type problems as well as our algorithm
for property testing. First, we must define the notion of a basis.

I Definition 2 (Basis of LP-Type problems). Given an LP-Type problem, a basis B ⊆ S is a
set such that for all proper subsets B′ ⊂ B, we have ϕ(B′) < ϕ(B).

Given the above definitions, we can now define the dimension of a LP-Type problem.

I Definition 3 (Dimension of LP-Type problem). The dimension δ of an LP-Type problem is
the largest possible size of a basis B ⊆ S. This is sometimes also called the combinatorial
dimension.

There are many examples of well-studied LP-Type problems and in many of these cases explicit
bounds, if not exact values, are known regarding their dimensions. For more information, see
our contributions in Section 2.2. In general, the dimension of the problem tends to grow with
the “difficulty” of solving it and for property testing, our query complexity bound is also a
function of the dimension. We now formally define property testing for LP-Type problems.

I Definition 4 (Property Testing of LP-Type problems). Given an LP-Type problem (S, ϕ), a
parameter k, a distance parameter ε, and query access to the constraints in S, we wish to
distinguish the following two cases:

Output accept with probability at least 2/3 if ϕ(S) ≤ k (Completeness Case)
Output reject with probability at least 2/3 if at least ε|S| constraints need to be removed
from S for ϕ(S) ≤ k to hold (Soundness Case).

I Remark 5. We say that S is ε-far if it falls in the soundness case.

2.2 Our Contributions
The main contribution of this paper is a comprehensive algorithm for property testing of
LP-Type problems with query complexity O(δ/ε) where δ is the dimension of the LP-Type
problem. Note that this bound is independent of the number of constraints which is |S|.
Our algorithm is simple and proceeds by first sampling a small set of random constraints
in S, constructing a partial solution, and “testing” this partial solution against few other
randomly chosen constraints. The analysis that we reject in the ε-far case (soundness) is
straightforward. However, the main technical challenge lies in showing that our algorithm
accepts in the completeness case. To do so, we use a “sampling” lemma which roughly says
that for a randomly chosen subset R of S of a particular size (depending on the dimension δ)
and x a randomly chosen element of S \R, we have ϕ(R) = ϕ(R ∪ {x}). Using this result,
we show that we are likely to accept in the completeness case. For the full detailed analysis,
see Section 3. All of our algorithms have two-sided error.
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We highlight the power of our approach by considering the query complexity bounds that
we get for a few selected problems. In many cases, we are also able to get matching lower
bounds. More specifically, we obtain the following results as an application of our framework:
1. We consider the problem of determining if a set of linear inequalities in d variables is

feasible (there exists a satisfying assignment) or if at least ε-fraction of the constraints
need to be removed for the set of constraints to be feasible. While this problem does not
exactly fall under the LP-Type definition (since there is no optimization function), we
modify our general algorithm slightly to given an algorithm with query complexity is
O(d/ε). We also modify our approach for this problem to give a tolerant tester for linear
program feasibility. This passes programs which are ε/c-close to feasible for some fixed
constant c > 1, and rejects those which are ε-far from feasible. This tester also has query
complexity O(d/ε)

2. We study the problem of determining if a set of points in d dimensions labeled {+1,−1}
is linearly separable or if at least ε-fraction of the points need to be relabeled or removed
for the points to be linearly separable. Using result 1 above, we directly get a query
complexity bound of O(d/ε). We also give a matching lower bound for this problem
which implies a lower bound for result 1.

3. We obtain a result for property testing of many classical LP-Type problems. In particular,
we consider the following problems:

Smallest enclosing ball: Accept if a set of points in Rd can be covered by a ball of
radius r and reject if at least ε-fraction of the points need to be removed to be able to
be covered by a ball of radius r. This problem has been previously studied in [1]. We
improve upon the upper bound obtained in this paper in the case of two-sided error
by getting a tight query complexity of O(d/ε) queries (also see point 4 below). Note
that the algorithm in [1] has one sided error but has slightly worse query complexity.
Smallest intersecting ball: Accept if a set of closed convex bodies in Rd can all be
intersected by a ball of radius r and reject if at least ε-fraction of the convex bodies
need to be removed to be able to be intersected by a ball of radius r.
Smallest volume annulus: Accept if a set of points in Rd can be enclosed in an annulus
of volume V and reject if at least ε-fraction of the points need to be removed to be
encloseable by an annulus of volume V .

In all these cases, it is known that the dimension of the LP-Type problem is linearly
related to the dimension of the points in S, so we get an upper bound of O(d/ε) queries.

4. We get a matching lower bound of Ω(d/ε) queries for the smallest enclosing ball problem
and the smallest intersecting ball problem. This provides a lower bound for the radius
cost of clustering considered by Alon et al. in [1] in the case of 1 cluster.

I Remark 6. Note that there are also many examples of LP-Type problems where the
constraints in S describe points in dimension d but the dimension of the LP-Type problem
is not a linear function of d. For example, if ϕ(S) is the smallest ellipsoid that encloses the
set of points in S which are in Rd, then (S, ϕ) has dimension O(d2) as a LP-Type problem
[12]. We did not explicitly highlight these problems but our approach also gives an upper
bound on the query complexity for the property testing versions of these problems.

3 General Algorithm for Property Testing of LP-Type problems

We now present our general algorithm, LP-Type Tester, for property testing of LP-Type
problems as defined in Definition 4. Given a LP-Type problem (S, ϕ), Our algorithm first
samples a subset R of O(δ/ε) constraints from S where δ is the dimension of the LP-Type
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problem. It then calculates the value of ϕ on the sampled subset. After this step, an
additional O(1/ε) constraints are sampled randomly from S. If ϕ(R ∪ {x}) differs from
ϕ(R) where x is any of the additional random constraints, then our algorithm outputs reject.
Otherwise, the algorithm outputs accept. We present our approach in Algorithm 1 along
with our main theorem, Theorem 7 which proves the correctness of Algorithm 1.

Algorithm 1 LP-Type Tester.

Input : δ, ε, k, query access to constraints in S
Output : accept or reject

1 r ← d10δ/εe
2 R← random sample of size r of constraints from S.
3 if ϕ(R) > k then
4 Output reject and abort.
5 for 2/ε rounds do
6 x← uniformly random constraint of S \R
7 if ϕ(R ∪ {x}) 6= ϕ(R) then
8 Output reject and abort.

9 Output accept.

I Theorem 7 (Correctness of LP-Type Tester). Given an LP-Type problem (S, ϕ) of
dimension δ and parameters k and ε, the following statements hold with probability at
least 2/3:

Completeness case: LP-Type Tester outputs accept ϕ(S) ≤ k.
Soundness Case: LP-Type Tester outputs reject if at least ε|S| constraints need to
be removed from S for ϕ(S) ≤ k to hold.

I Remark 8. Note that the query complexity of Algorithm 1 is O(δ/ε) which is independent
of |S|, the number of constraints.

3.1 Overview of the proof
To prove the correctness of LP-Type Tester, we analyze the completeness case and the
soundness case separately. For the soundness case, we show that with sufficiently large
probability, either ϕ(R) > k or LP-Type Tester outputs reject during the second sampling
phase where we sample an additional O(1/ε) constraints. To show this, we use the locality
property of LP-Type problems (see Definition 1) to show that there must be “many” x such
that ϕ(R ∪ {x}) 6= ϕ(R). To analyze the completeness case, we use the Sampling Lemma,
Lemma 11, to show that there are “few” x such that ϕ(R∪ {x}) 6= ϕ(R) so that Algorithm 1
outputs accept with sufficiently large probability.

Before we present the proof of Theorem 7, we present the Sampling Lemma as described
above. This lemma has previously been used to study LP-Type problems. For completeness,
we present a proof. For more information, see [26, 18, 11, 10]. Before we present the lemma,
we introduce two new definitions.

I Definition 9 (Violators and Extreme Elements). For a subset R ⊆ S, define the violators
and extreme elements of R as the following:

Define the violators of R as the set V (R) = {s ∈ S\R | ϕ(R ∪ {s}) 6= ϕ(R)}.
Define the extreme elements of R as the set X(R) = {s ∈ R | ϕ(R) 6= ϕ(R\{s}}.
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I Remark 10. Note that s is a violator of R if and only if s is an extreme element of in
R ∪ {s}.

We now present the Sampling Lemma.

I Lemma 11 (Sampling Lemma). Let vr = E[|V (R)|] and xr = E[|X(R)|] where both
expectations are taken over the random subsets R of S which have size r. Suppose |S| = n.
Then for 0 ≤ r ≤ n, we have

vr
n− r

= xr+1

r + 1 .

Proof. Let 1{·} denote an indicator variable. Note that(
n

r

)
vr =

∑
R∈(S

r)

∑
s∈S\R

1{s is a violator of R} =
∑
R∈(S

r)

∑
s∈S\R

1{s is extreme for R ∪ {s}}

=
∑

Q∈( S
r+1)

∑
s∈Q

1{s is extreme for Q} =
(

n

r + 1

)
xr+1.

The proof follows from the following calculation.(
n
r+1
)(

n
r

) = r!(n− r)!
(r + 1)!(n− r − 1)! = n− r

r + 1 . J

I Remark 12. Note that (S, ϕ) does not need to be a LP-Type problem for the Sampling
Lemma to hold true.

If (S, ϕ) is a LP-Type problem, there is a direct relationship between the expected
number of violators and the dimension of (S, ϕ) as defined in 3. The following corollary also
appears in many forms in literature (for instance [26, 18, 11, 4]) but we present its proof for
completeness.

I Corollary 13. Let (S, ϕ) be a LP-Type problem of dimension δ and let |S| = n. If R ⊆ S
is subset of size r chosen uniformly at random, then vr = E[|V (R)|] satisfies

vr ≤
δ(n− r)
r + 1 .

Proof. We show that for any set R ⊆ S, we have |X(R)| ≤ δ. Then the corollary follows
from Lemma 11. Let R′ be the smallest subset of R such that ϕ(R′) = ϕ(R). We first claim
that V (R′) = V (R). It is clear that V (R) ⊆ V (R′) by monotonicity (see Definition 1). For
the other inclusion, consider x ∈ V (R′). If x 6∈ V (R), we have ϕ(R ∪ {x}) = ϕ(R) = ϕ(R′)
so by locality, we have ϕ(R′) = ϕ(R′ ∪ {x}) which contradicts the fact that x ∈ V (R′).
Therefore, our claim holds true.

We now claim that R′ is a basis as defined in Definition 2. Suppose for the sake of
contradiction that R′ is not a basis. Then there exists a F ⊂ R′ such that ϕ(F ) = ϕ(R′). We
now claim that V (R′) = V (F ). It is clear that V (R′) ⊆ V (F ). To show the other inclusion,
let x ∈ V (F ). Then if x was not a violator of R′, then ϕ(R′ ∪ {x}) = ϕ(R′) = ϕ(F ) which
would imply that ϕ(F ∪{x}) = ϕ(F ) by the locality property in Definition 1 which is false by
definition. Hence, V (F ) = V (R′) = V (R) which contradicts the minimality of R′. Therefore,
R′ is a basis.

Finally, we claim that if x ∈ X(R) then x ∈ R′. This must be true because otherwise,
we have R′ ⊆ R \ {x} ⊆ R which results in a contradiction by monotonicity. Finally, since
X(R) ⊆ R′ and R′ is a basis, it follows that |X(R)| ≤ δ, as desired. J
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I Remark 14. Corollary 13 holds for a larger class of problems than LP-Type problems called
violator spaces ([11, 4]. However, we omitted this extra layer of abstraction since there are
no additional natural property testing consequences from considering violator spaces over
LP-Type problems.

Proof of Theorem 7. We first prove the soundness case. Consider the set R that was
randomly sampled in step 2 of LP-Type Tester. Assume that ϕ(R) ≤ k since this can only
decrease the probability that our algorithm outputs reject. Now we claim that there must be
at least ε|S| choices of x in step 6 of LP-Type Tester that results in ϕ(R∪{x}) > ϕ(R) (so
that we correctly output reject). To show this, note that if ϕ(R) = ϕ(R ∪ {x}) = ϕ(R ∪ {y})
for x 6= y then by locality, it follows that ϕ(R) = ϕ(R ∪ {x, y}). Therefore, if there are less
than ε|S| choices of x in step 6 of LP-Type Tester for some R such that ϕ(R∪{x}) > ϕ(R),
then we would have ϕ(R∪R′) = ϕ(R) ≤ k where |R∪R′| ≥ (1−ε)|S| which would contradict
our assumption that at least ε|S| constraints need to be removed from S for ϕ(S) ≤ k to
hold true. Therefore, the probability our algorithm does not output reject in any of the 2/ε
rounds is at most

(1− ε)2/ε ≤ e−2 <
1
3 (1)

which means that we output reject with probability at least 2/3, as desired.
We now prove Theorem 7 for the completeness case. Let vr = E[|V (R)|]. Since r = |R| =

10δ/ε, Corollary 13 gives us

vr ≤
δ(|S| − r)
r + 1 ≤ ε|S|

10 .

Therefore in the completeness case, the probability that a randomly chosen x satisfies
ϕ(R ∪ {x}) 6= ϕ(R) is at most ε/10. Since we choose 2/ε random constraints, the probability
we don’t find such a x is at least

(1− ε/10)2/ε ≥ 1− 2
10 >

2
3 . (2)

Therefore, LP-Type Tester outputs accept with probability at least 2/3, as desired. J

4 Property Testing Applications of LP-Type Tester

We now give applications of the framework we build in Section 3. We first consider the
problem of testing feasibility of a set of linear inequalities. As a direct consequence, we can
test if a set of labeled points can be linearly sepearable (either by linear hyperplanes or by
functions that have a finite basis). These two applications will not be an immediate corollary
of Theorem 7 since there is no objective function that we want to optimize, but our results
follow from Theorem 7 with some slight modificatons.

We then consider direct applications of Algorithm 1 to some cannonical LP-Type problems
such as the smallest enclosing ball. Theorem 7 gives direct upper bounds for property testing
for these problems.

4.1 Testing Feasibility of a System of Linear Equations
We first begin by considering testing feasibility of a set of linear inequalities. Recall that in
this problem, we have n linear constraints in Rd (such as x1 + · · ·+ xd ≤ 1) and we want to
distinguish the following two cases with probability at least 2/3:
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The system of linear inequalities can all be mutually satisfied, i.e., the system is feasible
(Completeness Case)
At least ε|S| many of the constraints need to be removed (or flipped) for the system to
be feasible (Soundness Case).

This is not exactly a LP-Type problem since we do not have an optimization function ϕ. We
note that if ϕ was an indicator function for a subset of constraints being feasible then ϕ
would break the locality condition in Definition 1. One way to see this is consider the case
when A is the single constraint that y ≥ 0, B is the set of two constraints 0 ≤ y and y ≤ 1,
and x is the additional constraint that y ≥ 2. We can see that A,B, and A ∪ {x} are all
feasible, but B ∪{x} is not, contradicting locality. However, we perform a slight modification
of Algorithm 1 to create a new algorithm for this problem.

Our algorithm for this testing problem, Linear Feasibility Tester, uses the fact that
if we pick any arbitrary x ∈ Rd, then x will violate “many” of the linear constraints in S in
the completeness case. In the soundness case, we use ideas from LP-Type Tester and show
that if we introduce an arbitrary linear optimization function (thus turning our problem into
an instance of linear programming), then a solution that optimizes a small subset of the
constraints will not violate “too many” of the other constraints. We present our algorithm
below along with Theorem 15 that proves its correctness.

Algorithm 2 Linear Feasibility Tester.

Input : d, ε, query access to constraints of S
Output :Accept or Reject

1 r ← d10d/εe
2 R← random sample of size r of constraints from S

3 Create the linear program L: max x1 subject to the constraints in R
4 x← solution of L
5 if L is not feasible then
6 Reject and abort
7 for 2/ε rounds do
8 y ← uniformly random constraint of S
9 if x does not satisfy y then

10 Output reject and abort.

11 Output accept.

I Theorem 15 (Correctness of Linear Feasibility Tester). Given a set S of linear
inequalities in Rd, the following statements hold with probability at least 2/3:

Completeness case: Linear Feasibility Tester outputs accept if there exists x ∈ Rd
that satisfies all of the constraints in S.
Soundness Case: Linear Feasibility Tester outputs reject if at least ε|S| constraints
need to be removed from S for S to be feasible.

I Remark 16. Note that the query complexity of Algorithm 1 is O(d/ε) which is independent
of |S|, the number of constraints. Furthermore, the runtime is polynomial in d/ε since we
are solving a linear programs in d variables and O(d/ε) constraints.

Proof. The proof of the soundness case follows similarly to Theorem 7 using the fact that for
any x, there are at least ε|S| constraints in x such that x violates these constraints. Then the
probability that Linear Feasibility Tester outputs reject in this case can be calculated
to be at least 2/3 using the same bound as Eq. (1) in the proof of Theorem 7.
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For the completeness case, we note that if we introduce the optimization function
ϕ(S) = max x1 subject to the constraints in S, then (S, ϕ) is an LP-Type problem of
dimension d (assuming that the constraints are non degenerate which can be assumed by
perturbing the constraints and then taking the limit of the perturbation to 0. For more details,
see [6, 25]). Now let x be the solution to the linear program that we solved in Step 4 of Linear
Feasibility Tester. Using Corollary 13, we know that if |R| = 10dd/εe, then the number of
constraints vr in S that satisfy ϕ(R∪{y}) 6= ϕ(R) is at most vr ≤ (d|S|)/(10d/ε) = ε|S|/10 in
expectation. Knowing that x not satisfying y implies that y is a violator of R, the probability
that x does not satisfy a randomly chosen y is at most ε/10. Thus, using the exact calculation
as in Eq.(2) of Theorem 7, we have that Linear Feasibility Tester outputs accept in
the completeness case with probability at least 2/3, as desired. J

In Section 6 we give a tolerant tester for testing linear feasibility. A tolerant tester accepts
instances that are ε-close and rejects instances that are cε-far for some constant c > 1.

4.2 Testing if Labeled Points can be Linearly Separated
As a direct consequence of the Theorem 15, we can test if a set of points in d dimensions
labeled {+1,−1} can be linearly separated. More formally, we have the following corollary.

I Corollary 17. Given a set S of points in Rd with labels in {+1,−1}, the following statements
hold with probability at least 2/3:

Completeness case: Linear Feasibility Tester outputs accept if there exists a
hyperplane that separates the two sets of labeled points.
Soundness Case: Linear Feasibility Tester outputs reject if at least ε|S| points
need to be removed (or relabeled) for S to be linearly sepearable.

Proof. The proof follows directly from the fact that we can write a linear inequality that
represents a separating hyperplane. For example, if p ∈ S is labeled 1, we want to find x
such that pTx ≥ 1 and if p is labeled −1, we want to find x such that pTx ≤ −1. J

We consider generalizations of this problem where we wish to separate labelled points by
arbitrary functions, rather than just linear hyperplanes. In Section 7 we address the issue of
separating using arbitrary functions when we know the basis of the functions, and the case
of multiple labels.

4.3 Upper Bounds for Canonical LP-Type Problems
We now give direct applications of LP-Type Tester to some canonical LP-Type problems.
The correctness of these applications follows directly from Theorem 7. Our list is not
exhaustive and we only consider some of the more well known LP-Type problems. In all of
the following problems, Theorem 7 tells us that the following statements hold with probability
at least 2/3:

LP-Type Tester outputs accept if ϕ(S) ≤ k (Completeness Case)
LP-Type Tester outputs reject if at least ε|S| constraints need to be removed from S

for ϕ(S) ≤ k to hold (Soundness Case).

Our results are the following:
Smallest enclosing ball: In this problem, ϕ(S) is the radius of the smallest enclosing ball
of a set of points S in Rd. It is known that the dimension of this LP-Type problem is
d+ 1 (see [12]) so we can test if ϕ(S) ≤ k with query complexity O(d/ε) queries.
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Smallest intersecting ball: In this problem, ϕ(S) is the smallest radius ball that intersects
a set of closed convex bodies S in Rd. The dimension of this LP-Type problem is O(d)
([12]) so we can test if ϕ(S) ≤ k with query complexity O(d/ε) queries.
Smallest volume annulus: In this problem, ϕ(S) is the volume of the smallest annulus
that contains a set of points S in Rd. Again, the dimension of this LP-Type problem is
O(d) ( [12]) so we can test if ϕ(S) ≤ k with query complexity O(d/ε).

5 Lower Bounds

In this section, we give matching lower bounds for all the testing problems that we considered
in Section 4.

5.1 Lower Bound for Testing Feasibility of Linear Constraints
Since linear separability is a special case of feasibility of linear constraints, we can lower
bound the necessary query complexity of the latter by providing one for the former. In
particular, we aim to show that Ω(d/ε) queries are needed to determine if a set of points in
d dimensions is linearly separable. By the reduction of linear separability to feasibility of
linear constraints, this implies that Ω(d/ε) constraint queries are needed to test feasibility of
a system of linear constraints, which matches our upper bound.

Our overall approach is to first introduce a set of O(d) points in Rd that have the property
that if we do not look at a large enough collection of these points, they can be separated by
a hyperplane even with arbitrary labels. However, there will exist a labeling of all of the
points such that “many” of the points will have to be removed or relabeled for this labeling
to be separated. The existence of these points is given in Lemma 18 (and is inspired by the
moment curve).

Then, repeating these points with carefully chosen multiplicities allows us to construct
our set S of points. Then a coupon collector argument gives us our desired lower bound on
the query complexity. This argument is formalized in the proof of Theorem 19.

I Lemma 18. There exists a set S of 3d+1 points in Rd that satisfy the following conditions:
1. There exists a labeling of the points of S such that at least d points have to be relabeled

for the points to be linearly separable.
2. Any subset of points of S of size d+ 1 with arbitrary labels in {−1, 1} is linearly separable.

Proof. We construct our set S as follows. Let xi be the point (i1, · · · , id) ∈ Rd for 1 ≤ i ≤
3d+ 1 (note that this set of points is referred to as the moment curve). We prove the first
claim using a standard relationship between the moment curve and polynomials. Assign the
point xi to the label (−1)i. Let k be the number of relabeled points such that S is linearly
separable. Then there exists w ∈ Rd and w0 ∈ R such that Sign(xTi w + w0) matches the
label of every point xi ∈ S. In other words, there exists a polynomial P (x) =

∑d
j=0 cjx

j

such that Sign(P (i)) matches the label of xi. Now note that if there are two consecutive
indices i and i+ 1 that have different labels, then P must have a root in the interval (i, i+ 1).
Originally, there are 3d such alternating intervals. Now note that the relabeling of any point
can decrease the total number of such alternating intervals by at most 2. Hence after k
relabelings, there must be at least 3d − 2k alternating intervals. However, since P is a d
degree polynomial, it must have at most d roots which means 3d − 2k ≤ d and therefore,
k ≥ d, as desired.

ICALP 2020



98:12 Property Testing of LP-Type Problems

We now prove the second claim. Let xa1 , · · · , xad+1 be a subset of d + 1 points of S.
Without loss of generality, suppose that a1 < · · · < ad+1. We now show that for every
labelings of these d + 1 points, there exists a polynomial of degree d such that the sign
of P (ai) matches the label of xai . Towards this goal, pick t elements b1, · · · , bt of the set
{a2, · · · , ad+1} where t ≤ d. Consider the t+ 1 intervals

[a1, b1), [b1, b2), · · · , [bt−1, bt), [bt, ad+1 + 1).

We can then find a polynomial of degree d such that
the sign of P is constant on I ∩ {a1, a2, · · · , ad+1} where I is any of the t+ 1 intervals
above,
the sign of P alternates between consecutive intervals.

This is possible since we are only specifying the value of P on d + 1 locations. Now the
total number of labelings described by all possible choices of P is given by 2

∑d
t=0
(
d
t

)
= 2d+1

where the factor of 2 comes from specifying the sign of P on the first interval. Note that
2d+1 is exactly the total number of different ways to label d + 1 points, which proves the
second claim. J

With Lemma 18 on hand, we can prove our desired lower bound on the query complexity.

I Theorem 19. Any algorithm that tests if a set S of labeled points in d dimensions can be
linearly separated requires Ω(d/ε) queries.

Proof. Let |S| = n. We create two families of n points in Rd with a specific labeling such
that any S from one family can be linearly separated while any S from the other family
is ε-far from being linearly separable. First, consider the set of 3d + 1 points supplied by
Lemma 18 and the labeling from part 1 of the lemma. The first family F1 consists of picking
a subset of d+ 1 of these points (with the labeling above), repeating d of these points nε/d
times, and repeating the remaining point (1− ε)n times. The second family F2 (again with
the same labeling) consists of picking all of the 3d+ 1 points from Lemma 18, repeating some
3d of these points with multiplicity nε/(3d), and repeating the last point with multiplicity
(1− ε)n.

By Lemma 18, we know that if S is from F1 then S is linearly separable while if S is from
F2, then S is at least ε/(3d) · d = O(ε)-far from separable. Any algorithm that queries points
randomly must discover at least d+ 1 unique points out of the points that were repeated
nε/d time from any S in F2 to discover that this S is O(ε)-far from separable (otherwise, the
points look separable). Call points that are identical “groups”. Now given a random point
from S, the probability of hitting any one group is ε/(3d). Therefore by coupon collector,
the expected number of queries required to hit at least d+ 1 of these 3d groups is at least

1
ε

(
3d
3d + 3d

3d− 1 + · · ·+ 3d
3d− d

)
= 3d

ε
(H3d −H2d−1) = Θ

(
d

ε

)
. J

As a corollary, we have the following lower bound as well. This is due to the reduction from
linear separability to linear program feasibility from the proof of Corollary 17.

I Theorem 20. Any algorithm that tests if n linear inequalities in d dimensions are feasible
requires Ω(d/ε) queries.

We now give matching query complexity lower bounds for the LP-Type problems that we
considered in Section 4.
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5.2 Lower bound for Testing Smallest Enclosing Ball
We first give a lower bound for property testing the radius of the smallest enclosing ball of
a set of points. Our approach is to first construct a set of points in Rj , for any j, whose
smallest enclosing ball can be calculated exactly. This set of points will have the property
that a small enough subset of the points will have a significantly smaller enclosing ball.
Therefore, if an algorithm does not query enough points, it will incorrectly believe that this
set of points can be covered by a ball of small radius. Our construction for this case will be
a regular simplex and explained below. First we prove an auxiliary lemma.

I Lemma 21. The radius of the circumcircle of a unit simplex in Rj is
√
j/(
√

2(j + 1)).

Proof. Note that we can embed a regular j-simplex in Rj+1 using the coordinates {ei}j+1
i=1

where ei is the all zero vector with a single 1 in the ith coordinate. This simplex has edge
length

√
2 so we can scale appropriately to find the circumcircle of a unit simplex. Now the

centroid of this simplex is easily seen to be located at (1/(j + 1), · · · , 1/(j + 1)) which means
that the circumcircle has radius√(

1− 1
j + 1

)2
+ j

(j + 1)2 =

√
j

j + 1 .

Now scaling by 1/
√

2 gives us the desired value. J

I Theorem 22. Any algorithm that tests if a set of n points in Rd can be enclosed by a ball
of radius k, where k is given, requires Ω(d/ε) queries.

Proof. Let k be fixed. We construct two families of points in RO(d) such that any S from
one family can be enclosed by a ball of radius k while any S from the second family is ε-far
from being enclosed by a ball of radius k. Before constructing these families, we first pick `
such that the regular simplex of side length ` in Rd+1 has circumradius k.

Now to create the first family F1, we first pick any d+ 1 points of the regular simplex
with side length ` in R3d+1. Then we repeat one of these points with multiplicity (1− ε)n
and we repeat the other d points with multiplicity nε/d each. To create the second family F2,
we pick a point of the regular simplex with side length ` in R3d+1, repeat it with multiplicity
(1− ε)n, and repeat the other 3d points with multiplicity nε/(3d). Finally, let S be a set of
n points from F2. From Lemma 21, we can check that the circumradius of a regular unit
simplex is an increasing function of the dimension and that any subset of the vertices of
a regular simplex is a regular simplex itself. Therefore, the smallest radius of the points
in S is much larger than k and S is O(ε)-far from being encloseable by a ball of radius k.
However, similar to the argument in Theorem 19, any algorithm that rejects S must have
discovered at least d+ 1 distinct “groups” of repeated points. By the same coupon collector
argument as in the proof of Theorem 19, we have that this task takes at least Ω(d/ε) queries
in expectation. J

As a simple application of Theorem 22, we get the following lower bounds as well.

I Corollary 23. Any algorithm for testing the smallest intersecting ball for n convex bodies
in Rd requires Ω(d/ε) queries.

Proof. The proof follows from the fact that a set of singleton points is also a set of convex
bodies. In this case, the smallest intersecting ball is equivalent to the smallest ball that
encloses these points. Therefore, the same lower bound as in Theorem 22 holds. J
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6 Tolerant Tester for Testing Feasibility of Linear Constraints

We generalize our argument in Section 4.1 by giving a tolerant tester for testing feasibility of
a system of linear constraints. In the tolerant version, we output accept if there only “few”
constraints need to be removed for a set of linear inequalities to be feasible. More formally,
we wish to distinguish the following two cases with probability at least 2/3:

At most cε|S| many inequalities in S need to be removed for S (or flipped) for S to be
feasible, i.e., S is cε-close to being feasible for some fixed positive c < 1 (Completeness
Case).
At least ε|S| many of the constraints need to be removed (or flipped) for the system to
be feasible (Soundness Case).

Our approach is a slightly modified version of Linear Feasibility Tester, Algorithm 2,
that we presented in Section 4.1. The challenge here is the completeness case where we must
accept if we only have a “few” bad constraints. To accomplish this, we carefully select a
solution to a small linear program that we run. For more details, see Algorithm 3. Our main
theorem in this section, Theorem 24 shows that we can perform tolerant testing using the
same query complexity we used for the non tolerant tester in Section 4.1, namely O(d/ε).
However, as we will explain below, the running time of Algorithm 3, Tolerant Linear
Feasibility Tester, is exponential in the running time of Algorithm 2. Our algorithm,
Tolerant Linear Feasibility Tester, is presented below.

Algorithm 3 Tolerant Linear Feasibility Tester.

Input : d, ε, query access to constraints of LP
Output :Accept or Reject

1 r ← d10d/εe
2 R← random sample of size r of constraints from S

3 x← solution of the largest subset R′ of R such that the linear program L: max x1
subject to the constraints in R′ is feasible

4 if No L is not feasible then
5 Reject and abort
6 for 2/ε rounds do
7 y ← uniformly random constraint of S
8 if x does not satisfy y then
9 Output reject and abort.

10 Output accept.

Unlike Linear Feasibility Tester where we run a linear program, we solve a slightly
different program given in step 3 of Tolerant Linear Feasibility Tester. The step
determines the largest feasible subset of these constraints. Note that this step is clearly
exponential in the number of constraints (which is O(d/ε)). Therefore, the overall runtime
of Tolerant Linear Feasibility Tester will be exponential in the runtime of Linear
Feasibility Tester. The correctness of Tolerant Linear Feasibility Tester is
proven in Theorem 24.
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I Theorem 24 (Correctness of Tolerant Linear Feasibility Tester). Given a set S
of linear inequalities in Rd, there exists a constant c < 1 such that the following statements
hold with probability at least 2/3:

Completeness case: Tolerant Linear Feasibility Tester outputs accept if there
exists x ∈ Rd that satisfies (1− cε)|S| of the constraints in S.
Soundness Case: Tolerant Linear Feasibility Tester outputs reject if at least
ε|S| constraints need to be removed from S for S to be feasible.

I Remark 25. Note that the query complexity of Algorithm 3 is O(d/ε) which is independent
of |S|, the number of constraints.

Proof. Note that the proof of the soundness case is identical to the proof of the soundness
case in Theorem 15 since for any x we find in step 3 of Tolerant Linear Feasibility
Tester, there exists at least ε|S| choices of y in step 7 such that x does not satisfy the
constraint y. Then a similar calculation as in Eq. (1) implies that we reject with probability
at least 2/3.

We now focus on the completeness case where we know there is a subset of (1− cε)|S|
constraints that are feasible. We call this the good set, and the rest, the bad set. Consider the
sample R from step 2 of Tolerant Linear Feasibility Tester. The expected number
of constraints from the good set in R is (1 − cε)r. This means at most cεr constraints in
R come from the bad set in expectation. Hence with probability at least 9/10, we know
that the number of constraints from the bad set is at most 10cεr by Markov’s inequality,
which means the number of constraints coming from the good set is at least (1− 10cε)r. We
condition on this event. Now note that one valid subset R′ to use in step 3 of Tolerant
Linear Feasibility Tester is to take all the constraints coming from the good set only.
This results in |R′| ≥ (1 − 10cε). Since we are maximizing |R′|, this means that at most
10cεr of the constraints coming from the good set that are in R will not be included in R′.
Thus, x satisfies at least (1− 20cε)r constraints in the good set with probability at least 9/10.
Now we proceed similarly as the proof of Theorem 15. By Corollary 13, the probability that
x violates any other constraint in the good set is at most

d(n′ − r + 1)
n′(r − d) ≤ dn′

10dn′/ε = ε

10

where n′ is the size of the good set. Furthermore, x can possibly violate any constraint in
the bad set which means that the probability x violates any other constraint is at most
ε/10 + cε < ε/6 for sufficiently small c, i.e. c < 1/15. Then, the probability that we find such
a constraint in 2/ε rounds is at most

1−
(

1− ε

6

)2/ε
≤ 1−

(
1− 1

3

)
= 1

3 .

Therefore, we accept with probability at least 2/3, as desired. Note that we can take any
c < 1/15 in the statement of the Theorem for instance. J

7 Separating Points with Arbitrary Functions and Multiple Labels

7.1 Separating labeled points using arbitrary functions
We can generalize our result from Section 4.2 by separating labeled points using arbitrary
functions: given a family of functions F , we can ask if there is a f ∈ F such that f(p) > 0
for all points with a particular label and f(p) < 0 for all the points with the other label.

ICALP 2020



98:16 Property Testing of LP-Type Problems

We now translate this problem to a setting with linear inequalities. Our approach is
standard in machine learning and is known as feature maps. If the family F has a finite
basis f1, · · · , fk, meaning that every f ∈ F is a linear combination of f1, · · · , fk, then we
can create a system of linear inequalities as follows. For each point p ∈ S, we can make
a new constraint which is (f1(p), · · · , fk(p))x ≥ 1 (note there that x is a column vector of
variables) if p has one particular label or ≤ −1 if p has another label. Then this system
of linear constraints is feasible iff there are scalars a1, · · · , ak such that

∑
i aifi(p) ≥ 0 for

all p with one label and
∑
i aifi(p) ≤ 0 for all p with the other label. Then our separating

function is precisely f =
∑
i aifi. Note that in this formulation, we have k variables. Thus,

the query complexity is O(k/ε).
As an example, we consider the case that F is the family of polynomials in d variables

with degree ≤ t. The basis of this family is all the possible terms of the form xt11 · · ·x
td
d where

the ti are non-negative and add to at most t. By a standard balls and bins argument, the
number of these terms is

(
t+d
d

)
. For constant t, this is O(dt), which means that our system

of linear constraints has O(dt) variables. Thus, the query complexity is O(dt/ε).

7.2 Separating Points with Multiple Labels

Suppose that in Section 4.2, instead of assigning each point one of 2 labels, we instead chose
to assign it one of ` ≥ 2 labels. One common interpretation of separability for this setup is
to check if each of the

(
`
2
)
pairs of label sets are separable. We modify our notion of ε-far to

reflect this.

I Definition 26. S is ε-far from linearly separable if at least ε|S| many labels in S have to
be changed for S to be separable.

If such a data set is ε-far from separable, then some subset with consisting of two labels
must be ε/

(
`
2
)
-far from separable. As such, we can consider an algorithm that runs Algorithm

Linear Feasibility Tester on each pair of labels with ε′ = ε/
(
`
2
)
and outputs accept if

all these tests output accept. We need to reduce the error probability for each pair such
that the overall error probability of outputting the incorrect answer (acquired by a union
bound) is still at most 1/3. This can be done by using a stronger version of the original
algorithm where we run it O(log `) times and taking the majority answer. By a standard
Chernoff bound argument, the probability this process gives the wrong answer is at most say
1/`3. Thus, we can distinguish separability in this case by running this stronger version over
all pairs of distinct labels, resulting in O(`2 log `) instances of Linear Feasibility Tester,
using ε′ = ε/

(
`
2
)
. So, the total query complexity will be O(d`4 log `/ε).

Additionally, the completeness case has error at most
(
`
2
)
1/`3 = o(1) by a Union Bound

argument. Clearly, the soundness case has error at most 1/`3, since there is one pair of
distinct labels which is ε′-far from separable.
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Lower Bounds for Dynamic Distributed Task
Allocation
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Abstract
We study the problem of distributed task allocation in multi-agent systems. Suppose there is a
collection of agents, a collection of tasks, and a demand vector, which specifies the number of agents
required to perform each task. The goal of the agents is to cooperatively allocate themselves to the
tasks to satisfy the demand vector. We study the dynamic version of the problem where the demand
vector changes over time. Here, the goal is to minimize the switching cost, which is the number of
agents that change tasks in response to a change in the demand vector. The switching cost is an
important metric since changing tasks may incur significant overhead.
We study a mathematical formalization of the above problem introduced by Su, Su, Dornhaus, and
Lynch [20], which can be reformulated as a question of finding a low distortion embedding from
symmetric difference to Hamming distance. In this model it is trivial to prove that the switching
cost is at least 2. We present the first non-trivial lower bounds for the switching cost, by giving
lower bounds of 3 and 4 for different ranges of the parameters.
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1 Introduction

Task allocation in multi-agent systems is a fundamental problem in distributed computing.
Given a collection of tasks, a collection of task-performing agents, and a demand vector which
specifies the number of agents required to perform each task, the agents must collectively
allocate themselves to the tasks to satisfy the demand vector. This problem has been studied
in a wide variety of settings. For example, agents may be identical or have differing abilities,
agents may or may not be permitted to communicate with each other, agents may have
limited memory or computational power, agents may be faulty, and agents may or may not
have full information about the demand vector. See Georgiou and Shvartsman’s book [7] for
a survey of the distributed task allocation literature. See also the more recent line of work by
Dornhaus, Lynch and others on algorithms for task allocation in ant colonies [4, 20, 5, 17].

We consider the setting where the demand vector changes dynamically over time and
agents must redistribute themselves among the tasks accordingly. We aim to minimize the
switching cost, which is the number of agents that change tasks in response to a change
in the demand vector. The switching cost is an important metric since changing tasks
may incur significant overhead. Dynamic task allocation has been extensively studied in
practical, heuristic, and experimental domains. For example, in swarm robotics, there is much
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experimental work on heuristics for dynamic task allocation (see e.g. [10, 19, 13, 14, 11, 12]).
Additionally, in insect biology it has been empirically observed that demands for tasks in
ant colonies change over time based on environmental factors such as climate, season, food
availability, and predation pressure [15]. Accordingly, there is a large body of biological work
on developing hypotheses about how insects collectively perform task allocation in response
to a changing environment (see surveys [1, 18]).

Despite the rich experimental literature, to the best of our knowledge there are only two
works on dynamic distributed task allocation from a theoretical algorithmic perspective. Su,
Su, Dornhaus, and Lynch [20] present and analyze gossip-based algorithms for dynamic task
allocation in ant colonies. Radeva, Dornhaus, Lynch, Nagpal, and Su [17] analyze dynamic
task allocation in ant colonies when the ants behave randomly and have limited information
about the demand vector.

1.1 Problem Statement

We study the formalization of dynamic distributed task allocation introduced by Su, Su,
Dornhaus, and Lynch [20].

Objective. Our goal is to minimize the switching cost, which is the number of agents that
change tasks in response to a change in the demand vector.

Properties of agents.
1. the agents have complete information about the changing demand vector
2. the agents are heterogeneous
3. the agents cannot communicate
4. the agents are memoryless
The first two properties specify capabilities of the agents while the third and fourth properties
specify restrictions on the agents. Although the exclusion of communication and memory
may appear overly restrictive, our setting captures well-studied models of both collective
insect behavior and swarm robotics, as outlined in Section 1.1.3.

From a mathematical perspective, our model captures the combinatorial aspects of
dynamic distributed task allocation. In particular, as we show in Section 2, the problem can
be reformulated as finding a low distortion embedding from symmetric difference to Hamming
distance.

1.1.1 Formal statement

Formally, the problem is defined as follows. There are three positive integer parameters: n
is the number of agents, k is the number of tasks, and D is the target maximum switch-
ing cost, which we define later. The goal is to define a set of n deterministic functions
fn,k

1 , fn,k
2 , . . . , fn,k

n , one for each agent, with the following properties.
Input: For each agent a, the function fn,k

a takes as input a demand vector ~v =
{v1, v2, . . . , vk} where each vi is a non-negative integer and

∑
i vi = n. Each vi is

the number of agents required for task i, and the total number of agents required for
tasks is exactly the total number of agents.
Output: For each agent a, the function fn,k

a outputs some i ∈ [k]. The output of fn,k
a (~v)

is the task that agent a is assigned when the demand vector is ~v.
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Demand satisfied: For all demand vectors ~v and all tasks i, we require that the number
of agents a for which fn,k

a (~v) = i is exactly vi. That is, the allocation of agents to tasks
defined by the set of functions fn,k

1 , fn,k
2 , . . . , fn,k

n exactly satisfies the demand vector.
Switching cost satisfied: The switching cost of a pair (~v, ~v′) of demand vectors is
defined as the number of agents a for which fn,k

a (~v) 6= fn,k
a (~v′); that is, the number of

agents that switch tasks if the demand vector changes from ~v to ~v′ (or from ~v′ to ~v).
We say that a pair of demand vectors ~v, ~v′ are adjacent if |~v − ~v′|1 = 2; that is, if we
can get from ~v to ~v′ by moving exactly one unit of demand from one task to another.
The maximum switching cost of a set of functions fn,k

1 , fn,k
2 , . . . , fn,k

n is defined as the
maximum switching cost over all pairs of adjacent demand vectors; that is, the maximum
number of agents that switch tasks in response to the movement of a single unit of
demand from one task to another. We require that the maximum switching cost of
fn,k

1 , fn,k
2 , . . . , fn,k

n is at most D.

I Question. Given n and k, what is the minimum possible maximum switching cost D
over all sets of functions fn,k

1 , . . . , fn,k
n ?

1.1.2 Remarks
I Remark 1. The problem statement only considers the switching cost of pairs of adjacent
demand vectors. We observe that this also implies a bound on the switching cost of non-
adjacent vectors: if every pair of adjacent demand vectors has switching cost at most D,
then every pair of demand vectors with `1 distance d has switching cost at most D(d/2).

I Remark 2. The problem statement is consistent with the properties of the agents listed
above. In particular, the agents have complete information about the changing demand
vector because for each agent, the function fn,k

a takes as input the current demand vector.
The agents are heterogeneous because each agent a has a separate function fn,k

a . The agents
have no communication or memory because the only input to each function fn,k

a is the
current demand vector.

I Remark 3. Forbidding communication among agents is crucial in the formulation of the
problem, as otherwise the problem would be trivial. In particular, it would always be possible
to achieve maximum switching cost 1: when the current demand vector changes to an
adjacent demand vector, the agents simply reach consensus about which single agent will
move.

1.1.3 Applications
1.1.3.1 Collective insect behavior

There are a number of hypotheses that attempt to explain the mechanism behind task
allocation in ant colonies (see the survey [1]). One such hypothesis is the response threshold
model, in which ants decide which task to perform based on individual preferences and
environmental factors. Specifically, the model postulates that there is an environmental
stimulus associated with each task, and each individual ant has an internal threshold for each
task, whereby if the stimulus exceeds the threshold, then the ant performs that task. The
response threshold model was introduced in the 70s and has been studied extensively since
(for comprehensive background on this model see the survey [1] and the introduction of [6]).
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Our setting captures the essence of the response threshold model since agents are permitted
to behave based on individual preferences (property 2: agents are heterogeneous) and
environmental factors (property 1: agents have complete information about the demand
vector). We study whether models like the response threshold model can achieve low
switching costs.

Inspired by collective insect behavior, researchers have also studied the response threshold
model in the context of swarm robotics [2, 9, 22]. Our setting also relates more generally to
swarm robotics:

1.1.3.2 Swarm robotics

There is a body of work in swarm robotics specifically concerned with property 3 of our setting:
eliminating the need for communication (e.g. [21, 3, 8, 16]). In practice, communication
among agents may be unfeasible or costly. In particular, it may be unfeasible to build a fast
and reliable network infrastructure capable of dealing with delays and failures, especially in
a remote location.

Regarding property 4 of our setting (the agents are memoryless), it may be desirable for
robots in a swarm to not rely on memory. For example, if a robot fails and its memory is
lost, we may wish to be able to introduce a new robot into the system to replace it.

Concretely, dynamic task allocation in swarm robotics may be applicable to disaster
containment [16, 23], agricultural foraging, mining, drone package delivery, and environmental
monitoring [19].

1.2 Past Work
Our problem was previously studied only by Su, Su, Dornhaus, and Lynch [20], who presented
two upper bounds and a lower bound.

The first upper bound is a very simple set of functions fn,k
1 , . . . , fn,k

n with maximum
switching cost k − 1. Each agent has a unique ID in [n] and the tasks are numbered from
1 to k. The functions fn,k

1 , . . . , fn,k
n are defined so that for all demand vectors, the agents

populate the tasks in order from 1 to k in order of increasing agent ID. That is, for each agent
a, fn,k

a is defined as the task j such that
∑j−1

i=0 di < ID(a) and
∑j

i=0 di ≥ ID(a). Starting
with any demand vector, if one unit of demand is moved from task i to task j, the switching
cost is at most |i− j| because at most one agent from each task numbered between i and j
(including i but not including j) shifts to a new task. Thus, the maximum switching cost
is k − 1.

The lower bound of Su et al. is also very simple. It shows that there does not exist a set
of functions fn,k

1 , . . . , fn,k
n with maximum switching cost 1 for n ≥ 2 and k ≥ 3. Suppose

for contradiction that there exists a set of functions fn,k
1 , . . . , fn,k

n with maximum switching
cost 1 for n = 2 and k = 3 (the argument can be easily generalized to higher n and k).

Suppose the current demand vector is [1, 1, 0], that is, one agent is required for each of
tasks 1 and 2 while no agent is required for task 3. Suppose agents a and b are assigned
to tasks 1 and 2, respectively, which we denote [a, b, ∅]. Now suppose the demand vector
changes from [1, 1, 0] to the adjacent demand vector [1, 0, 1]. Since the maximum switching
cost is 1, only one agent moves, so agent b moves to task 3, so we have [a, ∅, b]. Now suppose
the demand vector changes from [1, 0, 1] to the adjacent demand vector [0, 1, 1]. Again, since
the maximum switching cost is 1, agent a moves from task 1 to task 2 resulting in [∅, a, b].
Now suppose the demand vector changes from [0, 1, 1] to the adjacent demand vector [1, 1, 0],
which was the initial demand vector. Since the maximum switching cost is 1, agent b moves
from task 3 to task 1 resulting in [b, a, ∅].
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The problem statement requires that the allocation of agents depends only on the current
demand vector, so the allocation of agents for any given demand vector must be the same
regardless of the history of changes to the demand vector. However, we have shown that the
allocation of agents for [1, 1, 0] was initially [a, b, ∅] and is now [b, a, ∅], a contradiction. Thus,
the maximum switching cost is at least 2.

The second upper bound of Su et al. states that there exists a set of functions fn,k
1 , . . . , fn,k

n

with maximum switching cost 2 if n ≤ 6 and k = 4. They prove this result by exhaustively
listing all 84 demand vectors along with the allocation of agents for each vector.

1.3 Our results
We initiate the study of non-trivial lower bounds for the switching cost. In particular, with
the current results it is completely plausible that the maximum switching cost can always be
upper bounded by 2, regardless of the number of tasks and agents. Our results show that
this is not true and provide further evidence that the maximum switching cost grows with
the number of tasks.

One might expect that the limitations on n and k in the second upper bound of Su et
al. is due to the fact the space of demand vectors grows exponentially with n and k so their
method of proof by exhaustive listing becomes unfeasible. However, our first result is that
the second upper bound of Su et al. is actually tight with respect to k. In particular, we
show that achieving maximum switching cost 2 is impossible even for k = 5 (for any n > 2).

I Theorem 4. For n ≥ 3, k ≥ 5, every set of functions fn,k
1 , . . . , fn,k

n has maximum switching
cost at least 3.

We then consider the next natural question: For what values of n and k is it possible to
achieve maximum switching cost 3? Our second result is that maximum switching cost 3 is
not always possible:

I Theorem 5. There exist n and k such that every set of functions fn,k
1 , . . . , fn,k

n has
maximum switching cost at least 4.

The value of k for Theorem 5 is an extremely large constant derived from hypergraph
Ramsey numbers. Specifically, there exists a constant c so that Theorem 5 holds for n ≥ 5
and k ≥ tn−1(cn) where the tower function tj(x) is defined by t1(x) = x and ti+1(x) = 2ti(x).

We remark that while our focus on small constant values of the switching cost may
appear restrictive, functions with maximum switching cost 3 already have a highly non-trivial
combinatorial structure.

1.4 Our techniques
We introduce two novel techniques, each tailored to a different parameter regime. One
parameter regime is when n� k and the demand for each task is either 0 or 1. This regime
seems to be the most natural for the goal of proving the highest possible lower bounds on
the switching cost.

1.4.1 The n � k regime
We develop a proof framework for the n � k regime and use it to prove Theorem 4 for
n = 3, k = 5, and more importantly, to prove Theorem 5. We begin by supposing for
contradiction that there exists a set of functions fn,k

1 , . . . , fn,k
n with switching cost 2 and 3,
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respectively, and then reason about the structure of these functions. The main challenge in
proving Theorem 5 as compared to Theorem 4 is that functions with switching cost 3 can
have a much more involved combinatorial structure than functions with switching cost 2. In
principle, our proof framework could also apply to higher switching costs, but at present it is
unclear how exactly to implement it for this setting.

The first step in our proofs is to reformulate the problem as that of finding a low distortion
embedding from symmetric difference to Hamming distance, which we describe in Section 2.
This provides a cleaner way to reason about the problem in the n � k parameter regime.
Our proofs are written in the language of the problem reformulation, but here we will briefly
describe our proof framework in the language of the original problem statement.

The simple upper bound of k − 1 described in Section 1.2 can be viewed as each agent
having a “preference” for certain tasks. The main idea of our lower bound is to show that
for any set of functions fn,k

1 , . . . , fn,k
n with low switching cost, many agents must have a

“preference” for certain tasks. More formally, we introduce the idea of a task being frozen to
an agent. A task t is frozen to agent a if for every demand vector in a particular large set of
demand vectors, agent a is assigned to task t. Our framework has three steps:

In step 1, we show roughly that in total, many tasks are frozen to some agent.
In step 2, we show roughly that for many agents a, only few tasks are frozen to a.
In step 3, we use a counting argument to derive a contradiction: we count a particular
subset of frozen task/agent pairs in two different ways using steps 1 and 2, respectively.

The proof of Theorem 4 for n = 3 and k = 5 serves as a simple illustrative example of
our proof framework, while the proof of Theorem 5 is more involved. In particular, in step 1
of the proof of Theorem 5, we derive multiple possible structures of frozen task/agent pairs.
Then, we use Ramsey theory to show that there exists a collection of tasks that all obey only
one of the possible structures. This allows us to reason about each of the possible structures
independently in steps 2 and 3.

1.4.2 The remaining parameter regime
In the remaining parameter regime, we complete the proof of Theorem 4. In the previous
parameter regime, we only addressed the n = 3, k = 5 case, and now we need to consider all
larger values of n and k. Extending to larger k is trivial (we prove this formally in Section 4).
However, it is not at all clear how to extend a lower bound to larger values of n. In particular,
our proof framework from the n� k regime immediately breaks down as n grows.

The main challenge of handling large n is that having an abundance of agents can actually
allow more pairs of adjacent demand vectors to have switching cost 2, so it becomes more
difficult to find a pair with switching cost greater than 2. To see this, consider the following
example.

Consider the subset Si of demand vectors in which a particular task i has an unconstrained
amount of demand and each remaining task has demand at most n/(k − 1). We claim that
there exists a set of functions fn,k

1 , . . . , fn,k
n so that every pair of adjacent demand vectors

from Si has switching cost 2. Divide the agents into k − 1 groups of n/(k − 1) agents
each, and associate each task except i to such a group of agents. We define the functions
fn,k

1 , . . . , fn,k
n so that given any demand vector in Si, the set of agents assigned to each task

except i is simply a subset of the group of agents associated with that task (say, the subset
of such agents with smallest ID). This is a valid assignment since the demand of each task
except i is at most the size of the group of agents associated with that task. The remaining
agents are assigned to task i. Then, given a pair (~v, ~v′) of adjacent demand vectors in Si,
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whose demands differ only for tasks s and t, their switching cost is 2 because the only agents
assigned to different tasks between ~v and ~v′ are: one agent from each of the groups associated
with tasks s and t, respectively.

Because it is possible for many pairs of adjacent demand vectors to have switching cost 2,
finding a pair of adjacent demand vectors with larger switching cost requires reasoning about
a very precise set of demand vectors. To do this, we use roughly the following strategy. We
identifying a task that serves the role of i in the above example and then successively move
demand out of task i until task i is empty and can thus no longer fill this role. At this point,
we argue that we have reached a pair of adjacent demand vectors with switching cost more
than 2.

2 Problem reformulation

2.1 Notation
Let A and B be multisets. The intersection of A and B denoted A∩B is the maximal multiset
of elements that appear in both A and B. For example, {a, a, b, b} ∩ {a, b, b, c} = {a, b, b}.
The symmetric difference between A and B, denoted A⊕B, is the multiset of elements in
either A or B but not in their intersection. For example, {a, a, b, b} ⊕ {a, b, b, c} = {a, c}
since we are left with a after removing {a, b, b} from {a, a, b, b} and we are left with c after
removing {a, b, b} from a, b, b, c.

A permutation of a multiset A is simply a permutation of the elements of the multiset. For
example, one permutation of {a, a, b} is aba. We treat permutation as strings and perform
string operations on them. For strings X and Y (which may be permutations), let d(X,Y )
denote the Hamming distance between X and Y . For example, d(aba, bca) = 2.

2.2 Problem statement
Given positive integers n, k, and D, the goal is to find a function πn,k with the following
properties.

Let Sn,k be the set of all size n multisets of [k]. The function πn,k takes as input a set
S ∈ Sn,k and outputs a permutation of S.
We say that a pair S, S′ ∈ Sn,k has distortion D′ with respect to πn,k if |S ⊕ S′| = 2 and
d(πn,k(S), πn,k(S′)) = D′. In other words, a pair of multisets has distortion D′ if they
have the smallest possible symmetric distance but large Hamming distance (at least D′).
We say that πn,k has maximum distortion D′ if the maximum distortion over all pairs
S, S′ ∈ Sn,k with |S ⊕ S′| = 2 is D′. We require that the function πn,k has maximum
distortion at most D.

We are interested in the question of for which values of the parameters n, k, and D, there
exists πn,k that satisfies the above properties. In particular, we aim to minimize the maximum
distortion:

I Question. Given n and k, what is the minimum possible maximum distortion over
all functions πn,k?

In other words, the question is whether there exists a function πn,k such that every pair
S, S′ ∈ Sn,k has distortion at least D. Our theorems are lower bounds, so we show that for
every function πn,k there exists a pair S, S′ ∈ Sn,k with distortion at least D.
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2.3 Equivalence to original problem statement
We claim that the new problem statement from Section 2.2 is equivalent to the original
problem statement from Section 1.1.

B Claim 6. Given parameters n and k (the same for both problem statements) there exists
a function πn,k with maximum distortion D if and only if there exists a set of functions
fn,k

1 , . . . , fn,k
n with maximum switching cost D.

We describe the correspondence between the two problem statements:
Demand vector. Sn,k is the set of all possible demand vectors since a demand vector
is simply a size n multiset of the k tasks. For example, the multiset S = {1, 1, 3} is
equivalent to the demand vector ~v = [2, 0, 1]; both notations indicate that task 1 requires
two units of demand, task 2 requires no demand, and task 3 requires one unit of demand.
Allocation of agents to tasks. If ~v is the demand vector representing the multiset
S ∈ Sn,k, a permutation πn,k(S) is an allocation fn,k

1 (~v), . . . , fn,k
n (~v) of agents to tasks

so that πn,k(S)[i] = fn,k
i (~v); that is, agent i performs the task that is the ith element in

the permutation πn,k(S). For example, π3,3({1, 1, 3}) = 131 is equivalent to the following:
f3,3

1 ([2, 0, 1]) = 1, f3,3
2 ([2, 0, 1]) = 3, and f3,3

3 ([2, 0, 1]) = 1; both notations indicate that
agents 1 and 3 both performs task 1, while agent 2 performs task 2.
Switching cost. If ~v, ~v′ are the demand vectors representing the multisets S, S′ ∈ Sn,k

respectively, the value d(πn,k(S), πn,k(S′)) is the switching cost because from the previous
bullet point, πn,k(S)[i] 6= πn,k(S′)[i] if and only if fn,k

a (~v) 6= fn,k
a (~v′).

Adjacent demand vectors. The set of all pairs S, S′ ∈ Sn,k such that |S ⊕ S′| = 2
is the set of all pairs of adjacent demand vectors. This is because |S ⊕ S′| = 2 means
that starting from S, one can reach S′ by changing exactly one element in S from some
i ∈ [k] to some j ∈ [k]. Equivalently, starting from the demand vector represented by
S and moving one unit of demand from task i to task j results in the demand vector
represented by S′.
Maximum switching cost. If fn,k

1 , . . . , fn,k
n is the set of functions representing πn,k,

then πn,k has maximum distortion D if and only if fn,k
1 , . . . , fn,k

n has maximum switching
cost D. This is because S, S′ ∈ Sn,k has distortion D if and only if |S ⊕ S′| = 2 and
d(πn,k(S), πn,k(S′)) = D which is equivalent to saying that the demand vectors ~v and ~v′

that represent S and S′ are adjacent and have switching cost D.

2.4 Restatement of results
We restate Theorems 4 and 5 in the language of the problem restatement.

I Theorem 7 (Restatement of Theorem 4). Let n ≥ 3 and k ≥ 5. Every function πn,k has
maximum distortion at least 3.

I Theorem 8 (Restatement of Theorem 5). There exist n and k so that every function πn,k

has maximum distortion at least 4.

2.5 Example instance
To build intuition about the problem restatement, we provide a concrete example of a small
instance of the problem. Suppose n = 3 and k = 2. For notational clarity, instead of denoting
[k] = {0, 1} we denote [k] = {a, b}. Then S3,2 is the set of all size 3 multisets of {a, b}; that
is, S3,2 = {{a, a, a}, {a, a, b}, {a, b, b}, {b, b, b}}. π3,2 is a function that maps each element of
S3,2 to a permutation of itself. For example, π3,2 could be defined as follows:
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π3,2({a, a, a}) = aaa, π3,2({a, a, b}) = aba π3,2({a, b, b}) = bab, π3,2({b, b, b}) = bbb.

We are concerned with all pairs S, S′ ∈ S3,2 such that |S ⊕ S′| = 2 (since the maximum
distortion of π3,2 is defined in terms of only these pairs). In this example, the only such pairs
are as follows:

{a, a, a} ⊕ {a, a, b} = 2, {a, a, b} ⊕ {a, b, b} = 2, {a, b, b} ⊕ {b, b, b} = 2.

For each such pair, we consider d(π3,2(S), π3,2(S′)):

d(aaa, aba) = 1, d(aba, bab) = 3, d(bab, bbb) = 1.

This particular choice of π3,2 has maximum distortion 3 (since the largest value in the above
row is 3), however we could have chosen π3,2 with maximum distortion 1 (for example if
π3,2({a, b, b}) = bba instead of bab).

3 The n � k regime

In this section we will prove Theorem 7 for n = 3, k = 5, and Theorem 8. The proofs are
written in the language of the problem reformulation from Section 2. For these proofs it will
suffice to consider only the elements of Sn,k that are subsets of [k], rather than multisets.
This corresponds to the set of demand vectors where each task has demand either 0 or 1.
For the rest of this section we consider only subsets of [k], rather than multisets.

We call each element of [k] a character (e.g. in the above example instance, a and b are
characters).

3.1 Proof framework
As described in Section 1.4, we develop a three-step proof framework for the n� k regime.
Suppose we are trying to prove that every function πn,k has maximum distortion at least
D for a particular n and k. We begin by supposing for contradiction that there exists πn,k

with maximum distortion less than D. That is, we suppose that every pair S, S′ ∈ Sn,k with
|S ⊕ S′| = 2 has d(πn,k(S), πn,k(S′)) < D. Under the assumption that such a πn,k exists,
steps 1 and 2 of the framework show that πn,k must obey a particular structure. For the
remainder of this section, we drop the subscript of π since n and k are fixed.

I Notation. For any set R ⊆ [k], let UR be the set of all sets S ⊆ [k] such that R ⊂ S and
|S| = |R|+ 1.

Step 1: Structure of size n − 1 sets

We begin by fixing a size n− 1 set R ⊆ [k]. Now, consider UR (defined above). We note that
all pairs S, S′ ∈ UR are by definition such that |S ⊕ S′| = 2. Because we initially supposed
that π has maximum distortion less than D, we know that for all pairs S, S′ ∈ UR, we have
d(π(S), π(S′)) < D.

Then we prove a structural lemma which roughly says that many characters r ∈ R have a
“preference” to be in a particular position in the permutations π(S) for S ∈ UR. We say that
R i-freezes the character r if π(S)[i] = r for many S ∈ UR. Our structural lemma roughly
says that for many characters r ∈ R, there exists an index i ∈ [n] such that R i-freezes r. In
other words, for many S ∈ UR, the π(S)s agree on the position of many characters in the
permutation.
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Step 2: Structure of size n − 2 sets

We begin by fixing a size n− 2 set Q ⊆ [k]. Now, consider UQ. We note that each R ∈ UQ

obeys the structural lemma from step 1; that is, for many characters r ∈ R, there exists an
index i ∈ [n] such that R i-freezes r.

We prove a structural lemma which roughly says that the sets P ∈ UQ are for the most
part consistent about which characters they freeze to which index of the permutation. More
specifically, for many characters q ∈ Q, for all pairs P, P ′ ∈ UQ, if R i-freezes r and R′

j-freezes r, then i = j.

Step 3: Counting argument

In step 3, we use a counting argument to derive a contradiction. For the proof of Theorem 7,
a simple argument suffices. The idea is that step 1 shows that many characters are frozen
overall while step 2 shows that each character can only be frozen to a single index. Then, the
pigeonhole principle implies that more than one character is frozen to a single index, which
helps to derive a contradiction.

For the proof of Theorem 8, it no longer suffices to just show that more than one character
is frozen to a single index. Instead, we require a more sophisticated counting argument and
a careful choice of what quantity to count. We end up counting the number of pairs (Q, a)
such that R ∈ UQ, where Q ⊂ [k] is a size n− 2 set and a ∈ [n] \Q. To reach a contradiction,
we count this quantity in two different ways, using steps 1 and 2 respectively.

Having reached a contradiction, we conclude that π has maximum distortion at least D.

3.2 Proof of Theorem 7 for n = 3, k = 5
In this section, we prove Theorem 7 for n = 3, k = 5, which serves as a simple illustrative
example of our proof framework from Section 3.1.

I Theorem 9 (Special case of Theorem 7). Every function π3,5 has maximum distortion at
least 3.

Proof. Suppose by way of contradiction that there is a function π3,5 with maximum distortion
at most 2. For the remainder of this section we omit the subscript of π since n = 3, k = 5
are fixed. For clarity of notation, we let {a, b, c, d, e} be the characters in [k] for k = 5. Thus,
we are considering the set of all

(5
3
)

= 10 size 3 subsets of {a, b, c, d, e}. (Recall that we are
only concerned with subsets, not multisets.)

Step 1: Structure of size n − 1 sets. We begin by fixing a set {x, y} ⊆ {a, b, c, d, e} of size
n−1 = 2. Recall that U{x,y} is the set of all size 3 sets S such that {x, y} ⊆ S ⊆ {a, b, c, d, e}.
For example, U{a,b} = {{a, b, c}, {a, b, d}, {a, b, e}}. We note that by definition all pairs
S, S′ ∈ U{x,y} have |S ⊕ S′| = 2. Thus, to find a pair with distortion 3 and thereby
obtain a contradiction, it suffices to find a pair S, S′ ∈ U{x,y} with Hamming distance
d(π(S), π(S′)) = 3. Since n = 3, this means we are looking for permutations π(S), π(S′) that
disagree about the position of all elements.

The following lemma says that π places one of x or y at the same position for all π(S)
with S ∈ U{x,y}. For ease of notation, we give this phenomenon a name:

I Definition 10 (freeze). We say that a pair {x, y} ⊆ {a, b, c, d, e} i-freezes a character
p ∈ {x, y} if for all S ∈ U{x,y}, we have π(S)[i] = p. We simply say that {x, y} freezes p if i
is unspecified. Equivalently, we say that a character p is i-frozen (or just frozen) by a pair.
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I Lemma 11. For every {x, y} ⊆ {a, b, c, d, e}, there exists i so that {x, y} i-freezes either x
or y.

For example, one way that the pair {a, b} could satisfy Lemma 11 is if the permutations
π({a, b, c}), π({a, b, d}), and π({a, b, e}) all place the character a in the 0th position. In this
case, we would say that the pair {a, b} 0-freezes a.

Proof of Lemma 11. Without loss of generality, consider {x, y} = {a, b}. In this case,
U{x,y} = U{a,b} = {{a, b, c}, {a, b, d}, {a, b, e}}. Thus, we are trying to show that {a, b, c},
{a, b, d}, and {a, b, e} all agree on the position of either a or b.

Suppose without loss of generality that π({a, b, c}) = abc. We first note that π({a, b, c})
and π({a, b, d}) must agree on the position of either a or b because otherwise we would have
d(π({a, b, c}), π({a, b, d})) = 3 which would mean that π({a, b, c}) and π({a, b, d}) would
have distortion 3, and we would have proved Theorem 9. Without loss of generality, suppose
π({a, b, c}) and π({a, b, d}) agree on the position of a; that is, π({a, b, d}) is either abd or
adb.

By the same reasoning, π({a, b, c}) and π({a, b, e}) agree on the position of either a
or b, and π({a, b, d}) and π({a, b, e}) agree on the position of either a or b. If π({a, b, e})
agrees with either π({a, b, c}) or π({a, b, d}) on the position of a, then it agrees with both (in
which case we are done) since π({a, b, c}) and π({a, b, d}) agree on the position of a, by the
previous paragraph. Thus, the only option is that π({a, b, e}) agrees with both π({a, b, c})
and π({a, b, d}) on the position of b. This completes the proof. J

Step 2: Structure of size n − 2 sets. Since n− 2 = 1, we begin by fixing a single element
x ∈ {a, b, c, d, e}. In the following lemma we prove that x cannot be frozen to two different
indices.

I Lemma 12. If a pair {x, y} ⊆ {a, b, c, d, e} i-freezes x and a pair {x, z} ⊆ {a, b, c, d, e}
j-freezes x then i = j.

Proof. Since {x, y} i-freezes x, then in particular, π({x, y, z})[i] = x. Since {x, z} j-freezes
x, then in particular, π({x, y, z})[j] = x. A single character cannot be in multiple positions
of the permutation π({x, y, z}) so i = j. J

Step 3: Counting argument. Lemma 11 implies that for each character x ∈ {a, b, c, d, e}
except for at most one, some pair {x, y} freezes x. That is, at least 4 characters are frozen by
some pair. However n = 3 so by the pigeonhole principle, two characters x, y ∈ {a, b, c, d, e}
are frozen to the same index i.

Fix x, y, and i, and suppose x and y are each i-frozen. By Lemma 11, the pair {x, y}
freezes either x or y. Without loss of generality, say {x, y} freezes x. By Lemma 12, since
x is i-frozen by some pair, all pairs that freeze x must i-freeze x. Thus, the pair {x, y}
i-freezes x.

Let {y, z} ⊆ {a, b, c, d, e} be a pair that i-freezes y. Thus we have π({x, y, z})[i] = y.
However, since {x, y} i-freezes x, we also have π({x, y, z})[i] = x. This is a contradiction
since π({x, y, z})[i] cannot take on two different values. J

We defer the proof of Theorem 8, which is the remainder of Section 3, to the full version.
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4 The remaining parameter regime

I Theorem 13 (restatement of Theorem 4). For n ≥ 3, k ≥ 5, every set of functions
fn,k

1 , . . . , fn,k
n has maximum switching cost at least 3.

I Remark. We note that the proof framework from Section 3 immediately breaks down if
we try to apply it to Theorem 13 for all n, k. For example, when n > k, there are no size
n subsets of [k] so we must instead consider size n multisets of [k]. Even if we have the
same setting of parameters as Theorem 7 but we are considering multisets, in step 1 of
the proof framework Lemma 11 is no longer true. That is, it is not true that for all size 2
multisets {x, y} of [k], we have that {x, y} i-freezes either x or y for some i. In particular,
suppose {x, y} = {a, a}. Then if is possible that π({a, a, b}) = aab, π({a, a, c}) = aca, and
π({a, a, d}) = daa, in which case a is not frozen to any index. Since the proof framework
from Section 3 no longer applies, we develop entirely new techniques in this section. (However
we do use this proof framework to prove Theorem 8.)

For the rest of this section we will use the language of the original problem statement
rather than that of the problem reformulation.

4.1 Preliminaries
To prove the Theorem 13, we need to show that Theorem 9 extends to larger k and n. As
noted in Section 1.4.2, extending to larger n is challenging, while extending to larger k is
trivial, as shown in the following lemma.

I Lemma 14. Fix n and k. If there exists a set of functions fn,k
1 , . . . , fn,k

n with maximum
switching cost D, then for all k′ < k, there exists a set of functions gn,k′

1 , . . . , gn,k′

n with
maximum switching cost D.

Proof. For each demand vector ~v with n agents and k tasks such that only the first k′ entries
of ~v are non-zero, let ~v′ be the length k′ vector consisting of only the first k′ entries of ~v.
We note that the set of all such vectors ~v′ is the set of all demand vectors for n agents
and k′ tasks. Set each gn,k′

i (~v′) = fn,k
i (~v). Then the switching cost for any adjacent pair

(~v′1, ~v′2) with respect to gn,k′

1 , . . . , gn,k′

n is equal to the switching cost of the corresponding
adjacent pair (~v1, ~v2) with respect to fn,k

1 , . . . , fn,k
n . Thus, the maximum switching cost of

gn,k′

1 , . . . , gn,k′

n is equal to the maximum switching cost of fn,k
1 , . . . , fn,k

n . J

I Notation. We say that an ordered pair of adjacent demand vectors (~v1, ~v2) is (s, t)-adjacent
if starting with ~v1 and moving exactly one unit of demand from task s to task t results in ~v2.
We say that an agent a is (i, j)-mobile with respect to an ordered pair of adjacent demand
vectors (~v1, ~v2) if fn,k

a (~v1) = i, fn,k
a (~v2) = j, and i 6= j.

We note that if (~v1, ~v2) is (s, t)-adjacent and has switching cost 2, then for some task i,
some agent a must be (s, i)-mobile and another agent b must be (i, t)-mobile. We say that i
is the intermediate task with respect to (~v1, ~v2).

4.2 Proof overview
We begin by supposing for contradiction that there exists a set of functions fn,k

1 , . . . , fn,k
n

with maximum switching cost 2, and then we prove a series of structural lemmas about such
functions.
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As previously mentioned, the main challenge of proving Lemma 13 is handling large n.
To illustrate this challenge, we repeat the example from Section 1.4.2. This example shows
that having large n can allow more pairs of adjacent demand vectors to have switching cost 2,
making it more difficult to find a pair with switching cost greater than 2.

Consider the subset Si of demand vectors in which a particular task i has an unconstrained
amount of demand and each remaining task has demand at most n/(k − 1). We claim that
there exists a set of functions fn,k

1 , . . . , fn,k
n so that every pair of adjacent demand vectors

from Si has switching cost 2. Divide the agents into k − 1 groups of n/(k − 1) agents
each, and associate each task except i to such a group of agents. We define the functions
fn,k

1 , . . . , fn,k
n so that given any demand vector in Si, the set of agents assigned to each task

except i is simply a subset of the group of agents associated with that task (say, the subset
of such agents with smallest ID). This is a valid assignment since the demand of each task
except i is at most the size of the group of agents associated with that task. The remaining
agents are assigned to task i. Then, given a pair (~v, ~v′) of adjacent demand vectors in Si,
whose demands differ only for tasks s and t, their switching cost is 2 because the only agents
assigned to different tasks between ~v and ~v′ are: one agent from each of the groups associated
with tasks s and t, respectively.

To overcome the challenge illustrated by the above example, our general method is to
identify a task that serves the role of task i and then successively move demand out of task
i until task i is empty, and thus can no longer serve its original role. We note that in the
above example, the task i serves as the intermediate task for all pairs of adjacent demand
vectors from Si. Thus, we will choose i to be an intermediate task.

In particular, we show that there is a demand vector ~v so that we can identify tasks i
and t with the following important property: if we start with ~v and move a unit of demand
to task t from any other task except i, the switching cost is 2 and the intermediate task is i.

Furthermore, we prove that if we start with demand vector ~v and move a unit of demand
from task i to task t resulting in demand vector ~v1, then t and i have the important property
from the previous paragraph with respect to ~v1. Applying this argument inductively, we
show that no matter how many units of demand we successively move from i to t, i and t
still satisfy the important property with respect to the current demand vector.

We move demand from i to t until task i is empty. Then, the final contradiction comes
from the fact that if we now move a unit of demand from any non-i task to t, then the
important property implies that the switching cost is 2 and the intermediate task is i; however,
i is empty and an empty task cannot serve as an intermediate task.

We defer the proof of Theorem 13, which is the remainder of Section 4 to the full version.
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Polynomial representations of Boolean functions over various rings such as Z and Zm have been
studied since Minsky and Papert (1969). From then on, they have been employed in a large variety
of areas including communication complexity, circuit complexity, learning theory, coding theory
and so on. For any integer m ≥ 2, each Boolean function has a unique multilinear polynomial
representation over ring Zm. The degree of such polynomial is called modulo-m degree, denoted as
degm(·).

In this paper, we investigate the lower bound of modulo-m degree of Boolean functions. When
m = pk (k ≥ 1) for some prime p, we give a tight lower bound degm(f) ≥ k(p − 1) for any non-
degenerate function f : {0, 1}n → {0, 1}, provided that n is sufficient large. When m contains two
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1 Introduction

Given a Boolean function f : {0, 1}n → {0, 1}, the degree (resp., modulo-m degree), denoted
as deg(f) (resp., degm(f)), is the degree of the unique1 multilinear polynomial representation
of f over R (resp., Zm). These complexity measures and related notions have been studied
extensively since the work of Minsky and Papert [23]. The polynomial representation of a
Boolean function has found numerous applications in the study of query complexity (see
e.g. [5]), communication complexity [4, 28, 31, 30, 29, 24, 10], learning theory [17, 20, 16, 25],
explicit combinatorial constructions [13, 14, 11, 7], circuit lower bounds [33, 27, 1, 12] and
coding theory [36, 37, 15, 21], etc.

In this paper, we focus on modulo-m degree of Boolean functions. Throughout, all
Boolean functions are assumed to be non-degenerate2, if not specifically mentioned. One
of the complexity theoretic motivations of studying degm(f) is to understand the power of
modular counting. For example, the famous Razborov–Smolensky polynomial method [27, 33]
reduces the task of proving size lower bounds for AC0[p] circuits to proving a lower bound
of approximate modulo-p degree of the target Boolean function. However, this approach
mainly works when p is a prime.3 Another example, in which m can be composite, is that a
(1/2 + o(1))-inapproximability of a Boolean function f by degree-O(1) polynomials over Zm
implies that f cannot be computed by MAJO(1) ◦MODm ◦ ANDO(1) circuits [1]. In general,
it has been proved important to understand the computational power of polynomials over
Zm for general m.

Towards the complexity measure degm(f) itself, the case when m is a prime has been
studied a lot in previous works. For example, one natural question is whether degm(f) is
polynomially related to deg(f) for general m, as other complexity measures like decision
tree complexity D(f) do? The answer is NO according to the parity function PARITY(x) :=⊕n

i=1 xi. That is, deg2(PARITY) = 1 but deg(PARITY) = n. Though this function works
as a counterexample for the relationship between deg2(f) and deg(f), it is still inspiring
because its modulo-3 degree is large. By writing PARITY as 1

2 −
1
2
∏n
i=1(1− 2xi) and taking

modulo 3, one can get deg3(PARITY) = n. Actually, Gopalan et al. [12] give the following
relationship between the polynomial degrees modulo two different primes p and q:

degq(f) ≥ n

dlog2 pe degp(f)p2 degp(f) .

Daunting at the first glance, the inequality implies an essential fact that, as long as degp(f) =
o(logn), a lower bound of Ω(n1−o(1)) for degq(f) follows. Moreover, if m has at least two
different prime factors p and q, then degm(f) ≥ max

{
degp(f),degq(f)

}
= Ω(logn).

Having negated the possibility for the case of prime m, it is natural to study the case
of composite number. The systematic study of this case was initiated by Barrington et al.
[3]. Alas, whether degm(f) is polynomially related to deg(f) is still a widely open problem.
Though the case m being a prime power is proved to be not true in Gopalan’s thesis [10], we
are unable to find better separation between degm(f) and deg(f), for m = pq with p and q
being two distinct primes, than the quadratic one given by Li and Sun [19]. This leads to
the following conjecture:

1 The existence and uniqueness are guaranteed by the Möbius inversion, see e.g. [12].
2 A Boolean function is called non-degenerate if it depends on all its n variables.
3 It is a folklore that AC0[m] = AC0[rad(m)], where rad(m) is the square-free part of m. Therefore in

fact we are able to handle AC0[q] circuits for any prime power q.
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I Conjecture 1.1. Let f be a Boolean function. If m has at least two distinct prime factors,
then

deg(f) = O(poly(degm(f))).

Towards this conjecture, the first step is to deal with symmetric Boolean functions. Lee
et al. [18] proves that 2 degp(f) degq(f) > n for any distinct primes p, q and non-trivial
symmetric Boolean function f : {0, 1}n → {0, 1}, implying the correctness of Conjecture 1.1
in symmetric cases. Li and Sun [19] improved their bound to pdegp(f) + q degq(f) > n,
which implies degpq(f) > n

p+q . This is far from being tight; actually, as we will present later,
the denominator p+ q can be reduced to 3.5.

On the tight lower bound of deg(f), Nisan and Szegedy [26] give the bound deg(f) ≥
log2 n−O(log logn) as long as f is non-degenerate. Very recently, this bound is improved
to deg(f) ≥ log2 n − O(1) by [6, 35], which is tight up to the additive O(1)-term by the
address function. Gathen and Roche [34] show that deg(f) ≥ degp(n)(f) ≥ p(n)− 1 for any
non-trivial symmetric Boolean function, where p(n) is the largest prime below n+ 2. (Notice
that the module degree gives a lower bound on the degree.) Using the currently best result
on prime gaps [2], this gives an n−O(n0.525) lower bound. On the other side, Gathen and
Roche give a polynomial family with deg(f) = n− 3, and they propose Conjecture 1.2 below
with a probabilistic heuristic argument:

I Conjecture 1.2. For any non-trivial symmetric Boolean function f : {0, 1}n → {0, 1},

deg(f) ≥ n−O(1).

Our Results. In this work, we prove the following four theorems, giving better lower bounds
for degm(f). As we have already mentioned, the gap between deg(f) and degpk (f) can be
arbitrarily large. Nevertheless, we claim that degpk (f) cannot be too small either. This
begins with symmetric functions:

I Theorem 1.3. For any prime p, positive integer k, and non-trivial symmetric function
f : {0, 1}n → {0, 1},

degpk (f) ≥ (p− 1) · k

when n ≥ (k − 1)ϕ(pµ) + pµ − 1 ∈ O(p2k2) where µ = dlogp((p − 1)k − 1)e. The bound
(p− 1) · k is tight.

The proof of Theorem 1.3 is centered around Mahler expansion [22], which has been
deemed useful in several fields of study, from analytic functions to combinatorics. Wilson [36]
studied Mahler coefficients and related degree to period of symmetric functions. However, by
introducing some more insights, we are able to give a stronger analysis to settle this case
once for all. To be a bit more concrete, our argument (i) introduces the base-p period to
replace normal period, and then (ii) spans every symmetric functions into two fashions, by
MODs or binomials, and then (iii) introduces Mahler coefficient matrix and determines its
kernel.

In addition, Theorem 1.3 can be extended to non-degenerate Boolean functions. We
achieve this by showing that one can embed an ω(1)-size non-trivial symmetric Boolean
function into any non-degenerate functions by applying Erdős–Rado Theorem from Ramsey
theory.4 This leads to the same tight bound, provided that the input size is sufficiently large.

4 We note that a similar embedding argument has appeared before in [1].
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I Theorem 1.4. For any prime p, positive integer k, and non-degenerate function f :
{0, 1}n → {0, 1} with sufficiently large n,

degpk (f) ≥ (p− 1) · k.

The bound (p− 1) · k is tight.

Now turn to the case of non-prime-power composite m. The following theorem provides
a lower bound on degm(f).

I Theorem 1.5. For any composite number m with at least two different prime factors p, q
and any non-trivial symmetric Boolean function f : {0, 1}n → {0, 1},

degm(f) ≥ 1
2 + 1

p−1 + 1
q−1
· n.

Note that this bound approaches n/2 when p and q become larger and larger. It improves
the n/(p+q) bound in [19]. To prove this theorem, we show a stronger version of Theorem 1.3
for k = 1, which requires a more elaborate analysis. Then we utilizes Periodicity Lemma [9]
to obtain the desired lower bound.

On the other hand, the next theorem shows that the bound in Theorem 1.5 cannot be
larger than (1 + o(1))n/2:

I Theorem 1.6. Let m be a square-free composite number. There exists a symmetric Boolean
function f : {0, 1}n → {0, 1} with arbitrarily large n, such that degm(f) ≤ n/2 + om(n).5

Organization. In Section 2, we give necessary definitions and concepts. Then we give the
proofs of Theorem 1.3 and Theorem 1.4 respectively in Section 3.1 and Section 3.2. In
Section 4.2 we prove Theorem 1.5, and in Section 4.3 we prove Theorem 1.6. Finally, we
conclude the paper in Section 5.

2 Preliminaries

We denote {1, 2, . . . , n} as [n] throughout this paper. ϕ(·) denotes Euler’s totient function.
Notation log◦k(n) is defined as log log · · · log︸ ︷︷ ︸

k

n, and log∗(n) is for the iterated logarithm, that

is, min{k : log◦k(n) ≤ 1}.

2.1 Basics of Boolean Functions

An n-bit Boolean function f(x) is a mapping from {0, 1}n to {0, 1}. Sometimes we write x
to indicate the n-dimensional 0-1 vector corresponding to string x ∈ {0, 1}n. The following
operation will be frequently used: Suppose x ∈ {0, 1}n is a (input) string, and S ⊆ [n] is a
set of indices. Denote the string obtained by flipping all bits in x whose indices are in S as
x⊕S . As a common practice, x⊕{i} is abbreviated as x⊕i.

5 The subscript “m” in the o(·) notation means that the hidden factor depends on m.
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Here we list some subclasses of Boolean functions, which we will frequently deal with
later:

A Boolean function is called non-trivial if it is not a constant.
A Boolean function is called non-degenerate if its value depends on all input bits. In other
words, there does not exist such t that, for every x ∈ {0, 1}n the equality f(x) = f(x⊕t)
holds. Such bit, if exists, is also known as dumb bit.
A Boolean function is called symmetric, if f(x) = f(y) for any x, y satisfying |x| = |y|.
Here |x| denotes the Hamming weight of x, i.e., number of 1’s.

There exists a unique polynomial representing f over Zm or Z. More formally:

I Fact 2.1. For any Boolean function f : {0, 1}n→{0, 1}, the unique polynomial

∑
a∈{0,1}n

f(a)
n∏
i=1

((2ai − 1)xi + 1− ai) =:
∑
S⊆[n]

cS
∏
i∈S

xi

represents f over Z. On top of this, the polynomial
∑
S⊆[n](cS mod m)

∏
i∈S xi represents f

over Zm.

I Definition 2.2. The degree (resp., modulo-m degree) of a Boolean function f , denoted by
deg(f) (resp., degm(f)), is the degree of the polynomial representing f over Z (resp., Zm).

This measure has some simple but useful properties. The following fact is a consequence
of the Chinese Remainder Theorem; see [19, Fact 5].

I Fact 2.3. Suppose f : {0, 1}n → {0, 1} is a Boolean function, and m,m′ are coprime.
Then degm′m(f) = max{degm(f),degm′(f)}.

With some input bits fixed, the degree of a Boolean function may decrease. This can be
easily derived by substituting those variables with their values. More formally, we define the
restriction of Boolean functions and restate this fact below.

I Definition 2.4 (Restriction). Suppose f : {0, 1}n → {0, 1} is a Boolean function, S ⊆ [n]
is a set of indices, and there is a mapping σ : [n]\S → {0, 1}. For every i /∈ S, fix the i-th
bit in the input of f to be σ(i) to obtain a new Boolean function with input size |S|. We call
it the restriction of f over σ, denoted as f |σ.

I Fact 2.5. Suppose f : {0, 1}n → {0, 1} is a Boolean function. For any integer m ≥ 2 and
restriction f |σ, we have degm(f) ≥ degm (f |σ).

A common complexity measure, the sensitivity, will be used in Section 3.2. Simon gave a
lower bound on this measure [32].

I Definition 2.6 (Sensitivity). Given a Boolean function f : {0, 1}n → {0, 1} and an input
x, we say bit i is sensitive if f(x) 6= f(x⊕i). The sensitivity of f on input x is s(f, x) := |{i :
i ∈ [n], f(x) 6= f(x⊕i)}|. The sensitivity of f is then defined as s(f) := maxx s(f, x).

I Theorem 2.7 ([32]). For any non-degenerate Boolean function f : {0, 1}n → {0, 1}, we
have

s(f) ≥ 1
2 logn− 1

2 log logn+ 1
2 .
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2.2 Periodicity and Mahler Expansion
We consider symmetric Boolean functions in this section. For a symmetric function f :
{0, 1}n → {0, 1}, clearly there exists a unique F : {0, . . . , n} → {0, 1}, called the univariate
version of f , such that f(x) = F (|x|) for every x. We call f (and F ) `-periodic, if F (a) = F (b)
for any 0 ≤ a, b ≤ n satisfying ` | a− b. For example, f is trivially `-periodic for any ` > n.
We are also interested in integer power period length. Hence we introduce the following
definition.

I Definition 2.8 (Base-m period). Assume f : {0, 1}n → {0, 1} is a symmetric Boolean
function. The base-m period is the minimum ` such that ` is a power of m, and f is `-periodic.
Denote it as πm(f).

Here are some concrete examples for a clearer illustration.

The not-all-equal NAE function is defined as NAEn(x1, . . . , xn) := I[∃i, j s.t. xi 6= xj ].
Then π3 (NAE3) = 3 while π3 (NAE4) = 9. That is, πm(f) may be larger than n.
If f is a trivial function, then π3(f) = 1.

One may write F as a univariate polynomial over Q, but it will not always induce a
polynomial when we move to work on Zm, like what f does. Fortunately, the following
representation, also known as Mahler expansion [36], serves the purpose similar to polynomial
representation.

I Theorem 2.9 (Mahler expansion). Assume that f : {0, 1}n → {0, 1} is a symmetric Boolean
function, and F is the corresponding univariate version. Let d := max{n,m − 1}. Then
there exists a unique sequence α0, α1, · · · , αd ∈ Zm such that

d∑
j=0

αj

(
t

j

)
=
{
F (t), 0 ≤ t ≤ n;

0, n < m− 1 and n < t < m.

We call
∑d
j=0 αj

(
t
j

)
the Mahler expansion of F over Zm, and αj the j-th Mahler coefficient.

There are some connections between polynomial degree and Mahler expansion. Over ring
Zm, let d∗ := max{` : α` 6≡ 0 (mod m), ` ≤ n}. If we only take 0-th to d∗-th terms in the
Mahler expansion to get F̂ (t) =

∑d∗

j=0 αj
(
t
j

)
, then F̂ (|x|) = F (|x|) for all x ∈ {0, 1}n, which

implies

I Fact 2.10. degm(f) = max{` : α` 6≡ 0 (mod m), ` ≤ n}.

I Remark. The fact above does not hold if we take away the condition ` ≤ n. The next
example shows that on Zm, the existence of high-order non-zero Mahler coefficient does not
imply high degree, if the input length is too short.

I Example 2.11. Let n = 2 and f(x) = −x0x1 + x0 + x1 = x0 ∨ x1. On Z5, one can verify
its Mahler expansion is

f(x) =
(
|x|
1

)
+ 4
(
|x|
2

)
+ 2
(
|x|
4

)
.

But deg5(f) = 2.

This phenomenon does not come from nowhere; intuitively speaking, in the Mahler
expansion over Zm, one may need to imitate Lagrange-style interpolation for |x| > n , and
hence introduce some high-order terms. (Although |x| can never be above n, we need to
utilize MOD functions later in this paper, which requires F (t) to be zero for n < t < m.)
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Wilson [36] showed the following result about the degree and Mahler expansion of
symmetric Boolean functions, given the base-p period.

I Theorem 2.12 ([36, Lemma 1]). Let p be a prime, and t, k be positive integers. Assume
f : {0, 1}n → {0, 1} is a symmetric Boolean function, and {α`} are its Mahler coefficients
over Zpk . If f is pt-periodic, then

degpk (f) ≤ (k − 1) · ϕ(pt) + pt − 1.

In addition, for any positive integer j and ` ≥ j · ϕ(pt) + pt, we have α` ≡ 0 (mod pj).

2.3 MOD and Its Mahler Expansion over Zpk

We first look into the Mahler expansion of weight modular functions. This special case is
illuminating in our later proofs. The MOD function is defined as

MODc,mn (x) := I
[
|x| ≡ c (mod m)

]
∈ {0, 1},

where n ≥ m − 1 denotes the length of input x, and I[·] is the indicator function. The
following theorem gives the degree of MOD0,pt

n .

I Theorem 2.13 ([36, Theorem 10]). Let p be a prime, and t, k be positive integers. Denote
d := (k − 1) · ϕ(pt) + pt − 1. Then for any n ≥ d, we have

degpk (MOD0,pt

n ) = d.

In fact, we can achieve a more general result by further analysis. Fix n, p, t and k. Notate
the Mahler coefficient of MODa,p

t

n over Zpk as α(a,pt)
` i.e., MODa,p

t

n (x) =
∑d
j=0 α

(a,pt)
j

(|x|
j

)
.

Moreover, MODa,p
t

n can also be represented with α(0,pt)
` as

MODa,p
t

n (x) =
d∑
j=0

α
(0,pt)
j

(
|x| − a
j

)
.

Then expand each
(|x|−a

j

)
by Vandermonde convolution to get

α
(a,pt)
` =

d−∑̀
i=0

(
−a
i

)
α

(0,pt)
i+` . (1)

Specially, by setting ` = d, we get α(a,pt)
d = α

(0,pt)
d . This equation generalizes the theorem to

all remainders.

I Corollary 2.14. Let p be a prime, and t and k be positive integers. Denote d := (k − 1) ·
ϕ(pt) + pt − 1. For any n ≥ d and 0 ≤ a < pt, we have

degpk (MODa,p
t

n ) = d.

3 Lower Bound of degpk(f)

By identifying the degree of MODi,p
t

n over Zpk , we show that the degree of all pt-periodic
functions is constantly small since they can be spanned by {MODj,p

t

n }
pt−1
j=0 . In Section 3.1,

we prove that the degree of any pt-periodic (but not pt−1-periodic) function will not decrease
too much from (k − 1) · ϕ(pt) + pt − 1 during the spanning, despite the cancellation of the
high-order coefficients. By a Ramsey-type argument in Section 3.2, we further extend our
lower bound to all non-degenerate Boolean function with sufficiently many input bits.

ICALP 2020



100:8 On the Degree of Boolean Functions as Polynomials over Zm

3.1 Symmetric Functions – Proof of Theorem 1.3
We begin with the periodicity of symmetric Boolean functions with low degree. In our proof,
the following Lucas’s Theorem is important.

I Theorem 3.1 (Lucas). Let n,m ∈ N, and p be a prime. Assume in base p, n and m can
be represented as n = (nvnv−1 · · ·n0)p and m = (mvmv−1 · · ·m0)p (the number with fewer
digits are padded with 0). Then(

n

m

)
≡
(
nv
mv

)(
nv−1

mv−1

)
· · ·
(
n0

m0

)
(mod p).

The next lemma indicates the periodicity of symmetric Boolean functions with low degree.

I Lemma 3.2. Let f : {0, 1}n → {0, 1} be a symmetric Boolean function. For prime p and
positive integers t and k, if degpk (f) ≤ pt − 1, then f is pt-periodic.

Proof. Denote d := degpk (f), and suppose α` are the Mahler coefficients of f over ring Zpk ,
i.e., f(x) =

∑d
j=0 αj

(|x|
j

)
mod pk. According to Lucas’s Theorem, if a ≡ b (mod pt), then

for any 0 ≤ j ≤ pt − 1, we have
(
a
j

)
≡
(
av

jv

)
· · ·
(
at

jt

)(
at−1
jt−1

)
· · ·
(
a0
j0

)
(mod p). Here, ai (resp.

bi and ji) is the representation of a (resp. b and j) in the base p. Note that ji = 0 for
any i ≥ t. Hence

(
a
j

)
≡
(
at−1
jt−1

)
· · ·
(
a0
j0

)
(mod p). For the same reason,

(
b
j

)
≡
(
bt−1
jt−1

)
· · ·
(
b0
j0

)
(mod p). In addition, a and b’s last t digits are the same as a ≡ b (mod pt). Thus∑d

j=0 αj
(
a
j

)
mod p =

∑d
j=0 αj

(
b
j

)
mod p. By the definition that f(x) ∈ {0, 1}, we get∑d

j=0 αj
(
a
j

)
mod pk =

∑d
j=0 αj

(
b
j

)
mod pk. J

Next, provided πp(f), we give some lower bounds on the degree by the following two lem-
mas, conditioned on that n is large enough. Together with the lemma above we lead to a con-
tradiction, and our theorem follows eventually. Before continuing, notice again that the value
f(x) is related only to the Hamming weight of x, and thus f(x) =

∑
0≤i≤n:F (i)=1 MODi,n+1

n (x).
Specially, if f(x) is t-periodic, then we can write f(x) as f(x) =

∑
0≤i≤t−1:F (i)=1 MODi,tn (x)

and apply Corollary 2.14.

I Lemma 3.3. Assume p is a prime, and f : {0, 1}n → {0, 1} is a symmetric Boolean
function of period p. If for some positive integer k, it holds that n ≥ (p− 1) · k, then

degpk (f) = (p− 1) · k.

Proof. Expand f(x) to get
∑

0≤i≤p−1:F (i)=1 MODi,pn (x). According to Corollary 2.14, the
degree of each term in the summation is degpk

(
MODi,pn

)
= (p − 1) · k =: d. On the other

hand, Section 2.3 says the coefficient of degree d term is identical in the polynomial of every
MOD. As f(x) is non-trivial, the number of terms in the summation, denoted as N , is
neither 0 nor p. Therefore, the degree d term in f(x) has coefficient N · α(0,p)

d 6≡ 0 (mod p),
implying degpk (f) = d as desired. J

I Lemma 3.4. Assume p is a prime, and f : {0, 1}n → {0, 1} is a symmetric Boolean
function with πp(f) = pt. Here t ≥ 1 and n ≥ (k − 1) · ϕ(pt) + pt − 1. Then

degpk (f) ≥ (k − 2) · ϕ(pt) + pt.

Proof. Consider over the ring Zpk . Let d := (k − 1) · ϕ(pt) + pt − 1. Provided pt, we
abbreviate α(j,pt)

` , the `-th Mahler coefficients of MODj,p
t

n , as α(j)
` for convenience. According

to Corollary 2.14, we have degpk

(
MODj,p

t

n

)
= d.
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For all 0 ≤ i ≤ pt − 1, Theorem 2.12 implies the fact that α(i)
` can be divided by pk−2

when ` ≥ (k − 2) · ϕ(pt) + pt = d − ϕ(pt) + 1. Therefore, we divide every such coefficient
by pk−2, and then take the remainder modulo p to get α̃(i)

` :=
(
α

(i)
` /pk−2

)
mod p, where

d− ϕ(pt) + 1 ≤ ` ≤ d. All these α̃(i)
` forms the matrix

S :=


α̃

(0)
d · · · α̃

(pt−1)
d

...
. . .

...
α̃

(0)
d−ϕ(pt)+1 · · · α̃

(pt−1)
d−ϕ(pt)+1

 ∈ Fϕ(pt)·pt

p .

Take its first ϕ(pt) columns to get a square matrix

S′ :=


α̃

(0)
d · · · α̃

(ϕ(pt)−1)
d

...
. . .

...

α̃
(0)
d−ϕ(pt)+1 · · · α̃

(ϕ(pt)−1)
d−ϕ(pt)+1

 .
When d−ϕ(pt)+1 ≤ ` ≤ d, divide both sides of Equation (1) by pk−2 and take the remainder
modulo p to get

α̃
(a)
` =

d−∑̀
j=0

(
−a
j

)
α̃

(0)
j+`,

which leads to the following decomposition of matrix S′:

S′ =


α̃

(0)
d
...

. . .
α̃

(0)
d−ϕ(pt)+1 · · · α̃

(0)
d

 ·


(0
0
)

· · ·
(1−ϕ(pt)

0
)

...
. . .

...( 0
ϕ(pt)−1

)
· · ·

(1−ϕ(pt)
ϕ(pt)−1

)
 =: T ·C.

As α̃(0)
d 6= 0, the first matrix has determinant det(T ) 6= 0. The latter one, consisting of

binomial coefficients, is also invertible. We will prove this fact later. Eventually, rank(S′) =
ϕ(pt), so the kernel of S has dimension dim kerS = (pt)− ϕ(pt) = pt−1.

On one hand, because f(x) is pt-periodic, we can expand it by {MODj,p
t

n }
pt−1
j=0 with

coefficients wj .

f(x) =
pt−1∑
j=0

wjMODj,p
t

n (x) =
pt−1∑
j=0

(
wj

d∑
`=0

α
(j)
`

(
|x|
`

))
=

d∑
`=0

pt−1∑
j=0

wjα
(j)
`

(|x|
`

) . (2)

On the other hand, MODi,p
t−1

n can also be spanned by {MODj,p
t

n }. In other words, assume
w

(i)
j := I[i ≡ j (mod pt−1)], then

MODi,p
t−1

n =
pt−1∑
j=0

w
(i)
j MODj,p

t

n =
d∑
`=0

pt−1∑
j=0

w
(i)
j α

(j)
`

(|x|
`

) . (3)

We claim degpk (MODi,p
t−1

n ) ≤ d− ϕ(pt), and because n ≥ d, the coefficients of highest ϕ(pt)
terms in its Mahler expansion (i.e., from degree d− ϕ(pt) + 1 to degree d) are all zero. This
is due to Corollary 2.14, where we have
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degpk (MODi,p
t−1

n ) = (k − 1)ϕ(pt−1) + pt−1 − 1
= pt−2 ((k − 1)(p− 1) + p)− 1
≤ pt−2 ((k − 1)(p2 − p) + p

)
− 1

= d− ϕ(pt).

Further, if we set column vector w(i) =
(
w

(i)
0 , ..., w

(i)
pt−1

)>
where 0 ≤ i ≤ pt−1 − 1, then the

above fact, together with Equation (3), indicates the following equation:

Sw(i) =

pt−1∑
j=0

w
(i)
j α̃

(j)
d ,

pt−1∑
j=0

w
(i)
j α̃

(j)
d−1, · · · ,

pt−1∑
j=0

w
(i)
j α̃

(j)
d−ϕ(pt)+1

> = 0.

One can verify that
{
w(0), · · · ,w(pt−1−1)

}
is linear independent, and therefore they form a

base of the kernel of S i.e., kerS = span
{
w(0), · · · ,w(pt−1−1)

}
.

However, f(x) is not pt−1-periodic because πp(f) = pt. This means f(x) cannot be written
as the sum of some MODi,p

t−1

n . Thusw := (w0, ..., wpt−1)> /∈ span
{
w(0), · · · ,w(pt−1−1)

}
i.e.,

Sw 6= 0. This leads to the existence of D ∈ [d− ϕ(pt) + 1, d] such that
∑pt−1
j=0 w

(i)
j α̃

(j)
D 6= 0.

Namely, the degree D term in Equation (2) exists as desired. J

To finish the proof of this lemma, we show that the matrix C is invertible, due to the
following proposition.

I Proposition 3.5. det(C) = ±1.

Proof. In fact,

C = diag{1,−1, 1,−1, ...(−1)m−1} ·


1 1

(1
1
)
· · ·

(
m−2
m−2

)
0

(1
0
) (2

1
)
· · ·

(
m−1
m−2

)
0

(2
0
) (3

1
)
· · ·

(
m
m−2

)
...

...
...

. . .
...

0
(
m−1

0
) (

m
1
)
· · ·

(2m−3
m−2

)


where m := ϕ(pt). Denote the second matrix as C ′. Take Row m of C ′ and subtract Row
m− 1 from it. Then take Row m− 1 and subtract Row m− 2 from it. · · · Take Row 3 and
subtract Row 2 from it. Then C ′ has been transformed to

1 1
(1

1
)

· · ·
(
m−2
m−2

)
0
(1

0
) (2

1
)

· · ·
(
m−1
m−2

)
0 0

(2
0
)

· · ·
(
m−1
m−3

)
...

...
...

. . .
...

0 0
(
m−1

0
)
· · ·

(2m−4
m−3

)

 .

Keep repeating this step, and C ′ will be transformed into an upper triangular matrix, whose
diagonal elements are all 1. J

Now we are ready to prove Theorem 1.3.
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Proof of Theorem 1.3. Note that Lemma 3.3 provides tight instances, so below we are going
to prove the inequality.

Assume towards contradiction that there exists f : {0, 1}n → {0, 1} satisfying degpk (f) <
(p− 1) · k, and n ≥ (k − 1) · ϕ(pµ) + pµ − 1 where µ = dlogp((p− 1)k − 1)e. Lemma 3.2 tells
us that f is pµ-periodic. The non-triviality of f indicates that there exists 1 ≤ t ≤ µ such
that πp(f) = pt.

If t = 1, then according to Lemma 3.3 we have degpk (f) = (p − 1) · k. If t ≥ 2, then
Lemma 3.4 indicates

degpk (f) ≥ (k − 2) · ϕ(pt) + pt

≥ (k − 2) · ϕ(p2) + p2

= k · (p− 1)2 + 2p− p2 + (p− 1) · k
≥ (p− 1)2 + 2p− p2 + (p− 1) · k
> (p− 1) · k.

Both cases lead to contradiction. J

3.2 Non-degenerate Functions – Proof of Theorem 1.4
For the general non-degenerate case, our key idea is to embed a symmetric Boolean function
into it, and then apply Theorem 1.3. The following lemma is crucial.

I Lemma 3.6. There exists a monotone increasing function r(n) = ω(1) such that the
following holds. Let f : {0, 1}n → {0, 1} be a non-degenerate Boolean function. Then there
exists a set of indices S ⊆ [n] with |S| ≥ r(n), and a mapping σ : [n]\S → {0, 1} such that
f |σ is a non-trivial symmetric Boolean function.

Generally speaking, with this lemma in hand, every h(n) lower bound on complexity
measure of symmetric functions that is monotone decreasing w.r.t. restriction (e.g., Fact 2.5)
can yield an h(r(n)) lower bound on that of all non-degenerate functions. In the setting
of modulo-pk degree, the bound h(n) is a constant function (when n is large than some
threshold), so we can get the same bound, except that the threshold for n blows up. However,
as indicated by our proof, the function r(n) grows extraordinary slow (approximately the
square root of iterated logarithm of n).

First, let us see how to utilize this lemma in proving Theorem 1.4.

Proof of Theorem 1.4. As long as Lemma 3.6 holds, by Fact 2.5 and Theorem 1.3, if
n ≥ r−1((k − 1) · ϕ(pµ) + pµ − 1), then degpk (f) ≥ (p − 1) · k, deriving the desired lower
bound. In addition, any symmetric function with period p (and input long enough) still
serves as an instance with degpk (f) = (p− 1) · k. J

In the rest part of this section we prove Lemma 3.6.
For convenience, we introduce the following notation. If xi = 1 for every i ∈ S ⊆ [n],

then define DOWN(S, x, k) :=
{
x⊕T | T ⊆ S, |T | = k

}
. Intuitively speaking, it is the set of

strings obtained by flipping k bits, whose indices are in S, of x from 1 to 0.
According to Theorem 2.7, there exists x̃ such that s(f, x̃) = Ω(logn). Without loss of

generality we assume the set {i ∈ [n] : x̃i = 1, f(x̃) 6= f(x̃⊕i)}, defined as S0, is of cardinality
Ω(logn). Recursively define St to be the largest set satisfying the following two conditions:

St ⊆ St−1.
The value f(y) are identical for any y ∈ DOWN(St, x̃, t).
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We then make the following claim, and prove it.

B Claim 3.7.

|St| = Ω
(

log◦(t−1)(|St−1|)
)
.

Our proof relies on Erdős–Rado Theorem [8] from Ramsey theory on hypergraphs.

I Definition 3.8 (k-Uniform Hypergraph Ramsey Number). Suppose V is a set of vertices,
and all size-k subsets of V forms Fk(V ). If E ⊆ Fk(V ), then we call (V,E) as a k-uniform
hypergraph of order |V |. Naturally, we call (V,Fk(V )) a complete k-uniform hypergraph.

If the following property holds for complete k-uniform hypergraph of order M but not
M − 1, then rk(s, t) := M is called the k-uniform hypergraph Ramsey number: color every
k-hyperedge red or blue arbitrarily, then there must exist a complete red hyper-subgraph of
order s, or a complete blue hyper-subgraph of order t.

I Theorem 3.9 ([8]). r2(s, t) ≤
(
s+t−2
t−1

)
and

rk(s, t) ≤ 2(rk−1(s−1,t−1)
k−1 ), (k > 2).

This theorem implies the following fact: if we color k-uniform hypergraph of order n with
two colors, then there exists a monochromatic clique of size Ω(log◦k(n)).

Proof of Claim 3.7. Construct the following complete t-uniform hypergraph. The vertex set
is St−1. For any x ∈ DOWN(St−1, x̃, t), we color the hyperedge {i : xi 6= x̃i} with red if
f(x) = 1, or blue otherwise. Take the largest monochromatic clique and suppose its vertex
set is S. According to Theorem 3.9, |S| = Ω(log◦k(n)). Furthermore, the monochromaticity
implies the value f(z) is identical for any z ∈ DOWN(S, x̃, t). Hence S satisfies the desired
conditions where our claim follows immediately. C

With the help of the claim and notations above, we can complete our proof of Lemma 3.6.

Proof of Lemma 3.6. By invoking Claim 3.7 iteratively,

|St| ≥ Z · log◦((t−1)t/2+1)(n),

where Z is a positive constant irrelevant to n. Take t′ = t′(n) := b
√

log∗(n)− 2c. Then
(t′ − 1)t′/2 + 1 < log∗(n) and |St′ | = ω(1). In addition, define

r = r(n) := min
{
Z · log◦(t

′(t′−1)/2+1)(n), t′(n)
}

= ω(1).

Then we have r(n) ≤ |Sr(n)|. This is because
if t′(n) ≤ Z · log◦(t

′(t′−1)/2+1)(n), then we have r(n) = t′(n) ≤ Z · log◦(r(r−1)/2+1)(n) ≤
|Sr(n)|;
if t′(n) > Z · log◦(t

′(t′−1)/2+1)(n), then t′(n) > r(n), so r(n) = Z · log◦(t
′(t′−1)/2+1)(n) ≤

Z · log◦(r(r−1)/2+1)(n) ≤ |Sr(n)|.

Now take a size r(n) subset T of Sr(n) arbitrarily. Define the mapping σ : [n]\T → {0, 1}
such that σ(i) = x̃i. Restrict f over σ to obtain a new function g := f |σ. We will prove g is
symmetric and non-trivial, and then the lemma follows immediately.
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Symmetric. Assume x, y ∈ {0, 1}r(n) such that |x| = |y|. Define x′ (resp. y′) to be the
string of size n obtained from x (resp. y) and σ. Recall the definition of Sr(n). That is, for
any i ∈ Sr(n), it holds that x̃i = 1. Therefore,

x′, y′ ∈ DOWN(Sr(n), x̃, |x|) ⊆ DOWN(S|x|, x̃, |x|).

By definition of DOWN, we have f(x′) = f(y′) i.e., g(x) = g(y).

Non-trivial. Assume z, w ∈ {0, 1}r(n) such that |z| = 0 and |w| = 1. We define z′ and
w′ similarly to x′ and y′. Suppose z′ = w′ ⊕ ei. As i ∈ T ⊆ S0, the i-th bit is sensitive.
Therefore, f(z′) 6= f(w′) i.e., g(z) 6= g(w). J

4 Lower Bounds of degpq(f) for Symmetric Functions

We first go further with the analysis of Mahler coefficients of MOD functions, then prove
Theorem 1.5 in Section 4.2, and give an instance in Section 4.3, showing one can never
improve the constant factor 1/2.

4.1 More Analyses of MOD and Its Mahler Coefficients
Let p be a prime and t be a positive integer. Consider over the ring Zp. Recall the notation
α

(a,pt)
` : it is the `-th Mahler coefficient of MODa,p

t

n . Since degp(MODa,p
t

n ) = pt − 1, the
following pt × pt matrix collects all the coefficients of MODa,p

t

n :

Apt :=


α

(0,pt)
0 · · · α

(pt−1,pt)
0

...
. . .

...
α

(0,pt)
pt−1 · · · α

(pt−1,pt)
pt−1

 .
In fact,

(Apt)i,j = α
(j,pt)
i =

(
pt − 1− j
pt − 1− i

)
.

This is because

pt−1∑
i=0

(
pt − 1− j
pt − 1− i

)(
|x|
i

)
=
(
pt − 1− j + |x|

pt − 1

)
=
{

1 if |x| ≡ j (mod pt),
0 otherwise, (4)

by Vandermonde’s convolution.
The matrix Apt has many elegant properties. For example, the following one shows the

relationship between Apt and Ap. We use ⊗ to denote matrix tensor product.

I Proposition 4.1. On the ring Zp,

Apt = A⊗tp := Ap ⊗Ap ⊗ · · · ⊗Ap︸ ︷︷ ︸
t

.

Proof. Let i` and j` be the representation of i and j in base p. Then by Lucas’s Theorem,(
pt − 1− j
pt − 1− i

)
≡
(∑t−1

`=0(p− 1− j`) · p`∑t−1
`=0(p− 1− i`) · p`

)
≡

t−1∏
`=0

(
p− 1− j`
p− 1− i`

)
≡

t−1∏
`=0

(Ap)i`,j`
(mod p).J

ICALP 2020



100:14 On the Degree of Boolean Functions as Polynomials over Zm

Below we give another observation, which assists with our proof of Theorem 1.5.

I Lemma 4.2. Suppose p is a prime, and n < p − 1 is a positive integer. Then for any
v ∈ {0, 1}p satisfying vi 6= vj for some 0 ≤ i < j ≤ n, there exists bn/2c+ 1 ≤ ` ≤ n such
that (Apv)` 6= 0.

Our proof of Lemma 4.2 utilizes the following proposition on another binomial coefficient
matrix.

I Proposition 4.3. For any prime p, integers j, k with j+k < p and distinct a0, . . . , ak ∈ Fp
satisfying a0, . . . , ak ≥ j, the matrix

(
a0
j

) (
a1
j

)
· · ·

(
ak

j

)(
a0
j+1
) (

a1
j+1
)
· · ·

(
ak

j+1
)

...
...

. . .
...(

a0
j+k
) (

a1
j+k
)
· · ·

(
ak

j+k
)


is invertible over Fp.

Proof. One can verify that

diag
{

(j + 0)0(
a0
j

) , . . . ,
(j + k)k(

ak

j

) }
· S ·


(
a0
j

)
· · ·

(
ak

j

)
...

. . .
...(

a0
j+k
)
· · ·

(
ak

j+k
)
 =

(a0 − j)0 · · · (ak − j)0

...
. . .

...
(a0 − j)k · · · (ak − j)k

 ,
where S is the second Stirling number matrix, i.e., Sij =

{
i
j

}
, and the notation xy stands for

the falling factorial power x(x− 1) · · · (x− y + 1). The Vandermonde matrix on the R.H.S.
is also invertible because a0, . . . , ak are distinct. J

Proof of Lemma 4.2. Assume towards contradiction that there exists some v satisfying the
condition, but (Apv)` = 0 for all bn/2c+ 1 ≤ ` ≤ n. In other words, if we take row bn/2c+ 1
to n and column 0 to n from Ap to get another dn/2e × (n+ 1) matrix B i.e.,

B :=


(

p−1−0
p−1−(bn/2c+1)

) (
p−1−1

p−1−(bn/2c+1)
)

. . .
(

p−1−n
p−1−(bn/2c+1)

)
...

...
. . .

...(
p−1−0
p−1−n

) (
p−1−1
p−1−n

)
. . .

(
p−1−n
p−1−n

)
 ,

then Bv′ = 0 where v′ = {v0, ..., vn}T . (This is because (Ap)i,j =
(
p−1−j
p−1−i

)
= 0 for all

bn/2c+ 1 ≤ i ≤ n and n+ 1 ≤ j ≤ p− 1. )
Next, for any t ∈ [(bn/2c+ 1), n], the sum of row t is

(
p−1−0
p−1−t

)
+
(
p−1−1
p−1−t

)
+ · · ·+

(
p−1−n
p−1−t

)
=(

p
p−t
)
≡ 0 (mod p). Therefore B1 = 0, so we can assume the number of 1’s in v′ is no more

that dn/2e, without loss of generality. (Otherwise, subtract v′ from 1.) This means that we
can take s ≤ dn/2e column vectors of B, the summation of which is 0, and furthermore, the
last s dimensions of these vectors form a singular matrix with form B′i,j =

(
aj

p−1−n+s−1+i
)
.

However, by flipping it upside down and applying Proposition 4.3, this matrix is invertible. J

4.2 Proof of Theorem 1.5
Our proof requires the following two lemmas. The first one is often referred to as Periodicity
Lemma. It says any function with coprime periods is constant, if the domain is large enough.
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I Lemma 4.4 (Periodicity Lemma, [9]). Let g be an a-periodic and b-periodic function on
domain {0, 1, . . . , n} with gcd(a, b) = 1 and n ≥ a+ b− 2. Then g is a constant function.

The next one can be regarded as a stronger version of Theorem 1.3 with k = 1.

I Lemma 4.5. Assume p is a prime. For any non-trivial symmetric f : {0, 1}n → {0, 1},

degp(f) ≥ min
{
n

2 ,
(

1− 1
p

)
πp(f)

}
.

Note that the base-p period appear explicitly in the lower bound. This allows us to apply
Lemma 4.4. We prove Theorem 1.5 first.

Proof of Theorem 1.5. If max{degp(f),degq(f)} ≥ n
2 , the theorem then follows naturally.

Otherwise, according to Fact 2.3 and Lemma 4.5, we have

degm(f) ≥ degpq(f) = max{degp(f),degq(f)} ≥ max
{(

1− 1
p

)
πp(f),

(
1− 1

q

)
πq(f)

}
.

(5)

On the other hand, the non-triviality of f(x) implies πp(f) + πq(f) > n + 2 owing to
Lemma 4.4. The last term in Inequality (5) is > n+2

2+1/(p−1)+1/(q−1) >
n

2+1/(p−1)+1/(q−1) , and
hence the theorem is also true. J

It remains to show why Lemma 4.5 is true.

Proof of Lemma 4.5. Consider over the ring Zp. Suppose πp(f) = pt. We write f(x) as we
did in Equation (2), and let α` be the `-th Mahler coefficient of f(x). Then

∑pt−1
j=0 wjα

(j,pt)
` =

α`, or

α = Aptw (6)

if we set w := (w0, ..., wpt−1)> and α := (α0, ..., αpt−1)>.
Divide w and α into blocks of length pt−1 as w = (w〈0〉, . . . ,w〈p−1〉)> and α =

(α〈0〉, . . . ,α〈0〉)> where w〈i〉 ∈ {0, 1}pt−1
,α〈i〉 ∈ Fpt−1

p . By Proposition 4.1, we have

α〈i〉 = Apt−1

p−1∑
j=0

(
(Ap)ijw〈j〉

)
. (7)

Consider two cases. One deals with the case πp(f) = pt < n, where we show degp(f) >
p−1
p · πp(f); another deals with πp(f) ≥ n, where we can obtain degp(f) ≥ n/2.

Case I (pt < n). First, assume α〈p−1〉 = 0. Note that Apt−1 is full-rank according to
Proposition 4.3, which allows Equation (7) to be transformed into

A−1
pt−1α

〈p−1〉 =
p−1∑
j=0

(
(Ap)p−1,jw

〈j〉
)
.

Since (Ap)p−1,j = 1, we have
∑p−1
j=0 w

〈j〉 = 0. This implies w〈0〉 = · · · = w〈p−1〉 as w〈i〉 ∈
{0, 1}pt−1 , and further, f(x) becomes pt−1-periodic, conflicting with πp(f) = pt. Eventually,
we have α〈p−1〉 6= 0. Because n > pt, the highest non-zero Mahler coefficient indicates the
degree of f (see the remark below Fact 2.10), and then degp(f) > (p− 1)pt−1 = p−1

p · πp(f).
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Case II (pt ≥ n). By Equation (6),(
Ip ⊗ (Apt−1)−1)Aptw =

(
Ip ⊗ (Apt−1)−1)α. (8)

The R.H.S. of (8) is just

(
Ip ⊗ (Apt−1)−1)α =

 (Apt−1)−1α〈0〉

...
(Apt−1)−1α〈p−1〉

 =:

 β〈0〉

...
β〈p−1〉

 .
The L.H.S. of (8) can be written as(

Ip ⊗ (Apt−1)−1)Aptw =
(
Ip ⊗ (Apt−1)−1) (Ap ⊗Apt−1)w

= (IpAp)⊗ ((Apt−1)−1Apt−1)w
= (Ap ⊗ Ipt−1)w.

Therefore,

(Ap ⊗ Ipt−1)w =
(
β〈0〉, · · · ,β〈p−1〉

)>
. (9)

For 0 ≤ j < pt−1 we define

β̃〈j〉 :=
(
β
〈0〉
j , · · · ,β〈p−1〉

j

)>
and w̃〈j〉 :=

(
w
〈0〉
j , · · · ,w〈p−1〉

j

)>
,

Intuitively, vectors with tildes here contain entries taken from the original vector with stride
pt−1. Then Equation (9) implies

Apw̃
〈j〉 = β̃〈j〉.

Let n′ = b(n+ 1)/pt−1c − 1, n′′ = d(n+ 1)/pt−1e − 1, and m′ = n mod pt−1. Consider
the following two subcases:

Subcase II-1. Suppose there exists ` ≤ m′ and i, j ∈ [0, n′′] such that w̃〈`〉i 6= w̃
〈`〉
j .

According to Lemma 4.2, there exists i′ ∈ [bn′′/2c+1, n′′] satisfying 0 6=
(
Apw̃

〈j〉)
i′

= β̃
〈`〉
i′ =

β
〈i′〉
` . Because Apt−1 is invertible, we have α〈i′〉 = Apt−1β〈i

′〉 6= 0. What’s more,
if i′ < n′′ and recall Fact 2.10, we have degp(f) ≥ (bn′′/2c+ 1) · pt−1 ≥ n/2;
if i′ = n′′, we select the minimum ` such that β〈i

′〉
` 6= 0. Due to the fact (Apt−1)`,j =(

pt−1−1−j
pt−1−1−`

)
= 0 when j > `, it follows that

α
〈i′〉
` =

∑̀
j=0

(Apt−1)`,jβ〈i
′〉

j = (Apt−1)`,`β〈i
′〉

` 6= 0. (10)

Eventually degp(f) ≥ n′′ · pt−1 ≥ n/2.

Subcase II-2. Otherwise, there exists a minimum ` ∈ [m′ + 1, pt−1 − 1] and i, j ∈ [0, n′]
such that w̃〈`〉i 6= w̃

〈`〉
j as f(x) is non-trivial. The same argument shows that there exists

i′ ∈ [bn′/2c+ 1, n′] satisfying β〈i
′〉

` 6= 0. In addition, the condition w̃〈`
′〉

0 = · · · = w̃
〈`′〉
n′ for all

`′ < ` implies

β
〈i′〉
`′ = β̃

〈`′〉
i′ =

p−1∑
j=0

(Ap)i′,jw̃〈`
′〉

j = w
〈`′〉
0 ·

i′∑
j=0

(
p− 1− j
p− 1− i′

)
= w

〈`′〉
0 ·

(
p

p− i′

)
= 0.

Hence, by imitating (10) we can obtain α〈i
′〉

` 6= 0, which leads to degp(f) ≥ bn′/2c · pt−1 +
m′ + 1 ≥ n/2. J
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4.3 Proof of Theorem 1.6
We will later apply the following lemma about Diophantine approximation, which is an
immediate corollary of Kronecker’s Theorem.

I Lemma 4.6. Suppose real numbers a1, . . . , ak satisfy that 1, a1, . . . , ak are linearly inde-
pendent over Q. Then, for any ε > 0, there exist infinitely many positive integers ` such that
`ai mod 1 ∈ (1− ε, 1) for each i = 1, . . . , k.

Now we prove Theorem 1.6.

Proof of Theorem 1.6. Write m = p1p2 · · · pk for pi being primes. Choose a prime q

different from all pi. Fix an arbitrary ε > 0. Let ai = log q/ log pi for i = 1, . . . , k. Then
1, a1, . . . , ak are linearly independent over Q, otherwise a nontrivial linear relation can be
exponentiated to contradict the unique factorization theorem over Z+. Applying Lemma 4.6
we get infinitely many ` that satisfy the condition ` · log q/ log pi mod 1 ∈ (1− ε, 1), which
implies pri

i /q
` ∈ (1, pεi ) where ri = d` log q/ log pie.

Now, choose a sufficiently large `, let n = 2q` and define f : {0, 1}n → {0, 1} by
f(x) = I[|x| = q`]. Then f is pri

i -periodic since pri
i > q`. Therefore degpi

(f) ≤ pri
i − 1 by

Theorem 2.12. Thus,

degm(f) ≤ max
1≤i≤k

{pri
i } ≤

n

2 max
1≤i≤k

{pεi}.

The theorem follows by letting ε→ 0. J

5 Conclusion

In a nutshell, we explore and exploit the matrices consisting of Mahler coefficients of the
MOD function, serving as a significant extension of Wilson’s arguments. This approach fully
characterizes the modulo degree of Boolean functions when the base is prime or prime power,
and provides good lower bounds for the composite case with the help of periodicity lemma.
In addition, we also show a practical way to generalize properties of symmetric functions to
non-degenerate ones by a Ramsey-type argument.

Nevertheless, there is still ample room for further discussion. First and foremost, we
conjecture that the constant factor in Theorem 1.5 can be improved to 1/2 in correspondence
with Theorem 1.6. Moreover, an anonymous reviewer also raises a good question with regard
to Theorem 1.4: Could the extraordinary large prerequisite n ≥ tower(poly(p, k)) (which is
implicit in the proof) be improved to something like n ≥ exp(poly(p, k))? We also wonder
if it is possible to embed other kinds of functions to derive similar results. Above all, both
Conjecture 1.1 and Conjecture 1.2 remain open.
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On Quasipolynomial Multicut-Mimicking Networks
and Kernelization of Multiway Cut Problems
Magnus Wahlström
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Abstract
We show the existence of an exact mimicking network of kO(log k) edges for minimum multicuts
over a set of terminals in an undirected graph, where k is the total capacity of the terminals.
Furthermore, if Small Set Expansion has an approximation algorithm with a ratio slightly better
than Θ(log n), then a mimicking network of quasipolynomial size can be computed in polynomial
time. As a consequence of the latter, several problems would have quasipolynomial kernels, including
Edge Multiway Cut, Group Feedback Edge Set for an arbitrary group, 0-Extension for
integer-weighted metrics, and Edge Multicut parameterized by the solution and the number of cut
requests. The result works via a combination of the matroid-based irrelevant edge approach used in
the kernel for s-Multiway Cut with a recursive decomposition and sparsification of the graph along
sparse cuts. The main technical contribution is a matroid-based marking procedure that we can
show will mark all non-irrelevant edges, assuming that the graph is sufficiently densely connected.
The only part of the result that is not currently constructive and polynomial-time computable is the
detection of such sparse cuts.

This is the first progress on the kernelization of Multiway Cut problems since the kernel for
s-Multiway Cut for constant value of s (Kratsch and Wahlström, FOCS 2012).
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1 Introduction

Graph separation questions are home to some of the most intriguing open questions in
theoretical computer science. In approximation algorithms, the well-known unique games
conjecture (UGC) has been central to the area for close to two decades, and is closely
related to graph separation problems. Even more directly, the small set expansion hypothesis,
proposed by Raghavendra and Steurer [31], roughly states that it is NP-hard to approximate
the Small Set Expansion problem (SSE) up to a constant factor, where SSE is the problem
of finding a small-sized set in a graph with minimum expansion. (More precise statements
are given in Section 2.2.) Despite significant research, the best result available in polynomial
time is an O(logn)-approximation due to Räcke [30].

Another interesting notion from parameterized complexity is kernelization. Informally,
a kernelization algorithm is a procedure that takes an input of a parameterized, usually
NP-hard problem and reduces it to an equivalent instance of size bounded in the parameter,
e.g., by discarding irrelevant parts of the input or transforming some part of the input into
a smaller object with equivalent behaviour. For example, the seminal Nemhauser-Trotter
theorem on the half-integrality of Vertex Cover [27] implies that an instance of Vertex
Cover can be reduced to have at most 2k vertices, where k is the bound given on the
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solution size. On the flip side, Fortnow and Santhanam [10] and Bodlaender et al. [3] gave
a framework to exclude the existence of a kernel of any polynomial size, under a standard
complexity-theoretic conjecture. An extensive collection of upper and lower bounds for
kernelization exists (see, e.g., the recent book of Fomin et al. [9]), but a handful of central
“hard questions” remain unanswered. One of the most notorious is Multiway Cut.

Let G = (V,E) be a graph and T ⊆ V a set of terminals in G. An (edge) multiway cut
for T in G is a set of edges X ⊆ E such that no two terminals are connected in G − X,
and Multiway Cut is the problem of finding a multiway cut of at most k edges, given
a parameter k. The problem is FPT [24] and NP-hard for |T | ≥ 3 [6]. Using methods
from matroid theory, Kratsch and Wahlström [17] were able to show that if |T | ≤ s, then
Multiway Cut has a kernel with O(ks+1) vertices, hence the problem has a polynomial
kernel for every constant s. However, if |T | is unbounded, the only known size bound
for a kernel is 2O(k), following from the FPT algorithm [24], and the question of whether
Multiway Cut has a polynomial kernel in the general case is completely open.

We show a connection between kernelization of Multiway Cut-type problems and
approximation algorithms for Small Set Expansion. Specifically, we show the existence
of a kind of mimicking network for the problem, of size quasipolynomial in k; and if SSE
has approximation algorithms slightly better than current state of the art, then it can be
computed in polynomial time and Multiway Cut has a quasipolynomial kernel.

1.1 Mimicking networks and multiway cut sparsifiers
Although kernelization is most commonly described in terms of polynomial-time preprocessing
as above, there is also a clear connection with succinct information representation. For
example, consider a graph G = (V,E) with a set of k terminals T ⊆ V . The pair (G,T ) is
referred to as a terminal network. A mimicking network for (G,T ) is a graph G′ = (V ′, E′)
with T ⊆ V ′ such that for any sets A,B ⊆ T , the min-cut between A and B in G and G′ have
the same value. A mimicking network of size bounded in k always exists, but the size of G′
can be significant. The best known general upper bound is double-exponential in k [12, 15],
and there is an exponential lower bound [20]. Better bounds are known for special graph
classes, but even for planar graphs the best possible general bound has 2Θ(k) vertices [20, 14]
(see also recent improvements by Krauthgamer and Rika [19]).

A related notion is cut sparsifiers, which solve the same task up to some approximation
factor q ≥ 1 [26, 21], typically q = ω(1) in the general case. We focus on mimicking networks;
see Krauthgamer and Rika [19] for an overview of cut sparsifiers.

However, if we include the capacity of the set of terminals in the bound (and if edges have
integer capacity), then significantly stronger results are possible. Chuzhoy [4] showed that if
the total capacity of T is capG(T ) =

∑
t∈T d(t) = k, then there exists an O(1)-approximate

cut sparsifier of size O(k3). Kratsch and Wahlström [17] sharpened this to an exact mimicking
network with O(k3) edges, which furthermore can be computed in randomized polynomial
time. This is particularly remarkable given that the network has to replicate the exact cut-
value for exponentially many pairs (A,B). The network can be constructed via contractions
on G.1 This built on an earlier result that used linear representations of matroids to encode
the sizes of all (A,B)-min cuts into an object using Õ(k3) bits of space [18], although this
earlier version did not produce an explicit graph, i.e., not a mimicking network.

1 The results of [17] are phrased in terms of vertex cuts, but the above follows easily from [17].
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These results had significant consequences for kernelization. The succinct representation
in [18] was used to produce a (randomized) polynomial kernel for the Odd Cycle Trans-
versal problem, thereby solving a notorious open problem in parameterized complexity [18];
and the mimicking network of [17] brought further (randomized) polynomial kernels for a
range of problems, in particular including Almost 2-SAT, i.e., the problem of satisfying all
but at most k clauses of a given 2-CNF formula.

Similar methods are relevant for the question of separating a set of terminals into more
than two parts. Let (G,T ) be a terminal network, and let T = T1 ∪ . . . ∪ Ts be a partition
of T . A multiway cut for T is a set of edges X ⊆ E(G) such that G−X contains no path
between any pair of terminals t ∈ Ti and t′ ∈ Tj for t, t′ /∈ X and i 6= j. Let us define a
multicut-mimicking network for (G,T ) as a terminal network (G′, T ) where T ⊆ V (G′) and
for every partition T = T1 ∪ . . . ∪ Ts of T , the size of a minimum multiway cut for T is
identical in G and G′. (The term multicut-mimicking, as opposed to multiway cut-mimicking,
is justified; see Section 2.1.) The minimum size of a multicut-mimicking network, in terms
of k = capG(T ), appears to lie at the core of the difficulty of the question of a polynomial
kernelization of Multiway Cut. The kernel for s-Multiway Cut mentioned above builds
on the computation of a mimicking network of size O(ks+1) for partitions of T into at most
s parts [17]. The kernel for s-Multiway Cut then essentially follows from considering the
partition T = {t1} ∪ . . . ∪ {ts} of a set T of |T | = s terminals (along with known reduction
rules bounding capG(T )). We are not aware of any non-trivial lower bounds on the size
of a multicut-mimicking network in terms of k; it seems completely consistent with known
bounds that every terminal network (G,T ) would have a multicut-mimicking network of size
poly(k), even for partitions into an unbounded number of sets.

In this paper, we show that any terminal network (G,T ) with capG(T ) = k admits
a multicut-mimicking network (G′, T ) where |V (G′)| = kO(log k); and furthermore, such a
network could be computed in randomized polynomial time, given a polynomial number
of queries to a sufficiently good approximation algorithm for a graph separation problem
similar to Small Set Expansion. We also see a tradeoff between the quality of the
approximation algorithm and the size of (G′, T ). In particular, if Small Set Expansion has
an approximation algorithm with a ratio of α(n, k) = log1−ε n·logO(1) k for some ε > 0, where
k is the number of edges cut in the optimal solution, then (G′, T ) can be computed efficiently,
with |V (G′)| being quasipolynomial in k. Such an algorithm goes beyond the bounds of what
is currently known – namely, a ratio of O(logn) due to Räcke [30], improved for certain
regimes by Bansal et al. [2] – but does not appear to be excluded by any established hardness
conjecture. We also consider the existence result very interesting in its own right, and
invite further study of capacity-based bounds for multicut-mimicking networks; in particular,
whether a poly(k)-sized multicut-mimicking network always exists. The results strongly
suggest the existence of a quasipolynomial kernel for Edge Multiway Cut.

Flow sparsifiers. Finally, similarly to cut sparsifiers, there is a notion of a flow sparsifier
of a terminal network (G,T ). Here the goal is to approximately preserve the minimum
congestion for any multicommodity flow on (G,T ). Chuzhoy [4] showed flow sparsifiers
with quality O(1) and with kO(log log k) vertices, where k is the total terminal capacity; for
further results on achievable bounds for flow sparsifiers, see [1, 7]. However, the notion is
incomparable to multicut-mimicking networks, because even an exact flow sparsifier would
be subject to the corresponding multicommodity flow-multicut approximation gap, which is
Θ(log k) in the worst case [11].

Further related work. The general approach of decomposing a graph along sparse cuts is
well established; cf. Räcke [29] and follow-up work. For further applications of matroid tools
to kernelization, see Hols and Kratsch [13], Kratsch [16], and Reidl and Wahlström [32].
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1.2 Our results

More formally, we have the following.

I Theorem 1. Let A be an approximation algorithm for Small Set Expansion with
an approximation ratio of α(n, k) = O(log1−ε n logd k), where ε > 0, d = O(1), and k is
the number of edges cut in the optimal solution. Let (G,T ) be a terminal network with
capG(T ) = k. Then there is a set Z ⊆ E(G) with |Z| = kO(α(n,k) log k) such that for every
partition T = T1 ∪ . . .∪Ts of T , there is a minimum multiway cut X for T such that X ⊆ Z.
Furthermore, Z can be computed in randomized polynomial time using calls to A.

The precise requirement for the approximation algorithm is slightly relaxed from the
above. We refer to the precise algorithm we need as a sublogarithmic terminal expansion
tester ; see Definition 5. Simplifying the statement a bit gives us the following.

I Corollary 2. Let (G,T ) be a terminal network with capG(T ) = k. The following holds.
1. There is a multicut-mimicking network for (G,T ) with kO(log k) edges.
2. If there is a sublogarithmic terminal expansion tester – in particular, if Small Set

Expansion has an approximation ratio as in Theorem 1 – then a multicut-mimicking
network of size quasipolynomial in k can be computed in randomized polynomial time.

This would give us the following selection of conditional breakthrough results in kerneliz-
ation. We refer to previous kernelization work [17, 32] for the necessary definitions.

I Corollary 3. If there is a sublogarithmic terminal expansion tester, then the following
problems have randomized quasipolynomial kernels.
1. Edge Multiway Cut parameterized by solution size.
2. Edge Multicut parameterized by the solution size and the number of cut requests.
3. Group Feedback Edge Set parameterized by solution size, for any group.
4. Subset Feedback Edge Set with undeletable edges, parameterized by solution size.
5. 0-Extension for integer-weighted graphs, parameterized by solution cost.

Preliminaries. A parameterized problem is a decision problem where inputs are given as
pairs I = (X, k), where k is the parameter. A polynomial kernelization is a polynomial-time
procedure that maps an instance (X, k) to an instance (X ′, k′) where (X, k) is positive if
and only if (X ′, k′) is positive, and |X ′|, k′ ≤ g(k) for some function g(k) referred to as the
size of the kernel. A problem has a polynomial kernel if it has a kernel where g(k) = kO(1).
We extend this to discuss quasipolynomial kernels, which is the case that g(k) = klogO(1) k.

We use standard terminology from graph theory and parameterized complexity; see,
e.g., [5, 9] for references.

2 Terminal separation notions

For a graph G = (V,E) and sets A,B ⊆ V , we let EG(A,B) = {uv ∈ E | u ∈ A, v ∈ B}. As
shorthand for S ⊆ V we also write E(S) = E(S, S), ∂G(S) = EG(S, V \ S), and δG(S) =
|∂G(S)|. The total capacity of a set of vertices S in a graph G is capG(S) :=

∑
v∈S d(v). In

all cases, we may omit the index G if understood from context.
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2.1 Multicut-mimicking networks
Let G = (V,E) be a graph and T ⊆ V a set of terminals with capG(T ) = k. An (edge)
multiway cut for T in G is a set of edges X ⊆ E such that no two vertices in T are connected
in G−X. More generally, let T = {T1, . . . , Tr} be a partition of T . Then an (edge) multiway
cut for T in G is a set of edges X ⊆ E such that in G − X every connected component
contains terminals from at most one part of T . Hence a multiway cut for (G,T ) is equivalent
to a multiway cut for (G, {{t} | t ∈ T}). Furthermore, let R ⊆

(
T
2
)
be a set of pairs over T ,

referred to as cut requests. A multicut for R in G is a set of edges X ⊆ E such that every
connected component in G−X contains at most one member of every pair {u, v} ∈ R. A
minimum multicut for R in G is a multicut for R in G of minimum cardinality. Similarly, a
minimum multiway cut for T in G is a multiway cut for T in G of minimum cardinality.

We define a multicut-mimicking network for T in G as a graph G′ = (V ′, E′) such that
T ⊆ V ′ and such that for every set of cut requests R ⊆

(
T
2
)
, the size of a minimum multicut

for R is equal in G and in G′. We observe that this is equivalent to preserving the sizes of
minimum multiway cuts over all partitions of T .

I Proposition 4 (F2). A graph G′ with T ⊆ V (G′) is a multicut-mimicking network for T
in G if and only if, for every partition T of T , the size of a minimum multiway cut for T is
equal in G and in G′.

As a slightly sharper notion, a multicut-covering set for (G,T ) is a set Z ⊆ E(G) such that
for every set of cut requests R ⊆

(
T
2
)
, there is a minimum multicut X for R in G such that

X ⊆ Z. Note that a multicut-covering set Z is essentially equivalent to a multicut-mimicking
network formed by contraction (contracting all edges of E(G) \ Z). Our main result in this
paper is the existence of a multicut-covering set of size quasipolynomial in k = cap(T ) in any
undirected graph G. Furthermore, such a set can be computed in polynomial time, subject
to the existence of certain approximation algorithms that we will make precise later in this
section. The term is a generalization of a cut-covering set, used in previous work [17].

2.2 Graph separation algorithms
The central technical approximation assumption needed in this paper is the following.
For a graph G with a set of terminals T , define the T -capacity of S in G as capT (S) =
capG(T ∩ S) + δG(S). Then we define the following notion.

I Definition 5 (Sublogarithmic terminal expansion tester). Let (G,T ) be a terminal network
with capG(T ) = k. A terminal polynomial expansion tester (with approximation ratio α)
is a (possibly randomized) algorithm that, given as input (G,T ) and an integer c ∈ N, with
c = Ω(log k), does one of the following.
1. Either returns a set S ⊂ V such that NG[S] 6= V (G) and capT (S) < |S|1/c,
2. or guarantees that for every set S with ∅ ⊂ (S ∩ T ) ⊂ T and |S| ≤ |V (G)|/2 we have

capT (S) ≥ |S|1/c/α.
A sublogarithmic terminal expansion tester is a terminal polynomial expansion tester with an
approximation ratio α = O(log1−ε n logO(1) k) for some ε > 0. We say that (G,T ) is (α, c)-
dense if case 2 above applies, i.e., for every set S with S ∩ T /∈ {∅, T} and |S| ≤ |V (G)|/2
we have capT (S) ≥ |S|1/c/α.

2 Proofs marked with F are found in the full version of the paper
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The conditions can be relaxed somewhat. It is sufficient if the algorithm works with
parameters c = Ω(α log k). It is also possible to put a lower bound on the size of sets S for
which the guarantee needs to apply. However, these relaxed assumptions do not seem to
make a difference for any algorithms we are aware of for the problem.

We note that such an algorithm would follow from a slightly improved approximation
algorithm for Small Set Expansion. Let G = (V,E) be a graph and S ⊆ V a set of
vertices. The edge expansion of S is Φ(S) := δ(S)

|S| . For a real number ρ ∈ (0, 1/2], one
also defines the small set expansion Φρ(G) := minS⊆V,|S|≤ρn Φ(S). In particular, for a value
s ∈ [n/2], Φs/n(G) denotes the worst (i.e., minimum) expansion among subsets of G of size
at most s. A sufficiently good approximation algorithm for Small Set Expansion implies
a sublogarithmic terminal expansion tester, as follows.

I Lemma 6 (F). Assume that Small Set Expansion has a bicriteria approximation
algorithm that on input (G, ρ) returns a set S with |S| ≤ βρn and Φ(S) ≤ α · Φρ, for some
α, β ≥ 1. If αβ = O(log1−ε n logO(1)(n · Φρ)), for some ε > 0, then there is a sublogarithmic
terminal expansion tester with ratio Θ(αβ) (with n · Φρ replaced by k).

Existing approximation algorithms do not meet this threshold; the best known results are
an O(logn)-approximation due to Räcke [30] and a bicriteria algorithm of Bansal et al. [2]
which achieves a ratio of O(

√
logn log(1/ρ)). Unfortunately, the latter improvement is

insufficient to make the analysis in the next section work. However, it seems clear that
no existing hardness conjecture could possibly rule out the existence of such an algorithm.
Furthermore, testing for (α, c)-denseness when c = Ω(α log k) corresponds to looking for
significantly worse expanding sets than the regime usually focused on in the approximation
literature. Hence we proceed with conditional results in the rest of the paper.

3 Multicut-covering sets

We now present the main result of the paper, namely the existence of quasipolynomial
multicut-mimicking networks for terminal networks (G,T ), and the conditional efficient
computability of such objects given a sublogarithmic terminal expansion tester.

At a high level, the process works through recursive decomposition of the graph G across
very sparse cuts, treating each piece G[S] of the recursion as a new instance of multicut-
covering set computation, where the edges of ∂(S) are considered as additional terminals.
The process repeatedly finds a single edge e ∈ E(G) with a guarantee that for every set of cut
requests R ⊆

(
T
2
)
there is a minimum multicut X for R in G such that e /∈ X. We may then

contract the edge e and repeat the process. Thus the end product is a multicut-mimicking
network, and the edges that survive until the end of the process form a multicut-covering set.

In somewhat more detail, the process uses a novel variant of the representative sets
approach, which was previously used in the kernel for s-Multiway Cut [17]. Refer to an
edge e as essential for R, for some R ⊆

(
T
2
)
, if every minimum multicut for R in G contains e,

and essential for (G,T ) if it is essential for R for some R ⊆
(
T
2
)
. We use a representative sets

approach to return a set of at most kc edges which is guaranteed to contain every essential
edge, if (G,T ) is already (α, c)-dense, for an appropriate value c = Θ(α log k). On the other
hand, if (G,T ) is not (α, c)-dense, then (by careful choice of parameters) we can identify a
cut through G which is sufficiently sparse that we can reduce the size of one side of this cut
via a recursive call. This gives a tradeoff between the size of the resulting multicut-covering
set and the denseness-guarantee we may assume through the approximation algorithm. The
threshold for feasibility for this tradeoff is precisely the existence of a sublogarithmic terminal
expansion tester.
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3.1 Recursive replacement
We now present the recursive decomposition step in detail. Let (G,T ) be a terminal
network with capG(T ) = k. For a set S ⊆ V , we define the graph GS = G[NG[S]]− E(S),
i.e., GS equals the graph G[S] with the edges of ∂(S) added back in. We also denote
T (S) = (T ∩ S) ∪NG(S) as the terminals of S. Under these definitions, the T -capacity of
S in G has two equivalent definitions as capT (S) = capGS

(T (S)) = capG(T ∩ S) + δG(S).
The recursive instance at S consists of the terminal network (GS , T (S)). This is the basis of
our recursive replacement procedure. Indeed, we show the following. Note that we consider
E(GS) ⊆ E(G) in the following.

I Lemma 7 (F). Let (GS , T (S)) be the recursive instance at S for some S ⊆ V (G). Let ZS
be a multicut-covering set for (GS , T (S)) and let e ∈ E(GS) \ ZS. Then e is not essential
for (G,T ).

Let us also briefly note the formal correctness of contracting a non-essential edge.

I Proposition 8 (F). Let e ∈ E(G) be a non-essential edge. Then for every X ⊆ E(G) with
e /∈ X, and every partition T of T , X is a multiway cut for T in G if and only if it is a
multiway cut for T in G/e. Furthermore, G/e is a multicut-mimicking network for (G,T ),
and any multicut-covering set Z ⊆ E(G/e) for (G/e, T ) is also multicut-covering for (G,T ).

The process now works as follows. Recall that (G,T ) is (α, c)-dense if capT (S) ≥ |S|1/c/α
for every set S with S ∩ T 6= ∅ and |S| ≤ |V |/2. The main technical result is a marking
process that marks all essential edges for (G,T ) on the condition that (G,T ) is (α, c)-dense,
and which marks at most kc edges in total. In such a case, we are clearly allowed to select
and contract any unmarked edge of G. Now, assume that (G,T ) is not (α, c)-dense. Then
by definition there exists a set S ⊂ V such that capT (S) < |S|1/c/α. If we can detect a set
S such that capT (S) < |S|1/c, then we can recursively compute a multicut-covering set ZS
for (GS , T (S)), consisting of at most capT (S)c < |S| edges. By the above, we may again
select any single edge e ∈ E(GS) \ ZS and contract e in G. In either case, we replace G by a
strictly smaller graph until |E(G)| ≤ kc, at which point we are done.

The two ingredients in the above are thus the marking process for (α, c)-dense graphs,
which we present next, and the ability to distinguish the two cases, which is precisely the
assumption of the existence of a sublogarithmic terminal expansion tester.

3.2 The (α, c)-dense case
Let us now focus on the marking procedure. Let a terminal network (G,T ) with capG(T ) = k

and an integer c be given, and assume that c = Ω(α log k) for some α. We show a process
that marks a set of at most kc edges that contains every essential edge, assuming that (G,T )
is (α, c)-dense. (A more precise bound on the relationship between c and α is given later,
but the constant factors involved are not important to our main result.)

We will prove the following result. The proof takes up the rest of the subsection.

I Lemma 9. Assume that (G,T ) is (α, c)-dense where c = Ω(α log k). A multicut-covering
set Z ⊆ E(G) of size less than kc can be computed in randomized polynomial time.

The basis is the following. If (G,T ) is (α, c)-dense then for every partition T of T , every
minimum multiway cut X for T , and every connected component H of G−X except possibly
the largest one, it holds that capT (V (H)) ≥ |V (H)|1/c/α. We also have∑

H∈G−X
capT (V (H)) = capG(T ) + 2|X| < 3k,
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where the sum ranges over connected components H. This implies restrictions on the possible
sizes of components of G − X, which will help in the marking process (as we shall see).
Essentially, if too many components are too large, then the above sum will exceed 3k and we
can conclude non-optimality of the corresponding multiway cut.

Finally, let us eliminate a silly edge case to assume c ≤ k.

I Lemma 10 (F). If c > k then a multicut-covering set of at most kc edges can be marked
deterministically.

3.2.1 Matroid constructions
Before we show the marking procedure, we need some additional preliminaries. We refer to
Oxley [28] and Marx [25] for further relevant background on matroids.

A matroid is a pair M = (E, I) where I ⊆ 2E is the independent sets of M , subject to
the following axioms.
1. ∅ ∈ I;
2. if B ∈ I and A ⊆ B then A ∈ I; and
3. if A,B ∈ I with |B| > |A| then there exists an element x ∈ B \A such that A+ x ∈ I.
A basis of M is a maximum independent set of M ; the rank of M is the size of a basis.

Let A be a matrix, and let E label the columns of A. The column matroid of A is the
matroid M = (E, I) where S ∈ I for S ⊆ E if and only if the columns indexed by S are
linearly independent. A matrix A represents a matroid M if M is isomorphic to the column
matroid of A. We refer to A as a linear representation of M .

We need three classes of matroids to build from. First, for a set E, the uniform matroid
over E of rank r is the matroid U(E, r) := (E, {S ⊆ E | |S| ≤ r}). Uniform matroids are
representable over any sufficiently large field.

The second class is a truncated graphic matroid. Given a graph G = (E, V ), the graphic
matroid of G is the matroid M(G) = (E, I) where a set F ⊆ E is independent if and only if
F is the edge set of a forest in G. Graphic matroids can be deterministically represented
over all fields. The r-truncation of a matroid M = (E, I) for some r ∈ N is the matroid
M ′ = (E, I ′) where S ∈ I ′ if and only if S ∈ I and |S| ≤ r. Given a linear representation of
M , over some field F, a truncation of M can be computed in randomized polynomial time,
possibly by moving to an extension field of F [25]. There are also methods for doing this
deterministically [22], but the basic randomized form will suffice for us.

The final class is more involved. Let D = (V,A) be a directed graph and S ⊆ V a set
of source vertices. A set T ⊆ V is linked to S in D if there are |T | pairwise vertex-disjoint
paths starting in S and ending in T . Let U ⊆ V . Then M(D,S, U) = (U, {T ⊆ U |
T is linked to S in D}) defines a matroid over U , referred to as a gammoid. Note that by
Menger’s theorem, a set T is dependent in M if and only if there is an (S, T )-vertex cut in
D of cardinality less than |T | (where the cut is allowed to overlap S and T ). Like uniform
matroids, gammoids are representable over any sufficiently large field, and a representation
can be computed in randomized polynomial time [28, 25]. We will work over a variant of
gammoids we refer to as edge-cut gammoids, which are defined as gammoids, except in terms
of edge cuts instead of vertex cuts. Informally, for a graph G = (V,E) and a set of source
vertices S ⊆ V , the edge-cut gammoid of (G,S) is a matroid on a ground set of edges, where
a set F of edges is independent if and only if it can be linked to S via pairwise edge-disjoint
paths. However, we also need to introduce the “edge version” of sink-only copies of vertices,
as used in previous work [17]. That is, we introduce a second set E′ = {e′ | e ∈ E} containing
copies of edges e ∈ E which can only be used as the endpoints of linkages, not as initial or
intermediate edges.
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More formally, for a graph G = (V,E) and a set of source vertices S ⊆ E we perform the
following transformation.
1. Subdivide every edge e ∈ E by a new vertex ze.
2. Let p = capG(S). Inflate every vertex v ∈ V into a twin class of p+ 1 vertices (but do

not inflate vertices ze introduced in the previous step).
3. Replace every edge uv in the resulting graph by the two directed edges (u, v), (v, u),

creating a directed graph DG.
4. For every edge e = uv ∈ E, introduce a further new vertex z′e, and create directed edges

(ui, z′e) and (vj , z′e) for every copy ui, vj in DG of the vertices u, v of G.
Slightly abusing notation, we let E refer to the vertices ze in DG, and we let E′ refer to the
vertices z′e in DG. The edge-cut gammoid of (G,S) is the gammoid (DG, ∂(S), E ∪ E′). Let
us observe the resulting notion of independence.

I Proposition 11. Let G = (V,E) and S ⊆ V be given. Let M = (E ∪E′, I) be the edge-cut
gammoid of (G,S). Let X ⊆ E ∪E′ be given, and let F = (X ∩E)∪ {e | e′ ∈ F ∩E′}. Then
X is independent in M if and only if there exists a set P of |X| paths linking X to S, where
paths are pairwise edge-disjoint except that if {e, e′} ⊆ X for some edge e, then two distinct
paths in P end in e.

We let U(E, p) denote the uniform matroid of rank p on ground set E(G), MG(p) the
p-truncated graphic matroid of G, and M(T ) the edge-cut gammoid of (G,T ).

If M1 = (E1, I1) and M2 = (E2, I2) are two matroids with E1 ∩ E2 = ∅, then their
disjoint union is the matroid M1 ]M2 = (E1 ∪ E2, {I1 ∪ I2 | I1 ∈ I1, I2 ∈ I2}). If M1 and
M2 are represented by matrices A1 and A2 over the same field, then M1 ]M2 is represented

by the matrix A =
(
A1 0
0 A2

)
. We will define matroids M as the disjoint union over several

copies of the base matroids M(T ), MG(p) and U(E, p) defined above. In such a case, we
refer to the individual base matroids making up M as the layers of M .

Representative sets

Our main technical tool is the representative sets lemma, due to Lovász [23] and Marx [25].
This result has been important in FPT algorithms [25, 8] and has been central to the previous
kernelization algorithms for cut problems, including variants of Multiway Cut [17]. We
also introduce some further notions.

I Definition 12. Let M = (E, I) be a matroid and X,Y ∈ I. We say that Y extends X in
M if r(X ∪ Y ) = |X|+ |Y |, or equivalently, if X ∩ Y = ∅ and X ∪ Y ∈ I. Furthermore, let
c = O(1) be a constant and let Y ⊆

(
E
c

)
. We say that a set Ŷ ⊆ Y represents Y in M if the

following holds: For every X ∈ I for which there exists some Y ∈ Y such that Y extends X
in M , then there exists some Y ′ ∈ Ŷ such that Y ′ extends X in M .

I Lemma 13 (representative sets lemma [23, 25]). Let M = (E, I) be a linear matroid
represented by a matrix A of rank r + s, and let Y ⊆

(
E
s

)
be a collection of independent sets

of M , where s = O(1). In time polynomial in the size of A and the size of Y, we can compute
a set Ŷ ⊆ Y of size at most

(
r+s
s

)
which represents Y in M .

We will use the following product form of the representative sets lemma, with stronger
specialized bounds. Assume that the rank of M is r = r1 + . . .+ rc, where ri is the rank of
layer i of M . Then Lemma 13 gives a bound on |Ŷ| as Θ((r1 + . . .+ rc)c), but the following
bound is significantly better when the layers of M have different rank.
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I Lemma 14 ([17]). Let M = (E, I) be a linear matroid, given as the disjoint union of c
matroids Mi = (Ei, Ii), where Mi has rank ri. Let Y ⊆

(
E
c

)
be such that every set Y ∈ Y

contains precisely one member in each layer Mi of M . Then the representative set Ŷ ⊆ Y
computed by the representative sets lemma will have |Ŷ| ≤

∏c
i=1 ri.

3.2.2 The marking process
We are now ready to present the marking process.

Let r = c− 2. We define a process that marks edges of G in r passes, where each pass is
a call to the representative sets lemma with a different matroid construction. Specifically,
for each i ∈ [r], define the following. The matroid Mi is the disjoint union of i copies of the
edge-cut gammoid M(T ), one copy of MG(kr−i), and one copy of U(E, k), where for i = r

we simply skip the copy of MG(k0). We refer to the first i layers in Mi as the gammoid
layers and the remaining as the additional layers. Note that a linear representation of Mi

over some common field F can be computed in randomized polynomial time, since every
layer of Mi can be represented over any sufficiently large field.

For each edge e ∈ E, let ti(e) be the set that contains a copy of z′e in every gammoid
layer, and a copy of e in every additional layer. Let Ei = {ti(e) | e ∈ E}. For each pass
i ∈ [r], we compute a representative set Êi ⊆ Ei in the matroid Mi, and let Zi ⊆ E be the
set of edges represented in Êi. Let Z = Z1 ∪ . . . ∪ Zr. We consider an edge e ∈ E marked if
e ∈ Z. We finish the description by observing the bound on the number of marked edges.

I Lemma 15. The total number of marked edges is at most rkr+1 < kc.

Proof. By the product form of the representative sets lemma, |Zi| ≤ kr+1 for every i ∈ [r]. J

Our main correctness condition for the marking is as follows. Consider a partition T of
T and a corresponding minimum multiway cut X ⊆ E. Note that |X| ≤ k since E(T, V ) is
a multiway cut for every partition. Say that X is p-way plus q if the p largest connected
components of G−X together cover all but q of the vertices. Say that X is covered if all
edges essential for T are marked. We then have the following.

I Lemma 16 (F). If X is p-way plus kr−p for p ∈ [r], then X is covered in pass p above.

Proof sketch. We define a set Fe such that tp(f) extends Fe if and only if f = e. By
the existence of the set Fe, we then have a guarantee that e ∈ Zp. To construct Fe, we
follow [17] in the first p layers by letting Fe contain X ∪ ∂(Ti), where Ti is the set of vertices
of T contained in the ith largest layer, thereby “blocking out” any edge contained in the p
largest components from extending Fe. We use the two additional layers to block out edges
containing in small components, respectively edges of X− e. Then by construction tp(f) fails
to extend Fe for every edge f 6= e. Furthermore, as as in [17], we show that tp(e) extends Fe:
if tp(e) fails to extend Fe in a gammoid layer, then this yields a “pushed solution” X2 which
is a minimum multiway cut for T with e /∈ X2, contradicting that e is essential for T . In the
additional layers, the argument for why e extends Fe is trivial. J

3.2.3 Correctness
We now argue that if (G,T ) is (α, c)-dense for c = Ω(α log k) then every partition of T has
a minimum multiway cut that is p-way plus kr−p for some p ∈ [r]. For this, assume for
a contradiction that for some partition T of T the minimum multiway cut X of T is not
covered in any of the above passes. We will derive that |X| > k, contradicting that X is
minimum. Assume that G−X has p components, and let n1 ≥ . . . ≥ np be the number of
vertices in each component, sorted by size. The converse to Lemma 16 is the following.
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I Corollary 17. If X is not covered, then for every i ∈ [r] it holds that
∑p
j=i+1 nj > kr−i.

For i ∈ [r], let us write n≥i =
∑p
j=i nj . Hence for each i ∈ [r], n≥i+1 > kr−i.

Now, refer as previously to the vertex sets of the connected components of G − X in
order as V1, . . . , Vp, where |Vi| = ni, i ∈ [p]. By the density assumption, for every i ≥ 2,
capT (Vi) ≥ n1/c

i /α. On the other hand, as previously noted, if X is minimum we have

p∑
i=1

capT (Vi) =
p∑
i=1

(capG(T ∩ Vi) + δ(Vi)) = k + 2|X| ≤ 3k. (1)

It now remains to estimate the value of the following system:

min
∑p
i=2 n

1/c
i /α

s.t.
∑p
j=i+1 nj > kr−i ∀i ∈ [r]∑p

i=1 ni = n

n1 ≥ . . . ≥ np ≥ 0

(2)

If we can determine that this value is greater than 3k, then we will have derived a contradiction,
showing that the cut X is covered. This is somewhat intricate, but not very difficult.

I Lemma 18 (F). There is a c = Θ(α log k) such that the following holds: If (G,T ) is
(α, c)-dense, and if X is a multiway cut for some partition T of T such that X is not covered,
then |X| > k.

Proof sketch. Through concavity, one can show that the worst-case component sizes (i.e.,
the distribution ni for which the system above achieves its minimum value) is when ni =
kr−i+1(1 − o(1)) for every i ≥ 2. The value of the system then becomes a geometric sum
with ratio k1/c = 2Θ(1/α), hence the total contribution is Θ((1/α)k/(k1/c − 1)). Computing
the asymptotics of the contributing factor k1/c − 1 shows that it defeats 1/α, and establishes
the result. J

3.3 Completing the result
By the above, every terminal network (G,T ) that is (α, c)-dense for some c = Θ(α log k) has a
multicut-covering set of at most kc edges, which can be computed in randomized polynomial
time. We extend the result to any (G,T ), using a sublogarithmic terminal expansion tester.

I Theorem 19 (Theorem 1 restated). Let A be a sublogarithmic terminal expansion tester
with ratio α(n, k). Let (G,T ) be a terminal network with capG(T ) = k. There is a multicut-
covering set Z ⊆ E(G) with |Z| ≤ kO(α(n,k) log k), which furthermore can be computed in
randomized polynomial time using calls to A.

Proof. Set c = Θ(α log k) as in Lemma 18. If |E(G)| < kc then return Z = E(G), otherwise
call A on (G,T, c). If (G,T ) is (α, c)-dense, then Lemma 9 applies and we are done. Otherwise,
let S ⊆ V (G) be the set returned by A, and let kS = capT (S). Let (GS , T (S)) be the recursive
instance at S, and note that |V (GS)| = |NG[S]| < |V | and |S| > kcS by definition of A. We
may now proceed by induction on |V | and assume that we can compute a multicut-covering
set ZS ⊆ E(GS) of size |ZS | < kcS . To eliminate a corner case, if there is a vertex v ∈ V (GS)
with v /∈ T (S) and dGS

(v) ≤ 2, then delete v if v is a leaf, otherwise contract one edge
incident with v. Note that since v /∈ T (S) we have dG(v) = dGS

(v) and v /∈ T , hence these
reduction rules are clearly correct. If this rule does not apply, there must be some edge
e ∈ E(GS) \ ZS , and by construction e corresponds directly to an edge in G. Hence by

ICALP 2020



101:12 Quasipolynomial Multicut-Mimicking Networks

Prop. 8 we may contract e in G and repeat. This yields a graph G′ with |V (G′)| < |V |, hence
by induction we can create a multicut-covering set Z for G′, which is also a multicut-covering
set of G by Prop. 8. Hence we can compute a multicut-covering set Z with |Z| < kc. J

We observe the following consequences.
I Corollary 20. Let (G,T ) be a terminal network with capG(T ) = k. The following holds.
1. There is a multicut-mimicking network for (G,T ) with kO(log k) edges.
2. If there is a sublogarithmic terminal expansion tester – in particular, if Small Set

Expansion has an approximation ratio as in Theorem 19 – then a multicut-mimicking
network of size quasipolynomial in k can be computed in randomized polynomial time.

Proof. The first is immediate using α(n, k) = 1. For the second, all that remains is to clean
up the value |Z|. For this, let α(n, k) ≤ log1−ε n logd k and c = bα log k, for some bounded
values b, d, and first assume that |Z| ≥ |V (G)| = n. Then

n ≤ |Z| < kbα log k ⇒
logn < bα log2 k ⇒

logn < b log1−ε n logd+2 k ⇒

logε n < b logd+2 k ⇒

logn < (b logd+2 k)1/ε,

hence |Z| ≤ klogO(1) k, as promised. Otherwise, we contract all edges not present in Z and
compute a new multicut-covering set Z ′ for the new system (G′, T ). Eventually, this process
halts, and at this point we will have a multicut-covering set Z with |Z| ≤ klogO(1) k for some
graph G′′ created by contractions from G, and by Prop. 8 this set Z is also a multicut-covering
set for (G,T ). J

3.4 Kernelization extensions and consequences
As noted, we get the following consequences.
I Corollary 21 (F). If there is a sublogarithmic terminal expansion tester, then the following
problems have randomized quasipolynomial kernels.
1. Edge Multiway Cut parameterized by solution size.
2. Edge Multicut parameterized by the solution size and the number of cut requests.
3. Group Feedback Edge Set parameterized by solution size, for any group.
4. Subset Feedback Edge Set with undeletable edges, parameterized by solution size.
5. 0-Extension for integer-weighted graphs, parameterized by solution cost.

Finally, as in [32], the latter result extends to “0-Extension sparsifiers” which hold
independent of the choice of metric. Let us briefly recall some details. An instance of
0-Extension can be defined as a terminal network (G,T ), a metric µ : D ×D → R+ for
some label set D, and a partial labelling τ : T → D. The goal is to find λ : V (G) → D

extending τ , to minimize the cost
∑
uv∈E(G) µ(λ(u), λ(v)). We note that the “kernel” in the

previous result can be constructed without needing access to µ or τ , i.e., it is valid for every
metric µ and every partial labelling τ .
I Theorem 22 (F). Let G = (V,E) be an undirected, unweighted graph and T ⊆ V a set
of terminals, |T | = r. For any integer p ∈ N, let k = p + r; there exists a set Z ⊆ E with
|Z| = kO(log k) such that the following holds. For any metric µ : D × D → R+ and any
labelling τ : T → D, if there exists a labelling λ : V → D extending τ where λ(u) 6= λ(v) for
at most p edges uv ∈ E, then there exists such a labelling λ, of minimum cost among all such
labellings, such that λ(u) = λ(v) for every edge uv ∈ E \ Z.
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4 Discussion

We defined the notion of a multicut-mimicking network, and showed that every terminal
network (G,T ) with k = capG(T ) admits one of size kO(log k), which furthermore may be
computable in randomized polynomial time, subject to the precise approximation guarantees
available for a restricted variant of Small Set Expansion. The mimicking network can
be constructed via contractions on G, i.e., it simply consists of a set of edges which form a
multicut-covering set. As a consequence of such a result, a range of parameterized problems,
starting from Edge Multiway Cut, would have quasipolynomial kernels. Unfortunately,
the approximation guarantee required for this latter result appears to go just below the range
of available guarantees from the literature.

A natural question is whether an appropriate approximation algorithm can be constructed.
We note that an approximation ratio of polylog(k) for Small Set Expansion is sufficient,
where k = δ(S) is the number of edges cut in the optimal solution S. We are not aware of
approximation ratios in term of this parameter having been investigated. Also note that it
is sufficient if the approximation algorithm has a running time quasipolynomial in k (but
polynomial in n).

Another question is whether the existence of a polynomial-sized multicut-mimicking
network can be established. Can such a result be excluded, even for the apparently more
demanding situation of sparsifiers for 0-Extension instances (as in Theorem 22)?

We also have not investigated the vertex-deletion versions of these problems, which seem
likely to bring significant additional difficulty (if such a generalization is possible).

In either case, the existence of a quasipolynomial multicut-covering set appears to rule
out any possibility of a lower bound against the kernelizability of Edge Multiway Cut
for any size better than quasipolynomial, given the nature of the lower bound results
against kernelization. We hope, therefore (but dare not explicitly conjecture) that Edge
Multiway Cut and related problems have quasipolynomial (randomized) kernels or better,
unconditionally.
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Abstract
Goldmann and Russell (2002) initiated the study of the complexity of the equation satisfiability
problem in finite groups by showing that it is in P for nilpotent groups while it is NP-complete
for non-solvable groups. Since then, several results have appeared showing that the problem can
be solved in polynomial time in certain solvable groups of Fitting length two. In this work, we
present the first lower bounds for the equation satisfiability problem in finite solvable groups: under
the assumption of the exponential time hypothesis, we show that it cannot be in P for any group
of Fitting length at least four and for certain groups of Fitting length three. Moreover, the same
hardness result applies to the equation identity problem.
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1 Introduction

The study of equations over algebraic structures has a long history in mathematics. Some of
the first explicit decidability results in group theory are due to Makanin [33], who showed
that equations over free groups are decidable. Subsequently several other decidability and
undecidability results as well as complexity results on equations over infinite groups emerged
(see [11, 14, 32, 37] for a random selection). For a fixed group G, the equation satisfiability
problem EQN-SAT is as follows: given an expression α ∈ (G ∪ X ∪ X−1)∗ where X is some
set of variables, the question is whether there exists some assignment σ : X → G such that
σ(α) = 1 (here σ is extended to expressions in the natural way – X−1 is a disjoint copy of
X representing the inverses of X ). Likewise EQN-ID is the problem, given an expression,
decide whether it evaluates to 1 under all assignments.

Henceforth, all groups we consider are finite. In this case, equation satisfiability and
related questions are clearly decidable by an exhaustive search. Still the complexity is an
interesting topic of research: its study has been initiated by Goldmann and Russell [15], who
showed that satisfiability of systems of equations can be decided in P if and only if the group
is abelian (assuming P 6= NP) – otherwise, the problem is NP-complete. They also obtained
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some results for single equations: EQN-SAT is NP-complete for non-solvable groups, while
for nilpotent groups it is in P. This left the case of solvable but non-nilpotent groups open.
Indeed, Burris and Lawrence raised the question whether EQN-ID(G) ∈ P for all finite
solvable groups G [9, Problem 1]. Moreover, Horváth [18] conjectured a positive answer.

Contribution. In this work we give a negative answer to this question assuming the expo-
nential time hypothesis by showing the following result:

I Corollary A. Let G be finite solvable group and assume that either
the Fitting length of G is at least four, or
the Fitting length of G is three and there is no Fitting-length-two normal subgroup whose
index is a power of two.

Then EQN-SAT(G) and EQN-ID(G) are not in P under the exponential time hypothesis.

To the best of our knowledge, this constitutes the first hardness results for EQN-SAT(G)
and EQN-ID(G) if G is solvable.1 The Fitting length of a group G is the minimal d such
that there is a sequence 1 = G0 E · · · E Gd = G with all quotients Gi+1/Gi nilpotent.

Moreover, we show that if S is a semigroup with a group divisor (i.e., a group which is a
quotient of a subsemigroup of S) meeting the requirements of Corollary A, EQN-SAT(S)
(here the input consists of two expressions) is also not in P under the exponential time
hypothesis. Finally, using the same ideas as for our main result, we derive an upper bound
of 2O(n1/(d−1)) for the length of the shortest G-program (definition see below) for the n-input
AND function in a finite solvable group of Fitting length d ≥ 2. Notice that a corresponding
2nΩ(1) lower bound would imply that EQN-SAT(G) and EQN-ID(G) can be solved in
quasipolynomial time for finite solvable groups G.

General approach. The complexity of EQN-SAT is closely related to the complexity of
the satisfiability problem for G-programs (denoted by ProgramSAT – for a definition see
Section 3). Indeed, [5] gives a reduction from EQN-SAT to ProgramSAT (be aware that,
while the problems EQN-SAT and ProgramSAT are well-defined for finitely generated
infinite groups, in general, such a reduction exists only in the case of finite groups). Moreover,
also ProgramSAT is in P for nilpotent groups and NP-complete for non-solvable groups [6].

In order to show hardness of these problems, one usually reduces some NP-complete
problem like 3SAT or C-Coloring to them. Typically, this requires to encode big logical
conjunctions into the group G. Therefore, the complexity of these problems is linked to the
length of the shortest G-program for the AND function. Indeed, [5, Theorem 4] shows that,
if the AND function can be computed by a P-uniform family of G-programs of polynomial
length, then ProgramSAT(G o Ck) for k ≥ 4 is NP-complete (here Ck denotes the cyclic
group of order k; P-uniform means that the n-input G-program can be computed in time
polynomial in n). Thus, if there exists a solvable group with efficiently computable polynomial
length G-programs for the AND function, then there is a solvable group with an NP-complete
ProgramSAT problem.

1 Recently (a preprint appeared only days after the submission of this paper), in [24] Idziak, Kawałek, and
Krzaczkowski succeeded to show that EQN-SAT(S4) is not in P under the exponential time hypothesis
(S4 denotes the symmetric group over four elements). Moreover, they proved similar results as in this
work for the case of algebras from congruence modular varieties. This complements our main result
Corollary A. Indeed, a joint paper proving a quasipolynomial lower bound on EQN-SAT and EQN-ID
for all finite groups of Fitting length three is under preparation.
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It is well-known that G-programs describe the circuit complexity class CC0 [34] with
the depth of the circuit relating to the Fitting length of the group. One can make a depth
size trade-off for the AND function using a divide-and-conquer approach: Assume there is
a circuit of depth two and size 2n for the n-input AND (which is the case by [3]). Since
the n-input AND can be decomposed as

√
n-input AND of

√
n many

√
n-input ANDs, we

obtain a CC0 circuit of depth 4 and size roughly 2
√
n.

This observation plays a crucial role for our results: it allows us to reduce an m-edge C-
Coloring instance to an equation of size roughly 2

√
m. We compare this to the exponential

time hypothesis (ETH), which conjectures that n-variable 3SAT cannot be solved in time
2o(n). ETH implies that C-Coloring cannot be solved in time 2o(m), which gives us a
quasipolynomial lower bound on EQN-SAT and EQN-ID. Notice that in the literature there
are several other quasipolynomial lower bounds building on the exponential time hypothesis –
see [1, 7, 8] for some examples.

Outline. In Section 2, we fix our notation and state some basic results on inducible and
atomically universally definable subgroups. Some of these observations are well-known, while
others, to the best of our knowledge, have not been stated explicitly. Section 3 gives a little
excursion to the complexity of the AND-function in terms of G-programs over finite solvable
groups deriving an upper bound 2O(n1/(d−1)) if d ≥ 2 is the Fitting length of G.

Section 4 and Section 5 are the main part of our paper: we reduce the C-Coloring
problem to EQN-SAT and EQN-ID. For the reduction, we need some special requirements
on the group G. In Section 5 we show that actually the requirements of Corollary A are
enough using the concept of inducible and atomically universally definable subgroups. Finally,
in Corollary 22 we examine consequences to EQN-SAT in semigroups.

Related work on equations. Since the work of Goldman and Russell [15] and Barrington
et al. [5], a long list of literature has appeared investigating EQN-ID and EQN-SAT in
groups and other algebraic structures. In [9] it is shown that EQN-ID is in P for nilpotent
groups as well as for dihedral groups Dk where k is odd. Horváth resp. Horváth and Szabó
[19, 22] extended these results by showing the following among other results: EQN-SAT(G)
is in P for G = Cn oB with B abelian, n = pk or n = 2pk for some prime p and EQN-ID is
in P for semidirect products G = Cn1 o (Cn2 o · · · o (Cnk o (A o B))) with A,B abelian
(be aware that such a group is two-step solvable). Furthermore, in [12] it is proved that
EQN-SAT(G) ∈ P for so-called semi-pattern groups. Finally, in [13] Földvári and Horváth
established that EQN-SAT is in P for the semidirect product of a p-group and an abelian
group and that EQN-ID is in P for the semidirect product of a nilpotent group with an
abelian group. Notice that all these groups have in common that their Fitting length is at
most two.

In [20, 21] the EQN-SAT and EQN-ID problems for generalized terms are introduced.
Here a generalized term means an expression which may also use commutators or even
more complicated terms inside the input expression. Using commutators is a more succinct
representation, which allows for showing that EQN-SAT is NP-complete and EQN-ID is
coNP-complete in the alternating group A4 [21]. In [31] this result is extended by showing that,
with commutators and the generalized term w(x, y1, y2, y3) = x8[x, y1, y2, y3], EQN-SAT is
NP-complete and EQN-ID is coNP-complete for all non-nilpotent groups.

There is also extensive literature on equations in other algebraic structures – for instance,
[2, 5, 26, 27, 28, 29, 38, 39, 40] in semigroups. We only mention two of them explicitly: [27]
showed that identity checking (EQN-ID without constants in the input) in semigroups is
coNP complete. Moreover, among other results, [2] reduces the identity checking problem in
the direct product of maximal subgroups to identity checking in some semigroup.
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2 Preliminaries

The set of words over some alphabet Σ is denoted by Σ∗. The length of a word w ∈ Σ∗ is
denoted by |w|. We denote the interval of integers { i, . . . , j } by [i .. j].

Complexity. We use standard notation from complexity theory. In several cases we use the
notion of AC0 many-one reductions (denoted by ≤AC0

m ) meaning that the reducing function can
be computed in AC0 (i.e., by a polynomial-size, constant-depth Boolean circuit). The reader
unfamiliar with this terminology may think about logspace or polynomial time reductions.
Also be aware that in order to obtain AC0 many-one reductions in most cases we need the
presence of a letter representing the group identity for padding reasons.

Exponential time hypothesis. The exponential time hypothesis (ETH) is the conjecture
that there is some δ > 0 such that every algorithm for 3SAT needs time Ω(2δn) in the worst
case where n is the number of variables of the given 3SAT instance. By the sparsification
lemma [25, Thm. 1] this is equivalent to the existence of some ε > 0 such that every algorithm
for 3SAT needs time Ω(2ε(m+n)) in the worst case where m is the number of clauses of
the given 3SAT instance (see also [10, Thm. 14.4]). In particular, under ETH there is no
algorithm for 3SAT running in time 2o(n+m).

C-Coloring. A C-coloring for C ∈ N of a graph Γ = (V,E) is a map χ : V → [1 .. C]. A
coloring χ is called valid if χ(u) 6= χ(v) whenever {u, v } ∈ E. The problem C-Coloring is
as follows: given an undirected graph Γ = (V,E), the question is whether there is a valid
C-coloring of Γ. The C-Coloring problem is one of the classical NP-complete problems
for C ≥ 3. Moreover, by [10, Thm. 14.6], 3-Coloring cannot be solved in time 2o(|V |+|E|)
unless ETH fails. Since 3-Coloring can be reduced to C-Coloring for fixed C ≥ 3 by
introducing only a linear number of additional edges and a constant number of vertices, it
follows for every C ≥ 3 that also C-Coloring cannot be solved in time 2o(|V |+|E|) unless
ETH fails.

Commutators and Fitting series. Throughout, we only consider finite groups G. We use
notation similar to [36]. We write [x, y] = x−1y−1xy for the commutator and xy = y−1xy

for the conjugation. Moreover, we write [x1, . . . , xn] = [[x1, . . . , xn−1], xn] for n ≥ 3.
As usual for subsets X,Y ⊆ G, we write 〈X〉 for the subgroup generated by X

and we define [X,Y ] = 〈 [x, y] | x ∈ X, y ∈ Y 〉 and [X1, . . . , Xk] = [[X1, . . . , Xk−1], Xk]
for X1, . . . , Xk ⊆ G. In contrast, we write [X,Y ]set = { [x, y] | x ∈ X, y ∈ Y } (thus,
[X,Y ] = 〈[X,Y ]set〉) and [X1, . . . , Xk]set = [[X1, . . . , Xk−1]set, Xk]set.

Finally, we denote the set { gx | x ∈ X } with gX (be aware that here we differ from [36])
and define XY = {xy | x ∈ X, y ∈ Y }.

I Lemma 1. If XG
i = Xi ⊆ G for i = 1, . . . , k, then

[〈X1〉 , . . . , 〈Xk〉] = 〈[X1, . . . , Xk]set〉 .

Proof. By [36, 5.1.7], we have [〈X〉 , 〈Y 〉] = [X,Y ]〈X〉〈Y 〉 for arbitrary X,Y ⊆ G. Thus, if
X = XG and Y = Y G, we have [〈X〉 , 〈Y 〉] = [X,Y ]. We use this to show the lemma by
induction:

[〈X1〉 , . . . , 〈Xk〉] =
[
[〈X1〉 , . . . , 〈Xk−1〉], 〈Xk〉

]
=
[
〈[X1, . . . , Xk−1]set〉 , 〈Xk〉

]
(by induction)

=
[
[X1, . . . , Xk−1]set, Xk

]
(by [36, 5.1.7])

= 〈[X1, . . . , Xk]set〉 J
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For x, y ∈ G, we write [x, k y] = [x, y, . . . , y︸ ︷︷ ︸
k times

] and likewise for X,Y ⊆ G, we write

[X, k Y ] = [X,Y, . . . , Y︸ ︷︷ ︸
k times

] and [k Y ] = [Y, . . . , Y︸ ︷︷ ︸
k times

] and analogously [X, k Y ]set and [k Y ]set.

Since G is finite, there is some M = M(G) ∈ N such that [X, M Y ] = [X, i Y ] for all
i ≥ M and all X,Y ⊆ G with XG = X and Y G = Y (notice that [X, i Y ] ≤ [X, j Y ] for
j ≤ i due to the normality of [X,Y ]). It is clear that M = |G| is large enough, but typically
much smaller values suffice.

I Lemma 2. For all X,Y ⊆ G with XG = X we have [X, M Y ] = [[X,G], M Y ].

Proof. We have [X,G] ≤ 〈X〉 because [x, g] = x−1xg ∈ X. Thus, the inclusion right
to left follows. The other inclusion is because [X, M Y ] = [X, M+1 Y ] ≤ [X,G, M Y ] =
[[X,G], M Y ]. J

The k-th term of the lower central series is γkG = [G, k G]. The nilpotent residual of G
is defined as γ∞G = γMG where M is as above (i.e., γ∞G = γiG for every i ≥M). Recall
that a finite group G is nilpotent if and only if γ∞G = 1.

The Fitting subgroup Fit(G) is the union of all nilpotent normal subgroups. Let G be a
finite solvable group. It is well-known that Fit(G) itself is a nilpotent normal subgroup (see
e.g. [23, Satz 4.2]). The upper Fitting series

1 = U0G C U1G C · · · C UkG = G

is defined by Ui+1G/UiG = Fit(G/UiG). The lower Fitting series

1 = LdG C · · · C L1G C L0G = G

is defined by Li+1G = γ∞(LiG). We have d = k (see e.g. [23, Satz 4.6]) and this number
is called the Fitting length FitLen(G) (sometimes also referred to as nilpotent length). The
following fact can be derived by a straightforward induction from the characterization of
Fit(G) as largest nilpotent normal subgroup (for a proof see e.g. [41]):

I Lemma 3. Let H E G be a normal subgroup. Then for all i, we have UiH = UiG∩H. In
particular,
(i) if FitLen(H) = i, then H ≤ UiG,
(ii) if g ∈ UiG Ui−1G, then FitLen(

〈
gG
〉
) = i.

Equations in groups. An expression (also called a polynomial in [39, 22, 31]) over a group G
is a word α over the alphabet G∪X ∪X−1 where X is a set of variables. Here X−1 denotes a
formal set of inverses of the variables. Since we are dealing with finite groups only, a variable
X−1 ∈ X−1 for X ∈ X can be considered as an abbreviation for X |G|−1. Sometimes we write
α(X1, . . . , Xn) for an expression α to indicate that the variables occurring in α are from the
set {X1, . . . , Xn }. Moreover, if β1, . . . , βn are other expressions, we write α(β1, . . . , βn) for
the expression obtained by substituting each occurrence of a variable Xi by the expression βi.

An assignment for an expression α is a mapping σ : X → G – here σ is canonically
extended by σ(X−1) = σ(X)−1 and σ(g) = g for g ∈ G. An assignment σ is satisfying if
σ(α) = 1 in G. The problems EQN-SAT(G) and EQN-ID(G) are as follows: for both of
them the input is an expression α. For EQN-SAT(G) the question is whether there exists a
satisfying assignment, for EQN-ID(G) the question is whether all assignments are satisfying.

Notice that in the literature EQN-SAT is also denoted by POL-SAT [39, 22] or Eq [31],
while EQN-ID is also referred to as POL-EQ (e.g. in [39, 22, 28]) or Id [31].
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If X = Y ∪Z with Y ∩Z = ∅ and we are given assignments σ1 : Y → G and σ2 : Z → G,
we obtain a new assignment σ1 ∪ σ2 defined by (σ1 ∪ σ2)(X) = σ1(X) if X ∈ Y and
(σ1 ∪ σ2)(X) = σ2(X) if X ∈ Z. We write [X 7→ g] for the assignment {X } → G mapping
X to g.

Inducible subgroups. According to [15], we call a subset S ⊆ G inducible if there is some
expression α ∈ (G∪X ∪X−1)∗ such that S = {σ(α) | σ : X → G }. In this case we say that
α induces S. Notice that in a finite group every verbal subgroup is inducible. (A subgroup
is called verbal if it is generated by a set of the form {σ(α) | σ : X → G,α ∈ A } where
A ⊆ (X ∪ X−1)∗ is a finite set of expressions without constants.) This shows the first three
points of the following lemma (for γ1G, see also [15, Lemma 5]):

I Lemma 4. Let G be a finite group. Then
(i) for every k ∈ N, the subgroup generated by all k-th powers is inducible,
(ii) every element γkG of the lower central series is inducible,
(iii) every element LkG of the lower Fitting series is inducible,
(iv) if K ≤ H ≤ G and K is inducible in H and H inducible in G, then K is also inducible

in G,
(v) if H ≤ G with H = [G,H], then H is inducible.

The fourth point follows simply by “plugging in” an expression for H inside an expression
for K. The last point follows from the proof of [31, Lemma 9 ].

The notion of inducible subgroup turns out to be very useful for proving lower bounds on
the complexity. Indeed, the following facts are straightforward:

I Lemma 5 ([15, Lemma 8], [20, Lemma 9, 10]). Let H ≤ G be an inducible subgroup. Then
EQN-SAT(H) ≤AC0

m EQN-SAT(G), and
EQN-ID(H) ≤AC0

m EQN-ID(G).
If, moreover, H is normal in G, then EQN-SAT(G/H) ≤AC0

m EQN-SAT(G).

Let us briefly sketch the ideas to see this lemma: Fix an expression β inducing H. For
first and second reduction, replace every occurring variable of a given equation by a copy of
β with disjoint variables. The third reduction simply appends β to an input equation.

Atomically universally definable subgroups. The situation for reducing EQN-ID(G/H)
to EQN-ID(G) is slightly more complicated. For this we need a new definition: We call a
subset S ⊆ G atomically universally definable if there is some expression α ∈ (G∪X ∪X−1)∗
where X = {X } ∪ {Y1, Y2, . . . } such that

S = { g ∈ G | (σ ∪ [X 7→ g])(α) = 1 for all σ : {Y1, Y2, . . . } → G } .

In this case we say that α atomically universally defines S. (Notice that universally definable
usually is defined analogously but instead of a single equation α one allows a Boolean formula
of equations.) It is clear that the center of a group is atomically universally definable by the
expression [X,Y ]. This generalizes as follows:

I Lemma 6. Let G be a finite group.
The Fitting group Fit(G) is atomically universally definable.
If N ≤ H ≤ G and N is normal in G and H/N is atomically universally definable in
G/N and N is atomically universally definable in G, then H is atomically universally
definable in G.
All terms UiG of the upper Fitting series are atomically universally definable.
If H ≤ G is inducible, then the centralizer CG(H) = { g ∈ G | gh = hg for all h ∈ H }
is atomically universally definable.
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Proof. By Lemma 3, the normal subgroup
〈
gG
〉
generated by g ∈ G is nilpotent if and only

if g ∈ Fit(G). Therefore, g ∈ Fit(G) if and only if
[
M

〈
gG
〉]

= 1 (M as in Section 2 large
enough), which, by Lemma 1, is the case if and only if

[
M gG

]
set = 1. Hence, the expression

[XY1 , . . . , XYM ] atomically universally defines Fit(G).
Now, suppose that β ∈ (G∪Xβ∪X−1

β )∗ with Xβ = {X,Y1, . . . , Yk } atomically universally
defines H/N in G/N and that α ∈ (G∪Xα∪X−1

α )∗ with Xα = {Z, Yk+1, . . . , Ym } atomically
universally defines N in G. Thus, g ∈ H if and only if β(g, Y1, . . . , Yk) ∈ N for all Y1, . . . , Yk ∈
G and h ∈ N if and only if α(h, Yk+1, . . . , Ym) = 1 for all Yk+1, . . . , Ym ∈ G. Hence,
α(β(g, Y1, . . . , Yk), Yk+1, . . . , Ym) = 1 for all Y1, . . . , Ym ∈ G if and only if g ∈ H and so H is
atomically universally definable.

The third point follows by induction from the first and second point. The fourth point is
essentially due to [20, Lemma 10]: if β is an expression inducing H, then [X,β] atomically
universally defines CG(H). J

I Lemma 7. Let H E G be an atomically universally definable normal subgroup. Then

EQN-ID(G/H) ≤AC0

m EQN-ID(G).

Proof. Denote Q = G/H. Let β ∈ (G ∪ Xβ ∪ X−1
β )∗ with Xβ = {Z, Y1, . . . , Yk } atomically

universally define H and let α ∈ (Q ∪ X ∪ X−1)∗ be an instance for EQN-ID(Q) (with
X ∩ Xβ = ∅). Let α̃ denote the expression obtained from α by replacing every constant of Q
by an arbitrary preimage in G. Then σ(α) = 1 in Q for all assignments σ : X → Q if and
only if σ̃(α̃) ∈ H for all assignments σ̃ : X → G. By the choice of β, the latter is the case if
and only if σ̂(β(α̃, Y1, . . . , Yk)) = 1 for all assignments σ̂ : X ∪ {Y1, . . . , Yk } → G. J

3 G-programs and AND-weakness

Let G be a finite group. An n-input G-program of length ` with variables (input bits) from
{B1, . . . , Bn } is a sequence

P = 〈Bi1 , a1, b1〉〈Bi2 , a2, b2〉 · · · 〈Bi` , a`, b`〉 ∈ ({B1, . . . , Bn } ×G×G)∗.

For a mapping σ : {B1, . . . , Bn } → {0, 1} (called an assignment) we define σ(P ) ∈ G as the
group element c1c2 · · · c`, where cj = aj if Bij = 0 and cj = bj if Bij = 1 for all 1 ≤ j ≤ `.
We say that an n-input G-program P computes a function f : {0, 1}n → {0, 1} if P is over
the variables B1, . . . , Bn and there is some S ⊆ G such that σ(P ) ∈ S if and only if f(σ) = 1.

ProgramSAT is the following problem: given a G-program P with variables B1, . . . , Bn,
decide whether there is an assignment σ : {B1, . . . , Bn } → G such that σ(P ) = 1.

The AND-weakness conjecture. In [6], Barrington, Straubing and Thérien conjectured
that, if G is finite and solvable, every G-program computing the n-input AND requires length
exponential in n. This is called the AND-weakness conjecture.

Unfortunately, the term “exponential” seems to be a source of a possible misunderstanding:
while often it means 2Ω(n), in other occasions it is used for 2nΩ(1) . Indeed, in [15, 5], the
conjecture is restated as its strong version: “every G-program over a solvable group G for the
n-input AND requires length 2Ω(n).” However, already in the earlier paper [4], it is remarked
that the n-input AND can be computed by depth-k CC0 circuits of size 2O(n1/(k−1)) for every
k ≥ 2 (a CC0 circuit is a circuit consisting only of MODm gates for some m ∈ N) – thus,
disproving the strong version of the AND-weakness conjecture. For a recent discussion about
the topic also referencing the cases where the conjecture actually is proved, we refer to [30].
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In this section we provide a more detailed upper bound on the length of G-programs for
the AND function in terms of the Fitting length of G. We can view our upper bound as a
refined version of the 2O(n1/(k−1)) upper bound for depth-k CC0 circuits. This is because, by
[34, Theorem 2.8], for every depth-k CC0 circuit family there is a fixed group G of Fitting
length k (indeed, of derived length k) such that the n-input circuit can be transformed into
a G-program of length polynomial in n.

I Proposition 8. Let G be a finite solvable group and consider a strictly ascending series
1 = H0 C H1 C · · · C Hm = G of normal subgroups where Hi = γki(Hi+1) with ki ∈
N ∪ {∞} for i ∈ [1 ..m− 1] and k0 = ∞. Denote c = |{ i ∈ [1 ..m− 1] | ki =∞ }| and
C =

∏
ki<∞(ki + 1).

Then the n-input AND function can be computed by a G-program of length O(2Dn1/c)
where D = c

C1/c . More precisely, for every n ∈ N there is some 1 6= g ∈ G and a G-program
Qn of length O(2Dn1/c) such that

σ(Qn) =
{
g if σ(B1) = · · · = σ(Bn) = 1,
1 otherwise.

Clearly we have c ≤ d − 1 if d is the Fitting length of G. The lower Fitting series is the
special example of such a series where Hi = Ld−iG and ki =∞ for all i ∈ { 0, . . . , d }. Thus,
we get the following corollary:

I Corollary 9. Let G be a finite solvable group of Fitting length d ≥ 2. Then the n-input
AND function can be computed by a G-program of length 2O(n1/(d−1)).

I Example 10. The symmetric group on four elements S4 has Fitting length 3 with S4 ≥
A4 ≥ C2 × C2 ≥ 1 being both the upper and lower Fitting series. Therefore, we obtain a
length-O(22

√
n)) program for the n-input AND by Proposition 8. In particular, the strong

version of the AND-weakness conjecture does not hold for the group S4. Note that according
to [6], S4 is the smallest group for which the 2Ω(n) lower bound from [6] does not apply.

On the other hand, consider the group G = (C3×C3)oD4 where D4 (the dihedral group
of order eight) acts faithfully on C3 × C3

2. It has Fitting length two. Moreover, its derived
subgroup G′ = (C3 × C3) o C2 still has Fitting length two. Hence, we have a series H3 = G,
H2 = G′ = γ1G, H1 = γ∞G

′ = C3 × C3, and H0 = 1. Therefore, we get an upper bound of
O(2n/2) for the length of a program for the n-input AND.

Proof of Proposition 8. We choose K = (n/C)1/c. For simplicity, let us first assume that
K is an integer. Moreover, we assume that K is large enough such that Hi = [K Hi+1] holds
whenever ki =∞ and that K ≥ ki + 1 for all ki <∞.

We define sets Ai ⊆ G inductively by Am = G and Ai = [K Ai+1]set if ki = ∞ and
Ai = [ki+1 Ai+1]set if ki <∞. By Lemma 1 and induction it follows that Hi = 〈Ai〉 for all
i ∈ 0, . . . ,m. Since H1 6= 1, we find a non-trivial element g ∈ A1. We can decompose g
recursively. For this, we need some more notation: for ` ∈ [1 ..m] consider the set of words

V` =
{
v = v1 · · · v`−1 ∈ [1 ..K]`−1 ∣∣ vi ≤ ki + 1 for all i ∈ [1 .. `− 1]

}
.

We have |Vm| = C ·Kc = n, so we can fix a bijection κ : Vm → [1 .. n].
Now, we can describe the recursive decomposition of g = gε:

2 This group can be found in the GAP small group library under the index [72, 40]. It has been suggested
as an example by Barrington (private communication).
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gv for v ∈ Vm are arbitrary element from G, and
gv = [gv1, . . . , gvK ] for v ∈ V` with k` =∞, and
gv = [gv1, . . . , gv(k`+1)] for v ∈ V` with k` <∞.

For v ∈ V` we have |gv| ≤
∑K
i=1 2K+1−i |gvi| ≤ 2K+1 maxi |gvi| whenever k` = ∞ and

|gv| ≤ 2k`+2 maxi |gvi| if k` <∞. Therefore, setting D = c
C1/c we obtain by induction

|gε| ≤ 2
∑

k`<∞
(k`+2)(2K+1)c ∈ O(2Dn

1/c
).

In order to obtain a G-program for the n-input AND, we define G-programs Pv for
v ∈

⋃
`≤m V`. In the commutators we need also programs for inverses: for a G-program

P = 〈Bi1 , a1, b1〉〈Bi2 , a2, b2〉 · · · 〈Bi` , a`, b`〉 we set P−1 = 〈Bi` , a−1
` , b−1

` 〉 · · · 〈Bi1 , a
−1
1 , b−1

1 〉.
Clearly (σ(P ))−1 = σ(P−1) for all assignments σ.

for v ∈ Vm we set Pv = 〈Bκ(v), 1, gv〉,
for v ∈ V` with 1 ≤ ` < m we set Pv = [Pv1, . . . , PvK ] if k` =∞, and
for v ∈ V` with 1 ≤ ` < m we set Pv = [Pv1, . . . , Pv(k`+1)] if k` <∞.

For v ∈ V` let V (v) denote the set of those words w ∈ Vm having v as a prefix. By
induction we see that

σ(Pv) =
{
gv if σ(Bκ(w)) = 1 for all w ∈ V (v),
1 otherwise.

This shows the correctness of our construction.
It remains to consider the case that (n/C)1/c is not an integer. Then we set K =⌈

(n/C)1/c⌉. It follows that |Vm−1| = C ·Kc ≥ n, so we can fix a bijection κ : U → [1 .. n] for

some subset U ⊆ Vm−1. We still have |gε| ≤ 2
∑

ki<∞
(ki+1)(2K+1)c ∈ O(2cK) = O(2Dn1/c)

with D as above. This concludes the proof of Proposition 8. J

I Remark 11. In the light of Proposition 8 it is natural to ask for a refined version of the
AND-weakness conjecture. A natural candidate would be to conjecture that every G-program
for the n-input AND has length 2Ω(n1/(d−1)) where d is the Fitting length of G.

However, this also weaker version of the AND-weakness conjecture is wrong! Indeed, in
[4, Section 2.4] Barrington, Beigel and Rudich show that the n-input AND can be computed
by circuits using only MODm gates of depth 3 and size 2O(n1/r logn) where r is the number
of different prime factors of m. Translating the circuit into a G-program yields a group G of
Fitting length 3. Since there is no bound on r, we see that there is no lower bound on the
exponent δ such that there are G-programs of length 2O(nδ) for the n-input AND in groups
of Fitting length 3.

In [17] it is shown that the AND function can be computed by probabilistic CC0 circuits
using only a logarithmic number of random bits, which “may be viewed as evidence contrary
to the conjecture” [17]. In the light of this, we do not feel confident to judge which form of
the AND-weakness conjecture might be true. The following version seems possible.

I Conjecture 1 (AND-weakness [6]). Let G be finite solvable. Then every G-program for
the n-input AND has length 2nΩ(1) .

Notice that [5, Theorem 2] (if G is AND-weak, ProgramSAT over G can be decided in
quasi-polynomial time) still holds with this version of the AND-weakness conjecture.

ICALP 2020



102:10 Equations over Finite Solvable Groups

4 Reducing C-Coloring to equations

In this section we describe the reduction of C-Coloring to EQN-SAT(G) and EQN-ID(G)
in the spirit of [15, 31]. For this, we rely on the fact that G has some normal subgroups
meeting some special requirements. In Section 5, we show that all sufficiently complicated
finite solvable groups meet the requirements of Theorem 14.

For a normal subgroup H E G and g ∈ G, we define ηg(H) =
[
H, M gG

]
. Recall that M

is chosen large enough such that [X, M Y ] = [X, i Y ] for all i ≥M and all X,Y ⊆ G with
XG = X and Y G = Y . Since H is normal, we have ηg(H) ≤ H and ηg(H) is normal in G.

I Lemma 12. Let H E G be a normal subgroup and g, h ∈ G. Then
(i) ηg(ηg(H)) = ηg(H), and
(ii) ηgh(H) ≤ ηg(H)ηh(H), and
(iii) FitLen(ηgh(H)) ≤ max {FitLen(ηg(H)),FitLen(ηh(H)) }.

Proof. We use the fact that M is chosen such that [X, M Y ] = [X, i Y ] for all i ≥ M and
all X,Y ⊆ G with XG = G and Y G = Y :

ηg(H) =
[
H, M gG

]
=
[
H, 2M gG

]
=
[[
H, M gG

]
, M gG

]
= ηg(ηg(H)).

The second point follows with the same kind of argument:

ηgh(H) = [H, 2M (gh)G] ≤ [H, 2M
〈
gG ∪ hG

〉
]

=
〈
[H, 2Mg

G ∪ hG]set
〉

(by Lemma 1)
≤ ηg(H)ηh(H).

The last step is because each of the commutators in [H, 2Mg
G ∪ hG]set either contains at

least M terms from gG and, thus, is in ηg(H) or it contains at least M terms from hG.
The third point is an immediate consequence of the second point and Lemma 3. J

I Lemma 13. Suppose that K E G is a normal subgroup satisfying ηg(K) = K for some
g ∈ G. Then K is inducible.

Proof. Because ηg(K) = K for some g ∈ G implies that K = [K,G], it follows from Lemma 4
that K is inducible. J

I Theorem 14. Let G be a finite solvable group of Fitting length three and assume there
are normal subgroups K E H E G such that FitLen(K) = 2, U2G ≤ H, and |G/H| ≥ 3.
Moreover, assume that

(I) for all g ∈ G H we have ηg(K) = K,
(II) for all h ∈ H we have FitLen(ηh(K)) ≤ 1.

Then EQN-SAT(G) and EQN-ID(G) cannot be decided in deterministic time 2o(log2 N)

under ETH where N is the length of the input expression. In particular, EQN-SAT(G) and
EQN-ID(G) are not in P under ETH.

Proof outline. The crucial observation for this theorem is the same as for Proposition 8:
that, roughly speaking, the n-input AND can be decomposed into the conjunction of

√
n

many
√
n-input ANDs. We use this observation in order to reduce the C-Coloring problem

to EQN-SAT. More precisely, given a graph Γ with n vertices and m edges, we construct an
expression δ and an element h̃ ∈ G such that
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(A) the length of δ is in 2O(
√
m+n),

(B) δ can be computed in time polynomial in its length,
(C) δ = h̃ is satisfiable if and only if Γ has a valid C-coloring, and
(D) σ(δ) = 1 holds for all assignments σ if and only if Γ does not have a valid C-coloring.
For the number of colors we use C = |G/H|. Let N denote the input length for EQN-SAT
(resp. EQN-ID). A 2o(log2 N)-time algorithm for EQN-SAT (resp. EQN-ID), thus, would
imply a 2o(n+m)-time algorithm for C-Coloring contradicting ETH. Hence, it is enough to
show points (A)–(D).

In order to construct the expression δ, we assign a variable Xi to every vertex vi of Γ.
Every assignment σ to the variables Xi will give us a coloring χσ of Γ (to be defined later).
During the proof, we also introduce some auxiliary variables. The aim is to construct δ in a
way that an assignment σ to the variables Xi can be extended to a satisfying assignment for
δ = h̃ if and only if χσ is a valid coloring of Γ (see Lemma 17).

We start by grouping the edges into roughly
√
m batches of

√
m edges each. For each

batch of edges, we construct an expression γr (where r is the number of the batch) such that
for every assignment σ to the variables Xi we have

if χσ assigns the same color to two endpoints of an edge in the r-th batch, then for every
assignment to the auxiliary variables, γr evaluates to something in U1K,
otherwise, for every element h ∈ K, there is an assignment to the auxiliary variables such
that γr evaluates to h.

A more formal statement of this can be found in Lemma 15. The expression δ combines all
the γr as an iterated commutator such that if one of the γr evaluates to something in U1K,
then δ evaluates to 1, and, otherwise, there is some assignment to the auxiliary variables
such that δ evaluates to the fixed element h̃.

Proof. Let C = |G/H|. Let us describe how the C-Coloring problem for a given graph Γ =
(V,E) is reduced to an instance of EQN-SAT (resp. EQN-ID). We denote V = { v1, . . . , vn }.
For every vertex vi we introduce a variable Xi and we set X = {X1, . . . , Xn }. By fixing a
bijection |G/H| → [1 .. C], we obtain a correspondence between assignments X → G and
colorings V → [1 .. C] (be aware that it is not one-to-one). During the construction we
will also introduce a set Y of auxiliary variables. As outlined above, the idea is that an
assignment X → G represents a valid coloring if and only if there is an assignment to the
auxiliary variables under which the equation evaluates to a non-identity element.

For each edge { vi, vj } ∈ E, we introduce one edge gadget XiX
−1
j (it does not matter

which one is the positive variable). Now, we group these gadgets into R batches of R elements
each (if the number of gadgets is not a square, we duplicate some gadgets) – i.e., we choose
R = d

√
me. How the gadgets exactly are grouped together does not matter.

For r ∈ [1 .. R] and k ∈ [1 .. |K|] let αr,k be an expression which induces K (i.e., all
αr,k are the same expressions but with disjoint sets of variables). Such expressions exist
by Lemma 13. Let the variables of αr,k be Yr,k,t for t ∈ [1 .. T ] for some T ∈ N. Moreover,
we introduce more auxiliary variables Zr,k,s,ν for r ∈ [1 .. R], k ∈ [1 .. |K|], s ∈ [1 .. R], and
ν ∈ [1 ..M ] (recall that M is chosen such that, in particular, [H1, M H2] = [H1, M+1 H2] for
arbitrary normal subgroups H1, H2 of G) and we set

Y ′r =
{
Zr,k,s,ν , Yr,k,t

∣∣ k ∈ [1 .. |K|], s ∈ [1 .. R], ν ∈ [1 ..M ], t ∈ [1 .. T ]
}
.

Let βr,1, . . . , βr,R be the gadgets of the r-th batch for some r ∈ [1 .. R]. We define

γr =
|K|∏
k=1

[
αr,k, β

Zr,k,1,1
r,1 , . . . , β

Zr,k,1,M
r,1 , . . . , β

Zr,k,R,1
r,R , . . . , β

Zr,k,R,M
r,R

]
. (1)

ICALP 2020



102:12 Equations over Finite Solvable Groups

We do this for every batch of gadgets. The following observation is crucial:

I Lemma 15. Let σ : X → G be an assignment and let r ∈ [1 .. R].
If σ(βr,s) ∈ G H for all s, then

{
(σ ∪ σ′)(γr)

∣∣ σ′ : Y ′r → G
}

= K,

Otherwise,
{

(σ ∪ σ′)(γr)
∣∣ σ′ : Y ′r → G

}
≤ U1K.

Proof. By construction, we have (σ ∪ σ′)(αr,k) ∈ K for all r and k and all assignments σ
and σ′. Since K is normal, it follows that (σ ∪ σ′)(γr) ∈ K for all assignments σ and σ′.

Consider the case that gs := σ(βr,s) ∈ G H for all s ∈ [1 .. R]. By assumption (I),
we have K = ηg1(K) = ηg2(ηg1(K)) = · · · = ηgR . . . ηg2(ηg1(K)) · · · ). By Lemma 1, it
follows that K =

〈
[K, M gG1 , . . . , M gGR ]set

〉
. Since 1 ∈ [K, M gG1 , . . . , M gGR ]set and every

element in K can be written as a product of length at most |K| over any generating set,
we conclude K =

(
[K, M gG1 , . . . , M gGR ]set

)|K|. This is exactly the form how γr was defined
in Equation (1) (recall that αr,s can evaluate to every element of K). Therefore, for each
h ∈ K, there is an assignment σ′ : Y ′r → G such that (σ ∪ σ′)(γr) = h.

On the other hand, let gs := σ(βr,s) ∈ H for some s. Then, by assumption (II) we
have FitLen(ηgs(K)) ≤ 1. Since (σ ∪ σ′)(γr) ∈ ηgs(K), we obtain (σ ∪ σ′)(γr) ∈ U1K by
Lemma 3. J

Now, for every set of auxiliary variables Y ′r we introduce M disjoint copies, which we
call Y(µ)

r for µ ∈ [1 ..M ]. We write γ(µ)
r for the copy of γr where the variables of Y ′r are

substituted by the corresponding ones in Y(µ)
r (the variables X are shared over all γ(µ)

r ). We
set

δ =
[
γ

(1)
1 , . . . , γ

(M)
1 , . . . , γ

(1)
R , . . . , γ

(M)
R

]
.

Finally, fix some h̃ ∈ K 1 with h̃ ∈ [M·R K]set and set Y =
⋃
r,µ Y

(µ)
r .

I Lemma 16. Let σ : X → G be an assignment. If σ(βr,s) ∈ G H for all r and s, then
there is some assignment σ′ : Y → G such that (σ ∪ σ′)(δ) = h̃. Otherwise (σ ∪ σ′)(δ) = 1
for all σ′ : Y → G.

Proof. If σ(βr,s) ∈ G H for all r and s, then by Lemma 15,
{

(σ ∪ σ′)(γ(µ)
r )

∣∣ σ′ : Y(µ)
r →

G
}

= K for all r ∈ [1 .. R] and µ ∈ [1 ..M ]. Hence, since we chose the auxiliary variables
Y(µ)
r to be all disjoint, we obtain

h̃ ∈ [M·R K]set ⊆
{

(σ ∪ σ′)(δ)
∣∣∣ σ′ : Y(µ)

r → G
}
.

On the other hand, if σ(βr,s) ∈ H, then, by Lemma 15, for all σ′ : Y → G and all
µ ∈ [1 ..M ] we have (σ ∪ σ′)(γ(µ)

r ) ∈ U1K. Hence, (σ ∪ σ′)(δ) ∈ [M U1K] = 1. J

Now we are ready to define our equation as δh̃−1 for the reduction of C-Coloring to
EQN-SAT(G) and δ for the reduction to EQN-ID(G).

The final step is to show points (A)–(D) from above.
For (A) observe that the length of γr is O(2M ·R) for all r. Thus, the length of δ is

O(2M ·R) · O(2M ·R) ⊆ 2O(R) = 2O(
√
m) as desired. Point (B) is straightforward from the

construction of δ.
In order to see (C) and (D), we use Lemma 16 to prove another lemma. We fix a bijection

ξ : G/H → [1 .. C]. For an assignment σ : X → G, we define a corresponding coloring
χσ : V → [1 .. C] by χσ(vi) = ξ(σ(Xi)H).
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I Lemma 17. Let σ : X → G be an assignment. Then
if χσ is valid, then there is an assignment σ′ : Y → G such that (σ ∪ σ′)(δ) = h̃ 6= 1,
if χσ is not valid, then for all assignments σ′ : Y → G we have (σ ∪ σ′)(δ) = 1.

Proof. Let χσ be a valid coloring. First, observe that the gadgets all evaluate to some
element outside of H under σ. This is because, if there is a gadget XiX

−1
j that means that

{ vi, vj } ∈ E and so χσ(vi) 6= χσ(vj); hence, σ(Xi) 6= σ(Xj) in G/H (since ξ is a bijection).
Therefore, by Lemma 16, it follows that δ evaluates to h̃ under some proper assignment for
Y.

On the other hand, if χσ is not a valid coloring, then there is an edge { vi, vj } ∈ E with
χσ(vi) = χσ(vj). Then we have σ(Xi)H = σ(Xj)H. Hence, by Lemma 16, we obtain that
(σχ ∪ σ′)(δ) = 1 in G for every σ′ : Y → G. J

This concludes the proof of Theorem 14. J

5 Consequences

In this section we derive our main result Corollary A. We start again with a lemma.

I Lemma 18. For every finite solvable, non-nilpotent group G of Fitting length d, there are
proper normal subgroups K E H C G with FitLen(K) = d− 1 and Ud−1G ≤ H such that

for all g ∈ G H we have ηg(K) = K,
for all h ∈ H we have FitLen(ηh(K)) < FitLen(K).

The construction for Lemma 18 resembles the ones in Lemmas 5 and 6 of [31]. However,
while in [31] a minimal normal subgroup N of a quotient G/K is constructed such that
rg with rg(x) = [x, g] is an automorphism of N (and N is abelian), in our case this is not
enough since we need to apply commutator constructions to our analog of N in the spirit of
the divide-and-conquer approach of Proposition 8.

Proof. Let g1 ∈ G Ud−1G where d is the Fitting length of G. We construct a sequence
of normal subgroups K1,K2, . . . of G as follows: we set K1 = ηg1(G). By Lemma 2,
K1 = γ∞

〈
gG1
〉
, so it has Fitting length d− 1.

Now, while there is some gi ∈ G such that ηgi(Ki−1) < Ki−1 and FitLen(ηgi(Ki−1)) =
FitLen(Ki−1), we set Ki = ηgi(Ki−1) and continue. Since Ki is a proper subgroup of Ki−1,
this process eventually terminates. We call the last term K. We claim that K satisfies the
statement of Lemma 18. By construction for every g ∈ G one of the two cases

ηg(K) = K or
FitLen(ηg(K)) < FitLen(K)

applies. Moreover, since K = ηg(K ′) for some K ′ ≤ G and some g ∈ G, we have
K = ηg(K ′) = ηg(ηg(K ′)) = ηg(K) by Lemma 12 (i). By Lemma 12 (iii), the elements
{h ∈ G | FitLen(ηh(K)) < FitLen(K) } form a subgroup H of G. Clearly H is normal (by
the definition of ηh) and Ud−1G ≤ H because FitLen([K, M Ud−1G]) = FitLen(K)−1. Since
there is some g ∈ G with K = ηg(K), we have H 6= G. J

Be aware that K depends on the order the gi were chosen. Indeed, if G is a direct product
of two groups G1 and G2 of equal Fitting length, then K will either be contained in G1 or in
G2 – in which factor depends on the choice of the gi.
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I Theorem 19 (Corollary A). Let G be a finite solvable group such that either FitLen(G) = 3
and |G/U2G| has a prime divisor 3 or greater (i.e., G/U2G is not a 2-group) or FitLen(G) ≥ 4.
Then EQN-SAT(G) and EQN-ID(G) cannot be decided in deterministic time 2o(log2 N) under
ETH. In particular, EQN-SAT(G) and EQN-ID(G) are not in P under ETH.

Proof. Consider the case that G has Fitting length 3 and |G/U2G| has a prime divisor 3
or greater. Let 2ν for some ν ∈ N be the greatest power of two dividing |G/U2G|. Then,
the subgroup G̃ generated by all 2ν-th powers is normal and it is not contained in U2G.
Therefore, by Lemma 3 it has Fitting length 3 as well. Also, by Lemma 3, we know that
U2G̃ = G̃ ∩ U2G. Hence, G̃/U2G̃ is a subgroup of G/U2G. Moreover, since G̃ is generated by
2ν-th powers, the generators of G̃ have odd order in G̃/U2G̃. Since G̃/U2G̃ is nilpotent, it
follows that |G̃/U2G̃| is odd (recall that a nilpotent group is a direct product of p-groups).

Since G̃ is inducible in G, by Lemma 5, it suffices to show that G̃ satisfies the requirements
of Theorem 14. For this, we use Lemma 18, which gives us normal subgroups K E H C G̃

with U2G̃ ≤ H, FitLen(K) = 2 and such that for all g ∈ G̃ H we have ηg(K) = K, and for
all h ∈ H we have FitLen(ηh(K)) ≤ 1.

It only remains to show that |G̃/H| ≥ 3. Since H 6= G̃ and |G̃/H| is odd, this holds
trivially. Thus, both EQN-SAT(G) and EQN-ID(G) are not in P under ETH if G has
Fitting length 3 and |G/U2G| a prime divisor 3 or greater.

The second case can be reduced to the first case as follows: Assume that G has Fitting
length d ≥ 4. If |G/Ud−1G| has a prime factor 3 or greater, we can apply the Fitting length
3 case to G/L3G for EQN-SAT and to G/Ud−3G for EQN-ID. By Lemma 4 and Lemma 5
this implies the corollary for EQN-SAT. For EQN-ID, the statement follows form Lemma 6
and Lemma 7.

On the other hand, if |G/Ud−1G| = 2ν for some ν ≥ 1, as in the first case, we consider
the subgroup G̃ generated by all 2ν-th powers. Then the index of G̃ in G is again a power of
two (since the order of every element in G/G̃ is a power of two). Moreover, G̃ ≤ Ud−1G and,
by Lemma 3, we have

G̃/Ud−2G̃ = G̃/(Ud−2G ∩ G̃) ∼= (G̃ · Ud−2G)/Ud−2G ≤ Ud−1G/Ud−2G.

Now, |Ud−1G/Ud−2G| cannot be a power of two because, otherwise, G/Ud−2G would be a
2-group and, thus, nilpotent – contradicting the fact that the upper Fitting series is a shortest
Fitting series. Since the index of G̃ in Ud−1G is a power of two, we see that G̃ 6⊆ Ud−2G and
that the index of Ud−2G̃ in G̃ has a prime factor other than 2. Therefore, we can apply the
Fitting length 3 case to G̃/L3G̃ (resp. G̃/Ud−3G̃). J

The case that G/U2G is a 2-group. As mentioned above, in the recent paper [24] Idziak,
Kawałek, and Krzaczkowski proved a 2O(log2(n))-lower bound under ETH for EQN-SAT(S4).
They apply a reduction of 3SAT to EQN-SAT(S4). Instead of using commutators to
simulate conjunctions in the group, the more complicated logical function (X,Y1, Y2, Y3) 7→
X∧ (Y1∨Y2∨Y3) is encoded into the group. Indeed, under suitable assumptions on the group
and the range of the variables, both the expressions w(X,Y1, Y2, Y3) = X8[X,Y1, Y2, Y3] (see
[31]) and s(X,Y1, Y2, Y3) = X [X,Y1, Y2, Y3]−1 (see [16] – referred to by [24]) simulate this
logical function. A new paper unifying our approaches and proving Theorem 19 for all groups
of Fitting length 3 is under preparation.

Consequences for ProgramSAT. We have EQN-SAT(G) ≤AC0

m ProgramSAT(G) for
every finite group G by [5, Lem. 1] (while not explicitly stated, it is clear that this reduction
is an AC0-reduction). Thus, by Theorem 14, ProgramSAT(G) is not in P under ETH if G
is of Fitting length at least 4 or G is of Fitting length 3 and G/U2G is not a 2-group.
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Table 1 Groups up to order 767 for which Theorem 19 gives lower bounds.

Index in Small
Groups Library

Fitting
length GAP Structure description

[ 168, 43 ] 3 (C2 x C2 x C2) : (C7 : C3)
[ 216, 153 ] 3 ((C3 x C3) : Q8) : C3
[ 324, 160 ] 3 ((C3 x C3 x C3) : (C2 x C2)) : C3
[ 336, 210 ] 3 C2 x ((C2 x C2 x C2) : (C7 : C3))
[ 432, 734 ] 4 (((C3 x C3) : Q8) : C3) : C2
[ 432, 735 ] 3 C2 x (((C3 x C3) : Q8) : C3)
[ 504, 52 ] 3 (C2 x C2 x C2) : (C7 : C9)
[ 504, 158 ] 3 C3 x ((C2 x C2 x C2) : (C7 : C3))
[ 600, 150 ] 3 (C5 x C5) : SL(2,3)
[ 648, 531 ] 3 C3 . (((C3 x C3) : Q8) : C3) = (((C3 x C3) : C3) : Q8) . C3
[ 648, 532 ] 3 (((C3 x C3) : C3) : Q8) : C3
[ 648, 533 ] 3 (((C3 x C3) : C3) : Q8) : C3
[ 648, 534 ] 3 ((C3 x C3) : Q8) : C9
[ 648, 641 ] 3 ((C3 x C3 x C3) : Q8) : C3
[ 648, 702 ] 3 C3 x (((C3 x C3) : Q8) : C3)
[ 648, 703 ] 4 (((C3 x C3 x C3) : (C2 x C2)) : C3) : C2
[ 648, 704 ] 4 (((C3 x C3 x C3) : (C2 x C2)) : C3) : C2
[ 648, 705 ] 3 (S3 x S3 x S3) : C3
[ 648, 706 ] 3 C2 x (((C3 x C3 x C3) : (C2 x C2)) : C3)
[ 672, 1049 ] 3 C4 x ((C2 x C2 x C2) : (C7 : C3))
[ 672, 1256 ] 3 C2 x C2 x ((C2 x C2 x C2) : (C7 : C3))
[ 672, 1257 ] 3 (C2 x C2 x C2 x C2 x C2) : (C7 : C3)

Small groups for which Theorem 19 gives a lower bound. In [19] lists of groups are
given where the complexity of EQN-SAT and EQN-ID is unknown. The paper refers
to a more comprehensive list available on the author’s website http://math.unideb.hu/
horvath-gabor/research.html. We downloaded the lists of groups and ran tests in GAP
for which of these groups Theorem 19 provides lower bounds. In the list with unknown
complexity for EQN-ID there are 2331 groups of order less than 768 out of which 1559 are
of Fitting length three or greater. Theorem 19 applies to 22 of them: 3 groups of Fitting
length 4 and 19 groups G of Fitting length 2 where G/U2G is not a 2-group. A list of the
groups for which we could prove lower bounds can be found in Table 1.

5.1 Equations in finite semigroups
For a semigroup S, the problems EQN-SAT(S) and EQN-ID(S) both receive two expressions
as input. The questions is whether the two expressions evaluate to the same element under
some (resp. all) assignments. For semigroups R,S we say that R divides S if R is a quotient
of a subsemigroup of S. The following lemmas are straightforward to prove using basic
semigroup theory.

For the proofs, we need Green’s relations H and J . For a definition, we refer to [35,
Appendix A]. For a semigroup S we write S1 for S with an identity adjoined if there is none.

I Lemma 20. If G is a maximal subgroup of a finite semigroup S, then EQN-SAT(G) ≤AC0

m
EQN-SAT(S).

Proof. Let e ∈ G denote the identity of G. Clearly, G = eGe ≤ eSe and eSe is a submonoid
of S with identity e. The reduction simply replaces every variable X by eXe (and likewise
for constants). Let α̃ denote the equation we obtain from an input equation α this way. Now
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the question is whether α̃ = e in S. Clearly, if α has a solution in G, the resulting equation
α̃ has a solution in S. On the other hand, if α̃ has a solution in S, we obtain a solution of
α = e in S where every variable takes values in eSe.

Assume we have σ(X) = x 6∈ G for a satisfying assignment σ and some variable X of α.
Since σ(α) = e, we have that e is in the two-sided ideal S1xS1 generated by x = exe. By
point 2. of [35, Exercise A.2.2] it follows that x ∈ He = G where He denotes the H-class of e
under Green’s relations (for a definition, we refer to [35]) and G agrees with He because G is
a maximal subgroup. J

I Lemma 21. If a group G divides a semigroup S, then G divides already one of the maximal
subgroups (i.e., regular H-classes) of S.

Proof. Let U ≤ S a subsemigroup and ϕ : U → G a surjective semigroup homomorphism.
Pick some arbitrary element s ∈ U and let e = sω be the idempotent generated by s.
Clearly, we have ϕ(e) = 1. Now, the subsemigroup eUe ≤ U still maps surjectively onto
G under ϕ: by assumption for every g ∈ G there is some ug ∈ U with ϕ(ug) = g; hence,
g = 1g1 = ϕ(e)ϕ(ug)ϕ(e) ∈ ϕ(eUe).

If eUe is not contained in a maximal subgroup, then by point 2. of [35, Exercise A.2.2],
there is some t ∈ eUe which is not J -equivalent to e. Now, we can repeat the above process
starting with t. This will decrease the size of U , so it eventually terminates. J

I Corollary 22. Let S be a finite semigroup and G a group dividing S. If FitLen(G) ≥ 4 or
FitLen(G) = 3 and G/U2G is not a 2-group, then EQN-SAT(S) is not in P under ETH.

Proof. If G with FitLen(G) ≥ 4 or FitLen(G) = 3 and G/U2G divides S, then it follows
from Lemma 21 that there is a group G̃ with the same properties and which is a maximal
subgroup of S. Hence, the statement follows from Lemma 20. J

[2, Theorem 1] states that identity checking over G̃ reduces to identity checking over
S where G̃ is the direct product of all maximal subgroups of S. However, be aware that
in this context the identity checking problem does not allow constants. Since the proof of
Theorem 14 essentially relies on the fact that the subgroup K is inducible and this can be
only shown using constants, this does not allow us to show hardness of EQN-ID(S).

6 Conclusion

We have shown that assuming the exponential time hypothesis there are solvable groups
with equation satisfiability problem not decidable in polynomial time. Thus, under standard
assumptions from complexity theory this means a negative answer to [9, Problem 1] (also
conjectured in [18]). Theorem 19 yields a quasipolynomial time lower bound under ETH.
Thus, a natural weakening of [9, Problem 1] is as follows:

I Conjecture 2. If G is a finite solvable group, then EQN-SAT(G) and EQN-ID(G) are
decidable in quasipolynomial time.

In [5, Theorem 2] it is proved that ProgramSAT(G) and, hence, also EQN-SAT(G)
can be decided in quasipolynomial time given that G is AND-weak. As remarked in Section 3
this theorem remains valid with our slightly less restrictive definition of AND-weakness in
Conjecture 1. Thus, Conjecture 1 implies Conjecture 2. In particular, under the assumption
of both ETH and the AND-weakness conjecture (Conjecture 1), for every finite solvable
group G meeting the requirements of Theorem 19 there are quasipolynomial upper and lower
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bounds for EQN-SAT(G) and EQN-ID(G) – so under these assumptions both problems are
neither in P nor NP-complete. This contrasts the situation for solving systems of equations:
there is a clear P versus NP-complete dichotomy [15].

Theorem 19 proves lower bounds on EQN-SAT and EQN-ID for all sufficiently com-
plicated finite solvable groups. As outlined above, together with the authors of [24] the
extension to all groups of Fitting length three is under preparation. As a refinement we
plan to show that under ETH there is no 2o(n1/(d−1))-time algorithm for EQN-SAT(G) and
EQN-ID(G) where d is the Fitting length of G. Possible further research might address
the complexity of EQN-SAT and EQN-ID in groups of Fitting length two. The results
presented in the introduction suggest that these cases can be solved in polynomial time.

I Conjecture 3. If G is a finite solvable group of Fitting length two, then EQN-SAT(G)
and EQN-ID(G) are decidable in polynomial time.

Another direction for future work is the complexity of EQN-ID for expressions without
constants.
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Abstract
We extend Babai’s quasipolynomial-time graph isomorphism test (STOC 2016) and develop a
quasipolynomial-time algorithm for the multiple-coset isomorphism problem. The algorithm for
the multiple-coset isomorphism problem allows to exploit graph decompositions of the given input
graphs within Babai’s group-theoretic framework.

We use it to develop a graph isomorphism test that runs in time npolylog(k) where n is the number
of vertices and k is the minimum treewidth of the given graphs and polylog(k) is some polynomial
in log(k). Our result generalizes Babai’s quasipolynomial-time graph isomorphism test.
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1 Introduction

The graph isomorphism problem asks for a structure preserving bijection between two given
graphs G and H, i.e., a bijection ϕ ∶ V (G) → V (H) such that vw ∈ E(G) if and only if
ϕ(v)ϕ(w) ∈ E(H). One central open problem in theoretical computer science is the question
whether the graph isomorphism problem can be solved in polynomial time. There are a
few evidences that the problem might not be NP-hard. For example, NP-hardness of the
problem implies a collapse of the polynomial hierarchy [32]. Moreover, NP-hardness of the
graph isomorphism problem would refute the exponential time hypothesis since the problem
can be decided in quasipolynomial time [1].

The research of the graph isomorphism problem started with two fundamental graph
classes, i.e., the class of trees and the class of planar graphs. In 1970, Zemlyachenko gave a
polynomial-time isomorphism algorithm for trees [37]. One year later, Hopcroft and Tarjan
extended a result of Weinberg and designed a polynomial-time isomorphism algorithm for
planar graphs [16],[34]. In 1980, Filotti, Mayer and Miller extended the polynomial-time
algorithm to graphs of bounded genus [24],[10]1. The genus is a graph parameter that
measures how far away the graph is from being planar.

In Luks’s pioneering work in 1982, he gave a polynomial-time isomorphism algorithm
for graphs of bounded degree [22]. His group-theoretic approach laid the foundation of
many other algorithms that were developed ever since. It turns out that the research in the

1 Myrvold and Kocay pointed out an error in Filotti’s techniques [26]. However, different algorithms have
been given which show that the graph isomorphism problem for graphs of bounded genus is indeed
decidable in polynomial time [25, 11, 17].
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graph isomorphism problem for restricted graph classes was a promising approach in tackling
the graph isomorphism problem in general. Shortly after Luks’s result, a combinatorial
partitioning lemma by Zemlyachenko was combined with Luks’s framework. This resulted in
an isomorphism algorithm for graphs with n vertices in general that runs in time 2O(

√

n logn)

[38],[4]. This algorithm was the fastest for decades.
In 1983, the seminal work of Robertson and Seymour in graph minors started a new era

of graph theory [30]. At the same time, Miller extended Luks’s group-theoretic framework to
hypergraphs [25]. It turned out that the study of general structures such as hypergraphs was
also a promising approach in tackling the graph isomorphism problem. In 1991, Ponomarenko
could in fact use Miller’s hypergraph algorithm to design a polynomial-time isomorphism
algorithm for graphs excluding a minor [29].

The work of Robertson and Seymour also rediscovered the notion of treewidth [8], a
graph parameter that measures how far away the graph is from being a tree. The treewidth
parameter was reborn and has been studied ever since. So, researchers went back to the
roots and studied the isomorphism problem for graphs of bounded treewidth. In 1990,
Bodlaender gave a simple isomorphism-algorithm for graphs of treewidth k with n vertices
that runs in time nO(k) [5]. However, no FPT-algorithm was known, i.e., an isomorphism
algorithm with a running time of the form f(k) ⋅ nO(1). The search of a FPT-algorithm
occupied researchers over years and this open problem was explicitly stated by several
authors [36, 6, 18, 19, 28, 7, 9, 12]. In 2017, Lokshtanov, Pilipczuk, Pilipczuk and Saurabh
finally solved this open problem and designed a FPT-algorithm for the graph isomorphism
problem [21]. Their algorithm runs in time 2O(k5 logk)nO(1) where n is the number of vertices
and k is the minimum treewidth of the given graphs.

At the same time, Babai made a breakthrough and designed a quasipolynomial-time
algorithm for the graph isomorphism problem in general [1]. His algorithm runs in time
npolylog(n) where n is the number of vertices and polylog(n) is some polynomial in log(n)
(according to Helfgott’s analysis the function polylog(n) can chosen to be quadratic in
log(n) [15]). To achieve this result, Babai built on Luks’s group-theoretic framework, which
actually solves the more general string isomorphism problem. One of the main questions
is how to combine Babai’s group-theoretic algorithm with the graph-theoretic techniques
that have been developed. For example, it is unclear how to exploit a decomposition of the
given graphs within Babai’s framework since his algorithm actually processes strings rather
than graphs.

Recently, Grohe, Neuen and Schweitzer were able to extend Babai’s algorithm to graphs of
maximum degree d and an isomorphism algorithm was developed that runs in time npolylog(d)

[13]. They suggest that their techniques might be useful also for graphs parameterized by
treewidth and conjectured that the isomorphism problem for graphs of treewidth k can be
decided in time npolylog(k).

In [14], the graph-theoretic FPT-algorithm of Lokshtanov et al. was improved by using
Babai’s group-theoretic algorithm and the extension given by Grohe et al. as a black box.
They decomposed a graph of bounded treewidth into subgraphs with particular properties.
They were able to design a faster algorithm that computes the isomorphisms between these
subgraphs. However, they pointed out a central problem that arises when dealing with graph
decompositions: When the isomorphisms between these subgraphs are already computed, how
can they be efficiently merged in order to compute the isomorphisms between the entire graphs?
This problem was named as multiple-coset isomorphism problem and is formally defined as
follows. Given two sets J = {ρ1∆Can

1 , . . . , ρt∆Can
t } and J ′ = {ρ′1∆′Can

1 , . . . , ρ′t∆′Can
t } where

ρi ∶ V → n, ρ′i ∶ V ′ → n are bijections and ∆Can
i ,∆′Can

i ≤ Sym([n]) are permutation groups for
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all i ∈ [t], the problem is to decide whether there are bijections ϕ ∶ V → V ′, ψ ∶ [t]→ [t] such
that ∆Can

i = ∆′Can
ψ(i) and ϕ ∈ ρi∆Can

i (ρ′ψ(i))−1 for all i ∈ [t]. By applying the group-theoretic
black box algorithms, they achieved an improved isomorphism test for graphs of treewidth k
that runs in time 2k⋅polylog(k)nO(1). However, for further improvements, it did not seem to
be enough to use the group-theoretic algorithms as a black box only. The question of an
isomorphism algorithm that runs in time npolylog(k) remained open.

In [31], the study of the multiple-coset isomorphism problem continued. Rather than
using group-theoretic algorithms as a black box, they were able to extend Luks’s group-
theoretic framework to the multiple-coset isomorphism problem. In order to facilitate their
recursion, they introduced the class of combinatorial objects. Their class of combinatorial
objects contains hypergraphs, colored graphs, relational structures, explicitly given codes
and more. However, the key idea in order to handle the involved structures recursively,
was to add so-called labeling cosets to their structures. By doing so, they could combine
combinatorial decomposition techniques with Luks’s group-theoretic framework. This led to
a simply-exponential time algorithm for the multiple-coset isomorphism problem. Although
the achieved running time was far away from being quasipolynomial, their result led to
improvements of several algorithms. For example, it led to the currently best algorithm for
the normalizer problem (a central problem in computational group theory) [35]. However,
they were not able to extend also Babai’s techniques to their framework and the question of
a graph isomorphism algorithm running in time npolylog(k) remained open.

Our Contribution. In this paper, we give a quasipolynomial-time algorithm for the multiple-
coset isomorphism problem. This leads to an answer of the conjecture in [13] mentioned
above.

I Theorem (Theorem 10). The graph isomorphism problem can be decided in time npolylog(k)

where n is the number of vertices and k is the minimum treewidth of the input graphs.

When k = polylog(n), our algorithm runs in time nO(log(logn)c
) (for some constant c)

and is significantly faster than Babai’s algorithm and existing FPT-algorithms for graphs
parameterized by treewidth.

For the present work, we exploit the fact that Babai’s algorithm was recently extended to
canonization [3]. A canonical labeling of a graph is a function that labels the vertices V of
the graph with integers 1, . . . , ∣V ∣ in such a way that the labeled versions of two isomorphic
graphs are equal (rather than isomorphic). The computation of canonical forms and labelings,
rather than isomorphism testing, is an important task in the area of graph isomorphism and
is especially useful for practical applications. Also the framework given in [31] is actually
designed for the canonization problem. The present paper is based on these works and our
algorithms provide canonical labelings as well. Only the algorithm given in the last section
depends on the bounded-degree isomorphism algorithm of Grohe et al. for which no adequate
canonization version is known.

The first necessary algorithm that we provide in our work is a simple canonization
algorithm for hypergraphs.

I Theorem (Theorem 6). Canonical labelings for hypergraphs (V,H) can be computed in
time (∣V ∣ + ∣H ∣)polylog ∣V ∣.

There is a simple argument why this algorithm is indeed necessary for our main result. It is
well-known that a hypergraphX = (V,H) can be encoded as a bipartite graphGX = (V ⊍H,E)
(the bipartite graph GX has an edge (v,S) ∈ E, if and only if v ∈ S). It is not hard to show
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that the treewidth k of this bipartite graph GX is at most ∣V ∣. The bipartite graph GX
uniquely encodes the hypergraph X, in particular, two hypergraphs are isomorphic if and
only if their corresponding bipartite graphs are isomorphic. This means that an isomorphism
algorithm for graphs of treewidth k running in time npolylog(k) would imply an isomorphism
algorithm for hypergraphs running in time (∣V ∣ + ∣H ∣)polylog ∣V ∣. However, applying Babai’s
algorithm to the bipartite graph would lead to a running time of (∣V ∣ + ∣H ∣)polylog(∣V ∣+∣H ∣).
Instead of applying Babai’s algorithm to the bipartite graph directly, we decompose the
hypergraph and canonize the substructures recursively. To merge the canonical labelings of
all subhypergraphs, we use a canonical version of the multiple-coset isomorphism problem.
However, for the hypergraph algorithm, it suffices to use Babai’s algorithm as a black
box only.

Our decomposition technique for hypergraphs can also be used to design a simple
canonization algorithm for k-ary relations.

I Theorem (Theorem 5). Canonical labelings for k-ary relations R ⊆ V k can be computed in
time 2polylog ∣V ∣∣R∣O(1).

The algorithm improves the currently best algorithm from [13]. As graphs can be seen
as binary relations, our algorithm generalizes the quasipolynomial-time bound for graphs.
The achieved running time is the best one can hope for as long as the graph isomorphism
problem has no solution better than quasipolynomial time.

Our main algorithm finally solves the multiple-coset isomorphism problem. In fact, the
algorithm computes canonical labelings as well.

I Theorem (Theorem 7). Canonical labelings for a set J consisting of labeling cosets can be
computed in time (∣V ∣ + ∣J ∣)polylog ∣V ∣.

This result is actually of independent interest as it also implies a faster canonization
algorithm for the entire class of combinatorial objects.

To solve this problem, the simple hypergraph canonization algorithm can be used as a
subroutine in some places. However, we do not longer use Babai’s and Luks’s techniques
as a black box only. To extend their methods, we follow the route of [31] and consider
combinatorial objects that allows to combine combinatorial structures with permutation
group theory. In particular, we can extend Luks’s subgroup reduction and Babai’s method
and aggregation of local certificates to our framework. All these methods were designed for
the string isomorphism problem and need non-trivial extensions when dealing with a set of
labeling cosets rather than a string.

Related Work. Another extension of Babai’s quasipolynomial time algorithm has been
independently proposed by Daniel Neuen [27] who provided another algorithm for the
isomorphism problem of hypergraphs. However, Neuen can exploit groups with restricted
composition factors that are given as additional input in order to speed up his algorithm.
This can be exploited in the setting of graphs of bounded Euler genus. He provides a graph
isomorphism algorithm that runs in time npolylog(g) where n is the number of vertices and g
is the minimum genus of the given graphs.

On the other hand, his algorithm is not able to handle labeling cosets occurring in the
combinatorial structures. In particular, his algorithm is not able to solve the multiple-coset
isomorphism problem in the desired time bound, which we require for our isomorphism
algorithm for graphs parameterized by treewidth. Moreover, his techniques do not provide
canonical labelings.
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We hope that both algorithms can be combined to give a faster isomorphism test for the
large class of graphs excluding a topological subgraph. This large class of graphs includes the
graphs of bounded treewidth, graphs of bounded genus, graphs of bounded degree and graphs
excluding a minor. In fact, Grohe and Marx provide a structure theorem which shows that
the graph classes mentioned above also characterize graphs excluding a topological subgraph.
Informally, they showed that graphs excluding a topological subgraph can be decomposed
into almost bounded-degree parts and minor-free parts which in turn can be decomposed
into almost-embeddable parts [12]. Therefore, we hope that the improved algorithms for the
isomorphism problem for bounded-degree graphs and bounded-genus graphs can be combined
with our algorithm to exploit the occurring graph decomposition.

Organization of the Paper. In Section 3, we show how (sufficiently small) instances of
the multiple-coset isomorphism and canonization problem can be processed with Babai’s
algorithm. In Section 4, we present a partitioning technique to reduce the canonization
problem for k-ary relations to instances of small size in each decomposition level. In
Section 5, we extend our technique to canonization of hypergraphs, which is an important
subroutine used in the next section. In Section 6, we finally present our main algorithm
which canonizes a set of labeling cosets and is divided into five subroutines. In the first
subroutine, we extend the partitioning technique to families of partitions. The second
and third subroutine extends Luks’s subgroup reduction to our framework and reduces the
problem to the barrier configuration characterized by a giant representation. The fourth and
fifth subroutine extend Babai’s method and aggregation of local certificates to our framework.
In Section 7, a straightforward application of the multiple-coset isomorphism problem leads
to an isomorphism algorithm that runs in time npolylog(k) where n is the number of vertices
and k is the treewidth of the given graphs.

2 Preliminaries

For an integer t, we write [t] for {1, . . . , t}. For a set S and an integer k, we write (S
k
) for

the k-element subsets of S and 2S for the power set of S. The composition of two functions
f ∶ V → U and g ∶ U →W is denoted by fg and is defined as the function that first applies f
and then applies g.

Labeling Cosets. A labeling of a set V is a bijection ρ ∶ V → {1, . . . , ∣V ∣}. A labeling coset of
a set V is a set of bijections Λ such that Λ = ∆ρ = {δρ ∣ δ ∈ ∆} for some subgroup ∆ ≤ Sym(V )
and some labeling ρ ∶ V → {1, . . . , ∣V ∣}. We write Label(V ) to denote the labeling coset
Sym(V )ρ = {σρ ∣ σ ∈ Sym(V )} where ρ is an arbitrary labeling of V . Analogous to subgroups,
a set Θτ is called a labeling subcoset of ∆ρ, written Θτ ≤ ∆ρ, if the labeling coset Θτ is a
subset of ∆ρ.

Generating Sets. For the basic theory of handling permutation groups given by generating
sets, we refer to [33]. Indeed, most algorithms are based on strong generating sets. However,
given an arbitrary generating set, the Schreier-Sims algorithm is used to compute a strong
generating set (of size quadratic in the degree) in polynomial time.

Hereditarily Finite Sets and Combinatorial Objects. Inductively, we define hereditarily
finite sets, denoted by HFS(V ), over a ground set V .

A vertex v ∈ V is an atom and a hereditarily finite set v ∈ HFS(V ),
a labeling coset ∆ρ ≤ Label(V ) is an atom and a hereditarily finite set ∆ρ ∈ HFS(V ),
if X1, . . . ,Xt ∈ HFS(V ), then also X = {X1, . . . ,Xt} ∈ HFS(V ) where t ∈ N ∪ {0}, and
if X1, . . . ,Xt ∈ HFS(V ), then also X = (X1, . . . ,Xt) ∈ HFS(V ) where t ∈ N ∪ {0}.
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A (combinatorial) object is a pair (V,X ) consisting of a ground set V and a hereditarily finite
set X ∈ HFS(V ). The ground set V is usually apparent from context and the combinatorial
object (V,X ) is identified with the hereditarily finite set X . The set Obj(V ) denotes the set
of all objects over V . The transitive closure of an object X , denoted by TC(X ), is defined
as all objects that recursively occur in X . All labeling cosets that occur in X are succinctly
represented via generating sets. The encoding size of an object X can be chosen polynomial
in ∣TC(X )∣ + ∣V ∣ + tmax where tmax is the maximal length of a tuple in TC(X ).

Isomorphisms and Automorphisms of Objects. The image of an object X ∈ Obj(V ) (where
V is disjoint from N) under a bijection µ ∶ V → V ′ is an object X µ ∈ Obj(V ′) that is defined as
follows. Define vµ ∶= µ(v) for an atom X = v and define (∆ρ)µ ∶= µ−1∆ρ for an atom X = ∆ρ,
and inductively define {X1, . . . ,Xt}µ ∶= {Xµ

1 , . . . ,X
µ
t } and (X1, . . . ,Xt)µ ∶= (Xµ

1 , . . . ,X
µ
t ).

The set of all isomorphisms from an object X ∈ Obj(V ) and to an object X ′ ∈ Obj(V ′) is
denoted by Iso(X ;X ′) ∶= {ϕ ∶ V → V ′ ∣ Xϕ = X ′}. The set of all automorphisms of an object
X is denoted by Aut(X ) ∶= Iso(X ;X ).

I Definition 1 ([31]). Let C be an isomorphisms-closed class of (unordered) objects, i.e., for
all X ∈ C over a set V and all bijections ϕ ∶ V → V ′ it holds that Xϕ ∈ C. A canonical labeling
function CL is a function that assigns each object in C a labeling coset CL(X ) = Λ ≤ Label(V )
such that:
(CL1) CL(X ) = ϕCL(Xϕ) for all ϕ ∈ Iso(V ;V ′) (the set of bijections from V to V ′), and
(CL2) CL(X ) = Aut(X )π for some (and thus for all) π ∈ CL(X ).
In this case, the labeling coset Λ is also called a canonical labeling for X .

3 Handling Small Objects via String Canonization

Next, we define the central problem of this paper which is introduced in [14],[31]. This
problem is a canonical version of the multiple-coset isomorphism problem.

I Problem 2. Compute a function CLSet with the following properties:
Input J ∈ Obj(V ) where J = {∆1ρ1, . . . ,∆tρt}, ∆iρi ≤ Label(V ), i ∈ [t] and V is an (un-

ordered) set.
Output A labeling coset CLSet(J) = Λ ≤ Label(V ) such that:
(CL1) CLSet(J) = ϕCLSet(J

ϕ
) for all ϕ ∈ Iso(V ;V ′).

(CL2) CLSet(J) = Aut(J)π for some (and thus for all) π ∈ Λ.

Following the definition of the automorphism group for objects in general, we have that
Aut(J) = {σ ∈ Sym(V ) ∣ ∃ψ ∈ Sym(t)∀i ∈ [t] ∶ σ−1∆iρi = ∆ψ(i)ρψ(i)}.

To clarify the complexity status of Problem 2, it is important to note that the problem
is actually polynomial-time equivalent to the string canonization problem. The string
canonization problem in turn can be solved in quasipolynomial-time with Babai’s algorithm [3].
However, the reduction increases the permutation domain V by a factor ∣J ∣, which leads to a
running time of 2polylog(∣V ∣+∣J ∣) as stated in the following lemma.

I Lemma 3. Canonical labelings for sets J can be computed in time 2polylog(∣V ∣+∣J ∣).

The main task in this work is to remove the dependency of ∣J ∣ in the exponent. The
main algorithm (Theorem 7) solves Problem 2 in a running time of (∣V ∣+ ∣J ∣)polylog ∣V ∣ and is
presented in Section 6. This improvement will finally lead to an improved algorithm for the
graph isomorphism problem from npolylog(n) to npolylog(k) where n is the number of vertices
and k is the minimum treewidth of the input graphs. However, Lemma 3 is still used in our
algorithms. Especially, when ∣J ∣ is bounded by some quasipolynomial in ∣V ∣, the algorithm
from Lemma 3 already runs in the desired time bound.
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Figure 1 We see a graph G decomposed into 3 isomorphic subgraphs H1,H2,H3 ⊆ G shown in
distinct colors.

The Intuition Behind this Central Problem. We explain why Problem 2 is the central
problem when dealing with graph decompositions. We want to keep this subsection as simple
as possible and do not want to introduce tree decompositions yet. For our purpose, we consider
a simplified formulation of a graph decomposition. In this subsection, a graph decomposition
of a graph G = (V,E) is a family of subgraphs {Hi}i∈[t] that covers the edges of the entire
graph, i.e., E(G) = E(H1) ∪ . . . ∪ E(Ht). We say that a graph decomposition is defined
in an isomorphism-invariant way if for two isomorphic graphs G,G′ the decompositions
{Hi}i∈[t],{H ′

i}i∈[t] are defined in such a way that each isomorphism ϕ ∈ Iso(G;G′) also maps
each subgraph Hi of the decomposition of G to a subgraph H ′

j of the decomposition of G′.
In particular, such a decomposition has to be invariant under automorphisms of the graph.
A prime example of such a isomorphism-invariant decomposition in the setting of bounded-
treewidth graphs is the decomposition into clique-separator-free parts. The clique-separator
decomposition goes back to Leimer [20] and is also used in our final isomorphism algorithm.

Assume we have given a graph G for which we can construct a graph decomposition
{Hi}i∈[t] in an isomorphism-invariant way and our task is the computation of a canonical
labeling for G. A priori, it is unclear how to exploit our graph decomposition. In a first
step, we could compute canonical labelings ∆iρi ∶= CL(Hi) for each subgraph Hi recursively.
The central question is how to merge these labeling cosets ∆iρi for Hi in order to obtain a
canonical labeling ∆ρ for the entire graph G.

The easy case occurs when all subgraphs Hi,Hj are pairwise non-isomorphic. In this case,
the subgraphs cannot be mapped to each other and indeed Aut(G) = Aut(H1)∩ . . .∩Aut(Ht).
Therefore, the computation of ∆ρ reduces to a canonical intersection-problem. In fact, Babai’s
quasipolynomial-time algorithm [3] can be used to intersect labeling cosets canonically.

We consider the second extreme case in which all subgraphsHi,Hj are pairwise isomorphic,
see Figure 1.

In such a case, we have that Aut(G) = {σ ∈ Sym(V ) ∣ ∃ψ(t)∀i ∈ [t] ∶ σ ∈ Iso(Hi;Hψ(i))}.
Equivalently, we have that Aut(G) = Aut({∆1ρ1, . . . ,∆tρt}). Therefore, by the definition of
Problem 2, the canonical labeling ∆ρ ∶= CLSet({∆1ρ1, . . . ,∆tρt}) defines a canonical labeling
for the entire graph G.

Alternatively, one can use the following lemma which intuitively says that for the purpose
of canonization the subgraphs Hi can be replaced with their labeling cosets ∆iρi while
preserving all symmetry information. Formally, it says the following.

ICALP 2020
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I Lemma 4 ([31], Object Replacement Lemma). Let X = {X1, . . . ,Xt} be an object and
let CL and CLSet be canonical labeling functions. Define X Set ∶= {∆1ρ1, . . . ,∆tρt} where
∆iρi ∶= CL(Xi) is a canonical labeling for Xi ∈ X . Assume that Xi,Xj ∈ X are pairwise
isomorphic. Then, CLObject(X ) ∶= CLSet(X Set) defines a canonical labeling for X .

Roughly speaking, Problem 2 can be seen as the task of merging the given labeling cosets.
The mixed case in which some (but not all) subgraphs Hi,Hj are isomorphic can be handled
by a mixture of the above cases.

In Section 7, we apply this problem to graphs G with n vertices of treewidth k. By
exploiting that the subgraphs in our application can only intersect in cliques of size at most
k, we are able to restrict our attention to vertex sets of size ∣V ∣ ≤ k (with at most ∣J ∣ ≤ n
labeling cosets). This finally leads to the desired running time of npolylog(k).

Application to Combinatorial Objects. A second application of Problem 2 is the canoniz-
ation framework for combinatorial objects in general given in [31]. In fact, our algorithms
build on this canonization framework as it allows a recursive approach to solve the problem.
Our improved running time for Problem 2 then implies an improved canonization algorithm
for combinatorial objects in general that runs in time npolylog ∣V ∣ (Corollary 8).

4 Canonization of k-ary Relations

In this section, we provide an algorithm for canonical labeling of k-ary relations R ⊆ V k. As
graphs can be seen as binary relations, this problem clearly generalizes the graph canonization
problem. One way to canonize k-ary relations is by using a well-known reduction to the
graph canonization problem [23]. However, this approach leads to a running time that is
quasipolynomial in ∣V ∣ + ∣R∣. In this section, we will give a polynomial-time reduction to the
canonization problem for objects that are of input size polynomial in ∣V ∣ (which does not
depend on ∣R∣). With this reduction, we obtain an improved algorithm that runs in time
2polylog ∣V ∣∣R∣O(1). Our bound improves the currently best algorithm from [13]. Moreover, our
time bound is also optimal (when measured in ∣V ∣ and ∣R∣) as long as the graph isomorphism
problem can not be solved faster than quasipolynomial time.

A partition of a set X ∈ Obj(V ) is a set P = {P1, . . . , Pp} such that X = P1 ⊍ . . . ⊍ Pp
where ∅ ≠ Pi ⊆ X for all Pi ∈ P. We suggest a general technique for exploiting partitions.

The Partitioning Technique. In this setting, we assume that we are given some object
X ∈ Obj(V ) for which we can construct a partition P = {P1, . . . , Pp} in an isomorphism-
invariant way such that 2 ≤ ∣P ∣ ≤ 2polylog ∣V ∣. The goal is the computation of a canonical
labeling for X by using an efficient recursion.

For example, X = R ⊆ V k might be a k-ary relation for which we can easily construct
a partition in an isomorphism-invariant way, as seen next. Assume ∣R∣ ≥ 2 (otherwise the
canonization problem is easy to solve) and let r be the first position in which R differs, i.e.,
the smallest r ∈ [k] such that there are (x1, . . . , xk), (y1, . . . , yk) ∈ R with xr ≠ yr. Then,
we partition R = P1 ⊍ . . . ⊍ Pp by saying that two tuples (x1, . . . , xk), (y1, . . . , yk) are in the
same part Pi if and only if xr = yr. This gives a non-trivial partition P = {P1, . . . , Pp} with
2 ≤ ∣P ∣ ≤ ∣V ∣ ≤ 2polylog ∣V ∣ which is preserved under automorphisms and isomorphisms.

Using recursion, we compute a canonical labeling ∆iρi for each part Pi ⊆ X recursively
(assumed that we can define a partition for each part again). In our example, Pi ⊆ R is a
subrelation and therefore we can apply our approach recursively.



D. Wiebking 103:9

So far, we computed canonical labelings for each part Pi ⊆ X independently. The main
idea is to use our central problem (Problem 2) to merge all these labeling cosets. Let us
restrict our attention to the case in which the parts Pi, Pj ∈ P are pairwise isomorphic. In this
case, we define the set PSet ∶= {∆iρi ∣ Pi ∈ P} consisting of the canonical labelings ∆iρi for
each part. Moreover, by object replacement (Lemma 4), a canonical labeling for PSet defines
a canonical labeling for P as well. A canonical labeling for P in turn defines a canonical
labeling for X since we assume the partition to be defined in an isomorphism-invariant
way. Therefore, it is indeed true that a canonical labeling for PSet would define a canonical
labeling for X . For this reason, we can use the algorithm from Lemma 3 to compute a
canonical labeling for PSet. Intuitively, this algorithm merges all the labeling cosets in PSet

into one single canonical labeling. In our example, this single labeling coset is a canonical
labeling for the relation R. The algorithm Lemma 3 runs in the desired time bound since
∣PSet∣ = ∣P ∣ ≤ 2polylog ∣V ∣ is bounded by some quasipolynomial.

Let us consider the number of recursive calls R(X ) of this approach for a given object X .
Since we recurse on each part Pi ∈ P , we have a recurrence of R(X ) = 1+∑Pi∈P

R(Pi) leading
to at most ∣X ∣O(1) recursive calls. The running time for one single recursive call is bounded
by 2polylog ∣V ∣. For this reason, the total running time is bounded by 2polylog ∣V ∣∣X ∣O(1).

I Theorem 5. Canonical labelings for k-ary relations R ⊆ V k can be computed in time
2polylog ∣V ∣∣R∣O(1).

5 Canonization of Hypergraphs

In this section, we provide an algorithm for canonical labeling of hypergraphs (V,H) where
H ⊆ 2V .

We want to extend the previous partitioning technique to hypergraphs. However, for
hypergraphs a non-trivial isomorphism-invariant partition H =H1 ⊍ . . . ⊍Hs of the edge set
does not always exist, e.g., the hypergraph (V,{S ⊆ V ∣ ∣S∣ = 2}) does not have a non-trivial
partition of the edge set that is preserved under automorphisms. Therefore, we can not
apply the partitioning technique to this setting. For this reason, we introduce a generalized
technique in order to solve this problem. This generalized technique results in a slightly
weaker time bound of (∣V ∣ + ∣H ∣)polylog ∣V ∣ (where the dependency on ∣H ∣ is not polynomial).
Indeed, it is an open problem whether the running time for the hypergraph isomorphism
problem can be improved to 2polylog ∣V ∣ ⋅ ∣H ∣O(1) [2].

A cover of a set X ∈ Obj(V ) is a set C = {C1, . . . ,Cc} such that X = C1 ∪ . . . ∪Cc where
∅ ≠ Ci ⊆ X for all Ci ∈ C. In contrast to a partition, the sets Ci,Cj are not necessarily
disjoint for i ≠ j. A cover C of X is called sparse if ∣Ci∣ ≤ 1

2 ∣X ∣ for all Ci ∈ C. Extending the
partitioning technique, we suggest a technique to handle covers.

The Covering Technique. In this setting, we assume that we have given some object
X ∈ Obj(V ) for which we can define a cover C = {C1, . . . ,Cc} in an isomorphism-invariant
way. Also here, we assume that 2 ≤ ∣C∣ ≤ 2polylog ∣V ∣. The goal is the computation of a
canonical labeling of X using an efficient recursion.

For example, X = H is a hypergraph for which we can easily define a cover in an
isomorphism-invariant way, as seen next. We assume that ∣H ∣ ≥ 2 (otherwise the canonization
problem is easy to solve) and that ∅ ∉H (otherwise we remove the empty set from H). Then,
we cover H = ⋃v∈V Cv by setting Cv ∶= {S ∈ H ∣ v ∈ S} and define a cover C ∶= {Cv ∣ v ∈ V }.
Since each hyperedge S ∈H contains at least one vertex v ∈ V , each hyperedge S is contained
in at least one set Cv ∈ C. Moreover, the cover C is preserved under automorphisms and
isomorphisms.
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First, we reduce to the setting in which C is a sparse cover of X . This can be done
as follows. We define C∗

i ∶= Ci if ∣Ci∣ ≤ 1
2 ∣X ∣ and we define C∗

i ∶= X ∖ Ci if ∣Ci∣ > 1
2 ∣X ∣. By

definition, we ensured that ∣C∗

i ∣ ≤ 1
2 ∣X ∣ for all i ∈ [c]. Let X ∗ ∶= ⋃i∈[c]C∗

i . Next, we consider
two cases.

If X ∗ ( X , then we have found a non-trivial partition X = X ∗ ⊍X ○ where X ○ ∶= X ∖X ∗.
In the hypergraph example, we would have a non-trivial partition of the hyperedges defined in
an isomorphism-invariant way (which can be exploited very easily). We proceed analogously
as in the partitioning technique explained in Section 4.

Otherwise, if X ∗ = X , then C∗ ∶= {C∗

1 , . . . ,C
∗

c } is also a cover of X . But more importantly,
the cover C∗ is indeed sparse. In the case of a sparse cover, we also proceed analogously
as in the partition technique explained in Section 4. However, the key difference of the
covering technique compared to the partitioning technique lies in the recurrence for the
number of recursive calls since the sets C∗

i ,C
∗

j ∈ C∗ are not necessarily pairwise disjoint. The
recurrence we have is R(X ) = 1 +∑C∗

i ∈C
∗ R(C∗

i ). By using that ∣C∗∣ = ∣C∣ ≤ 2polylog ∣V ∣ and
that ∣C∗

i ∣ ≤ 1
2 ∣X ∣, we obtain at most ∣X ∣polylog ∣V ∣ recursive calls. This is exactly the reason

why the algorithm for relations is faster than the algorithm for hypergraphs.

I Theorem 6. Canonical labelings for hypergraphs (V,H) can be computed in time (∣V ∣ +
∣H ∣)polylog ∣V ∣.

6 Canonization of Sets and Objects

Our main theorem provides an algorithm that canonizes a set J = {∆1ρ1, . . . ,∆tρt} consisting
of labelings cosets ∆iρi ≤ Label(V ), i ∈ [t].

I Theorem 7. A function CLSet solving Problem 2 can be computed in time (∣V ∣+∣J ∣)polylog ∣V ∣.

I Corollary 8. Canonical labelings for combinatorial objects can be computed in time
npolylog ∣V ∣ where n is the input size and V is the ground set of the object.

Proof Outline. For the purpose of recursion, our main algorithm CLSet needs some ad-
ditional input parameters. The input of the main algorithm is a tuple (J,A,∆Can, gCan)
consisting of the following input parameters.

J is a set consisting of labeling cosets,
A ⊆ V is a subset which is ∆i-invariant for all ∆iρi ∈ J . We require that Property (A)
holds: (∆iρi)∣V ∖A = (∆jρj)∣V ∖A for all ∆iρi,∆jρj ∈ J (initially, we set A ∶= V ),
∆Can ≤ Sym(V Can) is a group over the linearly ordered set V Can = {1, . . . , ∣V ∣}. We
require that for all ∆iρi ∈ J it holds that ρ−1

i ∆iρi = ∆Can (if this would not be the case,
in can be shown that J can be partitioned such that progress can be measured), and
gCan ∶ ∆Can → Sym(WCan) is a giant representation where WCan = {1, . . . , ∣WCan∣} is a
linearly ordered set (a homomorphism h ∶ ∆→ Sym(W ) is called a giant representation if
the image of ∆ under h is a giant, i.e., Alt(W ) ≤ h(∆) ≤ Sym(W )). It is allowed that
gCan is undefined (gCan = �).

The Subgroup Recursion. First of all we design a subgroup reduction that, given a tuple
(J,A,∆Can,�) and a subgroup ΨCan ≤ ∆Can, reduces the canonical labeling problem of
(J,A,∆Can,�) to s-many instances (Ĵi,A,ΨCan,�) where ∣Ĵi∣ ≤ ∣J ∣. Here, s corresponds to
the index of ΨCan in ∆Can. In contrast to Luks’s subgroup reduction, the present reduction
splits all labeling cosets in J simultaneously. We describe the idea of this algorithm.
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Main algorithm CLSet

gCan is
defined?

reduceToJohnson produceCertificates

aggregateCertificates

No Yes Certificate
of Fullness

found

Progress Progress

Progress

Figure 2 Flowchart of the algorithm for Theorem 7.

We consider the decomposition into left cosets of ∆Can = ⋃`∈[s] δCan
` ΨCan and define

Ĵ ∶= {ρiδCan
` ΨCan ∣ i ∈ [t], ` ∈ [s]}. Surprisingly, we can show that Aut(Ĵ) = Aut(J). This

means that a canonical labeling for Ĵ defines a canonical labeling for J as well and vice
versa. Therefore, the first idea that comes to mind would be a recursion on the instance
(Ĵ ,A,ΨCan,�). However, there are two problems when recursing on Ĵ . First, the instance
Ĵ does not necessarily preserve Property (A) that we have for the subset A ⊆ V (this
requirement is important for the subroutines that follow).

Second, it holds that ∣Ĵ ∣ > ∣J ∣ (assumed that ΨCan < ∆Can is a proper subgroup). Also
this blow-up in the instance size would not lead to the desired recursion. However, we are
able to construct a decomposition of Ĵ = Ĵ1 ⊍ . . . ⊍ Ĵr such that r ≤ s and ∣Ĵi∣ ≤ ∣J ∣ and such
that Property (A) holds for each instance (Ĵi,A,ΨCan,�).

The Johnson Reduction. We design an algorithm that, given an instance (J,A,∆Can,�),
either finds a giant representation gCan ∶ ∆Can → Sym(WCan) or reduces the canonical
labeling problem of (J,A,∆Can,�) to instances that are smaller (according to some function
that measures progress).

First of all, we want to reduce to the case in which all ∆i ≤ Sym(V ) are transitive on
A ⊆ V . To achieve transitivity, Babai’s algorithm uses Luks’s idea of orbit-by-orbit processing.
However, the orbit-by-orbit recursion is a tool that is developed for strings and needs a
non-trivial adaption when dealing with a set of labeling cosets J . To achieve transitivity,
the present algorithm uses an extension of the orbit-by-orbit recursion that was developed
in [31]. In the transitive case, we follow Babai’s idea. First, we define a block system BCan

on which ∆Can acts primitively. If the primitive group acting on BCan is small, we use the
subgroup reduction to reduce to a subgroup ΨCan ≤ ∆Can that is defined as the kernel of
that action. In case that the primitive group is large, we use Cameron’s classification of large
primitive groups which implies that the primitive group is a Cameron group. We reduce the
Cameron group to a Johnson group by using the subgroup reduction again. The Johnson
group (acting on subsets of a set WCan) in turn can be used to define a giant representation
gCan ∶ ∆Can → Sym(WCan).

I Definition 9 (Certificates of Fullness). A group G ≤ Sym(V ) is called certificate of fullness
for an instance (J,A,∆Can, gCan) if
1. G ≤ Aut(J),
2. GCan ∶= Gρi ≤ ∆Can does not depend on the choice of ∆iρi ∈ J , and
3. gCan ∶ GCan → Sym(WCan) is still a giant representation.

The Certificate Producing Algorithm. We design an algorithm that, given an instance
(J,A,∆Can, gCan) (where gCan is defined), either finds a certificate of fullness or makes
progress (according to some function that measures progress).
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The algorithm picks a subset TCan ⊆WCan of logarithmic size. We call this set TCan a
canonical test set. Next, we define the group ∆Can

T ≤ ∆Can which stabilizes TCan in the image
under gCan. By doing so, we can define a giant representation gCan

T ∶ ∆Can
T → Sym(TCan). We

say that vCan ∈ V Can is affected by gCan
T if gCan

T is not a giant representation when restricted
to (∆Can

T )(vCan). Let SCan, UCan ⊆ V Can be set of elements affected and unaffected by gCan
T ,

respectively. We have a technical difference in our algorithm in contrast to Babai’s method.
In Babai’s method of local certificates, he processes a giant representation g ∶ ∆→ Sym(W )
and considers multiple test sets T ⊆W (one test set for each subset of logarithmic size). In
our framework, we define the giant representation for a group ∆Can over a linearly ordered
set V Can. This allows us to choose one single (canonical) test set TCan ⊆WCan only. Here,
canonical means that the subset is chosen minimal with respect to the ordering of the natural
numbers. However, when we translate the ordered structures V Can to unordered structures
over V , we implicitly consider multiple test sets and giant representations. More precise, by
applying inverses of labelings in ∆iρi ∈ J to the ordered group ∆Can

T ≤ Sym(V Can), we obtain
a set of groups over V , i.e., {λi∆Can

T λ−1
i ∣ λi ∈ ∆iρi}. Similarly, we can define a set of giant

representations {(gCan
T )λ−1

i ∣ λi ∈ ∆iρi} (where (gCan
T )λ−1

i (δi) ∶= gCan
T (λ−1

i δiλi) for δi ∈ ∆i)
and a set of affected points Hi ∶= {S ⊆ V ∣ Sλi = SCan for some λi ∈ ∆iρi}. Therefore, when
dealing over unordered structures, we need to consider multiple groups and homomorphisms.
It becomes even more complex, since we are dealing with a set J consisting of labeling cosets
rather than one single group only. In fact, we obtain a set of affected point sets Hi for each
labeling coset ∆iρi ∈ J . However, it turns out that the hardest case occurs when Hi =Hj for
all ∆iρi,∆jρj ∈ J . Roughly speaking, we will apply the following strategy.

We restrict each labeling coset in J to some set of affected points S ∈ Hi and define a
set of local restrictions J∗S that ignore the vertices outside S. The precise definition of J∗S is
given in our algorithm. Intuitively, the algorithms tries to analyze the labeling cosets locally.

Case 1: The local restrictions J∗S are pairwise distinct. In this case, we canonize the local
restrictions J∗S recursively. Observe that a canonical labeling ∆ρ for J∗S does not necessarily
define a canonical labeling for J . However, we can define a function α ∶ J∗S → J that assigns
each local restriction its corresponding labeling coset ∆iρi ∈ J . This function is well-defined
since we assumed the local restrictions to be pairwise distinct. Now, each automorphism
in Aut(J∗S) induces a permutation of J∗S which in turn induces a permutation of J . We are
able to use the permutations on J to canonize the set J efficiently (without even applying
further recursive calls).

Case 2: Some local restrictions in J∗S are pairwise different and some local restrictions in
J∗S are pairwise equal. In this case, we can define a non-trivial partition of J in the following
way. We say that two labeling cosets ∆iρi,∆jρj are in the same part, if and only if the
corresponding local restrictions in J∗S coincide. Actually, this leads to a family of partitions
since we obtain one partition for each choice of an affected set S ∈ Hi. We exploit this
partition family by using an extension of the partitioning techniques from Sections 4 and 5.

Case 3: The local restrictions J∗S are pairwise equal. In this case, it is possible to find
automorphisms GS ≤ Sym(V ) of J which fix the unaffected points V ∖S. In fact, we can find
such automorphisms for all choices of S ∈Hi, otherwise we are in a situation of a previous
case. Finally, we consider the group of automorphisms G ≤ Aut(J) generated by all GS for
S ∈Hi. We can show that G is indeed a certificate of fullness.

The Certificate Aggregation. We finally design an algorithm that, given an instance
(J,A,∆Can, gCan) and a certificate of fullness G ≤ Sym(V ) makes progress (according to
some function that measures progress).
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Let us consider the less technical case in which gCan(GCan) is the symmetric group (rather
than the alternating group). In this case, it holds that GCanΨCan = ∆Can where ΨCan is
the kernel of gCan. Similarly to the subgroup recursion, we consider the decomposition of
∆Can = ⋃`∈[s] δCan

` ΨCan into left cosets of the kernel and define Ĵ ∶= {ρiδCan
` ΨCan ∣ i ∈ [t], ` ∈

[s]}. Again, we have Aut(Ĵ) = Aut(J). The key observation is that G is transitive on Ĵ
since (ρiδCan

` ΨCan)g−1 = ρigρiδCan
` ΨCan for all g ∈ G and GCanΨCan = ∆Can.

First, consider an easy case in which J = {∆1ρ1} consists of one single labeling coset.
In this case, we have a set of automorphisms G acting transitively on the subcosets Ĵ =
{ρ1δ

Can
` ΨCan ∣ ` ∈ [s]}. Moreover, each subcoset satisfies Aut(ρ1δ

Can
` ΨCan) ≤ Aut(J) and

can be seen as an individualization of J . This means, we can choose (arbitrarily) a subcoset
ρ1δ

Can
` ΨCan ≤ ∆1ρ1 and recurse on that. Since the automorphisms in G can map each

subcoset to each other subcoset it does not matter which subcoset we choose. By recursing
on one single subcoset only, we can measure significant progress. At the end, we return GΛ̂
where Λ̂ is a canonical labeling for the (arbitrarily) chosen subcoset and G is the group of
automorphisms (acting transitively on the set of all subcosets).

However, the situation becomes more difficult when dealing with more labeling cosets J =
{∆1ρ1, . . . ,∆tρt} for t ≥ 2. The first idea that comes to mind is the following generalization.
We choose (arbitrarily) some ` ∈ [s] and define the set of subcosets Ĵ` ∶= {ρiδCan

` ΨCan ∣ i ∈
[t]} ⊆ Ĵ . The set Ĵ` contains exactly one subcoset ρiδCan

` ΨCan ≤ ∆iρi of each ∆iρi ∈ J .
However, the partition Ĵ ∶= {Ĵ` ∣ ` ∈ [s]} might not be G-invariant and G might not be
transitive on it. In fact, we are able to find a suitable partition Ĵ ∶= {Ĵ1, . . . , Ĵr} of the
subcosets Ĵ on which G is transitive.

7 Isomorphism of Graphs Parameterized by Treewidth

I Theorem 10. Let G1,G2 be two connected graphs. There is an algorithm that, given a
pair (G1,G2), computes the set of isomorphisms Iso(G1;G2) in time ∣V (G1)∣polylog(twG1).

Proof Outline. We follow the graph decomposition approach from [14] building on [21].
It was shown that graphs of treewidth k can be decomposed in an isomorphism-invariant
way into parts that have restrictions on their automorphism groups. More precisely, the
automorphism group of each part has composition-width at most k after fixing one vertex
(the composition-width of a group ∆ is the smallest integer k such that all composition factors
of ∆ are isomorphic to a subgroup of Sym(k)). This fact allows us to use the bounded-degree
graph isomorphism algorithm given in [13] to compute the isomorphisms between the parts.
Finally, we use our main theorem (Theorem 7) to merge the isomorphisms.

