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Abstract
We consider the problem of designing sublinear time algorithms for estimating the cost of minimum
metric traveling salesman (TSP) tour. Specifically, given access to a n× n distance matrix D that
specifies pairwise distances between n points, the goal is to estimate the TSP cost by performing
only sublinear (in the size of D) queries. For the closely related problem of estimating the weight of
a metric minimum spanning tree (MST), it is known that for any ε > 0, there exists an Õ(n/εO(1))
time algorithm that returns a (1+ε)-approximate estimate of the MST cost. This result immediately
implies an Õ(n/εO(1)) time algorithm to estimate the TSP cost to within a (2 + ε) factor for any
ε > 0. However, no o(n2) time algorithms are known to approximate metric TSP to a factor that is
strictly better than 2. On the other hand, there were also no known barriers that rule out existence
of (1 + ε)-approximate estimation algorithms for metric TSP with Õ(n) time for any fixed ε > 0. In
this paper, we make progress on both algorithms and lower bounds for estimating metric TSP cost.

On the algorithmic side, we first consider the graphic TSP problem where the metric D

corresponds to shortest path distances in a connected unweighted undirected graph. We show that
there exists an Õ(n) time algorithm that estimates the cost of graphic TSP to within a factor of
(2− ε0) for some ε0 > 0. This is the first sublinear cost estimation algorithm for graphic TSP that
achieves an approximation factor less than 2. We also consider another well-studied special case
of metric TSP, namely, (1, 2)-TSP where all distances are either 1 or 2, and give an Õ(n1.5) time
algorithm to estimate optimal cost to within a factor of 1.625. Our estimation algorithms for graphic
TSP as well as for (1, 2)-TSP naturally lend themselves to Õ(n) space streaming algorithms that
give an 11/6-approximation for graphic TSP and a 1.625-approximation for (1, 2)-TSP. These results
motivate the natural question if analogously to metric MST, for any ε > 0, (1 + ε)-approximate
estimates can be obtained for graphic TSP and (1, 2)-TSP using Õ(n) queries. We answer this
question in the negative – there exists an ε0 > 0, such that any algorithm that estimates the cost of
graphic TSP ((1, 2)-TSP) to within a (1 + ε0)-factor, necessarily requires Ω(n2) queries. This lower
bound result highlights a sharp separation between the metric MST and metric TSP problems.

Similarly to many classical approximation algorithms for TSP, our sublinear time estimation
algorithms utilize subroutines for estimating the size of a maximum matching in the underlying
graph. We show that this is not merely an artifact of our approach, and that for any ε > 0, any
algorithm that estimates the cost of graphic TSP or (1, 2)-TSP to within a (1 + ε)-factor, can also
be used to estimate the size of a maximum matching in a bipartite graph to within an εn additive
error. This connection allows us to translate known lower bounds for matching size estimation in
various models to similar lower bounds for metric TSP cost estimation.
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1 Introduction

In the metric traveling salesman problem (TSP), we are given n points in an arbitrary metric
space with an n× n matrix D specifying pairwise distances between them. The goal is to
find a simple cycle (a TSP tour) of minimum cost that visits all n points. An equivalent view
of the problem is that we are given a complete weighted undirected graph G(V,E) where the
weights satisfy triangle inequality, and the goal is to find a Hamiltonian cycle of minimum
weight. The study of metric TSP is intimately connected to many algorithmic developments,
and the poly-time approximability of metric TSP and its many natural variants are a subject
of extensive ongoing research (see, for instance, [3, 11,14, 15, 17, 24–28] and references within
for some relatively recent developments). In this paper, we consider the following question:
can one design sublinear algorithms that can be used to obtain good estimates of the cost of
an optimal TSP tour? Since the complete description of the input metric is of size Θ(n2),
the phrase sublinear here refers to algorithms that run in o(n2) time.

A standard approach to estimating the metric TSP cost is to compute the cost of a
minimum spanning tree, and output two times this cost as the estimate of the TSP cost (since
any spanning tree can be used to create a spanning simple cycle by at most doubling the cost).
The problem of approximating the cost of the minimum spanning tree in sublinear time was
first studied in the graph adjacency-list model by Chazelle, Rubinfeld, and Trevisan [7]. The
authors gave an Õ(dW/ε2)-time algorithm to estimate the MST cost to within a (1+ε)-factor
in a graph where average degree is d, and all edge costs are integers in [1..W ]. For certain
parameter regimes this gives a sublinear time algorithm for estimating the MST cost but in
general, this run-time need not be sublinear. Subsequently, in an identical setting as ours,
Czumaj and Sohler [10] showed that for any ε > 0, there exists an Õ(n/εO(1)) time algorithm
that returns a (1 + ε)-approximate estimate of the MST cost when the input is an n-point
metric. This result immediately implies an Õ(n/εO(1)) time algorithm to estimate the TSP
cost to within a (2 + ε) factor for any ε > 0. However, no o(n2) query algorithms are known
to approximate metric TSP to a factor that is strictly better than 2. On the other hand,
there are also no known barriers that rule out existence of (1 + ε)-approximate estimation
algorithms for metric TSP with Õ(n) queries for any fixed ε > 0. In this paper, we make
progress on both algorithms and lower bounds for estimating metric TSP cost.

On the algorithmic side, we first consider the graphic TSP problem, an important case
of metric TSP that has been extensively studied in the classical setting – the metric D
corresponds to the shortest path distances in a connected unweighted undirected graph [17,
18,25]. We give the first Õ(n) time algorithm for graphic TSP that achieves an approximation
factor strictly better than 2.

I Theorem 1.1. There is an Õ(n) time randomized algorithm that estimates the cost of
graphic TSP to within a factor of 2− ε0 for some constant ε0 > 0.
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On the other hand, if we are willing to allow a higher sublinear time, we can get a better
approximation ratio.

I Theorem 1.2. There is an Õ(n1.5) time randomized algorithm that estimates the cost of
graphic TSP to within a factor of (27/14).

At a high-level, our algorithm is based on showing the following: if a graph G either lacks
a matching of size Ω(n) or has Ω(n) biconnected components (blocks), then the optimal TSP
cost is not too much better than 2n. Conversely, if the graph G has both a large matching
and not too many blocks, then we can show that the optimal TSP cost is distinctly better
than 2n. Since we do not know an efficient sublinear algorithm to estimate the number of
blocks in a graph G, we work with another quantity that serves as a proxy for this and can
be estimated in Õ(n) time. The main remaining algorithmic challenge then is to estimate
sufficiently well the size of a largest matching. This problem is very important by itself, and
has received much attention [13,19,20,23,30]; please see a detailed discussion of this problem,
and relevant recent developments towards the end of this section. Our Õ(n) query results
utilize the recent result of Kapralov et al. [13] who give an algorithm to approximate the size
of maximum matching to within a constant factor (for some very large constant) in Õ(n)
time in the pair query model (is there an edge between a given pair of vertices?). We also
show that matching size can be estimated to within a factor of 2 in Õ(n1.5) time, crucial to
obtaining the approximation guarantee in Theorem 1.2.

Our approach for estimating graphic TSP cost in sublinear time also lends itself to an
Õ(n) space streaming algorithm that can obtain an even better estimate of the cost. To
our knowledge, no estimate better than a 2-approximation was known previously. In the
streaming model, we assume that the input to graphic TSP is presented as a sequence of
edges of the underlying graph G. Any algorithm for this model, clearly also works if instead
the entries of the distance matrix are presented in the stream – an entry that is 1 corresponds
to an edge of G, and it can be ignored otherwise as a non-edge.

I Theorem 1.3. There is an O(n) space randomized streaming algorithm that estimates the
cost of graphic TSP to within a factor of (11/6) in insertion-only streams.

