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Abstract
We study complex zeros of the partition function of 2-spin systems, viewed as a multivariate
polynomial in terms of the edge interaction parameters and the uniform external field. We obtain
new zero-free regions in which all these parameters are complex-valued. Crucially based on the
zero-freeness, we are able to extend the existence of correlation decay to these complex regions
from real parameters. As a consequence, we obtain an FPTAS for computing the partition function
of 2-spin systems on graphs of bounded degree for these parameter settings. We introduce the
contraction property as a unified sufficient condition to devise FPTAS via either Weitz’s algorithm
or Barvinok’s algorithm. Our main technical contribution is a very simple but general approach
to extend any real parameter of which the 2-spin system exhibits correlation decay to its complex
neighborhood where the partition function is zero-free and correlation decay still exists. This result
formally establishes the inherent connection between two distinct notions of phase transition for
2-spin systems: the existence of correlation decay and the zero-freeness of the partition function via
a unified perspective, contraction.
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1 Introduction

Spin systems originated from statistical physics to model interactions between neighbors on
graphs. In this paper, we focus on 2-state spin (2-spin) systems. Such a system is specified
by two edge interaction parameters β and γ, and a uniform external field λ. An instance
is a graph G = (V,E). A configuration σ is a mapping σ : V → {+,−} which assigns one
of the two spins + and − to each vertex in V . The weight w(σ) of a configuration σ is
given by w(σ) = βm+(σ)γm−(σ)λn+(σ), where m+(σ) denotes the number of (+,+) edges
under the configuration σ, m−(σ) denotes the number of (−,−) edges, and n+(σ) denotes
the number of vertices assigned to spin +. The partition function ZG(β, γ, λ) of the system
parameterized by (β, γ, λ) is defined to be the sum of weights over all configurations, i.e.,
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ZG(β, γ, λ) =
∑

σ:V→{+,−}

w(σ).

It is a sum-of-product computation. If a 2-spin system is restricted to graphs of degree
bounded by ∆, we say such a system is ∆-bounded.

In classical statistical mechanics the parameters (β, γ, λ) are usually non-negative real
numbers, and such 2-spin systems are divided into the ferromagnetic case (βγ > 1) and
the antiferromagnetic case (βγ < 1). The case βγ = 1 is degenerate. When (β, γ, λ) are
non-negative numbers and they are not all zero, the partition function can be viewed as the
normalizing factor of the Gibbs distribution, which is the distribution where a configuration
σ is drawn with probability PrG;β,γ,λ(σ) = w(σ)

ZG(β,γ,λ) . However, it is meaningful to consider
parameters of complex values. By analyzing the location of complex zeros of the partition
function, the phenomenon of phase transitions was discovered by statistical physicists. One
of the first and also the best known result is the Lee-Yang theorem [21] for the Ising model,
a special case of 2-spin systems. This result was later extended to more general models by
several people [1, 34, 37, 29, 24]. In this paper, we view the partition function ZG(β, γ, λ) as
a multivariate polynomial over these three complex parameters (β, γ, λ). We study the zeros
of this polynomial and the relation to the approximation of the partition function.

Partition functions encode rich information about the macroscopic properties of 2-spin
systems. They are not only of significance in statistical physics, but also are well-studied
in computer science. Computing the partition function of 2-spin systems given an input
graph G can be viewed as the most basic case of Counting Graph Homomorphisms (#GH)
[11, 5, 14, 8] and Counting Constraint Satisfaction Problems (#CSP) [10, 9, 6, 12, 7], which
are two very well studied frameworks for counting problems. Many natural combinatorial
problems can be formulated as 2-spin systems. For example, when β = γ, such a system
is the famous Ising model. And when β = 0 and γ = 1, ZG(0, 1, λ) is the independence
polynomial of the graph G (also known as the hard-core model in statistical physics); it
counts the number of independent sets of the graph G when λ = 1.

Related work
For exact computation of ZG(β, γ, λ), the problem is proved to be #P-hard for all complex
valued parameters but a few very restricted trivial settings [2, 8, 9]. So the main focus is to
approximate ZG(β, γ, λ). This is an area of active research, and many inspiring algorithms
are developed. The pioneering algorithm developed by Jerrum and Sinclair gives a fully
polynomial-time randomized approximation scheme (FPRAS) for the ferromagnetic Ising
model [19]. This FPRAS is based on the Markov Chain Monte Carlo (MCMC) method which
devises approximation counting algorithms via random sampling. Later, it was extended
to general ferromagnetic 2-spin systems [15, 26]. The MCMC method can only handle
non-negative parameters as it is based on probabilistic sampling.

The correlation decay method developed by Weitz [43] was originally used to devise
deterministic fully polynomial-time approximation schemes (FPTAS) for the hardcore model
up to the uniqueness threshold of the infinite regular tree. It turns out to be a very powerful
tool for devising FPTAS for antiferromagnetic 2-spin systems [44, 22, 23, 39]. Combining
with hardness results [40, 13], an exact threshold of computational complexity transition of
antiferromagnetic 2-spin systems is identified and the only remaining case is at the critical
point. On the other hand, for ferromagnetic 2-spin systems, limited results [44, 17] have been
obtained via the correlation decay method. Although correlation decay is usually analyzed
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in 2-spin systems of non-negative parameters, it can be adapted to complex parameters. An
FPTAS was obtained for the hard-core model in the Shearer’s region (a disc in the complex
plane) via correlation decay in [18].

Recently, a new method developed by Barvinok [3], and extended by Patel and Regts
[30] is the Taylor polynomial interpolation method that turns complex zero-free regions of
the partition function into FPTAS of corresponding complex parameters. Suppose that the
partition function ZG(β, γ, λ) has no zero in a complex region containing an easy computing
point, e.g., λ = 0. It turns out that, probably after a change of coordinates, logZG(β, γ, λ)
is well approximated in a slightly smaller region by a low degree Taylor polynomials which
can be efficiently computed. This method connects the long-standing study of complex zeros
to algorithmic studies of the partition function of physical systems. Motivated by this, more
recently some complex zero-free regions have been obtained for hard-core models [4, 32],
Ising models [27, 31], and general 2-spin systems [16].