Since Grohe, Neuen and Schweitzer provide an isomorphism algorithm, rather than a
canonization algorithm, our final algorithm from the previous theorem does not lead to
canonical forms. However, this is the only part that depends on their isomorphism algorithm.

8 Outlook and Open Questions

One could ask the question whether our isomorphism algorithm for graphs can be improved
to a FPT-algorithm that runs in time 2polylog(k)nO(1) where n is the number of vertices and k
is the maximum treewidth of the given graphs. There are various reasons why this might be
difficult. One reason is that our approach would require a FPT-algorithm for the isomorphism
problem of graphs of maximum degree d that runs in time 2polylog(d)nO(1). However, it is an
open question whether any FPT-algorithm for the graph isomorphism problem parameterized
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by maximum degree exists. Another reason is that an algorithm for graphs running in time
2polylog(k)nO(1) would imply an isomorphism algorithm for hypergraphs (V,H) running in
time 2polylog ∣V ∣∣H ∣O(1). It is also an open question, whether such a hypergraph isomorphism
algorithm exists [2]. If this were indeed the case, one could hope for an improvement
of our canonization algorithm for a set J consisting of labeling cosets that runs in time
2polylog ∣V ∣∣J ∣O(1).

Recently, Babai extended his quasipolynomial-time algorithm to the canonization problem
for graphs [3]. With Babai’s result, it is a natural question whether the bounded-degree
isomorphism algorithm of [13] extends to canonization as well. The present isomorphism
algorithm for graphs parameterized by treewidth should then be amenable to canonization
as well.

Another question that arises is about permutation groups G ≤ Sym(V ). The canonical
labeling problem for permutation groups is of great interest because it also solves the
normalizer problem. In our recent work, we gave a canonization algorithm for explicitly
given permutation groups running in time 2O(∣V ∣)∣G∣O(1) [31]. Recently, the framework
was extended to permutation groups that are implicitly given and the running time was
improved to 2O(∣V ∣) [35]. The present work implies a canonization algorithm running in
time (∣V ∣ + ∣G∣)polylog ∣V ∣. An important question is whether the present techniques can be
combined with the canonization techniques for implicitly given permutation groups to obtain
a canonization algorithm running in time 2polylog ∣V ∣.

Finally, we ask whether the isomorphism problem can be solved in time npolylog(∣V (H)∣)

where n is the number of vertices and H is an excluded topological subgraph H of the given
graphs. Even for excluded minors H, we do not have such an algorithm.
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Abstract
In the k-Steiner Orientation problem, we are given a mixed graph, that is, with both directed and
undirected edges, and a set of k terminal pairs. The goal is to find an orientation of the undirected
edges that maximizes the number of terminal pairs for which there is a path from the source to the sink.
The problem is known to be W[1]-hard when parameterized by k and hard to approximate up to
some constant for FPT algorithms assuming Gap-ETH. On the other hand, no approximation factor
better than O(k) is known.

We show that k-Steiner Orientation is unlikely to admit an approximation algorithm with
any constant factor, even within FPT running time. To obtain this result, we construct a self-
reduction via a hashing-based gap amplification technique, which turns out useful even outside
of the FPT paradigm. Precisely, we rule out any approximation factor of the form (log k)o(1)

for FPT algorithms (assuming FPT 6= W[1]) and (log n)o(1) for purely polynomial-time algorithms
(assuming that the class W[1] does not admit randomized FPT algorithms). This constitutes a novel
inapproximability result for polynomial-time algorithms obtained via tools from the FPT theory.
Moreover, we prove k-Steiner Orientation to belong to W[1], which entails W[1]-completeness
of (log k)o(1)-approximation for k-Steiner Orientation. This provides an example of a natural
approximation task that is complete in a parameterized complexity class.

Finally, we apply our technique to the maximization version of directed multicut – Max (k, p)-
Directed Multicut – where we are given a directed graph, k terminals pairs, and a budget p.
The goal is to maximize the number of separated terminal pairs by removing p edges. We present
a simple proof that the problem admits no FPT approximation with factor O(k 1

2−ε) (assuming FPT
6= W[1]) and no polynomial-time approximation with ratio O(|E(G)| 12−ε) (assuming NP 6⊆ co-RP).
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1 Introduction

In the recent years new research directions emerged in the intersection of the two theories
aimed at tackling NP-hard problem: parameterized complexity and approximation algorithms.
This led to numerous results combining techniques from both toolboxes. The main goal
in this area is to obtain an algorithm running in time f(k) · |I|O(1) for an instance I with
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parameter k, that finds a solution of value not worse than α (the approximation factor)
times the value of the optimal solution. They are particularly interesting for problems
that are both W[1]-hard and at the same time cannot be well approximated in polynomial
time [1, 10, 13, 22, 30]. On the other hand, some problems remain resistant to approximation
even in this paradigm.

Obtaining polynomial-time approximation lower bounds under the assumption of P 6= NP
is challenging, because it usually requires to prove NP-hardness of a gap problem. In a gap
problem one only needs to distinguish instances with the value of optimal solution at least C1
from those with this value at most C2. This provides an argument that one cannot obtain
any approximation factor better than the gap, i.e., C1

C2
, as long as P 6= NP.

A road to such lower bounds has been paved by the celebrated PCP theorem [4], which
gives an alternative characterization of the class NP. The original complicated proof has been
simplified by Dinur [16] via the technique of gap amplification: an iterated reduction from
a gap problem with a small gap to one with a larger gap. When the number of iterations
depends on the input size, this allows us to start the chain of reductions from a problem
with no constant gap. However, this is only possible when we can guarantee that the size
of all created instances does not grow super-polynomially.

The process of showing approximation lower bounds becomes easier with an additional
assumption of the Unique Games Conjecture [28], which states that a particular gap version
of the Unique Games problem is NP-hard. This makes it possible to start a reduction from
a problem with an already relatively large gap. The reductions based on Unique Games
Conjecture provided numerous tight approximation lower bounds [5, 23, 31].

A parameterized counterpart of the hardness assumption P 6= NP is FPT 6= W[1], which
is equivalent to the statement that k-Clique 6∈ FPT, that is, k-Clique1 does not admit
an algorithm with running time of the form f(k) · |I|O(1). Similarly to the classical complexity
theory, proving hardness of an approximate task relying only on FPT 6= W[1] is difficult
but possible. A recent result stating that the gap version of k-Dominating Set is W[1]-
hard (for the gap being any computable function F (k)) required gap amplification through
a distributed PCP theorem [26].

Again, the task becomes easier when working with a stronger hardness assumption: Gap
Exponential Time Hypothesis2 (Gap-ETH) states that there exists ε > 0 so that one requires
exponential time to distinguish satisfiable 3-CNF-SAT formulas from those where only
a fraction of (1−ε) clauses can be satisfied at once [17, 34]. Gap-ETH is a stronger assumption
than FPT 6= W[1], i.e., the first implies the second, and it sometimes turns out more convenient
since it already provides hardness for a problem with a gap. There are many recent examples
of using Gap-ETH for showing hardness of parameterized approximation [6, 9, 10, 11, 13, 30].

Our contribution is a novel gap amplification technique which exploits the fact that in
a parameterized reduction we can afford an exponential blow-up with respect to the parameter.
It circumvents the obstacles related to PCP protocols and, together with a hashing-based
lemma, allows us to construct relatively simple self-reductions for problems on directed
graphs.

1 We attach the parameter to the problem name when we refer to a parameterized problem.
2 Gap-ETH is a stronger version of the Exponential Time Hypothesis (ETH), according to which one

requires exponential time to solve 3-CNF-SAT [25].
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Steiner Orientation

In the k-Steiner Orientation problem we are given a mixed graph, that is, with both
directed and undirected edges, and a set of k terminal pairs. The goal is to find an orientation
of the undirected edges that maximizes the number of terminal pairs for which there is a path
from the source to the sink.

Some of the first studies on the k-Steiner Orientation problem (also referred to
as the Maximum Graph Orientation problem) were motivated by modeling protein-
protein interactions (PPI) [36] and protein-DNA interactions (PDI) [19, 20]. Whereas PPIs
interactions could be represented with undirected graphs, PDIs required introducing mixed
graphs. Arkin and Hassin [3] showed the problem to be NP-hard, but polynomially solvable
for k = 2. This result was generalized by Cygan et al. [15], who presented an nO(k)-time
algorithm, which implies that the problem belongs to the class XP (see Section 3) when
parameterized by k (cf. [18] for different choices of parameterization).

The k-Steiner Orientation problem has been proved to be W[1]-hard by Pilipczuk and
Wahlström [38], which makes it unlikely to be solvable in time f(k)·|I|O(1). The W[1]-hardness
proof has been later strengthened to work on planar graphs and to give a stronger running
time lower bound based on ETH [11], which is essentially tight with respect to the nO(k)-time
algorithm.

The approximation of Steiner Orientation has been mostly studied on undirected
graphs, where the problem reduces to optimization over trees by contracting 2-connected
components [15]. Medvedovsky et al. [36] presented an O(logn)-approximation and actually
proved that one can always find an orientation satisfying Ω( k

logn ) terminal pairs. The approx-
imation factor has been improved toO(logn/ log logn) [20] and later toO(log k/ log log k) [15]
by observing that one can compress an undirected instance to a tree of size O(k). A lower
bound of 12

11 − ε (based on P 6= NP) has been obtained via a reduction from Max Directed
Cut [36]. Medvedovsky et al. [36] posed a question of tackling the maximization problem on
mixed graphs, which was partially addressed by Gamzu et al. [20] who provided a polylog-
arithmic approximation in the case where the number of undirected components on each
source-sink path is bounded by a constant.

The decision problem whether all the terminal pairs can be satisfied is polynomially
solvable when restricting input graphs to be undirected [24], which makes the maximiz-
ation version fixed-parameter tractable, by simply enumerating all subsets of terminals.
The maximization version on mixed graphs is far less understood from the FPT perspective.
It is unlikely to be exactly solvable since the decision problem is W[1]-hard, but can we
approximate it within a reasonable factor? The reduction by Chitnis et al. [11] implies that,
assuming Gap-ETH, k-Steiner Orientation cannot be approximated within factor 20

19 − ε
on mixed graphs, in running time f(k) · nO(1). Using new techniques introduced in this
paper, we are able to provide stronger lower bounds based on a weaker assumption.

Related work

Some examples of the new advancements in parameterized approximations are 1.81-approxima-
tion for k-Cut [22] (recently improved to ( 5

3 + ε) [27]), which beats the factor 2 that is
believed to be optimal within polynomial running time [33], or (1 + 2

e + ε)-approximation for
k-Median [13], all running in time f(k) · nO(1). For Capacitated k-Median, a constant
factor FPT approximation has been obtained [1, 14], whereas the best-known polynomial-time
approximation factor is O(log k). Another example is an FPT approximation scheme for the
planar case of Bidirected Steiner Network, which does not admit a polynomial-time
approximation scheme unless P = NP [10].
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On the other hand several problems have proven resistant to such improvements. Chalerm-
sook et al. [9] showed that under the assumption of Gap-ETH there can be no parameterized
approximations with ratio o(k) for k-Clique or k-Biclique and none with ratio F (k) for
k-Dominating Set (for any computable function F ). They have also ruled out ko(1)-
approximation for Densest k-Subgraph. The cited FPT approximation for k-Median has
a tight approximation factor assuming Gap-ETH [13].

Subsequently, efforts have been undertaken to weaken the complexity assumptions
on which the lower bounds are based. For the k-Dominating Set problem Gap-ETH
has been replaced with a more established hardness assumption that FPT 6= W[1] [26].
Marx [35] has proven parameterized inapproximability of Monotone k-Circuit SAT
under the even weaker assumption that FPT 6= W[P]. Lokshtanov et al. [30] introduced
the Parameterized Inapproximability Hypothesis (PIH), that is weaker than Gap-ETH and
stronger than FPT 6= W[1], and used it to rule out an FPT approximation scheme for
Directed k-Odd Cycle Transversal. PIH turned out to be a sufficient assumption
to argue there can be no FPT algorithm for k-Even Set [6].

2 Overview of the results

Our main inapproximability result is a W[1]-hardness proof for the gap version of k-Steiner
Orientation with the gap q = (log k)o(1). This means that the problem is unlikely to admit
a (log k)o(1)-approximation algorithm with running time f(k) · |I|O(1).

I Theorem 2.1. Consider a function α(k) = (log k)β(k), where β(k)→ 0 is computable and
non-increasing. It is W[1]-hard to distinguish whether for a given instance of k-Steiner
Orientation:
1. there exists an orientation satisfying all k terminal pairs, or
2. for all orientations the number of satisfied pairs is at most 1

α(k) · k.
The previously known approximation lower bound for FPT algorithms, 20

19−ε, was obtained
via a linear reduction from k-Clique and was based on Gap-ETH [11]. Our reduction not only
raises the inapproximability bar significantly, but also weakens the hardness assumption
(although we are not able to enforce the planarity of the produced instances, as in [11]).
In fact, we begin with the decision version of k-Steiner Orientation and introduce
a gap inside the self-reduction. What is interesting, we rely on totally different properties
of the problem than in the W[1]-hardness proof [38]: that one required gadgets with long
undirected paths and we introduce only new directed edges.

This result is also interesting from the perspective of the classical (non-parameterized)
approximation theory. The best approximation lower bound known so far has been 12

11−ε [36],
valid also for undirected graphs. Therefore we provide a new inapproximability result for
polynomial algorithms, which is based on an assumption from parameterized complexity.
Restricting to a purely polynomial running time allows us to rule out also approximation
factors depending on n (rather than on k) with a slightly stronger assumption, which
is required because the reduction is randomized (see Section 3 for the formal definition
of a false-biased FPT algorithm).

I Theorem 2.2. Consider a function α(n) = (logn)β(n), where β(n) → 0 is computable
and non-increasing. Unless the class W[1] admits false-biased FPT algorithms, there is no
polynomial-time algorithm that, given an instance of Steiner Orientation with n vertices
and k terminal pairs, distinguishes between the following cases:
1. there exists an orientation satisfying all k terminal pairs, or
2. for all orientations the number of satisfied pairs is at most 1

α(n) · k.
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A similar phenomenon, that is, novel polynomial-time hardness based on an assumption
from parameterized complexity, has appeared in the work on Monotone k-Circuit SAT [35].
Another example of this kind is polynomial-time approximation hardness for Densest k-
Subgraph based on ETH [32].

W[1]-completeness

So far, the decision version of k-Steiner Orientation has only been known to be W[1]-
hard [38] and to belong to XP [15]. We establish its exact location in the W-hierarchy.
A crucial new insight is that we can assume the solution to be composed of f(k) pieces, for
which we only need to check if they match each other, and this task reduces to k-Clique.

I Theorem 2.3. k-Steiner Orientation is W[1]-complete.
We hereby solve an open problem posted by Chitnis et al. [11]. What is more, this implies

that (log k)o(1)-Gap k-Steiner Orientation belongs to W[1] (see Section 3 for formal
definitions of problems). Together with Theorem 2.1 this entails W[1]-completeness. Another
gap problem with this property is Maximum k-Subset Intersection3, introduced for
the purpose of proving W[1]-hardness of k-Biclique [29]. We are not aware of any other
natural gap problem being complete in a parameterized complexity class. Note that although
W[1]-hardness of the gap version of k-Dominating Set is known [26], k-Dominating Set
is W[2]-complete.

Directed Multicut

As another application of our technique, we present a simple hardness result for the gap
version of Max (k, p)-Directed Multicut with the gap q = k

1
2−ε. We show that even

if we parameterize the problem with both the number of terminal pairs k and the size
of the cutset p, then we essentially cannot obtain any approximation ratio better than

√
k.

I Theorem 2.4. For any ε > 0 and function α(k) = O
(
k

1
2−ε
)
, it is W[1]-hard to distinguish

whether for a given instance of Max (k, p)-Directed Multicut:
1. there is a cut of size p that separates all k terminal pairs, or
2. all cuts of size p separate at most 1

α(k) · k terminal pairs.

When restricted to polynomial running time, the lower bound of Ω(k 1
2−ε) can be improved

to Ω(|E(G)| 12−ε), however unlike the case of k-Steiner Orientation, this time the reduction
is polynomial and we need to assume only NP 6⊆ co-RP (recall that a problem is in co-RP if
it admits a polynomial-time false-biased algorithm, i.e., an algorithm which is always correct
for YES-instances and for NO-instances returns the correct answer with probability greater
than some constant).

I Theorem 2.5. Assuming NP 6⊆ co-RP, for any ε > 0 and function α(m) = O
(
m

1
2−ε
)
,

there is no polynomial-time algorithm that, given an instance (G, T , p), |T | = k, |E(G)| = m,
of Max Directed Multicut, distinguishes between the following cases:
1. there is a cut of size p that separates all k terminal pairs, or
2. all cuts of size p separate at most 1

α(m) · k terminal pairs.

3 To give a concrete example of a W[1]-complete gap problem, consider the task of distinguishing graphs
with Kk,F1(k) from those with no Kk,F2(k). The reduction in [29] implies that this is W[1]-hard for
functions F1, F2 with large gap. On the other hand, the problem of finding Kk,F1(k) belongs to W[1]
via a color-coding reduction to (F1(k) + k)-Clique.
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As far as we know, the approximation status of this variant has not been studied yet.
If we want to minimize the number of removed edges to separate all terminal pairs or
minimize the ratio of the cutset size to the number of separated terminal pairs (this problem
is known as Directed Sparsest Multicut), those cases admit a polynomial-time Õ(n 11

23 )-
approximation algorithm [2] and a lower bound of 2Ω(log1−ε n) [12]. Since 11

23 <
1
2 and n ≤ m,

the maximization variant with a hard constraint on the cutset size turns out to be harder.
In the undirected case p-Multicut is FPT, even when parameterized only by the size

of the cutset p and allowing arbitrarily many terminals [7]. This is in contrast with the
directed case, which becomes W[1]-hard already for 4 terminals, when parameterized by p.
It is worth mentioning that k-Steiner Orientation and p-Directed Multicut were
proven to be W[1]-hard with a similar gadgeting machinery [38].

Organization of the paper

We begin with the necessary definitions in Section 3. As our gap amplification technique
is arguably the most innovative ingredient of the paper, we precede the proofs with informal
Section 4, which introduces the ideas gradually. It is followed by the detailed constructions for
k-Steiner Orientation in Section 5 and for Max (k, p)-Directed Multicut in Section 6.
Each contains a self-reduction lemma and applications to polynomial and FPT running time.
The proof of W[1]-completeness of k-Steiner Orientation can be found in the full version
of the article.

3 Preliminaries

Fixed parameter tractability

A parameterized problem instance is created by associating an integer parameter k with
an input instance. Formally, a parameterized language is a subset of Σ∗ × N. We say that
a language (or a problem) is fixed parameter tractable (FPT) if it admits an algorithm solving
an instance (I, k) (i.e., deciding if it belongs to the language) in running time f(k) · |I|O(1),
where f is a computable function. Such a procedure is called an FPT algorithm and we say
concisely that it runs in FPT time. A language belongs to the broader class XP if it admits
an algorithm with running time of the form |I|f(k).

There is no widely recognized class describing problems which admit randomized FPT
algorithms. Instead of defining such a class, we will directly use the notion of a false-biased
algorithm, which is always correct for YES-instances and for NO-instances returns the correct
answer with probability greater than some constant (equivalently, when the algorithm returns
false then it is always correct). Similarly, a true-biased algorithm is always correct for
NO-instances but may be wrong for YES-instances with bounded probability. A false-biased
(resp. true-biased) FPT algorithm satisfies the condition above and runs in FPT time.

To argue that a problem is unlikely to be FPT, we use parameterized reductions analogous
to those employed in the classical complexity theory. Here, the concept of W-hardness replaces
NP-hardness, and we need not only to construct an equivalent instance in FPT time, but
also ensure that the parameter in the new instance depends only on the parameter in the
original instance. If there exists a parameterized reduction from a W[1]-hard problem (e.g.,
k-Clique) to another problem Π, then the problem Π is W[1]-hard as well. This provides
an argument that Π does not admit an algorithm with running time f(k) · |I|O(1) under the
assumption that FPT 6= W[1].
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Approximation algorithms and gap problems

We define an optimization problem (resp. parameterized optimization problem) as a task
of optimizing function L → N, where L ⊆ Σ∗ (resp. L ⊆ Σ∗ × N), representing the value
of the optimal solution. An α-approximation algorithm for a maximization task must return
a solution of value no less than the optimum divided by α (we follow the convention with
α > 1). The approximation factor α can be a constant or it can depend on the input
size. In the most common setting, the running time is required to be polynomial. An FPT
approximation algorithm works with a parameterized optimization problem and is required to
run in FPT time. It is common that its approximation factor can depend on the parameter.

A gap problem (resp. parameterized gap problem) is given by two disjoint languages
L1, L2 ⊆ Σ∗ (resp. L1, L2 ⊆ Σ∗×N). An algorithm should decide whether the input belongs
to L1 or to L2. If neither holds, then the algorithm is allowed to return anything. Usually
L1, L2 are defined respectively as the sets of instances (of an optimization problem) with
a solution of value at least C1 and instances with no solution with value greater than C2.
An α-approximation algorithm with α < C1

C2
can distinguish L1 from L2, therefore hardness

of an approximation task is implied by hardness for the related gap problem.

Problem definitions

We now formally describe the problems we work with. Since we consider parameterized
algorithms it is important to specify how we define the parameter of an instance.

A mixed graph is a triple (V,A,E), where V is the vertex set, A is the set of directed
edges, and E stands for the set of undirected edges. An orientation of a mixed graph is given
by replacing each undirected edge uv ∈ E with one of the directed ones: (u, v) or (v, u). This
creates a directed graph G̃ = (V,A ∪ Ẽ), where Ẽ is the set of newly created directed edges.
We assume that uv /∈ E for each (u, v) ∈ A, so G̃ is always a simple graph.

k-Steiner Orientation
Input: mixed graph G = (V, A, E), list of terminal pairs T =

((s1, t1), . . . , (sk, tk)),
Parameter: k

Task: find an orientation G̃ of G that maximizes the number of pairs
(si, ti), such that ti is reachable from si in G̃

We add „Max” to the name of the following problem in order to distinguish it from
the more common version of Directed Multicut, where one minimizes the number of edges
in the cut.

Max (k, p)-Directed Multicut

Input: directed graph G = (V, A), list of terminal pairs T = ((s1, t1), . . . ,

(sk, tk)), integer p

Parameter: k + p

Task: find a subset of edges A′ ⊆ A, |A′| ≤ p, in order to maximize the
number of pairs (si, ti), such that ti is unreachable from si in
G \A′

If a solution to either problem satisfies the reachability (resp. unreachability) condition
for a particular terminal pair, we say that this pair is satisfied by this solution. The decision
versions of both problems ask whether there is a solution of value k, that is, satisfying
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all the terminal pairs. We call such an instance fully satisfiable, or a YES-instance, and
a NO-instance otherwise. For the sake of proving approximation hardness we introduce the
gap versions: q-Gap k-Steiner Orientation and q-Gap Max (k, p)-Directed Multicut,
where we are promised that the value of the optimal solution is either k or at most k

q , and
we have to distinguish between these cases.

When referring to non-parameterized problems, we drop the parameters in the problem
name. We use notation [n] = {1, 2, . . . , n}. All logarithms are 2-based.

4 The gap amplification technique

We begin with an informal thought experiment that helps to understand the main ideas behind
the reduction. For an instance (G, T = ((s1, t1), . . . , (sk, tk))) of k-Steiner Orientation
we refer to the vertices si, ti ∈ V (G) as G{s, i} and G{t, i}. We want to construct a larger
instance (H, TH) so that if (G, T ) is fully satisfiable then (H, TH) is as well, but otherwise the
maximal fraction of satisfiable pairs in (H, TH) is strictly less than k−1

k . Consider k vertex-
disjoint copies of the original instance: (G1, T1), (G2, T2), . . . , (Gk, Tk), that will be treated
as the first layer. Assume that (G, T ) is a NO-instance (i.e., one cannot satisfy all pairs
at once), so for any orientation of the copies G̃1, G̃2, . . . , G̃k, there is a tuple (j1, j2, . . . , jk)
such that G̃i{t, ji} is unreachable from G̃i{s, ji} in G̃i. Suppose for now that we have fixed
the values of (ji), even before we have finished building our instance.

Let R = (r1, r2, . . . , rk) be a tuple sampled randomly from [k]k. We connect the sinks
in the first layer to the sources in another copy of the same instance – let us refer to it
as (GR, TR). We add a directed edge from Gi{t, ri} to GR{s, i} for each i ∈ [k], thus
connecting a random sink of Gi to the source GR{s, i}, as shown in Figure 1. We refer
to the union of all k + 1 copies of G with k added connecting edges as the graph H.
We define TH = ((G1{s, r1}, GR{t, 1}), . . . , (Gk{s, rk}, GR{t, k})), so we want to satisfy
those k terminal pairs that got connected randomly. Let X be a random variable equal to
the value of the optimal solution for (H, TH) under the restriction that the solution orients
G1, G2 . . . , Gk as G̃1, G̃2, . . . , G̃k. What would be the expected value of X?

Let Y denote another random variable being the number of indices i for which ri 6= ji.
By linearity of expectation we have EY = k − 1. It holds that X ≤ Y and so far we still
have only the bound EX ≤ k− 1. However, with probability (k−1

k )k we have ri 6= ji for all i,
therefore Y = k, but we cannot connect all pairs within GR (because it is a copy of a NO-
instance), so X ≤ k − 1. This means that E(Y −X) ≥ (k−1

k )k and so EX ≤ k − 1− (k−1
k )k:

the gap has been slightly amplified.
Of course in the proper reduction we cannot fix the orientation before adding the

connecting edges. However, we can afford an exponential blow-up with respect to k. We
can include in the second layer the whole probabilistic space, that is, kk copies of (G, T ) (rather
than a single (GR, TR)), each connected to the first layer with respect to a different tuple
(r1, r2, . . . , rk), thus creating a large instance (H, TH) with kk ·k terminal pairs (see Figure 1).
For any orientation of H the fraction of satisfied terminal pairs equals the average over
the fractions for all kk groups of terminal pairs, so we can emulate the construction above
without fixing (j1, j2, . . . , jk). The maximal fraction of satisfiable terminal pairs in such
(no longer random) (H, TH) would be the same as before, that is, EX

k < k − 1. However,
the smaller instance we create the better lower bounds we get, so we will try to be more
economical while constructing (H, TH).

An important observation is that we do not have to include all kk choices of R in the
construction. We just need a sufficient combination of them, so that the gap amplification
occurs for any choice of (j1, j2, . . . , jk). This can be ensured by picking just kO(1) choices of R
and using an argument based on the Chernoff bound (see Section 5 for a detailed construction).
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(G1, T1) (G2, T2) (G3, T3) (G4, T4)

(GR, TR)

r1 r2 r3 r4

Figure 1 The construction of (H, TH) for k = 4. The black copy (GR, TR) is connected according
to the choice of R = (r1, r2, r3, r4) = (2, 2, 1, 2) and the terminals (sources and sinks) are marked
with black dots. The dotted lines indicate which pairs of terminals are unreachable in each G̃i

and we can set (j1, j2, j3, j4) = (4, 3, 4, 3) (another valid choice is (4, 3, 4, 1)). We have ri 6= ji for
each i, so Y = 4 but X ≤ 3. The grey copy illustrates another random choice of connection: R′ =
(r1, r2, r3, r4) = (4, 4, 1, 3) and X ≤ Y = 2. If we wanted to construct (H, TH) emulating the whole
probabilistic space, we would include all 44 copies of (GR, TR) for all choices of R = (r1, r2, r3, r4) in
the same way as the black and the grey copy.

We can iterate this construction by treating (H, TH) as a new input and amplifying the
gap further in each step. In further steps we need to add an exponential number of copies
to the new layer, even when compressing the probabilistic space as above. This is why we
get an exponential blow-up with respect to k and we need to work with a parameterized
hardness assumption, even for ruling out polynomial-time approximations.

The construction for Max (k, p)-Directed Multicut is simpler because the layer
stacking does not have to be iterated. Therefore to achieve polynomial-time hardness it
suffices to assume that NP 6⊆ co-RP. The phenomenon that both problems admit such
strong self-reduction properties can be explained by the fact that when dealing with directed
reachability one can compose instances sequentially, which is the first step in both reductions.

5 Inapproximability of Steiner Orientation

We are going to present a formal construction of the argument sketched in Section 4. We first
formulate and discuss the properties of the construction. Then we introduce a probabilistic
tool, called a δ-biased sampler family, describe the reduction step, and prove the gap
amplifying property. At the end of this section we present the proof of the following lemma.
Let S(G, T ) denote the maximal number of pairs that can be satisfied by some orientation
in an instance (G, T ).

I Lemma 5.1. There is a procedure that, for an instance (G, TG), k = |TG|, of Steiner
Orientation, and a parameter q, constructs a new instance (H, TH), k0 = |TH |, such that:
1. k0 = 2qO(k) ,
2. |V (H)| ≤ |V (G)| · k2

0,
3. if S(G, TG) = k, then S(H, TH) = k0 always (Completeness),
4. if S(G, TG) < k, then S(H, TH) ≤ 1

q · k0 with probability at least 1
k0

(Soundness).
The randomized construction runs in time proportional to |H|. It can be derandomized within
running time f(k, q) · |G|.
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It easily follows from these properties that the gap can get amplified to any constant q.
It is more complicated though to rule out a superconstant approximation factor, e.g.,
α(k) = log log k, because we need to keep track of the growth of α(k0) when increasing q.
We address this issue after proving Lemma 5.1.

Sampler families

As sketched in Section 4, given fixed orientations of the k copies of G, we are able to randomly
sample k sinks and insert additional edges so that the expected optimum of the new instance
is sufficiently upper bounded. We want to reverse this idea, so we could randomly sample
a moderate number of additional connections once to ensure the upper bound works for any
orientation. To this end, we need some kind of a hashing technique to mimic the behaviour
of the probabilistic space with a structure of moderate size. Examples of such constructions
are (generalized) universal hash families [8, 39, 40] or expander random walk sampling [21].
Even though the construction presented below is relatively simple, we are not aware of any
occurrences of it in the literature.

For a set X1 and a multiset X2, we write X2 ⊆ X1 if every element from X2 appears
in X1. Let U(X) denote the uniform distribution over a finite multiset X. In particular,
each distinct copy of the same element in X has the same probability of being chosen: 1

|X| .

I Definition 5.2. For a family F of functions X → [0, 1], a δ-biased sampler family is
a multiset XH ⊆ X, such that for every f ∈ F it holds∣∣Ex∼U(XH)f(x)− Ex∼U(X)f(x)

∣∣ ≤ δ.
I Lemma 5.3. For a given X, F , and δ > 0, a sample of O(δ−2 log(|F|)) elements from X

(sampled independently with repetitions) forms a δ-biased sampler family with probability
at least 1

2 .

Proof. We sample independently M = 10 · δ−2 log(|F|) elements from X with repetitions.
For the sake of analysis, note that this is a single sample from the space ΩX,M being the family
of all M -tuples of elements from X, equipped with a uniform distribution. Let XH denote
the random multiset of all elements in this M -tuple. For each f ∈ F we define Af ⊆ ΩX,M
as the family of tuples for which

∣∣Ex∼U(XH)f(x)− Ex∼U(X)f(x)
∣∣ > δ. For a fixed f we apply

the Hoeffding’s inequality.

P(Af ) = P
(∣∣∣∣Ex∼U(XH)f(x)− Ex∼U(X)f(x)

∣∣∣∣ > δ

)
≤ 2 exp(−2δ2M).

For our choice of M this bound gets less than 1
2|F| . By union bound, the probability that XF

is not a δ-biased sampler family is P
(⋃

f∈F Af

)
≤
∑
f∈F P(Af ) ≤ 1

2 . The claim follows. J

We keep the concise notation from Section 4: for an instance (G, T ), T = ((s1, t1), . . . ,
(sk, tk)) of k-Steiner Orientation we refer to the vertices si, ti ∈ V (G) as G{s, i} and
G{t, i}.

Building the layers

Given an instance (G, TG), our aim is to build a larger instance, so that if S(G, T ) = k then
the new one is also fully satisfiable, but otherwise the maximal fraction of terminal pairs
being simultaneously satisfiable in the new instance is at most 1

q .
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(GR, TR)

(H i
1, T i

1 )

r1 r2 r3 r4

. . .

(Hi−1
1 , T i−1

1 ) (H i
2, T i

2 )

. . .

︷ ︸︸ ︷
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

(H i
3, T i

3 ) (H i
4, T i

4 )

pi+1

Figure 2 The construction of (Hi+1, T i+1) for k = 4. The first copy of (Hi, T i) is shown
in greater detail to highlight the recursive construction, with circles representing its terminal pairs.
The new layer consists of pi+1 copies of (G, T ). The vector R = (r1, r2, r3, r4) ∈ [pi]4 indicates which
sinks are connected to the sources in (GR, TR). The black dots show 4 terminal pairs associated with
this copy. For the sake of legibility only the edges incident to GR (the black ones) and neighboring
copies (the grey ones) are sketched.

We inductively construct a family of instances (Hi, T i)Bi=1 with (H1, T 1) = (G, TG). Let
ki = |T i| and pi indicate the number of copies of (G, TG) in the last layer (to be explained
below) of (Hi, T i). We will have that p1 = 1 and ki = |T i| = k ·pi. We construct (Hi+1, T i+1)
by taking k vertex-disjoint copies of the i-th instance, denoted (Hi

1, T i1 ), . . . , (Hi
k, T ik ) and

forming a new layer of copies of (G, TG) which will be randomly connected to the i-th layer
through directed edges. Therefore graph Hi+1 will have i+ 1 layers of copies of G.

Let R = [ki]k be the family of k-tuples (r1, r2, . . . rk) with elements from the set [ki].
We sample a random tuple R = (r1, r2, . . . rk) from R and create a new copy of the original
instance – let us refer to it as (GR, TR). We add a directed edge from Hi

j{t, rj} to GR{s, j}
for each j ∈ [k], thus connecting a random sink of Hi

j to the source GR{s, i}. We insert
k pairs to T i+1: (Hi

1{s, r1}, GR{t, 1}), . . . , (Hi
k{s, rk}, GR{t, k}). We iterate this subroutine

pi+1 = O(k4q2kpi) times (a derivation of this quantity is postponed to Lemma 5.4), as shown
in Figure 2.

I Lemma 5.4. Let yi = S(Hi, T i) / ki be the maximal fraction of terminal pairs that can be
simultaneously satisfied in (Hi, T i). Suppose that S(G, TG) < k and yi ≥ 1

q . Then with
probability at least 1

2 it holds yi+1 ≤ yi − 1
2k · q

−k.

Proof. First observe that for each (sj , tj) ∈ T i, any (sj , tj)-path in (Hi, T i) runs through
i unique copies of (G, TG). Therefore an (sj , tj)-pair is satisfied only if the corresponding
i terminal pairs in those copies are satisfied. Recall that we have connected each copy
of (G, TG) in the i-th layer to the terminals from the previous layer according to a random
tuple R = (r1, r2, . . . rk) ∈ R.

We will now analyze how the possible orientations H̃i
1, . . . , H̃

i
k influence the status of the

terminal pairs in T i+1. Let Cj ⊆ [ki] encode which of the terminal pairs are reachable in
H̃i
j , that is, Cj = {` ∈ [ki] : H̃i

j{t, `} is reachable from H̃i
j{s, `}}. A tuple C = (C1, . . . Ck) is

called a configuration and we denote the family of all feasible configurations as C. We have
|C| ≤ (2ki)k = 2pik2 . For a configuration C ∈ C let fC : R → [0, 1] be a function describing
the maximal fraction of satisfiable terminal pairs from those with sinks in GR connected
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through a tuple R ∈ R. Note that fC(R) depends on C,R and the best possible orientation
of GR, whereas it is oblivious to the rest of the structure of (H̃i

j)kj=1. We can thus think of C
as an interface between the first i layers and GR.

For fixed orientations H̃i
1, . . . , H̃

i
k, and therefore fixed configuration C ∈ C, we estimate

the expected value of fC . Let Yj be a random Boolean variable indicating that H̃i
j [t, rj ]

is reachable from H̃i
j [s, rj ] for a random (r1, r2, . . . rk) ∈ R, i.e., that rj ∈ Cj . Let Y =∑k

j=1 Yj/k, so that we always have fC(R) ≤ Y .
Let cj = |Cj |/ki. By linearity of expectation EY =

∑k
j=1 cj/k and by the assumption

cj ≤ yi for all j ∈ [k]. However, with probability
∏k
j=1 cj we have rj ∈ Cj for all j, so

Y = 1, but we cannot connect all pairs within (GR, TR) (since we assumed S(G, TG) < k),
so fC(R) ≤ 1− 1

k . This means that

E (Y − fC(R)) ≥ 1
k
·
k∏
j=1

cj , and so EfC(R) ≤ 1
k
·

 k∑
j=1

cj −
k∏
j=1

cj

 .

The quantity
∑k
j=1 cj −

∏k
j=1 cj can only increase when we increase some c`, because the

`-th partial derivative is 1−
∏
j∈[k], j 6=` cj ≥ 0. By the assumption cj ≤ yi and yi ≥ 1

q , hence

EfC(R) ≤ 1
k
·

 k∑
j=1

yi −
k∏
j=1

yi

 ≤ yi − 1
k
· q−k.

Now we apply Lemma 5.3 for F = {fC : C ∈ C} and δ = 1
2k · q

−k to argue that for
our choice of pi+1 – the number of copies in the last layer – the estimation works for all
C ∈ C at once. The quantity M = O(δ−2 log(|F|)) in Lemma 5.3 becomes O(k4q2kpi), which
is exactly as we defined pi+1. We have sampled pi+1 tuples from R (let us denote this
multiset as RH ⊆ R) and added a copy (GR, TR) for each R ∈ RH . For a fixed C ∈ C, the
maximal fraction of satisfiable terminal pairs in (Hi+1, T i+1) equals the average of fC(R)
over R ∈ RH . By Lemma 5.3 we know that, regardless of the choice of C, this quantity is
at most

ER∼U(RH)fC(R) ≤ ER∼U(R)fC(R) + 1
2k · q

−k ≤ yi −
1
2k · q

−k,

with probability at least 1
2 (that is, if we have chosen RH correctly). Since the upper bound

works for all C ∈ C simultaneously, the claim follows. J

Proof of Lemma 5.1. We define (H, TH) = (HB , T B) for B = 2kqk. The completeness is
straightforward: if S(G, TG) = k, then we can orient all copies of G so that G{t, j} is always
reachable from G{s, j} and each requested path in S(Hi, T i) is given as a concatenation
of respective paths in B copies of G.

To see the soundness, suppose that S(G, TG) < k. The sequence (yi)Bi=0 is non-increasing
and the value of yi is being decreased by at least i

2k · q
−k in each iteration, as long as yi ≥ 1

q ,
due to Lemma 5.4. Therefore after B = 2kqk iterations we are sure to have yB ≤ 1

q .
To estimate the size of the instance, recall that we have ki = pik and pi+1 = O(k4q2kpi).

We can assume q ≥ 2 and so k ≤ qk. For B = 2kqk, the value of pB becomes
(
k4q2k)O(kqk) =

2qO(k)O(log q) = 2qO(k) . The size of V (H) is at most kB · |V (G)| times the number of layers,
which is B. We trivially bound B ≤ 2B ≤ kB to obtain |V (H)| ≤ |V (G)| · k2

B .
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The presented construction is randomized because we randomly choose a biased sampler
family in each of the B steps. If we start with a YES-instance, then we produce a YES instance
regardless of these choices, and otherwise we produce a NO instance with probability at least
2−B ≥ 1

kB
. The construction can be derandomized within running time f(k, q) · |V (G)|

as follows. In each application of Lemma 5.3 the sizes of X and F are (ki)k and 2pik2 ,
respectively, and δ = 1

2k · q
−k, which are all bounded by a function of k and q. Therefore

instead of sampling a biased sampler family, we can enumerate all O(δ−2 log(|F|))-tuples
of elements from X and find one giving a biased sampler family. J

Adjusting the parameters

The construction above implies that we can amplify the gap to any constant q by multiplying
the size of an instance by a factor depending on k and q. However, when we want to rule
out a superconstant approximation factor, e.g., α(k) = log log k, we would like to apply the
hypothetical approximation algorithm to the instance (H, TH) with parameter k0 depending
on k and q, so we additionally need to adjust q so that α(k0(k, q)) ≤ q.

I Theorem 2.1. Consider a function α(k) = (log k)β(k), where β(k)→ 0 is computable and
non-increasing. It is W[1]-hard to distinguish whether for a given instance of k-Steiner
Orientation:
1. there exists an orientation satisfying all k terminal pairs, or
2. for all orientations the number of satisfied pairs is at most 1

α(k) · k.

Proof. We are going to reduce the exact version of k-Steiner Orientation, which is
W[1]-hard, to the version with a sufficiently large gap, with Lemma 5.1. For a fixed k

we can bound k0 by a function of q: k0(q) ≤ 2qc·k for some constant c. On the other
hand, k0(q) → ∞. Given an instance (G, TG) we use Lemma 5.1 with q large enough, so
that β(k0(q)) · c · k ≤ 1. The dependency q(k) is also a computable function. We get
α(k0) = (log k0)β(k0) ≤ qc·k·β(k0) ≤ q.

We have obtained a new instance (H, TH) of k0-Steiner Orientation of size f(k)·|V (G)|
and k0 being a function of k. If the original instance is fully satisfiable then the same holds
for (H, TH) and otherwise S(H, TH) ≤ 1

q · k0 ≤ 1
α(k0) · k0, which finishes the reduction. J

If we restrict the running time to be purely polynomial, we can slightly strengthen the
lower bound, i.e., replace k with n in the approximation factor, while working with a similar
hardness assumption. To make this connection, we observe that in order to show that
a problem is in FPT, it suffices to solve it in polynomial time for some superconstant bound
on the parameter.

I Proposition 5.5. Consider a parameterized problem Π ∈ XP that admits a polynomial-time
algorithm (resp. false-biased polynomial-time algorithm) for the case f(k) ≤ |I|, where f
is some computable function. Then Π admits an FPT algorithm (resp. false-biased FPT
algorithm).

Proof. Since Π ∈ XP, it admits a deterministic algorithm with running time |I|g(k). Whenever
f(k) ≤ |I|, we execute the polynomial-time algorithm. Otherwise we can solve it in time
f(k)g(k). J

The hardness assumption below is slightly stronger than in Theorem 2.1, because the
quantity 2k0 can be super-polynomial and we cannot afford the time-expensive derandomiza-
tion.
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I Theorem 2.2. Consider a function α(n) = (logn)β(n), where β(n) → 0 is computable
and non-increasing. Unless the class W[1] admits false-biased FPT algorithms, there is no
polynomial-time algorithm that, given an instance of Steiner Orientation with n vertices
and k terminal pairs, distinguishes between the following cases:
1. there exists an orientation satisfying all k terminal pairs, or
2. for all orientations the number of satisfied pairs is at most 1

α(n) · k.

Proof. Suppose there is such an algorithm with approximation factor α(n) = (logn)β(n).
Let β∗(`) be the smallest integer L, for which β(L) ≤ 1

` . The function β∗ is well defined
and computable, because β is computable. Again, for fixed k and some constant c we have
dependency k0(q) ≤ 2qc·k .

We are going to use the polynomial-time algorithm to solve k-Steiner Orientation
in randomized f(k) · nO(1) time, which would imply the claim. Since the problem is in
XP [15], by Fact 5.5 it suffices to solve instances satisfying β∗((ck)2) ≤ n in polynomial time.
We can thus assume (ck)2 · β(n) ≤ 1, or equivalently ck · β(n) ≤

√
β(n).

Given an instance of k-Steiner Orientation, we apply Lemma 5.1 with q = (2 logn)β(n).

k0 ≤ 2q
ck

= 2(2 logn)ck·β(n)
≤ 2(2 logn)

√
β(n)

= no(1),

α(|V (H)|) ≤ α(n · k2
0) = α(n1+o(1)) = ((1 + o(1)) · logn)β(n).

For large n we obtain α(|V (H)|) ≤ q. Since |V (H)| ≤ n · k2
0 = n1+o(1), the size of

the new instance of polynomially bounded and thus the randomized construction takes
polynomial time. If we started with a YES instance, we always produce a YES instance,
and otherwise S(H, TH) ≤ 1

q · k0 ≤ 1
α(|V (H)|) · k0 with probability at least 1

k0
, so we need to

repeat the procedure k0 = no(1) times to get a constant probability of creating an instance
with a small optimum. A hypothetical algorithm distinguishing these cases would therefore
entail a false-biased polynomial-time algorithm for Steiner Orientation for the case
β∗((ck)2) ≤ n. The claim follows from Proposition 5.5. J

6 Inapproximability of Directed Multicut

We switch our attention to the Max (k, p)-Directed Multicut problem, for which we
provide a slightly simpler reduction. We keep the same convention as before: within graph G
we refer to sources and sinks (si, ti) ∈ T shortly as G{s, i}, G{t, i}, and denote the maximal
number of terminal pairs separable in (G, T ) by deleting p edges by S(G, T , p).

I Lemma 6.1. There is a procedure that, for an instance (G, TG, p), |TG| = 4 of Directed
Multicut and parameter q, constructs a new instance (H, TH , p0), k0 = |TH |, such that:
1. k0 = Θ(p · q2 log q),
2. p0 = Θ(p2 log q),
3. |E(H)| = |E(G)| · p0 +O(k0 · p0),
4. if S(G, TG, p) = 4, then S(H, TH , p0) = k0 always (Completeness),
5. if S(G, TG, p) < 4, then S(H, TH , p0) ≤ 1

q · k0 with probability at least 1
2 (Soundness).

The randomized construction takes time proportional to |H|. It can be derandomized in time
f(p, q) · |G|.

Proof. Consider M = 3(p + 1) · log q copies of (G, TG), denoted (G1, T1), . . . , (GM , TM ).
Let R = [4]M be the family of all M-tuples with values in [4]. For a random sequence
R = (r1, r2, . . . rM ) ∈ R, we add a terminal pair sR, tR and for each i ∈ [M ] we add directed
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︷ ︸︸ ︷
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k0

(G1, T1) (G3, T3)(G2, T2) (GM , TM )

. . . . . .

. . . . . .

. . . . . .

sR

r1 r2 r3 rM

tR

. . . . . .

Figure 3 Building a new instance from M parallel copies of G. The tuple R = (r1, r2, . . . rM )
encodes through which nodes the (sR, tR) pair is connected. For the sake of legibility only the edges
incident to sR, tR (the black ones) and neighboring terminals (the grey ones) are sketched.

edges (sR, Gi{s, ri}) and (Gi{t, ri}, tR). We repeat this subroutine k0 = Θ(p · q2 log q)
times and create that many terminals pairs as depicted in Figure 3. We set the budget
p0 = 3p(p+ 1) · log q.

If S(G, TG, p) = 4, then the budget suffices to separate all terminal pairs in all copies
of (G, TG) (completeness). Otherwise, one needs to remove at least p+ 1 edges from each
copy of (G, TG) to separate all 4 pairs so we can afford that in at most 3p · log q copies.
Therefore for any solution there are at least 3 log q copies, where there is at least one terminal
pair that is not separated.

Let Ci ⊆ [4] represent information about the status of solution within (Gi, Ti): there
is path from Gi{s, j} to Gi{t, j} only if j ∈ Ci. A tuple C = (C1, . . . , CM ) is called
a configuration and we refer to the family of configurations induced by possible solutions
as C. Clearly, |C| ≤ 16M .

Recall that each terminal pair can be represented by a tuple R = (r1, r2, . . . rM ) ∈ R
encoding through which terminal pair in Gi a path from sR to tR can go. For a fixed
configuration C ∈ C, function fC : R → {0, 1} is set to 1 if the pair sR, tR is separated,
or equivalently: if for each i ∈ [M ] we have ri 6∈ Ci. For S(G, TG, p) < 4 there are at least
3 log q copies of Gi with Ci 6= ∅, therefore ER∼U(R)fC(R) ≤ ( 3

4 )3 log q ≤ 2− log(2q) = 1
2q .

The size of C is at most 16M = 2O(p log q). We apply Lemma 5.3 for F = {fC : C ∈ C}
and δ = 1

2q . It follows that O(δ−2 log(|F|)) = O(p · q2 log q) random samples from R
suffice to obtain a rounding error of at most 1

2q for all C ∈ C at once. Therefore with
probability at least 1

2 we have constructed an instance in which for any cutset of size p0
(and thus for any configuration C) the fraction of separated terminal pairs is at most
ER∼U(R)fC(R) + 1

2q ≤
1
q . J

Remark on derandomization

As before, if we allow exponential running time with respect to p and q, we can find a correct
sampler family by enumeration and derandomize the reduction. However, we cannot afford
that in a polynomial-time reduction. To circumvent this, observe that we upper bound
the expected value of fC using independence of 3 log q variables. We could alternatively
take advantage of δ-biased `-wise independent hashing [37] (cf. [8, 39, 40]) to construct
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biased `-wise independent binary random variables with few random bits, instead of relying
on Lemma 5.3. This technique provides an analogous bound on additive estimation error
as in Lemma 5.3 for events that depend on at most ` variables. A family of N such variables
can be constructed using O(`+ log logN + log( 1

δ )) random bits [37, Lemma 4.2].
Since we are interested in having N = O(p · log q) variables, δ = 1

2q , and (3 log q)-
wise independency, the size of the whole probabilistic space becomes 2O(log q+log log p) =
qO(1)(log p)O(1). The problem is that we need to optimize the exponent at q in order to
obtain better lower bounds. Unfortunately, we are not aware of any construction of a δ-biased
`-wise independent hash family, that would optimize this constant.

I Theorem 2.4. For any ε > 0 and function α(k) = O
(
k

1
2−ε
)
, it is W[1]-hard to distinguish

whether for a given instance of Max (k, p)-Directed Multicut:
1. there is a cut of size p that separates all k terminal pairs, or
2. all cuts of size p separate at most 1

α(k) · k terminal pairs.

Proof. Let us fix ε > 0. We are going to reduce the exact version of p-Directed Multicut
with 4 terminals, which is W[1]-hard, to the version with a sufficiently large gap, parameterized
by both p and k = |T |. Let L be an integer larger than 2

ε .
For an instance (G, T , p) of p-Directed Multicut we apply Lemma 6.1 with q = pL.

If the original instance is fully solvable, the new one is as well. Otherwise the maximal
fraction of separated terminal pairs is k0

q = O(p · q log q) = O(pL+2). On the other hand,
k0

α(k0) = Ω
(
k

( 1
2 +ε)

0

)
≥ Ω

(
p2L·( 1

2 +ε)
)
. The exponent at p in the latter formula is L+ 2εL >

L + 2, so for large p it holds k0
α(k0) ≥

k0
q , therefore the reduction maps NO-instances into

those where all cuts of size p0 separate at most k0
α(k0) terminal pairs. Both k0 and p0 are

functions of p, therefore we have obtained a parameterized reduction. J

I Theorem 2.5. Assuming NP 6⊆ co-RP, for any ε > 0 and function α(m) = O
(
m

1
2−ε
)
,

there is no polynomial-time algorithm that, given an instance (G, T , p), |T | = k, |E(G)| = m,
of Max Directed Multicut, distinguishes between the following cases:
1. there is a cut of size p that separates all k terminal pairs, or
2. all cuts of size p separate at most 1

α(m) · k terminal pairs.

Proof. Suppose there is such an algorithm for some ε > 0 and proceed as in the proof
of Theorem 2.4 with L sufficiently large, so that 2εL ≥ 5 and q = mL. The reduction
is polynomial because L is constant for fixed ε. We have m0 = |E(H)| = m ·p0 +O(k0 ·p0) =
mp2 log q + O(p3q2 log2 q) = O(m2L+5) because p ≤ m. If the initial instance is fully
satisfiable, then always S(H, TH , p0) = k0. For a NO-instance, we have S(H, TH , p0) ≤ k0

q =
O(mL+2) with probability at least 1

2 . On the other hand, k0 = Ω(m2L) and

k0

α(m0) = Ω
(

1

m
1
2−ε
0

)
· k0 = Ω

(
m2L−(2L+5)·( 1

2−ε)
)

= Ω(mL− 5
2 +2εL).

We have adjusted L to have L − 5
2 + 2εL > L + 2, so for large m we get k0

α(m0) ≥
k0
q .

Therefore the reduction maps NO-instances into those where all cuts of size p0 separate at
most k0

α(m0) terminal pairs. When the reduction from Lemma 6.1 is correct (with probability
at least 1

2 ), we are able to detect the NO-instances. This implies that Directed Multicut
∈ co-RP. J
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7 Final remarks and open problems

I would like to thank Pasin Manurangsi for helpful discussions and, in particular, for suggesting
the argument based on Chernoff bound in Lemma 5.1, which is surprisingly simple and
powerful. A question arises whether one can derandomize this argument efficiently and
construct a δ-biased sampler family in an explicit way. This would allow us to replace the
assumption NP 6⊆ co-RP with P 6= NP for Directed Multicut. This technique may also
find use in other reductions in parameterized inapproximability.

An obvious question is if any of the studied problems admits an o(k)-approximation,
or if the lower bounds can be strengthened. Note that for the maximization version of Dir-
ected Multicut we do not know anything better than k

2 -approximation as we cannot
solve the exact problem for k > 2. For Steiner Orientation, the reason why the value
of the parameter in the self-reduction becomes so large, is that in each step we can add only
an exponentially small term to the gap. Getting around this obstacle should lead to better
lower bounds. Also, the approximation status for k-Steiner Orientation on planar graphs
remains unclear [11]. Here we still cannot rule out a constant approximation and there are
no upper bounds known.

Finally, it is an open quest to establish relations between other hard parameterized
problems and their gap versions. Is F (k)-Gap k-Clique W[1]-hard for F (k) = o(k) and
is F (k)-Gap k-Dominating Set W[2]-hard for any function F (open questions in [26])?
Or can it be possible that F (k)-Gap k-Dominating Set is in W[1] for some function F?

References
1 Marek Adamczyk, Jaroslaw Byrka, Jan Marcinkowski, Syed M. Meesum, and Michal Wlodar-

czyk. Constant-Factor FPT Approximation for Capacitated k-Median. In 27th Annual European
Symposium on Algorithms (ESA 2019), volume 144 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 1:1–1:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.ESA.2019.1.

2 Amit Agarwal, Noga Alon, and Moses S. Charikar. Improved approximation for directed cut
problems. In Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing,
STOC ’07, pages 671–680, New York, NY, USA, 2007. ACM. doi:10.1145/1250790.1250888.

3 Esther M. Arkin and Refael Hassin. A note on orientations of mixed graphs. Discrete Applied
Mathematics, 116(3):271–278, 2002. doi:10.1016/S0166-218X(01)00228-1.

4 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, May 1998.
doi:10.1145/278298.278306.

5 Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, pages 453–462. IEEE, 2009.

6 Arnab Bhattacharyya, Suprovat Ghoshal, Karthik C. S., and Pasin Manurangsi. Parameterized
intractability of Even Set and Shortest Vector Problem from Gap-ETH. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, pages 17:1–17:15, 2018. doi:10.4230/LIPIcs.ICALP.2018.17.

7 Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. In Proceedings of
the Forty-third Annual ACM Symposium on Theory of Computing, STOC ’11, pages 459–468,
New York, NY, USA, 2011. ACM. doi:10.1145/1993636.1993698.

8 J.Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1979. doi:10.1016/0022-0000(79)90044-8.

9 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From Gap-ETH to FPT-inapproximability: Clique,
Dominating Set, and more. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 743–754, October 2017. doi:10.1109/FOCS.2017.74.

ICALP 2020

https://doi.org/10.4230/LIPIcs.ESA.2019.1
https://doi.org/10.1145/1250790.1250888
https://doi.org/10.1016/S0166-218X(01)00228-1
https://doi.org/10.1145/278298.278306
https://doi.org/10.4230/LIPIcs.ICALP.2018.17
https://doi.org/10.1145/1993636.1993698
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1109/FOCS.2017.74


104:18 Parameterized Inapproximability for Steiner Orientation by Gap Amplification

10 Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized approximation
algorithms for bidirected steiner network problems. In 26th Annual European Symposium on
Algorithms (ESA 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

11 Rajesh Chitnis, Andreas Emil Feldmann, and Ondřej Suchý. A tight lower bound for Planar
Steiner Orientation. Algorithmica, May 2019. doi:10.1007/s00453-019-00580-x.

12 Julia Chuzhoy and Sanjeev Khanna. Polynomial flow-cut gaps and hardness of directed cut
problems. J. ACM, 56(2):6:1–6:28, April 2009. doi:10.1145/1502793.1502795.

13 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight FPT
Approximations for k-Median and k-Means. In 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 42:1–42:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2019.42.

14 Vincent Cohen-Addad and Jason Li. On the Fixed-Parameter Tractability of Capacitated
Clustering. In 46th International Colloquium on Automata, Languages, and Programming
(ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages
41:1–41:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ICALP.2019.41.

15 Marek Cygan, Guy Kortsarz, and Zeev Nutov. Steiner forest orientation problems. SIAM
Journal on Discrete Mathematics, 27(3):1503–1513, 2013. doi:10.1137/120883931.

16 Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3), June 2007. doi:
10.1145/1236457.1236459.

17 Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover.
Electronic Colloquium on Computational Complexity (ECCC), 23:128, 2016.

18 Britta Dorn, Falk Hüffner, Dominikus Krüger, Rolf Niedermeier, and Johannes Uhlmann.
Exploiting bounded signal flow for graph orientation based on cause–effect pairs. In Theory
and Practice of Algorithms in (Computer) Systems, pages 104–115, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

19 Guillaume Fertin, Hafedh Mohamed-Babou, and Irena Rusu. On the Complexity of two
Problems on Orientations of Mixed Graphs. In In Proc. 5èmes Journées Ouvertes Biologie
Informatique Mathématiques (JOBIM 2012), pages 161–170, Rennes, France, July 2012. URL:
https://hal.archives-ouvertes.fr/hal-00826863.

20 Iftah Gamzu, Danny Segev, and Roded Sharan. Improved orientations of physical networks.
In Algorithms in Bioinformatics, pages 215–225, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

21 David Gillman. A Chernoff bound for random walks on expander graphs. SIAM J. Comput.,
27:1203–1220, 1998.

22 Anupam Gupta, Euiwoong Lee, and Jason Li. Faster exact and approximate algorithms for
k-Cut. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018, pages 113–123, 2018. doi:10.1109/FOCS.2018.00020.

23 Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the random
ordering is hard: Inapproximability of maximum acyclic subgraph. In 2008 49th Annual IEEE
Symposium on Foundations of Computer Science, pages 573–582. IEEE, 2008.

24 Rafael Hassin and Nimrod Megiddo. On orientations and shortest paths. Linear Algebra and
its Applications, 114-115:589–602, 1989. doi:10.1016/0024-3795(89)90481-3.

25 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

26 Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complexity of
approximating Dominating Set. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages
1283–1296, 2018. doi:10.1145/3188745.3188896.

https://doi.org/10.1007/s00453-019-00580-x
https://doi.org/10.1145/1502793.1502795
https://doi.org/10.4230/LIPIcs.ICALP.2019.42
https://doi.org/10.4230/LIPIcs.ICALP.2019.41
https://doi.org/10.1137/120883931
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://hal.archives-ouvertes.fr/hal-00826863
https://doi.org/10.1109/FOCS.2018.00020
https://doi.org/10.1016/0024-3795(89)90481-3
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1145/3188745.3188896


M. Włodarczyk 104:19

27 Ken-ichi Kawarabayashi and Bingkai Lin. A nearly 5/3-approximation FPT algorithm for
Min-k-Cut. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, pages
990–999, 2020. doi:10.1137/1.9781611975994.59.

28 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages 767–775,
New York, NY, USA, 2002. ACM. doi:10.1145/509907.510017.

29 Bingkai Lin. The parameterized complexity of k-Biclique. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 605–615, 2015. doi:10.1137/1.9781611973730.41.

30 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized
complexity and approximability of directed odd cycle transversal. In Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 2181–2200, 2020. doi:10.1137/1.9781611975994.134.

31 Rajsekar Manokaran, Joseph Naor, Prasad Raghavendra, and Roy Schwartz. SDP gaps and
UGC hardness for multiway cut, 0-extension, and metric labeling. In Proceedings of the fortieth
annual ACM symposium on Theory of computing, pages 11–20, 2008.

32 Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating Densest k-
Subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pages 954–961, New York, NY, USA, 2017. ACM. doi:10.1145/
3055399.3055412.

33 Pasin Manurangsi. Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique
and Minimum k-Cut from the Small Set Expansion Hypothesis. In 44th International Col-
loquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 79:1–79:14, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2017.79.

34 Pasin Manurangsi and Prasad Raghavendra. A Birthday Repetition Theorem and Complexity
of Approximating Dense CSPs. In 44th International Colloquium on Automata, Languages, and
Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 78:1–78:15, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ICALP.2017.78.

35 Daniel Marx. Completely inapproximable monotone and antimonotone parameterized problems.
In 2010 IEEE 25th Annual Conference on Computational Complexity, pages 181–187, June
2010. doi:10.1109/CCC.2010.25.

36 Alexander Medvedovsky, Vineet Bafna, Uri Zwick, and Roded Sharan. An algorithm for
orienting graphs based on cause-effect pairs and its applications to orienting protein networks.
In Algorithms in Bioinformatics, pages 222–232, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

37 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM Journal on Computing, 22, March 2001. doi:10.1145/100216.100244.

38 Marcin Pilipczuk and Magnus Wahlström. Directed Multicut is W[1]-hard, even for four
terminal pairs. ACM Trans. Comput. Theory, 10(3):13:1–13:18, May 2018. doi:10.1145/
3201775.

39 Alan. Siegel. On universal classes of extremely random constant-time hash functions. SIAM
Journal on Computing, 33(3):505–543, 2004. doi:10.1137/S0097539701386216.

40 Umesh Virkumar Vazirani. Randomness, Adversaries and Computation (Random Polynomial
Time). PhD thesis, University of California, Berkeley, 1986.

ICALP 2020

https://doi.org/10.1137/1.9781611975994.59
https://doi.org/10.1145/509907.510017
https://doi.org/10.1137/1.9781611973730.41
https://doi.org/10.1137/1.9781611975994.134
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.4230/LIPIcs.ICALP.2017.79
https://doi.org/10.4230/LIPIcs.ICALP.2017.78
https://doi.org/10.1109/CCC.2010.25
https://doi.org/10.1145/100216.100244
https://doi.org/10.1145/3201775
https://doi.org/10.1145/3201775
https://doi.org/10.1137/S0097539701386216




Near-Optimal Algorithm for Constructing Greedy
Consensus Tree
Hongxun Wu
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
wuhx18@mails.tsinghua.edu.cn

Abstract
In biology, phylogenetic trees are important tools for describing evolutionary relations, but various
data sources may result in conflicting phylogenetic trees. To summarize these conflicting phylogenetic
trees, consensus tree methods take k conflicting phylogenetic trees (each with n leaves) as input and
output a single phylogenetic tree as consensus.

Among the consensus tree methods, a widely used method is the greedy consensus tree. The
previous fastest algorithms for constructing a greedy consensus tree have time complexity Õ(kn1.5)
[Gawrychowski, Landau, Sung, Weimann 2018] and Õ(k2n) [Sung 2019] respectively. In this paper,
we improve the running time to Õ(kn). Since k input trees have Θ(kn) nodes in total, our algorithm
is optimal up to polylogarithmic factors.
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1 Introduction

The problem of constructing consensus trees arises from bioinformatics. In biology, phylogen-
etic trees describe the biological evolutionary relations between species. But the phylogenetic
trees from different biological data may conflict with each other. As mentioned in [22],
even from the same data set, when certain resampling techniques are used, we could still
get many different phylogenetic trees. This problem has long been studied, to name a few
[1, 14, 28, 17, 13, 12, 18, 5].

Motivated by this, consensus tree methods were proposed [1] to summarize these phylo-
genetic trees into a single phylogenetic tree, which is viewed as the consensus of these
phylogenetic trees and is called the consensus tree. Since then, many different consensus
tree methods were proposed. As mentioned in [22], the majority rule consensus tree [28],
the loose consensus tree [8], and the greedy consensus tree [9] are the most frequently used
consensus trees.

As discussed in [11], while increasing the number of phylogenetic trees in the input, the
greedy consensus tree converges faster than majority rule consensus tree and R∗ consensus
tree. Although the greedy consensus tree is not a consistent estimator, the region of parameter
space in which greedy consensus tree fails is relatively small, hence greedy consensus tree
offers more robustness [11]. The greedy consensus tree method is implemented in many
software packages, such as PHYLIP [15], PAUP* [40], MrBayes [32], RAxML [37], and also
widely used in numerous works in biology [6, 7, 11, 24, 26, 27, 30, 31, 33, 34, 36, 38].

For most consensus tree methods, optimal or near-optimal algorithms for construction have
been found. One exception is the greedy consensus tree (See Table 1). For greedy consensus
tree construction, the naïve algorithm takes Õ(kn3) time [9]. Then it was improved to O(kn2)
time by [22]. Recently there are Õ(kn1.5) [16] and Õ(k2n) [39] algorithms proposed for it.
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Table 1 Running time of construction algorithms for different consensus tree methods.

Consensus tree method Running time Reference
Adam’s consensus tree O(kn log n) [19]
Strict consensus tree O(kn) [10]
Loose consensus tree O(kn) [22]

Frequency difference consensus tree O(kn log2 n) [16]
Majority-rule consensus tree O(kn log k), Randomized O(kn) [4, 22]

Majority-rule (+) consensus tree O(kn) [21]
Local consensus tree O(kn3) [25, 20]

R∗ consensus tree O(n2 logk+2 n) [23]
Greedy consensus tree O(kn1.5), O(k2n) [16, 39]

In this paper, we present a near-optimal Õ(kn) time algorithm for greedy consensus tree
construction.

I Theorem 1. Greedy consensus tree of k phylogenetic trees for n species can be constructed
in Õ(kn) time.

High Level Idea

The previous Õ(kn1.5) algorithm [16] builds the consensus tree by dynamically adding nodes
to it. To find out the position to add a new node, they need to support least common ancestor
query on the consensus tree. Since the consensus tree is dynamically changing, answering such
queries is time-consuming and becomes the bottleneck of this previous algorithm. Motivated
by it, we came up with an alternative approach that only requires least common ancestor
query on the phylogenetic trees in the input. Since these are static trees, such queries can be
efficiently answered. This leads to our improved algorithm.

2 Preliminaries

2.1 Phylogenetic Tree
Phylogenetic trees represent the evolution of species. Different leaves of a phylogenetic tree
represent different species. From biological data, we can infer that some of these species
share common ancestors. These common ancestors are represented by the nonleaf nodes,
also called inner nodes. Each inner node represents the common ancestor of all leaves in its
subtree.

Formally, a tree with n leaves is leaf-labeled if and only if its n leaves have distinct labels
from 1 to n. A phylogenetic tree T is a rooted, unordered, leaf-labeled tree in which every
inner node has at least two children. If there is a directed path from node u to node v, u is a
descendant of v, and v is an ancestor of u. Thus node u is a descendant of itself. If u 6= v

and v is a descendant of u, v is a proper descendant of u, and u is a proper ancestor of v.
The subtree tree of an inner node u is the subtree rooted at u and formed by all its

descendants. In the rest of the paper, whenever we say a subtree, we always refer to the
subtree of an inner node.

Cluster and Signature

For inner node v in phylogenetic tree T , we define L(v) to be the set of species within its
subtree. Namely, L(v) = {x ∈ [n] : There is a leaf labeled x in the subtree of v}. The set
L(v) is called a cluster.
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Based on L(v), we define the signature of phylogenetic tree T to be the set of all clusters
in it. Namely, sign(T ) = {L(v) : v is an inner node in T}.

I Observation 2. The signature of a phylogenetic tree completely captures its structure.
Namely, given sign(T ), the phylogenetic tree T is uniquely determined.

More specifically, suppose the cluster c1 ∈ sign(T ) corresponds to node u on T . Namely,
c1 = L(u). Let par(u) denote the parent of u on T . L(par(u)) is the smallest cluster
c2 ∈ sign(T ) such that c1 ⊂ c2. This determines the parent of each node.

Consistency

But not every set S of clusters can be the signature of a phylogenetic tree. S is a valid
signature if and only if it is a laminar family. In this case, we say S is consistent. Namely, S

is consistent if and only if for every pair of distinct clusters c1, c2 ∈ S, one of the following
holds:

c1 ∩ c2 = ∅
c1 ⊂ c2
c1 ⊃ c2

We say a cluster c is consistent with S if and only if S ∪ {c} is consistent.

2.2 Greedy Consensus Tree
Recall that the greedy consensus tree method takes k phylogenetic trees T1, T2, · · · , Tk as
inputs. These k trees are over the same set of n species. Its objective is to output a single
phylogenetic tree to be the consensus tree.

Definition

As its name suggests, a greedy consensus tree is defined as the output of a simple greedy
algorithm. Let F be the set of all clusters that have appeared in T1, T2, · · · , Tk. The frequency
f(c) of a cluster c is the number of times c appears in F .

Let S denote the signature of the current consensus tree. Initially, the consensus tree
only contains a root and n leaves. Thus S = {{1, 2, . . . , n}, {1}, {2}, . . . , {n}}. Each time we
pick the cluster with the highest frequency in F and add it to S if they are consistent. From
the tree point of view, we are adding a new inner node to the consensus tree. For the details,
see Algorithm 1.

Algorithm 1 Greedy consensus tree.

1: Initially signature S ← {{1, 2, . . . , n}, {1}, {2}, . . . , {n}}
2: F ← sign(T1) ∪ sign(T2) ∪ · · · ∪ sign(Tk)
3: For all clusters c ∈ F , count its frequency f(c)← |{i|c ∈ sign(Ti)}|
4: while F 6= ∅ do
5: Pick c0 ← arg maxc∈F f(c) with the highest frequency (ties are broken arbitrarily)
6: if c0 is consistent with S then S ← S ∪ {c0}
7: F ← F\{c0}
8: S is the signature of a greedy consensus tree

Since at Line 5, Algorithm 1, ties are broken arbitrarily, the output of the algorithm may
not be unique. There may be more than one greedy consensus tree for a fixed input.

ICALP 2020
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Running Time

Algorithm 1 is a naïve algorithm for constructing greedy consensus trees. Here we discuss
this algorithm and its complexity in more detail. It essentially contains two phases:
1. Count the frequency f(c) of clusters and sort them. (Line 1 ∼ 3 of Algorithm 1)
2. Repeatedly run the greedy procedure. (Line 4 ∼ 7 of Algorithm 1)

The first phase is easy to be handled in Õ(kn) time. Suppose |F| = m. Namely, there
are m distinct clusters. For each of them, we assign a unique number in [m] to it as its
identifier. For each u ∈ Ti, let id(u) ∈ [m] be the identifier of L(u). Then, for u ∈ Ti and
v ∈ Tj , id(u) = id(v) if and only if L(u) = L(v).

In [16], they showed that these identifiers can be computed in O(kn log2 n) time. To be
self-contained, we state it in Lemma 4 and present a short proof here. We first need a data
structure for dynamic set equality.

I Lemma 3 (Lemma 1, [16]). There is a deterministic dynamic set equality structure that
supports:

Create(s): Create a new empty set s.
Add(s, x): Add an element x to set s. (create a new set s ∪ {x} without destroying s)
ID(s): Return the identifier of set s which is a positive integer smaller than the number
of sets we have created. Two sets have the same identifier if and only if they are equal.

Let n denote the size of all sets created. Each operation takes Õ(1) time.

Proof. We apply the dynamic string equality structure in [29]. It supports the following
operations in Õ(1) time: (1) create a new string with a single character, (2) test if two strings
are equal, (3) split a string into two new strings without destroying it, (4) concatenate two
strings to form a new string without destroying them, (5) given i, return the i-th character
in a string. Modifying a character of a string can be reduced to O(1) split, create, and
concatenate operations. Comparing the lexicographical order of two strings can be reduced
to O(log n) split and equality testing operations using binary search. Thus they all take
Õ(1) time.

We encode each set s into a binary string. The i-th bit of the string is 1 if and only if
i ∈ s. For empty set, we create a new string with n zeros in beginning. To add an element x

to s, we only need to modify the x-th bit in the string which take Õ(1) time.
To maintain the identifier of each set s, we maintain a global balanced binary search tree

of the strings of all sets in their lexicographical order. When a new set is created, we add its
string to this balanced binary search tree, and attach a new identifier to it. Since comparing
lexicographical order takes Õ(1) time, maintaining this binary search tree and finding the
identifier of a set also takes Õ(1) time. J

I Lemma 4 (Theorem 3, [16]). The identifier id(u) can be found for every node u of
phylogenetic trees T1, T2, · · · , Tk in Õ(kn) time.

Proof. We process each tree Ti bottom-up. For each inner node u, we obtain L(u) and its
identifier in the dynamic set equality structure by the following procedure:
1. Let v be the children of u with the largest subtree. If v is a leaf, we let s be the singleton
{label(v)}. Otherwise, let s = L(v) in dynamic set equality structure.

2. We traverse the subtrees of all other children of u and add the leaves we visited into s.
Now s equals L(u)

3. id(u)← ID(s).



H. Wu 105:5

Since each time a node is visited at Step 2, the subtree it belongs to is doubled. Each
node can be visited at most O(log n) times throughout the procedure. Thus this procedure
takes Õ(kn) time in total. J

After we get the identifiers id(u), counting the frequency of identifiers and sorting within
Õ(kn) time are straight-forward.

The bottleneck of the naïve algorithm is the second phase. To test whether the signature
S of the consensus tree is consistent with c0, the naïve algorithm enumerates all clusters in
S. There can be at most O(n) clusters in S since each of them corresponds to a node in the
consensus tree.

For every cluster in S testing whether it is consistent with c0 takes O(n) time. There are
O(n) clusters in S. Thus for each c0, it takes at most O(n2) time. There are O(kn) clusters
in F (since each of them corresponds to at least one node in T1, T2, . . . , Tk).

So in total, the naïve algorithm takes O(kn3) time. We will present our algorithm for the
second phase in Section 3 and show how to make it efficient in Section 4.

2.3 Data Structures

Our algorithm relies on some classical data structure techniques introduced here.

DFS Sequence

Let T be a rooted tree. The Euler tour of T starts from its root, passing by each edge exactly
twice (from opposite directions), and return to the root. We define E(T ) to be the Euler
tour of T in which we only keep the first occurrence of each node. Or equivalently, E(T )
is the sequence produced by the following depth-first search: Initially let the sequence be
empty. When we perform a depth-first search on T , each time we visit a node for the first
time, we add it to the end of our sequence. In the end, this sequence equals E(T ).

I Observation 5. Suppose v is a node on T . All nodes within the subtree of v form a
continuous interval in E(T ).

For the subtree of v on T , we denote its corresponding interval by [lT (v), rT (v)]. Here
lT (v) is the position of v in E(T ), and rT (v) is the position of the last node that belongs to
the subtree of v in E(T ).

Top Tree

A dynamic forest is a set of trees over disjoint sets of nodes that supports dynamic edge
connection and deletion. Top tree [3] is a useful data structure for maintaining information
in a dynamic forest. k-th ancestor of node u is the ancestor which is higher than u by k

edges. When k = 1, it is the parent of u.

I Lemma 6 ([3]). Top tree supports the following operations in Õ(1) time:
1. connect(u, v) : Add an edge connecting nodes u and v that belong to different trees.
2. delete(u, v) : Delete the edge connecting nodes u and v.
3. lca(u, v) : Return the least common ancestor of u and v.
4. ancestor(u, k) : Return the k-th ancestor of u.

ICALP 2020
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Splay tree

Splay tree [35] is a classical binary search tree maintaining a dynamic sequence. Each element
in the sequence has two attributes, its key and value. The elements in a dynamic sequence are
arranged in the increasing order of their keys. While keys specify the order of the elements,
values are the information related to our queries.

I Lemma 7. Let K be an ordered set, and let G = (S, +) be a semigroup. Splay tree
maintains n nodes each with its key and value, supporting the following operations:
1. Insert(k, v) : Insert a new node with key k ∈ K and value v ∈ S.
2. Delete(k) : Delete the elements with key k ∈ K.
3. Split(k) : Return two splay trees T1, T2. T1 contains all nodes whose keys are smaller

than k, and T2 contains all other nodes. The original splay tree is destroyed after the
operation.

4. Size() : Return the number of nodes in the splay tree.
5. Merge(T1, T2) : Merge two splay trees T1, T2 where all nodes in T1 have smaller keys

than those in T2.
6. Sum(k1, k2) : Suppose the values of nodes with keys k ∈ [k1, k2] are v1, v2, . . . , vt in the

order of increasing keys. Then it returns v1 + v2 + · · ·+ vt.

Suppose the + operation of semigroup G takes Õ(1) time. Then each operation here takes
Õ(1) time.

Specifically, it has the following two applications:
Let S be the set of integers, and let + be addition. We can answer the summation of a
continuous subsequence in Õ(1) time.
Let S be the set of nodes in a static tree, and let a + b be the least common ancestor of a

and b. We can answer the least common ancestor of a continuous subsequence in Õ(1)
time.

Proof. The original paper [35] for splay tree showed how to handle insert, delete, split, and
merge operations when nodes only have keys but no values.

Here at each node, in addition to its key, we also maintain its value and the summation
of all values in its subtree. (Here summation refers to the operation of the semigroup)
This summation can be calculated from the summation of its children by a + operation.
Whenever the children of a node in splay tree changes, we update its summation. Since for
each operation, we only change the children of O(log n) nodes. Update the summation for
them takes O(log n) many + operations only.

To evaluate Sum(k1, k2), we first split the splay tree into three trees T1, T2, T3 using two
splits. T1 contains all nodes with keys smaller than k1. T2 contains all elements with keys in
[k1, k2]. T3 contains all other elements. Then we return the summation maintained at the
root of T2, and merge them back.

For Size() query, we can let the value of each node be one and reduce it to the value
summation query.

For the applications, since LCA operation is associative, (S, +) is a semigroup. The LCA
of two nodes can be answered in Õ(1) time [2]. Thus each operation takes only Õ(1) time,
and we can answer the least common ancestor of a continuous subsequence by Sum(k1, k2).

Similarly, we can answer the summation of a continuous subsequence in Õ(1) time by
Sum(k1, k2). J
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3 Algorithm

In the naïve algorithm, checking whether a cluster c0 is consistent with signature S takes
O(n2) time. To speed it up, the first step is to find a characterization of consistency that
utilizes the tree structure. Here we start with the characterization from the previous Õ(kn1.5)
algorithm [16]. Then we develop it into an improved algorithm.

From this section, we will be using the following notations. T denotes the phylogenetic
tree corresponding to signature S, namely our consensus tree. LCAT (c0) is the least common
ancestor of all species in cluster c0 on consensus tree T , while LCAi(c0) is that on the input
phylogenetic tree Ti. subtree(v) denotes the set of all nodes (both inner nodes and leaves)
within the subtree of v.

3.1 Characterization of consistency
In this subsection, the proof of Lemma 8 and 9 are already known from [16], but for clarity,
we formally state and prove them here.

To utilize the tree structure, we will focus on consensus tree T instead of its signature S.
The cluster c0 is consistent with S if and only if for all nodes u ∈ T , L(u) is consistent with
c0. First, we begin with a lemma that says only those nodes within the subtree of LCAT (c0)
matters.

I Lemma 8 ([16]). For node u ∈ T outside the subtree of LCAT (c0), L(u) is always
consistent with c0.

Proof. For simplicity, we use lca to denote LCAT (c0) here. By the definition of lca, we know
c0 ⊆ L(lca). u 6∈ subtree(lca) implies that L(u) 6⊂ L(lca). Since signature S is consistent,
there are two possibilities, either L(lca) ⊂ L(u) or L(lca) ∩ L(u) = ∅.

L(lca) ⊂ L(u) : Then c0 ⊆ L(lca) ⊂ L(u).
L(lca) ∩ L(u) = ∅ : Then c0 ∩ L(u) ⊆ L(lca) ∩ L(u) = ∅.

In both cases, L(u) is consistent with c0. J

Then we focus on nodes within the subtree of LCAT (c0), more specifically, the children
of LCAT (c0). Following is the characterization.

I Lemma 9 ([16]). Cluster c0 is consistent with the signature S of T if and only if every
child w of LCAT (c0) satisfies one of the following:

L(w) ⊂ c0
L(w) ∩ c0 = ∅

Equivalently, S ∪ {c0} is consistent if and only if∑
child w of LCAT (c0)

L(w)⊂c0

|L(w)| = |c0|

Proof. For simplicity, we use lca to denote LCAT (c0) here. By Lemma 8, we only have to
consider every node u within the subtree of lca. If c0 = L(lca), c0 is consistent with S (since
S ∪ {c0} = S), and all children w satisfies L(w) ⊂ c0. Now we assume c0 6= L(lca) which
implies c0 ⊂ L(lca).

We first prove that this condition is sufficient. For inner node u within the subtree of lca,
if u = lca, we know c0 ⊂ L(u) which means they are consistent. Otherwise, u must belong
to the subtree of a child of lca. Let us call this child w0.

ICALP 2020
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By the condition of this lemma, either L(w0) ∩ c0 = ∅ or L(w0) ⊂ c0. If L(w0) ∩ c0 = ∅,
since L(u) ⊆ L(w0), we know L(u) ∩ c0 = ∅. Otherwise L(u) ⊆ L(w0) ⊂ c0. In either case,
L(u) is consistent with c0.

Then we prove the necessity. For every child w of lca, since L(w) has to be consistent
with c0, either one of two conditions in this lemma holds, or c0 ⊂ L(w). If c0 ⊂ L(w), then w

is either lca or a proper ancestor of lca, which contradicts the fact that w is a child of lca. J

3.2 Our Algorithm
Algorithm

We begin with a corollary of the characterization to replace LCAT (c0).

I Corollary 10. c0 is consistent with the signature S of T if and only if, there exists a node
u0 ∈ T , such that c0 ⊆ L(u0), and every child w of u0 satisfies one of the following:

L(w) ⊆ c0
L(w) ∩ c0 = ∅

Equivalently, S ∪ {c0} is consistent if and only if ∃u0 ∈ T such that∑
child w of u0

L(w)⊆c0

|L(w)| = |c0|

Proof. For necessity, let u0 = LCAT (c).
For sufficiency, if u0 = LCAT (c0), it follows from Lemma 9. If u0 6= LCAT (c0), since

c0 ⊆ L(u0), there must be a child w0 of u0 such that c0 ⊆ L(w0). Otherwise, LCAT (c0)
should have been u0. On the other hand, because L(w0) ∩ c0 6= ∅, L(w0) ⊆ c0. Thus
c0 = L(w0). Namely, if u0 6= LCAT (c0), it must be the parent of w0 = LCAT (c0), and
c0 = L(w0). c0 is then consistent with S since L(w0) ∈ S. J

We have the following lemma to help us find such u0.

I Lemma 11. Suppose x is an arbitrary leaf of T such that x ∈ c0. Let u0 be the lowest
ancestor of x that L(u0) * c0. c0 is consistent with the signature S of T if and only if u0
satisfies the conditions in Corollary 10.

Besides, let p be the path from the root to u0. If c0 is consistent with signature S, for
each proper ancestors u of u0, L(u) * c0, and for each proper descendant u of u0 on path p,
L(u) ⊆ c0.

Proof. If c0 is consistent with S, by Corollary 10, there is a node u0 ∈ T satisfying the
conditions. Then by c0 ⊆ L(u0), we know x is in the subtree of u0. In other words, u0 is on
path p.

For each proper ancestor u of u0, c0 ⊆ L(u0) ⊂ L(u). Thus L(u) * c0. Suppose the child
of u0 on path p is w0. Since leaf x ∈ c0 ∩ L(w0), we know L(w0) ⊆ c0 from the conditions in
Corollary 10. For all proper descendants u of u0 on path p, L(u) ⊆ L(w0) ⊆ c0. Thus u0 is
the lowest ancestor of x that L(u0) * c0. J

By Lemma 11, we can perform a binary search on path p to find the lowest ancestor u0
of x that L(u0) * c0. We will show how to check whether L(u) * c0 for an arbitrary node
u ∈ T efficiently in Section 4.

Finally, we discuss how T should change when we add c0.



H. Wu 105:9

I Lemma 12. Suppose S is consistent with c0 and c0 6∈ S. When adding c0 to S and adding
the new node (corresponding to c0) to T , the u0 in Lemma 11 should be the parent of the new
node on T . The children of the new node should be all children w of u0 such that L(w) ⊂ c0.

Proof. Since the leaf x ∈ c0 (in Lemma 11), all inner nodes u with c0 ⊂ L(u) are on path p,
the path from the root to x. Thus by Lemma 11, L(u0) is the smallest set in S that contains
c0. Then the first claim follows from Observation 2. For those children w of u0 such that
L(w) ⊂ c0, c0 becomes the smaller set containing them. Thus they must change their parent.
For other nodes u, such that L(u) ⊂ c0, by the conditions of Corollary 10, u must be within
the subtree of a child of u0. Then that child is a smaller set containing it. Thus their parents
stay unchanged. J

Algorithm 2 Our algorithm to check consistency and update T .

1: Pick an arbitrary species in c0, and x← the corresponding leaf of T
2: Binary search the path from root to x.
3: u0 ← the lowest node u on the path that L(u) * c0

4: sum←
∑

child w of u0,L(w)⊆c0

|L(w)|

5: if sum = |c0| then
6: c0 is consistent with S, and we add it to consensus.
7: We add a new node w′ (corresponding to c0) to T
8: for child w of u0 do
9: if L(w) ⊂ c0 then
10: Move w to be a child of w′

11: Let w′ be a child of u0

Details of our algorithm are presented in Algorithm 2.

I Lemma 13. sum = |c0| at Line 5, Algorithm 2 if and only if c0 is consistent with S.

Proof. If c0 is consistent with S, by Lemma 11 we must find such a node u0. On the other
hand, if c0 is not consistent with S, by Corollary 10, there is no such u0. 1 J

To test whether L(u) ⊆ c0 at Line 3, we need the following lemma. Recall LCAi(c) is
the least common ancestor on tree Ti for cluster c.

I Lemma 14. Suppose c0 = L(v) where v is a node in Ti. For a node u in T , L(u) ⊆ c0 if
and only if LCAi(L(u)) is in the subtree of v.

Proof. If L(u) ⊆ c0 = L(v), every leaf in L(u) is a descendant of v. So LCATi
(L(u)) is in

the subtree of v. (note when c0 = L(u), it is still true since LCAi(L(u)) = v)
Conversely, if LCAi(L(u)) is a descendant of v, since leaves in L(u) are in the subtree of

LCAi(L(u)) on Ti, they are also in the subtree of L(v). Thus L(u) ⊆ L(v) = c0. J

Thus the subset queries at Line 11 of Algorithm 2 are turned into LCA queries on
phylogenetic tree Ti. Also for the summation query at Line 4, L(w) ⊆ c0 if and only if
LCAi(L(w)) is in the subtree of v.

Since Ti is a fixed static tree, finding LCAi(L(w)) is tractable in polylogarithmic time.
Details are presented in the next section.

1 Note if c0 is not consistent with S, u0 may not equal to LCAT (c). In this case, we have to refer back
to Corollary 10 instead of Lemma 9.
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4 Efficiency

In this section, we will show that our algorithm can be implemented efficiently. There are
two kinds of queries in Algorithm 2:
1. lca(u, i): Given u ∈ T , return LCAi(L(u)) on tree Ti. (At Line 3, to see whether

L(u) ⊆ c0, by Lemma 14, we need to find out LCAi(L(u)))
2. sum(u, v, i): Given u ∈ T and v ∈ Ti, evaluate the summation∑

child w of u
LCAi(L(w)) ∈ subtree(v) on Ti

|L(w)|

(By Lemma 14, it equals the summation sum at Line 4)

After checking consistency, in Line 7 ∼ 11, Algorithm 2, the consensus tree is dynamically
updated. The following update operation is needed:
1. add(u, v, i): Given u ∈ T and v ∈ Ti, add a new node w′ to be a child of u. For all

children w of u such that LCAi(L(w)) is in the subtree of v, move them to be the children
of the new node w′.

4.1 Data Structures

Recall E(T ) is the Euler tour of T where we only keep the first occurrence of each node. For
node v ∈ Ti, the subtree of L(v) corresponds to a continuous interval [lTi(v), rTi(v)] in E(Ti).
Let li(v) and ri(v) be the shorthands for lTi

(v) and rTi
(v).

The data structures we use have three components:
1. For each phylogenetic tree Ti, we maintain a top tree T ′i . Thus by Lemma 6, we can

answer the least common ancestor of two nodes in Õ(1) time.
2. For the consensus tree T , we maintain its structure with a top tree T ′. By Lemma 6,

we can answer k-th ancestor query in Õ(1) time. This is for the binary search at Line 3,
Algorithm 2.

3. For each node u ∈ T , we use k splay trees S1, . . . , Sk to maintain all its children w. The
key of child w in the i-th tree is li(LCAi(L(w))), the position of LCAi(L(w)) in E(Ti).
We maintain the following two values for each child w:
|L(w)| : The corresponding operation is integer additions.
LCAi(L(w)) : The corresponding operation is the least common ancestor of two nodes
on Ti.

Thus the splay trees support the following two kinds of queries:
Sum_Size(k1, k2) : return the summation of the first value of each w whose key is in
range [k1, k2].
Sum_LCA(k1, k2) : return the LCA of the second value of each w whose key is in
range [k1, k2].

Here the splay trees can be replaced with any balanced search trees with merge and split
operations.

For each node u ∈ T , we compute LCAi(L(u)) for all i once we add u to our consensus
tree and store these k numbers at node u. Namely, we compute them during the updates,
not the queries.
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4.2 Handle Update
Recall add(u, v, i) requires us to do the following:

add a new node w′ to be a child of u on the consensus tree T
move some children of u to be children of w′

Let the set of all children of u be C and those children need to move be W . par(u)
denotes the parent of u.

Here we use the following idea from [16]:
If |W | ≤ |C|/2, we add a new node w′ to be a child of u. Then we move nodes in W to
be the children of w′ one by one.
If |W | > |C|/2, instead of moving nodes in W , we move nodes in C\W . We disconnect u

from par(u) and connect w′ with par(u). Namely, replace u with w′. Then we make u a
child of w′. For all children of u in C\W , we move them to be the children of w′.

In this way, we need to move at most min{|W |, |C|−|W |} nodes. The details are presented
in Algorithm 3.

Algorithm 3 Handle update add(u, v, i).

1: C ← the set of all children of u

2: W ← {w ∈ C|LCAi(L(w)) ∈ subtree(v) on Ti}
3: if |W | ≤ |C|/2 then
4: Add a new node w′ to be a child of u on Top tree T ′
5: for w ∈W do
6: Cut the edge between w and u on T ′ and connect w with w′

7: Remove w from the splay trees at u. Insert w into splay trees at w′

8: for i ∈ k do
9: Compute LCAi(L(w′))← Sum_LCA(1, n) by query the splay tree Si at node w′

10: else
11: Add a new node w′ to replace u, and make u a child of w′ on Top tree T ′
12: for w ∈ C −W do
13: Cut the edge between w and u on T ′ and connect w with w′

14: Remove w from the splay trees at u. Insert w into splay trees at w′

15: for i ∈ k do
16: LCAi(L(w)) gets the answer we stored at node u before
17: Compute LCAi(L(u))← Sum_LCA(1, n) by query the splay tree Si at node u

I Lemma 15. Each node is moved at most O(log n) times.

Proof. No matter we move children in W or C\W , the set C is eventually divided into two
sets C\W and W after the procedure. Since we always move the nodes in the smaller set,
each time we move a node, the size of the set containing it is at least halved. Or equivalently,
the number of its siblings is at least halved. Since initially the root has n children, every
node is in a set of size n. Each node can be moved at most O(log n) times. J

I Lemma 16. All updates add(u, v, i) take Õ(kn) time in total.

Proof. See Algorithm 3.
At Line 2, we need to implicitly find out the set W and get its size. By Observation 5,

the subtree of v forms a continuous interval in E(Ti). Then the size of W is just the number
of nodes with keys within [li(v), ri(v)] in splay tree Si. We can split this part out from Si

into a splay tree S′. The size of S′ is just the size of W .

ICALP 2020



105:12 Near-Optimal Algorithm for Constructing Greedy Consensus Tree

Then at Line 6, 7, 13, 14, each time we move a node, by Lemma 6 and Lemma 7, it takes
Õ(k) time. (The bottleneck is to delete and insert nodes at all k splay trees) By Lemma 15,
each node is moved at most O(log n) times. Since the consensus tree has at most n nodes in
the end, in total this part takes Õ(kn) time.

At Line 9, and 17, we need to query k splay trees for each node inserted to the consensus
tree. By Lemma 7, this takes Õ(k) time for each node inserted. Thus in total, we need Õ(kn)
time. J

4.3 Handle Queries
I Lemma 17. The queries lca(u, i) and sum(u, v, i) can be answered in Õ(1) time.

Proof. For query lca(u, i), we return the LCAi(L(w)) we computed at Line 17, Algorithm 3
when adding u.

For sum(u, v, i), by Observation 5, all children w that LCAi(L(w)) ∈ subtree(v) on Ti

are in a continuous interval of E(Ti), namely [li(v), ri(v)]. To answer sum(u, v, i), we perform
Sum(li(v), ri(v)) on splay tree Si for the second value, namely |L(w)|, and we return the
summation to be the answer. J

4.4 Time complexity
I Theorem 18. Greedy consensus tree of k phylogenetic trees for n species can be constructed
in Õ(kn) time.

Proof. Recall the construction of greedy consensus tree contains two phases:
1. Count the frequency f(c) of clusters and sort them. (Line 1 ∼ 3 of Algorithm 1)
2. Repeatedly run the greedy procedure. (Line 4 ∼ 7 of Algorithm 1)

By Lemma 4, we can get the identifier of each cluster and handle the first phase in Õ(kn)
time.

To handle the second phase, we run our Algorithm 2.
For the binary search at Line 3, by Lemma 6, we can randomly access the path by
k-th ancestor query in Õ(1) time. By Lemma 14 and Lemma 17, we can check whether
L(u) ⊆ c0 in Õ(1) time.
For the summation at Line 4, by Lemma 17, can also be evaluated in Õ(1) time.

Thus for each of the kn clusters, checking consistency takes Õ(1) time. Then it takes
Õ(kn) time in total.

For Line 7 ∼ 11 of Algorithm 2, we run Algorithm 3. By Lemma 3, this part takes Õ(kn)
time in total.

Thus our algorithm takes Õ(kn) time. J
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Constraints on entropies are considered to be the laws of information theory. Even though the
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1 Introduction

The study of constraints on entropies is a central topic of research in information theory.
In fact, more than 30 years ago, Pippenger [40] asserted that constraints on entropies are
the “laws of information theory” and asked whether the polymatroidal axioms form the
complete laws of information theory, i.e., whether every constraint on entropies can be
derived from the polymatroidal axioms. These axioms consist of the following three types of
constraints: (1) H(∅) = 0, (2) H(X) ≤H(X ∪ Y ) (monotonicity), and (3) H(X) +H(Y ) ≥
H(X ∩ Y ) +H(X ∪ Y ) (submodularity). It is known that the polymatroidal axioms are
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equivalent to Shannon’s basic inequalities, that is, to the non-negativity of the entropy,
conditional entropy, mutual information, and conditional mutual information [46]. In a
celebrated result published in 1998, Zhang and Yeung [51] answered Pippenger’s question
negatively by finding a linear inequality that is satisfied by all entropic functions, but cannot
be derived from the polymatroidal axioms.

Zhang and Yeung’s result became the catalyst for the discovery of other information laws
that are not captured by the polymatroidal axioms (e.g., [25, 34]). In particular, we now know
that there are more elaborate laws, such as conditional inequalities, or inequalities expressed
using max, which find equally important applications in a variety of areas. For example,
implications between conditional independence statements of discrete random variables can
be expressed as conditional information inequalities. In another example, we have recently
shown that conjunctive query containment under bag semantics is at least as hard as checking
information inequalities using max [1]. Despite the extensive research on various kinds of
information inequalities, to the best of our knowledge nothing is known about the algorithmic
aspects of the associated decision problem: check whether a given information law is valid.

In this paper, we initiate a study of algorithmic problems that arise naturally in information
theory, and establish several results. To this effect, we introduce a generalized form of
information inequalities, which we call Boolean information constraints, consisting of Boolean
combinations of linear information inequalities, and define their associated decision problems.
Since it is still an open problem whether linear information inequalities, which are the
simplest kind of information laws, are decidable, we focus on placing these decision problems
in the arithmetical hierarchy, also known as the Kleene-Mostowski hierarchy [41]. The
arithmetical hierarchy has been studied by mathematical logicians since the late 1940s;
moreover, it directly influenced the introduction and study of the polynomial-time hierarchy
by Stockmeyer [43]. The first level of the arithmetical hierarchy consists of the collection Σ0

1
of all recursively enumerable sets and the collection Π0

1 of the complements of all recursively
enumerable sets. The higher levels Σ0

n and Π0
n, n ≥ 2, are defined using existential and

universal quantification over lower levels. We prove a number of results, including the
following.

(1) Checking the validity of a Boolean information constraint arising from a monotone
Boolean formula (in particular, a max information inequality) is in Π0

1 (Theorem 7).
(2) Checking the validity of a conditional information inequality whose antecedents are

“tight” is in Π0
3 (Corollary 11). “Tight” inequalities are defined in Section 4.2.2, and

include conditional independence assertions between random variables.
(3) Checking the validity of a conditional information inequality whose antecedents have

“slack” and are group-balanced is in Σ0
2 (Corollary 14).

(4) Checking the validity of a group-balanced, max information inequality is Turing equivalent
to checking the validity of an information inequality (Corollary 17).

While the decidability of linear information inequalities (the simplest kind considered in
this paper) remains open, a separate important question is whether more complex Boolean
information constraints are any harder. For example, some conditional inequalities, or
some max-inequalities can be proven from a simple linear inequality, hence they do not
appear to be any harder. However, Kaced and Romashchenko [25] proved that there exist
conditional inequalities that are essentially conditional, which means that they do not follow
from a linear inequality. (We give an example in Equation (9).) We prove here that any
conditional information inequality with slack is essentially unconditioned (Corollary 10; see
also Equation(19)), and that any max-inequality also follows from a single linear inequality
(Theorem 16).
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A subtle complication involving these results is whether by “validity” it is meant that
the given Boolean information constraint holds for the set of all entropic vectors over n
variables, denoted by Γ∗n, or for its topological closure, denoted by Γ∗n. It is well known
that these two spaces differ for all n ≥ 3. With the exception of (1) above, which holds for
both Γ∗n and Γ∗n, our results are only for Γ∗n. A problem of special interest is the implication
between conditional independence statements of discrete random variables, and this amounts
to checking the Γ∗n-validity of a tight conditional information inequality; it is known that this
problem is not finitely axiomatizable [44], and its decidability remains open. Our result (2)
above does not apply here because it is a statement about Γ∗n-validity. However, we prove
that the implication problem for conditional independence statements is in Π0

1 (Theorem 8).

2 Background and Notations

Throughout this paper, vectors and tuples are denoted by bold-faced letters, and random
variables are capitalized. We write x ⋅ y def= ∑i xiyi for the dot product of x,y ∈ Rm. For a
given set S ⊆ Rm, S is convex if x,y ∈ S and θ ∈ [0,1] implies θx + (1 − θ)y ∈ S; S is called
a cone if x ∈ S and θ ≥ 0 implies θx ∈ S; the topological closure of S is denoted by S; and,
finally, S∗ def= {y ∣ ∀x ∈ S,x ⋅ y ≥ 0} denotes the dual cone of S. It is known that S∗ is always
a closed, convex cone. We provide more background in the full version [2].

For a random variable X with a fixed finite domain D and a probability mass function
(pmf) p, its (binary) entropy is defined by

H(X) def= − ∑
x∈D

p(x) ⋅ log p(x) (1)

In this paper all logarithms are in base 2.
Fix a joint distribution over n finite random variables V

def= {X1, . . . ,Xn}. For each
α ⊆ [n], let Xα denote the random (vector-valued) variable (Xi ∶ i ∈ α). Define the set
function h ∶ 2[n] → R+ by setting h(α) def= H(Xα), for all α ⊆ [n]. With some abuse, we blur
the distinction between the set [n] and the set of variables V = {X1, . . . ,Xn}, and write
H(Xα), h(Xα), or h(α) interchangeably. We call the function h an entropic function, and
also identify it with a vector h

def= (h(α))α⊆[n] ∈ R2n

+ , which is called an entropic vector. Note
that most texts and papers on this topic drop the component h(∅), which is always 0, leading
to entropic vectors in R2n−1. We prefer to keep the ∅-coordinate to simplify notations. The
implicit assumption h(∅) = 0 is used through the rest of the paper.

The set of entropic functions/vectors is denoted by Γ∗n ⊆ R2n

+ . Its topological closure,
denoted by Γ∗n, is the set of almost entropic vectors (or functions). It is known [46] that
Γ∗n ( Γ∗n for n ≥ 3. In general, Γ∗n is neither a cone nor convex, but its topological closure Γ∗n
is a closed convex cone [46].

Every entropic function h satisfies the following basic Shannon inequalities:

h(Y ∪X) ≥ h(X) h(X) + h(Y ) ≥ h(X ∪Y ) + h(X ∩Y )

called monotonicity and submodularity respectively. Any inequality obtained by taking a
positive linear combination of Shannon inequalities is called a Shannon-type inequality.

Throughout this paper we will abbreviate the union X ∪ Y of two sets of variables as
XY . The quantities h(Y ∣X) def= h(XY ) − h(X) and Ih(Y ; Z ∣X) def= h(XY ) + h(XZ) −
h(XY Z) − h(X) are called the conditional entropy and the conditional mutual information
respectively. It can be easily checked that h(Y ∣X) ≥ 0 and Ih(Y ; Z ∣X) ≥ 0 are Shannon-type
inequalities.
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I Remark 1. The established notation Γ∗n [47, 50, 11] for the set of entropic vectors is
unfortunate, because the star in this context does not represent the dual cone. We will
continue to denote by Γ∗n the set of entropic vectors (which is not a cone!), and use explicit
parentheses, as in (Γ∗n)∗, to represent the dual cone.

3 Boolean information Constraints

Most of this paper considers the following problem: given a Boolean combination of informa-
tion inequalities, check whether it is valid. However in Section 5 we briefly discuss the dual
problem, namely, recognizing whether a given vector h is an entropic vector (or an almost
entropic vector).

A Boolean function is a function F ∶ {0,1}m → {0,1}. We often denote its inputs with
variables Z1, . . . , Zm ∈ {0, 1}, and write F (Z1, . . . , Zm) for the value of the Boolean function.

3.1 Problem Definition
A vector c ∈ R2n

defines the following (linear) information inequality:

c ⋅h = ∑
α⊆[n]

cαh(Xα) ≥ 0. (2)

The information inequality is said to be valid if it holds for all vectors h ∈ Γ∗n; equivalently,
c is in the dual cone, c ∈ (Γ∗n)∗. By continuity, an information inequality holds ∀h ∈ Γ∗n
iff it holds ∀h ∈ Γ∗n. In 1986, Pippenger [40] defined the “laws of information theory” as
the set of all information inequalities, and asked whether all of them are Shannon-type
inequalities. This was answered negatively by Zhang and Yeung in 1998 [51]. We know
today that several applications require more elaborate laws, such as max-inequalities and
conditional inequalities. Inspired by these new laws, we define the following generalization.

I Definition 2. To each Boolean function F with m inputs, and every m vectors cj ∈ R2n

, j ∈
[m], we associate the following Boolean information constraint:

F (c1 ⋅h ≥ 0, . . . ,cm ⋅h ≥ 0). (3)

For a set S ⊆ R2n

, a Boolean information constraint is said to be S-valid if it holds for
all h ∈ S. Thus, we will distinguish between Γ∗n-validity and Γ∗n-validity. Unlike in the case
of information inequalities, these two notions of validity no longer coincide for arbitrary
Boolean information constraints in general, as we explain in what follows.

I Definition 3. Let F be a Boolean function. The entropic Boolean information constraint
problem parameterized by F , denoted by EBIC(F ), is the following: given m integer vectors
cj ∈ Z2n

, where j ∈ [m], check whether the constraint (3) holds for all entropic functions
h ∈ Γ∗n. In the almost-entropic version, denoted by AEBIC(F ), we replace Γ∗n by Γ∗n.

The inputs cj , j ∈ [m], to these problems are required to be integer vectors in order for
EBIC(F ) and AEBIC(F ) to be meaningful computational problems. Equivalently, one can
require the inputs to be rational vectors cj ∈ Q2n

, j ∈ [m].
Let F be a Boolean function. F can be written as a conjunction of clauses F = C1∧C2∧⋯,

where each clause is a disjunction of literals. Equivalently, a clause C has this form:

(Z ′
1 ∧⋯ ∧Z ′

k)⇒ (Z1 ∨⋯ ∨Z`) (4)
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Abbreviation
Problem Entropic Almost- Simple Example

entropic

Boolean information EBIC(F ) AEBIC(F ) h(XY ) ≤ 2
3h(XY Z)⇒

constraint max(h(Y Z), h(XZ)) ≥ 2
3h(XY Z)

Information Inequality IIP h(XY ) + h(Y Z) + h(XZ) ≥ 2h(XY Z)
Max-Information Inequality MaxIIP max(h(XY ), h(Y Z), h(XZ)) ≥ 2

3h(XY Z)
Conditional Information ECIIP AECIIP ((h(XY ) ≤ 2

3h(XY Z)) ∧ (h(Y Z) ≤ 2
3h(XY Z)))

Inequality ⇒ h(XZ) ≥ 2
3h(XY Z)

Conditional Independence CI (no name) (I(X;Y ) = 0 ∧ I(X;Z ∣Y ) = 0)⇒ I(X;Z) = 0

Figure 1 Notations for various Boolean Information Constraint Problems.

where Z ′
1, . . . , Z

′
k, Z1, . . . , Z` are distinct Boolean variables. Checking EBIC(F ) is equivalent

to checking EBIC(C), for each clause of F (and similarly for AEBIC(F )); therefore and
without loss of generality, we will assume in the rest of the paper that F consists of a single
clause (4) and study the problem along these dimensions:

Conditional and Unconditional Constraints. When k = 0 (i.e., when the antecedent is
empty), the formula F is monotone, and we call the corresponding Boolean information
constraint unconditional. When k > 0, the formula F is non-monotone, and we call the
corresponding constraint conditional.

Simple and Max Constraints. When k = 0 and ` = 1, then we say that F defines a simple
inequality; when k = 0 and ` > 1, then we say that F defines a max-inequality. The case
when ` = 0 and k > 0 is not interesting because F is not valid, since the zero-vector h = 0
violates the constraint.

3.2 Examples and Applications
This section presents examples and applications of Boolean Function Information Constraints
and their associated decision problems. A summary of the notations is in Fig. 1.

3.2.1 Information Inequalities
We start with the simplest form of a Boolean information constraint, namely, the linear
information inequality in Eq. (2), which arises from the single-variable Boolean formula Z1.
We will call the corresponding decision problem the information-inequality problem, denoted
by IIP: given a vector of integers c, check whether Eq. (2) is Γ∗n-valid or, equivalently, Γ∗n-valid.
Pippenger’s question from 1986 was essentially a question about decidability. Shannon-
type inequalities are decidable in exponential time using linear programming methods, and
software packages have been developed for this purpose [46, Chapter 13] (it is not known,
however, if there is a matching lower bound in the complexity of this problem). Thus, if every
information inequality were a Shannon-type inequality, then information inequalities would
be decidable. However, Zhang and Yeung’s gave the first example of a non-Shannon-type
information inequality [51]. Later, Matúš [34] proved that, when n ≥ 4 variables, there exists
infinitely many inequivalent non-Shannon entropic inequalities. More precisely, he proved
that the following is a non-Shannon inequality, for every k ≥ 1:

Ih(C;D∣A) + k + 3
2

Ih(C;D∣B) + Ih(A;B) + k − 1
2

Ih(B;C ∣D) + 1
k
Ih(B;D∣C) ≥ Ih(C;D)

(5)
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This ruined any hope of proving decidability of information inequalities by listing a finite
set of axioms. To date, the study of non-Shannon-type inequalities is an active area of
research [49, 31, 48], and the question whether IIP is decidable remains open.

Hammer et al. [23], showed that, up to logarithmic precision, information inequalities are
equivalent to linear inequalities in Kolmogorov complexity (see also [20, Theorem 3.5]).

3.2.2 Max Information Inequalities
Next, we consider constraints defined by a disjunction of linear inequalities, in other words
(c1 ⋅h ≥ 0) ∨⋯ ∨ (cm ⋅h ≥ 0), where cj ∈ R2n

. This is equivalent to:

max(c1 ⋅h,c2 ⋅h, . . . ,cm ⋅h) ≥ 0 (6)

and, for that reason, we call them Max information inequalities and denote the corresponding
decision problem by MaxIIP. As before, Γ∗n-validity and Γ∗n-validity coincide.

Application to Constraint Satisfaction and Database Theory. Given two finite structures
A and B, we write HOM(A,B) for the set of homomorphisms from A to B. We say that
B dominates structure A, denote by A ⪯ B, if for every finite structure C, we have that
∣HOM(A,C)∣ ≤ ∣HOM(B,C)∣. The homomorphism domination problem asks whether A ⪯ B,
given A and B. In database theory this problem is known as the query containment problem
under bag semantics [13]. In that setting we are given two Boolean conjunctive queries
Q1,Q2, which we interpret using bag semantics, i.e., given a database D, the answer Q1(D)
is the number of homomorphisms Q1 →D [28]. Q1 is contained in Q2 under bag semantics
if Q1(D) ≤ Q2(D) for every database D. It is open whether the homomorphism domination
problem is decidable.

Kopparty and Rossman [29] described a MaxIIP problem that yields a sufficient condition
for homomorphism domination. In recent work [1] we proved that, when B is acyclic, then
that condition is also necessary, and, moreover, the domination problem for acyclic B is
Turing-equivalent to MaxIIP. Hence, any result on the complexity of MaxIIP immediately
carries over to the homomorphism domination problem for acyclic B, and vice versa.

We illustrate here Kopparty and Rossman’s MaxIIP condition on a simple example.
Consider the following two Boolean conjunctive queries: Q1() = R(u, v) ∧R(v,w) ∧R(w,u),
Q2() = R(x, y)∧R(x, z); interpreted using bag semantics, Q1 returns the number of triangles
and Q2 the number of V-shaped subgraphs. Kopparty and Rossman proved that Q1 ⪯ Q2
follows from the following max-inequality:

max{2h(XY ) − h(X) − h(XY Z),2h(Y Z) − h(Y ) − h(XY Z),2h(XZ) − h(Z) − h(XY Z)} ≥ 0
(7)

3.2.3 Conditional Information Inequalities
A conditional information inequality has the form:

(c1 ⋅h ≥ 0 ∧⋯ ∧ ck ⋅h ≥ 0)⇒ c0 ⋅h ≥ 0 (8)

Here we need to distinguish between Γ∗n-validity and Γ∗n-validity, and denote by ECIIP and
AECIIP the corresponding decision problems. Notice that, without loss of generality, we can
allow equality in the antecedent, because ci ⋅h = 0 is equivalent to ci ⋅h ≥ 0 ∧ −ci ⋅h ≥ 0.



M. Abo Khamis, P. G. Kolaitis, H.Q. Ngo, and D. Suciu 106:7

Suppose that there exist λ1 ≥ 0, . . . , λm ≥ 0 such that the inequality c0 ⋅h−(∑i λici ⋅h) ≥ 0
is valid; then Eq. (8) is, obviously, also valid. Kaced and Romashchenko [25] called Eq. (8) an
essentially conditioned inequality if no such λi’s exist, and discovered several valid conditional
inequalities that are essentially conditioned.

Application to Conditional Independence. Fix three set of random variables X,Y ,Z. A
conditional independence (CI) statement is a statement of the form φ = (Y á Z ∣ X), and it
asserts that Y and Z are independent conditioned on X. A CI implication is a statement
ϕ1 ∧ ⋯ ∧ ϕk ⇒ ϕ0, where ϕi, i ∈ {0, . . . , k} are CI statements. The CI implication problem
is: given an implication, check if it is valid for all discrete probability distributions. Since
(Y á Z ∣ X) ⇔ Ih(Y ; Z ∣X) = 0 ⇔ −Ih(Y ; Z ∣X) ≥ 0, the CI implication problem is a
special case of ECIIP.

The CI implication problem has been studied extensively in the literature [30, 44, 18, 27].
Pearl and Paz [39] gave a sound, but incomplete, set of graphoid axioms, Studený [44]
proved that no finite axiomatization exists, while Geiger and Pearl [18] gave a complete
axiomatization for two restricted classes, called saturated, and marginal CIs. See [16, 21, 38]
for some recent work on the CI implication problem. The decidability of the CI implication
problem remains open to date.

Results in [25] imply that the following CI implication is essentially conditioned (see [27]):

Ih(C;D∣A) = Ih(C;D∣B) = Ih(A;B) = Ih(B;C ∣D) = 0Ô⇒ Ih(C;D) = 0 (9)

While a CI implication problem is an instance of an entropic conditional inequality, one can
also consider the question whether a CI implication statement holds for all almost entropic
functions; for example the implication (9) holds for all almost entropic functions. Kaced
and Romashchenko [25] proved that these two problems differ, by giving examples of CI
implications that hold for all entropic functions but fail for almost entropic functions.

3.2.4 Group-Theoretic Inequalities

There turns out to be a way to “rephrase” IIP as a decision problem in group theory; This
was a wonderful result by Chan and Yeung [12] (see also [11]). A tuple (G;G1, . . . ,Gn)
is called a group system if G is a finite group and G1, . . . ,Gn ⊆ G are n subgroups. For
any α ⊆ [n], define Gα ∶= ⋂i∈αGi; implicitly, we set G∅ ∶= G. A vector c ⊆ R2n

defines the
following group-theoretic inequality:

∑
α⊆[n]

cα log ∣G∣
∣Gα∣

≥ 0 (10)

I Theorem 4 ([12]). An information inequality (2) is Γ∗n-valid if and only if the corresponding
group-theoretic inequality (10) holds for all group systems (G,G1, . . . ,Gn),

In particular, a positive or negative answer to the decidability problem for IIP immediately
carries over to the validity problem of group-theoretic inequalities of the form (10). We note
that the group-theoretic inequalities considered here are different from the word problems in
group, see e.g. the survey [35]; the undecidability results for word problems in groups do not
carry over to the group-theoretic inequalities and, thus, to information inequalities.
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3.2.5 Application to Relational Query Evaluation
The problem of bounding the number of copies of a graph inside of another graph has a long
and interesting history [17, 5, 14, 36]. The subgraph homomorphism problem is a special
case of the relational query evaluation problem, in which case we want to find an upper
bound on the output size of a full conjunctive query. Using the entropy argument from [14],
Shearer’s lemma in particular, Atserias, Grohe, and Marx [6] established a tight upper bound
on the answer to a full conjunctive query over a database. Note that Shearer’s lemma is a
Shannon-type inequality. Their result was extended to include functional dependencies and
more generally degree constraints in a series of recent work in database theory [19, 3, 4]. All
these results can be cast as applications of Shannon-type inequalities. For a simple example,
let R(X,Y ), S(Y,Z), T (Z,U) be three binary relations (tables), each with N tuples, then
their join R(X,Y ) & S(Y,Z) & T (Z,U) can be as large as N2 tuples. However, if we further
know that the functional dependencies XZ → U and Y U →X hold in the output, then one
can prove that the output size is ≤ N3/2, by using the following Shannon-type information
inequality:

h(XY ) + h(Y Z) + h(ZU) + h(X ∣Y U) + h(U ∣XZ) ≥ 2h(XY ZU) (11)

While the tight upper bound of any conjunctive query can be proven using only Shannon-type
inequalities, this no longer holds when the relations used in the query are constrained to
satisfy functional dependencies. In that case, the tight upper bound can always be obtained
from an information inequality, but Abo Khamis et al. [4] gave an example of a conjunctive
query for which the tight upper bound requires a non-Shannon inequality.

3.2.6 Application to Secret Sharing
An interesting application of conditional information inequalities is secret sharing, which is a
classic problem in cryptography, independently introduced by Shamir [42] and Blakley [8].
The setup is as follows. There is a set P of participants, a dealer d ∉ P , and an access
structure F ⊂ 2P . The access structure is closed under taking superset: A ∈ F and A ⊆ B
implies B ∈ F . The dealer has a secret s, from some finite set K, which she would like to
share in such a way that every set F ∈ F of participants can recover the secret s, but every
set F ∉ F knows nothing about s. The dealer shares her secret by using a secret sharing
scheme, in which she gives each participant p ∈ P a share sp ∈Kp, where Kp is some finite
domain. The scheme is designed in such a way that from the tuple (sp)p∈F one can recover s
if F ∈ F , and conversely one cannot infer any information about s if F ∉ F .

One way to formalize secret sharing uses information theory (for other formalisms, see [7]).
We identify the participants P with the set [n − 1], and the dealer with the number n. A
secret sharing scheme on P with access structure F ⊆ 2P is a joint distribution on n discrete
random variables (X1, . . . ,Xn) satisfying:
(i) H(Xn) > 0
(ii) H(Xn ∣ XF ) = 0 if F ∈ F
(iii) H(Xn ∣ XF ) =H(Xn) if F ∉ F ; equivalently, IH(Xn; XF ) = 0.
Intuitively, Xi denotes the share given to the ith participant, and Xn is the unknown secret.
It can be shown, without loss of generality, that (i) can be replaced by the assumption that
the marginal distribution on Xn is uniform [9], which encodes the fact that the scheme does
not reveal any information about the secret Xn. Condition (ii) means one can recover the
secret from the shares of qualified participants, while condition (iii) guarantees the complete
opposite. A key challenge in designing a good secret sharing scheme is to reduce the total
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size of the shares. The only known [15, 10, 26] way to prove a lower bound on share sizes is to
lower bound the information ratio maxp∈P H(Xp)

H(Xn) . In order to prove that some number ` is a
lower bound on the information ratio, we need to check that maxi∈[n−1]{h(Xi)−` ⋅h(Xn)} ≥ 0
holds for all entropic functions h ∈ Γ∗n satisfying the extra conditions (i), (ii), and (iii) above.
Equivalently, ` is a lower bound on the information ratio if and only if the following Boolean
information constraint is Γ∗n-valid:

⋀
F ∈F

(h(Xn ∣ XF ) = 0) ∧ ⋀
F /∈F

(Ih(Xn; XF ) = 0)Ô⇒ (h(Xn) = 0) ∨ [ ⋁
i∈[n−1]

(h(Xi) ≥ ` ⋅ h(Xn))]

4 Placing EBIC and AEBIC in the Arithmetical Hierarchy

What is the complexity of EBIC(F ) / AEBIC(F )? Is it even decidable? As we have seen
there are numerous applications of the Boolean Information Constraint problem, hence any
positive or negative answer, even for special cases, would shed light on these applications.
While their (un)decidability is currently open, in this paper we provide several upper bounds
on their complexity, by placing them in the arithmetical hierarchy.

We briefly review some concepts from computability theory. In this setting it is standard to
assume objects are encoded as natural numbers. A set A ⊆ Nk, for k ≥ 1, is Turing computable,
or decidable, if there exists a Turing machine that, given x ∈ Nk decides whether x ∈ A. A set
A is Turing reducible to B if there exists a Turing machine with an oracle for B that can decide
membership in A. The arithmetical hierarchy consists of the classes of sets Σ0

n and Π0
n defined

as follows. The class Σ0
n consists of all sets of the form {x ∣ ∃y1∀y2∃y3⋯QynR(x, y1, . . . , yn)},

where R is an (n + 1)-ary decidable predicate, Q = ∃ if n is odd, and Q = ∀ if n is even. In a
dual manner, the class Π0

n consists of sets of the form {x ∣ ∀y1∃y2∀y3⋯QynR(x, y1, . . . , yn)}.
Then Σ0

0 = Π0
0 are the decidable sets, while Σ0

1 consists of the recursively enumerable sets,
and Π0

1 consists of the co-recursively enumerable sets. It is known that these classes are
closed under union and intersection, but not under complements, and that they form a
strict hierarchy, Σ0

n,Π0
n ( (Σ0

n+1 ∩Π0
n+1). For more background, we refer to [41]. Our goal

is to place the problems EBIC(F ), AEBIC(F ), and their variants in concrete levels of the
arithmetical hierarchy.

4.1 Unconditional Boolean Information Constraints
We start by discussing unconditional Boolean information constraints, or, equivalently, a
Boolean information constraint defined by a monotone Boolean formula F . The results here
are rather simple; we include them only as a warmup for the less obvious results in later
sections. Based on our discussion in Sections 3.2.1 and 3.2.2, we have the following result.

I Theorem 5. If F is monotone, then EBIC(F ) and AEBIC(F ) are equivalent problems.

Next, we prove that these problems are co-recursively enumerable, by using the following
folklore fact. A representable set of n random variables is a finite relation Ω with N rows and
n+ 1 columns X1, . . . ,Xn, p, where column p contains rational probabilities in [0, 1]∩Q that
sum to 1. Thus, Ω defines n random variables with finite domain and probability mass given
by rational numbers. We denote hΩ its entropic vector. By continuity of Eq.(1), we obtain:

I Proposition 6. For every entropic vector h ∈ Γ∗n and every ε > 0, there exists a representable
space Ω such that ∥h −hΩ∥ < ε.
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The group-characterization proven by Chan and Yeung [12] implies a much stronger
version of the proposition; we do not need that stronger version in this paper.

I Theorem 7. Let F be a monotone Boolean formula. Then EBIC(F ) (and, hence, AEBIC(F))
is in Π0

1, i.e., it is co-recursively enumerable.

Proof. Fix F = Z1 ∨⋯ ∨Zm and ci ∈ Z2n

, i ∈ [m]. We need to check:

∀h ∈ Γ∗n ∶ c1 ⋅h ≥ 0 ∨⋯ ∨ cm ⋅h ≥ 0 (12)

We claim that (12) is equivalent to:

∀Ω c1 ⋅hΩ ≥ 0 ∨⋯ ∨ cm ⋅hΩ ≥ 0 (13)

Obviously (12) implies (13), and the opposite follows from Prop. 6: if (12) fails on some
entropic vector h, then it also fails on some representable hΩ close enough to h. Finally,
(13) is in Π0

1 because, the property after ∀Ω is decidable, by expanding the definition of
entropy (1) in each condition ci ⋅ hΩ ≥ 0, and writing the latter as ∑j aj log bj ≥ 0, or,
equivalently, ∏j(bj)aj ≥ 1, where aj , bj are rational numbers, which is decidable. J

4.2 Conditional Boolean Information Constraints
We now consider non-monotone Boolean functions, in other words, conditional information
constraints (8). Since Γ∗n- and Γ∗n-validity no longer coincide, we study EBIC(F ) and
AEBIC(F ) separately. The results here are non-trivial, and some proofs are deferred to [2].

4.2.1 The Entropic Case
Our result for EBIC(F ) is restricted to the CI implication problem. Recall from Sec. 3.2.3
that this problem consists of checking whether an implication between statements of the
form (Y á Z ∣ X) holds for all random variables with finite domain, and this is equivalent
to checking whether a certain conditional inequality holds for all entropic functions. We
prove that this problem is in Π0

1 by using Tarski’s theorem of the decidability of the theory
of reals with +,∗ [45].

I Theorem 8. The CI implication problem (Section 3.2.3) is in Π0
1.

Proof. Tarski has proven that the theory of reals with +,∗ is decidable. More precisely, given
a formula Φ in FO with symbols + and ∗, it is decidable whether that formula is true in the
model of real numbers (R,+,∗); for example, it is decidable whether1 Φ ≡ ∀x∃y∀z(x2 + 3y ≥
z ∧ (y3 + yz ≤ xy2)) is true. We will write (R,+,∗) ⊧ Φ to denote the fact that Φ is true in
the model of reals.

Consider a conditional inequality over a set of n joint random variables:

Ih(Y1;Z1∣X1) = 0 ∧⋯ ∧ Ih(Yk;Zk ∣Xk) = 0⇒ Ih(Y ;Z ∣X) = 0

The following algorithm returns false if the inequality fails on some entropic function h,
and runs forever if the inequality holds for all h, proving that the problem is in Π0

1:

Iterate over all N ≥ 0. For each N , do the following steps.

1 3y is a shorthand for y + y + y and x ≥ y is a shorthand for ∃u(x = y + u2).
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Consider n joint random variables X1, . . . ,Xn where each has outcomes in the domain
[N]; thus there are Nn possible outcomes. Let p1, . . . , pNn be real variables representing
the probabilities of these outcomes.
Construct a formula ∆ stating “there exist probabilities p1, . . . , pNn for these outcomes,
whose entropy fails the conditional inequality”. More precisely, the formula consists of
the following:

Convert each conditional independence statement in the antecedent Ih(Yi;Zi∣Xi) = 0
into its equivalent statement on probabilities: p(XiYiZi)p(Xi) = p(XiYi)p(XiZi).
Replace each such statement with a conjunction of statements of the form p(Xi =
x,Yi = y,Zi = z) ⋅ p(Xi = x) = p(Xi = x,Yi = y) ⋅ p(Xi = x,Zi = z), for all combinations
of values x, y, z. If Xi, Yi, Zi have in total k random variables, then there are Nk

combinations of values x, y, z, thus we create a conjunction of Nk equality statements.
Each marginal probability is a sum of atomic probabilities, for example p(Xi = x,Yi =
y) = pk1 + pk2 + ⋯ where pk1 , pk2 , . . . are the probabilities of all outcomes that have
Xi = x and Yi = y. Thus, the equality statement in the previous step becomes the
following formula: (pi1 + pi2 +⋯)(pj1 + pj2 +⋯) = (pk1 + pk2 +⋯)(p`1 + p`2 +⋯). There
is one such formula for every combination of values x, y, z; denote Φi the conjunction
of all these formulas. Thus, Φi asserts Ih(Yi;Zi∣Xi) = 0.
Let Φ = Φ1 ∧⋯ ∧Φk. Let Ψ be the similar formula for the consequent: thus, Ψ asserts
Ih(Y ;Z ∣X) = 0.
Finally, construct the formula ∆ def= ∃p1, . . . ,∃pNn , (Φ ∧ ¬Ψ).

Check whether (R,+,∗) ⊧∆. By Tarski’s theorem this step is decidable.
If ∆ is true, then return false; otherwise, continue with N + 1. J

Tarski’s exponential function problem

One may attempt to extend the proof above from the CI implication problem to arbitrary
conditional inequalities (8). To check if a conditional inequality is valid for all entropic
functions, we can repeat the argument above: iterate over all domain sizes N = 1, 2, 3, . . ., and
check if there exists probabilities p1, . . . , pNn that falsify the implication (c1 ⋅h ≥ 0∧⋯∧ck ⋅h ≥
0) ⇒ c0 ⋅ h ≥ 0. The problem is that in order to express ci ⋅ h ≥ 0 we need to express the
vector h in terms of the probabilities p1, . . . , pNn . To apply directly the definition of entropy
in (1) we need to use the log function, or, alternatively, the exponential function, and this
takes us outside the scope of Tarski’s theorem. A major open problem in model theory,
originally formulated also by Tarski, is whether decidability continues to hold if we augment
the structure of the real numbers with the exponential function (see, e.g., [32] for a discussion).
Decidability of the first-order theory of the reals with exponentiation would easily imply
that the entropic conditional information inequality problem ECIIP (not just the entropic
conditional independence (CI) implication problem) is in Π0

1, because every condition c ⋅h ≥ 0
can be expressed using +,∗ and the exponential function, by simply expanding the definition
of entropy in Equation (1).

4.2.2 The Almost-Entropic Case
Suppose the antecedent of (8) includes the condition c ⋅h ≥ 0. Call c ∈ R2n

tight if c ⋅h ≤ 0 is
Γ∗n-valid. When c is tight, we can rewrite c ⋅h ≥ 0 as c ⋅h = 0. If c is not tight, then there exists
h ∈ Γ∗n such that c ⋅h > 0; in that case we say that c has slack. For example, all conditions
occurring in CI implications are tight, because they are of the form −Ih(Y ;Z ∣X) ≥ 0, and
more conveniently written Ih(Y ;Z ∣X) = 0, while a condition like 3h(X) − 4h(Y Z) ≥ 0 has
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slack. We extend the definition of slack to a set. We say that the set {c1, . . . ,ck} ⊂ R2n

has slack if there exists h ∈ Γ∗n such that ci ⋅ h > 0 for all i = 1, k; notice that this is more
restricted than requiring each of ci to have slack. We present below results on the complexity
of AEBIC(F ) in two special cases: when all antecedents are tight, and when the set of
antecedents has slack. Both results use the following theorem, which allows us to move one
condition ck ⋅h ≥ 0 from the antecedent to the consequent:

I Theorem 9. The following statements are equivalent:

∀h ∈ Γ∗n ∶ ⋀
i∈[k]

ci ⋅h ≥ 0⇒c ⋅h ≥ 0 (14)

∀ε > 0,∃λ ≥ 0,∀h ∈ Γ∗n ∶ ⋀
i∈[k−1]

ci ⋅h ≥ 0⇒c ⋅h + εh([n]) ≥ λck ⋅h (15)

Moreover, if the set {c1, . . . ,ck} has slack, then one can set ε = 0 in Eq.(15).

Proof. We prove here only the implication from (15) to (14); the other direction is non-trivial
and is proven in the full version [2] using only the properties of closed convex cones. Assume
condition (15) holds, and consider any h ∈ Γ∗n s.t. ⋀i∈[k] ci ⋅ h ≥ 0. We prove that c ⋅ h ≥ 0.
For any ε > 0, condition (15) states that there exists λ > 0 such that c ⋅h + εh([n]) ≥ λck ⋅h
and therefore c ⋅ h + εh([n]) ≥ 0. Since ε > 0 is arbitrary, we conclude that c ⋅ h ≥ 0, as
required. J

By applying the theorem repeatedly, we can move all antecedents to the consequent:

I Corollary 10. Condition (14) is equivalent to:

∀ε > 0,∃λ1 ≥ 0,⋯,∃λk ≥ 0,∀h ∈ Γ∗n ∶ c ⋅h + εh([n]) ≥ ∑
i∈[k]

λici ⋅h (16)

Moreover, if the set {c1, . . . ,ck} has slack, then one can set ε = 0 in Eq.(16).

Antecedents Are Tight. We consider now the case when all antecedents are tight, a
condition that can be verified in Π0

1, by Th.7. In that case, condition (14) is equivalent to:

∀p ∈ N,∃q ∈ N,∀h ∈ Γ∗n ∶ c ⋅h + 1
p
h([n]) ≥ q ∑

i∈[k]
ci ⋅h (17)

Indeed, the non-trivial direction (16)⇒ (17) follows by setting q def= ⌈max(λ1, . . . , λk)⌉ ∈ N
and noting that ci is tight, hence ci ⋅h ≤ 0 and therefore λici ⋅h ≥ qci ⋅h.

I Corollary 11. Consider a conditional inequality (8). If all antecedents are tight, then the
corresponding decision problem AECIIP is in Π0

3

Proof. Based on our discussion, the inequality (8) is equivalent to condition (17), which is
of the form ∀p∃q∀h. Replace h with a representable entropic vector hΩ, as in the proof of
Theorem 7, and it becomes ∀p∃q∀hΩ, placing it in Π0

3. J

Recall that the implication problem for CI is a special case of a conditional inequality
with tight antecedents. We have seen in Theorem 8 that the entropic version of the CI
implication problem is in Π0

1; Corollary 11 proves that the almost entropic version is in Π0
3.

Consider any conditional inequality (8) where the antecedents are tight. If this inequality
holds for all almost entropic functions, then it can be proven by proving a family of (uncon-
ditional) inequalities (17). In fact, some conditional inequalities in the literature have been
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proven precisely in this way. For example, consider the CI implication (9) (Sec. 3.2.3), and
replace each antecedent Ih(Y ; Z ∣X) = 0 with −Ih(Y ; Z ∣X) ≥ 0. By Eq. (17), the following
condition holds: ∀p ∈ N,∃q ∈ N such that

q(Ih(C;D ∣ A) + Ih(C;D ∣ B) + Ih(A;B) + Ih(B;C ∣ D)) + 1
p
h(ABCD) ≥ Ih(C;D) (18)

Thus, in order to prove (9), it suffices to prove (18). Matúš’s inequality (5) provides
precisely the proof of (18) (by setting k

def= p, q def= max(⌈k+3
2 ⌉ ,1), and observing that

Ih(B;D ∣ C) ≤ h(ABCD)).

Antecedents Have Slack. Next, we consider the case when the antecedents have slack,
which is a recursively enumerable condition. In that case, condition (16) is equivalent to:

∃λ1 ≥ 0,⋯,∃λk ≥ 0,∀h ∈ Γ∗n ∶ c ⋅h ≥ ∑
i∈[k]

λici ⋅h (19)

In other words, we have proven the following result of independent interest: any conditional
implication with slack is essentially unconditioned. However, we cannot immediately use
(19) to prove complexity bounds for AEBIC(F ), because the λi’s in (19) are not necessarily
rational numbers. When we derived Eq. (17) we used the fact that the antecedents are tight,
hence ci ⋅h ≤ 0, hence we could replace the λi’s with some natural number q larger than all
of them. But now, the sign of ci ⋅h is unknown. We prove below that, under a restriction
called group balance, the λi’s can be chosen in Q, placing the decision problem in Σ0

2. Group
balance generalizes Chan’s notion of a balanced inequality, which we review below. In the full
version [2] we give evidence that some restriction is necessary to ensure the λi’s are rationals,
and also show that every conditional inequality can be strengthened to be group balanced.

A vector h ∈ R2n

is called modular if h(X) + h(Y ) = h(X ∪ Y ) + h(X ∩ Y ) forall sets
of variables X,Y ⊆ V . Every non-negative modular function is entropic [46], and is a non-
negative linear combination of the basic modular functions h(1), . . . ,h(n), where h(j)(α) def= 1
when j ∈ α and is h(j)(α) def= 0 otherwise. Chan [22] called an inequality c ⋅ h ≥ 0 balanced
if c ⋅ h(j) = 0 for every j ∈ [n]. He proved that any valid inequality can be strengthened
to a balanced one. More precisely: c ⋅ h ≥ 0 is valid iff c ⋅ h(i) ≥ 0 for all i ∈ [n] and
c ⋅h −∑i(c ⋅h(i))h(Xi ∣ X[n]−{i}) ≥ 0 is valid; notice that the latter inequality is balanced.
For example, h(XY ) + h(XZ) − h(X) − h(XY Z) ≥ 0 is balanced, while h(XY ) − h(X) ≥ 0
is not balanced, and can be strengthened to h(XY ) − h(X) − h(Y ∣X) ≥ 0. We generalize
Chan’s definition:

I Definition 12. Call a set {d1, . . . ,dk} ⊆ R2n

group balanced if (a) rank(A) = k − 1 where
A is the k × n matrix Aij = di ⋅ h(j), and (b) there exists a non-negative modular function
h(∗) ≠ 0 such that di ⋅h(∗) = 0 for all i.

If k = 1 then {d1} is group balanced iff d1 is balanced, because the matrix A has a single
row (d ⋅h(1)⋯d ⋅h(n)), and its rank is 0 iff all entries are 0. We prove in [2]:

I Theorem 13. Consider a group balanced set of n vectors with rational coefficients, D =
{d1, . . . ,dn} ⊆ Q2n

. Suppose the following condition holds:

∃λ1 ≥ 0,⋯,∃λn ≥ 0, ∑
i∈[n]

λi = 1,∀h ∈ Γ∗n ∶ ∑
i∈[n]

λidi ⋅h ≥ 0 (20)

Then there exists rational λ1, . . . , λk ≥ 0 with this property.
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This implies that, if c1, . . . ,ck have slack and {c,−c1, . . . ,−ck} is group balanced, then
there exist rational λi’s for inequality (19). In particular:

I Corollary 14. Consider a conditional inequality (8). If the antecedents have slack and
{c,−c1, . . . ,−ck} is group balanced, then the corresponding decision problem is in Σ0

2.

We end this section by illustrating with an example:

I Example 15. Consider the following conditional inequality:

h(XY Z) + h(X) ≥ 2h(XY ) ∧ h(XY Z) + h(Y ) ≥ 2h(Y Z) ⇒ 2h(XZ) ≥ h(XY Z) + h(Z)
(21)

The antecedents have slack, because, by setting2 h
def= 2h(X) + h(Z), both antecedents

become strict inequalities: h(XY Z) + h(X) − 2h(XY ) = 3 + 2 − 4 > 0 and h(XY Z) + h(Y ) −
2h(Y Z) = 3 + 0 − 2 > 0. To check validity, we prove in Example 18 the following inequality:

(2h(XY ) − h(XY Z) − h(X)) + (2h(Y Z) − h(XY Z) − h(Y )) + (2h(XZ) − h(XY Z) − h(Z)) ≥0

and this immediately implies (21).
Consider now the following set D = {d1,d2,d3}, where the vectors d1,d2,d3 represent the

expressions 2h(XY )−h(XY Z)−h(X), 2h(Y Z)−h(XY Z)−h(Y ), and 2h(XZ)−h(XY Z)−
h(Z) respectively. We prove that D is group balanced. To check condition (a) of Def. 12

we verify that the matrix A has rank 2; in our example the matrix is A =
⎛
⎜
⎝

0 1 −1
−1 0 1
−1 1 0

⎞
⎟
⎠

and its rank is 2 as required. To check condition (b), we define h(∗) = h(X) + h(Y ) + h(Z) and
verify that d1 ⋅h(∗) = d2 ⋅h(∗) = d3 ⋅h(∗) = 4 − 3 − 1 = 0. Thus, D is group balanced.

4.3 Discussion on the Decidability of MaxIIP
A proof of the decidability of MaxIIP would immediately imply that the domination problem
A ⪯ B for acyclic structures B is also decidable [1]. It is currently open whether MaxIIP
is decidable, or even if the special case IIP is decidable. But what can we say about the
domination problem if IIP were decidable? Theorem 7 only says that both problems are in
Π0

1, and does not tell us anything about MaxIIP if IIP were decidable. We prove here that,
the decidability of IIP implies the decidability of group-balanced MaxIIP. We start with a
result of general interest, which holds even for conditional Max-Information constraints.

I Theorem 16. The following two statements are equivalent:

∀h ∈ Γ∗n ∶ ⋀
i∈[k]

ci ⋅h ≥ 0⇒ ⋁
j∈[m]

dj ⋅h ≥ 0 (22)

∃λ1, . . . , λm ≥ 0,∑
j

λj = 1,∀h ∈ Γ∗n ∶ ⋀
i∈[k]

ci ⋅h ≥ 0⇒ ∑
j∈[m]

λjdj ⋅h ≥ 0 (23)

The theorem says that every max-inequality is essentially a linear inequality. The proof
of (23) ⇒ (22) is immediate; we prove the reverse in [2]. As before, we don’t know whether
these coefficients λi can be chosen to be rational numbers in general, but by Theorem 13
this is the case when {c1, . . . ,ck} is group-balanced, and this implies:

I Corollary 17. The MaxIIP problem where the inequalities c1, . . . ,cn are group balanced is
Turing equivalent to the IIP problem.

2 Where h(X) denotes the basic modular function at X, i.e. h(X)(X) = 1, h(X)(Y ) = h(X)(Z) = 0.
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Proof. We describe a Turing reduction from MaxIIP to IIP. Consider a MaxIIP problem,
⋁j∈[m](cj ⋅h ≥ 0). We run two computations in parallel. The first computation iterates over
all representable spaces Ω, and checks whether ⋀j(cj ⋅hΩ < 0); if we find such a space then
we stop and we return false. If the inequality is invalid then this computation will eventually
terminate because in that case there exists a representable counterexample Ω. The second
computation iterates over all m-tuples of natural numbers (λ1, . . . , λm) ∈ Nm and checks
∀h ∈ Γ∗n,∑j λjcj ⋅ h ≥ 0 by using the oracle for IIP: if it finds such λj ’s, then it stops and
returns true. If the inequality is valid then this computation will eventually terminate, by
Theorems 16 and 13. J

We illustrate with an example.

I Example 18. Consider Kopparty and Rossman’s inequality (7), which can be stated as
max(c1,c2,c3) ≥ 0, where c1,c2,c3 define the three expressions in (7). To prove that it is
valid, it suffices to prove that their sum is ≥ 0; we show this briefly here3:

(2h(XY ) − h(X)) + (2h(Y Z) − h(Y )) + (2h(XZ) − h(Z)) − 3h(XY Z)
= (h(XY ) + h(Y Z) + h(XZ)) + (h(XY ) − h(X)) + (h(Y Z) − h(Y )) + (h(XZ) − h(Z))
− 3h(XY Z)

≥ (h(XY ) + h(Y Z) + h(XZ)) + (h(XY Z) − h(XZ)) + (h(XY Z) − h(XY ))
+ (h(XY Z) − h(Y Z)) − 3h(XY Z) = 0

Theorem 16 proves that any max-inequality necessarily follows from such a linear inequality;
we just have to find the right λi’s. In this example, the set c1,c2,c3 is group balanced (as
we showed in Example 15), therefore there exists rational λi’s; indeed, our choice here is
λ1 = λ2 = λ3 = 1.

5 The Recognizability Problems

We study here two problems that are the dual of the Boolean information constraint problem.
The entropic-recognizability problem takes as input a vector h and checks if h ∈ Γ∗n. The
almost-entropic-recognizability problem checks if h ∈ Γ∗n. We will prove that the latter is in
Π0

2, and leave open the complexity of the former.
Before we define these problems formally, we must first address the question of how to

represent the input h. One possibility is to represent h as a vector of rational numbers,
but this is unsatisfactory, because usually entropies are not rational numbers. Instead, we
will allow a more general representation. To justify it, assume first that h were given by
some representable space Ω (Sec. 4.1), where all probabilities are rational numbers. In that
case, every term pi log pi in the definition of the entropy can be written as log(ppi

i ), hence
the quantity h(X) has the form h(X) = log∏i p

pi

i . In general, any product ∏im
ni

i where
mi, ni ∈ Q, for i = 1, n, can be rewritten as (a

b
)

1
c , where a, b, c ∈ N. Indeed, writing mi = ui/vi

and ni = si/ti where ui, vi, si, ti ∈ N, we have:

∏
i

(ui
vi

)
si
ti =∏

i

(
usi

i

vsi

i

)
1
ti

=
⎛
⎝∏i

u
si⋅∏j≠i tj
i

v
si⋅∏j≠i tj
i

⎞
⎠

1
∏i ti

= (a
b
)

1
c

a, b, c ∈ N

3 We apply submodularity: h(XY ) − h(X) ≥ h(XY Z) − h(XZ) etc.
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Justified by this observation, we assume that the input to our problem consists of three vectors
(aX)X⊆V , (bX)X⊆V , and (cX)X⊆V in N2n

, with the convention that h(X) def= 1
cX

log aX

bX
.

Thus, we do not assume that these vectors come from a representable space Ω, we only
assume their entropies can be represented in this form.

I Definition 19 ((Almost-)Entropic Recognizability Problem). Given natural numbers
(aX)X⊆V , (bX)X⊆V and (cX)X⊆V , check whether the vector h(X) def= 1

cX
log aX

bX
, X ⊆ V ,

represents an entropic vector, or an almost-entropic vector.

Our result in this section is (see [2] for a proof):

I Theorem 20. The almost entropic recognizability problem is in Π0
2.

We end with a brief comment on the complexity of the entropic-recognizability problem:
given h (represented as in Def. 19) check if h ∈ Γ∗n. Consider the following restricted form of
the problem: check if h is the entropic vector of a representable space Ω (i.e. finite space with
rational probabilities). This problem is in Σ0

1, because one can iterate over all representable
spaces Ω and check that their entropies are those required. However, in the general setting we
ask whether any finite probability space has these entropies, not necessarily one with rational
probabilities. This problem would remain in Σ0

1 if the theory of reals with exponentiation
were decidable. Recall that Tarski’s theorem states that the theory of reals FO(R,0,1,+,∗)
is decidable. A major open problem in model theory is whether the theory remains decidable
if we add exponentiation. If that were decidable, then the entropic-recognizability problem
would be in Σ0

1. To see this, consider the following semi-decision problem. Iterate over
N = 1,2,3, . . . and for each N check if there exists a probability space whose active domain
has size N (thus, there are Nn outcomes, where n = ∣V ∣ is the number of variables) and
whose entropies are precisely those given. This statement that can be expressed using the
exponential function (which we need in order to express the entropy as ∑i pi log pi). If there
exists any finite probability space with the required entropies, then this procedure will find
it; otherwise it will run forever, placing the problem in Σ0

1.

6 Discussion

CI Implication Problem. The implication problem for Conditional Independence statements
has been extensively studied in the literature, but its complexity remains an open problem.
It is not even known whether this problem is decidable [18, 37, 38]. Our Theorem 8 appears
to be the first upper bound on the complexity of the CI implication problem, placing it in
Π0

1. Hannula et al. [24] prove that, if all random variables are restricted to be binary random
variables, then the CI implication problem is in EXPSPACE; the implication problem for
binary random variables differs from that for general discrete random variables; see the
discussion in [18].

Finite, infinite, continuous random variables. In this paper, all random variables have
a finite domain. There are two alternative choices: discrete random variables (possibly
infinite), and continuous random variables. The literature on entropic functions has mostly
alternated between defining entropic functions over finite random variables, or over discrete
infinite random variables with finite entropy. For example discrete (possibly infinite) random
variables are considered by Zhang and Yeung, [50], by Chan and Yeung [12], and by Chan [22],
while random variables with finite domains are considered by Matúš [33, 34] and by Kaced
and Romashchenko [25]. The reason for this inconsistency is that for information inequalities
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the distinction doesn’t matter: every entropy of a set of discrete random variables can be
approximated arbitrarily well by the entropy of a set of random variables with finite domain,
and Prop. 6 extends immediately to discrete random variables4. However, the distinction
is significant for conditional inequalities, and here the choice in the literature is always for
finite domains. For example, the implication problem for conditional independence, i.e. the
graphoid axioms, is stated for finite probability spaces by Geiger and Pearl [18], while Kaced
and Romashchenko [25] also use finite distributions to prove the existence of conditional
inequalities that hold over entropic but fail for almost-entropic functions. One could also
consider continuous distributions, whose entropy is ∫ p(x) log(1/p(x))dx, where p is the
probability density function. Chan [22] showed that an information inequality holds for
all continuous distributions iff it is balanced and it holds for all discrete distributions. For
example, h(X) ≥ 0 is not balanced, hence it fails in the continuous, because the entropy of
the uniform distribution in the interval [0, c] is log c, which is < 0 when c < 1.

Strict vs. non-strict inequalities. The literature on information inequalities always defines
inequalities using ≥ 0, in which case validity for entropic functions is the same as validity for
almost entropic functions. One may wonder what happens if one examines strict inequalities
c ⋅ h > 0 instead. Obviously, each such inequality fails on the zero-entropic vector, but
we can consider the conditional version h ≠ 0 ⇒ c ⋅ h > 0, which we can write formally as
c ⋅h ≤ 0⇒ h(V ) ≤ 0. This a special case of a conditional inequality as discussed in this paper.
An interesting question is whether for this special case Γ∗n-validity and Γ∗n-validity coincide;
a negative answer would represent a significant extension of Kaced and Romashchenko’s
result [25].
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1 Introduction

A continuous linear dynamical system (CDS) is a system whose evolution is governed by a
differential equation of the form ẋ(t) = Ax(t), where A is a matrix with real entries. CDSs
are ubiquitous in mathematics, physics, and engineering; they have been extensively studied
as they describe the evolution of many types of systems (or abstractions thereof) over time.
More recently, CDSs have become central in the study of cyber-physical systems (see, e.g.,
the textbook [4]).

In the study of CDSs, particularly from the perspective of control theory, a fundamental
problem is reachability – namely whether the orbit {x(t) : t ≥ 0} intersects a given target
set Y ⊆ Rd. For example, when x(t) describes the state of an autonomous car (i.e., its
location, velocity, etc.). Y may describe situations where the car is not able to stop in time
to respond to a hazard.

When Y is a singleton set, reachability is decidable [14, Theorem 2]. However, already
when Y is a half-space it is open whether or not reachability is decidable. The latter decision
problem is known in the literature as the continuous Skolem problem. Some partial positive
results were given in [6] and [10]. The continuous Skolem problem is related to notoriously
difficult problems in the theory of Diophantine approximation: specifically a procedure for
the continuous Skolem problem would yield one for computing to arbitrary precision the
Diophantine-approximation types of all real algebraic numbers [10].

In lieu of an algorithm to decide reachability, a popular approach to certifying non-
reachability is by finding an inductive invariant, that is, a set X that is closed under the
dynamics of the system and disjoint from the target Y . For such a set, it is immediate that
the orbit of any point in X does not reach Y . In order to make this approach effective
it is natural to seek invariants among suitably tame classes of sets (e.g., polyhedra, semi-
algebraic sets, etc). In this work we take a very general approach – we consider o-minimal
invariants, that is, invariants definable in some o-minimal expansion of the ordered set of real
numbers. The class of o-minimal invariants includes those defined by Boolean combinations
of inequalities involving polynomials, the real exponential function, and bounded versions
of the trigonometric functions. One can potentially use many other functions to define
o-minimal invariants, but the key to our approach is to show that the ingredients just listed
suffice in the case of a CDS and semi-algebraic target Y .

The papers [2, 1] study o-minimal invariants for discrete linear dynamical systems. There
it is proved that when the target Y is a semi-algebraic set, the question of whether there exists
an o-minimal invariant disjoint from Y is decidable. Furthermore, if there is an o-minimal
invariant then there is in fact a semi-algebraic invariant which can moreover be constructed
effectively. The present paper uses similar ideas, although the case of continuous linear
dynamical systems differs in several important ways.

Main Contributions. We consider the following problem: given a CDS by means of a
matrix A with rational entries, an initial point x0 = x(0), and a semi-algebraic set Y of error
states, decide whether there exists a set that is definable in some o-minimal expansion of
the ordered real field and is (1) disjoint from Y , (2) invariant under the dynamics of the
system, and (3) contains the initial point x0. We show that in searching for such invariants
it suffices to look among sets definable in the expansion of the reals with the real exponential
function and trigonometric functions restricted to bounded domains. Moroever, assuming
Schanuel’s conjecture (a unifying conjecture in transcendental number theory), we prove
that the existence of such an invariant is decidable, and that invariants can effectively be
constructed when they exist.
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Without assuming Schanuel’s conjecture we can decide a related problem, namely the
question of whether there exists a set that is definable in an o-minimal expansion of the
real field and is (1) disjoint from Y , (2) invariant under the dynamics of the system, and
(3) meets the orbit of the initial point x0. Notice that such a set – which could be called
an eventual invariant – must contain all but a bounded initial segment of the orbit. We
show that when such a set exists, it can be effectively constructed and moreover that it can
be chosen to be a semi-algebraic set. Such an invariant can serve as a certificate that the
orbit does not enter the error set Y infinitely often. The latter is a very difficult problem to
decide, even when the target set is a half-space [9].

As mentioned earlier, for discrete linear dynamical systems the question of whether there
exists a semi-algebraic invariant that contains the whole orbit is decidable [2, 1]. We provide
an explanation of why the analogous result for continuous systems is not easy to prove;
this is by way of a reduction from a difficult problem that highlights the complications of
continuous systems. The problem asks whether a given exponential polynomial of the form

f(t) = a1e
b1t + · · ·+ ane

bnt

has zeros in a bounded interval, where ai, bi are real algebraic numbers. Deciding whether
f has zeros in a bounded region seems to be difficult because all the zeros have to be
transcendental (a consequence of Hermite-Lindemann Theorem), and they can be tangential,
i.e., f never changes its sign, yet it has a zero.

Related Work. Invariant synthesis is a central technique for establishing safety properties
of hybrid systems. It has long been known how to compute a strongest algebraic invariant [20]
(i.e., a smallest algebraic set that contains the collection of reachable states) for an arbitrary
CDS. Here an algebraic invariant is one that is specified by a conjunction of polynomial
equalities. If one moves to the more expressive setting of semi-algebraic invariants, which
allow inequalities, then there is typically no longer a strongest (or smallest) invariant, but
one can still ask to decide the existence of an invariant that avoids a given target set of
configurations. This is the problem that is addressed in the present paper.

Partial positive results are known, for example when strong restrictions on the matrix A
are imposed, such as when all the eigenvalues are real and rational, or purely imaginary with
rational imaginary part [15].

A popular approach in previous work has been to seek invariants that match a given
syntactic template, which allows to reduce invariant synthesis to constraint solving [13, 23, 16].
While this technique can be applied to much richer classes of systems than those considered
here (e.g., with discrete control modes and non-linear differential equations), it does not
appear to offer a way to decide the existence of arbitrary semi-algebraic invariants. An
alternative to the template approach for invariant generation involves obtaining candidate
invariants from semi-algebraic abstractions of a system [21]. Another active area of current
research lies in developing powerful techniques to check whether a given semi-algebraic set is
actually an invariant [12, 16].

Other avenues for analysing dynamical systems in the literature include bisimulations [7],
forward/backward reach-set computation [5], and methods for directly proving liveness
properties [22]. The latter depends on constructing staging sets, which are essentially
semi-algebraic invariants.

Often, questions about dynamical systems can be reduced to deciding whether a sentence
belongs to the elementary theory of an appropriate expansion of the ordered field of real
numbers. While the latter is typically undecidable, there are partial positive results, namely
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quasi-decidability in bounded domains, see [11] and the references therein. This can be used
to reason about the dynamics of a system in a bounded time interval, under the assumption
that it does not tangentially approach the set that we want to avoid. However, it seems
unlikely that such results can be easily applied to the problems considered here.

The rest of the paper is organised as follows. In Section 2, we give the necessary
definitions and terminology. In Section 3, we define cones, which are over-approximations of
the orbit, and prove that they are in a certain sense canonical. The positive results assuming
Schanuel’s conjecture are subsequently given in this section. Section 4 is devoted to the
effective construction of the semi-algebraic invariants which allows us to state and prove
the unconditional positive results. In Section 5, we give the aforementioned reduction, from
finding zeros of exponential polynomials.

See [3] for the complete proofs.

2 Preliminaries

A continuous-time linear dynamical system is a pair

〈A,x0〉

where A ∈ Qd×d and x0 ∈ Qd. The system evolves in time according the function x(t) which
is the unique solution to the differential equation ẋ(t) = Ax(t) with x(0) = x0. Explicitly
this solution can be written as:

x(t) = eAtx0.

The orbit of 〈A,x0〉 from time t0 is the set O(t0) = {eAtx0 : t ≥ t0}. An invariant for
〈A,x0〉 from time t0 is a set I ⊆ Rd that contains eAt0x0 and is stable under applications
of eAt, i.e., eAtI ⊆ I for every t ≥ 0. Note that an invariant from time t0 contains O(t0).
Given a set Y ⊆ Rd (referred to henceforth as an error set), we say that the invariant I
avoids Y if the two sets are disjoint.

We denote by R0 the structure 〈R, 0, 1,+, ·, <〉. This is the ordered field of real numbers
with constants 0 and 1. A sentence in the corresponding first-order language is a quantified
Boolean combination of atomic propositions of the form P (x1, . . . , xn) > 0, where P is a
polynomial with integer coefficients and x1, . . . , xn are variables. In addition to R0, we also
consider its following expansions:

Rexp, obtained by expanding R0 with the real exponentiation function x 7→ ex.
RRE, obtained by expanding R0 with the restricted elementary functions, namely x 7→
ex|[0,1], x 7→ sin x|[0,1], and x 7→ cosx|[0,1].
RRE

exp, obtained by expanding Rexp with the restricted elementary functions.

Tarski famously showed that the first-order theory of R0 admits quantifier elimination,
moreover the elimination is effective and therefore the theory is decidable [24, Theorem 37].

It is an open question whether the theory of the reals with exponentiation (Rexp) is
decidable; however decidability was established subject to Schanuel’s conjecture by MacIntyre
and Wilkie [18, Theorem 1.1]. MacIntyre and Wilkie further showed in [18, Section 5] that
decidability of the theory of Rexp implies a weak form of Schanuel’s conjecture.

Similarly, it is an open question whether RRE and RRE
exp are decidable, but they are also

known to be decidable subject to Schanuel’s conjecture [17, Theorem 3.1]1.

1 More precisely, the decidability of Rexp requires Schanuel’s conjecture over R, whereas that of RRE
exp

requires it over C.
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Let R be an expansion of the structure R0. A set S ⊆ Rd is definable in R if there exists
a formula φ(x1, . . . , xd) in R with free variables x1, . . . , xd such that S = {(c1, . . . , cd) ∈ Rd |
R |= φ(c1, . . . , cd)}. For R = R0, the ordered field of real numbers, R0-definable sets are
known as semi-algebraic sets.
I Remark 2.1. There is a natural first-order interpretation of the field of complex numbers C
in the field of real numbers R. We shall say that a set S ⊆ Cd is R-definable if the image
{(x, y) ∈ Rd × Rd | x+ iy ∈ S} of S under this interpretation is R-definable.

A totally ordered structure 〈M,<, . . .〉 is said to be o-minimal if every definable subset
of M is a finite union of intervals. Tarski’s result on quantifier elimination implies that R0
is o-minimal. The o-minimality of Rexp and RRE is shown in [27], and the o-minimality of
RRE and RRE

exp is due to [25, 26].
A semi-algebraic invariant is one that is definable in R0. An o-minimal invariant is one

that is definable in an o-minimal expansion of Rexp.

3 Orbit Cones

In this section we define orbit cones, an object that plays a central role in the subsequent
results. They can be thought of as over-approximations of the orbit that has certain desirable
properties, and moreover it is canonical in the sense that any other invariant must contain a
cone.

3.1 Jordan Normal Form
Let 〈A,x0〉 be a continuous linear dynamical system. The exponential of a square matrix A
is defined by its formal power series as

eA
def=

∞∑
n=0

An

n! .

Let λ1, . . . , λk be the eigenvalues of A, and recall that when A ∈ Qd×d, all the eigenvalues
are algebraic. We can write A in Jordan Normal Form as A = PJP−1 where P ∈ Cd×d is an
invertible matrix with algebraic entries, and J = diag(B1, . . . , Bk) is a block-diagonal matrix
where each block Bl is a Jordan block that corresponds to eigenvalue λl, and it has the form

Bl =


λl 1 0 · · · 0
0 λl 1 · · · 0
...

...
...

...
...

0 0 0 · · · λl

 ∈ Cdl×dl

with
∑k
l=1 dl = d.

From the power series, we can write eAt = PeJtP−1. Further, eJt = diag(eB1 , . . . , eBk ).
For each 1 ≤ l ≤ k, write Bl = Λl+Nl, where Λl is the dl×dl diagonal matrix diag(λl, . . . , λl)
and Nl is the dl × dl matrix diag2(1, . . . , 1); where diagj(·) is the j-th diagonal matrix, with
other entries zero.

The matrices Λl and Nl commute, since the former is a diagonal matrix. A fundamental
property of matrix exponentiation is that if matrices A,B commute, then eA+B = eAeB.
Thus, we have

eJt = ediag(Λ1t+N1t,...,Λkt+Nkt) = diag(eλ1t, . . . , eλkt)ediag(N1t,...,Nkt),
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where by diag(eλ1t, . . . , eλkt) we mean the d × d diagonal matrix that has the entry eλ1t

written d1 times, the entry eλ2t written d2 times and so on. It will always be clear from the
context whether we repeat the entries because of their multiplicity or not.

Matrices Nl are nilpotent, so its power series expansion is a finite sum, i.e. a polynomial
in Nlt. More precisely, one can verify that:

eNlt = I + diag2(t, . . . , t) + diag3( t
2

2 , . . . ,
t2

2 ) + . . .+ diagdl

(
t(dl−1)

(dl − 1)!

)
.

SetQ(t) def= diag(eN1t, . . . , eNkt). From the equation above, the entries ofQ(t) are polynomials
in t with rational coefficients.

Write the eigenvalues as λl = ρl + iωl, so that

diag(eλ1t, . . . , eλkt) = diag(eρ1t, . . . , eρkt)︸ ︷︷ ︸
E(t)

·diag(eω1it, . . . , eωkit)︸ ︷︷ ︸
R(t)

We have in this manner decomposed the orbit

O(t0) = {P E(t) R(t) Q(t) P−1x0 : t ≥ t0},

into an exponential E(t), a rotation R(t), and a simple polynomial Q(t) matrices that
commute with one another. Having the orbit in such a form will facilitate the analysis done
in the sequel.

3.2 Cones as Canonical Invariants
In a certain sense, the rotation matrix R(t) is the most complicated, because of it, the orbit
is not even definable in Rexp. The purpose of cones is to abstract away this matrix by a
much simpler subgroup of the complex torus

T def= {z ∈ Ck : |zi| = 1, 1 ≤ i ≤ k}.

To this end, consider the group of additive relations among the frequencies ω1, . . . , ωk:

S
def= {a ∈ Zk : a1ω1 + · · ·+ akωk = 0}.

The subgroup of the torus of interest, respects the additive relations as follows:

Tω
def= {(τ1, . . . , τk) ∈ T : for all a ∈ S, τa1

1 · · · τ
ak

k = 1}.

Its desirable properties are summarised in the following proposition:

I Proposition 3.1. For algebraic numbers ω1, . . . , ωk,
1. Tω is semi-algebraic,
2. diagonals of {R(t) : t ≥ 0} form a dense subset of Tω.

Proof. Being an Abelian subgroup of Zk, S has a finite basis, moreover this basis can be
computed because of effective bounds, [19, Section 3]. To check that (τ1, . . . , τk) belongs to
Tω, it suffices to check that τa1

1 · · · τ
ak

k = 1 for (a1, . . . , ak) in the finite basis. This forms a
finite number of equations, therefore Tω is semi-algebraic. The fact that this is a subset of
vectors of complex numbers is not problematic in this case because of the simple first-order
interpretation in the theory of reals, see Remark 2.1.

The second statement of the proposition is a consequence of Kronecker’s theorem on
inhomogeneous simultaneous Diophantine approximations, see [8, Page 53, Theorem 4]. The
proof of a slightly stronger statement can also be found in [9, Lemma 4]. Examples can be
found where the set of diagonals of {R(t) : t ≥ 0} is a strict subset of Tω. J
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The orbit cone can now be defined by replacing the rotations with the subgroup of the
torus. As it turns out, for our purposes this approximation is not too rough.

I Definition 3.2. The orbit cone from t0 ≥ 0 is

Ct0
def=
{
P E(t) diag(τ ) Q(t) P−1x0 : τ ∈ Tω, t ≥ t0

}
.

We prove that the cone is an inductive invariant and also a subset of Rd.

I Lemma 3.3. For all δ, t0 ≥ 0, eAδCt0 ⊆ Ct0 .

Proof. Fix t ≥ t0 and τ ∈ Tω, and consider the point

v = P E(t) diag(τ ) Q(t) P−1x0 ∈ Ct0 ,

then we can write eAδv as

eAδv = P E(δ)R(δ)Q(δ) · E(t)diag(τ )Q(t) P−1x0

= P E(δ + t) R(δ)diag(τ ) Q(δ)Q(t) P−1x0.

The matrix R(δ)diag(τ ) is equal to diag(τ ′) for some τ ′ ∈ Tω. Otherwise said, the vector
(eδω1iτ1, . . . , e

δωkiτk) belongs to Tω. Indeed this is the case because for any a ∈ S we have

ea1δω1iτa1
1 · · · eakδωkiτak

k = eδi (a1ω1+···+akωk) · τa1
1 · · · τ

ak

k = 1.

Finally, by induction on the dimension d one can verify that Q(δ)Q(t) = Q(δ + t). J

The fact that cones are subsets of Rd comes as a corollary of the following proposition
whose proof can be found in Appendix A of the full version of the paper [3].

I Proposition 3.4. Let A = PJP−1 as above, and let Ci ∈ Cdi×di for i = 1, . . . , k, with
dimensions compatible to the Jordan blocks of A, and such that for every i1, i2, if Bi1 = Bi2 ,
then Ci1 = Ci2 . Then Pdiag(C1, . . . , Ck)P−1 has real entries.

The matrix E(t)diag(τ)Q(t) can be written as diag(C1, . . . , Ck) where the Ci matrices
satisfy the conditions of Proposition 3.4, hence the following corollary.

I Corollary 3.5. For all t0 ≥ 0 we have Ct0 ⊆ Rd.

It is surprising that, already, the cones are a complete characterisation of o-minimal inductive
invariants in the following sense.

I Theorem 3.6. Let I be an o-minimal invariant that contains the orbit O(u) from some
time u ≥ 0, then there exists t0 ≥ u such that:

Ct0 ⊆ I.

Proof sketch. Conceptually, the proof follows along the lines of its analogue in [1]. There are
a few differences, namely that the entries of the matrix A in [1] are assumed to be algebraic,
while this is not true for the entries of eA.

We define rays of the cone, which are subsets where τ ∈ Tω is fixed. Then we prove
that for every ray, all but a finite part of it, is contained in the invariant. This is done by
contradiction: if a ray is not contained in the invariant, a whole dense subset of the cone
can be shown not to be contained in the invariant, leading to a contradiction, since the
invariant is assumed to contain the orbit. We achieve this using some results on the topology
of o-minimal sets.

The complete proof can be found in Appendix B of [3]. J
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Another desirable property of cones is that they are Rexp-definable. Also, one can observe
that for every t0, the set {eAtx0 : 0 ≤ t ≤ t0} is definable in RRE

exp (as we only need bounded
restrictions of sin and cos to capture e.g. eiωi up to time t0). As an immediate corollary of
Theorem 3.6, we have the following theorems.

I Theorem 3.7. Let 〈A,x0〉 be a CDS. For every t0 ≥ 0, the set Ct0 ∪ {eAtx0 : 0 ≤ t ≤ t0}
is an invariant that contains the whole orbit of 〈A,x0〉. Moreover, this invariant is definable
in RRE

exp (and in particular is o-minimal).

I Theorem 3.8. Let 〈A,x0〉 be a CDS and let Y ⊆ Rd be an error set. There exists an
o-minimal invariant I that contains the orbit and is disjoint from Y if and only if there
exists t0 such that Ct0 ∪ {eAtx0 : 0 ≤ t ≤ t0} is such an invariant.

Theorem 3.8 now allows us to provide an algorithm for deciding the existence of an
invariant, subject to Schanuel’s conjecture:

I Theorem 3.9. Assuming Schanuel’s conjecture, given a CDS 〈A,x0〉 and an RRE
exp definable

error set Y , it is decidable whether there exists an o-minimal invariant for 〈A,x0〉 that avoids
Y . Moreover, if such an invariant exists, we can compute a representation of it.

Proof. By Theorem 3.8, there exists an o-minimal invariant I that avoids Y if and only if
there exists some t0 ∈ R such that Ct0 ∪ {eAtx0 : 0 ≤ t ≤ t0} is such an invariant. Thus, the
problem reduces to deciding the truth value of the following RRE

exp sentence:

∃t0 : (Ct0 ∪ {eAtx0 : 0 ≤ t ≤ t0}) ∩ Y = ∅

The theory of RRE
exp is decidable subject to Schanuel’s conjecture, and therefore we can

decide the existence of an invariant. Moreover, if an invariant exists, we can compute a
representation of it by iterating over increasing values of t0, until we find a value for which
the sentence

(
Ct0 ∪ {eAtx0 : 0 ≤ t ≤ t0}

)
∩ Y = ∅ is true. J

4 Semi-algebraic Error Sets and Fat Trajectory Cones

In this section, we restrict attention to semi-algebraic invariants and semi-algebraic error
sets, in order to regain unconditional decidability.

Substitute s = et in the definition of the cone to get:

Ct0 =
{
P E(log s) diag(τ ) Q(log s) P−1x0 : τ ∈ Tω, s ≥ et0

}
.

Written this way, observe that E(log s) = diag(sρ1 , . . . , sρk ), which is almost semi-algebraic,
apart from the fact that the exponents need not be rational.

4.1 Unconditional Decidability
We give the final, yet crucial property of the cones. When the error set is semi-algebraic, it is
possible to decide, unconditionally, whether there exists some cone that avoids the error set.
Moreover the proof is constructive, it will produce the cone for which this property holds.

I Theorem 4.1. For a semi-algebraic error set Y , it is (unconditionally) decidable whether
there exists t0 ≥ 0 such that Ct0 ∩ Y = ∅. Moreover, such a t0 can be computed.
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Proof. Define the set

U
def=
{
V ∈ Rd×d : ∀τ ∈ Tω, P V diag(τ ) P−1x0 ∈ Rd \ Y

}
.

The set U can be seen to be semi-algebraic and thus is expressed by a quantifier-free formula
that is a finite disjunction of formulas of the form

∧m
l=1Rl(V) ∼l 0, where each Rl is a

polynomial with integer coefficients, over d × d variables of the entries of the matrix V,
and∼l∈ {>,=}. Define the matrix

Λ(s) def= diag(sρ1 , . . . , sρk )Q(log s) ∈ Rd×d,

and notice that Ct0 ∩ Y = ∅ if and only if Λ(s) ∈ U for every s ≥ et0 . Thus, it is enough to
decide whether there exists s0 ≥ 1 such that for every s ≥ s0, at least one of the disjuncts∧m
l=1Rl(Λ(s)) ∼l 0 is satisfied.
Since Rl(Λ(s)) are polynomials in entries of the form sρi and log(s), there is an effective

bound s0 such that for all s ≥ s0, none of the values Rl(Λ(s)) change sign for any 1 ≤ l ≤ m.
Hence we only need to decide whether there exists some s′0 ≥ s0 such that for all s ≥ s′0 we
have Rl(Λ(s)) ∼l 0 for every 1 ≤ l ≤ m.

Fix some l. The polynomial Rl(v1, . . . , vD) has the form
∑
i aiv

ni,1
1 · · · vni,D

D . After
identifying the matrix Λ(s) with a vector in RD for D = d2, we see that Rl(Λ(s)) is a sum of
terms of the form

ais
n′

i,1ρ1+...n′
i,kρk ·Qi,1(log s) · · ·Qi,D(log s)

where the n′i,j are aggregations of the ni,j for identical entries of diag(sρ1, . . . , s
ρ
k), and

Qi,j(log s) are polynomials obtained from the entries of Q(log s) under Rl. We can join the
polynomials Q1, . . . , QD into a single polynomial fi, which would also absorb ai. Thus, we
rewrite Rl in the form

∑
i s
n′

i,1ρ1+...n′
i,kρkfi(log s) where each fi is a polynomial with rational

coefficients (as the coefficients in Q(log s) are rational).
In order to reason about the sign of this expression as s→∞, we need to find the leading

term of Rl(Λ(s)). This, however, is easy: the exponents n′i,1ρ1 + . . .+ n′i,kρk are algebraic
numbers, and are therefore susceptible to effective comparison. Thus, we can order the terms
by magnitude. Then, we can determine the asymptotic sign of each coefficient fi(log s) by
looking at the leading term in fi.

We can thus determine the asymptotic behaviour of each Rl(Λ(s)), to conclude whether∧m
l=1Rl(Λ(s)) ∼l 0 eventually holds. Moreover, for rational s, every quantity above can be

computed to arbitrary precision, therefore it is possible to compute a threshold s′0, after
which, for all s ≥ s′0,

∧m
l=1Rl(Λ(s)) ∼l 0 holds. This completes the proof. J

I Theorem 4.2. For a semi-algebraic set Y , it is decidable whether there exists a o-minimal
invariant, disjoint from Y , that contains the orbit O(u) after some time u ≥ 0. Moreover in
the positive instances an invariant that is Rexp-definable can be constructed.

Proof. If there is an invariant I that contains O(u), for some u ≥ 0, then Theorem 3.6
implies that there exists some t0 ≥ u such that Ct0 is contained in I. Consequently, the
question that we want to decide is equivalent to the question of whether there exists a t0, such
that Ct0 ∩ Y = ∅. The latter is decidable thanks to Theorem 4.1. The effective construction
follows from the fact that such a t0 is computable and that the cone is Rexp-definable. J

ICALP 2020



107:10 Invariants for Continuous Linear Dynamical Systems

4.2 Effectively Constructing the Semi-algebraic Invariant
We now turn to show that in fact, for semi-algebraic error sets Y , we can approximate Ct0
with a semi-algebraic set such that if Ct0 avoids Y , so does the approximation. Intuitively,
this is done by relaxing the “non semi-algebraic” parts of Ct0 in order to obtain a fat cone.
This relaxation has two parts: one is to “rationalize” the (possibly irrational) exponents
ρ1, . . . , ρk, and the other is to approximate the polylogs in Q(log s) by polynomials.

Relaxing the exponents. We start by approximating the exponents ρ1, . . . , ρk with rational
numbers. We remark that naively taking rational approximations is not sound, as the
approximation must also adhere to the additive relationships of the exponents.

Let ` = (`1, . . . , `k) and u = (u1, . . . , uk) be tuples of rational numbers such that
`i ≤ ρi ≤ ui for i = 1, . . . , k. Define S ⊆ Rk as:

S def=
{

(q1, . . . , qk) ∈ Rk : ∀n1, . . . , nk ∈ Z,

(
k∑
i=1

niρi = 0⇒
k∑
i=1

niqi = 0
)}

Thus, S captures the integer additive relationships among the ρi. Define

Box(`,u) def= {diag(q) : ` ≤ q ≤ u,q ∈ S}.

Approximating polylogs. Let ε, δ > 0. We simply replace log s by r such that δ ≤ r ≤ sε.
Note that it is not necessarily the case that δ ≤ log s ≤ sε, so this replacement is a-priori
not sound. However, for large enough s the inequalities do hold, which will suffice for our
purposes.

We can now define the fat cone. Let ε, δ > 0 and ` = (`1, . . . , `k) and u = (u1, . . . , uk) as
above, the fat orbit cone Fs0,ε,δ,`,u is the set:{

P diag(sq1 , . . . , sqk )diag(τ ) Q(r)P−1x0 : τ ∈ Tω, s ≥ s0, δ ≤ r ≤ sε, q ∈ Box(`,u)
}
.

That is, the fat cone is obtained from Ct0 with the following changes:
R(log s) = diag(sρ1 , . . . , sρk ) is replaced with diag(sq1 , . . . , sqk ), where the qi are rational
approximations of the ρi, and maintain the additive relationships.
Q(log s) is replaced with Q(r) where δ ≤ r ≤ sε.
The variable s starts from s0 (as opposed to et0).

We first show that the fat cone is semi-algebraic (the proof is in [3] Appendix C), then
proceed to prove that if there is a cone that avoids the error set, then there is a fat one that
avoids it as well.

I Lemma 4.3. Fs0,ε,δ,`,u is definable in R0, and we can compute a representation of it.

I Lemma 4.4. Let Y ⊆ Rd be a a semi-algebraic error set such that Ct0 ∩ Y = ∅ for some
t0 ∈ R, then there exists δ, ε, s0, `,u as above such that
1. Fs0,ε,δ,`,u ∩ Y = ∅, and
2. for every t ≥ 0 it holds that eAt · Fs0,ε,δ,`,u ⊆ Fs0,ε,δ,`,u.

The result is constructive, so when t0 is given, the constants s0, ε, δ, `,u can be computed.
It follows that a corollary of this lemma, and Lemma 4.3, is a stronger statement than that
of Theorem 4.2, namely one where Rexp is replaced by R0. We state it here before moving
on with the proof of Lemma 4.4.
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I Theorem 4.5. For a semi-algebraic set Y , it is decidable whether there exists a o-minimal
invariant, disjoint from Y , that contains the orbit O(u) after some time u ≥ 0. Moreover in
the positive instances an invariant that is R0-definable can be constructed.

The proof of Lemma 4.4 is given by the two corresponding steps. The second step, proving
the invariance of the fat cone, can be found in [3]. We turn our attention to the first step.

I Lemma 4.6. Let Y ⊆ Rd be a semi-algebraic error set, and let t0 ∈ R be such that
Ct0 ∩ Y = ∅, then there exists δ, ε, s0, `,u as above such that Fs0,ε,δ,`,u ∩ Y = ∅.

Proof. We use the same analysis and definitions of U , Rl, ∼l, Λ(s) as in the proof of
Theorem 4.1 and focus on a single polynomial Rl. Recall that we had

Rl(Λ(s)) =
∑
i

sni,1ρ1+...ni,kρkfi(log s) (1)

where each fi is a polynomial with rational coefficients.
Denote ρ = (ρ1, . . . , ρk). We show, first, how to replace the exponents vector ρ by any

exponents vector in Box(`,u) for appropriate `,u, and second, how to replace log s by r
where δ ≤ r ≤ sε for some appropriate δ and ε, while maintaining the inequality or equality
prescribed by ∼l.

Denote by N the set of vectors ni = (ni,1, . . . , ni,k) of exponents in (1). Let µ > 0, such
that for every n,n′ ∈ N , if ρ · (n − n′) 6= 0 then |ρ · (n − n′)| > µ. That is, µ is a lower
bound on the minimal difference between distinct exponents in (1). Observe that we can
compute a description of µ, as the exponents are algebraic numbers.

Let M = maxn,n′∈N ‖n− n′‖ (where ‖·‖ is the Euclidean norm in Rk).

B Claim 4.7. Let c ∈ Rk be such that ‖ρ− c‖ ≤ µ
2M , then, for all n,n′ ∈ N , if ρ·(n−n′) > 0

then c · (n− n′) > µ
2 .

Proof of Claim 4.7. Suppose that ρ · (n−n′) > 0, then by the above we have ρ · (n−n′) > µ,
and hence

c · (n−n′) = ρ · (n−n′) + (c−ρ) · (n−n′) ≥ µ−‖c− ρ‖ · ‖n− n′‖ ≥ µ− µ

2MM = µ

2 .J

We can now choose ` and u such that ui − `i ≤ µ

2M
√
k
and for all c ∈ Box(`,u) we have

‖ρ− c‖ ≤

√√√√ k∑
i=1

(ui − `i)2 ≤

√
µ2

(2M)2 = µ

2M .

It follows from Claim 4.7 and from the definition of Box(`,u) that, intuitively, every c ∈
Box(`,u) maintains the order of magnitude of the monomials sni,1·ρ1+...+ni,k·ρk in Rl(Λ(s)).

More precisely, let Λ′(s) = diag(sc1 , . . . , sck )Q(log s) for some c ∈ Box(`,u), then the
exponent of the ratio of every two monomials in Rl(Λ′(s)) has the same (constant) sign as
the corresponding exponent in Rl(Λ(s)). Moreover, the exponents of distinct monomials in
Rl(Λ(s)) differ by at least µ

2 in Rl(Λ′(s)).
We now turn our attention to the log s factor. First, let s0 be large enough that fi(log s)

has constant sign for every s ≥ s0. We can now let δ be large enough such that for every
r ≥ δ, the sign of fi(log s) coincides with the sign of fi(r) for every s ≥ s0. It remains to
give an upper bound on r of the form sε such that plugging fi(r) instead of fi(log s) does
not change the ordering of the terms (by their magnitude) in Rl(Λ′(s)).
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Let B be the maximum degree of all polynomials fi in (1), and define ε = µ
3B (in fact,

any ε < µ
2B would suffice), then we have that, for s ≥ s0, fi(r) has the same sign as fi(log s)

for every δ ≤ r ≤ sε (by our choice of δ), and guarantees that plugging sε instead of s does
not change the ordering of the terms (by their magnitude) in Rl. Since the exponents of the
monomials in Rl(Λ′(s)) differ by at least µ

2 , it follows that their order is maintained when
replacing log s by δ ≤ r ≤ sε.

Let Λ′′(s) = diag(sc1 , . . . , sck )Q(r) for some c ∈ Box(`,u) and δ ≤ r ≤ sε, then by our
choice of ε, the dominant term in Rl(Λ′′(s)) is the same as that in Rl(Λ(s)). Therefore, for
large enough s, the signs of Rl(Λ′′(s)) and Rl(Λ(s)) are the same.

Note that since Ct0 ∩ Y = ∅, then w.l.o.g. Rl(Λ(s)) ∼l 0 for every l. Thus, by repeating
the above argument for each Rl, we can compute s0 ∈ R, ε > 0, δ ∈ R, and `,u ∈ Qk such
that Fs0,ε,δ,`,u ∩ Y = ∅, and we are done. J

5 A Reduction from Zeros of an Exponential Polynomial

In Theorem 4.5, we showed unconditional decidability for the question of whether there exists
an invariant containing the orbit O(u), for some u ≥ 0. Even though we construct such an
invariant, it cannot be used as a certificate proving that the orbit never enters the error set;
however it is a certificate that the orbit of the system does not enter Y after time u.

In this section we give indications that deciding whether there exists an invariant that
takes into account the orbit ≤ u is difficult. More precisely, we will reduce a problem
about zeros of a certain exponential polynomial to the question of whether there exists a
semi-algebraic invariant disjoint from Y containing O(0).
I Remark 5.1. In the setting of discrete linear dynamical systems, the existence of a semi-
algebraic invariant from time t0 immediately implies the existence of one from time 0. This
is because the system goes through finitely many points from 0 to t0, which can be added
one by one to the semi-algebraic set. In this respect CDSs are more complicated to analyse.

The problem that we reduce from, can be stated as follows. We are given as input
real algebraic numbers a1, . . . , an, ρ1, . . . , ρn, and t0 ∈ Q, and asked to decide whether the
exponential function:

f(t) def= a1e
ρ1t + · · ·+ ane

ρnt,

has any zeros in the interval [0, t0]. This is a special case of the so-called Continuous Skolem
Problem [6, 10].

While there has been progress on characterising the asymptotic distribution of complex
zeros of such functions, less is known about the real zeros, and we lack any effective
characterisation, see [6, 10] and the references therein. The difficulty of knowing whether f
has a zero in the specified region is because (a) all the zeros have to be transcendental (a
consequence of Hermite-Lindemann Theorem) and (b) there can be tangential zeros, that is
f has a zero but it never changes its sign. See the discussion in [6, Section 6]. Finding the
zeros of such a polynomial is a special case of the bounded continuous Skolem problem. We
note that when ρi are all rational the problem is equivalent to a sentence of R0 (and hence
decidable) by replacing t = log s.

The rest of this section is devoted to the proof of the following theorem.

I Theorem 5.2. For every exponential polynomial f we can construct a CDS 〈A,x0〉 and
semi-algebraic set Y such that the following two statements are equivalent:

there exists a semi-algebraic invariant disjoint from Y that contains O(0),
f does not have a zero in [0, t0].
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Fix the function f , i.e. real algebraic numbers a1, . . . , an, ρ1, . . . , ρn and t0 ∈ Q. Without
loss of generality we can assume that ρ1, . . . , ρn are all nonnegative, since eρtf(t) = 0 if and
only if f(t) = 0 where ρ is larger than all ρ1, . . . , ρn.

Since every ρi is algebraic, there is a minimal polynomial pi, that has ρi as a simple root.
Let A be the d×d companion matrix of the polynomial p1(x) · · · pn(x)x2. The numbers ρi are
eigenvalues A of multiplicity one, and the latter also has zero as an eigenvalue of multiplicity
two. In addition to those, the matrix A generally has other (complex) eigenvalues as well.
We put A in Jordan normal form, P−1AP = J where J is made of two block diagonals: Ã
and B, where

Ã
def=

diag(ρ1, . . . , ρn)
0 1
0 0

 ,

and B is some (d− n− 2)× (d− n− 2) matrix. Define:

x̃0
def= (1, . . . , 1︸ ︷︷ ︸

n+2

, 0, . . . , 0),

the vector that has n+ 2 ones and the rest, d− (n+ 2) zeros, whose purpose is to ignore the
contribution of the eigenvalues in matrix B in the system. To simplify notation, since x̃0 is
ignoring the contribution of the matrix B, the dynamics of the system 〈J, x̃0〉 can be assume
to be the same as:

eÃt(1, . . . , 1) = (eρ1t, . . . , eρnt, t).

Focus on a single eigenvalue, i.e. on the graph {(eρt, t) : t ≥ 0}, as the analysis will
easily generalise to the CDS in question. This is itself a CDS, so terminology such as orbits
etc. make sense. The challenge is to find a family of tubes around this exponential curve
such that (a) all the tubes together with {(y, t) : t ≥ t0} are invariants and (b) the tubes
are arbitrarily close approximations of the curve.

We achieve this by the following families of polynomials:
under-approximations are given by the family indexed by n ∈ N:

Pn(t) def=
n∑
k=0

(ρt)k

k! .

over-approximations are given by a family indexed by n ∈ N and µ > 1:

Qn,µ(t) def= Pn(µt).

Define:

In,µ
def= {(y, t) : Pn(t) ≤ y ≤ Qn,µ(t) and 0 ≤ t ≤ t0} .

It is clear from Taylor’s theorem and the assumption that ρ > 0, that by taking n→∞,
and µ→ 1+ the sets In,µ are arbitrary precise approximations of the graph {(eρt, t) : t ≥ 0},
what remains to show is that they are invariant.

I Lemma 5.3. For every µ > 1 there exists n0 ∈ N such that for all n ≥ n0 the set

In,µ ∪ {(y, t) : t > t0}

is an invariant containing the whole orbit, i.e. {(eρt, t) : t ≥ 0}.
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The proof is in Appendix D of [3].
We can construct such invariants for every curve eρit, and thus build Ĩn,µ for{

(eρ1t, . . . , eρnt, t) : t ≥ 0
}
.

To prove Theorem 5.2 we define Ỹ by the formula

Φ(x1, . . . , xn, xn+1) def= a1x1 + · · ·+ anxn = 0 and 0 ≤ xn+1 ≤ t0.

Since the analysis was done on the CDS 〈J, x̃0〉, whose entries are not rational in general,
before proceeding with the proof of Theorem 5.2, we need the following lemma to say that
changing basis does not have an effect in the decision problem at hand:

I Lemma 5.4. For every Ỹ semi-algebraic, there exists another semi-algebraic set Y and
x0 with rational entries such that the following two statements are equivalent:
〈J, x̃0〉 has a semi-algebraic invariant disjoint from Ỹ , containing the whole orbit,
〈PJP−1,x0〉 has a semi-algebraic invariant disjoint from Y , containing the whole orbit.
The proof can be found in [3]. Thanks to this lemma, we can prove Theorem 5.2 for the

CDS 〈J, x̃0〉 and the set Ỹ instead. This is done as follows. The direct implication is trivial.
For the converse, observe that f(t) does not have a zero in [0, t0] if and only if the O(0) and
Ỹ are disjoint. Since both O(0) and Ỹ are closed sets, we can find a tube that contains O(0)
and is disjoint from Ỹ , i.e. there exists some µ > 1 and n ∈ N such that

Ĩn,µ ∪ {(y, t) : t > t0},

is an invariant that is disjoint from Ỹ but contains O(0).
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Abstract
Type-two constructions abound in cryptography: adversaries for encryption and authentication
schemes, if active, are modeled as algorithms having access to oracles, i.e. as second-order algorithms.
But how about making cryptographic schemes themselves higher-order? This paper gives an answer
to this question, by first describing why higher-order cryptography is interesting as an object of
study, then showing how the concept of probabilistic polynomial time algorithm can be generalized
so as to encompass algorithms of order strictly higher than two, and finally proving some positive and
negative results about the existence of higher-order cryptographic primitives, namely authentication
schemes and pseudorandom functions.
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1 Introduction

Higher-order computation generalizes classic first-order one by allowing algorithms and
functions to not only take strings but also functions in input. It is well-known that this way
of computing gives rise to an interesting computability and complexity theory [26, 25, 31],
and that it also constitutes a conceptual basis for the functional programming paradigm, in
which higher-order subroutines allow for a greater degree of modularity and conciseness in
programs.
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In cryptography [19, 20, 24], computation is necessarily randomized, and being able
to restrict the time complexity of adversaries is itself crucial: most modern cryptographic
schemes are insecure against computationally unbounded adversaries. Noticeably, higher-
order constructions are often considered in cryptography, in particular when modeling active
adversaries, which have access to oracles for the underlying encryption, decryption, or
authentication functions, and can thus naturally be seen as second-order algorithms. Another
example of useful cryptographic constructions which can be spelled out at different type
orders, are pseudorandom primitives. Indeed, pseudorandomness can be formulated on
(families of) strings, giving rise to so-called pseudorandom generators [5], but also on (families
of) first-order functions on strings, giving rise to the so-called pseudorandom functions [21].
In the former case, again, adversaries (i.e., distinguishers) are ordinary polynomial time
algorithms, while in the latter case, they are polytime oracle machines.

Given the above, it is natural to wonder whether standard primitives like encryption,
authentication, hash functions, or pseudorandom functions, could be made higher-order. As
discussed in Section 2 below, that would represent a way of dealing with code-manipulating
programs and their security in a novel, fundamentally interactive, way. Before even look-
ing at the feasibility of this goal, there is one challenge we are bound to face, which is
genuinely definitional: how could we even give notions of security (e.g. pseudorandomness,
unforgeability, and the like) for second-order functions, given that those definitions would
rely on a notion of third-order probabilistic polynomial time adversary, itself absent from
the literature? Indeed, although different proposals exist for classes of feasible deterministic
functionals [9, 25], not much is known if the underlying algorithm has access to a source
of randomness. Moreover, the notion of feasibility cryptography relies on is based on the
so-called security parameter, a global numerical value which controls the complexity of all the
involved parties. In Section 3, we give a definition of higher-order probabilistic polynomial
time by way of concepts borrowed from game semantics [22, 23, 2], and being inspired by
recent work by Ferée [13]. We give evidence to the fact that the provided definition is general
enough to capture a broad class of adversaries of order strictly higher than two.

After having introduced the model, we take a look at whether any concrete instance
of a secure higher-order cryptographic primitive can be given. The results we provide are
about pseudorandom functions and (deterministic) authentication. We prove on the one
hand that those constructions are not possible if one insists on them having the expected
type (see Section 4.2). On the other hand, we prove (in Section 4.3 below) that second-order
pseudorandomness is possible if the argument function takes as input a string of logarithmic
length.

2 The Why and How of Authenticating Functions

Encryption and authentication, arguably the two simplest cryptographic primitives, are often
applied to programs rather than mere data. But when this is done, programs are treated as
ordinary data, i.e., as strings of symbols. In particular, two different but equivalent programs
are seen as different strings, and their encryptions or authentication tags can be completely
different objects. It is natural to ask the following: would it be possible to deal with programs
as functions and not as strings, in a cryptographic scenario? Could we, e.g., encrypt or
authenticate programs seeing them as black boxes, thus without any access to their code?

For the sake of simplicity, suppose that the program P we deal with has a very simple
IO behaviour, i.e. it takes as input a binary string of length n and returns a boolean.
Authenticating P could in principle be done by querying P on some of its inputs and, based
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on the outputs to the queries, compute a tag for P. As usual, such an authenticating scheme
would be secure if no efficient adversary A could produce a tag for P without knowing the
underlying secret key k (such that |k| = n), unless with negligible probability. Please notice
that the adversary, contrarily to the scheme itself, could have access to the code of P, even if
that code has not been used during the authenticating process.

But how could security be defined in a setting like the above? The three entities at hand
have the following types, where MAC is the authentication algorithm, S = {0, 1}∗ is the set of
binary strings, and B = {0, 1} is the set of boolean values:

P : S→ B
MAC : S→ (S→ B)→ S
A : ((S→ B)→ S)→ (S→ B)× S

The first argument of MAC is the key k, which is of course not passed to the adversary A.
The latter can query MACk and produce a function and its tag. Its type, as expected, has
order three. The above is not an accurate description of the input-output behaviour of the
involved algorithms, and in particular of the fact that the length of the input string to P
might be in a certain relation to the length of k, i.e., the underlying security parameter.
Reflecting all this in the types above is however possible by replacing occurrences of the type
S with refinements of S, as follows:

P : S[n]→ B
MAC : S[n]→ (S[r(n)]→ B)→ S[p(n)]
A : ((S[r(n)]→ B)→ S[p(n)])→ (S[r(n)]→ B)× S[p(n)]

But how could the time complexity of the three algorithms above be defined? While
polynomial time computability of the function P and the authenticating algorithm MAC can
be captured in a standard way using, e.g., oracle Turing machines, the same cannot be said
about A. How to, e.g., appropriately account for the time A needs to “cook” a function f
in S[n] → B to be passed to its argument functional? Appealing as it is, our objective of
studying higher-order forms of cryptography is actually bound to be nontrivial, even from a
purely definitional perspective.

Given the above discussion, the contributions of this paper can be described in greater
detail, as follows:

On the one hand, we give a definition of a polynomial-time higher-order probabilistic
algorithm whose time complexity depends on a global security parameter and which is
based on games and strategies, in line with game semantics [22, 23, 2]. This allows to
discriminate satisfactorily between efficient and non-efficient adversaries, and accounts for
the complexity of first-and-second-order algorithms consistently with standard complexity
theory.
On the other hand, we give some positive and negative results about the possibility of
designing second-order cryptographic primitives, and in particular pseudorandom functions
and authentication schemes. In particular we prove, by an essentially information-theoretic
argument, that secure deterministic second-order authentication schemes of the kind
sketched above cannot exist. A simple and direct reduction argument shows that a
more restricted form of pseudorandom function exists under standard cryptographic
assumptions. Noticeably, the adversaries we prove the existence of are of a very peculiar
form, while the ones which we prove impossible to build are quite general.
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3 Higher-Order Probabilistic Polynomial Time Through Parametrized
Games

In this section, we introduce a framework inspired by game semantics, in which one can talk
about the efficiency of probabilistic higher-order programs in presence of a global security
parameter. While the capability of interpreting higher-order programs is a well-established
feature of game semantics, dealing at the same time with probabilistic behaviors and efficiency
constraints has – to the best of the authors’ knowledge – not been considered so far. The
two aspects have however been tackled independently. Several game models of probabilistic
languages have been introduced: we can cite here, for instance, the fully abstract model of
probabilistic Idealized Algol by Danos and Harmer [11], or the model of probabilistic PCF by
Clairambault at al. [8]. About efficiency, we can cite the work by Férée [13] on higher-order
complexity and game semantics, in which the cost of evaluating higher-order programs is
measured parametrically on the size of all their inputs, including functions, thus in line with
type-two complexity [9]. We are instead interested in the efficiency of higher-order definitions
with respect to the security parameter. Unfortunately, existing probabilistic game models
do not behave well when restricted to capture feasibility: polytime computable probabilistic
strategies in the spirit of Danos and Harmer do not compose (see the Extended Version of
this paper [3] for more details).

Contrary to most works in game semantics, we do not aim at building a model of a
particular programming language, but we take game semantics as our model of computation.
As a consequence, we are not bound by requirements to interpret particular programming
features or to reflect their discriminating power, and the resulting notions of games and
strategies will be very simple.

We present our game-based model of computation in three steps: first, we define a
category of deterministic games and strategies called PG – for parametrized games – which
capture computational agents whose behavior is parametrized by the security parameter.
This model ensures that computational agents are total: they always answer any request
by the opponent. In a second step, we introduce PPG, as a sub-category of PG designed
to model those agents whose time complexity is polynomially bounded with respect to the
security parameter. Finally, we deal with randomized agents by allowing them to interact
with a probabilistic oracle, that outputs (a bounded amount of) random bits.

3.1 Parametrized Deterministic Games
Our game model has been designed so as to be able to deal with security properties that – as
exemplified by computational indistinguishability – are expressed by looking at the behavior
of adversaries at the limit, i.e., when the security parameter tends towards infinity. The
agents we consider are actually families of functions, indexed by the security parameter. As
such, our game model can be seen as a parametrized version of Hyland’s simple games [22],
where the set of plays is replaced by a family of sets of plays, indexed by the natural numbers.
Moreover, we require the total length of any interaction between the involved parties to be
polynomially bounded in the security parameter.

We need a few preliminary definitions before delving into the definition of a game.
Given two sets X and Y , we define Alt(X,Y ) as {(a1, . . . , an) | ai ∈ X if i is odd, ai ∈
Y if i is even}, i.e., as the set of finite alternating sequences whose first element is in X.
Given any set of sequences X, Odd(X) (respectively, Even(X)) stands for the subset of X
containing the sequences of odd (respectively, even) length. From now on, we implicitly
assume that any (opponent or player) move m can be faithfully encoded as a string in an



B. Barak, R. Crubillé, and U. Dal Lago 108:5

appropriate, fixed alphabet. This way, moves and plays implicitly have a length, that we will
indicate through the unary operator | · |. We fix a set Pol of unary polynomially-bounded
total functions on the natural numbers, which includes the identity ι, base-2 logarithm
blgc, addition, multiplication, and closed under composition. Pol can be equipped with the
pointwise partial order: p ≤ q when ∀n ∈ N, p(n) ≤ q(n).

I Definition 1 (Parametrized Games). A parametrized game G = (OG,PG,LG) consists of
sets OG, PG of opponent and player moves, respectively, together with a family of non-empty
prefix-closed sets LG = {LnG}n∈N, where LnG ⊆ Alt(OG,PG), such that there is p ∈ Pol with
∀n ∈ N.∀s ∈ LnG.|s| ≤ p(n). The union of OG and PG is indicated as MG, and is said to be
set of moves of G.

For every n ∈ N, LnG represents the set of legal plays, when n is the current value of the
security parameter. Observe that the first move is always played by the opponent, and that
for any fixed value of the security parameter n, the length of legal plays is bounded by p(n),
where p ∈ Pol. In the following, we often form plays from moves coming from different
games or from different copies of the same game. If s is such a play, we indicate, e.g., the
sub-play of s consisting of the moves from G as sG.

I Example 2 (Ground Games). We present here some games designed to model data-types.
The simplest game is probably the unit game 1 = ({?}, {∗}, {Ln1}n∈N) with just one opponent
move and one player move, where Ln1 = {ε, ?, ?∗} for every n. Just slightly more complicated
than the unit game is the boolean game B in which the two moves 0 and 1 take the place
of ∗. In the two games introduced so far, parametrization is not really relevant, since
LnG = LmG for every n,m ∈ N. The latter is not true in S[p] = ({?}, {0, 1}∗, {LnS[p]}n∈N)
with LnS[p] = {ε, ?} ∪ {?s | |s| = p(n)}, which will be our way of capturing strings. A slight
variation of S[p] is L[p], in which the returned string can have length smaller or equal to p(n).

I Example 3 (Oracle Games). As another example, we describe how to construct poly-
nomial boolean oracles as games. For every polynomial p ∈ Pol we define a game Op as
({?}, {0, 1}, {LnOp}n∈N) with

LnOp = {?} ∪ {?b1?b2 . . .?bm | bi ∈ {0, 1} ∧m ≤ p(n)}
∪ {?b1?b2 . . .?bm? | bi ∈ {0, 1} ∧m < p(n)}.

Our oracle games are actually a special case of a more general construction, that amounts to
building, from any game G, and any polynomial p, a game which consists in playing G at
most p(n) times. That is itself nothing more than a bounded version [18] of the exponential
construction from models of linear logic [16].

I Definition 4 (Bounded Exponentials). Let G = (OG,PG,LG) be a parametrized game.
For every p ∈ Pol, we define a new parametrized game !pG := (O!pG,P!pG,L!pG) as fol-
lows:

O!pG = N>0 ×OG, and P!pG = N>0 × PG;
For n ∈ N, Ln!pG

is the set of those plays s ∈ Alt(O!pG,P!pG) such that:
for every i, the i-th projection si of s is in LnG;
if a move (i+1, z) appears in s for i ∈ N>0, then a move (i,x) appears at some earlier
point of s, and i+ 1 ≤ p(n).

We do not need any switching condition as in so-called AJM games [1]: the impossibility for
the observer to switch between the various copies of G when playing in !pG is a byproduct of
our very definition of a game. Observe that the game Op is isomorphic to the game !pB –
we can build a bijection between legal plays having the same length.

ICALP 2020
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Games specify how agents could play in a certain interactive scenario. As such, they do
not represent one such agent, this role being the one of strategies. Indeed, a strategy on a
game is precisely a way of specifying the deterministic behavior of an agent, i.e. how the
agent plans to react to any possible move by the opponent. We moreover ask our strategies
to be total, i.e., that the player cannot refuse to play when it is her turn.

I Definition 5 (Strategies). A strategy on a parametrized game G = (OG,PG,LG) consists of
a family f = {fn}n∈N, where fn is a partial function from Odd(LnG) to PG such that:

for every s ∈ Odd(LnG), if fn(s) = x is defined, then sx ∈ LnG;
sxy ∈ Dom(fn) implies that x = fn(s);
for every s ∈ fn, if sx ∈ LnG then sx ∈ Dom(fn);

where f represents the set of plays characterising f, defined as the family {fn} where fn =
{ε} ∪ {sfn(s) | s ∈ Dom(fn)} ⊆ LnG.

Any strategy f is entirely characterized by its set of plays f. As such, it does not need to be
effective, i.e., it is entirely possible that f, seen as a function of the history and the security
parameter, is an uncomputable function.

Up to now, the games we have described are such that their strategies are meant to
represent concrete data: think about how a strategy for, e.g., B or Op could look like.
It is now time to build games modeling functions, this being embodied by the following
construction on games:

I Definition 6 (Constructing Functional Games). The game G ( H is given as OG(H =
PG +OH , PG(H = OG + PH , and LG(H = {s ∈ Alt(OG(H ,PG(H) | sG ∈ LG, sH ∈ LH}.

Strategies for the game G( H are meant to model any agent that, when interacting with a
strategy in G, behaves like a strategy for H. When G and H are ground games, this can
indeed be seen as a function between the corresponding sets.

I Example 7. As an example, we look at the game Op ( S[p], which captures functions
returning a string of size p(n) after having queried a binary oracle at most p(n) times. First,
observe that:

Op ( S[p] = ({?S[p], 0, 1}, {?Op} ∪ {0, 1}?, {LnOp(S[p]}n∈N),

where LOp(S[p]
n is generated by the following grammar:

q ∈ LOp(S[p]
n ::=?S[p]o | ?S[p]e | ?S[p]es s ∈ {0, 1}∗ with |s| ≤ p(n)

e ::= ε | ?Opb1 . . .?Opbm bi ∈ {0, 1},m ≤ p(n)

o ::=?Op | ?Opb1 . . .?Opbm−1?Op bi ∈ {0, 1},m ≤ p(n)

Of course there are many strategies for this game, and we just describe two of them here,
both making use of the oracle: the first one – that we will call oncep – queries the oracle for
a random boolean, and returns the string 0p(n) or the string 1p(n) depending on the obtained
value. It is represented in Figure 1a. The second strategy – denoted multp and represented in
Figure 1b – generates a random key of length p(n) by making p(n) calls to the probabilistic
oracle.

We now look at how to compose strategies: given a strategy on G ( H, and H ( K,
we want to build a strategy on G ( K that combines them. We define composition as
in [22, 32], except that we need to take into account the security parameter n.



B. Barak, R. Crubillé, and U. Dal Lago 108:7

Op ( S[p]

O

O

?S[p]

b

P ?Op

P bp(n)

(a) The strategy oncep.

Op ( S[p]

O ?S[p]

P ?Op

O b1

...
P ?Op

O bp(n)

P b1 . . . bp(n)

(b) The strategy multp.

Figure 1 Two Distinct Strategies on the Game Op ( S[p].

I Definition 8 (Composition of Strategies). Let G,H,K be parametrized games, and let f, g
be two strategies on G( H and H ( K respectively. We first define the set of interaction
sequences of f and g as:

(f 9 g)n = {s ∈ (MG +MH +MK)? | sG,H ∈ fn ∧ sH,K ∈ gn}.

From there, we define the composition of f and g as the unique strategy f; g such that:

f; gn = {sG,K | s ∈ (f 9 g)n}.

We can check that f; g is indeed a strategy on G( K, and that moreover composition, seen
as an operation on strategies, is associative and admits an identity. We can thus define PG as
the category whose objects are parametrized games, and whose set of morphisms PG(G,H)
consists of the parametrized strategies on the game G( H.

3.2 Polytime Computable Strategies
Parametrized games have been defined so as to have polynomially bounded length. However,
there is no guarantee on the effectiveness of its strategies, i.e., that the next player move, can
be computed algorithmically from the history, uniformly in the security parameter. This can
be however tackled by considering a subcategory of PG in which strategies are not merely
functions, but can be (efficiently) computed:

I Definition 9 (Polytime Computable Strategies). Let G be a parametrized game, and f be a
strategy on G. We say that f is polytime computable when there exists a polynomial time
Turing machine which on input (1n, s) returns f(n)(s).

All strategies we have given as examples in the previous section are polytime computable.
For example, the two strategies from Example 7 are both computable in linear time.

I Proposition 10 (Stability of Polytime Computable Strategies). Let G,H,K be polynomially
bounded games. If f, g are polytime computable strategies, respectively on G ( H, and
H ( K, then f; g is itself a polytime computable strategy.

For elementary reasons, the identity strategy on any game G is polytime computable. We
can thus write PPG for the the sub-category of PG whose objects are paramterized games,
and whose morphisms are polytime computable strategies.

ICALP 2020
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Let us now consider the algorithm MAC from Section 2. Its type can be turned into the
parametrized game S[ι] (!q(S[r] ( B) ( S[p]. The bounded exponential !q serves to model
the fact that the argument function can be accessed a number of times which is polynomially
bounded on n. As a consequence, MAC can only query the argument function a number of
times which is negligibly smaller than the number of possible queries, itself exponential in n
(if r(n) ≥ n). As we will see in Section 4, this is the key ingredient towards proving security
of such a message authentication code to be unattainable.

3.3 Probabilistic Strategies
Both in PG and in PPG, strategies on any game G are ultimately functions, and the way they
react to stimuli from the environment is completely deterministic. How could we reconcile
all this with our claim that the framework we are introducing adequately models randomized
higher-order computation? Actually, one could be tempted to define a notion of probabilistic
strategy in which the underlying function family {fn}n∈N is such that fn returns a probability
distribution fn(s) of player moves when fed with the history s. This, however, would lead to
some technical problems when composing strategies: it would be hard to keep the composition
of two efficient strategies itself efficient (see [3]).

It turns out that a much more convenient route consists, instead, in defining a probabilistic
strategy on G simply as a deterministic polytime strategy on Op ( G, namely as an
ordinary strategy having access to polynomially many random bits. Actually, we have already
encountered strategies of this kind, namely oncep and multp from Example 7. This will be
our way of modeling higher-order probabilistic computations.

But in which sense does any probabilistic strategy behave probabilistically, given that,
after all, behind it there is a deterministic (polytime) Turing machine? The following
definition gives an answer to this question, in the particular case of probabilistic strategies
on the game B.

I Definition 11. Let f be a strategy on the game Op ( B. For every b ∈ B, we define the
probability of observing b when executing f as follows:

Pr(f ⇓n b) =
∑

(b1,...,bk)∈Bk

with (?B·?Op ·b1...?Op ·bk·b)∈fn

1
2k .

Parametrized games and probabilistic strategies can be themselves seen as a category
whose morphisms (from the game G to the game H) are pairs in the form (q, f), where f is a
strategy in Oq ( (G( H). This category can be proved to be symmetric monoidal closed,
although cartesian closure fails: duplication is not available in its full generality, but only in
bounded form, which, we conjecture, is enough to get the structure of a bounded exponential
situation [6].

Given a probabilistic strategy f on G (i.e. a strategy on Oq ( G) and p ∈ Pol, we
indicate as !pf the strategy in which p(n) copies of f are played, but in which randomness
is resolved just once and for all, i.e. !pf is the naturally defined strategy on Oq (!pG in
which the q(n) random bits are all queried for at the beginning of the play, after the first
opponent move.

3.4 On the Expressive Power of Probabilistic Strategies
A few words about the expressive power of probabilistic strategies – seen as a model of higher-
order randomized computation – are now in order. For trivial reasons, every probabilistic
strategy for the game S[ι] ( L[p] can be precisely simulated by a probabilistic Turing machine



B. Barak, R. Crubillé, and U. Dal Lago 108:9

!q(S[r] ( B) ( S[p]

O ?S[p]

P (1, ?B)

O (1, ?S[r])

P (1, s1)

O (1, t1)
...

P (m, ?B)

O (m, ?S[r])

P (m, sm)

O (m, tm)

P v

Figure 2 Plays (of Maximal Length) for the game !q(S[r] ( B) ( S[p].

working in polynomial time. Conversely, every such machine can be turned into a probabilistic
strategy for the aforementioned game, once p is chosen as a sufficiently large polynomial.
Similarly, behind any probabilistic strategy for the game S[ι] (!q(L[p] ( L[r]) ( L[s]
there is an probabilistic oracle Turing machine working in polynomial time. The converse
statement, however, can be proved only assuming the oracle with which the machine interacts
to produce outputs polynomially related (in size) to the inputs.

More generally, the intrinsic restriction parametrized games impose on the length of any
interaction indeed poses some limitations as to what strategies can do, and in particular to how
they can interact with the environment. This implies that our framework is fundamentally
inadequate as a characterization of, say, the basic feasible functionals [9]. We claim, however,
that cryptography most often deals with situations in which, even if some of the parties
can be computationally unbounded, the length of the interaction between them, but also
the size of the exchanged messages, are polynomially bounded. The interested reader is
invited to take a look at, e.g., the cryptographic experiments in [24]. Even in interactive
proofs, in which no restrictions is put on complexity of the prover, the amount and size of
the exchanged messages is by definition polynomially bounded.

4 The (In)feasibility of Higher-Order Cryptography

In this section, we give both negative and positive results about the possibility of defining a
deterministic polytime strategy for the game S[ι] (!q(S[r] ( B) ( S[p] which could serve
to authenticate functions. When r is linear, this is impossible, as proved in Section 4.2 below.
When, instead, r is logarithmic (and q is at least linear), a positive result can be given, see
Section 4.3.

But how would a strategy for the game !q(S[r] ( B) ( S[p] look like? Plays for this
game are in Figure 2. A strategy for such a game is required to determine the value of the
query si+1 ∈ S[r(n)] based on t1, . . . , ti ∈ B. Moreover, based on t1, . . . , tm (where m ≤ q(n)),
the strategy should be able to produce the value v ∈ S[p(n)]. Strictly speaking, the strategy
should also be able to respond to a situation in which the opponent directly replies to a
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move (i, ?B) by way of a truth value (i, ti), without querying the argument. This is however
a signal that the agent with which the strategy is interacting represents a constant function,
and we will not consider it in the following.

The way we will prove deterministic authentication impossible when r is linear consists
in showing that since q is polynomially bounded (thus negligibly smaller than the number
of possible queries of type S[r] any function is allowed to make to its argument), there are
many argument functions S[r(n)]→ B which are indistinguishable, and would thus receive
the same tag. In the following, we prove that the (relatively few) coordinates on which the
argument function is queried can even be efficiently determined.

4.1 Efficiently Determining Influential Variables
A key step towards proving our negative result comes from the theory of influential variables
in decision trees. In this section, we are going to give some preliminary definitions about it,
without any aim at being comprehensive (see, e.g., [29]).

From now on, metavariables like N ,M ,L stand for natural number unrelated to the
security parameter, unless otherwise specified. Given a natural number N ∈ N, [N ] denotes
the set {1, . . . ,N}. Whenever j ∈ [N ], ej ∈ S[N ] is the binary string which is everywhere 0
except on the j-th component, in which it is 1.

I Definition 12 (Variance and Influence). For every distribution D over S[N ], and F : S[N ]→
B, we write VarD(F ) for the value E(F (D)2)− E(F (D))2 = Prx,y∼D(F (x) 6= F (y)), called
the variance of F under D. For every distribution D over S[N ], F : S[N ]→ B, and j ∈ [N ],
we define the influence of j on F under D, written Inf jD(F ), as Prx∼D[F (x) 6= F (x⊕ ej)].

The quantity Inf jD(F ) measures how much, on the average, changing the j-th input to F
influences its output. If F does not depend too much on the j-th input, then Inf jD(F ) is
close to 0, while it is close to 1 when switching the j-th input has a strong effect on the
output.

I Example 13. Let PARITYN : S[N ]→ B be the parity function on N bits. It holds that

Inf jD(PARITYN ) = Pr
x∼D

[PARITYN (x) 6= PARITYN (x⊕ ej)]

=
∑
x

D(x) · |PARITYN (x)− PARITYN (x⊕ ej)| =
∑
x

D(x) = 1.

This indeed matches the intuition: changing any one coordinate makes the output to change,
independently on the distribution from which the input is drawn.

If F : A→ S[L], and t ∈ [L], we define Ft : A→ B to be the function that on input x ∈ A
outputs the t-th bit of F (x). The kind of distributions over S[N ] we will be mainly interested
at are the so-called semi-uniform ones, namely those in which some of the N bits have
a fixed value, while the others take all possible values with equal probability. It is thus
natural to deal with them by way of partial functions. For every partial function g : [N ]→ B
we define Dom(g) ⊆ [N ] to be the set of inputs on which g is defined, and Ug to be the
uniform distribution of x over S[N ] conditioned on xj = g(j) for every j ∈ Dom(g), i.e., the
distribution defined as follows:

Ug(x) =
{ 1

2N−|Dom(g)| if xj = g(j) for every j ∈ Dom(g);
0 otherwise.
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0 1 0 0 11 1 0

1

2 2

3 3 3 3

Figure 3 A Decision Tree for PARITY3.

If a distribution D can be written as Ug, where g : [N ]→ B, we say that D is an Dom(g)-
distribution, or a semi-uniform distribution. Given a distribution D : S[N ]→ R[0,1], some
index j ∈ [N ] and a bit b ∈ B, the expression D[j ← b] stands for the conditioning of D
to the fact that the j-th boolean argument is b. Note that if D is an S-distribution and
j ∈ [N ] \ S, then D[j ← b] is an S ∪ {j}-distribution.

A crucial concept in the following is that of a decision tree, which is a model of computation
for boolean functions in which the interactive aspects are put upfront, while the merely
computational aspects are somehow abstracted away.

I Definition 14 (Decision Tree). Given a function F , a decision tree T for F is a finite
ordered binary tree whose internal nodes are labelled with an index i ∈ [N ], whose leaves are
labelled with a bit b ∈ B, and such that whenever a path ending in a leaf labelled with b is
consistent with x ∈ S[N ], it holds that F (x) = b. The depth of any decision tree T is defined
the same as that of any tree.

I Example 15. An example of a decision tree that computes the function PARITY3 : S[3]→
B defined in Example 13 can be found in Figure 3.

The following result, which is an easy corollary of some well-known results in the literature
(i.e. Corollary 1.2 from [29]), put the variance and the influence in relation whenever the
underlying function can be computed by way of a decision tree of limited depth.

I Lemma 16. Suppose that F is computable by a decision tree of depth at most q and
g : [N ]→ B is a partial function. Then there exists j ∈ [N ] \Dom(g) such that

Inf jUg
(F ) ≥ VarUg (F )

q .

Every decision tree T makes on any input a certain number of queries, which of course
can be different for different inputs. If D is a distribution, S is a subset of [N ] and T is a
decision tree, we define ∆D,S(T ) as the expectation over x ∼ D of the number of queries that
T makes on input x outside of S, which is said to be the average query complexity of T on D
and S. The following result relates the query complexity before and after the underlying
semi-uniform distribution is updated: if we fix the value of a variable, then the average query
complexity goes down (on the average) by at least the variable’s influence:

I Lemma 17. For every decision tree T computing a function F , S ⊆ [N ], j ∈ [N ] \ S, and
S-distribution D, it holds that

1
2 ∆D[j←0],S∪{j}(T ) + 1

2 ∆D[j←1],S∪{j}(T ) ≤ ∆D,S(T )− Inf jD(F ).

By somehow iterating over Lemma 17, we can get the following result, which states that fixing
enough coordinates, the variance can be made arbitrarily low, and that those coordinates
can be efficiently determined:
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I Theorem 18. For every F : S[N ]→ S[L] such that for every t ∈ [L], Ft is computable by
a decision tree of depth at most Q, and every ε > 0, there exist a natural number m ≤ LQ2/ε

and a partial function g : [N ]→ B where |Dom(g)| ≤ m such that VarUg
(Ft) ≤ ε for every

t ∈ {1, . . . ,L}. Moreover, there is a polytime randomized algorithm A that on input F , δ > 0,
and ε > 0, makes at most O(LN) · poly(Q/(δε)) queries to F and outputs such a partial
function g with |Dom(g)| ≤ O((LQ2)/(εδ)) with probability at least 1− δ.

Proof. We here give the main ingredients of the proof, referring to [3] for a more detailed
account. The algorithm A proceeds by iteratively fixing new coordinates between the N
many ones the function F depends on, stopping when the variance of all the functions Ft on
the obtained semi-uniform distribution falls significantly below ε. The next coordinate to
be fixed is chosen by estimating, using statistical methods, the influence of all the possible
coordinates. Using similar methods, A can also estimate accurately the variance, and stop
when enough coordinates are fixed. The role of Lemma 16 is to guarantee that if the variance
is not too low, an influential variable can always be found, while the one of Lemma 17 consists
in guaranteeing that a bounded number of iterations is enough. J

4.2 On the Impossibility of Authenticating Functions
Theorem 18 tells us that for every first-order boolean function which can be computed by
a decision tree of low depth, there exist relatively few of its coordinates that, once fixed,
determine the function’s output with very high probability. If N is exponentially larger than
Q, in particular, there is no hope for such a function to be a secure message authentication
code. In this section, we aim at proving the aforementioned claim. In order to do it, we
build a third-order randomized algorithm, which will be shown to fit into our game-theoretic
framework.

More specifically, we are concerned with the cryptographic properties of strategies for
the parametrized game SOFq,r,p =!q(S[r] ( B) ( S[p] and, in particular, with the case in
which r is the identity ι, i.e. we are considering the game LINSOFq,p = SOFq,ι,p. Any such
strategy, when deterministic, can be seen as computing a family of functions {Fn}n∈N where
Fn : (S[n]→ B)→ S[p(n)]. How could we fit all this into the hypotheses of Theorem 18?

The definitions of variance, influence, and decision tree can be easily generalised to
functions in the form F : (S[N ]→ B)→ S[M ]. Of course the underlying distribution D must
be a distribution over functions S[N ] → B. The parameter N can be fixed in such a way
that n < N < 2n, where n is the security parameter. For simplicity we will choose N to be a
power of 2, which hence divides 2n.

I Definition 19 (Extensions). For every x ∈ S[N ], we define the extension of x, denoted
by fx as the function fx : S[n] → B such that for every i ∈ [2n] (identifying S[n] with the
numbers {0, . . . , 2n − 1} in the natural way), it holds that fx(i) = xbi/Nc+1. That is, fx is
the function that outputs x1 on the first 2n/N inputs, outputs x2 on the second 2n/N inputs,
and so on and so forth. Given a distribution D over S[N ], a distribution over functions
S[n]→ B can be formed in the natural way as fD.

We will also make use of the following slight variation on the classic notion of Hamming
distance: define H(·, ·) to be the so-called normalized Hamming distance. In fact, we overload
the symbol H and use it for both strings in S[N ] and functions in S[n] → X for some set
X. That is, if x, y ∈ {0, 1}N then H(x, y) = Prj∈[N ][xj 6= yj ] while if f , g ∈ S[n]→ X then
H(f , g) = Pri∈S[n][f(i) 6= g(i)].
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Finally, the following ground game will be useful in the following as a way to represent
partial functions as ground objects. The game T[q] is a slight variation on S[q] in which the
returned string is in the ternary alphabet {0, 1,⊥}. Any strategy for T[q] can thus be seen
as representing a (family of) partial functions from [q(n)] to B.

I Theorem 20. For every ε, δ > 0, there is a polytime probabilistic strategy infvarε,δ on the
game !s(LINSOFq,p) ( T[t] such that for every deterministic strategy f on LINSOFq,p com-
puting {Fn}n∈N, the composition (!sf); infvarε,δ, with probability at least 1− δ, computes some
functions gn : [t(n)]→ B such that VarfUgn

(Fn) ≤ ε and |Dom(gn)| ≤ O(p(n)q2(n)/(δε)).

Proof. This is a corollary to Theorem 18, since the functions Fn can be seen as first-order
functions, and can thus be queried on functions in the form fx (see Definition 19), where
x ∈ S[N ], and N is appropriately chosen so as to be significantly smaller than 2n. Since Fn
is computed by f, it can be computed by a decision tree having depth q(n). Please refer
to [3] for a more detailed proof. J

Remarkably, the strategy infvarε,δ infers the “influential variables” of f without looking at
how the latter queries its argument function, something which would anyway be available in
the history of the interaction. This is reminiscent of innocence [23], a key concept in game
semantics. We can now state the main result of this section.

I Theorem 21. For every δ there is a polytime probabilistic strategy collδ on a game
!s(LINSOFq,p) ( (S[ι] ( B)⊗ (S[ι] ( B) such that for every deterministic strategy f on
LINSOFq,p computing {Fn}n∈N, the composition (!sf); collδ, with probability at least 1− δ,
computes two function families g,h with gn,hn : S[n]→ B such that
1. H(gn,hn) ≥ 0.1 for every n.
2. Fn(gn) = Fn(hn) for every n.
3. For every function f on which collδ queries its argument, it holds that H(f , gn) ≥ 0.1

and H(f ,hn) ≥ 0.1.

Proof. The strategy collδ can be easily built from infvarε,δ: the former calls the latter, and
then draws two strings independently at random from Ukn

, where kn is the function the
latter produces in output, and obtaining x, y. The two required outputs are thus fx and fy,
and have all the required properties. J

This shows that collδ finds a collision for Fn as a pair of functions that are different from
each other (and in fact significantly different in Hamming distance) but for which Fn outputs
the same value, and hence F cannot be a collision-resistant hash function. Moreover, because
the functions are far from those queried, this means that Fn cannot be a secure message
authentication code either, since by querying Fn on gn, the adversary can predict the value
of the tag on hn.

4.3 A Positive Result on Higher-Order Pseudorandomness
We conclude this paper by giving a positive result. More specifically, we prove that pseudor-
andomness can indeed be attained at second order, but at a high price, namely by switching
to the type LOGSOFp = SOF ι,blgc,p. This indeed has the same structure of LINSOFq,p,
but the argument function takes in input strings of logarithmic size rather than linear size.
Moreover, the argument function can be accessed a linear number of times, which is enough
to query it on every possible coordinate.

The fact that a strategy on LOGSOFp can query its argument on every possible coordinate
renders the attacks described in the previous section unfeasible. Actually, LOGSOFp can
be seen as an interactive variation of the game S[ι] ( S[p], for which pseudorandomness is
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!ι+1(L[ι] ( S[w]) ( !ι(S[blgc] ( B) ( S[p])
O ?S[p]

...
P (i, ?S[w])
O (i, ?L[ι])
P (i, (z1 · · · zi−1)
O (i, ji))
P (i, ?B)
O (i, ?S[blgc])
P (i,α(ji, {j1, . . . , ji−1})
O (i, zi)

...
P (n, ?S[w])
O (n, ?L[ι])
P (n, (z1 · · · zn))
O (n, v)
P β(v)

Figure 4 Plays in fo2so.

well known to be attainable starting from standard cryptographic assumptions [19]: simply,
instead of taking in input the whole string at once, it queries it bit by bit, in a certain order.
A random strategy of that type, then, would be one that, using the notation from Figure 2,

Given t1, . . . , ti ∈ B, returns a string si+1 uniformly chosen at random from S[r(n)] −
{s1, . . . , si}, this for every i < q(n).
Moreover, based on t1, . . . , tr(n), it produces a string v chosen uniformly at random from
S[p(n)].

Please notice that this random strategy can be considered as a random functional in
(S[r(n)] → B) → S[p(n)] only if r(n) is logarithmic, because this way the final result v is
allowed to depend on the value of the input function in all possible coordinates. The process
of generating such a random strategy uniformly can be seen1 as a probabilistic strategy
randsof. We are now ready to formally define pseudorandom functions:

I Definition 22 (Second-Order Pseudorandom Function). A deterministic polytime strategy f
on S[ι] ( LOGSOFp is said to be pseudorandom iff for every probabilistic polytime strategy
A on !sLOGSOFp ( B there is a negligible function ε : N→ R[0,1] such that

|Pr(!s(multι; f);A ⇓n 1)− Pr(!srandsof;A ⇓n 1)| ≤ ε(n).

The way we build a pseudorandom function consists in constructing a deterministic
polytime strategy fo2so for the game !ι+1(L[ι] ( S[w]) ( LOGSOFp, where w ∈ Pol is
such that w ≥ blgc and w ≥ p. The strategy is represented in Figure 4. The function α

interprets its first argument (a string in S[w(n)]), as an element of S[blgc(n)] distinct from
those it takes as second argument, and distributing the probabilities uniformly. The function
β, instead, possibly discards some bits of the input and produces a possibly shorter string.

1 the strategy at hand would, strictly speaking, need exponentially many random bits, which are not
allowed in our model; this could be accomodated without any major problem.



B. Barak, R. Crubillé, and U. Dal Lago 108:15

The way the strategy fo2so is defined makes the composition f; fo2so statistically very
close to the random strategy whenever f is chosen uniformly at random among the strategies
for the parametric game L[ι] ( S[w]. This allows us to prove the following:

I Theorem 23. Let F : {0, 1}n × {0, 1}≤n → {0, 1}w(n) be a pseudorandom function and let
fF be the deterministic polytime strategy for the game S[ι] (!ι+1(L[ι] ( S[w]) obtained from
F . Then, fF ; fo2so is second-order pseudorandom.

5 Related Work

Game semantics and the geometry of interaction are among the best-studied program semantic
frameworks (see, e.g. [17, 2, 23]), and can also be seen as computational models, given their
operational flavor. This is particularly apparent in the work on abstract machines [10, 14],
but also in the so-called geometry of synthesis [15]. In this paper, we are particularly
interested in the latter use of game semantics, and take it as the underlying computational
model. The definition of our game model has been strongly inspired by works by Hyland [22]
and Wolverson [32], the main novelties being parametrization and the bounded exponential
construction, which together allow us to account for efficient randomized higher-order
computations of the kinds used in cryptography. As a consequence, our definition of an
acceptable strategy is more permissive than the ones from so-called AJM games [2] and
HO games [23], the former being history-free, the latter essentially relying on so-called
justification pointers.

This is certainly not the first paper in which cryptography is generalized to computational
models beyond the one of first-order functions. One should of course cite Canetti’s universally
composable security [7], but also Mitchell et al.’s framework, the latter based on process
algebras [28]. None of them deals with security properties of higher-order functions, though.
A precursor of the aforementioned work [27] deals with first-order probabilistic polynomial
time by way of oracles in an higher-order calculus, but lacks any claim about how probabilistic
polynomial time would look like for genuinely higher-order functions.

Various ways to generalize the so-called formal model [12] to higher-order computation
have been proposed. As an example, this is what Sumii and Pierce [30] do with their system
of logical relations, which is shown to guarantee a form of non-interference. Similarly for
Bhargavan et al.’s type system [4] in which cryptographic primitives are seen as libraries for
the language F#. All this is is however fundamentally different from what we do here, namely
extending the so-called computational model to higher-order computation: randomized
behaviours and time-bounds are abstracted away.
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1 Introduction

Higher-order functions are nowadays widely used not only in functional programming lan-
guages such as Haskell and the OCAML family, but also in mainstream languages such as
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manageable abstractions of the control flow of higher-order programs [36]. A deterministic
recursion scheme normalises into a possibly infinite Böhm tree, and in this respect recursion
schemes can equivalently be presented as simply-typed lambda-terms using a higher-order
fixpoint combinator Y [50]. There are also nontrivial inter-reductions between recursion
schemes and the equi-expressive collapsible higher-order pushdown automata [30] and ordered
tree-pushdown automata [13]. In another semantics, also used in this paper, nondeterminstic
recursion schemes are recognisers of languages of finite trees, and in this view they are also
known as higher-order OI grammars [23, 38], generalising indexed grammars [2] (which are
recursion schemes of order two) and ordered multi-pushdown automata [8].

The most celebrated algorithmic result in the analysis of recursion schemes is the decid-
ability of the model-checking problem against properties expressed in monadic second-order
logic (MSO): given a recursion scheme G and an MSO sentence ϕ, one can decide whether
the Böhm tree generated by G satisfies ϕ [43]. This fundamental result has been reproved
several times, that is, using collapsible higher-order pushdown automata [30], intersection
types [37], Krivine machines [48], and it has been extended in diverse directions such as global
model checking [11], logical reflection [9], effective selection [12], and a transfer theorem via
models of lambda-calculus [49]. When the input property is given as an MSO formula, the
model-checking problem is non-elementary already for trees of order 0 (regular trees) [51];
when the input property is presented as a parity tree automaton (which is equi-expressive with
MSO on trees, but less succinct), the MSO model-checking problem for recursion schemes
of order n is complete for n-fold exponential time [43]. Despite these hardness results, the
model-checking problem can be solved efficiently on multiple nontrivial examples, thanks to
the development of several recursion-scheme model checkers [36, 35, 10, 47, 42].

Unboundedness problems. Recently, an increasing interest has arose for model checking
quantitative properties going beyond the expressive power of MSO. The diagonal problem
is an example of a quantitative property not expressible in MSO. Over words, the problem
asks, for a given set of letters Σ and a language of finite words L, whether for every n ∈ N
there is a word in L where every letter from Σ occurs at least n times. Over full trios (classes
of languages closed under regular transductions), decidability of the diagonal problem over
finite words has interesting algorithmic consequences, such as computability of downward
closures [54] and decidability of separability by piecewise testable languages [21]. The diagonal
problem for languages of words recognised by recursion schemes is decidable [29, 14, 45].

Over full trios of finite words, the diagonal problem is equivalent to the computability
of downward closures [22], which is an important problem in its own right. The downward
closure of a language L of finite trees is the set L↓ of all trees that can be homeomorphically
embedded into some tree in L. By Higman’s lemma [31], the embedding relation on finite
ranked trees is a well quasi-order. Consequently, the downward closure L↓ of an arbitrary
set of trees L is always a regular language. The downward closure of a language offers a
nontrivial regular abstraction thereof: even though the actual count of letters is lost, their
limit properties are preserved, as well as their order of appearance.

We say that the downward closure is computable when a finite automaton for L↓ can be
effectively constructed (which is not true in general). Downward closures are computable for a
wide class of languages of finite words such as those recognised by context-free grammars [20,
41, 3], Petri nets [27], stacked counter automata [55], context-free FIFO rewriting systems and
0L-systems [1], second-order pushdown automata [54], higher-order pushdown automata [29],
and (possibly unsafe) recursion schemes over words [14]. Over finite trees, it is known that
downward closures are computable for the class of regular tree languages [25]. We are not
aware of other such computability results for other classes of languages of finite trees.
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In another line of research, B-automata, and among them alternating B-automata, have
been put forward as a quantitative extension to MSO [15, 18, 52, 39]. They extend alternating
automata over infinite trees [26, Chapter 9] by nonnegative integer counters that can be
incremented or reset to zero. The extra counters do not constrain the availability of transitions
during a run (unlike in other superficially similar models, such as counter machines), but are
used in order to define the acceptance condition: an infinite tree is n-accepted if n is a bound
on the values taken by the counters during an accepting run of the automaton over it.

The universality problem consists in deciding whether for every tree there is a bound n
for which it is n-accepted. The boundedness problem asks whether there exists a bound n for
which all trees are n-accepted. These two problems are closely related. Their decidability is
an important open problem in the field, and proving the decidability of the boundedness
problem would solve the long standing nondeterministic Mostowski index problem [17].
However, though open in general, the boundedness problem is known to be decidable over
finite words [15] and trees [18] and infinite words [39], as well as over infinite trees for its
weak [53] and the more general quasi-weak [40] version.

Another expressive formalism expressing unboundedness properties beyond MSO is
MSO+U, which extends MSO by a new quantifier “UX.ϕ” [7] stating that there exist
arbitrarily large finite sets X satisfying ϕ. This logic is incomparable with B-automata. The
model-checking problem of recursion schemes against its weak fragment WMSO+U, where
monadic second-order quantifiers are restricted to finite sets, is decidable [46].

Contributions. Our first contribution is the decidability of the model-checking problem of
properties expressed by alternating B-automata for an expressive class of recursion schemes
called safe recursion schemes. As generators of infinite trees, safe recursion schemes are
equivalent to higher-order pushdown automata without the collapse operation [34] and are
strictly less expressive than general (unsafe) recursion schemes [44, Corollary I.2]. Here, the
model-checking problem asks whether a concrete infinite tree (the Böhm tree generated by the
safe recursion scheme) is accepted by the B-automaton for some bound. This problem happens
to be significantly simpler than the universality/boundedness problem above described. The
proof goes by reducing the order of the safe recursion scheme similarly as done in Knapik,
Niwiński, and Urzyczyn [34] to show decidability of the MSO model-checking problem, at the
expense of making the property automaton two-way. We then rely on the fact that two-way
alternating B-automata can be converted to equivalent one-way alternating B-automata [6].
Our result is incomparable with the result of Ong [43], since
(1) alternating B-automata are strictly more expressive than MSO, however
(2) we obtain it under the more restrictive safety assumption.
Whether the safety assumption can be dropped while preserving decidability of the model-
checking problem against B-automata properties remains open.

Our second contribution is to define the following generalization of the diagonal problem
from words to trees: given a language of finite trees L and a set of letters Σ, decide whether
for every n ∈ N there is a tree T ∈ L such that every letter from Σ occurs at least n times
on every branch of T . This generalization is designed in order to reduce the computation of
downward closures to the diagonal problem, in the same fashion as for finite words. Our proof
strategy is to represent downward-closed sets of trees L↓ by simple tree regular expressions,
which are a subclass of regular expressions for finite trees [24, 25]. By further analysing
and simplifying the structure of these expressions, the computation of the downward closure
can be reduced to finitely many instances of the diagonal problem. Unlike in the case of
finite words, we do not know whether for full trios there exists a converse reduction from the
diagonal problem to the problem of computing downward closures.
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Our third contribution is decidability of the diagonal problem for languages of finite
trees recognised by safe recursion schemes (and thus computability of downward closures
of those languages). The diagonal problem can directly be expressed in a logic called weak
cost monadic second order logic (WCMSO) [53], which extends weak MSO with atomic
formulae of the form |X| ≤ N stating that the cardinality of the monadic variable X is at
most N . Since WCMSO can be translated to alternating B-automata [53], the diagonal
problem reduces to the model-checking problem of safe recursion schemes against alternating
B-automata, which we have shown decidable in the first part. Note that it seems difficult
to express the diagonal problem using alternating B-automata directly, and indeed the fact
that alternating B-automata can express all WCMSO properties is nontrivial.

Outline. In Section 2, we define recursion schemes and B-automata. In Section 3, we
present our first result, namely decidability of model checking of safe recursion schemes
against B-automata. In Section 4, we introduce the diagonal problem, and we show how it
can be used to compute downward closures. In Section 5, we solve the diagonal problem
for schemes. We conclude in Section 6 with some open problems. A full technical report
containing full proofs it also available [4].

2 Preliminaries

Recursion schemes. A ranked alphabet is a (usually finite) set A of letters, together with
a function rank : A→ N, assigning a rank to every letter. When we define trees below, we
require that a node labeled by a letter a has exactly rank(a) children. In the sequel, we
usually assume some fixed finite ranked alphabet A. The set of (simple) types is constructed
from a unique ground type o using a binary operation →; namely o is a type, and if α and
β are types, so is α→ β. By convention, → associates to the right, that is, α→ β→ γ is
understood as α→ (β → γ). A type o→ . . .→ o with k occurrences of → is also written
as ok→ o. The order of a type α, denoted ord(α) is defined by induction: ord(o) = 0 and
ord(α1→ . . .→ αk→ o) = maxi(ord(αi)) + 1 for k > 1.

We coinductively define both lambda-terms and the two-argument relation “M is a
lambda-term of type α” as follows (cf. [32, 5]):

a letter a ∈ A is a lambda-term of type orank(a)→ o;
for every type α there is a countable set {x, y, . . . } of variables of type α which can be
used as lambda-terms of type α;
if M is a lambda-term of type β and x a variable of type α, then λx.M is a lambda-term
of type α→ β; this construction is called a lambda-binder ;
if M is a lambda-term of type α→ β, and N is a lambda-term of type α, then MoN is a
lambda-term of type β, called an application.

As usual, we identify lambda-terms up to alpha-conversion (i.e., renaming of bound variables).
We use here the standard notions of free variable, subterm, (capture-avoiding) substitution,
and beta-reduction (see for instance [32, 5]). A closed lambda-term does not have free
variables. For a lambda-term M of type α, the order of M , denoted ord(M), is defined
as ord(α). It is first-order if its order is one. An applicative term is a lambda-term not
containing lambda-binders (it contains only letters, applications, and variables).

A lambda-termM is superficially safe if all its free variables x have order ord(x) > ord(M).
A lambda-term M is safe if it is superficially safe, and if for every subterm of the form
KoL1o. . .oLk, where K is not an application and k > 1, all subterms K,L1, . . . , Lk are
superficially safe.
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A (higher-order, deterministic) recursion scheme over the alphabet A is a tuple G =
〈A,N , X0,R〉, whereN is a finite set of typed nonterminals,X0 ∈ N is the initial nonterminal,
and R is a function assigning to every nonterminal X ∈ N of type α1→· · ·→αk→ o a finite
lambda-term of the form λx1. · · · .λxk.K, of the same type α1→· · ·→αk→ o, in which K is
an applicative term with free variables in N ] {x1, . . . , xk}. We refer to R(X) as the rule
for X. The order of a recursion scheme ord(G) is the maximum order of its nonterminals.

The lambda-term represented by a recursion scheme G as above, denoted Λ(G), is the
limit of applying recursively the following operation to X0: take an occurrence of some
nonterminal X, and replace it with R(X) (the nonterminals should be chosen in a fair way,
so that every nonterminal is eventually replaced). Thus, Λ(G) is a (usually infinite) regular
lambda-term obtained by unfolding the nonterminals of G according to their definition. We
remark that when substituting R(X) for a nonterminal X there is no need for any renaming
of variables (capture-avoiding substitution), since R(X) does not contain free variables other
than nonterminals. We only consider recursion schemes for which Λ(G) is well-defined (e.g. by
requiring that R(X) is not a single nonterminal). A recursion scheme G is safe if Λ(G) is
safe.

A tree is a closed applicative term of type o. Such lambda-terms are coinductively of the
form aoM1o· · ·oMr, where a ∈ A is of rank r, and where M1, . . . ,Mr are again trees. Thus,
such a lambda-term can be identified with a tree understood in the traditional sense: a is
the label of its root, and M1, . . . ,Mr describe subtrees attached in the r children of the root,
from left to right. For trees we also use the notation a(M1, . . . ,Mr) instead of aM1 . . . Mr.
A tree is regular if it has finitely many subtrees (subterms) up to isomorphism.

The Böhm tree of a lambda-term M of type o, denoted BT (M), is defined coinductively
as follows: if there is a sequence of beta-reductions from M to a lambda-term of the form
aM1 . . . Mr (where a ∈ A is a letter), then BT (M) = a(BT (M1), . . . ,BT (Mr)); otherwise
BT(M) = ⊥(), where ⊥ ∈ A is a distinguished letter of rank 0. It is a classical result that
BT(M) exists, and is uniquely defined [32, 5]. Clearly, BT(M) is indeed a tree. The tree
generated by a recursion scheme G, denoted BT (G), is BT (Λ(G)).

A lambda-term N is normalizing if BT(N) does not contain the special letter ⊥; a
recursion scheme G is normalizing if Λ(G) is normalizing. In other words, in a normalizing
recursion scheme/lambda-term beta-reduction always produces a letter. It is possible to
transform every recursion scheme G into a normalizing recursion scheme G′ generating the
same tree as G, up to renaming ⊥ into some non-special letter ⊥′ (cf. [28, Section 5]).
Moreover, the construction preserves safety and the order.

Recursion schemes as recognizers of languages of finite trees. The standard semantics
of a recursion scheme G = 〈A,N , X0,R〉 is the single infinite tree BT(G) generated by the
scheme. An alternative view is to consider a recursion scheme as a recognizer of a language
of finite trees L(G). This alternative view is relevant when discussing downward closures of
languages of finite trees. We employ a special letter nd ∈ A of rank 2 in order to represent
L(G) by resolving the nondeterministic choice of nd in the infinite tree BT (G) in all possible
ways. Formally, for two trees T,U , we write T →nd U if U is obtained from T by choosing
an nd-labeled node u of T and a child v thereof, and replacing the subtree rooted at u with
the subtree rooted at v. The relation →∗nd is the reflexive and transitive closure of →nd. We
define the language of finite trees recognized by G as L(G) = L(BT (G)), where

L(T ) = {U | T →∗nd U , with U finite and not containing “nd” or “⊥”} .

ICALP 2020



109:6 Cost Automata, Safe Schemes, and Downward Closures

For an illustration of this encoding, and simultaneously for an example of a recursion
scheme, consider the ranked alphabet A containing a letter a of rank 2, two letters b1, b2 of
rank 1, and a letter c of rank 0. We use an initial nonterminal S of order-0 type o, and an
additional nonterminal A of order-2 type (o→ o)→ (o→ o)→ o→ o→ o, together with
the following two rules:

R(S) = Aob1ob2ococ,

R(A) = λf.λg.λx.λy.ndo(aoxoy)o(Aofogo(fox)o(gox)).

Then, BT(G) is the infinite non-regular tree ndo(aococ)o(ndo(ao(b1oc)o(b2oc))o(· · · )), and L(G) is
the non-regular language of all finite trees of the form ao(bn1oc)o(bn2oc) with n ∈ N.

Alternating B-automata. We introduce the model of automata used in this paper, namely
alternating one-way/two-way B-automata over trees (over a ranked alphabet). We consider
counters which can be incremented i, reset r, or left unchanged ε. Let Γ be a finite set of
counters and let C = {i, r, ε} be the alphabet of counter actions. Each counter starts with
value zero, and the value of a sequence of actions is the supremum of the values achieved
during this sequence. For instance iirεiε has value 2, (ir)ω has value 1, and iri2ri3r · · ·
has value ∞. For an infinite sequence of counter actions w ∈ Cω, let val(w) ∈ N ∪ {∞} be
its value. In case of several counters, w = c1c2 · · · ∈ (CΓ)ω, we take the counter with the
maximal value: val(w) = supc∈Γ val(w(c)), where w(c) = c1(c)c2(c) · · · .

An (alternating, two-way) B-automaton over a finite ranked alphabet A is a tuple 〈A, Q,
q0, pr ,Γ, δ〉 consisting of a finite set of states Q, an initial state q0 ∈ Q, a function pr : Q→ N
assigning priorities to states, a finite set Γ of counters, and a transition function

δ : Q× A→ B+({↑,	, ↓ 1, ↓ 2, . . .} × CΓ ×Q)

mapping a state and a letter a to a (finite) positive Boolean combination of triples of the form
(d, c, q); it is assumed that if d =↓ i then i 6 rank(a). Such a triple encodes the instruction
to send the automaton to state q in direction d while performing action c. The direction ↓ i
moves to the i-th child, ↑ moves to the parent, and 	 stays in place. We assume that δ(q, a)
is written in disjunctive normal form for all q and a.

The acceptance of an infinite input tree T by an alternating B-automaton A is defined
in terms of a game (A, T ) between two players, called Eve and Adam. Eve is in charge
of disjunctive choices and tries to minimize the counter values while satisfying the parity
condition. Adam, on the other hand, is in charge of conjunctive choices and tries to either
maximize counter values, or to sabotage the parity condition. Since the transition function is
given in disjunctive normal form, each turn of the game consists of Eve choosing a disjunct
and Adam selecting a single tuple (d, c, q) thereof. In order to guarantee that from every
position there is some move, we assume that each disjunction is nonempty and that each
disjunct contains a tuple with some direction other than ↑. A play of A on the tree T is
a sequence q0, (d1, c1, q1), (d2, c2, q2), . . . compatible with T and δ: q0 is the initial state,
and for all i ∈ N, (di+1, ci+1, qi+1) appears in δ(qi, T (xi)) where xi is the node of T after
following the directions d1d2 . . . di starting from the root. The value val(π) of a play π is the
value val(c1c2 · · · ) as defined above if the largest number appearing infinitely often among
the priorities pr(q0), pr(q1), . . . is even; otherwise, val(π) = ∞. We say that the play π is
n-winning (for Eve) if val(π) 6 n.

A strategy for one of the players in the game (A, T ) is a function that returns the next
choice given the history of the play. Note that choosing a strategy for Eve and a strategy
for Adam fixes a play in (A, T ). We say that a play π is compatible with a strategy σ if
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there is some strategy σ′ for the other player such that σ and σ′ together yield the play π.
A strategy for Eve is n-winning if every play compatible with it is n-winning. We say that
Eve n-wins the game if there is some n-winning strategy for Eve. A B-automaton n-accepts
a tree T if Eve n-wins the game (A, T ); it accepts T if it n-accepts T for some n ∈ N. The
language recognized by A is the set of all trees accepted by A.

If no δ(q, a) uses the direction ↑, then we call A one-way. The following theorem essentially
follows from a result of Blumensath, Colcombet, Kuperberg, Parys, and Vanden Boom [6,
Theorem 6] modulo some cosmetic changes (c.f. [4, Appendix A] for more details).

I Theorem 2.1 (c.f. [6, Theorem 6]). Given an alternating two-way B-automaton, one can
compute an alternating one-way B-automaton that recognizes the same language.

As a special case of a result by Colcombet and Göller [16] we obtain the following fact.

I Fact 2.2. One can decide whether a given B-automaton accepts a given regular tree.

3 Model-checking safe recursion schemes against alternating
B-automata

In this section we prove the first main theorem of our paper, the decidability of the model-
checking problem of safe recursion schemes against properties described by B-automata:

I Theorem 3.1. Given an alternating B-automaton A and a safe recursion scheme G, one
can decide whether A accepts the tree generated by G.

It is worth noticing that this theorem generalises the result of Knapik et al. [34] on safe
recursion schemes from regular (MSO) properties to the more general quantitative realm of
properties described by B-automata. On the other hand, our result is incomparable with the
celebrated theorem of Ong [43] showing decidability of model checking regular properties
of possibly unsafe recursion schemes. Whether model checking of possibly unsafe recursion
schemes against properties described by B-automata is decidable remains an open problem.

By Theorem 2.1, every B-automaton can be effectively transformed into an equivalent
one-way B-automaton, so it is enough to prove Theorem 3.1 for a one-way B-automaton A.
The proof of Theorem 3.1 is based on the following lemma, where we use in an essential way
the assumption that the recursion scheme is safe.

I Lemma 3.2. For every safe recursion scheme G of order m and for every alternating
one-way B-automaton A, one can effectively construct a safe recursion scheme G′ of order
m− 1 and an alternating two-way B-automaton A′ such that

A accepts BT (G) if and only if A′ accepts BT (G′).

Theorem 3.1 follows easily: Using Lemma 3.2 we can reduce the order of the considered
safe recursion scheme by one. We obtain a two-way B-automaton, which we convert back to
a one-way B-automaton using Theorem 2.1. It is then sufficient to repeat this process, until
we end up with a recursion scheme of order 0. A recursion scheme of order 0 generates a
regular tree and, by Fact 2.2, we can decide whether the resulting B-automaton accepts this
tree, answering our original question.

Lambda-trees. We now come to the proof of Lemma 3.2. The construction of G′ from of
G follows an analogous result for MSO [33, 34], which we generalise to B-automata. We
represent some lambda-terms as trees. For a finite set X of variables of type o, we define a
new ranked alphabet AX that contains
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1) a letter a of rank 0 for every letter a ∈ A;
2) a letter x of rank 0 for every variable x ∈ X ;
3) a letter λx of rank 1 for every variable x ∈ X ;
4) a letter @ of rank 2.
We remark that AX is a usual finite ranked alphabet. A lambda-tree is a tree over the alphabet
AX , where X is clear from the context. Intuitively, a lambda-tree is a tree representation of
a first-order lambda-term.

The semantics JT KX ,s of a lambda-tree T is defined in such a way that if T “corresponds”
to the lambda-term M , then JT KX ,s = BT (M). Since T uses only variables of type o we can
read the resulting Böhm tree directly, without performing any reduction. Essentially, we walk
down through T , skipping all lambda-binders and choosing the left branch in all applications.
Whenever we reach some variable x, we go up to the corresponding lambda-binder, then
up to the corresponding application, and then we again start going down in the argument
of this application. Formally, let X be a finite set of variables of type o, and let s ∈ N.
The intended meaning is that X contains variables that may potentially appear in the
considered lambda-tree T , and that s is a bound for the arity of types in the lambda-term
represented by T (types of all its subterms should be of the form ok→ o for k ≤ s). We take
DirsX ,s = {↓} ∪ {↑x| x ∈ X} ∪ {↑i| 1 ≤ i ≤ s}. Intuitively, ↓ means to go down to the left
child, ↑ x means that we are looking for the value of (̨lambda)variable x, and ↑ i means that
we are looking for the i-th argument of an application. For a node v of T denote its parent
by par(v), and its i-th child by chi(v). For d ∈ DirsX ,s, and for a node v of T labeled by
a ∈ A, we define the (X , s)-successor of (d, v) as
1. (↓, ch1(v)) if d =↓ and a = λx (for some x) or @,
2. (↑ x, v) if d =↓ and a = x (for some x),
3. (↑ x, par(v)) if d =↑ x and a 6= λx (including the case when a = λy for y 6= x),
4. (↑ 1, par(v)) if d =↑ x and a = λx,
5. (↑ i+1, par(v)) if d =↑ i for i < s and a = λy (for some y),
6. (↑ i−1, par(v)) if d =↑ i for i > 1 and a = @,
7. (↓, ch2(v)) if d =↑ 1 and a = @.
Rule 1 allows us go to down to the first child in the case of lambda-binders and applications.
Rule 2 records that we have seen x, and thus we need to find its value by going up. Rule
3 climbs the tree upwards as long as we do not see the corresponding binder λx. Rule 4 records
that we have seen λx and initialises its level to 1. We now need to find the corresponding
application. Rule 5 increments the level and goes up when we encounter a binder λy, and
Rule 6 decrements it for applications @. Finally, when we see an application at level 1
we apply Rule 7 which searches for the value of x in the right child. An (X , s)-maximal
path from (d1, v1) is a sequence of pairs (d1, v1), (d2, v2), . . . in which every (di+1, vi+1) is
the (X , s)-successor of (di, vi), and which is either infinite or ends in a pair that has no
(X , s)-successor. For d ∈ DirsX ,s, and for a node v of T , we define the (X , s)-derived tree
from (T, d, v), denoted by JT, d, vKX ,s, by coinduction:

if the (X , s)-maximal path from (d, v) is finite and ends in (↓, w) for a node w labeled by
a, then JT, d, vKX ,s = a(JT, ↑ 1, wKX ,s, . . . , JT, ↑ rank(a), wKX ,s);
otherwise, JT, d, vKX ,s = ⊥.

The (X , s)-derived tree from T is JT KX ,s = JT, ↓, v0KX ,s, where v0 is the root of T . We say
that T is normalizing if JT KX ,s does not contain ⊥.

The following lemma performs the order reduction. It crucially relies on the safety
assumption. It is a variant of results proved in Knapik et al. [33, 34] (c.f. [4, Appendix C]
for more details). Intuitively, it says that a lambda-tree representation T of a safe recursion
scheme G of order m can be computed by a safe recursion scheme of order m − 1 in a
semantic-preserving way.
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I Lemma 3.3 ([33, 34]). For every safe recursion scheme G of order m ≥ 1 one can construct
a safe recursion scheme G′ of order m− 1, a finite set of variables X , and a number s ∈ N
such that

JBT (G′)KX ,s = BT (G).

I Remark 3.4. In Knapik et al. [33, 34] the lambda-tree T is denoted G(X0)ג (where X0 is
the starting nonterminal of G), and the recursion scheme G′ is denoted Gα. The set X is just
the set of variables appearing in the letters used in Gα; the number s can be also read out of
Gα. They prove that the (X , s)-derived tree of G(X0)ג equals the tree generated by G [33,
Proposition 4], that Gα is safe [34, Lemma 3.5], and that Gα generates .G(X0)ג

In order to prove Lemma 3.3, one needs to replace in G every variable x of type o by
x, every lambda-binder concerning such a variable by λx, and every application with an
argument of type o by a construct creating a @-labeled node. Types of subterms change and
the order of the recursion scheme decreases by one. Notice, however, that while computing
BT (Λ(G)) we may need to rename variables during capture-avoiding substitutions, while in
the tree generated by the modified recursion scheme we leave original variable names. In
general (i.e., when the transformation is applied to an arbitrary recursion scheme) this causes
a problem of overlapping variable names. The assumption that G is safe is crucial here and
there is no need to rename variables when applying the transformation to a safe recursion
scheme.

Having Lemma 3.3, it remains to transform a one-way B-automaton A operating on the
tree generated by G into a two-way B-automaton A′ operating on the lambda-tree generated
by G′, as described by the following lemma (as mentioned on page 5, we can assume that
G is normalizing, which implies that BT (G′) is normalizing: the tree JBT (G′)KX ,s = BT (G)
does not contain ⊥).

I Lemma 3.5. Let A be an alternating one-way B-automaton over a finite alphabet A, let
X be a finite set of variables, and let s ∈ N. One can construct an alternating two-way
B-automaton A′ such that for every normalizing lambda-tree T over AX ,

A accepts JT KX ,s if and only if A′ accepts T.

Proof. The B-automaton A′ simulates A on the lambda-tree. Whenever A wants to go
down to the i-th child, A′ has to follow the (X , s)-maximal path from (↑ i, v) (where v is
the current node). To this end, it has to remember the current pair (d, v), and repeatedly
find its (X , s)-successor. Here v is always just the current node visited by the B-automaton;
the d component comes from the (finite) set DirsX ,s, and thus it can be remembered in the
state. It is straightforward to encode the definition of an (X , s)-successor in transitions of
an automaton. We do not have to worry about infinite (X , s)-maximal paths, because by
assumption the (X , s)-derived tree does not contain ⊥-labeled nodes. J

4 Downward closures of tree languages

In this section we lay down a method for the computation of the downward closure for classes
of languages of finite trees closed under linear FTT transductions. This method is analogous
to the one of Zetzsche [54] for the case of finite words. In Section 4.1 we define the downward
closure of languages of finite ranked trees with respect to the embedding well-quasi order
and in Section 4.2 we define the simultaneous unboundedness problem for trees and show
how computing the downward closure reduces to it. In Section 4.3 we define the diagonal
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problem for finite trees and show how the previous problem reduces to it. We will then solve
the diagonal problem for languages of finite trees recognized by safe recursion schemes in
Section 5.

Let us emphasize that this section can be applied to any class of languages of finite trees
closed under linear FTT transductions, not just those recognized by safe recursion schemes.

4.1 Preliminaries
Given two finite trees S = a(S1, . . . , Sk) and T = b(T1, . . . , Tr), we say that S homeomorph-
ically embeds into T , written S v T , if, either
1) there exists i ∈ {1, . . . , r} such that S v Ti, or
2) a = b, k = r, and Si v Ti for all i ∈ {1, . . . , r}.
For a language of finite trees L, its downward closure, denoted by L↓, is the set of trees S
such that S v T for some tree T ∈ L.

Pure products. Goubault-Larrecq and Schmitz [25] describe downward-closed sets of trees
using so-called simple tree regular expressions. Among those expressions they distinguish
products, which describe ideals of trees. Because every downward-closed set of trees is a finite
union of ideals, such a set can be described by a finite list of products. Since their definition
of a product is rather indirect, we consider the stronger notion of pure products.

A context is a tree possibly containing one or more occurrences of a special leaf �, called a
hole. Given a context C and a set of trees L, we write C[L] for the set of trees obtained from
C by replacing every occurrence of the hole � by some tree from L. Different occurrences of
� are replaced by possibly different trees from L. The definition readily extends to a set of
contexts C, by writing C[L] for

⋃
C∈C C[L]. If C does not have any �, then C[L] is just {C}.

A pure product is defined according to the following abstract syntax:

P ::= a?(P, . . . , P ) | I∗.P, C ::= a(P�, . . . , P�),
I ::= C + · · ·+ C, P� ::= � | P,

where the sum of contexts is nonempty, and where in a context C = a(P�,1, . . . , P�,r) it is
required that at least one P�,i is a hole �. A pure product P denotes a set of trees JP K
downward-closed for v, which is defined recursively as follows:

Ja?(P1, . . . , Pr)K = {a(T1, . . . , Tr) | ∀i . Ti ∈ JPiK} ∪ JP1K ∪ · · · ∪ JPrK,

JI∗.P K =
⋃
n∈N

JIK[. . . [JIK[︸ ︷︷ ︸
n

JP K]] . . . ],

JC1 + · · ·+ CkK = JC1K ∪ · · · ∪ JCkK,

Ja(P�,1, . . . , P�,r)K = {a(T1, . . . , Tr) | ∀i . Ti ∈ JP�,iK} ∪ JP�,1K ∪ · · · ∪ JP�,rK,

J�K = {�} .

For example, J(a(b(), �))∗.c?()K is the set of trees of the form either b(), or c(), or
a(b(), a(b(), . . . a(b(), x) . . . )) with x either b() or c(). Based on the results of Goubault-
Larrecq and Schmitz [25] it is not difficult to deduce the following lemma (see [4, Appendix
D] for a proof).

I Lemma 4.1. Every set of trees L downward-closed for v can be represented as L =
JP1K ∪ · · · ∪ JPkK, in which P1, . . . , Pk are pure products.
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This decomposition result strengthens the results of Goubault-Larrecq and Schmitz [25]
by showing that pure products (instead of just products) suffice in order to represent
downward-closed sets of trees.

Transductions. A (nondeterministic) finite tree transducer (FTT) is a tuple A = (Ain,

Aout , S, p
I , δ), where Ain,Aout are the input and output alphabets (finite, ranked), S is a

finite set of control states, pI ∈ S is an initial state, and δ is a finite set of transition rules of
the form either (p, a(x1, . . . , xr))→ T or (p, x)→ T , where p ∈ S is a control state, a ∈ Ain
is a letter of rank r, and T is a finite tree over the alphabet Aout ∪ (S × {x1, . . . , xr}) or
Aout ∪ (S × {x}), respectively. The rank of all the pairs from S × {x1, . . . , xr} or S × {x}
is 0. An FTT is linear if for each rule of the form (p, a(x1, . . . , xr)) → T and for each
i ∈ {1, . . . , r}, in T there is at most one letter from S × {xi}, and moreover for each rule of
the form (p, x)→ T , in T there is at most one letter from S × {x}. An FTT A defines in a
natural way a relation between finite trees, also denoted A (c.f. Comon et al. [19]). For a
language L we write A(L) for the set of trees U such that (T,U) ∈ A for some T ∈ L. A
function that maps L to A(L) for some linear FTT A is called a linear FTT transduction.

I Fact 4.2. The downward closure operation L 7→ L↓ and the regular restriction operation
L 7→ L ∩R (for every regular language R) are effectively linear FTT transductions.

I Lemma 4.3 (c.f. [4, Appendix E]). The class of languages of finite trees recognized by safe
recursion schemes is effectively closed under linear FTT transductions.

4.2 The simultaneous unboundedness problem for trees

We say that a pure product P is diversified, if no letter appears in P more than once. The
simultaneous unboundedness problem (SUP) for a class C of finite trees asks, given a diversified
pure product P and a language L ∈ C such that L ⊆ JP K, whether JP K ⊆ L↓.

I Remark 4.4. This is a generalization of SUP over finite words. In the latter problem,
one is given a language of finite words L such that L ⊆ a∗1 . . . a∗k, and must check whether
a∗1 . . . a

∗
k ⊆ L↓. A word in a∗1 . . . a

∗
k can be represented as a linear tree by interpreting

a1, . . . , ak as unary letters and by appending a new leaf e at the end. Thus a∗1 . . . a∗k can be
represented as the language of the diversified pure product (a1(�))∗.(a2(�))∗. · · · .(ak(�))∗.e?().

Following Zetzsche [54], we can reduce the computation of the downward closure to SUP.

I Theorem 4.5 (c.f. [4, Appendix F]). Let C be a class of languages of finite trees closed
under linear FTT transductions. One can compute a finite tree automaton recognizing the
downward closure of a given language from C if and only if SUP is decidable for C.

I Remark 4.6. Pure products for trees correspond to expressions of the form a?
0A
∗
1a

?
1 . . . A

∗
ka

?
k

for words (where Ai are sets of letters). In SUP for words simpler expressions of the form
b∗1 . . . b

∗
k suffice. This is not possible for trees:

1) expressions of the form a?(·, ·) cannot be removed since they are responsible for branching,
and

2) reducing the two contexts in (a(P1, �)+b(P2, �))∗.P3 to a single one would require changing
trees of the form a(T1, b(T2, T3)) into trees of the form c(T1, T2, T3), which is not a linear
FTT transduction.
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4.3 The diagonal problem for trees
In SUP for words, instead of checking whether a∗1 . . . a∗k ⊆ L↓, one can equivalently check
whether, for each n ∈ N, there is a word ax1

1 . . . axk

k ∈ L such that x1, . . . , xk ≥ n. The latter
problem is known as the diagonal problem for words. In this section, we define an analogous
diagonal problem for trees, and we show how to reduce SUP to it.

Given a set of letters Σ, we say that a language of finite trees L is Σ-diagonal if, for every
n ∈ N, there is a tree T ∈ L such that for every letter a ∈ Σ and every branch B of T there
are at least n occurrences a in B. The diagonal problem for a class C of finite trees asks,
given a language L ∈ C and a set of letters Σ, whether L is Σ-diagonal.

Versatile trees. Contrary to the case of words, the presence of sums in our expressions
creates some complications in reducing from SUP to the diagonal problem. We deal with
these sums by introducing the notion of versatile trees. Intuitively, in order to obtain a
versatile tree of a pure product P , for every sum I = C1 + · · ·+Ck in P we fix some order of
the contexts C1, . . . , Ck, and we allow the contexts to be appended in this order. Formally,
the set LP M of versatile trees of a pure product P is defined by structural induction on P :

LI∗.P M =
⋃
n∈N

LIM[(LIM ∪ {�})[. . . [(LIM ∪ {�})[︸ ︷︷ ︸
n

LP M]] . . . ]],

La?(P1, . . . , Pr)M = La(P1, . . . , Pr)M,
LC1 + · · ·+ CkM = LC1M[. . . [LCkM] . . . ],

La(P�,1, . . . , P�,r)M = {a(T1, . . . , Tr) | ∀i . Ti ∈ LP�,iM} ,
L�M = {�} .

For example, if I = a(S1, �, �) + b(�, S2), then LIM = {a(S1, b(�, S2), b(�, S2))}. Notice that
all trees in LP M have the same root’s label; denote this label by root(P ).

From SUP to the diagonal problem. Assuming that P is diversified, for a number n ∈ N
we say that a tree T is n-large with respect to P if, for every subexpression of P of the
form I∗.P ′, above every occurrence of root(P ′) in T there are at least n ancestors labeled
by root(I∗.P ′). In other words, for T ∈ LP M this means that in T every context appearing
in P was appended at least n times, on all branches where it was possible to append it.
Clearly LP M ⊆ JP K. On the other hand, every tree from JP K can be embedded into every
large enough versatile tree. We thus obtain the following lemma.

I Lemma 4.7. For every diversified pure product P , and for every sequence of trees
T1, T2, · · · ∈ LP M such that every Tn is n-large, {Tn | n ∈ N}↓ = JP K.

Using versatile trees we can reduce from SUP to the diagonal problem.

I Lemma 4.8 (c.f. [4, Appendix G]). Let C be a class of languages of finite trees closed under
linear FTT transductions. SUP for C reduces to the diagonal problem for C.

I Remark 4.9. Another formulation of the diagonal problem for languages of finite trees
[29, 14, 45] requires that, for every n ∈ N, there is a tree T ∈ L containing at least n
occurrences of every letter a ∈ Σ (not necessarily on the same branch, unlike in our case).
Such a formulation of the diagonal problem seems too weak to compute downward closures
for languages of finite trees.
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5 Languages of safe recursion schemes

In the previous section, we have developed a general machinery allowing one to compute
downward closures for classes of languages of finite trees closed under linear FTT transductions.
In this section, we apply this machinery to the particular case of languages recognized by
safe recursion schemes. The following is the main theorem of this section.

I Theorem 5.1. Finite tree automata recognizing downward closures of languages of finite
trees recognised by safe recursion schemes are computable.

In order to prove the theorem we need to recall a formalism necessary to express the
diagonal problem in logic.

Cost logics. Cost monadic logic (CMSO) was introduced in Colcombet [15] as a quantitative
extension of monadic second-order logic. As usual, the logic can be defined over any relational
structure, but we restrict our attention to CMSO over trees. In addition to first-order variables
ranging over nodes of the tree and monadic second-order variables (also called set variables)
ranging over sets of nodes, CMSO uses a single additional variable N , called the numeric
variable, which ranges over N. The atomic formulas in CMSO are those from MSO (the
membership relation x ∈ X and relations a(x, x1, . . . , xr) asserting that a ∈ A of rank r is the
label at node x with children x1, . . . , xr from left to right), as well as a new predicate |X| 6 N ,
where X is any set variable and N is the numeric variable. Arbitrary CMSO formulas are built
inductively by applying Boolean connectives and by quantifying (existentially or universally)
over first-order or set variables. We require that any predicates of the form |X| 6 N appear
positively in the formula (i.e., within the scope of an even number of negations). We regard
N as a parameter. As usual, a sentence is a formula without first-order or monadic free
variables; however, the parameter N is allowed to occur in a sentence. If we fix a value n ∈ N
for N , the semantics of |X| 6 N is what one would expect: the predicate holds when X has
cardinality at most n. We say that a sentence ϕ n-accepts a tree T if it holds in T when n is
used as value of N ; it accepts T if it n-accepts T for some n ∈ N. The language defined by ϕ
is the set of all trees (over a fixed alphabet A) accepted by ϕ.

Weak cost monadic logic (WCMSO for short) is the variant of CMSO where the second-
order quantification is restricted to finite sets. Vanden Boom [53, Theorem 2] proves that
WCMSO is effectively equivalent to a subclass of alternating B-automata, called weak
B-automata. Thanks to Theorem 3.1, we obtain the following corollary.

I Corollary 5.2. The model-checking problem of safe recursion schemes against WCMSO
properties is decidable.

I Remark 5.3. The same holds for a more expressive logic called quasi-weak cost monadic
logic (QWCMSO) [6], whose expressive power lies between WCMSO and the CMSO. Indeed,
Blumensath et al. [6, Theorem 2] prove that QWCMSO is effectively equivalent to a subclass
of alternating B-automata called quasi-weak B-automata, and thus by Theorem 3.1 even
model checking of safe recursion schemes against QWCMSO properties is decidable.

Solving the diagonal problem. By Theorem 4.5 and Lemma 4.8, all we need to do is to
show that the diagonal problem is decidable for languages recognized by safe recursion
schemes, that is, that given a safe recursion scheme G and a set of letters Σ, one can check
whether for every n ∈ N there is a tree T ∈ L(G) such that there are at least n occurrences
of every letter a ∈ Σ on every branch of T (we say that such a tree T is n-large with respect
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to Σ). In order to do this, given a set of letters Σ, we write a WCMSO sentence ϕΣ that
n-accepts an (infinite) tree T if and only if no tree in L(T ) is n-large with respect to Σ.
Consequently, ϕΣ accepts T if for some n no tree in L(T ) is n-large with respect to Σ, that is,
if L(T ) is not Σ-diagonal. Thus, in order to solve the diagonal problem, it is enough to check
whether ϕΣ accepts BT (G) (recall that L(G) is defined as L(BT (G))), which is decidable by
Corollary 5.2. It remains to construct the aforementioned sentence ϕΣ.

First, observe that the process of producing a finite tree recognized by G from the infinite
tree BT (G) generated by G is expressible by a formula of WCMSO (actually, by a first-order
formula). More precisely we can write a WCMSO formula tree(X) that holds in a tree T
if and only if X is instantiated to a set of nodes of a tree T ′ ∈ L(T ), together with their
nd-labeled ancestors. See [4, Appendix H] for more details. Using tree(X) we now construct
the desired formula ϕΣ, and thus we finish the proof of Theorem 5.1.

I Lemma 5.4. Given a set of letters Σ, one can compute a WCMSO sentence ϕΣ that, for
every n ∈ N, n-accepts a tree T if and only if no tree in L(T ) is n-large with respect to Σ.

Proof. We can reformulate the property as follows: for every tree T ′ ∈ L(T ) there is a
letter a ∈ Σ, and a leaf x that has less than n a-labeled ancestors. This is expressed by the
following formula of WCMSO (where leaf(x) states that the node x is a leaf, a(x) that x has
label a, and z ≤ x that z is an ancestor of x, all being easily expressible):

∀X.
(
tree(X)→

∨
a∈Σ
∃x∃Z.

