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Abstract
Given query access to a set of constraints S, we wish to quickly check if some objective function
ϕ subject to these constraints is at most a given value k. We approach this problem using the
framework of property testing where our goal is to distinguish the case ϕ(S) ≤ k from the case
that at least an ε fraction of the constraints in S need to be removed for ϕ(S) ≤ k to hold. We
restrict our attention to the case where (S, ϕ) are LP-Type problems which is a rich family of
combinatorial optimization problems with an inherent geometric structure. By utilizing a simple
sampling procedure which has been used previously to study these problems, we are able to create
property testers for any LP-Type problem whose query complexities are independent of the number
of constraints. To the best of our knowledge, this is the first work that connects the area of LP-Type
problems and property testing in a systematic way. Among our results are property testers for a
variety of LP-Type problems that are new and also problems that have been studied previously such
as a tight upper bound on the query complexity of testing clusterability with one cluster considered
by Alon, Dar, Parnas, and Ron (FOCS 2000). We also supply a corresponding tight lower bound for
this problem and other LP-Type problems using geometric constructions.
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1 Introduction

Many problems in combinatorial optimization can be represented as a pair (S, ϕ) where S is
a set of constraints and ϕ is a function of the constraints that we would like to minimize.
This class includes many problems that are NP-hard, even for the decision version of some
problems where we would like to determine if ϕ(S) is at most some constant k. For instance,
let S be constraints that say two nodes in a graph are connected by an edge (so S can be
thought of as a set of edges) and ϕ be the chromatic number of a graph with those edges.
Then it is NP-complete to determine if ϕ(S) ≤ 3.

In this work, we consider a relaxation of the above hard class of problems by using the
framework of property testing. Specifically, given a value parameter k and distance parameter
ε, we wish to determine if ϕ(S) ≤ k or if (S, ϕ) is ε-far from ϕ(S) ≤ k, where ε-far means
that at least ε|S| many of the constraints of S need to be removed for ϕ(S) ≤ k to hold.
We assume we have query access to the constraints and knowledge of ϕ and our goal is to
perform property testing while minimizing the number of constraints of S we access.
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98:2 Property Testing of LP-Type Problems

Even under the property testing setting, this question is too broad. Therefore, we focus
our attention to LP-Type Problems, formally described in Definition 1. Informally, these
problems have an underlying geometrical structure, much like that of linear programs, which
can be used to create efficient testing algorithms.

Our main result is a general algorithm that is able to perform property testing for any
LP-Type problem with O(δ/ε) queries where δ is the dimension of the LP-Type problem,
formally defined in Section 2. In many cases, this bound is tight such as testing clusterability
using one cluster considered in [1]. To the best of our knowledge, this is the first work that
connects the area of LP-Type problems and property testing in a systematic way. The class
of these problems is quite general and includes problems which have been previously studied
individually in property testing, such as testing clusterability of points in [1], and newer
testing problems, such as determining if a set of linear constraints is feasible or “far” from
feasible. We also give a matching lower bound for many of these problems using geometric
constructions. For a comprehensive overview of our contributions, see Section 2.2.

1.1 Related Work
Many problems in property testing can be modeled as a set of constraints and some op-
timization function over these constraints. These include well studied graph problems such
as bipartiteness, expansion, k-colorability, and many other problems [14, 15, 16, 23]. This
line of work was initiated by Goldreich and Ron and there are many results in the area of
graph property testing. For more information about graph property testing, see [13] and the
references within. Overall, these testing problems differ from our setting where our queries
are essentially access to random constraints.

This model where queries are accesses to constraints have also been studied in the case
where we wish to test properties of a metric space and queries are access to points (see
[19, 1, 21]). There are instances of these problems that are also examples of LP-Type
problems that we consider. For more information, see Section 2.2.

LP-Type problems have a rich literature and there have been many previous work on
them, including general algorithms to solve LP-Type problems [25, 6, 26, 18]. The algorithms
for these problems have runtimes that are generally linear in the number of constraints, but
exponential in the dimension of the LP-Type problem (see Definition 3). This is in contrast
to our testing algorithms that have no dependence on the number of constraints.

Furthermore, many properties of LP-Type problems have been generalized to a larger
class of problems called violator spaces [11, 4]. We do not explicitly consider them here since
these problems do not yield any additional interesting property testing applications but our
results carry over to this setting in a straightforward manner.

There are previous works on geometric property testing, for example, testing convexity
of point sets [7, 20], testing disjointness of geometric bodies [9], and testing properties of
two dimensional images [22, 24, 2, 3]. While many of these work share the paradigm of
“sample few objects and test” that is common among many property testers, including ours,
the problems considered in these works are very different than the problems we focus on
(see 2.2).

There is also existing work on property testing for constraint satisfaction problems
(CSPs) where given an instance of a CSP, one is given query access to an assignment of the
variables and the task is to determine if the assignment is “close” or “far” from satisfying
the instance [5]. This is different than our setting where we wish to check if ϕ(S) ≤ k where
ϕ is a function of the constraints in S.
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The paper of Czumaj and Sohler cited in [8] is closest in spirit to our work, as it also
introduces a framework for property testing for a general class of problems which they refer
to as abstract combinatorial problems (ACPs). This class of problems are similar to LP-type
problems as they both include a set of constraints and consider a restricted set of subsets
called a basis (see Section 2 for a formal definition of LP-Type problems). Furthermore, [8]
exploit the combinatorial structure of ACPs to develop testing algorithms, just as we do for
LP-Type problems. However, there are some key differences between ACPs and LP-Type
problems, such as the fact that LP-Type problems are equipped with a function φ that is
optimized over a set of constraints. LP-Type problems also have a clean correspondence
between dimension and the number of “violators” for a particular basis as formulated in
Lemma 11 and Corollary 13, which lets us automatically translate between the dimension
and the property testing query complexity.

