
A Scaling Algorithm for Weighted f -Factors in
General Graphs
Ran Duan
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
duanran@mail.tsinghua.edu.cn

Haoqing He
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
hehq13@mails.tsinghua.edu.cn

Tianyi Zhang
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
tianyi-z16@mails.tsinghua.edu.cn

Abstract
We study the maximum weight perfect f -factor problem on any general simple graph G = (V,E, ω)
with positive integral edge weights w, and n = |V |,m = |E|. When we have a function f : V → N+

on vertices, a perfect f -factor is a generalized matching so that every vertex u is matched to exactly
f(u) different edges. The previous best results on this problem have running time O(mf(V)) [Gabow
2018] or Õ(W (f(V))2.373)) [Gabow and Sankowski 2013], where W is the maximum edge weight,
and f(V) =

∑
u∈V f(u). In this paper, we present a scaling algorithm for this problem with running

time Õ(mn2/3 logW). Previously this bound is only known for bipartite graphs [Gabow and Tarjan
1989]. The advantage is that the running time is independent of f(V), and consequently it breaks
the Ω(mn) barrier for large f(V) even for the unweighted f -factor problem in general graphs.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Scaling Algorithm, f -Factors, General Graphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.41

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://arxiv.org/abs/2003.07589.

1 Introduction

Suppose we are given an undirected simple graph G = (V,E, ω) on n vertices and m edges,
with positive integer edge weights ω : E → {1, 2, · · · ,W}. Let f : V → N+ be a function
that maps vertices to positive integers. An f -factor is a subset of edges F ⊆ E such that
degF (u) ≤ f(u) for all u ∈ V , and F is a perfect f -factor if degF (u) = f(u) for all u ∈ V . In
this paper we are concerned with computing a perfect f -factor with maximum edge weights1

For polynomial running time algorithms, the previous best result on this problem has
running time 2Õ(mf(V)) [8], where conventionally f(V) =

∑
v∈V f(v). When edge weights

are small integers, a pseudo-polynomial running time of Õ(W (f(V))2.373) was obtained using
algebraic approaches by [9]. For unweighted graphs, one can achieve Õ(m

√
f(V)) running

time using algorithms from [13, 6]. Faster algorithms with running time independent of f(V)
were obtained previously but only in bipartite graphs: [11] gave a scaling algorithm that runs
in time Õ(m2/3n5/3 logW) solving the more general min-cost unit-capacity max-flow problem,

1 Of course, original definition of f -factors means perfect ones (e.g. in [16]), but we follow the definition
from [13] which does not require perfectness for convenience.

2 In this paper Õ(·) hides logn factors.

EA
T

C
S

© Ran Duan, Haoqing He, and Tianyi Zhang;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 41; pp. 41:1–41:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:duanran@mail.tsinghua.edu.cn
mailto:hehq13@mails.tsinghua.edu.cn
mailto:tianyi-z16@mails.tsinghua.edu.cn
https://doi.org/10.4230/LIPIcs.ICALP.2020.41
https://arxiv.org/abs/2003.07589
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 A Scaling Algorithm for Weighted f -Factors in General Graphs

and the time bound for bipartite f -factor was later improved to Õ(mmin{n2/3,m1/2}· logW)
in [10], and the time bound for min-cost flow was further improved to Õ(mn1/2) and
Õ(m10/7 logW) using algebraic approaches [15, 1]. For the maximum weight f -factor problem,
if one is willing to settle for approximate solutions instead of the exact maximum, linear
time algorithms can be found from [13, 2]. A closely related problem is the min-cost perfect
b-matching, in which every edge can be matched multiple times. There are several classical
results for b-matchings [10, 4, 7, 8].

In this paper we prove the following result, which is the first one to break the Ω(mn)
barrier for perfect f -factors in general graphs.

I Theorem 1. There is a deterministic algorithm that computes a maximum weight perfect
f -factor in Õ(mn2/3 logW) time.

1.1 Technical overview
Our algorithm is based on the scaling approach for maximum weight matching in general
graphs that runs in time Õ(m

√
n logW) from [3] and the blocking flow method in [5, 14, 12].

Here we begin with a sketch of our idea on finding a perfect f -factor in an unweighted graph.
To generalize it to weighted graphs, we will adapt the scaling algorithmic framework for
maximum weight perfect matching from [3].

The algorithm for the unweighted case uses primal-dual approach for f -factors which
was presented in [8]. It maintains a set of dual variables y : V → Z and z : 2V → N, as well
as a laminar family of blossoms Ω ⊆ 2V and a compatible f -factor F , which are initialized
as y = 0, z = 0, F = Ω = ∅. Basically, the algorithm invokes for Cn2/3 times the Edmonds
search procedure under an approximate complementary slackness constraint on F, y, z,Ω,
where C is a sufficiently large constant. The key idea is that when G is a simple graph,
after that we wish to prove that the total deficiency of the current f -factor F is bounded by
O(n2/3), namely

∑
v∈V (f(v)− degF (v)) ≤ O(n2/3). If this is true, then we only need extra

O(n2/3) rounds of Edmonds searches to reach a perfect f -factor.
Let F ∗ be an arbitrary perfect f -factor. To upper bound the total deficiency

∑
v∈V (f(v)−

degF (v)) ≤ O(n2/3), we need to bound the total number of edge-disjoint augmenting walks
in F ∗ ⊕ F . Consider any augmenting walk which is specified by a sequence of consecutive
edges (u1, u2), (u2, u3), · · · , (u2s−1, u2s), where (u2i−1, u2i) ∈ F ∗, (u2i, u2i+1) ∈ F , and all
ui’s but u1, u2s are saturated vertices (degF (ui) = f(ui)). If we start the search for y-values
of all vertices equal to some positive constant, then y-values of unsaturated vertices remain
equal. Since u1, u2s are both unsaturated vertices, we have y(u1) = y(u2s) = −Cn2/3.

No blossoms. For bipartite graphs, we do not need to consider blossoms, so we can use the
idea from [12, 5]. By approximate complementary slackness we know: y(u2i−1) + y(u2i) ≥
−2, y(u2i)+y(u2i+1) ≤ 0. Then we have y(u2i+1)−y(u2i−1) ≤ 2, y(u2s−1) ≥ Cn2/3. Consider
the sequence of duals: y(u1), y(u3), · · · , y(u2s−1). This sequence starts with a small value
y(u1) = −Cn2/3 but ends with a large value y(u2s−1) ≥ Cn2/3, and so intuitively many
of the differences y(u2i+1)− y(u2i−1) should be positive. However, given the upper bound
y(u2i+1)−y(u2i−1) ≤ 2, we would know many differences y(u2i+1)−y(u2i−1) can only belong
to a very narrow range {1, 2}. In this case, since y(u2i−1)+y(u2i) ≥ −2, y(u2i)+y(u2i+1) ≤ 0,
it must be −1− y(u2i+1) ≤ y(u2i) ≤ −y(u2i+1). In words, this augmenting walk contains an
edge in Vq × V−q, where Vx = {|y(u)− x| ≤ 1 | u ∈ V }, q = y(u2i).

