
A (2 + ε)-Factor Approximation Algorithm for
Split Vertex Deletion
Daniel Lokshtanov
University of California, Santa Barbara, CA, USA
daniello@ucsb.edu

Pranabendu Misra
Max Planck Institut für Informatik, Saarland Informatics Campus, Saarbrücken, Germany
pmisra@mpi-inf.mpg.de

Fahad Panolan
IIT Hyderabad, India
fahad@iith.ac.in

Geevarghese Philip
Chennai Mathematical Institute, UMI ReLaX, Chennai, India
gphilip@cmi.ac.in

Saket Saurabh
Institute of Mathematical Sciences, Chennai, India
University of Bergen, Norway
saket@imsc.res.in

Abstract

In the Split Vertex Deletion (SVD) problem, the input is an n-vertex undirected graph G and
a weight function w : V (G)→ N, and the objective is to find a minimum weight subset S of vertices
such that G − S is a split graph (i.e., there is bipartition of V (G − S) = C ] I such that C is a
clique and I is an independent set in G− S). This problem is a special case of 5-Hitting Set and
consequently, there is a simple factor 5-approximation algorithm for this. On the negative side, it is
easy to show that the problem does not admit a polynomial time (2− δ)-approximation algorithm,
for any fixed δ > 0, unless the Unique Games Conjecture fails.

We start by giving a simple quasipolynomial time (nO(log n)) factor 2-approximation algorithm
for SVD using the notion of clique-independent set separating collection. Thus, on the one hand SVD
admits a factor 2-approximation in quasipolynomial time, and on the other hand this approximation
factor cannot be improved assuming UGC. It naturally leads to the following question: Can SVD
be 2-approximated in polynomial time? In this work we almost close this gap and prove that for
any ε > 0, there is a nO(log 1

ε
)-time 2(1 + ε)-approximation algorithm.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximation Algorithms, Graph Algorithms, Split Vertex Deletion

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.80

Category Track A: Algorithms, Complexity and Games

Funding This work has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (via grant no. 819416 and no.
715744), the Norwegian Research Council(via grants MULTIVAL and CLASSIS), and Swarnajayanti
Fellowship grant DST/SJF/MSA-01/2017-18.

EA
T

C
S

© Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, Geevarghese Philip, and
Saket Saurabh;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 80; pp. 80:1–80:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniello@ucsb.edu
mailto:pmisra@mpi-inf.mpg.de
mailto:fahad@iith.ac.in
mailto:gphilip@cmi.ac.in
mailto:saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.ICALP.2020.80
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


80:2 A (2 + ε)-Factor Approximation Algorithm for Split Vertex Deletion

1 Introduction

The Hitting Set problem encompasses a large number of well studied problems in Computer
Science. Here, the input is a family F of sets over an n-element universe U and a weight
function w : U → N, and the objective is to compute a hitting set of minimum weight. A
hitting set is a subset S ⊆ U such that for any F ∈ F , F ∩ S 6= ∅ and the weight of S is
w(S) =

∑
u∈S w(u). This problem generalizes a number of other well studied problems in

computer science, and consequently it is very hard to approximate: it can not be approximated
within a factor 2log1−δc(n) n in polynomial time, for any constant c < 1/2, unless SAT can
be decided in slightly subexponential time, where δc(n) = 1/(log logn)c [11]. A restricted
version of this problem, is the d-Hitting Set problem, where d ∈ N and the cardinality
of every set in F is at most d. This problem also generalizes a number of well studied
problems, and it admits a simple factor d-approximation algorithm: Solve the natural LP
relaxation and select all elements whose corresponding variable in the LP is set to at least
1/d. Unfortunately, this simple algorithm is likely to be the best possible. That is, assuming
Unique Game Conjecture (UGC), there is no c-factor approximation algorithm for d-Hitting
Set, for any c < d in the general case [7].

A number of vertex deletion problems on graphs can be considered as special cases
of d-Hitting Set, and it is of great interest to devise factor-α approximation algorithm
for them where α < d, or rule out any such algorithm. For example, in the Vertex
Cover problem, the input is a graph G and a weight function w : V (G) → N, and the
objective is to find a subset of vertices of minimum weight that hits all edges in G. This is
same as 2-Hitting Set, and assuming the Unique Games Conjecture we cannot do better
than a factor-2 approximation in polynomial time. However, there are other examples of
vertex deletion problems on graphs, that are special cases of d-Hitting Set, for which
we can indeed do better than a factor-d approximation. Consider the Cluster Vertex
Deletion problem, where the input is a graph G and a weight function w : V (G) → N,
and the objective is to find a minimum weight subset S of vertices such that S is a cluster
graph. Equivalently, S hits all induced paths of length 3 in G. Hence, it is a special case
of 3-Hitting Set and admits a simple 3-approximation algorithm. You et al. [13] showed
that the unweighted version of Cluster Vertex Deletion admits a 5/2 approximation
algorithm. Recently, this was improved to factor 9/4 by Fiorini et al. [5]. The problem
also admits an approximation-preserving reduction from Vertex Cover and hence there
is a lower bound of 2 on the approximation-factor assuming UGC [5]. Fiorini et al. [5]
have conjectured that Cluster Vertex Deletion admits a 2-approximation algorithm.
Another example is the Tournament Feedback Vertex Set (TFVS) problem, which is
equivalent to hitting all directed triangles in a digraph. It is very well studied in the realm
of approximation algorithms [3, 1, 10, 9], and very recently a 2-approximation algorithm was
designed by Lokshtanov et al. [9], matching the lower-bound under UGC [12]. Similarly, a
number of such “implicit” d-Hitting Set problems are studied in Computer Science, and it
is of great interest to settle their approximation complexity.

In this work we study another implicit d-Hitting Set problem called Split Vertex
Deletion(SVD) (defined below). A subset S of vertices in a graph G is a split vertex
deletion set if G− S is a split graph (i.e., there is bipartition of V (G− S) = C ] I such that
C is a clique and I is an independent set in G− S).

Split Vertex Deletion (SVD)
Input: An undirected graph G and a weight function w : V (G)→ N.
Output: A split vertex deletion set S ⊆ V (G) of G of the smallest weight (an optimum
split vertex deletion set of G).



D. Lokshtanov, P. Misra, F. Panolan, G. Philip, and S. Saurabh 80:3

A graph G is a split graph if and only if it does not contain C4, C5 and 2K2 as induced
subgraphs in G [6]. This implies that SVD is special case of 5-Hitting Set and hence
it admits a simple 5-approximation algorithm. Furthermore, it is interesting to note that
we can obtain a 2-approximation algorithm for SVD in time nO(logn) using the notion of
clique-independent set separating collection [4]. For a graph G, a clique-independent set
separating collection is a family C of vertex subsets of V (G) such that for a clique C and
an independent set I in G such that C ∩ I = ∅, there is subset X in the collection C such
that C ⊆ X and I ⊆ V (G) \X. Thus, if there is a “small” clique-independent set separating
collection, then we can enumerate such a collection C and solve Vertex Cover of G[X]
and G − X for each X ∈ C. Notice that for any X ∈ C, the union of the two solutions
of the two Vertex Cover instances on G[X] and G − X, respectively, is a solution to
SVD. Moreover, the best c-approximation solutions over all choices of X, is a c-approximate
solution of SVD. It is known that for any n-vertex graph, there is clique-independent set
separating collection of size nO(logn) and this can be enumerated in time linear in the size of
the collection [4]. This along with a 2-approximation algorithm of Vertex Cover leads to
an nO(logn)-time 2-approximation algorithm for SVD. There is also a simple approximation
preserving reduction from Vertex Cover to SVD, which shows that we cannot improve
upon factor 2-approximation algorithm, unless UGC fails. The reduction is as follows: Given
an instance (G,w) of Vertex Cover, we add a large complete graph H of size 2|V (G)|
into G with weight of each vertex in H to be max{w(u) : u ∈ V (G)}. One can easily verify
that this is an approximation preserving reduction.

Thus, on the one hand SVD admits a 2-approximation in quasipolynomial (nO(logn))
time, and on the other hand this approximation factor cannot be improved assuming UGC.
It naturally leads to the following question: Can SVD be 2-approximated in polynomial
time? This is precisely the question we address in this paper, and obtain the following result.

