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Abstract
In the Directed Long Cycle Hitting Set problem we are given a directed graph G, and the
task is to find a set S of at most k vertices/arcs such that G − S has no cycle of length longer
than `. We show that the problem can be solved in time 2O(`6+`k3 log k+k5 log k log `) · nO(1), that
is, it is fixed-parameter tractable (FPT) parameterized by k and `. This algorithm can be seen
as a far-reaching generalization of the fixed-parameter tractability of Mixed Graph Feedback
Vertex Set [Bonsma and Lokshtanov WADS 2011], which is already a common generalization of the
fixed-parameter tractability of (undirected) Feedback Vertex Set and the Directed Feedback
Vertex Set problems, two classic results in parameterized algorithms. The algorithm requires
significant insights into the structure of graphs without directed cycles of length longer than ` and
can be seen as an exact version of the approximation algorithm following from the Erdős-Pósa
property for long cycles in directed graphs proved by Kreutzer and Kawarabayashi [STOC 2015].
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1 Introduction

Feedback Vertex Set (FVS) and its directed variant Directed FVS (DFVS) are among
the most classical problems in algorithmic graph theory: given a (directed) graph G the task
is to find a minimum-size set S ⊆ V (G) of vertices such that G− S contains no (directed)
cycles. Interestingly, the directed version is not a generalization of the undirected one. There
is no obvious reduction from FVS to DFVS (replacing each undirected edge with two arcs of
opposite directions does not work, as this would create directed cycles of length 2).

Both problems received significant amount of attention from the perspective of paramet-
erized complexity. The main parameter of interest there is the optimal solution size k = |S|.
Both problems can easily be solved in time nO(k) by enumerating all size-k vertex subsets
S ⊆ V (G) and then checking whether G − S is acyclic. The interesting question is thus
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whether the problems are fixed-parameter tractable with respect to k, i.e. whether there is an
algorithm with run time f(k) · nO(1) for some computable function f depending only on k.
FVS is one of the most studied problems in parameterized complexity: starting in the early
1990’s, a long series of improved fixed-parameter algorithms [5, 6, 10, 13, 18, 25] lead to
the currently fastest (randomized) algorithm from 2020 with run time 2.7k · nO(1) [20]. The
DFVS problem has also received a significant amount of attention from the perspective of
parameterized complexity. It was a long-standing open problem whether DFVS admits such
an algorithm; the question was finally resolved by Chen et al. who gave a 4kk!k4 ·O(nm)-time
algorithm for graphs with n vertices and m edges. Recently, an algorithm for DFVS with
run time 4kk!k5 · O(n+m) was given by Lokshtanov et al. [22]. A fruitful research direction
is trying to extend the algorithm to more general problems than DFVS. On the one hand,
Chitnis et al. [8] generalized the result by giving a fixed-parameter algorithm for Directed
Subset FVS: here we are given a subset U of arcs and only require the k-vertex set S to hit
every cycle that contains an arc of U . On the other hand, Lokshtanov et al. [21] showed that
the Directed Odd Cycle Transversal problem, where only the directed cycles of odd
length needed to be hit, is W[1]-hard parameterized by solution size.

It is worth noting that very different algorithmic tools form the basis of the fixed-parameter
tractability of FVS and DFVS: the undirected version behaves more like a hitting set-type
problem, whereas the directed version has a more cut-like flavor. These differences motivated
Bonsma and Lokshtanov [4] to consider Mixed FVS, the common generalization of FVS
and DFVS where the input graph contains both directed and undirected edges. In such
mixed graphs, cycles can contain directed arcs and undirected edges, but in particular the
walk visiting an undirected edge twice is not a cycle. They obtained an algorithm for Mixed
FVS with run time 2O(k log k) · nO(1) for k the size of the smallest feedback vertex set.

In this paper we study the following generalization of DFVS: We want to find a minimum
size vertex set S such that all cycles of G − S to have length at most `. For ` = 1 this is
DFVS in loopless graphs. For ` = 2 this is Mixed FVS in mixed graphs. The length of a
longest cycle in a (directed) graph is also known as (directed) circumference of a graph. The
parameterized version of our problem thus reads:

Directed Long Cycle Hitting Set Parameter: k + `.
Input: A directed multigraph G and integers k, ` ∈ N.
Task: Find a set S of at most k vertices such that G− S has circumference at most `.

Note that Directed Long Cycle Hitting Set for ` = 2 generalizes Mixed FVS (and
hence both FVS and DFVS): to see this, subdivide anti-parallel arcs to make all cycles have
length at least three and then replace undirected edges by anti-parallel arcs.

In contrast to FVS and DFVS, even checking feasibility of a given solution is a non-trivial
task. It amounts to checking, for a digraph G and integer `, whether G contains a cycle of
length more than `. This is also known as the Long Directed Cycle problem, which
is obviously NP-hard since it contains the Directed Hamiltonian Cycle problem for
` = |V (G)|−1. However, Long Directed Cycle is fixed-parameter tractable parameterized
by ` [29], hence verifying the solution of Directed Long Cycle Hitting Set is fixed-
parameter tractable in `.

Our contributions. Our main result is a fixed-parameter algorithm for Directed Long
Cycle Hitting Set.

I Theorem 1. There is an algorithm that solves Directed Long Cycle Hitting Set in
time 2O(`6+`k3 log k+k5 log k log `) · nO(1) for n-vertex digraphs G and parameters k, ` ∈ N.
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The result also extends to the arc deletion variant of the problem, as we show both of
them to be equivalent in a parameter preserving way.

The run time in Theorem 1 depends on two parameters, k and `. This is necessary for
the following reason. For ` = 1, Directed Long Cycle Hitting Set corresponds to the
DFVS problem, which is NP-hard. Moreover, the problem is also NP-hard for k = 0, as it
contains the Directed Hamiltonian Cycle problem. This also shows that the run time
cannot be polynomial in k or ` (unless P = NP). Assuming ETH, it is even necessary that
the run time depends exponentially on both k and `. Our algorithm achieves a run time that
is single-exponential in both parameters k and `. It is, in this sense, optimal.

Our algorithm is based on an elaborate combination algorithmic techniques, some of
them used previously, some of them new.

