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Abstract
We prove that both Polynomial Calculus and Sums-of-Squares proof systems admit a strong form of
feasible interpolation property for sets of polynomial equality constraints. Precisely, given two sets
P (x, z) and Q(y, z) of equality constraints, a refutation Π of P (x, z) ∪ Q(y, z), and any assignment a

to the variables z, one can find a refutation of P (x, a) or a refutation of Q(y, a) in time polynomial
in the length of the bit-string encoding the refutation Π. For Sums-of-Squares we rely on the use of
Boolean axioms, but for Polynomial Calculus we do not assume their presence.
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1 Introduction

In this paper we consider the proof systems Polynomial Calculus (PC) and Sums-of-Squares
(SOS). PC is a proof system that is used to derive polynomial equalities from a set of
polynomial equality constraints in a step-by-step fashion similar to traditional logical proof
systems. A PC proof is a compact certificate that the proved polynomial is in the ideal
generated by the constraints. PC was introduced by Clegg et al. [4].

Sums-of-Squares proof system on the other hand is a proof system used to derive
polynomial inequalities from a set of polynomial constraints. As a proof system Sums-
of-Squares was first investigated by Grigoriev and Vorobjov in [6], but it has its roots in
semialgebraic geometry and combinatorial optimization. We refer the reader to [10] for a
thorough presentation of these connections.

Feasible interpolation was introduced by Krajíček in [9] as a framework to prove lengths-
of-proofs lower bounds for propositional proof system from lower bounds on Boolean circuits
or other computational models. The feasible interpolation has been applied to prove lower
bounds for example for Resolution [9] and Cutting Planes [12] from lower bounds on monotone
Boolean and real circuits, respectively. On the negative side Krajíček and Pudlák showed
in [8] that Extended Frege does not admit feasible interpolation with respect to Boolean
circuits unless RSA is not secure against P/poly. This was later extended to Frege in [3] and
to bounded depth Frege in [2] under other cryptographic assumptions.
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63:2 Feasible Interpolation for Polynomial Calculus and Sums-Of-Squares

We will prove here feasible interpolation for both PC and SOS for equality constrains
P (x, y) and Q(y, z) in disjoint sequences x, y and z of variables. We show that for both
proof systems given a refutation Π of P (x, z) ∪Q(y, z) and an assignment a to the variables
z, one can in polynomial time in the bit-complexity of Π find a refutation of P (x, a) or a
refutation of Q(y, a). Previously, a form of feasible interpolation for PC was proven for
degree bounded PC-refutations by Pudlák and Sgall [13]. We know of no previous results on
feasible interpolation for Sums-of-Squares proofs.

From [4] we know that PC is degree-automatable: any degree d proof can be found in
time nO(d). The same is not true in general for SOS, since the coefficients in a small degree
proof might be exceedingly large. This was first noted by O’Donnell in [11]. O’Donnell
demonstrated a simple system of polynomial constraints that admit a degree 2 proofs of
non-negativity, so that every degree 2 proof necessarily has coefficients of exponential bit-
complexity. Later the example of [11] was strengthened by Raghavendra and Weitz in [14]
by giving a system of constraints over the Boolean cube that have proofs of non-negativity
of degree 2, but any proof of degree less than O(

√
n) must have exponential bit-complexity.

In view of these issues on the bit-complexity of SOS, the question arises whether doubly
exponential coefficients can pose a problem for feasible interpolation. However we show that
we can use the given refutation of P (x, z) ∪Q(y, z) to bound the coefficients appearing in a
refutation of P (x, a) or a refutation of Q(y, a).

Our proofs rely on a ’semantic’ characterizations of refutations with bounded resources. A
standard way to prove lower bounds in proof complexity is to exhibit a ’semantic’ object whose
existence is in contradiction with the existence of refutations with bounded resources. These
include the reduction operators first used in [15] against low-degree PC-refutations, the d-
designs first used in [1] against low-degree Nullstellensatz refutations and pseudoexpectations
first used in [6] against low-degree Sums-of-Squares refutations. In many cases these objects
actually characterize the associated classes of refutations, and thus they, from a logical point
of view, give soundness and completeness theorems for resource bounded refutations. If
soundness of these characterizations can be used to prove lower bounds, the completeness
properties are useful in establishing upper bounds on proofs as exemplified by the proofs of
Theorems 3 and 9 below.

