
Robust Algorithms Under Adversarial Injections
Paritosh Garg
EPFL, Lausanne, Switzerland
paritosh.garg@epfl.ch

Sagar Kale
University of Vienna, Austria
sagar.kale@univie.ac.at

Lars Rohwedder
EPFL, Lausanne, Switzerland
lars.rohwedder@epfl.ch

Ola Svensson
EPFL, Lausanne, Switzerland
ola.svensson@epfl.ch

Abstract
In this paper, we study streaming and online algorithms in the context of randomness in the input.
For several problems, a random order of the input sequence – as opposed to the worst-case order
– appears to be a necessary evil in order to prove satisfying guarantees. However, algorithmic
techniques that work under this assumption tend to be vulnerable to even small changes in the
distribution. For this reason, we propose a new adversarial injections model, in which the input
is ordered randomly, but an adversary may inject misleading elements at arbitrary positions. We
believe that studying algorithms under this much weaker assumption can lead to new insights and,
in particular, more robust algorithms. We investigate two classical combinatorial-optimization
problems in this model: Maximum matching and cardinality constrained monotone submodular
function maximization. Our main technical contribution is a novel streaming algorithm for the latter
that computes a 0.55-approximation. While the algorithm itself is clean and simple, an involved
analysis shows that it emulates a subdivision of the input stream which can be used to greatly limit
the power of the adversary.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Adversary models

Keywords and phrases Streaming algorithm, adversary, submodular maximization, matching

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.56

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at http://arxiv.org/abs/2004.12667.

Funding This research was supported in part by the Swiss National Science Foundation project
200021-184656 “Randomness in Problem Instances and Randomized Algorithms.”

1 Introduction

In the streaming model, an algorithm reads the input sequentially from the input stream
while using limited memory. In particular, the algorithm is expected to use memory that is
much smaller than the input size, ideally, linear in the size of a solution. We consider the
most fundamental setting in which the algorithm is further restricted to only read the input
stream once. In this case, the algorithm cannot remember much of the input along the way,
and part of the input is irrevocably lost. Something similar happens for online algorithms:
Here, the input is given to the algorithm one element at a time and the algorithm has to
decide whether to take it into its solution or to discard it. This decision is irrevocable.

EA
T

C
S

© Paritosh Garg, Sagar Kale, Lars Rohwedder, and Ola Svensson;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 56; pp. 56:1–56:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paritosh.garg@epfl.ch
mailto:sagar.kale@univie.ac.at
mailto:lars.rohwedder@epfl.ch
mailto:ola.svensson@epfl.ch
https://doi.org/10.4230/LIPIcs.ICALP.2020.56
http://arxiv.org/abs/2004.12667
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


56:2 Robust Algorithms Under Adversarial Injections

The most common approach to analyze the quality of an algorithm in these models is
worst-case analysis. Here, an adversary has full knowledge of the algorithm’s strategy and
presents a carefully crafted instance to it, trying to make the ratio between the value of the
algorithm’s solution and that of an optimum solution (the approximation ratio; for online
algorithms called the competitive ratio) as small as possible1. While worst-case analysis gives
very robust guarantees, it is also well-known that such an analysis is often very pessimistic.
Not only are good guarantees not possible for many problems, but in many cases worst-case
instances appear quite artificial. Hence, the worst-case approximation/competitive ratio does
not necessarily represent the quantity that we want to optimize.

One way to remedy this is to weaken the power of the adversary and a popular model to
achieve that is the random-order model. Here, an adversary may pick the instance as before,
but it is presented in a uniformly-random order to the algorithm. This often allows for
significantly better provable guarantees. A prime example is the secretary problem: For the
worst-case order it is impossible to get a bounded competitive ratio whereas for the random-
order a very simple stopping rule achieves a competitive ratio of 1/e. Unfortunately, in this
model, algorithms tend to overfit and the assumption of a uniformly-random permutation of
the input is a strong one. To illustrate this point, it is instructive to consider two examples
of techniques that break apart when the random-order assumption is slightly weakened:

Several algorithms in the random-order model first read a small fraction of the input,
say, the first 1% of the input. Such an algorithm relies on the assumption that around 1%
of the elements from an optimum solution are contained in this first chunk. It computes
some statistics, summaries, or initial solutions using this chunk in order to estimate certain
properties of the optimum solution. Then in the remaining 99% of the input it uses this
knowledge to build a good solution for the problem. For examples of such streaming
algorithms, see Norouzi-Fard et al. [29] who study submodular maximization and Gamlath et
al. [13] who study maximum matching. Also Guruganesh and Singla’s [16] online algorithm
for maximum matching for bipartite graphs is of this kind. Note that these algorithms are
very sensitive to noise at the beginning of the stream.

Another common technique is to split the input into fixed parts and exploit that with
high probability the elements of the optimum solution are distributed evenly among these
parts, e.g., each part has at most one optimum element. These methods critically rely on the
assumption that each part is representative for the whole input or that the parts are in some
way homogeneous (properties of the parts are the same in expectation). Examples of such
algorithms include the streaming algorithm for maximum matching [23], and the streaming
algorithm for submodular maximization [1] that achieves the tight competitive ratio 1− 1/e
in the random-order model.

The motivation of this work is to understand whether the strong assumption of uniformly-
random order is necessary to allow for better algorithms. More specifically, we are motivated
by the following question:

Can we achieve the same guarantees as in the uniform-random order but by
algorithms that are more robust against some distortions in the input?

In the next subsection, we describe our proposed model that is defined so as to avoid
overfitting to the random-order model, and, by working in this model, our algorithms for
submodular maximization and maximum matching are more robust while maintaining good
guarantees.

1 We assume that the problem is a maximization problem.



P. Garg, S. Kale, L. Rohwedder, and O. Svensson 56:3

1.1 The Adversarial Injections Model
Our model – that we call the adversarial-injections model – lies in between the two extremes
of random-order and adversarial-order. In this model, the input elements are divided into
two sets Enoise and Egood. An adversary first picks all elements, puts each element in either
Enoise or Egood, and chooses the input order. Then the elements belonging to Egood are
permuted uniformly at random among themselves. The algorithm does not know if an
element is good or noise. We judge the quality of the solution produced by an algorithm by
comparing it to the best solution in Egood.