Our contribution
In this paper, we obtain new zero-free regions of the partition function of 2-spin systems.
Crucially based on the zero-freeness, we are able to extend the existence of correlation
decay to these complex regions from real parameters. As a consequence, we obtain an
FPTAS for computing the partition function of bounded 2-spin systems for these parameter
settings. Our result gives the first zero-free regions in which all three parameters (β, γ, λ) are
complex-valued and new correlation decay results for bounded ferromagnetic 2-spin systems.
Our main technical contribution is a very simple but general approach to extend any real
parameter of which the bounded 2-spin system exhibits correlation decay to its complex
neighborhood where the partition function is zero-free and correlation decay still exists. We
show that for bounded 2-spin systems, the real contraction1 property that ensures correlation
decay exists for certain real parameters directly implies the zero-freeness and the existence
of correlation decay of corresponding complex neighborhoods.

We formally describe our main result. We use ζζζ ∈ C3 to denote the parameter vector
(β, γ, λ). Since the case β = γ = 0 is trivial, by symmetry we always assume γ 6= 0.

I Theorem 1. Fix ∆ ∈ N. If ζζζ0 ∈ R3 satisfies real contraction for ∆, then there exists a
δ > 0 such that for any ζζζ ∈ C3 where ‖ζζζ − ζζζ0‖∞ < δ, we have

ZG(ζζζ) 6= 0 for every graph2 G of degree at most ∆;
the ∆-bounded 2-spin system specified by ζζζ exhibits correlation decay.

As a consequence, there is an FPTAS for computing ZG(ζζζ).

This result formally establishes the inherent connection between two distinct notions
of phase transition for bounded 2-spin systems: the existence of correlation decay and the
zero-freeness of the partition function, via a unified perspective, contraction. The connection
from the existence of correlation decay of real parameters to the zero-freeness of corresponding
complex neighborhoods was already observed for the hard-core model [32] and the Ising
model without external field [27]. In this paper, we extend it to general 2-spin systems, and
furthermore we establish the connection from the zero-freeness of complex neighborhoods
back to the existence of correlation decay of such complex regions.

Now, we give our zero-free regions. We first identify the sets of real parameters of which
bounded 2-spin systems exhibit correlation decay.

1 See Definition 11. In many cases, the existence of correlation decay boils down to this property.
2 This is true even if G contains some vertices pinned by a feasible configuration (Definition 7).

ICALP 2020
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I Definition 2. Fix integer ∆ ≥ 3. We define the following four real correlation decay sets.
1. S∆

1 = {ζζζ ∈ R3 | ∆−2
∆ <

√
βγ < ∆

∆−2 , β, γ > 0 and λ ≥ 0},
2. S∆

2 = {ζζζ ∈ R3 | βγ < 1, β ≥ 0, γ > 0, λ ≥ 0, and ζζζ is up-to-∆ unique (Definition 14)},
3. S∆

3 = {ζζζ ∈ R3 | βγ > ∆
∆−2 , β, γ > 0 and 0 ≤ λ < γ

t∆−1[(∆−2)βγ−∆]} where t = max{1, β},
4. and S∆

4 = {ζζζ ∈ R3 | βγ > ∆
∆−2 , β, γ > 0 and λ > (∆−2)βγ−∆

βr∆−1 } where r = min{1, 1/γ}.
When context is clear, we omit the superscript ∆.

The set S∆
1 was given in [44] and S∆

2 was given in [23]. To our best knowledge, S∆
1

and S∆
2 cover all non-negative parameters of which bounded 2-spin systems are known to

exhibit correlation decay. The sets S∆
3 and S∆

4 are obtained in this paper3. They give new
correlation decay results and hence FPTAS for bounded ferromagnetic 2-spin systems. When
β < γ and λ is sufficiently large, it is known that approximating the partition function of
ferromagnetic 2-spin systems over general graphs is #BIS-hard [26]. Our result S∆

4 shows
that there is an FPTAS for such a problem when restricted to graphs of bounded degree.
When β < 1 < γ, the FPTAS obtained from S∆

3 is covered by [17].

I Theorem 3. Fix integer ∆ ≥ 3. For every ζζζ0 ∈ S∆
i (i ∈ [4]), there exists a δ > 0 such

that for any ζζζ ∈ C3 where ‖ζζζ − ζζζ0‖∞ < δ, we have
ZG(ζζζ) 6= 0 for every graph G of degree at most ∆; (G may contain a feasible configuration.)
the ∆-bounded 2-spin system specified by ζζζ exhibits correlation decay.

Then via either Weitz’s algorithm or Barvinok’s algorithm, there is an FPTAS for computing
the partition function ZG(ζζζ).

I Remark 4. The choice of δ does not depend on the size of the graph, only on ∆ and ζζζ0.

Organization
This paper is organized as follows. In Section 2, we briefly describe Weitz’s algorithm [43].
We introduce real contraction as a sufficient condition for the existence of correlation decay
of real parameters, and we show that sets S∆

i (i ∈ [4]) satisfy it. In Section 3, we briefly
describe Barvinok’s algorithm [3]. We introduce complex contraction as a generalization
of real contraction, and we show that it gives a unified sufficient condition for both the
zero-freeness of the partition function and the existence of correlation decay of complex
parameters. Finally, in Section 4, we prove our main result that real contraction implies
complex contraction. This finishes the proof of Theorem 3. We use the following diagram
(Figure 1) to summarize our approach to establish the connection between correlation decay
and zero-freeness. We expect it to be further explored for other models.

Independent work
After a preliminary version [36] of this manuscript was posted, we learned that based on similar
ideas, Liu simplified the proofs of [32] and [27], and generalized them to antiferromagnetic
Ising models (β = γ < 1) in chapter 3 of his Ph.D. thesis [25], where similar zero-freeness
results (a complex neighborhood of S∆

2 restricted to β = γ) were obtained. We mention
that by using the unique analytic continuation and the inverse function theorem, our main
technical result (Theorem 24) is generic; it does not rely on a particularly chosen potential
function. Thus, in our approach we can work with any existing potential function based

3 Since we do not assume β 6 γ or β > γ, S∆
3 and S∆

4 are essentially the same by swapping β and γ and
replacing λ with 1/λ. However, if one restrict to β 6 γ, then S∆

3 is no longer the same as S∆
4 .
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Zero-Freeness

Barvinok’s Algorithm

&&
S∆
i

(i ∈ [4])
Lemma 15 // Real

Contraction
Theorem 24 // Complex

Contraction

Lemma 19

77

Lemma 20
''

FPTAS

Correlation Decay

Weitz’s Algorithm

88

Figure 1 The structure of our approach.

argument for correlation decay even if the potential function does not have an explicit
expression, for instance, the one used in [23] when β 6= γ. Furthermore, we mention also that
based on the zero-freeness, we obtain new correlation decay results for complex parameters
(Lemma 20). Note that Barvinok’s algorithm requires an entire region in which the partition
function is zero-free and there is an easy computing point in this region. However, our
correlation decay results show that one can always devise an FPTAS for these parameter
settings via Weitz’s algorithm, even if Barvinok’s algorithm fails.