Since there are many different such pairs y(u2i−1), y(u2i+1), intuitively we can imagine
this augmenting walk contains edges in Vq × V−q for Ω(n2/3) different integer q’s. If the
number of augmenting walks is ω(n2/3), there will be Ω(n2/3) different Vq×V−q’s intersecting

R. Duan, H. He, and T. Zhang 41:3

ω(n2/3) augmenting walks each. By the pigeon-hole principle, there exists one such q such
that |Vq ∪ V−q| ≤ O(n1/3). As G is a simple graph, the total number of edge-disjoint
augmenting walks that contains an edge in Vq × V−q is at most |Vq ∪ V−q|2 = O(n2/3), which
comes to a contradiction.

Handling blossoms. The major difficulty for general graphs comes from the blossoms. We
use the generalized blossoms introduced in [8], and utilize the blossom dissolution technique
from [3], but it will become much more complicated for f -factors. To analyze the influence
of blossoms, let us divide Ω into two categories: large and small. A blossom B ∈ Ω is large if
|B| ≥ n1/3. For small blossoms, we know by definition, the total number of edges contained
in any small blossoms is bounded by n4/3. So if F ∗ ⊕F contains ≥ Cn2/3 augmenting walks,
then most augmenting walks contain O(n2/3) small blossom edges. To restore the argument
we discussed in previous paragraphs, we could safely remove those vertices incident to any
edges belonging to small blossoms from the sequence u1, u3, u5, · · · , u2s−1, and we could still
work with a very long sequence of vertices that are not removed (if C is large).

As for large blossoms, we could prove that
∑

large B∈Ω z(B) ≤ O(n4/3). Basically, this is
because the total number of root large blossoms is always bounded by n2/3, and so each round
of Edmonds search could increase this sum by at most n2/3, and therefore the algorithm could
raise

∑
large B∈Ω z(B) to at most Cn4/3 during Cn2/3 executions of Edmonds search. Once

we have a good handle of the total sum
∑

large B∈Ω z(B) ≤ O(n4/3), we could argue that the
“average influence” of large blossoms on each augmenting walk is bounded by O(n2/3), if
F ∗ ⊕ F has more than Cn2/3 augmenting walks.

1.2 Structure of our paper
In Section 2 we define the notations and basic concepts we will use in the paper, while in
Section 3 the algorithm is given. A brief analysis of the running time of the algorithm is
given in Section 4. Due to page limit, many details of the proofs are omitted, which can be
found in the full version of this paper.

2 Preliminaries

2.1 Notations
Our input is a weighted simple graph G = (V,E, ω) without self-loops and a function
f : V → N+. For S ⊆ V , define f(S) =

∑
v∈S f(v), and let δ(S) and γ(S) be sets of edges

with exactly one endpoint and both endpoints in S, respectively, and δ(v) is an abbreviation
for δ({v}). For any edge subset F ⊆ E, define δF (S) = δ(S) ∩ F , ω(F) =

∑
e∈F ω(e), and

degF (u) = |F ∩ {(u, v) ∈ E}|. F ⊆ E is called an f -factor if degF (u) ≤ f(u) for all u ∈ V .
For an f -factor F , the deficiency of u in F is defined as f(u)−degF (u) and u is saturated
by F if f(u)− degF (u) = 0. When all vertices are saturated, F is called a perfect f -factor.
Edges in F are called matching edges. For a graph G and a subset of vertices U , G[U]
denotes the subgraph of G induced by U .

2.2 Blowup graphs
Instead of running on the original graph, our algorithm will be operating on an auxiliary
weighted graph G = (V, E , µ) which is called the blowup graph. V contains all original vertices
in V . For each edge e = (u, v) in the original graph, add two vertices eu, ev to V and add

ICALP 2020

41:4 A Scaling Algorithm for Weighted f -Factors in General Graphs

three edges (u, eu), (eu, ev), (ev, v) to E . All vertices in V are called original vertices, and the
newly added vertices are called auxiliary vertices. Then assign µ(u, eu) = µ(v, ev) = ω(u, v),
µ(eu, ev) = 0 and f(eu) = f(ev) = 1.

The purpose of transferring original graph G to G is mainly to avoid edges contained in
the sets I(B) for disjoint blossoms B. (See subsection Blossom.) Note that the number of
vertices in G is n+ 2m, so we need to carefully analyze the running time. It is easy to see
the following, whose proof is in the full version of this paper.

I Lemma 2. Computing maximum weight perfect f -factor in G and G are equivalent.

2.3 LP formulation
Computing maximum weight perfect f -factor on the blowup graph G = (V, E , µ) can be
expressed as a linear program [8]:

maximize
∑
e∈E

µ(e)x(e)

subject to
∑
e∈δ(v)

x(e) = f(v),∀v ∈ V

∑
e∈γ(B)∪I

x(e) ≤
⌊
f(B) + |I|

2

⌋
,∀B ⊆ V, I ⊆ δ(B)

0 ≤ x(e) ≤ 1,∀e ∈ E

Its dual LP is written as the following.

minimize
∑
v∈V

f(v)y(v) +
∑

B⊆V,I⊆δ(B)

⌊
f(B) + |I|

2

⌋
z(B, I) +

∑
e∈E

u(e)

subject to yz(e) + u(e) ≥ µ(e),∀e ∈ E
z(B, I) ≥ 0, u(e) ≥ 0

Here yz(u, v) is defined as: yz(u, v) = y(u) + y(v) +
∑
B,I:(u,v)∈γ(B)∪I,I⊆δ(B) z(B, I).

2.4 Blossoms
We follow the definitions and the terminology of [8, 13] for f -factor blossoms. A blossom
is specified by a tuple (B, EB , β(B), η(B)), where B ⊆ V is a subset of vertices, EB ⊆ E a
subset of edges, β(B) ∈ B a special vertex which is called the base, and η(B) is either null
or an edge from δ(β(B)) ∩ δ(B). Blossoms follow an inductive definition below.

I Definition 3 (Blossom, [8, 13]). A single vertex v forms a trivial blossom, also called
a singleton. Here B = {v}, EB = ∅, β(B) = v, and η(B) is null. Inductively, let
B0, B1, · · · , Bl−1 be a sequence of disjoint singletons or non-trivial blossoms. Suppose
there exists a closed walk CB = {e0, e1, · · · , el−1} starting and ending with B0 such that
ei ∈ Bi × Bi+1, (Bl = B0). The vertex set B =

⋃l−1
i=0Bi is identified as a blossom if the

following are satisfied.
1. Base. If B0 is a singleton, the two edges incident to B0 on CB, i.e., e0 and el−1, must

both be matched or both be unmatched.
2. Alternation. Fix a Bi, i 6= 0. If Bi is a singleton, exactly one of ei−1 and ei is matched.

If Bi is a non-trivial blossom, η(Bi) = ei−1 or ei.