An equivalent description of the model is as follows. First, a set of elements is picked
by the adversary and is permuted randomly. Then, the adversary injects more elements at
positions of his choice without knowing the random permutation of the original stream2.
Comparing with the previous definition, the elements injected by the adversary correspond
to Enoise and the elements of the original stream correspond to Egood.

We denote by Eopt ⊆ Egood the elements of a fixed optimum solution of the elements
in Egood. We can assume without loss of generality that Egood = Eopt, because otherwise
elements in Egood \Eopt can be treated as those belonging to Enoise (which only strengthens
the power of the adversary).

1.2 Related Models
With a similar motivation, Kesselheim, Kleinberg, Niazadeh [21] studied the robustness of
algorithms for the secretary problem from a slightly different perspective: They considered
the case when the order of the elements is not guaranteed to be uniformly-at-random but still
contains “enough” randomness with respect to different notions such as entropy. Recently,
Esfandiari, Korula, Mirrokni [8] introduced a model where the input is a combination of
stochastic input that is picked from a distribution and adversarially ordered input. Our
model is different in the sense that the input is a combination of randomly ordered (instead
of stochastic input) and adversarially ordered elements.

Two models that are more similar to ours in the sense that the input is initially ordered
in a uniformly-random order and then scrambled by an adversary in a limited way are [15]
and [3]. First, in the streaming model, Guha and McGregor [15] introduced the notion of
a t-bounded adversary that can disturb a uniformly-random stream but has memory to
remember and delay at most t input elements at a time. Second, Bradac et al. [3] very recently
introduced a new model that they used to obtain robust online algorithms for the secretary
problem. Their model, called the Byzantine model, is very related to ours: the input is
split into two sets which exactly correspond to Egood and Enoise in the adversarial-injections
model. The adversary gets to pick the elements in both of them, but an algorithm will be
compared against only Egood. Then – this is where our models differ – the adversary chooses
an arrival time in [0, 1] for each element in Enoise. He has no control over the arrival times
of the elements in Egood, which are chosen independently and uniformly at random in [0, 1].
The algorithm does not know to which set an element belongs, but it knows the timestamp
of each element, as the element arrives. While the Byzantine model prevents certain kinds of

2 We remark that the assumption that the adversary does not know the order of the elements is important.
Otherwise, the model is equivalent to the adversarial order model for “symmetric” problems such as
the matching problem. To see this, let Eopt correspond to an optimum matching in any hard instance
under the adversarial order. Since a matching is symmetric, the adversary can inject appropriately
renamed edges depending on the order of the edges (which he without this assumption knows) and
obtain exactly the hard instance.

ICALP 2020



56:4 Robust Algorithms Under Adversarial Injections

overfitting (e.g., of the classical algorithm for the secretary problem), it does not tackle the
issues of the two algorithmic techniques we discussed earlier: Indeed, by time t = 0.01, we
will see around 1% of the elements from Eopt. Hence, we can still compute some estimates
based on them, but do not lose a lot when dismissing them. Likewise, we may partition the
timeline, and thereby the input, into parts such that in each part at most one element of
Eopt appears.

Hence, even if our model appears very similar to the Byzantine model, there is this
subtle, yet crucial, difference. The adversarial-injections model does not add the additional
dimension of time, and hence, does not allow for the kind of overfitting that we discussed
earlier. To further emphasize this difference, we now describe why it is strictly harder to
devise algorithms in the adversarial-injections model compared to the Byzantine model. It is
at least as hard as the Byzantine model, because any algorithm for the former also works
for the latter. This holds because the adversarial-injections model can be thought of as
the Byzantine model with additional power to the adversary and reduced power for the
algorithm: The adversary gets the additional power of setting the timestamps of elements in
Egood, but not their identities, whereas the algorithm is not allowed to see the timestamp of
any element.

To show that it is strictly harder, consider online bipartite matching. We show that
one cannot beat 1/2 in the adversarial-injections model (for further details, see Section 2.2)
whereas we observe that the (1/2 + δ)-approximation algorithm [16] for bipartite graphs and
its analysis generalizes to the Byzantine model as well. This turns out to be the case because
the algorithm in [16] runs a greedy algorithm on the first small fraction, say 1% of the input
and “augments” this solution using the remaining 99% of the input. The analysis crucially
uses the fact that 99% of the optimum elements are yet to arrive in the augmentation phase.
This can be simulated in the Byzantine model using timestamps in the online setting as one
sees 1% of Eopt in expectation.

1.3 Our Results
We consider two benchmark problems in combinatorial optimization under the adversarial-
injections model in both the streaming and the online settings, namely maximum matching
and monotone submodular maximization subject to a cardinality constraint. As we explain
next, the study of these classic problems in our new model gives interesting insights: for
many settings we can achieve more robust algorithms with similar guarantees as in the
random-order model but, perhaps surprisingly, there are also natural settings where the
adversarial-injection model turns out to be as hard as the adversarial order model.

The maximum matching problem. We first discuss the (unweighted) maximum matching
problem. Given a graph G = (V,E), a matching M is a subset of edges such that every
vertex has at most one incident edge in M . A matching of maximum cardinality is called
a maximum matching, whereas a maximal matching is one in which no edge can be added
without breaking the property of it being a matching. The goal in the maximum matching
problem is to compute a matching of maximum cardinality. Note that a maximal matching
is 1/2-approximate. Work on maximum matching has led to several important concepts and
new techniques in theoretical computer science [26, 24, 6, 19]. The combination of streaming
and random-order model was first studied by Konrad, Magniez and Mathieu [23], where edges
of the input graph arrive in the stream. We allow a streaming algorithm to have memory
O(npolylog(n)), which is called the semi-streaming setting. This is usually significantly less
than the input size, which can be as large as O(n2). This memory usage is justified, because



P. Garg, S. Kale, L. Rohwedder, and O. Svensson 56:5

even storing a solution can take Ω(n log(n)) space (Ω(log(n)) for each edge identity). The
question that Konrad et al. answered affirmatively was whether the trivial 1/2-approximation
algorithm that computes a maximal matching can be improved in the random-order model.
Since then, there has been some work on improving the constant [14, 9]. The state-of-the-art
is an approximation ratio of 6/11 ≈ 0.545 proved by Farhadi, Hajiaghayi, Mah, Rao, and
Rossi [9]. We show that beating the ratio of 1/2 is possible also in the adversarial-injections
model by building on the techniques developed for the random-order model.