We next consider another well-studied special case of metric TSP, namely, (1, 2)-TSP
where all distances are either 1 or 2 [2, 5, 22], and obtain the following result.

I Theorem 1.4. There is an Õ(n1.5) time randomized algorithm that estimates the cost of
(1, 2)-TSP to within a factor of 1.625.

Throughout the paper, whenever we refer to a graph associated with a (1, 2)-TSP instance,
it refers to the graph G induced by edges of distance 1 in our {1, 2}-metric. At a high-level,
the idea underlying our algorithm is to analyze the structure of the graph G induced by
edges of distance 1. We design an algorithm to estimate the size of a maximal “matching
pair” of G which is defined to be a pair of edge-disjoint matchings. We show that whenever
the size of a matching pair is large in a graph G, the TSP cost is distinctly smaller than 2n,
and conversely, if this quantity is not large, the TSP cost is close to 2n. The main remaining
algorithm challenge then is to estimate sufficiently well the size of a maximal matching pair,
and we show that this can be done in Õ(n1.5) time.

For (1, 2)-TSP, an Õ(n) query algorithm that estimates the cost of (1, 2)-TSP to within
a factor of 1.75 was claimed in [1] but this result is based on the matching size estimation
results of [20]. Unfortunately, as confirmed by the authors [21], there is a problem with
the proof of one of the statements in the paper – Observation 3.9 – which is crucial for the
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correctness of the main result. As a result, the Õ(d) time result in the neighbor query model
as well as the Õ(n) time result in the adjacency matrix, claimed in [20] can no longer be
relied upon, and we have chosen to make this paper independent of these results [20]. It is
worth mentioning that if the Õ(n)-time matching estimation result of [20] can be shown to
hold, then the run-time of both Theorems 1.2 and 1.4 can be improved to Õ(n) time.

We note that it is easy to show that randomization is crucial to getting better than a
2-approximation in sublinear time for both graphic TSP and (1, 2)-TSP (we include the proof
of these results in the full version of this paper). The algorithms underlying Theorems 1.2
and 1.4, lend themselves to Õ(n) space single-pass streaming algorithms with identical
approximation guarantees. These sublinear time algorithms motivate the natural question if
analogously to metric MST, there exist sublinear time algorithms that for any ε > 0, output
a (1 + ε)-approximate estimate of TSP cost for graphic TSP and (1, 2)-TSP in Õ(n) time.
We rule out this possibility in a strong sense for both graphic TSP and (1, 2)-TSP.

I Theorem 1.5. There exists an ε0 > 0, such that any algorithm that estimates the cost of
graphic TSP ((1, 2)-TSP) to within a (1 + ε0)-factor, necessarily requires Ω(n2) queries.

This lower bound result highlights a sharp separation between the behavior of metric
MST and metric TSP problems. At a high-level, our lower bound is inspired by the work of
Bogdanov et al. [6] who showed that any query algorithm that for any ε > 0 distinguishes
between instances of parity equations (mod 2) that are either satisfiable (Yes) or at most
(1/2 + ε)-satisfiable (No), requires Ω(n) queries where n denotes the number of variables.
However, the query model analyzed in [6] is different from ours (see more details in Section 4).
We first show that the lower bound of [6] can be adapted to an Ω(n2) lower bound in our
model, and then show that instances of parity equations can be converted into instances
of graphic TSP (resp. (1, 2)-TSP) such that for some ε0 > 0, any (1 + ε0)-approximation
algorithm for graphic TSP (resp. (1, 2)-TSP), can distinguish between the Yes and No
instances of the parity equations, giving us the desired result.

Finally, similar to many classical approximation algorithms for TSP, our sublinear time
estimation algorithms utilize subroutines for estimating the size of a maximum matching in
the underlying graph. We show that this is not merely an artifact of our approach.

I Theorem 1.6. For any ε ∈ [0, 1/5), any algorithm that estimates the cost of an n-vertex
instance of graphic TSP or (1, 2)-TSP to within a (1 + ε)-factor, can also be used to estimate
the size of a maximum matching in an n-vertex bipartite graph to within an εn additive error,
with an identical query complexity, running time, and space usage.

This connection allows us to translate known lower bounds for matching size estimation in
various models to similar lower bounds for metric TSP cost estimation. In particular, using
the results of [4], we can show that there exists an ε0 such that any randomized single-pass
dynamic streaming algorithm for either graphic TSP or (1, 2)-TSP that estimates the cost to
within a factor of (1 + ε0), necessarily requires Ω(n2) space.

We conclude by establishing several additional lower bound results that further clarify the
query complexity of approximating TSP cost. For instance, we show that if an algorithm can
access an instance of graphic TSP by only querying the edges of the graph (via neighbor and
pair queries), then any algorithm that approximates the graphic TSP cost to a factor better
than 2, necessarily requires Ω(n2) queries. This is in sharp contrast to Theorem 1.1, and
shows that working with the distance matrix is crucial to obtaining sublinear time algorithms
for graphic TSP. We also show that even in the distance matrix representation, the task of
finding a tour that is (2 − ε)-approximate for any ε > 0, requires Ω(n2) queries for both
graphic TSP and (1, 2)-TSP.
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Matching Size Estimation. As the problem of matching size estimation is intimately
connected to metric TSP cost estimation, we briefly review some relevant work here. This
line of research primarily assumes that we are given a graph G(V,E) with maximum degree
d, that can be accessed via neighbor queries [12]: (a) for any vertex v, we can query its
degree, and (b) for any vertex v and an integer i, we can learn the ith neighbor of v.

Parnas and Ron [23] initiated the study of matching size estimation in sublinear time and
gave an dO(log(d/ε) time algorithm that estimates the matching size to within a constant factor
plus an additive εn error for any ε > 0. Nguyen and Onak [19] presented a new estimation
algorithm and showed that it can estimate the matching size to within a factor of 2 plus an
additive εn error in 2O(d)/ε2 time. We will refer to this approximation guarantee as a (2, ε)-
approximation of matching size. Yoshida et al. [30] strongly improved upon the performance
guarantee obtained in [19], and showed that a (2, ε)-approximation to matching size can
be accomplished in O(d4/ε2) time (in fact, they obtain the stronger (2± ε)-approximation
guarantee). The analysis of [30] was further improved by Onak et al. [20] who showed that
the state of the art for (2, ε)-approximation of matching size. We note that it is known that
any (O(1), ε)-approximate estimate of matching size necessarily requires Ω(d) queries [23], so
the result of [20] is essentially best possible. Unfortunately, as mentioned above, we recently
discovered a subtle mistake in the analysis of Onak et al. [21]. Consequently, the best known
time complexity for obtaining a (2, ε)-approximate estimate is Õ(d2/ε2)); this weaker result
also follows from the work of [20], but does not rely on the incorrect observation in [20].

The difference between a linear dependence versus a quadratic dependence on degree
d is however huge in the sublinear time applications when the graph is not very sparse.
In particular, while an Õ(d) query result translates into an Õ(n) time algorithm in the
adjacency matrix model, an Õ(d2) query result gives only an Õ(n2) time algorithm, which is
clearly not useful. Very recently, Kapralov et al. [13] gave an alternate approach based on a
vertex “peeling” strategy (originally proposed in [23]) that yields an (O(1), ε)-approximation
of matching size in Õ(d/ε2) time. Unfortunately, the constant hidden in the O(1) notation
is very large, and efficiently obtaining a (2, ε)-approximation to matching size remains an
important open problem. Meanwhile, by directly building on the work of [30], we obtain an
Õ(n1.5) time algorithm for a (2, ε)-approximation to matching size in the adjacency matrix
model, and it is this algorithm that is used in the results of Theorem 1.2 and Theorem 1.4.

