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Abstract
We investigate the power of randomness in two-party communication complexity. In particular,
we study the model where the parties can make a constant number of queries to a function with
an efficient one-sided-error randomized protocol. The complexity classes defined by this model
comprise the Randomized Boolean Hierarchy, which is analogous to the Boolean Hierarchy but
defined with one-sided-error randomness instead of nondeterminism. Our techniques connect the
Nondeterministic and Randomized Boolean Hierarchies, and we provide a complete picture of the
relationships among complexity classes within and across these two hierarchies. In particular,
we prove that the Randomized Boolean Hierarchy does not collapse, and we prove a query-to-
communication lifting theorem for all levels of the Nondeterministic Boolean Hierarchy and use it
to resolve an open problem stated in the paper by Halstenberg and Reischuk (CCC 1988) which
initiated the study of this hierarchy.
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1 Introduction

A classic example of the power of randomness in communication is the Equality function:
Alice gets an n-bit string x, Bob gets an n-bit string y, and they want to know whether x
equals y. Though Equality is maximally hard for deterministic communication [35], it can
be solved by a randomized protocol using O(1) bits of communication (in the public-coin
model) using the fingerprinting technique. Although this example (known for over 40 years)
demonstrates the power of randomized communication in the standard two-party setting,
many questions remain about the exact power of randomness in communication.
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Much is still not understood about the power of randomness in other important com-
munication settings beyond the standard two-party model. For example, in the Number-
on-Forehead (NOF) model, even for three parties, no explicit function is known to exhibit
a superpolylogarithmic separation between randomized and deterministic communication
[25] (despite the fact that linear lower bounds for randomized NOF protocols were proven
over 30 years ago in the seminal paper [3]). Another example concerns randomness in the
context of nondeterministic two-party protocols (so-called Arthur–Merlin and Merlin–Arthur
models). While strong lower bounds are known for Merlin–Arthur protocols [22] (though
even here, explicit linear lower bounds remain elusive), no strong lower bounds are known
for Arthur–Merlin protocols computing any explicit function – such bounds are necessary
for making progress on rigidity bounds and circuit lower bounds, and also important for
delegation [29, 12, 1].

We wish to highlight that even in the standard setting of plain randomized two-party
communication protocols, many fundamental questions remain poorly understood. Our
goal in this paper is to make progress on some of these questions. Much is known about
the limitations of randomness – e.g., strong (indeed, linear) lower bounds are known for
the classic Set-Disjointness function [2, 21, 30, 4], which can be viewed as showing that
coNPcc 6⊆ BPPcc (where we use cc superscripts to indicate the communication analogues
of classical complexity classes). However, surprisingly little is known about the power
of randomness. Most known efficient randomized protocols for other functions, such as
Greater-Than, can be viewed as oracle reductions to the aforementioned Equality
upper bound: Greater-Than ∈ PEquality. Until recently, it was not even known whether
BPPcc = PEquality (assuming the classes are defined to contain only total two-party functions),
i.e., whether Equality is the “only” thing randomness is good for. Chattopadhyay, Lovett,
and Vinyals [8] answered this question in the negative by exhibiting a total function that is
in BPPcc (indeed, in coRPcc) but not in PEquality (though the upper bound is still a form
of fingerprinting). Since Equality ∈ coRPcc, we have PEquality ⊆ PRPcc where the latter
class contains functions with efficient deterministic protocols that can make (adaptive) oracle
queries to any function in RPcc. In fact, [8] exhibited a strict infinite hierarchy of classes
within PRPcc, with PEquality at the bottom, and with subsequent levels having increasingly
powerful specific oracle functions.

However, it remains open whether BPPcc = PRPcc for total functions (intuitively, whether
two-sided error can be efficiently converted to oracle queries to one-sided error). It is even
open whether BPPcc ⊆ PNPcc for total functions [15], although this is known to be false if the
classes are defined to allow partial functions [26]. We obtain a more detailed understanding
of the structure of PRPcc by focusing on restricting the number of oracle queries (rather than
restricting the RPcc function as in [8]). For constants q = 0, 1, 2, 3, . . ., the class PRP[q]cc

‖
consists of all two-party functions with an efficient (polylogarithmic communication cost)
deterministic protocol that can make q many nonadaptive queries to an oracle for a function
in RPcc. Even if partial functions are allowed, it was not known whether these classes form
a strict infinite hierarchy, i.e., whether PRP[q]cc

‖ ( PRP[q+1]cc
‖ for all q. One of our main

contributions (Theorem 1) implies that this is indeed the case, even for total functions. Our
proof introduces new lower bound techniques.

With NPcc in place of RPcc,
⋃

q PNP[q]cc
‖ forms the communication version of the Boolean

Hierarchy from classical complexity, which was previously studied by Halstenberg and
Reischuk [16, 17, 18]. We also prove results (Theorem 2 and Theorem 3) that resolve a 31-
year-old open question posed in their work.

⋃
q PRP[q]cc
‖ can be viewed as the communication

version of the Randomized Boolean Hierarchy, which has not been studied explicitly in
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previous works. Overall, we obtain a complete understanding of the relationships among
the classes within and across the Nondeterministic and Randomized Boolean Hierarchies in
communication complexity. In the following subsection we discuss the relevant communication
complexity classes and describe our theorems in detail.

1.1 Background and our contributions
Forgetting about communication complexity for a moment, the Boolean Hierarchy in classical
complexity theory consists of problems that have a polynomial-time algorithm making a
constant number of queries to an NP oracle. This hierarchy has an intricate relationship
with other complexity classes, and its second level (DP) captures the complexity of certain
“exact” versions of optimization problems. It consists of an infinite sequence of complexity
classes NP(q) for q = 1, 2, 3, . . . (where NP(1) = NP and NP(2) = DP). Among the several
equivalent ways of defining these classes [34, 7, 23, 32], perhaps the simplest is that NP(q)
consists of all decision problems that can be computed by taking the parity of the answers
to a sequence of q NP problems on the given input. As illustrated in Figure 1, it is known
that these levels are intertwined with the classes PNP[q]

‖ of all decision problems solvable in
polynomial time using q nonadaptive NP queries (for constant q) [23, 32, 5]:

NP(q) ⊆ PNP[q]
‖ ⊆ NP(q + 1) and coNP(q) ⊆ PNP[q]

‖ ⊆ coNP(q + 1)

(by closure of PNP[q]
‖ under complementation). Here, coNP(q) means co(NP(q)) rather than

(coNP)(q).
Analogous to the above Nondeterministic Boolean Hierarchy, one can define the Random-

ized Boolean Hierarchy by using RP (one-sided error randomized polynomial time) instead
of NP in the definitions [6]. The analogous inclusions like in Figure 1 hold among all the
classes RP(q), coRP(q), and PRP[q]

‖ , by similar arguments. Although the (suitably defined)
Polynomial Hierarchy over RP is known to collapse to its second level, which equals BPP
[36], the Boolean Hierarchy over RP has not been widely studied.

