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Abstract
The classic Ham-Sandwich theorem states that for any d measurable sets in Rd, there is a hyperplane
that bisects them simultaneously. An extension by Bárány, Hubard, and Jerónimo [DCG2008]
states that if the sets are convex and well-separated, then for any given α1, . . . , αd ∈ [0, 1], there is a
unique oriented hyperplane that cuts off a respective fraction α1, . . . , αd from each set. Steiger and
Zhao [DCG2010] proved a discrete analogue of this theorem, which we call the α-Ham-Sandwich
theorem. They gave an algorithm to find the hyperplane in time O(n(logn)d−3), where n is the total
number of input points. The computational complexity of this search problem in high dimensions
is open, quite unlike the complexity of the Ham-Sandwich problem, which is now known to be
PPA-complete (Filos-Ratsikas and Goldberg [STOC 2019]).

Recently, Fearnley, Gordon, Mehta, and Savani [ICALP2019] introduced a new sub-class of
CLS (Continuous Local Search) called Unique End-of-Potential Line (UEOPL). This class captures
problems in CLS that have unique solutions. We show that for the α-Ham-Sandwich theorem, the
search problem of finding the dividing hyperplane lies in UEOPL. This gives the first non-trivial
containment of the problem in a complexity class and places it in the company of classic search
problems such as finding the fixed point of a contraction map, the unique sink orientation problem
and the P -matrix linear complementarity problem.
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1 Introduction

The Ham-Sandwich Theorem [41] is a classic result about partitioning sets in high dimensions:
for any d measurable sets S1, . . . , Sd ⊂ Rd in d dimensions, there is an oriented hyperplane H
that simultaneously bisects S1, . . . , Sd. More precisely, if H+, H− are the closed half-spaces
bounded by H, then for i = 1, . . . , d, the measure of Si ∩H+ equals the measure of Si ∩H−.
The traditional proof goes through the Borsuk-Ulam Theorem [30]. The Ham-Sandwich
Theorem is a cornerstone of geometry and topology, and it has found applications in other
areas of mathematics.
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31:2 Computational Complexity of the α-Ham-Sandwich Problem

Let [n] = {1, . . . , n}. The discrete Ham-Sandwich Theorem [28,30] states that for any d
finite point sets P1, . . . , Pd ⊂ Rd in d dimensions, there is an oriented hyperplane H such that
H bisects each Pi, i.e., for i ∈ [d], we have min{|Pi ∩H+|, |Pi ∩H−|} ≥ d|Pi|/2e. We denote
the associated search problem as Ham-Sandwich. Lo, Matoušek, and Steiger [28] gave an
nO(d)-time algorithm for Ham-Sandwich. They also provided a linear-time algorithm for
points in R3, under additional constraints.

There are many alternative and more general variants of both the continuous and the
discrete Ham-Sandwich Theorem. For example, Bárány and Matoušek [5] derived a version
where measures in the plane can be divided into any (possibly different) ratios by fans instead
of hyperplanes (lines). A discrete variant of this result was given by Bereg [7]. Schnider [37]
and Karasev [27] studied generalizations in higher dimensions. Recently Barba, Pilz, and
Schnider [6] showed that four measures in the plane can be bisected with two lines. Higher
dimensional generalizations of this result were presented in [9,25]. Zivaljević and Vrećica [44]
and independently, Dol’nikov [19] proved a result called the Center Transversal Theorem
that interpolates between the Ham-Sandwich Theorem and the Centerpoint Theorem [35].
There is also a no-dimensional version [14] for the Center Transversal Theorem. Schnider [38]
presented a generalization based on this result among others.

Here, we focus on a version that allows for dividing the sets into arbitrary given ratios
instead of simply bisecting them. The sets S1, . . . , Sd ⊂ Rd are well-separated if every
selection of them can be strictly separated from the others by a hyperplane. Bárány, Hubard,
and Jerónimo [4] showed that if S1, . . . , Sd are well-separated and convex, then for any given
reals α1, . . . , αd ∈ [0, 1], there is a unique hyperplane that divides S1, . . . , Sd in the ratios
α1, . . . , αd, respectively. Their proof goes through Brouwer’s Fixed Point Theorem. Steiger
and Zhao [40] formulated a discrete version. In this setup, S1, . . . , Sd are finite point sets.
Again, we need that the (convex hulls of the) Si are well-separated. Additionally, we require
that the Si follow a weak version of general position. Let α1, . . . , αd ∈ N be d integers
with 1 ≤ αi ≤ |Si|, for i ∈ [d]. Then, there is a unique oriented hyperplane H that passes
through one point from each Si and has |H+ ∩ Si| = αi, for i ∈ [d] [40]. In other words, H
simultaneously cuts off αi points from Si, for i ∈ [d]. This statement does not necessarily
hold if the sets are not well-separated, see Figure 1 for an example.

Steiger and Zhao called their result the Generalized Ham-Sandwich Theorem, yet it is
not a strict generalization of the classic Ham-Sandwich Theorem. Their result requires that
the point sets obey well-separation and weak general position, while the classic theorem
always holds without these assumptions. Therefore, we call this result the α-Ham-Sandwich
theorem, for a clearer distinction. Set n =

∑
i∈[d] |Si|. Steiger and Zhao gave an algorithm

that computes the dividing hyperplane in O
(
n(logn)d−3) time, which is exponential in d.

Later, Bereg [8] improved this algorithm to achieve a running time of n2O(d), which is linear
in n but still exponential in d. We denote the associated computational search problem of
finding the dividing hyperplane as Alpha-HS.

No polynomial algorithms are known for Ham-Sandwich and for Alpha-HS if the
dimension is not fixed, and the notion of approximation is also not well-explored. Despite
their superficial similarity, it is not immediately apparent whether the two problems are
comparable in terms of their complexity. Due to the additional requirements on an input for
Alpha-HS, an instance of Ham-Sandwich may not be reducible to Alpha-HS in general.

A dividing hyperplane for Alpha-HS is guaranteed to exist if the sets satisfy the conditions
of well-separation and (weak) general position. Therefore, the search problem Alpha-HS
is total, that is, there is a solution for every valid instance. In general, such problems are
modelled by the complexity class TFNP (Total Function Nondeterministic Polynomial) of
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Figure 1 The red (square) and the blue (round) point sets are not well-separated. Every halfplane
that contains three red points must contain at least five blue points. Thus, there is no halfplane
that contains exactly three red and three blue points.