Other Related Work. We note here that there is an orthogonal line of research that focuses
on computing an approximate solution in near-linear time when the input is presented as
a weighted undirected graph, and the metric is defined by shortest path distances on this
weighted graph. It is known that in this model, for any ε > 0, there is an Õ(m/ε2 + n1.5/ε3)
time algorithm that computes a (3/2 + ε)-approximate solution; here n denotes the number
of vertices and m denotes the number of edges [9], and that a (3/2 + ε)-approximate estimate
of the solution cost can be computed in Õ(m/ε2) time [8]. It is not difficult to show that in
this access model, even when the input graph is unweighted (i.e. a graphic TSP instance),
any algorithm that outputs better than a 2-approximate estimate of the TSP cost, requires
Ω(n + m) time even when m = Ω(n2). Hence this access model does not admit sublinear
time algorithms that beat the trivial 2-approximate estimate.

Organization. In Section 2, we present our algorithms for graphic TSP (Theorem 1.1 and
Theorem 1.2). In section 3, we present the 1.625-approximation algorithm of (1, 2)-TSP
(Theorem 1.4). In Section 4, we present our lower bound result that rules out possibility of a
sublinear-time approximation scheme for both graphic TSP and (1, 2)-TSP (Theorem 1.5).
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In Section 5, we present a strong connection between approximating metric TSP cost
and estimating matching size (Theorem 1.6). We defer to the full version the proofs of
several additional lower bound results on the complexity of approximating graphic TSP and
(1, 2)-TSP cost.

2 Approximation for Graphic TSP Cost

In this section, we exploit well-known properties of biconnected graphs and biconnected
components in graphs to give an algorithm that achieves a (2 − 1

7c0
)-approximation for

graphic TSP if we have an efficient algorithm that approximates the maximum matching
size within a factor of c0. We first relate the cost of the TSP tour in a graph to the costs of
the TSP tours in the biconnected components of the graph. Next we show that if the graph
does not have a sufficiently big matching, it does not have a TSP tour whose length is much
better than 2n. We also show that if a graph has too many degree 1 vertices, or vertices of
degree 2, both whose incident edges are bridges, then it does not have a TSP tour of cost
much better than 2n. We then establish the converse - a graph that has a good matching
and not too many bad vertices (namely, vertices of degree 1 or articulation points of degree
2), then it necessarily has a TSP tour of cost much better than 2n. We design Õ(n) time
test for the second condition, allowing us to approximate the cost of an optimal graphic TSP
tour in sublinear time together with some known techniques for testing the first condition.
In what follows, we first present some basic concepts and develop some tools that will play a
central role in our algorithms.

2.1 Preliminaries
An unweighted graph G = (V,E), defines a graphic metric in V , where the distance between
any two vertices u and v is given by the length of the shortest path between u and v. The
graphic TSP is the Traveling Salesman Problem defined on such a graphic metric. In this
paper our goal is to find a non-trivial approximation to the length of the traveling salesman
tour in sublinear time in a model where we are allowed to make distance queries. In the
distance query model, the algorithm can make a query on a pair of vertices (u, v) and get
back the answer d(u, v), the distance between u and v in G.

In a connected graph G, an edge e is a bridge if the deletion of e would increase the
number of connected components of G. A connected graph with no bridge is called a 2-edge-
connected graph. A maximal 2-edge-connected subgraph of G is called a 2-edge-connected
component. The bridge-block tree of a graph is a tree such that the vertex set contains the
2-edge-connected components and the edge set contains the bridges in the graph.

A connected graph G is called 2-vertex-connected or biconnected if when any one vertex
is removed, the resulting graph remains connected. In a graph which is not biconnected,
a vertex v whose removal increases the number of components is called an articulation
point. It is easy to prove that any biconnected graph with at least 3 vertices does not have
degree 1 vertices. A well-known alternate characterization of biconnectedness is that, a
graph G is biconnected if and only if for any two distinct edges, there is a simple cycle that
contains them.

A biconnected component or block in a graph is a maximal biconnected subgraph. Any
graph G can be decomposed into blocks such that the intersection of any two blocks is either
empty, or a single articulation point. Each articulation point belongs to at least two blocks.
If a block is a single edge, then we call this block a trival block; otherwise it is a non-trivial
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block. A trival block is also a bridge in the graph. The size of a block is the number of
vertices in the block. The following lemma shows the relationship between the number of
blocks and the sum of the sizes of the blocks.

I Lemma 2.1. If a connected graph G has n vertices and k blocks, then the sum of the sizes
of the blocks is equal to n+ k − 1.

Proof. We prove the lemma by induction on the number k of blocks. The base case is when
k = 1. In this case, G itself is a block of size n.

For the induction step, we have k > 1 and thus the graph has at least one articulation
point. Suppose v is an arbitrary articulation point in G. Let V1, V2, . . . , Vj be the set
of vertices in the connected components of G \ {v}. We have

∑j
i=1 |Vi| = n − 1. Let

G1, G2, . . . , Gj be the subgraphs of G induced by V1 ∪ {v}, V2 ∪ {v}, . . . , Vj ∪ {v}. For any
Gi, let ki be the number of blocks in Gi, we have

∑j
i=1 ki = k. By induction hypothesis, the

sum of the sizes of blocks in Gi is |Vi|+ 1 + ki − 1 = |Vi|+ ki. So the sum of the sizes of
blocks in G is

∑j
i=1 |Vi|+ ki = n− 1 + k. J

The block decomposition of a graph has a close relationship with the cost of graphic TSP
of the graph.

I Lemma 2.2 (Lemma 2.1 of [16]). The cost of the graphic TSP of a connected graph
G = (V,E) is equal to the sum of the costs of the graphic TSP of all blocks in the graph.

Together these two lemmas give us a simple lower bound on the cost of the graphic TSP
of a graph G (using the fact that the cost of graphic TSP is at least the number of vertices
in the graph).

I Lemma 2.3. If a graph G has n vertices and k blocks, then the cost of graphic TSP of G
is at least n+ k − 1.

An ear in a graph is a simple cycle or a simple path. An ear which is a path is also
called an open ear and it has two endpoints, whereas for a cycle, one vertex is designated as
the endpoint. An ear decomposition of a graph is a partition of a graph into a sequence of
ears such the endpoint(s) of each ear (except for the first) appear on previous ears and the
internal points (the points that are not endpoints) are not on previous ears. A graph G is
biconnected if and only if G has an ear decomposition such that each ear but the first one
is an open ear [29]. An ear is nontrivial if it has at least one internal point. The following
lemma upper bounds the cost of graphic TSP of a biconnected graph.

I Lemma 2.4 (Lemma 5.3 of [25], also a corollary of Lemma 3.2 of [17]). Given a 2-vertex-
connected graph G = (V,E) and an ear-decomposition of G in which all ears are nontrivial,
a graphic TSP tour of cost at most 4

3 (|V | − 1) + 2
3π can be found in polynomial-time, where

π denotes the number of ears.

We now prove an important lemma that gives an upper bound on the cost of graphic
TSP in a biconnected graph in terms of the size of a matching in the graph.

I Lemma 2.5. Suppose G is a biconnected graph with at least n ≥ 3 vertices. If G has a
matching M , then the cost of graphic TSP of G is at most 2n− 2− 2|M |

3 .