2 Weitz’s Algorithm

In this section, we describe Weitz’s algorithm and introduce real contraction. We first
consider positive parameters ζζζ ∈ R3

+. An obvious but important fact about ζζζ being positive
is that ZG(ζζζ) 6= 0 for any graph G. This is true even if G contains arbitrary number of
vertices pinned to spin + or −. Then, the partition function can be viewed as the normalizing
factor of the Gibbs distribution.

2.1 Notations and definitions

Let ζζζ ∈ R3
+. We use pv(ζζζ) to denote the marginal probability of v being assigned to spin +

in the Gibbs distribution, i.e., pv(ζζζ) = Z+
G,v

(ζζζ)
ZG(ζζζ) , where Z+

G,v(ζζζ) is the contribution to ZG(ζζζ)
over all configurations with v being assigned to spin +. We know that pv(ζζζ) is well-defined
since ZG(ζζζ) 6= 0. (Later, we will extend the definition of pv(ζζζ) to complex parameters ζζζ.)

Let σΛ ∈ {0, 1}Λ be a configuration of some subset Λ ⊆ V . We allow Λ to be the
empty set. We call vertices in Λ pinned and other vertices free. We use pσΛ

v (ζζζ) to denote
the marginal probability of a free vertex v (v /∈ Λ) being assigned to spin + conditioning

on the configuration σΛ of Λ, i.e., pσΛ
v (ζζζ) = Z

σΛ,+
G,v

(ζζζ)
Z
σΛ
G

(ζζζ) , where ZσΛ
G (ζζζ) is the weight over all

configurations where vertices in Λ are pinned by the configuration σΛ, and ZσΛ,+
G,v (ζζζ) is the

contribution to ZσΛ
G (ζζζ) with v being assigned to spin +. Correspondingly, we can define

ZσΛ,−
G,v (ζζζ). Let RσΛ

G,v(ζζζ) := Z
σΛ,+
G,v

(ζζζ)

Z
σΛ,−
G,v

(ζζζ)
= p

σΛ
v (ζζζ)

1−pσΛ
v (ζζζ) be the ratio between the two probabilities

that the free vertex v is assigned to spin + and −, while imposing some condition σΛ. Since
ZG(ζζζ) 6= 0 for any graph G with arbitrary number of pinned vertices, both pσΛ

v (ζζζ) and
RσΛ
G,v(ζζζ) are well-defined. When context is clear, we write pv(ζζζ), pσΛ

v (ζζζ) and RσΛ
G,v(ζζζ) as pv,

pσΛ
v and RσΛ

G,v for convenience.

ICALP 2020
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Since computing the partition function of 2-spin systems is self-reducible, if one can
compute pv for any vertex v, then the partition function can be computed via telescoping
[20]. The goal of Weitz’s algorithm is to estimate pσΛ

v , which is equivalent to estimating RσΛ
G,v.

For the case that the graph is a tree T , RσΛ
T,v can be computed by recursion. Suppose that

a free vertex v has d children, and s1 of them are pinned to +, s2 are pinned to −, and k
are free (s1 + s2 + k = d). We denote these k free vertices by vi(i ∈ [k]) and let Ti be the
corresponding subtree rooted at vi. We use σiΛ to denote the configuration σΛ restricted to
Ti. Since all subtrees are independent, it is easy to get the following recurrence relation,

RσΛ
T,v =

ZσΛ,+
T,v (ζζζ)

ZσΛ,−
T,v (ζζζ)

=
λ1+s1βs1

∏k
i=1

(
βZ

σiΛ,+
Ti,vi

(ζζζ) + Z
σiΛ,−
Ti,vi

(ζζζ)
)

λs1γs2
∏k
i=1

(
Z
σiΛ,+
Ti,vi

(ζζζ) + γZ
σiΛ,−
Ti,vi

(ζζζ)
) = λβs1

γs2

k∏
i=1

βRσiΛTi,vi + 1

R
σiΛ
Ti,vi

+ γ

.
I Definition 5 (Recursion function). Let s = (s1, s2, k) ∈ N3 (including 0). A recursion
function Fs for 2-spin systems is defined to be

Fs(ζζζ,x) := λβs1γ−s2
k∏
i=1

(
βxi + 1
xi + γ

)
,

where ζζζ = (β, γ, λ) ∈ C × (C\{0}) × C and x = (x1, . . . , xk) ∈ (C\{−γ})k. We define
Fζζζ,s(x) := Fs(ζζζ,x) for fixed ζζζ with γ 6= 0, and Fx,s(ζζζ) := Fs(ζζζ,x) for fixed x.

I Remark 6. Every recursion function is analytic on its domain.
For a general graph G, Weitz reduced computing RσΛ

G,v to that in a tree T , called the
self-avoiding walk (SAW) tree, and Weitz’s theorem [43] states that RσΛ

G,v = RσΛ
T,v. (Please

see [43], [17] or the full paper for more details.) We want to generalize Weitz’s theorem to
complex parameters ζζζ ∈ C3. First, we need to make sure that RσΛ

G,v and pσΛ
v are well-defined

for any vertex v /∈ Λ. This requires that ZσΛ
G (ζζζ) 6= 0 for any graph G and any configuration

σΛ. Now, pσΛ
v no longer has a probabilistic meaning. It is just a ratio of two complex

numbers. However, one can easily observe that for some special parameters, there are trivial
configurations such that ZσΛ

G,v(ζζζ) = 0. We will rule these cases out as they are infeasible.