NP-search problems that always admit a solution. Two popular subclasses of TFNP, originally
defined by Papadimitriou [34], are PPA (Polynomial Parity Argument) and its sub-class
PPAD (Polynomial Parity Arguments on Directed graphs). These classes contain total search
problems where the existence of a solution is based on a parity argument in an undirected or
in a directed graph, respectively. Another sub-class of TFNP is PLS (polynomial local search).
It models total search problems where the solutions can be obtained as minima in a local
search process, while the number of steps in the local search may be exponential in the input
size. The class PLS was introduced by Johnson, Papadimitriou, and Yannakakis [26]. A
noteworthy sub-class of PPAD ∩ PLS is CLS (continuous local search) [18]. It models similar
local search problems over a continuous domain using a continuous potential function.

Up to very recently, these complexity classes had mostly been studied in the context of
algorithmic game theory. These classes have also found relevance in the study of fairness [33]
and markets [10, 12]. However, there have been increasing efforts towards mapping the
complexity landscape of existence theorems in high-dimensional discrete geometry. Computing
an approximate solution for the search problem associated with the Borsuk-Ulam Theorem
is in PPA. In fact, this problem is complete for this class. The discrete analogue of the
Borsuk-Ulam Theorem, Tucker’s Lemma [42], is also PPA-complete [1, 34]. Therefore, since
the traditional proof of the Ham-Sandwich Theorem goes through the Borsuk-Ulam Theorem,
it follows that Ham-Sandwich lies in PPA. In fact, Filos-Ratsikas and Goldberg [21] recently
showed that Ham-Sandwich is complete for PPA. The (presumably smaller) class PPAD
is associated with fixed-point type problems: computing an approximate Brouwer fixed
point is a prototypical complete problem for PPAD. The discrete analogue of Brouwer’s
Fixed Point Theorem, Sperner’s Lemma, is also complete for PPAD [34]. The computational
version of the Hairy Ball Theorem has recently been shown to be PPAD-complete [24]. In a
celebrated result, the relevance of PPAD for algorithmic game theory was made clear when it
turned out that computing a Nash-equilibrium in a three player game is PPAD-complete [17].
Subsequently, this was also shown for the two player game [11]. In discrete geometry, finding
a solution to the Colorful Carathéodory problem [3] was shown to lie in the intersection
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Figure 2 The hierarchy of complexity classes.

PPAD∩PLS [31,32]. This further implies that finding a Tverberg partition (and computing a
centerpoint) also lies in the intersection [29,36,43]. The problem of computing the (unique)
fixed point of a contraction map is known to lie in CLS [18].

Recently, at ICALP 2019, Fearnley, Gordon, Mehta, and Savani defined a sub-class of
CLS that represents a family of total search problems with unique solutions [20]. They
named the class Unique End of Potential Line (UEOPL) and defined it through the canonical
complete problem UniqueEOPL. This problem is modelled as a directed graph. There are
polynomially-sized Boolean circuits that compute the successor and predecessor of each node,
and a potential value that always increases on a directed path. There is supposed to be
only a single vertex with no predecessor (start of line). Under these conditions, there is a
unique path in the graph that ends on a vertex (called end of line) with the highest potential
along the path. This vertex is the solution to UniqueEOPL. Since the uniqueness of the
solution is guaranteed only under certain assumptions, such a formulation is called a promise
problem. Since there seems to be no efficient way to verify the assumptions, the authors allow
two possible outcomes of the search algorithm: either report a correct solution, or provide
any solution that was found to be in violation of the assumptions. This formulation turns
UniqueEOPL into a non-promise problem and places it in TFNP, since a correct solution is
bound to exist when there are no violations, and otherwise a violation can be reported as a
solution. Fearnley et al. [20] also introduced the concept of a promise-preserving reduction
between two problems A and B, such that if an instance of A has no violations, then the
reduced instance of B is also free of violations. This notion is particularly meaningful for
non-promise problems.

Contributions. We provide the first non-trivial containment in a complexity class for the
α-Ham-Sandwich problem by locating it in UEOPL. More precisely, we formulate Alpha-HS
as a non-promise problem in which we allow for both valid solutions representing the correct
dividing hyperplane, as well as violations accounting for the lack of well-separation and/or
(weak) general position of the input point sets. A precise formulation of the problem is
given in Definition 4 in Section 2. We then show a promise-preserving reduction from
Alpha-HS to UniqueEOPL. This implies that Alpha-HS lies in UEOPL, and hence in
CLS ⊆ PPAD ∩ PLS. See Figure 2 for a pictorial description.
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It is not surprising to discover that Alpha-HS lies in PPAD, since the proof of the
continuous version in [4] was based on Brouwer’s Fixed Point Theorem. The observation
that it also lies in PLS is new and noteworthy, putting Alpha-HS into the reach of local
search algorithms. In contrast, given our current understanding of total search problems, it
is unlikely that the problem Ham-Sandwich would be in PLS.

Since Alpha-HS lies in PPAD ⊆ PPA, it is computationally easier than Ham-Sandwich,
which is PPA-complete. This implies the existence of a polynomial-time reduction from
Alpha-HS to Ham-Sandwich. A reduction in the other direction is unlikely. It thus turns
out that well-separation brings down the complexity of the problem significantly.

Often, problems in TFNP come in the guise of a polynomial-size Boolean circuit with
some property. In contrast, Alpha-HS is a purely geometric problem that has no circuit in
its problem definition. Apart from the P -Matrix Linear complementarity problem, this is
one of the few problems in UEOPL and hence in CLS that do not have a description in terms
of circuits.

Our local-search formulation is based on the intuition of rotating a hyperplane until we
reach the desired solution. We essentially start with a hyperplane that is tangent to the
convex hull of each input set, and we deterministically rotate the hyperplane until it hits a
new point. This rotation can be continued whenever the hyperplane hits a new point, until we
reach the correct dividing hyperplane. In other words, we can follow a local-search argument
to find the solution. We show that this sequence of rotations can be modelled as a canonical
path in a grid graph, and we give a potential function that guides the rotation and always
increases along this path. Every violation of well-separation and (weak) general position can
destroy this path. Furthermore, no efficient methods to verify these two assumptions are
known. This poses a major challenge in handling the violations. One of our main technical
contributions is to handle the violation solutions concisely.

