
Online Algorithms for Weighted Paging with
Predictions
Zhihao Jiang1

Tsinghua University, Beijing, China
jzh16@mails.tsinghua.edu.cn

Debmalya Panigrahi
Duke University, Durham, NC, USA
debmalya@cs.duke.edu

Kevin Sun
Duke University, Durham, NC, USA
ksun@cs.duke.edu

Abstract
In this paper, we initiate the study of the weighted paging problem with predictions. This continues
the recent line of work in online algorithms with predictions, particularly that of Lykouris and
Vassilvitski (ICML 2018) and Rohatgi (SODA 2020) on unweighted paging with predictions. We
show that unlike unweighted paging, neither a fixed lookahead nor knowledge of the next request
for every page is sufficient information for an algorithm to overcome existing lower bounds in
weighted paging. However, a combination of the two, which we call the strong per request prediction
(SPRP) model, suffices to give a 2-competitive algorithm. We also explore the question of gracefully
degrading algorithms with increasing prediction error, and give both upper and lower bounds for a
set of natural measures of prediction error.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online algorithms, paging

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.69

Category Track A: Algorithms, Complexity and Games

Related Version https://arxiv.org/abs/2006.09509

Funding Debmalya Panigrahi: Supported in part by NSF grants CCF-1535972, CCF-1955703, an
NSF CAREER Award CCF-1750140, and the Indo-US Virtual Networked Joint Center on Algorithms
under Uncertainty.
Kevin Sun: Supported in part by NSF grants CCF-1535972, CCF-1527084, CCF-1955703, and an
NSF CAREER Award CCF-1750140.

1 Introduction

The paging problem is among the most well-studied problems in online algorithms. In this
problem, there is a set of n pages and a cache of size k < n. The online input comprises a
sequence of requests for these pages. If the requested page is already in the cache, then the
algorithm does not need to do anything. But, if the requested page is not in the cache, then
the algorithm suffers what is known as a cache miss and must bring the requested page into
the cache. If the cache is full, then an existing page must be evicted from the cache to make
room for the new page. The goal of the online algorithm is to minimize the total number of
cache misses in the unweighted paging problem, and the total weight of the evicted pages in
the weighted paging problem. It is well-known that for both problems, the best deterministic
algorithms have a competitive ratio of O(k) and the best randomized algorithms have a
competitive ratio of O(log k) (see, e.g., [4, 2]).

1 Work done while visiting Duke University.

EA
T

C
S

© Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 69; pp. 69:1–69:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jzh16@mails.tsinghua.edu.cn
mailto:debmalya@cs.duke.edu
mailto:ksun@cs.duke.edu
https://doi.org/10.4230/LIPIcs.ICALP.2020.69
https://arxiv.org/abs/2006.09509
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2 Online Algorithms for Weighted Paging with Predictions

Although the paging problem is essentially solved from the perspective of competitive
analysis, it also highlights the limitations of this framework. For instance, it fails to distinguish
between algorithms that perform nearly optimally in practice such as the least recently used
(LRU) rule and very naïve strategies such as flush when full that evicts all pages whenever the
cache is full. In practice, paging algorithms are augmented with predictions about the future
(such as those generated by machine learning models) to improve their empirical performance.
To model this, for unweighted paging, several lookahead models have been proposed where
only a partial prediction of the future leads to algorithms that are significantly better than
what can be obtained in traditional competitive analysis. But, to the best of our knowledge,
no such results were previously known for the weighted paging problem. In this paper, we
initiate the study of the weighted paging problem with future predictions.

For unweighted paging, it is well-known that evicting the page whose next request is
farthest in the future (also called Belady’s rule) is optimal. As a consequence, it suffices
for an online algorithm to simply predict the next request of every page (we call this per
request prediction or PRP in short) in order to match offline performance. In fact, Lykouris
and Vassilvitskii [9] (see also Rohatgi [13]) showed recently that in this prediction model,
one can simultaneously achieve a competitive ratio of O(1) if the predictions are accurate,
and O(log k) regardless of the quality of the predictions. Earlier, Albers [1] used a different
prediction model called `-strong lookahead, where we predict a sequence of future requests
that includes ` distinct pages (excluding the current request). For ` = n− 1, this prediction
is stronger than the PRP model, since the algorithm can possibly see multiple requests for a
page in the lookahead sequence. But, for ` < n− 1, which is typically the setting that this
model is studied in, the two models are incomparable. The main result in [1] is to show that
one can obtain a constant approximation for unweighted paging for ` ≥ k − 2.

Somewhat surprisingly, we show that neither of these models are sufficient for weighted
paging. In particular, we show a lower bound of Ω(k) for deterministic algorithms and
Ω(log k) for randomized algorithms in the PRP model. These lower bounds match, up to
constants, standard lower bounds for the online paging problem (without prediction) (see,
e.g., [11]), hence establishing that the PRP model does not give any advantage to the online
algorithm beyond the strict online setting. Next, we show that for `-strong lookahead, even
with ` = k, there are lower bounds of Ω(k) for deterministic algorithms and Ω(log k) for
randomized algorithms, again asymptotically matching the lower bounds from online paging
without prediction. Interestingly, however, we show that a combination of these prediction
models is sufficient: if ` = n − 1 in the strong lookahead setting, then we get predictions
that subsume both models; and, in this case, we give a simple deterministic algorithm with a
competitive ratio of 2 for weighted paging, thereby overcoming the online lower bounds.

Obtaining online algorithms with predictions, however, is fraught with the risk that the
predictions are inaccurate which renders the analysis of the algorithms useless. Ideally, one
would therefore, want the algorithms to also be robust, in that their performance gracefully
degrades with increasing prediction error. Recently, there has been significant interest in
designing online algorithms with predictions that achieve both these goals, of matching
nearly offline performance if the predictions are correct, and of gracefully degrading as the
prediction error increases. Originally proposed for the (unweighted) paging problem [9], this
model has gained significant traction in the last couple of years and has been applied to
problems in data structures [10], online decision making [12, 6], scheduling theory [12, 8],
frequency estimation [7], etc. Our final result contributes to this line of research.

First, if the online algorithm and offline optimal solution both use a cache of size k, then
we show that no algorithm can asymptotically benefit from the predictions while achieving
sublinear dependence on the prediction error. Moreover, if we make the relatively modest

Z. Jiang, D. Panigrahi, and K. Sun 69:3

assumption that the algorithm is allowed a cache that contains just 1 extra slot than that of
the optimal solution, then we can achieve constant competitive ratio when the prediction
error is small.

1.1 Overview of models and our results
Our first result is a lower bound for weighted paging in the PRP model. Recall that in the
PRP model, in addition to the current page request, the online algorithm is provided the
time-step for the next request of the same page. For instance, if the request sequence is
(a, b, a, c, d, b, . . .), then at time-step 1, the algorithm sees request a and is given position 3,
and at time-step 2, the algorithm sees request b and is given position 6.

I Theorem 1. For weighted paging with PRP, any deterministic algorithm is Ω(k)-competi-
tive, and any randomized algorithm is Ω(log k)-competitive.