Main results. Let P (x, z) and Q(y, z) be sets of polynomial equations, where x, y and z are
disjoint sequences of variables. Our main results are as follows:

For any finite field F there is a polynomial time algorithm that given a PC-refutation
of P (x, z) ∪Q(y, z), and an assignment a to the variables z, outputs a PC-refutation of
P (x, a) or a PC-refutation of Q(y, a). (Theorem 5)
There is a polynomial time algorithm that given an SOS-refutation of P (x, z) ∪Q(y, z)
over the Boolean hypercube and a Boolean assignment a to the variables z outputs an
SOS-refutation of P (x, a) over the Boolean hypercube or an SOS-refutation of Q(y, a)
over the Boolean hypercube. (Theorem 14)

Proof methods. We study the two systems in two separate parts. Each part follows the
same outline. First we define a suitable class of proofs and its semantic counterpart. We
define proofs over some fixed set of monomials. The idea is to shift the focus from trying to
obtain size-of-proof upper bounds directly to proving the existence of proofs that use only
monomials from some small set S. The corresponding semantic operators are then defined
on the vector space of all polynomials which are linear combinations of elements of S.
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Secondly we prove a feasible disjunction property for the system using the obtained
semantic characterizations. Given a refutation of P (x) ∪Q(y), where x and y are disjoint
sequences of variables, we can define sets Sx and Sy whose size are polynomial in the size of
the given refutation, such that either P (x) has a refutation over Sx or Q(y) has a refutation
over Sy.

Finally we argue that the refutations whose existence is guaranteed by the feasible
disjunction property can be found in time polynomial in the size of the underlying set of
monomials. For PC we give a simple proof search algorithm, and for SOS we use the ellipsoid
algorithm to search for a proof after meeting sufficient conditions for polynomial run-time.

2 Preliminaries

2.1 Polynomials and the Boolean Ideal
A monomial is a product of variables. A term over a field F is a product of a non-zero
element of F, called the coefficient of the term, and a monomial. A polynomial is a finite
sum of terms, i.e. a finite linear combination of monomials. We write F[x] for the set of
all polynomials over a field F. In particular R[x] denotes the set of all monomials with real
coefficients. For any set S of monomials we denote by F[S] the set of all linear combinations
of monomials from S. For any p ∈ R[x] we denote by ‖p‖ the largest absolute value of a
coefficient that appears in p.

For SOS we consider polynomials over n pairs of twin variables x1, . . . , xn, x̄1, . . . , x̄n.
The intended meaning is that the variables range over Boolean values {0, 1} and that a pair
of twin variables assumes opposite values. Accordingly we define the Boolean ideal In to be
the ideal generated by the Boolean axioms {x2

i − xi, xi + x̄i − 1 : i ∈ [n]}. We write p ≡ q

mod In if p− q ∈ In.
The Boolean axioms form a Gröbner basis for the Boolean ideal. This is readily seen

using the Buchberger’s criterion. The important consequence of this for our purposes is
that the multivariate division algorithm with respect to the Boolean axioms leaves a unique
remainder, and in particular the remainder is 0 if and only if p ∈ In. For more information
on multivariate division and Gröbner bases, we refer the reader to [5].

2.2 Polynomial Calculus and Sums-of-Squares proofs
Let Q be a set of polynomials over an arbitrary field F. We think of elements of Q as equality
constraints q = 0. Let p be another polynomial. A PC-proof of p from Q is a sequence
p1, . . . , p` of polynomials such that p` = p and for each i ∈ [`] one of the following hold:
(i) pi ∈ Q;
(ii) there are j, k < i and a, b ∈ F such that pi = apj + bpk;
(iii) there is j < i and a variable x such that pi = xpj .

A PC-proof of p from Q is a certificate that p is in the ideal generated by Q. A
PC-refutation of Q is a PC-proof of 1 from Q.

Let now Q be a set of real polynomials over n pairs of Boolean variables. A Sums-of-
Squares proof of non-negativity of p from Q over the Boolean hypercube is a polynomial
equality of the form

p =
∑
i∈[k]

r2
i +

∑
q∈Q

tqq +
∑
i∈[n]

(
ui
(
x2
i − xi

)
+ vi (xi + x̄i − 1)

)
, (1)
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where ri, tq, ui and vi are arbitrary real polynomials. An SOS refutation of Q over the
Boolean hypercube is a proof of non-negativity of −1. Usually we will simply write the SOS
proof (1) as

p ≡
∑
i∈[k]

r2
i +

∑
q∈Q

tqq mod In

and omit the explicit lifts of the Boolean axioms.

3 Feasible interpolation for Polynomial Calculus

3.1 PC proofs over a set of monomials
Let Q be a set of polynomials over field F and let S be a set of monomials containing all
the monomials in Q and the empty monomial 1. Let Ŝ = S ∪ xS, where xS = {xm : m ∈
S and x is a variable}. A PC-proof of p from Q over S is a PC-proof of p from Q, where
only monomials from the set Ŝ appear, and the inference rule p/xp is only applied when
p ∈ F[S]. Denote by PCS(Q) the set of all p such that there exists a PC-proof of p from Q

over S.
Let now < be a total order on Ŝ satisfying the following two conditions:

(i) 1 ≤ m for any m ∈ Ŝ;
(ii) if m ∈ S and m′ ∈ Ŝ \ S, then m < m′.