I Theorem 1. Let G be a graph on n vertices, w a weight function on V (G) and let ε > 0
be a constant. Then there exists a randomized algorithm that runs in time O(ng(ε)) and
outputs S ⊆ V (G) such that G − S is a split graph and w(S) ≤ 2(1 + ε)w(OPT ) with
probability at least 1/2. Here OPT is a minimum weight split vertex deletion set of G, and
g(ε) = 6 + 8 log(80(1 + 12

ε )) · log( 30
ε )/ log(4/3).

Overview of Theorem 1. At a very high level the algorithm described in Theorem 1 is
inspired from the algorithm developed for factor 2-approximation algorithm for TFVS [9].
In TFVS knowing just one vertex is sufficient to completely split the instance into two
independent sub-instances and thus leading to a natural divide and conquer scheme. However,
in our case (SVD) the instances don’t become truly independent before every vertex is
classified as either potential clique or potential independent set vertex. Classifying all the
vertices requires several new ideas and insights in the problem. This classification could
be vaguely viewed as a polynomial time algorithm that quickly navigates through sets in
clique-independent set separating collection C, and almost reaches a correct partition.

Our algorithm in fact finds a (2 + ε)-factor approximate solution for a more general
annotated variant of the problem, where the solution must obey certain additional constraints.

Annotated Split Vertex Deletion (A-SVD)
Input: An undirected graph G, a weight function w : V (G) → N, and a partition of
V (G) into three parts V (G) = C ] I ]U , where at most two of these parts may be empty.
Output: A set S? ⊆ V (G) of G of the smallest weight such that G− S? is a split graph
with a split partition (C?, I?) where C? ⊆ (C ∪ U) and I? ⊆ (I ∪ U) hold.

ICALP 2020



80:4 A (2 + ε)-Factor Approximation Algorithm for Split Vertex Deletion

A feasible solution to an instance (G,w, (C, I, U)) of Annotated Split Vertex Dele-
tion is a split vertex deletion set S of G such that the split graph G−S has a split partition
(C ′, I ′) where no vertex in the specified set I goes to the split part C ′ and no vertex in the
specified set C goes to the independent part I ′. Thus, each vertex in the set I is either
deleted as part of S or ends up in the independent set I ′ in graph G− S, and each vertex in
C is either deleted or ends up in the clique C ′ in G− S. There are no restrictions on where
the vertices in the “unconstrained” set U may go. We call a feasible solution of A-SVD an
annotated split vertex deletion set of the instance (G,w, (C, I, U)); the A-SVD problem asks
for an optimum annotated split vertex deletion set of the input instance.

First we show that we can, in polynomial time, find 2-factor approximate solutions to A-
SVD instances which are of the form (G,w, (C, I, U = ∅)) ( Lemma 12). Let (G,w, (C, I, U))
be an instance of A-SVD, let OPT be an (unknown) optimum solution to (G,w, (C, I, U)),
let (C? ⊆ (C ∪ U), I? ⊆ (I ∪ U)) be a split partition of G − OPT , and let C?U = (C? ∩
U), I?U = (I? ∩ U). We show that if w(C?U \ {c?}) ≤

ε·w(OPT )
2 holds for some c? ∈ C?U or

w(I?U \{i?}) ≤
ε·w(OPT )

2 holds for some i? ∈ I?U then we can, in polynomial time, find a (2+ε)-
factor approximate solution to (G,w, (C, I, U)) (Lemma 16, Lemma 18). These constitute
the base cases of our algorithm. It is not difficult to see that moving a vertex x ∈ C?U to the
set C and moving a vertex y ∈ I?U to the set I are approximation-preserving transformations.
At a high level, our algorithm starts with an arbitrary instance (G,w, (C, I, U)) of A-SVD,
correctly identifies – with a constant probability of success – a good fraction of vertices which
belong to the sets C?U or I?U , and moves these vertices to the sets C or I, respectively. It
then recurses on the resulting instance, till it reaches one of the base cases described above.

We now briefly and informally outline how our algorithm identifies vertices as belonging
to C?U or I?U . Consider the bipartite subgraph H of G induced by the pair (C?U , I?U ). Define
the weight of an edge to be the product of the weights of its two end-points, and suppose
the total weight of edges in H is at least half the maximum possible weight. Then each of a
constant fraction (by weight) of the vertices in I?U has a constant fraction (by weight) of C?U
in its neighborhood (Lemma 4). If we can identify one of these special vertices of I?U then we
can safely move all its neighbors in U to the set C while reducing the weight of C?U by a
constant fraction. The catch, of course, is that we have no idea what the set I?U is.

To get around this, we find an approximate solution X of the Split Vertex Deletion
instance defined by the induced subgraph G[U ]. Let (CX , IX) be a split partition of G−X.
We show that we can, in polynomial time and with constant probability, sample a vertex
from the set X ∪ (IX \ C?U ) (Lemma 26). We further show that the weight of X ∪ (IX \ C?U )
is at most a constant multiple of the weight of I?U (Lemma 22). So if I?U ⊆ (X ∪ (IX \ C?U ))
holds then we can, with good probability, sample a vertex from the set I?U . The hard part
is when this condition does not hold. We show using a series of lemmas (summarized in
Lemma 25) that we can, even in this case, sample a vertex from one of the two sets C?U , I?U
with constant probability. A symmetric analysis applies when the total weight of non-edges
across (C?U , I?U ) is at least half the maximum possible weight.

2 Preliminaries

We use ] to denote the disjoint union of sets. Moreover, when we write X ] Y we implicitly
assert that the sets X and Y are disjoint. We use V (G) (respectively, E(G)) to denote the
vertex set (respectively, the edge set) of graph G. For a subset S ⊆ V (G) of vertices of G we
use G[S] to denote the subgraph of G induced by S and G− S to denote the subgraph of
G obtained by deleting all vertices in S (and their incident edges) from G. A non-edge in



D. Lokshtanov, P. Misra, F. Panolan, G. Philip, and S. Saurabh 80:5

a graph G is any 2-subset {x, y} ⊆ V (G) of vertices such that xy is not an edge in G. For
the sake of brevity we use the notation xy to denote a non-edge {x, y}. For a finite set U ,
weight function w : U → N, and subset X ⊆ U we use wX to denote the weight function w
restricted to the subset X, and w(X) to denote the sum

∑
x∈X w(x) of weights of all the

elements in X. For the sake of brevity we drop the subscript X from the expression wX
when there is no risk of ambiguity.

The operation of sampling (or picking) proportionately at random from U according to
the weight function w chooses one element from U , where each element x ∈ U is chosen
with probability w(x)/w(U). We use G to denote the complement of a graph G, defined as
follows: The vertex set of G is V (G). For every two vertices {u, v} ⊆ V (G) there is an edge
uv in G if and only if uv is not an edge in graph G. A vertex cover of graph G is any subset
S ⊆ V (G) of its vertex set such that the graph G− S has no edges. A clique in graph G is
any non-empty subset S ⊆ V (G) of its vertex set such that (i) |S| = 1, or (ii) if |S| ≥ 2 then
for every two vertices u, v in S, the edge uv is present in graph G.

I Observation 2. For an undirected graph G and any S ⊆ V (G), the vertex set V (G) \ S is
a clique in G if and only if S is a vertex cover of the complement graph G.

For a graph G and two disjoint vertex subsets X,Y ⊆ V (G) ; X ∩ Y = ∅ the bipartite
subgraph of G induced by the pair (X,Y ) has vertex set X ∪ Y and edge set {xy | x ∈ X, y ∈
Y, xy ∈ E(G)}. Note that the bipartite subgraph of G induced by the pair (X,Y ) is not
necessarily identical to the subgraph G[X ∪ Y ] induced by the subset X ∪ Y , and is defined
even if the induced subgraph G[X ∪ Y ] is not bipartite. For a bipartite graph H with vertex
bipartition V (H) = V1 ] V2 we define Ê(H) = {v1v2 | v1 ∈ V1, v2 ∈ V2, v1v2 /∈ E} to be
the set of all non-edges of H with one end in V1 and the other end in V2. Further, for a
weight function w : V (H)→ N defined on the vertex set of a bipartite graph H we define
the weight of its edge set to be w(E(H)) =

∑
v1v2∈E(H)(w(v1) · w(v2)) and the weight of its

set of non-edges to be w(Ê(H)) =
∑
v1v2∈Ê(H)(w(v1) · w(v2)).

