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Abstract
We study the problem of maximizing a non-monotone submodular function subject to a cardinality
constraint in the streaming model. Our main contributions are two single-pass (semi-)streaming
algorithms that use Õ(k) · poly(1/ε) memory, where k is the size constraint. At the end of the
stream, both our algorithms post-process their data structures using any offline algorithm for
submodular maximization, and obtain a solution whose approximation guarantee is α

1+α − ε, where
α is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing
algorithm, this leads to 1

2 − ε approximation (which is nearly optimal). If we post-process with the
algorithm of [5], that achieves the state-of-the-art offline approximation guarantee of α = 0.385, we
obtain 0.2779-approximation in polynomial time, improving over the previously best polynomial-time
approximation of 0.1715 due to [17]. One of our algorithms is combinatorial and enjoys fast update
and overall running times. Our other algorithm is based on the multilinear extension, enjoys an
improved space complexity, and can be made deterministic in some settings of interest.
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6:2 Optimal Streaming Algorithms for Submodular Maximization

1 Introduction

In this paper, we study the problem of maximizing a non-monotone submodular function
subject to a cardinality (size) constraint in the streaming model. This problem captures
problems of interest in a wide-range of domains, such as machine learning, data mining,
combinatorial optimization, algorithmic game theory, social networks, and many others. A
representative application is data summarization, where the goal is to select a small subset
of the data that captures the salient features of the overall dataset [2]. One can model
these problems as submodular maximization with a cardinality constraint: the submodular
objective captures how informative the summary is, as well as other considerations such as
how diverse the summary is, and the cardinality constraint ensures that the summary is
small. Obtaining such a summary is very beneficial when working with massive data sets,
that may not even fit into memory, since it makes it possible to analyze the data using
algorithms that would be prohibitive to run on the entire dataset.

There have been two main approaches to deal with the large size of modern data sets: the
distributed computation approach partitions the data across many machines and uses local
computation on the machines and communication across the machines in order to perform
the analysis, and the streaming computation approach processes the data in a stream using
only a small amount of memory and (ideally) only a single pass over the data. Classical
algorithms for submodular maximization, such as the Greedy algorithm, are not suitable in
these settings since they are centralized and require many passes over the data. Motivated
by the applications as well as theoretical considerations, there has been a significant interest
in studying submodular maximization problems both in the distributed and the streaming
setting, leading to many new results and insights [22, 29, 2, 9, 11, 26, 4, 28, 3, 14, 27, 17, 31, 1].

Despite this significant progress, several fundamental questions remain open both in the
streaming and distributed setting. In the streaming setting, which is the main focus of this
paper, submodular maximization is fairly well understood when the objective function is
additionallymonotone – i.e., we have f(A) ≤ f(B) whenever A ⊆ B. For example, the Greedy
approach, which obtains an optimal (1− 1/e)-approximation in the centralized setting when
the function is monotone [30], can be adapted to the streaming model [22, 2]. This yields the
single-threshold Greedy algorithm: make a single pass over the data and select an item if its
marginal gain exceeds a suitably chosen threshold. If the threshold is chosen to be 1

2
f(OPT)

k ,
where f(OPT) is the value of the optimal solution and k is the cardinality constraint, then the
single-threshold Greedy algorithm is guaranteed to achieve 1

2 -approximation. Although the
value of the optimal solution is unknown, it can be estimated based on the largest singleton
value even in the streaming setting [2]. Remarkably, this approximation guarantee is optimal
in the streaming model even if we allow unbounded computational power: Feldman et al.
[19] showed that any algorithm for monotone submodular maximization that achieves an
approximation better than 1

2 requires Ω
(
n
k3

)
memory, where n is the length of the stream.

Additionally, the single-threshold Greedy algorithm enjoys a fast update time of O(ε−1 log k)
marginal value computations per item, and it uses O(ε−1k log k) space.

In contrast, the general problem with a non-monotone objective has proved to be
considerably more challenging. Even in the centralized setting, the Greedy algorithm
fails to achieve any approximation guarantee when the objective is non-monotone. Thus,
several approaches have been developed for handling non-monotone objectives in this setting,
including local search [15, 24, 23], continuous optimization [18, 13, 5] and sampling [6, 16].
The currently best approximation guarantee is 0.385 [5], and the strongest inapproximability
is 0.491 [20], and it remains a long-standing open problem to settle the approximability of
submodular maximization subject to a cardinality constraint.
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Adapting the above techniques to the streaming setting is challenging, and the approx-
imation guarantees are weaker. The main approach for non-monotone maximization in the
streaming setting has been to extend the local search algorithm of Chakrabarti and Kale
[9] from monotone to non-monotone objectives. This approach was employed in a sequence
of works [11, 17, 27], leading to the currently best approximation of 1

3+2
√

2 ≈ 0.1715.1 This
naturally leads to the following questions.

What is the optimal approximation ratio achievable for submodular maximization in the
streaming model? Is it possible to achieve 1

2 − ε approximation using an algorithm that
uses only poly(k, 1/ε) space?
Is there a good streaming algorithm for non-monotone functions based on the single-
threshold Greedy algorithm that works so well for monotone functions?
Can we exploit existing heuristics for the offline problem in the streaming setting?

Our contributions. In this work, we give an affirmative answer to all of the above questions.
Specifically, we give streaming algorithms2 that perform a single pass over the stream and
output a set of size k · poly(1/ε) that can be post-processed using any offline algorithm for
submodular maximization. The post-processing is itself quite straightforward: we simply run
the offline algorithm on the output set to obtain a solution of size at most k. We show that,
if the offline algorithm achieves α-approximation, then we obtain

(
α

1+α − ε
)
-approximation.

Our main result implies that if we post-process using an exact (exponential time) algorithm,
we obtain ( 1

2 − ε)-approximation. This matches the inapproximability result proven by [19]
for the special case of a monotone function. Furthermore, we show that in the non-monotone
case any streaming algorithm guaranteeing ( 1

2 + ε)-approximation for some positive constant
ε must use in fact Ω(n) space.3 Thus, we essentially settle the approximability of the problem
if exponential-time computation is allowed.

The best (polynomial-time) approximation guarantee that is currently known in the
offline setting is α = 0.385 [5]. If we post-process using this algorithm, we obtain 0.2779-
approximation in polynomial time, improving over the previously best polynomial-time
approximation of 0.1715 due to [17]. The offline algorithm of [5] is based on the multilinear
extension, and thus is quite slow. One can obtain a more efficient overall algorithm by
using the combinatorial random Greedy algorithm of [6] that achieves 1

e -approximation.
Furthermore, any existing heuristic for the offline problem can be used for post-processing,
exploiting their effectiveness beyond the worst case.