I Theorem 1. There exists an absolute constant γ > 0 such that there is a semi-streaming
algorithm for maximum matching under adversarial-injections with an approximation ratio
of 1/2 + γ in expectation.

We note that beating 1/2 in adversarial-order streams is a major open problem. In this
regard, our algorithm can be viewed as a natural first step towards understanding this
question.

Now we move our attention to the online setting, where the maximum matching problem
was first studied in the seminal work of Karp, Vazirani, and Vazirani [20]. They gave a tight
(1− 1/e)-competitive algorithm for the so-called one-sided vertex arrival model which is an
important special case of the edge-arrival model considered here. Since then, the online
matching problem has received significant attention (see e.g. [4, 7, 11, 17, 14]). Unlike the
adversarial streaming setting, there is a recent hardness result due to [14] in the adversarial
online setting that the trivial ratio of 1/2 cannot be improved. We also know by [16]
that one can beat 1/2 for bipartite graphs in the random-order online setting. Hence, one
might hope at least for bipartite graphs to use existing techniques to beat 1/2 in the online
adversarial-injections setting and get a result analogous to Theorem 1. But surprisingly so,
this is not the case. We observe that the construction used in proving Theorem 3 in [14] also
implies that there does not exist an algorithm with a competitive ratio of 1/2 + ε for any
ε > 0 in the adversarial-injections model.

Maximizing a monotone submodular function subject to a cardinality constraint. In this
problem, we are given a ground set E of n elements and a monotone submodular set function
f : 2E → R>0. A function is said to be submodular, if for any S, T ⊆ E it holds that
f(S) + f(T ) > f(S ∪ T ) + f(S ∩ T ). It is monotone if f(S) 6 f(T ) for all S ⊆ T ⊆ E. The
problem we consider is to find a set S ⊆ E with |S| 6 k that maximizes f(S). We assume
that access to f is via an oracle.

In the offline setting, a simple greedy algorithm that iteratively picks the element with
the largest marginal contribution to f with respect to the current solution is (1 − 1/e)-
approximate [28]. This is tight: Any algorithm that achieves an approximation ratio of
better than (1 − 1/e) must make Ω(nk) oracle calls [27], which is enough to brute-force
over all k-size subsets. Even for maximum coverage (which is a special family of monotone
submodular functions), it is NP-hard to get an approximation algorithm with ratio better
than 1− 1/e [10].

In the random-order online setting, this problem is called the submodular secretary
problem, and an exponential time 1/e-approximation and polynomial-time (1 − 1/e)/e-
approximation algorithms are the state-of-the-art [22]. In the adversarial online setting, it is
impossible to get any bounded approximation ratio for even the very special case of picking a
maximum weight element. In this case, |Eopt| = 1 and adversarial and adversarial-injections
models coincide; hence the same hardness holds. In light of this negative result, we focus on
adversarial-injections in the streaming setting. Note that to store a solution we only need
the space for k element identities. We think of k to be much smaller than n. Hence, it is
natural to ask, whether the number of elements in memory can be independent of n.

ICALP 2020



56:6 Robust Algorithms Under Adversarial Injections

Table 1 : Comparison of different models for the two studied problems. Here, γ > 0 is a fixed
absolute constant and ε > 0 is any constant.

Maximum matching
Random order Adversarial Injections Adversarial order

Streaming > 6/11 [9] > 1/2 + γ 6 1− 1/e+ ε [18]
Online > 1/2 (folklore) 6 1/2 6 1/2 [14]
Submodular function maximization

Random order Adversarial Injections Adversarial order
Streaming > 1− 1/e− ε [1] > 0.55 > 1/2− ε [2]

6 1− 1/e+ ε [25] 6 1/2 [12]

For streaming algorithms in the adversarial order setting, the problem was first stud-
ied by Chakrabarti and Kale [5] where they gave a 1/4-approximation algorithm. This
was subsequently improved to 1/2 − ε by Badanidiyuru et al. [2]. Later, Norouzi-Fard
et al. [29] observed that in the random-order model this ratio can be improved to bey-
ond 1/2. Finally, Agrawal et al. [1] obtained a tight (1− 1/e)-approximation guarantee in
the random-order model.

The algorithm of Agrawal et al. [1] involves as a crucial step a partitioning the stream in
order to isolate the elements of the optimum solution. As discussed earlier, this approach
does not work under adversarial-injections. However, we note that the algorithm and analysis
by Norouzi-Fard et al. [29] can be easily modified to work under adversarial-injections as
well. Their algorithm, however, has an approximation ratio of 1/2 + 8 · 10−14. In this paper,
we remedy this weak guarantee.

I Theorem 2. There exists a 0.55-approximation algorithm that stores a number of elements
that is independent of n for maximizing a monotone submodular function with a cardinality
constraint k under adversarial-injections in the streaming setting.

We summarize and compare our results with random-order and adversarial-order models for
the problems we study in Table 1. It is interesting to see that in terms of beating 1/2, our
model in the streaming setting agrees with the random-order model and in the online setting
agrees with the adversarial-order model.

2 Matching

In this section, we consider the problem of maximum unweighted matching under adversarial
injections in both streaming and online settings where the edges of the input graph arrive
one after another.

2.1 Streaming Setting
We show that the trivial approximation ratio of 1/2 can be improved upon. We provide a
robust version of existing techniques and prove a statement about robustness of the greedy
algorithm to achieve this.