We use the standard opening step of iterative compression, which allows to assume that
each directed cycle of length more than ` goes through a small number of exceptional
vertices.
We do not want to deal with the situation when there are two exceptional vertices x
and y that are in the same strong component of the solution G − S. If we guess that
this happens in the solution, then a way to avoid this problem is to guess a directed
cycle C containing both x and y, and to contract this cycle. In order to guess this cycle,
we essentially need a representative set of x→ y paths, that is, a collection of paths
such that if an (unknown) set S of at most k vertices does not disconnect y from x, then
there is at least one x → y path disjoint from S in our collection. As an interesting
self-contained result, we construct such a collection of size `O(k2 log k) · logn on directed
graphs without cycles of length greater than `.
If we can assume that the exceptional vertices are in different strong components of the
solution, then this defines a separation problem on the exceptional vertices and makes
the directed shadow removal technique of Chitnis et al. [8] relevant to simplify the
structure of the instance. In particular, a major structural goal that we want to achieve
is to ensure that every arc of the input graph lies in a directed cycle of length at most `.
Removing the exceptional vertices breaks the graph into some number of strong compon-
ents with no cycle of length longer than ` in any of them. We call portal vertices the
endpoints of the arcs connecting these strong components with each other and with the
exceptional vertices. We show that the portal vertices can be partitioned into clusters:
portals in each cluster are close to each other, while the distance between any two clusters
is large. Furthermore, every solution has to separate the clusters from each other, defining
another directed multiway cut problem.
In the final step of the algorithm, we would like to use the technique of important
separators to solve the directed multiway cut problem defined above: these are separators
that are maximally “pushed” towards the target of the separations. However, the exact
notion of importance is difficult to define due to the additional constraints of the problem
being solved. Ergo, we perform a detailed analysis of the instance structure to identify
outlet vertices that allows us to represent the additional constraints as separation, and
to formally reduce the problem to branching on the choice of an important separator.

Related work. The structure of long cycles in directed graphs has been of interest for
long time. For instance, Lewin [19] analyzed the density of such graphs, and Kintali [16]
analyzes the directed treewidth of such directed graphs. Algorithmically, though, it was
only recently shown by Kawarabayashi and Kreutzer [15] that the vertex version of the
Erdős-Posa property holds for long directed cycles: namely, they show that any digraph G
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either contains a set of k + 1 vertex-disjoint directed cycles of length at least ` or some
set S of at most f(k, `) vertices that intersects all directed cycles of G with length at least `.
The corresponding questions for directed cycles without length restrictions have also been
well-investigated [2, 26].

Note that an algorithmic proof of the Erdős-Pósa property can be a useful opening step
for a fixed-parameter algorithm: we either find a set of k + 1 arc- or vertex-disjoint cycles
of length at least ` (and thus can reject the instance (G, k, `) as “no”-instance) or obtain
a set S which can serve as a feasible approximate solution. Such an opening step was also
discussed in the well-known fixed-parameter algorithm for DFVS by Chen et al. [7, Remark
5.3], where the function f(k, 1) is known to be near-linear. In our case though, the function
f(k, `) from the Kawarabayashi-Kreutzer result is too large for us to obtain an algorithm for
Directed Long Cycle Hitting Set with run time 2poly(k,`) · nO(1).

Further, directed circumference can be seen as an intermediate step towards a general
algorithmic framework for graph optimization problems related to directed treewidth. In
undirected graphs, treewidth as a graph measure has enjoyed unprecedented success as
a tool towards efficient approximation algorithms and fixed-parameter algorithms. For
instance, as part of their Graph Minors series, Robertson and Seymour [28] showed that
the k-linkage problem is fixed-parameter tractable, heavily relying on the reduction of the
problem to graphs of bounded treewidth. In directed graphs, the situation is again much more
complicated: Johnson et al. [14] introduced the notion of directed treewidth for digraphs.
Yet, for digraphs the k-linkage problem is NP-hard already for k = 2, and no fixed-parameter
algorithm is known which recognizes digraphs of nearly-bounded directed treewidth. On the
positive side, though, digraphs of bounded directed circumference are nicely squeezed between
acyclic digraphs and digraphs of bounded directed treewidth [16]. Also, the arc version of the
k-linkage problem is fixed-parameter tractable on digraphs of directed circumference 2 [3];
the question remains open for digraphs of larger directed circumference.

Returning to the original motivation of studying generalizations of DFVS, Neogi et al. [24]
gave a fixed-parameter algorithm for the problem of finding a set S of size at most k in a
given digraph G such that every strong component of G− S excludes graphs in a fixed finite
family H as (not necessarily induced) subgraphs, when H contains only rooted graphs, or
contains at least one directed path. Göke et al. [12] considered the problem of finding a set S
of size at most k in a given digraph G such that every strong component of G− S has size
at most s; they gave a fixed-parameter algorithm for parameter k + s.

2 Definitions and Notations

In this paper, we mainly consider finite loop-less directed graphs (or digraphs) G with vertex
set V (G) and arc set A(G). We allow multiple arcs and arcs in both directions between
the same pairs of vertices. A walk is a sequence of vertices (v1, . . . , v`) with corresponding
arcs (vi, vi+1) for i = 1, . . . , `− 1 which forms a subgraph of G; the length of a walk is its
number of arcs. A walk is closed if v1 = v`; otherwise, it is open. A path in G is an open
walk where all vertices are visited at most once. A cycle in G is a closed walk in which every
vertex is visited at most once, except for x1 = x` which is visited twice. (Throughout this
entire paper, by “cycle” we always mean directed cycle.) We call G acyclic if G does not
contain any cycle. For two vertices xi, xj of a walk W with i ≤ j we denote by W [xi, xj ]
the subwalk of W starting at xi and ending in xj . For a walk W ending in a vertex x and a
second walk R starting in x, W ◦R is the walk resulting when concatenating W and R.
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For each vertex v ∈ V (G), its out-degree in G is the number d+
G(v) of arcs of the form

(v, w) for some w ∈ V (G) \ {v}, and its in-degree in G is the number d−G(v) of arcs of the
form (w, v) for some w ∈ V (G) \ {v}. For each subset V ′ ⊆ V (G), the subgraph induced
by V ′ is the graph G[V ′] with vertex set V ′ and arc set {(u, v) ∈ A(G) | u, v ∈ V ′}. For
a set X of vertices or arcs, let G −X denote the subgraph of G obtained by deleting the
elements in X from G. For a subgraph G′ and an integer d we denote by R+

G′(X) the set of
vertices that are reachable from X in G′.

A digraph G is strong if either G consists of a single vertex (then G is called trivial),
or for any distinct u, v ∈ V (G) there is a (directed) path from u to v. A strong component
of G is an inclusion-wise maximal induced subgraph of G that is strong. The (directed)
circumference of a digraph G is the length cf(G) of a longest cycle of G; if G is acyclic, then
define cf(G) = 0.

3 Directed Long Cycle Hitting Set Algorithm

The goal of this section is to devise an algorithm for Directed Long Cycle Hitting
Set and thereby proof Theorem 1. We will only consider the vertex deletion variant. This
will suffice, as the arc deletion version can be reduced to the vertex deletion version in a
parameter-preserving way, as we show in the full version.

The algorithm performs a sequence of reductions to special cases of the original Bounded
Cycle Length Vertex Deletion. All these sections are modular and just need the
problem formulation and theorem at the end of the previous section.

Compression. Recall that in the Directed Long Cycle Hitting Set problem we are
given a digraph G and integers k and `. The task then is to find a set of at most k vertices
such that G− S contains no cycles of length more than `.

As already stated in the introduction, checking a solution for correctness is an non-trivial
task. For this we use a fixed-parameter algorithm by Zehavi [29].

I Theorem 2. There is an algorithm that decides in time 2O(`) · nO(1) whether an n-vertex
digraph G contains a cycle of length more than `.