In terms of concrete property testing problems, [8] also consider the smallest enclosing
ball problem (see Section 2.2). We achieve a better query complexity bound than [8] for this
problem, but it is important to note that the results of [8] also hold for the general problem
of clustering with multiple balls while we only consider one ball. However, the rest of the
problems considered in [8] do not overlap with the problems we present in this paper and
furthermore, the problems we study are inherently geometric in nature. Lastly, while ACPs
are the invention of the authors in [8], there exists rich literature for LP-Type problems
outside of the domain of property testing.

Lastly, we note that using a few samples to determine information about your underlying
data has also been studied in the PAC-learning literature. In that setting, the goal is to
learn a classifier of your dataset and recently, the question of optimal sample complexity
for PAC learning has been settled, see for instance [17]. The key differences between the
PAC learning setting and our work is that our “datapoints” do not necessarily come with a
label. For instance, the PAC learning framework would be valid in the example where we
have labeled points in Rd and we wish to learn a separator from a family class such as balls.
However, this framework would not apply if we wished to compute the smallest enclosing ball
of the points. We do consider one instance where a PAC learning framework would apply
and that is problem of property testing if a set of labeled points are linearly separable or
far from it (for more information, see Section 2.2). In this example, a valid approach would
be to use the PAC learning framework and learn a linear classifier. Instead of pursuing this
route, we are able to cast this problem as an example of a LP-Type problem and achieve the
optimal sample complexity using the theory we develop.

1.2 Organization
In Section 2, we formally define the class of LP-Type problems. In Section 2.2 we outline
our contributions. In Section 3, we present our algorithms and prove their correctness and in
Section 4, we apply our algorithm to specific LP-Type problems. Finally, we complement
some of these problems with lower bounds in Section 5.

2 Preliminaries

2.1 Notation and Definitions
We define LP-Type problems as well as some related concepts. These definitions are
standard in the literature for LP-Type problems but we reproduce them below for the sake
of completeness. For more information, see [26, 18, 12].

ICALP 2020



98:4 Property Testing of LP-Type Problems

I Definition 1 (LP-Type Problem). Let S be a finite set and ϕ be a function that maps
subsets of S to some value. We say (S, ϕ) is a LP-Type problem if ϕ satisfies the following
two properties:

Monotonicity: if A ⊆ B ⊆ S then ϕ(A) ≤ ϕ(B)
Locality: For all A ⊆ B ⊆ S and elements x ∈ S, if ϕ(A) = ϕ(B) = ϕ(A ∪ {x}), then
ϕ(A) = ϕ(B ∪ {x}).

In general, one should think of S as a set of constraints, and ϕ as some objective function we
wish to minimize (or equivalently, maximize) over these constraints. The canonical example
of a LP-Type problem is a linear program where S is a set of linear constraints and ϕ is a
linear functional.

Just as linear programs can be associated with a dimension, which is the number of
variables, LP-Type problems in general also have a natural definition of dimension which
influences the runtime of many algorithms for LP-Type problems as well as our algorithm
for property testing. First, we must define the notion of a basis.

I Definition 2 (Basis of LP-Type problems). Given an LP-Type problem, a basis B ⊆ S is a
set such that for all proper subsets B′ ⊂ B, we have ϕ(B′) < ϕ(B).

Given the above definitions, we can now define the dimension of a LP-Type problem.

I Definition 3 (Dimension of LP-Type problem). The dimension δ of an LP-Type problem is
the largest possible size of a basis B ⊆ S. This is sometimes also called the combinatorial
dimension.

There are many examples of well-studied LP-Type problems and in many of these cases explicit
bounds, if not exact values, are known regarding their dimensions. For more information, see
our contributions in Section 2.2. In general, the dimension of the problem tends to grow with
the “difficulty” of solving it and for property testing, our query complexity bound is also a
function of the dimension. We now formally define property testing for LP-Type problems.

I Definition 4 (Property Testing of LP-Type problems). Given an LP-Type problem (S, ϕ), a
parameter k, a distance parameter ε, and query access to the constraints in S, we wish to
distinguish the following two cases:

Output accept with probability at least 2/3 if ϕ(S) ≤ k (Completeness Case)
Output reject with probability at least 2/3 if at least ε|S| constraints need to be removed
from S for ϕ(S) ≤ k to hold (Soundness Case).

I Remark 5. We say that S is ε-far if it falls in the soundness case.

2.2 Our Contributions
The main contribution of this paper is a comprehensive algorithm for property testing of
LP-Type problems with query complexity O(δ/ε) where δ is the dimension of the LP-Type
problem. Note that this bound is independent of the number of constraints which is |S|.
Our algorithm is simple and proceeds by first sampling a small set of random constraints
in S, constructing a partial solution, and “testing” this partial solution against few other
randomly chosen constraints. The analysis that we reject in the ε-far case (soundness) is
straightforward. However, the main technical challenge lies in showing that our algorithm
accepts in the completeness case. To do so, we use a “sampling” lemma which roughly says
that for a randomly chosen subset R of S of a particular size (depending on the dimension δ)
and x a randomly chosen element of S \R, we have ϕ(R) = ϕ(R ∪ {x}). Using this result,
we show that we are likely to accept in the completeness case. For the full detailed analysis,
see Section 3. All of our algorithms have two-sided error.
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We highlight the power of our approach by considering the query complexity bounds that
we get for a few selected problems. In many cases, we are also able to get matching lower
bounds. More specifically, we obtain the following results as an application of our framework:
1. We consider the problem of determining if a set of linear inequalities in d variables is

feasible (there exists a satisfying assignment) or if at least ε-fraction of the constraints
need to be removed for the set of constraints to be feasible. While this problem does not
exactly fall under the LP-Type definition (since there is no optimization function), we
modify our general algorithm slightly to given an algorithm with query complexity is
O(d/ε). We also modify our approach for this problem to give a tolerant tester for linear
program feasibility. This passes programs which are ε/c-close to feasible for some fixed
constant c > 1, and rejects those which are ε-far from feasible. This tester also has query
complexity O(d/ε)

2. We study the problem of determining if a set of points in d dimensions labeled {+1,−1}
is linearly separable or if at least ε-fraction of the points need to be relabeled or removed
for the points to be linearly separable. Using result 1 above, we directly get a query
complexity bound of O(d/ε). We also give a matching lower bound for this problem
which implies a lower bound for result 1.

