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Abstract
While 3-SAT is NP-hard, 2-SAT is solvable in polynomial time. Austrin, Guruswami, and Håstad
[FOCS’14/SICOMP’17] proved a result known as “(2 + ε)-SAT is NP-hard”. They showed that the
problem of distinguishing k-CNF formulas that are g-satisfiable (i.e. some assignment satisfies at
least g literals in every clause) from those that are not even 1-satisfiable is NP-hard if g

k
< 1

2 and is
in P otherwise. We study a generalisation of SAT on arbitrary finite domains, with clauses that are
disjunctions of unary constraints, and establish analogous behaviour. Thus we give a dichotomy for
a natural fragment of promise constraint satisfaction problems (PCSPs) on arbitrary finite domains.
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1 Introduction

It is a classic result that while 3-SAT is NP-hard [12, 22], 2-SAT can be solved in polynomial-
time [21]. Austrin, Guruswami, and Håstad [2] considered the promise problem (1, g, k)-SAT
(for integers 1 ≤ g ≤ k): given a k-CNF formula with the promise that there is an assignment
that satisfies at least g literals in each clause, find an assignment that satisfies at least one
literal in each clause. They showed that the problem is NP-hard if gk <

1
2 and in P otherwise.

Viewing k-SAT as (1, 1, k)-SAT, this shows that, in a natural sense, the transition from
tractability to hardness occurs just after 2 and not just before 3.
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17:2 The Complexity of Promise SAT on Non-Boolean Domains

The set-satisfiability (SetSAT) problem generalises the Boolean satisfiability problem
to larger domains and we prove that it exhibits an analogous hardness transition. As in
(a, g, k)-SAT, for integer constants 1 ≤ a ≤ g ≤ k and 1 ≤ s < d, an instance of the
(a, g, k)-SetSAT problem is a conjunction of clauses, where each clause is a disjunction of k
literals. However, variables x1, . . . , xn can take values in a larger domain [d] = {1, . . . , d},
while literals take the form “xi ∈ S”, where S is any subset of the domain [d] of size s.
As in the Boolean case, an assignment σ : {x1, . . . , xn} → [d] is g-satisfying if it satisfies at
least g literals in every clause. In (a, g, k)-SetSAT with set size s and domain size d, given
an instance promised to be g-satisfiable, we are to find an a-satisfying assignment. When
s = 1 and d = 2 we recover Boolean promise SAT, whereas when a = g = 1 we recover the
non-promise version of SetSAT.

The most natural case of SetSAT is when we allow all nontrivial unary constraints (sets)
as literals, i.e., the case s = d− 1. (While we defined sets defining literals to have size exactly
s, one can simulate sets of size at most s by replacing them with all possible supersets of
size s; see the proof of [9, Proposition A.5]). More generally one could consider the problem
restricted to any family of literals. Our work deals with the “folded” case: if a set S is
available as a literal, then for all permutations of the domain π, π(S) is also available as
a literal. In this case only the cardinality of S matters, and in fact only the maximum
available cardinality matters, so all such problems are equivalent to (a, g, k)-SetSAT, for
some constants a, g, k, s, d.

1.1 Related work
Our main motivation to study SetSAT as a promise problem is the fact that it constitutes
a natural fragment of so-called promise constraint satisfaction problems (PCSPs), which
are problems defined by homomorphisms between relational structures (see Section 2 for
more details). PCSPs were studied as early as in the classic work of Garey and Johnson [16]
on approximate graph colouring, but a systematic study originated in the paper of Austrin
et al. [2]. In a series of papers [5, 6, 7], Brakensiek and Guruswami linked PCSPs to the
universal-algebraic methods developed for the study of non-uniform CSPs [4]. In particular,
the notion of (weak) polymorphisms, formulated in [2], allowed some ideas developed for
CSPs to be used in the context of PCSPs. The algebraic theory of PCSPs was then lifted to
an abstract level by Barto, Bulín, Krokhin, and Opršal in [10, 3]. Consequently, this theory
was used by Ficak, Kozik, Olšák, and Stankiewicz to obtain a dichotomy for symmetric
Boolean PCSPs [15], thus improving on an earlier result from [6], which gave a dichotomy
for symmetric Boolean PCSPs with folding. Further resent results on PCSPs include the
work of Krokhin and Opršal [20], Brakensiek and Guruswami [8], and Austrin, Bhangale,
and Potukuchi [1].

Variants of the Boolean satisfiability problem over larger domains have been defined using
CNFs by Gil, Hermann, Salzer, and Zanuttini [17] and DNFs by Chen and Grohe [11] but,
as far as we are aware, have not been studied as promise problems before.

1.2 Results
We completely resolve the complexity of (a, g, k)-SetSAT. As our main result, we show that
the complexity of (1, g, k)-SetSAT depends only on the ratio g

k .