This already solves the case for k = 0. We now want to design an algorithm for general k.
The goal of this subsection is to get an existing solution T for which we have to find a

disjoint solution S of size less than |T |. For this we use the standard techniques of iterative
compression and disjoint solution.

We start our algorithm by applying the iterative compression technique introduced by
Reed, Smith and Vetta [27]. This technique was also used by Chen et al. [7] to show the
fixed parameter tractability of DFVS. We choose an arbitrary enumeration v1, . . . , vn of the
vertices of G. By Gi we denote the digraph G[v1, . . . , vi]. We want to iteratively construct
solutions Si+1 to (Gi+1, k, `) by using the solution Si of (Gi, k, `). We start with the empty
digraph G0 and the empty solution S0 = ∅. This solution is feasible for every choice of G, k
and ` as the empty digraph contains no cycles.

Now, if Si hits all cycles of length more than ` in Gi, then Ti+1 = Si+1 ∪ {vi+1} does
the same for Gi+1 (as Gi − Si = Gi+1 − Ti−1). The only problem now is that Ti+1 may be
to large. Therefore, we consider the compression version of our problem: given an instance
(Gi, k, `) with a solution Ti of size k + 1, find a solution Si of size at most k. If we can
solve this problem, by above procedure we get a solution Sn for the digraph Gn = G and
hence have solved the original problem. This adds a factor of n to the run-time, preserving
fixed-parameter tractability.
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The compression problem can be modified further in two useful ways. The first modi-
fication is to get disjointness of solutions Ti and Si. This can be achieved by guessing the
intersection Ui = Ti ∩ Si by taking all possible subsets of Ti. For every choice we can then
solve the disjoint compression problem (Gi − Ui, k − |Ui|, `) with starting solution Ti \ Ui. If
the non-disjoint instance has a solution, then the instance where we guessed the intersection
correctly has a solution. Otherwise, none of the disjoint instances has a solution. This adds
a factor of 2|Ti| = 2k+1 to the run-time, also preserving fixed-parameter tractability.

The other useful modification is about not solving the problem exactly but instead to
guess a set S of bounded size intersecting Si in at least one vertex. If we have a routine that
for an instance (G′, k′, `′, T ′) of the disjoint compression problem returns us a set S that
is guaranteed to intersect some solution (if a non-empty solution exists), we can branch as
follows. First we check whether the empty solution already solves the problem by Theorem 2.
This solves the the problem for k = 0. Otherwise we call our routine on the instance obtaining
a set S. For every v ∈ S we recurse on the instance (G′ − v, k′ − 1, `, T ′). This adds a factor
of f(k′, `′, n′)k′ to the run-time where f(k′, `′, n′) is an upper bound on the size of S on an
instance (G′, k′, `′, T ′) with n′ = |G′|. This preserves fixed-parameter tractability if we can
write f(k′, `′, n′)k′ as g(k′, `′) · poly(n′) for some appropiate function g. Note that this is the
case even if f(k′, `′, n′) = h1(k′, `′) · logh2(k′,`′)(n′).

After all these reductions we are left with the following problem:

Intersecting Directed Long Cycle Hitting Set Parameter: k + `.
Input: A directed multigraph G, T ⊆ V (G) and integers k, ` ∈ N.

Properties: cf(G− T ) ≤ `

Task: Find a set S ⊆ V (G) \ T that intersects a set S ⊆ V (G) \ T

of size at most k with cf(G− S) ≤ ` if such a set exists.

The set S will often help us to argue about solutions S disjoint from it. This is often
described as branching steps throughout the algorithm but we decided to collect all the
branching here to be more precise about the assumptions needed in the theorems.

Contraction. In the last section we reduced the original Directed Long Cycle Hitting
Set problem to a variant where we are already given a solution T and now want to find a
set S intersecting every solution S disjoint from T . Except for the intersection step, such
reductions have been used by Chen et al. [7] in their algorithm for DFVS. The next key
observation in their algorithm for DFVS is that every vertex of T must lie in their own
strong component of G− S. The reason is that for every directed feedback vertex set S of G,
each strong component of G− S is a single vertex. For Directed Long Cycle Hitting
Set, the situation is way more complicated, as strong components of G− S contain cycles of
length up to `. Moreover, those cycles can concatenate to arbitrarily large strong components.
So it is possible that G− S contains strong components with more than one vertex of T . In
this section, we want to contract (parts of) such components to a single vertex such that
eventually, after contraction, every strong component of G− S contains at most one vertex
of T . A structural result allowing the contraction is the following lemma:

I Lemma 3. Let G be a digraph and let X ⊆ V (G) be such that G[X] is strong and
cf(G[X]) ≤ `. Suppose that the following two properties hold:
1. Every cycle of G has length at most ` or length at least `2.
2. For any a, b ∈ X there cannot be both

a. an a→ b-path Pab of length at least ` in G[X]
b. a b→ a-path Pba of length at most ` in G− (X \ {a, b})
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Let G/X be the digraph obtained by contracting X to a single vertex x.
If cf(G− S) ≤ ` for some S ⊆ V (G) \X, then cf(G/X − S) ≤ `.
If cf(G/X − S′) ≤ ` for some S′ ⊆ V (G/X) \ {x}, then cf(G− S′) ≤ `.

To algorithmically use this result we have to make sure its requirements are fulfilled.
This is easy if G has a cycle C with ` < |C| < `2. We can can detect these cycles in time
2O(`2) ·nO(1) by using color coding (see Alon et al. [1]). If there exists such an cycle, any long
cycle hitting set has to intersect it. Also it’s length is bounded, so we can return it as set S.

To find a set X fulfilling the remaining properties is more difficult. For this we build on
a tool called “k-representative set of paths”.

I Definition 4. Let G be a digraph, x, y ∈ V (G) and k ∈ Z≥0. A set P of x→ y-paths is a
k-representative set of x→ y-paths, if for every set S ⊆ V (G) of size at most k it holds: If
there is an x→ y-path in G− S there is an x→ y-path P ∈ P that is disjoint from S.

In our case such a k-representative set of paths will be useful for constructing a closed
walk visting several vertices of T to use as our set X. Later on the reversed property of
k-representative sets of paths will also be handy: if you hit all paths of P with a set S of
size at most k, then there exist no x→ y-paths in G− S.

Alas, we were not able to find k-representative sets of paths of small size in general graphs.
In the case of strong digraphs of bounded circumference, however, we obtain the following:

I Theorem 5. Let G be a strong digraph, x, y ∈ V (G) and k ∈ Z≥0. Then a k-representative
set of x→ y-paths having size cf(G)O(k2 log k) ·logn can be found in time cf(G)O(k2 log k) ·nO(1).

We need to generalize this tool a bit further as our graph G neither has bounded
circumference nor does it need to be strong. However, we have a set T of small size such
that cf(G− T ) ≤ ` and we are only interested in the strong components of the graph. This
leads us to the following specialized lemma:

I Lemma 6. Let G be a strong digraph, T ⊆ V (G) and k, ` ∈ Z≥0 with cf(G − T ) ≤ `.
Then in time 2O(k`+k2 log k log `)nO(1), we can find a set Q of |T |22O(k`+k2 log k log `) log2 n

closed walks with the following property: If there is a set S ⊆ V (G) of size at most k with
cf(G− S) ≤ ` and there are two vertices of T in the same strong component of G− S then
there is

a closed walk in Q ∈ Q containing two vertices of T that is disjoint from S or
a simple cycle of length at most ` containing two vertices of T .