I Definition 3. Let G be an undirected graph and w : V (G) → N a weight function. Let
X,Y be two disjoint vertex subsets of G and let H be the bipartite subgraph of G induced by
the pair (X,Y ). Let w(E(H)) and w(Ê(H)) be defined as above. We say that (X,Y ) is a
heavy pair if w(E(H)) ≥ w(X)·w(Y )

2 holds, and is a light pair if w(Ê(H)) ≥ w(X)·w(Y )
2 holds.

I Lemma 4 (♣). 1 Let H = (V,E) be a bipartite graph, let V = V1 ] V2 be a bipartition of
H, and let w : V (H) → N be a weight function. Then (V1, V2) is either a heavy pair or a
light pair. Moreover,
1. Suppose (V1, V2) is a heavy pair, and let X = {x ∈ V1 | w(N(x)) ≥ w(V2)

4 } be the set of
all vertices x in the set V1 such that the total weight of the neighborhood of x in the set
V2 is at least one-fourth the total weight of the set V2. Then w(X) > w(V1)

4 .
2. Suppose (V1, V2) is a light pair, and let Y = {y ∈ V1 | w(V2 \N(y)) ≥ w(V2)

4 } be the set
of all vertices y in the set V1 such that the total weight of the non-neighbors of y in the
set V2 is at least one-fourth the total weight of the set V2. Then w(Y ) > w(V1)

4 .

For a graph G given together with a weight function w : V (G)→ N, an optimum vertex
cover of G is any vertex cover of G with the least total weight.

1 Proofs of statements labeled with a ♣ will appear in the full version of the paper.

ICALP 2020



80:6 A (2 + ε)-Factor Approximation Algorithm for Split Vertex Deletion

Weighted Vertex Cover (wVC)
Input: An undirected graph G and a weight function w : V (G)→ N.
Output: An optimum vertex cover S ⊆ V (G) of G

I Theorem 5 ([2]). There is an algorithm which, given an instance (G,w) of Weighted
Vertex Cover as input, runs in O(|E(G)|) time and outputs a vertex cover S of G whose
weight is at most twice the weight of an optimum vertex cover of G.

3 The Algorithm

Let (G,w) be an instance of Split Vertex Deletion. Since deleting vertices conserves
the property of being a split graph one can safely add zero-weight vertices to any split vertex
deletion set. So we assume without loss of generality that w(v) ≥ 1 holds for every v ∈ V (G).
Split Vertex Deletion is NP-complete by the meta-result of Lewis and Yannakakis [8],
and has a simple 5-factor approximation algorithm based on the Local Ratio Technique.

I Theorem 6 (♣). There is a deterministic algorithm which, given an instance (G,w) of
SVD, runs in O(|V (G)|6) time and outputs a split vertex deletion set S ⊆ V (G) of G such
that w(S) ≤ 5 · w(OPT ) where OPT is an optimum split vertex deletion set of G.

We describe a randomized polynomial-time algorithm which outputs a (2 + ε)-factor
approximate solution for this problem for any fixed ε > 0.

Note that in an instance (G,w, (C, I, U)) of Annotated Split Vertex Deletion the
set C is not necessarily a clique, nor is I necessarily an independent set in G. But we have
the following.

I Observation 7. Let S be a feasible solution of an A-SVD instance (G,w, (C, I, U)) and
let (C ′, I ′) be a split partition of G − S where C ′ ⊆ (C ∪ U) and I ′ ⊆ (I ∪ U) hold. Then
C \ S ⊆ C ′ and I \ S ⊆ I ′ hold. Hence C \ S is a clique in G and I \ S is an independent
set in G.

From Observations 2 and 7 we get

I Corollary 8. Let S be a feasible solution of an A-SVD instance (G,w, (C, I, U)). Let V CC
be an optimum solution of the wVC instance (G[C], w) and let V CI be an optimum solution
of the wVC instance (G[I], w). Then w(V CC) ≤ w(S ∩ C) and w(V CI) ≤ w(S ∩ I) hold.

A-SVD is clearly a generalization of SVD: Given an instance (G,w) of SVD, construct
the instance (G,w, (C = ∅, I = ∅, U = V (G))) of A-SVD. Every split vertex deletion set
of graph G is a feasible solution of the A-SVD instance, and every annotated split vertex
deletion set of (G,w, (∅, ∅, V (G))) is a split vertex deletion set of graph G. It follows that
for any constant c, a c-factor approximate solution to the A-SVD instance is a c-factor
approximate solution to the SVD instance as well.

We can find feasible solutions to an A-SVD instance (G,w, (C, I, U)) by computing
vertex covers for certain pairs of subgraphs derived from G.

I Observation 9 (♣). Let (G,w, (C, I, U)) be an instance of A-SVD.
1. Let V1 be a vertex cover of the graph G[I ] U ] and let V2 be a vertex cover of the graph

G[C]. Then V1 ] V2 is a feasible solution to (G,w, (C, I, U)).
2. Let V3 be a vertex cover of the graph G[I] and let V4 be a vertex cover of the graph

G[C ] U ]. Then V3 ] V4 is a feasible solution to (G,w, (C, I, U)).



D. Lokshtanov, P. Misra, F. Panolan, G. Philip, and S. Saurabh 80:7

I

C

U

UOPT

IOPT

COPT

I?U

C?
U

IX

CX

C?
U

I?U

U

X

C? ∩ C

I? ∩ I

Figure 1 Illustration of Definition 13.

I Observation 10 (♣). Let (G,w, (C, I, U)) be an instance of A-SVD and let u ∈ U .
1. Let V1 be a vertex cover of the graph G[I ] (U \ {u})] and let V2 be a vertex cover of the

graph G[C ∪ {u}]. Then V1 ] V2 is a feasible solution to (G,w, (C, I, U)).
2. Let V3 be a vertex cover of the graph G[I ∪ {u}] and let V4 be a vertex cover of the graph

G[C ] (U \ {u})]. Then V3 ] V4 is a feasible solution to (G,w, (C, I, U)).

Observation 9 has some interesting consequences. For instance, it implies that when the
“unconstrained” set U in an A-SVD instance is empty, an optimum solution to the A-SVD
instance corresponds to optimum solutions of two Weighted Vertex Cover instances
derived from the A-SVD instance in a natural fashion.

I Lemma 11 (♣). Let S? be an optimum solution to an A-SVD instance (G,w, (C, I, U = ∅)).
Then the set (S? ∩ I) is an optimum solution to the wVC instance (G[I], w), and the set
(S? ∩ C) is an optimum solution to the wVC instance (G[C], w).

This in turn implies that given an A-SVD instance in which the unconstrained set U is
empty, we can find a 2-factor approximate solution to the instance in polynomial time.

I Lemma 12 (♣). There is a deterministic algorithm that finds a 2-factor approximate
solution to an A-SVD instance that is of the form (G,w, (C, I, U = ∅)), in O(|E(G)|) time.

This idea generalizes as follows. Let OPT be an optimum solution to an A-SVD instance
(G,w, (C, I, U)). Suppose the split graph G−OPT has a split partition (C?, I?) such that
vertices from the unconstrained set U contribute a small weight to either the clique C? or
the independent set I?. Then a variant of the algorithm in the proof of Lemma 12 yields a
small-factor approximate solution to the instance, in polynomial time. We state this formally
in Lemma 16 below, for which we need some notation (see Figure 1).

I Definition 13. Let (G,w, (C, I, U)) be an instance of A-SVD, and let ε ≥ 0 be a constant.
Let OPT ⊆ V (G) be an optimum solution of (G,w, (C, I, U)) and let (C?, I?) be a split
partition of the split graph G? = (G − OPT ) such that C? ⊆ (C ∪ U) and I? ⊆ (I ∪ U)
hold. Let C?U = (C? ∩ U) be the set of vertices from the unconstrained set U which become
part of the clique C? and let I?U = (I? ∩ U) be the set of vertices from U which become
part of the independent set I? in G?. Let UOPT = (U ∩ OPT ), COPT = (C ∩ OPT ) and
IOPT = (I ∩OPT ).