Recall the basic (deterministic) model of communication [35, 24], where Alice is given an
input x and Bob is given an input y, and they wish to collaboratively evaluate some function
F (x, y) of their joint input by engaging in a protocol that specifies how they exchange bits of
information about their inputs. Many classical complexity classes (P, RP, NP, and so on) have
natural two-party communication analogues [2] (including the classes in the Nondeterministic
and Randomized Boolean Hierarchies). The area of structural communication complexity,
which concerns the properties of and relationships among these classes, is undergoing a
renaissance and has turned out to yield new techniques and perspectives for understanding
questions in a variety of other areas (circuit complexity, proof complexity, data structures,
learning theory, delegation, fine-grained complexity, property testing, cryptography, extended
formulations, etc.) [15]. For any classical time-bounded complexity class C, we use Ccc to
denote its communication complexity analogue – the class of all two-party functions on n
bits that admit a protocol communicating at most polylog(n) bits, in a model defined by
analogy with the classical C.

Halstenberg and Reischuk [16, 17] initiated the study of the Nondeterministic Boolean
Hierarchy in two-party communication complexity. They observed that the inclusions shown
in Figure 1 hold for the communication versions of the classes, by essentially the same
proofs as in the time-bounded setting. They also proved that NP(q)cc 6= coNP(q)cc, which
simultaneously implies that each of the inclusions is strict: NP(q)cc ( PNP[q]cc

‖ ( NP(q + 1)cc.
The communication version of the Randomized Boolean Hierarchy has not been explicitly

studied as far as we know, but as mentioned earlier it is interesting since Equality ∈ coRPcc

and many randomized protocols have been designed by reduction to this fact (such as
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P

NP(1)
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coNP(1)
= coNP

PNP[1]

NP(2)
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coNP(2)
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PNP[2]
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NP(3)

coNP(3)

PNP[3]
‖

NP(4)

coNP(4)

PNP[4]
‖

. . . PNP
‖ PNP

Figure 1 Relations between classes in the Boolean Hierarchy. Here, C1 → C2 represents C1 ⊆ C2.

Greater-Than ∈ PRPcc). What can we say about the power of a fixed number of queries
to an RPcc oracle? Our first contribution strengthens the aforementioned separation due to
Halstenberg and Reischuk.

I Theorem 1. For total functions, coRP(q)cc 6⊆ NP(q)cc for every constant q.

Since RPcc ⊆ NPcc, Theorem 1 simultaneously implies that each of the inclusions in the
Randomized Boolean Hierarchy is strict: RP(q)cc ( PRP[q]cc

‖ ( RP(q + 1)cc, and thus the
hierarchy does not collapse. Previously, no separation beyond the first level seemed to be
known in the literature. Our proof of Theorem 1 is completely different from (and more
involved than) Halstenberg and Reischuk’s proof of coNP(q)cc 6⊆ NP(q)cc, which used the
“easy-hard argument” of [20].

In [16, 17], Halstenberg and Reischuk asked whether the inclusion PNP[q]cc
‖ ⊆ NP(q + 1)cc∩

coNP(q + 1)cc is strict. When q = 0, this is answered by the familiar results that Pcc =
NPcc ∩ coNPcc when the classes are defined to contain only total functions [18], whereas
Pcc ( NPcc ∩ coNPcc (indeed, Pcc ( ZPPcc) holds when partial functions (promise problems)
are allowed. For q > 0, we resolve this 31-year-old open question by proving that the situation
is analogous to the q = 0 case.

I Theorem 2. For total functions,

PNP[q]cc
‖ = NP(q + 1)cc ∩ coNP(q + 1)cc and PRP[q]cc

‖ = RP(q + 1)cc ∩ coRP(q + 1)cc

for every constant q.

I Theorem 3. For partial functions, RP(q + 1)cc ∩ coRP(q + 1)cc 6⊆ PNP[q]cc
‖ for every con-

stant q.

Since RPcc ⊆ NPcc, Theorem 3 implies that

PNP[q]cc
‖ ( NP(q + 1)cc ∩ coNP(q + 1)cc and PRP[q]cc

‖ ( RP(q + 1)cc ∩ coRP(q + 1)cc

for partial functions. Taken together, Theorem 1, Theorem 2, and Theorem 3 complete the
picture of the relationships among the classes within and across both hierarchies, for both
total and partial functions.

1.2 Query-to-communication lifting
Our proof of Theorem 3 uses the paradigm of query-to-communication lifting [28, 11, 9, 14,
10, 13, 33]. This approach to proving communication lower bounds has led to breakthroughs
on fundamental questions in communication complexity and many of its application areas.
The idea consists of two steps:
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(1) First prove an analogous lower bound in the simpler setting of decision tree depth
complexity (a.k.a. query complexity). This step captures the combinatorial core of the
lower bound argument without the burden of dealing with the full power of communication
protocols.

(2) Then apply a lifting theorem, which translates the query lower bound into a commu-
nication lower bound for a related two-party function. This step encapsulates the
general-purpose machinery for dealing with protocols, and can be reused from one
argument to the next.

The availability of a lifting theorem greatly simplifies the task of proving certain com-
munication lower bounds, because it divorces the problem-specific aspects from the generic
aspects. The format of a lifting theorem is that if f : {0, 1}n → {0, 1} is any partial function
and g : X × Y → {0, 1} is a certain “small” two-party function called a gadget, then the
communication complexity of the two-party composed function f ◦ gn : Xn × Yn → {0, 1} –
in which Alice gets x = (x1, . . . , xn), Bob gets y = (y1, . . . , yn), and their goal is to evaluate
(f ◦gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)) – should be approximately the query complexity of
the outer function f . One direction is generally straightforward: given a query upper bound
for f , a communication upper bound for f ◦ gn is witnessed by a protocol that simulates the
decision tree for f and evaluates g(xi, yi) whenever it queries the ith bit of the input to f ;
the number of bits of communication is at most the number of queries made by the decision
tree times the (small) cost of evaluating a copy of g. The other direction is the challenging
part: despite Alice and Bob’s ability to send messages that depend in arbitrary ways on all
n coordinates, they nevertheless cannot do much better than just simulating a decision tree,
which involves “talking about” one coordinate at a time.

A lifting theorem must be stated with respect to a particular model of computation,
such as deterministic, one-sided error randomized, nondeterministic, etc., which we associate
with the corresponding complexity classes. Indeed, lifting theorems are known for P [28, 14],
RP [13], NP [11, 9], and many other classes. It is convenient to recycle complexity class
names to denote the complexity of a given function in the corresponding model, e.g., Pdt(f)
is the minimum worst-case number of queries made by any decision tree that computes f ,
and Pcc(F ) is the minimum worst-case communication cost of any protocol that computes
F . With this notation, the deterministic lifting theorem from [28, 14] can be stated as: for
all f , Pcc(f ◦ gn) = Pdt(f) ·Θ(logn) where g : [m]× {0, 1}m → {0, 1} is the “index” gadget
defined by g(x, y) = yx with m := n20. (Note that Pcc(g) = O(logn) since Alice can send
her logm-bit “pointer” to Bob, who responds with the pointed-to bit from his string.) The
index gadget has also been used in lifting theorems for several other complexity classes.

We prove lifting theorems for all classes in the Nondeterministic Boolean Hierarchy, with
the index gadget.

I Theorem 4. For every partial function f : {0, 1}n → {0, 1} and every constant q,
(i) NP(q)cc(f ◦ gn) = NP(q)dt(f) ·Θ(logn)
(ii) PNP[q]cc

‖ (f ◦ gn) = PNP[q]dt
‖ (f) ·Θ(logn)

where g : [m]× {0, 1}m → {0, 1} is the index gadget defined by g(x, y) = yx with m := n20.

Only part (ii) is needed for proving Theorem 3, but part (i) forms an ingredient in the
proof of (ii) and is of independent interest.