I Theorem 1. (1, g, k)-SetSAT with set size s and domain size s+1 is solvable in polynomial
time if g

k ≥
s
s+1 and is NP-hard otherwise.
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Our result generalises the case of (1, g, k)-SAT, where s = 1 and the hardness threshold
is 1

2 . The general case, when a 6= 1 or d > s + 1, follows by simple reductions (cf. [9,
Corollary A.4]). The positive side of the theorem is proved by a simple randomised algorithm
based on classical work of Papadimitriou [23], just as in the Boolean case. The main difficulty
is in proving NP-hardness when the ratio g

k is close to, but below s
s+1 .

Following [2] and the more abstract algebraic framework of [3], the hardness proof relies
on understanding polymorphisms, i.e., high-arity functions f : [d]n → [d] which describe the
symmetries of our computational problem. In the Boolean case, the proof of [2] relies on
showing that every polymorphism depends on only a few variables (in other words, is a
junta), and that this condition suffices for a reduction from the gap label cover problem.
In our case, this condition does not hold, and neither do the various generalisations of it
used in later work on PCSPs [15, 3, 20]. In fact, we show in [9, Section 6] that SetSAT has
significantly richer, more robust polymorphisms, which makes the application of many such
conditions impossible. Our main technical contribution is a new condition that guarantees
an NP-hardness reduction from a multilayered variant of the gap label cover problem.

As in previous work, the combinatorial core of our NP-hardness results for SetSAT relies
on identifying, in every polymorphism f : [d]n → [d], a small set of distinguished coordinates.
The rough idea is that a polymorphism encodes a 1-in-n choice analogously to the long code,
and the reduction relies on being able to decode f with small ambiguity.

The set of distinguished coordinates could be, in the simplest case, those on which f

depends (called essential coordinates) and, as shown in [2], a small set of essential coordinates
is sufficient for hardness of (1, g, k)-SAT if g

k <
1
2 . More generally, the distinguished set

S could be such that some partial assignment to S makes f constant (as a function of its
remaining coordinates), or restricts the range of f (called fixing [2, 15] and avoiding [3] sets,
respectively). As shown in [9, Section 6], the polymorphisms of SetSAT on non-Boolean
domains do not have small sets of coordinates that are essential, fixing, or avoiding. Instead,
in this paper we introduce the notion of a smug set of f . We say that a set S ⊆ [n] is smug
if for some input (a1, . . . , an) to f , the coordinates i whose values ai agree with the output
f(a1, . . . , an) are exactly those in S. We show that every polymorphism of SetSAT has a
smug set of constant size (independent of n) and cannot have many disjoint smug sets.

In previous work, it was crucial that essential coordinates respect minors. We say that (an
m-ary function) g is a minor of (an n-ary function) f if g(x1, . . . , xm) ≈ f(xπ(1), . . . , xπ(n))
for some π : [n]→ [m] (that is, g is obtained from f by identifying or permuting coordinates of
f , or introducing inessential coordinates). In that case, if S contains all essential coordinates
of f , then π(S) contains all essential coordinates of g. This does not hold for smug sets;
instead, if S is a smug set of g, then its pre-image π−1(S) is a smug set of f . The pre-image
may however be much larger. Still, these properties of smug sets are enough to guarantee
that, in any sufficiently long chain of minors, if one chooses a random coordinate in a small
smug set from each function in the chain, then for some two functions in the chain the choices
will agree, respecting the minor relation between them with constant probability. We show
that this condition is sufficient to obtain NP-hardness from a layered gap label cover problem.
See Section 4 for details.

We note that several other properties of label cover variants were used before in the
context of polymorphisms. Guruswami and Sandeep [18] use “smoothness” of NP-hard
label cover instances (introduced by Khot [19]) so that a minor relation π needs to be
respected only if it is injective on a small set S. This allows them to use sets S which are
weakly fixing, i.e. the partial assignment to S which makes f constant does not necessarily
have to assign the same value to all coordinates in S. Layered label cover was introduced
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17:4 The Complexity of Promise SAT on Non-Boolean Domains

by Dinur, Guruswami, Khot, and Regev [13] to tighten the approximation hardness for
hypergraph vertex cover. In the proof of hardness of hypergraph colouring by Dinur, Regev,
and Smyth [14], as reinterpreted in [3], layered label cover is used to partition polymorphisms
into an arbitrary constant number L of parts, so that only minors within one part need
to be respected. This implies that in any chain of minors with L+ 1 functions, some two
functions will be in the same part and hence the minor between them will be respected; our
approach is hence similar, though apparently more general, in this aspect. Another feature
used in [14, 3] is that the bound on the size of a set of special coordinates or on the number
of disjoint such sets may be any subpolynomial function in n, not necessarily a constant.
These different features of NP-hard label cover instances can be combined; however, this is
not necessary for our result.

2 Preliminaries

Let [n] = {1, 2, . . . , n}. For a set A, we call R ⊆ Ak a relation of arity ar(R) = k and
f : Ak → B a function of arity ar(f) = k.