The leading monomial of a polynomial p ∈ F[Ŝ], denoted LM(p), is the largest monomial
with respect to < that appears in p with a non-zero coefficient. The leading term of a
polynomial p ∈ F[Ŝ], denoted LT(p) is the term, whose underlying monomial is the leading
monomial of p.

We say that a term t ∈ F[Ŝ] is S-reducible modulo Q if there is p ∈ PCS(Q) such that
t = LT(p). Otherwise the term is S-irreducible modulo Q. The following lemma shows
that any polynomial in F[Ŝ] can be uniquely factorized into a provable and an S-irreducible
component.

I Lemma 1. For any polynomial p ∈ F[Ŝ] there are unique q ∈ F[Ŝ] and r ∈ F[Ŝ] such that
p = q + r;
q ∈ PCS(Q);
r is a sum of S-irreducible terms modulo Q.

Moreover LT(p) ≥ t for each term t in r.

Proof. To prove the existence of such q and r, we construct sequences pi, qi, ri such that
p = pi + qi + ri;
qi ∈ PCS(Q);
ri is a sum of S-irreducible terms.
pm = 0 for some m.

Let p1 = p and q1 = r1 = 0. For step i, let LT(pi) = ti. If ti is S-reducible as witnessed
by q ∈ PCS(Q) let pi+1 = pi − q, qi+1 = qi + q and ri+1 = ri. On the other hand, if ti is
S-irreducible, let pi+1 = pi − ti, qi+1 = qi and ri+1 = ri + ti.

Now pm = 0 for some m, since the rank of the leading term of pi decreases at each step.
By construction, qm and rm satisfy the conditions of the lemma.

To prove the uniqueness of q and r, suppose p = q+ r and p = q′ + r′, i.e. q− q′ = r′ − r.
Now q−q′ ∈ PCS(Q) and so r′−r ∈ PCS(Q), Hence LT(r′−r) is not S-irreducible. However,
since both r and r′ are sums of S-irreducible terms, it follows that LT(r′ − r) = 0 and so
r = r′. Hence also q = q′. J
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Consider now the mapping RQS : F[Ŝ]→ F[Ŝ] that maps each p to the unique sum r of
S-irreducible terms modulo Q such that p− r ∈ PCS(Q). The following lemma gathers four
basic properties of the mapping.

I Lemma 2. The following hold.
(i) If there is no refutation of Q over S, then RQS (1) = 1;
(ii) RQS is a linear function;
(iii) RQS (RQS (p)) = RQS (p) for any polynomial p ∈ F[Ŝ];
(iv) RQS (xm) = RQS (xRQS (m)) for any m ∈ S and any variable x.

Proof. (i) If there is no refutation of Q over S, then, by part (i) of the definition of <, the
constant polynomial 1 is S-irreducible modulo Q. On the other hand 0 ∈ PCS(Q) and so, by
the uniqueness of the factorization, RQS (1) = 1.

(ii) Firstly, we have that p−RQS (p), q−RQS (q) ∈ PCS(Q), and so p+q−(RQS (p)+RQS (q)) ∈
PCS(Q). Now RQS (p) + RQS (q) is a sum of S-irreducible terms modulo Q and so, by the
uniqueness of the factorization, RQS (p+q) = RQS (p)+RQS (q). Similarly ap−aRQS (p) ∈ PCS(Q)
and so RQS (ap) = aRQS (p).

(iii) We have that p−RQS (p), RQS (p)−RQS (RQS (p)) ∈ PCS(Q) and so also p−RQS (RQS (p)) ∈
PCS(Q), where RQS (RQS (p)) is a sum of S-irreducible terms modulo Q. Hence, again by the
uniqueness of the factorization, RQS (p) = RQS (RQS (p)).

(iv) Again, we have that m − RQS (m) ∈ PCS(Q). Now, by Lemma 1, each term t

in RQS (m) satisfies t ≤ m. Hence, by part (ii) of the definition of <, each t in RQS (m)
is in S, and so RQS (m) ∈ F[S]. Hence also xm − xRQS (m) ∈ PCS(Q). It follows that
RQS (xm) = RQS (xRQS (m)). J

3.2 Feasible disjunction for PC
In this section we prove a feasible disjunction property for Polynomial Calculus using the
machinery developed in the previous section. Below P (x) and Q(y) are set of polynomials in
disjoint sequences x and y of variables.

For a set of monomials S, and a sequence x of variables, we denote by Sx the projection
of S onto the variables x, i.e. m ∈ Sx, if only variables from x appear in m, there is some
m′, where no variables from x appear and mm′ ∈ S.

I Theorem 3. Let Π be a PC-refutation of P (x)∪Q(y), and let S be the set of all monomials
appearing in the refutation Π. Then there is a PC-refutation of P (x) over Sx or a PC-
refutation of Q(y) over Sy.