The lemma allows for a branching procedure that creates several instances. For each
instance we assume that there is a solution S such that no two vertices of T lie in the same
strong component of G − S. We call such a solution isolating long cycle hitting set. The
instances are created in the following way: We keep our original instance just in case it has
an isolating long cycle hitting set. Then we search for a simple cycle C of length at most `
in G visiting at least two vertices of T . Such a cycle can be found by color coding in time
2O(`) · nO(1). If such a cycle exists, we branch into two instances: In the first instance, we
assume that S intersects C and we can just return S = V (C) as solution to our intersection
problem. In the second instance, C is disjoint from S and we have a candidate X for
contraction with Lemma 3. If no such cycle exists we get our candidate applying Lemma 6
by branching on which closed walk of Q is disjoint from S and take that as a candidate X.

We now have to check whether our candidate X fulfills the assumptions of Lemma 3. If
cf(G[X]) > ` then X cannot be disjoint from S in contradiction to our branching assumption
and we give up on this branch. Then we check for every pair a, b ∈ X, if paths Pab and Pba
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as in Lemma 3 exist. If they do we cannot contract X, but Pab ◦ Pba forms a cycle of length
more than `, so it has to be intersected by S. By branching assumption V (Pab) ⊆ X is
disjoint from S and therefore Pba has to intersect S. Luckily, |V (Pba)| ≤ `+ 1 and we can
return S = V (Pba) as set intersecting S. If these paths do not exist we can contract X to a
single vertex to obtain a new instance (G′, k, `, T ′). We continue our branching procedure
with this new instance until we guess that our instance has an isolating long cycle hitting
separator. As the cardinality of T is decreased in each branching step this is the case at
the latest when |T | = 1. Note that this may lead to the strange case that we are indeed
searching for a solution S that is larger than our set T .

The remaining problem can be stated as:

Isolating Long Cycle Hitting Set Intersection Parameter: k + ` + |T |.
Input: A directed multigraph G, integers k, ` ∈ N and a set T ⊆ V (G)

Properties: cf(G− T ) ≤ `

Task: Find a set S intersecting some isolating long cycle hitting set S

of size at most k with respect to T if such a set exists.

The above procedure (and the result of this section) can be summarized as follows.

I Theorem 7. Instances (G, k, `) of Directed Long Cycle Hitting Set can be solved
in time 2O(`2+`k3 log k) · (fii(k, `))k · nO(1) by at most 2O(`k3 log k) · (fii(k, `))k · n2 log2k+2(n)
calls to an algorithm Aii solving the Isolating Long Cycle Hitting Set Intersection
problem, where fii(k, `) is a size bound on the set produced by Aii.

Reducing to Important Hitting Separator. In the previous section we reduced the Direc-
ted Long Cycle Hitting Set problem to the Isolating Long Cycle Hitting Set
Intersection problem, a variant where we are already given a solution T and search for
a solution S disjoint from T of size at most k. Additionally, we know that T has at most
one vertex in each strong component of G− S. For the remainder of this subsection, assume
that there is such a solution S of size at most k.

Intuitively, we did the reduction to the isolating variant in order to apply something
like Skewed Multiway Cut. This was done by Chen et al. [7] in their algorithm for
Directed FVS. They guessed a topological ordering of the vertices of T in G− S and used
Skewed Multiway Cut to cut away the backward paths. This also implied that each
strong component consisted of a single vertex. In our case, though, we still have cycles left,
and a direct construction to Skewed Multiway Cut gives us no control over their length.

We instead guess only a last vertex t ∈ T in some topological ordering of the strong
components of G−S. From here our approach differs significantly from that of Chen et al. [7]
for Directed FVS. Instead of finding all cuts at once, we focus on the t → T \ {t}-cuts
while still hitting long cycles. This is we want to find the strong component of t in G− S.

For this it is useful to see, that two types of arcs may not lie in the strong component
of t in G− S. The first kind of arcs are simply the arcs having their endpoint in T \ {t}, i.e.
arcs in δ−(T \ {t}). This is because S is isolating. The other kind of arcs are the arcs that
lie only on long cycles, i.e. arcs a = (v, w) ∈ A(G) with distG−a(w, v) ≥ `. This follows from
the fact that S hits all long cycles. Therefore, the strong component of t in G− S must be a
subset of the connected component of t in G after above arcs are removed. We call the later
component C?t . We want to focus our search onto that component.
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However, there may also be other arcs and vertices which do not lie in the strong
component of t in G− S which are still in C?t . To make it easier to argue about these, we
use the shadow-covering technique introduced by Chitnis et al. [9] to solve the Directed
Multiway Cut problem. For this we need to define what the shadow of our solution S with
respect to the set T is:

I Definition 8 (shadow). Let G be a digraph and let T, S ⊆ V (G). A vertex v ∈ V (G) is in
the forward shadow fG,T (S) of S (with respect to T ) if S is a T → v-separator in G, and v
is in the reverse shadow rG,T (S) of S (with respect to T ) if S is a v → T -separator in G.
All vertices of G which are either in the forward shadow or in the reverse shadow of S (with
respect to T ) are said to be in the shadow of S (with respect to T ).

Note that S itself is not in its own shadow. The most useful property of the shadow
for our purposes is that every vertex that is not in the shadow of S with respect to T is
reachable from a vertex of T and can reach some (maybe different) vertex of T . In particular,
if a vertex v is not in the shadow of S and reachable from t (our last vertex) in G− S then
it has to lie in the strong component of t in G− S. This is because v can also reach a vertex
of T but there is no T → T \ {t}-walk in G− S.

We use the deterministic algorithm for shadow covering by Chitnis et al. [8]. The following
corollary follows from their paper:

I Corollary 9. Let (G, k, `, T ) be an instance of Isolating Long Cycle Hitting Set In-
tersection. One can construct, in time 2O(k2) ·nO(1), sets Z1, . . . , Zp with p ≤ 2O(k2) log2 n

such that if there is an isolating long cycle hitting set of size at most k, there is isolating
long cycle hitting set S of size at most k and an i ∈ {1, . . . , p} such that Zi ∩ (S ∪ T ) = ∅
and Zi includes the shadow of S with respect to T .

By branching on the possible choices of Zi we can assume that we have a set Z that
covers (read: includes) the shadow of S with respect to T and is disjoint from S and T . Now
every vertex outside of Z is reachable from a vertex of T and can also reach a vertex of T .