We take the domain of the variables in SetSAT to be [d] and for a fixed s < d we identify
each literal with the indicator function of some S ⊆ [d], |S| = s: S(x) = 1[x ∈ S]. For a
SetSAT instance (or formula) with n variables x1, . . . , xn, an assignment to the variables is
a function σ : {x1, . . . , xn} → [d]. An assignment σ is called a g-satisfying assignment for
an instance φ if σ satisfies at least g literals in every clause of φ. A 1-satisfying assignment
is usually simply called a satisfying assignment. A formula is called g-satisfiable if there
exists a g-satisfying assignment to its variables, and satisfiable if there exists a 1-satisfying
assignment.

The SAT problem corresponds to the SetSAT problem with d = 2 and s = 1, so SetSAT
does indeed generalise SAT. Note that every SetSAT instance is trivially unsatisfiable when
s = 0 and satisfiable when s = d, so we exclude these cases in our analysis. We now give the
formal definition of (a, g, k)-SetSAT.

I Definition 2. Let 1 ≤ s < d and 1 ≤ a ≤ g ≤ k. The (a, g, k)-SetSAT problem is the
following promise problem. In the decision version, given a SetSAT instance where each clause
has k literals, accept the instance if it is g-satisfiable and reject it if it is not a-satisfiable. In
the search version, given a g-satisfiable SetSAT instance, find an a-satisfying assignment.

We will prove hardness only for the decision version of (a, g, k)-SetSAT and tractability
only for the search version. This suffices since the decision version of (a, g, k)-SetSAT is
polynomial-time reducible to the corresponding search problem. This is discussed in [9,
Appendix A], where it is also shown how to obtain simple hardness results for SetSAT. In
particular, [9, Propositions A.1 and A.3] show that we can focus on the case of (1, g, k)-SetSAT
with d = s+ 1.

Promise CSPs

We describe how the SetSAT problem fits into the general framework of promise CSPs
(PCSPs). For a more in-depth algebraic study of PCSPs, we refer the reader to [3].

A relational structure A is a tuple (A;R1, . . . , Rm) where each Ri is a relation on A.
We say that two relational structures are similar if their relations have the same sequence
of arities. A homomorphism between similar relational structures A = (A;RA

1 , . . . , , R
A
m)

and B = (B;RB
1 , . . . , R

B
m) is a function h : A→ B such that (a1, . . . , aar(RA

i
)) ∈ RA

i implies
(h(a1), . . . , h(aar(RA

i
))) ∈ RB

i for all i. We denote this by A→ B.
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I Definition 3. Let (A,B) be a pair of similar relational structures such that there is a
homomorphism A→ B. The pair (A,B) is called the template of the promise constraint
satisfaction problem PCSP(A,B). The decision version of PCSP(A,B) is as follows:
given as input a relational structure C similar to A and B, decide whether C admits a
homomorphism to A, or does not even admit a homomorphism to B. The promise is that it
is never the case that C→ B but C 6→ A. The search problem asks to find a homomorphism
C→ B, given that there exists a homomorphism C→ A.

Since (a, g, k)-SetSAT is a PCSP where all relations have fixed arity k, it is possible to
transform SetSAT instances from their CNF representation into the PCSP representation
of Definition 3. Let f be a bijection between [dk] and the set of clauses containing k

literals (ignoring the variables they contain). We can represent each SetSAT instance Ψ as
a relational structure C = (C;RC

1 , . . . , R
C
dk ), where C = {x1, . . . , xn} is the set of variables

appearing in Ψ and RC
i is a k-ary relation corresponding to the clause f(i). For each clause

(S1(x1) ∨ . . . ∨ Sk(xk)) of type f(i) in Ψ, we add the tuple (x1, . . . , xk) to RC
i , so that each

RC
i collects the tuples of variables appearing in clauses of type f(i).
Now define RA

i (respectively RB
i ) to be the k-ary relation over [d] containing (a1, . . . , ak)

if and only if (a1, . . . , ak) g-satisfies (respectively a-satisfies) the clause f(i) when the
variable of the j-th literal of f(i) is set to aj , for 1 ≤ j ≤ k. Let A = ([d], RA

1 , . . . , R
A
dk )

and B = ([d], RB
1 , . . . , R

B
dk ). Then (a, g, k)-SetSAT is precisely PCSP(A,B): the identity

function is a homomorphism from A to B, a homomorphism C→ A represents a g-satisfying
assignment to Ψ, and a homomorphism C→ B represents an a-satisfying assignment to Ψ.

Polymorphisms

The following concept from the algebraic study of PCSPs is central to our hardness result.
Let f : Am → B be a function. We say that f is a polymorphism of the template (A,B)

if, for ā1, . . . , ām ∈ RA
i , we have that f(ā1, . . . , ām) ∈ RB

i ; here f is applied componentwise.
We will denote by Pol(A,B) the set of all polymorphisms of the template (A,B). A simple
example of a polymorphism of every template with A = B is a projection, which is a
function p

(m)
i : Am → B of the form p

(m)
i (x1, . . . , xm) = xi. More generally, for every

template, trivial polymorphisms are given by dictators, which are functions p of the form
p(x1, . . . , xm) = f(xi), where f is a homomorphism from A to B.