Proof. Suppose towards a contradiction that the conclusion does not hold, and consider
the reduction operators RP (x)

Sx
and RQ(y)

Sy
. Let S′ := {mxmy : mx ∈ Sx and my ∈ Sy}, and

define a linear function R : F[S′]→ F[S′] with

R(mxmy) = R
P (x)
Sx

(mx)RQ(y)
Sy

(my)

for any mxmy ∈ S′ and extend linearly.
We claim now that R has the following properties:

(i) R(1) = 1;
(ii) R(p(x, a)) = 0 for any p(x, a) ∈ P (x, a);
(iii) R(q(y, a)) = 0 for any q(y, a) ∈ Q(y, a);
(iv) R(xim) = R(xiR(m)) if m ∈ S;
(v) R(yim) = R(yiR(m)) if m ∈ S.

ICALP 2020
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The item (i) holds, since by Lemma 2(i), RP (x)
Sx

(1) = R
Q(y)
Sy

(1) = 1. It is clear that both
(ii) and (iii) hold.

Finally (iv) holds, by Lemma 2, since

R(xim) = RSx
(ximx)RSy

(my)
= RSx(xiRSx(mx))RSy (RSy (my))
= R(xiRSx

(mx)RSy
(my))

= R(xiR(m))

The case (v) is proved similarly.
Now the existence of such R is in contradiction with the assumption that in Π there

appears only monomials from S. Firstly R is defined for all the polynomial appearing in Π.
Secondly, by (ii) and (iii), R maps each axiom in P (x) ∪Q(y) to zero, and, by linearity and
(iv) and (v), respects the inference rules in the sense that R maps the consequent of a rule
to zero whenever it maps the premises to zero. Hence, by induction on the structure of the
refutation, R(1) = 0, against (i). J

3.3 Proof search over S

In this section we show how to find proofs over a given set S of monomials in time polynomial
in |S|. We make this claim only for proofs over a finite field F. In order to avoid pathological
counterexamples we tacitly assume that the size of S is at least the number of distinct
variables in S.

We begin by constructing a basis B for PCS(Q). The construction is given by the
following algorithm, which is a modification of an algorithm from [4].

Algorithm 1 Proof search over S.

Initially A = Q and B = ∅;
while A 6= ∅ do

Pick p ∈ A and remove it from A;
while LM(p) ∈ LM(B) do

Let q ∈ B be such that LM(q) = LM(p);
Let p← p− aq, where a is such that LT(p) = aLT(q);

end
If p 6= 0, add p to B;
If p ∈ F[S], add xp to A for every variable x;

end
Output B;

Now B is a linearly independent set of polynomials, since all elements of B have distinct
leading monomials. As all elements of B have distinct leading monomials there is never more
than |S|3 elements in A and thus the algorithm halts after polynomially many steps in |S|.
Hence for any finite field the above algorithm will halt in time polynomial in |S|. In the
following we prove that B is actually a basis for PCS(Q).

I Lemma 4. At the end of the above algorithm span(B) = PCS(Q).

Proof. Clearly each q ∈ B has a proof from Q over S, and so span(B) ⊆ PCS(Q).
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Now suppose p ∈ PCS(Q) and let p1, . . . , p` be a PCR proof of p from Q over S. We show
by induction on the structure of the proof that pi ∈ span(B) for any i ∈ [`]. To see that each
axiom is in B, note that span(A∪B) can only increase at each stage of the algorithm. Hence,
as the algorithm halts with A = ∅, at the end each axiom is in span(B). If pi = apj + bpk
for some j, k < i, and pj , pk ∈ span(B), then clearly pi ∈ span(B).

Finally, suppose that pi = xpj for some j < i and some variable x. Now pj ∈ F[S], and
by induction assumption, pj ∈ span(B). Write pj =

∑
akqk for some ak ∈ F and qk ∈ B.

We claim that qk ∈ F[S] for each k with non-zero ak. To see this, let m be the maximal
monomial that appears in any qk with a non-zero coefficient. Now m appears in only one
of the qk’s, since they all have distinct leading monomials, and so the monomial m has a
non-zero coefficient in pj . Hence m ∈ S, and so qk ∈ F[S] for every k. Now for any k, qk
was added to B and xqk was added to A at some stage of the algorithm. Now, at that
stage xqk ∈ span(A ∪B). However, since the span only increases during the execution of the
algorithm, xqk ∈ span(B) at the end of the algorithm. Hence xpj ∈ span(B) at the end of
the algorithm. J

Now to check whether there is a PC proof of p from Q over S one simply needs to reduce
the polynomial p with respect to the basis B. This is easy to do, since all the elements of
B have distinct leading monomials. In order to construct the proof, one needs proofs for the
basis elements. The construction of these proofs is easily incorporable into the algorithm
above.

3.4 Feasible interpolation
Finally as a consequence of Theorem 3 and Section 3.3 we obtain the feasible interpolation
property for PC over any finite field. Below P (x, z) and Q(y, z) are two sets of polynomials,
where x, y and z are disjoint sequences of variables.