Proof. We first find a spanning biconnected subgraph of G that only contains 2n− 2−M
edges, then use Lemma 2.4 to bound the cost of graphic TSP.
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We construct a spanning biconnected subgraph G? = P0∪P1∪. . . recursively: P0 contains
a single edge in M . If Gi−1 = P0∪P1∪· · ·∪Pi−1 is a spanning subgraph of G, let G? = Gi−1
and finish the construction. Otherwise we construct Pi as follows. Let e be an edge in M
both whose endpoints are not in Gi−1. If there is no such edge, then let e be an arbitrary
edge such that at least one of its endpoints is not in Gi−1. Let e′ be an arbitrary edge in
Gi−1. By the alternate characterization of biconnectedness, there is a simple cycle Ci that
contains both e and e′. Let Pi be the path in Ci that contains e and exactly two vertices in
Gi−1, which are the endpoints of Pi.

Since Pi contains at least one vertex not in Gi−1, the construction always terminates.
Note that P0 ∪ P1 is a cycle, and each Pi (i > 1) is an open ear of G?. So, (P0 ∪ P1, P2, . . . )
is an open ear decomposition of G?, which means G? is biconnected.

Now we prove that the number of edges in G? is at most 2n − 2 −M . Let ni be the
number of vertices in Gi\Gi−1. Let G−1 be the empty graph, so that n0=2. Let pi be the
number of edges in Pi and mi be the number of edges e in M such that e ∩ Gi 6= ∅ and
e∩Gi−1 = ∅. (Here we view an edge as a 2-vertex set.) Note that m0 = 1. Suppose G? = Gk.
Then

∑k
i=1 ni = n,

∑k
i=1 pi is the number of edges in G? and

∑k
i=1mi = |M |. For any i > 0,

Pi is an open ear whose internal points are not in Gi−1. So ni = pi − 1. If there is an edge
e ∈ M such that e ∩ Gi−1 = ∅, then Pi contains both endpoints of an edge in M , which
means mi ≤ ni − 1. If all edges in M already have an endpoint in Gi−1, mi = 0 ≤ ni − 1.
So in both cases, pi = ni + 1 = 2ni − (ni − 1) ≤ 2ni −mi. Also, p0 = 1 = 2n0 − 2−m0. So
the number of edges in G? is

∑k
i=0 pi ≤ 2n0 − 2−m0 +

∑k
i=1(2ni −mi) = 2n− 2− |M |.

As (P0∪P1, P2, P3, . . . , Pk) is an open ear decomposition of G?, the number of ears in G is
k. On the other hand,

∑k
i=0 pi = 1+

∑k
i=1(ni+1) = n−1+k, we have n−1+k ≤ 2n−2−|M |,

which means k ≤ n − 1 − |M |. By Lemma 2.4, the cost of graphic TSP of G? is at most
4
3 (n− 1) + 2

3k ≤ 2(n− 1)− 2
3 |M |.

Since G? is a subgraph of G that contains all the vertices in G, the cost of graphic TSP
of G is at most the cost of graphic TSP of G?, which is at most 2n− 2− 2

3 |M |. J

2.2 Approximation Algorithm for Graphic TSP
We now give our sublinear-time algorithm for approximating the cost of graphic TSP of a
graph G to within a factor strictly smaller than 2.

We call a vertex v a bad vertex if v has degree 1 or is an articulation point with degree 2.
For any given δ > 0, the graphic TSP algorithm performs the following two steps.

1. Obtain an estimate α̂n of the size of maximum matching αn.
2. Obtain an estimate β̂n of the number of bad vertices βn.

The algorithm then output min{2n, (2− 2
7 (α̂− 2β̂))n}.

To perform the second step in Õ(n) distance queries and time, we randomly sample O( 1
δ2 )

vertices. For each sampled vertex, we can obtain the degree with n queries. The following
lemma shows that we can also check whether a degree 2 vertex is an articulation point using
distance queries in O(n) time. Then by the Chernoff bound, we can approximate the number
of bad vertices with additive error O(δn) with a high constant probability.

I Lemma 2.6. Suppose a vertex v in a connected graph G has only two neighbors u and w.
The following three conditions are equivalent:
1. v is an articulation point.
2. The edges (u, v) and (v, w) are both bridges.
3. For any vertex v′ 6= v, |d(u, v′)− d(w, v′)| = 2.
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Proof. We first prove the first two conditions are equivalent. If v is an articulation point,
then v is in two different blocks. So edge (u, v) and (v, w) are in different blocks, which
means v has degree 1 in both blocks. So both blocks are trivial, which means (u, v) and
(v, w) are both bridges. If (u, v) and (v, w) are both bridges, then deleting either (u, v) or
(v, w) will disconnect u and w, which means deleting v will also disconnect u and w.

Next we prove that the third condition is equivalent to the first two. Suppose v is an
articulation point. Since v has degree 2, the graph G \ {v} has only two components, one
containing u and the other containing w. For any vertex v′ 6= v, without loss of generality,
suppose v′ is in the same component as u in G \ {v}. Since (u, v) and (v, w) are both bridges
in G, any path between v′ and w contains u and v. So d(v′, w) = d(v′, u) + 2.

If v is not an articulation point, then u and w are connected in G \ {v}. Let (u =
v0, v1, v2, . . . , vk = w) be the shortest path between u and w in G \ {v}. For any vertex vi on
the path, the distance between vi and u (resp. w) in G \ {v} is i (resp. k − i). Consider the
shortest path between u and vi in G. If this path does not contain v, then it is the same as the
path in G \ {v}. In this case, d(u, vi) = i. If the shortest path contains v, then v must be the
second last vertex on the path and w be the third last one. In this case, d(u, vi) = k − i+ 2.
So d(u, vi) = min{i, k − i + 2}. Similarly, we also have d(vi, w) = min{i + 2, k − i}. Let
v′ = vbk/2c. Since |i− (k − i)| ≤ 1, we have i < k − i + 2 and k − i < i + 2, which means
|d(u, v′)− d(w, v′)| = |i− (k − i)| ≤ 2. J

Next, we prove that if α is small or β is large, the cost of graphic TSP is bounded away
from n. The following lemma shows that if the size of maximum matching of a graph is
small, then the cost of the graphic TSP is large.

I Lemma 2.7. For any ε > 0, if the maximum matching of a graph G has size at most
(1−ε)n

2 , then the cost of graphic TSP of G is at least (1 + ε)n.

Proof. Suppose the optimal TSP tour is (v0, v1, . . . , vn−1, vn = v0). Since the size of
maximum matching in G is at most (1−ε)n

2 , there are at most (1−ε)n
2 edges between pairs

(vi, vi+1) where i is even (resp. odd). So there are at least εn pairs of (vi, vi+1) that have
distance at least 2, which means that the optimal cost of TSP tour of G is

∑n−1
i=1 d(vi, vi+1) ≥

n+ εn = (1 + ε)n. J

The following lemma shows that if β is large, the cost of graphic TSP is large.

I Lemma 2.8. For any ε > 0, if a connected graph G has εn bad vertices, then the cost of
graph-TSP of G is at least (1 + ε)n− 2.

Proof. We first prove by induction on the number of vertices that a graph with k bad vertices
has k − 1 bridges. The base case is when n = 2, the graph has k = 2 bad vertices and
1 = k − 1 bridge.

For the induction step, the graph has n vertices with n ≥ 3. If G has no degree 1 vertices,
then the graph has k articulation points with degree 2. By Lemma 2.6, any edge incident on
a degree 2 articulation point is a bridge. So each bad vertex is incident on 2 bridges. On the
other hand, a bridge is incident on at most 2 vertices. So there are at least 2k

2 = k bridges in
G. Next, suppose G has degree 1 vertices. Let v be an arbitrary such vertex and let u be its
neighbor. Since G is connected and n ≥ 3, u must has degree at least 2, since otherwise u
and v are not connected to other vertices in G. Consider the graph G \ {v}, if u is a bad
vertex in G, u has degree 1 in G \ {v} and is still a bad vertex. So the number of bad vertices
in G \ {v} is k − 1. By induction hypothesis, G \ {v} has at least k − 2 bridges. G has at
least k − 1 bridges since (u, v) is also a bridge.