R. Duan, H. He, and T. Zhang 41:5

The edge set of the blossom B is EB = CB ∪ (∪l−1
i=0EBi) and its base is β(B) = β(B0). If

B0 is not a singleton, η(B) = η(B0). Otherwise, η(B) may either be null or one edge in
δ(B) ∩ δ(B0) that is the opposite type of e0 and el−1.

A blossom is called root blossom if it is not contained in any other blossom. Blossoms
have two different types: light and heavy. If B0 is a singleton, B is light/heavy if e0 and
el−1 are both unmatched/matched. Otherwise, B is light/heavy if B0 is light/heavy.

I Definition 4. Given an f -factor F , an alternating walk on G is a sequence of consecutive
edges (u1, u2), (u2, u3), · · · , (ul−1, ul) such that:

(ui, ui+1) ∈ E are different edges 1 ≤ i < l.
exactly one of (ui−1, ui), (ui, ui+1) belongs to F , 1 < i < l.

This walk is called an augmenting walk if both (u1, u2), (ul−1, ul) /∈ F .

When searching for an augmenting walk, a blossom behaves as a unit in the graph. These
properties are formally stated by the following lemma.

I Lemma 5 ([8, 13]). Let v be an arbitrary vertex in B. There exists an even length
alternating walk P0(v) and an odd length alternating walk P1(v) from β(B) to v using edges
in EB. Moreover, the terminal edge of P0,1(v) incident to β(B) must have a different type
than η(B), if η(B) is defined.

We also introduce the notion of maturity of blossoms below.

I Definition 6 (Mature Blossom, [8, 13]). A blossom is mature with respect to an f -factor F
if the following requirements are satisfied.
1. Every vertex v ∈ B \ {β(B)} is saturated, namely degF (v) = f(v).
2. The deficiency of β(B) is at most 1. Furthermore, if it is 1, then B must be a light

blossom and η(B) is null; otherwise, η(B) is defined.

Our algorithm always keeps a set Ω of mature blossoms and maintains a non-negative value
z(B) for each B ∈ Ω. For each blossom B, define a set I(B) ⊆ δ(B) as I(B) = δF (B)⊕{η(B)}.

2.5 Augmenting path
To find augmentations, we need to work with the contraction graph Ĝ where every root
blossom is contracted to a single node.

I Definition 7 ([8, 13]). Let F , Ω and Ĝ be an f -factor, a set of blossoms and the graph ob-
tained by contracting every root blossom in the Ω, respectively. P̂ = 〈B0, e0, B1, e1, · · · , Bl〉 ∈
Ĝ is called an augmenting path if the following requirements are satisfied.
1. The terminals B0 and Bl must be unsaturated singletons or unsaturated light blossoms.

If P̂ is a closed path (B0 = Bl), B0 must be a singleton and the deficiency of β(B0) is at
least 2. Otherwise B0 and Bl can be either singletons or blossoms and their deficiency
must be positive.

2. If the terminal vertex B0 (Bl) is a singleton, then the incident terminal edges e0 (el−1)
must be unmatched. Otherwise, they can be either matched or unmatched.

3. Let Bi, 0 < i < l be an internal singleton or blossom. If Bi is a singleton, then exactly
one of ei−1 and ei is matched. If Bi is a non-trivial blossom, then η(Bi) = ei−1 or ei.

To avoid misunderstanding, we emphasize the difference between the augmenting path
and the augmenting walk. First they are defined on Ĝ and G respectively. Second, an
augmenting walk can pass through a vertex in G several times but an augmenting path can
pass through a vertex in Ĝ (except the endpoint) only once. In the following parts, these two
concepts are used in different scenarios.

ICALP 2020

41:6 A Scaling Algorithm for Weighted f -Factors in General Graphs

Next we define a concept of the alternating path, which is weaker than the concept of
the augmenting path.

I Definition 8. Let F , Ω and Ĝ be an f -factor, a set of blossoms and the graph obtained by
contracting every root blossom in the Ω. A simple path P̂ = 〈B0, e0, B1, e1, · · · , Bl〉 is called
an alternating path if it satisfies the following requirements.
1. The terminals B0 must be unsaturated singletons or unsaturated light blossoms.
2. If the terminal vertex B0 is a singleton, then the incident terminal edges e0 must be

non-matching. Otherwise, they can be either matching or non-matching.
3. For each 1 ≤ i < l, if Bi is a singleton, then exactly one of ei−1, ei is matched. Otherwise,

η(Bi) = ei−1 or ei.

2.6 Complementary slackness
Throughout the algorithm, we will be maintaining an f -factor F , a set of mature blossoms
Ω, dual functions y : V → N, z : Ω→ N≥0 and yz : E → N. For an f -factor F , we define two
kinds of complementary slackness: complementary slackness and approximate complementary
slackness.

I Definition 9 (Complementary Slackness). In the blowup graph G, an f -factor F , duals y, z,
as well as a laminar family of blossoms Ω satisfy complementary slackness if the following
requirements hold.
1. Dominance. For each e ∈ E, yz(e) ≥ µ(e).
2. Tightness. For each e ∈ F , yz(e) = µ(e).

I Definition 10 (Approximate Complementary Slackness). In the blowup graph G, an f -factor
F , duals y, z, as well as a laminar family of blossoms Ω satisfy approximate complementary
slackness if the following requirements hold.
1. Dominance. For each e ∈ E, yz(e) ≥ µ(e)− 2.
2. Tightness. For each e ∈ F , yz(e) ≤ µ(e).

I Lemma 11 ([13]). Let F be a perfect f-factor associated with duals y, z and blossoms Ω,
and define F ∗ to be a maximum weight perfect f -factor. Suppose F,Ω, y, z satisfy approximate
complementary slackness, then

µ(F) ≥ µ(F ∗)− f(V)

Proof. We first define u : E → N as

u(e) =
{
µ(e)− yz(e), if e ∈ F
0, otherwise

According to the approximate domination and tightness properties, we have u(e) ≥ 0 for all
e ∈ E . Moreover, yz(e) + u(e) ≥ µ(e)− 2 for all e ∈ E . This gives the following:

µ(F) =
∑
e∈F

(yz(e) + u(e))=
∑
v∈V

degF (v)y(v)+
∑
B∈Ω
|F ∩ (γ(B) ∪ I(B))|z(B)+

∑
e∈F

u(e)

=
∑
v∈V

f(v)y(v) +
∑
B∈Ω

⌊
f(B) + |I(B)|

2

⌋
z(B) +

∑
e∈E

u(e)

≥
∑
v∈V

degF∗(v)y(v) +
∑
B∈Ω
|F ∗ ∩ (γ(B) ∪ I(B))|z(B) +

∑
e∈F∗

u(e)

≥
∑
e∈F∗

(µ(e)− 2) ≥ µ(F ∗)− f(V) J

R. Duan, H. He, and T. Zhang 41:7

2.7 Edmonds search
In this subsection, we introduce two different implementations of Edmonds search. Suppose
we have an f -factor F , a set of blossoms Ω, and duals y, z satisfying some kind of slackness
condition. The purpose of Edmonds search is to reduce total deficiency of F by eligible
augmenting paths. We need two different notions of eligibility, namely eligibility and
approximate eligibility, compatible with Definition 9 or Definition 10.