First, let us introduce some notation which we will use throughout this section. We denote
the input graph by G = (V,E), and let M∗ be a maximum matching. For any matching M ,
the union M ∪M∗ is a collection of vertex-disjoint paths and cycles. When M is clear from
the context, a path of length i > 3 in M ∪M∗ which starts and ends with an edge of M∗ is



P. Garg, S. Kale, L. Rohwedder, and O. Svensson 56:7

called an i-augmenting path. Notice that an i-augmenting path alternates between edges of
M∗ and M and that we can increase the size of M by one by taking all edges from M∗ and
removing all edges from M along this path. We say that an edge in M is 3-augmentable if it
belongs to some 3-augmenting path. Otherwise, we say it is non-3-augmentable. Also, let
M∗ = Eopt; as described in the introduction, this is without loss of generality.

As a subroutine for our algorithm we need the following procedure.

I Lemma 3 (Lemma 3.1 in [13]). There exists a streaming algorithm 3-Aug-Paths with the
following properties:
1. The algorithm is initialized with a matching M and a parameter β > 0. Then a set E of

edges is given to the algorithm one edge at a time.
2. If M ∪E contains at least β|M | vertex disjoint 3-augmenting paths, the algorithm returns

a set A of at least (β2/32)|M | vertex disjoint 3-augmenting paths. The algorithm uses
space O(|M |).

2.1.1 The Algorithm
We now describe our algorithm Match. It runs two algorithms in parallel and selects
the better of the two outputs. The first algorithm simply constructs a maximal matching
greedily by updating the variable M1. The second algorithm also constructs a matching
M

(1)
2 greedily, but it stops once M (1)

2 has |M∗|(1/2− ε) edges. We call this Phase 1. Then,
it finds 3-augmentations using the 3-Aug-Paths algorithm given by Lemma 3. Finally, it
augments the paths found to obtain a matching M2. The constant β used in 3-Aug-Paths
is optimized for the analysis and will be specified there.

Notice that here we assumed that the algorithm knows |M∗|. This assumption can be
removed using geometric guessing at a loss of an arbitrary small factor in the approximation
ratio. We refer the reader to the full version for details.

2.1.2 Overview of the Analysis
We discuss only the intuition here and refer the reader to the full version for a formal
proof. Consider the first portion of the stream until we have seen a small constant fraction
of the elements in Eopt. If the greedy matching up to this point is already close to a
1/2-approximation, this is good for the second algorithm as we are able to augment the
matching using the remaining edges of M∗. The other case is good for the first algorithm:
We will show that the greedy matching formed so far must contain a significant fraction of
the edges in M∗ which we have seen so far. If this happens, the first algorithm outputs a
matching of size a constant fraction more than |M∗|/2.

A technical challenge and novelty comes from the fact that the two events above are not
independent of the random order of Eopt. Hence, when conditioning on one event, we can no
longer assume that the order of Eopt is uniformly at random. We get around this by showing
that the greedy algorithm is robust to small changes in streams. The intuition is that in the
first part of the stream the greedy solution either is large for all permutations of Eopt or it is
small for all permutations. Hence, these are not random events depending on the order, but
two cases in which we can assume a uniform distribution.

2.2 Online Setting
Since we can improve 1/2 for the streaming setting, it is natural to hope that the existing
techniques (e.g., the approach of the previous subsection) can be applied in the online setting
as well. Surprisingly, this is not the case. In other words, the competitive ratio of 1/2 is

ICALP 2020



56:8 Robust Algorithms Under Adversarial Injections

optimal even for bipartite graphs. The technique from the previous subsection breaks apart,
because the algorithm constructs several candidate solutions in parallel by guessing |M∗|.
This is not a problem for a streaming algorithm, however, an online algorithm can only build
one solution.

For a formal proof, we rely on the bipartite construction used in the proof of Theorem 3
from [14]. The authors show that there is no (randomized) algorithm with a competitive
ratio of 1/2 + ε for any ε > 0. More precisely, they show that not even a good fractional
matching can be constructed online. For fractional matchings, randomization does not help
and therefore we can assume the algorithm is deterministic. The original proof is with respect
to adversarial order, but it is not hard to see that it transfers to adversarial injections.

The authors construct a bipartite instance that arrives in (up to) N rounds. In round
i, a matching of size i arrives. The algorithm does not know whether the current round is
the last one or not. Hence, it has to maintain a good approximation after each round. This
forces the algorithm to take edges that do not belong to the optimal matching and eventually
leads to a competitive ratio of 1/2. The same construction works in our model: The edges
from the optimal matching arrive in the last round and their internal order does not affect
the proof. In fact, the construction works for any order of the elements within a round. Thus,
an algorithm cannot exploit the fact that their order is randomized and therefore also cannot
do better than 1/2.

3 Submodular Maximization

In this section, we consider the problem of submodular maximization subject to a cardinality
constraint. The algorithm has query access to a monotone, submodular function f : 2E → R
over a ground set E. Moreover, f is normalized with f(∅) = 0. The goal is to compute
a set S of size at most k that maximizes f(S). We present a 0.55-approximate streaming
algorithm in the adversarial-injections model which only needs the memory to store (O(k))k
many elements. In particular, this number is independent of the length of the stream.

3.1 Notation
For e ∈ E and S ⊆ E we write S + e for the set S ∪ {e} and f(e | S) for f(S + e)− f(S).
Similarly, for A,B ⊆ E let f(A | B) := f(A ∪ B) − f(B). An equivalent definition of
submodularity to the one given in the introduction states that for any two sets S ⊆ T ⊆ E,
and e ∈ E \ T it holds that f(e | S) > f(e | T ).

We denote by σ the stream of elements E, by −∞ and ∞ the start and end of the stream.
For elements a and b, we write σ[a, b] for the interval including a and b and σ(a, b) for the
interval excluding them. Moreover, we may assume that f(∅) = 0, since otherwise, we may
replace the submodular function by f ′ : 2E → R>0, T 7→ f(T )− f(∅).

Denote the permutation of Eopt by π. Let oπi be the i’th element of Eopt in the stream
according to the order given by π. Let Oπ0 = ∅ and Oπi = {oπ1 , . . . , oπi } for all i; hence,
Eopt = Oπk for any π. Finally, let OPT = f(Oπk ).