I Theorem 5. For any finite field F, there is a polynomial time algorithm that given a PC-
refutation of P (x, z)∪Q(y, z), and an assignment a to the variables z, outputs a PC-refutation
of P (x, a) or a PC-refutation of Q(y, a).

4 Feasible interpolation for Sums-of-Squares

4.1 Bounded SOS proofs over a set of monomials
Let Q be a set of polynomials and let S be a set of monomials that includes all the monomials
appearing in Q and the empty monomial 1.

Denote by S2 the set of all monomials m such that m = m1m2, where m1,m2 ∈ S. An
SOS proof of non-negativity of some p ∈ R[S2] from Q over S is a polynomial equality of the
form

p ≡
∑
i∈[k]

r2
i +

∑
q∈Q

tqq mod In

where ri, tq ∈ R[S]. We write Q `S p ≥ q if there is a proof of non-negativity of p− q from Q

over S. The proof is R-bounded if ‖tq‖ ≤ R for each q ∈ Q. We need to consider explicitly
bounded proofs in order to later be able to give a polynomial time proof search algorithm.

We prove first the important fact that every polynomial in R[S2] has provable upper
bounds over S modulo the Boolean ideal.

ICALP 2020
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I Lemma 6. For any p ∈ R[S2] there is r ∈ R+ such that

∅ `S r ≥ p.

Proof. Let first m ∈ S, and let a ∈ R. We want to show that there is some b ∈ R+ such that
Q `S b ≥ am. If a < 0, then −am ≡ (

√
−am)2 mod In and so Q `S 0 ≥ am. On the other

hand if a > 0, then a− am ≡ (
√
a−
√
am)2 mod In, and so Q `S a ≥ am.

Let then m1,m2 ∈ S and a ∈ R. We show again that there is some b ∈ R+ such
that Q `S b ≥ am1m2. If a < 0, then −am1 − 2am1m2 − am2 ≡ (

√
−am1 +

√
−am2)2

mod In. On the other hand, by the above paragraph, there are b1, b2 ∈ R+ such that
Q `S b1 ≥ −am1 and Q `S b2 ≥ −am2. Hence Q `S (b1 + b2)/2 ≥ am1m2. If a > 0, then
am1 − 2am1m2 + am2 ≡ (

√
am1 −

√
am2)2 mod In. Again there are b1, b2 ∈ R+ such that

Q `S b1 ≥ am1 and Q `S b2 ≥ am2, and so Q `S (b1 + b2)/2 ≥ am1m2. J

Now we define the objects that we consider to be the semantic counterparts of bounded
refutations over a set of monomials. Let ε > 0. A linear functional E : R[S2] → R is an
ε-pseudoexpectation for Q over S if the following properties hold:
(i) E(1) = 1;
(ii) E(p) = E(q) if p ≡ q mod In;
(iii) E(p2) ≥ 0 for any p ∈ R[S];
(iv) |E(mq)| ≤ ε for any m ∈ S and any q ∈ Q.

The following two lemmas show connections between ε-pseudoexpectations and proofs
with bounded coefficients.

I Lemma 7. If there is an ε-pseudoexpectation for Q over S, then there is no R-bounded
refutation of Q over S for R less than 1/ε|S||Q|.

Proof. Let E be an ε-pseudoexpectation for Q over S, and suppose that

−1 ≡
∑
i∈[k]

r2
i +

∑
q∈Q

tqq mod In

is a refutation over S with ‖tq‖ < 1/ε|S||Q| for any q ∈ Q. Now |E(amq)| ≤ |a|ε for each
m ∈ S, q ∈ Q and a ∈ R. Hence |E(tqq)| < 1/|Q| for each q ∈ Q, and so |E(

∑
q∈Q tqq)| < 1.

Now applying E to both sides of the refutation we obtain that −1 ≥
∑
q∈QE(tqq) > −1. J

I Lemma 8. If there is no R-bounded refutation of Q over S, then there is a (1/R)-
pseudoexpectation for Q over S.

Proof. Suppose there is no R-bounded refutation of Q over S, and consider the following
two sets

A := {p ∈ R[S2] : ∅ `S p ≥ 0}

and

B := {−1 +
∑
q∈Q

tqq : tq ∈ R[S] and ‖tq‖ ≤ R for every q ∈ Q}.

Now, by assumption, A and B are disjoint, A is a convex cone and B is a convex set. Hence,
by the hyperplane separation theorem, there is a non-trivial linear functional L : R[S2]→ R
such that L(p) ≥ 0 for every p ∈ A, and L(p′) ≤ 0 for every p′ ∈ B.
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We want to first argue that L(1) 6= 0. So suppose towards a contradiction that L(1) = 0.
By Lemma 6, for any p ∈ R[S2] there is some R ∈ R+ such that ∅ `S R ≥ p ≥ −R. It follows
that L(R) ≥ L(p) ≥ L(−R), and so L(p) = 0 for every p ∈ R[S2] against the non-triviality
of L.