I Definition 7 (Feasible configuration). Let ζζζ ∈ C3. Given a graph G = (V,E) of the 2-spin
system specified by ζζζ, a configuration σΛ on some vertices Λ ⊆ V is feasible if

σΛ does not assign any vertex in G to spin + when λ = 0, and
σΛ does not assign any two adjacent vertices in G both to spin + when β = 0.

I Remark 8. Let σΛ be a feasible configuration. If we further pin one vertex v /∈ Λ to spin
−, and get the configuration σΛ′ on Λ′ = Λ ∪ {v}, then σΛ′ is still a feasible configuration.
Thus, given ζζζ ∈ C3, if ZσΛ

G (ζζζ) 6= 0 for any graph G and any arbitrary feasible configuration
σΛ on G, then both pσΛ

v and RσΛ
G,v are well-defined.

Given RσΛ
G,v is well-defined for some ζζζ ∈ C3, we can still compute it by recursion via SAW

tree. We first consider the case that λ 6= 0. Let σΛ be a feasible configuration. It is easy
to verify that the corresponding configuration on the SAW tree is also feasible and Weitz’s
theorem still holds. For the case that λ = 0, it is obvious that RσΛ

G,v ≡ 0 for any graph G,
any free vertex v and any feasible configuration σΛ. This is equal to the value of recursion
functions Fs(ζζζ,x) at λ = 0. We agree that RσΛ

G,v can be computed by recursion functions
when λ = 0, although Weitz’s theorem does not hold for this case. For the case that β = 0,
we have RσΛ

G,v = 0 if one of the children of v is pinned to +. Then, we may view v as it is
pinned to −. Thus, for β = 0, we only consider recursion functions Fs where s1 = 0.
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y x

F (y) Fϕ(x)

F Fϕ

ϕ

ϕ−1

ϕ

ϕ−1

Figure 2 Commutative diagram between F and Fϕ.

2.2 Correlation decay and real contraction

The SAW tree may be exponentially large in size of G. In order to get a polynomial time
approximation algorithm, we may run the tree recursion at logarithmic depth and hence in
polynomial time, and plug in some arbitrary values at the truncated boundary. We have
the following notion of strong spatial mixing (SSM) to bound the error caused by arbitrary
guesses. It was originally introduced for non-negative parameters. Here, we extend it to
complex parameters.

I Definition 9 (Strong spatial mixing). A 2-spin system specified by ζζζ ∈ C3 on a family G of
graphs is said to exhibit strong spatial mixing if for any graph G = (V,E) ∈ G, any v ∈ V ,
and any feasible configurations σΛ1 ∈ {0, 1}Λ1 and τΛ2 ∈ {0, 1}Λ2 where v /∈ Λ1 ∪Λ2, we have

1. ZσΛ1
G (ζζζ) 6= 0 and ZτΛ2

G (ζζζ) 6= 0, and

2.
∣∣pσΛ1
v − pτΛ2

v

∣∣ ≤ exp(−Ω(dist(v, S))).
Here, S ⊆ Λ1 ∪ Λ2 is the subset on which σΛ1 and τΛ2 differ (If a vertex v is free in one
configuration but pinned in the other, we say that these two configurations differ at v), and
distG(v, S) is the shortest distance from v to any vertex in S.

I Remark 10. When ζζζ ∈ R3
+, condition 1 is always satisfied. Condition 2 is a stronger form

of SSM of real parameters (see Definition 5 of [23]). For real values, by monotonicity one
need to consider only the case that Λ1 = Λ2 (the two configurations are on the same set
of vertices). Here, we need to consider the case that Λ1 6= Λ2. This is necessary to extend
Weitz’s algorithm to complex parameters.

In statistical physics, SSM implies correlation decay. If SSM holds, then the error caused
by arbitrary boundary guesses at logarithmic depth of the SAW tree is polynomially small.
Hence, Weitz’s algorithm gives an FPTAS. A main technique that has been widely used to
establish SSM is the potential method [33, 22, 23, 38, 17]. Instead of bounding the rate of
decay of recursion functions directly, we use a potential function ϕ(x) to map the original
recursion to a new domain (See Figure 2 for the commutative diagram).

Let Fs(ζζζ,y) be a recursion function (s = (s1, s2, k) ∈ N3). We use Fϕs (ζζζ,x) to denote the
composition ϕ(Fs(ζζζ,ϕϕϕ−1(x))) where y = ϕϕϕ−1(x) denotes the vector (ϕ−1(x1), . . . , ϕ−1(xk)).
Correspondingly, we define Fϕζζζ,s(x) for fixed ζζζ, and Fϕx,s(ζζζ) for fixed x. We will specify the
domain on which Fϕs is well-defined per each ϕ that will be used. For positive ζζζ, a sufficient
condition for the bounded 2-spin system of ζζζ exhibiting SSM is that there exists a “good”
potential function ϕ such that Fϕζζζ,s satisfies the following contraction property.

ICALP 2020
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I Definition 11 (Real contraction). Fix ∆ ∈ N. We say that ζζζ ∈ R3 satisfies real contraction
for ∆ if there is a real compact interval J ⊆ R where λ ∈ J , −γ /∈ J and −1 /∈ J , and a real
analytic function ϕ : J → I where ϕ′(x) 6= 0 for all x ∈ J , such that
1. Fζζζ,s(Jk) ⊆ J for every s with ‖s‖1 ≤ ∆−1 and −1 /∈ Fζζζ,s(Jk) for every s with ‖s‖1 = ∆;
2. there exists η > 0 s.t.

∥∥∥∇Fϕζζζ,s(x)
∥∥∥

1
≤ 1− η for every s with ‖s‖1 ≤ ∆− 1 and all x ∈ Ik.

We say ϕ defined on J is a good potential function for ζζζ.

I Remark 12. Since ϕ is analytic and ϕ′(x) 6= 0 for all x ∈ J , the function ϕ is invertible
and the inverse ϕ−1 : I → J is also analytic by the inverse function theorem (Theorem 22).
Also for every s with ‖s‖1 ≤ ∆ − 1, since Fζζζ,s(Jk) ⊆ J and −γ /∈ J , the function Fζζζ,s(x)
is analytic on Jk. Thus, Fϕζζζ,s(x) is well-defined and analytic on Ik, and then ∇Fϕζζζ,s(x) is
well-defined on Ik. Note that I is also a real compact interval since J is a real compact
interval and ϕ is a real analytic function.