Our techniques. The two streaming algorithms that we present enjoy the same approx-
imation guarantee, but differ in other properties. Our first algorithm (StreamProcess)
is a combinatorial algorithm that achieves very fast update time and overall running time.
StreamProcess takes inspiration both from the single-threshold Greedy algorithm for
monotone maximization and distributed algorithms that randomly partition the data [26, 4, 3]:
it randomly partitions the elements into 1/ε parts as they arrive in the stream and runs

1 Chekuri et al. [11] claimed an improved approximation ratio of 1
2+e − ε for a cardinality constraint, but

an error was later found in the proof of this improved ratio [10]. We defer the details to the full version.
2 Formally, our algorithms are semi-streaming algorithms, i.e., their space complexity is nearly linear in
k. Since this is unavoidable for algorithms designed to output an approximate solution (as opposed
to just estimating the value of the optimal solution), we ignore the difference between streaming and
semi-streaming algorithms in this paper and use the two terms interchangably.

3 This result is a simple adaptation of a result due to Buchbinder et al. [7]. For completeness, we include
the proof in the full version of the paper.
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6:4 Optimal Streaming Algorithms for Submodular Maximization

the single-threshold Greedy algorithm on each part; this process is repeated independently
and in parallel O(ln(1/ε)/ε) times. Since the main engine behind our algorithm is the very
efficient and practical single-threshold Greedy algorithm, our StreamProcess algorithm
inherits its very efficient update time and practical potential. Compared to the optimal
streaming algorithm for monotone maximization discussed above, our algorithm is quite
similar: the monotone algorithm runs O(log k/ε) instances of single-threshold Greedy, each
of which processes all n items; StreamProcess runs O(ln(1/ε)/ε2) ·O(log k/ε) instances
of single-threshold Greedy, each of which processes O(ε · n) items with high probability.

Our second algorithm (StreamProcessExtension) is based on the multilinear extension
of the submodular function. This algorithm is similar to the single-threshold Greedy algorithm,
but adds fractions of elements rather than whole elements to the solution it maintains. The
extension based approach of this algorithm allows us to save on the space usage. Furthermore,
when the multilinear extension can be evaluated deterministically, this approach leads to
a deterministic algorithm. However, the time complexity of this approach depends on the
complexity of evaluating the multilinear extension, which is quite high if we are only given
value oracle access to f . Thus, given such restricted access, this approach leads to higher
update and overall running time.

We note that combining the single-threshold Greedy with randomization is difficult
because it requires delicate care of the event that the single-threshold Greedy algorithm fills
up the budget. In particular, this was the source of the subtle error mentioned above in one
of the results of [11]. Our approach here for handling this issue is simple in retrospect. In
our combinatorial algorithm, we consider two cases depending on the probability that the
budget is filled up in a run (this is a good event since the resulting solution has good value).
If this probability is sufficiently large (at least ε), we repeat the basic algorithm O(ln(1/ε)/ε)
times to boost the probability of this good event to 1− ε. Otherwise, the probability that
the budget is not filled up in a run is at least 1− ε, and conditioning on this event changes
the probabilities by only a 1− ε factor.

In our extension based algorithm, the decisions of the algorithm are based on the values
taken by derivatives of the extension, which are values of expectations over appropriately
chosen distributions. On the one hand, this allows our algorithm to include a random com-
ponent, which is a component that appears (at least implicitly) in all of the known algorithms
for non-monotone submodular maximization. On the other hand, since expectations have
deterministic values, the algorithm we get is deterministic enough that it suffices for us to
consider at each time only one of two possible cases: the case in which the budget fills up,
and the case in which it does not.

Paper structure. In Section 2, defines the notation that we use and presents some known
lemmata. Section 3 presents and analyzes our combinatorial algorithm (StreamProcess).
Finally, in Section 4, we present and analyze our extension based algorithm.

2 Preliminaries

Basic notation. Let V denote a finite ground set of size n := |V |. We occasionally assume
without loss of generality that V = {1, 2, . . . , n}, and use, e.g., x = (x1, x2, . . . , xn) to denote
a vector in RV . For two vectors x, y ∈ RV , we let x ∨ y and x ∧ y be the vectors such that
(x ∨ y)e = max{xe, ye} and (x ∧ y)e = min{xe, ye} for all e ∈ V . For a set S ⊆ V , we let 1S
denote the indicator vector of S, i.e., the vector that has 1 in every coordinate e ∈ S and 0
in every coordinate e ∈ V \ S. Given an element e ∈ V , we use 1e as a shorthand for 1{e}.
Furthermore, if S is a random subset of V , we use E[1S ] to denote the vector p such that
pe = Pr[e ∈ S] for all e ∈ V (i.e., the expectation is applied coordinate-wise).
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Submodular functions. In this paper, we consider the problem of maximizing a non-
negative submodular function subject to a cardinality constraint. A set function f : 2V → R
is submodular if f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) for all subsets A,B ⊆ V .

Continuous extensions. We make use of two standard continuous extensions of submodular
functions. The first of these extensions is known as the multilinear extension. To define this
extension, we first need to define the random set R(x). For every vector x ∈ [0, 1]V , R(x)
is defined as a random subset of V that includes every element e ∈ V with probability xe,
independently. The multilinear extension F of f is now defined for every x ∈ [0, 1]V by

F (x) = E
[
f
(
R(x)

)]
=
∑
A⊆V

f(A) · Pr[R(x) = A] =
∑
A⊆V

(
f(A) ·

∏
e∈A

xe ·
∏
e/∈A

(1− xe)
)
.

One can observe from the definition that F is indeed a multilinear function of the coordinates
of x, as suggested by its name. Thus, if we use the shorthand ∂eF (x) for the first partial
derivative ∂F (x)

∂xe
of the multilinear extension F , then ∂eF (x) = F (x ∨ 1e)− F

(
x ∧ 1V \{e}

)
.

In the analysis of our extension based algorithm, we need an upper bound on the
possible increase in the value of F (x) when some of the indices of x are zeroed. Corollary 2
provides such an upper bound. It readily follows from the following known lemma by
Buchbinder et al. [6].

I Lemma 1 (Lemma 2.2 from [6]). Let f : 2V → R≥0 be a non-negative submodular function.
Denote by A(p) a random subset of A ⊆ V where each element appears with probability at
most p (not necessarily independently). Then, E[f(A(p))] ≥ (1− p) · f(∅).

In the statement of Corollary 2, and in the rest of the paper, we denote by supp(x) the
support of vector x, i.e., the set {e ∈ V | xe > 0}.