In particular, f : [d]m → [d] is a polymorphism of (a, g, k)-SetSAT if for every SetSAT
clause C of width k and for every tuple v̄1, . . . , v̄m ∈ [d]k of g-satisfying assignments to C,
we have that f(v̄1, . . . , v̄m) is an a-satisfying assignment to C.

3 Tractability

How big must one make the fraction of satisfied literals in order for the SetSAT problem to
become tractable? The following proposition shows that s

s+1 is sufficient.

I Proposition 4. For 1 ≤ s < d and g
k ≥

s
s+1 , (1, g, k)-SetSAT is solvable in expected

polynomial time.

Proof. Algorithm 1 finds a satisfying assignment to a g-satisfiable formula in expected
polynomial time. The algorithm and its analysis are based on [2, Proposition 6.1], which in
turn is based on Papadimitriou’s randomised algorithm for 2-SAT [23].
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17:6 The Complexity of Promise SAT on Non-Boolean Domains

Algorithm 1 Randomised algorithm for (1, g, k)-SetSAT with g
k
≥ s

s+1 .

1: x← arbitrary assignment
2: while x does not satisfy input formula φ do
3: Arbitrarily pick a falsified clause C
4: Randomly choose from C a literal S(xi)
5: Randomly choose a value for xi so that S(xi) is satisfied

return x

Suppose that φ has a g-satisfying assignment x∗. Let xt be the assignment obtained
in iteration t of the algorithm, and let Dt = dist(xt, x∗), where dist(x, y) is the Hamming
distance between x and y. Since Dt −Dt−1 ∈ {−1, 0, 1} for every t, we have

E(Dt −Dt−1) = P(Dt −Dt−1 = 1)− P(Dt −Dt−1 = −1)

≤ k − g
k
− g

k

1
s
≤ 0 if and only if g

k
≥ s

s+ 1 .

The sequence D0, D1, . . . is a random walk starting between 0 and n with steps either
unbiased or biased toward 0. With constant probability, such a walk hits 0 within n2 steps
and so the probability that the algorithm fails to find a satisfying assignment within crn2

steps is at most 2−r for some constant c. J

I Remark 5. The proof of Proposition 4 can be modified to show that Algorithm 1 also finds
a satisfying assignment when each literal corresponds to a set of size at most s. This makes
sense intuitively, as smaller literals give the algorithm a better chance of setting xi equal to
x∗i in Step 5.

We show that if gk ≥
s
s+1 then (1, g, k)-SetSAT has a specific family of polymorphisms

that leads to a deterministic algorithm based on linear programming.
A function f : Am → B is symmetric if f(a1, . . . , am) = f(aπ(1), . . . , aπ(m)) for all

a1, . . . , am ∈ A and all permutations π on [m].

I Definition 6. A symmetric function f : [d]m → [d] is a plurality if

f(x1, . . . , xm) = argmaxa∈[d]{# of occurrences of a in (x1, . . . , xm)},

with ties broken in such a way that f is symmetric.

We will also use the fact that all polymorphisms of SetSAT are conservative; i.e., they
always return one of their input values, as the following proposition shows.

I Proposition 7. All polymorphisms of (1, g, k)-SetSAT are conservative.

Proof. Let f : [d]m → [d] be such that f(a1, . . . , am) = b and b /∈ {a1, . . . , am}. If S is a literal
not containing b, then the clause (S(x1)∨. . .∨S(xk)) is g-satisfied (even k-satisfied) by setting
all xi equal to any one of the aj . Thus taking the m assignments (x1 = · · · = xk = aj)1≤j≤m
and applying f to each component, we get the assignment x1 = · · · = xk = b which clearly
does not 1-satisfy the clause, and so f cannot be a polymorphism. J

I Proposition 8. Let s ≥ 1. If g
k >

s
s+1 then every plurality function is a polymorphism

of (1, g, k)-SetSAT. If g
k = s

s+1 then every plurality function of arity m 6≡ 0 mod s+ 1 is a
polymorphism of (1, g, k)-SetSAT, and no symmetric function of arity m ≡ 0 mod s+ 1 is a
polymorphism of (1, g, k)-SetSAT.
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Proof. Let f be a plurality function of arity m. Given m g-satisfying assignments to a clause
of width k, we are guaranteed to have at least mg satisfying values among the mk total
values. Therefore there is a coordinate i, 1 ≤ i ≤ k, containing at least

⌈
mg
k

⌉
satisfying

values, that is, at least
⌈
mg
k

⌉
values not equal to the value b forbidden by the i-th literal of

the clause. In order for f to be a polymorphism it suffices that
⌈
mg
k

⌉
> s

s+1m, since then b
will appear fewer than m

s+1 times and will never be returned using the plurality rule. But
g
k >

s
s+1 is equivalent to mg

k > s
s+1m, and the latter implies that

⌈
mg
k

⌉
> s

s+1m, so f is a
polymorphism.