Since −1 /∈ J , Fζζζ,s(Jk) ⊆ J implies that −1 /∈ Fζζζ,s(Jk). Thus, real contraction implies
that−1 /∈ Fζζζ,s(Jk) for all ‖s‖1 ≤ ∆. The reason why we require Fζζζ,s(Jk) ⊆ J for ‖s‖1 ≤ ∆−1,
but only require −1 /∈ Fζζζ,s(Jk) for ‖s‖1 = ∆ is that in a tree of degree at most ∆, only the
root node may have ∆ many children, while other nodes have at most ∆− 1 many children.

I Lemma 13. If ζζζ ∈ R3
+ satisfies real contraction for ∆, then the ∆-bounded 2-spin system

of ζζζ exhibits SSM. Thus there is an FPTAS for computing the partition function ZG(ζζζ).

Proof. The proof directly follows from the argument of the potential method, see [23, 17].
The FPTAS follows from Weitz’s algorithm. J

Now, we give the sets of non-negative parameters that satisfy real contraction.

I Definition 14 (Uniqueness condition [23]). Let ζζζ ∈ R3 be antiferromagnetic (βγ < 1) with

β ≥ 0, γ > 0 and λ ≥ 0, and fd(x) = λ
(
βx+1
x+γ

)d
. We say ζζζ is up-to-∆ unique, if λ = 0 or

λ > 0 and there exists a constant 0 < c < 1 such that for every integer 1 ≤ d ≤ ∆− 1,

|f ′d(x̂d)| =
d(1− βγ)x̂d

(βx̂d + 1)(x̂d + γ) ≤ c,

where x̂d is the unique positive fixed point of the function fd(x).

Let S∆
i (i ∈ [4]) be the correlation decay sets defined in Definition 2. The set S∆

1 was
given in [44] and S∆

2 was given in [23]. Directly following their proofs, it is easy to verify
that both sets satisfy real contraction . The sets S∆

3 and S∆
4 are obtained in this paper, and

we show that they also satisfy real contraction.

I Lemma 15. Fix ∆ ≥ 3. For every ζζζ ∈ S∆
i (i ∈ [4]), it satisfies real contraction for ∆.

Proof. We only give a proof for sets S∆
3 and S∆

4 . For a proof of sets S∆
1 and S∆

2 , please
refer to the full paper. The case that λ = 0 is easy to check. We only consider that λ 6= 0.

Since βγ > ∆
∆−2 > 1, we have 1/γ < β. We pick the interval J = [λr∆−1, λt∆−1] where

r = min{1, 1/γ} and t = max{1, β}, and the potential function ϕ = log(x). Clearly, ϕ is
analytic on J and ϕ′(x) 6= 0 for all x ∈ J . Also, we know that λ ∈ J , −γ /∈ J and −1 /∈ J ,
and −1 /∈ Fζζζ,s(Jk) for every ‖s‖1 = ∆. Since β > 0 and γ > 0, for all x > 0,

r ≤ min{β, 1/γ} ≤ βx+ 1
x+ γ

≤ max{β, 1/γ} ≤ t.
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Thus, for all x ∈ Jk,

Fζζζ,s(x) = λβs1γ−s2
k∏
i=1

(
βxi + 1
xi + γ

)
∈
[
λr‖s‖1 , λt‖s‖1

]
⊆
[
λr∆−1, λt∆−1] .

Hence, Fζζζ,s(Jk) ⊆ J for every ‖s‖1 ≤ ∆− 1. Condition 1 of real contraction is satisfied.
Let I = ϕ(J). Consider the gradient ∇Fϕζζζ,s(x) for every ‖s‖1 ≤ ∆ − 1 and all x ∈ Ik.

Note that Fϕζζζ,s(x) = log λ+ s1 log β − s2 log γ +
∑k
i=1 log

(
βexi+1
exi+γ

)
, and exi = ϕ−1(xi) ∈ J

and e−xi ∈ [ 1
λt∆−1 ,

1
λr∆−1 ] when xi ∈ I.

If ζζζ ∈ S∆
3 , then (∆− 2)βγ −∆ < γ

λt∆−1 . Thus,∣∣∣∣∣∂F
ϕ
ζζζ,s

∂xi

∣∣∣∣∣ = βγ − 1
βexi + γe−xi + 1 + βγ

≤ βγ − 1
γ

λt∆−1 + 1 + βγ
<

βγ − 1
(∆−2)βγ −∆ +1 +βγ

= 1
∆−1 .

Otherwise, ζζζ ∈ S∆
4 and then λβr∆−1 > (∆− 2)βγ −∆. Thus,∣∣∣∣∣∂F

ϕ
ζζζ,s

∂xi

∣∣∣∣∣ = βγ − 1
βexi + γe−xi + 1 + βγ

≤ βγ − 1
βλr∆−1 + 1 + βγ

<
βγ − 1

(∆−2)βγ −∆ +1 +βγ
= 1

∆−1 .

Thus, in both cases, there exists some η > 0 such that
∥∥∥∇Fϕζζζ,s(x)

∥∥∥
1
≤ 1 − η for every

‖s‖1 ≤ ∆− 1 and all x ∈ Ik. Condition 2 of real contraction is satisfied. J

In order to generalize the correlation decay technique to complex parameters, we need to
ensure that the partition function is zero-free. Now, let us first take a detour to Barvinok’s
algorithm which crucially relies on the zero-free regions of the partition function. After we
carve out our new zero-free regions, we will come back to the existence of correlation decay
of complex parameters.

3 Barvinok’s Algorithm

In this section, we describe Barvinok’s algorithm and introduce complex contraction. Let
I = [0, t] be a closed real interval. We define the δ-strip of I to be {z ∈ C | |z − z0| <
δ, z0 ∈ I}, denoted by Iδ. It is a complex neighborhood of I. Suppose a graph polynomial
P (z) =

∑n
i=0 aiz

i of degree n is zero-free in Iδ. Barvinok’s method [3] roughly states
that for any z ∈ Iδ, P (z) can be (1 ± ε)-approximated using coefficients a0, . . . , ak for
some k = O(eΘ(1/δ) log(n/ε)), via truncating the Taylor expansion of the logarithm of the
polynomial. For the partition function of 2-spin systems, these coefficients can be computed
in polynomial time [30, 28]. For the purpose of obtaining an FPTAS, we will view the
partition function as a univariate polynomial ZG;β,γ(λ) in λ and fix β and γ. The following
result is known.