An alternative approach would have been to look at the dual space of points where we get
an arrangement of hyperplanes. The dividing hyperplane could then be found by looking at
the correct level sets of the arrangement. However, this approach has the problem that the
orientations of the hyperplanes in the original space and the dual space are not consistent.
This complicates the arguments on the level sets, so we found it more convenient to use
our notion of rotating hyperplanes. We show that we can maintain a consistent orientation
throughout the rotation, and an inconsistent rotation is detected as a violation of the promise.

Outline of the paper. We discuss the background about the α-Ham-sandwich Theorem
and UniqueEOPL in Section 2. In Section 3, we describe our instance of Alpha-HS and
give an overview of the reduction and violation-handling. We conclude in Section 4. The
technical details of the reduction and some proofs can be found in the full version of the
paper in [13].

2 Preliminaries

2.1 The α-Ham-Sandwich problem
For conciseness, we describe the discrete version of α-Ham-Sandwich Theorem [40] here. The
continuous version [4] follows a similar formulation.

Let P1, . . . , Pd ⊂ Rd be a collection of d finite point sets. Let n1, . . . , nd denote the
sizes of P1, . . . , Pd, respectively. For each i ∈ [d] we say that the point set Pi represents a
unique color and let P := P1 ∪ · · · ∪ Pd denote the union of all the points. A set of points
{p1, . . . , pm} is said to be colorful if there are no two points pi, pj both from the same color.
Indeed a colorful point set can have size at most d.

ICALP 2020
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Weak general position. We say that P has very weak general position [40], if for every
choice of points x1 ∈ P1, . . . , xd ∈ Pd, the affine hull of the set {x1, . . . , xd} is a (d− 1)-flat
and does not contain any other point of P . This definition is sufficient for the result of Steiger
and Zhao, where they simply call it as weak general position. Of course, this definition of
weak general position has no restriction on sets {x1, . . . , xd} that contain multiple points
from the same color. To simplify our proofs we need a slightly stronger form of general
position. We discuss how to deal with very weak general position at the end of Section 3.
We say that P has weak general position if the above restriction also applies to sets having
exactly d− 1 colors. That means, each color may contribute at most one point to the set,
except perhaps one color which is allowed to contribute two points. A certificate for checking
violations of weak general position is a set of d+ 1 points whose affine hull has dimension at
most d− 1, with at least d− 1 colors in the set. Testing whether a point set is in general
position can be shown to be NP-Hard, using the result in [23]. It is easy to see that when
d = 2, weak general position is equivalent to general position.

Well-separation. The point set P is said to be well-separated [4, 40], if for every choice of
points y1 ∈ conv(Pi1), . . . , yk ∈ conv(Pik

), where i1, . . . , ik are distinct indices and 1 ≤ k ≤ d,
the affine hull of {y1, . . . , yk} is a (k − 1)-flat. An equivalent definition is as follows: P
is well-separated if and only if for every disjoint pair of index sets I, J ⊂ [d], there is a
hyperplane that separates the set {∪i∈IPi} from the set {∪j∈JPj} strictly. Formally:

I Lemma 1. Let y1, . . . , yd be a colorful set of points in the corresponding conv(Pi). The
affine hull of y1, . . . , yd has dimension d− 2 or less if and only if there is a partition of [d]
into index sets I, J such that conv ({∪i∈IPi}) ∩ conv ({∪j∈JPj}) 6= ∅.

Given such a colorful set, the partition of [d] can be computed in poly(n, d) time. Vice-
versa, given such a partition, the colorful set can be computed in poly(n, d) time.

A certificate for checking violations of well-separation is a colorful set {x1, . . . , xd} whose
affine hull has dimension at most d− 2. Another certificate is a partition I, J ⊂ [d] such that
the convex hulls of the indexed sets are not separable. Due to Lemma 1, both certificates are
equivalent and either can be converted into the other in polynomial time. To the best of our
knowledge, the complexity of testing well-separation is unknown.

Given any set of positive integers {α1, . . . , αd} satisfying 1 ≤ αi ≤ ni, i ∈ [d], an
(α1, . . . , αd)-cut is an oriented hyperplane H that contains one point from each color and
satisfies |H+ ∩ Pi| = αi for i ∈ [d], where H+ is the closed positive half-space defined by H.

I Theorem 2 (α-Ham-Sandwich Theorem [40]). Let P1, . . . , Pd be finite, well-separated point
sets in Rd. Let α = (α1, . . . , αd) be a vector, where αi ∈ [ni] for i ∈ [d].
1. If an α-cut exists, then it is unique.
2. If P has weak general position, then an α-cut exists for each choice of α.

That means, every colorful d-tuple of P represents an oriented hyperplane that corresponds
to exactly one α-vector. Steiger and Zhao [40] also presented an algorithm to compute the
cut in O(n(logn)d−3) time, where n =

∑d
i=1 ni. The algorithm proceeds inductively in

dimension and employs a prune-and-search technique. Bereg [8] improved the pruning step
to improve the runtime to n2O(d).

2.2 Unique End of Potential Line
We briefly explain the Unique end of potential line problem that was introduced in [20]. More
details about the problem and the associated class can be found in the above reference.
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I Definition 3 (from [20]). Let n,m be positive integers. The input consists of
a pair of Boolean circuits S,P : {0, 1}n → {0, 1}n such that P(0n) = 0n 6= S(0n), and
a Boolean circuit V : {0, 1}n → {0, 1, . . . , 2m − 1} such that V(0n) = 0,

each circuit having poly(n,m) size. The UniqueEOPL problem is to report one of the
following:
(U1). A point v ∈ {0, 1}n such that P(S(v)) 6= v.

(UV1). A point v ∈ {0, 1}n such that S(v) 6= v, P(S(v)) = v, and V(S(v))− V(v) ≤ 0.
(UV2). A point v ∈ {0, 1}n such that S(P(v)) 6= v 6= 0n.
(UV3). Two points v, u ∈ {0, 1}n such that v 6= u, S(v) 6= v, S(u) 6= u, and either

V(v) = V(u) or V(v) < V(u) < V(S(v)).
The problem defines a graph G with up to 2n vertices. Informally, S(·),P(·),V(·) represent
the successor, predecessor and potential functions that act on each vertex in G. The in-degree
and out-degree of each vertex is at most one. There is an edge from vertex u to vertex v if
and only if S(u) = v, P(v) = u and V(u) < V(v). Thus, G is a directed acyclic path graph
(line) along which the potential strictly increases. The condition S(P(x)) 6= x means that
x is the start of the line, P(S(x)) 6= x means that x is the end of the line, and P(S(x)) = x

occurs when x is neither. The vertex 0n is a given start of the line in G.
(U1) is a solution representing the end of a line. (UV1), (UV2) and (UV3) are violations.