The most closely related lifting theorem to Theorem 4 is the one for PNP [10], corresponding
to computations that make an unbounded number of adaptive queries to an NP oracle. In
that paper, the overall idea was to approximately characterize PNP complexity in terms of
decision lists (DL), and then prove a lifting theorem directly for DLs. Briefly, a conjunction
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DL (introduced by [31]) is a sequence of small-width conjunctions each with an associated
output bit, and the output is determined by finding the first conjunction in the list that
accepts the given input. A rectangle DL is similar but with combinatorial rectangles instead
of conjunctions. The proof from [10] shows how to convert a rectangle DL for f ◦ gn into a
conjunction DL for f .

The gist of our arguments for both parts of Theorem 4 is to approximately characterize
(via different techniques than for PNP) these classes in terms of DLs with a bounded number of
alternations (how many times the associated output bit flips as we walk down the entire DL).
The DL lifting argument from [10] does not preserve the number of alternations, but we show
how it can be adapted to do this. Our techniques also yield an approximate lifting theorem
for PNP

‖ (corresponding to computations that make an unbounded number of nonadaptive
NP oracle queries), but we omit the details.

2 Preliminaries

We assume familiarity with deterministic computation in query and communication complexity
[19, 24]. Recall the following standard definitions of nondeterministic and one-sided error
randomized models:

An NPdt decision tree is a DNF formula Φ. Given an input z, the output of such a
decision tree is Φ evaluated on z. A function f is computed by Φ if f(z) = Φ(z) on all
inputs z for which f(z) is defined. The cost of Φ is the maximum width (number of
literals) in any conjunction in Φ.
An NPcc protocol is a set R of combinatorial rectangles. Given an input (x, y), the output
of such a protocol is R(x, y) := 1 iff there exists an R ∈ R containing (x, y). A two-party
function F is computed by R if F (x, y) = R(x, y) on all inputs (x, y) for which F (x, y) is
defined. The cost of R is dlog(|R|+ 1)e, which intuitively represents the number of bits
required to specify a rectangle in R or indicate that the input is in no such rectangle.
An RPdt decision tree is a distribution T over deterministic decision trees. Given an input
z, the output of such a decision tree is computed by sampling a deterministic decision
tree T from T and evaluating T (z). A function f is computed by T if for all z ∈ f−1(0),
PrT∼T [T (z) = 1] = 0 and for all z ∈ f−1(1), PrT∼T [T (z) = 1] ≥ 1/2. The cost of T is
the maximum number of bits queried in any T in its support.
An RPcc protocol is a distribution Π over deterministic communication protocols. Given an
input (x, y), the output of such a protocol is computed by sampling a deterministic protocol
Π from Π and evaluating Π(x, y). A function F is computed by Π if for all (x, y) ∈ F−1(0),
PrΠ∼Π[Π(x, y) = 1] = 0 and for all (x, y) ∈ F−1(1), PrΠ∼Π[Π(x, y) = 1] ≥ 1/2. The cost
of Π is the maximum number of bits exchanged in any Π in its support.

Let C be an arbitrary complexity class name representing a model of computation (such
as NP or RP). We let Ccc(F ) denote the communication complexity of a two-party function
F in the corresponding model: the minimum cost of any Ccc protocol computing F . We let
Cdt(f) denote the query complexity of a Boolean function f in the corresponding model: the
minimum cost of any Cdt decision tree computing f . Often we will abuse notation by having
F or f refer to an infinite family of functions, where there is at most one function in the
family for each possible input length. In this case, Ccc(F ) or Cdt(f) will be the complexity
parameterized by the input length n; we typically express this with asymptotic notation.
When written by itself, Ccc or Cdt denotes the class of all families of functions with complexity
at most polylogarithmic in n, in the corresponding model. We will always clarify whether a
class Ccc or Cdt is meant to contain partial functions or just total functions, since this is not
explicit in the notation.
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∧

¬Π4(x, y)∨

Π3(x, y)∧

¬Π2(x, y)Π1(x, y)

Figure 2 A visualization of a C(4)cc protocol, where each Πi is a Ccc protocol.

For RPcc and RPdt, the constant 1/2 in the success probability is arbitrary: by amplifica-
tion, choosing a different positive constant in the definition would only affect the complexity
of any function by a constant factor. Also note that NPdt(f) ≤ RPdt(f) for all f , and since
we defined RPcc using the public-coin model, we have NPcc(F ) ≤ RPcc(F ) +O(logn) for all
F (by decreasing the number of random bits for sampling a protocol to O(logn) and using
nondeterminism to guess an outcome that results in output 1).

2.1 Nondeterministic and Randomized Boolean Hierarchies
In the following definitions, restrict C to be either NP or RP. We will use two different but
equivalent definitions of the constituent levels of the Nondeterministic and Randomized
Boolean Hierarchies. Our “official” definition is in terms of the following “decision list
functions” (also known as “odd-max-bit”):

I Definition 5. ∆q : {0, 1}q → {0, 1} is defined inductively as follows:
∆1(z1) := z1.
If q is odd, ∆q(z1, . . . , zq−1, zq) := ∆q−1(z1, . . . , zq−1) ∨ zq.
If q is even, ∆q(z1, . . . , zq−1, zq) := ∆q−1(z1, . . . , zq−1) ∧ (¬zq).

In other words, letting ⊕ : N → {0, 1} denote the parity function, we have ∆q(z) := ⊕(i)
where i is the greatest index such that zi = 1 (or i = 0 if z is all zeros).

I Definition 6. A C(q)cc protocol is an ordered list of q many Ccc protocols Π = (Π1, . . . ,Πq).
Given an input (x, y), the output of the protocol is Π(x, y) := ∆q(Π1(x, y), . . . ,Πq(x, y)). The
cost of a C(q)cc protocol is the sum of the costs of the component Ccc protocols.

See Figure 2 for an example of such a protocol. The Nondeterministic Boolean Hierarchy
is
⋃

constant q NP(q)cc and the Randomized Boolean Hierarchy is
⋃

constant q RP(q)cc. We are
also interested in the complement classes coNP(q)cc and coRP(q)cc. As is standard, when we
write coC(q)cc we refer to the class co(C(q)cc) (that is, functions that are the negations of
functions in C(q)cc) as opposed to (coC)(q)cc (that is, where the component protocols are
coCcc protocols).

There are analogous definitions in query complexity:

I Definition 7. A C(q)dt decision tree is an ordered list of q many Cdt decision trees
T = (T1, . . . , Tq). Given an input z, define the output as T (z) := ∆q(T1(z), . . . , Tq(z)).
The cost of a C(q)dt decision tree is the sum of the costs of the component Cdt decision trees.

Our alternative definition of the Nondeterministic and Randomized Boolean Hierarchies
simply replaces ∆q with the parity function ⊕q : {0, 1}q → {0, 1}.

ICALP 2020
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I Lemma 8. For C ∈ {NP,RP}, if the definitions of C(q)cc and C(q)dt are changed to use ⊕q

in place of ∆q, it only affects the complexity measures C(q)cc(F ) and C(q)dt(f) by a constant
factor (depending on q).