In the case that g
k = s

s+1 , the same argument works so long as mg
k is not an integer, since

by taking the ceiling we obtain a value strictly greater than s
s+1m. Since g

k = s
s+1 , we have

g
km = s

s+1m and this is an integer only if m is a multiple of s+ 1.
To show that there are no symmetric polymorphisms when g

k = s
s+1 and m is a multiple of

s+ 1, note that this equality implies that k is divisible by s+ 1. Let M be the (s+ 1)× (s+ 1)
matrix whose first row is 12 · · · s+ 1 and whose i-th row for 2 ≤ i ≤ s+ 1 is obtained from the
(i− 1)-st row by shifting it cyclically to the left by one coordinate. We stack k

s+1 copies of M
on top of each other and take m

s+1 copies of this stack side-by-side to form the k ×m matrix
M ′. If f is symmetric, it returns the same value b when applied to each row of M ′. Every
column of M ′ satisfies exactly an s

s+1 -fraction of the literals in a clause whose k literals all
forbid b. On the other hand, the assignment produced by applying f to each row of M ′ does
not even 1-satisfy this clause, so f is not a polymorphism. J

Proposition 8 has interesting consequences for solvability of (1, g, k)-SetSAT via linear
programming relaxations. By [3, Theorem 7.9], (1, g, k)-SetSAT is solvable by the basic
linear programming relaxation if gk >

s
s+1 (since there exist symmetric polymorphisms of all

arities) but not solvable by the basic linear programming relaxation if gk = s
s+1 (since there

do not exist symmetric polymorphisms of all arities). By [8, Theorem 3.1], (1, g, k)-SetSAT
is solvable by the combined basic linear programming and affine relaxation if gk ≥

s
s+1 (since

there exist symmetric polymorphisms of infinitely many arities). We note that iterative
rounding of the basic linear relaxation could also be used to get a deterministic algorithm
as in [2].

4 Layered label cover and smug sets

An `-layered label cover instance is a sequence of ` + 1 sets X0, . . . , X` (called layers) of
variables with range [m], for some domain size m ∈ N, and a set of constraints Φ. Each
constraint is a function (often called a projection constraint) from a variable x ∈ Xi to a
variable in a further layer y ∈ Xj , i < j: that is, a function denoted φx→y which is satisfied
by an assignment σ : X0 ∪ · · · ∪X` → [m] if σ(y) = φx→y(σ(x)). A chain is a sequence of
variables xi ∈ Xi for i = 0, . . . , ` such that there are constraints φxi→xj

between them, for
i < j. A chain is weakly satisfied if at least one of these constraints is satisfied.

The basis for our hardness result is the hardness of distinguishing fully satisfiable instances
from those where no constant fraction of chains can be weakly satisfied. This follows by a
simple adaptation of a reduction from the work of Dinur, Guruswami, Khot, and Regev [13],
which we defer to the full version [9, Appendix B].

I Theorem 9. For every ` ∈ N and ε > 0, there is an m ∈ N such that it is NP-hard to
distinguish `-layered label cover instances with domain size m that are fully satisfiable from
those where not even an ε-fraction of all chains is weakly satisfied.
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17:8 The Complexity of Promise SAT on Non-Boolean Domains

In order to use Theorem 9 to derive hardness for PCSPs, we use the algebraic approach:
every PCSP is equivalent to a promise problem about satisfying minor conditions with
polymorphisms. We give definitions first, following [3], to where we refer the reader for a
more detailed exposition.

For f : An → B, g : Am → B and π : [n]→ [m], we say that g is the minor of f obtained
from π if

g(x1, . . . , xm) ≈ f(xπ(1), . . . , xπ(n)), (1)

where g ≈ f means that the values of g and f agree on every input in Am. We write f π−→ g

as a shorthand for (1). For π : [n]→ [m], the expression f π−→ g is called a minor identity.
A minion on a pair of sets (A,B) is a non-empty set of functions from An to B (for

n ∈ N) that is closed under taking minors.
A bipartite minor condition is a finite set Σ of minor identities where the sets of function

symbols used on the left- and right-hand sides are disjoint. More precisely, Σ is a pair of
disjoint sets U and V of function symbols of arity n and m, respectively, and a set of minor
identities of the form f

π−→ g, where g ∈ U , f ∈ V and π : [n] → [m]. A bipartite minor
condition Σ is satisfied in a minionM if there is an assignment ξ : U ∪ V →M that assigns
to each function symbol a function from M of the corresponding arity so that for every
identity f π−→ g in Σ, we have ξ(f) π−→ ξ(g) inM. A bipartite minor condition is called trivial
if it is satisfied in every minion, or equivalently, in the minion consisting of all projections
on {0, 1}. Since choosing a projection of arity n is the same as choosing an element of [n],
deciding whether a bipartite minor condition is trivial is the same as standard label cover.