Note that these bounds are tight, because there exist online algorithms without prediction
whose competitive ratios match these bounds (see Chrobak et al. [4] and Bansal et al. [2]).

Next, for the `-strong lookahead model, we show lower bounds for weighted paging. Recall
that in this model, the algorithm is provided a lookahead into future requests that includes
` distinct pages. For instance, if ` = 3 and the request sequence is (a, b, a, c, d, b, . . .), then
at time-step 1, the algorithm sees request a and is given the lookahead sequence (b, a, c)
since it includes 3 distinct pages. At time step 2, the algorithm sees request b and is given
(a, c, d). Note the difference with the PRP model, which would not be give the information
that the request in time-step 5 is for page d, but does give the information that the request
in time-step 6 is for page b.

I Theorem 2. For weighted paging with `-strong lookahead where ` ≤ n−k, any deterministic
algorithm is Ω(k)-competitive, and any randomized algorithm is Ω(log k)-competitive.

For weighted paging with `-strong lookahead where n−k+1 ≤ ` ≤ n−1, any deterministic
algorithm is Ω(n− `)-competitive, and any randomized algorithm is Ω(log(n− `))-competitive.

In contrast to these lower bounds, we show that a prediction model that combines features
of these individual models gives significant benefits to an online algorithm. In particular,
combining PRP and `-strong lookahead, we define the following prediction model:

SPRP (“strong per-request prediction”): On a request for page p, the predictor
gives the next time-step when p will be requested and all page requests till that request.

This is similar to (n − 1)-strong lookahead, but is slightly weaker in that it does not
provide the first request of every page at the outset. After each of the n pages has been
requested, SPRP and (n− 1)-strong lookahead are equivalent.

I Theorem 3. There is a deterministic 2-competitive for weighted paging with SPRP.

So far, all of these results assume that the prediction model is completely correct.
However, in general, predictions can have errors, and therefore, it is desirable that an
algorithm gracefully degrades with increase in prediction error. To this end, we also give
upper and lower bounds in terms of the prediction error.

For unweighted paging, Lykouris and Vassilvitski [9] basically considered two measures
of prediction error. The first, called `pd in this paper, is defined as follows: For each input
request pt, we increase `pd by w(pt) times the absolute difference between the predicted
next-arrival time and the actual next-arrival time. For unweighted paging, Lykouris and
Vassilvitskii [9] gave an algorithm with cost O(OPT +

√
`pd · OPT). Unfortunately, we rule

out an analogous result for weighted paging.

ICALP 2020

69:4 Online Algorithms for Weighted Paging with Predictions

I Theorem 4. For weighted paging with SPRP, there is no deterministic algorithm whose cost
is o(k)·OPT+o(`pd), and there is no randomized algorithm whose cost is o(log k)·OPT+o(`pd).

It turns out that the `pd error measure is closely related to another natural error measure
that we call the `1 measure. This is defined as follows: for each input request pt, if the
prediction qt is not the same as pt, then increase `1 by the sum of weights w(pt) + w(qt).
(This is the `1 distance between the predictions and actual requests in the standard weighted
star metric space for the weighted paging problem.) The lower bound for `pd continues to
hold for `1 as well, and is tight.

I Theorem 5. For weighted paging with SPRP, there is no deterministic algorithm whose cost
is o(k) ·OPT+o(`1), and there is no randomized algorithm whose cost is o(log k) ·OPT+o(`1).
Furthermore, there is a deterministic algorithm with SPRP with cost O(OPT + `1).

One criticism of both the `pd and `1 error measures is that they are not robust to insertions
or deletions from the prediction stream. To counter this, Lykouris and Vassilvitski [9] used a
variant of the classic edit distance measure, and showed a constant competitive ratio for this
error measure. For weighted paging, we also consider a variant of edit distance, called `ed and
formally defined in Section 5, which allows insertions and deletions between the predicted
and actual request streams.2 Unfortunately, as with `pd and `1, we rule out algorithms
that asymptoticaly benefit from the predictions while achieving sublinear dependence on `ed.
Furthermore, if the algorithm were to use a cache with even one extra slot than the optimal
solution, then we show that even for weighted paging, we can achieve a constant competitive
algorithm. We summarize these results in the next theorem.

I Theorem 6. For weighted paging with SPRP, there is no deterministic algorithm whose cost
is o(k)·OPT+o(`ed), and there is no randomized algorithm whose cost is o(log k)·OPT+o(`ed).
In the same setting, there exists a randomized algorithm that uses a cache of size k+ 1 whose
cost is O(OPT + `ed), where OPT uses a cache of size k.

1.2 Related work
We now give a brief overview of the online paging literature, highlighting the results that
consider a prediction model for future requests. For unweighted paging, the optimal offline
algorithm is Belady’s algorithm, which always evicts the page that appears farthest in the
future [3]. For online paging, Sleator and Tarjan [14] gave a deterministic k-competitive
algorithm, and Fiat et al. [5] gave a randomized O(log k)-competitive algorithm; both results
were also shown to be optimal. For weighted online paging, Chrobak et al. [4] gave a
deterministic k-competitive algorithm, and Bansal et al. [2] gave an O(log k)-competitive
randomized algorithm, which are also optimal by extension.

Recently, Lykouris and Vassilvitskii [9] introduced a prediction model that we call
PRP in this paper: on each request p, the algorithm is given a prediction of the next
time at which p will be requested. For unweighted paging, they gave a randomized
algorithm, based on the “marker” algorithm of Fiat et al. [5], with competitive ratio
O(min(

√
`pd/OPT, log k)). Here, `pd is the absolute difference between the predicted arrival

and actual arrival times of requests, summed across all requests. They also perform a tighter
analysis yielding a competitive ratio of O(min(ηed/OPT, log k)), where ηed is the edit distance

2 For technical reasons, neither `ed in this paper nor the edit distance variant in [9] exactly match the
classical definition of edit distance.

Z. Jiang, D. Panigrahi, and K. Sun 69:5

between the predicted sequence and the actual input. Subsequently, Rohatgi [13] improved
the former bound to O(1 + min((`pd/OPT)/k, 1) log k) and also proved a lower bound of
Ω(log min((`pd/OPT)/(k log k), k)).

Albers [1] studied the `-strong lookahead model: on each request p, the algorithm is
shown the next ` distinct requests after p and all pages within this range. For unweighted
paging, Albers [1] gave a deterministic (k − `)-competitive algorithm and a randomized
2Hk−`-competitive algorithm. Albers also showed that these bounds are essentially tight:
if l ≤ k − 2, then any deterministic algorithm has competitive ratio at least k − `, and any
randomized algorithm has competitive ratio at least Ω(log(k − `)).

Finally, we review the paging model in which the offline adversary is restricted to a
cache of size h < k, while the online algorithm uses a larger cache of size k. For this model,
Young [16] gave a deterministic algorithm with competitive ratio k/(k − h+ 1) and showed
that this is optimal. In another paper, Young [15] showed that the randomized “marker”
algorithm is O(log(k/k − h))-competitive and this bound is optimal up to constants.