Now define E(p) = L(p)/L(1) for any p ∈ R[S2]. We claim that E has the desired
properties. We prove the last case. By definition, −1±Rmq ∈ B, and so E(−1±Rmq) ≤ 0
for any m ∈ S and q ∈ Q. Hence |E(mq)| ≤ 1/R. J

4.2 Feasible disjunction for SOS

In this section we prove a feasible disjunction property for SOS. For a refutation

−1 =
∑
i∈[k]

r2
i +

∑
q∈Q

tqq +
∑
i∈[n]

(
ui
(
x2
i − xi

)
+ vi (xi + x̄i − 1)

)
the explicit monomials of the refutation are all the monomials appearing in the polynomials
ri, tq, q, ui, vi, x2

i − xi and xi + x̄i − 1, i.e. the explicit monomials are the monomials that
appear in an explicit representation of the refutation.

I Theorem 9. Let

− 1 =
∑
i∈[k]

r2
i +

∑
p(x)∈P (x)

tpp(x) +
∑

q(y)∈Q(y)

tqq(y)+

∑
i∈[n]

(
ui
(
x2
i − xi

)
+ vi (xi + x̄i − 1)

) ∑
i∈[n′]

(
u′
i

(
y2
i − yi

)
+ v′

i (yi + ȳi − 1)
)

be an SOS refutation of P (x) ∪Q(y) with ‖tp‖, ‖tq‖ ≤ R for every p(x) ∈ P (x) and q(y) ∈
Q(y), let S be the set of explicit monomials appearing in the refutation, and let R′ =
2R|P (x) ∪Q(y)||S|. Then there is a R′-bounded refutation of P (x) over Sx or a R′-bounded
refutation of Q(y) over Sy.

Proof. Suppose towards a contradiction that the conclusion does not hold. Then, by
Lemma 8, there are 1/R′-pseudoexpectations for P (x) over Sx and Q(y) over Sy. Now define
a linear functional E : R[S2]→ R with

E(m) = Ex(mx)Ey(my),

for m ∈ S2 and extend linearly. Here mx and my are the projections of the monomial m to
variables x and y, respectively. We claim that E has the following properties.

(i) E(1) = 1;
(ii) E(m(x2

i − xi)) = 0 for any m ∈ S and any variable xi;
(iii) E(m(xi + x̄i − 1)) = 0 for any m ∈ S and any variable x;
(iv) E(m(y2

i − yi)) = 0 for any m ∈ S and any variable yi;
(v) E(m(yi + ȳi − 1)) = 0 for any m ∈ S and any variable yi;
(vi) E(p2) ≥ 0 for any p ∈ R[S];
(vii) |E(m(p(x))| ≤ 1/R′ for any m ∈ S and any p(x) ∈ P (x);
(viii) |E(m(q(y))| ≤ 1/R′ for any m ∈ S and any q(y) ∈ Q(y).
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The cases (i)-(v) are easy to see. For (vi), write p =
∑
m∈S amm. Now the matrix

(Ey(mym
′
y))m,m′∈S is positive semidefinite and so there are vectors u su ch that Ey(mym

′
y) =∑

u umum′ . Now we have

E(p2) =
∑
m,m′

amam′Ex(mxm
′
x)Ey(mym

′
y)

=
∑
m,m′

∑
u

amumam′um′Ex(mxm
′
x)

= Ex((
∑
m

∑
u

amummx)2) ≥ 0

Finally (vii) holds, since

|E(m(p(x)| = |Ex(mx(p(x))||Ey(my)| ≤ 1/R′,

where the last inequality holds since Ex is an 1/R′-pseudoexpectation for P (x) over Sx and
|Ey(my)| ≤ 1 for all m ∈ S. Case (viii) is proved similarly.

Now the existence of such E is in contradiction with the assumptions about the given
refutation of P (x) ∪Q(y). Although the mapping E does not necessarily fulfill the condition
(ii) of an ε-pseudoexpectation, as E is defined for all the summands in the given refutation,
we reach a contradiction by a similar argument as in Lemma 7. J

4.3 Proof search over S with bounded coefficients
In this section we show how to find the bounded refutation, whose existence is guaranteed
by Theorem 9, in time polynomial in the size of S and logR. Again we tacitly assume that
the size of S is at least the number of distinct variables appearing in S. For proof search we
use the ellipsoid algorithm. Before we can apply the algorithm we need to show that we can
bound the other coefficients appearing in the proof using the bound on the tq polynomials.

As a first step we show that we can bound the coefficients appearing in the sum of squares
part of a given refutation. The next lemma is a simple special case of the main theorem
of [14].

I Lemma 10. Let p ∈ R[S2]. If there is a proof of non-negativity of p from ∅ over S, then
there are ri ∈ R[S] such that

p ≡
∑
i∈[k]

r2
i mod In

and ‖ri‖ is at most polynomial in 2poly(|S|) and ‖p‖ for any i ∈ [k].