We can now define the promise satisfaction of a minor condition problem. For a minion
M and an integer m, PMCM(m) is the following promise problem: given a bipartite minor
condition Σ that involves only symbols of arity at most m, the answer should be YES if
Σ is trivial and NO if Σ is not satisfiable in M (the promise is that either of those two
cases holds, i.e. an algorithm can behave arbitrarily otherwise). Barto et al. [3] show that
PCSP(A,B) is log-space equivalent to PMCM(m), forM = Pol(A,B) and m a constant
depending on A only.

A final piece of notation before we prove a corollary of Theorem 9. A chain of minors is
a sequence of the form f0

π0,1−−→ f1
π1,2−−→ . . .

π`−1,`−−−−→ f`. We shall then write πi,j : [ar(fi)] →
[ar(fj)] for the composition of πi,i+1, . . . , πj−1,j , for any 0 ≤ i < j ≤ `. Note that fi

πi,j−−→ fj .

I Corollary 10 (of Theorem 9). Let M be a minion. Suppose there are constants k, ` ∈ N
and an assignment of a set of at most k coordinates sel(f) ⊆ [ar(f)] to every f ∈M such that
for every chain of minors f0

π0,1−−→ f1
π1,2−−→ . . .

π`−1,`−−−−→ f`, there are 0 ≤ i < j ≤ ` such that
πi,j(sel(fi)) ∩ sel(fj) 6= ∅. Then PMCM(m) is NP-hard, for m large enough. In particular,
ifM = Pol(A,B), then PCSP(A,B) is NP-hard.

Proof. For `, k as in the assumption, let ε := 1
k and let m be as given by Theorem 9. We

reduce an `-layered label cover instance by replacing each variable x with a symbol fx of arity
m and each constraint φx→y : [m]→ [m] by the minor condition fx

φx→y−−−→ fy. If the original
instance was fully satisfiable, the new instance is trivial (i.e., fully satisfiable by projections).

If the constructed instance is satisfied by functions in the minion M, we define an
assignment to the original instance by selecting, for each variable x, a random coordinate
from sel(fx) ⊆ [m] (uniformly, independently). The assumption guarantees a set of constraints
φx→y such that (1) each chain contains at least one and (2) for each such constraint φx→y, we
have φx→y(sel(fx)) ∩ sel(fy) 6= ∅. The random choice then satisfies each of these constraints,
and hence weakly satisfies each chain, with probability at least 1

k = ε. The expected fraction
of weakly satisfied chains is thus at least ε and a standard maximisation-of-expectation
procedure deterministically finds an assignment which certifies this. J
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The following definition is crucial to our results.

I Definition 11. For a function f : Aar(f) → B we say that a set of coordinates S ⊆ [ar(f)]
is a smug set if there is an input vector v̄ ∈ Aar(f) such that S = {i | vi = f(v̄)}.

We will use the following to prove hardness of (1, g, k)-SetSAT.

I Corollary 12. Let M be a minion. Suppose there are constants k, ` ∈ N such that the
following holds, for every f ∈M:

f has a smug set of at most k coordinates,
f has no family of more than ` (pairwise) disjoint smug sets,
if f π−→ g and S is a smug set of g, then π−1(S) is a smug set of f .

Then PMCM(m) is NP-hard, for m large enough. In particular, if M = Pol(A,B), then
PCSP(A,B) is NP-hard.

Proof. For each f ∈M, we define sel(f) as a smug set of at most k coordinates, arbitrarily
chosen (some such set exists by the first condition). Consider a chain f0

π0,1−−→ f1
π1,2−−→

. . .
π`−1,`−−−−→ f`. Suppose to the contrary that for each 0 ≤ i < j ≤ `, πi,j(sel(fi)) is

disjoint from sel(fj), or equivalently, that sel(fi) is disjoint from π −1
i,j (sel(fj)). This implies

that π −1
0,i (sel(fi)) is disjoint from π −1

0,i (π −1
i,j (sel(fj))) = π −1

0,j (sel(fj)). That is, the sets
π −1

0,i (sel(fi)) for i = 0 . . . ` are pairwise disjoint. By the third condition they are smug sets
of f0. But by the second condition this is impossible. J

We note that in the proof of Corollary 12, the exact definition of “smug” is irrelevant, as
long as it satisfies the above three conditions.

It is easy to check that the definition of “smug” satisfies the third condition for any
functions f π−→ g, not necessarily polymorphisms. Indeed, if an input v̄ ∈ Aar(g) to g gives
a smug set S = {j | vj = g(v̄)}, then the corresponding input ū ∈ Aar(f) to f defined as
ui := vπ(i) satisfies f(ū) = g(v̄) and hence gives a smug set {i | ui = f(ū)} = {i | vπ(i) =
g(v̄)} = {i | π(i) ∈ S} = π−1(S).