I Definition 12 (Eligibility, [8]). An edge e ∈ E is eligible if yz(e) = µ(e).

I Definition 13 (Approximate Eligibility, [13]). An edge e ∈ E is approximately eligible if it
satisfies one of the following.
1. e ∈ EB for some B ∈ Ω.
2. e /∈ F and yz(e) = µ(e)− 2.
3. e ∈ F and yz(e) = µ(e).

Let Ĝelig be the subgraph of Ĝ consisting of eligible edges. A root blossom B′ ∈ Ω is called
reachable from an unsaturated root blossom B via an alternating path in Ĝelig, if there is an
alternating path that starts at B and ends at B′. To find augmenting paths and blossoms in
Ĝelig, we start from any unsaturated node u0 in the contraction graph Ĝ and grow a search
tree T̂ rooted at u0; this method was also described in [8, 13]. All nodes in T̂ are classified
as outer/inner. Initially the root is outer. Next we use a DFS-like approach to build the
entire T̂ . During the process, we keep track of a tree path 〈u0, e0, u1, · · · , el−1, ul〉 from the
root, which is guaranteed to be an alternating path. According to the type of ul, the next
edge el and node ul+1 are selected by the rules below:
1. ul is outer. If ul is a singleton, then scan the next non-matching edge el and find the

other endpoint ul+1. If ul is a nontrivial blossom, then scan the next edge el and find
the other endpoint ul+1.

2. ul is inner. If ul is a singleton, then scan the next matching edge el and find the other
endpoint ul+1. If ul is nontrivial blossom, then assign el = η(ul) (if it was not scanned
before) and find the other endpoint ul+1.

After finding ul+1, we try to classify it as outer or inner: if ul+1 is a singleton, then
ul+1 is outer if el is matched; otherwise, ul+1 is outer if el = η(ul+1). Issues may arise if
(1) ul+1 was already classified by previous tree searches and there is a conflict between the
new label and the old label; or (2) ul+1 is an unsaturated then the tree search has found a
new augmenting path. In either case we can construct a new blossom or reduce the total
deficiency.

In the end, when all reachable singletons or root blossoms are classified as outer or inner,
let V̂out be the set of all outer singletons or root blossoms, and let V̂in be the set of all inner
singletons or root blossoms. Define Vout,Vin to be the set of all vertices in V contained
in outer and inner root blossoms, respectively. Next we introduce a meta procedure that
will be a basic building block, which is dual adjustment. A dual adjustment performs the
following step: decrement y(v) for all v ∈ Vout, and increment y(v) for all v ∈ Vin; after that,
increment by 2 all z(B) for all B ∈ V̂out, and decrement by 2 all z(B) for all B ∈ V̂in. This
is summarized as the AdjustDuals algorithm 1.

We introduce two different implementations of Edmonds search: the EdmondsSearch
algorithm 2 and the PQ-Edmonds algorithm 3, which both rely on the AdjustDuals subroutine 1.
The EdmondsSearch algorithm searches from all unsaturated root blossoms, and it requires
that the y-values of all unsaturated vertices have the same parity. It reserves approximate
complementary slackness under the approximate eligibility, so it only needs to perform one
step of augmentation before dual-adjustment:

ICALP 2020

41:8 A Scaling Algorithm for Weighted f -Factors in General Graphs

Algorithm 1 AdjustDuals(F,Ω, y, z).

1 classify every root blossom in Ω as outer or inner;
2 let V̂out/V̂in be the set of all outer/inner root blossoms in Ĝelig including singletons;

let Vout/Vin be the set of all vertices in V contained in outer/inner root blossoms;
3 adjust the duals y, z as follows:

y(v)← y(v)− 1, v ∈ Vout
y(v)← y(v) + 1, v ∈ Vin
z(B)← z(B) + 2, for non-singleton B ∈ V̂out
z(B)← z(B)− 2, for non-singleton B ∈ V̂in

Algorithm 2 EdmondsSearch(F,Ω, y, z).

/* Precondition: y-values of unsaturated vertices must all be of the
same parity */

1 find a maximal set Ψ̂ of a vertex-disjoint augmenting paths in Ĝelig and extend Ψ̂ to a
set Ψ of vertex-disjoint augmenting walks in Gelig;

2 update F ← F ⊕
⋃
P∈Ψ P ;

3 find a maximal set Ω′ of mature blossoms reachable from unsaturated vertices in Ĝelig;
4 update Ω← Ω ∪ Ω′ and Ĝelig;
5 run AdjustDuals(F,Ω, y, z);
6 for every matching edge (u, v) that does not satisfy the dominance condition, choose

an auxiliary node u, y(u)← µ(u, v)− y(v)−
∑
B z(B);

7 recursively remove all root blossoms whose dual values are zero;

I Lemma 14 ([13]). In the EdmondsSearch algorithm, after augmentation and blossom
formation, Ĝelig does not contain any augmenting paths.

Proof. Suppose that, after the augmentation and blossom formation, there is an augmenting
path P in Ĝelig. Since Ψ̂ is maximal, P must intersect some augmenting path P ′ ∈ Ψ̂ at
a vertex v. However, after the augmentation and blossom formation every edge in P ′ will
become ineligible, so the matching edge (v, v′) ∈ P is no longer in Ĝelig, contradicting the
fact that P consists of eligible edges. J

The PQ-Edmonds algorithm searches for augmenting paths only from a set U of unsaturated
vertices whose y-values share the same parity, halting after finding an augmenting path from
vertices in U or making D dual adjustments.

The following two lemmas describe the properties of the EdmondsSearch algorithm and
the PQ-Edmonds algorithm3 which are from [8, 13]. Their proofs are presented in the full
version of this paper.

3 In the original paper [8], their algorithm actually searches from all unsaturated root blossoms. This
slack can be remedied by the following reduction. For each unsaturated vertex v /∈ U , match v to
f(v)− degF (v) new temporary vertices whose duals are equal to −y(v) and the matching edges have
zero weight. The proof is described in the full version of this paper.

R. Duan, H. He, and T. Zhang 41:9

Algorithm 3 PQ-Edmonds(F,Ω, y, z, U,D).

/* Precondition: {y(u)|u ∈ U} must all be of the same parity */
1 while less than D dual adjustments have been made so far do
2 if an augmenting path P from vertices in U is found then
3 update F ← F ⊕ P ;
4 break;
5 end
6 find a maximal set Ω′ of mature blossoms reachable from U in Ĝelig;
7 update Ω← Ω ∪ Ω′ and Ĝelig;
8 run AdjustDuals(F,Ω, y, z);
9 recursively remove all root blossoms whose dual values are zero;

10 end
11 for every matching edge (u, v) that does not satisfy the dominance condition, choose

an auxiliary node u, y(u)← µ(u, v)− y(v)−
∑
B z(B);

I Lemma 15. The EdmondsSearch algorithm preserves approximate complementary
slackness under the approximate eligibility definition. Furthermore, one execution can
be implemented in O(m) time.