(
x ∈ X ∧ leaf(x) ∧ ∀z.(z ≤ x ∧ a(z)→ z ∈ Z) ∧ |Z| < N

))
. J

6 Conclusions

A tantalising direction for further work is to drop the safety assumption from Theorem 3.1,
that is, to establish whether the model-checking problem against B-automata is decidable
for trees generated by (not necessarily safe) recursion schemes. We also leave open whether
downward closures are computable for this more expressive class. Another direction for
further work is to analyse the complexity of the considered model-checking problem. The
related problem described in Remark 4.9 is k-EXP-complete for languages of finite trees
recognised by recursion schemes of order k [45], and thus not harder than the nonemptiness
problem [43]. Does the same upper bound hold for the more general diagonal problem that
we consider in this paper? Zetzsche [56] has shown that the downward closure inclusion
problem is co-k-NEXP-hard for languages of finite trees recognised by safe recursion schemes
of order k. Is it possible to obtain a matching upper bound?

References
1 Parosh Aziz Abdulla, Luc Boasson, and Ahmed Bouajjani. Effective lossy queue languages. In

Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata, Languages and
Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001,
Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 639–651. Springer,
2001. doi:10.1007/3-540-48224-5_53.

2 Alfred V. Aho. Indexed grammars - an extension of context-free grammars. J. ACM, 15(4):647–
671, 1968. doi:10.1145/321479.321488.

3 Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. Finite automata for the sub-
and superword closure of CFLs: Descriptional and computational complexity. In Adrian-Horia
Dediu, Enrico Formenti, Carlos Martín-Vide, and Bianca Truthe, editors, Language and
Automata Theory and Applications - 9th International Conference, LATA 2015, Nice, France,
March 2-6, 2015, Proceedings, volume 8977 of Lecture Notes in Computer Science, pages
473–485. Springer, 2015. doi:10.1007/978-3-319-15579-1_37.

https://doi.org/10.1007/3-540-48224-5_53
https://doi.org/10.1145/321479.321488
https://doi.org/10.1007/978-3-319-15579-1_37


D. Barozzini, L. Clemente, T. Colcombet, and P. Parys 109:15

4 David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Paweł Parys. Cost Automata,
Safe Schemes, and Downward Closures. arXiv e-prints, page arXiv:2004.12187, April 2020.
arXiv:2004.12187.

5 Alessandro Berarducci and Mariangiola Dezani-Ciancaglini. Infinite lambda-calculus and types.
Theor. Comput. Sci., 212(1-2):29–75, 1999. doi:10.1016/S0304-3975(98)00135-2.

6 Achim Blumensath, Thomas Colcombet, Denis Kuperberg, Paweł Parys, and Michael Vanden
Boom. Two-way cost automata and cost logics over infinite trees. In Thomas A. Henzinger
and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages
16:1–16:9. ACM, 2014. doi:10.1145/2603088.2603104.

7 Mikołaj Bojańczyk. A bounding quantifier. In Jerzy Marcinkowski and Andrzej Tarlecki, editors,
Computer Science Logic, 18th International Workshop, CSL 2004, 13th Annual Conference of
the EACSL, Karpacz, Poland, September 20-24, 2004, Proceedings, volume 3210 of Lecture
Notes in Computer Science, pages 41–55. Springer, 2004. doi:10.1007/978-3-540-30124-0_7.

8 Luca Breveglieri, Alessandra Cherubini, Claudio Citrini, and Stefano Crespi-Reghizzi. Multi-
push-down languages and grammars. Int. J. Found. Comput. Sci., 7(3):253–292, 1996. doi:
10.1142/S0129054196000191.

9 Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong, and Olivier Serre. Recursion
schemes and logical reflection. In Proceedings of the 25th Annual IEEE Symposium on Logic in
Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 120–129.
IEEE Computer Society, 2010. doi:10.1109/LICS.2010.40.

10 Christopher H. Broadbent and Naoki Kobayashi. Saturation-based model checking of higher-
order recursion schemes. In Simona Ronchi Della Rocca, editor, Computer Science Logic
2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages
129–148. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2013. doi:10.4230/LIPIcs.
CSL.2013.129.

11 Christopher H. Broadbent and C.-H. Luke Ong. On global model checking trees generated by
higher-order recursion schemes. In Luca de Alfaro, editor, Foundations of Software Science
and Computational Structures, 12th International Conference, FOSSACS 2009, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York,
UK, March 22-29, 2009. Proceedings, volume 5504 of Lecture Notes in Computer Science,
pages 107–121. Springer, 2009. doi:10.1007/978-3-642-00596-1_9.

12 Arnaud Carayol and Olivier Serre. Collapsible pushdown automata and labeled recursion
schemes: Equivalence, safety and effective selection. In Proceedings of the 27th Annual IEEE
Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012,
pages 165–174. IEEE Computer Society, 2012. doi:10.1109/LICS.2012.73.

13 Lorenzo Clemente, Paweł Parys, Sylvain Salvati, and Igor Walukiewicz. Ordered tree-pushdown
systems. In Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference
on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015,
December 16-18, 2015, Bangalore, India, volume 45 of LIPIcs, pages 163–177. Schloss Dagstuhl
– Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.163.

14 Lorenzo Clemente, Paweł Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem
for higher-order recursion schemes is decidable. In Martin Grohe, Eric Koskinen, and Natarajan
Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 96–105. ACM, 2016. doi:
10.1145/2933575.2934527.

15 Thomas Colcombet. Regular cost functions, part I: Logic and algebra over words. Logical
Methods in Computer Science, 9(3), 2013. doi:10.2168/LMCS-9(3:3)2013.

16 Thomas Colcombet and Stefan Göller. Games with bound guess actions. In Martin Grohe,
Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016,
pages 257–266. ACM, 2016. doi:10.1145/2933575.2934502.

ICALP 2020

http://arxiv.org/abs/2004.12187
https://doi.org/10.1016/S0304-3975(98)00135-2
https://doi.org/10.1145/2603088.2603104
https://doi.org/10.1007/978-3-540-30124-0_7
https://doi.org/10.1142/S0129054196000191
https://doi.org/10.1142/S0129054196000191
https://doi.org/10.1109/LICS.2010.40
https://doi.org/10.4230/LIPIcs.CSL.2013.129
https://doi.org/10.4230/LIPIcs.CSL.2013.129
https://doi.org/10.1007/978-3-642-00596-1_9
https://doi.org/10.1109/LICS.2012.73
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.163
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.2168/LMCS-9(3:3)2013
https://doi.org/10.1145/2933575.2934502


109:16 Cost Automata, Safe Schemes, and Downward Closures

17 Thomas Colcombet and Christof Löding. The non-deterministic Mostowski hierarchy and
distance-parity automata. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Languages and
Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,
2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track
C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science,
pages 398–409. Springer, 2008. doi:10.1007/978-3-540-70583-3_33.

18 Thomas Colcombet and Christof Löding. Regular cost functions over finite trees. In Proceedings
of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14
July 2010, Edinburgh, United Kingdom, pages 70–79. IEEE Computer Society, 2010. doi:
10.1109/LICS.2010.36.

19 Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez, Christof
Löding, Sophie Tison, and Marc Tommasi. Tree automata techniques and applications, 2007.
URL: http://tata.gforge.inria.fr/.

20 Bruno Courcelle. On constructing obstruction sets of words. Bulletin of EATCS, 1991.
21 Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, and Marc Zeitoun. A note on decidable

separability by piecewise testable languages. In Adrian Kosowski and Igor Walukiewicz, editors,
Fundamentals of Computation Theory - 20th International Symposium, FCT 2015, Gdańsk,
Poland, August 17-19, 2015, Proceedings, volume 9210 of Lecture Notes in Computer Science,
pages 173–185. Springer, 2015. doi:10.1007/978-3-319-22177-9_14.

22 Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, Marc Zeitoun, and Georg Zetzsche.
A Characterization for Decidable Separability by Piecewise Testable Languages. Discrete
Mathematics & Theoretical Computer Science, Vol. 19 no. 4, FCT ’15, December 2017.
doi:10.23638/DMTCS-19-4-1.

23 Werner Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20:95–207, 1982. doi:
10.1016/0304-3975(82)90009-3.

24 Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part I: Completions.
In Susanne Albers and Jean-Yves Marion, editors, 26th International Symposium on Theoret-
ical Aspects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg, Germany,
Proceedings, volume 3 of LIPIcs, pages 433–444. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, Germany, 2009. doi:10.4230/LIPIcs.STACS.2009.1844.

25 Jean Goubault-Larrecq and Sylvain Schmitz. Deciding piecewise testable separability for regular
tree languages. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 97:1–97:15. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.97.

26 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/3-540-36387-4.

27 Peter Habermehl, Roland Meyer, and Harro Wimmel. The downward-closure of Petri net
languages. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf
der Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming, 37th
International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings,
Part II, volume 6199 of Lecture Notes in Computer Science, pages 466–477. Springer, 2010.
doi:10.1007/978-3-642-14162-1_39.

28 Axel Haddad. IO vs OI in higher-order recursion schemes. In Dale Miller and Zoltán Ésik,
editors, Proceedings 8th Workshop on Fixed Points in Computer Science, FICS 2012, Tallinn,
Estonia, 24th March 2012., volume 77 of EPTCS, pages 23–30, 2012. doi:10.4204/EPTCS.77.4.

29 Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and downward
closures of higher-order pushdown automata. In Rastislav Bodík and Rupak Majumdar,
editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
pages 151–163. ACM, 2016. doi:10.1145/2837614.2837627.

https://doi.org/10.1007/978-3-540-70583-3_33
https://doi.org/10.1109/LICS.2010.36
https://doi.org/10.1109/LICS.2010.36
http://tata.gforge.inria.fr/
https://doi.org/10.1007/978-3-319-22177-9_14
https://doi.org/10.23638/DMTCS-19-4-1
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.4230/LIPIcs.STACS.2009.1844
https://doi.org/10.4230/LIPIcs.ICALP.2016.97
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-642-14162-1_39
https://doi.org/10.4204/EPTCS.77.4
https://doi.org/10.1145/2837614.2837627


D. Barozzini, L. Clemente, T. Colcombet, and P. Parys 109:17

30 Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible
pushdown automata and recursion schemes. In Proceedings of the Twenty-Third Annual IEEE
Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA,
pages 452–461. IEEE Computer Society, 2008. doi:10.1109/LICS.2008.34.

31 Graham Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc.,
s3-2(1):326–336, January 1952. doi:10.1112/plms/s3-2.1.326.

32 Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries. Infinitary lambda
calculus. Theor. Comput. Sci., 175(1):93–125, 1997. doi:10.1016/S0304-3975(96)00171-5.

33 Teodor Knapik, Damian Niwiński, and Paweł Urzyczyn. Deciding monadic theories of
hyperalgebraic trees. In Samson Abramsky, editor, Typed Lambda Calculi and Applications,
5th International Conference, TLCA 2001, Kraków, Poland, May 2-5, 2001, Proceedings,
volume 2044 of Lecture Notes in Computer Science, pages 253–267. Springer, 2001. doi:
10.1007/3-540-45413-6_21.

34 Teodor Knapik, Damian Niwiński, and Paweł Urzyczyn. Higher-order pushdown trees are
easy. In Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science and
Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble,
France, April 8-12, 2002, Proceedings, volume 2303 of Lecture Notes in Computer Science,
pages 205–222. Springer, 2002. doi:10.1007/3-540-45931-6_15.

35 Naoki Kobayashi. A practical linear time algorithm for trivial automata model checking of
higher-order recursion schemes. In Martin Hofmann, editor, Foundations of Software Science
and Computational Structures - 14th International Conference, FOSSACS 2011, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2011,
Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, volume 6604 of Lecture Notes in
Computer Science, pages 260–274. Springer, 2011. doi:10.1007/978-3-642-19805-2_18.

36 Naoki Kobayashi. Model checking higher-order programs. J. ACM, 60(3):20:1–20:62, 2013.
doi:10.1145/2487241.2487246.

37 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In Proceedings of the 24th Annual IEEE
Symposium on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA,
USA, pages 179–188. IEEE Computer Society, 2009. doi:10.1109/LICS.2009.29.

38 Gregory M. Kobele and Sylvain Salvati. The IO and OI hierarchies revisited. Inf. Comput.,
243:205–221, 2015. doi:10.1016/j.ic.2014.12.015.

39 Denis Kuperberg and Michael Vanden Boom. Quasi-weak cost automata: A new variant of
weakness. In Supratik Chakraborty and Amit Kumar, editors, IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2011,
December 12-14, 2011, Mumbai, India, volume 13 of LIPIcs, pages 66–77. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2011.

40 Denis Kuperberg and Michael Vanden Boom. Quasi-weak cost automata: A new variant of
weakness. In Supratik Chakraborty and Amit Kumar, editors, IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2011,
December 12-14, 2011, Mumbai, India, volume 13 of LIPIcs, pages 66–77. Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2011. doi:10.4230/LIPIcs.FSTTCS.2011.66.

41 Jan van Leeuwen. Effective constructions in well-partially- ordered free monoids. Discrete
Mathematics, 21(3):237–252, 1978. doi:10.1016/0012-365X(78)90156-5.

42 Robin P. Neatherway and C.-H. Luke Ong. TravMC2: Higher-order model checking for
alternating parity tree automata. In Neha Rungta and Oksana Tkachuk, editors, 2014
International Symposium on Model Checking of Software, SPIN 2014, Proceedings, San Jose,
CA, USA, July 21-23, 2014, pages 129–132. ACM, 2014. doi:10.1145/2632362.2632381.

43 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In 21th
IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA,
USA, Proceedings, pages 81–90. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.38.

ICALP 2020

https://doi.org/10.1109/LICS.2008.34
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1016/S0304-3975(96)00171-5
https://doi.org/10.1007/3-540-45413-6_21
https://doi.org/10.1007/3-540-45413-6_21
https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1007/978-3-642-19805-2_18
https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1109/LICS.2009.29
https://doi.org/10.1016/j.ic.2014.12.015
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.66
https://doi.org/10.1016/0012-365X(78)90156-5
https://doi.org/10.1145/2632362.2632381
https://doi.org/10.1109/LICS.2006.38


109:18 Cost Automata, Safe Schemes, and Downward Closures

44 Paweł Parys. On the significance of the collapse operation. In Proceedings of the 27th Annual
IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28,
2012, pages 521–530. IEEE Computer Society, 2012. doi:10.1109/LICS.2012.62.

45 Paweł Parys. The complexity of the diagonal problem for recursion schemes. In Satya
Lokam and R. Ramanujam, editors, Proc. of FSTTCS’17, volume 93 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 45:1–45:14, Dagstuhl, Germany, 2017. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.FSTTCS.2017.45.

46 Paweł Parys. Recursion schemes and the WMSO+U logic. In Rolf Niedermeier and Brigitte
Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018,
February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 53:1–53:16. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.53.

47 Steven J. Ramsay, Robin P. Neatherway, and C.-H. Luke Ong. A type-directed abstraction
refinement approach to higher-order model checking. In Suresh Jagannathan and Peter Sewell,
editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 61–72. ACM, 2014.
doi:10.1145/2535838.2535873.

48 Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. Inf.
Comput., 239:340–355, 2014. doi:10.1016/j.ic.2014.07.012.

49 Sylvain Salvati and Igor Walukiewicz. A model for behavioural properties of higher-order
programs. In Stephan Kreutzer, editor, 24th EACSL Annual Conference on Computer Science
Logic, CSL 2015, September 7-10, 2015, Berlin, Germany, volume 41 of LIPIcs, pages 229–243.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.
229.

50 Sylvain Salvati and Igor Walukiewicz. Simply typed fixpoint calculus and collapsible pushdown
automata. Mathematical Structures in Computer Science, 26(7):1304–1350, 2016. doi:10.
1017/S0960129514000590.

51 Larry J. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD
thesis, MIT, 1974.

52 Michael Vanden Boom. Weak cost monadic logic over infinite trees. In Filip Murlak and Piotr
Sankowski, editors, Mathematical Foundations of Computer Science 2011 - 36th International
Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings, volume 6907 of
Lecture Notes in Computer Science, pages 580–591. Springer, 2011.

53 Michael Vanden Boom. Weak cost monadic logic over infinite trees. In Filip Murlak
and Piotr Sankowski, editors, Mathematical Foundations of Computer Science 2011 - 36th
International Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceed-
ings, volume 6907 of Lecture Notes in Computer Science, pages 580–591. Springer, 2011.
doi:10.1007/978-3-642-22993-0_52.

54 Georg Zetzsche. An approach to computing downward closures. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Proc. of ICALP’15, volume
9135 of LNCS, pages 440–451. Springer, 2015. doi:10.1007/978-3-662-47666-6_35.

55 Georg Zetzsche. Computing downward closures for stacked counter automata. In Ernst W.
Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical Aspects
of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of
LIPIcs, pages 743–756. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015. doi:
10.4230/LIPIcs.STACS.2015.743.

56 Georg Zetzsche. The complexity of downward closure comparisons. In Ioannis Chatzigiannakis,
Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, volume 55 of LIPIcs, pages 123:1–123:14. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.123.

https://doi.org/10.1109/LICS.2012.62
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.45
https://doi.org/10.4230/LIPIcs.STACS.2018.53
https://doi.org/10.1145/2535838.2535873
https://doi.org/10.1016/j.ic.2014.07.012
https://doi.org/10.4230/LIPIcs.CSL.2015.229
https://doi.org/10.4230/LIPIcs.CSL.2015.229
https://doi.org/10.1017/S0960129514000590
https://doi.org/10.1017/S0960129514000590
https://doi.org/10.1007/978-3-642-22993-0_52
https://doi.org/10.1007/978-3-662-47666-6_35
https://doi.org/10.4230/LIPIcs.STACS.2015.743
https://doi.org/10.4230/LIPIcs.STACS.2015.743
https://doi.org/10.4230/LIPIcs.ICALP.2016.123


Sensitive Instances
of the Constraint Satisfaction Problem
Libor Barto
Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Praha 8, Czech Republic
barto@karlin.mff.cuni.cz

Marcin Kozik
Theoretical Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
marcin.kozik@uj.edu.pl

Johnson Tan
Department of Mathematics, University of Illinois, Urbana-Champaign, Urbana, IL, USA
jgtan2@illinois.edu

Matt Valeriote
Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
matt@math.mcmaster.ca

Abstract
We investigate the impact of modifying the constraining relations of a Constraint Satisfaction
Problem (CSP) instance, with a fixed template, on the set of solutions of the instance. More precisely
we investigate sensitive instances: an instance of the CSP is called sensitive, if removing any tuple
from any constraining relation invalidates some solution of the instance. Equivalently, one could
require that every tuple from any one of its constraints extends to a solution of the instance.

Clearly, any non-trivial template has instances which are not sensitive. Therefore we follow the
direction proposed (in the context of strict width) by Feder and Vardi in [13] and require that only
the instances produced by a local consistency checking algorithm are sensitive. In the language
of the algebraic approach to the CSP we show that a finite idempotent algebra A has a k + 2
variable near unanimity term operation if and only if any instance that results from running the
(k, k + 1)-consistency algorithm on an instance over A2 is sensitive.

A version of our result, without idempotency but with the sensitivity condition holding in a
variety of algebras, settles a question posed by G. Bergman about systems of projections of algebras
that arise from some subalgebra of a finite product of algebras.

Our results hold for infinite (albeit in the case of A idempotent) algebras as well and exhibit a
surprising similarity to the strict width k condition proposed by Feder and Vardi. Both conditions
can be characterized by the existence of a near unanimity operation, but the arities of the operations
differ by 1.
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1 Introduction

One important algorithmic approach to deciding if a given instance of the Constraint
Satisfaction Problem (CSP) has a solution is to first consider whether it has a consistent set
of local solutions. Clearly, the absence of local solutions will rule out having any (global)
solutions, but in general having local solutions does not guarantee the presence of a solution.
A major thrust of the recent research on the CSP has focused on coming up with suitable
notions of local consistency and then characterizing those CSPs for which local consistency
implies outright consistency or some stronger property. A good source for background
material is the survey article [7].

Early results of Feder and Vardi [13] and also Jeavons, Cooper, and Cohen [15] establish
that when a template (i.e., a relational structure) A has a special type of polymorphism,
called a near unanimity operation, then not only will an instance of the CSP over A that has
a suitably consistent set of local solutions have a solution, but that any partial solution of it
can always be extended to a solution. The notion of local consistency that we investigate
in this paper is related to that considered by these researchers but that, as we shall see, is
weaker.

The following operations are central to our investigation.

I Definition 1. An operation n(x1, . . . , xk+1) on a set A of arity k + 1 is called a near
unanimity operation on A if it satisfies the equalities

n(b, a, a, . . . , a) = n(a, b, a, . . . , a) = · · · = n(a, a, . . . , a, b) = a

for all a, b ∈ A.

Near unanimity operations have played an important role in the development of universal
algebra and first appeared in the 1970’s in the work of Baker and Pixley [1] and Huhn [14].
More recently they have been used in the study of the CSP [13, 15] and related questions
[2, 12]. The main results of this paper can be expressed in terms of the CSP and also in
algebraic terms and we start by presenting them from both perspectives. In the concluding
section, Section 6, a translation of parts of our results into a relational language is provided,
along with some open problems.

1.1 CSP viewpoint
In their seminal paper, Feder and Vardi [13] introduced the notion of bounded width for
the class of CSP instances over a finite template A. Their definition of bounded width was
presented in terms of the logic programming language DATALOG but there is an equivalent
formulation using local consistency algorithms, also given in [13]. Given a CSP instance I
and k < l, the (k, l)-consistency algorithm will produce a new instance having all k variable
constraints that can be inferred by considering l variables at a time of I. This algorithm
rejects I if it produces an empty constraint. The class of CSP instances over a finite template
A will have width (k, l) if the (k, l)-consistency algorithm rejects all instances from the class
that do not have solutions, i.e., the (k, l)-consistency algorithm can be used to decide if a
given instance from the class has a solution or not. The class has bounded width if it has
width (k, l) for some k < l.
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A lot of effort, in the framework of the algebraic approach to the CSP, has gone in
to analyzing various properties of instances that are the outputs of these types of local
consistency algorithms. On one end of the spectrum of the research is a rather wide class of
templates of bounded width [5] and on the other a very restrictive class of templates having
bounded strict width [13].

To be more precise, we now formally introduce instances of the CSP.

I Definition 2. An instance I of the CSP is a pair (V, C) where V is a finite set of variables,
and C is a set of constraints of the form ((x1, . . . , xn), R) where all xi are in V and R is an
n-ary relation over (possibly infinite) sets Ai associated to each variable xi.

A solution of I is an evaluation f of variables such that, for every ((x1, . . . , xn), R) ∈ C
we have (f(x1), . . . , f(xn)) ∈ R; a partial solution is a partial function satisfying the same
condition.

The CSP over a relational structure A, written CSP(A), is the class of CSP instances
whose constraint relations are from A.

I Example 3. For k > 1, the template associated with the graph k-colouring problem is
the relational structure Dkcolour that has universe {0, 1, . . . , k − 1} and a single relation
6=k= {(x, y) | x, y < k and x 6= y}. The template associated with the HORN-3-SAT problem
is the relational structure Dhorn that has universe {0, 1} and two ternary relations R0, R1,
where Ri contains all the triples but (1, 1, i). It is known that CSP(Dhorn) has width (1, 2),
that CSP(D2colour) has width (2, 3), and that for k > 2, CSP(Dkcolour) does not have bounded
width (see [7]).

Instances produced by the (k, l)-consistency algorithm have uniformity and consistency
properties that we highlight.

I Definition 4. The CSP instance I is k-uniform if all of its constraints are k-ary and every
set of k variables is constrained by a single constraint.

An instance is a (k, l)-instance if it is k-uniform and for every choice of a set W of l
variables no additional information about the constraints can be derived by restricting the
instance to the variables in W .

This last, very important, property can be rephrased in the following way: for every set
W ⊆ V of size l, every tuple in every constraint of I|W participates in a solution to I|W (where
I|W is obtained from I by removing all the variables outside of W and all the constraints
that contain any such variables).

Consider the notion of strict width k introduced by Feder and Vardi [13, Section 6.1.2].
Let A be a template and let us assume, to avoid some technical subtleties, that every
relation in A has arity at most k. The class CSP(A) has strict width (k, l) if whenever the
(k, l)-consistency algorithm does not reject an instance I from the class then “it should be
possible to obtain a solution by greedily assigning values to the variables one at a time
while satisfying the inferred k-constraints.” In other words, if I is the result of applying the
(k, l)-consistency algorithm to an instance of CSP(A), then any partial solution of I over at
least k variables can be extended to a solution. The template A is said to have strict width k
if it has strict width (k, l) for some l > k.

A polymorphism of a template A is a function on A that preserves all of the relations of
A. Feder and Vardi prove the following.

I Theorem 5 (see Theorem 25, [13]). Let k > 1 and let A be a finite relational structure
with relations of arity at most k. The class CSP(A) has strict width k if and only if it has
strict width (k, k + 1) if and only if A has a (k + 1)-ary near unanimity operation as a
polymorphism.
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Using this Theorem we can conclude that CSP(D2colour) from Example 3 has strict width 2
since the ternary majority operation preserves the relation 6=2. In fact this operation preserves
all binary relations over the set {0, 1}. On the other hand, CSP(Dhorn) does not have strict
width k for any k ≥ 3.

Following the algebraic approach to the CSP we replace templates A with algebras A.

I Definition 6. An algebra A is a pair (A,F) where A is a non-empty set, called the
universe of A and F = (fi | i ∈ I) is a set of finitary operations on A called the set of basic
operations of A. The function that assigns the arity of the operation fi to i is called the
signature of A. If t(x1, . . . , xn) is a term in the signature of A then the interpretation of t
by A as an operation on A is called a term operation of A and is denoted by tA.

The CSP over A, written CSP(A), is the class of CSP instances whose constraint relations
are amongst those relations over A that are preserved by the operations of A (i.e., they are
subuniverses of powers of A).

A number of important questions about the CSP can be reduced to considering templates
that have all of the singleton unary relations [7]; the algebraic counterpart to these types of
templates are the idempotent algebras.

I Definition 7. An operation f : An → A on a set A is idempotent if f(a, a, . . . , a) = a for
all a ∈ A. An algebra A is idempotent if all of its basic operations are.

It follows that if A is idempotent then every term operation of A is an idempotent operation.
As demonstrated in Example 22, several of the results in this paper do not hold in the
absence of idempotency.

The characterization of strict width in Theorem 5 has the following consequence in terms
of algebras.

I Corollary 8. Let k > 1 and let A be a finite relational structure with relations of arity at
most k. Let A be the algebra with the same universe as A whose basic operations are exactly
the polymorphisms of A. The following are equivalent:
1. A has a near unanimity term operation of arity k + 1;
2. in every (k, k + 1)-instance over A, every partial solution extends to a solution.

The implication “1 implies 2” in Corollary 8 remains valid for general algebras, not
necessarily coming from finite relational structures with restricted arities of relations. However,
the converse implication fails even if A is assumed to be finite and idempotent.

I Example 9. Consider the rather trivial algebra A that has universe {0, 1} and no basic
operations. If I is a (2, 3)-instance over A then since, as noted just after Theorem 5, every
binary relation over {0, 1} is invariant under the ternary majority operation on {0, 1} it
follows that every partial solution of I can be extended to a solution. Of course, A does not
have a near unanimity term operation of any arity.

What this example demonstrates is that in general, for a fixed k, the k-ary constraint
relations arising from an algebra do not capture that much of the structure of the algebra.
Example 22 provides further evidence for this.

Our first theorem shows that for finite idempotent algebras A, by considering a slightly
bigger set of (k, k + 1)-instances, over CSP(A2), rather than over CSP(A), we can detect the
presence of a (k + 1)-ary near unanimity term operation. Moreover, it is enough to consider
only instances with k + 2 variables. We note that every (k, k + 1)-instance over A can be
easily encoded as a (k, k + 1)-instance over A2.
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I Theorem 10. Let A be a finite, idempotent algebra and k > 1. The following are equivalent:
1. A (or equivalently A2) has a near unanimity term operation of arity k + 1;
2. in every (k, k + 1)-instance over A2, every partial solution extends to a solution;
3. in every (k, k + 1)-instance over A2 on k + 2 variables, every partial solution extends

to a solution.
In Theorem 20 we extend our result to infinite idempotent algebras by working with local
near unanimity term operations.

Going back the original definition of strict width: “it should be possible to obtain a
solution by greedily assigning values to the variables one at a time while satisfying the
inferred k-constraints” we note that the requirement that the assignment should be greedy is
rather restrictive. The main theorem of this paper investigates an arguably more natural
concept where the assignment need not be greedy.

I Definition 11. An instance of the CSP is called sensitive, if removing any tuple from any
constraining relation invalidates some solution of the instance.

In other words, an instance is sensitive if every tuple in every constraint of the instance
extends to a solution. For (k, k + 1)-instances, being sensitive is equivalent to the instance
being a (k, n)-instance, where n is the number of variables present in the instance. We
provide the following characterization.

I Theorem 12. Let A be a finite, idempotent algebra and k > 1. The following are equivalent:
1. A (or equivalently A2) has a near unanimity term operation of arity k + 2;
2. every (k, k + 1)-instance over A2 is sensitive;
3. every (k, k + 1)-instance over A2 on k + 2 variables is sensitive.
Exactly as in Theorem 10 we can consider infinite algebras at the cost of using local near
unanimity term operations (see Theorem 21).

In conclusion we investigate a natural property of instances motivated by the definition
of strict width and provide a characterization of this new condition in algebraic terms. A
surprising conclusion is that the new concept is, in fact, very close to the strict width concept,
i.e., for a fixed k one characterization is equivalent to a near unanimity operation of arity
k + 1 and the second of arity k + 2.

1.2 Algebraic viewpoint

Our work has as an antecedent the papers of Baker and Pixley [1] and of Bergman [8] on
algebras having near unanimity term operations. In these papers the authors considered
subalgebras of products of algebras and systems of projections associated with them. Baker
and Pixley showed that in the presence of a near unanimity term operation, such a subalgebra
is closely tied with its projections onto small sets of coordinates.

I Definition 13. A variety of algebras is a class of algebras of the same signature that is
closed under taking homomorphic images, subalgebras, and direct products. For A an algebra,
V(A) denotes the smallest variety that contains A and is called the variety generated by A.
A variety V has a near unanimity term of arity k+ 1 if there is some (k+ 1)-ary term in the
signature of V whose interpretation in each member of V is a near unanimity operation.

Here is one version of the Baker-Pixley Theorem:
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I Theorem 14 (see Theorem 2.1 from [1]). Let A be an algebra and k > 1. The following
are equivalent:
1. A has a (k + 1)-ary near unanimity term operation;
2. for every r > k and every Ai ∈ V(A), 1 ≤ i ≤ r, every subalgebra R of

∏r
i=1 Ai

is uniquely determined by the projections of R on all products Ai1 × · · · × Aik for
1 ≤ i1 < i2 < · · · < ik ≤ r;

3. the same as condition 2, with r set to k + 1.
In other words, an algebra has a (k + 1)-ary near unanimity term operation if and only if
every subalgebra of a product of algebras from V(A) is uniquely determined by its system of
k-fold projections into its factor algebras. A natural question, extending the result above,
was investigated by Bergman [8]: when does a given “system of k-fold projections” arise from
a product algebra?

Note that such a system can be viewed as a k-uniform CSP instance: indeed, following
the notation of Theorem 14, we can introduce a variable xi for each i ≤ r and a constraint
((xi1 , . . . , xik ); proji1,...,ik R) for each 1 ≤ i1 < i2 < · · · < ik ≤ r. In this way the original
relation R consists of solutions of the created instance (but in general will not contain all of
them). In this particular instance, different variables can be evaluated in different algebras.
Note that the instance is sensitive, if and only if it “arises from a product algebra” in the
sense investigated by Bergman.

We will say that I is a CSP instance over the variety V (denoted I ∈ CSP(V)) if all the
constraining relations of I are algebras in V. In the language of the CSP, Bergman proved
the following:

I Theorem 15 ([8]). If V is a variety that has a (k+ 1)-ary near unanimity term then every
(k, k + 1)-instance over V is sensitive.

In commentary that Bergman provided on his proof of this theorem he noted that a
stronger conclusion could be drawn from it and he proved the following theorem. We note
that this theorem anticipates the results from [13] and [15] dealing with templates having
near unanimity operations as polymorphisms.

I Theorem 16 ([8]). Let k > 1 and V be a variety. The following are equivalent:
1. V has a (k + 1)-ary near unanimity term;
2. any partial solution of a (k, k + 1)-instance over V extends to a solution.

Theorem 15 provides a partial answer to the question that Bergman posed in [8], namely
that in the presence of a (k+1)-ary near unanimity term, a necessary and sufficient condition
for a k-fold system of algebras to arise from a product algebra is that the associated CSP
instance is a (k, k + 1)-instance.

In [8] Bergman asked whether the converse to Theorem 15 holds, namely, that if all
(k, k + 1)-instances over a variety are sensitive, must the variety have a (k + 1)-ary near
unanimity term? He provided examples that suggested that the answer is no, and we confirm
this by proving that the condition is actually equivalent to the variety having a near unanimity
term of arity k + 2. The main result of this paper, viewed from the algebraic perspective
(but stated in terms of the CSP), is the following:

I Theorem 17. Let k > 1. A variety V has a (k + 2)-ary near unanimity term if and only
if each (k, k + 1)-instance of the CSP over V is sensitive.

The “if” direction of this theorem is proved in Section 3, while a sketch of a proof of the
“only if” direction can be found in Section 5 (the complete reasoning is included in the full
version of this paper). We note that a novel and significant feature of this result is that it
does not assume any finiteness or idempotency of the algebras involved.
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1.3 Structure of the paper
The paper is structured as follows. In the next section we introduce local near unanimity
operations and state Theorem 10 and Theorem 12 in their full power. In Section 3 we
collect the proofs that establish the existence of (local) near unanimity operations. Section 4
contains a proof of a new loop lemma, which can be of independent interest, and is necessary
in the proof in Section 5. In Section 5 we provide a sketch of the proof showing that, in the
presence of a near unanimity operation of arity k+ 2, the (k, k+ 1)-instances are sensitive. A
complete proof of this fact, which is our main contribution, can be found in the full version
of this paper. Finally, Section 6 contains conclusions.

2 Details of the CSP viewpoint

In order to state our results in their full strength, we need to define local near unanimity
operations. This special concept of local near unanimity operations is required, when
considering infinite algebras.

I Definition 18. Let k > 1. An algebra A has local near unanimity term operations of arity
k + 1 if for every finite subset S of A there is some (k + 1)-ary term operation nS of A such
that

nS(b, a, . . . , a, a) = nS(a, b, a, . . . , a) = · · · = nS(a, a, . . . , b, a) = nS(a, a, . . . , a, b) = a.

for all a, b ∈ S.

It should be clear that, for finite algebras, having local near unanimity term operations of
arity k + 1 and having a near unanimity term operation of arity k + 1 are equivalent, but
for arbitrary algebras they are not. The following provides a characterization of when an
idempotent algebra has local near unanimity term operations of some given arity; it will be
used in the proofs of Theorems 20 and 21. It is similar to Theorem 14 and is proved in the
full version of this paper.

I Theorem 19. Let A be an idempotent algebra and k > 1. The following are equivalent:
1. A has local near unanimity term operations of arity k + 1;
2. for every r > k, every subalgebra of Ar is uniquely determined by its projections onto all

k-element subsets of coordinates;
3. every subalgebra of Ak+1 is uniquely determined by its projections onto all k-element

subsets of coordinates.

We are ready to state Theorem 10 in its full strength:

I Theorem 20. Let A be an idempotent algebra and k > 1. The following are equivalent:
1. A (or equivalently A2) has local near unanimity term operations of arity k + 1;
2. in every (k, k + 1)-instance over A2, every partial solution extends to a solution;
3. in every (k, k + 1)-instance over A2 on k + 2 variables, every partial solution extends

to a solution.

Proof. Obviously condition 2 implies condition 3. A proof of condition 3 implying condition
1 can be found in Section 3. The implication from 1 to 2 is covered by Theorem 16. J

Analogously, the main result of the paper, for idempotent algebras, and the full version of
Theorem 12 states:
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I Theorem 21. Let A be an idempotent algebra and k > 1. The following are equivalent:
1. A (or equivalently A2) has local near unanimity term operations of arity k + 2;
2. every (k, k + 1)-instance over A2 is sensitive;
3. every (k, k + 1)-instance over A2 on k + 2 variables is sensitive.

Proof. Obviously condition 2 implies condition 3. For a proof that condition 3 implies
condition 1 see Section 3. A sketch of the proof of the remaining implication can be found in
Section 5 (see the full version of this paper for a complete proof). J

The following examples show that in Theorems 19, 20, and 21 the assumption of idempotency
is necessary.

I Example 22. For n > 2, let Sn be the algebra with domain [n] = {1, 2, . . . , n} and with
basic operations consisting of all unary operations on [n] and all non-surjective operations
on [n] of arbitrary arity. The collection of such operations forms a finitely generated clone,
called the Słupecki clone. Relevant details of these algebras can be found in [16, Example
4.6] and [20]. It can be shown that for m < n, the subuniverses of Smn consist of all m-ary
relations Rθ over [n] determined by a partition θ of [m] by

Rθ = {(a1, . . . , am) | ai = aj whenever (i, j) ∈ θ}.

These rather simple relations are preserved by any operation on [n], in particular by any
majority operation or more generally, by any near unanimity operation.

It follows from Theorem 16 that if k > 1 and I is a (k, k + 1)-instance of CSP(S2
2k+1)

then any partial solution of I extends to a solution. This also implies that I is sensitive.
Furthermore any subalgebra of Sk+1

k+2 is determined by it projections onto all k-element sets
of coordinates. As noted in [16, Example 4.6], for n > 2, Sn does not have a near unanimity
term operation of any arity, since the algebra Snn has a quotient that is a 2-element essentially
unary algebra.

3 Constructing near unanimity operations

In this section we collect the proofs providing, under various assumptions, near unanimity or
local near unanimity operations. That is: the proofs of “3 implies 1” in Theorems 20 and
Theorem 21 as well as a proof of the “if” direction from Theorem 17.

In the following proposition we construct instances over A2 (for some algebra A). By
a minor abuse of notation, we allow in such instances two kinds of variables: variables
x evaluated in A and variables y evaluated in A2. The former kind should be formally
considered as variables evaluated in A2 where each constraint enforces that x is sent to
{(b, b) | b ∈ A}.

Moreover, dealing with k-uniform instances, we understand the condition “every set of
k variables is constrained by a single constraint” flexibly: in some cases we allow for more
constraints with the same set of variables, as long as the relations are proper permutations
so that every constraint imposes the same restriction.

I Proposition 23. Let k > 1 and let A be an algebra such that, for every (k, k + 1)-instance
I over A2 on k + 2 variables every partial solution of I extends to a solution. Then each
subalgebra of Ak+1 is determined by its k-ary projections.

Proof. Let R ≤ Ak+1 and we will show that it is determined by the system of projections
projI(R) as I ranges over all k elements subsets of coordinates. Using R we define the
following instance I of CSP(A2). The variables of I will be the set {x1, x2, . . . , xk+1, y12}
and the domain of each xi is A, while the domain of y12 is A2.
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For U ⊆ {x1, . . . , xk+1} of size k, let CU be the constraint with scope U and constraint
relation RU = projU (R). For U a (k − 1)-element subset of {x1, . . . , xk+1}, let CU∪{y12} be
the constraint with scope U ∪ {y12} and constraint relation RU∪{y12} that consists of all
tuples (bv | v ∈ U ∪ {y12}) such that there is some (a1, . . . , ak+1) ∈ R with bv = ai if v = xi
and with by12 = (a1, a2).

The instance I is k-uniform and we will show that it is sensitive. Indeed every tuple in
every constraining relation originates in some tuple b ∈ R. Setting xi 7→ bi and y12 7→ (b1, b2)
defines a solution that extends such a tuple.

In particular I is a (k, k + 1)-instance over A2 with k + 2 variables and so any partial
solution of it can be extended to a solution. Let b ∈ Ak+1 such that projI(b) ∈ projI(R)
for all k element subsets I of [k + 1]. Then b is a partial solution of I over the variables
{x1, . . . , xk+1} and thus there is some extension of it to the variable y12 that produces a
solution of I. But there is only one consistent way to extend b to y12 namely by setting y12
to the value (b1, b2). By considering the constraint with scope {x3, . . . , xk+1, y12} it follows
that b ∈ R, as required. J

Now we are ready to prove the first implication tackled in this section: 3 implies 1 in
Theorem 20.

Proof of “3 implies 1” in Theorem 20. By Theorem 19 it suffices to show that each subal-
gebra of Ak+1 is determined by its k-ary projections. Fortunately, Proposition 23 provides
just that. J

We move on to proofs of “3 implies 1” in Theorem 21 and the “if” direction of Theorem 17.
Similarly, as in the theorem just proved, we start with a proposition.

I Proposition 24. Let k > 1 and let A be an algebra such that every (k, k + 1)-instance I
over A2 on k + 2 variables is sensitive. Then each subalgebra of Ak+2 is determined by its
(k + 1)-ary projections.

Proof. We will show that if R is a subalgebra of Ak+2 then R = R∗ where

R∗ = {a ∈ Ak+2 | projI(a) ∈ projI(R) whenever |I| = k + 1}.

In other words, we will show that the subalgebra R is determined by its projections into all
(k + 1)-element sets of coordinates.

We will use R and R∗ from the previous paragraph to construct a (k, k + 2)-instance
I = (V, C) with V = {x5, . . . , xk+2, y12, y34, y13, y24} where each xi is evaluated in A while
all the y’s are evaluated in A2.

The set of constraints is more complicated. There is a special constraint on a special
variable set ((y12, y34, x5, . . . , xk+2), C) where

C = {((a1, a2), (a3, a4), a5, . . . , ak+2) | (a1, . . . , ak+2) ∈ R∗}.

The remaining constraints are defined using the relation R. For each set of variables
S = {v1, . . . , vk} ⊆ V (which is different than the set for the special constraint) we define
a constraint ((v1, . . . , vk), DS) with (b1, . . . , bk) ∈ DS if and only if there exists a tuple
(a1, . . . , ak+2) ∈ R such that:

if vi is xj then bi = aj , and
if vi is ylm then bi = (al, am).

Note that the instance I is k-uniform.

B Claim 25. I is a (k, k + 1)-instance.
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Let S ⊆ V be a set of size k. If S is not the special variable set, then every tuple in
the relation constraining S originates in some (b1, . . . , bk+2) ∈ R and, as in Proposition 23,
sending xi 7→ bi and ylm 7→ (bl, bm) defines a solution that extends such a tuple. We
immediately conclude, that the potential failure of the (k, k + 1) condition must involve the
special constraint.

Thus S = {y12, y34, x5, . . . , xk+2} and if b is a tuple from the special constraint C then
there is some (a1, . . . , ak+2) ∈ R∗ with

b = ((a1, a2), (a3, a4), a5, . . . , ak+2).

The extra variable that we want to extend the tuple b to is either y13 or y24. Both cases are
similar and we will only work through the details when it is y13. In this case, assigning the
value (a1, a3) to the variable y13 will produce an extension b′ of b to a tuple over S∪{y13} that
is consistent with all constraints of I whose scopes are subsets of {y12, y34, x5, . . . , xk+2, y13}.

To see this, consider a k element subset S′ of {y12, y34, x5, . . . , xk+2, y13} that excludes
some variable xj . Then, by the definition of R∗ there exists some tuple of the form
(a1, a2, . . . , aj−1, a

′
j , aj+1, . . . , ak+2) ∈ R. This tuple from R can be used to witness that the

restriction of b′ to S′ satisfies the constraint DS′ since the scope of this constraint does not
include the variable xj .

Suppose that S′ is a k element subset of {y12, y34, x5, . . . , xk+2, y13} that excludes y12.
By the definition of R∗ there is some tuple of the form (a1, a

′
2, a3, . . . , ak+2) ∈ R. Using this

tuple it follows that the restriction of b′ to S′ satisfies the constraint DS′ . This is because
neither of the variables y12 and y24 are in S′ and so the value a′2 ∈ A2 does not matter. A
similar argument works when S′ is assumed to exclude y34 and the claim is proved.

Since I is a (k, k+ 1)-instance over A2 and it has k+ 2 variables then by assumption, I is
sensitive. We can use this to show that R∗ ⊆ R to complete the proof of this proposition. Let
(a1, . . . , ak+2) ∈ R∗ and consider the associated tuple b = ((a1, a2), (a3, a4), a5, . . . , ak+2) ∈
C. Since I is sensitive then this k-tuple can be extended to a solution b′ of I. Using any
constraints of I whose scopes include combinations of y12 or y34 with y13 or y24 it follows
that the value of b′ on the variables y13 and y24 are (a1, a3) and (a2, a4) respectively. Then
considering the restriction of b′ to S = {x5, . . . , xk+2, y13, y24} it follows that (a1, . . . , ak+2) ∈
R since this restriction lies in the constraint relation DS . J

We are in a position to provide the two final proofs in this section.

Proof of “3 implies 1” in Theorem 21. By Theorem 19 it suffices to show that each sub-
algebra of Ak+2 is determined by its (k + 1)-ary projections. Fortunately Propositions 24
provides just that. J

Proof of the “if” direction in Theorem 17. For this direction we apply Proposition 24 to
a special member of V, namely the V-free algebra freely generated by x and y, which we
will denote by F. Up to isomorphism, this algebra is unique and its defining property is
that F ∈ V and for any algebra A ∈ V, any map f : {x,y} → A extends uniquely to a
homomorphism from F to A. Consequently, for any two terms s(x, y) and t(x, y) in the
signature of V if sF(x,y) = tF(x,y) then the equation s(x, y) ≈ t(x, y) holds in V.

Let R be the subalgebra of Fk+2 generated by the tuples (y,x,x, . . . ,x), (x,y,x, . . . ,x),
. . . , (x, . . . ,x,y). By Proposition 24, the algebra R is determined by its (k+1)-ary projections
and so the constant tuple (x, . . . ,x) belongs to R. The term generating this tuple from the
given generators of R defines the required (k + 2)-ary near unanimity operation. J
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4 New loop lemmata

A loop lemma is a theorem stating that a binary relation satisfying certain structural and
algebraic requirements necessarily contains a loop – a pair (a, a). In this section we provide
two new loop lemmata, Theorem 31 and Theorem 32, which generalize an “infinite loop
lemma” of Olšák [18] and may be of independent interest. Theorem 32 is a crucial tool for
the proof presented in Section 5.

The algebraic assumptions in the new loop lemmata concern absorption, a concept that
has proven to be useful in the algebraic theory of CSPs and in universal algebra [6]. We
adjust the standard definition to our specific purposes. We begin with a very elementary
definition.

I Definition 26. Let R and S be sets. We call a tuple (a1, . . . , an) a one-S-in-R tuple if for
exactly one i we have ai ∈ S and all the other ai’s are in R.

Next we proceed to define a relaxation of the standard absorbing notion. We follow a
standard notation, silently extending operations of an algebra to powers (by computing them
coordinate-wise).

I Definition 27. Let A be an algebra, R ≤ Ak and S ⊆ Ak. We say that R locally n-absorbs
S if, for every finite set C of one-S-in-R tuples of length n, there is a term operation t of A
such that t(a1, . . . ,an) ∈ R whenever (a1, . . . ,an) ∈ C. We will say that R locally absorbs
S, if R locally n-absorbs S for some n.

Absorption, even in this form, is stable under various constructions. The following lemma
lists some of them and we leave it without a proof (the reasoning is identical to the one in
e.g. Proposition 2 in [6]).

I Lemma 28. Let A be an algebra and R ≤ A2 such that R locally n-absorbs S. Then
R−1 locally n-absorbs S−1; and R ◦R locally n-absorbs S ◦S, and R ◦R ◦R locally n-absorbs
S ◦ S ◦ S etc.

Let us prove a first basic property of local absorption.

I Lemma 29. Let A be an idempotent algebra and R ≤ A2 such that R locally n-absorbs S.
Let (a1, . . . , an) and (b1, . . . , bn) be directed walks in R, and let (ai, bi) ∈ S for each i (see
Figure 1). Then there exists a directed walk from a1 to bn of length n in R.

a1 a2 · · · ai · · · an

b1 b2 · · · bi · · · bn

· · ·

p1
p2 p3 pn−1

pn

Figure 1 Solid arrows represent tuples from R and dashed arrows represent tuples from S.
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Proof. We will show that there is a term operation t of the algebra A such that the following
(n+ 1)-tuple of elements of A is a walk of length n in R from a1 to bn.

(a1 =t(a1, a1, a1, . . . , a1),
t(b1, a2, a2, . . . , a2),
t(b2, b2, a3, . . . , a3),
...
t(bn−1, bn−1, . . . , bn−1, an),

bn =t(bn, bn, bn, . . . , bn)).

In order to choose a proper t we apply the definition of local absorption to the set of (n+ 1)
one-S-in-R tuples corresponding to the steps in the path. J

The loop lemma of Olšák concerns symmetric relations absorbing the equality relation
{(a, a) | a ∈ A}, which is denoted =A. The original result, stated in a slightly different
language, does not cover the case of local absorption. However, a typographical modification
of a proof mentioned in [18] shows that the theorem holds. For completeness sake, we present
this proof in the full version of this paper.

I Theorem 30 ([18]). Let A be an idempotent algebra and R ≤ A2 be nonempty and
symmetric. If R locally absorbs =A, then R contains a loop.

In order to apply this theorem in the case of sensitive instances, we need to generalize it.
In the following two theorems we will gradually relax the requirement that R is symmetric.
In the first step, we substitute it with a condition requiring a closed, directed walk in the
graph (i.e., a sequence of possibly repeating vertices, with consecutive vertices connected by
forward edges and the first and last vertex identical). Recall that R−1 is the inverse relation
to R and let us denote by R◦l the l-fold relational composition of R with itself.

I Theorem 31. Let A be an idempotent algebra and R ≤ A2 contain a directed closed
walk. If R locally absorbs =A, then R contains a loop.

Proof. Let n denote the arity of the absorbing operations. The proof is by induction on
l ≥ 0, where l is a number such that there exists a directed closed walk from a1 to a1 of
length 2l.

We start by verifying that such an l exists. Take a directed walk (a1, . . . , ak−1, ak = a1)
in R. We may assume that its length k is at least n, since we can, if necessary, traverse
the walk multiple times. An application of Lemma 29 to the relations R,=A and tuples
(a1, . . . , an), (a1, . . . , an) gives us a directed walk from a1 to an of length n. Appending this
walk with the walk (an, an+1, . . . , ak = a1) yields a directed walk from a1 to a1 of length
k + 1. In this way, we can get a directed walk from a1 to a1 of any length greater than k.

Now we return to the inductive proof and start with the base of induction for l = 0 or
l = 1. If l = 0, then we have found a loop. If l = 1 we have a closed walk of length 2, that is,
a pair (a, b) which belongs to both R and R−1. We set R′ = R ∩R−1 and observe that R′ is
nonempty and symmetric, and it is not hard to verify that R′ locally absorbs =A. Olšák’s
loop lemma, in the form of Theorem 30, gives us a loop in R.

Finally, we make the induction step from l − 1 to l. Take a closed walk (a1, a2, . . .)
of length 2l and consider R′ = R◦2. Observe that R′ contains a directed closed walk of
length 2l−1 (namely (a1, a3, . . .)), and that R′ locally absorbs =A (by Lemma 28), so, by the
inductive hypothesis, R′ has a loop. In other words, R has a directed closed walk of length 2
and we are done by the case l = 1. J
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Note that we cannot further relax the assumption on the graph by requiring that, for
example, it has an infinite directed walk. Indeed the natural order of the rationals (taken
for R) locally 2-absorbs the equality relation by the binary arithmetic mean operation
(a+ b)/2 (i.e., all the absorbing evaluations are realized by a single operation). The same
relation locally 4-absorbs equality with the near unanimity operation n(x, y, z, w) which,
when applied to a ≤ b ≤ c ≤ d, in any order, returns (b+ c)/2.

Nevertheless, we can strengthen the algebraic assumption and still provide a loop; the
following theorem is one of the key components in the proof sketch provided in Section 5 (albeit
applied there with l = 1).

I Theorem 32. Let A be an idempotent algebra and R ≤ A2 contain a directed walk of
length n− 1. If R locally n-absorbs =A and R◦l locally n-absorbs R−1 for some l ∈ N then
R contains a loop.

Proof. By applying Lemma 29 similarly as in the proof of Theorem 31, we can get, from a
directed walk of length n− 1, a directed walk (a1, a2, . . .) of an arbitrary length. Moreover,
by the same reasoning, for each i and j with j ≥ i+ n− 1, there is a directed walk from ai
to aj of any length greater than or equal to j − i.

Consider the relations R′ = R◦ln
2 and S = (R−1)◦n2 , and tuples

c = (c1, . . . , cn) := (an2 , a(n+1)n, . . . a(2n−1)n), and
d = (d1, . . . , dn) := (an, a2n . . . , an2)

By the previous paragraph and the definitions, both c and d are directed walks in R′, and
(ci, di) ∈ S for each i. Moreover, since R◦l locally n-absorbs R−1, Lemma 28 implies that
R′ locally absorbs S. We can thus apply Lemma 29 to the relations R′, S and the tuples
c,d and obtain a directed walk from c1 = an2 to dn−1 = an2 in R′. This closed walk in turn
gives a closed directed walk in R and we are in a position to finish the proof by applying
Theorem 31. J

5 Consistent instances are sensitive (sketch of a proof)

In this section we present the main ideas that are used to prove the “only if” direction in
Theorem 17 and “1 implies 2” in Theorem 21. These ideas are shown in a very simplified
situation, in particular, only the case that k = 2 and A is finite is considered. In the end of
this section we briefly discuss the necessary adjustments in the general situation. A complete
proof is given in the full version of this paper.

Consider a finite idempotent algebra A with a 4-ary near unanimity term operation
and a (2, 3)-instance I = (V, C) over A. Each pair {x, y} of variables is constrained by a
unique constraint ((x, y), Rxy) or ((y, x), Ryx). For convenience we also define Ryx = R−1

yx

(or Rxy = R−1
yx in the latter case) and Rxx to be the equality relation on A. Our aim is to

show that every pair in every constraint relation extends to a solution. The overall structure
of the proof is by induction on the number of variables of I.

We fix a pair of variables {x1, x2} and a pair (a1, a2) ∈ Rx1x2 that we want to extend.
The strategy is to consider the instance J obtained by removing x1 and x2 from the set of
variables and shrinking the constraint relations Ruv to R′uv so that only the pairs consistent
with the fixed choice remain, that is,

R′uv = {(b, c) ∈ Ruv | (a1, b) ∈ Rx1u, (a2, b) ∈ Rx2u, (a1, c) ∈ Rx1v, (a2, c) ∈ Rx2v}.
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W ′

w11x1

w12x2

w21x1

w22x2

w1 z1

w2 z2

Figure 2 Pattern P in Lemma 35. Figure 3 Path of three bow ties.

We will show that J contains a nonempty (2, 3)-subinstance, that is, an instance whose
constraint relations are nonempty subsets of the original ones. The induction hypothesis
then gives us a solution to J which, in turn, yields a solution to I that extends the fixed
choice.

Having a nonempty (2, 3)-subinstance can be characterized by the solvability of certain
relaxed instances. The following concepts will be useful for working with relaxations of I
and J .

I Definition 33. A pattern is a triple P = (W ;F , l), where (W ;F) is an undirected graph,
and l is a mapping l : W → V . The variable l(i) is referred to as the label of i.

A realization ( strong realization, respectively) of P is a mapping α : W → A, which
satisfies every edge {w1, w2} ∈ F , that is, (α(w1), α(w2)) ∈ Rl(w1),l(w2) ((α(w1), α(w2)) ∈
R′l(w1),l(w2), respectively). (Strong realization only makes sense if l(W ) ⊆ V \ {x1, x2}.)

A pattern is ( strongly) realizable if it has a (strong) realization.

The most important patterns for our purposes are 2-trees, these are patterns obtained
from the empty pattern by gradually adding triangles (patterns whose underlying graph is
the complete graph on 3 vertices) and merging them along a vertex or an edge to the already
constructed pattern. Their significance stems from the following well known fact.

I Lemma 34. An instance (over a finite domain) contains a nonempty (2,3)-subinstance if
and only if every 2-tree is realizable in it.

The “only if” direction of the lemma applied to the instance I implies that every 2-tree
is realizable. The “if” direction applied to the instance J tells us that our aim boils down
to proving that every 2-tree is strongly realizable. This is achieved by an induction on a
suitable measure of complexity of the tree using several constructions. We will not go into
full technical details here, we rather present several lemmata whose proofs contain essentially
all the ideas that are necessary for the complete proof.

I Lemma 35. Every edge (i.e., a pattern whose underlying graph is a single edge) is strongly
realizable.

Proof sketch. Let Q be the pattern formed by an undirected edge with vertices w1 and w2

labeled z1 and z2, respectively. Let P be the pattern obtained from Q by adding a set of
four fresh vertices W ′ = {w11, w12, w21, w22} labeled x1, x2, x1, x2, respectively, and adding
the edges {wi, wi1} and {wi, wi2} for i = 1, 2, see Figure 2. Observe that the restriction of a
realization β of P, such that β(wij) = aj for each i, j ∈ {1, 2}, to the set {w1, w2} is a strong
realization of Q.
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We consider the set T of restrictions of realizations of P to the set W ′. Since constraint
relations are subuniverses of A2, it follows that T is a subuniverse of A4.

T = {(β(w11), β(w12), β(w21), β(w22)) | β realizes P} ≤ A4

We need to prove that the tuple a = (a1, a2, a1, a2) is in T . By the Baker-Pixley theorem,
Theorem 14, it is enough to show that for any 3-element set of coordinates, the relation T
contains a tuple that agrees with a on this set. This is now our aim.

For simplicity, consider the set of the first three coordinates. We will build a realization
β of P in three steps. After each step, β will satisfy all the edges where it is defined. First,
since (a1, a2) ∈ Rx1x2 and I is a (2,3)-instance, we can find b1 ∈ A such that (a1, b1) ∈ Rx1z1

and (a2, b1) ∈ Rx2z1 , and we set β(w11) = a1, β(w12) = a2, and β(w1) = b1. Second, we find
b2 ∈ A such that (a1, b2) ∈ Rx1z2 and (b1, b2) ∈ Rz1z2 (here we use (a1, b1) ∈ Rx1z1 and that
I is a (2,3)-instance), and set β(w21) = a1, β(w2) = b2. Third, using (a1, b2) ∈ Rx1z2 we find
a′2 such that (b2, a

′
2) ∈ Rz2x2 and set β(w22) = a′2. By construction, β is a realization of P

and (β(w11), β(w12), β(w21)) = (a1, a2, a1), so our aim has been achieved. J

Using Lemma 35, one can go a step further and prove that every pattern built on a graph
which is a triangle is strongly realizable. We are not going to prove this fact here.

I Lemma 36. Every bow tie (a pattern whose underlying graph is formed by two triangles
with a single common vertex) is strongly realizable.

Proof sketch. Let W′1 and W′2 be two triangles (viewed as undirected graphs) with a single
common vertex w. Let Q′ be any pattern over W ′1 ∪W ′2 with labelling l′ sending W ′1 ∪W ′2
to V \ {x1, x2}. Similarly as in the proof of Lemma 35 we form a pattern Q by adding to
Q′ ten additional vertices (five of them labeled x1, the other five x2) and edges so that the
restriction of a realization α of Q to the set W ′1 ∪W ′2 is a strong realization of Q′ whenever
the additional vertices have proper values (that is, value ai for vertices labeled xi).

We will gradually construct a realization α of Q, which sends all the vertices labeled
by x1 to a1, and all the vertices labeled by x2 and adjacent to a vertex in W ′1 to a2. First
use the discussion after Lemma 35 to find a strong realization of Q′ restricted to W ′1. This
defines α on W ′1 and its adjacent vertices labeled by x1 and x2.

Next, we want to use Lemma 35 for assigning values to the two remaining vertices of
W ′2. However, in order to accomplish that, we need to shift the perspective: the role of
x1 is played by x1, but the role of x2 is played by l′(w); and the role of (a1, a2) is played
by (a1, α(w)). In this new context, we use Lemma 35 to find a strong realization of the
edge-pattern formed by the two remaining vertices of W ′2 (with a proper restriction of l′).
This defines α on all the vertices of Q, except for the two vertices adjacent to W ′2 \ {w} and
labeled by x2. Finally, similarly as in the third step in the proof of Lemma 35, we define α
on the remaining two vertices (labeled x2) to get a sought after realization of Q.

Now α assigns proper values (a1 or a2) to all additional vertices, except those two coming
from the non-central vertices of W ′2 and labeled by x2. We apply the 4-ary near unanimity
term operation to the realization α and its 3 variants obtained by exchanging the roles of
W ′1 and W ′2 and x1 and x2. The result of this application is a realization of Q which defines
a strong realization of Q′. J

In the same way it is possible to prove strong realizability of further patterns, such as those
in the following corollary.

I Corollary 37. Every “path of 3 bow ties” (i.e., a pattern whose underlying graph is as in
Figure 3) is strongly realizable.
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The application of the loop lemma is illustrated by the final lemma in this section.

I Lemma 38. Every diamond (i.e., a pattern whose underlying graph is formed by two
triangles with a single common edge) is strongly realizable.

Proof sketch. The idea is to merge two vertices in a bow tie using the loop lemma. Let Q′
be a pattern over a graph which is a bow tie on two triangles W ′1 and W ′2 (just like in the
proof of Lemma 36). Let w1 ∈W ′1 \W ′2 and w2 ∈W ′2 \W ′1 be such that l(w1) = l(w2).

Let Q be obtained from Q′ exactly as in the proof of Lemma 36 and notice that a proper
realization α of Q with α(w1) = α(w2) gives us a strong realization of a diamond. Let Q3 be
the pattern obtained by taking the disjoint union of 3 copies of Q and identifying the vertex
w2 in the i-th copy with the vertex w1 in the (i+ 1)-first copy, for each i ∈ {1, 2} (Figure 3
shows Q3 without the additional vertices).

Denote by T the set of all the realizations β of Q and denote by S ⊆ T the set of those
β ∈ T that are proper. By a straightforward argument, both T and S are subuniverses of∏
w∈Q A. Using the near unanimity term operation of arity 4, S clearly 4-absorbs T .
The plan is to apply Theorem 32 to the binary relation projw1,w2 S ⊆ A×A. As noted

above, a loop in this relation gives us the desired strong realization of a diamond, so it only
remains to verify the assumptions of Theorem 32. By Corollary 37, the patternQ3 has a proper
realization. The images of copies of vertices w1 and w2 in such a realization yield a directed
walk in projw1,w2(S) of length 3. Next, since S 4-absorbs T , then projw1,w2(S) 4-absorbs
projw1,w2(T ), so it is enough to verify that the latter relation contains =A and projw1,w2(S)−1.
We only look at the latter property. Consider any (b1, b2) ∈ projw1,w2(S)−1. By the definition
of S, the pattern Q has a realization α such that α(w1) = b2 and α(w2) = b1. We flip the
values α(w1) and α(w2), restrict α to {w1, w2} together with the middle vertex of the bow tie,
and then extend this assignment to a realization of Q, giving us (b1, b2) ∈ projw1,w2(T ). J

There are two major adjustments needed for the general case. First, the “if” direction of
Lemma 34 (and its analogue for a general k) is no longer true over infinite domains. This
is resolved by working directly with the realizability of k-trees and proving a more general
claim by induction: instead of “a (k, k + 1)-instance is sensitive” we prove, roughly, that
any evaluation, which extends to a sufficiently deep k-tree, extends to a solution. Second,
for higher values of k than 2 we do not prove strong realizability in one step as in, e.g.,
Lemma 35, but rather go through a sequence of intermediate steps between realizability and
strong realizability.

6 Conclusion

We have characterized varieties that have sensitive (k, k + 1)-instances of the CSP as those
that possess a near unanimity term of arity k + 2. From the computational perspective, the
following corollary is perhaps the most interesting consequence of our results.

I Corollary 39. Let A be a finite CSP template whose relations all have arity at most k and
which has a near unanimity polymorphism of arity k + 2. Then every instance of the CSP
over A, after enforcing (k, k + 1)-consistency, is sensitive.

Therefore not only is the (k, k + 1)-consistency algorithm sufficient to detect global
inconsistency, we also additionally get the sensitivity property. Let us compare this result to
some previous results as follows. Consider a template A that, for simplicity, has only unary
and binary relations and that has a near unanimity polymorphism of arity k + 2 ≥ 4. Then
any instance of the CSP over A satisfies the following.
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1. After enforcing (2, 3)-consistency, if no contradiction is detected, then the instance has a
solution [4] (this is the bounded width property).

2. After enforcing (k, k + 1)-consistency, every partial solution on k variables extends to a
solution (this is the sensitivity property).

3. After enforcing (k + 1, k + 2)-consistency, every partial solution extends to a solution [13]
(this is the bounded strict width property).

For k + 2 > 4 there is a gap between the first and the second item. Are there natural
conditions that can be placed there?

The properties of a template A from the first and the third item (holding for every
instance) can be characterized by the existence of certain polymorphisms: a near unanimity
polymorphism of arity k + 2 for the third item [13] and weak near unanimity polymorphisms
of all arities greater than 2 for the first item [5, 11, 17]. This paper does not give such a
direct characterization for the second item (essentially, since Theorem 21 involves a square).
Is there any? Moreover, there are characterizations for natural extensions of the first and
the third to relational structures with higher arity relations [13, 3]. This remains open for
the second item as well.

In parallel with the flurry of activity around the CSP over finite templates, there has been
much work done on the CSP over infinite ω-categorical templates [9, 19]. These templates
cover a much larger class of computational problems but, on the other hand, share some
pleasant properties with the finite ones. In particular, the (k, k+1)-consistency of an instance
can still be enforced in polynomial time. Corollary 39 can be extended to this setting as
follows.

I Corollary 40. Let A be an ω-categorical CSP template whose relations all have arity at
most k and which has local idempotent near unanimity polymorphisms of arity k + 2. Then
every instance of the CSP over A, after enforcing the (k, k + 1)-consistency, is sensitive.

Bounded strict width k of an ω-categorical template was characterized in [10] by the
existence of a quasi-near unanimity polymorphism n of arity k + 1, i.e.,

n(y, x, . . . , x) ≈ n(x, y, . . . , x) ≈ · · · ≈ n(x, x, . . . , y) ≈ n(x, x, . . . , x),

which is, additionally, oligopotent, i.e., the unary operation x 7→ n(x, x, . . . , x) is equal to
an automorphism on every finite set. This result extends the characterization of Feder and
Vardi since an oligopotent quasi-near unanimity polymorphism generates a near unanimity
polymorphism as soon as the domain is finite. On an infinite domain, however, oligopotent
quasi-near unanimity polymorphisms generate local near unanimity polymorphisms which,
unfortunately, do not need to be idempotent on the whole domain. Our results thus fall
short of proving the following natural generalization of Corollary 39 to the infinite.

I Conjecture 41. Let A be an ω-categorical CSP template whose relations all have arity
at most k and which has an oligopotent quasi-near unanimity polymorphism of arity k + 2.
Then every instance of the CSP over A, after enforcing (k, k + 1)-consistency, is sensitive.

To confirm the conjecture, a new approach, that does not use a loop lemma, will be
needed since there are examples of ω-categorical structures having oligopotent quasi-near
unanimity polymorphisms for which the counterpart to Theorem 30 does not hold. Indeed,
one such an example is the infinite clique.
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Abstract

Dynamic networks of concurrent pushdown systems (DCPS) are a theoretical model for multi-
threaded recursive programs with shared global state and dynamical creation of threads. The
(global) state reachability problem for DCPS is undecidable in general, but Atig et al. (2009) showed
that it becomes decidable, and is in 2EXPSPACE, when each thread is restricted to a fixed number
of context switches. The best known lower bound for the problem is EXPSPACE-hard and this lower
bound follows already when each thread is a finite-state machine and runs atomically to completion
(i.e., does not switch contexts). In this paper, we close the gap by showing that state reachability is
2EXPSPACE-hard already with only one context switch. Interestingly, state reachability analysis
is in EXPSPACE both for pushdown threads without context switches as well as for finite-state
threads with arbitrary context switches. Thus, recursive threads together with a single context
switch provide an exponential advantage.

Our proof techniques are of independent interest for 2EXPSPACE-hardness results. We introduce
transducer-defined Petri nets, a succinct representation for Petri nets, and show coverability is
2EXPSPACE-hard for this model. To show 2EXPSPACE-hardness, we present a modified version of
Lipton’s simulation of counter machines by Petri nets, where the net programs can make explicit
recursive procedure calls up to a bounded depth.
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111:2 The Complexity of Bounded Context Switching with Dynamic Thread Creation

1 Introduction

There is a complexity gap between EXPSPACE and 2EXPSPACE that shows up in several
problems in the safety verification of multithreaded programs.

Atig, Bouajjani, and Qadeer [1] study safety verification for dynamic networks of concur-
rent pushdown systems (DCPS), a theoretical model for multithreaded recursive programs
with a finite shared global state, where threads can be recursive and can dynamically spawn
additional threads. Unrestricted reachability is undecidable in this model. To ensure decid-
ability, like many other works [16, 11, 14, 10], they assume a bound K that restricts each
thread to have at most K context switches. For safety verification in this model, formulated
as global state reachability, they show a lower bound of EXPSPACE and an upper bound of
2EXPSPACE, “closing the gap” is left open.

Kaiser, Kroening, and Wahl [8] study safety verification of multithreaded non-recursive
programs with local and global Boolean variables. In this model, an arbitrary number of
non-recursive threads execute over shared global state, but each thread can maintain local
state in Boolean variables. Although their paper does not provide an explicit complexity
bound, a lower bound of EXPSPACE and an upper bound of 2EXPSPACE can be derived
from a reduction from Petri net coverability and their algorithm respectively.

Interestingly, when we restrict the models to disallow either context switches (i.e., each
thread runs atomically to completion) or local state in the form of the pushdown stack or local
variables (but allow arbitrary context switches), safety verification is in EXPSPACE [1, 7].

Thus, the complexity gap asks whether or not the combination of local state (maintained
in local variables or in the stack) and bounded context switching provides additional power
to computation. In this paper, we show that indeed it does. In fact, the combination of local
state and just one context switch is sufficient to achieve 2EXPSPACE lower bounds for these
problems. This closes the complexity gap.

We believe the constructions and models that we use along the way are of independent
interest. We introduce transducer-defined Petri nets (TDPNs), a succinct representation for
Petri nets. The places in a TDPN are encoded using words over a fixed alphabet, and the
transitions are described by length-preserving transducers. We show that coverability for
TDPNs is 2EXPSPACE-complete1 and give a polynomial-time reduction from coverability for
TDPNs to safety verification for DCPS with one context switch.

The idea of the latter reduction is to map a (compressed) place to the stack of a thread
and a marking to the set of currently spawned threads. A key obstacle in the simulation is
to “transfer” potentially exponential amount of information from before a transition to after
it through a polynomial-sized global store. We present a “guess and verify” procedure, using
non-determinism and the use of additional threads to verify a stack content letter-by-letter.

In order to show 2EXPSPACE-hardness for TDPNs, we introduce the model of recursive
net programs (RNPs), which add the power of making possibly recursive procedure calls to
the model of net programs (i.e., programs with access to Petri net counters). The addition
of recursion enables us to replace the “copy and paste code” idea in Lipton’s construction
to show EXPSPACE-hardness of Petri net coverability [13] with a more succinct and cleaner
program description where the copies are instead represented by different values of the local
variables of the procedures. The net effect is to push the requirement for copies into the call
stack of the RNP while maintaining a syntax which gives us a RNP which is polynomial in the

1 After submitting this work, the authors were made aware of “(level 1) counter systems with chained
counters” from [3], for which 2EXPSPACE-hardness of state reachability is shown in [3, Theorem 14].
The 2EXPSPACE-hardness of coverability in TDPN could also be deduced from that result.
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size of a given counter program. When the stack size is bounded by an exponential function
of the size of the program, we get a 2EXPSPACE-lower bound. We show that recursive net
programs with exponentially large stacks can be simulated by TDPNs.

Finally, we note that the 2EXPSPACE lower bound holds for DCPS where each stack is
bounded by a linear function of the size. Such stacks can be encoded by polynomially many
local Boolean variables, giving us a 2EXPSPACE lower bound for the model of Kaiser et al.

In summary, we introduce a number of natural 2EXPSPACE-complete problems and,
through a series of reductions, close an exponential gap in the complexity of safety verification
for multithreaded recursive programs.

2 Dynamic Networks of Concurrent Pushdown Systems (DCPS)

In this section, we define the model of DCPS and then state our main result. Intuitively, a
DCPS consists of a finite state control and several pushdown threads with local configurations,
one of them being the active thread. A local configuration contains the number of context
switches the thread has already performed, as well as the contents of its local stack. An
action of a thread may specify a new thread with initially one symbol on the stack to be
spawned as an inactive thread. The active thread can be switched out for one of the inactive
threads at any time. When a thread is switched out, its context switch number increases by
one. One can view this model as a collection of dynamically created recursive threads (with
a call stack each), that communicate using some finite shared memory (the state control).

A multiset m : S → N over a set S maps each element of S to a natural number. Let
M[S] be the set of all multisets over S. We treat sets as a special case of multisets where
each element is mapped onto 0 or 1. We sometimes write m = [[a1, a1, a3]] for the multiset
m ∈ M[S] such that m(a1) = 2, m(a3) = 1, and m(a) = 0 for each a ∈ S\{a1, a3}. The
empty multiset is denoted ∅. The size of a multiset m, denoted |m|, is given by

∑
a∈S m(a).

Note that this definition applies to sets as well.
Given two multisets m,m′ ∈M[S] we define m⊕m′ ∈M[S] to be a multiset such that

for all a ∈ S, we have (m ⊕m′)(a) = m(a) + m′(a). We also define the natural order �
on M[S] as follows: m �m′ iff there exists m∆ ∈M[S] such that m⊕m∆ = m′. We also
define m	m′ for m′ �m analogously: for all a ∈ S, we have (m	m′)(a) = m(a)−m′(a).

A Dynamic Network of Concurrent Pushdown Systems (DCPS) A = (G,Γ,∆, g0, γ0)
consists of a finite set of (global) states G, a finite alphabet of stack symbols Γ, an initial
state g0 ∈ G, an initial stack symbol γ0 ∈ Γ, and a finite set of transition rules ∆. Elements
of ∆ have one of the two forms (1) g|γ ↪→ g′|w′, or (2) g|γ ↪→ g′|w′ . γ′, where g, g′ ∈ G,
γ, γ′ ∈ Γ, w′ ∈ Γ∗, and |w′| ≤ 2. Rules of the first kind allow the DCPS to take a single step
in one of the pushdown threads while the second additionally spawn a new thread with top
of stack symbol γ′. The size of A is defined as |A| = |G|+ |Γ|+ |∆|.

The set of configurations of A is G × (Γ∗ × N) × M[Γ∗ × N]. Given a configuration
〈g, (w, i),m〉, we call g the (global) state, (w, i) the local configuration of the active thread,
and m the multiset of the local configurations of the inactive threads. The initial configuration
of A is 〈g0, (γ0, 0), ∅〉. For a configuration c of A, we will sometimes write c.g for the state
of c and c.m for the multiset of threads of c (both active and inactive). The size of a
configuration c = 〈g, (w, i),m〉 is defined as |c| = |w|+

∑
(w′,j)∈m |w′|.

For i ∈ N we define the relation ⇒i=→i ∪ 7→i on configurations of A, where →i and 7→i

are defined as follows:
〈g, (γ.w, i),m〉 →i 〈g′, (w′.w, i),m′〉 for all w ∈ Γ∗ iff (1) there is a rule g|γ ↪→ g′|w′ ∈ ∆
and m′ = m or (2) there is a rule g|γ ↪→ g′|w′ . γ′ ∈ ∆ and m′ = m⊕ [[(γ′, 0)]].
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〈g, (w, i),m ⊕ [[(w′, j)]]〉 7→i 〈g, (w′, j),m ⊕ [[(w, i+ 1)]]〉 for all j ∈ N, g ∈ G,

m ∈M[Γ∗ × N], and w,w′ ∈ Γ∗.
For b ∈ N we define the relation ⇒≤b:=

⋃b
i=0 ⇒i. We use ⇒∗i and ⇒∗≤b to denote the

reflexive, transitive closure of ⇒i and ⇒≤b, respectively.
Given K ∈ N, a state g of A is K-bounded reachable iff 〈g0, (γ0, 0), ∅〉 ⇒∗≤K 〈g, (w, i),m〉

for some (w, i) ∈ Γ∗ × {0, . . . ,K} and m ∈M[Γ∗ × {0, . . . ,K + 1}].
Intuitively, a local configuration (w, i) describes a pushdown thread with stack content w

that has already performed i context switches. The relation →i corresponds to applying the
two kinds of transition rules at i context switches. Both of them define pushdown transitions,
which the active thread can perform. Type (2) also spawns a new inactive pushdown thread
with 0 context switches, whose initial stack content consists of a single specified symbol. For
each i ∈ N, the relation 7→i corresponds to switching out the active thread and raising its
number of context switches from i to i + 1, while also switching in a previously inactive
thread. For a fixed K, the K-bounded state reachability problem (SRP[K]) for a DCPS is :
Input A DCPS A and a global state g
Question Is g K-bounded reachable in A?
This corresponds to asking whether the global state g is reachable if each thread can perform
at most K context switches.

I Theorem 1 (Main Result). For each K ≥ 1, the problem SRP[K] is 2EXPSPACE-complete.

The fact that SRP[K] is in 2EXPSPACE for any fixed K follows from the results of Atig
et al. [1]. They use a slightly different variant of DCPS. However, it is possible to show a
reduction from SRP[K] for our variant to SRP[K + 2] for theirs.

Our main result is to show 2EXPSPACE-hardness for SRP[1]. One may also adapt the
results of Atig et al. to the problem where K is part of the input (encoded in unary), to
derive an EXPSPACE lower bound and a 2EXPSPACE upper bound. Our result immediately
implies 2EXPSPACE-hardness for this problem as well.

In the remaining sections we prove the lower bound in Theorem 1. In Section 3, we
introduce transducer-defined Petri nets (TDPN), a succinct representation for Petri nets
for which we prove the coverability problem is 2EXPSPACE-complete. Then, we show a
reduction from the coverability problem for TDPNs to the SRP[1] problem. In Section 4, we
prove hardness for coverability of TDPNs, completing the proof.

3 Transducer Defined Petri Nets (TDPN)

In this section, we prove the lower bound in Theorem 1 by reducing coverability for a
succinct representation of Petri nets, namely TDPN, to SRP[1] for DCPS. We first recall
some definitions about Petri nets, transducers and problems related to them.

I Definition 2. A Petri net is a tuple N = (P, T, F, p0, pf ) where P is a finite set of
places, T is a finite set of transitions with T ∩ P = ∅, F ⊆ (P × T ) ∪ (T × P ) is its flow
relation, and p0 ∈ P (resp. pf ∈ P ) its initial place (resp. final place). A marking of N is a
multiset m ∈M[P ]. For a marking m and a place p we say that there are m(p) tokens on p.
Corresponding to the initial (resp. final) place we have the initial marking m0 = [[p0]] (resp.
final marking mf = [[pf ]]). The size of N is defined as |N | = |P |+ |T |.

A transition t ∈ T is enabled at a marking m if {p | (p, t) ∈ F} �m. If t is enabled in m,
t can be fired, which leads to a marking m′ with m′ = m⊕ {p | (t, p) ∈ F} 	 {p | (p, t) ∈ F}.
In this case we write m t−→ m′. A marking m is coverable in N if there is a sequence
m0

t1−→m1
t2−→ . . .

tl−→ml such that m �ml. We call such a sequence a run of N .
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t = (p1, p2) ∈ L(Tmove)
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p3t

t = (p1, p2, p3) ∈ L(Tfork)

p1

p2

p3

t

t = (p1, p2, p3) ∈ L(Tjoin)

Figure 1 The types of transitions defined by the three transducers.

The coverability problem for Petri nets is defined as:
Input A Petri net N .
Question Is mf coverable in N?

I Definition 3. For n ∈ N, a (length preserving) n-ary transducer T = (Σ, Q, q0, Qf ,∆)
consists of an alphabet Σ, a finite set of states Q, an initial state q0 ∈ Q, a set of final states
Qf ⊆ Q, and a transition relation ∆ ⊆ Q× Σn ×Q. For a transition (q, a1, . . . , an, q

′) ∈ ∆
we also write q (a1,...,an)−−−−−−→ q′. The size of T is defined as |T | = n · |∆|.

The language of T is the n-ary relation L(T ) ⊆ (Σ∗)n containing precisely those n-
tuples (w1, . . . , wn), for which there is a transition sequence q0

(a1,1,...,an,1)−−−−−−−−→ q1
(a1,2,...,an,2)−−−−−−−−→

. . .
(a1,m,...,an,m)−−−−−−−−−→ qm with qm ∈ Qf and wi = ai,1ai,2 · · · ai,m for all i ∈ {1, . . . , n}. Such a

transition sequence is called an accepting run of T .

We note that in the more general (i.e. non-length-preserving) definition of a transducer, the
transition relation ∆ is a subset of Q× (Σ ∪ ε)n ×Q. All transducers we consider in this
paper are length-preserving.

I Definition 4. A transducer-defined Petri net N = (winit , wfinal , Tmove, Tfork, Tjoin)
consists of two words winit , wfinal ∈ Σl for some l ∈ N, a binary transducer Tmove and two
ternary transducers Tfork and Tjoin. Additionally, all three transducers share Σ as their
alphabet. This defines an explicit Petri net N(N ) = (P, T, F, p0, pf ) :

P = Σl.
T is the disjoint union of Tmove, Tjoin and Tfork

2 where
Tmove = {(w,w′) ∈ Σl × Σl | (w,w′) ∈ L(Tmove)},
Tfork = {(w,w′, w′′) ∈ Σl × Σl × Σl | (w,w′, w′′) ∈ L(Tfork)}, and
Tjoin = {(w,w′, w′′) ∈ Σl × Σl × Σl | (w,w′, w′′) ∈ L(Tjoin)}.

p0 = winit and pf = wfinal.
∀t ∈ T :

If t = (p1, p2) ∈ Tmove then (p1, t), (t, p2) ∈ F .
If t = (p1, p2, p3) ∈ Tfork then (p1, t), (t, p2), (t, p3) ∈ F .
If t = (p1, p2, p3) ∈ Tjoin then (p1, t), (p2, t), (t, p3) ∈ F .

An accepting run of one of the transducers, which corresponds to a single transition of N , is
called a transducer-move. The size of N is defined as |N | = l + |Tmove|+ |Tfork|+ |Tjoin|.

A Petri net defined by transducers in this way can only contain three different types of
transitions, each type corresponding to one of the three transducers. These transition types
are depicted in Figure 1. The coverability problem for TDPN is given by:
Input A TDPN N .
Question Is mf = [[wfinal ]] coverable in the corresponding explicit Petri net N(N )?

2 Note that a tuple (w, w′, w′′) ∈ Tjoin is different from the same tuple in Tfork . In the interest of
readability, we have chosen not to introduce a 4th coordinate to distinguish the two.
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111:6 The Complexity of Bounded Context Switching with Dynamic Thread Creation

Observe that the exlicit Petri net N(N ) has |Σ|l places, which is exponential in the size
of N . This means that TDPN are exponentially succinct representations of Petri nets.

It is a common theme in complexity theory to consider succinct versions of decision
problems [12, 6, 15]. The resulting complexity is usually one exponent higher than the
original version. In fact, certain types of hardness proofs can be lifted generically [15] (but
such a simple argument does not seem to apply in our case). The hardness proof in the
following is deferred to Section 4.

I Theorem 5. The coverability problem for TDPN is 2EXPSPACE-complete.

Traditionally, succinct versions of graphs and automata feature a compression using circuits [6,
15] or formulas [12]. One could also compress Petri nets by using circuits to accept binary
encodings of elements (p, t) or (t, p) of the flow relation. It is relatively easy to reduce
coverability for TDPN to this model by encoding transitions t as the pair or triple of places
that they correspond to, yielding 2EXPSPACE-hardness. We consider transducers because
they make the reduction to DCPS more natural. 2EXPSPACE-membership for any such
representation follows by first unravelling the Petri net and then checking coverability [17].

We now show that coverability for TDPN can be reduced in polynomial time to SRP[1]
for DCPS. The goal of the reduction is, given a TDPN N = (winit , wfinal , Tmove, Tfork,

Tjoin), to produce a DCPS A(N ) with a global state halt such that wfinal is coverable in N
iff halt is 1-bounded reachable in A(N ). We outline the main ideas and informally explain
the solution to some technical issues that arise.

Representation of Markings. The main idea behind the simulation of a TDPN N by a
DCPS A(N ) is that a token on a place w of N is represented by a thread with stack content
w. Extending this idea, a marking is represented by a multiset of threads, one for each token.

Initialization. The initial marking of N is [[winit ]] and A(N ) starts by going into a special
state where it always fills its stack with winit and then moving to a global state main. We
need O(l) states in the global memory for the initialization.

Simulation of one Transducer-move. In the sequel, we explain the simulation of a single
transducer-move from Tmove; the changes required to be made in the case of Tjoin and Tfork
are explained at the end. Remembering the choice of transducer incurs a multiplicative cost
of 3 in the global memory. The transducer-move requires us to do two things: Read the stack
contents of a particular input thread which corresponds to a place w from which a token is
removed; after which we need to create an output thread which corresponds to a place w′ to
which a token is added. This results in the following issue regarding input threads:
Issue 1: How can an input thread communicate its stack content w which comes from an

exponentially large space of possibilities (since this space is Σl) given the requirement for
the global state space to be polynomial in |N |?

Solution 1: We pop the contents of the thread while simultaneously spawning bit-threads,
each of which contains one letter of w along with the index i ∈ {1, . . . , l} of the letter
and the information that w is a place from which a token is being removed; all of which
is coded into a single bit-symbol.

Note that we have two types of threads: bit-threads and token-threads (i.e., those whose
stack contents encode a token’s position). Moreover, these two types of threads have disjoint
sets of stack symbols: bit-symbols and token-symbols. The idea used to solve Issue 1 and
read the stack contents, cannot be used in reverse to create an output token-thread since it
is not possible to populate a stack with information from bit-threads.
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Issue 2: How do we ensure the creation of appropriate output threads?
Solution 2: We implement a “guess-and-verify” procedure whereby we first guess the contents

of an output token-thread while simultaneously producing bit-threads corresponding to
w′; this is followed by a verification of the transition by comparing bit-threads produced
corresponding to w and w′, in a bit-by-bit fashion.

In particular, our simulation of a single transducer-move corresponds to a loop on the global
state main which is broken up into three stages: Read, guess and verify. The implementation
of this loop ensures that a configuration c of A(N ) where c.g = main has a multiset c.m
of threads faithfully representing a marking m̃ of N in that c.m contains exactly m̃(w′′)
token-threads with stack content w′′ for each place w′′ of N and no other threads.

We note that the discussion so far shows how the run of a N can be simulated when the
schedule switches contexts at appropriate times. We must also ensure that new behaviors
cannot arise due to context switches at arbitrary other points. We accomplish this by using
global locks that ensure unwanted context switches get stuck.
Issue 3: How do we control the effect of arbitrary context switches?
Solution 3: The global state is partitioned in such a way as to only enable operations on

bit-symbols while in some states and token-symbols in others. We ensure that for every
bit-symbol γ, there is at most one thread with top of stack γ at any given time. Thus
with the help of global control, we make sure unwanted context switches to bit-threads get
the system stuck. The problem reduces to avoiding unwanted context switches between
token-threads.
We use a locking mechanism. We add an extra > symbol at the top of every token-thread
when it is first created. A read-stage always begins in a special state used for unlocking a
thread (i.e. removing >). While reading a particular thread, the global state disallows
any transition on > or bit-symbols. Since all inactive token-threads have > as the top
of stack symbol, this implies that the system cannot proceed until it switches back to
the unlocked token-thread. Similarly, during the guess-stage where we are creating a
new token-thread, transitions are disallowed on > and bit-symbols. The verify-stage only
operates on bit-threads and switching to a token-thread is similarly pointless.

We now describe the three stages. Recall that the global state keeps the information that
the current step is a transducer-move from Tmove.

Read-stage. We non-deterministically switch to a token-thread t0 containing w as stack
content, which we need to read. As explained earlier, we produce bit-threads decorated
appropriately and at the end of this stage, we have popped all of t0 and created l bit-threads;
t0 ceases to exist. The number of global states required in the stage is O(l).

Guess-stage. Next, we create a new token-thread with w′ as its stack contents by non-
deterministic guessing, simultaneously spawning bit-threads for each letter of w′. At the
end of this stage l more bit-threads have been added to the task buffer (for a total of 2l
bit-threads) along with a token-thread containing w′. As in the read-stage, the number of
global states used in this stage is O(l).

Verify-stage. We guess a sequence of transitions δ1 . . . δl of Tmove on-the-fly; we guess δi

which must be of the form qi−1
(wi,w′

i)−−−−−→ qi where wi (resp. w′i) the ith letter of w (resp.
w′). We verify our guess by comparing each δi with the corresponding bit-threads bi, b

′
i with

index i produced in the read-stage from w,w′ respectively, before moving on to δi+1. During
the verification, the bit-threads are killed. We enforce the condition that the target state of
δi matches the source state of δi+1.
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Claim. Killing a bit-thread t′ with a single stack symbol γ′ can be simulated by a DCPS.
Consider the following sequence of operations starting from global state g with an active
thread t which contains only one symbol γ on the stack:

1. Spawn a thread t′′ with a special symbol γspawn and move to a special kill-state kill which
contains information regarding the state g prior to the kill operation and stack symbols
of t and t′.

2. Switch to a thread with symbol γ′ and pop its contents while moving to a special state
return which is forwarded the information contained in kill.

3. Switch to the thread with γspawn as top of stack and replace it with γ and at the same
time go to global state g.

This concludes our proof sketch of the claim. Adding a kill operation to a DCPS only incurs
a polynomial increase in the size of the DCPS.

In our setting, the net result of the sequence of operations simulating a kill-move is to
remove the two bit-threads bi, b

′
i from the multiset of threads without changing the global

state or the top of stack symbol γ. The special states kill (resp. return) ensure that if
one switches to a thread whose top of stack is different from γ′ in Step 2 (resp. γspawn in
Step 3), no transition can be made. We return to our discussion regarding the sequence of
transitions δi.

Since this process of checking the transducer-move occurs bit-by-bit, we require O(l|Tmove|)
many global states in this stage. At the end of the verification process, A(N ) is once again in
state main and the new multiset is the result of the addition of a w′ thread and removal of the
w thread from the old multiset of threads. We can now simulate the next transducer-move.

Checking for Coverability. At any point when A(N ) is in the state main, it makes a non-
deterministic choice between simulating the next transducer-move or checking for coverability.
In the latter case, it goes into a special check state where the active thread is compared letter
by letter with wfinal in a process similar to initialization. At the end of the checking process,
A(N ) reaches the state halt. If the check fails at any intermediate point, A(N ) terminates
without reaching the halt state. We require a further O(l) states for checking coverability.

Fork and Join. We have shown above how a single transducer-move is simulated assuming
that it is a transducer-move from Tmove. In general, the transducer-move could be from
Tjoin or Tfork as well. In these two cases, we have triples of the form (w,w′, w′′) accepted by
the transducer. However, in the former, we read w,w′ and guess w′′ while in the latter, we
read w and guess w′, w′′. In the case of Tjoin , once we have read w, we non-deterministically
switch to a thread containing w′ as its contents. Whenever the threads picked during the
read-stage and the threads created during the guess-stage do not agree with the guessed
transitions of the transducer-move, we encounter a problem during the verify-stage and A(N )
terminates without reaching the halt state.

Context Switches. Every thread (other than the initial one for winit) is created during
the guess-stage and then switched out once. The next time it is switched in, it is read and
ceases to exist. This implies that there exists a run of A(N ) simulating a run of N where
every thread undergoes at most one context switch. Conversely, we show that a run of
A(N ) reaching halt where every thread is bounded by at most 1 context switch implies the
existence of a run in N which covers the final marking as desired.
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This concludes our overview of the construction of A(N ) and completes the reduction
of coverability for TDPN to SRP[1] for DCPS. The global memory is polynomial in the size
of N . Similarly, the stack alphabet is expanded to include O(l · |Σ|) bit symbols, hence
the alphabet of A(N ) is polynomial as well. In summary, A(N ) can be produced in time
polynomial in the size of the input.
I Remark 6. Our lower bound holds already for DCPS where the stack of each thread
is bounded by a linear function of the size of the DCPS. Thus, as a corollary, we get
2EXPSPACE-hardness for a related model in which each thread is a Boolean program, i.e.,
where each thread has its stack bounded by a constant but has a polynomial number (in
the size of |G|+ |Γ|+ |∆|) of local Boolean variables. This closes the gap from [8] as well as
other similar models studied in the literature [2, 9, 4].

4 Recursive Net Programs (RNP)

We prove Theorem 5 by adapting the Lipton construction [13], as it is explained in [5], to our
succinct representation of Petri nets. Our construction requires two steps. First we reduce
termination for bounded counter programs to termination for Petri net programs which do
not allow zero tests. Second, we reduce termination of net programs with to coverability for
TDPN.

For the first step, we have to show how we can simulate the operation of a bounded
counter program with one without zero tests. In the Lipton construction, this is achieved
by constructing a gadget that performs zero tests for counters bounded by some bound B.
These gadgets are obtained by transforming a gadget for bound B into a gadget for B2.
Starting with B = 2 and applying this transformation n times leads to a gadget for B = 22n .
One then has to argue that the resulting net program still has linear size in the parameter n.
For a 2EXPSPACE lower bound, one would need to simulate a program where the bound is
triply exponential in n. A naive implementation of the gadget would then lead to a program
with triply exponential counter values, but exponential program size in n.

In order to argue later that the resulting program can be encoded in a small TDPN, we
will present the Lipton construction in a different way. Instead of growing the program with
every gadget transformation, we implement the gadgets recursively using a stack. We call
these programs recursive net programs (RNP). This way, when we instantiate the model
for a triply exponential bound on the counters (to get 2EXPSPACE-hardness instead of
EXPSPACE-hardness), the resulting programs still have polynomial size control flow. Note
that at run time, such programs can have an exponentially deep stack; however, this very
large stack does not form part of the program description. We shall show that RNP have a
natural encoding as TDPN.

For the second step, we reduce termination for RNP to coverability for TDPN. To this
end, we borrow some techniques from the original construction to translate an RNP into
an exponential sized Petri net. We then assign binary addresses to its places and construct
transducers for those pairs and triples that correspond to transitions. This results in a TDPN
of polynomial size. Finally, we argue that we do not need the whole exponential sized Petri
net to reason about the transducers, and that just a polynomial size part suffices. This then
gives us a polynomial time procedure.

4.1 From Bounded Counter Programs to RNP
Bounded Counter Programs. A counter program is a finite sequence of labelled commands
separated by semicolons. Let l, l1, l2 be labels and x be a variable (also called a counter).
The labelled commands have one of the following five forms:
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(1) l : inc x; // increment
(2) l : dec x; // decrement
(3) l : halt
(4) l : goto l1; // unconditional jump
(5) l : if x = 0 then goto l1 else goto l2; // conditional jump

Variables can hold values over the natural numbers, labels have to be pairwise distinct,
but can otherwise come from some arbitrary set. For convenience, we require each program
to contain exactly one halt command at the very end. The size |C| of a counter program C

is the number of its labelled commands.
During execution, all variables start with initial value 0. The semantics of programs

follows from the syntax, except for the case of decrementing a variable whose value is
already 0. In this case, the program aborts, which is different from proper termination, i.e.,
the execution of the halt command. It is easy to see that each counter program has only one
execution, meaning it is deterministic. This execution is k-bounded if none of the variables
ever reaches a value greater than k during it.

Let expm+1(x) := exp(expm(x)) and exp1(x) = exp(x) := 2x. The N -fold exponentially
bounded halting problem (also called termination) for counter programs (HP[N ]) is given by:
Input A unary number n ∈ N and a counter program C.
Question Does C have an expN (n)-bounded execution that reaches the halt command?
We make use of the following well-known result regarding this problem:

I Theorem 7. For each N > 0, the problem HP[N + 1] is N -EXPSPACE-complete.

The proof for arbitrary N matches the proof for N = 1, which the Lipton construction used.

Recursive Net Programs. The definition of recursive net programs (RNP) also involves
sequences of labelled commands separated by semicolons. Let l, l1, l2 be labels, x be a variable,
and proc be a procedure name. Then the labelled commands can still have one of the previous
forms (1) to (4). However, form (5) changes from a conditional to a nondeterministic jump,
and there are two new forms for procedure calls:

(1) l : inc x; // increment
(2) l : dec x; // decrement
(3) l : halt
(4) l : goto l1; // unconditional jump
(5) l : goto l1 or goto l2; // nondeterministic jump
(6) l : call proc; // procedure call
(7) l : return; // end of procedure

In addition to labelled commands, these programs consist of a finite set PROC of procedure
names and also a maximum recursion depth k ∈ N. Furthermore, they not only contain
one sequence of labelled commands to serve as the main program, but also include two
additional sequences of labelled commands for each procedure name proc ∈ PROC. The
second sequence for each proc is not allowed to contain any call commands and serves as a
sort of “base case” only to be called at the maximum recursion depth. Each label has to be
unique among all sequences and each jump is only allowed to target labels of the sequence it
belongs to. Each RNP contains exactly one halt command at the end of the main program.
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For proc ∈ PROC let #c(proc) be the number of commands in both of its sequences added
together and let #c(main) be the number of commands in the main program. Then the size
of an RNP R is defined as |R| = dlog ke+ #c(main) +

∑
proc∈PROC #c(proc).

The semantics here is quite different compared to counter programs: If the command
“l : call proc” is executed, the label l gets pushed onto the call stack. Then if the stack
contains less than k labels, the first command sequence pertaining to proc, which we now call
proc<max, is executed. If the stack already contains k labels, the second command sequence,
proc=max, is executed instead. Since proc=max cannot call any procedures by definition, the
call stack’s height (i.e. the recursion depth) is bounded by k. On a return command, the last
label gets popped from the stack and we continue the execution at the label occurring right
after the popped one.

How increments and decrements are executed depends on the current recursion depth d
as well. For each variable x appearing in a command, k + 1 copies x0 to xk are maintained
during execution. The commands inc x resp. dec x are then interpreted as increments resp.
decrements on xd (and not x or any other copy). As before, all these copies start with value 0
and decrements fail at value 0, which is different from proper termination.

Instead of a conditional jump, we now have a nondeterministic one, that allows the
program execution to continue at either label. Regarding termination we thus only require
there to be at least one execution that reaches the halt command. This gives us the following
halting problem for RNP:
Input An RNP R

Question Is there an execution of R that reaches the halt command?

We now adapt the Lipton construction to recursive net programs. We start with a
exp2(n)-bounded counter program C with a set of counters X and construct an RNP R(C)
with maximum recursion depth n + 1 that terminates iff C terminates. The number of
commands in R(C) will be linear in |C|.

Auxiliary Variables. The construction of R(C) involves simulating the zero test. To this
end, we introduce for each counter x ∈ X a complementary counter x̄ and ensure that the
invariant x0 + x̄0 = exp2(n) always holds. We can then simulate a zero test on x by checking
that x̄ can be decremented exp2(n) times. This requires us to implement a decrement by
exp2(n) in linearly many commands and also a similar increment to reach a value of exp2(n)
for x̄ from its initial value 0 at the start of the program. Furthermore, we need helper
variables s, s̄, y, ȳ, z, and z̄. We also sometimes need to increment or decrement the (d+1)th
copy of one of these six variables at recursion level d. As an example, for incrementing sd+1
in this way, we define the procedure s_inc:

s_inc<max : inc s; return s_inc=max : inc s; return

The analogous procedures for s̄, y, ȳ, z, and z̄ are defined similarly.

Program Structure. The program R(C) consists of two parts: The initial part Rinit(C),
which initializes all the complementary counters as mentioned above, followed by Rsim(C),
the part that simulates C. We construct Rsim(C) from C by replacing some of its commands.
Increments of the form inc x are replaced by dec x̄;inc x, decrements dec x are replaced by
dec x;inc x̄. Unconditional jumps and the halt command stay the same. Each conditional
jump (form (5) for counter programs) is replaced by

l : Test(x, lcontinue, l2);
lcontinue : Test(x̄, l1, l2)
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Test(x, lzero, lnonzero) :

goto lnztest or goto lloop;
lnztest : dec x; inc x; goto lnonzero;

lloop : dec x̄; inc x; call s̄_dec; call s_inc;
goto lexit or goto lloop;

lexit : call dec; goto lzero

Test+1(v, lzero, lnonzero) :

goto lnztest or goto lloop;
lnztest : call v_dec; call v_inc; goto lnonzero;

lloop : call v̄_dec; call v_inc;
call s̄_dec; call s_inc;
goto lexit or goto lloop;

lexit : call dec; goto lzero

dec<max :

louter : call y_dec; call ȳ_inc;
linner : call z_dec; call z̄_inc;

dec s; inc s̄;
Test+1(z, lnext, linner);

lnext : Test+1(y, lexit, louter);
lexit : return

dec=max :

dec s; inc s̄; dec s; inc s̄;
return

Figure 2 Definitions of the macros Test and Test+1 as well as the procedure dec. Regarding the
second macro we require v ∈ {y, z}.

where Test(x, lzero, lnonzero) is what we call a macro. We use it as syntactic sugar to be
replaced by its specification for the actual construction of R(C). This is in contrast to
procedures, which refer to specific parts of the program that can be called to increase the
recursion depth.

Test Macros and Decrement Procedure. The macro Test is specified in the left part of
Figure 2. It involves a call to the procedure dec, which is defined in the right part of the
same figure. Below Test we have also specified the variant Test+1, which is used in dec. The
main difference is that Test+1 can only be invoked on variables y or z and acts on their
(d+ 1)th copy at recursion depth d.

Semantically, dec at recursion depth d decrements sd by exp2(n+ 1− d) (and increments
s̄d by the same amount). Both variants of Test simulate a conditional jump and have the
side effect of switching the values xd and x̄d if the tested variable xd was 0. Because of this,
every conditional jump of C gets replaced by two instances of the Test macro, where the
second one reverses the potential side effect.

The decrements of procedure dec are performed via two nested loops that each run
exp2(n − d)-times. Each of these loops uses a helper variable yd+1 or zd+1 that has to be
tested for zero at the end, using the Test+1 macro. This involves transferring the helper
variable’s value to sd+1 and then calling dec at the next recursion depth. Essentially, any
decrement by exp2(j) for some j is implemented using exp2(j − 1) many decrements by
exp2(j − 1) via the nested loops. This iterative squaring of the value by which we decrement
continues down to the base case of exp2(0) = 2.

Semantics. Our construction is semantically very similar to the Lipton construction, barring
two main differences: Firstly, instead of having n+ 1 different procedure definitions of dec
(one per level d), we only need two because of recursion. The case for the Test macros is
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similar, as is the case of the helper variables s, y, z and their complements. Secondly, our
variable copies start with index 0 counting upwards, whereas in the Lipton construction the
variables start with index n and count downwards. This means that for some index d we have
the invariant sd + s̄d = exp2(n+ 1− d) in our construction, where it is sd + s̄d = exp2(d) for
Lipton. While the invariant of the Lipton construction is simpler, ours allows us to define the
recursion depth starting at 0 and going upwards, which seemed more natural for recursion.

Let us give a more precise analysis regarding the effect of the Test macros and dec
procedure. During the execution of dec at recursion depth d, we begin with sd = exp2(n+
1 − d), yd+1 = zd+1 = exp2(n − d), and s̄d = ȳd+1 = z̄d+1 = 0. The invariants sd + s̄d =
exp2(n + 1 − d), yd+1 + ȳd+1 = exp2(n − d), and zd+1 + z̄d+1 = exp2(n − d) are upheld
throughout. At the end we have sd = ȳd+1 = z̄d+1 = 0, yd+1 = zd+1 = exp2(n − d), and
s̄d = exp2(n + 1 − d), meaning the decrements were performed correctly and all helper
variables retain their initial values. The situation is quite similar for Test and Test+1, if
the variable to be tested was initially 0. In the non-zero case, the tested variable is just
decremented and incremented once, whereas no other variables are touched. All executions
that differ from the described behavior are guaranteed to get stuck.

Correctness of these semantics can be proven by induction on the recursion depth. It
requires the assumptions x0 + x̄0 = exp2(n), vd + v̄d = exp2(n+ 1− d), and v̄d = 0 for all
x ∈ X, v ∈ {s̄, y, z}, and d > 0.

Initialization. We now have to construct Rinit(C) in such a way, that it performs all the
necessary increments for these assumptions to hold at the start of Rsim(C). Since this is
again achieved using iterative squaring, we omit the precise construction. It involves calling
a procedure inc to perform the increments on copies of variables at lower recursion depths,
while x0 is incremented in the main program for each x ∈ X.

Size Analysis. To give a brief size analysis of R(C), PROC contains 14 procedure names,
whose corresponding definitions have constant size. For each command in C, Rsim(C)
contains constantly many commands, and Rinit(C) has linearly many commands in the
size of the variable set X. Since wlog. each variable of C is involved in at least one of its
commands, the amount of commands in R(C) is linear in |C|. Here, for doubly exponential
counter values, we would not even need n to be given in unary since only dlog(n+ 1)e factors
into the size of R(C).

Handling Triply Exponential Counter Values. The exact same construction with a maxi-
mum recursion depth of 2n + 1 can be used to simulate a counter program with counters
bounded by exp3(n): Starting with 2 and squaring n-times yields exp2(n), therefore squaring
2n times instead yields exp3(n). The correctness follows from the same inductive proofs as
before. For this changed maximum recursion depth, configurations contain exponentially in
n many counter values and also maintain a call stack of size up to 2n. However, since the
maximum recursion depth can be encoded in binary, its size is still polynomial in the unary
encoding of n. Thus, the halting problem for recursive net programs is 2EXPSPACE-hard.

4.2 From RNP to TDPN
Figure 3 and Figure 4 show how the commands of recursive net programs can be simulated
by Petri net transitions. This is again done in similar fashion to Esparza’s description [5] of
the Lipton construction [13]. As we can see, this involves only the three types of transitions
defined by our transducers.
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l1,d

l2,d

xd

l1 : inc x;
l2 : . . .

l1,d

l2,d

xd

l1 : dec x;
l2 : . . .

l1,d

whalt

l1 : halt;

l1,d

l2,d

l1 : goto l2;

l1,d

l2,d l3,d

l1 : goto l2 or goto l3;

Figure 3 Petri net transitions for five of the seven command types found in recursive net programs.
Here, d ∈ {0, . . . , k}, where k is the maximum recursion depth.

l1,d l1,d_calls_proc l2,d

l3,d+1

· · ·
l4,d+1 return_procd+1

proc : l3 : . . .
...

l4 : return;

l1 : call proc;
l2 : . . .

Figure 4 Petri net transitions for procedure calls found in recursive net programs. Here,
d ∈ {0, . . . , k − 1}, where k is the maximum recursion depth.

Let us give more detail regarding the Petri net construction: Given an RNP R with
maximum recursion depth k we construct a transducer-defined Petri net N = (winit , wfinal ,

Tmove, Tfork , Tjoin), which defines the Petri net N(N ) = (P, T, F, p0, pf ), such that [[pf ]] is
coverable in N(N ) iff there is a terminating execution of R. We begin by arguing about the
shape of N(N ) and then construct our transducers afterwards.

The idea is for N(N ) to start with one place per variable and one place per label, as well
as one auxiliary place for each call command and each proc ∈ PROC, which can be seen in
Figure 4. Additionally, there is also a single auxiliary place whalt for the halt command. Let
the number of all these places be h. Then each such place gets copied k + 1 times, so that a
copy exists for each possible recursion depth. Transitions get added at each recursion depth
d according to Figure 3 and Figure 4, whereas some transitions in the latter also connect to
places of recursion depth d+ 1.

Regarding the transducers, we use the alphabet {0, 1}. Every place address w = u.v has
a prefix u of length dlog he and a postfix v of length dlog ke. We assign each of the h places
that N(N ) started with a number from 0 to h− 1. The binary representation of this number
(with leading zeros) is used for the u-part of its address. For the v-part, we use the binary
representation of the recursion depth d (also with leading zeros), that a particular copy of
this place corresponds to. The address of the place corresponding to the first label in the
main program at recursion depth 0 is used for winit , whereas the one corresponding to whalt
at recursion depth 0 is used for wfinal .

To accept a particular pair or triple of addresses as a transition, each of the three
transducers distinguishes between all possibilities regarding the u-parts. Any pair or triple of
dlog he-length words that matches a particular transition of the right type (move, fork, join)
has a unique path in the transducer, while all non-matching pairs or triples do not. Then for
the v-parts, the transducer needs to either check for equality, if all places correspond to the
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same recursion depth, or for one binary represented number to be one higher. Since it is
clear from the u-parts, whether the recursion depths should all match or not, we can just
connect the unique paths to the correct part of the transducer at the end.

The transducer parts for the first dlog he bits require to distinguish between up to
23 log h = 8h possibilities, meaning they require polynomially in h many states. The parts for
the last dlog ke bits can easily be constructed using polynomially many states in log k. Since
h is linear in the number of commands in R and dlog ke is the size of the binary encoding
of the maximum recursion depth, N is of polynomial size compared to R. Because we can
construct N by first constructing N(N ) without the copies for each recursion depth, this is
feasible in polynomial time. Thus, the coverability problem for transducer-defined Petri nets
is 2EXPSPACE-hard.

5 Discussion

The chain of reductions in Sections 3 and 4 complete the 2EXPSPACE lower bound for
1-bounded reachability for DCPS. In fact, an inspection of the reductions show a technical
strengthening: the 2EXPSPACE lower bound already holds for SRP[1] of DCPS which satisfy
two additional properties, boundedness and local termination.

I Definition 8. A DCPS A is said to be bounded if there is a global bound B ∈ N on the
size of every configuration of every run of A. It is locally terminating if every infinite run
of A contains infinitely many context switches.

Consider the chain of reductions from the halting problem for bounded counter programs
to RNP to TDPN to SRP[1]. The configurations of the counter programs, by definition,
are bounded by a triply-exponential bound on the parameter n. This bound translates to
bounds on the RNP and TDPN instances. In particular, the number of places in the TDPN
produced in the reduction is exponentially bounded in n and the number of tokens on these
places is triple-exponentially bounded in n. The DCPS constructed from the TDPN uses the
stack of a thread to store an address of a place; thus, the height of a stack is bounded by a
polynomial in n. In addition, since the number of tokens in the TDPN correspond to the
number of in-progress threads in the DCPS, this implies a triple exponential (in n) bound on
the number of threads in any execution of the DCPS. Thus, the size of every configuration
in every run of the DCPS is bounded.

Second, the rules of the constructed DCPS do not allow any one thread to run indefinitely.
In other words, any non-terminating run of the DCPS must involve infinitely many threads
and the run contains infinitely many context switches.

I Theorem 9. The SRP[1] problem for bounded, locally terminating DCPS is 2EXPSPACE-
hard.
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definable in Presburger arithmetic. In the process we present several refinements to the “biregular
graph method”. In this method, decidability issues concerning two-variable logics are reduced to
questions about Presburger definability of integer vectors associated with partitioned graphs, where
nodes in a partition satisfy certain constraints on their in- and out-degrees.
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1 Introduction

In the search for expressive logics with decidable satisfiability problem, two-variable logic,
denoted here as FO2, is one yardstick. This logic is expressive enough to subsume basic
modal logic and many description logics, while satisfiability and finite satisfiability coincide,
and both are decidable [23, 15, 9]. However, FO2 lacks the ability to count. Two-variable
logic with counting, C2, is a decidable extension of FO2 that adds counting quantifiers. In C2

one can express, for example, ∃5x P (x) and ∀x∃>5y E(x, y) which, respectively, mean that
there are exactly 5 elements in unary relation P , and that every element in a graph has at
least 5 adjacent edges. Satisfiability and finite satisfiability do not coincide for C2, but both
are decidable [10, 16]. In [16] the problems were shown to be NEXPTIME-complete under a
unary encoding of numbers, and this was extended to binary encoding in [18]. However, the
numerical capabilities of C2 are quite limited. For example, one can not express that the
number of outgoing edges of each element in the graph is even.
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112:2 Two Variable Logic with Ultimately Periodic Counting

A natural extension is to combine FO2 with Presburger arithmetic where one is allowed to
define collections of tuples of integers from addition and equality using boolean operators and
quantifiers. The collections of k-tuples that one can define in this way are the semi-linear sets,
and the collections of integers (when k = 1) definable are the ultimately periodic sets. Prior
work has considered the addition of Presburger quantification to fragments of two-variable
logic. For every definable set φ(x, y) and every ultimately periodic set S, one has a formula
∃Sy φ(x, y) that holds at x when the number of y such that φ(x, y) is in S. We let FO2

Pres
denote the logic that adds this construct to FO2.

On the one hand, the corresponding quantification over general k-tuples (allowing semi-
linear rather than ultimately periodic sets) easily leads to undecidability [11, 3]. On the
other hand, adding this quantification to modal logic has been shown to preserve decidability
[1, 7]. Related one-variable fragments in which we have only a unary relational vocabulary
and the main quantification is ∃Sx φ(x) are known to be decidable (see, e.g. [2]), and their
decidability is the basis for a number of software tools focusing on integration of relational
languages with Presburger arithmetic [14]. The decidability of full FO2

Pres is, to the best
of our knowledge, still open [4]. There are a number of other extensions of C2 that have
been shown decidable; for example it has been shown that one can allow a distinguished
equivalence relation [22] or a forest-structured relation [6, 5]. FO2

Pres is easily seen to be
orthogonal to these other extensions.

In this paper we show that both satisfiability and finite satisfiability of FO2
Pres are

decidable. Our result makes use of the biregular graph method introduced for analyzing C2

in [13]. The method focuses on the problem of existence of graphs equipped with a partition
of vertices based on constraints on the out- and in-degree. Such a partitioned graph can be
characterized by the cardinalities of each partition component, and the key step in showing
these decidability results is to prove that the set of tuples of integers representing valid
sizes of partition components is definable by a formula in Presburger arithmetic. From this
“graph constraint Presburger definability” result one can reduce satisfiability in the logic to
satisfiability of a Presburger formula, and from there infer decidability using known results
on Presburger arithmetic.

The approach is closely-related to the machinery developed by Pratt-Hartmann (the “star
types” of [21]) for analyzing the decidability and complexity of C2, its fragments [19], and its
extensions [22, 5]. An advantage of the biregular graph approach is that it is transparent
how to extract more information about the shape of witness structures. In particular we
can infer that the spectrum of any formula is Presburger definable, where the spectrum of a
formula φ is the set of cardinalities of finite models of φ. It is also interesting to note that a
more restricted version of our biregular graph method is used to prove the decidability of
FO2 extended with two equivalence relations [12].

Characterising the spectrum for general first order formulas is quite a difficult problem,
with ties to major open questions in complexity theory [8]. This work can be seen as a
demonstration of the power of the biregular graph method to get new decidability results.
We make heavy use of both techniques and results in [13], adapting them to the richer logic.
We also require additional inductive arguments to handle the interaction of ordinary counting
quantifiers and modulo counting quantification.

2 Preliminaries

Let N = {0, 1, 2, . . .} and let N∞ = N ∪ {∞}.
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Linear and ultimately periodic sets. A set of the form {a+ ip | i ∈ N}, for some a, p ∈ N
is a linear set. We will denote such a set by a+p, where a and p are called the offset and
period of the set, respectively. Note that, by definition, a+0 = {a}, which is a linear set. For
convenience, we define ∅ and {∞} (which may be written as ∞+p) to also be linear sets.

An ultimately periodic set (u.p.s.) S is a finite union of linear sets. Usually we write a
u.p.s. {c1} ∪ · · · ∪ {cm} ∪ a+p1

1 ∪ · · · ∪ a+pn
n as just {c1, . . . , cm, a+p1

1 , . . . , a+pn
n }, and abusing

notation, we write a+p ∈ S for a u.p.s. S if a+ ip ∈ S for every i ∈ N.

Two-variable logic with ultimately periodic counting quantifiers. An atomic formula is
either an atom R(~u), where R is a predicate, and ~u is a tuple of variables of appropriate size,
or an equality u = u′, with u and u′ variables, or one of the formulas > and ⊥ denoting the
True and False values. The logic FO2

Pres is a class of first-order formulas using only variables
x and y, built up from atomic formulas and equalities using the usual boolean connectives
and also ultimately periodic counting quantification, which is of the form ∃Sx φ where S is a
u.p.s. One special case is where S is a singleton {a} with a ∈ N∞, which we write ∃ax φ; in
case of a ∈ N, these are counting quantifiers. The semantics of FO2

Pres is defined as usual
except that, for every a ∈ N, ∃ax φ holds when there are exactly a number of x’s such that
φ holds, ∃∞ φ holds when there are infinitely many x’s such that φ holds, and ∃Sx φ holds
when there is some a ∈ S such that ∃ax φ holds.

Note that when S is {∞} ∪ 0+1 = N∞, ∃Sx φ is equivalent to >. When S is 0+1, ∃Sx φ
semantically means that there are finitely many x such that φ holds. We define ∃∅x φ to
be ⊥ for any formula φ. We also note that ∃0x φ is equivalent to ∀x ¬φ, and ¬∃Sx φ is
equivalent to ∃N∞−Sx φ.

For example, we can state in FO2
Pres that every node in a graph has even degree (i.e., the

graph is Eulerian). Clearly FO2
Pres extends C2, the fragment of the logic where only counting

quantifiers are used, and FO2, the fragment where only the classical quantifier ∃x is allowed.

Presburger arithmetic. An existential Presburger formula is a formula of the form
∃x1 . . . xk φ, where φ is a quantifier-free formula over the signature including constants 0, 1, a
binary function symbol +, and a binary relation 6. Such a formula is a sentence if it has no
free variables. The notion of a sentence holding in a structure interpreting the function, rela-
tions, and constants is defined in the usual way. The structure N = (N,+,6, 0, 1), is defined
by interpreting +,6, 0, 1 in the standard way, while the structure N∞ = (N∞,+,6, 0, 1) is
the same except that a+∞ =∞ and a 6∞ for each a ∈ N∞.

It is known that the satisfiability of existential Presburger sentences over N is decidable
and belongs to NP [17]. Further, the satisfiability problem for N∞ can easily be reduced to
that for N . Indeed, we can first guess which variables are mapped to ∞ and then which
atoms should be true, then check whether each guessed atomic truth value is consistent with
other guesses and determine additional variables which must be infinite based on this choice,
and finally restrict to atoms that do not involve variables guessed to be infinite, and check
that the conjunction is satisfiable by standard integers.

I Theorem 1. The satisfiability problem for existential Presburger sentences over both N
and N∞ are both in NP.

3 Main result

In this section we prove the decidability of FO2
Pres satisfiability. Our decision procedure is

based on the key notion of regular graphs. Note that whenever we talk about graphs or
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112:4 Two Variable Logic with Ultimately Periodic Counting

digraphs (i.e., directed graphs), by default we allow both finite and infinite sets of vertices
and edges.

3.1 Regular graphs
In the following we fix an integer p > 0. Let N∞,+p denote the set whose elements are either
a or a+p, where a ∈ N∞. For integers t,m > 1, let Nt×m∞,+p denote the set of matrices with t
rows and m columns where each entry is an element from N∞,+p.

A t-color bipartite (undirected) graph is G = (U, V,E1, . . . , Et), where U and V are sets
of vertices and E1, . . . , Et are pairwise disjoint sets of edges between U and V . Edges in
Ei are called Ei-edges. We will write an edge in a bipartite graph as (u, v) ∈ U × V . For a
vertex u ∈ U ∪ V , the Ei-degree of u is the number of Ei-edges adjacent to u. The degree of
u is the sum of the Ei-degrees for i = 1 . . . t. We say that G is complete, if U × V =

⋃t
i=1Ei.

For two matrices A ∈ Nt×m∞,+p and B ∈ Nt×n∞,+p, the graph G is a A|B-biregular graph, if
there exist partitions U1, . . . , Um of U and V1, . . . , Vn of V such that for every 1 6 i 6 t,
for every 1 6 k 6 m, for every 1 6 l 6 n, the Ei-degree of every vertex in Uk is Ai,k and
the Ei degree of every vertex in Vl is Bi,l.1 For each such partition, we say that G has size
M̄ |N̄ , where M̄ = (|U1|, . . . , |Um|) and N̄ = (|V1|, . . . , |Vn|). The partition U1, . . . , Um and
V1, . . . , Vn is called a witness partition. We should remark that some Ui and Vi are allowed
to be empty.

The above definition can be easily adapted for the case of directed graphs that are not
necessarily bipartite. A t-color directed graph (or digraph) is G = (V,E1, . . . , Et), where
E1, . . . , Et are pairwise disjoint set of directed edges on a set of vertices V . As before, edges
in Ei are called Ei-edges. The Ei-indegree and -outdegree of a vertex u, is defined as the
number of incoming and outgoing Ei-edges incident to u.

In a t-color digraph G we will assume that (i) there are no self-loops – that is, (v, v) is
not an Ei-edge, for every vertex v ∈ V and every Ei, and (ii) if (u, v) is an Ei-edge, then its
inverse (v, u) is not an Ej-edge for any Ej . This will suffice for the digraphs that arise in
our decision procedure. We say that a digraph G is complete, if for every u, v ∈ V and u 6= v,
either (u, v) or (v, u) is an Ei-edge, for some Ei.

We say that G is a A|B-regular digraph, where A,B ∈ Nt×m∞,+p, if there exists a partition
V1, . . . , Vm of V such that for every 1 6 i 6 t, for every 1 6 k 6 m, the Ei-indegree and
-outdegree of every vertex in Vk is Ai,k and Bi,k, respectively. We say that G has size
(|V1|, . . . , |Vm|), and call V1, . . . , Vm a witness partition.

Lemma 2 below will be the main technical tool for our decidability result. Let x̄ and ȳ
be vectors of variables of length m and n, respectively.

I Lemma 2. For every A ∈ Nt×m∞,+p and B ∈ Nt×n∞,+p, there exists (effectively computable)
existential Presburger formula c-biregA|B(x̄, ȳ) such that for every (M̄, N̄) ∈ Nm∞ × Nn∞,
the following holds: there is complete A|B-biregular graph with size M̄ |N̄ if and only if
c-biregA|B(M̄, N̄) holds in N∞.

Lemma 3 below is the analog for digraphs.

I Lemma 3. For every A ∈ Nt×m∞,+p and B ∈ Nt×m∞,+p, there exists (effectively computable)
existential Presburger formula c-regA|B(x̄) such that for every M̄ ∈ Nm∞, the following holds.
There is complete A|B-regular digraph with size M̄ if and only if c-regA|B(M̄) holds in N∞.

1 By abuse of notation, when we say that an integer z equals a+p, we mean that z ∈ a+p. Thus, when
writing Ai,k = a+p, we mean that the degree of the vertex is an element in a+p.
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Lemmas 2 and 3 can be easily readjusted when we are interested only in finite sizes, i.e.,
M̄ ∈ Nm and N̄ ∈ Nn, by requiring the formulas to hold in N , instead of N∞. Alternatively,
we can also state inside the formulas that none of the variables in x̄ and ȳ are equal to ∞.

The proofs of these two lemmas are discussed in Section 4.

3.2 Decision procedure

Theorem 4 below is the main result in this paper.

I Theorem 4. For every FO2
Pres sentence φ, there is an (effectively computable) existential

Presburger formula PRESφ such that (i) φ has a model iff PRESφ holds in N∞ and (ii) φ
has a finite model iff PRESφ holds in N .

From the decision procedure for existential Presburger formulas (Theorem 1) mentioned
in Section 2, we immediately will obtain the following corollary.

I Corollary 5. Both satisfiability and finite satisfiability for FO2
Pres are decidable.

We will sketch how Theorem 4 is proven, making use of Lemmas 2 and 3. We start by
observing that satisfiability (and spectrum analysis) for an FO2

Pres sentence can be converted
effectively into the same questions for a sentence in a variant of Scott normal form:

φ := ∀x∀y α(x, y) ∧
k∧
i=1
∀x∃Siy βi(x, y) ∧ x 6= y, (1)

where α(x, y) is a quantifier free formula, each βi(x, y) is an atomic formula and each Si is
an u.p.s. The proof, which is fairly standard, will appear in the full version of this paper. By
taking the least common multiple, we may assume that all the (non-zero) periods in all Si
are the same.

We recall some standard terminology. A 1-type is a maximally consistent set of atomic
and negated atomic unary formulas using only variable x. A 1-type can be identified with
the quantifier-free formula that is the conjunction of its constituent formulas. Thus, we say
that an element a in a structure A has 1-type π, if π holds on the element a. We denote
by Aπ the set of elements in A with 1-type π. Clearly the domain A of a structure A is
partitioned into the sets Aπ. Similarly, a 2-type is a maximally consistent set of atomic and
negated atomic binary formulas using only variables x, y, containing the predicate x 6= y.
The notion of a pair of elements (a, b) in a structure A having 2-type E is defined as with
1-types. We denote by Π = {π1, π2, . . . , πn} and E = {E1, . . . , Et,

←−
E1, . . . ,

←−
Et} the sets of all

1-types and 2-types, respectively, where ←−Ei(x, y) = Ei(y, x) for each 1 6 i 6 t – that is, each
←−
Ei is the reversal of Ei.

Let g : E × Π → N∞,+p be a function. We will use such a function g to describe the
“behavior” of the elements in the following sense. Let A be a structure. We say that an
element a ∈ A behaves according to g, if for every E ∈ E and for every π ∈ Π, the number of
elements b ∈ Aπ such that the 2-type of (a, b) is E belongs to g(E, π). We denote by Aπ,g
the set of all elements in Aπ that behave according to g. The restriction of g on 1-type π is
the function gπ : E → N∞,+p, where gπ(E) = g(E, π). We call the function gπ the behavior
(function) towards 1-type π.

We are, of course, only interested in functions g that are consistent with the sentence φ
in (1), and we formalize this as follows:

A 1-type π ∈ Π and a function g : E ×Π→ N∞,+p are incompatible (w.r.t. ∀x∀y α(x, y)),
if there is E ∈ E and π′ ∈ Π such that π(x)∧E(x, y)∧π′(y) |= ¬α(x, y) and g(E, π′) 6= 0.

ICALP 2020



112:6 Two Variable Logic with Ultimately Periodic Counting

A function g : E ×Π→ N∞,+p is a good function (w.r.t.
∧k
i=1 ∀x∃Siy βi(x, y) ∧ x 6= y), if

for every π ∈ Π and for every i the following holds:2∑
E|=βi(x,y)

∑
π∈Π

g(E, π) = a for some a ∈ Si.

If A |= φ then A(π,g) = ∅, whenever π and g are incompatible, and in addition every element
in A behaves only according to some good function.

The main idea is to construct the sentence PRESφ that “counts” the cardinality |A(π,g)| in
every structure A |= φ, for every π and g. Toward this end, let G = {g1, g2, . . . , gm} enumerate
all good functions. Note that G can be computed effectively from the sentence φ, since it
suffices to consider functions g : E ×Π→ N∞,+p with codomain {0, . . . , a, 0+p, . . . , a+p,∞},
where a is the maximal offset of the (non-∞) elements in

⋃k
i=1 Si.

The sentence PRESφ will be of the form

PRESφ := ∃X̄ consistent1(X̄) ∧ consistent2(X̄) (2)

where X̄ is a vector of variables (X(π1,g1), X(π1,g2), . . . , X(πn,gm)). Intuitively, each X(πi,gj)
represents |Aπi,gj |. By the formulas consistent1(X̄) and consistent2(X̄), we capture the
consistency of the integers X̄ with the formulas ∀x∀y α(x, y) and

∧k
i=1 ∀x∃Siy βi(x, y)∧x 6= y,

respectively.
We start by defining the formula consistent1(X̄). Letting H be the set of all pairs (π, g)

where π and g are incompatible, the formula consistent1(X̄) can be defined as

consistent1(X̄) :=
∧

(π,g)∈H

X(π,g) = 0 (3)

Towards defining the formula consistent2(X̄), we introduce some notations. For π ∈ Π,
define the matrices Mπ,

←−
Mπ ∈ Nt×m∞,+p as follows:

Mπ :=

g1(E1, π) · · · gm(E1, π)
...

. . .
...

g1(Et, π) · · · gm(Et, π)

 and ←−
Mπ :=


g1(←−E1, π) · · · gm(←−E1, π)

...
. . .

...
g1(←−Et, π) · · · gm(←−Et, π)


The idea is that Mπ captures all possible behavior towards 1-type π, where each column
j represents the behavior of gj towards π. Note that for a structure A and 1-type π, the
restriction of A on the set Aπ can be viewed as a t-color digraph G = (V,E1, . . . , Et). It is
sufficient to consider only the 2-types E1, . . . , Et, because each Ei determines its reversal ←−Ei.
Moreover, an element a has an incoming Ei-edge if and only if it has an outgoing ←−Ei-edge.
Thus, if A |= φ, the graph G is a complete Mπ|

←−
Mπ-regular digraph.

Now, we explain how to capture the behavior between elements with distinct 1-types.
Define matrices Lπ,

←−
L π ∈ N2t×m

∞,+p as follows:

Lπ :=
(
Mπ←−
Mπ

)
and ←−

L π :=
(←−
Mπ

Mπ

)

That is, in Lπ the first t rows come from Mπ with the next t rows from ←−Mπ. On the other
hand, in ←−L π the first t rows come from ←−Mπ, followed by the t rows from Mπ.

2 Here the operation + on N∞,+p is defined to be commutative operation where a + ∞ = a+p + ∞ = ∞
and a+p + b = a+p + b+p = (a + b)+p. On integers from N, it is the standard addition operation.
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The idea is that for a structure A, the 2-types that are realized between Aπ and Aπ′

can be viewed as a 2t-color bipartite graph G = (Aπ, Aπ′ , E1, . . . , Et,
←−
E1, . . . ,

←−
Et), where the

direction of the edges are ignored. Moreover, a pair (a, b) has 2-type E if and only if (b, a)
has 2-type ←−E , Thus, if A |= φ, the graph G is a complete Lπ′ |

←−
L π-biregular graph.

Now we are ready to define the formula consistent2(X̄). We enumerate all the 1-types
π1, . . . , πn and define consistent2 as follows:

consistent2(X̄) :=
∧

16i6n
c-reg

Mπi
|
←−
Mπi

(X̄πi) ∧
∧

16i<j6n
c-bireg

Lπj |
←−
Lπi

(X̄πi , X̄πj ). (4)

The formula consistent1(X̄) is Presburger definable by inspection, while consistent2(X̄)
is Presburger definable using Lemmas 2 and 3. The correctness comes directly from the
following lemma.

I Lemma 6. For every structure A |= φ, consistent1(N̄) ∧ consistent2(N̄) holds, where N̄ =
(|Aπ1,g1 |, . . . , |Aπn,gm |). Conversely, for every N̄ such that consistent1(N̄) ∧ consistent2(N̄)
holds, there is A |= φ such that N̄ = (|Aπ1,g1 |, . . . , |Aπn,gm |).

Proof. Let φ be in Scott normal form as in (1). As before, Π = {π1, π2, . . . , πn} denote the set
of all 1-types and E = {E1, . . . , Et,

←−
E1, . . . ,

←−
Et} the set of all 2-types, where←−Ei(x, y) = Ei(y, x)

for each 1 6 i 6 t. Recall that each 2-type E contains the predicate x 6= y and that
G = {g1, . . . , gm} is the set of all good functions.

Note that for π, π′ ∈ Π and E ∈ E , the conjunction π(x) ∧ E(x, y) ∧ π′(y) corresponds
to a boolean assignment of the atomic predicates in α(x, y). Thus, either π(x) ∧ E(x, y) ∧
π′(y) |= α(x, y) or π(x) ∧ E(x, y) ∧ π′(y) |= ¬α(x, y). Similarly, π(x) ∧ x = y |= α(x, y) or
π(x) ∧ x = y |= ¬α(x, y).

We first prove the first statement in the lemma. Let A |= φ. Partition A into Aπ,g’s. We
will show that consistent1(X̄) ∧ consistent2(X̄) holds when each Xπ,g is assigned with the
value |Aπ,g|.

Since A |= ∀x∀y α(x, y), by definition Aπ,g = ∅, whenever π and g are incompatible.
Thus, consistent1(X̄) holds.

Next, we will show that consistent2(X̄) holds. Let π ∈ Π. By definition of Aπ, Aπ is a
complete Mπ|

←−
Mπ-regular digraph G = (V,E1, . . . , Et), with size (|Aπ,g1 |, . . . , |Aπ,gm |). Thus,

by Lemma 3, c-reg
Mπ|
←−
Mπ

(X̄π) holds.
For πi, πj ∈ Π, where i < j, the structure A restricted to Aπi and Aπj can be viewed as

a complete Lπj |
←−
L πi-biregular graph G = (U, V,E1, . . . , Et,

←−
E1, . . . ,

←−
Et), where U = Aπi and

V = Aπj , and for each 1 6 i 6 t, we have the interpretation denoted (by a slight abuse of
notation) as Ei consist of all pairs (a, b) ∈ Aπi ×Aπj whose 2-type is Ei, and similarly for
←−
Ei. By Lemma 2, c-bireg

Lπj |
←−
Lπi

(X̄πi , X̄πj ) holds.
Now we prove the second statement. Suppose PRESφ holds. By definition, there exists an

assignment to the variables in X̄ such that consistent1(X̄) ∧ consistent2(X̄) holds. Abusing
notation as we often do in this work, we denote the value assigned to each Xπ,g by the
variable Xπ,g itself.

For each (π, g), we have a set Vπ,g with cardinality Xπ,g. We denote by Vπ =
⋃
g Vπ,g.

We construct a structure A that satisfies φ as follows.
The domain is A =

⋃
π,g Vπ,g.

For each π ∈ Π, for each a ∈ Vπ, the unary atomic formulas on a are defined such that
the 1-type of a becomes π.

ICALP 2020



112:8 Two Variable Logic with Ultimately Periodic Counting

For each π ∈ Π, the binary predicates on (u, v) ∈ Vπ × Vπ are defined as follows. Since
c-reg

Mπ|
←−
Mπ

(X̄π) holds, there is a complete Mπ|
←−
Mπ-regular digraph G = (Vπ, E1, . . . , Et)

with size X̄π. The edges E1, . . . , Et define precisely the 2-types among elements in Vπ.
For each πi, πj , where i < j, the binary predicates on (u, v) ∈ Vπi × Vπj are defined
as follows. Since c-bireg

Lπj |
←−
Lπi

(X̄πi , X̄πj ) holds, there is a Lπ′ |
←−
L π-biregular graph

G = (Vπi , Vπj , E1, . . . , Et,
←−
E1, . . . ,

←−
Et) with size X̄π|X̄π′ . The edges E1, . . . , Et,

←−
E1, . . . ,

←−
Et

define precisely the 2-types on (u, v) ∈ Vπi × Vπj .

We first show that A |= ∀x∀y α(x, y). Indeed, suppose there exist u, v ∈ A such that
π(u)∧E(u, v)∧π′(v) 6|= α(u, v). By definition, there is g such that u ∈ Vπ,g and g(E, π′) 6= 0.
Thus, Vπ,g 6= ∅. This also means that π is incompatible with g, which implies that Xπ,g = 0
by consistent1(X̄), thus, contradicts the assumption that Vπ,g 6= ∅.

Next, we show thatA |=
∧k
i=1 ∀x∃Siy βi(x, y)∧x 6= y. Note that G = {g1, . . . , gm} consists

of only good functions. Thus, for every g ∈ G, for every βi, the sum
∑
π

∑
βi(x,y)∈E g(E, π)

is an element in Si. J

4 Proof ideas for Lemmas 2 and 3

We now discuss the proof of the main biregular graph lemmas. Due to space constraints, we
deal only with the 1-color case, which gives the flavor of the arguments. The general case,
which is much more involved, is deferred to the full version of this paper.

This section is organized as follows. In Subsection 4.1 we will focus on a relaxation of
Lemma 2 where the requirement being complete is dropped. This will then be used to prove
the complete case in Subsection 4.2. Finally, in Subsection 4.3 we present a brief explanation
on how to modify the proof for the biregular graphs to the one for regular digraphs.

4.1 The case of incomplete 1-color biregular graphs
This subsection is devoted to the proof of the following lemma.

I Lemma 7. For every A ∈ N1×m
∞,+p and B ∈ N1×n

∞,+p, there exists (effectively computable)
existential Presburger formula biregA|B(x̄, ȳ) such that for every (M̄, N̄) ∈ Nm∞ × Nn∞ the
following holds: there is an A|B-biregular graph with size M̄ |N̄ if and only if biregA|B(M̄, N̄)
holds in N∞.

The desired formula c-biregA|B(x̄, ȳ) for complete biregular graphs will be defined using
the formula biregA|B(x̄, ȳ).

We will use the following notations. The term vectors always refers to row vectors, and
we usually use ā, b̄, . . . (possibly indexed) to denote them. We write (ā, b̄) to denote the
vector ā concatenated with b̄. Obviously 1-row matrices can be viewed as row vectors. For
ā = (a1, . . . , ak) ∈ Nk∞, we write ā+p to denote the vector (a+p

1 , . . . , a+p
k ).

Matrix entries of the form a+p are called periodic entries. Otherwise, they are called fixed
entries. By grouping the entries according to whether they are fixed/periodic, we write a
1-row matrix M as (ā, b̄+p), where ā and b̄+p correspond to the fixed and periodic entries in
M . Matrices that contain only fixed (or, periodic) entries are written as ā (or, ā+p).

To specify A|B-biregular graphs, we write (ā, b̄+p)|(c̄, d̄+p)-biregular graphs, where
A = (ā, b̄+p) and B = (c̄, d̄+p). Similarly, when, say, A contains only fixed entries, it
is written as ā|(c̄, d̄+p)-biregular. The size of (ā, b̄+p)|(c̄, d̄+p)-biregular graph is written as
(M̄0, M̄1)|(N̄0, N̄1), where the lengths of M̄0, M̄1, N̄0, N̄1 are the same as ā, b̄, c̄, d̄, respectively.
The other cases, when some of ā, b̄+p, c̄, d̄+p are omitted, are treated in similar manner.
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As before, we will write x̄, ȳ (possibly indexed) to denote a vector of variables. We write
1̄ to denote the vector with all components being 1. We use · to denote the standard dot
product between two vectors. To avoid being repetitive, when dot products are performed,
it is implicit that the vector lengths are the same. In particular, x̄ · 1̄ is the sum of all the
components in x̄.

We now outline the proof of Lemma 7, focusing only on the case where there is no ∞
degree in the matrices. The case where such a degree exists is similar but simpler. Without
loss of generality, we can also assume that none of the fixed entries are zero. For vectors
M̄0, M̄1, N̄0, N̄1 with the same length as ā, b̄, c̄, d̄, respectively, we say that (M̄0, M̄1)|(N̄0, N̄1)
is big enough for (ā, b̄+p)|(c̄, d̄+p), if the following holds:
(a) M̄0 · 1̄ + M̄1 · 1̄ + N̄0 · 1̄ + N̄1 · 1̄ > 2δ2

max + 3,
(b) M̄1 · 1̄ > δ2

max + 1,
(c) N̄1 · 1̄ > δ2

max + 1.
Here δmax is max(p, ā, b̄, c̄, d̄) – that is, the maximal element among p and the components
in ā, b̄, c̄, d̄. When b̄+p or d̄+p are missing, the same notion can be defined by dropping
condition (b) or (c), respectively. For example, we say that M̄ |N̄ is big enough for ā|b̄, if
M̄ · 1̄ + N̄ · 1̄ > 2δ2

max + 3, where δmax = max(ā, b̄). Similarly, (M̄0, M̄1)|N̄ is big enough for
(ā, b̄+p)|c̄, if M̄0·1̄+M̄1·1̄+N̄ ·1̄ > 2δ2

max+3, and M̄1·1̄ > δ2
max+1, where δmax = max(p, ā, b̄, c̄).

The proof idea is as follows. We first construct a formula that deals with big enough
sizes. Then, we construct a formula for each of the cases when one of the conditions (a), (b)
or (c) is violated. The interesting case will be when condition (b) is violated. This means
that the number of vertices with degrees from b̄+p is fixed, and they can be “encoded” inside
the Presburger formula.

We start with the big enough case. When there are only fixed entries, we will use the
following lemma.

I Lemma 8. For M̄ |N̄ big enough for ā|b̄, there is a ā|b̄-biregular graph with size M̄ |N̄ if
and only if M̄ · ā = N̄ · b̄.

Proof. Note that if we have a biregular graph with the desired outdegrees on the left, then
the total number of edges must be M̄ · ā, and similarly the total number of edges considering
the requirement for vertices on the right, we see that the total number of edges must be N̄ · b̄.
Thus this condition is always a necessary one, regardless of whether M̄ |N̄ is big enough.

When both M̄ and N̄ do not contain ∞, [13, Lemma 7.2] shows that when M̄ |N̄ is big
enough for ā|b̄, the converse holds: M̄ · ā = N̄ · b̄ implies that there is a ā|b̄-biregular graph
with size M̄ |N̄ . We briefly mention the proof idea there, which we will also see later (e.g., in
the proof of Lemma 9). There is a preliminary construction that handles the requirement
on vertices on one side in isolation, leaving the vertices on the right with outdegree 1. A
follow-up construction merges vertices on the right in order to ensure the necessary number
of incoming edges on the right. In doing so we exploit the “big enough” property in order to
avoid merging two nodes on the right with a common adjacent edge on the left.

We will now prove that the condition is also sufficient when either M̄ or N̄ contains ∞.
So assume M̄ · ā = N̄ · b̄, and thus both M̄, N̄ contain ∞.

We construct an ā|b̄-biregular graph G = (U, V,E) with size M̄ |N̄ as follows. Let
ā = (a1, . . . , am) and b̄ = (b1, . . . , bn). Let M̄ = (M1, . . . ,Mm) and N̄ = (N1, . . . , Nn). We
pick pairwise disjoint sets U1, . . . , Um, where each |Ui| = Mi and V1, . . . , Vn, where |Vi| = Ni.
We set U =

⋃
i Ui and V =

⋃
i Vi.

The edges are constructed as follows. For each i 6 i 6 m, when |Ui| is finite, we make
each vertex u ∈ Ui have degree ai, as follows. For each 1 6 j 6 t, we pick ai “new” vertices
from some infinite set Vl – that is, vertices that are not adjacent to any edge, and connect
them to u. Likewise, for each vertex v ∈ Vi when |Vi| is finite. After performing this, every
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vertex in finite Ui and Vi has degree ai and bi, respectively, and every vertex in infinite sets
Ui and Vi has degree at most 1.

Finally, we iterate the following process. For every infinite Ui, if u ∈ Ui has degree other
than ai, we change the degree to ai by picking “new” vertices from some infinite set Vl, and
connect them to u by an appropriate number of edges. Likewise, we can make each vertex
v in infinite Vi to have degree bi. Note that in any iteration, for every infinite set Ui, the
degree of a vertex u ∈ Ui is either ai, 1, or 0. Likewise, in any iteration, for every infinite
set Vi, the degree of a vertex v ∈ Vi is either bi, 1, or 0. Since there is an infinite supply of
vertices, there are always new vertices that can be picked in any iteration. J

Now we move to the case where the entries are still big enough, but some of the entries
are periodic on one side. Then we consider the following formula Ψ(ā,b̄+p)|c̄(x̄0, x̄1, ȳ):

∃z (z 6=∞) ∧
(
ā · x̄0 + b̄ · x̄1 + pz = c̄ · ȳ

)
. (5)

Note that if G = (U, V,E) is a (ā, b̄+p)|c̄-biregular graph with size (M̄0, M̄1)|N̄ , then the
number of edges |E| should equal the sum of the degrees of the vertices in U , which is
ā · M̄0 + b̄ · M̄1 + zp, for some integer z > 0. Since this quantity must equal the sum of the
degrees of the vertices in V , which is c̄ · N̄ , we again conclude that this formula is a necessary
condition – regardless of whether the entries are big enough. We again show the converse.

I Lemma 9. For (M̄0, M̄1)|N̄ big enough for (ā, b̄+p)|c̄ the following holds. There is a
(ā, b̄+p)|c̄-biregular graph with size (M̄0, M̄1)|N̄ if and only if Ψ(ā,b̄+p)|c̄(M̄0, M̄1, N̄) holds.

Proof. Assume that Ψ(ā,b̄+p)|c̄(M̄0, M̄1, N̄) holds. As before, abusing notation, we denote
the value assigned to variable z by z itself. Suppose ā · M̄0 + b̄ · M̄1 + pz = N̄ · c̄. Since
(M̄0, M̄1)|N̄ is big enough for (ā, b̄+p)|c̄, it follows immediately that (M̄0, M̄1, z)|N̄ is big
enough for (ā, b̄, p)|c̄. Applying Lemma 8, there is a (ā, b̄, p)|c̄-biregular graph with size
(M̄0, M̄1, z)|N̄ . That is, we have a graph that satisfies our requirements, but there is an
additional partition class Z on the left of size z where the number of adjacent vertices
is p, rather than being b̄+p as we require. Let G = (U, V,E) be such a graph, and let
U = U0 ∪ U1 ∪ Z, where U0, U1, and Z are the sets of vertices whose degrees are from ā, b̄,
and from p. Note that |U0| = M̄0 · 1̄, |U1| = M̄1 · 1̄ and |Z| = z.

We will construct a (ā, b̄+p)|c̄-biregular graph with size (M̄0, M̄1)|N̄ . The idea is to merge
the vertices in Z with vertices in U1. Let z0 ∈ Z. The number of vertices in U1 reachable
from z0 in distance 2 is at most δ2

max. Since (M̄0, M̄1)|N̄ is big enough for (ā, b̄+p)|c̄, we
have |U1| = M̄1 · 1̄ > δ2

max + 1. Thus, there is a vertex u ∈ U1 not reachable in distance 2.
We merge z0 and u into one vertex. Since the degree of z0 is p, such merging increases the
degree of u by p, which does not break our requirement. We perform such merging for every
vertex in Z. J

Finally, we turn to the big enough case where there are periodic entries on both sides.
There we will deal with the following formula Ψ(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1):

∃z1∃z2 (z1 6=∞) ∧ (z2 6=∞) ∧
(
ā · x̄0 + b̄ · x̄1 + pz1 = c̄ · ȳ0 + d̄ · ȳ1 + pz2

)
. (6)

I Lemma 10. For (M̄0, M̄1)|(N̄0, N̄1) big enough for (ā, b̄+p)|(c̄, d̄+p) the following holds:
there exists a (ā, b̄+p)|(c̄, d̄+p)-biregular graph with size (M̄0, M̄1)|(N̄0, N̄1) if and only if
Ψ(ā,b̄+p)|(c̄,d̄+p)(M̄0, M̄1, N̄0, N̄1) holds.
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Proof. As before, the “only if” part is straightforward, so we focus on the “if” part. Suppose
Ψ(ā,b̄+p)|(c̄,d̄+p)(M̄0, M̄1, N̄0, N̄1) holds. Thus, ā · M̄0 + b̄ · M̄1 + pz1 = c̄ · N̄0 + d̄ · N̄1 + pz2. If
z1 > z2, then the equation can be rewritten as ā · M̄0 + b̄ · M̄1 + p(z1 − z2) = c̄ · N̄0 + d̄ · N̄1.
By Lemma 9, there is a (ā, b̄+p)|(c̄, d̄)-biregular graph with size (M̄0, M̄1)|(N̄0, N̄1), which of
course, is also (ā, b̄+p)|(c̄, d̄+p)-biregular. The case when z2 > z1 is symmetric. J

The previous lemmas give formulas that capture the existence of 1-color biregular graphs
for big enough sizes. We now turn to sizes that are not big enough – that is, when one of the
conditions (a), (b) or (c) is violated. When condition (a) is violated, we have restricted the
total size of the graph, and thus we can write a formula that simply enumerate all possible
valid sizes. We will consider the case when condition (b) is violated, with the case where
condition (c) is violated being symmetric.

If (b) is violated we can fix the value of M̄1 · 1̄ as some r, and it suffices to find a formula
that works for this r. The idea is that a fixed number of vertices in a graph can be “encoded”
as formulas. For ā = (a1, . . . , ak), b̄ = (b1, . . . , bl), c̄ = (c1, . . . , cm) and d̄ = (d1, . . . , dn), and
for integer r > 0, define the formula Φr(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1) as follows:
1. when r = 0, let

Φr(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1) := x̄1 · 1̄ = 0 ∧ Ψā|(c̄,d̄+p)(x̄0, ȳ0, ȳ1),

where Ψā|(c̄,d̄+p)(x̄0, ȳ0, ȳ1) is as defined in equation (5);
2. when r > 1, let x̄1 = (x1,1, . . . , x1,l) and

Φr(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1) :=

∃s∃z̄0∃z̄1∃z̄2∃z̄3

l∨
i=1

 (x1,i 6= 0) ∧ (bi + ps = z̄1 · 1̄ + z̄3 · 1̄) ∧ (s 6=∞)
∧ (z̄0 + z̄1 = ȳ0) ∧ (z̄2 + z̄3 = ȳ1)
∧ Φr−1

(ā,b̄+p)|(c̄,c̄−1̄,d̄+p,(d̄−1̄)+p)(x̄0, x̄1 − ei, z̄0, z̄1, z̄2, z̄3)

 ,

where ei denotes the unit vector (with length k) where the i-th component is 1, and the
lengths of z̄0 and z̄1 are the same as ȳ0, and the lengths of z̄2 and z̄3 are the same as ȳ1.

The motivation for these formulas will be explained in the proof of the following lemma.

I Lemma 11. For every ā, b̄, c̄, d̄, every integer r > 0 and every M̄0, M̄1, N̄0, N̄1 such that
1. M̄0 · 1̄ + N̄0 · 1̄ + N̄1 · 1̄ > 2δ2

max + 3,
2. N̄1 · 1̄ > δ2

max + 1,
3. M̄1 · 1̄ = r,
where δmax = max(p, ā, c̄, d̄), the following holds: there is a (ā, b̄+p)|(c̄, d̄+p)-biregular graph
with size (M̄0, M̄1)|(N̄0, N̄1) if and only if Φr(ā,b̄+p)|(c̄,d̄+p)(M̄0, M̄1, N̄0, N̄1) holds.

Proof. The proof is by induction on r. The base case r = 0 follows from Lemma 9, so we
focus on the induction step.

We begin with the “only if” direction, which provides the intuition for these formulas.
Suppose G = (U, V,E) is a (ā, b̄+p)|(c̄, d̄+p)-biregular with size (M̄0, M̄1)|(N̄0, N̄1). We
let U = U0,1 ∪ · · · ∪ U0,k ∪ U1,1 ∪ · · · ∪ U1,l, where M̄0 = (|U0,1|, . . . , |U0,k|) and M̄1 =
(|U1,1|, . . . , |U1,l|). Likewise, we let V = V0,1 ∪ · · · ∪ V0,m ∪ V1,1 ∪ · · · ∪ V1,n, where N̄0 =
(|V0,1|, . . . , |V0,m|) and N̄1 = (|V1,1|, . . . , |V1,n|).

Since we are not in the base case, we can assume M̄1 · 1̄ =
∑l
i=1 |U1,i| = r 6= 0. Thus we

can fix some i with 1 6 i 6 l such that U1,i 6= ∅, and fix also some u ∈ U1,i. Based on this u,
we define, for each 1 6 j 6 m, Z0,j to be the set of vertices in V0,j adjacent to u. For each
1 6 j 6 n we let Z1,j be the set of vertices in V1,j adjacent to u. Figure 1 illustrates the
situation.

If we omit the vertex u and all its adjacent edges, we have the following:

ICALP 2020



112:12 Two Variable Logic with Ultimately Periodic Counting

U0,1

ppp
U0,k

U1,1

ppp
U1,i ruppp
U1,l

V0,1
Z0,1

ppp
V0,m

Z0,m

V1,1
Z1,1

ppp
V1,n

Z1,n

Figure 1 Inductive construction for the “not big enough” case.

1. for every 1 6 j 6 m, every vertex in Z0,j has degree cj − 1,
2. for every 1 6 j 6 n, every vertex in Z1,j has degree (dj − 1)+p.
Thus, we have a (ā, b̄+p)|(c̄, c̄ − 1̄, d̄+p, (d̄ − 1̄)+p)-biregular graph with size (M̄0, M̄1 −
ei)|(K̄0,0, K̄0,1, K̄1,0, K̄1,1), where

K̄0 = (|V0,1| − |Z0,1|, . . . , |V0,m| − |Z0,m|), K̄1 = (|Z0,1|, . . . , |Z0,m|),
K̄2 = (|V1,1| − |Z1,1|, . . . , |V1,n| − |Z1,n|), K̄3 = (|Z1,1|, . . . , |Z1,n|).

We can check that the sizes allow us to apply the induction hypothesis to this graph,
keeping in mind that the sizes on the left have now decreased by one. We conclude
that Φr−1

(ā,b̄+p)|(c̄,c̄−1̄,d̄+p,(d̄−1̄)+p)(M̄0, M̄1 − ei)|(K̄0,0, K̄0,1, K̄1,0, K̄1,1) holds. Moreover, since
u ∈ U1,i, and hence the degree of u is b+pi , we have K̄1·1̄+K̄3·1̄ = bi+ps, for some integer s > 0.
Note also that K̄0 + K̄1 = N̄0 and K̄2 + K̄3 = N̄1. Thus, Φr

(ā,b̄+p)|(c̄,d̄+p)(M̄0, M̄1)|(N̄0, N̄1)
holds where the variables z̄0, z̄1, z̄2, z̄3 are assigned with K̄0, K̄1, K̄2, K̄3, respectively.

For the “if” direction, suppose Φr
(ā,b̄+p)|(c̄,d̄+p)(M̄0, M̄1, N̄0, N̄1) holds. Then we can fix

some s, z̄0, z̄1, z̄2, z̄3, and i such that (a) x1,i 6= 0, (b) bi + ps = z̄1 · 1̄ + z̄3 · 1̄, (c) z̄0 + z̄1 = N̄0,
(d) z̄2 + z̄3 = N̄1, and (e) Φr−1

(ā,b̄+p)|(c̄,c̄−1̄,d̄+p,(d̄−1̄)+p)(M̄0, M̄1 − ei, z̄0, z̄1, z̄2, z̄3) holds.
We prove from this that a biregular graph of the appropriate size exists. Note that the

hypothesis requires that M̄0 · 1̄ + N̄0 · 1̄ + N̄1 · 1̄ > 2δ2
max + 3, where δmax is as defined in the

statement of the lemma. Since max(p, ā, b̄, c̄, c̄− 1̄, d̄, d̄− 1̄) = δmax, the equalities in (c) and
(d) imply that M̄0 · 1̄ + z̄0 · 1̄ + z̄1 · 1̄ + z̄2 · 1̄ + z̄3 · 1̄ is bigger than 2δ2

max + 3.
Note that (M̄1 − ei) · 1̄ = r − 1. Thus we can apply the induction hypothesis and

obtain a (ā, b̄+p)|(c̄, c̄− 1̄, d̄+p, (d̄− 1̄)+p)-biregular graph G = (U, V,E) with size (M̄0, M̄1 −
ei)|(z̄0, z̄1, z̄2, z̄3). Let V = V0 ∪ V1 ∪ V2 ∪ V3 be the partition of V , where

V0 = V0,1 ∪ · · · ∪ V0,m, V1 = V1,1 ∪ · · · ∪ V1,m,

V2 = V2,1 ∪ · · · ∪ V2,n, V3 = V3,1 ∪ · · · ∪ V3,n,

and such that
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1. for every 1 6 i 6 m, the degree of vertices in V0,j and V1,j are cj and cj − 1, respectively;
2. for every 1 6 i 6 n, the degree of vertices in V2,j and V3,j are d+p

j and (dj − 1)+p,
respectively.

Note also that z̄0 = (|V0,1|, . . . , |V0,m|), z̄1 = (|V1,1|, . . . , |V1,m|), z̄2 = (|V2,1|, . . . , |V2,m|), and
z̄3 = (|V3,1|, . . . , |V3,m|).

Let u be a fresh vertex. We can construct a (ā, b̄+p)|(c̄, d̄+p)-biregular graph G′ =
(U ∪ {u}, V, E′), by connecting the vertex u with every vertex in V1 ∪ V3. Note that the
formula states that z̄1 · 1̄ + z̄3 · 1̄ = bi + ps, which equals to |V1| + |V3|, thus, the degree
of u is bi + ps, which satisfies our requirement for a vertex to be in Ui. Since prior to the
connection, the degrees of V1,j and V3,j are cj − 1 and (dj − 1)+p, after connecting u with
each vertex in V1 ∪ V3, their degrees become cj and d+p

j . That is, the right side vertices now
have the desired degrees, i.e., G′ is (ā, b̄+p)|(c̄, d̄+p)-biregular. Moreover, z̄0 + z̄1 = N̄0 and
z̄2 + z̄3 = N̄1. Thus, the resulting graph G′ has size (M̄0, M̄1)|(N̄0, N̄1). J

The formula bireg(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1) characterizing the sizes of (ā, b̄+p)|(c̄, d̄+p)-
biregular graphs can be defined by combining all the cases described above.

4.2 Proof of Lemma 2 for 1-color graphs (the complete case)

We now turn to bootstrapping the biregular case to add the completeness requirement imposed
in Lemma 2. Let ā = (a1, . . . , ak), b̄ = (b1, . . . , bl), c̄ = (c1, . . . , cm) and d̄ = (d1, . . . , dn). Let
x̄0 = (x0,1, . . . , x0,k), x̄1 = (x1,1, . . . , x1,l), ȳ0 = (y0,1, . . . , y0,m), and ȳ1 = (y1,1, . . . , y1,n).

The formula c-bireg(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1) for the sizes of complete (ā, b̄+p)|(c̄, d̄+p)-
biregular graphs is the conjunction of bireg(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1) such that
1. for every 1 6 i 6 k, if x0,i 6= 0, then ȳ0 · 1̄ + ȳ1 · 1̄ = ai;
2. for every 1 6 i 6 l, if x1,i 6= 0, then ȳ0 · 1̄ + ȳ1 · 1̄ = bi + pzi, for some zi;
3. for every 1 6 i 6 m, if y0,i 6= 0, then x̄0 · 1̄ + x̄1 · 1̄ = ci;
4. for every 1 6 i 6 n, if y1,i 6= 0, then x̄0 · 1̄ + x̄1 · 1̄ = di + pzi, for some zi.

To understand these additional conditions, consider a complete biregular graph meeting
the cardinality specification. The completeness criterion for 1-color graphs implies that
each element on the left is connected to every element on the right. Thus if the size of a
partition required to have fixed outdegree ai is non-empty, we must have that ai is exactly
the cardinality of the number of elements on the right. This is what is captured in the first
item. If we have non-empty size for a partition whose outdegree is constrained to be bi plus
a multiple of p, then the total number of elements on the right must be bi plus a multiple of
p. This is what the second item specifies. Considering elements on the left motivates the
third and fourth item. Thus we see that these conditions are necessary.

Suppose c-bireg(ā,b̄+p)|(c̄,d̄+p)(M̄0, M̄1, M̄0, M̄1) holds. Then, there is a (ā, b̄+p)|(c̄, d̄+p)-
biregular graphG = (U, V,E) with size (M̄0, M̄1)|(N̄0, N̄1), which are not necessarily complete.
Note that N̄0 · 1̄ + N̄1 · 1̄ is precisely the number of vertices in V . The first item states that
the existence of a vertex u with degree ai implies u is adjacent to every vertex in V . Now,
suppose there is a vertex u ∈ U with degree b+pi . If u is not adjacent to every vertex in V ,
then we can add additional edges so that u is adjacent to every vertex in V . The second
item states that |V | = b+pi . Thus, adding such edges is legal, since the degree of u stays b+pi .
We can make vertices in V adjacent to every vertex in U using the same argument.

ICALP 2020
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4.3 The proof for regular digraphs
Recall that in the prior argument we consider only digraphs without any self-loop. Thus,
a digraph can be viewed as a bipartite graph by splitting every vertex u into two vertices,
where one is adjacent to all the incoming edges, and the other to all the outgoing edges.
Thus, A|B-regular digraphs with size M̄ can be characterized as A|B-biregular graphs with
size M̄ |M̄ . For more details, see [13, Section 8].

5 Extensions and applications

A type/behavior profile for a modelM is the vector of cardinalities of the sets Aπ,g computed in
M , where π ranges of 1-types and g over behavior functions (for a fixed φ). Recall that in the
proof Theorem 4 we actually showed, in Lemma 6, that we can obtain existential Presburger
formulas which define exactly the vectors of integers that arise as the type/behavior profiles
of models of φ. The domain of the model can be broken up as a disjoint union of sets Aπ,g,
and thus its cardinality is a sum of numbers in this vector. We can thus add one additional
integer variable xtotal in PRESφ, which will be free, with an additional equation stating that
xtotal is the sum of all Xπ,g’s. This allows us to conclude definability of the spectrum.

I Theorem 12. From an FO2
Pres sentence φ, we can effectively construct a Presburger

formula ψ(n) such that N |= ψ(n) exactly when n is the size of a finite structure that satisfies
φ, and similarly a formulas ψ∞(n) such that N∞ |= ψ∞(n) exactly when n is the size of a
finite or countably infinite model of φ.

We say that φ has NP data complexity of (finite) satisfiability if there is a non-deterministic
algorithm that takes as input a set of ground atoms A and determines whether φ ∧

∧
A

is satisfiable, running in time polynomial in the size of A. Pratt-Hartmann [20] showed
that C2 formulas have NP data complexity of both satisfiability and finite satisfiability.
Following the general approach to data complexity from [20], while plugging in our Presburger
characterization of FO2

Pres, we can show that the same data complexity bound holds for
FO2

Pres.

I Theorem 13. FO2
Pres formulas have NP data complexity of satisfiability and finite satis-

fiability.

Proof. We give only the proof for finite satisfiability. We will follow closely the approach
used for C2 in Section 4 of [20], and the terminology we use below comes from that work.

Given a set of facts D, our algorithm guesses a set of facts (including equalities) on
elements of D, giving us a finite set of facts D+ extending D, but with the same domain as
D. We check that our guess is consistent with the universal part α and such that equality
satisfies the usual transitivity and congruence rules.

Now consider 1-types and 2-types with an additional predicate Observable. Based on this
extended language, we consider good functions as before, and define the formulas consistent1
and consistent2 based on them. 1-types with that contain the predicate Observable will be
referred to as observable 1-types. The restriction of a behavior function to observable 1-types
will be called an observable behavior. Given a structure M , an observable one-type π, and
an observable behavior function g0, we let Mπ,g0 be the elements of M having 1-type π and
observable behavior g0, and we analogously let Dπ,g0 be the elements of D whose 1-type and
behavior in D+ match π and g0.
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We declare that all elements in A are in the predicate Observable. Add to the formulas
consistent1 and consistent2 additional conjuncts stating that for each observable 1-type π
and for each observable behavior function g0, the total sum of the number of elements with
1-type π and a behavior function g extending g0 (i.e., the cardinality of Mπ,g0) is the same
as |Dπ,g0 |. with the cardinality being counted modulo equalities of D+.

At this point our algorithm returns true exactly when the sentence obtained by existentially
quantifying this extended set of conjuncts is satisfiable in the integers. The solving procedure
is certainly in NP. In fact, since the number of variables is fixed, with only the constants
varying, it is in PTIME [17].

We argue for correctness, focusing on the proof that when the algorithm returns true we
have the desired model. Assuming the constraints above are satisfied, we get a graph, and
from the graph we get a model M . M will clearly satisfy φ, but its domain does not contain
the domain of D. Letting O be the elements of M satisfying Observable, we know, from
the additional constraints imposed, that the cardinality of O matches the cardinality of the
domain of D modulo the equalities in D+, and for each observable 1-type πo and observable
behavior g0, |Mπ,g0 | = |Dπ,g0 .

Fix an isomorphism λ taking each Mπ,g0 to (equality classes of) Dπ,g0 . Create M ′ by
redefining M on O by connecting pairs (o1, o2) via E exactly when λ(o1), λ(o2) ise connected
via E in D+. We can thus identify O with D+ modulo equalities in M ′.

ClearlyM ′ now satisfies D. To see thatM ′ satisfies φ, we simply note that since all of the
observable behaviors are unchanged in moving from an element e in M to the corresponding
element λ(e) in M ′, and every such e modified has an observable type, it follows that the
behavior of every element in M is unchanged in moving from M to M ′. Since the 1-types
are also unchanged, M ′ satisfies φ. J

Note that the data complexity result here is best possible, since even for FO2 the data
complexity can be NP-hard [20].

6 Conclusion

We have shown that we can extend the powerful language two-variable logic with counting to
include ultimately periodic counting quantifiers without sacrificing decidability, and without
losing the effective definability of the spectrum of formulas within Presburger arithmetic.
We believe that by refining our proof we can obtain a 2NEXPTIME bound on complexity.
However the only lower bound we know of is NEXPTIME, inherited from FO2. We leave the
analysis of the exact complexity for future work.
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Abstract
Our starting point are register automata for data words, in the style of Kaminski and Francez. We
study the effects of the single-use restriction, which says that a register is emptied immediately after
being used. We show that under the single-use restriction, the theory of automata for data words
becomes much more robust. The main results are: (a) five different machine models are equivalent
as language acceptors, including one-way and two-way single-use register automata; (b) one can
recover some of the algebraic theory of languages over finite alphabets, including a version of the
Krohn-Rhodes Theorem; (c) there is also a robust theory of transducers, with four equivalent models,
including two-way single use transducers and a variant of streaming string transducers for data
words. These results are in contrast with automata for data words without the single-use restriction,
where essentially all models are pairwise non-equivalent.
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1 Introduction

One of the appealing features of regular languages for finite alphabets is the robustness of the
notion: it can be characterised by many equivalent models of automata (one-way, two-way,
deterministic, nondeterministic, alternating, etc.), regular expressions, finite semigroups, or
monadic second-order logic. A similar robustness appears for transducers, see [11] for a survey;
particularly for the class of regular string-to-string functions, which can be characterised
using deterministic two-way transducers, streaming string transducers, or mso transductions.

This robustness vanishes for infinite alphabets. We consider infinite alphabets that are
constructed using an infinite set A of atoms, also called data values. Atoms can only be
compared for equality. The literature for infinite alphabets is full of depressing diagrams
like [15, Figure 1] or [6, p. 24], which describe countless models that satisfy only trivial
relationships such as deterministic ⊆ nondeterministic, one-way ⊆ two-way, etc.

This lack of robustness has caused several authors to ask if there is a notion of “regular
language” for infinite alphabets; see [3, p. 703] or [4, p. 2]. This question was probably
rhetorical, with the assumed answer being “no”. In this paper, we postulate a “yes” answer.
The main theme is register automata, as introduced by Kaminski and Francez [13], but with
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the single-use restriction, which says that immediately after a register is used, its value is
destroyed. As we show in this paper, many automata constructions, which fail for unrestricted
register automata, start to work again in the presence of the single-use restriction.

Before describing the results in the paper, we illustrate the single-use restriction.

I Example 1. Consider the language “there are at most three distinct letters in the input
word, not counting repetitions”, over alphabet A. There is a natural register automaton
which recognises this language: use three registers to store the distinct atoms that have been
seen so far, and if a fourth atom comes up, then reject. This automaton, however, violates
the single-use restriction, because each new input letter is compared to all the registers.

letter a is stored in 3 copies
letter b is stored in 2 copies

letter c is stored in 1 copya
a b

ba c

Here is a solution that respects the single-use restriction. The idea is that once the
automaton has seen three distinct letters a, b, c, it stores them in six registers as explained in
the picture on the right. Assume that a new input letter d is read. The behaviour of the
automaton (when it already has three atoms in its registers) is explained in the flowchart in
Figure 1.

A similar flowchart is used for the corner cases when the automaton has seen less than
three letters so far.

Our first main result, Theorem 6 (in Section 3), says that the following models recognise
the same languages over infinite alphabets:
1. deterministic one-way single-use automata;
2. deterministic two-way single-use automata;
3. orbit-finite monoids [5];
4. rigidly guarded mso∼ [9];
5. string-to-boolean regular list functions with atoms.
The equivalence of the models in items 3 and 4 was shown in [9]; the remaining models and
their equivalences are new (item 5 is an extension of the regular list functions from [7]).

Just like their classical versions, one-way and two-way single-use automata are equivalent
as language acceptors, but they are no longer equivalent as transducers. For example, a
two-way single-use transducer can reverse the input string, which is impossible for a one-way
single-use transducer. In Sections 4 and 5 we develop the theory of single-use transducers:

In Section 4, we investigate single-use one-way transducers. For finite alphabets, one of
the most important results about one-way transducers is the Krohn-Rhodes Theorem [14],
which says that every Mealy machine (which is a length preserving one-way transducer)
can be decomposed into certain “prime” Mealy machines. We show that the same can be
done for infinite alphabets, using a single-use extension of Mealy machines. The underlying
prime machines are the all the machines from the original Krohn-Rhodes theorem, plus one
additional register machine which moves atoms to later positions.

In Section 5, we investigate single-use two-way transducers, and show that the correspond-
ing class of string-to-string functions enjoys similar robustness properties as the languages
discussed in Theorem 6, with four models being equivalent:
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the input letter is a,
so it can be used

to make 3 copies of a

the input letter is b,
so it can be used

to make 3 copies of b

the input letter is c,
so it can be used

to make 3 copies of c

a
a b

ba c

a
a b

ba c

a = d?
no a b

ba c

ab
b

ab c

b = d?
no a

ba c

ac
c

c

a b

c = d?

yes

no

reject

yesyes

Figure 1 Updating the six registers.

1. single-use two-way transducers;
2. an atom extension of streaming string transducers [2];
3. string-to-string regular list functions with atoms;
4. compositions of certain “prime two-way machines” (Krohn & Rhodes style).
We also show other good properties of the string-to-string functions in the above items,
including closure under composition (which follows from item 4) and decidable equivalence.

Summing up, the single-use restriction allows us to identify languages and string-to-string
functions with infinite alphabets, which share the robustness and good mathematical theory
usually associated with regularity for finite alphabets.

Due to space constraints, and a large number of results, virtually all of the proofs are in
an appendix. We use the available space to explain and justify the many new models that
are introduced.

2 Automata and transducers with atoms

For the rest of the paper, fix an infinite set A, whose elements are called atoms. Atoms will
be used to construct infinite alphabets. Intuitively speaking, atoms can only be compared
for equality. It would be interesting enough to consider alphabets of the form A × Σ, for
some finite Σ, as is typically done in the literature on data words [4, p. 1]. However, in the
proofs, we use more complicated sets, such as the set A2 of pairs of atoms, the set A+ {`,a}
obtained by adding two endmarkers to the atoms, or the co-product (i.e. disjoint union)
A2 + A3. This motivates the following definition.

I Definition 2. A polynomial orbit-finite set1 is any set that can be obtained from A and
singleton sets by means of finite products and co-products (i.e. disjoint unions).

We only care about properties of such sets that are stable under atom automorphisms, as
described below. Define an atom automorphism to be any bijection A→ A. (This notion
of automorphism formalises the intuition that atoms can only be compared for equality).
Atom automorphisms form a group. There is a natural action of this group on polynomial

1 The name “orbit-finite” is used because the above definition is a special case of orbit-finite sets discussed
later in the paper, and the name “polynomial” is used to underline that the sets are closed under
products and co-products.
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orbit-finite sets: for elements of A we apply the atom automorphism, for singleton sets the
action is trivial, and for other polynomial orbit-finite sets the action is lifted inductively
along + and × in the natural way. Let Σ and Γ be sets equipped with an action of the
group of atom automorphisms – in particular, these could be polynomial orbit-finite sets.
A function f : Σ→ Γ is called equivariant if f(π(x)) = π(f(x)) holds for every x ∈ Σ and
every atom automorphism π. The general idea is that equivariant functions can only talk
about equality of atoms. In the case of polynomial orbit-finite sets, equivariant functions can
also be finitely represented using quantifier-free formulas [6, Lemma 1.3].

The model. We now describe the single-use machine models discussed in this paper. There
are four variants: machines can be one-way or two-way, and they can recognise languages
or compute string-to-string functions. We begin with the most general form – two-way
string-to-string functions – and define the other models as special cases.

The machine reads the input string, extended with left and right endmarkers `,a. It uses
registers to store atoms that appear in the input string. A register can store either an atom,
or the undefined value ⊥. The single-use restriction, which is highlighted in bold below, says
that a register is set to ⊥ immediately after being used.

I Definition 3. The syntax of a two-way single-use transducer2 consists of
input and output alphabets Σ and Γ, both polynomial orbit-finite sets;
a finite set of states Q, with a distinguished initial state q0 ∈ Q;
a finite set R of register names;
a transition function which maps each state q ∈ Q to an element of:

questions︸ ︷︷ ︸
question that is asked

× (Q× actions)︸ ︷︷ ︸
what to do if the

question has a yes answer

× (Q× actions)︸ ︷︷ ︸
what to do if the

question has a no answer

where the allowed questions and actions are taken from the following toolkit:
1. Questions.

a. Apply an equivariant function f : Σ + {`,a} → {yes, no} to the letter under the
head, and return the answer.

b. Are the atoms stored in registers r1, r2 equal and defined? If any of these registers
is undefined, then the run immediately stops and rejects3. This question has the
side effect of setting the values of r1 and r2 to ⊥.

2. Actions.
a. Apply an equivariant function f : Σ + {`,a} → A +⊥ to the letter under the head,

and store the result in register r ∈ R.
b. Apply an equivariant function f : Ak → Γ to the contents of distinct registers

r1, . . . , rk ∈ R, and append the result to the output string. If any of the registers
is undefined, stop and reject. This action has the side effect of setting the
values of r1, r2, . . . , rk to ⊥.

c. Move the head to the previous/next input position.
d. Accept/reject and finish the run.

2 Unless otherwise noted, all transducers and automata considered in this paper are deterministic. The
theory of nondeterministic single-use models seems to be less appealing.

3 By remembering in the state which registers are defined, one can modify an automaton so that this
never happens.
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The semantics of the transducer is a partial function from strings over the input alphabet
to strings over the output alphabet. Consider a string of the form `wa where w ∈ Σ∗. A
configuration over such a string consists of (a) a position in the string; (b) a state; (c) a
register valuation, which is a function of type R → A + ⊥; (d) an output string, which is
a string over the output alphabet. A run of the transducer is defined to be a sequence
of configurations, where consecutive configurations are related by applying the transition
function in the natural way. The output of a run is defined to be the contents of the output
string in the last configuration. An accepting configuration is one which executes the accept
action from item 2d – accepting configurations have no successors. The initial configuration
is a configuration where the head is over the left endmarker `, the state is the initial state,
the register valuation maps all registers to the undefined value, and the output string is
empty. An accepting run is a run that begins in the initial configuration and ends in an
accepting one. By determinism, there is at most one accepting run. The semantics of the
transducer is defined to be the partial function Σ∗ → Γ∗, which inputs w ∈ Σ∗ and returns
the output of the accepting run over `wa. If there is no accepting run, f(w) has no value.

Special cases. A one-way single-use transducer is the special case of Definition 3 which
does not use the “previous” action from item 2c. A two-way single-use automaton is the
special case which does not use the output actions from item 2b. The language recognised
by such an automaton is defined to be the set of words which admit an accepting run. A
one-way single-use automaton is the special case of a two-way single-use automaton, which
does not use the “previous” action from item 2c.

3 Languages recognised by single-use automata

In this section we discuss languages recognised by single-use automata. The main result is
that one-way and two-way single-use automata recognise the same languages, and furthermore
these are the same languages that are recognised by orbit-finite monoids [5], the logic rigidly
guarded mso∼ [9], and a new model called regular list functions with atoms, that will be
defined in Section 5.

Orbit-finite monoids. We begin by defining orbit-finite sets and orbit-finite monoids, which
play an important technical role in this paper. For more on orbit-finite sets, see the lecture
notes [6]. For a tuple ā ∈ A∗, an ā-automorphism is defined to be any atom automorphism
that maps ā to itself. Consider set X equipped with an action of the group of atom
automorphisms. We say that x ∈ X is supported by a tuple of atoms ā ∈ A∗ if π(x) = x holds
for every ā-automorphism π. We say that a subset of X is ā-supported if it is an ā-supported
element of the powerset of X; similarly we define supports of relations and functions. We
say that x is finitely supported if it is supported by some tuple ā ∈ A∗. Define the ā-orbit of
x to be its orbit under the action of the group of ā-automorphisms.

I Definition 4 (Orbit-finite sets). Let X be a set equipped with an action of atom automor-
phisms. A subset Y ⊆ X is called orbit-finite if (a) every element of Y is finitely supported;
and (b) there exists some ā ∈ A∗ such that Y is a union of finitely many ā-orbits.
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An equivariant orbit-finite set is the special case where the tuple ā in item (b) is empty.
The polynomial orbit-finite sets from Section 2 are a special case of equivariant orbit-finite
sets4. The following notion was introduced in [5, Section 3].

I Definition 5 (Orbit-finite monoid). An orbit-finite monoid is a monoid where the underlying
set is orbit-finite, and the monoid operation is finitely supported. If Σ is an orbit-finite set,
then we say that a language L ⊆ Σ∗ is recognised by an orbit-finite monoid M if there is
a finitely supported monoid morphism h : Σ∗ → M and a finitely supported accepting set
F ⊆M such that L contains exactly the words whose image under h belongs to F .

In this paper, we are mainly interested in the case where both the morphism and the
accepting set are equivariant. In this case, it follows that the alphabet Σ, the image of the
morphism, and the recognised language all also have to be equivariant.

The structural theory of orbit-finite monoids was first developed in [5], where it was shown
how the classical results about Green’s relations for finite monoids extend to the orbit-finite
setting. This theory was further investigated in [9], including a lemma stating that every
orbit-finite group is necessarily finite. In the full version of this paper we build on these
results, to prove an orbit-finite version of the Factorisation Forest Theorem of Simon [17,
Theorem 6.1], which is used in proofs of Theorems 6 and 12.

Main theorem about languages. We are now ready to state Theorem 6, which is our main
result about languages.

I Theorem 6. Let Σ be a polynomial orbit-finite set. The following conditions are equivalent
for every language L ⊆ Σ∗:
1. L is recognised by a single-use one-way automaton;
2. L is recognised by a single-use two-way automaton;
3. L is recognised by an orbit-finite monoid, with an equivariant morphism and an equivariant

accepting set;
4. L can be defined in the rigidly guarded mso∼ logic;
5. L’s characteristic function Σ∗ → {yes, no} is an orbit-finite regular list function.
The equivalence of items 4 and 3 has been proved in [9, Theorems 4.2 and 5.1], and since we
do not use rigidly guarded mso∼ outside of the this theorem, we do not give a definition
here (see [9, Section 3]). The orbit-finite regular list functions from item 5 will be defined in
Section 5. The proof outline for Theorem 6 is given in the following diagram

regular
list functionsOO

Section 5
��

one-way
single-usespecial

case

tt

rigidly guarded
mso∼
OO
Theorems 4.2
and 5.1 in [9]
��

two-way
single-use Section 3.1

// orbit-finite
monoid

in the appendix,
using

factorisation
forests

jj

All equivalences in the theorem are effective, i.e. there are algorithms implementing the
conversions between any of the models.

The single-use restriction is crucial in the theorem. Automata without the single-use
restriction – call them multiple-use – only satisfy the trivial inclusions:

4 The converse does not hold – there exist sets that are equivariant orbit finite but not polynomial orbit
finite e. g. the set of unordered pairs of atoms: {{a, b} | a, b ∈ A, a 6= b}.
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single-use

first letter appears again
[6, Exercise 91]

( one-way multiple-use

some letter appears twice
[13, Example 11]

( two-way multiple-use.

Two-way multiple-use automata have an undecidable emptiness problem [15, Theorem 5.3].
For one-way (even multiple-use) automata, emptiness is decidable and even tractable in a
suitable parametrised understanding [6, Corollary 9.12]. We leave open the following question:
given a one-way multiple-use automaton, can one decide if there is an equivalent automaton
that is single-use (by Theorem 6, it does not matter whether one-way or two-way)?

3.1 From two-way automata to orbit-finite monoids
In this section, we show the implication 2 ⇒ 3 of Theorem 6. (This is the only proof
presented in the conference version of the paper – we chose it, because it illustrates the
importance of the single-use restriction). The implication states that the language of every
single-use two-way automaton can also be recognised by an equivariant homomorphism
into an orbit-finite monoid. In the proof, we use the Shepherdson construction for two-way
automata [16] and show that, thanks to the single-use restriction, it produces monoids which
are orbit-finite.

Consider a two-way single-use automaton, with k registers and let Q be the set of its states.
For a string over the input alphabet (extended with endmarkers), define its Shepherdson
profile to be the function of the type

state and register
valuation at the
start of the run︷ ︸︸ ︷
Q× (A +⊥)k ×

does the run
enter from the
left or right︷ ︸︸ ︷
{←,→} → {accept, loop}+ (

state and register
valuation at the
end of the run︷ ︸︸ ︷
Q× (A +⊥)k ×

does the run
exit from the
left or right︷ ︸︸ ︷
{←,→} )

that describes runs of the automaton in the natural way (see [16, Proof of Theorem 2]). The
run is taken until the automaton either exits the string from either side, accepts, or enters
an infinite loop. By the same reasoning as in Shepherdson’s proof, one can equip the set of
Shepherdson profiles with a monoid structure so that the function which maps a word to
its Shepherdson profile becomes a monoid homomorphism. We use the name Shepherdson
monoid for the resulting monoid (it only contains the “achievable” profiles – the image of Σ∗).
It is easy to see that whether a word is accepted depends only on an equivariant property
of its Shepherdson profile, and therefore the language recognised by the automaton is also
recognised by the Shepherdson monoid.

It remains to show that the Shepherdson monoid is orbit-finite, which is the main part
of the proof. Unlike the arguments so far, this part of the proof relies on the single-use
restriction. To illustrate this, we give an example of a one-way automaton that is not
single-use and whose Shepherdson monoid is not orbit-finite.

I Example 7. Consider the language over A of words whose first letter appears again. This
language is not recognised by any orbit-finite monoid [6, Exercise 91], but it is recognised
by a multiple-use one-way automaton, which stores the first letter in a register, and then
compares this register with all remaining letters of the input word. For this automaton, the
Shepherdson profile needs to remember all of the distinct letters that appear in the word. In
particular, if two words have different numbers of distinct letters, then their Shepherdson
profiles cannot be in the same orbit. Since input strings can contain arbitrarily many distinct
letters, the Shepherdson monoid of this automaton is not orbit-finite.
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I Lemma 8. For every single-use two-way automaton there is some N ∈ N such that every
Shepherdson profile is supported by at most N atoms.

Before proving the lemma, we use it to show that the Shepherdson monoid is orbit-finite.
In the full version of the paper, we show that if an equivariant set consists of functions from
one orbit-finite set to another orbit-finite set (as is the case for the underling set in the
Shepherdson monoid) and all functions in the set have supports of bounded size (as is the
case thanks to Lemma 8), then the set is orbit-finite. This leaves us with proving Lemma 8.

Proof. Define a transition in a run to be a pair of consecutive configurations. Each transition
has a corresponding question and action. A transition in a run is called important if its
question or action involves a register that has not appeared in any action or question of the
run. The number of important transitions is bounded by k – the number of registers. The
crucial observation, which relies on the single-use restriction, is that if the input word, head
position, and state are fixed (but not the register valuation), then the sequence of actions
in the corresponding run depends only on the answers to the questions in the important
transitions. This is described in more detail below.

Fix a choice of the following parameters: (a) a string over the input alphabet that might
contain endmarkers; (b) an entry point of the automaton – either the left or the right end of
the word; (c) a state of the automaton. We do not fix the register valuation. For a register
valuation η, define ρ(η) to be the run which begins in the configuration described by the
parameters (abc) together with η, and which is maximal, i.e. it ends when the automaton
either accepts, rejects, or tries to leave the fixed string. For i ∈ {0, 1, . . . , k} define αi(η)
to be the sequence of actions that are performed in the maximal prefix of the run ρ(η)
which uses at most i important transitions. The crucial observation that was stated at the
beginning of this proof is that once the parameters (abc) are fixed, then the sequence of
actions αi(η) depends only on the answers to the questions asked in the first i important
transitions. In particular, the function αi has at most 2i possible values. Furthermore, by a
simple induction on i, one can show the following claim.

B Claim 9. The function αi is supported by at most 2i+1 atoms.

Since there are at most k important transitions in a run, the above claim implies that,
for every fixed choice of parameters (abc), at most 2k+1 atoms are needed to support the
function which maps η to the sequence of actions in the run ρ(η). In the arguments for
the Shepherdson profile for a fixed word w, parameter (b) can have two values (first or last
position) and parameter (c) can have at most |Q| values. Therefore, at most 2|Q|2k+1 atoms
are needed to support the function which takes an argument as in the Shepherdson profile,
and returns the sequence of actions in the corresponding run. The lemma follows. J

4 A Krohn-Rhodes decomposition of one-way transducers with atoms

In this section, we present a decomposition result for single-use one-way transducers, which
is a version of the celebrated Krohn-Rhodes Theorem [14, p. 454]. We think that this result
gives further evidence for the good structure of single-use models. In the next section, we
give a similar decomposition result for two-way single-use transducers which will be used to
prove the equivalence of several other characterisations of the two-way model.

We begin by describing the classical Krohn-Rhodes Theorem. A Mealy machine is a
deterministic one-way length-preserving transducer, which is obtained from a deterministic
finite automaton by labelling transitions with output letters and ignoring accepting states.
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The Krohn-Rhodes Theorem says that every function computed by a Mealy machine is
a composition of functions computed by certain prime Mealy machines (which are called
reversible and reset in [1, Chapter 6]). In this section, we prove a version of this theorem for
orbit-finite alphabets; this version relies crucially on the single-use restriction. To distinguish
the original model of Mealy machines from the single-use model described below, we will
use the name classical Mealy machine for the Mealy machines in the original Krohn-Rhodes
Theorem, i.e. the alphabets and state spaces are finite.

Define a single-use Mealy machine to have the same syntax as in Definition 3, with the
following differences: there are no “next/previous” actions from item 2c, but the output
action from item 2b has the side effect of moving the head to the next position. A consequence
is that a Mealy machine is length-preserving, i.e. it outputs exactly one letter for each input
position. Furthermore, there are no endmarkers and no “accept” or “reject” actions from
item 2d; the automaton begins in the first input position and accepts immediately once its
head leaves the input word from the right.

I Example 10. Define atom propagation to be the following length-preserving function. The
input alphabet is A + {ε, ↓} and the output alphabet is A +⊥. If a position i in the input
string has label ↓ and there is some (necessarily unique) position j < i with an atom label
such that all positions strictly between j and i have label ε, then the output label of position
i is the atom in input position j. For all other input positions, the output label is ⊥. Here is
an example of atom propagation:

input 1 2 ε ε ↓ ↓ 3 ε ε ↓ ε ↓
output ⊥ ⊥ ⊥ ⊥ 2 ⊥ ⊥ ⊥ ⊥ 3 ⊥ ⊥

Atom propagation is computed by a single-use Mealy machine, which stores the most recently
seen atom in a register, and outputs the register at the nearest appearance of ↓.

The following example illustrates some of the technical difficulties with single-use Mealy
machines: It is often useful to consider a Mealy machine that computes the run of another
Mealy machine i. e. decorate every input position with the state and the register valuation
that the Mealy machine will have after reading the input up to (but not including) that
position. As shown in the following example the single-use restriction makes this construction
impossible.

I Example 11. Consider the single-use Mealy machine that implements the atom propagation
function from Example 10. This machine has only one register. Every time it sees an atom
value, it stores the value in the register and every time it sees ↓, and the register is non-empty,
the machine outputs the register’s content. We claim that the run of this machine cannot
be computed by a Mealy machine. If it could, we would be able to use it to construct a
Mealy machine that given a word over A, equips every position with the atom from the first
position. This would easily lead to a construction of a single-use automaton for the language
“the first letter appears again” (from Example 7) which, as we already know, is impossible.

The Krohn-Rhodes Theorem, both in its original version and in our orbit-finite version
below, says that every Mealy machine can be decomposed using two types of composition:

Σ∗ f−→ Γ∗ Γ∗ g−→ ∆∗

Σ∗ g◦f−→ ∆∗
sequential

Σ∗1
f1−→ Γ∗1 Σ∗2

f2−→ Γ∗2
(Σ1 × Σ2)∗ f1|f2−→ (Γ1 × Γ2)∗

parallel

The sequential composition is simply function composition. The parallel composition –
which only makes sense for length preserving functions – applies the function fi to the i-th
projection of the input string.
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I Theorem 12. Every total function computed by a single-use Mealy machine can be obtained,
using sequential and parallel composition, from the following prime functions:
1. Length-preserving homomorphisms. Any function of type Σ∗ → Γ∗, where Σ and Γ

are polynomial orbit-finite, obtained by lifting to strings an equivariant function of type
Σ→ Γ.

2. Classic Mealy machines. Any function computed by a classical Mealy machine.
3. Atom propagation. The atom propagation function from Example 10.
By the original Krohn-Rhodes theorem, classical Mealy machines can be further decomposed.

Define a composition of primes to be any function that can be obtained from the prime
functions by using a parallel and sequential composition. In this terminology, Theorem 12
says that every function computed by a single-use Mealy machine is a composition of primes.
In the full version of the paper we show that the converse is also true: every prime function
is computed by a single-use Mealy machine, and single-use Mealy machines are closed under
both kinds of composition.

Decomposition of single-use one-way transducers. A Mealy machine is the special case
of a single-use one-way transducer which is length preserving, and does not see an endmarker.
A corollary of Theorem 12 is that, in order to generate all total functions computed by
single-use one-way transducers, it is enough to add two items to the list of prime functions
from Theorem 12: (a) a function w 7→ wa which appends an endmarker5, and (b) equivariant
homomorphisms over polynomial orbit-finite alphabets that are not necessarily length-
preserving.

5 Two-way single-use transducers

In this section, we turn to two-way single-use transducers. For them, we show three other
equivalent models: (a) compositions of certain two-way prime functions; (b) an atom variant
of the streaming string transducer (sst) model of Alur and Černý from [2]; and (c) an atom
variant of the regular string functions from [7]. We believe that the atom variants of items (b)
and (c), as described in this section, are the natural atom extensions of the original models;
and the fact that these extensions are all equivalent to single-use two-way transducers is a
further validation of the single-use restriction.

We illustrate the transducer models using the functions from the following example.

I Example 13. Consider some polynomial orbit-finite alphabet Σ. The input and output
alphabets are the same, namely Σ extended with a separator symbol |. Define map reverse
(respectively, map duplicate) to be the function which reverses (respectively, duplicates) every
string between consecutive separators, as in the following examples:

12||345|678|9 7→ 21||543|876|9︸ ︷︷ ︸
map reverse

12||345|678|9 7→ 1212||345345|678678|99︸ ︷︷ ︸
map duplicate

Both functions can be computed by single-use two-way transducers. These functions will be
included in the prime functions for two-way single-use transducers, as discussed in item (a)
at the beginning of this section.

5 This function accounts for the fact that a one-way transducer (contrary to a Mealy machine) may
perform some computation and produce some output at the end of the input word.
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Streaming string transducers with atoms. A streaming string transducer with atoms has
two types of registers: atom registers r, s, . . . which are the same as in Definition 3, and
string registers A,B,C, . . . which are used to store strings over the output alphabet. Both
kinds of registers are subject to the single-use restriction, which is highlighted in bold in the
following definition.

I Definition 14 (Streaming string transducer with atoms). Define the syntax of a streaming
string transducer (sst) with atoms in the same way as a one-way single-use transducer
(variant of Definition 3), except that the model is additionally equipped with a finite set
of string registers, with a designated output string register. The actions are the same as
for one-way single-use transducers except that the output action is replaced by two kinds of
actions:
1. Apply an equivariant function f : Ak → Γ to the contents of distinct registers r1, . . . , rk ∈

R, and put the result into string register A (overwriting its previous contents). If any
of these registers is undefined, then the run immediately stops and rejects. This action
has the side effect of setting the values of r1, r2, . . . , rkj to ⊥.

2. Concatenate string registers A and B, and put the result into string register C. This
action has the side effect of setting A and B to the empty string.

The output of a streaming string transducer is defined to be the contents of the designated
output register when the “accept” action is performed. In the atomless case, when no atom
registers are allowed and the input and output alphabets are finite, the above definition is
equivalent to the original definition of streaming string transducers from [2].

I Example 15. Consider the map reverse function from Example 13, with alphabet A. To
compute it, we use two string registers A and B, with the output register being B. When
reading an atom a ∈ A, the transducer executes an action A := aA. (This action needs to
be broken into simpler actions as in Definition 14 and requires auxiliary registers). When
reading a separator symbol, the automaton executes action B := B|A, which erases the
content of register A. Similar idea works for map duplicate – it uses two copies of register A.

Regular list functions with atoms. Our last model is based on the regular list functions
from [7]. Originally, the regular list functions were introduced to characterise two-way
transducers (over finite alphabets), in terms of simple prime functions and combinators [7,
Theorem 6.1]. The following definition extends the original definition6 in only two ways: we
add an extra datatype A and an equality test eq : A2 → {yes,no}.

I Definition 16 (Regular list functions with atoms). Define the datatypes to be sets which can
be obtained from A and singleton sets, by applying constructors for products τ×σ, co-products
τ + σ and lists τ∗. The class of regular list functions with atoms is the least class which:
1. contains all equivariant constant functions;
2. contains all functions from Figure 2, and an equality test eq : A2 → {yes,no};
3. is closed under applying the following combinators:

a. comp function composition (f, g) 7→ f ◦ g;
b. pair function pairing (f0, f1) 7→ (x 7→ (f0(x), f1(x)));
c. cases function co-pairing (f0, f1) 7→ ((i, a) 7→ fi(a));
d. map lifting functions to lists f 7→ ([a1, . . . , an] 7→ [f(a1), . . . , f(an)]).

6 In [7], the group product operation has output type G∗, while this paper uses (G× σ)∗. This difference
is due to an error in [7].
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projecti : (σ0 × σ1)→ σi

projection (a0, a1) 7→ ai

coprojecti : σi → (σ0 + σ1)
coprojection ai 7→ (i, ai)

distr : (σ1 + σ2)× τ → (σ1 × τ) + (σ2 × τ)
distribution ((i, a), b) 7→ (i, (a, b))

reverse : σ∗ → σ∗

list reverse [a1, . . . , an] 7→ [an, . . . , a1]
concat : (σ∗)∗ → σ∗

list concatenation, defined by [] 7→ [] and [a] · l 7→ a · concat(l)
append : (σ × σ∗)→ σ∗

append, defined by (a, l) 7→ [a] · l
coappend : σ → (σ × σ∗) +⊥

the opposite of append, defined by [] 7→ (1,⊥) and [a] · l 7→ (0, (a, l))
block : (σ + τ)∗ → (σ∗ + τ∗)∗

group the list into maximal connected blocks from σ∗ or τ∗

group : (G× σ)∗ → (G× σ)∗

[(g1, a1), . . . , (gn, an)] 7→ [(1, a1), (g1, a2), (g1g2, a3), . . . , (g1 · · · gn−1, an)]

Figure 2 For every datatypes τ, τ0, τ1, σ, every finite group G, and every i ∈ {0, 1} the above
functions are regular list functions with atoms.

Every polynomial orbit-finite set is a datatype (actually, polynomial orbit-finite sets are
exactly the datatypes that do not use lists), and therefore it makes sense to talk about regular
list functions with atoms that describe string-to-string functions with input and output
alphabets that are polynomial orbit-finite sets. Also, one can consider string-to-boolean
functions – they describe languages, and are the model mentioned in item 5 of Theorem 6.

I Example 17. We show that map reverse from Example 13 is a regular list function with
atoms. Consider an input string, say

[1, 2, |, |, 3, 4, 5, |, 6, 7, 8, |, 9] ∈ (A + |)∗.

Apply the prime block function, yielding

[[1, 2], [|, |], [3, 4, 5], [|], [6, 7, 8], [|], [9]] ∈ (A∗ + |∗)∗.

Using the cases and map combinators, apply reverse to all list items, yielding

[[2, 1], [|, |], [5, 4, 3], [|], [8, 7, 6], [|], [9]] ∈ (A∗ + |∗)∗.

To get the final output, apply concat. A similar idea works for map duplicate, except we
need to derive the string duplication function:

w
pair(...)7→ (w, [w]) append7→ [w,w] concat7→ ww

Equivalence of the models. The main result of this section is that all models described
above are equivalent, and furthermore admit a decomposition into prime functions in the
spirit of the Krohn-Rhodes theorem. Since the functions discussed in this section are no
longer length-preserving, the Krohn-Rhodes decomposition uses only sequential composition.
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I Theorem 18. The following conditions are equivalent for every total function f : Σ∗ → Γ∗,
where Σ and Γ are polynomial orbit-finite sets:
1. f is computed by a two-way single-use transducer;
2. f is computed by a streaming string transducer with atoms;
3. f is a regular list function with atoms;
4. f is a sequential composition of functions of the following kinds:

a. single-use Mealy machines;
b. equivariant homomorphisms that are not necessarily length-preserving;
c. map reverse and map duplicate functions from Example 13.

In the future, we plan to extend the above theorem with one more item, namely a variant
of mso transductions based on rigidly guarded mso∼. The models in items 3 and 4 are
closed under sequential composition, and therefore the same is true for the models in items 1
and 2; we do not know any direct proof of composition closure for items 1 and 2, which
contrasts the classical case without atoms [8, Theorem 2]. The Krohn-Rhodes decomposition
from item 4, in the case without atoms, was present implicitly in [7]; in this paper we make
the decomposition explicit, extend it to atoms, and leverage it to get a relatively simple
proof of Theorem 18. Even for the reader interested in transducers but not atoms, our
Krohn-Rhodes-based proof of Theorem 18 might be of some independent interest.

Here are some immediate corollaries of Theorem 18:
1. Every function in item 4 is computed by a two-way single-use transducer which is reversible

in the sense of [10, p. 2]; hence two-way single-use transducers can be translated into
reversible ones.

2. Since the equivalence in Theorem 18 also works for functions with yes/no outputs, it
follows that items 2 and 5 in Theorem 6 are equivalent.

3. If f is a transducer from the class described in Theorem 18, then the language class
described in Theorem 6 is preserved under inverse images of f .

All conversions between the models in Theorem 18 are effective. Our last result concerns
the equivalence problem for these models, which is checking if two transducers compute the
same function. Using a reduction to the equivalence problem for copyful streaming string
transducers without atoms [12, p. 81], we prove the following result:

I Theorem 19. Equivalence is decidable for streaming string transducers with atoms (and
therefore also for every other of the equivalent models from Theorem 18).
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Abstract
We investigate the connection between properties of formal languages and properties of their
generating series, with a focus on the class of holonomic power series. We first prove a strong version
of a conjecture by Castiglione and Massazza: weakly-unambiguous Parikh automata are equivalent
to unambiguous two-way reversal bounded counter machines, and their multivariate generating
series are holonomic. We then show that the converse is not true: we construct a language whose
generating series is algebraic (thus holonomic), but which is inherently weakly-ambiguous as a Parikh
automata language. Finally, we prove an effective decidability result for the inclusion problem for
weakly-unambiguous Parikh automata, and provide an upper-bound on its complexity.
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1 Introduction

This article investigates the link between holonomic (or D-finite) power series and formal
languages. We consider the classical setting in which this connection is established via the
generating series L(x) =

∑
n≥0 `nx

n counting the number `n of words of length n in a given
language L.

On the languages side, the Chomsky–Schützenberger hierarchy [10] regroups languages
in classes of increasing complexity: regular, context-free, context-sensitive and recursively
enumerable. For power series, a similar hierarchy exists, consisting of the rational, algebraic
and holonomic series. The first two levels of each hierarchy share a strong connection, as the
generating series of a regular (resp. unambiguous context-free) language is a rational (resp.
algebraic) power series.

This connection has borne fruits both in formal language theory and in combinatorics. In
combinatorics, finite automata and unambiguous grammars are routinely used to establish
rationality and algebraicity of particular power series. In formal languages, this connection
was (implicitly) used to give polynomial-time algorithms for the inclusion and universality
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tests for unambiguous finite automata [35]. In [15], Flajolet uses the connection between
unambiguous context-free grammars and algebraic series to prove the inherent ambiguity
of certain context-free languages, solving several conjectures with this tool. Using analytic
criteria on the series (for instance, the existence of infinitely many singularities), he establishes
that the series of these context-free languages is not algebraic. Hence these languages cannot
be described by unambiguous context-free grammars and are therefore inherently ambiguous.

In this article we propose to extend the connection to holonomic series. Holonomic series
enjoy non-trivial closure properties whose algorithmic counterparts are actively studied in
computer algebra. Our aim is to show that these advances can be leveraged to obtain non-
trivial results in the formal languages and verification worlds. These results are particularly
noteworthy as the notion of unambiguity in automata theory is not fully understood [11].
The work of extending the connection was already initiated by Massazza in [27], where
he introduces two families of languages, named RCM1 and linearly constrained languages
(LCL), whose generating series are holonomic. These classes are, however, not captured
by well-known models of automata, and this limits their appeal. Recently, Castiglione and
Massazza addressed this issue and conjectured that RCM contains the languages accepted by
deterministic one-way reversal bounded machines (RBCM for short) [8]; Massazza proved the
result for RBCM for two subclasses of one-way deterministic RBCM [28, 29]. This conjecture
hints that the class RCM is related to models of automata such as RBCM, which are used in
program verification.

Our first contribution is to prove a stronger version of this conjecture. We show that
RCM and LCL respectively correspond to the languages accepted by weakly-unambiguous2
version of Parikh automata (PA, for short) [24] and pushdown Parikh automata. Intuitively,
Parikh automata are3 finite non-deterministic word automata enriched with the ability to test
semilinear constraints between the number of occurrences of each transition in the run. In
terms of RBCM, these classes correspond to unambiguous two-way RBCM and unambiguous
one-way RBCM enriched with a stack. Parikh automata are also commonly used in program
verification. In view of the literature, these results might seem expected but they still require
a careful adaptation of the standard techniques in the absence of a stack and become even
more involved when a stack is added.

After having established the relevance of the classes of languages under study, we provide
two consequences of the holonomicity of their associated generating series.

The first consequence follows Flajolet’s approach mentioned previously and gives criteria
to establish the inherent weak-ambiguity for languages accepted by PA or pushdown PA, by
proving that their generating series are not holonomic. These criteria are sufficient but not
necessary; this is not surprising as the inherent weak-ambiguity is undecidable for languages
accepted by PA. Yet, the resulting method captures non-trivial examples with quite short
and elegant proofs. In contrast, we give an example of inherently weakly-ambiguous PA
language having a holonomic series (and therefore not amenable to the analytic method) for
which we prove inherent weak-ambiguity by hand. The proof is quite involved but shows
the inherent ambiguity of this language for a much larger class of automata (i.e., PA whose
semi-linear sets are replaced by arbitrary recursive sets).

1 The name RCM comes from the fact that these languages are defined using a Regular language, a
semilinear Constraint and a Morphism.

2 We use the term weakly-unambiguous here to avoid a possible confusion with the class of unambiguous
PA defined in [7] which is strictly contained in our class. Our notion of non-ambiguity is the standard
one: every word has at most one accepting computation (this is detailed in Remark 11).

3 In this article, we use an equivalent definition where the transitions of the automaton are additionally
labeled by vectors of natural numbers. A run is accepting if the sum of all the vectors encountered in
the run satisfies a semilinear constraint.
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The second consequence is of an algorithmic nature. We focus on the inclusion problem for
weakly-unambiguous PA, whose decidability can be deduced from Castiglione and Massazza’s
work [8]. Here our contribution is an effective decidability result: we derive a concrete
bound B, depending on the size of the representation of the two PAs, such that the inclusion
holds if and only if the languages are included when considering words up to the length B.
This bound B is obtained by a careful analysis of the proofs establishing the closure properties
of holonomic series (in several variables), notably under Hadamard product and specialization.
We do this by controlling various parameters (order, size of the polynomial coefficients, . . . )
of the resulting partial differential equations.

2 Primer on holonomic power series in several variables

In this section, we introduce power series in several variables and the classes of rational,
algebraic and holonomic power series. We recall the connection with regular and context-free
languages via the notions of generating series in one or several variables.

Let Q[x1, . . . , xk] be the ring of polynomials in the variables x1, . . . , xk with coefficients
in Q and let Q(x1, . . . , xk) be the associated field of rational functions.

The generating series of a sequence (fn)n∈N is the (formal) power series in the vari-
able x defined by F (x) =

∑
n∈N fnx

n. More generally, the generating series of a sequence
a(n1, . . . , nk) is a multivariate (formal) power series in the variables x1, . . . , xk defined by
A(x1, . . . , xk) =

∑
(n1,...,nk)∈Nk a(n1, . . . , nk)xn1

1 . . . xnk

k . In this article, we only consider
power series whose coefficients belong to the field Q. The set of such k-variate power series
is denoted Q[[x1, . . . , xk]]. Power series are naturally equipped with a sum and a product
which generalize those of polynomials, for which Q[[x1, . . . , xk]] is a ring. We use the bracket
notation for the coefficient extraction: [xn1

1 . . . xnk

k ]A(x1, . . . , xk) = a(n1, . . . , nk). The sup-
port of A ∈ Q[[x1, . . . , xk]] is the set of (n1, . . . , nk) such that [xn1

1 . . . xnk

k ]A 6= 0. The inverse
1/A of a series A ∈ Q[[x1, . . . , xk]] is well-defined when its constant term [x0

1 . . . x
0
k]A is not

zero. For instance, the inverse of A(x1, x2) = 1− x1x
2
2 is 1

1−x1x2
2

=
∑
n≥0 x

n
1x

2n
2 .

The generating series of a language L over the alphabet Σ = {a1, . . . , ak} is the univariate
power series L(x) =

∑
w∈L x

|w| =
∑
n∈N `nx

n, where `n counts the number of words of
length n in L. Similarly the multivariate generating series of L defined by L(xa1 , . . . , xak

) =∑
(n1,...,nk)∈Nk `(n1, . . . , nk)xn1

a1
. . . xnk

ak
where `(n1, . . . , nk) denotes the number of words w

in L such that |w|a1 = n1, |w|a2 = n2, . . . , and |w|ak
= nk, and |w|a denotes the number of

occurrences of a ∈ Σ in w. This way, we create one dimension per letter, so that each letter
a ∈ Σ has a corresponding variable xa.

Observe that the univariate generating series of a language is exactly L(x, . . . , x), obtained
by setting each variable to x in its multivariate generating series.

I Example 1. The generating series of the language P of well-nested parentheses defined
by the grammar S → aSbS + ε is P (xa, xb) = 1−

√
1−4xaxb

2xaxb
and its counting series is4

P (x) = 1−
√

1−4x2

2x2 . Indeed the production of the grammar translates to the equation
P (xa, xb) = xaxbP (xa, xb)2 + 1. This equation admits only one power series solution, namely
1−
√

1−4xaxb

2xaxb
.

4 As for the inverse, the square root of a power series with nonzero constant term can be defined using
the usual Taylor formula

√
1− x =

∑
n≥0

1
(1−2n) 4n

(2n
n

)
xn.
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A power series A(x1, . . . , xk) =
∑
n1,...,nk

a(n1, . . . , nk)xn1
1 . . . xnk

k is rational if it sat-
isfies an equation of the form: P (x1, . . . , xk)A(x1, . . . , xk) = Q(x1, . . . , xk), with P,Q ∈
Q[x1, . . . , xk] and P 6= 0. The generating series (both univariate and multivariate) of reg-
ular languages (i.e., languages accepted by a finite state automaton) are rational power
series [4]. It is well-known that the generating series can be effectively computed from a
deterministic automaton accepting the language (see for instance [17, §I.4.2] for a detailed
proof). For example, the multivariate generating series of the regular language (abc)∗ is

1
1−xaxbxc

=
∑
n≥0 x

n
ax

n
b x

n
c . Its univariate generating series is 1

1−x3 .
The connection between rational languages and rational power series is not tight. For

instance, the generating series of the non-regular context-free language {anbn : n ≥ 0} is
1

1−xaxb
, which is rational. In fact, it has the same generating series as the regular language

(ab)∗. Also there exist rational power series with coefficients in N which are not the generating
series of any rational language. This is the case for x+5x2

1+x−5x2−125x3 as shown in [4].
A power series A(x1, . . . , xk) is algebraic if there exists a non-zero polynomial P ∈

Q[x1, . . . , xk, Y ] such that P (x1, . . . , xk, A(x1, . . . , xk)) = 0. All rational series are algebraic.

I Example 2. The series 1
1−x1x2

=
∑
n≥0 x

n
1x

n
2 is rational, as it satisfies the equation

(1 − x1x2)A(x1, x2) = 1. The series A(x1, x2) =
√

1− x1x2 is algebraic but not rational,
since A(x1, x2)2 + (x1x2 − 1) = 0 and there is no similar algebraic equation of degree 1.

The reader is referred to [34, 17] for a detailed account on rational and algebraic series.
In the same manner that rational series satisfy linear equations and algebraic series satisfy

polynomial equations, holonomic series satisfy linear differential equations with polynomial
coefficients. To give a precise definition, we need to introduce the formal partial differentiation
of power series. The differential operator ∂xi

with respect to the variable xi is defined by

∂xiA(x1, . . . , xk) =
∑

n1,...,nk

ni a(n1, . . . , nk)xn1
1 . . . x

ni−1
i−1 x

ni− 1
i x

ni+1
i+1 . . . xnk

k .

The composed operator ∂jxi
is inductively defined for j ≥ 1 by ∂1

xi
= ∂xi

and ∂j+1
xi

= ∂xi
◦∂jxi

.

I Definition 3 (see [33, 26]). A power series A(x1, . . . , xk) is holonomic or D-finite5 if the
Q(x1, . . . , xk)-vector space spanned by the family {∂i1x1

. . . ∂ikxk
A(x1, . . . , xk) : (i1, . . . , ik) ∈

Nk} has a finite dimension. Equivalently, for every variable z ∈ {x1, . . . , xk}, A(x1, . . . , xk)
satisfies a linear differential equation of the form Pr(x1, . . . , xk)∂rzA(x1, . . . , xk) + . . . +
P0(x1, . . . , xk)A(x1, . . . , xk) = 0, where the Pi’s are polynomials of Q[x1, . . . , xk] with Pr 6= 0.

In the sequel, except for Section 5, we rely on the closure properties of the holonomic
series and will not need to go back to Definition 3.

I Example 4. A simple example of holonomic series is A(x) = ex
2 =

∑
n≥0

x2n

n! . It is
holonomic (in one variable) since it satisfies ∂xA(x)− 2xA(x) = 0.

For a more involved example, consider the language L3 = {w ∈ {a, b, c}∗ : |w|a = |w|b =
|w|c}, containing the words having the same number of occurrences of a’s, b’s and c’s. This
language is classically not context-free. Moreover there are

( 3n
n,n,n

)
words of length 3n in L3

5 A priori, these notions differ: a function A(x1, . . . , xk) is called D-finite if all its partial derivatives
∂n1
x1 · · · ∂

nk
xk
·A generate a finite dimensional space over Q(x1, . . . , xk), and holonomic if the functions

xα1
1 · · · xαk

k ∂β1
x1 · · · ∂

βk
xk
· A subject to the constraint α1 + · · · +αk +β1 + · · · +βk ≤ N span a vector

space whose dimension over Q grows like O(Nk). The equivalence of these notions is proved by deep
results of Bernštĕın [2] and Kashiwara [21, 36].
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and the power series
∑
n≥0

( 3n
n,n,n

)
xn is transcendental [15, §7]. Its multivariate generating

series L3(xa, xb, xc) is equal to
∑
n≥0

(3n)! (xaxbxc)n

(n!)3 and satisfies the partial differential
equation:

(27x2
axbxc−xa)∂2

xa
f(xa, xb, xc) + (54xaxbxc− 1)∂xaf(xa, xb, xc) + 6xbxcf(xa, xb, xc) = 0,

and the symmetric ones for the other variables xb and xc.

Holonomic series are an extension of the hierarchy we presented, as stated in the following
proposition (see [12] for a proof, and [3] for bounds, algorithms and historical remarks).

I Proposition 5. Multivariate algebraic power series are holonomic.

In the univariate case6, a power series A(x) =
∑
n anx

n is holonomic if and only if its
coefficients satisfy a linear recurrence of the form pr(n)an+r + . . .+ p0(n)an = 0, where every
pi is a polynomial with rational coefficients [33, Th. 1.2].

We now focus on these closure properties.

I Proposition 6 ([33]). Multivariate holonomic series are closed under sum and product.

Holonomic series are also closed under substitution by algebraic series as long as the
resulting series is well-defined7.

I Proposition 7 ([26, Prop. 2.3]). Let A(x1, . . . , xk) be a power series and let Gi(y1, . . . , y`)
be algebraic power series such that B(y1, . . . , y`) = A(G1(y1, . . . , y`), . . . , Gk(y1, . . . , y`)) is
well-defined as a power series. If A is holonomic, then B is also holonomic.

A sufficient condition for the substitution to be valid is that Gi(0, . . . , 0) = 0 for all i (see
[33, Th. 2.7]). For the case G1 = · · · = Gk = 1, called the specialization to 1, a sufficient
condition is that for every index (i1, . . . , ik), [xi11 . . . xikk ]A is a polynomial in y1, . . . , y`.

The Hadamard product is the coefficient-wise multiplication of power series. If the series
A(x1, . . . , xk) and B(x1, . . . , xk) are the generating series of the sequences a(n1, . . . , nk) and
b(n1, . . . , nk), the Hadamard product A�B of A and B is the power series defined by

A�B(x1, . . . , xk) =
∑

(n1,...,nk)∈Nk

a(n1, . . . , nk)b(n1, . . . , nk)xn1
1 . . . xnk

k .

Observe that the support of F �G is the intersection of the supports of F and G.

I Theorem 8 ([25]). Multivariate holonomic series are closed under Hadamard product.

I Example 9. The generating series of the language L3 of Example 4, which is not context-
free, can be expressed using the Hadamard product: since 1

1−xaxbxc
is the support series

of the subset {(n, n, n) : n ∈ N}, and since 1
1−(xa+xb+xc) is the multivariate series of all the

words on {a, b, c}, we have L3(xa, xb, xc) = 1
1−(xa+xb+xc) �

1
1−xaxbxc

, which is not algebraic.

One of our main technical contributions is to provide bounds on the sizes of the polynomials
in the differential equations of the holonomic representation of the Hadamard product of two
rational series P1

Q1
and P2

Q2
: we prove that their maxdegree is at most (kM)O(k) and that the

logarithm of their largest coefficient is at most (kM)O(k2)(1 + logS∞), where M (resp. S∞)
is the maxdegree plus one (resp. largest coefficient) in P1, Q1, P2 and Q2.

6 The generalization of this equivalence to the multivariate case is not straightforward (see [26] for more
details) and will not be used in this article.

7 Note that the substitution of a power series into another power series might not yield a power series:
for instance substituting x by 1 + y in

∑
n≥0 x

n does not result in a power series as the constant term
would be infinite.
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3 Weakly-unambiguous Parikh automata

In this section, we introduce weakly-unambiguous Parikh automata and show that their
multivariate generating series are holonomic. We establish that they accept the same
languages as unambiguous two-way reversal bounded counter machines [19]. Finally, we
prove that the class of accepted languages coincides with Massazza’s RCM class [27, 8].

Parikh automata (PA for short) were introduced in [23, 24]. Informally, a PA is a finite
automaton whose transitions are labeled by pairs (a,v) where a is a letter of the input
alphabet and v is a vector in Nd. A run q0

a1,v1−−−→ q1
a2,v2−−−→ q2 · · · qn−1

an,vn−−−−→ qn computes
the word a1 · · · an and the vector v1 + · · ·+ vn where the sum is done component-wise. The
acceptance condition is given by a set of final states and a semilinear set of vectors. A run is
accepting if it reaches a final state and if its vector belongs to the semilinear set.

0 1 2
a
(1

0
0

)
a
(1

0
0

)
a
(1

0
0

)
, b
(0

1
0

)
, c
(0

0
1

)

The PA depicted above, equipped with the semilinear constraint {(n1, n2, n1 + n2) :
n1, n2 ≥ 0}, accepts the set of words w over {a, b, c} that start and end with a and that are
such that |w|a + |w|b = |w|c.

3.1 Semilinear sets and their characteristic series
A set L ⊆ Nd is linear if it is of the form c +P ∗ := {c + λ1p1 + · · ·+ λkpk : λ1, . . . , λk ∈ N},
where c ∈ Nd is the constant of the set and P = {p1, . . . ,pk} ⊂ N its set of periods. A set
C ⊆ Nd is semilinear if it is a finite union of linear sets. For example, the semilinear set
{(n1, n2, n1 + n2) : n1, n2 ≥ 0} is in fact a linear set (0, 0, 0) + {(1, 0, 1), (0, 1, 1)}∗.

In [13, 20], it is shown that every semilinear set admits an unambiguous presentation. A
presentation c + P ∗ with P = {p1, . . . ,pk} of a linear set L is unambiguous if for all x ∈ L,
the λi’s such that x = c + λ1p1 + · · ·+ λkpk are unique. An unambiguous presentation of a
semilinear set is given by a disjoint union of unambiguous linear sets. A bound on the size
of the equivalent unambiguous presentation is given in [9].

Semilinear sets are ubiquitous in theoretical computer science and admit numerous
characterizations. They are the rational subsets of the commutative monoid (Nd,+), the un-
ambiguous rational subset of (Nd,+) [13, 20], the Parikh images of context-free languages [30],
the sets definable in Presburger arithmetic [31], the sets defined by boolean combinations of
linear inequalities, equalities and equalities modulo constants.

For example, the semilinear set {(2n, 3n, 5n) : n ≥ 0} is equal to (0, 0, 0)+{(2, 3, 5)}∗. It
is also the Parikh image of the regular (hence context-free) language (aabbbccccc)∗. In (N,+),
it is defined by the Presburger formula φ(x, y, z) = ∃w, x = w + w ∧ y = w + w + w ∧ z =
w + w + w + w + w. Finally it is characterized in N3 by the equalities 3x = 2y and 5x = 2z.

For a semilinear set C ⊆ Nd, we consider its characteristic generating series C(x1, . . . , xd)
defined by

∑
(i1,...,id)∈C x

i1
1 · · ·x

id
d . It is well-known [13, 20] that this power series is rational8.

8 The characteristic series of an unambiguous linear set c + P ∗ ⊆ N with P = {p1, . . . ,pk} is
x

c(1)
1 . . . x

c(d)
d

∏k

i=1

(
1 − xpi(1)

1 · · ·xpi(d)
d

)−1 and hence is rational. As an unambiguous semilinear
set is the disjoint union of unambiguous linear sets, its characteristic series is the sum of their series
and it is therefore rational.
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3.2 Weakly-unambiguous PAs and their generating series
We now introduce PA and their weakly-unambiguous variant. We discuss the relationship
with the class of unambiguous PA introduced by Cadilhac et al. in [7] and the closure
properties of this class.

A Parikh automaton of dimension d ≥ 1 is a tuple A = (Σ, Q, qI , F, C,∆) where Σ is the
alphabet, Q is the set of states, qI ∈ Q is the initial state, F ⊆ Q is the set of final states,
C ⊆ Nd is the semilinear constraint and ∆ ⊆ Q× (Σ× Nd)×Q is the transition relation.

A run of the automaton is a sequence q0
a1,v1−−−→ q1

a2,v2−−−→ q2 · · · qn−1
an,vn−−−−→ qn where

for all i ∈ [1, n], (qi−1, (ai,vi), qi) is a transition in ∆. The run is labeled by the pair
(a1 · · · an,v1 + · · · + vn) ∈ Σ∗ × Nd. It is accepting if q0 = qI , the state qn is final and if
the vector v1 + · · ·+ vn belongs to C. The word w is then said to be accepted by A. The
language accepted by A is denoted by L(A).

To define a notion of size for a PA, we assume that the constraint set is given by an
unambiguous presentation ]pi=1ci + P ∗i . We denote by |A| := |Q|+ |∆|+ p+

∑
i |Pi| and by

‖A‖∞ the maximum coordinate of a vector appearing in ∆, the ci’s and the Pi’s.

I Definition 10. A Parikh automaton is said to be weakly-unambiguous if for every word
there is at most one accepting run.

A language is inherently weakly-ambiguous if it cannot be accepted by any weakly-
unambiguous PA. The language S (defined in Section 4.1) is an example9 of a language
accepted by a non-deterministic PA which is inherently weakly-ambiguous.
I Remark 11. We consider here the standard notion of unambiguity for finite state machines.
However we decided to use the name weakly-unambiguous to avoid the confusion with the
class of unambiguous PA which appears in the literature. This class was introduced by
Cadilhac et al. in [7] for constraint automata, a model equivalent to PA and was latter
defined directly on PAs. This notion of unambiguity is more restrictive than ours: they
call a Parikh automaton unambiguous if the underlying automaton on letters, where the
vectors have been erased, is unambiguous. Clearly such automata are weakly-unambiguous.
However the converse is not true. Consider the language L = {cnw : w = x1x2 · · ·xm ∈
{a, b}∗ ∧ m ≥ n > 0 ∧ |x1x2 · · ·xn|a < |x1x2 · · ·xn|b} over the alphabet {a, b, c}. Using
results from [7], one can show that it is not recognized by any unambiguous Parikh automata.
However, it is accepted by the weakly-unambiguous automaton depicted in Fig. 1 below with
the semilinear {(n1, n2, n3) : n1 = n2 + n3 and n2 < n3}.

The lack of expressivity of unambiguous PAs is counter-balanced by their closure under
boolean operations, which is explained by their link with a class of deterministic PA [7, 14].
It was pointed out to us by a reviewer that the class of weakly-unambiguous PA is briefly
considered, under the name OneCA, in Cadilhac’s PhD thesis [5, p. 117], where only basic
properties are established, in particular the strict inclusion of unambiguous PA in this class.

Using a standard product construction when the vectors are concatenated and using the
concatenation of the constraints, it is easy to show that weakly-unambiguous PA are closed
under intersection. In [8], the authors claim that the class10 is closed under union. However
their construction has an irrecoverable flaw and we do not know if weakly-unambiguous PA
are closed under union or under complementation.

9 Using the equivalences between weakly-unambiguous PA and RCM established in Proposition 13 and PA
and RBCM [23, 6], it also gives an example of a language accepted by a RBCM with a non-holonomic
generating series (strengthening Theorem 12 of [8]) and a witness for the strict inclusion of RCM in
RBCM announced in Theorem 11 of [8]. Remark that their proof of this theorem only shows that there
exists no recursive translation from RBCM to RCM.

10Actually, their claim is for the class RCM, which we will show to be equivalent in Section 3.4.
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Figure 1 A weakly-unambiguous Parikh automaton accepting the language L = {cnw : w =
x1x2 · · ·xm ∈ {a, b}∗ ∧ m ≥ n > 0∧ |x1x2 · · ·xn|a < |x1x2 · · ·xn|b} over the alphabet {a, b, c} with
the semilinear constraint {(n1, n2, n3) : n1 = n2 + n3 and n2 < n3}.

We now give a very short proof of the fact that weakly-unambiguous languages in PA
have holonomic generating series. The idea of the proof can be traced back to [25]. A similar
proof was given in [27] for languages in the class RCM but using the closure under algebraic
substitutions instead of specialization (see Remark 25).

Our approach puts into light a different multivariate power series associated with a
weakly-unambiguous PA A of dimension d. The multivariate weighted generating series
G(x, y1, . . . , yd) of A is such that for all indices (n, i1, . . . , id), [xnyi11 . . . yidd ]G counts the
number of words of length n accepted by A with a run labeled by the vector (i1, . . . , id).

I Proposition 12. The generating series of the language recognized by a weakly-unambiguous
Parikh automaton is holonomic.

Proof. Let A be a weakly-unambiguous PA with a constraint set C ⊆ Nd. We first prove
that its weighted series G(x, y1, . . . , yd) is holonomic. As holonomic series are closed under
Hadamard product (see Theorem 8), it suffices to express G as the Hadamard product of
two rational series A and C in the variables x, y1, . . . , yd.

The first series A(x, y1, . . . , yd) is such that for all n, i1, . . . , id ≥ 0, [xnyi11 . . . yidd ]A counts
the number of runs of A starting in qI , ending in a final state and labeled with a word of
length n and the vector (i1, . . . , id). Note that we do not require that (i1, . . . , id) belongs to
C. As this series simply counts the number of runs in an automaton, its rationality is proved
via the standard translation of the automaton into a linear system of equations.

For the second series, we take C(x, y1, . . . , yd) := 1
1−x C̃(y1, . . . , yd) where C̃ is the

support series of C, which is rational (see [13, 20]). A direct computation yields that for all
n, i1, . . . , id ≥ 0, [xnyi11 . . . yidd ]C is equal to 1 if (i1, . . . , id) belongs to C and 0 otherwise.

The Hadamard product of A and C counts the number of runs accepting a word of
length n with the vector (i1, . . . , id). As A is weakly-unambiguous, this quantity is equal to
the number of words of length n accepted with this vector. Hence G = Ā� C̄.

The univariate series A(x) of A is equal to G(x, 1, . . . , 1). Indeed, for all n ≥ 0,
[xn]G(x, 1, . . . , 1) =

∑
i=(i1,...,id)[xny

i1
1 . . . yidd ]G(x, y1, . . . , yd) is the sum over all vectors

i ∈ Nd of the number of words of length n accepted with the vector i. As A is weakly-
unambiguous, each word is accepted with at most one vector and this sum is therefore
equal to the total number of accepted words of length n. Thanks to Proposition 7,
A(x) = G(x, 1, . . . , 1) is holonomic. J

3.3 Equivalence with unambiguous reversal bounded counter machines
A k-counter machine [19] is informally a Turing machine with one read-only tape that contains
the input word, and k counters. Reading a letter a on the input tape, in a state q, the
machine can check which of its counters are zero, increment or decrement its counters, change
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its state, and move its read head one step to the left or right, or stay on its current position.
Note that the machine does not have access to the exact value of its counters. A k-counter
machine is said (m,n)-reversal bounded if its reading head can change direction between left
and right at most m times, and if every counter can alternate between incrementing and
decrementing at most n times each. Finally, a reversal bounded counter machine (RBCM)
is a k-counter machine which is (m,n)-reversal bounded for some m and n. A RBCM is
unambiguous if for every word there is at most one accepting computation.

RBCM are known11 to recognize the same languages as Parikh automata (see [24, 23, 6]).
This equality does not hold anymore for their deterministic versions [6, Prop. 3.14]. However,
the proof of the equivalence for the general case can be slightly modified to preserve
unambiguity.

I Proposition 13. The class of languages accepted by unambiguous RBCM and weakly-
unambiguous PA coincide.

Proof sketch. Unambiguous RBCMs are shown to be equivalent to one-way unambiguous
RBCMs. In turn these are shown to be equivalent to weakly-unambiguous PA with ε-
transitions, which in turn are equivalent to weakly-unambiguous PA. This ε-removal step
needs to be adapted to preserve weak-unambiguity. J

3.4 Equivalence with RCM
If we fix an alphabet Γ = {a1, . . . , ad} with the ordering a1 < · · · < ad on the letters, we
can associate with every semilinear set C of dimension d, the language [C] = {w ∈ Γ∗ :
(|w|a1 , . . . , |w|ad

) ∈ C} of words whose numbers of occurrences of each letter satisfy the
constraint expressed by C. For instance, if we take the semilinear set C0 = {(n,m, n,m) :
n,m ≥ 0} and the alphabet {a, b, c, d} ordered by a < b < c < d, [C0] consists of all words
having as many a’s as c’s and as many b’s as d’s.

A language L over Σ belongs to RCM if there exist a regular language R over Γ =
{a1, . . . , ad}, a semilinear set12 C ⊆ Nd and a length preserving morphism µ : Γ∗ −→ Σ∗, that
is injective overR∩[C], so that L = µ(R∩[C]). For example, Labab = {anbmanbm : n,m ∈ N}
can be shown to be in RCM by taking Γ = {a, b, c, d},Σ = {a, b}, µ(a) = µ(c) = a, µ(b) =
µ(d) = b, R = a∗b∗c∗d∗ and the semilinear set C0 defined in the previous paragraph.

I Theorem 14. L ∈ RCM iff L is recognized by a weakly-unambiguous Parikh automaton.

Proof sketch. Every language in RCM can be accepted by a weakly-unambiguous PA that
guesses the underlying word over Γ: the weak-unambiguity is guaranteed by the injectivity
of the morphism. Conversely a language accepted by a weakly-unambiguous PA is in RCM
by taking for R the set of runs of the PA and translating the constraint: the injectivity of
the morphism is guaranteed by the weak-unambiguity of the PA. J

In [8], the authors conjectured that the class RCM contains the one-way deterministic
RBCM. From Theorem 14 and Proposition 13 we get a stronger result:

I Corollary 15. The languages in RCM are the languages accepted by unambiguous RBCM.

11The proof in [23] contains a patchable error, that was corrected in [6].
12Our definition may seem a little more general than Massazza’s, which only uses semilinear defined

without modulo constraints, but it can be shown that the classes are equivalent.
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3.5 Weakly-unambiguous pushdown Parikh automata
A pushdown Parikh automaton (PA for short) is a PA where the finite automaton is replaced
by a pushdown automaton. A weakly-unambiguous PA has at most one accepting run for
each word. Most results obtained previously can be adapted for weakly-unambiguous PA.
However, unsurprisingly, the class of languages accepted by weakly-unambiguous PA is not
closed under union and intersection. This can be shown using the inherent weak-ambiguity
of the language D proved in Section 4.1. The closure under complementation is left open.

I Proposition 16. The generating series of a weakly-unambiguous PA is holonomic.

Proof. The proof is almost identical to the proof of Proposition 12. The only difference is
that the series A is algebraic and not rational. Indeed it counts the number of runs in a
pushdown automaton and the language of runs is a deterministic context-free language even
if the pushdown automaton is not deterministic. J

Remark that using the same techniques, we can prove that the generating series of
weakly-unambiguous Parikh tree automata are holonomic. As we proved that all these series
are also generating series of PAs, we do not elaborate on this model in this extended abstract.

RBCMs can be extended with a pushdown storage to obtain a RBCM with a stack [19].

I Theorem 17. Weakly-unambiguous PA are equivalent to unambiguous one-way RBCM
with a stack.

Proof sketch. We first establish that unambiguous one-way RBCM with a stack are equival-
ent to weakly-unambiguous PA with ε-transitions. Contrarily to the PA case, the removal of
ε-transitions is quite involved and uses weighted context-free grammars. J

The class LCL of [27] is defined13 as RCM is, except that the regular language is replaced
by an unambiguous context-free14 language. Similarly to the PA case, one can prove:

I Proposition 18. LCL is the set of languages accepted by weakly-unambiguous PA.

4 Examples of inherently weakly-ambiguous languages

There is a polynomial-time algorithm to decide whether a given PA is weakly-unambiguous.
But inherent weak-unambiguity is undecidable, as a direct application of a general theorem
from [18]. This emphasizes that inherent weak-ambiguity is a difficult problem in general.

4.1 Two examples using an analytic criterion
Following an idea from Flajolet [15] for context-free languages, the link between weakly-
unambiguous PA and holonomic series yields sufficient criteria to establish inherent weak-
ambiguity, of analytic flavor: the contraposition of Proposition 12 indicates that if L is
recognized by a PA but its generating series is not holonomic, then L is inherently weakly-
ambiguous. Hence, any criterion of non-holonomicity can be used to establish the inherent
weak-ambiguity. Many such criteria can be obtained when considering the generating series
as analytic functions (of complex variables). See [15, 16] for several examples. For the
presentation of this method in this extended abstract, we only rely on the following property:

13 In [27], LCL is defined without the injective morphism but we adapt it following [8].
14Using deterministic context-free languages instead of unambiguous ones in the definition of LCL would

result in the same class.



A. Bostan, A. Carayol, F. Koechlin, and C. Nicaud 114:11

I Proposition 19 ([33]). A holonomic function in one variable has finitely many singularities.

Our first example is the language D, defined over the alphabet {a, b} as follows:

D = {n1 n2 . . . nk : k > 0, n1 = 1 and ∃j < k, nj+1 6= 2nj}, where n = anb.

This language is recognized by a weakly-ambiguous Parikh automaton, which guesses the
correct j, and then verifies that nj+1 6= 2nj . Let D = ab(a∗b)∗ \ D, and suppose by
contradiction that D can be recognized by a weakly-unambiguous PA. Then its generating
series should be holonomic by Proposition 12. Since the generating series of D is D(xa, xb) =
xaxb

1− xb
1−xa

−D(xa, xb), it should be holonomic too. Looking closely at the form of the words of

D, we get that its generating series is
∑
k≥1 x

2k−1
a xkb . It is not holonomic as xD(x, 1) + x

has infinitely many singularities, see [15, p. 296–297].
Our second example is Shamir’s language S = {anbv1a

nv2 : n ≥ 1, v1, v2 ∈ {a, b}∗}. One
can easily design a PA recognizing S, where one coordinate stands for the length of the
first run of a’s and the other one for the second run of a’s, the automaton guessing when
the second run starts. Flajolet proved that S is inherently ambiguous as a context-free
language, since its generating series S(z) = z(1−z)

1−2z
∑
n>1

z2n

1−2z+zn+1 has an infinite number of
singularities [15, p. 296–297]. This also yields its inherent weak-ambiguity as a PA language.

4.2 Limit of the method: an example using pumping techniques
As already mentioned, the analytic method presented is not always sufficient to prove inherent
ambiguity. In this section, we develop an example where it does not apply. We consider the
following language Leven , which is accepted both by a deterministic pushdown automaton
and a non-deterministic PA (where n = anb as in Section 4.1):

Leven =
{
n1 n2 . . . n2k : k ∈ N, ∀i ≤ 2k, ni > 0, and ∃j ≤ k, n2j = n2j−1

}
.

In other words, Leven is the language of sequences of encoded numbers having two consecutive
equal values, the first one being at an odd position. This language is accepted by a non-
deterministic PA but is also deterministic context-free. This means that its generating series
is algebraic and hence holonomic. This puts it out of the reach of our analytic method.

In this section we establish the following result:

I Theorem 20. The language Leven is inherently weakly-ambiguous as a PA language.

The remainder of this section is devoted to sketch the proof of this proposition. By
contradiction, we suppose that Leven is recognized by a weakly-unambiguous PA A.

An a-piece ω of A is a non-empty simple path of a-edges in A, starting and ending at
the same state: the states of the path are pairwise distinct, except for its extremities. The
origin of w is its starting (and ending) state. Let Π(A) be the (finite) set of a-pieces in A.

We see a run in A as a sequence of transitions forming a path in A. An a-subpath of a
run R in A is a maximal consecutive subsequence of R whose transitions are all labeled by
a’s, that is, it cannot be extended further to the left nor to the right in R using a’s.

Let R be an accepting run in A. One can show that every a-subpath S of R can be
decomposed as S = w1σ

s1
1 w2σ

s2
2 · · ·wfσ

sf

f wf+1, where the σi’s are a-pieces of Π(A), the si’s
are positive integers, and the wi’s are paths not using twice the same state. Moreover, this
decomposition is unique if we add the condition that if wi = ε, then σi 6= σi−1 and the only
state in common in wi and σi is the origin of σi. This is done by repeatedly following the
path until a state q is met twice, factorizing this segment of the form wσ, where σ is an
a-piece of origin q. We call this decomposition the canonical form of S, and the signature of
S is the tuple (w1, σ1, w2, . . . , wf , σf , wf+1), i.e., we dropped the si’s of the canonical form.
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From the weak-unambiguity of A we can prove that there are at most c distinct possible
signatures, where c only depends on A, and that f is always at most |QA|.

Ramsey’s Theorem [32] guarantees that there exists an integer r such that any complete
undirected graph with at least r vertices, whose edges are colored using c2 different colors,
admits a monochromatic triangle. We fix two positive integers n and k sufficiently large,
which will be chosen later on, depending on A only. For ` ∈ {1, . . . , r}, let w` be the word
w` = n1 n2 . . . n2r, where ni = n for odd i and n2i = n+ k if i 6= ` and n2` = n. Each w` is
in Leven , with a match at position 2` only. By weak-unambiguity, each w` has a unique
accepting run R` in A, each such run having 2r a-subpaths by construction. For i 6= j in
{1, . . . , r}, let λij be the signature of the 2j-th a-subpath of Ri, which is a path of length
n+ k by definition. The complete undirected graph of vertex set {1, . . . , r} where each edge
ij, with i < j, is colored by the pair (λij , λji) admits a monochromatic triangle of vertices
α < β < γ. In particular, λαβ = λαγ and λγα = λγβ .

We choose k = lcm({|σ| : σ ∈ Π(A)}), and n sufficiently large so that any a-subpath of
an accepting run contains an a-piece σ repeated at least k + 1 times. This is possible as
the wi’s have bounded length, and there are at most |QA|+ 1 of them. Hence, the 2γ-th
a-subpath of wα contains a a-piece σ that is repeated more than s times, where s = k/|σ|. As
λαβ = λαγ , the piece σ is also in the 2β-th a-subpath of wα. If we alter the accepting path
Rα into R′α by looping s more times in σ in the a-subpath at position 2β and s less times
in σ at position 2γ, we obtain a run for the word w = · · ·nn

2α
· · ·nn+ 2k

2β
· · ·nn

2γ
· · · . This

run is accepting as the PA computes the same vector as for wα, by commutativity of vectors
addition. And the signatures remain unchanged, as there are sufficiently many repetitions of
σ at position 2γ in wα. Similarly, as λγα = λγβ , we can alter the accepting path Rγ into an
accepting path R′γ of same signatures as Rγ for the same word w, by removing s′ = k/|σ′|
iterations of an a-piece σ′ at position 2α and adding them at position 2β.

We have built two paths R′α and R′γ that both accept the same word w. Therefore, as A
is weakly-unambiguous, they are equal. As the signatures have not changed, this implies
that the signature at position 2α in R′α is λγα, which is equal to λγβ (monochromaticity),
which is equal to λαβ (R′α and R′γ have same signatures). This is a contradiction as we
could remove one a-piece at position 2α in wα and add it at position 2β, while computing
the same vector with the same starting and ending states: but this word is not in Leven.

I Remark 21. The proof relies on manipulations of paths in the automaton, and we only
use the commutativity of the addition for the vector part. Thus, it still holds if we consider
automata where we use a recursively enumerable set instead of a semilinear set for acceptance.

5 Algorithmic consequence of holonomicity

Generating series of languages have already been used to obtain efficient algorithms on
unambiguous models of automata. For instance, they were used by Stearns and Hunt as a
basic tool to obtain bounds on the length of a word witnessing the non-inclusion between two
unambiguous word automata [35]. More precisely, the proof in [35] relies on the recurrence
equation satisfied by the coefficients of the generating series (which is guaranteed to exist by
holonomicity in one variable). In the rational case, this recurrence relation can be derived
from the automaton and does not require advanced results on holonomic series. In this section,
our aim is to obtain a similar bound for the inclusion problem for weakly-unambiguous
Parikh automata. The inclusion problem for RCM (and hence for weakly-unambiguous PA)
is shown to be decidable in [8] but no complexity bound is provided. Note that this problem
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is known to be undecidable for non-deterministic PA [19]. We follow the same approach as
for the rational case [35] and for RCM [8]. In stark contrast with the rational case, it is
necessary to closely inspect holonomic closure properties in order to give concrete bounds.

Fix A and B two weakly-unambiguous PA. We can construct a weakly-unambiguous PA
C accepting L(A)∩L(B). We rely on the key fact that the series D(x) = A(x)−C(x) counts
the number of words of length n in L(A) \ L(B). In particular, L(A) ⊆ L(B) if and only if
D(x) = 0.

As D(x) is the difference of two holonomic series, it is holonomic. As equality between
holonomic series is decidable, [8] concludes that the problem is decidable. But without further
analysis, no complexity upper-bound can be derived. The coefficients of D(x) =

∑
n≥0 dnx

n

satisfy a recurrence equation of the form p0(n)dn =
∑r
k=1 pk(n)dn−k for n ≥ r with p0(x) 6= 0.

This equation fully determines dn in terms of its r previous values dn−1, . . . , dn−r, provided
that p0(n) 6= 0. In particular, if the r previous values are all equal to 0, then dn = 0.
Consequently, if dn is equal to 0 for all n ≤ r +R where R denotes the largest positive root
of p0 (which is bounded from above by its ∞-norm, as a polynomial on Z) then15 D(x) = 0.

Taking W := r + R, we have that if L(A) 6⊆ L(B) then there exists a word witnessing
this non-inclusion of length at most W . We now aim at computing an upper-bound on W
on the size of the inputs A and B.

For this, we first bound the order of the linear recurrence satisfied by A(x) and C(x), as
well as the degrees and norm of the polynomials involved. This is stated in Proposition 22,
whose proof follows the one of Proposition 12, while establishing such bounds for the
multivariate Hadamard product and the specialization to 1.

I Proposition 22. The generating series A(x) of a weakly-unambiguous PA A of dimension
d ≥ 1 satisfies a non-trivial linear differential equation qs(x)∂sxA(x) + · · ·+ q0(x)A(x) = 0,
with s ≤ ((d+ 1)|A| ‖A‖∞)O(d) and for all i ∈ [0, s], deg(qi) ≤ ((d+ 1)|A| ‖A‖∞)O(d) and
log ‖qi‖∞ ≤ ((d+ 1)|A| ‖A‖∞)O(d2) using the notations of Section 3.2.

Finally, we transfer these bounds to the series D(x) of L(A) \ L(B) using the analysis of
[22] for the sum of holonomic series in one variable.

I Theorem 23. Given two weakly-unambiguous PA A and B of respective dimensions dA
and dB, if L(A) is not included in L(B) then there exists a word in L(A) \ L(B) of length at
most 22O(d2 log(dM)) where d = dA + dB and M = |A| |B| ‖A‖∞ ‖B‖∞.

Using the bound of Theorem 23, the inclusion problem can be solved in triply exponential
time by a naive counting of all words up to the bound. Using dynamic programming to
compute the number of accepted words, we can decide inclusion in doubly exponential time.

I Corollary 24. Given two weakly-unambiguous PA A and B of dimensions dA and dB,
we can decide if L(A) is included in L(B) in time 22O(d2 log(dM)) where d = dA + dB and
M = |A| |B| ‖A‖∞ ‖B‖∞.

I Remark 25. In [8], the authors propose a different construction to prove the holonomicity
of the generating series of languages in RCM. This proof uses the closure of holonomic
series under Hadamard product and algebraic substitution x1 = x2 = · · · = xn = x. It is
natural to wonder if this approach would lead to better bounds in Proposition 22 (using the

15The proof of Theorem 7 in [8] wrongly suggests that we can take the order of the differential equation
for D as a bound on the length of a witness for non-inclusion. In general, this is not the case. For instance
consider D(x) = x1000 which satisfies the first-order differential equation 1000D(x)− x∂xD(x) = 0. It
is clear that the coefficients D0 = 0 and D1 = 0 are not enough to decide that D is not zero.
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equivalence between weakly-unambiguous PA and RCM). It turns out that the operation
x1 = x2 = · · · = xn = x is more complicated than it seems at a first glance. Indeed, to our
knowledge, no proof of the closure under algebraic substitution explains what happens if,
during the substitution process, the equations become trivial. This issue can be overcome
by doing the substitution step by step: x2 = x1, then x3 = x1, etc. However, this naive
approach would produce worse bounds.

6 Perspectives

The bounds obtained in Section 5 are derived directly from constructions given in the proofs
of the closure properties. In particular, we did not use any information on the special form
of our series. The bounds are certainly perfectible using more advanced tools from computer
algebra. Also it seems that the complexity of the closure under the algebraic substitution
deserves more investigation, as discussed in Remark 25.

A more ambitious perspective is to find larger classes of automata whose generating series
are holonomic. This would certainly require new ideas, as for instance any holonomic power
series with coefficients in {0, 1} is known to be the characteristic series of some semilinear
set [1].
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1 Introduction

The Burnside Problem

An element g of a semigroup G is called torsion if gi = gj holds for some naturals i < j, and
G torsion if all its elements are torsion. Burnside [6] asked in 1902 a question which became
known as the Burnside problem for groups: is every finitely generated torsion group finite?
Schur [28] showed in 1911 that this holds true for groups of invertible complex matrices,
i.e., any finitely generated torsion subgroup of GL(n,C) is finite. This was generalised by
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Kaplansky [21, p. 105] to matrices over arbitrary fields. The Burnside problem for groups has
a negative answer in general: in 1964 Golod and Shafarevich exhibited a finitely generated
infinite torsion group [13, 14].

The Maximal Order of Finite Matrix Groups

Schur’s result [28] assures that finitely generated torsion matrix groups are finite, but does
not bound the group order. Indeed, it is easy to see that any finite cyclic group is isomorphic
to a group generated by a matrix in GL(2,R). The same is not true for GL(n,Q): An
elementary proof, see e.g. [23], shows that any finite subgroup of GL(n,Q) is conjugate to a
finite subgroup of GL(n,Z). Another elementary proof shows that the order of any finite
subgroup of GL(n,Z) divides (2n)!; see, e.g., [27, Chapter IX]. Thus, denoting the order of the
largest finite subgroup of GL(n,Q) by g(n), we have g(n) ≤ (2n)!. It is shown in a paper by
Friedland [12] that g(n) = 2nn! holds for all sufficiently large n. This bound is attained by the
group of signed permutation matrices. Friedland’s proof rests on an article by Weisfeiler [34]
which in turn is based on the classification of finite simple groups. Feit showed in an
unpublished manuscript [9] that g(n) = 2nn! holds if and only if n ∈ N \ {2, 4, 6, 7, 8, 9, 10}.1
Feit’s proof relies on an unpublished manuscript [33], also based on the classification of finite
simple groups, which Weisfeiler left behind before his tragic disappearance.

Deciding Finiteness of Matrix Groups

Bounds on group orders give a straightforward, albeit inefficient, way of deciding whether a
given set of matrices generates a finite group: starting from the set of generators, enlarge it
with products of matrices in the set, until either it is closed under product or the bound on
the order has been exceeded. One can do substantially better: it is shown in [2] that, using
computations on quadratic forms, one can decide in polynomial time if a given finite set of
rational matrices generates a finite group.

Deciding Finiteness of Matrix Semigroups

The Burnside problem has a natural analogue for semigroups. In 1975, McNaughton and
Zalcstein [26] positively solved the Burnside problem for matrix semigroups, i.e., they showed,
for any field F, that any finitely generated torsion subsemigroup of Fn×n is finite, using the
result for groups by Schur and Kaplansky as a building block. From a computational point
of view, McNaughton and Zalcstein’s result suggests an approach for deciding finiteness
of the semigroup generated by a given set of rational matrices: finiteness is recursively
enumerable, by closing the set of generators under product, as described above for groups.
On the other hand, infiniteness is recursively enumerable by enumerating elements in the
generated semigroup and checking each element whether it is torsion. By the contrapositive
of McNaughton and Zalcstein’s result, if the generated matrix semigroup is infinite, it has
a non-torsion element, witnessing infiniteness. However, deciding whether a given matrix
has finite order is nontrivial. Only in 1980 did Kannan and Lipton [19, 20] show that the
so-called orbit problem is decidable (in polynomial time), implying an algorithm for checking
whether a matrix has finite order.

1 A list of the maximal-order finite subgroups of GL(n,Q) for n ∈ {2, 4, 6, 7, 8, 9, 10} can be found in [3,
Table 1].
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Avoiding this problem, Mandel and Simon [25] showed in 1977 that there exists a function
f : N3 → N such that if S is a finite subsemigroup of Fn×n, generated by m of its elements,
and the subgroups of S have order at most g, then S has size (cardinality) at most f(n,m, g).
For rational matrices, one may use the function g(n) from above for g. By making, in a sense,
McNaughton and Zalcstein’s proof quantitative, Mandel and Simon explicitly construct such
a function f , which implies an algorithm, with bounded runtime, for deciding finiteness of a
finitely generated rational matrix semigroup. A similar result about the decidability of this
problem was obtained independently and concurrently by Jacob [18].

Size Bounds

Unlike the function g for rational matrix groups, Mandel and Simon’s function f(n,m, g)
depends on m, the number of generators. This is unavoidable: the semigroup generated

by the set Mm :=
{(

0 i

0 0

)
: i ∈ {0, . . . ,m− 1}}

}
is the set Mm itself, with |Mm| = m

for any m ∈ N. Further, the growth in n of Mandel and Simon’s f is, roughly, a tower of
exponentials of height n. They write in [25, Section 3]: “However, it is likely that our upper
bound [f(n,m, g)] can be significantly improved.”

In [4, Chapter VI], Berstel and Reutenauer also show, for the rational case, the existence
of a function in n and m that bounds the semigroup size. They write: “As we shall see, the
function [. . . ] grows extremely rapidly.” An analysis of their proof shows that the growth of
their function is comparable with the growth of Mandel and Simon’s function. A related
approach is taken in [31]. Further proofs of McNaughton and Zalcstein’s result can be found,
e.g., in [24, 11, 8, 30], but they do not lead to better size bounds.

Length Bounds

In 1991, Weber and Seidl [32] considered semigroups over nonnegative integer matrices. Using
combinatorial and automata-theoretic techniques, they showed that if a finite setM⊆ Nn×n
generates a finite monoid, then for any matrix M of that monoid there are M1, . . . ,M` ∈M
with ` ≤ de2n!e − 2 such that M = M1 · · ·M`; i.e., any matrix in the monoid is a product of
matrices inM whose length is at most de2n!e − 2. Note that this bound does not depend
on the number of generators. Weber and Seidl also give an example that shows that such a
length bound cannot be smaller than 2n−2.

Almeida and Steinberg [1] proved in 2009 a length bound for rational matrices and
expressing the zero matrix: if a finite setM⊆ Qn×n (with n > 1) generates a finite semigroup
that includes the zero matrix 0, then there are M1, . . . ,M` ∈ M with ` ≤ (2n − 1)n2 − 1
such that 0 = M1 · · ·M`. A length bound of n5 for expressing the zero matrix was recently
given in the nonnegative integer case [22]. It is open whether there is a polynomial length
bound for expressing the zero matrix in the rational case.

Our Contribution

We prove a 2O(n2 logn) length bound for the rational case:

I Theorem 1. Let M ⊆ Qn×n be a finite set of rational matrices such that M gen-
erates a finite semigroup M. Then for any M ∈ M there are M1, . . . ,M` ∈ M with
` ≤ 2n(2n+3)g(n)n+1 ∈ 2O(n2 logn) such that M = M1 · · ·M`. (Here g(n) ≤ (2n)! denotes the
order of the largest finite subgroup of GL(n,Q).)
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The example by Weber and Seidl mentioned above shows that any such length bound must
be at least 2n−2. A length bound trivially implies a size bound, and Theorem 1 allows us to
obtain the first significant improvement over the fast-growing function of Mandel and Simon.

I Corollary 2. LetM⊆ Qn×n be a finite set of m rational matrices that generate a finite
semigroupM. Then |M| ≤ m2O(n2 log n) .

The proof of Theorem 1 is largely based on linear-algebra arguments, specifically on the
structure of a certain graph of vector spaces obtained fromM. This graph was introduced
and analysed by Hrushovski et al. [17] for the computation of the Zariski closure of the
generated matrix semigroup.

After the preliminaries (section 2) and the proof of Theorem 1 (section 3), we discuss
applications in automata theory (section 4). In particular we show that our result implies
the first elementary-time algorithm for deciding finiteness of weighted automata over the
rationals.

2 Preliminaries

We write N = {0, 1, 2, . . .}. For a finite alphabet Σ, we write Σ∗ = {a1 · · · ak : k ≥ 0, ai ∈ Σ}
and Σ+ = {a1 · · · ak : k ≥ 1, ai ∈ Σ} for the free monoid and the free semigroup generated
by Σ. The elements of Σ∗ are called words. For a word w = a1 · · · ak, its length |w| is k.
We denote by ε the empty word, i.e., the word of length 0. For L ⊆ Σ∗, we also write
L∗ = {w1 · · ·wk : k ≥ 0, wi ∈ L} ⊆ Σ∗ and L+ = {w1 · · ·wk : k ≥ 1, wi ∈ L} ⊆ Σ∗.

We denote by In the n×n-identity matrix, and by ~0 the zero vector. For vectors v1, . . . , vk
from a vector space, we denote their span by 〈v1, . . . , vk〉. In this article, we view elements
of Qn as row vectors.

For some n ∈ N \ {0}, letM ⊆ Qn×n be a finite set of rational matrices, generating a
finite semigroupM. For notational convenience, throughout the paper, we associate toM
an alphabet Σ with |M| = |Σ|, and a bijection M : Σ→M which we extend to the monoid
morphism M : Σ∗ →M∪{In}. Thus we may write M(Σ) and M(Σ∗) forM andM∪{In},
respectively.

We often identify a matrix A ∈ Qn×n with its linear transformation A : Qn → Qn such
that x 7→ xA for row vectors x ∈ Qn. To avoid clutter, we extend linear-algebra notions from
matrices to words, i.e., we may write imw, kerw, rkw for the image im(M(w)) = QnM(w),
the kernel ker(M(w)) = {x ∈ Qn : xM(w) = ~0}, and the rank of M(w).

If all matrices inM(Σ) are invertible andM(Σ∗) is finite, thenM(Σ∗) is a finite subgroup
of GL(n,Q). For n ∈ N, let us write g(n) for the size of the largest finite subgroup of GL(n,Q).
As discussed in the introduction, a non-trivial but elementary proof shows g(n) ≤ (2n)!, and
it is known that g(n) = 2nn! holds for sufficiently large n.

Exterior Algebra

This brief introduction is borrowed and slightly extended from [17, Section 3]. Let V be
an n-dimensional vector space over a field F. (We will only consider V = Qn.) For any
r ∈ N, let Ar denote the set of maps B : V r → F so that B is linear in each argument and
further B(v1, . . . , vr) = 0 holds whenever vi = vi+1 holds for some i ∈ {1, . . . , r − 1}. These
conditions imply that swapping two adjacent arguments changes the sign, i.e.,

B(v1, . . . , vi−2, vi−1, vi+1, vi, vi+2, vi+3, . . . , vr) = −B(v1, . . . , vr) .
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These properties of Ar imply that, given an arbitrary basis {e1, . . . , en} of V , any B ∈ Ar
is uniquely determined by all B(ei1 , . . . , eir ) where 1 ≤ i1 < i2 < . . . < ir ≤ n. For any
v1, . . . , vr ∈ V , define the wedge product

v1 ∧ · · · ∧ vr : Ar → F by (v1 ∧ · · · ∧ vr)(B) = B(v1, . . . , vr) .

It follows from the properties of Ar above that the wedge product is linear in each argument:
if vi = λu+ λ′u′ then( ∧

1≤i≤k
vi

)
(B) = λ

( ∧
1≤j<i

vj ∧ u ∧
∧

i<j≤k

vj

)
(B) + λ′

( ∧
1≤j<i

vj ∧ u′ ∧
∧

i<j≤k

vj

)
(B)

Moreover, (v1 ∧ · · · ∧ vr)(B) = 0 if vi = vj holds for some i, j with i 6= j.
For r ∈ N define ΛrV as the vector space generated by the length-r wedge products

v1∧· · ·∧vr with v1, . . . , vr ∈ V . For any basis {e1, . . . , en} of V , the set {ei1∧· · ·∧eir : 1 ≤ i1 <
. . . < ir ≤ n} is a basis of ΛrV ; hence dim ΛrV =

(
n
r

)
. Note that Λ1V = V and

(
n
r

)
= 0 for

r > n. One can view the wedge product as an associative operation ∧ : ΛrV ×Λ`V → Λr+`V .
Define the exterior algebra of V as the direct sum ΛV = Λ0V ⊕ Λ1V ⊕ · · · . Then also
∧ : ΛV × ΛV → ΛV .

It follows that for u1, . . . , ur ∈ V , we have u1 ∧ · · · ∧ ur 6= ~0 if and only if {u1, . . . , ur} is
linearly independent. Furthermore, for u1, . . . , ur, v1, . . . , vr ∈ V and u = u1 ∧ · · · ∧ ur 6= ~0
and v = v1 ∧ · · · ∧ vr 6= ~0, we have that u, v are scalar multiples if and only if 〈u1, . . . , ur〉 =
〈v1, . . . , vr〉.

The Grassmannian Gr(n) is the set of subspaces of Qn. By the above-stated properties
of the wedge product there is an injective function

ι : Gr(n)→ ΛQn

such that, for all W ∈ Gr(n), we have ι(W ) = v1∧· · ·∧vr where {v1, . . . , vr} is an arbitrarily
chosen basis of W . Note that the particular choice of a basis for W only changes the value
of ι(W ) up to a constant. Given subspacesW1,W2 ∈ Gr(n), we moreover haveW1∩W2 = {~0}
if and only if ι(W1) ∧ ι(W2) 6= ~0.

3 Proof of Theorem 1

It is convenient to state and prove our main result in terms of monoids rather than semigroups:

I Theorem 3. Let M : Σ∗ → Qn×n be a monoid morphism whose image M(Σ∗) is finite.
Then for any w ∈ Σ∗ there is u ∈ Σ∗ with M(w) = M(u) and

|u| ≤ 2n(2n+3)g(n)n+1 ∈ 2O(n2 logn) .

With this theorem at hand, Theorem 1 follows immediately:

Proof of Theorem 1. Let M ∈ M be an element of the semigroup generated by M. If
M 6= In, by Theorem 3, M can be written as a short product. Otherwise, M = In ∈ G,
where G =M∩GL(n,Q) is a finite group of order at most g(n). For any product M1 · · ·M`

with ` > g(n), there are 1 ≤ i < j ≤ ` such that M1 · · ·Mi = M1 · · ·Mj , and so M1 · · ·M` =
M1 · · ·MiMj+1 · · ·M`. Hence, there are ` ∈ {1, . . . , g(n)} and M1, . . . ,M` ∈ M such that
M = In = M1 · · ·M`. J
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I Remark 4. The same argument as in the proof above shows that in a finite monoid (H, ·),
generated by G ⊆ H, for any h ∈ H there are ` ∈ {0, . . . , |H| − 1} and g1, . . . , g` ∈ G with
h = g1 · · · g`.

In the remainder of this section, we prove Theorem 3. We assume that M : Σ∗ → Qn×n
is a monoid morphism with finite image M(Σ∗).

3.1 The Maximum-Rank Case
In this subsection we prove:

I Proposition 5. Suppose that there is r ≤ n with rk a = r for all a ∈ Σ. Let w ∈ Σ∗ with
rkw = r. Then there is u ∈ Σ∗ with M(w) = M(u) and

|u| ≤ 22n+3g(n)− 1 ∈ 2O(n logn) .

In this subsection we assume that rk a = r holds for all a ∈ Σ. For the proof of
Proposition 5, we define a directed labelled graph G whose vertices are the vector spaces imw

for w ∈ Σ∗ such that rkw = r, and whose edges are triples (V1, a, V2) such that a ∈ Σ and
V1M(a) = V2. Let (V1, a, V2) be an edge; then V2 ⊆ im a, but dimV2 = r = rk a = dim im a,
hence V2 = im a, i.e., the edge label determines the edge target. We will implicitly use the
fact that any path in G is determined by its start vertex and the sequence of its edge labels.
Note that if V1 is a vertex and a ∈ Σ, the edge (V1, a, im a) is present in G if and only if
rk V1M(a) = r if and only if V1 ∩ ker a = {~0}.

The following two lemmas, which are variants of lemmas in [17, Section 6], are statements
about the structure of G in terms of its strongly connected components (SCCs).

I Lemma 6. Let w = w1 · · ·wk for w1, . . . , wk ∈ Σ+ with rkw = r such that the k vertices
imw1, . . . , imwk are all in different SCCs of G. Then k ≤ 2

(
n
r

)
.

Proof. Let i ∈ {2, . . . , k− 1}. Since rkwi = r = rk(wiwi+1), we have imwi ∩kerwi+1 = {~0},
thus ι(imwi) ∧ ι(kerwi+1) 6= ~0. On the other hand, for any j < i, since imwi, imwj are
in different SCCs and imwi is reachable from imwj , the vertex imwj is not reachable
from imwi; therefore we have imwi ∩ kerwj 6= {~0}, thus ι(imwi) ∧ ι(kerwj) = ~0. It
follows that ι(kerwi+1) 6∈ 〈ι(kerwj) : j < i〉. Indeed, if ι(kerwi+1) =

∑
j<i λjι(kerwj)

for some λ1, . . . , λi−1 then, by linearity of the wedge product, ι(imwi) ∧ ι(kerwi+1) =∑
j<i λj(ι(imwi) ∧ ι(kerwj)) = ~0, a contradiction.
We show by induction on i that dim 〈ι(kerwj) : j ∈ {1, . . . , i}〉 ≥ i/2 for all i ∈ {1, . . . , k}.

This is clear for i = 1, 2. For the induction step, we have dim 〈ι(kerwj) : j ∈ {1, . . . , i+ 1}〉 ≥
dim 〈ι(kerwi+1), ι(kerwj) : j ∈ {1, . . . , i− 1}〉 ≥ 1 + (i − 1)/2 = (i + 1)/2. Hence k/2 ≤
dim 〈ι(kerwj) : j ∈ {1, . . . , k}〉 ≤ dim Λn−rQn =

(
n
r

)
. J

I Lemma 7. Let a1 · · · ak ∈ Σ∗ be (the edge labels of) a shortest path in G from a vertex im a0
to im ak. Then k ≤

(
n
r

)
.

Proof. Let i ∈ {0, . . . , k− 2}. We have im ai ∩ ker ai+1 = {~0}, thus ι(im ai)∧ ι(ker ai+1) 6= ~0.
On the other hand, for any j > i + 1, since ai+1 · · · aj is a shortest path from im ai
to im aj , there is no edge from im ai to im aj ; therefore we have im ai ∩ ker aj 6= {~0}, thus
ι(im ai) ∧ ι(ker aj) = ~0. It follows that ι(ker ai+1) 6∈ 〈ι(ker aj) : j > i+ 1〉.

By induction it follows that dim 〈ι(ker aj) : j ∈ {i+ 1, . . . , k}〉 ≥ k − i holds for all
i ∈ {0, . . . , k − 1}. Hence k ≤ dim 〈ι(ker aj) : j ∈ {1, . . . , k}〉 ≤ dim Λn−rQn =

(
n
r

)
. J
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The next lemmas discuss cycles w ∈ Σ+ in G, i.e., (the edge labels of) paths in G such
that imw∩kerw = {~0}. A cycle w is said to be around imw0 if imw = imw0. The following
lemma says, loosely speaking, that cycles around a single vertex “generate a group”.

I Lemma 8. Let w0 ∈ Σ+ with rkw0 = r, and let P ∈ Qr×n be a matrix with imP = imw0.
Then for every cycle w ∈ Σ+ around imw0 there exists a unique invertible matrix M ′(w) ∈
GL(r,Q) such that PM(w) = M ′(w)P . Moreover, for any nonempty set C ⊆ Σ+ of cycles
around imw0, M ′(C+) is a finite subgroup of GL(r,Q).

Proof. Let w ∈ Σ+ be a cycle around imw0. Since imP ∩ ker(M(w)) = {~0}, it follows that
im(PM(w)) = imw = imP . So the rows of PM(w) are linear combinations of rows of P ,
and vice versa, hence there is a unique M ′(w) ∈ GL(r,Q) with PM(w) = M ′(w)P .

Let C ⊆ Σ+ be a nonempty set of cycles around imw0. For any w1, w2 ∈ C we have
M ′(w1w2)P = PM(w1w2) = PM(w1)M(w2) = M ′(w1)PM(w2) = M ′(w1)M ′(w2)P , and
since the rows of P are linearly independent, it follows that M ′(w1w2) = M ′(w1)M ′(w2).
Thus, M ′(C+) is a semigroup.

Towards a contradiction, suppose M ′(C+) were infinite. Since the rows of P are linearly
independent, it follows that M ′(C+)P is infinite, thus PM(C+) is infinite. Since imw0 =
imP , there is a matrix B ∈ Qn×r with M(w0) = BP . Since the columns of B are linearly
independent, the set BPM(C+) is infinite. But this set equals M(w0C

+), contradicting
the finiteness of M(Σ∗). Thus the semigroup M ′(C+) is finite. As M ′(C+) ⊆ GL(r,Q), it
follows that M ′(C+) is a finite group. J

The following lemma allows us, loosely speaking, to limit the number of cycles in a word.

I Lemma 9. Let w0, w1, . . . , wk ∈ Σ+ such that w1, . . . , wk are cycles around imw0. Then
there exist ` ≤ g(n) − 1 and {u1, . . . , u`} ⊆ {w1, . . . , wk} such that M(w0w1 · · ·wk) =
M(w0u1 · · ·u`).

Proof. We can assume k ≥ 1. Let C = {w1, . . . , wk}. Let P and M ′(w) for w ∈ C

as in Lemma 8. By Lemma 8, the set M ′(C+) is a finite subgroup of GL(r,Q), so we
have |M ′(C+)| ≤ g(r) ≤ g(n). By Remark 4, there are ` ≤ g(n) − 1 and u1, . . . , u` ∈ C
such that M ′(w1) · · ·M ′(wk) = M ′(u1) · · ·M ′(u`). Since imw0 = imP , there is a matrix
B ∈ Qn×r with M(w0) = BP . Hence we have M(w0w1 · · ·wk) = BPM(w1) · · ·M(wk) =
BM ′(w1) · · ·M ′(wk)P = BM ′(u1) · · ·M ′(u`)P = BPM(u1) · · ·M(u`) = M(w0u1 · · ·u`).

J

The following lemma allows us to add cycles to a word.

I Lemma 10. Let w ∈ Σ+ be a cycle in G. Then there exists ρ(w) ∈ N \ {0} such that
M(w0) = M(w0w

ρ(w)) holds for all w0 ∈ Σ+ with imw0 = imw.

Proof. Let P ∈ Qr×n be a matrix with imP = imw. By Lemma 8, there exists M ′(w) ∈
GL(r,Q) such that PM(w) = M ′(w)P and {M ′(w)i : i ∈ N} is a finite group. Define ρ(w)
to be the order of this group, i.e., M ′(w)ρ(w) = Ir. Let w0 ∈ Σ+ with imw0 = imw. Since
imw0 = imP , there is a matrix B ∈ Qn×r with M(w0) = BP . Hence M(w0) = BP =
BIrP = BM ′(w)ρ(w)P = BPM(w)ρ(w) = M(w0)M(w)ρ(w) = M(w0w

ρ(w)). J

The following lemma allows us to limit the length of paths within an SCC.

I Lemma 11. Let a ∈ Σ, and let w ∈ Σ∗ be a path in G from im a such that im a and imw

are in the same SCC. Then there exists u ∈ Σ∗ with M(aw) = M(au) and

|u| ≤ 2n+2g(n)− 2 ∈ 2O(n logn) .
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. . .

· · ·

. . .

a a1

s(a, a1)

s(a1, a)

a2

s(a, a2)

s(a2, a)

a3 ak

s(a, ak)

s(ak, a)

Figure 1 Illustration of the paths w and w′ in Lemma 11. Edges are depicted as solid arrows,
paths as dashed arrows.

Proof. For any b1, b2 ∈ Σ such that im b1, im b2 are in the SCC of im a, let s(b1, b2) ∈ Σ∗ be
a shortest path from im b1 to im b2. By Lemma 7, we have |s(b1, b2)| ≤

(
n
r

)
.

Suppose w = a1 · · · ak for ai ∈ Σ. For i ∈ {1, . . . , k} define the cycle wi := s(ai, a)s(a, ai)
around im ai. By Lemma 10, we have M(aw) = M(aw′) for

w′ := a1w
ρ(w1)
1 a2w

ρ(w2)
2 · · · akwρ(wk)

k .

For i ∈ {1, . . . , k} also define the cycle vi := s(a, ai)s(ai, a) around im a. Then we have:

w′ = a1s(a1, a)vρ(w1)−1
1 s(a, a1)a2s(a2, a)vρ(w2)−1

2 s(a, a2) · · · aks(ak, a)vρ(wk)−1
k s(a, ak)

Figure 1 illustrates the paths w and w′. Define a set of cycles C ⊆ Σ∗ around im a by

C := {a1s(a1, a), v1, s(a, a1)a2s(a2, a), v2, . . . , s(a, ak−1)aks(ak, a), vk} .