The definition of “smug” is particularly well-suited to our problem, because whether f is
a polymorphisms or not depends only on its family of smug sets.

I Lemma 13. Let 1 ≤ s and 1 ≤ g < k. A function f : [s+ 1]m → [s+ 1] is a polymorphism
of (1, g, k)-SetSAT if and only if there is no multiset S1, . . . , Sk of smug sets of f , such that
each coordinate ` ∈ [m] is contained in at most k − g of them.

3 3 3 3 3 1 1 2 1 2
3 3 2 2 1 1 2 2 3 3
3 3 2 2 1 1 1 2 3 3
1 2 1 2 1 2 1 2 3 3
1 2 1 2 1 2 1 2 3 3

k = 5

m

−→ 3
f

−→ 2
−→ 1
−→ 3
−→ 3

ō

clause
x1 6= 3
x2 6= 2
x3 6= 1
x4 6= 3
x5 6= 3

∨
∨
∨
∨

b̄

Figure 1 Illustration of Lemma 13. Smug sets S ⊆ [m] are highlighted in each row.

Proof. A function f : [s+ 1]m → [s+ 1] is not a polymorphism if and only if there is a clause
of the form x1 6= b1 ∨ · · · ∨ xk 6= bk (for some column vector b̄ ∈ [s+ 1]k) and a sequence of
m column vectors v̄1, . . . , v̄m ∈ [s + 1]k each of which g-satisfies the clause, but for which
the vector ō = f(v̄1, . . . , v̄m) (with f applied coordinatewise) does not even 1-satisfy the
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clause. The latter is equivalent to saying that oi = bi for i ∈ [k], that is, applying f to the
i-th row gives f(v1

i , . . . , v
m
i ) = bi. The former is equivalent to saying that for each column

v̄ in v̄1, . . . , v̄m, the condition vi 6= bi holds for at least g indices i ∈ [k] of that column.
The two are hence equivalent to saying that for each column v̄`, ` ∈ [m], the condition
v`i = f(v1

i , . . . , v
m
i ) holds for at most k − g indices i ∈ [k] in that column. In other words,

the k row vectors (v1
i , . . . , v

m
i ) for i ∈ [k] have smug sets such that ` is contained in at most

k − g of these sets, for each coordinate ` ∈ [m]. J

Checking the second condition for polymorphisms of our SetSAT problem is easy.

I Lemma 14. For every polymorphism f of (1, g, k)-SetSAT with domain size s + 1, if
S1, . . . , Sn are disjoint smug sets of f , then n < k

k−g .

Proof. Suppose to the contrary that n ≥ k
k−g . Then we can build a multiset containing each

Si up to k − g times until we have exactly k in total. We thus obtain a multiset of k smug
sets such that every coordinate is contained in at most k − g of them. J

5 Finding small smug sets

It is easy to show NP-hardness when g
k ≤

1
2 (cf. [9, Proposition A.8]). We now show a general

reduction by finding a small smug set for (1, g, k)-SetSAT whenever g
k <

s
s+1 .

Consider a polymorphism f : [s+ 1]m → [s+ 1] of (1, g, k)-SetSAT (with set size s and
domain size s+ 1).

I Lemma 15. There exists a smug set of size at most s−1, or a family of s disjoint minimal
smug sets S1, . . . , Ss.

Proof. Suppose that every smug set has size at least s. We show by induction on t that
there is a family of t disjoint minimal smug sets S1, . . . , St. Suppose we found S1, . . . , St for
some 0 ≤ t < s and we want to find St+1. Let T be a set containing one arbitrary coordinate
from each Si, i = 1 . . . t. Let v̄ ∈ [s+ 1]m be the input vector with values t+ 2 on T , i on
Si \T (for i = 1 . . . t) and t+ 1 on the remaining coordinates R := [m] \ (S1 ∪ · · · ∪St). Since
|T | ≤ t < s, T is not smug, so f(v̄) 6= t+ 2. By minimality, Si \T are not smug for i = 1 . . . t,
so f(v̄) 6= i. Therefore, by conservativity of f (Proposition 7), the only remaining option is
f(v̄) = t+ 1. Thus R is smug and disjoint from Si. Taking St+1 to be a minimal smug set
contained in R proves the induction step. J

Together with Lemma 14, Lemma 15 already establishes (via Corollary 12) NP-hardness
when s ≥ k

k−g = g
k−g + 1 (equivalently, gk ≤

s−1
s ): since there cannot be s disjoint smug sets,

every polymorphism has a smug set of size at most s − 1. The proof in the general case,
when g

k <
s
s+1 , extends this approach by first finding (assuming there are no small smug

sets) disjoint minimal smug sets S1, . . . , Ss, then exploiting the fact that each has a special
coordinate whose removal makes it not smug, and using these coordinates to find further
variants of each Si with new special coordinates.