Wagner [32] showed that these alternative characterizations are equivalent for the classical
Nondeterministic Boolean Hierarchy, and Halstenberg and Reischuk [17] observed the same
(up to a constant factor) in communication complexity. This latter proof uses only the
property that NPcc is closed under intersection and union; that is, if NPcc(F1),NPcc(F2) ≤ k,
then NPcc(F1 ∧ F2) and NPcc(F1 ∨ F2) are both O(k). Observe that since this property also
holds for RPcc, NPdt, and RPdt, their proof works for these models of computation as well.
In fact, in all of these models, the cost of the intersection or union of i cost-k computations
is at most ik.

We use both definitions in this paper. We found that the ∆q definition makes it easier to
prove the lifting theorems, and the ⊕q definition makes it easier to prove concrete upper and
lower bounds.

2.2 Parallel queries
In the following definitions, restrict C to be either NP or RP.

I Definition 9. A PC[q]cc
‖ protocol consists of a deterministic protocol Πdet that maps an

input (x, y) to two things: a function out : {0, 1}q → {0, 1} and an ordered list of q many Ccc

protocols (Π1, . . . ,Πq). The output is then out(Π1(x, y), . . . ,Πq(x, y)). The cost of a PC[q]cc
‖

protocol is the communication cost (depth) of Πdet plus the maximum over (x, y) of the sum
of the costs of the Ccc protocols produced by Πdet(x, y).

I Definition 10. A PC[q]dt
‖ decision tree consists of a deterministic decision tree Tdet that

maps an input z to two things: a function out : {0, 1}q → {0, 1} and an ordered list of q
many Cdt decision trees (T1, . . . , Tq). The output is then out(T1(z), . . . , Tq(z)). The cost of a
PC[q]dt
‖ decision tree is the query cost (depth) of Tdet plus the maximum over z of the sum of

the costs of the Cdt decision trees produced by Tdet(z).

The following lemma states that at each leaf of Πdet or Tdet, we can replace the q “C
oracle queries” with one “C(q) oracle query” (where some leaves may output the oracle’s
answer, while other leaves output the negation of it). This was shown in classical time-
bounded complexity using the so-called “mind-change argument” [5], and this argument can
be translated directly to communication and query complexity. For example, [17] used this
method to show that PNP[q]cc

‖ ⊆ NP(q + 1)cc ∩ coNP(q + 1)cc. We will only need to use the
result for C = NP.

I Lemma 11. For C ∈ {NP,RP}, we have PC[q]cc
‖ (F ) = Θ(PC(q)[1]cc(F )) and PC[q]dt

‖ (f) =
Θ(PC(q)[1]dt(f)) for every constant q.

3 Separations

In this section we prove our separation results (Theorem 1 and Theorem 3).

3.1 Proof of Theorem 1
I Theorem (Restatement of Theorem 1). For total functions, coRP(q)cc 6⊆ NP(q)cc for every
constant q.
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Fix any constant q. Let ⊕qNonEq : ({0, 1}n)q × ({0, 1}n)q → {0, 1} be the two-party
total function where Alice’s and Bob’s inputs are divided into q blocks x = (x1, . . . , xq) and
y = (y1, . . . , yq) with each xi, yi ∈ {0, 1}n, and which is defined by ⊕qNonEq(x, y) := 1 iff
there are an odd number of blocks i such that xi 6= yi. Note that RP(q)cc(⊕qNonEq) = O(1)
by Lemma 8 and the standard fact that RPcc(NonEq) = O(1). Thus ⊕qNonEq ∈ coRP(q)cc.
We will now prove that NP(q)cc(⊕qNonEq) = Ω(n).

Suppose for contradiction ⊕qNonEq has an NP(q)cc protocol of cost k ≤ n/2q, say
Π = (R1, . . . ,Rq) where each Ri is a nonempty set of rectangles. By Lemma 8 we may
assume the protocol outputs 1 iff the input is contained in an odd number of the rectangle
unions

⋃
R∈Ri

R for i ∈ [q], in other words, Π(x, y) := ⊕q(R1(x, y), . . . ,Rq(x, y)). Note
that, assuming Ri has cost ki, the total number of rectangles in these unions is at most∑

i |Ri| ≤
∏

i(|Ri|+ 1) ≤
∏

i 2ki = 2k.
We will iteratively construct a sequence of rectangles Qj for j = 0, . . . , q such that (i)

there are at least j many values of i for which Qj ⊆
⋃

R∈Ri
R, and (ii) Qj contains an input

where exactly j blocks are unequal. We obtain the contradiction when j = q: by (ii) some
input (x, y) ∈ Qq has xi 6= yi for all i and thus ⊕qNonEq(x, y) = 1 − ⊕(q), yet by (i) we
have Ri(x, y) = 1 for all i and thus Π(x, y) = ⊕(q), contradicting the supposed correctness
of Π.

We will actually maintain stronger invariants than the above (i) and (ii): For (i), we will
actually have for some j values of i – we assume they are 1, . . . , j for notational convenience
– some individual rectangle Ri ∈ Ri contains Qj . For (ii), Qj will actually have the following
form: for some fixed strings aj = (a1, . . . , aj) ∈ ({0, 1}n)j and bj = (b1, . . . , bj) ∈ ({0, 1}n)j

such that ai 6= bi for all i ∈ [j], and for some nonempty set Sj ⊆ ({0, 1}n)q−j , we have
Qj := {ajs : s ∈ Sj} × {bjs : s ∈ Sj}, which we abbreviate as ajSj × bjSj . Defining a
diagonal input in Qj to be one of the form (ajs, bjs) for any particular s ∈ Sj , we see that
each diagonal input has exactly j unequal blocks, as needed for (ii).

In fact, we will maintain not just that Sj is nonempty, but that it is sufficiently large.
Specifically, the deficiency of Sj , defined as D∞(Sj) := n(q − j)− log |Sj |, will be at most
(2j − 1)(2k+ 1). At the end, since (2q − 1)(2k+ 1) <∞, this guarantees that Sq will contain
at least one element from ({0, 1}n)q−q. The latter set only has one element, namely the
empty tuple, so this means Qq will contain the single input (aq, bq), which has all blocks
unequal.

We start with S0 = ({0, 1}n)q, which indeed has D∞(S0) = 0 = (20 − 1)(2k + 1), and
thus Q0 is the rectangle of all possible inputs. Now supposing we already have aj , bj ,
and Sj satisfying all the properties from the previous two paragraphs, we explain how to
obtain aj+1, bj+1 ∈ {0, 1}n and Sj+1 ⊆ ({0, 1}n)q−(j+1) so these properties again hold (with
aj+1 := ajaj+1 and bj+1 := bjbj+1).

We first observe that each diagonal input in Qj must be contained in at least one
rectangle from Rj+1 ∪ · · · ∪ Rq. This is because such an input (x, y) is already contained
in the rectangles R1 ∈ R1, . . . , Rj ∈ Rj , and these cannot be the only values of i such that
Ri(x, y) = 1 since otherwise we would have Π(x, y) = ⊕(j) while ⊕qNonEq(x, y) = 1−⊕(j),
contradicting the supposed correctness of Π. Now pick one of the (at most 2k) rectangles
from Rj+1 ∪ · · · ∪ Rq that contains the largest fraction (at least 1/2k) of diagonal inputs
from Qj , and assume this rectangle is Rj+1 ∈ Rj+1 for notational convenience. Defining
S̃j := {s ∈ Sj : (ajs, bjs) ∈ Rj+1}, we see that D∞(S̃j) ≤ D∞(Sj)+k ≤ (2j−1)(2k+1)+k.