I Lemma 16. The PQ-Edmonds algorithm preserves the complementary slackness under
the eligibility definition. Furthermore, one execution can be implemented in O(m logn)
time. Moreover, the y(u) for unsaturated vertex u not in U will not be increased during the
algorithm.

3 The Scaling Algorithm

Our algorithm follows the idea of the scaling algorithm in [3] for maximum weight perfect
matching. The scaling algorithm maintains an f -factor F , a family of blossoms Ω, as well as
duals y, z, and it is divided into dlog(2f(V)W)e iterations. Edge weights µ(e) are rescaled
to 2f(V)µ(e) and they all have dlog(2f(V)W)e bits. Throughout the algorithm we assume
y always assigns integer values and z always assigns even non-negative integers. For any
B ∈ Ω, B is called a large blossom if |B ∩ V | ≥ n1/3, i.e., the number of original vertices in
B is at least n1/3; otherwise it is deemed a small blossom.

Let µ̄ be the edge weight function that keeps track of the scaled edge weights in each
iteration. Initially before the first iteration, assign F,Ω = ∅, y, z, µ̄ = 0. At the beginning of
each iteration, define F0 to be the f -factor from the previous iteration. Empty the matching
F ← ∅, and update weights and duals as following.

µ̄(e)← 2 (µ̄(e) + the next bit of 2f(V)µ(e))
y(u)← 2y(u) + 3
z(B)← 2z(B)

The whole procedure is shown in the Scaling algorithm 5, involving an important sub-
routine: the Dissolve algorithm 4. Note that here we only provide a stretch of the proof ideas,
while the whole proofs can be found in the full version of this paper.

ICALP 2020

41:10 A Scaling Algorithm for Weighted f -Factors in General Graphs

Algorithm 4 Dissolve(B, y, z,Ω).

1 for u ∈ B or there exists v ∈ B such that (u, v) ∈ I(B) do
2 y(u)← y(u) + z(B)/2;
3 end
4 z(B)← 0 and remove it from Ω;

3.1 Correctness
In this subsection, we will show that the Scaling algorithm indeed returns the maximum
weight perfect f -factor in G, and in the next subsection we will analyze its time complexity.
Some proofs of the statements here are omitted and can be found in the full version of this
paper.

Define ζ(B) = (eu, ev), if (u, eu) = η(B) and ev is the auxiliary vertex adjacent to eu. It
is not hard to see that:

I Lemma 17. For any blossom B ∈ Ω in G, the edge e ∈ δ(B) has the form of (u, eu) where
u ∈ B is an original vertex and eu is an auxiliary vertex.

I Lemma 18. There are two properties right after the scaling step (Line 3-6):
1. For each e ∈ E, µ̄(e) ≤ yz(e).
2. For each e ∈ F0, µ̄(e) ≥ yz(e)− 6.

I Lemma 19. There are two properties right after the blossom dissolution step (Line 7-15):
1. For each (u, v) /∈ F0 ∪

⋃l
i=1 γ(Bi) ∪ I(Bi), µ̄(u, v) ≤ 0.

2. For each (u, v) ∈ E, µ̄(u, v) ≤ 2 min{y(u), y(v)}.

Proof. Let µ̄1, y1, z1,Ω1 be the edge weights, duals and blossoms at the beginning of the step
of blossom dissolution, respectively. Let Ω′1 ⊆ Ω1 be the set of all blossoms that are dissolved
in Line 7-9 before the step of reweighting. By Lemma 18: (Note that for auxiliary edges
adjacent to edges in I(B), blossom dissolution can only cause µ̄(u, v) to become smaller.)

µ̄(u, v) ≤ µ̄1(u, v)− y1(u)− y1(v)−
∑
B∈Ω′1

(u,v)∈γ(B)∪I(B)

z1(B)

≤ yz1(u, v)− y1(u)− y1(v)−
∑
B∈Ω′1

(u,v)∈γ(B)∪I(B)

z1(B)

=
∑

B∈Ω1\Ω′1
(u,v)∈γ(B)∪I(B)

z1(B)

The last term is zero when (u, v) /∈
⋃l
i=1 γ(Bi) ∪ I(Bi).

Hence, by the end of the step of blossom dissolution,

y(u) = 1
2

∑
B∈Ω1\Ω′1

∃(u,w)∈γ(B)∪I(B)

z1(B) ≥ 1
2

∑
B∈Ω1\Ω′1

(u,v)∈γ(B)∪I(B)

z1(B) ≥ 1
2 µ̄(u, v)

By symmetry, we can also prove y(v) ≥ 1
2 µ̄(u, v). Then µ̄(u, v) ≤ 2 min{y(u), y(v)}. J

Next we study what happens during the step of augmentation within small blossoms.
If a matching edge (u, eu) is newly added to F in line 17, for some small blossom Bi,
(u, eu) ∈ IF0(Bi) \ {η(Bi)}. The following statements will be proved in the full version.

R. Duan, H. He, and T. Zhang 41:11

Algorithm 5 Scaling(V, E , µ, f).

1 y, z ← 0, F,Ω← ∅;
2 for iter = 1, · · · , dlog(2f(V)W)e do

/* scaling */
3 µ̄(e)← 2 (µ̄(e) + the next bit of 2f(V)µ(e));
4 y(u)← 2y(u) + 3;
5 z(B)← 2z(B);
6 F0 ← F , F ← ∅;

/* blossom dissolution (Line 7-15) */
7 while exists a large blossom B ∈ Ω, or a root blossom B with z(B) ≤ 12 do
8 run Dissolve(B, y, z,Ω);
9 end

10 µ̄(u, v)← µ̄(u, v)− y(u)− y(v),∀(u, v) ∈ E ;
11 y(u)← 0,∀u ∈ V;
12 let B1, B2, · · · , Bl be all the root small blossoms not dissolved yet;
13 while exists a blossom B ∈ Ω do
14 run Dissolve(B, y, z,Ω);
15 end

/* Ω now becomes empty. */
/* augmentation within small blossoms (Line 16-27) */

16 if (u, v) ∈ IF0(Bj) \ {η(Bj)} for some previous root small blossom Bj then
17 F ← F ∪ {(u, v)};
18 if u ∈ Bj , v /∈ Bj , y(v)← µ̄(u, v)− y(u);
19 end
20 for i = 1, 2, · · · , l do
21 while max{y(u) | degF (u) < f(u), u ∈ Bi} > 6 do
22 let Y1, Y2 be the largest and second largest y values of unsaturated vertices

in Bi;
23 define U ⊆ Bi to be the set of unsaturated vertices whose y values equal to

Y1;
24 define Hi = G[Bi∪ all the endpoints of IF0(Bi) \ {η(Bi)}];
25 run PQ-Edmonds(F,Ω, y, z, U, Y1 − Y2) in subgraph Hi;
26 end
27 end

/* deficiency reduction */
28 run EdmondsSearch(F,Ω, y, z) on the entire graph G for dCn2/3e+ 6 times;
29 end