Roadmap

In Section 2, we show the lower bounds stated in Theorem 1 for the PRP model. The lower
bounds for the `-strong lookahead model stated in Theorem 2 are proven in Section 3. In
Section 4, we state and analyze the algorithm for the SPRP model with no error, thereby
proving Theorem 3. Finally, in Section 5, we consider the SPRP model with errors, and focus
on the upper and lower bounds in Theorems 4, 5, and 6. Detailed proofs of these bounds
appear in the full version of this paper.

2 The Per-Request Prediction Model (PRP)

In this section, we give the lower bounds stated in Theorem 1 for the PRP model. Our
strategy, at a high level, will be the same in both the deterministic and randomized cases: we
consider the special case where the cache size is exactly one less than the number of distinct
pages. We then provide an algorithm that generates a specific input. In the deterministic
case, this input will be adversarial, based on the single page not being in the cache at any
time. In the randomized case, the input will be oblivious to the choices made by the paging
algorithm but will be drawn from a distribution. We will give a brief overview of the main
ideas that are common to both lower bound constructions first, and then give the details of
the randomized construction in this section. The details of the deterministic construction
are deferred to the full paper.

Let us first recall the Ω(k) deterministic lower bound for unweighted caching without
predictions. Suppose the cache has size k and the set of distinct pages is {a0, a1, . . . , ak}. At
each step, the adversary requests the page a` not contained in the cache of the algorithm
ALG. Then ALG incurs a miss at every step, while OPT, upon a miss, evicts the page whose
next request is furthest in the future. Therefore, ALG misses at least k more times before
OPT misses again.

Ideally, we would like to imitate this construction. But, the adversary cannot simply
request the missing page a` because that could violate the predictions made on previous
requests. Our first idea is to replace this single request for a` with a “block” of requests
of pages containing a` in a manner that all the previous predictions are met, but ALG still
incurs the cost of page a` in serving this block of requests.

But, how do we guarantee that OPT only misses requests once for every k blocks? Indeed,
it is not possible to provide such a guarantee. Instead, as a surrogate for OPT, we use an
array of k algorithms ALGi for 1 ≤ i ≤ k, where each ALGi follows a fixed strategy: maintain

ICALP 2020

69:6 Online Algorithms for Weighted Paging with Predictions

all pages except a0 and ai permanently in the cache, and swap a0 and ai as required to serve
their requests. Our goal is to show that the sum of costs of all these algorithms is a lower
bound (up to constants) on the cost of ALG; this would clearly imply an Ω(k) lower bound.

This is where the weights of pages come handy. We set the weight w(ai) of page ai

in the following manner: w(ai) = ci for some constant c ≥ 2. Now, imagine that a block
requested for a missing page a` only contains pages a0, a1, . . . , a` (we call this an `-block).
The algorithms ALGi for i ≤ ` suffer a cache miss on page ai in this block, while the remaining
algorithms ALGi for i > ` do not suffer a cache miss in this block. Moreover, the sum of
costs of all the algorithms ALGi for i ≤ ` in this block is at most a constant times that of
the cost of ALG alone, because of the geometric nature of the cost function.

The only difficulty is that by constructing blocks that do not contain pages ai for i > `,
we might be violating the previous predictions for these pages. To overcome this, we create
an invariant where for every i, an (i + 1)-block must be introduced after a fixed number
of i-blocks. Because of this invariant, we are sometimes forced to introduce a larger block
than that demanded by the missing page in ALG. To distinguish between these two types of
blocks, we call the ones that exactly correspond to the missing page a regular block, and the
ones that are larger irregular blocks. Irregular blocks help preserve the correctness of all
previous predictions, but the sum of costs of ALGi’s on an irregular block can no longer be
bounded against that of ALG. Nevertheless, we can show that the number of irregular blocks
is small enough that this extra cost incurred by ALGi’s in irregular blocks can be charged off
to the regular blocks, thereby proving the deterministic lower bound:

I Theorem 7. For weighted paging with PRP, any deterministic algorithm is Ω(k)-competitive.

A formal proof of this theorem is deferred to the full paper. Instead, we focus on proving
the lower bound for randomized algorithms.

2.1 Randomized Lower Bound
This subsection is devoted to proving the following theorem:

I Theorem 8. For weighted paging with PRP, any randomized algorithm is Ω(log k)-
competitive.

Here, we still use the same idea of request blocks, but now the input is derived from a fixed
distribution and is not aware of the state of ALG. The main idea is to design a distribution
over block sizes in a manner that still causes any fixed deterministic algorithm ALG to suffer
a large cost in expectation, and then invoke Yao’s minimax principle to translate this to a
randomized lower bound.

Let Hk = 1 + 1/2 + · · · + 1/k ≈ ln k denote the k-th harmonic number. The input is
defined as follows:

1. For 0 ≤ i ≤ k, set ui = (2ckHk + 2)i and let yi = 0 for i < k.
2. Repeat the following:

a. Select a value of ` according to the following probability distribution: Pr[` = j] = c−1
cj+1

for j ∈ {0, 1, . . . , k − 1} and Pr[` = k] = 1
ck .

b. Increase ` until ` = k or y` < 2ckHk.
c. For j from 0 to `,

i. Set all requests from time t + 1 through uj − 1 as aj−1. (Note: If j = 0, then
uj = t+ 1, so this step is empty.)

ii. Set the request at time uj as aj .
iii. Let t = uj .

Z. Jiang, D. Panigrahi, and K. Sun 69:7

d. For 0 ≤ j ≤ `, let uj = t+ (2ckHk + 2)j .
e. For 0 ≤ j < `, let yj = 0. If ` < k, increase y` by one.

Note that if ` is not increased in Step 2b, then this block is regular ; otherwise, it is
irregular. Let vi denote the number of regular i-blocks, and let v′i denote the number of
irregular i-blocks. A j-block is an i-plus block if and only if j ≥ i. We first lower bound the
cost of ALG by the number of blocks.

I Lemma 9. Every requested block increases E [cost(ALG)] by at least a constant.

Proof. At every time step, the cache of ALG is missing some page aj . The probability that
aj is requested in the next block is at least Pr[` = j] ≥ 1

2cj , so the expected cost of serving
this block is at least cj · Pr[` = j] = Ω(1). J

For the rest of the proof, we upper bound the cost of OPT. We first upper bound the
number of regular blocks, and then we use this to bound the number of irregular blocks.

I Lemma 10. For every i ∈ {0, 1, . . . , k}, we have E [vi] ≤ 2c−im.

Proof. Consider the potential function φ(y) =
∑k−1

i=0 yi ≥ 0. The initial value of φ(y) is 0.
Notice that whenever a regular block is generated, φ(y) increases by at most 1, and whenever
an irregular block is generated, φ(y) decreases by at least 2ckHk. Thus, the number of
irregular blocks is at most the number of regular blocks, so the total number of blocks is at
most 2m. The lemma follows by noting that the probability that a block is a regular i-block
is at most c−i. J

I Lemma 11. For every i ∈ {0, 1, . . . , k}, we have E [v′i] ≤ 2m
cikHk

.