So G has at least εn− 1 bridges, and the number of blocks in G is at least εn− 1. By
Lemma 2.3, the cost of graph-TSP of G is at least n+ εn− 2 = (1 + ε)n− 2. J
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Finally, the following lemma shows that the cost of graphic TSP is at most (2− 2
7 (α̂−2β))n.

I Lemma 2.9. If a graph has a matching M of size α′n and the graph has βn bad vertices,
the cost of graphic TSP of G is at most (2− 2

7 (α′ − 2β))n.

Proof. Let G1, G2, . . . , Gk be the block decomposition of G. Let ni be the size of Gi. If
|ni| ≥ 3, by Lemma 2.5, the cost of the graphic TSP of Gi is at most 2ni − 3 since any
non-empty graph has a matching of size at least 1. If |ni| = 2, then the graphic TSP of Gi is
exactly 2 = 2ni − 2. Suppose G has ` non-trivial blocks. Then by Lemma 2.2 the cost of
graphic TSP of G is at most

∑k
i=1(2ni − 2)− `, which equals to 2n− 2− ` by Lemma 2.1.

Let mi be the size of maximum matching in Gi if Gi is a non-trivial block, and let
mi = 0 if Gi is a trivial block. By Lemma 2.5, the cost of the graphic TSP of Gi is at most
2ni − 2 − 2mi

3 . For any non-trivial block Gi, M ∩ Gi is a matching in Gi. So the size of
maximum matching in Gi is at least the number of edges in M ∩Gi. So by Lemma 2.2 and
Lemma 2.1, the cost of graphic TSP of G is at most

∑k
i=1(2ni − 2− 2

3mi) = 2n− 2− 2
3 |M

′|,
where M ′ is the set of edges in M that are not bridges in G. Let B be the number of bridges
in G. We have 2n− 2− 2

3 |M
′| ≤ 2n− 2− 2

3 (|M | −B).
So there are two upper bounds of the graphic TSP of G – 2n−2−` and 2n−2− 2

3 (|M |−B).
Which bound is better depends on the number of bridges B.

If B ≤ ( 4
7α
′ + 6

7β)n, the cost of graphic TSP of G is at most

2n− 2− 2
3(|M | −B) ≤ 2n− 2

3(3
7α
′ − 6

7β)n = (2− 2
7(α′ − 2β))n

If B > ( 4
7α
′ + 6

7β)n, consider the bridge-block tree T of G. T has at least B edges
and at least B + 1 vertices. Since T is a tree, there are at least B

2 vertices of degree at
most 2. For any vertex vT of degree at most 2 in T , if the vertex vT represents a single
vertex v in G, then v is either a degree 1 vertex or a degree 2 articulation point in G,
otherwise vT represents a 2-edge-connected component of size at least 2 in G. So There
are at least B

2 − βn ≥ ( 2
7α
′ − 4

7β)n 2-edge-connected components of size at least 2. Since
any 2-edge-connected component of size at least 2 has no bridge, each such component of
G contains at least 1 non-trivial block in G, implying that ` ≥ 2

7 (α′ − 2β)n. So the cost of
graphic TSP of G is at most 2n− 2− ` ≤ (2− 2

7 (α′ − 2β))n. J

We summarize the ideas in this section and prove the following lemma.

I Lemma 2.10. For any c0 > 1 and δ > 0, suppose α̂ ≤ α ≤ c0α̂ + δ and β̂ − δ ≤ β ≤ β̂.
Then (2 − 2

7 (α̂ − 2β̂))n is an approximation of the size of graphic TSP within a factor of
2− 1

7c0
+ δ.

Proof. Let T̂ = (2− 2
7 (α̂− 2β̂))n. Since β̂ ≥ β and α̂ ≤ α, by Lemma 2.9, T ≤ T̂ .

Then we prove that T̂ ≤ (2− 1
7c0

+ δ)T . By Lemma 2.7 and Lemma 2.8, T ≥ max{(2−
2α)n, (1 + β)n− 2}, which means

(2− 1
7c0

+ δ)T ≥ (2− 1
7c0

) max{(2− 2α)n, (1 + β)n} − 4 + δn

On the other hand, T̂ ≤ (2− 2
7 ( αc0
−2β))n+ 6

7δn since c0α̂+δ ≤ α and β̂ ≤ β+δ. For sufficient

large n, we have δn− 4 ≥ 6
7δn, so it is sufficient to prove that

2− 2
7 ( αc0

−2β)
max{2−2α,1+β} ≤ 2− 1

7c0
for

any 0 ≤ α, β ≤ 1 and c0 ≥ 1.
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Let γ = α
c0
−2β, 1+β = 1+( αc0

−γ)/2, so if we fix γ, max{2−2α, 1+β} is minimized when
2− 2α = 1 + ( αc0

− γ)/2. In this case α = (2+γ)c0
4c0+1 and max{2− 2α, 1 + β} = 4c0+2

4c0+1 −
2c0

4c0+1γ.
If γ ≤ 1

2c0
,

2− 2
7 (α− 2β)

max{2− 2α, 1 + β}
≤

2− 2
7γ

4c0+2
4c0+1 −

2c0
4c0+1γ

= 4c0 + 1
7c0

−
2− 4c0+2

7c0
4c0+2
4c0+1 −

2c0
4c0+1γ

≤ 4c0 + 1
7c0

+ 2− 4c0 + 2
7c0

= 2− 1
7c0

If γ > 1
2c0

, 2− 2
7 (α−2β)

max{2−2α,1+β} <
2− 1

7c0
1 = 2− 1

7c0
since β ≥ 0. So T̂ ≤ (2− 1

7c0
+ δ)T . J

By Lemma 2.10, we immediately have the following theorem.

I Theorem 2.11. For any δ > 0 and c0 ≥ 1. Given a graph G with maximum matching size
αn, suppose there is an algorithm that uses pair queries, runs in t time, and with probability
at least 2/3, outputs an estimate of the maximum matching size α̂n such that α̂ ≤ α ≤ c0α̂+δ.
Then there is an algorithm that approximates the cost of graphic TSP of G to within a factor
of 2− 1

7c0
+ δ, using distance queries, in t+ Õ(n/δ2) time with probability at least 3/5.

Proof. We first use the algorithm in the assumption to obtain an estimate α̂n of the size of
maximum matching αn. The following analysis is based on the event that this algorithm is
run successfully, which has probability 2/3.

We then sample N = 100
δ2 vertices. For each sampled vertex v, we first query the distance

between v and every vertex in G to obtain the degree of v. If v has degree 2, suppose
u and w are the neighbors of v. We query the distance from u and w to every vertex in
G. By Lemma 2.6, v is an articulation point if and only if there is no vertex v′ such that
|d(u, v′)− d(w, v′)| ≤ 1. So we can check if v is a bad vertex with O(n) distance queries and
time. Suppose there are βn bad vertices in G and (β̂ − δ/2)N sampled vertices are bad. By
Chernoff bound, the probability that

∣∣∣β − β̂ + δ/2
∣∣∣ > δ/2 is at most 2e δ

2N2
16 < 1/15. We

analyze the performance based on the event that β ≤ β̂ ≤ β + δ.
By Lemma 2.10, (2− 2

7 (α̂− 2β̂)) is a (2− 1
7c0

+ δ) approximation of the size of graphic
TSP of G. The probability of failure is at most 1/3 + 1/15 = 2/5. J

Proof of Theorem 1.2. The following theorem whose proof appears in the full version,
gives an algorithm for matching size estimation that only uses pair queries – given a pair of
vertices, is there an edge between them? Note that any pair query can be simulated by a
single query to the distance matrix in a graphic TSP instance. J

I Theorem 2.12. For any ε > 0, there is an algorithm that uses pair queries, runs in
Õ(n1.5/ε2) time, and with probability 2/3, outputs an estimate of the size of a maximal
matching within an additive error εn.