I Corollary 2. Let f : 2V → R≥0 be a non-negative submodular function, let p be a number
in the range [0, 1] and let x, y ∈ [0, 1]V be two vectors such that supp(x) ∩ supp(y) = ∅ and
ye ≤ p for every e ∈ V . Then, the multilinear extension F of f obeys F (x+y) ≥ (1−p) ·F (x).

The analyses of both our algorithms make use of the Lovász extension f̂ of f . The Lovász
extension f̂ : [0, 1]V → R is defined as follows. For every x ∈ [0, 1]V , f̂(x) = Eθ∼[0,1][f({e ∈
V : xe ≥ θ})], where we use the notation θ ∼ [0, 1] to denote a value chosen uniformly
at random from the interval [0, 1]. The Lovász extension f̂ of a non-negative submodular
function has the following properties: (1) convexity: cf̂(x) + (1− c)f̂(y) ≥ f̂(cx+ (1− c)y)
for all x, y ∈ [0, 1]V and all c ∈ [0, 1] [25]; (2) restricted scale invariance: f̂(cx) ≥ cf̂(x) for all
x ∈ [0, 1]V and all c ∈ [0, 1]; (3) it lower bounds the multilinear extension, i.e., F (x) ≥ f̂(x)
for every x ∈ [0, 1]V [32, Lemma A.4].

3 Combinatorial Algorithm

Our combinatorial streaming algorithm is shown in Algorithm 1. For simplicity, we describe
the algorithm assuming the knowledge of an estimate of the value of the optimal solution,
f(OPT). To remove this assumption, we use the standard technique introduced by [2]. The
basic idea is to use the maximum singleton value v = maxe f({e}) as a k-approximation of
f(OPT). Given this approximation, one can guess a 1 + ε approximation of f(OPT) from a
set of O(log(k/α)/ε) values ranging from v to kv/α (α is the approximation guarantee of the
offline algorithm OfflineAlg that we use in the post-processing step). The final streaming

ICALP 2020



6:6 Optimal Streaming Algorithms for Submodular Maximization

algorithm is simply O(log(k/α)/ε) copies of the basic algorithm running in parallel with
different guesses. As new elements appear in the stream, the value v = maxe f({e}) also
increases over time and thus, existing copies of the basic algorithm with small guesses are
dropped and new copies with higher guesses are added. An important observation is that
when we introduce a new copy with a large guess, starting it from mid-stream has exactly
the same outcome as if we started it from the beginning of the stream: all previous elements
have marginal gain much smaller than the guess and smaller than the threshold so they
would have been rejected anyway. We refer to [2] for the full details.

I Theorem 3. There is a streaming algorithm StreamProcess for non-negative, non-
monotone submodular maximization with the following properties (ε > 0 is any desired
accuracy and it is given as input to the algorithm):

The algorithm makes a single pass over the stream.
The algorithm uses O

(
k log(k/α) log(1/ε)

ε3

)
space.

The update time per item is O
(

log(k/α) log(1/ε)
ε2

)
marginal gain computations.

At the end of the stream, we post-process the output of StreamProcess using any offline
algorithm OfflineAlg for submodular maximization. The resulting solution is a α

1+α − ε
approximation, where α is the approximation of OfflineAlg.

Algorithm 1 Streaming algorithm for max|S|≤k f(S). PostProcess uses any offline
algorithm OfflineAlg with approximation α. Lines shown in blue are comments. The
algorithm does not store the sets Vi,j , they are defined for analysis purposes only.

1 StreamProcess(f, k, ε, κ)
2 r ← Θ(ln(1/ε)/ε)
3 m← 1/ε
4 Si,j ← ∅ for all i ∈ [r], j ∈ [m]
5 Vi,j ← ∅ for all i ∈ [r], j ∈ [m] // not stored, defined for analysis purposes only
6 for each arriving element e do
7 for i = 1 to r do
8 choose an index j ∈ [m] uniformly and independently at random
9 Vi,j ← Vi,j ∪ {e} // not stored, defined for analysis purposes only

10 if f(Si,j ∪ {e})− f(Si,j) ≥ κ and |Si,j | < k then
11 Si,j ← Si,j ∪ {e}

12 return {Si,j : i ∈ [r], j ∈ [m]}

13 PostProcess(f, k, ε)
14 κ← α

1+α ·
1
k · f(OPT) // threshold

15 {Si,j} ← StreamProcess(f, k, ε, κ)
16 if |Si,j | = k for some i and j then
17 return Si,j

18 else
19 U ←

⋃
i,j Si,j

20 T ← OfflineAlg(f, k, U)
21 return arg max {f(S1,1), f(T )}



N. Alaluf, A. Ene, M. Feldman, H. L. Nguyen, and A. Suh 6:7

Algorithm 2 Single threshold Greedy algorithm. The algorithm processes the elements
in the order in which they arrive in the stream, and it uses the same threshold κ as
StreamProcess.

1 STGreedy(f,N, k, κ):
2 S ← ∅
3 for each e ∈ N in the stream order do
4 if f(S ∪ {e})− f(S) ≥ κ and |S| < k then
5 S ← S ∪ {e}

6 return S

In the remainder of this section, we analyze Algorithm 1 and show that it achieves a
α

1+α − ε approximation, where α is the approximation guarantee of the offline algorithm
OfflineAlg.

We divide the analysis into two cases, depending on the probability of the event that a
set Si,1 (for some i ∈ [r]) constructed by StreamProcess has size k. For every i ∈ [r], let
Fi be the event that |Si,1| = k. Since each of the r repetitions (iterations of the for loop of
StreamProcess) use independent randomness to partition V , the events F1, . . . ,Fr are
independent. Additionally, the events F1, . . . ,Fr have the same probability. We divide the
analysis into two cases, depending on whether Pr[F1] ≥ ε or Pr[F1] < ε. In the first case,
since we are repeating r = Θ(ln(1/ε)/ε) times, the probability that there is a set Si,j of
size k is at least 1− ε, and we obtain the desired approximation since f(Si,j) ≥ κ |Si,j | =
κk = α

1+αf(OPT). In the second case, we have Pr
[
F1
]
≥ 1− ε and we argue that

⋃
i,j Si,j

contains a good solution. We now give the formal argument for each of the cases.

The case Pr[F1] ≥ ε

As noted earlier, the events F1, . . . ,Fr are independent and have the same probability. Thus,

Pr
[
F1 ∪ · · · ∪ Fr

]
≤ (1− ε)r ≤ exp(−εr) ≤ ε

since r = Θ(ln(1/ε)/ε). Thus Pr[F1 ∪ · · · ∪ Fr] ≥ 1− ε.
Conditioned on the event F1 ∪ · · · ∪ Fr, we obtain the desired approximation due to the

following lemma. The lemma follows from the fact that the marginal gain of each selected
element is at least κ.