Since Rj+1 is a rectangle, it must in fact contain the entire rectangle ajS̃j × bjS̃j . Since
ajS̃j × bjS̃j ⊆ ajSj × bjSj = Qj , by assumption it is also contained in each of R1, . . . , Rj . In
the end, we will ensure Qj+1 is a subrectangle of ajS̃j × bjS̃j , which will maintain property
(i): Qj+1 is contained in each of R1, . . . , Rj+1.

ICALP 2020



92:10 Boolean Hierarchies in Communication Complexity

To maintain (ii), we will find some aj+1 6= bj+1 and then define Sj+1 := {s : aj+1s ∈
S̃j and bj+1s ∈ S̃j}. Then aj+1S

j+1 ⊆ S̃j and bj+1S
j+1 ⊆ S̃j ensure that Qj+1 :=

aj+1Sj+1 × bj+1Sj+1 is indeed a subrectangle of ajS̃j × bjS̃j , as we needed for (i). The fact
that this can be done with a not-too-small Sj+1 is encapsulated in the following technical
lemma, which we prove shortly:

I Lemma 12. Consider any bipartite graph with left nodes U and right nodes V , and suppose
1 ≥ ε ≥ 2/|U |. If an ε fraction of all possible edges are present in the graph, then there exist
distinct nodes u, u′ ∈ U that have at least (ε2/2) · |V | common neighbors.

Specifically, take U := {0, 1}n and V := ({0, 1}n)q−(j+1) (so |V | = 1 if j = q−1, but that is
fine), put an edge between u ∈ U and v ∈ V iff uv ∈ S̃j , and let ε := |S̃j |/2n(q−j) = 1/2D∞(S̃j).
Notice that ε ≥ 2/|U | holds since D∞(S̃j) ≤ (2j − 1)(2k + 1) + k ≤ 2j+1k − 1 ≤ n − 1
follows from our assumption that k ≤ n/2q. Thus Lemma 12 guarantees we can pick strings
aj+1 6= bj+1 (corresponding to the nodes u, u′) such that Sj+1 (the set of common neighbors)
has size at least (ε2/2) · 2n(q−(j+1)). Thus

D∞(Sj+1) := n(q − (j + 1))− log |Sj+1| ≤ log(2/ε2) = 2D∞(S̃j) + 1
≤ 2

(
(2j − 1)(2k + 1) + k

)
+ 1 =

(
2(2j − 1) + 1

)
(2k + 1)

= (2j+1 − 1)(2k + 1)

as we needed for (ii). This finishes the proof of Theorem 1.

Proof of Lemma 12. Let du and dv denote the degrees of nodes u ∈ U and v ∈ V , and let
du,u′ denote the number of common neighbors of u, u′ ∈ U . Summing over ordered pairs
u, u′ of not-necessarily-distinct left nodes, we have∑

u,u′∈U

du,u′ =
∑

v∈V

d2
v ≥

( ∑
v∈V

dv

)2
/|V | = ε2 · |U |2 · |V |

by Cauchy–Schwarz and the assumption
∑

v∈V dv = ε · |U | · |V |. Now sampling u, u′

independently uniformly at random from U , we have

ε2 · |V | ≤ E
u,u′

[du,u′ ] ≤ E
u,u′

[du,u′ | u 6= u′] + E
u

[du] · Pr
u,u′

[u = u′]

(the conditioning is valid by the assumption |U | ≥ 2). Since Eu[du] = ε · |V | and Pru,u′ [u =
u′] = 1/|U |, rearranging gives

E
u,u′

[du,u′ | u 6= u′] ≥ ε2 · |V | − ε · |V |/|U | ≥ (ε2/2) · |V |

where the last inequality holds by the assumption 1/|U | ≤ ε/2. Thus there must be some
u 6= u′ such that du,u′ is at least this large. J

3.2 Proof of Theorem 3
I Theorem (Restatement of Theorem 3). For partial functions, RP(q + 1)cc∩coRP(q + 1)cc 6⊆
PNP[q]cc
‖ for every constant q.

To prove this result, we require the query complexity separation coRP(q)dt 6⊆ NP(q)dt.

I Definition 13. Fix any constant q. Let ⊕qGapOr : ({0, 1}n)q → {0, 1} be the partial
function where the input is divided into q blocks z = (z1, . . . , zq) having the promise that each
zi ∈ {0, 1}n is either all zeros or at least half ones (call such an input valid), and which is
defined by ⊕qGapOr(z) := 1 iff an odd number of blocks i are such that zi is nonzero.
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Note that RP(q)dt(⊕qGapOr) = O(1) by Lemma 8 and the fact that RPdt(GapOr) = 1.
The full version of this paper [27] contains a proof of the following lemma:

I Lemma 14. NP(q)dt(⊕qGapOr) = Ω(n).

We now proceed to the proof of Theorem 3.
Fix any constant q. Let Which⊕q+1GapOr : ({0, 1}2n)2(q+1) → {0, 1} be the following

partial function: The input is divided into two halves z = (z0, z1), and each half is divided
into q + 1 blocks zh = (zh

1 , . . . , z
h
q+1) having the promise that each zh

i ∈ {0, 1}2n is either all
zeros or at least a quarter ones, and moreover it is promised that the number of nonzero
blocks in z0 has the opposite parity as the number of nonzero blocks in z1 (call such an input
valid). The partial function is defined by

Which⊕q+1GapOr(z) =

{
1 if the number of nonzero blocks is odd in z0 and even in z1

0 if the number of nonzero blocks is even in z0 and odd in z1

We henceforth abbreviate Which⊕q+1GapOr as f . Note that RP(q + 1)dt(f) = O(1)
by applying the RP(q + 1)dt decision tree for ⊕q+1GapOr on z0 (adapted for the different
block length and different threshold for fraction of ones in a block). By symmetry (focusing
on z1), we also have RP(q + 1)dt(f) = O(1). Letting g : [m]× {0, 1}m → {0, 1} be the index
gadget with m := N20 where N := 4(q + 1)n, this implies that

RP(q + 1)cc(f ◦ gN ) = O(logn) and coRP(q + 1)cc(f ◦ gN ) = O(logn)

(by the “easy direction” of RP(q + 1) lifting) and thus f◦gN ∈ RP(q + 1)cc∩coRP(q + 1)cc. We
will now prove that PNP[q]dt

‖ (f) = Ω(n), which by Theorem 4.(ii) implies that PNP[q]cc
‖ (f◦gN ) =

Ω(n logn).
We show this by reduction from Lemma 14. We henceforth abbreviate ⊕qGapOr as f ′.

Supposing f has a PNP[q]dt
‖ decision tree T of cost k ≤ n/2, say with deterministic phase Tdet,

we will use it to construct an NP(q)dt decision tree T ′ of cost at most k for f ′.
By Lemma 11 we may assume that each leaf of Tdet produces a single NP(q)dt decision

tree and chooses whether to output the same or opposite answer as that decision tree. Follow
the root-to-leaf path in Tdet where all queries are answered with zero. Let ρ ∈ ({0, ∗}2n)2(q+1)

be the partial assignment with at most k ≤ n/2 zeros that records these queries (so an input
leads to this leaf iff it is consistent with ρ). Let Tleaf = (Φ1, . . . ,Φq) be the NP(q)dt decision
tree of cost at most k produced at this leaf, where each Φi is a DNF. By symmetry, we
assume (without loss of generality) that this leaf chooses to output the same answer as Tleaf.