ICALP 2020



80:8 A (2 + ε)-Factor Approximation Algorithm for Split Vertex Deletion

Further, let X be a 5-factor approximate solution of the Split Vertex Deletion
instance (G[U ], wU ) defined by the induced subgraph G[U ], and let (CX , IX) be a split
partition of the split graph G[U ]−X.

I Remark 14. Given an instance (G,w, (C, I, U)) of A-SVD we can, using Theorem 6,
compute such a set X and partition (CX , IX) in polynomial time.

I Observation 15 (♣). Let (G,w, (C, I, U)), X, IX , CX , I?U , C?U be as in Definition 13. Then
both |I?U \ (X ∪ (IX \ C?U ))| ≤ 1 and |C?U \ (X ∪ (CX \ I?U ))| ≤ 1 hold.

I Lemma 16 (♣). Let (G,w, (C, I, U)), ε, OPT,C?U , I?U be as in Definition 13. Let S1 be
a 2-factor approximate solution for the wVC instance (G[I ∪ U ], w) and S2 a 2-factor
approximate solution for the wVC instance (G[C], w). Let S12 = (S1 ∪ S2). Let S3 be
a 2-factor approximate solution for the wVC instance (G[C ∪ U ], w) and S4 a 2-factor
approximate solution for the wVC instance (G[I], w). Let S34 = (S3 ∪ S4). Then the sets
S12 and S34 can be computed in O(|E(G)|) time. Further,
1. If w(C?U ) ≤ ε·w(OPT )

2 holds then the set S12 is a (2 + ε)-factor approximate solution for
the Annotated Split Vertex Deletion instance (G,w, (C, I, U)).

2. If w(I?U ) ≤ ε·w(OPT )
2 holds then the set S34 is a (2 + ε)-factor approximate solution for

the Annotated Split Vertex Deletion instance (G,w, (C, I, U)).
I Remark 17. Note that these two cases are neither exclusive nor exhaustive.

By repeatedly applying the procedure in the proof of Lemma 16 and taking the minimum,
we can find a (2 + ε)-factor approximate solution in polynomial time even in the more general
case where there is at most one “heavy” vertex in C?U or I?U that

I Lemma 18 (♣). Let (G,w, (C, I, U)), ε, OPT,C?U , I?U be as in Definition 13. For each
vertex u ∈ U let Su1 be a 2-factor approximate solution for the wVC instance (G[I ∪
(U \ {u})], w), Su2 a 2-factor approximate solution for the wVC instance (G[C ∪ {u}], w),
and let Su12 = Su1 ∪ Su2 . Let Su3 be a 2-factor approximate solution for the wVC instance
(G[C ∪ (U \ {u})], w), Su4 a 2-factor approximate solution for the wVC instance (G[I ∪
{u}], w), and let Su34 = Su3 ∪ Su4 . Finally, let S† be a set of the form Su12 of the minimum
weight and let S‡ be a set of the form Su34 of the minimum weight, both minima taken over
all vertices u ∈ U .

The sets S† and S‡ can be computed in O(|V (G)| · |E(G)|) time. Further,
1. If w(C?U \{c?}) ≤

ε·w(OPT )
2 holds for some vertex c? ∈ C?U then the set S† is a (2+ε)-factor

approximate solution for the A-SVD instance (G,w, (C, I, U)).
2. If w(I?U \{i?}) ≤

ε·w(OPT )
2 holds for some vertex i? ∈ I?U then the set S‡ is a (2+ε)-factor

approximate solution for the A-SVD instance (G,w, (C, I, U)).
I Remark 19. Note that these two cases are neither exclusive nor exhaustive.

I Definition 20. Let (G,w, (C, I, U)), ε, OPT,C?, I?, C?U , I?U be as in Definition 13. We say
that (G,w, (C, I, U)) is an easy instance if U = ∅ holds, or if at least one of the following
holds: (i) w(C?U ) ≤ ε·w(OPT )

2 , (ii) w(I?U ) ≤ ε·w(OPT )
2 , (iii) w(C?U \ {c?}) ≤

ε·w(OPT )
2 holds

for some vertex c? ∈ C?U , (iv) w(I?U \ {i?}) ≤
ε·w(OPT )

2 holds for some vertex i? ∈ I?U . We
say that (G,w, (C, I, U)) is a hard instance otherwise.

From Lemma 12, Lemma 16 and Lemma 18 we get

I Corollary 21. There is an algorithm which, given an easy instance (G,w, (C, I, U)) of
A-SVD and a constant ε > 0 as input, computes a (2 + ε)-factor approximate solution for
(G,w, (C, I, U)) in deterministic polynomial time.



D. Lokshtanov, P. Misra, F. Panolan, G. Philip, and S. Saurabh 80:9

I Lemma 22 (♣). Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε, C?U , I?U , X,
IX , CX be as in Definition 13. Then the following hold:
1. w(X ∪ (IX \ C?U )) < (1 + 12

ε ) · w(I?U )
2. w(X ∪ (CX \ I?U )) < (1 + 12

ε ) · w(C?U )

Recall the notion of heavy and light pairs from Definition 3.

I Lemma 23 (♣). Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε,OPT,C?, I?,
C?U , I

?
U be as in Definition 13. Suppose (I?U , C?U ) is a heavy pair. Let I© = {v ∈

I?U ; w(N(v) ∩ C?U ) ≥ w(C?U )
4 } be the set of vertices in I?U which have a “heavy” neigh-

borhood in C?U , and let i© be a heaviest vertex in I©, i.e. a vertex of maximum weight.
Let C© = {v ∈ C?U ; w((I?U \ {i©}) \ (N(v) ∩ I?U )) ≥ w(I?U\{i

©})
4 } be the set of vertices

in C?U which have a “heavy” non-neighborhood in the subset I?U \ {i©}, and let c© be a
heaviest vertex in C©. Let I� = {v ∈ (I?U \ {i©}) ; w(N(v) ∩ (C?U \ {c©})) ≥

w(C?U\{c
©})

4 }
be the set of vertices in I?U \ {i©} which have a “heavy” neighborhood in C?U \ {c©}, and let
C� = {v ∈ (C?U \ {c©}) ; w((I?U \ {i©}) \ (N(v) ∩ I?U )) ≥ w(I?U\{i

©})
4 } be the set of vertices

in (C?U \ {c©}) which have a “heavy” non-neighborhood in I?U \ {i©}.
Then at least one of the following statements holds:

(1a) Picking a vertex proportionately at random from the set X ∪ (IX \ C?U ) yields a vertex
v ∈ I© with probability at least 1/(20(1 + 12

ε )).
(1b) Picking a vertex proportionately at random from the set X ∪ (IX \ C?U ) yields a vertex

v ∈ I� with probability at least 1/(4(1 + 12
ε )).

(2a) Picking a vertex proportionately at random from the set X ∪ (CX \ I?U ) yields a vertex
v ∈ C© with probability at least 1/(20(1 + 12

ε )).
(2b) Picking a vertex proportionately at random from the set X ∪ (CX \ I?U ) yields a vertex

v ∈ C� with probability at least 1/(4(1 + 12
ε )).

I Lemma 24 (♣). Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε,OPT,C?, I?,
C?U , I

?
U be as in Definition 13. Suppose (I?U , C?U ) is a light pair. Let C‖ = {v ∈ C?U ; w(I?U \

(N(v) ∩ I?U )) ≥ w(I?U )
4 } be the set of vertices in C?U which have a “heavy” non-neighborhood

in I?U , and let c‖ be a heaviest vertex in C‖. Let I‖ = {v ∈ I?U ; w(N(v) ∩ (C?U \ {c‖})) ≥
w(C?U\{c

‖})
4 } be the set of vertices in I?U which have a “heavy” neighborhood in the subset

C?U \ {c‖}, and let i‖ be a heaviest vertex in I‖. Let C‡ = {v ∈ (C?U \ {c‖}) ; w((I?U \ {i‖}) \
(N(v) ∩ I?U )) ≥ w(I?U\{i

‖})
4 } be the set of vertices in C?U \ {c‖} which have a “heavy” non-

neighborhood in I?U \{i‖}, and let I‡ = {v ∈ (I?U \{i‖}) ; w(N(v)∩(C?U \{c‖})) ≥
w(C?U\{c

‖})
4 }

be the set of vertices in (I?U \ {i‖}) which have a “heavy” neighborhood in C?U \ {c‖}.
Then at least one of the following statements is true.