I Lemma 4. We have f (Si,j) ≥ κ |Si,j | for all i ∈ [r], j ∈ [m].

We can combine the two facts and obtain the desired approximation as follows. Let S be the
random variable equal to the solution returned by PostProcess. We have

E[f(S)] ≥ E[f(S)|F1 ∪ · · · ∪ Fr] Pr[F1 ∪ · · · ∪ Fr] ≥ (1− ε)κk = (1− ε) α

1 + α
f(OPT)

The case Pr[F1] < ε

In this case, we show that the solution arg max {f(T ), f(S1,1)} returned on the last line of
PostProcess has good value in expectation. Our analysis borrows ideas and techniques
from the work of Barbosa et al. [3]: the probabilities pe defined below are analogous
to the probabilities used in that work; the division of OPT into two sets based on these
probabilities is analogous to the division employed in Section 7.3 in that work; Lemma 6

ICALP 2020



6:8 Optimal Streaming Algorithms for Submodular Maximization

shows a consistency property for the single threshold greedy algorithm that is analogous to
the consistency property shown for the standard greedy algorithm and other algorithms by
Barbosa et al. Barbosa et al. use these concepts in a different context (specifically, monotone
maximization in the distributed setting). When applied to our context – non-monotone
maximization in the streaming setting – the framework of Barbosa et al. requires Ω(

√
nk)

memory if used with a single pass (alternatively, they use Ω(min{k, 1/ε}) passes) and achieves
worse approximation guarantees.

Notation and definitions. For analysis purposes only, we make use of the Lovasz extension
f̂ . We fix an optimal solution OPT ∈ arg max{f(A) : A ⊆ V, |A| ≤ k}. Let V(1/m) be the
distribution of 1/m-samples of V , where a 1/m-sample of V includes each element of V
independently at random with probability 1/m. Note that Vi,j ∼ V(1/m) for every i ∈ [r],
j ∈ [m] (see StreamProcess). Additionally, for each i ∈ [r], Vi,1, . . . , Vi,m is a partition of
V into 1/m-samples.

For a subset N ⊆ V , we let STGreedy(N) be the output of the single threshold greedy
algorithm when run as follows (see also Algorithm 2 for a formal description of the algorithm):
the algorithm processes the elements of N in the order in which they arrive in the stream
and it uses the same threshold κ as StreamProcess; starting with the empty solution and
continuing until the size constraint of k is reached, the algorithm adds an element to the
current solution if its marginal gain is above the threshold. Note that Si,j = STGreedy(Vi,j)
for all i ∈ [r], j ∈ [m]. For analysis purposes only, we also consider STGreedy(N) for sets
N that do not correspond to any set Vi,j .

For each e ∈ V , we define

pe =
{

PrX∼V(1/m) [e ∈ STGreedy(X ∪ {e})] if e ∈ OPT
0 otherwise

We partition OPT into two sets:

O1 = {e ∈ OPT: pe ≥ ε} O2 = OPT \O1

We also define the following subset of O2:

O′2 = {e ∈ O2 : e /∈ STGreedy (V1,1 ∪ {e})} .

Note that (O1, O2) is a deterministic partition of OPT, whereas O′2 is a random subset of
O2. The role of the sets O1, O2, O

′
2 will become clearer in the analysis. The intuition is that,

using the repetition, we can ensure that each element of O1 ends up in the collected set
U =

⋃
i,j Si,j with good probability: each iteration i ∈ [r] ensures that an element e ∈ O1 is

in Si,1 ∪ · · · ∪ Si,m with probability pe ≥ ε and, since we repeat r = Θ(ln(1/ε)/ε) times, we
will ensure that E[1O1∩U ] ≥ (1− ε)1O1 . We also have that E

[
1O′2

]
≥ (1− ε)1O2 : an element

e ∈ O2 \O′2 ends up being picked by STGreedy when run on input V1,1∪{e}, which is a low
probability event for the elements in O2; more precisely, the probability of this event is equal
to pe (since V1,1 ∼ V(1/m)) and pe ≤ ε (since e ∈ O2). Thus E

[
1(O1∩U)∪O′2

]
≥ (1− ε)1OPT ,

which implies that the expected value of (O1 ∩ U) ∪O′2 is at least (1− ε)f(OPT). However,
whereas O1∩U is available in the post-processing phase, elements of O′2 may not be available
and they may account for most of the value of O2. The key insight is to show that S1,1
makes up for the lost value from these elements.

We start the analysis with two helper lemmas, which follow from standard arguments
that have been used in previous works. The first of these lemmas follows from an argument
based on the Lovasz extension and its properties.
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I Lemma 5. Let 0 ≤ u ≤ v ≤ 1. Let S ⊆ V \OPT and O ⊆ OPT be random sets such that
E[1S ] ≤ u1V \OPT and E[1O] ≥ v1OPT. Then E[f(S ∪O)] ≥ (v − u)f(OPT).

The following lemma establishes a consistency property for the STGreedy algorithm,
analogous to the consistency property shown and used by Barbosa et al. for algorithms such
as the standard Greedy algorithm. The proof is also very similar to the proof shown by
Barbosa et al.

I Lemma 6. Conditioned on the event |S1,1| < k, we have STGreedy (V1,1 ∪O′2) =
STGreedy (V1,1) = S1,1.

We now proceed with the main analysis. Recall that PostProcess runs the algorithm
OfflineAlg on U to obtain a solution T , and returns the better of the two solutions S1,1
and T . In the following lemma, we show that the value of this solution is proportional to
f(S1,1 ∪ (O1 ∩ U)). Note that S1,1 ∪ (O1 ∩ U) may not be feasible, since we could have
|S1,1| > |O2|, and hence the scaling based on |O2|

k .

I Lemma 7. We have max {f(S1,1), f(T )} ≥ α

1+α
(

1− |O2|
k

)f(S1,1 ∪ (O1 ∩ U)).

Proof. To simplify notation, we let S1 = S1,1. Let b = |O2|. First, we analyze f(T ). Let
X ⊆ S1 be a random subset of S1 such that |X| ≤ b and E[1X ] = b

k1S1 . We can select such
a subset as follows: we first choose a permutation of S1 uniformly at random, and let X̃ be
the first s := min {b, |S1|} elements in the permutation. For each element of X̃, we add it to
X with probability p := |S1|b/(sk). For each e ∈ S1, we have

Pr[e ∈ X] = Pr
[
e ∈ X|e ∈ X̃

]
Pr
[
e ∈ X̃

]
= p

s

|S1|
= b

k

For each e /∈ S1, we have Pr[e ∈ X] = 0. Thus E[1X ] = b
k1S1 .