Consider now the set Vout ⊆ V (G) \ Z defined as follows. For every v ∈ Vout there is
a v → w-path P with w ∈ V (G) \ Z whose inner vertices are inside Z and one of the
following properties holds. The endpoint w is contained in T \ {t} or P contains an arc
a = (x, y) ∈ A(G) that only lies on long cycles (i.e. distG−a(y, x) ≥ `). The set of these
vertices may not be reached from t in G− S if the other endpoint w is not in S. Because
then w reaches a vertex of T and that gives us either a t→ T \ {t} path in G−S or a closed
walk in G− S containing an arc that only lies on long cycles (which therefore contains itself
a long cycle).

To get rid of the condition that the other endpoint of the path P we apply the tool of
critical vertices also used by Chitnis et al. [8]. For this we use an auxiliary graph (called
torso) which is created by taking all vertices of V (G) \ Z and shrinking paths with interior
points in Z to arcs. By remembering the paths which contained arcs only on long cycle we
get a set U long

t of dangerous arcs that must not be traversable from t. In case they are not
traversable only by the endpoint w lying in S these vertices are called k-critical with respect
to U long

t . Now, we can use the following theorem by Chitnis et al. [8].

I Proposition 10 ([8]). Given a digraph G, a subset U of its arcs, and some t ∈ V (G), in
time 2O(k) · nO(1) we can find a set Fcritical of size 2O(k) that contains all k-critical vertices.

We apply Proposition 10 to G,U long
t , t and k, and add the resulting set Fcritical to our

solution S. If our solution S is still disjoint from S, it cannot contain a k-critical vertex.
This implies that t cannot reach a vertex of Vout in G− S. So S is a t→ Vout-separator in
the strong component C?t .
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But S ∩ C?t may also have other properties like hitting long cycles that intersect or lie
within C?t . To cover these we introduce the notation of important hitting t→ Vout-separators.
These are t→ Vout-separators U that hit all long cycles in a digraph and are backward-range
minimal in the sense that there is no other t → Vout-separators U ′ hitting all cycles with
|U ′| ≤ |U | and R−G−U ′(Vout) ( R−G−U (Vout).

The main result of this section is that it is enough to find a set S intersecting one
important hitting t → Vout-separator U for every backward range R−G−U (Vout) in a strong
digraph (read G[C?t ]). We call the remaining problem Important Hitting Separator in
Strong Digraphs which reads as follows:

Important Hitting Separator in Strong Digraphs Parameter: k + `.
Input: A strong digraph G, integers k, ` ∈ N, t ∈ V (G) and Vout ⊆ V (G).

Properties: cf(G− t) ≤ `, every arc of G lies on a cycle of length at most `.
Task: Find a set Shs intersecting a important hitting t→ Vout-separator

of size at most k in every range equivalence class.

Portals and Clusters. In the previous section we reduced Isolating Long Cycle Hitting
Set Intersection to Important Hitting Separator in Strong Digraphs. In an
intuitive way we replaced the constraint on S of hitting all cycles going through T \ {t}
by a constraint that S needs to be a backward-range minimal t→ Vout-separator. Also we
simplified our graph to be strongly connected and that every arc lies on a short cycle. We
now want to also break the long cycles going only through t into cut constraints. For this we
consider the strong components of G− t. Let C the set of all such components. Our main
interest are now portal vertices.

I Definition 11. Let G be a digraph and let C ⊂ V (G). A vertex v ∈ C is a portal vertex
of C, if ∆G(v) > ∆G[C](v), where ∆H(v) is the number of incident arcs (both in-coming and
out-going) of v in a graph H. We denote by XC the set of all portal vertices of C.

As all arcs of G lie on a short cycles the arcs going between clusters must cycle back to t.

I Lemma 12. Let C ∈ C and v ∈ XC . There is a cycle Ov with v, t ∈ V (Ov) and |Ov| ≤ `.

These cycles allow us to transform paths between portal vertices of the same strong
component into closed walks. Like in the first part of our algorithm we can eliminate cycles
of length between ` + 1 and 2`6 by detecting them and returning them as set Shs as any
hitting separator has to intersect these. This gap between small and large cycles however
allows us to get a similar gap for the distance between portal vertices.

I Lemma 13. For any v1, v2 ∈ XC , either distG[C](v1, v2) ≤ 2`2 or distG[C](v1, v2) ≥ 2`6−2`.

This in turn allows us to cluster the portal vertices of every component. For `max = 2`2
we put all portal vertices at distance at most `max from a portal vertex v into the set Xv.
This defines a partition into clusters:

I Lemma 14. For any C ∈ C and v1, v2 ∈ XC , sets Xv1 and Xv2 are either disjoint or
equal.

Consider now a long cycle O in G. Assume it contains for each strong component C ∈ C
it visits only portal vertices of one of the clusters of C. In strong digraphs of circumference
at most ` (like G[C]) the length of a path can at most be `2 times the distance between its
endpoints. Therefore the length of O inside a single component C can be at most 2`4. We
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already made sure that long cycles in G have length more than 2`6. But we can shortcut O
after the visit of C to a cycle with length between `+ 1 and 2`6 – a contradiction. Therefore
every long cycle has a path between different clusters of some strong component of G− t.

By carefully analyzing the structure of the strong components and guessing vertices of S
(by including them into Shs) we make sure there are neither too many strong components
with more than one cluster nor do these have to many clusters themselves. Moreover, we
were able to restrict t→ Vout-paths to a single strong component.

This means that our sought after solution S forms in each strong component C a
multiway cut between the different cluster Xi of C and additionally cuts all Xi → Vout-paths
in backward-range minimal way. This structure of S we call important cluster separators:

I Definition 15. Let G be a digraph and let X1, . . . , Xt, Y ⊆ V (G) be pairwise disjoint vertex
sets. We call a vertex set U ⊆ V \ (X1 ∪ . . . ∪Xt ∪ Y ) a cluster separator if G− U contains

no path from Xi to Xj for i 6= j and
no path from Xi to Y for i = 1, . . . , t.

A cluster separator U is important if there is no cluster separator U ′ with |U ′| ≤ |U |
and R−G−U ′(Y ) ( R−G−U (Y ).

If Vout = ∅ this boils down to the Directed Multiway Cut problem, which we solve
by the algorithm of Chitnis et al. [9]. It thus remains to solve the case where Vout 6= ∅.

Important Cluster Separator in Strong Digraphs
of Bounded Circumference

Parameter: k + `.

Input: A strong digraph G, integers k, ` ∈ N and sets X1, . . . , Xp, Vout ⊆ V (G).
Properties: cf(G) ≤ `, Xi, Vout 6= ∅, 2 ≤ p ≤ k(k + 1) + 1,

dist(v, w) ≤ 2`2 ∀v, w ∈ Xi, i ∈ {1, . . . , p}.
Task: Find a vertex set Scluster intersecting any important cluster separator

with respect to X1, . . . , X`, Vout of size at most k.

Finding Important Cluster Separators. In this section we want to solve the Important
Cluster Separator in Strong Digraphs of Bounded Circumference problem. This
problem is strongly related to the Directed Multiway Cut Problem. By adding an
additional vertex v? that has an incoming arc from ever vertex of Vout we see that cluster
separator are indeed multiway cuts in this modified graph. The difficulty lies in the notion of
importance we introduced (and needed). That is, we want to intersect all cluster separators S
where R−G−S(Vout) is minimal for their size.