(UV1) gives a vertex v that is not the end of line, and the potential of S(v) is not strictly
larger than that of v, which is a violation of our assumption that the potential increases
strictly along the line. (UV2) gives a vertex that is the start of a line, but is not 0n. (UV3)
shows that G has more than one line, which is witnessed by the fact that v and u cannot
lie on the same line if they have the same potential, or if the potential of u is sandwiched
between that of v and the successor of v. Under the promise that there are no violations, G is
a single line starting at 0n and ending at a vertex that is the unique solution. UniqueEOPL
is formulated in the non-promise setting, placing it in the class TFNP.

The complexity class UEOPL represents the class of problems that can be reduced in
polynomial time to UniqueEOPL. This has been shown to lie in CLS and contains three
classical problems in [20]: finding the fixed point of a piecewise-linear contraction map,
solving the P-Matrix Linear complementarity problem, and finding the unique sink of a
directed graph (with arbitrary edge orientations such that each face has a sink) on the
1-skeleton of a hypercube. Note that finding the fixed point of a contraction map is in
CLS [18], but is not known to lie in UEOPL.

A notion of promise-preserving reductions is also defined in [20]. Let X and Y be two
problems both having a formulation that allows for valid and violation solutions. A reduction
from X to Y is said to be promise-preserving, if whenever it is promised that X has no
violations, then the reduced instance of Y also has no violations. Thus a promise-preserving
reduction to UniqueEOPL would mean that whenever the original problem is free of
violations, then the reduced instance always has a single line that ends at a valid solution.

2.3 Formulating the search problem
We formalize the search problem for α-Ham-Sandwich in a non-promise setting:

I Definition 4 (Alpha-HS). Given d finite sets of points P = P1∪ . . .∪Pd in Rd and a vector
(α1, . . . , αd) of positive integers such that αi ≤ |Pi| for all i ∈ [d], the Alpha-HS problem is
to find one of the following:

(G1). An (α1, . . . , αd)-cut.
(GV1). A subset of P of size d+ 1 and at least d− 1 colors that lies on a hyperplane.
(GV2). A disjoint pair of sets I, J ⊂ [d] such that conv({∪i∈IPi}) ∩ conv({∪j∈JPj}) 6= ∅.

ICALP 2020



31:8 Computational Complexity of the α-Ham-Sandwich Problem

Here a solution of type (G1) corresponds to a solution representing a valid cut, while solutions
of type (GV1) and (GV2) refer to violations of weak general position and well-separation,
respectively. From Theorem 2 we see that a valid solution is guaranteed if no violations are
presented, which shows that Alpha-HS is a total search problem.

3 Alpha-HS is in UEOPL

In this section we describe our instance of Alpha-HS in more detail and briefly outline a
reduction to UniqueEOPL.

Setup. The input consists of d finite point sets P1, . . . , Pd ⊂ Rd each representing a unique
color, of sizes n1, . . . , nd, respectively, and a vector of integers α = (α1, . . . , αd) such that
αi ∈ [ni] for each i ∈ [d]. Let k denote the number of coordinates of α that are not equal
to 1. Without loss of generality, we assume that {α1, . . . , αk} are the non-unit entries in α.
Let P denote the union P1 ∪ · · · ∪ Pd. For each i ∈ [d] we define an arbitrary order ≺i on
Pi. Concatenating the orders ≺1,≺2, . . . ,≺d in sequence gives a global order ≺ on P . That
means, p ≺ q if p ∈ Pi, q ∈ Pj and i < j or p, q ∈ Pj and p ≺j q.

We follow the notation of [40] to define the orientation of a hyperplane in Rd that has
a non-empty intersection with the convex hull of each Pi. For any hyperplane H passing
via {x1 ∈ conv(P1), . . . , xd ∈ conv(Pd)}, the normal is the unit vector n̂ ∈ Rd that satisfies

〈xi, n̂〉 = t for some fixed t ∈ R and each i ∈ [d], and det
∣∣∣∣x1 x2 . . . xd n̂

1 1 . . . 1 0

∣∣∣∣ > 0, where

the columns of the matrix are determined using the order ≺. The positive and negative
half-spaces of H are defined accordingly. In [4, Proposition 2], the authors show that the
choice of n̂ does not depend on the choice of xi ∈ conv(Pi) for any i, if the colors are
well-separated. Notice that if the colors are not well-separated, then the dimension of the
affine hull of {x1, . . . , xd} may be less than d− 1. This makes the value of the determinant
above to be zero, so the orientation is not well-defined.

We call a hyperplane colorful if it passes through a colorful set {p1, . . . , pd} ⊂ P . Oth-
erwise, we call the hyperplane non-colorful. There is a natural orientation for colorful
hyperplanes using the definition above. In order to define an orientation for non-colorful
hyperplanes, one needs additional points from the convex hulls of unused colors on the
hyperplane. Let H ′ denote a hyperplane that passes through points of (d− 1) colors. Let
Pj denote the missing color in H ′. To define an orientation for H ′, we choose a point from
conv(Pj) that lies on H ′ as follows. We collect the points of Pj on each side of H ′, and
choose the highest ranked points under the order ≺j . Let these points on opposite sides
of H ′ be denoted by x and y. Let z denote the intersection of the line segment xy with
H ′. By convexity, z is a point in conv(Pj), so we choose z to define the orientation of
H ′. The intersection point z does not change if x and y are interchanged, giving a valid
definition of orientation for H ′. We can also extend this construction to define orientations
for hyperplanes containing points from fewer than d − 1 colors, but for our purpose this
definition suffices. The α-vector of any oriented hyperplane H is a d-tuple (α1, . . . , αd) of
integers where αi is the number of points of Pi in the closed halfspace H+ for i ∈ [d].