Given any valid input z′ to f ′, we show how to map it to a valid input z to f such that
(i) f ′(z′) = f(z), (ii) z is consistent with ρ, and (iii) each bit of z either is fixed or is some
preselected bit of z′. Since (iii) implies that Tleaf(z) can be viewed as an NP(q)dt decision
tree T ′(z′) by substituting a constant or variable of z′ in for each variable of z (which does
not increase the width of any conjunction), and T ′ would correctly compute f ′ since

f ′(z′) = f(z) = T (z) = Tleaf(z) = T ′(z′)

by (i), correctness of T , (ii), and (iii) respectively, this would show that NP(q)dt(f ′) ≤ k ≤
n/2, which we know is false from Lemma 14.

To define z, we start with ρ (that is, we place zeros everywhere ρ requires, thus ensuring
(ii)). Since ρ has at most n zeros in each block (indeed, at most n/2 zeros total), we can
then place more zeros in such a way that each block now has exactly n zeros and n stars.
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Next we replace the stars in z0
q+1 with ones and replace the stars in z1

q+1 with zeros. Finally,
for each i ∈ [q], we fill in the stars of z0

i with a copy of z′i and fill in the stars of z1
i with

another copy of z′i. This construction satisfies (iii).
To verify (i), first observe that since each block of z′ is either all zeros or at least half

(n/2) ones, this ensures each block of z is either all zeros or at least a quarter (2n/4) ones.
Furthermore, if z′ has exactly ` nonzero blocks then the number of nonzero blocks is `+ 1
in z0 (since z0

q+1 is nonzero) and ` in z1 (since z1
q+1 is all zeros). Hence if f ′(z′) = 1 (` is

even) then f(z) = 1 (since ` + 1 is odd and ` is even), and if f ′(z′) = 0 (` is odd) then
f(z) = 0 (since `+ 1 is even and ` is odd). Thus f ′(z′) = f(z), and this finishes the proof of
Theorem 3.

4 Total function collapse

I Theorem (Restatement of Theorem 2). For total functions,

PNP[q]cc
‖ = NP(q + 1)cc ∩ coNP(q + 1)cc and PRP[q]cc

‖ = RP(q + 1)cc ∩ coRP(q + 1)cc

for every constant q.

In this section we will present intuition for the proof of the nondeterministic case of
Theorem 2. For the complete proof, see the full version of this paper [27].

This proof is similar to the argument for the q = 0 case (that is, for total functions,
Pcc = NPcc ∩ coNPcc). In that proof, Alice and Bob can use the fact that the rectangles
in the NPcc protocol’s 1-monochromatic covering of F are disjoint from the rectangles in
the coNPcc protocol’s 0-monochromatic covering. Specifically, if F (x, y) = 1, then (x, y)
is in some 1-rectangle, which is row-disjoint or column-disjoint from each 0-rectangle. (If
a 1-rectangle and 0-rectangle shared a row and a column, they would intersect, which is
not possible for a total function.) Therefore, Alice and Bob can repeatedly eliminate from
consideration at least half of the remaining 0-rectangles, by identifying a 1-rectangle that
either has x in its row set but is row-disjoint from at least half the remaining 0-rectangles, or
has y in its column set but is column-disjoint from at least half the remaining 0-rectangles.
If (x, y) is indeed in a 1-rectangle, then this process can always continue until there are no
0-rectangles left. If (x, y) is in a 0-rectangle, then this process will never eliminate that
rectangle, so the process will halt with a nonempty set of 0-rectangles.

We repeat a similar argument, but using the “top level” of the NP(q + 1)cc and the
coNP(q + 1)cc protocols for F as our monochromatic rectangle sets. Here we think of a
coNP(q + 1)cc protocol as computing F by applying ∆q+1 (with negations pushed to the
leaves) to the indicators for q + 1 rectangle unions. Depending on the parity of q, the
rectangle union Rq+1 queried at depth 1 of the NP(q + 1)cc protocol will correspond to either
1-monochromatic rectangles or 0-monochromatic rectangles for F . The rectangle union R′q+1
queried at depth 1 of the coNP(q + 1)cc protocol will be the opposite color of monochromatic
rectangles. Crucially, this means that no input is in a rectangle from both of these sets (as
we are assuming F is total). See Figure 3 for an illustration.

A key observation is that a deterministic protocol similar to the one used in the q = 0 case,
ran using these top-level rectangle sets, will return the correct answer under the promise that
(x, y) is in one of these rectangles. Say, for example, that (x, y) is in some rectangle in the
1-monochromatic top-level set. Then the deterministic protocol will successfully eliminate all
0-rectangles from the other top-level set, and will announce that the answer is 1. If (x, y) was
in one of the 0-rectangles, then that rectangle will never be eliminated, and so the protocol
would announce that the answer is 0.
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NP(4)cc protocol

∧

¬R4(x, y)∨

R3(x, y)∧

¬R2(x, y)R1(x, y)

coNP(4)cc protocol

∨

R′4(x, y)∧

¬R′3(x, y)∨

R′2(x, y)¬R′1(x, y)

Figure 3 If a total function has an NP(4)cc protocol and a coNP(4)cc protocol, then the rectangle
unions from the NPcc functions at depth one of each protocol are disjoint.

If (x, y) is in the top-level rectangle union for one of the protocols, then (x, y) is not in
the top-level rectangle union of the other protocol, so F (x, y) can be computed by the other
protocol but where the top level is skipped (resulting in only q many NPcc oracle queries).
This boils down to the observation that ∆q+1(z1, . . . , zq, 0) = ∆q(z1, . . . , zq).

What if (x, y) is in neither top-level rectangle union? Then we can make no guarantees
about the behavior of the deterministic protocol – it might answer 0 or 1 (which we interpret
as merely a “guess” for F (x, y)). However, in this case both protocols correctly compute
F (x, y) even if the top level is skipped. Therefore, we will still get the correct answer no
matter which guess is produced by the deterministic protocol.

5 Query-to-communication lifting theorems

I Theorem (Restatement of Theorem 4.). For every partial function f : {0, 1}n → {0, 1} and
every constant q,
(i) NP(q)cc(f ◦ gn) = NP(q)dt(f) ·Θ(logn)
(ii) PNP[q]cc

‖ (f ◦ gn) = PNP[q]dt
‖ (f) ·Θ(logn)

where g : [m]× {0, 1}m → {0, 1} is the index gadget defined by g(x, y) = yx with m := n20.

In this section we present the proof for Theorem 4.(i), as well as the necessary background.
The full version of this paper [27] contains the proof of Theorem 4.(ii). The high-level idea
of the latter proof is to convert a PNP(q)[1]cc protocol for f ◦ gn into a PNP(q)[1]dt decision tree
for f by using the P lifting theorem of Raz and McKenzie [28, 14] to handle the deterministic
phase, followed by our NP(q) lifting theorem to handle the single NP(q) oracle query.

5.1 Decision lists
The reason we call ∆q a “decision list function” is that it highlights the connection between
the Boolean Hierarchy classes and the decision list models of computation:

I Definition 15. A rectangle decision list LR is an ordered list of pairs (R1, `1), (R2, `2), . . .
where each Ri is a combinatorial rectangle, `i ∈ {0, 1} is a label, and the final rectangle in
the list contains all inputs in the domain. For an input (x, y), the output LR(x, y) is `i where
i is the first index for which (x, y) ∈ Ri. The cost of LR is the log of the length of the list.