Substituting the above result in Theorem 2.11 and using the fact that a maximum
matching has size at most twice the size of a maximal matching (setting c0 = 2, and δ = ε),
we obtain Theorem 1.2.

Proof of Theorem 1.1. Kapralov et al. [13] give an algorithm that uses Õ(d) queries to
approximate the size of maximum matching in a graph with average degree d in the neighbor
query model (the approximation ratio is a very large constant). Together with a reduction
in [20], this implies a pair query algorithm that uses Õ(n) queries to estimate matching size
to a constant factor. Combined with Theorem 2.11, this implies Theorem 1.1. J
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2.3 An O(n) Space (11
6 )-Approximate Streaming Algorithm

We show here that our approach above can be extended to the insertion-only streaming
model to obtain for any ε > 0, an ( 11

6 + ε)-approximate estimate of the graphic TSP cost
using O(n/ε2) space. Given a stream containing edges of a graph G(V,E), our algorithm
performs the following two tasks simultaneously:

Find a maximal matching M in G – let αn denote its size.
Estimate the number of bridges in the maximal matchingM , say βn, to within an additive
error of εn.

The algorithm outputs (2− 2
3 (α− β))n as the estimated cost of graphic TSP of G.

In an insertion-only stream, it is easy to compute a maximal stream with O(n) space,
we start with M initialized as an empty set, and add a new edge (u, v) into the matching
M iff neither u nor v are already in M . It is also easy to check if the edge is a bridge
in insertion-only stream with O(n) space. We can maintain a disjoint-set data structure.
Whenever an edge arrives (other than e), we merge the connected components of its endpoints.
If there is only one component remaining at the end of the stream, then e is not a bridge.
Otherwise, e is a bridge.

To estimate the number of bridges in the maximal matching, we sample N = 100/ε2

edges in the matching, and run in parallel N tests where each test determines whether or not
the sampled edge is a bridge. We use O(n/ε2) space in total since we sample N = O(1/ε2)
edges. Suppose there are β̄ sampled edges are bridges, then by Chernoff bound, β̂n = β̄|M |

N

is an approximation of βn to within additive error εn with probability at least 9/10.
As stated, this gives us a two-pass algorithm: the first pass for computing the matching

M , and the second pass for estimating the number of bridges in M . However, we can do
both these tasks simultaneously in a single pass as follows: at the beginning of the stream,
we start the process of finding connected components of graph G. Whenever an edge e is
added to M , if |M | < N , then we create a new instance Ie of the connectivity problem
that ignores the edge e. This clearly allows us to test whether or not e is a bridge. Once
|M | > N , then whenever an edge e is added to M , with probability N

|M | , we randomly drop
an existing instance, say Ie′ of connectivity, and create a new instance Ie of connectivity that
only ignores edge e (we insert back the edge e′ into Ie). Since there are at most N instances
of connectivity instance that are running in parallel, the algorithm uses O(nN) = O(n/ε2)
space.

We defer to the full version the details of the analysis showing that the cost estimate
output above is a ( 11

6 + ε)-approximate estimate.

3 (1.625)-Approximation for (1, 2)-TSP Cost in Õ(n1.5) Time

In this section, we give an algorithm that for any δ > 0, approximates the cost of the
minimum (1, 2)-TSP to within a factor of 1.625 + δ with Õ(n1.5/δ2) queries. The idea of the
algorithm is to approximate the size of a maximal “matching pair” of G. In a graph G, a
matching pair (M1,M2) is a pair of edge-disjoint matchings. A maximal matching pair is a
matching pair (M1,M2) such that for any edge e 6∈M1 ∪M2, neither M1 ∪ {e} nor M2 ∪ {e}
is a matching. The size of a matching pair (M1,M2) is the sum of the sizes of M1 and M2.
The following lemma shows that the size of any maximal matching pair is lower bounded by
the size of maximum matching in the graph.

I Lemma 3.1. Suppose M is a matching in a graph G. Then any maximal matching pair
(M1,M2) in G has size at least |M |.
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Proof. Let X1 be the set of vertices matched in both M and M1, and X2 be the set of
vertices matched in both M and M2. We have |X1|+ |X2| ≤ 2 |M1|+ 2 |M2| since M1 and
M2 are both matchings. On the other hand, for any edge e ∈M , if e is either in M1 or M2,
then both of its endpoints are in X1 or X2. If e is neither in M1 or M2, then there are edges
e1 ∈M1 and e2 ∈M2 that share an endpoint with e since (M1,M2) is a maximal matching
pair. So both X1 and X2 contain at least one endpoint of e. In both case e’s endpoints
appear twice in X1 and X2. So |X1|+ |X2| ≥ 2 |M |, which means |M1|+ |M2| ≥ |M |. J

If a graph has a large sized matching pair, then the cost of (1, 2)-TSP is not very large.

I Lemma 3.2. If a graph G with n vertices contains a matching pair (M1,M2) of size X,
then the cost of (1, 2)-TSP of G is at most 2n− 3

4X.

Proof. Since M1 and M2 are both matchings, M1 ∪M2 only contains paths and cycles of
even length. We delete one edge from each cycle in M1 ∪M2, resulting in a graph that only
contains paths. Since the cycles in M1 ∪M2 are of even length, the size of any cycle is at
least 4. We deleted at most 1

4X edges, so G contains a set of vertex disjoint paths (including
some of length 0, corresponding to isolated vertices), with total size at least 3

4X. Construct
a TSP tour by ordering the paths arbitrarily, orienting each one, and connecting the end of
one path with the start of the next, cyclically. The tour contains at least 3

4X edges of weight
1, while the remaining edges are of weight 2. So the cost of the tour is at most 2n− 3

4X. J

By Lemma 3.1, the maximum matching size is upper bounded by the size of any maximal
matching pair. It follows that if the maximum matching size is small, the cost of (1, 2)-TSP
is large.

I Lemma 3.3. For any ε > 0, if the maximum matching of a graph G has size at most
(1−ε)n

2 , then the cost of (1, 2)-TSP of G is at least (1 + ε)n.

The proof of Lemma 3.3 is similar to the proof of Lemma 2.7 and we omit it here. By
Lemma 3.2 and Lemma 3.3, if we can approximate the size of an arbitrary maximal matching
pair, then we will get a good approximation of the cost of the (1, 2)-TSP.

I Theorem 3.4. There is an algorithm that uses pair queries, with probability at least 2/3,
approximates the size of a maximal matching pair with additive error εn using Õ(n1.5/ε2)
time.

The algorithm in Theorem 3.4 is given in the full verstion of this paper. With Theorem 3.4,
we can approximate the cost of (1, 2)-TSP in a graph G by the size of maximal matching
pair.

I Theorem 3.5. For any δ > 0, there is an algorithm that estimates the cost of (1, 2)-TSP
of a graph G within a factor of 1.625 + δ using Õ(n1.5/δ2) queries with probability at least
2/3.