3.1 An overview of the reduction
We give a short overview of the ideas used in the reduction from Alpha-HS to UniqueEOPL.
The details are technical and we encourage the interested reader to go through the details of
our reduction in [13].
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Our intuition is based on rotating a colorful hyperplane H to another colorful hyperplane
H ′ through a sequence of local changes of the points on the hyperplanes such that the
α-vector of H ′ increases in some coordinate by one from that of H. We next define the
rotation operation in a little more detail. An anchor is a colorful (d− 1)-tuple of P which
spans a (d − 2)-flat. The following procedure takes as input an anchor R and some point
p ∈ P \R and determines the next hyperplane obtained by a rotation. The output is (R′, p′),
where R′ is an anchor and p′ ∈ P \R′ is some point.

Procedure (R′, p′) = NextRotate(R, p)
1. Let H denote the hyperplane defined by R ∪ {p} and t1 be the missing color in R.
2. If the orientation of H is not well-defined, report a violation of weak general position and

well-separation.
3. Let P+

t1
be the subset of Pt1 that lies in the closed halfspace H+ and P−t1

be the subset of
Pt1 that lies in the open halfspace H−. Let x ∈ P+

t1
be the highest ranked point according

to the order ≺t1 and y ∈ P−t1
be the highest ranked point according to ≺t1 .

4. If p has color t1 and |P+
t1
| = nt1 , report out of range.

5. We rotate H around the anchor R in a direction such that the hyperplane is moving away
from x along the segment xy until it hits some point q ∈ P .

6. If the hyperplane hits multiple points at the same time, report a violation of weak general
position.

7. If q is not color t1, set R′ := R ∪ {q} \ {r} and p′ = r, where r is a point in R with the
same color as q. Otherwise, set R′ = R and p′ = q.

8. Return (R′, p′).
Figure 3 shows an application of this procedure, rotating H0 to H4 through H1, H2, H3.

This rotation function can be interpreted as a function that assigns each hyperplane to
the next hyperplane. The set of colorful hyperplanes can be interpreted as vertices in a graph
with the rotation function determining the connectivity of the graph.

Canonical path. Each colorful hyperplane H is incident to a colorful set of d points. This
set of points defines d possible anchors, and each anchor can be used to rotate H in a different
fashion. To define a unique sequence of rotations, we pick a specific order as follows: first, we
assume that the colorful hyperplane H whose α-vector is (1, . . . , 1) is given (we show later
how this assumption can be removed). We start at H and pick the anchor that excludes the
first color, then apply a sequence of rotations until we hit another colorful hyperplane with
α-vector (2, 1, . . . , 1). Similarly, we move to a colorful hyperplane with α-vector (3, 1, . . . , 1)
and so on until we reach (α1, 1, . . . , 1). Then, we repeat this for the other colors in order to
reach (α1, α2, 1, . . . , 1) and so on until we reach the target α-vector. This pattern of α-vectors
helps in defining a potential function that strictly increases along the path. We can encode
this sequence of rotations as a unique path in the UniqueEOPL instance, and we call it
canonical path.

A natural way to define the UniqueEOPL graph would be to consider hyperplanes as the
vertices in the graph. However, this leads to complications. Figure 3 shows a rotation from
H0 to H4, with α-vectors (3, 2) and (3, 3) respectively. During the rotation, we encounter
a hyperplane H2 for which its α-vector is (4, 2), which differs from our desired sequence
of (3, 2), . . . , (3, 2), (3, 3). This makes it difficult to define a potential function in the graph
that strictly increases along the path vH0 , . . . , vH4 where vHi

is the vertex representing
hyperplane Hi. One way to alleviate this problem is to not use Hi as a vertex directly, but
the double-wedge that is traced out by the rotation from Hi to Hi+1. If the α-vector is
now measured using the hyperplane that bisects the double-wedge, then we get the desired
sequence of (3, 2), . . . , (3, 2), (3, 3). See Figure 3 for an example.
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H1, α = (3, 2)

H2, α = (4, 2)

H3, α = (3, 2)

H0, α = (3, 2)

H4, α = (3, 3)

+

+

+

+

+

z1

z2

z3

x

y

H12, α = (3, 2)

+

Figure 3 An example showing a sequence of rotations from H0 to H4 through H1, H2, H3.
Red (square) is the first color and purple (disk) is the second color. This sequence represents a
path between two vertices in the UniqueEOPL graph that is generated in the reduction. The
double-wedge is shaded and its angular bisector H12 has the desired α-vector.

With additional overhead, the rotation function can be extended to double-wedges. This
in turn also leads to a neighborhood graph where the vertices are the double-wedges and
the rotations can be used to define the edges. The graph is connected and has a grid-like
structure that may be of independent interest. Due to lack of space, the description of
double-wedges and the associated graph can be found in [13].

Distance parameter and potential function. The α-vector is not sufficient to define the
potential function, since the sequence of rotations between two colorful hyperplanes may
have the same α-vector. For instance, the bisectors of the rotations in H0, . . . ,H3 in Figure 3
all have the same α-vector. Hence, we need an additional measurement in order to determine
the direction of rotation that increases the α-vector.

Similar to how we define the orientation for a non-colorful hyperplane, let H denote a
hyperplane that passes through points of (d− 1) colors. Let Pj denote the missing color in
H. Let x, y ∈ Pj be the highest ranked points under ≺j in H+ and H− respectively. Let z
denote the intersection of xy and H. We define a distance parameter called dist-value of H
to be the distance ‖x− z‖. In Figure 3, we can see that rotating from H0 to H4 sweeps the
segment xy in one direction, with the dist-value of the hyperplanes increasing strictly. This
is sufficient to break ties and hence determine the correct direction of rotation. The precise
statement is given in Lemma 6. We can extend this definition to the domain of double-wedges.
We define a potential value for each vertex on the canonical path in UniqueEOPL using
the sum of weighed components of α-vector and dist-value for the tie-breaker.
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Correctness. We show that if there are no violations, we can always apply Procedure
NextRotate to increment the α-vector until we find the desired solution, which implies that
the canonical path exists. If the input satisfies weak general position, we can see that the
rotating hyperplane always hits a unique point in Step 5, which may be swapped to form a
new anchor in Step 7.

The well-separation condition guarantees that the potential function always increases
along the rotation. Let H1, H2 denote a pair of hyperplanes that are the input and output
of Procedure NextRotate respectively. Let H denote any intermediate hyperplane during
the rotation from H1 to H2 through the common anchor. Let Pj be the color missing from
the anchor and x be the highest ranked point under ≺j in H+

1 . We say that the orientation
of H2 (resp. H) is consistent with that of H1 if x ∈ H+

2 (resp. x ∈ H+). Lemma 5 shows
that the orientations are always consistent when H1 and H2 are non-colorful hyperplanes
even without the assumption of well-separation.