We introduce two definitions to handle this. The first is the concept of the frontier F of
a cluster separator S. These are the vertices that define the backward range from Vout, i.e.
the vertices of S that can reach Vout without going through another vertex of S. The other
concept is that of an outlet. Given an Xi → Xj-path P and two integers α, β ∈ Z≥0, an
(α, β)-outlet of P is a vertex ω of P with the following property: there is a ω → Vout-path Rω
such that every vertex on P except for the α-many preceding and following vertices of ω
on P have distance at least β from Rω. These outlets are in some sense key positions where
Xi → Xj-paths start to significantly differ from Xi → Vout-paths.

For outlets we differentiate between “open” and “closed” outlets. Open outlets are outlets
that lie in R−G−S(Vout), i.e. behind the frontier; the other outlets closed. The frontier F is
therefore separates X =

⋃t
i=1Xi from the open outlets. The rest of our efforts now focuses

on finding a set VΩ such that the frontier F is an important X → (Vout ∪VΩ)-separator. This
set VΩ contains (a subset of) the open outlets for some Xi → Xj-paths. As set of paths tho
search on we take for every ordered pair of distinct Xi, Xj an arbitrary Xi → Xj-path Pi,j .
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The main property we use for finding the set VΩ is some kind of locality argument. As
our graph G is strong and has bounded circumference, the length of any path cannot differ
too much from the distance of its endpoints. So if we know that a path is hit by S not to far
from an outlet, we can guess these vertices. This is done with the help of k-representative
sets of paths: if we know that an ω → Vout-path is hit near ω, we construct a k-representative
set of ω → Vout-paths. We can argue that also one of the paths in this set has to be hit
near ω. So we can guess all the vertices near ω on the paths of the k-representative set for
their intersection with S.

By carefully guessing such potential intersections, and choosing α, β properly, we obtain:
If a path Pi,j has more than γ = poly(k, `) outlets, one of them is open.
If there is a Xi → Xj-path in G− F then Pi,j has an open outlet.

The last step is now to get rid of the Xi → Xj-paths in G − F . We achieve this by
guessing that a so called landing strip in front of an open outlet of Pi,j (which exists by the
second property) is disjoint from S. This landing strip has the task that that if there is a
Xi → Xj-path in G− F than also the open outlet would be reachable. This again works by
the locality of our strong graphs of bounded circumference.

After all these guessing we obtain (for the right guess) a set VΩ such that F is an important
X → (Vout ∪ VΩ)-separator. These we can enumerate by a result of Chitnis et al. [9].

I Proposition 16 ([9]). Let G be a digraph and let X,Y ⊆ V (G) be disjoint non-empty
vertex sets. For every p ≥ 0 there are at most 4p important X − Y -separators of size at
most p, and all these separators can be enumerated in time O(4p · p(n+m)).

Putting Everything Together. Finally, we are able to prove our main result. By combining
the reductions of the previous sections, we get an overall algorithm solving Directed Long
Cycle Hitting Set:

I Theorem 1. There is an algorithm that solves Directed Long Cycle Hitting Set in
time 2O(`6+`k3 log k+k5 log k log `) · nO(1) for n-vertex digraphs G and parameters k, ` ∈ N.

4 k-Representative Sets of Paths

In this section, we show how to obtain a k-representative set of paths of small size in strong
digraphs of bounded circumference. Let us briefly recall the definition.

I Definition 4. Let G be a digraph, x, y ∈ V (G) and k ∈ Z≥0. A set P of x→ y-paths is a
k-representative set of x→ y-paths, if for every set S ⊆ V (G) of size at most k it holds: If
there is an x→ y-path in G− S there is an x→ y-path P ∈ P that is disjoint from S.

Our goal is to prove the following:

I Theorem 5. Let G be a strong digraph, x, y ∈ V (G) and k ∈ Z≥0. Then a k-representative
set of x→ y-paths having size cf(G)O(k2 log k) ·logn can be found in time cf(G)O(k2 log k) ·nO(1).

If all x→ y-paths are short we can use the following result of Monien [23]:

I Proposition 17 ([23]). Let G be a digraph, let x, y ∈ V (G) and let k ∈ N. If every
x → y-path in G has length at most `, then a k-representative set containing at most `k
many x→ y-paths can be found in time `O(k) · nO(1).

Recently, Fomin et al. [11] improved the computation of representative sets of paths, both
in terms of the size of the set and the run time, but Proposition 17 will be sufficient for our
purposes.
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A motivational example. Before we give our construction for k-representative sets of paths
in strong digraphs of bounded circumference, we want to consider graphs of treewidth two
and a special example of treewidth three. Strong digraphs of treewidth two are trees with
bidirected arcs. In this case we have that for every pair x, y ∈ V (G) there is an unique
x→ y-path P . Thus, {P} is a feasible k-representative set of paths.

The situation is significantly different even for cf(G) = 3. Consider the strong digraph in
Figure 1.

x y

v11 v12 v13 . . . v1n

v01 v02 v03 . . . v0n

Figure 1 A digraph G with cf(G) = 3 where every k-representative set of x→ y-paths has size
2Ω(k) log n.

There are exactly 2n different x→ y-paths in G; each such path corresponds to a 0− 1
vector of length n. Thus, if we remove a vertex v0

i or v1
i , then only those paths survive that

have 1 or 0 at the i-th coordinate, respectively. Therefore, a collection of paths in this graph
is k-representative only if no matter how we fix the values of k arbitrary coordinates, there
is a vector in the collection satisfying these constraints. Such collections of vectors are also
known as binary covering arrays. Kleitman and Spencer [17] proved that every collection of
vectors of length n satisfying this property has size 2Ω(k) · logn (more precisely, they gave a
lower bound on the dual question of k-independent families, but it can be easily rephrased
into this lower bound).

We will now construct a k-representative set of paths for this graph G by using so called
k-perfect families of hash functions.

I Definition 18. Let F be a family of functions f : U → {1, . . . , k} on the universe U . We
say that F is a k-perfect family of hash functions if for every X ⊆ U of size at most k, there
is an f ∈ F that is injective on X, i.e. f(x) 6= f(x′) for any two distinct x, x′ ∈ X.

We use the following result by Alon et al. [1] for our construction.

I Proposition 19 ([1]). Let U be a universe and k ∈ N. Then there exists a k-perfect
family F of size 2O(k) log |U | that can be constructed in time 2O(k)|U |O(1).

Before considering arbitrary strong digraphs of bounded circumference, let us explain
how k-perfect families of hash functions can be used for the construction in the case
of the digraph G of Figure 1. Let F be a k-perfect family of hash functions over the
universe U = {1, . . . , n} as in Proposition 19. Moreover, let H be the set of all functions
h : {1, . . . , k} → {0, 1}. For (f, h) ∈ F ×H denote by Pf,h the x → y-path in G that uses
the vertices vh(f(i))

i for i = 1, . . . , n. Then we add for every pair (f, h) ∈ F ×H the path Pf,h
to our set P.