Proof. Let ε = δ/2. We use the algorithm in Theorem 3.4 that approximates the size of a
maximal matching pair. Suppose the output of the algorithm is X̄. Then, by Theorem 3.4,
there is a maximal matching pair of size X such that

∣∣X − X̄∣∣ ≤ εn . We output the cost of
the (1, 2)-TSP of G to be T̄ = 2n− 3

4 (X̄ − εn). Suppose the optimal (1, 2)-TSP has cost T .
By Lemma 3.2, T ≤ 2n− 3

4X ≤ 2n− 3
4 (X̄ − εn) = T̄ . On the other hand, by Lemma 3.3, the

size of maximum matching in G is at least (2n− T )/2. So by Lemma 3.1, X ≥ (2n− T )/2,
which means X̄ ≥ (2n− T )/2− εn. So T̄ ≤ 2n− 3

4 (n− T/2− 2εn) < 1.25n+ 0.375T + δn.
Since T is the cost of (1, 2)-TSP of G, which is at least n, we have T̄ ≤ (1.625 + δ)T . J
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I Remark 3.6. The algorithm can be generalized to insertion-only streaming model. In
insertion-only streaming model, we can compute a maximal matching pair as follows: we
set M1 and M2 as empty set before the stream. Whenever an edge e comes, we first check
if there is an edge in M1 that shares an endpoint with e. If not, then we add e into M1.
Otherwise, we check if there is an edge in M2 that shares and endpoint with e. If not, then
we add e into M2. So we get an algorithm that only uses O(n) space to compute a maximal
matching pair. We have the following corollary.

I Corollary 3.7. There is an insertion-only streaming algorithm that estimates the cost of
(1, 2)-TSP of a graph G within a factor of 1.625 using O(n) space.

4 An Ω(n2) Query Lower Bound for Approximation Schemes

In this section, we prove that there exists an ε0 > 0, such that any query algorithm for
graphic or (1, 2)-TSP that returns a (1 + ε0)-approximate estimate of optimal cost, requires
Ω(n2) queries. In order to prove this, we design a new query model for the 3SAT problem
and show an Ω(n2) query lower bound for 3SAT in this model. We then use a reduction from
3SAT to (1, 2)-TSP in [22] to prove the lower bound for (1, 2)-TSP; with some additional
changes, we also get an identical lower bound for graphic TSP.

The idea of proving query lower bound for APX-hard problems by reduction from 3SAT
is similar to the idea used in [6], and we follow their general approach. However, in [6], the
authors study lower bounds for problems in sparse graphs and hence the query model uses
only neighbor queries. So in their query model, the lower bound for 3SAT is Ω(n). In order
to prove an Ω(n2) query lower bound in the pair query model, we need to design a new query
model for 3SAT.

In the 3SAT problem, we are given a 3CNF instance on n variables, and the goal is
to estimate the largest fraction of clauses that can be satisfied by any assignment. The
algorithm is allowed to perform only one kind of query: is a variable x present in a clause
c? If the answer is yes, then the algorithm is given the full information about all variables
that appear in the clause c. The proof of the next theorem is deferred to the full version of
this paper.

I Theorem 4.1. For any ε > 0, any algorithm that with probability at least 2/3 distinguishes
between satisfiable 3CNF instances and 3CNF instances where at most (7/8 + ε) fraction of
clauses can be satisfied, needs Ω(n2) queries.

4.1 Reduction from 3SAT to (1, 2)-TSP
We will utilize an additional property of the hard instances of 3SAT in Theorem 4.1, namely,
each variable occurs the same constant number of times where the constant only depends on
ε. We denote the number of variables by n, the number of clauses by m, and the number of
occurrences of each variable by k; thus m = kn/3.

We use the reduction in [22] to reduce a 3SAT instance to a (1, 2)-TSP instance. In this
reduction, there is a gadget for each variable and for each clause. Each of these gadgets has size
at most L = Θ(k2). Thus the (1, 2)-TSP contains N vertices where N ≤ L(n+m) = L(k+3)n

3 .
Let Gxj be the gadget of variable xj and Gci be the gadget of clause ci. There is a ground
graph which is the same for each 3SAT instance. Each variable gadget is connected with the
gadgets for clauses that contain that variable. The reduction satisfies the following property.
If the 3SAT instance is satisfiable, then the (1, 2)-TSP instance contains a Hamilton cycle
supported only on the weight 1 edges. On the other hand, if at most m− ` clauses can be
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satisfied in the 3SAT instance, the (1, 2)-TSP cost is at least N + d`/2e. Thus there is a
constant factor separation between the optimal (1, 2)-TSP cost in the two cases. However,
what remains to be shown is that any query algorithm for (1, 2)-TSP can also be directly
simulated on the underlying 3SAT instance with a similar number of queries. The theorem
below now follows by establishing this simulation.

I Theorem 4.2. There is a constant ε0 such that any algorithm that approximates the
(1, 2)-TSP cost to within a factor of (1 + ε0) needs Ω(n2) queries.

Proof. We consider the following stronger queries for (1, 2)-TSP: for any query (u, v), if u is
in a vertex gadget Gxj and v is in a clause gadget Gci (or vice versa) and xj occurs in ci in
the 3SAT instance, then the algorithm is given all the edges incident on Gci . Otherwise the
algorithm just learns if the there is an edge between u and v.

Let ε = 1/16, and let the values of k, L and N correspond to this choice for ε according
to the redution in Section 4.1. Let ε0 = k

32(k+3)L . Consider the (1, 2)-TSP instance reduced
from the 3SAT instance generated by the hard distribution in Theorem 4.1 with ε = 1/16.
If the 3SAT instance is perfectly satisfiable, then the (1, 2)-TSP instance has a Hamilton
cycle of cost N . If the 3SAT instance satisfies at most (15/16)-fraction of clauses, then each
Hamilton cycle in the (1, 2)-TSP instance has cost at least

N + (1/8− ε)m/2 = N + (1/8− ε)kn/6 ≥ (1 + (1/8− ε)k
2(k + 3)L )N = (1 + ε0)N

For any query (u, v) in the (1, 2)-TSP instance, we can simulate it by at most one query
in the corresponding 3SAT instance as follows: if u is in a vertex gadget Gxj and v is in a
clause gadget Gci (or vice versa), then we make a query of xj and ci in the 3SAT instance.
If the 3SAT query returns YES and the full information of ci, then we return all the edges
incident on Gci according to the reduction rule and the full information of ci. If the 3SAT
query returns NO or (u, v) are not in a vertex gadget and a clause gadget respectively, we
return YES if (u, v) is an edge in the ground graph and NO otherwise.

By Theorem 4.1, any algorithm that distinguishes a perfectly satisfiable 3SAT instance
from an instance where at most (15/16)-fraction of the clauses can be satisfied needs Ω(n2)
queries. So any algorithm that distinguishes a (1, 2)-TSP instance containing a Hamilton
cycle of length N from an instance that has minimum Hamilton cycle of cost (1 + ε0)N needs
Ω(n2) queries. J

4.2 Ω(n2) Lower Bound for Graphic TSP
We can reduce an instance of (1, 2)-TSP to an instance of graphic TSP by adding a new
vertex that is adjacent to all other vertices. By doing so, any pair of vertices in the new
graph has a distance at most 2. On the other hand, the cost of graphic TSP in the new
graph differs by at most 1 from the cost of (1, 2)-TSP in the old graph. So the Ω(n2) query
lower bound for (1, 2)-TSP also holds for the graphic TSP problem.

5 A Reduction from Matching Size to TSP Cost Estimation

In this section, we give a reduction from the problem of estimating the maximum matching size
in a bipartite graph to the problem of estimating the optimal (1, 2)-TSP cost. An essentially
identical reduction works for graphic TSP cost using the idea described in Section 4.2.
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We will denote the size of the largest matching in a graph G by α(G). Given a bipartite
graph G(V,E) with n vertices on each side, we construct an instance G′(V ′, E′) of the
(1, 2)-TSP problem on 4n vertices such that the optimal TSP cost on G′ is 5n− α(G). Thus
for any ε ∈ [0, 1/5), any algorithm that can estimate (1, 2)-TSP cost to within a (1+ε)-factor,
also gives us an estimate of the matching size in G to within an additive error of 5εn.