I Lemma 16. Fix β, γ ∈ C and ∆ ∈ N. Let G be a graph of degree at most ∆. If
ZG;β,γ(λ) 6= 0 lies in a δ-strip Iδ of I = [0, t], then there is an FPTAS for computing
ZG;β,γ(λ) for λ ∈ Iδ.

Proof. This lemma is a generalization of Lemma 4 in [16], where β and γ are both real. The
generalization to complex valued parameters directly follows from the argument in [28]. J
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3.1 Zero-freeness and complex contraction
With Lemma 16 in hand, the main effort is to obtain zero-free regions of the partition function.
For this purpose, we will still view ZG(ζζζ) as a multivariate polynomial in (β, γ, λ). A main
and widely used approach to obtain zero-free regions is the recursion method [41, 35, 4, 32, 27].
This method is related to the correlation decay method.

Assuming Z−G,v(ζζζ) 6= 0 for some vertex v, then ZG(ζζζ) 6= 0 is equivalent to RG,v =
Z+
G,v

(ζζζ)
Z−
G,v

(ζζζ) 6= −1. As pointed above, the ratio RG,v can be computed by recursion via the
SAW tree in which v is the root. Roughly speaking, the key idea of the recursion method
is to construct a contraction region Q ⊆ C where λ ∈ Q and −1 /∈ Q such that for all
recursion functions Fζζζ,s with ‖s‖1 ≤ ∆− 1, Fζζζ,s(Qk) ⊆ Q, and for all Fζζζ,s with ‖s‖1 = ∆,
−1 /∈ Fζζζ,s(Qk). This condition guarantees that with the initial value RG,v` = λ where v` is
a free leaf node in the SAW tree of which the degree is bounded by ∆, the recursion will
never achieve −1. Hence, we have ZG(ζζζ) 6= 0 by induction. Again, we may use a potential
function ϕ : Q→ P to change the domain, and we prove Fϕζζζ,s(P k) ⊆ P .

Now, we introduce the following complex contraction property as a generalization of real
contraction. This property gives a sufficient condition for the zero-freeness of the partition
function.

I Definition 17 (Complex contraction). Fix ∆ ∈ N. We say that ζζζ ∈ C3 satisfies complex
contraction for ∆ if there is a closed and bounded complex region Q ⊆ C where λ ∈ Q,
−γ /∈ Q and −1 /∈ Q, and an analytic and invertible function ϕ : Q→ P where the inverse
ϕ−1 : P → Q is also analytic and P is convex, such that
1. Fζζζ,s(Qk) ⊆ Q for every s with ‖s‖1 ≤ ∆−1 and −1 /∈ Fζζζ,s(Qk) for every s with ‖s‖1 = ∆;
2. there exists η > 0 s.t.

∥∥∥∇Fϕζζζ,s(x)
∥∥∥

1
≤ 1− η for every s with ‖s‖1 ≤ ∆− 1 and all x ∈ P k.

I Remark 18. Similar to the remark of Definition 11, the function Fϕζζζ,s(x) is well-defined
and analytic on P k. Here, we directly assume that the inverse ϕ−1 is analytic instead of
ϕ′(x) 6= 0 for the sake of simplicity of our proof.

I Lemma 19. If ζζζ ∈ C3 satisfies complex contraction for ∆, then ZσΛ
G (ζζζ) 6= 0 for any graph

G of degree at most ∆ and any feasible configuration σΛ.

Please refer to the full paper for a proof of Lemma 19. Such a proof only uses condition
1 of complex contraction. However, condition 2 combining with the zero-freeness result of
Lemma 19 gives a sufficient condition for bounded 2-spin systems of complex parameters
exhibiting correlation decay. This is a generalization of Lemma 13. Also, please refer to the
full paper for a proof.

I Lemma 20. If ζζζ ∈ C3 satisfies complex contraction for ∆, then the ∆-bounded 2-spin system
of ζζζ exhibits SSM. Thus, there is an FPTAS for computing ZG(ζζζ) via Weitz’s algorithm.

4 From Real Contraction to Complex Contraction

In this section, we prove our main result. We first give some preliminaries in complex analysis.
The main tools are the unique analytic continuation and the inverse function theorem. Here,
we slightly modify the statements to fit for our settings. Please refer to [42] for the proofs.

I Theorem 21 (Unique analytic continuation). Let f(x) be a (real) analytic function defined
on a compact real interval I ⊆ R. Then, there exists a complex neighborhood Ĩ ⊆ C of I,
and a (complex) analytic function f̃(x) defined on Ĩ such that f̃(x) ≡ f(x) for all x ∈ I.
Moreover, if there is another (complex) analytic function g̃(x) also defined on Ĩ such that
g̃(x) ≡ f̃(x) for all x ∈ I and the measure m(I) 6= 0, then g̃(x) ≡ f̃(x) for all x ∈ Ĩ. We call
f̃(x) the unique analytic continuation of f(x) on Ĩ.
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I Theorem 22 (Inverse function theorem). For a real analytic function ϕ defined on a real
interval J ⊆ R, if ϕ′(x) 6= 0 for all x ∈ J , then ϕ is invertible on J and the inverse ϕ−1 is
also analytic on ϕ(J). For a complex analytic function ψ defined on U ⊆ C, if ψ′(z) 6= 0 for
some z ∈ U , then there exists a complex neighborhood D of z such that ψ is invertible on D
and the inverse is also analytic.

Combining the above theorems, we have the following result.

I Lemma 23. Let ϕ : J → I be a real analytic function, and ϕ′(x) 6= 0 for all x ∈ J where J
and I are real compact intervals. Then, there exists an analytic continuation ϕ̃ on a complex
neighborhood J̃ of J such that ϕ̃ is invertible on J̃ and the inverse ϕ̃−1 is also analytic.