Proof. Observe that v′i ≤ 1
2ckHk

(v′i−1 + vi−1) and v′1 ≤ 1
2ckHk

v0. Repeatedly applying this
inequality yields

E [v′i] ≤
i−1∑
j=0

E [vj]
(2ckHk)i−j

≤
i−1∑
j=0

2c−jm

(2ckHk)i−j
= 2m

ci

i−1∑
j=0

1
(2kHk)i−j

≤ 2m
cikHk

,

where the second inequality holds due to Lemma 10. J

Now let A denote the entire sequence of requests, B the subsequence of A comprising all
regular blocks, and m the number of blocks in B. We bound OPT = OPT(A) in terms of
the optimal cost on B and the number of irregular blocks.

I Lemma 12. Let OPT(A) and OPT(B) denote the optimal offline algorithm on request
sequences A and B respectively. Then cost(OPT(A)) ≤ cost(OPT(B)) + 4c

∑k
i=0 v

′
ic

i.

Proof. Consider the following algorithm ALGA on request sequence A:
1. For requests in regular blocks, imitate OPT(B). That is, copy the cache contents when

OPT(B) serves this block.
2. Upon the arrival of an irregular i-block, let a` denote the page not in the cache.

a. If ` > i, then the cost of serving this block is 0.
b. If 1 ≤ ` ≤ i, evict a0 when a` is requested. Then evict a` and fetch a0 at the end of

this block; the cost of this is 2(ci + 1).
c. If ` = 0, we evict a1 and fetch a0 when a0 is requested. Then we evict a0 and fetch a1

when a1 is requested or at the end of this block (if a1 is not requested in this block).
The cost is 2(c+ 1).

ICALP 2020

69:8 Online Algorithms for Weighted Paging with Predictions

For each irregular block, notice that the cache of ALGA is the same at the beginning
and the end of the block. So Step 2 does not influence the imitation in Step 1. The cost of
serving an irregular i-block is at most 4ci+1. Combining these facts proves the lemma. J

To bound OPT(B), we divide the sequence B into phases. Each phase is a contiguous
sequence of blocks. Phases are defined recursively, starting with 0-phases all the way through
to k-phases. A 0-phase is defined as a single request. For i ≥ 1, let Mi denote the first time
that an i-plus-block is requested and let Qi denote the first time that c (i− 1)-phases have
appeared. An i-phase ends immediately after Mi and Qi have both occurred. In other words,
an i-phase is a minimal contiguous subsequence that contains c (i− 1)-phases and an i-plus
block. (Notice that for a fixed i, the set of i-phases partition the input sequence.)

For any k-phase, we upper bound OPT by considering an algorithm ALGk
B that is optimal

for B subject to the additional restriction that a0 is not in the cache at the beginning or end
of any k-phase. We bound the cost of ALGk

B in any k-phase using a more general lemma.

I Lemma 13. For any i, let ALGi
B be an optimal algorithm on B subject to the following: a0

is not in the cache at the beginning or the end of any i-phase. Then the cost of ALGi
B within

an i-phase is at most 4ci+1. In particular, in each k-phase, the algorithm ALGk
B incurs cost

at most 4ck+1.

Proof. We shall prove this by induction on i. If i = 0, then the phase under consideration is
one step. To serve one step, we can evict a1 to serve a0, and then evict a0 if necessary for a
total cost of 4c. Now assume that the lemma holds for all values in {0, . . . , i − 1}. Let si

denote the first i-plus block; there are two possible cases for the structure of an i-phase:
1. si appears after the c (i− 1)-phases: In this case, the i-phase ends after this block. Thus,

one strategy to serve the phase is to evict ai at the beginning and evict a0 when ai is
requested within si. These two evictions cost at most 4ci+1.

2. si appears within the first c (i− 1)-phases: By the inductive hypothesis, the algorithm
can serve these c (i− 1)-phases with total cost at most c · 4ci = 4ci+1. J

Finally, we lower bound the expected number of blocks in an i-phase. Since the total
number of blocks is fixed, this allows us to upper bound the number of k-phases in the entire
sequence. The next proposition forms the technical core of the lower bound:

I Proposition 14. For i ≥ 1, the expected number of blocks in an i-phase is at least ciHi/4.

We defer the proof of Proposition 14 to the end of this section; first, we use it to prove
Theorem 8.

Proof of Theorem 8. Let OPT(A) denote the cost of an optimal algorithm on the request
sequence A, and let OPT(B) denote the cost of an optimal algorithm on the regular blocks
B. Then we have the following:

E [cost(OPT(A))] ≤ E [cost(OPT(B))] + 4c
k∑

i=0
ci · E [v′i] (Lemma 12)

≤ E
[
cost(ALGk

B)
]

+ 4c
k∑

i=0
ci · 2m

cikHk
(Lemma 11)

≤ 4ck+1 · E [Nk(B)] + 16cm
Hk

, (Lemma 13)

Z. Jiang, D. Panigrahi, and K. Sun 69:9

where Nk(B) denotes the number of k-phases in B. According to Proposition 14, the
expected number of blocks in a k-phase is at least ckHk/4, which implies E [Nk(B)] ≤ 4m

ckHk
.

Combining this with the above, we get

E [cost(OPT(A))] ≤ 16cm
Hk

+ 16cm
Hk

= O

(
m

Hk

)
.

Since any algorithm incurs at least some constant cost in every block by Lemma 9, its cost is
Ω(m), which concludes the proof. J

Proof of Proposition 14

Let zi be a random variable denoting the number of i-plus blocks in a fixed i-phase. We will
first prove a sequence of three lemmas to yield a lower bound on E [zi].

I Lemma 15. For any i ≥ 1, we have E [zi] = E [zi−1] + Pr{Mi > Qi}.

Proof. Recall that an i-phase ends once it contains c (i− 1)-phases and an i-plus block. In
each of the (i− 1)-phases, the expected number of (i− 1)-plus blocks is E [zi−1], so the total
expected number of (i− 1)-plus blocks in the first c (i− 1)-phases of an i-phase is c ·E [zi−1].

An elementary calculation shows that an (i − 1)-plus block is an i-plus block with
probability 1/c. Thus, in expectation, the first c (i−1)-phases of this i-phase contain E [zi−1]
i-plus blocks.

If there are no i-plus blocks in the first c (i− 1)-phases, then the i-phase ends as soon
as an i-plus block appears. In this case, we have zi = 1, and this happens with probability
exactly Pr{Mi > Qi}. Otherwise, the i-phase ends immediately after the c (i− 1)-phases, in
which case no additional term is added. J

I Lemma 16. For any i ≥ 1, we have Pr{Mi > Qi} ≥ e−2E[zi−1].