We will now describe our construction of the graph G′. For clarity of exposition, we
will describe G′ as the graph that contains edges of cost 1 – all other edges have cost
2. Suppose the vertex set V of G consists of the bipartition V1 = {v1

1 , v
1
2 , . . . , v

1
n} and

V2 = {v2
1 , v

2
2 , . . . , v

2
n}. We construct the graph G′ as follows: we start with the graph G, then

add three sets of vertices V0, V3 and V4, such that V0 = {v0
1 , v

0
2 , . . . , v

0
n/2} with n/2 vertices,

V3 = {v3
1 , v

3
2 , . . . , v

3
n} with n vertices, and V4 = {v4

1 , v
4
2 , . . . , v

4
n/2} with n/2 vertices. The

graph G′ will only have edges between Vj and Vj+1 (j = {0, 1, 2, 3}). We will denote the set
of edges between Vj and Vj+1 as Ej,j+1. For any vertex v0

i ∈ V0, it connects to v1
2i−1 and v1

2i
in V1. E1,2 has the same edges as the edges in G. Each vertex v2

i ∈ V2 is connected to vertex
v3
i in V3, that is, vertices in V2 and V3 induce a perfect matching (identity matching). Finally,
each vertex in V3 is connected to all the vertices in V4. See Figure 1(a) for an illustration.

V0
V1 V2 V3

V4

(a) The illustration of G′.

V0
V1 V2 V3

V4

(b) The illustration of tour T , where V2 and
V3 are arranged with order (v2

f(1), . . . , v2
f(6)) and

(v3
f(1), . . . , v3

f(6)).

Figure 1 An illustration of the reduction for n = 6.

The lemmas below relate matching size in G to (1, 2)-TSP cost in G′.

I Lemma 5.1. Let M be any matching in G. Then there is a (1, 2)-TSP tour T in G′ of
cost at most 5n− |M |.

Proof. Let f : [n]→ [n] be any bijection from [n] to [n] such that whenever a vertex v1
i is

matched to a vertex v2
j in M , then f(i) = j. Consider the following (1, 2)-TSP tour T : each

vertex v0
i ∈ V0 connects to v1

2i−1 and v1
2i in T ; each vertex v1

i ∈ V1 connects to v0
d(i+1)/2e and

v2
f(i) in T . For any v2

f(i) ∈ V2, it connects to v1
i and v3

f(i) in T . For any vertex v3
f(i) ∈ V3, if

i > 1, it connects to v2
f(i) and v4

di/2e in T ; if i = 1, it connects to v2
f(i) and v4

n/2 in T . See
Figure 1(b) as an illustration. T is clearly a TSP-tour.

All edges in T are also edges in G′ except for possibly some edges between V1 and V2.
If v1

i is matched in M , then (v1
i , v

2
f(i)) is an edge in G′, otherwise it is not in G′ and thus

has weight 2. So T only has n − |M | weight 2 edges, which means T has cost at most
4n+ n− |M | = 5n− |M |. J

I Lemma 5.2. For any (1, 2)-TSP tour T in G, T has cost at least 5n− α(G).
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To prove Lemma 5.2, we first prove an auxiliary claim.

B Claim 5.3. Suppose G = (V1, V2, E) is a bipartite graph which has maximum size α(G).
For any 2-degree subgraph H of G, if there are at most X vertices in V1 has degree 2 in H,
then there are at most α(G) +X vertices in V2 which have degree at least 1 in H. Similarly,
if there are at most X vertices in V2 has degree 2 in H, then there are at most α(G) +X

vertices in V1 which have degree at least 1 in H.

Proof. If there are at most X vertices in V1 has degree 2 in H. We construct H ′ by deleting
an arbitrary edge on each degree 2 vertex in V1, then construct H ′′ by deleing an arbitrary
edge on each degree 2 vertex in V2. Since H ′′ does not have degree two vertex, it is a
matching of G. So the number of degree 1 vertices in V2 in H ′′ is at most α(G). On the
other hand, any vertex in V2 which has degree at least 1 in H ′ also has degree 1 in H ′′. So
there are at most α(G) vertices of degree at least 1 in V2 in H ′. Furthermore, since there are
only X vertices of degree 2 in V1 in H, we delete at most X edges in H when constructing
H ′. So H ′ has at most X more isolate vertices in V2 than in H, which means H has at most
α(G) +X vertices with degree at least 1 in V2.

The second part of the claim follows via a similar argument as the first part of the claim.
C

Proof of Lemma 5.2. Let a01 be the number of edges in T ∩ E0,1, a2,3 be the number of
edges in T ∩ E3,4. Let GX be the intersection graph of G and T . Since the vertices in V0
only connect to the vertices in V1 in G′, and any vertex in T has degree 2, there are at
least n − a01 edges incident on V0 in T are not an edge in G′. On the other hand, since
any vertex in V1 is incident on at at most 1 edge in E0,1, there are at least a01 vertices in
V1 is connected to a vertex in V0 in T , which means there are at most n − a01 vertices in
V1 has degree 2 in GX . By Claim 5.3, there are at most n− a01 + α(G) vertices in V2 has
edge in GX . For any isolate vertex in V2 in T , it has only one edge in G′ connecting to
V3, so this vertex must incident on an edge in T which is not in G′. So there are at least
n− (n− a01 + α(G)) = α(G)− a01 edges incident on V2 in T which is not in G′.

There are 2n edges incident on V3 in T , but among them, there are only a23 edges between
V2 and V3 which is also in G′, and there are at most n edges between V3 and V4 in T since
each vertex has degree only 2. So there are at least 2n− n− a23 = n− a23 edges incident on
V3 which is not in G′. On the other hand, since any vertex in V2 is incident on at at most 1
edge in E2,3, there are at least a23 vertices in V2 is connected to a vertex in V3 in T , which
means there are at most n− a23 vertices in V2 has degree 2 in GX . By Claim 5.3, there are
at most n− a23 + α(G) vertices in V1 has edge in GX . For any isolate vertex in V1 in T , it
has only one edge in G′ connecting to V0, so this vertex must incident on an edge in T which
is not in G′. So there are at least n− (n− a23 + α(G)) = a23 − α(G) edges incident on V1 in
T which is not in G′.

Since any edge has two endpoints, the number of edges in T but not in G′ is at least
((n− a01) + (a01 −α(G)) + (n− a23) + (a23 −α(G)))/2 = n−α(G), which means T has cost
at least 4n+ n− α(G) = 5n− α(G). J

I Corollary 5.4. For any ε ∈ [0, 1/5), any algorithm that can estimate (1, 2)-TSP cost to
within a (1 + ε)-factor, can be used to estimate the size of a largest matching in a bipartite
graph G on 2n vertices to within an additive error of 5εn.

Proof. We use the reduction above to construct a (1, 2)-TSP instance G′ on 4n vertices.
By Lemmas 5.1 and 5.2, the optimal TSP cost for G′ is 5n − α(G). We now run the
(1 + ε)-approximation algorithm for (1, 2)-TSP on graph G′ (note that the reduction can
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be simulated in each of neighbor query model, pair query model, and the streaming model
without altering the asymptotic number of queries used). Suppose the output is C which
satisfies (1− ε)(5n−α(G)) ≤ C ≤ (1 + ε)(5n−α(G)), which means 5n−α(G)− 5εn < C <

5n− α(G) + 5εn. Let α̂ = 5n− C, we have α(G)− 5εn < α̂ < α(G) + 5εn. J
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