I Definition 16. A conjunction decision list LC is an ordered list of pairs (C1, `1), (C2, `2), . . .
where each Ci is a conjunction, `i ∈ {0, 1} is a label, and the final conjunction in the list
accepts all inputs in the domain. For an input z, the output LC(z) is `i where i is the first
index for which Ci(z) = 1. The cost of LC is the maximum width of any conjunction in
the list.
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Note that the restriction on the final rectangle/conjunction is without loss of generality.
The complexity measures DLcc(F ) and DLdt(f) are the minimum cost of any rectangle/con-
junction decision list computing F or f , and the classes DLcc and DLdt contain those functions
with complexity at most polylog(n).

We now define q-alternating decision lists to have the additional restriction that the
sequence of output labels `1, `2, . . . only flips between 0 and 1 at most q times, and furthermore
the last label is 0. This restriction partitions the list into contiguous levels where all labels
in the same level are equal; without loss of generality the last level consists only of the final
“catch-all” entry. For convenience, in the list entries we replace the labels with the level
numbers themselves.

I Definition 17. A q-alternating rectangle decision list LR is an ordered list of pairs
(R1, `1), (R2, `2), . . . where each Ri is a combinatorial rectangle, `i ∈ {0, 1, . . . , q} is a level
such that `i ≥ `i+1 for all i, and the final rectangle in the list contains all inputs in the
domain and is the only rectangle at level 0. For an input (x, y), the output LR(x, y) is ⊕(`i)
where i is the first index for which (x, y) ∈ Ri. The cost of LR is the log of the length of
the list.

I Definition 18. A q-alternating conjunction decision list LC is an ordered list of pairs
(C1, `1), (C2, `2), . . . where each Ci is a conjunction, `i ∈ {0, 1, . . . , q} is a level such that
`i ≥ `i+1 for all i, and the final conjunction in the list accepts all inputs in the domain and
is the only conjunction at level 0. For an input z, the output LC(z) is ⊕(`i) where i is the
first index for which Ci(z) = 1. The cost of LC is the maximum width of any conjunction in
the list.

The complexity measures DL(q)cc(F ) and DL(q)dt(f) are the minimum cost of any q-
alternating rectangle/conjunction decision list computing F or f , and the classes DL(q)cc

and DL(q)dt contain those functions with complexity at most polylog(n).
It turns out that q-alternating decision lists are equivalent to NP(q) in both communication

and query complexity. As this follows almost immediately from the definition of ∆q, we omit
the proof here.

I Lemma 19. DL(q)cc(F ) = Θ(NP(q)cc(F )) and DL(q)dt(f) = Θ(NP(q)dt(f)) for every
constant q. Thus, DL(q)cc = NP(q)cc and DL(q)dt = NP(q)dt for partial functions.

This can be contrasted with the lemma from [10] stating that DLcc = PNPcc and DLdt =
PNPdt for partial functions.

5.2 Query-to-communication lifting for NP(q)
The big-O direction of Theorem 4.(i) follows immediately from the same fact for NP: for
every f , NPcc(f ◦ gn) = NPdt(f) ·O(logn) holds by replacing each of the nO(k) conjunctions
in a width-k DNF with mk rectangles (each of which contains inputs where the gadget
outputs satisfy the conjunction), for a total of nO(k)mk = 2k·O(log n) rectangles. In the rest
of this section we prove the big-Ω direction. By Lemma 19 it suffices to show

DL(q)cc(f ◦ gn) = DL(q)dt(f) · Ω(logn).

5.2.1 Technical preliminaries
Our proof is closely related to the PNP lifting theorem of Göös, Kamath, Pitassi, and
Watson [10], so we start by recalling some definitions and lemmas that were used in that
work. We will need to tweak some of the statements and parameters, though.
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Define G : [m]n× ({0, 1}m)n → {0, 1}n as G := gn. This partitions the input domain into
2n slices G−1(z) = {(x, y) : g(xi, yi) = zi for all i ∈ [n]}, one for each z ∈ {0, 1}n. For a
set Z ⊆ {0, 1}n, let G−1(Z) :=

⋃
z∈Z G

−1(z). Consider sets A ⊆ [m]n and B ⊆ ({0, 1}m)n.
For I ⊆ [n], we let AI := {xI : x ∈ A} and BI := {yI : y ∈ B} be the projections onto the
coordinates of I. Themin-entropy of a random variable x is H∞(x) := minx log(1/Pr[x = x]).
We say A is δ-dense if the uniform random variable x over A satisfies the following: for
every nonempty I ⊆ [n], H∞(xI) ≥ δ|I| logm (that is, the min-entropy of the marginal
distribution of x on coordinates I is at least a δ fraction of the maximum possible for a
distribution over [m]I). The deficiency of B is D∞(B) := mn− log |B|.

I Lemma 20 ([10, Lemma 11]). If A ⊆ [m]n is 0.8-dense and B ⊆ ({0, 1}m)n has deficiency
at most n4, then G(A × B) = {0, 1}n, that is, for every z ∈ {0, 1}n there are x ∈ A and
y ∈ B with G(x, y) = z.

Here the density parameter is δ = 0.8 and the deficiency is D∞(B) ≤ n4, instead of
δ = 0.9 and D∞(B) ≤ n2 as in the original. Lemma 20 still holds because our gadget size
has increased: we use m := n20, whereas [10] used m := n4. This can be verified by a simple
substitution in the proof.

The next lemma is altered somewhat from the original. For a proof, see the full version [27].

I Lemma 21 (A more general version of [10, Claim 12]). Let X ⊆ [m]n be 0.85-dense. If
A′ ⊆ X satisfies |A′| ≥ |X |/2k+1 then there exist an I ⊆ [n] of size |I| < 20(k + 1)/ logm
and an A ⊆ A′ such that A is fixed on coordinates I and 0.8-dense on all other coordinates.

5.2.2 The simulation
We exhibit an algorithm that takes a q-alternating rectangle decision list LR for f ◦ gn of cost
k, and converts it to a q-alternating conjunction decision list LC for f of cost O(k/ logn).
The argument from [10] does exactly this except without preserving the bound on the number
of alternations. In [10] the argument is formulated using a “dual” characterization of DLdt,
but it has the effect of building LC in order, obtaining each conjunction by “extracting” it
from one of the rectangles in LR. The trouble is that the rectangles are not necessarily
“extracted from” in order: after extracting a conjunction from some rectangle, the next
conjunction that gets put in LC may be extracted from a rectangle that is earlier in LR.
Thus LC may end up with more alternations than LR.

To fix this, we convert the argument to a “primal” form and argue that it still works
when we force the rectangles to be extracted from in order. The high-level view is that we
iterate through the rectangles of LR in order, and for each we extract as many conjunctions
as we can until the rectangle becomes “exhausted”, at which time we remove the remaining
“error” portion of the rectangle (by deleting few rows and columns) and move on to the next
rectangle. With this modification, the rest of the technical details from [10] continue to work,
and it now preserves the number of alternations.

At any step of this process, we let X × Y be the remaining rows and columns (after
having removed the error portion of all previous rectangles in LR), and we let Z ⊆ {0, 1}n be
the remaining inputs to f (which have not been accepted by any previous conjunctions we
put in LC). Suppose (Ri, `i) is our current entry in LR. The goal is to find a subrectangle
A×B ⊆ Ri ∩ (X × Y ) that is “conjunction-like” in the sense that G(A×B) is exactly the
inputs accepted by some small-width conjunction C, and such that among all remaining
inputs z ∈ Z, C only accepts those with f(z) = ⊕(`i). These properties would ensure it is
safe to put (C, `i) next in LC.
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Algorithm 1 Simulation algorithm.