Proof. The proof is practically the same as the proof of the main theorem of [14] with only
small differences. We’ll sketch the proof for completeness.

Let vS be a vector of all the monomials in S, and let C be a PSD matrix such that
p ≡ 〈C,vSvTS 〉 mod In. Now denote by MS the averaged matrix Eα∈{0,1}nvS(α)vTS (α) over
all Boolean assignments. Now, by Lemma 6 of [14], the smallest non-zero eigenvalue δ of MS

is at least 1/2poly(|S|).
Let now P =

∑
uuT be a projection to the zero eigenspace of MS . Now, for each u,

uTvS is zero on all Boolean assignments, and thus uTvS ≡ 0 mod In. Hence

〈C,vSvTS 〉 ≡ 〈C, (P + P⊥)vSvTS (P + P⊥)〉 mod In

≡ 〈C,P⊥vSvTSP⊥〉 mod In

≡ 〈P⊥CP⊥,vSvTS 〉 mod In
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Let C ′ = P⊥CP⊥, so that p ≡ 〈C ′,vSvTS 〉. Now, by taking averages on both sides, we
obtain that

Eα∈{0,1}n [p(α)] = 〈C ′,MS〉.

Now the left hand side is at most polynomial in ‖p‖ and |S|. On the other hand the right
hand side is at least δTr(C ′), since every non-zero eigenvalue of MS is at least δ and the zero
eigenspace of C ′ is included in the zero-eigenspace of MS . Since the Frobenius norm of C ′

is bounded by Tr(C ′) we have that each entry of C ′ is at most polynomial in 2poly(|S|) and
‖p‖. Now let ri, i ∈ [k] be such that

∑
i∈[k] r

2
i = 〈C ′,vSvTS 〉. Now each coefficient of ri is

bounded by a polynomial in 2poly(|S|) and ‖p‖. J

I Corollary 11. Let p ∈ R[S2]. If there is an R-bounded proof of p from Q over S, then
there are ri ∈ R[S] such that

p =
∑
i∈[k′]

r2
i +

∑
q∈Q

tqq mod In,

and the absolute value of all the coefficients appearing in each ri is at most polynomial in
2poly(|S|), R and ‖p‖.

Proof. If p ≡
∑
i∈[k] r

2
i +

∑
q∈Q tqq mod In, then p −

∑
q∈Q tqq ≡

∑
i∈[k] r

2
i mod In, and

the result follows from the previous lemma. J

Secondly we need to restrict the search space for the lifts of the Boolean axioms. In our
definition of a proof over a set of monomials, we worked over the Boolean ideal, and thus did
not restrict the lifts of the Boolean axioms in any way. However since the Boolean axioms
form a Gröbner basis for the Boolean ideal, we can show that there is a well-behaved set S̄
of monomials computable from S in time polynomial in |S| such that for any p ∈ R[S2] with
p ≡ 0 mod In there are ui, vi ∈ R[S̄] such that

p = ui(x2
i − xi) + vi(xi + x̄i − 1)

To see this consider any monomial ordering < such that Bn forms a Gröbner basis for In with
respect to <, and define the set Sm for any monomial m with the following algorithm.

Algorithm 2 Construction of the set Sm.

Initially I = {m} and Sm = ∅;
while leading monomial of some Boolean axiom divides LM(I) do

Let p be the first Boolean axiom such that LM(p) divides LM(I);
Let m′ be such that LM(I) = m′LM(p);
Let p′ = m−m′p;
Add m′ to Sm;
Add all the monomials in p′ to I;

end
Output Sm;

The runtime of the above algorithm is polynomial in the degree of m. Now define
S̄ =

⋃
m∈S2 Sm. Now, if S is a set of multilinear monomials, set S̄ can be computed in time

polynomial in |S|.
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I Lemma 12. For each p ∈ R[S2] such that p ≡ 0 mod In there are ui, vi ∈ R[S̄] such that

p =
∑
i∈[n]

(ui(x2
i − xi) + vi(xi + x̄i − 1)).

Moreover the absolute value of the coefficients in ui and vi is bounded by a polynomial in
‖p‖, |S| and the degree of p.

Proof. The proof follows since, as the Boolean axioms form a Gröbner basis for In with
respect to <, we have that p ≡ 0 mod In if and only if p reduces to 0 with the multivariate
division algorithm with respect to the monomial ordering <. The multivariate division
algorithm will construct ui and vi that are linear combinations of monomials from S̄. The
last part follows from the fact that the algorithm halts after polynomially many steps in the
degree of p and |S|. J

Now as a corollary to Corollary 11 and Lemma 12 we have the following

I Corollary 13. Let p ∈ R[S2]. If there is an R-bounded proof of p from Q over S, then
there are ri ∈ R[S] and ui, vi ∈ R[S̄] such that

p =
∑
i∈[k′]

r2
i +

∑
q∈Q

tqq +
∑
i∈[n]

(
ui
(
x2
i − xi

)
+ vi (xi + x̄i − 1)

)
,

and the absolute value of all the coefficients appearing in each si, ui and vi is at most
polynomial in 2poly(|S|), R and ‖p‖.