3.2 The Algorithm
For simplicity we present an algorithm with the assumption that it knows the value OPT.
Moreover, for the set of increases in f , that is I = {f(e | S) : e ∈ E,S ⊆ E}, we assume that
|I| 6 O(k). These two assumptions can be made at a marginal cost in the approximation
ratio and an insignificant increase in memory. This follows from standard techniques. We
refer the reader to the full version for details.



P. Garg, S. Kale, L. Rohwedder, and O. Svensson 56:9

A :
B :
C :
D :

∅

D A

BCD

B

C

1 2 4

321 1

Figure 1 In this example, function f counts the dots covered by a set of rectangles. On the right,
the tree for stream σ = (A,B,C,D) and k = 2 is depicted. The labels on the edges correspond to
the increase in f . The maximal leaves are highlighted.

As a central data-structure, the algorithm maintains a rooted tree T of height at most
k. Every node except for the root stores a single element from E. The structure resembles
a prefix tree: Each node is associated with the solution, where the elements on the path
from the root to it is selected. The nodes can have at most |I| children, that is, one for each
increase. The basic idea is that for some partial solution S ⊆ E (corresponding to a node)
and two elements e, e′ with f(e | S) = f(e′ | S) we only consider one of the solutions S ∪ {e}
and S ∪ {e′}. More precisely, the algorithm starts with a tree consisting only of the root.
When it reads an element e from the stream, it adds e as a child to every node where (1) the
distance of the node to the root is smaller than k and (2) the node does not have a child
with increase f(e | S), where S is the partial solution corresponding to this particular node.

Because of (1), the solutions are always of cardinality at most k. When the stream is
read completely, the algorithm selects the best solution among all leaves. An example of the
algorithm’s behavior is given in Figure 1.

3.3 Overview of the Analysis
For analyzing the algorithm, we will use a sophisticated strategy to select one of the leaves
and only compare this leaf to the optimum. We emphasize that this selection does not have
to be computed by the algorithm. In particular, it does not need to be computable by a
streaming algorithm and it can rely on knowledge of Eopt and Enoise, which the algorithm
does not have. Since the algorithm always takes the best leaf, we only need to give a lower
bound for one of them. Before we describe this strategy, we analyze the tree algorithm in
two educational corner cases.

The first one shows that by a careful selection of a leaf the algorithm appears to
take elements based on the location of the Eopt, although it does not know them. Let
rπi = argmaxe∈σ(−∞,oπ1 ]f(e), that is, the most valuable element until the arrival of the
first element from Eopt. Here argmax breaks ties in favor of the first element in σ. We
do not know when oπ1 arrives, but we know that the algorithm will have created a node
(with the root as its parent) for rπ1 by then. We define iteratively Rπi = {rπ1 , . . . , rπi } and
rπi+1 = argmaxe∈σ(rπ

i
,oπ
i+1]f(e | Rπi ) for all i. Again, we can be sure that rπi+1, which yields

the best increase for Rπi until the arrival of oπi+1, is a appended to the path rπ1 → · · · → rπi .
This selection is inspired by the following idea. Suppose we could partition the stream

into k intervals such that in each exactly one elements from Eopt appears. Then a sensible
approach would be to start with an empty solution and greedily add the element that yields
the maximal increase to our partial solution in each interval. Clearly one such partition
would be σ(oπi , oπi+1], i = 1, . . . , k. We note that while the selection above is similar, it does
not completely capture this. Although rπi+1 is an element that arrives before oπi+1, we cannot
be certain that it arrives after oπi . We only know that it arrives after rπi .

ICALP 2020



56:10 Robust Algorithms Under Adversarial Injections

Next, we prove that the solution Rπk is a 1/2-approximation. This already shows that the
tree algorithm is 1/2-approximate even in the adversarial order model. By definition of Rπi
and rπi , we have

f(Rπk ) =
k∑
i=1

f(rπi | Rπi−1) >
k∑
i=1

f(oπi | Rπi−1)

=
k∑
i=1

[f(oπi | Rπi−1) − f(oπi | Rπk )] +
k∑
i=1

f(oπi | Rπk ).

Notice that due to submodularity the term f(oπi | Rπi−1)− f(oπi | Rπk ) is always non-negative.
Moreover, if oπi = rπi ∈ Rπk , it collapses to f(oπi | Rπi−1). Thus, we can bound the right term
of the equation and thereby f(Rπk ) with

f(Rπk ) >
k∑
i=1

rπi =oπi

f(oπi | Rπi−1) +
k∑
i=1

f(oπi | Rπk ).

From submodularity and monotonicity of f it follows that
k∑
i=1

f(oπi | Rπk ) > f(Oπk | Rπk ) = f(Oπk ∪Rπk )− f(Rπk ) > f(Oπk )− f(Rπk ).

Hence, we conclude that

2f(Rπk ) > f(Oπk ) +
k∑
i=1

rπi =oπi

f(oπi | Rπi−1).

This shows that Rπk is 1/2-approximate, because Oπk = Eopt. Indeed, if a significant value of
the elements in Eopt are taken, then Rπk is even better than 1/2-approximate.

Recall that the elements Eopt are ordered randomly in the adversarial-injections model.
Hence, the worst-case in the analysis above is that Rπk is disjoint from Eopt for all realizations
of π. However, by a different analysis we can see that this case is in fact well-behaved. This
is because the algorithm would select the same elements rπ1 , . . . , rπk for every realization of π.
Hence, we can safely drop the superscript π in Rπi and rπi . Since for every element o ∈ Eopt
there is some realization of π where oπi = o, yet the algorithm does not pick oπi , we can
bound the increase of each ri by

f(ri | Ri−1) > max
o∈Eopt

f(o | Ri−1) > 1
k

∑
o∈Eopt

f(o | Ri−1).

By submodularity and monotonicity we get
1
k

∑
o∈Eopt

f(o | Ri−1) > 1
k
f(Eopt | Ri−1) > 1

k
(OPT−f(Ri−1)).