In: LR = (R1, `1), . . . , (R2k , `2k ) and X ⊆ [m]n, Y ⊆ ({0, 1}m)n

Out: LC
1: initialize X ← X , Y ← Y, Z ← domain of f , LC ← empty list
2: for i = 1 to 2k do
3: while Z 6= ∅ do
4: for each x ∈ X, let Yx := {y ∈ Y : (x, y) ∈ Ri ∩G−1(Z)}
5: let A′ := {x ∈ X : |Yx| ≥ 2mn−n4}
6: if |A′| ≤ |X |/2k+1 then
7: update X ← X rA′

8: update Y ← Y r
⋃

x∈XrA′ Yx

9: break out of inner loop
10: else |A′| > |X |/2k+1

11: let A ⊆ A′, I ⊆ [n], α ∈ [m]I be such that:
12: |I| = O(k/ logn), AI is fixed to α, and A[n]rI is 0.8-dense
13: pick any x′ ∈ A and choose β ∈ ({0, 1}m)I to maximize |{y ∈ Yx′ : yI = β}|
14: let C be the conjunction “zI = gI(α, β)”
15: update LC by appending (C, `i) to it
16: update Z ← Z r C−1(1)

Combining Lemma 20 and Lemma 21 (using X = [m]n) suggests an approach for finding
a conjunction-like subrectangle: If A′ is not too small, we can restrict it to A that is fixed
on few coordinates I and dense on the rest (by Lemma 21). If B is also not too small (low
deficiency) and fixed on coordinates I, then G(A×B) is fixed on I and takes on all possible
values on the remaining coordinates (by Lemma 20, which still works with [n] r I in place of
[n]). In other words, G(A×B) = C−1(1) for a small-width conjunction C, as desired.

The other property we needed to ensure is that if this C is the first conjunction in LC
to accept a particular z, then f(z) = ⊕(`i) (so LC is correct). This will follow if we know
there is some (x, y) ∈ G−1(z) such that Ri is the first rectangle in LR to contain (x, y),
as that guarantees f(z) = f(G(x, y)) = (f ◦ gn)(x, y) = ⊕(`i). It turns out this will hold
automatically if A×B ⊆ Ri ∩ (X × Y ), because A×B touches the slice of every z that is
accepted by C, and all inputs (x, y) ∈ G−1(Z) that were in some Rj with j < i have already
been removed from X × Y .

Our algorithm for building LC from LR is shown in Algorithm 1. It is described as starting
from some arbitrary initial rectangle X × Y. For the purpose of proving Theorem 4.(i) we
only need to take X = [m]n and Y = ({0, 1}m)n, but when we invoke this as a component in
the proof of Theorem 4.(ii) we will need to start from some X × Y that is merely “dense ×
large” rather than the full input domain, so we state this more general version now.

I Lemma 22. If LR computes f ◦ gn on X × Y and has cost k, and if X is 0.85-dense
and D∞(Y) ≤ n3, then LC produced by Algorithm 1 computes f and has cost O(k/ logn).
Moreover, if LR is q-alternating then so is LC.

Proof. To verify the cost, just note that lines 11 and 12 always succeed by Lemma 21 (since X
is 0.85-dense and |A′| ≥ |X |/2k+1), so when a conjunction is added to LC on lines 14 and 15, it
has width |I| < 20(k+ 1)/ logm = O(k/ logn). On line 13, defining B := {y ∈ Yx′ : yI = β}
we have |B| ≥ |Yx′ |/2m|I| ≥ 2mn−n4−m|I| = 2m(n−|I|)−n4 (since x′ ∈ A ⊆ A′) and therefore
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D∞(B[n]rI) ≤ n4 (relative to ({0, 1}m)[n]rI). Thus by applying Lemma 20 to A[n]rI

(which is 0.8-dense) and B[n]rI we have g[n]rI(A[n]rI ×B[n]rI) = {0, 1}n−|I| and therefore
G(A×B) = C−1(1). (Lemma 20 works with the same parameters even though the sets are
now on fewer than n coordinates.)

The algorithm terminates because Z always shrinks on line 16: for any y ∈ B we have
G(x′, y) ∈ Z (from the definition of Yx′) and C(G(x′, y)) = 1 (since x′I = α and yI = β and
thus G(x′, y)I = gI(α, β)).

The algorithm maintains the invariant that for all j < i, Rj ∩ (X × Y ) ∩ G−1(Z) = ∅.
This vacuously holds at the beginning, and is clearly maintained in the else case because i
stays the same and nothing gets added to X, Y , or Z. Lines 7 and 8 maintain the invariant
in the if case because the removed rows and columns cover all of Ri ∩ (X × Y ) ∩G−1(Z)
and i goes up by 1.

Next we argue that when the algorithm terminates, Z must be empty. In each iteration
of the outer loop, we throw out at most |X |/2k+1 rows and at most |X | · 2mn−n4 ≤ mn ·
2mn−n4 ≤ 2mn−n3

/2k+1 ≤ |Y|/2k+1 columns. (We throw out columns in Yx for x 6∈ A′, all
of these Yx had the property |Yx| < 2mn−n4 , we do this for at most |X | values of x, and
n4−n logm ≥ n3 +k+1.) Since the outer loop executes 2k times, by the end at most half the
rows of X and half the columns of Y have been discarded, so |X| ≥ |X |/2 and |Y | ≥ |Y|/2.
This means X is essentially as dense as X (only a −1 loss in any H∞(xI)) and Y is essentially
as low-deficiency as Y (only a +1 loss in D∞). Thus Lemma 20 (with a tiny perturbation of
the parameters, which does not affect the result) shows that G(X × Y ) = {0, 1}n. However,
the last rectangle that is processed, R2k , contains all of X ×Y by definition (since we assume
LR is correct on X ×Y). So, the invariant guarantees (X × Y )∩G−1(Z) = ∅ at termination.
This can only happen if G−1(Z) = ∅ and thus Z = ∅ (since G(X × Y ) = {0, 1}n).

We now argue that LC is correct. Consider any z in the domain of f . Since Z is
empty at termination, z must be accepted by some conjunction in LC. Let (C, `i) be the
first entry such that C(z) = 1, so z ∈ Z during the iteration of the inner loop when this
entry was added. Since in this iteration we have G(A × B) = C−1(1) and z ∈ C−1(1),
there is some (x, y) ∈ A × B with G(x, y) = z. Since A × B ⊆ Ri we have (x, y) ∈ Ri.
Since A × B ⊆ X × Y , we have (x, y) ∈ (X × Y ) ∩ G−1(Z) and thus (x, y) cannot be in
Rj for any j < i since Rj ∩ (X × Y ) ∩ G−1(Z) = ∅ by the invariant. In summary, Ri is
the first rectangle in LR that contains (x, y). By correctness of LR on X × Y, we have
⊕(`i) = (f ◦ gn)(x, y) = f(G(x, y)) = f(z). Thus LC also correctly outputs ⊕(`i) on input z.

The “moreover” part is straightforward to verify: the levels assigned to conjunctions in
LC come from the levels assigned to rectangles in LR (namely {0, . . . , q}), in the same order
(which is non-increasing). J
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