Now consider a deletion set S ⊆ V (G) of size at most k such that there is still an
x → y-path in G. Then S contains only vertices of type vji and at most one of v0

i and v1
i

for every i ∈ {1, . . . , n}. In other words, for some X ⊆ U of size at most k and function
g : X → {0, 1}, the vertices vg(i)i form the set S. As F is a k-perfect family of hash functions,
there is an f ∈ F that is injective on X. Now consider the function h defined as follows.
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For every i ∈ X, let h(f(i)) = 1 − g(i); as f is injective on X, this is well-defined and
gives a function h : f(X) → {0, 1}. Complete, h to a function h : {1, . . . , k} → {0, 1} by
choosing the remaining values arbitrarily. We claim that the path Pf,h introduced for this
choice of f and h is disjoint from S. For i /∈ X, it does not matter if Pf,h uses v0

i or v1
i . For

i ∈ X, set S contains vg(i)i . By our definition of h, we have h(f(i)) = 1− g(i), hence Pf,h
uses v1−g(i)

i , avoiding S. Thus Pf,h is indeed disjoint from S.
Our proof of Theorem 5 generalizes this construction to arbitrary strong digraphs of

bounded circumference: we construct the path by concatenating a series of fairly independent
“short jumps.” For each of these short jumps, we construct a k-representative set of paths by
Proposition 17. The choice of which short path to select is determined by a k-perfect family
of hash functions, similarly to the argument in the previous paragraph.

Strong digraphs with bounded circumference. Before we formally start proving Theorem 5,
we establish some structural properties of strong digraphs with bounded circumference.

I Lemma 20. Let G be a digraph and let x, y ∈ V (G). If P1 is an x → y-path and P2
is a y → x-path, then |P1| ≤ (cf(G) − 1)|P2| holds. Consequently, we have distG(x, y) ≤
(cf(G)− 1)distG(y, x).

Proof. Suppose, for sake of contradiction, that |P1| > (cf(G) − 1)|P2|. By x, y ∈ V (P1) ∩
V (P2), we can split P1 into |P2| pairwise disjoint subpaths whose internal vertices are disjoint
from V (P2). Note that there are |V (P1)| − |V (P2)| = (|P1| + 1) − (|P2| + 1) = |P1| − |P2|
of these internal vertices. By pigeonhole principle, at least one of the subpaths has at least⌈
|P1|−|P2|
|P2|

⌉
=

⌈
|P1|
|P2|

⌉
− 1 internal vertices. By our assumption, these are at least cf(G)− 1

many. But than the whole subpath has at least cf(G) + 1 vertices. Since P1 ◦ P2 is a closed
walk, our segment is contained in a closed walk. Moreover, P1 is acyclic and our segment is
internally disjoint from P2. Thus, the segment is even contained in a cycle. But this cycle
then has length at least cf(G) + 1, contradicting the definition of circumference. J

By using that there is always a backward path in strong digraphs, applying above result
twice yields:

I Lemma 21. Let G be a strong digraph and x, y ∈ V (G). Then |P | ≤ (cf(G)−1)2distG(x, y)
for every x→ y-path P .

Proof. Let W be a shortest x→ y-path in G. As G is strong, there is also a y → x-path Q
in G. By Lemma 20 we then have

|P | ≤ (cf(G)− 1)|Q| ≤ (cf(G)− 1)2|W | = (cf(G)− 1)2distG(x, y). J

Similarly to the length, we can also argue about the distance between two paths.

I Lemma 22. Let G be a strong digraph, x, y ∈ V (G) be two vertices, and P1, P2 be
two x → y-paths. For every vertex v of P1, we have distG(P2, v) ≤ 2(cf(G) − 2) and
distG(v, P2) ≤ 2(cf(G)− 2).

Proof. As G is strong, there is a y → x-path Q.

B Claim 23. For i ∈ {1, 2}, we have that
(i) distG(Q, v) ≤ cf(G)− 2 and distG(v,Q) ≤ cf(G)− 2 for every v ∈ Pi, and
(ii) distG(Pi, v) ≤ cf(G)− 2 and distG(v, Pi) ≤ cf(G)− 2 for every v ∈ Q.
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Proof. Let v ∈ Pi. As Pi is acyclic (it is a path), but Pi ◦Q is a closed walk in G, v has to
lie on a cycle O in Pi ◦Q. This cycle has length at most cf(G). Furthermore, O has at least
two vertices in V (Q), as it contains an arc of Q. So there is a path in O from v to a vertex
of Q of length at most |O| − 2 ≤ cf(G)− 2, showing distG(v,Q) ≤ cf(G)− 2. On the other
hand there is also a V (Q)→ v-path (from another vertex of V (Q) ∩ V (O)) in O of length
at most |O| − 2 ≤ cf(G) − 2, showing distG(Q, v) ≤ cf(G) − 2. This shows Statement (i).
Statement (ii) can be seen analogously by switching the roles of Pi and Q. C

Now fix a v ∈ V (P1). By Claim 23, we have that there is a w ∈ V (Q) such that
distG(w, v) = distG(Q, v) ≤ cf(G)− 2. Applying Claim 23 another time and using triangle
inequality we get

distG(P2, v) ≤ distG(P2, w) + distG(w, v) ≤ 2(cf(G)− 2).

Similarly, we get from Claim 23 that there is an u ∈ V (Q) with distG(v, u) = distG(v,Q) ≤
cf(G)− 2. Another application of Claim 23 and the triangle inequality yields

distG(v, P2) ≤ distG(v, u) + distG(u, P2) ≤ 2(cf(G)− 2),

concluding the proof. J

We are now ready to prove Theorem 5.

I Theorem 5. Let G be a strong digraph, x, y ∈ V (G) and k ∈ Z≥0. Then a k-representative
set of x→ y-paths having size cf(G)O(k2 log k) ·logn can be found in time cf(G)O(k2 log k) ·nO(1).

Proof. Let us fix an arbitrary x → y-path R (which exists as G is strong) to guide our
construction. Denote by r the length of R and by v0 = x, v1, . . . , vr−1, vr = y its vertices.
We only consider a subset of vertices zi at distance d = 2cf(G)4 from each other or more
formally zi = vi·d. These zi will be the anchor vertices for our short jumps. We divide
then zi further into k + 1 subsets Zo by taking every (k + 1)st vertex starting at offset o.
Formally we define zoi = zi(k+1)+o and Zo = {zoi }. These subsets have the advantage that
one of these is far away from a deletion set S of size at most k. For this we fix a set S of size
at most k such that an x→ y-path in G− S exists.

B Claim 24. There is some oS ∈ {0, . . . , k} such that
distG(ZoS , S) > 2(cf(G)− 2) and
distG(S,ZoS ) > 2(cf(G)− 2).