/* weight adjustment */
30 for an edge (u, v) ∈ E such that yz(u, v) < µ(u, v) do
31 µ(u, v)← yz(u, v);
32 end

/* PQ-deficiency reduction */
33 repeat PQ-Edmonds(F,Ω, y, z, {u | u ∈ V is unsaturated},∞) on the entire graph G

until the total deficiency becomes zero;

ICALP 2020

41:12 A Scaling Algorithm for Weighted f -Factors in General Graphs

At the beginning of the step of augmentation within small blossoms, µ̄(u, eu) ≥ y(u) +
y(eu)− 6.
After we have added (u, eu) to F and reassigned y(eu) ← µ̄(u, eu) − y(u), the comple-
mentary slackness is preserved. Plus, y(eu) ≥ 1

2 µ̄(u, eu)− 6.
Within the while-loop, for any u ∈ Bi reachable via alternating paths from U , y(u) ≥ Y1.
Plus, y(eu) ≥ 0 at any moment. Also from Lemma 16, the y-values of unsaturated vertices
outside current U cannot increase.

Then we can conclude the correctness of the algorithm:

I Lemma 20. The Scaling algorithm 5 returns a maximum weight perfect f -factor in G.

Proof. First we claim that approximate complementary slackness is maintained until the
step of weight adjustment (Line 30-32). By Lemma 19, the tightness of complementary
slackness is satisfied after the step of blossom dissolution. For each edge e newly added
to F , yz(e) = µ(e) and the dominance of complementary slackness is satisfied. For the
edges in Hi, the PQ-Edmonds preserve complementary slackness by Lemma 16. For the
edge (u, v) where u and v does not belong to any Hi, the duals does not change. For
the edge (u, v) where u ∈ Hi and v does not belong to any Hj , we have µ(u, v) ≤ 0,
µ(u, v) ≤ 2y(v) and y(u) ≥ 0 by Lemma 19. The complementary slackness is maintained
after the step of augmentation within small blossoms. Since complementary slackness is
stronger than approximate complementary slackness and the EdmondsSearch algorithm
preserves approximate complementary slackness by Lemma 15, approximate complementary
slackness is maintained at the end of each iteration.

Let µ, µ′ be the edge weights respectively before and after the step of weight adjustment
on line 30-32. As y, z, µ,Ω satisfy approximate complementary slackness, y, z, µ′,Ω satisfy
complementary slackness, we know for each edge e, µ(e)− µ′(e) ∈ [0, 2]. Since PQ-Edmonds
algorithm preserves complementary slackness by Lemma 16, complementary slackness is
maintained with respect to edge weights µ′ after Algorithm 5. Now, again by µ(e)− µ′(e) ∈
[0, 2],∀e ∈ E , we know, y, z, F,Ω still satisfy approximate complementary slackness with
respect to µ after Algorithm 5 is completed.

After the step of PQ-deficiency reduction, the total deficiency becomes zero. Then,
according to Lemma 11, µ(F ∗)−µ(F) ≤ f(V). Since for every edge e ∈ E , µ(e) is an integral
multiple of 2f(V), therefore it must be µ(F) = µ(F ∗). Hence F is a maximum weight perfect
f -factor of G. J

4 Running Time Analysis

Recall that an alternating walk on G is a sequence of edges (u1, u2), (u2, u3), · · · , (ul−1, ul)
such that: (1) (ui, ui+1) ∈ E are different edges; (2) exactly one of (ui−1, ui), (ui, ui+1) belongs
to F , 1 < i < l. And this walk is called an augmenting walk if both (u1, u2), (ul−1, ul) /∈ F .

I Lemma 21. The running time of each iteration is Õ(mn2/3), thus Õ(mn2/3 logW) for
all iterations.

Proof. We analyze the running time of the t-th iteration, where t ≥ 1. Clearly the scaling
step and the blossom dissolution step only take linear time. By Lemma 15, the deficiency
reduction step takes Õ(mn2/3) in total. So the only technical part is the running time of the
augmentations within small blossoms.

For each small blossom Bi, |Bi ∩ V |, i.e. the number of original vertices in Bi, is less
than n1/3. According to the properties of the blowup graph, the number of vertices in Bi is
O(n2/3). When we add edges in IF0(Bi) \ {η(Bi)} to F , the overall deficiency of vertices in

R. Duan, H. He, and T. Zhang 41:13

Bi is at most 1 + 3
(|Bi∩V |

2
)
< 1.5n2/3. After one execution of the PQ-Edmonds algorithm,

the overall deficiency is reduced by one, or the largest y value of unsaturated vertices in Bi is
equal to Y2; the former case could happen at most 1.5n2/3 times, while the latter case could
happen at most |Bi| = O(n2/3) times since every time this case happens we add at least
one more unsaturated vertex to U . Thus the PQ-Edmonds algorithm is invoked for at most
O(n2/3) times. By Lemma 16, for each small blossom Bi, each instance of the PQ-Edmonds
algorithm takes O(m(Bi) logn) time, where m(Bi) denotes the number of edges in Bi. Thus,
the total running time of the augmentations within small blossoms is Õ(mn2/3). J

Now we only need to analyze the running time for the PQ-deficiency reduction step at
the end of the Scaling algorithm 5.

I Lemma 22. Let Ft denote the f-factor at the end of the t-th scaling iteration. For any
t ≥ 1, Ft−1 ⊕ Ft contains at most O(n2/3) edge-disjoint augmenting walks in G, where
augmenting walks are w.r.t. Ft. (For the F1, we can imagine an arbitrary perfect f-factor
F0, but do not need to compute it explicitly.)

Then we can see the total deficiency of Ft is at most O(n2/3t) for any t ≥ 1, and the
overall running time of our algorithm is bounded by Õ(mn2/3 logW) by Lemma 16.

The rest of this subsection is devoted to the proof of Lemma 22 in the t-th iteration. With
a slight abuse of notations, let F0 = Ft−1 and F = Ft and when talking about augmenting
walks, we always mean augmenting walks in F0 ⊕ F w.r.t. F . (F -edges are considered as
matching edges and F0-edges are considered as non-matching edges.) Let µ̄old, yold, zold,Ωold
denote the edge weights, duals, and blossoms at the beginning of the blossom dissolution
step, respectively; and let Ωlarge

old be the set of all blossoms in Ωold that were dissolved in the
blossom dissolution phase before the reweighting step. Similarly, µ̄, y, z,Ω denote the edge
weights, duals, and blossoms at the end of the t-th iteration, respectively; and Ωlarge denotes
the set of all large blossoms in Ω.

Instead of directly working with duals y, define variables ŷ for vertices as follows:

ŷ(u) = y(u) + 1
2

∑
X∈Ωlarge s.t.

∃(u,v)∈γ(X)∪I(X)

z(X)

When η(B) ∈ I(B), η(B) is not a matching edge. Then ζ(B) may be a matching edge
and its yz-value will increase by z(B)/2 after the dissolution of blossom B. (Recall that
ζ(B) = (eu, ev), if (u, eu) = η(B).)