Since w′ ∈ C∗s(a, ak), by Lemma 9, there exist ` ≤ g(n)− 1 and u1, . . . , u` ∈ C such that
M(aw) = M(aw′) = M(au1u2 · · ·u`s(a, ak)). For all v ∈ C we have |v| ≤ 2

(
n
r

)
+ 1 ≤ 2n+2,

and |s(a, ak)| ≤
(
n
r

)
≤ 2n. Hence the lemma holds for u := u1u2 · · ·u`s(a, ak), as |u| ≤

2n+2(g(n)− 1) + 2n ≤ 2n+2g(n)− 2. J

We are ready to prove Proposition 5.

Proof of Proposition 5. Decompose the word w into w = a1w1a2w2 · · · akwk for ai ∈ Σ
so that for all i ∈ {1, . . . , k} the vertices im ai, imwi are in the same SCC, and for all
i ∈ {1, . . . , k − 1} the vertices imwi, im ai+1 are in different SCCs. By Lemma 6, we
have k ≤ 2

(
n
r

)
≤ 2n+1. For all i ∈ {1, . . . , k}, by Lemma 11, there is ui ∈ Σ∗ with

|ui| ≤ 2n+2g(n) − 2 such that M(aiwi) = M(aiui). Hence the proposition holds for
u := a1u1a2u2 · · · akuk, as |u| ≤ 2n+1(2n+2g(n)− 2 + 1) ≤ 22n+3 − 1. J
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3.2 The General Case
In this subsection we prove Theorem 3. For r ∈ {0, . . . , n} let dr ∈ N be the smallest number
such that for any w ∈ Σ∗ with rkw ≥ r there is u ∈ Σ∗ with M(w) = M(u) and |u| ≤ dr.
Also write h for the bound from Proposition 5.

I Proposition 12. For any r ∈ {0, . . . , n− 1} we have dr ≤ dr+1 + (dr+1 + 1)h.

Proof. Let w ∈ Σ∗ with rkw ≥ r. We need to show that there is u ∈ Σ∗ with M(w) = M(u)
and |u| ≤ dr+1 + (dr+1 + 1)h. Decompose w into w = w0a1w1a2w2 · · · akwk for ai ∈ Σ
such that rkw0 > r and for all i ∈ {1, . . . , k} we have rk(aiwi) = r and rkwi > r. (This
decomposition is unique; in particular, akwk is the shortest suffix of w with rank r.) By
the definition of dr+1, for all i ∈ {0, . . . , k} there exists ui ∈ Σ∗ with M(wi) = M(ui) and
|ui| ≤ dr+1. Then M(w) = M(u0a1u1a2u2 · · · akuk).

Define a new alphabet Σr and a monoid morphism Mr : Σ∗r → Qn×n with Mr(Σr) =
{M(aiui) : i ∈ {1, . . . , k}}, and note that rkMr(b) = r for all b ∈ Σr. Then there is a
word y ∈ Σ∗r such that Mr(y) = M(a1u1 · · · akuk). By Proposition 5, there is x ∈ Σ∗r with
Mr(y) = Mr(x) and |x| ≤ h. Obtain the word v ∈ Σ∗ from x by replacing each letter
b ∈ Σr in x by aiui for i ∈ {1, . . . , k} such that Mr(b) = M(aiui). Then Mr(x) = M(v), and
thus M(w) = M(u0a1u1 · · · akuk) = M(u0)Mr(y) = M(u0)Mr(x) = M(u0)M(v) = M(u0v),
where |u0v| = |u0|+ |v| ≤ dr+1 + (dr+1 + 1)|x| ≤ dr+1 + (dr+1 + 1)h. J

We can now prove our main result.

Proof of Theorem 3. We prove by induction that for all r ∈ {0, . . . , n} we have dr ≤
(h + 1)n−rdn + (h + 1)n−r − 1. For the base case, r = n, this is trivial. For the step, let
r < n. We have:

dr ≤ h+ (h+ 1)dr+1 (Proposition 12)
≤ h+ (h+ 1)

(
(h+ 1)n−r−1dn + (h+ 1)n−r−1 − 1

)
(induction hypothesis)

= h+ (h+ 1)n−rdn + (h+ 1)n−r − h− 1

This completes the induction proof. Hence d0 ≤ (h+ 1)n(dn + 1) = 2n(2n+3)g(n)n(dn + 1).
The rank-n matrices in M(Σ) generate a finite subgroup of GL(n,Q). So it follows by
Remark 4 that dn + 1 ≤ g(n). Thus d0 ≤ 2n(2n+3)g(n)n+1. J

4 Algorithmic Applications

Theorem 1 gives an exponential-space algorithm for deciding finiteness of a finitely generated
rational matrix semigroup. In fact, the following theorem shows that deciding finiteness is in
the second level of the weak EXP hierarchy (see e.g. [16] for a definition).

I Theorem 13. Given be a finite setM⊆ Qn×n of rational matrices, the problem of deciding
finiteness of the generated semigroupM is in coNEXPNP.

Proof. For a NEXPNP algorithm deciding infiniteness, non-deterministically guess in expo-
nential time some M = M1 · · ·M`, Mi ∈M, with ` = 2n(2n+3)g(n)n+1 + 1 as a witness for
infiniteness. Then, using a call to an NP oracle, check whether there are M ′1, . . . ,M ′r ∈M
such that M = M ′1 · · ·M ′r for some 0 ≤ r < `. If the call is successful then reject, otherwise
accept.

Correctness of the algorithm immediately follows from Theorem 1: ifM is finite, then
the M ′1, . . . ,M ′r ∈M such that M = M ′1 · · ·M ′r are guaranteed to exist. J
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This is the first improvement of the non-elementary algorithm of Mandel and Simon [25].
Another immediate consequence of Theorem 1 is an upper bound on the complexity of

the membership problem for finite matrix semigroups:

I Theorem 14. Given a finite set of rational matrices M ⊆ Qn×n such that M is finite
and A ∈ Qn×n, the problem of deciding whether A ∈M is in NEXP.

In the remainder of this section, we discuss implications of Theorem 13 to decision
problems in automata theory.

4.1 Weighted Automata
The motivation for Mandel and Simon to study the finiteness problem originated from investig-
ating the decidability of the finiteness problem (originally called boundedness problem in [25])
for weighted automata. A weighted automaton over Q is a quintuple A = (n,Σ,M, α, η)
where n ∈ N is the number of states, Σ is the finite alphabet, M : Σ→ Qn×n maps letters to
transition matrices, α ∈ Qn is the initial state vector, and η ∈ Qn is the final state vector.
We extend M to the monoid morphism M : Σ∗ → Qn×n as before. Such an automaton
defines a function |A| : Σ∗ → Q by defining |A|(w) = αM(w)ηT , where the superscript T
denotes transpose. We say, A is finite if the image of |A| is finite, i.e., if |A|(Σ∗) ⊆ Q is a
finite set. The finiteness problem asks whether a given automaton is finite.

It is clear that if M(Σ∗) is finite then A is finite. The converse is not generally true: e.g.,
any automaton A whose initial state vector is the zero vector satisfies |A|(Σ∗) = {0}, hence
is finite, regardless of M(Σ∗). However, it is argued in the proof of Corollary 5.4 in [25] that,
given an automaton A, one can compute, in exponential time, a polynomial-size automaton B
with monoid morphism MB such that (i) |A| = |B|, and (ii) A (and hence B) is finite if and
only if MB(Σ∗) is finite.2 Mandel and Simon use this argument to show that the finiteness
problem for weighted automata over Q is decidable. Theorem 13 then immediately gives:

I Corollary 15. The finiteness problem for weighted automata over Q can be decided in
coNEXPNP.

4.2 Affine Integer Vector Addition Systems with States
We show that Theorem 1 together with Corollary 2 imply an upper bound for the reachability
problem in affine integer vector addition systems with states with the finite monoid property
(afmp-Z-VASS) studied in [5]. An affine Z-VASS in dimension d ∈ N is a tuple V = (d,Q, T )
such that Q is a finite set of states and T ⊆ Q×Zd×d ×Zd ×Q is a finite transition relation.
Setting M := {A ∈ Zd×d : (q, A,~b, r) ∈ T}, in afmp-Z-VASS we additionally require that
M is finite. A configuration of V is a tuple (q,~v) ∈ Q × Zd which we write as q(~v). We
define the step relation → ⊆ (Q × Zd)2 such that q(~v) → r(~w) if and only if there is a
transition (q, A,~b, r) ∈ T such that ~w = A · ~v +~b. Moreover, we denote by →∗ the reflexive
transitive closure of →. For a configuration q(~v), we define the reachability set of q(~v) as
R(q(~v)) := {r(~w) : q(~v)→∗ r(~w)}. Given configurations q(~v) and r(~w), reachability is the
problem of deciding whether r(~w) ∈ R(q(~v)). Note that R(q(~v)) is in general infinite despite
M being finite.

2 We remark that this automaton B has the minimal number of states among the automata defining the
function |A|. This minimal automaton goes back to [29] and has been further studied in, e.g., [7, 10].
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The reachability problem for afmp-Z-VASS was shown decidable in [5] by a reduction
to reachability in Z-VASS. A Z-VASS is an afmp-Z-VASS in which every transition is of
the form (q, Id,~b, r). The reachability problem for Z-VASS is known to be NP-complete, see
e.g. [15]. The size of the Z-VASS obtained in the reduction given in [5] grows in |M| and
hence leads to a non-elementary upper bound for reachability in afmp-Z-VASS assuming
Mandel and Simon’s bound. The results of this paper enable us to significantly improve this
upper bound.

I Corollary 16. The reachability problem for afmp-Z-VASS can be decided in EXPSPACE.

Proof. Let V = (d,Q, T ) be an afmp-Z-VASS and letM be defined as above. Set ||M|| :=
|M| · d2 ·max{log(||A||+ 1) : A ∈M}, where ||A|| is the largest absolute value of all entries
of A. Since ||A1 · · ·An|| ≤ dn · ||A1|| · · · ||An|| for all A1, . . . , An ∈ Zd×d and n ∈ N, by
Theorem 1 and Corollary 2 we have

||M|| ≤ |T |2
O(d2·log d)

· d2 · 2d(2d+3)g(d)d+1 · (log d+ ||T ||) ≤ ||T ||2
O(d2·log d)

,

where ||T || :=
∑

(q,A,~b,r)∈T d
2 · dlog ||A||+log ||~b||+1e. It can be deduced from the proof of [5,

Thm. 7] that reachability in V can be decided in non-deterministic space that is polynomially
bounded in the encoding of V and poly-logarithmically in ||M||, from which the desired
exponential space upper bound follows. J

5 Conclusion

The main result of this paper has been to show that any element in the finite multiplicative
semigroupM generated by a finite setM of m rational n× n matrices can be obtained as a
product of generators of length at most 2O(n2 logn). This length bound immediately gives
that |M| is bounded by m2O(n2 log n) .

There remain two immediate questions that we did not answer in this article. The first
is whether the order of growth of |M| we obtained is tight. IfM is a group its order can
be bounded by 2nn! for almost all n, and this bound is attained by the group of signed
permutation matrices. In contrast, in the semigroup case |M| also depends on m. We
conjecture that our doubly exponential upper bound is not optimal and that it is possible to
establish an exponential upper bound of |M| in terms of m and n. The second open question
concerns the precise complexity of deciding finiteness of matrix semigroups. We have been
unable to establish any non-trivial lower bounds on this problem and conjecture that our
coNEXPNP upper bound can significantly be improved, possibly by adapting techniques of
Babai et al. [2].
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Abstract
We consider the rational subset membership problem for Baumslag-Solitar groups. These groups
form a prominent class in the area of algorithmic group theory, and they were recently identified as
an obstacle for understanding the rational subsets of GL(2,Q).

We show that rational subset membership for Baumslag-Solitar groups BS(1, q) with q ≥ 2 is
decidable and PSPACE-complete. To this end, we introduce a word representation of the elements of
BS(1, q): their pointed expansion (PE), an annotated q-ary expansion. Seeing subsets of BS(1, q)
as word languages, this leads to a natural notion of PE-regular subsets of BS(1, q): these are the
subsets of BS(1, q) whose sets of PE are regular languages. Our proof shows that every rational
subset of BS(1, q) is PE-regular.

Since the class of PE-regular subsets of BS(1, q) is well-equipped with closure properties, we obtain
further applications of these results. Our results imply that (i) emptiness of Boolean combinations
of rational subsets is decidable, (ii) membership to each fixed rational subset of BS(1, q) is decidable
in logarithmic space, and (iii) it is decidable whether a given rational subset is recognizable. In
particular, it is decidable whether a given finitely generated subgroup of BS(1, q) has finite index.
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1 Introduction

Subsets of groups. Regular languages are an extremely versatile tool in algorithmics on
sets of finite words. This is mainly due to two reasons. First, they are robust in terms
of representations and closure properties: They can be described by finite automata, by
recognizing morphisms, and by monadic second-order logic and they are closed under Boolean
and an abundance of other operations. Second, many properties (such as emptiness) are
easily decidable using finite automata.
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Given this success, there have been several attempts to develop an analogous notion for
subsets of (infinite, finitely generated) groups. Adapting the notion of recognizing morphism
yields recognizable subsets of a group G. They are closed under Boolean operations, and
problems such as membership or emptiness are decidable. However, since they are merely
unions of cosets of finite-index normal subgroups, their expressiveness is severely limited.

Another notion is that of rational subsets, which transfer (non-deterministic) finite
automata to groups. Starting with pioneering work by Benois [6] in 1969, they have
matured into an important tool in group theory. Rational subsets are quite expressive: They
include finitely generated submonoids and are closed under (finite) union, pointwise product,
and Kleene star. Moreover, they have been applied successfully to solving equations in
groups [11, 9], as well as in other settings [2, 34].

The high expressiveness of rational subsets comes at the cost of undecidability of decision
problems for many groups. The most fundamental one is the membership problem for rational
subsets: Given a rational subset R of a group G and an element g ∈ G, does g belong to R?
Understanding for which groups this problem is decidable received significant attention over
the last two decades, see [24] for a survey. Unfortunately, the rational subsets do not quite
reach the level of robustness of regular languages. In general, the class of rational subsets
of a group is not closed under Boolean operations, and the papers [25, 4] study for which
groups the rational subsets form a Boolean algebra.

Baumslag-Solitar groups. A prominent class of groups is that of Baumslag-Solitar groups
BS(p, q). For each p, q ∈ N, the group is defined as BS(p, q) = 〈a, t | tapt−1 = aq〉. They
were introduced in 1962 by Baumslag and Solitar to provide an example of a two-generator
one-relator group that is non-Hopfian. They recently came into focus from the algorithmic
perspective in a paper by Kharlampovich, López, and Miasnikov [22], which shows that
solvability of equations is decidable in BS(1, q). They have also been studied from several
other perspectives, such as the decidability and complexity of the word problem [28, 14, 35],
the conjugacy problem [14, 35], tiling problems [1], and computing normal forms [13, 18, 17].

More specifically to our setting, the Baumslag-Solitar groups have recently been identified
by Diekert, Potapov, and Semukhin [15] as a stumbling block in solving rational subset
membership in the group GL(2,Q), that is, the group of invertible 2×2 matrices over Q. They
show that any subgroup of GL(2,Q) containing GL(2,Z) is either of the form GL(2,Z)× Zk
for k ≥ 1 or contains BS(1, q) as a subgroup for some q ≥ 2. Rational subset membership for
GL(2,Z)× Zk is today a matter of standard arguments [24], because GL(2,Z) is virtually
free. Therefore, making significant progress towards decidability in larger subgroups requires
understanding rational subsets of BS(1, q).

One can represent the elements of BS(1, q) as pairs (r,m), where r is a number in Z[ 1
q ],

say r = ±
∑n
i=−n aiq

i for a−n, a−n+1, . . . , an ∈ {0, . . . , q − 1},1 and m ∈ Z. Here, one can
think of m as a cursor pointing to a position in the q-ary expansion anqn + · · ·+ a−nq

−n.
Then the action of the generators of BS(1, q) is as follows. Multiplication by t or t−1 moves
the cursor to the left or the right, respectively. Multiplication by a adds qm; likewise,
multiplication by a−1 subtracts qm. Thus, from an automata-theoretic perspective, one can
view the rational subset membership problem as the reachability problem for an extended
version of one-counter automata. Instead of storing a natural number, such an automaton
stores a number r ∈ Z[ 1

q ]. Moreover, instead of instructions “increment by 1” and “decrement

1 Z[ 1
q ] denotes (the additive group of) the smallest subring of (Q, +, ·) containing Z and 1/q; as a set, it

consists of all rational numbers of the form n · qj , n, j ∈ Z.
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by 1”, it has an additional Z-counter m that determines the value to be added in the next
update. Then, performing “increment” on r will add qm and “decrement” on r will subtract
qm. The Z-counter m supports the classical “increment” and “decrement” instructions.

Contribution. Our first main contribution is to show is that for each group BS(1, q), the
rational subset membership problem is decidable and PSPACE-complete. To this end, we
show that each rational subset can be represented by a regular language of finite words that
encode elements of BS(1, q) in the natural way: For (r,m) as above, we encode each digit ai
by a letter; and we decorate the digits at position 0 and at position m. We call this encoding
the pointed expansion (PE) of (r,m). This leads to a natural notion of subsets of BS(1, q),
which we call PE-regular. We regard the introduction of this notion as the second main
contribution of this work.

The class of PE-regular subsets of BS(1, q) has several properties that make them a
promising tool for decision procedures for BS(1, q): First, our proof shows that it effectively
includes the large class of rational subsets, in particular any finitely generated submonoid.
Second, they form an effective Boolean algebra. Third, due to them being regular languages
of words, they inherit many algorithmic tools from the setting of free monoids. We apply
these properties to obtain three applications of our main results.
1. Membership in each fixed rational subset can be decided in logarithmic space.
2. We show that it is decidable whether a given PE-regular subset (and thus a given rational

subset) is recognizable. Recognizability of rational subsets is rarely known to be decidable
for groups: The only examples known to the authors are free groups, for which decidability
was shown by Sénizergues [31] (and simplified by Silva [33]) and free abelian groups (this
follows from [19, Theorem 3.1]). Since (i) finitely generated subgroups are rational subsets
and (ii) a subgroup of any group G is recognizable if and only if it has finite index in
G, our result implies that it is decidable whether a given finitely generated subgroup of
BS(1, q) has finite index. Studying decidability of this finite index problem in groups was
recently proposed by Kapovich [12, Section 4.3].

3. Our results imply that emptiness of Boolean combinations (hence inclusion, equality, etc.)
of rational subsets is decidable. (We also show that the rational subsets of BS(1, q) are
not closed under intersection.) This is a strong decidability property that already fails
for groups as simple as F2 × Z (this follows from [20, Theorem 6.3]), where F2 is the free
group over two generators, and hence for GL(2,Z)× Zk, k ≥ 1.

Finally, we remark that since BS(1, q) is isomorphic to the group of all matrices
(
qm r
0 1
)
for

m ∈ Z and r ∈ Z[ 1
q ], our results can be interpreted as solving the rational subset membership

problem for this subgroup of GL(2,Q).

Related work. It is well-known that membership in a given finitely generated subgroup,
called the generalized word problem of BS(1, q), is decidable. This is due to a general result
of Romanovskĭı, who showed in [29] and [30] that solvable groups of derived length two have
a decidable generalized word problem (it is an easy exercise to show that BS(1, q) is solvable
of derived length two for each q ∈ N).

Another restricted version of rational subset membership is the knapsack problem, which
was introduced by Myasnikov, Nikolaev, and Ushakov [27]. Here, one is given group elements
g1, . . . , gk, g and is asked whether there exist x1, . . . , xk ∈ N with gx1

1 · · · g
xk
k = g. A recent

paper on the knapsack problem in Baumslag-Solitar groups by Dudkin and Treyer [16] left
open whether the knapsack problem is decidable in BS(1, q) for q ≥ 2. This was settled
very recently in [26], where one expresses solvability of gx1

1 · · · g
xk
k = g in a variant of Büchi
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arithmetic. A slight extension of that proof yields a regular language as above for the
set S = {gx1

1 · · · g
xk
k | x1, . . . , xk ∈ N}. Note that each element gi moves the cursor either

to the left (i.e. increases m), to the right (i.e. decreases m), or not at all. Thus, in a
product gx1

1 · · · g
xk
k , the cursor direction is reversed at most k − 1 times. The challenge of

our translation from rational subsets to PE-regular subsets is to capture products where the
cursor changes direction an unbounded number of times.

Finally, closely related to rational subsets, there is another approach to group-theoretic
problems via automata: One can represent finitely generated subgroups of free groups using
Stallings graphs. Due to the special setting of free groups, they behave in many ways similar
to automata over words and are thus useful for decision procedures [21]. Stallings graphs
have recently been extended to semidirect products of free groups and free abelian groups by
Delgado [10]. However, this does not include products Z[ 1

q ]oZ and is restricted to subgroups.

2 Basic notions

Automata, rational subsets, and regular languages. Since we work with automata over
finite words and over groups, we define automata over a general monoid M . A subset
S ⊆ M is recognizable if there is a finite monoid F and a morphism ϕ : M → F such that
S = ϕ−1(ϕ(S)). If M is a group, one can equivalently require F to be a finite group.

For a subset S ⊆M , we write 〈S〉 or S∗ for the submonoid generated by S, i.e. the set of
elements that can be written as a (possibly empty) product of elements of S. In particular,
the neutral element 1 ∈M always belongs to 〈S〉 = S∗. A generating set is a subset Σ ⊆M
such that M = 〈Σ〉. We say that M is finitely generated (f.g.) if it has a finite generating
set. Suppose M is finitely generated and fix a finite generating set Σ. An automaton over
M is a tuple A = (Q,Σ, E, q0, qf ), where Q is a finite set of states, E ⊆ Q × Σ × Q is a
finite set of edges, q0 ∈ Q is its initial state, and qf ∈ Q is its final state. A run (in A) is
a sequence ρ = (p0, a1, p1) · · · (pm−1, am, pm), where (pi−1, ai, pi) ∈ E for i ∈ [1,m]. It is
accepting if p0 = q0 and pm = qf . By [ρ], we denote the production of ρ, that is, the element
a1 · · · am ∈M . Two runs are equivalent if they start in the same state, end in the same state,
and have the same production. For a set of runs P , we denote [P ] = {[ρ] | ρ ∈ P}.

The subset accepted by A is L(A) = {[ρ] | ρ is an accepting run in A}. A subset R ⊆M is
called rational if it is accepted by some automaton overM . It is a standard fact that the family
of rational subsets of M does not depend on the chosen generating set Σ. Rational subsets
of a free monoid Γ∗ for some alphabet Γ are also called regular languages. If M = Γ∗ ×∆∗
for alphabets Γ,∆, then rational subsets of M are also called rational transductions. If
T ⊆ Γ∗ ×∆∗ and L ⊆ Γ∗, then we set TL = {v ∈ ∆∗ | ∃u ∈ L : (u, v) ∈ T}. It is well-known
that if L ⊆ Γ∗ is regular and T ⊆ Γ∗ ×∆∗ is rational, then TL is regular as well [7].

Baumslag-Solitar groups. The Baumslag-Solitar groups are the groups BS(p, q) for p, q ∈ N,
where BS(p, q) = 〈a, t | tapt−1 = aq〉. They were introduced in 1962 by Baumslag and
Solitar [3] to provide an example of a non-Hopfian group with two generators and one
defining relation. In this paper, we focus on the case p = 1. In this case, there is a well-known
isomorphism BS(1, q) ∼= Z[ 1

q ] o Z and we will identify the two groups. Here, Z[ 1
q ] is the

additive group of number nqi with n, i ∈ Z, and o denotes semidirect product. Building
this semidirect product requires us to specify an automorphism ϕm of Z[ 1

q ] for each m ∈ Z,
which is given by ϕm(nqi) = qm · nqi.
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For readers not familiar with semidirect products, we give an alternative self-contained
definition of Z[ 1

q ]oZ. The elements of this group are pairs (r,m), where r ∈ Z[ 1
q ] and m ∈ Z.

The multiplication is defined as

(r,m)(r′,m′) = (r + qm · r′,m+m′).

We think of an element (r,m) as representing a number r in Z[ 1
q ] together with a cursor m to

a position in the q-ary expansion of r. Multiplying an element (r,m) by the pair (1, 0) from
the right means adding 1 at the position in r given by m, hence adding qm to r and leaving
the cursor unchanged: we have (r,m)(1, 0) = (r + qm,m). Multiplying by (0, 1) moves the
cursor one position to the left: (r,m)(0, 1) = (r,m + 1). It is easy to see that Z[ 1

q ] o Z is
generated by the set {(1, 0), (−1, 0), (0, 1), (0,−1)}. The isomorphism BS(1, q) ∼−→ Z[ 1

q ] o Z
mentioned above maps a to (1, 0) and t to (0, 1). Since we identify BS(1, q) and Z[ 1

q ]oZ, we
will have a = (1, 0) and t = (0, 1). In particular, a can be thought of as “add”/“increment”,
and t as “move”. We regard elements of the subgroup Z[ 1

q ]× {0} of BS(1, q) as elements of
Z[ 1

q ], i.e., integers or rational fractions with denominator qi, i ≥ 1.

Rational subset membership. Unless specified otherwise, automata over BS(1, q) will use
the generating set Σ = {a, a−1, t, t−1} = {(1, 0), (−1, 0), (0, 1), (0,−1)}. The central decision
problem of this work is the rational subset membership problem for BS(1, q):
Given An automaton A over BS(1, q) and an element g ∈ BS(1, q) as a word over Σ.
Question Does g belong to L(A)?

Automata over BS(1, q). In the following definitions, let A = (Q,Σ, E, q0, qf ) be an
automaton over BS(1, q). For a run ρ of A, recall that [ρ] ∈ Z[ 1

q ] o Z is the production of
ρ. Moreover, if [ρ] = (r,m) with r ∈ Z[ 1

q ] and m ∈ Z, then we define pos(ρ) = m, and call
this the final position of ρ. More generally, the position at a particular point in ρ is the
final position of the corresponding prefix of ρ. By pmax(ρ), we denote the maximal value of
pos(π) where π is a prefix of ρ. Analogously, pmin(ρ) is the minimal value of pos(π) where
π is a prefix of ρ. A run ρ is returning if pos(ρ) = 0. It is returning-left if in addition
pmin(ρ) = 0. Note that for a returning run ρ, we have [ρ] ∈ Z[ 1

q ] and if ρ is returning-left,
we have [ρ] ∈ Z. Let |ρ| be the length of the run ρ as a word over E. We will often write ρi
assuming ρ = ρ1ρ2 . . . ρ` where each ρi ∈ E and ` = |ρ|. A run is a cycle if it is returning
and starts and ends in the same state. The thickness of a run ρ is defined as the greatest
number of times a position is seen:

thickness(ρ) = max
n∈Z
|{i | pos(ρ1 · · · ρi) = n}| .

We call a run k-thin if its thickness is at most k.
We let Runs(A) (resp. Ret(A), RetL(A)) be the set of all accepting runs (resp. accepting

returning runs, accepting returning-left runs) of A. We add k in subscript to restrict the set
to k-thin runs; for instance, Retk(A) is the set of k-thin returning runs. Further, we write
Runsp→p

′

k (A) for k-thin runs that start in p and end in p′, and use the similar notations
Retp→p

′

k (A) and RetLp→p
′

k (A).
Seeing {0, . . . , q− 1} as an alphabet, write Φq for letters from this alphabet with possibly

a • subscript (e.g., 0•), a / superscript (e.g., 0/), or both (e.g., 0/•). For v = (r, n) ∈ BS(1, q),
we write pe(v) for its base-q pointed expansion (or just expansion) as a word in ±Φ∗q , where
the subscript • and the superscript / appear only once, the former representing the radix
point, the latter indicating the value of n. That is, if r =

∑k1
i=−k2

aiq
i, with k1, k2 ≥ 0, pe(v)

is the following word:

±ak1 · · · a1(a0)•a−1 · · · a−k2 ,
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p1 p2 p3

t−2 t2

tat

t−2

1 1

(a) Automaton over BS(1, q) from Example 3.7.

p0

p1

p2

p3
t−1

a

t a

t

(b) Automaton over BS(1, 2) from Example 4.1.

Figure 1 Example automata over BS(1, q).

where / is added to an. We tacitly assume a uniqueness condition: the expansion pe(v) of
an element v ∈ BS(1, q) is the shortest that abides by the definition. Expansions are read by
automata in the left to right direction, i.e., from most to least significant digit.

I Definition 2.1. We say that a subset of R ⊆ BS(1, q) is PE-regular, where PE stands for
pointed expansion, if the word language {pe(v) | v ∈ R} is regular.

We remark that basic properties of regular languages support the transformation of
noncanonical expansions of elements BS(1, q), i.e., those with zeros on the left or right, into
canonical ones, pe(v). Finally, recall that we identify each r ∈ Z[ 1

q ] with (r, 0) ∈ Z[ 1
q ] o Z.

Hence, for r ∈ Z[ 1
q ], pe(r) is the q-ary expansion of r (with / as an additional decoration at

the radix point).

3 Main results

Our first main result is that one can translate rational subsets into PE-regular subsets.

I Theorem 3.1. Every rational subset of BS(1, q) is effectively PE-regular.

This will be shown in Section 4. Since membership is decidable for regular languages and
given g ∈ BS(1, q) as a word over {a, a−1, t, t−1}, one can compute pe(g), Theorem 3.1 implies
that rational subset membership is decidable. Our next main result is that the problem is
PSPACE-complete.

I Theorem 3.2. The rational subset membership problem for BS(1, q) is PSPACE-complete.

This is shown in Section 5. We shall also conclude that membership to each fixed rational
subset is decidable in logspace.

I Theorem 3.3. For each fixed rational subset of BS(1, q), membership is decidable in
logarithmic space.

The proof can also be found in Section 5. Note that, in particular, membership to each fixed
subgroup of BS(1, q) is decidable in logarithmic space. Another application of Theorem 3.1
is that one can decide whether a given rational subset of BS(1, q) is recognizable.

I Theorem 3.4. Given a PE-regular subset R of BS(1, q), it is decidable whether R is
recognizable.

This is shown in Section 6. Since a subgroup of any group H is recognizable if and only if it
has finite index in H (see, e.g. [2, Prop. 3.2]), we obtain:
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I Corollary 3.5. Given a f.g. subgroup of BS(1, q), it is decidable whether it has finite index.

We close this section by showing that regular subsets of BS(1, q) are robust in terms of
closure properties.

I Proposition 3.6. The PE-regular subsets of BS(1, q) form an effective Boolean algebra.
Moreover, for PE-regular subsets R,S ⊆ BS(1, q), the sets RS = {rs | r ∈ R, s ∈ S} and
R−1 = {r−1 | r ∈ R} are PE-regular as well.

The proof is straightforward. Together with Theorem 3.1, this implies that emptiness of
Boolean combinations (hence inclusion, equality) is decidable for rational subsets. To further
highlight the advantages of PE-regular subsets, we also show that the rational subsets of
BS(1, q) are not closed under intersection.

I Example 3.7 (Intersection of rational subsets). Let R be the set accepted by the automaton
in Figure 1a. The automaton first moves an even number of positions to the right (p1) and
then an even number of positions to the left while adding 1 in a subset of the odd positions
(p2). Finally, it goes an even number of positions to the left again. Note that (r,m) ∈ R if
and only if r =

∑
i∈A q

2i+1 for some finite A ⊆ Z and m ∈ 2Z. Now consider the rational
sets aR and Ra and their intersection I = aR ∩ Ra. Note that (r,m) ∈ aR if and only if
r = 1 +

∑
i∈A q

2i+1 and m ∈ 2Z for some finite A ⊆ Z. Moreover, (r,m) ∈ Ra if and only
if r = qm +

∑
i∈A q

2i+1 and m ∈ 2Z for some finite A ⊆ Z. Therefore, we have (r,m) ∈ I
if and only if r = 1 +

∑
i∈A q

2i+1 and m = 0 for some finite A ⊆ Z. Since I only contains
elements with cursor 0, but carries non-zero digits in positions that are arbitrarily far to the
right, it follows that I is not rational.

However, the PE-regular subsets of BS(1, q) are not closed under iteration.

I Example 3.8 (Iteration of PE-regular subsets). The subset A = {(1 + 2−i, 0) | i ≥ 1}
of BS(1, 2) is PE-regular, because pe(A) = 1/•0∗1 is a regular language. However, the set
A∗ is not PE-regular: one can show that for each n ≥ 1, we have n = min{m ∈ N |
(m+ 2−1 + · · ·+ 2−n, 0) ∈ A∗}.2 Therefore, for each n ≥ 1, a word in pe(A∗) with 1n to the
right of the radix point can have an integer part of n and cannot have a smaller integer part.
This implies that pe(A∗) is not regular.

4 Every rational subset of BS(1, q) is effectively PE-regular

In this section, we prove Theorem 3.1. We first illustrate our approach on an example.

I Example 4.1. Consider the automaton over BS(1, 2) in Figure 1b. In its only initial and
final state p0, it has a choice of two operations: (i) move the cursor one position to the right
(i.e. multiplication by t−1) or (ii) perform the increment on two neighbouring cells and stop
one position left of them (i.e. multiplication by atat). The automaton can perform these
operations arbitrarily many times in any order.

We shall prove that the automaton accepts

R = {(3n · 2m−2k,m) | n ∈ N, k ∈ N, m ∈ Z, 0 ≥ m− 2k, 3n · 2m−2k ≥ f(m, k)} ,

where

f(m, k) =
k∑
i=1

3 · 2m−2i =
m−1∑

j=m−2k
2j = 2m − 2m−2k .

2 We denote N = {0, 1, 2, . . . }.
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The language pe(R) is regular. Indeed, note that the number f(m, k) has a particularly
simple binary representation. A pointed expansion of (r,m) belongs to pe(R) if there is a
position m − 2k ≤ 0 such that reading the digits left of position m − 2k yields a number
(namely 3n) that (a) is divisible by 3 and (b) lies above a bound with a simple binary
expansion.

Let us now prove that the automaton accepts R. Let ρ be an accepting run producing
(r,m). Choose k ∈ N so that pmin(ρ) = m − 2k or pmin(ρ) = m − 2k + 1 (depending on
whether m− pmin(ρ) is even or odd). Then 0 ≥ pmin(ρ) ≥ m− 2k. Each time operation (ii)
is performed from position ` ∈ Z, the update is (r,m)→ (r + 3 · 2`,m+ 2).

Now, once ρ visits position pmin(ρ), in order to eventually reach a position ` > pmin(ρ),
the operation (ii) must be performed on some position ≥ `−2. In particular, to reach position
m, it must be performed at some position m1 ≥ m − 2. If m1 > pmin(ρ), to reach m1, it
must also be performed at some position m2 ≥ m− 4, etc. Therefore, ρ has to perform (ii)
at positions mi ≥ m− 2i for each i with m > m− 2i ≥ pmin(ρ)− 1. In other words, it has
to do this for each i = 1, . . . , k. Each time ρ performs (ii) at mi, it adds 3 · 2mi . Moreover,
each extra time ρ performs (ii), it adds a multiple of 3 · 2m−2k, because pmin(ρ) ≥ m− 2k.
Thus, the number produced in total is some 3n · 2m−2k where

3n · 2m−2k ≥
k∑
i=1

3 · 2mi ≥
k∑
i=1

3 · 2m−2i = f(m, k) .

Conversely, suppose n ∈ N and k ∈ N, m ∈ Z, 0 ≥ m−2k, and 3n ·2m−2k ≥ f(m, k). The
automaton first moves to positionm−2k using operation (i). Then, it performs operations (ii),
(i), and (i) again, ` times in a loop (we specify ` later). That way, it adds 3` · 2m−2k. Then,
it moves to position m by applying operation (ii) exactly k times. Hence, it applies (ii) at
positions m− 2i for i = 1, . . . , k and each time, it adds 3 · 2m−2i. In total, the effect is

3` · 2m−2k +
k∑
i=1

3 · 2m−2i = 3` · 2m−2k + f(m, k) .

Since 3n · 2m−2k ≥ f(m, k) and f(m, k) is an integer multiple of 3 · 2m−2k, we can choose
` ∈ N so as to produce 3n · 2m−2k.

Following this example, we first show that any run has the same production as a thin
(i.e. bounded thickness) run in which thin returning-left cycles are inserted (p. 9); in the
example, such a cycle applies operations (ii), (i), and (i). We then prove that the productions
of thin runs form a PE-regular set (p. 10); in the example, the thin run moves to the right
to position pmin(ρ) using operation (i) and then left to m ≥ pmin(ρ) using operations (i)
and (ii). Finally, we show that iterating returning-left thin cycles also leads to a PE-regular
set (p. 11); in the example, this is how we get all numbers divisible by 3 above a particular
bound. We combine these three statements to prove Theorem 3.1.

In combining the thin run with cycles, we will need to ensure that the cycles are anchored
on the correct state. To this end, we introduce an annotated version of pe([ρ]) as follows.
Let A be an automaton over BS(1, q) with state set Q. Let ρ be a run in A starting and
ending in arbitrary states and with [ρ] = (r,m). Letting Q̄ = {p̄ | p ∈ Q} be a copy of Q, we
define sv(ρ), the state view of ρ, to be the word over the alphabet Φq ∪Q ∪ Q̄ ∪ {±} built as
follows. First, write: pe([ρ]) = ±ak1 · · · a1a0a−1 · · · a−k2 ,where a0 has subscript •. Second,
let Pi ∈ (Q∪ Q̄)|Q|, for i ∈ {−k2, . . . , k1}, be a word that contains all the states of Q once in
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a fixed ordering of Q, either with a bar or not; the states without a bar are exactly those
that visit position i in ρ. That is, p appears in Pi iff there is a prefix of ρ ending in p whose
final position is i. The state view of ρ is then:

sv(ρ) = ±ak1 · Pk1 · · · a0 · P0 · a−1 · P−1 · · · a−k2 · P−k2 .

We naturally extend sv to sets of runs.

Any run is equivalent to a thin run augmented with thin returning-left cycles. We now
focus on two properties of runs: the states they visit in the automaton and the final position
of their prefixes. To that end, we introduce the following notions. For Q a finite set, a
position path is a word π ∈ (Q× Z)∗. We extend the analogy with graphs calling elements
of Q× Z vertices, talking of the vertices visited by a position path, and using the notion of
(position) subpaths and cycles. The thickness of a position path π is defined as:

thickness(π) = max
n∈Z
|{i | πi = (q, n) for some q}| .

I Lemma 4.2. Let Q be a finite set and π ∈ (Q× Z)∗ be a position path. For any subset V ′
of the vertices visited by π, there exists a subpath π′ of π such that:
1. π′ starts and ends with the same vertices as π,
2. π′ visits all the vertices in V ′,
3. thickness(π′) ≤ |Q| · (1 + 2|V ′|),
4. π − π′ consists only of cycles.

Proof (sketch). We first consider a shortest subpath π′ of π from the initial to the final
vertices of π – this implies that π′ has thickness at most |Q|. We then treat each missing
vertex from V ′ in turn, and add to π′ a subpath from π that is a cycle and includes that
vertex. Each of these iterations can augment the thickness of π′ by at most 2|Q|. J

I Corollary 4.3. Let A be an automaton over BS(1, q) with state set Q, and let k = |Q|+2|Q|2.
Any run of A is equivalent to a run in Runsk(A) on which, for each state p appearing in the
run, cycles from RetLp→pk (A) are inserted at an occurrence of p with smallest position.

Conversely, any run built by taking a run in Runsk(A) and inserting cycles from
RetLp→pk (A) at an occurrence of p is a run of A.

Proof. The converse is clear, we thus focus on the first direction.
(Step 1: Decomposing a run into a thin run and cycles.) Let ρ ∈ Runs(A), and extract

from it a position path π = π0 · · ·π|ρ| as follows. We let, π0 = (q0, 0) and for all i ≥ 1:

πi = (p, n) where ρi = (·, ·, p) and n = pos(ρ1 · · · ρi) .

For each state p visited by ρ, let np = min{n | there exists i such that πi = (p, n)}; in words,
np is the smallest final position of a prefix of ρ ending in p. Using V ′ = {(p, np) | ρ visits p},
Lemma 4.2 provides a position path π′ of thickness ≤ k = |Q|+ 2|Q|2 visiting all of V ′.

From π′, we can obtain the corresponding subpath ρ′ of ρ that has the same starting and
ending state and positions as ρ, and such that ρ is made of ρ′ onto which cycles are added.
The thickness of ρ′ is bounded by k, but the cycles can be of any thickness.

(Step 2: Thinning the cycles.) Consider a cycle β that gets added to ρ′ to form ρ, say at
position i (after initial i moves, ρ′1 · · · ρ′i), and assume that thickness(β) > k. Since a position
is repeated more than k > |Q| times, there is a cycle β′ within β with thickness(β′) ≤ k;
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write then β = α · β′ · α′. Let p be the state in β′ that has the smallest position, that is, p
is the ending state of the prefix γ of β′ with final position pmin(β′); write β′ = γ · γ′. By
definition, we have pos(ρ′1 · · · ρ′iαγ) ≥ np. Note that γ′ · γ is in RetLp→pk (A). We now remove
β′ from β and then insert γ′ · γ at the position j in ρ′ that is such that ρ′1 · · · ρ′j ends in
p with final position np. For the contribution of γ′ · γ to be the same as that of β′ in the
original path, we insert it qd times, where d = pos(ρ′1 · · · ρ′iαγ)− np.

This shows that if any cycle added to ρ′ is of thickness > k, then a subcycle of it can be
moved to another position of ρ′ as a returning-left cycle. Iterating this process, all the cycles
added to ρ′ will thus be of thickness ≤ k. Moreover, if an added cycle β is not returning-left
after these operations, or if it does not sit at an occurrence of its initial state with smallest
position, this means that we can decompose it just as above as γ ·γ′, with γ reaching pmin(β),
and move γ′ · γ, a returning-left cycle, to an appropriate position in ρ′ as before. J

Intermezzo: reflecting on Corollary 4.3. Before we continue with the proof, we want to
illustrate how crucial the previous corollary is. Lemma 4.2 tells us that we can obtain
every run from a thin run by then adding cycles. This already simplifies the structure of
Runs(A): indeed, inserting cycles at a certain position in a run ρ ∈ Runs(A) corresponds (in
algebraic terms) to adding to [ρ] a subset of Z[ 1

q ] closed under addition, i.e., a submonoid.
(Closure under addition follows from the observation that any two returning cycles from each
Retp→pk (A) can be concatenated.)

Sometimes one can conclude that every submonoid of a monoid has a simple structure.
For example, every submonoid M of Z is semilinear and hence a PE-regular subset of Z[ 1

q ].
Unfortunately, the situation in Z[ 1

q ] is not as simple as in Z: One can show that Z[ 1
q ] has

uncountably many submonoids. Thus, Z[ 1
q ] has submonoids with undecidable membership

problem; moreover, there is no hope for a finite description for every submonoid as in Z. Thus,
we need to look at our specific submonoids. A simple observation similar to Lemma 4.2 allows
us to obtain every run from a thin part by adding thin cycles. Hence, the submonoids that we
add are of the form [Retp→pk (A)]∗. It is not hard to show (see Lemma 4.4) that [Retp→pk (A)]
is always a PE-regular set. Thus, one may hope to prove that the regularity of [Retp→pk (A)]
implies regularity of [Retp→pk (A)]∗. (This was an approach to rational subset membership
proposed by the third author of this work in [12, Section 4.7].) However, Example 3.8 tells
us that even for PE-regular R ⊆ BS(1, q), the set R∗ may not be PE-regular.

Therefore, Corollary 4.3 is the key insight of our proof. It says that a run can be
decomposed into a thin part and thin returning-left cycles. Since returning-left cycles
produce integers, this will lead us to submonoids of Z.

Sets of thin runs are PE-regular.

I Lemma 4.4. Let A be an automaton over BS(1, q), p, p′ be states of A, and k > 0. The
sets sv(Runsp→p

′

k (A)), sv(Retp→p
′

k (A)), and sv(RetLp→p
′

k (A)) are effectively regular.

Proof (sketch). We see A as a two-way automaton, and apply a construction similar to the
classical proof that two-way automata are no more expressive than one-way automata [32].
This transforms A into a one-way automaton over the alphabet {−1, 0, 1}k, where each
component tracks a 1-thin partial run. It is a classical exercise to show that automata
can compute the addition of numbers in a given base; this can be extended to signed-digit
expansions, in which negative digits can be used [8, Section 2.2.2.2]. We thus rely on this to
compute the sum, componentwise, of these partial runs. Adding state information to that
construction is straightforward, so that we obtain automata for state views. J
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Iterations of returning-left thin cycles are PE-regular. It is well-known that for every set
S ⊆ N the generated monoid S∗ = {s1 + · · · + sm | s1, . . . , sm ∈ S,m ≥ 0} is eventually
identical with gcd(S) ·N. In other words, the set (gcd(S) ·N) \S∗ is finite and we may define
F (S) = max((gcd(S) ·N) \S∗). The number F (S) is called the Frobenius number of S. With
this, we have S∗ = {n ∈ S∗ | n ≤ F (S)} ∪ {n ∈ gcd(S) · N | n > F (S)}. If S ⊆ −N, then we
set F (S) := F (−S). Now consider an arbitrary set S ⊆ Z. If S contains both a positive and
a negative number, then S∗ = gcd(S) · Z and we set F (S) := 0. We shall use the following
well-known fact [36].

I Lemma 4.5. If S = {n1, . . . , nk} with 0 < n1 < · · · < nk, then F (S) ≤ n2
k.

I Lemma 4.6. For every automaton A over BS(1, q), the language pe([RetLp→pk (A)]∗) is
effectively regular.

Proof. Recall that we identify each r ∈ Z[ 1
q ] with (r, 0) ∈ Z[ 1

q ]. In particular, for n ∈ Z,
pe(n) is the same as pe((n, 0)).

Denote S = [RetLp→pk (A)]. We first consider the case S ⊆ N and S 6= ∅. Suppose we can
compute gcd(S) and a bound B ∈ N with B ≥ F (S). Then we have

S∗ = {n ∈ S∗ | n ≤ B}︸ ︷︷ ︸
=:X

∪ {n ∈ gcd(S) · N | n > B}︸ ︷︷ ︸
=:Y

(1)

and it suffices to show that pe(X) and pe(Y ) are effectively regular. Note that X is finite
and can be computed by finding all n ≤ B with n ∈ S (recall that membership in S is
decidable because sv(RetLp→pk (A)) is effectively regular by Lemma 4.4) and building sums.
Moreover, pe(Y ) is regular because the set L0 = pe(gcd(S) · N) is effectively regular and so
is L1 = {pe(n) | n ∈ N, n > B}, and hence pe(Y ) = L0 ∩ L1.

Thus, it remains to compute gcd(S) and some B ≥ F (S). For the former, find any r ∈ S
and consider its decomposition r = pe1

1 · · · pemm into prime powers. For each i ∈ [1,m], we
compute di ∈ [0, ei] and ni ∈ S such that (i) S ⊆ pdii · N, and (ii) ni ∈ S \ pdi+1

i · N. Since
for d ∈ N, we can construct an automaton for pe(S ∩ d ·N), these di and ni can be computed.
Observe that gcd(S) = pd1

1 · · · pdmm . Let T = {r, n1, . . . , nk}. Observe that gcd(T ) = gcd(S),
and hence T ∗ and S∗ are ultimately identical. Since T ⊆ S, this means F (S) ≤ F (T ). By
Lemma 4.5, we have F (T ) ≤ (max{r, n1, . . . , nk})2, which yields our bound B.

The case S ⊆ −N is analogous to S ⊆ N. If S contains a positive and a negative number,
then S∗ = gcd(S) · Z, so it suffices to just compute gcd(S). This is done as above. Finally,
deciding between these three cases is easy. This completes the proof. J

Wrapping up: Proof of Theorem 3.1. Let A be an automaton over BS(1, q) with state
set Q. Corollary 4.3 indicates that the set of productions of accepting runs is the same as
the set of productions of k-thin runs in which thin cycles are introduced.

By Lemma 4.4, sv(Runsk(A)) is a regular language L. For any state p of A, let Lp =
pe
(
[RetLp→pk (A)]∗

)
, a regular language by Lemma 4.6. For padding purposes, let s ∈ Q be

some state, and let h be the morphism from (Φq ∪ {±})∗ to (Φq ∪Q∪ {±})∗ defined, for any
a ∈ Φq, by h(a) = as|Q|, and h(+) = +, h(−) = −. Define now L′p to be the image by h of
the version of Lp where arbitrary 0’s are added after the sign, and at the end of the number
(these 0’s do not change the value represented).

Consider now the language R over the alphabet (Φq ∪Q∪ Q̄∪{±})|Q|+1 whose projection
on the first component is the language L, and the other components correspond to the
languages L′p, for each p ∈ Q. The first component indicates in particular the states of A
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that visited that location; to synchronize the different components of R, we ensure that the
letter annotated with • in L′p is aligned with a letter from L that is followed by p – that is,
the starting position of L′p is at a position in L that is seen while being in the state p.

Finally, an automaton can do the componentwise addition in base q, collapsing the |Q|+ 1
components into a single one. The radix point is given by the digit with • of L, i.e., in the
first component; and similarly for /. The resulting language, thanks to Corollary 4.3, is the
language of the pointed expansions of all runs in Runs(A). J

5 Complexity

Computing pointed expansions. In this section, we prove Theorems 3.2 and 3.3. For the
upper bounds in Theorems 3.2 and 3.3, we shall rely on the fact that, given an element g ∈
Z[ 1

q ]oZ as a word over Σ = {a, a−1, t, t−1}, one can compute the pointed expansion pe(g) in
logarithmic space. This is a direct consequence of a result of Elder, Elston, and Ostheimer [18,
Proposition 32]. They show that given a word w over Σ, one can compute in logarithmic
space an equivalent word of one of the forms (i) ti, (ii) (aη0)tα0 (aη1)tα1 · · · (aηk)tαk ti or
(iii) (a−η0)tα0 (a−η1)tα1 · · · (a−ηk)tαk ti, where i ∈ Z, k ∈ N, 0 < ηj < q for j ∈ [0, k], and
α0 > · · · > αk. Here, xy stands for y−1xy in the group. Since these normal forms denote the
elements (i) (0, i), (ii) (

∑k
j=0 ηjq

−αj , i) and (iii) (−
∑k
j=0 ηjq

−αj , i), respectively, it is easy
to turn these normal forms into pe(w) using logarithmic space.

This allows us to prove Theorem 3.3: For every rational subset R ⊆ BS(1, q), the language
pe(R) is a regular language. In particular, there exists a deterministic automaton B for pe(R).
Therefore, given g ∈ BS(1, q) as a word over {a, a−1, t, t−1}, we compute pe(g) in logspace
and then check membership of pe(g) in L(B), which is decidable in logarithmic space.

PSPACE-completeness. The PSPACE lower bound in Theorem 3.2 is a reduction from
the intersection nonemptiness of finite-state automata, a well-known PSPACE-complete
problem [23]. For the PSPACE upper bound, we strengthen Theorem 3.1 by constructing a
polynomial-size representation of an exponential size automaton for the resulting regular
language. A succinct finite automaton is a tuple S = (n,Γ, (ϕx)x∈Γ∪{ε}, p0, pf}), where n ∈ N
is its bit length, Γ is its input alphabet, ϕx(v1, . . . , vn, v′1, . . . , v′n) is a formula from propositional
logic with free variables v1, . . . , vn, v′1, . . . , v′n for each x ∈ Γ ∪ {ε}, p0 ∈ {0, 1}n is its initial
state, and pf ∈ {0, 1}n is its final state. The size of S is defined as |S| = n+

∑
x∈Γ∪{ε} |ϕx|,

where |ϕ| denotes the length of the formula ϕ.
Moreover, S represents the automaton A(S), which is defined as follows. It has the state

set {0, 1}n, initial state p0, and final state pf . For states p = (b1, . . . , bn), p′ = (b′1, . . . , b′n) ∈
{0, 1}n and x ∈ Γ∪{ε}, there is an edge (p, x, q) in A(S) if and only if ϕx(b1, . . . , bn, b′1, . . . , b′n)
holds. We define the language accepted by S as L(S) = L(A(S)).

We allow ε-edges in succinct automata, and with Boolean formulas, one can encode
steps in a Turing machine. Thus, a succinct automaton of polynomial size can simulate a
polynomial space Turing machine with a one-way read-only input tape. Our descriptions of
succinct automata will therefore be in the style of polynomial space algorithms. We show:

I Theorem 5.1. Given a rational subset R ⊆ BS(1, q), one can construct in polynomial
space a polynomial-size succinct automaton accepting pe(R).

This allows us to decide rational subset membership in PSPACE: Given an automaton A over
BS(1, q) and an element g as a word over {a, a−1, t, t−1}, we construct a succinct automaton
B for pe(L(A)) and the pointed expansion pe(g) in logarithmic space. Since membership in
succinct automata is well-known to be in PSPACE, we can check whether pe(g) ∈ L(B).
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Constructing succinct automata. It remains to prove Theorem 5.1. The construction of a
succinct automaton for pe(R) proceeds with the same steps as in Section 4. For most of these
steps, our constructions already yield small succinct automata (e.g., one for pe([RetLp→p

′

k (A)])
in Lemma 4.4). The exception is Lemma 4.6 – in which case the key ingredient is as follows.

I Proposition 5.2. Given an automaton A over BS(1, q), a state p of A, and k ∈ N in
unary, one can compute in polynomial space the number gcd([RetLp→pk (A)]) and a bound
B ≥ F ([RetLp→pk (A)]). Both are at most exponential in k and the size of A.

Our bound on F extends the bound for automatic sets in N [5, Lemma 4.5] to thin two-way
computations. Before proving Proposition 5.2, let us show how it implies Theorem 5.1.

Proof of Theorem 5.1. The constructions in Lemma 4.4 and Theorem 3.1, immediately
yield a polynomial-size succinct automaton for pe(R) once a succinct automaton for each
pe([RetLp→pk (A)]∗) is found. For the latter, we proceed as in Lemma 4.6. Let S =
[RetLp→pk (A)] and compute gcd(S) and a bound B ≥ F (S) using Proposition 5.2. Then, by
Equation (1) on page 11, it suffices to construct a succinct automaton for pe(X) and one for
pe(Y ). For pe(X), we use the fact that we can construct a succinct automaton B for pe(S).
Our automaton for pe(X) proceeds as follows. With ε-transitions, it runs B to successively
guess numbers ≤ B from S and stores each of them temporarily in its state. Such a number
requires O(log(B)) bits. In another O(log(B)) bits, it stores the sum of the numbers guessed
so far. This continues as long as the sum is at most B. Then, our automaton reads the
resulting sum from the input. This automaton clearly accepts pe(X).

For pe(Y ), we have to construct a succinct automaton that accepts any number > B that is
divisible by gcd(S). Since gcd(S) is available as a number with polynomially many digits, we
can construct a succinct automaton accepting pe(gcd(S) ·N): It keeps the remainder modulo
gcd(S) of the currently read prefix. This requires O(log(gcd(S)) many bits. Since B also
has polynomially many digits, we can construct a succinct automaton for {n ∈ N | n > B}.
An automaton for the intersection then accepts pe(Y ). J

It is easy to see that the number produced by a returning-left run is at most exponential
in the length of the run. The exact bound will not be important.

I Lemma 5.3. If ρ is a run in RetLk(A) of length `, then |[ρ]| ≤ q2`.

The main ingredient for Proposition 5.2 will be Lemma 5.4. We write ρ� ρ′ if |ρ| < |ρ′|.
Moreover, for d ∈ Z, we write ρ�d ρ

′ if ρ� ρ′ and for some ` ∈ Z, we have [ρ′] = ` · [ρ] + d.

I Lemma 5.4. There is a polynomial f such that the following holds. Let A be an n-
state automaton over BS(1, q) and let p, p′ be two states of A. Let ρ11 ∈ RetLp→p

′

k (A) with
|ρ11| > f(n, k). There exist runs ρ00, ρ10, ρ01 ∈ RetLp→p

′

k (A) and d ∈ Z so that:

ρ01 �d ρ11

� �

ρ00 �d ρ10

(2)

Here, one shows that a long run can be shortened independently in two ways: Going left in
the diagram (2), and going down. Shortening the run by “going left” changes the production
of the run by the same difference, up to a factor ` that may differ in the two rows. Lemma 5.5
applies Lemma 5.4 to construct small numbers in [RetLk(A)] that are not divisible by a given
m. Later, these numbers allow us to compute gcd([RetLp→pk (A)]) and bound F ([RetLp→pk (A)]).
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I Lemma 5.5. There is a polynomial f such that the following holds. Let m ∈ Z. Let A
be an n-state automaton over BS(1, q) and let p, p′ be two states of A. Suppose there is a
number in [RetLp→p

′

k (A)] not divisible by m; then there is also an s ∈ [RetLp→p
′

k (A)] not
divisible by m such that |s| ≤ qf(n,k).

Proof. Let f be the polynomial from Lemma 5.4. Let ρ ∈ RetLp→p
′

k (A) be of minimal length
such that m does not divide [ρ]. Suppose |ρ| > f(n, k). Write ρ11 = ρ and apply Lemma 5.4.
By minimality of ρ11, we get [ρ00] ≡ [ρ10] ≡ [ρ01] ≡ 0 mod m. In particular, ρ00 �d ρ10
implies d ≡ 0 mod m. However, since ρ01 �d ρ11 and [ρ11] 6≡ 0 mod m, we get d 6≡ 0 mod m,
a contradiction. Hence, |ρ| ≤ f(n, k) and thus |[ρ]| ≤ q2f(n,k) by Lemma 5.3. J

With Lemma 5.5 in hand, one can show Proposition 5.2 similarly to Lemma 4.6.

6 Recognizability

In this section, we prove Theorem 3.4. We first present a characterization of recognizability
that is easily checkable for PE-regular subsets. It is well-known that a subset S of Z is
recognizable if and only if there is a k ∈ Z \ {0} such that for every s ∈ Z, we have s ∈ S if
and only if s+ k ∈ S. Our characterization is an analog for Baumslag-Solitar groups.

A subset S ⊆ Z[ 1
q ] o Z is called k-periodic if for every s ∈ Z[ 1

q ] o Z, we have (i) s ∈ S if
and only if s(0, k) ∈ S and (ii) for every ` ∈ Z, we have s ∈ S if and only if s(q`−q`+k, 0) ∈ S.
In other words, membership in S is insensitive to (i) moving the cursor k positions and
(ii) replacing a power of q by another power of q whose exponent differs by k. The set S is
periodic if it is k-periodic for some k ≥ 1. We show the following:

I Proposition 6.1. A subset S ⊆ Z[ 1
q ] o Z is recognizable if and only if S is periodic.

The fact that recognizable sets are periodic is an easy exercise. For the converse, we show
that the subgroup H of G = Z[ 1

q ] o Z generated by (0, k) and all (q` − q`+k, 0) for ` ∈ Z is
normal and the quotient G/H is finite. Then, S is recognized by the projection G→ G/H.

To decide whether a PE-regular R ⊆ BS(1, q) is recognizable, we show effective regularity
of the set N ⊆ {a}∗ of all words ak such that R is not k-periodic. Then, we just have to check
whether N contains all words ak with k ≥ 1, which is clearly decidable. Since R is PE-regular,
the set D = R(G\R)−1 ∪ (G\R)R−1 is effectively PE-regular (Proposition 3.6). Then R is
not k-periodic if and only if (0, k) ∈ D or (q` − q`+k, 0) ∈ D for some ` ∈ Z. The element
(0, k) has the pointed expansion 0/0k−10•. The pointed expansions of (q` − q`+k, 0) for ` ∈ Z
are exactly those words obtained from words −0r(q − 1)k−10s for r, s ∈ N by decorating one
of the digits with / and with •, and removing leading or trailing 0’s. Therefore, it is easy
to see that T1 = {(0/0k−10•, ak) | k ≥ 1} and T2 = {(pe((q` − q`+k, 0)), ak) | ` ∈ Z, k ≥ 1}
are rational transductions. This implies that N = T1(pe(D)) ∪ T2(pe(D)) ⊆ a∗ is effectively
regular. Then clearly, R is not k-periodic if and only if ak ∈ N .
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We study the expressive power of polynomial recursive sequences, a nonlinear extension of the
well-known class of linear recursive sequences. These sequences arise naturally in the study of
nonlinear extensions of weighted automata, where (non)expressiveness results translate to class
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117:2 On Polynomial Recursive Sequences

element can be obtained as a linear combination of the k elements preceding it. The most
famous example is the Fibonacci sequence, defined by setting f0 = 0, f1 = 1, and the
recurrence relation fn+2 = fn+1 + fn.

It is well known that every linear recursive sequence can be defined by a system of k

jointly recursive sequences, where for every sequence we fix the initial value and provide
a recurrence relation expressing the (n + 1)st element as a linear combination of the nth
elements of all the sequences [15]. For example, to define the Fibonacci sequence fn in this
way, one needs one auxiliary sequence: we set f0 = 0, g0 = 1, and postulate{

fn+1 = gn,

gn+1 = fn + gn.
(1)

In this paper we study polynomial recursive sequences over rational numbers that generalise
linear recursive sequences. They are defined by systems of sequences like (1), but on the right
hand side we allow arbitrary polynomial expressions, rather than just linear combinations.
For example, the sequence bn = n! can be defined in this way using one auxiliary sequence:
we may set b0 = c0 = 1 and write{

bn+1 = bn · cn,

cn+1 = cn + 1.
(2)

Thus, the recurrence relation uses two polynomials: P1(x1, x2) = x1x2 and P2(x1, x2) = x2+1.
The two classes of linear and polynomial recursive sequences appear naturally in automata

theory, and in particular in connection with weighted automata and higher-order pushdown
automata. Weighted automata over the rational semiring are a quantitative variant of finite
automata that assign rational numbers to words [10]. In the special case of a 1-letter alphabet,
each word can be identified with its length. Then a weighted automaton defines a mapping
from natural numbers (possible lengths) to rationals, and this can be seen as a sequence. It
is known that sequences definable in this way by weighted automata are exactly the linear
recursive sequences [6]. Pushdown automata of order k can be used for defining mappings
from words to words [21]; in particular, for k = 2 and 1-letter alphabets, such automata
compute exactly the linear recursive sequences of natural integers [11].

Thus, nonlinear extensions of linear recursive sequences may correspond to nonlinear
extensions of weighted automata. For the latter, consider three examples:

polynomial recurrent relations that generalise pushdown automata of order 3 [12, 21];
cost-register automata which arose as a variant of streaming transducers [3, 4];
polynomial automata, connected to reachability problems for vector addition systems [7].

Surprisingly, these three models, although introduced in different contexts, are all equivalent.1
Moreover, over unary alphabets they define exactly polynomial recursive sequences, in the
same fashion as weighted automata (respectively order 2 pushdown automata) over unary
alphabets define linear recursive sequences.

The goal of this paper is to study the expressive power of polynomial recursive sequences.
Clearly, this expressive power extends that of linear recursive sequences: it is easy to see that
every linear recursive sequence has growth bounded by 2O(n), while already the sequence
bn = n! grows faster. In fact, already the recurrence relation a0 = 2, an+1 = (an)2 defines

1 This is a simple but technical observation as the three models are essentially syntactically equivalent.
Throughout the paper we will use the name cost-register automata to refer to all three models.
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the sequence 22n , whose growth is doubly-exponential. However, there are well-known integer
sequences related to these examples for which definability as a polynomial recursive sequence
seems much less clear. The first example is the sequence un = nn. The second example
is the sequence of Catalan numbers Cn = 1

n+1
(2n

n

)
. Note that by Stirling’s approximation,

nn is asymptotically very close to n!, while Cn is, up to factors polynomial in n, roughly
equal to 4n. For these reasons, simple asymptotic considerations cannot prove the sequences
un = nn and Cn to be not polynomial recursive. Recall that the Catalan numbers admit
multiple combinatorial interpretations, which can be used to derive the recurrence formulas
Cn+1 =

∑n
i=0 CiCn−i and (n + 2)Cn+1 = (4n + 2)Cn. Note that these formulas are not

of the form of recurrence formulas considered in this work. Additionally, it is known that
Catalan numbers Cn are not linear recursive (see e.g. [8]), despite having growth 2O(n).

Our results. We show that both the sequence of Catalan numbers Cn and the sequence
un = nn are not polynomial recursive. For this, we present two techniques for proving
that a sequence is not polynomial recursive. The first technique for Catalan numbers is
number-theoretical: we show that a polynomial recursive sequence of integers is ultimately
periodic modulo any large enough prime. The second technique for nn is more algebraic
in nature: we show that for every polynomial recursive sequence there exists k ∈ N such
that every k consecutive elements of the sequence satisfy a nontrivial polynomial equation.
The fact that un = nn is not polynomial recursive is our main result. These inexpressibility
results were announced without proofs by the fifth coauthor in an invited talk in 2007 [21].
The present paper contains proofs and extensions of these results.

Applications. The discussed models of cost-register automata [12, 4, 7] are not the only
nonlinear extensions of weighted automata that appear in the literature. We are aware of
at least two more extensions: weighted context-free grammars [5, 8] and weighted MSO
logic [9, 17]. As it happens, over the 1-letter alphabet, weighted context-free grammars can
define Catalan numbers, and weighted MSO logic can define nn. Therefore, as a corollary of
our results we show that functions expressible in pushdown-automata of level 4, weighted
context-free grammars and weighted MSO logic are not always expressible in the class of
cost-register automata.

The class of holonomic sequences is another extension of linear recursive sequences [16].
These sequences are defined recursively with one sequence, but the coefficients in the recursion
are polynomials of the element’s index. For example, bn = 1 and bn+1 = (n + 1)bn defines
bn = n!. The expressiveness of this class has also been studied and in particular the sequence
nn is known to be not in the class of holonomic sequences [14]. As a corollary of our results
one can show that there are no inclusions between the classes of holonomic sequences and
polynomial recursive sequences. On the one hand every holonomic sequence is asymptotically
bounded by 2p(n) for some polynomial p [16], and the sequence an = 22n is polynomial
recursive. On the other hand, Catalan numbers admit a definition as a holonomic sequence:
C0 = 1 and (n+2)Cn+1 = (4n+2)Cn. In Section 7 we discuss the class of rational recurrence
sequences that generalises both holonomic and polynomial recursive sequences.

Organisation. In Section 2 we give basic definitions and examples of linear and polynomial
recursive sequences. In Section 3 we show that the definition of polynomial recursive sequences
requires a system of sequences and, unlike linear recursive sequences, cannot be equivalently
defined using only one sequence. Then in Sections 4 and 5 we show that the sequence of
Catalan numbers Cn and the sequence un = nn are not polynomial recursive. In Section 6
we explain in details our corollaries for weighted automata. We conclude in Section 7.

ICALP 2020
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2 Preliminaries

By N we denote the set of nonnegative integers. A sequence over a set D is a function
u : N→ D; all the sequences considered in this work are over the field of rationals Q. We use
the notation 〈un〉n∈N for elements of sequences, where un = u(n). Also, we use bold-face
letters as a short-hand for sequences, e.g., u = 〈un〉n∈N.

We now introduce the two main formalisms for describing sequences: linear recursive
sequences and polynomial recursive sequences.

Linear recursive sequences. A k-variate linear form (or linear form if k is irrelevant) over
Q is a function L : Qk → Q of the form

L(x1, . . . , xk) = a1x1 + . . . + akxk

for some a1, . . . , ak ∈ Q. A sequence of rationals u is a linear recursive sequence if there
exist k ∈ N and a k-variate linear form L such that u satisfies the recurrence relation

un+k = L(un, . . . , un+k−1) for all n ∈ N. (3)

Observe that such a sequence is uniquely determined by the form L and its first k elements:
u0, . . . , uk−1 ∈ Q. The minimal k for which a description of u as in (3) can be given is called
the order of u. For example, Fibonacci numbers are uniquely defined by the recurrence
relation fn+2 = fn+1 + fn and starting elements f0 = 0, f1 = 1. Note that this recurrence
relation corresponds to the linear form L(x1, x2) = x1 + x2.

We now present a second definition of linear recursive sequences which, as we will explain,
is equivalent to the first definition. Suppose u1, u2, . . . , uk are sequences of rationals. We
say that these sequences satisfy a system of linear recurrence equations if there are k-variate
linear forms L1, . . . , Lk such that:

u1
n+1 = L1(u1

n, . . . , uk
n),

...
uk

n+1 = Lk(u1
n, . . . , uk

n).

(4)

for all n ∈ N. Note that such a system can be equivalently rewritten in the matrix form

~un+1 = M~un

where ~un = (u1
n, . . . , uk

n)T and M is the k × k matrix over Q such that M~x = (L1(~x), . . . ,

Lk(~x))T for all ~x ∈ Qk. Note that then ~un = Mn~u0 for all n ∈ N.
It is well known that systems of linear recurrence equations can be equivalently used to

define linear recursive sequences, as explained in the following result.

I Proposition 1 ([15]). A sequence u is a linear recursive sequence if and only if there exists
k ∈ N and sequences u1, . . . , uk that satisfy a system of linear recurrence equations, where
u1 = u. Moreover, the smallest k for which this holds is the order of u.

To get more accustomed with this equivalent definition, let us consider the sequence
an = n2. Since (n + 1)2 = n2 + 2n + 1, we consider two auxiliary sequences bn = n and
cn = 1. The initial values of these sequences are a0 = b0 = 0 and c0 = 1. Thus, an can be
defined by providing these initial values together with a system of linear equations

an+1 = an + 2bn + cn,

bn+1 = bn + cn,

cn+1 = cn.

(5)
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In the matrix form, we could equivalently write that (an, bn, cn)T = Mn~e, where

M =

1 2 1
0 1 1
0 0 1

 , ~e =

0
0
1

 .

It can be readily verified that an is also defined by the recurrence an+3 = 3an+2−3an+1 +an.
The difference between the two definitions is that in (3) we have only one sequence,

but the depth of the recursion can be any k. Conversely, in (4) we are allowed to have k

sequences, but the depth of recursion is 1. The equivalence provided by Proposition 1 is
quite convenient and is often used in the literature, see e.g. [20].

We give a short proof of Proposition 1, different from the proof in [15]. The reason is
that this proof provides us with intuition that will turn out to be useful later on.

Proof of Proposition 1. For the left-to-right implication, suppose u is a linear recursive
sequence of order k; say it is defined by the recursive formula un+k = L(un, . . . , un+k−1),
where L is a k-variate linear form. Define the sequences u1, . . . , uk by setting

ui
n := un+i−1 for all i ∈ {1, . . . , k} and n ∈ N.

Then u1 = u and the sequences u1, . . . , uk satisfy the system of equations as in (4), where
Lk = L and Li(x1, . . . , xk) = xi+1 for i ∈ {1, . . . , k − 1}.

For the right-to-left implication, suppose that there exist k ∈ N and sequences u1, . . . , uk

that satisfy the system of equations (4) for some linear forms L1, . . . , Lk, such that u = u1.
Let M be a k×k matrix over Q that encodes the linear forms L1, . . . , Lk; that is, ~un = Mn~u0,
where ~un = (u1

n, . . . , uk
n)T ∈ Qk. Consider the linear map R : Qk → Qk+1 defined as

R(~x) = ( ~eM0~x , ~eM1~x , . . . , ~eMk~x )T,

where ~e = (1, 0, . . . , 0) ∈ Qk. Note that

R(~un) = (u1
n, u1

n+1, . . . , u1
n+k) = (un, un+1, . . . , un+k) for all n ∈ N. (6)

Observe that R is a linear map from Qk to Qk+1, hence the image of R is a linear subspace
of Qk+1 of co-dimension at least 1. Hence, there exists a nonzero linear form K : Qk+1 → Q
such that im R ⊆ ker K, or equivalently K(R(~x)) = 0 for all ~x ∈ Qk. By (6), we have

K(un, un+1, . . . , un+k) = 0 for all n ∈ N. (7)

Let a0, a1, . . . , ak ∈ Q be such that

K(x0, . . . , xk) = a0x0 + . . . + akxk.

Since K is nonzero there exists the largest index t such that at 6= 0. From (7) we infer that

un+t = −at−1

at
· un+t−1 −

at−2

at
· un+t−2 − . . .− a0

at
· un for all n ∈ N,

so u is a linear recursive sequence of order at most t. J

I Remark 2. One could imagine setting up all the definitions presented above using affine
forms instead of linear forms, that is, functions A : Qk → Q of the form

A(x1, . . . , xk) = a1x1 + . . . + akx2 + c,

where a1, . . . , ak, c ∈ Q. However, as we may always add constant sequences to the system
of recurrence equations defining a sequence, considering affine forms does not increase the
expressive power. In fact, from Proposition 1 it can be easily derived that we obtain exactly
the same class of linear recursive sequences, regardless of whether we use linear or affine
forms in both definitions.
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Poly-recursive sequences. We now generalise the concept of linear recursive sequences
by allowing polynomial functions instead of only linear forms. The starting point of the
generalisation is the definition via a system of recurrence equations, as in (4).

I Definition 3. A sequence of rationals u is polynomial recursive (or poly-recursive for short)
if there exist k ∈ N, sequences of rationals u1, . . . , uk satisfying u = u1, and polynomials
P1, . . . , Pk ∈ Q[x1, . . . , xk] such that for all n ∈ N, we have

u1
n+1 = P1(u1

n, . . . , uk
n),

...
uk

n+1 = Pk(u1
n, . . . , uk

n).

(8)

Again, notice that polynomials P1, . . . , Pk and the initial values u1
0, . . . uk

0 uniquely determine
the sequences u1, . . . , uk, hence in particular the sequence u = u1.

Let us examine a few examples. First, recall the sequences an = 22n and bn = n! defined
in Section 1. Another example is the sequence dn = 2n2 . Since 2(n+1)2 = 2n2+2n+1, we define
d0 = e0 = 1 and let{

dn+1 = dn · (en)2 · 2,

en+1 = en · 2.

The polynomials used in the last definition are P1(x1, x2) = 2x1(x2)2 and P2(x1, x2) = 2x2.
Notice that this idea can be easily generalised to define any sequence of the form rQ(n), where
r is a rational number and Q is a polynomial with rational coefficients. We remark that all
three sequences an = 22n , bn = n!, dn = 2n2 are not linear recursive for simple asymptotic
reasons (from the discussion in Section 1).

3 Simple poly-recursive sequences

The following notion is a natural generalisation of the definition (3) of linear recursive
sequences to the setting of recurrences defined using polynomials.

I Definition 4. A sequence of rationals u is simple poly-recursive if there exists k ∈ N and
a polynomial P ∈ Q[x1, x2, . . . , xk] such that

un+k = P (un, un+1, . . . , un+k−1) for all n ∈ N. (9)

Again, note that if u is simple poly-recursive as above, then the polynomial P and the
first k values u0, . . . , uk−1 uniquely determine the sequence u.

Clearly, every linear recursive sequence is a simple poly-recursive sequence. In fact,
by Proposition 1 and Remark 2, the two notions would coincide if we required that the
polynomial P in the definition above has degree at most 1. On the other hand, observe that
the same construction as in the first paragraph of the proof of Proposition 1 shows that every
simple poly-recursive sequence is poly-recursive. We now prove that this inclusion is strict.

I Theorem 5. The sequence bn = n! is not simple poly-recursive.

Proof. Towards a contradiction, suppose there is k ∈ N and a polynomial P ∈ Q[x1, . . . , xk]
such that

bn+k = P (bn, bn+1, . . . , bn+k−1) for all n ∈ N. (10)

Let us write

P = Q + A,
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where Q, A ∈ Q[x1, . . . , xk] are such that A is the sum of all the monomials in the expansion
of P that have degree at most 1, while Q is the sum of all the remaining monomials in the
expansion of P . Thus, A is an affine form, while every monomial in the expansion of Q has
total degree at least 2.

Since A is an affine form, there exists a number c ∈ N such that

|A(q1, . . . , qk)| < c + c · max
16i6k

|qi| for all q1, . . . , qk ∈ Q.

Thus, for all n > 2c we have

|A(bn, bn+1, . . . , bn+k−1)| 6 c + c · (n + k − 1)! < (n + k)! = bn+k. (11)

Since by (10) it follows that

Q(bn, bn+1, . . . , bn+k−1) = bn+k −A(bn, bn+1, . . . , bn+k−1),

using (11) we may conclude that for all n > 2c the following inequality holds:

0 < Q(bn, bn+1, . . . , bn+k−1) < 2bn+k. (12)

Let m be the product of all denominators of all the coefficients appearing in the expansion
of P into a sum of monomials. Note that for all n > m, the number b̃n := bn

m = n!
m is an

integer. Furthermore, we have that b̃n divides b̃n′ for all n′ > n. Since every monomial in
the expansion of Q has total degree at least 2, we infer that for all n > m, we have(

b̃n

)2 | Q(bn, bn+1, . . . , bn+k−1). (13)

By combining (13) with the left inequality of (12), we conclude that for all n > max(2c, m),

Q(bn, bn+1, . . . , bn+k−1) >
(
b̃n

)2
.

This bound together with the right inequality of (12) implies that(
n!
m

)2
=
(
b̃n

)2
< 2bn+k = 2 · (n + k)!.

This inequality, however, is not true for every sufficiently large n, a contradiction. J

4 Modular periodicity

Recall that a sequence of numbers r is ultimately periodic if there exist N, k ∈ N such that
for all n > N , we have rn = rn+k. In this section we prove the following periodicity property
of poly-recursive sequences, which, by means of contradiction, provides a basic technique for
proving that a given sequence is not poly-recursive.

I Theorem 6. Suppose u is a poly-recursive sequence of integers. Then there exists a ∈ N
such that for every prime p > a, the sequence rn := un mod p is ultimately periodic.

Proof. Let u be defined by the system of recursive equations
u1

n+1 = P1(u1
n, . . . , uk

n),
...
uk

n+1 = Pk(u1
n, . . . , uk

n),

(14)

where u1, . . . , uk are sequences such that u1 = u and P1, . . . , Pk ∈ Q[x1, . . . , xk].
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Without loss of generality we may assume that the initial values u1
0, . . . , uk

0 are integers.
Indeed, this is certainly the case for u1

0 = u0, while for every i > 1, we may rewrite the
system so that it uses the sequence ũi = qi · ui instead of ui, where qi is the denominator of
ui

0. For this, the starting condition for ũi can be set as ũi
0 = qi · ui

0, which is an integer, in
all polynomials P1, . . . , Pk we may substitute xi with xi/qi, and the polynomial Pi can be
replaced with qi · Pi.

Further, without loss of generality we may assume that all the monomials present
in the expansions of all the polynomials P1, . . . , Pk have the same total degree d > 1.
Such polynomials are called homogeneous of degree d and they have the property that
Pi(ax1, . . . , axk) = adPi(x1, . . . , xk) for all a ∈ Q. Indeed, let d > 1 be any integer that is
not smaller than the degrees of all the polynomials P1, . . . , Pk. To the system (14) we add a
new sequence uk+1, defined by setting

uk+1
0 = 1 and uk+1

n+1 =
(
uk+1

n

)d for n ∈ N.

Thus uk+1 is constantly equal to 1. Then each monomial M(x1, . . . , xk) appearing in
the expansion of any of the polynomials Pi(x1, . . . , xk) can be replaced by the monomial
M(x1, . . . , xk) · xd−t

k+1 ∈ Q[x1, . . . , xk, xk+1], where t is the total degree of M . It is straight-
forward to see that the modified system of recursive equations still defines u = u1, while all
monomials appearing in all the polynomials used in it have the same degree d.

After establishing these two assumptions, we proceed to the main proof. Let a ∈ N be a
positive integer such that the polynomials

P̃i := a · Pi

all belong to Z[x1, . . . , xk], that is, have integer coefficients. For instance, one can take a to
be product of all the denominators of all the rational coefficients appearing in the polynomials
P1, . . . , Pk. For all i ∈ {1, . . . , k} and n ∈ N, let us define

ũi
n := a

dn−1
d−1 · ui

n.

By a straightforward induction we show that the sequences ũ1, . . . , ũk satisfy the system of
recursive equations

ũ1
n+1 = P̃1(ũ1

n, . . . , ũk
n),

...
ũk

n+1 = P̃k(ũ1
n, . . . , ũk

n).

(15)

Indeed, the induction base is trivial and for the induction step recall that all monomials have
the same degree d, hence

P̃i(ũ1
n, . . . , ũk

n) = a·Pi(a
dn−1
d−1 ·u1

n, . . . , a
dn−1
d−1 ·uk

n) = a·a
dn+1−d

d−1 ·ui
n+1 = a

dn+1−1
d−1 ·ui

n+1 = ũi
n+1.

Observe that since the initial values ũi
0 = ui

0 are integers, and the polynomials P̃i have integer
coefficients, we can infer that all entries of the sequences ũ1, . . . , ũk are integers.

We now show that for every prime p > a, the sequence r defined as rn = un mod p is
ultimately periodic; this will conclude the proof. For every i ∈ {1, . . . , k} and n ∈ N, let

r̃i
n := ũi

n mod p.
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By (15) and the fact that the polynomials P̃i have integer coefficients, for every n ∈ N the
vector of entries (r̃1

n+1, . . . , r̃k
n+1) is uniquely determined by the vector (r̃1

n, . . . , r̃k
n). Since

this vector may take only at most pk different values, it follows that the sequences r̃1, . . . , r̃k

are ultimately periodic.
Now note that for every n ∈ N, we have

a
dn−1
d−1 · rn ≡ a

dn−1
d−1 · un = ũ1

n ≡ r̃1
n mod p.

Since p > a and p is a prime, we have that a and p are coprime. Therefore, there exists an
integer b such that ab ≡ 1 mod p. By multiplying the above congruence by b

dn−1
d−1 , we have

rn ≡ b
dn−1
d−1 · r̃1

n mod p. (16)

Observe that the sequence bn = b
dn−1
d−1 satisfies the recursive equation bn+1 = b · (bn)d,

hence the sequence (bn mod p) is ultimately periodic. Since r̃1 is ultimately periodic as well,
from (16) we conclude that the sequence r is ultimately periodic. J

We use Theorem 6 to prove that the Catalan numbers are not poly-recursive. Recall that
the nth Catalan number Cn is given by the formula Cn = 1

n+1
(2n

n

)
.

Alter and Kubota [2] studied the behaviour of the Catalan numbers modulo primes. It is
easy to see (and proved in [2]) that for every prime p, the sequence Cn contains infinitely
many numbers divisible by p, and infinitely many numbers not divisible by p. Let a p-block
be a maximal contiguous subsequence of the sequence Cn consisting of entries divisible by p.
The p-blocks can be naturally ordered along the sequence Cn, so let Lp

k be the length of the
kth p-block. Then Alter and Kubota proved the following.

I Theorem 7 ([2]). For every prime p > 3 and k > 1, we have

Lp
k = pm+1 − 3

2 ,

where m is the largest integer such that
(

p+1
2
)m divides k.

Note that Theorem 7 in particular implies that for every prime p > 3, the sequence Cn

contains arbitrary long p-blocks. This means that Cn taken modulo p cannot be ultimately
periodic. By combining this with Theorem 6, we conclude the following.

I Corollary 8. Catalan numbers are not poly-recursive.

5 Cancelling polynomials

Consider the following definition, which can be seen as a variation of the definition of simple
poly-recursive sequences, which we discussed in Section 3.

I Definition 9. A sequence of rationals u admits a cancelling polynomial if there exist k ∈ N
and a nonzero polynomial P ∈ Q[x0, . . . , xk] such that

P (un, un+1, . . . , un+k) = 0 for all n ∈ N.

I Remark 10. A cancelling polynomial P can be always assumed to have integer coefficients,
i.e. to belong to Z[x0, . . . , xk], because one may multiply P by the product of all denominators
that occur in its coefficients.
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Observe that the notion of a cancelling polynomial extends the definition of simple
poly-recursive sequences (Definition 4) in the following sense: a sequence is simple poly-
recursive if and only if it admits a cancelling polynomial P (x0, . . . , xk) whose expansion into
a sum of monomials involves only one term containing xk, namely the monomial xk itself.
This particular form of the considered algebraic constraint was vitally used in the proof of
Proposition 5, where we showed that the sequence bn = n! is not simple poly-recursive. In
fact, if one drops this restriction, then it is easy to see that the sequence bn = n! actually
admits a cancelling polynomial: for instance P (x0, x1, x2) = x0x2 − (x1)2 − x0x1.

We now prove that the above example is not a coincidence.

I Theorem 11. Every poly-recursive sequence admits a cancelling polynomial.

Proof. The proof follows the same basic idea as the proof of Proposition 1 that we gave
in Section 2. The difference is that instead of linear maps we work with maps defined by
polynomial functions, hence instead of linear independence we shall work with the notion of
algebraic independence.

Recall that if K ⊆ L is a field extension, then elements a1, . . . , ak ∈ L are algebraically
dependent over K if there is a nonzero polynomial P ∈ K[x1, . . . , xk] such that P (a1, . . . , ak) =
0 in L. We will use the following well-known fact; see e.g. [18, Chapter VIII, Theorem 1.1].

B Claim 12. If K is a field and k ∈ N, then in the field of rational expressions K(x1, . . . , xk)
every k + 1 elements are algebraically dependent over K.

We proceed to the proof of the theorem. Let u be the poly-recursive sequence in
question. By definition, for some k ∈ N there are sequences u1, . . . , uk and polynomials
P1, . . . , Pk ∈ Q[x1, . . . , xk] such that for all n ∈ N,

u1
n+1 = P1(u1

n, . . . , uk
n),

...
uk

n+1 = Pk(u1
n, . . . , uk

n).

We inductively define polynomials P
(t)
1 , . . . , P

(t)
k ∈ Q[x1, . . . , xk] as follows. For t = 0, set

P
(0)
i (x1, . . . , xk) = xi for all i ∈ {1, . . . , k},

and for t > 1, set

P
(t)
i (x1, . . . , xk) = Pi(P (t−1)

1 (x1, . . . , xk), . . . , P
(t−1)
k (x1, . . . , xk)) for all i ∈ {1, . . . , k}.

The following claim follows from the construction by a straightforward induction.

B Claim 13. For all n, t ∈ N and i ∈ {1, . . . , k}, we have P
(t)
i (u1

n, . . . , uk
n) = ui

n+t.

Consider the polynomials

P
(0)
1 , P

(1)
1 , . . . , P

(k)
1 ∈ Q[x1, . . . , xk].

By Claim 12, these polynomials (treated as elements of Q(x1, . . . , xk)) are algebraically
dependent over Q, so there exists a nonzero polynomial Q ∈ Q[y0, y1, . . . , yk] such that the
polynomial
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R(x1, . . . , xk) = Q(P (0)
1 (x1, . . . , xk), P

(1)
1 (x1, . . . , xk), . . . , P

(k)
1 (x1, . . . , xk))

is identically zero. It now remains to observe that by Claim 13, for every n ∈ N we have

0 = R(u1
n, . . . , uk

n) = Q(u1
n, u1

n+1, . . . , u1
n+k) = Q(un, un+1, . . . , un+k),

hence Q is a cancelling polynomial for u. J

I Remark 14. Notice that a given polynomial can be the cancelling polynomial of many
different sequences. For example, the polynomial (x0)2 − 1 is a cancelling polynomial of any
sequence over {−1, 1}. In particular, some of those sequences are not ultimately periodic
modulo p, for any prime numbers p, and thus are not poly-recursive by Theorem 6. Hence,
the converse direction of Theorem 11 does not hold.

We now present an application of Theorem 11 by showing that the sequence un = nn is not
poly-recursive. By Theorem 11, it suffices to show that there is no cancelling polynomial for
this sequence. Contrary to the reasoning presented in Section 4, where we used off-the-shelf
results about modular (non)periodicity of Catalan numbers, proving the nonexistence of a
cancelling polynomial for the nn sequence turns out to be a somewhat challenging task.

We first observe that when we apply a multivariate polynomial to consecutive entries of
un, we can rewrite the result in another form:

I Lemma 15. Let Z ∈ Z[x0, x1, . . . , xk] be a nonzero polynomial. Then there exist nonzero
polynomials P1, . . . , Pm, Q1, . . . , Qm ∈ Z[x] such that the polynomials P1, . . . , Pm are pairwise
different and for every n ∈ N,

Z
(
nn, (n + 1)n+1, . . . , (n + k)n+k

)
=

m∑
i=1

Pi(n)n ·Qi(n).

Proof. By expanding Z as a sum of monomials, we may write

Z(x0, . . . , xk) =
m∑

i=1
ci ·Mi(x0, . . . , xj), (17)

where for all i ∈ {1, . . . , m}, ci 6= 0 and

Mi(x0, . . . , xk) =
k∏

j=0
x

di,j

j

are pairwise different monomials. Now observe that for every n ∈ N, we have

Mi

(
nn, (n + 1)n+1, . . . , (n + k)n+k

)
=

k∏
j=0

(n + j)di,j ·(n+j)

=

 k∏
j=0

(n + j)di,j

n

·
k∏

j=0
(n + j)di,j ·j . (18)

Hence, if we define

Pi(x) =
k∏

j=0
(x + j)di,j and Qi(x) = ci ·

k∏
j=0

(x + j)di,j ·j ,
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then, by (17) and (18), we conclude that

Z
(
nn, (n + 1)n+1, . . . , (n + k)n+k

)
=

m∑
i=1

Pi(n)n ·Qi(n) for all n ∈ N,

as required. It now suffices to observe that (1) all polynomials Pi and Qi are nonzero, because
ci 6= 0 and the monomial Mi is nonzero, and (2) the polynomials Pi are pairwise different,
because they have pairwise different multisets of roots. J

With Lemma 15 established, we move to the main result of this section.

I Theorem 16. The sequence un = nn is not poly-recursive.

Proof. Suppose, for the sake of contradiction, that the sequence un = nn is poly-recursive. By
Theorem 11 and Remark 10, there exists a nonzero polynomial Z ∈ Z[x0, x1, . . . , xk] that is
cancelling for un. By Lemma 15, we can find nonzero polynomials P1, . . . , Pm, Q1, . . . , Qm ∈
Z[x], where P1, . . . , Pm are pairwise different, such that

m∑
i=1

Pi(n)n ·Qi(n) = 0 for all n ∈ N. (19)

This system of equations seems somewhat unwieldy due to the presence of the term Pi(n)n,
where n is involved both in the base and in the exponent. The following claim formulates the
key idea of the proof: if we consider the equations (19) modulo any prime, then the bases
and the exponents of these terms can be made independent.

B Claim 17. For every prime p and all a, b ∈ Z where b > 0, it holds that

m∑
i=1

Pi(a)b ·Qi(a) ≡ 0 mod p .

Proof. Since p and p− 1 are coprime, there is an n ∈ N such that n > b, n ≡ a mod p and
n ≡ b mod p− 1. Thus for any 1 6 i 6 m:

Qi(n) ≡ Qi(a) mod p and Pi(n)n ≡ Pi(a)n ≡ Pi(a)b mod p ,

the second part holding by Fermat’s Little Theorem. The claim now follows by considering
equality (19) modulo p. C

Let a ∈ N and let Da = [dij ]16i,j6m be the m × m matrix defined by dij = Pj(a)i.
Since this is essentially a Vandermonde matrix, its determinant has a simple expression, as
expressed in the following claim.

B Claim 18. Let S ∈ Z[x] be defined as

S(x) =
m∏

i=1
Pi(x) ·

∏
16i<j6m

(Pi(x)− Pj(x)) .

Then S is nonzero and det(Da) = S(a).

Proof. That S is nonzero follows from the fact that the polynomials Pi are all nonzero and
pairwise different.
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Now observe that Da is a Vandermonde matrix with columns consisting of consecutive
powers of Pj(a), for 1 6 j 6 m with columns consisting of consecutive powers of Pj(a),
starting with Pj(a)1 (whereas the Vandermonde matrix starts with Pj(a)0). It is well known
that the determinant of the Vandermonde matrix [Pj(a)i−1]16i,j6m is∏

16i<j6m

(Pi(a)− Pj(a)) .

Further, multiplying the jth column by Pj(a), for all j, results in the determinant being
multiplied by

∏m
i=1 Pi(a). This proves the claim. C

We will need the following classical definition.

I Definition 19. Let R be a ring and M be a m×m matrix over R. The adjugate matrix
M̂ of M is an m×m matrix over R that satisfies M̂M = det(M) · I, where I is the m×m

identity matrix.

It is well known that the adjugate matrix always exists. Now let ua = (Q1(a), . . . , Qm(a))T.
Claim 17 implies that for every prime p,

Daua ≡ ~0 mod p,

where ~0 is the m-dimensional zero vector. By multiplying both sides of this equation by the
adjugate matrix of Da taken over Zp, we conclude that for every prime p, we have

det(Da) · ua ≡ ~0 mod p for all a ∈ N.

This is equivalent to

S(a) ·Qi(a) ≡ 0 mod p for all a ∈ N and 1 6 i 6 m. (20)

This means that for every prime p and every 1 6 i 6 m, the following assertion holds: every
a ∈ Fp is a zero of the polynomial S ·Qi considered as a polynomial over Fp.

Recall that the polynomials S, Q1, . . . , Qm ∈ Z[x] are nonzero. Consider a prime p that
is larger than every coefficient occurring in the expansion of the polynomials S, Q1, . . . , Qm

into sums of monomials, and that is further larger than deg(S) + maxj∈{1,...,m} deg(Qj).
Then the polynomials S, Q1, . . . , Qm are nonzero even when regarded as polynomials over Fp,
hence the same can be said also about the polynomials S ·Qi, for all 1 6 i 6 m. However,
by (20), for every 1 6 i 6 m the polynomial S ·Qi has at least p > deg(S) + deg(Qi) roots
over Fp. This is a contradiction. J

6 Applications in weighted automata

In this section we discuss the implications of the results we presented in the previous sections
for various questions regarding the expressive power of extensions of weighted automata. We
will briefly describe the model of weighted automata and focus only on its expressive power.
We refer an interested reader to e.g. [1, 10] for an introduction to the area.

Given a semiring S, a weighted automaton A is a tuple (d, Σ, {Ma}a∈Σ, I, F ), where:
d ∈ N is the dimension;
Σ is a finite alphabet;
every Ma is a d× d matrix over S; and
I and F are the initial and the final vector in Sd, respectively.
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In this paper we only consider the semiring S = Q. A weighted automaton defines a function
JAK : Σ∗ → S as follows: if w = a1 . . . an ∈ Σ∗, then

JAK (w) = IT ·Ma1Ma2 . . . Man · F. (21)

Note that when |Σ| = 1, this definition coincides with (the matrix form of) the definition (4)
of linear recursive sequences. Assuming |Σ| = 1, one can identify each word with its length,
which means that a weighted automaton defines a sequence JAK : N→ S. Therefore, weighted
automata recognise exactly linear recursive sequences. See [6] for a broader discussion of the
connection between linear recursive sequences and weighted automata.

We now discuss three nonlinear extensions of weighted automata that can be found in the
literature. These extensions are studied in different areas and, as far as we are aware, they
have never been compared in terms of expressive power before. We show that the results
we presented in Sections 4 and 5 can be used to prove separation results, in terms of the
expressive power, for some of these classes.

Like in the case of weighted automata, any automaton within the considered classes
defines a function f : Σ∗ → Q, where Σ is the working alphabet. For our purposes, we restrict
attention to the case of unary alphabets, that is, |Σ| = 1. Thus, the three considered classes
of extended weighted automata correspond to three separate classes of sequences f : N→ Q,
similarly as standard weighted automata correspond to the class of linear recursive sequences.

Cost-register automata (CRA). Cost-register automata (CRA) were introduced in at least
three contexts [21, 4, 7]. To avoid technical details, we simply observe that CRAs over unary
alphabets recognize exactly poly-recursive sequences, as defined in Definition 3. Since [21, 4, 7]
discuss several variants of CRAs, to avoid ambiguity we refer to the definition of a CRA that
can be found in [19]2.

Weighted context-free grammars (WCFG). Weighted automata can be equivalently de-
fined as an extension of finite automata, where each translation is labelled by an element of
the semiring S (see e.g. [1]). In short, each run is assigned a value: the semiring product of
the labels of all the transitions used in the run. Given a word w, the automaton outputs the
semiring sum of the values assigned to all runs accepting w.

Weighted context-free grammars are an extension of context-free grammars in the same
way weighted automata are an extension of finite automata. Every grammar rule is assigned
a label from S. Then every derivation tree is assigned the semiring product of the labels of
all the rules used in the tree. The output for a word w is defined as the semiring sum of all
values assigned to derivation trees of w. See e.g. [13] for more details. Here we present only
one example from [13] over the semiring Q.

Consider the grammar with one nonterminal X (which is also the starting nonterminal)
and one terminal a with the following rules: X → a, X → XX. Both rules are assigned
weight 1. Therefore, for every word an the output is the number of derivation trees. It is
easy to see that if we denote the output on the word an by Dn, then Dn is the number of
full binary trees with n leaves, which is the sequence of Catalan numbers shifted by one,
i.e. D0 = 0 and Dn+1 = Cn. By Corollary 8 and since it is easy to see that poly-recursive
sequences are closed under shifts, we conclude the following.

I Corollary 20. The class of sequences definable by unary-alphabet WCFGs over Q is not
contained in the class of sequences recognizable by unary-alphabet CRAs over Q.

2 The equivalence of CRAs and poly-recursive sequences over a unary alphabet is basically a syntactic
translation, if one assumes that CRAs have only one state. Proving that every CRA can be defined by
a one state CRA is a simple encoding of states into the registers.
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Weighted MSO (WMSO). Weighted MSO logic [9, 17] was introduced as a logic involving
weights that intended to capture the expressive power of weighted automata, similarly as
finite automata are characterized by MSO. In general, WMSO turns out to be strictly more
expressive than weighted automata. We will not define the whole syntax of WMSO, only a
simple fragment that does not even use variables. See [9, 17] for the full definition.

Fix the semiring S = Q. Similarly as for weighted automata, every WMSO formula ϕ

over Q defines a function JϕK : Σ∗ → Q. As for atomic formulas, every c ∈ Q is an atomic
formula that defines the constant function JcK (w) = c. Instead of the boolean connectives
∨ and ∧, WMSO formulas can be added using + and multiplied using ·, with the obvious
semantics. Instead of having the existential quantifier ∃x and the universal quantifier ∀x, we
have the sum quantifier

∑
x and the product quantifier

∏
x. Then

t∑
x

ϕ

|

(w) =
n∑

i=1
Jϕ[x→ ai]K (w) for all w = a1 . . . an ∈ Σ∗,

and similarly for J
∏

x ϕK (w). For example, J
∑

x 1K (an) = n. It follows that

t∏
x

∑
y

1
|

(an) = nn.

This proves that the sequence nn can be defined in unary-alphabet WMSO over Q, so by
Theorem 16 we may conclude the following.

I Corollary 21. The class of sequences definable in unary-alphabet WMSO over Q is not
contained in the class of sequences recognizable by unary-alphabet CRAs over Q.

7 Conclusion

We proved that two sequences, the Catalan numbers Cn and un = nn, are not polynomial
recursive. For this, we exhibited two properties that poly-recursive sequences always satisfy:
ultimate periodicity modulo large prime numbers and admitting a cancelling polynomial.

Going further than poly-recursive sequences, one can consider the class of rational recursive
sequences. These are specified like polynomial recursive sequences (Definition 3) but on the
right hand side of the system of equations (8) we allow the Pi’s to be taken from the field of
fractions of the polynomial ring. That is, each Pi is of the form Pi(x1, . . . , xk) = Qi(x1,...,xk)

Ri(x1,...,xk) ,
where Qi, Ri ∈ Q[x1, . . . , xk] and Ri 6= 0.

This class extends both poly-recursive sequences and holonomic sequences (see Section 1).
For example one can express the sequence of Catalan numbers, since Cn+1 = 4n+2

n+2 · Cn and
an ancillary sequence can hold the value n. On the other hand, the proof of the existence of
cancelling polynomials for poly-recursive sequences (Theorem 11) carries over to rational
recursive sequences. In particular, un = nn is not even rational recursive.

This discussion points to the notion of rational recursive sequences as a natural object
for future research.
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Abstract
Different graphical calculi have been proposed to represent quantum computation. First the ZX-
calculus [4], followed by the ZW-calculus [12] and then the ZH-calculus [1]. We can wonder if
new ZX-like calculi will continue to be proposed forever. This article answers negatively. All
those language share a common core structure we call Z∗-algebras. We classify Z∗-algebras up
to isomorphism in two dimensional Hilbert spaces and show that they are all variations of the
aforementioned calculi. We do the same for linear relations and show that the calculus of [2] is
essentially the unique one.
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1 Introduction

The most common formalization of quantum computing is the circuit model, a diagrammatical
language representing unitary matrices in a two dimensional Hilbert space, see [20] for an
introduction. Verification of quantum processes requires a sound and complete equational
theory for quantum circuits, i.e. a complete presentation of unitaries by generators and
relations. This is known to be a difficult open problem.

By relaxing the unitarity condition and allowing all linear maps, at least three different
complete equational theories were found. The ZX-calculus was introduced in [4] and was
designed as a part of the categorical quantum mechanics program. It relies on the interaction
between two complementary observables. The ZX-calculus has proven to be a good language
to reason about quantum processes [7, 11]. However, finding a set of rules to make it complete
has been open for a long time, and part of the solution [15] involved a secondary graphical
language: the ZW -calculus [12, 5]. This calculus is built on two tripartite entanglement
classes (GHZ and W-states) unraveling new structures. Yet another complete graphical
language was later introduced, the ZH-calculus [1], inspired by hyper-graph states.

Compared to quantum circuits, these three languages share an important advantage.
Processes and matrices are not represented merely by diagrams, but by graphs (hence the
term graphical language). Isomorphic graphs represent the same quantum evolution. This
peculiarity is embedded in the only topology matters paradigm. This is a subtle feature: a
usual diagrammatic language (like quantum circuits) starts with a given set of primitives
(usually quantum gates) for which the notion of inputs and outputs is significant. When only
topology matters, one can readily switch an input into an output, and conversely.
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This property follows from some specificities of the building blocks of those languages.
One goal of this article is to give a formal definition of these specificities.

Then, we will be able to prove that the three existing graphical calculi for quantum
computing, ZX, ZH and ZW , are essentially the only possible graphical calculi of their kind.

To do this, we identify in this paper a common structure underlying the already defined
calculi, that we call a Z∗-algebra. Formally, the structure consists of two Frobenius algebras
interacting via a bialgebra rule. To this, we add one additional property, called compatibility,
to ensure the only topology matters paradigm. We then describe all the Z∗-algebras in two
dimensional Hilbert spaces and show that they all happen to be phase-shifted versions of
four structures we call ZX, ZH, ZW and ZZ. The first three appear respectively in the
ZX, ZH and ZW -calculus. The last one corresponds to a degenerate calculus arising from
only one self-interacting special Frobenius algebra.

It is important to note that languages for quantum computing are not the only known
to enjoy these nice properties. In particular Bonchi and his coauthors [2] gave in 2017 a
graphical language for linear relations, with striking similarities to the ZX, ZH and ZW
calculi. In fact, we will prove that their language is the only Z∗-algebra for linear relations.

There exist some other formalisms trying to unify ZX-like languages, in particular in
the context of interacting Frobenius algebras [10] or Hopf-Frobenius algebras [6]. However,
these formalisms usually require too much structures, and fail to capture all three examples
simultaneously. Typically they do not capture the ZW -calculus.

Some of our work indirectly has to do with the classification of finite dimensional algebras,
bialgebras and Frobenius algebras. In the general case, an exact classification of algebras
is not known, even in the commutative case. It is known that there is an infinite number
of algebras up to isomorphism of dimension d for any d > 6. All of them are known for
d ≤ 6 [22]. We find a classification of low dimension bialgebras in [8]. We can find some
constructions related to Z∗-algebras in [17] and [9].

This paper starts by introducing the prop formalism for graphical languages. The second
section introduces various algebraic structures culminating in the definition of Z∗-algebras.
The third section provides a classification of Z∗-algebras up to isomorphism for qubits.
The last section gives some hint towards classification in higher dimension and provides
a classification of Z∗-algebras in the context of linear relations. All the proofs are in the
complete version of the paper.

2 Diagrammatical quantum computing

In this paper all processes are represented by a combinatorial structure called a prop [26].

I Definition 1 (prop). A prop P is a collection of sets P[n,m], indexed by N2. An element
f ∈ P[n,m] is called a morphism and is usually written f : n→ m. These sets are linked by
the following operators:

A composition ◦ : P[b, c]×P[a, b]→ P[a, c] satisfying: (f ◦ g) ◦ h = f ◦ (g ◦ h).
A tensor product ⊗ : P[a, b]×P[c, d]→ P[a+c, b+d], satisfying: (f⊗g)⊗h = f⊗(g⊗h)
and (f ◦ g)⊗ (h ◦ k) = (f ⊗ h) ◦ (g ⊗ k).
An empty morphism 1 : 0→ 0 such that f ⊗ 1 = 1⊗ f = f for all f : a→ b.
An identity id : 1 → 1 such that f ◦ id⊗a = id⊗b ◦ f = f for all f : a → b. With the
convention id⊗0 = 1.
A symmetry σ : 2→ 2 satisfying: σ2 = id⊗2 and such that, σa ◦ (f ⊗ id) = (id⊗ f) ◦ σb,
for all f : a→ b, where σn+1 = (1⊗n ⊗ σ) ◦ (1⊗ σn), with σ0 = id.
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In the language of categories [18], a prop is a small strict symmetric monoidal category
whose monoid of object is spanned by a unique object. They can be seen as resource sensitive
Lawvere theories where multiple outputs are allowed [3].

Props admit a nice diagrammatical representation that gives a topological interpretation
to the axioms [23]. A morphism f : n → m is represented as a box with n inputs and m
outputs. Composition is represented by plugging the boxes. The tensor product by drawing
the boxes side by side. The identity is represented by a single wire, the empty morphism by
an empty diagram and the symmetry by wire crossing.

...

f

...

...

f

...
g

...

...

f

...

...

g

...

f : n→ m id : 1→ 1 f ◦ g f ⊗ g σ : 2→ 2

That choice of notation fits nicely with the axioms of props. The corresponding equations
are natural in the diagrammatic notation. In particular the symmetry axioms express that
the boxes can move through wires:

=

...
f

...

...

=

...

...
f

...

This diagrammatical language is sound [16]. So we can equivalently work with equations or
diagrams.

I Example 2 (sets and functions). Let X be a set. In the prop FunX , the set FunX [n,m] is
exactly the set of functions from Xn to Xm, with composition being the usual composition,
and tensor product being the cartesian product.

I Example 3 (matrices). For an integer d and a field K, the prop MatKd is defined by
MatKd [n,m] :=Mdm×dn(K), the matrices of size dm by dn over the field K. The composition
is the matrix product and the tensor is the Kronecker product. Keeping with quantum
computing traditions, we will denote by (|ei〉)1≤i≤d a basis of Kd.

The main prop of interest for quantum computing is Qubits := MatC2 . The quantum
analog of bits, the qubits, are described by vectors in C2. A register of n qubits is then a
vector in the tensor product C2n .

3 Graphical structures

While the diagrammatical languages presented in the previous section make reasoning about
props easier, it is still somewhat strict: inputs come to the top of the box representing f ,
outputs goes out at the bottom. Graphical languages do not have this restriction, and we
will explain here what additional properties should be satisfied to obtain a better framework.
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3.1 Half a spider
We start by studying elementary associative binary operations with units: monoids.

I Definition 4. A monoid is a morphism µ : 2→ 1 (the product) and a morphism η : 0→ 1
(the unit) that satisfy the equations: µ◦(η⊗id) = µ◦(id⊗η) = id and µ◦(µ⊗id) = µ◦(id⊗µ).

If we depict the product and the unit , the equations becomes: = =

and = . The monoid is commutative if µ ◦ σ = µ. In pictures, = .

All the monoids in this paper are supposed to be commutative.
Once we have a monoid (µ, η), we can define an n-ary product inductively by µ0 =η, µ1 = id

and µn+1 = µ ◦ (µn ⊗ id). As an example, here is µ4: = .

Using the equations, we have more generally µn+p = µ ◦ (µn ⊗ µp), so how to transform
the operator µn into compositions of µ and η doesn’t matter.

I Example 5. A monoid in FunX is exactly what is usually called a monoid on X. Monoid
in MatKd are exactly the d-dimensional K-algebras.

In the following we will be mainly interested in the two following examples:

I Example 6 (co-copy). Given a basis (|i〉)1≤i≤d of Kd, the co-copy monoid is define in

MatKd by η : 1 7→
∑d
i=1 |i〉 and µ : |i〉|j〉 7→

{
|i〉 if i = j

else 0

I Example 7 (monoid algebra [21]). Given a monoid M = (X, ∗, e) in FunX with X of
cardinality d, we can define a monoid K[M ] in MatKd by indexing each element of a basis
by the elements of M . We then take: η : 1 7→ |e〉 and µ : |a〉|b〉 7→ |a ∗ b〉. If M is a group, we
will speak of a group algebra.

Starting from a monoid M in FunX with X of cardinality d + 1 that contains a zero
element (that we note ⊥), we can build a contracted algebra KM in MatKd by essentially
the same construction, but identifying the element ⊥ with the matrix 0. One can see that
the previous example of the co-copy actually fits in this framework: it is exactly KM for the
monoid in Fun{⊥,1,...,n} defined by i ∗ j = i if i = j and ⊥ otherwise.

Any commutative monoid defines a group of phases:

I Definition 8 (phase). Given a commutative monoid (µ, η), a phase is an invertible

morphism α : 1→ 1 such that: α ◦ µ = µ ◦ (id⊗ α). Pictorially:
α
= α .

The phases form an abelian group. In general we will write this group multiplicatively
and write αβ instead of α ◦ β. In the following, the notations α and β will be reserved for
elements of the phase group.
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I Discussion 9. An invertible scalar (a 0→ 0 morphism) is obviously a phase. Therefore
the group of invertible scalars S is always a subgroup of the phase group G. If it is a direct
summand, i.e. if G = S ×H for some group H, then one can simplify the presentation by
“dropping out” the scalars and only consider nontrivial phases. This will be the case later on
for the Qubit prop, but there are examples for which such a simplification cannot be made.

Once we have phases, we can introduce a new sequence of operators µn(α) and η(α) defined

by µn(α) = α ◦ µn and η(α) = α ◦ η . Pictorially
α

...

=
α

...

and α= α .

These operators satisfy the following equation:
α

...
β

...

= α+ β

...

It is interesting to note that µ(α) itself defines a monoid, by taking as unit η(α−1). We
will call it a phase-shifted monoid of the original monoid.

Monoids dualize to co-monoids:

I Definition 10. A co-monoid in a prop is a morphism ∆ : 1→ 2 (the co-product) and a
morphism ε : 1→ 0 (the co-unit) that satisfies the equations: (∆⊗ id) ◦∆ = (id⊗∆) ◦∆

and (ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id. If we depict the co-product and the co-unit , the

equations become: = and = = . A co-monoid is co-commutative

if it satisfies: σ ◦∆ = ∆. In pictures, = .

All the co-monoids in this paper are supposed to be cocommutative.
Again we can inductively define ∆n by ∆0 = ε,∆1 = id and ∆n+1 = (∆n ⊗ id) ◦∆.
We define phases for co-commutative co-monoids in the same way as phases for commut-

ative monoids, they are the invertible morphisms satisfying: α =
α

.

We can also define the morphisms ∆(α) and ε(α) as well as the phase-shifted co-monoid
(∆(α), ε(1/α)).

I Example 11 (copy in FinX). The functions ∆ : x 7→ (x, x), with ε the only function from
X to X0, defines a co-monoid in FinX . This is the only co-monoid in this prop.

I Example 12 (copy in MatKd). Given a basis of (|i〉)1≤i≤d, the copy co-monoid is defined
in MatKd by ε : |i〉 7→ 1 and ∆ : |i〉 7→ |i〉|i〉.

I Example 13 (group co-algebra). Given a finite group G of size d we can define a co-monoid

in MatKd by |x〉 7→ 1
d

∑
a∗b=x |a〉|b〉, the co-unit is |x〉 7→

{
1 if x = e

else 0
.
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3.2 One spider

A monoid and a co-monoid can interact forming a Frobenius algebra.

I Definition 14. A monoid (µ, η) and a co-monoid (∆, ε) form a Frobenius algebra iff they

satisfy: (id⊗ µ) ◦ (∆⊗ id) = (µ⊗ id) ◦ (id⊗∆) = ∆ ◦ µ. Pictorially: = = .

A Frobenius algebra is commutative if the monoid is commutative and the co-monoid is
cocommutative. All the Frobenius algebras in this paper are commutative.

In a Frobenius algebra the phases of the monoid coincide with the phases of the co-monoid.
Thus we can speak without ambiguity of the phases of a Frobenius algebra.

I Example 15 (In FinX). There are no Frobenius algebras in FinX (unless |X| = 1).

I Example 16 (copy and cocopy). Given a basis (|i〉)1≤i≤d of Kd, the co-copy monoid and
copy co-monoid form a Frobenius algebra in MatKd .

I Example 17 (group Frobenius algebra). Given a group G of size d, the group algebra and
the group co-algebra form a Frobenius algebra in MatKd .

When we have a Frobenius algebra (µ, η,∆, ε) we can define a family of morphisms

Sn,m : n → m by Sn,m := µn ◦∆m. We call them spiders and depict them
...

...

. They

satisfy the following equation:

... ...

... ...

=
...

...

. As we have done for monoids and

co-monoids, provided a phase α, we define decorated spiders Sn,m(α) by Sn = mn ◦ α ◦∆p.

These new morphisms satisfy the equation:

... ...
β

α

... ...

=
...

αβ

...

.

3.2.1 Compact structure

The symmetry in a prop allows various topological moves involving the wires. We can go
further by providing a way to bend them. This is done by compact structures.

I Definition 18 (compact structure). A compact structure is given by two morphisms δ : 0→ 2
and ν : 2→ 0 depicted as and satisfying the snake equation (ν ⊗ id) ◦ (id⊗ δ) =

(id ⊗ ν) ◦ (δ ⊗ id) = id. Pictorially: = = . A compact structure is

symmetric if ν ◦ σ = ν ◦ (id ⊗ id): pictorially, = . (This implies a similar

statement on δ). All compact structures in this paper are symmetric.
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A compact structure allows to bend the wire leading to new topological properties. This
extends the diagrammatical language [23]. Any Frobenius algebra directly provides a compact

structure given by δ = ∆ ◦ η and ν = ε ◦ µ, pictorially: = and = .

If the Frobenius algebra is commutative then this compact structure is symmetric.
This compact structure behaves well with the Frobenius algebra, we have: (id⊗ µ) ◦ (δ ⊗

id) = ∆, pictorially: =

This equation is interesting from a topological point of view. Bending the wires of a
diagram gives a diagram representing the same morphism. This has been referred to as the
only topology matters paradigm [4]. For us, the only topology matter paradigm is the
key property of a graphical language.

In particular, we can by abuse of notation write: which may represent any of the fol-

lowing diagrams : = = = = =

In general, we can give an unambiguous meaning to any multi-graph with input and
outputs. We emphasize that this property plays a central role in the elegance of the Z∗
calculi.

3.3 Two spiders

The ZX, ZW and ZH-calculii all have two Frobenius algebras. The next step is therefore to
have two of them.

In this setting, the only topology matters paradigm doesn’t apply anymore. Indeed, coloring

the two algebras in white and black, we have: = and = using the

two compact structures corresponding to the two algebras, but in general 6= .

So we cannot hope for the two compact structures to be equal, but we can hope for some
sort of compatibility:

I Definition 19 (compatibility). Two Frobenius algebras are compatible if their compact
structure satisfy:

=
. We call the left hand side the dualizer.

Note that the snake equation(s) implies that the left hand side is always the inverse of
the right hand side. In compatible case the dualizer is an involution.

When the two Frobenius algebras are compatible, we can adjust the language so that
we can bend wires on both structures. This is done at the price of a slight modification of
the second algebra. We introduce now a new generator (represented by a black node) that
represents the dualizer, and introduce four new generators in place of the original structures:
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= = = = and more generally
...

α

...

=
...

α

...

With the new generators, we succeed in obtaining a new language: Indeed: we can now
bend the wires of the new generator, and we keep a form of the spider rule:

=

... ...
β

α

... ...

=
...

αβ

...

I Discussion 20. One could decide similarly to change the first Frobenius algebra rather
than the second one. In fact, if there is a preexisting compact structure, it also make sense
to search for a compatibility between the preexisting compact structure and the two algebras.
This is somehow what has been done in [12].

3.4 Two spiders interacting
We now require the two spiders to interact in a precise way.

I Definition 21 (Bialgebra). A co-monoid and a monoid form a bialgebra iff they satisfy the
three following equations:

=
= = =

Bigebra (B) Copy (C1) Cocopy (C2) Identity (Id)

The four bialgebra laws enforces some kind of commutation property between the co-
monoid and the monoid. There are conflicting definitions in the literature on which properties
one should impose on a bialgebra. The one we take is from Sweedler[25].

We now come to our main definition:

I Definition 22 (Z∗-algebra). A Z∗-algebra is formed by two compatible Frobenius algebras
such that the co-monoid of the first one satisfies the bigebra rule (B) with the monoid of the
second one.

A Z∗-algebra formed by two Frobenius algebras F and G will be denoted FG.

I Discussion 23. One could give a different definition of a Z∗-algebra, by imposing all four
conditions of the bialgebra law, or even impose it to both monoid/co-monoid pairs. However
it turns out that the most important examples (esp. the ZW-calculus) do not satisfy all
equations. We isolate the bigebra law as being central.

Using the notations from the previous section, we see that a Z∗-algebra leads to a
graphical-calculus, formed by two spiders that are subject to the following rules1:

1 The white node is the same as the white lozenge, but represented differently to emphasize that the
whole calculus is different
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... ...
β

α

... ...

=
...

αβ

...

... ...
β

α

... ...

=
...

αβ

...

= = =

Together with the only topology matters paradigm, which means we can bend the wires
of any node, changing an input into an output.

The rules we obtain are a common subset of the rules of the Z∗-calculi [2, 4, 12, 1].

4 Classification of Z∗-algebras in Qubits and LinRel

Now that we have defined what we think is a ZX-like calculus, we can proceed to the
main theorem: there are essentially only four possible such calculi for quantum computing
up to isomorphism: the ZX-calculus, the ZW-calculus, the ZW-calculus, and the (trivial)
ZZ-calculus. Before we can give a formal statement of the theorem, we need to explain what
we mean by “essentially”.

Consider a Z∗-algebra formed of two Frobenius algebras named A and B. Suppose that
λ is a invertible scalar (i.e. a 0→ 0 morphism). If we multiply, say, the generators of the
monoid of A by λ and the generators of the co-monoid of B by 1/λ, then we obtain a new
Z∗-algebra. This new algebra is usually not isomorphic to the first one, but for all practical
purposes, they behave the same.

More generally, suppose we add a phase α to the monoid of A (replacing µ, η by µ(α)
and η(α)) and we add similarly a phase β to the co-monoid of B. Then we obtain two
new Frobenius algebras that we will call Aα and Bβ which satisfies all axioms of a Z∗-
algebra, except possibly the compatibility relations. We call this a phase-shifted versions of
the original Z∗-algebra. We will show that all possible Z∗-algebra for quantum computing
are phase-shifted version of four basic ones.

Phase-shifted algebras are a bit subtle. To ease the understanding, we provide here the
graphical calculus that corresponds to AαBβ in terms of the original generators, with the
caveat that it is a graphical calculus only if the compatibility relation is satisfied (equivalently,
the black node below is an involution). n and m denote respectively the number of inputs
and outputs and we represent the compact structure of the white algebra differently in both
calculi to avoid confusion:

...
ℵ

...

=
...
ℵαn−1

...

= α−1 =
β

α

...

i

...

=
...

iβm−1

...

4.1 Z∗-algebras in Qubits

We now investigate the particular case of graphical calculi for quantum computing. This
corresponds to the special case Qubits = MatC2 .

A monoid in Qubit is exactly the same as a C-algebra of dimension 2. Algebras in
dimension 2 have been classified [24]: there are only two algebras up to isomorphism.

For our purpose however, we will introduce four algebras (the first three being isomorphic),
that we call Z, X, H and W . Working in the basis (|0〉, |1〉). They correspond to contracted
algebras CM , see 7.
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Z |0〉 |1〉
|0〉 |0〉 0
|1〉 0 |1〉

X |0〉 |1〉
|0〉 |0〉 |1〉
|1〉 |1〉 |0〉

H |0〉 |1〉
|0〉 |0〉 |0〉
|1〉 |0〉 |1〉

W |0〉 |1〉
|0〉 |0〉 |1〉
|1〉 |1〉 0

Those multiplication tables describe the behavior of the algebras on |0〉 and |1〉.
We see that Z behaves like a Kronecker delta ensuring equality, X is the XOR gate, H

the AND gate and W is the effect algebra on two elements.
The matricial representation in the computational basis are:

, :=
Z

µZ ηZ(
1 0 0 0
0 0 0 1

) (
1
1

)
X

µX ηX(
1 0 0 1
0 1 1 0

) (
1
0

)
H

µH ηH(
1 1 1 0
0 0 0 1

) (
0
1

)
W

µW ηW(
1 0 0 0
0 1 1 0

) (
1
0

)

The phase group of Z is C∗×2. The phase group of W is C∗× × C+.
If we write the phases for our four favorite monoids, they read:

(a, b) :=
Z

a, b ∈ C∗

a

(
1 0
0 b

)
X

a, b ∈ C∗

a
2

(
1 + b 1− b
1− b 1 + b

)
H

a, b ∈ C∗

a

(
1 1− b
0 b

)
W

a ∈ C∗ b ∈ C
a

(
1 0
b 1

)

As explained in Discussion 9, in the case of Qubit, we can write2 the phase group
G = C? ×H where the first component C? corresponds to the invertible scalars, and H is
some commutative group (H = C?× in the first three cases, and H = C+ in the last case). One
could then index the phases only by this subgroup H (i.e. always take a = 1), introducing
scalars when necessary. This is what has been done in the literature.

All four monoids form Frobenius algebras, with the following co-monoids3, co-units, and
compact structures:

, :=

Z

∆Z εZ1 0
0 0
0 0
0 1

 (
1 1

)

X

∆X εX

1
2

1 0
0 1
0 1
1 0

 (
2 0

)

H

∆H εH1 2
0 −1
0 −1
0 1

 (
1 2

)

W

∆W εW0 0
1 0
1 0
0 1

 (
0 1

)

, :=

Z

δZ νZ1
0
0
1

 (
1 0 0 1

)

X

δX νX

1
2

1
0
0
1

 (
2 0 0 2

)

H

δH νH 2
−1
−1
1

 (
1 1 1 2

)

W

δW νW0
1
1
0

 (
0 1 1 0

)

We can now state our main theorem:

I Theorem 24. The only Z∗-algebras up to isomorphism in Qubits are, with a, b ∈ C∗:
Z(a, b

a )Z( 1
a ,

a
b ), Z(a, b

a )Z(− 1
a ,

a
b ), Z(a, b

a )Z( 1
a ,−

a
b ), Z(a, b

a )Z(− 1
a ,−

a
b ), Z(a,1)X( 2

a ,1), Z(a,1)X(− 2
a ,1),

Z(a,−1)X( 2
a ,1), Z(a,−1)X(− 2

a ,1), Z( a
b ,b

2)X( 2
a ,−1), Z(a,−1)X( 2b

a ,
1

b2 ), Z
(a, 1

b2−1
)
H( b

a ,
1−b2

b2 ) with

b2 6= 1, Z(a, 1
b2 )W( b

a ,0) and W (a,0)Z( b
a ,

1
b2 ).

2 This can be done more generally in any prop if the group of scalars is divisible.
3 The co-monoids have been choosen such that the three first Frobenius algebras are isomorphic, hence

the weird 1
2 factor in X.



T. Carette and E. Jeandel 118:11

The idea is to show that, up to isomorphism, there are only five possible monoids/co-
monoid pairs satisfying the bigebra rule, and then show how they can possibly extend to
Z∗-algebras.

We will now compare the calculi we obtain with the literature.

The ZZ-calculus never has been really considered, as having two spiders that are identical
is not useful. However, its existence is not happenstance: in general a Frobenius algebra
would not make a bigebra with itself. In this case, it works as Z is a special Frobenius
algebra.
The ZX-calculus [4] corresponds to what we call ZX(2,2). This is a particular calculus as
the dualizer is trivial: both algebras have the same compact structure (up to scalars). We
say that the two algebras are coflexible. There are a few substantial differences between
our calculus and the ZX-calculus. Instead of using all possibles phases in C?, the authors
use phases in the unit circle. Subsequent work [19] introduced so-called lambda-boxes to
restore all phases. Second, the ZX(2,2)-calculus is a bit awkward as the two Frobenius
algebras Z and X(2,2) are not isomorphic, but only isomorphic up to a scalar. By rescaling
the X algebra, we can obtain a calculus where both algebras are dual, at the price of a
slightly different bigebra rule. The isomorphism corresponds to the Hadamard matrix;
as this matrix is symmetric, we can add it to our language without changing the only
topology matters paradigm, and we obtain this way the ZX-calculus defined in [4].
The fact that other calculi of the form ZαXβ exist corresponds to some commutation
properties between phases of the two algebras. In fact, they correspond to what is called
the π-commutation rule: (1, λ)Z ◦ (1,−1)X = λ(1,−1)X ◦ (1, 1

λ )Z where (a, b)Z is a phase
of Z and (a, b)X is a phase of X.
The original rules [4] of the ZX-calculus correspond exactly to:

The only topology matters paradigm (rule T)
The rules above valid on any graphical calculi (rules S1, S2, B2), including in this case
the copy rule (B1) and some form of the identity rule (rule D1)
one rule relative to the π-commutation (rule K2)
one rule relative to Hadamard, the isomorphism between Z and X (rule C)
one rule stating that Z is a special Frobenius algebra (hidden in rule S1)
one rule called π-copying (K1), and one rule related to the scalars (rules D2). The
second rule is anecdotal. The first one relates to what are the automorphisms of Z.

Therefore, with one omission, all original rules of the ZX-calculus could be rediscovered
again in a systematic way using our definition.
The ZW -calculus as discussed in [13, 14] is exactly what we call ZW . The calculus
however do not use phases on the black nodes. The original ZW -calculus introduced in
[12] by the same author is slightly different. Intuitively it corresponds to a different kind
of graphical languages where the two Frobenius algebras have been made compatible with
a third compact structure. The fact that other calculi of the form ZαWβ exist essentially
amounts to the same π-commutation rule as before.
The ZH-calculus as discussed in [1] is exactly what we call ZH(

√
2,− 1

2 ). However the
authors do not use phases on the white node, and use a different parametrizations of the
phases on the black node. The phase they call x is what we would call the phase (1, 1−2x)H .
This makes the spider rule more awkward in their calculus. The fact that other calculi
of the form ZαHβ exist is linked to the following rule: 2λ+1

λ (1, λ)Z ◦H ◦ (1, 1
2

1
λ+1 )H =

(1, 2(λ+ 1))H ◦H ◦ (1, 1
λ )Z where (a, b)Z is a phase of Z, (a, b)H is a phase of H and H

is the Hadamard gate.
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4.2 Generalization for qudits
A similar classification could be theoretically done for other dimensions, i.e. for the prop
MatCd . However difficulties arise. Indeed, all possible algebras have been classified only in
dimension d ≤ 6 [22] (in fact there are an infinite number of non isomorphic commutative
algebras of dimension 7), and the work is even more terse on bigebras (some work [8] has
been done for bialgebras in dimension 2 and 3) or Frobenius algebras (although a theoretical
characterization exist).

We will therefore focus here on generalizations of the existing structures of dimension 2
to higher dimension.

The ZX-structure corresponds to an interaction between the two algebras C2 and C[Z/2Z].
One could readily generalize this to higher dimensions replacing Z/2Z by Z/dZ, or actually
any other commutative group of size d. In higher dimension, the dualizer actually becomes
non trivial: it corresponds to the morphism x 7→ −x in Z/dZ, which is trivial only if d = 2.

The ZW -structure can also be generalized easily. We again replace the algebra C2 by Cd.
and we can generalize the W algebra in dimension 2 to the algebra C[X]

/(
Xd
) .

We did not find any generalization of ZH that work in arbitrary dimension. The obvious
d-dimensional generalization of H would be as a contracted monoid algebra CM where M
is the monoid (F ,∩) for a family of subsets F closed under intersection (the 2-dimensional
version corresponding to F = {{1}, ∅}). This generalization gives indeed two Frobenius
algebra that satisfy a bigebra law, but they usually are not compatible (unless F = 2X for
some set X).

4.3 In LinRelK
Quantum computing is not the only place where ZX-like calculi appear: another Z∗-algebra
that occurs in the literature is Graphical linear algebra [2] in the prop LinRelK. In LinRelK
a map n→ m is a linear subspace of Kn+m.

It turns out that there are only two monoids in LinRelK, and they are not isomorphic: the
monoid given by the subspace {(x, x, x), x ∈ K} and the monoid given by {(x, y, x+y), x, y ∈
K}. Their respective phase groups are both trivial. Both these monoids, that we call B and
N , actually happen to have Frobenius algebra structures.

I Proposition 25. There are only four Z∗-algebras in LinRelK: BB, NN , BN and NB.

As these are the only potential candidates, we just have to check that they indeed give
Z∗-algebras. BB and NN are trivial, and BN is just a dual version of NB, therefore the
graphical calculi of [2] is THE only possible ZX-like calculus for this prop.

5 Future works

We have classified Z∗-algebras in MatC2 and LinRelK. Further investigations will concern
other categories. In the case of MatR for a semiring R, generalizations of ZW and ZX exist.
A natural question is which other Z∗-algebras exist in this setting. All the monoids and
co-monoids we considered were commutative, the non commutative case is also of interest,
leading to a more general notion of graphical language involving port graphs or rotation
systems. An other direction would be to drop the unit and the compact structure and find
what defines a graphical language in this case. This is necessary in infinite dimensional
Hilbert spaces for example.
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6 All graphical calculi for quantum computing

In this last section we provide a complete description of the Z∗-algebras in Qubits.

6.1 The ZZ-calculis

6.1.1 Z(a,b/a)Z(1/a,a/b)

This is the first calculus presented in the Theorem, up to a re-parametrization that makes it
slightly better looking:

=
(
a 0 0 0
0 0 0 b

)
=
( 1
a
1
b

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

=
(
a 0 0 b

)
=


1
a

0
0
1
b

 =
(

1 0
0 1

)

=
(

1 0 0 0
0 0 0 1

)
=
(

1
1

)
=


1
a 0
0 0
0 0
0 1

b

 =
(
a b

)
(x, y) = x

(
1 0
0 y

)

6.1.2 Z(a,b/a)Z(1/a,−a/b)

The only difference with the previous calculus is in the following generators:

=
(

1 0
0 −1

)
=
(

1 0 0 0
0 0 0 −1

)
=
(

1
−1

)

=


1
a 0
0 0
0 0
0 − 1

b

 =
(
a −b

)
(x, y) = x

(
1 0
0 −y

)

6.1.3 Z(a,b/a)Z(−1/a,a/b) and Z(a,b/a)Z(−1/a,−a/b)

These calculi differ from the previous ones only by the presence of a global scalar “-1” in all
matrices corresponding to the black nodes.

6.2 The ZX-calculi

6.2.1 Z(a,1)X(2/a,1)

In the case a = 1, this is almost the ZX-calculus of [4]:

= a

(
1 0 0 0
0 0 0 1

)
= 1

a

(
1
1

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)
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= a
(
1 0 0 1

)
= 1

a


1
0
0
1

 =
(

1 0
0 1

)

=
(

1 0 0 1
0 1 1 0

)
=
(

1
0

)
= 1

a


1 0
0 1
0 1
1 0

 = a
(
1 0

)

(x, y) = 1
2 x

(
y + 1 −y + 1
−y + 1 y + 1

)

6.2.2 Z(a,1)X(2/a,−1)

The only difference with the previous calculus is in the following generators:

=
(

0 1
1 0

)
=
(

0 1 1 0
1 0 0 1

)
=
(

0
1

)

= 1
a


0 1
1 0
1 0
0 1

 = a
(
0 1

)
(x, y) = 1

2 x

(
−y + 1 y + 1
y + 1 −y + 1

)

6.2.3 Z(a,1)X(−2/a,−1) and Z(a,1)X(−2/a,1)

These calculi differ from the previous ones only by the presence of a global scalar “-1” in all
matrices corresponding to the black nodes.

6.2.4 Z(a/b,b2)X(2/a,−1)

This is a quite different calculus:

= a

( 1
b 0 0 0
0 0 0 b

)
= 1

a

(
b
1
b

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

= a
( 1
b 0 0 b

)
= 1

a


b

0
0
1
b

 =
(

0 b
1
b 0

)

=
(

0 b b 0
1
b 0 0 1

b

)
=
(

0
1
b

)
= 1

a


0 b2

1 0
1 0
0 1

b2

 = a
(
0 1

)

(x, y) = 1
2 x

(
−by + b by + b
y+1
b −y−1

b

)

6.2.5 Z(a,−1)X(2b/a,1/b2)

This is a calculus dual to the previous one, but the equations look more intricate:
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= a

(
1 0 0 0
0 0 0 −1

)
= 1

a

(
1
−1

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

= a
(
1 0 0 −1

)
= 1

a


1
0
0
−1

 = 1
2b

(
b2 + 1 1− b2

b2 − 1 −1− b2

)

= 1
2b

(
b2 + 1 1− b2 1− b2 b2 + 1
b2 − 1 −1− b2 −1− b2 b2 − 1

)
= 1

2b

(
b2 + 1
b2 − 1

)

= 1
2ab


b2 + 1 1− b2

b2 − 1 −1− b2

b2 − 1 −1− b2

b2 + 1 1− b2

 = a
2b
(
b2 + 1 1− b2)

(x, y) = x
2b

(
b2y + 1 1− b2y

b2y − 1 −1− b2y

)

6.3 The ZH-calculi

6.3.1 The Z(a,1/(b2−1))H(b/a,(1−b2)/b2) calculus

= a

(
1 0 0 0
0 0 0 1

b2−1

)
= 1

a

(
1

b2 − 1

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

= a
(

1 0 0 1
b2−1

)
= 1

a


1
0
0

b2 − 1

 = 1
b

(
1 1

b2 − 1 −1

)

= 1
b

(
1 1 1 1

b2 − 1 b2 − 1 b2 − 1 −1

)
= 1

b

(
1
−1

)
= 1

ab


1 1

b2 − 1 b2 − 1
b2 − 1 b2 − 1

(b2 − 1)2 1− b2


= a

b

(
1 1

1−b2

)
(x, y) = x

b

(
1 1

b2 − 1 b2 − 1− b2y

)

6.4 The ZW-calculi

6.4.1 The Z(a,1/c2)W(c/a,0)

= a

(
1 0 0 0
0 0 0 1

c2

)
= 1

a

(
1
c2

)
=


1 0
0 0
0 0
0 1

 =
(
1 1

)
(x, y) = x

(
1 0
0 y

)

= a
(
1 0 0 1

c2

)
= 1

a


1
0
0
c2

 =
(

0 1
c

c 0

)
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=
(

0 1
c

1
c 0

c 0 0 0

)
=
(

0
c

)
= 1

a


0 1

c

c 0
c 0
0 0

 = a
(
0 1

c

)
(x, y) = x

(
cy 1

c

c 0

)

6.4.2 The W (a,0)Z(b/a,1/b2) calculus
This is very similar to the previous calculus, except that W is now chosen as the white node,
meaning that the black node is actually Z, up to the dualizer.

= a

(
1 0 0 0
0 1 1 0

)
= 1

a

(
1
0

)
=


0 0
1 0
1 0
0 1

 =
(
0 1

)
(x, y) = x

(
1 0
y 1

)

= a
(
0 1 1 0

)
= 1

a


0
1
1
0

 =
(

0 b
1
b 0

)

=
(

0 0 0 b
1
b 0 0 0

)
=
(
b
1
b

)
= 1

a


0 b

0 0
0 0
1
b 0

 = a
( 1
b b

)
(x, y) = x

(
0 by
1
b 0

)
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Abstract
We study the problems of deciding whether a relation definable by a first-order formula in linear
rational or linear integer arithmetic with an order relation is definable in absence of the order
relation. Over the integers, this problem was shown decidable by Choffrut and Frigeri [Discret. Math.
Theor. C., 12(1), pp. 21–38, 2010], albeit with non-elementary time complexity. Our contribution is to
establish a full geometric characterisation of those sets definable without order which in turn enables
us to prove coNP-completeness of this problem over the rationals and to establish an elementary
upper bound over the integers. We also provide a complementary ΠP

2 lower bound for the integer
case that holds even in a fixed dimension. This lower bound is obtained by showing that universality
for ultimately periodic sets, i.e., semilinear sets in dimension one, is ΠP

2 -hard, which resolves an
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1 Introduction

A central topic in mathematical and computational logic is to investigate the expressive
power of first-order formulas in a given structure. Notable results in this context include
Robinson’s seminal work showing that the integers are first-order definable in the structure
〈Q,+, ·〉, thus rendering its first-order theory undecidable [13]. Another example is the
celebrated theorem of Muchnik [10] showing decidability of the problem of determining
whether a relation first-order definable in the structure 〈Z,+, Vk, <〉 (whose first-order theory
is known as Büchi arithmetic) is definable in the weaker substructure 〈Z,+, <〉 (known
as linear integer arithmetic or Presburger arithmetic). Here, Vk is the function mapping
an integer to the highest power of k dividing it without remainder. Muchnik’s approach
yields a quadruply exponential time algorithm for this problem when the relation is given as
a deterministic finite-state automaton; a polynomial-time algorithm was later claimed by
Leroux [9]. It has recently been shown that this problem can be solved in quasi-linear time
for unary relations [1].
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In this paper, we investigate the computational complexity of the weak definability problem,
which is the problem of deciding whether a relation first-order definable in the structures
〈Q,+, <〉 or 〈Z,+, <〉 is definable in its weak counterpart, which is obtained from replacing
the order relation with the equality relation. It follows from elementary model-theoretic
arguments that such weak linear arithmetic theories are strictly less expressive compared
to their counterparts that include the order relation, since h(x) := −x is an automorphism
in structures without order but fails to be one in the presence of the order relation. For
Presburger arithmetic, the weak definability problem was shown decidable by Choffrut
and Frigeri, albeit with non-elementary time complexity [5]. To the best of the authors’
knowledge, no decidability results on weak definability for the structure 〈Q,+, <〉 are known.
Following [5], weak Presburger arithmetic (alternatively weak linear integer arithmetic) refers
to the first-order theory of 〈Z,+,=〉 whereas weak linear rational arithmetic refers to the
theory of 〈Q,+,=〉.

The main contribution of this paper is to significantly improve existing algorithmic upper
bounds for the weak definability problem by establishing elementary upper bounds over
both Q and Z: we show that weak definability is in coNP for rational linear arithmetic, and
decidable in elementary time for Presburger arithmetic. To this end, we develop geometric
criteria that precisely characterize when a relation is definable without order. We also
establish complementary lower bounds. While a matching coNP lower bound in the rational
case is easy to obtain, we furthermore establish a ΠP

2 lower bound for the weak definability
problem for Presburger arithmetic that holds even in a fixed dimension. This lower bound is
obtained by establishing ΠP

2 -completeness of the universality problem for ultimately periodic
sets, i.e., semi-linear sets in dimension one. This positively answers one of the longest-
standing open problems in the theory of semi-linear sets posed by Huynh in 1982 [8], who
asked whether the universality problem for semi-linear sets in dimension one is ΠP

2 -complete.
Our lower bound moreover strengthens previously known ΠP

2 lower bounds for the inclusion
problems for linear sets which have only been obtained in recent years, see [4, Thm. 12]
and [16].

2 The weak definability problem

Everywhere in this paper, we denote by Q, Z, N and N+ the rational numbers, integers,
natural numbers including zero and the positive integers, respectively. Given a, b ∈ Z, we
write [a, b] for {a, a+1, . . . , b} and [a] as a shortcut for [1, a]. Throughout this paper, numbers
are assumed to be encoded in binary.

Linear arithmetic theories. Quantifier-free formulas ψ of the linear arithmetic theories
we consider in this paper are obtained as Boolean combinations of linear constraints of
the form a1 · x1 + · · · + an · xn ∼ b, where all ai and b are integer constants, the xi are
first-order variables, and ∼ is a relation symbol < or =. If ψ only contains equality symbols
it is a formula of a weak linear arithmetic theory, in which case we call ψ weak. We can
always without loss of generality assume that ψ is in negation normal form, and if ψ is not
weak, we can furthermore assume that ψ is negation-free. Formulas Φ of linear arithmetic
theories additionally allow for quantification over first-order variables and are of the form
Q1x1 · · ·Qnxn ψ, where each Qi is ∃ or ∀, and ψ is a quantifier-free formula. We write ‖Φ‖
to denote the maximum of two and the maximum of the absolute values of all constants
occurring in Φ, and |Φ| to denote the length of Φ which is the number of symbols required
to write down Φ.
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The semantics of such formulas is given with respect to the structures of linear rational
arithmetic 〈Q,+, <〉 and linear integer arithmetic 〈Z,+, <〉. We call Φ weak whenever ψ
is weak. Let x1, . . . , xn be the free variables of Φ, and let D ⊆ Q; often D will be Q or Z.
We write JΦKD ⊆ Dn for the set of all variable assignments making Φ a true sentence in the
structure 〈D,+, <〉. We may drop the subscript D when D is clear from the context.

Definable relations and weak definability. Fix D to be either Q or Z. A relation R ⊆ Dn

is called D-definable whenever there is a linear arithmetic formula Φ(x1, . . . , xn) such that
(m1, . . . ,mn) ∈ R if and only if (m1, . . . ,mn) ∈ JΦKD. In particular, we call R weakly
D-definable if the witnessing formula Φ is weak. The weak definability problem, the main
decision problem considered in this paper, asks whether a relation definable by an arbitrary
linear arithmetic formula is definable without order: Given a linear arithmetic formula Φ, is
the set JΦKD weakly D-definable?

Obviously, for a relation to be definable without order, it has to also be definable with
order. In other words, weak definability, somewhat ironically, is a stronger property than
definability.

I Example 1. Consider Φ(x) := x < 0 ∨ x ≥ 1. It is not difficult to check that JΦKQ is not
weaklyQ-definable. However, JΦKZ is weakly Z-definable by Φ′(x) := ¬(x = 0), demonstrating
that weak Z-definability does not imply weak Q-definability. Conversely, weak Q-definability
does not imply weak Z-definability either. Let Φ(x) := ∃y (x > 0∧x = 2·y)∨(x < 0∧x = 3·y).
Then JΦKZ is not weakly Z-definable, but JΦKQ is weakly Q-definable via the same Φ′(x) as
above.

When studying the complexity of weak definability problems, it makes sense to restrict the
input formulas we consider. On the one hand, due to quantifier elimination (Fourier-Motzkin
and Presburger’s quantifier elimination procedures, respectively), quantifier-free formulas
of linear rational arithmetic can define all sets definable in linear rational arithmetic, and
existential formulas those in linear integer arithmetic. On the other hand, satisfiability can
be reduced to deciding weak definability, meaning that if we allow arbitrary formulas as
input, deciding weak definability is at least as hard as deciding linear rational and integer
arithmetic, respectively. This does, however, blur the inherent complexity of deciding weak
definability. For these reasons, we restrict formulas in instances of the weak definability
problem to the most restricted fragments that are still expressively complete:

Weak Q-definability: Given a quantifier-free formula Φ of linear arithmetic, decide whether
JΦKQ is weakly Q-definable.

Weak Z-definability: Given an existential quantifier-free formula Φ of linear arithmetic,
decide whether JΦKZ is weakly Z-definable.1

By establishing an analogue of semilinear sets characterizing sets definable in weak integer
arithmetic, Choffrut and Frigeri [5] have shown that weak Z-definability is decidable. As the
main result of the present paper, we show that deciding weak Q-definability is coNP-complete,
and deciding weak Z-definability is elementary and ΠP

2 -hard.

1 One could alternatively take quantifier-free formulas with additional divisibility predicates c | · for every
c ∈ N+.
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3 Preliminaries

Linear algebra. We denote by ei the i-th unit vector in any dimension. For v = (v1,. . . ,vd) ∈
Zd, we denote ‖v‖ := max{2,max1≤i≤d|vi|}, and for V ⊆ Qd we set ‖V ‖ := maxv∈V ‖v‖.
Likewise, for a matrix A, ‖A‖ is defined as the maximum over ‖v‖ for every column vector
v of A. We sometimes treat finite sets V ⊆ Qm with n elements as m× n matrices (e.g., by
ordering the vectors in V lexicographically), which we denote by V . Given A,B ⊆ Qd, the
Minkowski sum of A and B is defined as A+ B := {a+ b : a ∈ A, b ∈ B}. If A or B is a
singletons, we omit set brackets and write, e.g., a+B instead of {a}+B. Analogously, we
define A ·B := {a · b : a ∈ A, b ∈ B}. We write A4B for the symmetric difference of A and
B, i.e., A4B := (A \B) ∪ (B \A).

A set A ⊆ Qd is an affine subspace if A = a + V for some a ∈ Qd and a linear subspace
V ⊆ Qd. Affine subspaces are sometimes called flats. The affine hull of any set V ⊆ Qd is
the smallest affine subspace containing V and is equal to

aff V :=
{

n∑
i=1

λi · vi : n ∈ N, vi ∈ V, λi ∈ Q, i ∈ [n],
n∑

i=1
λi = 1

}
.

The dimension of an affine subspace A, denoted dimA, is defined as the dimension of the
associated linear space A0 such that A = v +A0 for some v ∈ Qd. It is standard that this is
well-defined. If affine subspaces A1, A2 are such that A1 ⊆ A2, then dimA1 ≤ dimA2 (and
moreover A1 = A2 iff dimA1 = dimA2).

A set S in Qd (resp. Zd) is vanishing (is zero, has measure zero) with respect to an affine
subspace A ⊆ Qd if the set S is contained in a finite union of affine subpaces of A of dimension
strictly less than A. Note that S ⊆ A for any such S. For example, all finite subsets of Qd

have measure zero with respect to Qd unless d = 0. If we do not specify the affine subspace
A explicitly, A = Qd is implicitly assumed.

The geometry of linear arithmetic. We recall some definitions and results from the liter-
ature on the geometry of solutions to systems of linear constraints.

It is well known that the set of solutions of a system of linear equations B · x = c over
the rationals is an affine subspace. Conversely, every affine subspace of Qd is the set of
solutions to a system of (linearly independent) equations with integer coefficients. For a
representation A = {x ∈ Qd : B · x = c}, we write ‖A‖ to denote max{‖B‖, ‖c‖}, when B

and c are determined by the context.
The Minkowski–Weyl theorem states that the set of points in a rational polyhedron

A · x ≥ b can be represented as the sum of a bounded polytope and a convex cone, and vice
versa. Given a finite set of vectors V = {v1, . . . ,vn} ⊆ Qd, we define

convV :=
{

n∑
i=1

λi · vi :
n∑

i=1
λi = 1, λi ∈ Q≥0, i ∈ [n]

}
and

coneV :=
{

n∑
i=1

λi · vi : λi ∈ Q≥0, i ∈ [n]
}
,

the convex hull of V and the convex cone generated by V , respectively. It follows that sets
in Qd definable in linear rational arithmetic can be obtained as finite unions of sets of the
form (convB + coneP ) \A, where A is a finite union of affine subspaces of Qd.
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An effective version of the Minkowski–Weyl theorem over Q states that the two repres-
entations (as the intersection of half-spaces and as convF + coneG for finite sets F,G of
generators) can be translated from one to another with a single exponential blowup (see,
e.g., [15, Chapter 10]).

In the discrete setting, semilinear sets [11] characterize the sets of integer vectors definable
in linear integer arithmetic [6]. For technical purposes, we give a slightly more generic
definition. Let b ∈ Zd and P = {p1, . . . ,pn} ⊆ Zd, we call (b, P ) a generator tuple with
base b and periods P . Fix D to be some subset of Qd, then the D-linear set LD(b, P ) generated
by the tuple (b, P ) is defined as

LD(b, P ) = b + D · p1 + · · ·+ D · pn .

Thus, N-linear sets recover standard linear sets [11] as defined in the literature. Given a set
M ⊆ Zd, we say thatM is D-linear if there is a generator tuple (b, P ) such thatM = LD(b, P ).
Clearly, N-linear sets contain all Z-linear sets, since LZ(b, P ) = LN(b, P ∪ −P ), but the
converse does not hold: it is easy to prove that N is N-linear but not Z-linear.

We say that M is a hybrid D-linear set if it is a union of the form

LD(B,P ) =
⋃

b∈B

LD(b, P )

where both sets B,P ⊆ Zd are finite. A D-linear or hybrid D-linear set, as defined above, is
k-dimensional if the linear span of the set P has dimension k; it is full-dimensional if k = d.
One may think of k-dimensional Z-linear sets as of shifted lattices (or cosets of lattices)
inside k-dimensional affine subspaces.

We say that M is D-semilinear if it is a finite union of D-linear sets. We call a semilinear
set proper if all sets of period vectors of those linear sets are linearly independent.

Hybrid N-linear sets (often just hybrid linear sets for short) are discrete analogues of
convex polyhedra; they are exactly sets of integer solutions to systems of linear inequalities
A · x ≥ c [17, 2], which implies that sets definable in linear integer arithmetic are N-
semilinear [6]. Similarly, integer solutions of systems of linear equations are Z-linear:

I Proposition 2. Suppose A · x = c has a solution in Zd. Then its set of solutions in
Zd is a proper Z-linear set LZ(b, P ), with ‖b‖ ≤ 2O(d4 log d) · ‖A‖O(d4) · ‖c‖ and ‖P‖ ≤
2O(d4 log d) · ‖A‖O(d4). Moreover, |P | = d− rank A and the vectors in P are fully determined
by A (i.e., independent of c).

It should be noted, however, that Z-semilinear sets do not fully characterize sets definable
in weak linear integer arithmetic. Choffrut and Frigeri [5] have shown that M ⊆ Zd is
definable in weak linear arithmetic if and only if M =

⋃
i∈I Si \ Ti, where the Si are proper

Z-linear sets, Ti proper Z-semilinear sets, and Ti ⊆ Si for all i ∈ I.

Descriptional complexity. The complexity upper bounds we obtain in this paper rely on
bounds on the constants in the generator representation of sets definable in linear arithmetic
theories. Given a D-semilinear set S ⊆ Zd in generator representation, S =

⋃
i∈I L(Bi, Pi),

we define ‖S‖ := maxi∈I max‖Bi ∪ Pi‖.

I Proposition 3. Let Φ be an existential formula of linear integer arithmetic and S = JΦKZ.
Then S =

⋃
i∈I L(Bi, Pi) such that log‖S‖, log|I| ≤ poly(|Φ|).

Proof. For a system of linear inequalities A · x ≥ c, the statement follows, e.g., from [17].
Moreover, the disjunctive normal form of Φ consists of at most 2|Φ| conjunctions, each of
which is a system of linear inequalities, from which the statement follows. J
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4 A characterisation of weak Q- and Z-definability

We now establish properties that fully characterize when a subset of Qd is weakly Q- and
weakly Z-definable, respectively.

I Definition 4. Suppose X ⊆ Qd. We say that X:
has 0–1 property with respect to an affine subspace A if either X∩A or A\X is contained
in a finite union of affine subspaces of dimension dimA− 1,
has hierarchical 0–1 property with respect to an affine subspace A if it has 0–1 property
with respect to A, where the subspaces of lower dimension are some H1, . . . ,Hm, and, if
dimA > 1, it has hierarchical 0–1 property with respect to each Hi, 1 ≤ i ≤ m,
has (hierarchical) 0–1 property if it has (hierarchical) 0–1 property with respect to Qd,
has global 0–1 property if, for every affine subspace A ⊆ Qd, it has 0–1 property with
respect to A,
has `-bounded 0–1 property if, for every affine subspace A = {x ∈ Qd : B · x = c} with
‖B‖, ‖c‖ ≤ `, it has 0–1 property with respect to A.

The term “0–1 property” refers to the intuition that a (weakly Q-definable) set must either
vanish (“zero”) or fill almost all the space (“one”). The hierarchical version of the property
basically says, “and the same holds recursively for these subspaces of lower dimension.”

The following theorem, whose proof is deferred to the full version of the paper, shows
how these properties relate to weak Q-definability.

I Theorem 5. For all sets X ⊆ Qd the following statements are equivalent:
X is weakly Q-definable,
X has hierarchical 0–1 property,
X has global 0–1 property, and
X has ‖Φ‖-bounded 0–1 property, where Φ is a quantifier-free formula of linear rational
arithmetic such that X = JΦK.

I Example 6. To illustrate the global version of the property, we demonstrate how from
Theorem 5 we can derive that Φ(x, y) := x ≥ 0 ∧ y = 0 is not weakly Q-definable. Observe
that although JΦK satisfies the 0–1 property, it fails the global 0–1 property with A = {(x, 0) :
x ∈ Q}. Indeed, both JΦK ∩A and A \ JΦK are infinite sets, whereas every affine subspace of
A of dimension lower than A, i.e., of dimension zero, is a single point. As a consequence,
JΦK ∩A is not contained in a finite union of such subspaces, and neither is A \ JΦK.

In comparison, Ψ(x, y) := y = 0 satisfies the global 0–1 property. We observe, for example,
that for A = {(x, 0) : x ∈ Q} the set A \ JΨK is empty and thus contained in a finite union of
subspaces of A of dimension 0 < dimA.

Note that the `-bounded version of the property will later give a decision procedure for
weak Q-definability.

Weakly Z-definable sets do not have to satisfy an immediate analogue of the 0–1 property:
2 · Z ⊆ Q is an example of a weakly Z-definable set failing the property. The following
definition bridges this gap and requires instead that almost all the space is “tiled” by the set
X in a periodic manner. Empty tiling (almost all space is empty, i.e., X vanishes) and full
tiling (Zd \X vanishes in Qd) are special cases of this.

I Definition 7. Suppose X ⊆ Zd. We say that X:
has mosaic property with respect to an affine subspace A if there exists a hybrid Z-linear
set F ⊆ A of dimension dimA such that (X ∩A)4 F is contained in a finite union of
affine subspaces inside A of dimension dimA− 1,
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has hierarchical mosaic property with respect to an affine subspace A if it has mosaic
property with respect to A, where the subspaces of lower dimension are some H1, . . . ,Hm,
and, if dimA > 1, it has hierarchical mosaic property with respect to each Hi, 1 ≤ i ≤ m,
has (hierarchical) mosaic property if it has (hierarchical) mosaic property with respect to
Qd,
has global mosaic property if, for every affine subspace A ⊆ Qd, it has mosaic property
with respect to A,
has `-bounded mosaic property if, for every affine subspace A = {x ∈ Qd : B · x = c}
with ‖B‖, ‖c‖ ≤ `, it has mosaic property with respect to A.

The intuition behind the variants of the mosaic property is the same as for the 0–1
property.

I Example 8. We show how the sets defined by the following logical formulae over the
integers satisfy the hierarchical mosaic property.
1. Φ1(x, y) := ∃u∃v.(x = 3u ∨ x = 3u+ 1) ∧ y = 2v. The mosaic property w.r.t. Q2 holds

with F = LZ({(0, 0), (1, 0)}, {(3, 0), (0, 2)}), because JΦ1KZ = F . So the hierarchical
mosaic property (w.r.t. Q2) holds too, with m = 0.

2. Φ2(x, y) := (x = 0) ∨ (y > 0) ∨ (y < 0). The mosaic property w.r.t. Q2 holds with
F = Z2 = LZ(0, {e1, e2}), because we can pick an “exceptional” subspace H1 = {(x, y) ∈
Q2 : y = 0}. Going inside H1, we notice that JΦ2KZ also has the mosaic property
w.r.t. H1, because its intersection with H1 is the singleton {0}, so we can pick F ′ = ∅
and zero-dimensional subspace H1,1 = {0}. Therefore, JΦ2KZ satisfies the hierarchical
mosaic property (w.r.t. Q2).

3. Φ3(x, y, z) := (y = 0∧z = 0)∨(x = 0∧(∃t.y = 2t)∧z = 0)∨(x = 0∧y = 0∧(∃t.z = 3t+1)).
For the mosaic property w.r.t. Q3, we can pick F = ∅ with H1 = Jx = 0KQ and H2 =
Jy = 0KQ. The mosaic property w.r.t. H1 holds with F1 = ∅ and H1,1 = Jx = 0∧ z = 0KQ,
H1,2 = Jx = 0 ∧ y = 0KQ. Similarly, the mosaic property w.r.t. H2 holds with F2 = ∅
and H2,1 = Jy = 0 ∧ z = 0KQ, H2,2 = H1,2. We leave it as an exercise to the reader to
check that JΦ3KZ has the mosaic property with respect to each of H1,1, H1,2, and H2,1.
In conclusion, JΦ3KZ has the hierarchical mosaic property (w.r.t. Q3).

The proof of the following theorem is deferred to the full version of this paper:

I Theorem 9. There exists a function f(s, d) : N× N→ N, f(n, d) = sdO(d) , such that for
all sets X ⊆ Zd the following statements are equivalent:

X is weakly Z-definable,
X has hierarchical mosaic property,
X has global mosaic property, and
X has f(‖Φ‖, d)-bounded mosaic property, where Φ is an existential formula of linear
integer arithmetic such that X = JΦK.

The function f gives an upper bound on the magnitude of coefficients in systems of linear
equations that specify relevant affine subspaces. We can see from the theorem that, for fixed
dimension d, the function f is at most polynomial; and in arbitrary dimension, the bit size
of required coefficients is at most dO(d) · log‖Φ‖, a single exponential in d.
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4.1 More on mosaic property
We introduce the following problem.
Piece of Mosaic
INPUT: Semilinear set S ⊆ Zd in generator representation, system of equations B ·x = c

with integer coefficients defining an affine subspace A ⊆ Qd.
OUTPUT: Hybrid Z-linear set F represented as F =

⋃
j∈J LZ(Cj , Qj) and such that, if S

has mosaic property w.r.t. A, then (S 4 F ) ∩A vanishes w.r.t. A.
Note that this is a promise problem: if S does not satisfy the mosaic property w.r.t. A,

then no restriction is imposed on F .
The intuition for the name of this problem is that an algorithm for it “finds a piece of

mosaic”, F , in the set S: if S as a whole satisfies the mosaic property (w.r.t. A), then S ∩A
should really look like F everywhere in A (except for maybe lower-dimensional exceptions).
But it is also possible that some parts of S are unlike F , and then S does not satisfy the
mosaic property (in which case the algorithm may output any hybrid Z-linear set).

Also note that, in the case that S satisfies the mosaic property, although the set F must
be hybrid Z-linear, the algorithm is permitted to output a Z-semilinear representation of
it. This is because the bit size and the norm can grow significantly if a hybrid Z-linear
representation is required. (For example, in dimension one, the set

⋃n
i=1 LZ(0, i) is hybrid

Z-linear, but all its representations as LZ(C,Q) have bit size superpolynomial in n.)

I Lemma 10. Let t := (‖S‖+ ‖A‖)poly(d). The following statements hold:
1. If a semilinear set S satisfies the mosaic property with respect to an affine subspace A,

then
(a) the set F in the definition of the property is determined uniquely and
(b) (S ∩A)4 F is contained in a finite collection of affine subspaces of A of dimension

dimA− 1 each, defined by linear equations with integer coefficients of absolute value
at most t.

2. There is a t-time algorithm that solves the Piece of Mosaic problem, which always
produces an F =

⋃
j∈J LZ(Cj , Qj) such that ‖Cj‖, ‖Qj‖ ≤ t.

The proof is given in the full version of this paper.

I Lemma 11. There is an algorithm with running time 2(‖A‖+‖S‖)poly(d) that, given a
semilinear set S =

⋃
i∈I L(Bi, Pi) and a system of equations B ·x = c with integer coefficients

defining an affine subspace A ⊆ Qd, decides whether S has the mosaic property with respect
to A.

Proof. Run the algorithm from Lemma 10(2) to obtain a hybrid Z-linear set F such that
‖F‖ ≤ t with t defined as in the lemma. To check whether S has mosaic property, we
determine whether (S ∩ A)4 F is vanishing. By Proposition 2, A ∩ Zd = L(C,Q) such
that ‖C‖, ‖Q‖ ≤ ‖A‖poly(d). Then from [2, Thm. 6], we get that S ∩ A =

⋃
k∈K L(Dk, Ek)

such that ‖Dk‖, ‖Ek‖ ≤ (‖S‖+ ‖A‖)poly(d). We compute the semilinear representation M
of ((S ∩ A) \ F ) ∪ (F \ (S ∩ A)). It follows the bounds on the description size of (each)
set difference [2, Cor. 22] that log‖M‖ ≤ (‖A‖ + ‖S‖)poly(d). In order to check whether
(S ∩ A)4 F vanishes w.r.t. to A, it remains to iterate over all hybrid linear sets defining
M and to check whether the dimension of the affine hull of the period vectors in each set
is strictly less than dimA. We remark that the upper bound on the running time holds,
because ‖A‖ and ‖S‖ are at most exponential in the bit size of the encoding. J
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I Lemma 12. There is a doubly exponential algorithm that, given Φ ⊆ Zd, decides whether
JΦK has the f(‖Φ‖, d)-bounded mosaic property, where f is defined as in Theorem 9.

Proof. It follows from Proposition 3 that we can compute in time 2poly(|Φ|) the semilinear
representation of JΦK. The lemma then follows by an application of Lemma 11; note that
the running time of the algorithm of that lemma has only a single exponential dependency
on ‖S‖+ ‖A‖. J

5 Computational complexity of weak Q- and Z-definability

Building upon the results in the previous sections, we now prove the main theorem of this
paper.

I Theorem 13. The weak Q-definability problem is coNP-complete, and the weak Z-
definability problem is ΠP

2 -hard and can be decided by an algorithm with elementary running
time.

We first outline the upper bounds of this theorem and then the lower bounds. The lower
bound for weak Z-definability already holds in a fixed dimension and is obtained from showing
that the universality problem for one-dimensional semi-linear sets is ΠP

2 -hard. We give the
proof of ΠP

2 -hardness of this universality problem in a separate Section 6.

5.1 Upper bounds for deciding weak Q- and Z-definability
By Theorem 5, a set X ⊆ Qd given by a quantifier-free formula Φ of linear rational arithmetic
is weakly Q-definable if and only if for every affine subspace A, given by a system of linear
equations A · x = c such that ‖A‖, ‖c‖ ≤ ‖Φ‖, either X ∩A or A \X = A ∩X is contained
in a finite union of affine subspaces of dimension dimA− 1. To prove that Φ is not weakly
Q-definable, we attempt to find an affine subspace A such that neither X ∩ A nor A \X
is contained in a finite union of affine subspaces of dimension dimA − 1. Note that due
to Φ being quantifier-free, ¬Φ is also a quantifier-free formula of linear rational arithmetic.
Hence it will suffice to only discuss the case X ∩ A; and, in this case, we can also assume
without loss of generality that Φ is negation-free. Let Ψ be the disjunctive normal form of Φ.
We clearly have JΨK = X, and JΨK ∩A is not contained in a finite union of hyperplanes of
dimension dimA− 1 if and only if for some polyhedron P , defined by a conjunction of Ψ,
the polyhedron P ∩A has dimension dimA. We now outline how to decide in polynomial
time whether dim(P ∩A) equals dimA.

Both P and A are given as systems of linear constraints, and hence we immediately
obtain P ∩A as a system of linear constraints. The dimension dim(P ∩A) is, by definition,
equal to dim aff(P ∩A). When P ∩A is given by a system of non-strict linear inequalities,
one can obtain in polynomial time a representation of aff(P ∩ A) as the intersection of
at most d implicit equalities of P ∩ A, each obtained from a row of the system defining
P ∩ A [15, p. 100]. One can then compute dim aff(P ∩ A), by (a variant of) Gaussian
elimination [15, Section 3.3]. In general, the system of constraints defining P may contain
strict inequalities though. However, this does not cause any problems, since for a polyhedron
P , dim(P ) = dim(clP ), where clP is the closure of P . If P 6= ∅ and given as a system
of linear constraints, clP can be obtained by making all strict inequalities in the defining
system of P non-strict.

From this line of reasoning, we obtain a coNP upper bound for deciding weak Q-definability
as follows. We guess A and c above in non-deterministic polynomial time. While the
disjunctive normal forms of Φ and ¬Φ (both assumed negation-free, with no loss of generality)
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can be exponentially long, we can – given the formulas Φ and ¬Φ – guess a single conjunction
of their disjunctive normal forms in non-deterministic polynomial time, by inspecting the
structure of Φ and ¬Φ. These two conjunctions induce polyhedra P and P ′. We then decide
in polynomial time whether the dimension of the polyhedra P ∩A and P ′ ∩A equals dimA.
We reject if and only if this is the case for both conjunctions.

We now turn towards a sketch of the upper bound for weak Z-definability. To this end,
let X ⊆ Zd be defined by an existential formula Φ(x) of linear integer arithmetic. For an
elementary upper bound, following Theorem 9 we iterate over all affine subspaces A given by
systems of equations B · x = c such that ‖B‖, ‖c‖ are at most f(‖Φ‖, d) and check whether
Φ has mosaic property with respect to A. By Lemma 12, there is a doubly exponential
algorithm that achieves this.

5.2 Lower bounds for deciding weak Q-definability and Z-definability
Lower bound for weak Q-definability. We show a matching coNP-lower bound for deciding
weak Q-definability by a reduction from the problem of deciding whether a Boolean 3-DNF
formula is a tautology. Let ψ = ψ1 ∨ · · · ∨ψk be in 3-DNF over Boolean variables X1, . . . , Xd.
Let φ1 be the formula of rational arithmetic obtained from ψ by applying the function h to
every literal, with h defined as h(Xi) := xi = 1 and h(¬Xi) := xi = 0. In addition, define

φ2 :=
∨

1≤i≤d

xi > 1 ∨ xi < 0 ∨ (0 < xi < 1)

Observe that Jφ1 ∨ φ2K is the whole of Qd except possibly a finite set of points corresponding
to those truth assignments that do not make ψ evaluate to true, i.e., Jφ1 ∨ φ2K = Qd if
and only if ψ is a tautology. Now define Φ := φ1 ∨ φ2 ∨ u > 0, where u is a fresh variable.
Note that JΦK is the whole of Qd+1 except possibly several half-lines that correspond to
assignments falsifying ψ. If a half-line is missing then JΦK does not satisfy the global 0–1
property and is therefore not weakly Q-definable, by Theorem 5. Otherwise no half-line is
missing, ψ is a tautology, JΦK is equal to Qd and is weakly Q-definable.

Lower bound for weak Z-definability. We show a ΠP
2 -lower bound for weak Z-definability

via a reduction from the universality problem for semilinear sets. Given a semilinear set
M ⊆ Nd in the generator representation, the universality problem is to decide whether
M = Nd. It was asked by Huynh [8] whether this problem is ΠP

2 -hard when he established a
ΠP

2 -upper bound for this problem. We show in the next section that this is the case, even in
dimension one, and assume hardness for now to show our lower bound for weak Z-definability.

To this end, let M =
⋃

i∈I L(bi, Pi) ⊆ Nd. One easily constructs an existential
formula ψ(x1, . . . , xd) of linear integer arithmetic such that M = JψK. Now consider
Φ(u, x1, . . . , xd) := ψ ∨ u > 0 ∨

∨
i∈[d] xi < 0, where u is a fresh variable. Analogously

to what we showed above, JΦK is the whole of Zd+1 except possibly several “discrete half-lines”
corresponding to elements v ∈ Nd \M . By the global mosaic property (Theorem 9), JΦK is
weakly Z-definable if and only if no half-line is missing.

6 A lower bound for deciding universality of semilinear sets

We exclusively deal with N-semilinear sets in this section and so, when presenting such
semilinear sets in generator presentation, for readability, instead of writing, e.g., LN(b, P )
we subsequently drop the subscript N and simply write L(b, P ). The main result of this
section is a ΠP

2 lower bound for the universality problem for ultimately periodic sets, which
are semilinear sets in dimension one:
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Restricted Simultaneous Subset Sum

Ray Cover Bounded Ray Cover

1D Ray Cover Bounded 1D Ray Cover

Ultimately Periodic Set Universality

Figure 1 Reductions in the proof of Theorem 14. X → Y denotes a logarithmic-space reduction
from X to Y .

Ultimately Periodic Set Universality
INPUT: Finite set I and, for each i ∈ I, a number bi ∈ N and a finite set Pi ⊆ N.
QUESTION: Is

⋃
i∈I L(bi, Pi) = N ?

Since a set M ⊆ Nd is universal if and only if L(0, {e1, . . . , ed}) ⊆M , this universality
problem is a special case of inclusion for semilinear sets, which asks to decide if N ⊆M for
semilinear sets M,N . While inclusion for semilinear sets has been known to be ΠP

2 -complete
since the 1980s [8], the lower bound has only been strengthened to hold for inclusion of linear
sets as recently as 2018 [4, Thm. 12], and then also to linear sets in dimension one [16]. It
has also recently been shown that universality for linear sets is decidable in polynomial time,
even for hybrid linear sets of the form L(B,P ) :=

⋃
b∈B L(b, P ) [3].

Our new ΠP
2 lower bound is based on a chain of reductions between intermediate problems

that we now introduce. The overall reduction chain is displayed in Figure 1. Our starting
point is the Simultaneous Subset Sum problem introduced in [4] from which we derive a
slightly restricted version. Both problems are defined in Figure 2 and are variants of the
classical subset sum problem. They ask whether all elements in a finite arithmetic progression
can be obtained as sums of subsets of a given set W ⊆ N.

Via a reduction from Restricted Simultaneous Subset Sum, we prove ΠP
2 -hardness

of two special cases of the semilinear set inclusion problem, Bounded Ray Cover and Ray
Cover, which are defined in Figure 3. The problem Ray Cover asks whether a discrete
ray in Nd (basically an arithmetic progression) is contained in an integer cone (linear set) –
this is a restricted variant of linear set inclusion. The problem Bounded Ray Cover is the
same but only concerns a finite segment of the ray. The ΠP

2 -hardness of Ray Cover follows
from that of Bounded Ray Cover.

Next, by a reduction from Bounded Ray Cover, we show ΠP
2 -hardness of the one-

dimensional versions of the ray cover problems, formally defined in Figure 4. A reduction
from Bounded 1D Ray Cover will then give the desired ΠP

2 -lower bound of Ultimately
Periodic Set Universality.

I Theorem 14. All six problems in Figure 1 are ΠP
2 -complete.

All upper bounds in Theorem 14 are easily obtained from the observation that the
respective problems either reduce to semi-linear set inclusion, which is in ΠP

2 [8], or involve
sets of numbers of polynomial bit size.

To prove the lower bounds, once the intermediate problems have been identified, one
of the key insights is in the reduction from Bounded Ray Cover to Bounded 1D Ray
Cover, which maps a problem from Nd into N. In the remainder of this section, we focus
on the techniques that enable us to overcome this challenge.
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Simultaneous Subset Sum
INPUT: Finite set W ⊆ N, and t, h, 2m ∈ N such that t < h.
QUESTION: For every i ∈ [0, 2m − 1], does there exist a W ′ ⊆W such that

∑
W ′ =

t+ i · h?
Restricted Simultaneous Subset Sum
INPUT: Finite set W ⊆ N and t, 2k, 2m ∈ N such that t < 2k.
QUESTION: For every i ∈ [0, 2m − 1], does there exist a W ′ ⊆W such that

∑
W ′ =

t+ i · 2k ?

Figure 2 The simultaneous subset sum problem introduced in [4] and its restricted version.

Ray Cover
INPUT: Finite set P ⊆ Nd and a, 2k ∈ N such that a < 2k.
QUESTION: Does L(0, P ) ⊇ L(a, b), where a = (a,1) and b = (2k,0)?
Bounded Ray Cover
INPUT: Finite set P ⊆ Nd and a, 2k, 2m ∈ N such that a < 2k.
QUESTION: Does L(0, P ) ⊇ L(a, b) ∩ [0, B]d, where a = (a,1), b = (2k,0), and

B = a+ (2m − 1) · 2k ?

Figure 3 Ray cover problems in arbitrary dimensions.

1D Ray Cover
INPUT: Finite set P ⊆ N and a, 2k ∈ N such that a < 2k.
QUESTION: Does L(0, P ) ⊇ L(a, b), where b = 2k ?
Bounded 1D Ray Cover
INPUT: Finite set P ⊆ N and a, 2k, 2m ∈ N such that a < 2k.
QUESTION: Does L(0, P ) ⊇ L(a, b) ∩ [0, B], where b = 2k and B = a+ (2m − 1) · b?

Figure 4 Ray cover problems in dimension one.

6.1 Aggregation of several dimensions into one
Aggregation is an important technique in the theory of integer programming (see, e.g.,
Schrijver’s book [15, Sections 16.6 and 18.2]). It has been used by Huynh [8] and Simon [16]
for showing lower bounds for the inclusion problem for (semi)linear sets in dimension one.
Aggregation can be achieved in the setting of linear Diophantine equations over nonnegative
(integer) variables, following a classic result of Glover and Woolsey [7], which we extend.

As we already mentioned, we apply aggregation in order to reduce Bounded Ray Cover
to Bounded 1D Ray Cover. In the former problem, think of vectors v ∈ L(a, b) ∩ [0, B]d
as targets to hit. Each of them is hit if and only if L(0, P ) contains it, i.e., if the system
of equations P · x = v has a solution in Nd. The instance is a yes-instance if and only if
all 2m targets are hit. While Glover and Woolsey’s result would allow us to aggregate one
system of equations like this (for a single target) into a single equation, the key technical
challenge in our setting is that – in contrast to [7, Thm. 3] – we need to aggregate several
such systems, for 2m different targets (each into its own one equation). That is, these systems
have identical coefficients, but different constant terms.
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For the following lemma, we will explain the rationale behind the constraints “α is a
power of two” and “α/β > maxB” subsequently.

I Lemma 15. Let A,B be finite subsets of N+. Then there exist α, β ∈ N such that α is a
power of two, α/β > maxB, and, for each pair (a, b) ∈ A×B, every system of equations{

c · x = a

d · x = b

with c,d ∈ Nd and (a, b) ∈ A×B has the same set of solutions in Nd as the single equation

(αc + βd) · x = αa+ βb .

Moreover, α and β are polynomial-time computable from maxA and maxB and are inde-
pendent of c and d.

Proof. It follows from [7, Thm. 3] of Glover and Woolsey that when A and B are singletons
A = {a} and B = {b} the statement holds if

α > b, β > a, and gcd(α, β) = 1 . (1)

We show how to find a single pair of coefficients α, β ∈ N that make Glover and Woolsey’s
result applicable to the system in question for all pairs (a, b) ∈ A × B. Indeed, choose r
as the smallest power of two such that r − 1 strictly exceeds both maxA and maxB. Pick
β = r − 1 > maxA and α = r2. We now check that α and β satisfy conditions (1). Observe
that

α = r2 > r − 1 > b, for all b ∈ B,
β = r − 1 > a, for all a ∈ A,

and gcd(α, β) = gcd ((r − 1)(r + 1) + 1, r − 1) = 1. It remains to note that α/β ≥ r >

maxB. J

Note that Lemma 15 aggregates several systems using the same α and β. It guarantees
that the numbers α and β stay small (have polynomial size) and satisfy additional constraints,
to make the subsequent reduction from Bounded 1D Ray Cover to Ultimately Periodic
Set Universality possible. We now discuss how these constraints arise.

6.2 Additional constraints and the final reduction
Let us take a step forward in the chain of reductions in Figure 1. We illustrate the
significance of the additional requirements on the input of Bounded 1D Ray Cover using
the following simple observation on the representation of the complement of a segment of a
linear progression.

I Lemma 16. Let a, 2k, 2m ∈ N. Denote b = 2k and B = a+ (2m − 1) · b, as in the input of
Bounded 1D Ray Cover. Then the set N \ (L(a, b)∩ [0, B]) is semilinear with a generator
representation of size O(ba/bc log a+ k2 +m).

Proof. Observe that N \ (L(a, b)∩ [0, B]) = {n ∈ N : n < a, n ≡ a mod b} ∪ {n ∈ N : n 6≡ a
mod b} ∪ {n ∈ N : n > B}. The third set on the right-hand side is L(B + 1, 1), and the first
set is a finite set with ba/bc elements, i.e., a union of ba/bc linear sets of the form L(x, 0),
x < a. For the second set, we will rely on the assumption that b = 2k. Suppose that in
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binary we have a mod b = ak−1 · 2k−1 + · · · + a1 · 21 + a0 · 20, ai ∈ {0, 1}. Notice that an
arbitrary n ∈ N is not congruent to a modulo 2k if and only if, for some j ∈ {0, . . . , k− 1}, it
is congruent to cj := aj · 2j + aj−1 · 2j−1 · · · a1 · 21 + a0 · 20 modulo 2j+1, where aj = 1− aj .
Therefore, the second set in the equation above is equal to

⋃k−1
j=0 L(cj , 2j+1). J

Given Lemma 16, the final reduction from Bounded 1D Ray Cover to Ultimately
Periodic Set Universality is simple. Indeed, L(0, P ) ⊇ L(a, b) ∩ [0, B] if and only if
L(0, P ) ∪ (N \ (L(a, b) ∩ [0, B])) = N, where the second set in the union is described by a
semilinear set in generator representation of polynomial size. The bound on the size holds,
because k and m cannot exceed the bit size of the input instance and ba/bc = ba/2kc = 0 by
the promise that a < 2k in the definition of Bounded 1D Ray Cover.

Note that the proof of Lemma 16 would work just as well if we had b equal to a power
of 3, or a power of any other fixed number (other forms are also possible). For the input of
Bounded 1D Ray Cover, any of these constraints is not difficult to satisfy on its own. In
comparison, the dependence on ba/bc in Lemma 16 is more important and more difficult to
handle. We ensure in our chain of reductions from Restricted Simultaneous Subset
Sum that a/b < 1; in particular, in our aggregation procedure (Lemma 15) we require that
the coefficients α and β satisfy α/β > b The condition that α is a power of two comes from
our preference to use an arithmetic progression with a difference of the form 2v, v ∈ N, in
Lemma 16: L(a, b), b = 2k.

Detailed ΠP
2 -hardness proofs for the lower bounds in Theorem 14 can be found in the full

version of this paper.

7 Conclusion

Choffrut and Frigeri left open the question whether there is an algorithm with an elementary
running time deciding weak Z-definability [5]. We have shown in this article that this is the
case. There still remains a significant gap between our ΠP

2 lower bound and the rather crude
upper bound that we obtained. Our algorithm is based on a geometric characterisation of
sets definable in weak Presburger arithmetic that complements the generator characterisation
obtained by Choffrut and Frigeri [5].

While weak definability is an interesting problem in its own right, another motivation
for our work stems from the fact it is an open problem whether deciding weak Presburger
arithmetic is computationally easier than deciding full Presburger arithmetic. In fact, in
his original article [12], Presburger only showed decidability of weak Presburger arithmetic
and remarked that his proof could be adapted to also work for Presburger arithmetic. We
are unable to give an answer to this open problem at the present stage, but we believe that
the geometric insights that enable us to show the elementary upper bounds of the weak
definability problems may eventually help settling the computational complexity of weak
Presburger arithmetic. Note that deciding weak linear rational arithmetic has essentially the
same complexity as linear rational arithmetic [14].
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Abstract
A marked free monoid morphism is a morphism for which the image of each generator starts
with a different letter, and immersions are the analogous maps in free groups. We show that the
(simultaneous) PCP is decidable for immersions of free groups, and provide an algorithm to compute
bases for the sets, called equalisers, on which the immersions take the same values. We also answer
a question of Stallings about the rank of the equaliser.

Analogous results are proven for marked morphisms of free monoids.
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1 Introduction

In this paper we prove results about the classical Post Correspondence Problem (PCPFM),
which we state in terms of equalisers of free monoid morphisms, and the analogue problem
PCPFG for free groups ([5], [19]), and we describe the solutions to PCPFM and PCPFG
for certain classes of morphisms. While the classical PCPFM is famously undecidable for
arbitrary maps of free monoids [21] (see also the survey [12] and the recent result of Neary
[20]), PCPFG for free groups is an important open question [8, Problem 5.1.4]. Additionally,
for both free monoids and free groups there are only few results describing algebraically the
solutions to classes of instances known to have decidable PCPFM or PCPFG. Our results
apply to marked morphisms in the monoid case, and to their counterparts in free groups,
called immersions. Marked morphisms are the key tool used in resolving the PCPFM for the
free monoid of rank two [9], and therefore understanding the solutions to the PCPFG for
immersions is an important step towards resolving the PCPFG for the free group of rank two.
The density of marked morphisms and immersions among all the free monoid or group maps
is strictly positive (Section 10), so our results concern a significant proportion of instances.

An instance of the PCPFM is a tuple I = (Σ,∆, g, h), where Σ,∆ are finite alphabets,
Σ∗,∆∗ are the respective free monoids, and g, h : Σ∗ → ∆∗ are morphisms. The equaliser of
g, h is Eq(g, h) = {x ∈ Σ∗ | g(x) = h(x)}. The PCPFM is the decision problem:
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120:2 PCP and Equalisers for Certain Morphisms

PCPFMPCPFMPCPFM: Given I = (Σ,∆, g, h), is the equaliser Eq(g, h) trivial?

Analogously, an instance of the PCPFG is a four-tuple I = (Σ,∆, g, h) with g, h : F (Σ)→
F (∆) morphisms between the free groups F (Σ) and F (∆), and PCPFG is the decision
problem pertaining to the similarly defined Eq(g, h) in free groups.

Beyond PCPFM, in this paper we also consider the Algorithmic Equaliser Problem, denoted
AEPFM (or AEPFG in the group case), which for an instance I = (Σ,∆, g, h) with g, h free
monoid morphisms (or free group morphisms for AEPFG), says:

AEPFMAEPFMAEPFM: Given I = (Σ,∆, g, h), output
(a) a finite basis for Eq(g, h), or
(b) a finite automaton recognising the set Eq(g, h).

If a finite basis or finite automaton for Eq(g, h) does not exist then Part (a) or (b),
respectively, of the problem is insoluble. Note that (a) and (b) are connected: for free groups
these two problems are in fact the same when Eq(g, h) is finitely generated, while for free
monoids (a) implies (b). Part (a) of the AEPFM is known to be soluble when |Σ| = 2 and
one of g or h is non-periodic, and insoluble otherwise [13] [12, Corollary 6].

Sets of morphisms. We are particularly interested in sets S of morphisms (not just two
morphisms f , g) and their equalisers Eq(S) =

⋂
g,h∈S Eq(g, h), and we prove structural

results for arbitrary sets and algorithmic results for finite sets. Our results resolve the
simultaneous PCPFG and PCPFM for immersions and marked morphisms; these problems
take as input a finite set S of maps and ask the same questions about equalisers as in
the classical setting. Analogously, one could further define the “simultaneous AEPFG and
AEPFM”. However, the simultaneous AEPFG is equivalent to the AEPFG, and Part (b) of
the simultaneous AEPFM is equivalent to Part (b) of the AEPFM, as follows. As bases of
intersections of finitely generated subgroups of free groups are computable (and as Parts
(a) and (b) of the AEPFG are equivalent), if the AEPFG is soluble for a class C of maps
then there exists an algorithm with input a finite set S of morphisms from F (Σ) to F (∆),
S ⊆ C, and output a basis for Eq(S). Similarly, automata accepting intersections of regular
languages are computable, and so if Part (b) of the AEPFM is soluble for a class C of maps
then there exists an algorithm with input a finite set S of morphisms from Σ∗ to ∆∗, S ⊆ C,
and output a finite automaton whose language is Eq(S) =

⋂
g,h∈S Eq(g, h).

Main results. A set of words s ⊆ ∆∗ is marked if any two distinct u, v ∈ s start with a
different letter of ∆, which implies |s| 6 |∆|. A free monoid morphism f : Σ∗ → ∆∗ is marked
if the set f(Σ) is marked. An immersion of free groups is a morphism f : F (Σ) → F (∆)
where the set f(Σ ∪ Σ−1) is marked (see Section 3 for equivalent formulations). Halava,
Hirvensalo and de Wolf [11] showed that PCPFM is decidable for marked morphisms; inspired
by their methods we were able to obtain stronger results (Theorem A) for this kind of map,
as well as expand to the world of free groups (Theorem C), where we employ “finite state
automata”-like objects called Stallings graphs.

I Theorem A. If S is a set of marked morphisms from Σ∗ to ∆∗, then there exists a finite
alphabet ΣS and a marked morphism ψS : Σ∗S → Σ∗ such that Image(ψS) = Eq(S). Moreover,
for S finite, there exists an algorithm with input S and output the marked morphism ψS.

I Corollary B. The simultaneous PCPFM is decidable for marked morphisms of free monoids.
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I Theorem C. If S is a set of immersions from F (Σ) to F (∆), then there exists a finite
alphabet ΣS and an immersion ψS : F (ΣS)→ F (Σ) such that Image(ψS) = Eq(S). Moreover,
when S is finite, there exists an algorithm with input S and output the immersion ψS.

I Corollary D. The simultaneous PCPFG is decidable for immersions of free groups.

The Equaliser Conjecture. Our work was partially motivated by Stallings’ Equaliser Con-
jecture for free groups, which dates from 1984 [22, Problems P1 & 5] (also [7, Problem 6]
[24, Conjecture 8.3] [1, Problem F31]). Here rk(H) stands for the rank, or minimum number
of generators, of a subgroup H:

I Conjecture 1 (The Equalizer Conjecture, 1984). If g, h : F (Σ) → F (∆) are injective
morphisms then rk(Eq(g, h)) 6 |Σ|.

This conjecture has its roots in “fixed subgroups” Fix(φ) of free group endomorphisms
φ : F (Σ)→ F (Σ) (if Σ = ∆ then Fix(φ) = Eq(φ, id)), where Bestvina and Handel proved
that rk(Fix(φ)) 6 |Σ| for φ an automorphism [3], and Imrich and Turner extended this bound
to all endomorphisms [14]. Bergman further extended this bound to all sets of endomorphisms
[2]. Like Bergman’s result, our first corollary of Theorem C considers sets of immersions,
which are injective, and answers Conjecture 1 for immersions.

I Corollary E. If S is a set of immersions from F (Σ) to F (∆) then rk(Eq(S)) 6 |Σ|.

In free monoids, equalisers of injections are free [12, Corollary 4] but they are not
necessarily regular languages (and hence not necessarily finitely generated) [12, Example 6].
In order to understand equalisers Eq(S) of sets of maps we need to understand intersections
in free monoids. Recall that the intersection A∗∩B∗ of two finitely generated free submonoids
of a free monoid Σ∗ is free [23] and one can find a regular expression that represents a basis
of A∗ ∩ B∗ [4]. However, the intersection is not necessarily finitely generated [17]. The
following result is surprising because we have finite generation, even for the intersection
Eq(S) =

⋂
g,h∈S Eq(g, h).

I Corollary F. If S is a set of marked morphisms from Σ∗ to ∆∗ then Eq(S) is a free monoid
with rk(Eq(S)) 6 |Σ|.

The Algorithmic Equaliser Problem. The AEPFG is insoluble in general, as equalisers in
free groups are not necessarily finitely generated [24, Section 3], and is an open problem of
Stallings’ if both maps are injective [22, Problems P3 & 5]. Our next corollary of Theorem
C resolves this open problem for immersions.

I Corollary G. The AEPFG is soluble for immersions of free groups.

The AEPFM is insoluble in general, primarily as equalisers are not necessarily regular
languages [10, Example 4.6]. Even for maps whose equalisers form regular languages, the
problem remains insoluble [18]. Another corollary of Theorem A is the following.

I Corollary H. The AEPFM is soluble for marked morphisms of free monoids.

Outline of the article. In Section 2 we prove Theorem A and its corollaries about free
monoids. The remainder of the paper focuses on free groups, where the central result is
Theorem 18, which is Theorem C for |S| = 2. In Section 3 we reformulate immersions in
terms of Stallings’ graphs, and in Section 4 define the “reduction” I ′ = (Σ′,∆′, g′, h′) of an
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instance I = (Σ,∆, g, h) of the AEPFG for immersions. Repeatedly computing reductions is
the key process in our algorithm. In Section 5 we prove the process of reduction decreases the
“prefix complexity” of an instance (so the word “reduction” makes sense), and in Section 6 we
prove Theorem 18, mentioned above. In Section 7 we prove Theorem C and its corollaries. In
Section 9 we give a complexity analysis for both our free monoid and free group algorithms,
and in Section 10 we show that the density of marked morphisms and immersions among all
the free monoid or group maps is strictly positive.

2 Marked morphisms in free monoids

In this section we prove Theorem A and its corollaries. We use the following immediate fact.

I Lemma 2. Marked morphisms of free monoids are injective.

Proof. Let f : Σ∗ → ∆∗ be marked and let x 6= y be nontrivial. One can write x = zax′ and
y = zby′, where a, b ∈ Σ are the first letter where x and y differ. As f is marked, f(a) 6= f(b),
hence f(x) = f(z)f(a)f(x′) 6= f(z)f(b)f(y′) = f(y), so f is injective. J

We may assume Σ ⊆ ∆, as |Σ| 6 |∆| holds whenever f : Σ∗ → ∆∗ is marked.
Consider morphisms g : Σ∗1 → ∆∗ and h : Σ∗2 → ∆∗. The set of non-empty words over an

alphabet Σ is denoted Σ+. For a ∈ ∆, a pair (u, v) ∈ Σ+
1 ×Σ+

2 is an a-block if (i) g(u) = h(v)
starts with a, and (ii) u and v are minimal, that is, the length |g(u)| = |h(v)| is minimal
among all such pairs. If the pair (g, h) has blocks ai = (ui, vi), 1 6 i 6 m, then let Σ′
be the alphabet consisting of these blocks and define g′ : (Σ′)∗ 7→ Σ∗1 by g′(ai) = ui and
h′ : (Σ′)∗ 7→ Σ∗2 by h′(ai) = vi. These maps are computable and, by an identical logic
to [11, Section 2], are seen to be marked. Then gg′ = hh′, and we let k = gg′ = hh′ (so
k : (Σ′)∗ → ∆∗). Since k is the composition of marked morphisms, it is itself marked. We
therefore have the following.

I Lemma 3. If g : Σ∗1 → ∆∗ and h : Σ∗2 → ∆∗ are marked morphisms then the corresponding
maps g′ : Σ′∗ → Σ∗1, h′ : Σ′∗ → Σ∗2 and k : Σ′∗ → ∆∗, k = gg′ = hh′, are marked and are
computable.

The reduction of an instance I = (Σ,∆, g, h) of the marked PCPFM, as defined in [11],
is the instance I ′ := (Σ′,∆, g′, h′) where Σ′ is defined as above, and where g′ and h′ are as
above, but with codomain ∆ (which we may do as Σ ⊆ ∆). We additionally assume that
Σ′ ⊆ Σ; we can do this as |Σ′| 6 |Σ| by Lemma 3.

The following relies on [11, Lemma 1], which we strengthen by replacing the notion of
“equivalence” with that of “strong equivalence”: Two instances I1 and I2 of the PCPFM are
strongly equivalent if their equalisers are isomorphic, which we write as Eq(I1) ∼= Eq(I2).

I Lemma 4. Let I ′ = (Σ′,∆′, g′, h′) be the reduction of I = (Σ,∆, g, h) where g and h are
marked. Then I and I ′ are strongly equivalent, and g′(Eq(I ′)) = Eq(I) = h′(Eq(I ′)).

Proof. Firstly, note that g′(Eq(I ′)) 6 Eq(I) [11, Lemma 1, paragraph 2]. From [11, Lemma
1, paragraph 1] it follows that g′(Eq(I ′)) > Eq(I), so g′(Eq(I ′)) = Eq(I) . As g′ is injective,
the map g′|Eq(I′) is an isomorphism. Hence, I and I ′ are strongly equivalent, and, by
symmetry for the h′ map, g′(Eq(I ′)) = Eq(I) = h′(Eq(I ′)) as required. J

We can now improve the existing result on the marked PCPFM. We store a morphism
f : Σ∗ → ∆∗ as a list (f(a))a∈Σ.
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I Theorem 5. If I = (Σ,∆, g, h) is an instance of the marked PCPFM then there exists
an alphabet Σg,h and a marked morphism ψg,h : Σ∗g,h → Σ∗ such that Image(ψg,h) = Eq(I).
Moreover, there exists an algorithm with input I and output the marked morphism ψg,h.

Proof. We explain the algorithm, and note at the end that the output is a marked morphism
ψg,h : F (Σg,h)→ F (Σ) with the required properties, and so the result follows.

Begin by making reductions I0, I1, I2, . . ., starting with I0 = I = (Σ,∆, g, h), the input
instance. Then by [11, Section 5, paragraph 1] we will obtain an instance Ij = (Σj ,∆, gj , hj)
such that one of the following will occur:
1. |Σj | = 1.
2. |gj(a)| = 1 = |hj(a)| for all a ∈ Σj .
3. There exists some i < j with Ii = Ij (sequence starts cycling).
Keeping in mind the fact that reductions preserve equalisers (Lemma 4), we obtain in each
case a subset Σg,h (possibly empty) which forms a basis for Eq(Ij): For Case (1), writing
Σj = {a}, the result holds as if g(ai) = h(ai) then g(a)i = h(a)i and so g(a) = h(a) as roots
are unique in a free monoid. For Case (2), suppose gj(x) = hj(x). Then gj and hj agree on
the first letter of x ∈ Σ∗j because the image of each letter has length one, and inductively we
see that they agree on every letter of x. Hence, a subset Σg,h of Σj forms a basis for Eq(Ij).

For Case (3), suppose there is a sequence of reductions beginning and ending at Ij :

Ij → Ij+1 → · · · → Ij+(i−1) → Ij+i = Ij

and write r := j + i. By Lemma 4, Eq(Ij) = gj+1gj+2 . . . gr(Eq(Ir)) = Eq(Ir); thus
gr := gj+1gj+2 . . . gr restricts to an automorphism of Eq(Ij), so gr|Eq(Ij) ∈ Aut(Eq(Ij)). The
automorphism gr is necessarily length-preserving (|gr(w)| = |w| for all w ∈ Eq(Ij)). Consider
x ∈ Eq(Ij) = Eq(Ir). Then gr maps the letters occurring in xr to letters and so gj(= gr) and
hj(= hr) map the letters occuring in x to letters, and it follows that every letter occuring in
x is a solution to Ir = Ij . Hence, a subset Σg,h of Σj forms a basis for Eq(Ij) as required.

Therefore, in all three cases a subset Σg,h of Σj forms a basis for Eq(Ij), and since
Σj is computable, this basis is as well. In order to prove the theorem, it is sufficient
to prove that there is a computable immersion ψg,h : Σ∗g,h → Σ∗. Consider the map
g̃ = g1g2 · · · gj : Σ∗j → Σ∗ (and the analogous h̃). Now, each gi is marked, by Lemma
3, and so g̃ is the composition of marked morphisms and hence is marked itself. Define
ψg,h := g̃|Σ∗

g,h
. This map is computable from g̃, and as Σg,h ⊆ Σj , the map ψg,h is marked. As

Image(ψg,h) = g1g2 . . . gj(Eq(Ij)) = Eq(I), by Lemma 4 and the above, the result follows. J

Theorem 5 together with Lemma 6 give the non-algorithmic part of Theorem A. A
subsemigroup M of a free monoid Σ∗ is marked if it is the image of a marked morphism.

I Lemma 6. If {Mj}j∈J is a set of marked subsemigroups of Σ∗ then the intersection⋂
j∈JMj is marked.

Proof. Firstly, suppose x, y ∈Mj for some j ∈ J . Then there exist two words x0 . . . xl and
y0 . . . yk, with xi, yi ∈ Σ, such that φ(x0 . . . xl) = x and φ(y0 . . . yk) = y, where φ is a marked
morphism. If x and y have a nontrivial common prefix, then because φ is marked we get
x0 = y0, and φ(x0) is a prefix of both x and y, and in particular φ(x0) ∈Mj . By continuing
this argument, if z is a maximal common prefix of x and y, then z ∈Mj .

Now, suppose x, y ∈
⋂
j∈JMj , and suppose they both begin with some letter a ∈ Σ∪Σ−1.

By the above, their maximal common prefix za is contained in each Mj and so is contained
in
⋂
j∈JMj . Therefore, za is a prefix of every element of

⋂
j∈JMj beginning with an a. It

follows that
⋂
j∈JMj is immersed, as required. J
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We now prove the algorithmic part of Theorem A (this is independent of Lemma 6).

I Lemma 7. There exists an algorithm with input a finite set of marked morphisms S from
Σ∗ to ∆∗ and output a marked morphism ψS : Σ∗S → Σ∗ such that Image(ψS) = Eq(S).

Proof. We use induction on |S|. By Theorem 5, the result holds if |S| = 2. Suppose the result
holds for all sets of n marked morphisms, n > 2, and let S be a set of n+1 marked morphisms.
Take elements g, h ∈ S, and write Sg = S \{g}. By hypothesis, we can algorithmically obtain
marked morphisms ψSg

: Σ∗Sg
→ Σ∗ and ψg,h : Σ∗g,h → Σ∗ such that Image(ψSg

) = Eq(Sg)
and Image(ψg,h) = Eq(g, h).

By Lemma 3, there exists a (computable) marked morphism ψS : Σ∗S → Σ∗ such
that Image(ψS) = Image(ψSg ) ∩ Image(ψg,h) (the map ψS corresponds to the map k in
Lemma 3, and ΣS to Σ′). Then, as required: Image(ψS) = Image(ψSg

) ∩ Image(ψg,h) =
Eq(Sg) ∩ Eq(g, h) = Eq(S). J

We now prove Theorem A, which states that the equaliser is the image of a marked map.

Proof of Theorem A. By applying Lemma 6 to Theorem 5, there exists an alphabet ΣS

and a marked morphism ψS : Σ∗S → Σ∗ such that Image(ψS) = Eq(S), while by Lemma 7 if
S is finite then such a marked morphism can be algorithmically found. J

We now prove Corollary F, which says that Eq(S) is free of rank 6 |Σ|.

Proof of Corollary F. Consider the marked morphism ψS : Σ∗S → Σ∗ given by Theorem A.
By Lemma 2, ψS is injective so Image(ψS) is free. As ψS is marked the map ΣS → Σ taking
each a ∈ ΣS to the initial letter of ψS(a) is an injection, so |ΣS | 6 |Σ| as required. J

We now prove a strong form of the AEPFM for marked morphisms.

I Corollary 8. There exists an algorithm with input a finite set S of marked morphisms from
Σ∗ to ∆∗ and output a basis for Eq(S).

Proof. To algorithmically obtain a basis for Eq (S), first use the algorithm of Theorem A to
obtain the marked morphism ψS : Σ∗S → Σ∗ such that Image(ψS) = Eq(S). Then, recalling
that we store ψS as a list (ψS(a))a∈Σ, the required basis is the set of elements in this list, so
the set {ψS(a)}a∈Σ. J

Corollary H, the AEPFM for marked morphisms, follows from Corollary 8 by taking
|S| = 2, while Corollary B, the simultaneous PCPFM, also follows as Eq (S) is trivial if and
only if its basis is empty.

3 Immersions of free groups

We denote the free group with finite generating set Σ by F (Σ), and view it as the set of all
freely reduced words over Σ±1 = Σ ∪ Σ−1, that is, words not containing xx−1 as subwords,
x ∈ Σ±1, together with the operations of concatenation and free reduction (that is, the
removal of any xx−1 that might occur when concatenating two words).

We now begin our study of immersions of free groups, as defined in the introduction. We
first state the characterising lemma, then explain the terms involved before giving the proof.

I Lemma 9. Let g : F (Σ)→ F (∆) be a free group morphism. The following are equivalent.
1. The map g is an immersion of free groups.
2. Every word in the language L(Γg, vg) is freely reduced.
3. For all x, y ∈ Σ∪Σ−1 such that xy 6= 1, the length identity |g(xy)| = |g(x)|+ |g(y)| holds.
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Characterisation (3) is the established definition of Kapovich [15]. Characterisation (2) is
the one we shall work with in this article. It uses “Stallings graphs”, which are essentially
finite state automata that recognise the elements of finitely generated subgroups of free
groups. We define these now, and refer the reader to [16] for background on Stallings graphs.

The (unfolded) Stallings graph Γg of the free group morphism g is the directed graph
formed by taking a bouquet with |Σ| petals attached at a central vertex we call vg, where
each petal consists of a path labeled by g(x) ∈ (∆ ∪∆−1)∗; the elements of ∆−1 occur as
edges traversed backwards and we denote by e−1 the edge e in opposite direction, and by
EΓ±1

g the sets of edges in both directions. A path q = (e1, . . . , en), ei ∈ EΓ±1
g edges, is

reduced if it has no backtracking, that is, e−1
i 6= ei+1 for all 1 6 i < n. We denote by ι(p) the

initial vertex of a path p and τ(p) for the terminal vertex, and call a reduced path p with
ι(p) = u = τ(p) a closed reduced circuit.

We shall view Γg as a finite state automaton (Γg, vg) with start and accept states both
equal to vg. Then the extended language accepted by (Γg, vg) is the set of words labelling
reduced closed circuits at vg in Γg:

L(Γg, vg) = {label(p) | p is a reduced path with ι(p) = u = τ(p)}.

Immersions are precisely those maps g such that every element of L(Γg, vg) is freely reduced;
this corresponds to the automaton (Γg, vg) and the “reversed” automaton (Γg, vg)−1, where
edge directions are reversed, both being deterministic (map g in Figure 1 is not an immersion;
although the automaton (Γg, vg) is deterministic, (Γg, vg)−1 is not). For such maps, L(Γg, vg)
is precisely the image of the map g [16, Proposition 3.8].

Proof of Lemma 9. (1) ⇔ (2). Every element of L(Γg, vg) is freely reduced if and only if
the graph Γg, with base vertex vg, is such that for all e1, e2 ∈ (EΓg)±1 such that both edes
start at vg or both edges end at vg, then e1 and e2 have different labels (so γg(e1) 6= γg(e2)).
This condition on labels is equivalent to g(Σ ∪ Σ−1) being marked, as required.

(1) ⇔ (3). Condition (3) is equivalent to the condition that for all x, y ∈ Σ ∪ Σ−1 such
that xy 6= 1, free cancellation does not happen between g(x) and g(y), which in turn is
equivalent to the condition that for all such x, y the elements g(x−1) and g(y) start with
different letters of ∆ ∪∆−1. This is equivalent to g(Σ ∪Σ−1) being marked, as required. J

I Example 10. Let g : F (a, b)→ F (x, y) be the map defined by g(a) = x−2y and g(b) = y2x.
Then the graph Γg, where the double arrow represents x and the single arrow y, is depicted
in Figure 1. The map g is not an immersion since there are two edges labeled x entering vg
(violating Characterisation (2)). Similarly, g(a) and g(b−1) both start with x−1 (violating
Characterisation (1)) and |g(ba)| = 4 < 6 = |g(a)|+ |g(b)| (violating Characterisation (3)).

Using Characterisation (2), we see that immersions are injective [16, Proposition 3.8]:

I Lemma 11. If g : F (Σ)→ F (∆) is an immersion then it is injective.

4 The reduction of an instance in free groups

By an immersed instance of the PCPFG we mean an instance I = (Σ,∆, g, h) where both g
and h are immersions. In this section we define the “reduction” of an immersed instance of
the PCPFG, which is similar to the reduction in the free monoid case.

Let Γ be a directed, labeled graph and u ∈ V Γ a vertex of Γ. The core graph of Γ at u,
written Coreu(Γ), is the maximal subgraph of Γ containing u but no vertices of degree 1,
except possibly u itself. Note that L(Coreu(Γ), u) = L(Γ, u). For Γ1, Γ2 directed, labeled
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Γg =
vg

g(a) g(b)

Figure 1 The graph Γg for the map g : F (a, b) → F (x, y) defined by g(a) = x−2y, g(b) = y2x−1.

graphs, the product graph of Γ1 and Γ2, denoted Γ1 ⊗ Γ2, is the subgraph of Γ1 × Γ2 with
vertex set V Γ1 × V Γ2 and edge set {(e1, e2) | ei ∈ EΓ±1

i , label(e1) = label(e2)}. One may
think of the standard construction of an automaton recognising the intersection of two regular
languages, each given by a finite state automaton Γi with start state si, where the core of
Γ1 ⊗ Γ2 at (s1, s2) is the automaton recognising this intersection.

Core graph of a pair of morphisms. Let g : F (Σ1) → F (∆), h : F (Σ2) → F (∆) be
morphisms. The core graph of the pair (g, h), denoted Core(g, h), is the core graph of Γg⊗Γh
at the vertex vg,h = (vg, vh), so Core(g, h) = Corevg,h

(Γg ⊗ Γh). We shall refer to vg,h as
the central vertex of Core(g, h). Note that Core(g, h) represents the intersection of the two
images [16, Lemma 9.3], in the sense that

L(Core(g, h), vg,h) = Image(g) ∩ Image(h).

Write δg : Core(g, h)→ Γg and δh : Core(g, h)→ Γh for the restriction of Core(g, h) to the g
and h components, respectively, so δg(e1, e2) = e1, etc.

Now, let g, h be immersions. The graph Core(g, h) is a bouquet and every element of
L(Core(g, h), vg,h) is freely reduced [16, Lemma 9.2]. We therefore have free group morphisms
g′ : L(Core(g, h), vg,h)→ L(Γg, vg) and h′ : L(Core(g, h), vg,h)→ L(Γh, vh) induced by the
maps δg, δh, where L(Γg, vg) = F (Σ1) and L(Γh, vh) = F (Σ2). These maps are computable
[16, Corollary 9.5]. Let Σ′ be the alphabet whose elements consist of the petals of Core(g, h).
Then Σ′ generates the free group L(Core(g, h), vg,h), so F (Σ′) = L(Core(g, h), vg,h), and we
see that both g′ and h′ are immersions with g′ : F (Σ′)→ F (Σ1), h′ : F (Σ′)→ F (Σ2). The
map gg′ = hh′, which we shall call k (so k : F (Σ′)→ F (∆)) is the composition of immersions
and hence is itself an immersion. We therefore have the following.

I Lemma 12. If g : F (Σ1) → F (∆) and h : F (Σ2) → F (∆) are immersions then the
corresponding maps g′ : F (Σ′)→ F (Σ1), h′ : F (Σ′)→ F (Σ2) and k : F (Σ′)→ F (∆), where
k = gg′ = hh′, are immersions and are computable.

Reduction. The reduction of an immersed instance I = (Σ,∆, g, h) of the PCPFG is the
instance I ′ = (Σ′,∆, g′, h′) where g′ and h′ are as above, but with codomain ∆ (which we
may do as Σ ⊆ ∆). We additionally assume that Σ′ ⊆ Σ; we can do this as |Σ′| 6 |Σ| by
Lemma 12. As I is immersed, I ′ is also immersed by Lemma 12. In the next section we show
that the name “reduction” makes sense, as it reduces the “prefix complexity” of instances.

I Example 13. Consider the maps g, h : F (a, b, c)→ F (x, y, z) given by g(x) = aba2, g(b) =
y−1, g(c) = zxz and h(a) = x, h(b) = yx2y, h(c) = z.
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Then the graph Core(g, h) is a bouquet with two petals labelled xyx2y and zxz, and
Image(g) ∩ Image(h) = 〈xyx2y, zxz〉. Moreover, g(ab−1) = h(ab) = xyx2y and g(z) =
h(zxz) = zxz. Then we can take Σ′ = {a′, b′}, and the maps given by g′(a′) = ab−1, g(b′) = c

and h′(a′) = ab, h′(b′) = cac are the reduction of (g, h).

We now prove that reduction preserves equalisers. Two instances I1 and I2 of the PCPFG
are strongly equivalent if the equalisers are isomorphic, which we write as Eq(I1) ∼= Eq(I2).

I Lemma 14. Let I ′ = (Σ′,∆′, g′, h′) be the reduction of I = (Σ,∆, g, h) where g and h are
immersions. Then I and I ′ are strongly equivalent, and g′(Eq(I ′)) = Eq(I) = h′(Eq(I ′)).

Proof. It is sufficient to prove that g′|Eq(I′) is injective and g′(Eq(I ′)) = Eq(I); that
h′(Eq(I ′)) = Eq(I) follows as g′|Eq(I′) = h′|Eq(I′).

As g′ is an immersion it is injective, by Lemma 11. Therefore, g′|Eq(I′) is injective. To
see that Image(g′|Eq(I′)) 6 Eq(I), suppose x′ ∈ Eq(I ′). Writing x = g′(x′) = h′(x′), we have
g(x) = gg′(x′) = hh′(x′) = h(x) and so x = g′(x′) ∈ Eq(I), as required.

To see that Image(g′|Eq(I′)) > Eq(I), suppose x ∈ Eq(I). Then there exists a path
px ∈ Core(g, h), ι(px) = vg,h = τ(px), such that γgδg(px) = g(x) = h(x) = γhδh(px) [16,
Proposition 9.4], where γg : Γg → Γ∆ is the canonical morphism of directed, labeled graphs
from Γg to the bouquet Γ∆ with ∆ petals. Hence, writing x′ for the element of F (Σ′)
corresponding to px ∈ L(Core(g, h), vg,h), we have that gg′(x′) = g(x) = h(x) = hh′(x). As
h and g are injective, by Lemma 11, we have that g′(x′) = x = h′(x′) as required. J

5 Prefix complexity of immersions in free groups

In this section we associate to an instance I of the PCPFG a certain complexity, called the
“prefix complexity”. We prove that the process of reduction does not increase this complexity,
and that for all n ∈ N there are only finitely many instances with complexity 6 n.

Let I = (Σ,∆, g, h) be an immersive instance of the PCPFG. We define, analogously to
[11, Section 4] (see also [9]), the prefix complexity σ(I) as:

σ(I) = |∪a∈Σ±1{x ∈ F (∆) | x is a proper prefix of g(a)}|
+ |∪a∈Σ±1{x ∈ F (∆) | x is a proper prefix of h(a)}| .

In the maps in Example 13, σ(I) = 10 + 6 = 16, and σ(I ′) = 2 + 4 = 6.
The process of reduction does not increase the prefix complexity, and we prove this by

using the fact that, for any a ∈ Σ±1, the proper prefixes of g(a) and h(a) are in bijection
with the proper initial subpaths of the petals of Γg and Γh, respectively.

I Lemma 15. Let I = (Σ,∆, g, h) be an instance of the PCPFG with g and h immersions,
and let I ′ be the reduction of I. Then σ(I ′) 6 σ(I).

Proof. We write Vg Core(g, h) = {(vg, v) ∈ V Core(g, h) | v ∈ Γh} = δ−1
g (vg) for the set of

vertices in the Core(g, h) whose first component is the central vertex vg of Γg, and similarly
for Vh Core(g, h). Note that Vg Core(g, h) ∩ Vh Core(g, h) = {vg,h}.

By construction, each petal of Γg and Γh corresponds to a letter a ∈ Σ±1, and we
shall denote the petal also by a. Write PΓ for the set of reduced paths in a graph Γ.
Similarly to a ∈ PΓg and a ∈ PΓh, we map write a ∈ P Core(g, h) for the petal in Core(g, h)
corresponding to a ∈ (Σ′)±1. From now on, all paths are assumed to be reduced. Define
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G = ∪a∈Σ±1{p ∈ Γg | p is a proper initial subpath of petal a ∈ Γg},
G′ = ∪a∈(Σ′)±1{p ∈ Core(g, h) | p is a proper initial subpath

of a ∈ Core(g, h) s.t. its end vertex τ(p) ∈ Vg Core(g, h)},

and define H and H ′ analogously. Hence, σ(I) = |G|+|H| and analogously σ(I ′) = |G′|+|H ′|.
For a ∈ (Σ′)±1 let q ∈ G′ be a subpath of a ∈ P Core(g, h). Denote by rq the shortest

subpath of a intersecting q at only one point, their common end vertex (that is, τ(q) =
τ(rq) = q ∩ rq), such that ι(rq) ∈ Vh Core(g, h); the paths q and rq can be seen as “facing”
one another on a. As Vg Core(g, h) ∩ Vh Core(g, h) = {vg,h}, and as q is a proper initial
subpath of a, the projection δh(rq) is a non-trivial path in Γh. Note also that ι(δh(rq)) = vh,
as ι(rq) ∈ Vh Core(g, h), hence there exists some b ∈ Σ±1 such that δh(rq) is a proper initial
subpath of the petal b ∈ Γh. Therefore, δh(rq) ∈ H. Let ξH : G′ → H be the map given by
ξH(q) = δh(rq).

We now prove that ξH is injective. Suppose p, q ∈ G′ are such that ξH(p) = ξH(q), and
let rp and rq be the paths obtained from p and q, respectively, such that ξH(p) = δh(rp)
and ξH(q) = δh(rq). Write ep for the terminal edge of rp, and eq for the terminal edge of
rq, and note that these two edges have the same label and direction as δh(ep) = δh(eq).
Now, δg(τ(ep)) = vg = δg(τ(eq)) as τ(rp), τ(rq) ∈ Vg Core(g, h), and as ep and eq have the
same label and direction we have that δg(ep) = δg(eq). Therefore, both δg and δh agree
on ep and eq, and so as Core(g, h) is a subgraph of Γg × Γh we have that ep = eq. As
Core(g, h) is a bouquet, there exists a unique shortest reduced path s such that ι(s) = vg,h
and τ(s) = s ∩ ep = τ(ep). Hence, p = s = q as required.

Thus ξH is injective, and so |G′| 6 |H|. The same will hold for an analogously defined
function ξH fromH ′ toG, so |H ′| 6 |G|. Therefore, σ(I ′) = |G′|+|H ′| 6 |G|+|H| = σ(I). J

For a fixed number n > 1 there are obviously only finitely many words which have 6 n

proper prefixes, and so the following is clear:

I Lemma 16. There exist only finitely many distinct instances I = (Σ,∆, g, h) of the PCPFG
that satisfy σ(I) 6 n.

As the reduction I ′ of an instance I gives σ(I ′) 6 σ(I), and as |Σ′| ⊆ |Σ|, this means
that the process of iteratively computing reductions will eventually cycle.

6 Solving the Algorithmic Equaliser Problem in free groups (AEPFG)

The algorithm for solving the AEPFG for immersions is analogous to the algorithm for
marked free monoid morphisms in Section 2. Our algorithm starts by making reductions
I0, I1, I2, . . ., beginning with I0 = I, the input instance. By Lemma 16, we will obtain an
instance Ij = (Σj ,∆, gj , hj) such that one of the following will occur:
1. |Σj | = 1.
2. σ(Ij) = 0.
3. there exists some i < j with Ii = Ij (sequence starts cycling).
Keeping in mind the fact that reductions preserve equalisers (Lemma 14), we obtain in each
case a subset Σg,h (possibly empty) which forms a basis for Eq(Ij): For Case (1), writing
Σj = {a}, the result holds as if g(ai) = h(ai) then g(a)i = h(a)i and so g(a) = h(a) as roots are
unique in a free group. For Case (2), σ(Ij) = 0 is equivalent to |g(a)| = |h(a)| = 1 for all a ∈ Σ.
Suppose there exists some non-trivial reduced word x = aε1

i1
· · · aεn

in
such that g(x) = h(x).
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Then as g and h are injective, the words g(ai1)ε1 · · · g(ain)εn and h(ai1)ε1 · · ·h(ain)εn are
freely reduced and hence are the same word, and so g(aij ) = h(aij ). The result then follows
for Case (2). Case (3) has a more involved proof.

I Lemma 17. Let I = (Σ,∆, g, h) be an immersive instance of the PCPFG that starts a cycle
(i.e. starting the reduction process with I eventually gives I again). If Eq(I) is non-trivial
then a subset of Σ forms a basis for Eq(I).

Proof. There is a sequence of reductions beginning and ending at I:

I = I0 → I1 → · · · → Ir−1 → Ir = I

where Ii = (Σi,∆, gi, hi). By Lemma 14, Eq(I0) = g1g2 . . . gr(Eq(Ir)) = Eq(Ir) and so
gr = g1g2 . . . gr restricts to an automorphism of Eq(I0), that is, gr|Eq(I0) ∈ Aut(Eq(I0)). For
hr defined analogously, hr|Eq(I0) ∈ Aut(Eq(I0)). Write Eq(Ik)(n) for the set of words in
Eq(Ik) of length precisely n, and Eq(Ik)(6n) for the set of words in Eq(Ik) of length at most
n. Consider some x0 ∈ Eq(I0) and write xr = gr

−1(x0). Then

x0 = g1g2 . . . gr(xr) = gr(xr),
x0 = h1h2 . . . hr(xr) = hr(xr).

By Lemma 12, both gi and hi are immersions for each i, and so by Characterisation (3)
of Lemma 9 we see that |gi(w)| > |w| for all w ∈ F (Σi). Hence, |x0| > |xr|. Therefore,
for all m > 1 the map gr induces a map gr

(m) : Eq(Ir)(m) → Eq(Ir)(6m). Clearly gr
(1)

is a bijection, and so we inductively see that gr(m) has image Eq(Ir)(m). Therefore, the
automorphism gr of Eq(I0) is length-preserving (|gr(w)| = |w| for all w ∈ Eq(I)), and so
maps the letters occurring in xr to letters. Hence, g0(= gr) and h0(= hr) map the letters
occuring in xr to letters, and it follows that every letter occuring in xr is a solution to I0.
Hence, a subset Σg,h of Σr forms a basis for Eq(Ir). J

We now prove the central theorem of this article, which gives an algorithm to describe
Eq(I) as the image of an immersion. Note that not every subgroup of a free group is the
image of an immersion: for example, if |Σ| = n, then no subgroup of F (Σ) of rank > n is the
image of an immersion. We store a morphism f : F (Σ)→ F (∆) as a list (f(a))a∈Σ.

I Theorem 18. There exist an algorithm with input an immersive instance I = (Σ,∆, g, h) of
the PCPFG and output an immersion ψg,h : F (Σg,h)→ F (Σ) such that Image(ψg,h) = Eq(I).

Proof. Start by making reductions I = I0 → I1 → · · · . By Lemma 16 we will obtain an
instance Ij = (Σj ,∆, gj , hj) satisfying one of the Cases (1)–(3) above, and in each case a
subset Σg,h of Σj forms a basis for Eq(Ij). Since Σj is computable, this basis is as well.

In order to prove the theorem, it is sufficient to prove that there is a computable
immersion ψg,h : F (Σg,h)→ F (Σ). Consider the map g̃ = g1g2 · · · gj : F (Σj)→ F (Σ) (and
the analogous h̃). Now, each gi is an immersion, so g̃ is the composition of immersions and
hence is an immersion. Define ψg,h = g̃|F (Σg,h). This map is computable from g̃, and as
Σg,h ⊆ Σj , the map ψg,h is an immersion. As Image(ψg,h) = g1g2 . . . gj(Eq(Ij)) = Eq(I), by
Lemma 14 and the above, the result follows. J

We now prove Corollary G, which solves the AEPFG for immersions of free groups.

Proof of Corollary G. To algorithmically obtain a basis for Eq(I), first obtain the immersion
ψg,h : F (Σg,h) → F (Σ) given by Theorem 18. Then, recalling that we store ψg,h as a list
(ψg,h(a))a∈Σ, the required basis is the set of elements in this list, so the set {ψg,h(a)}a∈Σ. J
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7 Sets of immersions

We now prove Theorem C and its corollaries. We first give a general result, from which
the non-algorithmic part of Theorem C follows quickly. An immersed subgroup H of a free
group F (Σ) is a subgroup which is the image of an immersion. The proof of Lemma 19 is
fundamentally identical to the proof of Lemma 6, via Characterisation 1 of Lemma 9.

I Lemma 19. If {Hj}j∈J is a set of immersed subgroups of F (Σ) then the intersection⋂
j∈J Hj is immersed.

Proof. Firstly, suppose x, y ∈ Hj for some j ∈ J , and let z be their maximal common prefix.
Then z decomposes uniquely as z1z2 · · · znz′n+1 such that each zk ∈ Hj . As Hj is immersed,
and as z is a maximal common prefix of x and y, we have that z ∈ Hj .

Now, suppose x, y ∈
⋂
j∈J Hj , and suppose they both begin with some letter a ∈ Σ∪Σ−1.

By the above, their maximal common prefix za is contained in each Hj and so is contained
in
⋂
j∈J Hj . Therefore, za is a prefix of every element of

⋂
j∈J Hj beginning with an a. It

follows that
⋂
j∈J Hj is immersed, as required. J

The following lemma corresponds to the algorithmic part of Theorem C. Similar to the
above, the proof of the lemma is fundamentally identical to the proof of Lemma 7.

I Lemma 20. There exists an algorithm with input a finite set of immersions S from F (Σ)
to F (∆) and output an immersion ψS : F (ΣS)→ F (Σ) such that Image(ψS) = Eq(S).

Proof. We proceed by inducting on |S|. By Theorem 18, the result holds if |S| = 2.
Suppose the result holds for all sets of n immersions, n > 2, and let S be a set of n + 1
immersions. Take elements g, h ∈ S, and write Sg = S \ {g}. By hypothesis, we can
algorithmically obtain immersions ψSg

: F (ΣSg
)→ F (Σ) and ψg,h : F (Σg,h)→ F (Σ) such

that Image(ψSg ) = Eq(Sg) and Image(ψg,h) = Eq(g, h).
By Lemma 12, there exists a (computable) immersion ψS : F (ΣS) → F (Σ) such that

Image(ψS) = Image(ψSg
)∩ Image(ψg,h) (the map ψS corresponds to the map k in the lemma,

and ΣS to Σ′). Then we have the required equality:

Image(ψS) = Image(ψSg
) ∩ Image(ψg,h)

= Eq(Sg) ∩ Eq(g, h)
= Eq(S). J

We now prove Theorem C, which states that the equaliser is the image of a computable
immersion.

Proof of Theorem C. By Lemma 19, there exists an alphabet ΣS and an immersion ψS :
F (ΣS)→ F (Σ) such that Image(ψS) = Eq(S), while by Lemma 20 if S is finite then such
an immersion can be algorithmically found. J

We now prove Corollary D, which solves the simultaneous PCPFG for immersions.

Proof of Corollary D. First find a basis for Eq(I): obtain the immersion ψg,h : F (Σg,h)→
F (Σ) given by Theorem C. Then, recalling that we store ψg,h as a list (ψg,h(a))a∈Σ, the
required basis is the set of elements in this list, so the set {ψg,h(a)}a∈Σ. Then Eq(S) is
trivial if and only if this basis is empty. J

Finally, we prove Corollary E, which says that Eq(S) is of rank 6 |Σ|.
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Proof of Corollary E. Consider the immersion ψg,h : F (Σg,h)→ F (Σ) given by Theorem C.
As Image(ψg,h) = Eq(S) we have that rk(Eq(S)) 6 |Σg,h|, while as ψg,h is an immersion we
have that |Σg,h| 6 |Σ|, and the result follows. J

8 Algorithm to compute the equaliser

Theorems A and C produce the equaliser of a set S of morphisms as the image of a computable
map ψS . For S = {g, h}, the structure of the algorithm that gives ψS (as a list of elements
representing the images of the generators) is given below. The values for M in step 3
correspond to the number of instances of complexity 6 σ(I), as explained in Section 9.

Algorithm 1 Structure of the algorithm that gives ψS .

1. Input I = (Σ,∆, g, h).
2. Set c =; 0, i := 0, I0 := I

3. Set M := (|∆|+ 1)2|Σ|(σ(I)+1) (monoids) or M := (2|∆|)2|Σ|(σ(I)+1) (groups)
4. i := i+ 1
5. Reduce instance Ii−1 to Ii (as in Sections 2 and 4); store Ii in memory
6. If Ii has source alphabet of size 1 or σ = 0 then:

a. Compute a basis B for Eq(Ii)
b. Print composition(B, i) (see below) and terminate.

7. If Ii is simpler than Ii−1 (smaller source alphabet or σ) then set c = 0 and goto (4)
8. If c > M then there exists a cycle which starts with Ii.

a. Compute a basis B for Eq(Ii)
b. Print composition(B, i) and terminate.

Procedure composition(B, i) computes the composition of a map, stored as a list B,
with the maps obtained in the reduction process, indexed from i downwards.

Algorithm 2 composition(B, i).

1. Set B := gi(B), where gi is loaded from memory
2. i := i− 1
3. If i > 0, goto (1); else, output B.

9 Complexity analysis

The size of an instance I = (Σ,∆, S), S a set of morphisms, is |Σ|+ |∆|+
∑
g∈S

∑
a∈Σ±1 |g(a)|.

The algorithm underlying Theorem A can be run with O(2n) space, where n is the size of the
input instance I, which gives a time bound of O(22n). The space grows exponentially, unlike
in [11], because the algorithm computes instances that must each be stored (as the immersion
ψg,h is their composition; this corresponds to the function composition(B, i), above). To
obtain this space complexity, first suppose |S| = 2 (so consider the function pairs(g, h),
above). There are at most (|∆|+ 1)2|Σ|(σ(I)+1) instances Ij with σ(Ij) 6 σ(I) [11, Proof of
Lemma 3], which is O(2n). Every other procedure requires asymptotically less space, and
hence if |S| = 2 we require O(2n) space. For S = {g1, . . . , gk}, note that we only need to
compute the immersions corresponding to Eq(gi, gi+1) for 1 6 i < k (as these intersect to
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give Eq(S)), and these can all be stored in (k − 1) × O(2n) = O(2n) space. Intersection
corresponds to reduction, and reduction can be done in PSPACE [11, Section 6]. Hence, the
algorithm can be run in O(2n) space.

Similarly, the algorithm underlying Theorem C runs in O(2n) space, where n is the input
size. The main difference to the above is that there are O(2n) instances Ij with σ(Ij) 6 σ(I).
To see this, write m := σ(I) and d := |∆|. If Ij = (Σj ,∆j , gj , hj) is such that σ(Ij) 6 m

then |g(a)| 6 m + 1 for all a ∈ Σ±1
j , as g(a) has at most m proper prefixes, and similarly

|h(a)| 6 m+ 1. There are 2d(2d− 1)m freely reduced words of length m+ 1 in F (Σj), and
so (by using the empty word) we see that there are at most (2d)m+1 freely reduced words
of length at most m+ 1. As each list of 2|Σj | words defines an instance, there are at most
(2d)2|Σj |(m+1) 6 (2d)2|Σ|(m+1) instances that satisfy σ(I) 6 m. This is O(2n) as required.

10 The density of marked morphisms and immersions

Here we show that immersions and marked morphisms are not a negligible (i.e. density zero)
subset of the entire set of free group and free monoid morphisms, respectively, but represent
a strictly positive proportion of those.

Suppose Σ = {a1, . . . , ak}, and k = |Σ| > |∆| = m. A morphism in a free monoid or free
group, φ : Σ∗ → ∆∗ or φ : F (Σ)→ F (∆), is uniquely determined by (φ(a1), . . . , φ(ak)).

We start with the monoid case. There are mn words of length n in ∆∗, and
∑

16i6nm
i ∼

cmn words of length 6 n, where c = m
m−1 and we write an ∼ bn for limn→∞

an

bn
= 1. If αn is

the number of morphisms from Σ∗ to ∆∗ with images of length at most n, then αn ∼ (cmn)k.
Now let βn be the number of marked morphisms from Σ∗ to ∆∗ with images of length at
most n. For a marked morphism φ, each word in the list (φ(a1), . . . , φ(ak)) must start with
a different letter, followed by any word of length 6 n− 1. Since there are

(
m
k

)
k! options for

the first letters, βn ∼
(
m
k

)
k!(cmn−1)k and we get:

I Proposition 21. If αn and βn are the numbers of morphisms and marked morphisms,
respectively, from Σ∗ to ∆∗, with images of length at most n, then the density of the marked
morphisms among all morphisms is a positive constant:

lim
n→∞

βn
αn

= lim
n→∞

(
m
k

)
k!(cmn−1)k

(cmn)k = m!
mk(m− k)! .

In the free group case the counting is similar, but there are more restrictions on the
images of an immersion: first, all images need to be reduced words, and second, not just their
first letters are constrained, but also their last letters. For some φ, let the set of first letters
of (φ(a1), . . . , φ(ak)) be F ⊂ ∆±1, and the set of inverses of the last letters be L ⊂ ∆±1.
Then φ : F (Σ) 7→ F (∆) is an immersion if all letters in F are distinct, all the letters in L
are distinct, which implies |F | = |L| = k, and furthermore F ∩ L = ∅. An image φ(ai) of
length n has the form φ(ai) = αx1x2 . . . xn−2β, where α ∈ F , β−1 ∈ L, xi ∈ ∆±1, and φ(ai)
is reduced, so x1 6= α−1 and xn−2 6= β−1. Counting such words is more delicate than in the
monoid case, but the asymptotics are similar, due to the following result ([6, Proposition 1]).

I Proposition 22. Let A and B be subsets of ∆±1. The number of elements of length n in
F (∆) that do not start with a letter in A and do not end with a letter in B is equal to

fA,B(n) = (2m− |A|)(2m− |B|)(2m− 1)n−1 + xm+ (−1)n(|A||B| − ym)
2m ,

where x = |A ∩B| − |A−1 ∩B|, y = |A ∩B|+ |A−1 ∩B|, and m = |∆|.
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Let A = {α−1} and B = {β−1}; then since the number of possible φ(ai) of length 6 n

is equal to the number of reduced words of length 6 n− 2 starting with a letter different
from α−1 and ending with a letter different from β−1, this number is

∑
16j6n−2 fA,B(j).

Since |A| = |B| = 1, fA,B(j) is asymptotically (2m− 1)j , and the number of possible φ(ai)
is ∼ c1(2m− 1)n−2, where c1 is a constant depending on m. Thus for fixed sets F and L the
number of immersions φ with images in the ball of radius n is ∼ (c1(2m− 1)n−2)k. Since
there are only finitely many choices for sets F and L of first and last letters, respectively,
and the number of k-tuples of elements in F (∆) of length 6 n is ∼ (c2(2m− 1)n)k for some
constant c2, the number of immersions over the total number of maps F (Σ) 7→ F (∆) is
∼ (c1(2m−1)n−2)k

(c2(2m−1)n)k ; so as n 7→ ∞, this ratio is a positive constant depending on k and m.
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Abstract
We study a generalisation of Büchi-Landweber games to the timed setting. The winning condition is
specified by a non-deterministic timed automaton with epsilon transitions and only Player I can
elapse time. We show that for fixed number of clocks and maximal numerical constant available to
Player II, it is decidable whether she has a winning timed controller using these resources. More
interestingly, we also show that the problem remains decidable even when the maximal numerical
constant is not specified in advance, which is an important technical novelty not present in previous
literature on timed games. We complement these two decidability result by showing undecidability
when the number of clocks available to Player II is not fixed.

As an application of timed games, and our main motivation to study them, we show that they
can be used to solve the deterministic separability problem for nondeterministic timed automata
with epsilon transitions. This is a novel decision problem about timed automata which has not been
studied before. We show that separability is decidable when the number of clocks of the separating
automaton is fixed and the maximal constant is not. The problem whether separability is decidable
without bounding the number of clocks of the separator remains an interesting open problem.
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1 Introduction

Separability. Separability is a classical problem in theoretical computer science and math-
ematics. A set S separates two sets L,M if L ⊆ S and S ∩M = ∅. Intuitively, a separator
S provides a certificate of disjointness, yielding information on the structure of L,M up
to some granularity. There are many elegant results in computer science and mathematics
showing that separators with certain properties always exist, such as Lusin’s separation
theorem in topology (two disjoint analytic sets are separable by a Borel set), Craig’s inter-
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polation theorem in logic (two contradictory first-order formulas can be separated by one
containing only symbols in the shared vocabulary), in model theory (two disjoint projective
classes of models are separable by an elementary class), in formal languages (two disjoint
Büchi languages of infinite trees are separable by a weak language, generalising Rabin’s
theorem [44]), in computability (two disjoint co-recursively enumerable sets are separable by
a recursive set), in the analysis of infinite-state systems (two disjoint languages recognisable
by well-structured transition systems are regular separable [17]), etc.

When separability is not trivial, one may ask whether the problem is decidable. Let C
and S be two classes of sets. The S-separability problem for C amounts to decide whether,
for every input sets L,M ∈ C there is a set S ∈ S separating L,M . Many results of this
kind exist when C is the class of regular languages of finite words over finite alphabets,
and S ranges over piecewise-testable languages [40, 18] (later generalised to context-free
languages [19] and finite trees [28]), locally and locally threshold testable languages [41],
first-order logic definable languages [43] (generalised to some fixed levels of the first-order
hierarchy [42]). For classes of languages C beyond the regular ones, decidability results
are more rare. For example, regular separability of context-free languages is undecidable
[45, 32, 34]. Nonetheless, there are positive decidability results for separability problems
on several infinite-state models, such as Petri nets [12], Parikh automata [11], one-counter
automata [16], higher-order and collapsible pushdown automata [30, 14], and others.

In this paper, we go beyond languages over finite alphabets, and we study the separability
problem for timed languages, which we introduce next.

Timed automata. Nondeterministic timed automata are one of the most widespread model
of real-time reactive systems. They consist of finite automata extended with real-valued
clocks which can be reset and compared by inequality constraints. Alur and Dill’s seminal
result showed PSpace-completeness of the reachability problem [3], for which they received
the 2016 Church Award [1]. This paved the way to the automatic verification of timed
systems, eventually leading to mature tools such as UPPAAL [6], UPPAAL Tiga (timed
games) [10], and PRISM (probabilistic timed automata) [36]. The reachability problem is
still a very active research area to these days [23, 31, 2, 26, 27, 29], as well as expressive
generalisations thereof, such as the binary reachability problem [15, 21, 35, 25].

Deterministic timed automata form a strict subclass of nondeterministic timed automata
where the next configuration is uniquely determined from the current one and the timed
input symbol. This class enjoys stronger properties, such as decidable universality/inclusion
problems and complementability [3], and it is used in several applications, such as test
generation [39], fault diagnosis [7], learning [49, 46]; defining winning conditions in timed
games [4, 33, 8], and in a notion of recognisability of timed languages [37].

The k,m-deterministic separability problem asks, given two nondeterministic timed auto-
mata A and B with epsilon transitions, whether there exists a deterministic timed automaton
S with k clocks and maximal constant bounded by m s.t. L(S) separates L(A), L(B). Like-
wise one defines k-deterministic separability, where only k is fixed but not m. We can see A
as recognising a set of good behaviours which we want to preserve and B recognising a set of
bad behaviours which we want to exclude; a deterministic separator, when it exists, provides
a compromise between these two conflicting requirements. To the best of our knowledge,
separability problems for timed automata have not been investigated before. Our first main
result is decidability of k,m and k-deterministic separability.

I Theorem 1.1. The k,m and k-deterministic separability problems are decidable.



L. Clemente, S. Lasota, and R. Piórkowski 121:3

Decidability of deterministic separability should be contrasted with undecidability of the
corresponding membership problem [24, 48]. This is a rare circumstance, which is shared
with languages recognised by one-counter nets [16], and conjectured to be the case for the full
class of Petri net languages1. We solve the separability problem by reducing to an appropriate
timed game (cf. Theorems 1.2 and 1.3 below). This forms the basis of our interest in defining
and studying a non-trivial class of timed games, which we introduce next.

Timed games. We consider the following timed generalisation of Büchi-Landweber games [9].
There are two players, called Player I and Player II, which play taking turns in a strictly
alternating fashion. At the i-th round, Player I selects a letter ai from a finite alphabet and a
nonnegative timestamp ti from R≥0, and Player II replies with a letter bi from a finite alphabet.
At doomsday, the two players have built an infinite play π = (a1, b1, t1) (a2, b2, t2) · · · , and
Player I wins if, and only if, π belongs to her winning set, which is a timed langauge
recognised by a nondeterministic timed automaton with ε-steps. For a fixed number of clocks
k ∈ N and maximal constant m ∈ N, the k,m-timed synthesis problem asks whether there
is a finite-memory timed controller for Player II using at most k clocks and guards with
maximal constant bounded by m in absolute value, ensuring that every play π conform to the
controller is winning for Player II. Our second contribution is decidability of this problem.

I Theorem 1.2. For every fixed k,m ∈ N, the k,m-timed synthesis problem is decidable.

We reduce to an untimed finite-state game with an ω-regular winning condition [9]. This
should be contrasted with undecidability of the same problem when the set of winning plays
for Player II is a nondeterministic timed language (cf. [22] for a similar observation). The
k-timed synthesis problem asks whether there exists a bound m ∈ N s.t. the k,m-timed
synthesis problem has a positive answer for Player II, which we also show decidable.

I Theorem 1.3. For every fixed k ∈ N, the k-timed synthesis problem is decidable.

This requires the synthesis of the maximal constant m, which is a very interesting a technical
novelty not shared with the current literature on timed games. We design a protocol whereby
Player II demands Player I to be informed when clocks elapse one time unit. We require
that the number of such consecutive requests be finite, yielding a bound on m (when such a
value exists).

Finally, we complement the two decidability results above by showing that the synthesis
problem is undecidable when the number of clocks k available to Player II is not specified in
advance (cf. Theorem 6.1).

There are many variants of timed games in the literature, depending whether the players
must enforce a nonzeno play, who controls the elapse of time, concurrent actions, etc.
[50, 38, 5, 22, 20]. In this terminology, our timed games are asymmetric (only Player I can
elapse time) and turn-based (the two players strictly alternate).

2 Preliminaries

Let R be the set of real numbers and R≥0 the set of nonnegative real numbers. For two
sets A and B, let their Cartesian product be A · B. Let A0 = {ε}, and, for every n ≥ 0,
An+1 = A ·An. The set of finite sequences over A is A∗ =

⋃
n≥0 A

n, Aω is the set of infinite

1 All these classes of languages have a decidable disjointness problem, however regular separability is not
always decidable in this case [47].
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sequences, and A∞ = A∗ ∪ Aω. A (monotonic) timed word over a finite alphabet Σ is
a sequence w = (a1, t1) (a2, t2) · · · ∈ (Σ · R≥0)∞ s.t. 0 ≤ t1 ≤ t2 ≤ · · · , and it is strictly
monotonic if 0 ≤ t1 < t2 < · · · . A timed language over Σ is a set L ⊆ (Σ ·R≥0)∞ of monotonic
timed words; it is strictly monotonic if it contains only strictly monotonic timed words.
The untiming untime(w) of a timed word w as above is the word a0a1 · · · ∈ Σ∞ obtained
from w by removing the timestamps, which is extended to timed languages L pointwise as
untime(L) = {untime(w) | w ∈ L}.

Clocks, constraints, and regions. Let X = {x1, . . . , xk} be a finite set of clocks. A clock
valuation is a function µ ∈ RX

≥0 assigning a nonnegative real number µ(x) to every clock
x ∈ X. For a nonnegative time elapse δ ∈ R≥0, we denote by µ+ δ the valuation assigning
µ(x) + δ to every clock x; for a set of clocks Y ⊆ X, let µ[Y 7→ 0] be the valuation which is 0
on Y and agrees with µ on X \ Y. We write µ0 for the clock valuation mapping every clock
x ∈ X to µ0(x) = 0. A clock constraint is a quantifier-free formula of the form

ϕ,ψ ::≡ true | false | xi − xj ∼ z | xi ∼ z | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ,

where ∼∈ {=, <,≤, >,≥} and z ∈ Z. A clock valuation µ satisfies a constraint ϕ, written
µ |= ϕ, if interpreting each clock xi by µ(xi) makes ϕ true. A constraint ϕ defines the set
JϕK =

{
µ ∈ RX

≥0
∣∣ µ |= ϕ

}
of all clock valuation it satisfies. When the set of clocks is fixed to

X and the absolute value of constants is bounded by m ∈ N, we speak of X,m-constraints.Two
valuations µ, ν ∈ RX

≥0 are X,m-region equivalent, written µ ∼X,m ν, if they satisfy the same
X,m-constraints. An X,m-region [µ]X,m ⊆ RX

≥0 is an equivalence class of clock valuations
w.r.t. ∼X,m. For fixed finite X and m ∈ N there are finitely many X,m-regions; let Reg(X,m)
denote this set. Let µ0 = λx.0 and r0 = [µ0]X,m be its region. We write r |= ϕ for a
region r ∈ Reg(X,m) whenever µ |= ϕ for some µ ∈ r (equivalently, for all such µ’s). The
characteristic clock constraint ϕr of a region r ∈ Reg(X,m) is the unique constraint (up to
logical equivalence) s.t. JϕrK = r. When convenient, we deliberately confuse regions with
their characteristic constraints. For two regions r, r′ ∈ Reg(X,m) we write r ≺ r′ whenever
r = [µ]X,m, r′ = [µ+ δ]X,m for some δ > 0, and r 6= r′.

Timed automata. A (nondeterministic) timed automaton is a tuple A = (Σ, L, X, I, F,∆),
where Σ is a finite input alphabet, L is a finite set of control locations, X is a finite set of
clocks, I, F ⊆ L are the subsets of initial, resp., final, control locations, and ∆ is a finite
set of transition rules of the form tr = (p, a, ϕ, Y, q) ∈ ∆, with p, q ∈ L control locations,
a ∈ Σε := Σ ∪ {ε}, ϕ a clock constraint to be tested and Y ⊆ X the set of clocks to be
reset to 0. A configuration of a timed automaton A is a pair (p, µ) consisting of a control
location p ∈ L and a clock valuation µ ∈ RX

≥0. It is initial if p is so and µ = µ0. It is
final if p is so. Every transition rule tr induces a discrete transition between configurations
(p, µ) tr−→ (q, ν) when µ |= ϕ and ν = µ[Y 7→ 0]. Intuitively, a discrete transition consists of a
test of the clock constraint ϕ, reset of clocks Y, and step to the location q. Moreover, for
every nonnegative δ ∈ R≥0 and every configuration (p, µ) there is a time-elapse transition
(p, µ) δ−→ (p, µ+ δ). The timed language ε-recognised by A, denoted Lε(A), is the set of
finite timed words w = (a1, t1) · · · (an, tn) ∈ (Σε ·R≥0)∗ s.t. there is a sequence of transitions
(p0, µ0) tr1,δ1−−−→ · · · trn,δn−−−−→ (pn, µn) where p0 ∈ I is initial, µ0(x) = 0 for every clock x ∈ X,
pn ∈ F is final, and, for every 1 ≤ i ≤ n, δi = ti − ti−1 (where t0 = 0) and tri is of the form
(pi−1, ai,_,_, pi). The timed ω-language Lωε (A) ⊆ (Σε ·R≥0)ω is defined in terms of sequences
as above with the condition that pi ∈ F infinitely often. We obtain the timed language
L(A) = π(Lε(A)) ⊆ (Σ·R≥0)∗, resp., ω-language Lω(A) = π(Lωε (A))∩(Σ·R≥0)ω ⊆ (Σ·R≥0)ω
recognised by A, where π is the mapping that removes letters of the form (ε,_).
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A timed automaton (without ε-transitions) is deterministic if it has exactly one initial
location and, for every two rules (p, a, ϕ, Y, q), (p, a, ϕ′, Y′, q′) with Jϕ ∧ ϕ′K 6= ∅, we have
Y = Y′ and q = q′. We write nta, dta for the classes of nondeterministic, resp., deterministic
timed automata without epsilon transitions. When the number of clocks in X is bounded
by k we write k-nta, resp., k-dta. When the absolute value of the maximal constant is
additionally bounded by m ∈ N we write k,m-nta, resp., k,m-dta. When epsilon transitions
are allowed, we write ntaε. A timed language is called nta language, dta language, and
so on, if it is recognized by a timed automaton in the respective class. A k,m-dta with
clocks X is regionised if each constraint is a characteristic constraint ϕr of some region
r ∈ Reg(X,m) and for each location p, input a ∈ Σ, and r ∈ Reg(X,m) there is a (necessarily
unique) transition rule of the form (p, a, ϕr, Y, q). It is well-known that a k,m-dta can be
transformed into an equivalent regionised one by adding exponentially many transitions.

I Example 2.1 (nta language which is not a dta language). Let Σ = {a} be a unary alphabet
and let L be the set of timed words of the form (a, t1) · · · (a, tn) s.t. tn − ti = 1 for some
1 ≤ i < n. L = L(A) for the timed automaton A = (Σ, L, X, I, F,∆) with a single clock
X = {x} three locations L = {p, q, r}, of which I = {p} is initial and F = {r} is final, and
transitions rules (p, a, true, ∅, p), (p, a, true, {x} , q), (q, a, x < 1, ∅, q), (q, a, x = 1, ∅, r) ∈ ∆.
Intuitively, in p the automaton waits until it guesses that the next input will be (a, ti), at
which point it moves to q by resetting the clock (and subsequently reading a). From q, the
automaton can accept by going to r only if exactly one time unit elapsed since (a, ti). There
is no dta recognising L, since in order to recognise L deterministically one must store all
timestamps in the last unit interval, and thus no bounded number of clocks suffices.

I Example 2.2. The complement of L from Example 2.1 can be recognised by an nta
with two clocks. Indeed, a timed word (a, t1) · · · (a, tn) is not in L if either of the following
conditions hold:
1) its length n is at most 1, or
2) the total time elapsed between the first and the last letter is less than one time unit

tn − t1 < 1, or
3) there is a position 1 ≤ i < n s.t. tn − ti > 1 and tn − ti+1 < 1.
It is easy to see that two clocks suffice to nondeterministically check the conditions above.

Since checking whether an nta recognises a deterministic language is undecidable [24, 48],
there is no recursive bound on the number of clocks sufficient to deterministically recognise
an nta language (whenever possible). Thus nta can be non-recursively more succinct than
dta w.r.t. number of clocks. However, in general such nta recognise timed languages whose
complement is not an nta language. The next example shows a timed language which is
both nta and co-nta recognisable, however the number of clocks of an equivalent dta is at
least exponential in the number of clocks of the nta.

I Example 2.3. For k ∈ N, let Lk be the set of strictly monotonic timed words (a, t1) · · · (a, tn)
s.t. tn − ti = 1 where i = n− 2k. The language Lk can be recognised by a (2 · k + 2)-clock
nta Ak of polynomial size. There are clocks x0, x1, . . . , xk and y0, y1, . . . , yk. Clock x0 is
used to check strict monotonicity. Clock y0 is reset when the automaton guesses (a, ti). The
automaton additionally keeps track of the length of the remaining input. This is achieved
by implementing a k-bit binary counter, where xj = yj represents that the j-th bit is one.
In order to set the j-th bit to one, the automaton resets xj , yj ; to set it to zero, it resets
only xj . This is correct thanks to strict monotonicity. At the end the automaton checks
y0 = 1 and that the binary counter has value 2k. Any deterministic automaton recognising
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Lk requires exponentially many clocks to store the last 2k timestamps. The complement of
Lk can be recognised by a (2 · k + 2)-clock nta of polynomial size. Indeed, a timed word is
not in Lk if any of the following conditions hold:
1) its length n is ≤ 2k, or
2) tn − ti < 1 with i = n− 2k, or
3) tn − ti > 1 with i = n− 2k.
The automaton guesses which condition holds and uses a k-bit binary counter as above to
check that position i has been guessed correctly.

3 Timed synthesis games

Let A and B be two finite alphabets of actions and let W ⊆ (A · B · R≥0)ω be a language
of timed ω-words over the alphabet A · B. The timed synthesis game GA,B(W ) is played
by Player I and Player II in rounds. At round i ≥ 0, Player I chooses a timed action
ai · ti ∈ A ·R≥0 and Player II replies immediately with an untimed action bi ∈ B. The game
is played for ω rounds, and at doomsday the two players have produced an infinite play

π = a1b1t1a2b2t2 · · · ∈ (A ·B · R≥0)ω. (1)

Player I wins the game if, and only if, π ∈W .
Let k ∈ N be a bound on the number of available clocks X = {x1, . . . , xk}, and letm ∈ N be

a bound on the maximal constant. A k,m-controller for Player II in GA,B(W ) is a regionised
k,m-dtaM = (A,B, L, `0, δ) with input alphabet A and output alphabet B, where L is a set
of memory locations, `0 ∈ L is the initial memory location, and δ : L ·A ·Reg(k,m)→ L ·B ·2X

is the update function mapping the current memory ` ∈ L, input a ∈ A, and region
ϕ ∈ Reg(k,m) to δ(`, a, ϕ) = (`′, b, Y), where `′ ∈ L is the next memory location, b ∈ B is an
output symbol, and Y ⊆ X is the set of clocks to be reset.

We define by mutual induction the notion ofM-conform partial runs Run(M) ⊆ L ·RX
≥0 ·

(A ·B · R≥0 · L · RX
≥0)∗, and the strategy JMK : Run(M) ·A · R≥0 → L · RX

≥0 ·B induced by
the controller on conform runs as follows: Initially, (`0, µ0) ∈ Run(M), where µ0(x) = 0 for
every clock x ∈ X. Inductively, for every n ≥ 0 and everyM-conform partial run

ρ = (`0, µ0) (a1, b1, t1, `1, µ1) · · · (an, bn, tn, `n, µn) ∈ Run(M), (2)

and for every (an+1, tn+1) ∈ A · R≥0, we define JMK (ρ · an+1 · tn+1) = (`n+1, µn+1, bn+1)
for the unique (`n+1, µn+1, bn+1) ∈ L · RX

≥0 · B s.t. δ(`n, an+1, ϕµn+δn+1) = (`n+1, bn+1, Y)
and µn+1 = (µn + δn+1)[Y 7→ 0], where δn+1 = tn+1 − tn (with t0 = 0). Moreover, ρ ·
an+1 · bn+1 · tn+1 · `n+1 · µn+1 ∈ Run(M). An infinite M-conform run is any sequence
ρ ∈ L · RX

≥0 · (A · B · R≥0 · L · RX
≥0)ω such that every finite prefix thereof is M-conform;

let Runω(M) be the set of such ρ’s. Let r2p(ρ) ∈ (A ·B · R≥0)ω be the corresponding play
π = r2p(ρ) as in (1) obtained by dropping locations and clocks valuations. The controller
M is winning if every infinite M-conform run ρ satisfies r2p(ρ) 6∈ W . A k-controller is
k,m-controller for some m ∈ N. For fixed k,m ∈ N, the k,m-timed synthesis problem asks,
given A,B and an ntaε timed language W ⊆ (A ·B ·R≥0)ω, whether Player II has a winning
k,m-controller in GA,B(W ); the k-timed synthesis problem asks instead for a k-controller;
finally, the timed synthesis problem asks whether there exists a controller. The 0, 0-timed
synthesis problem is equivalent to untimed synthesis problem, which is decidable by the
Büchi-Landweber Theorem [9, Theorem 1′]:

I Lemma 3.1 (cf. [13, Appendix A]). The 0, 0-synthesis problem is decidable.
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4 Deterministic separability

In this section we prove our first main result Theorem 1.1: we show that the k,m and
k-deterministic separability problems are decidable. We begin with a motivating example of
nonseparable languages.

I Example 4.1. Consider the nta language L from Example 2.1. Thanks to Example 2.2
its complement is also a nta language. Since neither L nor its complement are deterministic,
they cannot be deterministically separable.

Moreover, a deterministic separator, when it exists, may need exponentially many clocks.

I Example 4.2. We have seen in Example 2.3 an O(k)-clock nta language s.t. 1) its
complement is also an O(k)-clock nta language, and 2) any dta recognising it requires 2k
clocks. Thus, a deterministic separator may need exponentially many clocks in the size of
the input nta.

In the rest of the section we show how to decide the separability problems. We reduce
the k,m-deterministic separability to k,m-timed synthesis, and k-deterministic separability
to k-timed synthesis, for every fixed k,m ∈ N. Let A,B be two ntaε over alphabet Σ, and
let X be a set of k clocks. We build a timed synthesis game where the two sets of actions are

A = Σ (Player I), B = {acc, rej} (Player II).

We define a projection function proj(a, b, t) = (a, t), which is extended pointwise to finite and
infinite timed words proj((a0, b0, t0) (a1, b1, t1) · · · ) = (a0, t0) (a1, t1) · · · and timed languages
proj(L) = {proj(w) | w ∈ L ⊆ (A ·B · R≥0)ω}. Let Acc,Rej ⊆ (A ·B · R≥0)∗ be sets of those
timed words ending in a timed letter of the form (_, acc,_), resp., (_, rej,_). The winning
condition for Player I is

W0 =
(
proj−1(L(A)) ∩ Rej ∪ proj−1(L(B)) ∩ Acc

)
· (A ·B · R≥0)ω. (3)

Crucially, we observe that W0 is a ntaε language since L(A), L(B),Rej,Acc are so, and this
class is closed under inverse homomorphic images, intersections, and unions. The following
lemma states the correctness of the reduction.

I Lemma 4.3. There is a k,m-controller for Player I in GA,B(W0) if, and only if, L(A), L(B)
are k,m-deterministically separable.

Proof. LetM = (A,B, L, `0, δ) be a winning k,m-controller for Player II in G = GA,B(W0).
Let X = {x1, . . . , xk} be clocks ofM. We construct a separator S = (Σ, L×B, X, I, F,∆) ∈
k,m-dta, where I = {(`0, acc)} if ε ∈ L(A) and I = {(`0, rej)} otherwise, F = L× {acc}, and

((`, b) , a, ϕ, Y, (`′, b′)) ∈ ∆ if, and only if, δ(`, a, ϕ) = (`′, b′, Y) . (4)

We show that L(S) separates L(A), L(B) using the fact that S is deterministic. In order
to show L(A) ⊆ L(S), let w = (a1, t1) · · · (an, tn) ∈ L(A) and let Player I play this timed
word in G. Let the correspondingM-conform partial play be π = (a1, b1, t1) · · · (an, bn, tn).
Since M is winning, π does not extend to an infinite word in W0, and in particular π 6∈
proj−1(L(A)) ∩ Rej. But proj(π) = w ∈ L(A) by assumption, and thus bn = acc. The unique
run of S on w ends up in an accepting control location of the form (_, bn), and thus w ∈ L(S),
as required. The argument showing that L(S) ∩ L(B) = ∅ is similar, using the fact that S is
deterministic and must reach bn = rej and thus reject all words (a1, t1) · · · (an, tn) ∈ L(B).
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For the other direction, let S = (Σ, L, X, {`0} , F,∆) ∈ k,m-dta be a deterministic
separator. We construct a winning k,m-controller for Player II in G of the form M =
(A,B, L, `0, δ) where δ(`, a, ϕ) = (`′, b, Y) for the unique Y, `′, b s.t. (`, a, ϕ, Y, `′) ∈ ∆ and
b = acc iff `′ ∈ F. In order to argue thatM is winning in G, let π = (a1, b1, t1) (a2, b2, t2) · · · ∈
(A ·B · R≥0)ω be anM-conform play. By construction ofM we have:

B Claim 4.4. For every finite nonempty prefix π′ = (a1, b1, t1) · · · (an, bn, tn) of π, proj(π′) ∈
L(S) if, and only if bn = acc.

Knowing that L(A) ⊆ S, we deduce that no prefix of π belongs to proj−1(L(A))∩Rej. Simil-
arly, knowing that L(S)∩L(B) = ∅, we deduce that no prefix of π belongs to proj−1(L(B))∩Acc.
Thus π /∈W0 and thereforeM is winning. J

Proof of Theorem 1.1. Lemma 4.3 provides a reduction from the k,m-deterministic separ-
ability problem to the k,m-timed synthesis problem. The latter problem is decidable by
Theorem 1.2. Since the construction in Lemma 4.3 is independent of m, it provides also a
reduction from the k-deterministic separability problem to the k-timed synthesis problem.
The latter problem is decidable by Theorem 1.3. J

5 Solving the timed synthesis problems

The second main result of this paper is decidability of the k,m-timed synthesis problem and
of the k-synthesis problem, i.e., when the maximal constant m is not specified in advance
(Theorems 1.2 and 1.3). This will be achieved in four steps. In the first two steps (see
[13, Appendices B.1 and B.2]) we make certain easy simplifying assumptions that winning
conditions W are strictly monotonic, and zero-starting: all words (a1, t1) (a2, t2) · · · ∈ W
satisfy t1 = 0. The main technical construction is in Section 5.1, where we prove Theorem 1.2
in such a way that we will easily obtain Theorem 1.3 as a corollary thereof in Section 5.2.

The decidability results of this section are tight, since timed synthesis is undecidable
when k is not fixed (cf. Theorem 6.1).

5.1 Solving the k, m-timed synthesis problem
In this section we prove Theorem 1.2 by reducing the k,m-timed synthesis problem to a
0, 0-timed synthesis problem, which is decidable by Lemma 3.1. This is the most technically
involved section. The structure of the reduction will be useful in Section 5.2 to show
decidability of the k-timed synthesis problem.

Let X be a fixed set of clocks of size |X| = k and let m ∈ N be a fixed bound on constants.
We reduce the k,m-synthesis problem to the 0, 0-synthesis problem by designing a protocol
in which Player II, to compensate his inability to measure time elapse, can request certain
clocks to be tracked. In addition, we design the Player I’s winning condition that obliges
her to remind whenever the value of any tracked clock is an integer, by submitting expiry
information one time unit after a corresponding request.

Let fract(x) stand for the fractional part of the value of a clock x. For Y1, Y2 ⊆ X, two
(partial) clock valuations µ ∈ RY1

≥0, ν ∈ RY2
≥0 are fractional region equivalent if Y1 = Y2 and

they exhibit the same relations between fractional parts of clocks: µ |= fract(x) < fract(x′)
iff ν |= fract(x) < fract(x′) and µ |= fract(x) = 0 iff ν |= fract(x) = 0, for all x, x′ ∈ Y1. By
a (partial) fractional X-region f we mean an equivalence class of this equivalence relation.
All elements µ ∈ RY

≥0 in f have the same domain Y, which we denote by dom(f) = Y. Let
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0(f) = {x ∈ dom(f) | f |= fract(x) = 0}. Let FReg(X) be the set of all fractional X-regions,
including the empty one f0 with dom(f0) = ∅. For r ∈ Reg(X,m) and f ∈ FReg(X), we say
that f agrees with r if they give the same answer for clocks x, y ∈ dom(f):

f |= fract(x) < fract(y) if, and only if, r |= fract(x) < fract(y) ∨ x > m ∨ y > m;

f |= fract(x) = 0 if, and only if, r |= fract(x) = 0 ∨ x > m.
The successor relation between regions induces a corresponding relation between fractional
regions: f � f′ whenever dom(f) = dom(f′), f agrees with some r, f′ agrees with some r′,
and r � r′. The immediate successor is the minimal f′ with f ≺ f′. Finally, the successor
region of r agreeing with f is succX,m(r, f) = min� {r′ � r | f agrees with r′}. In the sequel
we apply clock resets also to regions r[Y 7→ 0] and fractional regions.

Let the original game G = GA,B(W ) have action alphabets A,B and Player I’s winning
condition W ⊆ (A ·B · R≥0)ω. Thanks to [13, Appendices B.1 and B.2] we assume that W
is both strictly monotonic and zero starting. We design a new game G′ = GA′,B′(W ′k,m) as
follows. We take as the new action alphabets the sets

A′ = (A ∪ {�}) · FReg(X) and B′ = (B ∪ {�}) · 2X. (5)

The players’ action sets A′, B′ depend only on the set of clocks X and do not depend on the
maximal constant m. Moves of the form (�,_) are improper and the other ones (i.e., those
involving an A or B component) are proper. Let an infinite play be of the form

π = (a′1, b′1, t1) (a′2, b′2, t2) · · · ∈ (A′ ·B′ · R≥0)ω, with a′i = (ai, fi) and b′i = (bi, Yi) . (6)

The domain Ti = dom(fi) of a fractional region denotes the clocks tracked at time ti, i.e.,
those for which Player I needs to provide expiry information. Sets Yi’s denote clocks which
Player II wants to be continued to be tracked: by an x-request at time ti we mean a Player
II’s move b′i with x ∈ Yi. An x-request at time ti is cancelled if there is another x-request
for the same clock at some time ti < u < ti + 1. An improper x-request chain starting at
time ti of length l ≥ 1 is a sequence of improper non-cancelled x-requests at times ti, ti + 1,
. . . , ti + l − 2, followed by an improper (but possibly cancelled) x-request at time ti + l − 1.
Likewise one defines an infinite improper x-request chain starting at time ti.

I Example 5.1. Before defining the winning set W ′k,m formally, we illustrate the underlying
idea. Consider the following partial play (a1, b1, 0) (a2, b2, 4.2) (a3, b3, 6) ∈ (A ·B · R≥0)∗ in
G:

time

0 1 2 3 4 5 6

a1
b1

a2
b2

a3
b3

In G′, Player II demands Player I to provide clock expiry information. Let X = {x, y} and
m = 3. Suppose Player II wants to make sure that a2 comes at time > 3. To this end, she
makes an x-request chain of length 3 (we write x instead of fract(x); fφ denotes the fractional
X-region agreeing with φ):
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emulated
time

0 1 2 3 4 5 6

(a1, f0)
(b1, {x})

(a2, f0)
(b2, {y})

(a3, f0<y)
(b3, {y})

x = 0 x = 1 x = 2 x = 3 x > 3, y = 0 y = 1 1 < y < 2

(�, fx=0)
(�, {x})

(�, fx=0)
(�, {x})

(�, fx=0)
(�, ∅)

(�, fy=0)
(�, {y})

cancelledwhat is played
Player II’s knowledge

The length of an x-chain at any given moment corresponds to the integral part of x; the
expiry information for x is provided by Player I precisely when the fractional part of x is 0.

In order to define W ′k,m it will be convenient to have the following additional data
extracted from π. Let δi = ti − ti−1 ≥ 0 be the time elapsed by Player I at round i (with
t0 = 0). Furthermore, let ν0 = λx · 0 be the initial clock valuation, and, for i ≥ 0, let

νi+1 = (νi + δi+1)[Yi+1 7→ 0]. (7)

In words, every x-request is interpreted as reset of clock x. The winning condition W ′k,m in
the new game will impose, in addition to W , the following further conditions to be satisfied
by Player I in order to win. Let W I

k ⊆ (A′ ·B′ · R≥0)ω be the set of plays π as in (6) which
are zero-starting (t1 = 0), strictly monotonic and, for every i ≥ 1:
1. For every x ∈ X, x is expired at time ti if, and only if, ti ≥ 1 and there is a non-cancelled

x-request at an earlier time tj = ti − 1.
2. Tracked clocks are consistent with requests: for every clock x ∈ X, x is tracked x ∈ Ti at

time ti if, and only if, there is an x-request at an earlier tj with ti − 1 ≤ tj < ti.
3. The fractional regions are correct: fi agrees with [(νi−1 + δi)]X,m.

Thus the conditions above assure that Player I provides exactly all expiry information
requested by Player II in a timely manner, and the fractional regions fi are consistent with
the requests and time elapse. Note that any play in W I

k satisfies 0 < νi(x) ≤ 1 for every i ≥ 1
and x ∈ Ti. Indeed, positivity is due to strict monotonicity, and the upper bound due to the
conditions 1–3. Provided Player I satisfies W I

k, she wins whenever Player II violates any of
the conditions below: Let W II

k,m ⊆ (A′ ·B′ · R≥0)ω be the set of plays π as in (6) s.t.
4. Player II plays a proper move iff Player I does so.
5. Every improper Player II’s x-request b′i is a response to Player I’s expiry information for

x: Yi ⊆ 0(fi). (Proper x-requests are allowed unconditionally.)
6. For every clock x ∈ X, the length Player II’s improper x-request chains is < m. This is

the only component in the winning condition which depends on m.
Consider the projection function φ : (A′·B′·R≥0)→ (A·B·R≥0)∪{ε} s.t. φ((a,_) , (b,_) , t) =
ε if a = � or b = �, and φ((a,_) , (b,_) , t) = (a, b, t) if a ∈ A and b ∈ B, which is extended
homomorphically on finite and infinite plays. The winning condition for Player I in G′ is

W ′k,m = W I
k ∩

(
φ−1(W ) ∪ (A′ ·B′ · R≥0)ω \W II

k,m

)
. (8)

Since W , W I
k, are ntaε languages, and W I

k and W II
k,m are k-dta languages over A′ · B′,

thanks to the closure properties dta and ntaε languages the winning condition W ′k,m is
an ntaε language. In what follows, an untimed controller is a 0, 0-controller. Then next
two lemmas state the correctness of the reduction. Our assumption on strict monotonicity
facilitates the correctness proof since we need not deal with simultaneous events.
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I Lemma 5.2. If there is a winning k,m-controller M for G, then there is a winning
untimed controllerM′ for G′.

Proof. Let M = (A,B, L, `0, δ) be a winning k,m-controller M for G with clocks X =
{x1, . . . , xk} and update function δ : L ·A ·Reg(X,m)→ L ·B ·2X. We define a winning untimed
controllerM′ = (A′, B′, L′,B, δ′) for G′ with memory locations L′ = {B} ∪ L · Reg(X,m),
where B is the initial memory location, and remaing memory locations are of the form (`, r),
where ` ∈ L is the current memory location ofM and r ∈ Reg(X,m) is the current region of
M’s clocks. The update function δ′ : L′ ·A′ → L′ ·B′ (we omit regions and clock resets because
M′ has no clocks) is defined as follows. As long as the play is in W I

k, we can assume that
Player I starts with ((a, f0), t) and t = 0, due to the zero-starting restriction, which allows
Player II to submit requests at time 0. Consequently, let δ′(B, (a, f)) = ((`′, r0) , (b, X)),
where the next location `′ and the response b are determined by δ(`0, a, r0) = (`′, b), and the
set X denotes a request to track all clocks. Then, for every `, r, a, f, let

δ′((`, r) , (a, f)) = ((`′, r′) , (b, Y)) , (9)

where the r.h.s. is defined as follows. Let T = dom(f) be the currently tracked clocks, and
T0 = 0(f) ⊆ T the currently expired ones. If f agrees with no successor region of r then
Player II wins immediately because Player I is violating condition 3. Therefore, assume such
a successor region r̂ = succX,m(r, f) exists. We do a case analysis based on whether Player I
plays a proper or an improper move.

Case a ∈ A (proper move): Let δ(`, a, r̂) = (`′, b, Y) thus defining `′ and (b, Y) in (9). Take
as the new region r′ = r̂[Y 7→ 0].
Case a = � (improper move): Let the response be also improper b = �, the control
location does not change `′ = `, the new clocks to be tracked are the expired clocks with
a short improper chain Y = {x ∈ T0 | r̂ |= x = 1 ∨ · · · ∨ x = m− 1}, and r′ = r̂.

Consider an infiniteM′-conform run in G′ (omitting clock valuations sinceM′ has no clocks)

ρ′ = B (a′1, b′1, t1, (`1, r1)) (a′2, b′2, t2, (`2, r2)) · · · ∈ Runω(M′), a′i = (ai, fi) , b′i = (bi, Yi) .

If the induced play π′ = r2p(ρ′) = (a′1, b′1, t1) (a′2, b′2, t2) · · · ∈ (A′ · B′ · R≥0)ω is not in
W I
k, then Player II wins and we are done. Assume π′ ∈ W I

k, and thus conditions 1–3 are
satisfied. We argue that π′ ∈W II

k,m. The conditions 4 and 5 hold by construction. Aiming at
demonstrating that 6 holds too, let µ0 = λx · 0, and, for i ≥ 0, let

µi+1 =
{
µi + δi+1 ai = � (improper round)
(µi + δi+1)[Yi 7→ 0] ai ∈ A (proper round).

(10)

Thus clock valuations µi are defined exactly as νi in (7) except that only proper requests
are interpreted as clock resets. We claim that the region information ri is consistent with
µi: ri = [µi]X,m (*). Indeed, this is due to π′ ∈W I

k, and the fact thatM′ updates its stored
region consistently with time elapse: at every roundM′ uses the successor region agreeing
with the current fractional region submitted by Player I, and resets a set of clocks Y exactly
when she plays a proper move of the form (a, Y) ∈ A · 2X. Since an x-request is submitted by
M′ only when r̂ |= x ≤ m−1, condition 6 holds.

In order to show that Player II is winning, consider anM′-conform run ρ′. It suffices
to show π′ = r2p(ρ′) 6∈ φ−1(W ). Let the proper moves in ρ′ be at indices 1 = i1 < i2 < · · ·
(i1 = 1 due to zero-starting). In particular, `il = `i for il ≤ i < il+1. Consider the run
ρ = (`0, µ0) (ai1 , bi1 , ti1 , (`i1 , µi1)) (ai2 , bi2 , ti2 , (`i2 , µi2)) · · · . Using (*) and the definition of
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M′, one can prove by induction that ρ is an M-conform run in G. Since M is winning,
the induced play π = r2p(ρ) = (ai1 , bi1 , ti1) (ai2 , bi2 , ti2) · · · ∈ (A ·B · R≥0)ω, satisfies π /∈W .
Again by induction one can prove that π = φ(π′). Hence φ(π′) /∈W as required. J

I Lemma 5.3 (cf. [13, Appendix B.3]). If there is a winning untimed controllerM′ in G′,
then there is a winning k,m-controllerM in G.