3. We obtain a result for property testing of many classical LP-Type problems. In particular,
we consider the following problems:

Smallest enclosing ball: Accept if a set of points in Rd can be covered by a ball of
radius r and reject if at least ε-fraction of the points need to be removed to be able to
be covered by a ball of radius r. This problem has been previously studied in [1]. We
improve upon the upper bound obtained in this paper in the case of two-sided error
by getting a tight query complexity of O(d/ε) queries (also see point 4 below). Note
that the algorithm in [1] has one sided error but has slightly worse query complexity.
Smallest intersecting ball: Accept if a set of closed convex bodies in Rd can all be
intersected by a ball of radius r and reject if at least ε-fraction of the convex bodies
need to be removed to be able to be intersected by a ball of radius r.
Smallest volume annulus: Accept if a set of points in Rd can be enclosed in an annulus
of volume V and reject if at least ε-fraction of the points need to be removed to be
encloseable by an annulus of volume V .

In all these cases, it is known that the dimension of the LP-Type problem is linearly
related to the dimension of the points in S, so we get an upper bound of O(d/ε) queries.

4. We get a matching lower bound of Ω(d/ε) queries for the smallest enclosing ball problem
and the smallest intersecting ball problem. This provides a lower bound for the radius
cost of clustering considered by Alon et al. in [1] in the case of 1 cluster.

I Remark 6. Note that there are also many examples of LP-Type problems where the
constraints in S describe points in dimension d but the dimension of the LP-Type problem
is not a linear function of d. For example, if ϕ(S) is the smallest ellipsoid that encloses the
set of points in S which are in Rd, then (S, ϕ) has dimension O(d2) as a LP-Type problem
[12]. We did not explicitly highlight these problems but our approach also gives an upper
bound on the query complexity for the property testing versions of these problems.

3 General Algorithm for Property Testing of LP-Type problems

We now present our general algorithm, LP-Type Tester, for property testing of LP-Type
problems as defined in Definition 4. Given a LP-Type problem (S, ϕ), Our algorithm first
samples a subset R of O(δ/ε) constraints from S where δ is the dimension of the LP-Type
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problem. It then calculates the value of ϕ on the sampled subset. After this step, an
additional O(1/ε) constraints are sampled randomly from S. If ϕ(R ∪ {x}) differs from
ϕ(R) where x is any of the additional random constraints, then our algorithm outputs reject.
Otherwise, the algorithm outputs accept. We present our approach in Algorithm 1 along
with our main theorem, Theorem 7 which proves the correctness of Algorithm 1.

Algorithm 1 LP-Type Tester.

Input : δ, ε, k, query access to constraints in S
Output : accept or reject

1 r ← d10δ/εe
2 R← random sample of size r of constraints from S.
3 if ϕ(R) > k then
4 Output reject and abort.
5 for 2/ε rounds do
6 x← uniformly random constraint of S \R
7 if ϕ(R ∪ {x}) 6= ϕ(R) then
8 Output reject and abort.

9 Output accept.

I Theorem 7 (Correctness of LP-Type Tester). Given an LP-Type problem (S, ϕ) of
dimension δ and parameters k and ε, the following statements hold with probability at
least 2/3:

Completeness case: LP-Type Tester outputs accept ϕ(S) ≤ k.
Soundness Case: LP-Type Tester outputs reject if at least ε|S| constraints need to
be removed from S for ϕ(S) ≤ k to hold.

I Remark 8. Note that the query complexity of Algorithm 1 is O(δ/ε) which is independent
of |S|, the number of constraints.

3.1 Overview of the proof
To prove the correctness of LP-Type Tester, we analyze the completeness case and the
soundness case separately. For the soundness case, we show that with sufficiently large
probability, either ϕ(R) > k or LP-Type Tester outputs reject during the second sampling
phase where we sample an additional O(1/ε) constraints. To show this, we use the locality
property of LP-Type problems (see Definition 1) to show that there must be “many” x such
that ϕ(R ∪ {x}) 6= ϕ(R). To analyze the completeness case, we use the Sampling Lemma,
Lemma 11, to show that there are “few” x such that ϕ(R∪ {x}) 6= ϕ(R) so that Algorithm 1
outputs accept with sufficiently large probability.

Before we present the proof of Theorem 7, we present the Sampling Lemma as described
above. This lemma has previously been used to study LP-Type problems. For completeness,
we present a proof. For more information, see [26, 18, 11, 10]. Before we present the lemma,
we introduce two new definitions.

I Definition 9 (Violators and Extreme Elements). For a subset R ⊆ S, define the violators
and extreme elements of R as the following:

Define the violators of R as the set V (R) = {s ∈ S\R | ϕ(R ∪ {s}) 6= ϕ(R)}.
Define the extreme elements of R as the set X(R) = {s ∈ R | ϕ(R) 6= ϕ(R\{s}}.
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I Remark 10. Note that s is a violator of R if and only if s is an extreme element of in
R ∪ {s}.

We now present the Sampling Lemma.

I Lemma 11 (Sampling Lemma). Let vr = E[|V (R)|] and xr = E[|X(R)|] where both
expectations are taken over the random subsets R of S which have size r. Suppose |S| = n.
Then for 0 ≤ r ≤ n, we have

vr
n− r

= xr+1

r + 1 .