Proof. We let v1, . . . , vc denote the number of i-plus blocks in the first c (i− 1)-phases and
let V =

∑c
i=1 vi. As we saw in the proof of Lemma 15, an (i − 1)-plus block is an i-plus

block with probability 1/c, so the probability that an (i− 1)-plus block is an (i− 1)-block is
1− 1/c. Thus, we have

Pr{Mi > Qi} = Ev1,v2,...,vc

[(
1− 1

c

)V
]
≥
(

1− 1
c

)E[V]
=
(

1− 1
c

)c·E[zi−1]

where the inequality follows from convexity and the second equality holds due to linearity of
expectation. The lemma follows from this and the fact that c ≥ 2. J

I Lemma 17. For any i ≥ 0, we have E [zi] ≥ 1
4Hi.

Proof. When i ≤ 4, we have E [zi] ≥ 1 ≥ 1
4Hi. Now for induction, assume the statement

holds for j < i, and consider the two possible cases:
1. If E [zi−1] ≥ 1

2Hi−1, then Lemma 15 implies E [zi] ≥ E [zi−1] ≥ 1
4Hi.

2. If E [zi−1] < 1
2Hi−1 <

1
2 (1 + ln(i− 1)), then

E [zi] = E [zi−1] + Pr{Mi > Qi} ≥ 1
4Hi−1 + e−2·E[zi−1], where the equality follows from

Lemma 15 and the inequality holds by the induction hypothesis and Lemma 16. Thus,
E [zi] ≥ 1

4Hi−1 + 1
e ·

1
i−1 ≥

1
4Hi. J

Now let Li denote the number of blocks in an i-phase; recall that our goal is to lower
bound its expectation by ciHi/4. The following lemma relates Li to zi.

ICALP 2020

69:10 Online Algorithms for Weighted Paging with Predictions

I Lemma 18. For any i ≥ 0, we have E [Li] = ci · E [zi].

Proof. When i = 0, the lemma holds because E[L0] = E[z0] = 1, so now we assume i ≥ 1.
Recall that an i-phase contains at least c (i − 1)-phases, so the expected total number of
blocks in the first c (i− 1)-phases of this i-phase is c · E [Li−1].

If there are no i-plus-blocks in these c (i−1)-phases, we need to wait for an i-plus block to
appear in order for the i-phase to end. This is a geometric random variable with expectation
ci. Thus, we have: E [Li] = c · E [Li−1] + ci · Pr{Mi > Qi}. Applying this recursively,

E [Li] = ci

 i∑
j=1

Pr{Mj > Qj}+ E [L0]

 = ci

 i∑
j=1

Pr{Mj > Qj}+ 1


Furthermore, from Lemma 15, we have

E [zi] = E [zi−1] + Pr{Mi > Qi} = E [z0] +
i∑

j=1
Pr{Mj > Qj} = 1 +

i∑
j=1

Pr{Mj > Qj}.

Combining the two equalities yields the lemma. J

We conclude by proving Proposition 14. Fix some i ≥ 1. Using Lemma 18 and Lemma 17,
we get E [Li] = ci · E [zi] ≥ ciHi

4 .

3 The `-Strong Lookahead Model

Now we consider the following prediction model: at each time t, the algorithm can see request
pt as well as L(t), which is the set of all requests through the `-th distinct request. In other
words, the algorithm can always see the next contiguous subsequence of ` distinct pages
(excluding pt) for a fixed value of `. This model was introduced by Albers [1], who (among
other things) proved the following lower bounds on algorithms with `-strong lookahead.

I Lemma 19 ([1]). For unweighted paging with `-strong lookahead where ` ≤ k − 2, any
deterministic algorithm is Ω(k − `)-competitive. For randomized algorithms, the bound is
Ω(log(k − `)).

Notice that Lemma 19 implies that for small values of `, `-strong lookahead provides
no asymptotic improvement to the competitive ratio of any algorithm. The proof proceeds
by constructing a particular sequence of requests and analyzing the performance of any
algorithm on this sequence. By slightly modifying the sequence, we can prove a similar result
for the weighted paging problem.

I Theorem 20. For weighted paging with `-strong lookahead where n − k + 1 ≤ ` ≤
n− 1, any deterministic algorithm is Ω(n− `)-competitive, and any randomized algorithm is
Ω(log(n− `))-competitive.

Proof. We modify the adversarial input in Lemma 19 as follows: insert n− k − 1 distinct
pages with very low weight between every two pages. This causes the lookahead to have
effective size `′ = `− (n− k − 1), because at any point L(t) contains at most `′ pages with
normal weight. Note that if ` ≤ n− k, then `′ ≤ 1, and from Lemma 19, a lookahead of size
1 provides no asymptotic benefit to any algorithm.

If ` ≤ n − 3, then `′ ≤ k − 2. Thus, we can apply Lemma 19 to conclude that for any
deterministic algorithm, the competitive ratio is Ω(k − `′) = Ω(n − ` − 1), and for any
randomized algorithm, the competitive ratio is Ω(log(n− `− 1)). Otherwise, if ` ≥ n− 2,
then the lower bounds continue to hold because when ` = n− 3, they are Ω(1). J

Z. Jiang, D. Panigrahi, and K. Sun 69:11

4 The Strong Per-Request Prediction Model (SPRP)

In this section, we define a simple algorithm called Static that is 2-competitive when the
SPRP predictions are always correct. At any time step t, let L(t) denote the set of pages
in the current prediction. The Static algorithm runs on “batches” of requests. The first
batch starts at t = 1 and comprises all requests in L(1). The next batch starts once the first
batch ends, i.e. at |L(1)|+ 1, and comprises all predicted requests at that time, and so on.
Within each batch, the Static algorithm runs the optimal offline strategy, computed at the
beginning of the batch on the entire set of requests in the batch.

I Theorem 21. The Static algorithm is 2-competitive when the predictions from SPRP are
entirely correct.

Proof. In this proof, we assume w.l.o.g. that evicting page p costs w(p), and fetches can be
performed for free.

Suppose the algorithm runs a total of m batches B1, . . . , Bm. Consider a page p in some
batch Bi where i < m. If p appears again after Bi, then upon seeing the last request for p in
Bi, SPRP will include p in the next batch Bi+1. (If p does not appear again, then the next
batch must be the last batch.) Therefore, the batches satisfy B1 ⊆ B2 ⊆ · · · ⊆ Bm−1.

Now let OPT denote a fixed optimal offline algorithm for the entire sequence, and let
OPTi denote the cost of OPT incurred in Bi. Similarly, let S denote the total cost of Static,
and let Si denote the cost that Static incurs in Bi. So we have OPT =

∑m
i=1 OPTi and

S =
∑m

i=1 Si.
Fix a batch index j ∈ {2, 3, . . . ,m} and let C(OPTj−1) and C(Sj−1) denote the cache

states of OPT and Static immediately before batch Bj . We know that Static runs an
optimal offline algorithm on Bj . One feasible solution is to immediately change the cache
state to C(OPTj−1), and then imitate what OPT does to serve Bj . Since we charge for
evictions, we have

Sj ≤ OPTj +
∑

p∈C(Sj−1)\C(OPTj−1)

w(p), for every j ∈ {2, 3, . . . ,m}.