Since X ∪ ((O1 ∩U) \S1) is a feasible solution contained in U and OfflineAlg achieves
an α-approximation, we have

f(T ) ≥ αf(X ∪ ((O1 ∩ U) \ S1))

By taking expectation over X only (more precisely, the random sampling that we used to
select X) and using that f̂ is a convex extension, we obtain:

f(T ) ≥ αEX [f(X ∪ ((O1 ∩ U) \ S1))] = αEX
[
f̂
(
1X∪((O1∩U)\S1))]

)]
≥ αf̂

(
EX

[
1X∪((O1∩U)\S1)

])
= αf̂

(
b

k
1S1 + 1(O1∩U)\S1

)

Next, we lower bound max {f(S1), f(T )} using a convex combination (1− θ)f(S1) + θf(T )
with coefficient θ = 1/(1 + α

(
1− b

k

)
). Note that 1− θ = θα

(
1− b

k

)
. By taking this convex

combination, using the previous inequality lower bounding f(T ), and the convexity and
restricted scale invariance of f̂ , we obtain:
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max {f(S1), f(T )} ≥ (1− θ)f(S1) + θf(T ) = θα

(
1− b

k

)
f(S1) + θf(T )

≥ θα
(

1− b

k

)
f̂ (1S1) + θαf̂

(
b

k
1S1 + 1(O1∩U)\S1

)
= θα

(
2− b

k

)(1− b
k

2− b
k

f̂ (1S1) + 1
2− b

k

f̂

(
b

k
1S1 + 1(O1∩U)\S1

))

≥ θα
(

2− b

k

)
f̂

(
1− b

k

2− b
k

1S1 + 1
2− b

k

(
b

k
1S1 + 1(O1∩U)\S1

))

= θα

(
2− b

k

)
f̂

(
1

2− b
k

1S1∪(O1∩U)

)
≥ α

1 + α
(
1− b

k

)f(S1 ∪ (O1 ∩ U)). J

(We note that we chose θ to make the coefficients of 1S1 and 1(O1∩U)\S1 equal, and this
allowed us to relate the value of the final solution to f(S1 ∪ (O1 ∩ U)).)

Next, we analyze the expected value of f(S1,1 ∪ (O1 ∩ U)). We do so in two steps: first
we analyze the marginal gain of O′2 on top of S1,1 and show that it is suitably small, and
then we analyze f(S1,1 ∪ (O1 ∩ U) ∪O′2) and show that its expected value is proportional to
f(OPT). We use the notation f(A|B) to denote the marginal gain of A on top of B, i.e.,
f(A|B) = f(A ∪B)− f(B).

I Lemma 8. We have E[f (O′2|S1,1)] ≤ κb+ εf(OPT).

Proof. As before, to simplify notation, we let S1 = S1,1 and V1 = V1,1. We break down the
expectation using the law of total expectation as follows:

E[f (O′2|S1)] = E[f (O′2|S1) | |S1| < k] · Pr[|S1| < k]︸ ︷︷ ︸
≤1

+E[f (O′2|S1) | |S1| = k]︸ ︷︷ ︸
≤f(OPT)

·Pr[|S1| = k]︸ ︷︷ ︸
≤ε

≤ E[f (O′2|S1) | |S1| < k] + εf(OPT)

Above, we have used that f(O′2|S1) ≤ f(O′2) ≤ f(OPT), where the first inequality follows by
submodularity. We have also used that Pr[|S1| = k] = Pr[F1] ≤ ε. Thus it only remains to
show that E[f (O′2|S1) | |S1| < k] ≤ κb.

We condition on the event |S1| < k for the remainder of the proof. By Lemma 6, we have
STGreedy(V1 ∪O′2) = S1. Since |S1| < k, each element of O′2 \ S1 was rejected because its
marginal gain was below the threshold when it arrived in the stream. This, together with
submodularity, implies that f (O′2|S1) ≤ κ |O′2| ≤ κb. J

I Lemma 9. We have E[f(S1,1 ∪ (O1 ∩ U) ∪O′2)] ≥ (1− 2ε)f(OPT).

Proof. We apply Lemma 5 to the following sets:

S = S1,1 \OPT
O = (S1,1 ∩OPT) ∪ (O1 ∩ U) ∪O′2

We show below that E[1O] ≤ ε1V \OPT and E[1O] ≥ (1− ε)1OPT. Assuming these bounds,
we can take u = ε and v = 1− ε in Lemma 5, which gives the desired result.

Since S ⊆ S1,1 ⊆ V1,1 and V1,1 is a (1/m)-sample of V , we have E[1S ] ≤ 1
m1V \OPT =

ε1V \OPT. Thus it only remains to show that, for each e ∈ OPT, we have Pr[e ∈ O] ≥ 1− ε.
Since (O1∩U)∪O′2 ⊆ O, it suffices to show that Pr[e ∈ (O1 ∩ U) ∪O′2] ≥ 1−ε, or equivalently
that Pr[e ∈ (O1 \ U) ∪ (O2 \O′2)] ≤ ε.
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Recall that (O1, O2) is a deterministic partition of OPT. Thus e belongs to exactly one
of O1 and O2 and we consider each of these cases in turn.

Suppose that e ∈ O1. A single iteration of the for loop of StreamProcess ensures
that e is in Si,1 ∪ · · · ∪ Si,m with probability pe ≥ ε. Since we perform r = Θ(ln(1/ε)/ε)
independent iterations, we have Pr[e /∈ U ] ≤ (1− ε)r ≤ exp(−εr) ≤ ε.

Suppose that e ∈ O2. We have

Pr[e ∈ O2 \O′2] = Pr[e ∈ STGreedy (V1,1 ∪ {e})] = pe ≤ ε

where the first equality follows from the definition of O′2, the second equality follows from
the definition of pe and the fact that V1,1 ∼ V(1/m), and the inequality follows from the
definition of O2. J

Lemmas 8 and 9 immediately imply the following:

I Lemma 10. We have E[f (S1,1 ∪ (O1 ∩ U))] ≥ (1− 3ε)f(OPT)− κb.

Finally, Lemmas 7 and 10 give the approximation guarantee:

I Lemma 11. We have E[max {f(S1,1), f(T )}] ≥
(

α
1+α − 3ε

)
f(OPT).

4 Extension based algorithm

Using our extension based algorithm, we prove the following theorem.