I Lemma 5 (consistency of orientation). Assume that weak general position holds. Let
H1, H2 be the input and output of Procedure NextRotate respectively. Let H denote any
intermediate hyperplane within the rotation. The orientations of H1 (resp. H2) and H are
consistent when H1 (resp. H2) is a non-colorful hyperplane.

Proof. Since H1 is a non-colorful hyperplane, let Pj denote the color missing from H1. H1
and H give the same partition of Pj into two sets because the continuous rotation from H1
to H does not hit any point in Pj . Let x and y be the highest ranked points under ≺j in
each set. Since we have weak general position, the segment xy cannot pass through the
anchor of the rotation so that the orientations of H1 and H are well-defined by the (d− 1)
colored points in the anchor and the intersections of the hyperplanes with the segment xy.
Thus, the determinant defining the normal of the rotating hyperplane from H1 to H for the
orientation is always non-zero. Since the intersection of the rotating hyperplane from H1 to
H and the segment xy moves continuously along xy, by a continuity argument, the normal
of the hyperplane does not flip during the rotation. Without loss of generality, assume that
x ∈ H+

1 . This implies that x is always in the positive half-space of H and hence H has a
consistent orientation as H1. The same proof holds for H2. J

Next, we show that the dist-value is strictly increasing for all the intermediate hyperplanes
in the sequence of rotations from one colorful hyperplane to another colorful hyperplane.

I Lemma 6. Assume that weak general position holds. Let H0 be a colorful hyperplane
and Hk be the first colorful hyperplane obtained by a sequence of rotations by Procedure
NextRotate. We denote by H1, . . . ,Hk−1 the non-colorful hyperplanes obtained from the
above sequence of rotations. The dist-values of H1, . . . ,Hk−1 are strictly increasing.

Proof. Let Pj denote the color missing from H1. Then, H2, . . . ,Hk−1 all miss the color Pj ,
otherwise Hk is not the first colorful hyperplane obtained by the rotations. Therefore, each Hi

gives the same partition of Pj into two sets for i = 1, . . . , k−1 because the continuous rotations
from H1 to Hk−1 does not hit any point in Pj . Let x and y be the highest ranked points
under ≺j in each set. Without loss of generality, assume that x ∈ H+

1 . Since H1, . . . ,Hk−1
are non-colorful hyperplanes, by Lemma 5, the consistent of the orientation can carry from
H1 to H2 and so on. Then we have x ∈ H+

1 , . . . , x ∈ H+
k−1 and y ∈ H−1 , . . . , y ∈ H−k−1.

Let z1 = xy ∩H1, . . . , zk−1 = xy ∩Hk−1. According to Step 5 of Procedure NextRotate,
each rotation is performed by moving away from x along the segment xy. Hence we have
‖x− z1‖ < ‖x− z2‖ < · · · < ‖x− zk−1‖. J
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The last step for proving that the potential function always increases along the canonical
path is to show that the α-vector increases in some coordinate from one colorful hyperplane to
another colorful hyperplane through Procedure NextRotate. This requires the assumption
of well-separation. Lemma 7 shows that if the orientations of H1, H2 and H are inconsistent,
then well-separation is violated. By the contrapositive, if well-separation is satisfied, then
all hyperplanes in the rotation always give consistent orientations. Then, it implies that
rotating from a colorful hyperplane H0 to another colorful hyperplane Hk through a sequence
of non-colorful hyperplanes that miss color Pj , we have H+

0 ∩Pj ⊂ H+
k ∩Pj and Hk contains

one additional point in Pj that is hit by the last rotation. Therefore, αj is increased by 1
and other αis keep the same value because of the way we swap the point of repeated color
with the one in the anchor and the direction of rotation.

I Lemma 7. Assume that weak general position holds. Let H1, H2 be the input and output of
Procedure NextRotate respectively. Let R denote the anchor of the rotation from H1 to H2,
and Pj denote the color missing from R. Let H denote any intermediate hyperplane within
the rotation. If the orientations of H1 (resp. H2) and H are inconsistent, then H1 (resp.
H2) is a colorful hyperplane and we can find a colorful set R ∪ {x′} lying in a (d− 2)-flat
where x′ ∈ conv(Pj), in O(d3) arithmetic operations. The set R∪{x′} witnesses the violation
of well-separation.

Proof. Since the orientations of H1 and H are inconsistent, H1 must be a colorful hyperplane
by Lemma 5. Therefore, the point in H1 that is not in the anchor is in Pj , denoted by p.

Let x and y be the points defined in Lemma 5 such that x, y ∈ Pj , and x and y are on
different sides of H1 and H. The (d − 2)-flat containing R separates H1 and H into two
(d− 1)-dimensional half-subspaces each. Let H+

1,R and H+
R be the half-subspaces intersecting

with xy on H1 and H respectively, and let us denote the intersection points by zp and z,
respectively. The opposite half-subspaces are denoted by H−1,R and H−R , respectively. By
definition of the orientation for non-colorful hyperplanes, the orientation of H is defined by
R∪{z}. Although the orientation of H1 is defined by R∪{p}, if we consider the determinant
defining the orientation using R ∪ {zp}, it gives an orientation consistent with that of H.
Therefore, it must be that p ∈ H−1,R. Then, we can see that the line segment pzp intersects
the (d− 2)-flat of R. We can compute zp and also the intersection point x′ of pzp and the
(d− 2)-flat of R by solving systems of linear equations with d equations and d variables in
O(d3) arithmetic operations. Since x′ ∈ conv(Pj), R ∪ {x′} is a colorful set contained in the
(d− 2)-flat of R. J

In order to guarantee that there is no other path in UniqueEOPL apart from the
canonical path, we introduce self-loops for vertices that are not on the canonical path. The
detailed proof in [13] shows that if there are no violations, then the reduced instance of
UniqueEOPL only gives a (U1) solution, which readily translates to a (G1) solution, so
our reduction is promise-preserving, and this can be done in polynomial time.