Proof. Let 1{·} denote an indicator variable. Note that(
n

r

)
vr =

∑
R∈(S

r)

∑
s∈S\R

1{s is a violator of R} =
∑
R∈(S

r)

∑
s∈S\R

1{s is extreme for R ∪ {s}}

=
∑

Q∈( S
r+1)

∑
s∈Q

1{s is extreme for Q} =
(

n

r + 1

)
xr+1.

The proof follows from the following calculation.(
n
r+1
)(

n
r

) = r!(n− r)!
(r + 1)!(n− r − 1)! = n− r

r + 1 . J

I Remark 12. Note that (S, ϕ) does not need to be a LP-Type problem for the Sampling
Lemma to hold true.

If (S, ϕ) is a LP-Type problem, there is a direct relationship between the expected
number of violators and the dimension of (S, ϕ) as defined in 3. The following corollary also
appears in many forms in literature (for instance [26, 18, 11, 4]) but we present its proof for
completeness.

I Corollary 13. Let (S, ϕ) be a LP-Type problem of dimension δ and let |S| = n. If R ⊆ S
is subset of size r chosen uniformly at random, then vr = E[|V (R)|] satisfies

vr ≤
δ(n− r)
r + 1 .

Proof. We show that for any set R ⊆ S, we have |X(R)| ≤ δ. Then the corollary follows
from Lemma 11. Let R′ be the smallest subset of R such that ϕ(R′) = ϕ(R). We first claim
that V (R′) = V (R). It is clear that V (R) ⊆ V (R′) by monotonicity (see Definition 1). For
the other inclusion, consider x ∈ V (R′). If x 6∈ V (R), we have ϕ(R ∪ {x}) = ϕ(R) = ϕ(R′)
so by locality, we have ϕ(R′) = ϕ(R′ ∪ {x}) which contradicts the fact that x ∈ V (R′).
Therefore, our claim holds true.

We now claim that R′ is a basis as defined in Definition 2. Suppose for the sake of
contradiction that R′ is not a basis. Then there exists a F ⊂ R′ such that ϕ(F ) = ϕ(R′). We
now claim that V (R′) = V (F ). It is clear that V (R′) ⊆ V (F ). To show the other inclusion,
let x ∈ V (F ). Then if x was not a violator of R′, then ϕ(R′ ∪ {x}) = ϕ(R′) = ϕ(F ) which
would imply that ϕ(F ∪{x}) = ϕ(F ) by the locality property in Definition 1 which is false by
definition. Hence, V (F ) = V (R′) = V (R) which contradicts the minimality of R′. Therefore,
R′ is a basis.

Finally, we claim that if x ∈ X(R) then x ∈ R′. This must be true because otherwise,
we have R′ ⊆ R \ {x} ⊆ R which results in a contradiction by monotonicity. Finally, since
X(R) ⊆ R′ and R′ is a basis, it follows that |X(R)| ≤ δ, as desired. J

ICALP 2020
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I Remark 14. Corollary 13 holds for a larger class of problems than LP-Type problems called
violator spaces ([11, 4]. However, we omitted this extra layer of abstraction since there are
no additional natural property testing consequences from considering violator spaces over
LP-Type problems.

Proof of Theorem 7. We first prove the soundness case. Consider the set R that was
randomly sampled in step 2 of LP-Type Tester. Assume that ϕ(R) ≤ k since this can only
decrease the probability that our algorithm outputs reject. Now we claim that there must be
at least ε|S| choices of x in step 6 of LP-Type Tester that results in ϕ(R∪{x}) > ϕ(R) (so
that we correctly output reject). To show this, note that if ϕ(R) = ϕ(R ∪ {x}) = ϕ(R ∪ {y})
for x 6= y then by locality, it follows that ϕ(R) = ϕ(R ∪ {x, y}). Therefore, if there are less
than ε|S| choices of x in step 6 of LP-Type Tester for some R such that ϕ(R∪{x}) > ϕ(R),
then we would have ϕ(R∪R′) = ϕ(R) ≤ k where |R∪R′| ≥ (1−ε)|S| which would contradict
our assumption that at least ε|S| constraints need to be removed from S for ϕ(S) ≤ k to
hold true. Therefore, the probability our algorithm does not output reject in any of the 2/ε
rounds is at most

(1− ε)2/ε ≤ e−2 <
1
3 (1)

which means that we output reject with probability at least 2/3, as desired.
We now prove Theorem 7 for the completeness case. Let vr = E[|V (R)|]. Since r = |R| =

10δ/ε, Corollary 13 gives us

vr ≤
δ(|S| − r)
r + 1 ≤ ε|S|

10 .

Therefore in the completeness case, the probability that a randomly chosen x satisfies
ϕ(R ∪ {x}) 6= ϕ(R) is at most ε/10. Since we choose 2/ε random constraints, the probability
we don’t find such a x is at least

(1− ε/10)2/ε ≥ 1− 2
10 >

2
3 . (2)

Therefore, LP-Type Tester outputs accept with probability at least 2/3, as desired. J

4 Property Testing Applications of LP-Type Tester

We now give applications of the framework we build in Section 3. We first consider the
problem of testing feasibility of a set of linear inequalities. As a direct consequence, we can
test if a set of labeled points can be linearly sepearable (either by linear hyperplanes or by
functions that have a finite basis). These two applications will not be an immediate corollary
of Theorem 7 since there is no objective function that we want to optimize, but our results
follow from Theorem 7 with some slight modificatons.

We then consider direct applications of Algorithm 1 to some cannonical LP-Type problems
such as the smallest enclosing ball. Theorem 7 gives direct upper bounds for property testing
for these problems.