Now the existence of a proof given by Corollary 13 can be expressed as feasibility of a
set of linear and semidefinite constraints over explicitly bounded variables and so we can
find an approximate solution to the set of constraints in polynomial time using the ellipsoid
algorithm. We will sketch some details below. For details on ellipsoid algorithm see [7].

For each q ∈ Q, let q̄ ∈ RS such that q̄TvS = q, and introduce a vector xq of variables.
Similarly for each m,m′ ∈ S, introduce a variable xm,m′ . In addition, introduce variables
ym,x2

i
, ym,xi

for each i and m ∈ S̄ and variables zm,xi
, zm,x̄i

, zm,i for each i ∈ [n] and m ∈ S̄
Now let p =

∑
k∈S2 akk and introduce for every k ∈ S2 a constraint Ck = ak, where

Ck =
∑

m,m′∈S
mm′=k

(xm,m′ +
∑
q∈Q

q̄mxq,m′)

+
∑
i∈[n]

(
∑
m,∈S̄
mx2

i =k

ym,x2
i

+
∑
m∈S̄
mxi=k

(zm,xi
− ym,xi

) +
∑
m∈S̄
mx̄i=k

zm,x̄i
−
∑
m∈S̄
m=k

zm,i).

Let X be the matrix Xm,m′ = xm,m′ , and add the constraint X � 0. Finally add the
bounding constraints −R′ ≤ x ≤ R′ for each variable for R′ of magnitude polynomial in
2poly(|S|) , R and ‖p‖. Now any feasible solution gives a proof of p from Q with all coefficients
bounded by R′ and vice versa.

For ε > 0, an ε-relaxation of the above constraints is the set of constraints |Ck − ak| ≤ ε,
X � 0 and −R′ − ε ≤ x ≤ R′ + ε for every variable x. Now if there is a feasible solution for
the original set of constraints, the set of solutions of the ε-relaxation has volume at least
1/2poly(log(1/ε),|S|).

Choose now ε = 1/2poly(|S|). Now the ellipsoid method can find a feasible solution to the
ε-relaxation in time polynomial in |S|, logR and log ‖p‖. Any such solution translates into a
polynomial p+ q, where ‖q‖ ≤ ε. Now for each am that appears in q, define qm as follows: if
a > 0 let qm = a(1−m)2, and if a < 0 let qm = −a(m)2. Now adding all qm to p+ q gives
Sums-of-Squares proof of p− ε′ for some ε′ = 1/2poly(|S|).
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4.4 Feasible interpolation
Finally we obtain the feasible interpolation property for SOS as a corollary to Theorem 9 and
section 4.3. For the theorem below P (x, z) and Q(y, z) are sets of multilinear polynomials
over Boolean variables, where x, y and z are disjoint sequences of variables.

I Theorem 14. Let P (x, z) and Q(y, z) be sets of multilinear polynomials. There is a
polynomial time algorithm that given an SOS-refutation of P (x, z)∪Q(y, z) and an assignment
a to the variables z outputs an SOS-refutation of P (x, a) or an SOS-refutation of Q(y, a).

5 Concluding remarks

We have seen that both Polynomial Calculus and Sums-of-Squares admit a strong form of
feasible interpolation. Using similar methods we can also prove that Sherali-Adams proof
system admits equally strong feasible interpolation property. The proof can be obtained by
a simple modification of the proof for Sums-of-Squares. The proof is actually considerably
simpler since the problem of too large coefficients does not appear with Sherali-Adams proofs.

Sums-of-Squares proofs cannot admit monotone feasible interpolation, since the Clique-
Coloring formulas have small Sums-of-Squares refutations. Pudlák and Sgall prove in [13] that
degree bounded Polynomial Calculus admits monotone feasible interpolation with respect
to monotone polynomial programs. An interesting open question is whether one can prove
monotone feasible interpolation for Polynomial Calculus with respect to monotone circuits.

We only prove feasible interpolation for SOS for sets of equality constraints. If there
are inequality constraints, we can only prove a feasible disjunction property with respect
to monomial size: if there is a refutation of P (x, z) ∪Q(y, z) of monomial size s, then for
any a there is a refutation of P (x, a) or a refutation of Q(y, a) of monomial size O(s). The
problem is that we don’t have nice counterparts of the ε-pseudoexpectations when we add
inequality constraints.

Finally we want to emphasize that although we proved the feasible interpolation for
Sums-of-Squares only over the {0, 1}-values, importantly the argument works also for Boolean
values over the ±1 basis.
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