This is the same recurrence formula as in the classic greedy algorithm and by simple
calculations we get the closed form

f(Rk) >
(

1−
(

1− 1
k

)k)
OPT >

(
1− 1

e

)
OPT .

In other words, the algorithm is even (1− 1/e)-approximate in this case. In our main proof
we will use a more involved strategy for selecting a leaf. This is to be able to combine the
two approaches discussed above.



P. Garg, S. Kale, L. Rohwedder, and O. Svensson 56:11

3.4 Analysis
Let us first define the selection of the leaf we are going to analyze. The elements on the
path to this leaf will be denoted by sπ1 , . . . , sπk and we write Sπi for {sπ1 , . . . sπi }. The elements
are defined inductively, but as opposed to the previous section we need in addition indices
n1, . . . , nk. Recall, previously we defined the (i + 1)’th element rπi+1 as the best increase
in σ(rπi , oπi+1]. Here, we use ni+1 to describe the index of the element from Eopt which
constitutes the end of this interval. It is not necessarily oπi+1 anymore. We always start with
n1 = 1, but based on different cases we either set ni+1 = ni + 1 or ni+1 = ni. We underline
that ni is independent of the realization of π. In the following, t ∈ [0, 1] denotes a parameter
that we will specify later.

The element sπi will be chosen from two candidates uπi and vπi . The former is the best
increase of elements excluding oπni , that is,

uπi =

argmaxe∈σ(−∞,oπn1 )f(e) if i = 1,
argmaxe∈σ(sπ

i
,oπni

)f(e | Sπi−1) otherwise.

The latter is defined in the same way, except it includes oπni in the choices, that is,

vπi =

argmaxe∈σ(−∞,oπn1 ]f(e) if i = 1,
argmaxe∈σ(sπ

i−1,o
π
ni

]f(e | Sπi−1) otherwise.

We now define the choice of sπi and ni+1 based on the following two cases. Note that the
cases are independent from the realization of π.
Case 1: Eπ f(uπi | Sπi−1) > t · Eπ f(oπni

| Sπi−1). In this case, we set sπi = uπi and ni+1 =
ni. Notice that this means sπi is chosen independently from oπni . In other words, we did
not see oπni , yet. The element oπni is still each of the remaining elements in Eopt with
equal probability. In the analysis this is beneficial, because the distribution of oπni , . . . , o

π
k

remains unchanged. This is similar to the second case in the previous section.
Case 2: Eπ f(uπi | Sπi−1) < t · Eπ f(oπni

| Sπi−1). Here, set sπi = vπi and ni+1 = ni + 1.
Now the distribution of oπi , . . . , oπk can change. However, a considerable value of sπi over
different π comes from taking oπni . As indicated by the first case in the previous section
this will improve the guarantee of the algorithm.

The solution Sπk corresponds to a leaf in the tree algorithm. Clearly, uπ1 and vπ1 are children
of the root. Hence, sπ1 is also a child. Then for induction we assume sπi is a node, which
implies uπi+1 and vπi+1 are also nodes: The elements uπi+1 and vπi+1 are the first elements after
sπi with the respective gains (f(uπi+1 | Sπi ) and f(vπi+1 | Sπi )). Hence, sπi+1 is a child of sπi .

In order to bound Eπ f(Sπk ), we will study more broadly all values of Eπ f(Sπh ) where h 6 k.
To this end, we define a recursive formula R(k, h) and prove that it bounds Eπ f(Sπh )/OPT
from below. Then using basic calculus we will show that R(k, k) > 0.5506 for all k. Initialize
R(k, 0) = 0 for all k. Then let R(k, h), h 6 k, be defined by

R(k, h) = min
{
t

k
+
(

1− t

k

)
R(k, h− 1) , 1

k
+
(

1− 1 + t

k

)
R(k − 1, h− 1) , 1

1 + t

}
.

I Lemma 4. For all instances of the problem and h 6 k, the solution Sπh as defined above
satisfies Eπ f(Sπh ) > R(k, h) OPT .

ICALP 2020



56:12 Robust Algorithms Under Adversarial Injections

Proof. The proof is by induction over h. For h = 0, the statement holds as R(k, 0) OPT =
0 = Eπ f(Sπ0 ). Let h > 0 and suppose the statement of the lemma holds with h− 1 for all
instances of the problem. Suppose we are given an instance with k > h. We distinguish the
two cases sπ1 = uπ1 and sπ1 = vπ1 .

First, consider Eπ f(uπ1 ) > t · Eπ f(oπ1 ), which implies that sπ1 = uπ1 . Note that uπ1 is the
best element in σ(−∞, oπ1 ), consequently, its choice is independent from the realization of π.
Let us drop the superscript in uπ1 and sπ1 for clarity. We construct a new instance mimicking
the subtree of s1. Formally, our new instance still has the same k elements Eopt, i.e., k′ = k.
The stream is σ′ = σ(sπ1 ,∞) and, the submodular function f ′ : 2U → R, f ′(T ) 7→ f(T | s1).
In this instance we have OPT′ = f ′(Eopt) = f(Eopt | s1) > OPT−f(s1). It is easy to see
that the elements s′π1 , . . . , s′πh−1 chosen in the new instance correspond exactly to the elements
sπ2 , . . . , s

π
h. Hence, with the induction hypothesis we get

Eπ f(Sπh ) = f(s1)+Eπ f(Sπh | s1) = f(s1)+Eπ f ′(S′πh−1) > f(s1)+R(k, h−1)(OPT−f(s1)).

By assumption we have f(s1) > t · Eπ f(oπi ) > t · OPT /k. Together with R(k, h − 1) 6
1/(1 + t) 6 1 we calculate

f(s1) +R(k, h− 1)(OPT−f(s1)) > t

k
OPT +R(k, h− 1)

(
1− t

k

)
OPT .