4.1 Testing Feasibility of a System of Linear Equations
We first begin by considering testing feasibility of a set of linear inequalities. Recall that in
this problem, we have n linear constraints in Rd (such as x1 + · · ·+ xd ≤ 1) and we want to
distinguish the following two cases with probability at least 2/3:
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The system of linear inequalities can all be mutually satisfied, i.e., the system is feasible
(Completeness Case)
At least ε|S| many of the constraints need to be removed (or flipped) for the system to
be feasible (Soundness Case).

This is not exactly a LP-Type problem since we do not have an optimization function ϕ. We
note that if ϕ was an indicator function for a subset of constraints being feasible then ϕ
would break the locality condition in Definition 1. One way to see this is consider the case
when A is the single constraint that y ≥ 0, B is the set of two constraints 0 ≤ y and y ≤ 1,
and x is the additional constraint that y ≥ 2. We can see that A,B, and A ∪ {x} are all
feasible, but B ∪{x} is not, contradicting locality. However, we perform a slight modification
of Algorithm 1 to create a new algorithm for this problem.

Our algorithm for this testing problem, Linear Feasibility Tester, uses the fact that
if we pick any arbitrary x ∈ Rd, then x will violate “many” of the linear constraints in S in
the completeness case. In the soundness case, we use ideas from LP-Type Tester and show
that if we introduce an arbitrary linear optimization function (thus turning our problem into
an instance of linear programming), then a solution that optimizes a small subset of the
constraints will not violate “too many” of the other constraints. We present our algorithm
below along with Theorem 15 that proves its correctness.

Algorithm 2 Linear Feasibility Tester.

Input : d, ε, query access to constraints of S
Output :Accept or Reject

1 r ← d10d/εe
2 R← random sample of size r of constraints from S

3 Create the linear program L: max x1 subject to the constraints in R
4 x← solution of L
5 if L is not feasible then
6 Reject and abort
7 for 2/ε rounds do
8 y ← uniformly random constraint of S
9 if x does not satisfy y then

10 Output reject and abort.

11 Output accept.

I Theorem 15 (Correctness of Linear Feasibility Tester). Given a set S of linear
inequalities in Rd, the following statements hold with probability at least 2/3:

Completeness case: Linear Feasibility Tester outputs accept if there exists x ∈ Rd
that satisfies all of the constraints in S.
Soundness Case: Linear Feasibility Tester outputs reject if at least ε|S| constraints
need to be removed from S for S to be feasible.

I Remark 16. Note that the query complexity of Algorithm 1 is O(d/ε) which is independent
of |S|, the number of constraints. Furthermore, the runtime is polynomial in d/ε since we
are solving a linear programs in d variables and O(d/ε) constraints.

Proof. The proof of the soundness case follows similarly to Theorem 7 using the fact that for
any x, there are at least ε|S| constraints in x such that x violates these constraints. Then the
probability that Linear Feasibility Tester outputs reject in this case can be calculated
to be at least 2/3 using the same bound as Eq. (1) in the proof of Theorem 7.

ICALP 2020



98:10 Property Testing of LP-Type Problems

For the completeness case, we note that if we introduce the optimization function
ϕ(S) = max x1 subject to the constraints in S, then (S, ϕ) is an LP-Type problem of
dimension d (assuming that the constraints are non degenerate which can be assumed by
perturbing the constraints and then taking the limit of the perturbation to 0. For more details,
see [6, 25]). Now let x be the solution to the linear program that we solved in Step 4 of Linear
Feasibility Tester. Using Corollary 13, we know that if |R| = 10dd/εe, then the number of
constraints vr in S that satisfy ϕ(R∪{y}) 6= ϕ(R) is at most vr ≤ (d|S|)/(10d/ε) = ε|S|/10 in
expectation. Knowing that x not satisfying y implies that y is a violator of R, the probability
that x does not satisfy a randomly chosen y is at most ε/10. Thus, using the exact calculation
as in Eq.(2) of Theorem 7, we have that Linear Feasibility Tester outputs accept in
the completeness case with probability at least 2/3, as desired. J

In Section 6 we give a tolerant tester for testing linear feasibility. A tolerant tester accepts
instances that are ε-close and rejects instances that are cε-far for some constant c > 1.

4.2 Testing if Labeled Points can be Linearly Separated
As a direct consequence of the Theorem 15, we can test if a set of points in d dimensions
labeled {+1,−1} can be linearly separated. More formally, we have the following corollary.

I Corollary 17. Given a set S of points in Rd with labels in {+1,−1}, the following statements
hold with probability at least 2/3:

Completeness case: Linear Feasibility Tester outputs accept if there exists a
hyperplane that separates the two sets of labeled points.
Soundness Case: Linear Feasibility Tester outputs reject if at least ε|S| points
need to be removed (or relabeled) for S to be linearly sepearable.

Proof. The proof follows directly from the fact that we can write a linear inequality that
represents a separating hyperplane. For example, if p ∈ S is labeled 1, we want to find x
such that pTx ≥ 1 and if p is labeled −1, we want to find x such that pTx ≤ −1. J

We consider generalizations of this problem where we wish to separate labelled points by
arbitrary functions, rather than just linear hyperplanes. In Section 7 we address the issue of
separating using arbitrary functions when we know the basis of the functions, and the case
of multiple labels.

4.3 Upper Bounds for Canonical LP-Type Problems
We now give direct applications of LP-Type Tester to some canonical LP-Type problems.
The correctness of these applications follows directly from Theorem 7. Our list is not
exhaustive and we only consider some of the more well known LP-Type problems. In all of
the following problems, Theorem 7 tells us that the following statements hold with probability
at least 2/3:

LP-Type Tester outputs accept if ϕ(S) ≤ k (Completeness Case)
LP-Type Tester outputs reject if at least ε|S| constraints need to be removed from S

for ϕ(S) ≤ k to hold (Soundness Case).