5.2 Solving the k-timed synthesis problem
In this section we prove Theorem 1.3, stating that the k-timed synthesis problem is decidable,
by reducing it to the 0, 0-synthesis problem, which is decidable by Lemma 5.2. We build on the
game defined in Section 5.1. Starting from a timed game G = GA,B(W ) we define the timed
game G′′ = GA′,B′(W ′′k ), where the sets of actions A′ and B′ are as in (5), and the winning
condition W ′′k is defined as follows. Let W II

k ⊆ (A′ ·B′ · R≥0)ω be the set of plays where, for
every clock x ∈ X, improper x-request chains have finite lengths: W II

k =
⋃
m∈NW

II
k,m. (In

other words, (A′ ·B′ · R≥0)ω \W II
k contains plays with an infinite improper x-request chain,

for some clock x ∈ X.) Then, W ′′k is defined as W ′k,m from (8), except that W II
k,m is replaced

by the weaker condition W II
k (notice W ′′k does not depend on m):

W ′′k = W I
k ∩

(
φ−1(W ) ∪ (A′ ·B′ · R≥0)ω \W II

k

)
. (11)

I Lemma 5.4. There is a winning untimed controller for G′′ if, and only if, there is some
m ∈ N and a winning untimed controller for G′ = GA′,B′(W ′k,m).

Proof. For the “if” direction, we observe that W ′′k ⊆W ′k,m, for every m ∈ N. Hence every
winning untimed controller for G′ is also winning for G′′. For the “only if” direction, let
M′′ = (A′, B′, L, `0, δ) be an untimed winning controller in G′′. Let m = |A′| · |L|+ 1. We
claim thatM′′ is also winning in G′ = GA′,B′(W ′k,m) for this choice of m. Towards reaching
a contradiction, supposeM′′ is losing in G′. AnM′′-conform run ρ in G′ (or in G′′) and its
associated play π are of the form

ρ = `0 (a′1, b′1, t1, `1) (a′2, b′2, t2, `2) · · · ∈ Runω(M′′), with a′i = (ai, fi) and b′i = (bi, Yi) ,
π = r2p(ρ) = (a′1, b′1, t1) (a′2, b′2, t2) · · · ∈ Play(M′′).

Let ρi ∈ Run(M′′) be the finite prefix of ρ ending at (a′i, b′i, ti, `i). SinceM′′ is losing in G′,
someM′′-conform play π above is in W ′k,m. SinceM′′ is winning in G′′, π 6∈ φ−1(W ), and
thus π ∈W I

k \W II
k,m. This means that π contains an improper x-request chain C of length m,

for some clock x ∈ X. By the definition ofm, there are indices i < j s.t. the the same controller
memory repeats together with Player I’s action (a′i, `i) =

(
a′j , `j

)
. In particular fi = fj .

SinceM′′ is deterministic and its action depends only on Player I’s action a′i and control
location `i, a posteriori we have b′i = b′j as well. Moreover, as consecutive timestamps in C
are equal to the first one plus consecutive nonnegative integers, ∆ = ti − tj ∈ {1, . . . ,m− 1}.
Consider the corresponding infix σ =

(
a′i+1, b

′
i+1, ti+1, `i+1

)
· · ·
(
a′j , b

′
j , tj , `j

)
of the run

ρ. Since π ∈ W ′k,m, thanks to conditions 2 and 3 the fractional regions fi = fj con-
tain all tracked clocks, and they agree with the clock valuations νi and νj , respectively,
as defined in (7). Let {ti − 1 ≤ ti1 < ti2 < · · · < til < ti} = {ti − νi(x) | x ∈ dom(fi)} be
the timestamps corresponding to the last request of the clocks tracked at time ti, and
likewise let

{
tj − 1 ≤ tj1 < tj2 < · · · < tjl′ < tj

}
= {tj − νj(x) | x ∈ dom(fj)}. By assump-

tion, fi = fj , and hence l = l′ and for x ∈ dom(fi) = dom(fj) and 1 ≤ h ≤ l,
tih = ti − νi(x) if, and only if, tjh

= tj − νj(x) (*). Moreover, since 0(fi) = 0(fj), we
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have ti1 = ti − 1 if, and only if, tj1 = tj − 1 (**). Player I will win in G′ by forcing a
repetition of the infix σ ad libitum. In order to do so, we need to modify its timestamps.
An automorphism of the structure (R,≤,+1) is a monotonic bijection preserving integer
differences, in the sense that f(x + 1) = f(x) + 1 for every x ∈ R. Note that such an
automorphism is uniquely defined by its action on any unit-length interval. We claim that
there exists such an automorphism f : R→ R mapping ti − 1 to tj − 1 (and hence forcedly
also ti to tj), and each tih with 1 ≤ h ≤ l to f(tih) = tjh

. This is indeed the case, by (*)
and (**) all timestamps tih ’s belong to the unit half-open interval [ti − 1, ti) and likewise
all timestamps tjh

’s belong to [tj − 1, tj). We apply f to a timed word σ 7→ f(σ) by acting
pointwise on timestamps. Consider the infinite run ρ′ = ρi · σ · f(σ) · f(f(σ)) · · · ; it is
M′′-conform since the controllerM′′ is deterministic. By construction, ρ′ contains an infinite
x-request chain, and thus ρ′ 6∈W II

k . It remains to argue that ρ ∈W I
k implies ρ′ ∈W I

k as well.
Let there be a non-cancelled x-request at time ts in ρ′. If ts < tj − 1, then this request must
be satisfied at time ts′ = ts + 1 < tj , and thus already in ρi · σ, which is the case since the
latter is a prefix of ρ ∈W I

k. Now assume tj − 1 ≤ ts < tj . Thus ts = tjh
for some 1 ≤ h ≤ l.

By the definition of f , f−1(ts) = tih < tj − 1 and, thanks to the previous case, the request at
tih is satisfied at tih + 1 due to (*).By applying f we obtain f(tih + 1) = f(tih) + 1 = ts + 1,
and thus the request at time ts is satisfied at time ts + 1 in f(σ), as required. The general
argument for tj + n∆ + d− 1 ≤ ts < tj + n∆ + d, where n ≥ 0 and 0 ≤ d < ∆, is similar,
using induction on n. J

Proof of Theorem 1.3. Due to Lemmas 5.2 to 5.4, there is a winning untimed controller
M′′ for G′′ if, and only if there is some m ∈ N and a winning k,m-controllerM for G. Thus
the k-synthesis problem reduces to the 0, 0-synthesis problem, and the latter is decidable
thanks to Lemma 3.1. J

6 Future work

While deterministic separators may need exponentially many clocks (cf. Example 4.2), we do
not have a computable upper bound on the number of clocks of the separating automaton (if
one exists). We leave the dta separability problem when the number of clocks is not fixed
in advance as a challenging open problem. In this case, we cannot reduce the separability
problem to a timed synthesis problem, since the latter is undecidable (cf. [13, Appendix C]).

I Theorem 6.1. The timed synthesis problem is undecidable, and this holds already when
Player I’s winning condition is a 1-nta language.

We leave the computational complexity of separability as future work.
Deterministic separability can be considered also over infinite timed words. We chose to

present the case of finite words because it allows us to focus on the essential ingredients of
this problem. When going to infinite words, new phenomena appear already in the untimed
setting; for instance, deterministic Büchi automata are less expressive than deterministic
parity automata, and thus one should additionally specify in the input which priorities can
be used by the separator; or leave them unspecified and solve a more difficult problem.

Analogous results about separability of register automata can be obtained with techniques
similar to the one presented in this paper. We leave such developments for further work.
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Abstract
In 2015, it was shown that reachability for arbitrary directed graphs can be updated by first-order
formulas after inserting or deleting single edges. Later, in 2018, this was extended for changes of
size log n

log log n
, where n is the size of the graph. Changes of polylogarithmic size can be handled when

also majority quantifiers may be used.
In this paper we extend these results by showing that, for changes of polylogarithmic size,

first-order update formulas suffice for maintaining (1) undirected reachability, and (2) directed
reachability under insertions. For classes of directed graphs for which efficient parallel algorithms
can compute non-zero circulation weights, reachability can be maintained with update formulas that
may use “modulo 2” quantifiers under changes of polylogarithmic size. Examples for these classes
include the class of planar graphs and graphs with bounded treewidth. The latter is shown here.

As the logics we consider cannot maintain reachability under changes of larger sizes, our results
are optimal with respect to the size of the changes.
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1 Introduction

Suppose we are given a graph G whose edge relation is subjected to insertions and deletions
of edges. Which resources are required to update the reachability relation of the graph?

Recently it was shown that if one is allowed to store auxiliary relations, then the
reachability relation can be updated after single edge insertions and deletions using first-order
logic formulas with access to the graph, the stored relations, and the changed edges [4]. In
other words, the reachability query is contained in the dynamic complexity class DynFO [19].
From a database perspective, this means that it can be updated with core-SQL queries; from
the perspective of circuit complexity, this means that reachability can be updated by circuits
of polynomial size in constant-time due to the correspondence of first-order logic and AC0

established by Barrington, Immerman, and Straubing [1].
Understanding single edge insertions and deletions is an important first step. Yet in

applications, changes to a graph G often come as bulk set ∆E of changed edges. It is natural
to ask, how large the set ∆E of edges can be such that reachability can be maintained with the
same resources as for single edge changes – that is with first-order formulas or, respectively,
AC0 circuits. Using existing lower bounds for circuits [21], it is easy to see that DynFO (or
DynAC0, respectively) cannot handle changes of size larger than polylogarithmic for many
queries, including the reachability query (see Section 3 for a more detailed discussion).

The best one can hope for is to maintain reachability with first-order formulas for changes
of polylogarithmic size with respect to the size of the graph. In a first step, a subset of
the authors showed that reachability can be maintained in DynFO(≤,+,×) under changes
of size O( logn

log logn ) [7]. Here, the class DynFO(≤,+,×) extends DynFO by access to built-in
arithmetic, which for technical reasons is more natural for bulk changes. Unfortunately, the
techniques used in [7] seem only be able to handle changes of polylogarithmic size in the
extension of DynFO by majority quantifiers, that is, in the class DynFO+Maj(≤,+,×).

In this paper we make progress on handling changes of polylogarithmic size in DynFO by
attacking the challenge from two directions. First, we establish two restrictions for which
reachability can be maintained under these changes.

I Main Theorem 1. Reachability can be maintained in DynFO(≤,+,×) under
insertions of polylogarithmically many edges; and
insertions and deletions of polylogarithmically many edges if the graph remains undirected.

As second contribution of this paper, we provide a meta-theorem for establishing classes
of graphs for which reachability can be maintained under polylogarithmic-size changes with
a slight extension of first-order logic. In this extension, DynFO+Mod 2(≤,+,×), formulas
used for updating the reachability information and the auxiliary relations may use parity
quantifiers in addition to the traditional universal and existential quantifiers.

I Main Theorem 2. Reachability can be maintained in DynFO+Mod 2(≤,+,×) under in-
sertions and deletions of polylogarithmically many edges on classes of graphs for which
polynomially bounded non-zero circulation weights can be computed in AC.

Here a weighting function for the edges of a graph has non-zero circulation, if the
weight of every directed cycle is non-zero (see Section 6 for details). The class AC contains
queries computable by circuits of polynomial size and polylogarithmic depth. Examples
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for graph classes for which non-zero circulation weights can be computed in AC include
the class of planar graphs and graphs with bounded treewidth. The latter is shown here.
We note that isolating weights, a concept closely related to non-zero circulation weights,
have been used previously in dynamic complexity for establishing that reachability is in
non-uniform DynFO+Mod 2(≤,+,×) under single edge changes [3], a precursor result to
reachability in DynFO.

For our results, we employ two techniques of independent interest. The first technique
relies on the power of first-order logic on structures of polylogarithmic size. It is well-known
that reachability can be computed by a uniform circuit family of size NO(N1/d) and depth 2d.
An immediate consequence is that all NL-queries can be expressed by first-order formulas
for graphs with n nodes but only polylogarithmically many edges. Thus, for maintaining a
query under changes ∆E of polylogarithmic size, a dynamic program can (1) do an arbitrary
NL-computation on ∆E, and (2) update the auxiliary data by combining the computed
information with the previous auxiliary data using a first-order formula.

The second technique we rely on is a slight generalization of the “Muddling Lemma”
from [6]. The Muddling Lemma reduces the requirements for proving that a query is in
DynFO: a query is in DynFO if, essentially, one can update the query for polylog many
steps starting from auxiliary data precomputed in AC. Here we observe that this can be
strengthened for changes of polylogarithmic size: a query is in DynFO if, essentially, one can
update the query under one polylogarithmic-size change from auxiliary data precomputed
in AC.

Parts of the results presented here have been included in the PhD thesis of Nils Vort-
meier [24].

Outline. After recalling the dynamic complexity framework in Section 2, we shortly outline
barriers for the size of bulk changes in Section 3 and recall useful techniques in Section 4.
Afterwards we present our results for DynFO in Section 5 and for DynFO+Mod 2(≤,+,×) in
Section 6.

2 The dynamic setting

We briefly repeat the essentials of dynamic complexity, closely following [7] which in turn
builds on [20]. The goal of a dynamic program is to answer a given query on a relational input
structure subjected to changes that insert tuples into the input relations or delete tuples from
them. The program may use auxiliary information represented by an auxiliary structure over
the same domain as the input structure. Initially, both input and auxiliary structure are
empty; and the domain is fixed during each run of the program. Whenever a change to the
input structure occurs, the auxiliary structure is updated by means of first-order formulas.

Changes. For a (relational) structure I over domain D and schema σ, a change ∆I consists
of sets R+ and R− of tuples for each relation symbol R ∈ σ. The result I + ∆I of an
application of the change ∆I to I is the input structure where RI is changed to (RI∪R+)\R−.
The size of ∆I is the total number of tuples in relations R+ and R− and the set of affected
elements is the (active) domain of tuples in ∆I.

Dynamic Programs and Maintenance of Queries. A dynamic program consists of a set
of update rules that specify how auxiliary relations are updated after changing the input
structure. Let I be the current input structure over schema σ and let A be the auxiliary
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structure over some schema σaux. An update rule for updating an `-ary auxiliary relation T
after a change is a first-order formula ϕ over schema σ ∪ σaux with ` free variables. After a
change ∆I, the new version of T is T def= {ā | (I + ∆I,A) |= ϕ(ā)}, so, the updated auxiliary
relation includes all tuples ā such that ϕ(ā) is satisfied when it is evaluated on the changed
input structure and the old auxiliary structure. Note that a dynamic program can choose to
have access also to the old input structure by storing it in its auxiliary relations.

For a state S = (I,A) of the dynamic program P with input structure I and auxiliary
structure A we denote the state of the program after applying a change sequence α and
updating the auxiliary relations accordingly by Pα(S).

The dynamic program maintains a q-ary query Q under changes of size k if it has a q-ary
auxiliary relation Ans that at any time stores the result of Q applied to the current input
structure. More precisely, for each non-empty sequence α of changes of size k, the relation
Ans in Pα(S∅) and Q(α(I∅)) coincide, where the state S∅

def= (I∅,A∅) consists of an input
structure I∅ and an auxiliary structure A∅ over some common domain that both have empty
relations, and α(I∅) is the input structure after applying α.

If a dynamic program maintains a query, we say that the query is in DynFO. Similarly to
DynFO one can define variants with built-in auxiliary relations and with more powerful update
formulas. For instance, the class DynFO(≤,+,×) contains queries that can be maintained
by first-order update formulas with access to three particular auxiliary relations <,+, and
× which are initialized as a linear order and the corresponding addition and multiplication
relations; in the class DynFO+Mod p, update formulas may use modulo-p-quantifiers in
addition to existential and universal quantifiers.

We state our results for dynamic classes with access to the arithmetic relations ≤,+
and ×. Handling bulk changes without access to arithmetic leads to technical issues which
distract from the fundamental dynamic properties. See [7, 24] for further discussions on this
topic and how our results can be stated for DynFO in an adapted setting which takes these
technical issues into account.

For the construction of dynamic programs in this paper we assume that changes either
only insert edges or only delete edges. This is no restriction, as corresponding update formulas
can be combined to process a change that inserts and deletes edges at the same time, by
first processing the inserted edges and then processing the deleted edges.

3 Barriers for the size of bulk changes

In the following we outline why it is not possible to maintain reachability under changes
of larger than polylogarithmic size with first-order formulas, even in the presence of parity
quantifiers.

The idea is simple. A classical result by Smolensky states that for computing the number of
ones modulo a prime q occurring in a bit string of length n, an AC[p] circuit of depth d requires
2Ω(n1/2d) many gates, for each prime p distinct from q (see [21] or, for a modern exposition, [17,
Theorem 12.27]). A simple, well-known reduction yields that deciding reachability for graphs
with n edges which are disjoint unions of paths also requires AC[p] circuits of size 2Ω(n1/2d).
Indeed, computing the number of ones in w = a1 · · · an modulo q can be reduced to reachability
as follows. Consider the graph with nodes {(i, k) | 1 ≤ i ≤ n+ 1 and 0 ≤ k < q} and edges
{((i, k), (i+ 1, k)) | ai = 0} ∪ {((i, k), (i+ 1, k + 1 mod q)) | ai = 1}. It is easy to see that (i)
the graph has O(n) edges and is a disjoint union of q paths, and (ii) there is a path from
(1, 0) to (n+ 1, 0) if and only if the number of ones in w is 0 modulo q.
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These lower bounds for circuit sizes immediately translate into lower bounds for first-order
formulas with modulo p quantifiers via the correspondence due to Barrington, Immerman,
and Straubing [1].

I Theorem 1. Let f(n) ∈ logω(1) n be a function from N to N and let p be a prime. There
is no FO+Mod p formula with access to built-in relations that defines
1. whether the size of a unary relation U with |U | ≤ f(n) is divisible by q, for primes q

distinct from p;
2. reachability in graphs with at most f(n) edges, even for disjoint unions of paths.

Proof sketch.
(a) Let f(n) be some function from logω(1) n. Suppose, towards a contradiction, that there

is an FO+Mod p formula with access to built-in relations that defines whether the size
of a unary relation U with |U | ≤ f(n) is divisible by q, for some primes p 6= q. Then,
by [1], for every n there is an AC[p] circuit of some fixed depth d that decides that
question for inputs if size n, and the size of this circuit is polynomial in n. That is
a contradiction, as by Smolensky’s lower bound every such circuit needs to have size
2Ω(f(n)1/2d) = 2log(n)ω(1) = nω(1).

(b) This part can be proven analogously to Part (a), using the circuit lower bound for graph
reachability. J

Those lower bounds have the immediate consequence that DynFO cannot deal with bulk
changes of larger than polylogarithmic size. Indeed, from any formula that updates the result
of a query after an insertion of f(n) tuples into an initially empty input relation one can
construct a formula that defines the query for inputs of size f(n).

I Corollary 2. Let f(n) ∈ logω(1) n be a function from N to N and let p be a prime. Then
the following queries cannot be maintained in DynFO+Mod p for bulk changes of size ≤ f(n),
even if the auxiliary relations may be initialized arbitrarily:
1. divisibility of the size of a unary relation by a prime q 6= p, and
2. reachability in graphs, even if restricted to disjoint unions of paths.

4 Techniques and Tools

In the previous section we recalled that FO(≤,+,×), even if equipped with modulo p

quantifiers, is not very expressive in general. That changes when we are only interested in
small substructures of our input: FO(≤,+,×) can express every NL-computable query on
subgraphs of polylogarithmic size.

I Theorem 3. Let k and c be arbitrary natural numbers, and let Q be a k-ary, NL-computable
graph query. There is an FO(≤,+,×) formula ϕ over schema {E,D} such that for any graph
G with n nodes, any subset D of its nodes of size at most logc n and any k-tuple ā ∈ Dk:
ā ∈ Q(G[D]) if and only if (G,D) |= ϕ(ā). Here, G[D] denotes the subgraph of G induced
by D.

Proof. We prove the result for the reachability query. As reachability is NL-complete under
FO(≤,+,×)-reductions [16], and every FO(≤,+,×)-reduction maps an instance of size logc n
to an instance of size logcd n for a fixed d ∈ N, the full result follows.

It is well-known (see for example [2, p. 613]), that for every d ∈ N there is a uniform
circuit family for reachability where the circuit for inputs of size N has depth 2d and size
NO(N1/d). Suppose the input size N is only logc n, for some c ∈ N and pick d def= 2c. Then
the circuit size
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NO(N1/d) =(logc n)O((logc n)1/d)

=(logn)cO((logn)c/d) = (logn)O((logn)c/2c) = (logn)O(
√

logn)

=2O(log logn
√

logn) ⊆ 2O(
√

logn
√

logn) = 2O(logn) = nO(1)

is polynomial in n, so, the circuit is a uniform AC0 circuit for reachability for graphs of size
logc n. The existence of ϕ follows by the equivalence of uniform AC0 and FO(≤,+,×) [1]. J

The Muddling Lemma simplifies the maintenance of queries under single edge changes [6].
It states that for many natural queries Q, in order to show that Q can be maintained, it is
enough to show that the query can be maintained for a bounded number of steps. In the
following we recall the necessary notions and extend the lemma to bulk changes.

A query Q is almost domain-independent if there is a c ∈ N such that Q(A)[(adom(A) ∪
B)] = Q(A[(adom(A) ∪ B)]) for all structures A and sets B ⊆ A \ adom(A) with |B| ≥ c.
Here, adom(A) denotes the active domain, i.e. the set of domain elements that are used in
some tuple of A. A query Q is (C, f)-maintainable, for some complexity class C and some
function f : N→ R, if there is a dynamic program P and a C-algorithm A such that for
each input structure I over a domain of size n, each linear order ≤ on the domain, and
each change sequence α of length |α| ≤ f(n), the relation Q in Pα(S) and Q(α(I)) coincide,
where S = (I,A(I,≤)).

The Muddling Lemma from [6] has been formulated for bulk changes in [7, 24]1.

I Theorem 4 ([7, 24]). Let Q be an NL-computable, almost domain independent query, and
let c ∈ N be arbitrary. If the query Q is (ACd, logd n)-maintainable under changes of size
logc n for some d ∈ N, then Q is in DynFO(≤,+,×) under changes of size logc n.

The previous theorem can be strengthened as follows.

I Theorem 5. Let Q be an NL-computable, almost domain independent query, and let c ∈ N
be arbitrary. If the query Q is (ACd, 1)-maintainable under changes of size logc+d n for some
d ∈ N, then Q is in DynFO(≤,+,×) under changes of size logc n.

Proof. Let Q and d be as in the theorem statement, and let A be an ACd algorithm and
P a dynamic program that witness that Q is (ACd, 1)-maintainable under changes of size
logc+d n. By Theorem 4 it suffices to show that there is an ACd algorithm A′ and a dynamic
program P ′ that witness that Q is (ACd, logd n)-maintainable under changes of size logc n.

We choose A′ as A. The program P ′ just stores the at most logc+d n changes that
accumulate during the logd n steps, and in each step uses P to answer Q, using the initial
auxiliary relations computed by A. J

5 Handling Polylog Changes with DynFO

So far we do not know how to maintain directed reachability under polylogarithmically many
changes in DynFO(≤,+,×). In this section we show that reachability can be maintained
in DynFO(≤,+,×) under insertions of polylogarithmically many edges for arbitrary graphs
(disallowing any deletions), and under insertions and deletions of polylogarithmic size for
undirected graphs.

1 The statement and proof in [7] is slightly flawed and has been corrected in [24].
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The general idea is similar in both cases. After changing polylogarithmically many edges
with an effect on nodes Vaff, the dynamic program (1) computes a structure of polylogarithmic
size on Vaff, (2) uses Theorem 3 to compute helpful information for this structure, and (3)
updates the auxiliary relations by combining this information with the previous auxiliary data.
Both (1) and (3) are performed by first-order formulas, and (2) uses an NL-computation.

I Theorem 6. Reachability is in DynFO(≤,+,×) under insertions of size logc n, for every
c ∈ N.

Proof. Let c ∈ N be fixed. We construct a dynamic program with a single auxiliary relation
Ans which stores the transitive closure of the current graph.

Whenever a set E+ of edges is inserted into the current graph G = (V,E), the dynamic
program updates Ans with the help of the transitive closure relation of a graph H defined
as follows. The nodes of H are the nodes Vaff affected by the change, that is, the nodes
incident to edges in E+. The edge set EH of H contains the newly inserted edges E+, and
additionally edges (u, v) for all pairs (u, v) of nodes from Vaff that are connected by a path in
G. Observe that H is of size O(logc n) and first-order definable from G,E+ and Ans. Hence,
by Theorem 3, the transitive closure of H can be defined by a first-order formula.

The transitive closure relation of G′ def= (V,E ∪ E+) can now be constructed from the
transitive closures of G and H. To this end observe that the transitive closure of H equals
the transitive closure relation of G′ restricted to Vaff: it accounts for all paths from a node
u ∈ Vaff to another node v ∈ Vaff that may use both newly inserted edges and edges that
are already present in G. For this reason, every path ρ in G′ consists of three consecutive
subpaths ρ1ρ2ρ3 = ρ, where ρ1 and ρ3 are defined as the maximal subpaths of ρ that do not
rely on edges from E+. These subpaths already exist in G and are represented in Ans. The
subgraph ρ2 by definition starts and ends at nodes from Vaff, so its existence is given by the
transitive closure relation of H.

Hence, the transitive closure of G′ can be defined by the formula ϕ(s, t) def= Ans(s, t) ∨
∃x1∃x2

(
Ans(s, x1) ∧TCH(x1, x2) ∧Ans(x2, t)

)
. J

I Theorem 7. Reachability on undirected graphs can be maintained in DynFO(≤,+,×) under
changes of size logc n, for every c ∈ N.

Proof. The dynamic program from [9] that maintains undirected reachability in DynFO
under single-edge changes uses, in addition to the transitive closure relation of the input
graph, two binary auxiliary relations that represent a directed spanning forest of the input
graph and its transitive closure, respectively. We show that these relations can still be
maintained in DynFO(≤,+,×) under changes of logc n many edges, for fixed c ∈ N.

Recall that it suffices to treat insertions and deletions independently, as they can be
handled subsequently by a dynamic program.

For edge insertions, the construction idea is very similar to the proof of Theorem 6. We
define a graph H, where nodes correspond to connected components of the input graph that
include an affected node, and edges indicate that some inserted edge connects the respective
connected components. As this graph is of polylogarithmic size, thanks to Theorem 3 we can
express a spanning forest for H and its transitive closure in FO(≤,+,×), which is sufficient
to update the respective relations for the whole input graph.

In the case of edge deletions, the update formulas need to replace deleted spanning tree
edges, whenever this is possible. Our approach is very similar to the case of edge insertions.
The spanning tree decomposes into polylogarithmically many connected components when
edges are deleted. These components can be merged again if non-tree edges exist that connect
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them, and these edges become tree edges of the spanning forest. For a correspondingly
defined graph of polylogarithmic size we can again define a spanning forest and its transitive
closure, and from this information select the new tree edges.

We explain both cases in more detail. Let G = (V,E) be the undirected input graph
of size n with transitive closure Ans, and let S and TCS be a directed spanning forest for
G and its transitive closure, respectively. Suppose that a set E+ of size at most logc n is
inserted. We define a graph H as follows. It contains a node v ∈ V if (1) v is affected,
that is, if E+ contains an edge of v, and (2) v is the smallest affected node in its connected
component of G with respect to ≤. It contains an edge (u, v) if (u′, v′) ∈ E+ for some nodes
u′, v′ with (u, u′) ∈ Ans and (v, v′) ∈ Ans, so, if the connected components of u and v are
connected by an inserted edge. The graph H is easily seen to be FO-definable using Ans.
Because H is of polylogarithmic size with respect to n and a spanning forest of a graph can
be computed2 in NL, we can define a spanning tree SH as well as its transitive closure TCSH

in FO(≤,+,×), thanks to Theorem 3.
The update formulas define updated auxiliary relations for the graph G′ = (V,E ∪E+) as

follows. Intuitively, an edge (u, v) ∈ SH means that the connected components of u and v in
G shall be connected in G′ directly by a new tree edge. There might be several edges in E+

that may serve this purpose, and we need to choose one of them. So, an edge (u′, v′) ∈ E+

becomes part the updated spanning forest if there is an edge (u, v) ∈ SH such that u′ and u
as well as v′ and v are in the same connected component of G, respectively, and (u′, v′) is the
lexicographically minimal edge with these properties. This is clearly FO(≤,+,×)-expressible
using the old auxiliary relations. The old tree edges from S are taken over to the updated
version, although some directions need to be inverted, if for a newly chosen tree edge (u′, v′)
the node v′ was not the root of the directed spanning tree of its connected component.
First-order formulas that determine which edges need to be reversed and that provide the
adjusted transitive closure for the components of the spanning forest are given in [9]. The
relation TCS is updated by combining this information with TCSH

.
We note that Ans is first-order expressible from TCS . In conclusion, all auxiliary relations

can be updated in FO(≤,+,×).
Now suppose that a set E− of at most logc n edges is deleted. Let S′ be the spanning

forest that results from S after all tree edges from E− are removed, and let TCS′ be its
transitive closure, which is easily FO-expressible from TCS . Similarly as above we define a
graph H, with nodes being the minimal affected nodes in a weakly connected component of
S′, which are connected by an edge if the respective weakly connected components of S′ are
connected by some edge from E \ E−. The same way as above, FO(≤,+,×) formulas can
define a spanning forest and its transitive closure for H and then use this information to
define a spanning forest and its transitive closure for the changed graph G′ = (V,E \E−). J

6 Handling Polylog Changes with DynFO+Mod 2

While we have seen, in the last section, that reachability for directed graphs can be maintained
under edge insertions of polylogarithmic size, a matching result for edge deletions is still
missing. Two intermediate results were shown in [7], building on the work of [13]: reachability
can be maintained in DynFO(≤,+,×) under insertions and deletions that affect logn

log logn
nodes, and in DynFO+Maj under insertions and deletions of polylogarithmically many edges.

2 For example the breadth-first spanning forest with the minimal nodes of each component, with respect to
≤, as roots can be computed with the inductive counting technique due to Immerman and Szelepcsényi
[15, 22].
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In this section, we adapt the proof of the latter result, also using ideas that appear
in [3], and show that reachability can be maintained in DynFO+Mod 2(≤,+,×) under edge
insertions and deletions of polylogarithmic size for classes of directed graphs for which
non-vanishing weight assignments can be computed in AC, that is, by polynomial-size circuits
of polylogarithmic depth. This is possible for example for planar graphs [23], as well as for
graphs with bounded treewidth, as we show towards the end of this section.

We start by giving the necessary definitions regarding isolating and non-vanishing weight
assignments.

6.1 Isolating and non-vanishing weights
A weighted directed graph (G,w) consists of a graph G = (V,E) and a weight assignment
w : E → Z that assigns an integer weight w(e) to each edge e ∈ E. The weight assignment w
is bounded by a function f(|V |) if w assigns only weights from the interval [−f(|V |), f(|V |)].

The weighted graph (G,w) is min-unique if (1) w only gives positive weights to the edges
E, and (2) if some path from s to t exists, for some pair s, t of nodes, then there is a unique
path from s to t with minimum weight under w. Here, the weight of a path (and in general
every sequence of edges) is the sum of the weights of its edges. If (G,w) is min-unique, we
say that w isolates (minimal paths in) G.

Define G~

~

= (V,E~

~

) to be the bidirected extension of G, where E~

~

def= {(u, v), (v, u) | (u, v) ∈
E}. A weight assignment w is skew-symmetric if w(u, v) = −w(v, u) for all (u, v) ∈ E~

~

. It
has non-zero circulation if the weight of every simple directed cycle in G~

~

is non-zero (here, a
cycle is simple if no node occurs twice).

From polynomially bounded non-zero circulation weights for G~

~

we can easily compute
isolating weights for G.

I Lemma 8. Let G = (V,E) be a graph with n nodes, and let w be skew-symmetric non-zero
circulation weight assignment for G~

~

, which is bounded by nk for some k ∈ N. Then w′ with
w′(e) = w(e) + nk+2 for every e ∈ E isolates G.

Proof. All weights in w′ are clearly positive. It remains to show that w′ isolates minimal
paths in G. Assume, towards a contradiction, that there are two different s-t-paths ρ1, ρ2
with the same minimal weight under w′ in G, for some nodes s and t. Without loss of
generality, they are both simple paths, as otherwise they cannot be minimal. Let u be the
last node visited by both paths before they differ for the first time, and let v be the first
node after u that is visited by both paths. Let ρuv1 , ρuv2 be the subpaths in ρ1, ρ2 from u to
v, respectively. If these subpaths have different weights, say, w′(ρuv1 ) < w′(ρuv2 ), then we
can replace ρuv2 by ρuv1 in ρ2 and get a lighter path, contradicting the assumption that both
ρ1 and ρ2 are paths with minimal weight. So, w′(ρuv1 ) = w′(ρuv2 ) needs to hold. Then also
w(ρuv1 ) = w(ρuv2 ) holds, because w(ρ) and w′(ρ) differ by a multiple of nk+2 for any path ρ,
and the difference between w(ρ) and w(ρ′) is at most nk+1, for simple paths ρ and ρ′. So,
w′ cannot compensate weight differences under w. But then the concatenation of ρuv1 and
the reverse of ρuv2 is a simple cycle in G~

~

with weight w(ρuv1 )− w(ρuv2 ) = 0, contradiction the
assumption that w has non-zero circulation. J

We explain how (families of) polynomially bounded weight assignments for graphs are
represented in relational structures. Let V be the node set of a weighted graph of size n. We
identify V with the set {0, . . . , n− 1} of numbers according to the given linear order ≤. A
tuple (a1, . . . , ak) of nodes then represents the number

∑k
i=1 ain

i−1. A (partial) function
f : V k → V ` is represented as a (k+`)-ary relation F over V , such that for each ā ∈ V k there
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is at most one b̄ ∈ V ` with (ā, b̄) ∈ F . We say that f is FO(≤,+,×)-definable if F is defined
by an FO(≤,+,×) formula ψ(x̄, ȳ), where x̄ = x1, . . . , xk and ȳ = y1, . . . , y`. An FO(≤,+,×)
formula ψ(z̄, x̄, ȳ), with z̄ = z1, . . . , zm, defines a family {f(c̄) : V k → V ` | c̄ ∈ V m} of
functions.

6.2 Maintaining Reachability in weighted graphs
We now state and prove the main result of this section.

I Theorem 9. Let G be a class of graphs for which polynomially bounded skew-symmetric
non-zero circulation weights can be computed in AC. Then, reachability for graphs in G is in
DynFO+Mod 2(≤,+,×) under changes of size logc n, for every c ∈ N.

Although this result leaves open whether reachability can be maintained in DynFO(≤,+,×)
under polylogarithmically many edge changes, note that, in light of Corollary 2, it gives a
tight upper bound for the size of changes that can be handled in DynFO+Mod 2(≤,+,×).

We outline the proof strategy, which closely follows the strategy from [7]. Suppose, we
are given a weighted directed graph (G,w) where G = (V,E) is a graph with n nodes and
w is an isolating weight assignment. We represent this weighted graph by an n× n matrix
A(G,w)(x) as follows: if (u, v) ∈ E, then the u-v-entry of A(G,w)(x) is xw(u,v), where x is a
formal variable, otherwise the u-v-entry is 0.

The matrixD def=
∑∞
i=0(AGw

(x))i is a matrix of formal power series in the formal variable x,
and from an s-t-entry

∑∞
i=0 cix

i of this matrix we can read the number ci of paths from s to
t with weight i. Our goal is to determine the coefficients ci modulo 2, for all i up to some
polynomial bound. From this information we can deduce whether there is a path from s to t
in G: as w isolates minimal paths in G, if there is some path from s to t, then there is a
unique path with minimal weight, which means that for the weight ` of this path we have
c` ≡ 1 (mod 2). Otherwise, if no path from s to t exists, c` ≡ 0 (mod 2) for all i.

We use the following insights to actually compute and update the coefficients ci. Notice
that the matrix D is invertible over the ring of formal power series (see [7] and its full
version [8]) and can be written as D = (I −A(G,w)(x))−1, where I is the identity matrix.

So, we need to compute and update the inverse of a matrix. This cannot be done
effectively for matrices of inherently infinite formal power series. For this reason we compute
D only approximately. A b-approximation C of D, for some b ∈ N, is a matrix of formal
polynomials that agrees with the entries of D on the low-degree coefficients ci for all i ≤ b.
This precision is preserved by the matrix operations we use, see [7, Proposition 14]. Note that
it is sufficient to maintain an approximation of D, as for a weighted graph with polynomially
bounded weights the maximal possible weight wmax of a minimal path is bounded by a
polynomial, and thus only the coefficients ci with i ≤ wmax are relevant.

To update the matrix inverse, we employ the Sherman-Morrison-Woodbury identity
(cf. [12]). This identity states that when updating a matrix A to a matrix A+ ∆A, with ∆A
writeable as matrix product UBV , the inverse of A can be updated as follows:

(A+ ∆A)−1 = (A+ UBV )−1 = A−1 −A−1U(I +BV A−1U)−1BV A−1.

When ∆A has only k non-zero rows and columns, there is a decomposition UBV where
B is a k × k matrix.

The right-hand side can be computed in FO+Mod 2(≤,+,×) for k def= logc n. To see this,
we observe that also I +BV A−1U is a k × k matrix. Computing the right-hand side now
requires multiplication and iterated addition of polynomials over Z as well as the computation
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of the inverse of a k × k matrix. As all computations are done modulo 2, this is indeed
possible in FO+Mod 2(≤,+,×) for (matrices of) polynomials with polynomial degree using
results of [11]. We provide more details later.

As we work with isolating weight assignments, our update routines also need to assign
weights to changed edges such that the resulting weight assignment is again isolating. We
show that this can be done if we start with (slightly adjusted) non-zero circulation weights.
Using Theorem 5 we can assume that such an assignment is given, and that we only need to
update the weights once.

Proof sketch (of Theorem 9). Let c be arbitrary. Thanks to Theorem 5 it suffices to show
that there is a d ∈ N such that reachability is (ACd, 1)-maintainable by a dynamic program
P under changes of size logc+d n. Let d′ ∈ N be such that polynomially bounded skew-
symmetric non-zero circulation weights for graphs from G can be computed in ACd

′
, and set

d
def= max(2, d′).
Let G = (V,E) be a graph with n nodes. Let u be skew-symmetric non-zero circulation

weights for G and let nk be the polynomial bound on the weights. Further, let w be the
weight assignment that gives weight nk+2 + u(e) to each edge e ∈ E. Notice that w is
polynomially bounded by nk+3 and isolates G according to Lemma 8.

The ACd initialization computes, as auxiliary information, the weightings u and w and
an nb-approximation C of (I −A(G,w)(x))−1 mod 2, that is, a matrix of formal polynomials
in x that agree with the formal power series in (I −A(G,w)(x))−1 mod 2 on the coefficients
up to degree nb. Here, b ∈ N is a constant to be determined later.

When changing G via a change ∆E with deletions E− and insertions E+, the dynamic
program P handles deletions and insertions subsequently:
(1) Handling of deletions:

(a) Define isolating weights w− for G− def= (V,E \ E−). The weights w− will differ from
w only for the at most logc+d n edges in E−.

(b) Compute an nb-approximation of (I −A(G−,w−)(x))−1 mod 2 using the existing
nb-approximation of (I −A(G,w)(x))−1 mod 2.

(2) Handling of insertions:
(a) Define a family W−/+ of weightings such that one member of the family is isolating

for G−/+ def= (V, (E \ E−) ∪ E+). All weightings of the family will differ from w−

only for the at most logc+d n edges in E+.
(b) Compute an nb-approximation of (I −A(G−/+,w−/+)(x))−1 mod 2 using the existing

nb-approximation of (I −A(G−,w−)(x))−1 mod 2 for all members w−/+ of W−/+.

We first explain Steps (1a) and (2a) in more detail. For computing the isolating weights
w−, the program proceeds as follows. Skew-symmetric non-zero circulation weights u− for
G− are obtained from the non-zero circulation weights u for G by setting the weight of
deleted edges e ∈ E− to 0. As u− gives the same weight to all simple cycles in G− as u gives
to these cycles in G, it has non-zero circulation. Now, the weight assignment w− defined by
nk+2 + u−(e) is isolating for G− due to Lemma 8, and differs from w only for edges in E−.

Computing the isolation weights for insertions is more challenging. In Lemma 11 below
we show that from G−, its transitive closure, and a set E+ of edges of polylogarithmic size
one can FO(≤,+,×)-define a family W−/+ of weight assignments such that one of these
assignments is isolating for G−/+.

For both Steps (1b) and (2b), the inverse of a matrix of polynomials over Z2 of polynomial
degree needs to be updated after changing polylogarithmically many entries (i.e. entries
corresponding to E− and E+, respectively). Inverses can be updated under such changes in
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FO+Mod 2(≤,+,×) due to Lemma 10 (see below) and the observation that changes ∆A of
size logc+d n to such a matrix can be decomposed into UBV as required by Lemma 10, see
Lemma 7 in [7]. For Step (2b) this is done in parallel for all members of W−/+.

For checking whether there is a path from s to t after the change ∆E to G, the dy-
namic program checks whether there is a member of W−/+ such that the s-t-entry of
(I −A(G−/+,w−/+)(x))−1 mod 2 is non-zero. Since one member of W−/+ is isolating, a path
will be discovered this way. J

In the remainder of this subsection we show how inverses for matrices of polynomials can
be updated under changes of polylogarithmic size, and how weights for inserted edges can be
found.

The following lemma is obtained using the same techniques as in [7]. Here, Z2[[x]] denotes
the ring of formal power series with coefficients from Z2, and Z2[x] denotes its subring that
consists of all finite polynomials.

I Lemma 10. Suppose A ∈ Z2[[x]]n×n is invertible over Z2[[x]], and C ∈ Z2[x]n×n is an
m-approximation of A−1. If A + ∆A is invertible over Z2[[x]] and ∆A can be written as
UBV with U ∈ Z2[x]n×k, B ∈ Z2[x]k×k, and V ∈ Z2[x]k×n, then

(A+ ∆A)−1 ≈m C − CU(I +BV CU)−1BV C

Furthermore, if k ≤ logc n for some fixed c and all involved polynomials have polynomial
degree in n, then the right-hand side can be defined in FO+Mod 2(≤,+,×) from C and ∆A.

Proof sketch. The correctness of the equation can be proved exactly as in Proposition 14
in [7] (there, this is proved for Z[[x]] instead of Z2[[x]]).

We argue that the right-hand side can be defined in FO+Mod 2(≤,+,×). The involved
matrix additions and multiplications modulo 2 can easily be expressed in FO+Mod 2(≤,+,×),
see [11]. It remains to explain how the inverse of the logc n× logc n matrix I +BV CU can
be found.

To this end, recall that the i-j-entry of the inverse of a matrix D is equal to (−1)i+j detDji

detD ,
where Dji is obtained from D by removing the j-th row and the i-th column.

So, it is sufficient to show that the determinant of a logc n× logc n matrix of polynomials
with polynomial degree can be expressed modulo 2. In [7, Lemma 15] it was shown that
such a determinant can be expressed in FO+Maj(≤,+,×), by observing that one only needs
to be able to express the sum of polynomially many polynomials and the product of logc n
many polynomials. This observation is still valid for computing the determinant modulo 2 in
FO+Mod 2(≤,+,×). Both kind of computations are possible modulo 2 in FO+Mod 2(≤,+,×)
as well [11]. J

I Lemma 11. Let G = (V,E) be a graph and let n = |V |. Further, let w be a polynomially
bounded isolating weight assignment for G, and let E+ be a set of O(logc n) edges that
is disjoint from E, for some c ∈ N. Then there is a family W ′ of polynomially many
polynomially bounded weight assignments such that
1. W ′ is FO(≤,+,×)-definable from G, Reach(G), E+ and w,
2. all w′ ∈W ′ agree with w on E,
3. at least one w′ ∈W ′ is isolating for (V,E ∪ E+).

The proof works along the following lines. We use the approach from [18] to obtain
weights for the inserted edges with the following idea: if there is an s-t-path that uses at
least one inserted edge from E+, then there is a unique minimal path under all s-t-paths
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that use at least one such edge, where we ignore the weight of the paths that is contributed
by edges from E. We multiply these constructed weights for the edges from E+ by a large
polynomial to ensure that the combined weight assignment with the existing weights for
edges in E is isolating for the graph (V,E ∪ E+).

The approach from [18] does not lead to polynomially bounded weights in the size of the
graph it is used for. We construct them for a graph with N = O(logc n) many nodes, and
although they are not polynomially bounded in N , they are in n.

We now get to the details of the construction. In the following, we consider graphs with
two sets of edges. An adorned graph G = (V,E, F ) has, besides the set E of real edges,
a further set F of fictitious edges, which is not necessarily disjoint from E. For each pair
s, t of nodes, let P ′s,t be the set of s-t-paths in G that use at least one real edge e ∈ E and
arbitrarily many fictitious edges e′ ∈ F . Let Ps,t be the set of edge sequences that result
from P ′s,t by removing the fictitious edges from the paths.

We say that a weight assignment w real-isolates G, if (1) it maps each real edge e ∈ E
to a positive integer, and (2) each non-empty Ps,t has a unique minimal element under w.
In the following, we will need a stronger property. We say that w strongly real-isolates G,
if in addition for each pair Ps,t and Ps′,t′ of non-empty sets with (s, t) 6= (s′, t′) the unique
minimal elements of Ps,t and Ps′,t′ have different weights under w.

The following lemma can be proved along the lines of [18], see the full version for details.

I Lemma 12. There is a constant β ∈ N such that for every natural number N and every
adorned graph G = (V,E, F ) with V = {1, . . . , N} there is a sequence p̄ = p1, p2, . . . , plogN
of primes, each consisting of at most (β − 2) logN bits, such that the weight assignment

wp̄(e) =
{∑logN

j=1 Nβ(logN−j)(w0(e) mod pj) e ∈ E
0 e ∈ F

strongly real-isolates G. Here, w0(u, v) def= 2(N+1)u+v.

Using this lemma, we can prove Lemma 11.

Proof of Lemma 11. Let Vaff ⊆ V be the set of nodes with edges in E+. We construct an
adorned graph H = (VH , EH , FH) with node set VH

def= Vaff as follows. The set EH of real
edges is EH

def= E+, and the set FH of fictitious edges is FH
def= {(u, v) | u, v ∈ VH , (u, v) ∈

Reach(G)}. So, a fictitious edge (u, v) of H represents the existence of a u-v-path in G.
Let β, p̄ and wp̄ be as promised to exist for H by Lemma 12. Further, let nk be the upper

bound on the weights of w. We define the weight assignment w′ for G′ def= (V,E ∪ E+) as
follows.

w′(e) = w(e) for all e ∈ E,
w′(e) = nk+2 · wp̄(e) for all e ∈ E+ = EH .

We show that w′ isolates G′ first, afterwards we show that w′ is a member of an
FO(≤,+,×)-definable family of weightings.

For showing that w′ isolates G′ suppose, towards a contradiction, that there are two
lightest simple s-t-paths π, ρ in G′ with respect to w′, for some nodes s and t. Let π1π2π3 = π

and ρ1ρ2ρ3 = ρ be the subpaths of π and ρ such that edges from E+ are only used in π2
and ρ2 and those subpaths are minimal with that property. Notice that both π2 and ρ2 are
non-empty, as otherwise ρ and π are also lightest paths in G with respect to w, contradicting
the assumption that w isolates G. Let π′ and ρ′ be the paths in H that correspond to π2
and ρ2, where subpaths of π2 and ρ2 are replaced by fictitious edges. We consider two cases.
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If wp̄(π′) 6= wp̄(ρ′), then the total weight of π and ρ contributed by the edges from
E+ differs by at least nk+2. As the total weight contributed by the remaining edges is
upper-bounded by nk+1, we have that w′(π) 6= w′(ρ), the desired contradiction.

Thus assume, without loss of generality, that wp̄(π′) = wp̄(ρ′). We can assume that both
paths π′ and ρ′ are lightest paths in H: if, say, π′ is not a lightest path, then we can replace
π2 in π by a path that uses lighter edges from E+, leading to an overall lighter path by
the argument of the previous case. Then, because wp̄ strongly isolates H, the edges from
EH = E+ used in π′ and ρ′ must be equal, and the same is true for π2 and ρ2. These edges
must also be used in the same order, as otherwise a path with fewer edges from E+ exists,
which by the argument of previous case is lighter than both π and ρ. Because π and ρ are
different paths, there must be subpaths π∗ and ρ∗ that consist only of edges from E and are
both simple u-v-paths, for some nodes u and v. As w is isolating for G, not both subpaths
can be lightest u-v-paths in G. Say, ρ∗ is not such a lightest path. If we replace ρ∗ in ρ by
the lightest u-v-path in G, we obtain a path that is lighter than ρ, as w′ agrees with w on E.
So, ρ is not a lightest s-t-path in G′ with respect to w′, the desired contradiction. It follows
that w′ is isolating for G′.

The weight assignment wp̄ is clearly FO(≤,+,×)-definable from G,Reach(G), E+, w

and p̄, as H is FO(≤,+,×)-definable, the involved numbers consist of at most polylogarith-
mically many bits, and FO(≤,+,×) can express the necessary arithmetic on numbers of that
magnitude (see [14, Theorem 5.1]). The sequence p̄ consists of O(log logn) many primes (as
H is of size polylog) which in turn are represented by O(log logn) many bits, because H has
only polylogarithmic size in n. So, p̄ can be represented by a tuple of nodes from V , and it
follows that a family W ′ of weight assignments with w′ ∈W ′ is FO(≤,+,×)-definable from
G,Reach(G), E+ and w. J

6.3 Computing weights for bounded-treewidth graphs
In this section, we show that isolating weights for graphs of bounded treewidth can be
computed in LOGSPACE. As an immediate consequence, reachability can be maintained for
such graphs under changes of polylogarithmic size.

A tree decomposition T = (T,B) of a graph G = (V,E) consists of a (rooted, directed)
tree T = (I, F, r), with (tree) nodes I, (tree) edges F , a distinguished root node r ∈ I, and a
function B : I → 2V such that
(1) the set {i ∈ I | v ∈ B(i)} is non-empty for each node v ∈ V ,
(2) there is an i ∈ I with {u, v} ⊆ B(i) for each edge (u, v) ∈ E, and
(3) the subgraph T [{i ∈ I | v ∈ B(i)}] is connected for each node v ∈ V .

We refer to the number of children of a node i of T as its degree, and to the set B(i) as
its bag. We denote the parent node of i by parent(i). The width of a tree decomposition is
defined as the maximal size of a bag minus 1. The treewidth of a graph G is the minimal
width among all tree decompositions of G. A tree decomposition is binary, if all tree nodes
have degree at most 2. Its depth is the length of a longest path from the root r to a leaf
of T . We inductively define the height h(i) of i to be 1 if i is a leaf, and h(i′) + 1 if i is an
inner tree node and i′ is a child of i with maximal height. For a node v ∈ V we denote by
B(v) the highest bag that contains u, and let h(u) def= h(B(u)). This bag B(v) is well-defined
for each node v thanks to condition (3) of the definition of a tree decomposition.

We usually identify tree nodes i and their bag B(i), and use the above notions and
measures directly for bags. We also abuse notation and write B ∈ B if B = B(i) for some
tree node i.
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As a first step we construct isolation weights for bounded treewidth graphs that addition-
ally have bounded degree. Isolation weights for all graphs of bounded treewidth are provided
afterwards.

I Proposition 13. Let c, d, k ∈ N be fixed. Let G = (V,E) be a graph with maximal degree d,
and let n be the number of its nodes. Let T be a binary tree decomposition of G with width k
and depth at most c logn. A polynomially bounded skew-symmetric weight assignment with
non-zero circulation for G can be computed in LOGSPACE.

Proof. The idea for assigning weights is the following. We associate each edge with one
bag of the tree decomposition, namely the highest bag that contains one endpoint of the
edge. For each bag B, we denote the set of all edges that are associated with B by S(B).
As the width of T and the degree of G are bounded by a constant, so is |S(B)|. An edge e
is assigned a weight that depends exponentially on the height of the bag B it is associated
with, and also exponentially on its position in some linear order on S(B). For each cycle C
there is a unique highest bag BC that some of the cycle’s edges is associated with. The idea
for establishing non-zero circulation of C is that its weight is dominated by the weight of the
unique edge which (1) is associated with BC and (2) has largest index in the linear order on
S(B) among all edges of the cycle. As the height of a bag is logarithmic in n and |S(B)| is
bounded by a constant, the weight of every edge is polynomial in n.

We now proceed to the details. For each e ∈ E~

~

, let Be be the (unique) highest bag that
contains one of the end points of e. For a bag B, define the set S(B) of its associated edges
as S(B) def= {e ∈ E~

~

| B = Be}. Observe that the sets S(B) partition the set E~

~

of edges and
that the size of S(B) is bounded by a constant β def= 2d(k + 1), as each bag B contains at
most k + 1 nodes and each node has degree at most d in G and therefore degree at most 2d
in G~

~

. For each S(B) we fix an enumeration of its elements3. Now, for each edge e, we set
h(e) = h(Be) and `(e) = i, if e is the i-th element in the enumeration of S(Be).

We set the weight w(e) of an edge e = (u, v) with u ≤ v to be w(e) def= (4β ·3β+2)h(e) ·3`(e).
The weight of an edge (u, v) with u > v is w(u, v) = −w(v, u). Notice that this weight
assignment is polynomially bounded and skew-symmetric and can be computed in LOGSPACE.
We now show that it has non-zero circulation.

Let C be any simple cycle in G~

~

, and let e1, . . . , em be an enumeration of its edges. Without
loss of generality we assume that e1 is the edge with the maximal weight among all edges in
C. This edge is well-defined, as there is a unique highest bag B such that S(B) contains an
edge of C, and the term 4β · 3β + 2 is strictly greater than 3`(e) for any value of `(e).

We show |w(e1)| > |w(e2) + · · ·+w(em)|, which implies the claim. Actually, we show that
the weight of w(e1) exceeds the combined weight of all other edges e that are either in S(B)
and have `(e) < `(e1) or are in S(B′) for some bag B′ below B in the tree decomposition.
Note that there are

∑h(e1)−1
h=1 2h(e1)−h many of those bags B′, each S(B′) contains at most β

edges, and the weight of each edge is upper bounded by (4β · 3β + 2)h(B′) · 3β .

|w(e2) + · · ·+ w(em)|

<

l(e1)−1∑
i=1

(4β · 3β + 2)h(e1) · 3i +
h(e1)−1∑
h=1

2h(e1)−h · β · (4β · 3β + 2)h · 3β

=
l(e1)−1∑
i=1

(4β · 3β + 2)h(e1) · 3i +
h(e1)−1∑
h=1

2h(e1) · β · (2β · 3β + 1)h · 3β

3 As we devise an LOGSPACE algorithm, we can assume the existence of a linear order on the input.
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= (4β · 3β + 2)h(e1) ·
l(e1)−1∑
i=1

3i + 2h(e1) · β · 3β ·
h(e1)−1∑
h=1

(2β · 3β + 1)h

= (4β · 3β + 2)h(e1) · 3l(e1) − 3
2 + 2h(e1) · β · 3β · (2β · 3β + 1)h(e1) − (2β · 3β + 1)

2β · 3β

< (4β · 3β + 2)h(e1) · 3`(e1) = |w(e1)| J

Non-zero circulation weights cannot only be computed in LOGSPACE for bounded-
treewidth graphs with bounded degree, as given by Proposition 13, but also for all graphs
with bounded treewidth. Also, using a result of Elberfeld, Jakoby and Tantau [10], no tree
decomposition needs to be given as input.

I Theorem 14. Let k ∈ N be fixed and let G = (V,E) be a graph with treewidth at most k.
A polynomially bounded skew-symmetric weight assignment with non-zero circulation for G
can be computed in LOGSPACE.

The idea for proving Theorem 14 is as follows. From a given graph G with treewidth
at most k we construct a graph G′ with treewidth and degree O(k) as well as a tree
decomposition. The graph G′ basically results from a tree decomposition T of G by making
a copy of a node v for every bag of T that contains v. These copies are connected by an edge
if the corresponding bags in T are. Using Proposition 13, we obtain non-zero circulation
weights for G′, and we show that they can be translated to non-zero circulation weights
for G.

Proof. Fix k ∈ N and let G = (V,E) be a graph with treewidth at most k. Let n be
the size of V . There are constants c1, c2 ∈ N that only depend on k such that a binary
tree decomposition T = (T,B) of G of width at most c1k and depth at most c2 logn can
be computed in LOGSPACE [10]. From G and T we construct a graph G′ = (V ′, E′) as
follows. Let V ′ be the set V ′ def= {vB | B ∈ B, v ∈ B} and let E′ def= {(vB , vB′) | B′ =
parent(B)} ∪ {(uB , vB) | (u, v) ∈ E, u 6∈ parent(B) or v 6∈ parent(B)}. So, we have one copy
vB of a node v ∈ V for each bag B such that v is contained in B. Two copies of a node are
connected by an edge if they originate from adjacent bags in the tree decomposition, and
there is an edge between two copies uB and vB , originating from the same bag B, if B is the
highest bag of T that contains both endpoints u and v.

The degree of G′ is bounded by c1k+3. The tree decomposition T ′ = (T,B′) that replaces
each bag B of T by {vB | v ∈ B}∪ {vparent(B) | v ∈ parent(B)} is a tree decomposition of G′
and has width at most 2c1k+ 1. Furthermore, it is binary and has depth at most c2 logn. So,
by Proposition 13, one can compute in LOGSPACE polynomially bounded, skew-symmetric
non-zero circulation weights w′ for G′.

We construct a weight function w for G~

~

as follows. For that, we associate with each
edge (u, v) ∈ E~

~

a sequence P (u, v) of edges in G′~

~

. Recall that for each edge (u, v) there is
a highest bag in which both u and v appear. The bag above that bag contains either (a)
none of the two vertices, or (b) v but not u, or (c) u but not v. The definition of P (u, v)
distinguishes these three cases:
1. Suppose B(u) = B(v). We set P (u, v) = (uB(u), vB(v)).
2. Suppose B(u) is a proper descendant of B(v). Let B = B(u) and B′ = B(v). We set

P (u, v) = (uB , vB), (vB , vparent(B)), . . . , (vparent(···(parent(B))), vB′).
3. Suppose B(v) is a proper descendant of B(u). Let B = B(u) and B′ = B(v). We set

P (u, v) = (uB , uparent(···(parent(B′)))), . . . , (uparent(B′), uB′), (uB′ , vB′).
Now, let w(u, v) be the sum

∑
e∈P (u,v) w

′(e) of the weights of the edges e in P (u, v). Because
w′ is a polynomially bounded skew-symmetric weight assignment, so is w.



S. Datta, P. Kumar, A. Mukherjee, A. Tawari, N. Vortmeier, and T. Zeume 122:17

It remains to show that w has non-zero circulation. Let C be an arbitrary simple cycle in
G~

~

. We need to show that w assigns a non-zero weight to C. Let e1, . . . , em be the sequence of
edges that constitutes C, and letW ′ be the sequence P (e1), . . . , P (em) of edges. By definition,
the weight of C under w is the same as the weight of W ′ under w′.

Note that W ′ constitutes a cycle in G′~

~

which is not necessarily simple: some nodes might
be visited more than once. We show that we can construct from W ′ a simple cycle C′ by
removing parts of W ′ with total weight 0. As a result, C′ has the same weight as W ′ under
w′. Because w′ has non-zero circulation, the weight of C′ and W ′ is non-zero, and so is the
weight of C under w.

Suppose that some node uB is visited twice by W ′. Then W ′ has the subsequence
P (v, u)P (u, v′) for some nodes v and v′, because u is visited only once in C and no node
appears twice in a single sequence P (u, u′). Moreover, it most be that h(u) is greater than both
h(v) and h(v′), or smaller than both h(v) and h(v′), and either B(v) is a descendent of B(v′)
or B(v′) is a descendant of B(v). We consider the case that h(u) is greater than both h(v) and
h(v′), and B(v′) is a descendant of B(v). The other cases are analogous. Then P (v, u)P (u, v′)
visits the nodes vB(v), uB(v), uparent(B(v)), . . . , uB(u), . . . uparent(B(v)), uB(v), . . . , uB(v′), v

′
B(v′)

in that order. The closed walk from uB(v) to uB(u) and back to uB(v) has, because of
skew-symmetry, a total weight of 0 under w′. So, the corresponding edges can be removed
from W ′ without changing the weight. Repeating this step results in a simple cycle C′ with
the same weight under w′ as C under w. As w′ has non-zero circulation, the weight of C′ is
non-zero, and so is the weight of C. J

7 Conclusion

The complexity of maintaining (variants of) the reachability query is the dominant research
question in dynamic complexity theory. With this paper we basically settle this question for
reachability in undirected graphs, at least with respect to the size of a change: reachability in
undirected graphs is in DynFO(≤,+,×) if and only if the changes have at most polylogarithmic
size. For reachability in directed graphs, we can only show this for insertions of polylogarithmic
size, and the main open problem is whether this can be extended to also allow for deletions
of single edges, non-constantly many edges, or even polylogarithmically many edges.

We give preliminary results for classes of graphs for which non-zero circulation weights
can be computed in AC: reachability for these graphs is in DynFO+Mod 2(≤,+,×) under
insertions and deletions of polylogarithmic size. We show that one can compute such weight
assignments for graphs with bounded treewidth. Other graph classes for which this is possible
include the class of planar graphs [23], and in general all graphs with bounded genus, which
one can show using results from [5].

A question for further research is whether reachability for classes of directed graphs can
be maintained in DynFO(≤,+,×) under insertions and deletions of polylogarithmic size.
Candidate classes are graphs with bounded treewidth, and directed acyclic graphs.
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Abstract
The Strahler number of a rooted tree is the largest height of a perfect binary tree that is its minor.
The Strahler number of a parity game is proposed to be defined as the smallest Strahler number
of the tree of any of its attractor decompositions. It is proved that parity games can be solved in
quasi-linear space and in time that is polynomial in the number of vertices n and linear in (d/2k)k,
where d is the number of priorities and k is the Strahler number. This complexity is quasi-polynomial
because the Strahler number is at most logarithmic in the number of vertices. The proof is based on
a new construction of small Strahler-universal trees.

It is shown that the Strahler number of a parity game is a robust, and hence arguably natural,
parameter: it coincides with its alternative version based on trees of progress measures and –
remarkably – with the register number defined by Lehtinen (2018). It follows that parity games can
be solved in quasi-linear space and in time that is polynomial in the number of vertices and linear
in (d/2k)k, where k is the register number. This significantly improves the running times and space
achieved for parity games of bounded register number by Lehtinen (2018) and by Parys (2020).

The running time of the algorithm based on small Strahler-universal trees yields a novel trade-off
k · lg(d/k) = O(logn) between the two natural parameters that measure the structural complexity of
a parity game, which allows solving parity games in polynomial time. This includes as special cases
the asymptotic settings of those parameters covered by the results of Calude, Jain Khoussainov, Li,
and Stephan (2017), of Jurdziński and Lazić (2017), and of Lehtinen (2018), and it significantly

extends the range of such settings, for example to d = 2O
(√

lg n
)
and k = O

(√
lgn
)
.
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1 Context

Parity Games. Parity games are a fundamental model in automata theory and logic [8, 32, 17,
2], and their applications to verification, program analysis, and synthesis. In particular, they
are intimately linked to the problems of emptiness and complementation of non-deterministic
automata on trees [8, 32], model checking and satisfiability of fixpoint logics [9, 2], and
evaluation of nested fixpoint expressions [1, 18]. It is a long-standing open problem whether
parity games can be solved in polynomial time [9].

The impact of parity games goes well beyond their home turf of automata theory, logic,
and formal methods. For example, an answer [14] of a question posed originally for parity
games [31] has strongly inspired major breakthroughs on the computational complexity of
fundamental algorithms in stochastic planning [12] and linear optimization [15, 16].

Strahler Number. The Strahler number has been proposed by Horton (1945) and made
rigorous by Strahler (1952), in their morphological study of river networks in hydrogeology.
It has been also studied in other sciences, such as botany, anatomy, neurophysiology, physics,
and molecular biology, where branching patterns appear. The Strahler number has been
identified in computer science by Ershov [10] as the smallest number of registers needed to
evaluate an arithmetic expression. It has since been rediscovered many times in various areas
of computer science; see the surveys of Knuth [23], Viennot [30], and Esparza, Luttenberger,
and Schlund [11].

Related Work. A major breakthrough in the quest for a polynomial-time algorithm for
parity games was achieved by Calude, Jain, Khoussainov, Li, and Stephan [3], who have
given the first quasi-polynomial algorithm. Other quasi-polynomial algorithms have been
developed soon after by Jurdziński and Lazić [20], and Lehtinen [24]. Czerwiński, Daviaud,
Fijalkow, Jurdziński, Lazić, and Parys [4] have introduced the concepts of universal trees and
separating automata, and argued that all the aforementioned quasi-polynomial algorithms
were intimately linked to them.

By establishing a quasi-polynomial lower bound on the size of universal trees, Czerwiński et
al. have highlighted the fundamental limitations of the above approaches, motivating further
the study of the attractor decomposition algorithm due to McNaughton [27] and Zielonka [32].
Parys [28] has proposed an ingenious quasi-polynomial version of McNaughton-Zielonka
algorithm, but Lehtinen, Schewe, and Wojtczak [26], and Jurdziński and Morvan [21] have
again strongly linked all quasi-polynomial variants of the attractor decomposition algorithm
to universal trees.

Among several prominent quasi-polynomial algorithms for parity games, Lehtinen’s
approach [24] has relatively least attractive worst-case running time bounds. Parys [29] has
offered some running-time improvements to Lehtinen’s algorithm, but it remains significantly
worse than state-of-the-art bounds of Jurdziński and Lazić [20], and Fearnley, Jain, de
Keijzer, Schewe, Stephan, and Wojtczak [13], in particular because it always requires at least
quasi-polynomial working space.
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Our Contributions. We propose the Strahler number as a parameter that measures the
structural complexity of dominia in a parity game and that governs the computational
complexity of the most efficient algorithms currently known for solving parity games. We
establish that the Strahler number is a robust, and hence natural, parameter by proving
that it coincides with its version based on trees of progress measures and with the register
number defined by Lehtinen [24].

We give a construction of small Strahler-universal trees that, when used with the progress
measure lifting algorithm [19, 20] or with the universal attractor decomposition algorithm [21],
yield algorithms that work in quasi-linear space and quasi-polynomial time. Moreover, usage
of our small Strahler-universal trees allows to solve parity games in polynomial time for
a wider range of asymptotic settings of the two natural structural complexity parameters
(number of priorities d and the Strahler/register number k) than previously known, and
that covers as special cases the k = O(1) criterion of Lehtinen [24] and the d < lgn and
d = O(logn) criteria of of Calude et al. [3], and of Jurdziński and Lazić [20], respectively.

Proofs. Proofs of some of our technical results can be found in the long version of this
extended abstract available on arXiv [7].

2 Dominions, Attractor Decompositions, and Their Trees

Strategies, Traps, and Dominions. A parity game [8] G consists of a finite directed
graph (V,E), a partition (VEven, VOdd) of the set of vertices V , and a function π : V →
{ 0, 1, . . . , d } that labels every vertex v ∈ V with a non-negative integer π(v) called its
priority. We say that a cycle is even if the highest vertex priority on the cycle is even;
otherwise the cycle is odd. We say that a parity game is (n, d)-small if it has at most n
vertices and all vertex priorities are at most d.

For a set S of vertices, we write G ∩ S for the substructure of G whose graph is the
subgraph of (V,E) induced by the sets of vertices S. Sometimes, we also write G \ S to
denote G ∩ (V \ S). We assume throughout that every vertex has at least one outgoing
edge, and we reserve the term subgame to substructures G ∩ S, such that every vertex in the
subgraph of (V,E) induced by S has at least one outgoing edge.

A (positional) Steven strategy is a set σ ⊆ E of edges such that:
for every v ∈ VEven, there is an edge (v, u) ∈ σ,
for every v ∈ VOdd, if (v, u) ∈ E then (v, u) ∈ σ.

For a non-empty set of vertices R, we say that a Steven strategy σ traps Audrey in R if
w ∈ R and (w, u) ∈ σ imply u ∈ R. We say that a set of vertices R is a trap for Audrey [32]
if there is a Steven strategy that traps Audrey in R. Observe that if R is a trap in a game G
then G ∩R is a subgame of G. For a set of vertices D ⊆ V , we say that a Steven strategy σ
is a Steven dominion strategy on D if σ traps Audrey in D and every cycle in the subgraph
(D,σ) is even. Finally, we say that a set D of vertices is a Steven dominion [22] if there is a
Steven dominion strategy on it.

Audrey strategies, trapping Steven, and Audrey dominions are defined in an analogous
way by swapping the roles of the two players. We note that the sets of Steven dominions and
of Audrey dominions are each closed under union, and hence the largest Steven and Audrey
dominions exist, and they are the unions of all Steven and Audrey dominions, respectively.
Moreover, every Steven dominion is disjoint from every Audrey dominion.
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Attractor Decompositions. In a parity game G, for a target set of vertices B (“bullseye”)
and a set of vertices A such that B ⊆ A, we say that a Steven strategy σ is a Steven
reachability strategy to B from A if every infinite path in the subgraph (V, σ) that starts
from a vertex in A contains at least one vertex in B.

For every target set B, there is the largest (with respect to set inclusion) set from which
there is a Steven reachability strategy to B in G; we call this set the Steven attractor to B
in G [32]. Audrey reachability strategies and Audrey attractors are defined analogously. We
highlight the simple fact that if A is an attractor for a player in G then its complement V \A
is a trap for them.

If G is a parity game in which all priorities do not exceed a non-negative even number d then
we say that H = 〈A, (S1,H1, A1), . . . , (S`,H`, A`)〉 is a Steven d-attractor decomposition [5,
6, 21] of G if:

A is the Steven attractor to the (possibly empty) set of vertices of priority d in G;
and setting G1 = G \A, for all i = 1, 2, . . . , `, we have:

Si is a non-empty trap for Audrey in Gi in which every vertex priority is at most d− 2;
Hi is a Steven (d− 2)-attractor decomposition of subgame G ∩ Si;
Ai is the Steven attractor to Si in Gi;
Gi+1 = Gi \Ai;

and the game G`+1 is empty. If d = 0 then we require that ` = 0.
The following proposition states that if a subgame induced by a trap for Audrey has a

Steven attractor decomposition then the trap is a Steven dominion. Indeed, a routine proof
argues that the union of all the Steven reachability strategies, implicit in the attractors listed
in the decomposition, is a Steven dominion strategy.

I Proposition 1 ([32, 5, 21]). If d is even, R is a trap for Audrey in G, and there is a Steven
d-attractor decomposition of G ∩R, then R is a Steven dominion in G.

Attractor decompositions for Audrey can be defined in the analogous way by swapping the
roles of players as expected, and then a dual version of the proposition holds routinely.

The following theorem implies that every vertex in a parity game is either in the largest
Steven dominion or in the largest Audrey dominion – it is often referred to as the positional
determinacy theorem for parity games.

I Theorem 2 ([8, 27, 32, 21]). For every parity game G, there is a partition of the set of
vertices into a trap for Audrey WEven and a trap for Steven WOdd, such that there is a Steven
attractor decomposition of G ∩WEven and an Audrey attractor decomposition of G ∩WOdd.

Ordered Trees and Their Strahler Numbers. Ordered trees are defined inductively; the
trivial tree 〈〉 is an ordered tree and so is a sequence 〈T1, T2, . . . , T`〉, where Ti is an ordered
tree for every i = 1, 2, . . . , `. The trivial tree has only one node called the root, which is a
leaf; and a tree of the form 〈T1, T2, . . . , T`〉 has the root with k children, the root is not a
leaf, and the i-th child of the root is the root of ordered tree Ti.

Because the trivial tree 〈〉 has just one node, we sometimes write ◦ to denote it. If T is an
ordered tree and i is a positive integer, then we use the notation T i to denote the sequence
T, T, . . . , T consisting of i copies of tree T . Then the expression

〈
T i
〉

= 〈T, . . . , T 〉 denotes
the tree whose root has i children, each of which is the root of a copy of T . We also use
the · symbol to denote concatenation of sequences, which in the context of ordered trees
can be interpreted as sequential composition of trees by merging their roots; for example,〈〈
◦3〉〉 · 〈◦4, 〈〈◦〉〉2

〉
=
〈〈
◦3〉 , ◦4, 〈〈◦〉〉2

〉
= 〈〈◦, ◦, ◦〉 , ◦, ◦, ◦, ◦, 〈〈◦〉〉 , 〈〈◦〉〉〉.
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For an ordered tree T , we write height (T ) for its height and leaves (T ) for its number of
leaves, which are defined by the following routine induction: the trivial tree 〈〉 = ◦ has 1 leaf
and its height is 1; the number of leaves of tree 〈T1, T2, . . . , T`〉 is the sum of the numbers of
leaves of trees T1, T2, . . . , T`; and its height is 1 plus the maximum height of trees T1, T2,
. . . , T`. For example, the tree

〈〈
◦3〉 , ◦4, 〈〈◦〉〉2

〉
has 9 leaves and height 4 We say that an

ordered tree is (n, h)-small if it has at most n leaves and its height is at most h.
The Strahler number Str (T ) of a tree T is defined to be the largest height of a perfect

binary tree that is a minor of T . Alternatively, it can be defined by the following structural
induction: the Strahler number of the trivial tree 〈〉 = ◦ is 1; and if T = 〈T1, . . . , T`〉
and m is the largest Strahler number of trees T1, . . . , T`, then Str (T ) = m if there is a
unique i such that Str (Ti) = m, and Str (T ) = m + 1 otherwise. For example, we have
Str
(〈〈
◦3〉 , ◦4, 〈〈◦〉〉2

〉)
= 2 because Str (◦) = Str (〈〈◦〉〉) = 1 and Str

(〈
◦3〉) = 2.

I Proposition 3. For every (n, h)-small tree T , we have Str (T ) ≤ h and Str (T ) ≤ blgnc+1.

Trees of Attractor Decompositions. The definition of an attractor decomposition is in-
ductive and we define an ordered tree that reflects the hierarchical structure of an attractor
decomposition. If d is even and H = 〈A, (S1,H1, A1), . . . , (S`,H`, A`)〉 is a Steven d-attractor
decomposition then we define the tree of attractor decomposition H [6, 21], denoted by TH, to
be the trivial ordered tree 〈〉 if ` = 0, and otherwise, to be the ordered tree 〈TH1 , TH2 , . . . , TH`

〉,
where for every i = 1, 2, . . . , `, tree THi is the tree of attractor decomposition Hi. Trees of
Audrey attractor decompositions are defined analogously.

Observe that the sets S1, S2, . . . , S` in an attractor decomposition as above are non-empty
and pairwise disjoint, which implies that trees of attractor decompositions are small relative
to the number of vertices and the number of distinct priorities in a parity game. The following
proposition can be proved by routine structural induction.

I Proposition 4 ([6, 21]). If H is an attractor decomposition of an (n, d)-small parity game
then its tree TH is (n, dd/2e+ 1)-small.

We define the Strahler number of an attractor decomposition H, denoted by Str (H), to
be the Strahler number Str (TH) of its tree TH. We define the Strahler number of a parity
game to be the maximum of the smallest Strahler numbers of attractor decompositions of
the largest Steven and Audrey dominions, respectively.

3 Strahler Strategies in Register Games

This section establishes a connection between the register number of a parity game defined
by Lehtinen [24] and the Strahler number. More specifically, we argue that from every Steven
attractor decomposition of Strahler number k, we can derive a dominion strategy for Steven
in the k-register game. Once we establish the Strahler number upper bound on the register
number, we are faced with the following two natural questions:

I Question 5. Do the Strahler and the register numbers coincide?

I Question 6. Can the relationship between Strahler and register numbers be exploited
algorithmically, in particular, to improve the running time and space complexity of solving
register games studied by Lehtinen [24] and Parys [29]?

This work has been motivated by those two questions and it answers them both positively
(Lemma 7 and Theorem 8, and Theorem 26, respectively).
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For every positive number k, a Steven k-register game on a parity game G is another
parity game Rk(G) whose vertices, edges, and priorities will be referred to as states, moves,
and ranks, respectively, for disambiguation. The states of the Steven k-register game on G
are either pairs (v, 〈rk, rk−1, . . . , r1〉) or triples (v, 〈rk, rk−1, . . . , r1〉 , p), where v is a vertex
in G, d ≥ rk ≥ rk−1 ≥ · · · ≥ r1 ≥ 0, and 1 ≤ p ≤ 2k + 1. The former states have rank 1 and
the latter have rank p. Each number ri, for i = k, k − 1, . . . , 1, is referred to as the value
of the i-th register in the state. Steven owns all states (v, 〈rk, rk−1, . . . , r1〉) and the owner
of vertex v in G is the owner of states (v, 〈rk, rk−1, . . . , r1〉 , p) for every p. How the game is
played by Steven and Audrey is determined by the available moves:

at every state (v, 〈rk, rk−1, . . . , r1〉), Steven picks i, such that 0 ≤ i ≤ k, and resets
registers i, i − 1, i − 2, . . . , 1, leading to state

(
v,
〈
r′k, . . . , r

′
i+1, r

′
i, 0, . . . , 0

〉
, p
)
of rank p

and with updated register values, where:

p =
{

2i if i ≥ 1 and max (ri, π(v)) is even,
2i+ 1 if i = 0, or if i ≥ 1 and max (ri, π(v)) is odd;

r′j = max(rj , π(v)) for j ≥ i+ 1, and r′i = π(v);
at every state (v, 〈rk, rk−1, . . . , r1〉 , p), the owner of vertex v in G picks an edge (v, u)
in G, leading to state (u, 〈rk, rk−1, . . . , r1〉) of rank 1 and with unchanged register values.

For example, at state (v, 〈9, 6, 4, 4, 3〉) of rank 1, if the priority π(v) of vertex v is 5 and Steven
picks i = 3, this leads to state (v, 〈9, 6, 5, 0, 0〉 , 7) of rank 2i+ 1 = 7 because max(r3, π(v)) =
max(4, 5) = 5 is odd, r′4 = max(r4, π(v)) = max(6, 5) = 6, and r′3 = π(v) = 5.

Observe that the first components of states on every cycle in game Rk(G) form a (not
necessarily simple) cycle in parity game G; we call it the cycle in G induced by the cycle
in Rk(G). If a cycle in Rk(G) is even (that is, the highest state rank on it is even) then the
induced cycle in G is also even. Lehtinen [24, Lemmas 3.3 and 3.4] has shown that a vertex v
is in the largest Steven dominion in G if and only if there is a positive integer k such that a
state (v, r), for some register values r is in the largest Steven dominion in Rk(G). Lehtinen
and Boker [25, a comment after Definition 3.1] have further clarified that for every k, if a
player has a dominion strategy in Rk(G) from a state whose first component is a vertex v in G,
then they also have a dominion strategy in Rk(G) from every state whose first component
is v. This allows us to say without loss of rigour that a vertex v in G is in a dominion
in Rk(G).

By defining the (Steven) register number [24, Definition 3.5] of a parity game G to be the
smallest number k such that all vertices v in the largest Steven dominion in G are in a Steven
dominion in Rk(G), and by proving the 1 + lgn upper bound on the register number of every
(n, d)-small parity game [24, Theorem 4.7], Lehtinen has contributed a novel quasi-polynomial
algorithm for solving parity games, adding to those by Calude et al. [3] and Jurdziński and
Lazić [20].

Lehtinen [24, Definition 4.8] has also considered the concept of a Steven defensive dominion
strategy in a k-register game (for brevity, we call it a k-defensive strategy): it is a Steven
dominion strategy on a set of states in Rk(G) in which there is no state of rank 2k + 1.
Alternatively, the same concept can be formalized by defining the defensive k-register game
Dk(G), which is played exactly like the k-register game Rk(G), but in which Audrey can also
win just by reaching a state of rank 2k + 1. Note that the game Dk(G) can be thought of
as having the winning criterion for Steven as being a conjunction of a parity and a safety
criteria, and the winning criterion for Audrey as a disjunction of a parity and a reachability
criteria. Routine arguements allow to extend positional determinacy from parity games to
such games with combinations of parity, and safety or reachability winning criteria.
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We follow Lehtinen [24, Definition 4.9] by defining the (Steven) defensive register number
of a Steven dominion D in G as the smallest number k such that Steven has a defensive
dominion strategy in Rk(G) on a set of states that includes all (v, 〈rk, . . . , r1〉) for v ∈ D, and
such that rk is an even number at least as large as every vertex priority in D. We propose
to call it the Lehtinen number of a Steven dominion in G to honour Lehtinen’s insight that
led to this – as we argue in this work – fundamental concept. We also define the Lehtinen
number of a vertex in G to be the smallest Lehtinen number of a Steven dominion in G that
includes the vertex, and the Lehtinen number of a parity game to be the Lehtinen number of
its largest Steven dominion. We also note that the register and the Lehtinen numbers of a
parity game nearly coincide (they differ by at most one), and hence the conclusions of our
analysis of the latter also apply to the former.

I Lemma 7. The Lehtinen number of a parity game is no larger than its Strahler number.

The arguments used in our proof of this lemma are similar to those used in the proof of
the main result of Lehtinen [24, Theorem 4.7]. Our contribution here is to pinpoint the
Strahler number of an attractor decomposition as the structural parameter of a dominion
that naturally bounds the number of registers used in Lehtinen’s construction of a defensive
dominion strategy.

Proof of Lemma 7. Consider a parity game G and let d be the least even integer no smaller
than any of the priority in G. Consider a Steven d-attractor decomposition H of G of
Strahler number k. We construct a defensive k-register strategy for Steven on Rk(G). The
strategy is defined inductively on the height of TH, and has the additional property of being
G-positional in the following sense: if ((v, 〈rk, . . . , r1〉) , (v, 〈r′k, . . . , r′1〉 , p)) is a move then
the register reset by Steven only depends on v, not on the values in the registers. Similarly,
if ((v, 〈rk, . . . , r1〉 , p) , (u, 〈rk, . . . , r1〉)) is a move and v is owned by Steven, u only depends
on v and not on the values of the registers or p.

Strategy for Steven. If H = 〈A, ∅〉, then G consists of the set of vertices of priority d and of
its Steven attractor. In this case, Steven follows the strategy induced by the reachability
strategy in A to the set of vertices of priority d, only resetting register r1 immediately after
visiting a state with first component a vertex of priority d in G. More precisely, the Steven
defensive strategy is defined with the following moves:

((v, 〈r1〉) , (v, 〈r1〉 , 1)) if v is not a vertex of priority d in G;
((v, 〈r1〉) , (v, 〈r′1〉 , 2)) if v is a vertex of priority d in G and r′1 = max(r1, d) is even;
((v, 〈r1〉) , (v, 〈r′1〉 , 3)) if v is a vertex of priority d in G and r′1 = max(r1, d) is odd (we
state this case for completeness but this will never occur);
((v, 〈r1〉 , p) , (u, 〈r1〉)) where (v, u) belongs to the Steven reachability strategy from A to
the set of vertices of priority d in G.

Note that this strategy is G-positional.
Suppose now that H = 〈A, (S1,H1, A1), . . . , (S`,H`, A`)〉 and that it has Strahler

number k. For all i = 1, 2, . . . , `, let ki be the Strahler number of Hi. By induction, for
all i, we have a Steven defensive ki-register strategy σi, which is (G ∩ Si)-positional, on a
set of states Ωi in Rki(G ∩ Si) including all the states (v, 〈rki

, . . . , r1〉) for v ∈ Si and rki

an even number at least as large as every vertex priority in Si. Let Γi be the set of states
in Rk(G ∩ Si) defined as all the states (v, 〈d, rk−1, . . . , r1〉) for v ∈ Si if ki 6= k and as the
union of the states (v, 〈d, rk−1, . . . , r1〉) for v ∈ Si and Ωi, otherwise.
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The strategy σi induces a strategy on Γi in Rk(G ∩ Si) by simply ignoring registers
rki+1, . . . , rk, and using (G∩Si)-positionality to define moves from the states not in Ωi. More
precisely, in a state (v, 〈rk, . . . , r1〉), Steven resets register j if and only if register j is reset in
a state

(
v,
〈
r′ki
, . . . , r′1

〉)
of Ωi according to σi. This is well defined by (G ∩ Si)-positionality.

Similarly, we add moves ((v, 〈rk, . . . , r1〉 , p) , (u, 〈rk, . . . , r1〉)) to the strategy if and only if
there is a move

((
v,
〈
r′ki
, . . . , r′1

〉
, p′
)
,
(
u,
〈
r′ki
, . . . , r′1

〉))
in σi. This is again well-defined by

(G ∩ Si)-positionality.
This strategy is denoted by τi. Note that τi is a defensive k-register strategy on Γi, which

is G-positional.
The Steven defensive strategy in Rk(G) is defined by the following moves, where S denotes

the set of vertices of priority d in G:
On the set of states with first component a vertex of Ai \ Si, the moves are given by τi.
On the set of states with first component a vertex of A \ S, Steven uses the strategy
induced by the reachability strategy from Ai to Si, without resetting any registers.
On Rk(G ∩ (A \ S)), Steven uses the strategy induced by the reachability strategy from
A to S, without resetting any registers.
On the set of states with first component a vertex of S,

((v, 〈rk, . . . , r1〉) , (v, 〈d, 0, . . . , 0〉 , p)) where v is a vertex in S and p = 2k if max(rk, d)
is even and p = 2k + 1 otherwise.
((v, 〈rk, . . . , r1〉 , p) , (u, 〈rk, . . . , r1〉)) for some uniquely chosen u such that (v, u) in E
if v is owned by Steven and for all u such that (v, u) in E if v is owned by Audrey.

Observe that this strategy is G-positional.

Correctness of the Strategy. We prove now that the strategy defined above is indeed a
defensive k-register strategy. We proceed by induction on the height of TH and define a set
of states Γ, including all the states (v, 〈d, rk−1, . . . , r1〉) such that v is a vertex of G.

Base Case: If the height of TH is 0 and H = 〈A, ∅〉, let Γ be the set of states (v, 〈r1〉) and
(v, 〈r1〉 , p) with v a vertex of G, 1 ≤ r1 ≤ d and p being either 1 or 2. It is easy to see that
the strategy defined above is a defensive dominion strategy on this set.

Inductive step: If H = 〈A, (S1,H1, A1), . . . , (S`,H`, A`)〉 with Strahler number k and ki
being the Strahler number ofHi for all i (note that ki ≤ k for all i, and by definition of Strahler
number, there is at most one m such that km = k), we define Γ to be the set comprising the
union of the Γi and all the states of the form (v, 〈rk, . . . , r1〉) and (v, 〈rk, . . . , r1〉 , p) with v
a vertex of (Ai \ Si) ∪A and 1 ≤ p ≤ 2k.

Case 1: For each i, ki < k. We first show that Γ is a trap for Audrey for the strategy
defined above, showing that rank 2k+ 1 can never be reached (implying that the strategy
is defensive). This comes from the fact that the register of rank k is only reset in a
state (v, 〈rk, . . . , r1〉) with v in S. Since max(rk, d) = d is even then this leads to a state
(v, 〈d, 0, . . . , 0〉 , 2k). Otherwise, register k is never reset, so a state with rank 2k + 1
cannot be reached.
Consider now any cycle in Rk(G) with moves restricted to the strategy constructed above.
If this cycle contains a state whose first component is a vertex of S, then as explained
above, the highest rank in the cycle is 2k. Otherwise, the cycle is necessarily in Rk(G ∩ Si)
for some i. By induction, τi is winning and so the cycle is even.

Case 2: There is a unique m such that km = k. We first show that a state of rank 2k+ 1
is never reached. Observe that register k is reset in two places: (1) immediately after a
state with first component a vertex of S is visited, (2) if register k is reset by τm. In the
first case, similarly as shown above, a state of rank 2k is reached. In the second case,
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register k is either reset in a state (v, 〈d, rk−1, . . . , r1〉), and similarly as above, a state of
rank 2k is reached, or in a state of Ωi. In this case, as τi is defensive on Ωi by induction,
a state of rank 2k + 1 cannot be reached, and the highest rank that can be reached is 2k.
Proving that every cycle is even is similar to the previous case. J

4 Strahler-Optimal Attractor Decompositions

In this section we prove that every parity game whose Lehtinen number is k has an attractor
decomposition of Strahler number at most k. In other words, we establish the Lehtinen
number upper bound on the Strahler number, which together with Lemma 7 provides a
positive answer to Question 5.

I Theorem 8. The Strahler number of a parity game is no larger than its Lehtinen number.

When talking about strategies in parity games in Section 2, we only considered positional
strategies, for which it was sufficient to verify the parity criterion on (simple) cycles. Instead,
we explicitly consider the parity criterion on infinite paths here, which we find more convenient
to establish properties of Audrey strategies in the proof of Theorem 8.

First, we introduce the concepts of tight and offensively optimal attractor decompositions.

I Definition 9. A Steven d-attractor decomposition H of G is tight if Audrey has a winning
strategy from at least one state in DStr(H)−1(G) in which the value of register Str (H)− 1 is d.

By definition, the existence of a tight Steven d-attractor decomposition on a parity game
implies that the Lehtinen number of the game is at least its Strahler number, from which
Theorem 8 follows. Offensive optimality of an attractor decomposition, the concept we define
next, may seem less natural and more technical than tightness, but it facilitates our proof
that every game has a tight attractor decomposition.

I Definition 10. Let H = 〈A, (S1,H1, A1), . . . , (S`,H`, A`)〉 be a Steven d-attractor decom-
position, let games Gi for i = 1, 2, . . . , ` be as in the definition of an attractor decomposition,
let A′i be the Audrey attractor of the set of vertices of priority d−1 in Gi, and let G′i = Gi \A′i.
We say that H is offensively optimal if for every i = 1, 2, . . . , `, we have:

Audrey has a dominion strategy on RStr(Hi)−1(G′i);
Audrey has a dominion strategy on DStr(Hi)(G′i \ Si).

Proving that every offensively optimal Steven attractor decomposition is tight (Lemma 11),
and that every Steven dominion in a parity game has an offensively optimal Steven attractor
decomposition (Lemma 12), will complete the proof of Theorem 8.

I Lemma 11. Every offensively optimal Steven attractor decomposition is tight.

Proof. Let H = 〈A, (S1,H1, A1), . . . , (S`,H`, A`)〉 be an offensively optimal d-attractor
decomposition of a parity game and let k = Str (H). We construct a strategy for Audrey
in Dk−1(G) that is winning for her from at least one state in which the value of register k− 1
is d. We define G′i and A′i as in Definition 10.

Case 1: Str (Hi) = k for some unique i in {1, . . . , `}. In this case, we show that Audrey
has a dominion strategy on Dk−1(Gi). Since Gi is a trap for Steven in G, this gives the desired
result. Consider the following strategy in Dk−1(Gi):

On the set of states whose vertex components are in A′i, Audrey follows a strategy induced
by the reachability strategy in A′i to a vertex of priority d− 1 (picking any move if v is of
priority d− 1);
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In states whose vertex component is in G′i, Audrey plays a (k − 1)-register dominion
strategy on Rk−1(G′i). Such a strategy exists by the definition of offensive optimality and
by the assumption that Str (Hi) = k.

This strategy is indeed an Audrey dominion strategy on Dk−1(Gi), because any play either
visits a state whose first component is a vertex in A′i infinitely often, or it eventually remains
in Rk−1(G′i). In the former case, the play visits a state whose first component is a vertex of
priority d− 1 infinitely often. In the latter case, the state parity criterion holds. Note that
this even defines an Audrey dominion strategy on Rk−1(Gi).

Case 2: There are 1 ≤ i < j ≤ ` such that Str (Hi) = Str (Hj) = k − 1. We construct
a strategy for Audrey in Dk−1(G) that is winning for her from all states in Gj whose
register k − 1 has value d. Firstly, since H is offensively optimal, Audrey has a dominion
strategy on Dk−1(G′i \ Si), denoted by τi, and a dominion strategy on Rk−2(G′i), denoted
by τ ′i . Moreover, since 〈∅, (Sj ,Hj , Aj), . . . , (S`,H`, A`)〉 is an offensively optimal attractor
decomposition of Gj , an argument similar to the one in Case 1. yields that Audrey has a
dominion strategy, denoted by τj , on Rk−2(Gj) (note that Gj is a trap for Steven in G).
Consider the following strategy for Audrey in Dk−1(G), starting from a state whose vertex
component is in Gj and register k − 1 has value d:

As long as the value of register k − 1 is larger than d− 1, Audrey follows the strategy
induced by τj , while ignoring the value of register k − 1, as long as this value is larger
than d− 1.
If the value in register k − 1 is at most d− 1:

In states whose vertex component is in A′i, Audrey follows a strategy induced by the
reachability strategy from A′i to a vertex of priority d − 1 (picking any move if the
vertex has priority d− 1);
In states whose vertex component is in G′i \ Si and whose register k − 2 has value at
most d− 2, Audrey follows τi;
In states whose vertex component is in G′i and whose register k − 1 has value d− 1,
Audrey follows the strategy induced by τ ′i , while ignoring the value of regiser k − 1.

Audrey plays any move if none of the above applies.
We argue that this strategy is winning for Audrey in Dk−1(G) from states whose vertex

component is in Gj and register k − 1 has value d. Consider an infinite path that starts in
such a state. As long as register k − 1 has value d, Audrey follows τj . If Steven never resets
register k− 1 then Audrey wins. Otherwise, once register k− 1 has been reset, its value is at
most d− 1. Note that Gj is included in A′i ∪ (G′i \ Si). If register k − 1 has a value smaller
than d− 1, and the play never visits a state whose vertex component is in A′i, then Audrey
has followed τi along the play (she has never left G′i \ Si as the only way for Steven to go out
G′i \ Si is to go to A′i) and wins. Otherwise, the play visits a state whose vertex component
is in A′i, and so it visits a state whose vertex component has priority d − 1, leading to a
state in which register k− 1 has value d− 1. Finally, if a state whose vertex component is in
A′i is visited infinitely many times then Audrey wins. Otherwise, Audrey eventually plays
according to τ ′i . If Steven never resets register k − 1 then Audrey wins. Otherwise, if Steven
resets register k− 1, which at this point has value d− 1, a state of rank 2k− 1 is visited and
Audrey wins. J

I Lemma 12. Every Steven dominion in a parity game has an offensively optimal Steven
attractor decomposition.

Proof. Consider a parity game G which is a Steven dominion. Let k be the Lehtinen number
of G and let d be the largest even value such that π−1({d, d − 1}) 6= ∅. We construct an
offensively optimal Steven attractor decomposition by induction.
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If d = 0, it is enough to consider 〈A, ∅〉, where A is the set of all vertices in G.
If d > 1, let A be the Steven attractor of the set of vertices of priority d in G. Let

G0 = G \A. If G0 = ∅ then 〈A, ∅〉 is an offensively optimal Steven attractor decomposition
for G. Otherwise, G0 is a non-empty trap for Steven in G and therefore G0 has a Lehtinen
number at most k. Let A′ be the Audrey attractor of all the vertices of priority d− 1 in the
sub-game G0 and let G′0 = G0 \A′.

Given a positive integer b, let Lb be the largest dominion in G′0 such that Steven has a
dominion strategy on Db(G′0). We define m to be the smallest number such that Lm 6= ∅
and let S0 = Lm. We show that m ≤ k. To prove this, we construct an Audrey dominion
strategy on Db(G0) for all b such that Lb = ∅. Since the Lehtinen number of G0 is at most k,
this implies that m ≤ k. The Audrey dominion strategy on Db(G0), assuming Lb = ∅, is as
follows:

If the vertex component of a state is in A′ then Audrey uses the strategy in A′ induced
by the reachability strategy to vertices of priority d− 1;
If the vertex component of a state is in G′0 then Audrey uses her dominion strategy
on Db(G′0), which exists because the Steven dominion Lb in Db(G′0) is empty.

Any play following the above strategy and visiting infinitely often a state of Db(G0 ∩A′) is
winning for Audrey. A play following the above strategy and remaining eventually in Db(G′0)
is also winning for Audrey.

Let H0 be the (d− 2)-attractor decomposition of S0 obtained by induction. In particular,
H0 is offensively optimal.

Let A0 be the Steven attractor to S0 in G0 and let G1 = G0 \A0. Subgame G1 is a trap
for Steven and therefore it is a Steven dominion. Let H′ = 〈∅, (S1,H1, A1), . . . , (S`,H`, A`)〉
be an offensively optimal Steven d-attractor decomposition of G1 obtained by induction.

We claim that H = 〈A, (S0,H0, A0), (S1,H1, A1), . . . , (S`,H`, A`)〉 is an offensively op-
timal Steven d-attractor decomposition of G. Since H′ is offensively optimal, it is enough to
show that:

Audrey has a dominion strategy on RStr(H0)−1(G′0),
Audrey has a dominion strategy on DStr(H0)(G′0 \ S0).

Since H0 is offensively optimal, Audrey has a dominion strategy in RStr(H0)−1(S0), by
Lemma 11, and hence m ≥ Str (H0). Moreover, by construction of S0, Audrey has a
dominion strategy on Dm(G′0 \ S0). This implies that Audrey has a dominion strategy on
DStr(H0)(G′0 \ S0).

By choice of m, Steven does not have a defensive dominion strategy on DStr(H0)−1(G′0)
from any state. This means that for all states s, Audrey has a winning strategy τs on
DStr(H0)−1(G′0) starting in s. We construct a dominion strategy for her on RStr(H0)−1(G′0):
after every visit to a state of rank 2Str (H0) − 1, Audrey follows τs, where s is the first
state that follows on the path and whose rank is smaller than 2Str (H0)− 1. This defines a
dominion strategy on RStr(H0)−1(G′0). J

5 Strahler-Universal Trees

Our attention now shifts to tackling Question 6. The approach is to develop constructions of
small ordered trees into which trees of attractor decompositions or of progress measures can
be embedded. Such trees can be seen as natural search spaces for dominion strategies, and
existing meta-algorithms such as the universal attractor decomposition algorithm [21] and
progress measure lifting algorithm [19, 20] can use them to guide their search, performed in
time proportional to the size of the trees in the worst case.
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An ordered tree is universal for a class of trees if all trees from the class can be embedded
into it. The innovation offered in this work is to develop optimized constructions of trees that
are universal for classes of trees whose complex structural parameter, such as the Strahler
number, is bounded. This is in contrast to less restrictive universal trees introduced by
Czerwiński et al. [4] and implicitly constructed by Jurdziński and Lazić [20], whose sizes
therefore grow faster with size parameters, leading to slower algorithms.

Firstly, we give an inductive construction of Strahler-universal trees and an upper bound
on their numbers of leaves. Then we introduce labelled ordered trees, provide a succinct
bit-string labelling of the Strahler-universal trees, and give an alternative and more explicit
characterization of the succinctly-labelled Strahler-universal trees. Finally, we argue how the
succinct bit-string labelling of Strahler-universal trees facilitates efficient computation of the
so-called “level-p successors” in them, which is the key computational primitive that allows
using ordered trees to solve parity games. The constructions and techniques we develop here
are inspired by and significantly refine those introduced by Jurdziński and Lazić [20].

Strahler-Universal Trees and Their Sizes. Intuitively, an ordered tree can be embedded in
another if the former can be obtained from the latter by pruning some subtrees. More formally,
the trivial tree 〈〉 can be embedded in every ordered tree, and 〈T1, T2, . . . , Tk〉 can be embedded
in 〈T ′1, T ′2, . . . , T ′`〉 if there are indices i1, i2, . . . , ik such that 1 ≤ i1 < i2 < · · · < ik ≤ ` and
for every j = 1, 2, . . . , k, we have that Tj can be embedded in T ′ij .

An ordered tree is (n, h)-universal [4] if every (n, h)-small ordered tree can be embedded
in it. We define an ordered tree to be k-Strahler (n, h)-universal if every (n, h)-small ordered
tree whose Strahler number is at most k can be embedded in it, and we give a construction
of small Strahler-universal trees.

I Definition 13 (Trees Ukt,h and V kt,h). For all t ≥ 0, we define trees Ukt,h (for all h and k
such that h ≥ k ≥ 1) and V kt,h (for all h and k such that h ≥ k ≥ 2) by mutual induction:
1. if h = k = 1 then Ukt,h = 〈〉;
2. if h > 1 and k = 1 then Ukt,h =

〈
Ukt,h−1

〉
;

3. if h ≥ k ≥ 2 and t = 0 then Ukt,h = V kt,h =
〈
Uk−1
t,h−1

〉
;

4. if h ≥ k ≥ 2 and t ≥ 1 then V kt,h = V kt−1,h ·
〈
Uk−1
t,h−1

〉
· V kt−1,h;

5. if h = k ≥ 2 and t ≥ 2 then Ukt,h = V kt,h;
6. if h > k ≥ 2 and t ≥ 2 then Ukt,h = V kt,h ·

〈
Ukt,h−1

〉
· V kt,h.

For g ≥ 0, let Ig be the trivial tree, that is the tree with exactly one leaf, of height g. For
example, I1 = 〈〉 and I3 = 〈〈〈〉〉〉 = 〈〈◦〉〉. It is routine to verify that if h ≥ k = 1 or t = 0
then Ukt,h = Ih, and if h ≥ k ≥ 2 and t = 0 then V kt,h = Ih.

I Lemma 14. For all n ≥ 1 and h ≥ k ≥ 1, the ordered tree Ukblgnc,h is k-Strahler (n, h)-
universal.

Proof. We say that a tree has weak Strahler number at most k if every subtree rooted in
a child of the root has Strahler number at most k − 1. A tree is then weakly k-Strahler
(n, h)-universal if every (n, h)-small ordered tree whose weak Strahler number is at most k
can be embedded in it. We proceed by induction on the number of leaves in an ordered tree
and its height, using the following strengthened inductive hypothesis:

for all n ≥ 1 and h ≥ k ≥ 1, ordered tree Ukblgnc,h is k-Strahler (n, h)-universal;
for all n ≥ 1 and h ≥ k ≥ 2, ordered tree V kblgnc,h is weakly k-Strahler (n, h)-universal.
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Let T be an (n, h)-small ordered tree of Strahler number at most k. If n = 1, h = 1, or
k = 1, then T is the trivial tree (with just one leaf) of height at most h, and hence it can be
embedded in Ukblgnc,h = Ih, the trivial tree of height h. Likewise, if h ≥ k ≥ 2 and n = 1,
then T is the trivial tree of height at most h, and hence it can be embedded in V kblgnc,h = Ih,
the trivial tree of height h.

Otherwise, we have that T = 〈T1, . . . , Tj〉 for some j ≥ 1. We consider two cases: either
Str (Ti) ≤ k − 1 for all i = 1, . . . , j, or there is q such that Str (Tq) = k. Note that by
Proposition 3, the latter case can only occur if h > k.

If Str (Ti) ≤ k − 1 for all i = 1, . . . , j, then we argue that T can be embedded in V kblgnc,h,
and hence also in Ukblgnc,h, because V kblgnc,h can be embedded in Ukblgnc,h by definition
(see items 3., 5., and 6. of Definition 13). Let p (a pivot) be an integer such that both
trees T ′ = 〈T1, . . . , Tp−1〉 and T ′′ = 〈Tp+1, . . . , Tj〉 are (bn/2c , h)-small. Then by the
strengthened inductive hypothesis, each of the two trees T ′ and T ′′ can be embedded in
tree V kblgbn/2cc,h = V kblgnc−1,h and tree Tp can be embedded in Uk−1

blgnc,h−1. It then follows that

tree T = T ′ · 〈Tp〉 · T ′′ can be embedded in V kblgnc,h = V kblgnc−1,h ·
〈
Uk−1
blgnc,h−1

〉
· V kblgnc−1,h.

If Str (Tq) = k for some q (the pivot), then we argue that T can be embedded in Ukblgnc,h.
Note that each of the two trees T ′ = 〈T1, . . . , Tq−1〉 and T ′′ = 〈Tq+1, . . . , Tj〉 is (n, h)-small
and all trees T1, . . . , Tq−1 and Tq+1, . . . , Tj have Strahler numbers at most k − 1. By the
previous paragraph, it follows that each of the two trees T ′ and T ′′ can be embedded
in V kblgnc,h. Moreover, tree Tq is (n, h− 1)-small and hence, by the inductive hypothesis, it
can be embedded in Ukblgnc,h−1. It follows that tree T = T ′ · 〈Tq〉 · T ′′ can be embedded in

Ukblgnc,h = V kblgnc,h ·
〈
Ukblgnc,h−1

〉
· V kblgnc,h. J

I Lemma 15. For all t ≥ 0, we have:
if h ≥ k = 1 then leaves

(
Ukt,h

)
= 1;

if h ≥ k ≥ 2 then leaves
(
Ukt,h

)
≤ 2t+k

(
t+k−2
k−2

)(
h−1
k−1
)
.

I Theorem 16. For k ≤ lgn, the number of leaves of the k-Strahler (n, h)-universal ordered
trees Ukblgnc,h is nO(1) · (h/k)k = nk lg(h/k)/lgn+O(1), which is polynomial in n if k · lg (h/k) =
O(logn). In more detail, the number is at most nc(n) · (h/k)k, where c(n) = 5.45 if k ≤ lgn,
c(n) = 3 + o(1) if k = o(logn), and c(n) = 1 + o(1) if k = O(1).

I Remark 17. By Proposition 3 and Lemma 14, for all positive integers n and h, the tree
U
blgnc+1
blgnc,h is (n, h)-universal. Theorem 16 implies that the number of leaves of Ublgnc+1

blgnc,h is
nlg(h/lgn)+O(1), which matches the asymptotic number of leaves of (n, h)-universal trees of
Jurdziński and Lazić [20, Lemma 6]. In particular, if h = O(logn) then lg(h/lgn) = O(1),
and hence the number of leaves of Ublgnc+1

blgnc,h is polynomial in n.

Labelled Strahler-Universal Trees. Labelled ordered tree are similar to ordered trees: the
trivial tree 〈〉 is an A-labelled ordered tree and so is a sequence 〈(a1,L1), (a2,L2), . . . , (ak,Lk)〉,
where L1, L2, . . . , Lk are A-labelled ordered trees, and a1, a2, . . . , ak are distinct elements
of a linearly ordered set (A,≤) and a1 < a2 < · · · < ak in that linear order. We define
the unlabelling of a labelled ordered tree 〈(a1,L1), (a2,L2), . . . , (ak,Lk)〉, by straightforward
induction, to be the ordered tree 〈T1, T2, . . . , Tk〉, where Ti is the unlabelling of Li for
every i = 1, 2, . . . , k. An A-labelling of an ordered tree T is an A-labelled tree L whose
unlabelling is T . We define the natural labelling of an ordered tree T = 〈T1, . . . , Tk〉, again
by a straightfoward induction, to be the N-labelled tree 〈(1,L1), . . . , (k,Lk)〉, where L1, . . . ,
Lk are the natural labellings of trees T1, . . . , Tk.
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For an A-labelled tree 〈(a1,L1), . . . , (ak,Lk)〉, its set of nodes is defined inductively to
consist of the root 〈〉 and all the sequences in A∗ of the form 〈ai〉 · v, where v ∈ A∗ is a node
in Li for some i = 1, . . . , k, and where the symbol · denotes concatenation of sequences. For
example, the natural labelling of tree

〈〈
◦3〉 , ◦4, 〈〈◦〉〉2

〉
has the set of nodes that consists

of the following set of leaves 〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈2〉, 〈3〉, 〈4〉, 〈5〉, 〈6, 1, 1〉, 〈7, 1, 1〉, and all
of their prefixes. Indeed, the set of nodes of a labelled ordered tree is always prefix-closed.
Moreover, if L ⊆ A∗ then its closure under prefixes uniquely identifies a labelled ordered tree
that we call the labelled ordered tree generated by L, and its unlabelling is the ordered tree
generated by L. For example, the set { 〈1〉 , 〈3, 1〉 , 〈3, 4, 1〉 , 〈6, 1〉 } generates ordered tree
〈◦, 〈◦, 〈◦〉〉 , 〈◦〉〉.

Consider the following linear order on the set { 0, 1 }∗ of bit strings: for each bit b ∈ { 0, 1 },
and for all bit strings β, β′ ∈ { 0, 1 }∗, if ε is the empty string, then we have 0β < ε, ε < 1β,
and bβ < bβ′ iff β < β′.

For a bit string β ∈ { 0, 1 }∗, we write |β| for the number of bits used in the string. For
example, we have |ε| = 0 and |010| = 3, and |11| = 2. Suppose that 〈βi, βi−1, . . . , β1〉 is a
node in a { 0, 1 }∗-labelled ordered tree. Then if βj = bβ for some j = 1, 2, . . . , i, b ∈ { 0, 1 },
and β ∈ { 0, 1 }∗, then we refer to the first bit b as the leading bit in βj , and we refer to
all the following bits in β as non-leading bits in βj . For example, node 〈ε, 010, ε, ε, 11〉 has
two non-empty strings and hence two leading bits, and it uses three non-leading bits overall,
because |010|+ |11| − 2 = 3.

For a bit b ∈ { 0, 1 } and a { 0, 1 }∗-labelled ordered tree L = 〈(β1,L1) , . . . , (β`,L`)〉, we
define the { 0, 1 }∗-labelled ordered tree [L]b to be equal to L = 〈(bβ1,L1) , . . . , (bβ`,L`)〉. In
other words, [L]b is the labelled ordered tree that is obtained from L by adding an extra
copy of bit b as the leading bit in the labels of all children of the root of L.

The inductive structure of the next definition is identical to that of Definition 13, and
hence labelled ordered trees Ukt,h and Vkt,h defined here are labellings of the ordered trees Ukt,h
and V kt,h, respectively.

I Definition 18 (Trees Ukt,h and Vkt,h). For all t ≥ 0, we define { 0, 1 }∗-labelled ordered
trees Ukt,h (for all h and k such that h ≥ k ≥ 1) and Vkt,h (for all h and k such that h ≥ k ≥ 2)
by mutual induction:
1. if h = k = 1 then Ukt,h = 〈〉;
2. if h > 1 and k = 1 then Ukt,h =

〈(
ε,Ukt,h−1

)〉
;

3. if h ≥ k ≥ 2 and t = 0 then Vkt,h =
〈(
ε,Uk−1

t,h−1

)〉
and Ukt,h =

[
Vkt,h

]0
=
〈(

0,Uk−1
t,h−1

)〉
;

4. if h ≥ k ≥ 2 and t ≥ 1 then Vkt,h =
[
Vkt−1,h

]0
·
〈(
ε,Uk−1

t,h−1

)〉
·
[
Vkt−1,h

]1
;

5. if h = k ≥ 2 and t ≥ 1 then Ukt,h =
[
Vkt,h

]0
;

6. if h > k ≥ 2 and t ≥ 1 then Ukt,h =
[
Vkt,h

]0
·
〈(
ε,Ukt,h−1

)〉
·
[
Vkt,h

]1
.

The inductive definition of labelled ordered trees Ukt,h and Vkt,h makes it straightforward
to argue that their unlabellings are equal to trees Ukt,h and V kt,h, respectively, and hence to
transfer to them Strahler-universality established in Lemma 14 and upper bounds on the
numbers of leaves established in Lemma 15 and Theorem 16. We now give an alternative
and more explicit characterization of those trees, which will be more suitable for algorithmic
purposes. To that end, we define { 0, 1 }∗-labelled trees Bkt,h and Ckt,h and then we argue
that they are equal to trees Ukt,h and Vkt,h, respectively, by showing that they satisfy all the
recurrences in Definition 18.
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I Definition 19 (Trees Bkt,h and Ckt,h). For all t ≥ 0 and h ≥ k ≥ 1, we define { 0, 1 }∗-labelled
ordered trees Bkt,h as the tree generated by sequences 〈βh−1, . . . , β1〉 such that:
1. the number of non-empty bit strings among βh−1, . . . , β1 is k − 1;
2. the number of bits used in bit strings βh−1, . . . , β1 overall is at most (k − 1) + t;
and for every i = 1, . . . , h− 1, we have the following:
3. if there are less than k − 1 non-empty bit strings among βh−1, . . . , βi+1, but there are t

non-leading bits used in them, then βi = 0;
4. if all bit strings βi, . . . , β1 are non-empty, then each of them has 0 as its leading bit.

For all t ≥ 0 and h ≥ k ≥ 2, we define { 0, 1 }∗-labelled ordered trees Ckt,h as the tree
generated by sequences 〈βh−1, . . . , β1〉 such that:
1. the number of non-empty bit strings among βh−2, . . . , β1 is k − 2;
2. the number of bits used in bit strings βh−1, . . . , β1 overall is at most (k − 2) + t;
and for every i = 1, . . . , h− 1, we have the following:
3. if there are less than k − 2 non-empty bit strings among βh−2, . . . , βi+1, but there are

t− |βh−1| non-leading bits used in them, then βi = 0;
4. if all bit strings βi, . . . , β1 are non-empty, then each of them has 0 as its leading bit.

I Lemma 20. For all t ≥ 0 and h ≥ k ≥ 1, we have Ukt,h = Bkt,h.

The following corollary follows from Lemma 20, and from the identical inductive structures
of Definitions 13 and 18.

I Corollary 21. For all t ≥ 0 and h ≥ k ≥ 1, the unlabelling of Bkt,h is equal to Ukt,h.

Efficiently Navigating Labelled Strahler-Universal Trees. The computation of the level-p
successor of a leaf in a labelled ordered tree of height h is the following problem: given a
leaf 〈βh, βh−1, . . . , β1〉 in the tree and given a number p, such that 1 ≤ p ≤ h, compute the
<lex-smallest leaf

〈
β′h, β

′
h−1, . . . , β

′
1
〉
in the tree, such that 〈βh, . . . , βp〉 <lex

〈
β′h, . . . , β

′
p

〉
. As

(implicitly) explained by Jurdziński and Lazić [20, Proof of Theorem 7], the level-p successor
computation is the key primitive used extensively in an implementation of a progress measure
lifting algorithm.

I Lemma 22. Every leaf in tree Bkt,h can be represented using O ((k + t) log h) bits and for
every p = 1, 2, . . . , h, the level-p successor of a leaf in tree Bkt,h can be computed in time
O ((k + t) log h).

6 Progress-Measure Strahler Numbers

Consider a parity game G in which all vertex priorities are at most an even number d.
If (A,≤) is a well-founded linear order then we write sequences in Ad/2 in the follow-
ing form 〈md−1,md−3, . . . ,m1〉, and for every priority p ∈ { 0, 1, . . . , d }, we define the
p-truncation of 〈md−1,md−3, . . . ,m1〉, denoted by 〈md−1,md−3, . . . ,m1〉|p, to be the se-
quence 〈md−1, . . . ,mp+2,mp〉 if p is odd and 〈md−1, . . . ,mp+3,mp+1〉 if p is even. We use
the lexicographic order ≤lex to linearly order the set A∗ =

⋃∞
i=0 A

i.
A Steven progress measure [8, 19, 20] on a parity game G is a map µ : V → Ad/2 such

that for every vertex v ∈ V :
if v ∈ VEven then there is a µ-progressive edge (v, u) ∈ E;
if v ∈ VOdd then every edge (v, u) ∈ E is µ-progressive;

where we say that an edge (v, u) ∈ E is µ-progressive if:
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if π(v) is even then µ(v)|π(v) ≥lex µ(u)|π(v);
if π(v) is odd then µ(v)|π(v) >lex µ(u)|π(v).

We define the tree of a progress measure µ to be the ordered tree generated by the image
of V under µ.

I Theorem 23 ([8, 19, 20]). There is a Steven progress measure on a parity game G if and
only if every vertex in G is in its largest Steven dominion. If game G is (n, d)-small then the
tree of a progress measure on G is (n, d/2 + 1)-small.

We define the Steven progress-measure Strahler number of a parity game G to be the
smallest Strahler number of a tree of a progress measure on G. The following theorem refines
and strengthens Theorems 2 and 23 by establishing that the Steven Strahler number and the
Steven progress-measure Strahler number of a parity game nearly coincide.

I Theorem 24. The Steven Strahler number and the Steven progress-measure Strahler
number of a parity game differ by at most 1.

The translations between progress measures and attractor decompositions are as given by
Daviaud, Jurdziński, and Lazić [5]; here we point out that they do not increase the Strahler
number of the underlying trees by more than 1. This coincidence of the two complexity
measures, one based on attractor decompositions and the other based on progress measures,
allows us in Section 7 to use a progress measure lifting algorithm to solve games with bounded
Strahler number.

7 Strahler-Universal Progress Measure Lifting Algorithm

Jurdziński and Lazić [20, Section IV] have implicitly suggested that the progress-measure
lifting algorithm [19] can be run on any ordered tree and they have established the correctness
of such an algorithm if their succinct multi-counters trees were used. This has been further
clarified by Czerwiński et al. [4, Section 2.3], who have explicitly argued that any (n, d/2)-
universal ordered tree is sufficient to solve an (n, d)-small parity game in this way. We make
explicit a more detailed observation that follows using the same standard arguments (see, for
example, Jurdziński and Lazić [20, Theorem 5]).

I Proposition 25. Suppose the progress measure-lifting algorithm is run on a parity game G
and on an ordered tree T . Let D be the largest Steven dominion in G on which there is a
Steven progress measure whose tree can be embedded in T . Then the algorithm returns a
Steven dominion strategy on D.

An elementary corollary of this observation is that if the progress-measure lifting algorithm
is run on the tree of a progress measure on some Steven dominion in a parity game, then the
algorithm produces a Steven dominion strategy on a superset of that dominion. Note that
this is achieved in polynomial time because the tree of a progress measure on an (n, d)-small
parity game is (n, d/2)-small and the running time of the algorithm is dominated by the size
of the tree [20, Section IV.B].

I Theorem 26. There is an algorithm for solving (n, d)-small parity games of Strahler
number k in quasi-linear space and time nO(1) · (d/2k)k = nk lg(d/k)/lgn+O(1), which is
polynomial in n if k · lg(d/k) = O(logn).



L. Daviaud, M. Jurdziński, and K. Thejaswini 123:17

Proof. By Proposition 3, we may assume that k ≤ 1 + lgn. In order to solve an (n, d)-small
parity game of Steven Strahler number k, run the progress-measure lifting algorithm for
Steven on tree Bk+1

blgnc,d/2+1, which is (k + 1)-Strahler (n, d/2 + 1)-universal by Lemma 14
and Corollary 21. By Theorem 24 and by Proposition 25, the algorithm will then return
a Steven dominion strategy on the largest Steven dominion. The running time and space
upper bounds follow from Theorem 16, by the standard analysis of progress-measure lifting
as in [20, Theorem 7], and by Lemma 22. J

I Remark 27. We highlight the k · lg(d/k) = O(logn) criterion from Theorem 26 as offering
a novel trade-off between two natural structural complexity parameters of parity games
(number of of priorities d and the Strahler/Lehtinen number k) that enables solving them
in time that is polynomial in the number of vertices n. It includes as special cases both
the d < lgn criterion of Calude et al. [3, Theorem 2.8] and the d = O(logn) criterion of
Jurdziński and Lazić [20, Theorem 7] (set k = blgnc+ 1 and use Propositions 4 and 3 to
justify it), and the k = O(1) criterion of Lehtinen [24, Theorem 3.6] (by Theorem 8).

We argue that the new k ·lg(d/k) = O(logn) criterion (Theorem 26) enabled by our results
(coincidence of the Strahler and the Lehtinen numbers: Theorem 8) and techniques (small
and efficiently navigable Strahler-universal trees: Theorem 16, Corollary 21, and Lemma 22)
considerably expands the asymptotic ranges of the natural structural complexity parameters
in which parity games can be solved in polynomial time. We illustrate it by considering the
scenario in which the rates of growth of both k and lg d as functions of n are O

(√
logn

)
, i.e.,

d is 2O
(√

logn
)
. Note that the number of priorities d in this scenario is allowed to grow as

fast as 2b·
√

lgn for an arbitrary positive constant b, which is significantly larger than what is
allowed by the d = O(logn) criterion of Jurdziński and Lazić [20, Theorem 7]. Indeed, its rate
of growth is much larger than any poly-logarithmic function of n, because for every positive
constant c, we have (lgn)c = 2c·lg lgn, and c · lg lgn is exponentially smaller than b ·

√
lgn.

At the same time, the O
(√

logn
)
rate of growth allowed in this scenario for the Strahler

number k substantially exceeds k = O(1) required by Lehtinen [24, Theorem 3.6].
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Abstract
For quadratic word equations, there exists an algorithm based on rewriting rules which generates a
directed graph describing all solutions to the equation. For regular word equations – those for which
each variable occurs at most once on each side of the equation – we investigate the properties of this
graph, such as bounds on its diameter, size, and DAG-width, as well as providing some insights into
symmetries in its structure. As a consequence, we obtain a combinatorial proof that the problem of
deciding whether a regular word equation has a solution is in NP.
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1 Introduction

A word equation is a tuple (α, β), usually written α
.= β, such that α and β are words

comprised of letters from a terminal alphabet Σ = {a, b, . . .} and variables from a set
X = {x, y, z, . . .}. Solutions are substitutions of the variables for words in Σ∗ making both
sides identical. For example, one solution to the word equation xaby .= ybax is given by
x→ b and y → bab. A system of equations is a set of equations, and a solution to the system
is a substitution for the variables which is a solution to all the equations in the system.

One of the most fundamental questions concerning word equations is the satisfiability
problem: determining whether or not a word equation has a solution. Makanin [22] famously
showed in 1977 that the satisfiability problem for word equations is decidable by giving
a general algorithm. Since then, several further algorithms have been presented. Most
notable among these are the algorithm given by Plandowski [25] which demonstrated that
the satisfiability problem is in PSPACE, the algorithm based on Lempel-Ziv encodings by
Plandowksi and Rytter [26], and the method of recompression by Jeż, which has since been
shown to require only non-deterministic linear space [15, 16]. On the other hand, it is easily
seen that solving word equations is NP-hard due to fact that the subcase when one side of
the equation consists only of terminals is exactly the pattern matching problem which is
NP-complete [3, 12]. It remains a long-standing open problem whether or not the satisfiability
problem for word equations is contained in NP.
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Recently, there has been elevated interest in solving more general versions of the satisfiab-
ility problem, originating from practical applications in e.g. software verification where several
string solving tools capable of solving word equations are being developed [1, 4, 6, 18, 2] and
database theory [14, 13], where one asks whether a given (system of) word equation(s) has a
solution which satisfies some additional constraints. Prominent examples include requiring
that the substitution for a variable x belongs to some regular language Lx (regular con-
straints), or that the lengths of the substitutions of the variables satisfy a set of given linear
diophantine equations. Adding regular constraints makes the problem PSPACE complete
(see [10, 25, 27], while it is another long standing open problem whether the satisfiability
problem with length constraints is decidable. There are also many other kinds of constraints,
however many lead to undecidable variants of the satisfiability problem [7, 19]. The main
difficulty in dealing with additional constraints is that the solution-sets to word equations are
often infinite sets with complex structures. For example, they are not parametrizable [24], and
the set of lengths of solutions is generally not definable in Presburger arithmetic [20]. Thus,
a better understanding of the solution-sets and their structures is a key aspect of improving
our ability to solve problems relating to word equations both in theory and practice.

Quadratic word equations (QWEs) are equations in which each variable occurs at most
twice. For QWEs, a conceptually simple and easily implemented algorithm exists which
produces a representation of the set of all solutions as a graph. Despite this, however, the
satisfiability problem for quadratic equations remains NP-hard, even for severely restricted
subclasses [8, 11], while inclusion in NP, and whether the satisfiability problem with length
constraints is decidable, have remained open for a long time, just as for the general case.

The algorithm solving QWEs is based on iteratively rewriting the equation(s) according to
some simple rules called Nielsen transformations. If there exists a sequence of transformations
from the original equation to the trivial equation ε .= ε, then the equation has a solution.
Otherwise, there is no solution. Hence the satisfiability problem becomes a reachability
problem for the underlying rewriting transformation relation, which we denote ⇒NT . It is
natural to represent this relation as a directed graph G⇒NT in which the vertices are word
equations and the edges are the rewriting transformations. This has the advantage that the
set of all solutions to an equation E corresponds exactly to the set of walks in the graph
starting at E and finishing at the trivial equation ε .= ε.2 Consequently, the properties of
the subgraph of G⇒NT containing all vertices reachable from E (denoted G⇒NT

[E] ) are also
informative about the set of solutions to the equation. For example, in [24] a connection
is made between the non-parameterisability of the solution set of E and the occurrence of
combinations of cycles in the graph. Since equations with a parametrisable solution set are
much easier to work with when dealing with additional constraints, this also establishes a
connection between the structure of G⇒NT

[E] and the potential (un)decidability of variants of
the satisfiability problem. Moreover, new insights into the structure and symmetries of these
graphs are necessary for better understanding and optimising the practical performance of
the algorithm.

2 Each choice of edge in a walk can be seen as a decision about the corresponding solution. It is not
necessarily true that different walks will result in different solutions. However, all possible decisions
are accounted for, so it is guaranteed that for every solution there is a walk from E to ε .= ε which
corresponds to that solution.
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Our Contribution

We consider a subclass of QWEs called regular equations (RWEs) introduced in [23]. A
word equation is regular if each variable occurs at most once on each side of the equation.
Thus, for example, xaby .= ybax is regular while xabx .= ybay is not. Understanding RWEs
is a vital step towards understanding the quadratic case, not only because they constitute
a significant and general subclass, but also because many non-regular quadratic equations
can exhibit the same behaviour as regular ones (consider, e.g. zz .= xabyybax for which all
solutions must satisfy z = xaby = ybax). The satisfiability problem was shown in [8] to be
NP-hard for RWEs, and shown to be NP-complete in [9] for some restricted subclasses of
RWEs including the classes of regular-reversed and regular-ordered equations.

For RWEs E, we investigate the structure of the graphs G⇒NT

[E] , and as a consequence, are
able to describe some of their most important properties. We achieve this by first noting that
G⇒NT

[E] can be divided into strongly connected components G⇒[E′] for which all the vertices are
equations of the same length (⇒ shall be used to denote the restriction of ⇒NT to length
preserving transformations only). The “full” graph G⇒NT

[E] is comprised of these individual
components G⇒[E′] arranged in a DAG-like structure of linear depth (see Section 3) and
therefore many properties and parameters of the “full” graph G⇒NT

[E] are determined by the
equivalent properties and parameters of the individual components G⇒[E′]. We then focus
on the structure of the subgraphs G⇒[E′], and as a result are able to give bounds on certain
parameters such as diameter, size, and DAG-width.

Our structural results come in two stages, based on whether the equation belongs to a
the class of “jumbled” equations introduced in Section 4.3. In the first stage, we consider
equations which are not jumbled, and we show that for all such equations E, there exists a
jumbled equation Ê such that G⇒[E] is comprised mainly of several well-connected near-copies
of G⇒[Ê]. For jumbled equations Ê, we show in Section 4.4 that every vertex in G⇒[Ê] is close
to a vertex in a certain normal form. We show that the vertices in this normal form are
determined to a large extent by a property invariant under ⇒ introduced in Section 4.2.

With regards to the diameter of G⇒[E′], we give upper bounds which are polynomial in the
length of the equation. It follows that the diameter of the full graph G⇒NT

[E] is also polynomial,
and consequently, that the satisfiability problem for RWEs is NP-complete. This can be
generalised to systems of equations satisfying a natural extension of the regularity property
(see Section 4.7). We also give exact upper and lower bounds on the number of vertices3
in G⇒[E′] for a subclass of RWEs called basic RWEs (see Section 4.1), as well as describing
exactly for which equations these bounds are achieved. For RWEs which are not basic, we
can infer similar bounds, at the cost of a small (linear in the length of the equation) degree
of imprecision. Since in the worst case (e.g. for equations without a solution), running the
algorithm will perform a full “search” of the graph, the number of vertices is integral to the
running time of the algorithm, and is potentially a better indicator of difficult instances than
the complexity class alone. An example of this, comes from comparing two subclasses of
RWEs called regular-ordered and regular rotated equations. It follows from our results that
while both classes have an NP-complete satisfiability problem, if E′ is regular-ordered, then
G⇒[E′] will contain at most n vertices, where n is the length of the equation, while if E′ is
regular rotated, but not regular-ordered, then G⇒[E′] will contain

n!
2 vertices, indicating a vast

difference in the number of vertices the algorithm would have to visit.

3 We consider the number of vertices, rather than edges, because it is the number of vertices which is
relevant to the performance of the algorithm, and by definition of ⇒NT , the out-degree of the graph is
bounded by a constant so the the number of edges is linear in the number of vertices.
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Motivated by generalisations of the satisfiability problem permitting additional constraints,
we also consider the connectivity of the graphs G⇒NT

[E] . To do this, we use DAG-width, a
measure for directed graphs which is in several ways analogous to treewidth for undirected
graphs. Intuitively, equations for which G⇒NT

[E] has low DAG-width are likely to be more
amenable when considering additional constraints such as length constraints (see Section 3.3).
We give an example class of equations for which the DAG-width is unbounded, as well as
a class for which the DAG-width is at most two. The latter includes the class of regular-
ordered equations which is the most general subclass of QWEs for which it is known that
the satisfiability problem with length constraints is decidable [20], and we expect that both
cases will be interesting classes to consider in the context of this problem.

2 Preliminaries

For a set S, we denote the cardinality of S by Card(S). Let Σ be an alphabet. By Σ∗, we
denote the set of all words over Σ, and by ε the empty word. By Σ+, we denote the free
semigroup Σ∗\{ε}. A word u is a prefix (resp. suffix) of a word w if there exists v such that
w = uv (resp. w = vu). Similarly, u is a factor of w if there exist v, v′ such that w = vuv′.
A prefix/suffix/factor is proper if is neither the whole word w, nor ε. The length of a word
w is denoted |w|, while for a ∈ Σ, |w|a denotes the number of occurrences of a in w. For a
word w = a1a2 . . . an with ai ∈ Σ for 1 ≤ i ≤ n, the notation w[i] refers to the letter ai in
the ith position. By wR, we denote the reversal anan−1 . . . a1 of the word w. Two words
w1, w2 are conjugate (written w1 ∼ w2) if there exist u, v such that w1 = uv and w2 = vu.

We shall generally distinguish between two types of alphabet: an infinite set X =
{x1, x2, . . .} of variables, and a set Σ = {a, b, . . .} of terminal symbols. We shall assume that
Card(Σ) ≥ 2, and that there exists an order on X leading to a lexicographic order on X∗.
For a word α ∈ (X ∪Σ)∗, we shall denote by var(α) the set {x ∈ X | x is a factor of α}. We
shall denote by qv(α) the set {x ∈ var(α) | |α|x = 2}. A word equation is a tuple (α, β) ∈
(X ∪ Σ)∗ × (X ∪ Σ)∗, usually written α .= β. Solutions are morphisms h : (X ∪ Σ)∗ → Σ∗
with h(a) = a for all a ∈ Σ such that h(α) = h(β). The satisfiability problem is the problem
of deciding algorithmically whether a given word equation has a solution. For equations
E given by α .= β, we shall often extend notations regarding words in (X ∪ Σ)∗ to E for
convenience, so that, e.g. |E| = |αβ|, var(E) = var(αβ) and qv(E) = qv(αβ). An equation
α
.= β is quadratic if |αβ|x ≤ 2 for all x ∈ X. It is regular if |α|x ≤ 1 and |β|x ≤ 1 hold

for all x ∈ X. Thus all regular equations are quadratic, but not all quadratic equations
are regular. We shall usually abbreviate regular (resp. quadratic) word equation to RWE
(resp. QWE). For Y ⊆ X, let πY : (X ∪ Σ∗)→ Y ∗ be the morphism such that πY (x) = x if
x ∈ Y and πY (x) = ε otherwise; i.e. πY is a projection from (X ∪ Σ)∗ onto Y ∗. A regular
equation E given by α .= β is regular-ordered if πqv(E)(α) = πqv(E)(β), it is regular rotated
if πqv(E)(α) ∼ πqv(E)(β) and it is regular reversed if πqv(E)(α) = πqv(E)(β)R.

Given a set S and binary relation R ⊆ S × S, we denote the reflexive-transitive closure
of R as R∗. For each s ∈ S, we denote by [s]R the set {s′ | sR∗s′}. The relation R may be
represented as a directed graph, which we denote GR, with vertices from S and edges from
R. Usually, we will be interested in the subgraph of GR containing vertices belonging to
[s] for some s ∈ S. Thus, for a subset T of S we shall denote by GRT the subgraph of GR
containing vertices from T . Given a (directed) graph G, with vertices V (G) and edges E(G),
a root vertex is some v ∈ V (G) such that there does not exist (u, v) ∈ E(G). We denote
by diam(G) the diameter: the maximum length of a shortest (directed) path between two
vertices. For W,V ′ ⊆ V (G), we say that W guards V ′ if for all (u, v) ∈ E(G) with u ∈ V ′,
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we have v ∈ V ′ ∪W . If G is acyclic, we write v1 ≤G v2 if there is a directed path from v1 to
v2 in G or v1 = v2. Following [5], A DAG-decomposition of G is a pair (D,χ) such that D is
a directed acyclic graph (DAG) with vertices V (D), and χ = {Xd | d ∈ V (D)} is a family of
subsets of V (G) satisfying:
(D1) V (G) =

⋃
d∈V (D)

Xd,

(D2) if d, d′, d′′ ∈ V (D) such that d ≤D d′ ≤D d′′, then Xd ∩Xd′′ ⊆ Xd′ ,
(D3) For all edges (d, d′) of D, Xd ∩Xd′ guards X≥d′\Xd, where X≥d′ =

⋃
d′′≥Dd′

Xd′′ , and

for all root vertices d, X≥d is guarded by ∅.
The width of the DAG-decomposition is max{Card(Xd) | d ∈ V (D)}. The DAG-width of G
is the minimum width of any possible DAG-decomposition of G and is denoted dgw(G).

3 Solving regular word equations

In this section we present the algorithm for solving QWEs discussed in the introduction as a
rewriting system given by a relation ⇒NT . The rewriting transformations are derived from
morphisms called Nielsen transformations, and we shall abuse this terminology slightly and
generally also refer to the rewriting transformations themselves as Nielsen transformations.
The Nielsen transformations never introduce new variables or terminal symbols, and never
increase the length of the equation. They also preserve the properties of being quadratic
(resp. regular). Thus, given a quadratic (resp. regular) word equation, the possible space of
all equations reachable via Nielsen transformations is finite. Moreover, given an equation
which has a solution h, there is always at least one Nielsen transformation which produces
an equation which has a solution, such that the new equation or the new solution is shorter
than the previous one. It follows that, given an equation which possesses a solution, it is
possible to reach the equation ε .= ε after finitely many rewriting steps. For a more detailed
description of the algorithm, we refer the reader to e.g. Chapter 12 of [21].

3.1 Nielsen transformations
The Nielsen transformations are defined as follows: for x ∈ X ∪ Σ and y ∈ X, let ψx<y :
(X ∪ Σ)∗ → (X ∪ Σ)∗ be the morphism given by ψx<y(y) = xy and ψx<y(z) = z if z 6= y.
We define the rewriting transformations via the relations ⇒L, ⇒R,⇒> as follows. Suppose
we have a QWE E of the form xα

.= yβ where x, y ∈ X ∪ Σ and α, β ∈ (X ∪ Σ)∗. Then:
1. if x ∈ qv(E) and x 6= y, then xα .= yβ ⇒L xψy<x(α) .= ψy<x(β), and
2. if y ∈ qv(E) and x 6= y, then xα .= yβ ⇒R ψx<y(α) .= yψx<y(β), and
3. if x ∈ X\ qv(E), then xα .= yβ ⇒> xα

.= β, and
4. if y ∈ X\ qv(E), then xα .= yβ ⇒> α

.= yβ, and
5. if x = y, then xα .= yβ ⇒> α

.= β.
Moreover, for a QWE E of the form α

.= β with α, β ∈ (X ∪ Σ)∗, and for each Y ⊆ var(E),
we have the additional transformations α .= β ⇒> πX\{Y }(α) .= πX\{Y }(β). Now, our full
rewriting relation, ⇒NT , is given by ⇒L ∪ ⇒R ∪ ⇒>. For convenience, we shall define ⇒
to be ⇒L ∪ ⇒R. We shall call the rewriting transformations in ⇒ length-preserving, since
they are exactly those for which the resulting equation has the same length as the original.

I Remark 1. Let E,E′ be QWEs such that E ⇒NT E
′. If E is regular, then E′ is regular.

Moreover, if E ⇒ E′, then var(E) = var(E′), qv(E) = qv(E′), and |E| = |E′|.

If E1, E2 are RWEs such that E1 ⇒L E2, then it follows from the definitions that there
exist x, y ∈ X and α1, α2, β1, β2,∈ (X\{x, y})∗ such that E1 is given by xα1yα2

.= yβ1xβ2
and E2 is given by xα1yα2

.= β1yxβ2. Extending this observation to multiple applications of
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⇒L, we may conclude that the set {E2 | E1 ⇒∗L E′2} is exactly the set {xα1yα2
.= β3xβ2 |

β3 ∼ yβ1}. A similar statement can be made for ⇒∗R. Consequently, ⇒∗L and ⇒∗R are
symmetric. Since they are reflexive and transitive by definition, we get the following.
I Remark 2. Let E be a RWE and Z ∈ {L,R}. Then Card({E′ | E ⇒∗Z E′}) < |E| and ⇒∗Z
is an equivalence relation. It follows that ⇒∗ is also an equivalence relation.

The following well-known result forms the basis for the algorithm for solving QWEs.

I Theorem 3 ([21]). Let E be a QWE. Then E has a solution if and only if E ⇒∗NT ε
.= ε.

3.2 The graph of all solutions
Theorem 3 provides the basis for treating the satisfiability of QWEs as a reachability problem
for the rewriting relation ⇒NT . Since any relation R is naturally represented as a (directed)
graph GR, it is also natural to interpret the resulting algorithm as a search in the graph
G⇒NT

[E] , in order to determine whether a path exists in the graph from the original equation
E to the trivial equation ε .= ε. In fact, the graph G⇒NT

[E] can tell us significantly more than
simply whether a solution to E exists: every walk from E to ε .= ε in G⇒NT

[E] corresponds to a
solution to E and likewise, every solution to E is represented by a walk in G⇒NT

[E] from E to
ε
.= ε. Thus the graphs G⇒[E] contain a full description of all solutions to E, and as such, their

properties and structure are of inherent interest to the study of QWEs and their solutions.
An immediate example of this is the diameter, which is strongly related to the complexity of
the satisfiability problem, as demonstrated in the following proposition.

I Proposition 4. Let C be a class of QWEs. Suppose there exists k ∈ N such that for each
E ∈ C, we have diam(G⇒NT

[E] ) ∈ O(|E|k). Then the satisfiability problem for C is in NP.

Many properties will be determined mostly (i.e. up to some small imprecision) on the
subgraphs obtained by restricting our rewriting relation to length-preserving transformations
only (i.e. to ⇒). Since the rewriting relation ⇒NT allows us to preserve or decrease the
length, but never increase it again, any walk in the graph will visit a subgraph containing
equations of each length only once, and in order of decreasing length.

The following proposition is an example of how we may infer a global property of G⇒NT

[E]
from its “local” values in the individual subgraphs G⇒[E′].

I Proposition 5. Let E be a QWE. Then
1. diam(G⇒NT

[E] ) ≤ 1 + (|E|+ 1) max{diam(G⇒[E′]) | E ⇒∗NT E′}, and
2. dgw(G⇒NT

[E] ) = max{dgw(G⇒[E′]) | E ⇒∗NT E′}.

In what follows, we shall focus predominantly on the structure of the (sub)graphs G⇒[E′]
corresponding to the length-preserving transformations given by ⇒. This has the advantage
of allowing us to apply further restrictions, including a reduction to the case of basic equations
introduced in Section 4.1, without significantly altering the structure of the graph.

3.3 Solving equations modulo constraints
For many kinds of additional constraint, it is possible to adapt the algorithm by finding, for
each Nielsen transformation, an appropriate corresponding transformation of the constraints.
For example, if x, y, z ∈ X and we have the length constraint |x| = |z|, when we apply the
Nielsen transformation associated with ψy<x to our equation, we replace each occurrence of
x with yx. Thus, the updated constraint would be |x|+ |y| = |z|. However, in some cases,
including length constraints, the resulting space of possible combinations of equations and
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constraints becomes infinite, meaning the algorithm is no longer guaranteed to terminate.
A possible solution to this is to find finite descriptions of the potentially infinite sets of
constraints which may occur alongside each equation. The task of finding such descriptions,
and consequently the decidability of the corresponding extended satisfiability problems, is
dependent on the structural properties of the graph, as can be seen e.g. in [20, 24].

4 Properties of the graphs G⇒NT

[E] for regular equations E

The remainder of the paper concentrates on describing the structure of the graphs G[E]
for RWEs E. Our general description of G[E] is comprised of several steps, with each
one accounting for a particular aspect. The first step (Section 4.1) describes the effect of
terminal symbols, single-occurrence variables, and ’decomposability’ on the structure of G[E],
essentially reducing the structure of G[E] to G[E′] for a “basic” equation E′ which does not
contain any of these features. The second step (Section 4.3) describes a particular symmetric
structure which arises from the same factor(s) occurring on both sides of the equation once
we have simplified the equations by eliminating the aforementioned features. This allows for
a description of G[E′] as a combination of (near) copies of some smaller graph G[E′′] where
E′′ is a “jumbled equation” obtained by deleting the appropriate variables from E′. Finally,
we are able to show (Section 4.4) that for jumbled equations E′′, all vertices in G[E′′] are
“close” to a vertex from a small subset conforming to a very particular structure called Lex
Normal Form, allowing us to draw conclusions in Sections 4.5 and 4.6 about the diameter,
number of vertices and connectivity (DAG-width) of G[E]. Finally, in Section 4.7 we note a
generalisation of our results to systems of equations.

4.1 Basic equations: a convenient abstraction
The current section is devoted to reducing the study of the graphs G⇒[E] to the case of basic
equations. This has several advantages, including a significant reduction in the size of
the graphs which is useful for working with examples, as well as allowing for the simpler
formulation of precise results, e.g. regarding the size of the graphs in Section 4.6, as well as
avoiding unnecessary repetition in the formal statements and their proofs..

I Definition 6 (Basic Equations). Let E be a QWE given by α .= β. Then E is decomposable
if there exist proper prefixes α′, β′ of α and β such that var(α′) ∩ qv(E) = var(β′) ∩ qv(E).
Otherwise, E is indecomposable. E is basic if it is indecomposable and α, β ∈ qv(E)∗.

A RWE is basic only if both sides of the equation are permutations of the same set of
variables, for example x1x2x3

.= x3x1x2 and xywz .= wzxy are both basic and regular while
xyzw

.= yxzw and xy .= yz are not. It is easily verified that the property of being basic is
preserved under ⇒∗. In order to formally present our reduction from arbitrary RWEs to
basic RWEs, we need the following notion for graphs which are structurally similar.

I Definition 7 (Isolated path compression). Let G1, G2 be (directed) graphs. We say that G1
is an isolated path compression of order n of G2 if G2 may be obtained from G1 by replacing
each edge (e, e′) in G1 by a path (e, e1), (e1, e2), . . . (ek−1, ek), (ek, e′) such that k ≤ n and
e1, e2, e3, . . . , ek are new vertices unique to the edge (e, e′).

Informally, an isolated path compression of a graph is obtained simply by replacing
“isolated paths” (paths whose internal vertices are not adjacent to to any vertices outside the
path) of a bounded length with single edges. It is easy to see that many structural properties
are thus preserved.
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G1 G2

Figure 1 The graph G1 is an isolated path compression of order two of the graph G2.

I Remark 8. Consider graphs G1, G2 such that G1 is an isolated path compression of order n of
G2. If dgw(G1) = 1, then dgw(G2) ∈ {1, 2}. If dgw(G1) ≥ 2, then the dgw(G1) = dgw(G2).
Moreover, diam(G2) ≤ (n+ 1) diam(G1), and the number of vertices (resp. edges) in G2 is
at most the number of vertices in G1 plus n times the number of edges of G1.

Using isolated path compressions, it is possible to describe the structure of the graph
G⇒[E] for any RWE E in terms of the graph G⇒[E′] for a basic RWE E′.

I Theorem 9. Let E be a RWE given by α .= β. Let α′, β′ be the shortest non-empty prefixes
of α, β respectively such that var(α′)∩ qv(E) = var(β′)∩ qv(E). Let E′ be the equation given
by πqv(E)(α′)

.= πqv(E)(β′). Then E′ is basic, and G⇒[E′] is isomorphic to an isolated path
compression of order |E| of G⇒[E].

4.2 A useful invariant
When reasoning about the graphs G⇒[E], we need a way to help determine whether, for two
equations E1, E2, we have E1 ⇒∗ E2. Usually, showing that E1 ⇒∗ E2 is not a problem,
since it is sufficient to simply find a sequence of length-preserving Nielsen transformations
from E1 to E2. However, showing that E1 6⇒∗ E2 presents more of a challenge. The naive
way would be to enumerate all vertices in G⇒[E1] and show that E2 is not among them.
However, this is not suitable for generic reasoning, and, even in concrete cases, is inelegant
and time-consuming. The following is a property of basic RWEs which is preserved under ⇒
and thus provides a concise and more general means for showing that E1 6⇒∗ E2. It is an
indispensable component of the proofs of our main results.

I Definition 10 (The invariant ΥE). Let # be a new symbol not in X. Let E be a basic
RWE such that Card(var(E)) > 1. Then we may write E as xα1yα2

.= yβ1xβ2 with
x, y ∈ X and α1, α2, β1, β2 ∈ (X\{x, y})∗. Let ZE = var(α1α2β1β2) ∪ {#}. Let the function
QE : ZE → X2 be defined as follows: for each z ∈ ZE\{#}, let QE(z) = (u, v) where uz is
a factor of xα1yα2 and vz is a factor of yβ1xβ2. Let QE(#) = (u, v) where uy is a factor of
xα1yα2 and vx is a factor of yβ1xβ2. Let ΥE = {QE(z) | z ∈ ZE}.

I Theorem 11. Let E1, E2 be basic RWEs such that E1 ⇒∗ E2. Then ΥE1 = ΥE2 .

As an example, let E1 be the basic RWE given by xuzwy
.= ywuxz. Then ZE1 =

{u, z, w,#} and QE1 is the function such that QE1(u) = (x,w), QE1(z) = (u, x), QE1(w) =
(z, y) and QE1(#) = (w, u). Thus, ΥE1 = {(w, u), (x,w), (u, x), (z, y)}. Similarly, if E2 is the
basic RWE given by xuwzy .= yuxwz, then ΥE2 = {(x, y), (u, x), (w,w), (z, u)}. Consequently,
we may conclude that E1 6⇒∗ E2 (and symmetrically E2 6⇒∗ E1).

Since the invariant ΥE provides a necessary condition on when two basic RWEs belong to
the same equivalence class under⇒∗, we might also ask whether it is also sufficient, and hence
characteristic. However, this is not the case. For instance, if E1 is given by xuvwy .= ywvux

and E2 is given by xwvuy .= yuvwx, then ΥE1 = ΥE2 = {(x, v), (u,w), (v, y), (w, u)} but it
can be verified by enumerating [E1]⇒ and [E2]⇒ that E1 6⇒∗ E2.
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4.3 A special case of symmetry
The invariant property ΥE introduced in the previous section is a set of pairs of variables.
The case that (x, x) ∈ ΥE for some x ∈ var(E) is special in the sense that it leads to a
particular symmetrical structure in G⇒[E]. Intuitively, (x, x) ∈ ΥE when there exists y ∈ X
and α .= β ∈ [E]⇒ such that xy is a factor of both α and β. Hence the number of variables
x such that (x, x) ∈ ΥE is, in a sense, a measure of the “jumbledness” of E.

I Definition 12 (Jumbled Equations and ∆(E)). Let E be a basic RWE. Let ∆(E) = {x ∈
var(E) | (x, x) ∈ ΥE}. If Card(∆(E)) = 0, then E is jumbled.

Note that since ΥE is invariant under ⇒∗, so is the property of being (not) jumbled. Any
basic RWE E can be turned into a jumbled equation by simply erasing each x ∈ ∆(E).

I Lemma 13. Let E be a basic RWE given by α .= β and let Y = var(E)\∆(E). Then the
equation EY given by πY (α) .= πY (β) is jumbled.

The following theorem describes the structure of G⇒[E] for a RWE E which is not jumbled
in terms of G⇒[EY ] where EY is obtained from E by deleting the variables in ∆(E).

I Theorem 14. Let E be a basic RWE given by α .= β. Let Y = var(E)\∆(E). Let EY be the
equation πY (α) .= πY (β). Let V = [EY ]⇒. Let Φ be the set of morphisms ϕ : Y ∗ → var(E)∗
satisfying ϕ(y) ∈ ∆(E)∗y for all y ∈ Y , and

∑
y∈Y
|ϕ(y)|x = 1 for all x ∈ ∆(E). For each

ϕ ∈ Φ, let ϕ(V ) denote the set {ϕ(α′) .= ϕ(β′) | α′ .= β′ ∈ V }. Then:
1.

⋃
ϕ∈Φ

ϕ(V ) ⊆ [E]⇒,

2. for each E′ ∈ [E]⇒ and Z ∈ {L,R}, there exists E′′ ∈
⋃
ϕ∈Φ

ϕ(V ) such that E′ ⇒∗Z E′′,

3. for each ϕ ∈ Φ, there exists a subgraph Hϕ of G⇒[E] containing ϕ(V ) such that G⇒[EY ] is
isomorphic to a structure-preserving contraction of order Card(∆(E)) of Hϕ.

4. if d = diam(G⇒[EY ]), then diam(G⇒[E]) ∈ O(d|E|2).

Theorem 14 deserves a few remarks. Firstly, we note that, recalling Remark 2, it follows
from statements 1. and 2. of the theorem that

⋃
ϕ∈Φ

ϕ(V ) is a dense subset of the vertices

of G⇒[E] in the sense that every vertex is at most distance |E| away from one contained in⋃
ϕ∈Φ

ϕ(V ). Moreover, since each morphism ϕ ∈ Φ is injective, the sets ϕ(V ) are pairwise

disjoint. Consequently, G⇒[E] is made up of many (one for each ϕ ∈ Φ) slightly modified copies
of the graph G⇒[α .=β], with the remaining vertices creating short paths between the different
copies. Due to the bound on the diameter, we see that these copies are well connected.
Finally, it is worth noting that Card(Φ) grows exponentially w.r.t.Card(∆(E)).

4.4 Normal forms and block decompositions
Having described the structure G⇒[E] for equations E which are not jumbled in the previous
section, it remains to consider equations which are jumbled. In this case, the structure of
G⇒[E] is more intricate and a different approach is required. Our main insight for jumbled
equations is the existence of certain normal forms, from which every vertex is polynomial
distance away. By constructing these normal forms in a specific way based on reversals, we
are able to take full advantage of the invariant ΥE from Section 4.2 when reasoning about
which of these normal forms may occur. The first normal form is defined as follows.
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G⇒[E] G⇒[EY ]

A
B

E

C

D

G

F

A1

B1E1

C1

D1G1

F1

A2

B2

E2

C2

D2

G2

F2
A3

B3E3 C3

D3G3
F3

A4

B4

E4

C4

D4

G4

F4

i1

i2

i3

i4

i6

i5

Figure 2 Example illustrating Theorem 14. On the left is G⇒
[E] for the equation E given by

x1yx2x3x4
.= x4x3yx2x1. Note that ∆(E) = {y}, so Y = {x1, x2, x3, x4} and EY is x1x2x3x4

.=
x4x3x2x1. The graph G⇒

[EY ] is shown on the right, where the equations in [EY ]⇒ have been labelled
A,B,C,D,E, F,G. The set Φ contains four morphisms ϕi, 1 ≤ i ≤ 4, such that ϕi(xi) = yxi

and ϕi(xj) = xj for j 6= i. For each Z ∈ {A,B,C,D,E, F,G} given by αZ
.= βZ , Zi denotes the

equation ϕi(αZ) .= ϕi(βZ). The graph G⇒
[E] contains a “near-copy” of G⇒

[EY ] corresponding to each
of the morphisms ϕi. Each copy can be made exact by contracting length-two paths (dashed)
passing through the intermediate vertices i1, i2, . . . , i6. For example, the subgraph containing
the vertices A1, B1, C1, D1, E1, F1, G1 can be made isomorphic to G⇒

[EY ] by contracting the paths
(A1, i4, E1), (B1, i5, D1), and (C1, i1, C1) into single edges (A1, E1), (B1, D1) and (C1, C1).

I Definition 15 (Normal Form). Let E be a basic RWE. Then E is in normal form if it can
be written as xα1α2, . . . αky

.= yαR1 α
R
2 . . . α

R
k x where x, y ∈ X, αi ∈ X+ for 1 ≤ i ≤ k, and

|αi| ≤ 3 for 1 ≤ i < k.

We can obtain an equation in normal form from any basic RWE by applying a polynomial
number of rewriting operations.

I Theorem 16. Let E be a jumbled basic RWE. Then there exists E which is in normal
form and such that E ⇒n1 E and E ⇒n2 E for some n1, n2 ∈ O(|E|3).

The idea behind the first normal form is to divide the RWE into pairs (αi, αRi ) which are
regular-reversed word equations (although solutions to the full equation E are not necessarily
solutions to these smaller equations), and for which all but one belong to a finite number
of cases (i.e. three cases depending on the length of αi). Forcing the sub-equations to be
regular-reversed gives us the most control when working with the invariant ΥE . Some intuition
behind this fact can be derived from the observation that if we know that a (complete) basic
RWE E is regular-reversed, we can uniquely reconstruct it from the leftmost two variables
on the LHS and ΥE . Indeed, any regular-reversed basic RWE E can be written in the form
x1x2 . . . xn

.= xnxn−1 . . . x1, meaning that ΥE = {(xi−1, xi+1 | 2 ≤ i ≤ n} ∪ {(xn−1, x2)},
and if we know x1, then we may infer from ΥE all the odd-index variables (x3, x5, . . .) and if
we know x2 then we may infer all the even-index variables (x4, x6, . . .).

Rather than looking at the pairs (αi, αRi ) in isolation, in order to take full advantage of the
invariant ΥE , we actually need to consider pairs of the form (αiαi+1 . . . αj , α

R
i α

R
i+1 . . . α

R
j ).

We shall call such pairs blocks, which we define formally below. Our second normal form will
be a restriction of the first, and is based on the notion of blocks.
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B0 B1 B2 B3

Initial (A) Standard (B) Standard (A) End (A)

x z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 y
y z2 z1 z5 z4 z3 z7 z6 z8 z10 z9 z11 z15 z14 x13 x12 x

Figure 3 A depiction of the equation E given by xz1z2z3z4z5z6z7z8z9z10z11z12z13z14z15y
.=

yz2z1z5z4z3z7z6z8z10z9z11z15z14z13z12x where x, y and zi for 1 ≤ i ≤ 15 are variables. The LHS
and RHS of the equation are aligned vertically. The block decomposition B = (B0, B1, B2, B3) of
E is shown with solid rectangles and with the variety and type of the block written beneath. The
additional divisions into the factors αi, α

R
i required by the definition of normal form are indicated

by dashed lines (so that, i.e. α1 = z1z2, α2 = z3z4z5, α3 = z6z7, α4 = z8, z5, α5 = z9z10, α6 = z11

and α7 = z12z13z14z15). In order for the equation to satisfy the definition of Lex Normal Form, the
variables highlighted in bold must be lexicographically minimal with respect to the appropriate sets
Γi. Note that Γ1 = {zi | 3 ≤ i ≤ 15}\{z4}. In particular, Γ1 consists of the first variable in the
block B1 (x3) along with (nearly) all variables on the LHS of the equation occurring to the right of
z3, excluding the rightmost variable (y), and since B1 is Type B, also excluding the second variable
in the block B1 (namely z4). On the other hand, since B2 is Type A, in this case we do not need to
exclude the second variable in the block B2, so Γ2 = {zi | 8 ≤ i ≤ 15}. Assuming an underlying
lexicographic order for which zi+1 is greater than zi, we can conclude that E is in Lex Normal Form.

I Definition 17 (Blocks). We define 3 variations of blocks which may each have up to two
types.
1. A standard block is a pair (α1α2 . . . αj , α

R
1 α

R
2 . . . α

R
j ) such that j ≥ 1, αi ∈ X∗ for

1 ≤ i ≤ j, |α1| ∈ {1, 3}, and for each i, 1 < i ≤ j, |αi| = 2. It is Type A if |α1| = 1 and
Type B if |α1| = 3.

2. An initial block is a pair (xα1 . . . αj , yα
R
1 . . . α

R
j ) with j ≥ 0, x, y ∈ X with x 6= y, and

αi ∈ (X\{x, y})∗ for 1 ≤ i ≤ j such that |αi| = 2 for 1 ≤ i ≤ j. All initial blocks are
Type A.

3. An end block is a pair (γ1δy, γ2δ
Rx) where x, y ∈ X with x 6= y, and γ1, γ2, δ ∈

(X\{x, y})∗ with |δ| ≥ 1 such that (γ1, γ2) is a block (initial or standard). It is Type A if
(γ1, γ2) is Type A, and Type B otherwise.

Given an equation which is in normal form, we may decompose it uniquely into blocks
in the following manner. The intuition behind this decomposition is that if we fix the
invariant property ΥE , then each block (with the exception of the final block) is determined
entirely by the block preceding it and its first (leftmost in the first element) variable. This
gives us a crucial degree of control when considering which equations in normal form may
appear in G⇒[E].

I Definition 18 (Block Decomposition). Let E be a basic RWE in normal form. Then E

may be written as xα1α2 . . . αny
.= yαR1 α

R
2 . . . α

R
nx where x, y ∈ X, αi ∈ X+ for 1 ≤ i ≤ n,

and |αi| ≤ 3 for 1 ≤ i < n. Let I = {i1, i2, . . . , ik} = {i | 1 ≤ i < n and |αi| 6= 2} with
1 ≤ i1 < i2 < . . . < ik < n. If I = ∅, let B = (E). Otherwise, let B = (B0, B1, . . . , Bk)
where for 0 ≤ j ≤ k, the Bj are blocks such that:
1. B0 = (xα1 . . . αi1−1, yα

R
1 . . . α

R
i1−1),

2. Bk = (αik . . . αny, αRik . . . α
R
nx), and

3. for 1 ≤ j < k, Bj = (αij . . . αij+1−1, α
R
ij
. . . αRij+1−1).

Then B is the block decomposition of E.

An example illustrating a block decomposition of an equation in normal form is given
in Figure 3. Since the blocks are fixed by their first variable, it is natural to ask for which
variables we can find an equation in our graph G⇒[E] such that the block begins with that
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variable. In particular, can we find an equation in normal form in G⇒[E] for which the first
variable of each block is lexicographically minimal when going from left to right? The answer
to the question is “nearly”. In other words, if we relax the notion slightly to account for some
specific cases in which we cannot guarantee minimality, then we can always guarantee the
existence of such an equation. This leads to the notion of Lex Normal Form defined below.

I Definition 19 (Lex Normal Form). Let E be a basic RWE in normal form. Then there exist
x, y ∈ X and α, β ∈ (X\{x, y})∗ such that E has the form xαy

.= yβx. Let (B0, B1, . . . , Bn)
be the block decomposition of E. For each i, 0 ≤ i ≤ n, let γi, γ′i ∈ X∗ such that Bi =
(γi, γ′i), let Si = {γi[2], y} whenever Bi is Type B and Si = {y} otherwise, and let Γi =( ⋃
i≤j≤n

var(γj)
)
\Si. A block Bi is lex-minimal if γi[1] is lexicographically minimal in Γi.

The equation E is in Lex Normal Form (LNF) if, for each i, 0 < i < n, Bi is lex-minimal.

Lex Normal Form (see also Fig. 3 for an example) describes the class of equations for
which the first variable of each blocks is lexicographically minimal whenever possible. We
can, in general, guarantee the existence of an equation E′ in G⇒[E] such that the first variable
of each block is lexicographically minimal with the following exceptions. Firstly, we must
exclude the first and last blocks (the first block is fixed completely by ΥE). Secondly, we
must only compare the first variable to other variables occurring further right in the LHS
of the equation, and excluding the rightmost variable on the LHS of the equation (y in the
definition above) and, for blocks of Type B, the second variable in the block. The sets Γi in
the definition account for these exclusions. It turns out that every vertex in G⇒[E] is never
more than a polynomial distance away from a vertex corresponding to an equation in LNF.

I Theorem 20. Let E be a jumbled basic RWE. Then there exists E′ such that E′ is in Lex
Normal Form, and such that E ⇒n1 E′ and E ⇒n2 E for some n1, n2 ∈ O(|E|4).

4.5 Diameter
It was mentioned in the previous section that the choices for the blocks in a block decompos-
ition of an equation in normal form are restricted by the invariant ΥE . We shall now make
full use of that fact to show that the number of equations in LNF in a single graph G⇒[E] is
polynomial in |E|, and as a consequence that the diameter of G⇒[E] is also polynomial. Since
each equation in LNF has a unique block decomposition, it is sufficient to count the possible
block decompositions for a given value of ΥE for which the conditions for LNF hold. The
restrictions imposed on the blocks by ΥE are given formally in the following lemmata.

I Lemma 21. Let E1, E2 be basic RWEs in normal form such that ΥE1 = ΥE2 . Let
(B0, B1, . . . , Bk) and (C0, C1, . . . , C`) be their respective block decompositions and let k, ` > 0.
Then B0 = C0. Moreover, suppose that Bi = Cj, for some i < k − 1, j < `− 1. Let Bi+1 =
(γ1, γ2) and Cj+1 = (δ1, δ2) with γ1, γ2, δ1, δ2 ∈ X∗. If γ1[1] = δ1[1], then Bi+1 = Cj+1.

Lemma 21 tells us that the equations in LNF belonging to a single graph G⇒[E] are
remarkably similar in that they are identical up to the last block of the shorter decomposition.

I Corollary 22. Let E1, E2 be basic RWEs in LNF such that ΥE1 = ΥE2 . Let (B0, B1, . . . , Bk)
and (C0, C1, . . . , C`) be their respective block decompositions and suppose that k, ` > 0. Then
Bi = Ci for 0 ≤ i < min(k, `).

Consequently, two equations in LNF in the graph G⇒[E] with block decompositions con-
taining the same number of blocks may differ only in the final block. Clearly, the number of
blocks is at most Card(var(E)). Thus, in order to show that there are only polynomially
many equations in LNF in G⇒[E], it remains to consider the possibilities for the final block.
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I Lemma 23. Let E1, E2 be basic RWEs in normal form such that ΥE1 = ΥE2 . Let
(B0, B1, . . . , Bk) and (C0, C1, . . . , C`) be their respective block decompositions and suppose that
k, ` > 0. Suppose moreover that Bk−1 = C`−1. Let Bk = (α1α2 . . . αny, α

R
1 α

R
2 . . . α

R
nx) and

C` = (β1β2 . . . βmy, β
R
1 β

R
2 . . . , βRmx), where x, y ∈ X, α1, α2, . . . , αn, β1, β2, . . . , βm ∈ X+,

|α1| = |β1| ∈ {1, 3} and |αi|, |βj | = 2 for 2 ≤ i < n and 2 ≤ j < m. Then if α1[1] = β1[1],
n = m, and αn[1] = βm[1], we have Bk = C`.

Lemma 23 reveals that the options for last block are dependent only on the choices of
three parameters: α1[1], αn[1], and n. Since each of these can take at most |E| possible
values, there are |E|3 possibilities altogether. Thus for each possible number of blocks,
there are at most |E|3 possible block decompositions, and therefore only |E|4 possible block
decompositions respecting the invariant ΥE in total. Since every equation in LNF permits a
unique block decomposition, this gives us our desired polynomial bound.

I Theorem 24. Let E be a basic RWE. Let S be the set of basic regular equations E′ in Lex
Normal Form for which ΥE = ΥE′ . Then Card(S) ≤ |E|4.

Since every vertex in G⇒[E] is at polynomial distance from a vertex in LNF, and since there
are only polynomially many such vertices, it is straightforward to show that the diameter of
G⇒[E] must also be polynomial: indeed if we have a sufficiently long path between two vertices,
then we must have a long path between two vertices which are close to the same vertex in
LNF. Since they are close to the same vertex, we can find a shortcut between them, and the
initial long path is not minimal. Since the diameter of G⇒[E] is polynomial, it follows from
Theorem 9 (see also Remark 8) and Proposition 5 that the diameter of G⇒NT

[E] is polynomial
whenever E is regular, even in the case that E is not basic.

I Theorem 25. Let E be a basic RWE. Then diam(G⇒[E]) ∈ O(|E|10). Consequently, for any
RWE E, diam(G⇒NT

[E] ) ∈ O(|E|12).

Thus, by Proposition 4, we may infer that the satisfiability problem for RWEs is in NP.
It was already shown in [8] that the satisfiability problem for RWEs is NP-hard, and thus we
obtain matching upper and lower bounds for its complexity.

I Theorem 26. The satisfiability problem for RWEs is NP-complete.

4.6 Size and DAG-width
While the diameter of G⇒[E] is one important parameter, being directly related to the complexity
of the satisfiability problem, it is by no means the only interesting one. The overall size of the
graphs will also play a central role in the practical performance of the algorithm described
in Section 3. For basic RWEs, we have the following tight upper and lower bounds on the
number of vertices in the graphs G⇒[E].

I Theorem 27. Let E be a basic RWE and let n = Card(var(E)). Suppose that n > 1. Let
V be the number of vertices in G⇒[E]. 2n−1 − 1 ≤ V ≤ n!

2 .

It is worth noting that the lower bound given by Theorem 27 is already exponential in
the number of variables. The interpretation of the theorem in the more general (i.e. not
basic) setting therefore tells us that the number of vertices in G⇒[E] is exponential in the
number of variables occurring twice in the appropriate (indecomposable) parts of the LHS
and RHS. In other words, we see the rather intuitive fact here that decomposable equations
are somehow easier to deal with than indecomposable equations of the same length. The
following demonstrates that the bounds given by Theorem 27 are tight.

ICALP 2020



124:14 On the Structure of Solution Sets to Regular Word Equations

I Theorem 28. Let E be a basic RWE and let n = Card(var(α)). Suppose that n > 1. Let
V be the number of vertices in G⇒[E]. Then:
1. V = 2n−1 − 1 if and only if there exists E′ ∈ [E]⇒ such that E′ is regular reversed,
2. V = n!

2 if and only if there exists E′ ∈ [E]⇒ such that E′ is regular rotated.

In addition to the size we are also able to give some insights about the connectedness of
the graphs, which, as discussed in Section 3.3, are of interest when solving RWEs modulo
additional constraints. We show firstly that there exist classes of equations E for which
dgw(G⇒NT

[E] ) may be arbitrarily large.

I Theorem 29. Let x, y, z0, z1, z2, . . . , zn ∈ X. Let E be the RWE given by xz0z1z2 . . . zny
.=

yz0znzn−1 . . . z1x. Then dgw(G⇒NT

[E] ) > n.

Since high connectivity can be seen as an obstacle to deciding the satisfiability problem
with additional constraints, it is also worth noting classes for which the DAG-width is
bounded by a small constant, such as with those described in the next theorem.

I Theorem 30. Let α1, α2, . . . , αn, β1, β2, . . . , βn ∈ X∗ such that var(αi) = var(βi) for
1 ≤ i ≤ n and var(αi) ∩ var(αj) = ∅ for 1 ≤ i, j ≤ n with i 6= j. Let E be the RWE
α1α2 . . . αn

.= β1β2 . . . βn. Then dgw(G⇒NT

[E] ) = 2.

4.7 Extension to systems of equations
So far, we have considered individual equations. However, it is often the case in practice
that there is not just one equation to be solved, but a system of several concurrent equations.
However, while constructions exist which transform a system of equations into a single
equation (see e.g. [17]), the resulting equation will generally not be quadratic/regular. We
extend the definition of regular equations to regular systems as follows.

I Definition 31 (Regular systems). Let Θ = {α1
.= β1, α2

.= β2, . . . , αn
.= βn} be a system of

word equations. An orientation of Θ is any element of {α1
.= β1, β1

.= α1} × {α2
.= β2, β2

.=
α2} × . . .× {αn

.= βn, βn
.= αn}. We say that Θ is regular if it has an orientation for which

each variable occurs at most once across all LHSs and at most once across all RHSs.

I Theorem 32. The satisfiability problem for regular systems of equations is NP-complete.
Moreover, whether a system of word equations is regular can be decided in polynomial time.

5 Conclusions

A famous algorithm for solving quadratic word equations can be used to produce a (directed)
graph containing all solutions to the equation. In the case of regular equations, we have
described some underlying structures of these graphs with the intention of better understand-
ing their solution sets. We give bounds on their diameter and number of vertices, as well as
provide classes with bounded (resp. unbounded) DAG-width. Probably the most significant
result arising from our analysis is that the satisfiability problem for regular word equations
is in NP (and thus NP-complete), which we also extend to regular systems of equations.

We leave open many interesting problems, the most obvious of which is to generalise
our results to the (full) quadratic case. We also believe that our analysis and techniques
open up the possibility to investigate in far more detail the graphs G⇒[E], even in the case
of regular equations. For example, in light of our results, it seems reasonable to suggest
that determining whether E1 ⇒∗ E2 for two regular equations E1 and E2 may be done in
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polynomial time. A particularly nice characterisation of E1 and E2 such that E1 ⇒∗ E2
might yield a much quicker algorithm than the one resulting from our bound on the diameter
of G⇒NT

[E] by significantly reducing the degree of the polynomial. We also expect that a
detailed analysis of the length-reducing transformations and symmetries which may be found
there would be particularly helpful in understanding further the structure of solution sets
and the performance of algorithms solving regular equations in practice.

Finally, we mention the task of investigating the decidability of the satisfiability problem
for regular equations with additional constraints, in particular length constraints, with the
hope that having identified cases where the DAG-width is particularly high/low, along with
improved means to describe precisely the structure of the solution-graphs, might provide
some useful hints with how to proceed in this direction.
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Abstract
This paper proves the decidability of several important properties of additive cellular automata over
finite abelian groups. First of all, we prove that equicontinuity and sensitivity to initial conditions
are decidable for a nontrivial subclass of additive cellular automata, namely, the linear cellular
automata over Kn, where K is the ring Z/mZ. The proof of this last result has required to prove a
general result on the powers of matrices over a commutative ring which is of interest in its own.

Then, we extend the decidability result concerning sensitivity and equicontinuity to the whole
class of additive cellular automata over a finite abelian group and for such a class we also prove
the decidability of topological transitivity and all the properties (as, for instance, ergodicity) that
are equivalent to it. Finally, a decidable characterization of injectivity and surjectivity for additive
cellular automata over a finite abelian group is provided in terms of injectivity and surjectivity of an
associated linear cellular automata over Kn.
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1 Introduction

Cellular automata (CA) are widely known formal models for studying and simulating complex
systems (for recent results, an up-to date bibliography on CA, and simulations of complex
systems, see for instance [18, 1, 8, 9, 22, 5]). They are used in many disciplines ranging from
physics to biology, stepping through sociology, ecology and many others. In computer science
they are used for designing security schemes, random number generation, image processing,
etc. This extensive use is essentially due to three main ingredients: the huge variety of
distinct dynamical behaviors; the emergence of complex behaviors from local interactions;
the ease of implementation (even at a hardware level). In practical applications one needs
to know if the CA used for modelling a system has or not some specific property and this
can be an issue. Indeed, Jarkko Kari proved a strong result stating (roughly speaking) that
all non-trivial dynamical behaviors are undecidable [27]. From this seminal result, a long
sequence followed (see [2, 21, 25], just to cite some of them).
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The undecidability issue can be tackled by adding more constraints on the model.
These constraints may consist of conservation laws over the evolutions [24, 20, 23, 3, 34]
or superposition principles induced by imposing a rich algebraic structure over the CA
alphabet [26, 31, 30, 28, 7, 6, 19] (in both cases the literature is huge and only a very small
excerpt is cited here).

In this paper we follow the latter trend: the alphabet of the CA is a finite abelian group
G and its global update map is an additive function, i.e., an endomorphism of GZ. This
pretty broad requirement provides a class of CA generalizing those with linear local rule
defined by n× n matrices (see the previous citations for n = 1 and [28, 4] for n > 1).

Even if the superposition principle still allows us to prove deep and interesting results
on the asymptotic behavior of linear CA over (Z/mZ)n (for some integers m,n > 1), their
dynamics is definitely more interesting and expressive than that of linear CA over Z/mZ
(the classical linear CA setting) and exhibits much more complex features.

In [13, 10], we proved that ergodicity coincides with topological transitivity (and many
other properties) for additive CA over finite abelian groups and in [12] we proved the
decidability of those properties for the restricted case of linear CA over (Z/mZ)n.

The present paper adds the following important results to the panorama of the existing
ones for additive CA over finite abelian groups:

a lifting of the decidability of topological transitivity, ergodicity, and all the related
properties from linear CA to the general case of additive CA over finite abelian groups;
a decidable characterization of sensitivity to initial conditions for linear CA over (Z/mZ)n

which is then lifted to additive CA over finite abelian groups;
a dichotomy property of sensitivity to initial conditions vs. equicontinuity;
a characterization of surjectivity and injectivity properties extending the known results
for linear CA given in [28, 4].

The above results are important features of the dynamics of additive CA over finite
abelian groups which are involved in the most complex CA behaviors. Two main tools were
used in the proofs:

an embedding of an additive CA over a finite abelian group into a linear CA over a
commutative ring;
a deep result about commutative algebras defined over a commutative ring which is of
interest in its own;

The paper is structured as follows. The next section introduces all the necessary back-
ground and formal definitions. Section 3 recalls the known results about linear CA over
(Z/mZ)n and proves the new ones, including the non trivial algebra result about powers of
matrix over commutative rings. Section 4 explains the embedding allowing to lift results
from linear CA over (Z/mZ)n to generic additive CA over abelian groups. It also contains all
the main results. In the last section we draw our conclusion and provide some perspectives.

2 Background on DTDS and Cellular Automata

We begin by reviewing some general notions about discrete time dynamical systems and
cellular automata.

A discrete time dynamical system (DTDS) is a pair (X ,F), where X is any set equipped
with a distance function d (i.e., (X , d) is a metric space) and F : X → X is a map that is
continuous on X according to the topology induced by d.
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Let (X ,F) be a DTDS. We say that it is surjective, resp., injective, if F is surjective,
resp., injective. The DTDS (X ,F) is sensitive to the initial conditions (or simply sensitive)
if there exists ε > 0 such that for any x ∈ X and any δ > 0 there is an element y ∈ X such
that 0 < d(y, x) < δ and d(Fk(y),Fk(x)) > ε for some k ∈ N. The system (X ,F) is said to
be equicontinuous if ∀ε > 0 there exists δ > 0 such that for all x, y ∈ X , d(x, y) < δ implies
that ∀k ∈ N, d(Fk(x),Fk(y)) < ε. As dynamical properties, sensitivity and equicontinuity
represent the main features of unstable and stable dynamical systems, respectively. The
former is the well-known basic component and essence of the chaotic behavior of discrete
time dynamical systems, while the latter is a strong form of stability.

The DTDS (X ,F) is topologically transitive (or, simply, transitive) if for all nonempty
open subsets U and V of X there exists a natural number h such that Fh(U) ∩ V 6= ∅, while
it is said to be topologically mixing if for all nonempty open subsets U and V of X there exists
a natural number h0 such that the previous intersection condition holds for every h ≥ h0.
Clearly, topological mixing is a stronger condition than transitivity. Moreover, (X ,F) is
topologically weakly mixing if the DTDS (X × X ,F × F) is topologically transitive, while it
is totally transitive if (X ,Fh) is topologically transitive for all h ∈ N.

Let (X ,M, µ) be a probability space and let (X ,F) be a DTDS where F is a measurable
map which preserves µ, i.e., µ(E) = µ(F−1(E)) for every E ∈ M. The DTDS (X ,F), or,
the map F , is ergodic with respect to µ if for every E ∈M(

E = F−1(E)
)
⇒ µ(E)(1− µ(E)) = 0

It is well known that F is ergodic iff for any pair of sets A,B ∈M it holds that

lim
h→∞

1
h

h−1∑
i=0

µ(F−i(A) ∩B) = µ(A)µ(B)

The DTDS (X ,F) is (ergodic) mixing, if for any pair of sets A,B ∈M it holds that

lim
h→∞

µ(F−h(A) ∩B) = µ(A)µ(B) ,

while it is (ergodic) weak mixing, if for any pair of sets A,B ∈M it holds that

lim
h→∞

1
h

h−1∑
i=0
|µ(F−i(A) ∩B)− µ(A)µ(B)| = 0

We now recall some general notions about cellular automata.

Let S be a finite set. A configuration over S is a map from Z to S. We consider the
following space of configurations SZ = {c| c : Z→ S} . Each element c ∈ SZ can be visualized
as an infinite one-dimensional cell lattice in which each cell i ∈ Z contains the element ci ∈ S.

Let r ∈ N and δ : S2r+1 → S be any map. We say that r is the radius of δ.

I Definition 1 (Cellular Automaton). A one-dimensional CA based on a radius r local rule δ
is a pair (SZ, F ), where F : SZ → SZ is the global transition map defined as follows:

∀c ∈ SZ, ∀i ∈ Z, F (c)i = δ (ci−r, . . . , ci+r) . (1)

We stress that the local rule δ completely determines the global rule F of a CA.
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In order to study the dynamical properties of one-dimensional CA, we introduce a distance
over the space of the configurations. Namely, SZ is equipped with the Tychonoff distance d
defined as follows

∀c, c′ ∈ SZ, d(c, c′) =
{

0, if c = c′,

2−min{i∈N : ci 6=c′i or c−i 6=c′−i} otherwise .

It is easy to verify that metric topology induced by d coincides with the product topology
induced by the discrete topology on SZ. With this topology, SZ is a compact and totally
disconnected space and the global transition map F of any CA (SZ, F ) turns out to be
(uniformly) continuous. Therefore, any CA itself is also a discrete time dynamical system.
Moreover, any map F : SZ → SZ is the global transition rule of a CA if and only if F is
(uniformly) continuous and F ◦ σ = σ ◦ F , where σ : SZ → SZ is the shift map defined as
∀c ∈ SZ, ∀i ∈ Z, σ(c)i = ci+1. From now, when no misunderstanding is possible, we identify
a CA with its global rule. Moreover, whenever an ergodic property is considered for CA, µ is
the well-known Haar measure over the collectionM of measurable subsets of SZ, i.e., the
one defined as the product measure induced by the uniform probability distribution over S.

2.1 Additive and Linear Cellular Automata
Let us introduce the background of additive CA. The alphabet S will be a finite abelian
group G, with group operation +, neutral element 0, and inverse operation −. In this way,
the configuration space GZ turns out to be a finite abelian group, too, where the group
operation of GZ is the componentwise extension of + to GZ. With an abuse of notation, we
denote by the same symbols +, 0, and − the group operation, the neutral element, and the
inverse operation, respectively, both of G and GZ. Observe that + and − are continuous
functions in the topology induced by the metric d. A configuration c ∈ GZ is said to be finite
if the number of positions i ∈ Z with ci 6= 0 is finite.

I Definition 2 (Additive Cellular Automata). An additive CA over a abelian finite group G
is a CA (GZ, F ) where the global transition map F : GZ → GZ is an endomorphism of GZ.

The sum of two additive CA F1 and F2 over G is naturally defined as the map on GZ denoted
by F1 + F2 and such that

∀c ∈ GZ, (F1 + F2)(c) = F1(c) + F2(c)

Clearly, F1 + F2 is an additive CA over G.

We now recall the notion of linear CA, an important subclass of additive CA. We stress
that, whenever the term linear is involved, the alphabet S is Kn, where K = Z/mZ for some
positive integer m. Both Kn and (Kn)Z become K-modules in the obvious (i.e., entrywise)
way.

A local rule δ : (Kn)2r+1 → Kn of radius r is said to be linear if it is defined by 2r + 1
matrices A−r, . . . , A0, . . . , Ar ∈ Kn×n as follows:

∀(x−r, . . . , x0, . . . , xr) ∈ (Kn)2r+1, δ(x−r, . . . , x0, . . . , xr) =
r∑

i=−r

Ai · xi .

I Definition 3 (Linear Cellular Automata (LCA)). A linear CA (LCA) over Kn is a CA based
on a linear local rule.
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Let Kn[X,X−1] and Kn[[X,X−1]] denote the set of Laurent polynomials and the set of
Laurent series, respectively, with coefficients in Kn. Before proceeding, let us recall that
such formalisms have been successfully used to study the dynamical behaviour of LCA in
the case n = 1 [26, 31]. Indeed, global rules and configurations are represented by Laurent
polynomials and Laurent series, respectively, and the application of a global rule turns into a
polynomial-series multiplication. In the more general case of LCA over Kn, a configuration
c ∈ (Kn)Z can be associated with the Laurent series

P c(X) =
∑
i∈Z

ciX
i =

c
1(X)
...

cn(X)

 =


∑

i∈Z c
1
iX

i

...∑
i∈Z c

n
i X

i

 ∈ (K[[X,X−1]]
)n ∼= Kn[[X,X−1]] .

Then, if F is the global rule of a LCA defined by A−r, . . . , A0, . . . , Ar, one finds

P F (c)(X) = A · P c(X)

where

A =
r∑

i=−r

AiX
−i ∈ K[X,X−1]n×n

is the the matrix associated with the LCA F . In this way, for any integer k > 0 the matrix
associated with F k is Ak, and then P F k(c)(X) = Ak · P c(X) .

A matrix A ∈ K[X,X−1]n×n is in Frobenius normal form if

A =



0 1 0 . . . 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . . . . .

...

0 0 0 . . . 0 1

a0 a1 a2 . . . an−2 an−1


(2)

where each ai ∈ K[X,X−1]. Recall that the coefficients of the characteristic polynomial of A
are just the elements ai of the n-th row of A (up to sign).

I Definition 4 (Frobenius LCA). A LCA ((Kn)Z, F ) is said to be a Frobenius LCA if the
matrix A ∈ K[X,X−1]n×n associated with F is in Frobenius normal form.

3 Decidability Results about Linear CA

We now deal with sensitivity and equicontinuity for LCA over Kn. First of all, we remind
that a dichotomy between sensitivity and equicontinuity holds for LCA. Moreover, these
properties are characterized by the behavior of the powers of the matrix associated with
a LCA.

I Proposition 5 ([14]). Let
(

(Kn)Z , F
)
be a LCA over Kn and let A be the matrix associated

with F . The following statements are equivalent:
1. F is sensitive to the initial conditions;
2. F is not equicontinuous;
3.
∣∣{A1, A2, A3, . . .}

∣∣ =∞.
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An immediate consequence of Proposition 5 is that any decidable characterization of sensitivity
to the initial conditions in terms of the matrices defining LCA over Kn would also provide
a characterization of equicontinuity. In the sequel, we are going to show that such a
characterization actually exists. First of all, we remind that a decidable characterization
of sensitivity and equicontinuity was provided for the class of Frobenius LCA in [14]. In
particular, the following result holds.

I Theorem 6 (Theorem 31 in [14]). Sensitivity and equicontinuity are decidable for Frobenius
LCA over Kn.

In order to prove that equicontinuity and sensitivity are decidable for the whole class of LCA
over Kn, we need to prove the following result whose proof is strongly far from trivial and,
for a lack of space, is omitted (the proof can be found in [11]).

Notation. Let K be a commutative ring. Let n ∈ N. Let A be an n × n-matrix over
K. We denote by χA the characteristic polynomial of A which is as usual defined as the
polynomial det (tIn −A) ∈ K [t], where In stands for the n× n identity matrix and tIn −A
is considered as an n× n-matrix over the polynomial ring K [t].

I Theorem 7. Let K be a finite commutative ring. Let L be a commutative K-algebra. Let
n ∈ N. Let A and B be two n × n-matrices over L such that χA = χB. Then, the set{
A0, A1, A2, . . .

}
is finite if and only if the set

{
B0, B1, B2, . . .

}
is finite.

We are now able to prove the following

I Theorem 8. Sensitivity and equicontinuity are decidable for LCA over Kn.

Proof. Let
(

(Kn)Z , G
)
be any LCA over Kn and let A be the matrix associated with G.

Consider the Frobenius LCA
(

(Kn)Z , F
)
such that χA = χB, where B is the matrix (in

Frobenius normal form) associated with F . By Theorem 7 and Proposition 5 the former
LCA is equicontinuous if and only if the latter is. Theorem 6 concludes the proof. J

For a sake of completeness, we recall that injectivity and surjectivity are decidable for LCA
over Kn. This result follows from a characterization of these properties in terms of the
determinant of the matrix associated with a LCA and from the fact that injectivity and
surjectivity are decidable for LCA over K (for the latter, see [26]).

I Theorem 9 ([4, 28]). Injectivity and surjectivity are decidable for LCA over Kn. In
particular, a LCA over Kn is injective (resp., surjective) if and only if the determinant of the
matrix associated with it is the Laurent series associated with an injective (resp., surjective)
LCA over K.

The decidability of topologically transitivity, ergodicity, and other mixing and ergodic
properties for LCA over Kn has been recently proved in [13]. In particular, authors showed
the equivalence of all the mixing and ergodic properties for additive CA over a finite abelian
group and the decidability for LCA over Kn (see also [10]).

I Theorem 10 ([13, 10]). Let F be any additive CA over a finite abelian group. The
following statements are equivalent: (1) F is topologically transitive; (2) F is ergodic; (3)
F is surjective and for every k ∈ N it holds that F k − I is surjective; (4) F is topologically
mixing; (5) F is weak topologically transitive; (6) F is totally transitive; (7) F is weakly
ergodic mixing; (8) F is ergodic mixing. Moreover, all the previously mentioned properties
are decidable for LCA over Kn.
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4 From Linear to Additive CA

In this section we are going to prove that sensitivity, equicontinuity, topological transitivity,
and all the properties equivalent to the latter are decidable also for additive CA over a
finite abelian group. For each of them we will reach the decidability result by extending the
analogous one obtained for LCA to the wide class of additive CA over a finite abelian group.
In a similar way, we provide a decidable characterization of injectivity and surjectivity for
additive CA over a finite abelian group.

We recall that the local rule δ : G2r+1 → G of an additive CA of radius r over a finite
abelian group G can be written as

∀(x−r, . . . , xr) ∈ G2r+1, δ(x−r, . . . , xr) =
r∑

i=−r

δi(xi) (3)

where the functions δi are endomorphisms of G.
The fundamental theorem of finite abelian groups states that every finite abelian group

G is isomorphic to
⊕h

i=1 Z/kiZ where the numbers k1, . . . , kh are powers of (not necessarily
distinct) primes and ⊕ is the direct sum operation. Hence, the global rule F of an additive
CA over G splits into the direct sum of a suitable number h′ of additive CA over subgroups
G1, . . . , Gh′ with h′ ≤ h and such that gcd(|Gi|, |Gj |) = 1 for each pair of distinct i, j ∈
{1, . . . , h′}. Each of them can be studied separately and then the analysis of the dynamical
behavior of F can be carried out by combining together the results obtained for each
component.

In order to make things clearer, consider the following example. If F is an additive
CA over G ∼= Z/4Z × Z/8Z × Z/3Z × Z/3Z × Z/25Z then F splits into the direct sum of
3 additive CA F1, F2, and F3 over Z/4Z × Z/8Z, Z/3Z × Z/3Z and Z/25Z, respectively.
Therefore, F will be sensitive to initial conditions iff at least one Fi is sensitive to the initial
conditions, while F will be topological transitive iff every Fi is topological transitive.

The above considerations lead us to three distinct scenarios:
1) G ∼= Z/pkZ. Then, G is cyclic and we can define each δi simply assigning the value

of δi applied to the unique generator of G. Moreover, every pair δi, δj commutes, i.e.,
δi ◦ δj = δj ◦ δi, and this makes it possible a detailed analysis of the global behavior of
F . Indeed, additive cellular automata over Z/pkZ are nothing but LCA over Z/pkZ and
almost all dynamical properties, including sensitivity to the initial conditions, equicon-
tinutity, injectivity, surjectivity, topological transitivity and so on are well understood
and characterized (see [31]).

2) G ∼= (Z/pkZ)n. In this case, G is not cyclic anymore and has n generators. We can
define each δi assigning the value of δi for each generator of G. This gives rise to the class
of linear CA over (Z/pkZ)n. Now, δi and δj do not commute in general and this makes
the analysis of the dynamical behavior much harder. Nevertheless, in Section 3 we have
proved that sensitivity and equicontinuity are decidable by exploiting Theorem 7. As
pointed out in [14], we also recall that linear CA over (Z/pkZ)n allow the investigation
of some classes of non-uniform CA over Z/pkZ ( (for these latter see [15, 16, 17] ).

3) G ∼=
⊕n

i=1 Z/pkiZ. In this case (Z/4Z × Z/8Z in the example), G is again not cyclic
and F turns out to be a subsystem of a suitable LCA. Then, the analysis of the dynamical
behavior of F is even more complex than in 2). We do not even know easy checkable
characterizations of basic properties like surjectivity or injectivity so far. We will provide
them in the sequel as we stated at the beginning of this section.

Therefore, without loss of generality, in the sequel we can assume that G = Z/pk1Z× . . .×
Z/pknZ with k1 ≥ k2 ≥ . . . ≥ kn in order to reach our goal.
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For any i ∈ {1, . . . , n} let us denote by e(i) ∈ GZ the bi-infinite configuration such that
e

(i)
0 = ei and e

(i)
j = 0 for every integer j 6= 0.

I Definition 11. Let (GZ, F ) be an additive CA over G. We say that e(i) ∈ GZ spreads
under F if for every ` ∈ N there exists k ∈ N such that F k(e(i))j 6= 0 for some integer j with
|j| > `.

I Remark 12. Whenever we consider P e(i)(X) ∈ G[X,X−1], we will say that P e(i)(X)
spreads under F if for every ` ∈ N there exists k ∈ N such that P F k(e(i))(X) has at least
one component with a non null monomial of degree which is greater than ` in absolute value.
Clearly, P e(i)(X) spreads under F if and only if e(i) spreads under F .

Let Ĝ = (Z/pk1Z)n. Define the map ψ : G→ Ĝ as follows

∀h ∈ G, ∀i = 1, . . . , n, ψ(h)i = hi pk1−ki ,

where, for a sake of clarity, we stress that hi denotes the i-th component of h, while pk1−ki

is just the (k1 − ki)-th power of p.

I Definition 13. We define the function Ψ : GZ → ĜZ as the componentwise extension of ψ,
i.e.,

∀c ∈ GZ, ∀j ∈ Z, Ψ(c)j = ψ(cj) .

It is easy to check that Ψ is continuous and injective. Since every configuration c ∈ GZ (or
ĜZ) is associated with the Laurent series P c(X) ∈ G[[X,X−1]] (or Ĝ[[X,X−1]]), with an
abuse of notation we will sometimes consider Ψ as map from G[[X,X−1]] to Ĝ[[X,X−1]]
with the obvious meaning.

For any additive CA over G, we are now going to define a LCA over (Z/pk1Z)n associated
to it. With a further abuse of notation, in the sequel we will write p−m with m ∈ N even if
this quantity might not exist in Z/pkZ. However, we will use it only when it multiplies pm′

for some integer m′ > m. In such a way pm′−m is well-defined in Z/pkZ and we will note it
as product p−m · pm′ .

I Definition 14. Let (GZ, F ) be any additive CA and let δ : G2r+1 → G be its local rule
defined, according to (3), by 2r+1 endomorphisms δ−r, . . . , δr of G . For each z ∈ {−r, . . . , r},
we define the matrix Az = (a(z)

i,j )1≤i≤n, 1≤j≤n ∈ (Z/pk1Z)n×n as

∀i, j ∈ {1, . . . , n}, a
(z)
i,j = pkj−ki · δz(ej)i

The LCA associated with the additive CA (GZ, F ) is (ĜZ, L), where L is defined by
A−r, . . . , Ar or, equivalently, by A =

∑r
z=−r AzX

−z ∈ Ĝ[X,X−1]n×n.

I Remark 15. Since every δz is an endomorphism of G, by construction A turns out to be
well-defined.
I Remark 16. The following diagram commutes

GZ F−−−−→ GZ

Ψ
y yΨ

ĜZ −−−−→
L

ĜZ

,

i.e., L ◦Ψ = Ψ ◦ F . Therefore we say that (ĜZ, L) is the LCA associated with (GZ, F ) via
the embedding Ψ.
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4.1 Sensitivity and Equicontinuity for Additive Cellular Automata
Let us start with the decidability of sensitivity and equicontinuity.

I Lemma 17. Let (GZ, F ) be any additive CA. If for some i ∈ {1, . . . , n} the configuration
e(i) ∈ GZ spreads under F then (GZ, F ) is sensitive to the initial conditions.

Proof. We prove that F is sensitive with constant ε = 1. Let e(i) ∈ GZ be the configuration
spreading under F . Choose arbitrarily an integer ` ∈ N and a configuration c ∈ GZ. Let
t ∈ N and j /∈ {−`, . . . , `} be the integers such that F t(e(i))j 6= 0. Consider the configuration
c′ = c + σj(e(i)). Clearly, it holds that d(c, c′) < 2−` and F t(c′) = F t(c) + F t(σj(e(i))) =
F t(c) + σj(F t(e(i))). So, we get d(F t(c′), F t(c)) = 1 and this concludes the proof. J

In order to prove the decidability of sensitivity, we need to deal with the following notions
about Laurent polynomials.

I Definition 18. Given any polynomial p(X) ∈ Z/pk1Z
[
X,X−1], the positive (resp., nega-

tive) degree of p(X), denoted by deg+[p(X)] (resp., deg−[p(X)]) is the maximum (resp.,
minimum) degree among those of the monomials having both positive (resp., negative) degree
and coefficient which is not multiple of p. If there is no monomial satisfying both the required
conditions, then deg+[p(X)] = 0 (resp., deg−[p(X)]=0).

I Lemma 19. Let (ĜZ, L) be a LCA and let A ∈ Z/pk1Z
[
X,X−1]n×n be the matrix

associated to it. If (ĜZ, L) is sensitive then for every integer m ≥ 1 there exists an integer
k ≥ 1 such that at least one entry of Ak has either positive or negative degree with absolute
value which is greater than m.

Proof. We can write A = B + p · C for some B,C ∈ Z/pk1Z
[
X,X−1]n×n, where the

monomials of all entries of B have coefficient which is not multiple of p. Assume that there
exists a bound b ≥ 1 such that for every k ≥ 1 all entries of Ak have degree less than b in
absolute value. Therefore, it holds that

∣∣{Ak, k ≥ 1}
∣∣ <∞ and so, by Proposition 5, (ĜZ, L)

is not sensitive. J

We are now able to prove the following important result.

I Theorem 20. Let (GZ, F ) be any additive CA over G and let (ĜZ, L) be the LCA associated
to it via the embedding Ψ. Then, the CA (GZ, F ) is sensitive to the initial conditions if and
only if (ĜZ, L) is. Moreover, the CA (GZ, F ) is equicontinuous if and only if (ĜZ, L) is.

Proof. Let us start with the equivalence between sensitivity of (GZ, F ) and sensitivity of
(ĜZ, L).
=⇒: Assume that (ĜZ, L) is not sensitive. Then, by Proposition 5, there exist two integers
k ∈ N and m > 0 such that Lk+m = Lk. Therefore, we get Ψ◦F k+m = Lk+m ◦Ψ = Lk ◦Ψ =
Ψ ◦ F k. Since Ψ is injective, it holds that F k+m = F k and so (GZ, F ) is not sensitive.
⇐=: Assume that (ĜZ, L) is sensitive and for any natural k let Ak = (a(k)

i,j )1≤i≤n, 1≤j≤n be
the k-th power of A ∈ Z/pk1Z

[
X,X−1]n×n, where A is the matrix associated to (ĜZ, L).

We are going to show that at least one configuration among e(1), . . . , e(n) spreads under
F . Choose arbitrarily ` ∈ N. By Lemma 19, there exist an integer m ≥ 1 and one entry
(i, j) such that either deg−[a(m)

i,j ] < −` or deg+[a(m)
i,j ] > `. Without loss of generality suppose

that deg+[a(m)
i,j ] > `. The i–th component of P F m(e(j))(X) is the well defined polynomial

pki−k1 · pk1−kj · a(m)
i,j . Since deg+[a(m)

i,j ] > `, we can state that e(j) spreads under F . By
Lemma 17, it follows that (GZ, F ) is sensitive.
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As to the equicontinuity equivalence, the above first implication also proves that if (ĜZ, L)
is equicontinuous (i.e., by Proposition 5, it is not sensitive) then F k+m = F k, i.e., by [29],
(GZ, F ) is equicontinuous. Conversely, if (GZ, F ) is equicontinuous then it trivially follows
that it is not sensitive, i.e., by the above second implication, (ĜZ, L) is not sensitive, i.e., by
Proposition 5, (ĜZ, L) is equicontinuous. J

As immediate consequence of Theorem 20 we can state that the dichotomy between sensitivity
and equicontinuity also holds for additive CA.

I Corollary 21. Any additive CA over a finite abelian group is sensitive to the initial
conditions if and only if it is not equicontinuous.

The following decidability result follows from Theorem 20 and the decidability of sensitivity
for LCA.

I Corollary 22. Equicontinuity and sensitivity to the initial conditions are decidable for
additive CA over a finite abelian group.

Proof. Use Theorem 8 and 20. J

4.2 Surjectivity and Injectivity for Additive Cellular Automata
We now study injectivity and surjectivity for additive CA.

I Lemma 23. Let (ĜZ, L) be any LCA over Ĝ. If there exists a configuration b ∈ ĜZ with
b 6= 0 and L(b) = 0, then there exists a configuration b′ ∈ Ψ(GZ) such that b′ 6= 0 and
L(b′) = 0. In particular, if b is finite then b′ is finite too.

Proof. Let b ∈ ĜZ any configuration with b 6= 0 and L(b) = 0. Set b(1) = p · b. If b(1) = 0
then for every i ∈ Z each component of bi has pk1−1 as factor. So, b ∈ Ψ(GZ) and b′ = b is
just one possible configuration the thesis requires to exhibit. Otherwise, by repeating the
same argument, set b(2) = p · b(1). If b(2) = 0 then, for every i ∈ Z, each component of b

(1)
i

has pk1−1 as factor and so b(1) ∈ Ψ(GZ). Since L(b(1)) = 0, a configuration we are looking for
is b′ = b(1). After k1 − 1 iterations, i.e., once we get b(k1−1) = p · b(k−2) (with b(k−2) 6= 0), if
b(k1−1) = 0 holds we conclude that b′ = b(k1−2) by using the same argument of the previous
steps. Otherwise, by definition, for every i ∈ Z each component of b

(k1−1)
i itself certainly

contains pk1−1 as factor. Therefore, b(k1−1) ∈ Ψ(GZ). Moreover, L(b(k1−1)) = 0. Hence, we
can set b′ = b(k1−1) and this concludes the proof. J

The following lemma will be useful for studying both surjectivity and other properties.

I Lemma 24. Let (GZ, F ) and (ĜZ, L) be any additive CA over G and any LCA over Ĝ,
respectively, such that L ◦ Ψ = Ψ ◦ F . Then, the CA (GZ, F ) is surjective if and only if
(ĜZ, L) is.

Proof. ⇐=: Assume that F is not surjective. Then, by the Garden of Eden theorem [32, 33], F
is not injective on the finite configurations, i.e., there exist two distinct and finite configurations
c′, c′′ ∈ GZ with F (c′) = F (c′′). Therefore, the element c = c′ − c′′ ∈ GZ is a finite
configuration such that c 6= 0 and F (c) = 0. So, we get both Ψ(c) 6= 0 and L(Ψ(c)) =
Ψ(F (c)) = 0. Since Ψ(c) 6= 0, it follows that L is not surjective.
=⇒: Assume that L is not surjective. Then it is not injective on the finite configurations.
Thus, there exist a finite configuration b 6= 0 with L(b) = 0. By Lemma 23, there exists a
finite configuration b′ ∈ Ψ(GZ) such that b′ 6= 0 and L(b′) = 0. Let c ∈ GZ be the finite
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configuration such that Ψ(c) = b′. Clearly, it holds that c 6= 0. We get Ψ(F (c)) = L(Ψ(c)) =
0. Since Ψ is injective, it follows that F (c) = 0. Therefore, we conclude that F is not
surjective. J

Next two theorems state that surjectivity and injectivity behave as sensitivity when looking
at an additive CA over G and the associated LCA via the embedding Ψ.

I Theorem 25. Let (GZ, F ) be any additive CA over G and let (ĜZ, L) be the LCA associated
with it via the embedding Ψ. Then, the CA (GZ, F ) is surjective if and only if (ĜZ, L) is.

Proof. Use Lemma 24. J

I Theorem 26. Let (GZ, F ) be any additive CA and let (ĜZ, L) be the LCA associated with
it via the embedding Ψ. Then, the CA (GZ, F ) is injective if and only if (ĜZ, L) is.

Proof. ⇐=: Assume that F is not injective. Then, there exist two distinct configurations
c, c′ ∈ GZ with F (c) = F (c′). We get L(Ψ(c)) = Ψ(F (c)) = Ψ(F (c′)) = L(Ψ(c′)) and, since
Ψ is injective, it follows that L is not injective.
=⇒: Assume that L is not injective. Then, there exists a configuration b ∈ ĜZ such that
b 6= 0 and L(b) = 0. By Lemma 23, there exists a configuration b′ ∈ Ψ(GZ) such that b′ 6= 0
and L(b′) = 0. Let c ∈ GZ be the configuration such that Ψ(c) = b′. Clearly, it holds that
c 6= 0. We get Ψ(F (c)) = L(Ψ(c)) = 0. Since Ψ is injective, it follows that F (c) = 0. Since
F (0) = 0, we conclude that F is not injective. J

4.3 Topological transitivity and ergodicity
We start by proving that the embedding Ψ also preserves topological transitivity between an
additive CA over G and the associated LCA.

I Theorem 27. Let (GZ, F ) be any additive CA over G and let (ĜZ, L) be the LCA associated
with it via the embedding Ψ. Then, the CA (GZ, F ) is topologically transitive if and only if
(ĜZ, L) is.

Proof. Since Ψ ◦ F = L ◦ Ψ, for every k ∈ N it holds that Ψ ◦ (F k − I) = Ψ ◦ F k − Ψ =
Lk ◦Ψ−Ψ = (Lk − I) ◦Ψ. By Lemma 24 , F k − I is surjective iff Lk − I is. Theorem 25
and 10 conclude the proof. J

As a final result, we get the decidability of many mixing and ergodic properties for additive
CA over any finite abelian group, including topological transitivity and ergodicity.

I Corollary 28. All the following properties are decidable for additive CA over any finite
abelian group: (1) topological transitivity; (2) ergodicity; (3) topological mixing; (4) weak
topological transitivity; (5) total transitivity; (6) weak ergodic mixing; (7) ergodic mixing.

Proof. It is an immediate consequence of Theorem 10 and 27. J

5 Conclusions

In this paper we have provided many decidability and characterization results about the
dynamical behavior of additive CA over finite abelian groups. These results were obtained
using an embedding of linear CA over (Z/mZ)n to additive CA over finite abelian groups
and a deep algebra result about powers of matrices over commutative rings.
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The are at least three main research directions that are worth investigating. First, one
might ask which results and characterizations are still true when considering non-abelian
groups. Second, it would be very interesting to find characterizations or decidability results
about positive expansivity and strong transitivity for the case of additive CA over finite
abelian groups. Finally, an important research direction consists in generalizing our results
to higher dimensions (see [18] for recent results about D-dimensional CA).
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Abstract
We prove new complexity results for computational problems in certain wreath products of groups
and (as an application) for free solvable groups. For a finitely generated group we study the
so-called power word problem (does a given expression uk1

1 . . . u
kd
d , where u1, . . . , ud are words over

the group generators and k1, . . . , kd are binary encoded integers, evaluate to the group identity?)
and knapsack problem (does a given equation ux1

1 . . . u
xd
d = v, where u1, . . . , ud, v are words over

the group generators and x1, . . . , xd are variables, have a solution in the natural numbers). We
prove that the power word problem for wreath products of the form G o Z with G nilpotent and
iterated wreath products of free abelian groups belongs to TC0. As an application of the latter, the
power word problem for free solvable groups is in TC0. On the other hand we show that for wreath
products G o Z, where G is a so called uniformly strongly efficiently non-solvable group (which form
a large subclass of non-solvable groups), the power word problem is coNP-hard. For the knapsack
problem we show NP-completeness for iterated wreath products of free abelian groups and hence
free solvable groups. Moreover, the knapsack problem for every wreath product G o Z, where G is
uniformly efficiently non-solvable, is Σp

2-hard.
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1 Introduction

Since the seminal work of Dehn [7] on the word and conjugacy problem in surface groups,
the area of combinatorial group theory [31] is tightly connected to algorithmic questions.
The famous Novikov-Boone result [4, 40] on the existence of finitely presented groups with
undecidable word problem was one of the first undecidability results that touched real
mathematics. Since this pioneering work, the area of algorithmic group theory has been
extended in many different directions. More general algorithmic problems have been studied
and also the computational complexity of group theoretic problems has been investigated. In
this paper, we focus on the decidability/complexity of two specific problems in group theory
that have received considerable attention in recent years: the knapsack problem and the
power word problem.
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Knapsack problems. There exist several variants of the classical knapsack problem over the
integers [21]. In the variant that is particularly relevant for this paper, it is asked whether a
linear equation x1 ·a1+· · ·+xd ·ad = b, with a1, . . . , ad, b ∈ Z, has a solution (x1, . . . , xd) ∈ Nd.
A proof for the NP-completeness of this problem for binary encoded integers a1, . . . , ad, b

can be found in [15]. In contrast, if the numbers ai, b are given in unary notation then the
problem falls down into the circuit complexity class TC0 [8]. In the course of a systematic
investigation of classical commutative discrete optimization problems in non-commutative
group theory, Myasnikov, Nikolaev, and Ushakov [33] generalized the above definition of
knapsack to any f.g. group G: The input for the knapsack problem for G (KP(G) for short)
is an equation of the form gx1

1 · · · g
xd

d = h for group elements g1, . . . , gd, h ∈ G (specified by
finite words over the generators of G) and pairwise different variables x1, . . . , xd that take
values in N and it is asked whether this equation has a solution (in Section 3.2, we formulate
this problem in a slightly more general but equivalent way). In this form, KP(Z) is exactly
the above knapsack problem for unary encoded integers studied in [8] (a unary encoded
integer can be viewed as a word over a generating set {t, t−1} of Z). For the case where
g1, . . . , gd, h are commuting matrices over an algebraic number field, the knapsack problem
has been studied in [1]. Let us emphasize that we are looking for solutions of knapsack
equations in the natural numbers. One might also consider the variant, where the variables
x1, . . . , xd take values in Z. This latter version can be easily reduced to our knapsack version
(with solutions in N), but we are not aware of a reduction in the opposite direction.1 Let us
also mention that the knapsack problem is a special case of the more general rational subset
membership problem [26].

We also consider a generalization of KP(G): An exponent equation is an equation of the
form gx1

1 · · · g
xd

d = h as in the specification of KP(G), except that the variables x1, . . . , xd are
not required to be pairwise different. Solvability of exponent equations for G (ExpEq(G) for
short) is the problem where the input is a conjunction of exponent equations (possibly with
shared variables) and the question is whether there is a joint solution for these equations in
the natural numbers.

Let us briefly survey the results about knapsack obtained in [33] and subsequent papers:
Knapsack can be solved in polynomial time for every hyperbolic group [33]. Some
extensions of this result can be found in [11, 25].
There are nilpotent groups of class 2 for which knapsack is undecidable. Examples are
direct products of sufficiently many copies of the discrete Heisenberg group H3(Z) [22],
and free nilpotent groups of class 2 and sufficiently high rank [37]. In contrast, knapsack
for H3(Z) is decidable [22]. Thus, direct products to not preserve decidability of knapsack.
Knapsack is decidable for every co-context-free group [22], i.e., groups where the set
of all words over the generators that do not represent the identity is a context-free
language. Lehnert and Schweitzer [23] have shown that the Higman-Thompson groups
are co-context-free.
Knapsack belongs to NP for all virtually special groups (finite extensions of subgroups of
graph groups) [28]. The class of virtually special groups is very rich. It contains all Coxeter
groups, one-relator groups with torsion, fully residually free groups, and fundamental
groups of hyperbolic 3-manifolds. For graph groups (a.k.a. right-angled Artin groups) a

1 Note that the problem whether a given system of linear equations has a solution in N is NP-complete,
whereas the problem can be solved in polynomial time (using the Smith normal form) if we ask for a
solution in Z. In other words, if we consider the knapsack problem for Zn with n part of the input,
then looking for solutions in N seems to be more difficult than looking for solutions in Z.
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complete classification of the complexity was obtained in [29]: If the underlying graph
contains an induced path or cycle on 4 nodes, then knapsack is NP-complete; in all other
cases knapsack can be solved in polynomial time (even in LogCFL).
Knapsack is NP-complete for every wreath product A o Z with A 6= 1 f.g. abelian [12]
(wreath products are formally defined in Section 3.1).
Decidability of knapsack is preserved under finite extensions, HNN-extensions over finite
associated subgroups and amalgamated free products over finite subgroups [28].

For a knapsack equation gx1
1 · · · g

xd

d = h we may consider the set of all solutions {(n1, . . . , nd) ∈
Nd | gn1

1 · · · g
nd

d = g in G}. In the papers [25, 22, 29] it turned out that in many groups the
solution set of every knapsack equation is a semilinear set (see Section 2 for a definition).
We say that a group is knapsack-semilinear if for every knapsack equation the set of all
solutions is semilinear and a semilinear representation can be computed effectively (the same
holds then also for exponent equations). Note that in any group G the set of solutions on an
equation gx = h is periodic and hence semilinear. This result generalizes to solution sets of
knapsack instances of the for gx1g

y
2 = h (see Lemma 9), but there are examples of knapsack

instances with three variables where solutions sets (in certain groups) are not semilinear.
Examples of knapsack-semilinear groups are graph groups [29] (which include free groups
and free abelian groups), hyperbolic groups [25], and co-context free groups [22].2 Moreover,
the class of knapsack-semilinear groups is closed under finite extensions, graph products,
amalgamated free products with finite amalgamated subgroups, HNN-extensions with finite
associated subgroups (see [10] for these closure properties) and wreath products [12].

Power word problems. In the power word problem for a f.g. group G (PowerWP(G) for
short) the input consists of an expression un1

1 un2
2 · · ·u

nd

d , where u1, . . . , ud are words over
the group generators and n1, . . . , nd are binary encoded integers. The problem is then to
decide whether the expression un1

1 un2
2 · · ·u

nd

d evaluates to the identity in G. The power word
problem arises very naturally in the context of the knapsack problem: it allows us to verify a
proposed solution for a knapsack equation with binary encoded numbers. The power word
problem has been first studied in [27], where it was shown that the power word problem for
f.g. free groups has the same complexity as the word problem and hence can be solved in
logarithmic space. Other groups with easy power word problems are f.g. nilpotent groups
and wreath products A o Z with A f.g. abelian [27]. In contrast it is shown in [27] that
the power word problem for wreath products G o Z, where G is either finite non-solvable
or f.g. free, is coNP-complete. Implicitly, the power word problem appeared also in the
work of Ge [13], where it was shown that one can verify in polynomial time an identity
αn1

1 αn2
2 · · ·α

nd

d = 1, where the αi are elements of an algebraic number field and the ni are
binary encoded integers. The power word problem is a special case of the compressed word
problem [24], which asks whether a grammar-compressed word over the group generators
evaluates to the group identity.

Main results. Our main focus is on the problems PowerWP(G), KP(G) and ExpEq(G)
for the case where G is a wreath product. We start with the following result:

I Theorem 1. PowerWP(G o Z) is in TC0 for every f.g. nilpotent group G.

2 Knapsack-semilinearity of co-context free groups is not stated in [22] but follows immediately from the
proof for the decidability of knapsack.
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Theorem 1 generalizes the above mentioned result from [27] (for G abelian) in a nontrivial
way. Our proof analyzes periodic infinite words over a nilpotent group G. Roughly speaking,
we show that one can check in TC0, whether a given list of such periodic infinite words
pointwise multiplies to the identity of G. We believe that this is a result of independent
interest. We use this result also in the proof of the following theorem:

I Theorem 2. KP(G o Z) is NP-complete for every finite nilpotent group G 6= 1.

Next, we consider iterated wreath products. Fix r ≥ 1 and define the iterated wreath
products W0,r = Zr and Wm+1,r = Zr oWm,r. By a famous result of Magnus [32] the free
solvable group Sm,r of derived length r and rank m embeds into Wm,r. Our main results for
these groups are:

I Theorem 3. PowerWP(Wm,r) and hence PowerWP(Sm,r) is in TC0 for m ≥ 0, r ≥ 1.

It was only recently shown in [35] that the word problem (and the conjugacy problem) for
every free solvable group belongs to TC0. Theorem 3 generalizes TC0 membership of the
word problem.

I Theorem 4. ExpEq(Wm,r) and hence ExpEq(Sm,r) is NP-complete for m ≥ 0, r ≥ 1.

For the proof of Theorem 4 we show that if a given knapsack equation over Wm,r has a
solution then it has a solution where all numbers are exponentially bounded in the length
of the knapsack instance. Theorem 4 then follows easily from Theorem 3. For some other
algorithmic results for free solvable groups see [34].

Finally, we show new hardness results for the power word problem and knapsack problem.
For this we make use so-called uniformly strongly efficiently non-solvable groups (uniformly
SENS groups) that were recently defined in [3]. Roughly speaking, a group G is uniformly
SENS if there exists nontrivial nested commutators of arbitrary depth that moreover, are
efficiently computable in a certain sense (see Section 6 for the precise definition). The
essence of these groups is that they allow to carry out Barrington’s argument showing the
NC1-hardness of the word problem for a finite solvable group [2]. We prove the following:

I Theorem 5. PowerWP(G o Z) is coNP-hard for every f.g. uniformly SENS group G.

This result generalizes a result from [27] saying that PowerWP(G o Z) is coNP-hard for the
case that G is f.g. free or finite non-solvable.

I Theorem 6. KP(G o Z) is Σp2-hard for every f.g. uniformly SENS group G.

Recall that for every nontrivial group G, KP(G o Z) is NP-hard [12]. We also show several
corollaries of Theorems 5 and 6. For instance, we show that for the famous Thompson’s
group F , PowerWP(F ) is coNP-complete and KP(F ) is Σp2-hard.

2 Preliminaries

Complexity theory. We assume some knowledge in complexity theory; in particular the
reader should be familiar with the classes P, NP, and coNP. The class Σp2 (second existential
level of the polynomial time hierarchy) contains all languages L ⊆ Σ∗ for which there exists
a polynomial p and a language K ⊆ Σ∗#{0, 1}∗#{0, 1}∗ in P (for a symbol # /∈ Σ ∪ {0, 1})
such that x ∈ L if and only if ∃y ∈ {0, 1}≤p(|x|)∀z ∈ {0, 1}≤p(|x|) : x#y#z ∈ K.

The class TC0 contains all problems that can be solved by a family of threshold circuits of
polynomial size and constant depth. In this paper, TC0 will always refer to the DLOGTIME-
uniform version of TC0. A precise definition is not needed for our work; see [42] for details.
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All we need is that the following arithmetic operations on binary encoded integers belong to
TC0: iterated addition and multiplication (i.e., addition and multiplication of n many n-bit
numbers) and division with remainder.

For languages (or computational problems) A,B1, . . . , Bk ⊆ {0, 1}∗ we write A ∈
TC0(B1, . . . , Bk) (A is TC0-Turing-reducible to B1, . . . , Bk) if A can be solved by a family
of threshold circuits of polynomial size and constant depth that in addition may also use
oracle gates for the languages B1, . . . , Bk (an oracle gate for Bi yields the output 1 if and
only if the string of input bits belongs to Bi).

Semilinear sets. Fix a dimension d ≥ 1. All vectors will be column vectors. For a
vector v = (v1, . . . , vd)T ∈ Zd we define its norm ‖v‖ := max{|vi| | 1 ≤ i ≤ d} and
for a matrix M ∈ Zc×d with entries mi,j (1 ≤ i ≤ c, 1 ≤ j ≤ d) we define the norm
‖M‖ = max{|mi,j | | 1 ≤ i ≤ c, 1 ≤ j ≤ d}. Finally, for a finite set of vectors A ⊆ Nd let
‖A‖ = max{‖a‖ | a ∈ A}. We extend the operations of vector addition and multiplication
of a vector by a matrix to sets of vectors in the obvious way. A linear subset of Nd is a
set of the form L = L(b, P ) := b + P · Nk, where b ∈ Nd and P ∈ Nd×k. A set S ⊆ Nd is
called semilinear if it is a finite union of linear sets. Semilinear sets play an important role in
automata theory, logic, and other areas. They are precisely the sets definable in Presburger
arithmetic, i.e. first-order logic over the structure (N,+), and thus form a Boolean algebra.

For a semilinear set S =
⋃k
i=1 L(bi, Pi), we call the tuple (b1, P1, . . . , bk, Pk) a semilinear

representation of S. The magnitude of the semilinear representation (b1, P1, . . . , bk, Pk) is
max{‖b1‖, ‖P1‖ . . . , ‖bk‖, ‖Pk‖}. The magnitude ‖S‖ of a semilinear set S is the minimal
magnitude of all semilinear representations for S.

It is often convenient to treat mappings ν : {x1, . . . , xd} → N, where X = {x1, . . . , xd} is a
finite set of variables, as vectors. To this end, we identify ν with the vector (ν(x1), . . . , ν(xd))T.
This way, vector operations (e.g. addition and scalar multiplication) and the notion of
semilinearity carry over to the set NX of all mappings from X to N.

3 Groups

We assume that the reader is familiar with the basics of group theory. Let G be a group. We
always write 1 for the group identity element. For g, h ∈ G we write [g, h] := g−1h−1gh for
the commutator of g and h and gh for h−1gh. For subgroups A,B of G we write [A,B] for
the subgroup generated by all commutators [a, b] with a ∈ A and b ∈ B. The order of an
element g ∈ G is the smallest number z > 0 with gz = 1 and ∞ if such a z does not exist.
The group G is torsion-free, if every g ∈ G \ {1} has infinite order.

We say that G is finitely generated (f.g.) if there is a finite subset Σ ⊆ G such that
every element of G can be written as a product of elements from Σ; such a Σ is called a
finite generating set for G. We also write G = 〈Σ〉. We then have a canonical morphism
h : Σ∗ → G that maps a word over Σ to its product in G. If h(w) = 1 we also say that w = 1
in G. For g ∈ G we write |g| for the length of a shortest word w ∈ Σ∗ such that h(w) = g.
This notation depends on the generating set Σ. We always assume that the generating set Σ
is symmetric in the sense that a ∈ Σ implies a−1 ∈ Σ. Then, we can define on Σ∗ a natural
involution ·−1 by (a1a2 · · · an)−1 = a−1

n · · · a−1
2 a−1

1 for a1, a2, . . . , an ∈ Σ. This allows to use
the notations [g, h] = g−1h−1gh and gh = h−1gh in the case g, h ∈ Σ∗. By computing a
homomorphism h : G1 = 〈Σ1〉 → G2 = 〈Σ2〉, we mean computing the images h(a) for a ∈ Σ1.
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A group G is called orderable if there exists a linear order ≤ on G such that g ≤ h implies
xgy ≤ xhy for all g, h, x, y ∈ G [39, 38]. Every orderable group is torsion-free (this follows
directly from the definition) and has the unique roots property [41], i.e., gn = hn implies
g = h. The are numerous examples of orderable groups: for instance, torsion-free nilpotent
groups, right-angled Artin groups, and diagram groups are all orderable.

Two elements g, h ∈ G in a group G are called commensurable if gx = hy for some
x, y ∈ Z \ {0}. This defines an equivalence relation on G, in which the elements with finite
order form an equivalence class. By [39, Corollary 1.2] commensurable elements in an
orderable group commute.

3.1 Wreath products
Let G andH be groups. Consider the direct sumK =

⊕
h∈H Gh, where Gh is a copy of G. We

view K as the set G(H) of all mappings f : H → G such that supp(f) := {h ∈ H | f(h) 6= 1}
is finite, together with pointwise multiplication as the group operation. The set supp(f) ⊆ H
is called the support of f . The group H has a natural left action on G(H) given by
hf(a) = f(h−1a), where f ∈ G(H) and h, a ∈ H. The corresponding semidirect product
G(H) oH is the (restricted) wreath product G oH. In other words:

Elements of G oH are pairs (f, h), where h ∈ H and f ∈ G(H).
The multiplication in G o H is defined as follows: Let (f1, h1), (f2, h2) ∈ G o H. Then
(f1, h1)(f2, h2) = (f, h1h2), where f(a) = f1(a)f2(h−1

1 a).
There are canonical mappings

σ : G oH → H with σ(f, h) = h and
τ : G oH → G(H) with τ(f, h) = f

In other words: g = (τ(g), σ(g)) for g ∈ G oH. Note that σ is a homomorphism whereas τ is
in general not a homomorphism. Throughout this paper, the letters σ and τ will have the
above meaning, which of course depends on the underlying wreath product G oH, but the
latter will be always clear from the context.

The following intuition might be helpful: An element (f, h) ∈ G oH can be thought of
as a finite multiset of elements of G \ {1G} that are sitting at certain elements of H (the
mapping f) together with the distinguished element h ∈ H, which can be thought of as
a cursor moving in H. If we want to compute the product (f1, h1)(f2, h2), we do this as
follows: First, we shift the finite collection of G-elements that corresponds to the mapping
f2 by h1: If the element g ∈ G \ {1G} is sitting at a ∈ H (i.e., f2(a) = g), then we remove
g from a and put it to the new location h1a ∈ H. This new collection corresponds to the
mapping f ′2 : a 7→ f2(h−1

1 a). After this shift, we multiply the two collections of G-elements
pointwise: If in a ∈ H the elements g1 and g2 are sitting (i.e., f1(a) = g1 and f ′2(a) = g2),
then we put the product g1g2 into the location a. Finally, the new distinguished H-element
(the new cursor position) becomes h1h2.

Clearly, H is a subgroup of G oH. We also regard G as a subgroup of G oH by identifying
G with the set of all f ∈ G(H) with supp(f) ⊆ {1}. This copy of G together with H generates
G oH. In particular, if G = 〈Σ〉 and H = 〈Γ〉 with Σ ∩ Γ = ∅ then G oH is generated by
Σ ∪ Γ. In this situation, we will also apply the above mappings σ and τ to words over Σ ∪ Γ.

In [34] it was shown that the word problem of a wreath product G oH is TC0-reducible to
the word problems for G and H. Let us briefly sketch the argument. Assume that G = 〈Σ〉
and H = 〈Γ〉. Given a word w ∈ (Σ ∪ Γ)∗ one has to check whether σ(w) = 1 in H and
τ(w)(h) = 1 in H for all h in the support of τ(w). One can compute in TC0 the word σ(w)
by projecting w onto the alphabet Γ. Moreover, one can enumerate the support of τ(w)
by going over all prefixes of w and checking which σ-values are the same. Similarly, one
produces for a given h ∈ supp(τ(w)) a word over Σ that represents τ(w)(h).
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We will need the following result from [30] (which holds only for the so-called restricted
wreath product that we consider in this paper):

I Theorem 7 ([30]). If G and H are orderable then also G oH is orderable.

3.2 Knapsack problem
Let G = 〈Σ〉 be a f.g. group. An exponent expression over G is an expression of the
form E = v0u

x1
1 v1u

x2
2 v2 · · ·uxd

d vd with d ≥ 1, words v0, . . . , vd ∈ Σ∗, non-empty words
u1, . . . , ud ∈ Σ∗, and variables x1, . . . , xd. Here, we allow xi = xj for i 6= j. If every variable
xi occurs at most once, then E is called a knapsack expression. Let X = {x1, . . . , xd}
be the set of variables that occur in E. For a homomorphism h : G → G′ = 〈Σ′〉 (that
is specified by a mapping from Σ to (Σ′ ∪ Σ′−1)∗), we denote with h(E) the exponent
expression h(v0)h(u1)x1h(v1)h(u2)x2h(v2) · · ·h(ud)xdh(vd). For a mapping ν ∈ NX , we
define ν(E) = v0u

ν(x1)
1 v1u

ν(x2)
2 v2 · · ·uν(xd)

d vd ∈ Σ∗. We say that ν is a G-solution for E if
ν(E) = 1 in G. With solG(E) we denote the set of all G-solutions of E. The length of
E is defined as |E| =

∑d
i=1 |ui|+ |vi|. We define solvability of exponent equations over G,

ExpEq(G) for short, as the following decision problem:
Input A finite list of exponent expressions E1, . . . , En over G.
Question Is

⋂n
i=1 solG(Ei) non-empty?

The knapsack problem for G, KP(G) for short, is the following decision problem:
Input A single knapsack expression E over G.
Question Is solG(E) non-empty?
It is an easy observation that the choice of the generating set Σ has no influence on the
decidability or complexity of these problems. For the knapsack problem in wreath products
the following result has been shown in [12]:

I Theorem 8 ([12]). For every nontrivial group G, KP(G o Z) is NP-hard.

3.3 Knapsack-semilinear groups
The group G is called knapsack-semilinear if for every knapsack expression E over Σ, the
set solG(E) is a semilinear set of vectors and a semilinear representation can be effectively
computed from E. Since semilinear sets are effectively closed under intersection, it follows
that for every exponent expression E over Σ, the set solG(E) is semilinear and a semilinear
representation can be effectively computed from E. Moreover, solvability of exponent
equations is decidable for every knapsack-semilinear group. As mentioned above, the class
of knapsack-semilinear groups is very rich. An example of a group G, where knapsack is
decidable but solvability of exponent equations is undecidable is the Heisenberg group H3(Z)
(which consists of all upper triangular (3× 3)-matrices over the integers, where all diagonal
entries are 1), see [22]. In particular, H3(Z) is not knapsack-semilinear. A non-semilinear
solution set can be achieved with a three-variable knapsack instance over H3(Z). For two
variables, the solutions sets are semilinear for any group. In fact, they have a particularly
simple structure:

I Lemma 9. Let G be a group and g1, g2, h ∈ G be elements.
(i) The solution set S1 = {(x, y) ∈ Z2 | gx1g

y
2 = 1} is a subgroup of Z2. If G is torsion-free

and {g1, g2} 6= {1} then S1 is cyclic.
(ii) The solution set S = {(x, y) ∈ Z2 | gx1g

y
2 = h} is either empty or a coset (a, b) + S1 of

S1 where (a, b) ∈ S is any solution.
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For a knapsack-semilinear group G and a finite generating set Σ for G we define a growth
function. For n ∈ N let Knap(n) (resp., Exp(n)) be the finite set of all knapsack expressions
(resp., exponent expression) E over Σ such that solG(E) 6= ∅ and |E| ≤ n. We define the
mapping KG,Σ : N→ N and EG,Σ : N→ N as follows:

KG,Σ(n) = max{‖solG(E)‖ | E ∈ Knap(n)}, (1)
EG,Σ(n) = max{‖solG(E)‖ | E ∈ Exp(n)}. (2)

Clearly, if solG(E) 6= ∅ and ‖solG(E)‖ ≤ N then E has a G-solution ν such that ν(x) ≤ N for
all variables x that occur in E. Thus, if G has a decidable word problem and a computable
bound on the function KG,Σ, then we can solve KP(G) non-deterministically: given a
knapsack expression E with variables from X, we guess ν : X → N with σ(x) ≤ N for all
variables x and then check (using an algorithm for the word problem) whether ν is a solution.

Let Σ and Σ′ be two generating sets for the group G. Then there is a constant c such
that KG,Σ(n) ≤ KG,Σ′(cn), and similarly for EG,Σ(n). To see this, note that for every a ∈ Σ′
there is a word wa ∈ Σ∗ such that a and wa represent the same element in G. Then we can
choose c = max{|wa| | a ∈ Σ′}. Due to this fact, we do not have to specify the generating
set Σ when we say that KG,Σ (resp., EG,Σ) is polynomially/exponentially bounded.

Important for us is also the following result from [12]:

I Theorem 10 ([12]). If G and H are knapsack-semilinear then so is G oH.
The proof of this result in [12] does not yield a good bound of KGoH(n) in terms of KG(n)
and KH(n) (and similarly for the E-function). One of our main achievements is such a bound
for the case that the left factor G is f.g. abelian. For EG(n) we then have the following bound,
which follows from well-known bounds on solutions of linear Diophantine equations [43]:

I Lemma 11. If G is a f.g. abelian group then EG(n) ≤ 2nO(1) .

3.4 Power word problem
A power word (over Σ) is a tuple (u1, k1, u2, k2, . . . , ud, kd) where u1, . . . , ud ∈ Σ∗ are
words over the group generators (called the periods of the power word) and k1, . . . , kd ∈ Z
are integers that are given in binary notation. Such a power word represents the word
uk1

1 u
k2
2 · · ·u

kd

d . We will often identify the power word (u1, k1, u2, k2, . . . , ud, kd) with the word
uk1

1 u
k2
2 · · ·u

kd

d . Moreover, if ki = 1, then we usually omit the exponent 1 in a power word.
The power word problem for the f.g. group G, PowerWP(G) for short, is the following:
Input A power word (u1, k1, u2, k2, . . . , ud, kd).
Question Does uk1

1 u
k2
2 · · ·u

kd

d = 1 hold in G?
Due to the binary encoded exponents, a power word can be seen as a succinct description of
an ordinary word. We have the following simple lemma.

I Lemma 12. If the f.g. group G is knapsack-semilinear, EG(n) is exponentially bounded,
and PowerWP(G) belongs to NP then ExpEq(G) belongs to NP.

4 Wreath products of nilpotent groups and the integers

Nilpotent groups. The lower central series of a group G is the sequence of groups (Gi)i≥0
with G0 = G and Gi+1 = [Gi, G]. The group G is nilpotent if there is a c ≥ 0 with Gc = 1;
in this case the minimal c with Gc = 1 is called the nilpotency class of G. In this section we
prove Theorems 1 and 2. Our main tool are periodic words over G as introduced in [12].
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Periodic words over groups. Let G = 〈Σ〉 be a f.g. group. Let Gω be the set of all functions
f : N→ G, which forms a group by pointwise multiplication (fg)(t) = f(t) · g(t). A function
f ∈ Gω is periodic if there exists a number d ≥ 1 such that f(t) = f(t + d) for all t ≥ 0.
The smallest such d is called the period of f . If f ∈ Gω has period d and g ∈ Gω has period
e then fg has period at most lcm(d, e). A periodic function f ∈ Gω with period d can be
specified by its initial d elements f(0), . . . , f(d − 1) where each element f(t) is given as a
word over the generating set Σ. The periodic words problem Periodic(G) over G is the
following:
Input Periodic functions f1, . . . , fm ∈ Gω and a binary encoded number T .
Question Does the product f =

∏m
i=1 fi satisfy f(t) = 1 for all t ≤ T?

We shall derive Theorems 1 and 2 from the following result:

I Theorem 13. If G is a f.g. nilpotent group then Periodic(G) belongs to TC0.

Previously it was proven that Periodic(G) belongs to TC0 if G is abelian [12]. As an
introduction let us reprove this result.

Let ρ : Gω → Gω be the shift-operator, i.e. (ρ(f))(t) = f(t + 1), which is a group
homomorphism. For a subgroup H of Gω, we denote by H(n) the smallest subgroup of Gω
that contains ρ0(H), ρ1(H), . . . , ρn(H). Note that (H(m))(n) = H(m+n) for any m,n ∈ N. A
function f ∈ Gω satisfies a recurrence of order d ≥ 1 if ρd(f) is contained in the subgroup
〈f〉(d−1) of Gω. If f has period d then f clearly satisfies a recurrence of order d.

Let us now consider the case that G is abelian. Then, also Gω is abelian and we use the
additive notation for Gω. The following lemma is folklore:

I Lemma 14 (cf. [17]). Let G be a f.g. abelian group. If f1, . . . , fm ∈ Gω satisfy recurrences
of order d1, . . . , dm ≥ 1 respectively, then

∑m
i=1 fi satisfies a recurrence of order

∑m
i=1 di.

Proof. Observe that Gω is a Z[x]-module with scalar multiplication
d∑
i=0

aix
i · f 7→

d∑
i=0

aiρ
i(f). (3)

Then f ∈ Gω satisfies a recurrence of order d ≥ 1 if and only if there exists a monic
polynomial p ∈ Z[x] of degree d (where monic means that the leading coefficient is one) such
that pf = 0. Therefore, if p1, . . . , pm ∈ Z[x] such that deg(pi) = di ≥ 1 and pifi = 0 then∏m
i=1 pi

∑m
j=1 fj =

∑m
j=1(

∏m
i=1 pi)fj = 0. Since

∏m
i=1 pi is a monic polynomial of degree

d :=
∑m
i=1 di,

∑m
i=1 fi satisfies a recurrence of order d. J

The above lemma implies that
∑m
i=1 fi = 0 if and only if

∑m
i=1 fi(t) = 0 for all 0 ≤ t ≤ d− 1,

where d is the sum of the periods of the fi.
Let us now turn to the nilpotent case. For n ∈ N, let Gω,n be the subgroup of Gω

generated by all elements with period at most n. Then Gω,n is closed under shift. The key
fact for showing Theorem 13 is the following.

I Proposition 15. If G is a f.g. nilpotent group, then there is a polynomial p such that every
element of Gω,n satisfies a recurrence of order p(n).

Let H ≤ Gω be a subgroup which is closed under shifting, i.e. ρ(H) ⊆ H. Since the shift
is a homomorphism, the commutator subgroup [H,H] is closed under shifting as well. We
will work in the abelianization H ′ = H/[H,H] where we write f̄ for the coset f [H,H]. We
also define ρ : H ′ → H ′ by ρ(f̄) = ρ(f). This is well-defined since fg−1 ∈ [H,H] implies
ρ(f)ρ(g)−1 = ρ(fg−1) ∈ [H,H] and hence ρ(f) = ρ(g). As an abelian group H ′ is a Z-module
and, in fact, H ′ forms a Z[x]-module using the shift-operator. By the above remark (see (3))
we have the following (where we use the multiplicative notation for H ′):
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I Lemma 16. H ′ is a Z[x]-module with the scalar multiplication
∑d
i=0 aix

i·f̄ 7→
∏d
i=0 ρ

i(f̄)ai .

Our first step for proving Proposition 15 is to show that every element of Gω,n satisfies a
polynomial-order recurrence, modulo some element in [Gω,n, Gω,n].

I Lemma 17. For every f ∈ Gω,n, we have ρd(f) ∈ 〈f〉(d−1)[Gω,n, Gω,n] for d = n(n+ 1)/2.

Proof. Suppose f = f1 · · · fm such that f1, . . . , fm ∈ Gω are elements of period ≤ n.
According to Lemma 16, we consider Gω,n/[Gω,n, Gω,n] as a Z[x]-module.

If g ∈ Gω has period q then ρq(g)g−1 = 1 and thus (xq − 1)ḡ = ρq(ḡ)ḡ−1 = 1. Define the
polynomial p(x) =

∏n
i=1(xi − 1) =

∑d
i=0 aix

i of degree d = n(n + 1)/2 satisfying ad = 1.
Since all functions f1, . . . , fm have period at most n, we have pf̄ = 1. Explicitly, this means
1 = pf̄ = ρ0(f̄)a0 · ρ1(f̄)a1 · · · ρd(f̄)ad = ρ0(f)a0 · · · ρd(f)ad . Noticing that ad = 1, we can
write ρd(f) = gh for some g ∈ 〈f〉(d−1) and h ∈ [Gω,n, Gω,n], which has the desired form. J

The following lemma gives us control over the remaining factor from [Gω,n, Gω,n].

I Lemma 18. Let G be a group with nilpotency class c. Then [Gω,n, Gω,n] ⊆ [G,G]ω,n2c .

Proof. We need the fact that the commutator subgroup [F, F ] of a group F with generating
set Γ is generated by all left-normed commutators [g1, . . . , gk] := [[. . . [[g1, g2], g3], . . . ], gk],
where g1, . . . , gk ∈ Γ∪Γ−1 and k ≥ 2, cf. [6, Lemma 2.6]. Therefore [Gω,n, Gω,n] is generated
by all left-normed commutators [g1, . . . , gk] where k ≥ 2 and g1, . . . , gk ∈ Gω have period at
most n. Furthermore, we can bound k by c since any left-normed commutator [g1, . . . , gc+1]
is trivial (recall that G is nilpotent of class c). A left-normed commutator [g1, . . . , gk] with
2 ≤ k ≤ c and g1, . . . , gk periodic with period at most n is a product containing at most
2k ≤ 2c distinct functions of period at most n (namely, the g1, . . . , gk and their inverses).
Hence [Gω,n, Gω,n] is generated by functions g ∈ [G,G]ω of period at most n2c. J

Proof of Proposition 15. We proceed by induction on the nilpotency class of G. If G has
nilpotency class 0, then G is trivial and the claim is vacuous. Now suppose that G has
nilpotency class c ≥ 1. According to Lemma 17, we have ρd(f) ∈ 〈f〉(d−1)h for some
h ∈ [Gω,n, Gω,n]. By Lemma 18, we have [Gω,n, Gω,n] ⊆ [G,G]ω,n2c . Since the group [G,G]
has nilpotency class at most c− 1 (we included a proof for this in the full version [9]), we
may apply induction. Thus, we know that ρe(h) ∈ 〈h〉(e−1) for some e = e(n2c). We claim
that then ρd+e(f) ∈ 〈f〉(d+e−1). Note that ρd+e(f) ∈ ρe(〈f〉(d−1)h) ⊆ ρe(〈f〉(d−1))ρe(h) ⊆
〈f〉(d+e−1) · ρe(h). Therefore, it suffices to show that ρe(h) ∈ 〈f〉(d+e−1). Since ρd(f) ∈
〈f〉(d−1)h we have h ∈ 〈f〉(d) and thus ρe(h) ∈ 〈h〉(e−1) ⊆ (〈f〉(d))(e−1) = 〈f〉(d+e−1). J

Proof of Theorem 13. Given periodic functions f1, . . . , fm ∈ Gω with maximum period n,
and a number T ∈ N. By Proposition 15 the product f = f1 · · · fm satisfies a recurrence of
order d, where d is bounded polynomially in n. Notice that f = 1 if and only if f(t) = 1 for
all t ≤ d− 1. Hence, it suffices to verify that f1(t) · · · fm(t) = 1 for all t ≤ min{d, T}. This
can be accomplished by solving in parallel a polynomial number of instances of the word
problem over G, which is contained in TC0 by [36]. J

Proof of Theorem 1. In [27] it is shown that for every f.g. group G, PowerWP(G o Z)
belongs to TC0(Periodic(G),PowerWP(G)). By [27] the power word problem for a f.g.
nilpotent group belongs to TC0 and by Theorem 13, Periodic(G) belongs to TC0. J

Proof of Theorem 2. By Theorem 8, KP(G o Z) is NP-hard. For the upper bound we use
the following result from [12] that holds for every f.g. group G: There is a non-deterministic
polynomial time Turing machineM that takes as input a knapsack expression E over GoZ and
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outputs in each leaf of the computation tree the following data: (i) an instance of ExpEq(G)
and (ii) a finite list of instances of Periodic(G). Moreover, the input expression E has
a (G o Z)-solution if and only if the computation tree has a leaf in which all Periodic(G)
instances are positive. If G is finite and nilpotent, then Periodic(G) belongs to TC0 and
ExpEq(G) belongs to NP (this holds for every finite group). The theorem follows. J

5 Wreath products with abelian left factors

In this section we consider wreath products AoH where A is f.g. abelian and H is a f.g. torsion-
free group. We study for which groups H, the complexity of the power word/knapsack
problem in H is passed on to A oH. As applications, we obtain Theorems 3 and 4.

Power word problem over A o H. As a first step, we normalize a given power word
uk1

1 . . . ukd

d , i.e. ensure that u1, . . . , ud ∈ AH, say ui = aihi for some ai ∈ A and hi ∈ H
for 1 ≤ i ≤ d. Intuitively, the computation of the power word can be described by finite
progressions in the Cayley graph of H, which are labelled with elements ai from A. The goal
is to determine whether the labels on each point cancel out in the abelian group A. Here,
a progression in H is a sequence p = (ghk)0≤k≤` with offset g ∈ H and period h ∈ H. If
h 6= 1 then p is a ray. For all 1 ≤ i ≤ d the power word writes the element ai into the Cayley
graph of H along the progression pi = (hk1

1 . . . h
ki−1
i−1 h

k
i )0≤k≤ki

. Notice that the offset of pi is
given as a power word for hk1

1 . . . h
ki−1
i−1 and the period is given explicitly as a word for the

group element h; we call such a progression power-compressed.
To solve the power word problem over AoH it seems inevitable to compute the intersection

set {(i, j) ∈ [0, k] × [0, `] | abi = ghj} of two given power-compressed progressions p =
(abi)0≤i≤k, q = (ghj)0≤j≤`, for any pair of progressions appearing in the power word. Such a
intersection set is always a finite progression in N2 (c.f. Lemma 9).

However, the key insight of Theorem 3 is that it essentially suffices to compute the
intersection of parallel rays, i.e. rays with commensurable periods. This is because two
non-parallel rays can intersect at most once. Therefore, the number of points in H that cancel
to zero with the help of intersections between non-parallel rays can be at most polynomial.

Therefore, roughly speaking, we proceed as follows. Consider a class C of parallel rays
from the progressions p1, . . . ,pd. First, we compute the intersection sets of all rays in C.
Second, we decide whether the number of points in the support of C which do not cancel to
0 in A exceeds a polynomial bound. In order to count such non-cancelling points, we use
Lemma 14 to limit the search to (polynomially many) polynomial-length rays. If our bound
on such non-cancelling points is exceeded, then we can reject the entire power word: As
mentioned above, non-parallel rays pi can only intersect at a polynomial number of points in
C. If, however, our bound is obeyed, we can explicitly compute the non-cancelling points (as
power compressed words) for each parallelity class C and verify that they do evaluate to 0 in
the entire set of progressions pi.

In order to (i) compute the intersection set of two parallel power-compressed rays and
(ii) count non-cancelling points, we need to solve a generalization of the power word problem
in the group H, which we explain next. For a f.g. group G = 〈Σ〉 we define the power
compressed power problem PowerPP(G):
Input A word u ∈ Σ∗ and a power word (v1, k1, . . . , vd, kd) over Σ.
Output A binary encoded number z ∈ Z with uz = v where v = vk1

1 . . . vkd

d , or no if uz = v

has no solution.
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Note that the word u in the input of PowerPP is uncompressed. In order to guarantee that
we have small uncompressed inputs to PowerPP, we need to show another property of our
groups. Specifically, we prove that the intersection set of parallel rays has a small period: A
group G = 〈Σ〉 is tame with respect to commensurability, or short c-tame, if there exists a
number d ∈ N such that for all commensurable elements g, h ∈ G having infinite order there
exist numbers s, t ∈ Z \ {0} such that gs = ht and |s|, |t| ≤ O((|g|+ |h|)d).

Our algorithm for the power word problem sketched above yields the following:

I Proposition 19. If the group H is c-tame and torsion-free then PowerWP(A o H) is
TC0-reducible to PowerPP(H).

This means, in order to solve the power word problem for groups Wm,r and Sm,r in TC0,
we also need to solve the power compressed power problem in TC0. To this end, we first
establish TC0 membership of PowerPP in groups Wm,r in the following transfer result.

I Theorem 20. Let H and A be f.g. groups where A is abelian and H is c-tame and
torsion-free. Then PowerPP(A oH) is TC0-reducible to PowerPP(H).

To show Theorem 20, we provide an elementary (but still somewhat involved) TC0-reduction
from PowerPP(A oH) to PowerWP(A oH) and PowerPP(H) and apply Proposition 19.

Finally, we need to show that all the groups Wm,r and Sm,r are c-tame.

I Proposition 21. For all r ≥ 1, m ≥ 0 the groups Wm,r and Sm,r are c-tame.

For Proposition 21, we use elementary arguments and the unique roots property of Wm,r.
The preceding ingredients now yield Theorem 3.

Proof of Theorem 3. We will prove by induction on m ∈ N that PowerPP(Wm,r) and
hence also PowerWP(Wm,r) belongs to TC0. If m = 0 then PowerPP(W0,r) is the
problem of solving a system of r linear equations aix = bi where ai is given in unary encoding
and bi is given in binary encoding for 1 ≤ i ≤ r. Since integer division belongs to TC0 (here,
we only have to divide by the unary encoded integers ai) this problem can be solved in TC0.
The inductive step follows from Theorem 20 and the fact that all groups Wm,r are c-tame
(Proposition 21) and torsion-free. J

Knapsack problem over A o H. For the knapsack problem we prove the following transfer
theorem (recall the definition of an orderable group from Section 3 and the definition of the
function EG(n) from (2) in Section 3.3):

I Theorem 22. Let H and A be f.g. groups where A is abelian and H is orderable and
knapsack-semilinear. If EH(n) is exponentially bounded then so is EAoH(n).

The proof of Theorem 22 follows a similar pattern as Theorem 20. The condition that
H is orderable ensures that parallel rays in H are contained in cosets of a common cyclic
subgroup. We describe the solution set of an exponent equation over A oH as a disjunction
of polynomially large existential Presburger formulas, which use exponent equations over H
and inequalities as atomic formulas. Here, we do not need to algorithmically construct the
formula: Its mere existence yields an exponential bound on the size of a solution.

Using Theorem 3 and 22 we can prove Theorem 4: let us fix an iterated wreath product
W = Wm,r for some m ≥ 0, r ≥ 1 (recall that W0,r = Zr and Wm+1,r = Zr oWm,r). Since
Zm is orderable, Theorem 7 implies that W is orderable. Moreover, by Theorem 10, W is
also knapsack-semilinear. Since by Lemma 11, EA(n) is exponentially bounded for every
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f.g. abelian group A, it follows from Theorem 22 that EW (n) is exponentially bounded
as well. By Theorem 3 and Lemma 12, ExpEq(W ) belongs to NP. Finally, NP-hardness
of ExpEq(W ) follows from the fact that the question whether a given system of linear
Diophantine equations with unary encoded numbers has a solution in N is NP-hard.

6 Wreath products with difficult knapsack and power word problems

In this section we provide additional details concerning Theorems 5 and 6. We start with a
formal definition of uniformly SENS groups [3].

Strongly efficiently non-solvable groups. Let us fix a f.g. group G = 〈Σ〉. Following [3]
we need the additional assumption that the generating set Σ contains the group identity 1.
This allows to pad words over Σ to any larger length without changing the group element
represented by the word. One also says that Σ is a standard generating set for G. The group
G is called strongly efficiently non-solvable (SENS) if there is a constant µ ∈ N such that for
every d ∈ N and v ∈ {0, 1}≤d there is a word wd,v ∈ Σ∗ with the following properties:
|wd,v| = 2µd for all v ∈ {0, 1}d,
wd,v = [wd,v0, wd,v1] for all v ∈ {0, 1}<d (here we take the commutator of words),
wd,ε 6= 1 in G.

The group G is called uniformly strongly efficiently non-solvable if, moreover,
given v ∈ {0, 1}d, a binary number i with µd bits, and a ∈ Σ one can decide in linear
time on a random access Turing-machine whether the i-th letter of wd,v is a.

In [3] the authors defines also the weaker condition of being (uniformly) efficiently non-
solvable. The definition is more technical and it is not clear whether it really leads to a
larger class of groups. Examples for uniformly SENS groups are: finite non-solvable groups
(more generally, every f.g. group that has a finite non-solvable quotient), f.g. non-abelian free
groups, Thompson’s group F , and weakly branched self-similar groups with a f.g. branching
subgroup (this includes several famous self-similar groups like the Grigorchuk group, the
Gupta-Sidki groups and the Tower of Hanoi groups); see [3] for details.

Wreath products with difficult knapsack problems. Recall that Theorem 6 states that
KP(G o Z) is Σp

2-hard for every uniformly SENS group G. For the proof we consider G-
programs. A G-program is a sequence of instructions (X, a, b) where X is a boolean variable
and a, b are generators of G. Given an assignment for the boolean variables, one can evaluate
the G-program in the natural way: If X is set to 1 (resp., 0) then the instruction (X, a, b)
evaluates to a (resp. b). The resulting sequence of group generators evaluates to an element
of G and this is the evaluation of the G-program under the given assignment. We consider
now the following computational problem ∃∀-Sat(G): Given a G-program P , whose variables
are split into two sets X and Y , does there exist an assignment α : X → {0, 1} such that for
every assignment β : Y → {0, 1} the program P evaluates to the group identity under the
combined assignment α ∪ β?

We prove Theorem 6 in two steps. The first is Σp2-hardness of ∃∀-Sat(G).

I Lemma 23. Let the f.g. group G = 〈Σ〉 be uniformly SENS. Then, ∃∀-Sat(G) is Σp2-hard.

Proof. We prove the lemma by a reduction from the following Σp2-complete problem: given
a boolean formula F = F (X,Y ) in disjunctive normal form, where X and Y are disjoint
tuples of boolean variables, does the quantified boolean formula ∃X∀Y : F hold? Let us fix
such a formula F (X,Y ). We can write F as a fan-in two boolean circuit of depth O(log |F |).
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By [3, Remark 34] we can compute in logspace from F a G-program P over the variables
X ∪ Y of length polynomial in |F | such that for every assignment γ : X ∪ Y → {0, 1} the
following two statements are equivalent:

F (γ(X), γ(Y )) holds.
P (γ) = 1 in G.

Hence, ∃X∀Y : F holds if and only if ∃X∀Y : P = 1 holds. J

The second step is to reduce ∃∀-Sat(G) to KP(G o Z). In fact, this reduction works for
any f.g. group G.

I Lemma 24. For every f.g. nontrivial group G, ∃∀-Sat(G) is logspace many-one reducible
to KP(G o Z).

Proof sketch. Let us fix a G-program

P = (Z1, a1, b1)(Z2, a2, b2) · · · (Z`, a`, b`) ∈ ((X ∪ Y )× Σ× Σ)∗

where X and Y are disjoint sets of variables. Let m = |X| and n = |Y |. We want to construct
a knapsack expression E over G oZ which has a solution if and only if there is an assignment
α : X → {0, 1} such that P (α ∪ β) = 1 for every assignment β : Y → {0, 1}. Let us choose a
generator t for Z. Then Σ∪{t, t−1} generates the wreath product G oZ. First, we compute in
logspace the m+ n first primes p1, . . . , pm+n and fix a bijection p : X ∪ Y → {p1, . . . , pm+n}.
Moreover, let M =

∏m+n
i=1 pi.

Roughly speaking, the idea is as follows. Each assignment α : X → {0, 1} will correspond
to a valuation ν for our expression E. The resulting element ν(E) ∈ G o Z then encodes the
value P (α∪ β) for each β : Y → {0, 1} in some position s ∈ [0,M − 1]. To be precise, to each
s ∈ [0,M − 1], we associate the assignment βs : Y → {0, 1} where βs(Y ) = 1 if and only if
s ≡ 0 mod p(Y ). Then, τ(ν(E))(s) will be P (α ∪ βs). This means, ν(E) = 1 implies that
P (α ∪ β) = 1 for all assignments β : Y → {0, 1}.

Our expression implements this as follows. For each i = 1, . . . , `, it walks to the right
to some position M ′ ≥M and then walks back to the origin. On the way to the right, the
behavior depends on whether Zi is an existential or a universal variable. If Zi is existential,
we either place ai at every position (if α(Zi) = 1) or bi at every position (if α(Zi) = 0).
If Zi is universal, we place ai in the positions divisible by p(Zi); and we place bi in the
others. That way, in position s ∈ [0,M − 1], the accumulated element will be P (α ∪ βs).
The complete proof can be found in the full version [9]. J

Let us now show some applications of Theorem 6:

I Corollary 25. KP(G o Z) is Σp2-complete for G finite non-solvable or f.g.non-abelian free.

Proof. Finite non-solvable groups and f.g. non-abelian free groups are uniformly SENS [3].
By Theorem 6, KP(G o Z) is Σp

2-hard. It remains to show that KP(G o Z) belongs to Σp
2.

According to [12] (see also the proof of Theorem 2) it suffices to show that Periodic(G) and
ExpEq(G) both belong to Σp2. The problem Periodic(G) belongs to coNP (since the word
problem for G can be solved in polynomial time) and ExpEq(G) belongs to NP. For a finite
group this is clear and for a free group one can use [29]. J

Theorem 6 can be also applied to Thompson’s group F . This is one of the most well
studied groups in (infinite) group theory due to its unusual properties, see e.g. [5]. It
can be defined in several ways; let us just mention the following finite presentation: F =
〈x0, x1 | [x0x

−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]〉. Thompson’s group F is uniformly SENS [3]

and contains a copy of F o Z [14]. Theorem 6 yields:
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I Corollary 26. The knapsack problem for Thompson’s group F is Σp2-hard.

We conjecture Σp2-completeness. Since F is co-context-free [23], KP(F ) is decidable [22].

Wreath product with difficult power word problems. In [27] it was shown that the problem
PowerWP(G o Z) is coNP-complete in case G is a finite non-solvable group or a f.g. free
group. The proof in [27] immediately generalizes to the case were G is uniformly SENS. This
yields Theorem 5. Alternatively, one can prove Theorem 5 by showing that
∀-Sat(G) (the question whether a given G-program P evaluates to the group identity for
all assignment) is coNP-hard if G is uniformly SENS, and
∀-Sat(G) is logspace many-one reducible to PowerWP(G o Z).

This can be shown with the same reductions as in Lemmas 23 and 24.
Fix a f.g. group G = 〈Σ〉. With WP(G,Σ) we denote the set of all words w ∈ Σ∗ such

that w = 1 in G (the word problem for G with respect to Σ). We say that G is co-context-free
if Σ∗ \WP(G,Σ) is context-free (the choice of Σ is not relevant for this) [18, Section 14.2].

I Theorem 27. The power word problem for a co-context-free group G belongs to coNP.

Proof. The following argument is similar to the decidability proof for knapsack in co-
context-free groups in [22]. Let G = 〈Σ〉 and let (u1, k1, u2, k2, . . . , ud, kd) be the input
power word, where ui ∈ Σ∗. We can assume that all ki are positive. We have to check
whether uk1

1 u
k2
2 · · ·u

kd

d is trivial in G. Let L be the complement of WP(G,Σ), which is
context-free. Take the alphabet {a1, . . . , ad} and define the morphism h : {a1, . . . , ad}∗ → Σ∗
by h(ai) = ui. Consider the language K = h−1(L) ∩ a∗1a∗2 · · · a∗d. Since the context-free
languages are closed under inverse morphisms and intersections with regular languages, K is
context-free too. Moreover, from the tuple (u1, u2, . . . , ud) we can compute in polynomial
time a context-free grammar for K: Start with a push-down automaton M for L (since
L is a fixed language, this is an object of constant size). From M one can compute in
polynomial time a push-down automaton M ′ for h−1(L): when reading the symbol ai, M ′
has to simulate (using ε-transitions) M on h(ai). Next, we construct in polynomial time a
push-down automaton M ′′ for h−1(L)∩ a∗1a∗2 · · · a∗d using a product construction. Finally, we
transform M ′′ back into a context-free grammar. This is again possible in polynomial time
using the standard triple construction. It remains to check whether ak1

1 a
k2
2 · · · a

kd

d /∈ L(G).
This is equivalent to (k1, k2, . . . , kd) /∈ Ψ(L(G)), where Ψ(L(G)) denotes the Parikh image
of L(G). Checking (k1, k2, . . . , kd) ∈ Ψ(L(G)) is an instance of the uniform membership
problem for commutative context-free languages, which can be solved in NP according to
[19]. This implies that the power word problem for G belongs to coNP. J

I Theorem 28. For Thompson’s group F , the power word problem is coNP-complete.

Proof. Since F is co-context-free [23], Theorem 27 yields the upper bound. The lower bound
follows from Theorem 5 and the facts that F is uniformly SENS and that F o Z ≤ F . J

7 Open problems

Our results naturally lead to several open research problems:
Theorems 1 and 5 leave some room for further improvements. In this context, a particularly
interesting problem is the power word problem for a wreath product G o Z, where G is
finite solvable but not nilpotent. Recall that for Theorem 5 we reduced ∀-Sat(G) to
PowerWP(G o Z). This reduction works for every non-trivial f.g. group. Moreover, the
problem whether a given equation u = v with variables holds in G for all assignments
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of the variables to elements of G (called EqnId(G) in [44]) can be easily reduced to ∀-
Sat(G). This allows us to apply recent results from [44], where the author constructs finite
solvable groups G for which EqnId(G) cannot be solved in polynomial time assuming
the exponential time hypothesis (this holds for instance for all finite solvable groups of
Fitting length at least 4). Hence, there is no hope to find a polynomial time algorithm
for the power word problem for G o Z for every finite solvable group G, but one can still
look at restricted classes of solvable groups.
We believe that in Theorem 22, the assumption that H is orderable is not needed. In
other words, we conjecture the following: Let H and A be f.g. groups where A is abelian
and H is knapsack-semilinear. If EH(n) is exponentially bounded then so is EAoH(n).
Recall the we proved that knapsack for Thompson’s group F is Σp2-hard. Decidability of
knapsack for Thompson’s group F follows from [22] and the fact that F is co-context-free.
It is shown in [22] that for every co-context-free group the knapsack problem reduces to
checking non-universality of the Parikh image of a bounded context-free language. The
latter problem belongs to NEXPTIME [20, Theorem 2.10] (see also [16, Corollary 1]). It
would be interesting to find better complexity bounds for this problem.
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Abstract
In this paper, we study the notion of adversarial Stackelberg value for two-player non-zero sum
games played on bi-weighted graphs with the mean-payoff and the discounted sum functions. The
adversarial Stackelberg value of Player 0 is the largest value that Player 0 can obtain when announcing
her strategy to Player 1 which in turn responds with any of his best response. For the mean-payoff
function, we show that the adversarial Stackelberg value is not always achievable but ε-optimal
strategies exist. We show how to compute this value and prove that the associated threshold problem
is in NP. For the discounted sum payoff function, we draw a link with the target discounted sum
problem which explains why the problem is difficult to solve for this payoff function. We also provide
solutions to related gap problems.
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1 Introduction

In this paper, we study two-player non-zero sum infinite duration quantitative games played
on graph games. In non-zero sum games, the notion of worst-case value is not rich enough to
reason about the (rational) behavior of players. More elaborate solution concepts have been
proposed in game theory to reason about non-zero sum games: Nash equilibria, subgames
perfect equilibria, admissibility, and Stackelberg equilibria are important examples of such
solution concepts, see e.g. [18] and [19].

Let us first recall the abstract setting underlying the notion of Stackelberg equilibria
and explain the variant that is the focus of this paper. Stackelberg games are strategic
games played by two players. We note Σ0 the set of strategies of Player 0, also called
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the leader, and Σ1 the set of strategies of Player 1, also called the follower. Additionally,
the game comes with two (usually R-valued) payoff functions, Payoff0 and Payoff1, that
determine the payoff each player receives: if σ0 ∈ Σ0 and σ1 ∈ Σ1 are chosen then Player 0
receives the payoff Payoff0(σ0, σ1) while Player 1 receives the payoff Payoff1(σ0, σ1). Both
players aim at maximizing their respective payoffs, and in a Stackelberg game, players play
sequentially as follows. 1 Player 0, the leader, announces her choice of strategy σ0 ∈ Σ0.
2 Player 1, the follower, announces his choice of strategy σ1 ∈ Σ1. 3 Both players receive
their respective payoffs: Payoff0(σ0, σ1) and Payoff1(σ0, σ1). Due to the sequential nature
of the game, Player 1 knows the strategy σ0, and so to act rationally (s)he should choose
a strategy σ1 that maximizes the payoff Payoff1(σ0, σ1). If such a strategy σ1 exists, it is
called a best-response 1 to the strategy σ0 ∈ Σ0. In turn, if the leader assumes a rational
response of the follower to her strategy, this should guide the leader when choosing σ0 ∈ Σ0.
Indeed, the leader should choose a strategy σ0 ∈ Σ0 such that the value Payoff0(σ0, σ1) is as
large as possible when σ1 is a best-response of the follower.

Two different scenarios can be considered in this setting: either the best-response σ1 ∈ Σ1
is imposed by the leader (or equivalently chosen cooperatively by the two players), or the
best-response is chosen adversarially by Player 1. In classical results from game theory
and most of the close related works on games played on graphs [13, 15], with the exception
of [17], only the cooperative scenario has been investigated. But, the adversarial case is
interesting because it allows us to model the situation in which the leader chooses σ0 ∈ Σ0
only and must be prepared to face any rational response of Player 1, i.e. if Player 1 has
several possible best responses then σ0 should be designed to face all of them. In this paper,
our main contribution is to investigate the second route. As already noted in [17], this route
is particularly interesting for applications in automatic synthesis. Indeed, when designing a
program, and this is especially true for reactive programs [20, 2], we aim for robust solutions
that works for multiple rational usages, e.g. all the usages that respect some specification or
that maximize some measure for the user.

To reflect the two scenarios above, there are two notions of Stackelberg values. First,
the cooperative Stackelberg value is the largest value that Player 0 can secure by proposing a
strategy σ0 and a strategy σ1 to the follower with the constraint that σ1 is a best-response for
the follower to σ0. Second, the adversarial Stackelberg value is the largest value that Player 0
can secure by proposing a strategy σ0 and facing any best response σ1 of the follower to the
strategy σ0. In this paper, we mostly concentrate on the adversarial Stackelberg value, for
infinite duration games played on bi-weighted game graphs for the mean-payoff function and
the discounted sum function. The cooperative case has been studied in [13, 15] and we only
provide some additional results when relevant for that case (see also related works below).

Main contributions. First, we consider the mean-payoff function. For this payoff function,
best responses of Player 1 to a strategy σ0 ∈ Σ0 not always exist (Lemma 3). As a consequence,
the cooperative (CSV) and adversarial (ASV) Stackelberg values are defined using ε-best
responses. While strategies of Player 0 to achieve CSV always exist as shown in [13], we show
that it is not the case for ASV (Theorem 4). The ASV can only be approached in general and
memory may be necessary to play optimally or ε-optimally in adversarial Stackelberg games
for the mean-payoff function (Theorem 4). We also provide results for related algorithmic

1 As we will see later in the paper, sometimes, best-responses are not guaranteed to exist. In such cases,
we need to resort to weaker notions such as ε-best-responses. We leave those technical details for later
in the paper.
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problems. We provide a notion of witness for proving that the ASV is (strictly) above some
threshold (Theorem 5), and it is the basis for an NP algorithm to solve the threshold problem
(Theorem 7). Finally, we show how the ASV can be computed effectively (Theorem 12).

Second, we consider the discounted sum function. In that case, best responses of Player 1
to strategies σ0 ∈ Σ0 of Player 0 always exist (Lemma 13). The CSV and ASV are directly
based on best-responses in that case. Then we draw a link between the target discounted
sum problem and the CSV threshold problem (Lemma 15). The target discounted sum
problem has been studied recently in [1], left open there for the general case and shown to be
related to other open problems in piecewise affine maps and the representation of numbers in
nonintegral bases. As a consequence, we introduce a relaxation of the threshold problems for
both CSV and ASV in the form of gap problems (or promised problems as defined in [12]).
We provide algorithms to solve those gap problems (Theorem 17) both for CSV and ASV.
Finally, we prove NP-hardness for the gap problems both for CSV and ASV (Theorem 18).

Closely related work. The notions of cooperative and adversarial synthesis have been
introduced in [11, 17], and further studied in [7, 10]. Those two notions are closely related to
our notion of cooperative and adversarial Stackelberg value respectively. The games that are
considered in those papers are infinite duration games played on graphs but they consider
Boolean ω-regular payoff functions or finite range ω-regular payoff functions. Neither the
mean-payoff function nor the discounted sum payoff function are ω-regular, and thus they
are not considered in [11, 17]. The ω-regularity of the payoff functions that they consider
is central to their techniques: they show how to reduce their problems to problems on tree
automata and strategy logic. Those reductions cannot be used for payoff functions that are
not ω-regular functions and we need specific new techniques to solve our problems.

In [13, 15], the cooperative scenario for Stackelberg game is studied for mean-payoff and
discounted sum respectively. Their results are sufficient to solve most of the relevant questions
on the CSV but not for ASV. Indeed, the techniques that are used for CSV are closely related
to the techniques that are used to reason on Nash equilibria and build on previous works [4]
which in turn reduce to algorithmic solutions for zero-sum one dimensional mean-payoff (or
discounted sum games). For the ASV in the context of the mean-payoff function, we have
to use more elaborate multi-dim. mean-payoff games and a notion of Pareto curve adapted
from [3]. Additionally, we provide new results on the CSV for the discounted sum function.
First, our reduction that relates the target discounted sum problem to the CSV is new and
gives additional explanations why the CSV is difficult to solve and not solved in the general
case in [15]. Second, while we also leave the general problem open here, we show how to solve
the gap problems related to both CSV and ASV. Finally, the authors of [14] study incentive
equilibria for multi-player mean-payoff games. This work is an extension of their previous
work [13] and again concentrates on CSV and does not consider ASV.

Structure of the paper. In Sect. 2, we introduce the necessary preliminaries for our
definitions and developments. In Sect. 3, we consider the adversarial Stackelberg value for
the mean-payoff function. In Sect. 4, we present our results for the discounted sum function.

2 Preliminaries and notations

Arenas. A (bi-weighted) arena A = (V,E, 〈V0, V1〉, w0, w1) consists of a finite set V of
vertices, a set E ⊆ V × V of edges such that for all v ∈ V there exists v′ ∈ V such that
(v, v′) ∈ E, a partition 〈V0, V1〉 of V , where V0 (resp. V1) is the set of vertices for Player 0
(resp. Player 1), and two edge weight functions w0 : E 7→ Z, w1 : E 7→ Z. In the sequel, we
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denote the maximum absolute value of a weight in A by W . As arenas are directed weighted
graphs, we use, sometimes without recalling the details, the classical vocabulary for directed
graphs. E.g., a set of vertices S ⊆ V is a strongly connected component of the arena (SCC
for short), if for all s1, s2 ∈ S, there exists a path from s1 to s2 and a path from s2 to s1.

Plays and histories. A play in A is an infinite sequence of vertices π = π0π1 · · · ∈ V ω such
that for all k ∈ N, (πk, πk+1) ∈ E. We denote by PlaysA the set of plays in A, omitting the
subscript A when the underlying arena is clear from the context. Given π = π0π1 · · · ∈ PlaysA
and k ∈ N, the prefix π0π1 . . . πk of π (resp. suffix πkπk+1 . . . of π) is denoted by π≤k (resp.
π≥k). An history in A is a (non-empty) prefix of a play in A. The length |h| of an history
h = π≤k is the number |h| = k of its edges. We denote by HistA the set of histories in A, A
is omitted when clear from the context. Given i ∈ {0, 1}, the set Histi

A denotes the set of
histories such that their last vertex belongs to Vi. We denote the last vertex of a history
h by last(h). We write h ≤ π whenever h is a prefix of π. A play π is called a lasso if it
is obtained as the concatenation of a history h concatenated with the infinite repetition of
another history l, i.e. π = h · lω with h, l ∈ HistA (notice that l is not necessary a simple
cycle). The size of a lasso h · lω is defined as |h · l|. Given a vertex v ∈ V in the arena A, we
denote by Succ(v) = {v′|(v, v′) ∈ E} the set of successors of v and by Succ∗ its transitive
closure.

Games. A game G = (A, 〈Val0,Val1〉) consists of a bi-weighted arena A, a value function
Val0 : PlaysA 7→ R for Player 0 and a value function Val1 : PlaysA 7→ R for Player 1. In this
paper, we consider the classical mean-payoff and discounted-sum value functions. Both are
played in bi-weighted arenas.

In a mean-payoff game G = (A, 〈MP0,MP1〉) the payoff functions MP0,MP1 are defined
as follows. Given a play π ∈ PlaysA and i ∈ {0, 1}, the payoff MPi(π) is given by MPi(π) =
lim infk→∞ 1

kwi(π≤k), where the weight wi(h) of an history h ∈ Hist is the sum of the weights
assigned by wi to its edges. In our definition of the mean-payoff, we have used lim inf, we
will also need the lim sup case for technical reasons. Here is the formal definition together
with its notation: MPi(π) = lim supk→∞ 1

kwi(π≤k)
For a given discount factor 0 < λ < 1, a discounted sum game is a game G =

(A, 〈DSλ0 ,DSλ1 〉) where the payoff functions DSλ0 ,DSλ1 are defined as follows. Given a play
π ∈ PlaysA and i ∈ {0, 1}, the payoff DSλi (π) is defined as DSλi (π) =

∑∞
k=0 λ

kwi(πk, πk+1).