Since we do not know the hyperplane with α-vector (1, . . . , 1) in advance, we split the
problem into two sub-problems: in the first we start with any colorful hyperplane. We reverse
the direction of the canonical path determined by the potential and construct an Alpha-HS
instance for which the vertex with α-vector (1, . . . , 1) is the solution. In the second, we use
this vertex as the input to the main Alpha-HS instance. If the input is free of violations,
then both sub-problems give valid solutions and together they answer the original question.
To merge the two sub-problems into one UniqueEOPL instance, we can make two layer
copies of the vertices with an additional flag variable to indicate which copy is in the first
layer. In the first layer, we build the canonical path from any colorful vertex to the colorful
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vertex with α-vector (1, . . . , 1), which connects to the colorful vertex with α-vector (1, . . . , 1)
in the second layer. Similarly, in the second layer, we build the canonical path from the
colorful vertex with α-vector (1, . . . , 1) to the vertex with the target α-vector. Then, we can
also easily modify the potential function accordingly.

An alternative approach is to define the canonical path directly from any colorful vertex
to the target vertex. In this case, each coordinate of the current α-vector may increase or
decrease depending on the signed distance to the target α-vector along the canonical path.
However, the potential function can still be defined in a way that it is strictly increasing
along the path.

Handling violations. The reduction maps violations of Alpha-HS to violations of the
UniqueEOPL instance, and certificates for the violations can be recovered from additional
processing. When a violation of weak general position is witnessed on a vertex that lies on
the canonical path, a hyperplane incident to d colors may contain additional points. This in
turn implies that some α-cut is missing, so that the correct solution for the target may not
exist. For cuts that exist in spite of the violation, reporting either the correct solution or the
violation are sufficient for Alpha-HS.

In addition, the (highest-ranked) points x, y from the missing color that we choose to
define the orientation of a non-colorful hyperplane may form a segment xy that passes through
the (d− 2)-flat spanned by the anchor. In that case the orientation of the hyperplane is not
well-defined. In the reduction, these problematic vertices are removed from the canonical
path, thereby creating some additional starting points and end points in the reduced instance.
These violations can be captured by (U1) with a wrong α-vector or (UV2). Furthermore,
the hyperplanes that contain the degenerate point sets could be represented by different
choices of anchors and an additional point on the plane. Each such pair represents a vertex
in the reduced instance. We join these vertices in the form of a cycle in the UniqueEOPL
instance with all vertices having the same potential value, so that the violations can also be
captured by (UV1) and (UV3).

When a violation of well-separation is witnessed on a vertex on the canonical path, the
orientations of the two hyperplanes paired by Procedure NextRotate may be inconsistent,
which may not guarantee that the α-vector is incremented in one component by one (See
Figure 4). Hence, the canonical path is split into two paths that can be captured by (UV2).
Furthermore, a violation of well-separation also creates multiple colorful hyperplanes with the
same α-vector (See Figure 4, left). Two vertices in the UniqueEOPL graph with the same
potential value, which could correspond to some colorful or non-colorful hyperplanes, can be
reported by (UV3). We show that this gives a certificate of violation of well-separation in
the following lemmas, where m0 is the number of bits used to represent each coordinate of
points of P .

I Lemma 8. Given two colorful hyperplanes Hp, Hq with the same α-vector, we can find a
colorful set {x1 ∈ conv(P1), . . . , xd ∈ conv(Pd)} that lies on a (d− 2)-flat in poly(n, d,m0)
time.

I Lemma 9. Given two non-colorful hyperplanes that both contain d− 1 points and have
the same missing color, α-vector and dist-value, we can find a colorful set of points {x1 ∈
conv(P1), . . . , xd ∈ conv(Pd)} that lies on a (d− 2)-flat in poly(n, d,m0) time.

For the second output (V(v) < V(u) < V(S(v))) of (UV3), there are two cases to consider.
In the first case, if both v and S(v) correspond to the same α-vector, then u also has the same
α-vector and its dist-value is between that of v and S(v). Since rotating the hyperplane from
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H1, α = (3, 2)
+

+

H2, α = (3, 2)

H1, α = (4, 3)

+

+

H2, α = (2, 2)

x

y

Figure 4 The examples show two sets of points that are not well-separated. Purple (circle)
represents the first color and red (square) represents the second color. In both examples the rotation
procedure does not increase the α-vector. Both examples show that the orientation of the hyperplane
may be flipped after the rotation, so the resulting α-vector can go wrong.

v to S(v) does not pass through u, we can find a different hyperplane that is interpolated
by v and S(v) and has the same dist-value as u. Hence, we apply Lemma 9 again to find
a witness of the violation. For the second case that the α-vector of S(v) increases in one
coordinate by one from that of v, since the role of dist-value is dominated by the role of
α-vector in the potential function, the dist-value of u can be arbitrarily large. Therefore, we
may not be able to apply the interpolation technique from the first again. We argue that we
can transform P to a point set P ′ satisfying conv(P ′i ) ⊆ conv(Pi) for all i ∈ [d], such that
the hyperplanes of v and u become colorful. Then, we apply Lemma 8 to show that P ′ is
not well-separated, which also implies that P is not well-separated. The precise statement
and proof are given in [13]. We also show

how to compute a (GV1) solution from a (UV1) solution,
how to compute a (GV1) or (GV2) solution, given a (UV2) or (UV3) solution, and
a (GV1) or (GV2) solution that can occur with a (U1) solution that has the incorrect
α-vector.

We show that converting these solutions always takes poly(n, d) time. The violations may be
detected in either the first sub-problem or the second sub-problem. Our constructions thus
culminate in the promised result:

I Theorem 10. Alpha-HS ∈ UEOPL ⊆ CLS.

Handling very weak general position. We have described our construction for the case
when weak general position holds. If we only assume that very weak general position holds,
then there may exist a hyperplane that passes through more than d points of at most d− 1
colors. Therefore, in Step 5 of Procedure NextRotate the rotating hyperplane may hit
more than one point so that it is not clear how to define the new anchor in Step 7. From the
point of view of the reduction, there are many non-colorful vertices that represent the same
hyperplane. We need a new approach to define a unique path to traverse these vertices with
respect to this hyperplane. In other words, we charge the computational time of finding the
new anchor to traversing these vertices on the path instead of considering it as one operation.