(1a) Picking a vertex proportionately at random from the set X ∪ (CX \ I?U ) yields a vertex
v ∈ C‖ with probability at least 1/(20(1 + 12

ε )), or
(1b) Picking a vertex proportionately at random from the set X ∪ (CX \ I?U ) yields a vertex

v ∈ C‡ with probability at least 1/(4(1 + 12
ε )).

(2a) Picking a vertex proportionately at random from the set X ∪ (IX \ C?U ) yields a vertex
v ∈ I‖ with probability at least 1/(20(1 + 12

ε )), or
(2b) Picking a vertex proportionately at random from the set X ∪ (IX \ C?U ) yields a vertex

v ∈ I‡ with probability at least 1/(4(1 + 12
ε )).

From Lemma 23 and Lemma 24 we get

ICALP 2020



80:10 A (2 + ε)-Factor Approximation Algorithm for Split Vertex Deletion

I Lemma 25. Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε,OPT,C?, I?, C?U ,
I?U be as in Definition 13. Then one of the following statements is true.
(1a) Picking a vertex proportionately at random from X ∪ (IX \ C?U ) yields a vertex from
{v ∈ I?U | w(N(v) ∩ C?U ) ≥ w(C?U )

4 } with probability at least 1/20(1 + 12
ε ).

(1b) Picking a vertex proportionately at random from X ∪ (IX \ C?U ) yields a vertex from
{v ∈ I?U | w(N(v) ∩ (C?U \ {c?})) ≥

w(C?U\{c
?})

4 } with probability at least 1/20(1 + 12
ε ), for

some vertex c? ∈ C?U .
(2a) Picking a vertex proportionately at random from X ∪ (CX \ I?U ) yields a vertex from
{v ∈ C?U | w(I?U \N(v)) ≥ w(I?U )

4 } with probability at least 1/20(1 + 12
ε ).

(2b) Picking a vertex proportionately at random from X ∪ (CX \ I?U ) yields a vertex from
{v ∈ C?U | w((I?U \ {i?}) \N(v)) ≥ w(I?U\{i

?})
4 } with probability at least 1/20(1 + 12

ε ), for
some vertex i? ∈ I?U .

Proof. From Lemma 4 we get that (I?U , C?U ) is either a heavy pair or a light pair. If (I?U , C?U )
is a heavy pair then Lemma 23 applies, and at least one of the four options of that lemma
holds. Option (1a) of Lemma 23 implies option (1a) of the current lemma. Option (1b) of
Lemma 23 implies option (1b) of the current lemma. Options (2a) and (2b) of Lemma 23
both imply option (2b) of the current lemma.

If (I?U , C?U ) is a light pair then Lemma 24 applies, and at least one of the four options
of that lemma holds. Option (1a) of Lemma 24 implies option (2a) of the current lemma.
Option (1b) of Lemma 24 implies option (2b) of the current lemma. Options (2a) and (2b)
of Lemma 24 both imply option (1b) of the current lemma.

Thus in every case, one of the four options of the current lemma holds. J

I Lemma 26 (♣). Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε,OPT,C?, I?,
C?U , I

?
U be as in Definition 13.

1. There is a randomized polynomial-time algorithm which, given (G,w, (C, I, U)) as input,
picks a vertex proportionately at random from the set X ∪ (IX \ C?U ) with probability
at least 1

2 . That is, the algorithm runs in polynomial time and outputs a vertex v, and
the following hold with probability at least 1

2 : (i) v ∈ X ∪ (IX \ C?U ), and (ii) for any
x ∈ (X ∪ (IX \ C?U )), Pr[v = x] = w(x)/w(X ∪ (IX \ C?U )).

2. There is a randomized polynomial-time algorithm which, given (G,w, (C, I, U)) as input,
picks a vertex proportionately at random from the set X ∪ (CX \ I?U ) with probability
at least 1

2 . That is, the algorithm runs in polynomial time and outputs a vertex v, and
the following hold with probability at least 1

2 : (i) v ∈ X ∪ (CX \ I?U ), and (ii) for any
x ∈ (X ∪ (CX \ I?U )), Pr[v = x] = w(x)/w(X ∪ (CX \ I?U )).

3.1 Polynomially Bounded Weights
Let us first consider instances (G,w) of SVD which have polynomially bounded weights.
Let n = |V (G)|. Recall that w(v) ≥ 1 holds for each vertex v of G. We say that the weight
function w is polynomially bounded if, in addition,

∑
v∈V (G) w(v) ≤ c1n

c0 holds for every
v ∈ V (G) and some constants c0, c1. For such instances we have the following theorem.

I Theorem 27. There exists a randomized algorithm that given a graph G, a polynomially
bounded weight function w on V (G) and ε > 0, runs in time O(nf(ε)) and outputs S ⊆ V (G)
such that G − S is a split graph and w(S) ≤ (2 + ε)w(OPT ) with probability at least 1/2,
where OPT is a minimum weight split vertex deletion set of G. Here, f(ε) = 6 + log(80(1 +
12
ε )) · 4c0 log(c1)/ log(4/3), where c0, c1 are constants such that w(V (G)) ≤ c1 · nc0 .



D. Lokshtanov, P. Misra, F. Panolan, G. Philip, and S. Saurabh 80:11

Algorithm 1 Approximation algorithm for the case of polynomially bounded weights.

Input: An instance (G,w, (C, I, U)) of A-SVD, a tuples (βC1 , βC2 , βI1 , βI2) and ε > 0.
Output: A (2 + ε)-factor approximate solution to (G,w, (C, I, U)).

1: procedure ASVD-Approx((G,w, (C, I, U)), ε, βC1 , βC2 , βI1 , βI2))
2: if U = ∅ then
3: Compute a 2-approximation S using Lemma 12
4: return S

5: end if
6: X ← 5-approximate solution to (G[U ], w) from Theorem 6
7: IX , CX ← the independent set and the clique in the split partition of G[U ]−X.
8: Compute the sets S12 and S34 as described in Lemma 16.
9: Compute the sets S† and S‡ as described in Lemma 18.
10: if βC1 ≥ 0 and βC2 ≥ 0 and βI1 ≥ 0 and βI2 ≥ 0 then
11: for all j ∈ {1, 2, . . . , b(ε)} do . b(ε) = d80(1 + 12

ε )e.
12: Sample a vertex vI proportionally at random from the set X ∪ (IX \ C?U )

using Lemma 26.
13: Set ZC ← N(vI) ∩ U .
14: Set C ′ ← C ∪ ZC
15: Set U ′ ← U \ ZC
16: Set SCj,1 ← ASVD-Approx((G,w, (C ′, I, U ′)), ε, βC1 − 1, βC2 , βI1 , βI2)
17: Set SCj,2 ← ASVD-Approx((G,w, (C ′, I, U ′)), ε, βC1 , βC2 − 1, βI1 , βI2)
18: Sample a vertex vC proportionally at random from the set X ∪ (CX \ I?U )

using Lemma 26.
19: Set ZI ← U \N(vC).
20: Set I ′ ← I ∪ ZI
21: Set U ′ ← U \ ZI
22: Set SIj,1 ← ASVD-Approx((G,w, (C, I ′, U ′)), ε, βC1 , βC2 , βI1 − 1, βI2)
23: Set SIj,1 ← ASVD-Approx((G,w, (C, I ′, U ′)), ε, βC1 , βC2 , βI1 , βI2 − 1)
24: end for
25: else
26: for all j ∈ {1, 2, . . . , b(ε)} do
27: SCj,1, S