I Lemma 16. Let gk <
s
s+1 (equivalently, s > g

k−g ). Every polymorphism of (1, g, k)-SetSAT
on s has a smug set of size at most g.

Proof. Consider a polymorphism f : [s + 1]m → [s + 1] of (1, g, k)-SetSAT. We prove by
induction on t that there is a smug set of size at most t− 1, or there is a sequence of smug
sets S1, . . . , St and a set T such that (see Figure 2):
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(i) |T | = t and |T ∩ Si| = 1 for i = 1 . . . t (hence Si ∩ T 6= Si′ ∩ T for i 6= i′);
(ii) Si \ T is not smug for i = 1 . . . t;
(iii) Si ∩ Si′ = ∅ if i 6≡ i′ mod s;
(iv) Si ⊇ Si−s \ T for i > s.

t

m

S1

Ss
Ss+1

S2s

Ss+1

S2s
S2s+1 S2s+1 S2s+1

v̄ = 1 1 T 2 2 T T s s T 1 1 T 2 2 T T s T 1 1 T 2 2

Figure 2 Illustration of smug sets obtained in the proof of Lemma 16. Each row represents one
of the sets in the sequence S1, . . . , St. The set T is formed by coordinates with a T and get values
s+ 1. The vector v̄ is used to find the next row St+1.

By Lemma 15 we can start with t = s (by taking any T containing one coordinate from
each Si). Suppose the above is true for t ≥ s and let us prove the same for t+ 1. If there is a
smug set of size at most t then we are done, so assume that T is not smug. Let v̄ ∈ [s+ 1]m
be the input vector with value s+ 1 on T and different values from {1, . . . , s} on St−i \ T
for i = 0 . . . s− 2 and on the set of remaining coordinates R := [m] \ (St ∪ · · · ∪ St−s+2 ∪ T ).
Then by (ii), R is smug.

Observe that R contains St−s+1 \ T , because St, . . . , St−s+2, T are disjoint from that set
by (iii). We define St+1 to be a minimal subset of R among smug sets containing St−s+1 \ T .
By (ii) St−s+1 \ T itself is not smug, so there exists some coordinate ` in St+1 \ St−s+1. We
choose it arbitrarily and set T ′ := T ∪ {`}.

We claim that the sequence of smug sets S1, . . . , St+1 and the set T ′ satisfy the above
conditions. By minimality St+1 \T ′ is not smug, so it satisfies (ii) and by definition it satisfies
(iv). The set St+1 is disjoint from St, . . . , St−s+2, T , because R was. It is also disjoint from
Si for i 6≡ t+ 1 mod s, because for every such i, Si \ T is contained in one of St, . . . , St−s+2;
this proves (iii). In particular ` is not contained in any of these sets, and since it is not
contained in St−s+1, it is in fact not contained in any Si with i < t+ 1. Hence |T ′| = t and
|T ′ ∩ Si| = |T ∩ Si| = 1 for i < t+ 1. Clearly also |T ′ ∩ St+1| = |{`}| = 1. Therefore, (i) is
satisfied, concluding the inductive proof.

Let us now consider sets as guaranteed above for t = g + 1 (assuming there is no smug
set of size at most g). Let v̄ ∈ [s+ 1]m be the input vector with value i+ 1 on St−i \ T for
i = 0 . . . s−1, and value s+1 on the remaining coordinates R := ([m] \ (St ∪ · · · ∪ St−s+1))∪T .
By (ii) the sets St−i \ T are not smug, so R is smug. We claim that the multiset obtained
from {S1, . . . , St} by adding (k − g − 1) copies of the set R contradicts Lemma 13: that is,
each coordinate in [m] is covered at most k − g times by this multiset.

Consider first the coordinates contained in R. By definition of R, they are disjoint from
St−i \ T for i = 0 . . . s− 1. By (iv), they are also disjoint from all sets Si \ T for i = 0 . . . t,
because every such set is contained in one of the former. Hence if a coordinate in R is also
contained in one of S1, . . . , St, then it is contained in T and therefore in at most one of
S1, . . . , St, by (i). In total, it is thus covered at most (k − g − 1) + 1 = k − g times.
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Consider now coordinates outside of R. By (iii), they can be covered only by sets
Si with congruent indices i mod s. Since s > g

k−g , we have s(k − g) > g, so there are
t = g + 1 ≤ s(k − g) distinct indices in total in {1, . . . , t}. Hence at most k − g of them can
be pairwise congruent to each other mod s. Thus coordinates outside of R are also covered
at most k − g times. J

This concludes the proof that smug sets satisfy the first condition of Corollary 12 for
polymorphisms of (1, g, k)-SetSAT with set size s and domain size s+ 1, assuming g

k <
s
s+1 .

Therefore, the problem is NP-hard. The full dichotomy then follows by simple reductions,
see [9, Corollary A.4].
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