Consider some p ∈ C(Sj−1)\C(OPTj−1): since p ∈ C(Sj−1), we know p must have appeared
before the start of Bj (because Static does not fetch pages that have never been requested).
Since Bj−1 contains all pages that appeared before, in particular, p must be in Bj−1.
Furthermore, since p 6∈ C(OPTj−1), then at some point while serving Bj−1, OPT must have
evicted p. Thus, Sj ≤ OPTj + OPTj−1. Summing over all j ≥ 2 and S1 ≤ OPT1 proves the
theorem. J

5 The SPRP Model with Prediction Errors

In this section, we consider the SPRP prediction model with the possibility of prediction
errors. We first define three measurements of error and then prove lower and upper bounds
on algorithms with imperfect SPRP, in terms of these error measurements.

Let A denote a prediction sequence of length m, and let B denote an input sequence of
length n. For any time t, let At and Bt denote the t-th element of A and B, respectively.
We also define the following for any time step t:

prev(t): The largest i < t such that Bi = Bt (or 0 if no such if no such i exists).
next(t): The smallest i > t such that Bi = Bt (or n+ 1 if no such i exists).
pnext(t): The smallest i > t such that Ai = Bt (or m+ 1 if no such i exists).
We say two requests Ai = Bj = p can be matched only if pnext(prev(j)) = i. In other
words, Ai must be the earliest occurrence of p in A after the time of the last p in B before
Bj . Furthermore, no edges in a matching are allowed to cross.

ICALP 2020

69:12 Online Algorithms for Weighted Paging with Predictions

First, we define a variant of edit distance between the two sequences.

I Definition 22. The edit distance `ed between A and B is the total minimum weight of
unmatched elements of A and B.

Next, we define an error measure based on the metric 1-norm distance between corresponding
requests on the standard weighted star metric denoting the weighted paging problem.

I Definition 23. The 1-norm distance `1 between A and B is defined as follows:

`1 =
n∑

i=1
Ai 6=Bi

(w(Ai) + w(Bi)) . (1-norm)

Third, we define an error measure inspired by the PRP model that was also used in [9].

I Definition 24. The prediction distance `pd between A and B is defined as follows:

`pd =
n∑

i=1
w(Bi) · |next(i)− pnext(i)| .

5.1 Lower Bounds

In this section, we give an overview of the lower bounds stated in Theorems 4, 5, and 6.
We focus on the `ed (i.e., Theorem 6) error measurement; the proofs for `1 and `pd follow
similarly. We defer some of the proofs to the full paper.

Our high-level argument proceeds as follows: recall that in Section 2, we showed a lower
bound of Ω(k) on the competitive ratio of deterministic PRP-based algorithms. Given an
SPRP algorithm ALG, we design a PRP algorithm ALG′ specifically for the input generated
by the procedure described in Section 2. (Recall that this input is a sequence of blocks,
where a block is a string of a0’s, a1’s, and so on, ending with a single page a` for some `.)

We show that if ALG has cost o(k) · OPT + o(`ed) (where OPT is the optimal cost of the
SPRP instance), then ALG′ will have cost o(k) · OPT′ (where OPT′ is the optimal cost of
the PRP instance), which contradicts our PRP lower bound of Ω(k) on this input. For the
randomized lower bound, we use the same line of reasoning, but replace Ω(k) with Ω(log k).

Let k′ denote the cache size of ALG′. Recall that the set of possible page requests received
by ALG′ is A = {a0, a1, . . . , ak′} where w(ai) = ci for some constant c ≥ 2. The oracle ALG,
maintained by ALG′, has cache size k = k′ + 1. The set of possible requests received by ALG
is A ∪ {b} where w(b) = 1/v for some sufficiently large value of v. (Thus, the instance for
ALG has k + 1 distinct pages.) Our PRP algorithm ALG′ must define a prediction and an
input sequence for ALG.

The prediction sequence for ALG. For any strings X and Y , let X + Y denote the
concatenation of X and Y and let λ · X denote the concatenation of λ copies of X. Let
L = 2ck′Hk′ + 1, and consider the series of strings: S0 = 2 · a0, and Si = L · Si−1 + ai for
i ∈ {1, . . . , k′}. We fix S := M ·Sk′ , for some sufficiently large M , as the prediction sequence
for the SPRP algorithm. (Observe that S only contains k distinct pages, and the oracle ALG
has cache size k.)

Z. Jiang, D. Panigrahi, and K. Sun 69:13

ALG’ and the request sequence for ALG. Our PRP algorithm ALG′ will simultaneously
construct input for ALG while serving its own requests. Since randomized and fractional
algorithms are equivalent up to constants (see Bansal et al. [2]), we view the SPRP algorithm
ALG from a fractional perspective. Let qi ∈ [0, 1] denote the fraction of page ai not in the cache
of ALG. Notice that the vector q = (q0, q1, . . . , qk′) satisfies

∑k′

i=0 qi ≥ 1. (A deterministic
algorithm is the special case where every qi ∈ {0, 1}.) Similarly, let q′ = (q′0, q′1, . . . , q′k′),
where q′i denotes the amount of request for ai that is not in the cache in ALG′.

When a block ending with ai is requested, ALG′ scans S for the next appearance of ai.
It then feeds the scanned portion to ALG, followed by a single request for page b. In this
case, the prediction error only occurs due to the requests for this page b. After serving this
request b, the cache of ALG contains at most k′ pages in A. This enables ALG′ to mimic
the behavior of ALG upon serving the current block. This process continues for every block:
ALG′ modifies the input by inserting an extra request b into the input for ALG, and mimics
the resulting cache state of ALG. The details of our algorithm ALG′ are given below:

1. Initially, let S be the input for ALG and t = 0. (We will modify S as time passes.)

2. For all 0 ≤ i ≤ k′, let q′i = 1. (Note that the initial value of every qi is also 1.)

3. On PRP request block si = (a0, a1, . . . , ai) (for some unknown i):

a. Let q′ = (q′0, q′1, . . . , q′k′) denote the current cache state.

b. Set q′ = (0,min{1, q′0 + q′1}, q′2, q′3, . . . , q′k′) to serve a0. Note that after we serve a0, the
PRP prediction tells us the value of i.

c. Find the first time t′ after t when S requests ai and set t = t′ + 2.

d. Change the request at time t into b. (Note that the original request is a0.)

e. Run ALG until this b is served to obtain a vector q = (q0, q1, . . . , qk′).

f. If i ≥ 1, set q′ = (min{1,
∑i

j=0 q
′
j}, 0, 0, . . . , 0, q′i+1, q

′
i+2, . . . , q

′
k′); this serves the

requests (a1, a2, . . . , ai).

g. Set q′ = (q0, q1, . . . , qk′).

Bounding the costs. The main idea in the analysis is the following: since the input
sequences to ALG and ALG′ are closely related, and they maintain similar cache states, we
can show that they are coupled both in terms of the algorithm’s cost and the optimal cost.
Therefore, the ratio of Ω(k) for ALG′ (from Theorem 7) translates to a ratio of Ω(k) for ALG.
Furthermore, since the only prediction errors are due to the additional requests for page b,
and this page has a very small weight, the cost of ALG is at least the value of `ed. (The same
line of reasoning is used for randomized algorithms, but Ω(k) is replaced by Ω(log k).)