I Theorem 12. Assume there exists an α-approximation offline algorithm OfflineAlg
for maximizing a non-negative submodular function subject to cardinality constraint whose
space complexity is nearly linear in the size of the ground set. Then, for every constant
ε ∈ (0, 1], there exists an ( α

1+α − ε)-approximation semi-streaming algorithm for maximizing
a non-negative submodular function subject to a cardinality constraint. The algorithm stores
at most O(kε−2) elements.4

In this section, we introduce a simplified version of the algorithm used to prove Theorem 12.
This simplified version (given as Algorithm 3) captures our main new ideas, but makes two
simplifying assumptions that can be avoided using standard techniques.

The first assumption is that Algorithm 3 has access to an estimate τ of f(OPT) obeying
(1− ε/8) · f(OPT) ≤ τ ≤ f(OPT). Such an estimate can be produced using well-known
techniques, at the cost of a slight increase in the space complexity of the algorithm. In
the full version of this paper we formally show that one such technique due to [21] can be
used for that purpose, and that it increases the space complexity of the algorithm only
by a factor of O(ε−1 logα−1).
The second assumption is that Algorithm 3 has value oracle access to the multilinear
extension F . If the time complexity of Algorithm 3 is not important, then this assumption
is of no consequence since a value oracle query to F can be emulated using an exponential
number of value oracle queries to f . However, the assumption becomes problematic when
we would like to keep the time complexity of the algorithm polynomial and we only have
value oracle access to f . Thus, we explain in the full version of this paper how to drop this

4 Formally, the number of elements stored by the algorithm also depends on logα−1. Since α is typically
a positive constant, or at least lower bounded by a positive constant, we omit this dependence from the
statement of the theorem.
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assumption via sampling. Interestingly, the rounding step and this sampling technique
are the only parts of the extension based algorithm that employ randomness. Since the
rounding can be made deterministic given either exponential time or value oracle access
to F , we get the following observation.

I Observation 13. If OfflineAlg is deterministic, then the algorithm whose existence
is guaranteed by Theorem 12 is also deterministic when it is allowed either exponential
computation time or value oracle access to F .

Algorithm 3 has two constant parameters p ∈ (0, 1) and c > 0 and maintains a fractional
solution x ∈ [0, 1]V . This fractional solution starts empty, and the algorithm adds to it
fractions of elements as they arrive. Specifically, when an element e arrives, the algorithm
considers its marginal contribution with respect to the current fractional solution x. If this
marginal contribution exceeds the threshold of cτ/k, then the algorithm tries to add to x a
p-fraction of e, but might end up adding a smaller fraction of e if adding a full p-fraction of
e to x will make x an infeasible solution, i.e., make ‖x‖1 > k (note that ‖x‖1 is the sum of
the coordinates of x).

After viewing all of the elements, Algorithm 3 uses the fractional solution x to generate
two sets S1 and S2 that are feasible (integral) solutions. The set S1 is generated by rounding
the fractional solution x. Two rounding procedures, named Pipage Rounding and Swap
Rounding, were suggested for this task in the literature [8, 12]. Both procedures run in
polynomial time and guarantee that the output set S1 of the rounding is always feasible,
and that its expected value with respect to f is at least the value F (x) of the fractional
solution x. The set S2 is generated by applying OfflineAlg to the support of the vector x,
which produces a feasible solution that (approximately) maximizes f among all subsets of
the support whose size is at most k. After computing the two feasible solutions S1 and S2,
Algorithm 3 simply returns the better one of them.

Algorithm 3 StreamProcessExtension (simplified) (p, c).

1 Let x← 1∅.
2 for each arriving element e do
3 if ∂eF (x) ≥ cτ

k then x← x+ min{p, k − ‖x‖1} · 1e.
4 Round the vector x to yield a feasible solution S1 such that E[f(S1)] ≥ F (x).
5 Find another feasible solution S2 ⊆ supp(x) by running OfflineAlg with supp(x)

as the ground set.
6 return the better solution among S1 and S2.

Let us denote by x̂ the final value of the fractional solution x (i.e., its value when the
stream ends). We begin the analysis of Algorithm 3 with the following useful observation.

I Observation 14. If ‖x̂‖1 < k, then x̂e = p for every e ∈ supp(x̂). Otherwise (when
‖x̂‖1 = k), this is still true for every element e ∈ supp(x̂) except for maybe a single element.

Proof. For every element e added to the support of x by Algorithm 3, the algorithm sets xe
to p unless this will make ‖x‖1 exceed k, in which case the algorithm set xe to be the value
that will make ‖x‖1 equal to k. Thus, after a single coordinate of x is set to a value other
than p (or the initial 0), ‖x‖1 becomes k and Algorithm 3 stops changing x. J
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Using the last observation we can now bound the space complexity of Algorithm 3, and
show (in particular) that it is a semi-streaming algorithm for a constant p when the space
complexity of OfflineAlg is nearly linear.

I Observation 15. Algorithm 3 can be implemented so that it stores at most O(k/p) elements.

Proof. To calculate the sets S1 and S2, Algorithm 3 needs access only to the elements
of V that appear in the support of x. Thus, the number of elements it needs to store is
O(| supp(x̂)|) = O(k/p), where the equality follows from Observation 14. J

We now divert our attention to analyzing the approximation ratio of Algorithm 3. The
first step in this analysis is lower bounding the value of F (x̂), which we do by considering
two cases, one when ‖x̂‖1 = k, and the other when ‖x̂‖1 < k. The following lemma bounds
the value of F (x̂) in the first of these cases. Intuitively, this lemma holds since supp(x̂)
contains many elements, and each one of these elements must have increased the value of
F (x) significantly when added (otherwise, Algorithm 3 would not have added this element
to the support of x).

I Lemma 16. If ‖x̂‖1 = k, then F (x̂) ≥ cτ .

Proof. Denote by e1, e2, . . . , e` the elements in the support of x̂, in the order of their arrival.
Using this notation, the value of F (x̂) can be written as follows.

F (x̂) = F (1∅) +
∑̀
i=1

(
F
(
x̂ ∧ 1{e1,e2,...,ei}

)
− F

(
x̂ ∧ 1{e1,e2,...,ei−1}

))
= F (1∅) +

∑̀
i=1

(
x̂ei · ∂eiF

(
x̂ ∧ 1{e1,e2,...,ei−1}

))
≥ F (1∅) + cτ

k
·
∑̀
i=1

x̂ei
= F (1∅) + cτ

k
· ‖x̂‖1 ≥ cτ ,

where the second equality follows from the multilinearity of F , and the first inequality holds
since Algorithm 3 selects an element ei only when ∂ei

F
(
x̂ ∧ 1{e1,e2,...,ei−1}

)
≥ cτ

k . The last
inequality holds since f (and thus, also F ) is non-negative and ‖x̂‖1 = k by the assumption
of the lemma. J

Consider now the case in which ‖x̂‖1 < k. Recall that our objective is to lower bound
F (x̂) in this case as well. Towards this goal, we bound the expression F (x̂+ 1OPT\supp(x̂))
from below and above in the following two lemmata.