Proof. We claim that for every s ∈ S there is at most one value o ∈ {0, . . . , k} such
that distG(Zo, s) ≤ 2cf(G)2. Suppose that distG(w1, s), dist(w2, s) ≤ 2cf(G)2 for some
w1 ∈ Zo1 and w2 ∈ Zo2 with o1 6= o2. Assume, without loss of generality, that w1 is
before w2 on R; then R[w1, w2] has length at least d (as different zi have distance at
least d). By Lemma 20, we have distG(s, w1) ≤ (cf(G)−1)distG(w1, s) ≤ (cf(G)−1) ·2cf(G)2,
thus distG(w2, w1) ≤ distG(w2, s) + distG(s, w1) ≤ 2cf(G)3. Again by Lemma 20, we have
d ≤ |R[w1, w2]| ≤ (cf(G)− 1)distG(w2, w1) < 2cf(G)4, a contradiction. Thus, we have proven
that for each of the k vertices s ∈ S there is at most one value o ∈ {0, . . . , k} such that s
is at distance at most 2cf(G)2 from Zo. Therefore, by the pigeon-hole principle there is
an oS ∈ {0, . . . , k} such that distG(ZoS , S) > 2cf(G)2. By Lemma 20 this also implies
distG(S,ZoS ) > 2cf(G)2/(cf(G)− 1) > 2(cf(G)− 2). This completes the proof of Claim 24.

C
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Thus we know that a small surrounding of one of the Zo’s will be disjoint from S.
Furthermore, Lemma 21 gives a bound on the length of a path P between two consecutive
vertices zoi and zoi+1 of Zo, by |P | ≤ (cf(G)−1)2|R[zoi , zoi+1]| = O(cf(G)7k). This allows us to
introduce sets Poi of k-representative zoi → zoi+1-paths using the algorithm of Proposition 17
and have their size bounded by some B = O(cf(G)7k)k = cf(G)O(k log k) (using k = 2log k

and cf(G) ≥ 2). By duplicating paths as necessary we can assume that every P oi has size
exactly B.

To make sure that our path collections with offset are connected to x and y, we construct
additional sets Pox and Poy as follows: Let zox be the first vertex in Zo after x and zoy
the last vertex before y. Then compute, using the algorithm of Proposition 17, Pox as a
k-representative set of x→ zox-paths and Poy as a k-representative set of zoy → y-paths. As
the distances between these pairs of vertices are bounded by the distance of neighboring
vertices in Zo we can analogously get a size bound of B for Pox and Poy . Note that for some
offsets o either Pox or Poy may align with some Poi ; then we leave out this Poi as we do not
need it anymore. For each o, let Po := {Pox, Poy} ∪ {Poi }i be the set of these relevant sets.

B Claim 25. Every PoS

T ∈ PoS contains a path disjoint from S.

Proof. Consider a set PoS

T with T ∈ {x, y, i} such that the paths in PoS

T are xT → yT -paths.
As above sets are k-representative sets of paths, we must only show that there is any xT → yT -
path in G− S. By assumption there is a x→ y path Q in G− S. By Lemma 22 we can find
a qx ∈ V (Q) such that dist(xT , qx) ≤ 2(cf(G)− 2) and a xT → qx-path Qx in G achieving
this distance. By Claim 24 we know that Qx is disjoint from S and therefore, Qx ◦Q[qx, y]
is a qx → y walk disjoint from S. Let Q̂x be a qx → y-path contained in this walk. Another
application of Lemma 22 yields a vertex qy ∈ V (Q̂) with dist(qy, yT ) ≤ 2(cf(G)− 2) and a
qy → yT -path Qy in G achieving this distance. Again, by Claim 24, Qy is disjoint from S.
Then Q̂x[xT , qy] ◦ Qy contains a xT → yT -path as proposed. This completes the proof of
Claim 25. C

Of course, enumerating all possible tuples of paths would construct too many candidates,
as the size of PoS can be Ω(m). Therefore, we want to use a f(k)-perfect family of hash
functions. This is possible if we can bound the number of intersections with the sets PoS

by f(k).

B Claim 26. The set S intersects at most 2k sets of PoS .

Proof. We show that s ∈ S can intersect for at most two sets that share an endpoint, thus
achieving the claimed size bound. Suppose for contradiction that s intersects two paths Q1
and Q2 out of sets in PoS that do not share an endpoint. Let each Qi be a xi → yi-path,
then we can assume without loss on generality that the order the endpoints appear on R is
x1, y1, x2, y2 and |R[y1, x2] ≥ 2cf(G)5 (by the distance of the zi. On the other hand R[xi, yi]
and Qi connect the same endpoints, hence Lemma 22 implies that there is a t1 ∈ V (R[x1, y1])
with dist(t1, s) ≤ 2(cf(G) − 2) and a t2 ∈ V (R[x2, y2]) with dist(s, t2) ≤ 2(cf(G) − 2) as
s ∈ Q1 ∩ Q2. This implies that dist(t1, t2) ≤ dist(t1, s) + dist(s, t2) ≤ 4(cf(G) − 2). If we
now consider R[t1, t2], we get |R[t1, t2]| ≥ |R[y1, x2] ≥ 2cf(G)5 > (cf(G)− 1)2 · dist(t1, t2) in
contradiction to Lemma 21. This completes the proof of Claim 26. C

We can now construct a 2k-perfect family Ψo of hash functions over the universe Po
for each o. For oS this family contains an element ψ which gives every set of PoS that
is intersected by S a different number in {1, . . . , 2k} (by Claim 26). Further, there is a
map πfree that maps the numbers of {1, . . . , 2k} to a number of {1, . . . , B}, such that for
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every P ∈ PoS which has a path intersected by S, we have that the ψ ◦ πfree(P)th path
of P is not intersected by S. There is such a path by Claim 25. Denote by Qψ,πfree(P) this
path. As we cannot know πfree in advance we create a set Π of all possible functions from
{1, . . . , 2k} to {1, . . . , B}.

We know that for the specific choices of oS , ψ and πfree we get a that the union of paths
in {Qψ,πfree(P)|P ∈ PoS} forms a x→ y walk W in G− S. Every x→ y-path within W is
also disjoint from S. Therefore, the set Px,y,k created as follows contains a path disjoint
from S: For every o ∈ {1, . . . , k + 1}, every ψ ∈ Ψ and every π ∈ Π consider the x→ y-walk⋃
P∈Po Qψ,π(P) and introduce an arbitrary x→ y-path contained in it into Px,y,k.
The size bound on Px,y,k is proven by multiplying the possibilities for each choice:

(k + 1)︸ ︷︷ ︸
choice of o

· 2O(k) logm︸ ︷︷ ︸
|Ψ|

·B2k︸︷︷︸
|Π|

= cf(G)O(k2 log k) logn.

The run time follows similarly. J

We think that k-representative sets of paths could prove a useful tool in many vertex
deletion problems. Together with iterative compression, it allows one to argue about
connectivity structure of the old solution. In our case it led to contraction argument
strengthening the solution structure (Lemma 3) and a focused guessing of solution vertices
(subsection about finding important cluster separators).

There may be other use cases as well. Therefore, we decided to present our result
on k-representative sets of paths in a self-contained way. We hope that this helps other
researchers and improves our understanding of vertex-deletion problems in directed graphs.
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