C
j,2, S

I
j,1, S

I
j,2 ← V (G), V (G), V (G), V (G)

28: end for
29: end if
30: S ← a min weight set in

⋃
j=1,2,...b(ε){SCj,1, SCj,2, SIj,1, SIj,2}

⋃
{S12, S34, S

†, S‡}.
31: return S

32: end procedure

Proof. Let us fix an optimum solution OPT to (G,w). We treat the instance (G,w) of SVD
as an instance (G,w, (C = ∅, I = ∅, U = V (G))) of A-SVD, and apply Algorithm 1 to it,
along with the given value of ε and four integers βC1 , βC2 , βI1 , βI2 each set to dlog4/3(w(V (G)))e.
Note that, as w is polynomially bounded, we have w(V (G)) ≤ c1n

c0 for some constants
c0, c1, and hence β′ ≤ c2 log(n) for every β′ ∈ {βC1 , βC2 , βI1 , βI2} where c2 is a constant. We
will show that the value β = 1 + βC1 + βC2 + βI1 + βI2 ≤ 1 + 4c2 log(n) is an upper-bound on
the depth of the recursion tree of Algorithm 1, and that in each recursive call this value
drops by 1. Hence the depth of recursion is bounded by β. Each recursive call is made on
more constrained sub-instances of A-SVD where the underlying graph G, weight function w,

ICALP 2020



80:12 A (2 + ε)-Factor Approximation Algorithm for Split Vertex Deletion

and the value of ε remain fixed. When one of {βC1 , βC2 , βI1 , βI2} falls to −1, we argue that the
current instance must be an easy instance (see Definition 20), assuming all the recursive
calls leading the current call were “good” (as defined below). During its run the algorithm
also computes a 5-approximate solution X to (G[U ], w) using Theorem 6; let (IX , CX) be a
fixed split partition of G[U ] −X. We have a split partition (C?, I?) of G − OPT and we
define I?U = I? ∩U,C?U = C? ∩U . These sets, introduced in Definition 13, play an important
role in Algorithm 1 and its analysis.

To argue the correctness of Algorithm 1, we require the following definition. An invocation
ASVD-Approx(G,w, (C, I, U), ε, βC1 , βC2 , βI1 , βI2) is good if the following conditions are true:

βC1 ≥ log4/3(w(C?U )),
βC2 ≥ log4/3(w(C?U \ {c})) for some c ∈ C?U ,
βI1 ≥ log4/3(w(I?U )), and
βI2 ≥ log4/3(w(I?U \ {i})) for some i ∈ I?U .

Note that the definitions of C?U and I?U depend only on (G,w, (C, I, U)) and on the
optimum solution OPT that was fixed at the beginning. These sets are hypothetical and
unknown, and we can’t directly test if an invocation of Algorithm 1 is a good invocation.
However, observe that in the initial call, U = V (G) and we set each of βC1 , βC2 , βI1 , βI2 to
dlog4/3(w(V (G)))e, and hence the initial invocation is good. We will argue that if the
current invocation is good and the instance of A-SVD is a hard instance (see Definition 20),
then each recursive call made by the algorithm is good with a constant probability (which
depends on ε). Then (via an induction) we argue that a good recursive call will return a
(2 + ε)-approximate solution with probability at least 1

2 , and hence with constant probability
we obtain a (2 + ε)-approximate solution from a recursive call. To boost the probability of
success to 1

2 , we need to repeat this process constantly many times, so we make constantly
many recursive calls. Finally, to bound the running time, we argue that the depth of the
recursion tree is bounded by β = O(logn), and we make constantly many recursive calls in
each invocation of the algorithm. So the total number of calls made to this algorithm, which
is upper-bounded by the size of the recursion tree, is nO(1). This means that in polynomial
time, with probability at least 1/2, we obtain a (2 + ε)-approximate solution to (G,w). Let
us now present these arguments formally.

Let us recall the optimum solution OPT to (G,w) that was fixed at the beginning. We say
that an instance (G,w, (C, I, U)) is a nice instance if the solution OPT is also an optimum
solution to this A-SVD instance. This means that a split partition (C?, I?) of G − OPT
satisfies, C? ∩ I = ∅ and I? ∩ C = ∅. Note that this condition is trivially satisfied at the
beginning for the starting instance (G,w, (C = ∅, I = ∅, U = V (G)). Let us consider an
invocation of Algorithm 1 on a nice instance of (G,w, (C, I, U)) with polynomially bounded
weight function w and βC1 , βC2 , βI1 , βI2 such that it is a good invocation. Let S denote the
solution returned by it. We will show that S is a (2+ε)-approximate solution with probability
at least 1

2 , by an induction on |U |. Suppose that |U | = 0, i.e. U = ∅. Then Lemma 12
ensures that S is a 2-approximate solution. This forms the base case of our induction on |U |.

Now suppose that |U | > 0, and we have two cases depending on whether (G,w, (C, I, U))
is an easy instance or not. If it is an easy instance, then either the premise of Lemma 16 or
the premise of Lemma 18 holds. Hence, one of S12, S34, S

†, S‡ is a (2 + ε)-approximation
to (G,w, (C, I, U)). Moreover, we claim that if any one of βC1 , βC2 , βI1 , βI2 drops to −1, then
the instance (G,w, (C, I, U)) is an easy instance. Consider the case when βC2 = −1. Then
log4/3(w(C?U \ {c})) = −1 for some c ∈ C?U . This means w(C?U \ {c}) < 3/4, and since
w(v) ≥ 1 for every v ∈ V (G), it must be the case that C?U = {c}. Hence, the premise of
Lemma 18 holds and we obtain a (2 + ε)-approximate solution for (G,w, (C, I, U)). Similar



D. Lokshtanov, P. Misra, F. Panolan, G. Philip, and S. Saurabh 80:13

arguments apply to the other cases, i.e. when βC1 = −1, or βI1 = −1 or βI2 = −1, and we
can obtain a (2 + ε)-approximation in all these cases. Therefore, in all these cases S is a
(2 + ε)-approximation to (G,w, (C, I, U)).

Now, consider the case when the given instance is a hard instance, i.e. U 6= ∅ and the
premises of Lemma 16 and Lemma 18 don’t hold. In this case βC1 , βC2 , βI1 , βI2 ≥ 0. Recall that
X is a 5-approximate solution to SVD in the subgraph G[U ], and hence w(X) ≤ 5 ·w(OPT ).
We will make recursive calls on instances of A-SVD of the form (G,w, (C ′, I ′, U ′)) such
that C ⊆ C ′, I ⊆ I ′ and U ′ ( U . Suppose that (G,w, (C ′, I ′, U ′)) is a nice instance. Then
by the induction hypothesis, as |U ′| < |U |, we can assume that Algorithm 1 returns a
(2 + ε)-approximate solution Ŝ to this instance with probability at least 1/2. This is an
approximate solution to the current instance as well:

B Claim 28. Ŝ is a (2 + ε)-approximate solution to (G,w, (C, I, U))

Proof. Observe that, since Ŝ is feasible solution to the nice instance (G,w, (C ′, I ′, U ′)), there
is a split partition (C

Ŝ
, I
Ŝ

) of G − Ŝ such that C ′ ∩ I
Ŝ

= ∅ and I ′ ∩ C
Ŝ

= ∅. Therefore,
we have C ∩ I

Ŝ
= ∅ and I ∩ C

Ŝ
= ∅, i.e. Ŝ is a feasible solution to (G,w, (C, I, U)). Since

w(Ŝ) ≤ (2 + ε)w(OPT ), the claim is true. C

Let us now consider the recursive calls made by the algorithm for each j ∈ {1, 2, . . . , b(ε) =
d80(1 + 12

ε )e}, and argue that with a constant probability (depending on ε) we can obtain a
(2+ε)-approximation to the given instance. In each recursive call, one of βC1 , βC2 , βI1 , βI2 drops
by exactly 1. Let us fix j ∈ {1, 2, . . . , b(ε)} and consider the two vertices vI , vC sampled
using Lemma 26. Since (G,w, (C, I, U)) is a hard instance, the following hold.