Our results are the following:
Smallest enclosing ball: In this problem, ϕ(S) is the radius of the smallest enclosing ball
of a set of points S in Rd. It is known that the dimension of this LP-Type problem is
d+ 1 (see [12]) so we can test if ϕ(S) ≤ k with query complexity O(d/ε) queries.
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Smallest intersecting ball: In this problem, ϕ(S) is the smallest radius ball that intersects
a set of closed convex bodies S in Rd. The dimension of this LP-Type problem is O(d)
([12]) so we can test if ϕ(S) ≤ k with query complexity O(d/ε) queries.
Smallest volume annulus: In this problem, ϕ(S) is the volume of the smallest annulus
that contains a set of points S in Rd. Again, the dimension of this LP-Type problem is
O(d) ( [12]) so we can test if ϕ(S) ≤ k with query complexity O(d/ε).

5 Lower Bounds

In this section, we give matching lower bounds for all the testing problems that we considered
in Section 4.

5.1 Lower Bound for Testing Feasibility of Linear Constraints
Since linear separability is a special case of feasibility of linear constraints, we can lower
bound the necessary query complexity of the latter by providing one for the former. In
particular, we aim to show that Ω(d/ε) queries are needed to determine if a set of points in
d dimensions is linearly separable. By the reduction of linear separability to feasibility of
linear constraints, this implies that Ω(d/ε) constraint queries are needed to test feasibility of
a system of linear constraints, which matches our upper bound.

Our overall approach is to first introduce a set of O(d) points in Rd that have the property
that if we do not look at a large enough collection of these points, they can be separated by
a hyperplane even with arbitrary labels. However, there will exist a labeling of all of the
points such that “many” of the points will have to be removed or relabeled for this labeling
to be separated. The existence of these points is given in Lemma 18 (and is inspired by the
moment curve).

Then, repeating these points with carefully chosen multiplicities allows us to construct
our set S of points. Then a coupon collector argument gives us our desired lower bound on
the query complexity. This argument is formalized in the proof of Theorem 19.

I Lemma 18. There exists a set S of 3d+1 points in Rd that satisfy the following conditions:
1. There exists a labeling of the points of S such that at least d points have to be relabeled

for the points to be linearly separable.
2. Any subset of points of S of size d+ 1 with arbitrary labels in {−1, 1} is linearly separable.

Proof. We construct our set S as follows. Let xi be the point (i1, · · · , id) ∈ Rd for 1 ≤ i ≤
3d+ 1 (note that this set of points is referred to as the moment curve). We prove the first
claim using a standard relationship between the moment curve and polynomials. Assign the
point xi to the label (−1)i. Let k be the number of relabeled points such that S is linearly
separable. Then there exists w ∈ Rd and w0 ∈ R such that Sign(xTi w + w0) matches the
label of every point xi ∈ S. In other words, there exists a polynomial P (x) =

∑d
j=0 cjx

j

such that Sign(P (i)) matches the label of xi. Now note that if there are two consecutive
indices i and i+ 1 that have different labels, then P must have a root in the interval (i, i+ 1).
Originally, there are 3d such alternating intervals. Now note that the relabeling of any point
can decrease the total number of such alternating intervals by at most 2. Hence after k
relabelings, there must be at least 3d − 2k alternating intervals. However, since P is a d
degree polynomial, it must have at most d roots which means 3d − 2k ≤ d and therefore,
k ≥ d, as desired.
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We now prove the second claim. Let xa1 , · · · , xad+1 be a subset of d + 1 points of S.
Without loss of generality, suppose that a1 < · · · < ad+1. We now show that for every
labelings of these d + 1 points, there exists a polynomial of degree d such that the sign
of P (ai) matches the label of xai . Towards this goal, pick t elements b1, · · · , bt of the set
{a2, · · · , ad+1} where t ≤ d. Consider the t+ 1 intervals

[a1, b1), [b1, b2), · · · , [bt−1, bt), [bt, ad+1 + 1).

We can then find a polynomial of degree d such that
the sign of P is constant on I ∩ {a1, a2, · · · , ad+1} where I is any of the t+ 1 intervals
above,
the sign of P alternates between consecutive intervals.

This is possible since we are only specifying the value of P on d + 1 locations. Now the
total number of labelings described by all possible choices of P is given by 2

∑d
t=0
(
d
t

)
= 2d+1

where the factor of 2 comes from specifying the sign of P on the first interval. Note that
2d+1 is exactly the total number of different ways to label d + 1 points, which proves the
second claim. J

With Lemma 18 on hand, we can prove our desired lower bound on the query complexity.

I Theorem 19. Any algorithm that tests if a set S of labeled points in d dimensions can be
linearly separated requires Ω(d/ε) queries.

Proof. Let |S| = n. We create two families of n points in Rd with a specific labeling such
that any S from one family can be linearly separated while any S from the other family
is ε-far from being linearly separable. First, consider the set of 3d + 1 points supplied by
Lemma 18 and the labeling from part 1 of the lemma. The first family F1 consists of picking
a subset of d+ 1 of these points (with the labeling above), repeating d of these points nε/d
times, and repeating the remaining point (1− ε)n times. The second family F2 (again with
the same labeling) consists of picking all of the 3d+ 1 points from Lemma 18, repeating some
3d of these points with multiplicity nε/(3d), and repeating the last point with multiplicity
(1− ε)n.

By Lemma 18, we know that if S is from F1 then S is linearly separable while if S is from
F2, then S is at least ε/(3d) · d = O(ε)-far from separable. Any algorithm that queries points
randomly must discover at least d+ 1 unique points out of the points that were repeated
nε/d time from any S in F2 to discover that this S is O(ε)-far from separable (otherwise, the
points look separable). Call points that are identical “groups”. Now given a random point
from S, the probability of hitting any one group is ε/(3d). Therefore by coupon collector,
the expected number of queries required to hit at least d+ 1 of these 3d groups is at least

1
ε

(
3d
3d + 3d

3d− 1 + · · ·+ 3d
3d− d

)
= 3d

ε
(H3d −H2d−1) = Θ

(
d

ε

)
. J

As a corollary, we have the following lower bound as well. This is due to the reduction from
linear separability to linear program feasibility from the proof of Corollary 17.