Proof. If m(J) = 0, i.e., J = {x}, then by Theorem 21 there exists an analytic continuation
ϕ̃ of ϕ. Since ϕ̃′(x) = ϕ′(x) 6= 0, by Theorem 22, there is a neighborhood of x on which ϕ̃ is
invertible and the inverse ϕ̃−1 is analytic.

Otherwise, m(J) 6= 0. Since ϕ(x) is analytic and ϕ′(x) 6= 0 for all x ∈ J , the function ϕ
is invertible and by Theorem 22, the inverse ϕ−1 : I → J is analytic on I. By Theorem 21,
there exists an analytic continuation ϕ̃−1 of ϕ−1 defined on a neighborhood Ĩ1 of I. Similarly,
there exists an analytic continuation ϕ̃ of ϕ defined on a neighborhood J̃ of J . We use Ĩ to
denote the image ϕ̃(J̃). Since ϕ̃ is analytic, by the open mapping theorem Ĩ is an open set in
the complex plane. Clearly, we have ϕ(J) = I ⊆ Ĩ. We can pick J̃ small enough while still
keeping J ⊆ J̃ such that the image Ĩ = ϕ̃(J̃) ⊆ Ĩ1 and still I ⊆ Ĩ. Thus, the composition
ϕ̃−1 ◦ ϕ̃ is a well-defined analytic function on J̃ . Clearly, we have that

ϕ̃−1 ◦ ϕ̃(x) = ϕ−1 ◦ ϕ(x) ≡ x for all x ∈ J.

Since m(J) 6= 0, by Theorem 21, we have that ϕ̃−1 ◦ ϕ̃(x) ≡ x for all x ∈ J̃ .
Thus, ϕ̃ is invertible on J̃ and the inverse ϕ̃−1 = ϕ̃−1 is analytic. J

Now, we are ready to prove our main result.

I Theorem 24. If ζζζ0 satisfies real contraction for ∆, then there exists a δ > 0 such that for
every ζζζ ∈ C3 with ‖ζζζ − ζζζ0‖∞ < δ, ζζζ satisfies complex contraction for ∆.

Proof. Let ϕ : J → I be a good potential function for ζζζ0. By Definition 11 and Lemma 23,
there exists a neighborhood J̃ of J such that the analytic continuation ϕ̃ : J̃ → Ĩ of ϕ on J̃
is invertible. Here Ĩ = ϕ̃(J̃) is a neighborhood of I, and the inverse ϕ̃−1 is also analytic on Ĩ.
We use Bδ := {z ∈ C3 | ‖z−ζζζ0‖∞ < δ} to denote the 3-dimensional complex ball around ζζζ0 of
radius δ in terms of the infinity norm. Recall that we define Iε = {z ∈ C | |z−z0| < ε, z0 ∈ I}.
Given a set U ⊆ Ck, we use U to denote its closure.

We first show that we can pick a pair of (δ1, ε1) such that for every s with ‖s‖1 ≤ ∆− 1,
the composition

F ϕ̃s (ζζζ,x) = ϕ̃(Fs(ζζζ, ϕ̃ϕϕ−1(x))) is well-defined and analytic on Bδ1 × Ikε1 .

Given some s with ‖s‖1 ≤ ∆ − 1, we consider the function Fs(ζζζ,x). We know that it is
analytic on a neighborhood of {ζζζ0} × Jk and by real contraction we have Fs(ζζζ0, J

k) ⊆ J .
Then, we can pick some δs and a neighborhood J̃s of J that are small enough such that
Fs(ζζζ,x) is analytic on Bδs × J̃ks , and Fs(Bδs , J̃

k
s ) ⊆ J̃ . Let

δ1 = min
‖s‖1≤∆−1

{δs} and J̃1 =
⋂

‖s‖1≤∆−1

J̃s.
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Since there is only a finite number of s with ‖s‖1 ≤ ∆−1, we have that δ1 > 0, and J̃1 is open
and it is a neighborhood of J . Then, Fs(Bδ1 , J̃1) ⊆ J̃ for every s with ‖s‖1 ≤ ∆− 1. Since
ϕ̃−1 is analytic on Ĩ and ϕ̃−1(I) = J , similarly we can pick a small enough neighborhood Ĩ1
of I where Ĩ1 ⊆ Ĩ such that ϕ̃−1(Ĩ1) ⊆ J̃1. For every z0 ∈ I, we can pick an εz0 such that the
disc Bz0,εz0 := {z ∈ C | |z − z0| < εz0} is in Ĩ1. Recall that I is a compact real interval, by
the finite cover theorem, we can uniformly pick an ε1 such that I ⊆ Iε1 ⊆ Ĩ1. Thus, F

ϕ̃
s (ζζζ,x)

is well-defined and analytic on Bδ1 × Ikε1 for every s with ‖s‖1 ≤ ∆ − 1. In fact, F ϕ̃s is a
(multivariate) analytic continuation of Fϕs . Since I is a compact interval, in the following
when we pick a neighborhood Ĩ of I, without loss of generality, we may always pick Ĩ as an
ε-strip Iε of I.

Then, we show that we can pick a pair of (δ2, ε2) where δ2 < δ1 and ε2 < ε1, a constant
M > 0 and a constant η > 0 such that for every s with ‖s‖1 ≤ ∆− 1,

∥∥∥∇F ϕ̃ζζζ,s(x)
∥∥∥

1
≤ 1− η and

∥∥∥∇F ϕ̃x,s(ζζζ)
∥∥∥

1
≤M

for all ζζζ ∈ Bδ2 and all x ∈ Ikε2 . By real contraction, there is an η′ > 0 such that
∥∥∥∇F ϕ̃ζζζ0,s(x)

∥∥∥
1
≤

1− η′ for every s with ‖s‖1 ≤ ∆− 1 and all x ∈ Ik. Given some s with ‖s‖1 ≤ ∆− 1, since
F ϕ̃s (ζζζ,x) is analytic on Bδ1 × Ikε1 , by continuity we can pick some δs < δ1 and εs < ε1 such
that

∥∥∥∇F ϕ̃ζζζ,s(x)
∥∥∥

1
≤ 1− η′

2 for all ζζζ ∈ Bδs and all x ∈ Ikεs
. In addition, let

Ms = sup
ζζζ∈Bδs ,x∈Ikεs

∥∥∥∇F ϕ̃x,s(ζζζ)
∥∥∥

1
,

and we know that Ms < +∞ since F ϕ̃ is analytic on Bδs × Ikεs
which is closed and bounded.