The right-hand side is by definition at least R(k, h) OPT.
Now we turn to the case Eπ f(uπ1 ) < t·Eπ f(oπ1 ), which means sπ1 = vπ1 is chosen. Similar to

the previous case, we construct a new instance. After taking sπ1 , our new instance has k′ = k−1
elements E′opt = Eopt \ {oπ1}, stream σ′ = σ(s1,∞), and submodular function f ′ : 2E → R,
f(T ) 7→ f(T | sπ1 ). Thus, OPT′ = f ′(E′opt) = f(Eopt \ {oπ1} | sπ1 ) > OPT−f(sπ1 ∪ oπ1 ). We
remove oπ1 from Eopt, because sπ1 = vπ1 depends on it. The distribution of oπ2 , . . . , oπk when
conditioning on the value of oπ1 (and thereby the choice of sπ1 ) is still a uniformly random
permutation of E′opt. Like in the previous case, we can see that S′πh−1 = Sπh \ {sπ1} and we
can apply the induction hypothesis. First, however, let us examine Eπ f(sπ1 ∪ oπ1 ). Since we
know that whenever sπ1 6= oπ1 we have sπ1 = uπ1 , it follows that

Pπ[sπ1 6= oπ1 ] · Eπ[f(s1) | sπ1 6= oπ1 ] 6 Eπ f(uπ1 ) < t · Eπ f(oπ1 ) 6 t · Eπ f(sπ1 ).

Hence, we deduce

Eπ f(sπ1 ∪ oπ1 ) 6 Eπ f(oπ1 ) + Pπ[sπ1 6= oπ1 ] · Eπ[f(s1) | sπ1 6= oπ1 ] 6 Eπ f(oπ1 ) + t · Eπ f(sπ1 ).

We are ready to prove the bound on Eπ f(Sπh ). By induction hypothesis, we get

Eπ f(Sπh ) = Eπ f(sπ1 ) + Eπ f ′(S′πh−1)
> Eπ f(sπ1 ) +R(k − 1, h− 1)(OPT−Eπ f(sπ1 ∪ oπ1 )).

Inserting the bound on Eπ f(sπ1 ∪ oπ1 ) we know that the right-hand side is at least

Eπ f(sπ1 ) +R(k − 1, h− 1)(OPT−Eπ f(oπ1 )− t · Eπ f(sπ1 )).

Using that f(sπ1 ) > f(oπ1 ) for all π and R(k − 1, h − 1) · t 6 t/(1 + t) 6 1 we bound the
previous term from below by

Eπ f(oπ1 ) +R(k − 1, h− 1)(OPT−(1 + t)Eπ f(oπ1 )).



P. Garg, S. Kale, L. Rohwedder, and O. Svensson 56:13

 0.5506
 0.5507
 0.5508
 0.5509

 0.551
 0.5511
 0.5512

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

k

R(k, k)

Figure 2 Values of the recurrence formula for t = 0.8.

Finally, we use that Eπ f(oπ1 ) > OPT /k and R(k − 1, h− 1)(1 + t) 6 1 to arrive at

1
k

OPT +R(k − 1, h− 1)
(

OPT−1 + t

k
OPT

)
> R(k, h) OPT,

which concludes the proof. J

With t = 0.8 we are able to show that for sufficiently large k the minimum in the definition
of R(k, k) is always attained by the first term. Then, after calculating a lower bound on
R(k, k) for small values, we can easily derive a general bound.

I Lemma 5. With t = 0.8 for all positive integers k it holds that R(k, k) > 0.5506 .

Figure 2 contains a diagram (generated by computer calculation), which shows that the
formula tends to a value between 0.5506 and 0.5507 for k ∈ {0, . . . , 10000}. The proof
requires tedious and mechanical calculations and hence is omitted here. We refer the reader
to the full version for complete details.

4 Conclusion and Open Problems

In this paper, we introduced a semi-random model called adversarial-injections with the
motivation of eliminating algorithms that overfit to random-order streams while still being
easier than adversarial-order streams. We studied two classical problems in combinatorial
optimization in this model.

For unweighted matching, we could beat 1/2 in the streaming setting whereas we observed
from [14] that we could not beat 1/2 in the online setting. This also makes our model
non-trivial as there is a separation between the online and streaming setting.

For monotone submodular maximization with cardinality constraint k, we obtained a 0.55
approximation algorithm albeit with a huge memory footprint but importantly independent
of n (universe size). The obvious open question is whether one can design a (1 − 1/e)-
approximation algorithm which stores number of elements that is independent of n. Does
our algorithm have an approximation ratio of 1− 1/e? We observed that the algorithm in
[29] is a 1/2 + ε approximation for a very small ε > 0. The algorithm stores poly(k) elements.
Can one design an algorithm that stores only poly(k) elements and beats 1/2 by a significant
constant or, even better, gets 1− 1/e?

ICALP 2020



56:14 Robust Algorithms Under Adversarial Injections

References
1 Shipra Agrawal, Mohammad Shadravan, and Cliff Stein. Submodular secretary problem with

shortlists. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019,
January 10-12, 2019, San Diego, California, USA, pages 1:1–1:19, 2019. doi:10.4230/LIPIcs.
ITCS.2019.1.

2 Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause.
Streaming submodular maximization: massive data summarization on the fly. In The 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, New
York, NY, USA - August 24 - 27, 2014, pages 671–680, 2014. doi:10.1145/2623330.2623637.

3 Domagoj Bradac, Anupam Gupta, Sahil Singla, and Goran Zuzic. Robust algorithms for
the secretary problem. In 11th Innovations in Theoretical Computer Science Conference,
ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, pages 32:1–32:26, 2020. doi:
10.4230/LIPIcs.ITCS.2020.32.

4 Niv Buchbinder, Danny Segev, and Yevgeny Tkach. Online algorithms for maximum car-
dinality matching with edge arrivals. Algorithmica, 81(5):1781–1799, 2019. doi:10.1007/
s00453-018-0505-7.

5 Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: match-
ings, matroids, and more. Math. Program., 154(1-2):225–247, 2015. doi:10.1007/
s10107-015-0900-7.

6 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.
7 Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann. Improved bounds for randomized

preemptive online matching. Inf. Comput., 259(1):31–40, 2018. doi:10.1016/j.ic.2017.12.
002.