I Theorem 20. Any algorithm that tests if n linear inequalities in d dimensions are feasible
requires Ω(d/ε) queries.

We now give matching query complexity lower bounds for the LP-Type problems that we
considered in Section 4.
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5.2 Lower bound for Testing Smallest Enclosing Ball
We first give a lower bound for property testing the radius of the smallest enclosing ball of
a set of points. Our approach is to first construct a set of points in Rj , for any j, whose
smallest enclosing ball can be calculated exactly. This set of points will have the property
that a small enough subset of the points will have a significantly smaller enclosing ball.
Therefore, if an algorithm does not query enough points, it will incorrectly believe that this
set of points can be covered by a ball of small radius. Our construction for this case will be
a regular simplex and explained below. First we prove an auxiliary lemma.

I Lemma 21. The radius of the circumcircle of a unit simplex in Rj is
√
j/(
√

2(j + 1)).

Proof. Note that we can embed a regular j-simplex in Rj+1 using the coordinates {ei}j+1
i=1

where ei is the all zero vector with a single 1 in the ith coordinate. This simplex has edge
length

√
2 so we can scale appropriately to find the circumcircle of a unit simplex. Now the

centroid of this simplex is easily seen to be located at (1/(j + 1), · · · , 1/(j + 1)) which means
that the circumcircle has radius√(

1− 1
j + 1

)2
+ j

(j + 1)2 =

√
j

j + 1 .

Now scaling by 1/
√

2 gives us the desired value. J

I Theorem 22. Any algorithm that tests if a set of n points in Rd can be enclosed by a ball
of radius k, where k is given, requires Ω(d/ε) queries.

Proof. Let k be fixed. We construct two families of points in RO(d) such that any S from
one family can be enclosed by a ball of radius k while any S from the second family is ε-far
from being enclosed by a ball of radius k. Before constructing these families, we first pick `
such that the regular simplex of side length ` in Rd+1 has circumradius k.

Now to create the first family F1, we first pick any d+ 1 points of the regular simplex
with side length ` in R3d+1. Then we repeat one of these points with multiplicity (1− ε)n
and we repeat the other d points with multiplicity nε/d each. To create the second family F2,
we pick a point of the regular simplex with side length ` in R3d+1, repeat it with multiplicity
(1− ε)n, and repeat the other 3d points with multiplicity nε/(3d). Finally, let S be a set of
n points from F2. From Lemma 21, we can check that the circumradius of a regular unit
simplex is an increasing function of the dimension and that any subset of the vertices of
a regular simplex is a regular simplex itself. Therefore, the smallest radius of the points
in S is much larger than k and S is O(ε)-far from being encloseable by a ball of radius k.
However, similar to the argument in Theorem 19, any algorithm that rejects S must have
discovered at least d+ 1 distinct “groups” of repeated points. By the same coupon collector
argument as in the proof of Theorem 19, we have that this task takes at least Ω(d/ε) queries
in expectation. J

As a simple application of Theorem 22, we get the following lower bounds as well.

I Corollary 23. Any algorithm for testing the smallest intersecting ball for n convex bodies
in Rd requires Ω(d/ε) queries.

Proof. The proof follows from the fact that a set of singleton points is also a set of convex
bodies. In this case, the smallest intersecting ball is equivalent to the smallest ball that
encloses these points. Therefore, the same lower bound as in Theorem 22 holds. J
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6 Tolerant Tester for Testing Feasibility of Linear Constraints

We generalize our argument in Section 4.1 by giving a tolerant tester for testing feasibility of
a system of linear constraints. In the tolerant version, we output accept if there only “few”
constraints need to be removed for a set of linear inequalities to be feasible. More formally,
we wish to distinguish the following two cases with probability at least 2/3:

At most cε|S| many inequalities in S need to be removed for S (or flipped) for S to be
feasible, i.e., S is cε-close to being feasible for some fixed positive c < 1 (Completeness
Case).
At least ε|S| many of the constraints need to be removed (or flipped) for the system to
be feasible (Soundness Case).

Our approach is a slightly modified version of Linear Feasibility Tester, Algorithm 2,
that we presented in Section 4.1. The challenge here is the completeness case where we must
accept if we only have a “few” bad constraints. To accomplish this, we carefully select a
solution to a small linear program that we run. For more details, see Algorithm 3. Our main
theorem in this section, Theorem 24 shows that we can perform tolerant testing using the
same query complexity we used for the non tolerant tester in Section 4.1, namely O(d/ε).
However, as we will explain below, the running time of Algorithm 3, Tolerant Linear
Feasibility Tester, is exponential in the running time of Algorithm 2. Our algorithm,
Tolerant Linear Feasibility Tester, is presented below.

Algorithm 3 Tolerant Linear Feasibility Tester.

Input : d, ε, query access to constraints of LP
Output :Accept or Reject

1 r ← d10d/εe
2 R← random sample of size r of constraints from S

3 x← solution of the largest subset R′ of R such that the linear program L: max x1
subject to the constraints in R′ is feasible

4 if No L is not feasible then
5 Reject and abort
6 for 2/ε rounds do
7 y ← uniformly random constraint of S
8 if x does not satisfy y then
9 Output reject and abort.