Finally, let

η = η′

2 , δ2 = min
‖s‖1≤∆−1

{δs}, ε2 = min
‖s‖1≤∆−1

{εs}, and M = max
‖s‖1≤∆−1

{Ms}.

These choices will satisfy our requirement.
For the case that ‖s‖1 = ∆, we show that we can pick a pair of (δ3, ε3) where δ3 < δ1 and

ε3 < ε1 such that for every s with ‖s‖1 = ∆, we have −1 /∈ Fs(Bδ3 , J̃k2 ) where J̃2 = ϕ̃−1(Iε3)
is a closed neighborhood of J . Since Fs is analytic, by real contraction, −1 /∈ Fζζζ0,s(Jk) which
is closed. Again by continuity we can pick some (δ3, ε3) that satisfy our requirement.

Since ζζζ0 = (β0, γ0, λ0) satisfies real contraction, we have λ0 ∈ J , −γ0 /∈ J and −1 /∈ J .
Recall that J = ϕ̃−1(I). Again, since ϕ̃−1 is analytic, by continuity we can pick some
ε ≤ min{ε2, ε3} such that λ0 ∈ ϕ̃−1(Iε) (an open set), −γ0 /∈ ϕ̃−1(Iε) (a closed set) and
−1 /∈ ϕ̃−1(Iε). Moreover, we can pick some δ4 small enough such that the disc Bλ0,δ4 :=
{z ∈ C | |z − λ0| < δ4} is in ϕ̃−1(Iε), and the disc B−γ0,δ4 := {z ∈ C | |z − (−γ0)| < δ4}
is disjoint with ϕ̃−1(Iε). Let P = Iε and Q = ϕ̃−1(Iε). Clearly, P is convex. For every ζζζ
with ‖ζζζ − ζζζ0‖∞ < δ, we have λ ∈ Q, −γ /∈ Q and −1 /∈ Q. In addition, we know that Q is
closed and bounded since P is closed and bounded and ϕ̃−1 is analytic on P . Finally, let
δ = min{δ2, δ3, δ4, εηM }. We show that for every s with ‖s‖1 ≤ ∆− 1, F ϕ̃s (Bδ, P k) ⊆ P , which
implies that Fs(Bδ, Qk) ⊆ Q.
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Consider some x ∈ P k. By the definition of P , there exists an x0 ∈ Ik such that
‖x− x0‖∞ ≤ ε. Also, consider some ζζζ ∈ Bδ, and we have ‖ζζζ − ζζζ0‖∞ < δ. Then, for every s
with ‖s‖1 ≤ ∆− 1, consider F ϕ̃s (ζζζ,x)− F ϕ̃s (ζζζ0,x0). We have∣∣∣F ϕ̃s (ζζζ,x)− F ϕ̃s (ζζζ0,x0)

∣∣∣
≤
∣∣∣F ϕ̃s (ζζζ,x)− F ϕ̃s (ζζζ0,x)

∣∣∣+
∣∣∣F ϕ̃s (ζζζ0,x)− F ϕ̃s (ζζζ0,x0)

∣∣∣
≤ sup
ζζζ′∈Bδ

∥∥∥∇F ϕ̃x,s(ζζζ ′)
∥∥∥

1
· ‖ζζζ − ζζζ0‖∞ + sup

x′∈Pk

∥∥∥∇F ϕ̃ζζζ0,s(x′)
∥∥∥

1
· ‖x− x0‖∞

≤Mδ + (1− η) · ε ≤ ε.

The second inequality above uses the fact that both Bδ and P k are convex, which ensures
that the line between ζζζ0 and ζζζ is in Bδ and the line between x0 and x is in P k. By real
contraction, we know that F ϕ̃s (ζζζ0,x0) ∈ I since x0 ∈ Ik. Thus, we have F ϕ̃s (ζζζ,x) ∈ P. Thus,
for every ζζζ with ‖ζζζ − ζζζ0‖∞ < δ, we have that λ ∈ Q, −γ /∈ Q and −1 /∈ Q, and
1. Fζζζ,s(Qk) ⊆ Q for every s with ‖s‖1 ≤ ∆−1 and −1 /∈ Fζζζ,s(Qk) for every s with ‖s‖1 = ∆;
2. there exists η > 0 s.t.

∥∥∥∇Fϕζζζ,s(x)
∥∥∥

1
≤ 1− η for every s with ‖s‖1 ≤ ∆− 1 and all x ∈ P k.

The function ϕ̃ : Q→ P is a good potential function for ζζζ. J

Combining Lemmas 15, 19, 20 and Theorem 24, we have the following result.

I Theorem 25. Fix ∆ ≥ 3. For every ζζζ0 ∈ S∆
i (i ∈ [4]), there exists a δ > 0 such that for

any ζζζ ∈ C3 where ‖ζζζ − ζζζ0‖∞ < δ, we have
ZσΛ
G (ζζζ) 6= 0 for every graph G of degree at most ∆ and every feasible configuration σΛ;

the ∆-bounded 2-spin system specified by ζζζ exhibits correlation decay.
Then via either Weitz’s or Barvinok’s algorithm, there is an FPTAS for computing ZG(ζζζ).

I Remark 26. The choice of δ does not depend on the size of the graph, only on ∆ and ζζζ0.
In particular, let D be a compact set in S∆

i for some i ∈ [4]. Then there is a uniform δ such
that for all ζζζ in a complex neighborhood Dδ of radius δ around D, i.e., ζζζ ∈ Dδ := {z ∈ C3 |
‖z− z0‖∞ < δ, z0 ∈ D}, ZG(ζζζ) 6= 0 for every graph G of degree at most ∆. In addition, in
order to apply Barvinok’s algorithm, by Lemma 16, we need to make sure that the zero-free
regions contain λ = 0 (an easy computing point). This is true for S∆

1 , S∆
2 and S∆

3 . For
parameters in S∆

4 , we will reduce the problem to a case in S∆
3 by swapping β and γ and

replacing λ by 1/λ. Then, one can apply Barvinok’s algorithm.
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