We now formalize the above line of reasoning with the following lemmas.

I Lemma 25. Using any SPRP algorithm ALG as a black box, the PRP algorithm ALG′

satisfies the following: cost(ALG′) ≤ 2(c+ 1) · cost(ALG).

Proof. Note that q = q′ at the beginning and end of Step 3. For convenience, let q′ denote
the vector at the beginning of Step 3, and let q denote the vector at the end of Step 3. Let
costALG and costALG′ denote the cost of ALG and ALG′ respectively incurred in a fixed Step 3.

ICALP 2020

69:14 Online Algorithms for Weighted Paging with Predictions

Each time ALG′ enters Step 3, the cost incurred is at most:

Step 3b: q′0 · (1 + c),

Step 3f: (q′0 + q′1) · (1 + c) +
i∑

j=2
q′j · (1 + cj),

Step 3g:

 i∑
j=1

qj · (1 + cj)

+

 k∑
j=i+1

∣∣q′j − qj

∣∣ · (1 + cj)

 .

Summing the above yields the following:

costALG′ ≤ 2(c+ 1) ·

 i∑
j=0

cj ·
(
qj + q′j

)+

 k∑
j=i+1

cj ·
∣∣qj − q′j

∣∣ .

Now we consider ALG. For each j, at the beginning of Step 3, there is q′j amount of aj

not in the cache, and at the end of Step 3, there is qj amount of aj not in the cache.
If j > i, the cost incurred due to aj is at least cj ·

∣∣qj − q′j
∣∣. If j ≤ i, ALG′ must serve aj

at some point in Step 3e, so the incurred cost due to aj is at least cj ·
(
qj + q′j

)
. Summing

the above yields the following:

costALG ≥

 i∑
j=0

cj ·
(
qj + q′j

)+

 k∑
j=i+1

cj ·
∣∣qj − q′j

∣∣ .

Combining the two inequalities above proves the lemma. J

Now let OPT denote the optimal SPRP algorithm for the input sequence served by ALG,
and let OPT′ denote the optimal PRP algorithm for the input sequence served by ALG′. We
can similarly prove the following lemma (proof in full paper):

I Lemma 26. The algorithms OPT and OPT′ satisfy cost(OPT) ≤ 2 · cost(OPT′).

We are now ready to bound the cost of any algorithm with SPRP (proof in full paper):

I Theorem 27. For weighted paging with SPRP, there is no deterministic algorithm whose
cost is o(k) · OPT + o(`ed), and there is no randomized algorithm whose cost is o(log k) ·
OPT + o(`ed).

Proof (Sketch). From Theorem 7, we know ALG′ = Ω(k) ·OPT′. Thus, applying Lemmas 25
and 26, we have ALG = Ω(k) · OPT. Furthermore (as we saw in Section 2), each PRP block
increases ALG by at least a constant. At the same time, for each block, we can show that `ed

increases by at most 2. As a result, we can conclude that ALG = Ω(`1). The theorem follows
by combining these facts. For randomized algorithms, the same line of reasoning holds, but
with Ω(log k) instead of Ω(k). J

5.2 Upper Bounds
In this section, we give algorithms whose performance degrades with the value of the SPRP
error. In particular, we first prove the upper bound in Theorem 6 for the `ed measurement,
and then analyze the Follow algorithm, which proves the upper bound in Theorem 5.

Now we present an algorithm that uses a cache of size k + 1 whose cost scales linearly
with OPT + `ed. Following our previous terminology, let A denote a prediction sequence of
length m, and let B denote an input sequence of length n.

Z. Jiang, D. Panigrahi, and K. Sun 69:15

Our algorithm, which we call Learn, relies on an algorithm that we call Idle. At a high
level, Idle resembles Static (see Section 4): it partitions the prediction sequence A into
batches and runs an optimal offline algorithm on each batch. The Learn algorithm tracks
the cost of imitating Idle: if the cost is sufficiently low, then it will imitate Idle on k of its
cache slots; otherwise, it will simply evict the page in the extra cache slot.

Before formally defining Idle, we consider a modified version of caching. Our cache
has k + 1 slots, where one slot is memoryless: it always immediately evicts the page it just
fetched. In other words, this slot can serve any request, but it cannot store any pages. Let
OPT+1 denote the optimal algorithm that uses a memoryless cache slot.

I Lemma 28. For any sequences A and B, cost(OPT+1(A)) ≤ cost(OPT(B)) + 2`ed, where
`ed is the edit distance between A and B.

Proof. Let M denote the optimal matching between A and B (for `ed). One algorithm for
OPT+1(A) is the following: imitate what OPT(B) does for requests matched by M , and use
the memoryless slot for unmatched requests. The cost of this algorithm is OPT(B)+2`ed. J

Recall that the Static algorithm requires the use of an optimal offline algorithm. Similarly,
for our new problem with a memoryless cache slot, we require a constant-approximation
offline algorithm on A. This can be obtained from the following lemma (proof in full paper):

I Lemma 29. Given a prediction sequence A, there is a randomized offline algorithm whose
cost is at most a constant times the cost of OPT+1(A).

The Idle algorithm

Assume that our cache has size k + 1 and the extra slot is memoryless (as defined above).
For any time step t, let L(t) denote the set of pages predicted to arrive starting at time
t+ 1. At time step 1 (i.e., initially), Idle runs the offline algorithm from Lemma 29 on L(1),
ignoring future requests. After the requests in L(1) have been served, i.e., at time |L(1)|+ 1,
Idle then consults the predictor and runs the offline algorithm on the next “batch”. The
algorithm proceeds in this batch-by-batch manner until the end. We can show that the
competitive ratio of this algorithm is at most a constant (see full paper).

I Lemma 30. On the prediction sequence A, we have cost(Idle) = O(1) · cost(OPT+1(A)).

The Learn algorithm

Before defining the algorithm, we introduce another measurement of error that closely
approximates `ed. Recall that A denotes a prediction sequence of length m and B denotes
an input sequence of length n. In defining `ed, two elements Ai = Bj can be matched only if
pnext(prev(j)) = i, and no matching edges are permitted to cross.

I Definition 31. The constrained edit distance `′ed is the minimum weight of unmatched
elements of A and B, with the following additional constraint: if |P (Ai)| ≥ 2, then Ai can
only be matched with the latest-arriving element in P (Ai).

We note that `′ed is a constant approximation of `ed (proof in full paper):

I Lemma 32. For any sequences A,B, we have `ed ≤ `′ed ≤ 3`ed.

Now we are ready to define the Learn algorithm. For any i ≤ j, we let A(i, j) denote
the subsequence (Ai, Ai+1, . . . , Aj). For any set (or multiset) of pages S, we let w(S) denote
the total cost of pages in S. The algorithm is the following:

ICALP 2020

69:16 Online Algorithms for Weighted Paging with Predictions

1. Let s = 0; the variable s always denotes that we have imitated the Idle algorithm
through the first s requests of the prediction.