Strategies and payoffs. A strategy for Player i ∈ {0, 1} in a game G = (A, 〈Val0,Val1〉) is
a function σ : HistiA 7→ V that maps histories ending with a vertex v ∈ Vi to a successor of v.
The set of all strategies of Player i ∈ {0, 1} in the game G is denoted Σi(G), or Σi when G is
clear from the context.

A strategy has memory M if it can be realized as the output of a finite state machine
with M states. A memoryless (or positional) strategy is a strategy with memory 1, that is,
a function that only depends on the last element of the given partial play. We note ΣML

i

the set of memoryless strategies of Player i, and ΣFM
i its set of finite memory strategies.

A profile is a pair of strategies σ̄ = (σ0, σ1), where σ0 ∈ Σ0(G) and σ1 ∈ Σ1(G). As we
consider games with perfect information and deterministic transitions, any profile σ̄ yields,
from any history h, a unique play or outcome, denoted Outh(G, σ̄). Formally, Outh(G, σ̄)
is the play π such that π≤|h|−1 = h and ∀k ≥ |h| − 1 it holds that πk+1 = σi(π≤k) if
πk ∈ Vi. The set of outcomes (resp. histories) compatible with a strategy σ ∈ Σi∈{0,1}(G)
after a history h is Outh(G, σ) = {π | ∃σ′ ∈ Σ1−i(G) such that π = Outh(G, (σ, σ′))} (resp.
Histh(σ) = {h′ ∈ Hist(G) | ∃π ∈ Outh(G, σ), n ∈ N : h′ = π≤n}.
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Each outcome π in G = (A, 〈Val0,Val1〉) yields a payoff Val(π) = (Val0(π),Val1(π)), where
Val0(π) is the payoff for Player 0 and Val1(π) is the payoff for Player 1. We denote by
Val(h, σ̄) = Val(Outh(G, σ̄)) the payoff of a profile of strategies σ̄ after a history h.

Usually, we consider game instances such that players start to play at a fixed vertex
v0. Thus, we call an initialized game a pair (G, v0), where G is a game and v0 ∈ V is
the initial vertex. When the initial vertex v0 is clear from context, we speak directly of
G,Out(G, σ̄),Out(G, σ), Val(σ̄) instead of (G, v0), Outv0(G, σ̄), Outv0(G, σ),Val(v0, σ̄) . We
sometimes simplify further the notation omitting also G, when the latter is clear from the
context.

Best-responses and adversarial value in zero-sum games. Let G = (A, 〈Val0,Val1〉) be a
(Val0,Val1)-game on the bi-weighted arena A. Given a strategy σ0 for Player 0, we define
two sets of strategies for Player 1. His best-responses to σ0, noted BR1(σ0), and defined as:

{σ1 ∈ Σ1 | ∀v ∈ V · ∀σ′1 ∈ Σ1 : Val1(Outv(σ0, σ1)) ≥ Val1(Outv(σ0, σ
′
1))} .

And his ε-best-responses to σ0, for ε > 0, noted BRε1(σ0), and defined as:

{σ1 ∈ Σ1 | ∀v ∈ V · ∀σ′1 ∈ Σ1 : Val1(Outv(σ0, σ1) ≥ Val1(Outv(σ0, σ
′
1))− ε} .

We also introduce notations for zero-sum games (that are needed as intermediary steps in
our algorithms). The adversarial value that Player 1 can enforce in the game G from vertex
v as: WCV 1(v) = supσ1∈Σ1 infσ0∈Σ0 Val1(Outv(σ0, σ1)). Let A be an arena, v ∈ V one of its
states, and O ⊆ PlaysA be a set of plays (called objective), then we write A, v |=� i� O,
if ∃σi ∈ Σi · ∀σ1−i ∈ Σ1−i : Outv(A, (σ, σ′)) ∈ O, for i ∈ {0, 1}. Here the underlying
interpretation is zero-sum: Player i wants to force an outcome in O and Player 1 − i

has the opposite goal. All the zero-sum games we consider in this paper are determined
meaning that for all A, for all objectives O ⊆ PlaysA we have that: A, v |= � i� O iff
A, v 2� 1− i� PlaysA \ O.

Convex hull and Fmin. First, we need som e additional notations and vocabulary related to
linear algebra. Given a finite set of d-dim. vectors X ⊂ Rd, we note the set of all their convex
combinations as CH(X) = {v | v =

∑
x∈X αx · x ∧ ∀x ∈ X : αx ∈ [0, 1] ∧

∑
x∈X αx = 1},

this set is called the convex hull of X. We also need the following additional, and less
standard notions, introduced in [5]. Given a finite set of d-dim. vectors X ⊂ Rd, let fmin(X)
be the vector v = (v1, v2, . . . , vd) where vi = min {c | ∃x ∈ X : xi = c}, i.e. the vector
v is the pointwise minimum of the vectors in X. Let S ⊆ Rd, then Fmin(S) = {fmin(P ) |
P is a finite subset of S}. The following proposition expresses properties of the Fmin(S)
operator that are useful for us in the sequel. The interested reader will find more results
about the Fmin operator in [5].

I Proposition 1. For all sets S ⊆ Rd, for all x ∈ Fmin(S), there exists y ∈ S such that
x ≤ y. If S is a closed bounded set then Fmin(S) is also a closed bounded set.

In the sequel, we also use formulas of the theory of the reals with addition and order,
noted 〈R,+,≤〉, in order to define subsets of Rn. This theory is decidable and admits effective
quantifier elimination [8].
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3 Adversarial Stackelberg value for mean-payoff games

Mean-payoffs induced by simple cycles. Given a play π ∈ PlaysA, we note inf(π) the set of
vertices v that appear infinitely many times along π, i.e. inf(π) = {v | ∀i ∈ N·∃j ≥ i : v = πj}.
It is easy to see that inf(π) is an SCC in the underlying graph of the arena A. A cycle c is a
sequence of edges that starts and stops in a given vertex v, it is simple if it does not contain
any other repetition of vertices. Given an SCC S, we write C(S) for the set of simple cycles
inside S. Given a simple cycle c, for i ∈ {0, 1}, let MPi(c) = wi(c)

|c| be the mean of wi weights
along edges in the simple cycle c, and we call the pair (MP0(c),MP1(c)) the mean-payoff
coordinate of the cycle c. We write CH(C(S)) for the convex-hull of the set of mean-payoff
coordinates of simple cycles of S. The following theorem relates the d-dim. mean-payoff
values of infinite plays and the d-dim. mean-payoff of simple cycles in the arena.

I Theorem 2 ([5]). Let S be an SCC in the arena A, the following two properties hold: (i) for
all π ∈ PlaysA, if inf(π) ⊆ S then (MP0(π),MP1(π)) ∈ Fmin(CH(C(S))) (ii) for all (x, y) ∈
Fmin(CH(C(S))), there exists π ∈ PlaysA such that inf(π) = S and (MP0(π),MP1(π)) = (x, y).
Furthermore, the set Fmin(CH(C(S))) is effectively expressible in 〈R,+,≤〉.

In the sequel, we denote by ΦS(x, y) the formula with two free variables in 〈R,+,≤〉 such
that for all (u, v) ∈ R2, (u, v) ∈ Fmin(CH(C(S))) if and only if ΦS(x, y)[x/u, y/v] is true.

On the existence of best-responses for MP. We start the study of mean-payoff games
with some considerations about the existence of best-responses and ε-best-responses for
Player 1 to strategies of Player 0.

I Lemma 3. There is a mean-payoff game G and a strategy σ0 ∈ Σ0(G) such that BR1(σ0) =
∅. For all mean-payoff games G and finite memory strategies σ0 ∈ ΣFM

0 (G), BR1(σ0) 6= ∅.
For all mean-payoff games G, for all strategies σ0 ∈ Σ0(G), for all ε > 0, BRε1(σ0) 6= ∅.

Proof sketch - full proof in the full version [9]. First, in the arena of Fig. 1, we consider
the strategy of Player 0 that plays the actions c and d with a frequency that is equal to
1− 1

k for c and 1
k for d where k is the number of times that Player 1 has played a in state 1

before sending the game to state 2. We claim that there is no best response of Player 1 to
this strategy of Player 0. Indeed, taking a one more time before going to state 2 is better for
Player 1.

Second, if Player 0 plays a finite memory strategy, then a best response for Player 1 is
an optimal path for the mean-payoff of Player 1 in the finite graph obtained as the product
of the original game arena with the finite state strategy of Player 0. Optimal mean-payoff
paths are guaranteed to exist [16].

Finally, the existence of ε-best responses for ε > 0, is guaranteed by an analysis of
the infinite tree obtained as the unfolding of the game arena with the (potentially infinite
memory) strategy of Player 1. Branches of this tree witness responses of Player 1 to the
strategy of Player 0. The supremum of the values of those branches for Player 1 is always
approachable to any ε > 0. J

According to Lemma 3, the set of best-responses of Player 1 to a strategy of Player 0 can
be empty. As a consequence, we need to use the notion of ε-best-responses (which are always
guaranteed to exist) when we define the adversarial Stackelberg value:

ASV(σ0)(v) = sup
ε≥0 | BRε1(σ0)6=∅

inf
σ1∈BRε1(σ0)

MP0(Outv(σ0, σ1)) and ASV(v) = sup
σ0∈Σ0

ASV(σ0)(v)
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Figure 1 A mean-payoff game in which there exists a Player 0’s strategy σ0 such that BR1(σ0) = ∅.

v0v1 v2
(0, 1)

(0,1)(0,2)

(1,1)

(1,1)

Figure 2 In this game, ASV(v0) = 1 but there is no Player 0 strategy to achieve this value.

We note that when best-responses to a strategy σ0 exist, then as expected the following
equality holds, because BR1(σ0) = BR0

1(σ0) and BRε1
1 (σ0) ⊆ BRε2

1 (σ0) for all ε1 ≤ ε2, ε should
be taken equal to 0:

ASV(σ0)(v) = sup
ε≥0 | BRε1(σ0)6=∅

inf
σ1∈BRε1(σ0)

MP0(Outv(σ0, σ1)) = inf
σ1∈BR1(σ0)

MP0(Outv(σ0, σ1))

Finally, we note that changing the sup over ε into an inf in our definition, we get the classical
notion of worst-case value in which the rationality of Player 1 and his payoff are ignored. We
also recall the definition of CSV, the cooperative Stackelberg value:

CSV(σ0)(v) = sup
ε≥0 | BRε1(σ0)6=∅

sup
σ1∈BRε1(σ0)

MP0(Outv(σ0, σ1)) and CSV(v) = sup
σ0∈Σ0

CSV(σ0)(v)

The interest reader is referred to [13] for an in-depth treatment of this value.

The adversarial Stackelberg value may not be achievable. In contrast with results in [13]
that show that CSV can always be achieved, the following statement expresses the fact that
the adversarial Stackelberg value may not be achievable but it can always be approximated
by a strategy of Player 0.

I Theorem 4. There exists a mean-payoff game G in which Player 0 has no strategy which
enforces the adversarial Stackelberg value. Furthermore, for all mean-payoff games G, for all
vertices v ∈ V , for all ε > 0, there exists a strategy σ0 ∈ Σ0 such that ASV(σ0)(v) > ASV(v)−ε.
Memory is needed to achieve high ASV.

Proof sketch - full proof in the full version [9]. First, consider the game depicted in Fig 2.
In this game, ASV(v0) = 1 and it is not achievable. Player 0 needs to ensure that Player 1
does not take the transition from v0 to v2 otherwise she gets a payoff of 0. To ensure this,
Player 0 needs to choose a strategy (that cycles within {v0, v1}) and that gives to Player 1
at least 1 + ε with ε > 0. Such strategies gives 1− ε to Player 0, and the value 1 cannot be
reached.

Second, by definition of the ASV, the value is obtained as the sup over all strategies of
Player 0. As a consequence, ε-optimal strategies (for ε > 0) exist. J
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Witnesses for the ASV. Given a mean-payoff game G, we associate with each vertex v, the
following set of pairs of real numbers: Λ(v) = {(c, d) ∈ R2 | v |=� 1� MP0 ≤ c∧MP1 ≥ d}.
We say that v is (c, d)-bad if (c, d) ∈ Λ(v). Let c′ ∈ R. A play π in G is called a (c′, d)-witness
of ASV(v) > c if it starts from v, (MP0(π),MP1(π)) = (c′, d), c′ > c and π does not contain
any (c, d)-bad vertex. A play π is called a witness of ASV(v) > c if it is a (c′, d)-witness of
ASV(v) > c for some c′, d. The following theorem justifies the name witness.

I Theorem 5. Let G be a mean-payoff game and v be one of its vertices. ASV(v) > c iff
there exists a play π in G such that π is a witness of ASV(v) > c.

Proof. From right to left. Assume the existence of a (c′, d)-witness π and let us show that
there exists a strategy σ0 which forces ASV(σ0)(v) > c. We define σ0 as follows:
1. for all histories h ≤ π such that last (h) belongs to Player 0, σ0(h) follows π.
2. for all histories h 6≤ π where there has been a deviation from π by Player 1, we assume

that Player 0 switches to a strategy that we call punishing. This strategy is defined as
follows. In the subgame after history h′ where h′ is a first deviation by Player 1 from
π, we know that Player 0 has a strategy to enforce the objective: MP0 > c ∨MP1 < d.
This is true because π does not cross any (c, d)-bad vertex. So, we know that h′ 2
� 1� MP0 ≤ c ∧ MP1 ≥ d which entails the previous statement by determinacy of
n-dimension mean-payoff games [21] (here n = 2).

3. for all other histories h, Player 0 can behave arbitrarily as those histories are never
reached when Player 0 plays as defined in point 1 and 2 above.

Let us now establish that the strategy σ0 satisfies ASV(σ0)(v) > c. We have to show the
existence of some ε ≥ 0 such that BRε1(σ0) 6= ∅ and for all σ1 ∈ BRε1(σ0), MP0(Outv(σ0, σ1)) >
c holds. For that, we consider two subcases:
1. supσ1 MP1(Outv(σ0, σ1)) = d = MP1(π). This means that any strategy σ1 of Player 1

that follows π is for ε = 0 a best-response to σ0. Now let us consider any strategy
σ1 ∈ BR0

1(σ0). Clearly, π′ = Outv(σ0, σ1) is such that MP1(π′) ≥ d. If π′ = π, we
have that MP0(π′) = c′ > c. If π′ 6= π, then when π′ deviates from π, we know that
σ0 behaves as the punishing strategy and so we have that MP0(π′) > c ∨MP1(π′) < d.
But as σ1 ∈ BR0

1(σ0), we conclude that MP1(π′) ≥ d, and so in turn, we obtain that
MP0(π′) > c.

2. supσ1 MP1(Outv(σ0, σ1)) = d′ > d. Let ε > 0 be such that d′ − ε > d. By Lemma 3,
BRε1(σ0) 6= ∅. Let us now characterize the value that Player 0 receives against any
strategy σ1 ∈ BRε1(σ0). First, if σ1 follows π then Player 0 receives c′ > c. Second, if σ1
deviates from π, Player 1 receives at least d′ − ε > d. But by definition of σ0, we know
that if the play deviates from π then Player 0 applies her punishing strategy. Then we
know that the outcome satisfies MP0 > c∨MP1 < d. But as d′− ε > d, we must conclude
that the outcome π′ is such that MP0(π′) > c.

From left to right. Let σ0 such that ASV(σ0)(v) > c. Then by the equivalence shown in the
proof of Theorem 4, we know that

∃ε ≥ 0 : BRε1(σ0) 6= ∅ ∧ ∀σ1 ∈ BRε1(σ0) : Outv(σ0, σ1) > c (1)

Let ε∗ be a value for ε that makes eq. (1) true. Take any σ1 ∈ BRε
∗

1 (σ0) and consider
π = Outv(σ0, σ1). We will show that π is a witness for ASV(v) > c.

We have that MP0(π) > c. Let d1 = MP1(π) and consider any π′ ∈ Outv(σ0). Clearly if
MP1(π′) ≥ d1 then there exists σ′1 ∈ BRε

∗

1 (σ0) such that π′ = Outv0(σ0, σ
′
1) and we conclude

that MP0(π′) > c. So all deviations of Player 1 w.r.t. π against σ0 are either giving him
a MP1 which is less than d1 or it gives to Player 0 a MP0 which is larger than c. So π
is a (MP0(π),MP1(π))-witness for ASV(v) > c as we have shown that π never crosses an
(c,MP1(π))-bad vertex, and we are done. J
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The following statement is a direct consequence of the proof of the previous theorem.

I Corollary 6. If π is a witness for ASV(v) > c then all π′ such that: π′(0) = v, the set of
vertices visited along π and π′ are the same, and MP0(π′) ≥ MP0(π) and MP1(π′) ≥ MP1(π),
are also witnesses for ASV(v) > c.

Small witnesses and NP membership. Here, we refine Theorem 5 to establish membership
of the threshold problem to NP.

I Theorem 7. Given a mean-payoff game G, a vertex v and a rational value c ∈ Q, it can
be decided in nondeterministic polynomial time if ASV(v) > c.

Proof of Thm. 7 relies on the existence of small witnesses established in the following lemma:

I Lemma 8. Given a mean-payoff game G, a vertex v and c ∈ Q, ASV(v) > c if and only
if there exists an SCC reachable from v that contains two simple cycles `1, `2 such that: (i)
there exist α, β ∈ Q such that α ·w0(`1) + β ·w0(`2) = c′ > c, and α ·w1(`1) + β ·w1(`2) = d

(ii) there is no (c, d)-bad vertex v′ along the path from v to `1, the path from `1 to `2, and
the path from `2 to `1.

Proof sketch - full proof in the full version [9]. Theorem 5 establishes the existence of a
witness π for ASV(v) > c. In turn, we show here that the existence of such a π can be
established by a polynomially checkable witness composed of the following elements. First,
a simple path from v to the SCC in which π gets trapped in the long run, (ii) two simple
cycles (that can produce the value (c′, d) of π) by looping at the right frequencies along the
two cycles. Indeed, (MP0(π),MP1(π)) only depends on the suffix in the SCC in which it
gets trapped. Furthermore, by Theorem 2, Proposition 1 and Corollary 6, we know that
the mean-payoff of witnesses can be obtained as the convex combination of the mean-payoff
coordinates of simple cycles, and 3 such simple cycles are sufficient by the Carathéodory
baricenter theorem. A finer analysis of the geometry of the sets allows us to go to 2 cycles
only (see the full proof in [9]). J

Proof of Theorem 7. According to Lemma 8, the nondeterministic algorithm that estab-
lishes the membership to NP guesses a reachable SCC together with the two simple cycles
`1 and `2, and parameters α and β. Additionally, for each vertex v′ that appears along the
paths to reach the SCC, on the simple cycles `1 and `2, and to connect those simple
cycles, the algorithm guesses a memoryless strategy σv

′

0 for Player 0 that establishes
v′ 2� 1� MP0 ≤ c ∧MP1 ≥ d which means by determinacy of multi-dimensional mean-
payoff games, that v′ � � 0� MP0 > c ∨MP1 < d. The existence of those memoryless
strategy is established in Propositions 20 and 21 in the full version [9] (in turn those proposi-
tions rely on results from [21]). Those memoryless strategies are checkable in PTime [16]. J

Computing the ASV in mean-payoff games. The previous theorems establish the existence
of a notion of witness for the adversarial Stackelberg value in non zero-sum two-player mean-
payoff games. This notion of witness can be used to decide the threshold problem in NPtime.
We now show how to use this notion to effectively compute the ASV. This algorithm is also
based on the computation of an effective representation, for each vertex v of the game graph,
of the infinite set of pairs Λ(v). The following lemma expresses that a symbolic representation
of this set of pairs can be constructed effectively. This result is using techniques that have
been introduced in [3].
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I Lemma 9. Given a bi-weighted game graph G and a vertex v ∈ V , we can effectively
construct a formula Ψv(x, y) of 〈R,+,≤〉 with two free variables such that (c, d) ∈ Λ(v) if
and only if the formula Ψv(x, y)[x/c, y/d] is true.

Extended graph game. From the graph game G = (V,E,w0, w1), we construct the extended
graph game Gext = (V ext, Eext, wext

0 , wext
1 ), whose vertices and edges are defined as follows.

The set of vertices is V ext = V × 2V . With an history h in G, we associate a vertex in
Gext which is a pair (v, P ), where v = last (h) and P is the set of the vertices traversed
along h. Accordingly the set of edges and the weight functions are defined as Eext =
{((v, P ), (v′, P ′)) | (v, v′) ∈ E ∧ P ′ = P ∪ {v′}} and wext

i ((v, P ), (v′, P ′)) = wi((v, v′)), for
i ∈ {0, 1}. Clearly, there exists a bijection between the plays π in G and the plays πext in
Gext which start in vertices of the form (v, {v}), i.e. πext is mapped to the play π in G that is
obtained by erasing the second dimension of its vertices.

I Proposition 10. For all game graph G, the following holds:
1. Let πext be an infinite play in the extended graph and π be its projection into the original

graph G (over the first component of each vertex) , the following properties hold: (i) For all
i < j: if πext(i) = (vi, Pi) and πext(j) = (vj , Pj) then Pi ⊆ Pj. (ii) MPi(πext) = MPi(π),
for i ∈ {0, 1}.

2. The unfolding of G from v and the unfolding of Gext from (v, {v}) are isomorphic, and so
ASV(v) = ASV(v, {v}).

By the first point of the latter proposition and since the set of vertices of the graph is
finite, the second component of any play πext stabilises into a set of vertices of G which we
denote by V ∗(πext).

We now show how to characterize ASV(v) with the notion of witness introduced above
and the decomposition of Gext into SCC. This is formalized in the following lemma:

I Lemma 11. For all mean-payoff games G, for all vertices v ∈ V , let SCCext(v) be the set
of strongly-connected components in Gext which are reachable from (v, {v}), then we have

ASV(v)= max
S∈SCCext(v)

sup{c ∈ R | ∃πext : πext is a witness for ASV(v, {v}) > c and V ∗(πext) = S}

Proof. First, we note the following sequence of equalities:

ASV(v)
= sup{c ∈ R | ASV(v) ≥ c}
= sup{c ∈ R | ASV(v) > c}
= sup{c ∈ R | ∃π : π is a witness for ASV(v) > c}
= sup{c ∈ R | ∃πext : πext is a witness for ASV(v, {v}) > c}
= maxS∈SCCext(v) sup{c ∈ R | ∃πext : πext is a witness for ASV(v, {v}) > c and V ∗(πext)=S}

The first two equalities are direct consequences of the definition of the supremum and
that ASV(v) ∈ R. The third is a consequence of Theorem 5 that guarantees the existence
of witnesses for strict inequalities. The fourth equality is a consequence of point 2 in
Proposition 10. The last equality is the consequence of point 1 in Proposition 10. J

By definition of Gext, for all SCC S of Gext, there exists a set of vertices of G which we
also denote by V ∗(S) such that any vertex of S is of the form (v, V ∗(S)). The set of bad
thresholds for S is then defined as Λext(S) =

⋃
v∈V ∗(S) Λ(v). Applying Lemma 9, we can

construct a formula ΨS(x, y) which symbolic encodes the set Λext(S).
Now, we are equipped to prove that ASV(v) is effectively computable. This is expressed

by the following theorem and established in its proof.
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I Theorem 12. For all mean-payoff games G, for all vertices v ∈ V , the value ASV(v) can be
effectively expressed by a formula ρv in 〈R,+,≤〉 and explicitly computed from this formula.

Proof. To establish this theorem, we show how to build the formula ρv(z) that is true iff
ASV(v) = z. We use Lemma 11, to reduce this to the construction of a formula that expresses
the existence of witnesses for ASV(v) from (v, {v}):

ASV(v) = max
S∈SCCext(v)

sup{c ∈ R | ∃πext : πext is a witness for ASV(v, {v}) > c and V ∗(πext) = S}

As maxS∈SCCext(v) is easily expressed in 〈R,+,≤〉, we concentrate on one SCC S reachable
from (v, {v}) and we show how to express

sup{c ∈ R | ∃πext : πext is a witness for ASV(v, {v}) > c and V ∗(πext) = S}

First, we define a formula that express the existence of a witness for ASV(v) > c. This is
done by the following formula:

ρSv0
(c) ≡ ∃x, y · x > c ∧ ΦS(x, y) ∧ ¬ΨS(c, y)

Where ΦS(x, y) is the symbolic encoding of Fmin(CH(C(S))) as defined in Theorem 2. This
ensures that the values (x, y) are the mean-payoff values realizable by some path in S. By
Lemma 9, ¬ΨS(c, y) expresses that the path does not cross a (c, y)-bad vertex. So the
conjunction ∃x, y · x > c ∧ ΦS(x, y) ∧ ¬ΨS(c, y) establishes the existence of a witness with
mean-payoff values (x, y) for the threshold c. From this formula, we can compute the ASV
by quantifier elimination in:

∃z · ∀e > 0 · (ρSv0
(z − e) ∧ (∀y · ρSv0

(y) =⇒ y ≤ z))

and obtain the unique value of z that makes the formula true. J

4 Stackelberg values for discounted-sum games

In this section, we study the notion of Stackelberg value in the case of discounted sum
measures. Beside the adversarial setting considered so far, we also refer to a cooperative
framework for discounted sum-games, since we add some results to [15], where the cooperative
Stackelberg value for discounted-sum measures has been previously introduced and studied.

On the existence of best-responses for DS. First, we show that the set of best-responses
for Player 1 to strategies of Player 0 is guaranteed to be nonempty for discounted sum games,
while this was not the case in mean-payoff games.

I Lemma 13. For all discounted sum games G and strategies σ0 ∈ Σ0(G), BR1(σ0) 6= ∅.

Proof. Given σ ∈ Σ0(G), consider S = {DS1(Out(σ, τ)) | τ ∈ Σ1(G)}. S is a non empty
limited subset of R, since for each τ ∈ Σ1(G) it holds DS1(Out(σ, τ)) ≤ W

1− λ , where
W is the maximum absolute value of a weight in G. Hence, S admits a unique superior
extreme s = sup(S). By definition of superior extreme, for each ε > 0, there exists vε ∈ S
such that s ≥ vε > s − ε. Therefore, for each ε > 0 there exists τε ∈ Σ1(G) such that
s ≥ DS1(Out(σ, τε)) > s− ε, i.e.:

0 ≤ s− DS1(Out(σ, τε)) < ε (2)

ICALP 2020
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We show that this implies that Out(σ) contains a play π∗ such that DS1(π∗) = s, which leads to
BR1(σ) 6= ∅, since Player 1 has a strategy to achieve s = sup({DS1(Out(σ, τ)) | τ ∈ Σ1(G)}).
By contradiction, suppose that Out(σ) does not contain any play π such that DS1(π) = s.
Hence, for each π ∈ Out(σ), it holds that DS1(π) < s and π admits a prefix π≤k such that:

DS1(π≤k) +W
λk

1− λ < s (3)

Hence, we can cut each play in Out(σ) as soon as Equation 3 is accomplished, leading to a
finite tree T (by Konig lemma, since Out(σ) is finitely branching). Let π∗T = π0 . . . πk be a
branch in the finite tree T such that the value v(π∗T ) = s− (DS1(π∗T ) +W λk

1−λ ) is minimal.
Note that, by Equation 3, v(π∗T ) > 0 since v(π∗T ) = s− (DS1(π∗T ) +W λk

1−λ ) > s− s = 0.
Then, for each play π, let π≤p be the longest prefix of π which is also a branch in the

finite tree T . By definition of π∗T , we have:

s− DS1(π) ≥ s− (DS1(π≤p) +W
λp

1− λ ) ≥ v(π∗T ) > 0 (4)

This leads to a contradiction to the fact that for all ε > 0 there exists τ ∈ Σ1(G) such that
s− DS1(Out(σ, τε)) < ε, established within Equation 2. J

Stackelberg values for DS in the adversarial and cooperative settings. The existence
of best-responses allows us to simplify the notion of Stackelberg value for discounted sum
measures, avoiding the parameter ε used for mean-payoff games. In particular, the adversarial
Stackelberg value ASV(v) for discounted sum games is defined for all σ0 ∈ Σ0(G) as:

ASV(σ0)(v) = inf
σ1∈BR1(σ0)

DSλ0 (Outv(σ0, σ1)) and ASV(v) = sup
σ0∈Σ0

ASV(σ0)(v)

As previously announced, we also consider the notion of Stackelberg value for discounted sum
measures in the cooperative setting, where Player 0 suggests a profile of strategies (σ0, σ1)
and Player 1 agrees to play σ1 if the latter strategy is a best response to σ0. Formally, the
cooperative Stackelberg value CSV(v) for discounted sum games is defined as:

CSV(σ0)(v) = sup
σ1∈BR1(σ0)

DSλ0 (Outv(σ0, σ1)) and CSV(v) = sup
σ0∈Σ0

CSV(σ0)(v)

Lemma 15 below links the cooperative Stackelberg value for discounted-sum measures to the
target discounted-sum problem [1] (cfr. Definition 14), whose decidability is notoriously hard
to solve and relates to several open questions in mathematics and computer science [1].

I Definition 14 (Target Discount Sum Problem [1] (TDS)). Given a rational discount factor
0 < λ < 1 and three rationals a, b, t does there exist an infinite sequence w ∈ {a, b}ω such
that

∑∞
i=0 w(i)λi = t?

In particular, given an instance I = (a, b, t, λ) of the TDS problem, Figure 3 depicts a
discounted sum game GI such that I admits a solution iff CSV(v) ≥ λ · t.

I Lemma 15. The target discounted-sum problem reduces to the problem of deciding if
CSV(v) ≥ c in discounted-sum games.

Proof. Let I = (a, b, t, λ) be an instance of the target discounted sum problem and consider
the game GI depicted in Figure 3. We prove that I admits a solution iff CSV(v) ≥ λ · t.
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v

z s a

b

(0,0)

(λ · t− 1,−λ · t) (0, 0)
(b,−b)

(a,−a)

(b,−b)

(a,−a)
(a,−a)

(b,−b)

Figure 3 The instance of TDS I = (a, b, λ, t) admits a solution iff CSV(v) ≥ λ · t.

Suppose that I admits a solution and let w ∈ {a, b}ω such that
∑∞
i=0 w(i)λi = t. Consider

the following strategy σ for Player 0: for all α ∈ {a, b}∗, σ(vsα) = x if w(|α|) = x, where
x ∈ {a, b}. We prove that if τ is a best response to σ, then DS0(Out(σ, τ)) = λ · t. In fact,
Player 1 has two choices from v. Let us denote τs (resp. τz) the strategy that prescribes
to Player 1 to proceed to vertex s (resp. z) out from v. We have that DS1(Out(σ, τs)) =
DS1(Out(σ, τz)) = −λ · t, by definition of σ and GI . Hence, τs is a best response to σ which
guarantees to Player 0 a payoff DS0(Out(σ, τs)) = λ · t.

In the other direction, suppose that I does not admit any solution, i.e. there does not
exist an infinite sequence w ∈ {a, b}ω such that

∑∞
i=0 w(i)λi = t. We prove that for any

strategy σ for Player 0, if τ is a best response of Player 1 to σ then DS0(Out(σ, τ)) < λ · t.
Let σ be an arbitrary strategy for Player 0 and consider the strategy τz for Player 1.

We have two cases to consider depending on wether τz is a best response to σ or not. In the
first case, we have that DS(Out(σ, τz)) = (λ · t−1,−λ · t) and, since τz is a best response to σ,
we need to have DS1(Out(σ, τs)) ≤ −λ ·t. We can not have that DS1(Out(σ, τs)) = −λ ·t, since
this would imply DS0(Out(σ, τi)) = −DS1(Out(σ, τs)) = λ · t contradicting our hypothesis
that I does not admit any solution. Therefore, DS1(Out(σ, τs)) < −λ · t, meaning that τs is
not a best response to σ and CSV(v) = λ · t− 1 < λ · t.

In the second case, where σz is not a best response to σ, we have that DS1(Out(σ, τs)) >
−λ · t which implies that CSV(v) = DS0(Out(σ, τs)) = −DS1(Out(σ, τs)) < λ · t. J

The construction used to link the cooperative Stackelberg value to the target discounted
sum problem can be properly modified2 to prove that infinite memory may be necessary to
allow Player 0 to achieve her CSV, recovering a result originally proved in [15]. In the same
paper, the authors show that in 3-player discounted sum games the cooperative Stackelberg
value cannot be approximated by considering strategies with bounded memory only. In the
next section, we show that this is not the case for 2-player discounted sum games.

Gap problems and their algorithmic solutions. We consider a gap approximation of the
Stackelberg value problem in both the cooperative and the adversarial settings. Given ε > 0
and c ∈ Q, and VAL ∈ {CSV,ASV}, let us define the sets of games:

Yesε,cVAL = {(G, v) | G is a game with VAL(v) > c+ ε}
Noε,cVAL = {(G, v) | G is a game with VAL(v) < c− ε}

The (ε, c)-CSV-gap (resp. (ε, c)-ASV-gap) problem (also referred to as (ε, c)-gap problems or
just gap problems when ε and c are clear from the context) consists in determining if a given
game G and an initial vertex v belong to Yesε,cCSV or Noε,cCSV (resp. Yesε,cASV or Noε,cASV). More

2 Consider the game GI depicted in Figure 3 for a = 0, b = 1, λ = 2
3 , t = 3

2 . By Proposition 1 in [6], Player
0 can achieve 3

2 from s – and therefore CSV(v)=1 – only with infinite memory.
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precisely, solving the Stackelberg value gap problem in e.g. the cooperative setting amounts
to answer Yes if the instance of the game belongs to Yesε,cCSV, answer No if the instance belongs
to Noε,cCSV, never answer or answer arbitrarily otherwise.

Theorem 17 below uses the results in Lemma 16 to provide an algorithm that solves the
Stackelberg value gap problem in the cooperative and adversarial settings, for games with
discounted sum objectives. In particular, Lemma 16, shows that finite memory strategies are
sufficient to witness Stackelberg values strictly greater than a threshold c ∈ Q.

I Lemma 16. Let G be a discounted-sum game and consider c ∈ Q and ε > 0. If Player 0
has a strategy σ0 such that CSV(σ0)(v) > c+ ε (resp. ASV(σ0)(v) > c+ ε), then Player 0 has
a strategy σ∗0 with finite memory M(ε) such that CSV(σ∗0)(v) > c (resp. ASV(σ∗0)(v) > c).
Moreover, M(ε) is computable given ε.

Proof. Let σDS1
min ∈ Σ0 a memoryless strategy for Player 0 minimizing supτ∈Σ1DS1(Out(σ, τ)).

Let σDS1
max ∈ Σ0 be a memoryless strategy for Player 0 that maximizes supτ∈Σ1DS1(Out(σ, τ)).

Such memoryless strategies exist since 2-player (single-valued) discounted-sum games are
memoryless determined. In particular, σDS1

min ∈ Σ0 can be obtained by using standard
algorithms for two players (single-valued) discounted-sum games. In turn, σDS1

max ∈ Σ0 can be
computed by solving a single player (single valued) discounted-sum game, in which all the
nodes are controlled by the maximizer who aims at maximizing DS1.

Cooperative Setting: Let σ∗ ∈ Σ0(G) be a strategy for Player 0 s.t. DS0(Out(σ∗, τ)) > c+ε
for some strategy τ ∈ BR1(σ∗). Denote by π∗ the play π∗ = Out(σ∗, τ) and let N such
that λN W

1− λ <
ε

2 . Given the above premises, consider the finite memory strategy σ′ ∈ Σ0

for Player 0 that follows σ∗ for the first N steps and then either apply the memoryless
strategy σDS1

min ∈ Σ0 or the memoryless strategy σDS1
max ∈ Σ0, depending on the history h

followed up to N . In particular, if h = π∗≤N , then the strategy σ′ prescribes to Player 0 to
follow σDS1

max ∈ Σ0, cooperating with Player 1 at maximizing DS1. Otherwise (h 6= π∗≤N ), the
strategy σ′ prescribes to Player 0 to follow σDS1

min ∈ Σ0, minimizing the payoff of the adversary.
We show that a best response τ ′ for Player 1 to σ′ consists in following π∗ up to N and then
applying the memoryless strategy τDS1

max ∈ Σ1, i.e. maximizing supσ∈Σ0DS1(Out(σ, τ)). In
fact, by definition of σ′ and τ ′ we have that:

DS1(Out(σ′, τ ′)) ≥ DS1(π∗)
for any other strategy τ ′′ 6= τ ′ for Player 1:

if Out(σ′, τ ′′)≤N = x 6= π∗≤N , then:

DS1(Out(σ′, τ ′′)) = DS1(x) + λNDS1(Outx(σDS1
min, τ

′′)) ≤

≤ DS1(x) + λN (supτ∈Σ1(DS1(Outx(σDS1
min, τ))) ≤

≤ DS1(x) + λN (supτ∈Σ1(DS1(Outx(σ∗, τ))) = DS1(π∗) ≤ DS1(Out(σ′, τ ′))

since DS1(π∗) is the payoff (for player 1) of a best response of Player 1 to σ∗.
if Out(σ′, τ ′′)≤N = x = π∗≤N , then:

DS1(Out(σ′, τ ′′)) ≤ DS1(x)+λN ·sup{DS1(π) |π ∈ Plays(G)∧π starts at last(x)} =

= DS1(x) + λN · DS1(Outx(σDS1
max, τ

DS1
max)) = DS1(Out(σ′, τ ′))

Finally, we show that the best response π′ of Player 1 to σ′ guarantees to Player 0 a
payoff greater than c. In fact, DS0(Out(σ′, τ ′)) > DS0(π∗≤N ) − ε

2 > c + ε

2 −
ε

2 = c, since

DS0(π∗≤N ) > c+ ε

2 . Due to the choice of N , having DS0(π∗≤N ) ≤ c+ ε

2 would lead in fact to the

following contradiction: DS0(π∗) ≤ DS0(π∗≤N )+λN W

1− λ < DS0(π∗≤N )+ ε

2 ≤ c+
ε

2 + ε

2 = c+ε,
i.e. DS0(π∗) ≤ c+ ε.
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Adversarial Setting: Let σ ∈ Σ0 be a strategy for Player 0 such that for all τ ∈ BR1(σ) it
holds DS0(Out(σ, τ)) > c + ε. Let N such that λN W

1− λ <
ε

2 and consider the unfolding T
of Out(σ) up to N . For each maximal root-to-leaf branch b of T , color its leaf last(b) green
if b is the prefix π≤N of some play π = Out(σ, τ) such that τ ∈ BR1(σ). Otherwise, let the
leaf last(b) of b be colored by red. We show that the finite memory strategy σ∗ ∈ Σ0 that
prescribes to Player 0 to follow σ up to N and then:

from each green node apply the memoryless strategy σDS1
max ∈ Σ0 (i.e. cooperate with

Player 1 to maximize the payoff DS1)
from each red node apply the memoryless strategy σDS1

min ∈ Σ0 (i.e. minimize the payoff
DS1 of the adversary )

is such that ASV (σ∗) > c. Let d = sup{DS1(Out(σ, τ))|τ ∈ Σ1(G)} and consider π ∈ Out(σ∗).
First, we show that if π contains a green node then DS0(π≤N) > c. In fact, DS0(π≤N ) >

DS0(π≤N ) − λN W

1− λ > c + ε

2 −
ε

2 = c, since λN W

1− λ <
ε

2 by definition of N and since

DS0(π≤N ) > c + ε

2 being last(π≤N ) a green node (witnessing that π≤N is the prefix of a
play π′ compatible with a best response of Player 1 to σ∗, for which DS0(π′) > c + ε).

Moreover, there is a play π ∈ Out(σ∗) containing a green node for which DS1(π) ≥ d. This
is because of two reasons. First, a play in Out(σ) compatible with a best response to σ by
Player 1 is of the form hvπ′, where hv is a maximal root-to-leaf branch b of T with last(b) = v

green (by definition of green nodes). Second, for each hystory hv such that hv is a maximal
root-to-leaf branch b of T with last(b) = v green, Out(σ∗) contains a play hvπ̄, where π̄
is a play starting in v maximizing DS1. Therefore DS1(hvπ̄) = DS1(hv) + λNDS1(π̄) ≥
DS1(hv) + λNDS1(π′)) = d, where hvπ′ is a play compatible with a best response of Player 1
to σ. To conclude our proof, we need just to show that each play π ∈ Out(σ∗) containing a
red node is such that DS1(π) < d. In fact, being last(π≤N ) red, the history π≤N can not be
a prefix of any play in Out(σ) compatible with a best response of Player 1 to σ. In other
words, by playing σ Player 0 allows the adversary to gain a payoff that is at most r < d on
each play π = hvπ′ with v red. Therefore, switching her strategy from σ to σ∗ (i.e. playing
σ for the first N turns and then switching to the memoryless strategy σDS1

min ∈ Σ0) Player 0 is
sure to let Player 1 gain a payoff that is at most r′ ≤ r < d on each play π = hvπ′ with v red.

As a conclusion, against σ∗ Player 1 can achieve at least a value d. Hence, each best
response to σ∗ visits a green node (if it does not, then DS1 < d which is a contradiction).
This guarantees that DS0 > c. J

The approximation algorithm for solving the Stackelberg values gap problems introduced
in Theorem 17 roughly works as follows. Given a discounted sum game G, a rational threshold
c ∈ Q and a tolerance rational value ε > 0, the procedure checks whether there exists a
strategy σ0 ∈ Σ0(G) with finite memory M(ε) such that ASV(σ0) > c (resp. CSV(σ0) > c ).
If such a strategy exists, the procedure answers Yes, otherwise it answers No. The correctness
of the outlined procedure follows directly from Lemma 16.

I Theorem 17. The (ε, c)-gap problems for both the CSV and ASV are decidable for games
with discounted-sum objectives.

We conclude this subsection by providing a reduction from the partition problem to our gap
problems (for both CSV and ASV), showing NP-hardness for the corresponding problems.

I Theorem 18. The (ε, c)-gap problems for both the CSV and ASV are NP-hard for games
with discounted-sum objectives, where ε and c are given as input.
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v0v1 1 2 n v2· · ·

(0,0)

0, T − 2
3 (0, 0)

(w(1), 0) (w(n), 0)

(0, w(1)) (0, w(n))

(0,0)

Figure 4 Arena for hardness proof of the gap problem.

Proof. We do a reduction from the Partition problem to our gap problems, working for
both CSV and ASV. Let us consider an instance of the partition problem defined by a set
A = {1, 2, . . . n}, a function w : A→ N0. The partition problem asks if there exists B ⊂ A
such that

∑
a∈B w(a) =

∑
a∈A\B w(a). W.l.o.g., we assume

∑
a∈A w(a) = 2 · T for some T .

To define our reduction, we first fix c to T − 1
2 , and the two parameters λ ∈ (0, 1) and

ε > 0 by choosing values that respect the following two constraints:

T · λn+1 > T − 1
2 + ε (T − 1) · λn+1 < T − 1

2 − ε (5)

It is not difficult to see that such values always exist and they can be computed in polynomial
time from the description of the partition problem. Then, we construct the bi-weighted arena
A depicted in Fig. 4. In this arena, Player 1 has only two choices in the starting state of the
game v0. There, he can either send the game to the state v1, and get a payoff of T − 2

3 , or
he can go to state 1.

From state 1, Player 0 can simulate a partition of the elements of A by choosing edges:
left edges simulate the choice of putting the object corresponding to the state in the left
class and right edges simulate the choice of putting the corresponding object in the right
class. Let D0 and D1 be the discounted sum obtained by Player 0 and Player 1 when
arriving in v2. Because λ and ε have been chosen according to eq. (5) , we have that:
D0 > T − 1

2 + ε ∧D1 > T − 1
2 + ε if and only if the choices of edges of Player 0 correspond

to a valid partition of A.
Indeed, assume that B ⊆ A is a solution to the partition problem. Assume that Player 0

follows the choices defined by B. Then when the game reaches state v2, the discounted
sum of rewards for both players is larger than T · λn+1. This is because along the way to
v2, the discounted factor applied on the rewards obtained by both players has always been
smaller than λn+1 as they were equal to λi+1 for all i ≤ n. Additionally, we know that sum
of (non-discounted) rewards for both players is equal to T as B is a correct partition. Now,
it should be clear that both ASV(v0) and CSV(v0) are greater than T − 1

2 + ε as in the two
cases, Player 1 has no incentive to deviate from the play that goes to v1 as Player 1 would
only get T − 2

3 which is strictly smaller than D1.
Now, assume that there is no solution to the partition problem. In that case, Player 0

cannot avoid to give less than T − 1 to herself or to Player 1 when going from v0 to v2. In
the first case, its reward is less than T − 1 and in the second case, the reward of Player 1 is
less than T − 1 and Player 1 has an incentive to deviate to state v1. In the two cases, we
have that both ASV(v0) and CSV(v0) are less than T − 1

2 − ε. So, we have established that
the answer to the gap problem is yes if the partition instance is positive, and the answer is
no if the partition instance is negative. J
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Abstract
Modeling distributed computing in a way enabling the use of formal methods is a challenge that
has been approached from different angles, among which two techniques emerged at the turn of
the century: protocol complexes, and directed algebraic topology. In both cases, the considered
computational model generally assumes communication via shared objects (typically a shared memory
consisting of a collection of read-write registers), or message-passing enabling direct communication
between any pair of processes. Our paper is concerned with network computing, where the processes
are located at the nodes of a network, and communicate by exchanging messages along the edges of
that network (only neighboring processes can communicate directly).

Applying the topological approach for verification in network computing is a considerable
challenge, mainly because the presence of identifiers assigned to the nodes yields protocol complexes
whose size grows exponentially with the size of the underlying network. However, many of the
problems studied in this context are of local nature, and their definitions do not depend on the
identifiers or on the size of the network. We leverage this independence in order to meet the above
challenge, and present local protocol complexes, whose sizes do not depend on the size of the network.
As an application of the design of “compacted” protocol complexes, we reformulate the celebrated
lower bound of Ω(log∗ n) rounds for 3-coloring the n-node ring, in the algebraic topology framework.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed computing, distributed graph algorithms, combinatorial topology

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.128

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version https://arxiv.org/pdf/2003.03255.pdf

Funding Pierre Fraigniaud: Additional support from ANR projects DESCARTES and FREDDA,
and INRIA project GANG.
Ami Paz: This research was done during the stay of the second author at Institut de Recherche en
Informatique Fondamentale (IRIF), supported by Fondation des Sciences Mathématiques de Paris
(FSMP).

Acknowledgements Both authors are thankful to Juho Hirvonen for his help with the figures.

1 Context and Objective

Several techniques for formalizing distributed computing based on algebraic topology have
emerged in the last decades, including the study of complexes capturing all possible global
states of the systems at a given time [11], and the study of the (di)homotopy classes of
directed paths representing the execution traces of concurrent programs [7]. We refer to [10]
for a recent attempt to reconcile the two approaches. This paper is focusing on the approach
based on the study of complexes.

A generic methodology for studying distributed computing through the lens of topology
has been set by Herlihy and Shavit [12]. This methodology has played an important role in
distributed computing, mostly for establishing lower bounds and impossibility results [5,12,18],

EA
T

C
S

© Pierre Fraigniaud and Ami Paz;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 128; pp. 128:1–128:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2020.128
https://arxiv.org/pdf/2003.03255.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


128:2 The Topology of Local Computing in Networks

but also for the design of algorithms [6]. It is based on viewing distributed computation
as a topological deformation of an input space. More specifically, recall that a simplicial
complex K is a collection of non-empty subsets of a finite set V , downward closed under
inclusion, i.e., for every σ ∈ K, and every non-empty σ′ ⊂ σ, it holds that σ′ ∈ K. Every
σ ∈ K is called a simplex, and every v ∈ V is called a vertex. For instance, a graph G = (V,E)
with E ⊆

(
V
2
)
, can be viewed as the complex K = {{v} : v ∈ V } ∪E on the set V of vertices.

A sub-complex of a complex K is a subset of simplices of K forming a complex. The dimension
of a simplex is one less than the number of its elements. A facet of a complex K is a maximal
simplex of K, that is, a simplex not contained in any other simplex. E.g., the facets of a
graph with no isolated nodes are its edges. We note that a set of facets uniquely defines a
complex.

The set of all possible input (resp., output) configurations of a distributed system can be
viewed as a simplicial complex, called input complex (resp., output complex), and denoted
by I (resp., O). A vertex of I (resp., O) is a pair (p, x) where p is a process name, and x is
an input (resp., output) value. For instance, the input complex of binary consensus in an
n-process system with process names p1, . . . , pn is:

I‖ =
{{

(pi, xi) : i ∈ I, xi ∈ {0, 1} for every i ∈ I
}

: I ⊆ [n], I 6= ∅
}
,

with [n] = {1, . . . , n}, and the output complex is:

O‖ =
{{

(pi, y) : i ∈ I
}
, I ⊆ [n], I 6= ∅, y ∈ {0, 1}

}
.

One can check that I‖ and O‖ are indeed collections of non-empty subsets of a finite set,
downward closed under inclusion. A distributed computing task is then specified as a carrier
map ∆ : I → 2O, i.e., a function ∆ that maps every input simplex σ ∈ I to a sub-complex
∆(σ) of the output complex, satisfying that, for every σ, σ′ ∈ I, if σ ⊆ σ′ then ∆(σ) is a
sub-complex of ∆(σ′). The carrier map ∆ is describing the output configurations that are
legal with respect to the input configuration σ. For instance, the specification of consensus
is, for every σ = {(pi, xi) : i ∈ I, xi ∈ {0, 1}} ∈ I‖,

∆‖(σ) =
{ {
{(pi, 0) : i ∈ I}, {(pi, 1) : i ∈ I}

}
if ∃ i, j ∈ I, xi 6= xj ;{

{(pi, y) : i ∈ I}
}

if ∀ i ∈ I, xi = y.

Note that the specification of consensus given here is very general, i.e., ∆ is specified for
every simplex σ ∈ I‖. This enables, e.g., to handle crash failures. In absence of failures, the
specification of a task can be done just by specifying ∆ for the facets in the input complex.

In the topological framework, computation is modeled by a protocol complex that evolves
with time, where the notion of “time” depends on the computational model at hand. The
protocol complex at time t, denoted by P(t), captures all possible states of the system at
time t. Typically, a vertex of P(t) is a pair (p, s) where p is a process name, and s is a
possible state of p at time t. A set {(pi, si) : i ∈ I} of such vertices, for ∅ 6= I ⊆ [n], forms a
simplex of P(t) if the states si, i ∈ I, are mutually compatible, that is, if {si : i ∈ I} forms a
possible global state for the processes in the set {pi : i ∈ I} at time t.

A crucial point is that an algorithm that outputs in time t induces a mapping δ : P(t) → O.
Specifically, if the process pi with state si at time t outputs yi, then δ maps the vertex
(pi, si) ∈ P(t) to the vertex δ(pi, si) = (pi, yi) in O. For the task to be correctly solved, the
mapping δ must preserve the simplices of P(t), and must agree with the specification ∆ of the
task. That is, δ must map simplices to simplices, and if the configuration {(pi, si), i ∈ I} of a
distributed system is reachable at time t starting from the input configuration {(pi, xi), i ∈ I},
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then it must be the case that {δ(pi, si), i ∈ I} ∈ ∆({(pi, xi), i ∈ I}). The set of configurations
reachable in time t stating from an input configuration σ ∈ I is denoted by Ξt(σ). In
particular, Ξt : I → 2P(t) is a carrier map.

Fundamental Lemma. The framework defined by Herlihy and Shavit [12] enables to char-
acterize the power and limitation of distributed computing, thanks to the following generic
result, which can be viewed as the basis of distributed computing within the topological
framework. Let us consider some (deterministic) distributed computing model, assumed
to be full information, that is, every process communicates its entire history at each of its
communication step. The following result connects solvability of a task by an algorithm in
a given model with the existence of a mapping of a specific form between the topological
complexes corresponding to this task and this model (see [4, 11,12] for instantiations of this
result for different computational models).

I Lemma 1. A task (I,O,∆) is solvable in time t if and only if there exists a simplicial
map δ : P(t) → O such that, for every σ ∈ I, δ(Ξt(σ)) ⊆ ∆(σ).

Again, beware that the notion of time in the above lemma depends on the computational
model. The topology of the protocol complex P(t), and the nature of the carrier map
Ξt, depend on the input complex I, and on the computing model at hand. For instance,
wait-free computing in asynchronous shared memory systems induces protocol complexes by
a deformation of the input complex, called chromatic subdivisions [11]. Similarly, t-resilient
computing may introduce holes in the protocol complex, in addition to chromatic subdivisions.
More generally, the topological deformation Ξt of the input complex caused by the execution
of a full information protocol in the considered computing model entirely determines the
existence of a decision map δ : P(t) → O, which makes the task (I,O,∆) solvable or not in
that model.

Topological Invariants. The typical approach for determining whether a task (e.g., consen-
sus) is solvable in t rounds consists of identifying topological invariants, i.e., properties of
complexes that are preserved by simplicial maps. Specifically, the approach consists in:
1. Identifying a topological invariant, i.e., a property satisfied by the input complex I, and

preserved by Ξt;
2. Checking whether this invariant, which must be satisfied by the sub-complex δ(P(t)) of

the output complex O, does not contradict the specification ∆ of the task.
For instance, in the case of binary consensus, the input complex I‖ is a sphere. One
basic property of spheres is being path-connected (i.e., there is a path in I‖ between any
two vertices). As mentioned earlier, shared-memory wait-free computing corresponds to
subdividing the input complex [11]. Therefore, independently from the length t of the
execution, the protocol complex P(t) is a chromatic subdivision of the sphere I‖, and thus it
remains path-connected. On the other hand, the output complex O‖ of binary consensus is
the disjoint union of two complexes O0 and O1, where Oy =

{
{(i, y) : i ∈ I}, I ⊆ [n], I 6= ∅

}
for y ∈ {0, 1}. Since simplicial maps preserve connectivity, it follows that δ(P(t)) ⊆ O0 or
δ(P(t)) ⊆ O1. As a consequence, δ cannot agree with ∆‖, as the latter maps the simplex
{(i, 0), i ∈ [n]} to O0, and the simplex {(i, 1), i ∈ [n]} to O1. Therefore, consensus cannot be
achieved wait-free, regardless of the number t of rounds.

The fact that connectivity plays a significant role in the inability to solve consensus in
the presence of asynchrony and crash failures is known since the original proof of the FLP
theorem [8] in the early 1980s. However, the relation between k-set agreement and higher
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dimensional forms of connectivity (i.e., the ability to contract high dimensional spheres)
was only established ten years later [12,18]. We refer to [11] for numerous applications of
Lemma 1 to various models of distributed computing, including asynchronous crash-prone
shared-memory or fully-connected message passing models. In particular, for tasks such as
renaming, identifying the minimal number t of rounds enabling a simplicial map δ to exist is
currently the only known technique for upper bounding their time complexities [1].

Network Computing. Recently, Castañeda et al. [4] applied Lemma 1 to synchronous
fault-free computing in networks, that is, to the framework in which processes are located
at the vertices of a simple (no multiple edges, no loops) n-node undirected graph G, and
can exchange messages only along the edges of that graph. They mostly focus on input-
output tasks such as consensus and set-agreement, in a simplified computing model, called
KNOW-ALL, specifying that every process is initially aware of the name and the location of
all the other processes in the network. As observed in [4], synchronous fault-free computing
in the KNOW-ALL model preserves the facets of the input complex, and does not subdivide
them. However, scissor cuts may occur between adjacent facets during the course of the
computation, that is, the protocol complex P(t) is obtained from the input complex I by
partially separating facets that initially shared a simplex. Figure 1 illustrates two types of
scissor cuts applied to the sphere, corresponding to two different communication networks.
The positions of the cuts depend on the structure of the graph G in which the computation
takes place, and determining the precise impact of the structure of G on the topology of the
protocol complex is a nontrivial challenge, even in the KNOW-ALL model.

(a) (b) (c)

Figure 1 (a) The input complex of binary consensus for three processes; (b) The scissor cuts for
the consistently directed 3-process cycle C3 after one round; (c) The scissor cuts for the directed
3-process star S3, where edges are directed from the center to the leaves, after one round.

Instead, we aim at analyzing classical graph problems (e.g., coloring, independent set,
etc.) in the standard LOCAL model [17] of network computing, which is weaker than the
KNOW-ALL model, and thus allows for more complicated topological deformations. In the
LOCAL model, every node is initially aware of solely its identifier (which is unique in the
network), and its input (e.g., for minimum weight vertex cover or for list-coloring), all nodes
wake up synchronously, and compute in locksteps. The LOCAL model is an ideal model for
studying locality in the context of network computing [17].

In addition to the fact that the topological deformations of the protocol complexes
strongly depend on the structure of the network, another obstacle that makes applying the
topological approach to the LOCAL model even more challenging is the presence of process
identifiers. Indeed, the model typically assumes that the node IDs are taken in a range
[N ] where N = poly(n). As a consequence, independently from the potential presence of
other input values, the size of the complexes (i.e., their number of vertices) may become
as large as

(
N
n

)
n!, since there are

(
N
n

)
ways of choosing n IDs, and n! ways of assigning the

n chosen IDs to the n nodes of G (unless G presents symmetries). For instance, Figure 1
assumes the KNOW-ALL model, hence fixed IDs. Redrawing these complexes assuming that
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the three processes can pick arbitrary distinct IDs as in the LOCAL model, even in the small
domain {1, 2, 3, 4}, would yield a cumbersome figure with 24 nodes. Note that the presence
of IDs also results in input complexes that may be topologically more complicated than
pseudospheres, even for tasks such as consensus.

Importantly, the fact that the IDs are not fixed a priori, and may even be taken in a
range exceeding [n], is inherent to distributed network computing. Indeed, this framework
aims at understanding the power and limitation of computing in large networks, from LANs
to the whole Internet, where the processing nodes are assigned arbitrary IDs taken from a
range of values which may significantly exceed the number of nodes in the network.

Objective. To sum up, while the study of protocol complexes has found numerous applica-
tions in the context of fault-tolerant message-passing or shared-memory computing, extending
this theory to network computing faces a difficulty caused by the presence of arbitrary IDs,
which are often the only inputs to the processes [17]. The objective of this paper is to show
how the combinatorial blowup caused by the presence of IDs in network computing can be
bypassed, at least as far as local computing is concerned.

2 Our Results

We show how to bypass the aforementioned exponential blowup in the size of the complexes,
that would result from a straightforward application of Lemma 1 for analyzing the com-
plexity of tasks in networks. Our result holds for a variety of problems, including classical
graph problems such as vertex and edge-coloring, maximal independent set (MIS), maximal
matching, etc. More specifically, it holds for the large class of locally checkable labeling
(LCL) tasks [16] on bounded-degree graphs. These are tasks for which it is possible to verify
locally the correctness of a solution, and thus they are sometimes viewed as the analog of
NP in the context of computing in networks. An LCL task is described by a finite set of
labels, and a local description of how these labels can be legally assigned to the nodes of a
network. Our local characterization theorem is strongly based on a seminal result by Naor
and Stockmeyer [16] who showed that the values of the IDs do not actually matter much for
solving LCL tasks in networks, but only their relative order matters.

We prove an analog of Lemma 1, but where the size of the complexes involved in the
statement is independent of the size of the networks. Specifically, the size of the complexes
in our characterization theorem depends solely on the maximum degree d of the network,
the number of labels used for the description of the task, and the number of rounds of
the considered algorithm for solving that task. In particular, the identifiers are taken from
a bounded-size set, even if the theorem applies to tasks defined on n-node networks with
arbitrarily large n, and for identifiers taken in an arbitrarily large range [N ]. We denote
by Kx,[y] the fact that the facets of K have dimension x, and that the IDs are taken in
the set {1, . . . , y}, and we let Kx = Kx,∅. Also π : Kx,[y] → Kx denotes the mapping that
removes the IDs of the vertices. Every LCL task in networks with maximum degree d can be
expressed topologically as a task (Id,Od,∆) where Id and Od are complexes of dimension d.
Our main result is the following.

I Theorem 2 (A simplified version of Theorem 3). For every LCL task T = (Id,Od,∆) on
graphs of maximum degree d, and for every t ≥ 0, there exists R ∈ N such that the following
holds. The task T is solvable in t rounds in the LOCAL model if and only if there is a
simplicial map δ : P(t)

d,[R] → Od such that, for every facet σ ∈ Id,[R], δ(Ξt(σ)) ⊆ ∆(π(σ)).
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Figure 2 provides a rough description of the commutative diagram corresponding to
the brute force application of Lemma 1 to LCL tasks, and of the commutative diagram
corresponding to Theorem 2. Note that Lemma 1, which corresponds to the left diagram
in Figure 2, involves global complexes with (n− 1)-dimensional facets, whose vertices are
labeled by IDs in an arbitrarily large set [N ]. In contrast, the complexes corresponding
to Theorem 2, which correspond to the right diagram, are local complexes, with facets of
constant dimension, and vertices labeled with IDs in a finite set whose size is constant w.r.t.
the number of nodes n in the network.

In−1,[N ] P(t)
n−1,[N ]

On−1,[N ]

Ξt

∆ δ

Id,[R] P(t)
d,[R]

Id Od

Ξt

∆

π δ

Figure 2 The commutative diagrams of Lemma 1 (left), and Theorem 2 (right).

As an application of Theorem 2, we reformulate the celebrated lower bound Ω(log∗ n)
rounds for 3-coloring the n-node ring by Linial [15], in the algebraic topology framework (see
Corollary 4).

3 Models and Definitions

The LOCAL model. The LOCAL model was introduced more than a quarter of a century
ago (see, e.g., [15, 16]) for studying which tasks can be solved locally in networks, that is,
which tasks can be solved when every node is bounded to collect information only from nodes
in its vicinity. Specifically, the LOCAL model [17] states that the processors are located at the
nodes of a simple connected graph G = (V,E) modeling a network. All nodes are fault-free,
they wake up simultaneously, and they execute the same algorithm. Computation proceeds
in synchronous rounds, where a round consists of the following three steps performed by
every node: (1) sending a message to each neighbor in G, (2) receiving the messages sent
by the neighbors, and (3) performing local computation. There are no bounds on the size
of the messages exchanged at every round between neighbors, and there are no limits on
the individual computational power or memory of the nodes. These assumptions enable the
design of unconditional lower bounds on the number of rounds required for performing some
task (e.g., for providing the nodes with a proper coloring), while the vast majority of the
algorithms solving these tasks do not abuse of these assumptions [19], that is, they exchange
small (i.e., polylogarithmic size) messages, and perform efficient (i.e., poly-time) individual
computations.

Every node in the network has an identifier (ID) which is supposed to be unique in
the network. In n-node networks, the IDs are supposed to be in a range 1, . . . , N where
N � n typically holds (most often, N = poly(n)). The absence of limits on the amount of
communication and computation that can be performed at every round implies that the
LOCAL model enables full-information protocols, that is, protocols in which, at every round,
every node sends all the information it acquired during the previous rounds to its neighbors.
Therefore, for every t ≥ 0, and every graph G, a t-round algorithm allows every node in G to
acquires a local view of G, which is a ball in G centered at that node, and of radius t. A
view includes the inputs and the IDs of the nodes in the corresponding ball. It follows that a
t-round algorithm in the LOCAL model can be considered as a function from the set of views
of radius t to the set of output values.
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Locally Checkable Labelings (LCL). Let d ≥ 2, and let Gd be the class of connected simple
undirected d-regular graphs (all nodes have degree d). Recall that, for a positive integer c,
c-coloring is the task consisting in providing each node with a color in {1, . . . , c} in such a
way that no two adjacent nodes are given the same color. Maximal independent set (MIS) is
the closely related task consisting in providing each node with a boolean value (0 or 1) such
that no two adjacent nodes are given the value 1, and every node with value 0 is adjacent
to at least one node with value 1. Proper c-coloring in Gd can actually be described by the
collection of good stars of degree d, and with nodes colored by labels in {1, . . . , c}, such
that the center node has a color different from the color of each leaf. Similarly, maximal
independent set (MIS) in Gd can be described by the collection of stars with degree d, and
with each node colored by a label in {0, 1}, such that if the center node is labeled 1 then all
the leaves are colored 0, and if the center node is labeled 0 then at least one leaf is colored 1.
Other tasks such as variants of coloring, or (2, 1)-ruling set1 can be described similarly, by a
finite number of legal labeled stars.

More generally, given a finite set L of labels, we denote by SLd the set of all labeled stars
resulting from labeling each node of the (d + 1)-node star by some label in L. A locally
checkable labeling (LCL) [16] is then defined by a finite set L of labels, and a set S ⊆ SLd .
Every star in S is called a good star, and those in SLd \ S are bad. The computing task
defined by an LCL (L,S) consists, for every node of every graph G ∈ Gd, of computing a
label in L such that every resulting labeled radius-1 star in G is isomorphic to a star in S. In
other words, the objective of every node is to compute a label in L such that every resulting
labeled radius-1 star in G is good. It is undecidable, in general, whether a given LCL task
has an algorithm performing in O(1) rounds in the LOCAL model [16].

In their full generality, LCL tasks include tasks in which nodes have inputs, potentially
of some restricted format. For instance, this is the case of the task consisting of reducing
c-coloring to MIS in the n-node cycle Cn, studied in the next section. Hence, in its full
generality, an LCL task is described by a quadruple (Lin,Sin,Lout,Sout) where Lin and Lout
are the input and output labels, respectively. The set of stars Sin can often be simply viewed
as a promise stating that every radius-1 star of the input graph G belongs to Sin, and the
set Sout is the target set of good radius-1 stars. LCL tasks also capture settings in which the
legality of the output stars depends on the inputs. A typical example of such a setting is
list-coloring where the output color of each node must belong to a list of colors given to this
node as input. The framework of LCL tasks can be extended to balls of radius r > 1, and
assuming radius 1 is not restrictive, up to increasing the size of the set of labels [3].

4 Warm Up: Coloring and MIS in the Ring

In this section, we exemplify our technique, in a way that resembles the proof of Theorem 2.
We consider an LCL task on a ring, where the legal input stars define a proper 3-coloring,
and the output stars define a maximal independent set (MIS). That is, we study the time
complexity of reducing a 3-coloring to a MIS on a ring. It is known [15] that there is a
2-round algorithm for the problem in the LOCAL model, and we show that this is optimal
using topological arguments. This toy example provides the basic concepts and arguments
that we use later, when considering general LCL tasks and proving Theorem 2.

1 Recall that an (α, β)-ruling set in a graph G = (V,E) is a set R ⊆ V such that, for any node v ∈ V
there is a node u ∈ R in distance at most β from v, and any two nodes in R are at distance at least α
from each other.
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4.1 Reduction from 3-coloring to MIS
Let us consider three consecutive nodes of the n-node ring Cn, denoted by p−1, p0, and p1,
as displayed on Figure 3.

p0 p1p-1

Figure 3 Three consecutive nodes in the n-node ring.

By the independence property, if p0 is in the MIS, then neither p−1 nor p1 can be in the
MIS, and, by the maximality property, if p0 is not in the MIS, then p−1 or p1, or both, must
be in the MIS. These constraints are captured by the complexM2 displayed on Figure 4,
including six vertices (pi, x), with i ∈ {−1, 0, 1}, and x ∈ {0, 1}, where x = 1 (resp., x = 0)
indicates that pi is in the MIS (resp., not in the MIS).

(p0,1)

(p1,0)(p-1,0)

(p-1,1)(p1,1)

(p0,0)

1

11

0 0
0

(a) (b)

p0 p1p-1

Figure 4 The local complexM2 of MIS in the ring. (a) the vertices are labeled with the index
of the processes and the values; (b) the indexes of the processes are replaced by colors.

The complexM2 of Figure 4 has four facets of dimension 2: they are triangles. Some
triangles intersect along an edge, while some others intersect only at a node. The complex
M2 is called the local complex of MIS in the ring (the index 2 refers to the fact that rings
have degree 2). Note that the sets {(p−1, 0), (p0, 0), (p1, 0)} and {(p−1, 1), (p0, 1), (p1, 1)}
do not form simplices of M2. We call these two sets monochromatic. In the objective of
reducing 3-coloring to MIS,M2 will be the output complex, corresponding to Od with d = 2
in Figure 2 and in Theorem 2.

Similarly, let us focus on 3-coloring, with the same three processes p−1, p0, and p1. The
neighborhood of p0 cannot include the same color as its own color, and thus there are twelve
possible colorings of the nodes in the star centered at p0. Each of these stars corresponds
to a 2-dimensional simplex, forming the facets of the local complex C2 of 3-coloring in the
ring, depicted in Figure 5. This complex contains nine vertices of the form (pi, c), with
i ∈ {−1, 0, 1}, and c ∈ {1, 2, 3}, and twelve facets. Note that the vertices (p−1, 3) and (p1, 3)
appear twice in the figure, since the leftmost and rightmost edges are identified, but in
opposite direction, forming a Möbius strip. C2 is a manifold (with boundary). When reducing
3-coloring to MIS, C2 will be the input complex, corresponding to Id with d = 2 in Figure 2.

Remark. It is crucial to note that the complexes displayed in Figures 4 and 5 are not the
ones used in the standard settings (e.g., [4, 11]), for which Lemma 1 would use vertices
of the form (p, x) for p ∈ [n], or even p ∈ [N ] assuming IDs in a range of N values. As



P. Fraigniaud and A. Paz 128:9

1

1

1 2

2

2

3

3

3

3

3

p0 p1p-1

Figure 5 Local complex C2 of 3-coloring in the ring.

a consequence, these complexes have 6 vertices instead of 2n!
(
N
n

)
for MIS, and 9 vertices

instead of 3n!
(
N
n

)
for coloring, where n can be arbitrarily large. Even if the IDs would have

been fixed, the approach of Lemma 1 would yield complexes with a number of vertices linear
in n, while the complexes of Figs. 4 and 5 are of constant size.

As it is well know since the early work by Linial [15], a properly 3-colored ring can be
“recolored” into a MIS in just two rounds. First, the nodes colored 3 recolor themselves 1 if
they have no neighbors originally colored 1. Then, the nodes colored 2 do the same, i.e., they
recolor themselves 1 if they have no neighbors colored 1 (whether it be neighbors originally
colored 1, or nodes that recolored themselves 1 during the first round). The nodes colored 1
output 1, and the other nodes output 0. The set of nodes colored 1 forms a MIS. Note that
this algorithm is ID-oblivious, i.e., it can run in an anonymous network.

Task specification. The specification of reducing 3-coloring to MIS can be given by the
trivial carrier map ∆ : C2 → 2M2 defined by ∆(F ) = {F ′ : F ′ is a facet ofM2} for every
facet F of C2. (As the LOCAL model is failure-free, it is enough to describe all maps at the
level of facets.) Note that the initial coloring of a facet in C2 does not induce constraints
on the facet of M2 to which it should be mapped. Figure 6 displays some of the various
commutative diagrams that will be considered in this section. In all of them, ∆ is the carrier
map specifying reduction from 3-coloring to MIS in the ring, and none of the simplicial maps
δ exist. Also recall that π is the map removing IDs.

C2,∅ C2,∅

C2 M2

Ξ0

∆

π δ

C2,∅ P(1)
2,∅

C2 M2

Ξ1

∆

π δ

C2,[24] C2,[24]

C2 M2

Ξ0

∆

π δ

C2,[R] P(1)
2,[R]

C2 M2

Ξ1

∆

π δ

Figure 6 Complexes corresponding to reduction from 3-coloring to MIS in the n-node ring. From
left to right: 0 rounds without IDs, 1-round without IDs, 0 rounds with ID, and 1-round with IDs.

4.2 ID-Oblivious Algorithms
Impossibility in Zero Rounds. Let us consider an alleged ID-oblivious algorithm alg which
reduces 3-coloring to MIS in zero rounds. Such an algorithm sees only the node’s color
c ∈ {1, 2, 3}, and must map it to some x ∈ {0, 1}. This mapping can be extended to
a mapping δ that maps every pair (pi, c) with i ∈ {−1, 0, 1} and c ∈ {1, 2, 3} to a pair
δ(pi, c) = (pj , x), j ∈ {−1, 0, 1} and x ∈ {0, 1}, with the following properties.
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Name-preservation. The mapping δ must satisfy that pj = pi, i.e., δ is name-preserving.
By the name-preserving property, the algorithm maps the vertices in Figure 5 to the
vertices in Figure 4(b) while preserving the names p−1, p0, p1 of these vertices. Therefore,
the algorithm induces a chromatic simplicial map δ : C2 →M2. (The “color” of p, i.e.,
p’s name, is preserved).
Name-independence. In addition to name-preservation, the mapping δ must satisfy that,
for every i 6= j, (pi, c) and (pj , c) are mapped to (pi, xi) and (pj , xj), respectively, with
xi = xj , i.e., δ is name-independent. Indeed, the names p−1, p0, and p1 given to the nodes
are “external”, i.e., they are not part of the input to the algorithm alg.

We are therefore questioning the existence of a name-preserving name-independent
simplicial map δ : C2 →M2. This is in correspondence to Figure 2 and Theorem 2, in the
degenerated case where t = 0 and [R] = ∅, for which C2 = I2, and C2,∅ = I2,∅ = P(0)

2,∅ = C2 –
see the leftmost diagram in Figure 6. There cannot exist a name-preserving name-independent
simplicial map δ from the manifold C2 to M2 (from Figure 5 to Figure 4(b)), which we
formally prove in the full version of the paper [9]. The intuition is that if some triangle
of C2 is mapped to the triangle {(p0, 1), (p−1, 0), (p1, 0)} ofM2 then all triangles of C2 must
be mapped to that triangle of M2, from which it follows by name-independence that all
processes output 1, or all processes output 0, which leads to contraction in both cases. The
absence of a name-independent name-preserving simplicial map δ : C2 →M2 is a witness of
the impossibility to construct a MIS from a 3-coloring of the ring in zero rounds, when using
an ID-oblivious algorithm.

Impossibility in One Round. For analyzing 1-round algorithms, let us consider the local
protocol complex P(1)

2,∅, including the views of the three nodes p−1, p0, and p1 after one round.
The vertices of P(1)

2,∅ are of the form (pi, xyz) with i ∈ {−1, 0, 1}, and x, y, z ∈ {1, 2, 3},
x 6= y, and y 6= z. The vertex (pi, xyz) is representing a process pi starting with color y, and
receiving the input colors x and z from its left and right neighbors, respectively. The facets
of P(1)

2,∅ are of the form {(p−1, x
′xy), (p0, xyz), (p1, yzz

′)}. Figure 7 displays that complex,
which consists of three connected components K1,K2, and K3 where, for y = 1, 2, 3, Ky
includes the four vertices (p0, xyz) for x, z ∈ {1, 2, 3}r {y}, and all triangles that include
these vertices. Each set of four triangles sharing a vertex (p0, xyz) forms a cone (see Figure 8).
These cones are displayed twisted on Figure 7 to emphasis the “circular structure” of the
three components.

212

121

321

131

231

121

123

131

132

313

213 312

212

312

232

132

212

213

232

231

313

213

323

123

313

312

323

321

121

323

123 321

131

232

132 2311Ƙ 2Ƙ 3Ƙ

p0 p1p-1

Figure 7 Local protocol complex P(1)
2,∅ after 1 round starting from a 3-coloring of the ring.
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Following the same reasoning as for 0-round algorithms, a 1-round algorithm alg induces
a chromatic (i.e., name-preserving) simplicial map δ : P(1)

2,∅ →M2, as in the second to left
diagram in Figure 6. In the full version, we show that such a mapping cannot exist [9].

212

121

321

121

123

212

121

123 321

121

(a) (b)

p0 p1p-1

Figure 8 (a) A cone composed of four triangles; (b) The same cone “twisted”.

The 2-Round Algorithm. The local protocol complex P(2)
2,∅ includes the views of the three

nodes p−1, p0, and p1 after two rounds. The vertices of P(2)
2,∅ are of the form (pi, c1c2c3c4c5)

with i ∈ {−1, 0, 1}, cj ∈ {1, 2, 3} for 1 ≤ j ≤ 5, and cj 6= cj+1 for 1 ≤ j < 5. Figure 9(a)
displays one of the connected components of P(2)

2,∅, denoted K323 ,which includes the four
vertices (p0, c1323c5), c1, c5 ∈ {1, 2}. There are 12 disjoint isomorphic copies of this connected
component in P(2)

2,∅, one for each triplet c2, c3, c4 ∈ {1, 2, 3}, c2 6= c3, and c3 6= c4.

1

11

0 0

0

σ00

σ01 σ10
σ11

(a) (b)

31323

21323

32323

12323

32313

32312

32323

32321

13231

23232

13
23
2 23231

p0 p1p-1

Figure 9 (a) The sub-complex K323 of the local protocol complex P(2)
2,∅. (b) The facets ofM2.

Interestingly, each connected component of P(2)
2,∅ is isomorphic to each connected compo-

nent of P(1)
2,∅, while there are more connected components in P(2)

2,∅ than in P(1)
2,∅. However,

the larger views of the processes provides more flexibility for the mapping from P(2)
2,∅ toM2

than for the mapping from P(1)
2,∅ to M2. And indeed, the 2-round anonymous algorithm

presented at the end of Section 4.1 does induce a chromatic simplicial map δ : P(2)
2,∅ →M2.

Specifically, the four sub-complexes Kx1y, as well as the simplex K232 are entirely mapped
to the simplex σ00 (see Figure 9(b) for the labeling of the four facets of M2). The two
sub-complexes K1x1 are entirely mapped to the simplex σ11. The two sub-complexes K321
and K231 are entirely mapped to the sub-complex σ01 ∪ σ11, and the two sub-complexes K123
and K132 are entirely mapped to the sub-complex σ10 ∪ σ11. The mapping of the remaining
sub-complex K323 is more sophisticated, and illustrates that the simple algorithm showing
reduction from 3-coloring to MIS in [15] is actually topologically non-trivial. Indeed, K323 is
mapped by the algorithm so that it wraps around the hole inM2, as depicted in Figure 9.
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4.3 General Case with IDs
The presence of IDs given to the nodes adds power to the distributed algorithms, as the
output of a process is not only a function of the observed colors in its neighborhood, but
also of the observed IDs. In particular, after one round, a process p is not only aware of a
triplet of colors (c1c2c3), but also of a triplet of distinct IDs (x1x2x3).

Impossibility in Zero Rounds with IDs. Since the simplicial maps δ induced by the potential
algorithms are name-preserving, they actually act on pairs (x, c) where x is an ID and c is a
color, i.e., δ(p, (x, c)) = (p, δ̂(x, c)) for some δ̂. For brevity, we identify δ̂ with δ. Let us assume
that the IDs are from {1, . . . , R}, for some R ≥ 4. That is, we consider now C2,[R] for R ≥ 4.
By the pigeon-hole principle, there exists a set I1 ⊆ {1, . . . , R} with |I1| ≥ R/2 such that, for
every x, x′ ∈ I1, δ(x, 1) = δ(x′, 1). Therefore, again by the pigeon-hole principle, there exists
a set I2 ⊆ I1 with |I2| ≥ |I1|/2 such that, for every x, x′ ∈ I2, δ(x, 2) = δ(x′, 2). Finally,
there exists a set I3 ⊆ I2 with |I3| ≥ |I2|/2 such that, for every x, x′ ∈ I3, δ(x, 3) = δ(x′, 3).
Therefore, there exists a set I ⊆ {1, . . . , R} with |I| ≥ R/8 such that, for every x, x′ ∈ I,
δ(x, 1) = δ(x′, 1), δ(x, 2) = δ(x′, 2), and δ(x, 3) = δ(x′, 3). Therefore, whenever R ≥ 24,
the set I has size at least 3. Consider the sub-complex C′2,[R] of C2,[R] induced by the three
smallest IDs in I – this sub-complex is isomorphic to C2,∅ (Figure 5). More importantly, the
mapping from C′2,[R] toM2 depends only on the colors and not on the IDs, by the choice
of I. Hence, if there was a mapping from C′2,[R] toM2, then there would exist a mapping
from C2,∅ toM2, which we know does not exist.

It follows that there are no mappings from C2,[24] = P(0)
2,[24] to M2 – see the second to

right diagram in Figure 6. In other words, if the IDs are picked from a set of at least 24
values, then 3-coloring cannot be reduced to MIS in zero rounds.

Impossibility in One Rounds with IDs. We reduce the case with IDs to the case without
IDs following the guideline introduced in [16]. We consider the 1-round protocol complex with
IDs in a finite set X with at least 5 elements, denoted by P(1)

2,X . That is, P(1)
2,X = P(1)

2,[k] with
k = |X|. The vertices of this complex are of the form (pi, (xyz, abc)) where i ∈ {−1, 0, 1},
{x, y, z} ∈

(
X
3
)
, and a, b, c ∈ {1, 2, 3} with a 6= b and b 6= c. The facets of P(1)

2,X are of the
form F = {(p−1, (x′xy, a′ab)), (p0, (xyz, abc)), (p1, (yzz′, bcc′))}. Let us assume the existence
of a name-preserving name-independent simplicial map δ : P(1)

2,X →M2 (see the rightmost
diagram in Figure 6). This map induces a labeling of the pairs (xyz, abc) with labels
in {0, 1}, where xyz is an ordered triplet of distinct IDs, and abc is an ordered triplet
of colors in {1, 2, 3}. It follows that δ induces a labeling of the ordered triplets xyz of
distinct IDs by labels in {0, 1}12, by applying δ to the 12 possible choices of color triplets.
By Ramsey’s Theorem [14], by taking the IDs in the set X = {1, . . . , R} with R large
enough, there exists a set Y of five IDs such that, for every two sets {x, y, z} and {x,′ y′, z′}
of IDs in Y , with x < y < z and x′ < y′ < z′, and for every ordered sequence abc of
colors, δ(p0, (xyz, abc)) = δ(p0, (x′y′z′, abc)). Let P(1)

2,Y be the sub-complex of the 1-round
protocol complex P(1)

2,X induced by the vertices with IDs in Y ordered in increasing order.
By construction of Y , δ is ID-oblivious on P(1)

2,Y . Now, let P
(1)
2,∅ as displayed on Figure 7. Let

us define the map δ′ : P(1)
2,∅ →M2 by δ′(pi, abc) = δ(pi, (xyz, abc)) where {x, y, z} ⊂ Y and

x < y < z. Note that δ′ is well defined as δ is ID-oblivious on Y . Assuming δ : P(1)
2,X →M2

is simplicial yields that δ′ : P(1)
2,∅ →M2 is simplicial as well. We have seen in Section 4.2

that such a simplicial mapping does not exist. It follows that there are no name-preserving
name-independent simplicial maps δ : P(1)

2,[R] →M2 whenever R is large enough (see Figure 6).
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5 Topology of LCL Tasks

Let Sd be the star of d + 1 nodes, whose center node is named p0, and the leaves are
named pi, for i = 1, . . . , d. We consider algorithms for classes G ⊆ Gd of graphs. Let
T = (Lin,Sin,Lout,Sout) be an LCL task for G ⊆ Gd. The input complex Id (resp., output
complex Od) associated with T is the complex where {(pi, xi) : i ∈ {0, . . . , d}} is a facet
of Id (resp., a facet of Od) if xi ∈ Lin (resp., Lout) for every i ∈ {0, . . . , d}, and the labeled
star resulting from assigning label xi to the node pi of Sd for every i ∈ {0, . . . , d} is in Sin
(resp., Sout). If the considered LCL task T imposes constraints on the correctness of the
outputs as a function of the inputs, as in list-coloring, then the carrier map ∆ : Id → 2Od

specifies, for each facet F ∈ Id, the facets ∆(F ) which are legal with respect to F . Otherwise,
∆(F ) = {all facets of Od}, for every facet F of Id.

Let t ≥ 0, and let us fix a graph G = (V,E) in G ⊆ Gd. In t rounds, every node in G
acquires a view w, whose structure is isomorphic to a radius-t ball in G centered at that
node, including the input labels and the IDs of the nodes in the ball. An ordered collection
w0, . . . , wd of views at distance t forms a collection of mutually compatible views for G if
there exists a graph G ∈ G, an assignment of input labels and IDs to the nodes of G, and a
star S in G, with nodes v0, . . . , vd, centered at v0, such that wi is the view of vi in G after t
rounds, for i = 0, . . . , d.

Let T be an LCL task for G ⊆ Gd, and let t ≥ 0. The t-round protocol complex associated
with T for a finite set X of IDs, is the complex P(t)

d,X where F = {(pi, wi) : i ∈ {0, . . . , d}}
is a facet of P(t)

d,X if w0, . . . , wd is an ordered collection of mutually compatible views at
distance t for G. The special case t = 0 corresponds to P(0)

d,X = Id,X where Id,X in the input
complex Id extended with IDs in X. The set X must be large enough for all the nodes in the
views wi, i = 0, . . . , d, to be provided with distinct IDs. Namely, |X| ≥ N(d, t+ 1), where
N(d, t+ 1) denotes the maximum number of nodes in the ball of radius t in a graph in G.

Two mappings from Id,X play a crucial role. The first is the simplicial map π : Id,X → Id
defined by π(pi, (id, x)) = (pi, x) for every i = 0, . . . , d, every id ∈ X, and every x ∈ Lin.
The second is the carrier map Ξt : Id,X → 2P

(t)
d,X that specifies, for each facet F ∈ Id,X , the

set Ξt(F ) of facets which may result from F after t rounds of computation in graphs in G.
Specifically, they are merely the facets of P(t)

d,X for which the views w0, . . . , wd are compatible
with the IDs and inputs of p0, . . . , pd in F .

Our main result is an analog of the generic lemma (see Lemma 1), but involving local
complexes, even for tasks defined on arbitrarily large networks, and for arbitrarily large sets
of IDs.

I Theorem 3. Let T = (Id,Od,∆) be an LCL task for G ⊆ Gd, and let t ≥ 0.
If there exists a distributed algorithm solving T in t rounds in the LOCAL model then, for
every R ≥ N(d, t+ 1), there is a name-independent and name-preserving simplicial map
δ : P(t)

d,[R] → Od such that, for every facet F ∈ Id,[R], δ(Ξt(F )) ⊆ ∆(π(F )).
There exists R ≥ N(d, t+ 1) satisfying that, if there is a name-independent and name-
preserving simplicial map δ : P(t)

d,[R] → Od such that, for every facet F ∈ Id,[R], δ(Ξt(F )) ⊆
∆(π(F )), then there is a distributed algorithm solving T in t rounds in the LOCAL model.

Proof. Let us fix an LCL task T = (Lin,Sin,Lout,Sout) = (Id,Od,∆) for G, and t ≥ 0. Let
alg be a t-round algorithm for T . For any finite set X of IDs, let δX : P(t)

d,X → Od defined by
δX(pi, wi) = (pi,alg(wi)), for every i = 0, . . . , d. By construction, δX is name-independent,
and name-preserving. To show that δX is simplicial, let F ′ = {(pi, wi) : i ∈ {0, . . . , d}} be
a facet of the protocol complex P(t)

d,X . This facet is mapped to δX(F ′) = {(pi,alg(wi)) :
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i ∈ {0, . . . , d}}. Since alg solves T , every output alg(wi) is in Lout, and the labeled star
resulting from assigning label alg(wi) to the node pi of the star Sd, for every i ∈ {0, . . . , d},
is in Sout. It follows that δX(F ′) is a facet of Od, and thus δX is simplicial. Moreover, if
the facet F ′ belongs to the image Ξt(F ) of a facet F of Id,X , since alg solves T , it follows
that δX(F ′) ∈ ∆(π(F )) as desired. So, the existence of an algorithm alg guarantees the
existence of a simplicial map δX satisfying the requirements of the theorem for every large
enough set X of IDs.

We now show that, to guarantee the existence of an algorithm, it is sufficient to guarantee
the existence of a simplicial map δX just for one specific set X = [R]. In order to identify R,
we follow the same guideline as the specific impossibility proof in Section 4.3, using Ramsey’s
theorem. Note that the number of possible balls of radius t in graphs of G is finite, and
depends only on t and d. Given such a ball B, there are finitely many ways of assigning
input labels to the vertices of B. The number of assignments depends only on the structure
of B, and on |Lin|. (It may also depend on Sin, but in the worst case, all assignments are
possible.) Let us enumerate all the labeled balls in G as B(1), . . . , B(k). The number k of
such labeled balls depends only on d, t, and |Lin|. (It may also depend on G, but it is upper
bounded by a function of d, t, and |Lin|.)

For every labeled ball B(i), i = 1, . . . , k, let νi = |B(i)|. Let us rank the vertices of
B(i) arbitrarily from 1 to νi, and let Σi be the set of all permutations of {1, . . . , νi}. To
every π ∈ Σi corresponds a labeled ball B(i)

π in which the rank of the vertices is determined
by π. Now, let X be a finite set of IDs with |X| ≥ N(d, t + 1). We consider all possible
identity-assignments with IDs in X to the nodes of the labeled balls with ranked vertices,
B

(i)
π , i = 1, . . . , k, π ∈ Σi, as follows. For every S ⊆ X with |S| = N(d, t), let us order the

IDs in S in increasing order. Given a ranked labeled ball B(i)
π , i.e., a labeled ball B(i) whose

vertices are ranked by some permutation π ∈ Σi, the IDs in S are assigned to the nodes of
B

(i)
π by assigning the jth smallest ID in S to the node ranked π(j) in B(i)

π , for j = 1, . . . , νi.
By picking all i = 1, . . . , k, all π ∈ Σi, and all S ⊆ X, we obtain all possible views resulting
from performing a t-round algorithm in G with IDs taken from X. Let us order these views
as w(1), . . . , w(h), where the views induced by B(1) are listed first, then the views induced by
B(2), etc., until the views induced by B(k). Moreover, for a given i ∈ {1, . . . , k}, the views
corresponding to the labeled ball B(i) are listed according to the lexicographic order of the
permutations in Σi. Note that the number h of views depends only on d, t, |Lin|, and |X|.
Each set S is then “colored” by

c(S) = (δX(p0, w
(1)), . . . , δX(p0, w

(h))) ∈ {1, . . . , |Lout|}h.

In this way, the set
(

X
N(d,t)

)
is partitioned into |Lout|h classes. Thanks to Ramsey’s Theorem,

by taking set

X = [R] with R = R(a, b, c) for a = |Lout|h, and b = c = N(d, t+ 1),

we are guaranteed that there exists a set Y of at least N(d, t+1) IDs such that every two sets
S and S′ of N(d, t) IDs in Y are given the same color c(S) = c(S′). In other words, for any
ball B of radius t in a graph from G, and for every valid assignment of inputs values to the
nodes of B, if one assigns the IDs in S and S′ in the same manner (i.e., the ith smallest ID
of S is assigned to the same node as the ith smallest ID of S′), then δX(p0, w) = δX(p0, w

′),
where w and w′ are the views resulting from assigning IDs from S and S′ to the nodes,
respectively.
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Now, let us define the following t-round algorithm alg for T . Actually, this is precisely
the order-invariant algorithm constructed in [16]. Every node v collects the data available in
its centered ball B = BG(v, t) of radius t in the actual graph G ∈ G. Note that B contains
IDs, and input values. Node v reassigns the IDs to the nodes of B by using the |B| smallest
IDs in Y , and assigning these IDs to the nodes of B in the order respecting the order of the
actual IDs assigned to the nodes of B. Then node v considers the view w after reassignment
of the IDs, and outputs alg(w) = δX(p0, w). Note that δX returns values in Lout, and thus
alg is well defined.

To show correctness, let us consider a star v0, . . . , vd centered at v0 in some graph G ∈ G.
Performing alg in G, each of these d + 1 nodes acquires a view of radius t. These views
are mutually compatible. Let us reassign the IDs in the ball of radius t + 1 centered at
v0 in G, using the at most N(d, t + 1) smallest IDs in Y , and assigning these IDs to the
nodes of the ball B of radius t + 1 centered at v0, in the order respecting the order of
the actual IDs assigned to the nodes of B. The resulting views w0, . . . , wd of the d + 1
nodes v0, . . . , vd remain mutually compatible. It follows that if these d + 1 nodes would
output δX(p0, w0), . . . , δX(pd, wd), respectively, then the resulting star would be good. We
claim that this is exactly what occurs with alg. Indeed, first, δX is name-independent,
and thus δX(p0, w) = δX(pi, w) for every i = 1, . . . , d. Second, and more importantly, by
the construction of Y , the actual values of the IDs do not matter, but solely their relative
order. The reassignment of IDs performed at each of the nodes v0, . . . , vd is different from the
reassignment of IDs in the ball B of radius t+ 1 around v0, but the relative order of these IDs
is preserved as it is governed by the relative order of the original IDs in B. As a consequence,
the nodes of Sd correctly output δX(p0, w0), . . . , δX(pd, wd) in alg, as desired. J

To illustrate Theorem 3, we reprove the celebrated result by Linial [15] regarding 3-
coloring the n-node ring in at least 1

2 log∗ n − 1 rounds (see also [2, 3, 13]), which can be
obtained by iterating Corollary 4.

I Corollary 4. Let t ≥ 1, k ≥ 2, n ≥ 1, and N ≥ n. If there is a t-round algorithm for
k-coloring Cn = (v1, . . . , vn) whenever the IDs in [N ] are assigned to consecutive nodes
vi, vi+1, i ∈ {1, . . . , n− 1}, in increasing order of their indices, then there is a (t− 1)-round
algorithm for 22k -coloring Cn under the same constraints of the identity assignment.

Proof. Our aim is to find δt−1 : P(t−1)
[R] → O22k where O22k is the output complex for 22k -

coloring Cn. For this purpose, we follows the approach illustrated on Figure 10. That is, first,
we identify a functor Φ on a category corresponding to a subclass of simplicial complexes. From
the simplicial map δt : P(t)

[R] → Ok, we derive the simplicial map Φ(δt) : Φ(P(t)
[R]) → Φ(Ok).

Then we show that Φ(Ok) ⊆ O22k , and therefore Φ(δt) maps Φ(P(t)
[R]) to O22k . Finally, we

identify a simplicial map f : P(t−1)
[R] → Φ(P(t)

[R]) enabling to conclude that δt−1 : P(t−1)
[R] → O22k

defined by δt−1 = Φ(δt) ◦ f satisfies the hypotheses of Theorem 3, showing the existence of a
(t− 1)-round algorithm for 22k -coloring Cn.

More specifically, given any complex K with vertices (pi, v) with i ∈ {−1, 0, 1}, and v ∈ V
where V is a finite set of values, we define the functor Φ as follows. The complex Φ(K) is
on the set of vertices (pi,S) where S = {S1, . . . , S`} for some ` ≥ 0, and Si ⊆ V for every
i = 1, . . . , `. A set {(p−1,S−1), (p0,S0), (p1,S1)} forms a facet of Φ(K) if for every i ∈ {0, 1},

∃S ∈ Si−1 ∀S′ ∈ Si ∃v′ ∈ S′ ∀v ∈ S : {(pi−1, v), (pi, s′)} ∈ K. (1)
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P(t)
[R] Φ(P(t)

[R]) P(t−1)
[R]

Ok Φ(Ok) ⊆ O22k

Φ

Φ

δt

f

δt−1
Φ(δt)

Figure 10 Commutative diagrams in the proof of Corollary 4.

Given a simplicial map ψ : A → B the map Φ(ψ) is defined as

Φ(ψ)(pi,S) =
(
pi,
{{
π2◦ψ(pi, v1,1), . . . , π2◦ψ(v1,s1)

}
, . . . ,

{
π2◦ψ(v`,1), . . . , π2◦ψ(v`,s`

)
}})

for every i = {−1, 0, 1}, and every S = {S1, . . . , S`} with Sj = {vj,1, . . . , vj,sj
} and sj ≥ 0,

where π2 : B → V is the mere projection π2(pi, v) = v for every value v. By construction,
Φ(ψ) : Φ(A) → Φ(B) is simplicial. Note that if ψ is name-invariant and name-preserving,
then Φ(ψ) as well.

Next, we observe that Φ(Ok) is a sub-complex of O22k . To see why, note first that Φ
maps vertices of Ok to vertices of O22k . Moreover, a facet F = {(p−1,S−1), (p0,S0), (p1,S1)}
of Φ(Ok) is a facet of O22k . Indeed, Eq. (1) guarantees that there exists a set S in S−1
such that for every set S′ in S0, there exists a color v′ in S′ that is different from all the
colors in S. It follows that S /∈ S0, and therefore S−1 6= S0. By the same argument,
S0 6= S1, and thus F is a facet of O22k , as claimed. Finally, we define the simplicial
map f : P(t−1)

[R] → Φ(P(t)
[R]) as follows. Let us consider a vertex (pi, w) ∈ P(t−1)

[R] , with
w = (z−(t−1), . . . , z−1, z0, z1, . . . , zt−1) ∈ [R]2t−1 with z−(t−1) < · · · < zt−1. For every b ∈ [R]
with b > zt−1, let W b

i = {awb : a ∈ [R], a < z−(t−1)}, and let Wi = {W b
i : b ∈ [R], b > zt−1}.

We set f(pi, w) = (pi,Wi). This mapping maps every vertex of P(t−1)
[R] to a vertex of Φ(P(t)

[R]).
Let us show that f is simplicial. For this purpose, let us consider a facet

F = {(p−1, x
′xw), (p0, xwy), (p1, wyy

′)}

of P(t−1)
[R] . Here w = (z−(t−2), . . . , z−1, z0, z1, . . . , zt−2) ∈ [R]2t−3 with x′ < x < z−(t−2) <

· · · < zt−2 < y < y′. Let us consider the two sets W y
−1 ∈W−1 and W y′

0 ∈W0. We claim
that these are the two sets witnessing the validity of Eq. (1) for establishing the fact that f(F )
is a facet of Φ(P(t)

[R]). To see why, let W b
0 ∈ W0, and let x′xwyb ∈ W b

0 . The view ax′xwy

for p−1 is compatible with the view x′xwyb for p0, for every a < x′. Therefore, for every set
W b

0 ∈W0, there exists a view x′xwyb ∈W b
0 such that, for every view ax′xwy ∈W y

−1,

{(p−1, ax
′xwy), (p0, x

′xwyb)} ∈ P(t)
[R].

Hence Eq. (1) is satisfied for p−1 and p0. By the same arguments, using W y′

0 instead of W y
−1,

Eq. (1) is satisfied for p−1 and p0, from which it follows that f(F ) is a facet of Φ(P(t)
[R]). We

conclude that f is simplicial. Since both f and Φ(δ) are simplicial, the map δ′ = Φ(δ) ◦ f is
simplicial too, which completes the proof by application of Theorem 3. J

6 Conclusion and Further Work

This paper shows that the study of algorithms for solving LCL tasks in the LOCAL model can
be achieved by considering simplicial complexes whose sizes are independent of the number of
nodes, and independent of the number of possible IDs that could be assigned to these nodes.
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Two main directions for further work can be identified. A first direction is understanding
topological properties of the carrier map Ξt : Id,X → P(t)

d,X occurring in the LOCAL model
depending on the network. Another direction is understanding what governs the existence of
the simplicial map δ : P(t)

d,X → O depending on the considered task.
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Abstract
We study the problem of verifying differential privacy for loop-free programs with probabilistic choice.
Programs in this class can be seen as randomized Boolean circuits, which we will use as a formal
model to answer two different questions: first, deciding whether a program satisfies a prescribed
level of privacy; second, approximating the privacy parameters a program realizes. We show that
the problem of deciding whether a program satisfies ε-differential privacy is coNP#P-complete. In
fact, this is the case when either the input domain or the output range of the program is large.
Further, we show that deciding whether a program is (ε, δ)-differentially private is coNP#P-hard,
and in coNP#P for small output domains, but always in coNP#P#P

. Finally, we show that
the problem of approximating the level of differential privacy is both NP-hard and coNP-hard.
These results complement previous results by Murtagh and Vadhan [35] showing that deciding the
optimal composition of differentially private components is #P-complete, and that approximating
the optimal composition of differentially private components is in P.
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1 Introduction

Differential privacy [22] is currently making significant strides towards being used in large
scale applications. Prominent real-world examples include the use of differentially private
computations by the US Census’ OnTheMap project1, applications by companies such as
Google and Apple [24, 36, 4, 18], and the US Census’ plan to deploy differentially private
releases in the upcoming 2020 Decennial [1].

1 https://onthemap.ces.census.gov
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More often than not, algorithms and their implementations are analyzed “on paper”
to show that they provide differential privacy. This analysis – a proof that the outcome
distribution of the algorithm is stable under the change in any single individual’s information
– is often intricate and may contain errors (see [32] for an illuminating discussion about several
wrong versions of the sparse vector algorithm which appeared in the literature). Moreover,
even if it is actually differentially private, an algorithm may be incorrectly implemented when
used in practice, e.g., due to coding errors, or because the analysis makes assumptions which
do not hold in finite computers, such as the ability to sample from continuous distributions
(see [34] for a discussion about privacy attacks on naive implementations of continuous
distributions). Verification tools may help validate, given the code of an implementation, that
it would indeed provide the privacy guarantees it is intended to provide. However, despite
the many verification efforts that have targeted differential privacy based on automated or
interactive techniques (see, e.g.,[37, 9, 40, 25, 7, 44, 6, 2, 14, 15]), little is known about the
complexity of some of the basic problems in this area. Our aim is to clarify the complexity
of some of these problems.

In this paper, we consider the computational complexity of determining whether pro-
grams satisfy (ε, δ)-differential privacy. The problem is generally undecidable, and we hence
restrict our attention to probabilistic loop-free programs, which are part of any reasonable
programming language supporting random computations. To approach this question form-
ally, we consider probabilistic circuits. The latter are Boolean circuits with input nodes
corresponding both to input bits and to uniformly random bits (“coin flips”) where the latter
allow the circuit to behave probabilistically (see Figure 1). We consider both decision and
approximation versions of the problem, where in the case of decision the input consists of
a randomized circuit and parameters ε, δ and in the case of approximation the input is a
randomized circuit, the desired approximation precision, and one of the two parameters ε, δ.
In both cases, complexity is measured as function of the total input length in bits (circuit
and parameters).

Previous works have studied the complexity of composing differentially private components.
For any k differentially private algorithms with privacy parameters (ε1, δ1), . . . , (εk, δk), it is
known that their composition is also differentially private [22, 23, 35], making composition
a powerful design tool for differentially private programs. However, not all interesting
differentially private programs are obtained by composing differentially private components,
and a goal of our work is to understand what is the complexity of verifying that full programs
are differentially private, and how this complexity differs from the one for programs which
result of composing differentially private components.

Regarding the resulting parameters, the result of composing the k differentially private
algorithms above results in (εg, δg)-differentially private for a multitude of possible (εg, δg)
pairs. Murtagh and Vadhan showed that determining the minimal εg given δg is #P-
complete [35]. They also gave a polynomial time approximation algorithm that computes εg
to arbitrary accuracy, giving hope that for “simple” programs deciding differential privacy or
approximating of privacy parameters may be tractable. Unfortunately, our results show that
this is not the case.

1.1 Contributions

Following the literature, we refer to the variant of differential privacy where δ = 0 as pure
differential privacy and to the variant where δ > 0 as approximate differential privacy. We
contribute in three directions.
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Bounding pure differential privacy. We show that determining whether a randomized
circuit is ε-differentially private is coNP#P-complete.2 To show hardness in coNP#P we
consider a complement to the problem E-Maj-Sat [31], which is complete for NP#P [13].
In the complementary problem, All-Min-Sat, given a formula φ over n+m variables
the task is to determine if for all allocations x ∈ {0, 1}n, φ(x,y) evaluates to true on no
more than 1

2 of allocations to y ∈ {0, 1}m.
Bounding approximate differential privacy. Turning to the case where δ > 0, we
show that determining whether a randomized circuit is (ε, δ)-differentially private is
coNP#P-complete when the number of output bits is small relative to the total size of
the circuit and otherwise between coNP#P and coNP#P#P

.
Approximating the parameters ε and δ. Efficient approximation algorithms exist
for optimal composition [35], and one might expect the existence of polynomial time
algorithms to approximate ε or δ in randomized circuits. We show this is NP-hard and
coNP-hard, and therefore an efficient algorithm does not exist (unless P = NP).
Our results show that for loop-free programs with probabilistic choice directly verifying

whether a program is differentially private is intractable. These results apply to programs in
any reasonable programming language supporting randomized computations. Hence, they
set the limits on where to search for automated techniques for these tasks.

The relation to quantitative information flow

Differential privacy shares similarities with quantitative information flow [17, 27], which is an
entropy-based theory measuring how secure a program is. Alvim et al. [3] showed that a bound
on pure differential privacy implies a bound on quantitative information flow. So, one could
hope that bounding differential privacy could be easier than bounding quantitative information
flow. Yasuoka and Terauchi [42] have shown that bounding quantitative information flow
for loop free boolean programs with probabilistic choice is PP-hard (but in PSPACE).
In contrast, our results show that bounding pure differential privacy is coNP#P-complete.
Chadha et al. [11] showed the problem to be PSPACE-complete for boolean programs with
loops and probabilistic choice (notice that this would be not true for programs with integers).
We leave the analogous question for future works.

2 Preliminaries

Numbers

By a number given as a rational we mean a number of the form x
y where x, y are given as

binary integers.

2.1 Loop-free probabilistic programs
We consider a simple loop-free imperative programming language built over Booleans, and
including probabilistic choice.

x ::= [a−z]+ (variable identifiers)
b ::= true | false | random | x | b ∧ b | b ∨ b | ¬b (boolean expressions)
c ::= SKIP | x := b | c; c | if b then c else c (commands)
t ::= x | t, x (list of variables)
p ::= input(t); c; return(t) (programs)

2 The class coNP#P is contained in PSPACE and contains the polynomial hierarchy (as, per Toda’s
Theorem, PH ⊆ P#P).

ICALP 2020



129:4 The Complexity of Verifying Loop-Free Programs as Differentially Private

In
pu

t

C
oi

n
Fl

ip
s

O
ut

pu
t

Boolean Circuit
Randomized Circuit

Figure 1 Example randomized circuit.

Probabilistic programs [30] extend standard programs with the addition of coin tosses; this
is achieved by the probabilistic operation random, which returns either true or false with
equal probability. A standard operation, sometimes denoted by c⊕ c, which computes one
of the two expressions with probability 1

2 each is achieved with if random then c else c.
The notation c⊕ c is avoided as ⊕ refers to exclusive or in this paper.

The semantics of the programming language are standard and straight forward. Without
loss of generality, each variable assignment is final, that is, each assignment must go to a fresh
variable. Looping behaviour is not permitted, although bounded looping can be encoded by
unrolling the loop.

I Remark 1. Our results also hold when the language additionally supports integers and the
associated operations (e.g. +,×,−,≥,= etc.), providing the integers are of a bounded size.
Such a language is equally expressive as the language presented here. Further details are
given in the full version of the paper.

2.2 Probabilistic circuits

I Definition 2. A Boolean circuit ψ with n inputs and ` outputs is a directed acyclic graph
ψ = (V,E) containing n input vertices with zero in-degree, labeled X1, . . . , Xn and ` output
vertices with zero out-degree, labeled O1, . . . , O`. Other nodes are assigned a label in {∧,∨,¬},
with vertices labeled ¬ having in-degree one and all others having in-degree two. The size of
ψ, denoted |ψ|, is defined to be |V |. A randomized circuit has m additional random input
vertices labeled R1, . . . , Rm.

Given an input string x = (x1, . . . , xn) ∈ {0, 1}n, the circuit is evaluated as follows.
First, the values x1, . . . , xn are assigned to the nodes labeled X1, . . . , Xn. Then, m bits
r = (r1, . . . , rm) are sampled uniformly at random from {0, 1}m and assigned to the nodes
labeled R1, . . . , Rm. Then, the circuit is evaluated in topological order in the natural way.
E.g., let v be a node labeled ∧ with incoming edges (u1, v), (u2, v) where u1, u2 were assigned
values z1, z2 then v is assigned the value z1 ∧ z2. The outcome of ψ is (o1, . . . , o`), the
concatenation of values assigned to the ` output vertices O1, . . . , O`.
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For input x ∈ {0, 1}n and event E ⊆ {0, 1}` we have

Pr[ψ(x) ∈ E] = |{r ∈ {0, 1}
m : ψ(x, r) ∈ E}|

2m .

I Remark 3. The operators, ∧,∨ and ¬ are functionally complete. However, we will also use
⊕ (exclusive or), such that p⊕ q ⇐⇒ (p ∨ q) ∧ ¬(p ∧ q).

2.3 Equivalence of programs and circuits

I Lemma 4. A loop-free probabilistic program can be converted into an equivalent probabilistic
boolean circuit in linear time in the size of the program (and vice-versa).

Proof sketch. It is clear that a probabilistic circuit can be expressed as a probabilistic
program using just boolean operations by expressing a variable for each vertex after sorting
the vertices in topological order.

To convert a probabilistic Boolean program into a probabilistic circuit, each of the
commands can be handled using a fixed size sub-circuit, each of which can be composed
together appropriately. J

Given the equivalence between loop-free probabilistic programs and probabilistic circuits,
the remainder of the paper will use probabilistic circuits.

2.4 Differential privacy in probabilistic circuits

Let X be any input domain. An input to a differentially private analysis would generally be
an array of elements from a data domain X, each corresponding to the information of an
individual, i.e., x = (x1, . . . , xn) ∈ Xn.

The definition of differential privacy depends on adjacency between inputs, we define
neighboring inputs.

I Definition 5. Inputs x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
n) ∈ Xn are called neighboring

if there exist i ∈ [n] s.t. if j 6= i then xj = x′
j.

In this work, we will consider input domains with finite representation. Without loss
of generality we set X = {0, 1}k and hence an array x = (x1, . . . , xn) can be written as a
sequence of nk bits, and given as input to a (randomized) circuit with nk inputs. Our lower
bounds work already for for k = 1 and our upper bounds are presented using k = 1 but
generalise to all k.

I Definition 6 (Differential Privacy [22, 21]). A probabilistic circuit ψ is (ε, δ)-differentially
private if for all neighboring x,x′ ∈ Xn and for all E ⊆ {0, 1}`,

Pr[ψ(x) ∈ E] ≤ eε · Pr[ψ(x′) ∈ E] + δ.

Following common use, we refer to the case where δ = 0 as pure differential privacy and
to the case where δ > 0 as approximate differential privacy. When omitted, δ is understood
to be zero.
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2.5 Problems of deciding and approximating differential privacy
We formally define our three problems of interest.

I Definition 7. The problem Decide-ε-DP asks, given ε and ψ, if ψ is ε-differentially
private. We assume ε is given by the input eε as a rational number.

I Definition 8. The problem Decide-ε, δ-DP asks, given ε, δ and ψ, if ψ is (ε, δ)-
differentially private. We assume ε is given by the input eε as a rational number.

I Definition 9. Given an approximation error γ > 0, the Approximate-δ problem and the
Approximate-ε problem, respectively, ask:

Given ε, find δ̂ ∈ [0, 1], such that 0 ≤ δ̂ − δ ≤ γ, where δ is the minimal value such that
ψ is (ε, δ)-differentially private.
Given δ, find ε̂ ≥ 0, such that 0 ≤ ε̂− ε ≤ γ, where ε is the minimal value such that ψ is
(ε, δ)-differentially private.

2.6 The class coNP#P

The complexity class #P is the counting analogue of NP problems. In particular #Sat, the
problem of counting the number of satisfying assignments of a given a boolean formula φ
on n variables, is complete for #P. Similarly #CircuitSat, the problem of counting the
satisfying assignments of a circuit with a single output, is complete for #P.

A language L is in coNP#P if membership in L can be refuted using a polynomial
time non-deterministic Turing machine with access to a #P oracle. It is easy to see that
coNP#P = coNPPP, and PH ⊆ coNP#P ⊆ PSPACE, where PH ⊆ coNP#P follows
by Toda’s theorem (PH ⊆ P#P) [39].

The following decision problem is complete for NP#P [13]:

I Definition 10. E-Maj-Sat asks, given φ a quantifier free formula over n+m variables if
there exist an allocation x ∈ {0, 1}n such that there are strictly greater than 1

2 of allocations
to y ∈ {0, 1}m where φ(x,y) evaluates to true.

The complementary problem All-Min-Sat, is complete for coNP#P: a formula φ is
All-Min-Sat, if φ is not E-Maj-Sat. That is, φ a quantifier free formula over n + m

variables is All-Min-Sat if for all allocations x ∈ {0, 1}n there are no more than 1
2 of

allocations to y ∈ {0, 1}m where φ(x,y) evaluates to true.

3 The complexity of deciding pure differential privacy

In this section we classify the complexity of deciding ε-differential privacy, for which we show
the following theorem:

I Theorem 11. Decide-ε-DP is coNP#P-complete.

It will be convenient to consider the well-known simpler reformulation of the definition of
pure differential privacy in finite ranges to consider specific outcomes o ∈ {0, 1}` rather than
events E ⊆ {0, 1}`.

I Reformulation 12 (Pure differential privacy). A probabilistic circuit ψ is ε-differentially
private if and only if for all neighboring x,x′ ∈ Xn and for all o ∈ {0, 1}`,

Pr[ψ(x) = o] ≤ eε · Pr[ψ(x′) = o].
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3.1 Decide-ε-DP is in coNP#P

We show a non-deterministic Turing machine which can “refute” ψ being ε-differentially
private in (non-deterministic) polynomial time with a #P oracle. A circuit ψ is shown
not to be ε-differentially private by exhibiting a combination x,x′,o such that Pr[ψ(x) =
o] > eε · Pr[ψ(x′) = o]. The witness to the non-deterministic Turing machine would be a
sequence of 2n bits parsed as neighboring inputs x,x′ ∈ {0, 1}n and ` bits describing an
output o ∈ {0, 1}`. The constraint can then be checked in polynomial time, using the #P
oracle to compute Pr[ψ(x) = o] and Pr[ψ(x′) = o].

To compute Pr[ψ(x) = o] in #P we create an instance to #CircuitSat, which will
count the number of allocations to the m probabilistic bits consistent with this output. We
do this by extending ψ with additional gates reducing to a single output which is true only
when the input is fixed to x and the output of ψ was o.

3.2 coNP#P-hardness of Decide-ε-DP
To show coNP#P-hardness of Decide-ε-DP we show a reduction from All-Min-Sat in
Lemma 14; together with the inclusion result above, this entails that Decide-ε-DP is
coNP#P-complete (Theorem 11).

Randomized response [41] is a technique for answering sensitive Yes/No questions by
flipping the answer with probability p ≤ 0.5. Setting p = 1

1+eε gives ε-differential privacy.
Thus p = 0 gives no privacy and p = 0.5 gives total privacy (albeit no utility).

I Definition 13 (Randomized Response).

RRε(x) =
{
x w.p. eε

1+eε

¬x w.p. 1
1+eε

I Lemma 14. All-Min-Sat reduces in polynomial time to Decide-ε-DP.

Proof. We will reduce from All-Min-Sat to Decide-ε-DP using randomized response. We
will take a boolean formula φ and create a probabilistic circuit that is ε-differentially private
if and only if φ is All-Min-Sat.

Consider the circuit ψ which takes as input the value z ∈ {0, 1}. It probabilistically
chooses a value of x ∈ {0, 1}n and y ∈ {0, 1}m and one further random bit p1 and computes
b = z ⊕ ¬(p1 ∨ φ(x,y)). The circuit outputs (x, b).

B Claim 15. ψ is ln(3)-differentially private if and only if φ is All-Min-Sat.

Suppose φ ∈ All-Min-Sat then, no matter the choice of x,

0 ≤ Pr
y

[φ(x,y) = 1] ≤ 1
2 ,

and hence

1
4 ≤ Pr

y,p1
[¬(p1 ∨ φ(x,y)) = 1] ≤ 1

2 .

We conclude the true answer z is flipped between 1
4 and 1

2 of the time, observe this is
exactly the region in which randomized response gives us the most privacy. In the worst case
p = 1

4 = 1
1+eε , gives eε = 3, so ln(3)-differential privacy.
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In the converse, suppose φ ∈ E-Maj-Sat, then for some x
1
2 < Pr

y
[φ(x,y) = 1] ≤ 1,

and then

Pr
y,p1

[¬(p1 ∨ φ(x,y)) = 1] < 1
4 ,

in which case the randomized response does not provide ln(3)-differential privacy. J

I Remark 16. We skew the result so that in the positive case (when φ ∈ All-Min-Sat)
the proportion of accepting allocations is between 1

4 and 1
2 , resulting in the choice of ln(3)-

differentially privacy. Alternative skews, using more bits akin to p1, shows hardness for other
choices of ε.

Hardness by circuit shape
In our proof of the upper-bound we use coNP to resolve the non-deterministic choice of
both input and output. We show this is necessary in the sense coNP is still required for
either large input or large output. The hardness proof used in Lemma 14 shows that when
|ψ| = n the problem is hard for Ω(1)-bit input and Ω(n)-bit output.

We can also prove this is hard for Ω(n)-bit input and Ω(1)-bit output. Intuitively a
counter example to differential privacy has two choices: a pair of adjacent input and a
given output upon which the relevant inequality will hold. So to “refute” All-Min-Sat
the counterexample of the All choice (i.e. x) can be selected in the input, rather than the
output as in our case. Since the input is now non-trivial we must take care of what happens
when the adjacent bit is in the choice of x. Details are given in the full version.

Further the problem is in P#P for O(log(n))-bit input and O(log(n))-bit output, as in
this case, the choices made by coNP can instead be checked deterministically in polynomial
time. In this case we show PP-hardness, which applies even when there is 1-bit input and
1-bit output.

4 On the complexity of deciding approximate differential privacy

It is less clear whether deciding (ε, δ)-differential privacy can be done in coNP#P. First we
consider restrictions to the shape of the circuit so that coNP#P can be recovered, and then
show that in general the problem is in coNP#P#P

.
Recall that in the case of ε-differential privacy it was enough to consider singleton events

{o} where o ∈ {0, 1}`, however in the definition of (ε, δ)-differential privacy we must quantify
over output events E ⊆ {0, 1}`. If we consider circuits with one output bit (` = 1), then
the event space essentially reduces to E ∈ {∅, {0}, {1}, {0, 1}} and we can apply the same
technique.

We expand this to the case when the number of outputs bits is logarithmic ` ≤ log(|ψ|).
To cater to this, rather than guessing a violating E ∈ {0, 1}`, we consider a violating subset
of events E ⊆ {0, 1}`. Given such an event E we create a circuit ψE on ` inputs and a
single output which indicates whether the input is in the event E. The size of this circuit is
exponential in `, thus polynomial in |ψ|. Composing ψE ◦ ψ, we check the conditions hold
for this event E, with just one bit of output.

B Claim 17. Decide-ε, δ-DP, restricted to circuits ψ with ` bit outputs where ` ≤ log(|ψ|),
is in coNP#P (and hence coNP#P-complete).

The claim trivially extends to ` ≤ c · log(|ψ|) for any fixed c > 0.
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4.1 Decide-ε, δ-DP is in coNP#P#P

We now show that Decide-ε, δ-DP in the most general case can be solved in coNP#P#P
.

We will assume eε = α is given as a rational, with α = u
v for some integers u and v. Recall

we use n, ` and m to refer to the number of input, output and random bits of a circuit
respectively. While we will use non-determinism to choose inputs leading to a violating event,
unlike in Section 3 it would not be used for finding a violating event E, as an (explicit)
description of such an event may be of super-polynomial length. It would be useful for us to
use a reformulation of approximate differential privacy, using a sum over potential individual
outcomes.

I Reformulation 18 (Pointwise differential privacy [7]). A probabilistic circuit ψ is (ε, δ)-
differentially private if and only if for all neighboring x,x′ ∈ Xn and for all o ∈ {0, 1}`,∑

o∈{0,1}`

δx,x′(o) ≤ δ,

where δx,x′(o) = max (Pr[ψ(x) = o]− eε · Pr[ψ(x′) = o], 0) .

We defineM, a non-deterministic Turing Machine with access to a #P-oracle, and where
each execution branch runs in polynomial time. On inputs a probabilistic circuit ψ and
neighboring x,x′ ∈ Xn the number of accepting executions ofM would be proportional to∑

o∈{0,1}` δx,x′(o).
In more detail, on inputs ψ, x and x′, M chooses o ∈ {0, 1}` and an integer C ∈

{1, 2, . . . , 2m+dlog(v)e} (this requires choosing `+m+ dlog(v)e bits). Through a call to the
#P oracle,M computes

a = |{r ∈ {0, 1}m : ψ(x, r) = o}|

and

b = |{r ∈ {0, 1}m : ψ(x′, r) = o}| .

Finally,M accepts if v · a− u · b ≥ C and otherwise rejects.

I Lemma 19. Given two inputs x,x′ ∈ Xn,M(ψ,x,x′) has exactly v ·2m
∑

o∈{0,1}` δx,x′(o)
accepting executions.

Proof. Let 1{X} be the indicator function, which is one if the predicate X holds and zero
otherwise.

v · 2m
∑

o∈{0,1}`

δx,x′ (o) =
∑

o∈{0,1}`

v · 2m max
(
Pr[ψ(x) = o]− αPr[ψ(x′) = o], 0

)

=
∑

o∈{0,1}`

v2m max

 1
2m

∑
r∈{0,1}m

1{ψ(x, r) = o} − α 1
2m

∑
r∈{0,1}m

1
{
ψ(x′, r) = o

}
, 0


=

∑
o∈{0,1}`

max

v ∑
r∈{0,1}m

1{ψ(x, r) = o} − vα
∑

r∈{0,1}m

1
{
ψ(x′, r) = o

}
, 0
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. . . =
∑

o∈{0,1}`

max

v ∑
r∈{0,1}m

1{ψ(x, r) = o} − u
∑

r∈{0,1}m

1
{
ψ(x′, r) = o

}
, 0


=

∑
o∈{0,1}`

2dlog(v)e+m∑
C=1

1

max

v ∑
r∈{0,1}m

1{ψ(x, r) = o} − u
∑

r∈{0,1}m

1
{
ψ(x′, r) = o

}
, 0

 ≥ C


= number of accepting executions in M̂ J

We can now describe our coNP#P#P
procedure for Decide-ε, δ-DP. The procedure

takes as input a probabilistic circuit ψ.
1. Non-deterministically choose neighboring x and x′ ∈ {0, 1}n (i.e., 2n bits).
2. LetM be the non-deterministic Turing Machine with access to a #P-oracle as described

above. Create a machine M̂ with no input that executesM on ψ,x,x′.
3. Make an #P#P oracle call for the number of accepting executions M̂ has.
4. Reject if the number of accepting executions is greater than v ·2m · δ and otherwise accept.

By Lemma 19, there is a choice x,x′ on which the procedure rejects if and only if ψ is
not (ε, δ)-differentially private.

4.2 Hardness
Theorem 11 shows that Decide-ε-DP is coNP#P-complete, in particular coNP#P-hard
and since Decide-ε-DP is a special case of Decide-ε, δ-DP, this is also coNP#P-hard.
Nevertheless the proof is based on particular values of ε and in the full version we provide
an alternative proof of hardness based on δ. This proof result will apply for any ε (even for
ε = 0) and for a large range of δ (but not δ = 0).

The proof proceeds by first considering the generalisation of All-Min-Sat to the version
where minority, i.e. less than 1

2 of the assignments, is replaced with another threshold. This
problem is also coNP#P-hard for a range of thresholds. Note however, if this threshold is
exactly 1 the problem is true for all formulae, and if the threshold is 0 the problem is simply
asks if the formula is unsatisfiable (a coNP problem).

This generalised problem can then be reduced to deciding Decide-ε, δ-DP, where the
threshold corresponds exactly to δ. It will turn out in the resulting circuit ε does not change
the status of differential privacy, i.e. it is (ε, δ)-differentially private for all ε, or not.

The proof shows hardness for Ω(n)-input bits and 1-output bit; the case in which there
also exists a coNP#P upper-bound. Hence, showing hardness in a higher complexity class,
e.g., coNP#P#P

, would require a reduction to a circuit with more output bits.

5 Inapproximability of the privacy parameters ε, δ

Given the difficulty of deciding if a circuit is differentially private, one might naturally
consider whether approximating ε or δ could be efficient. We show that these tasks are both
NP-hard and coNP-hard.

We show that distinguishing between (ε, δ), and (ε′, δ′)-differential privacy is NP-hard,
by reduction from a problem we call Not-Constant which we also show is NP-hard. A
boolean formula is in Not-Constant if it is satisfiable and not also a tautology.

I Lemma 20. Not-Constant is NP-complete. (hence Constant is coNP-complete).
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Proof. Clearly, Not-Constant ∈ NP, the witness being a pair of satisfying and non-
satisfying assignments. We reduce 3-SAT to Not-Constant. Given a Boolean formula
φ over variables x1, . . . , xn let φ′(x1, . . . , xn, xn+1) = φ(x1, . . . , xn) ∧ xn+1. Note that φ′ is
never a tautology as φ′(x1, . . . , xn, 0) = 0. Furthermore, φ′ is satisfiable iff φ is. J

In Definition 13 we used randomized response in the pure differential privacy setting. We
now consider the approximate differential privacy variant RRε,δ : {0, 1} → {>,⊥} × {0, 1}
defined as follows:

RRε,δ(x) =


(>, x) w.p. δ
(⊥, x) w.p. (1− δ) α

1+α

(⊥,¬x) w.p. (1− δ) 1
1+α

where α = eε

I.e., with probability δ, RRε,δ(x) reveals x and otherwise it executes RRε(x). The former
is marked with “>” and the latter with “⊥”. This mechanism is equivalent to the one
described in [35] and is (ε, δ)-differentially private.

I Definition 21. Let 0 ≤ ε ≤ ε′, 0 ≤ δ ≤ δ′ ≤ 1, with either ε < ε′ or δ < δ′. The
problem Distinguish-(ε, δ), (ε′, δ′)-DP takes as input a circuit ψ, guaranteed to be either
(ε, δ)-differentially private, or (ε′, δ′)-differentially private. The problem asks whether ψ is
(ε, δ)-differentially private or (ε′, δ′)-differentially private.

I Lemma 22. Distinguish-(ε, δ), (ε′, δ′)-DP is NP-hard (and coNP-hard).

Proof. We reduce Not-Constant to Distinguish-(ε, δ), (ε′, δ′)-DP. Given the boolean
formula φ(x) on n bits, we create a probabilistic circuit ψ. The input to ψ consists of the
n bits x plus a single bit y. The circuit ψ has four output bits (o1, o2, o3, o4) such that
(o1, o2) = RRε,δ(y) and (o3, o4) = RRε′,δ′(φ(x)).

Observe that (o1, o2) = RRε,δ(y) is always (ε, δ) differentially private. As for (o3, o4) =
RRε′,δ′(φ(x)), if φ ∈ Not-Constant then there are adjacent x,x′ such that φ(x) 6= φ(x′).
In this case, (o3, o4) = RRε′,δ′(φ(x)) is (ε′, δ′)-differentially private, and, because (ε, δ) <
(ε′, δ′), so is ψ . On the other hand, if φ 6∈ Not-Constant then φ(x) does not depend on x
and hence (o3, o4) does not affect privacy, in which case we get that ψ is (ε, δ) differentially
private.

The same argument also gives coNP-hardness. J

Notice that the above theorem holds when δ = δ′ and ε < ε′ (similarly, ε = ε′ and δ < δ′),
which entails the following theorem:

I Theorem 23. Assuming P 6= NP, for any approximation error γ > 0, there does not
exist a polynomial time approximation algorithm that given a probabilistic circuit ψ and δ
computes some ε̂, where |ε̂− ε| ≤ γ and ε is the minimal such that ψ is (ε, δ)-differentially
private within error γ. Similarly, given ε, no such δ̂ can be computed polynomial time where
|δ̂ − δ| ≤ γ and δ is minimal.

I Remark 24. The result also applies when approximating within a given ratio ρ > 1 (e.g.
in the case of approximating ε, to find ε̂ such that ε̂

ε ≤ ρ). Moreover, the result also holds
when approximating pure differential privacy, that is when δ = 0.
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6 Related work

Differential privacy was introduced in [22]. It is a definition of privacy in the context of data
analysis capturing the intuition that information specific to an individuals is protected if
every single user’s input has a bounded influence on the computation’s outcome distribution,
where the bound is specified by two parameters, usually denoted by ε, δ. Intuitively, these
parameters set an upperbound on privacy loss, where the parameter ε limits the loss and the
parameter δ limits the probability in which the loss may exceed ε.

Extensive work has occurred in the computer-assisted or automated of verification of
differential privacy. Early work includes, PINQ [33] and Airavat [38] which are systems that
keep track of the privacy budgets (ε and δ) using trusted privacy primitives in SQL-like
and MapReduce-like paradigms respectively. In other work, programming languages were
developed, that use the type system to keep track of the sensitivity and ensure the correct
level of noise is added [37, 9, 16, 8]. Another line of work uses proof assistants to help prove
that an algorithm is differentially private [7]; although much of this work is not automated,
recent work has gone in this direction [2, 44].

These techniques focuses on “soundness”, rather than “completeness” thus are not
amenable to complexity analysis. In the constrained case of verifying differential privacy on
probabilistic automata and Markov chains there are bisimulation based techniques [40, 12].
Towards complexity analysis; [15] shows that computing the optimal value of δ for a finite
labelled Markov chain is undecidable. Further [14] and [15] provides distances, which are
(necessarily) not tight, but can be computed in polynomial time with an NP oracle and a
weaker bound in polynomial time. Recent works have focused on developing techniques for
finding violations of differential privacy [19, 10]. The methods proposed so far have been
based on some form of testing. Our result limits also the tractability of these approaches.
Finally, [5] proposes an automated technique for proving differential privacy or finding
counterexamples. This paper studies a constrained class of programs extending the language
we presented here, and provides a “complete” procedure for deciding differential privacy for
them. The paper does not provide any complexity guarantee for the proposed method and
we expect our results to apply also in their setting.

As we already discussed, Murtagh and Vadhan [35] showed that finding the optimal
values for the privacy parameters when composing different algorithms in a black-box way is
#P-complete, but also that approximating the optimal values can be done efficiently. In
contrast, our results show that when one wants to consider programs as white-box, as often
needed to achieve better privacy guarantees (e.g. in the case of the sparse vector technique),
the complexity is higher.

Several works have explored different property testing related to differential privacy [20,
29, 26], including verification [26]. In the standard model used in property testing, a user
has only black-box access to the function and the observable outputs are the ones provided
by a privacy mechanism. In contrast, our work is based on the program description and
aim to provide computational limits to the design of techniques for program analyses for
differential privacy.

We already discussed some works on quantitative information flow. In addition to those,
it was shown that comparing the quantitative information flow of two programs on inputs
coming from the uniform distribution is #P-hard [43]. However, when quantifying over all
distributions the question is coNP-complete [43].

As we remarked earlier, our language is equally expressive when integers of a fixed size
are added. Recently Jacomme, Kremer and Barthe [28] show deciding equivalence of two
such programs, operating over a fixed finite field, is coNPC=P-complete and the majority
problem, which is similar to pure differential privacy, is coNPPP-complete – matching the
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class we show for deciding ε-differential privacy. Further the universal equivalence problem,
which shows the programs are equivalent over all field extensions, is decidable in 2-EXP;
the universal majority problem is not know to be decidable.

7 Conclusions and future work

Verifying differential privacy of loop-free probabilistic boolean programs

We have shown the difficulty of verifying differential privacy in loop-free probabilistic
boolean programs through their correspondence with probabilistic circuits. Deciding ε-
differential privacy is coNP#P-complete and (ε, δ)-differential privacy is coNP#P-hard and
in coNP#P#P

(a gap that we leave for future work). Both problems are positioned in the
counting hierarchy, in between the polynomial hierarchy PH and PSPACE.

Verifying differential privacy of probabilistic boolean programs

One interesting question that our work leaves open is the characterization of the complexity
of deciding differential privacy problems for probabilistic boolean programs, including loops.
Similarly to the works on quantitative information flow [11], we expect these problems to
be decidable and we expect them to be in PSPACE. However, this question requires some
further investigation that we leave for future work.

Solvers mixing non-determinism and counting

Returning to our motivation for this work – developing practical tools for verifying differential
privacy – our results seem to point to a deficiency in available tools for model checking. The
model checking toolkit includes well established Sat solvers for NP (and coNP) problems,
solvers for further quantification in PH, solvers for #Sat (and hence for #P problems3).
However to the best of our knowledge, there are currently no solvers that are specialized for
mixing the polynomial hierarchy PH and counting problems #P, in particular coNP#P

and coNP#P#P
.

Approximating the differential privacy parameters

We show that distinguishing (ε, δ)-differential privacy from (ε′, δ′) differential privacy where
(ε, δ) < (ε′, δ′) is both NP- and coNP-hard. We leave refining the classification of this
problem as an open problem.
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Abstract
Logical characterisation of a behavioural equivalence relation precisely specifies the set of formulae
that are preserved and reflected by the relation. Such characterisations have been studied extensively
for exact semantics on discrete models such as bisimulations for labelled transition systems and
Kripke structures, but to a much lesser extent for approximate relations, in particular in the context of
hybrid systems. We present what is to our knowledge the first characterisation result for approximate
notions of hybrid refinement and hybrid conformance involving tolerance thresholds in both time
and value. Since the notion of conformance in this setting is approximate, any characterisation
will unavoidably involve a notion of relaxation, denoting how the specification formulae should
be relaxed in order to hold for the implementation. We also show that an existing relaxation
scheme on Metric Temporal Logic used for preservation results in this setting is not tight enough for
providing a characterisation of neither hybrid conformance nor refinement. The characterisation
result, while interesting in its own right, paves the way to more applied research, as our notion of
hybrid conformance underlies a formal model-based technique for the verification of cyber-physical
systems.
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1 Introduction

Cyber-physical systems integrate discrete aspects of computation, with continuous aspects
of physical phenomena, and asynchronous aspects of communication protocols. To test
cyber-physical systems against their discrete abstractions (also called discrete-event systems),
several notions of conformance have been proposed [13, 28, 31]; we refer to the tutorial volume
edited by Broy et al. [8] for an overview. Logical characterisations of conformance [21, 3]
are of particular importance in this context, because they precisely specify the set of logical
formulae that are preserved and reflected under conformance (we refer to [4] for an accessible
introduction). Such logical characterisations provide a rigorous basis for design trajectories
that involves subsequent conformance test at different layers of abstraction. Moreover, logical
characterisations are stepping stones towards devising the notion of characterising formulae,
which have been used in tools and algorithms for checking conformance [4, 10].

In the context of hybrid systems, i.e., abstractions of CPSs integrating both discrete
and continuous aspects, some notions of conformance have been proposed in the recent
literature [2, 1, 11, 16] (see [22] for an overview). However, not much is known about logical
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characterisation of such notions; to our knowledge, the closest known results to a logical
characterisation of hybrid conformance are the logical preservation results [16, 1] and the
characterisation of metric bisimulation [12] and stochastic bisimulation for systems with
rewards [17] (see the related work section for an in-depth discussion). This paper aims
at bridging this gap and comes up with, to the best of our knowledge, the first logical
characterisation of approximate conformance for hybrid systems [2, 1] in terms of Metric
Temporal Logic [23, 5].

To this end, we study the hybrid conformance notion due to Abbas, Mittelmann and
Fainekos [2, 1], as well as its its associated preorder which we call hybrid refinement (for both
notions, we also study their extensions to non-deterministic hybrid-systems). We provide
logical characterisations for each of theses notions in terms of Metric Temporal Logic (MTL)
and suitable notions of relaxation. We also show that the notions of relaxation proposed in
the preservation result by Abbas, Mittelmann and Fainekos [1] is insufficiently precise to lead
to a logical characterisation. We formulate our results in a general semantic domain, called
generalised timed traces, which encompasses both discretised hybrid systems (as studied
by Abbas, Mittelmann, and Fainekos [1]) and their continuous variants that have not been
given a logical characterisation so far, to the best of our knowledge. Moreover, we study a
generalisation of these results for both bounded and unbounded nondeterministic systems.

The contributions of this paper have both theoretical and practical motivation and
relevance. The theoretical motivation for logical characterisation is that it not only provides
an idea about the logic that is preserved under conformance (subject to relaxation) such
as – in our case – MTL, but also it specifies precise bounds on the relaxation required for
such formulae to hold. The practical motivation is that firstly, it provides designers with
a precisely specified set of properties that carry over from specification to implementation
(while preservations results only provide a rough approximation of such properties) and
moreover, logical characterisation sets the scene for developing algorithms for finding distin-
guishing formulae, and hence, provide an alternative means for checking hybrid conformance.
Logical characterisations have also proven to be a versatile auxiliary tool in e.g. developing
congruence formats for operational semantics [7], as well as providing approximations of
hybrid systems [26].

The rest of this paper is organised as follows. In Section 2, we review the related work
and position our contributions with respect to the state of the art. In Section 3, we define
some preliminary notions, including our semantic domain, the notions of hybrid refinement
and conformance [1] and Metric Temporal Logic [6]. Subsequently in Section 4, we define
appropriate notions of relaxations to characterise these notions using Metric Temporal Logic.
We compare our results to the past preservation results in Section 5, where we show that
the existing relaxation scheme for Metric Temporal Logic are too lax to serve for a logical
characterisation of hybrid refinement and conformance. Namely, we prove there is a class of
non-conforming implementations that do satisfy all relaxed MTL formulae satisfied by the
specification. In Section 6, we conclude the paper, and present the directions of our ongoing
research in this domain.

2 Related work

Logical characterisations of conformance relations allow for identifying conforming systems by
means of the logical formulae satisfied by them. They also facilitate the converse operation,
important from a practical perspective, namely, distinguishing non-conforming systems with
a formula that forms a succinct counterexample.
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Characterisations using modal logic have been studied extensively in the setting of exact
behavioural semantics on discrete models such as labelled transition systems [21, 30]. In this
context, characterisations use direct comparison i.e. inclusion of sets of formulae satisfied by
systems in question; distinguishing formulae are those belonging to a set difference of such
sets. Our work differs from this line of work in that it deals with approximate behavioural
semantics and hence, cannot use standard inclusion check between sets of satisfied formulae.

To our knowledge, the first notion of characterisation for approximate behavioural
semantics has been offered in the context of Metric Transition Systems [12] for linear and
branching distances based on Metric Bisimulation [20, 19].

On a general level, our semantic model and conformance relation are different from
those in [12, 20] in that they involve separate time and value dimensions, both of which
can be subject to perturbations. Our choices for the semantic model and the notion of
conformance are motivated by the practical applications of hybrid conformance [2, 1] in
testing cyber-physical systems, e.g., in the automotive- [29] and healthcare domain [27].
Moreover, from a technical perspective, we base our characterisation on a logic with a
qualitative (binary) satisfaction relation, but with quantities embedded in its syntax, namely,
the Metric Temporal Logic (MTL). However, our approach can be easily translated to a
quantitative setting of [12], by defining an evaluation of a formulae as the least degree of
relaxation after applying which the formula is satisfied by a system. Also in this case, the
choice of Metric Temporal Logic [23, 5] (and its concrete instantiation with signal values for
propositions: Signal Temporal Logic [24]) is motivated by its wide-spread use in the hybrid
systems literature and in practice [1, 18, 15].

Prabhakar, Vladimerou, Viswanathan, and Dullerud [26] provide a characterisation
theorem for approximate simulation [19]; the characterisation serves as an auxiliary tool for
developing approximations of hybrid systems with polynomial flows. In terms of semantic
domain and relation under consideration, their characterisation result is strongly related
to [12]. One technical feature which makes that paper somewhat closer in style to ours
than [12] is the use of a relaxation operator (called a shrink of a formula in [26]).

Desharnais, Gupta, Jagadeesan and Panangaden [14] provide an approximate charac-
terisation of probabilistic bisimulation for labelled Markov processes. They do so using
a quantitative extension of Hennessy-Milner logic. This work has led to several follow-
up applications, e.g., to a logical characterisation of differential privacy by Castiglioni,
Chatzikokolakis, and Palamidessi [9]. Gburek and Baier [17] have recently investigated
characterisation of bisimulation for stochastic systems with actions and rewards with two
probabilistic logics: a very expressive APCTL∗, and simpler APCTL◦, that can provide
succinct distinguishing formulae. Unlike their approach [17], our work is set in the context
of standard hybrid systems.

The results that appear closest to ours in terms of underlying models, and conformance
relations that allow for disturbances in both time and space values, are logical preservation
results for hybrid conformance [1] and Skorokhod conformance [16]. Both papers define
syntactical transformations on temporal logics yielding more relaxed formulae; they differ
on the conformance relations and temporal logics investigated. We improve upon them by
providing different relaxation schemes that are proven to be tight, i.e., are precisely sufficient
for a characterisation. Moreover, we generalise their results to semantic models that can
encompass both discrete and continuous behaviour and non-determinism. Our framework of
generalised timed traces subsumes both discrete timed state sequences (TSSs) and continuous
trajectories, e.g., allowing for a comparison of behaviours of different types (such as sampled
discretised behaviour against continuous trajectories).
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Figure 1 Examples of (a) continuous and (b) discretised GTTs.

3 Preliminaries

In this section, we define some preliminaries regarding our semantic domain, Metric Temporal
Logic and notions of hybrid conformance and refinement.

Generalised timed traces and hybrid systems. In order for our theory to remain as general
as possible, we define generalised timed traces, a notion that generalises both discrete semantic
models, such as timed state sequences (TSSs) [1], and continuous-time trajectories [16]. A
generalised timed trace is essentially a mapping from a discrete or continuous time domain
to a set of values within some metric space.

I Definition 1. Let (Y, dY) be a metric space. A Y-valued generalised timed trace is a
function µ : T → Y such that T ⊆ R≥0 is the time domain, and in addition 0 ∈ T is the
least element in T . The set of all Y-valued generalised timed traces is denoted by GTT (Y).

Observe that a timed state sequence (TSS) is simply a generalised timed trace with T
being a finite subset of R≥0; moreover, in case T is an interval within R≥0, we obtain a
standard continuous-time trajectory. We could generalise the domain of µ to any totally-
ordered metric space, but we dispense with this generalisation here for the sake of simplicity.
Likewise, the assumption that 0 is the least element of the time domain could be also
dispensed with.

I Example 2. Consider trajectories µ1 and µ2 depicted in Figure 1.(a), where µ1 represents
the specification of a system and µ2 its implementation. The mappings from the subset of
reals in the domain of each trajectory to the value of x at the corresponding point form
real-valued GTTs.

Consider the discretisation of these two trajectories where we sample the trajectories
with a period T and we record whether the value of x at the sampling point is higher than α
(denoted by p .= x > α) or at most α (denoted by ¬p .= x ≤ α). The corresponding mappings
from {0, T, 2T, 3T, 4T} to P = {p,¬p} are discretised GTTs depicted in Figure 1.(b) are
P -valued GTTs.

A hybrid system, defined below, is a mapping from initial conditions and inputs to sets
of generalised (output) traces. We use the notation P(S) and P

FIN
(S) denote, respectively,

a powerset of S, and the powerset of S restricted to the finite subsets.

I Definition 3. Given sets C and I of initial conditions and input space, the set of Y-
valued hybrid systems, denoted by H(C, I,Y) is the set of all functions of the type C ×
I → P(GTT(Y)). In addition, we distinguish the following two classes of hybrid systems:
the class of finitely branching hybrid systems is defined as HFIN (C, I,Y) := {H : C ×
I → PFIN (GTT(Y))}; similarly, the class of deterministic hybrid systems is defined as
HDET (C, I,Y) := {H : C × I → P(GTT (Y)) | ∀c∈C,i∈I |H(c, i)| = 1}.



M. Gazda and M.R. Mousavi 130:5

Note that we intentionally left the nature of the initial conditions and input space implicit,
as they play no role in the development of this paper. In reality, input conditions are typically
constraints on input signals and the input space is typically a generalised timed trace with
the same domain as the generalised timed trace for output. Also note that we focus mainly
on finitely branching hybrid systems. When the parameters I, C,Y are not relevant or are
clear from the context, we leave them out and refer to the set of hybrid systems with fixed
parameters as H.

3.1 Metric Temporal Logic
Metric Temporal Logic (MTL) [23, 5] is an extension of Linear Temporal Logic [25] with
intervals; the introduction of intervals allows for reasoning about the real-time behaviour of
dynamic systems once the propositions of the logic are interpreted over real-valued signals
[24] (this interpretation of MTL is also called Signal Temporal Logic, or STL in the literature).
MTL serves as an intuitive formalism for reasoning about hybrid systems [24, 1, 18, 15].

We work with the following language MTL+ of MTL formulas in the negation-normal
form

φ ::= T | F | p | ¬p | φ ∧ φ | φ ∨ φ | φUI φ | φRI φ

where p ranges over a collection of atomic propositions AP , and I ranges over intervals,
UI denotes the until operator and RI denotes the release operator (both annotated with
interval I).

For the purpose of relaxation, we shall also use the slightly extended language MTL+
ext

that in addition includes p+(ε) and p−(ε) constructs. Intuitively, they denote, respectively,
the expansion- and contraction of the domain of validity of proposition p by ε.

φ ::= T | F | p | ¬p | φ ∧ φ | φ ∨ φ | φUI φ | φRI φ | p+(ε) | p−(ε) (ε ∈ R≥0)

I Example 4. To illustrate the intuitive meaning of p+(ε) and p−(ε) consider the predicate
p := x > α in Example 2. p+(ε) relaxes p into x > α− ε; in other words p+(ε) allows for an
error margin of ε when checking p, while p−(ε) shrinks p into x > α+ ε. The latter is helpful
for defining the relaxation of negated propositions.

In order to provide the formal semantics for MTL+, we need two auxiliary definitions of
δ-expansion and δ-contraction. Below, we assume the context of some metric space (Y, dY),
and S ranges over subsets of Y.

E(S, δ) := {x ∈ Y | ∃y ∈ S : dY(x, y) ≤ δ} (δ-expansion)
C(S, δ) := Y \ E(Y \ S, δ) (δ-contraction)

Note that our definitions slightly differ from [1]. In particular, for any y0 ∈ Y, and the
set Bε(y0) = {y ∈ Y |, dY(y, y0) > ε} (complement of an ε-ball of point y0), we have
E(Bε(y0), ε) = {y0} (rather than ∅ which the expansion of [1] would yield).

We also remark that the semantics of MTL+
ext is provided in the context of an interpretation

function O : AP → P(Y). This is a standard approach, similar to e.g. [1], but also to
Signal Temporal Logic [24]. Note that the nature of the interpretation function restricts the
expressive power of the logic, as the propositions are interpreted over the domain of values
only (excluding time domain), which precludes expressing more powerful properties such as
signal tracking (which is possible in Freeze LTL [16]).
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I Definition 5. Let µ : T → Y be a generalised timed trace, t ∈ R, and O : AP → P(Y) be
an interpretation mapping for atomic propositions. The semantics of MTL+

ext formulas is
defined as follows:
(µ, t) |= T (µ, t) 6|= F
(µ, t) |= p iff t ∈ T and µ(t) ∈ O(p)
(µ, t) |= ¬p iff t ∈ T and µ(t) /∈ O(p)
(µ, t) |= p+(ε) iff t ∈ T and µ(t) ∈ E(O(p), ε)
(µ, t) |= p−(ε) iff t ∈ T and µ(t) /∈ C(O(p), ε)
(µ, t) |= φ ∧ ψ iff (µ, t) |= φ and (µ, t) |= ψ

(µ, t) |= φ ∨ ψ iff (µ, t) |= φ or (µ, t) |= ψ

(µ, t) |= φUI ψ iff ∃t′ ∈ T . t′ − t ∈ I. (µ, t′) |= ψ

∧∀t′′ ∈ T . t′′ ∈ [t, t′) =⇒ ((µ, t′′) |= φ ∨ (t′′ − t ∈ I ∧ (µ, t′′) |= ψ))
(µ, t) |= ψRI φ iff ∀t′ ∈ T . (t′ − t ∈ I ∧ (µ, t′) 6|= φ) =⇒ (∃t1 ∈ T . t1 ∈ [t, t′) ∧ (µ, t1) |= ψ)

We say that a generalised timed trace µ : T → Y satisfies an MTL+ formula φ, notation
µ |= φ iff (µ, 0) |= φ. The satisfaction relation is lifted to hybrid systems in the standard
manner, i.e., H(c, i) |= φ ⇐⇒ ∀µ ∈ H(c, i). µ |= φ.

In the remainder of this paper, we use the common shorthand notation for eventually
and always, defined as: ♦Iφ := TUI φ �Iφ := FRI φ.

We remark that the semantics of the until operator slightly differs from the standard one
used e.g. for MTL over discrete-time models. There, one simply requires the safety formula
φ to hold in every time point before the “ultimate” formula ψ holds. In order to cater for
dense-time domains where there may be no “earliest” time point satisfying ψ, we require
that in all the preceding time points either φ, or ψ holds. A similar kind of semantics can be
found in [16].

We also remark that the semantics of until operator makes it possible for the “ultimate”
formula ψ to hold before the current state (time point); this is because we allow formulae to
be annotated with arbitrary intervals, in particular those with negative endpoints.

Furthermore, note that the semantics allows for certain “ambiguous” cases where neither
a formula nor its negation (which can be syntactically obtained by an appropriate trans-
formation) is satisfied by a given state. This happens in case of (negated) propositions, and
tuples of the form (µ, t), where t does not belong to the time domain T . For instance, in
case of a generalised timed trace µ : {0, 1, 2, 3} → R corresponding to a small sampling of
a real-valued signal, and proposition pos such that O(pos) = R>0 we have (µ,

√
2) 6|= pos,

and (µ,
√

2) 6|= ¬ pos, regardless of the actual values of µ for the sampling points in the time
domain.

However, if all occurrences of propositions in a formula are guarded by an until or release
operator, the satisfaction status of a formula is never ambiguous – this is because semantics
of those operators refer only to time points within the time domain. Throughout the rest of
the paper, we work with propositions that are guarded with until or release and hence, in
our context, the ambiguity is never an issue in the context of our theory.

3.2 Hybrid Conformance
Next, we provide the definition of hybrid conformance, due to Abbas and Fainekos [2, 1],
in the context of our generalised semantic domain. Intuitively, hybrid conformance allows
for conforming signal to differ up to τ in time and up to ε in the value. In addition to the
“standard” hybrid conformance, which is a symmetric relation on traces, we also define its
one-directional variant which we call hybrid refinement.
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I Definition 6. Let µ1 : T1 → Y and µ2 : T2 → Y be Y-valued generalised timed traces. A
trace µ1 is a (τ, ε)-refinement of µ2, notation µ1 vτ,ε µ2, iff:

∀t1 ∈ dom(µ1). ∃t2 ∈ dom(µ2). |t2 − t1| ≤ τ ∧ dY(µ2(t2), µ1(t1)) ≤ ε

In the above definition, µ2 can match any value in µ1 within a sufficiently small time
interval, but can potentially contain some other signal values that cannot be matched by µ1.
We know at least that the “behaviour”of µ1 in terms of signal values does not go beyond
those of µ2 (up to the (τ, ε)-window).

By requiring two traces to be mutually conforming, we obtain the standard notion of
hybrid conformance [2, 1] for individual traces:

I Definition 7. Let µ1 : T1 → Y and µ2 : T2 → Y be Y-valued generalised timed traces. µ1
and µ2 are (τ, ε)-close, denoted by µ1 ∼τ,ε µ2, whenever µ1 vτ,ε µ2 and µ2 vτ,ε µ1.

When the precise value of τ and ε is not relevant, we refer to (τ, ε)-refinement, and
(τ, ε)-closeness, as respectively, hybrid refinement, and hybrid conformance. The two notions
can be lifted to hybrid systems in the following manner:

I Definition 8.
1. A system H1 is a (τ, ε)-refinement of H2, notation H1 vτ,ε H2, if for all c ∈ C and i ∈ I,

it holds that:

∀µ1 ∈ H1(c, i). ∃µ2 ∈ H2(c, i). µ1 vτ,ε µ2

2. Two hybrid systems H1, H2 are (τ, ε)-close, denoted by H1 ∼τ,ε H2, if and only if for all
c ∈ C and i ∈ I, it holds that

∀µ1 ∈ H1(c, i). ∃µ2 ∈ H2(c, i). µ1 ∼τ,ε µ2

∀µ2 ∈ H2(c, i). ∃µ1 ∈ H1(c, i). µ1 ∼τ,ε µ2

4 Logical Characterisation of Hybrid Refinement and Hybrid
Conformance

4.1 Logical Characterisation via Relaxation
Logical characterisation of a relation provides means to uniquely identify classes of related
systems by sets of formulae in a certain logic. In case of non-exact relations involving some
tolerance thresholds for disturbances, such as hybrid conformance or refinement, one cannot
directly compare sets of formulae satisfied by systems in question.

Our approach to characterisation involves the notion of relaxation of logical formulae,
that has been used in the context of hybrid systems [1, 16, 26]. It involves a syntactical
transformation of a formula to a weaker one, which is supposed to be also satisfied by at
least one trace of a conforming system.

For the purpose of logical characterisation, we introduce the following relation.

I Definition 9. We say that a system potentially exhibits property φ, notation H(c, i) |=∃ φ,
whenever there exists µ ∈ H(c, i) such that µ |= φ.

The relation |=∃ can be seen as a variant of satisfaction relation for nondeterministic
systems that has existential, rather than universal interpretation, the latter being the
traditional interpretation in LTL literature. This alternative view on satisfaction is similar
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to one that is used in the context of Hennessy-Milner logic and its variations for behavioural
models [21, 30], where a logical formula represents a (potentially) observable behaviour of a
system. This approach is more suitable for the purpose of logical chracterisation.

Assume a logic (a collection of formulae) L and a notion of relaxation rlx : L → L. Our
notion of characterisation can now be defined as follows

I Definition 10. A logic L and a notion of relaxation rlx : L → L characterise a relation
R ⊆ H×H if and only if, for any two systems H and H ′ we have:

H RH ′ ⇐⇒ ∀φ ∈ L. H |=∃ φ =⇒ H ′ |=∃ rlx(φ)

The implication from left to right is called preservation; in our context, there already
exist some preservation results in the literature [1, 16]; the implication from right to left
(called reflection) has not been studied for hybrid conformance and MTL to the best of our
knowledge.

We remark that for certain classes of “well-behaved” relations, the implication under the
existential interpretation in definition 10, namely H |=∃ φ =⇒ H ′ |=∃ rlx(φ), is equivalent
to a dual one under the more common universal interpretation, i.e. H ′ |= φ =⇒ H |= rlx(φ).
Regarding the two relations considered in our work, only hybrid conformance has this property
on all systems, while hybrid refinement does not. This is because the underlying relation on
individual traces is not symmetric, and moreover allows the presence of considerably different
values on the side of the “larger” trace (as long as it also matches all the required values on
other timepoints within the relevant time interval).

In this section, we define two novel (and in our view, very natural) relaxation operators
on MTL which, as we subsequently show, precisely serve this purpose.

4.2 Characterisation of hybrid refinement
Relaxation operator rlx v

τ,ε. We shall now introduce the first relaxation operator on MTL,
which (as we subsequently prove) gives rise to the characterisation of hybrid refinement.
Syntactically, it has a very simple structure: the actual relaxation is performed on the level
of propositions only.

I Definition 11. Let τ, ε ≥ 0. The relaxation operator rlx vτ,ε : MTL+ → MTL+
ext is defined

as follows:

rlx vτ,ε(T) = T , rlx vτ,ε(F) = F
rlx vτ,ε(p) = ♦[−τ,τ ] p

+(ε) , rlx vτ,ε(¬p) = ♦[−τ,τ ] p
−(ε)

rlx vτ,ε(φ1 ∧ φ2) = rlx vτ,ε(φ1) ∧ rlx vτ,ε(φ2)
rlx vτ,ε(φ1 ∨ φ2) = rlx vτ,ε(φ1) ∨ rlx vτ,ε(φ2)
rlx vτ,ε(φUI ψ) = rlx vτ,ε(φ)UI rlx vτ,ε(ψ)
rlx vτ,ε(φRI ψ) = rlx vτ,ε(φ)RI rlx vτ,ε(ψ)

Note that each relaxation of a formula different than T and F is guarded by either release
or until formulae, and hence its satisfaction status is always unambiguous.

4.2.1 Characterisation of traces
We proceed to show that the introduced relaxation operator can be used to characterise the
(τ, ε)-refinement, starting with the individual timed traces. Note that since the results below
concern arbitrary generalised timed traces, they apply also to the setting with two traces of
different kind, e.g., a discrete TSS against a continuous trajectory.
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4.2.1.1 Preservation modulo relaxation

We start by proving that the satisfaction of MTL+ formulae is preserved by the refinement
relation vτ,ε on timed traces modulo rlx vτ,ε relaxation.

I Proposition 12. Let µ1 : T1 → Y, µ2 : T2 → Y be two Y-valued generalised timed traces,
and φ be an MTL formula. If µ1 vτ,ε µ2, then, for any t ∈ R:

(µ1, t) |= φ =⇒ (µ2, t) |= rlx vτ,ε(φ)

Proof. The proof proceeds by structural induction on the formula φ.

φ = p: since (µ1, t) |= p, we have t ∈ T1 and µ1(t) ∈ O(p). Furthermore, since µ1 vτ,ε µ2,
we know that there is some t′ such that |t′− t| ≤ τ and d(µ1(t), µ2(t′)) ≤ ε. We have thus
µ2(t′) ∈ O(p+(ε)), and hence (µ2, t

′) |= p+(ε). Moreover, since |t′ − t| ≤ τ , we obtain
(µ2, t) |= ♦[−τ,τ ] p

+(ε) = rlx vτ,ε(p).
φ = ¬p: since (µ1, t) |= ¬p, we have t ∈ T1 and µ1(t) /∈ O(p). Furthermore, since
µ1 vτ,ε µ2, we know that there is some t′ such that |t′ − t| ≤ τ and d(µ1(t), µ2(t′)) ≤ ε.
From the latter and µ1(t) ∈ Y\O(p), we obtain µ2(t′) ∈ E(Y\O(p), ε), which is equivalent
to µ2(t′) /∈ C(O(p), ε). Hence (µ2, t) |= ♦[−τ,τ ] p

−(ε) = rlx vτ,ε(¬p)
φ = φUI ψ: since (µ1, t) |= φUI ψ, there is some t1 ∈ T1 such that t1−t ∈ I and (µ1, t1) |=
ψ, and moreover for any t0 ∈ [t, t1) we have (µ1, t0) |= φ ∨ (µ1, t0) |= ψ. By applying the
inductive hypothesis, we obtain that (µ2, t1) |= rlx vτ,ε(ψ), and for any t0 ∈ [t, t1) we have
(µ2, t0) |= rlx vτ,ε(φ) or (µ2, t0) |= rlx vτ,ε(ψ). We thus have (µ2, t) |= rlx vτ,ε(φ)UI rlx vτ,ε(ψ),
and from the definition of relaxation we immediately obtain (µ2, t) |= rlx vτ,ε(φUI ψ).
φ = φRI ψ: take any t′ ∈ T2 such that t′ − t ∈ I and (µ2, t

′) 6|= rlx vτ,ε(ψ). From the
inductive hypothesis, we have (µ1, t

′) 6|= ψ, and since (µ1, t) |= φRI ψ, we know that
there is some t1 ∈ T1 such that t1 ∈ [t, t′), and (µ1, t1) |= φ. By applying the inductive
hypothesis again, we obtain (µ2, t1) |= rlx vτ,ε(φ). From the statements obtained above we
can now infer that (µ2, t) |= rlx vτ,ε(φRI ψ). J

4.2.1.2 Existence of distinguishing formula

We shall now prove that the converse of the preceding theorem holds as well: whenever a
timed trace is not a (τ, ε)-refinement of another, we can always find an MTL formula that
witnesses this, that is, preservation modulo rlx vτ,ε relaxation operator does not hold.

I Proposition 13. Let µ1 : T1 → Y and µ2 : T2 → Y be two Y-valued timed traces. If
µ1 6vτ,ε µ2, then there is a formula φ ∈ MTL+ such that φ distinguishes µ1 from µ2 modulo
relaxation rlx vτ,ε, that is µ1 |= φ ∧ µ2 6|= rlx vτ,ε(φ)

Proof. Suppose that there is some t1 ∈ T1 for which there is no t2 ∈ T2 such that |t2 − t1| ≤
τ and |µ2(t2) − µ1(t1)| ≤ ε. Consider an MTL formula φ = ♦[t1,t1]p, where O(p) =
{µ1(t1)}. Obviously, we have µ1 |= φ, however, the relaxed version of the formula rlx vτ,ε(φ) =
♦[t1,t1]♦[−τ,τ ]p

+(ε) cannot be satisfied by µ2. J

4.2.2 Characterisation of hybrid systems
4.2.2.1 Finitely branching systems

Propositions 12 and 13 provide the characterisation of relation vτ,ε by MTL+ through the
relaxation rlx vτ,ε on individual traces. Based on those results, for hybrid systems that are
finitely branching (i.e. have bounded non-determinism, see definition 3), the characterisation
result for hybrid refinement can be obtained in a straightforward manner.
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I Theorem 14. The logic MTL+, together with the relaxation operator rlx vτ,ε, characterise
the conformance relation vτ,ε on finitely branching hybrid systems. That is, for arbitrary
finitely branching hybrid systems H and H ′, the following statements hold:

H vτ,ε H ′ ⇐⇒ (∀φ ∈ MTL+. H |=∃ φ =⇒ H ′ |=∃ rlx vτ,ε(φ)

Proof.
(preservation): Take any two hybrid systems H1, H2 such that H1 vτ,ε H2. Take any c ∈
C, i ∈ I. Suppose w.l.o.g. that H1(c, i) |=∃ φ; we need to show that H2(c, i) |=∃ rlx vτ,ε(φ).
From H1(c, i) |=∃ φ we know that there is a µ1 ∈ H1(c, i) such that µ1 |= φ. Moreover,
since H1 vτ,ε H2, there is some µ2 ∈ H2(c, i) such that µ1 vτ,ε µ2. From Proposition 12
we thus obtain µ2 |= rlx vτ,ε(φ), and hence H2(c, i) |=∃ rlx vτ,ε(φ).
(reflection/distinguishing formula): Suppose that H1 6vτ,ε H2. Then for certain c ∈ C, i ∈
I there is some µ1 ∈ H1(c, i) such that for all µj2 ∈ H2(c, i) we have µ1 6vτ,ε µj2. From
Proposition 13 we know that for each such µj2 ∈ H2(c, i) there is a distinguishing formula
φj such that µ1 |= φj and µj2 6|= rlx vτ,ε(φj). Consider a formula Φ =

∧
j:µj2∈H2(c,i) φj . Since

H2(c, i) is a finite set, Φ is a well-formed MTL+formula. We now have H1(c, i) |=∃ Φ,
but since obviously for any j, µj2 6|= rlx vτ,ε(Φ), we also have H2(c, i) 6|=∃ rlx vτ,ε(Φ). Hence Φ
distinguishes H1(c, i) from H2(c, i). J

4.2.2.2 Systems with unbounded non-determinism

In order to provide characterisation for hybrid refinement on systems with infinite branching,
one needs to endow the logic MTL+ with infinite conjunctions and disjunction; the syntax of
such logic, denoted with MTL+

∞, is given below (Ind ranges over arbitrary sets of indices).

φ ::= T | F | p | ¬p |
∧
i∈Ind

φi |
∨
i∈Ind

φi | φUI φ | φRI φ

I Theorem 15. The logic MTL+
∞, together with the relaxation operator rlx vτ,ε, characterise

the conformance relation vτ,ε on arbitrary hybrid systems.

Proof. The proof is nearly the same as the one of Theorem 14, except that while proving the
reflection property, the set of distinguishing formulae for individual traces may be infinite.
However, a disjunction over such a set is now a well-formed MTL+

∞ formula, hence the
construction is valid. J

4.3 Characterisation of hybrid conformance
4.3.1 Relaxation operator rlx ∼

τ,ε

While the relaxation operator rlx vτ,ε introduced in the previous section allows one to preserve
– up to the relevant (τ ,ε)-window – properties of (signal values at) individual timepoints, it
falls short of preserving properties of entire intervals. Therefore, in order to characterise
the standard, symmetric notion of (τ, ε)-closeness, or hybrid conformance, one needs a finer
notion of relaxation.

In what follows, we shall use the following notation: for an interval I, by I<a,b> we denote
the modified interval: I<a,b> := {x ∈ R | ∃xa, xb ∈ I : xa + a ≤ x ∧ x ≤ xb + b}.

Below, we define a relaxation operator rlx ∼τ,ε where:
for propositions not in the scope of a temporal operator, the relaxation is done similarly
as in the rlx vτ,ε operator
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for temporal operators, the interval endpoints are modified (i.e. “shrinked” to relax the
temporal obligations accordingly)
for propositions guarded by a temporal operator, only ε-relaxation of a signal value is
perfomed (the relaxation of timeline has already been handled through interval relaxation)

I Definition 16. Let τ, ε ≥ 0. The relaxation operator rlx ∼τ,ε : MTL+ → MTL+
ext is defined

as follows:
rlx ∼
τ,ε(T) = T , rlx ∼

τ,ε(F) = F
rlx ∼
τ,ε(p) = ♦[−τ,τ ]p

+(ε) , rlx ∼
τ,ε(¬p) = ♦[−τ,τ ]p

−(ε)
rlx ∼
τ,ε(φ1 ∧ φ2) = rlx ∼

τ,ε(φ1) ∧ rlx ∼
τ,ε(φ2)

rlx ∼
τ,ε(φ1 ∨ φ2) = rlx ∼

τ,ε(φ1) ∨ rlx ∼
τ,ε(φ2)

rlx ∼
τ,ε(φUI ψ) =

{
♦[τ,τ ]

(
t-rlx ∼

τ,ε(φ) UI<0,−2τ> (♦[0,2τ ]t-rlx ∼
τ,ε(ψ))

)
if I<0,−2τ> 6= ∅

♦I<−τ,τ> t-rlx ∼
τ,ε(ψ) if I<0,−2τ> = ∅

rlx ∼
τ,ε(φRI ψ) = (♦[−τ,τ ]t-rlx ∼

τ,ε(φ)) RI<τ,−τ> t-rlx ∼
τ,ε(ψ)

where the auxilliary relaxation t-rlx ∼τ,ε for subformulae guarded by a temporal operator is
defined as follows:

t-rlx ∼
τ,ε(T) = T , t-rlx ∼

τ,ε(F) = F
t-rlx ∼

τ,ε(p) = p+(ε) , t-rlx ∼
τ,ε(¬p) = p−(ε)

t-rlx ∼
τ,ε(φ1 ∧ φ2) = t-rlx ∼

τ,ε(φ1) ∧ t-rlx ∼
τ,ε(φ2)

t-rlx ∼
τ,ε(φ1 ∨ φ2) = t-rlx ∼

τ,ε(φ1) ∨ t-rlx ∼
τ,ε(φ2)

t-rlx ∼
τ,ε(φUI ψ) =

{
♦[τ,τ ]

(
t-rlx ∼

τ,ε(φ) UI<0,−2τ> (♦[0,2τ ]t-rlx ∼
τ,ε(ψ))

)
if I<0,−2τ> 6= ∅

♦I<−τ,τ> t-rlx ∼
τ,ε(ψ) if I<0,−2τ> = ∅

t-rlx ∼
τ,ε(φRI ψ) = (♦[−τ,τ ]t-rlx ∼

τ,ε(φ)) RI<τ,−τ> t-rlx ∼
τ,ε(ψ)

4.3.2 Characterisation of traces

4.3.2.1 Preservation

Before stating the main preservation property, we prove the key lemma which lists certain
properties of the auxilliary relaxation operator t-rlx ∼τ,ε.

I Lemma 17. Suppose µ1 ∼τ,ε µ2. For any φ ∈ MTL+ we have:
1. µ1, t |= φ =⇒ ∃t′ ∈ [t− τ, t+ τ ]. µ2, t

′ |= t-rlx ∼τ,ε(φ)
2. (∀t ∈ I. µ1, t |= φ) =⇒ (∀t ∈ I<τ,−τ>. µ2, t |= t-rlx ∼τ,ε(φ))
3. if in addition φ is of the form χUI ψ or ψRI χ, then µ1, t |= φ =⇒ µ2, t |= t-rlx ∼τ,ε(φ)

Proof. We proceed by structural induction on φ; for technical reasons, it is convenient to
prove all the properties simultaneously. We focus on three key cases: atomic propositions, as
well as the until and release operators.

φ = p:
1. Suppose µ1, t |= p; from the semantics of MTL+ this means that µ1(t) ∈ O(p). Since

µ1 ∼τ,ε µ2, there is some t′ ∈ [t− τ, t+ τ ] such that dY(µ1(t), µ2(t)′) ≤ ε. From this
and µ1(t) ∈ O(p) we obtain µ2(t′) ∈ E(O(p), ε), and hence µ2, t

′ |= p+(ε) = t-rlx ∼τ,ε(p).
2. Suppose that for all t ∈ I we have µ1, t |= p, that is, for all t ∈ I µ1(t) ∈ O(p).

Take any t2 ∈ I<τ,−τ>. Observe that the “matching” timepoint for µ2 and t2 in µ1
must be in the interval I, i.e. there is some t1 ∈ I such that dY(µ1(t1), µ2(t2)) ≤ ε.
Since t1 ∈ I, we have µ1(t1) ∈ O(p), and hence µ2(t2) ∈ E(O(p, ε)), from which
µ2, t2 |= p+(ε) = t-rlx ∼τ,ε(p) follows.
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φ = χUI ψ: we only need to prove the third statement, as it is stronger than the first
two. Moreover, we consider only the more involved case when I<0,−2τ> 6= ∅.
Suppose µ1, t |= χUI ψ. Then there is some tψ ∈ t+ I such that µ1, tψ |= ψ (note that
since I<0,−2τ> 6= ∅, we have tψ − t ≥ 2τ). From µ1 ∼τ,ε µ2 and applying the inductive
hypothesis on statement 1 of Lemma 17 there is some t′ψ ∈ [tψ − τ, tψ + τ ] such that
µ2, t

′
ψ |= t-rlx ∼τ,ε(ψ). This in particular implies that

(*) µ2, tψ − τ |= ♦[0,2τ ]t-rlx ∼τ,ε(ψ).
From µ1, t |= χUI ψ it further follows that for all t′ ∈ [t, tψ) we have µ1, t

′ |= χ. From
applying the inductive hypothesis on statement 2 of Lemma 17 we therefore have
(**) for all t′ ∈ [t+ τ, tψ − τ) we have µ2, t

′ |= t-rlx ∼τ,ε(χ).
That µ2, t |= ♦[τ,τ ]

(
t-rlx ∼τ,ε(χ)UI<0,−2τ> (♦[0,2τ ]t-rlx ∼τ,ε(ψ))

)
= t-rlx ∼τ,ε(χUI ψ) now follows

immediately from (*) and (**).
φ = ψRI χ: similarly as above, we only prove the third statement. Note that whenever
the interval I is strictly shorter than 2τ , we have I<0,−2τ> = ∅, and the relaxation yields
a formula equivalent to T.
Take any t′¬χ ∈ t + I<τ,−τ> such that µ2, t

′
¬χ 6|= t-rlx ∼τ,ε(χ). Consider the interval

I ∩ [t, t′¬χ + τ ]. There must be some t¬χ ∈ [t′¬χ− τ, t′¬χ + τ ] ⊆ t+ I such that µ1, t¬χ 6|= χ.
Indeed, were it not the case, then from the inductive hypothesis (statement 2), we would
have that for all t′ ∈ [t′¬χ, t′¬χ], t′ |= t-rlx ∼τ,ε(χ), contradicting µ2, t

′
¬χ 6|= t-rlx ∼τ,ε(χ).

From µ1, t |= ψRI χ and µ1, t¬χ 6|= χ, one obtains existence of some tψ ∈ [t, t¬χ) such that
µ1, tψ |= ψ. From the inductive hypothesis (1) we know that µ2, tψ |= ♦[−τ,τ ]t-rlx ∼τ,ε(ψ).
We have thus shown that µ2, t |= (♦[−τ,τ ]t-rlx ∼τ,ε(ψ))RI<τ,−τ> t-rlx ∼τ,ε(χ) = t-rlx ∼τ,ε(ψRI χ)

J

The preservation property is given in the proposition below.

I Proposition 18. µ1 ∼τ,ε µ2 =⇒ ∀φ, t. µ1, t |= φ =⇒ µ2, t |= rlx ∼τ,ε(φ)

Proof. Formally, the proof proceeds by structural induction. However, the key cases of
temporal operators are now immediate corollaries of Lemma 17 (point 3); while for the
remaining cases including base the proof is very straightforward. J

4.3.2.2 Reflection

We proceed to show that for non-conforming traces, one can always find a distinguishing
formula, regardless of the “direction” in which the conformance fails. Since ∼τ,ε is symmetric,
this is equivalent to the statement that if µ1 6∼τ,ε µ2, then one can find both a formula
distinguishing µ1 from µ2, and also one that distinguishes µ2 from µ1.

I Proposition 19. µ1 6∼τ,ε µ2 =⇒ ∃φ. µ1 |= φ ∧ µ2 6|= rlx ∼τ,ε(φ)

Proof. Suppose µ1 6∼τ,ε µ2; we show that there is always a formula that distinguishes µ1
from µ2. We distinguish two cases:

there is some t1 ∈ T1 such that the value µ1(t1) cannot be matched within the (τ, ε)-window
by µ2, that is:

(∗) ∀t′ ∈ T2. |t′ − t1| ≤ τ =⇒ dY(µ2(t′), µ1(t1)) > ε

We use a similar construction as for the relaxation rlx vτ,ε, by defining

ΦDIST := ♦[t1,t1]p

where O(p) = {µ1(t1)}. Then rlx ∼τ,ε(ΦDIST ) = ♦[t1−τ,t1+τ ] p
+(ε). We have µ1 |= ΦDIST ,

but from (*) we clearly have µ2 6|= rlx ∼τ,ε(ΦDIST ).
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there is some t2 ∈ T2 that cannot be matched by µ1, that is: that is:

∀t′ ∈ T1. |t′ − t2| ≤ τ =⇒ dY(µ1(t′), µ2(t2) > ε

we define

ΦDIST := �[t2−τ,t2+τ ]p

where O(p) = {y ∈ Y | dY(y, µ2(t2)) > ε}. Note that p+(ε) = Y \ {µ2(t2)} (at this point
using our definition of expansion operator rather than the one from [1] proves essential).
We have µ1 |= ΦDIST , but on the other hand: rlx ∼τ,ε(ΦDIST ) = (♦[−τ,τ ]F)R[t2,t2] p

+(ε) ≡
�[t2,t2]p

+(ε), and since µ2(t2) /∈ Y \ {µ2(t2)} = p+(ε), we have µ2 6|= rlx ∼τ,ε(ΦDIST ). J

4.3.3 Characterisation of hybrid systems
Characterisation results for hybrid conformance and their proofs share many similarities with
those for hybrid refinement. One fine point worth noting is the proof of reflection property:
when, similarly as in the proof of Theorem 14, we arrive at the case when µ1 6∼τ,ε µj2, we
know from Proposition 19 that for all j there is a formula that distinguishes µ1 from µj2,
regardless of the direction in which the (τ, ε)-matching fails . We therefore have a family
of formulae distinguishing µ1 from µj2 for each j, and hence can construct a distinguishing
formula by taking their conjunction.

In addition, since hybrid conformance is based on a symmetric relation on individual traces,
the characterisation result holds for the standard (universal) interpretation of satisfaction
relation as well.

I Theorem 20. The logic MTL+ [resp. MTL+
∞], together with the relaxation operator rlx ∼τ,ε,

characterise the conformance relation vτ,ε on finitely branching [resp. arbitrary] hybrid
systems. That is, for finitely branching [resp. arbitrary] hybrid systems H and H ′, the
following statements hold:

H ∼τ,ε H ′ ⇐⇒ (∀φ ∈ MTL+ [MTL+
∞]. H |=∃ φ =⇒ H ′ |=∃ rlx vτ,ε(φ))

Moreover, the characterisation result holds for the universal interpretation of satisfaction
relation as well, that is:

H ∼τ,ε H ′ ⇐⇒ (∀φ ∈ MTL+ [MTL+
∞]. H ′ |= φ =⇒ H |= rlx vτ,ε(φ))

5 Comparison with an existing relaxation

In this section, we discuss the existing relaxation operator for MTL from the literature due to
Abbas, Mittelmann, and Fainekos [1], which is known to preserve MTL formulae for discrete
samplings (timed-state sequences). We show that their relaxation cannot distinguish between
traces not related by hybrid conformance, and hence is too lax for the purpose of logical
characterisation for either hybrid conformance, or refinement.

5.1 AMF-Relaxation
We recall the relaxation operator from [1], which we call AMF-relaxation (for Abbas,
Mittelmann, and Fainekos). Originally the definition was given on the super-dense time
domain (i.e., a time domain that allows for specifying the ordering of simultaneous events).
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Since the “super-denseness” of the time domain does not have any influence on our study,
we simplify the time domain to a dense time domain (such as non-negative real numbers).
We also adapt the presentation to the generalised timed traces framework.

I Definition 21. Given τ, ε ≥ 0, the relaxation operator []amf
τ,ε : MTL+ → MTL+

ext is defined
as follows:

[T]amf
τ,ε = T , [F]amf

τ,ε = F
[p]amf

τ,ε = p+(ε) , [¬p]amf
τ,ε = p−(ε)

[φ1 ∧ φ2]amf
τ,ε = [φ1]amf

τ,ε ∧ [φ2]amf
τ,ε

[φ1 ∨ φ2]amf
τ,ε = [φ1]amf

τ,ε ∨ [φ2]amf
τ,ε

[φUI ψ]amf
τ,ε = (♦(−2τ,0][φ]amf

τ,ε )UI<<−2τ,2τ>> (♦[0,2τ)[ψ]amf
τ,ε )

[φRI ψ]amf
τ,ε = (♦(−2τ,0][φ]amf

τ,ε )RI<<2τ,−2τ>> (♦[0,2τ)[ψ]amf
τ,ε ),

where I<<a,b>> is the relaxation of the bounds of interval I with constants a and b, formally
defined as follows. For a, b ∈ R, let T (a, b) := {[a, b], (a, b], [a, b), (a, b)}; then for any interval
I ∈ T (a, b), I<<c,d>> := (a+ c, b+ d).

Note that the interval relaxation I<<a,b>> differs from I<a,b> in that the former always
yields an open interval, while the latter yields an interval of the same kind as I. For instance
[4, 7]<<−1,1>> = (3, 8), whereas [4, 7]<−1,1> = [3, 8].

It follows from Definition 21 that the relaxation operator []amf
τ,ε applied to until or release

formulae annotated with any interval from T (a, b) produces the same formulae:

I Observation 22. For any I ∈ T (a, b), we have:

[φUI ψ]amf
τ,ε = (♦(−2τ,0][φ]amf

τ,ε )U(a−2τ,b+2τ) (♦[0,2τ)[ψ]amf
τ,ε )

[φRI ψ]amf
τ,ε = (♦(−2τ,0][φ]amf

τ,ε )R(a+2τ,b−2τ) (♦[0,2τ)[ψ]amf
τ,ε )

The following preservation result can be found in [1].

I Theorem 23. Let φ ∈ MTL+. Let µ1 : T1 → Y and µ2 : T2 → Y be two discrete GTTs, i.e.
T1, T2 ⊆ PFIN (R≥0). If µ1 ∼τ,ε µ2, then for any t1 ∈ T1 if (µ1, t1) |= φ, then for all t2 ∈ T2
such that |t2 − t1| ≤ τ and |µ2(t2)− µ1(t1)| ≤ ε, we have µ1, t1 |= φ =⇒ µ2, t2 |= [φ]amf

τ,ε .

Observe that the above preservation property is very strong: it holds for any sampling
point in the conforming trace that matches the given point within the (τ, ε)-“window”. This
kind of result comes at a price of having to employ a relaxation operator which yields
considerably weaker formulae, which explains the significant relaxation of intervals in []amf

τ,ε .

5.2 Laxness of AMF-Relaxation
In this section, we prove that the notion of AMF-relaxation is too lax for the purpose
of logical characterisation of hybrid conformance, i.e. there is a class of non-conforming
implementations which preserve AMF-relaxations of all MTL properties satisfied by their
specifications.

Throughout this section, we assume a simple setting where values range over Booleans,
i.e. Y = B = {true, false}. The associated metric on P(B) is defined as d(b1, b2) = 0 if
b1 = b2, and ∞ otherwise.

Recall that we refer to generalised timed traces with a finite time domain as timed state
sequences, or TSSs.

We first explain the gist of our proof by showing one instance of the above-mentioned
family of non-conforming counter-examples.
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I Example 24. Fix τ > 0 and let T be a value very slightly smaller than τ , i.e. T = τ − δ,
where δ << τ . Consider the discretised GTTs presented in Example 2, which we recall here
for the sake of convenience; µ1 holds value true only at T and 2T and µ2 holds value true
at 3T and false, otherwise. The two TSSs can be depicted as follows (white/black dots
represent states that have value, respectively, true / false):

µ1

0 T 2T 3T 4T
µ2

µ1 and µ2 are not (τ, 0)-close, not even (t, 0)-close for any t < 2T . To observe this
note that for instance µ1(T ) cannot be matched by µ2 within (−T, 3T ) since no state in
µ2 has value false in this interval. On the other hand, as we show next, TSSs µ2 satisfies
the AMF-relaxation of all MTL formulae satisfied by µ1 (relaxed by parameters (τ, 0) and
vice versa. Intuitively, this is because the intervals in the until and release formulae are
respectively expanded and compressed by 2τ , allowing for shifts by 2τ in the states of TSS
without affecting the satisfaction of formulae.

In the remainder of this section, we generalise this example and prove this fact for a
broader, infinite class of pairs of TSSs which are not (t, 0)-equivalent for any t < 2τ .

I Definition 25. For a pair of TSSs µA : TA → B and µB : TB → B, we say that µB
is stretched to the right of µA by less than t, if there is some K ∈ N and functions
chunkA : TA → {1, . . . ,K} and chunkB : TB → {1, . . . ,K} such that the following hold:

chunkA and chunkB are surjective and non-decreasing
all states that map to the same chunk number have the same value, i.e. for all k ∈
{1, . . . ,K} and for all tA ∈ TA, tB ∈ TA such that chunkA(tA) = chunkB(tB) = k, we
have µA(tA) = µB(tB)
for any tA ∈ TA, there is some tB ∈ TB such that

(∗) 0 ≤ tB − tA < t ∧ chunkA(tA) = chunkB(tB)

and conversely, for any tB ∈ TB there is some tA ∈ TA such that (*) holds. We shall call
a pair (µA, tA), (µB , tB) satisfying (*) a pair of t-corresponding states.

Note that in the last condition, the inequality in (*) involves the actual difference between
tB and tA, not its absolute value – we allow µB to be shifted only to the right as compared
to µA. The following example illustrates this definition.

I Example 26. Consider the TSSs in Example 24; the TSS µ2 is stretched to the right
of µ1 by less than 2τ , as witnessed by the following functions chunk1 and chunk2:

chunk1(0) = 1 chunk2(t) = 1 for t ∈ {0, T, 2T}
chunk1(t) = 2 for t ∈ {T, 2T} chunk2(3T ) = 2
chunk1(t) = 3 for t ∈ {3T, 4T} chunk2(4T ) = 3

I Example 27. Considering Example 24 and propositions pt and pf such thatO(pt) = {true}
and O(pf ) = {false}; we have (µ2, 0) |= pt U[3T,3T ] pf , and the 2τ -corresponding state (µ1, 0)
satisfies the relaxed formula [pt U[3T,3T ] pf ]amf

τ,0 . The latter statement can be deduced from that
(µ1, 0) satisfies pt U(3T−2τ,3T+2τ) pf , a simpler formula that logically entails [pt U[3T,3T ] pf ]amf

τ,0 .
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The key proposition below states that for 2τ -corresponding states, the satisfaction of all
formulae in MTL+ is preserved modulo relaxation []amf

τ,0 .

I Proposition 28. Suppose µB is stretched to the right of µA by less than 2τ . Then for any
tA ∈ TA, and any tB ∈ TB satisfying

(∗) 0 ≤ tB − tA < 2τ ∧ chunkA(tA) = chunkB(tB)

we have, for all formulae φ ∈ MTL+: (µA, tA) |= φ =⇒ (µB , tB) |= [φ]amf
τ,0 , and (µB , tB) |=

φ =⇒ (µA, tA) |= [φ]amf
τ,0 .

Proof. The proof by structural induction on φ is rather tedious and technical, and omitted
in this version of the paper. J

6 Conclusions and Future Work

In this paper, we have studied the notion of hybrid conformance from the literature, as well
its associated preorder, called hybrid refinement. We have presented a logical characterisation
of both relations in Metric Temporal Logic. Since the notions of refinement and conformance
allow for some deviations (in time and value), the characterisation is expressed in terms of a
relaxation of the set of formulae satisfied by a system. The relaxation operators corresponding
to the two relations differ considerably – while for hybrid refinement it suffices to perform
relaxation on the level of propositions only, characterising hybrid conformance requires
relaxing bounds of intervals in temporal operators. We note that with hybrid conformance
we obtain stronger characterisation result; it holds in particular under both existential and
universal interpretation of the satisfaction relation.

We have also showed that the existing relaxation scheme proposed by Abbas, Fainekos, and
Mittelmann is too lax to serve for a characterisation, i.e., there is a class of non-conforming
systems that do satisfy all relaxations of the specification properties. Hence, we proposed
a tighter notion of relaxation and showed that it is the appropriate notion to provide a
characterisation of hybrid conformance.

Our preservation and characterisation results for hybrid refinement are formulated us-
ing the existential interpretation of the satisfaction relation, while our results for hybrid
conformance hold both for the existential- and universal interpretation of the satisfaction
relation. This is inherent to our notion of hybrid refinement and cannot be remedied in any
straightforward manner, as far as we could investigate. We envisage that there could be
other definitions of hybrid refinement that are well-behaved in this respect and we would like
to study and propose such notions in the future.

As another line of future research, we would also like to investigate the possibility
of characterising Skorokhod conformance with Freeze Temporal Logic and the notion of
relaxation provided by Deshmukh, Majumdar, and Prabhu [16]. Coming up with the notion
of characteristic formulae is another avenue for our future research, which leads to a new
technique for checking hybrid conformance.
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1 Introduction

1.1 Constraint Satisfaction Problems
The Constraint Satisfaction Problem, or CSP for short, over a relational structure A is
the computational problem of deciding whether a given finite relational structure B in the
signature of A can be homomorphically mapped into A. The structure A is known as the
template or constraint language of the CSP, and the CSP of the particular structure A is
denoted by CSP(A). A host of interesting computational problems can be modelled using
CSPs by choosing an appropriate template. For example, if A is the structure with domain
{0, 1} and all binary relations on the set {0, 1}, then CSP(A) is precisely the 2-SAT problem,
and if A is the complete graph on three vertices, then CSP(A) is the 3-colouring problem.
Note that the template A which defines the problem can also be infinite – only the input
structure B is required to be finite in order to obtain a computational problem. Many
well-known computational problems can be modelled, and can in fact only be modelled, using
an infinite template. One example is the CSP of the order of the rational numbers (Q;<),
which is equivalent to the problem of deciding whether a given finite directed graph is acyclic.
The size of the signature of the template A, or in other words the number of its relations,
is however generally required to be finite: otherwise, the encoding of its relational symbols
might influence the computational complexity of CSP(A), so that this complexity is not
well-defined as per the structure A itself. To emphasize the importance of this requirement,
we shall henceforth only call relational structures in a finite signature CSP templates.

The general aim in the study of CSPs is to understand the structural reasons for the
hardness or the tractability of such problems. This has been successfully achieved for CSPs
of structures over a finite domain. As it turns out, every finite template either has, in a
certain precise sense, as little symmetry as the 3-colouring problem above, in which case its
CSP is NP-complete; or it has more symmetry and its CSP is polynomial-time solvable, just
like the 2-SAT problem. This dichotomy result was conjectured by Feder and Vardi [19, 20],
and proved, almost 25 years later, independently by Bulatov [18] and Zhuk [28].

1.2 A dichotomy conjecture and local identities
The algebraic approach behind these proofs does not require the template to be finite, but also
works under the assumption of ω-categoricity. And although every computational decision
problem is polynomial-time Turing-equivalent to the CSP of some infinite template [9], for a
large and natural class of ω-categorical templates, which considerably expands the class of
finite templates, a similar conjecture as for finite-domain CSPs has been formulated.

I Conjecture 1 (see [3, 5, 17]). Let A be a CSP template which is a first-order reduct of a
countable finitely bounded homogeneous structure. Then one of the following holds.

A satisfies some non-trivial set of h1 identities locally, i.e., on every finite subset of its
domain, and CSP(A) is in P.
There exists a finite subset of its domain on which A satisfies no non-trivial set of h1
identities, and CSP(A) is NP-complete.

The conjectured P/NP-complete dichotomy has been demonstrated for numerous subclasses:
for example for all CSPs in the class MMSNP [11], as well as for the CSPs of the first-order
reducts of (Q;<) [10], of any countable homogeneous graph [12] (including the random
graph [15]), and of the random poset [24].

It is thus the local h1 identities which are believed to be the “right” measure of symmetry
of a template A – according to the conjecture, they determine tractability or hardness of its
CSP. The distinction between local and global h1 identities is, of course, void in the case
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of a finite template A, and the above-stated dichotomy is true by the theorem of Bulatov
and Zhuk and results from [5]. One of the main challenges towards proving Conjecture 1 is
to determine whether this distinction could be void as well for structures within its range.
The satisfaction of non-trivial h1 identities in A is characterised by the non-existence of
particular maps called minion homomorphisms from the polymorphism clone Pol(A) of A to
the projection clone P. The mentioned distinction between local and global h1 identities is
then mirrored by the distinction between those maps that are uniformly continuous and those
that are not. Hence, the question whether non-trivial local h1 identities imply non-trivial
global h1 identities in a relational structure A raises the following question.

I Question 2. Does the existence of a minion homomorphism from Pol(A) to P imply the
existence of a uniformly continuous minion homomorphism from Pol(A) to P?

2 Results

Among all finite structures, it is known that CSP templates (i.e., those structures with finite
signature) have considerably better algebraic properties than other structures [2, 1]. We
refine a model-theoretic trick due to Hrushovski [23] to encode ω-categorical structures with
an infinite signature into ω-categorical CSP templates whilst preserving certain properties of
the original, showing that a similar phenomenon does not seem to appear within the class of
ω-categorical structures. Using this method, we produce ω-categorical CSP templates with
various “untame” properties of both algebraic and complexity-theoretic nature.

2.1 Local versus global identities
Recently, in [13, 14], an example of an ω-categorical structure answering Question 2 in the
negative was given; however, this structure had an infinite language and therefore this result
had a priori no consequence for the study of CSPs. Using our encoding, we provide a negative
answer within the realm of CSP templates.

I Theorem 3. There is an ω-categorical CSP template U with slow orbit growth such that
there exists a minion homomorphism from Pol(U) to P, but no uniformly continuous one.

We also encode a counterexample from [17] for clone homomorphisms, which are mappings
preserving arbitrary (not only h1) identities, into a finite language. Clone homomorphisms
appear in the original (and equivalent [3, 4]) formulation of Conjecture 1 from [17] (also
see [6, 7]).

I Theorem 4. There exists an ω-categorical CSP template U with a clone homomorphism
from Pol(U) to P that is not uniformly continuous.

2.2 Dissected weak near-unanimity identities
Our proof of the fact that the template U from Theorem 3 satisfies non-trivial h1 identities
locally is constructive: we exhibit a concrete set of such identities which we call dissected weak
near-unanimity. Moreover, we obtain quite general conditions on the symmetry of a structure
which force our identities to be satisfied locally. It follows that the original infinite-language
structure from [13, 14] satisfies them; this contrasts the indirect proof in [13, 14] which does
not provide any concrete set of h1 identities.
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I Theorem 5. Let U be a homogeneous structure. Let F be a finite subset of its domain,
and let k ≥ 1. Suppose that:
(i) Only relations of arity smaller than k hold for tuples of elements in F .
(ii) There is an embedding from U2 into U.

Then U satisfies (n, k) dissected weak near-unanimity identities on F for all n > k.

Dissected weak near-unanimity identities can be viewed as a generalization of weak
near-unanimity identities. It follows from [26] and [5] that if U is a finite relational structure
satisfying non-trivial h1 identities, then U satisfies weak near-unanimity identities. The
satisfaction of dissected weak near-unanimity identities has been proven for a large number
of structures within the range of Conjecture 1 in [4, 3]; since they now reappeared in the
rather different context of Theorem 3, the following question emerges naturally.

I Question 6. Let U be an ω-categorical structure with slow orbit growth which satisfies
non-trivial h1 identities locally. Does U satisfy dissected weak near-unanimity identities
locally?

2.3 ω-categorical CSP monsters

The complexity of CSP(A) is, for every ω-categorical CSP template A, determined by Pol(A)
viewed as a topological clone: if there exists a topological clone isomorphism Pol(A)→ Pol(B)
and A and B are ω-categorical, then CSP(A) and CSP(B) are equivalent under log-space
reductions [16]. In other words, the local (not necessarily h1) identities satisfied in Pol(A)
encode the complexity of CSP(A). Conjecture 1 even postulates that for every template A
within its scope, membership of CSP(A) in P only depends on the local h1 identities of A.
The latter is equivalent to the statement that polynomial-time tractability is characterised
by the global satisfaction of the single identity αs(x, y, x, z, y, z) = βs(y, x, z, x, z, y) [4, 7].

Using our encoding, we prove that global identities do not characterise membership in
P – or, in fact, in any other non-trivial class of languages containing AC0 – for the class of
homogeneous CSP templates.

I Theorem 7. Let C be any class of languages that contains AC0 and that does not inter-
sect every Turing degree. Then there is no countable set Θ of identities such that for all
homogeneous CSP templates membership in C is equivalent to the satisfaction of Θ.

The proof of Theorem 7 relies on encoding arbitrary languages as CSPs of homogeneous
templates. These templates are obtained by applying our encoding to structures which have
only empty relations, but a complicated infinite signature. On the way, we obtain a new
proof of a result by Bodirsky and Grohe [9].

I Theorem 8. Let C be a complexity class such that there exist coNPC-complete problems.
Then there exists a homogeneous CSP template that satisfies non-trivial h1 identities and
whose CSP is coNPC-complete. Moreover, if P 6= coNP, then there exists a CSP template
with these algebraic properties whose CSP has coNP-intermediate complexity.

In particular, Theorem 8 gives complete problems for classes such as ΠP
n for every n ≥ 1,

Pspace, ExpTime, or even every fast-growing time complexity class Fα where α ≥ 2 is an
ordinal (such as the classes Tower or Ackermann, see [27]).
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3 Outline

The most important definitions, in particular those of notions which appear in the introduction
and the results, are given in Section 4. A complete exposition of all notions, as well as most
proofs are left to the appendix due to space restrictions; we also refer to the long version of
this extended abstract which is available on arXiv [22]. Our variant of Hrushovski’s encoding
and its most important properties are presented in Section 5. Dissected weak near-unanimity
identities, as well as the proof of Theorem 3, are the contents of Section 6. In Section 7,
we sketch the proofs of Theorem 7 and of the first statement of Theorem 8. Due to space
restrictions, we cannot address the proofs of Theorems 4 and of the second statement of
Theorem 8 at all – they can be found in the long version.

4 Preliminaries

If A is a relational structure in a finite signature, called a CSP template, then CSP(A) is
the set of all finite structures B in the same signature with the property that there exists a
homomorphism from B into A. This set can be viewed as a computational problem where we
are given a finite structure B in that signature, and we have to decide whether B ∈ CSP(A).

We will tacitly assume that all relational structures, as well as their signatures, are at
most countably infinite.

4.1 Polymorphisms, identities, and clone and minion homomorphisms
A polymorphism of a relational structure A is a homomorphism from some finite power An
of the structure into A. The set of all polymorphisms of A is called the polymorphism clone
of A and is denoted by Pol(A).

An identity is a formal expression s(x1, . . . , xn) = t(y1, . . . , ym) where s and t are abstract
terms of function symbols, and x1, . . . , xn, y1, . . . , ym are the variables that appear in these
terms. The identity is of height 1, and called h1 identity, if the terms s and t contain precisely
one function symbol, i.e., no nesting of function symbols is allowed, and no term may be just
a variable.

A set Θ of identities is satisfied in A if the function symbols of Θ can be assigned functions
in Pol(A) in such a way that all identities of Θ become true for all possible values of their
variables in A. If F is a finite subset of the domain of A, then Θ is satisfied locally on F if
the above situation holds where only values within F are considered for the variables.

A set of identities is called trivial if it is satisfied in the projection clone P consisting of
the projection operations on the set {0, 1}. Otherwise, the set is called non-trivial. We say
that A satisfies non-trivial identities locally if on every finite subset of its domain it locally
satisfies some non-trivial set of identities. We shall use similar terminology for h1 identities.

A map ξ : Pol(A)→ Pol(B) is called a clone homomorphism if it preserves arities, maps
the i-th n-ary projection in Pol(A) to the i-th n-ary projection in Pol(B) for all 1 ≤ i ≤ n, and
satisfies ξ(f ◦ (g1, . . . , gn)) = ξ(f) ◦ (ξ(g1), . . . , ξ(gn)) for all n,m ≥ 1, all n-ary f ∈ Pol(A),
and all m-ary g1, . . . , gn ∈ Pol(A). This is the case if and only if the map ξ preserves
identities, i.e., whenever some functions in Pol(A) witness the satisfaction of some identity in
Pol(A), then their images under ξ witness the satisfaction of the same identity in Pol(B).

A map ξ : Pol(A)→ Pol(B) is called a minion homomorphism if it preserves arities and
composition with projections; the latter meaning that for all n,m ≥ 1, all n-ary f ∈ Pol(A),
and allm-ary projections p1, . . . , pn ∈ Pol(A), we have ξ(f ◦(p1, . . . , pn)) = ξ(f)◦(p′1, . . . , p′n),
where p′i is the m-ary projection in Pol(B) onto the same variable as pi, for all 1 ≤ i ≤ n.
This is the case if and only if the map ξ preserves h1 identities in the sense above.
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The existence of clone and minion homomorphisms Pol(A) → P is connected to the
satisfaction of non-trivial identities in a relational structure A. Namely, there exists a clone
homomorphism Pol(A)→P if and only if every set of identities satisfied in A is trivial; and
there exists a minion homomorphism Pol(A)→P if and only if every set of h1 identities
satisfied in A is trivial.

Similarly, the local satisfaction of identities and h1 identities can be characterised via
uniformly continuous clone and minion homomorphisms, respectively [16, 21, 5]. However,
the reader will not need any knowledge of topology and can only keep in mind that the
topology reflects the local/global distinction.

4.2 Homogeneity, boundedness, reducts, ω-categoricity, orbit growth
Let C be a class of finite structures in a common relational signature which is closed under
isomorphisms. We define the following properties the class C might have.
Hereditary property (HP): if A ∈ C and if B is a substructure of A, then B ∈ C;
Amalgamation property (AP): if A,B,C ∈ C and if f1 : A→ B and f2 : A→ C are embed-

dings, then there exist D ∈ C and embeddings g1 : B → D and g2 : C → D such that
g1 ◦ f1 = g2 ◦ f2;

Strong amalgamation property (SAP): C satisfies AP and in addition g1 and g2 can be
chosen to have disjoint ranges, except for the common values enforced by above equation.

A relational structure C is homogeneous if every isomorphism between finite induced sub-
structures extends to an automorphism of the entire structure C. In that case, C is uniquely
determined, up to isomorphism, by its age, i.e., the class of its finite induced substructures
up to isomorphism. This is a consequence of the following theorem.

I Theorem 9 (Fraïssé’s Theorem, see [23]). Let σ be a relational signature and let C be a
class of finite σ-structures which is closed under isomorphisms and satisfies HP and AP.
Then there exists a σ-structure A such that A is countable, homogeneous, and the age of A
equals C. Furthermore A is unique up to isomorphism.

The structure A above is called the Fraïssé limit of C, and the class C a Fraïssé class.
A class C of finite structures in the same finite signature is finitely bounded if it is given

by a finite set F of forbidden finite substructures, i.e., C consists precisely of those finite
structures in its signature which do not embed any member of F . A class C of finite structures
in the same signature is homomorphically bounded by a (possibly infinite) set F of finite
structures if it is defined by forbidding the structures in F homomorphically, i.e., C consists
precisely of those finite structures in its signature which do not contain a homomorphic image
of any member of F as a substructure. A structure A is finitely bounded (homomorphically
bounded) if its age is.

A first-order reduct of a relational structure C is a relational structure A on the same
domain which is first-order definable without parameters in C. Every first-order reduct A
of a finitely bounded homogeneous structure is ω-categorical, i.e., the automorphism group
Aut(A) has finitely many orbits in its componentwise action on An, for all finite n ≥ 1. In
fact, if A is such a first-order reduct, then the number of orbits in the action of Aut(A) on
An grows exponentially in n; in general, we say that ω-categorical structures where this
number grows less than double exponentially in n have slow orbit growth.

For a relational structure A in signature σ = (Ri)i∈I , and J ⊆ I, we call the structure
(A; (RA

i )i∈J ) in signature ρ := (Ri)i∈J the ρ-reduct of A; conversely A is called an expansion of
any of its reducts, and a first-order expansion of a reduct if all of its relations have a first-order
definition in the reduct. We say that a structure is homogenizable if it has a homogeneous
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first-order expansion. All ω-categorical structures are homogenizable. A homogenizable
structure A has no algebraicity if the age of any, or equivalently some, homogeneous first-order
expansion of A has SAP.

A formula is primitive positive, in short pp, if it contains only existential quantifiers,
conjunctions, equalities, and relational symbols. If A is a relational structure, then a relation
is pp-definable in A if it can be defined by a pp-formula in A. A structure A pp-interprets
B if a structure isomorphic to B can be constructed from A by pp-defining a subset S of
some finite power of its domain, then pp-defining an equivalence relation ∼ on S, and then
pp-defining relations on the equivalence classes of ∼.

5 The encoding

We present the encoding of an arbitrary homogenizable structure with no algebraicity into a
CSP template, which will be the basis of our results. The construction is originally due to
Hrushovski [23, Section 7.4]; it was designed to capture properties of the first-order theory and
consequently the automorphism group of the original structure. We refine his construction
in order to also compare the polymorphism clones of the original structure and its encoded
counterpart, and to control the complexity of the CSPs of the produced templates.

5.1 Encoding and Decoding
Let Σ be a finite alphabet, and let Σ≥2 denote the set of all finite words over Σ of length at
least two. We are going to encode structures with a signature of the form ρ = (Rw)w∈W ,
where W ⊆ Σ≥2 and where the arity of each symbol Rw equals the length |w| of the word
w. For the rest of this section we fix Σ and ρ. Our goal is to encode any homogenizable
ρ-structure A with no algebraicity into a structure EA (where E stands for E. Hrushovski)
in a finite signature θ which is disjoint from ρ and only depends on Σ.

Note that by renaming its signature, and possibly artificially inflating the arity of its
relations (by adding dummy variables), any arbitrary structure with countably many relations
can be given a signature of the above form without changing, for example, its polymorphism
clone. However, the encoding will depend on these modifications, and their effect on the
algebraic and combinatorial properties of the encoding is beyond the scope of this article.
The original encoding [23, Section 7.4] roughly corresponds to the case where |Σ| = 1, and
our generalization allows us to avoid such modifications for the structures we wish to encode,
making in particular our complexity-theoretic results possible.

I Definition 10. Let θ denote the signature {P, ι, τ, S} ∪ {Hs | s ∈ Σ}, where P , ι, τ are
unary relation symbols, Hs is a binary relation symbol for each s ∈ Σ, and S is a 4-ary
relation symbol. For every signature σ disjoint from θ, define σ+ to be the union σ ∪ θ.

The encoding of a ρ-structure A will roughly be obtained as follows: first, one takes a
homogeneous first-order expansion B in some signature σ; from its age K, one defines a class
K+ of finite structures in signature σ+; and the encoding is the θ-reduct of the Fraïssé limit
of K+. In order to define the class K+, we need the following definitions.

I Definition 11. Let σ be a signature disjoint from θ, let A be a σ+-structure, and let
w ∈ Σ≥2. A tuple (a1, . . . , a|w|, c1, . . . , c|w|) of elements of A is a valid w-code in A if the
following hold:
(a) a1, . . . , a|w| ∈ PA;
(b) HA

wi
(ci, cj) for all 1 ≤ i, j ≤ |w| such that j ≡ i+ 1 (mod |w|);

(c) ιA(c1) and τA(c|w|);
(d) SA(ai, aj , ci, cj) for all 1 ≤ i, j ≤ |w| with i 6= j.
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Figure 1 Sources and destinations of the operators related to the encoding and decoding.

I Definition 12. Let σ be a signature disjoint from θ, and let A be a σ+-structure. Then A
is called separated if
(i) HA

s only relates pairs within A \ PA for all s ∈ Σ;
(ii) ιA, τA are contained in A \ PA;
(iii) If (a, b, c, d) ∈ SA, then c, d ∈ A \ PA and c 6= d.

It follows from (iii) above that in a separated structure a valid w-code can only exist if
|w| ≥ 2; this is the reason for the exclusion of unary relation symbols from ρ.

I Definition 13. Let A be a ρ-structure and let B be a homogeneous first-order expansion of
A with signature σ and age K. Define K+ to be the class of all finite σ+-structures C with
the following properties:
(1) The σ-reduct of the restriction of C to PC is an element of K;
(2) C is separated and for every R ∈ σ the relation RC only relates tuples which lie entirely

within PC;
(3) If Rw ∈ ρ and (a1, . . . , a|w|, c1, . . . , c|w|) is a valid w-code in C, then (a1, . . . , a|w|) ∈ RC

w.

I Lemma 14. Let A be a ρ-structure and let B be a homogeneous first-order expansion of A
with age K. If K has the HP and the SAP, then K+ has the HP and the SAP as well.

By Lemma 14, if A has no algebraicity1, and B is a homogeneous first-order expansion of
A with age K, then K+ has a Fraïssé limit, allowing us to define our encoding as follows.

I Definition 15. Let A be a ρ-structure with no algebraicity and let B be a homogeneous
first-order expansion of A with age K. We define −→BB A, the encoding blow up of A, to be
the Fraïssé limit of K+. Moreover, we define −→R C to be the θ-reduct of any structure C with
signature containing θ. The Hrushovski-encoding EA is defined by EA := −→R −→BB A.

I Remark 16. All ω-categorical structures have a homogeneous first-order expansion. This
expansion is not unique, but the encoding EA of A does not depend on it.

1 Contrary to a claim in [23], AP of K is not a sufficient assumption for AP of K+ in Lemma 14.
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Figure 2 The encoding EA of a structure A.

It might be of help to the reader if we note that the operators used in the encoding of a
structure, i.e., −→BB and −→R, bear arrows from left to right; the operators used in the decoding
of a structure, defined below, bear arrows in the opposite direction. Table 1 contains an
informal summary of all operators, and Figure 1 describes on which classes of structures
they operate.

Table 1 The meaning of the operators.

Operator Name Description
−→
BB encoding blow up The first step in an encoding, extends the domain and defines

relations for the signature θ via a homogeneous expansion B of
the input.

−→
R θ-reduct Returns the θ-reduct of a structure.

E encoding Combines −→BB and −→R to obtain a θ-structure from a ρ-structure.
←−
B decoding blow up The first step in decoding a θ-structure, it converts valid codes

into corresponding relations in ρ.
←−
R relativised reduct Restricts a structure to the set named by P and forgets relations

not in ρ.

D decoding Combines ←−R and ←−B to obtain the ρ-structure A from the
encoded θ-structure EA.

C canonical code Defines in a canonical way a finite θ-structure from a finite
ρ-structure in which every relation which holds in the input is
witnessed by a valid code.

Like the encoding of a structure, the decoding of a structure is a composition of two steps;
first a decoding blow up, and then a relativised reduct.

I Definition 17. Let C be a θ-structure. Then the decoding blow up ←−B C of C is the
expansion of C in signature ρ+, where for any symbol Rw ∈ ρ the relation R

←−
B C
w is defined

to consist of those tuples (a1, . . . , a|w|) for which there exist c1, . . . , c|w| such that the tuple
(a1, . . . , a|w|, c1, . . . , c|w|) is a valid w-code in C.

For a structure D in a signature containing ρ+, the relativised reduct ←−R D of D is defined
to be the ρ-reduct of D restricted to PD.

Finally, we set DC :=←−R←−B C, the decoding of C, for any θ-structure C.
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The following proposition states that the operator D indeed decodes EA. It also allows
us to identify A and D EA, an assumption we shall thenceforth make.

I Proposition 18. Let A be a homogenizable ρ-structure with no algebraicity. Then A
and D EA are isomorphic. Moreover, for any θ-structure D, the structure DD has a
pp-interpretation in D.

5.2 The relationship between A and EA
We derive the following main properties of the encoding EA of a ρ-structure A:

EA is ω-categorical if and only if A is, and has slow orbit growth if and only if A does
(Proposition 19);
There exists a uniformly continuous clone homomorphism ξ from Pol(EA) into Pol(A);
conversely, if A is ω-categorical, then injective polymorphisms of A essentially extend to
polymorphisms of EA (Proposition 20).

We start by investigating the relationship of the orbits of Aut(A) with those of Aut(EA),
showing that ω-categoricity and slow orbit growth are preserved by the encoding.

I Proposition 19. Let A be a homogenizable ρ-structure with no algebraicity.
1. A is ω-categorical if and only if EA is.
2. Let A be ω-categorical. For n ≥ 1, write f(n) and g(n) for the number of orbits of n-tuples

under the action of Aut(A) and Aut(EA), respectively. Then f(n) ≤ g(n) ≤ 26|Σ|n4
f(n)

for all n ≥ 1. In particular, A has slow orbit growth if and only if EA does.

We now turn to the polymorphism clones of A and EA. An immediate consequence
of Proposition 18 is that polymorphisms of EA can be restricted to polymorphisms of A.
Conversely, one can prove that assuming ω-categoricity of A, for every injective f ∈ Pol(A)
there exists an embedding u of A such that uf can be extended to a polymorphism of EA.

I Proposition 20. Let A be a structure with no algebraicity, and let B be a homogeneous
first-order expansion of A. Then the following hold:
(1) For every f ∈ Pol(EA), the restriction f |PE A of f to PE A is a polymorphism of A. The

map f 7→ f |PE A is a uniformly continuous clone homomorphism Pol(EA)→ Pol(A).
(2) If A is ω-categorical, then for every injective f ∈ Pol(A) there exists an embedding

u : −→BB A→
−→BB A such that uf extends to a polymorphism of EA.

(3) If A is ω-categorical, then for all k ≥ 1, Bk embeds into B if and only if (−→BB A)k embeds
into −→BB A.

Propositions 19 and 20 are the fundamental results upon which the following sections
rely. They allow us to relate Pol(EA) and Pol(A) and to transfer the exotic behaviour of
the latter (for a well-chosen A with infinite signature) into the former.

5.3 Homomorphisms and the encoding
We now examine the relationship between the finite structures that homomorphically map
into a structure A with those that homomorphically map into its encoding EA (which is
precisely CSP(EA)). This will be particularly relevant in Section 7 where we investigate the
complexity of CSPs of structures encoded with our encoding.
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I Proposition 21. There exists a log-space computable function C 7→ CC from the set of
finite ρ-structures to the set of finite θ-structures satisfying the following properties:

For every finite ρ-structure C, we have D CC = C.
If C is a finite ρ-structure, and D is a θ-structure, then there exists a homomorphism
from C to DD if and only if there exists a homomorphism from CC to D.

The properties from Proposition 21 are enough to give a concrete description of CSP(EA)
when A is homomorphically bounded.

I Proposition 22. Let A be a homogenizable ρ-structure with no algebraicity which is
homomorphically bounded by a set G of finite ρ-structures. Let X be a θ-structure. Then the
following are equivalent.
(1) There exists an embedding of X into EA;
(2) There exists a homomorphism from X to EA;
(3) X is separated and for all G ∈ G there exists no homomorphism from CG to X.

Note that being separated can be characterised by not containing the homomorphic
image of any element of a finite set S of finite θ-structures. As an immediate consequence of
Proposition 22 we therefore obtain the following corollary.

I Corollary 23. Let A be a homogenizable ρ-structure with no algebraicity which is homo-
morphically bounded by a set G of finite ρ-structures. Then EA is homomorphically bounded
by {CG | G ∈ G} ∪ S.

6 Height 1 identities: local without global

Recall that in [13] a negative answer to Question 2 of the introduction was established by
an infinite-language example which is ω-categorical and has slow orbit growth. We are now
going to prove that the encoding of that structure, or in fact, of a simplification S thereof,
also provides an example. Since ES is a CSP template, and since both ω-categoricity and
slow orbit growth are preserved by the encoding, ES is a witness for the truth of Theorem 3.
While the non-satisfaction of non-trivial global h1 identities lifts from S to ES by virtue of
Proposition 20 (1), we do not know in general when this is the case for the local satisfaction
of non-trivial h1 identities. Our proof thus relies on specific structural properties of S; we
show that both S and ES locally satisfy dissected weak near-unanimity identities.

6.1 Dissected weak near-unanimity identities
I Definition 24. Let n > k > 1, let g1, . . . , gn be binary function symbols, and for every
injective function ψ : {1, . . . , k} → {1, . . . , n} let fψ be a k-ary function symbol. Then the set
of (n, k) dissected weak near-unanimity identities consists of the identities

fψ(x, . . . , x,
i
↓
y, x, . . . , x) = gψ(i)(x, y)

for all injective functions ψ : {1, . . . , k} → {1, . . . , n} and i ∈ {1, . . . , k}.

Note that any polymorphism clone which satisfies identities of the form

f(y, x, . . . , x) = · · · = f(x, . . . , x, y),

called k-ary weak near-unanimity identities when f is k-ary for some k ≥ 3, must also satisfy
the (n, k) dissected weak near-unanimity identities for all n > k. This can be seen by setting
fψ = f for every ψ. Moreover, there exist polymorphism clones which satisfy dissected weak
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near-unanimity identities, but do not satisfy any weak near-unanimity identities: one example
is the polymorphism clone consisting of all injective functions (up to dummy variables) on a
countable set, see [4]. Hence, we can regard dissected weak near-unanimity identities as a
strict weakening of the weak near-unanimity identities.

Further note that, for all parameters m ≥ n > k > 1, the (n, k) dissected weak near-
unanimity identities form a subset of the (m, k) dissected weak near-unanimity identities.
Thus for every fixed k > 1 the family of (n, k) dissected weak near-unanimity identities form an
infinite chain of h1 identities of increasing strength. In the special case k = 2, the satisfaction
of any of the (n, 2) dissected weak near-unanimity identities is equivalent to the existence of a
binary commutative polymorphism (as they imply g1(x, y) = g2(y, x) = g3(x, y) = g1(y, x)).

I Lemma 25. For all n > k > 1 the (n, k) dissected weak near-unanimity identities are
non-trivial.

Proof. Assume to the contrary that there exist projections g1, . . . , gn ∈ P and fψ ∈ P

for every injection ψ : {1, . . . , k} → {1, . . . , n} that satisfy the (n, k) dissected weak near-
unanimity identities. First, suppose that there are two distinct 1 ≤ i, j ≤ k such that gi, gj
are both the projection onto the second coordinate. Then let ψ be an injective function with
ψ(1) = i, ψ(2) = j. It follows from the identities that fψ(y, x, . . . , x) = fψ(x, y, . . . , x) = y

holds for all values of the variables, which contradicts fψ being a projection. Therefore at
most one operation gi equals the projection to its second coordinate. Since n > k, there is
an injective function ψ : {1, . . . , k} → {1, . . . , n} such that gψ(i) is the first projection for all
i ∈ {1, . . . , k}. Then fψ satisfies the weak near-unanimity identities, which again contradicts
fψ being a projection. J

I Lemma 26. Let U be a relational structure and let n ≥ 2. Then there exists an embedding
from U2 into U if and only if there exists an embedding from Un into U.

Proof. If there is an embedding f : Un → U for some n ≥ 2, then g : U2 → U, defined by
g(x, y) := f(x, y, . . . , y), is also an embedding. On the other hand, if for some n ≥ 2 there
exist embeddings g : U2 → U and h : Un → U, then the composition f(x1, . . . , xn+1) :=
g(h(x1, . . . , xn), xn+1) is an embedding from Un+1 into U. Hence by induction the existence
of an embedding from U2 into U implies the existence of an embedding from Un into U for
all n ≥ 2. J

Proof of Theorem 5. For all l ≥ 2, define Xl ⊆ F l by

Xl :=
⋃

a,b∈F

{(a, . . . , a, b), (a, . . . , a, b, a), . . . , (b, a, . . . , a)},

and let Xl be the substructure which Xl induces in Ul.
The first step of our proof is to show that if n ≥ k, then there exists an embedding

h : Xk → Xn such that x is an initial segment of h(x) for all x ∈ Xk. Let us first assume
that k ≥ 3. For every tuple x ∈ Xk we denote the unique element of F which occurs more
than once among its entries by s(x). Define h : Xk → Xn to be the map that extends the
tuple x by n− k many entries with value s(x). In order to prove that h is an embedding let
x1, . . . ,xm ∈ Xk be such that RUk (x1, . . . ,xm) holds for some m-ary relation symbol R in the
signature of U. By assumption (i) we have m < k. Thus there exists 1 ≤ j ≤ k such that the
projection of each xi to its j-th coordinate equals s(xi). Therefore (s(x1), . . . , s(xm)) ∈ RU,
and hence h is a homomorphism. Also its inverse – the projection of n-tuples to the first
k-coordinates – is a homomorphism, and thus h is an embedding. Now assume the remaining
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case where k = 2. Define a map h : X2 → Xn by (x1, x2) 7→ (x1, x2, . . . , x2). To check that
that h is an embedding, by assumption (i), we only need to check that h is an embedding
with respect to unary relations, which however follows from its definition.

Observe that h was defined in such a way that, for each index 1 ≤ i ≤ k, the i-th projection
of h(x) is equal to xi. By permuting the coordinates of its image in a suitable manner, we
can obtain embeddings hψ : Xk → Xn for every injection ψ : {1, . . . , k} → {1, . . . , n} such
that the ψ(i)-th projection of hψ(x) is equal to xi for all 1 ≤ i ≤ k.

In order to construct the operations fψ on F , let f : Uk → U and g : Un → U be
embeddings, which exist by (ii) and Lemma 26. For every injection ψ : {1, . . . , k} → {1, . . . , n}
define the map uψ : f(Xk)→ g(Xn) by

uψ(f(a, . . . , a, b
ith
, a, . . . , a)) := g(a, . . . , a, b

ψ(i)th
, a, . . . , a). (1)

Then uψ is equal to g ◦ hψ ◦ f−1. Since hψ is an embedding, uψ : f(Xk) → uψ(f(Xk)) is
an isomorphism between finite substructures of U. By the homogeneity of U, it can be
extended to an automorphism vψ of U. Set fψ := vψ ◦ f and, for all 1 ≤ i ≤ n, define
gi(x, y) := g(x, . . . , x, y, x, . . . , x), where the only y appears at the i-th coordinate of g. It then
follows from (1) that these polymorphisms satisfy the (n, k) dissected weak near-unanimity
identities on F , concluding the proof. J

6.2 Revisiting the infinite-language counterexample
We now investigate the simplification S of the infinite-language structure from [13]; S satisfies
the same local and global h1 identities as the structure in [13]. Namely, we consider the
superposition as in [13, Construction 6.4], but directly of the CSS structures in the proof
of [13, Lemma 6.3] rather than of their model-complete cores; we are able to do this due to
our constructive, rather than indirect, proof of the local satisfaction of h1 identities. The
structure S has the following properties.

I Proposition 27 (Consequence of the results from [13]). There exist ω-categorical structures
S and H with slow orbit growth and without algebraicity, as well as a strictly increasing
function α : N→ N such that the following hold:
(1) H is a homogeneous expansion of S by pp-definable relations.
(2) Every relation of H has arity k · α(n) for some k, n ≥ 1, and for every n ≥ 1 there exist

only finitely many relations of arity of the form k ·α(n). Moreover, if (a1, . . . , ak·α(n)) ∈ R
for some relation R of H, then {a1, . . . , ak·α(n)} has size at least α(n).

(3) H is homomorphically bounded.
(4) There exists a minion homomorphism from Pol(S) to P.

Proof of Theorem 3. Let S,H be as in Proposition 27. We can assume that S has signature
ρ as in Section 5 since this change does not affect the properties claimed in Proposition 27; see
the remark at the beginning of Section 5.1. Since S has no algebraicity, it has an ω-categorical
finite-language encoding U = ES. Moreover, since S has slow orbit growth, so does U by
Proposition 19. There is a minion homomorphism Pol(U)→ Pol(S) by Proposition 20 (1)
and a minion homomorphism Pol(S) → P by Proposition 27, thus we obtain a minion
homomorphism Pol(U)→P by composition.

It remains to prove that there is no uniformly continuous minion homomorphism from
Pol(U) to P. We do so by showing that for every finite subset F of the domain, there exists
k > 1 such that Pol(U) satisfies the (n, k) dissected weak near-unanimity identities on F for all
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n > k. Note that U = ES is a reduct of the blowup −→BH S, and hence Pol(−→BH S) ⊆ Pol(ES).
It is therefore sufficient to prove that there exists some k > 1 for which −→BH S satisfies the
(n, k) dissected weak near-unanimity identities on F for all n > k.

In order to prove this statement, we verify that conditions (i) and (ii) of Theorem 5 hold
for −→BH S, F , and a suitable k > 1. Since H is homomorphically bounded, it is well-known
that H2 embeds into H. By Proposition 20 (3), there exists an embedding of (−→BH S)2 into
−→BH S, and thus condition (ii) holds.

It remains to check (i) which states that there exists an upper bound on the arity of
tuples in F that satisfy some relation from −→BH S. Denote the signature of H by σ. Suppose
that R

−→
BH S contains a tuple entirely within F for some R ∈ σ+, the language of −→BH S. Since

σ+ = σ ∪ θ, and all relations in θ have arity at most 4, we may assume that R ∈ σ. Then
any tuple in R

−→
BH S must lie entirely within P

−→
BH S, and essentially the proof of Proposition 18

shows that this implies that the tuple is an element of RH.
By Proposition 27 (2), R has arity k · α(n) for some n, k ≥ 1 and at least α(n) many of

the values of any tuple in RH are distinct. Therefore, α(n) must be smaller than |F |. Since
α is a strictly increasing function, it follows that only finitely many relations of R

−→BH S have
tuples that lie entirely in F . Let k > 1 be a strict upper bound on the arity of those relations.
For this choice of k we have that (i) of Theorem 5 holds, and thus R

−→
BH S satisfies the (n, k)

dissected weak near-unanimity identities on F for all n > k. J

I Remark 28. It follows that the original structure S satisfies dissected weak near-unanimity
identities locally as well, since by Proposition 20 (1), there is a uniformly continuous minion
homomorphism from Pol(ES) to Pol(S). This result is new and no other explicit description
of non-trivial local h1 identities of S was given in [13].

7 Identities and CSPs with Homogeneous Templates

7.1 Encoding arbitrary languages as CSPs
Let Σ be a finite alphabet and W ⊆ Σ≥2. Let ρW be the signature consisting of one |w|-ary
relation symbol Rw for every word w ∈ W . The trivial structure TW is the countable
ρW -structure whose relations are all empty. For every word w ∈ W , the w-edge structure
Fw is the ρW -structure on the set Fw = {1, . . . , |w|} whose only non-empty relation is
RFw
w = {(1, . . . , |w|)}.
The trivial structure TW is homomorphically bounded by the set of all edge-structures

Fw with w ∈ W . Moreover, TW has no algebraicity. It is not hard to see that ETW is
homogeneous. Applying Theorem 5 and a compactness argument, one can see that ETW
satisfies non-trivial h1 identities.

Since TW is homomorphically bounded, Corollary 23 can be used to give an explicit
description of CSP(ETW ), which we use to prove the results of this section. We employ
the notion of coNP-many-one reduction first defined in [8]: a language K coNP-many-one
reduces to L if there is a non-deterministic polynomial-time Turing machine M such that
for all words w, we have w ∈ K if and only if each computational path of M , on input
w, produces a word in L. Note that if K has a coNP-many-one reduction to L, then in
particular K is in coNPL.

I Proposition 29. Let L ⊆ Σ≥2 and W := Σ≥2 \L both be nonempty. Then L has a log-space
many-one reduction to CSP(ETW ), and CSP(ETW ) coNP-many-one reduces to L.
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Proof. The function w 7→ CFw, for every w ∈ Σ≥2, is computable in logarithmic space with
respect to |w| by Proposition 21. Also note that there is a homomorphism CFu → CFw if
and only if w = u. Moreover, it follows from Proposition 22 that there is a homomorphism
CFw → ETW if and only if w ∈ L. Thus L has a log-space many-one reduction to CSP(TW ).

For the other reduction, let X be a finite θ-structure, an instance of CSP(ETW ). If there
is no homomorphism X→ ETW , by Proposition 22, either X is not separated (which can
be checked in polynomial time), or there is a word w ∈ W not longer than the size of the
domain of X and a homomorphism f : CFw → X. The reduction does the following: if X
is not separated, we map it to a fixed element of W . Otherwise, we guess a word w not
longer than the size of the domain of X and a function f : CFw → X. If this function is not
a homomorphism, we map X to a fixed word of L. If f is a homomorphism, we map X to w.
Thus, if X ∈ CSP(ETW ) then all runs of the reduction output a word of L. Moreover, if
X /∈ CSP(ETW ), then at least one run outputs word in W . J

We can now prove the first statement of Theorem 8.

Proof of the first statement of Theorem 8. Let L ⊆ Σ≥2 be a coNPC-complete language,
and let W be its complement. Then L reduces to CSP(ETW ) by Proposition 29, so
CSP(ETW ) is coNPC-hard. Moreover, it follows from Proposition 29 and the fact that
coNPC is closed under coNP-many-one reductions that CSP(ETW ) belongs to coNPC . J

The second statement of Theorem 8 follows from the following proposition whose proof is
inspired by Ladner’s proof on the existence of NP-intermediate problems [25].

I Proposition 30. Let L ⊆ {0, 1}≥2 be a language in coNP \ P. Then there is a unary
language I ⊆ {0}≥2 such that CSP(ETI) is also in coNP \P, but L is not polynomial-time
reducible to CSP(ETI).

Finally, we are ready to prove Theorem 7. In the following, let L be the extension of
existential second-order logic allowing countably many second-order quantifiers, followed by
a countable conjunction of first-order formulas. It can be seen that the upward direction of
Łoś’s theorem and the downward Löwenheim-Skolem theorem hold for this logic.

Proof of Theorem 7. We prove the following: there is no countable set Θ of θ-formulas in
L such that the equivalence A |= Θ⇔ CSP(A) ∈ C holds for all homogeneous θ-structures A.
This proves the theorem, as the satisfaction of a countable set of identities by polymorphisms
can be expressed in L.

Assume that such a Θ exists. Let L be a language over Σ whose Turing-degree is not
intersected by C, and let W = Σ≥2 \ L. For every n ∈ N, let W ∩Σ≤n be the set of words of
length at most n in W . Corollary 23 implies that CSP(ETW∩Σ≤n) is finitely bounded, hence
CSP(ETW∩Σ≤n) is in AC0. Therefore, since ETW∩Σ≤n is homogeneous, our assumption
implies that ETW∩Σ≤n |= Θ. Let U be a non-principal ultrafilter on N, and let X be the
ultraproduct

(∏
n∈N ETW∩Σ≤n

)
/U . Then X |= Θ by Łoś’s theorem and X is homogeneous, as

all the factors in the ultraproduct are homogeneous. By the Löwenheim-Skolem theorem, X
has a countable elementary substructure Y that also satisfies Θ. Note that Y is homogeneous
and has the same age as X, as it is an elementary substructure of X.

Finally, we claim that X and ETW have the same age. Every finite substructure of ETW
embeds into ETW∩Σ≤n for all n ∈ N, by Corollary 23, and therefore into their ultraproduct,
which is X. Conversely, assume that a finite structure C embeds into X. This precisely means
that I := {n ∈ N | C embeds into ETW∩Σ≤n} is in U . Moreover, since U is not principal,
I is infinite. Let w ∈ W . Since I is infinite there is an n ≥ |w| such that C embeds into
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ETW∩Σ≤n . Since w ∈ W ∩ Σ≤n, Corollary 23 gives that CFw does not homomorphically
map to C, and that C is separated. Since this holds for all w ∈W , it follows that C embeds
into ETW .

By Theorem 9, the two structures Y and ETW are isomorphic. By Proposition 29, L and
CSP(ETW ) have the same Turing-degree, therefore CSP(ETW ) is not in C, a contradiction.

J
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Abstract
This article is a study of descriptive complexity of subsets of represented spaces. Two competing
measures of descriptive complexity are available. The first one is topological and measures how
complex it is to obtain a set from open sets using boolean operations. The second one measures how
complex it is to test membership in the set, and we call it symbolic complexity because it measures
the complexity of the symbolic representation of the set. While topological and symbolic complexity
are equivalent on countably-based spaces, they differ on more general spaces. Our investigation is
aimed at explaining this difference and highly suggests that it is related to the well-known mismatch
between topological and sequential aspects of topological spaces.
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1 Introduction

This article fits in the line of research extending descriptive set theory, mainly developed on
Polish spaces, to other classes of topological spaces relevant to theoretical computer science,
such as domains [21], quasi-Polish spaces [2], and represented spaces [13, 4, 1]. We pursue
our investigation of descriptive set theory on represented spaces, started in [1].

Theoretical computer science, logic and descriptive set theory closely interact, providing
different ways of describing properties, by programs, formulas or boolean operation from
basic properties, all intimately related. For instance, a property of real numbers that is
decidable in the limit must belong to the class ˜∆0

2, and every ˜∆0
2-property is decidable in

the limit relative to some oracle.
This correspondence works very well on Polish spaces and more generally countably-based

topological spaces. However, little is known for other topological spaces whose points can be
represented and processed by a program, and it has been shown in [1] that the correspondence
fails, even on natural spaces such as the space of polynomials with real coefficients: there is
a property which can be decided with 2 mind-changes, but which is not a difference of two
open sets, and is in no level below ˜∆0

2.
We introduce symbolic descriptive complexity, which captures the algorithmic complexity

of a set, and compare it to topological descriptive complexity. Our general goal is to
understand when and why these two measures of complexity differ, and what topological
properties of the underlying space cause this disagreement. Our results suggest that the
mismatch between the two measures of complexity reflects the discordance between the
sequential and the topological aspects of the space, so that symbolic complexity may be
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interpreted as a measure of sequential complexity rather than topological complexity, in the
same way as many topological notions have a sequential counterpart (sequential continuity,
sequential compactness, sequential closure, etc.).

More precisely, we show that among Hausdorff spaces, the spaces that are not Fréchet-
Urysohn exhibit a disagreement between symbolic and topological complexity at the lowest
level above the open sets, namely the differences of open sets. This result extends a similar
result obtained in [1] for the subclass of coPolish spaces.

We focus on the space of open sets of a Polish space, and relate the disagreement between
symbolic and topological complexity to the compactness properties of the Polish space, by
dividing Polish spaces into 4 classes, ranging from the locally compact to the non σ-compact
spaces, and giving a detailed analysis of descriptive complexity of sets in each case.

Along the way, we develop several tools and techniques that are needed to prove our
results and are interesting on their own right. In particular we argue that the classical notion
of hardness, which makes sense on countably-based spaces, is too restrictive on other spaces
and we solve the problem by introducing the weaker notion of hard* set.

We finally observe that the discordance between topological and sequential aspects is
already at the core of the theory of admissibly represented topological spaces. These spaces,
also characterized as the T0 quotients of countably-based spaces, are all sequential and
form a subclass of topological spaces which behave particularly well from a categorical
perspective: for instance, contrary to general topological spaces, they form a cartesian closed
category. More concretely, in this category, the space constructions such as product space
or subspaces do not coincide with the ones in the category of topological spaces, but with
their sequentializations. Our separation results between symbolic and topological complexity
heavily rely on the disagreement between sequential and topological space constructions.

1.1 Summary of the main results
We give a quick overview of the main results, stated informally.

In a represented space X = (X, δX), we introduce the symbolic complexity of a set A ⊆ X.
If Γ is a descriptive complexity class, such as ˜Σ0

n or ˜Dn (difference of n open sets), then we
define the corresponding symbolic complexity class [Γ] as follows:

A ∈ [Γ](X) ⇐⇒ δ−1
X (A) ∈ Γ(dom(δX)).

In a topological space with an admissible representation, one usually has Γ(X) ⊆ [Γ](X)
and our goal is to understand when and why the other inclusion does not hold, i.e. when and
why the topological and symbolic measures of complexity differ. It is know from [2] that
they coincide when X is a countably-based space.

We first observe that the classical notion of hardness, which is very useful to identify the
complexity of a set, is closely related to symbolic rather than topological complexity. We
introduce a weaker version, called hard* set and prove:

I Theorem (Theorem 3.2). For a Borel subset A of an analytic space X,

A is Γ-hard ⇐⇒ A /∈ [Γ̌](X),

A is Γ-hard* ⇐⇒ A /∈ Γ̌(X).

A topological subspace of a sequential space is not always sequential, so the subspace
constructions differ in the categories of topological and sequential spaces. This difference
implies a difference between symbolic and topological complexity.
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The sequential spaces whose subspaces are sequential are called the Fréchet-Urysohn
spaces. The class ˜D2 consists of differences of two open sets.

I Theorem (Theorem 4.1). If X is admissibly represented, Hausdorff and not Fréchet-
Urysohn, then

[˜D2](X) * ˜D2(X).

The assumption that the space is Hausdorff is needed. Indeed, spaces of open sets behave
better at low complexity levels.

I Theorem (Theorem 5.1). If X is admissibly represented then

[˜Dn](O(X)) = ˜Dn(O(X)).

However, the proof is not constructive and we show that the corresponding effective
classes disagree. The class D2 consists of differences of two effective open sets. Let N1 be
the space of functions N→ N having at most 1 non-zero value.

I Theorem (Theorem 5.3). One has [D2](O(N1)) * D2(O(N1)).

Finally, we give a rather detailed study of descriptive complexity on the spaces O(X)
when X is Polish. More precisely, we connect the relationship between symbolic and
topological complexity classes to the compactness properties of X. Some of the proofs heavily
rely on the fact that the product topology is not sequential in general, so product space
constructions differ in the categories of topological and sequential spaces.

In particular, symbolic and topological complexity differ at higher levels when X is Polish
and not locally compact.

I Theorem (Theorem 6.5).
There exists A ∈ [˜Dω](O(N1)) which is ˜∆0

3-complete*.
There exists A ∈ [˜Σ0

k](O(N×N1)) which is ˜Σ0
k+1-complete*, for each k ≥ 2.

There exists A ∈ [˜Σ0
2](O(N )) which is not Borel.

The paper is organized as follows. In Section 2, after giving the needed background
on represented spaces, we introduce symbolic complexity and provide simple tools for its
study. In Section 3 we introduce and study the notion of hard* set, used to capture the
topological complexity of sets. In Section 4 we prove that Hausdorff spaces that are not
Fréchet-Urysohn exhibit a disagreement between symbolic and topological complexity at the
lowest level. In Section 5, we study spaces of open sets. In particular, in Section 6 we focus
on open subsets of Polish spaces and locate symbolic complexity classes depending on the
compactness properties of the Polish space.

We sometimes include the proof in the body of the article, and sometimes only give the
intuition. Complete proofs can be found in [9].

2 Symbolic complexity

2.1 Represented spaces
The Baire space is N = NN, whose elements are either viewed as functions or infinite
sequences. To finite sequence of natural numbers σ ∈ N∗, we associate the cylinder [σ] which
is the set of elements of N extending σ. The Baire space is then endowed with the topology
generated by the cylinders. Every subset of N is endowed with the subspace topology.

ICALP 2020
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A represented space is a pair X = (X, δX) where X is a set and δX :⊆ N → X is a
partial surjective function called a representation. If δX(p) = x, then p is a name of x.
If X,Y are represented spaces then a function F :⊆ N → N is a realizer of f : X → Y
if f ◦ δX = δY ◦ F . f is computable if it has a computable realizer. We write X ∼= Y if
there exists a bijection between X and Y which is computable in both directions.

A representation δ of a topological space (X, τ) is admissible if τ is the final topology
of δ and every partial continuous function f :⊆ N → X has a continuous realizer, which is a
continuous function F :⊆ N → N satisfying f = δ ◦ F .

If X,Y are admissibly represented spaces, then a function f : X → Y is continuous if
and only if it has a continuous realizer. In particular, f is continuous if and only if it is
computable relative to some oracle.

The topological spaces having an admissible representation are exactly the T0-spaces that
are quotients of countably-based spaces, and are also called QCB0-spaces. These spaces form
a cartesian closed category, with very natural representations for products and function spaces.
They enjoy the following remarkable but overlooked properties, as proved by Schröder [16]:
if X is a QCB0-space, then

X is sequential, separable and has a countable network, i.e. a countable family of subsets
such that every open set is a union of them,
X is first-countable if and only if X is countably-based,
X is hereditarily Lindelöf,
When identifying the space of open sets O(X) with the function space SX where S is the
Sierpinski space, the topology on O(X) is the Scott topology.

As far as topology is concerned, admissibly represented spaces and QCB0-spaces are the
same. However, computability can only be expressed in terms of representations, so we will
refer to admissibly represented spaces rather than QCB0-spaces.

Countably-based T0-spaces have a particular representation, called standard representa-
tion, which is admissible. Once a countable basis indexed by N has been chosen, say (Bi)i∈N,
a name of x is any sequence p ∈ N such that {i ∈ N : ∃n, p(n) = i+ 1} = {i ∈ N : x ∈ Bi},
so that x is described by enumerating its basic neighbourhoods in any order.

2.2 Symbolic complexity
Let Γ be a descriptive complexity class, i.e. a family Γ = {Γ(X)} where X ranges over
topological spaces and Γ(X) is a collection of subsets of X. The simplest class is ˜Σ0

1 =
{˜Σ0

1(X)} where ˜Σ0
1(X) is the collection of open subsets of X. The class ˜Σ0

n is inductively
defined as the class of countable unions of differences of ˜Σ0

n−1-sets. The class ˜Dn is inductively
defined as follows: ˜D1 = ˜Σ0

1 and ˜Dn+1 consists of sets U \ A where U ∈ ˜Σ0
1 and A ∈ ˜Dn.

For any class Γ, the class Γ̌ consists of the complements of sets in Γ.
Let X = (X, δX) be a represented space, which is also a topological space by taking the

final topology of δX: U ⊆ X is open iff δ−1
X (U) is open in dom(δX).

IDefinition 2.1. Let X = (X, δX) be a represented space. We define the symbolic complexity
class [Γ](X) as follows: for A ⊆ X,

A ∈ [Γ](X) ⇐⇒ δ−1
X (A) ∈ Γ(dom(δX)).

By definition of the final topology of δX, one always has [˜Σ0
1](X) = ˜Σ0

1(X). A descriptive
complexity class Γ is often closed under continuous preimages, and in that case one has Γ(X) ⊆
[Γ](X) because δX is continuous. Moreover, for such classes Γ, it is not hard to see that the
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symbolic complexity class [Γ] does not depend on the choice of the admissible representation,
hence Γ(X) is intrinsic to X as a topological space. However, effective complexity classes are
sensitive to the choice of an admissible representation (but not to the choice of a computably
admissible one, which we do not discuss here).

Our general goal is to understand symbolic complexity classes, relate them to topological
complexity classes and understand for which X and which Γ we have [Γ](X) = Γ(X).

An important result due to de Brecht [2] is that symbolic and topological complexity
coincide when X is a countably-based T0-space with its standard representation.

I Theorem 2.2 ([2]). Let X be a countably-based T0-space with its standard representation,
and let α, β < ω1. One has

[˜Dα(˜Σ0
β)](X) = ˜Dα(˜Σ0

β)(X).

It was improved in [1] by observing that the equality is uniform and effective, so it also
holds for the effective complexity classes Dm(Σ0

n), m,n ∈ N.

2.3 Tools
We give a simple way of locating a symbolic complexity class. A network in a topological
space X is a family F of subsets of X such that every open set is a union of elements of F [5].
Every admissibly represented space has a countable network, given by the images of cylinders
under the admissible representation.

I Proposition 2.3. Let X be admissibly represented. Assume that X has a countable network
of sets in ˜Σ0

i+1(X). For all n ∈ N, one has

[˜Σ0
n](X) ⊆ ˜Σ0

n+i(X).

Proof. Let Y be the topological space with underlying set X and whose topology is generated
by the countable network of X. Y is countably-based and inherits the T0-property of X,
let δY be its standard representation. Therefore, one has [˜Σ0

n](Y) = ˜Σ0
n(Y) by Theorem 2.2.

By definition of a network, every open subset of X is an open subset of Y. In other
words, id : Y→ X is continuous hence continuously realizable, which implies that [˜Σ0

n](X) ⊆
[˜Σ0

n](Y). Conversely, every open subset of Y belongs to ˜Σ0
i+1(X) which implies, by induction

on n, that ˜Σ0
n(Y) ⊆ ˜Σ0

n+i(X).
Putting everything together, we obtain [˜Σ0

n](X) ⊆ [˜Σ0
n](Y) = ˜Σ0

n(Y) ⊆ ˜Σ0
n+i(X). J

We take the following notion from [19]. An admissibly represented space is quasi-zero-
dimensional if it is the sequentialization of a zero-dimensional space, i.e. if its open sets
are the sequentially open sets of a space having a basis of clopen sets. For instance, the
spaces 2N and NN are not zero-dimensional, as proved by Schröder [18], but they are
quasi-zero-dimensional.

I Corollary 2.4. Let X be quasi-zero-dimensional, for instance X = 2N or NN . One has

[˜Σ0
n](X) ⊆ ˜Σ0

n+1(X).

Proof. The images of cylinders under the representation are closed subsets of X (Proposition 7
in [19]). J

A common technique to prove a separation result in a space Y is to prove it in a simpler
space X and then transfer the result to Y by including X into Y.

ICALP 2020
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I Proposition 2.5. Let Γ,Γ′ be complexity classes that are closed under continuous (resp. com-
putable) preimages.

Let X be a continuous (resp. computable) retract of Y. If [Γ](Y) ⊆ Γ′(Y), then [Γ](X) ⊆
Γ′(X).

Proof. Let r : Y → X and s : X → Y be continuous (resp. computable) functions such
that r ◦ s = idX. Let A ∈ [Γ](X) and B = r−1(A). As r is continuous hence continuously
realizable (resp. computable), one has B ∈ [Γ](Y) so B ∈ Γ(Y). As s is continuous
(resp. computable) and A = s−1(B), we conclude that A ∈ Γ′(X). J

If Y = (Y, δY) is a represented space and X ⊆ Y , then X := (X, δX) is a represented space
by taking δX as the restriction of δY to δ−1

Y (X). Observe that as a topological space, X is
not always a topological subspace of Y, but the sequentialization of the topological subspace
[17].

I Proposition 2.6. Let Γ be closed under finite intersections and continuous (resp. comput-
able) preimages, and Γ′ be closed under continuous (resp. computable) preimages. Let X ∈
Γ(Y). If [Γ](Y) ⊆ Γ′(Y), then [Γ](X) ⊆ Γ′(X).

Proof. The representation δX of X is the restriction of δY to δ−1
Y (X).

Let A ∈ [Γ](X). One has A ∈ [Γ](Y). Indeed, δ−1
Y (A) = δ−1

X (A) = S ∩ dom(δX)
for some S ∈ Γ(N ), and dom(δX) = δ−1

Y (X) = T ∩ dom(δY) for some T ∈ Γ(N ). By
assumption, U := S ∩ T ∈ Γ(N ) so δ−1

Y (A) = U ∩ dom(δY) and A ∈ [Γ](Y).
Threfore, A ∈ Γ′(Y) so by continuity (resp. computability) of the identity from X to Y,

we conclude that A ∈ Γ′(X). J

3 Hardness

An important tool to pinpoint the descriptive complexity of a set is provided by the notions
of hardness and completeness. If Γ is a descriptive complexity class, then in any topological
space X, one can define a set A ⊆ X to be Γ-hard if for each C ∈ Γ(N ), there is a continuous
reduction from C to A, i.e. a continuous function f : N → X such that C = f−1(A). Note
that the reduction always starts from N . It contrasts with the generalizations of Wadge
reducibility between subsets of a topological or represented spaces investigated in [14, 15].

As is well known in descriptive set theory on Polish (and even quasi-Polish) spaces, the
hardness of a set is closely related to its complexity: Wadge’s Lemma implies that for any
class Γ 6= Γ̌ of Borel sets and any Borel subset A of a Polish space X,

A is Γ-hard ⇐⇒ A /∈ Γ̌(X).

However, outside countably-based spaces it turns out that the hardness of a set is related to
its symbolic rather than topological complexity, which usually differ as we will see shortly.

Therefore, we need another notion of hardness which reflects the topological complexity
of a set.

I Definition 3.1. Let (X, τ) be a topological space and Γ a descriptive complexity class.
We say that A ⊆ X is Γ-hard* if for every countably-based topology τ ′ ⊆ τ , A is Γ-hard
in (X, τ ′). A set is Γ-complete* if it belongs to Γ(X) and is Γ-hard*.

Note that when (X, τ) is countably-based, these notions coincide with the standard notions
of hardness and completeness.
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Now we can state the main result of this section, making clear that hardness is related
to symbolic complexity, while hardness* is related to topological complexity. Say that a
topological space is analytic if it is a continuous image of N .

I Theorem 3.2. Let Γ = ˜Dα(˜Σ0
β) where α, β are countable ordinals. For an analytic

admissibly represented space X and A ⊆ X Borel,

A is Γ-hard ⇐⇒ A /∈ [Γ̌](X),

A is Γ-hard* ⇐⇒ A /∈ Γ̌(X).

For β = 1, the assumptions that the space is analytic and that A is Borel can be dropped.
The proof assumes ˜Σ1

1-determinacy.

3.1 Hausdorff-Kuratowski Theorem
On Polish and even quasi-Polish spaces, there is no ˜∆0

n-complete set because of the Hausdorff-
Kuratowski Theorem. Other spaces may admit ˜∆0

n-complete* sets, and we show that this
possibility is again tightly related to the validity of the Hausdorff-Kuratowski Theorem
for ˜∆0

n-sets.

I Definition 3.3. A topological space X has the Hausdorff-Kuratowski property at
level ˜∆0

n if

˜∆0
n(X) =

⋃
α<ω1

˜Dα(˜Σ0
n−1)(X).

I Theorem 3.4. Let X be an analytic topological space.
For each n ≥ 2, X has the Hausdorff-Kuratowski property at level ˜∆0

n if and only if X
has no ˜∆0

n-complete* set.
For n = 2, the analyticity assumption can be droppped.

Proof. If the HK property is satisfied, then there is no ˜∆0
n-complete* set. Indeed, such a

set A would be in ˜Dα(˜Σ0
n−1) for some α < ω1 and some countably-based topology, and ˜∆0

n-
hard for that topology, which would imply that ˜∆0

n(N ) ⊆ ˜Dα(˜Σ0
n−1)(N ), which is known to

be false (the difference hierarchies do not collapse on N ).
Conversely, if the HK property does not hold, then there exists A ∈ ˜∆0

n(X) such
that A /∈ ˜Dα(˜Σ0

n−1) for any α < ω1. If X is analytic or n = 2, then A is ˇ˜Dα(˜Σ0
n−1)-hard*

for each α < ω1 by Theorem 3.2. As a result, A is ˜∆0
n-hard*, hence ˜∆0

n-complete*. J

We now give a criterion for the validity of the Hausdorff-Kuratowski property at a given
level.

I Theorem 3.5. Let (X, τ) be a topological space. If there exists a Polish topology τ ′ such
that τ ⊆ τ ′ ⊆ ˜Σ0

n(τ), then (X, τ) has the Hausdorff-Kuratowski property for all levels ˜∆0
k

with k ≥ n+ 1.

Proof. The proof follows the line of the argument in [10], reducing the case of ˜∆0
n to ˜∆0

2
by enriching the topology. However, some care is needed because we have to deal with two
topologies.

B Claim 3.6. For any k ≤ n and any countable family F ⊆ ˜Σ0
k(X, τ), there exists a Polish

topology τ ′′ ⊆ ˜Σ0
n(X, τ) containing F .

ICALP 2020
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Proof of the Claim. We prove it by induction on k. For k = 1, the result is immediate
by taking τ ′′ = τ ′, as F is already contained in τ ′. Assume the result for k < n and
let F ⊆ ˜Σ0

k+1(X, τ). There exists a countable family G ⊆ ˜Σ0
k(X, τ) such that each element

of F is a countable union of differences of elements of G. By induction, there is a Polish
topology τ ′′ ⊆ ˜Σ0

n(X, τ) containing G. Let τ ′′′ be generated by τ ′′ and the complements of
the elements of G. As the latter sets are closed in τ ′′ which is Polish, τ ′′′ is Polish. Moreover,
those sets belong to ˜Π0

k(X, τ) ⊆ ˜Σ0
n(X, τ), so τ ′′′ ⊆ ˜Σ0

n(X, τ). Finally, each element of F is
open in τ ′′′, and the claim is proved. C

We now prove the theorem. Let A ∈ ˜∆0
n+1(X, τ). There exists a countable family F ⊆

˜Σ0
n(X, τ) such that A and its complement are countable unions of differences of elements

of F . Applying the claim, there exists a Polish topology τ ′′ ⊆ ˜Σ0
n(X, τ) containing F .

Therefore, A ∈ ˜∆0
2(X, τ ′′) so applying the Hausdorff-Kuratowski theorem for Polish spaces,

one has A ∈ ˜Dα(X, τ ′′) for some α < ω1. We conclude by observing that τ ′′ ⊆ ˜Σ0
n(X, τ). J

We give two simple applications of this result.
The space R[X] of polynomials with real coefficients is an example of a coPolish space

which is not countably-based [3]. A polynomial is represented by giving an upper bound on
its degree as well as standard names of its coefficients. On R[X], hence on R[X]N, there is a
set in [Dω] which is ˜∆0

2-complete* (Theorem 5.8 in [1]). Theorem 3.5 implies that there is
no ˜∆0

k-complete* set for k ≥ 3.

I Corollary 3.7. The space R[X]N has the Hausdorff-Kuratowski property for all levels ˜∆0
k

with k ≥ 3, therefore that space has no ˜∆0
k-complete* set for k ≥ 3.

Proof. For each n, d ∈ N, the set Cn,d := {(Pi)i∈N : deg(Pi) ≤ d} is closed. Enriching the
topology on R[X]N with these sets results in a Polish topology contained in ˜Σ0

2(R[X]N) (the
space becomes homeomorphic to RN). J

We will see later that on O(N1), hence on O(N × N1), there is a set in [Dω] which
is ˜∆0

3-complete* (Theorem 6.5). Theorem 3.5 implies that there is no ˜∆0
k-complete* set

for k ≥ 4.

I Corollary 3.8. The space O(N×N1) has the Hausdorff-Kuratowski property for all levels ˜∆0
k

with k ≥ 4, therefore that space has no ˜∆0
k-complete* set for k ≥ 4.

Proof. We add the following sets to the topology: for each (n, f) ∈ N × N1, the closed
set Cn,f := {U : (n, f) /∈ U}; for each (n, p) ∈ N2, the ˜Π0

2-set Pn,p := {U : {n} × [0p] ⊆ U},
where [0p] is the set of functions f ∈ N1 such that f(i) = 0 for all i < p. We now show that
the resulting topological space is homeomorphic to a closed subset of the Baire space, which
implies that it is Polish.

We encode U ∈ O(N × N1) into two sequences gn, hn of elements of N , which we can
encode into a single element of N . We use a one-to-one enumeration (fi)i∈N of the elements
of N1, where f0 is the null function.

Given U , we define its code (gn, hn)n∈N as follows:
gn(i) = 1 if (n, fi) ∈ U and gn(i) = 0 if (n, fi) /∈ U .
hn(0) = 0 if (n, f0) /∈ U , and hn(0) = p + 1 if (n, f0) ∈ U and p is minimal such
that {n} × [0p] ⊆ U .

It is not hard to see that the function sending U to (gn, hn)n∈N is one-to-one and continuous
for the enriched topology, as well as its inverse, and that the subset of N consisting of the
codes of elements of O(N×N1) is closed. As a result, the enriched topological space is Polish.

Moreover, the enriched topology is contained in ˜Σ0
3(O(N×N1)). J
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4 Fréchet-Urysohn property

In [1] we have given a characterization of the coPolish spaces on which the symbolic complexity
differs from the topological complexity at the level ˜D2: they are exactly the spaces that are
not Fréchet-Urysohn.

We can extend part of the argument from coPolish spaces to Hausdorff admissibly
represented spaces. We will see later (Theorem 5.1) that the assumption that the space is
Hausdorff cannot be dropped.

I Theorem 4.1. Let X be admissibly represented and Hausdorff. If X is not Fréchet-Urysohn,
then

[˜D2](X) * ˜D2(X).

We use the Arens’ space S2, which is the inductive limit of

XN = {0} ∪
{

1
n

: n ∈ N
}
∪
{

1
n

+ 1
k
Xn : n ≤ N, k ∈ N

}
.

As in [1], one has [˜D2](S2) * ˜D2(S2) and a witness is the set A = {0} ∪ { 1
n + 1

kX
n : n, k ∈

N}. Therefore, Theorem 4.1 is an immediate corollary of the next result together with
Proposition 2.6.

I Proposition 4.2. Let X be admissibly represented and Hausdorff. X is not Fréchet-Urysohn
if and only if X contains a closed copy of S2.

I Remark 4.3 (Historical remark about Proposition 4.2). Franklin [7] proved that when X

is a Hausdorff sequential space, X is Fréchet-Urysohn if and only if it does not contain a
set which, endowed with the sequentialization of the subspace topology, is homeomorphic
to S2 (Proposition 7.3 in [7]). It implies that if X is a Hausdorff admissibly represented
space, then X is not Fréchet-Urysohn if and only if X does not contain S2 as a represented
subspace.

In [22] and [11] it is proved that when X is a Hausdorff sequential space having a point-
countable k-network, X is not Fréchet-Urysohn if and only if it does not contain a closed
set homeomorphic to S2 (Theorem 2.12 in [11]). Observe that the subspace topology on
a closed subset of a sequential space is always sequential, so there is no need to take the
sequentialization of the subspace topology as in Franklin’s result. This result implies ours,
because admissibly represented spaces are sequential and the images of cylinders under the
representation give a countable k-network. However we provide a proof in our setting for
self-containedness.

The result was also recently proved in [3] for the subclass of coPolish spaces (Proposition 66
in [3], where S2 is called Smin).

5 Spaces of open sets

As already mentioned, the assumption that the space is Hausdorff is important in Theorem
4.1, because some spaces admitting a rich poset structure behave more smoothly. This
phenomenon has been already exploited in many ways in the realm of domain theory. We
show that even in the absence of a countable basis, some positive results are still valid.
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I Theorem 5.1. Let X be admissibly represented. For every n ≥ 2,

[˜Dn](O(X)) = ˜Dn(O(X)).

We will see that this equality cannot be extended to level ω: if X is Polish and not locally
compact, then [˜Dω](O(X)) contains a ˜∆0

3-complete* set (Theorem 6.5).

Informal proof. The strategy is inspired from the one developed in [8] and [20] where a
similar result is proved in the context of numbered sets and algebraic domains. We show
that the result can be proved in the context of represented spaces, and without assuming a
countable basis.

We first isolate a property of Scott open sets: say that a set A ⊆ O(X) is approximable if
for every directed set ∆ ⊆ O(X) such that sup ∆ ∈ A, ∆ intersects A. A set is Scott open,
i.e. in ˜Σ0

1(O(X)) if and only if it is upwards closed and approximable.
We prove the following generalization. A set A is in ˜Dn(O(X)) if and only if both A

and Ac are approximable and has no n+ 1-chain, i.e. no sequence U0 ⊆ U1 ⊆ . . . ⊆ Un such
that Ui ∈ A iff i is even (it indeed generalizes the case of open sets for n = 1).

The last step is to prove that:
A subset of O(X) that is not approximable is necessarily ˜Π0

2-hard,
A subset of O(X) having an n+ 1-chain is necessarily ˇ˜Dn-hard.

Therefore, if A ∈ [˜Σ0
2](O(X)) then A is approximable, and if moreover A ∈ [˜Dn](O(X)),

then A has no n+ 1-chain.
Putting everything together implies that [˜Dn](O(X)) ⊆ ˜Dn(O(X)). J

A consequence of the preceding development is a characterization of the class [˜∆0
2] in

certain cases.

I Proposition 5.2. Let X be countably-based. The class [˜∆0
2](O(X)) is precisely the class

of approximable and co-approximable sets.

Proof. We know from the proof of Theorem 5.1 that if A ∈ [˜∆0
2](O(X)) then both A and Ac

are approximable.
Conversely, assume that A ⊆ O(X) and its complement are approximable. Observe that

if Ui is a growing sequence of open sets with union U , then 1A(Ui) converges to 1A(U)
as i → ∞, as both A and Ac are approximable. Let (Bi)i∈N be a countable basis of X,
closed under finite intersections and unions. Let E = {i ∈ N : Bi ∈ A}. From a name of an
open set U ∈ O(X), one can continuously derive a sequence (in)n∈N such that Bin ⊆ Bin+1

and
⋃
nBin = U . Therefore, whether U ∈ A can be tested with finitely mind changes, by

testing whether in ∈ E. J

5.1 Effectiveness
The proof of Theorem 5.1 is not effective. We show that there is no effective argument by
proving that [D2](O(X)) * D2(O(X)) for some particular X.

I Theorem 5.3. One has

[D2](O(N1)) * D2(O(N1)),

and a witness can be taken in ˜D2(O(N1)).

Such a set is a difference of two open sets, but computationally speaking, its name set is
strictly easier to describe than the set itself.
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Informal proof. We prove the separation result for the space N×O(N1) and observe that
this space embeds as a D2-subset of O(N1), to which the result immediately transfers by
Proposition 2.6. The following discussion is rather general, and O(N1) is a possible instance
of X.

In [1] we proved that if X is not countably-based, then for sets in ˜D2(X), one cannot
continuously convert [˜D2]-names into ˜D2-names. Another way of formulating this result is
expressed by the existence of a function f : Y→ ˜D2(X) for some represented space Y, such
that:

f : Y→ [˜D2](X) is continuously realizable,
f : Y→ ˜D2(X) is not continuously realizable.

Equivalently, it means that {(y, x) : x ∈ f(y)} belongs to [˜D2](Y×X) but not ˜D2(Y×X).
If f : Y→ [˜D2](X) is moreover computable and if there is an effective enumeration (yi)i∈N

of the computable elements of Y, then we can consider the following set:

A = {(i, x) ∈ N×X : x ∈ f(yi)}.

One immediately has A ∈ ˜D2(N × X), A ∈ [D2](N × X) and one has to prove that A /∈
D2(N×X), which depends on the details of Y and f .

For X = O(N1), one can make Y and f : Y→ ˜D2(X) very explicit: let Y = N× N and

f(∞, y) = {U ∈ O(N1) : f∞ ∈ U},
f(n,∞) = ∅,
f(n, p) = {U ∈ O(N1) : fn,p /∈ U},

where f∞ is the null function and fn,p ∈ N1 is the only function satisfying fn,p(n) = p+ 1.
One can take the following effective indexing of Y = N × N: if 〈., .〉 : N2 → N is

a computable bijection, and ti is the halting time of Turing machine number i, then
let y〈i,j〉 = (ti, tj). The set A ⊆ N×O(N1) becomes:

A = {(〈i, j〉, U) : f∞ ∈ U and Mi does not halt, or Mi and Mj halt and fti,tj /∈ U}. J

I Corollary 5.4. If N1 embeds as a D2-subset of X, then

[D2](O(X)) * D2(O(X)).

Proof. O(N1) is a computable retract of O(X), so the separation result (Theorem 5.3)
about O(N1) extends to O(X) by Proposition 2.5. J

We consider the so-called sequential fan S(ω) = {0} ∪ { 1
pX

n : n, p ∈ N} ⊆ R[X]. It is
Fréchet-Urysohn but has one point with no countable basis of neighborhoods. The space
N× S(ω) has infinitely many points with no countable basis of neighborhoods.

I Theorem 5.5. Let X = N× S(ω). One has

[D2](X) * D2(X),

and it is witnessed by an open set.

Proof. We follow the same scheme as in the preceding proof. Let

A = {(n, P ) : if Mn halts then deg(P ) > tn}.

First, A is open because it is Σ0
1 relative the halting set.
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We show that A ∈ [D2](X). We are given (n, P ), with an upper bound d on deg(P ). We
run Mn for d steps. If Mn halts before d steps, then we know the value of tn so we can test
whether deg(P ) > tn (i.e. we start rejecting (n, P ) until this test succeeds, in which case
we accept (n, P )). If Mn does not halt before d steps, then we accept (n, P ) and eventually
reject it if Mn halts (indeed, in that case one has deg(P ) ≤ d ≤ tn).

We show that A /∈ D2(X). Observe that for each n, (n, 0) belongs to the closure of A:
if Mn does not halt then (n, 0) ∈ A; if Mn halts then (n, 0) is the limit when p grows
of (n, 1

pX
tn+1) ∈ A.

Assume that A = U \ V where U, V are open subsets of X and U is effectively open. For
each n, as (n, 0) belongs to the closure of A then one must have (n, 0) /∈ V . Therefore, (n, 0) ∈
A ⇐⇒ (n, 0) ∈ U . However, (n, 0) ∈ A iff Mn does not halt, so it cannot be equivalent
to (n, 0) ∈ U which is a c.e. condition. We obtain a contradiction, so A /∈ D2(X). J

Proposition 2.6 immediately implies

I Corollary 5.6. If N× S(ω) computably embeds as a D2-subset of X, then

[D2](X) * D2(X)

with a witness in ˜D2(X).

One easily checks that the spaces R[X], 2NN and NNN are instances of this result:
N× S(ω) ⊆ R[X] by identifying (n, P ) with 1

n +XP ,
N× S(ω) ⊆ 2NN by identifying (n, 0) with {f ∈ N : f(0) = n} and (n, 1

pX
q) with {f ∈

N : f(0) = n and f(q + 1) ≤ p}.

6 Spaces of open subsets of Polish spaces

We now focus on spaces of open subsets of Polish spaces, for which we can establish a rather
precise picture of the relationship between symbolic and topological complexity, depending on
the compactness properties of the space. We show how the behavior of symbolic complexity
classes on O(X) is closely related to the compactness properties of X.

6.1 The 4 classes
The first observation is that when X is locally compact, for instance X = R, O(X) is
countably-based so it behaves very well in terms of descriptive complexity: symbolic and
topological complexity coincide. We split the whole class of Polish spaces into 4 disjoint
classes, ranging from the locally compact spaces to the non σ-compact spaces.

Let Xnk = {x ∈ X : x has no compact neighborhood}, which is a closed subset of X.

I Definition 6.1. Let X be a Polish space.
1. X ∈ Class I if Xnk = ∅, i.e. X is locally compact,
2. X ∈ Class II if Xnk 6= ∅ is finite,
3. X ∈ Class III if Xnk 6= ∅ is infinite and X is σ-compact,
4. X ∈ Class IV if X is not σ-compact.
Observe that the union of Classes I, II, III is the class of σ-compact spaces.

I Example 6.2. Let us give one example for each class:
1. R belongs to Class I,
2. N1 = {f ∈ N : f takes at most one positive value} belongs to Class II, with one element

having no compact neighborhood, namely the zero function f0,
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3. N×N1 belongs to Class III, where the elements with no compact neighborhood are the
pairs (n, f0),

4. N belongs to Class IV.

Moreover, the three latter spaces are minimal in their respective classes, i.e. embed into
every space of their classes.

I Proposition 6.3. Let X be Polish.
X /∈ Class I ⇐⇒ X contains a closed copy of N1,
X /∈ Classes I or II ⇐⇒ X contains a ˜D2 copy of N×N1,
X /∈ Classes I, II or III ⇐⇒ X contains a closed copy of N .

Proof. The backwards implications are easy, because if C is a closed subset, or even a ˜D2-
subset of X and x ∈ C has no compact neighborhood in the subspace C, then x has no
compact neighborhood in X.

Assume that X is not locally compact and let x0 ∈ Xnk. We define a double-sequence xi,n
by induction on i. Let B0 be a basic neighborhood of x0. As B0 is not compact, it contains a
sequence x0,n with no converging subsequence. In particular, there exists a neighborhood B1
of x0 such that B1 does not contain any x0,n. Again, B1 is not compact so it contains a
sequence xi,n with no converging subsequence. We continue, making sure that the radius
of Bi converges to 0. One easily checks that the set {x0} ∪ {xi,n : i, n ∈ N} is closed and
homeomorphic to N1, by sending x0 to the zero function, and xi,n to the function f such
that f(i) = n.

Assume that Xnk is infinite. It contains a copyD of N withD ∈ ˜D2(X). Each point x ∈ D
is contained in a neighrbohood Bx such that Bx ∩By = ∅ for x 6= y. Around each point x
of D and inside Bx we can build a closed copy of N1 as in the previous case. Their union is
a copy of N×N1 and belongs to ˜D2(X).

The third statement is a particular case of Hurewicz theorem (Theorem 7.10 in [10]). J

6.2 Classification

We now relate the behavior of symbolic complexity on O(X) to the class of X. We first
locate the symbolic complexity classes.

I Theorem 6.4 (Classification – Positive results). Let X be Polish.
1. If X ∈ Class I, then [˜Σ0

k](O(X)) = ˜Σ0
k(O(X)) for all k,

2. If X ∈ Class II, then [˜Σ0
k](O(X)) = ˜Σ0

k(O(X)) for k ≥ 3,
3. If X ∈ Class III, then [˜Σ0

k](O(X)) ⊆ ˜Σ0
k+2(O(X)) for k ≥ 2.

Informal proof. If X ∈ Class I, i.e. if X is locally compact, then O(X) is countably-based [16],
so symbolic and topological complexity coincide there (Theorem 2.2).

If X ∈ Class II, then up to a finite set, X is countably-based, and we show that this finite
set do not affect the complexity of sets for levels k ≥ 3.

If X ∈ Class III, then X is σ-compact, so its open sets are σ-compact as well. Therefore,
for each open set B, the corresponding set PB = {U ∈ O(X) : B ⊆ U} belongs to ˜Π0

2(O(X)).
The countable family B of finite unions basic open subsets of X induces a countable net-
work (PB)B∈B of O(X) made of ˜Π0

2-sets. Therefore, we can apply Proposition 2.3. J
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We then identify gaps between symbolic and topological complexity.

I Theorem 6.5 (Classification – Negative results). Let X be Polish.
1. If X /∈ Class I, then [˜Dω](O(X)) contains a ˜∆0

3-complete* set,
2. If X /∈ Class II, then [˜Σ0

k](O(X)) contains a ˜Σ0
k+1-complete*-set for k ≥ 2,

3. If X /∈ Class III, then [˜Σ0
2](O(X)) contains a non-Borel set.

We observe that two phenomena are possible. For some spaces, the classes [˜Σ0
k] and ˜Σ0

k

differ for low values of k and then coincide after some rank (if X is in Class II, then they
coincide for k ≥ 3). For other spaces, the classes never coincide (if X is in Class III or IV).

It is open whether ˜Σ0
k(O(X)) ⊆ ˜Σ0

k+1(O(X)) when X belongs to Class III. A similar
study should be done when X is not Polish.

Informal proof. The difference between symbolic and topological complexity is related to the
fact that product spaces usually have two different natural topologies: the product topology
(which is the structure obtained as the cartesian product in the category of topological
spaces), and its sequentialization (obtained from the cartesian product in the category of
QCB0-spaces, or admissibly represented spaces). These two different topologies obviously
induce different topological complexity classes, already at the first level ˜Σ0

1.
For instance, on N × O(N ), the set {(f, U) : f ∈ U} is open but is not Borel for the

product topology.
The proof shows how to exploit the difference between the product topology and its

sequentialization on the space N ×O(X) and turn it into a difference between symbolic and
topological complexity on O(X).

When X = N×N1, one has X ∼= N×X so O(X) ∼= O(X)N. This equality enables one to
iterate: if Ak ∈ [Σ0

k](O(X)) is ˜Σ0
k+1-complete*, then the set

Ak+1 = {(Ui)i∈N ∈ O(X)N : ∃i, Ui /∈ Ak}

belongs to [˜Σ0
k+1](O(X)N) and it ˜Σ0

k+2-complete*. J

The fact that X is Polish is essential in the proofs. A particular property of Polish and
quasi-Polish spaces that is used is the following.

I Proposition 6.6. If X and Y are quasi-Polish, then the topologies on the admissiby
represented spaces O(X)N and O(X)×O(Y) are the product topologies.

Proof. As represented spaces, one has O(X)N ∼= O(N×X) and O(X)×O(Y) ∼= O(X tY).
The topologies on the admissibly represented spaces O(N×X) and O(X tY) are the Scott
topologies.