I Lemma 17. If ‖x̂‖1 < k, then F
(
x̂ + 1OPT\supp(x̂)

)
≥ (1 − p) ·

[
p · f(OPT) + (1 − p) ·

f
(
OPT \ supp(x̂)

)]
.

Proof. Since ‖x̂‖1 < k, Observation 14 guarantees that x̂e = p for every e ∈ supp(x̂). Thus
x̂ = p · 1OPT∩supp(x̂) + p · 1supp(x̂)\OPT, and therefore,

F
(
x̂+ 1OPT\supp(x̂)

)
= F

(
p · 1OPT∩supp(x̂) + p · 1supp(x̂)\OPT + 1OPT\supp(x̂)

)
≥ (1− p) · F

(
p · 1OPT∩supp(x̂) + 1OPT\supp(x̂)

)
≥ (1− p) · f̂

(
p · 1OPT∩supp(x̂) + 1OPT\supp(x̂)

)
= (1− p) ·

[
p · f(OPT) + (1− p) · f

(
OPT \ supp(x̂)

)]
,
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where the first inequality follows from Corollary 2, the second inequality holds since the
Lovász extension lower bounds the multilinear extension, and the last equality follows from
the definition of the Lovász extension. J

In the following lemma, and the rest of the section, we use the notation b = k−1 · |OPT \
supp(x̂)|. Intuitively, the lemma holds since the fact that the elements of OPT \ supp(x̂)
where not added to the support of x implies that their marginal contribution is small.

I Lemma 18. If ‖x̂‖1 < k, then F
(
x̂+ 1OPT\supp(x̂)

)
≤ F (x̂) + bcτ .

Proof. The elements in OPT\ supp(x̂) were rejected by Algorithm 3, which means that their
marginal contribution with respect to the fractional solution x at the time of their arrival
was smaller than cτ/k. Since the fractional solution x only increases during the execution of
the algorithm, the submodularity of f guarantees that this is true also with respect to x̂.
More formally, we get

∂eF (x̂) < cτ

k
∀ e ∈ OPT \ supp(x̂) .

Using the submodularity of f again, this implies

F
(
x̂+ 1OPT\supp(x̂)

)
≤ F (x̂) +

∑
e∈OPT\supp(x̂)

∂eF (x̂) ≤ F (x̂) + |OPT \ supp(x̂)| · cτ
k

= F (x̂) + bcτ. J

Combining the last two lemmata immediately yields the promised lower bound on F (x̂).
To understand the second inequality in the following corollary, recall that τ ≤ f(OPT).

I Corollary 19. If ‖x̂‖1 < k, then F (x̂) ≥ (1−p) ·
[
p ·f(OPT)+(1−p) ·f

(
OPT\supp(x̂)

)]
−

bcτ ≥ [p(1− p)− bc]τ + (1− p)2 · f
(
OPT \ supp(x̂)

)
.

Our next step is to get a lower bound on the expected value of f(S2). One easy way
to get such a lower bound is to observe that OPT ∩ supp(x̂) is a subset of the support
of x̂ of size at most k, and thus, is a candidate to be OPT; which implies E[f(S2)] ≥
α ·f(OPT∩supp(x̂)) since the algorithm OfflineAlg used to find S2 is an α-approximation
algorithm. The following lemma proves a more involved lower bound by considering the
vector (bx̂)∨ 1OPT∩supp(x̂) as a fractional candidate to be OPT (using the rounding methods
discussed above it, it can be converted into an integral candidate of at least the same value).
The proof of the lemma lower bounds the value of the vector (bx̂) ∨ 1OPT∩supp(x̂) using the
concavity of the function F ((t · x̂) ∨ 1OPT∩supp(x̂)) as well as ideas used in the proofs of the
previous claims.

I Lemma 20. If ‖x̂‖1 < k, then E[f(S2)] ≥ αb(1− p− cb)τ + α(1− b) · f(OPT ∩ supp(x̂)).

Proof. Consider the vector (bx̂) ∨ 1OPT∩supp(x̂). Clearly,∥∥(bx̂) ∨ 1OPT∩supp(x̂)
∥∥

1 ≤ b · ‖x̂‖1 +
∥∥1OPT∩supp(x̂)

∥∥
1

≤ |OPT \ supp(x̂)|+ |OPT ∩ supp(x̂)| = |OPT| ≤ k ,

where the second inequality holds by the definition of b since ‖x̂‖1 < k. Thus, due to the
existence of the rounding methods discussed in Section 4, there must exist a set S of size
at most k obeying f(S) ≥ F ((bx̂) ∨ 1OPT∩supp(x̂)). Since S2 is produced by OfflineAlg,
whose approximation ratio is α, this implies E[f(S2)] ≥ α · F ((bx̂) ∨ 1OPT∩supp(x̂)). Thus, to
prove the lemma it suffices to show that F ((bx̂) ∨ 1OPT∩supp(x̂)) is always at least b(1− p−
cb)τ + (1− b) · f(OPT ∩ supp(x̂)).
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The first step towards proving the last inequality is getting a lower bound on F (x̂ ∨
1OPT∩supp(x̂)). Recall that we already showed in the proof of Lemma 18 that

∂eF (x̂) < cτ

k
∀ e ∈ OPT \ supp(x̂) .

Thus, the submodularity of f implies

F (x̂ ∨ 1OPT) ≤ F (x̂ ∨ 1OPT∩supp(x̂)) +
∑

e∈OPT\supp(x̂)

∂eF (x̂)

≤ F (x̂ ∨ 1OPT∩supp(x̂)) + cτ · |OPT \ supp(x̂)|
k

= F (x̂ ∨ 1OPT∩supp(x̂)) + cbτ .

Rearranging this inequality yields

F (x̂ ∨ 1OPT∩supp(x̂)) ≥ F (x̂ ∨ 1OPT)− cbτ ≥ (1− p) · f(OPT)− cbτ ≥ (1− p− cb)τ ,

where the second inequality holds by Corollary 2 since Observation 14 guarantees that every
coordinate of x̂ is either 0 or p. This gives us the promised lower bound on F (x̂∨1OPT∩supp(x̂)).