With probability at least 1/2, vI ∈ X ∪ (IX \ C?U ), and for any x ∈ (X ∪ (IX \ C?U )),
Pr[vI = x] = w(x)/w(X ∪ (IX \ C?U )).
With probability at least 1/2, vC ∈ X ∪ (CX \ I?U ), and for any x ∈ (X ∪ (CX \ I?U )),
Pr[vC = x] = w(x)/w(X ∪ (CX \ I?U )).

By the induction hypothesis, any good invocation ASVD-Approx(G,w, (C ′, I ′, U ′), ε, β̂C1 ,
β̂C2 , β̂

I
1 , β̂

I
2) where (G,w, (C ′, I ′, U ′)) is a nice instance and |U ′| < |U | holds, returns a (2 + ε)-

approximate solution to (G,w, (C ′, I ′, U ′)) with probability at least 1
2 . We now have four

cases, depending on which of the four statements in Lemma 25 is true for (G,w, (C, I, U)).
In each case we will argue that with constant probability, we make a good recursive call on a
nice instance and obtain a (2 + ε)-approximate solution from it.
(i) Suppose that statement (1a) of Lemma 25 is true. That is, picking a vertex proportion-

ally at random fromX∪(IX\C?U ) yields a vertex from {v ∈ I?U | w(N(v)∩C?U ) ≥ w(C?U )
4 }

with probability at least 1/20(1+ 12
ε ). Then vI ∈ {v ∈ I?U | w(N(v)∩C?U ) ≥ w(C?U )

4 } with
probability at least 1/40(1+ 12

ε ). As vI ∈ I?U , every vertex in ZC = N(vI)∩U must either
be in OPTU or in C?U . Furthermore, w(ZC∩C?U ) ≥ w(C?U )

4 . Let U ′ = U\ZC , C ′ = C∪ZC
and consider the invocation ASVD-Approx(G,w, (C ′, I, U ′), ε, βC1 −1, βC2 , βI1 , βI2). Let
us argue that it is a good invocation. By definition C?U ′ = C? ∩ U ′ satisfies w(C?U ′) ≤
3
4w(C?U ). Therefore, as βC1 ≥ log4/3(w(C?U )), we have βC1 − 1 ≥ log4/3(w(C?U ′)). Fur-
thermore, observe that β2

C ≥ log4/3(w(C?U ′ \ {c?})), and I, βI1 , βI2 remain unchanged.
Hence, assuming that the current invocation is good, this invocation is also good. Let us
argue that (G,w, (C ′, I, U ′)) is a nice instance, i.e. OPT is an optimum solution to it.
Towards this, recall that C ′ = C ∪ZC where ZC = N(vI)∩U and vI ∈ I?U ⊆ I?. Hence,
every vertex in ZC is either in OPT or in C?, i.e. ZC ∩ I? = ∅. Since OPT is feasible
for (G,w, (C, I, U)) we have that C ∩ I? = ∅. Therefore, C ′ ∩ I? = (C ∪ ZC) ∩ I? = ∅,
and hence OPT is a feasible solution for (G,w, (C ′, I, U ′)). Finally, as any feasible

ICALP 2020



80:14 A (2 + ε)-Factor Approximation Algorithm for Split Vertex Deletion

solution for (G,w, (C ′, I, U ′)) is also feasible for (G,w), OPT is an optimum solution
for (G,w, (C ′, I, U ′)). Now |U ′| < |U |, and by the induction hypothesis, this invocation
returns a solution SCj,1 to (G,w, (C ′, I, U ′)) with probability at least 1/2. By Claim 28,
SC1,j is a (2 + ε)-approximate solution to (G,w, (C, I, U)). Hence, we obtain a solution
SC1,j that is a (2 + ε)-approximation to (G,w, (C, I, U)), and this event happens with
probability at least 1/80(1 + 12

ε ). Note that βC1 drops by 1 in the recursive call .
(ii) Suppose that statement (1b) of Lemma 25 is true. That is, picking a vertex propor-

tionately at random from X ∪ (IX \ C?U ) yields a vertex from {v ∈ I?U | w(N(v) ∩
(C?U \ {c?})) ≥

w(C?U )\{c?}
4 } with probability at least 1/20(1 + 12

ε ), for some vertex
c? ∈ C?U (as determined by Lemma 25). Then, with probability at least 1/40(1 + 12

ε ),
vI ∈ {v ∈ I?U | w(N(v) ∩ (C?U \ {c?})) ≥

w(C?U )\{c?}
4 }. As vI ∈ I?U , every vertex in

ZC = N(vI) ∩ U must either be in OPT or in C?U . Let C ′ = C ∪ ZC , U ′ = U \ ZC and
consider the invocation ASVD-Approx(G,w, (C ′, I, U ′), ε, βC1 , βC2 − 1, βI1 , βI2). Let us
argue that it is a good invocation. Let Ĉ = (C?U \{c?})\N(vI) and C?U ′ = C?∩U ′, and
note that either C?U ′ = Ĉ or C?U ′ = Ĉ∪{c?}. Since w(Ĉ) ≤ 3

4w(C?U \{c?}) by the choice
of vI , we have log4/3(w(Ĉ)) ≤ log4/3(w(C?U \{c?})−1 ≤ βC2 −1. Therefore, if C?U ′ = Ĉ,
then for any arbitrary c′ ∈ C?U ′ we have βC2 − 1 ≥ log4/3(w(C?U ′ \ {c′})); otherwise
C?U ′ = Ĉ ∪ {c?}, and βC2 − 1 ≥ log4/3(w(C?U ′ \ {c?})). Furthermore, observe that βC1 is
unchanged and C?U ′ ⊆ C?U , we have log4/3(w(C?U ′)) ≤ βC1 . Similarly, I, βI1 , βI2 are also
unchanged. Hence, this invocation is good. Next, as in the previous case, we can argue
that (G,w, (C ′, I, U ′) is a nice instance. Then, as |U ′| < |U |, by the induction hypo-
thesis the invocation returns a (2 + ε)-approximate solution SCj,2 to (G,w, (C ′, I, U ′))
with probability at least 1/2. By Claim 28, SCj,2 is a (2 + ε)-approximate solution to
(G,w, (C, I, U)). Hence, we obtain a solution SCj,2 that is a (2 + ε)-approximation to
(G,w, (C, I, U)), and this event happens with probability at least 1/80(1 + 12

ε ). Note
that βC2 drops by 1 in recursive call made here.

(iii) Suppose that statement (2a) of Lemma 25 is true. This case is symmetric to Case-(i),
above, where the arguments are made with respect to vC ∈ X ∪ (CX \ I?U ). Here
vC ∈ {v ∈ C?U | w(I?U \ N(v)) ≥ w(I?U )

4 } with probability at least 1/40(1 + 12
ε ).

We consider the instance (G,w, (C, I ′, U ′)) where ZI = U \ N(vC), I ′ = I ∪ ZI and
U ′ = U\ZI . We can argue that this invocation is good and the instance (G,w, (C, I ′, U ′))
is nice. Then, as |U ′| ≤ |U |, by the induction hypothesis, this invocation returns a
(2 + ε)-approximate solution to (G,w, (C, I ′, U ′)) with probability at least 1/2. Let
SIj,1 denote this solution, and we argue that it is also a (2 + ε)-approximate solution to
(G,w, (C, I, U)). In conclusion, we obtain a solution SIj,1 that is a (2+ε)-approximation
to (G,w, (C, I, U)), and this event happens with probability at least 1/80(1 + 12

ε ). Note
that βI1 drops by 1 in recursive call made here.

(iv) Suppose that statement (2b) of Lemma 25 is true. This case is symmetric to Case-(ii)
above. Here we have a vertex vC ∈ {v ∈ C?U | w(I?U \N(v)) ≥ w(I?U )

4 } with probability at
least 1/40(1+ 12

ε ). We make a recursive call ASVD-Approx(G,w, (C, I ′, U ′), ε, βC1 , βC2 ,
βI1 , β

I
2 − 1), where I ′ = I ∪ ZI , U ′ = U \ ZI and ZI = U \N(vC). Here, we obtain a

solution SIj,2 that is a (2 + ε)-approximation to (G,w, (C, I, U)), and this event happens
with probability at least 1/80(1 + 12

ε ). Note that βI2 drops by 1 in recursive call made
here.