If we consider the space of all the points lying on the hyperplane, we have d− 1 sets of
points each representing a unique color in an affine subspace of d − 1 dimensions. Thus,
we can consider it as a new instance of Alpha-HS in one dimension lower. Let H be the
rotating hyperplane that hits more than one point and contains d− 1 colors. Without loss of
generality, we assume that d is the missing color. We denote by Q = Q1∪Q2∪ . . .∪Qd−1 the
d− 1 sets of points in H such that Qi ⊆ Pi and denote by Q̂i the set of points represented in
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α = (6, 1)

H0, b = (6, 1)
+

H,α = (10, 1)
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span(R)+, α = (2)

R′

span(R′)+, α = (5)

H1, α = (6, 1)

q

Figure 5 An example showing the relationship between the α-vector in a subproblem in R and
the α-vector in the original problem in R2. Red (square) is the first color and purple (disk) is the
second color. The orientation of span(R) in H is defined such that it is consistent with H0. b = (6, 1)
is the α-vector of H0. k1 = 4 is the number of red points in H+ \H. The α-vector of the starting
vertex (i.e., R) with respect to H is (6− 4 = 2). The α-vector of the end vertex is (6 + 1− 2 = 5).
We can see that q ∈ span(R′)+ and q moves to the negative side of H1 when rotating from H to H1.

the new coordinate system in Rd−1 for Qi in H. First, we claim that if P is well-separated
and in very weak general position, then Q̂ is also well-separated and in very weak general
position. Since Q ⊂ P , it is clear that well-separation follows. Suppose that Q̂ violates very
weak general position, then there exists a (d− 2)-flat that contains more than d− 1 points of
d− 1 colors in Q. In particular, any (d− 1)-flat spanned by the (d− 2)-flat and any point in
Pd contains more than d points of d colors, which contradicts the fact that P is in very weak
general position.

Suppose that P is well-separated and in very weak general position. Now we define
what is the unique path with respect to Q̂. Let b = (b1, . . . , bd) be the α-vector of the
rotating hyperplane H0 just before rotating to H at the anchor R. In the new instance of
Alpha-HS, we would pick the orientation of (d−2)-flats in Rd−1 such that every point p ∈ Q
lies in H+

0 if and only if the corresponding point p̂ ∈ Q̂ lies in span(R̂)+. Let k1, . . . kd−1
denote the number of points of P1, . . . , Pd−1 in H+, but not in Qi. Then, we can see that
the number of points in Q̂i lying in span(R̂)+ is equal to bi − ki. Thus, the α-vector of
span(R̂)+ is (b1 − k1, . . . , bd−1 − kd−1), which is the α-vector of the starting vertex of the
path. On the other hand, the α-vector of the end vertex is (|Q1|+ 1− b1 + k1, . . . , |Qd−1|+
1 − bd−1 + kd−1). It is because the points in H+

0 \ H0 become in the opposite side after
the rotation passes through H. Therefore, if we rotate at the new anchor with α-vector
(|Q1|+ 1− b1 + k1, . . . , |Qd−1|+ 1− bd−1 + kd−1) in Q̂, then the α-vector of the new rotating
hyperplane is still (b1, . . . , bd). The next question is that if the vertex only stores any d points
of H, we cannot recover b and H0 so that the orientation cannot be defined consistently and
the target α-vector for Q̂ is not known. To handle this problem, we need to redefine the
double-wedge to be (R1, p1, R2, p2) instead of (R, p, q) in such a way that R1 = R2 if the
double-wedge contains exactly d+ 1 points, otherwise R1 ⊂ span(R2 ∪{p2}). For instance, if
(R̂1, q̂1)− > . . .− > (R̂m, q̂m) is the unique path in Q̂, where R̂i is an anchor of size d− 2 so
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that R̂i and q̂i represent a (d− 2)-flat in Rd−1, then the corresponding path in the original
problem is (R, p,R1 ∪ {q1}, p1)− > (R, p,R2 ∪ {q2}, p2)− > . . .− > (R, p,Rm ∪ {qm}, pm),
where pi is some point in H that is picked under ≺ in a way that the tuple is uniquely defined
in the path. Hence, b can be computed from the bisector of (R, p) and (Ri ∪ {qi}, pi), and
the orientation of (d− 2)-flats can also be defined by the bisector. There may exist some
other double-wedge (∗, ∗, Ri ∪ {qi}, pi) that is incident to H, but it will not have the same b.

In conclusion, the unique path in the reduction can be defined recursively as above
in an Alpha-HS instance of one dimension lower. As a result, the representation of the
double-wedges gets more complicated and the size is increased by a factor of O(d). The
potential function becomes a weighted sum of the potential function in each recursive level,
but the number of bits is still in polynomial size. For handling violations, there are not
many changes. Instead of reporting the violation of weak general position, we now report the
violation of very weak general position when the rotating hyperplane in Ri contains more
than i points of i colors. If any recursive subproblem violates very weak general position, it
also implies that the original input P violates very weak general position.

4 Conclusion and future work

We gave a complexity-theoretic upper bound for Alpha-HS. No hardness results are known
for this search problem, and the next question is determining if this is hard for UEOPL. One
challenge is that UniqueEOPL is formulated as Boolean circuits, whereas Alpha-HS is
purely geometric. Emulating circuits using purely geometric arguments is highly non-trivial.
Filos-Ratsikas and Goldberg showed a reduction of this form in [21]. They reduced the
PPA-complete 2D-Tucker circuit to Ham-Sandwich, going via the Consensus-Halving [39],
and the Necklace-splitting problems [2]. A simplified argument was recently presented in [22].
It could be a worthwhile exercise to investigate if their techniques can provide insights for
hardness of Alpha-HS.

Some related problems are determining the complexity of answering whether a point set
is well-separated, whether it is in weak general position, or whether a given α-cut exists
for the point set. A given α-cut may exist even when both assumptions are violated. On
a related note, deciding whether the Linear Complementarity problem has a solution is
NP-complete [15]. The solution is unique if the problem involves a P -matrix, but checking
this condition is coNP-complete [16]. However, using witnesses to verify whether a matrix is
P-matrix or not, a total search version is shown to be in UEOPL. Our result for Alpha-HS
would go in a similar vein, if the complexities of the above problems were better determined.

Another line to work could be to determine the computational complexities of other
extensions of the Ham-Sandwich theorem. For other geometric problems that are total and
admit unique solutions, it could be worthwhile to explore their place in the class UEOPL.
Faster algorithms for computing the α-cut can also be explored.
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