We now note that the submodularity of f implies that F ((t · x̂) ∨ 1OPT∩supp(x̂)) is a
concave function of t within the range [0, 1]. Since b is inside this range,

F ((bx̂) ∨ 1OPT∩supp(x̂)) ≥ b · F (x̂ ∨ 1OPT∩supp(x̂)) + (1− b) · f(OPT ∩ supp(x̂))
≥ b(1− p− cb)τ + (1− b) · f(OPT ∩ supp(x̂)) ,

which completes the proof of the lemma. J

Using the last two claims we can now obtain a lower bound on the value of the solution
of Algorithm 3 in the case of ‖x̂‖1 < k which is a function of α, τ and p alone. We note
that both the guarantees of Corollary 19 and Lemma 20 are lower bounds on the expected
value of the output of the algorithm in this case since E[f(S1)] ≥ F (x̂). Thus, any convex
combination of these guarantees is also such a lower bound, and the proof of the following
corollary basically proves a lower bound for one such convex combination – for the specific
value of c stated in the corollary.

I Corollary 21. If ‖x̂‖1 < k and c is set to α(1−p)
α+1 , then E[max{f(S1), f(S2)}] ≥ (1−p)ατ

α+1 .

Proof. The corollary follows immediately from the non-negativity of f when p = 1. Thus,
we may assume p < 1 in the rest of the proof.

By the definition of S1, E[f(S1)] ≥ F (x̂). Thus, by Corollary 19 and Lemma 20,

E[max{f(S1), f(S2)}] ≥ max{E[f(S1)],E[f(S2)]}
≥ max{[p(1− p)− bc]τ + (1− p)2 · f

(
OPT \ supp(x̂)

)
,

αb(1− p− cb)τ + α(1− b) · f(OPT ∩ supp(x̂))}

≥ α(1− b)
α(1− b) + (1− p)2 ·

[
[p(1− p)− bc]τ + (1− p)2 · f

(
OPT \ supp(x̂)

)]
+ (1− p)2

α(1− b) + (1− p)2 · [αb(1− p− cb)τ + α(1− b) · f(OPT ∩ supp(x̂))] .

To keep the following calculations short, it will be useful to define q = 1−p and d = 1−b. Using
this notation and the fact that the submodularity and non-negativity of f guarantee together
f
(
OPT \ supp(x̂)

)
+ f

(
OPT ∩ supp(x̂)

)
≥ f(OPT) ≥ τ , the previous inequality implies
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E[max{f(S1), f(S2)}]
ατ

≥ (1− b)[p(1− p)− bc] + b(1− p)2(1− p− bc) + (1− b)(1− p)2

α(1− b) + (1− p)2

= d[q(1− q)− (1− d)c] + q2(1− d)[q − (1− d)c] + dq2

αd+ q2

= d[q − (1− d)c] + q2(1− d)[q − (1− d)c]
αd+ q2 = [d+ q2(1− d)][q − (1− d)c]

αd+ q2

= q[d+ q2(1− d)](dα+ 1)
(α+ 1)(dα+ q2) = d2α+ dαq2 − d2αq2 + d+ q2 − dq2

dα+ q2 · q

α+ 1 , (1)

where the fourth equality holds by plugging in the value we assume for c.
The second fraction in the last expression is independent of the value of d, and the

derivative of the first fraction in this expression as a function of d is

(2dα+ αq2 − 2dαq2 + 1− q2)[dα+ q2]− α(d2α+ dαq2 − d2αq2 + d+ q2 − dq2)
[dα+ q2]2

= 1− q2

[dα+ q2]2 · [q
2(1− α) + dα(dα+ 2q2)] ,

which is always non-negative since both q and α are numbers between 0 and 1. Thus, we get
that the minimal value of the expression (1) is obtained for d = 0 for any choice of q and α.
Plugging this value into d yields

E[max{f(S1), f(S2)}] ≥ qατ

α+ 1 = (1− p)ατ
α+ 1 . J

Note that Lemma 16 and Corollary 21 prove the same lower bound on the expecta-
tion E[max{f(S1), f(S2)}] when c is set to the value it is set to in Corollary 21 (because
E[max{f(S1), f(S2)}] ≥ E[f(S1)] ≥ F (x̂)). Thus, we can summarize the results we have
proved so far using the following proposition.

I Proposition 22. Algorithm 3 is a semi-streaming algorithm storing O (k/p) elements.
Moreover, for the value of the parameter c given in Corollary 21, the output set produced by
this algorithm has an expected value of at least ατ(1−p)

α+1 .

Using the last proposition, we can now prove the following theorem. As discussed at the
beginning of the section, in the full version of this paper we explain how the assumption that
τ is known can be dropped at the cost of increasing of a slight increase in the number of of
elements stored by the algorithm, which yields Theorem 12.

I Theorem 23. For every constant ε ∈ (0, 1], there exists a semi-streaming algorithm that
assumes access to an estimate τ of f(OPT) obeying (1− ε/8) · f(OPT) ≤ τ ≤ f(OPT) and
provides ( α

1+α − ε)-approximation for the problem of maximizing a non-negative submodular
function subject to cardinality constraint. This algorithm stores at most O(kε−1) elements.

Proof. Consider the algorithm obtained from Algorithm 3 by setting p = ε/2 and c as is set
in Corollary 21. By Proposition 22, this algorithm stores only O(k/p) = O(kε−1) elements,
and the expected value of its output set is at least

ατ(1− p)
α+ 1 ≥ α(1− ε/8)(1− ε/2)

α+ 1 ·f(OPT) ≥ α(1− ε)
α+ 1 ·f(OPT) ≥

(
α

α+ 1 − ε
)
·f(OPT) ,

where the first inequality holds since τ obeys, by assumption, τ ≥ (1− ε/8) · f(OPT). J
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Further discussion. Before concluding, let us discuss in more detail the value that should
be assigned to the parameter p of Algorithm 3. In the proof of Theorem 23, we chose p to
be very small. This makes sense whenever α is independent of p since the formula given
by Proposition 22 for the guaranteed value of the output is non-increasing in p. However,
for some choices of OfflineAlg the value of α might depend on p, and thus, it might be
beneficial to choose a value for p which is not very small. To see why α might depend on
p, note that the input passed to OfflineAlg by Algorithm 3 is of size at most dk/pe due
to Observation 14; and therefore, the ratio between the size of the ground set and k in this
input is roughly 1/p. Hence, α depends on p if the approximation ratio of OfflineAlg
depends on the above ratio; which is the case, e.g., for one of the algorithms described in [6].

As a corollary of the above discussion, we get that for some offline algorithms a smart choice
of p can yield a better approximation guarantee than the one stated in Theorem 23. At the
current point this corollary is not very useful since the state-of-the-art offline approximation
algorithm has an approximation ratio which is independent of p; however, this might change
in the future.
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