8 Hossein Esfandiari, Nitish Korula, and Vahab Mirrokni. Online allocation with traffic spikes:
Mixing adversarial and stochastic models. In Proceedings of the Sixteenth ACM Conference on
Economics and Computation, pages 169–186, 2015.

9 Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A. Rossi.
Approximate maximum matching in random streams. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 1773–1785, 2020. doi:10.1137/1.9781611975994.108.

10 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
doi:10.1145/285055.285059.

11 Uriel Feige. Tighter bounds for online bipartite matching. CoRR, abs/1812.11774, 2018.
arXiv:1812.11774.

12 Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. The one-way
communication complexity of submodular maximization with applications to streaming and
robustness. In Proceedings of the Fifty-Second Annual ACM on Symposium on Theory of
Computing, STOC (to appear), 2020.

13 Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings
via unweighted augmentations. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages
491–500, 2019. doi:10.1145/3293611.3331603.

14 Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and David Wajc.
Online matching with general arrivals. In 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages
26–37, 2019. doi:10.1109/FOCS.2019.00011.

15 Sudipto Guha and Andrew McGregor. Approximate quantiles and the order of the stream. In
Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 26-28, 2006, Chicago, Illinois, USA, pages 273–279, 2006. doi:
10.1145/1142351.1142390.

https://doi.org/10.4230/LIPIcs.ITCS.2019.1
https://doi.org/10.4230/LIPIcs.ITCS.2019.1
https://doi.org/10.1145/2623330.2623637
https://doi.org/10.4230/LIPIcs.ITCS.2020.32
https://doi.org/10.4230/LIPIcs.ITCS.2020.32
https://doi.org/10.1007/s00453-018-0505-7
https://doi.org/10.1007/s00453-018-0505-7
https://doi.org/10.1007/s10107-015-0900-7
https://doi.org/10.1007/s10107-015-0900-7
https://doi.org/10.1016/j.ic.2017.12.002
https://doi.org/10.1016/j.ic.2017.12.002
https://doi.org/10.1137/1.9781611975994.108
https://doi.org/10.1145/285055.285059
http://arxiv.org/abs/1812.11774
https://doi.org/10.1145/3293611.3331603
https://doi.org/10.1109/FOCS.2019.00011
https://doi.org/10.1145/1142351.1142390
https://doi.org/10.1145/1142351.1142390


P. Garg, S. Kale, L. Rohwedder, and O. Svensson 56:15

16 Guru Prashanth Guruganesh and Sahil Singla. Online matroid intersection: Beating half for
random arrival. In Integer Programming and Combinatorial Optimization - 19th International
Conference, IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings, pages 241–253,
2017. doi:10.1007/978-3-319-59250-3_20.

17 Zhiyi Huang, Binghui Peng, Zhihao Gavin Tang, Runzhou Tao, Xiaowei Wu, and Yuhao
Zhang. Tight competitive ratios of classic matching algorithms in the fully online model.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2875–2886, 2019. doi:
10.1137/1.9781611975482.178.

18 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697, 2013. doi:10.1137/1.
9781611973105.121.

19 Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random
NC. Combinatorica, 6(1):35–48, 1986. doi:10.1007/BF02579407.

20 Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for
on-line bipartite matching. In Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 352–358, 1990. doi:
10.1145/100216.100262.

21 Thomas Kesselheim, Robert D. Kleinberg, and Rad Niazadeh. Secretary problems with
non-uniform arrival order. In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 879–888,
2015. doi:10.1145/2746539.2746602.

22 Thomas Kesselheim and Andreas Tönnis. Submodular secretary problems: Cardinality,
matching, and linear constraints. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017,
Berkeley, CA, USA, pages 16:1–16:22, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.16.

23 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Approximation, Randomization, and Combinatorial Optim-
ization. Algorithms and Techniques – 15th International Workshop, APPROX 2012, and
16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012.
Proceedings, pages 231–242. Springer, 2012. doi:10.1007/978-3-642-32512-0_20.

24 László Lovász. On determinants, matchings, and random algorithms. In Fundamentals of
Computation Theory, FCT 1979, Proceedings of the Conference on Algebraic, Arthmetic, and
Categorial Methods in Computation Theory, Berlin/Wendisch-Rietz, Germany, September
17-21, 1979, pages 565–574, 1979.

25 Andrew McGregor and Hoa T. Vu. Better streaming algorithms for the maximum coverage
problem. Theory Comput. Syst., 63(7):1595–1619, 2019. doi:10.1007/s00224-018-9878-x.

26 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987. doi:10.1007/BF02579206.

27 George L. Nemhauser and Laurence A. Wolsey. Best algorithms for approximating the
maximum of a submodular set function. Math. Oper. Res., 3(3):177–188, 1978. doi:10.1287/
moor.3.3.177.

28 George L Nemhauser, Laurence AWolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions – I. Mathematical programming, 14(1):265–294, 1978.

29 Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovic, Amir Zandieh, Aidasadat Mousavi-
far, and Ola Svensson. Beyond 1/2-approximation for submodular maximization on massive
data streams. In Proceedings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 3826–3835, 2018. URL:
http://proceedings.mlr.press/v80/norouzi-fard18a.html.

ICALP 2020

https://doi.org/10.1007/978-3-319-59250-3_20
https://doi.org/10.1137/1.9781611975482.178
https://doi.org/10.1137/1.9781611975482.178
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1007/BF02579407
https://doi.org/10.1145/100216.100262
https://doi.org/10.1145/100216.100262
https://doi.org/10.1145/2746539.2746602
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.16
https://doi.org/10.1007/978-3-642-32512-0_20
https://doi.org/10.1007/s00224-018-9878-x
https://doi.org/10.1007/BF02579206
https://doi.org/10.1287/moor.3.3.177
https://doi.org/10.1287/moor.3.3.177
http://proceedings.mlr.press/v80/norouzi-fard18a.html

	Introduction
	The Adversarial Injections Model
	Related Models
	Our Results

	Matching
	Streaming Setting
	The Algorithm
	Overview of the Analysis

	Online Setting

	Submodular Maximization
	Notation
	The Algorithm
	Overview of the Analysis
	Analysis

	Conclusion and Open Problems