Consider any subwalk ρ = 〈u1, u2, · · · , u2s+1〉 of an augmenting walk in F0 ⊕ F starting
with an edge not in F . Then, for 1 ≤ i ≤ s, since (u2i−1, u2i) /∈ F and (u2i, u2i+1) ∈ F , by
approximate complementary slackness we have

y(u2i−1) + y(u2i) +
∑
X∈Ω

(u2i−1,u2i)∈γ(X)∪I(X)

z(X) ≥ µ̄(u2i−1, u2i)− 2 (1)

y(u2i) + y(u2i+1) +
∑
X∈Ω

(u2i,u2i+1)∈γ(X)∪I(X)

z(X) ≤ µ̄(u2i, u2i+1) (2)

Plugging in the definition of ŷ, we get:

ŷ(u2i−1) + ŷ(u2i) +
∑

X∈Ω\Ωlarge

(u2i−1,u2i)∈γ(X)∪I(X)

z(X) ≥ µ̄(u2i−1, u2i)− 2 (3)

ICALP 2020

41:14 A Scaling Algorithm for Weighted f -Factors in General Graphs

and since (u2i, u2i+1) ∈ F , we have:

ŷ(u2i) + ŷ(u2i+1) = y(u2i) + y(u2i+1) +
∑

X∈Ωlarge

(u2i,u2i+1)∈γ(X)∪I(X)

z(X) + 1
2

∑
X∈Ωlarge

(u2i,u2i+1)∈{η(X),ζ(X)}

z(X)

ŷ(u2i)+ ŷ(u2i+1)+
∑

X∈Ω\Ωlarge

(u2i,u2i+1)∈γ(X)∪I(X)

z(X) ≤ µ̄(u2i, u2i+1)+ 1
2

∑
X∈Ωlarge

(u2i,u2i+1)∈{η(X),ζ(X)}

z(X)

Taking a subtraction we have

ŷ(u2i+1)− ŷ(u2i−1) ≤ 2 + µ̄(u2i, u2i+1)− µ̄(u2i−1, u2i) + 1
2

∑
X∈Ωlarge

(u2i,u2i+1)∈{η(X),ζ(X)}

z(X)

+
∑

X∈Ω\Ωlarge

(u2i−1,u2i)∈γ(X)∪I(X)

z(X)−
∑

X∈Ω\Ωlarge

(u2i,u2i+1)∈γ(X)∪I(X)

z(X)
(4)

By the derivation presented in Lemma 19,

µ̄(u2i, u2i+1) ≤ yzold(u2i, u2i+1)− yold(u2i)− yold(u2i+1)−
∑

X∈Ωlarge
old

(u2i,u2i+1)∈γ(X)∪I(X)

zold(X)

=
∑

X∈Ωold\Ωlarge
old

(u2i,u2i+1)∈γ(X)∪I(X)

zold(X)
(5)

Now, as (u2i−1, u2i) ∈ F0, again by Lemma 18 we are able to prove:

µ̄(u2i−1, u2i) ≥ −6 +
∑

X∈Ωold\Ωlarge
old

(u2i−1,u2i)∈γ(X)∪I(X)

zold(X)− 1
2

∑
X∈Ωlarge

old
(u2i−1,u2i)∈{η(X),ζ(X)}

zold(X) (6)

So for (u2i−1, u2i) not an η-edge or ζ-edge for old large blossoms,

µ̄(u2i−1, u2i) ≥ −6 (7)

Also define the function Z for an augmenting walk ρ as:

Z(ρ) = 1
2

∑
e∈ρ,X∈Ω

e∈{η(X),ζ(X)}

z(X) + 1
2

∑
e∈ρ,X∈Ωold

e∈{η(X),ζ(X)}

zold(X)

Let F̂ , Ω̂, ẑ denote any f -factor together with a compatible set of blossoms as well as
their duals, and let ρ be an arbitrary alternating walk. For any blossom X ∈ Ω̂, define the
following quantity:

Diff(ρ,X, F̂) def= |ρ ∩ F̂ ∩ (γ(X) ∪ I(X))| − |ρ ∩ (γ(X) ∪ I(X)) \ F̂ |

By a summation of (4) plugging in (5) and (6) over all 1 ≤ i ≤ s,

ŷ(u2s+1)− ŷ(u1) ≤8s+ Z(ρ)−
∑

X∈Ω\Ωlarge

z(X) ·Diff(ρ,X, F)

−
∑

X∈Ωold\Ωlarge
old

zold(X) ·Diff(ρ,X, F0)
(8)

R. Duan, H. He, and T. Zhang 41:15

We consider augmenting walks ρ = 〈u1, u2, · · · , u2s〉 in F0 ⊕ F starting and ending with
edges not equal to η(X) or ζ(X) for all X ∈ Ωlarge ∪ Ωlarge

old , and u1, u2s are not equal to
β(X) for all X ∈ Ωlarge ∪ Ωlarge

old . This only excludes O(n2/3) augmenting walks. Thus,
ŷ(u1) = ŷ(u2s) = −Cn2/3. For convenience, we only consider augmenting walks starting and
ending with non-matching edges (/∈ F) not in γ(X) ∪ I(X) for current small blossoms X,
otherwise we can just choose the first and last such edges on every augmenting walk and
consider the subwalk between them, and we can get similar results.

In an augmenting walk satisfying those conditions, since its first and last edges are in F0
and not equal to η or ζ edges of old large blossoms, µ̄(u2s−1, u2s) ≥ −6, and also (u2s−1, u2s)
cannot be in a large blossom, by (1) we have ŷ(u2s−1) ≥ −ŷ(u2s)− 8 = Cn2/3 − 8. Then by
(8), if Z(ρ) is less than n2/3, and Diff(ρ,X, F) and Diff(ρ,X, F0) are non-negative, then we
can see the length of such an augmenting walk is Ω(n2/3) when C is a large constant. We
have the following statement for Diff(ρ,X, F) and Diff(ρ,X, F0), which is proven in the full
version.

I Lemma 23. Consider any blossom X ∈ Ω ∪ Ωold and any augmenting walk ρ in F0 ⊕ F ,
in any maximal consecutive subwalk of ρ ∩ (γ(X) ∪ I(X)), the number of matching edges is
at least the number of non-matching edges. (For X ∈ Ω, edges in F are matching edges, and
for X ∈ Ωold, edges in F0 are matching edges.)

So Diff(ρ,X, F) and Diff(ρ,X, F0) are both nonnegative. It is also not hard to see the
following observations:

For old and new large blossoms,
∑
B∈Ωlarge

old
zold(B) and

∑
B∈Ωlarge z(B) are both O(n4/3).