On the other hand, for any topological spaces X,Y , it is easy to see that the compact-open
topology on O(N×X) and O(X t Y ) is the product topology on O(X)N and O(X)×O(Y )
respectively, where O(X) and O(Y ) are endowed with the compact-open topology.

When X and Y are quasi-Polish, so are N×X and XtY, so X, Y, N×X and XtY are
consonant, i.e. the Scott topology and the compact-open topology coincide on their spaces of
open sets [4]. As a result the topology on the represented spaces O(X)N and O(X)×O(Y)
is the product of the topologies on O(X) and O(Y). J
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Open subsets of the Baire space
We now give the complete proof that the class [Σ0

2](O(N )) contains a set that is not Borel
(Theorem 6.5, item 3.).

Proof. We have seen that two represented spaces X and Y naturally induce a third rep-
resented space X×Y. The topology induced by that representation is not in general the
product topology, but its sequentialization.

A simple example is given by X = N and Y = O(N ). The evaluation map N×O(N )→ S
is continuous (and computable), however it is not continuous w.r.t. the product topology,
because N is not locally compact (see [6] for more details on this topic). In other words the
set {(f,O) ∈ N ×O(N ) : f ∈ O} is not open for the product topology (but it is sequentially
open, or open for the topology induced by the representation). It is even worse.

I Proposition 6.7. E = {(f,O) ∈ N ×O(N ) : f ∈ O} is not Borel for the product topology.

Proof. We prove that for every Borel set A, there exists a dense Gδ-set G ⊆ N such that for
every f ∈ G, (f,N \ {f}) ∈ A ⇐⇒ (f,N ) ∈ A. It implies the result as it is obviously false
for the set E. To prove it, we show that the class of sets satisfying this condition contains
the open sets in the product topology and is closed under taking complements and countable
unions, which implies that this class contains the Borel sets.

First, consider a basic open set A = [u] × UK where u is a finite sequence of natural
numbers, K is a compact subset of N and UK = {O ∈ O(N ) : K ⊆ O}. Define G =
[u]c ∪ [u] \K, which is a dense open set. For f ∈ [u]c, no (f,O) belongs to A. For f ∈ [u] \K,
both (f,N \ {f}) and (f,N ) belong to A.

If A satisfies the condition with a dense Gδ-set G, then Ac satisfies the condition with the
same G. If Ai satisfy the condition with dense Gδ-sets Gi then

⋃
iAi satisfies the condition

with G =
⋂
iGi. J

We now use the set E to build a set in [Σ0
2](O(N )) which is not Borel. We show

that N ×prod O(N ), which is the topological space endowed with the product topology, is
a [Σ0

2]-retract of O(N ). We build:
A continuous function s : N ×prod O(N )→ O(N ),
A [Σ0

2]-measurable function r : O(N )→ N ×O(N ),
Such that r ◦ s = id.

First, these ingredients enable us to derive the result. Indeed, let E be the set from Proposition
6.7 and F := r−1(E) ⊆ O(N ). As E is open in N ×O(N ), F is Σ0

2. However F is not Borel,
otherwise E = s−1(F ) would be Borel in N ×prod O(N ).

Let us now build s and r. We identify O(N ) with O(N )×O(N ) and use the fact that
the topology on O(N )×O(N ) coincides with the product topology by Proposition 6.6.

I Lemma 6.8. N is a [Σ0
2]-retract of O(N): there exists r : O(N) → N which is [Σ0

2]-
measurable, s : N → O(N) which is computable, such that r ◦ s = idN .

Proof. Let 〈., .〉 : N2 → N be a computable bijection. Let r(E) = fE be defined by

fE(i) =
{

min{j ∈ N : 〈i, j〉 ∈ E} if that set is non-empty,
0 otherwise.

Let s(f) = {〈i, f(i)〉 : i ∈ N, f(i) ≥ 1}. One easily checks that r and s satisfy the required
conditions. J
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By Lemma 6.8,N is a [Σ0
2]-retract of O(N), which is a computable retract of O(N ), soN is

a [Σ0
2]-retract of O(N ). It is witnessed by two functions r0 : O(N )→ N and s0 : N → O(N )

such that r0 ◦ s0 = idN .
Let us simply pair s0 and r0 with the identity on O(N ): let s(f,O′) = (s0(f), O′)

and r(O,O′) = (r0(O), O′). J

In particular, that set is not a countable union of differences of open sets, as it should be
on Polish or quasi-Polish spaces. More generally, it is not a countable boolean combination
of open sets.

In order to overcome the mismatch between the hierarchy inherited from N via the
representation and the class of Borel sets, one may attempt to change the definition of
Borel sets. In [12] the Borel sets are redefined as the smallest class containing the open sets
and the saturated compact sets, and closed under countable unions and complements. We
observe here that this class is too large in the space O(N ). First, if U ⊆ N is open then
the set {V ∈ O(N ) : U ⊆ V } is compact and saturated in O(N ). From this it is easy to
see that the set built above is Borel in this weaker sense. However this notion of Borel sets
is too loose, because compact saturated sets do not usually have a Borel pre-image. For
instance, the singleton {N} is compact saturated but its pre-image under the representation
is a ˜Π1

1-complete set, hence is not Borel.
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Abstract
We consider the time-bounded reachability problem for continuous-time Markov decision processes.
We show that the problem is decidable subject to Schanuel’s conjecture. Our decision procedure relies
on the structure of optimal policies and the conditional decidability (under Schanuel’s conjecture) of
the theory of reals extended with exponential and trigonometric functions over bounded domains.
We further show that any unconditional decidability result would imply unconditional decidability of
the bounded continuous Skolem problem, or equivalently, the problem of checking if an exponential
polynomial has a non-tangential zero in a bounded interval. We note that the latter problems are
also decidable subject to Schanuel’s conjecture but finding unconditional decision procedures remain
longstanding open problems.
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1 Introduction

Continuous-time Markov decision processes (CTMDPs) are a widely used model for continu-
ous-time systems which exhibit both stochastic and non-deterministic choice. A CTMDP
consists of a finite set of states, a finite set of actions, and for each action, a transition rate
matrix that determines the rate (in an exponential distribution in continuous time) to go
from one state to the next when the action is chosen. A policy for a CTMDP maps a timed
execution path to state-dependent actions. Given a fixed policy, a CTMDP determines a
stochastic process in continuous time, where the rate matrix determines the distribution of
switches.
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A fundamental decision problem for CTMDPs is the time-bounded reachability problem,
which asks, given a CTMDPM with a designated “good” state, a time bound B, and a
rational vector r, whether there exists a policy that controls the Markov decision process such
that the probability of reaching the good state from state s within time bound B is at least
r(s). The time-bounded reachability problem is at the core of model checking CTMDPs with
respect to stochastic temporal logics [5] and has been extensively studied [10, 21, 28, 20, 9].

Existing papers either consider time-abstract policies [5, 25, 8, 28, 20] or focus on numerical
approximation schemes [10, 21, 3, 13, 9, 26]. However, policies that depend on time are
strictly more powerful and the decision problem has remained open. For the special case
of continuous-time Markov chains (CTMCs), where each state has a unique action, the
time-bounded reachability problem is decidable [4]. The proof uses tools from transcendental
number theory, specifically, the Lindemann-Weierstrass theorem. One might expect that a
similar argument might be used to show decidability for CTMDPs as well.

In this paper, we show conditional decidability. Our result uses, like several other
conditional results on dynamical systems, Schanuel’s conjecture from transcendental number
theory (see, e.g., [14]). Our proof has the following ingredients. First, we use the fact that
the optimal policy for the time-bounded reachability problem is a timed, piecewise constant
function with a finite number of switches [19, 22, 24]. We show that each switch point of
an optimal policy corresponds to a non-tangential zero of an associated linear dynamical
system. Second, we use the result of Macintyre and Wilkie [16, 17] that Schanuel’s conjecture
implies the decidability of the real-closed field together with the exponential, sine, and cosine
functions over a bounded domain. The existence of non-tangential zeros of linear dynamical
systems can be encoded in this theory. Third, for each natural number k ∈ N, we write a
sentence in this theory whose validity implies there is an optimal strategy with exactly k
switch points. By enumerating over k, we find the exact number of switches in an optimal
strategy. Finally, we write another sentence in the theory that checks if the reachability
probability attained by (an encoding of) the optimal policy is greater than the given bound.

We also study the related decision problem whether there is a stationary (i.e., time
independent) optimal policy. We show that there is a “direct” conditional decision procedure
for this problem based on Schanuel’s conjecture and recent results on zeros of exponential
polynomials [11], which avoids the result of Macintyre and Wilkie.

At the same time, we show that an unconditional decidability result is likely to be very
difficult. We show that the bounded continuous-time Skolem problem [7, 11] reduces to
checking if there is an optimal stationary policy in the time-bounded CTMDP problem. The
bounded continuous Skolem problem is a long-standing open problem about linear dynamical
systems [11, 7]; it asks if a linear dynamical system in continuous time has a non-tangential
zero in a bounded interval. Our reduction, in essence, demonstrates that CTMDPs can
“simulate” any linear dynamical system: a non-tangential zero in the dynamics corresponds
to a policy switch point in the simulating CTMDP.

Our result is in the same spirit as several recent results providing conditional decision
procedures, based on Schanuel’s conjecture, or hardness results, based on variants of the
Skolem problem, for problems on probabilistic systems. For example, Daviaud et al. [12]
showed conditional decidability of subcases of the containment problem for probabilistic
automata subject to the conditional decidability of the theory of real closed fields with the
exponential function [18, 27]. For lower bounds, Akshay et al. [2] showed a reduction from
the (unbounded, discrete) Skolem problem to reachability on discrete time Markov chains
and Piribauer and Baier [23] show that the positivity problem in discrete time can be reduced
into several decision problems corresponding to optimization tasks over discrete time MDPs.
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In summary, we summarize our contribution as the following theorem.

I Theorem 1. (1) The time-bounded reachability problem for CTMDPs is decidable assuming
Schanuel’s conjecture. (2) Whether the time-bounded reachability problem has a stationary
optimal policy is decidable assuming Schanuel’s conjecture. (3) The bounded continuous
Skolem problem reduces to checking if the time-bounded reachability problem has a stationary
optimal policy.

2 Continuous Time Markov Decision Processes

I Definition 2. A continuous-time Markov decision process (CTMDP) is a tuple M =
(S,D,Q) where

S = {1, 2, . . . , n} is a finite set of states for some n > 0;
a set D =

∏n
s=1Ds of decision vectors, where Ds is a finite set of actions that can be

taken in state s ∈ S;
Q is a D-indexed family of n × n generator matrices; we write Qd for the generator
matrix corresponding to the decision vector d ∈ D. The entry Qd(s, s′) ≥ 0 for s′ 6= s

gives the rate of transition from state s to state s′ under action d(s), and Qd(s, s′) is
independent of elements of d except d(s). The entry Qd(s, s) = −

∑
s′ 6=s Qd(s, s′).

A CTMDPM = (S,D,Q) with |D| = 1, i.e., when only a unique action can be taken in
each state, is called a continuous-time Markov chain (CTMC) and is simply denoted by the
tuple (S,Q), and with abuse of notation, we also write Q for the unique generator matrix.
The CTMDPM reduces to a CTMC whenever a decision vector d is fixed for all time on
the CTMDP.

Intuitively, Qd(s, s′) > 0 indicates that by fixing a decision vector d, a transition from s

to s′ is possible and that the timing of the transition is exponentially distributed with rate
Qd(s, s′). If there are several states s′ such that Qd(s, s′) > 0, more than one transition
will be possible. For each decision vector d ∈ D and any s ∈ S, the total rate of taking an
outgoing transition from state s when d is fixed is given by Ed(s) =

∑
s′ 6=s Qd(s, s′), By

fixing this decision vector d, a transition from a state s into s′ occurs within time t with
probability

P(s, s′, t) = Qd(s, s′)
Ed(s) .(1− e−Ed(s)t), t ≥ 0.

Intuitively, 1− e−Ed(s)t is the probability of taking an outgoing transition at s within time t
(exponentially distributed with rate Ed(s)) and Qd(s, s′)/Ed(s) is the probability of taking
transition to s′ among possible next states at s. Thus, the total probability of moving
from s to s′ under the decision d in one transition, written Pd(s, s′) is Qd(s, s′)/Ed(s). A
state s ∈ S is called absorbing if and only if Qd(s, s′) = 0 for all s′ ∈ S and all decision
vectors d ∈ D. For an absorbing state, we have Ed(s) = 0 for any decision vector d and no
transitions are enabled. The initial state of a CTMDP is either fixed deterministically or
selected randomly according to a probability distribution α over the set of states S.

Consider a time interval [0, B] with time bound B > 0. Let Ω denote the set of all
right-continuous step functions f : [0, B]→ S, i.e., there are time points t0 = 0 < t1 < t2 <

. . . < tm = B such that f(t′) = f(t′′) for all t′, t′′ ∈ [ti, ti+1) for all i ∈ {0, 1, . . . ,m− 1}. Let
F denote the sigma-algebra of the cylinder sets

Cyl(s0, I0, . . . , Im−1, sm) := {f ∈ Ω | ∀0 ≤ i ≤ m · f(ti) = si ∧ i < m⇒ (ti+1−ti) ∈ Ii}. (1)

for all m, si ∈ S and non-empty time intervals I0, I1, . . . , Im−1 ⊂ [0, B].
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I Definition 3. A policy π is a function from [0, B] into D, which is assumed to be Lebesgue
measurable. Any policy gives a decision vector πt ∈ D at time t such that the action πt(s) is
taken when the CTMDP is at state s at time t. The set of all such polices is denoted by ΠB.

Any policy π together with an initial distribution α induces the probability space (Ω,F ,Pπ
α).

If the initial distribution is chosen deterministically as s ∈ S, we denote the probability
measure by Pπ

s instead of Pπ
α.

A policy π : [0, B] → D is piecewise constant if there exist a number m ∈ N and time
points t0 = 0 < t1 < t2 < . . . < tm = B such that πt′ = πt′′ for all t′, t′′ ∈ (ti, ti+1] and all
i ∈ {0, 1, . . . ,m− 1}. The policy is stationary if m = 1. We denote the class of stationary
policies by Πst; observe that a stationary policy is given by a fixed decision vector, so Πst is
isomorphic with the set of decision vectors D. In particular, it is a finite set.
I Remark 4. The policies in Def. 3 are called timed positional policies since the action is
selected deterministically as a function of time and the state of the CTMDP at that time. A
stationary policy is only positional since the selected action is independent of time.

I Problem 1. Consider a CTMDPM = ({1, . . . , n} ] {good},D,Q) with a distinguished
absorbing state named good and a time bound B > 0. Define the event

reach := ∪{f ∈ Ω | f(t) = good for some t ∈ [0, B]}. (2)

The time-bounded reachability problem asks if for a rational vector r ∈ [0, 1]n, we have

sup
π∈ΠB

Pπ
s (reach) > r(s), for all s ∈ {1, . . . , n}.

The event reach defined in (2) is written as a union of an uncountable number of functions
but it is measurable in the probability space (Ω,F ,Pπ

α) for any α. Since the state space
is finite, reach can be written as a countable union of cylinder sets in the form of (1) by
taking all the time intervals to be [0, B] and enumerating over all possible sequence of states
(which is countable) [6].

A policy π∗ ∈ ΠB is optimal if Pπ∗s (reach) = supπ∈ΠB
Pπ
s (reach). Note that there

are more general classes of policies that may depend also on the history of the states in
the previous time points and which map the history to a distribution over D. It is shown
that piecewise constant timed positional policies are sufficient for the optimal reachability
probability [19, 22, 24]. That is, if there is an optimal policy from the larger class of policies,
there is already one from the class of piecewise constant, timed, positional policies.

A closely related problem is the existence of stationary optimal policies; here, it is possible
that the optimal stationary policy performs strictly worse than an optimal policy.

I Problem 2. Consider a CTMDP M = ({1, . . . , n} ] {good},D,Q) and a time bound
B > 0. Decide whether there is an optimal policy π∗ that is stationary, namely

∃π∗ ∈ Πst s.t. sup
π∈ΠB

Pπ
s (reach) = Pπ∗

s (reach), for all s ∈ {1, . . . , n}.

In the following, we shall assume that the CTMDPs and all bounds in the above decision
problems are given using rational numbers. That is, rates of transitions in each generator
matrix is a rational number, and the time bound B is a rational number.

I Theorem 5 ([10, 19]). A policy π ∈ ΠB is optimal if dt, the decision vector taken by π at
time B − t, maximizes for almost all t ∈ [0, B]

max
dt

(QdtWπ
t ) with d

dt
Wπ
t = QdtWπ

t , (3)

with the initial condition Wπ
0 (good) = 1 and Wπ

0 (s) = 0 for all s ∈ {1, 2, . . . , n}. There
exists a piecewise constant policy π that maximizes the equations.
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The maximization in Equation (3) above is performed element-wise. Equation (3) should
be solved forward in time to construct the policy π backward in time due to the definition
dt = πB−t. One can alternatively write down (3) directly backward in time based on πt.

The proof of Theorem 5 is constructive [10, 19] and is based on the following sets for any
vector W :

F1(W ) = {d ∈ D |d maximizes QdW},
F2(W ) = {d ∈ F1(W ) |d maximizes [Qd]2W}, (4)
· · ·
Fj(W ) = {d ∈ Fj−1(W ) |d maximizes [Qd]jW}.

The sets Fj(W ) form a sequence of decreasing sets such that F1(W ) ⊇ F2(W ) ⊇ . . . ⊇
Fn+2(W ) = Fn+k(W ) for all k > 2. An optimal piecewise constant policy is the one that
satisfies the condition dt ∈ Fn+2(Wπ

t ) for all t ∈ [0, B]. Note that if Fj(Wπ
t ) has only one

element for some j, Fk(Wπ
t ) = Fj(Wπ

t ) for all k ≥ j and that element is the optimal decision
vector. The next proposition shows that when Fn+2(Wπ

t ) has more than one element, we
can pick any one (and in fact, switch between them arbitrarily).

I Proposition 6. Let π be an optimal policy satisfying Equation (3). Take any t∗ such that
Fn+2(Wπ

t∗) 6= limt↑t∗ Fn+2(Wπ
t ). If Fn+2(Wπ

t∗) = {d1,d2, . . . ,dp} for some p > 1 and

∆i := sup {δ > 0 |di ∈ Fn+2(Wπ
t ) for all t ∈ [t∗, t∗ + δ)}, ∀i ∈ {1, 2, . . . , p}

Then, ∆1 = ∆2 = · · · = ∆p.
Suppose there are points δ1, δ2 such that t∗ ≤ δ1 < δ2 < t∗ + ∆1 and for all t ∈ [δ1, δ2), we
have πB−t = d for some d ∈ Fn+1(Wπ

t∗). If π′ is a policy that agrees with π on [0, δ1) but
for all t ∈ [δ1, δ2), we have π′B−t = d′ for some d′ ∈ Fn+1(Wπ

t∗) \ {d}, then π′ also satisfies
Equation (3) for almost all t ∈ [0, δ2).

Proof. Since Fn+2(Wπ
t∗) = Fn+k(Wπ

t∗) for all k > 2, for any di and dj belonging to the set
Fn+2(Wπ

t∗), we have [Qdi ]lWπ
t∗ = [Qdj ]lWπ

t∗ for all l ≥ 0. Pick δ > 0 sufficiently small such
that {d1,d2, . . . ,dp} ⊆ Fn+2(Wπ

t ) for all t ∈ [t∗, t∗ + δ). If the policy π selects di for all
t ∈ [t∗, t∗ + δ), we can write

Wπ
t = e[Qdi

](t−t∗)Wπ
t∗ for t ∈ [t∗, t∗ + δ),

where eΓ :=
∑∞
k=0

1
k!Γ

k denotes the exponential of a matrix Γ. Therefore, using the fact that
[Qdi ]lWπ

t∗ = [Qdj ]lWπ
t∗ for all l ≥ 0 we have

e[Qdi
](t−t∗)Wπ

t∗ = e[Qdj
](t−t∗)Wπ

t∗ , ∀ t ≥ t∗. (5)

Similarly, we have

[Qdi

]le[Qdi
]∆Wπ

t∗ = [Qdj

]le[Qdj
]∆Wπ

t∗ , ∀ l ≥ 0 and ∆ ≥ 0. (6)

Now take any i = arg minj ∆j , thus ∆i ≤ ∆j for all j. Also take d′ ∈ Fn+2(Wπ
t∗+∆i

) and
d′ 6= di (this is possible due to the definition of ∆i). Denote by h the smallest integer for
which 1 ≤ h ≤ n+ 2 and

[Qd′ ]hWπ
t∗+∆i

> [Qdi

]hWπ
t∗+∆i

⇒ [Qd′ ]he[Qdi
]∆iWπ

t∗ > [Qdi

]he[Qdi
]∆iWπ

t∗ .

Combining the above expression with Equation (6), we get

[Qd′ ]he[Qdi
]∆iWπ

t∗ > [Qdj

]he[Qdj
]∆iWπ

t∗ ⇒ [Qd′ ]hWπ
t∗+∆i

> [Qdj

]hWπ
t∗+∆i

,
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which implies that ∆j ≤ ∆i for any j. The particular selection of i results in ∆j = ∆i for all
i, j. The second part of the proposition is obtained by setting ∆ = (δ2 − δ1) in Equation (6)
and using the definition of the exponential of a matrix. J

The above proposition highlights the fact that whenever Fn+2(Wπ
t ) contains more than

one decision vector over a time interval, one can construct infinitely many optimal policies
by arbitrarily switching between such decision vectors. In the rest of this paper, we restrict
our attention to optimal policies that take only mandatory switches: the optimal policy will
take an element of Fn+2(Wπ

t ) as long as possible. This does not influence Problems 1 and 2.
The major challenge in the computation of the optimal policy, thus answering the

reachability problem, is the computation of the largest time t ∈ [0, B) such that Fn+2(Wπ
t ) 6=

Fn+2(Wπ
t−), where Wπ

t− denotes the value of Wπ
t−δ with δ converging to zero from the right.

Suppose a decision vector d0 ∈ Fn+2(Wπ
0 ) is selected. The optimal policy will change at the

following time point:

t′′ := sup {t |d0 ∈ Fn+2(Wπ
t′ ) for all t′ ∈ [0, t)}.

3 Conditional Decidability of Problems 1 and 2

3.1 Schanuel’s Conjecture and its Implications
Our decidability results will assume Schanuel’s Conjecture for the complex numbers, a unifying
conjecture in transcendental number theory (see, e.g., [14]). Recall that a transcendence basis
of a field extension L/K is a subset S ⊆ L such that S is algebraically independent over K
and L is algebraic over K(S). The transcendence degree of L/K is the (unique) cardinality
of some basis.

I Conjecture 7 (Schanuel’s Conjecture (SC)). Let a1, . . . , an be complex numbers that are
linearly independent over rational numbers Q. Then the field Q(a1, . . . , an, e

a1 , . . . , ean) has
transcendence degree at least n over Q.

An important consequence of Schanuel’s conjecture is that the theory of reals (R,0,1,+, ·,≤)
remains decidable when extended with the exponential and trigonometric functions over
bounded domains.1

I Theorem 8 (Macintyre and Wilkie (see [16, 17])). Assume SC. For any n ∈ N, the theory
RMW := (R, exp � [0, n], sin � [0, n], cos � [0, n]) is decidable.

Our main result will show that Problems 1 and 2 can be decided based on Theorem 8.
In fact, Problem 2 can be decided directly from Schanuel’s conjecture and recent results on
exponential polynomials [11].

I Theorem 9 (Main Result). Assume SC. Then Problems 1 and 2 are decidable.

In contrast, solving the time-bounded reachability problem for stationary policies is
decidable unconditionally. This is because fixing a stationary policy reduces the time-
bounded reachability problem to one on CTMCs, and one can use the decision procedure
from [4].

1 We note that while the result is claimed in several papers [16, 17], a complete proof of this result has
never been published. Thus, it would be nice to have a “direct” proof of our main theorem (Theorem 1)
starting with Schanuel’s conjecture. We do not know such a proof.
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3.2 Non-tangential Zeros
Recall that the solution to a first-order linear ODE of dimension n:

d

dt
Xt = AXt, zt = CXt

with real matrices A and C and real initial condition X0 ∈ Rn, can be written as zt = CeAtX0
where eΓ denotes the exponential of a square matrix Γ, and defined as the infinite sum
eΓ :=

∑∞
k=0

1
k!Γ

k that is guaranteed to converge for any matrix Γ. The function can be
expressed as an exponential polynomial zt =

∑k
j=1 Pt(j)eλjt, where λ1, . . . , λk are the distinct

(real or complex) eigenvalues of A. Each function Pt(j) is a polynomial function of t possibly
with complex coefficients and has a degree one less than the multiplicity of the eigenvalue λj .
Since the eigenvalues come in conjugate pairs, we can write the real-valued function z as

zt =
k∑
j=1

eajt

mj−1∑
l=0

cj,lt
l cos(bjt+ ϕj,l), (7)

where the eigenvalues are aj ± ibj with multiplicity mj . If A, X0, and C are over the rational
numbers, then aj , bj , cj,l are real algebraic and ϕj,l is such that eiϕj,l is algebraic for all j
and l. We can symbolically compute derivatives of z which also become functions with a
similar closed-form as in (7).

I Definition 10. The function zt has a zero at t = t∗ if zt∗ = 0. The zero is said to be
non-tangential if there is an ε > 0 such that zt1zt2 < 0 for all t1 ∈ (t∗ − ε, t∗) and all
t2 ∈ (t∗, t∗ + ε). The zero is called tangential if there is an ε > 0 such that zt1zt2 > 0 for all
t1 ∈ (t∗ − ε, t∗) and all t2 ∈ (t∗, t∗ + ε).

Note that there are functions with zeros that are neither tangential nor non-tangential.
Consider the function zt = t sin

( 1
t

)
for t 6= 0 and z0 = 0. The function does not satisfy the

conditions of being tangential or non-tangential. For any ε > 0, there are t1 ∈ (−ε, 0) and
t2 ∈ (0, ε), such that zt1zt2 = t1t2 sin

(
1
t1

)
sin
(

1
t2

)
is positive. There are also t1 and t2 in

the respective intervals that make zt1zt2 negative. In this paper, we only work with functions
of the form (7) that are analytic thus infinitely differentiable. Therefore, the first non-zero
derivative of zt at t∗ will decide if t∗ is tangential or not.

I Proposition 11. For any function zt of the form (7) such that zt∗ = 0 and z 6≡ 0, there is
a k0 such that dk

dtk
zt
∣∣
t=t∗ = 0 for all k < k0 and dk0

dtk0 zt
∣∣
t=t∗ 6= 0. Moreover, t∗ is tangential

if k0 is an even number and is non-tangential if k0 is an odd number.

Proof. The proof is based on the Taylor series of zt at t = t∗. Take k0 the order of the first
non-zero derivative of zt at t = t∗. This k0 always exists since otherwise z ≡ 0. The Taylor
series of zt will be

zt =
∞∑

k=k0

(t− t∗)k

k!
dk

dtk
zt
∣∣
t=t∗ = (t− t∗)k0

dk0

dtk0
zt
∣∣
t=t∗

∞∑
k=0

αk(t− t∗)k, (8)

for some {α0, α1, . . .} with α0 = 1
k0! . Define the function g by gt := zt

(t−t∗)k0 for t 6= t∗ and
gt∗ := 1

k0!
dk0

dtk0 zt
∣∣
t=t∗ . Using (8), we get that g is continuous at t∗ with gt∗ 6= 0. Therefore,

there is an interval (t∗ − ε, t∗ + ε) over which the function has the same sign as gt∗ . For all
t1 ∈ (t∗ − ε, t∗) and t2 ∈ (t∗, t∗ + ε)
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gt1gt∗ > 0⇒ zt1
(t1 − t∗)k0

gt∗ > 0⇒ (−1)k0zt1gt∗ > 0

gt2gt∗ > 0⇒ zt2
(t2 − t∗)k0

gt∗ > 0⇒ zt2gt∗ > 0

⇒ (−1)k0zt1gt∗zt2gt∗ > 0⇒ (−1)k0zt1zt2 > 0.

This means zt1zt2 > 0 for even k0 and t∗ becomes tangential, and zt1zt2 < 0 for odd k0 and
t∗ becomes non-tangential. J

For any function zt = CeAtX0, the predicate NonTangentialZero(z, l, u) stating the existence
of a non-tangential zero in an interval (l, u) is expressible in RMW:

∃t∗ . l < t∗ < u ∧ zt∗ = 0 ∧ [∃ε > 0 .∀t1 ∈ (t∗ − ε, 0), t2 ∈ (0, t∗ + ε) . zt1zt2 < 0]

3.3 Switch Points are Non-Tangential Zeroes
Given a CTMDPM and a piecewise constant optimal policy π : [0, B] → D for the time-
bounded reachability problem, a switch point t∗ is a point of discontinuity of π. Consider a
switch point t∗ such that the optimal policy takes the decision vector d in the time interval
(t∗ − ε) and then switches to another decision vector d′ at time t∗ for some ε > 0:

d ∈ Fn+2(Wπ
t ) and d′ 6∈ Fn+2(Wπ

t ) ∀t ∈ (t∗ − ε, t∗),
d 6∈ Fn+2(Wπ

t ) and d′ ∈ Fn+2(Wπ
t ) ∀t ∈ (t∗, t∗ + ε).

Consider a (not necessarily unique) state s ∈ S with actions a, b ∈ Ds such that a 6= b and
d(s) = a, d′(s) = b. Define the following set of first-order ODEs

Σ :
{

d
dtW

π
t = QdWπ

t

zt = (qa − qb)Wπ
t

(9)

for t ∈ (t∗ − ε, t∗ + ε), where qa and qb denote the sth row of the matrices Qd and Qd′ ,
respectively. The optimal decision vector on an interval before t∗ is d, thus for all t ∈
(t∗ − ε, t∗),

d ∈ F1(Wπ
t )⇒ QdWπ

t ≥ Qd′Wπ
t ⇒ (Qd −Qd′)Wπ

t ≥ 0⇒ (qa − qb)Wπ
t ≥ 0⇒ zt ≥ 0.

The next lemma states that the switch point t∗ corresponds to a non-tangential zero for zt.

I Lemma 12. Let π be an optimal piecewise constant policy for the time-bounded reachability
problem with bound B. Suppose π(B − t) = dt for all t ∈ [0, B]. Suppose that for a time
point t∗, d ∈ D is an optimal decision before t∗ and d′ 6= d is optimal right after t∗. There is
an ε such that for any s ∈ S with d(s) 6= d′(s), zt < 0 for all t ∈ (t∗, t∗ + ε) with zt defined
in (9).

Proof. Take k0 to be the smallest index k ≤ n with d 6∈ Fk+1(Wπ
t∗) and d′ ∈ Fk+1(Wπ

t∗).
Since d′ is optimal at t∗, we have d,d′ ∈ Fk+1(Wπ

t∗) for all k < k0. We show inductively
that

[Qd]k+1Wπ
t∗ = [Qd′ ]k+1Wπ

t∗ and dk

dtk
zt∗ = 0 for all 0 ≤ k < k0. (10)
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The claim is true for k = 0:

d,d′ ∈ F1(Wπ
t∗)⇒ QdWπ

t∗ = Qd′Wπ
t∗

⇒ (Qd −Qd′)Wπ
t∗ =

 . . .

qa − qb
. . .

Wπ
t∗ = 0⇒ (qa − qb)Wπ

t∗ = 0⇒ zt∗ = 0.

Now suppose (10) holds for (k − 1) with k < k0. Then

d,d′ ∈ Fk+1(Wπ
t∗)⇒ [Qd]k+1Wπ

t∗ = [Qd′ ]k+1Wπ
t∗

⇒ Qd[Qd]kWπ
t∗ = Qd′ [Qd′ ]kWπ

t∗ ⇒(∗) Qd[Qd]kWπ
t∗ = Qd′ [Qd]kWπ

t∗

⇒ [Qd −Qd′ ][Qd]kWπ
t∗ = 0⇒(∗∗) [Qd −Qd′ ] d

k

dtk
Xt∗ = 0

⇒ (qa − qb) d
k

dtk
Xt∗ = 0⇒ dk

dtk
zt∗ = 0,

where (∗) holds due to the induction assumption and (∗∗) is true due to the differential
equation (9). Finally, we show that dk0

dtk0 zt∗ < 0.

d 6∈ Fk0+1(Wπ
t∗) and d′ ∈ Fk0+1(Wπ

t∗)⇒ [Qd]k0+1Wπ
t∗ < [Qd′ ]k0+1Wπ

t∗

⇒ Qd[Qd]k0Wπ
t∗ < Qd′ [Qd′ ]k0Wπ

t∗ ⇒(ı) Qd[Qd]k0Wπ
t∗ < Qd′ [Qd]k0Wπ

t∗

⇒ [Qd −Qd′ ] d
k0

dtk0
Wπ
t∗ < 0⇒ (qa − qb) d

k0

dtk0
Wπ
t∗ < 0⇒ dk0

dtk0
zt∗ < 0,

where (ı) holds due to (10) for k0 − 1.
Since zt∗ = 0, we can select ε such that zt > 0 for all t ∈ (t∗ − ε, t∗). Using Taylor

expansion (8) and the facts that dk0

dtk0 zt∗ < 0 and zt > 0 for t ∈ (t∗ − ε, t∗), we have that
k0 must be an odd number, which means t∗ is non-tangential by Prop. 11. The function zt
changes sign from positive to negative at t∗. J

3.4 Conditional Decidability
The decision procedure for Problem 1 is as follows. Fix a CTMDP M = ({1, . . . , n} ]
{good},D,Q) and a bound B. We inductively construct a piecewise constant optimal policy,
going forward in time. To begin, we set the initial decision vector to d1, where d1 is selected
such that d1 ∈ Fn+2(Wπ

0 ) (Equation (4)) with Wπ
0 set to the indicator vector that is 1 at

the good state and 0 in other states.
Note that in general Fn+2(Wπ

t ) in (4) may have finitely many elements and the choice of
optimal decision at time t, dt ∈ Fn+2(Wπ

t ) is not unique. Based on results of Proposition 6,
any arbitrary element of Fn+2(Wπ

t ) can be chosen; but, we do not alter this choice until
the picked decision vector does not belong to Fn+2(Wπ

t ) anymore. We know that there
is a piecewise constant optimal policy π with finitely many switches obtained from the
charactrization in Theorem 5. Denote the (unknown) number of switches by k ∈ N.

We find k as follows. We inductively check the existence of a sequence of decision vectors
d1, . . . ,dk and time points t1, . . . , tk−1 such that the optimal policy (given a lexicographical
order on D) switches from di to di+1 at time ti but does not have any switch between the
time points. Then, we check if the optimal policy makes at least one additional switch point
in the interval (tk, B). The check reduces the question to a number of satisfiability questions
in RMW. If we find an additional switch, we know that the optimal strategy has at least k+ 1
switches and continue to check if there are further switch points. If not, we know that the
optimal policy has k switch points.
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We need some notation. A prefix σk = (d1, t1,d2, t2, . . . , tk−1,dk) ∈ (D × (0, B))∗ ×D
is a finite sequence of decision vectors from D and strictly increasing time points 0 < t1 <

t2 < . . . < tk−1 < B such that di 6= di+1 for i ∈ {1, . . . , k − 1}. Intuitively, it represents the
prefix of a piecewise constant policy with the first k − 1 switches. For two decision vectors
d,d′, let ∆(d,d′) := {s | d(s) 6= d′(s)} be the states at which the actions suggested by the
decision vectors differ. For a decision vector d, let d[s 7→ b] denote the decision vector that
maps state s to action b but agrees with d otherwise.

For a prefix σk = (d1, t1,d2, t2, . . . , tk−1,dk), a state s ∈ S, and an action b ∈ Ds, define

ys,bt (σk) = uT (s)([Qdk

]− [Qdk[s7→b]])e[Qdk
](t−tk−1)e[Qdk−1

](tk−1−tk−2) · · · e[Qd1
]t1u(good),

where u(s) is a vector of dimension n+ 1 that assigns one to s and zero to every other entry.
Observe that ys,bt (σk) is a solution of a set of linear ODEs similar to zt in Equation (9):{

d
dtWt = [Qdk ]Wt

ys,bt (σk) = uT (s)([Qdk ]− [Qdk[s7→b]])Wt,
(11)

with the condition Wtk−1 = e[Qdk−1
](tk−1−tk−2) · · · e[Qd1

]t1u(good).
We shall use (variants of) the predicate NonTangentialZero(y·,·, t1, t2), but write the

predicates informally for readability. We need two additional predicates Switch(σk, t∗,d′)
and NoSwitch(σk+1). The predicate Switch states that, given a prefix σk, the first switch
from dk to a new decision vector d′ occurs at time point t∗ > tk−1. This new switch requires
three conditions. First, there is a simultaneous non-tangential zero at t∗ for all dynamical
systems of the form (11) associated with ys,d

′(s)
t (σk), s ∈ ∆(dk,d′). Second, t∗ is the first

time after tk−1 that any of the dynamical systems have a non-tangential zero. Finally, none
of the states in S \∆(dk,d′) whose action remains the same before and after the switch,
have a non-tangential zero in (tk−1, t

∗] (up to and including t∗):

Switch((d1, t1, . . . , tk−1,dk)︸ ︷︷ ︸
σk

, t∗,d′) ≡

0 < t1 < . . . < tk−1 < B ∧ (B > t∗ > tk−1) ∧ (∆(dk,d′) 6= ∅)∧∧
s∈∆(dk,d′)

(
“ys,d

′(s)
t (σk) has a non-tangential zero at t∗”∧

“ys,d
′(s)

t (σk) has no non-tangential zero in (tk−1, t
∗)”

)
∧

∧
s∈S\∆(dk,d′)

“ys,d
′(s)

t (σk) has no non-tangential zero in (tk−1, t
∗]”

The predicate NoSwitch(σk+1) states that, given a prefix σk+1, the last decision vector dk+1

of (σk+1) stays optimal and does not switch to another decision vector within the interval
(tk, B). This is equivalent to stating that none of the dynamical systems of the from (11)
associated with ys,bt (σk+1) for s ∈ S, b ∈ Ds \ dk+1(s) has a non-tangential zero in (tk, B):

NoSwitch(σk+1) ≡
∧

s,b6=dk+1(s)

“ys,bt (σk+1) has no non-tangential zero in (tk, B)”

We can now check if the optimal strategy has exactly k switches. The first part of the
predicate written below sets up a proper σ and the last conjunct states that there is no
further switch after the last one.

∃t1, . . . , tk.(0 < t1 < t2 . . . < tk < B) ∧
k∧
i=1

Switch(d1, t1, . . . ,di, ti,di+1︸ ︷︷ ︸
σi+1

) ∧ NoSwitch(σk+1).
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We can enumerate these formulas with increasing k over all choices of decision vectors and
stop when the above formula is valid. At this point, we know that there is a piecewise
constant optimal policy with k switches, which plays the decision vectors d1, . . . ,dk. We
can make one more query to check if the probability of reaching good when playing this
strategy is at least a given rational vector r ∈ [0, 1]n:

∃t1, . . . , tk.(0 < t1 < . . . , tk < B) ∧
k∧
i=1

Switch(d1, t1, . . . ,di, ti,di+1) ∧ NoSwitch(σk+1)

∧
n∧
s=1

uT (s)e[Qdk+1
](B−tk)e[Qdk

](tk−tk−1) · · · e[Qd1
]t1u(good) > r(s)

(12)

This completes the proof of conditional decidability of Problem 1.

Conditional Decidability for Problem 2. A stationary policy d is not optimal if there is a
switch point. Using the Switch predicate and conditional decidability of RMW, this shows
conditional decidability of Problem 2.

In fact, to check the presence of a single non-tangential zero, one can avoid Theorem 8
and get a direct construction based on Schanuel’s conjecture. This construction is similar to
[11] and is provided in Section 5. Unfortunately, when there are multiple switch points, we
have to existentially quantify over previous switch points. Thus, the techniques of [11] cannot
be straightforwardly extended to find a direct conditional decision procedure for Problem 1.

We do not know if there is a numerical procedure that only uses an oracle for non-
tangential zeros. The problem is that, while numerical techniques can be used to bound
each non-tangential zero with rational intervals with arbitrary precision as well as compute
the reachability probability to arbitrary precision, we do not know how to numerically
detect whether the reachability probability in (12) is exactly equal to a given r. By the
Lindemann-Weierstrass Theorem [15], we already know that for CTMDPs with stationary
optimal strategies, the value of reachability probability for any rational time bound B > 0
is transcendental and hence supπ∈ΠB

Pπ
s (reach) 6= r(s) for all s ∈ S. However, we cannot

prove that the reachability probability remains irrational in the general case.

4 Lower Bound: Continuous Skolem Problem

I Problem 3 (Bounded Continuous-Time Skolem Problem). Given a linear ordinary differential
equation (ODE)

dn

dtn
zt + an−1

dn−1

dtn−1 zt + · · ·+ a1
d

dt
zt + a0zt = 0 (13)

with rational initial conditions z0,
dzt

dt |t=0, . . . ,
dn−1zt

dtn−1 |t=0 ∈ Q and rational coefficients
an−1, an−2, . . . , a0 ∈ Q and a time bound B ∈ Q, the bounded continuous Skolem problem
asks whether there exists 0 < t∗ < B such that it is a non-tangential zero for zt. Further, we
can assume w.l.o.g. that z0 = 0 in the initial condition.2

2 The assumption is w.l.o.g. because given a linear ODE whose solution is zt, one can construct another
linear ODE whose solution is yt = tzt. Clearly, y0 = 0 and there is a non-tangential zero of z in (0, B)
iff there is a non-tangential zero of y in (0, B).
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We note that our definition is slightly different from the usual definition of the problem,
e.g., in [7, 11], which simply asks for any zero (i.e., zt∗ = 0), not necessarily a non-tangential
one. Our version of the bounded continuous Skolem problem is also decidable assuming
SC [11]. However, there is no unconditional decidability result known for this problem, even
though we only look for a non-tangential zero.

We can encode any given linear ODE of order n in the form of (13) into a set of n
first-order linear ODE on X : [0, B]→ Rn with d

dtXt = AXt, X0 =
[
z0,

dzt

dt

∣∣∣
t=0

, . . . , d
n−1zt

dtn−1

∣∣∣
t=0

]T
zt = CXt,

(14)

with the state matrix A and output matrix C are

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 , C =
[
1 0 · · · 0

]
. (15)

Using the representation (14), the solution of the linear ODE (13) can be written as zt =
CeAtX0. Therefore, the bounded continuous-time Skolem problem can be restated as whether
the expression CeAtX0 has a non-tangential zero in the interval (0, B).

We now reduce the bounded continuous-time Skolem problem to Problem 2. Given an
instance (14)-(15) of the Skolem problem of dimension n, we shall construct a CTMDP over
states {1, . . . , 2n}∪{good,bad} and bound B, and just two decision vectors da and db that
only differ in the available actions (a or b) at state 1. Our reduction will ensure that the
answer of the Skolem problem has a non-tangential zero iff there is a switch in the optimal
policy in the time-bounded reachability problem for bound B, and thus, iff stationary policies
are not optimal.

I Theorem 13. For every instance of the bounded continuous-time Skolem problem with
dynamics d

dtXt = AXt, zt = CXt, initial condition X0, and time bound B, there is a CTMDP
M such that the dynamical system has a non-tangential zero in (0, B) iff the optimal strategy
of the CTMDP in the time-bounded reachability problem is not stationary.

We sketch the main ideas of the proof here. Consider the linear differential equation
described by the state space representation in (14) with the initial condition X0 that has its
first element equal to zero X0(1) = 0. Given the time bound B > 0, to solve the bounded
continuous Skolem problem, we are looking for the existence of a time 0 < t∗ < B such that
zt∗ = 0 is non-tangential. Equivalently, we want to find a non-tangential zero for the function
CeAtX0, where C =

[
1 0 · · · 0

]
.

There are three obstacles to go from (14) to generator matrices for a CTMDP. Each
generator matrix must have non-diagonal entries that are non-negative. The sum of each
row of the matrix must be zero. Moreover, the last state of the CTMDP must be absorbing.
None of these properties may hold for a general A. We show a series of transformations that
take the matrix A to a matrix P that is sub-stochastic. Then we construct the generator
matrices of the CTMDP using P that include the required absorbing state. We denote by 0m
and 1m as row vectors of dimension m with all elements equal to zero and one, respectively.
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I Theorem 14. Suppose A ∈ Qn×n, X0 ∈ Qn and C = [1,0n−1] are given with X0(1) = 0.
There are positive constants γ, λ and a generator matrix P ∈ Q(2n+1)×(2n+1) such that

CeAtX0 = γeλt
[
C ′ePtY0

]
, C ′ = [1,−1,02n−1], Y0 = [02n, 1]T . (16)

I Remark 15. The first equality in (16) ensures that nature of zeros of the two functions
CeAtX0 and C ′ePtY0 are the same. If one of them has a non-tangential zero at t∗ the other
one will also have a non-tangential zero at t∗. To see this, suppose CeAt∗X0 = 0 and CeAtX0
changes sign at t∗. The same things happen to C ′ePtY0 due to the fact that the two functions
are different with only a positive factor of γeλt.

Without loss of generality, we assume the element A11 is negative. This assumption is
needed when constructing the CTMDP in the sequel. If the assumption does not hold, we
can always replace A with A− λ0In for a sufficiently large λ0 and merge λ0 with λ in (16).
Define the map φ1 : ∪nQn×n → ∪nQ2n×2n

≥0 such that φ1(A) is obtained by replacing each

entry Aij with the matrix
[
αij βij
βij αij

]
, where αij = max(Aij , 0) and βij = max(−Aij , 0).

The map φ1 maps any square matrix to another matrix with non-negative entries ([2]). Also
define the map φ2 : ∪nQn → ∪nQ2n such that φ2(X) replaces each entry X(i) with two
entries [X(i), 0]T .

I Proposition 16. We have C ′′eφ1(A)tY2 =CeAtX0 with Y2 :=φ2(X0) and C ′′ :=[1,−1,02n−2].

Proof. We can show inductively that for any k ∈ {0, 1, 2, . . .}, {α1, α2, . . . , αn}, and
[β1, β2, . . . , βn] := [α1, α2, . . . , αn]Ak, we have

[α1,−α1, α2,−α2, . . . , αn,−αn]φ1(A)k = [β1,−β1, β2,−β2, . . . , βn,−βn].

Substitute [α1, α2, . . . , αn] by C and [β1, β2, . . . , βn] = CAk to get

C ′′φ1(A)kY2 = C ′′φ1(A)kφ2(X0) = [β1,−β1, β2,−β2, . . . , βn,−βn]φ2(X0)
= [β1, β2, . . . , βn]X0 = CAkX0

⇒ C ′′eφ1(A)tY2 =
∞∑
k=0

tk

k!C
′′φ1(A)kY2 =

∞∑
k=0

tk

k!CA
kX0 = CeAtX0. J

Next, we define λ := maxi
∑n
j=1 |Aij |+ 1, P2 := φ1(A) − λIn, and the vector β ∈ Q2n

with

β(2i− 1) = β(2i) = max(0,−P2Y2(2i− 1),−P2Y2(2i)) 1 ≤ i ≤ n.

Note that the row sum of P2 is at most −1 and β + P2Y2 is element-wise non-negative with
the maximum element

γ := max
i
P2Y2(i) + β(i).

I Proposition 17. The above choices of λ, γ and the matrix

P :=

P2
... (P2Y2 + β)/γ

. . . . . . . . .

0
... 0


satisfy (16) in Theorem 14. Moreover, P is row sub-stochastic.
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Proof. We can easily show by induction that

P kY0 =
[
P k−1

2 (P2Y2 + β)/γ
0

]
, ∀k ∈ {1, 2, . . .}.

C ′ePtY0 =
∞∑
k=0

tk

k!C
′P kY0 = C ′Y0 + C ′′

∞∑
k=1

tk

k!P
k−1
2 (P2Y2 + β)/γ,

where C ′′ := [1,−1,02n−2] is the same vector as C ′ but the last element is eliminated.

C ′ePtY0 = C ′Y0 + C ′′eP2tY2/γ − C ′′Y2/γ +
∞∑
k=1

tk

k!C
′′P k−1

2 β/γ.

The term C ′Y0 is zero by simple multiplication of the two vectors. C ′′Y2 = C ′′φ2(X0) = X0(1),
which is also assumed to be zero. Finally, we see by induction that for all k ∈ {1, 2, . . .}, the
elements (2i− 1) and 2i of the matrix P k−1

2 β are equal due to the particular structure of P2
and β. Therefore, the last sum in the above is also zero and we get

C ′ePtY0 = C ′′eP2tY2/γ = C ′′eφ1(A)t−λItφ2(X0)/γ

= C ′′eφ1(A)tφ2(X0)e−λt/γ = CeAtX0e−λt/γ.

To show that P is a sub-stochastic matrix, we recall that P2Y2 + β ≥ 0 with maximum
element γ. Then

P2 × 12n + (P2Y2 + β)/γ ≤ φ1(A)12n − λ12n + 12n = φ1(A)12n −max
i

∑
j

|Aij | ≤ 0. J

As the last step, we add an additional row and column to P to make it stochastic:

Qa :=

 P2
... Θ

... (P2Y2 + β)/γ
. . . . . . . . .

02×2n
... 02×1

... 02×1

 , C̄ =
[
1 −1 02n

]
, Ȳ0 =

[
02n+1

1

]
,

where Θ has non-negative entries and is such that Qa is stochastic (sum of elements of each
row is zero). The added row and column correspond to an absorbing state for a CTMDP
with no effect on reachability probability: C̄etQa

Ȳ0 = C ′ePtY0.
Next, we obtain a second generator matrix for the CTMDP. Define Qb := Qa +K with

K :=
[
−r r 02n

0(2n+1)×1 0(2n+1)×1 0(2n+1)×2n

]
,

Note that Qb has exactly the same transition rates as in Qa except the transition from state
1 to state 2, which is changed by r.
I Remark 18. We assumed w.l.o.g. that A11 is negative. The construction of P2, P,Qa

results in a positive value for Qa
12. Therefore, it is possible to select both negative and

positive values for r such that Qb
12 = Qa

12 + r ≥ 0.

Construction of the CTMDP. The CTMDPM has 2n+ 2 states, corresponding to the
rows of Qa and Qb, with the absorbing state 2n + 2 associated with the good state and
the absorbing state 2n + 1 with reachability probability equal to zero. We shall set the
time bound to be B. Ds the set of actions that can be taken in state s ∈ {2, 3, . . . , 2n+ 2}
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is singleton and D1 = {a, b}. The set of decision vectors has two elements D = {da,db}
corresponding to the actions a, b taken at state 1. For simplicity, we denote the generator
matrices of these decision vectors by Qa and Qb, respectively. Moreover, the two actions
a, b have the same transition rates for jumping from state 1 to other states, except giving
different rates ra, rb for jumping from 1 to 2 such that rb − ra = r.

The optimal policy π takes decision vector dt ∈ D at time B− t such that dt ∈ Fn+2(Wπ
t )

for all t ∈ [0, B] as defined in (4).

I Proposition 19. Let r have the same sign of the first non-zero element of the set
{C̄Ȳ0, C̄QaȲ0, C̄(Qa)2Ȳ0, . . .} and such that Qa

12 + r ≥ 0. This particular selection of r
results in the optimality of da at t = 0.

Proof. We have Wπ
0 = Ȳ0 and Fk(Wπ

0 ) = arg maxd[Qd]kȲ0. Then, we need to compare
[Qa]kȲ0 with [Qb]kȲ0 for different values of k and see which one gives the first highest value.
These two are the same for k = 1 and F1(Wπ

0 ) = arg maxd QdȲ0 = {da,db}. Suppose For
k0 > 1 is the smallest index such that C̄[Qa]k0 Ȳ0 6= 0. It can be shown inductively that
[Qb]kȲ0 = [Qa]kȲ0 for all 1 ≤ k ≤ k0:

[Qb]kȲ0 = Qb[Qb]k−1Ȳ0 = (Qa +K)[Qb]k−1Ȳ0 = (Qa +K)[Qa]k−1Ȳ0

= [Qa]kȲ0 +K[Qa]k−1Ȳ0 = [Qa]kȲ0 − r
[
C̄[Qa]k−1Ȳ0
0(2n+1)×2n

]
= [Qa]kȲ0.

This means Fk(Wπ
0 ) = arg maxd[Qd]kȲ0 = {da,db} for all 1 ≤ k ≤ k0. We have for

k = k0 + 1

[Qb]k0+1Ȳ0 = [Qa]k0+1Ȳ0 − r
[
C̄[Qa]k0 Ȳ0
0(2n+1)×2n.

]
The first element of [Qb]k0+1Ȳ0 is strictly less than the first element of [Qa]k0+1Ȳ0 since r
has the same sign as C̄[Qa]k0 Ȳ0. Thus Fk0+1(Wπ

0 ) = arg maxd[Qd]k0+1Ȳ0 = {da}. J

Note that the Skolem problem is trivial with the solution zt = 0 for all t ∈ [0, B] if all the
elements of the set {C̄Ȳ0, C̄QaȲ0, C̄(Qa)2Ȳ0, . . .} are zero.

Prop. 19 guarantees existence of an ε ∈ (0, B) such that Wπ
t satisfies

d

dt
Wπ
t = QaWπ

t ∀t ∈ (0, ε),

with the initial condition Wπ
0 (2n+ 2) = 1 and Wπ

0 (s) = 0 for all s ∈ {1, 2, . . . , 2n+ 1}.
To check if the optimal policy switches to db at some time point, we should check if there

is t∗ < B such that db ∈ Fn+2(Wπ
t∗). This is equivalent to having t∗ being non-tangential

for the maximization in F1(Wπ
t ), which means t∗ is non-tangential for the equation

QaWπ
t = QbWπ

t ⇔ KWπ
t = 0⇔ C̄Wπ

t = 0.

Summarizing the above derivations, we have the following set of ODEs

d

dt
Wπ
t = QaWπ

t ,Wπ
0 = Ȳ0, zt = C̄Wπ

t . (17)

The optimal policy for CTMDPM switches from da to db at some time point t∗ if and only
if zt in (17) has a non-tangential zero in (0, B) if and only if the original dynamics CeAtX0
has a non-tangential zero in (0, B). This completes the proof of Theorem 13.
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5 A Direct Algorithm for Problem 2

We now show a “direct” method for decidability of Problem 2 based on Schanuel’s conjecture
but without relying on the decidability of RMW. As stated before, a switch point in a strategy
corresponds to the existence of a non-tangential zero for the functions ys,bt (d1) for s ∈ S
and b ∈ Ds \ d1(s). We know ys,bt (d1) is an exponential polynomial of the form (7). Thus,
deciding Problem 2 reduces to checking if an exponential polynomial of the form (7) in one
free variable t has a non-tangential zero in a bounded interval. We use the following result
from [11].

I Theorem 20 ([11]). Assume SC. It is decidable whether an exponential polynomial of the
form (7) has a zero in the interval (t1, t2) with t1, t2 ∈ Q.

Theorem 20 decides whether a zero, not necessarily a non-tangential one, exists. We shall
use the characterization of Proposition 11 to check if a non-tangential zero of yt := ys,bt (d1)
exists in (0, B). Define the functions

zkt = y2
t +

k∑
j=1

(
dj

dtj
yt

)2

, k ∈ {0, 1, 2, . . .}. (18)

I Theorem 21. Fix rational numbers t1 < t2. Suppose yt has a zero in the interval (t1, t2)
and yt is not identically zero over this interval. There is k0 as the smallest k such that zkt in
(18) does not have any zero in (t1, t2). Moreover, the zero of yt in (t1, t2) is non-tangential
if k0 is odd and is tangential if k0 is even.

Intuitively, the above theorem states that if yt has at least one zero in (t1, t2), we can check
for the existence of a tangential or non-tangential zero by a finite number of applications of
Theorem 20 to functions zkt in (18). Note that yt may have both tangential and non-tangential
zeros; Theorem 21 gives a way of identifying the type of one of the zeros (the one with the
largest order).

Proof of Theorem 21. Since yt is an exponential polynomial, so is zkt for all k. Thus, we
can use Theorem 20 to check if zkt has a zero in (t1, t2). Note that zkt is the sum of squares
of dj

dtj yt, which means

zkt∗ = 0 ⇒ yt∗ = dyt
dt

∣∣
t=t∗ = · · · = dkyt

dtk
∣∣
t=t∗ = 0. (19)

The first part of the theorem is proved by showing that if for each k, zkt has a zero in
(t1, t2), then yt is identically zero. Suppose zkt = 0 for some t = t∗k in the interval (t1, t2),
for any k ∈ {0, 1, 2, . . .}. Using (19), we get that yt = 0 for all t ∈ {t∗0, t∗1, t∗2, . . .}. If the
set {t∗0, t∗1, t∗2, . . .} is not finite, we get that yt is identically zero according to the identity
theorem [1]. If the set of zeros is finite, there is some t∗ that appears infinitely often in
the sequence (t∗0, t∗1, t∗2, . . .). Therefore, zkt∗ = 0 for infinitely many indices, which means
dkyt

dtk

∣∣
t=t∗ = 0 for all k. Having yk as an analytic function, this again implies that yt is

identically zero.
Since yt is not identically zero, take k0 such that zk0

t does not have a zero in (t1, t2) but
zk0−1
t does. Then, there is t∗ ∈ (t1, t2) such that yt and all its derivatives up to order k0 − 1
are zero at t∗ but dk0

dtk0 yt
∣∣
t=t∗ 6= 0. This t∗ and k0 satisfy the conditions of Proposition 11.

Thus, t∗ is a non-tangential zero for yt if k0 is odd and a tangential zero if k0 is even. J
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To check if there is a non-tangential zero in an interval (0, B), we apply Theorem 21 to
each zero of yt individually. Suppose yt has at least one zero. We can localize all zeros of yt
as follows:
1. Set (t1, t2) := (0, B);
2. Set k0 to be the smallest index such that zkt in (18) does not have any zero in (t1, t2);
3. If k0 > 0, do the next steps:

Use bisection to find an interval (t′, t′′) ⊂ (t1, t2) such that over this interval, zk0−1
t

has a zero and zk0
t and dk0

dtk0 yt do not have any zero;
Store (t′, t′′);
Repeat Steps 2-3 with (t1, t2) := (t1, t′);
Repeat Steps 2-3 with (t1, t2) := (t′′, t2).

The bisection used in the above algorithm sequentially splits the interval into two sub-intervals
and picks the one that contains the zero of zk0−1

t . It stops when dk0

dtk0 yt does not have any
zero over the selected sub-interval. The splitting terminates after a finite number of iterations
due to the fact that dk0

dtk0 yt is a continuous function and non-zero at the zero of yt. The
whole algorithm terminates after a finite number of iterations since yt has a finite number of
zeros in (0, B) (note that if yt has infinite number of zeros in (0, B), it will be identically
zero according to the identity theorem [1]). The output of the algorithm is a set of intervals.
Within each interval, yt has a single zero. Applying Theorem 21 to each such interval will
decide whether the zero is tangential or non-tangential.
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Abstract
We consider two natural subclasses of deterministic top-down tree-to-tree transducers, namely,
linear and uniform-copying transducers. For both classes we show that it is decidable whether
the translation of a transducer with look-ahead can be realized by a transducer without look-
ahead. The transducers constructed in this way, may still make use of inspection, i.e., have an
additional tree automaton restricting the domain. We provide a second procedure which decides
whether inspection can be removed and if so, constructs an equivalent transducer without inspection.
The construction relies on a fixpoint algorithm that determines inspection requirements and on
dedicated earliest normal forms for linear as well as uniform-copying transducers which can be
constructed in polynomial time. As a consequence, equivalence of these transducers can be decided
in polynomial time. Applying these results to deterministic bottom-up transducers, we obtain that
it is decidable whether or not their translations can be realized by deterministic uniform-copying
top-down transducers without look-ahead (but with inspection) – or without both look-ahead and
inspection.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Formal languages and automata theory

Keywords and phrases Top-Down Tree Transducers, Earliest Transformation, Linear Transducers,
Uniform-copying Transucers, Removal of Look-ahead, Removal of Inspection

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.134
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1 Introduction

Even though top-down and bottom-up tree transducers are well-studied formalisms that were
introduced already in the 1970’s (by Rounds [13] and Thatcher [14] independently, and by
Thatcher [15], respectively), some fundamental questions have remained open until today. A
prominent example of such a question is: can we decide for a given deterministic bottom-up
tree transducer whether or not its translation can be realized by a top-down tree transducer?
We answer this question affirmatively, however, for a slight restriction on the considered
top-down tree transducers: they must be uniform-copying (uc). This means that all copies
of the same input subtree must be processed by the same state.

It is well-known that for every deterministic bottom-up tree transducer an equivalent
deterministic top-down tree transducer can be constructed which, however, makes use of
regular look-ahead [7]. That transducer indeed is uc. The question which we ask therefore is:
can regular look-ahead in uc transducers be eliminated? In order to answer this question, we
provide a canonical earliest normal form for uc (as well as for linear) deterministic top-down
transducers with and without look-ahead. We prove that if an earliest such transducer A
can be realized by such a transducer A′ without look-ahead (but with input inspection),
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then A must be synchronizing, twinning, and erasing. To understand the synchronizing
property, consider a transducer with look-ahead that translates an input tree of the form
a(f(t1, t2))) into the tree 〈a, f〉(t1, t2), where 〈a, f〉 is a binary output symbol. Clearly this
translation can be done by a transducer without look-ahead: it outputs nothing at the
root node, keeps the node label in its state, and at its child outputs the corresponding
binary symbol. Now consider that a(f(g(t1), t2))) is translated to 〈a, g〉(f(t1, t2)). Such a
translation cannot be realized by a transducer without look-ahead. The information about
the g-node cannot be “synchronized” at the f -node because it comes after the output must
be produced (contradicting the order of origins of output nodes [12], see also [10, 11]).

The twinning property is similar to the string case [5] (see also [2, 3]), but now for paths.
To understand the erasing property, consider a transducer with the following rules.

q0(a(x1 : he)) → a(a(e)) qid(a(x1 : hf )) → a(qid(x1))
q0(a(x1 : hf )) → a(qid(x1)) qid(f) → f

q0(f) → f

Here, input trees are of the form a(· · · a(e) · · · ) or a(· · · a(f) · · · ). The look-ahead automaton
has two states he and hf , indicating that the input tree is of the first form (e-leaf) or the
second form (f -leaf). The transducer translates input trees of the first form to the fixed tree
a(a(e)) and realizes the identity on trees of the second form. This translation cannot be
realized by a transducer without look-ahead. The erasing property demands that if an input
path depends on two different look-ahead states h1, h2, where for h1 a constant output tree
is produced (viz. the tree a(a(e))), then for h2 no output may be produced in any loop.

Given a uc transducer A with look-ahead that is synchronizing, twinning, and erasing
we construct an equivalent uc transducer with inspection (if it exists), i.e., a uc transducer
where the domain is given separately via some top-down deterministic tree automaton.

The third highlight of our contribution is a procedure that removes inspection (if possible).
The idea here is quite different from what we have discussed until now. Let us consider an
example. The domain automaton accepts trees of the form f(t1, t2) where t2 is an arbitrary
binary tree (with internal nodes labeled f and leaves labeled a or b) and t1 is a tree which
has a left-most leaf labeled a and a right-most leaf labeled b. The transducer has this rule:

q0(f(x1, x2))→ f(f(b, b), qid(x2)),

where state qid realizes the identity. Does there exist an equivalent top-down tree transducer
without inspection? As it turns out, the answer is “yes”. The idea is that the output subtree
f(b, b) can be used to simulate inspection! These are the rules of an equivalent transducer
without inspection:

q0(f(x1, x2))→ f(q(x1), qid(x2)) qa(f(x1, x2))→ qa(x1) qb(f(x1, x2))→ qb(x2)
q(f(x1, x2)) → f(qa(x1), qb(x2)) qa(a)→ b qb(b)→ b

We show that it is decidable for a given top-down deterministic tree language, whether
or not it can be simulated on a given output tree. The challenge now is that it may be
necessary to delay outputting certain output subtrees, until rules are encountered which
require these output trees for simulating their inspection needs. Similar as before, such
delay is only possible along input paths and must stop when two input subtrees of an input
node are processed. Using a fixpoint algorithm we are able to determine whether or not
sufficiently large output subtrees can be made available in order to satisfy all inspection needs.
The approach we have sketched here is quite different from earlier methods for look-ahead
removal [9] that rely on difference bounds, i.e., the differences in the translation with respect
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to different look-ahead states. In order to obtain an effective construction, however, so
far a variety of technical restrictions had to be introduced – implying that even for linear
deterministic top-down tree transducers, look-ahead removal remained an open problem. To
the best of our knowledge, this paper is the first to present look-ahead removal for natural
and known subclasses of top-down tree transducers.

2 Basics

Let Σ denote a ranked alphabet. Then Σk is the set of all symbols in Σ of rank k. As
usual, we define the set TΣ of all (finite) trees over Σ as the set of all strings t = f(t1, . . . , tk)
where f ∈ Σk for some k ≥ 0 and t1, . . . , tk ∈ TΣ. For convenience, we also write f for
f() if f is of rank 0. A subtree of that form is also called leaf. Let X = {xi | i ∈ N}
denote an infinite set of distinct variables which is disjoint from any other occurring ranked
alphabet (be it the input or the output alphabet of a transducer). All elements of the
set X are assumed to have rank 0. For a finite set J ⊆ N we denote by XJ the set of
variables {xj | j ∈ J}, and we write TΣ(XJ) for the set of all trees t over Σ ∪ XJ . E.g.,
f(h(x2), a) ∈ TΣ({x2}) where f ∈ Σ2, h ∈ Σ1, and a ∈ Σ0. Trees in TΣ(XJ) are also called
patterns. Of particular importance is the set of unary patterns TΣ({x1}) = TΣ(x1). This
set forms a free monoid where the monoid operation “·” is substitution into the variable
x1. The tree t = f(h(x1), g(a, h(x1))), e.g., can be uniquely factored into f(x1, g(a, x1)) and
h(x1). We thus write f(h(x1), g(a, h(x1))) = f(x1, g(a, x1)) · h(x1). We also consider the set
CΣ ⊆ TΣ(x1) of contexts over Σ which is the subset of unary patterns which contain exactly
one occurrence of x1. Technically, this means that each context t either is equal to x1, or is
of the form t = f(t1, . . . , tk) for some f ∈ Σk for some k ≥ 1 and 1 ≤ j, j′ ≤ k so that tj is a
context and tj′ ∈ TΣ for all j′ 6= j.

In the following, Σ and ∆ denote fixed non-empty ranked alphabets of input and output
symbols, respectively. In this paper, we consider deterministic top-down tree transducers
with uniform copying, or uc-transducers for short. Intuitively, uniform copying means that
each subtree of the input is processed at most once – while the produced output may be
copied arbitrarily often. This restriction is trivially met by linear deterministic top-down
transducers – but also by those that arise from the top-down simulation of deterministic
bottom-up transducers by means of regular look-ahead. Here, we refrain from introducing
transducers with look-ahead and inspection separately, as this would result in awkward
duplication of almost identical definitions. Instead, we find it convenient to introduce yet
another model, namely, deterministic transducers with (unambiguous) advice – which later
can be instantiated either with top-down deterministic inspection (no interference with the
computation of the transducer, only restriction to relevant input) or bottom-up deterministic
look-ahead (interference with the computation as well as restriction to relevant input).

A finite tree automaton over Σ, (for short, TA) B consists of
1. a finite set H of states,
2. a subset F ⊆ H of accepting states, and a transition relation δ ⊆

⋃
k≥0H × Σk ×Hk.

The computation of B on some input tree t can be represented by a tree in TT where the ranked
alphabet T consists of all transitions τ = 〈h, f, h1 . . . hk〉 ∈ δ where the rank of τ equals the
rank of the input symbol f . For h ∈ H, an h-computation φ for some t = f(t1, . . . , tk) ∈ TΣ
is a tree φ = τ(φ1, . . . , φk) where φi is a hi-computation for ti for all i = 1, . . . , k. We write
h : t to indicate that there is an h-computation for t. We write domB(h) = {t ∈ TΣ | h : t}
and define the set of trees accepted by B as L(B) = {t ∈ TΣ | ∃h0 ∈ F such that h0 : t}. An
(h, h′)-computation φ of B on some context t ∈ CΣ is analogously defined as a context in CT
where h is the state at the root and h′ is assumed at the variable leaf. We write (h, h′) : t to
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indicate that a (h, h′)-computation for t exists. In particular, (h, h) : x1 for every state h
of B. In general, we assume that every occurring TA B is trim, i.e., every transition of B
occurs in some accepting computation, i.e., some h-computation with h ∈ F . We call B

bottom-up deterministic, when for every tuple (f, h1 . . . hk) ∈ Σk ×Hk, there is at most
one h ∈ H so that 〈h, f, h1 . . . hk〉 ∈ δ;
top-down deterministic when F consists of a single state only, and for every k ≥ 0 and pair
(h, f) ∈ H ×Σk, there is at most one tuple (h1 . . . hk) ∈ Hk such that 〈h, f, h1 . . . hk〉 ∈ δ;
unambiguous, if for each t ∈ TΣ, there is at most one h ∈ F and at most one h-computation
φ of B for t.

It is well-known that B is unambiguous whenever B is bottom-up deterministic, or top-down
deterministic. In the following definition, we assume that the TA B is trim, unambiguous,
and has a single accepting state h0.

A deterministic uniform-copying top-down tree transducer with advice over Σ and ∆ (for
short, a DTA

uc transducer, or uc-transducer, or a DTA
uc) A is a tuple (B,Q, ι, T0, R) where

1. B is an unambiguous advice TA with a single final state h0;
2. Q is a finite set of states together with a mapping ι : Q→ H

3. T0 is an axiom which is either a tree from T∆, or of the form T0 = p · q0(x1) where
p ∈ T∆(x1) with q0 ∈ Q and ι(q0) = h0;

4. R is the set of rules such that for every transition 〈h, f, h1 . . . hk〉 of B and every state
q ∈ Q with ι(q) = h, R contains one rule

q(f(x1 : h1, . . . , xk : hk))→ T (1)

where f ∈ Σk for some k ≥ 0, and T = p {xj 7→ qj(xj) | j ∈ J} where p ∈ T∆(XJ) for
some subset J ⊆ {1, . . . , k} and for all j ∈ J , qj ∈ Q with ι(qj) = hj (thus {xj 7→ . . . } is
our notation of substituting leaves labeled xj by the correspoding trees).

A uc-transducer is linear, if each input variable xi occurs at most once in the right-hand side
of every rule (we also say “DTA

lin transducer”).
We remark that we view the set Q of states of A as symbols of rank 1 distinct from all

symbols in ∆. Given an h-computation φ of B on some input tree t ∈ TΣ, the rule (in R) at
each node of t is uniquely determined by the state q ∈ Q (with ι(q) = h) at the root of t,
and the transitions chosen in φ. Assume that t = f(t1, . . . , tk), and φ = τ(φ1, . . . , φk) for
τ = 〈h, f, h1 . . . hk〉. A q-computation ψ of A on t with output s is given by ρ(σ1, . . . , σk)
provided the following holds:
1. ρ is a rule of the form (1);
2. if j ∈ J , then σj is a qj-computation for tj with some output sj and otherwise, σj = φj ;
3. s = T{xj 7→ sj | j ∈ J}.
If such a q-computation for t exists with output s, we write q : t→ s.

As for TAs, we not only require the notion of a q-computation of A for input trees t ∈ TΣ
with output s, but also the notion of a (q, h)-computation of A on a context t ∈ CΣ with
output s. Let φ denote a (ι(q), h)-computation of B. If t = x1, then x1 is a (q, h)-computation
for x1 with output s = q(x1) whenever ι(q) = h. Assume that t = f(t1, . . . , tk) and tj ∈ CΣ
is a context, and let φ = τ(φ1, . . . , φk) denote the corresponding (ι(q), h)-computation of B.
Assume that the rule ρ is of the form (1). Then ρ(ψ1, . . . , ψk) is a (q, h)-computation for t
with output s = p{xj 7→ sj | j ∈ J}, if the following holds:
1. If j′ 6∈ J , then ψj′ = φj′ ;
2. If j′ ∈ J \ {j}, then ψj′ is a qj-computation for tj′ with output sj′ ;
3. If j′ = j ∈ J , then ψj′ is a (qj , h)-computation for tj with output sj .
We remark that if s is non-ground, i.e., is not contained in T∆, then s = s′ · q′(x1) with
ι(q′) = h. If such a (q, h)-computation exists, we write (q, h) : t→ s.
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The translation of A is the partial mapping [[.]]A : TΣ → T∆ defined by [[t]]A = p0 if the
axiom of A is the ground tree p0 and t ∈ L(B), and [[t]]A = p0 · s if the axiom is of the form
p0 · q0(x1) and q0 : t→ s holds.

Let us briefly list instances of uc-transducers with advice that are of interest here.

Transducers with Look-ahead. If the advice automaton B is chosen as bottom-up de-
terministic, the transducer A is a uc-transducer with regular look-ahead (for short, a DTR

uc
transducer, or a DTR

uc). We remark that the single axiom does not impose a severe restriction.
Consider the generalization of a look-ahead automaton B with a non-singleton set F of
accepting states and, accordingly, equip A with one dedicated axiom Th for each accepting
state h ∈ F . Instead, we may introduce a fresh unary input symbol $ and define a new
look-ahead automaton B′ with a single fresh accepting state h0 and a transducer A′ with
a single axiom such that L(B′) = {$(t) | t ∈ L(B)} and [[$(t)]]A′ = s holds iff [[t]]A = s

holds. In order to achieve that, we add to the set of transitions of B, all transitions 〈h0, $, h〉,
h ∈ F , and likewise introduce a fresh axiom q0(x1) for A′ together with a fresh state q0 where
ι(q0) = h0 and the rules q0($(x1 : h))→ Th whenever h ∈ F and Th is the axiom of A for h.

Transducers with Inspection. If the advice automaton B is chosen as top-down determin-
istic, the transducer A can be considered as a uc-transducer with inspection automaton B
(for short, a DTI

uc transducer, or a DTI
uc). In this case, the state annotations hi in the rule

(1), can be dropped since these are obtained from ι(q) (q the current state of the transducer)
and the input symbol f . A deterministic bottom-up tree transducer in the classical sense,
e.g., as in [6] is obtained in our model as a DTA

uc transducer where Q = H and ι is the
identity. A classical deterministic top-down tree transducer with uniform copying, on the
other hand, is obtained as a DTI

uc transducer where the inspection does not restrict the
domain. This can be achieved, e.g., by setting H = Q ∪ {>} for a fresh symbol > and
ι(q) = q. Moreover, for each f ∈ Σk, 〈>, f,>k〉 ∈ δ as well as 〈q, f, q′1 . . . q′k〉 ∈ δ whenever
there is a rule q(f(x1, . . . , xk))→ T such that for each i = 1, . . . , k, q′i = qi if qi(xi) occurs
in T and q′i = > otherwise.

We remark that in the same way, deterministic linear top-down tree transducers with
look-ahead as well as deterministic linear bottom-up transducers and deterministic linear
top-down transducers with inspection are instances of linear DTA

uc transducers.

3 A Dedicated Earliest Normal Form for uc-Transducers with Advice

In this section we present the construction of earliest normal-forms for uc-transducers with
advice. We also indicate how a corresponding construction is obtained for linear transducers.
In the following, we fix some unambiguous TA B for advice. A construction of earliest
top-down transducers has already been provided in [8] for top-down deterministic domain
automata B and as well as in [4] for bottom-up deterministic B. Here, we are slightly more
liberal by allowing unambiguous B to generalize both cases. The constructions from [8, 4],
on the other hand, neither preserve linearity nor uniform-copying.

I Example 1. Consider a linear top-down transducer with the rules:

q0(g(x1)) → q1(x1) q0(a) → a

q1(f(x1, x2)) → f(q0(x1), q0(x2)) q0(b) → b

and the axiom q0(x1). The (canonical) earliest transducer constructed according to the
methods in [8] has the same axiom q0(x1), but the rules:
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q0(g(x1)) → f(q11(x1), q12(x1)) q0(a) → a

q11(f(x1, x2)) → q0(x1) q0(b) → b

q12(f(x1, x2)) → q0(x2)

where no inspection automaton is required. The non-linearity in the first rule arises inevitably,
because the output f -node is already determined at this point and therefore must be output
for the transducer to be earliest.

We introduce dedicated constructions which allow to construct equivalent canonical trans-
ducers, but retain linearity or uniform-copying. It turns out that these normal forms can be
obtained in polynomial time. Our key insight is that dedicated notions should be provided
for the notion of maximal common prefix of a given set S of trees. In [8], a pattern such as
p = a(x1, g(x1)) was used to represent the common part of trees in S (note that they do
not use the symbol x1, but the symbol > to denote “any tree”). This meant for an element
t ∈ S such as t = a(b, g(c)) that different occurrences of the symbol x1 in p could correspond
to not necessarily isomorphic subtrees of t, in the example, b and c, respectively. In that
point, we will now be more restrictive and only allow substitutions, i.e., equal replacements
of the occurrences of the single variable x1 in patterns. For a distinction, we call such
patterns uniform. Let us denote by P∆ the set T∆ ∪ T∆(x1) ∪ {⊥} of all ground trees and
unary patterns, extended with one specific element ⊥. This set forms a partial order where
for t1, t2 ∈ P∆, t1 v t2 iff t1 = ⊥ or t1 = t2{x1 7→ s} for some s ∈ T∆ ∪ T∆(x1). In fact,
P∆, partially ordered in this way, forms a complete lattice with finite ascending chains. In
particular, the top-most element is x1, and the binary least upper bound operation t for
incomparable elements t1, t2 6= ⊥, is given by t1 t t2 = s where s is the maximal prefix such
that s{x1 7→ t′i} = ti for suitable trees t′i (i = 1, 2).

We remark that uniform patterns may contain more than one occurrence of x1 – all
representing, though, isomorphic subtrees. Let P(1)

∆ ⊆ P∆ denote the subset T∆ ∪ C∆ ∪ {⊥}
of all elements which either equal ⊥ or contain at most one occurrence of x1. Patterns in
that set are also called 1-patterns. For the induced partial ordering on P(1)

∆ , we again obtain
a complete lattice with finite ascending chains only. For a distinction, let us denote the least
upper bound operation with respect to P(1)

∆ with t(1).

I Example 2. The difference between the two least upper bound operations becomes apparent
when considering trees which differ in more than one subtree:

f(g(a, a), c) t f(g(b, b), c) = f(g(x1, x1), c)
f(g(a, a), c) t(1) f(g(b, b), c) = f(x1, c).

On the other hand, f(g(a, a), c) t f(g(b, b), d) = f(g(a, a), c) t(1) f(g(b, b), d) = x1. We
remark that the earliest construction in [8] would return f(g(x1, x1), x1) in the latter case –
implying that the place holder x1 no longer represents isomorphic subtrees.

For q ∈ Q, let

prefA(q) =
⊔
{s ∈ T∆ | ∃t ∈ TΣ. q : t→ s} and pref(1)

A (q) =
⊔(1){s ∈ T∆ | ∃t ∈ TΣ. q : t→ s}

In the following, we show that prefA : Q → P∆ as the least solutions of the set CA of
constraints. The case of pref(1)

A is analogous. The set CA consists of one constraint c(ρ) for
each rule ρ of A. Assume that τ ≡ q(f(. . .))→ T of A where T = p{xj 7→ qj(xj) | j ∈ J}
for some p ∈ T∆(XJ) and suitable qj ∈ Q. Then the constraint c(τ) is given by

σ(q)] w [[T ]]]σ] (2)
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where the value [[T ]]]σ] returns ⊥ if for any state qj , j ∈ J , σ](qj) = ⊥. Otherwise, assume
that p′ is obtained from p and σ] by replacing qj(xj) with σ](qj) · xj where j ∈ J and
with σ](qj) whenever σ](qj) is ground. If p′ is ground, we set [[T ]]]σ] = p′. If p′ contains
occurrences of xj for a single j ∈ J , i.e., is of the form p′ = p′′ · xj for some p′′ ∈ T∆(x1),
then [[T ]]]σ] = p′′. Otherwise, i.e., if p′ contains occurrences of more than one variable,
then [[T ]]]σ] = u where u ∈ T∆(x1) is the maximal prefix such that p′ = u · p′′ for some p′′
containing all xj , i.e., u has maximal size with this property and thus is least with respect to
the ordering on patterns.

I Example 3. Let T = f(g(q2(x2), a), g(q2(x2), q1(x1)), and thus p = f(g(x2, a), g(x2, x1)).
Then for σ] = {q1 7→ a, q2 7→ h(x1)}, we have that p′ = f(g(h(x2), a), g(h(x2), a)), and thus,
[[T ]]]σ] = f(x1, x1) · g(x1, a) · h(x1) = f(g(h(x1), a), g(h(x1), a)).

We remark that each right-hand side of a constraint in CA represents a function which is
distributive in each argument, i.e., commutes with the binary operator t in each accessed
argument σ](qj). Recall that any distributive function is also monotonic. Since the partial
ordering on P∆ and likewise on P(1)

∆ are complete lattices with finite ascending chains, the
constraint system (2) as well as the respective system for linear transducers and 1-patterns,
has a least solution. We thus obtain:

I Lemma 4. Let prefA(q), q ∈ Q, denote the least solution of the set of constraints (2) over
the complete lattice P∆ (P(1)

∆ ). Then for every a ∈ Q,

prefA(q) =
⊔
{s | ∃t ∈ TΣ. q : t→ s} (3)

holds. Moreover, this least solution can be computed in polynomial time.

Proof. Recall that by our assumption, the advice automaton is trim. Therefore, according
to our construction, there is a q-computation for every state q ∈ Q, i.e., prefA(q) 6= ⊥ for
each q ∈ Q. The equality in equation (3) then is due to the fixpoint transfer lemma [1].
More explicitly, let X(i)

q denote the ith iterate of the fixpoint iteration for the constraint
system for i ≥ 0. By induction on i, it can be verified that X(i)

q equals the maximal common
prefix of all s such that q : t → s for trees t ∈ TΣ of depth less than i. Thereby, the
prefixes X(i+1)

q can be determined from the preixes X(i)
q in polynomial time. This is obvious

for linear transducers A. When A is uniform copying, and general uniform patterns are
used, polynomial time can be obtained when trees are represented as dags where isomorphic
subtrees are represented only once. Since the number of iterations required for reaching the
least fixpoint of the constraint system is bounded by the size of the transducer A, the overall
complexity statement follows. J

Now let A denote some uc-transducer (linear transducer) A with advice and a non-empty
set of states. In particular, the axiom of A contains an occurrence of some state q0 (with
ι(q0) = h0). We call A an earliest uc-transducer (linear transducer), if prefA(q) = x1
(pref(1)

A (q) = x1) for all states q of A. If this is not yet the case, we construct a transducer A′
of the same kind as A as follows where we only present the construction for uc transducers
(the linear case is analogous). The set Q′ of states of A′ is obtained from the set Q of states
of A by Q′ = {q ∈ Q | prefA(q) 6∈ T∆}. Assume that the axiom T0 of A equals T0 = p · q0(x1).
If prefA(q0) = s ∈ T∆, then the axiom T ′0 of A′ is given by T ′0 = p · s. Otherwise, the new
axiom T ′0 is given by T ′0 = p · prefA(q0) · q0(x1). Now assume that q ∈ Q′, and prefA(q) = u.
Then for each rule q(f(x1 : h1, . . . , xk : hk)) → p{xj 7→ qj(xj) | j ∈ J} of A, A′ has a rule
q(f(x1 : h1, . . . , xk : hk)→ T ′ where T ′ is defined as follows. For j ∈ J , let sj = prefA(qj) if
prefA(qj) ∈ T∆, and sj = uj · qj(xj) if prefA(qj) = uj ∈ T∆(x1). Then u must be a prefix of
p{xj 7→ sj | j ∈ J}, and we choose T ′ such that p{xj 7→ sj | j ∈ J} = u · T ′ holds.
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I Lemma 5. Assume that A is a DTA
uc and A′ the DTA

uc as constructed above. Then,
1. For each state q of A′ with u = prefA(q), it holds that

a. If q : t→ s holds for A, then q : t→ s′ holds for A′ for some s′ ∈ T∆ so that s = u · s′,
and vice versa,

b. If q : t→ s′ holds for A′, then q : t→ u · s′ holds for A.
c. A and A′ are equivalent where prefA′(q) = x1 holds for all states q of A′.

2. A′ can be constructed from A in polynomial time.

The analogous properties hold for DTA
lin transducers.

Due to this lemma, we obtain that for each uc-transducer (linear transducer) an equivalent
earliest transducer can be constructed in polynomial time. In fact that transducer can
further be minimized. For that, we define ≡ as the coarsest equivalence relation on states
such that q ≡ q′ implies that ι(q) = ι(q′), and for each input symbol f ∈ Σ there is a rule
q(f(x1 : h1, . . . , xk : hk)) → T iff there is a rule q′(f(x1 : h1, . . . , xk : hk)) → T ′ such that
T = p{xj 7→ qj(xj) | j ∈ J} and T ′ = p{xj 7→ q′j(xj) | xj ∈ XJ} for some common pattern
p ∈ T∆(XJ) and states qj , q′j ∈ Q such that for all j ∈ J , qj ≡ q′j holds.

I Lemma 6. Let A be an earliest uc-transducer ( linear transducer) and ≡ the equivalence
relation as defined above. Then the following holds:
1. q ≡ q′ iff for all [[q]]A = [[q′]]A;
2. ≡ can be constructed in polynomial time.
The proof of Lemma 6 follows closely the corresponding proof of Theorem 13 of [8]. Putting
Lemmas 5 and 6 together, we obtain:

I Theorem 7. For each DTA
uc (DTA

lin) transducer A, a unique canonical earliest DTA
uc (DTA

lin)
transducer A′ can be constructed such that (1) A′ has at most as many states as A, (2) A′ is
equivalent to A, and (3) A′ can be constructed in polynomial time.

4 How to Remove Look-ahead

In the following, we assume that we are given a deterministic top-down tree transducer A
with regular look-ahead. By Theorem 7, we may assume that A is earliest. Our goal is
to decide whether the translation of A can be realized by a deterministic top-down tree
transducer without look-ahead (but with inspection). A necessary condition for the latter
is that the domain of the given translation can be accepted by a top-down deterministic
automaton. By assumption, the domain of the translation of A is given by the set L(B) of
all trees accepted by B. If the translation can be realized by a uc-transducer with inspection
only, L(B) = L(B′) for some top-down deterministic automaton B′. One such B′ can be
obtained by means of the powerset construction. The set H ′ of states of B′ are subsets of
states of B where in particular, {h0} ∈ H ′ is the accepting state. Moreover, if S ⊆ H is a
state in H ′, then for every input symbol f ∈ Σk and every j ∈ {1, . . . , k},

Sj = {hj ∈ H | ∃h ∈ S, h1, . . . , hj−1, hj+1, . . . , hk ∈ H. 〈h, f, h1 . . . hk〉 ∈ δ} ∈ H ′

and 〈S, f, S1 . . . Sk〉 is in the transition relation of B′. As B is assumed to be trim, the
automaton B′ constructed in this way, is trim as well. Checking whether or not L(B) = L(B′)
is decidable. In fact, the two automata are equivalent iff for each transition 〈S, f, S1 . . . Sk〉
constructed for B′, and every tuple of states (h1, . . . , hk) ∈ S1× . . .×Sk there is some h ∈ S
such that 〈h, f, h1 . . . hk〉 is a transition of B.
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Let us thus assume that B and B′ are equivalent. The following construction is given for
uniform copying transducers (the construction for linear transducers is analogous). Let us
assume that the earliest DTR

uc transducer A is canonical and equivalent to a DTI
uc transducer.

As the case where the axiom T0 of A is ground, is trivial, we now assume that the axiom is
non-ground, i.e., T0 = s0 · q0(x1) with ι(q0) = h0. Then we construct a DTI

uc transducer A′ as
follows. The states of A′ are given by 〈ρ〉 for mappings ρ which assign to the states h in some
set S ∈ H ′, trees ρ(h) which are either in T∆ or of the form ρ(h) = s · q(x1) where s ∈ T∆(x1)
and q ∈ Q is a state of A with ι(q) = h. For that mapping ρ, we define ι′(〈ρ〉) = S. The
axiom of A′ is given by T ′0 = s0 · 〈{h0 7→ q0(x1)}〉.

Assume now that 〈ρ〉 is a state of A′ with domain S. Consider some input symbol f ∈ Σ
of rank k ≥ 0 where 〈S, f, S1 . . . Sk〉 is a transition of B′. Let p′ denote a pattern in T∆(XJ′)
for some J ′ ⊆ {1, . . . , k}. Let ρi, i = 1, . . . , k be mappings with domains Si such that for
h ∈ S and 〈h, f, h1 . . . hk〉 ∈ δ,
1. If ρ(h) ∈ T∆, then hj ∈ Sj for all j ∈ {1, . . . , k}, and ρ(h) = p′{xj 7→ ρj(hj) | j ∈ J ′};
2. If ρ(h) = s · q(x1), and A has a rule of the form (1), then J ⊆ J ′ and s · p = p′{xj 7→ uj |

j ∈ J ′} where uj = ρj(hj) if ρj(hj) is ground, and uj = ρj(hj) · xj otherwise.
3. For each j ∈ J ′, the mapping ρj is (up to states in Q) prefix-free, i.e., the longest common

prefix of ρj(h), h ∈ Sj , in T∆(x1) is x1.
If A is equivalent to some DTuc transducer, p′ and ρj with these properties must always exist,
and then are uniquely defined.

I Example 8. Assume that ρ = {h1 7→ f(a, g(c)), h2 7→ f(b, g(c)), h3 7→ f(a, b), h4 7→
f(b, b), h5 7→ c} and for the binary input symbol f , B has the transitions 〈h1, f, hahc〉, 〈h2, f ,
hbhc〉, 〈h3, f, hahb〉, 〈h4, f, hbhb〉 while there is no transition for f resulting in state h5. By
comparing the outputs for h1 and h2, we identify the subtrees a and b whose outputs
cannot be decided depending on the input symbol f alone, but require information about
the first child of f . Likewise, by comparing the outputs for h3 and h4, we identify the
corresponding subtrees g(a) and b whose outputs can be discriminated only depending on
the second child of f in the input. Accordingly, the pattern is given by p′ = f(x1, x2) where
ρ1 = {ha 7→ a, hb 7→ b} and ρ2 = {hc 7→ g(c), hb 7→ b}.

Example 8 illustrates the perhaps most complicated case, namely, when all outputs stored in
ρ are ground. Given that J ′, p′ and ρj , j ∈ J ′, with the given properties exist, we add to A′
the states 〈ρj〉, j ∈ J ′, together with the rule

〈ρ〉(f(x1 : S1, . . . , xk : Sk))→ p′{xj 7→ 〈ρj〉(xj) | j ∈ J ′}. (4)

The resulting transducer is a DTI
uc transducer A′ which is equivalent to A. Now assume

that the construction successfully terminates. The following two lemmas summarize the
properties of the resulting transducer A′.

I Lemma 9. Consider a state 〈ρ〉 of A′ for some mapping ρ with domain S, h ∈ S and
t ∈ TΣ with h : t.
1. If ρ(h) = u is ground, then 〈ρ〉 : t→ u;
2. If ρ(h) = u · q(x1) for some u ∈ T∆(x1), and q : t→ s, then 〈ρ〉 : t→ u · s.

I Lemma 10. Assume that t ∈ CΣ is a context where (S0, S) : t holds in B′ for S0 = {h0}.
1. S = {h ∈ H | ∃sh. (q0, h) : t → sh}, i.e., S is the set of all h such that there is a

(q0, h)-computation of A for t;
2. Assume that for each h ∈ S, (q0, h) : t → sh. Then (〈ρ0〉, S) : t → s for ρ0 = {h0 7→

q0(x1)} so that the following holds:
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If s is ground, then sh is ground for each h ∈ S, and s = sh holds for each h ∈ S;
If s = s′ · 〈ρ〉(x1), then ρ is a mapping with domain S, and for each h ∈ S,
ρ(h) is ground iff sh is ground where s′ · ρ(h) = sh.
If ρ(h) = uh · q(x1) for some uh, then s′ · uh · q(x1) = sh.

The proof of these two lemmas is by induction on the structure of t, following the definition
of A′. We conclude that, upon successful termination, A and A′ are equivalent. It thus
suffices to prove successful termination whenever A is equivalent to some DTuc transducer.

We introduce three properties. The DTR
uc transducer A is called synchronizing, if for every

input tree t0 ∈ CΣ, input symbol f ∈ Σ of rank k ≥ 0 and look-ahead states h′1, h′2 so that
(q0, hi) : t→ si · qi(x1) for i = 1, 2, the following holds. Let qi(f(x1 : hi,1, . . . , xk : hi,k))→ Ti
be rules of A according to (1) where both T1 and T2 are non-ground. Then one of the
following two cases occurs.
Case 1. There are patterns p1, p2 ∈ T∆(XJ ) which agree in their sets of occurring variables,
and factorizations Ti = pi{xj 7→ ui,j | j ∈ J} for i = 1, 2 such that

s1 · p1 = s2 · p2,
for each j ∈ J , each ui,j is either ground, or is of the form s′ · q′(xj) for suitable s′, q′.

Case 2. There is some j such that both T1 = s′1 · q′1(xj) and T2 = s′2 · q′2(xj) for suitable
s′1, s

′
2 ∈ T∆(x1) and states q′1, q′2 ∈ Q.

Secondly, the DTR
uc transducer A is called twinning, if the following holds for all states

q1, q2 and contexts t, t′ ∈ CΣ such that (q0, ι(qi)) : t→ si ·qi(x1) and (qi, ι(qi)) : t′ → s′i ·qi(x1).
Either s′1 = s′2 = x1,
or there are trees u, v ∈ T∆(x1) such that s1 = s2 · w, s′1 = v · w and s′2 = w · v or vice
versa, s2 = s1 · w, s′2 = v · w and s′1 = w · v for suitable w, v ∈ T∆(x1).

Finally, the DTR
uc transducer A is called erasing, if the following holds for all input trees

t, t′ ∈ CΣ and states h1, h2 ∈ H. Assume that (q0, hi) : t → si for i = 1, 2 where s1 is of
the form s′1 · q(x1) (thus, ι(q) = h1) and s2 is ground. Then (q, h1) : t′ → u · q(x1) for some
u ∈ T∆(x1) and (h2, h2) : t′ implies that u = x1.

The variation ||t1, t2|| of t1, t2 ∈ T∆(x1) is the minimal depth of u1, u2 such that ti =
t0 · ui, i = 1, 2 for a t0 ∈ T∆(x1). The DTR

uc transducer A has bounded variation if ∃K ≥ 0
such that for every t ∈ CΣ and h1, h2 ∈ H with (q0, hi) : t → si for i = 1, 2, ||s′1, s′2||≤ K

holds. – Assume that A is synchronizing, erasing and twinning. Then the outputs of any
two computations for the same input tree, cannot not differ much. Intuitively, the variation
is synchronized at branching rules, does not increase in monadic loops and may increase only
marginally once one of the outputs is ground. Let us define the size |A| of some DTA

uc A as
the sum of the sizes of all rules of A where the size of the rule (1) is k + 1 plus the number
on nodes in the right-hand side. Altogether, we prove:

I Lemma 11. Assume that the domain of A is top-down deterministic where the bottom-up
deterministic look-ahead automaton B has m ≥ 1 states.
1. If A is equivalent to some DTI

uc A
′, then A is synchronizing, erasing and twinning.

2. If the DTR
uc A is synchronizing, erasing and twinning, then A has bounded variation where

the bound is given by |A| · (|A|+m).

Proof. The proof that A then must be twinning follows along the same lines as for word
transducers. Here, we only consider synchronization. Assume that A is equivalent to some
DTI

uc A
′, and ({h0}, S) : t for some t ∈ CΣ and state S of B′. Then (q̄, S) : t→ s0 · q̄(x1) holds

for the initial state q̄0 of A′ and some state q̄ of A′ where ι(q̄0) = {h0} and ι(q̄) = S. Assume
that there is a transition q̄(f(. . .))→ T of A′. Consider any h ∈ S so that 〈h, f, h1 . . . hk〉 is
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a transition of B, and assume that (q0, h) : t0 → s · q(x1) for some s ∈ T∆(x1). Since A is
assumed to be earliest, we have that s0 · u0 = s for some u0 ∈ T∆(x1). Moreover, there is a
rule q(f(x1 : h1, . . . , xk : hk))→ T ′ of A for f . We consider three cases.

1. T is ground. Then T ′ is ground with s0 · T = s · T ′ = s0 · u0 · T ′. Consequently by
top-cancellation, T = u0 · T ′ holds.

2. T contains occurrences of a single variable xj only, i.e., is of the form p · q̄′(xj) for some
state q̄′ of A′. If T ′ is ground, then s0 · p · v = s · T ′ = s0 · u · T ′ for some v ∈ T∆, i.e.,
p · v = u0 · T ′. If T ′ in non-ground, it necessarily is of the form T ′ = p′ · q′(xj) where
(again by top-cancellation) p · u′ = u0 · p′ holds for some u′ ∈ T∆(x1).

3. T contains occurrences of variables xj1 6= xj2 . Let J denote the set of indices j so that
xj occurs in T . Then T = u0 · p{xj 7→ q̄j(xj) | j ∈ J} holds for some p ∈ T∆(XJ ) so that
T ′ = p{xj 7→ uj | j ∈ J} for some uj which are either ground or of the form sj · qj(xj)
with qj ∈ Q.

Now assume that we have (q0, hi) : t0 → si · qi(x1), and let (q̄0, S) : t→ s0 · q̄(x1) denote the
corresponding computation of the DTI

uc A
′. In particular, this means that h1, h2 ∈ S, and we

can apply the observations listed above. Let qi(fi(x1 : hi,1, . . . , xk : hi,k)→ Ti, i = 1, 2, be
rules of A for qi and f such that T1, T2 are both non-ground. Then there also must be a rule
q̄(f(. . .))→ T of A′ where T is not ground as well, i.e., the first of the three cases does not
apply. Now, assume that the monadic second case of the synchronization property also does
not apply. Then T contains at least two variables, and there are factorizations T = ui · pi
for i = 1, 2 so that Ti = piτi for substitutions of τi mapping each xj to some ground tree or
expression si,j · qi,j(xj) where si = s0 · ui. We conclude that

s1 · p1 = s0 · u1 · p1 = s0 · u2 · p2 = s2 · p2

holds. Finally, consider some j where h1,j = h2,j = h′ for some h′. Assume for a contradiction
that τ1(h′) 6= τ2(h′), and consider any input tree t′ so that h′ : t′. Since h1 6= h2 holds, some
j′ 6= j exists so that h1,j′ 6= h2,j′ holds. In particular, this means that the right-hand side
T of ρ for f contains an occurrence of q̄′(xj) for some state q̄′ of A′. Then q̄′ : t′ → s′ for
some ground tree s′. If τi(h) = vi · q′i(xj) for states q′i of A, then q′i : t′ → s′i with s′ = vi · s′i.
Now since A is earliest, it follows that v1 = v2 must hold while q′1 and q′2 are equivalent, as
their outputs coincide for each input. Since A is canonical, this further means that q′1 = q′2.
Likewise, if τ1(h′) = s′1 is ground, then necessarily τ2(h′) also must be ground and coincide.
Thus, the synchronization property follows.

It remains to prove the second assertion of lemma, namely, that every DTR
uc A which is

synchronizing, erasing and twinning, has a variation bounded by |A| · (|A| + m). Let B′
denote the top-down deterministic automaton accepting the domain of A, and assume for a
contradiction that t ∈ CΣ is a context with a minimal number of nodes violating the claim
of the lemma. Let S denote the state of B′ such that ({h0}, S) : t holds. For h1, h2 ∈ S,
assume that (hf , hν) : t → sν , ν = 1, 2, holds for A. Assume that t = t1 · . . . · tm where
ti = fi(ui,1, . . . , ui,ji−1, x1, ui,ji+1, . . . , ui,ki) for some some 1 ≤ ji ≤ ki, some fi ∈ Σki and
ground trees ui,j′ , j′ 6= ji. Let hi,0, . . . , hi,m states of B so that (hi−1, hi) : ti holds for
i = 1, . . . ,m. Clearly, if m = 0, s1 = s2 = x1 and the assertion holds. First, we consider the
case that there is a maximal m′ ≤ m where (q0, h

′
m) : t1 . . . tm′−1 → s′i · qi(x0) holds such

that (qi, hi,m′) : piτi for some p1, p2 ∈ T∆(XJ) and substitutions τi, where
s′1 · p1 = s′2 · p2;
τ1(xj′) = τ2(xj) ∈ T∆ for j′ 6= jm′ ;
τi(xjm′ ) is of the form v′i · q′i(x1) where v′i · q′i(xjm′ ) is a subtree of some right-hand side
of A.
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If m′ = m, then obviously, the claim of the lemma holds. Therefore, either there is no such
m′ or m′ < m. Assume that u is obtained from p1 by substituting xj with τ1(xj) for all
j 6= jm′ . Thus, s′ = s′1 · u is a common prefix of s1 and s2. In case that the properties above
are never satisfied, we set m′ = 0, s′ = x1, and let v′i · q′i(x1) equal qi(x1).

Assume that m′′ ≥ m′ is chosen maximal so that (q′i, hi,m′′) : tm′+1 . . . tm′′ → s′′i · q′′i (xi),
i.e., both outputs are non-ground. The variation for the context t1 · . . . · tm′′ then is given by
||v′1 ·s′′1 ·q′′1 (x1), v′2 ·s′′2 ·q′′2 (x1)||. We claim that this variation is bounded by |A|2. Assume for a
contradiction that this were not the case. Then due to the synchronization property and the
choice of m′, this implies that m′′−m′ > n2 where n is the number of states of A. Therefore,
at least one pair of states occurs at least twice. But then, due to the twinning property, the
same variation is attained with a smaller context – contradicting the minimality of t.

To continue with our argument, we conclude that m′′ must be less than m. By the
definition of m′′ this means that one of the right-hand sides chosen for q′′i and fm′′+1 must
be ground. W.l.o.g., assume that this is the right-hand side T1 for q′′1 . But then due to the
erasing property, the depth of the output for tm′′+1 · . . . · tm is bounded by |A| ·m. Altogether
therefore, the variation is bounded by |A|2 + |A| ·m = |A| · (|A|+m) – in contradiction to
our assumption. This concludes the proof. J

In summary, we obtain:

I Theorem 12. Let A be a DTR
uc. It is decidable whether or not the translation of A can be

realized by a DTI
uc, and if so an equivalent DTI

uc A
′ can be constructed.

A corresponding theorem also holds for DTR
lin transducers.

5 How to Inspect Top-Down Deterministic Languages

Now consider a DTI
uc A with underlying top-down deterministic automaton B which is

assumed to be canonical earliest. For the following, we denote the unique state h of B
with domB(h) = TΣ (given that there is such a state), by >. The DTI

uc (DTI
lin) A is without

inspection (denoted by DTuc and DTlin) if for every rule q(f(x1 : h1, . . . , xk : hk)→ T of A,
hj = > whenever xj does not occur in T . When B does not have a state >, then A is without
inspection only if the right-hand side of every rule of A contains all variables xj occurring in
its left-hand side, i.e., A is non-deleting. Note that a DTuc can easily be changed in such a
way that no advice automaton is present at all (and still the same translation is realized).

Consider a fixed output tree s ∈ T∆. A language L ⊆ TΣ is called DTuc (DTlin) output
recognizable by s iff there is a DTuc (DTlin) A such that [[t]]A is defined iff t ∈ L, where [[t]]A = s

for all t ∈ L. It turns out that a language is output recognizable via some DTuc iff it is output
recognizable via some DTlin. Hence, we drop the qualification. The language L is called
output recognizable (without further mentioning of an output tree) if L is out recognizable by
some s ∈ T∆. Assume that the language L is accepted by the trim top-down deterministic
TA B. Then it can be decided in polynomial time whether or not L is output recognizable,
and if so, whether or not L is output recognizable by a particular given tree s.

I Lemma 13. L(B) is output recognizable iff for every strongly connected component H ′ of
the transition relation of B, every transition 〈h′, f, h1 . . . hk〉 of B, and i with h′, hi ∈ H ′, it
holds that hj = > for all j 6= i.

Let s denote any output tree in T∆ and h a state of B. Then domB(h) is output recognizable
by s if for every transition 〈h, f, h1 . . . hk〉 with subsequence hi1 . . . hir of states different from
>, there is a pattern s′ ∈ T∆(Xr) such that s = s′{xj 7→ sj | j = 1, . . . , r} and domB(hij ) is
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output recognizable by sj for all j = 1, . . . , r. In case that h and one of the hj are contained
in the same strongly connected component of B, then r must equal 1. Accordingly, then
s′ can be chosen as x1. We further remark that the pattern s′ can be chosen to be linear,
i.e., each variable xj occurs exactly once. The constructed transducer thus is in fact, a DTlin.
Finally we note that the set of all states h such that domB(h) is output recognizable by s,
can be determined by a TA running over s.

I Theorem 14. For a given state h of a top-down deterministic TA B,
1. it can be decided in polynomial time whether or not domB(h) is output recognizable;
2. it can be decided in polynomial time whether or not domB(h) is output recognizable by

a particular tree s and if so, a DTlin AB,h,s without inspection can be constructed in
polynomial time with domain domB(h) such that [[t]]AB,h,s

= s for all t ∈ domB(h).

6 How to Satisfy Inspection Needs

In the following, we consider an arbitrary DTI
uc transducer A with underlying top-down

deterministic TA B as inspection automaton. Consider a rule τ of the form q(f(x1 :
h1, . . . , xk : hk)) → T of A. For every xi not occurring in T , it must be verified that the
corresponding subtree of the input is contained in domB(hi). This verification is trivial if
domB(hi) = TΣ. Such a state hi (if present) has been denoted by >. Accordingly, let Jτ
denote the set of indices j such that xj does not occur in the right-hand side of T while at
the same time, hj 6= >. Let us thus call the multiset ητ = {hj | j ∈ Jτ} the inspection need
of the rule τ . Assume that T has disjoint ground subtrees sj , j ∈ Jτ , such that domB(hj) is
output recognizable by sj for j ∈ Jτ . Then the rule τ can equivalently be replaced by a rule
without inspection need. In this case, we say that τ satisfies its inspection need.

I Example 15. Consider the rule q(f(x1 : h1, x2 : h2))→ g(x1, r(b)) where domB(h2) equals
the set L = {g(a, t) | t ∈ TΣ}. Then Jτ = {2} where the language L is output realizable with
respect to r(b). The latter can be seen by means of the rules q1(g(x1, x2))→ r(q2(x1)) and
q2(a)→ b. Accordingly, the given rule for q and f satisfies its inspection need.

Our goal is to construct for a given DTI
uc transducer A an equivalent DTuc transducer A′ such

that each rule of A′ satisfies its inspection need. If each rule of A satisfies its inspection need,
this need no longer be the case for the earliest transducer equivalent to A. The reason is that
some ground subtrees of prefixes of right-hand sides may have been moved to the right-hand
sides of other rules. Satisfying inspection needs of rules therefore requires to partly revert
the earliest transformation. In the following, we call a state q of the DTI

uc A constant, if there
is a single output tree s such that s = s′ whenever q : t→ s′ holds.

I Lemma 16. For a partial mapping µ : TΣ → T∆, the following are equivalent: (1) µ is
realized by a DTuc without inspection; (2) µ is realized by a DTI

uc without constant states, but
where all inspection needs are satisfied.

Assume that A′ is a DTuc and A the corresponding DTI
uc in canonical earliest normal form.

This means that for each state q of A and each state q′ ∈ q of A′ with prefA′(q′) = p,
q′ : t→ s′ holds for A′ iff q : t→ s with s′ = p · s holds. In particular, the constant outputs
for some states of A′ may occur as subtrees in p and thus are already produced before A
processes t. In order to recover the (yet unknown) DTuc A′ without inspection from A, we
determine the minimal suffix p′ of p so that all inspections possibly encountered when q

processes its input, can be satisfied. Such a generalized inspection need of a q-computation
is represented by a sequence (M1, ∅) . . . (Mr−1, ∅)(Mr, φ), r ≥ 0, where M1, . . . ,Mr are
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multisets of inspection states and φ is a downward-closed subset of sub-multisets of Mr

with Mr 6∈ ψ. Intuitively, a generalized inspection need is the sequence of future inspections
yet to be simulated. The pair (Mr, φ) to the right is meant to occur farest in the future.
Thereby, the set φ describes which sub-multisets of individual inspections of Mr can already
be accomplished (the available ground terms might be used in more than one way). If
Mr ∈ φ, then all languages domB(h), h ∈Mr, are simultaneously realizable – implying that
the whole pair (Mr, φ) can be dropped.

For a finite multiset G of trees in T∆ and a finite multisetM of states inH, define 〈〈G,M〉〉
as the set of all sub-multisets M ′ of M so that the multiset of languages {domB(h) | h ∈M ′}
are simultaneously output recognizable by means of disjoint subtrees of trees in G.

Now assume that p ∈ T∆(x1) where p = s1 · . . . · sm where each of the sj ∈ T∆(x1) is
irreducible, i.e., cannot be written as a product of patterns different from x1. For p, we
define the auxiliary transformation [[p]]]] as the composition [[s1]]]] ◦ . . . ◦ [[sm]]]] where for an
irreducible pattern s ∈ T∆(x1), the transformation is defined as follows. First, [[s]]]]ε = ε. For
α = α′ (M,φ), the pattern s can only be used to satisfy the inspection need of the last pair
in α. Let G denote the set of maximal distinct ground subtrees of s. Let φ′ denote the set of
multisets of inspection needs which become satisfiable when the ground terms from G are
additionally available, i.e., φ′ = {R1 ∪R2 | R1 ∈ φ,R2 ∈ 〈〈G,M \R1〉〉}. Then [[s]]]]α = α′ if
M ∈ φ′ and [[s]]]]α = α′ (M,φ′) otherwise. Let I the set of all possible generalized inspection
needs. Let us introduce some notation. For a particular state q and input tree t, let us define
the inspection need ηq(t) of q for t as follows. Assume that t = f(t1, . . . , tk) and τ is the rule
of A of the form q(f(x1 : h1, . . . , xk : hk))→ p{xj 7→ qj(xj) | j ∈ J} such that p ∈ T∆(XJ)
holds with hi : ti for i = 1, . . . , k. For the rule τ , we define the transformation

[[τ ]]] : (XJ → I)→ I such that ηq(t) = [[τ ]]]{xj 7→ ηqj
(tj) | j ∈ J} holds.

The transformation [[τ ]]] is defined by case distinction. If J = ∅, i.e., p is ground, we check in
how far p itself is sufficient for ητ to be output realizable. Let φ = 〈〈{p}, ητ 〉〉. Then

[[τ ]]]∅ =
{
ε if ητ ∈ φ
(ητ , φ) otherwise

[[τ ]]]{xj 7→ α} = [[p]]]]((ητ , ∅)α)

Finally, assume that J contains more than one index. Let p = p′{xj 7→ pj · xj | j ∈ J} for
maximal patterns pj ∈ T∆(x1). For αj , j ∈ J , assume that pj = p′j · uj for some minimal
suffix uj ∈ T∆(x1) with [[uj ]]]]αj = ε. These suffixes must exist, whenever A is equivalent to
some DTuc without inspection. Let G denote the set of distinct maximal ground subtrees of
p′{xj 7→ p′j · xj | j ∈ J}, and φ = 〈〈G, ητ 〉〉. Then we define

[[τ ]]]{xj 7→ αj | xj ∈ XJ} =
{
ε if ητ ∈ φ
(ητ , φ) otherwise

We have:

I Lemma 17. Assume that A is the canonical earliest normal form of some DTuc A
′ without

inspection. Let q denote some state of A, i.e., an equivalence class of states of A′. Let q′ ∈ q
be state of A′, let p = prefA′(q′) the maximal common prefix of outputs of A′ for q′, and
t ∈ domB(ι(q)). Then (1) ηq(t) is defined and (2) [[p]]]](ηq(t)) = ε.

The proof is by induction on the structure of t where we use that for q′ : t→ s′ and q : t→ s

we have that s′ = p · s for p = prefA′(q′).
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By computing ηq(t), we partly recover information on the (unknown) common prefix p of
the (yet to be constructed) DTuc A′ for q′. By computing the set of all these inspection needs
for q, we determine the maximal requirement on a suffix of output already produced by A
when reaching q, whose delay then is sufficient to satisfy all possible future inspection needs.
Therefore, let S[q] = {ηq(t) | t ∈ domB(ι(q)}. In order to calculate this set, we construct a
constraint system CI with unknowns Xq, where q is state of A. The system consists of one
constraint per rule of A. Assume that τ is the rule q(f(. . .))→ p{xj 7→ qj(xj) | j ∈ J} where
p ∈ T∆(XJ ) and qj , j ∈ J are states of A. Then the constraint system CI has the constraint

Xq ⊇ {[[τ ]]]{xj 7→ αj | j ∈ J} | ∀j ∈ J. αj ∈ Xqj
}

The given constraint system is over subsets of I where all right-hand sides are monotonic
w.r.t. subset inclusion. Therefore, it has a least solution. Moreover, we have:

I Lemma 18. Assume that A is a canonical DTI
uc transducer which is equivalent to some

DTuc A
′ without inspection. Let Xq, q a state of A, denote the least solution of the system of

constraints CI . Then for each state q of A: (1) Xq = S[q] and (2) the length of each α ∈ S[q]
is bounded by |A|.

Proof. In order to verify the first statement, we prove by induction that the ith iterate X(i)
q

of the constraint system exactly equals the set of all ηq(t) for trees t of depth less than i.
For a proof of the second statement, we note that each α ∈ S[q] is the inspection need of
some execution starting in q which must be accomplished by every pattern available at q.
More precisely, for every state q of A there is a context t ∈ CΣ such that (q0, h) : t→ u · q(x1)
holds where ι(q) = h. Here, we rely on the minimality of A, implying that each state q can
be reached in this way. Let T ′0 · q0(x1) denote the axiom of A. Then t can be chosen in such
a way that T0 · u consists of at most |A| factors. Since at least one factor of the pattern is
required to realize the inspection at one rule, the upper bound to the lengthes of inspection
needs α ∈ S[q] follows. J

As a consequence, the sets S[q], q a state of A, are effectively computable.
For a finite set S ⊆ I, let tS denote the minimal suffix v of t such that [[v]]]]α = ε for

all α ∈ S. The states of the new DTuc A′ are pairs 〈q, s〉, q a state of A and s ∈ T∆(x1)
an output pattern for A, which will also be called the buffer. Assume that we are given
for each state q of A, the (finite) set S[q] of inspection needs which are to be satisfied by
q-computations. Assume that T ′0 = u · v where v = (T ′0)S[q0]. Then the axiom of A′ is given
by u · 〈q0, v〉(x1). Assume that state 〈q, u〉 of A′ has already been constructed, and τ is a
rule of A of the form q(f(. . .))→ p{xj 7→ qj(xj) | j ∈ J} where p ∈ T∆(XJ).

If J = ∅, A′ has a rule 〈q, u〉(f(. . .))→ u · p. In case that ητ 6= ε, u · p must be sufficient
to satisfy the inspection needs incurred by the rule τ , i.e., 〈〈{u · t}, ητ 〉〉 must contain ητ .

Next assume that J = {j}, i.e., p = p′ · xj . Then [[u · p′]]]]((ητ , ∅)α) = ε must hold for all
α ∈ S[qj ]. Therefore, there is a factorization such that u · p′ = u′ · v where v = (u · p′)S[qj ];
we add the rule 〈q, u〉(f(. . .)) → u′ · 〈q′, v〉(xi) to A′. Finally, assume that J contains at
least two elements. Then p is of the form p = p′{xj 7→ pj · xj | j ∈ J} for p′ ∈ T∆(XJ) and
maximal patterns pj ∈ T∆(x1). For each j ∈ J , there must be a factorization pj = uj · vj
where vj = (pj)S[qj ]. Moreover, the subset G of ground subtrees of u, p′ and uj , j ∈ J , must
be sufficient to satisfy the inspection need of τ itself, i.e., 〈〈G, ητ 〉〉 contains ητ . Then add the
rule 〈q, u〉(f(. . .))→ u · p′{xj 7→ uj · 〈qj , vj〉(xj) | j ∈ J} to A′. Correctness and termination
of the construction follows from the following lemma.
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I Lemma 19. Assume that A is the canonical earliest DTI
uc for a DTuc A

′′ without inspection.
Then the construction in Section 6 terminates with some A′ so that the following properties
are satisfied:
1. A is equivalent to A′;
2. Each inspection need ητ of A′ is satisfiable;
3. For each constructed state 〈q, u〉 of A′, u ∈ T∆(x1) has length at most |A|2 · (a− 1) if a

is the maximal rank of an input symbol.

Proof. Assume that A is equivalent to some A′′ without inspection, i.e., is the canonical
earliest normal form of A′′. This means that for states q1, q2 of A, t1 ∈ CΣ and t2 ∈ TΣ
with (q1, ι(q2)) : t1 → s1 · q2(x1), and q2 : t2 → s2 and all states q′1, q′2 of A′′ so that q′i ∈ qi,
(q′1, ι(q′2)) : t→ s′1 · q′2(x1) and q′2 : t→ s′2, for some s′1, s′2, it holds that v1 · s1 = s′1 · v2 and
v2 · s2 = s′2 for vi = prefA′(q′i).

Consider a pair 〈q, u〉 returned by the construction and let q′ ∈ q denote a state of A′′
contained in q with vq′ = prefA′′(q′). Then u is a suffix of vq′ . Consequently, the set of all
constructed states 〈q, u〉 is finite, and all pre-conditions at the construction of rules are met.
This means that all inspection needs of the resulting transducer are satisfiable. Moreover, we
have that q : t→ s holds for A iff 〈q, u〉 : t→ s′ holds for A′ where u · s = s′ – implying that
A and A′ are equivalent.

It remains to prove item (3), i.e., to provide an upper bound for the lengthes of the
patterns u occurring in the construction as second components of states 〈q, u〉 – not in terms
of the transducer A′′, but in terms of the transducer A, which serves as the input to the
construction. According to thr construction, we know that u is a minimal pattern to satisfy
all generalized inspection needs in S[q].

First, assume that (q, ι(q)) : t→ s · q(x1) holds for A some context t ∈ CΣ so that only
rules τ are applied whose right-hand sides have occurrences of single variables only. In that
case, t = t1 · . . . · tm for irreducible contexts ti ∈ CΣ where each computation for ti consists in
the application of a single rule τi. Case 1 : s = x1. Then ητi

must be ∅ for all i = 1, . . . ,m.
Case 2 : s 6= x1. Then u · s = u1 · v so that all inspections to be satisfied by the τi together
can be satisfied by u1 while v is sufficient to satisfy all generalized inspection needs in S[q].
Accordingly, [[s|A|·(a−1)]]]]α = ε for each α ∈ S[q]. Therefore, s (independently of u) is at
least able to satisfy each (M,φ) occurring inside some α ∈ S[q].

Now assume for a contradiction, that a state 〈q, u〉 is constructed where u is of length
exceeding |A|2 ·(a−1). Then there is a minimal context t ∈ CΣ of the form t = t′ ·t1 · . . . ·tN ·t′′
for N = |A|2 · (a− 1) + 1 such that (q1, ι(q′)) : t′ → s′ · q′(x1), (q′, ι(q′)) : ti → si · q′(x1) for
i = 1, . . . , N with si 6= x1, and (q′, ι(q)) : t′ → s′′ · q(x1) so that for some v0 ∈ T∆(x1), one of
the following two conditions holds:

The axiom of A is of the form s0 · v1 · q1(x1); or
there is a right-hand side of a rule of A which is of the form p{xj 7→ v′j · q′j(xj) | j ∈ J}
for some J of cardinality exceeding 1, where v1 = v′j′ and q1 = q′j′ for some j′ ∈ J .

By construction, all inspection needs along the way, are satisfied by v1 · s′. According to
our observation above, though, u must be a suffix of s2 · . . . · sN · s′′ – contradicting the
minimality of the context t. We conclude that the maximal length of the buffer is bounded
by |A|2 · (a− 1). J

In summary, we have shown:

I Theorem 20. (1) For a DTI
uc (DTI

lin) A it is decidable if is equivalent to a DTuc (DTlin) A′,
and if so, such A′ can be constructed. (2) For a DTR

uc (DTR
lin) A is decidable if A is equivalent

to a DTuc (DTlin) A′, and if so, such A′ can be constructed.
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In Section 2 we have seen that a bottom-up deterministic transducer (DB) can be seen as a
particularly simple DTR

uc transducer. Accordingly, we obtain as a corollary:

I Corollary 21. Let A be a (linear) DB. It is decidable if an equivalent DTI
uc (DTI

lin) or an
equivalent DTuc (DTlin) exists, and if so, such a transducer can be constructed.

7 Conclusion

We showed for two natural subclasses of deterministic top-down tree transducers how to
remove (bottom-up deterministic) look-ahead and replace it whenever possible, with (top-
down deterministic) inspection. We then also showed for the given classes how to remove
inspection (if possible). The constructions are technically intricate, but crucially rely on
canonical earliest normal forms for the transducers in question. As a corollary we obtain
that for a given deterministic bottom-up transducer it is decidable whether or not it can be
realized by a deterministic top-down tree transducer that is either uc or linear.

One may wonder if our results imply that for a given deterministic bottom-up tree
transducer U it is decidable whether or not it can be realized by an arbitrary deterministic
top-down tree transducer. I.e., if U can be realized by top-down transducer can be realized
by a uc such transducer? Interestingly, this is not the case: let ha, hb be look-ahead states
that indicate that the left-most leaf of the input tree is labeled a and b, respectively and
consider a transducer which has these rules (for every h ∈ {ha, hb}):

q0(f(x1 : ha, x2 : h))→ g(a, b, qid(x2)) q0(f(x1 : hb, x2 : h))→ g(c, d, qid(x2))

The corresponding translation can be realized by a deterministic top-down tree transducer!
However, the transducer is not uc (viz. the output leaves a and b must be produced by
different states, but both on the input variable x1).
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Abstract
We give a characterization of star-free languages in a λ-calculus with support for non-commutative
affine types (in the sense of linear logic), via the algebraic characterization of the former using
aperiodic monoids. When the type system is made commutative, we show that we get regular
languages instead. A key ingredient in our approach – that it shares with higher-order model
checking – is the use of Church encodings for inputs and outputs. Our result is, to our knowledge,
the first use of non-commutativity in implicit computational complexity.
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1 Introduction

A type-theoretic implicit automata theory. This paper explores connections between the
languages recognized by automata and those definable in certain typed λ-calculi (minimalistic
functional programming languages). It is intended to be the first in a series, whose next
installments will investigate the functions computable by transducers (automata with output,
see e.g. [15, 36]). Insofar as programming language theory is related to proof theory, via the
Curry–Howard correspondence, we are therefore trying to bridge logic and automata. That
said, our work does not fit in the “logics as specification languages” paradigm, exemplified
by the equivalence of recognition by finite-state automata and Monadic Second-Order Logic
(MSO). One could sum up the difference by analogy with the two main approaches to machine-
free complexity: implicit computational complexity (ICC) and descriptive complexity.
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Both aim to characterize complexity classes without reference to a machine model, but the
methods of ICC have a more computational flavor.

programming paradigm declarative functional
complexity classes Descriptive Complexity Implicit Computational Complexity
automata theory subsystems of MSO this paper (and planned sequels)

To our knowledge, very few works have looked at this kind of “type-theoretic” or “proof-
theoretic” ICC for automata. Let us mention a few recent papers (that we will discuss
further in §7) concerning transducers [13, 10] and multi-head automata [46, 28] and, most
importantly, a remarkable result from 1996 that provides our starting point:

I Theorem 1.1 (Hillebrand & Kanellakis [24, Theorem 3.4]). A language L ⊆ Σ∗ can be
defined in the simply typed λ-calculus by some closed λ-term of type StrΣ[A]→ Bool for
some type A (that may depend on L) if and only if it is a regular language.

Let us explain this statement. We consider a grammar of simple types with a single base
type: A,B ::= o | A→ B, and use the Church encodings of booleans and strings:

Bool = o→ o→ o StrΣ = (o→ o)→ . . .→ (o→ o)→ o→ o

with |Σ| arguments of type (o→ o), where Σ is a finite alphabet. Moreover, given any other
chosen type A, one can form the type StrΣ[A] by substituting A for the ground type o:

I Notation 1.2. For types A and B, we denote by B[A] the substitution B{o := A} of every
occurrence of o in B by A.

Every closed λ-term t of type StrΣ can also be seen as a term of type StrΣ[A]. (This is a
way to simulate a modicum of parametric polymorphism in a monomorphic type system.)
It follows that any closed λ-term of type StrΓ[A] → Bool in the simply typed λ-calculus
defines a predicate on strings, i.e. a language L ⊆ Σ∗.

Although little-known1, Hillebrand and Kanellakis’s theorem should not be surprising
in retrospect: there are strong connections between Church encodings and automata (see
e.g. [45, 48, 34]), that have been exploited in particular in higher-order model checking for
the past 15 years [2, 38, 25, 21, 23, 49]. This is not a mere contrivance: these encodings have
been a canonical data representation for λ-calculi for much longer2.

Star-free languages. We would like to extend this result by characterizing strict subclasses
of regular languages, the most famous being the star-free languages. Recall that the canonicity
of the class of regular languages is firmly established by its various definitions: regular
expressions, finite automata, definability in MSO and the algebraic characterization.

I Theorem 1.3 (cf. [44, §II.2.]). A language L ⊆ Σ∗ is regular if and only if for some finite
monoid M , some subset P ⊆M and some monoid morphism ϕ ∈ Hom(Σ∗,M), L = ϕ−1(P ).

Similarly, the seminal work of Schützenberger, Petrone, McNaughton and Papert in the
1960s (see [47] for a historical discussion) has led to many equivalent definitions for star-free
languages, with the algebraic notion of aperiodicity playing a key role:

1 See e.g. Damiano Mazza’s answer to this MathOverflow question: https://mathoverflow.net/q/296879
2 They were introduced for booleans and integers by Church in the 1930s, and later generalized by Böhm

and Berarducci [12], see also http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html.
(Similar ideas appear around the same time in [31].) As for the refined encodings with linear types that
we use later, they already appear in Girard’s founding paper on linear logic [17, §5.3.3].

https://mathoverflow.net/q/296879
http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
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IDefinition 1.4. A monoidM is aperiodic when any sequence of iterated powers is eventually
constant, i.e. for any x ∈M there exists an exponent n ∈ N such that xn = xn+1.

I Theorem 1.5 (cf. [47]). For a language L ⊆ Σ∗, the following conditions are equivalent:
L is defined by some star-free regular expression: E,E′ ::= ∅ | {a} | E ∪ E′ | E · E′ | Ec
where a can be any letter in Σ and Ec denotes the complement of E (JEcK = Σ∗ \ JEK);
L = ϕ−1(P ) for some finite and aperiodic monoid M , some subset P ⊆ M and some
monoid morphism ϕ ∈ Hom(Σ∗,M);
L is recognized by a deterministic finite automaton whose transition monoid is aperiodic;
L is definable in first-order logic.

Attempting to capture star-free languages in a λ-calculus presents a serious methodological
challenge: they form a strict subclass of uniform AC0, and, as far as we know, type-theoretic
ICC has never managed before to characterize complexity classes as small as this.

Non-commutative affine types. Monoids appear in typed λ-calculi when one looks at the
functions from a type A to itself, i.e. at the (closed) terms of type A→ A. At first glance, it
seems difficult indeed to enforce the aperiodicity of such monoids via a type system. For
instance, one needs to rule out not = λb. λx. λy. b y x : Bool → Bool since it “has period
two”: its iteration yields the sequence (modulo βη-conversion) not, id, not, id, . . . (where
id = λb. b) which is not eventually constant. Observe that not essentially exchanges the two
arguments of b; to exclude it, we are therefore led to require functions to use their arguments
in the same order that they are given in.

It is well-known that in order to make such a non-commutative λ-calculus work – in
particular to ensure that non-commutative λ-terms are closed under β-reduction – one
needs to make the type system affine, that is, to restrict the duplication of data. This is
achieved by considering a type system based on Girard’s linear3 logic [17], a system whose
“resource-sensitive” nature has been previously exploited in ICC [20, 19]. Not coincidentally,
the theme of non-commutativity first appeared in a form of linear logic ante litteram, namely
the Lambek calculus [29], and resurfaced shortly after the official birth of linear logic: it is
already mentioned by Girard in a 1987 colloquium [18].

We shall therefore introduce and use a variant of Polakow and Pfenning’s Intuitionistic
Non-Commutative Linear Logic [39, 40], making a distinction between two kinds of function
arrows: A ( B and A → B are, respectively, the types of affine functions and non-affine
functions from A to B. Accordingly:

I Definition 1.6. A type is said to be purely affine if it does not contain the “→” connective.

In our system that we call the λ℘-calculus, the types of Church encodings become

Bool = o( o( o StrΣ = (o( o)→ . . .→ (o( o)→ (o( o)

where StrΣ has |Σ| arguments4 of type (o ( o). Setting true = λ◦x. λ◦y. x : Bool and
false = λ◦x. λ◦y. y : Bool for the rest of the paper, we can now state our main result:

I Theorem 1.7. A language L ⊆ Σ∗ is star-free if and only if it can be defined by a closed
λ℘-term of type StrΣ[A] ( Bool for some purely affine type A (that may depend on L).

3 The main difference between so-called linear and affine type systems is that the latter allow weakening,
that is, to not use some argument. Typically, λx. λy. x is affine but not linear while λx. x x is neither
linear nor affine. The type system that we use in this paper is affine, not strictly linear.

4 o( o occurs |Σ|+ 1 times in StrΣ: |Σ| arguments plus the output.
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135:4 Aperiodicity in a Non-Commutative Logic

However, if we use the commutative variant of the λ℘-calculus instead, then what we get is
the class of regular languages (Theorem 5.1), just as in Hillebrand and Kanellakis’s theorem.

As far as we know, non-commutative type systems have never been applied to implicit
complexity before (but they have been used to control the expressivity of a domain-specific
programming language [26]). Previous works indeed tend to see non-commutative λ-terms (or
proof nets) as static objects, and to focus on their topological aspects (e.g. [6, 51, 35]), though
there is another tradition relating self-dual non-commutativity to process algebras5 [41, 22].

Proof strategy. As usual in implicit computational complexity, the proof of Theorem 1.7
consists of a soundness part – “every λ℘-definable language is star-free” – and an extensional
completeness part – the converse implication. In our case, soundness is a corollary of the
following property of the purely affine fragment of the λ℘-calculus – what one might call the
planar6 affine λ-calculus (cf. [1, 51]):

I Theorem 1.8 (proved in §3). For any purely affine type A, the set of closed λ℘-terms
of type A ( A, quotiented by βη-convertibility and endowed with function composition
(f ◦ g = λ◦x. f (g x)), is a finite and aperiodic monoid.

Extensional completeness turns out here to be somewhat deeper than the “programming
exercise of limited theoretical interest” [33, p. 137] that one generally finds in ICC. Indeed, we
have only managed to encode star-free languages in the λ℘-calculus by relying on a powerful
tool from semigroup theory: the Krohn–Rhodes decomposition [27].

Plan of the paper. After having defined the λ℘-calculus in §2, we prove Theorem 1.7:
soundness is treated in §3 and extensional completeness in §4. Then we discuss the analogous
results for the commutative variant of the λ℘-calculus and its extension with additives (§5),
our plans for the next papers in the series (§6) and finally some related work (§7).

Prerequisites. We assume that the reader is familiar with the basics of λ-calculi and type
systems, but require no prior knowledge of automata theory. This choice is motivated by the
impression that it is more difficult to introduce the former than the latter in a limited number
of pages. Nevertheless, we hope that our results will be of interest to both communities.

2 Preliminaries: the λ℘-calculus and Church encodings

The terms and types of the λ℘-calculus are defined by the respective grammars

A,B ::= o | A→ B | A( B t, u ::= x | t u | λ�x. t | λ◦x. t

As always, the λ℘ terms are identified up to α-equivalence (both λ� and λ◦ are binders).
There are two rules for β-reduction (closed under contexts)

(λ�x. t)u −→β t{x := u} (λ◦x. t)u −→β t{x := u}

5 This connection with the sequential composition of processes can be seen as a sort of embodiment of
Girard’s slogan “time is the contents of non-commutative linear logic” [18, IV.6]. But generally, these
works follow a “proof search as computation” paradigm (logic programming) rather than “normalization
as computation” (functional programming).

6 Hence our choice of name: the “Weierstraß P” character “℘” in “λ℘” stands for “planar”.



L. T.D. Nguyẽn and P. Pradic 135:5

Γ ] {x : A} | ∅ ` x : A
Γ | ∆ ` t : A→ B Γ | ∅ ` u : A

Γ | ∆ ` t u : B
Γ ] {x : A} | ∆ ` t : B
Γ | ∆ ` λ�x. t : A→ B

Γ | x : A ` x : A
Γ | ∆ ` t : A( B Γ | ∆′ ` u : A

Γ | ∆ ·∆′ ` t u : B
Γ | ∆ · (x : A) ` t : B

Γ | ∆ ` λ◦x. t : A( B

Γ | ∆ ` t : A
Γ | ∆′ ` t : A

when ∆ is a subsequence of ∆′

Figure 1 The typing rules of the λ℘-calculus (see Appendix C in [37] for examples of derivations).

and the remaining conversion rules are the expected η-reduction/η-expansion rules.
The typing judgements make use of dual contexts (a common feature originating in [7]):

they are of the form Γ | ∆ ` t : A where t is a term, A is a type, Γ is a set of bindings of the
form x : B (x being a variable and B a type), and ∆ is an ordered list of bindings – this
order is essential for non-commutativity. The typing rules are given in Figure 1, where ∆ ·∆′
denotes the concatenation of the ordered lists ∆ and ∆′. For both Γ,Γ′, . . . and ∆,∆′, . . . we
require each variable to appear at most once on the left of a colon.

I Remark 2.1. Unlike Polakow and Pfenning’s system [39, 40], the λ℘-calculus:
contains two function types instead of four7, with the top two rows of Figure 1 corre-
sponding almost exactly8 to the rules given for those connectives in [39];
is affine instead of linear, as expressed by the “ordered weakening” rule at the bottom of
Figure 1 – this seems important to get enough expressive power for our purposes9.

I Remark 2.2. Morally, the non-affine variables “commute with everything”. More formally,
one could translate the λ℘-calculus into a non-commutative version of Intuitionistic Affine
Logic whose exponential modality “!” incorporates the customary rules (see e.g. [50])

Γ, !A,B,∆ ` C
Γ, B, !A,∆ ` C

Γ, B, !A,∆ ` C
Γ, !A,B,∆ ` C

I Proposition 2.3. The λ℘-calculus enjoys subject reduction and admits normal forms (that
is, every well-typed λ℘-term is convertible to a β-normal η-long one).

Proof sketch. This is routine: subject reduction follows from a case analysis, while the fact
that the simply typed λ-calculus has normal forms entails that the λ℘-calculus also does
(the obvious translation preserves the β-reduction and η-expansion relations). J

We have already seen the type StrΣ = (o ( o) → . . . → (o ( o) → (o ( o) of
Church-encoded strings in the introduction. Let us now introduce the term-level encodings:

7 Our “→” and “(” are called “intuitionistic functions” and “right ordered functions” in [39]; we have
no counterpart for the “linear [commutative] functions” and “left ordered functions” in the λ℘-calculus.

8 The only difference is that we drop the linear commutative context.
9 Usually, the linear/affine distinction does not matter for implicit computational complexity if we allow
collecting the garbage produced during the computation in a designated part of the output, as in
e.g. [30]. But non-commutativity obstructs the free movement of garbage.
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135:6 Aperiodicity in a Non-Commutative Logic

I Definition 2.4. Let Σ be a finite alphabet, w = w[1] . . . w[n] ∈ Σ∗ be a string, and for each
c ∈ Σ, let tc be a λ℘-term (on which the next proposition will add typing assumptions). We
abbreviate (tc)c∈Σ as ~tΣ, and define the λ℘-term w†(~tΣ) = λ◦x. tw[1] (. . . (tw[n] x) . . .).

Given a total order c1 < . . . < c|Σ| on the alphabet Σ = {c1, . . . , c|Σ|}, the Church
encoding of any string w ∈ Σ∗ is w = λ�fc1 . . . . λ

�fc|Σ| . w
†(~fΣ).

This is simpler than the notation might suggest: as an example, for Σ = {a, b} with a < b,
baa = λ�fa. λ

�fb. λ
◦x. fb (fa (fa x)). Our choice of presentation is meant to stress the role

of the open subterm (baa)†(~f{a,b}) = λ◦x. fb (fa (fa x)), cf. Remark 2.9.
We now summarize the classical properties of the Church encoding of strings.

I Proposition 2.5. We reuse the notations of the above definition.
Assume that there is a type A and a typing context Γ | ∆ such that for all c ∈ Σ,
Γ | ∆ ` tc : A( A. Then Γ | ∆ ` w†(~tΣ) : A( A.
In particular, {fc : o( o | c ∈ Σ} | ∅ ` w†(~fΣ) : o( o for any variables (fc)c∈Σ.
Furthermore, in the case of variables, w ∈ Σ∗ 7→ w†(~fΣ) is in fact a bijection between the
strings over Σ and the λ℘-terms u such that {fc : o ( o | c ∈ Σ} | ∅ ` u : o ( o and
considered up to βη-conversion10.
It follows from the above that w ∈ Σ∗ 7→ w is a bijection from Σ∗ to the set of closed
λ℘-terms of type StrΣ modulo βη.
Finally, with the assumptions on tc of the first item, we have w tc1 . . . tc|Σ| −→∗β w†(~tΣ).

I Example 2.6. Given two closed λ℘-terms ta, tb : Bool ( Bool, one can define the term
g = λ◦s. s ta tb false : Str{a,b}[Bool] ( Bool. Then for any w = w[1] . . . w[n] ∈ {a, b}∗, we
have g w −→∗β w†(~t{a,b}) false −→∗β tw[1] (. . . (tw[n] false)).

For ta = λ◦x. true and tb = λ◦x. x, g decides the language of words in {a, b}∗ that
contain at least one a; this language is indeed star-free as it can be expressed as ∅ca∅c.
Coming back to a point raised in the introduction, if negation were definable by a λ℘-term
not : Bool ( Bool, then for ta = tb = not, the language decided by g would consist of
words of odd length: a standard example of regular language that is not star-free.

I Remark 2.7. Actually, the λ℘-term not′ : λ◦b. b false true : Bool[Bool] ( Bool does
“define negation”. A point of utmost importance is that because of the heterogeneity of the
input and output types, this term does not contradict Theorem 1.8 and cannot be iterated by
a Church-encoded string. Monomorphism is therefore crucial for us: if our type system had
actual polymorphism, one could give not′ the type (∀α. Bool[α]) ( (∀α. Bool[α]), whose
input and output types are equal, and then the words of odd length would be λ℘-definable.

An analogous phenomenon in the simply typed λ-calculus is that one can define n 7→ 2n
on the type of Church numerals Nat by a term of type Nat[o→ o]→ Nat, but not by a term
of type Nat→ Nat (since iterating it would give rise to a tower of exponentials of variable
height, which is known to be inexpressible by any Nat[A]→ Nat).

Yet our ersatz of polymorphism still allows for some form of compositionality that will
prove useful in several places in §4 (the proof may be found in Appendix B in [37]):

I Lemma 2.8. If ` t : A[T ] ( B and ` u : B[U ] ( C, then ` λ◦x. u (t x) : A[T [U ]] ( C.

I Remark 2.9. One final observation on Church encodings: when the context Γ of non-affine
variables contains fc : o( o for each c ∈ Σ, then any string w ∈ Σ∗ can be represented as

10 η-conversion is necessary to identify λ�f. f : Str{a} with a = λ�f. λ◦x. f x : Str{a}.
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the open λ℘-term Γ | . . . ` w†(~fΣ) : o ( o in that context, and such strings can even be
concatenated by function composition. The point is that this gives us a kind of purely affine
type of strings, which will allow us in §4.2 to encode sequential transducers as λ℘-terms of
type StrΣ[A] ( StrΠ for some purely affine type A (compare Theorem 1.7).

3 Proof of soundness

As stated in the introduction, the soundness part of our main Theorem 1.7 will follow from
Theorem 1.8, so we start this section by proving the latter. First, the monoid structure on the
closed λ℘-terms of any type A( A can be verified routinely: both (f ◦ g) ◦ h and f ◦ (g ◦ h)
β-reduce to λ◦x. f (g (h x)), and λ◦x. x provides the identity element. The finiteness of this
monoid for A purely affine comes from a slightly more general statement:

I Proposition 3.1. For any purely affine type B, there are finitely many βη-equivalence
classes of closed λ℘-terms of type B.

Proof. This is a well-known property of affine type systems: here, non-commutativity plays
no role. We provide a proof in Appendix B in [37]. J

The substantial part of Theorem 1.8 is the aperiodicity of this monoid. It is here that
non-commutativity comes into play. Morally, it is a kind of monotonicity condition that
λ℘-terms obey. A first idea would therefore be to seek to exploit the fact that the monoid of
monotone functions on an ordered set is aperiodic. What we end up using is closely related:

I Lemma 3.2. For any k ∈ N, the monoid of partial non-decreasing functions from {1, . . . , k}
to itself (endowed with usual function composition) is aperiodic.

Proof. Let f : {1, . . . , k} ⇀ {1, . . . , k} be non-decreasing. For any i ∈ {1, . . . , k}, the
sequence (fn(i))n∈N is either non-increasing or non-decreasing as long as it is defined
(depending on whether i ≥ f(i) or i ≤ f(i)); so at some n = Ni, either it becomes undefined
or it reaches a fixed point of f . By taking N = max1≤i≤kNi, we have fN = fN+1. J

This underlies the proof of the key lemma below, that allows one to reduce the aperiodicity
of some t : A( A to the aperiodicity of λ℘-terms at smaller types.

I Notation 3.3. ∆ ` t : A is an abbreviation for ∅ | ∆ ` t : A (indeed, the context of
non-affine variables will be generally empty in our proof).

I Notation 3.4. Let u1, . . . , uk and v1, . . . , vl be λ℘-terms. The notation ~v[~y := ~u] denotes
the componentwise parallel substitution (vi[y1 := u1, . . . , yk := uk])1≤i≤l.

I Lemma 3.5. Let t = λ◦x. λ◦y1. . . . λ
◦ym. x u1 . . . uk be a well-typed closed λ℘-term of

type A ( A in η-long form, so that x : A, y1 : B1, . . . , yk : Bk ` xu1 . . . uk : o with
A = B1 ( . . .( Bk ( o. Then:

tn = t ◦ . . . ◦ t (n times) is β-convertible to λ◦x. λ◦y1. . . . λ
◦yk. x u

(n)
1 . . . u

(n)
k where

~u(0) = (y1, . . . , yk), ~u(n+1) = ~u(n)[~y := ~u];
For large enough n ∈ N, each u(n+1)

i depends only on u
(n)
i for the same i ∈ {1, . . . , k}.

More precisely, there exists N ∈ N such that for all i ∈ {1, . . . , k} there exists a well-typed
closed λ℘-term t′i : Bi ( Bi such that for all n ≥ N , u(n+1)

i = t′i u
(n)
i .
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135:8 Aperiodicity in a Non-Commutative Logic

Proof. The first item is established by induction: abbreviating λ◦y1. . . . λ
◦yk. as λ◦~y.,

t ◦ (λ◦x. λ◦~y. x u(n)
1 . . . u

(n)
k ) =β λ

◦x. λ◦~y. (λ◦~y. x u(n)
1 . . . u

(n)
k )u1 . . . uk

=β λ
◦x. λ◦~y. x (u(n)

1 [~y := ~u]) . . . u(n)
k ([~y := ~u])

(We invite to reader to reproduce the full computation to check that no spurious capture of
free variables happens.)

For the second item, let us define the partial function µ~u : {1, . . . , k} ⇀ {1, . . . , k}
by µ~u(i) = j ⇐⇒ yi ∈ FV(uj). (FV(u) denotes the set of free variables of u.) The
relation on the right-hand side of the equivalence is indeed a partial function because of
the affineness of t = λ◦x. λ◦y1. . . . λ

◦yk. z u1 . . . uk. One can also show that for all n ∈ N,
FV(u(n)

i ) = {yj | (µ~u)n(j) = i}.
As a consequence of non-commutativity, µ~u is non-decreasing. This is because for the

typing judgment on xu1 . . . uk to hold, there must exist ∆1, . . . ,∆k such that:
for all j ∈ {1, . . . , k}, ∆j ` uj and ∀i, yi ∈ FV(uj) ⇐⇒ (yi : Bi) ∈ ∆j ;
∆1 · . . . ·∆k is an ordered subsequence of (y1 : B1) · . . . · (yk : Bk).

Therefore, by Lemma 3.2, there exists N ∈ N such that (µ~u)N = (µ~u)N+1.
Next, let i ∈ {1, . . . , k}. We may reformulate our goal as finding t′i : Bi ( Bi such that

t′i u
(N+n)
i =βη u

(N+n+1) for all n ∈ N. The simple case is when i /∈ (µ~u)N ({1, . . . , k}): u(N)
i

has no free variables, so u(N+1)
i = u

(N)
i [~y := ~u] = u

(N)
i : we may then take t′i = λ◦z. z. For

the remainder of the proof we assume otherwise, that is, we take i in the range of (µ~u)N .
First, ~u(n+1) = ~u[~y := ~u(n)] because parallel substitution is associative11. Thus,

∀n ∈ N, u(N+n+1)
i = ui

[
yj := u

(N+n)
j for j ∈ {1, . . . , k} such that µ~u(j) = i

]
Any j ∈ {1, . . . , k} \ {i} such that µ~u(j) = i is not a fixed point of µ~u, and therefore is not in
the range of (µ~u)N since (µ~u)N = (µ~u)N+1 = µ~u ◦ (µ~u)N . By the simple case already treated,
we then have u(N+n)

j = u
(N)
j . This allows us to write the above equation as

u
(N+n+1)
i = ri[yi := u

(N+n)
i ] where ri = ui

[
yj := u

(N)
j for j 6= i s.t. µ~u(j) = i

]
Using β-conversion, u(N+n+1)

i =β (λ◦yi. ri)u(N+n)
i . We conclude by setting t′i = (λ◦yi. ri).

It is clear that this λ℘-term is closed, but one should check that it is well-typed; to do so,
one convenient observation is that the u(N)

j are closed (because j /∈ (µ~u)N ({1, . . . , k})) and
well-typed (as closed subterms of a reduct of the N -fold composition tN ). J

The remainder of the proof of Theorem 1.8 is essentially bureaucratic.

Proof of the aperiodicity part of Theorem 1.8. Let t : A ( A; our goal is to show that
the sequence tn = t ◦ . . . ◦ t is eventually constant modulo βη. We shall do so by induction
on the size of A. The type A is purely affine by assumption, and can therefore be written
as B1 ( . . . ( Bm ( o where the Bi are also purely affine for i ∈ {1, . . . ,m}. The base
case m = 0 being trivial, we assume m ≥ 1. In this case, by Proposition 2.3, t has an η-long
β-normal form t = λ◦x. λ◦y1. . . . λ

◦ym. z u1 . . . uk where z is a variable. There are two cases:
z = yi for some i. Then (yi : Bi) · ∆ ` z u1 . . . uk by application rule (we omit the
non-affine context Γ which will always be empty during this proof). The abstraction rule
only allows introducing λ◦yi when (yi : Bi) is on the right, so by then ∆ must have been

11More precisely, (~t1[~x := ~t2])[~y := ~t3] = ~t1[~x := ~t2[~y := ~t3]] when ~y ∩ (FV(~t1) \ ~x) = ∅.
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entirely emptied out by previous abstractions. This means that λ◦yi. . . . λ◦ym. z u1 . . . uk
is a closed term, so in particular it contains no free occurrence of x: t is a constant
function from A to A. So the sequence of iterations stabilizes from n = 1.
z = x, which entails k = m since the variable x is of type A = B1 ( . . .( Bm ( o and
we must have x : A, y1 : B1, . . . , ym : Bm ` xu1 . . . uk : o. Lemma 3.5 gives us closed
λ℘-terms t′i : Bi ( Bi (i ∈ {1, . . . , k}) whose iterates eventually determine those of t.
Since the type Bi has size strictly smaller than A, the induction hypothesis applies: each
((t′i)n)n∈N is eventually constant modulo βη. Therefore, this is also the case for t. J

Let us now apply Theorem 1.8 to the λ℘-terms defining languages.

I Lemma 3.6. Let Σ = {c1, . . . , c|Σ|} be a finite alphabet, A be a purely affine type and
t : StrΣ[A] ( Bool be a closed λ℘-term. Then there exist some closed λ℘-terms gc : A( A

for c ∈ Γ and h : (A( A) ( Bool such that t =βη λ
◦s. h (s gc1 . . . gc|Σ|).

Proof. By inspection of the normal form of t, see Appendix B in [37]. J

Reusing the notations of this lemma, let us define ϕ : Σ∗ → {v | v : A( A}/=βη to be
the monoid morphism such that ϕ(c) = gc for c ∈ Σ. Then for all w ∈ Σ∗, ϕ(w) = w†(~gΣ)
(in the quotient): by a similar computation than for f ◦ (g ◦ h) =βη (f ◦ g) ◦ h, we have
gw[1] ◦ . . . ◦ gw[n] −→∗β w†(~gΣ). Therefore, by Proposition 2.5, ϕ−1({v | h v =βη true}) is
none other than the language defined by the t : StrΣ[A] ( Bool in the lemma. Thus, L fits
the second definition of star-free languages given in Theorem 1.5: indeed, the codomain of ϕ
is finite and aperiodic by Theorem 1.8. This proves the soundness part of Theorem 1.7.

4 Expressiveness of the λ℘-calculus

We now turn to the extensional completeness part in Theorem 1.7: our goal is to construct,
for any star-free language, a closed λ℘-term of type StrΣ[A] ( Bool (for some purely
affine A) that defines this language. To do so, the most convenient way that we have
found is to take a detour through automata that compute an output string instead of a
single bit (acceptance/rejection). We will recall the notion of aperiodic sequential function
(Definition 4.4), and then establish that:

I Theorem 4.1. Any aperiodic sequential function Σ∗ → Π∗ can be expressed by a λ℘-term
of type StrΣ[A] ( StrΠ for some purely affine type A.

The advantage of working with this class of functions is that they can be assembled from small
“building blocks” by function composition, as the Krohn–Rhodes decomposition (Theorem 4.8)
tells us. Our proof strategy for the above theorem will consist in encoding these blocks
(Lemma 4.10) and composing them together (as a special case of Lemma 2.8).

To deduce the desired result, we rely on two lemmas (proved in Appendix B in [37]):

I Lemma 4.2. If a language L ⊆ Σ∗ is star-free, then its (string-valued) indicator function
χL : Σ∗ → {1}∗, defined by χL(w) = 1 if w ∈ L and χL(w) = ε otherwise, is aperiodic
sequential.

I Lemma 4.3. There exists a λ℘-term nonempty : Str{1}[Bool] ( Bool that tests whether
its input string is non-empty.

Let L be a star-free language. Combining Lemma 4.2 and Theorem 4.1, χL is definable
by some λ℘-term indicL : StrΣ[A] ( Str{1} where A is purely affine. To compose
this with the non-emptiness test of Lemma 4.3, we use Lemma 2.8 again: the λ℘-term
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qa qb

end|ab end|bbb

a|a b|a

a|bb

b|bb

Figure 2 A schematic representation of a sequential transducer whose formal definition is
Q = {qa, qb}, δ(q, a) = (qa, a) and δ(q, b) = (qb, bb) for q ∈ Q, qI = qa, F (qa) = ab and F (qb) = bbb.

tL = λ◦x. nonempty (indicL x) : StrΣ[A[Bool]] ( Bool defines L. Since A and Bool are
purely affine, so is A[Bool]: we just deduced extensional completeness from Theorem 4.1.
Proving the latter is the goal of the rest of this section.

4.1 Reminders on automata theory
Sequential transducers are among the simplest models of automata with output. They are
deterministic finite automata which can append a word to their output at each transition,
and at the end, they can add a suffix to the output depending on the final state. The
definition is classical; a possible reference is [44, Chapter V].

I Definition 4.4. A sequential transducer with input alphabet Σ and output alphabet Π
consists of a set of states Q, a transition function δ : Q × Σ → Q × Π∗, an initial state
qI ∈ Q, and a final output function F : Q → Π∗. We abbreviate δi = πi ◦ δ for i ∈ {1, 2},
where π1 : Q×Π∗ → Q and π2 : Q×Π∗ → Π∗ are the projections of the product.

Given an input string w = w[1] . . . w[n] ∈ Σ∗, the run of the transducer over w is the
sequence of states q0 = qI , q1 = δst(q0, w[1]), . . . , qn = δst(qn−1, w[n]). Its output is obtained
as the concatenation δout(q0, w[1]) · . . . · δout(qn−1, w[n]) · F (qn).

A sequential function is a function Σ∗ → Π∗ computed as described above by some
sequential transducer.

I Definition 4.5. The transition monoid of a sequential transducer is the submonoid of
Q → Q (endowed with reverse function composition: fg = g ◦ f) generated by the maps
{δst(−, c) | c ∈ Σ} (where δst(−, c) stands for q 7→ δst(q, c)).

A sequential transducer is said to be aperiodic when its transition monoid is aperiodic. A
function that can be computed by such a transducer is called an aperiodic sequential function.

I Example 4.6. The transducer in Figure 2 computes f : w ∈ {a, b}∗ 7→ a · ψ(w) · b where
ψ is the monoid morphism that doubles every b: ψ(a) = a and ψ(b) = bb. Its transition
monoid T is generated by G = {(δst(−, a) : q 7→ qa), (δst(−, b) : q 7→ qb)}; one can verify that
T = G ∪ {id} and therefore ∀h ∈ T, h ◦ h = h. Thus, f is an aperiodic sequential function.

I Remark 4.7. The converse to Lemma 4.2 is also true; more generally, the preimage of a
star-free language by an aperiodic sequential function is star-free, and the preimage of a
regular language is regular. But we will not need this here.

I Theorem 4.8 (Krohn–Rhodes decomposition, aperiodic case, cf. Appendix A in [37]). Any
aperiodic sequential function f : Σ∗ → Π∗ can be realized as a composition f = f1 ◦ . . . ◦ fn
(with fi : Ξ∗i → Ξ∗i−1, Ξ0 = Π and Ξn = Σ) where each function fi is computed by some
aperiodic sequential transducer with 2 states.
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Figure 2 gives an example of aperiodic transducer with two states.

I Remark 4.9. This is not the standard way to state this theorem, though one may find it in
the literature, usually without proof (e.g. [10, §1.1]); see [8] for a tutorial containing a proof
sketch of this version. In Appendix A in [37], we show how Theorem 4.8 follows from the
more usual statement on wreath products of monoid actions.

4.2 Encoding aperiodic sequential transducers
Thanks to the Krohn–Rhodes decomposition and to the fact that the string functions
definable in the λ℘-calculus (as specified by Theorem 4.1) are closed under composition (by
Lemma 2.8), the following entails Theorem 4.1, thus concluding our completeness proof.

I Lemma 4.10. Any function Σ∗ → Π∗ computed by some aperiodic sequential transducer
with 2 states can be expressed by some λ℘-term of type StrΣ[A] ( StrΠ, for a purely affine
type A depending on the function.

Let us start by exposing the rough idea of the encoding’s trick using set-theoretic maps. We
reuse the notations of Definition 4.4 and assume w.l.o.g. that the set of states is Q = {1, 2}.

Suppose that at some point, after processing a prefix of the input, the transducer has
arrived in state 1 (resp. 2) and in the meantime has outputted w ∈ Π∗. We can represent
this “history” by the pair (κw, ζ) (resp. (ζ, κw)) where

ζ, κw : Π∗ → Π∗ ζ : x 7→ ε κw : x 7→ w · x

For instance, in the case of Example 4.6, after reading a string s = s′b, the transducer is in
the state qb and has outputted12 w = a · ψ(s′), which we represent as (ζ, κa·ψ(s′)) (taking
qa = 1 and qb = 2; ψ is described in Example 4.6). In general, some key observations are

ζ ◦ κw = ζ κw ◦ κw′ = κww′ κw(w′)ζ(w′′) = ζ(w′′)κw(w′) = ww′

Now, consider an input letter c ∈ Σ; how to encode the corresponding transition δ(−, c) as a
transformation on the pair encoding the current state and output history? It depends on the
state transition δst(−, c); we have thanks to the above identities:

(h, g) 7→ (h ◦ κδout(1,c), g ◦ κδout(2,c)) when δst(−, c) = id;
(h, g) 7→ (κh(δout(1,c))g(δout(2,c)), ζ) when δst(−, c) : q′ 7→ 1 (note that h = ζ xor g = ζ);
(h, g) 7→ (ζ, κh(δout(1,c))g(δout(2,c))) when δst(−, c) : q′ 7→ 2;
The remaining case δst(−, c) : q 7→ 3− q is excluded by aperiodicity. This point is crucial:
this case would correspond to (h, g) 7→ (g ◦ κδout(2,c), h ◦ κδout(1,c)) which morally “uses
its arguments h, g in the wrong order”.

Coming back to Example 4.6, let us say that after the transducer has read a prefix s = s′b

of its input string as we previously described, the next letter is a. Then the expression
h(δout(1, c))g(δout(2, c)) above is in this case ζ(a)κa·ψ(s′)(bb) = ε ·a ·ψ(s′) · bb = a ·ψ(s) which
is indeed the output that the transducer produces after reading the input prefix sa = s′ba.

Next, we must transpose these ideas to the setting of the λ℘-calculus.

12This is indeed a · ψ(s′) and not a · ψ(s) = a · ψ(s′) · bb. If the input turns out to end there, the final
output function will provide the missing suffix F (qb) = bbb to obtain f(s) = a · ψ(s) · b = a · ψ(s′) · bbb.
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Proof of Lemma 4.10. We define the λ℘-term meant to compute our sequential function as

λ◦s. λ�fa1 . . . . λ
�fa|Π| . out (s transc1 . . . transc|Σ|) : StrΣ[A] ( StrΠ

where Σ = {c1, . . . , c|Σ|}, Π = {a1, . . . , a|Π|} and, writing Γ = {fa : o( o | a ∈ Π},

Γ | ∅ ` transc : A( A (for all c ∈ Σ) Γ | ∅ ` out : (A( A) ( (o( o)

In the presence of this non-affine context Γ, the type S = o( o morally serves as a purely
affine type of strings, as mentioned in Remark 2.9. Moreover this “contextual encoding of
strings” supports concatenation (by function composition), leading us to represent the maps
ζ and κw as open terms of type T = S ( S that use non-affinely the variables fa for a ∈ Π.

We shall take the type A, at which the input StrΣ is instantiated, to be A = T ( T ( S,
which is indeed purely affine as required by the theorem statement. This can be seen morally
as a type of continuations [42] taking pairs of type T ⊗ T (although our λ℘-calculus has no
actual ⊗ connective). Without further ado, let us program (the typing derivations for some
of the following λ℘-terms are given in Appendix C in [37]):

cat = λ◦w. λ◦w′. λ◦x.w (w′ x) : S ( S ( o( o = S ( S ( S = S ( T plays the roles
of both the concatenation operator and of w 7→ κw (thanks to currying)
zeta = λ◦w′. λ◦x. x : S ( o( o = T

uq = δout(q, c)†(~fΠ) : o ( o (by Proposition 2.5) represents the output word δout(q, c)
that corresponds to a given input letter c ∈ Σ and state q ∈ Q = {1, 2}
case δst(q, c) = q: transc = λ◦k. λ◦h. λ◦g. k (λ◦y. h (catu1 y)) (λ◦z. g (catu2 z)) – if we
wanted to handle the excluded case δst(q, c) = 3− q, we would write a similar term with
the occurrences of h and g exchanged (λ◦k. λ◦h. λ◦g. k (λ◦y. g . . .) (λ◦z. h . . .)), violating
the non-commutativity requirement (contrast with the proof of Theorem 5.4);
case δst(q, c) = 1: transc = λ◦k. λ◦h. λ◦g. k (cat (cat (hu1) (g u2))) zeta
case δst(q, c) = 2: transc = λ◦k. λ◦h. λ◦g. k zeta (cat (cat (hu1) (g u2)))
out = λ◦j. j (λ◦h. λ◦g. cat (h v1) (g v2)) (λ◦x. x) zeta, where vq = F (q)†(~fΠ) represents
the output suffix for state q ∈ {1, 2}, assuming w.l.o.g. that the initial state is 1 (also,
here λ◦x. x represents κε since the latter is the identity on Π∗)

We leave it to the reader to check that these λ℘-terms have the expected computational
behavior; again, see Appendix C in [37] for typing derivations. Note that in functional
programming terms, the use of continuations turns the “right fold” of the Church-encoded
input string into a “left fold”, and the latter fits with the left-to-right processing of a sequential
transducer. J

5 Regular languages in extensions of the λ℘-calculus

5.1 The commutative case
The λ℘-calculus adds two restrictions to the simply typed λ-calculus, namely affineness and
non-commutativity, with the latter depending on the former as already mentioned. One
could wonder whether affineness by itself would be enough to characterize star-free languages.
We now show that it is not the case.

The commutative variant of the λ℘-calculus – let us call this variant the λa-calculus13
– has the same grammar of types and terms as the λ℘-calculus (cf. §2). The typing rules
are also given by Figure 1, but their interpretation differs from the previous one as follows:

13a standing for “affine”.
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∆,∆′ stand for sets of bindings x : A, ∆ ·∆′ denotes the disjoint union of sets, and one must
read “subset” instead of “subsequence”. In other words, the main difference is that in the
λa-calculus, the affine context ∆ does not keep track of the ordering of variables.

By plugging this commutative system in the statement of our main result (Theorem 1.7),
we get regular languages instead of star-free languages:

I Theorem 5.1. A language L ⊆ Σ∗ is regular if and only if it can be defined by a closed
λa-term of type StrΣ[A] ( Bool for some purely affine type A (that may depend on L).

Proof. Soundness is a consequence of Hillebrand and Kanellakis’s Theorem 1.1, by a simple
translation from the λa-calculus to the simply typed λ-calculus which “forgets affineness”.

For extensional completeness, consider a regular language L = ϕ−1(P ) where P is a
subset of a finite monoid M and ϕ : Σ∗ → M is a morphism (cf. Theorem 1.3). If we
represent an element m ∈M by a M -indexed bit vector vm such that vm[i] = 1 ⇐⇒ i = m,
then a translation m 7→ mp can be represented by a purely disjunctive formula:

vmp[i] = vm[j1] ∨ . . . ∨ vm[jk] where {j1, . . . , jk} = {j ∈M | jp = i}

Moreover, this is linear in the following sense: given a fixed p ∈ M , each index j ∈ M is
involved in the right-hand side of this formula for exactly one i ∈M .

Let ttt = λ◦x. true : Bool ( Bool and fff = λ◦x. x : Bool ( Bool. This makes the
type B = Bool ( Bool into a kind of type of booleans that supports a disjunction of type
B ( B ( B (by function composition) and a type-cast function of type B ( Bool (by
applying to false). (Of course B has other closed inhabitants besides ttt and fff, but we
only use those two.) Using this type and the “iteration+continuations” recipe of the proof of
Lemma 4.10, one can define a λa-term of type StrΣ[A] ( Bool that decides the language L
with A = B ( . . .( B ( Bool (with |M | arguments of type B). J

Let us go further. According to Theorem 4.1, the λ℘-calculus can define all aperiodic
sequential functions; we show that as one can expect, the aperiodicity condition is lifted
when moving to the commutative λa-calculus. However, the trick used in the direct encoding
of the above proof does not work, and we have only managed to encode general sequential
functions by resorting to the Krohn–Rhodes theorem.

I Theorem 5.2 (Krohn–Rhodes decomposition, non-aperiodic case, cf. Appendix A in [37]).
Any sequential function f : Σ∗ → Π∗ can be realized as a composition f = f1 ◦ . . . ◦ fn (with
fi : Ξ∗i → Ξ∗i−1, Ξ0 = Π and Ξn = Σ) where each function fi is computed by some sequential
transducer whose transition monoid is either aperiodic or a group.

I Remark 5.3. By Theorem 4.8, the aperiodic transducers among the fi can be further
decomposed into two-state aperiodic transducers.

I Theorem 5.4. Any sequential function Σ∗ → Π∗ can be expressed by some λa-term of type
StrΣ[A] ( StrΠ, for a purely affine type A depending on the function.

Proof sketch. First, by Theorem 4.1, we can already encode aperiodic sequential functions,
since every well-typed λ℘-term is also a well-typed λa-term. One can also show that
Lemma 2.8 applies to the λa-calculus. By the general Krohn–Rhodes theorem, we just need
to handle the case of a sequential transducer whose transition monoid is a group.

The idea, in terms of set-theoretic maps as in our explanation of the proof of Lemma 4.10
(whose notations we borrow here), is as follows. The current state q ∈ Q and output history
w ∈ Π∗ is represented by a Q-indexed family (gq′)q′∈Q of functions such that gq = κw and for
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q′ 6= q, gq′ = ζ. The transition δ(−, c) is represented by (gq)q∈Q 7→ (gσ(q) ◦ κδout(σ(q),c))q∈Q
where σ = (δst(−, c))−1 – the latter is well-defined because the group assumption means that
δst(−, c) is a permutation of Q. The final output is obtained at the end as the concatenation
gq1(F (q1)) . . . gqn(F (qn)) where Q = {q1, . . . , qn} (with an arbitrary enumeration of Q).

The elaboration of the corresponding λa-term is left to the reader. Keep in mind that
the reason this term will not be well-typed for the λ℘-calculus is that the inversions in the
permutation δst(−, c) correspond to violations of non-commutative typing. J

5.2 Extension with additive pairs
Let’s look at what happens if we add the additive conjunction connective of linear logic to the
λ℘-calculus. The λ℘&-calculus is obtained by adding A,B ::= . . . | A&B to the grammar of
types and t, u ::= . . . | 〈t, u〉 | π1 t | π2 t for terms, with the typing rules

Γ | ∆ ` t : A Γ | ∆ ` u : B
Γ | ∆ ` 〈t, u〉 : A&B

Γ | ∆ ` t : A1 &A2

Γ | ∆ ` πi t : Ai
(see [39, §4])

the β-reduction rules πi 〈t1, t2〉 −→β ti, and the corresponding η-conversion rules.
Recall that we discussed both in the introduction and in Remark 2.7 the need to prevent

the existence of a λ℘-term of type Bool ( Bool for negation. However, if we use the additive
conjunction to define the type Bool& = (o& o) ( o, the following are well-typed λ℘&-terms:

true& = λ◦p. π1 p false& = λ◦p. π2 p not& = λ◦b. λ◦p. b 〈π2 p, π1 p〉

More generally:

I Proposition 5.5. Let Fin&(n) = (o & . . . & o) ( o. For all n ∈ N, there is a canonical
bijection between {1, . . . , n} and the closed λ℘&-terms of type Fin&(n). Furthermore, using
this encoding, every map {1, . . . , n1} × . . . × {1, . . . , nk} → {1, . . . ,m} can be defined by a
closed λ℘&-term of type Fin&(n1) ( . . . Fin&(nk) ( Fin&(m).

I Corollary 5.6. Every regular language can be defined by a closed λ℘&-term of type
StrΣ[A] ( Bool for some purely affine type A – we consider “&” as an affine connective
and therefore allow it in A.

Proof idea. Take A = Fin&(|M |) where M is any finite monoid that recognizes the language
as specified in Theorem 1.3. (We could also prove the converse by relying on an extension of
Hillebrand and Kanellakis’s Theorem 1.1 to the simply typed λ-calculus with products.) J

Similarly, one could show that the addition of the additive disjunction “⊕” of linear logic
to the λ℘-calculus would be sufficient to encode all regular languages.

5.3 On regular and first-order tree languages: a discussion
There is a rich theory of tree automata that extends the notion of regular language to trees
over ranked alphabets instead of strings. Such trees admit Church encodings; for instance,
for an alphabet with arities (a : 2, b : 2, x : 0) (i.e. for trees with two kind of binary nodes
and one kind of leaf) one would have Tree(2,2,0) = (o( o( o)→ (o( o( o)→ o→ o.
I Remark 5.7. A string over an alphabet Σ = {c1, . . . , c|Σ|} can be seen as a tree with arities
(c1 : 1, . . . , c|Σ| : 1, ε : 0). This would lead to defining the type of Church-encoded strings as
Str′Σ = (o( o)→ . . .→ (o( o)→ o→ o. Our type StrΣ, which is the traditional choice
in linear logic (see the discussion on Church numerals in [17, §5.3.2]), is a bit more precise
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since it expresses that such a “unary tree” can only contain one ε node. But as there exist
conversion functions StrΣ ( Str′Σ and Str′Σ[o ( o] ( StrΣ, this choice does not make
much difference (thanks again to Lemma 2.8).

We shall not go into the details of tree automata here, but the knowledgeable reader
may check that Proposition 5.5 can be used to encode all regular tree languages over
(a : 2, b : 2, x : 0) as closed λ℘&-terms of type Tree(2,2,0)[A] ( Bool for purely affine A.
Predictably, this fails for the λ℘-calculus without additive connectives. More noteworthy
is the failure of the trick used to prove Theorem 5.1 for the commutative λa-calculus when
one replaces strings with trees. Thus, it seems (though this remains conjectural) that the
additives of linear logic might be required to express some regular tree languages.

We believe that this is no accident and that some fundamental difficulty of automata
theory is being manifested here. Indeed, if we had a characterization of regular tree languages
in the λa-calculus, we could expect that moving to the λ℘-calculus would yield the first-order
tree languages, which are the commonly accepted counterpart of star-free languages for
trees. (Recall from Theorem 1.5 that definability in first-order logic is among the equivalent
definitions of star-free languages.) However, while Theorem 1.5 demonstrates that star-free
languages are well-understood, the situation is quite different for first-order tree languages:
there is no known algebraic characterization, and neither is there any known algorithm to
decide whether a tree automaton recognizes a first-order language (see e.g. [9, §3]). Another
argument for the necessity of additives, discussed in the next section, comes from transducers.

6 Next episode preview: transducers in typed λ-calculi

We started from Hillebrand and Kanellakis’s Theorem 1.1 and obtained an analogous
statement for star-free languages instead of regular languages. Another direction that we could
have pursued is to replace languages by functions, by looking at the type StrΣ[A]→ StrΠ.
Indeed, an immediate consequence of this “regular = λ-definable” result is:

I Corollary 6.1. If f : Σ∗ → Π∗ is definable by a closed simply typed λ-term of type
StrΣ[A]→ StrΠ, then for any regular language L ⊆ Π∗, f−1(L) ⊆ Σ∗ is also regular.

Proof idea. Let u : StrΠ[B] → Bool and t : StrΣ[A] → StrΠ be simply typed λ-terms
defining L and f respectively. Then f−1(L) is defined by λx. u (t x) which is well-typed with
type StrΣ[A[B]]→ Bool (analogously to Lemma 2.8). J

This suggests a connection between these λ-definable string functions and automata theory.
But while it is not too hard to define functions of hyperexponential growth in the simply
typed λ-calculus, most classes of string functions from automata theory (see [36] for a recent
survey) grow much more slowly (polynomially or even linearly in the input size). The
challenge then becomes to restrict the expressiveness via types to capture such classes. This
calls for the recipes that have worked here, namely affine types and non-commutativity.

B Claim 6.2 (to be proved in a sequel). The functions definable by closed terms of type
StrΣ[A] ( StrΠ, for purely affine A, are the MSO transductions14 [14] (a.k.a. regular
functions15) in the λa-calculus and the FO transductions in the λ℘-calculus.

14MSO stands for Monadic Second-Order Logic while FO stands for First-Order Logic, cf. the introduction.
15This name is somewhat confusing, since there are multiple classes of string functions that collapse to

the single class of regular languages when we consider indicator functions. For example, in-between
the sequential functions (Definition 4.4) and the regular (MSO-definable) functions, there is a widely
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This goes beyond the encodings of sequential transducers presented in this paper (Theorem 4.1
and Theorem 5.4). But the latter are an important stepping stone, since we do not know
how to prove the above claim without using the Krohn–Rhodes decomposition somewhere.
To summarize the results of the present paper together with its planned sequel:

calculus affine commutative StrΣ[A] ( Bool StrΣ[A] ( StrΠ

λ℘ yes no star-free (FO-definable) languages FO transductions
λa yes yes regular (MSO-definable) languages MSO transductions

While the connection between non-commutativity and aperiodicity came as a surprise to
us, we had more reasons to suspect that affine types should have something to do with
transducers. Indeed, the term “linear” itself has been used to describe the copyless assignment
condition on streaming string transducers (SSTs) [5], a machine model for MSO transductions,
e.g. “updates should make a linear use of registers” [15, §5] (in our terminology, the register
assignments of SSTs are in fact affine, not strictly linear). Moreover, it seems (informally
speaking) that the more sophisticated single-use-restricted assignments of streaming tree
transducers [3] correspond to a form of linearity that incorporates an additive conjunction,
whereas copyless assignments are purely multiplicative; compare with the discussion of §5.3.

7 Related work

We have already mentioned in the introduction several lines of tangentially related research,
such as higher-order model checking or the topology of non-commutative proofs. In this
section, we discuss a few references that we deemed to be more directly relevant.

Automata as circular proofs. Aside from Hillebrand and Kanellakis’s Theorem 1.1, perhaps
our most direct precursors in “implicit automata theory” are the works by DeYoung and
Pfenning [13] on sequential transducers (their version seems to be equivalent to Definition 4.4)
and by Kuperberg, Pinault and Pous [28] characterizing regular languages and deterministic
logarithmic space complexity. Both rely on a proofs-as-programs interpretation of circular16
proof systems for some variants of linear logic with fixed points.

The Church encoding of strings is obtained by a systematic procedure [12] from the
inductive definition s ::= ε | c1 · s | . . . | c|Σ| · s (Σ = {c1, . . . , c|Σ|}). Using fixed points of
formulas, one can instead turn it into the recursive type17 StrµΣ = 1⊕ StrµΣ ⊕ . . .⊕ StrµΣ;
this is the definition of the type of strings in [13], and it is also implicitly at work in18 [28].

So both our approach (following Hillebrand and Kanellakis [24]) and those using fixed
point logics morally work because the consumption of strings represented as inductive data
types is similar to their traversal by automata. However, while the use of the “right fold”
provided by a Church-encoded string involves an “inversion of control” (in programming
jargon) that, in the case of the simply typed λ-calculus, has drastic effects on expressive
power19 (contrast Theorem 1.1 with the fact that βη-convertibility of simply typed λ-terms is
not elementary recursive [32]), circular proofs seem to give the programmer more degrees of
freedom: Kuperberg et al. do not need to add polymorphism to go beyond regular languages.

studied strictly intermediate class called the rational functions. (The adjective “rational” is used to
refer to regular languages in a French tradition going back to Nivat and Schützenberger.)

16These are sometimes called “cyclic” proofs, but in our context, this would create a confusion with an
unrelated non-commutative logic, cyclic linear logic [50].

17Formally, this is expressed as the least fixed point StrµΣ = µα. 1⊕ α⊕ . . .⊕ α.
18The left rules given in [28, Figure 1] for A and A∗ correspond to A = 1⊕ . . .⊕ 1 and A∗ = 1⊕ (A⊗A∗).
19To overcome those limits and express any elementary recursive function as a simply typed λ-term,

Hillebrand and Kanellakis use an alternative representation of inputs inspired by database theory [24].
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Recognizable languages of λ-terms. A modern point of view on Hillebrand and Kanel-
lakis’s Theorem 1.1 can be implicitly found in a paper by Terui [48] emphasizing the method
of evaluation in a finite denotational semantics used to prove it. Along these lines, general
notions of recognizable languages of closed λ-terms of a given type (specializing to regular
languages for the type of Church-encoded strings) have been proposed, based on finite
semantics, in the simply-typed λ-calculus by Salvati [45] and in an infinitary λ-calculus
by Melliès [34]. It is plausible that Theorem 1.1 can be extended to give an equivalent
syntactic definition for Salvati’s recognizable languages: for a simple type B they would be
the languages definable by B[A] → Bool. An interesting question would be whether one
can give an encoding of higher-dimensional trees in the simply typed λ-calculus so that this
notion of recognizability coincides with Rogers’s automata for those trees [43, 16].

Other implicit automata results. In a recent preprint, Bojańczyk [10] introduces a new
class of string-to-string functions that admits several equivalent definitions (see also [11]).
One of them uses the simply typed λ-calculus enriched with a ground type of lists and several
primitive functions on lists. Strings are represented as lists of characters, which differs from
our use of functional encodings in a λ-calculus without any primitive data type.

Using a computational model inspired by denotational semantics of linear logic, Seiller [46]
gives a characterization of each level of the k-head two-way non-deterministic automata
hierarchy. The lowest level (k = 1) corresponds to regular languages, while the union over
k ∈ N≥1 gives the complexity class NL (non-deterministic logarithmic space). Something in
common with our work is that the representation of strings used by [46] is more or less a
semantic version of Church encodings (see [46, §3.2]). There is one main difference with what
one usually calls implicit complexity: Seiller’s result does not take place inside a syntactically
defined programming language (and it is far from obvious how to turn this model into a
similarly expressive syntax, because of the previously mentioned inversion of control).

Controlling expressible functions with non-commutativity. The tree-processing program-
ming language of Kodama, Suenaga and Kobayashi [26] uses non-commutative types to force
programs to process their input in a depth-first, left-to-right fashion. This allows them to
be compiled into a target language that works on a stream of tokens, suggesting a possible
connection with nested word automata [4]. The non-commutativity is restricted to arguments
of ground type in [26], whereas it is important for our λ℘-calculus that it applies at all orders
(indeed, since we encode data as functions, higher-order functions are pervasive).
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Abstract
This work addresses the problem of computing measures of recognisable sets of infinite trees.
An algorithm is provided to compute the probability measure of a tree language recognisable by
a weak alternating automaton, or equivalently definable in weak monadic second-order logic. The
measure is the uniform coin-flipping measure or more generally it is generated by a branching
stochastic process. The class of tree languages in consideration, although smaller than all regular
tree languages, comprises in particular the languages definable in the alternation-free µ-calculus or
in temporal logic CTL. Thus, the new algorithm may enhance the toolbox of probabilistic model
checking.
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1 Introduction

The non-emptiness problem asks if an automaton accepts at least one object. From a logical
perspective, it is an instance of the consistency question: does a given specification have
a model? Sometimes it is also relevant to ask a quantitative version of this question:
whether a non-negligible set of models satisfy the specification. When taken to the realm
of probability theory, this boils down to estimating the probability that a random object
is accepted by a given automaton. In this paper, models under consideration are infinite
binary trees labelled by a finite alphabet. Our main problem of interest is the following.

I Problem 1. Given a regular tree language L, compute the probability that a randomly
generated tree belongs to L.

In other words, we ask for the probability measure of L. Here, the tree language L might
be given by a formula of monadic second-order logic, but for complexity reasons it is more
suitable to present it by a tree automaton or by a formula of modal µ-calculus, see e.g. [9,13].
By default, the considered measure is the uniform coin-flipping measure, where each letter
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is chosen independently at random; but also more specific measures are of interest. If the
computed probability is rational then it can be represented explicitly, but the measure can be
irrational, see e.g. [15], and may require more complex representation. One of the possible
choices, exploited in this paper, is a formula over the field of reals R.

Chen et al. [6] addressed Problem 1 in the case where the tree language L is recognised
by a deterministic top-down automaton and the measure is induced by a stochastic branching
process, which then makes also a part of the input data. Their algorithm compares the
probability with any given rational number in polynomial space and with 0 or 1 in polynomial
time. The limitations of this result come from the deterministic nature of the considered
automata: deterministic top-down tree automata are known to have limited expressive power
within all regular tree languages.

Michalewski and Mio [15] stated Problem 1 explicitly and solved it for languages L given
by so-called game automata and the coin-flipping measure. This class of automata subsumes
deterministic ones and captures some important examples including the game languages,
cf. [10], but even here the strength of non-determinism is limited; in particular, the class is
not closed under finite union. The algorithm from [15] reduces the problem to computing the
value of a Markov branching play, and uses Tarski’s decision procedure for the theory of reals.
These authors also discover that the measure of a regular tree language can be irrational,
which stays in contrast with the case of ω-regular languages, i.e. regular languages of infinite
words, where the coin-flipping measure is always rational, cf. [5].

Another step towards a solution to Problem 1 was made by the second author of the
present article, who proposed an algorithm to compute the coin-flipping measure of tree
languages definable in fragments of first-order logic [20]. This work is subsumed in a re-
port [21] (accepted for publication in a journal) co-authored with the third author, where
a new class of languages L is also resolved: tree languages recognised by safety automata,
i.e. non-deterministic automata with a trivial accepting condition.

An analogue of Problem 1 can be stated for ω-regular languages. As noted by [6], the
problem then reduces to a well-known question in verification solved by Courcoubetis and
Yannakakis [8] already in the 1990s, namely whether a run of a finite-state Markov chain
satisfies an ω-regular property. The algorithm runs in single-exponential time w.r.t. the
automaton (and linear w.r.t. the Markov chain). A related question was also studied
by Staiger [24], who gave an algorithm to compute Hausdorff dimension and Hausdorff
measure of a given ω-regular language.

In general, Problem 1 remains unsolved. At first sight, one may even wonder if it is
well-stated, as regular tree languages need not in general be Borel, cf. [18]. However, due
to [12,16], we know that regular languages of trees are always universally measurable.

In the present paper, we solve Problem 1 in the case where the language L is recognised
by a weak alternating automaton or, equivalently, defined by a formula of weak monadic
second-order logic, cf. [17]. The class of tree languages in consideration is incomparable with
the one considered by Michalewski and Mio [15], but subsumes those considered in [20,21].
Yet another presentation of this class can be given in terms of alternation-free fragment of
modal µ-calculus, see [1] for details. This fragment is known to be useful in verification and
model checking, in particular, temporal logic CTL embeds into this fragment.

We consider the coin-flipping measure as our primary case, but we also show how
to extend our approach to measures generated by stochastic branching processes, as in [6].
The computed probability is presented by a first-order formula in prenex normal form over
the field of reals. The provided formula is exponential in the size of the automaton and
polynomial in the size of the branching process. Moreover, the quantifier alternation of the
computed formula is constant (equal 4). Combined with the known decision procedures for
the theory of reals, this gives the following.
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I Theorem 2. There is an algorithm that inputs a weak alternating parity automaton A,
a branching process P, and a rational number q encoded in binary; and decides if the measure
generated by P of the language recognised by A is equal, smaller, or greater than q. The
algorithm works in time polynomial in q, doubly exponential in A, and singly exponential
in P.

Similarly to the approach taken in [21], we reduce the problem to computation of an ap-
propriate probability distribution over the powerset of the automaton’s states. To do so, we
consider the set of all such distributions DP(Q) with a suitable ordering �. The structure is
in fact a finitary case of a probabilistic powerdomain introduced by Saheb-Djahromi [22]
(see also [14]), but we do not exploit category-theoretic concepts in this paper. The key step
is an approximation of the target language L by two families of tree languages representing
safety and reachability properties, respectively. Then we can apply fixed-point constructions
thanks to a kind of synergy between the order and topological properties of DP(Q).

2 Trees, topology, and measure

The set of natural numbers {0, 1, 2, . . .} is denoted by N, or by ω whenever we treat it as
an ordinal. A finite non-empty set A is called an alphabet. By P(X) we denote the family of
all subsets of a set X. The set of finite words over an alphabet A (including the empty word
ε) is denoted by A∗, and the set of ω-words by Aω. The length of a finite word w ∈ A∗ is
denoted by |w|. A full infinite binary tree over an alphabet A (or simply a tree if confusion
does not arise) is a mapping t : {L, R}∗ → A. The set of all such trees, denoted by TrA, can
be equipped with a topology induced by a metric

d(t1, t2) =
{

0 if t1 = t2
2−n with n = min{|w| | t1(w) 6= t2(w)} otherwise.

It is well-known that this topology coincides with the product topology on Aω, where A
is a discrete topological space. The topology can be generated by a basis consisting of all the
sets Uf , where f : dom(f)→ A is a function with a finite domain dom(f) ⊂ {L, R}∗, and Uf

consists of all trees t that coincide with f on dom(f). If A has at least 2 elements then this
topology is homeomorphic to the Cantor discontinuum {0, 1}ω (see, e.g. [19]).

The set of trees can be further equipped with a probabilistic measure µ0, which is the stand-
ard Lebesgue measure on the product space defined on the basis by µ0 (Uf ) =

∣∣A∣∣−|dom(f)|.
We note a useful property of this measure, which intuitively amounts to saying that

events happening in incomparable nodes are independent. For t ∈ TrA and v ∈ {L, R}∗, the
subtree of t induced by v is a tree t�v ∈ TrA defined by t�v(w) = t(vw), for w ∈ {L, R}∗.
I Remark 3. If v1, . . . , vk ∈ {L, R}∗ are pairwise incomparable nodes (i.e., none is a prefix of
another) and V1, . . . , Vk ⊆ TrA are Borel sets then

µ0
(
{t ∈ TrA | t�vi

∈ Vi for i = 1, . . . , k}
)

= µ0(V1) · . . . · µ0(Vk). (1)

We refer to e.g. [12] for more detailed considerations of measures on sets of infinite trees.

3 Tree automata and games

An alternating parity automaton over infinite trees can be presented as a tuple A =
〈A,Q, qI, δ,Ω〉, where A is a finite alphabet; Q a finite set of states; qI ∈ Q an initial
state; δ : Q×A→ BC+({L, R}×Q

)
a transition function that assigns to a pair (q, a) ∈ Q×A

a finite positive Boolean combination of pairs (d, q′) ∈ {L, R} ×Q; and finally Ω: Q→ N is
a priority mapping.

ICALP 2020



136:4 Computing Measures of Weak-MSO Definable Sets of Trees

In this paper, we assume that automata are weak, i.e. the priorities Ω(q) are non-increasing
along transitions. More precisely, if (d, q′) is an atom that appears in the formula δ(q, a)
then Ω(q) ≥ Ω(q′). Given n ∈ N, we denote by Q<n and Q≥n the subsets of Q consisting
of those states whose priority is respectively strictly smaller or greater than n.

The semantics of an automaton can be given in a terms of a game played by two players
∃ and ∀ over a tree t in TrA from a state p ∈ Q. Let Γ be the set of all sub-formulae
of the formulae in δ(q, a), for all (q, a) ∈ Q × A. The set of positions of the game is the
set

(
Q t Γ

)
× {L, R}∗ and the initial position is

(
p, ε
)
. The positions of the form

(
q, v
)
,(

φ1∨φ2, v
)
, and

(
(d, q), v

)
are controlled by ∃, while the positions of the form

(
φ1∧φ2, v

)
are

controlled by ∀. The edges connect the following types of positions:(
q, v
)
and

(
δ(q, t(v)), v

)
,(

φ1∨φ2, v
)
and

(
φi, v

)
for i = 1, 2,(

φ1∧φ2, v
)
and

(
φi, v

)
for i = 1, 2,(

(d, q), v
)
and

(
q, v · d

)
.

We assume that every formula in the image δ(Q×A) is non-trivial and, thus, every position
is a source of some edge.

The directed graph described above forms the arena of our game that we denote by G(t, p).
A play in the arena is any infinite path starting from the initial position

(
p, ε
)
. We call the

positions of the form (q, v) state positions. Given a play π, the states of the play denoted
states (π) is the sequence of states (q0, q1, . . .) ∈ Qω such that the successive state positions
visited during π are

(
qi, vi

)
, for i = 0, 1, . . ., and some (vi)i∈ω.

To complete the definition of the game, we specify a winning criterion for ∃. The default
is the parity condition, but we will also consider other criteria. Let

Runs def= {ρ ∈ Qω | ∀i ∈ ω. Ω(ρ(i)) ≥ Ω(ρ(i+1))
}

be the set that contains all sequences of states that induce non-increasing sequences of
priorities. Notice that since A is weak, only such sequences may arise in the game. In general,
a winning condition is any set W ⊆ Runs. That is, a play π is winning for ∃ with respect
toW if, and only if, states (π) ∈W . The game with a winning setW is denoted by G(t, p,W ).

The parity condition WP ⊆ Runs for a weak automaton amounts to: (q0, q1, . . .) ∈WP

if limi→∞Ω(qi) ≡ 0 mod 2, i.e. the limit priority of states visited in a play is even. Let
L(A, p) be the set of trees such that ∃ has a winning strategy in G(t, p,WP ). Then, the
language of an automaton A is the set L(A) def= L(A, qI), where qI is the initial state of A.

As mentioned above, we will consider games with various winning criteria. The following
simple observation is useful.
I Remark 4. If W ⊆W ′ ⊆ Runs then the following implication holds: if ∃ wins G(t, p,W )
then ∃ wins also G(t, p,W ′).

Since the winning criteria in consideration will always be ω-regular languages of infinite
words, we implicitly rely on the following classical fact (cf. [13]).

I Proposition 5. Games on graphs with ω-regular winning conditions are finite memory
determined.

We will also use the following fact, cf. e.g. [17, 23].

I Proposition 6. For a weak alternating parity automaton A, all tree languages L(A, p) are
Borel and, consequently, measurable with respect to the uniform measure µ0 (and also any
other Borel measure on TrA).

Note that measurability holds for non-weak automata as well [12].
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4 Approximations

For the sake of this section we fix a weak alternating parity automaton A. Our aim
is to provide some useful approximations for the tree languages L(A, p). The approximations
are simply some families of tree languages indexed by states p ∈ Q. Those families, called
Q-indexed families, or Q-families for short, are represented by functions L : Q → P(TrA).
By the construction, we will guarantee that the tree languages L(q) will themselves be
recognisable by some weak alternating automata. Each Q-family naturally possesses a dual
representation by a mapping TrA → P(Q) that we denote by the same letter (but with
different brackets)

L[t] def= {q ∈ Q | t ∈ L(q)} ∈ P(Q).

If ρ ∈ Runs ⊆ Qω is an infinite sequence of states then limi→∞ Ω(ρ(i)) (denoted by limit(ρ))
exists, because by the definition of Runs the priorities are non-increasing and bounded.
Recall that WP ⊆ Runs is the set of runs satisfying the parity condition, i.e. WP = {ρ ∈
Runs | limit(ρ) ≡ 0 mod 2}. For i, n ∈ N, consider the following subsets of Runs:

Sn
i

def= WP ∪
{
ρ ∈ Runs | Ω(ρ(i)) ≥ n

}
,

Sn
∞

def= WP ∪
{
ρ ∈ Runs | limit(ρ) ≥ n

}
,

Rn
i

def= WP ∩
{
ρ ∈ Runs | Ω(ρ(i)) < n

}
,

Rn
∞

def= WP ∩
{
ρ ∈ Runs | limit(ρ) < n

}
.

Connotatively, the name of the sets Sn
i comes from the condition of safety, while the sets Rn

i

are named after reachability. More precisely, Sn
i is an over-approximation of WP , that

makes ∃ win also if she manages to reach a priority ≥ n in the ith visited node of a given
tree. Analogously, Rn

i is an under-approximation of WP that makes ∀ win in the above case.
Based on the above definitions, we define the respective Q-families. For p ∈ Q, let Sn

i (p),
Sn
∞(p), Rn

i (p), and Rn
∞(p) be the sets of trees such that ∃ has a winning strategy in the

game G(t, p,W ), where W is respectively Sn
i , Sn

∞, Rn
i , and Rn

∞. Figure 1 below depicts the
way these Q-families are used in the general construction.

It is easy to see that all the tree languages above can be recognised by weak parity
alternating automata.

I Lemma 7. For every n ∈ N and i ∈ N, we have

Sn
i ⊇ Sn

i+1 ⊇ Sn
∞ and Rn

i ⊆ Rn
i+1 ⊆ Rn

∞.

Analogously, for every p ∈ Q,

Sn
i (p) ⊇ Sn

i+1(p) ⊇ Sn
∞(p) and Rn

i (p) ⊆ Rn
i+1(p) ⊆ Rn

∞(p).

Proof. The first property follows directly from the definition of Runs, which guarantees that
Ω(ρ(0)) ≥ Ω(ρ(1)) ≥ . . . ≥ limit(ρ). Then, the second property follows from Remark 4. J

It is straightforward to see that Sn
∞ =

⋂
i∈N S

n
i and Rn

∞ =
⋃

i∈NR
n
i . However, it is not clear

that these equalities imply the desired properties for the respective sets of trees. Lemma 9
below implies that it is the case. The proof relies on combinatorics of binary trees, namely
on König’s Lemma.
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I Lemma 8. Take n ∈ N and p ∈ Q. Let Bn
∞ = {ρ ∈ Runs | limit(ρ) < n} and, for i ∈ N,

let Bn
i = {ρ ∈ Runs | Ω(ρ(i)) < n}. If σ is a winning strategy of ∃ in G(t, p, Bn

∞) then there
exists a number J ∈ N, such that σ is actually winning in G(t, p, Bn

J ). An analogous property
holds if σ is a winning strategy for ∀.

Proof. Let σ be a winning strategy of ∃ in G(t, p, Bn
∞) (the case of ∀ is completely analogous).

Let T ⊆
(
Q× {L, R}

)∗ be the set of sequences (qi, di)i≤`, with q0 = p, such that there exists
a play consistent with σ that visits all the positions (qi, d0 · · · di−1) for i = 0, 1, . . . , `, and
additionally Ω(q`) ≥ n. Observe that T is prefix-closed. Thus, we can treat T as a tree.
Moreover, as Q×{L, R} is finite, T is finitely branching. If T is finite then there exists J such
that all the sequences in T have length at most J . In that case σ is winning in G(t, p, Bn

J ),
and we are done.

For the sake of contradiction, suppose that T is infinite. Apply König’s Lemma to obtain
an infinite path (qi, di)i∈ω in T . By the definition of T , it implies that there exists an infinite
play consistent with σ such that (qi)i∈ω is the sequence of states visited during the play. But
this is a contradiction, because limit

(
(qi)i∈ω

)
≥ n by the definition of T and, therefore, the

considered play is losing for ∃. J

I Lemma 9. Using the above notions, for every state p ∈ Q, we have

Sn
∞(p) =

⋂
i∈N
Sn

i (p) and Rn
∞(p) =

⋃
i∈N
Rn

i (p).

Proof. Consider the first claim and take a tree t ∈ TrA such that for every i ∈ N we
have t ∈ Sn

i (p). We need to prove that t ∈ Sn
∞(p). Assume contrarily, that t /∈ Sn

∞(p).
By determinacy, see Proposition 5, it means that there exists a strategy σ′ of ∀ such
that for every play π consistent with σ′, we have limit(states (π)) < n and limit(states (π))
is odd. Hence, in particular, σ′ is winning for ∀ in G(t, p, Bn

∞). Therefore, by Lemma 8,
we know that there exists a number J ∈ N such that, for every π consistent with σ′ with
states (π) = (q0, q1, . . .), we have Ω(qJ) < n. Therefore, the strategy σ′ witnesses that
t /∈ Sn

J (p), a contradiction.
We now prove the second claim. Take a tree t ∈ Rn

∞(p). We need to prove that t ∈ Rn
i (p)

for some i ∈ N. Let σ be a strategy of ∃ witnessing that t ∈ Rn
∞(p). Again, Lemma 8

guarantees that there exists a number J ∈ N such that if π is a play consistent with σ with
states (π) = (q0, q1, . . .) then Ω(qJ) < n. Thus, t ∈ Rn

J(p). J

The following lemma provides another characterisation of the above Q-families.

I Lemma 10. For each p ∈ Q, we have S0
i (p) = TrA and R0

i (p) = ∅. Take n > 0. If
Ω(p) ≥ n then Sn

0 (p) = TrA and Rn
0 (p) = ∅. If Ω(p) < n then

L(A, p) = Sn
0 (p),

L(A, p) = Sn−1
∞ (p) for odd n,

L(A, p) = Rn
0 (p),

L(A, p) = Rn−1
∞ (p) for even n.

Proof. The cases of n = 0 are trivial. The first two claims in the case Ω(p) ≥ n follow
directly from the definitions. Take p such that Ω(p) < n. Notice that in that case the
sequence of states ρ in a play in G(t, p) satisfies

ρ ∈WP ⇐⇒ ρ ∈ Sn
0 ,

ρ ∈WP ⇐⇒ ρ ∈ Sn−1
∞ for odd n,

ρ ∈WP ⇐⇒ ρ ∈ Rn
0 ,

ρ ∈WP ⇐⇒ ρ ∈ Rn−1
∞ for even n.
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where the first two equivalences follow from the fact that Ω(ρ(0)) = Ω(p) < n. The last
two equivalences can be derived from the fact that limit(ρ) ≤ Ω(p) < n. First, we have
limit(ρ) ≥ n−1⇔ limit(ρ) = n−1. Thus, if n is odd and limit(ρ) ≥ n−1 then we know that
limit(ρ) is even. Analogously, if n is even then n−1 is odd and the fact that limit(ρ) is even
guarantees that limit(ρ) < n−1.

Clearly, the above equivalences imply that, under the assumption of the lemma, a strategy
winning for the condition WP is winning for the respective conditions and vice-versa. J

Our aim now is to define a function ∆: P(Q)×A×P(Q)→ P(Q) that will allow us to form
equations over Q-families. An ordered pair of sets of states PL, PR ∈ P(Q) induces a valuation
vPL,PR to the atoms in {L, R} × Q defined by: vPL,PR(d, p) is true if p ∈ Pd. Now, consider
additionally a letter a ∈ A and put

∆(PL, a, PR) =
{
q ∈ Q | vPL,PR |= δ(q, a)

}
.

Equivalently, q ∈ ∆(PL, a, PR) if ∃ can play the finite game represented by δ(q, a) in such
a way to reach only such atoms (d, p) that satisfy p ∈ Pd.

I Lemma 11. The function ∆: P(Q)×A× P(Q)→ P(Q) is monotone, i.e. if PL ⊆ P ′L and
PR ⊆ P ′R then ∆(PL, a, PR) ⊆ ∆(P ′L, a, P ′R).

Proof. It follows directly from the fact that the Boolean formulae in δ(q, a) are positive. J

Recall that t�v ∈ TrA denotes the subtree of t induced by a node v, cf. Section 2. The
following lemma shows how to increase the index i of the above Q-families Sn

i and Rn
i .

I Lemma 12. Take n ∈ N, i ∈ N, and a tree t ∈ TrA. Then we have:

Sn
i+1[t] = ∆

(
Sn

i [t�L], t(ε),Sn
i [t�R]

)
,

Rn
i+1[t] = ∆

(
Rn

i [t�L], t(ε),Rn
i [t�R]

)
.

The proof of this lemma is based on a standard technique of merging strategies: the
game G(t, p) can be split into a finite game corresponding to the formula δ

(
p, t(ε)

)
that leads

to the sub-games G(t�L, pL) and G(t�R, pR) for some states pL, pR ∈ Q.

Proof. Take a play π in the arena G(t, p) for some state p ∈ Q. Recall that, by the definition
of the game, the initial position of the play is (p, ε) and the next state position will have
the form (q, d), for some q ∈ Q and d ∈ {L, R}. Consider the suffix of the play π starting
from that position. Clearly, this suffix induces a play, say π′, in the arena G(t�d, q), starting
from the position (q, ε) (technically, to satisfy our definition, we need also to replace every
position (α, dv) by (α, v) in the original play). Moreover, the sequence of states visited by π′,
states (π′), is a suffix of the sequence states (π) obtained by removing just the first element.
By the definition of Sn

i and Rn
i we have therefore

states(π) ∈ Sn
i+1 ⇐⇒ states(π′) ∈ Sn

i , and states(π) ∈ Rn
i+1 ⇐⇒ states(π′) ∈ Rn

i . (2)

We will now provide the proof for Sn
i+1, the case of Rn

i+1 is analogous. Let PL and PR

equal respectively Sn
i [t�L] and Sn

i [t�R]. Put a = t(ε). Recall that by the duality of the two
representations of Q-families, p ∈ Sn

i+1[t] iff t ∈ Sn
i+1(p). So we need to prove that for every

p ∈ Q we have t ∈ Sn
i+1(p) if and only if p ∈ ∆(PL, a, PR).

Assume that t ∈ Sn
i+1(p). Take a strategy σ witnessing that. Notice that if a position of

the form (q, d) can be reached by σ then by (2) we know that t�d ∈ Sn
i (q), i.e. q ∈ Pd. Thus,

the strategy σ witnesses that p ∈ ∆(PL, a, PR).
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Figure 1 A schematic presentation of the relationship between the distributions used in the proof.
The vertical axis represents the order �, i.e. ~µ0(S0

0 ) � ~µ0(S0
∞). The edges marked F , Q<n, and

Q≥n represent applications of the respective operations. The vertical convergence is understood
in terms of pointwise limits in RP(Q).

For the opposite direction, assume that p ∈ ∆(PL, a, PR). This means that there exists a
finite strategy of ∃ that allows her to resolve the formula δ(p, a) in such a way that for every
atom (d, q) that can be reached by this strategy, we have (d, q) ∈ Pd. The last means that ∃
has a winning strategy in the game G(t�d, q,Sn

i ). Now we can combine all above strategies
in a strategy in the game G(t, p, Sn

i+1), which by Equation (2) is again winning for ∃. Hence,
t ∈ Sn

i+1(p), as desired. J

5 Measures and distributions

Following an approach started in [21], we transfer the problem of computing measures
of tree languages L(A, p) to computing a suitable probability distribution on the sets of the
automaton states. We start with a general construction. For a finite set X, consider the set
of probability distributions over X, DX def=

{
α : X → [0, 1] |

∑
x∈X α(x) = 1

}
. Observe that,

if X is partially ordered by a relation ≤ then DX is partially ordered by a relation � defined
as follows: α � β if for every upward-closed1 set U ⊆ X, we have

∑
x∈U α(x) ≤

∑
x∈U β(x).

In this article, we are interested in 〈X,≤〉 being the powerset P(Q) ordered by inclusion ⊆.

I Remark 13. The relation � is a partial order on DX (as an intersection of a finite family
of partial orders).

Every Q-family L for a weak alternating automaton A induces naturally a member
of DP(Q), which is a distribution ~µ0

(
L
)
defined by

~µ0
(
L
)
(P ) = µ0

{
t ∈ TrA | L[t] = P

}
.

Here µ0 is the uniform probability measure on TrA. The sets in consideration are measurable
thanks to Proposition 6.

Note that if the language family is exactly L(q) = L(A, q) then the probability assigned
to a set of states P amounts to the probability that a randomly chosen tree, with respect
to µ0, is accepted precisely from the states in P .

I Lemma 14. If for each q ∈ Q we have L(q) ⊆ L′(q) then ~µ0(L) � ~µ0(L′) in DP(Q).

1 That is if x ≤ y and x ∈ U then y ∈ U .
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Proof. Take any upward-closed family U ⊆ P(Q). Then∑
P∈U

~µ0
(
L
)
(P ) =

∑
P∈U

µ0
{
t ∈ TrA | L[t] = P

}
= µ0

{
t ∈ TrA | L[t] ∈ U

}
≤

≤ µ0
{
t ∈ TrA | L′[t] ∈ U

}
=
∑
P∈U

µ0
{
t ∈ TrA | L′[t] = P

}
=
∑
P∈U

~µ0
(
L′
)
(P ),

where the middle inequality follows from the assumption that L(q) ⊆ L′(q) and the fact that
the family U is upward-closed. J

We now examine the sequences of distributions ~µ0
(
Sn

i

)
, ~µ0

(
Rn

i

)
, ~µ0

(
Sn
∞
)
, and ~µ0

(
Rn
∞
)

arising from the Q-families introduced in the previous section. Our aim is to bind them
by equations computable within DP(Q). As an analogue to the operation ∆, we introduce
a function F : DP(Q)→ DP(Q) defined for β ∈ DP(Q) and P ∈ P(Q) by

F(β)(P ) = 1
|A|
·

∑
(PL,a,PR)∈∆−1(P )

β(PL) · β(PR). (3)

Note that the formula guarantees that F(β) is indeed a probabilistic distribution in DP(Q).
The operator F allows us to lift the inductive definitions of the Q-families Sn

i+1 and Rn
i+1

given by Lemma 12, to their counterparts in the level of probability distributions.

I Lemma 15. For each n ∈ N and i ∈ N we have

~µ0
(
Sn

i+1
)

= F
(
~µ0
(
Sn

i

))
and ~µ0

(
Rn

i+1
)

= F
(
~µ0
(
Rn

i

))
.

Proof. Take P ∈ P(Q) and observe that

F
(
~µ0
(
Sn

i

))
(P ) (1)= 1

|A|
·

∑
(PL,a,PR)∈∆−1(P )

~µ0
(
Sn

i

)
(PL) · ~µ0

(
Sn

i

)
(PR)

(2)=
∑

(PL,a,PR)∈∆−1(P )

µ0
{
tL | Sn

i [tL]=PL
}
· 1
|A|
· µ0
{
tR | Sn

i [tR]=PR
}

(3)=
∑

(PL,a,PR)∈∆−1(P )

µ0
{
t | Sn

i [t�L]=PL ∧ t(ε)=a ∧ Sn
i [t�R]=PR

}
(4)= µ0

 ⋃
(PL,a,PR)∈∆−1(P )

{
t | Sn

i [t�L]=PL ∧ t(ε)=a ∧ Sn
i [t�R]=PR

}
(5)= µ0

{
t ∈ TrA | ∆

(
Sn

i [t�L], t(ε),Sn
i [t�R]

)
=P
}

(6)= µ0

{
t ∈ TrA | Sn

i+1[t]=P
}

(7)= ~µ0
(
Sn

i+1
)
(P ),

where: (1) is just the definition of F
(
~µ0
(
Sn

i

))
; (2) follows from the definition of ~µ0

(
Sn

i

)
;

(3) follows from Remark 3 and the independence of {t(ε) = a} from the other events
in consideration; (4) follows from the fact that the measured sets are pairwise disjoint;
(5) follows simply from the definition of ∆; (6) follows from Lemma 12; and (7) is just the
definition of ~µ0

(
Sn

i+1
)
.

The proof for Rn
i+1 follows the same steps, except it uses the Rn

i variant of Lemma 12. J
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Now, recall that Q≥n and Q<n are sets of states of respective priorities. Let the
functions Q<n,Q≥n : DP(Q)→ DP(Q) be defined by

Q<n(β)(P ) def=
∑

P ′ : P ′∩Q<n=P β(P ′), (4)

Q≥n(β)(P ) def=
∑

P ′ : P ′∪Q≥n=P β(P ′). (5)

Again, the formulae guarantee that Q<n(β) and Q≥n(β) are both probabilistic distributions
in DP(Q). The following lemma shows the relation between these functions and the limit
distributions ~µ0

(
Sn−1
∞

)
and ~µ0

(
Rn−1
∞
)
.

I Lemma 16. For each n ∈ N we have

Q<n

(
~µ0
(
Sn−1
∞

))
= ~µ0

(
Rn

0
)

if n is odd,

Q≥n

(
~µ0
(
Rn−1
∞
))

= ~µ0
(
Sn

0
)

if n is even.

This lemma follows from Lemma 10 in a similar way as Lemma 15 follows from Lemma 12.

Proof. Consider the case of even n and a tree t ∈ TrA. We need to show that

Q≥n

(
~µ0
(
Rn−1
∞
))

= ~µ0
(
Sn

0
)
.

Lemma 10 implies that

Sn
0 [t] =

(
Rn−1
∞ [t]

)
∪Q≥n. (6)

Therefore, for each P ∈ P(Q) we have

~µ0
(
Sn

0
)
(P ) = µ0

{
t ∈ TrA | Sn

0 [t] = P
}

= µ0
{
t ∈ TrA |

(
Rn−1
∞ [t]

)
∪Q≥n = P

}
= µ0

 ⋃
P ′ : P ′∪Q≥n=P

{
t ∈ TrA | Rn−1

∞ [t] = P ′
}

=
∑

P ′ : P ′∪Q≥n=P

µ0
{
t ∈ TrA | Rn−1

∞ [t] = P ′
}

=
∑

P ′ : P ′∪Q≥n=P

~µ0
(
Rn−1
∞
)
(P ′)

= Q≥n

(
~µ0
(
Rn−1
∞
))

(P )

The case of odd n is entirely analogous. J

The two above lemmata express the properties of the operators F , Q<n, and Q≥n

as depicted on Figure 1.
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6 Limit distributions ~µ0
(
Sn

∞

)
and ~µ0

(
Rn

∞

)
In this section we show how to represent the distributions ~µ0

(
Sn
∞
)
and ~µ0

(
Rn
∞
)
as fixed

points. We begin by proving that these distributions are limits in RP(Q) of the sequences
of vectors

(
~µ0
(
Sn

i

))
i∈N and

(
~µ0
(
Rn

i

))
i∈N respectively. This is a consequence of Lemmata 7

and 9.

I Lemma 17. For each n ∈ N and P ∈ P(Q) we have

lim
i→∞

~µ0
(
Sn

i

)
(P ) = ~µ0

(
Sn
∞
)
(P ) and lim

i→∞
~µ0
(
Rn

i

)
(P ) = ~µ0

(
Rn
∞
)
(P ).

Proof. We consider case of ~µ0
(
Sn
∞
)
, the case of ~µ0

(
Rn
∞
)
(P ) is entirely dual. First, we show

that the respective limits agree when taking sums over any upward closed family U ⊆ P(Q),
see (7) below. For i ∈ N let Xi =

⋃
P ′∈U{t ∈ TrA | Sn

i [t] = P ′} and X∞ =
⋃

P ′∈U{t ∈
TrA | Sn

∞[t] = P ′}. Lemma 7 together with the fact that U is upward-closed imply that
X0 ⊇ X1 ⊇ . . . ⊇ X∞. Lemma 9 and finiteness of Q imply that for every tree t there
exists an index J such that Sn

J [t] ⊆ Sn
∞[t]. Therefore,

⋂
i∈NXi = X∞. By continuity of the

measure µ0 we get that limi→∞ µ0(Xi) = µ0(X∞). This means that

lim
i→∞

∑
P ′∈U

~µ0
(
Sn

i

)
(P ′) = lim

i→∞
µ0(Xi) = µ0(X∞) =

∑
P ′∈U

~µ0
(
Sn
∞
)
(P ′). (7)

Clearly, {P} = {P ′ ∈ P(Q) | P ′ ⊇ P} \ {P ′ ∈ P(Q) | P ′ ) P} with both these families
upward closed. Therefore, we can apply (7) twice and obtain the desired equation. J

The monotonicity of ∆, see Lemma 11, implies the following lemma.

I Lemma 18. The operator F : DP(Q)→ DP(Q), see Equation (3), is monotone in �.

Proof. We need to prove that F is monotone w.r.t. the order �. Thus, for every α �
β ∈ DP(Q) and an upward-closed family U ⊆ P(Q) we should have

∑
P∈U F(α)(P ) ≤∑

P∈U F(β)(P ).
After multiplying by 1

|A| and splitting the sum over separate letters a ∈ A (see the

definition of F , cf. (3)), it is enough to show that for each a ∈ A and Oa
def= {(PL, PR) |

∆(PL, a, PR) ∈ U} we have

∑
(PL,PR)∈Oa

α(PL) · α(PR) ≤
∑

(PL,PR)∈Oa

β(PL) · β(PR).

Now, by monotonicity of ∆ (see Lemma 11) and the fact that U is upward-closed, we
know that if PL ⊆ P ′L, PR ⊆ P ′R, and (PL, PR) ∈ Oa then also (P ′L, P ′R) ∈ Oa. By P−1

L · Oa

and Oa · P−1
R we will denote the sections {PR | (PL, PR) ∈ Oa} and {PL | (PL, PR) ∈ Oa}

respectively. Notice that both of them are upward-closed. Thus, using the assumption that
α � β twice, we obtain
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∑
(PL,PR)∈Oa

α(PL) · α(PR) =
∑

PL∈P(Q)

α(PL) ·

 ∑
PR∈P−1

L ·Oa

α(PR)


≤

∑
PL∈P(Q)

α(PL) ·

 ∑
PR∈P−1

L ·Oa

β(PR)


=

∑
(PL,PR)∈Oa

α(PL) · β(PR) =
∑

(PL,PR)∈Oa

β(PR) · α(PL)

=
∑

PR∈P(Q)

β(PR) ·

 ∑
PL∈Oa·P−1

R

α(PL)


≤

∑
PR∈P(Q)

β(PR) ·

 ∑
PL∈Oa·P−1

R

β(PL)


=

∑
(PL,PR)∈Oa

β(PR) · β(PL) =
∑

(PL,PR)∈Oa

β(PL) · β(PR).

J

With the two lemmata above, we are ready to conclude this section: we characterise the
distributions ~µ0

(
Sn
∞
)
and ~µ0

(
Rn
∞
)
, see Figure 1, by a specialised variant of the Knaster-Tarski

fixed point theorem.

I Proposition 19. For each n ∈ N the distribution ~µ0
(
Sn
∞
)
is the �-greatest distribution β

satisfying β = F(β) and β � ~µ0
(
Sn

0
)
. Similarly, ~µ0

(
Rn
∞
)
is the �-least distribution β

satisfying β = F(β) and β � ~µ0
(
Rn

0
)
.

Proof. Consider the case of ~µ0
(
Sn
∞
)
. Observe that F is continuous in RP(Q). Indeed,

it is given by a vector of quadratic polynomials from RP(Q) to RP(Q). Now, take P ∈ P(Q)
and observe that

~µ0
(
Sn
∞
)
(P ) = lim

i→∞
~µ0
(
Sn

i

)
(P ) = lim

i→∞
F
(
~µ0
(
Sn

i

))
(P ) =

F
(

lim
i→∞

~µ0
(
Sn

i

)
(P )
)

= F
(
~µ0
(
Sn
∞
)
(P )
)

where the first equality follows from Lemma 17; the second from Lemma 15; the third
from continuity of F ; and the last from Lemma 17, again. Therefore, β = ~µ0

(
Sn
∞
)
satisfies

β = F(β). Moreover, Lemmata 7 and 14 imply that β � ~µ0
(
Sn

0
)
.

Consider now any distribution β ∈ DP(Q) such that β = F(β) and β � ~µ0
(
Sn

0
)
. We need

to prove that β � ~µ0
(
Sn
∞
)
. Lemma 18 states that F is monotone. Therefore, by inductively

applying Lemma 15 for i = 0, . . ., we infer that

β = F(β) ≤ F
(
~µ0
(
Sn

i

))
= ~µ0

(
Sn

i+1
)
.

Take any upward-closed family U ⊆ P(Q). The above inequality implies that for each i ∈ N
we have

∑
P∈U β(P ) ≤

∑
P∈U ~µ0

(
Sn

i

)
(P ). By taking the limit as in Lemma 17 we obtain

that
∑

P∈U β(P ) ≤
∑

P∈U ~µ0
(
Sn
∞
)
(P ). This implies that β � ~µ0

(
Sn
∞
)
.

The case of ~µ0
(
Rn
∞
)
is similar, we utilise the opposite monotonicity β � ~µ0

(
Rn

i+1
)
. J
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7 Computing measures

In this section, we conclude our solution to Problem 1 for weak alternating automata. This
is achieved by a reduction to the first-order theory of the real numbers R = 〈R, 0, 1,+, ·〉.
The theory is famously decidable thanks to Tarski-Seidenberg theorem, see e.g. [25].

Throughout this section, we assume that the reader is familiar with the syntax and
semantics of first-order logic. We say that a formula ϕ(x1, . . . , xk) represents a relation r ⊆ Rk

if it holds in R according to an evaluation v of the free variables x1, . . . , xn, precisely when
the tuple 〈v(x1), . . . , v(xk)〉 belongs to r. For example, the formula ∃z. x + (z·z) = y

represents the standard ordering ≤ on real numbers. A formula represents a number a ∈ R
if it represents the singleton {a}; for example the formula x·x = 1+1∧∃z. x = z·z, represents
the number

√
2.

I Theorem 20. Given a weak alternating automaton A one can compute a formula ψA(x)
that represents the number µ0

(
L(A)

)
. Moreover, the formula is in a prenex normal form, its

size is exponential in the size of A, and the quantifier alternation of ψA(x) is constant.

Proof. Fix a weak alternating automaton A = 〈A,Q, qI, δ,Ω〉. Let N > Ω(qI) be an even
number (either Ω(qI)+1 or Ω(qI)+2). Fix an enumeration {P1, . . . , PK} of P(Q) with K =
2|Q|. We will identify a distribution α ∈ DP(Q) with its representation α = (a1, . . . , aK) ∈ RK

as a vector of real numbers. Following this identification, α(Pk) stands for ak. Clearly the
properties that F(α) = β, Q<n(α) = β, and Q≥n(α) = β are definable by quantifier free
formulae of size polynomial in K.

The following formula defines the fact that α ∈ DP(Q).

dist(α) ≡
K∑

k=1
α(Pk) = 1 ∧

K∧
k=1

0 ≤ α(Pk) ≤ 1

Analogously to our representation of distributions, every subset U ⊆ P(Q) can be
represented by its indicator: a vector of numbers ι = (i1, . . . , iK) such that ι(P ) is either 0 (if
P /∈ U) or 1 (if P ∈ U). Note that if U is upward closed then whenever P ⊆ P ′ and ι(P ) = 1
then ι(P ′) = 1. The following formula defines the fact that ι represents an upward-closed set.

upward(ι) ≡
K∧

k=1

(
ι(Pk)=0 ∨ ι(Pk)=1

)
∧
∧

P⊆P ′

ι(P )=1→ ι(P ′)=1.

Thus, to check if α � β one can use the following formula (see Claim 21 below)

minor(α, β, ι) ≡
K∑

k=1
α(Pk) · ι(Pk) ≤

K∑
k=1

β(Pk) · ι(Pk).

Notice that all the above formulae: dist(α), upward(ι), and minor(α, β, ι) are quantifier
free: the

∧
there are just explicitly written as finite conjunctions. Therefore, these formulae

can be used to relativise quantifiers in a prenex normal form of a formula: for instance we
write ∀α : dist(α). ∃β : dist(β). ψ(α, β) to denote ∀α. ∃β. dist(α)→

(
dist(β) ∧ ψ(α, β)

)
.

B Claim 21. Given two distributions α and β, we have α � β if and only if

∀ι : upward(ι). minor(α, β, ι).
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α0 = ~µ0(S0
0 )

β0 = ~µ0(S0
∞)

♥

β1 = ~µ0(R0
∞)

α1 = ~µ0(R0
0)

♠

Q<1

α2 = ~µ0(S0
0 )

β2 = ~µ0(S0
∞)

♥

β3 = ~µ0(R0
∞)

α3 = ~µ0(R0
0)

♠

Q<3

Q≥2
· · ·

· · ·

· · ·

Q≥4

Figure 2 A diagram of the distributions αn and βn in the formula ψA(x), cf. Figure 1. The
symbol ♥ represents applications of Proposition 19 in the case of Sn

0 and Sn
∞; while ♠ corresponds

to the dual case of Rn
0 and Rn

∞.

The formula ψA(x) is indented to specify the distributions (αn, βn)n=0,...,N in a way
depicted on Figure 2. The value ~µ0

(
S0

0 (P )) is 1 if P = Q and 0 otherwise, see Lemma 10.
Proposition 19 allows us to define ~µ0

(
Sn
∞) (resp. ~µ0

(
Rn
∞)) using ~µ0

(
Sn

0 ) (resp. ~µ0
(
Rn

0 )) as
specific fixed points of the operation F . Finally, Lemma 16 allows us to define ~µ0

(
Rn

0
)

using Q<n, and ~µ0
(
Sn

0
)
using Q≥n. The value of x is related to those distributions based

on Lemma 10 which implies that µ0
(
L(A)

)
=
∑

P : qI∈P∈P(Q) ~µ0
(
SN

0
)
(P ).

The following equation defines the formula ψA(x).

ψA(x) ≡ ∃α0, β0 : dist(α0),dist(β0), β0=F(β0).
... (8)

∃αN , βN : dist(αN ),dist(βN ), βN =F(βN ).
∀θ : dist(θ), θ=F(θ). (9)
∃ι0 : upward(ι0).
... (10)
∃ιN : upward(ιN ).
∀γ0 : upward(γ0).

... (11)
∀γN : upward(γN ).α0(Q) = 1 ∧

∧
P 6=Q

α0(P ) = 0

 ∧ (12)

(
N∧

n=1
[n is odd]→ αn = Q<n(βn−1)

)
∧ (13)(

N∧
n=1

[n is even]→ αn = Q≥n(βn−1)
)
∧ (14)(

N∧
n=0

[n is odd]→ minor(αn, βn, γn)
)
∧ (15)(

N∧
n=0

[n is even]→ minor(βn, αn, γn)
)
∧ (16)(

N∧
n=0

[n is odd]→
(
¬minor(αn, θ, ιn) ∨minor(βn, θ, γn)

))
∧ (17)
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(
N∧

n=0
[n is even]→

(
¬minor(θ, αn, ιn) ∨minor(θ, βn, γn)

))
∧ (18)∑

P3qI

αN (P ) = x

 (19)

Observe that the size of this formula is polynomial in K and N (in fact it is O(N ·K2)),
i.e. exponential in the size of the automaton A. Moreover, the formula is in prenex normal
form and its quantifier alternation is 4 (the sub-formulae that involve

∧
are written explicitly

as conjunctions).
We begin by proving soundness of the formula: we assume that ψA(x) holds and show

that x = µ0
(
L(A)

)
. Consider a sequence of distributions (αn, βn)n=0,...,N witnessing (8).

The following two lemmata prove inductively that for n = 0, . . . , N we have

αn = ~µ0(Sn
0 ) and βn = ~µ0(Sn

∞) for even n, (20)
αn = ~µ0(Rn

0 ) and βn = ~µ0(Rn
∞) for odd n.

I Lemma 22. Using the above notations and the assumption that ψA(x) holds:

for even n, if αn = ~µ0(Sn
0 ) then βn = ~µ0(Sn

∞),
for odd n, if αn = ~µ0(Rn

0 ) then βn = ~µ0(Rn
∞).

Proof. Both claims follow from Proposition 19. Take n odd and assume that αn = ~µ0(Rn
0 ).

We know that βn = F(βn) by (8). Moreover, by Claim 21, the arbitrary choice of γn, and (15)
we know that αn � βn. It is enough to prove that if θ is any distribution satisfying αn � θ
and θ = F(θ) then βn � θ.

Assume contrarily that θ is a distribution such that αn � θ and θ = F(θ) but βn � θ.
We know that θ must satisfy the sub-formula in (9). Take the upward closed sets (ι`)`=0,...,N

given by (10). Now let (γ`)`=0,...,N be any sequence of upward closed sets such that γn

witnesses the fact that βn � θ, i.e. ¬minor(βn, θ, γn) holds. But this is a contradiction
with (17) because minor(αn, θ, ιn) is true as αn � θ and minor(βn, θ, γn) is false.

The case of even n is analogous. J

I Lemma 23. Using the above notations and the assumption that ψA(x) holds:

αn = ~µ0(Sn
0 ) for even n and αn = ~µ0(Rn

0 ) for odd n.

Proof. The proof is inductive in n. First, α0 = ~µ0(Sn
0 ) because of (12) and the statement

for n = 0 in Lemma 10 (we can take θ = β0 and γ` = ι` for ` = 0, . . . , N to check that
Condition (12) holds).

Now assume that the above conditions are true for n−1 for some n ∈ {1, . . . , N}. Again,
by the symmetry we assume that n is odd, i.e. αn−1 = ~µ0(Sn−1

0 ). By Lemma 22 we know
that βn−1 = ~µ0(Sn−1

∞ ). Condition (13) says that αn = Q<n(βn−1) = Q<n

(
~µ0(Sn−1

∞ )
)
. Now

Lemma 16 implies that Q<n

(
~µ0(Sn−1

∞ )
)

= ~µ0
(
Rn

0
)
and the induction step is complete. J

Equation (20) together with Condition (19), imply that x = µ0{t ∈ TrA | qI ∈ SN
0 [t]}.

Since N > Ω(qI) is even, Lemma 10 implies that SN
0 (qI) = L(A, qI) and therefore, qI ∈ SN

0 [t]
if and only if t ∈ L(A). This guarantees that x = µ0

(
L(A)

)
.

We will now prove completeness of the formula: if x = µ0
(
L(A)

)
then ψA(x) holds.

Choose the distributions (αn, βn)n=0,...,N in (8) as in (20). We will show that then the
rest of the formula holds. Consider any distribution θ. For each n = 0, . . . , N let ιn be
an upward-closed set witnessing that αn � θ for n odd (resp. θ � αn for n even); or any
upward closed set if the respective inequality holds.
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Take any (γn)n=0,...,N that are upward closed. We need to check that the sub-formula
starting in (12) holds. Conditions (12) – (16) and (19) hold by the same lemmata as
mentioned in the previous section. To check Conditions (17) and (18) one again invokes
Proposition 19: either ιn witnesses that αn � θ (resp. θ � αn) or, if ιn was chosen arbitrarily,
then Proposition 19 implies that also the respective inequality with βn holds. J

7.1 Branching processes
This section is devoted to the variant of Theorem 20 in the case when instead of the standard
measure µ0 one uses a measure µP generated by a given branching process P. For the sake
of simplicity we define only binary branching processes, the case of a fixed higher arity can
be solved analogously.

A branching process is a tuple P = 〈A, τ, αI〉 where A is a finite alphabet; τ : A→ DA2

a branching function that assigns a probability distribution over A2 to every letter in A;
and αI ∈ DA an initial distribution. We assume that all probabilities occurring in these
distributions are rational. By the size of P we understand the size of its binary representation.

A branching process P can be seen as a generator of random trees: it defines a complete
Borel measure µP over the set of infinite trees in the following way. Let f : dom(f) → A

be a complete finite tree of depth d ≥ 0 i.e. dom(f) = {u ∈ {L, R}∗ | |u| ≤ d} = {L, R}<d+1.
Then the measure µP of the basic set Uf , see Section 2, is defined by

µP(Uf ) def= αI(f(ε)) ·
∏

u∈{L,R}<d

τ(f(u))
(
f(uL), f(uR)

)
. (21)

Now, µP can be extended in a standard way to a complete Borel measure on the set of all
infinite trees TrA. Intuitively, a tree t ∈ TrA that is chosen according to µP is generated
in a top-down fashion: the root label t(ε) is chosen according to the initial distribution αI;
and the labels of the children uL and uR of a node u are chosen according to the distribution
τ(t(u)) ∈ DA2 defined for the label of their parent u.

Observe that the uniform measure µ0 over trees TrA equals the measure µP0 defined
by the branching process P0 = 〈A, τ0, α0〉, where α0(a) = |A|−1 and τ0(a)(aL, aR) = |A|−2

for each a, aL, aR ∈ A.

I Theorem 24. Given a weak alternating automaton A and a branching process P one can
compute a formula ψA,P(x) that represents the number µP

(
L(A)

)
. Moreover, the formula

is in a prenex normal form; its size is exponential in the size of A and polynomial in the size
of P; and the quantifier alternation of ψA,P is constant.

To prove Theorem 24, we construct the formula ψA,P(x) directly along the same lines as
the formula ψA(x) in Theorem 20. The difference is that instead of working in the space
DP(Q) with the order �, our computations are performed in the space (DP(Q))A ordered
by the order � considered coordinate-wise. A complete presentation of this more general
construction will be given in the full version of this article.

7.2 Representing algebraic numbers
We now use the formulae ψA and ψA,P constructed above to find the measure of the language
L(A). We use the celebrated result of Tarski [25] and its two algorithmic improvements.

I Theorem 25 ([2,3]). Given a formula ψ of first-order logic over R, one can decide if ψ
holds in deterministic exponential space. Moreover, if ψ is in a prenex normal form and
the alternation of quantifiers ∀ and ∃ in ψ is bounded then the algorithm works in single
exponential time in the size of ψ.
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Proof of Theorem 2. Input a weak alternating automaton A, a branching process P, and
a rational number q. Consider the formula ψ ≡ ∃x. ψA,P(x) ∧ q ./ x, where ./ is one of <,
=, or >. Notice that ψ is in prenex normal form; its size is exponential in the size of A and
polynomial in the size of P; and its quantifier alternation is constant. Apply the algorithm
from Theorem 25 to check whether ψ is true in R. J

We can also compute a representation of the measure µP
(
L(A)

)
. The quantifier elim-

ination procedure due to Tarski [25] transforms a formula ψ(x1, . . . , xn) into an equivalent
quantifier-free formula ψ̂(x1, . . . , xn), which moreover can be represented by a semialgebraic
set, see [4, Chapter 2].

I Theorem 26 ([7]). Given a formula ψ(x1, . . . , xn) of first-order logic over R, one can
construct a representation of the set of tuples (x1, . . . , xn) satisfying ψ, as a semialgebraic
set. Moreover, this algorithm works in time doubly-exponential in the size of ψ.

Theorems 20 and 24 together with the above results imply the following claim.

I Corollary 27. Given a weak alternating automaton A of size n, one can compute a repres-
entation of the value µ0

(
L(A)

)
as a singleton semialgebraic set in time triply exponential

in n. Moreover, given a branching process of size m, one can compute a representation of the
value µP

(
L(A)

)
as a singleton semialgebraic set in time triply exponential in n and doubly

exponential in m.

8 Conclusions

We have shown how to compute the probability measure of a tree language L recognised
by a weak alternating automaton. The crucial trait is continuity of certain approximations
of the measure of L in a properly chosen order �, see Lemma 17. This continuity relies
on König’s lemma, cf. Lemma 9. In terms of µ-calculus, it stems from both the absence
of alternation between least and greatest fixed points in formulae and the boundedness of
branching in models (for a study of continuity in µ-calculus see [11]).

Whether our techniques can be extended beyond weak automata – hopefully to all tree
automata or, equivalently, full MSO logic, or full µ-calculus – remains open. The question
is of interest as, e.g. translation of the logic CTL* into µ-calculus requires at least one
alternation between least and greatest fixed points (cf. [9], Exercise 10.13). On the other
hand, fixed point formulas over binary trees are not continuous in general, and may require ω1
iterations to reach stabilisation, already on the second level of the fixed-point hierarchy.

This problem has been already successfully tackled in the context of measurability of
regular tree languages – Mio [16] uses Martin’s axiom to control the behaviour of measure
when taking limits of sequences of length ω1. Such behaviour cannot be directly simulated
in DX, because each well-founded chain of distributions has a countable length. However,
this need not be an absolute obstacle as it might be the case that the values of the measure
of the iterations stabilise before the actual fixed point is reached, possibly in ω steps.

References
1 André Arnold and Damian Niwiński. Fixed point characterisation of weak monadic logic

definable sets of trees. In Tree Automata and Languages, pages 159–188, 1992.
2 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic

Geometry, volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag Berlin
Heidelberg, 2006.

ICALP 2020



136:18 Computing Measures of Weak-MSO Definable Sets of Trees

3 Michael Ben-Or, Dexter Kozen, and John Reif. The complexity of elementary algebra and
geometry. Journal of Computer and System Sciences, 32(2):251–264, 1986.

4 Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real Algebraic Geometry, volume 36
of A Series of Modern Surveys in Mathematics. Springer-Verlag Berlin Heidelberg, 1998.

5 Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Henzinger. Quantitative stochastic
parity games. In SODA, pages 121–130, 2004.

6 Taolue Chen, Klaus Dräger, and Stefan Kiefer. Model checking stochastic branching processes.
In MFCS, pages 271–282, 2012.

7 George E. Collins. Hauptvortrag: Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In Automata Theory and Formal Languages, pages 134–183, 1975.

8 Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verification. J.
ACM, 42(4):857–907, 1995.

9 Stéphane Demri, Valentin Goranko, and Martin Lange. Temporal Logics in Computer Sci-
ence: Finite-State Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2016.

10 Alessandro Facchini, Filip Murlak, and Michał Skrzypczak. Rabin-Mostowski index problem:
A step beyond deterministic automata. In LICS, pages 499–508, 2013.

11 Gaëlle Fontaine. Continuous fragment of the mu-calculus. In CSL, pages 139–153, 2008.
12 Tomasz Gogacz, Henryk Michalewski, Matteo Mio, and Michał Skrzypczak. Measure properties

of regular sets of trees. Information and Computation, 256:108–130, 2017.
13 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite

Games: A Guide to Current Research, volume 2500 of Lecture Notes in Computer Science.
Springer, 2002.

14 Claire Jones and Gordon D. Plotkin. A probabilistic powerdomain of evaluations. In LICS,
pages 186–195, 1989.

15 Henryk Michalewski and Matteo Mio. On the problem of computing the probability of regular
sets of trees. In FSTTCS, pages 489–502, 2015.

16 Matteo Mio. On the equivalence of game and denotational semantics for the probabilistic
mu-calculus. Logical Methods in Computer Science, 8(2), 2012.

17 David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Alternating automata. the weak
monadic theory of the tree, and its complexity. In ICALP, volume 226 of Lecture Notes in
Computer Science, pages 275–283, 1986.

18 Damian Niwiński and Igor Walukiewicz. A gap property of deterministic tree languages.
Theoretical Computer Science, 1(303):215–231, 2003.

19 Dominique Perrin and Jean-Éric Pin. Infinite Words: Automata, Semigroups, Logic and
Games. Elsevier, 2004.

20 Marcin Przybyłko. On computing the measures of first-order definable sets of trees. In
GandALF, pages 206–219, 2018.

21 Marcin Przybyłko and Michał Skrzypczak. The uniform measure of simple regular sets of
infinite trees. CoRR, abs/2001.11576, 2020. arXiv:2001.11576.

22 Nasser Saheb-Djahromi. Cpo’s of measures for nondeterminism. Theor. Comput. Sci., 12:19–37,
1980.

23 Jerzy Skurczyński. The Borel hierarchy is infinite in the class of regular sets of trees. Theoretical
Computer Science, 112(2):413–418, 1993.

24 Ludwig Staiger. The Hausdorff measure of regular omega-languages is computable. Bulletin
of the EATCS, 66:178–182, 1998.

25 Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. University of
California Press, 1951.

http://arxiv.org/abs/2001.11576


Finite Sequentiality of Finitely Ambiguous
Max-Plus Tree Automata
Erik Paul
Institute of Computer Science, Leipzig University, Germany
epaul@informatik.uni-leipzig.de

Abstract
We show that the finite sequentiality problem is decidable for finitely ambiguous max-plus tree
automata. A max-plus tree automaton is a weighted tree automaton over the max-plus semiring. A
max-plus tree automaton is called finitely ambiguous if the number of accepting runs on every tree
is bounded by a global constant. The finite sequentiality problem asks whether for a given max-plus
tree automaton, there exist finitely many deterministic max-plus tree automata whose pointwise
maximum is equivalent to the given automaton.
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1 Introduction

A max-plus automaton is a finite automaton whose transitions are weighted by real numbers.
A max-plus automaton assigns a weight to each of its runs by adding the weights of the
transitions which constitute the run and it assigns a weight to every word by taking the
maximum over the weights of all runs on the given word. Max-plus automata are weighted
automata [40, 39, 27, 6, 13] over the max-plus semiring. In the form of min-plus automata,
they were originally introduced by Imre Simon as a means to show the decidability of the
finite power property [42, 43] and they enjoy a continuing interest [26, 19, 22, 7, 12, 16, 28].
They have found applications in many different contexts, for example to determine the star
height of a language [18], to prove the termination of certain string rewriting systems [44],
and to model discrete event systems [23]. They also appear in the context of natural language
processing [29], where probabilities are often computed in the min-plus semiring as negative
log-likelihoods for reasons of numerical stability.

Like finite automata, max-plus automata are by definition non-deterministic devices.
However, while every finite automaton can be determinized [36], the same is in general
not true for max-plus automata [22]. Actually, it is a long-standing open question whether
given a max-plus automaton, the existence of an equivalent deterministic automaton can be
decided. This problem is commonly known as the sequentiality problem and is one of the
most prominent open questions about max-plus automata. For practical applications, the
execution of a deterministic automaton is of course much more efficient than the execution
of a non-deterministic one, so being able to decide whether a given automaton can be
determinized is very much desirable. While open in general, the sequentiality problem has
been shown to be decidable for some important subclasses of max-plus automata, namely
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for unambiguous [29], finitely ambiguous [22], and polynomially ambiguous [21] max-plus
automata. Here, we call a max-plus automaton unambiguous if there exists at most one
run on every word, finitely ambiguous if the number of runs on each word is bounded by a
global constant, and polynomially ambiguous if the number of runs on each word is bounded
polynomially in the length of the word. Note that the classes of deterministic, unambiguous,
finitely ambiguous, polynomially ambiguous, and arbitrary max-plus automata form a strictly
ascending hierarchy [22, 20, 28]. Also, deciding the degree of ambiguity of a max-plus
automaton can easily be reduced to deciding the degree of ambiguity of a finite automaton.
It is trivial to decide whether a finite automaton is deterministic. Polynomial time algorithms
to decide whether a finite automaton is unambiguous, finitely ambiguous, or polynomially
ambiguous can be found in [8, 45, 41].

While a given max-plus automaton may not be equivalent to a single deterministic max-
plus automaton, this does not exclude the possibility that it is equivalent to the pointwise
maximum of finitely many deterministic automata. The problem of deciding whether a
max-plus automaton possesses such a finitely sequential representation is known as the finite
sequentiality problem. The decidability of the finite sequentiality problem was posed as an
open question in [19] and has been solved only recently for unambiguous [4] and finitely
ambiguous [3] max-plus automata. Note that the class of max-plus automata which possess a
finitely sequential representation lies strictly between the classes of deterministic and finitely
ambiguous max-plus automata, and it is incomparable to the class of unambiguous max-plus
automata [22].

In this paper, we show that the finite sequentiality problem is decidable for finitely
ambiguous max-plus tree automata. Operating on trees instead of words, max-plus tree
automata are a generalization of max-plus word automata and more generally, they are
weighted tree automata [1, 5, 14, 17] over the max-plus semiring. Applications of max-plus
tree automata include proving the termination of certain term rewriting systems [24] and
they are commonly employed in natural language processing [35] in the form of probabilistic
context-free grammars. Our approach to proving the decidability of the finite sequentiality
problem for finitely ambiguous max-plus tree automata employs ideas from Bala’s proof
of the corresponding result for finitely ambiguous max-plus word automata [3]. However,
due to lack of space, formal proofs had to be omitted in [3] and Bala’s informal description
of his methods does not suffice for reconstruction. Also, no other published version of [3]
exists. We provide an honest attempt to compare our approach to his but note that our
interpretation might not be accurate.

In his proof for max-plus word automata, Bala first introduces the A-Fork property and
then proceeds to show that this property is a decidable criterion characterizing the finite
sequentiality of a finitely ambiguous max-plus automaton. More precisely, he shows that
a finitely ambiguous max-plus automaton possesses a finitely sequential representation if
and only if the A-Fork property is not satisfied. To show the decidability of the A-Fork
property, he shows its expressibility in a decidable fragment of Presburger arithmetic. To
show that an automaton is not finitely sequential if the A-Fork property is satisfied, he uses
pumping techniques similar to those employed in [4] for the finite sequentiality problem of
unambiguous max-plus word automata. This part of his proof most likely employs Ramsey’s
Theorem [37] as it involves “colorings of finite hypercubes”. His proof for the existence of a
finitely sequential representation in case that the A-Fork property is not satisfied employs
transducers and the notions of critical pairs and close approximations, none of which occur
in our approach. We are thus unsure about the nature of this particular part of the proof,
but it most likely uses a reduction to the decidability of the finite sequentiality problem for
unambiguous automata.
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Our approach is as follows. First, we introduce the separation property, a twofold
modification of the A-Fork property. On the one hand, we endow our new property with
a criterion accounting for the non-linear structure of trees. This new criterion is inspired
by the criterion we added in [34] to the fork property [4], the property characterizing finite
sequentiality of unambiguous max-plus word automata, in order to obtain the tree fork
property, the property characterizing finite sequentiality of unambiguous max-plus tree
automata. On the other hand, we strengthen the A-Fork property as with only the first
modification, our new property would wrongly characterize some finitely sequential automata
as not being finitely sequential. We then show that the separation property is decidable by
employing Parikh’s Theorem [31, 15] for a reduction to the decidability of the satisfiability
of systems of linear inequalities over the rational numbers with integer solutions [30, 9].
This means in particular that we show the decidability of the finite sequentiality problem
only for automata with weights in the rationals. Then we employ Ramsey’s Theorem to
show that no finitely sequential representation exists whenever the separation property is
satisfied. Due to the criterion accounting for the non-linearity of trees, this is considerably
more difficult than in [3] and it is in fact the most technical and the most challenging aspect
of our result. Finally, we show that if the separation property is not satisfied for a given
max-plus tree automaton, then we can construct finitely many unambiguous max-plus tree
automata which all do not satisfy the tree fork property and whose pointwise maximum is
equivalent to the automaton. By [34], these unambiguous automata then possess finitely
sequential representations. Combining these, we obtain a finitely sequential representation of
the original automaton.

2 Preliminaries

For a set X, we denote the power set of X by P(X) and the cardinality of X by |X|. For
two sets X and Y and a mapping f : X → Y , we call X the domain of f , denoted by
dom(f). For a subset X ′ ⊆ X, we call the set f(X ′) = {y ∈ Y | ∃x ∈ X ′ : f(x) = y} the
image or range of X ′ under f . The restriction of f to X ′, denoted by f�X′ , is the mapping
f�X′ : X ′ → Y defined by f�X′(x) = f(x) for every x ∈ X ′. For an element y ∈ Y , we call
the set f−1(y) = {x ∈ X | f(x) = y} the preimage of y under f . For a second mapping
g : X → Y , we write f = g if for all x ∈ X we have f(x) = g(x).

We let N = {0, 1, 2, . . .}. By N∗ we denote the set of all finite words over N. The empty
word is denoted by ε, and the length of a word w ∈ N∗ by |w|. The set N∗ is partially ordered
by the prefix relation ≤p and totally ordered with respect to the lexicographic ordering ≤l.
Two words from N∗ are called prefix-dependent if they are in prefix relation, and otherwise
they are called prefix-independent.

A ranked alphabet is a pair (Γ, rkΓ), often abbreviated by Γ, where Γ is a finite set
and rkΓ : Γ → N a mapping which assigns a rank to every symbol. For every m ≥ 0 we
define Γ(m) = rk−1

Γ (m) as the set of all symbols of rank m. The rank of Γ is defined as
rk(Γ) = max{rkΓ(a) | a ∈ Γ}. The set of (finite, labeled, and ordered) Γ-trees, denoted
by TΓ, is the set of all pairs t = (pos(t), labelt), where pos(t) ⊂ N∗ is a finite non-empty
prefix-closed set of positions, labelt : pos(t) → Γ is a mapping, and for every w ∈ pos(t)
we have wi ∈ pos(t) iff 1 ≤ i ≤ rkΓ(labelt(w)). We write t(w) for labelt(w) and |t| for
|pos(t)|. We also refer to the elements of pos(t) as nodes, to ε as the root of t, and to
prefix-maximal nodes as leaves. The height of t is defined as height(t) = maxw∈pos(t) |w|. For
a leaf w ∈ pos(t), the set {v ∈ pos(t) | v ≤p w} is called a branch of t.
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Now let s, t ∈ TΓ and w ∈ pos(t). The subtree of t at w, denoted by t�w, is a Γ-tree
defined as follows. We let pos(t�w) = {v ∈ N∗ | wv ∈ pos(t)} and for v ∈ pos(t�w), we let
labelt�w

(v) = t(wv). The substitution of s into w of t, denoted by t〈s→ w〉, is a Γ-tree defined
as follows. We let pos(t〈s→ w〉) = (pos(t) \ {v ∈ pos(t) | w ≤p v}) ∪ {wv | v ∈ pos(s)}. For
v ∈ pos(t〈s→ w〉), we let labelt〈s→w〉(v) = s(u) if v = wu for some u ∈ pos(s), and otherwise
labelt〈s→w〉(v) = t(v). For a ∈ Γ(m) and trees t1, . . . , tm ∈ TΓ, we also write a(t1, . . . , tm) to
denote the tree t with pos(t) = {ε} ∪ {iw | i ∈ {1, . . . ,m}, w ∈ pos(ti)}, labelt(ε) = a, and
labelt(iw) = ti(w). For a ∈ Γ(0), the tree a() is abbreviated by a.

For a ranked alphabet Γ, a tree over the alphabet Γ� = (Γ ∪ {�}, rkΓ ∪ {� 7→ 0}) is called
a Γ-context. Let t ∈ TΓ� be a Γ-context and let w1, . . . , wn ∈ pos(t) be a lexicographically
ordered enumeration of all leaves of t labeled �. Then we call t an n-Γ-context and define
♦i(t) = wi for i ∈ {1, . . . , n}. For an n-Γ-context t and contexts t1, . . . , tn ∈ TΓ� , we define
t(t1, . . . , tn) = t〈t1 → ♦1(t)〉 · · · 〈tn → ♦n(t)〉 by substitution of t1, . . . , tn into the �-leaves of
t. A 1-Γ-context is also called a Γ-word. For a Γ-word s, we define s0 = � and sn+1 = s(sn)
for n ≥ 0.

A commutative semiring is a tuple (K,⊕,�,0,1), abbreviated by K, with operations sum
⊕ and product � and constants 0 and 1 such that (K,⊕,0) and (K,�,1) are commutative
monoids, multiplication distributes over addition, and κ� 0 = 0� κ = 0 for every κ ∈ K. In
this paper, we mainly consider the following two semirings.

The Boolean semiring B = ({0, 1},∨,∧, 0, 1) with disjunction ∨ and conjunction ∧.
The max-plus semiring Qmax = (Q ∪ {−∞},max,+,−∞, 0) where the sum and the
product operations are max and +, respectively, extended to Q∪ {−∞} in the usual way.

For a commutative semiring (K,⊕,�,0,1) and an integer n ≥ 1, the product semiring
(Kn,⊕n,�n,0n,1n) is defined by componentwise operations and the constants 0n = (0, . . . ,0)
and 1n = (1, . . . ,1). We will usually denote ⊕n and �n simply by ⊕ and �.

Let (K,⊕,�,0,1) be a commutative semiring. A weighted bottom-up finite state tree
automaton (short: WTA) over K and Γ is a tuple A = (Q,Γ, µ, ν) where Q is a finite set
(of states), Γ is a ranked alphabet (of input symbols), µ :

⋃rk(Γ)
m=0 Q

m × Γ(m) ×Q→ K (the
function of transition weights), and ν : Q → K (the function of final weights). We define
∆A = dom(µ). A tuple d ∈ ∆A is called a transition and d is called valid if µ(d) 6= 0. A
state q ∈ Q is called final if ν(q) 6= 0.

We call a WTA over the max-plus semiring a max-plus-WTA and a WTA over the Boolean
semiring a finite tree automaton (FTA). We also write a WTA A = (Q,Γ, µ, ν) over B as a
tuple A′ = (Q,Γ, δ, F ) where δ = {d ∈ ∆A | µ(d) = 1} and F = {q ∈ Q | ν(q) = 1}.

For a tree t ∈ TΓ, a mapping r : pos(t) → Q is called a quasi-run of A on t. For a
quasi-run r on t and a position w ∈ pos(t) with t(w) = a ∈ Γ(m), the tuple t(t, r, w) =
(r(w1), . . . , r(wm), a, r(w)) is called the transition at w. The quasi-run r is called a (valid)
run if for every w ∈ pos(t) the transition t(t, r, w) is valid with respect to A. We call a run
r accepting if r(ε) is final. By RunA(t) and AccA(t) we denote the sets of all runs and all
accepting runs of A on t, respectively. For a state q ∈ Q, we denote by RunA(t, q) the set of
all runs r ∈ RunA(t) such that r(ε) = q.

For a run r ∈ RunA(t), the weight of r is defined by wtA(t, r) =
⊙

w∈pos(t) µ(t(t, r, w)).
The behavior of A, denoted by JAK, is the mapping defined for every t ∈ TΓ by JAK(t) =⊕

r∈AccA(t)(wtA(t, r)� ν(r(ε))), where the sum over the empty set is 0 by convention. The
support of a WTA A is the set supp(A) = {t ∈ TΓ | JAK(t) 6= 0}. The support of an FTA A
is also called the language accepted by A and denoted by L(A). A subset L ⊆ TΓ is called
recognizable if there exists an FTA A with L = L(A).
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For a WTA A = (Q,Γ, µ, ν), a run of A on a Γ-context t is a run of the WTA A′ =
(Q,Γ�, µ′, ν) on t, where µ′(�, q) = 1 for all q ∈ Q and µ′(d) = µ(d) for all d ∈ ∆A. We
denote Run�A(t) = RunA′(t) and for r ∈ Run�A(t) write wt�A(t, r) = wtA′(t, r). For an
n-Γ-context t ∈ TΓ� and states q0, . . . , qn, we denote by Run�A(q1, . . . , qn, t, q0) the set of all
runs r ∈ Run�A(t) such that r(ε) = q0 and r(♦i(t)) = qi for every i ∈ {1, . . . , n}.

We consider the set Γ × Q as an alphabet by defining rkΓ×Q(a, q) = rkΓ(a) for every
pair (a, q) ∈ Γ × Q and identify every tree t′ ∈ TΓ×Q with the pair (t, r) given by t =
(pos(t′), πΓ ◦ labelt′) ∈ TΓ and r = πQ ◦ labelt′ , where πΓ : Γ×Q→ Γ and πQ : Γ×Q→ Q

are the projections. For a Γ-word s ∈ TΓ� , a state q ∈ Q, and a run rs ∈ Run�A(q, s, q), we
define (s, rs)0 = (�, q) and (s, rs)n+1 = (s, rs)〈(s, rs)n → ♦1(s)〉 for n ≥ 0.

We call a WTA A = (Q,Γ, µ, ν) over K and Γ trim if for every p ∈ Q, there exist t ∈ TΓ,
r ∈ AccA(t), and w ∈ pos(t) with r(w) = p. The trim part of A is the automaton obtained
from A by removing all states p ∈ Q for which no such t, r, and w exist. This process
obviously has no influence on JAK. We call A complete if for every m ≥ 0, a ∈ Γ(m), and
(q1, . . . , qm) ∈ Qm, there exists at least one q ∈ Q with µ(q1, . . . , qm, a, q) 6= 0. We call A
deterministic or sequential if for every m ≥ 0, a ∈ Γ(m), and (q1, . . . , qm) ∈ Qm, there exists
at most one q ∈ Q with µ(q1, . . . , qm, a, q) 6= 0. If there exists an integer M ≥ 1 such that
|AccA(t)| ≤M for every t ∈ TΓ, we call A M -ambiguous. We call A finitely ambiguous if it
is M -ambiguous for some M ≥ 1 and unambiguous if it is 1-ambiguous. We call the behavior
JAK of A finitely sequential if there exist finitely many deterministic WTA A1, . . . ,An over
K and Γ such that JAK =

⊕n
i=1JAiK, where the sum is taken pointwise.

3 The Criterion for Finite Sequentiality

We will show that for a finitely ambiguous max-plus-WTA A, it is decidable whether its
behavior JAK is finitely sequential. For this, we first formulate the separation property, a
generalization of Bala’s A-Fork property [3]. Then we show that it is decidable whether
the separation property is satisfied and that the behavior of a max-plus-WTA is finitely
sequential if and only if the separation property is not satisfied. In the following, let Γ be
a ranked alphabet. We begin by recalling the tree fork property and the related concepts
of rivals, reachers, distinguishers, and forks. Intuitively, two states of a finitely ambiguous
max-plus-WTA A are called rivals if they can be reached by the same tree u and they can
loop in the same Γ-word s but the weights of these loops differ. The tree u is then called a
reacher of p and q and the Γ-word s a distinguisher for p and q. For two rivals p and q, a
Γ-word f is called a p-q-fork if f can both loop in p and also go from p to q, in a bottom-up
sense. We say that A satisfies the tree fork property if there exist two rivals p and q such
that either there exists a p-q-fork or p and q can occur at prefix-independent positions in
some run of A. Formally, these definitions are as follows.

I Definition 1. Let A = (Q,Γ, µ, ν) be a finitely ambiguous max-plus-WTA. Two states
p, q ∈ Q are called rivals if there exists a tree u ∈ TΓ with RunA(u, p) 6= ∅ and RunA(u, q) 6= ∅
and a Γ-word s with runs rp ∈ Run�A(p, s, p) and rq ∈ Run�A(q, s, q) such that wt�A(s, rp) 6=
wt�A(s, rq). In this case, we call u a p-q-reacher and s a p-q-distinguisher. We say that A
satisfies the tree fork property if at least one of the following two conditions is satisfied.
(i) There exist rivals p, q ∈ Q and a Γ-word f with RunA(p, f, p) 6= ∅ and RunA(p, f, q) 6= ∅.

In this case, we call f a p-q-fork.
(ii) There exist rivals p, q ∈ Q, a 2-Γ-context t ∈ TΓ� , and a run r ∈ Run�A(t) with

r(♦1(t)) = p and r(♦2(t)) = q. In this case, we call t a p-q-split.
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We have the following theorem relating the tree fork property to finite sequentiality of
unambiguous max-plus-WTA.

I Theorem 2 ([34]). The behavior of a trim unambiguous max-plus-WTA A is finitely
sequential if and only if A does not satisfy the tree fork property. If JAK is finitely sequential,
a finitely sequential representation of A can be effectively constructed.

For finitely ambiguous max-plus-WTA, however, the tree fork property does not capture
finite sequentiality. To see why, consider an unambiguous max-plus-WTA A satisfying the
tree fork property [34, 4, 22] and let L be the largest weight used in A. Then construct
a one-state max-plus-WTA B whose every transition weight and every final weight is L.
Clearly, B is deterministic and we have JBK ≥ JAK. By taking the disjoint union A ∪ B of
A and B, we obtain a 2-ambiguous max-plus-WTA which satisfies the tree fork property
but whose behavior coincides with that of the deterministic automaton B. In this particular
example, the states relevant for the tree fork property to be satisfied are not relevant at all
for the behavior of the automaton.

For the rest of this paper, let A be a trim finitely ambiguous max-plus-WTA over the
ranked alphabet Γ. In order to reduce the finite sequentiality problem of finitely ambiguous
max-plus-WTA to that of unambiguous max-plus-WTA, we decompose A into a maximum
of finitely many unambiguous max-plus-WTA A1, . . . ,AN and then analyze the interplay
of these latter automata. We can do so as in fact, every finitely ambiguous WTA can be
decomposed into finitely many unambiguous WTA [22, 32]. This is a common approach when
dealing with finite ambiguity [22, 25, 33] and is also used by Bala in the corresponding proof
for words [3]. In the simplest case, if A1, . . . ,AN all do not satisfy the tree fork property,
we find a finitely sequential representation of A by constructing such a representation for
each An and then combining all of these. However, if some An does satisfy the tree fork
property, we have to analyze whether this automaton contributes enough to the behavior of
A for there not to exist a finitely sequential representation of A. For an easier analysis of the
automata A1, . . . ,AN , we normalize their final weights and consider their product as follows.

I Lemma 3 ([41, 22, 32, 10]). We can effectively find an integer M ∈ N and construct a
trim WTA U = (Q,Γ, µ, ν) over QM

max and Γ such that
U is unambiguous,
µ(∆U ) ⊆ QM ∪ {(−∞, . . . ,−∞)} and ν(Q) ⊆ {(0, . . . , 0), (−∞, . . . ,−∞)}, and
for every t ∈ TΓ we have JAK(t) = maxM

i=1 πi(JUK(t)),
where πi : QM

max → Qmax is the projection to the i-th coordinate for every i ∈ {1, . . . ,M}.

Let U be the automaton we obtain for A from Lemma 3. For a tree t ∈ TΓ, a Γ-word
s ∈ TΓ� , runs rt ∈ RunU (t), rs ∈ Run�U (s), states p, q ∈ Q, and a coordinate i ∈ {1, . . . ,M},
we let wti(t, rt) = πi(wtU (t, rt)), wt�i (s, rs) = πi(wt�U (s, rs)), and wt�i (p, s, q) = wt�i (s, rq

p) for
the unique run rq

p ∈ Run�U (p, s, q). We define the concepts of rivals, reachers, distinguishers,
and forks for U as follows.

I Definition 4. Let i ∈ {1, . . . ,M}, p, q ∈ Q, t ∈ TΓ, and r ∈ AccU (t).
We call p and q i-rivals if there exists a tree u ∈ TΓ such that RunU (u, p) 6= ∅ and
RunU (u, q) 6= ∅ and a Γ-word s such that Run�U (p, s, p) 6= ∅, Run�U (q, s, q) 6= ∅, and
wt�i (p, s, p) 6= wt�i (q, s, q). In this case, we also call u a p-q-reacher and s an i-p-q-
distinguisher.
We call a Γ-word f an i-p-q-fork if p and q are i-rivals, Run�U (p, f, p) 6= ∅, and
Run�U (p, f, q) 6= ∅.
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We say that (t, r) is i-p-q-fork-broken if there exist positions wp, wq ∈ pos(t) such that
wq <p wp, r(wp) = p, r(wq) = q, and (t〈� → wp〉)�wq

is an i-p-q-fork.
We say that (t, r) is i-p-q-split-broken if p and q are i-rivals and there exist two prefix-
independent positions wp, wq ∈ pos(t) with r(wp) = p and r(wq) = q.

When appropriate, we may drop some of the hyphenated modifiers from the terms above;
for example, we will refer to (t, r) as i-fork-broken if there exist states p, q ∈ Q such that
(t, r) is i-p-q-fork-broken and as i-split-broken if there exist states p, q ∈ Q such that (t, r) is
i-p-q-split-broken. We call (t, r) i-broken if it is i-fork-broken or i-split-broken.

Our concept of brokenness, is inspired by Bala’s notion of “broken paths” [3]. Of course,
as his proof is concerned with words, the concept of split-brokenness does not exist. His
notion of brokenness corresponds to our notion of fork-brokenness. Employing the notion
of brokenness, Bala characterizes finite sequentiality of finitely ambiguous max-plus word
automata using the A-Fork property. Translated to tree automata, the A-Fork property is
defined as follows. We say that U satisfies the A-Fork property if for every constant C > 0,
there exists a tree t ∈ TΓ and an accepting run r ∈ AccU (t) such that for some weight-
maximal coordinate i, i.e., with wti(t, r) = maxM

j=1 wtj(t, r), we have that (t, r) is i-broken
and for every coordinate j such that (t, r) is not j-broken, we have wtj(t, r) < wti(t, r)− C.
In other words, the A-Fork property is satisfied if broken coordinates are able to dominate
non-broken coordinates by an arbitrarily large margin. Bala shows that a finitely ambiguous
max-plus word automaton is finitely sequential if and only if the corresponding automaton
U does not satisfy the A-Fork property. For tree automata, however, this criterion does
not capture finite sequentiality. More precisely, if we know that there do not exist a tree
t and a run r on t such that (t, r) is split-broken, then the A-Fork property does capture
finite sequentiality also for tree automata. However, if U satisfies the A-Fork property due to
split-broken coordinates dominating non-broken coordinates, the behavior of A may still be
finitely sequential. This is evidenced by the following example.

I Example 5. Consider the scenario for U as defined in Figure 1. The support of U consists
of all trees of the form c(bk(am

i (di)), bl(an
j (dj))) with i, j ∈ {1, 2}, k, l > 0, and m,n ≥ 0. A

valid run on such a tree necessarily assigns states from {p1, p2, p} to the left branch of the
tree and states from {q1, q2, q} to the right branch of the tree. Moreover, if a branch begins
with a letter di, this branch is assigned states from {pi, qi, p, q}. In particular, we see that U
is unambiguous. The states p and q are 2-rivals as we see from the p-q-reacher u = b(a1(d1))
and the 2-p-q-distinguisher s = b(�). By considering the trees tn = c(b(an

1 (d1)), b(an
2 (d2))), we

see that runs exist where p and q occur prefix-independently and the weight of coordinate 2 is
arbitrarily larger than the weights of coordinates 1 and 3 since we have JUK(tn) = (−n, 0,−n).
However, in tn the subtrees below p and q are distinct, thus a deterministic automaton can
distinguish between them.

In fact, if U is given this way, we can construct a finitely sequential representation
of JAK as follows. All trees of the form c(bk(am

1 (d1)), bl(an
1 (d1))) are assigned the weight

(−m−n+k+ l−2, k− l, k+ l−2), so coordinate 3 is always dominant. Similarly, coordinate 1
is dominant for trees of the form c(bk(am

2 (d2)), bl(an
2 (d2))). These trees can be handled by

the deterministic max-plus-WTA obtained from U by removing the states q1 and q2, letting
µ(p, p, c,>) = (0, 0, 0), and replacing µ with π1 ◦ µ and π3 ◦ µ, respectively. For trees of the
form c(bk(am

1 (d1)), bl(an
2 (d2))), we remove the states p2 and q1 from U and then construct

three deterministic max-plus-WTA by replacing µ by π1 ◦ µ, π2 ◦ µ, and π3 ◦ µ, respectively.
For the trees c(bk(am

2 (d2)), bl(an
1 (d1))) we can proceed similarly. The pointwise maximum

of the automata constructed this way is then equivalent to JAK. This example shows in
particular that if U satisfies the A-Fork property, JAK can still be finitely sequential.
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ν(>) = (0, 0, 0) µ(p, b, p) = (1, 1, 1) µ(p1, a1, p1) = µ(q1, a1, q1)
µ(p, q, c,>) = (0, 0, 0) µ(q, b, q) = (1,−1, 1) µ(p2, a2, p2) = µ(q2, a2, q2)

= (−1, 0, 0)
= (0, 0,−1)

µ(p1, b, p) = µ(p2, b, p) = µ(q1, b, q) = µ(q2, b, q) = (0, 0, 0)
µ(d1, p1) = µ(d1, q1) = µ(d2, p2) = µ(d2, q2) = (0, 0, 0)

c

b

b

a1

d1

b

b

a2

d2

c

b

b

a2

d2

b

b

a1

d1

>

q

q

q2

q2

p

p

p1

p1

>

q

q

q1

q1

p

p

p2

p2

(1, 1, 1)

(−1, 0, 0)

(1,−1, 1)

(0, 0,−1)

(1, 1, 1)

(0, 0,−1)

(1,−1, 1)

(−1, 0, 0)

Figure 1 A scenario for the automaton U : The automaton ({p1, p2, q1, q2, p, q,>},Γ, µ, ν) over
the ranked alphabet Γ = {a1, a2, b, c, d1, d2} where c ∈ Γ(2), a1, a2, b ∈ Γ(1), and d1, d2 ∈ Γ(0). All
unspecified weights are assumed to be −∞. The states p and q are 2-rivals.

Our fundamental idea to adapt the A-Fork property to tree automata is to formulate
our version not for U but for a covering of U . Oversimplifying, a covering of an automaton
is a new automaton obtained by enhancing the states of the original automaton with
additional capacities to store information. A prominent example of a covering construction
is the Schützenberger covering of an automaton. The Schützenberger covering in particular
has already been employed in a number of decidability results for max-plus automata
[22, 4, 3, 33, 34]. For more background on coverings, see [38].

Here, we construct from U an unambiguous automaton U with the same behavior as U
and whose states are tuples from Q×P(Q)×P(Q4 ×P(Q2)). Every run r of U on a tree
t ∈ TΓ will correspond uniquely to a run of U on t, given by projecting to the first entry. For
a position w, the second entry of r(w) will be the set of all states q ∈ Q which can be reached
by t�w, i.e., for which RunU (t�w, q) is non-empty. The third entry of r(w) will contain a
tuple (p, q, p′, q′, Y ) if and only if t�w can reach p and q with two runs rp and rq, these runs
visited p′ and q′ simultaneously at some position v in the past, and Y consists of all pairs of
states which these runs visited simultaneously up to v. More precisely, the third entry of
r(w) will consist of all tuples (p, q, p′, q′, Y ) such that (1) there exist runs rp ∈ RunU (t�w, p)
and rq ∈ RunU (t�w, q), (2) for some position below w, i.e., some position v ∈ pos(t�w), we
have rp(v) = p′ and rq(v) = q′, and (3) Y is the set of all pairs of states (rp(vu), rq(vu))
with u ∈ pos(t�wv). Our intention of considering the covering U is to increase the knowledge
we have about each pair of rivals. For two rivals of U , all we know is what the definition of
rivals specifies. For two rivals of U on the other hand, we can show that they are necessarily
of the form (p, P, V ) and (q, P, V ) where p and q are rivals of U . This allows us to infer
statements about the rivals of U which are not necessarily true for the rivals of U . The
precise construction of U is as follows.

I Construction 6. We define U = (Q,Γ,µ,ν) as the trim part of the automaton U ′ =
(Q′,Γ,µ′,ν′) defined as follows. We let Q′ = Q× P(Q)× P(Q4 × P(Q2)) and for subsets
P1, . . . , Pm ⊆ Q and a letter a ∈ Γ with rkΓ(a) = m, we let succ(P1, . . . , Pm, a) = {q0 |
∃(q1, . . . , qm) ∈ P1 × . . .× Pm with µ(q1, . . . , qm, a, q0) ∈ QM}. For i ∈ {1, . . . , rkΓ(a)} and
states (p, q, p′, q′, Y ) ∈ Q4 × P(Q2), we let succ(P1, . . . , Pm, (p, q, p′, q′, Y ), i, a) =
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succ(P1, . . . , Pi−1,{p}, Pi+1, . . . , Pm, a)×succ(P1, . . . , Pi−1,{q}, Pi+1, . . . , Pm, a)×{p′}×{q′}×
{Y }. For V ⊆ Q4 × P(Q2) and p, q ∈ Q, we let visited(p, q, V ) = {(p′, q′) | (p, q, p′, q′, Y ) ∈
V for some Y ⊆ Q2}. Then for a ∈ Γ with rkΓ(a) = m and (p0, P0, V0), . . . , (pm, Pm, Vm) ∈
Q′, we define ν′(p0, P0, V0) = ν(p0) and µ′((p1, P1, V1), . . . , (pm, Pm, Vm), a, (p0, P0, V0)) =

µ(p1, . . . , pm, a, p0) if P0 = succ(P1, . . . , Pm, a) and with
V =

⋃m
i=1
⋃

(p,q,p′,q′,Y )∈Vi
succ(P1, . . . , Pm, (p, q, p′, q′, Y ), i, a)

we have V0 = V ∪ {(p, q, p, q, Y ) | p, q ∈ P0 and
Y = visited(p, q, V ) ∪ {(p, q)}}

(−∞, . . . ,−∞) otherwise.
Then U satisfies the properties described above. We let π1 : Q → Q, π2 : Q → P(Q), and
π3 : Q→ P(Q4 × P(Q2)) be the projections, and let wti and wt�i be defined for U in the
same way we defined wti and wt�i for U . Furthermore, we note that the concepts of rivals,
reachers, distinguishers, and forks as defined for U in Definition 4 apply to U in a similar
fashion.

Finally, we introduce our version of the A-Fork property. To allow for easier proofs, we
use a different formulation and consequently a different name. But in fact, U satisfies the
separation property if and only if it satisfies the A-Fork property in the way we translated it
to trees earlier.

I Definition 7. Let C ∈ N. We call a set I ⊆ {1, . . . ,M} C-separable if there exists a tree
t ∈ TΓ and a run r ∈ AccU (t) such that
(i) if i ∈ I, then (t, r) is i-broken and
(ii) if j ∈ {1, . . . ,M} \ I, then wtj(t, r) ≤ wti(t, r)− C for all i ∈ I.

In this case, we also say that (t, r) is I-C-separated. We call I separable if it is C-separable
for every C ∈ N and define I as the set of all separable subsets I ⊆ {1, . . . ,M}. If I is
non-empty, we say that U satisfies the separation property or, for short, that U is broken.

Our main result is to prove the following theorem relating the separation property to the
finite sequentiality problem of finitely ambiguous max-plus-WTA.

I Theorem 8. The behavior JAK of A is finitely sequential if and only if U is not broken.
Moreover, it is decidable whether U is broken. In particular, it is decidable whether JAK is
finitely sequential.

We separate the proof of Theorem 8 into three parts. Due to lack of space, we have to
restrict ourselves to brief descriptions of our methods. In Section 3.1, we outline that it is
decidable whether U is broken. This part of the proof does not follow any idea from [3] as
in his proof, Bala reduces the decidability of the A-Fork property to the decidability of a
decidable fragment of Presburger arithmetic. In Section 3.2, we show that if U is broken,
then JAK is not finitely sequential. This part of the proof employs ideas from [4, 3, 34], but
extends these non-trivially. This particular proof is the most challenging and technical aspect
of our result. Finally, in Section 3.3, we outline how to construct finitely many deterministic
max-plus-WTA whose pointwise maximum is equivalent to JAK in case that U is not broken.
Although this part is inspired by an idea in [3], we are not sure whether we employ this idea
in the same way.