10 Output accept.

Unlike Linear Feasibility Tester where we run a linear program, we solve a slightly
different program given in step 3 of Tolerant Linear Feasibility Tester. The step
determines the largest feasible subset of these constraints. Note that this step is clearly
exponential in the number of constraints (which is O(d/ε)). Therefore, the overall runtime
of Tolerant Linear Feasibility Tester will be exponential in the runtime of Linear
Feasibility Tester. The correctness of Tolerant Linear Feasibility Tester is
proven in Theorem 24.
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I Theorem 24 (Correctness of Tolerant Linear Feasibility Tester). Given a set S
of linear inequalities in Rd, there exists a constant c < 1 such that the following statements
hold with probability at least 2/3:

Completeness case: Tolerant Linear Feasibility Tester outputs accept if there
exists x ∈ Rd that satisfies (1− cε)|S| of the constraints in S.
Soundness Case: Tolerant Linear Feasibility Tester outputs reject if at least
ε|S| constraints need to be removed from S for S to be feasible.

I Remark 25. Note that the query complexity of Algorithm 3 is O(d/ε) which is independent
of |S|, the number of constraints.

Proof. Note that the proof of the soundness case is identical to the proof of the soundness
case in Theorem 15 since for any x we find in step 3 of Tolerant Linear Feasibility
Tester, there exists at least ε|S| choices of y in step 7 such that x does not satisfy the
constraint y. Then a similar calculation as in Eq. (1) implies that we reject with probability
at least 2/3.

We now focus on the completeness case where we know there is a subset of (1− cε)|S|
constraints that are feasible. We call this the good set, and the rest, the bad set. Consider the
sample R from step 2 of Tolerant Linear Feasibility Tester. The expected number
of constraints from the good set in R is (1 − cε)r. This means at most cεr constraints in
R come from the bad set in expectation. Hence with probability at least 9/10, we know
that the number of constraints from the bad set is at most 10cεr by Markov’s inequality,
which means the number of constraints coming from the good set is at least (1− 10cε)r. We
condition on this event. Now note that one valid subset R′ to use in step 3 of Tolerant
Linear Feasibility Tester is to take all the constraints coming from the good set only.
This results in |R′| ≥ (1 − 10cε). Since we are maximizing |R′|, this means that at most
10cεr of the constraints coming from the good set that are in R will not be included in R′.
Thus, x satisfies at least (1− 20cε)r constraints in the good set with probability at least 9/10.
Now we proceed similarly as the proof of Theorem 15. By Corollary 13, the probability that
x violates any other constraint in the good set is at most

d(n′ − r + 1)
n′(r − d) ≤ dn′

10dn′/ε = ε

10

where n′ is the size of the good set. Furthermore, x can possibly violate any constraint in
the bad set which means that the probability x violates any other constraint is at most
ε/10 + cε < ε/6 for sufficiently small c, i.e. c < 1/15. Then, the probability that we find such
a constraint in 2/ε rounds is at most

1−
(

1− ε

6

)2/ε
≤ 1−

(
1− 1

3

)
= 1

3 .

Therefore, we accept with probability at least 2/3, as desired. Note that we can take any
c < 1/15 in the statement of the Theorem for instance. J

7 Separating Points with Arbitrary Functions and Multiple Labels

7.1 Separating labeled points using arbitrary functions
We can generalize our result from Section 4.2 by separating labeled points using arbitrary
functions: given a family of functions F , we can ask if there is a f ∈ F such that f(p) > 0
for all points with a particular label and f(p) < 0 for all the points with the other label.
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We now translate this problem to a setting with linear inequalities. Our approach is
standard in machine learning and is known as feature maps. If the family F has a finite
basis f1, · · · , fk, meaning that every f ∈ F is a linear combination of f1, · · · , fk, then we
can create a system of linear inequalities as follows. For each point p ∈ S, we can make
a new constraint which is (f1(p), · · · , fk(p))x ≥ 1 (note there that x is a column vector of
variables) if p has one particular label or ≤ −1 if p has another label. Then this system
of linear constraints is feasible iff there are scalars a1, · · · , ak such that

∑
i aifi(p) ≥ 0 for

all p with one label and
∑
i aifi(p) ≤ 0 for all p with the other label. Then our separating

function is precisely f =
∑
i aifi. Note that in this formulation, we have k variables. Thus,

the query complexity is O(k/ε).
As an example, we consider the case that F is the family of polynomials in d variables

with degree ≤ t. The basis of this family is all the possible terms of the form xt11 · · ·x
td
d where

the ti are non-negative and add to at most t. By a standard balls and bins argument, the
number of these terms is

(
t+d
d

)
. For constant t, this is O(dt), which means that our system

of linear constraints has O(dt) variables. Thus, the query complexity is O(dt/ε).

7.2 Separating Points with Multiple Labels

Suppose that in Section 4.2, instead of assigning each point one of 2 labels, we instead chose
to assign it one of ` ≥ 2 labels. One common interpretation of separability for this setup is
to check if each of the

(
`
2
)
pairs of label sets are separable. We modify our notion of ε-far to

reflect this.

I Definition 26. S is ε-far from linearly separable if at least ε|S| many labels in S have to
be changed for S to be separable.

If such a data set is ε-far from separable, then some subset with consisting of two labels
must be ε/

(
`
2
)
-far from separable. As such, we can consider an algorithm that runs Algorithm

Linear Feasibility Tester on each pair of labels with ε′ = ε/
(
`
2
)
and outputs accept if

all these tests output accept. We need to reduce the error probability for each pair such
that the overall error probability of outputting the incorrect answer (acquired by a union
bound) is still at most 1/3. This can be done by using a stronger version of the original
algorithm where we run it O(log `) times and taking the majority answer. By a standard
Chernoff bound argument, the probability this process gives the wrong answer is at most say
1/`3. Thus, we can distinguish separability in this case by running this stronger version over
all pairs of distinct labels, resulting in O(`2 log `) instances of Linear Feasibility Tester,
using ε′ = ε/

(
`
2
)
. So, the total query complexity will be O(d`4 log `/ε).

Additionally, the completeness case has error at most
(
`
2
)
1/`3 = o(1) by a Union Bound

argument. Clearly, the soundness case has error at most 1/`3, since there is one pair of
distinct labels which is ε′-far from separable.
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