Therefore, if (G,w, (C, I, U)) is a hard instance, then for each j ∈ {1, 2, . . . , b(ε)}, one of
SCj,1, S

C
j,2, S

I
j,1, S

I
j,2 is a (2+ε)-approximate solution to it with probability at least 1/80(1+ 12

ε ).
Note that the recursive calls made for any two distinct j, j′ ∈ {1, 2, . . . , b(ε)} are independent



D. Lokshtanov, P. Misra, F. Panolan, G. Philip, and S. Saurabh 80:15

events. Therefore, by setting b(ε) = d80(1+ 12
ε )e, we obtain that with probability at least 1/2

there exists j ∈ {1, 2, . . . , b(ε)} such that one of SCj,1, SCj,2, SIj,1, SIj,2 is a (2 + ε)-approximate
solution to (G,w, (C, I, U)).

Finally, let us bound the running time of this algorithm. Towards this, we must bound the
total number of calls made to Algorithm 1, when run on an instance (G,w) with polynomially
bounded weights. Observe that, we start with an instance (G,w, (C = ∅, I = ∅, U = V (G)))
of A-SVD along with βC1 , βC2 , βI1 , βI2 set to dlog4/3(w(V (G))e = c2 log(n) for some constant
c2. Then, for each instance (G,w, (C, I, U)), we make b(ε) recursive calls and at least one
of βC1 , βC2 , βI1 , βI2 drops by 1 in each of these calls. Additionally U drops to a strict subset
in each of these calls. Hence in a finite number of steps, either U becomes empty, or
one of βC1 , βC2 , βI1 , βI2 becomes equal to −1, and we reach an easy instance. Observe that
this must happen at some point before the depth of recursion exceeds β = 1 + 4c2 log(n).
Hence, the number of recursive calls made for the instance (G,w) is upper bounded by
b(ε)β = O(nh(ε)) where h(ε) = log(80(1 + 12

ε )) · 4c0 log(c1)/ log(4/3). Recall that c0, c1 are
constants such that w(V (G)) ≤ c1 · nc0 . Observe that in each recursive call, we spend O(n6)
time (excluding the recursive calls). Hence the total running time is upper-bounded by nf(ε)

where f(ε) = 6 + log(80(1 + 12
ε )) · 4c0 log(c1)/ log(4/3). Alternatively, this bound on the

running time can be obtained from the Master Theorem. J

3.2 General Weight Functions
In this section, we extend Theorem 27 to instances of SVD with general weight function. In
particular we show that given an instance with general weights, we can construct an instance
with polynomially-bounded weights such that an approximate solution to the new instance
can be lifted back to the original instance.
I Lemma 29 (♣). Let (G,w) be an instance of SVD, and ε > 0 be a constant. Then we can
construct another instance (G′, w′) of SVD such that G′ is a subgraph of G and given any α-
approximate solution to (G′, w′) where α ≤ 5, we can obtain an (α+ ε)-approximate solution
to (G,w). Moreover, the weight function w′ is polynomially bounded, and w′(V (G′)) ≤ 30n2

ε .
We have the following corollary of Theorem 27 and Lemma 29.

I Theorem 30. There exists a randomized algorithm that given a graph G, a weight function
w on V (G) and ε > 0, runs in time O(ng(ε)) and outputs S ⊆ V (G) such that G−S is a split
graph and w(S) ≤ 2(1 + ε)w(OPT ) with probability at least 1/2, where OPT is a minimum
weight split vertex deletion set of G. Here, g(ε) = 6 + 8 log(80(1 + 12

ε )) · log( 30
ε )/ log(4/3).

Proof. Given the instance (G,w) and ε, we apply Lemma 29 and obtain an instance
(G′, w′), where w′(V (G′)) ≤ 30n2

ε . We then apply Theorem 27 to (G′, w′) and ε and
obtain a solution S′ to it. This algorithm runs in time |V (G′)|g(ε) ≤ ng(ε, where g(ε) =
6 + 8 log(80(1 + 12

ε )) · log( 30
ε )/ log(4/3), and with probability at least 1/2 S′ is a (2 + ε)-

approximate solution to (G′, w′). Then by Lemma 29, S′ can be lifted to a 2(1+ε)-approximate
solution S to (G,w). J

4 Conclusion

One of the natural open question is to obtain a polynomial time 2-approximation algorithm
for SVD and match the lower bound obtained under UGC. It will be interesting to find other
implicit d-Hitting Set problems and find its correct “approximation complexity”. Towards
this we restate the conjecture of Fiorini et al. [5] about a concrete implicit 3-Hitting Set
problem: there is a 2-approximation algorithm for Cluster Vertex Deletion matching
the lower bound under UCG.

ICALP 2020



80:16 A (2 + ε)-Factor Approximation Algorithm for Split Vertex Deletion

References
1 R Bar-Yehuda and S Even. A linear-time approximation algorithm for the weighted vertex cover

problem. Journal of Algorithms, 2(2):198–203, 1981. doi:10.1016/0196-6774(81)90020-1.
2 Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for the weighted

vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981.
3 Mao-cheng Cai, Xiaotie Deng, and Wenan Zang. An approximation algorithm for feedback

vertex sets in tournaments. SIAM J. Comput., 30(6):1993–2007, 2000.
4 Marek Cygan and Marcin Pilipczuk. Split vertex deletion meets vertex cover: New fixed-

parameter and exact exponential-time algorithms. Inf. Process. Lett., 113(5-6):179–182, 2013.
5 Samuel Fiorini, Gwenaël Joret, and Oliver Schaudt. Improved approximation algorithms for

hitting 3-vertex paths. CoRR, abs/1808.10370, 2018. arXiv:1808.10370.
6 Stephane Foldes and Peter L. Hammer. Split graphs. Proceedings of the 8th Southeastern

Conference on Combinatorics, Graph Theory, and Computing, pages 311–315, 1977.
7 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2− ε.

Journal of Computer and System Sciences, 74(3):335–349, 2008. Computational Complexity
2003. doi:10.1016/j.jcss.2007.06.019.

8 John M Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is np-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

9 Daniel Lokshtanov, Pranabendu Misra, Joydeep Mukherjee, Fahad Panolan, Geevarghese
Philip, and Saket Saurabh. 2-approximating feedback vertex set in tournaments. In Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 1010–1018. SIAM, 2020. doi:10.1137/1.9781611975994.61.

10 Matthias Mnich, Virginia Vassilevska Williams, and Lászlo A Végh. A 7/3-approximation
for feedback vertex sets in tournaments. In 24th Annual European Symposium on Algorithms
(ESA 2016). Schloss Dagstuhl, 2016.

11 Jelani Nelson. A note on set cover inapproximability independent of universe size. Elec-
tronic Colloquium on Computational Complexity (ECCC), 14(105), 2007. URL: http:
//eccc.hpi-web.de/eccc-reports/2007/TR07-105/index.html.

12 Ewald Speckenmeyer. On feedback problems in diagraphs. In Graph-Theoretic Concepts in
Computer Science, 15th International Workshop, WG ’89, Castle Rolduc, The Netherlands,
June 14-16, 1989, Proceedings, volume 411 of Lecture Notes in Computer Science, pages
218–231. Springer, 1989. doi:10.1007/3-540-52292-1_16.

13 Jie You, Jianxin Wang, and Yixin Cao. Approximate association via dissociation. Discrete
Applied Mathematics, 219:202–209, 2017. doi:10.1016/j.dam.2016.11.007.

https://doi.org/10.1016/0196-6774(81)90020-1
http://arxiv.org/abs/1808.10370
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.1137/1.9781611975994.61
http://eccc.hpi-web.de/eccc-reports/2007/TR07-105/index.html
http://eccc.hpi-web.de/eccc-reports/2007/TR07-105/index.html
https://doi.org/10.1007/3-540-52292-1_16
https://doi.org/10.1016/j.dam.2016.11.007

	Introduction
	Preliminaries
	The Algorithm
	Polynomially Bounded Weights
	General Weight Functions

	Conclusion