For all of our proofs, it is crucial that for every two states of U , we can decide whether
they are rivals [2, Section 4], [11, Section 5.4]. For two rivals of an unambiguous automaton,
it is in fact quite easy to give an upper bound on the size of their smallest distinguisher
and smallest reacher. Thus, deciding whether two states are rivals reduces to checking for
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finitely many trees whether they can reach both states and checking for finitely many Γ-words
whether they are a distinguisher for these two states. For Section 3.3, we require an even
more precise statement, namely that if s is a distinguisher for two rivals p and q, then we
can obtain a p-q-distinguisher of height at most 4|Q|2 by removing loops from the unique
runs looping in p and q. For this, we employ the notion of a truncation. Simply put, for a
Γ-word s and a run r on s, a truncation of (s, r) is any pair (s′, r′) of a Γ-word s′ and a run
r′ on s′ which can be obtained by repeatedly cutting loops from (s, r).

I Definition 9. Let s, s′ ∈ TΓ� be Γ-words, r ∈ Run�U (s), and r′ ∈ Run�U (s′). We say
that (s′, r′) is a truncation of (s, r), denoted by (s, r) (s′, r′), if there exists a mapping
g : pos(s′) → pos(s) such that g(ε) = ε, g(♦1(s′)) = ♦1(s), for all w ∈ pos(s′) we have
t(s′, r′, w) = t(s, r, g(w)), and for all w1, w2 ∈ pos(s′) we have g(w1) ≤l g(w2) if and only
if w1 ≤l w2 and g(w1) ≤p g(w2) if and only if w1 ≤p w2.

We can use truncations to bound the size of distinguishers as follows.

I Lemma 10 ([11, Lemma 5.10],[34]). Let p,q ∈ Q be i-rivals for some i ∈ {1, . . . ,M}, let
u ∈ TΓ be a p-q-reacher, let f ∈ TΓ� be a p-q-fork, let s ∈ TΓ� be an i-p-q-distinguisher,
and let rp ∈ Run�U (p, s,p) and rq ∈ Run�U (q, s,q). Then there exists a p-q-reacher u′
with height(u′) ≤ |Q|2, a p-q-fork f ′ with height(f ′) ≤ 2|Q|2, and an i-p-q-distinguisher s′
with height(s′) ≤ 4|Q|2 such that for the runs r′p ∈ Run�U (p, s′,p) and r′q ∈ Run�U (q, s′,q),
(s′, r′p) is a truncation of (s, rp) and (s′, r′q) is a truncation of (s, rq). In particular, for
every two states p,q ∈ Q, it is decidable whether p and q are rivals.

3.1 Decidability
In order to show that it is decidable whether U is broken, we construct a covering Ū of U with
the capability to detect the broken coordinates of a run of U . The covering Ū possesses the
same behavior as U and each run of Ū corresponds to exactly one run of U . We construct Ū
by adding to each state of Q one entry containing all states reachable on the current subtree,
one entry containing all states visited on the current run, one entry containing all pairs (p,q)
of states such that q is reachable by a run which visited p at a position where our current run
also visited p, and one entry containing a record of all broken coordinates. This allows us to
infer the brokenness of a run directly from the state at its root. More precisely, we construct
Ū = (Q̄,Γ, µ̄, ν̄) with states from Q̄ = Q × P(Q) × P(Q) × P(Q2) × {0, 1}M such that if
t ∈ TΓ, r̄ ∈ RunŪ (t), w ∈ pos(t), and r̄(w) = (q, P, V,W, ā), then the following statements
hold. We have (1) the projection πQ : Q̄ → Q to the first coordinate induces a bijection
πQ : AccŪ (t) → AccU (t) preserving weights of runs, (2) P = {p ∈ Q | RunU (t�w,p) 6= ∅},
(3) V = {πQ ◦ r̄(wv) | v ∈ pos(t�w)}, (4) W = {(p1,p2) ∈ Q2 | for some v ∈ pos(t�w) we
have πQ ◦ r̄(wv) = p1 and Run�U (p1, t〈� → wv〉�w,p2) 6= ∅}, and (5) ā[i] = 1 if and only if
(t, πQ ◦ r̄)�w is i-broken.

We let d1, . . . , dD be an enumeration of ∆Ū and for a tree t ∈ TΓ and a run r̄ ∈
RunŪ (t), define the transition Parikh vector of (t, r̄) by p(t, r̄) = (|{w ∈ pos(t) | t(t, r̄, w) =
d1}|, . . . , |{w ∈ pos(t) | t(t, r̄, w) = dD}|), i.e., we count the number of occurrences of
each transition in (t, r̄). We can employ Parikh’s Theorem [31, 15] to show that the set
p(Ū) = {p(t, r) | t ∈ TΓ, r ∈ AccŪ (t)} is semilinear, i.e., that there exist integers k, k1, . . . , kk,
vectors α(l) ∈ ND, and matrices β(l) ∈ ND×kl (l ∈ {1, . . . , k}) with p(Ū) =

⋃k
l=1{α(l)+β(l)X̄ |

X̄ = (X1, . . . , Xkl
) ∈ Nkl}. We note that Parikh’s Theorem is effective, so we can effectively

compute all of these integers, vectors, and matrices.
Next, we let Ω = (µ̄(d1), . . . , µ̄(dD)) ∈ QM×D be a matrix containing the transition weight

vectors of d1, . . . , dD, let ω1, . . . , ωM be the rows of Ω, and let C̃ = 1+max{|ωiα
(l)−ωjα

(l)| |
i, j ∈ {1, . . . ,M}, l ∈ {1, . . . , k}}. For I ⊆ {1, . . . ,M}, we let DI = {l ∈ {1, . . . , D} | dl =
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(q̄1, . . . , q̄m, ā, (q, P, V,W, ā)) ∈ ∆Ū such that ā[i] = 1 ↔ i ∈ I} be the set of all indices of
transitions whose root state indicates brokenness of exactly the coordinates in I. Furthermore,
for every l ∈ {1, . . . , D} we let α(l)[1], . . . , α(l)[D] be the entries of α(l) and β(l)[1], . . . , β(l)[D]
be the rows of β(l). It is then elementary to show that every set I ⊆ {1, . . . ,M} is separable
iff it is C̃-separable iff for some l ∈ {1, . . . ,M}, the system of linear inequalities below
possesses an integer solution. The satisfiability of systems of linear inequalities over the
rationals with integer solutions is decidable [30][9, Theorem 3.4]. There are only finitely
many such systems to consider, so it is decidable whether I is separable. To decide whether
U is broken, it suffices to check whether there exists a separable subset I ⊆ {1, . . . ,M}.
(ωiβ

(l) − ωjβ
(l))X̄ ≥ ωjα

(l) − ωiα
(l) + C̃ X̄ ≥ 0 (i ∈ I, j ∈ Ic)∑

d∈DI

β(l)[d]X̄ ≥ 1−
∑

d∈DI

α(l)[d] −
∑

I(I′⊆M

∑
d∈DI′

β(l)[d]X̄ ≥
∑

I(I′⊆M

∑
d∈DI′

α(l)[d]

3.2 Necessity
To show that JAK is not finitely sequential if U is broken, we assume that JAK can be
represented as a finite maximum of deterministic max-plus-WTA A1, . . . ,AN and employ
Ramsey’s Theorem [37] to obtain a contradiction. Although not stated explicitly, Bala’s
proof for words [3] most likely also involves some form of Ramsey’s Theorem as his proof
of U being broken implying JAK to not be finitely sequential “deals with colorings of finite
hypercubes”. In our proof for tree automata, we are able to handle fork-brokenness without
employing Ramsey’s Theorem. This suggest that applying our approach to word automata
yields a proof which is simpler than the corresponding one used in [3]. The reason for this is
that our separation property considers sets of coordinates instead of the single coordinates
which the A-Fork property considers. For the separable sets I ∈ I which are minimal with
respect to set inclusion, we are able to prove a statement for I-C-separated pairs (t, r) which
greatly facilitates dealing with fork-brokenness and enables us to deal with split-brokenness
in the first place. Namely, if (t, r) is I-C-separated for a sufficiently large C and no subset
of I is separable, then for every p ∈ r(pos(t)), every Γ-word s with height(s) ≤ 4|Q|2 and
Run�U (p, s,p) 6= ∅, and every two coordinates i, j ∈ I we have wt�i (p, s,p) = wt�j (p, s,p).

For the proof, we choose a sufficiently large C, a set I ∈ I which is minimal with respect to
set inclusion, and an I-C-separated pair (t, r). Then we construct from (t, r) new trees which
require more than N deterministic max-plus-WTA in order to be assigned the correct weight.
If (t, r) is fork-broken, we construct trees and runs of U with increasingly more alterations of
forks and distinguishers. This approach is similar to the method used in [4] and [34] to deal
with fork-brokenness. The challenge we face in adapting the proof from [34] to our situation
is that we have to ensure that in the runs we construct, the coordinates from I dominate the
other coordinates. In our constructions we may therefore only make “small” modifications to
(t, r). Our solution relies on the minimality of I and involves constructing more than the
N + 1 trees sufficient for the proofs in [4, 34]. The case where (t, r) is split-broken is much
more complicated and is in fact the only reason we have to use the covering automaton U
instead of U . As split-brokenness does not apply to words, this was not an issue in [3]. Our
approach vastly extends the idea used to deal with split-brokenness in [34]. In [34], we relied
on replacing the subtrees below the prefix-independent rivals of a split-broken run by other
suitable trees. However, Example 5 shows that this is not possible in our scenario as these
subtrees may be indispensable to ensure that broken coordinates dominate all non-broken
coordinates. Here, we instead modify the subtrees present and construct trees and runs of U .
For this, we employ the properties of U , pumping techniques, and Ramsey’s Theorem.
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3.3 Sufficiency

To show that JAK is finitely sequential if U is not broken, we show that in this case we can
construct M unambiguous max-plus-WTA which all do not satisfy the tree fork property and
whose pointwise maximum is equivalent to JAK. By Theorem 2, we obtain a finitely sequential
representation of A by constructing one for each of the unambiguous max-plus-WTA. We
essentially construct the unambiguous automata by removing problematic runs from U
and then projecting to the coordinates 1, . . . ,M . Our fundamental idea is the following.
First, let ξ be the smallest difference between the weights of two coordinates of a loop in a
Γ-word of height at most 4|Q|2, i.e., for X = {|wt�i (p, s,p)−wt�j (q, s,q)| | p,q ∈ Q, i, j ∈
{1, . . . ,M}, s is a Γ-word with height(s) ≤ 4|Q|2,Run�U (p, s,p) 6= ∅,Run�U (q, s,q) 6= ∅}, let
ξ = minX \ {0}. Then assume that (t, r) is i-p-q-broken and that the maximum of wtU (t, r)
is in coordinate i. Furthermore, assume that in r, some i-p-q-distinguisher s of height at most
4|Q|2 loops N times in p, where N ∈ N is some integer, and that wti(p, s,p) < wti(q, s,q).
By removing the loops of s in p from (t, r) and inserting them back as loops in q, we
increase the weight of coordinate i by Nξ, but leave the weights of all non-broken coordinates
unchanged. Thus, coordinate i then dominates all non-broken coordinates by a margin of at
least Nξ. As i cannot dominate all non-broken coordinates by an arbitrarily large margin, N
cannot be arbitrarily large. In turn, this means that if N is sufficiently large, then wtU (t, r)
cannot take its maximum weight in coordinate i. This implies that the weight of coordinate
i can be discarded if some distinguisher loops in both of its rivals too many times.

We employ this idea in the following way. We define the set R = {(i,p,q, s) ∈
{1, . . . ,M} × Q2 × TΓ� | i ∈ {1, . . . ,M}, s is an i-p-q-distinguisher, height(s) ≤ 4|Q|2}
and define the constant N =

⌈
MC̃ξ−1⌉, where C̃ is as in Section 3.1. We note that R

is computable, as by Lemma 10, we can decide for every two states p,q ∈ Q whether
they are rivals or not. Let t ∈ TΓ, r ∈ RunU (t), (i,p,q, s) ∈ R, rp ∈ Run�U (p, s,p), and
rq ∈ Run�U (q, s,q). We call (t, r)

(i,p,q, s)-fork-broken if there exist positions up, vp, wp, wq, uq, vq ∈ pos(t) with vq <p
uq ≤p wq <p wp ≤p vp <p up such that (t, r)〈� → up〉�vp (s, rp)N+1, (t, r)〈� →
uq〉�vq (s, rq)N+1, r(wp) = p, r(wq) = q, and t〈� → wp〉�wq is a p-q-fork.

(i,p,q, s)-split-broken if there exist positions up, vp, uq, vq ∈ pos(t) such that vp <p
up, vq <p uq, vp and vq are prefix-independent, (t, r)〈� → up〉�vp (s, rp)N+1, and
(t, r)〈� → uq〉�vq (s, rq)N+1.

Following the idea above, we can show that if (t, r) is (i,p,q, s)-broken, then wti(t, r) <
JAK(t). Furthermore, we can show that for every i ∈ {1, . . . ,M}, we can construct a complete
and deterministic FTA Bi over the alphabet Γ ×Q which accepts a tree (t, r) ∈ TΓ×Q if
and only if there does not exist (i,p,q, s) ∈ R such that (t, r) is (i,p,q, s)-broken. Via a
product-like construction, we can employ Bi to construct a WTA Ci which “filters” the runs of
U so that the runs of Ci correspond exactly to those runs of U which are not (i,p,q, s)-broken
for any (i,p,q, s) ∈ R. Then Ci is not i-broken as otherwise, we can construct an accepting
run r of Ci on a tree t whose projection to Q yields an i-broken pair (t, r) which loops an
i-p-q-distinguisher s for N + 1 times in both p and q. As by Lemma 10, s can be truncated
to a distinguisher of height at most 4|Q|2, (t, r) is thus (i,p,q, s)-broken. We obtain the
contradiction that r is not accepting. Consequently, projecting the weights of each automaton
Ci to the i-th coordinate yields M unambiguous max-plus-WTA whose pointwise-maximum
coincides with JAK and which all do not satisfy the tree fork property.
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Abstract

The Skolem problem and the related Positivity problem for linear recurrence sequences are outstanding
number-theoretic problems whose decidability has been open for many decades. In this paper,
the inherent mathematical difficulty of a series of optimization problems on Markov decision
processes (MDPs) is shown by a reduction from the Positivity problem to the associated decision
problems which establishes that the problems are also at least as hard as the Skolem problem as
an immediate consequence. The optimization problems under consideration are two non-classical
variants of the stochastic shortest path problem (SSPP) in terms of expected partial or conditional
accumulated weights, the optimization of the conditional value-at-risk for accumulated weights, and
two problems addressing the long-run satisfaction of path properties, namely the optimization of
long-run probabilities of regular co-safety properties and the model-checking problem of the logic
frequency-LTL. To prove the Positivity- and hence Skolem-hardness for the latter two problems, a
new auxiliary path measure, called weighted long-run frequency, is introduced and the Positivity-
hardness of the corresponding decision problem is shown as an intermediate step. For the partial
and conditional SSPP on MDPs with non-negative weights and for the optimization of long-run
probabilities of constrained reachability properties (aU b), solutions are known that rely on the
identification of a bound on the accumulated weight or the number of consecutive visits to certain
sates, called a saturation point, from which on optimal schedulers behave memorylessly. In this
paper, it is shown that also the optimization of the conditional value-at-risk for the classical SSPP
and of weighted long-run frequencies on MDPs with non-negative weights can be solved in pseudo-
polynomial time exploiting the existence of a saturation point. As a consequence, one obtains
the decidability of the qualitative model-checking problem of a frequency-LTL formula that is not
included in the fragments with known solutions.
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1 Introduction

Markov decision processes (MDPs) (see, e.g., [40]) constitute one of the most prominent
classes of operational models combining randomization and non-determinism and are widely
used in verification, articifical intelligence, robotics and operations research. Consequently,
a vast landscape of optimization problems on MDPs has been studied. The task usually
is to find a strategy resolving the non-deterministic choices, called a scheduler, such that
a certain objective quantity is optimized or to decide whether the optimal value exceeds a
given rational threshold (threshold problem).

Stochastic shortest path problems (SSPPs) are one important type of such optimization
problems on MDPs equipped with weights. These problems ask for a scheduler maximizing or
minimizing the expected accumulated weight before reaching a designated goal state. In the
classical setting, only schedulers reaching the goal almost surely are taken into consideration.
This classical SSPP is known to be solvable in polynomial time using graph-based algorithms
and linear-programming techniques [10, 20, 3]. For various purposes, the requirement that the
goal has to be reached almost surely, however, is not appropriate. This applies, e.g., to work
on the semantics of probabilistic programs when no guarantee on almost sure termination can
be given [25, 30, 9, 15, 36], to the analysis of the behavior of fault-tolerant systems in error
scenarios which occur with low probability, or to the trade-off analysis when combinations of
utility and cost constraints can be achieved with positive probability, but not almost surely
(see, e.g., [5]). This motivates a switch to non-classical variants of the SSPP: The conditional
SSPP [8] asks for a scheduler optimizing the conditional expected accumulated weight
before reaching the goal under the condition that the goal will indeed be reached and the
partial SSPP [16, 38] assigns weight 0 to all executions not reaching the goal. Both variants
increase the algorithmic difficulties. In the special case of MDPs with non-negative weights,
exponential-time algorithms for the partial and conditional SSPP exploit the monotonicity
of accumulated weights and rely on the existence of a saturation point (a bound for the
accumulated weight) from which on optimal schedulers behave memorylessly. Apart from
a PSPACE lower bound and approximation algorithms [38], no algorithms are known for
solving the partial or conditional SSPP in integer-weighted MDPs.

Conditional expectations also play a crucial role in risk management: The conditional
value-at-risk is an established risk measure quanitfying the expected loss in bad cases [45, 1].
Given a probability value p, the value-at-risk of a random variable X is defined as the worst
p-quantile. Quantile queries on the distribution of path lengths have been studied in [44].
The conditional value-at-risk is the expectation of X under the condition that the outcome
is worse than the value-at-risk. For MDPs, the conditional value-at-risk has been studied for
mean-payoffs and for weighted reachability where on each run only once a terminal weight
is collected when a target state is reached [31]. In this paper, we consider the conditional
value-at-risk for the more general accumulated weight before reaching the goal, i.e. for the
classical SSPP. To the best of our knowledge, this problem has not been studied.

Other typical optimization problems arise in the context of verification, asking for worst-
case schedulers that minimize or maximize the probability of a given path property. While
such problems are well-understood, e.g., for properties given by linear temporal logic (LTL)-
formulas or non-deterministic Büchi-automata [19], there has been increasing interest in
ways to quantify the degree to which a property is satisfied not only by the probability
(see [28]). Approaches in this direction include the work on robust satisfaction of temporal
specifications [32, 43], coverage semantics [17], robustness distances [13], and the more general
model-measurement semantics [29] among others. Furthermore, this has lead to different
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notions quantifying to which degree a property is satisfied in the long-run: Frequency-LTL
has been introduced in [23, 24] as an extension of LTL by a frequency modality that makes
assertions on the portion of time (or relative frequency of positions in paths) where a
given event holds. While [23, 24] presents model-checking algorithms for Markov chains
and arbitrary frequency-LTL formulas, the presented model checking algorithms for MDPs
are restricted to fragments of frequency-LTL. We address the model checking problem for
frequency-LTL formulas not contained in these fragments. Further, the concept of long-run
probabilities [4] has been introduced for reasoning about the probabilities of path properties
when the system is in equilibrium and can, e.g., be useful to formalize refined notions of
long-run availability. In [4], a pseudo-polynomial time algorithm that exploits the existence
of a saturation point for the computation of optimal long-run probabilities of constrained
reachability properties (aU b) is provided. Here, we study long-run probabilities of general
regular co-safety properties.

Contributions. The main contribution of the paper is to provide evidence for the mathe-
matical difficulty of the series of decision problems described above in terms of a reduction
from the Positivity problem of linear recurrence sequences. The Positivity problem is closely
related to the Skolem problem, a prominent number-theoretic decision problem for linear
recurrence sequences, and the decidability of both problems has been open for many decades
(see, e.g., [27]). As it is well-known that the Skolem problem is reducible to the Positivity
problem, the provided reductions establish that the investigated decision problems are also at
least as hard as the Skolem problem. In the middle column of Table 1, these Skolem-hardness
results are listed:

Table 1 Overview of the results.

optimization problem threshold problem Positivity- exponential-time algorithm
on MDPs and hence Skolem-hard for using a saturation point for

partial SSPP (1) weights in Z, Thm. 3 weights in N [16]
(PSPACE-hard, Prop. 15)

conditional SSPP (2) weights in Z, Thm. 5 weights in N [8]
(PSPACE-hard [8])

conditional value-at-risk weights in Z, Thm. 6 weights in N, Thm. 12
for the classical SSPP (3)
long-run probability (4) regular co-safety properties, constrained reachability aU b [4]

Thm. 9 (NP-hard [4])
model checking of Prmax

M (G>ϑ
inf (ϕ)) = 1? Prmax

M (G>ϑ
inf (aU b)) = 1?

frequency-LTL (5) for an LTL-formula ϕ, Thm. 11 Cor. 14

To obtain these results, we construct an MDP-gadget in which a linear recurrence relation
can be encoded. Together with different gadgets encoding initial values of a linear recurrence
sequence, we use this gadget to establish Positivity-hardness for problems (1)-(3). Afterwards,
we introduce a notion of weighted long-run frequency for constrained reachability properties
that can be seen as a generalization of classical limit-average weights and serves here as a
technical vehicle to provide a connective link to long-run probabilities and the model-checking
problem of frequency-LTL. The Positivity-hardness for problems (4) and (5) is obtained via
the Positivity-hardness of the threshold problem for weighted long-run frequencies by showing
how to encode integer weights in terms of the satisfaction of a fixed co-safety property. The
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Positivity-hardness of (4) and (5) is somehow surprising: The non-probabilistic variant (4) is
shown to be decidable in [4], while our results show that Positivity-hardness of (4) holds even
for a simple fixed co-safety property given by a very small counter-free non-deterministic
finite automaton. Likewise, Positivity-hardness of (5) is established already for the restriction
to the almost-sure satisfaction problem of a simple fixed frequency-LTL formula.

For special cases of some of the problems studied here it is known that optimal values
can be computed in exponential time exploiting a saturation point. We extend this picture
by showing analogous results for problems (3) and (5) (see Table 1). In particular, we
provide a simple exponential time algorithm for the computation of the optimal conditional
value-at-risk for the classical SSPP. Further, we pinpoint where the Positivity-hardness
of the model checking problem of frequency-LTL arises: We observe that the techniques
of [4] allow to solve the qualitative model-checking problem for a frequency-LTL formula
with only one constrained reachability (aU b) property under a frequency-globally modality.
Our Positivity-hardness result for model checking frequency-LTL uses an only slightly
more complicated fixed formula where a Boolean combination of atomic propositions and
constrained reachability properties occurs in the scope of the frequency-globally modality. In
particular, the Positivity-hardness does not require deeper nesting of temporal operators.

Related work. Besides the above cited work that presents algorithms for special cases of the
investigated problems, closest to our work is [2] where Skolem-hardness for decision problems
for Markov chains have been established. The problems are to decide whether for given
states s, t and rational number p, there is a positive integer n such that the probability to
reach t from s in n steps equals p and the model checking problem for a probabilistic variant
of monadic logic and a variant of LTL that treats Markov chains as linear transformers of
probability distributions. These decision problems are of quite different nature than the
problems studied here, and so are the reductions from the Skolem problem. In this context
also the results of [18] and [34] are remarkable as they show the decidability (subject to
Schanuel’s conjecture) of reachability problems in continuous linear dynamical systems and
continuous-time MDPs, respectively, as instances of the continuous Skolem problem.

A class of problems related to SSPPs concerns the optimization of probabilities for
weight-bounded reachability properties and also exhibits increasing algorithmic difficulty (for
an overview see [41]): For non-negative weights, schedulers optimizing the probability for
reaching a target while the accumulated weight stays below a given bound are computable
in pseudo-polynomial time and the corresponding probability-threshold problem is in P
for qualitative probability thresholds (“>0” or “=1”) and PSPACE-hard in the general
case [44, 26]. For integer weights even in finite-state Markov chains, the probabilities for
a weight-bounded reachability property can be irrational. Still, decidability for analogous
problems for integer-weighted MDPs have been established for certain cases. Examples
are pseudo-polynomial algorithms for qualitative threshold problems in integer-weighted
MDPs [14, 12, 35, 3] or an exponential-time algorithm and a PSPACE lower bound for the
almost-sure termination problem in one-counter MDPs [11].

Switching to more expressive models typically leads to the undecidability of infinite-
horizon verification problems. This applies, e.g., to recursive MDPs [21], MDPs with two
or more weight functions [7, 42] or partially observable MDPs [33, 6]. However, we are not
aware of natural decision problems for standard (finite-state) MDPs with a single weight
function and single objective that are known to be undecidable.
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2 Preliminaries

We give basic definitions and present our notation (for more details see, e.g., [40]). We then
formally define the quantitative objectives studied in this paper.

Notations for Markov decision processes. A Markov decision process (MDP) is a tuple
M = (S,Act, P, sinit,wgt,AP, L) where S is a finite set of states, Act a finite set of actions,
sinit ∈ S the initial state, P : S ×Act × S → [0, 1] ∩Q is the transition probability function,
wgt : S×Act → Z the weight function, AP a finite set of atomic propositions, and L : S → 2AP a
labeling function. If not needed, we might drop the weight function or the labeling. We require
that

∑
t∈S P (s, α, t) ∈ {0, 1} for all (s, α) ∈ S×Act. We say that action α is enabled in state

s iff
∑
t∈S P (s, α, t) = 1. We assume that for all states s there is an enabled action and that

all states are reachable from sinit . We call a state absorbing if there is only one enabled action,
returning to the state with probability 1 and weight 0. The paths ofM are finite or infinite
sequences s0 α0 s1 α1 . . . where states and actions alternate such that P (si, αi, si+1) > 0 for all
i ≥ 0. For π = s0 α0 s1 α1 . . . αk−1 sk, wgt(π) = wgt(s0, α0) + . . .+ wgt(sk−1, αk−1) denotes
the accumulated weight of π, P (π) = P (s0, α0, s1) · . . . ·P (sk−1, αk−1, sk) its probability, and
last(π) = sk its last state. Further, we also write π to denote the word L(s0), L(s1), . . . . The
size ofM is the sum of the number of states plus the total sum of the logarithmic lengths of
the non-zero probability values P (s, α, s′) as fractions of co-prime integers and the weight
values wgt(s, α). An end component ofM is a strongly connected sub-MDP.

Scheduler. A scheduler forM is a function S that assigns to each finite path π a probability
distribution over Act(last(π)). If there is a finite set X of memory modes and a memory
update function U : S × Act × S × X → X such that the choice of S only depends on
the current state after a finite path and the memory mode obtained from updating the
memory mode according to U in each step, we say that S is a finite-memory scheduler. If
the choice depends only on the current state, we say that S is memoryless. A scheduler S is
called deterministic if S(π) is a Dirac distribution for each path π. Given a scheduler S,
ζ = s0 α0 s1 α1 . . . is a S-path iff ζ is a path and S(s0 α0 . . . αk−1 sk)(αk) > 0 for all k ≥ 0.

Probability measure. We write PrSM,s or briefly PrSs to denote the probability measure
induced by S and s. For details, see [40]. We will use LTL-like formulas to denote measurable
sets of paths. Given a measurable set ψ of infinite paths, we define Prmin

M,s(ψ) = infS PrSM,s(ψ)
and Prmax

M,s(ψ) = supS PrSM,s(ψ) where S ranges over all schedulers forM. For a random
variable X defined on infinte paths in M, we denote the expected value of X under the
probability measure induced by a scheduler S and state s by ES

M,s(X). Furthermore, for
a measurable set of paths ψ with positive probability, ES

M,s(X|ψ) denotes the conditional
expectation of X under ψ. If s = sinit, we sometimes drop the subscript s.

Partial and conditional SSPP. Let M be an MDP with an absorbing state goal. On
infinite paths ζ, we define the random variable ⊕goal(ζ) to be wgt(ζ) if ζ � ♦goal, and to be
0 otherwise. The partial expectation PES

M,s of a scheduler S is defined as ES
M,s(⊕goal). The

maximal partial expectation is PEmax
M,s = supS PES

M,s. The conditional expectation CES
M,s is

defined as the conditional expected value ES
M,s(⊕goal|♦goal) for all schedulers reaching goal

with positive probability, and the maximal conditional expectations is CEmax
M,s = supS CES

M,s

where S ranges over all schedulers S with PrSM,s(♦goal) > 0. The partial SSPP asks for
the maximal partial expectations and the conditional SSPP for the maximal conditional
expectation. These problems were first considered in [16] and [8]. For more details see [8, 38].
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Conditional value-at-risk. Given an MDP M with a scheduler S, a random variable X
defined on runs of the MDP with values in R and a value p ∈ [0, 1], we define the value-at-risk
as VaRS

p (X) = sup{r ∈ R|PrSM(X ≤ r) ≤ p}. So, the value-at-risk is the point at which the
cumulative distribution function of X reaches or exceeds p. Denote VaRS

p (X) by v. The
conditional value-at-risk is now the expectation of X under the condition that the outcome
belongs to the p worst outcomes. Following the treatment of random variables that are not
continuous in general in [31], we define the conditional value-at-risk as follows:

CVaRS
p (X) = 1/p(PrSM(X < v) · ES

M(X|X < v) + (p− PrSM(X < v)) · v).

Outcomes of X which are less than v are treated differently to outcomes equal to v as it is
possible that the outcome v has positive probability and we only want to account exactly
for the p worst outcomes. Hence, we take only p− PrSM(X < v) of the outcomes which are
exactly v into account as well.

Threshold problems for the conditional value-at-risk in weighted MDPs have been studied
in [31] for two random variables: the mean-payoff and weighted reachability where a set of
final states is equipped with terminal weights obtained when reaching these states while all
other transitions have weight 0. In this paper, we will address the conditional value-at-risk for
the accumulated weight before reaching goal in MDPs with an absorbing state goal: Define

goal(ζ) to be wgt(ζ) if ζ � ♦goal and leave it undefined otherwise. The optimization of
the expectation of goal is known as the classical SSPP. Note that the expectation of this
random variable is only defined under schedulers reaching goal with probability 1.

Long-run probability. LetM be an MDP with states labeled by atomic propositions from
AP. Let ϕ be a path property, i.e., a measurable set of paths. The long-run probability for ϕ
of a path ζ under a scheduler S is lrpS

ϕ (ζ) = lim infn→∞ 1
n+1 ·

∑n
i=0 PrS↑ζ[0...i]

M,ζ[i] (ϕ). Here,
ζ[0 . . . i] denotes the prefix from position 0 to i of ζ, ζ[i] denotes the state after i steps, and
S↑ζ[0 . . . i] denotes the residual scheduler defined by S↑ζ[0 . . . i](π) = S(ζ[0 . . . i] ◦ π) for all
finite paths π starting in ζ[i]. The long-run probability of ϕ under scheduler S is LPS

M(ϕ) =
ES
M(lrpS

ϕ ). The maximal long-run probability for ϕ is LPmax
M (ϕ) = supS ES

M(lrpS
ϕ ). This

notion was introduced in [4]. In this paper, we are interested in two kinds of path properties:
Constrained reachability, aU b, where a and b are atomic propositions and the more general
regular co-safety properties given by a finite non-deterministic automaton (NFA) A accepting
“good” prefixes of a run. For a co-safety property given by an NFA A, we also write LPmax

M (A).

3 Skolem-hardness

The Skolem problem and the closely related Positivity problem are outstanding problems
in the fields of number theory and theoretical computer science (see, e.g., [27, 37]). Their
decidability has been open for many decades. We call a problem to which the Skolem problem
is reducible Skolem-hard. This is a hardness result in the sense that a decision procedure
would imply a major breakthrough by settling the decidability of the Skolem problem and it
shows that a problem possesses an inherent mathematical difficulty.

Skolem problem. Given a natural number k ≥ 2, and rationals αi and βj with 1 ≤ i ≤ k
and 0 ≤ j ≤ k − 1, let (un)n≥0 be defined by the initial values u0 = β0, . . . , uk−1 = βk−1
and the linear recurrence relation un+k = α1un+k−1 + · · ·+ αkun for all n ≥ 0. The Skolem
problem is to decide whether there is an n ∈ N with un = 0.
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A closely related problem is the Positivity problem. It asks whether un ≥ 0 for all n. It is
folklore that the Skolem problem is polynomial-time reducible to the positivity problem (see,
e.g., [22]). We will use the Positivity problem for our reductions leading to the main result:

IMain result (Theorems 3, 5, 6, 9, 11). The Positivity problem and hence the Skolem problem
are polynomial-time reducible to the threshold problems for the partial and conditional SSPP,
the conditional value-at-risk in the classical SSPP, and long-run probabilities of regular
co-safety properties, as well as to the qualitative model checking problem of frequency-LTL.

For this purpose, we will construct an MDP gadget depicted in Figure 1a that encodes a
linear recurrence relation in terms of the optimal values of different quantitative objectives.
For the different problems, we then provide gadgets encoding the initial values of a linear
recurrence sequence. We can plug these gadgets together to obtain an MDP and a scheduler
S such that S maximizes the respective objective iff the linear recurrence sequence has no
negative member. By computing the optimal values under S in the MDPs – which turn
out to be rational – we provide reductions from the positivity problem to the respective
threshold problems with strict inequality (see also Remark 4).

3.1 Partial and Conditional SSPP
Given a linear recurrence sequence, we construct an MDP in which the sequence is encoded
in terms of optimal partial expectations. So let k be a natural number and let (un)n≥0 be
the linear recurrence sequence given by rationals αi for 1 ≤ i ≤ k and βj for 0 ≤ j ≤ k−1 as
above. As un+k = α1un+k−1 + · · ·+ αkun for all n, we see that for any positive λ ∈ Q the
sequence (vn)n≥0 defined by vn = λn+1un satisfies vn+k = λ1α1vn+k−1 + · · ·+λkαkvn for all
n. Furthermore, vn is non-negative if and only if un is. W.l.o.g., we hence can assume that∑
i |αi| <

1
4 and that 0 ≤ βj < 1

4k2k+2 for all j (for details, see the extended version [39]).
Now, we construct an MDP-gadget with an example depicted in Figure 1a. This gadget

contains states goal, s, and t, as well as s1, . . . , sk and t1, . . . , tk. In state t, an action γ

is enabled which has weight 0 and leads to state ti with probability αi if αi > 0 and to
state si with probability |αi| if αi < 0 for all i. The remaining probability leads to goal.
From each state ti, there is an action leading to t with weight −i. The action δ enabled in
s as well as the actions leading from states si to s are constructed in the same way. This
gadget will be integrated into a larger MDP where there are no other outgoing edges from
states s1, . . . , sk, t1, . . . , tk. Now, for each state q and each integer w, let e(q, w) be the
optimal partial expectation when starting in state q with accumulated weight w. Further, let
d(w) = e(t, w)− e(s, w). The simple proof of the following lemma can be found in [39] and
uses that optimal partial expectations satisfy that e(q, w) =

∑
r P (q, α, r)e(r, w+wgt(q, α))

if an optimal scheduler chooses action α in state q when the accumulated weight is w.

I Lemma 1. Let w ∈ Z. If an optimal scheduler chooses action γ in t and δ in s if the
accumulated weight is w, then d(w) = α1d(w − 1) + · · ·+ αkd(w − k).

Now we construct a gadget that encodes the initial values β0, . . . , βk−1. The gadget is
depicted in Figure 1b and contains states t, s, goal, and fail. For each 0 ≤ j ≤ k − 1, it
additionally contains states xj and yj . In state xj , there is one action enabled that leads to
goal with probability 1

2k2(k−j) + βj and to fail otherwise. From state yj , goal is reached with
probability 1

2k2(k−j) and fail otherwise. In state t, there is an action γj leading to xj with
weight +k − j for each 0 ≤ j ≤ k − 1. Likewise, in state s there is an action δj leading to yj
with weight k−j for each 0 ≤ j ≤ k − 1. We now glue together the two gadgets at states s,
t, and goal. The cumbersome choices of probability values lead to the following lemma via
straight-forward computations presented in [39].
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t

t1

t2

goal

s

s1

s2

1−|α1|−|α2|

|α1|
|α2|

γ

wgt : −1

wgt : −2

1−|α1|−|α2|

|α1|
|α2|

δ

wgt : −1

wgt : −2

(a) In the depicted example, the recurrence depth
is 2, α1 > 0, and α2 < 0.

t

xj goal yj

s

fail

1− ( 1
2k2(k−j) + βj)

1
2k2(k−j) + βj

γj|wgt : +k − j

1− 1
2k2(k−j)

1
2k2(k−j)

δj|wgt : +k − j

(b) The gadget contains the depicted states and
actions for each 0 ≤ j ≤ k − 1.

Figure 1 The gadget (a) encoding the linear recurrence relation in all reductions and (b) encoding
the intial values in the reduction to the partial SSPP.

I Lemma 2. Let 0 ≤ j ≤ k − 1. Starting with weight −(k−1)+j in state t or s, action γj
and δj maximize the partial expectation. For positive starting weight, γ and δ are optimal.

Comparing action γj and δj for starting weight −(k−1)+j, we conclude that the difference
between optimal values d(−(k−1)+j) is equal to βj , for 0 ≤ j ≤ k−1, and hence d(−(k−1)+
n) = un for all n. Finally, we equip the MDP with a simple initial gadget (see [39]): From
the initial state sinit, one action with weight +1 is enabled. This action leads to a state c with
probability 1

2 and loops back to sinit with probability 1
2 . In c, the decision between action τ

leading to state t and action σ leading to state s has to be made. So for any n > 0, state c is
reached with accumulated weight n with positive probability. An optimal scheduler now has
to decide whether the partial expectation when starting with weight n is better in state s or
t: Action τ is optimal in c for accumulated weight w if and only if d(w) ≥ 0. Further, the
scheduler S always choosing τ in c and actions γ, γ0, . . . , γk−1, δ, . . . as described in Lemma
2 is optimal iff the given linear recurrence sequence is non-negative. We can compute the
partial expectation of scheduler S in the constructed MDP. The partial expectation turns
out to be a rational. Hence, using this partial expectation as the threshold ϑ, we obtain the
first main result. The technical proof computing the value of S in the constructed MDP is
given in the extended version [39].

I Theorem 3. The Positivity problem is polynomial-time reducible to the following problem:
Given an MDPM and a rational ϑ, decide whether PEmax

M > ϑ.

I Remark 4. There is no obvious way to adjust the construction such that the Skolem-
hardness of the question whether PEmax

M ≥ ϑ would follow. One attempt would be to provide
an ε such that PEmax

M > ϑ iff PEmax
M ≥ ϑ + ε. This, however, probably requires a bound

on the position at which the given linear recurrence sequence first becomes negative. But
this question lies at the core of the positivity and the Skolem problem. All Skolem-hardness
results in this paper hence concern only threshold problems with strict inequality.

The Skolem-hardness of the threshold problem for the conditional SSPP is obtained by a
simple reduction showing that the threshold problems of the partial SSPP is polynomial-time
reducible to the threshold problem of the conditional SSPP (see [39]).

I Theorem 5. The Positivity problem is reducible in polynomial time to the following
problem: Given an MDPM and a rational ϑ, decide whether CEmax

M > ϑ.
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t

xj

zj

goal yj

s

y′
j

wgt : −k1
k+1

k
k+1

α

1−α

γj|wgt : −2k+j

wgt : +k
1− βj/α

wgt : +k

βj/α

wgt : +k

α

1−α

δj|wgt : −2k+j

wgt : −k
1

k+1

k
k+1

wgt : −2k

1
k+1

k
k+1

wgt : +3k−2j

(a) The gadget contains the depicted states and
actions for each 0 ≤ j ≤ k − 1. α =

∑k

1=i
|αi|.

t

xj

goal s

yj

failx′j y′j

p2
p1

γj |wgt : +k − j

α

p2

p1
α

q2
q1

δj |wgt : +k − j

α

q2

q1
α

(b) The gadget contains the depicted states and
actions for each 0 ≤ j ≤ k − 1. The probabilities
are: p1 = (1− α)( 1

2k2(k−j) + βj), p2 = (1− α)(1−
( 1

2k2(k−j) + βj)), q1 = (1 − α) 1
2k2(k−j) , q2 = (1 −

α)(1− 1
2k2(k−j) ). All actions except for γj and δj

have weight 0.

Figure 2 The gadgets encoding initial values for (a) the conditional value-at-risk for the classical
SSPP and (b) weighted long-run frequencies.

3.2 Conditional value-at-risk for the classical SSPP
We reuse the gadget depicted in Figure 1a to prove the following result:

I Theorem 6. The Positivity problem is polynomial-time reducible to the following problem:
Given an MDPM and rationals ϑ and p ∈ (0, 1), decide whether CVaRmax

p ( goal) > ϑ.

We begin by the following consideration: Given an MDPM with initial state sinit, we
construct a new MDP N . We add a new initial state s′init. In s′init, there is only one action with
weight 0 enabled leading to sinit with probability 1

3 and to goal with probability 2
3 . So, at least

two thirds of the paths accumulate weight 0 before reaching the goal. Hence, we can already
say that VaRS

1/2( goal) = 0 in N under any scheduler S. Note that schedulers forM can be
seen as schedulers for N and vice versa. This considerably simplifies the computation of the
conditional value-at-risk inN . Define the random variable goal(ζ) to be goal(ζ) if goal ≤ 0
and to be 0 otherwise. Now, the conditional value-at-risk for the probability value 1/2 under
a scheduler S in N is given by CVaRS

1/2( goal) = 2 ·ES
N ,sinit

( goal) = 2
3 ·E

S
M,sinit

( goal). So,
the result follows from the following lemma:

I Lemma 7. The Positivity problem is polynomial-time reducible to the following problem:
Given an MDPM and a rational ϑ, decide whether Emax

M,sinit
( goal) > ϑ.

We adjust the MDP used for the Skolem-hardness proof for the partial SSPP. So, let
k be a natural number, α1, . . . , αk be rational coefficients of a linear recurrence sequence,
and β0, . . . , βk−1 ≥ 0 the rational initial values. W.l.o.g. we again assume these values to be
small, namely:

∑
1≤i≤k |αi| ≤

1
5(k+1) and for all j, βj ≤ 1

3α where α =
∑

1≤i≤k |αi|.
The first important observation is that the optimal expectation of goal for different

starting states and starting weights behaves very similar to optimal partial expectations:
For each state q and each integer w, let e(q, w) be the optimal expectation of goal when
starting in state q with accumulated weight w. If an optimal scheduler chooses α when in
q with accumulated weight w, then e(q, w) =

∑
r∈S P (q, α, r) · e(r, w+wgt(q, α)). Reusing

the MDP-gadget depicted in 1a, we observe that if we again let d(w) = e(t, w)− e(s, w), the
following holds as before: For any w ∈ Z, if an optimal scheduler chooses action γ in t and δ
in s if the accumulated weight is w, then d(w) = α1d(w − 1) + · · ·+ αkd(w − k).
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Now, we construct a new gadget that encodes the initial values of a linear recurrence
sequence. The new gadget is depicted in Figure 2a. Besides the actions γj and δj for
0 ≤ j ≤ k−1 there are no non-deterministic choices. Again, we glue together the two gadgets
in states s, t, and goal. The main idea is that for non-negative starting weights in state s or
t actions γj and δj lead to a larger expected tail loss than actions γ and δ. For 0 ≤ j ≤ k−1
and an accumulated weight −k+j in state t or s, the actions γj and δj are, however, optimal
for maximizing the expectation of goal sinve the goal is reached with non-negative weights
with high probability under these actions (details in [39]). The difference of optimal values
satisfies e(t,−k + j)− e(s,−k + j) = βj for 0 ≤ j ≤ k−1 again. Finally, we add the same
initial component as in the previous section and see that the scheduler S always choosing τ
in state c is optimal iff the linear recurrence sequence stays non-negative. As the expectation
of goal under S is again a rational (see [39]), this finishes the proof analogously to the
previous section.

3.3 Long-run probability and frequency-LTL
In order to transfer the Skolem-hardness results to long-run probabilities and frequency-LTL,
we introduce the auxiliary notion of weighted long-run frequency. LetM be an MDP with
a weight function wgt : S × Act → Z and two disjoint sets of states Goal,Fail ⊆ S. On an
infinite paths π = s0, α0, s1, . . . , we define the random variable wlf as follows:

wlf (π) = lim inf
n→∞

1
n+ 1

∑n

i=0
wgt(si, αi) · 1π[i... ]�¬Fail U Goal

where 1π[i... ]�¬Fail U Goal is 1 if the suffix π[i . . . ] = si, αi, si+1, . . . satisfies ¬Fail U Goal, and
0 otherwise. Given a scheduler S, we define the weighted long-run frequency WLFS

M =
ES
M(wlf ) and WLFmax

M = supS WLFS
M. This can be seen as a long-run average version of

partial expectations. Weights are only received if afterwards Goal is visited before Fail and
we measure the average weight received per step according to this rule. Note that we only
consider the path property ¬Fail U Goal in this paper and hence do not include this property
in our notation and terminology. An illustrating example can be found in [39].

We modifiy the MDP that was constructed in Section 3.1 for the Skolem-hardness of the
partial SSPP. We replace the gadget encoding the initial values with the gadget depicted
in Figure 2b. This gadget differs from the gadget used for partial expectations only in the
expected time it takes to reach goal or fail under γj or δj . It is constructed in a way such that
the expected time to reach goal or fail from sinit does not depend on the scheduler. Finally,
we add a transition leading back to the initial state from goal and fail. An optimal scheduler
for weighted long-run frequencies in the constructed MDP K now just has to maximize the
partial expectation leading to the Skolem-hardness result (for more details see [39]).

I Theorem 8. The Positivity problem is polynomial-time reducible to the following problem:
Given an MDPM and a rational ϑ, decide whether WLFmax

M > ϑ.

This result now serves as a tool to establish analogous results for long-run probabilities.
The key idea is to encode integer weights via a labelling of states and to use a simple regular
co-safety property to mimic the reception of weights in weighted long-run frequencies.

I Theorem 9. The Positivity problem is polynomial-time reducible to the following problem:
Given an MDPM, an NFA A, and a rational ϑ, decide whether LPmax

M (A) > ϑ.

In the sequel, we consider weighted states instead of weighted state-action pairs. Further,
we assume that the weights are only −1, 0, and +1. This assumption leads to a pseudo-
polynomial blow-up in the general case. The weights in the MDP K constructed for Theorem
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p ∧ ¬g ∧ ¬f g, f ∧ c

z ∧ ¬g ∧ ¬f

g ∧ c, f ∧ c

n ∧ ¬g ∧ ¬f

f ∧ c

¬g ∧ ¬f

¬g ∧ ¬f

¬g ∧ ¬f

g ∧ p, g ∧ z ∧ c, f ∧ c

Figure 3 The NFA A expressing a property of the form d ∨
∨3

i=1(ci ∧ (aU bi)).

8 above are, however, at most k. As the MDP has more than 2k states, transforming K to
weights −1, 0, and +1 only leads to a polynomial blow-up. As this MDP has no non-trivial
end-components, {goal, fail} is visited infinitely often with probability 1 under any scheduler.
Let AP = {n, z, p, c, g, f} be a set of atomic propositions representing negative (−1), zero
(0), and positive (+1) weight, coin flip, goal, and fail, respectively. We construct an MDP L:
The states goal and fail are duplicated while one copy of each is labeled with c and whenever
goal or fail are entered in the MDP K, both of the two copies in L are equally likely. For
a formal definition see [39]. In Figure 3, we depict the NFA A used for the encoding. The
NFA A is constructed such that in L any run starting in a state labeled zero or reaching fail
before goal is accepted with probability 1/2 due to the coin flips. A run starting in a state
labeled positive and reaching goal before fail is accepted while such a path starting in a state
labeled negative is not. This leads to the following lemma that proves Theorem 9.

I Lemma 10. For the MDPs K and L constructed above, we have WLFmax
K = 1

2 + 1
2LP

max
L (A).

Proof sketch. It is quite easy to see that the claim holds for finite-memory schedulers as we
can rely on steady state probabilities in the resulting Markov chain. That the supremum
over all schedulers agrees with the supremum over finite-memory schedulers on both sides
follows from Fatou’s lemma. Details can be found in [39]. J

A consequence of this result is that model checking of frequency-LTL in MDPs is at least
as hard as the Skolem problem. The decidability of the model-checking problem for the full
logic frequency-LTL has been left open, but set as a goal in [23, 24]. Obtaining this goal by
proving the decidability of the model-checking problem hence would settle the decidability of
the Skolem problem. The frequency-globally modality G>ϑinf (ϕ) is defined to hold on a path π
iff lim infn→∞ 1

n+1
∑n
i=0 1π[i... ]�ϕ > ϑ, i.e. iff the long-run average number of positions at

which a suffix satisfying ϕ starts exceeds ϑ.

I Theorem 11. There is a polynomial-time reduction from the Positivity problem to the
following qualitative model checking problem for frequency LTL for a fixed LTL-formula ϕ:
Given an MDPM and a rational ϑ, is Prmax

M (G>ϑinf (ϕ)) = 1?

Proof sketch. The proof uses the reduction to the threshold problem for the long-run
probability of the co-safety property expressed by A. This property is captured by a simple
LTL-formula ϕ (see Figure 3). For finite-memory schedulers S inducing a single bottom
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strongly connected component, we see that G>ϑinf (ϕ) holds with probability 1 iff the expected
long-run probability of ϕ is greater than ϑ. That it is enough to consider such schedulers
follows from the argument using Fatou’s lemma again. For more details see [39]. J

4 Saturation points

Despite the inherent mathematical difficulty shown by the Skolem-hardness results so far,
all of the problems studied here are solvable in exponential time under a natural restriction.
For the problems on weighted MDPs, this restriction only allows non-negative weights
while for the long-run notions the restriction to constrained reachability properties (aU b)
leads to solvability. For the partial and the conditional SSPP [8, 16] and for long-run
probabilities [4], the computability of optimal values under these restrictions has been shown.
The algorithms exploit the existence of saturation points, a bound on the accumulated
weight or the consecutive visits to certain states before optimal schedulers can behave
memorylessly. We will extend this picture by providing a simple saturation point for the
computation of the optimal conditional value-at-risk for the classical SSPP in MDPs with
non-negative weights. Afterwards, we transfer the saturation-point algorithm from [4] to
weighted long-run frequencies in the setting of non-negative weights. As a consequence,
we obtain an exponential-time algorithm for the qualitative model-checking problem of a
frequency-LTL formula for which no solutions were known. To conclude the section, we
provide accompanying PSPACE lower bounds for the partial SSPP and weighted long-run
frequencies with non-negative weights.

4.1 Conditional value-at-risk for the classical SSPP
Let M be an MDP with non-negative weights. In the classical SSPP, it is decidable in
polynomial time whether the optimal expected accumulated weight before reaching the goal
is bounded. If this is the case, the usual preprocessing step removes end components [20, 3]
and transforms the MDP such that exactly the schedulers reaching the goal with probability
1 can be mimicked in the transformed MDP. So in the sequel, we assume that the absorbing
state goal forms the only end component. Given a rational probability value p ∈ (0, 1), we are
interested in the value CVaRmax

p ( goal). Note that in our formulation the worst outcomes
are the paths with the lowest accumulated weight before reaching the goal. Below we will
sketch how to treat the case where high outcomes are considered bad.

I Theorem 12. Given an MDP M = (S, sinit,Act, P,wgt, goal) with non-negative weights
and no end-components except for one absorbing state goal as well as a rational probability
value p ∈ (0, 1), the value CVaRmax

p ( goal) is computable in pseudo-polynomial time.

Proof sketch. As there are no end components, we can provide a saturation point K ∈ N
such that paths accumulate a weight of more than K with probability less than 1− p. Then,
paths reaching an accumulated weight of K do not belong to the worst p outcomes. We
construct an MDP with the state space S × {0, . . . ,K} that encodes the accumulated weight
of a path up to K. Letting states of the form (goal, i) be terminal with weight i and of the
form (s,K) be terminal with weight K, we can then rely on the algorithm computing the
conditional value-at-risk for weighted reachability in [31]. As K can be chosen of pseudo-
polynomial size and this algorithm runs in time polynomial in the size of the constructed
MDP, this leads to a pseudo-polynomial time algorithm. For details see [39]. J

Note that the behavior of a scheduler on paths with accumulated weight above K does
not matter at all for the conditional value-at-risk. If we want to consider the case where long
paths are considered as bad, we can multiply all weights by −1 and use the definitions as
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before. The idea here now is to compute a saturation point −K such that the probability for
a path to accumulate weight less than −K is smaller than p. So, we know that a path with
weight less than −K belongs to the p worst paths. On these paths, the best thing to do in
order to maximize the conditional value-at-risk is to maximize the expected accumulated
weight before reaching the goal. This can be done by a memoryless deterministic scheduler
simultaneously for all states and the values are computable in polynomial time [20]. Then
we construct the MDP N as above but change the terminal weights as follows: states of
the form (goal, i) get weight −i and states of the form (s,K) get weight −K + Emax

M,s( goal)
where M is the MDP in which all weights are already multiplied by −1. Afterwards the
problem can be solved by the techniques for weighted reachability from [31] again.

4.2 Weighted long-run frequencies and frequency-LTL
The existence of a saturation point for long-run probabilities of constrained reachability
properties was shown in [4]. This result can easily be adapted to weighted long-run frequencies
following the same arguments. First, it is shown by an application of Fatou’s lemma that
optimal weighted long-run frequency can be approximated by finite-memory schedulers.
Afterwards, it is shown that the memory needed for the optimization can be restricted
further: A saturation point K ∈ N is provided such that only scheduler keeping track of the
accumulated weight up to K have to be considered. The adaptions necessary to the proof
in [4] are worked out in the extended version [39] and lead to the following result:

I Theorem 13. The maximal value WLFmax
M in an MDPM with non-negative weights is

computable in pseudo-polynomial time.

I Corollary 14. Given an MDPM and a rational ϑ, it can be checked in pseudo-polynomial
time whether Prmax

M (G>ϑinf (aU b)) = 1.

Proof. The semantics of G>ϑinf (¬Fail U Goal) on a path π agree with the semantics of wlf (π) >
ϑ if all weights are set to +1. Now, we can check for each end component E ofM whether
WLFmax

E > ϑ. If that is the case, there is a finite memory scheduler for E inducing only one
BSCC achieving a weighted long-run frequency greater than ϑ. Under this scheduler almost
all paths π satisfy wlf (π) > ϑ. Afterwards, it remains to check whether end components
with such a scheduler can be reached with probability 1 inM. J

In [24], the fragment of frequency-LTL in which no until-operators occur in the scope of
a globally operator has been studied. The formula in the corollary is hence of the simplest
form of frequency-LTL formulas for which no solution to the qualitative model-checking
problem has been known. Remarkably, the formula used in the Skolem-hardness proof
(Theorem 11) is only slightly more complicated as it contains a Boolean combination of
constrained reachability properties and atomic propositions under the frequency-globally
operator.

4.3 PSPACE lower bounds
For the conditional SSPP with non-negative weights [8] and the long-run probability of
constrained reachability properties [4], PSPACE and NP lower bounds, respectively, are
known indicating that the pseudo-polynomial time algorithms for the computation can
probably not be significantly improved. The threshold problem of the conditional SSPP is
already PSPACE-hard in acyclic MDPs with non-negative weights as shown in [8]. In [38],
it has been shown that the threshold problem of the conditional SSPP is polynomial-time
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reducible to the threshold problem for the partial SSPP. This reduction generates an MDP
with negative weights, even when all weights in the original MDP are non-negative. Here,
we provide a new polynomial reduction for acyclic MDPs from the threshold problem for
the conditional SSPP to the threshold problem of the partial SSPP that preserves the
non-negativity of weights (see [39]).

I Proposition 15. The threshold problem of the partial SSPP is PSPACE-hard in acyclic
MDPs with non-negative weights. It is contained in PSPACE for acyclic MDPs with arbitrary
integer weights.

In an acyclic MDP, we can add intermediate states on transitions such that all paths
have the same length `. If we additionally add transitions form goal and fail back to the
initial state, the maximal weighted long-run frequency is just the maximal partial expectation
divided by `. This allows us to conclude:

I Proposition 16. The threshold problem for weighted long-run frequencies, “Does WLFmax
M ./

ϑ hold?”, in MDPs with non-negative weights is PSPACE-hard.

5 Conclusion

We identified a variety of optimization problems – some of which seemed rather unrelated
on first sight – with a Skolem-hard threshold problem on MDPs. The results show that
an algorithm for the exact solution to these optimization problems would imply a major
breakthrough. For the partial and conditional SSPP, however, approximation algorithms
were provided in [38]. Investigating the possibility to approximate optimal values might lead
to algorithms useful in practice for the other objectives studied here. Further, the problems
have a pseudo-polynomial solution under natural restrictions. The key result, the existence
of a saturation point, has been established in the setting of stochastic multiplayer games
for partial expectations [16]. This raises the question to which extend the saturation point
results for the other problems can be transferred to stochastic multiplayer games.

To the best of our knowledge, the conditional value-at-risk for accumulated weights
has not been addressed before. While we showed Skolem-hardness in the general setting,
the computation of the optimal value is possible in exponential time in the setting of non-
negative weights. Studying lower bounds for the complexity of the threshold problem and
the combination of constraints on the expected accumulated weight before reaching the goal,
the value-at-risk, and the conditional value-at-risk in this setting are left as future work.
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Abstract
The two-way finite automaton with quantum and classical states (2QCFA), defined by Ambainis and
Watrous, is a model of quantum computation whose quantum part is extremely limited; however, as
they showed, 2QCFA are surprisingly powerful: a 2QCFA, with a single qubit, can recognize, with
bounded error, the language Leq = {ambm : m ∈ N} in expected polynomial time and the language
Lpal = {w ∈ {a, b}∗ : w is a palindrome} in expected exponential time.

We further demonstrate the power of 2QCFA by showing that they can recognize the word
problems of many groups. In particular 2QCFA, with a single qubit and algebraic number transition
amplitudes, can recognize, with bounded error, the word problem of any finitely generated virtually
abelian group in expected polynomial time, as well as the word problems of a large class of linear
groups in expected exponential time. This latter class (properly) includes all groups with context-free
word problem. We also exhibit results for 2QCFA with any constant number of qubits.

As a corollary, we obtain a direct improvement on the original Ambainis and Watrous result by
showing that Leq can be recognized by a 2QCFA with better parameters. As a further corollary, we
show that 2QCFA can recognize certain non-context-free languages in expected polynomial time.

In a companion paper, we prove matching lower bounds, thereby showing that the class of
languages recognizable with bounded error by a 2QCFA in expected subexponential time is properly
contained in the class of languages recognizable with bounded error by a 2QCFA in expected
exponential time.
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1 Introduction

The theory of quantum computation has made amazing strides in the last several decades.
Landmark results, like Shor’s polynomial time quantum algorithm for integer factorization [31],
Grover’s algorithm for unstructured search [14], and the linear system solver of Harrow,
Hassidim, and Lloyd [15], have provided remarkable examples of natural problems for
which quantum computers seem to have an advantage over their classical counterparts.
These theoretical breakthroughs have provided strong motivation to construct quantum
computers. However, while significant advancements have been made, the experimental
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quantum computers that exist today are still quite limited, and are certainly not capable of
implementing, on a large scale, algorithms designed for general quantum Turing machines.
This naturally motivates the study of more restricted models of quantum computation.

In this paper, our goal is to understand the computational power of a small number of
qubits, especially the power of a single qubit. To that end, we study two-way finite automata
with quantum and classical states (2QCFA), introduced by Ambainis and Watrous [1].
Informally, a 2QCFA is a two-way deterministic finite automaton (2DFA) that has been
augmented with a quantum register of constant size, i.e., a constant number of qubits. The
quantum part of the machine is extremely limited; however, the model is surprisingly powerful.
In particular, Ambainis and Watrous [1] showed that a 2QCFA, using only one qubit, can
recognize, with bounded error, the language Leq = {ambm : m ∈ N} in expected polynomial
time and the language Lpal = {w ∈ {a, b}∗ : w is a palindrome} in expected exponential
time. This clearly demonstrated that 2QCFA are more powerful than 2DFA, which recognize
precisely the regular languages [26]. Moreover, as it is known that two-way probabilistic
finite automata (2PFA) can recognize Leq with bounded error in exponential time [11], but
not in subexponential time [13], and cannot recognize Lpal with bounded error in any time
bound [10], this result also demonstrated the superiority of 2QCFA over 2PFA.

We investigate the ability of 2QCFA to recognize the word problem of a group. Informally,
the word problem for a group G involves determining if the product of a finite sequence
of group elements g1, . . . , gk ∈ G is equal to the identity element of G. Word problems for
various classes of groups have a rich and well-studied history in computational complexity
theory, as there are many striking relationships between certain algebraic properties of a group
G and the computational complexity of its word problem WG. For example, WG ∈ REG⇔ G

is finite [3], WG ∈ CFL⇔WG ∈ DCFL⇔ G is a finitely generated virtually free group [23],
and WG ∈ NP ⇔ G is a finitely generated subgroup of a finitely presented group with
polynomial Dehn function [5].

For a quantum model, such as the 2QCFA, word problems are a particularly natural class
of languages to study. There are several results [6, 37, 36] which show that certain (generally
significantly more powerful) QFA variants can recognize the word problems of particular
classes of groups (see the excellent survey [2] for a full discussion of the many QFA variants).
Moreover, there are also results concerning the ability of QFA to recognize certain languages
that are extremely closely related to word problems; in fact, the languages Leq and Lpal
considered by Ambainis and Watrous [1] are each closely related to a word problem.

Fundamentally, the laws of quantum mechanics sharply constrain the manner in which
the state of the quantum register of a 2QCFA may evolve, thereby forcing the computation
of a 2QCFA to have a certain algebraic structure. Similarly, the algebraic properties of a
particular group G impose a corresponding algebraic structure on its word problem WG. For
certain classes of groups, the algebraic structure of WG is extremely compatible with the
algebraic structure of the computation of a 2QCFA; for other classes of groups, these two
algebraic structures are in extreme opposition.

In this paper, we show that there is a broad class of groups for which these algebraic
structures are quite compatible, which enables us to produce 2QCFA that recognize these
word problems. As a corollary, we show that Leq can be recognized by a 2QCFA with better
parameters than in the original Ambainis and Watrous result [1].

In a separate paper [27], we establish matching lower bounds on the running time of a
2QCFA (and, more generally, a quantum Turing machine that uses sublogarithmic space)
that recognizes these word problems, thereby demonstrating the optimality of these results;
this allows us to prove that the class of languages recognizable with bounded error by 2QCFA
in expected subexponential time is properly contained in the class of languages recognizable
with bounded error by 2QCFA in expected exponential time.
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1.1 Statement of the Main Results
We begin by formally defining the word problem of a group; for more extensive background,
see, for instance, [21]. Let F (S) denote the free group on the set S. For sets S and R,
where R ⊆ F (S), let 〈RF (S)〉 denote the normal closure of R in F (S); we say that a group
G has presentation 〈S|R〉 if G ∼= F (S)/〈RF (S)〉, in which case we write G = 〈S|R〉. For a
set S, we define the set of formal inverses S−1, such that for each s ∈ S, there is a unique
corresponding s−1 ∈ S−1, and S ∩ S−1 = ∅.

I Definition 1. Suppose G = 〈S|R〉, where S is finite. Let Σ = S t S−1, let Σ∗ denote
the free monoid over Σ, let φ : Σ∗ → G denote the natural monoid homomorphism that
takes each string in Σ∗ to the element of G that it represents, and let 1G denote the identity
element of G. The word problem of G with respect to the presentation 〈S|R〉 is the language
WG=〈S|R〉 = {w ∈ Σ∗ : φ(w) = 1G} consisting of all strings that represent 1G.

Note that if G = 〈S|R〉, then S (or more precisely the image of S in G under φ) is a
generating set for G. We say that G is finitely generated if it has a generating set S that
is finite. If G also has presentation 〈S′|R′〉, where S′ is also finite, then for any complexity
class C closed under inverse homomorphism, WG=〈S|R〉 ∈ C ⇔WG=〈S′|R′〉 ∈ C [16]. As each
complexity class C considered in this paper is closed under inverse homomorphism, we will use
WG to denote the word problem of a finitely generated group G, and we will write WG ∈ C
if WG=〈S|R〉 ∈ C for some (equivalently, every) presentation 〈S|R〉 of G with S finite.

We show that, for many groups G, the corresponding word problem WG is recognized
by a 2QCFA with “good” parameters. In order to state these results, we must make use of
some terminology and notation concerning 2QCFA and various classes of groups whose word
problems are of complexity theoretic interest. We define the 2QCFA model in Section 2. For
other definitions and additional background, we refer the reader to the full version of this
paper [28]. We use R>0 to denote the positive real numbers.

I Definition 2. For T : N → N, ε ∈ R>0, d ∈ N, and A ⊆ C, let the complexity class
coR2QCFA(T, ε, d,A) consist of all languages L ⊆ Σ∗ for which there is a 2QCFA M ,
which has d quantum basis states and transition amplitudes in A, such that, ∀w ∈ Σ∗, the
following holds: M runs in expected time O(T (|w|)), Pr[M accepts w]+Pr[M rejects w] = 1,
w ∈ L⇒ Pr[M accepts w] = 1, and w 6∈ L⇒ Pr[M rejects w] ≥ 1− ε.

The focus on the transition amplitudes of a 2QCFA warrants a bit of additional justifica-
tion, as while it is standard to limit the transition amplitudes of a Turing machine in this way,
it is common for finite automata to be defined without any such limitation. For many finite
automata models, applying such a constraint would be superfluous; for example, the class of
languages recognized with bounded error and in expected time 2no(1) by a 2PFA with no
restriction at all on its transition amplitudes is precisely the regular languages [9]. However,
the power of the 2QCFA model is quite sensitive to the choice of transition amplitudes. A
2QCFA with non-computable transition amplitudes can recognize undecidable languages,
with bounded error and in expected polynomial time [29]; whereas, 2QCFA with transition
amplitudes restricted to the algebraic numbers Q can only recognize languages in P ∩ L2,
even if permitted unbounded error and exponential time [34]. In particular, the algebraic
numbers are arguably the “standard” choice for the permitted transition amplitudes of a
quantum Turing machine (QTM). It is desirable for the definition of 2QCFA to be consistent
with that of QTMs as such consistency makes it more likely that techniques developed for
2QCFA could be applied to QTMs. Therefore, Q is the the natural choice for the permit-
ted transition amplitudes of a 2QCFA, though we do also consider the impact of allowing
transition amplitudes in the slightly broader class C̃ = Q ∪ {eπir : r ∈ (Q ∩ R)}.
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We begin with a simple motivating example. For a finite alphabet Σ, a symbol σ ∈ Σ,
and a word w ∈ Σ∗, let #(w, σ) denote the number of appearances of σ in w. Then the
word problem for the group Z (the integers, where the group operation is addition) is the
language WZ = {w ∈ {a, b}∗ : #(w, a) = #(w, b)}. This language is closely related to
the language Leq = {ambm : m ∈ N}; in particular, Leq = (a∗b∗) ∩WZ. More generally,
the word problem for the group Zk (the direct product of k copies of Z) is the language
WZk = {w ∈ {a1, b1, . . . , ak, bk}∗ : #(w, ai) = #(w, bi),∀i}.

Ambainis and Watrous [1] showed that Leq ∈ coR2QCFA(n4, ε, 2, C̃), ∀ε ∈ R>0. We note
that the same method would easily imply the same result for WZ, and could be further
adapted to produce a similar result forWZk . Our first main theorem generalizes and improves
upon these results in several ways. Let Π̂1 denote the collections of all finitely generated
virtually abelian groups (i.e., all groups that have a finite-index subgroup isomorphic to Zk,
for some k ∈ N, where Z0 is the trivial group); we will explain this choice of notation shortly.

I Theorem 3. ∃C ∈ R>0 such that ∀G ∈ Π̂1,∀ε ∈ R>0, WG ∈ coR2QCFA(n3, ε, 2, C̃) ∩
coR2QCFA(nC , ε, 2,Q).

By the above observation that Leq = (a∗b∗) ∩WZ, the following corollary is immediate.

I Corollary 4. ∃C ∈ R>0,∀ε ∈ R>0, Leq ∈ coR2QCFA(n3, ε, 2, C̃) ∩ coR2QCFA(nC , ε, 2,Q).

The above corollary improves upon the result of Ambainis and Watrous [1] in two distinct
senses. Firstly, using the same set of permissible transition amplitudes, our result has a
better expected running time. Secondly, our result shows that Leq can be recognized by a
2QCFA with transition amplitudes in Q, which still runs in expected polynomial time.

Let CFL denote the context-free languages (languages recognized by non-deterministic
pushdown automata), OCL denote the one-counter languages (languages recognized by non-
deterministic pushdown automata with single-symbol stack alphabet) and poly−CFL (resp.
poly−OCL) denote the intersection of finitely many context-free (resp. one-counter) languages.
As WG ∈ poly−OCL⇔ G ∈ Π̂1 [17], the following corollary is also immediate.

I Corollary 5. ∃C ∈ R>0,∀WG ∈ poly−OCL,∀ε ∈ R>0, WG ∈ coR2QCFA(n3, ε, 2, C̃)∩
coR2QCFA(nC , ε, 2,Q).

Moreover, asWG ∈ poly−OCL∩CFL⇔ G is a finitely generated virtually cyclic group [17],
the above corollary exhibits a wide class of non-context-free languages that are recognizable
by a 2QCFA in polynomial time: the word problem of any group that is virtually Zk, k ≥ 2.

Next, let Fk denote the free group of rank k, for k ∈ N; in particular, F0 is the trivial
group, F1 is the group Z, and, for any k ≥ 2, Fk is non-abelian. Notice that WF2 is closely
related to the language Lpal. Ambainis and Watrous [1] showed that, ∀ε ∈ R>0, ∃D ∈ R≥1,
such that Lpal ∈ coR2QCFA(Dn, ε, 2,Q), and the same method would show the same result
for WF2 . We show that the same result holds for any group built from free groups, using
certain operations. Let Π̂2 denote the collection of all finitely generated groups that are
virtually a subgroup of a direct product of finitely many finite-rank free groups.

I Theorem 6. ∀G ∈ Π̂2,∀ε ∈ R>0,∃D ∈ R≥1, such that WG ∈ coR2QCFA(Dn, ε, 2,Q).

AsWG ∈ CFL⇔ G is a finitely generated virtually free group [23], we obtain the following.

I Corollary 7. ∀WG ∈ CFL,∀ε ∈ R>0,∃D ∈ R≥1, such that WG ∈ coR2QCFA(Dn, ε, 2,Q).

Consider the homomorphism π : F2 × F2 → Z, where π takes each free generator of each
copy of F2 to a single generator of Z; then K = kerπ is finitely generated, but not finitely
presented [32]. All groups G for which WG ∈ CFL∪ poly−OCL are finitely presented [16]. As
K ∈ Π̂2, we have the following corollary.
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I Corollary 8. There is a finitely generated group K, which is not finitely presented (hence,
WK 6∈ CFL∪poly−OCL), where ∀ε ∈ R>0,∃D ∈ R≥1, such thatWK ∈ coR2QCFA(Dn, ε, 2,Q).

I Remark 9. It is known that, if G ∈ Π̂2, thenWG ∈ poly−CFL [7]. Moreover, it is conjectured
that Π̂2 is precisely the class of groups whose word problem is in poly−CFL [7] (cf. [8]).

We next consider a broader class of groups. Let Z(H) denote the center of a group H,
let U(d,Q) denote the group of d × d unitary matrices with entries in Q, let PU(d,Q) =
U(d,Q)/Z(U(d,Q)), and let (PU(d,Q))k denote the direct product of k copies of PU(d,Q).

I Theorem 10. If G is a finitely generated group that is virtually a subgroup of (PU(d,Q))k,
for some d, k ∈ N≥1, then ∀ε ∈ R>0,∃D ∈ R≥1, such that WG ∈ coR2QCFA(Dn, ε, d,Q).

In order to state our final main result, as well as to provide appropriate context for the
results listed above, we define the classes of groups Σj and Πj , for j ∈ N, inductively. First
Σ0 = Π0 = {Z, {1}} (i.e., both classes consist of the two groups Z and the trivial group
{1}). We use × to denote the direct product and ∗ to denote the free product. For j > 1,
we define Πj = {H1 × · · · ×Ht : t ∈ N≥1, H1, . . . ,Ht ∈ Σj−1} and Σj = {H1 ∗ · · · ∗Ht : t ∈
N≥1, H1, . . . ,Ht ∈ Πj−1}. These groups comprise an important subclass of a particularly
important class of groups: the right-angled Artin groups. Note that every G ∈

⋃
j(Πj ∪ Σj)

is finitely generated. Also note that the Πj and Σj form a hierarchy in the obvious way. We
further define Π̂j (resp. Σ̂j) as the set of all finitely generated groups that are virtually a
subgroup of some group in Πj (resp. Σj), which also form a hierarchy in the obvious way.

In particular, Π̂1 (resp. Π̂2) is precisely the class of groups for which Theorem 3 (resp.
Theorem 6) demonstrates the existence of a 2QCFA that recognizes the corresponding
word problem with bounded error in expected polynomial (resp. exponential) time. We
next consider the class Π̂3. While the relationship of this class to the class of groups to
which Theorem 10 applies is unclear to us, we can show that the word problem of any
group in this class can be recognized by a 2QCFA with negative one-sided unbounded
error. Let coN2QCFA(T, d,A) be defined as in Definition 2, except we now only require that
Pr[N rejects w] > 0,∀w 6∈ L.

I Theorem 11. If G ∈ Π̂3, then WG ∈ coN2QCFA(n, 2, C̃).

I Remark 12. Z ∗ Z2 ∈ Σ2 ⊆ Π̂3. It is conjectured [7, 18] that WZ∗Z2 6∈ poly−CFL ∪ coCFL.
Lastly, we consider 2QCFA with no restrictions on their transition amplitudes, as well as

the measure-once one-way quantum finite automaton (MO-1QFA) defined by Moore and
Crutchfield [22]. Let coN1QFA denote the class of languages recognizable with negative
one-sided unbounded error by a MO-1QFA (with any constant number of states).

I Theorem 13. If G is a finitely generated group that is virtually a subgroup of (PU(d))k,
for some d, k ∈ N≥1, then WG ∈ coN2QCFA(n, d,C) ∩ coN1QFA.

Let D denote the class of groups to which the preceding theorem applies (which includes
all groups to which all earlier theorems apply). Let S denote the stochastic languages
(the class of languages recognizable by PFA with strict cut-points). By [6, Theorem 3.6],
coN1QFA ⊆ coS, which implies the following corollary.

I Corollary 14. If G ∈ D, then WG ∈ coS.

I Remark 15. For many G ∈ D, the fact that WG ∈ coS was already known: WFk ∈ coS,
∀k [6], which implies (by standard arguments from computational group theory, see for
instance [23]) that ∀G ∈ Π̂2, WG ∈ coS. However, for G ∈ D \ Π̂2, this result appears to
be new.
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2 Quantum Computation and the 2QCFA

In this section, we briefly recall the fundamentals of quantum computation and the definition
of 2QCFA. For further background on quantum computation, see, for instance, [24, 35].

A natural way of understanding quantum computation is as a generalization of probabilistic
computation. One may consider a probabilistic system defined over some finite set of states
C = {c1, . . . , ck}, where the state of that system, at any particular point in time, is given
by a probability distribution over C. Such a probability distribution may be described by a
vector v = (vc1 , . . . , vck), where vc ∈ R≥0 denotes the probability that the system is in state
c ∈ C, and

∑
c vc = 1, i.e., v is simply an element of Rk≥0 with L1-norm 1.

Similarly, consider some finite set of quantum basis states Q = {q1, . . . , qk}, which
correspond to an orthonormal basis |q1〉 , . . . , |qk〉 of Ck (here and throughout the paper we
use the standard bra-ket notation). The state of a quantum system over Q, at any particular
time, is given by some superposition |ψ〉 =

∑
q αq |q〉 of the basis states, where each αq ∈ C

and
∑
q|αq|2 = 1; i.e., a superposition |ψ〉 is simply an element of Ck with L2-norm 1.

Let U(k) denote the group of k×k unitary matrices. Given a quantum system currently in
the superposition |ψ〉, one may apply a transformation t ∈ U(k) to the system, after which the
system is in the superposition t |ψ〉. One may also perform a projective measurement in the
computational basis, which is specified by some partition B = {B0, . . . , Bl} of Q. Measuring
a system that is in the superposition |ψ〉 =

∑
q αq |q〉 with respect to B gives the result

Br ∈ B with probability pr :=
∑
q∈Br |αq|

2; additionally, if the result of the measurement
is Br, then the state of the system collapses to the superposition 1√

pr

∑
q∈Br αq |q〉. We

emphasize that measuring a quantum system changes the state of that system.
We now define a 2QCFA, essentially following the original definition in [1]. Infor-

mally, a 2QCFA is a two-way deterministic finite automaton that has been augmented
with a finite size quantum register. Formally, a 2QCFA M is given by an 8-tuple, M =
{Q,C,Σ, δ, qstart, cstart, cacc, crej}, where Q (resp. C) is the finite set of quantum (resp. clas-
sical) states, Σ is a finite alphabet, δ is the transition function, qstart ∈ Q (resp. cstart ∈ C)
is the quantum (resp. classical) start state, and cacc, crej ∈ C, where cacc 6= crej , are the
accepting and rejecting states. The quantum register of M is given by the quantum system
with basis states Q. We define the tape alphabet Γ := Σ t {#L,#R} where the two distinct
symbols #L,#R 6∈ Σ will be used to denote, respectively, a left and right end-marker.

Each step of the computation of the 2QCFA M involves either performing a unitary
transformation or a projective measurement on its quantum register, updating the classical
state, and moving the tape head. This behavior is encoded in the transition function δ.
For each (c, γ) ∈ (C \ {cacc, crej})× Γ, δ(c, γ) specifies the behavior of M when it is in the
classical state c and the tape head currently points to a tape alphabet symbol γ. There are
two forms that δ(c, γ) may take, depending on whether it encodes a unitary transformation
or a projective measurement. In the first case, δ(c, γ) is a triple (t, c′, h) where t ∈ U(|Q|) is a
unitary transformation to be performed on the quantum register, c′ ∈ C is the new classical
state, and h ∈ {−1, 0, 1} specifies whether the tape head is to move left, stay put, or move
right, respectively. In the second case, δ(c, γ) is a pair (B, f), where B is a partition of Q
specifying a projective measurement, and f : B → C × {−1, 0, 1} specifies the mapping from
the result of that measurement to the evolution of the classical part of the machine, where,
if the result of the measurement is Br, and f(Br) = (c′, h), then c′ ∈ C is the new classical
state and h ∈ {−1, 0, 1} specifies the movement of the tape head.

The computation of M on an input w ∈ Σ∗ is then defined as follows. If w has length n,
then the tape will be of size n + 2 and contain the string #Lw#R. Initially, the classical
state is cstart, the quantum register is in the superposition |qstart〉, and the tape head points
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to the leftmost tape cell. At each step of the computation, if the classical state is currently c
and the tape head is pointing to symbol γ, the machine behaves as specified by δ(c, γ). If,
at some point in the computation, M enters the state cacc (resp. crej) then it immediately
halts and accepts (resp. rejects) the input w. As quantum measurement is a probabilistic
process, the computation of M is probabilistic. For any w ∈ Σ∗, we write Pr[M accepts w]
(resp. Pr[M rejects w]) for the probability that M will accept (resp. reject) the input w.

Let T = {t ∈ U(|Q|) : ∃(c, γ) ∈ ((C \ {cacc, crej})× Γ) such that δ(c, γ) = (t, ·, ·)} denote
the set of all unitary transformations that M may perform. The transition amplitudes of M
are the set of numbers A that appear as entries of some t ∈ T .

3 Distinguishing Families of Representations

The landmark result of Lipton and Zalcstein [20] showed that, if G is a finitely generated
linear group over a field of characteristic zero, then WG ∈ L. The key idea behind their
logspace algorithm was to make use of a carefully chosen representation of the group G in
order to recognize WG (see, for instance, [19] or the full version of our paper [28] for the
notation and terminology from representation theory used in this section). Our 2QCFA
algorithm will operate in a similar manner; however, the constraints of quantum mechanics
will require us to make many modifications to their approach.

A (unitary) representation of a (topological) group G is a continuous homomorphism
ρ : G→ U(H), where H is a Hilbert space, and U(H) is the group of unitary operators on
H. The Gel’fand-Raikov theorem states that the elements of any locally compact group G
are separated by its unitary representations; i.e., ∀g ∈ G with g 6= 1G, there is some H and
some ρ : G→ U(H) such that ρ(g) 6= ρ(1G). For certain groups, stronger statements can be
made; in particular, one calls a group maximally almost periodic if the previous condition
still holds when H is restricted to be finite-dimensional.

The core idea of our approach to recognizing the word problem WG of a particular group
G is to construct what we have chosen to call a distinguishing family of representations
(DFR) for G, which is a refinement of the above notion. Informally, a DFR is a collection
of a small number of unitary representations of G, all of which are over a Hilbert space of
small dimension, such that, for any g ∈ G other than 1G, there is some representation ρ in
the collection for which ρ(g) is “far from” ρ(1G), relative to the “size” of g. The following
definition formalizes this, by introducing parameters to quantify the above fuzzy notions.
In this definition, and in the remainder of the paper, let U(d) denote the group of d × d
unitary matrices, let M(d,A) denote the set of d × d matrices with entries in some set A,
let U(d,A) = U(d) ∩M(d,A), and let G6=1 = G \ {1G}. For a group G = 〈S|R〉, let l(g)
denote the length of any g ∈ G relative to the generating set S (i.e., l(g) is the minimum
value of m for which ∃g1, . . . , gm ∈ S ∪S−1 such that g = φ(g1 · · · gm)). For a representation
ρ : G→ U(d), let χρ : G→ C denote the character of ρ (i.e., χρ(g) = Tr(ρ(g))).

I Definition 16. Consider a group G = 〈S|R〉, with S finite. For k ∈ N≥1, d ∈ N≥2,
τ : R>0 → R>0 a monotone non-increasing function, and A ⊆ C, we define a [k, d, τ,A]-
distinguishing family of representations (DFR) for G to be a set F = {ρ1, . . . , ρk} where the
following conditions hold.
(a) ∀j ∈ {1, . . . , k}, ρj : G→ U(d) is a representation of G.
(b) ∀g ∈ G6=1, ∃j ∈ {1, . . . , k} such that |χρj (g)| ≤ d− τ(l(g)).
(c) ∀σ ∈ S ∪ S−1,∀j ∈ {1, . . . , k}, ∃Y1, . . . , Yt ∈ U(d,A), such that ρj(σ) =

∏
i Yi.
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Suppose F = {ρ1, . . . , ρk} is a [k, d, τ,A]-DFR for G = 〈S|R〉. We write Id = 1U(d) ∈ U(d)
for the d× d identity matrix, ker(ρj) = {g ∈ G : ρj(g) = Id} for the kernel of ρj , Z(U(d)) =
{eirId : r ∈ R} for the center of U(d), and Pker(ρj) = {g ∈ G : ρj(g) = Z(U(d))} for the
quasikernel of ρj . Clearly, 1G ∈ Pker(ρj),∀j, but, as ρj is not assumed to be P-faithful or
even faithful, there may be g ∈ G6=1 for which, for certain j, we have g ∈ Pker(ρj). However,
due to the fact that g ∈ Pker(ρj) exactly when |χρj (g)| = d, the second defining property
of a DFR guarantees not only that

⋂
j Pker(ρj) = {1G}, but, much more strongly, that

all g ∈ G6=1 are “far from” being in
⋂
j Pker(ρj). That is to say, ∀g ∈ G6=1,∃j such that

|χρj (g)| is at distance at least τ(l(g)) from having value d. The following proposition is then
immediate, but we explicitly state it as it is the central notion in our quantum approach to
the word problem.

I Proposition 17. Suppose G = 〈S|R〉 has a [k, d, τ,A]-DFR F = {ρ1, . . . , ρk}. Then,
∀g ∈ G, g = 1G ⇔ ∀j, |χρj (g)| = d and g ∈ G6=1 ⇔ ∃j such that |χρj (g)| ≤ d− τ(l(g)).

Note that, in the preceding proposition, ρ1 ⊕ · · · ⊕ ρk : G→ U(kd) is simply a faithful
representation of G, decomposed into subrepresentations in a convenient way. Next, we
establish some terminology that will better allow us to describe particular types of DFR.

I Definition 18. Suppose F = {ρ1, . . . , ρk} is a [k, d, τ,A]-DFR for a group G.
(a) If A = Q (equivalently, if ρj(G) ⊆ U(d,Q),∀j), we say F is an algebraic DFR.
(b) If ρj(g) is a diagonal matrix ∀j,∀g, then we say F is a diagonal DFR.
(c) If H is a finite-index overgroup of G, we say that H virtually has a [k, d, τ,A]-DFR.

When F is an algebraic DFR, we will often only write [k, d, τ ] to denote its parameters.
Note that only abelian groups have diagonal DFRs, and any DFR of an abelian group can
be converted to a diagonal DFR; we define diagonal DFRs for convenience.

Using a [k, d, τ,A]-DFR for a group G, it will be possible to construct a 2QCFA that
recognizes the word problem WH of any finite-index overgroup H of G, where the parameters
of the DFR will strongly impact the parameters of the resulting 2QCFA. In particular, in
Section 4, we produce a 2QCFA with d quantum states and transition amplitudes in A that
recognizes WH , with expected running time approximately O(τ(n)−1). The goal is then to
show that a wide collection of groups virtually have DFRs with good parameters.

3.1 Diophantine Approximation
Our constructions of DFRs rely crucially on certain results concerning Diophantine approx-
imation. Most fundamentally, the Diophantine approximation question asks how well a
particular real number α can be approximated by rational numbers. Of course, as Q is
dense in R, one can choose p

q ∈ Q so as to make the quantity |α− p
q | arbitrarily small; for

this reason, one considers p
q to be a “good” approximation to α only when |α− p

q | is small
compared to a suitable function of q. One then considers α to be poorly approximated by
rationals if, for some “small” constant d ∈ R≥2, ∃C ∈ R>0 such that, ∀(p, q) ∈ Z× Z6=0, we
have |α− p

q | ≥ C|q|
−d, where the smallness of d determines just how poorly approximable

α is. For α ∈ R, let ‖α‖ = minm∈Z|α −m| denote the distance between α and its nearest
integer. Notice that

∣∣∣α− p
q

∣∣∣ ≥ C|q|−d, ∀(p, q) ∈ Z× Z6=0 ⇔ ‖qα‖ ≥ C|q|−(d−1), ∀q ∈ Z6=0.
Of particular relevance to us is the following result, due to Schmidt [30], that real irrational
algebraic numbers are poorly approximated by rationals.

I Proposition 19 ([30]). ∀α1, . . . , αk ∈ (R∩Q) where 1, α1, . . . , αk are linearly independent
over Q, ∀ε ∈ R>0, ∃C ∈ R>0 such that ∀q ∈ Z6=0, ∃j such that ‖qαj‖ ≥ C|q|−( 1

k+ε).



Z. Remscrim 139:9

We also require the following result concerning the Diophantine properties of linear forms
in logarithms of algebraic numbers, due to Baker [4].

I Proposition 20 ([4]). Let L = {β ∈ C 6=0 : eβ ∈ Q}. ∀β1, . . . , βk ∈ L that are linearly
independent over Q, ∃C ∈ R>0 such that, ∀(q1, . . . , qk) ∈ Zk with qmax := maxj |qj | > 0, we
have |q1β1 + · · ·+ qkβk| ≥ (eqmax)−C .

Gamburd, Jakobson, and Sarnak [12] established a particular result concerning the
Diophantine properties of SU(2,Q). The following lemma generalizes their result to U(d,Q);
a proof of this lemma appears in the full version [28].

I Lemma 21. Consider a group G = 〈S|R〉, with S finite, and a representation ρ : G →
U(d,Q). Then ∃C ∈ R≥1 such that |χρ(g)| ≤ d− C−l(g), ∀g ∈ (G \ Pker(ρ)).

3.2 Constructions of DFRs
We now show that a wide collection of groups virtually have DFRs with good parameters.
We accomplish this by first constructing DFRs for only a small family of special groups. We
then present several constructions in which a DFR for a group, or more generally a family of
DFRs for a family of groups, is used to produce a DFR for a related group.

We begin with a straightforward lemma expressing a useful character bound. In this
lemma, and throughout this section, we continue to write group operations multiplicatively,
and so, for g ∈ G and h ∈ Z, if h > 0 (resp. h < 0) then gh denotes the element of G
obtained by combining h copies of g (resp. g−1) with the group operation, and if h = 0
then gh = 1G. Let S1 = {eir : r ∈ R} ⊆ C∗ denote the circle group and let T(d) ⊆ U(d)
denote the group of all d × d diagonal matrices where each diagonal entry lies in S1. For
A ⊆ C, let S1(A) = S1 ∩ A and T(d,A) = T(d) ∩M(d,A). Let 1d : G → U(d) denote the
trivial representation of dimension d (i.e., 1d(g) = Id = 1U(d), ∀g ∈ G). For a cyclic group
G = 〈a|RG〉 and for some r ∈ R, define the representation γ̂r : G → S1 ∼= U(1) such that
a 7→ e2πir; furthermore, define the representation γr : G→ T(2) by γr = γ̂r ⊕ 11.

I Lemma 22. Consider the cyclic group G = 〈a|RG〉. Fix r ∈ R and define γr : G→ T(2)
as above. Suppose that h ∈ Z and ε ∈ R>0 satisfy ‖hr‖ ≥ ε. Then χγr (ah) ≤ 2− 19π2

24 ε2.

Proof. We have χγr (ah) = e2πihr + 1 = 2eπihr cos(πhr). Clearly, ε ≤ 1
2 . Therefore,

|χγr (ah)| = 2|cos(πhr)| ≤ 2 cos(πε) ≤ 2
(

1− (πε)2

2 + (πε)4

24

)
≤ 2− 19π2

24 ε2. J

We first construct DFRs for a very narrow class of special groups: (i) Zm = 〈a|am〉, the
integers modulo m, where the group operation is addition, (ii) Z = 〈a|〉, the integers, where
the group operations is addition, and (iii) F2 = 〈a, b|〉 the (non-abelian) free group of rank 2.

I Lemma 23. Zm = 〈a|am〉 has a diagonal algebraic
[
1, 2, 19π2

24m2

]
-DFR, ∀m ∈ N≥2.

Proof. Fix m ∈ N≥2 and let r = 1
m . Define γr : Zm → T(2) as above, and notice that

γr(Zm) ⊆ T(2,Q). Consider any q ∈ Zm, where q 6≡ 0 mod m. Then q can be expressed
as q = ah, for h ∈ Z, h 6≡ 0 mod m. As ‖hr‖ ≥ 1

m , Lemma 22 implies |χγr(q)| ≤ 2− 19π2

24m2 .
Therefore, {γr} is a diagonal algebraic DFR for Zm, with the desired parameters. J

I Lemma 24. ∀δ ∈ R>0,∃C ∈ R>0, Z = 〈a|〉 has a diagonal [1 + b 2
δ c, 2, Cn

−δ, C̃]-DFR.
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Proof. Let k = 1+b 2
δ c and η = δ

2−
1
k > 0. Fix α1, . . . , αk ∈ (Q∩R) such that 1, α1, . . . , αk are

linearly independent over Q. For each j ∈ {1, . . . , k} define the representation γαj : Z→ T(2)
as above, and notice that γαj (Z) ⊆ T(2, C̃). By Proposition 19, ∃D ∈ R>0, such that
∀q ∈ Z6=0 (i.e., ∀q ∈ Z where q 6= 0 = 1Z), ∃j such that ‖qαj‖ ≥ D|q|−( 1

k+η) = D|q|− δ2 .
Therefore, for any q ∈ Z6=0, if we take j as above, then by Lemma 22 (with r = αj , ε = D|q|− δ2 ,
and h = q) we have |χγαj (q)| ≤ 2 − 19π2

24 D2|q|−δ. Therefore, {γα1 , . . . , γαk} is a diagonal
[1 + b 2

δ c, 2,
19π2

24 D2n−δ, C̃]-DFR for Z. J

I Lemma 25. ∃C1, C2 ∈ R>0 such that Z = 〈a|〉 has a diagonal algebraic [1, 2, C2n
−C1 ]-DFR.

Proof. As in Proposition 20, let L = {β ∈ C 6=0 : eβ ∈ Q} and notice that πi ∈ L. Let R =
{r ∈ ((R \Q) ∩ (0, 1)) : 2πir ∈ L} (e.g., r̂ = 1

2π cos−1 ( 3
5
)
is irrational and has e2πir̂ = 3+4i

5 ,
and so r̂ ∈ R). Fix r ∈ R. By definition, 2πir ∈ L, which immediately implies πir ∈ L. Also
by definition, r 6∈ Q, which implies πir and πi are linearly independent over Q. Therefore,
by Proposition 20, ∃D ∈ R>0 such that ∀(q,m) ∈ Z2 where qmax := max(|q|, |m|) > 0, we
have |qπir −mπi| ≥ (eqmax)−D.

For fixed q ∈ Z6=0 and varying m ∈ Z, |qπir − mπi| attains its minimum when m =
round(qr), the closest integer to qr. Notice that |round(qr)| ≤ |q|, as r ∈ (0, 1) and q ∈ Z.
Therefore, for any q ∈ Z6=0, we have

‖qr‖ = min
m∈Z
|qr −m| = 1

π
min
m∈Z
|qπir −mπi| = 1

π
|qπir − round(qr)πi| ≥ 1

π
|eq|−D.

Define γr : Z → T(2) as above. By Lemma 22, |χγr(q)| ≤ 2 − 19
24 |eq|

−2D. Clearly,
γr(Z) ⊆ T(2,Q). Therefore, {γr} is a diagonal algebraic [1, 2, 19

24e
−2Dn−2D]-DFR for Z. J

I Remark 26. We note that the above constructions of DFRs for Z are quite similar to
the technique used by Ambainis and Watrous [1] to produce a 2QCFA that recognizes Leq
(cf. [6, 25]). In particular, their approach relied on the fact that the number

√
2 ∈ Q is

poorly approximated by rationals; our constructions make use of more general Diophantine
approximation results. This allows us to produce 2QCFA with improved parameters.

I Lemma 27. ∃C ∈ R≥1, such that F2 = 〈a, b|〉 has an algebraic [1, 2, C−n]-DFR.

Proof. First, define the representation π : F2 → SO(3,Q) by

a 7→ 1
5

3 −4 0
4 3 0
0 0 5

 and b 7→ 1
5

5 0 0
0 3 −4
0 4 3

 .

This is the “standard” faithful representation of F2 into SO(3) used in many treat-
ments of the Banach-Tarski paradox. Recall that SU(2) is the double cover of SO(3), i.e.,
SU(2)/Z(SU(2)) ∼= SO(3). Then π induces a homomorphism π̂ : F2 → SU(2)/Z(SU(2)) in
the obvious way, which, by the universal property of the free group, can be lifted to the
representation ρ : F2 → SU(2,Q) given by

a 7→ 1√
5

(
2 + i 0

0 2− i

)
and b 7→ 1√

5

(
2 i

i 2

)
.

As π is faithful, we conclude that ρ(g) 6∈ Z(SU(2)), ∀g ∈ (F2 \ 1F2). Therefore, by
Lemma 21, {ρ} is an algebraic [1, 2, C−n]-DFR for F2. J
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I Remark 28. Note that the proof of the preceding lemma uses, fundamentally, the same
construction used by Ambainis and Watrous [1] to produce a 2QCFA for Lpal (which is
closely related to F2). The algebraic structure of F2 allows a substantially simpler argument.

We now present several constructions of new DFRs from existing DFRs. We emphasize
that all results in the following lemmas are constructive in the sense that, given the supposed
DFR or collection of DFRs, each corresponding proof provides an explicit construction of
the new DFR. Due to space restrictions, all proofs are omitted and may be found in the full
version [28]. We begin by considering conversions of a DFR of a group G to a DFR with
different parameters of the same group G. For C ∈ R>0, let ηC : R>0 → R>0 be given by
ηC(n) = Cn.

I Lemma 29. Suppose F is a [k, d, τ,A]-DFR for a group G = 〈S|R〉, with S finite. The
following statements hold.
(i) G has a [1, kd, τ,A]-DFR.
(ii) If d′ ∈ N and d′ > d, then G has a [k, d′, τ,A]-DFR.
(iii) Suppose G also has presentation 〈S′|R′〉, with S′ finite. Then ∃C ∈ R>0 such that F

is also a [k, d, τ ◦ ηC ,A]-DFR for G = 〈S′|R′〉.
Moreover, if F is a diagonal DFR, then each newly constructed DFR is also diagonal.

Next, we show that a DFR of G and a DFR of H can be used to produce a DFR of G×H,
the direct product of G and H. In the following, for a group Q, let [q1, q2] = q−1

1 q−1
2 q1q2

denote the commutator of elements q1, q2 ∈ Q. For functions τ, τ ′ : R>0 → R>0, we define
the function τmin

τ,τ ′ : R>0 → R>0 by τmin
τ,τ ′ (n) := min(τ(n), τ ′(n)), ∀n ∈ R>0.

I Lemma 30. Consider groups G = 〈SG|RG〉 and H = 〈SH |RH〉, with SG and SH finite, and
SG ∩SH = ∅. Let Rcom = {[g, h] : g ∈ SG, h ∈ SH}. If G has a [k, d, τ,A]-DFR and H has a
[k′, d′, τ ′,A]-DFR, then G×H = 〈SGtSH |RG∪RH∪Rcom〉 has a [k+k′,max(d, d′), τmin

τ,τ ′ ,A]-
DFR. Moreover, if G and H have diagonal DFRs with the above parameters, then G×H
has a diagonal DFR with the above parameters.

Now, we show that a DFR of a group G can be used to produce a DFR of a finitely
generated subgroup of G, or of a finite-index overgroup of G.

I Lemma 31. Suppose FG is a [k, d, τ,A]-DFR for a group G = 〈SG|RG〉, with SG finite.
The following statements hold.
(i) Suppose H ≤ G, where H = 〈SH |RH〉, with SH finite. Then ∃C ∈ R>0 such that H

has a [k, d, τ ◦ ηC ,A]-DFR. If, moreover, FG is a diagonal DFR, then H will also have
a diagonal DFR with the claimed parameters.

(ii) Suppose G ≤ Q, where Q = 〈SQ|RQ〉, with SQ finite, SG ⊆ SQ, and r := [Q : G] finite.
Then ∃C ∈ R>0 such that Q has a [k, dr, τ ◦ ηC ,A]-DFR.

I Remark 32. By the preceding lemma, any group G that virtually has a DFR also has a
DFR, but with worse parameters. As will be shown, it is possible to recognize WG using a
DFR for a finite-index subgroup of G, thereby avoiding this worsening of parameters.

We now construct DFRs, with good parameters, for a wide class of groups. Recall that any
finitely generated abelian group G admits a unique decomposition G ∼= Zr×Zm1 ×· · ·×Zmt ,
where mi divides mi+1, ∀i ∈ {1, . . . , t − 1}, and each mi ∈ N≥2. Let R(r,m1, . . . ,mt) =
{amii : i ∈ {1, . . . , t}} ∪ {[ai, aj ] : i, j ∈ {1, . . . , r + t}}.

I Lemma 33. Consider the finite (hence finitely generated) abelian group G = Zm1 × · · · ×
Zmt = 〈a1, . . . , at|R(0,m1, . . . ,mt)〉. If t = 0 (i.e., G is the trivial group), then G has a
diagonal algebraic [1, 2, 2]-DFR. Otherwise, G has a diagonal algebraic

[
t, 2, 19π2

24m2
t

]
-DFR.
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Proof. If t = 0, the claim is obvious. Suppose t > 0. By Lemma 23, each factor Zmi = 〈a|ami〉
has a diagonal algebraic

[
1, 2, 19π2

24m2
i

]
-DFR. Notice that m1 ≤ · · · ≤ mt, as each mi divides

mi+1. The existence of the desired DFR follows from Lemma 30. J

I Theorem 34. ∃C1 ∈ R>0 such that, for any finitely generated abelian group G = Zr ×
Zm1 × · · · × Zmt = 〈a1, . . . , ar+t|R(r,m1, . . . ,mt)〉, the following statements hold.
(i) ∃C2 ∈ R>0 such that G has a diagonal algebraic

[
r + t, 2, C2n

−C1
]
-DFR.

(ii) ∀δ ∈ R>0, ∃C3 ∈ R>0, such that G has a diagonal
[
r
(
1 + b 2

δ c
)

+ t, 2, C3n
−δ, C̃

]
-DFR.

Proof. By Lemma 25, ∃D1, D2 ∈ R>0 such that Z has a diagonal algebraic [1, 2, D2n
−D1 ]-

DFR, which we call F . We set C1 = D1. Let H1 = Zr and H2 = Zm1 × · · · × Zmt . If r = 0,
both claims follow trivially from Lemma 33. Suppose r > 0.
(i) Using the DFR F of Z, Lemma 30 implies H1 has a diagonal algebraic [r, 2, D2n

−C1 ]-
DFR H1. If t = 0, then G = H1; therefore, H1 is the desired DFR for G, with C2 = D2,
and we are done. If t > 0, Lemma 33 implies H2 has a diagonal algebraic

[
1, 2, 19π2

24m2
t

]
-

DFR H2. Set C2 = min(D2,
19π2

24m2
t
). By Lemma 30, we conclude G = H1 ×H2 has a

DFR with the claimed parameters.
(ii) By Lemma 24, ∃D ∈ R>0 such that Z has a diagonal

[
1 + b 2

δ c, 2, Dn
−δ, C̃

]
-DFR, F ′.

The remainder of the proof is analogous to that of part (i), using F ′ in place of F . J

As in Section 1.1, Π̂1 denotes the set of all finitely generated virtually abelian groups. For
G ∈ Π̂1, there is a unique r ∈ N such that G is virtually Zr. We have the following corollary.

I Corollary 35. ∃C ∈ R>0 such that, ∀G ∈ Π̂1, the following holds.
(i) ∃D ∈ R>0,∃K ∈ N≥1, such that G virtually has a diagonal algebraic [K, 2, Dn−C ]-DFR.
(ii) ∀δ ∈ R>0, ∃D ∈ R>0,∃K ∈ N≥1, G virtually has a diagonal

[
K, 2, Dn−δ, C̃

]
-DFR.

Next, we consider groups that can be built from finitely generated free groups.

I Lemma 36. ∀r ∈ N, ∃C ∈ R≥1, Fr = 〈a1, . . . , ar|〉 has an algebraic [1, 2, C−n]-DFR.

Proof. As F0 = {1} and F1 = Z, Theorem 34 immediately implies the claim when r ∈ {0, 1}.
Next, consider the case in which r = 2. By Lemma 27, ∃C ∈ R≥1 such that F2 = 〈a1, a2|〉 has
an algebraic [1, 2, C−n]-DFR. Finally, suppose r > 2. By the Nielsen-Schreier theorem, F2 has
a finite-index subgroup isomorphic to Fr; the claim immediately follows from Lemma 31(i). J

I Theorem 37. Suppose G = 〈S|R〉, with S finite, such that G ≤ Fr1 × · · · × Frt , for some
r1, . . . , rt ∈ N. Then ∃C ∈ R≥1 such that G has an algebraic [t, 2, C−n]-DFR.

Proof. By Lemma 36, each Fri has an algebraic [1, 2, C−ni ]-DFR, for some Ci ∈ R≥1.
Lemma 30 implies that Fr1 × · · · ×Frt has an algebraic [t, 2, C−n]-DFR, where C = maxi Ci,
and Lemma 31(i) then implies G has a DFR with the claimed parameters. J

As in Section 1.1, Π̂2 denotes the class of finitely generated groups that are virtually a
subgroup of a direct product of finitely-many finite-rank free groups.

I Corollary 38. ∀G ∈ Π̂2,∃K ∈ N≥1,∃C ∈ R≥1, such that G virtually has an algebraic
[K, 2, C−n]-DFR.

We conclude with a “generic” construction that covers all groups that have algebraic
DFRs. We remark that while this does partially subsume all other results in this section, it
does not do so completely, as the earlier constructions of DFRs, for certain particular groups,
yield better parameters.
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I Theorem 39. Consider a group G = 〈S|R〉, with S finite, where G is not the trivial
group. Suppose G has a faithful representation π : G → U(l,Q). Then π has a (unique,
up to isomorphism) set of irreducible subrepresentations {πj : G→ U(dj ,Q)}mj=1 such that
π ∼= π1⊕· · ·⊕πm. Let dmax = maxj dj . Define the value d as follows: if

⋂
j Pker(πj) = {1G},

let d = dmax, otherwise, let d = dmax + 1. Partition the non-trivial πj into isomorphism
classes (i.e., only consider those πj which are not the trivial representation; πj1 and πj2 belong
to the same isomorphism class if πj1

∼= πj2) and let k denote the number of isomorphism
classes that appear. Then ∃C ∈ R≥1 such that G has an algebraic [k, d, C−n]-DFR.

Proof. Notice that, as G is not the trivial group, d ≥ 2. Assume that the πj are ordered such
that π1, . . . , πk are representatives of the k distinct isomorphism classes of the non-trivial
representations that appear among the πj . For each j ∈ {1, . . . , k}, define the representation
ρj = πj ⊕ 1d−dj : G → U(d,Q). By Lemma 21, ∀j ∈ {1, . . . , k},∃Cj ∈ R≥1 such that,
∀g 6∈ Pker(ρj), |χρj (g)| ≤ d− C−l(g)

j . Set C = maxj Cj .
Next, notice that

⋂
j Pker(ρj) = {1G}. If

⋂
j Pker(πj) = {1G}, then this is obvious.

Suppose
⋂
j Pker(πj) 6= {1G}. Then d = dmax + 1 > dj , ∀j, which implies ρj = πj ⊕ 1tj ,

where tj := d− dj ≥ 1. Therefore, for each j, ρj(G)∩Z(U(d,Q)) = Id, and so, by definition,
Pker(ρj) = ker(ρj). As π is faithful, {1G} =

⋂m
j=1 ker(πj) =

⋂k
j=1 ker(ρj) =

⋂k
j=1 Pker(ρj).

Thus, ∀g ∈ G6=1, ∃j such that g 6∈ Pker(ρj), which implies |χρj (g)| ≤ d − C
−l(g)
j ≤

d− C−l(g). Therefore, {ρ1, . . . , ρk} is an algebraic [k, d, C−n]-DFR for G. J

3.3 Projective DFRs
A DFR F = {ρ1, . . . , ρj} of a group G is a set of unitary representations of G, i.e., group
homomorphisms ρj : G → U(d). We next consider a slight generalization. A projective
unitary representation of G is a group homomorphism ρ : G → PU(d) = U(d)/Z(U(d)).
We may (non-uniquely) lift any such ρ to a function ρ̂ : G → U(d) (i.e., γ ◦ ρ̂ = ρ, where
γ : U(d) → PU(d) is the canonical projection). Note that ρ̂ is not necessarily a group
homomorphism and that certain projective representations ρ cannot be lifted to an ordinary
representation. However, for any two lifts, ρ̂1 and ρ̂2, of ρ, we have |χρ̂1(g)| = |χρ̂2(g)|,
∀g ∈ G. Therefore, the function |χρ(·)| : G→ R given by |χρ(g)| = |χρ̂(g)| is well-defined.

We then define a [k, d, τ,A]-PDFR as a set of projective representations F = {ρ1, . . . , ρj}
that satisfies Definition 16 where “representation” is replaced by “projective representation” in
that definition. As we will observe in the following section, the same process that allows a DFR
for a group G to be used to produce a 2QCFA for the word problemWG, can also be applied to
a PDFR. If a PDFR consists entirely of representations into PU(d,Q) = U(d,Q)/Z(U(d,Q)),
we say it is an algebraic PDFR. The following variant of Theorem 39 follows by a precisely
analogous proof.

I Theorem 40. Suppose the group G = 〈S|R〉, with S finite, has a family F = {ρ1, . . . , ρk} of
projective representations ρj : G→ PU(d,Q), such that

⋂
j ker(ρj) = {1G}. Then ∃C ∈ R≥1

such that F is an algebraic [k, d, C−n]-PDFR for G.

3.4 Unbounded-Error DFRs
If F = {ρ1, . . . , ρk} is a DFR for a group G, then

⋂
j Pker(ρj) = {1G}. However, a crucial

element in the definition of a DFR is the requirement that, much more strongly, all g ∈ G6=1
are “far” from being in

⋂
j Pker(ρj); in particular, if F is a [k, d, τ,A]-DFR, then ∀g ∈ G6=1,∃j

such that |χρj (g)| ≤ d− τ(l(g)). This requirement is essential in order for our construction
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of a 2QCFA, that recognizes WG using a DFR for G, to operate with bounded error. We
next consider a generalization of a DFR, where this requirement is removed, which will then
yield a 2QCFA that recognizes WG with unbounded error.

We say F = {ρ1, . . . , ρk} is an unbounded-error [k, d,A]-DFR for a group G = 〈S|R〉 if
the conditions of Definition 16 hold, where Definition 16(b) is replaced by Definition 16(b)’:
∀g ∈ G6=1, ∃j such that |χρj (g)| < d. This condition is equivalent to

⋂
j Pker(ρj) = {1G}.

Note that, by Lemma 21, any algebraic unbounded-error [k, d]-DFR is also an algebraic
[k, d, C−n]-DFR, for some C ∈ R≥1; furthermore, as noted in the discussion following
Definition 18, only a finitely generated abelian group could have a diagonal unbounded-error
[k, d]-DFR, and all finitely generated abelian groups were shown to have DFRs in Theorem 34.
Therefore, in order to obtain something new, we must consider unbounded-error DFRs that
are neither algebraic nor diagonal. Due to space restrictions, we omit the proof of the
following theorem, which may be found in the full version [28].

I Theorem 41. ∀G ∈ Π̂3,∃k ∈ N such that G virtually has an unbounded-error [k, 2, C̃]-DFR.

4 Recognizing the Word Problem of a Group with a 2QCFA

Consider a group G = 〈S|R〉, with S finite. As before, let Σ = S t S−1, let φ : Σ∗ → G

denote the natural map that takes each string in Σ∗ to the element of G that it represents,
and let WG := WG=〈S|R〉 = {w ∈ Σ∗ : φ(w) = 1G} denote the word problem of G with
respect to the given presentation. Suppose F = {ρ1, . . . , ρk} is a [k, d, τ,A]-DFR (or PDFR)
for G. By Proposition 17, if w ∈ WG, then |χρj (φ(w))| = d, ∀j, and if w 6∈ WG, then ∃j
where |χρj (φ(w))| ≤ d− τ(l(φ(w))). Let Gj = {g ∈ G : |χρj (g)| ≤ d− τ(l(g))}. A 2QCFA
can recognize WG by checking if φ(w) ∈

⋃
j Gj = G 6=1. The well-known Hadamard test may

be used to estimate χρj (φ(w)) = Tr(ρj(φ(w))); however, as we wish to produce a 2QCFA
that has as few quantum states as possible, we wish to avoid the use of ancilla, and so we
follow a slightly different approach. We begin by defining several useful 2QCFA subroutines.

I Definition 42. Suppose M is a 2QCFA with d ≥ 2 quantum basis states Q = {q1, . . . , qd},
quantum start state q1 ∈ Q, and alphabet Σ.
(a) Suppose |ψ1〉 =

∑
q αq |q〉 and |ψ2〉 =

∑
q βq |q〉, where αq, βq ∈ Q,∀q ∈ Q. There are

(many) t ∈ U(d,Q) such that t |ψ1〉 = |ψ2〉. Let T|ψ1〉→|ψ2〉 denote an arbitrary such t.
(b) Let π : G → U(d) be a representation of G and let |ψ〉 =

∑
q βq |q〉, where βq ∈ Q,

∀q ∈ Q. Then the unitary round U(π, |ψ〉) is a particular sub-computation of M on w,
defined as follows. The round begins with the quantum register in the superposition |q1〉
and the tape head at the right end of the tape. On reading #R, M performs the unitary
transformation T|q1〉→|ψ〉 to its quantum register, and moves its head to the left. On
reading a symbol σ ∈ Σ, M performs the unitary transformation π(φ(σ)) to the quantum
register and moves its head left. When the tape head first reaches the left end of the tape
(i.e., the first time the symbol #L is read), M performs the identity transformation to
its quantum register, and does not move its head, at which point the round ends. As φ is
a (monoid) homomorphism and π is a (group) homomorphism, we immediately conclude
that, at the end of the round, the quantum register is in the superposition π(φ(w)) |ψ〉.

(c) For t ∈ U(d), a measurement round M(π, |ψ〉 , t) is a sub-computation of M that begins
with the unitary round U(π, |ψ〉). Then M performs the unitary transformation t, and
does not move its head. After which M performs the quantum measurement specified by
the partition B = {B0, B1} of Q given by B0 = {q2, . . . , qd} and B1 = {q1}, producing
some result r ∈ {0, 1}; then M records r in its classical state, and does not move its
head, at which point the round is over.
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I Lemma 43. Consider a group G = 〈S|R〉, with S finite, and let WG = WG=〈S|R〉. The
following statements hold.
(i) If G has a diagonal [k, d, C1n

−C2 ,A]-DFR (or PDFR), for some C1, C2 ∈ R>0, then
∀ε ∈ R>0, WG ∈ coR2QCFA(ndC2e+2, ε, d,Q ∪ A).

(ii) If G has a [k, d, C−n1 ,A]-DFR (or PDFR), for some C1 ∈ R≥1, then ∀ε ∈ R>0,
∃C2 ∈ R≥1 such that WG ∈ coR2QCFA(Cn2 , ε, d,Q ∪ A).

(iii) If G has an unbounded-error [k, d,A]-DFR (or PDFR), then WG ∈ coN1QFA ∩
coN2QCFA(n, d,Q ∪ A).

Proof Sketch. Suppose F = {ρ1, . . . , ρk} is a [k, d, τ,A]-DFR of G. Consider any w ∈ Σ∗.
A 2QCFA M can perform a constant number of measurement rounds (i.e., the number of
rounds only depends on k and d, not on |w|) using any representation ρj such that the
following holds: (1) if φ(w) ∈ Gj ⊆ G6=1, then, with probability Ω(τ(|w|)), the results of
those measurement rounds will allow M to be able to conclude with certainty that w 6∈WG,
(2) if φ(w) = 1G 6∈ Gj , then the results of those measurement rounds will never cause M to
incorrectly conclude that w 6∈WG. After running this procedure approximately τ(n) times,
for each j, the following holds: (1) if φ(w) ∈ G6=1 =

⋃
j Gj , then φ(w) ∈ Gj for at least some

j, and so, with probability Ω(1), M is able to conclude (with certainty) that w 6∈WG, (2) if
φ(w) = 1G, then M will never incorrectly conclude that w 6∈WG. As soon as M performs a
measurement round whose result allows it to conclude that w 6∈WG, M immediately rejects.
In order to correctly accept all w ∈ WG, M will run a procedure between measurement
rounds that will cause it to accept any input w with some small probability, and otherwise
continue; by setting this acceptance probability small enough, we assure that any w 6∈WG is
not (incorrectly) accepted with high probability. A formal proof can be found in the full
version [28]. J

Moreover, if H is a finite-index subgroup of G, a 2QCFA that recognizes WG can be
constructed from a 2QCFA that recognizes WH .

I Lemma 44. Consider a group H = 〈SH |RH〉, with SH finite, and suppose that AH is a
2QCFA that recognizes WH , which operates in the manner of our proof of Lemma 43. Further
suppose G is a group such that H ≤ G and [G : H] is finite. Then G admits a presentation
G = 〈SG|RG〉, with SG finite, such that there is a 2QCFA AG that recognizes WG. Moreover,
AG has the same acceptance criteria, asymptotic expected running time, number of quantum
basis states, and class of transition amplitudes as AH .

Using the above results, and the constructions of DFR from Section 3, the theorems
stated in Section 1.1 concerning the recognizability of word problems by 2QCFA easily follow;
proofs of the above results and of these theorems appear in the full version [28].

5 Discussion

In this paper, we have shown that 2QCFA can recognize the word problems of many groups.
In particular, let Π̂1 (resp. Π̂2) denote the collection of all finitely generated groups that are
virtually abelian (resp. virtually a subgroup of a direct product of finitely-many finite-rank
free groups), and let Q denotes the class of groups for which Theorem 10 applies. Then a
2QCFA, with a single-qubit quantum register and algebraic number transition amplitudes,
can recognize, with one-sided bounded error, the word problem WG of any G ∈ Π̂1 (resp.
G ∈ Π̂2) in expected polynomial (resp. exponential) time. Moreover, if allowed a quantum
register of any constant size, such a 2QCFA may recognize the word problem of any group
G ∈ Q with one-sided bounded error in expected exponential time.
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In a companion paper [27], we establish a lower bound on the running time of any 2QCFA
(with any size quantum register and no restrictions placed on its transition amplitudes) that
recognizes a word problem WG with bounded error (even under the more generous notion of
two-sided bounded error); more strongly, we establish a lower bound on the running time of
any quantum Turing machine that uses sublogarithmic space, though we will not discuss that
here. In particular, we show that, ∀G ∈ Q \ Π̂1, WG cannot be recognized by such a 2QCFA
is expected time 2o(n). Therefore, the algorithm exhibited in this paper for recognizing the
word problem of any group G ∈ Q \ Π̂1 has (essentially) optimal expected running time;
moreover, we have obtained the first provable separation between the classes of languages
recognizable with bounded error by 2QCFA in expected exponential time and in expected
subexponential time. In that same paper, we also show that if a 2QCFA of this most general
type recognizes a word problem WG in expected polynomial time, then G ∈ GvNilp, where
GvNilp denotes the finitely generated virtually nilpotent groups, and Π̂1 ( GvNilp. This
naturally raises the following question.

I Open Problem 1. Is there a group G ∈ (GvNilp \ Π̂1) such that WG can be recognized by a
2QCFA with bounded error in expected polynomial time?

We have shown that the (three-dimensional discrete) Heisenberg group H ∈ (GvNilp \ Π̂1)
is “complete” for this question, in the sense that if WH cannot be recognized with bounded
error by a 2QCFA in expected polynomial time, then no such G can [27].

Let GvSolvLin denote the finitely generated virtually solvable linear groups over a field
of characteristic zero, and note that GvNilp ( GvSolvLin. Furthermore, note that WG ∈ L,
∀G ∈ GvSolvLin [20]. However, every G ∈ GvSolvLin \ Π̂1 does not have a faithful finite-
dimensional unitary representation (see, for instance, [33, Proposition 2.2]) and, therefore,
does not have a DFR (even an unbounded-error DFR); this prevents the techniques of this
paper from producing a 2QCFA that recognizes the corresponding WG.

I Open Problem 2. Is there a finitely generated group G that does not have a faithful
finite-dimensional unitary representation (for example, any G ∈ GvSolvLin \ Π̂1 or any finitely
generated infinite Kazhdan group) such that WG can be recognized with bounded error by a
2QCFA at all (i.e., in any time bound)?

Consider the group Z ∗ Z2 ∈ Σ2 ( Π̂3, and note that Z ∗ Z2 6∈ Π̂2. The complexity of
WZ∗Z2 has been considered by many authors and it is conjectured that WZ∗Z2 6∈ poly−CFL [7]
(cf. [8]) and that WZ∗Z2 6∈ coCFL [18]. By Theorem 11, WZ∗Z2 is recognizable with one-sided
unbounded error by a 2QCFA. We ask the following questions.

I Open Problem 3. Can WZ∗Z2 be recognized by a 2QCFA with bounded error? More
generally, is WZ∗Zr recognizable by a 2QCFA with bounded error, ∀r ∈ N?

I Open Problem 4. Does Z ∗Z2 have an algebraic DFR. More generally, does Z ∗Zr have an
algebraic DFR, ∀r ∈ N? Even more generally, is the class of groups which have algebraic
DFRs closed under free product?
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Abstract
We study constant-free versions of the inclusion problem of pattern languages and the satisfiability
problem of word equations. The inclusion problem of pattern languages is known to be undecidable
for both erasing and nonerasing pattern languages, but decidable for constant-free erasing pattern
languages. We prove that it is undecidable for constant-free nonerasing pattern languages. The
satisfiability problem of word equations is known to be in PSPACE and NP-hard. We prove that the
nonperiodic satisfiability problem of constant-free word equations is NP-hard. Additionally, we prove
a polynomial-time reduction from the satisfiability problem of word equations to the problem of
deciding whether a given constant-free equation has a solution morphism α such that α(xy) 6= α(yx)
for given variables x and y.
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1 Introduction

The first topic of this article is pattern languages. If we fix an alphabet of variables and
an alphabet of constants, we can define a pattern as a word consisting of variables and
constant letters (constants are often called terminals). Given a pattern U , the nonerasing
pattern language of U is the set of images of U under all morphism that map the variables
to nonempty constant words and preserve the constants. The erasing pattern language of U
is defined in a similar way, except that the variables can be mapped also to the empty word.
Nonerasing pattern languages were introduced by Angluin [1] and erasing pattern languages
by Shinohara [33].

There are many interesting algorithmic questions about pattern languages, and they are
related to applications such as pattern matching and inductive inference. The membership
problem of pattern languages, which can also be called the matching problem, is NP-complete
in both the nonerasing and erasing case, and so are many of its variations, see, e.g., [10]
and [24]. Checking the emptiness of the intersection of two pattern languages is essentially a
special case of the satisfiability problem of word equations (discussed later in the introduction),
and can therefore be done in polynomial space.

The equivalence problem of two pattern languages is almost trivially decidable in the
nonerasing case: If the alphabet of constants is not unary, the nonerasing pattern languages
of two patterns are the same if and only if the patterns are identical up to a renaming of the
variables [1] (if the alphabet of constants is unary, the problem is a bit more complicated
but still easily decidable). In the erasing case, however, the decidability of the equivalence
problem is an open question.

The inclusion problem of pattern languages was mentioned as an open question in [1]. It
was proved to be undecidable in both the nonerasing and erasing case by Jiang, Salomaa,
Salomaa and Yu [18]. They reduced the undecidable problem of determining whether a
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nondeterministic two-counter automaton without input has an accepting computation to the
inclusion problem of erasing pattern languages, which they then reduced to the inclusion
problem of nonerasing pattern languages. Both proofs are very complicated. They also
proved that the inclusion problem of constant-free erasing pattern languages is decidable.
This proof is simpler but not trivial.

Analyzing the equivalence and inclusion of pattern languages naturally leads to eight
decision problems depending on whether we consider the nonerasing or erasing case and
whether we consider patterns with or without constants. By the results mentioned above,
the decidability status of six of these eight problems was known after [18], but two questions
were left open: Is the equivalence problem decidable for erasing pattern languages, and is
the inclusion problem decidable for constant-free nonerasing pattern languages? In [18], a
positive answer was conjectured for the first question. The second one was only stated as an
open problem with no conjecture. The questions have remained open since then.

The results in [18] were very interesting for many reasons. First, they solved a famous
problem that had been open for many years. Second, the inclusion problem is important for
inductive inference of pattern languages, see, e.g., the articles of Ng and Shinohara [25] and
Reidenbach [28]. Third, nonerasing pattern languages became perhaps the first example of a
family of formal languages with a trivially decidable equivalence problem but undecidable
inclusion problem. Some other families where the equivalence problem is decidable but the
inclusion problem is undecidable are the family of languages accepted by finite deterministic
multitape automata (decidability of equivalence proved by Harju and Karhumäki [12]) and
the family of deterministic context-free languages (decidability of equivalence proved later
by Sénizergues [32]), but in these cases the undecidability result is the easier one. It is also
interesting that for the equivalence problem of patterns, the nonerasing case is easier, while
for the inclusion problem of constant-free patterns, the erasing case is easier.

A lot of further research on the inclusion problem has been done. For example, Freyden-
berger and Reidenbach [11] proved that the inclusion problem remains undecidable if the size
of the alphabet of constants is fixed to be a positive integer k, as long as k ≥ 2 in the erasing
case and k ≥ 4 in the nonerasing case. Both variants of the inclusion problem are decidable if
the alphabet of constants is unary or infinite. Bremer and Freydenberger [4] proved stronger
results: Both the erasing and the nonerasing inclusion problem are undecidable even for a
fixed number of variables, as long as this number is large enough, and even if the size of the
alphabet of constants is two. This result holds also if the second pattern is required to be
constant-free.

In this article, we answer one of the open questions by proving that the inclusion problem
of constant-free nonerasing pattern languages is undecidable. The result holds even for a
fixed number of variables, as long as this number is large enough, and even if the size of
the alphabet of constants is two. Among the problems we have discussed, our new result
provides the first example where the constant-free version of a problem is undecidable, and
the first example where the decidability status of the nonerasing and erasing version has
been proved to be different. See Table 1 for a summary.

Let us now move to the topic of equations. A word equation can be defined as a pair
(U, V ) of patterns, and a solution can be defined as a constant-preserving morphism α such
that α(U) = α(V ). Like in the case of pattern languages, there are a couple of variations
of word equations. First, we can study either the general case of equations with constants,
or the restricted case of constant-free equations. Algorithmic questions are usually studied
for equations with constants. Some other questions, such as independence [13, 26] and
parameterizability [14, 30], are more often studied for constant-free equations. Second, we
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Table 1 The decidability of the equivalence (=) and inclusion (⊆) problem of nonerasing (NE)
and erasing (E) languages of constant-free patterns (CF) and patterns with constants (C). The
decidable problems have been marked with a plus and the undecidable ones with a minus. The new
result proved in this article has been circled.

= NE E ⊆ NE E
CF + + CF 	 +
C + ? C − −

can either allow a solution α to be erasing or require it to be nonerasing. This does not
usually make as big of a difference as in the case of the equivalence and inclusion of pattern
languages, but it can have an effect on some things, for example, the size of largest known
independent systems of equations [20]. We allow solutions to be erasing in this article.

The satisfiability problem of word equations, that is, the problem of deciding whether a
given word equation (or a system of equations) has a solution, is one of the major algorithmic
problems on words. The satisfiability problem was proved to be decidable by Makanin [23]. A
survey of Makanin’s algorithm can be found in [8]. The first PSPACE algorithm was given by
Plandowski [27]. Jeż gave a simpler PSPACE algorithm [16] and proved that the satisfiability
problem is in NSPACE(n) [17]. Linear integer programming and the membership problem of
pattern languages can both be easily reduced to the satisfiability problem, so it is NP-hard.
The NP-completeness of the satisfiability problem is a big open question.

Many special cases have been analyzed. For one-variable equations, the satisfiability
problem can be solved in linear time, as proved by Jeż [15], for two-variable equations, in
time O(n5), as proved by Da̧browski and Plandowski [7], and for quadratic equations, it
is NP-hard, as proved by Robson and Diekert [29]. Some other results can be found in
the article of Day, Manea and Nowotka [6]. Some quite powerful generalizations of word
equations were proved to be solvable in polynomial space by Diekert and Elder [9].

There is not much research about the satisfiability of constant-free word equations.
Constant-free equations always have solutions (at least the one mapping all variables to
the empty word, and usually infinitely many other trivial ones), so the natural decision
problem for them is to ask whether an equation has a nontrivial solution, for some definition
of “nontrivial”. It is known that deciding whether a constant-free three-variable equation
has a nonperiodic solution is in NP [30]. Nontrivial constant-free equations on one or two
variables have only periodic solutions.

Constant-free equations might seem much simpler than general ones, but we prove that
deciding whether a given constant-free equation has a nonperiodic solution is NP-hard, and
for a given constant-free equation and given variables x, y, deciding whether there exists
a solution α such that α(xy) 6= α(yx) is as hard as the general version of the satisfiability
problem.

Our proofs are based on the idea of simulating constants by variables in a certain way:
We replace the constants by words consisting of new variables, and then we make sure that
these words behave sufficiently much like constants by adding prefixes and suffixes to the
patterns or new equations to a system of equations. The details differ quite a bit depending
on the problem.

2 Preliminaries

First, we recall some standard notation, definitions, and results related to combinatorics on
words and free monoids. For more, see [5, 21, 3].
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The symbols Σ,Γ,Ξ are always used to denote alphabets. Alphabets are usually finite,
but at one point, we use an infinite alphabet. For k ≥ 1, let Σk = {0, . . . , k − 1}. When we
need an alphabet of size k, we often use specifically the alphabet Σk. The empty word is
denoted by ε.

A word U is a factor of a word V if there exist words X,Y such that V = XUY . If we
can choose X = ε, then U is a prefix, if we can choose Y = ε, then U is a suffix, and if we
can choose X 6= ε 6= Y , then U is an internal factor of V .

A nonempty word is primitive if it is not a power of a shorter word. If U = V n and V is
primitive, then V is a primitive root of U .

A language M ⊆ Σ∗ is a submonoid of Σ∗ if it is closed under concatenation and contains
ε. Let M1 and M2 be submonoids of Σ∗ and Γ∗. A mapping α : M1 →M2 is a morphism if
α(UV ) = α(U)α(V ) for all U, V ∈M1. The most common case is M1 = Σ∗ and M2 = Γ∗.

Let L ⊆ M1. A morphism α : M1 → M2 is nonerasing if α(x) 6= ε for all x 6= ε,
L-preserving if α(x) = x for all x ∈ L, L-periodic if α(xy) = α(yx) for all x, y ∈ L, and
L-nonperiodic if α(xy) 6= α(yx) for some x, y ∈ L.

In the following theorem, we have collected some folklore results related to these definitions.

I Theorem 1. Let U and V be words.
1. UV = V U if and only if there exists a word R such that U, V ∈ R∗.
2. Every nonempty word has a unique primitive root.
3. If U is primitive, then it is not an internal factor of U2.
4. If |Σ| = 2, then every Σ-nonperiodic morphism Σ∗ → Γ∗ is injective.

If every element of a submonoid M of Σ∗ has a unique representation as a product of
elements of some subset B ⊆M , then M is a free monoid and B is its basis. Of course, Σ∗
is a free monoid and Σ is its basis.

If M is a free monoid with a basis B, then every mapping α : B → Γ∗ can be extended
to a morphism M → Γ∗ in a unique way, and every injective mapping α : B → Γ can be
extended to an injective morphism M → Γ∗. Moreover, if L ⊆ B ∩ Γ, then every mapping
α : B r L → Γ∗ can be extended to an L-preserving morphism M → Γ∗ in a unique way.
Therefore, we often define a morphism α by just saying that it is L-preserving and giving
the values α(x) for all x ∈ B r L.

We need the following well-known characterization of free monoids.

I Theorem 2. Let M be a submonoid of Σ∗. M is a free monoid if and only if there does
not exist words U, V,W ∈ Σ∗ such that U, V W,UV,W ∈M but V /∈M .

Let Ξ be an alphabet of variables and Σ an alphabet of constants. The alphabets Ξ and
Σ are assumed to be disjoint. A pattern over (Ξ,Σ) is a word U ∈ (Ξ ∪ Σ)+. The pattern U
is constant-free if U ∈ Ξ+. The nonerasing pattern language of U , denoted by LNE(U), is
the set of images of U under all nonerasing Σ-preserving morphisms (Ξ ∪ Σ)∗ → Σ∗.

In the following definitions, by an alphabet of size ?, we mean an alphabet of arbitrary
finite size. For m,n, k ∈ Z+ ∪ {?}, we define the following decision problems related to
patterns:

Inclusion problem of nonerasing pattern languages PatInclNE(m,n, k): Given alphabets
Ξ1,Ξ2,Σ of sizes m,n, k, respectively, a pattern U over (Ξ1,Σ), and a pattern V over
(Ξ2,Σ), decide whether LNE(U) ⊆ LNE(V ).
Inclusion problem of constant-free nonerasing pattern languages PatInclCF

NE(m,n, k): Given
alphabets Ξ1,Ξ2,Σ of sizes m,n, k, respectively, a constant-free pattern U over (Ξ1,Σ),
and a constant-free pattern V over (Ξ2,Σ), decide whether LNE(U) ⊆ LNE(V ).

As mentioned in the introduction, PatInclNE(?, ?, ?) was shown to be undecidable already
in [18]. We need the following stronger result from [4].
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I Theorem 3 ([4], Theorem 3.10). PatInclNE(3, 2554, 2) is undecidable.

I Remark 4. Often, we use symbols from the end of the English alphabet (e.g., u, v, w, x, y, z
in the next example) for ordinary variables, symbols from the beginning of the alphabet
(e.g., a, b) for special variables that end up playing the role of constants in some sense, and
nonnegative integers (e.g., 0, 1) for the actual constants.

I Example 5. It is mentioned in several articles [18, 24] that one reason why the inclusion
problem of nonerasing pattern languages is so difficult is that many unavoidability properties
can be formulated in terms of pattern languages. In our new undecidability proof, an
important role is played by one unavoidability result, although an extremely simple one:
Every binary word of length at least 4 has a nonempty square factor, and therefore every
binary word of length at least 6 has a nonempty internal square factor. By considering
patterns over ({u, v, w, x, y, z},Σ2), this can be expressed as LNE(uvwxyz) ⊆ LNE(xy2z).
More specifically, we will need the fact that LNE(x2y2) r LNE(xy2z) = {0011, 1100}.

A word equation over (Ξ,Σ) is a pair of patterns over (Ξ,Σ). A solution of an equation
(U, V ) is a Σ-preserving morphism α : (Ξ ∪ Σ)∗ → Σ∗ such that α(U) = α(V ). A system of
equations is a set of equations. A solution of a system is a morphism that is a solution of
every equation in the system.

An equation (U, V ) is constant-free if U, V ∈ Ξ+. For constant-free equations, Ξ-periodic
solutions are considered trivial. We often call these solutions just periodic and the others
nonperiodic.

I Example 6. Consider word equations over ({x, y, z},Σ2). The equation (x2, y0y) has no
solutions, because |α(x2)| is even and |α(y0y)| is odd for all Σ2-preserving morphisms α.
The constant-free equation (x2, yzy) has nonperiodic solutions α defined by

α(x) = (PQ)i+1P, α(y) = (PQ)iP, α(z) = QPPQ

for all P,Q ∈ Σ∗2, PQ 6= QP , i ∈ Z≥0, and periodic solutions α defined by

α(x) = P i+j , α(y) = P i, α(z) = P 2j

for all P ∈ Σ∗2, i, j ∈ Z≥0.

By the theorem of Lyndon and Schützenberger [22], if Ξ = {x, y, z} and k,m, n ≥ 2, then
the word equation (xk, ymzn) has only periodic solutions. In other words, if α is a {y, z}-
nonperiodic morphism, then α(ymzn) is primitive. In Theorem 7, we state a generalization
of this result that we need later. It was proved by Spehner [34] and by Barbin-Le Rest and
Le Rest [2]. A shorter proof can be found in [31].

I Theorem 7. Let W ∈ {y, z}∗ be a primitive word that has at least two occurrences of both
letters y and z. Let α be a {y, z}-nonperiodic morphism. Then α(W ) is primitive.

For n, k ∈ Z+ ∪ {?}, we define the following decision problems related to systems of word
equations:

Satisfiability problem of word equations EqSat(n, k): Given alphabets Ξ,Σ of sizes n, k,
respectively, and a system S of equations over (Ξ,Σ), decide whether S has a solution.
Nonperiodic satisfiability problem of constant-free word equations EqSatCF

NP(n, k): Given
alphabets Ξ,Σ of sizes n, k, respectively, and a system S of constant-free equations over
(Ξ,Σ), decide whether S has a nonperiodic solution.
Noncommuting satisfiability problem of constant-free word equations EqSatCF

NC(n, k):
Given alphabets Ξ,Σ of sizes n, k, respectively, a system S of constant-free equations
over (Ξ,Σ), and variables x, y ∈ Ξ, decide whether S has a {x, y}-nonperiodic solution.
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As mentioned in the introduction, EqSat(?, ?) is known to be in PSPACE and NP-
hard. If Σ is unary, then word equations are essentially linear Diophantine equations, so
EqSat(?, 1) is equivalent to linear integer programming in unary notation, which is known to
be NP-complete.

We have defined the above decision problems for systems of equations. Studying single
equations instead of systems would not make them much easier, except in the case where Σ is
unary. If there are at least two distinct constant letters, then for every finite system of word
equations, we can find an equation that has exactly the same solutions as the system, and
for every finite system of constant-free word equations, we can find a constant-free equation
that has exactly the same nonperiodic solutions as the system, as proved by Hmelevskii [14].
Moreover, these equations can be constructed in polynomial time.

If A and B are decision problems and A is polynomial-time reducible to B, we use the
notation A ≤p B. If A and B are polynomially equivalent, that is, A ≤p B and B ≤p A,
then we use the notation A ≡p B.

3 Inclusion problem of pattern languages

We are going to prove that PatInclNE(?, ?, 2) ≤p PatInclCF
NE(?, ?, 2). Let the alphabet of

constants be Σ2. Let a and b be new variables that are supposed to represent the constants
0 and 1. Nonerasing morphisms that map a to 0 and b to 1 or vice versa can be called good,
and other nonerasing morphism can be called bad. For all patterns U, V , we must construct
constant-free patterns U ′, V ′ such that LNE(U ′) ⊆ LNE(V ′) if and only if LNE(U) ⊆ LNE(V ).
In other words, we must show that the following conditions are satisfied:
1. If LNE(U) ⊆ LNE(V ), then for all good morphisms α′, there exists a nonerasing morphism

β′ such that β′(V ′) = α′(U ′).
2. If LNE(U) ⊆ LNE(V ), then for all bad morphisms α′, there exists a nonerasing morphism

β′ such that β′(V ′) = α′(U ′).
3. If LNE(U) 6⊆ LNE(V ), then there exists a nonerasing morphism α′ such that for all

nonerasing morphisms β′, β′(V ′) 6= α′(U ′).
Before giving the definition of U ′ and V ′ and the formal proofs, we explain some ideas behind
the construction.

The simplest idea would be to replace 0 and 1 by a and b. Let U1, V1 be the constant-free
patterns we get from U, V this way. If we use U1, V1 as U ′, V ′, then the first condition is
satisfied. However, the next example shows that the third condition does not hold in general.

I Example 8. Let U = 0x, V = 1x, U ′ = ax, V ′ = bx. Then clearly LNE(U) 6⊆ LNE(V ) and
LNE(U ′) ⊆ LNE(V ′), so the third condition does not hold.

The problem with the third condition is that β′ does not necessarily map a and b in the
same way as α′. To solve this, we use an idea that is somewhat similar to one used in [4,
Subsection 5.2], where prefixes are added to patterns to ensure that certain variables must
be mapped in a certain way. Consider the patterns

U2 = a2b2c2U1, V2 = a2b2c2V1,

where c is a new variable. If α′ is good and α′(c) is a third letter that does not appear in
α′(U1), then it is quite easy to see that β′(V2) = α′(U2) is possible only if β′(x) = α′(x) for
all x ∈ {a, b, c}. Of course, there is no third letter in Σ2, but we can define α′(c) ∈ Σ+

2 so
that it still acts as a separator in the same way a unique letter would. If we use U2, V2 as
U ′, V ′, then the first and the third condition are satisfied.
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Satisfying the second condition without interfering with the third condition is the most
difficult part. To solve the problems, consider patterns of the form

U4 = W1pq
2rW2a

2b2W3, V4 = W4pq
2rW5,

where p, q, r are new variables and W1, . . . ,W5 are constant-free patterns. The factors pq2r

and a2b2 act as a “switch”. If β′(pq2r) = α′(pq2r), then we can say that the switch is in
the first position. If β′(pq2r) = α′(a2b2), then we can say that the switch is in the second
position. For any α′, we can define β′ so that β′(pq2r) = α′(pq2r), so the first position is
always possible. On the other hand, we can define β′ so that β′(pq2r) = α′(a2b2) if and only
if α′ is bad, so the second position is possible for the bad morphisms but not for the good.
This allows us to handle the second condition without causing problems with the other two.

Putting these ideas together leads to the following construction. Let U be a pattern over
(Ξ1,Σ2) and V a pattern over (Ξ2,Σ2). Let a, b, c, p, q, r, s, t be new variables not in Ξ1 ∪ Ξ2.
We define a (Ξ1 ∪ Ξ2)-preserving morphism

σ : (Ξ1 ∪ Ξ2 ∪ Σ2)∗ → (Ξ1 ∪ Ξ2 ∪ {a, b})∗, σ(0) = a, σ(1) = b.

We can construct the constant-free patterns

U ′ = a2b2c2 · c2 · σ(U) · c2pq2rc · σ(V ) · c2a2b2c · a
V ′ = a2b2c2 · sc · σ(V ) · c2pq2rc · t (1)

where U ′ is a pattern over (Ξ1 ∪ Ξ2 ∪ {a, b, c, p, q, r},Σ2) and V ′ is a pattern over (Ξ2 ∪
{a, b, c, p, q, r, s, t},Σ2).

I Lemma 9. If LNE(U) ⊆ LNE(V ), then LNE(U ′) ⊆ LNE(V ′),

Proof. Let α′ : (Ξ1 ∪Ξ2 ∪{a, b, c, p, q, r})∗ → Σ∗2 be a nonerasing morphism. We must find a
nonerasing morphism β′ : (Ξ2 ∪ {a, b, c, p, q, r, s, t})∗ → Σ∗2 such that β′(V ′) = α′(U ′). There
are two cases depending on whether α′ is good or bad.

If α′ is good, then we can define a nonerasing morphism

α : (Ξ1 ∪ Ξ2 ∪ Σ2)∗ → Σ∗2, α = α′ ◦ σ ◦ α′ ◦ σ.

It is easy to check that α is Σ2-preserving. By the assumption LNE(U) ⊆ LNE(V ), there
exists a nonerasing Σ2-preserving morphism β : (Ξ2 ∪ Σ2)∗ → Σ∗2 such that β(V ) = α(U).
We can define a morphism

β′ : (Ξ2 ∪ {a, b, c, p, q, r, s, t})∗ → Σ∗2, β′(x) = α′(σ(β(x)) for all x ∈ Ξ2,

β′(x) = α′(x) for all x ∈ {a, b, c, p, q, r}.
β′(s) = α′(c),
β′(t) = α′(σ(V )c2a2b2ca).

It follows directly from the definition of β′ that

β′(a2b2c2sc) = α′(a2b2c4),
β′(c2pq2rct) = α′(c2pq2rcσ(V )c2a2b2ca). (2)

Showing that β′(σ(V )) = α′(σ(U)) requires some computations. By using the definition of
β′ and the fact that σ is Ξ2-preserving and β is Σ2-preserving, we get

β′(σ(x)) = β′(x) = α′(σ(β(x))) for all x ∈ Ξ2,

β′(σ(x)) = α′(σ(x)) = α′(σ(β(x))) for all x ∈ Σ2. (3)
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We have

β′(σ(V )) = α′(σ(β(V ))) = α′(σ(α(U))) = α(α′(σ(U))) = α′(σ(U)), (4)

where the first equality follows from V ∈ (Ξ2 ∪ Σ2)+ and (3), the second from β(V ) = α(U),
the third from (α′ ◦ σ) ◦ α = α ◦ (α′ ◦ σ), and the fourth from α being Σ2-preserving. It
follows from (2) and (4) that β′(V ′) = α′(U ′)

If α′ is bad, then α′(a2b2) is either 04, 14, or a binary word of length at least six. In all
cases, it has a nonempty internal factor that is a square, so there exists P,Q,R ∈ Σ+

2 such
that α′(a2b2) = PQ2R. We can define a morphism

β′ : (Ξ2 ∪ {a, b, c, p, q, r, s, t})∗ → Σ∗2, β′(x) = α′(x) for all x ∈ Ξ2 ∪ {a, b, c},
β′(p) = P,

β′(q) = Q,

β′(r) = R,

β′(s) = α′(c2σ(U)c2pq2r),
β′(t) = α′(a).

It follows directly from the definition of β′ that β′(V ′) = α′(U ′). J

I Lemma 10. If LNE(U) 6⊆ LNE(V ), then LNE(U ′) 6⊆ LNE(V ′).

Proof. By the assumption LNE(U) 6⊆ LNE(V ), there exist a nonerasing Σ2-preserving
morphism α : (Ξ1 ∪ Σ2)∗ → Σ∗2 such that β(V ) 6= α(U) for all nonerasing Σ2-preserving
morphisms β : (Ξ2 ∪ Σ2)∗ → Σ∗2. We can define a morphism

α′ : (Ξ1 ∪ Ξ2 ∪ {a, b, c, p, q, r})∗ → Σ∗2, α′(x) = α(x) for all x ∈ Ξ1,

α′(a) = 0,
α′(b) = 1,
α′(c) = 10N 1,
α′(x) = 1 for all x ∈ Ξ2 ∪ {p, q, r},

where N = 1 + max{2, |α′(σ(U))|, |α′(σ(V ))|}.
It is easy to see that α′(U ′) does not contain any other occurrences of α′(c) than the

ten obvious ones. We can show that if A2 is a nonempty square prefix of α′(U ′), then
A = α′(a) = 0. First, if α′(a2b2c3) is a prefix of A, then Aα′(a2b2c3) is a prefix of α′(U ′),
which is impossible, because α′(c3) does not have any occurrences in α′(U ′) starting after
the prefix α′(a2b2c3). Second, if A is a prefix of α′(a2b2c3) and |A| ≥ 5, then A00111 is a
prefix of α′(a2b2c4), which is impossible, because 111 does not have any occurrences in α′(c4).
Finally, if |A| ≤ 4, then clearly the only possibility is A = 0. Similarly, we can show that if
W is the word such that U ′ = a2b2W , then the only nonempty square prefix of α′(b2W ) is
α′(b2) = 11, and the only nonempty square prefixes of α′(W ) are α′(c2) and α′(c4).

To complete the proof of the theorem, we assume that

β′ : (Ξ2 ∪ {a, b, c, p, q, r, s, t})∗ → Σ∗2

is a nonerasing morphism such that β′(V ′) = α′(U ′) and derive a contradiction. Because
β′(V ′) has the nonempty square prefix β′(a2), and the only nonempty square prefix of α′(U ′)
is 00, it must be β′(a) = 0. Similarly, we see that β′(b) = 1 and β′(c) ∈ {α′(c), α′(c2)}. If
β′(c) = α′(c2), then β′(c2) = α′(c4) has two occurrences in α′(U ′), which is not possible, so
it must be β′(c) = α′(c). It follows that
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β′(scσ(V )c2pq2rct) = α′(c2σ(U)c2pq2rcσ(V )c2a2b2ca).

Here on the right-hand side, there are only two occurrences of α′(c2) as an internal factor, so
either

β′(scσ(V )) = α′(c2σ(U)) and β′(pq2rct) = α′(pq2rcσ(V )c2a2b2ca) (5)

or

β′(scσ(V )) = α′(c2σ(U)c2pq2rcσ(V )) and β′(pq2rct) = α′(a2b2ca). (6)

There is only one occurrence of α′(c) as an internal factor in α′(c2σ(U)), so (5) implies
β′(σ(V )) = α′(σ(U)) = α(U), which is a contradiction because β′ ◦ σ is a nonerasing Σ2-
preserving morphism. There is only one occurrence of α′(c) as an internal factor in α′(a2b2ca),
so (6) implies β′(pq2r) = α′(a2b2) = 0011, which is a contradiction because 0011 does not
have a nonempty internal square factor. These contradictions show that the morphism β′

does not exist, and therefore LNE(U ′) 6⊆ LNE(V ′). J

I Theorem 11. For all m,n ∈ Z+,

PatInclNE(m,n, 2) ≤p PatInclCF
NE(max{m,n}+ 6, n+ 8, 2).

Proof. Let U be a pattern over (Ξ1,Σ2) and V a pattern over (Ξ2,Σ2), where |Ξ1| = m

and |Ξ2| = n. Because renaming the variables in one of U and V does not change the
pattern language, we can assume that one of Ξ1 and Ξ2 is a subset of the other, and
therefore |Ξ1 ∪ Ξ2| = max{m,n}. The constant-free patterns U ′ and V ′ defined in (1) can
be constructed in polynomial time. By Lemmas 9 and 10, LNE(U) ⊆ LNE(V ) if and only if
LNE(U ′) ⊆ LNE(V ′). The claim follows. J

I Corollary 12. The decision problem PatInclCF
NE(2560, 2562, 2) is undecidable.

Proof. By Theorem 3, PatInclNE(3, 2554, 2) is undecidable. It follows from Theorem 11 that
PatInclCF

NE(2560, 2562, 2) is undecidable. J

4 Nonperiodic satisfiability

We are going to prove that the decision problem EqSatCF
NP(?, 2) is NP-hard. This is based on

the NP-hardness of EqSat(?, 1). Before the proofs, we give a brief informal explanation of
the idea.

We are going to transform a system of word equations over (Ξ,Σ1) into a similarly-
behaving system of constant-free word equations over (Ξ∪ {a, b},Σ2), where a and b are new
variables. The letter 0 in the original system has two important properties: It is primitive,
and the images of all variables are powers of it. We want to replace 0 by a word consisting of
variables that has similar properties. We can use the word a2b2. For all {a, b}-nonperiodic
solutions β, the word β(a2b2) is primitive, and we can force β(x) to be a power of β(a2b2)
by adding the equation (xa2b2, a2b2x) for all x ∈ Ξ. Finally, adding the equation (xy, yx) for
all x, y ∈ Ξ makes sure that every {a, b}-periodic solution is periodic.

I Theorem 13. For all n ∈ Z+,

EqSat(n, 1) ≤p EqSatCF
NP(n+ 2, 2) and EqSat(?, 1) ≤p EqSatCF

NP(?, 2).
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Proof. Let S be a system of word equations over (Ξ,Σ1). Let a, b be new variables not in Ξ.
Let us define a Ξ-preserving morphism

σ : (Ξ ∪ Σ1)∗ → (Ξ ∪ {a, b})∗, σ(0) = a2b2,

and a morphism

τ : {a, b}∗ → Σ∗2, τ(a) = 0, τ(b) = 1.

We can construct in polynomial time a system of constant-free word equations

S′ = {(σ(U), σ(V )) | (U, V ) ∈ S} ∪ {(xσ(0), σ(0)x) | x ∈ Ξ} ∪ {(xy, yx) | x, y ∈ Ξ}

over (Ξ∪{a, b},Σ2). To complete the proof of the theorem, we show that S′ has a nonperiodic
solution if and only if S has a solution.

First, assume that S has a solution α. We can define a nonperiodic Σ2-preserving
morphism

β : (Ξ ∪ {a, b} ∪ Σ2)∗ → Σ∗2, β(x) = τ(x) for all x ∈ {a, b},
β(x) = τ(σ(α(x))) for all x ∈ Ξ

and show that it is a solution of S′. By using the definition of β and the fact that α is
Σ1-preserving and σ is Ξ-preserving, we get

β(σ(0)) = τ(σ(0)) = τ(σ(α(0))),
β(σ(x)) = β(x) = τ(σ(α(x))) for all x ∈ Ξ. (7)

For all (U, V ) ∈ S, from U, V ∈ (Ξ ∪ Σ1)∗, (7), and α(U) = α(V ), it follows that

β(σ(U)) = τ(σ(α(U))) = τ(σ(α(V ))) = β(σ(V )).

Thus β is a solution of (σ(U), σ(V )) for all (U, V ) ∈ S. For all x ∈ Ξ, we have α(x) ∈ 0∗ and
therefore

β(x) = τ(σ(α(x))) ∈ τ(σ(0))∗ = β(σ(0))∗.

Thus β is a solution of all the other equations in S′ as well.
Second, assume that S′ has a nonperiodic solution β. From β(xy) = β(yx) for all

x, y ∈ Ξ ∪ {σ(0)} it follows that there exists a primitive word R such that β(x) ∈ R∗ for all
x ∈ Ξ ∪ {σ(0)}. If β is {a, b}-periodic, then β(σ(0)) = β(a2b2) ∈ R∗ implies β(a), β(b) ∈ R∗,
and then β is periodic, a contradiction. Therefore β must be {a, b}-nonperiodic. It follows
from Theorem 7 that β(σ(0)) is primitive and therefore β(σ(0)) = R. We can define a
bijective morphism

φ : R∗ → Σ∗1, φ(R) = 0,

and a morphism

α : (Ξ ∪ Σ1)∗ → Σ∗1, α = φ ◦ β ◦ σ.

Then α is well-defined because the image of β ◦ σ is a subset of R∗, and α is Σ1-preserving
because α(0) = φ(R) = 0, and α is a solution of S because

α(U) = φ(β(σ(U))) = φ(β(σ(V ))) = α(V )

for all (U, V ) ∈ S. J

I Corollary 14. The decision problem EqSatCF
NP(?, 2) is NP-hard.

Proof. Follows from Theorem 13 because EqSat(?, 1) is NP-hard. J
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5 Noncommuting satisfiability

We have proved that EqSatCF
NP is NP-hard, but based on this result alone, it might be possible

that, for example, EqSatCF
NP is NP-complete but EqSat is not in NP. We would like to prove

that constant-free equations are, in some sense, as hard as general word equations. We are
going to prove this kind of a result for the decision problem EqSatCF

NC.
When trying to generalize the ideas of the previous section to the case where the alphabet

of constants is Σk with k > 1, it is quite easy to define words Ci ∈ {a, b} for all i ∈ Σk so
that for all {a, b}-nonperiodic morphisms β, the words β(Ci) are distinct primitive words
and {β(C0), . . . , β(Ck−1)} is the basis of a free monoid. The problem is that we cannot make
sure that β(x) is in this free monoid for all original variables x. (This difficulty is related to
the fact that if X ∈ Σ∗, Γ ( Σ, |Γ| ≥ 2, then the property X ∈ Γ∗ cannot be expressed by
word equations, see [19].) However, we can make sure that β(x) is in a certain larger free
monoid whose basis contains the words β(C0), . . . , β(Ck−1). This is sufficient to prove the
results.

I Lemma 15. Let k ∈ Z+ and let a, b be variables. Let

Ai = aib2ak−i+1 for all i ∈ {0, . . . , k + 1},
B = A2

kA
2
k+1A

2
k,

Ci = BAiB for all i ∈ {0, . . . , k − 1}.

Let β : {a, b}∗ → Σ∗ be an {a, b}-nonperiodic (and therefore injective) morphism and let

M = (β(B)Σ∗ ∩ Σ∗β(B)) ∪ {ε}.

The following are true:
1. β(A0), . . . , β(Ak+1), β(B) are primitive.
2. M is a free monoid.
3. β(C0), . . . , β(Ck−1) are in the basis of M .
4. If U ∈M r {ε} and UV = V U , then V ∈M .

Proof.
1. The primitivity of the words β(Ai) follows from Theorem 7. The word β(B) is the image

of 001100 under the morphism defined by 0 7→ β(Ak), 1 7→ β(Ak+1), and β(AkAk+1) 6=
β(Ak+1Ak) because AkAk+1 6= Ak+1Ak, so also the primitivity of β(B) follows from
Theorem 7.

2. We use Theorem 2. Clearly M is a monoid. We have to show that if U, V,W ∈ Σ∗ and
U, V W,UV,W ∈ M , then V ∈ M . If V = ε, then V ∈ M . If |V | ≥ |β(B)|, then VW
and thus also V begins with β(P ), and UV and thus also V ends with β(P ), so V ∈M .
If 0 < |V | < |β(B)|, then we can write U = Xβ(B), UV = Y β(B), UVW = Xβ(B)2Z

for some words X,Y, Z such that |X| < |Y | < |Xβ(B)|, so β(B) is an internal factor of
β(B)2, which contradicts the primitivity of β(P ). Thus M is a free monoid by Theorem 2.

3. Clearly β(Ci) ∈M . If β(Ci) is not in the basis for some i ∈ {0, . . . , k − 1}, then it is a
product of two nonempty elements of M , so it has a factor β(B2) and thus also a factor
β(A4

k) and we can write

β(Ci) = β(A2
kA

2
k+1A

2
kAiA

2
kA

2
k+1A

2
k) = Uβ(A4

k)V. (8)

for some words U, V . Let l = |β(Ak)|. Note that l = |β(Aj)| for all j. If l divides |U |,
then it follows from (8) that β(Ak) = β(Ak+1) or β(Ak) = β(Ai), which contradicts the
injectivity of β. If l does not divide |U |, then it follows from (8) that β(Ak) is an internal
factor of β(A2

k), which contradicts the primitivity of β(Ak). This proves the claim.
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4. If V = ε, then V ∈ M . If |V | ≥ |β(B)|, then U and thus also V begins and ends with
β(B), so V ∈ M . If 0 < |V | < |β(B)|, then β(B) = RkR′, where R is the common
primitive root of U and V , R′ is a nonempty prefix of R, and k ≥ 1. Because β(B) is
primitive, 0 < |R′| < |R|. But R is a suffix of U and thus of β(B) = RkR′, so R is an
internal factor of R2, which contradicts the primitivity of R. This proves the claim. J

I Theorem 16. For all n ∈ Z+,

EqSat(n, ?) ≤p EqSatCF
NC(2n+ 2, 2) and EqSat(?, ?) ≤p EqSatCF

NC(?, 2).

Proof. Let S be a system of word equations over (Ξ,Σk), where Ξ = {x1, . . . , xn}. Let
a, b, y1, . . . , yn be new variables not in Ξ and let Ξ′ = Ξ∪ {a, b, y1, . . . , yn}. Let B, Ci, M be
as in Lemma 15. Let us define a Ξ-preserving morphism

σ : (Ξ ∪ Σk)∗ → (Ξ ∪ {a, b})∗, σ(i) = Ci for all i ∈ Σk,

and a morphism

τ : {a, b}∗ → Σ∗2, τ(a) = 0, τ(b) = 1.

We can construct in polynomial time a system of constant-free word equations

S′ = {(σ(U), σ(V )) | (U, V ) ∈ S} ∪ {(xiByiB,ByiBxi) | i ∈ {1, . . . , n}}.

over (Ξ′,Σ2). To complete the proof of the theorem, we show that S′ has an {a, b}-nonperiodic
solution β if and only if S has a solution.

First, assume that S has a solution α. For all i, if σ(α(xi)) = ε, let Yi = ε, and
otherwise let σ(α(xi)) = BYiB. Such words Yi exist by the definition of σ. We can define an
{a, b}-nonperiodic Σ2-preserving morphism

β : (Ξ′ ∪ Σ2)∗ → Σ∗2, β(x) = τ(x) for all x ∈ {a, b},
β(xi) = τ(σ(α(xi))) for all i,
β(yi) = τ(Yi) for all i,

and show that it is a solution of S′. By using the definition of β and the fact that α is
Σk-preserving and σ is Ξ-preserving, we get

β(σ(i)) = τ(σ(i)) = τ(σ(α(i))) for all i ∈ Σk,

β(σ(x)) = β(x) = τ(σ(α(x))) for all x ∈ Ξ. (9)

For all (U, V ) ∈ S, from U, V ∈ (Ξ ∪ Σk)∗, (9), and α(U) = α(V ), it follows that

β(σ(U)) = τ(σ(α(U))) = τ(σ(α(V ))) = β(σ(V )).

Thus β is a solution of (σ(U), σ(V )) for all (U, V ) ∈ S. We have β(xi) = ε or β(xi) =
τ(BYiB) = β(ByiB) for all i, so β is a solution of the other equations (xiByiB,ByiBxi) in
S′ as well.

Second, assume that S′ has an {a, b}-nonperiodic solution β. By Lemma 15, from
β(xiByiB) = β(ByiBxi) it follows that β(xi) ∈M for all i. Again by Lemma 15, M is free
and the words β(Ci) are in the basis of M , so there exists an infinite alphabet Γ containing
Σk and an injective morphism
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φ : M → Γ∗ such that φ(β(Ci)) = i for all i. We can define a Σk-preserving morphism

ψ : Γ∗ → Σ∗k, ψ(x) = ε for all x ∈ Γ r Σk

and a morphism

α : (Ξ ∪ Σk)∗ → Σ∗k, α = ψ ◦ φ ◦ β ◦ σ.

Then α is well-defined because β(σ(x)) ∈ M for all x ∈ Ξ ∪ Σk, and α is Σk-preserving
because

α(i) = ψ(φ(β(Ci))) = ψ(i) = i

for all i ∈ Σk, and α is a solution of S because from β(σ(U)) = β(σ(V )) it follows that

α(U) = ψ(φ(β(σ(U)))) = ψ(φ(β(σ(V )))) = α(V )

for all (U, V ) ∈ S. J

I Corollary 17. EqSat(?, ?) ≡p EqSatCF
NC(?, ?).

Proof. We proved in Theorem 16 that EqSat(?, ?) ≤p EqSatCF
NC(?, ?). To prove the other

direction, let S be a system of constant-free equations over (Ξ,Σk), k ≥ 2, and x, y ∈ Ξ. Let
p, q, r be new variables not in Ξ. It is easy to see that the system

S′ = S ∪ {(xy, p0q), (yx, p1r)}

over (Ξ ∪ {p, q, r},Σk) has a solution if and only if S has a {x, y}-nonperiodic solution: If
β is a solution of S′, then the restriction of β on (Ξ ∪ Σk)∗ is a solution of S, and it is
{x, y}-nonperiodic because

β(xy) = β(p)0β(q) 6= β(p)1β(r) = β(yx).

On the other hand, if α is an {x, y}-nonperiodic solution of S, then we can write α(xy) = PaQ

and α(yx) = PbR for some words P,Q,R and distinct letters a, b. Because S is constant-free,
every morphism we get from α by permuting the constant letters in the images of the variables
is also an {x, y}-nonperiodic solution of S, so we can assume that a = 0 and b = 1. Then
we can extend α to a solution α′ of S′ by defining α′(p) = P , α′(q) = Q, α′(r) = R. This
completes the proof. J

6 Conclusion

We have proved that the inclusion problem of nonerasing pattern languages is undecidable
even in the case of constant-free patterns. We have also proved that the nonperiodic
satisfiability problem of constant-free word equations is NP-hard, and the noncommuting
satisfiability problem of constant-free word equations is polynomially equivalent to the general
satisfiability problem of word equations.

The following questions remain open:
Is the equivalence problem of erasing pattern languages decidable?
Is the satisfiability problem of word equations in NP?
For some fixed n ≥ 3, can we prove that EqSat(n, ?) is in P or NP or NP-hard?

ICALP 2020
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There are also several smaller open questions raised by the new results:
Can the numbers 2560 and 2562 in Corollary 12 be made significantly smaller? This
would require either a rather different approach or improving the results in [4].
Is EqSat(?, ?) polynomial-time reducible to EqSatCF

NP(?, ?)?
In Theorem 16, we used n+ 2 new variables. Would a constant number of new variables
be sufficient?
The satisfiability problem remains NP-hard for several restricted subfamilies of word
equations. Can we prove NP-hardness results for some interesting subfamilies of constant-
free equations?
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14 Ju. I. Hmelevskĭı. Equations in free semigroups. American Mathematical Society, 1976.
Translated by G. A. Kandall from the Russian original: Trudy Mat. Inst. Steklov. 107 (1971).

15 Artur Jeż. One-variable word equations in linear time. Algorithmica, 74(1):1–48, 2016.
doi:10.1007/s00453-014-9931-3.

https://doi.org/10.1016/0022-0000(80)90041-0
https://doi.org/10.1016/0304-3975(85)90060-X
https://doi.org/10.1016/j.ic.2012.10.003
https://doi.org/10.1016/j.ic.2012.10.003
https://doi.org/10.1007/978-3-642-59136-5_6
https://doi.org/10.4230/LIPIcs.MFCS.2017.18
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.4230/LIPIcs.ICALP.2017.96
https://doi.org/10.4230/LIPIcs.ICALP.2017.96
https://doi.org/10.1016/j.ic.2015.03.006
https://doi.org/10.1016/j.ic.2015.03.006
https://doi.org/10.1016/j.ic.2009.04.002
https://doi.org/10.1016/0304-3975(91)90356-7
https://doi.org/10.1007/s00453-014-9931-3


A. Saarela 140:15

16 Artur Jeż. Recompression: a simple and powerful technique for word equations. Journal of
the ACM, 63(1):Art. 4, 51, 2016. doi:10.1145/2743014.

17 Artur Jeż. Word equations in nondeterministic linear space. In Proceedings of the 44th ICALP,
volume 80 of LIPIcs, pages 95:1–13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.95.

18 Tao Jiang, Arto Salomaa, Kai Salomaa, and Sheng Yu. Decision problems for patterns. Journal
of Computer and System Sciences, 50(1):53–63, 1995. doi:10.1006/jcss.1995.1006.

19 Juhani Karhumäki, Filippo Mignosi, and Wojciech Plandowski. The expressibility of languages
and relations by word equations. Journal of the ACM, 47(3):483–505, 2000. doi:10.1145/
337244.337255.

20 Juhani Karhumäki and Wojciech Plandowski. On the defect effect of many identities in free
semigroups. In Gheorghe Paun, editor, Mathematical aspects of natural and formal languages,
pages 225–232. World Scientific, 1994. doi:10.1142/9789814447133_0012.

21 M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, 2002. URL:
http://www-igm.univ-mlv.fr/~berstel/Lothaire/AlgCWContents.html.

22 Roger C. Lyndon and Marcel-Paul Schützenberger. The equation aM = bNcP in a free group.
The Michigan Mathematical Journal, 9(4):289–298, 1962. doi:10.1307/mmj/1028998766.

23 G. S. Makanin. The problem of the solvability of equations in a free semigroup. Mat. Sb.
(N.S.), 103(2):147–236, 1977. English translation in Math. USSR Sb. 32:129–198, 1977.

24 Florin Manea and Markus L. Schmid. Matching patterns with variables. In Proceedings
of the 12th WORDS, volume 11682 of LNCS, pages 1–27. Springer, 2019. doi:10.1007/
978-3-030-28796-2_1.

25 Yen Kaow Ng and Takeshi Shinohara. Developments from enquiries into the learnability of
the pattern languages from positive data. Theoretical Computer Science, 397(1–3):150–165,
2008. doi:10.1016/j.tcs.2008.02.028.

26 Dirk Nowotka and Aleksi Saarela. An optimal bound on the solution sets of one-variable
word equations and its consequences. In Proceedings of the 45th ICALP, volume 107 of
LIPIcs, pages 136:1–136:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. doi:
10.4230/LIPIcs.ICALP.2018.136.

27 Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. Journal
of the ACM, 51(3):483–496, 2004.

28 Daniel Reidenbach. Discontinuities in pattern inference. Theoretical Computer Science,
397(1–3):166–193, 2008. doi:10.1016/j.tcs.2008.02.029.

29 John Michael Robson and Volker Diekert. On quadratic word equations. In Proceedings
of the 16th STACS, volume 1563 of LNCS, pages 217–226. Springer, 1999. doi:10.1007/
3-540-49116-3_20.

30 Aleksi Saarela. On the complexity of Hmelevskii’s theorem and satisfiability of three unknown
equations. In Proceedings of the 13th DLT, volume 5583 of LNCS, pages 443–453. Springer,
2009. doi:10.1007/978-3-642-02737-6_36.

31 Aleksi Saarela. Studying word equations by a method of weighted frequencies. Fundamenta
Informaticae, 162(2–3):223–235, 2018. doi:10.3233/FI-2018-1722.

32 Géraud Sénizergues. The equivalence problem for deterministic pushdown automata is
decidable. In Proceedings of the 24th ICALP, volume 1256 of LNCS, pages 671–681. Springer,
1997. doi:10.1007/3-540-63165-8_221.

33 Takeshi Shinohara. Polynomial time inference of extended regular pattern languages. In RIMS
Symposia on Software Science and Engineering, volume 147 of LNCS, pages 115–127. Springer,
1983. doi:doi.org/10.1007/3-540-11980-9_19.

34 Jean-Claude Spehner. Quelques problémes d’extension, de conjugaison et de présentation des
sous-monoïdes d’un monoïde libre. PhD thesis, Univ. Paris, 1976.

ICALP 2020

https://doi.org/10.1145/2743014
https://doi.org/10.4230/LIPIcs.ICALP.2017.95
https://doi.org/10.1006/jcss.1995.1006
https://doi.org/10.1145/337244.337255
https://doi.org/10.1145/337244.337255
https://doi.org/10.1142/9789814447133_0012
http://www-igm.univ-mlv.fr/~berstel/Lothaire/AlgCWContents.html
https://doi.org/10.1307/mmj/1028998766
https://doi.org/10.1007/978-3-030-28796-2_1
https://doi.org/10.1007/978-3-030-28796-2_1
https://doi.org/10.1016/j.tcs.2008.02.028
https://doi.org/10.4230/LIPIcs.ICALP.2018.136
https://doi.org/10.4230/LIPIcs.ICALP.2018.136
https://doi.org/10.1016/j.tcs.2008.02.029
https://doi.org/10.1007/3-540-49116-3_20
https://doi.org/10.1007/3-540-49116-3_20
https://doi.org/10.1007/978-3-642-02737-6_36
https://doi.org/10.3233/FI-2018-1722
https://doi.org/10.1007/3-540-63165-8_221
https://doi.org/doi.org/10.1007/3-540-11980-9_19




Bisimulation Equivalence of Pushdown Automata
Is Ackermann-Complete
Wenbo Zhang
BASICS, Shanghai Jiao Tong University, Shanghai, China
wbzhang@sjtu.edu.cn

Qiang Yin1

Alibaba Group, Shanghai, China
qiang.yq@alibaba-inc.com

Huan Long
BASICS, Shanghai Jiao Tong University, Shanghai, China
longhuan@sjtu.edu.cn

Xian Xu
East China University of Science and Technology, Shanghai, China
xuxian@ecust.edu.cn

Abstract
Deciding bisimulation equivalence of two pushdown automata is one of the most fundamental
problems in formal verification. Though Sénizergues established decidability of this problem in 1998,
it has taken a long time to understand its complexity: the problem was proven to be non-elementary
in 2013, and only recently, Jančar and Schmitz showed that it has an Ackermann upper bound.
We improve the lower bound to Ackermann-hard, and thus close the complexity gap.
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1 Introduction

In the area of formal verification, equivalence checking plays a central role in characterizing
when two systems should be considered as the same. A classical equivalence is language
equivalence, which asks if two processes recognize the same language. To characterize more
refined behavioural relations, Milner proposed a fundamental equivalence called bisimulation
equivalence (a.k.a. bisimilarity) [15]. Two processes are bisimilar to each other if every
transition from one process can be simulated by the other one, and the resulting two processes
keep in the same bisimilarity relation. If internal actions are allowed in a bisimulation step,
we will get a more complicated equivalence called weak bisimilarity [15]. A seminal result
proven in [1] shows that bisimulation equivalence is decidable for processes generated by
context-free grammars, while the language equivalence between context-free grammars is
well-known to be undecidable [6]. Extensive works followed up ever since, studying different
equivalence relations on various infinite-state systems. See [13] for a survey.
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Table 1 Complexity results of bisimulation equivalence problems for (variants of) PDA.

Model Lower bound Upper bound
DPDA P-hard Tower [9, 28]
PDA Ackermann-hard Ackermann [10]
FOG Ackermann-hard [9] Ackermann [10]

Pushdown automata (PDA) extend finite-state automata with a stack memory and can
be used to model recursive programs naturally. Since PDA recognize the same language as
context-free grammars [6], language equivalence is undecidable. The language equivalence
of deterministic PDA (DPDA), raised by Ginsburg and Greibach in [5], was first proved to
be decidable for the real-time subclass, i.e., DPDA without internal actions [17, 16]. The
decidable result was extended to DPDA in Sénizergues’s remarkable work [23]. Observe that
on DPDA, language equivalence coincides with weak bisimulation equivalence, which implies
the decidability of weak bisimilarity for DPDA. Sénizergues later generalized the decidability
result to weak bisimilarity of PDA with deterministic internal actions [22, 24]. An internal
action is deterministic if there is no alternative. There are also quite a few works trying
to simplify Sénizergues’s proof [27, 25, 26, 7, 8]. Stirling revisited the decidability proof
for DPDA via a tableau system [27]. He also generalized the tableau system for PDA [26].
Another line of work is conducted by Jančar in the framework of first-order grammars
(FOG) [7, 8]. FOG has very close relationship with PDA [4]. It can describe PDA with
deterministic internal actions by collapsed graphs where all internal actions are absorbed.

Concerning the complexity issue of bisimilarity of PDA, the best known upper bound for
the deterministic case (DPDA) is Tower [28, 9], while only P-hardness is known. For general
PDA, Exptime-hardness was proven by Kučera and Mayr [14]. The Exptime-hardness
even holds for a subclass of PDA, named BPA (Basic Process Algebra), of which the set
of control states is a singleton [12]. The Exptime-hardness was further improved to non-
elementary (Tower-hard actually) [2]. This non-elementary lower bound also holds for the
normed subclass, where every PDA process can empty its stack. As for the upper bound
for bisimilarity of PDA, little was known until very recently. Jančar and Schmitz gave an
Ackermann algorithm in [10]. This upper bound is actually proven in the framework of
FOG. It also matches the Ackermann-hard lower bound for bisimilarity of FOG [9].

Observe that FOG are equivalent to PDA with deterministic internal actions. Without
internal actions, the Ackermann-hardness of FOG cannot be applied to PDA. Thus the
best known lower-bound for bisimilarity of PDA is still Tower-hard.

Our Contribution. We show that bisimilarity of PDA is actually Ackermann-complete by
improving the Tower-hard lower bound to Ackermann-hard. This is done by a reduction
from the coverability problem of reset Petri net [19]. Moreover, our reduction also gives rise
to a parametric complexity result, i.e., Fd−1-hardness if the number of control states d ≥ 4
is fixed. Our proof extends an early work by Jančar [9], where similar results for first-order
grammars are established. We improve the reduction by avoiding ε-rules.

We summarize some mentioned results in Table 1 with our result presented in bold.

Further Comments. According to Table 1, the complexity classes of bisimilarity problems
for PDA and first-order grammars happen to be the same. Thus one may wonder whether
these two models are actually equal with respect to bisimilarity. The answer was known to
be negative [3]. In this paper, we present a new proof which shows that pushdown automata
are strictly weaker than first-order grammars as far as bisimilarity is considered. It also
demonstrates why the reduction in [9] cannot be applied to real-time PDA directly.
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Organization. The rest of the paper is organized as follows. Section 2 introduces the
background knowledge and necessary notations. Section 3 establishes the Ackermann
hardness for bisimilarity of PDA. Section 4 shows that PDA are strictly weaker than FOG
considering bisimilarity. Section 5 concludes this paper.

2 Preliminaries

2.1 Pushdown Automata
I Definition 1 (PDA). A pushdown automaton A = (Q,Γ,Σ,R) consists of

a finite set of control states Q ranged over by r, p, q;
a finite set of stack symbols Γ ranged over by X,Y, Z;
a finite set of actions Σ ranged over by a, b, c, d, f ;
a finite set of rules R ⊆ Q× Γ× Σ×Q× Γ∗.

The set Σ∗ of words will be ranged over by u, v, w, and the set Γ∗ of finite strings of stack
symbols will be ranged over by α, β. We write αβ (respectively uv) for the concatenation
of α and β (respectively u and v). As usual, |α| and |u| represent the length of α and u

respectively. For n ∈ N, we use an to denote n consecutive actions a, and similarly for Xn.
We write pX a−−→ qα to mean (p,X, a, q, α) ∈ R.

The syntax of a PDA process is pα, where p ∈ Q and α ∈ Γ∗. The size of process pα,
denoted by |pα|, is defined as its stack height |α|. The set of PDA processes P is ranged
over by O,P,Q. The semantics of the PDA processes is defined by the following rule:

pX
a−−→ qα ∈ R

pXβ
a−−→ qαβ (1)

If w = a1a2 . . . an with ai ∈ Σ (i ∈ 1, . . . , n), then P
w−→ Q stands for P a1−−→ P1

a2−−→
. . . Pn−1

an−−→ Q for some P1, P2, . . . , Pn−1. A process P is normed if P w−→ p for some w ∈ Σ∗
and p ∈ Q, i.e., P can empty its stack. A PDA A is normed (denoted as nPDA) if every
process defined in A is normed.
I Definition 2 (Bisimulation). A binary relation R ⊆ P × P is a bisimulation if, for all
a ∈ Σ, the following statements are valid:
1. whenever (P,Q) ∈ R and P a−−→ P ′, then Q a−−→ Q′ and (P ′, Q′) ∈ R for some Q′;
2. whenever (P,Q) ∈ R and Q a−−→ Q′, then P a−−→ P ′ and (P ′, Q′) ∈ R for some P ′.

The largest bisimulation relation, denoted by ∼, is an equivalence relation called bisimu-
lation equivalence or bisimilarity [15].

When silent actions are considered, we use a special symbol ε to represent a silent action.
Note that in Definition 1 we assume ε 6∈ Σ. PDA without silent actions are called real-time
PDA. When silent actions are allowed, we will specify action set as Σε = Σ ] {ε}. A rule
of the form pX

ε−−→ qα is referred to as an ε-rule. For an ε-rule pX ε−−→ qα, we say it is
popping if |α| < 1; it is pushing if |α| > 1; it is deterministic if pX a−−→ q′α′ implies a = ε,
q′ = q, and α′ = α. We will write ε==⇒ for the reflexive and transitive closure of ε−−→; and
write a==⇒ for ε==⇒ a−−→ ε==⇒ if a 6= ε.
I Definition 3 (Weak Bisimulation). A binary relation R ⊆ P × P is a weak bisimulation if
for all a ∈ Σε, the following statements are valid:
1. whenever (P,Q) ∈ R and P a−−→ P ′, then Q a==⇒ Q′ and (P ′, Q′) ∈ R for some Q′;
2. whenever (P,Q) ∈ R and Q a−−→ Q′, then P a==⇒ P ′ and (P ′, Q′) ∈ R for some P ′.

The largest weak bisimulation, denoted by ≈ is called weak bisimilarity [15], and is also
an equivalence relation.

ICALP 2020
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Fast-Growing Complexity. We will use an ordinal-indexed hierarchy of “fast-growing” com-
plexity classes defined in [18]. This hierarchy grows as F1,F2,F3, . . . ,Fω,Fω+1 . . . and
allows the classification of many decision problems with a non-elementary complexity. Here
F3 = Tower is the lowest non-elementary complexity class;

⋃
k∈N Fk is the primitive-

recursive complexity class; and Fω = Ackermann is the lowest non-primitive-recursive
complexity class. A complexity class is closed under reduction functions from “lower” com-
plexity class. For example, all classes starting from F3 are closed under elementary reduction.

Bisimilarity Problem for PDA. We are interested in the bisimilarity problem for PDA
defined as follows. Given a PDA A = (Q,Γ,Σ,R) and two process pα and qβ, where p, q ∈ Q
and α, β ∈ Γ∗, the bisimilarity problem asks if pα ∼ qβ.

Our main result stated as follows improves the previous Tower-hard lower bound [2].

I Theorem 4. The bisimilarity problem for PDA is Ackermann-hard and is Fd−1-hard if
the number of control states d ≥ 4 is fixed.

Combining with Ackermann upper bound from [10], we have the following result.

I Corollary 5. The bisimilarity problem for PDA is Ackermann-complete.

2.2 Bisimulation Game
Bisimulation equivalence has a nice game characterization called the bisimulation game.

Bisimulation Game. Given a pair of processes (P0, Q0), a bisimulation game for (P0, Q0) is
played between Attacker and Defender. The game is played in rounds. In round i, Attacker
chooses a transition Pi−1

ai−−→ Pi (resp. Qi−1
ai−−→ Qi), then Defender chooses a transition

with a same action Qi−1
ai−−→ Qi (resp. Pi−1

ai−−→ Pi). We use (Pi−1, Qi−1) ai−−→ (Pi, Qi) to
denote a round. Defender wins if it never gets stuck; otherwise Attacker wins. We say that
one player has a winning strategy if it can always win no matter how the opponent plays.
The following result is well known.

I Lemma 6. P ∼ Q if and only if Defender has a winning strategy in the bisimulation game
for (P,Q).

Macro Rules. Following [2], we introduce two kinds of macro rules to facilitate the design
of bisimulation game and make our presentation concise.

(1). A macro rule (pX, qY ) ATT
↪−−→ (p1α1, q1β1) denotes a pair of transitions:

pX
a−−→ p1α1 qY

a−−→ q1β1

Here action a is fresh. This macro rule favours Attacker. In a bisimulation game for (pX, qY ),
if Attacker chooses transition pX

a−−→ p1α1 (or qY a−−→ q1β1), then Defender is forced to
choose transition qY a−−→ q1β1 (or pX a−−→ p1α1).

(2). A macro rule (pX, qY ) DEF
↪−−→ {(p1α1, q1β1), (p2α2, q2β2)} denotes a set of transitions:

pX
a1−−→ pZ1 pX

a1−−→ pZ2 pX
a1−−→ pZ3

qY
a1−−→ pZ2 qY

a1−−→ pZ3

pZ1
a2−−→ p1α1 pZ1

a3−−→ p2α2 pZ2
a2−−→ p1α1 pZ2

a3−−→ q2β2

pZ3
a2−−→ q1β1 pZ3

a3−−→ p2α2
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pX qY

pZ1 pZ2 pZ3

p1α1 q1β1 p2α2 q2β2

a1 a1
a1 a1 a1

a2 a3a2 a3
a2

a3

Figure 1 State transition diagram of macro rules
DEF

↪−−→.

Here a1, a2, a3 are fresh actions, and Z1, Z2 and Z3 are fresh stack symbols. This macro
rule favours Defender. It is powered by a useful technique called Defender’s forcing [11].
The state transition diagram of this macro rule is shown in Fig. 1. In a nutshell, with this
macro rule, Defender can decide whether the game should continue with (p1α1α, q1β1α) or
(p2α2α, q2β2α) in the bisimulation game for (pXα, qY α).

Let us take a look at the development of the game for (pXα, qY α).
1. If the game reaches a configuration with two identical processes, Defender wins immedi-

ately. Thus Attacker’s optimal choice in the first step is pXα a1−−→ pZ1α.
2. Then Defender can make a choice between qY α a1−−→ pZ2α and qY α a1−−→ pZ3α. If Defender

chooses transition qY α a1−−→ pZ2α, the game continues with (pZ1α, pZ2α). If Defender
chooses transition qY α a1−−→ pZ3α, the game continues with (pZ1α, pZ3α).

3. In the case of (pZ1α, pZ2α), Attacker is forced to choose action a3, the game comes into
(p2α2α, q2β2α). Similarly, in the case of (pZ1α, pZ3α), Attacker is forced to choose action
a2 and the game reaches (p1α1α, q1β1α).

3 Lower Bound

We prove our main result by a reduction from the coverability problem of reset Petri net.
We recall reset Petri net and its Ackermann-complete coverability problem in Section 3.1.
We then construct an exponential time reduction in Section 3.2. Although the exponential
time reduction suffices for our purpose, we revise it to a polynomial one in Section 3.3.

3.1 Reset Petri Net

Reset Petri Net (RPN). A reset Petri net is a tuple N = (S, C, δ) consists of
a finite set of control states S ranged over by s, t;
a finite set of counters C = {c1, c2, . . . , cd};
a finite set of instructions δ ⊆ S × O × S, where the set of operations O consists of
INC(ci), DEC(ci) and RESET(ci) for i = 1, 2, . . . , d.

A configuration is a tuple (s, n1, . . . , nd) with s ∈ S representing the current state, and
n1, . . . , nd ∈ N representing the current contents of the counters. If (s, op, t) ∈ δ then we
have (s, n1, . . . , nd)→ (t, n′1, . . . , n′d) in the following cases:

op = INC(ci), n′i = ni + 1, and n′j = nj for all j 6= i; or
op = DEC(ci), ni > 0, n′i = ni − 1, and n′j = nj for all j 6= i; or
op = RESET(ci), n′i = 0, and n′j = nj for all j 6= i.
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By →∗ we denote the reflexive and transitive closure of →. We define a partial order ≤
on the configurations of N :

(s, n1, . . . , nd) ≤ (t,m1, . . . ,md) if s = t ∧ n1 ≤ m1 ∧ . . . ∧ nd ≤ md.

We say σ2 is coverable from σ1 if there is some σ such that σ1 →∗ σ and σ ≥ σ2.

Coverability Problem of RPN. Given a Reset Petri Net N = (S, C, δ), an initial configura-
tion σ1 and a final configuration σ2, where the counters of σ1 and σ2 are given in binary, the
coverability problem asks if σ2 is coverable from σ1.

We recall the following complexity result for coverability problem of RPN [19, 20, 21].

I Theorem 7. The coverability problem of RPN is Ackermann-complete, and is Fd-complete
if the number of counters d ≥ 3 is fixed.

3.2 An Exponential Time Reduction
Given a RPN N = (S, C, δ), an initial configuration σ1, and a final configuration σ2, we will
construct a PDA A = (Q,Γ,Σ,R) and two processes P , Q of A in exponential time such
that

σ2 is coverable from σ1 if and only if P 6∼ Q. (?)

Reduction Overview. Our reduction encodes the run of N from configuration σ1 as a
bisimulation game for (P,Q). In the bisimulation game, Attacker aims to show that σ2 is
coverable from σ1, while Defender aims to show the opposite.

In order to complete the reduction, we should pay attention to the following aspects.
A configuration σ′ of N corresponds to a game for (P ′, Q′) in the sense that the state
and counter values of σ′ are both encoded on the stack of both P ′ and Q′.
To track the counters in the run from σ, the bisimulation game pushes every counter
operation from the initial configuration on the stacks. Observe that the value of a counter
of N can never become negative. Our reduction will guarantee that Attacker can never
cheat by decreasing a counter with value zero. This is fulfilled by Defender’s forcing. More
specifically, for every DEC(ci) operation, Defender has the power to verify its validity by
initiating what we shall call a zero check for ci.
If a configuration that covers σ2 is reached, Attacker wins the game. In the reduction, we
will introduce a special witness action f . When a configuration σ ≥ σ2 is reached, the
game will finally come into some (P ′, Q′) where P ′ can do action f while Q′ cannot.

As mentioned earlier, the basic idea of our reduction follows from [9], where Ackermann-
hardness is proven for the bisimilarity problem of first-order grammars. However, as what
will become clear in Section 4, first-order grammars are strictly more powerful than PDA
w.r.t. bisimilarity. Here we highlight the main differences between our reduction and the
one in [9].

The reduction in [9] records the increasing and decreasing operations of d counters into
2d sub-processes (i.e. sub-terms in the terminology of first-order grammars). These
sub-processes can work “in parallel” and be accessed without being interfered by each
other. Zero check of a specific counter is achieved by skipping irrelevant sub-processes
and comparing the relevant ones directly. Due to the sequential nature of stacks, this is
beyond the reach of (real-time) PDA (see also Section 4). Instead, the increasing and
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decreasing operations recorded on the stack are interfered by each other unavoidably. To
check zero for a counter, we introduce a novel mechanism by comparing the stack as a
whole (Lemma 11).
Our reduction uses d+1 PDA control states to encode a RPN with d counters. This yields
a Fd−1-hardness result, a first parametric lower-bound for the bisimilarity problem for
PDA. In contrast, parametric complexity is not studied in [9]. Moreover, if we transform
the reduction for first-order grammars [9] directly to a new reduction for PDA, the
resulting PDA would require (i) at least 2d control states and (ii) popping ε-rules.

I Remark 8. In [9], the Ackermann-hardness for bisimilarity of FOG is established by
reduction from the control state reachability problem of RPN. When the counters in the
configurations of RPN are given in binary, the coverability problem of RPN is equivalent to
the control state reachability problem under exponential time reduction. Incorporating the
counter encoding and zero check trick into the reduction of [9], we can get the Ackermann-
hard lower bound for bisimilarity of PDA as well. The main reason that we choose the
coverability problem of RPN instead is to build a parametric lower bound under polynomial
time reduction.

The Reduction. We fix a RPN N = (S, C, δ), an initial configuration σ1 = (ts, n1, . . . , nd),
a final configuration σ2 = (tf ,m1, . . . ,md) in this subsection. The corresponding PDA
A = (Q,Γ,Σ,R) and two processes P , Q are defined as follows.

1. We introduce d+ 1 control states:

Q def= {p, q1, q2, . . . , qd}

Here q1, q2, . . . , qd correspond to c1, c2, . . . , cd of C, respectively. The usage of state p
will become clear later.

2. To record the operations on counters in C, we introduce the following stack symbols:

ΓC
def= {X+

i , X
–
i , X

0
i : i = 1, 2, . . . , d} ⊆ Γ

Here X+
i , X

–
i and X0

i represent operations INC(ci), DEC(ci) and RESET(ci), respectively.
3. To record the states of N , for every state s ∈ S, we introduce a pair of stack symbols:

{Ys, Y ′s} ⊆ Γ

4. The two processes P and Q of the initial bisimulation game configuration are defined by

P
def= pYs(X+

1 )n1 . . . (X+
d )nd Q

def= pY ′s (X+
1 )n1 . . . (X+

d )nd

In the rest of this subsection, we will complete the definition of A to validate property (?).
We start with encoding counters of N on the stacks of PDA processes. We then introduce
rules for A to manipulate counters and perform zero checks. Last we show how to verify the
coverability property in bisimulation games.

Counter Encoding. For each i = 1, 2, . . . , d, we introduce a function counti : ΓC∗ → Z. Let
α = XnXn−1 . . . X1 ∈ ΓC∗. Intuitively, counti(α) computes the value of ci after a sequence of
operations X1, X2, . . . , Xn. More specifically, let Ki be the largest index such that XKi

= X0
i ,

i.e., the leftmost occurrence of a reset operation of counter ci. If X0
i does not appear in α,

then Ki = 0. Let Ii and Di be the respective numbers of occurrences of X+
i and X–

i in the
subsequence XnXn−1 . . . XKi+1 of α. The function counti is defined by counti(α) = Ii −Di.
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I Remark 9. Since the counters in reset Petri net cannot be negative, some strings, e.g.
X–

1X
–
1X

+
1 , are invalid. For simplicity, the functions counti are defined on all strings in ΓC∗.

I Example 10. count1(X+
2 X

0
1X

+
2 X

+
1 ) = 0 and count2(X+

2 X
0
1X

+
2 X

+
1 ) = 2.

We next introduce rules for counter manipulations. The PDA processes record every
operation to the counters on their stacks. The trick here is to avoid invalid operations on
counters. For example, at configuration (pYsX–

1X
+
1 , pY

′
sX

–
1X

+
1 ), the counter c1 is zero and

it is not supposed to push another X–
1 . Here we use the Defender’s forcing technique to fulfill

this goal. Defender has a chance to force Attacker to check whether a decrease operation is
valid. If it is not valid, Defender can win the game.

Counter Manipulation. For each instruction I = (s, op, t) of N , we introduce a set of PDA
rules to R for counter manipulations as follows.

If op = INC(ci), we introduce (pYs, pY ′s ) ATT
↪−−→ (pYtX+

i , pY
′
tX

+
i ).

If op = RESET(ci), we introduce (pYs, pY ′s ) ATT
↪−−→ (pYtX0

i , pY
′
tX

0
i ).

If op = DEC(ci), we introduce (pYs, pY ′s ) DEF
↪−−→ {(pYtX–

i , pY
′
tX

–
i ), (p, qi)}.

We will make more comments on the decrease operation. The control states q1, q2, . . . , qd
are mainly used to zero check the counters c1, c2, . . . , cd, respectively. In the sequel, we
will introduce some rules to ensure the correctness of zero checks as stated in the following
lemma.

I Lemma 11. qiα ∼ pα if and only if counti(α) = 0, where α ∈ ΓC∗.

By Lemma 11, if Attacker intends to do an invalid decrease operation on counter ci, Defender
can force the game to the branch of (p, qi) and win. If Attacker intends to do a valid decrease
operation on counter ci, Defender would lose in the branch of (p, qi). In that case, Defender
will force the game to the branch of (pYtX–

i , pY
′
tX

–
i ) and the game continues.

Zero Check. We introduce the following rules to ensure the correctness of zero check. For
the sake of concision, we introduce another macro rule. Given w = a1a2 . . . an, we use
pX

w
↪−→ qα to stand for the sequence of transitions pX a1−−→ pX1

a2−−→ . . .
an−1−−−→ pXn−1

an−−→ qα.
Note that these macro rules do not introduce any new state. All the stack symbols introduced
in these macro rules are fresh.

pX
bpopbpop

↪−−−−−→ p For X ∈ ΓC
qiX

–
i

bpop

↪−−→ qi For i = 1, 2, . . . , d

qiX
+
i

bpopbpopbpop

↪−−−−−−−−→ qi For i = 1, 2, . . . , d

qiX
0
i

bpopbpop

↪−−−−−→ p For i = 1, 2, . . . , d

qiX
bpopbpop

↪−−−−−→ qi For i = 1, 2, . . . , d, X ∈ ΓC \ {X–
i , X

+
i , X

0
i }

Proof of Lemma 11. Observe that the bisimilarity between qiα and pα only depends on the
total numbers of consecutive actions bpop from qiα and pα. Process pα can do action bpop twice
for every stack symbol. Process qiα can do three bpop actions for each X+

i and one bpop action
for each X–

i before it meets the first X0
i . Let Ii and Di be the numbers of X+

i and X–
i before

it meets the first X0
i . It follows that qiα ∼ pα if and only if 3Ii +Di + 2(|α|− Ii−Di) = 2|α|.

Note that counti(α) = Ii −Di. Thus qiα ∼ pα if and only if counti(α) = 0. J
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I Remark 12. The implementation of counters and their zero check mechanism is the main
technical difference of our reduction from the one for first-order grammars [9]. The reduction
in [9] compares the increasing and decreasing operations of a counter directly, by skipping
non-relevant operations. As will be seen in Section 4, the ability to skip non-relevant
operations also makes first-order grammars more powerful than PDA.

Coverability Check. When the game reaches (pYtfα, pY ′tfα), Attacker can initiate a cover-
ability check. Then Defender will choose a counter ci and check if counti(α) ≥ mi. To this
end, we introduce d+ 1 pairs of stack symbols (Z1, Z

′
1), . . . (Zd+1, Z

′
d+1) for counter choice.

For each 1 ≤ i ≤ d, we introduce mi + 1 pairs of stack symbols (Zi,0, Z ′i,0), . . . , (Zi,mi
, Z ′i,mi

)
for coverability check of counter ci.

(1). We first add rules to check coverability of a specific counter ci (1 ≤ i ≤ d). For the
pair (pZi,n, pZ ′i,n), where 0 ≤ n ≤ mi, we introduce the following rules.

(pZi,n, pZ ′i,n) DEF
↪−−→ {(pZi,n−1X

–
i , pZ

′
i,n−1X

–
i ), (p, qi)};

pZi,0
f−−→ p, pZ ′i,0

bpop−−−→ p.

If counti(α) < mi, then by Defender’s forcing, Defender can push counti(α) number of
X–
i to the stack and the game reaches (pγα, piγα), where γ = (X–

i )counti(α). By Lemma 11,
Defender wins. If counti(α) ≥ mi, Defender’s best strategy would lead the game into a
configuration (pZi,0βα, pZ ′i,0βα) where β = (X–

i )mi . Attacker wins since pZi,0βα admits a
fresh action f , while pZ ′i,0βα does not. As a result, we have the following lemma.

I Lemma 13. pZi,mi
α ∼ pZ ′i,mi

α if and only if counti(α) < mi, where α ∈ Γ∗.

(2). We next introduce the following rules to help Defender pick a specific counter to
perform coverability check.

(pYtf , pY ′tf ) ATT
↪−−→ (pZ1, pZ

′
1);

(pZi, pZ ′i)
DEF
↪−−→ {(pZi,mi , pZ

′
i,mi

), (pZi+1, pZ
′
i+1)} for i = 1, 2, . . . , d;

pZd+1
f−−→ p, pZ ′d+1

bpop−−−→ p.

Suppose that Attacker initiates a coverability check and the game reaches (pZ1α, pZ
′
1α).

Defender can choose a specific counter to verify by Defender’s forcing. Indeed if counti(α) <
mi for some 1 ≤ i ≤ d, Defender can force the game to (pZi,mi

α, pZ ′i,mi
α). By Lemma 13,

Defender wins. If counti(α) ≥ mi for all 1 ≤ i ≤ d, then Defender’s best strategy is leading
the game to configuration (pZd+1α, pZ

′
d+1α). Attacker wins via a fresh action f .

I Proposition 14. The coverability problem of RPN (with d counters) can be reduced to the
complement of the bisimilarity problem for PDA (with d+ 1 states) in exponential time.

Proof. We construct the reduction as described in the section and prove the property (?).
(⇒). If (tf ,m1, . . . ,md) is coverable from (ts, n1, . . . , nd), then there exists a configuration

(tf ,m′1, . . . ,m′d) ≥ (tf ,m1, . . . ,md), which is reachable from (ts, n1, . . . , nd). We describe
a winning strategy for Attacker. Attacker simply follows the path from (ts, n1, . . . , nd) to
(tf ,m′1, . . . ,m′d). Since every decrease operation is valid, Defender will not ask for zero
checks. The bisimulation game will reach (pYtfα, pY ′tfα) such that counti(α) = m′i for each
i ∈ {1, 2, . . . , d}. Attacker starts a coverability check and wins the game.
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(⇐). If (tf ,m1, . . . ,md) is not coverable from (ts, n1, . . . , nd), we describe a winning strategy
for Defender. Defender just follows what Attacker does and asks for zero check if Attacker
tries to decrease a zero counter. Whenever the game reaches (pYtfβ, pY ′tfβ) for some β ∈ Γ∗,
there exists some i ∈ {1, 2, . . . , d}, counti(β) < mi. If Attacker asks for a coverability check,
then Defender can choose to verify the value of counter ci. By Lemma 13, Defender wins. If
Attacker never initiates a coverability check, Defender also wins as it will never get stuck. J

By Theorem 7 and Proposition 14, we have our main result Theorem 4. Observe that it
is safe to introduce rules pYs

bpop−−−→ p and pY ′s
bpop−−−→ p for every s ∈ S since these transitions

will never be chosen by Attacker (or Attacker loses immediately). As a result, the PDA A is
normed and our lower bound can be generalized to the normed case.

I Corollary 15. The bisimilarity problem of normed PDA is Ackermann-complete and is
Fd−1-hard if the number of control states is d ≥ 4.

3.3 A Polynomial Time Reduction

Although an elementary reduction suffices for our purpose, we show that the exponential time
reduction can be actually revised to be polynomial. There are two exponential factors in the
reduction presented in Section 3.2: (i) the size of the initial configuration of the bisimulation
game can be exponentially large; and (ii) the number of rules for coverability check can be
exponentially many. We eliminate both by incorporating a binary representation of counters.

Counter Binary Encoding. Let m be the maximal number occurs in the initial and final
configuration of N , and k the smallest number such that 2k ≥ m. For every counter ci,
we introduce two new stack symbols X+

i,j and X–
i,j for each j ∈ {0, 1, . . . , k}. Intuitively,

X+
i,j (resp. X–

i,j) represents 2j increasing (resp. decreasing) operations on counter ci. Stack
symbol X0

i is still used to represent operation RESET(ci). We then replace the initial game
configuration by this binary representation. The function counti can also be revised easily
by taking the binary representation into account. We omit the details.

I Example 16. An initial RPN configuration σ1 = (s, 6, 3) can be encoded by a game
configuration (pYsX+

1,2X
+
1,1X

+
2,1X

+
2,0, pY

′
sX

+
1,2X

+
1,1X

+
2,1X

+
2,0).

We next revise the rules to make zero check and coverability check work.

Zero Check. We introduce new rules for X+
i,j and X–

i,j for zero check, where 0 ≤ j ≤ k.

pX+
i,j

bpopbpop

↪−−−−−→ pX+
i,j−1 . . . X

+
i,0, pX+

i,0
bpopbpop

↪−−−−−→ p;

pX–
i,j

bpopbpop

↪−−−−−→ pX–
i,j−1 . . . X

–
i,0, pX–

i,0
bpopbpop

↪−−−−−→ p;

qiX
+
i,j

bpopbpopbpop

↪−−−−−−−−→ qiX
+
i,j−1 . . . X

+
i,0, qiX

+
i,0

bpopbpopbpop

↪−−−−−−−−→ qi;

qiX
–
i,j

bpop

↪−−→ qiX
–
i,j−1 . . . X

–
i,0, qiX

–
i,0

bpop

↪−−→ qi;

Note that besides the rules introduced above, we keep the rule qiX0
i

bpopbpop

↪−−−−−→ p for
i ∈ {1, . . . , d}. Lemma 11 is still valid and can be proved along the same line.
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Coverability Check. Let mi be the value of ci in the final configuration σ2 and ki be the
least number such that 2ki − 1 ≥ mi. We replace the rules for (pZi,j , pZ ′i,j) (0 ≤ j ≤ mi) by

(pZi,mi , pZ
′
i,mi

) ATT
↪−−→ (pWi,0β, pW

′
i,0β), (pWi,ki , pW

′
i,ki

) ATT
↪−−→ (p, qi);

(pWi,j , pW
′
i,j)

DEF
↪−−→ {(pWi,j+1X

–
i,j , pW

′
i,j+1X

–
i,j), (pWi,j+1, pW

′
i,j+1)} (0 ≤ j < ki)

Here Wi,0, . . . , Wi,ki
are new stack symbols for coverability check and β consists of the

binary stack symbols introduced above such that counti(β) = 2ki −mi.
We show that Lemma 13 still holds. Consider the bisimulation game for (pZi,mi

α, pZ ′i,mi
α).

Intuitively, the coverability check starts with increasing counter ci with 2ki −mi. After that,
Defender decreases ci by a combination of ki choices and the game reaches a configuration
(pγα, qiγα). If counti(α) < mi, Defender can pick γ such that counti(γα) = 0. By Lemma 11,
Defender wins. If counti(α) ≥ mi, then counti(α) + (2ki −mi)− (2ki − 1) > 0. The counter
ci can never be decreased to zero and Attacker wins.

4 Relative Expressiveness of PDA

First-order grammars have close relationship with pushdown automata [7, 9, 10], as they are
equivalent to PDA with deterministic and popping ε-rules. More specifically, any process T
definable in a first-order grammar can be encoded into a PDA process P with deterministic
and popping ε-rules, and vice versa. The processes T and P are weakly bisimilar. In the
real-time case, i.e, when no ε-rules is allowed, FOG have strictly richer behaviours than PDA.
This can be proved by considering the transition graph of real-time PDA and PDA with
deterministic ε-rules (see, e.g., [3], Proposition 5.8).

Nevertheless, to build better intuition for this result and also demonstrate why the original
reduction in [9] cannot be directly applied to real-time PDA, we give another proof in this
section to show that FOG are strictly stronger than PDA, as far as bisimilarity is considered.

To avoid introducing the definition of FOG, we construct a special PDA with deterministic
and popping ε-rules and show that it can define a process which cannot be bisimulated by
any real-time PDA process. The special PDA A contains the following rules:

pX0
a−−→ pX, pX

a−−→ pXX, pX
b−−→ pY X, pY

b−−→ pY Y ;
pY

c−−→ p1Y , pY
d−−→ p2Y ;

p1Y
ε−−→ p1, p1X

a−−→ p1, p2Y
b−−→ p2, p2X

ε−−→ p2.

Observe that pX0 can do actions ambn and record m and n by pushing Y mXn into stack.
The popping ε-rules enable the process to recover the information of m or n immediately (via
doing actions am after c or actions bn after d). We will show that such ε-rules are necessary
in the sense that no real-time PDA is weakly bisimilar to A. Intuitively, any real-time PDA
process, after executing actions ambn, cannot access both the information of m and n on the
stack without undesired interference. The necessity of ε-rules is also the basic reason why
the reduction in the hardness proof for first-order grammars [9] fails for real-time PDA.

I Proposition 17. For any real-time PDA process O, O 6≈ pX0.

A direct consequence is that first-order grammars are strictly stronger that PDA. Indeed,
following the transformation in [10], one can construct a process T in a first-order grammar
such that (i) T ≈ pX0 and (ii) T has no ε transitions (the ε transitions are absorbed in FOG
during transformation). As a result T cannot be related to any PDA process by bisimilarity.

I Corollary 18. There exists a process T definable by a first-order grammar, such that for
any real-time PDA process O, O 6∼ T .
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We prove Proposition 17 in the rest of this section. To do that, we need a useful pumping
property of pushdown automata. We say a transition sequence ξ : P0

a1−−→ P1
a2−−→ . . .

ak−−→ Pk
is non-sinking if |Pi| ≥ |P0| for 1 ≤ i ≤ k. Moreover, ξ is pumpable if (i) ξ is non-sinking and
(ii) P0 = pZα and Pk = pZβα for some p ∈ Q, Z ∈ Γ, α ∈ Γ∗, and β ∈ Γ+.

I Lemma 19. Suppose that P0 is a PDA process defined in A = (Q,Γ,Σ,R) and it holds that
|α| ≤ 2 for each (p,X, a, q, α) ∈ R. If there exists a transition sequence ξ : P0

a1−−→ P1
a2−−→

. . .
an−−→ Pn such that (i) n ≥ |P0| · (|Q||Γ|+ 1)|Q||Γ|+1 and (ii) Pi 6∼ Pj (∀i 6= j, 0 ≤ i, j ≤ n),

then ξ contains a pumpable transition subsequence.

Proof. Let ξ′ : Q0
b1−−→ Q1

b2−−→ . . .
bm−−→ Qm be a non-sinking transition sequence such that

Qi 6∼ Qj (∀i 6= j). Denote by type(ξ′) the set of different pairs of state and top stack symbol
that occur in ξ′. More specifically, type(ξ′) def= {(q, Z) : there is a process qZβ in ξ′}. It is
sufficient to prove the following property:

if m ≥ (|type(ξ′)|+ 1)|type(ξ′)|+1, then ξ′ contains a pumpable transition subsequence. (??)

Our lemma is established by observing that ξ contains a non-sinking subsequence ξ′ of length
at least (|Q||Γ|+ 1)|Q||Γ|+1. Suppose otherwise, then in less than |P0| · (|Q||Γ|+ 1)|Q||Γ|+1

steps P0 will reach a process p′ε for some p′ ∈ Q. This contradicts with our assumption (i).
We next prove (??) by induction on |type(ξ′)|.

|type(ξ′)| = 1. It is trivial since ξ′ is pumpable.
|type(ξ′)| = k+1. By assumption, ξ′ is of length at least (k+2)k+2. Since ξ′ is non-sinking
and any two processes in ξ′ are not equal, there are no more than k other processes of
the size |Q0|. By removing these (shortest) processes, we get at most k + 1 transition
subsequences. There must be a sequence (denoted as ξ′′) of length at least (k + 1)k+1.
By assumption of A, the stack height will increase at most by one in a transition. It
follows that ξ′′ is non-sinking. Let Q0 = qZα. If (q, Z) ∈ type(ξ′′), say Qj = qZβα, then
Q0

b1−−→ . . .
bj−−→ Qj is pumpable. Otherwise |type(ξ′′)| = k. By induction hypothesis, ξ′′

contains a pumpable transition subsequence. J

We are ready to prove Proposition 17.

Proof of Proposition 17. Suppose otherwise and let O be a process of a real-time PDA
B = (Q,Γ,Σ,R) and O ≈ pX0. W.l.o.g., we assume that |α| ≤ 2 for each (p,X, q, α) ∈ R.
Let N = |Q||Γ|+ 1 and m ≥ 1. Consider the following transition sequence of pX0

pX0
am

−−→ pXm b−−→ pY Xm b−−→ . . .
b−−→ pY nXm. (2)

Since O ≈ pX0 and O is real-time, there exists Om,i (0 ≤ i ≤ n) such that

O
am

−−→ Om,0
b−−→ Om,1

b−−→ . . .
b−−→ Om,n (3)

and Om,i ≈ pY iXm for 0 ≤ i ≤ n. Observe that pY iXm 6≈ pY jXm (∀i 6= j). Hence
Om,i 6∼ Om,j (∀i 6= j). Let n = |Om,0|NN . By Lemma 19, we can find q ∈ Q and Z ∈ Γ
such that
(i) qZα = Om,s and qZβα = Om,t for some 0 ≤ s < t ≤ n, α ∈ Γ∗ and β ∈ Γ+; and
(ii) the transition subsequence of Om,s

b−−→ Om,s+1
b−−→ . . .

b−−→ Om,t is pumpable.
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Let k = t− s, we can repeat the pumpable transition sequence as many times as we want

qZα
bk

−→ qZβα
bk

−→ qZββα
bk

−→ . . . (4)

As qZα = Om,s ≈ pY sXm, the above sequence must be simulated by

pY sXm bk

−→ pY s+kXm bk

−→ pY s+2kXm bk

−→ . . . (5)

such that qZβiα ≈ pY s+kiXm for i ≥ 0.
For different m, we can have different transition sequences (4) and (5), possibly with

different s > 0, k > 0, q ∈ Q, Z ∈ Γ, α ∈ Γ∗ and β ∈ Γ+. By the pigeonhole principle,
there are two different numbers 1 ≤ m1 < m2 ≤ N so that q and Z are the same in
transition sequence (4). Assume w.l.o.g. that qZα1 = Om1,s1 ≈ pY s1Xm1 , qZα2 = Om2,s2 ≈
pY s2Xm2 and qZ bk1

−−→ qZβ1 for some s1, s2, k1 > 0, α1, α2 ∈ Γ∗ and β1 ∈ Γ+. The actions
Om1,s1

bk1·N

−−−→ qZβN1 α1 must be simulated by pY s1Xm1 bk1·N

−−−→ pY s1+k1·NXm1 . Similarly
Om2,s2

bk1·N

−−−→ qZβN1 α2 must be simulated by pY s2Xm2 bk1·N

−−−→ pY s2+k1·NXm2 . We also have
that pY s1+k1·NXm1 ≈ qZβN1 α1 and pY s2+k1·NXm2 ≈ qZβN1 α2.

Consider the following transition sequence of pY s2+k1·NXm2

pY s2+k1·NXm2 c−−→ p1Y
s2+k1·NXm2 ε==⇒ p1X

m2 am1+1

−−−−→ p1X
m2−m1−1. (6)

It can be matched by qZβN1 α2
cam+1

−−−−→ P1 for some P1. Since qZβN1 α2 is real-time and
N ≥ m1+1, the actions cam1+1 from qZβN1 α2 only depend on qZβN1 . Thus qZβN1 α1

cam1+1

−−−−−→
Q for some Q. This contradicts with qZβN1 α1 ≈ pY s1+k1·NXm1 , since after transition
pY s1+k1·NXm1 c−−→ p1Y

s1+k1·NXm1 , the longest non-ε action sequence is am1 . J

5 Conclusion

In this paper, we show that the bisimilarity of PDA is Ackermann-hard. Combining with
the result in [10], we can conclude that the bisimilarity of PDA is Ackermann-complete.
The result can be generalized to normed PDA. Besides, we give another proof on that the
so-called real-time pushdown processes are strictly weaker than first-order grammars. Our
work answers the question proposed by Jančar and Schmitz in [10].

When the number of control states of PDA is fixed as d ≥ 4, bisimilarity is Fd−1-hard.
An obvious open problem is to close the complexity gap with the Fd+4 upper bound in [10].

References
1 Jos CM Baeten, Jan A Bergstra, and Jan Willem Klop. Decidability of bisimulation equivalence

for process generating context-free languages. Journal of the ACM, 40(3):653–682, 1993.
doi:10.1145/174130.174141.

2 Michael Benedikt, Stefan Göller, Stefan Kiefer, and Andrzej S Murawski. Bisimilarity of
pushdown automata is nonelementary. In Proc. LICS ’13, pages 488–498. IEEE, 2013.
doi:10.1109/LICS.2013.55.

3 Didier Caucal. Bisimulation of context-free grammars and of pushdown automata. Modal
Logic and Process Algebra, 53:85–106, 1995.

4 Bruno Courcelle. Recursive applicative program schemes. In Formal Models and Semantics,
pages 459–492. Elsevier, 1990. doi:10.1016/B978-0-444-88074-1.50014-7.

5 Seymour Ginsburg and Sheila Greibach. Deterministic context free languages. Information
and Control, 9(6):620–648, 1966. doi:10.1016/S0019-9958(66)80019-0.

ICALP 2020

https://doi.org/10.1145/174130.174141
https://doi.org/10.1109/LICS.2013.55
https://doi.org/10.1016/B978-0-444-88074-1.50014-7
https://doi.org/10.1016/S0019-9958(66)80019-0


141:14 Bisimulation Equivalence of Pushdown Automata Is Ackermann-Complete

6 J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley Publishing Company, 1979.

7 Petr Jančar. Decidability of DPDA Language Equivalence via First-Order Grammars. In Proc.
LICS ’12, pages 415–424. IEEE, 2012. doi:10.1109/LICS.2012.51.

8 Petr Jančar. Bisimulation Equivalence of First-Order Grammars. In Proc. ICALP ’14, LNCS,
pages 232–243. Springer, 2014. doi:10.1007/978-3-662-43951-7_20.

9 Petr Jančar. Equivalences of pushdown systems are hard. In Proc. FoSSaCS ’14, pages 1–28.
Springer, 2014. doi:10.1007/978-3-642-54830-7_1.

10 Petr Jančar and Sylvain Schmitz. Bisimulation equivalence of first-order grammars is
ACKERMANN-complete. In Proc. LICS ’19, pages 1–12. IEEE, 2019. doi:10.1109/LICS.
2019.8785848.

11 Petr Jančar and Jivří Srba. Undecidability of bisimilarity by Defender’s forcing. Journal of
the ACM (JACM), 55(1):5, 2008. doi:10.1145/1326554.1326559.

12 Stefan Kiefer. BPA bisimilarity is EXPTIME-hard. Information Processing Letters, 113(4):101–
106, 2013. doi:10.1016/j.ipl.2012.12.004.

13 Antonín Kučera and Petr Jančar. Equivalence-checking on infinite-state systems: Tech-
niques and results. Theory and Practice of Logic Programming, 6(201), 2006. doi:
10.1017/S1471068406002651.

14 Antonín Kučera and Richard Mayr. On the complexity of checking semantic equivalences
between pushdown processes and finite-state processes. Information and Computation,
208(7):772–796, 2010. doi:10.1016/j.ic.2010.01.003.

15 Robin Milner. Communication and concurrency, volume 84. Prentice-Hall, Inc., 1989.
16 Michio Oyamaguchi. The equivalence problem for real-time DPDAs. Journal of the ACM

(JACM), 34(3):731–760, 1987. doi:10.1145/28869.28881.
17 V Yu Romanovskii. The equivalence problem for real-time deterministic pushdown automata.

Cybernetics, 22(2):162–175, 1986. doi:10.1007/BF01074776.
18 Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Transactions on Computa-

tion Theory (TOCT), 8(1):3, 2016. doi:10.1145/2858784.
19 Sylvain Schmitz. Algorithmic Complexity of Well-Quasi-Orders. Habilitation thesis, École

Normale Supérieure Paris-Saclay, 2017.
20 Sylvain Schmitz. The parametric complexity of lossy counter machines. In Proc. ICALP ’19,

volume 132, pages 129:1–129:15. LZI, 2019. doi:10.4230/LIPIcs.ICALP.2019.129.
21 Philippe Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and

reset Petri nets. In Proc. MFCS ’10, pages 616–628. Springer, 2010. doi:10.1007/
978-3-642-15155-2_54.

22 Géraud Sénizergues. Decidability of bisimulation equivalence for equational graphs of finite
out-degree. In Proc. FOCS ’98, pages 120–129. IEEE, 1998. doi:10.1109/SFCS.1998.743435.

23 Géraud Sénizergues. L(A)=L(B)? Decidability results from complete formal systems. Theoret-
ical Computer Science, 251(1-2):1–166, 2001. doi:10.1016/S0304-3975(00)00285-1.

24 Géraud Sénizergues. The bisimulation problem for equational graphs of finite out-degree.
SIAM Journal on Computing, 34(5):1025–1106, 2005. doi:10.1137/S0097539700377256.

25 Colin Stirling. Decidability of bisimulation equivalence for normed pushdown processes.
Theoretical Computer Science, 195(2):113–131, 1998. doi:10.1016/S0304-3975(97)00216-8.

26 Colin Stirling. Decidability of bisimulation equivalence for pushdown processes. Technical
report, University of Edinburgh, 2000.

27 Colin Stirling. Decidability of DPDA equivalence. Theor. Comput. Sci., 255(1-2):1–31, 2001.
doi:10.1016/S0304-3975(00)00389-3.

28 Colin Stirling. Deciding DPDA equivalence is primitive recursive. In Proc. ICALP ’02, pages
821–832. Springer, 2002. doi:10.1007/3-540-45465-9_70.

https://doi.org/10.1109/LICS.2012.51
https://doi.org/10.1007/978-3-662-43951-7_20
https://doi.org/10.1007/978-3-642-54830-7_1
https://doi.org/10.1109/LICS.2019.8785848
https://doi.org/10.1109/LICS.2019.8785848
https://doi.org/10.1145/1326554.1326559
https://doi.org/10.1016/j.ipl.2012.12.004
https://doi.org/10.1017/S1471068406002651
https://doi.org/10.1017/S1471068406002651
https://doi.org/10.1016/j.ic.2010.01.003
https://doi.org/10.1145/28869.28881
https://doi.org/10.1007/BF01074776
https://doi.org/10.1145/2858784
https://doi.org/10.4230/LIPIcs.ICALP.2019.129
https://doi.org/10.1007/978-3-642-15155-2_54
https://doi.org/10.1007/978-3-642-15155-2_54
https://doi.org/10.1109/SFCS.1998.743435
https://doi.org/10.1016/S0304-3975(00)00285-1
https://doi.org/10.1137/S0097539700377256
https://doi.org/10.1016/S0304-3975(97)00216-8
https://doi.org/10.1016/S0304-3975(00)00389-3
https://doi.org/10.1007/3-540-45465-9_70

	p000-Frontmatter
	Preface
	Organization

	p001-Yao
	Introduction
	Review of the Models and Known Results
	The Monopolistic Price (MP) Mechanism
	The Random Sampling Optimal Price (RSOP) Auction

	Main Results
	Nearly Incentive Compatibility of MP
	The Effect of IC on Revenue

	An Overview of the Proof for Theorem 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 5

	p002-Krauthgamer
	p003-Kiefer
	Introduction
	Preliminaries
	Constructing MD Strategies
	Reduction to a Finite Case
	Ornstein's Plastering Technique
	Lévy's Zero-One Law
	The Flag Construction

	Markov Strategies and Generalizations
	Missing Proof Details
	Proof of Equation (1)
	Proof of Equation (3)
	Proof of Equation (4)


	p004-Abboud
	Introduction
	An Analogue of Theorem 1.2 for AND Subset Sum
	Scheduling lower bounds

	Quantified SETH Hardness of AND Subset Sum
	Main construction
	From OR Subset Sum to Subset Sum

	Scheduling Lower Bounds
	Scheduling Notation and Terminology
	Problems on Two Machines
	P_2|level-order|C_{max}
	P_2||T_{max} and P_2||sum U_j
	P_2|r_j >= 0|C_{max}

	Problems on One Machine
	1||sum w_jU_j
	1|Rej <= R|sum U_j and 1|Rej <= R|T_{max}
	1|r_j >= 0, Rej <= R|C_{max}


	Conclusion

	p005-Abboud
	Introduction
	Our Results
	The APSP Class
	Other Classes

	Related Work
	Preliminaries

	APSP to Median Parity
	Negative Weight Triangle to Median [Abboud et al., 2015]
	Negative Weight Triangle to Median Parity

	Negative Triangle Vertex Parity
	APSP to Negative Triangle Vertex Parity
	Negative Triangle Vertex Parity to Wiener Index Parity (Directed)
	Negative Triangle Vertex Parity to Wiener Index Parity (Undirected)
	Negative Triangle Vertex Parity to Sum of Eccentricities Parity
	Negative Triangle Vertex Parity to Integer Betweenness Centrality Parity
	APSP to Integer Betweenness Centrality Parity

	APSP to Min-Plus Matrix Multiplication Parity
	Min-Plus Multiplication to Min-Plus Multiplication Parity
	Min-Plus Convolution to Min-Plus Convolution Parity
	Maximum Consecutive Subsums to Maximum Consecutive Subsums Parity

	Zero Weight Triangle Counting to Negative Triangle Counting
	Zero Weight Triangle Counting (Parity) to Negative Triangle Counting (Parity)
	Zero Weight Triangle to Zero Weight Triangle Parity 

	Min-Plus Convolution to Knapsack Parity
	Super-Additivity Testing to Knapsack [Cygan et al., 2019]
	Super-Additivity Testing to Knapsack Parity
	Super-Additivity Testing to 0/1-knapsack Parity

	APSP to Sum of Eccentricities
	Radius to Radius Parity and Diameter to Diameter Parity 

	p006-Alaluf
	Introduction
	Preliminaries
	Combinatorial Algorithm
	Extension based algorithm

	p007-Alistarh
	Introduction
	Averaging on the Cycle: Upper Bounding the Gap
	Upper Bound on the Gap for n=2^m
	Gap Lower Bound
	Upper Bound on the Gap, General Case
	Experimental Validation
	Discussion and Future Work

	p008-Bahrani
	Introduction
	Our Results and Techniques
	Related Work

	Model and Preliminaries
	Concentration Bounds and Tools from Prior Work

	Key Concepts
	Forming an Initial Majority
	Stabilizing Quickly
	Wrapping Up: Preferential Attachment and Balanced M-ary Trees
	Preferential Attachment Trees Stabilize Quickly
	Balanced M-ary Trees Stablize Quickly


	p009-Bassilakis
	Introduction
	Correlated samples problem
	Main result
	Application 1: Selection problem
	Application 2: Randomized composition
	Independent work by Ben-David and Blais
	Roadmap

	Preliminaries
	Query Algorithms as Likelihood Boosters
	Bootstrapping Overall Booster to Uniform Booster
	Bootstrapping algorithm
	Sub-martingale property of progress measure
	Bounding the conditional expectation of progress
	A helper inequality

	Application 1: Selection Problem
	Bi-correlated samples
	Proof of Theorem 1.3

	Application 2: Randomized Composition

	p010-Beneteau
	Introduction
	Preliminaries
	Facts about median graphs
	Computation of the Theta-classes via LexBFS
	The median of G
	Peripheral peeling
	Computing the weights of the halfspaces of G
	The median Med_w(G)

	The median problem in the cube complex of G
	The main result
	Geometric halfspaces and hyperplanes
	The majority rule for {G}
	The algorithm


	p011-Bera
	Introduction
	Our Results and Techniques

	Related Work and Comparisons
	Preliminaries
	A Generic Framework for Coloring Algorithms
	A Low Degeneracy Partition
	Applications in Various Models

	Streaming Model
	Query Model
	Sublinear Algorithm

	Lower Bounds

	p012-Bernstein
	Introduction
	Notation and Preliminaries
	Our Modified Subgraph
	The Algorithm
	The Two Phases
	Description of Phase I
	Analysis

	Open Problems

	p013-Bienkowski
	Introduction
	Our results
	Related work
	Algorithmic challenges and ideas
	Preliminaries
	Neglecting lower-order terms
	Roadmap of the proof

	Rising Threshold Algorithm
	Gain on large items
	When RTA terminates with some empty bins

	Gain on medium items
	Boundary conditions on function xi
	Marked and tight items
	Impact of tight items on stacking bins
	When RTA terminates without empty bins and without MS-bins

	Gain on large items revisited
	When RTA terminates without empty bins and with some MS-bins

	Competitive ratio of RTA
	Proof of Lemma 7

	p014-Bille
	Introduction & Related Work
	Preliminaries
	The Lyndon Array & Nearest Smaller Suffixes

	Previous-Smaller-Suffix Trees
	Storing the PSS Tree as a BPS

	Constructing the PSS Tree
	Efficiently Computing p_m

	Achieving Linear Time
	Run Extension
	Amortized Look-Ahead
	Detecting Extended Lyndon Runs


	Algorithmic Summary & Adaptation to the Lyndon Array
	Experimental Results
	Summary

	p015-Bodwin
	Introduction
	Our Results
	Interpretation of Hypotheses
	Related Work
	Preliminaries and Tools

	Fault Tolerant Preservers for Undirected Graphs
	Preservers for Undirected Weighted Graphs
	Preservers for Undirected Unweighted Graphs

	Fault Tolerant Preservers for General Directed Graphs
	Preservers for Directed Weighted Graphs
	Preservers for Directed Unweighted Graphs

	Fault Tolerant Preservers for Directed Acyclic Graphs
	Lower Bounds for FT Preservers
	Unconditional Lower-Bounds for Weighted Graphs
	Conditional Lower-Bounds for Undirected Unweighted Graphs
	Conditional Lower-Bounds for Directed Unweighted Graphs


	p016-Bougeret
	Introduction
	Preliminaries
	An introduction to bridge-depth
	Bounded minimal blocking sets imply bounded bridge-depth
	Bounded bridge-depth implies bounded-size blocking sets
	Kernelization for modulators to bounded bridge-depth
	Conclusion

	p017-Brandts
	Introduction
	Related work
	Results

	Preliminaries
	Tractability
	Layered label cover and smug sets
	Finding small smug sets

	p018-Brankovic
	Introduction
	Paper Organization and Section Contributions

	Basic Definitions, Algorithms and Properties
	Trapezoidal Search Trees T
	Trapezoidal Decomposition A and Search DAG D

	Recursive Primitives for Dynamic Updates
	Priority Restricted Searches
	Recursive Vertical Partitions and Merges
	Recursive Edge Partitions and Merges

	Counting Search Nodes in Affected Regions
	Improved Update Bounds For TSDs

	Offline vs Online – Maintaining Small Codes For Dynamic Orders
	Implementation and Experiments

	p019-Bringmann
	Introduction
	State of the Art
	Our Results
	Roadmap

	Preliminaries
	Algorithm via Sumsets and Subset Sums
	Algorithm via Fast Skewed Convolutions
	Fast Skewed Convolutions
	Discussion and Open Problems

	p020-Buchin
	Introduction
	Previous Work
	Our Contributions
	Preliminaries

	Hardness Results
	Upper Bound and Expected Fréchet Distance
	Upper Bound Fréchet Distance on Indecisive Curves
	Expected Fréchet Distance on Indecisive Curves
	Imprecise Curves

	Lower Bound Fréchet Distance
	An Intermediate Problem
	Reduction to Lower Bound Fréchet Distance


	Algorithms for Lower Bound Fréchet Distance
	Approximation by Grids
	Greedy Algorithm

	Algorithms for Upper Bound and Expected Fréchet Distance
	Upper Bound Discrete Fréchet Distance
	Expected Discrete Fréchet Distance
	Continuous Fréchet Distance


	p021-Bulatov
	Introduction
	Preliminaries: Homomorphisms and Clique width
	Homomorphisms, plain exponential time
	Clique width and k-expressions

	Extended clique width
	Extended k-expressions
	Graph classes of bounded extended but not regular clique width

	Counting homomorphism to labeled graphs given an extended k-expression
	Inflation operator
	Putting pieces together

	Beyond bounded extended clique width
	Bounded degrees
	Subdivided Cliques 
	Kneser Graphs


	p022-Cai
	Introduction
	Holant problems
	Quantum entanglement theory
	Existing dichotomies inspired by entanglement theory
	Our results
	Surprising discovery of two extraordinary quantum states

	Preservation of Multipartite Entanglement under Projections
	Preliminaries for Holant Problems
	Definitions and Notations
	Holographic Transformation
	Gadget Construction
	Known results

	Proof Sketch for Theorem 10

	p023-Cai
	Introduction
	Preliminaries
	#PerfectMatchings-hardness
	#PerfectMatchings-easiness

	p024-Cen
	Introduction
	Related Works
	Organization

	Preliminaries
	A (2k-1)-Roundtrip Spanner Algorithm
	Preprocessing
	Approximating a Length Interval
	Main Construction
	Construction Time

	Removing the Dependence on W
	Conclusion

	p025-Chakraborty
	Introduction
	Related Work
	Technical Overview

	Preliminaries and Tools
	Strong-connectivity Preservers
	Construction for single failure
	A generic construction

	Reachability Preservers
	Upper Bound I
	Upper Bound II

	Lower Bounds for Pairwise Reachability Preserver under Dual Failures
	Application of FT-SCC Preserver in Connectivity Certificates
	Conclusion

	p026-Chan
	Introduction
	Exact statement of our results

	Notation
	Optimal extended depth-decompositions
	Optimal tree-depth of a matrix
	Parameterized algorithms for integer programming
	Structure of extended depth-decompositions
	Algorithm for finite fields
	Algorithm for rational matrices

	p027-Charalampopoulos
	Introduction
	Preliminaries
	Partially Dynamic LCS
	Fully Dynamic LCS
	Locally Consistent Parsing
	Anchoring the LCS
	A Problem on Dynamic Bicolored Trees
	Dynamic Best Bichromatic Point


	p028-Chatterjee
	Introduction
	Our Results
	Overview of Techniques
	Other Related Works

	Preliminaries
	Extractable Commitments
	Non-Malleable Commitments
	CCA Commitments

	A New CCA^{1:1} Commitment Scheme
	Our Black-Box CCA Commitment
	Angel-Based MPC in O~(log lambda) Rounds

	p029-Chechik
	Introduction
	Upper bounds
	Lower bounds
	Our result

	Preliminaries
	General notations
	Distance oracle
	Replacement path

	Replacement paths in weighted directed graphs
	Replacement paths in graphs with integer weights
	Replacement paths in planar graphs

	p030-Chen
	Introduction
	Approximation for Graphic TSP Cost
	Preliminaries
	Approximation Algorithm for Graphic TSP
	An O(n) Space (11/6)-Approximate Streaming Algorithm

	(1.625)-Approximation for (1,2)-TSP Cost in O~(n^{1.5}) Time
	An Omega(n^2) Query Lower Bound for Approximation Schemes
	Reduction from 3SAT to (1,2)-TSP
	Omega(n^2) Lower Bound for Graphic TSP

	A Reduction from Matching Size to TSP Cost Estimation

	p031-Chiu
	Introduction
	Preliminaries
	The a-Ham-Sandwich problem
	Unique End of Potential Line
	Formulating the search problem

	Alpha-HS is in UEOPL
	An overview of the reduction

	Conclusion and future work

	p032-Christodoulou
	Introduction
	Related Work
	Our Results and Techniques

	Model and Notation
	The Nonexistence Gadget
	The Hardness Gadget
	Hardness of Existence
	General Cost Functions
	Discussion and Future Directions

	p033-Chuzhoy
	Introduction
	Low-Diameter Tree Packing with Small Edge-Congestion: Proof of Theorem 1
	Low-Diameter Packing of Edge-Disjoint Trees: Proof of Theorem 2
	Lower Bound: Proof of Theorem 3
	Tree Packing for (k,D)-Connected Graphs: Proof of Theorem 4
	Overview of the Applications to Distributed Computation
	Open Problems

	p034-Cohen
	Introduction
	Results and Techniques
	Related Work

	Preliminaries
	Priority-based Algorithms
	Analysis Framework: Zooming in on Jobs Assigned to Two Machines

	Greedy Algorithm: Unknown opt
	Balance Algorithm: Known opt
	A Nearly Optimal Algorithm Against the Fractional Optimal Solution
	Assigning Jobs to Groups
	Assigning Jobs to Machines Within Each Group
	Building a decision tree
	Batching smalls jobs of the same type
	Batching small jobs online

	Putting the Pieces Together

	Open Problems

	p035-Dalirrooyfard
	Introduction
	Our results

	Preliminary Lemmas
	Lg-Approximation for the Girth in Unweighted Graphs
	Large girth
	Small girth

	Weighted Graphs: Girth and Roundtrip Spanner
	Lg-Approximation Algorithm for the Girth in Lg Time
	Lg-Approximation Algorithm For the Girth

	Hardness

	p036-Dawar
	Introduction
	Background
	Counting Width
	Circuits

	Symmetric Circuits
	Symmetric Functions
	Symmetric Circuits
	Polynomials

	An Upper-Bound for the Determinant
	From Arithmetic To Boolean Circuits
	A Lower-Bound for the Permanent
	Concluding Discussion

	p037-De
	Introduction
	Our techniques
	Organization

	Preliminaries
	Concentration and Scaling Results for Maximum of Poissons
	An Efficient Polynomial-time Approximation Scheme
	Recap of the PTAS for deterministic load balancing
	Overview of our approach
	Our PTAS
	Proof of Theorem 1

	Proof of Correctness using Concentration Results
	Analysis for large m


	p038-Deligkas
	Introduction
	Preliminaries
	Hardness of 2D-Brouwer
	Hardness of 2D-Brouwer with a constant width circuit
	Hardness for tree polymatrix games
	Open questions

	p039-Doron
	Introduction
	Background
	Our Main Result
	Techniques
	Lower Bounds for Bounded-Independence Sampling
	Open Problems

	Preliminaries
	PSD Matrices and Spectral Approximation
	The Moore-Penrose Pseudoinverse
	The Graph Laplacian and Effective Resistance
	Bounded-Independence Sampling

	Sparsification via Bounded-Independence Sampling
	Sparsification With Exact Effective Resistances
	Sparsification With Approximate Effective Resistances

	Lower Bounds for Bounded-Independence Sampling
	Moore-Like Graphs With a Given Girth
	The Lower Bound Proof

	Spectral Sparsifiers in Deterministic Small Space
	Algorithm for Approximating Effective Resistances
	Testing for Spectral Proximity
	Completing the Proof of Theorem 19


	p040-Dreier
	Introduction
	Preliminaries
	Results
	Playing with the probability
	Average Case Complexity of Even Set
	Conclusion

	p041-Duan
	Introduction
	Technical overview
	Structure of our paper

	Preliminaries
	Notations
	Blowup graphs
	LP formulation
	Blossoms
	Augmenting path
	Complementary slackness
	Edmonds search

	The Scaling Algorithm
	Correctness

	Running Time Analysis

	p042-Dughmi
	Introduction
	Preliminaries
	Matroid Theory Basics
	The Matroid Secretary Problem
	Miscellaneous Notation and Terminology

	Understanding Contention Resolution
	The Basics of Contention Resolution
	Uncontentious Distributions and their Characterization
	Elementary Properties of Uncontentious Distributions
	Examples of Uncontentious Distributions
	Contention Resolution Schemes, Universality, and Prior Dependence

	An Online Universal CRS from a Secretary Algorithm
	From Contention Resolution to a Secretary Algorithm?
	Proof of Theorem 5.3
	Where Prior Work Fails

	Conclusions and Open Problems

	p043-Eiben
	Introduction
	Preliminaries
	Extending 1-Planar Drawings
	Using Edge Deletion Distance for Drawing Extensions
	A Fixed-Parameter Algorithm for 1-Planar Drawing Extension
	A More Efficient Algorithm for Extending by Edges Only

	Using Vertex+Edge Deletion Distance for IC-Planar Drawing Extension
	Inserting Two Vertices into a 1-Plane Drawing
	Concluding Remarks

	p044-Feige
	Introduction
	The random planted clique model
	The adversarial planted clique model
	Our results
	Related work

	Overview of the proofs
	Finding cliques using the theta function
	Finding cliques by enumeration
	Proving NP-hardness results

	Additional results

	p045-Fichtenberger
	Introduction
	Our Results

	Preliminaries
	Sampling an Arbitrary Subgraph H
	Sampling an Odd-Length Cycle
	Sampling a Star
	Sampling H
	The Final Sampler

	Proof of Theorem 2

	p046-Fielbaum
	Introduction
	A Generalization of the Knapsack-Cover Inequalities for Non-Linear Knapsack-Cover
	Knapsack-Cover Inequalities for Non-Linear Costs
	A 2-approximate Primal-Dual Algorithm

	Unsplittable Flow-Cover on the Line 
	Arbitrary non-decreasing functions

	p047-Filtser
	Introduction
	Previous results
	Our Contribution
	Technical Ideas
	Related Work

	Preliminaries
	From Scattering Partitions to SPR: Proof of Theorem 2
	Algorithm
	Basic Properties
	Distortion Analysis

	Discussion and Open Problems

	p048-Filtser
	Introduction
	Technical ideas

	Preliminaries
	Discrete Fréchet distance (DFD)
	The asymmetric setting under DFD
	l_{p,2}-distance of polygonal curves
	A deterministic construction using a prefix tree
	Discrete Fréchet distance
	l_{p,2}-distance

	Approximate range counting
	Simplification in d-dimensions
	Remark on dimension reduction

	p049-Fomin
	Introduction
	Lower Bound: Prop-Colored List Subgraph Isomorphism
	Lower Bound for the Cross Matching Problem
	Lower Bounds: Clique Contraction and Hadwiger Number
	Lower Bounds for Contraction to Graph Classes Problems

	p050-Fotakis
	Introduction
	Basic Definitions and Notation
	Hardness of Computing Equilibria in Weighted Congestion Games
	Weighted Congestion Games on Series-Parallel Networks
	Weighted Congestion Games with Identity Latency Functions

	Computing Approximate Equilibria for Node-Max-Cut
	PLS-Completeness of Node-Max-Cut
	A Technical Overview of the Proof of Theorem 4

	Conclusions and Future Work

	p051-Fotakis
	Introduction
	Our Results
	Further Related Work
	Preliminaries

	Lower Bounds on the Deterministic Competitive Ratio
	An Algorithm with Asymptotically Optimal Competitive Ratio
	Using Multiplicative Weights Update in Online Min-Sum Set Cover
	Rounding
	The Lazy Rounding Algorithm

	A Memoryless Algorithm
	Dynamic Online Min-Sum Set Cover
	Concluding Remarks

	p052-Furer
	Introduction and main result
	Edge-explicit tree decomposition
	The Algorithm
	Example

	p053-Galanis
	Introduction
	The model and the main result
	Algorithm overview

	The coupling tree
	Identifying bad variables
	Marking good variables and identifying a satisfying assignment
	The coupling tree
	Key property of the coupling tree for a random formula

	The linear program
	Analysis of the linear program for a random formula and how it enables us to conclude Theorem 1

	p054-Ganesh
	Introduction
	Problem Definition and Results
	Our Techniques
	Related Work

	Generalized Rounding Algorithm
	Algorithm for the Robust Traveling Salesman Problem
	Approximate Separation Oracle

	Algorithm for the Robust Steiner Tree Problem
	Lower Bounds
	Conclusion

	p055-Ganesh
	Introduction
	Sigma Protocols
	Our Question

	Reverse Firewalls for Interactive Proofs
	Firewall Constructions from Malleable Sigma Protocols
	HVZK Preservation
	ZK Preservation

	Firewalls for Proving Compound Statements
	AND Composition
	OR Composition

	Previous Work
	Comparison with Mironov and Stephens-Davidowitz
	Additional Related Works

	Conclusion

	p056-Garg
	Introduction
	The Adversarial Injections Model
	Related Models
	Our Results

	Matching
	Streaming Setting
	The Algorithm
	Overview of the Analysis

	Online Setting

	Submodular Maximization
	Notation
	The Algorithm
	Overview of the Analysis
	Analysis

	Conclusion and Open Problems

	p057-Gawrychowski
	Introduction
	Our result and techniques
	Application to unweighted graphs
	Independent work

	Preliminaries
	Karger's algorithm
	Link-cut trees
	Topologically induced subtrees

	Finding a Minimum 2-respecting Cut
	Descendant edges
	Independent edges


	p058-Gilbert
	Introduction
	Orthogonal Polynomial Transforms
	Related Work
	Technical overview
	Reduction to one-sparse recovery
	A one-sparse recovery algorithm for Jacobi polynomials


	Background and Preliminaries
	Notation
	Orthogonal Polynomials
	Jacobi Polynomials and Special Cases
	Roots of Orthogonal Polynomials

	Sparse Recovery Problem

	Results
	Open Questions

	p059-Goke
	Introduction
	Definitions and Notations
	Directed Long Cycle Hitting Set Algorithm
	k-Representative Sets of Paths

	p060-Gregor
	Introduction
	Our results
	Efficient algorithms
	Proof ideas
	Outline of this paper

	Preliminaries
	Bitstrings and lattice paths
	The Greene-Kleitman SCD
	Lexical matchings

	Cycle factor construction
	Comparison with previous constructions

	Sketch of the remaining proof steps
	Proof of Theorem 3

	p061-Gurjar
	Introduction
	Preliminaries
	Submodular functions
	Polynomial identity testing

	Parallel algorithm for linearly representable submodular minimization
	LR submodular minimization for a special case
	Reduction to the special case

	Variants and Applications
	Variants
	Applications

	Discussion

	p062-Guruswami
	Introduction
	Preliminaries
	Label Cover
	Low degree influences

	d-to-1 hardness for 3-colorable graphs
	Reducing chromatic number to 3
	A symmetric Markov chain supported on disjoint tuples
	Proof of Theorem 9

	Reducing multigraph (exact) d-to-1 to (d+1)-to-1 conjecture
	Conclusion

	p063-Hakoniemi
	Introduction
	Preliminaries
	Polynomials and the Boolean Ideal
	Polynomial Calculus and Sums-of-Squares proofs

	Feasible interpolation for Polynomial Calculus
	PC proofs over a set of monomials
	Feasible disjunction for PC
	Proof search over S
	Feasible interpolation

	Feasible interpolation for Sums-of-Squares
	Bounded SOS proofs over a set of monomials
	Feasible disjunction for SOS
	Proof search over S with bounded coefficients
	Feasible interpolation

	Concluding remarks

	p064-Har-Peled
	Introduction
	Background
	Problem and motivation
	Additional motivation & previous work
	Our results

	The greedy algorithm in two and three dimensions
	Preliminaries
	The greedy algorithm in 2D
	Operations
	The algorithm
	Analysis
	Implementing the greedy algorithm

	The greedy algorithm in 3D

	An instance-optimal approximation in two dimensions
	A lower bound
	A sketch of the improved algorithm

	Application: Minimizing a convex function
	The discrete geometric median

	Conclusion and open problems

	p065-Hirai
	Introduction
	Node-Connectivity Terminal Backup Problem
	Combinatorial Duality for FNTB
	Checking the Optimality
	Finding a Descent Direction
	Scaling Algorithm

	Discrete Convex Analysis for Node-Connectivity Terminal Backup
	A General Theory
	Discrete Convexity in Node-Connectivity Terminal Backup
	Sensitivity


	p066-Govorov
	Introduction
	Preliminaries
	Dichotomy for bounded degree graphs
	Hardness proof
	Gadgets P_{n,p} and R_{d,n,p}
	Interpolation using R_{d,n,p}

	Tractability part
	Two technical lemmas
	Hardness for Z_A(.) on simple graphs for real symmetric A

	p067-Izumi
	Introduction
	Background and Motivation
	Our Result
	Related Work
	Organization of Paper

	Preliminaries
	Model and Notation
	Lex-DFS
	Tree Decomposition and Balanced Separator

	Small-Space Lex-DFS Algorithm for Graphs of Bounded Treewidth
	Reduction to (Approximate) Gray-Path Membership
	Implementation of AIsGray(u, v)
	Algorithm Details for Lex-DFS
	Complexity

	Tree Decomposition using Small Space
	A Small-Space Balanced Separator Algorithm

	Conclusion

	p068-Albers
	Introduction
	Strong competitiveness in the random-order model
	Description of the new algorithm
	Analysis of the algorithm
	Lower bounds

	p069-Jiang
	Introduction
	Overview of models and our results
	Related work

	The Per-Request Prediction Model (PRP)
	Randomized Lower Bound

	The l-Strong Lookahead Model
	The Strong Per-Request Prediction Model (SPRP)
	The SPRP Model with Prediction Errors
	Lower Bounds
	Upper Bounds

	Conclusion

	p070-Kavitha
	Introduction
	Background and Related results
	Our Result and Techniques

	Preliminaries
	Fully Popular Matchings
	Two partitions of the vertex set
	Our algorithm

	Correctness of our algorithm

	p071-DeKeijzer
	Introduction
	Preliminaries
	Deterministic mechanisms for known-bundle single-minded agents
	Domains of size 2
	Large domains

	Deterministic mechanisms for unknown-bundle single-minded agents
	Randomised mechanisms for known-bundle single-minded agents

	p072-Kesselheim
	Introduction
	The Bursty Adversary plus Random Order (BARO) model
	Our Results
	Related Work

	BARO Knapsack: model and algorithm
	Controlling tentative selections via weighted rank
	Controlling the probability of being blocked
	Concentration I: controlling the outer constraint
	Concentration II: control of main budget

	Lower bounding the value obtained
	Wrapping up: finishing the proof of Theorem 2
	Conclusions

	p073-Kiefer
	Introduction
	Preliminaries
	Colour Refinement
	Compact Representations of Long-Refinement Graphs
	Infinite Families of Long-Refinement Graphs
	Conclusion

	p074-Kopelowitz
	Introduction
	Our Results
	More Related Work

	SetDisjointness Algorithms
	Heavy-Light Decomposition
	Improved algorithm

	Unbalanced Triangle Detection Algorithm
	Optimal Conditional Lower Bound for SetDisjointness
	Unbalanced Triangle Enumeration
	Optimal Conditional Lower Bound for SetIntersection

	p075-Korman
	Introduction
	Preliminaries
	A Single Bisector
	Bounding the Number of Events
	A Kinetic Data Structure to Maintain a Bisector

	A Voronoi Center
	Bounding the Number of Events
	A Kinetic Data Structure to Maintain a Voronoi Center

	The Geodesic Voronoi Diagram
	A KDS for a Voronoi Diagram
	Maintaining Partial Shortest Path Maps
	The data structure
	Handling events



	p076-Laarhoven
	Introduction
	Related work
	A framework for evaluating spherical codes
	A survey of known spherical codes
	Lower bounds via spherical caps
	Selecting spherical codes in practice
	Summary and open problems


	p077-Li
	Introduction
	Technical Results
	Preliminaries
	l_infinity/l_1 Gurantee and incoherent matrices
	The Restrictred Isometry Property and its connection with incoherence

	Our results
	Sparse Fourier Transform Algorithms
	From DFT to incoherent matrices

	Comparing l_2/l_1 with l_{infinity}/l_1

	Overview
	Open Problems and Future Direction

	p078-Lincoln
	Introduction
	A New Algorithm 
	Previous work

	Preliminaries
	Algorithm
	Correctness and Running Time


	p079-Liu
	Introduction
	Main Results
	Related Work
	Previous Construction
	Our Techniques
	Membership Data Structure


	Preliminaries
	String Notations
	Computational Models
	Random Access Machine
	Memory Models

	Random Functions
	Adaptive Prefixes

	Data Structures for Sets of Unknown Sizes
	The Succinct Dynamic Filters
	The Succinct Dynamic Dictionaries

	Prefix Matching Upper Bound
	Succinct Prefix Matching with Known Capacity
	Unconditional Succinct Dictionary
	Upper Bounds in Allocate-Free Model

	p080-Lokshtanov
	Introduction
	Preliminaries
	The Algorithm
	Polynomially Bounded Weights
	General Weight Functions

	Conclusion

	p081-Chechik
	 Introduction
	 Rational Weights

	 Preliminaries
	 The Generalized SSRP Problem

	 Overview
	 Algorithm Overview
	 Running Time Analysis
	 Going From O~(n^{2.5}) to O~(msqrt{n} + n^2)


	p082-Magniez
	Introduction
	Context
	Application to quantum distributed computing
	Contributions

	Preliminaries
	Quantum distributed computing in the CONGEST model
	Quantum information theory
	Quantum communication complexity
	Quantum query complexity

	Set Disjointness on a Line
	The problem and results
	Overview of the proof
	Formal description of protocols on the line
	The two-party simulation
	Conditional information loss of the two-party protocol

	Two-oracle query algorithms with a switching delay
	The new query model
	Algorithm for Set Disjointness

	Conclusion

	p083-Mahmoody
	Introduction
	Our Results
	Our Techniques

	Related Work

	Preliminaries
	Lower Bounds for VDFs in the Random Oracle Model
	Case of Perfectly Unique VDFs
	Warm Up: The Special Case of Permutation VDFs
	Proof of Theorem 10 in the General (Perfectly Unique) Case

	Lower Bound for Tight Proofs of Sequential Work

	Extensions to the Lower Bounds
	Handling Expensive Setup Phase
	Extending to the Random Permutation Oracle Model

	Conclusion and Open Questions

	p084-Merino
	Introduction
	Our contribution
	Other related work

	Constant factor approximation algorithms
	Easy polygons
	Medium polygons
	Hard polygons
	Hard triangles

	Hard polygons under resource augmentation

	Optimal profit under resource augmentation
	Few types of items
	Recursive algorithm


	p085-Micha
	Introduction
	Our Contribution

	Preliminaries
	Greedy Capture
	Universal Lower Bounds
	Clustering in Graphs
	Computational Aspects
	Learning Fair Clustering
	Discussion

	p086-Momke
	Introduction
	Our contribution
	Other related work

	Overview
	Uniform edge capacities
	Resource augmentation

	Structural lemma for uniform capacities
	Structural lemma for arbitrary capacities
	Compute stair solution
	The rounding algorithm


	p087-Mousavi
	Introduction
	Proof overview
	Further remarks
	Open problems

	Preliminaries
	Turing machines and the arithmetical hierarchy
	Interactive verifiers
	Compression of quantum multiprover interactive protocols

	MIPzero=PI2
	MIPstar=RE implies gap-preserving compression

	p088-Neuen
	Introduction
	Preliminaries
	Isomorphism for Hypergraphs
	The Generalized String Isomorphism Problem
	Normalization of the Group Action
	Creating Global Automorphisms from Local Information
	The Local Certificates Routine
	An Algorithm for the Generalized String Isomorphism Problem

	Color Refinement and Small Color Classes
	The Color Refinement Algorithm
	Splitting Small Color Classes
	Hereditarily Finite Sets

	Isomorphism for Graphs of Bounded Genus
	Conclusion

	p089-Oki
	Introduction
	Preliminaries
	Matrices over Skew Fields
	Polynomials over Skew Fields

	Computing the Degree of Dieudonné Determinant
	Matrix Expansion
	Legendre Conjugacy of _() and _()
	Reductions and Algorithms

	Computing the Degree of Quasideterminants

	p090-Papp
	Introduction
	Related Work
	Model and Notation
	Preliminaries
	Model and switching rule
	On the f(lambda) function

	General intuition behind the proofs
	Conflict propagation systems

	Upper bound proof
	Properties of an optimal construction
	Edge potential
	Upper bounding switches

	Lower bound construction

	p091-Papp
	Introduction
	Related Work
	Financial system model
	Debt and CDS contracts
	Assets and liabilities

	Payments with priorities
	Influencing the financial system
	Removing an incoming debt
	Investing more external assets
	Readjusting priorities

	Game-theoretic dilemmas in financial systems
	Prisoner's dilemma
	Stag Hunt
	Chicken game
	Dollar auction


	p092-Pitassi
	Introduction
	Background and our contributions
	Query-to-communication lifting

	Preliminaries
	Nondeterministic and Randomized Boolean Hierarchies
	Parallel queries

	Separations
	Proof of Theorem 1
	Proof of Theorem 3

	Total function collapse
	Query-to-communication lifting theorems
	Decision lists
	Query-to-communication lifting for NP(q)
	Technical preliminaries
	The simulation



	p093-Potukuchi
	Introduction
	Background
	Discrepancy in random settings
	The partial coloring approach
	Proof sketch

	Proof of Theorem 1
	Preliminaries and notation
	A technical remark

	Partial coloring using Lemma 7

	Proof of Theorem 4
	A martingale inequality
	Proof of Theorem 4

	Conclusion

	p094-Sandlund
	Introduction
	Our Results
	Discussion of Technical Difficulty

	Related Work
	Preliminaries
	Main Algorithm

	p095-Sau
	Introduction
	Definitions and preliminary results
	Restating the problem
	Definitions

	Auxiliary algorithmic and combinatorial results
	Two algorithmic results
	Finding an irrelevant vertex
	Combinatorial results for branching

	The algorithms
	The general algorithm
	The apex-minor free case

	Concluding remarks

	p096-Shao
	Introduction
	Weitz's Algorithm
	Notations and definitions
	Correlation decay and real contraction

	Barvinok's Algorithm
	Zero-freeness and complex contraction

	From Real Contraction to Complex Contraction

	p097-Shimizu
	Introduction
	Previous works of specific updating rules
	Our model
	Our result
	Application
	Related work

	Preliminary and technical result
	Formal definition
	Technical background
	Our technical contribution
	Proof sketch

	Reversible Markov chains and Proof of Lemma 2.4
	Technical tools for reversible Markov chains
	Proof of Lemma 2.4

	Proofs of theorems on functional votings
	Phase (I): 0<= |delta|<= c_1log n/sqrt{n}
	Phase (II): frac{2max{K(f),8}}{epsilon_h(f)}max{lambda^2,|pi |_2sqrt{log n}}<= |delta|<= frac{epsilon_h(f)}{K(f)}
	Phase (III): 0<c_2<= alpha <= c_3<1/2
	Phase (IV): 0<= alpha <= frac{epsilon_c(f)}{8K(f)}
	Phase (V): H_f'(0)=0 and 0<= alpha <= 1/(7K(f))

	Conclusion

	p098-Epstein
	Introduction
	Related Work
	Organization

	Preliminaries
	Notation and Definitions
	Our Contributions

	General Algorithm for Property Testing of LP-Type problems
	Overview of the proof

	Property Testing Applications of LP-Type Tester
	Testing Feasibility of a System of Linear Equations
	Testing if Labeled Points can be Linearly Separated
	Upper Bounds for Canonical LP-Type Problems

	Lower Bounds
	Lower Bound for Testing Feasibility of Linear Constraints
	Lower bound for Testing Smallest Enclosing Ball

	Tolerant Tester for Testing Feasibility of Linear Constraints
	Separating Points with Arbitrary Functions and Multiple Labels
	Separating labeled points using arbitrary functions
	Separating Points with Multiple Labels


	p099-Su
	Introduction
	Problem Statement
	Formal statement
	Remarks
	Applications

	Past Work
	Our results
	Our techniques
	The n<< k regime
	The remaining parameter regime


	Problem reformulation
	Notation
	Problem statement
	Equivalence to original problem statement
	Restatement of results
	Example instance

	The n<< k regime
	Proof framework
	Proof of Theorem 7 for n=3, k=5

	The remaining parameter regime
	Preliminaries
	Proof overview


	p100-Sun
	Introduction
	Preliminaries
	Basics of Boolean Functions
	Periodicity and Mahler Expansion
	MOD and Its Mahler Expansion over Z_{p^k}

	Lower Bound of deg_{p^k}(f)
	Proof of Theorem 1
	Proof of Theorem 2

	Lower Bounds of deg_{pq}(f) for Symmetric Functions
	More Analyses of MOD and Its Mahler Coefficients
	Proof of Theorem 3
	Proof of Theorem 4

	Conclusion

	p101-Wahlstrom
	Introduction
	Mimicking networks and multiway cut sparsifiers
	Our results

	Terminal separation notions
	Multicut-mimicking networks
	Graph separation algorithms

	Multicut-covering sets
	Recursive replacement
	The (alpha,c)-dense case
	Matroid constructions
	The marking process
	Correctness

	Completing the result
	Kernelization extensions and consequences

	Discussion

	p102-Weiss
	Introduction
	Preliminaries
	G-programs and AND-weakness
	Reducing C-Coloring to equations
	Consequences
	Equations in finite semigroups

	Conclusion

	p103-Wiebking
	Introduction
	Preliminaries
	Handling Small Objects via String Canonization
	Canonization of k-ary Relations
	Canonization of Hypergraphs
	Canonization of Sets and Objects
	Isomorphism of Graphs Parameterized by Treewidth
	Outlook and Open Questions
	Bibliography

	p104-Wlodarczyk
	Introduction
	Overview of the results
	Preliminaries
	The gap amplification technique
	Inapproximability of Steiner Orientation
	Inapproximability of Directed Multicut
	Final remarks and open problems

	p105-Wu
	Introduction
	Preliminaries
	Phylogenetic Tree
	Greedy Consensus Tree
	Data Structures

	Algorithm
	Characterization of consistency
	Our Algorithm

	Efficiency
	Data Structures
	Handle Update
	Handle Queries
	Time complexity


	p106-AboKhamis
	Introduction
	Background and Notations
	Boolean information Constraints
	Problem Definition
	Examples and Applications
	Information Inequalities
	Max Information Inequalities
	Conditional Information Inequalities
	Group-Theoretic Inequalities
	Application to Relational Query Evaluation
	Application to Secret Sharing


	Placing EBIC and AEBIC in the Arithmetical Hierarchy
	Unconditional Boolean Information Constraints
	Conditional Boolean Information Constraints
	The Entropic Case
	The Almost-Entropic Case

	Discussion on the Decidability of MaxIIP

	The Recognizability Problems
	Discussion

	p107-Almagor
	Introduction
	Preliminaries
	Orbit Cones
	Jordan Normal Form
	Cones as Canonical Invariants

	Semi-algebraic Error Sets and Fat Trajectory Cones
	Unconditional Decidability
	Effectively Constructing the Semi-algebraic Invariant

	A Reduction from Zeros of an Exponential Polynomial

	p108-Barak
	Introduction
	The Why and How of Authenticating Functions
	Higher-Order Probabilistic Polynomial Time Through Parametrized Games
	Parametrized Deterministic Games
	Polytime Computable Strategies
	Probabilistic Strategies
	On the Expressive Power of Probabilistic Strategies

	The (In)feasibility of Higher-Order Cryptography
	Efficiently Determining Influential Variables
	On the Impossibility of Authenticating Functions
	A Positive Result on Higher-Order Pseudorandomness

	Related Work

	p109-Barozzini
	Introduction
	Preliminaries
	Model-checking safe recursion schemes against alternating B-automata
	Downward closures of tree languages
	Preliminaries
	The simultaneous unboundedness problem for trees
	The diagonal problem for trees

	Languages of safe recursion schemes
	Conclusions

	p110-Barto
	Introduction
	CSP viewpoint
	Algebraic viewpoint
	Structure of the paper

	Details of the CSP viewpoint
	Constructing near unanimity operations
	New loop lemmata
	Consistent instances are sensitive (sketch of a proof)
	Conclusion

	p111-Baumann
	Introduction
	Dynamic Networks of Concurrent Pushdown Systems (DCPS)
	 Transducer Defined Petri Nets (TDPN)
	Recursive Net Programs (RNP)
	From Bounded Counter Programs to RNP
	From RNP to TDPN

	Discussion

	p112-Benedikt
	Introduction
	Preliminaries
	Main result
	Regular graphs
	Decision procedure

	Proof ideas for Lemmas 2 and 3
	The case of incomplete 1-color biregular graphs
	Proof of Lemma 2 for 1-color graphs (the complete case)
	The proof for regular digraphs

	Extensions and applications
	Conclusion

	p113-Bojanczyk
	Introduction
	Automata and transducers with atoms
	Languages recognised by single-use automata
	From two-way automata to orbit-finite monoids

	A Krohn-Rhodes decomposition of one-way transducers with atoms
	Two-way single-use transducers

	p114-Bostan
	Introduction
	Primer on holonomic power series in several variables
	Weakly-unambiguous Parikh automata
	Semilinear sets and their characteristic series
	Weakly-unambiguous PAs and their generating series
	Equivalence with unambiguous reversal bounded counter machines
	Equivalence with RCM
	Weakly-unambiguous pushdown Parikh automata

	Examples of inherently weakly-ambiguous languages
	Two examples using an analytic criterion
	Limit of the method: an example using pumping techniques

	Algorithmic consequence of holonomicity
	Perspectives

	p115-Bumpus
	Introduction
	Preliminaries
	Proof of Theorem 1
	The Maximum-Rank Case
	The General Case

	Algorithmic Applications
	Weighted Automata
	Affine Integer Vector Addition Systems with States

	Conclusion

	p116-Cadilhac
	Introduction
	Basic notions
	Main results
	Every rational subset of BS(1, q) is effectively PE-regular
	Complexity
	Recognizability

	p117-Cadilhac
	Introduction
	Preliminaries
	Simple poly-recursive sequences
	Modular periodicity
	Cancelling polynomials
	Applications in weighted automata
	Conclusion

	p118-Carette
	Introduction
	Diagrammatical quantum computing
	Graphical structures
	Half a spider
	One spider
	Compact structure

	Two spiders
	Two spiders interacting

	Classification of Z*-algebras in Qubits and LinRel
	Z*-algebras in Qubits
	Generalization for qudits
	In LinRel_{K}

	Future works
	All graphical calculi for quantum computing
	The ZZ-calculis
	Z^{(a,b/a)}Z_{(1/a,a/b)}
	Z^{(a,b/a)}Z_{(1/a,-a/b)}
	Z^{(a,b/a)}Z_{(-1/a,a/b)} and Z^{(a,b/a)}Z_{(-1/a,-a/b)}

	The ZX-calculi
	Z^{(a,1)}X_{(2/a, 1)}
	Z^{(a,1)}X_{(2/a, -1)}
	Z^{(a,1)}X_{(-2/a, -1)} and Z^{(a,1)}X_{(-2/a, 1)}
	Z^{(a/b,b^2)}X_{(2/a,-1)}
	Z^{(a,-1)}X_{(2b/a,1/b^2)}

	The ZH-calculi
	The Z^{(a,1/(b^2-1))}H_{(b/a,(1-b^2)/b^2)} calculus

	The ZW-calculi
	The Z^{(a,1/c^2)}W_{(c/a,0)}
	The W^{(a,0)}Z_{(b/a,1/b^2)} calculus



	p119-Chistikov
	Introduction
	The weak definability problem
	Preliminaries
	A characterisation of weak Q- and Z-definability
	More on mosaic property

	Computational complexity of weak Q- and Z-definability
	Upper bounds for deciding weak Q- and Z-definability
	Lower bounds for deciding weak Q-definability and Z-definability

	A lower bound for deciding universality of semilinear sets
	Aggregation of several dimensions into one
	Additional constraints and the final reduction

	Conclusion

	p120-Ciobanu
	Introduction
	Marked morphisms in free monoids
	Immersions of free groups
	The reduction of an instance in free groups
	Prefix complexity of immersions in free groups
	Solving the Algorithmic Equaliser Problem in free groups (AEP_{FG})
	Sets of immersions
	Algorithm to compute the equaliser
	Complexity analysis
	The density of marked morphisms and immersions

	p121-Clemente
	Introduction
	Preliminaries
	Timed synthesis games
	Deterministic separability
	Solving the timed synthesis problems
	Solving the k, m-timed synthesis problem
	Solving the k-timed synthesis problem

	Future work

	p122-Datta
	Introduction
	The dynamic setting
	Barriers for the size of bulk changes
	Techniques and Tools
	Handling Polylog Changes with DynFO
	Handling Polylog Changes with DynFO+Mod2
	Isolating and non-vanishing weights
	Maintaining Reachability in weighted graphs
	Computing weights for bounded-treewidth graphs

	Conclusion

	p123-Daviaud
	Context
	Dominions, Attractor Decompositions, and Their Trees
	Strahler Strategies in Register Games
	Strahler-Optimal Attractor Decompositions
	Strahler-Universal Trees
	Progress-Measure Strahler Numbers
	Strahler-Universal Progress Measure Lifting Algorithm

	p124-Day
	Introduction
	Preliminaries
	Solving regular word equations
	Nielsen transformations
	The graph of all solutions
	Solving equations modulo constraints

	Properties of the graphs G^{==>_{NT}}_{[E]} for regular equations E
	Basic equations: a convenient abstraction
	A useful invariant
	A special case of symmetry
	Normal forms and block decompositions
	Diameter
	Size and DAG-width
	Extension to systems of equations

	Conclusions

	p125-Dennunzio
	Introduction
	Background on DTDS and Cellular Automata
	Additive and Linear Cellular Automata

	Decidability Results about Linear CA
	From Linear to Additive CA
	Sensitivity and Equicontinuity for Additive Cellular Automata
	Surjectivity and Injectivity for Additive Cellular Automata
	Topological transitivity and ergodicity

	Conclusions

	p126-Figelius
	Introduction
	Preliminaries
	Groups
	Wreath products
	Knapsack problem
	Knapsack-semilinear groups
	Power word problem

	Wreath products of nilpotent groups and the integers
	Wreath products with abelian left factors
	Wreath products with difficult knapsack and power word problems
	Open problems

	p127-Filiot
	Introduction
	Preliminaries and notations
	Adversarial Stackelberg value for mean-payoff games
	Stackelberg values for discounted-sum games

	p128-Fraigniaud
	Context and Objective
	Our Results
	Models and Definitions
	Warm Up: Coloring and MIS in the Ring
	Reduction from 3-coloring to MIS
	ID-Oblivious Algorithms
	General Case with IDs

	Topology of LCL Tasks
	Conclusion and Further Work

	p129-Gaboardi
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Loop-free probabilistic programs
	2.2 Probabilistic circuits
	2.3 Equivalence of programs and circuits
	2.4 Differential privacy in probabilistic circuits
	2.5 Problems of deciding and approximating differential privacy
	2.6 The class coNP^#P

	3 The complexity of deciding pure differential privacy
	3.1 Decide epsilon DP is in coNP^#P
	3.2 coNP^#P-hardness of Decide epsilon DP

	4 On the complexity of deciding approximate differential privacy
	4.1 Decide epsilon DP is in coNP^#P^#P
	4.2 Hardness

	5 Inapproximability of the privacy parameters epsilon, delta
	6 Related work
	7 Conclusions and future work

	p130-Gazda
	Introduction
	Related work
	Preliminaries
	Metric Temporal Logic
	Hybrid Conformance

	Logical Characterisation of Hybrid Refinement and Hybrid Conformance
	Logical Characterisation via Relaxation
	Characterisation of hybrid refinement
	Characterisation of traces
	Characterisation of hybrid systems

	Characterisation of hybrid conformance
	Relaxation operator rlx^{textasciitilde}_{tau,epsilon}
	Characterisation of traces
	Characterisation of hybrid systems


	Comparison with an existing relaxation
	AMF-Relaxation
	Laxness of AMF-Relaxation

	Conclusions and Future Work

	p131-Gillibert
	p132-Hoyrup
	Introduction
	Summary of the main results

	Symbolic complexity
	Represented spaces
	Symbolic complexity
	Tools

	Hardness
	Hausdorff-Kuratowski Theorem

	Fréchet-Urysohn property
	Spaces of open sets
	Effectiveness

	Spaces of open subsets of Polish spaces
	The 4 classes
	Classification


	p133-Majumdar
	Introduction
	Continuous Time Markov Decision Processes
	Conditional Decidability of Problems 1 and 2
	Schanuel's Conjecture and its Implications
	Non-tangential Zeros
	Switch Points are Non-Tangential Zeroes
	Conditional Decidability

	Lower Bound: Continuous Skolem Problem
	A Direct Algorithm for Problem 2

	p134-Maneth
	Introduction
	Basics
	A Dedicated Earliest Normal Form for uc-Transducers with Advice
	How to Remove Look-ahead
	How to Inspect Top-Down Deterministic Languages
	How to Satisfy Inspection Needs
	Conclusion

	p135-Nguyen
	Introduction
	Preliminaries: the lambda wp-calculus and Church encodings
	Proof of soundness
	Expressiveness of the lambda p-calculus
	Reminders on automata theory
	Encoding aperiodic sequential transducers

	Regular languages in extensions of the lambda p-calculus
	The commutative case
	Extension with additive pairs
	On regular and first-order tree languages: a discussion

	Next episode preview: transducers in typed lambda-calculi
	Related work

	p136-Niwinski
	Introduction
	Trees, topology, and measure
	Tree automata and games
	Approximations
	Measures and distributions
	Limit distributions mu(Sin) and mu(Rin)
	Computing measures
	Branching processes
	Representing algebraic numbers

	Conclusions

	p137-Paul
	Introduction
	Preliminaries
	The Criterion for Finite Sequentiality
	Decidability
	Necessity
	Sufficiency


	p138-Piribauer
	Introduction
	Preliminaries
	Skolem-hardness
	Partial and Conditional SSPP
	Conditional value-at-risk for the classical SSPP
	Long-run probability and frequency-LTL

	Saturation points
	Conditional value-at-risk for the classical SSPP
	Weighted long-run frequencies and frequency-LTL
	PSPACE lower bounds

	Conclusion

	p139-Remscrim
	Introduction
	Statement of the Main Results

	Quantum Computation and the 2QCFA
	Distinguishing Families of Representations
	Diophantine Approximation
	Constructions of DFRs
	Projective DFRs
	Unbounded-Error DFRs

	Recognizing the Word Problem of a Group with a 2QCFA
	Discussion

	p140-Saarela
	Introduction
	Preliminaries
	Inclusion problem of pattern languages
	Nonperiodic satisfiability
	Noncommuting satisfiability
	Conclusion

	p141-Zhang
	Introduction
	Preliminaries
	Pushdown Automata
	Bisimulation Game

	Lower Bound
	Reset Petri Net
	An Exponential Time Reduction
	A Polynomial Time Reduction

	Relative Expressiveness of PDA
	Conclusion