This is because the number of root large blossoms at a given time are bounded by O(n2/3)
and large blossoms can only be formed and dual-adjusted in the O(n2/3) EdmondsSearch
steps in the deficiency reduction step.
The total number of non-matching edges in γ(B)∪I(B) for all small blossoms B is bounded
by O(n4/3), that is,

∑
B∈Ω\Ωlarge |(γ(B)∪I(B))\F | and

∑
B∈Ωold\Ωlarge

old
|(γ(B)∪I(B))\F0|

are both O(n4/3). This is because the number of edges in γ(B) for every blossom B is
bounded by O(|B|2), the size of root small blossoms is less than n1/3, and every root
blossom has at most one non-matching edge in I(B) \ γ(B),

Therefore, if we assume the number of augmenting walks in F0⊕F is larger than K ·n2/3

for a large constant K, then we still have Ω(n2/3) augmenting walks ρ satisfying the following
conditions:
(a) Starting and ending with edges not equal to η-edge or ζ-edge for all old large blossoms.
(b) Starting and ending with vertices not equal to the base for all old large blossoms.
(c) Z(ρ) < n2/3

(d) The total number of non-matching edges on ρ in γ(X) ∪ I(X) for all old and new small
blossoms X is less than n2/3. As in Lemma 23, the number of maximal consecutive
subwalks in ρ ∩ (γ(X) ∪ I(X)) containing those edges is also bounded by n2/3. We call
all the edges in such subwalks “skip edges”.

Among vertices u1, u2, · · · , u2s−1, we pick the vertices with odd subscript which are
original vertices in G, plus the two endpoints, and obtain the list: u1(= v1), up(= v2), up+6(=
v3), · · · , up+6q(= vq+2), u2s−1(= vq+3), where p is 3,5 or 7. Consider all the differences
ŷ(vi+1) − ŷ(vi) for i = 1, · · · , q + 2. For the subwalk [vi, vi+1] in ρ containing skip edges
or the η or ζ-edges of old or new large blossoms, the sum of the differences ŷ(vi+1)− ŷ(vi)
is at most O(n2/3), by (c),(d) and Lemma 23. For subwalk [vi, vi+1] in ρ which does not
contain skip edges or η or ζ-edges, from (4), ŷ(u2j+1)− ŷ(u2j−1) ≤ 8 for (u2j+1, u2j−1) in

ICALP 2020

41:16 A Scaling Algorithm for Weighted f -Factors in General Graphs

the subwalk, so ŷ(vi+1)− ŷ(vi) ≤ 24, Since the sum of all ŷ(vi+1)− ŷ(vi) is ŷ(u2s−1)− ŷ(u1),
which is at least 2Cn2/3, if C is a large constant, the number of subwalks [vi, vi+1] in ρ which
does not contain skip edges or η, ζ-edges and satisfies 0 < ŷ(vi+1)− ŷ(vi) ≤ 24 is Ω(n2/3).
Moreover, there are Ω(n2/3) different values of ŷ(vi) in ρ. When vi is not u1 and vi+1 is
not u2s−1, then vi = up+6k and vi+1 = up+6k+6. Then we can see ŷ(up+6k+2) − ŷ(up+6k),
ŷ(up+6k+4)− ŷ(up+6k+2) and ŷ(up+6k+6)− ŷ(up+6k+4) are at most 8, and also by (1),(2),(7)
and Lemma 19, (remember p is odd)

ŷ(up+6k+3) + ŷ(up+6k+4) ≤ 0
ŷ(up+6k+2) + ŷ(up+6k+3) ≥ −8

So we have ŷ(up+6k+3) ≥ −ŷ(up+6k)−16 and ŷ(up+6k+3) ≤ −ŷ(up+6k+6)+8 < −ŷ(up+6k)+8.
Note that up+6k and up+6k+3 are original vertices in G, and their ŷ-values are ≥ −Cn2/3, so
their ŷ-values are also < Cn2/3 + 8.

Given an interval [a, b] of integers, define V[a,b] = {v ∈ V |ŷ(v) ∈ [a, b]}. For an edge
(u, v) ∈ E such that u ∈ V[a,b] and v ∈ V[a′,b′], we say the auxiliary edges (u, eu), (eu, ev), (ev, v)
are “between” the pair of intervals [a, b] and [a′, b′]. If we divide the original vertices in G by
their ŷ-values into intervals of length 48, then every augmenting walk we consider will go
through auxiliary edges between Ω(n2/3) pairs of intervals of the form [a, a+48], [−a,−a+48].
Any constant fraction of those Θ(n2/3) pairs of intervals contains O(n1/3) vertices each, so
there are at most O(n2/3) auxiliary edges between any of such pair of intervals. Thus the
number of augmenting walks satisfying (a),(b),(c),(d) is bounded by O(n2/3).

References
1 Michael B Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-weight

shortest paths and unit capacity minimum cost flow in Õ(m10/7 logw). In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 752–771. SIAM,
2017.

2 Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. Journal
of the ACM (JACM), 61(1):1, 2014.

3 Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling algorithms for weighted matching in general
graphs. ACM Transactions on Algorithms (TALG), 14(1):8, 2018.

4 Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.

5 Shimon Even and R Endre Tarjan. Network flow and testing graph connectivity. SIAM journal
on computing, 4(4):507–518, 1975.

6 Harold N Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In Proceedings of the fifteenth annual ACM symposium on
Theory of computing, pages 448–456. ACM, 1983.

7 Harold N Gabow. Scaling algorithms for network problems. In 24th Annual Symposium on
Foundations of Computer Science (SFCS 1983), pages 248–258. IEEE, 1983.

8 Harold N Gabow. Data structures for weighted matching and extensions to b-matching and
f -factors. ACM Transactions on Algorithms (TALG), 14(3):39, 2018.

9 Harold N Gabow and Piotr Sankowski. Algebraic algorithms for b-matching, shortest undirected
paths, and f -factors. In 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, pages 137–146. IEEE, 2013.

10 Harold N Gabow and Robert E Tarjan. Faster scaling algorithms for network problems. SIAM
Journal on Computing, 18(5):1013–1036, 1989.

11 Andrew Goldberg and Robert Tarjan. Solving minimum-cost flow problems by successive
approximation. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 7–18. ACM, 1987.

R. Duan, H. He, and T. Zhang 41:17

12 Andrew V Goldberg and Satish Rao. Beyond the flow decomposition barrier. Journal of the
ACM (JACM), 45(5):783–797, 1998.

13 Dawei Huang and Seth Pettie. Approximate generalized matching: f -factors and f -edge covers.
arXiv preprint, 2017. arXiv:1706.05761.

14 Alexander V Karzanov. On finding maximum flows in networks with special structure and
some applications. Matematicheskie Voprosy Upravleniya Proizvodstvom, 5:81–94, 1973.

15 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in Õ(

√
rank) iterations and faster algorithms for maximum flow. In 2014 IEEE

55th Annual Symposium on Foundations of Computer Science, pages 424–433. IEEE, 2014.
16 A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.

ICALP 2020

http://arxiv.org/abs/1706.05761

	Introduction
	Technical overview
	Structure of our paper

	Preliminaries
	Notations
	Blowup graphs
	LP formulation
	Blossoms
	Augmenting path
	Complementary slackness
	Edmonds search

	The Scaling Algorithm
	Correctness

	Running Time Analysis