2. Let S = ∅ be an empty queue.
3. On the arrival of request p, add p to S.

a. If there is a t (in [s+ 1, L] where L is the end of the current prediction) such that

`′ed(A(s+ 1, t), S) < 1
3(w(A(s+ 1, t)) + w(S)), (1)

then imitate Idle through position t, empty S and let s = t. (If more than one t
satisfies the above, select the minimum.)

b. Otherwise, evict the page in the final slot.

We first observe that the algorithm is indeed feasible (proof in full paper).

I Lemma 33. In the Learn algorithm, Step 3a is feasible, i.e., if t satisfies (1), then At = p.

Now we arrive at the heart of the analysis: we upper bound the cost of Learn against
the cost of Idle (i.e., a surrogate for OPT(B)) and the constrained edit distance `′ed. In
particular, we sketch a proof of the following lemma and defer the full proof to the full paper.

I Lemma 34. The algorithms Learn and Idle satisfy cost(Learn) ≤ cost(Idle) + 12`′ed.

Proof (Sketch). Let cost1 denote the total cost of Step 3a, and cost2 denote the total
cost of Step 3b so that cost(Learn) = cost1 + cost2. From the algorithm, we see that
cost1 ≤ cost(Idle), so now we must prove cost2 ≤ 12`′ed.

Now we establish some notation. Let `′ed((a, b)(c, d)) = `′ed(A(a, b), B(c, d)), and let
wA(a, b) = w(A(a, b)) and wB(a, b) = w(B(a, b)).

We proceed by induction on the number of times we went Step 3a. Consider the first
time we enter Step 3a; suppose we have read the input B(1, b) and we now imitated Idle
through A(1, a) for some values a, b. Since the matched edges for `′ed do not cross, there
exists some c such that `′ed = `′ed(A,B) satisfies

`′ed = `′ed((1, a), (1, c)) + `′ed((a+ 1,m), (c+ 1, n)).

We consider the case where c < b; the other cases follow similarly. Let cost(x, y) denote the
cost incurred by the algorithm when serving B(x, y) and notice that

cost2 ≤ cost(1, c) + cost(c+ 1, b) + cost(b+ 1, n).

The cost of serving B(1, c) is at most the weight of the requested pages, so cost(1, c) ≤ wB(1, c).
Furthermore, we can upper bound cost(c+ 1, b) by a constant times wA(1, a) by analyzing a
particular matching for `′ed((1, a)(1, c)). Combining this together, we have

cost(1, c) + cost(c+ 1, b) ≤ 4(wB(1, c) + wA(1, a)) ≤ 12 · `′ed((1, a), (1, c)),

where the second inequality follows from that we did not enter Step 3a when c arrived.
Finally, applying the inductive hypothesis to B(b+ 1, n) and substituting the definition of c
yields the lemma. J

The proof of Theorem 6 follows from Lemmas 28, 30, and 34.

Z. Jiang, D. Panigrahi, and K. Sun 69:17

The Follow algorithm

Now we show that the Ω(`1) lower bound in Theorem 5 is tight, that is, we will give an
SPRP algorithm Follow that has cost O(1) · (OPT + `1). Recall the Static algorithm
from Theorem 21. The algorithm Follow ignores its input: it simply runs Static on the
prediction sequence A and imitates its fetches/evictions on the input sequence B.

I Theorem 35. The Follow algorithm has cost O(1) · (OPT + `1).

Proof. Recall from Theorem 21 that cost(Static) ≤ O(1) ·OPT(A). Furthermore, we claim
OPT(A) ≤ OPT(B) + 2`1. This is because on A, there exists an algorithm that imitates the
movements of B: say at time t, OPT(B) evicts some element b that had appeared in B at
time v(t). Then OPT(A) can also evict whatever element appeared at time v(t) in A, and if
this is not b, then this cost can be charged to the v(t) term of `1. Each term of `1 is charged
at most twice because a specific request can be evicted and fetched at most once respectively.

By the same argument, we have cost(Follow) ≤ cost(Static) + 2`1. Combining these
inequalities proves the theorem. J

6 Conclusion

In this paper, we initiated the study of weighted paging with predictions. This continues
the recent line of work in online algorithms with predictions, particularly that of Lykouris
and Vassilvitski [9] on unweighted paging with predictions. We showed that unlike in
unweighted paging, neither a fixed lookahead not knowledge of the next request for every
page is sufficient information for an algorithm to overcome existing lower bounds in weighted
paging. However, a combination of the two, which we called the strong per request prediction
(SPRP) model, suffices to give a constant approximation. We also explored the question of
gracefully degrading algorithms with increasing prediction error, and gave both upper and
lower bounds for a set of natural measures of prediction error. The reader may note that the
SPRP model is rather optimistic and requires substantial information about the future. A
natural question arises: can we obtain constant competitive algorithms for weighted paging
with fewer predictions? While we refuted this for the PRP and fixed lookahead models, being
natural choices because they suffice for unweighted paging, it is possible that an entirely
different parameterization of predictions can also yield positive results for weighted paging.
We leave this as an intriguing direction for future work.

References
1 Susanne Albers. The influence of lookahead in competitive paging algorithms. In European

Symposium on Algorithms, pages 1–12. Springer, 1993.
2 Nikhil Bansal, Niv Buchbinder, and Joseph Seffi Naor. A primal-dual randomized algorithm

for weighted paging. Journal of the ACM (JACM), 59(4):19, 2012.
3 Laszlo A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM

Systems journal, 5(2):78–101, 1966.
4 Marek Chrobak, H Karloof, Tom Payne, and S Vishwnathan. New results on server problems.

SIAM Journal on Discrete Mathematics, 4(2):172–181, 1991.
5 Amos Fiat, Richard M Karp, Michael Luby, Lyle A McGeoch, Daniel D Sleator, and Neal E

Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.
6 Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert

advice. In International Conference on Machine Learning, pages 2319–2327, 2019.
7 Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation

algorithms. In International Conference on Learning Representations, 2019.

ICALP 2020

69:18 Online Algorithms for Weighted Paging with Predictions

8 Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online
scheduling via learned weights. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1859–1877, 2020.

9 Thodoris Lykouris and Sergei Vassilvtiskii. Competitive caching with machine learned advice.
In International Conference on Machine Learning, pages 3302–3311, 2018.

10 Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In
Advances in Neural Information Processing Systems, pages 464–473, 2018.

11 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, New York, NY, USA, 1995.

12 Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml
predictions. In Advances in Neural Information Processing Systems, pages 9661–9670, 2018.

13 Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1834–1845. SIAM, 2020.

14 Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

15 Neal Young. On-line caching as cache size varies. In Proceedings of the Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’91, pages 241–250, 1991.

16 Neal E Young. On-line file caching. Algorithmica, 33(3):371–383, 2002.

	Introduction
	Overview of models and our results
	Related work

	The Per-Request Prediction Model (PRP)
	Randomized Lower Bound

	The l-Strong Lookahead Model
	The Strong Per-Request Prediction Model (SPRP)
	The SPRP Model with Prediction Errors
	Lower Bounds
	Upper Bounds

	Conclusion

